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PREFACE

THE author's object in writing this book has been to provide a

practical statement of the principles of Mechanics. The arrangement

adopted is similar to that of his Applied Mechanics for Beginners.

Great pains have been taken to make the treatment adequate ; prin-

ciples have been illustrated by numerous fully worked-out examples,

and exercises for home or class work have been provided at the ends

of the chapters. The working out of typical exercises must be done

by every student of Mechanics, but the mere ability to solve examina-

tion questions is not the only service the study of Applied Mechanics

can render the Engineer. The problems met with in actual engineer-

ing practice often differ greatly from the text-book form of exercise,

and the student of Mechanics, in addition to a sound knowledge of

principles, must learn to appreciate the assumptions involved and the

consequent limitations which arise in their practical applications.

Consequently, the student must be provided with frequent oppor-
tunities for performing suitable experiments under workshop condi-

tions. In the mechanical laboratory he must come into touch with

practical problems, and there learn to test and apply his knowledge of

principles, and in this work he should have the assistance of a teacher

and the criticism of fellow-students. But if the whole value of such

laboratory work is to be secured, no slip-shod working out of results

must be tolerated. In recognition of the supreme importance of the

experience gained in the laboratory, many suitable experiments have

been described, and these have been arranged on p. xi to provide a

connected course of practical work. The nature and scope of the

apparatus available in different laboratories vary greatly, and some of

the experiments included are given as suggestions only, so as to be

applicable to any form of machine or instrument.

Students using the book must have a knowledge of Algebra up to

quadratic equations, and of Trigonometry to the simple properties of

triangles. They should be acquainted also with about half-a dozen
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vi PREFACE

rules of the Calculus, and these are given in Chapter I. Students

able to integrate x
n
dx, and to differentiate #", sin#, and cosx, will be

able to understand practically the whole volume.

Though no particular examination syllabus has been followed, the

book should be of service to students preparing for University degrees
in Engineering, for the examinations of the Institutions of Civil

Engineers and of Mechanical Engineers, and for the higher examina-

tions of the Board of Education and the City and Guilds of London

Institute.

Exercises marked B.E. are from recent examination papers of the

Board of Education, and are reprinted by permission of the Con-

troller of H.M. Stationery Office; those marked I.C.E. are taken

from recent examination papers of the Institution of Civil Engineers,

and are reprinted by permission of the publishers, Messrs. W. Clowes

& Sons. Exercises marked L.U. are reprinted, with permission, from

recent examination papers for B.Sc. (Eng.) of London University.

It is impossible to give in a book of moderate size a complete state-

ment of all subjects of Applied Mechanics. For fuller information on

special matters the student is referred to separate treatises
;
the names

of some of these are noted in the text, and the author takes the

opportunity of acknowledging his own indebtedness to them, especially

to Strength of Materials
> by Sir J. A. Ewing (Cambridge University

Press), and to Machine Design^ by Prof. W. C. Unwin (Longmans).
Sir Richard Gregory and Mr. A. T. Simmons have read the proofs,

and to their expert knowledge of books and book production the

author owes a heavy debt of gratitude. Thanks are also due to Mr.

L. Wyld, B.Sc., Assistant Lecturer at West Ham Institute, who has

read the proofs and checked the whole of the mathematical work and

the answers to the exercises ;
it is hoped that his care has had the

effect of reducing the number of errors to a minimum.

The apparatus represented in Figs. 706, 707 and 715 is made by

Mr. A. Macklow-Smith, Queen Anne's Chambers, Westminster, and

the illustrations have been reproduced from working drawings kindly

supplied by him. The illustration of a chain (Fig. 585) is inserted

by permission of Messrs. Hans Renold, Ltd. The Tables of

Logarithms and Trigonometrical Ratios are reprinted from Mr. F.

Castle's Machine Construction and Drawing (Macmillan).

J. DUNCAN
WEST HAM, September, 1913.
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COURSE OF LABORATORY EXPERIMENTS

INSTRUCTIONS FOR CARRYING OUT
LABORATORY WORK

General Instructions. Two Laboratory Note-books are required ;
in

one rough notes of the experiments should be made, and in the other a

fair copy of them in ink should be entered.

Before commencing any experiment, make sure that you understand

what its object is, and also the construction of the apparatus and instru-

ments employed.
Reasonable care should be exercised in order to avoid damage to

apparatus, and to secure fairly accurate results.

In writing up the results, enter the notes in the following order :

(1) The title of the experiment and the date on which it was

performed.

(2) Sketches and descriptions of any special apparatus or instruments

used.

(3) The object of the experiment.

(4) Dimensions, weights, etc., required for working out the results
;

from these values calculate any constants required.

(5) Log of the experiment, entered in tabular form where possible,

together with any remarks necessary.

(6) Work out the results of the experiment and tabulate them where

possible.

(7) Plot any curves required.

(8) Work out any general equations required.

(9) Where possible, state any general conclusions which may be

deduced from the results, and compare the results obtained with those

which may be derived from theory. Account for any discrepancies.

Notes should not be left in the rough form for several days ; it is much
better to work out the results and enter them directly after the experiments
have been performed.
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PART I.

MATERIALS AND STRUCTURES.

CHAPTER I.

INTRODUCTORY PRINCIPLES.

Definition of terms. Applied mechanics treats of those laws

of force and the effects of force upon matter which apply to works

of human art. It will suffice to define matter as anything which

occupies space. Matter exists in many different forms, and can

often be changed from one form to another, but man cannot create

it, nor can he annihilate it. Any given piece of matter, occupying
a definite space, is called a body. Force may exert push or pull

on a body ; force may change or tend to change a body's state of

rest or of motion.

Statics is that part of the subject embracing all questions in

which the forces applied to a body do not produce a disturbance

in its state of rest or motion. When we speak of a body's motion

we mean its motion relative to other bodies. Rest is merely a

relative term
;
no body, so far as we are aware, is actually at rest

;

but if its position is not changing in relation to other neighbouring

bodies, we say it is at rest. In the same way, when we speak of

a body's motion we mean the change of position which is being
effected relative to neighbouring bodies. Change of the state of rest

or of motion may be secured by the application of a force or forces,

but if the forces applied are self-equilibrating, i.e. balance among
themselves, no change of motion will occur. Kinetics includes all

problems in which change of motion occurs as a consequence of

the application of forces.

There is another division of the subject called kinematics. This

division may be defined as the geometry of motion, and has no

reference to the forces which may be required for the production
D.M. A d



MATERIALS AND STRUCTURES

of jhe; moU3n^ .Problems -arise in kinematics such as the curves

described by moving points in a mechanism, and the velocities of

these points at any instant.

Measurement of matter. Matter is measured by the mass, or

quantity of matter, it contains. The standard unit of mass for this

country is the pound mass, which may be denned as the quantity of

matter contained in a certain piece of platinum preserved in the

Exchequer Office. A gallon of water at 62F. has a mass of 10

pounds. In cases where a larger unit is desirable, the ton, contain-

ing 2240 pounds, or the hundredweight, containing 112 pounds,

may be used. Generally speaking, it is best to state results in tons

and decimals of a ton, or in pounds and decimals of a pound.
In countries using the metric system, the unit of mass employed

is the gram. This may be defined as the quantity of matter con-

tained in a cubic centimetre of pure water at the temperature of

4C. Where a larger unit is required, the kilogram may be used,

being a mass of 1000 grams.
The term density refers to the mass of unit volume of a substance.

Thus, in the British system, the density of water is about 62-5, there

being 62-5 pounds mass in one cubic foot of water. The density of

cast iron in the same system is about 450 pounds per cubic foot.

The density of water in the metric system is i, and of cast iron 7-2,

these numbers giving the mass in grams in one cubic centimetre

of water and cast iron respectively.

Measurement of force. Forces may be measured by com-

parison with the weight of the unit of mass. Thus, the weight of

the one pound mass, or that of the gram, may be taken as units of

force, and as these depend on gravitational effort they are referred

to as gravitational units of force. The attraction exerted by the

earth in producing the effect known as the weight of a body varies

in different latitudes, hence gravitational units of force have the

disadvantage of possessing variable magnitudes. The variation can

be disregarded in many engineering calculations, as it affects the

result to a very small extent only. Other practical gravitational units

of force are the weight of one ton (2240 Ib.) and the weight of

a kilogram (1000 grams or 2-2 Ib. nearly).

An absolute unit of force does not vary, as it is defined in relation

to the invariable units of mass, length and time belonging to the

system. In the British system, the absolute unit of force is called

the poundai, and has such a magnitude that, if it acts on one pound
mass, assumed to be perfectly free to move, for one second, it will
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produce a velocity of one foot per second. The metric absolute

unit of force is the dyne, and will produce a velocity of one centi-

metre per second if it acts for one second on a gram mass which

is perfectly free to move. The poundal is equal roughly to the

weight of half-an-ounce, or, accurately, it is equal to - Ib. weight,
o

g being the rate at which a body falling freely increases its speed.

For all parts of Britain g may be taken as 32-2 in feet and second

units, or 981 in centimetre and second units. On this basis, the

dyne will be - gram weight, or 981 dynes equal one gram weight

nearly.
*

Newton's laws of motion. In connection with the above

definitions, it is useful to study the laws of motion laid down by
Newton. These laws form the basis of all principles in mechanics,

and are three in number.

First law. Every body continues in its state of rest or of uniform

motion in a straight line except in so far as it is compelled by forces

to change that state.

Second law. Change of momentum is proportional to the applied

force, and takes place in the direction in which the force acts.

Third law. To every action there is always an equal and contrary

reaction
; or, the mutual actions of any two bodies are always equal

and oppositely directed.

The first law expresses what is called the inertia of a body, i.e. that

property whereby it resists any effort made to change either the

magnitude of its velocity or the direction of its motion. In the

second law, the term momentum may be here understood to mean

quantity of motion, measured by the product of the body's mass

and velocity. The law expresses the observed facts that change
in the magnitude of the velocity of a given body is proportional

to the force applied, and change in the direction of motion takes

place in the line of the force. The third law also expresses

observed facts. It is impossible to apply a single force; there

must always be an equal opposite force. One end of a string

cannot be pulled unless an equal opposite pull be applied to the

other end. If the body used be free to move and an effort be

applied, the velocity will change continuously and the inertia of

the body provides the resistance equal and opposite to the force

applied.

Experimental measurement of mass and force. Masses may
be compared by means of a common balance (Fig. i). In this
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FIG. i. Common balance.

appliance, a beam AB, pivoted at its centre, will become horizontal,

or will describe small equal angles on each side of the horizontal

when equal forces are applied at A and B. Such equal forces will

arise when bodies C and D, having equal

masses, are placed in the pans. This

follows as a consequence of the fact that

equal masses have equal weights at the

same part of the earth's surface. Further,

no matter at what part of the earth the

balance is used, it will always indicate

equal masses. It therefore follows that such a balance could not

be used to indicate the variation of a body's weight in different

places.

Spring balances (Fig. 2) may be used to measure forces by
observation of the extensions produced in a spring. As equal
masses have equal weights, such balances will indicate

the same scale reading for equal masses, but as it is the ^)
weight of the body which produces the extension of

the spring, and as it is known that the extension is

proportional to the force applied, it follows that change
of weight, such as would be produced by taking the

balance to another part of the earth's surface, will be

evidenced by a different scale reading. As has been

already mentioned, such difference is very small. Spring

balances are generally calibrated in a vertical position,

as shown in Fig. 2, and will not indicate quite the same

force when the balance is used in an inclined or inverted

position. This is owing to zero on the scale being
marked for the spring extension corresponding to the

weights of the parts of the balance suspended from the

spring, but no load on the hook or scale pan. Con-

sequently the zero will change if the balance is used

in any position other than that shown.

Specific gravity. The specific gravity of a substance is the

weight of a given volume of the substance as compared with the

weight of an equal volume of pure water. Specific gravities are

usually measured at a temperature of 60 Fahrenheit.

Let V = volume of a given body in cubic feet,

FIG. 2. Spring
balance.

p = specific gravity of material,

W = weight of body in Ib.
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Then

Hence

= 62-5V Ib. weight if the material is water,

= 62-5V/> Ib. weight for the given substance.

W
62-5V

This expression enables the specific gravity of a given body to be

found roughly by first weighing it, then calculating its volume from

the measured dimensions.

The following table gives the weights and specific gravities of

some common substances :

WEIGHTS AND SPECIFIC GRAVITIES.

Mathematical formulae. The following mathematical notes are

given for reference. It is assumed that the reader has studied the

principles involved, or that he is doing so conjointly with his course

in mechanics. It may be noted here that a knowledge of the

elementary rules of the calculus given below is not required in

reading the first five chapters of this book.

MENSURATION.

Determination of areas.

Square, side s
;
area = s2.

Rectangle, adjacent sides a and b
; area = ab.

Triangle, base b, perpendicular height h
;
area = \b x h.

Triangle, sides a, b and c. zs = a + b + c.

Area = \ls(s
-
a) (s

-
b) (s

-
c).



MATERIALS AND STRUCTURES

Parallelogram ;
area = one side x perpendicular distance from that

side to the opposite one.

Any irregular figure bounded by straight lines
; split it up into

triangles, find the area of each separately and take the sum.

Trapezoid; area = half the sum of

the end ordinates x the base.

A trapezoidal figure having equal
intervals (Fig. 3) ;

area = a ( -- + h^ + h
z + h \

Simpson's rule for the area bounded by a curve (Fig. 4) ; take an
odd number (say 7) of equidistant ordinates ;

then

FIG. 3. Trapezoidal figure.

area = -
(h^ + 4/i.2 + + h^

N G

FIG. 4. Illustration of Simpson's rule.

7

Circle, radius r, diameter d\ area = 7jv2 =-.

4

(Circumference = 2irr = ird.}

Parabola, vertex at O (Fig. 5) ; area OBC =
\ib.

Cylinder, diameter d, length /; area of curved
surface = irdl.

Sphere, diameter d, radius r\ area of curved
surface= ?r^2 = ^-rrr

2
.

Cone\ area of curved surface = circumference
of base x

-|
slant height.

Determination of volumes.

Cube, edge s\ volume =s3 .

Cylinder or prism, having its ends perpendicular g

to its axis
; volume = area of one end x length of

cylinder or prism.

Sphere, radius /; volume = ^Trr
3

.

B
"V

BH... ..$....*<,

FIG. 5. Area of a paia-
bola.

Cone or pyramid', volume = area of base x \ perpendicular height.

TRIGONOMETRY.

A degree is the angle subtended at the centre of a circle by an arc

of TrlTrth of the circumference.
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A radian is the angle subtended at the centre of a circle by an arc

equal to the radius of the circle.

There are 2ir radians in a complete circle, hence

27r radians = 360 degrees.

|TT =270
TT =180

|TT
= 90

Let / be the length of arc subtended by an angle, and let r be the

radius of the circle, both in the same units
;
then angle = - radians.

Trigonometrical ratios. In Fig. 6 let OB revolve anti-clockwise

about O, and let it stop successively in positions OP1} OP2 , OP3 ,

OP4 ;
the angles described by OB are said to be as follows :

P^B, in the first quadrant COB.
P

2OB, in the second quadrant COA.

P
3OB (greater than 180), in the third quadrant AOD.

P4OB (greater than 270), in the fourth quadrant BOD.

Drop perpendiculars such as PjM^ from each position of P on to

AB. OP is always regarded as positive ; OM is positive if on the

right and negative if on the left of O ;
PM is positive if above and

negative if below AB.

The values of the ratios are not affected by the length of the

radius OP ; taking OP to be unity, we have

sinPOM = PM (Fig. 6),

cos POM = OM (Fig. 6),

tan POM = P'B or P'A, depending on the quadrant (Fig. 7).



8 MATERIALS AND STRUCTURES

Figs. 6 and 7 show clearly both the sign and the varying values

of these ratios, and enable the following table to be deduced :

FIG. 6. Trigonometrical ratios. FIG. 7. Tangents of angles.

The following formulae are given for reference :iii
cosec A =

tanA =

sin A'

sin A

sec A

cot A =

cos A'

cos A

cot A
tan A

cos2A + sin2A = i .

cos A '
sin A '

tan2A + i = sec2A ;
cot2A + i = cosec2A.

sin A = cos (90
- A) ; sin A = sin

(
1 80 -

A),

sin (A + B) = sin A cos B + cos A sin B.

cos(A + B) = cos A cos B - sin A sin B.

sin(A
-
B) = sin A cos B - cos A sin B.

cos (A
-
B) = cos A cos B + sin A sin B.

tan A -f- tan B
tan(A + B) =

i -tan A tan B

tan A - tan B
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If the angles of a triangle are A, B and C, and the sides opposite
these angles are a, b and c respectively, the following relations hold :

a = b cos C + c cos B.

a b c

sin A sinB sinC*

a2 = ft + c1 - 2bc cos A.

ALGEBRA.

Solution of simple simultaneous equations. If the given equations are

'i. (O
* ()

then # = ^M ^-r->

Solution of a quadratic equation. If

ax2 + bx + c= o,

then x
20,

CALCULUS.

Differential calculus. Let AB (Fig. 8) represent the relation

of two quantities x and y which are connected in some definite

T O M, Ma X

FIG. 8. Graphic illustration of a differential coefficient.

manner. Consider two points P
l
and P

2
on AB separated by a

short distance PjP2 ; then

*
2 ;

P
2
M

2 =j2
.

The difference between the abscissae OMj and OM2
will be
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(x2
-

XT), and may be written 8x, the symbol S signifying
" the

difference in
"

; similarly with the ordinates PjMj and P
2
M

2
. Hence

8x = x
2
- x

l
= MjM2

= PjK.

fy=y-2-yi = ?2K>.

The ratio of these will be

^ =^2-^l = P2
K

Sx x
2
-x

l PjK*

The value of this ratio depends on the proximity of P! and P
2

.

If these points are taken indefinitely close together, the ratio tends

to take a definite value which depends on the given relationship of

x and y. This value is called a differential coefficient, and serves

to measure the rate of growth ofy with x.

If Pj and P
2 are very close together, PjP2

is practically a straight

line, and we have p T/-

|J
= tanP2

P
1
K.

If Pj and P
2
are indefinitely close together, PjP2

is in the direction

of the tangent PjT drawn to touch the curve at P
l ;

in this case Sy

and Sx are written dy and dx, and the final value of the ratio is

For example, suppose a graph such as AB in Fig. 8 to have been plotted

from the equation, y=-xi
. (i)

Then y+8y=(x+ Sx?
= X*+ 2X,8x+ (8x)*........................... (2)

Taking the difference between (2) and (i) gives

Now (&r)
2

is the square of a quantity which ultimately becomes very

small, and therefore becomes negligible. Hence we may write

~"............................................

Suppose, as another example, we take

y= ax\ ........................................(4)

when a is a constant. It will be evident, on repeating the above process,

that

thus giving the rule that any constant factor appears unaltered in

the value of the differential coefficient.
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Take now the following equation :

y = x* + a (6)

The effect of the addition of a constant a to the right-hand side

of (i) is simply to raise the graph to a higher level above OX in

Fig. 8 ; its shape will be exactly as before, and hence the tangent at

any point will make the same angle with OX. Therefore the

differential coefficient will have the same value as (3), viz.

^-2X
dx~

2X (7)

It will also be clear that, if the equation is

then dy
-j-

= 2ax.
dx

.(8)

(9)

The rule may be expressed that a constant quantity added to the

right-hand side disappears from the differential coefficient.

The following differential coefficients are useful; the methods of

obtaining them may be studied in any book dealing with the calculus.

The symbol e represents the base of the Naperian or hyperbolic

system of logarithms, viz. 2-71828.

DIFFERENTIAL COEFFICIENTS.

Differentiation rules. The following rules may also be stated

here.

If the right-hand side takes the form of the sum of a number of
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terms each depending on x, then the differential coefficient is the sum
of the differential coefficients of the terms taken separately. Thus :

y = ax* + bx1

To differentiate the product of a number of factors, each of which

depends on x, multiply the differential coefficient of each factor by
all the other factors and take the sum. Thus :

dy . ,~ = zx sm x + x2 cos x.
dx

To differentiate a fraction in which both numerator and denomi-

nator depend on x, proceed thus :

diff. coeff. of numerator x denominator

dy _ - diff. coeff. of denominator x numerator

dx square of denominator

EXAMPLE. Let j/=^^.
sin*

The differential coefficient of the numerator is 2;r and that of the

denominator is cos .*, hence, by the above rule :

dy _ ix sin x - x2 cos x
dx sin2x

Supposing we have to find the differential coefficient of

it should be noticed that the given expression, viz. the cube of sin x,

depends on another function of x. The rule to be followed is to

differentiate the expression as given, viz. (sin#)
3
,
the result being

3 (sin #)
2

; then multiply this result by the differential coefficient of

the function on which the given expression depends, viz. sin x, for

which the differential coefficient is cos x.

Hence, -r-= 3 (sin x}
2 cos x

dx
= 3 sin2x cos x.

In successive differentiation, the differential coefficient of the given

function is taken as a new function of x and its differential coefficient

is found
; the latter is called the second differential coefficient, and is

written ^. The operation may be repeated as many times as may

be necessary.
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EXAMPLE. Let

The maximum value of a given function of x may often be found

by application of the following simple method. It will be noted that,

in Fig. 8, at the point in AB for which y has its maximum value,

the tangent to the curve is parallel to OX, and hence -2. for this

point will be zero. The rule therefore is, take the differential

coefficient and equate to zero; this will give the value of x corre-

sponding to the maximum value of y. By inserting this value of x
in the given equation connecting x andj^, the maximum value of y
may be found. Thus :

Let jj/=sin;tr,

-^-
= cos.r=o for the maximum value

Now when cos^r= o, x is either 90 or 270, i.e. or *- radians, hence

Maximum value of y=sin- or sin^.
2 2

As the numerical value of sin - is unity, it follows that the maximum
value ofy is also unity.

As another example, take

y=ax-x\

then,
-j-=a-2x=0',

/. x- for the maximum value ofy.

Maximum value of y= =244
Integral calculus. In this branch of mathematics, rules are

formed for the addition of the indefinitely small portions into which

a quantity may be imagined to be divided. In Fig. 9, OA and OB
are two distances measured along the same straight line from O.

Let these be a and b respectively, then the length of AB will be

AB = -tf ....(i)

The line AB might be measured also by the process of dividing it
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up into a large number of small portions 8x
l9

8x
2 ,

8x
s , etc. The

total length of AB will then be

AB = 8x
t + 8x

2 + 8xB + etc.

= b-a, from (i) (2)

The symbol 2 or
J (sigma) is used to denote the phrase "the

algebraic sum of," and if any expression follows the symbol 2, it is

FIG. 9.

understood to be one only of a number of terms which are all of the

same type. Thus, 2&r means "the algebraic sum of all terms of

which 8x is given as a type." If we write 2*, it is to be understood

that we are to begin taking small portions, such as Sx-^, at a distance

a from the origin, and to finish at a distance b. Hence we may
write (2\ fyx = b-a (3)

In Fig. 10 is shown another example. As before, OA a and

OB =
, and the figure ABCD is constructed by making AD = a

and BC =
^, both being perpen-

dicular to OB. The area of the

figure ABCD may be calculated

by deducting the area of the

triangle OAD from that of the

triangle OBC. Thus :

Area of ABCD
=

(b x \b} -(ay. \d)

_&
2 a2

~
2. 2'

Alternatively, the area may be

estimated by cutting the figure

into strips, such as the one shown

shaded. It is evident from the

construction that its height y is

equal to x
; let 8x be its breadth, then

Area of the strip
= x . 8x (5)

Any similar strip will have a similar expression for its area, hence

Total area of the strips
= I^x 8x (6)

Or
JA |

~4 -

FIG. 10.

__L



MATHEMATICAL FORMULAE 15

The area stated in (5) is taken as that of a rectangle, and hence

omits a small triangle at the top of the strip. If, however, the strips

be taken indefinitely narrow, these triangles will practically vanish,

and the area expressed in (6) will be the area of ABCD. Hence
from (6) and (4), p a2

fy.dx----............................ (7)

In mathematical books, it is shown that if x is raised to a power n

in equation (7), n having any value except
-

i, then the result is as

follows : An+I _ an+l
^>x".dx = - ...................... (8)n -f i

If n is -
i, then the result may be shown to be

, ,

_!:,."."-
-. 2j*-'.,& = 2jf -log, ...................... (9)

If n is zero, then #= i, and we have

^b

axdx = ^b

a dx =
b

-^ = b-a................... (10)

The above are examples of definite integrals, taken between given

limits a and b the sum may be stated in an indefinite manner,

leaving the limits to be inserted afterwards. Thus :

It is also shown in mathematics that a constant term c should be

added to the result. The value of c depends on the conditions of

the problem, and can be found usually from the data. The com-

plete solution of (n) would thus be
-

fm ..................... (I2
\

dx
Similarly, 2 =

\ogex + <:. ..................... (13)
oc

If a constant factor is given on the left-hand side, it will appear
unaltered on the right-hand side. Thus :

x*
a \-c.

3

If a number of terms be given, the result will be obtained by

applying the rules to each term separately and then summing for

the total. Thus :
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The rules (8), (9), (12) and (13) should be learned thoroughly.

Some examples are given.

EXAMPLE i. Find the area of the triangle given in Fig. 11.

Taking a narrow strip parallel to the base and at a distance y from O,
let the breadth of the strip be 8y and

*
its length b.

*^ Area of the strip
= b . 8y.

KT b VNow ==; ;

FIG. ii. Area of a triangle.

.'. area of the strip
=

jj .y 8y.

Any other similar strip will have a

similar expression for its area, hence

Total area=2"u

_B/H_
2

_o_
2 \

~H\2 2)

=BH
2

EXAMPLE 2. Find the volume of a cone of height H and radius of

base R (Fig. 12).

In this case take a thin slice parallel to the base ;
let the radius of the

slice be r and its thickness h . Then

Volume of the slice= 7rr2 . S/i.

Now r
R~H

volume of the slice=

Any other similar slice will have a similar

expression for its volume, 'hence
FIG. 12. Volume of a cone..

Total volume^

R2 H 3

No constant of integration need be added in either of these examples.

Instances where a constant is necessary will occur later.
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The following table of indefinite integrals is given here for reference.

INTEGRALS.

EXERCISES ON CHAPTER I.

1. A masonry wall is trapezoidal in section, one face of the wall being
vertical. Height of wall, 20 feet

;
thickness at top, 4 feet

;
thickness at

base, 9 feet. The masonry weighs 150 Ib. per cubic foot. Find the

weight of a portion of the wall i foot in length.

2. A trapezoidal figure, having equal intervals of 10 feet each, has
ordinates in feet as follows : o, 100, 140, 120, 80, o. Find the total area
in square feet.

3. Draw a parabolic curve on a base a= 60 feet
;
the heighty feet of

the curve at any distance * from one end of the base is given by

Find the area by application of Simpson's rule ;
check the result by use

of ,the rule : area= 4 where b is the maximum height of the curve.

4. Write down the differential coefficients of the following :

(a) y 5*
3

. (d) y= sin2* + cos 2*. '^
(b} y= 3*

2 - y*
5

. (e) y= sin3*+ cos 3*.

(r) y= 2 sin*- 3 cos*. (/)j/=3tan*-cos*.

5. In Question 3, from a point M on the base, distant 15 feet from one

end, draw a perpendicular to cut the curve at a point P. At P draw a

tangent to the curve cutting the base produced in a point T. Measure
PMPM and MT and evaluate the ratio ~. The result gives the differential

P,M f
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coefficient for the curve at P ; compare this result with that obtained by
x^ dv

differentiation ofy= 2x-- and putting x\^ in the expression for -*-.

How do you account for the discrepancy, if any ?

6. Take the equation y= (^-x)x. Find the value of x for which y
attains its maximum value, and find also the maximum value ofy. Check
your result by plotting a graph from the equation.

7. Write down the indefinite integrals of the following :

(a) ycWx. (d) (2x*+ cos x)dx.
. dO

8. Find the value of the following expression when R
t
= i2 inches and

R2
= 6 inches. No constant of integration is required.'

9. Find the value of the following expression when 6 = 4 inches and
H = 8 inches. No constant of integration is required.



V

CHAPTER II.

FORCES ACTING AT A POINT.

Representation of a force. Any force is specified completely
when we are given the following particulars : (a) its magnitude, (b) its

point of application, (c) its line of direction, (d) its sense, i.e. to state

whether the force is pushing or pulling at the point of application.
A straight line may be employed to represent a given force, for it

may be drawn of any length, and so represent to a given scale the

magnitude of the force. The end of the line shows the point of applica-

tion, the direction of the line gives the direction, and an arrow point
on the line will indicate the sense of the force. Thus a pull of 5 Ib.

acting at a point O in a body (Fig. 13) at 45 to the horizontal

would be completely represented by a line OA,
of length 2 1" to a scale of J" to a Ib., and an

arrow point as shown. OA is called a vector ; any

physical quantity for which a line of direction must

be stated in order to have a complete specifica-

tion is called a vector quantity. Other quantities,

such as mass and volume, into which the idea of FJG. 13. Representa-
tion of a force,

direction does not enter, are called scalar quantities.

The expression "force acting at a point" must not be taken

literally. No material is so hard that it would not be penetrated by
even a very small force applied to it at a mathematical point. What
is meant is that the force may be imagined to be concentrated at the

point in question without thereby affecting the condition of the body
as a whole.

Forces acting in the same straight line. A body is said to

be in equilibrium if the forces applied to it balance one another.

Thus, if two equal and opposite pulls P, P (Fig. 14) be applied at a

point O in a body, both in the same straight line, they will evidently
balance one another, and the body will be in equilibrium.

Examples of this principle occur in ties, and in struts and columns-
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Ties are those parts of a structure intended to be under pull (Fig. 15),

struts and columns are those parts intended to be under push (Fig. 16).

These parts remain at rest under the action of the equal and opposite

forces applied in the same straight line.

It is impossible for a single force to act alone. To every force there

must be an equal and opposite force, or what is exactly equivalent to

an equal and opposite force. The term reaction is often used to

distinguish the resistance offered by bodies to which a given body is

FIG. 14. Two equal
opposite forces.

500 to.

SOOlb.

FIG. 15. Equilibrium
of a tie.

500 Ib.

^50011.
FIG. 16. Equilibrium

of a column.

connected when forces are applied to the latter body. An example
of the use of the term will be found in the reactions of the piers

supporting a bridge girder. Loads applied to the girder are balanced

by the reactions of the piers.

If several forces in the same straight line act at a point, the point

will be in equilibrium if the sum of the forces of one sense is equal to

the sum of those of opposite sense. Calling those forces of one

sense positive and those of opposite sense negative, the condition

may be expressed by stating that the algebraic sum of the given

forces must be zero. Thus, the forces P15
P

2 ,
P

3 ,
etc. (Fig. 17), will

balance, provided
P

1 + Pf -Pt-P4-Pi*a
or, 2P = o,

the interpretation being that the algebraic sum of all the forces of

which one only is given as a type immediately after the symbol 2

must be equal to zero.

Suppose in a given case it is found that the algebraic sum of the

given forces is not zero. We may infer from this that a single force

may be substituted for the given forces without altering the effect.

Thus, in Fig. 18, calling forces of sense from A towards B positive,

we have 2 + 3 + 5 _8-i=+i.
The given forces can be replaced by a single force of i Ib. weight of

sense from A towards B. The single force which may be substituted
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for a given system of forces without altering the effect on the body is

called the Resultant of the system. To find the resultant R of the

system we have been considering above, we have

The resultant R may be balanced by applying an equal opposite

force in the same straight line, and, since R is equivalent to the given

system of forces, the same force would also balance the given system.

FIG. 17. Forces in the same straight line. FIG. 1 8.

Any force which balances a given system of forces is called the

equilibrant of the system. Thus, the equilibrant E of the system
shown in Fig. 18 is a force of i Ib. weight of sense from B
towards A.

Two intersecting forces. To find the resultant of two intersecting

forces, the following construction may be employed. Let P and Q
be two pulls applied to a nail at O (Fig. 19 (a)); their joint

tendency will be to carry the nail upwards to the right, and the

resultant must produce exactly the same tendency. Set off, in the

direction in which P acts, OA, to some suitable scale, equal to P,

(a)

FIG. 19. Resultant and equilibrant of two intersecting forces.

and OB, to the same scale, equal to Q and in the direction in which

Q acts. Complete the parallelogram OACB, and draw its diagonal
OC. This diagonal will represent R completely, the magnitude being
measured by the length of OC to the same scale. The method is

called the parallelogram of forces. P and Q are called components

of R.

As R is equivalent in its effects to P and Q jointly, we may apply
either P and Q together, or R alone, without altering the effect on the



22 MATERIALS AND STRUCTURES

nail. This may be expressed by stating that the resultant may be

substituted for the components, or vice versa.

Substituting R for P and Q (Fig. 19 (<)), we may balance R by

applying an equilibrant E = R as shown. Again, replacing R by P
and Q (Fig. 1 9 (<r) ),

it will be evident that P, Q and E are in

equilibrium.

Experimental verification. The most satisfactory proof that the

engineering student can have of the truth of the parallelogram of

forces is experimental.

EXPT. i. Parallelogram of forces. In Fig. 20 is shown a board
attached to a wall and having three pulleys A, B and C capable of

FIG. 20. Apparatus for demonstrating the parallelogram of forces.

being clamped to any part of the edge of the board. These pulleys
should run very easily. Pin a sheet of drawing paper to the board.

Clamp the pulleys A and B in any given positions. Tie two silk

cords to a split key ring, pass a bradawl through the ring into the

board at O, and lead the cords over the pulleys at A and B. The
ends of the cords should have scale pans attached, in which weights

may be placed. Thus, known forces P and Q are applied to the ring
at O. Take care in noting these forces that the weight of the scale

pan is added to the weight you have placed in it. Mark carefully the

directions of P and Q on the paper, and find their resultant R by
means of the parallelogram Qabc. Produce the line of R, and by
means of a third cord tied to the ring apply a force E equal to R,

bringing the cord exactly into the line of R by using the pulley C
clamped to the proper position on the board. Note that the proper

weight to place in the scale pan is E less the weight of the scale pan,
so that weight and scale pan together equal E. If the method of

construction is correct, the bradawl may be withdrawn without the

ring altering its position.
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In general it will be found that, after the bradawl is removed, the

ring may be made to take up positions some little distance from O.

This is due to the friction of the pulleys and to the stiffness of the

cords bending round the pulleys, giving forces which cannot easily

be taken into account in the above construction.

Notice that, before attempting to apply the parallelogram of forces,

both given forces must be made to act either towards or from the point of

application. Thus, given P' pushing and Q pulling at O (Fig. 21),

the tendency will be to carry O downwards to the right. Substitute

P = P', pulling at O for P'
; complete the parallelogram OACB, when

OC will give the resultant R.

It will also be noticed that any one of the forces P, Q and E

(Fig. 19 (c)) will be equal and opposite to the resultant of the other

two if the three forces are in equilibrium.

Rectangular components of a force. Very frequently it becomes

useful in a given problem to deal with the components of a given

FIG. 2i. Parallelogram offerees applied
to a push and a pull.

FIG. 22. Rectangular components
of a force.

force instead of using the force itself. These components are

generally taken along two lines at 90 intersecting on the line of the

given force. Thus, given P acting at O (Fig. 22), and two lines OA
and OB at 90 intersecting at O, and in the same plane as P. The

components will be found by making OC equal to P, and completing

the parallelogram of forces OBCA, which in this case is a rectangle.

S equal to OB and T equal to OA will be the rectangular com-

ponents of P.

The following will be seen easily from the geometry of the figure :
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Also, let the angle COA = a
; then

OA
^i

= COS a,

OA = OC . cos a
;

/. T=P.cosa.

AC .

?^ = sin a,Again, oc
= OC.sina,
= P.sina.

Triangle of forces. It will now be understood that the conditions

which must be fulfilled in order that three forces whose lines inter-

sect may be in equilibrium are : (a) the forces must all be in the

same plane, i.e. uniplanar ; (b} their lines must intersect in the same

point; (c) any one of them must be equal and opposite to the

resultant of the other two forces.

Condition (c) may be stated in another manner. In Fig. 23, P and

Q have a resultant R, found by the parallelogram of forces OACB.
A force E has been applied equal and

opposite to R as shown; hence the

forces E, P and Q are in equilibrium.

The following relation evidently holds :

R : Q : P = OC : OB : OA.

Note the order in which the letters

of the lines have been written ; thus,

R is represented by OC, not by CO,
the order being so chosen as to show

the sense of the force. Now E is equal to R, and OA is equal to

BC ; hence we may write

E:Q:P = CO:OB:BC,
OC having been altered to CO so as to give the proper sense to E.

Expressed in words, the proportion states that the three forces in

equilibrium axe proportional respectively to the sides of a triangle taken in

order. The triangle OBC in Fig. 23 may be drawn anywhere on

the paper, and is called the triangle of forces for the forces E, Q, P.

EXAMPLE i. Given three uniplanar forces P, Q, S' (Fig. 24) acting at

O ; test for their equilibrium.

Using a convenient scale of force, draw ab, be and ca' parallel and pro-

portional respectively to the forces P, Q and S'. If the given forces are in

equilibrium, the lines so drawn will form a closed triangle. In Fig. 24,

FIG. 23.



FORCES ACTING AT A POINT

it will be noticed that there is a gap aaf

. S' will therefore not equilibrate

P and Q, but may be made to do so if it is redrawn as S, parallel and

proportional to ca, the closing line of the triangle abc.

FIG. 24. Triangle offerees. FIG. 25. Triangle of forces applied to

a push and a pull.

EXAMPLE 2. Given two forces P and Q (Fig. 25) acting at O
;
find

their equilibrant.

It will be observed that, in applying the triangle of forces, there is no

necessity for first making both the given forces pushes or pulls, provided
attention is paid to drawing the sides of the triangle in proper order.

Thus, draw ab to represent P and be to represent Q ; then ca will repre-

sent the equilibrant, which should now be drawn as E acting at O, parallel

and proportional to ca and of sense shown by the order of the letters ca.

Note carefully that the problem is not finished until E has been applied
on the drawing acting at the proper place O.

EXAMPLE 3. Three given forces are known to be in equilibrium

(Fig. 26 (a) ) ;
draw the triangle offerees.

This example is given to illustrate a con-

venient method of lettering the forces called

Bow's Notation. This method will be found to

simplify many of the problems which have

to be discussed, and consists in giving letters

to the spaces instead of to the forces. In

Fig. 2,6(0) this plan has been carried out by

calling the space between the 4 Ib. and the

2 Ib. A, that between the 2 Ib. and the 3 Ib. B,

and the remaining space C. Starting, say,

in space A and crossing over into space B,

a line AB (Fig. 26()) is drawn parallel and

proportional to the force crossed, and the

letters are so placed that their order A to B represents the sense of that

force. Now cross from space B into space C, and draw BC to represent

completely the force crossed. Finish the construction by crossing from

(a)

(b)

tion of Bow's
lotation.

Applicati
Notation
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space C into space A, when CA in Fig. 26 (b) will represent the third force

completely.

Examining these diagrams, it will be observed that a complete rotation

round the point of application has been performed in Fig. 26 (#), and that

there has been no reversal of the direction of rotation. Also that, in

Fig. 2.6(b\ if the same order of rotation be followed out, the sides correctly

represent the senses of the various forces. Either sense of rotation may
be used in proceeding round the point of application, clockwise or anti-

clockwise, but once started there must be no reversal.

Relation of forces and angles. In Fig. 27 (a) there are three

given forces in equilibrium, viz., P, Q and S, and in Fig. 27^) is

shown the triangle of forces for them. From what has been said

above, we may write

P:Q:S = AB:BC:CA.

It is shown in trigonometry that the sides of any triangle are pro-

portional to the sines of the opposite angles. Hence, in Fig. 2 7 (/),

AB : BC : CA = sin y : sin a : sin ft

or, P : Q : S = sin y : sin a : sin ft

Q

A-/' / fa.)X--..C' *

FIG. 27, Relation offerees and angles.

It will be noticed in Fig. 2 7 (a), as shown by dotted lines, that a, ft

y are respectively the angles between the produced directions of

S and P, P and Q, and Q and S ; also that the angles or spaces

denoted by A, B and C in the same figure are the supplements of

these angles. As the sine of any angle is equal to the sine of its

supplement, we have, in Fig. 2 7 (a),

P : Q : S = sin C : sin A : sin B.

We infer from this that each force is proportional to the sine of the

angle between the other two forces.

Any number of uniplanar forces acting at a point. The net

effect of such a system of forces may be found by taking components
of each force along two rectangular axes which meet in the point of

intersection and are in the same plane as the given forces. It is best,
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in order to comply with the usual trigonometrical conventions

regarding the algebraic signs of sines and cosines, to arrange the

forces to be either all pulls or all pushes.

In Fig. 28, Pj, P
2 ,

P
3
and P

4 are the given forces acting at O,

and OX and OY are two rectangular axes. The angles of direction

Sifld^t

FIG. 28. System of uniplanar forces acting at a point.

of the forces are stated with reference to OX as a
1?

a
2 ,

a
g and a

4
.

Taking components along OX and OY, we have :

Components along OX, P
T
cos a

x ,
P

2
cos a

2 ,
P

3
cos a

3 ,
P

4 cos a
4 .

Components along OY, Pjsinaj, P
2
sina

2 ,
P

3
sina

3 ,
P

4 sina4 .

Paying attention to the algebraic signs of these, it will be observed

that components acting along OX towards

the right are positive, and those acting
'

towards the left are negative ; also, of the

components acting along OY, those acting

upwards are positive, while those acting

downwards are negative. Each of these

sets of components may have a resultant, O r
Rx

A

or they may be in equilibrium. Suppose FIG. 29. Resultant of the systemrr shown in Fig. 28.

each to have a resultant, and denote

that along OX by Rx ,
also that along OY by RY ; then

P! cos a
1
+ P2

cos a
2 + P3 cos a

3 + P4 cos a4
= Rx ,

P! sin aj + P2
sin a

2 + P3
sin a

3 + P4 sin a
4
= RY .

Using the abbreviated system of writing these, we have

2Pcosa = R (i)

(a)

The system being now reduced to two forces Rx and RY acting in

lines at 90 to each other, we have for the resultant (Fig. 29),

(3)
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Also, tana
CA = OB
OA~OA
Ry

(4)

It may so happen that either Rx or Rv may be zero, in which case

the resultant of the system is a force acting along either OX or OY,

depending upon which of the forces is zero. For equilibrium of the

given system both Rx and RY must be zero. This condition may
be written 2Pcosa = o, (5)

2Psina = o; (6)

a pair of simultaneous equations which will serve for the solution

of any problem connected with the equilibrium of any system of

uniplanar forces acting at a point.

Graphical solution. A graphical solution of the same problem

may be obtained by repeated application of the parallelogram of

forces. Thus, given P, Q, S and T acting

at O (Fig. 30). First find Rj of P and S,

then R2 of Q and T by applications of the

parallelogram of forces. The resultant R is

found by a third application of the parallelo-

gram, as shown. A better solution is

obtained by repeated application of the

triangle of forces.

In Fig. 31(0), four forces P, Q, S and T
are given. To ascertain the net effect of the

system, first find the equilibrant Ej of P and

Q by the triangle of forces ABC (Fig. 31 (^)). E
l
reversed in sense

will give RI} the resultant of P and Q, and is so shown in Fig. 31(0),

and is represented by AC in Fig. 3i(^). Now find the equilibrant
B

p

FIG. 31. Resultant by application of the triangle offerees.

E
2
of Rj and S by means of the triangle of forces ACD (Fig. 31

E
2 reversed gives R

2 ,
the resultant of R

x
and S, and hence the

resultant of P, Q and S. R
2 will be represented in Fig. 3 1 (b} by
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AD. R
2 and T being the only forces remaining in Fig. 31(0),

their resultant R will be found from the triangle of forces ADA'

(Fig. 3i(^)), which gives their equilibrant E
3 , represented by A'A,

and on reversal gives R.

It will be noticed that, had the given forces been in equilibrium,

E
3 would have been zero, and A' would have coincided with A.

This case is shown in Fig. 32, giving a closed polygon ABCD, the

sides of which, taken in order, represent respectively the given forces.

We therefore infer that a given system of uniplanar forces acting at a

point will be in equilibrium, provided a closed polygon can be drawn which

shall have its sides respectively parallel and proportional to the given forces

taken in order. Should the polygon not close, then the line required
in order to close it will represent the equilibrant of the given forces,

and, the sense being reversed, the same line will give the resultant

of the given system. The figure ABCD (Fig. 32^)) is called the

B

FIG. 32. Polygon of forces.

polygon of forces for the given forces. Note, as before, that no problem
can be regarded as completed until R or E, as the case may require,

is actually shown on the drawing acting at its proper place O.

EXPT. 2. Pendulum. Fig. 33(0) shows a pendulum consisting of

a heavy bob at A suspended by a cord attached at B and having a

spring balance at F. Another cord is attached to A and is led

horizontally to E, where it is fastened. A spring balance at D
enables the pull to be read. Find the pulls T and P of the spring
balances F and D respectively when A is at gradually increased

distances x from the vertical. Check these by calculation as shown

below, and plot P and x.

Since P, W and T are respectively horizontal, vertical and along
AB, it follows that ABC is the triangle of forces for them. Hence

-,

/I

Wtana. (0
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Also,
TAB/

Wseca

FIG. 33. Experiment on a pendulum.

Measure /, also x and h, for each position of the bob, and calculate

P and T by inserting the required quantities in (i) and (2).

Tabulate thus : Weight of bob in Ib. =W =

Length of AB in inches = /=

The curve will resemble that shown in Fig. 34. Note how nearly

straight it is for comparatively small values of x.

EXPT. 3. Eoof truss. In Fig. 35 is shown a simple model of a
roof truss consisting of two rafters made of wooden bars AB and
BC hinged by means of a bolt at B and connected at the bottom

by a cord AC
?
wjiich takes the place of the tie-bar in the actual truss.
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Compression spring balances D and E and an ordinary spring
balance F enable the forces in the various parts to be measured.
C is pivoted by two pointed set screws, p LBS
as shown in the end elevation, and a

roller at A, also shown in end elevation,

permits the span of the truss to be
altered by adjusting the length of the

cord AC. A weight W is hung from B.

Set up the apparatus, and observe the

push in each rafter AB and CB, and also

the pull in the tie AC. Measure and
note the lengths AB, BC and AC when
the load is on. Repeat the experiment,

using different weights and spans, being
careful in each case to note the altered

dimensions of the parts. Compare each

set of readings with those found by appli-
cation of the triangle of forces, as shown
below.

Make an outline drawing of the truss

to scale (Fig. 36 (a)). If the truss is symmetrical, each rafter will

give equal pushes, say P lb., to the joints at B, A and C. The tie

will apply equal forces T, T at A and C. The reactions of the

supports, Rj and R
2 , may be assumed to be vertical. Considering

2-0 3-0 4-0 5-0
FT.

FIG. 34. Graph of P and x for a

pendulum.

FIG. 35. Experimental roof truss.

the forces acting at the point B, which is in equilibrium, and setting
off ab to represent W (Fig. 36 ()), and ac and be parallel respectively
to AB and BC, we have the triangle of forces abc for P, W and P
acting at B. Now ca represents P acting at B, and ac may be
taken to represent P of opposite sense acting at A. Draw cd

parallel to AC. Then the triangle acd is the triangle of forces for

P, Rj and T acting at A. In the same way bed is the triangle of
forces for P, R2 and T acting at C. Therefore,

The results for P and T as obtained from the diagram will agree
fairly well with those obtained from the spring balances, provided due
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allowance be made for the effects of the weights of the various parts
before the application of W. To do this, remove W and note the

readings of the balances. These readings should be deducted from

FIG. 36. Forces in a simple roof truss.

those taken after W is applied, when the corrected results will show
the forces in the parts due to the application ofW alone. The results

should be tabulated thus :

From your experiments, give a general statement of how P and T
vary for the same value of W, but with increasing lengths of span.

JL*

FIG. 37. Unsymmetrical roof truss.

The case of an unsymmetrical roof truss may be worked out in a

similar manner, and is shown in Fig. 37, the lettering of which

corresponds with that of Fig. 36,
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EXPT. 4. Derrick crane. A derrick crane model is shown in

Fig. 38, consisting of a post AB firmly fixed to a base board which

W

FIG. 38. Model derrick crane.

is screwed to a table ; a jib AC has a pointed end at A bearing in a

cup recess, a pulley at C and a compression spring balance at D. A
tie BC supports the jib and is of adjustable length ;

a spring balance

for measuring the pull is inserted at F. The weight is supported

by a cord led over the pulley at C and attached to one of the

screw-eyes on the post. The inclination of the jib may be altered

by adjusting the length of BC, and the inclinations of EC and BC
may be changed by making use of different screw-eyes.

FIG. 39. Forces in a derrick crane.

Find the push in the jib and the pull in the tie for different values

of W and different dimensions of the apparatus by observing the

spring balances. Check the results by means of the polygon of

forces.

The methods are similar to those adopted for the roof truss

(p. 30). It may be assumed that the pulley at C merely changes
the direction of the cord without altering the force in it. Hence
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p =W (Fig. 39 (a) ).
The polygon of forces is shown in Fig.

in which w _ ^A n _ ,j

The observed and graphical results should be compared in tabular

form as before :

EXPT. 5. Wall crane. A model wall crane is shown in Fig. 40 (a).

Its construction is similar to that of the derrick crane, and the method
of experimenting is the same. The outline diagram is given in

(b)

o
VST

(C)

FIG. 40. Experimental wall crane.

Fig. 40 (b\ and the polygon of forces in Fig. 40 (c).
These are lettered

to correspond with those for the derrick crane, and will be followed

readily.

Forces acting at a point but not in the same plane. In Fig. 41

is shown in outline a pair of sheer legs such as is used for moving

heavy loads. Two legs AB and BC are jointed together at the top B,

and are hinged at the ground at A and C so as to be capable of

rotating as a whole about the line AC in the plan. The legs are

supported in any given position by means of a back leg DB, which is
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jointed to the other legs at B, and has its end D capable of being
moved horizontally in the direction of the line BD in the plan. The
load W is hung from B and produces forces T, Q, Q in the three

legs ;
these are shown acting at B. It will be noted that T andW are in

the same vertical plane, and that the two forces Q, Q are both in the

inclined plane which has A'B' for its trace in the elevation. As the

legs are symmetrical, the forces Q, Q will be equal, and will have a

resultant S, which will fall in the same vertical plane as T and W.

FIG. 41. Forces in a pair of sheer legs.

Draw the triangle of forces abc by making ab represent W, and be and

ca parallel to A'B' and B'D' respectively. Then ca gives the pull T
in the back leg, and cb gives the force S. To obtain the forces Q, Q,
rotate the plane of ABC about the line AC, as shown, until it lies on

the ground, when the true shape of the triangle ABC will be seen in

the plan as ABjC. Mark off B
X
E to represent S, and draw the

parallelogram of forces BjGEF, when the equal lines GBj and FB
X

will give the values of the equal forces Q, Q.
A tripod is worked out in Fig. 42. Three poles AD, BD and CD

are lashed together at their tops, and have their lower ends resting on

the ground. Often the poles are equal in length, but for greater

generality they have been taken unequal in the example chosen. To
draw the plan (Fig. 42), first construct a plan of the triangular base

ABC from the given distances between the feet of the poles. Con-

struct the triangles AFC and EEC by making AF equal to the length

of the pole AD, BE equal to that of BD, and CF and CE each equal

to that of CD. It is clear that AFC and BEC are respectively the
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true shapes of ADC and BDC when rotated about the lines AC and

BC respectively, so as to lie on the ground. To find the position of

D in the plan, draw FD and ED intersecting at D and perpendicular

respectively to AC and BC.

Let a weight W be hung from D, and let P, Q and S be the forces

in the legs acting at D. P and W will be in the same vertical plane,

and may be balanced by a third force Z applied in the same vertical

plane and also contained by the plane of ADC. The line of Z in

the plan will be *DG, obtained by producing BD. To obtain a true

FIG. 42. Forces in a tripod.

view of the forces P, W and Z, take an elevation on the ground line

xy, which is parallel to BD ;
in this elevation, B'D' is the true length

of the pole BD. The lines of P and Z are shown by B'D' and

G'D' in this view (Fig. 42). W will be perpendicular to xy, and

by making D'b equal to W and drawing the parallelogram D'abc,

the values of P and Z will be given by #D' and cD' respectively.

To obtain Q and S, we have in the plan their lines lying on the

ground at AF and CF, and GF will be the line of Z. Make Fe equal

to Z and construct the parallelogram Ydef, when Q and S will be

given by d and /F respectively.

EXERCISES ON CHAPTER II.

1. Two pulls are applied to a point, one of 4 Ib. and the other of 9 Ib.

Find graphically the magnitude and direction of the resultant when the

forces are inclined to each other at angles of (a) 30, (&) 45, (c) 120.

Check your results by calculation.

2. Answer Question i, supposing the 4 Ib. force to be a push.
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3. A pull P of 5 Ib. and another force Q of unknown magnitude act

at 90. They are balanced by a force of 7 Ib. Find the magnitude of Q.

4. Answer Question 3, supposing P and Q .

intersect at 45.

5. A bent lever (Fig. 43) has its arms at ^p
90 and is pivoted at C. AC = 1 5 inches, BC = 6

inches. A force P of 35 Ib. is applied at A
at 1 5 to the horizontal, and another Q is applied
at B at 20 to the vertical. Find the magnitude
of Q and the magnitude and direction of the

reaction at C required to balance P and Q.

6. A body weighing 24 Ib. is kept at rest

on an incline which makes 40 with the hori-

zontal by a force P which is parallel to the

plane (Fig. 44). Assume that the reaction R FIG. 43 .

of the plane is at 90 to its surface, and find P.

7. Answer Question 6, supposing P to be horizontal.

8. Four loaded bars meet at a joint as shown (Fig. 45). P and Q are

in the same horizontal line
;
T and W are in the same vertical ;

S makes

FIG. 44.

45 with P. Given that

and T.
I5 tons, W=I2 tons, S= 6 tons, find Q

9. Lines are drawn from the centre O of a hexagon to each of the

corners A, B, C, D, E, F. Forces are applied in these lines as follows :

From O to A, 6 Ib.
;
from B to O, 2 Ib. ;

from C to O, 8 Ib.
;
from O to

D, 12 Ib.
;
from E to O, 7 Ib.

;
from F to O, 3 Ib. Find the resultant.

10. Two equal bars AC and BC are hinged at C (Fig. 46). A and B
are capable of moving in guides in the straight line AB. A constant

force P of 40 Ib. is applied at C in a direction at 90 to AB, and is

balanced by equal forces Q, Q applied at A and B in the line AB.
Calculate the values of Q when the angle ACB has values as follows :

170, 172, 174, 176, 178, 179, 1 80. Plot Q and the angle ACB from

your results. (The arrangement is called a toggle joint.)

11. Five forces meet at a point O as shown (Fig. 47), and are in

equilibrium. In the front elevation, P, Q and S are in the plane of the

paper and T is at 45 to the plane of the paper ; Q makes 135 with S.

In the side elevation T and V are in the plane of the paper. V is per-

pendicular to the plane containing P, Q and S, and T makes 45 with V.

Given Q = 4o tons, T= 25 tons, find P, S and V.
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12. In a hinged structure, pieces BO and CO meet at the hinge O, and
a force of 2 tons acts upon O in the direction AO. The angle AOB is

115, BOC is 15 and the angle AOC is 130 ; find the forces in the two

pieces and say whether they are struts or ties. (B.E.)

FIG. 46.

fruntElevation, Side.'Elevation,.

FIG. 47.

13. There is a triangular roof truss ABC
;
AC is horizontal, the angle

BCA is 25 and BAC is 55 ;
there is a vertical load of 5 tons at B.

What are the compressive forces in BA and BC? What are the vertical

supporting forces at A and C ? What is the tensile force in AC ? Find
these answers in any way you please. (B.E.)

14. Each of the legs of a pair of sheer legs is 45 feet long ; they are

spread out 23 feet at their base. The length of the back stay is 60 feet.

If a load of 40 tons is being lifted at a distance of 15 feet, measured in a

perpendicular line from the line joining the feet of the two legs, find the

forces in the legs and in the backstay due to this load. (It may be
assumed that the load is simply hung from the top of the legs.) (B.E.)

15. A tripod has the following dimensions : The apex point is O, and
the lengths of the three legs AO, BO and CO are respectively 18-0 feet,

17-5 feet and 16 feet. The lengths of the sides of the triangle formed by
the feet AB, BC and CA are 9-0 feet, 9-5 feet and 10 feet respectively.
Find graphically, or in any other way, the forces which act down each leg
of the tripod when a load of 10 tons is suspended from it. (B.E.)

16. If a rigid body be acted on by two non-parallel forces whose points
of application are different and be kept at rest by a third force, how must
this third force act, and what must be its magnitude ? A straight light
rod xyz is pivoted freely at x, and the point y is attached to a pin -z/,

vertically above JT, by a light cord
; xy is 3 feet, xv is 4 feet, yv is 2 feet,

yz is 2 feet
;
from z is hung a weight of 30 Ib. Find graphically the

tension in the cord. (I.C.E.)

17. If three non-parallel forces are in equilibrium, prove that their lines

of action must be concurrent. A uniform plank AB has length 6 feet and

weight 80 pounds and is inclined at 40 to the vertical. Its lower end A
is hinged to a support, while a light chain is fastened to a ring four feet

vertically above A and to a point on the plank five feet from A. Find

graphically, or otherwise, the tension in the chain and the magnitude and
direction of the action of the hinge at A. (The weight of AB may be
concentrated at the centre of the plank.) (L.U.)

18. Three cylinders, A, B and C, alike in all respects, are arranged
as follows : A and B rest on a horizontal table and their curved surfaces

touch one another. C rests on the top, its curved surface being in

contact with both A and B. Each cylinder weighs 6 Ib. Find, by
calculation, the mutual pressure between C and A, also what minimum
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horizontal forces must be applied to A and B, passing through their

axes, in order to preserve equilibrium. Frictional effects are to be

disregarded.

19. Three similar spheres rest on a horizontal table and are in

contact with each other. A fourth sphere, similar to the others, rests

on the top of the three spheres. Each sphere weighs 10 Ib. Find the

pressure communicated by the top sphere to each of the other three

spheres. Neglect frictional effects.



CHAPTER III.

PARALLEL FORCES.

Parallel forces. Confining ourselves for the present to two forces

only, there are two cases to be considered, viz. forces of like sense

and forces of unlike sense. To find the resultant of two parallel

forces P and Q (Fig. 48 (a) )
of like sense, the following method may be

employed. Let the given forces act at 90 to a rod, at the points A
and B respectively. The equilibrium of the rod will not be dis-

, / 4 .S a

3 /B
R /

/ *

'k

FIG. 48. Resultant of two parallel forces.

turbed by the application of equal opposite forces S, S, applied in

the line of the rod at A and B. By means of the parallelogram of

forces A&tt, find R
x
of P and S acting at A

;
and by means of the

parallelogram of forces B<?/#, find R
2

of Q and S acting at B.

Produce the lines of Rj and R2
until they intersect at O, and let R

T

and R
2
act at O. Apply the parallelogram of forces Qhkg to find R

of Rj and R
2

. R will clearly be the resultant of P and Q, and will

balance P and Q if its sense be reversed. By measurement it will

be found that R is equal to the sum of P and Q.
The resultant of two parallel forces of unlike sense may be found

by the same process. The construction is shown for two such
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forces, P and Q, in Fig. 48 (b) ; the lettering of this diagram corre-

sponds with that of Fig. 48 (a), and may be followed without further

explanation. If the diagram be measured, it will be found that R is

equal to the difference of P and Q.
Moment of a force. The moment of a force means the tendency of a

force to turn the body on which it acts about a given axis. The moment
of a given force depends upon (a) the magnitude of the force, and

(b) the length of a perpendicular dropped from the axis of rotation

on to the line of action of the force, and is therefore measured by

taking the product of these quantities. Thus, in Fig. 49, the body
is free to rotate about O, and a force P is acting

on it. Draw OM at 90 to P, then

Moment of P = P x OM.
To state the units in which a given moment

is measured, both the unit of force employed
and the unit of length must be mentioned.

Thus, in the above case, if P is in Ib. weight FIG. 49. Moment of a

and OM in feet, the units will be Ib.-feet. Other

units which may be used are ton-foot, ton-inch, gram-centimetre, etc.

The sense of the moment of a force is best stated by reference to

the direction of rotation of the hands of a clock. Thus the moment
of a given force will be clockwise or anti-clockwise according as it

tends to produce the same or opposite sense of rotation as that of

the hands of a clock.

Principle of moments. The resultant moment of two or more

forces, all of which tend to rotate the body on which they act in the

same sense, will be found by first calculating the moment of each

force, and then taking the sum If some of the forces have

moments of opposite sense, these may be designated negative, and

the resultant moment will be found by taking the algebraic sum.

Should the resultant moment be zero, the body will be in equilibrium

so far as rotation is concerned. This leads to the statement that

a body will be in equilibrium as regards rotation provided the sum of the

clockwise moments applied to it is equal to the sum of the anti-clockwise

moments. This is called the principle of moments.

EXAMPLE i. A horizontal rod AB, the weight of which may be ne-

glected, has a pivot at C (Fig. 50), and has two vertical forces P and Q
applied at A and B respectively. Find the relation of P and Q if the

rod is in equilibrium.
Let AC=#,
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Taking moments about C,

clockwise moment = anti-clockwise moment,

_
Q a

It will be seen from this result that the forces are inversely propor-
tional to the segments into which the rod is divided by the pivot. It will

also be evident that the equilibrant of P and Q acts through C.

AC~~ B k- ------ 6

FIG. 50. FIG. 51.

EXAMPLE 2. A horizontal rod BC, the weight of which may be ne-

glected, has a pivot at C, and has two vertical forces P and Q of unlike

sense applied at A and B respectively (Fig. 51). Find the relation of

P and Q if the rod is balanced.

Let AC = #,

BC =&

Taking moments about C,

Q *
Again we may say that each force is proportional to the distance of

the other force from the pivot, and that the equilibrant of P and Q acts

through C.

EXAMPLE 3. A horizontal rod AB, the weight of which may be ne-

glected, has a weight W applied at C and is

,. . supported at A and B, the reactions P and Q
~*~ ~

being vertical (Fig. 52). Find P and Q.
B

Let AB = ,,

then BC =/-.
Taking moments about B,

Px/=W(/-) + (Q*o),

P=(^)W (i)

Taking moments about A,

a= (Qx/) + (Pxo),

W (2)
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It is of interest to find the sum of P and Q, using their values as found

above ;
thus (l-a\ a

=
W-ji-~+^

=w.

Resultant of two parallel forces. Examining the results of these

examples together with what has been said regarding two parallel

forces on p. 40, we may state that the resultant of two parallel forces

has the following properties :

(1) The resultant is equal to the sum or diflerenee of the given forces

according as they are of like or unlike sense.

(2) The resultant is parallel to the given forces and acts nearer to the

larger ; it falls between the given forces if these are of like sense and outside

the larger force if of unlike sense.

(3) The perpendicular distances from the line of the resultant to the

given forces are inversely proportional to the given forces.

We may state properties (i) and (3) algebraically :

R=PQ, (i)

!= (=0

A special case. The resultant of two equal parallel forces of

opposite sense (Fig. 53) cannot be determined from these equations.

Here Q is equal to P, hence

R=P-P=c

FlG. 53. A couple.

These results show that no single force can

form the resultant of such given forces, and we may infer from this

that the resultant effect is to produce rotation solely. The name

couple is given to this system.

Eesultant of a number of parallel forces. In Fig. 54 is shown a

horizontal rod AB acted on by a number of parallel vertical forces

W
15
W

2 ,
W

3 ,
P and Q. For the rod to be in equilibrium under the

action of these forces, the following conditions must be complied with :

(i) the forces must not produce any vertical movement, either upwards
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or downwards : (2) they must not produce any rotational movement, either

clockwise or anti-clockwise.

The first condition will be satisfied provided the sum of the

upward forces is equal to that of the downward forces ; hence

The second condition will be satisfied if, on taking moments
about any point such as A, the sum of the clockwise moments is

equal to that of the anti-clockwise moments, hence

W& +W2
*

2 4-W3
*

3
- Pa + Qb.

Supposing that it is found that the sum of the downward forces is

not equal to that of the upward forces, then the rod may be equilibrated

by application of a force E equal and opposite to the difference of

these sums
; thus E = (

W
l +W2 +W3)

-
(P + Q).

FIG. 54. Resultant of parallel forces.

The distance x from A at which E must be applied (Fig. 54) may
be found by taking moments about A ; thus

Ex = (W^ +W2
#

2 +W3
#

3 )
-
(Pa + Q<).

Having thus found the magnitude, position and sense of E, the

resultant of the given forces may be found by reversing the sense of E.

We have therefore the following rules for finding the resultant of

a number of parallel forces P
15
P

2 ,
P

3 ,
etc.

R = 2P, (r)

(2)

or,
__

:

R

(3)

Equation (i) will give the magnitude of R, and its position will be

given by calculating x, obtained by taking moments about any con-

venient point as indicated by equation (2).
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EXAMPLE i. Four parallel forces act on a rod AB as shown (Fig. 55 (a)).

Find their resultant.

R=2P
=2+5+7+3
=^7 lb., of sense downward.

Taking moments about A, we have

feet.

=92,

.l 7lb.i 3/&1.

lh----
j

---x ---
'->[ ;

f-2-x ; fR i

------s'-- '
------ --
u ---------6

------ ^J

7'

FIG. 55.

EXAMPLE 2. Parallel forces act on a body as shown in Fig. 5 5 (b). Find
their resultant.

2)-8
= 9

- 8=1 lb., of sense downward.

It is convenient to take moments about a point O on the line of the 3 lb.

force.

(3 xo)+(4 x iJ)-(8 x 4) + (2 x 6J),

3=-j[7 feet.

The negative sign indicates that R falls on the left side of O.

EXAMPLE 3. A beam of 16 feet span rests on supports at A and B
and is loaded as shown (Fig. $6()). Find the reactions of its supports.

Taking moments about B we have

x 13),

P= 2-765 tons.

Taking moments about A we have

Q x i6= (2X2)+(ix5)+(fx
Q = 1-484 tons.
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To check the work we have

2765 + 1-484 = 2 + 1 +|+|,
4-249=4-25,

results which agree within the limits of accuracy of the answers found for

P and Q.

I J5-
Y2fonj|

Y^fcn

I t"" I f""
1

16 -*

FIG. 56. Reactions of the supports of beams.

EXAMPLE 4. A beam rests on supports at A and B (Fig. 56^)), its

ends overhanging the supports, and the beam is loaded as shown. Find

the reactions P and Q.

Taking moments about B, we have

tons.

Taking moments about A, we have

ioQ=98-6,
Q= 9-2 tons.

To check the work, we have

15 = 15.

Graphical method of finding the reactions of a beam. The
method will be illustrated by reference to Fig. 57, which shows a

beam simply supported at A and B and carrying a single load W.

Taking a base line CD projected from the drawing of the beam, set

off CE at right angles to CD, and of length to scale to represent W.

Join DE and project W downwards so as to intersect CD and DE in

F and G. Taking moments about B, we have

W*

From the similar triangles ECD and GFD, we have

CE = FG
CD FD'
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or
WFG

.

Q

.(2)

FIG. 57. Beam carrying one load ; reactions found graphically.

Hence FG represents P to the same scale that CE represents W.

The value of Q may be found from

Q = W-P.

Or, by using the same construction, Q may be found by making
DH equal to W, joining CH cutting FG in K, when FK gives the

value of Q (Fig. 57).

FIG. 58. Graphical solution of P for a beam carrying several loads.

If the beam carries several loads (Fig. 58), the construction for P
should be carried out for each load as indicated ;

the total sum of the
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intercepts will give the value of P. Q may be found by means of a

similar construction carried out for the other end of the beam, and

the result may be checked by comparing the sum of P and Q with

the sum of the given loads.

Centre of parallel forces. Let two parallel forces P and Q act on

a rod AB (Fig. 59). Their resultant R will divide AB in the pro-

portion P:Q = BC:AC (i)

Let the lines of P and Q be rotated to new positions P', Q',

without altering the magnitudes. Through C draw DCE perpen-
dicular to P' and Q'. Then R', the resultant of P' and Q', will

divide DE in inverse proportion to P' and Q'. Inspection of Fig.

59 will show that the triangles ACD and BCE are similar, hence

EC:DC=BC:AC
= P:Q

from (i). It therefore follows that R' passes through the same point

C. This point is called the centre of the parallel forces P and Q.

E

(o)
w

FIG. 59. Centre of parallel forces. FIG. 60. Centre of gravity.

If there are a number of parallel forces, it will be seen easily that

their resultant always passes through the same point, whatever may
be the inclination of the forces. A common example of this occurs

in the case of the weight of a body. Each particle in the body

possesses weight, hence gravitational effort on the body is really a

large number of forces directed towards the earth's centre, and these

will be parallel and vertical for any body of moderate dimensions.

It is not possible to incline the directions of the forces in this case,

but the same effect may be produced by inclining the body. The

weights of all particles will still be vertical, but their directions will be

altered in relation to a fixed line AB in the body (Fig. 60 (a and ^) ).

Supposing the line CD of the resultant weight W to be marked on

the body in Fig. 60 (a), and to be marked again as EF in Fig. 60 (),
the intersection G of these lines of W would be the centre of the
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weights of the composite particles. The name centre of gravity is

given to this point
Centre of gravity by calculation. The general method of calcu-

lation will be understood by reference to Fig. 61. The body is

supposed to be a thin sheet of material. Take two coordinate axes

FIG. 61. Centre of gravity of a thin sheet.

OX and OY. First let OX be horizontal; the weights of the

particles being called ze/j,
w

2 ,
ze>

3 , etc., and their coordinates

)' (^3^3)' etc -> we nave
5 by taking moments about O,

+ etc.) x = wl

or,

It is evident that 2w gives the total weight W of the sheet, hence

Now turn the sheet round until OY is horizontal
; the lines of

direction of the weights will be parallel to OX, and, by taking
moments about O, we have

+ etc)y =

Draw a line parallel to OX, and at a distance y from it, and
another parallel to OY at a distance x

; the intersection of these

gives the centre of gravity G.

D.M,
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The position of the centre of gravity in certain simple cases may
be seen by inspection. Thus for a slender straight rod or wire, it lies

at the middle of the length. In a square or rectangular plate G
lies at the intersection of the diagonals.

A circular plate has G at its geometrical centre. The position of

G in a triangular plate may be found by first imagining it to be cut

into thin strips parallel to BC (Fig. 62).

The centre of gravity of each strip will lie

at its centre of length ;
hence all these

centres will lie in DA, where D is the

centre of BC, and hence DA contains

the centre of gravity of the plate. In the

same way, by taking strips parallel to AB,
the centre of gravity will lie in CE, where

E is the centre of AB. Hence G lies at

FIG. 62. Centre of gravity of a the intersection of DA and CE, and it
triangle. . .

is easy to show by geometry that DG is

one-third of DA. Hence the rule that G lies one-third up the line

joining the centre of one side to the opposite corner.

Advantage is taken of a knowledge of the position of G in thin

plates having simple outlines in applying equations (i) and (2) above.

The following examples will illustrate the method.

EXAMPLE i. Find the centre of gravity of the thin uniform plate shown

in Fig. 63.

Take axes OX and OY as shown and let the weight of the plate per

square inch of surface be iv. For convenience of calculation the plate is

divided into three rectangles as shown, the respective centres of gravity

being G1? G2 and G3 . Taking moments about OY, we have

7/{(6x i) + (8x i) + (3>< i)}*=w(6x i x a)+w(8'x i

- 26-5x= S
I 7

=
1^56

inches.

Again, taking moments about OX, we have

=
5-8 inches.

EXAMPLE 2. A circular plate (Fig. 64) 12 inches diameter has a hole

3 inches diameter. The distance between the centre A of the plate and
the centre B of the hole is 2 inches. Find the centre of gravity.
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Take AB produced as OX, and take OY tangential to the circumference

of the plate. It is evident that G lies in OX. Taking moments about

OY, we may say that the moment of the plate as made is equal to that of

YI

FIG. 63. FIG. 64.

the solid disc diminished by the moment of the material removed in

cutting out the hole. Let w be the weight per square inch of surface, D
the diameter of the plate and d that of the hole. Then

D*

4
'

7T<t
2

Weight of solid disc

Weight of piece cut out w .

4

w . *. c , /TrD 2 irdz\
Weight of plate as made= -ze/

)

\ 4 4 /

Take moments about OY, and let OG = .r,

_=
"D2 -^2

828= =6-13 inches.

Other cases of symmetrical solids which may be worked out by

application of the same principles are given below.

Any uniform prismatic bar has its centre of gravity in its axis, at

the middle of its length.

A solid cone or pyramid has the centre of gravity one-quarter up
the line joining the centre of tbe base to the apex.



MATERIALS AND STRUCTURES

A cone or pyramid open at the base and made of thin sheet metal

has its centre of gravity one-third up the line joining the centre of

the base to the apex.

Graphical method for finding the centre of gravity. The follow-

ing method of finding G by construction

in the case of a thin sheet abed (Fig. 65)
is sometimes of service. Join bd and find

the centres of gravity ^ and c^ of the

triangles abd and cbd; join <y2
. Again,

join ac, and find the centres of gravity c
z

and c of the triangles abc and adc\ join

FIG. 65. Centre of gravity c% and c, cutting cfa in G, the centre of
found graphically. ^^ Qf^ ^^

States of equilibrium of a body. The equilibrium of a body will

be stable, unstable or neutral, depending on whether it tends to return

(a) (d)

FIG. 66. Stable and unstable equilibrium.

to its original position, to capsize, or to remain at rest when it is

slightly disturbed from its original position. A body at rest under

the action of gravity and supporting forces

depends for its state of equilibrium on the

situation of its centre of gravity. A cone

gives an excellent example of all three

states ;
when resting on its base on a hori-

zontal table the equilibrium is stable

(Fig. 66 (a)), for on slightly disturbing it

(Fig. 66 ()), R and W conspire to return

it to its original position. If resting fR

on its apex, the equilibrium is unstable
/T-- ~/ V\ v i ^ j- . i /-r-

FIG. 67. Neutral equilibrium.

(Fig. 66 (c) ) ; a slight disturbance (r ig.

66 (^)) shows that R and W conspire to overthrow it. If resting on

its curved surface on a horizontal table (Fig. 67), the equilibrium is
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neutral, for, no matter what the position may be, R and W act in

the same vertical line, and so balance.

Reactions of the supports of a beam. In calculating the moment

of the weight of a given body about a given axis, we may imagine

that the whole weight is concentrated at the centre of gravity. This

enables us to deal with problems on beams carrying distributed loads.

The following example will make the method clear.

EXAMPLE. A beam is supported at A and B (Fig. 68). The section

of the beam is uniform and its weight is 200 Ib. per foot run. It carries

*i

,
, Of

!.~4'--Ji 10

FIG. 68. Reactions of the supports of a beam.

a load of 500 Ib. per foot run uniformly distributed over 9 feet of the

length as shown. Find P and Q.

The centre of gravity of the beam lies at G
l
at a distance of 7 feet

from B. G2 is the centre of gravity of the distributed load, and lies at

9^ feet from B.

Total weight of beam=W!= 200 x 14= 2800 Ib.

Total weight of load =W2
= 500 x 9 =4500 Ib.

Apply Wj at Gj and W2 at G2 ,
and take moments about B to find P :

P=(2800x7)+ (45

10

= 6235 Ib.

Again, take moments about A to find Q :

(2800 x 3)+ (4500 x^)
10

= 106 Ib.

Checking the results, we have

62354-1065 = 2800+ 4500,

7300-7300.

Parallel forces not in the same plane. In Fig. 69 are shown four

bodies, one at each corner of the horizontal square ABCD. The

weights of these bodies act vertically downwards, and hence are not
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all contained in the same vertical plane. Denoting the weights of the

bodies by WA ,
WB ,

Wc and WD ,
we may proceed to find the centre

of gravity in the following manner. The resultant weight (WA +WB)

of the weights at A and B will act at G
l ,
which divides AB in inverse

proportion to WA and WB ;
i.e.

G
1
E:G

1
A =WA :W*.

In the same way, the position of G2 where the resultant (Wc +WD)

ofWc and WD acts may be found from :

G2D:G2
C =WC :WD .

The resultant weight of all four bodies is equal to

and will act at G which may be found from the following proportion

G2G : G,G = (WA +WB) :
(
Wc +WD).

FIG. 69. Parallel forces not in the same plane. FIG. 70. Pressure on table having
three legs.

Having thus determined the position of G, we may invert the

problem and state the results in this way. Let ABCD be a square

plate supported on legs at A, B, C and D. Let a weight having a

magnitude (WA +WB +Wc +WD)
be placed at the point G, the

position of which has been calculated as above, then it will be evident

that the pressure on the legs owing to this single load will have

respectively the values given in the first problem, viz. WA ,
WB ,

Wc

and WD . Strictly speaking, this problem is indeterminate, depend-

ing, as it does, on the exact equality of length of the legs, on their

elastic properties and on the levelness of the floor on which they
rest. A table having three legs gives a problem capable of exact

solution independent of these conditions.

Given a table resting horizontally on three legs at A, B and C, as

shown in plan in Fig. 70. Let a weight W be placed at any point

G, and let it be required to find the pressure on each leg due to W.
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It will be noticed that if one of the legs, say A, be lifted slightly, the

table will rotate in a vertical plane about the line BC. This indicates

that the pressure on A may be calculated by taking moments about

BC. Draw GM and AN perpendicular to BC, and let PA be the

reaction of the leg A ; then,

PA xAN =WxGM,

In the same way, PB may be

found by taking moments about

AC, and Pc by taking moments

about AB. The results may be

checked from

EXPT. 6. Principle of moments.

Fig. 7 1 shows a wooden disc which

is free to rotate about its centre

on a screw driven into a wall

board. Attach cords to various points on the face of the disc and

apply different forces by means of weights as shown. Let the disc

come to rest under the action of these forces, and test the truth of

the principle of moments by calculating the sum of the clockwise

moments and also that of the anti-clockwise moments.

EXPT. 7. Reactions of a beam. Fig. 72 shows an apparatus con-

sisting of a wooden beam supported by means of two hanging spring

FIG. 71. Apparatus for illustrating the

principle of moments.

n

FIG. 72. Apparatus for determining the reactions of a beam.

balances. Apply various loads and calculate the reactions of the

supports. Make allowance for the weight of the beam and also
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for any distributed loads by concentrating them at their respective
centres of gravity. Repeat the experiment with altered loads and

different positions of the points of support. Make
a table showing in each case the calculated

reactions and also those read from the spring
balances.

EXPT. 8. Centre of gravity of sheets. The
centre of gravity of a thin sheet may be found by
hanging it from a fixed support by means of a

cord AB (Fig. 73) ;
the cord extends downwards

and has a small weight W, thus serving as a

plumb-line. Mark the direction AC on the sheet

and then repeat the operation by hanging the

sheet from D, marking the new vertical DE. G
will be the point of intersection of AC and DE.

Carry out this experiment for the sheets of metal

or millboard supplied.

EXPT. 9. Centre of gravity of a solid body. The centre of gravity
of a body such as a connecting rod (Fig. 74) may be found by
balancing it on a knife edge, which may be arranged easily by use

of V blocks and a square bar of steel. G will lie vertically over

Ow
FIG. 73. Experiment

on the centre of gravity
of a sheet.

<r

''/'////S/////

FIG. 74. Experiment on the centre of gravity of a solid body.

the knife edge when the rod is balanced. Carry out this experiment
on the bodies supplied, in each case making a sketch of the body and

recording on the sketch the dimensions necessary for indicating the

position of G.

EXERCISES ON CHAPTER III.

1. A uniform horizontal rod AB is pivoted at its centre C, and carries

a load of 12 Ib. at D and another of 20 Ib. at E. D and E are on

opposite sides of C, CD and CE being 8 inches and 12 inches respectively.
If balance has to be restored by means of a 14 Ib. weight, find where it

must be placed. What will be the reaction of the pivot ?

2. A rod AB carries loads of 3 Ib., 7 Ib. and 10 Ib. at distances of 2

inches, 9 inches and 15 inches respectively from A. 'Find the point at

which the rod will balance. Neglect the weight of the rod.

3. Fig. 75 shows an arrangement of a right-angled bent lever ABC
carrying a load of 40 Ib. AB and BC are 12 inches and 3 inches respec-

tively and AB is horizontal. C is connected by a horizontal link CE to a
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vertical lever DF, which is pivoted at D. DF and DE are 15 inches

and 3 inches respectively. The arrangement is balanced by a cord FG
passing over a pulley at G and carrying a load W. Find W, neglecting
the weights of the various parts and also friction.

4. A lever safety valve for a steam boiler has the following dimensions :

Diameter of valve, 3 inches
;
distance from fulcrum to valve centre, 4^

inches
; weight of valve and its attachment to the lever, 4^ Ib

; distance

from fulcrum to centre of gravity of the lever, 14 inches ; weight of

lever, 7 Ib. The weight on the end of the lever is 90 Ib. Find its

distance from the fulcrum if the valve is to open with a steam pressure
of 70 Ib. per square inch.

5. A uniform beam 20 feet long weighs i| tons, and is supported at

its ends A and B. A uniformly distributed load of ^ ton per foot run

extends over 10 feet of the length measured from A, and a concentrated

load of 3 tons rests at a point 4 feet from B. Find the reactions of the

supports by calculation.

40/6.
FIG. 75-

6. A beam 18 feet span carries loads of 2 tons, 4 tons and 8 tons at

distances measured from one support of 3 feet, 8 feet and 12 feet respec-

tively. Find graphically the reactions of the supports. Neglect the weight
of the beam.

7. A uniform beam weighs 2 tons and is 24 feet long. It is supported
at a point A 6 feet from one end, and at another point B 4 feet from the

other end. There is a concentrated load of i tons at each end and
another of 3 tons at the middle of the beam. Find the reactions of the

supports by calculation.

8. Three weights of 4 Ib., 8 Ib. and 12 Ib. respectively are placed at

the corners A, B and C of an equilateral triangle of 2 feet side. Find the

centre of gravity.

9. A letter L is cut out of thin cardboard. Height, 3 inches ;

breadth, 2 inches
;
width of material, inch. Find the centre of gravity.

10. A solid pyramid has a square base of 3 inches edge and is

5 inches high. It rests on its base on a board, one end of which may
be raised. The edges of the base of the pyramid are parallel to the

edges of the board, and slipping is prevented by means of a thin strip
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nailed across the board. Find, by drawing or otherwise, the angle which
the board makes with the horizontal when the pyramid just tips over.

11. A flat equilateral triangular plate of 4 feet side is supported horizon-

tally by three legs, one at each corner. A vertical force of 112 pounds is

applied to the plate at a point which is distant 3 feet from one leg and
1 8 inches from another. Determine the compressive force in each leg

produced by this load. (B.E.)

12. A scale-pan of a balance with unequal arms is weighted in such a

way that the beam is horizontal when no masses are placed in the pans.
A body when placed in the two pans successively is balanced by masses

P and Q in the opposite pans. Prove that its mass is \/PQ. (L.U.)

13. A horizontal platform is supported on three piers ABC forming a

triangle in plan. AB = 6 feet
; AC = 8 feet

;
BC = 8 feet. The centre of

gravity of the platform and load carried is distant 5 feet from A and
4 feet from B. Find the proportion of the load carried by each of the

three piers. Show that, if there were four piers instead of three, the

reactions could not be determined without further information (I.C.E.)



CHAPTER IV.

PROPERTIES OF COUPLES. SYSTEMS OF UNIPLANAR
FORCES.

Moment of a couple. Consider the couple formed by the equal

forces Pj and P
2 (Fig. 76). Let d be the perpendicular distance, or

arm, between the lines of the forces.

It may be shown, by taking moments
in succession about several points A,

B, C, D, that the moment of the couple

is the same about any point in its plane,

and is given by Pd.

Thus, taking moments about A, we

have

Moment of the couple
=

(Pj X o)
-
(P2

X d) FlG ?6i_A couple has the same moment
r> j / \ about any point in its plane.

--tV*' ..................W
the negative sign indicating an anti-clockwise moment.

Taking moments about B, we have

Moment of the couple = (P2
x o)

-
(Pj x d)

Taking moments about C gives

Moment of the couple = -
(Pl

x a)
- P

2(d- a)

--V ....... .................. (3)

Taking moments about D, we have

Moment of the couple = (P2
x V)

- P
l (d+ b]

= -Pi* ........................... (4)

As the forces are equal, the four results are identical, thus proving
the proposition.

Equilibrant of a couple. It has been seen (p. 43) that no single

force can be the resultant of a couple, hence no single force can
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equilibrate a couple. It will now be shown that another couple of

equal opposite moment applied in the same plane, or in a parallel plane,

will balance a given couple.

In Fig. 77 are shown two couples, one having equal forces P
l
and

P
2 ,
and the other couple having equal forces Qx

and Q2
. Produce

the lines of these forces to intersect

at A, B, C and D, and let a and b be

the arms of the P and Q couples

respectively. From A draw AM and

AN perpendicular to P
l
and Qx

re-

spectively. Then AM =
a, and AN = b.

The triangles AMC and AND are

similar, hence

AC:AM = AD:AN,
AC:AD=AM:AN

~*W (i)

Now if the couples have equal moments, we have

FIG. 77. Two equal opposing couples
are in equilibrium.

or Q:P = a: (2)

Hence, AC and AD may be taken to represent Q and P respec-

tively to some scale of force.

As ACBD is a parallelogram, it follows that the resultant of P,

and Qj acting at B will be R = AB.

Also the resultant R
2
of P

2
and Q2 acting at A will be

R
2
= BA.

c

FIG. 78. Equal opposing couples in parallel planes are in equilibrium.

As R! and R
2
are equal, opposite, and in the same straight line,

they balance; hence, the given couples are in equilibrium. We
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may therefore state that couples of equal opposite moment acting

in the same plane are in equilibrium, and either couple may be

said to be the equilibrant of the other couple.

In Fig. 78 is shown a rectangular block having equal forces P
x

and P
2 applied to its vertical front edges AD and CB, and other

equal forces P
l
and P

2 applied to the vertical back edges FG and

HE. Let these forces be all equal, when the block will have a pair

of equal opposite couples acting in parallel planes. That these

couples balance may be seen by taking the resultant R
x

of the

forces Pj, Pj, and also the resultant R
2
of the other equal pair

P
2 ,

P
2

. These resultants are equal and opposite and act in the

same straight line, and hence are in equilibrium.

Eesultant of a couple. We have now seen that a couple can be

balanced by the application in the same plane, or in a parallel plane,

of a second couple having an equal opposite moment. Supposing
the forces of the second couple to be reversed in sense, it is evident

1

FIG. 79. Single-handed tap wrench. FIG. 80. Double-handed tap wrench.

that the effect of this couple on the body will be identical with that

of the first couple. We may say now that either couple is the resultant

of the other, i.e. the effect on the body as a whole will be the same,

no matter which couple be applied to it.

This proposition may be stated in a different way, viz. a couple

may be moved from any given position to another position in the same

plane or in a parallel plane, without thereby altering its effect on the body

as a whole.

Owing to the equality of the forces forming a couple, the applica-

tion of a couple to any body will not tend to move it in any

direction, but will merely tend to set up rotation. For example,
in tapping a hole, the use of a single-handed tap wrench (Fig. 79)

will tend to bend the tap and to spoil the thread ;
a double-handed

wrench enables a couple to be applied giving pure rotation to the

tap (Fig. 80). It is evident that the same turning effort may be



62 MATERIALS AND STRUCTURES

obtained by means of small forces and a large arm, or by larger

forces and a smaller arm, a fact which we may state as follows : The

forces of a couple may be altered in magnitude provided the arm be altered

so as to make the moment the same as at first.

The case of a ship having screw propellers affords an example of

the balancing of couples in parallel planes. Referring to Fig. 81,

couples are applied to the shaft at A by the engines and, neglecting

the friction of the bearings, these couples are balanced by an equal

opposite couple produced by the resistance of the water acting on

*n A

FIG. 8 1. Screw propeller shaft.

the propeller at E. The planes of these couples are perpendicular

to that of the paper and hence are parallel. The distance of A
from E is immaterial so far as the equilibrium of the couples is

concerned
;
nor does the diameter of the propeller affect the problem

of equilibrium.

The law that every force must have an equal opposite force may
now be extended by asserting that it is impossible for a couple to act

alone ; there must always be an equal opposite couple acting in the same

plane, or in a parallel plane.

Substitution of a force and couple for a given force. In Fig. 82

is shown a body having a force Pj applied at A. We will suppose
that it would be more convenient to

have the force applied at another point

B. Apply equal opposite forces P
2 ,

P
2 ,

to B, each equal to P
x
and in a

line parallel to P
T ; these will be self-

balancing and will therefore not affect

the equilibrium of the body. Let d be

the perpendicular distance between Pj
and P

2 . Pj and the equal downward
force P9 at B form a COUple, the moment FIG. 82. Transference of a force to a

. line parallel to the given line of action.

of which is P
2</; this couple may be

moved to any convenient situation in the plane, leaving the upward
force P

2
at B. A given force is therefore equivalent to a parallel equal

force of like sense together with a couple having a moment obtained as above.
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Substitution of a force for a given force and a given couple.

In Fig. 83 we have given a force P acting at A, together with a

couple Q, Q, having an arm d.

The moment of the couple is Q</.
p
'

Alter the forces of the couple so

that each new force P', P' is equal

to P, the new arm a being such that

Apply the new couple so that

one of its forces acts at A, in the

Same line as P, and in the Opposite FIG. 83. Reduction of a given force and

sense. These forces balance at A,
:ouple to a single f

leaving a single force P' acting at a perpendicular distance a from

the given force P.

EXAMPLE i. A single-handed tap wrench has a force of 30 Ib. applied

at a distance of 15 inches from the axis of the tap (Fig. 84). The centre

line of the wrench is at a height of 5 inches above the face of the work

being tapped. Find the moment of the couple acting on the tap and also

the moment of the force tending to bend the tap.

Transferring P from A to B gives a force P acting at B, together with

a couple having a moment given by

Moment of couple= P x AB
= 30 x 15=450 Ib.-inches.

The force P acting at B tends to bend the tap about C. To calculate

its moment we have

Moment of P = PxBC
= 30 x 5

= 150 Ib.-inches.

FIG. 84. FIG. 85.

EXAMPLE 2. A bent lever ACB (Fig. 85) is pivoted at C, and has
forces P and Q applied at A and B respectively. Find the resultant

turning moment on the lever and also the resultant force on the pivot.

The solution may be obtained by drawing the lever to scale. Transfer
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P and Q to C as shown, giving forces P'= P and Q'=Q acting at C,

together with a clockwise couple Q x CN and an anti-clockwise couple
P x CM, CN and CM being perpendicular to Q and P respectively. The
resultant turning moment may be calculated by taking the algebraic sum
of the couples, thus

Turning moment= (Q x CN) - (P x CM).

This moment will be clockwise if the result is positive.

To obtain the resultant force on the pivot, apply the parallelogram of

forces as shown to find the resultant of P' and Q' acting at C. R gives
the required force.

Equilibrium of a system of uniplanar forces. Any system of forces

acting in the same plane will be in equilibrium provided (a) there is

no tendency to produce translational movement, 0) there is no tendency to

rotate the body. These conditions may be tested either by mathe-

matical equations or by graphical methods. To obtain the necessary

equations we may proceed as follows.

In Fig. 86, four forces P
I}

P
2 ,

P
3 ,

P4 ,
are given acting in the

plane of the paper at A, B, C and D respectively. Take any two

Y

FIG. 86. A system of uniplanar forces.

rectangular axes OX and OY in the same plane and take components
of each force parallel to these axes. Calling the angles made by
the forces with OX <x

15
a
2 ,

a
g and a

4 ,
the components will be

(see p. 23) :

Components parallel to OX : P
l
cos a

lf
P

2
cos a

2 ,
P

3
cos <x

3 ,
P

4 cos a
4 .

Components parallel to OY : Pj sin a
lf
P

2
sin a

2 ,
P3 sin a

3 ,
P

4 sin a
4

.

These components may be substituted for the given forces. Now
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transfer each component so that it acts at O instead of in its given

position. This transference will necessitate the introduction of a

couple for each component transferred. Let x
l
and yl

be the

coordinates of A, and describe similarly the coordinates of B, C
and D. The couples required by the transference of the components
of P! will be (Px

cos c^)^ and (Pj sin a,)*, ;
the other couples may be

written in the same manner, giving

Couples parallel to OX :

(PjCOSa^jj, (P2
COSa

2)^2 , (P3 COSa3)j3 , (P4
COSa4)j4 .

Couples parallel to OY :

(Pjsinaj)^, (P2
sina

2)#2 , (P3
sina

3)^3 , (P4 sina4)#4
.

The couples parallel to OX may be reduced to a single resultant

couple by adding their moments algebraically. Similarly, those

parallel to OY may be reduced to a single couple, giving

Resultant couple parallel to OX = 2(P cos a)y.

Resultant couple parallel to OY = 2(Psina)#.

Fig. 87 shows the reduction of the given system so far as we have

proceeded, which now consists of a number of forces acting in OX

p* 6Ut *+ Couple* Z(Pcos)y.
P
3 sin 3

<-
P, 5171 OC,

*Couf>le~

FIG. 87. A system equivalent to that in Fig. 86.

and OY, together with two couples. For equilibrium, there must be

no tendency to produce movement in a direction parallel to OY,
hence the algebraic sum of the forces in OY must be zero. This

condition may be written :

2P sin a = o
(
i )

At the same time there must be no tendency to produce movement
in a direction parallel to OX ; hence the algebraic sum of the forces

in OX must be zero, a condition which may be written :

2Pcosa = o (2)
D.M. E
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Further, there must be no tendency to produce rotation, a condition

which may be secured provided (i) each of the couples is zero, in

which case
2(Psina)a; + 2(Pcosa)j = o

;

or, (ii)
the couples may be of equal moment and of opposite sense of

rotation, in which case their algebraic sum will again be zero. Hence

the complete condition of no rotational tendency may be written :

2(Psina)# + 2(Pcosa)^ = o (3)

These equations (i), (2) and (3) being fulfilled simultaneously serve

as tests for the equilibrium of any system of uniplanar forces. A
little judgment must be exercised in the selection of the coordinate

axes OX and OY in any particular problem so as to simplify the

subsequent calculations.

EXAMPLE. A roof truss, 20 feet span, 5 feet rise (Fig. 88), has a

resultant wind pressure of 2000 Ib. acting at C, the centre of the right-

FIG. b8. Reactions of the supports of a roof truss.

hand rafter, in a direction perpendicular to that of the rafter. The truss

is bolted down to the support at B, and rests on rollers at A, so that

the reaction of the support at A is vertical. Find the reactions of the

supports.
In this case, BX and BY are the most convenient coordinate axes.

First find H and V, the components of the load parallel to these axes, by

drawing the triangle of forces abc. This triangle is similar to the triangle

DBE, hence H : 2000= 5 :

V : 2000= 10 : V725,

Let P and Q be the reactions of the supports, and let QH and Qv be



THE LINK POLYGON 67

the components of Q parallel to BX and BY respectively. Then, from
the equations of equilibrium, we have

2Psina=o; hence, P + Qv-V= o,

or P + Q v = i79olb...................(i)

2Pcosa= o; hence, QH H=o,
or QH = 89 5 Ib.....................(2)

2(P sin a);tr+2(P cos a)y=o ; hence, (P x 20)
- (V x 5)

- (H x 2$)=o.

It will be noted that the last equation is obtained by taking the algebraic
sum of the moments of all the forces about B, Reducing it, we have

2oP = (1790x5)+ (895x2^),

(3)

Substitution of this value of P in (i) gives

559'4+Qv=i79o,

Qv=i23<>6 Ib................................ (4)

To find Q, we have Q = v/QH
2

= ^2311000
= i2olb..................................(5)

To find the angle a which Q makes with the vertical, we have

2
Qv

895

1230-6

=0727 ;

'.
= 36 I' (6)

Graphical solution by the link polygon. A convenient method of

determining graphically the equilibrant of a system of uniplanar forces

will now be explained. It is required to find the equilibrant of the

given forces P
lt
P

2 and P
3 (Fig. 89 (a)). Take any point A on the line

of P
1} and proceed to balance P

1 by the application of any pair of

forces / t
and /2 intersecting at A. The triangle of forces abQ

(Fig. 89 (^)), in which

p
i Pz'-p^ab'.bQ'.Qa,

will determine the magnitudes of/t
and /2

. Imagine p l
and /2 to

be applied at A (Fig. 89 (a) ) through the medium of bars, or links,

one of which, AB, is extended to a point B on the line of action of

P
2

. To equilibrate this link, it must exert a pull/2
at B equal and

opposite to the pull it gives to A.

The forces f> and P
2 acting at B may be equilibrated by the
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application of a third force /3 at B, /3 being found in direction and

magnitude from the triangle offerees Qbc (Fig. 89^)), in which

A :P
2

:A = ^ : ^ : ^-

Let /3 be applied at B (Fig. 89(0)) by means of a link BC,

intersecting P
3 at C and exerting at C a force equal and opposite to

that which it exerts on B.

The forces /3 and P
3 acting at C are now equilibrated by means of

a force /4 applied at C, /4 being found from the triangle of forces

CW, in which /8 : P3 :/4
= O* : *rf : dO.

Let the force /4 be applied at C by means of a link, and let this link

and that in which pl
acts intersect at D. Each link will exert a force

at D equal and opposite to that which it communicates to A and C

FIG. 89. Graphical solution by the link polygon.

respectively. The forcespl and/4
thus acting at D may be equilibrated

by means of a third force E applied at D, E being found from the

triangle of forces Qda, in which

It will now be seen, by reference to Fig. 89 (a), that each of the given

forces is balanced, that the closed link polygon ABCD is in equilibrium,

and that the force E is also balanced. It therefore follows that the forces

Pj, P
2 ,
P3 and E are in equilibrium.

Reference to Fig. 89 (b) will show that abed constitutes a closed polygon

of forces for Plf P2 ,
P

3
and E, and that the lines drawn from O to a,

,
c and */are parallel respectively to the links in Fig. Sg(a). As we

had a liberty of choice of the directions of the first two links, viz. DA
and AB, and as these directions, once chosen, settled the position of
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the point O in Fig. 89 (/;), we infer that the position ofO is immaterial,

the only effect of varying its position being to change somewhat the

shape of the link polygon without altering the final value or position

of E. It should also be noted that each link in Fig. 89 (a) is parallel

to the line from O in Fig. 89 (b) which falls between the sides of the

force polygon representing the two forces connected by the link in

Fig. 89 (a). Thus, AB in Fig. 89 (a) is parallel to Ob in Fig. 89 (b\ the

latter falling between ab and be which represent P
l
and P2 respectively.

In practice, Bow's notation is employed. Some examples are given
to illustrate the method.

EXAMPLE i. Given three forces of 3 tons, 4 tons and 2 tons respectively,
find their equilibrant (Fig. 9o(fl)).

The principles on which the solution is based are, as has been found

above, (a) the force polygon must close, (b) the link polygon must close.

E-3 25 tons

(a) c < "i

FIG. 90. An application of the link polygon.

Naming the spaces A, B and C, and placing D provisionally near to the

force of 2 tons, draw the force polygon ABCD (Fig. 90 (<)). The closing
line DA gives the direction, sense and magnitude of the equilibrant. To
find its proper position, take any pole O (Fig. 90 ()), and join O to the

corners A, B, C, D of the force polygon. Choose any point a on the line

of the 3 tons force. In space A draw a line ad, of indefinite length,

parallel to OA in Fig. 90 (b). In space B draw a line ab parallel to OB
;

and, in space C a line be parallel to OC. From c draw a line parallel to

OD to intersect that drawn from a in the point d. Then E passes through
d, and may now be shown completely in Fig. 90 (a).

EXAMPLE 2. Four forces are given in Fig. 91 (a); find their resultant.

The method employed consists in first finding the equilibrant and then

reversing its sense. This example is of slightly greater :omplication, but

the working does not differ from that illustrated above. In Fig. 91 (b)

ABCDE is the force polygon, the closing side EA represents the equili-

brant, hence AE represents the resultant. The position of the equilibrant
is found by drawing the link polygon abcde, having its sides parallel to
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the lines radiating from any pole O in Fig. 91 (

and de gives a point e on the line of action of R.

The intersection of ae

FIG. 91. The resultant determined by the link polygon.

EXAMPLE 3. Given a beam carrying loads as shown (Fig. 92 (rt)); find

the reactions of the supports.
In this case, as all the forces are parallel, the force polygon becomes a

straight line. The reactions AB and GA being unknown, begin in space
B and draw the sides of the force polygon as BC, CD, DE, EF and FG.
The corner A of the force polygon will fall on BG, and, its position having
been determined, the segments GA and AB will give the magnitudes
of the reactions. Choose any pole O and join it to the known corners

of the force polygon, viz. B, C, D, E, F, G. Start constructing the polygon
from a point a on the line of the left-hand reaction (Fig. 92(0:)) by

\
c

I I M

(b)

FIG. 92. Reactions of a beam by the link polygon method.

drawing ab parallel to OB m the space lying between the reaction AB and
the force BC. Then draw be, od, de, ef respectively parallel to OC, OD,
OE, OF. Fromyj a point on the force FG, a line fg has to be drawn to

intersect the reaction GA ; as these forces are in the same straight line, it

is clear that fg is of zero length, and that the link polygon will conse-

quently have a side short. Complete the link polygon by drawing^, and
draw OA (Fig. 92^)) parallel to fa. The magnitudes of the reactions

may now be scaled as AB and GA.
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EXPT. io, Equilibrium of two equal opposing couples. In Fig. 93 is

shown a rod AB hung by a string attached at A and also to a fixed

support at C. By means of cords, pulleys and weights, apply two

equal, opposite and parallel forces P, P, and also another pair Q, Q.

Adjust the values so that the following equation is satisfied :

PxDE = Q-xFG.

Note that the rod remains at rest under the action of these forces.

Repeat the experiment, inclining the parallel forces P, P, at any
angle to the horizontal, and inclining the parallel forces Q, Q, to a

different angle, but arranging that the moment of the P, P, couple is

equal to that of the Q, Q, couple. Note whether the rod is balanced

under the action of these couples.

Apply the P, P, couple only, and ascertain by actual trial whether

it is possible to balance the rod in its vertical position as shown in

the figure by application of any single force.

FIG. 93. An experiment on couples.

Plan of cord at B

FIG. 94. Couples acting on a door.

EXPT. ii. Couples acting on a door. Fig. 94 shows a board which

may be taken as a model of a door hung on two hinges. The
equal forces W and P form a couple, which is balanced by the equal
opposing couple Q, Q. Weigh the board, measure a and b, and
calculate Q from

Apply the forces as shown and note whether the door is in

equilibrium.

EXPT. 12. Link polygon. Fig. 95 (a) shows a polygon ABCDEA
made of light cord and having forces P, Q, S, T and V applied as



MATERIALS AND STRUCTURES

shown. Let the arrangement come to rest. Show by actual draw-

ing (a) that the force polygon abcdea closes (Fig. 95 (<)), its sides being

(b)

FIG. 95. An experimental link polygon.

drawn parallel and proportional to P, Q, S, T and V respectively ;

(b] that lines drawn from 0, b, c, d and e parallel respectively to AB,
BC, CD, DE and EA intersect in a common pole O.

EXPT. 13. Hanging cord. A light cord has small rings at A, B, C
and U and may be passed over pulleys E and F attached to a wall

board (Fig. 96(0)). Weights WT ,
W

2 ,
W

3
and W4 may be attached to

a

w,

6

FIG. 96. A hanging cord.

the rings, and P and Q to the ends of the cord. Choose any values

for W1?
W

2 ,
W

3 and W
4
and draw the force polygon for them as

shown at abcde. Choose any suitable pole O, and join O to a, b, c, d
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and e. Oa and Oe will give the magnitudes of P and Q respectively.
Fix the ring at A to the board by means of a bradawl or pin \

fix the

pulley at E so that the direction of the cord AE is parallel to Oa
;

fix the ring at B by means of a pin so that the direction of the cord
AB is parallel to CM. Fix also the other rings C and D, and the

pulley at F so that the directions of BC, CD and DF are parallel to

<rO, dO and eO respectively. Apply the selected weights W1?
W

2 ,
W

3

and W4 ,
and also weights P and Q of magnitude given by Oa and

Oe. Remove the bradawls and ascertain if the cord remains in

equilibrium.

EXPT. 14. Hanging chain. Fig. 97 (a) shows a short chain ACB in

equilibrium under the action of forces V
T ,
V

2 ,
H

T
and H2 applied by

means of cords, pulleys and weights. Find these forces by calcula-

tion, as indicated below, first weighing the chain, and apply them as

shown in the figure so as to test for the equilibrium of the chain.

FIG. 97. Equilibrium of a hanging chain.

Let D = the proposed dip or deflection of the chain in inches.

S = the span AB in inches.

It should be noted that D should not be too large when compared
with S. Both may be measured conveniently by first stretching the

chain between the two marked positions A and B on the wall board
and then taking the required dimensions. It is assumed that A and
B are on the same level. I

Imagine the chain to be cut at its centre C, and consider the

equilibrium of the right-hand half (Fig. 97 (b)). The weight of the

whole chain being W lb., the weight of the half considered will be

^W and will act at the centre of gravity G, which may be assumed
g

to be at -
horizontally from B provided D is not too large. As a

chain can only pull, the force H at C must be horizontal. Hence
the portion BC is at rest under the action of two equal opposing
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couples, one formed by the equal forces V
2
and |W and the other

by the equal forces H and H 2
. Hence

V iw (j\v
2 2 \ /

H xD =JWx,
4'

WS

and

or 00

EXERCISES ON CHAPTER IV.

1. A wooden gate weighs 100 lb., and has its centre of gravity situated

21 inches from the vertical axis of the hinges. The hinges are 24 inches

apart vertically, and the vertical reaction required to balance the gate is

shared equally between them. Calculate the magnitude and direction of

the reaction of each hinge and show both reactions in a diagram.

2. A square plate of 2 feet edge has forces of 2, 3, 4 and 5 lb. applied
as shown (Fig. 98). Find the force required in order to balance the

plate.

3. A plate having the shape of an equilateral triangle of 3 feet edge
has forces of i, 2 and 3 lb. applied as shown (Fig. 99). Find the resultant

force on the plate.

,2

4 3

FIG. 98. FIG. 99.

4. Suppose the plate in Question 3 to have equal forces of 2 lb. each

applied along the edges in the same manner as before. What must be

done in order to keep the plate in equilibrium ?

5. A uniform beam 12 feet span and 18 inches deep weighs 900 lb.

A load of 2 tons is applied to the top surface

at 3 feet from the right-hand support at an

angle of 45 to the horizontal (Fig. 100).

Suppose the left-hand reaction to be vertical,

and calculate the reactions of the supports.

6. A beam AB rests against walls at A
and B (Fig. 101). Vertical loads of 400 lb.

and 600 lb. trisect the beam. Suppose the

reaction at A to be horizontal, and calculate the reactions at A and B.

Neglect the weight of the beam.

FIG. 100.
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7. A triangular frame 15 feet span and 5 feet high (Fig. 102) carries

loads of 400 Ib. bisecting AC, 600 Ib. at C and 800 Ib. bisecting BC at

right angles. The reaction at B is vertical. Find the reactions of the

supports by calculation.

FIG. loi.

8. Prove that two couples of equal opposing moment, acting in the
same plane, balance.

9. Show how a force acting at a given point may be moved to another

point not in the original line of the force. Prove the method to be
correct.

10. Choose any three forces not meeting at a point and not parallel to

one another. Show how we can find, graphically, their resultant or their

equilibrant. (B.E.)

11. Answer Question 10 in a manner suitable for calculation.

600/4

f
FIG. 102.

12. A number of forces act in a plane and do not meet in a point.

Treating them graphically, what is the condition of equilibrium ? Prove

your statement to be correct. (You are expected to choose more than
three forces.) (B.E.)

13. A uniform chain weighs 4 Ib., and is hung from two points on the

same level. The span is 4 feet and the central dip is 6 inches. Calculate

the pulls at the ends of the chain, and show the directions of the chain at

the ends.
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14. A beam AB of 24 feet span is supported at the ends, and carries

vertical loads of 1-5, 2, 3 and 4-5 tons at distances of 3, 6, 12 and 18 feet

from the support at A. Use the link polygon method and find the reactions

of the supports.

15. Answer Question 6 by construction.

16. Answer Question 7 by construction.

17. ABCD is a square of 2-inch side, BD being a diagonal. A force

of 50 Ib. acts along BC from B towards C ;
a force of 80 Ib. acts along CD

from C towards D
; and a force of 6p Ib. acts along DB from D towards

B. Replace these forces by two equivalent forces, one of which acts at A
along the line AD. Find the magnitude of both these forces and the line

and direction of the second. (I.C.E.)

18. Prove that any system of coplanar forces may be replaced by a

single force acting at any assigned point and a couple. Forces of I, 2, 3,

4 Ib. weight act along the sides of a square taken in order. Find a point
such that the forces may be replaced by a single force acting at that

point. (L.U.)



CHAPTER V.

SIMPLE STRUCTURES.

Some definitions. A structure is an arrangement of various parts

constructed in such a manner that no relative motion (other than the

small amounts due to the straining of the parts) takes place when the

structure is loaded. The simple framed structures considered in this

chapter consist of bars assumed to be connected by pin joints and

(a) (b) (c)

FIG. 103. Classes of structures : (a) deficient, () simply firm, (c) redundant.

carrying loads applied at these joints. The bars under these conditions

will be subjected to simple push or pull in the direction of their

lengths, and our object will be to determine the magnitude of the

force in each bar, and also whether the bar is under push or pull.

Structures may be deficient, simply firm, or redundant. Deficient

structures are really mechanisms, that is, the parts are capable of

considerable relative motion. Fig. 103 (a) shows an example of a

deficient structure, consisting of four bars connected by pin joints.

The arrangement may be made simply firm by the introduction of a

single diagonal bar (Fig 103 (^)), and will now be capable of preserving

its shape under the load. The introduction .of a second diagonal bar

(Fig. 1 03 (r) ) produces a redundant structure. In redundant structures,

the length of any bar cannot be altered without either a correspond-

ing alteration in the lengths of other bars of the structure, or the

production of forces in the other b^rs. Good workmanship is

essential in redundant structures to ensure the accurate fitting

together of all parts, otheiwise some of the bars may require to be



MATERIALS AND STRUCTURES

(a) (b)
FIG. 104. Effect of stiff joints.

IS)

forced into position. Unequal heating causes unequal expansion
in redundant structures, and therefore introduces forces in the

various parts.

In simply firm structures, which form the subject of this chapter,
the length of any part may be altered without thereby producing

forces in the other parts. Con-

sequently, the effects of unequal

expansion are absent. A redundant

structure may be converted into a

simply firm structure by dropping
out one or more of the redundant

elements, or parts. Redundancy may
be produced by stiff joints. For

example, if the square in Fig. 103(0) i made with one stiff joint

(Fig. 104(0)), the structure will now be simply firm. Two stiff

joints (Fig. 104^)) will produce a redundant structure having one

redundant element
; three and four stiff joints in this example give

structures of two and three elements of redundancy respectively.

Conditions of equilibrium. In solving problems concerning any

structure, we may separate the forces ino two groups, external and
internal. The external forces include all forces applied as loads, or

reactions, to the structure. Obviously these forces, acting on the

structure as a whole, must be in equilibrium independently of the shape
of the structure, or of the form or arrangement of its parts. This con-

sideration enables us to apply the principles of the foregoing chapters to

such problems as the determination of the reactions of the supports.

The internal forces include the pushes, or pulls, to which the various

bars are subjected when the external forces are applied to the

structure. Not only is the structure as a whole in equilibrium, but

any bar, or any combination of selected bars in it, must be in

equilibrium under the action of any external loads applied to the

parts considered, together with the internal forces acting in the selected

parts. Usually a joint is selected, when the principle just stated

enables us to say that the forces acting at this joint, including external

forces, if any, as well as the pushes or pulls of the bars meeting at

the joint, are in equilibrium. Hence, the forces in these bars may
be found by an application of the polygon of forces.

It should be remembered in applying the polygon of forces that

the solution depends on there being not more than two unknowns
;

these may be either the magnitudes or the directions of two forces, or

one magnitude and one direction. In cases where the forces do not
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all intersect at one point, there are three conditions of equilibrium to

satisfy, and hence there may be three unknowns.

The methods of obtaining the reactions have been explained fully in

the preceding chapters ;
hence in some of the following cases the con-

structions, or calculations, for finding the reactions have been omitted.

Simple roof truss. Fig. 105 (a) shows a simple roof truss consist-

ing of five bars. There are three loads applied as shown, together

1000/6

(at

FIG. 105. A roof truss for small spans.

TABLE OF FORCES.

with two vertical reactions. To enable the forces to be named,
letters are placed as shown for the application of Bow's notation.

Thus, the left-hand reaction may be described as AB or BA, and the

force in the vertical centre bar may be described as FG or GF,

depending on the sense of rotation selected.

As all the external forces are vertical, the polygon of forces for the

equilibrium of the truss as a whole will be a straight line. In drawing

it, we may proceed round the truss either clockwise or anti-clockwise
;

but, once having settled on the direction, it should be preserved

throughout the whole work of solution. Choosing a clockwise direc-

tion, the straight line ABCDEA (Fig. 105^)) will be the polygon
for the external forces.



8o MATERIALS AND STRUCTURES

Selecting the joint at the left-hand support, there are four forces, two

of which are completely known, and other two of which the directions

alone are known, viz. the forces CF and FA. Hence the polygon of

forces can be drawn. In Fig. 105 ()), proceeding clockwise round

the joint, AB and BC have been already drawn
; draw CF parallel to

the rafter and AF parallel to the tie-bar
; these lines intersect in F and

give the closed polygon of forces ABCFA. The force in the rafter may
be scaled from CF and that in the tie-bar from FA. Taking these

lines in order in relation to the joint under consideration, the sense of

the force in the rafter in Fig. 105 (a) is CF in Fig. 105 (b), and hence

is a push ; that in the tie-bar has a sense FA, and hence is a pull.

Proceeding now to the top joint of the truss, we see that there are

two unknowns, viz. the magnitudes of the forces in GF and DG,
hence this joint may be solved by drawing the polygon of forces

FCDGF(Fig. io5(J)).

Taking now the joint at the right-hand support, and drawing the

polygon of forces GDEAG, we find that the closing line AG has its

position fixed already on the diagram. This fact provides a check

on the accuracy of the whole of the preceding graphical work
;

if on

joining AG in Fig. 105 (<), it is found that this line is not parallel

to the right-hand rafter, some error has occurred, and in order to

eliminate it the work must be repeated.

Rule for push or pull. The method of determining whether a bar

is under push or pull may be simplified somewhat by developing the

following rule from the principle explained above.

Select any bar such as FG
;
choose the joint at one end of it, say

the lower
;
cross the bar in the same sense of rotation in relation to

this joint as was chosen in drawing the force diagrams in this case

clockwise
;
name the spaces in this order, viz. FG. FG in Fig. 105 (b)

gives the sense of the force acting at the lower joint. As the force is

upwards, the bar is pulling.

It makes no difference in the application of the rule which end of

the bar is selected. For example, choosing the top joint of the same

bar and crossing it again clockwise as regards the upper end, the

order is GF. GF in Fig. 105 (b) is downwards, hence the bar is

pulling at the top joint.

It is desirable to indicate on the drawing of the truss which bars

are under push and which under pull. Probably the best way of

doing this is to thicken the lines of the bars under push. If the whole

line is thickened, the direction of the bar will be lost, hence, as shown

in Fig. 105 (), a short piece at each end is left thin.
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A tabular statement of the forces in the bars should be made in

the manner indicated on p. 79.

Another form of roof truss. Fig. io6(a) shows a common type of

roof truss carrying symmetrical loads. There will be no difficulty in

1000 Lb

500/6

1000/6

FIG. 106. Forces in a common type of roof truss ; weights only considered.

TABLE OF FORCES.

D.M.
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following the diagram of forces (Fig. 1 06 (/;)). The order in which

the joints have been taken is indicated by the number placed against
the joint. The sense of rotation employed is clockwise, and the

closing check line is NA.
The effect of wind pressure on the right-hand side of this truss is

determined in Fig. 107 (a) and (6). It is assumed that the wind load

500 to

iqooto

ft)

FIG. 107. Wind acting on the right-hand side of the truss.

TABLE OF FORCES.

produces forces of 500 Ib. at the top and bottom ends of the rafter,

and of TOGO Ib. at the middle, all three being perpendicular to the
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rafter. As an example of the use of the link polygon, the reactions

of the supports have been determined by this method. The left-hand

reaction has been assumed to be vertical when that of the right-hand

support will be inclined. Wind pressure only has been taken account

of in the working. It will be noted that there are three unknown
elements in the reactions, viz. the magnitude of the left-hand reaction

and both the magnitude and direction of the right-hand reaction. In

fact, all that is known of the latter reaction is that it acts through the

point a. Now, in drawing the link polygon, one link must fall between

this reaction and the force FG. As the line of the reaction is unknown,
it will be impossible to draw this link unless the artifice is adopted
of starting the drawing of the link polygon at the point a. The effect

of this will be that the link in question will have zero length.

First draw as much of the external force polygon as possible ; this

is shown by BEFG in the force diagram. A will lie in the vertical

through B as the reaction AB is vertical. Taking a convenient pole

O and joining OB, OE, OF and OG, we start drawing the link poly-

gon by making ab (Fig. 107 (<z)), which falls between FG and EF,

parallel to OF. be falls between EF and BE, and is made parallel to

OE. cd falls between BE and AB, and is made parallel to OB.
The link parallel to OG is omitted, as it is of zero length, coinciding

with a. Hence the closing line is da
; drawing OA parallel to ad to

intersect the vertical through B in A gives the left-hand reaction as

AB and the right-hand reaction as GA.
The remainder of the diagram giving the internal forces is worked

out in the usual manner, NA being the closing line.

An application of the method of graphical moments. The effect

of wind pressure on the left-hand side of this truss is determined in

Fig. 1 08. The student will have noted, in applying the link polygon
to the problem of finding the reactions, that the lines of the polygon
have a tendency to obscure the drawing of the truss. In the case

now before us, the method of graphical moments (p. 46) is employed
and involves the drawing of very few lines on the truss. The resultant

of the three wind loads has been taken as a single force of 2000 Ib.

applied at c. Join ab, and with centre b and radius be describe an arc

cutting ab in d. Make ae equal to 2000 Ib. to scale ; join be and

draw df perpendicular to ab and cutting be inf. Draw fg parallel to

aby when ga will be the vertical component of the right-hand reaction.

The horizontal component of this reaction will be equal and opposite

to the horizontal component of the force of 2000 Ib. acting at c.

Draw the triangle of forces dm, and make ha equal to me; the
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right-hand reaction will be the resultant ka of the components

represented by ga and ha.

The external force polygon (Fig. io8(^)) may now be drawn

I

500/6

(b)

FIG. 108. Wind acting on the left-hand side of the truss.

TABLE OF FORCES.
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FIG. 109. Combined dead and wind loads on the truss.

TABLE OF FORCES.
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for the three wind loads and the two reactions, and is shown by
ABCDEA. The internal force diagram is completed as before.

Notice that when the wind blows on the right-hand side, no force is

induced thereby in HK, and when acting on the left-hand side there

is no force in MN. This arises from the fact that there is no external

load at the joint in the two cases respectively. Two forces acting in

the same straight line, as is the case in the two parts of the rafter,

balance, and it is impossible to apply a single inclined force at the

point of action without disturbing the equilibrium.

The total force in any bar of the frame due to the dead loads,

i.e. the weights of the parts of the truss, and to the wind pressure

jointly may now be determined by adding the results for the dead

load (Fig. 1 06) and either those of Fig. 107 or of Fig. 108 depending
on whether the wind is blowing on the right- or left-hand side.

Combined dead load and wind pressure. As a further example of

another method of obtaining the reactions, a diagram has been drawn

in Fig. 109 for the combined dead loads and wind load on the right-

hand side. The two forces acting at each joint of the right hand

rafter have been combined by the parallelogram of forces, and the

resultant used as a single force at each joint (Fig. 109 (a)).

To find the reactions of the supports, we may take advantage of

the principle that the external forces balance independently of the

arrangement of the parts of the truss. Hence, any other convenient

arrangement may be substituted for that given without disturbing the

values of the reactions. The substituted frame chosen is sketched

in Fig. 109 (b}. It will be seen that it is possible to determine all the

forces in its parts without first determining the reactions. Thus,

starting at the top joint i, where there are two unknowns only, we

obtain DE/fc in the force diagram (Fig. 109^)). Proceeding to

joint 2, we obtain EF/#
;
at joint 3, CD/i/m is obtained, and at joint

4 we obtain BOzA, thus determining the point A on the force

polygon, and hence the reactions AB and GA.
The internal force diagrams for the given arrangement of bars may

now be proceeded with, the closing line being NA. It will be

observed that the greater part of the lines drawn in the force diagram
for the substituted frame are required for the actual frame, hence

there has been but little wasted work.

Another form of structure. In Fig. 110(0) is shown a structure

intended to carry a load at its upper end. Since there is but one

vertical load, the reactions of the foundation must reduce to one

vertical upward force equal to the load applied. Hence, the polygon
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for the external forces is completed by drawing AB downwards and

BA upwards. It will be noted in this example that it is not necessary

to determine the actual reactions of the foundations before finding

the forces in the parts. A start can be made at the joint i, as there

are only two unknowns there. The order of solution of the other

joints is indicated by the numerals. In drawing the various polygons

2

FIG. no. A braced frame.

TABLE OF FORCES.

(Fig. 1 10 ()), anti-clockwise sense of rotation has been chosen. The
student will observe that there is no force in HK, H and K coinciding

in the force diagram. It is easy to see that this must be the case

from consideration of the fact that the bars BH and AK are vertical,

and therefore the vertical forces in them are capable of balancing the

external load applied without any aid from the diagonal HK. In

fact, the diagonal HK merely serves to steady the frame under the
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given loading. There would, of course, be a force in this bar if an

inclined load were applied to the frame, or if there were a side effort

caused by wind pressure.

A larger roof truss. In Fig. 1 1 1 is shown a roof truss of a larger

type and having a different arrangement of parts from those dealt

FIG. in. A larger roof truss.

with previously. This case presents no difficulties, and is included

as an example which the student can work out for himself.

The roof truss shown in Fig. 112(0} presents a difficulty which

arises frequently. The external force polygon is drawn easily, but

(b)
iraoo

FIG. ii2. A more difficult example of truss.

in drawing the force polygon for the internal forces it will be found

that it is impossible to proceed with the drawing after solving point i.

All other points such as 2 and 3 have more than two unknowns,
hence the solution cannot be obtained by application of the ordinary

methods. We may proceed by either of two methods.
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(a) It will make no difference whatever in the forces in the remaining

part of the truss if we imagine the left-hand portion (shown shaded in

Fig. 112 (<$))
to be solid. Separating this portion as shown, we may

calculate T, the force in the bar AP, by taking moments about point 6.

Thus, taking the loads as shown, let the half-span be 15 feet and let

the perpendicular from point 6 to the line of T be 7-5 feet, then

(Tx7-5)+ (4oox 5)+ (4oox io) + (2oox I5)=i2oox 15.

_ 1 8,000
- 2000 - 4000 - 3000

7-5

_9ooo
~~r$
= 1200 lb.

Having found T, the number of unknowns at the point 3

(Fig. 112 (a) ),
will now be found to be two only, hence this point

may be solved. The solution for points 2, 5, 4, 6 may now be

obtained in the usual manner.

(b) It will make no difference whatever in the force in the bar AP
if, instead of imagining the triangular portion above considered to be

solid, we imagine it to have a different interior arrangement of bars.

Thus, in Fig. 1 1 2 (c} is shown this portion with a new arrangement
of bars substituted for that given. The force diagram for this

substituted frame may be drawn as in Fig. 112 (d), and stopped

directly the force in AP is found. The original arrangement of bars

is now restored and the force diagram completed in the usual

manner. The result for the force in AP is found graphically in

Fig. 112 (d) to be 1200 lb.

This method must be applied with caution. Care must be taken

to ensure that the substituted arrangement of bars does nothing
whatever to alter the force in the bar considered, viz. AP in

Fig. 112(0).

EXERCISES ON CHAPTER V.

In each of these exercises the forces should be tabulated, distinguishing

carefully push and pull members.
'

JOO/f

400/6.

E

FIG. 113.

1. Find the forces in all the bars of the roof truss shown in Fig. 113.
The bars AF, FG, GH and HA are equal.
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2. Find the forces in all the bars of the truss given in Fig. 1 14. The
loads are in Ib. units.

3. Find the forces in the roof truss shown in Fig. 106 ; apply the

same loads, with the exception of that at the centre of the right-hand

rafter, which in this case is 2000 Ib. Span 24 feet, rise 6 feet, rise of tie-

bar i foot. Each rafter is bisected perpendicularly by the inclined strut.

800
800 800

600

300

4. Find the forces in all the members of the truss shown in Fig. 1 1 5.

The loads are in Ib. units.

5. Take again the roof truss given in Question i. Remove all the

loads and apply wind loads of 400 Ib. at each end of the right-hand rafter,

acting at right angles to the rafter. Find the forces in all the parts due
to wind only. The left-hand reaction is vertical.

6. Answer Question 5, supposing that the wind loads are applied to

the left-hand rafter only. The left-hand reaction is vertical.

7. From the results obtained in answering Questions i, 5 and 6, con-

struct a table showing the maximum and minimum forces in each bar due
to dead load and wind pressure combined.

8. Find the forces in all the bars of the roof truss given in Fig. 116.

The loads are in Ib. units.

600

600 600

9. A roof truss similar to Fig. 1 1 1 has a span of 30 feet ; the rise is

8 feet and the height of the central horizontal part of the tie bar above
the supports is 18 inches. If the truss carries a symmetrically distributed

load of 4 tons, find the force in AO by calculation.

10. In the roof truss given in Question 8, in addition to the stated

loads, there are wind loads of 400, 800, 800 and 400 Ib. applied at the

joints of the right-hand rafter and perpendicular to the rafter. The left-

hand reaction is vertical. Find the reactions of the supports, using the

link polygon.



EXERCISES ON CHAPTER V.

11. Answer Question 10 by application of the substituted frame
method.

12. Answer Question 10 by calculation.

13. In Question 10 find the forces in all the parts due to combined dead
load and wind pressure.

14. A loaded Warren girder is shown in Fig. 117. Find the forces in

all the members. The loads are in Ib. units.

1000 1000

500 500

FIG. 117.

15. A frame secured to a vertical wall has dimensions as shown in

Fig. 118. The bars AD, AF, AH and AL are each 5 feet in length.
Find the forces in all the parts produced bv the load of I ton.

\ton

2*--^ 20

FIG. 118.

16. Answer Question 15 if the load is moved horizontally so as to be

vertically over the middle joint of the top member of the frame.

17. Part of a pin-jointed frame, shown in Fig. 119, is loaded with a
vertical dead load of 10,000 pounds and a normal wind pressure of 15,000
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pounds, both being taken as uniformly distributed along AB. The sup-
porting forces P, Q and R are shown by dotted lines. Find these forces
and the forces in the bars which meet at C, indicating the struts

and ties. (L.U.)

2 tons

18. A frame is loaded with 2 tons and supported as shown in Fig. 120.

Find the reactions at A and D and the forces in the members, indicating
which are struts and which are ties. (I.C.E.)



CHAPTER VI.

SIMPLE STRESSES AND STRAINS.

Stress. If any section in a loaded body be taken, it will be found

in general that the part of the body which lies on one side of the

section is communicating forces across the section to the other part,

and is itself experiencing equal opposite forces. The name stress is

given to these mutual actions. The stress is described as tensile or

pull if the effect is to pull the portions of the body apart, compressive

or push if they are being pushed together, and shearing or tangential if

the tendency is to cause one portion of the body to slide on the

other portion.

The stress is said to be distributed uniformly in cases where all

small equal areas experience equal loads. Stress is measured by

stating the force per unit area, the result being described as unitai

stress, or stress intensity, or often simply as the stress. In the case of

a uniform distribution of stress, the stress intensity will be found by

dividing the total force by the area over which it is distributed.

Should the stress vary from point to point, its intensity at any point

may be stated by considering that the forces acting on a very small

area embracing that point will show a very small variation and may
be taken as uniformly distributed. Thus, if a be a very small portion

of the area and/ the load on it, the stress intensity on a will be//.
Units of stress employed in practice are pounds or tons per square

inch or per square foot, or in the metric system, grams or kilograms

per square centimetre. One atmosphere is sometimes used as a unit,

being a stress of 14-7 Ib. per square inch ; it is useful to remember

that a stress of one kilogram per square centimetre is roughly equal
to one atmosphere.*

*
i kilogram per square centimetre = 2-205 Mb. Per -r square inch

0-45

= 14-19 Ib. per square inch.
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EXAMPLE i. A bar of circular cross-section 2 inches in diameter is

pulled with a force of 12 tons at each end. Find the tensile stress.

Area of cross-section= = 3-1416 sq. inches.

Tensile stress intensity =
area

12

3-1416

= 3-82 tons per square inch.

EXAMPLE 2. Suppose the same bar to be in two portions connected

by means of a knuckle joint having a pin i| inches in diameter (Fig. 121),

and calculate the intensity of shearing stress on the pin.

12 tons

FIG. 121.

It will be observed that the pin would have to shear at two sections

for the joint to fracture by failure of the pin, hence :

7ZY/
2

Area under shear stress= x 2
4

=
3-53 square inches.

Shear stress intensity=--area

12

~^S3
= 3-39 tons per square inch.

Stresses in shells. A shell is a vessel constructed of plates the

thickness of which is small compared with the overall dimensions of

the vessel, for example, a boiler of the cylindrical type. Such

vessels have generally to withstand internal fluid pressure, and the

plates are put under tensile stress thereby. Owing to the thinness

of the plates, the stress on any section may be considered to be

distributed uniformly.

Taking a cylindrical shell (Fig. 122) in which there are no stays

passing from end to end,
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Let d= diameter of shell, inches,

/ = fluid pressure, pounds per square inch,

t= thickness of plate, inches,

P = total pressure on each end of vessel, then

Section at AB ^Longitudinal Sect/oft

FIG. 122. Stresses in a cylindrical shell.

Owing to the forces P, P, any section such as AB will be under

tensile stress.

Sectional area at AB = circumference of shell x /

Tensile stress intensity on AB = ;

P*'

= f- lb. per square inch.
4/

The stress on a longitudinal section may be found in the following

manner. Consider a ring cut from the shell by two cross-sections

one inch apart (Fig. 123). It may be assumed

that all other such rings will be under similar

conditions, provided they are not taken too

near to the ends of the shells where the staying

action of the ends would interfere. The fluid

pressure on the ring is shown by arrows in

Fig. 123, everywhere directed perpendicular to

the curved surface of the ring, i.e. radial. Com-

ponents of these being taken, parallel and FIG. 123. A ring cut from

perpendicular to a diameter AB, it will be seen

that those parallel to AB equilibrate independently of the others.

The upward and downward components perpendicular to AB will

have resultants R
T
and R

2 respectively, which will have the effect

of producing tensile stress on the sections at A and B. Clearly Rj
and R

2
will be equal ;

to obtain their magnitudes proceed thus :
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There will be no difference experienced in the equilibrium of the

ring if we imagine it to be filled up to the level of AB with cement

(Fig. 124). The pressure on the surface of the cement will be

perpendicular to AB, and the resultant force due to this will be

Q =p x area of surface of AB

FIG. 124. Resultant pressure on hah
of the ring.

FIG. 125. Stresses at A and B.

R and Q now preserve the equilibrium of the ring, and must

therefore be equal, hence R =pd.

Imagine the material at A and B to be cut, and consider the equi-

librium of the top half of the ring (Fig. 125). Forces T, T at A and

B will be required, and are produced in the uncut shell by tensile

stress at A and B. For equilibrium, we
have R = 2T,

T = - = ^.
2 2

Also,

Stress intensity at A or B x t x i = T
;

.'. stress intensity on longitudinal section

= ^- Ib. per square inch.

Comparison of these results will show that

the stress on a longitudinal section is double

that on a circumferential section, a fact which

explains why the longitudinal joints in boilers

are made much stronger than the circum-

ferential joints.

A spherical shell may be worked out in a

similar man-ner. Let the shell be filled up to the level of a horizontal

diameter AB with cement (Fig. 126), then

Sectional Plan

FIG. 126. Stresses in a spherical
shell.
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The complete cross-section at AB is a ring of diameter d and
thickness /, and is under tensile stress of intensity given by

Tensile stress intensity x area of cross-section = R,
-D

.'. Tensile stress intensity
= -r

trdt

= Ib. per square inch.

As before, p = fluid pressure in Ib. per square inch,

d= diameter of sphere in inches,

/ = thickness of plate in inches.

It will be noted that the stress intensity in a spherical shell is the

same as that on the circumferential sections of a cylindrical shell of

the same diameter and thickness, and subjected to the same fluid

pressure. It will also be observed that a spherical shell is self-staying

on account of the fact that its shape does not tend to alter when
it is exposed to the internal fluid pressure. The same is true for

the cylindrical portion of an ordinary boiler shell, but the flat end

plates are liable to be bulged outwards unless supported or stayed
in some effectual manner.

Riveted joints. Plates may be connected permanently by means

of riveted joints. In lap joints the edges of the plates overlap

(Figs. 131 and 132) and are connected by one or two rows of

rivets ;
in butt joints the plates are brought together edge to edge

(Figs. 133 and 134) and cover plates pass along the seam on both

sides or on one side only. As the strength of the joint depends
to a considerable extent on the workshop methods employed, it is

necessary to make brief reference to these methods.

Excepting in the case of very thin plates and small rivets, the rivets

are heated before being inserted in the holes and are closed by the

use of hand or pneumatic hammers, or by a hydraulic riveting machine.

Owing to the great pressure exerted in the latter method, the rivets

generally fill the hole better when finished and the plates are held

together more firmly. In either method, the cooling of the rivet and

consequent longitudinal contraction assist largely in binding the plates

together, while at the same time the rivet is put under pull stress of

an uncertain amount.

P.M. G
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Rivet holes may be punched or drilled. Punching injures the

metal by overstraining the material round the hole, a defect which

may be remedied by annealing, or by punching the hole about -^ inch

smaller than the proper diameter, and then enlarging it to the size

required with a reamer, thus getting rid of the

overstrained material. The plates are punched

separately, hence there is difficulty in ensuring

that the holes shall come exactly opposite one

r*?[
another when the plates are brought together;

'-.4 drilling is effected with the plates together in

'p.-.d-y position, and this method is to be preferred as

FIG. i27.-stress on a
giving fair holes, as well as producing no injury

to the plates. Punched holes may be brought
fair by bolting the plates together before reamering.

There is a lower limit to the diameter of hole which may be

punched in a plate of given thickness, depending on the value of the

stress under which the punch will crush.

Let d= diameter of hole, inches (Fig. 127),

/ = thickness of plate, inches,

q = shearing stress of material of plate, in tons per square inch.

p = crushing stress of material of punch, in tons per square inch.

Area under shear stress = trd x /.

Force P required to shear the material = qtr dt.

Push stress on punch = P -5

Equating this to / will give the limiting value of d, thus

.

P

p for the material of the punch, tool steel, is about four times the

value of q for mild steel, hence, the condition that the punch is on

the point of crushing is ^_ t

showing that the minimum diameter of hole which may be punched
is equal to the thickness of the plate. If d is less than /, / must

have a value greater than \q for punching to be possible.
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Riveted joints should not be designed so as to load the rivets by

tension, as the heads are not reliable under pull. The loading should

be of the nature of pull or push along the direction of the plates, thus

putting the rivets under shear stress. Lap joints (Fig. 128) and butt

joints having a single cover plate (Fig. 129) are put under a bending

FIG. 128. FIG. 129.

action by reason of the forces being in parallel lines. Butt joints

having double cover plates (Figs. 133 and 134) are free from this

objection. In lap joints, the rivets will sustain equal shearing forces

whether the plates be under pull or push ;
in butt joints under push,

the forces will be communicated from plate to plate along the edges

in contact without putting the rivets under shear stress at all, provided

the fitting is perfect. The cover plates and rivets in this case serve

only to prevent the plates getting out of the same plane. For these

reasons, both compression and tension members are best fitted with

butt joints having double cover plates.

Methods of failure of riveted joints. These may be described by
reference to Fig. 1 30, showing a single riveted lap joint.

(a) If the hole is situated too near

the edge of the plate, the material may

open out as at A during punching, or by
reason of the bursting pressure exercised

by the hot, soft rivet while being closed.

To prevent this happening, the distance

from the centre of the hole to the edge of

the plate should not be less than 1-5 times

the diameter of the rivet.

(^) The material of the plate may crush

at B owing to the rivet being too large

in diameter. When the joint is loaded the

rivet bears on one half of the cylindrical

surface of the hole, producing a bearing

stress which is calculated by dividing the

load on the rivet by the "
projected area

"

of the hole, the latter being calculated by taking the product of the

diameter of the hole and the thickness of the plate. In girder work,

the design of the riveted joints has to be based sometimes on the

FIG. 130. Methods of failure of

riveted joints.
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safe bearing stress; this stress ranges from 7 to 10 tons per square
inch in practice.

(<r) One of the plates may give way by tearing along the line CD.

(d) The rivets may shear at EF.

The most economical joint would be equally ready to fail by all

four ways simultaneously. It is impossible to calculate (a) from first

principles, but expressions giving the relations of the various quantities

may be found by equalising the resistances of the joint to crushing,

tearing and shearing. It is customary in this country to neglect the

increase in strength owing to the frictional resistance to the plates

sliding on one another. The precise conditions for any riveted joint

cannot be stated definitely, hence empirical rules, or rules which are

partly empirical, are often employed in practice.

Lap joints. Lap joints may be single or double riveted ;
it is rarely

the case that there are more than two rows of rivets. The pitch is

the distance from centre to centre of the rivets measured along the

row. The strength of the joint may be considered by taking a strip

equal in breadth to the pitch, as the conclusions arrived at for this

piece may be assumed to be true for the entire joint.

Let p = pitch of the rivets, inches
;

d= diameter of the rivets, inches
;

t= thickness of the plates, inches
;

y~
= the ultimate tensile strength of

the plates, tons per square inch
;

fg
= the ultimate shearing strength of

the rivet, tons per square inch;

fb = the bearing stress, tons per

square inch of projected area,

when the joint is on the point

of failing by crushing.

FIG. 131. Strength of a single-riveted

lap joint.

We have, for a single riveted lap joint (Fig. 131) :

Least area of plate section under pull
= (p- d}ty

Resistance of joint to tearing =ft(p d)t tons............. (i)

Area of rivet section under shear

Resistance of joint to shearing =/ - tons................... ( 2 )

4

Projected area = dt,

Resistance of joint to crushing =fydt tons.................... (3)
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Equating (i), (2) and (3) gives :

Taking

d-
/ft

(4)
- .........................

JS

The diameter of the rivet may be found from this relation, and the

pitch may then be calculated from

P = ('l*S
J
i "-) + <*. v5)

In double riveted lap joints there will be two rivet sections per

;_iM^

FIG. 132. Strength of a double-riveted lap joint.

pitch under shear (Fig. 132); there will also be two bearing areas

per pitch. Hence

= 1-27/4 (6)

(7)
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Butt joints. The strength of butt joints may be calculated in a

similar manner; it will be observed (Fig. 133) that, with two cover

FIG. 133. Strength of a single-riveted butt joint.

plates, the rivets are under double shear, i.e., each rivet would have to

shear at two sections A and B for the joint to fail by shearing. Each

rivet will thus have a shearing area of 2 .

4
For a single riveted butt joint (Fig. 133),

.(8)
7.'

ft

FIG. 134. Strength of a double-riveted butt joint.

In the case of a double riveted butt joint (Fig. 134), we have

.(10)

.(II)
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Data from experiments. The ultimate tensile strength of iron

plates may vary from 21 to 26 tons per square inch, and for steel

plates may vary from 27 to 32 tons per square inch. Iron and steel

rivets have an ultimate shearing strength of about 23 tons per square
inch. Owing to the difficulty of stating precisely what the actual

conditions are in a finished riveted joint, these stresses should be

used with caution. Experiments on actual joints with iron plates

and iron rivets show that the ratio fg/ft,
is nearly i for drilled holes,

and from 1-2 to 1-3 for punched holes which have been neither

annealed nor reamered. For steel plates and steel rivets the values

of the ratio appear to be about 0-75 for drilled holes and about 0-9 for

punched holes neither annealed nor reamered. For either reamered

or annealed punched holes the values are about the same as for

drilled holes. Breakdown in experimental joints by crushing appears
to take place for ratios of fb/fs of about 1-7 for rivets in single shear

and about 2-35 for rivets in double shear. Provision against crush-

ing is often made by employment of an empirical rule for the

diameter of the rivet. A good practical rule is

</=I-2>/7 tO I-4A//.

When this rule is used, the diameter of the rivet is calculated

first, and the pitch is then determined by equating the resistances

to tearing and shearing. Afterwards, the bearing stress should be

calculated in order to ascertain that its value is not excessive.

In riveted joints designed under the Board of Trade rules, rivets

under double shear are allowed if rivet sections per rivet only ;
this

is owing to the probability of the rivets not all bearing equally. This

rule is often disregarded in other joints.*

Efficiency of riveted joints. The efficiency of a riveted joint is

the ratio of its actual strength to that of the solid plate. To calculate

the efficiency, the ratios of the strength of the joint against tearing,

shearing and crushing to the strength of the solid plate should be

calculated separately, and the lowest value taken as the efficiency

of the joint. It will be evident that all three ratios will be equal if

the joint has been designed for equality of rupture by each of the

three ways of failure, and the efficiency may be obtained then by
consideration of the tearing resistance only.

Resistance of joint to tearing
= (P~ d)tft-

Resistance of solid plate to tearing =ptft .

* For a full discussion of riveted joints, see Machine Design, Part I., by Prof.

W. C. Unwin (Longmans, 1909).
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P

EXAMPLE i. A double riveted butt joint with double cover plates is

used to connect steel plates of 0-5 inch thickness
;
the holes are to be

drilled. Find the diameter of the rivets from the empirical rule (p. 103),

and also the pitch of the rivets, taking

= | inch, nearly.

</ (p. 102)

= (3-142 x 075 x ()
2 x 2) + 1

= 4^ inches, nearly.

EXAMPLE 2. Calculate the efficiency of the above joint.

Efficiency =^-7

^4-5-0-875
4-5

=0-805
= 80-5 per cent.

Or the efficiency may be calculated by considering the resistance to

shearing. Thus :

Area per pitch under shear stress = 4
-

Strength against shearing= 7r</
2/s

.

Efficiency against shearing = 7rd'2fs -rfltft

nP fs=
Pt

'

ft.

^3-142x49x0-75
4-5x0-5x64

= 0-802

= 80-2 per cent.

EXAMPLE 3. Calculate the bearing stress in the above joint when

carrying a load which produces a stress of 4 tons per square inch in the

solid plate.
Area of solid plate per pitch pt

= 4-5x0-5
=

2-25 sq. inches.

Load per pitch ^4x2-2 5

= 9 tons.
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This load is carried on the bearing surface of two rivets
; hence :

Projected bearing surface per rivet= dr

/.

Bearing stress =-^
__9

2x0-875 X0'5

= 10-3 tons per sq. inch.

EXAMPLE 4. Two plates forming a tie-bar have to be connected end

to end by a butt joint having double cover straps (Fig. 135). Each plate

A, C. t,

o o o o
o 6000
6000

o o o o

o o o o o
o

o o o o

B 1 D 1 F 1

FIG. 135. Riveted joint for a tie-bar.

is 10 inches wide and f inch thick
;
the rivets are f inch in diameter.

The stresses allowed are 6 tons per square inch pull, 4 tons per square
inch shearing, and 10 tons per square inch bearing. Find the number
of rivets required.

Sectional area of each plate =iox =
7-5 square inches.

Area abstracted by one rivet hole at the section AB = | x 1
= 0-56 sq. in.

Net sectional area of plate at AB = 7-5 -0-56
= 6-94 square inches.

Total safe pull on the plate
= 6-94x6 = 41 -64 tons.

Sectional area of one rivet=
4

TT(t* 22

7X4
x r= 0-442 sq. in,

Allowing if rivet sections for rivets under double shear, we have

Shearing resistance of one rivet=o-442 x 1-75 X4
= 3-09 tons.

Projected area of one rivet =|x 1=0-56 square inch.

Bearing resistance of one rivet = o-56x 10= 5-6 tons.

As the shearing resistance is lower than the bearing resistance, the

shearing resistance must be taken in calculating the number of rivets

required. Let N be the number of rivets on each side of the joint ;
then

Total safe pull on the plate
= total shearing resistance of the rivets,

41-64 = N X3-09,

N = I4 rivets.

To obtain a good arrangement of rivets, 15 rivets have been placed on
each side of the joint in Fig. 135.
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At the section AB, the safe load which can be applied is that calculated

above as 41-64 tons. At CD, the tearing strength of the plate is less

than at AB, but to this must be added the resistance of the rivet on the

left-hand side of CD, as this rivet would have to shear simultaneously
with the plate tearing at CD for the joint to fail in this way.

Sectional area of plate at CD = 7-5 -(2 xo-56)= 6-38 square inches.

Resistance to tearing at CD = 6-38x6= 38-28 tons.

Adding the shearing resistance of one rivet to this, we have

Safe load with reference to the section CD = 38-28 4-3-09
= 41-37 tons.

Considering the section EF, the three rivets on the left-hand side of

EF would have to shear simultaneously with the plate tearing.

Resistance to tearing at EF = { 7-5
-

(3 x 0-56) }6= 34-92 tons.

Shearing resistance of three rivets = 3 x 3-09= 9-27 tons.

Safe load with reference to the section EF = 44-19 tons.

It is evident that the safe load with reference to any other section on

the right-hand side of EF will have a greater value than that for the

section EF. The minimum safe load is that calculated for the section

CD, viz. 41-37 tons, which accordingly is the safe load which the joint

will carry.

Strain. Strain refers to the alterations of form or dimensions

which occur when a body is loaded or subjected to stress. Thus a

pulled or pushed bar is found to have become longer or shorter after

the load is applied, and is said to have longitudinal strain. This kind

of strain is measured by taking the ratio of the change in length to

the original length.

Let L = original length of bar,

= alteration in length, both in the same units.

Longitudinal strain = =-.

Volumetric strain occurs when a body is subjected to uniform fluid

pressure over the whole of its exposed surfaces. The volume will be

changed somewhat under these conditions, and the volumetric strain

is measured by taking the ratio of the change in volume to the

original volume.

Let V =
original volume of body,

v = change in volume, both in the same units.

i)

Volumetric strain = =-=.

V

Shearing strain occurs when a body is subjected to shear stress.

Such a stress is distinguished from the other two just mentioned in
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that it produces a change in the shape of the body, while pull, push,

and hydrostatic stress produce no such change. We may obtain an

idea of what happens by holding one cover ot a thick book firmly

on the table and applying a shearing force to the top cover (Fig. 136).

The change in shape is evidenced by the square originally pencilled

**.,. .p.,?.?

FIG. 136. Shearing strain illustrated

by a book.

f

FIG. 137. Measurement of

shearing strain.

on the end of the book becoming a rhombus. A solid body
would behave in the same manner under similar conditions of load-

ing, only, of course, in a minor degree (Fig. 137). The shearing

strain is measured by stating the angle in radians through which the

vertical edge has rotated on application of the shearing stress.

Shearing strain = radians (Fig. 137).

For metals 6 is always very small, and it is often sufficiently

accurate to write, referring to Fig. 137:

Shearing strain = 0,

BE'

~BC*

Transverse strain. When a bar is pulled or pushed, not only is

its length altered, but also its transverse dimensions. Thus a pulled

bar becomes thinner, while a pushed bar becomes thicker. Such

alterations are referred to as transverse strains and are measured in

the same manner as longitudinal strains, viz. by taking the ratio of

the alteration in transverse dimension to the original transverse

dimension.

H = a transverse dimension of the bar,

h the change in H when the bar is loaded.

h

Let

Transverse strain =
H*

For any given material, such as a metal, experiment shows that
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there is a definite ratio of longitudinal to transverse strain, ranging
from 3 to 4 for common metals.

Let a = longitudinal strain,

b = transverse strain,

a

m-j.

The value of m depends on the kind of material
;

its reciprocal

is called Poisson's ratio. Values of this ratio for common materials
m
are tabulated on p. 683.

Elasticity. Elasticity is that property of matter by virtue of which

a body endeavours to return to its original form and dimensions

when strained, the recovery taking place when the disturbing forces

are removed. Strain takes place while the loads are being applied
to a body, hence mechanical work (see p. 325) is expended in pro-

ducing strain, and is stored up, partly at any rate, in the body.
The elasticity of any material is regarded as being perfect, provided
the recovery of the original form and dimensions is perfect on

removal of the loads, and provided also that the energy given out

during recovery equals that expended while the body was being
strained.

The elasticity of a large number of materials is practically perfect

provided they are not stressed beyond a certain limit, which depends
on the kind of material and also on the nature of the stress applied.

If loaded beyond this elastic limit of stress, the recovery of original

form and dimensions is incomplete and the body is said to have

acquired permanent set.

Further, experiment shows that the strains are proportional to the

stresses producing them provided that the elastic limit is not exceeded.

This law was first discovered by Hooke, and bears his name.

Most materials show slight divergencies from Hooke's law, but it is

adhered to so closely in the case of common metals as to justify the

assumption of its truth for nearly all practical purposes.

Modulus of elasticity. Assuming Hooke's law to be true, and

selecting any elastic material to which loads may be applied.

Let / = the stress,

s = the strain produced by /.

Then p varies as s up to the elastic limit, hence the quantity will

be constant for that material up to the elastic limit. The term

modulus of elasticity is given lo this quantity. The value of the
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modulus of elasticity depends firstly on the nature of the material,

and in the second place on the nature of the stress. For any given
material there are three moduli of elasticity which should be under-

stood. In each case the measurement is made by taking

Modulus of elasticity
= .

The units of this expression will be governed by the unit of stress

employed, as strain is simply a ratio.

Young's modulus for a pushed or pulled bar is obtained by dividing

the push or pull stress intensity on a cross section at 90 to the axis

of the bar by the longitudinal strain.

Let P = force of push or pull applied to the bar,

A = area of the cross section,

L = original length of the bar,

= change of length of the bar,

both the latter being in the same units.

Then, writing E for Young's modulus,

E =
stress

strain

* **
A '

L Ae'

The bulk modulus belongs to the case of a body subjected to hydro-
static stress, which produces volumetric strain.

Let / = the hydrostatic stress intensity,

V the original volume of the body,

v = the change in volume,

both the latter being in the same units.

Then, writing K for the bulk modulus,

The rigidity modulus refers to the case of a body under shearing

stress, and consequently changing its shape by shearing strain.

Let q = the shearing stress intensity,

6 = the shearing strain, in radians.

Then, writing C for the rigidity modulus,

The most convenient units to employ for the elastic moduli are

tons or Ib. per square inch in the British system, and kilograms per
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square centimetre in the metric system. A table of values will be

found on p. 683.

Strains in a cylindrical boiler shell. It has been seen (p. 96)
that the stresses in a cylindrical boiler shell on longitudinal seams

and on circumferential seams are in the ratio of two to one. Suppose
that in consequence of these stresses the circumference becomes

greater by a small amount e. Let d be the original diameter of the

shell, then the original length of the circumference will be ird, and
the circumferential strain will be :

Circumferential strain
7T/

Also, new length of the circumference = ird+ e
;

.'. new length of the diameter -.

7T

Hence, change in the diameter = - d

d+--d
7T

to

strain in the direction of a diameter

(2)

Comparison of (i) and (2) shows that the diametral and circum-

ferential strains are equal.

-6

\P (d) (b)

FIG. 138. Strains in a boiler shell.

To obtain the circumferential strain, let / and \p be the stresses

on the longitudinal and circumferential seams respectively. If /
were to act alone (Fig. 138 (a)), the circumferential strain would be

a (extension) and the transverse strain would be b (contraction).

If \p were to act alone (Fig. 138^)), the longitudinal strain would

be \a (extension) and the circumferential strain would be \b
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(contraction). Hence, when both stresses act together, the strains

produced will be :

Circumferential strain = a -
\b...................... (3)

Longitudinal strain = \a
- b....... ............... (4)

Or, since m ^ ^'

m

And Circumferential strain = a ---
2 m

Longitudinal strain = -a -

-, \

(6)

2 m
i

Suppose m be taken equal to 4, then

Circumferential strain = a
(
i - ^)

,

=l (7)

Longitudinal strain = a (^
-
j)

=> (8)

Reference to Fig. 1 38 (a) shows that

E-*
a

or =
g (9)

vHence : Circumferential strain = \ ^. (10)
O Ji

Longitudinal strain = - ^ ( ll )

4 &

ExAMPtE. A boiler shell 7 feet in diameter and 30 feet long is tested

by hydraulic pressure (cold water) up to a stress of 6 tons per square inch

on the longitudinal seams. Take = 13,500 tons per square inch and
m= 4, and find how much water will escape when a test cock on the top
of the boiler is opened. Neglect any bulging of the ends.

[To answer this question, calculate the increase in volume of the shell

while the pressure is being applied.]

Circumferential strain= | x Tg f jo
=

The diametral strain is equal to this
;
hence :

Change in diameter =(7 x 12) x ^-

=0-0327 inch.

Final diameter of shell = 84-0327 inches.
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Let JL) and d be the final and original diameters
;
then

Increase in cross-sectional area of the water =-(D 2 -</2
)

= - x 0-0327 x 2 x 84 nearly
4

= 4-32 square inches.

.. increase in volume due to increase in sectional area = 4-32 x 360
= 1555 cub. in,

Again, Longitudinal strain= J x Tsf(Rj
=

2TIW
/. change in length of the shell = 30 x 12 x ^7000

= 0-04 inch.

Sectional area of the water = - x 84
2
(nearly)

4
= 5542 sq. inches.

.*. increase in volume due to increase in length =0-04x5 542
= 222 cubic inches.

Total increase in volume = 1550+ 222

= 1777 cubic inches.

The change in volume which occurs when charging cylinders for

holding compressed gases is sometimes taken as a test of the

soundness of the material of which the cylinder is constructed.

The test is made by having the cylinder immersed in water contained

in a closed vessel fitted with an external glass tube connected to the

water space. In charging, the expansion of the cylinder will displace

some of the water, which will therefore rise in the glass tube. An
increase in volume of more than a prescribed limit, as indicated by the

tube reading, affords evidence of defects in the material of the cylinder.

Stresses in thick cylinders. In Fig. 139 (a) is shown a cylinder of

considerable thickness under external and internal fluid pressures.

Let push stresses be denoted positive, and let the external pressure

be greater than the internal pressure. Consider a ring of unit length,

having an inner radius r and outer radius (r + 8r) (Fig. 139 (<)). Let

the radial stress on its inner surface be /, and let that on the outer

surface be (p + Sp). The resultants of these stresses on the half ring

(Fig. 139 (r)) will be
P

1 =p x 2r (see p. 96),

The resultant P of P
x
and P

2 is

P = P
2
-P

1

= (/ + 8p) x 2 (r + 8r) -p x zr.
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Let / be the tangential, or hoop stress on the ring ; the area over

which this stress is distributed is 8r x i
,
and there are two horizontal

sections, one at A and one at B (Fig. 139 (<:)) ; hence,

or /. 8r=pr+r.8p+#.8r+8p.8r-pr

by neglecting the product of the small quantities 8p and Sr.

P* i P+$P

(i)

FIG. 139. Stresses in a thick cylinder.

Another equation may be formed by consideration of the strains

in the axial direction produced by p and f all over the cylinder. It

may be assumed that cross sections of the cylinder remain plane
when the fluid stress is applied, i.e. all fibres parallel to the axis of

the cylinder lying between two cross sections change their lengths to

the same extent. Hence the assumption that the axial strains are

equal all over the cylinder.

Axial strain produced by/ =-,

As both/ and/are push stresses, both of these strains are exten

sions, and the total axial strain will be

+ = a constant,
';V '

!

or p +/= a constant.

Taking 20, for the value of the constant, this gives

p+f=2d (2)

D.M.
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From (2), f=2a-p.

(i), (2a-p)Sr=r.8p+p.Sr,
2a . r p . 8r=r. Sp+p . Sr,

2a.8r=r.8p+2p.Sr.

Multiply each side of this equation by r, giving

2ar . &r = r2 . 8p + 2pr . Sr,

or in the limit, when 8r becomes very small,

2ar=**- + 2pr.
dr

The right-hand side is the differential coefficient of (pr*), i.e.

Hence, d(pr
&
)
= 2ar . dr.

Integrate, giving prz = ar2 + c.

f = * + ? ................................. (3)

and /= 20, -p

= - ................................ (4)

The solution of any particular problem may be obtained from (3)

and (4) by first determining a and c from the given conditions.

Take the ordinary case of a cylinder having an internal fluid pressure

pi, the external pressure being regarded as zero (Fig. 140). We have

p=pi when r=Rij /. A = +
^72

................ (5)

Hence,

p = o when r=R ;
."

P .2D 2

n .2

Substitution of these values in (4) gives

/_ _%:__ ioA R 2 -R,2 ^Ro^Ri2 '^

,

R-
2

\



TEMPERATURE STRESSES

This equation gives the hoop tension at any radius r
; the maximum

hoop tension will occur where r has its smallest value, i.e. at the

inner skin, where r=Ri. Hence,

AT f R*2
/ .

RO!

Maximum /= /trs =r-w i +

It will be noticed from equation (8) that the maximum hoop
tension is always greater than the internal fluid

stress pi, independently of the thickness of the

cylinder ; hence, it is impossible to design a

solid cylinder to withstand a fluid pressure

greater than a certain value for a given material.

The difficulty may be overcome by shrinking

one cylinder on the top of another, or by

winding wire under strong tension over the

outside of the cylinder. The effect is to put
FlG> 14 *

the inner parts under initial push hoop stress, and gives a distribution

of stress more nearly uniform when the fluid pressure is applied.

Stresses produced by change in temperature. If a metal bar be

heated, its length will increase by an amount proportional to the

increase in temperature, and to a coefficient, the value of which

depends on the kind of material
;
this is on the assumption that the

bar is permitted to expand freely.

Let L = the original length, in inches ;

/ = the rise in temperature ;

= the coefficient of expansion, i.e. the change in length

per unit length produced by a rise in temperature

of one degree.

Then, change in length
= L/e

;

new length of the bar = L + Lfc

(0

Suppose that the bar is now cooled to its original temperature, and

that forces are applied to its ends so as to prevent it from returning

to its original length. Evidently these forces will have the same

value as those which would be required to produce an elastic

extension L/ in the bar had its original temperature been kept

unaltered.
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Let P = the total force required in tons.

A = the cross sectional area in square inches.

p
p = the stress produced by P in tons per square inch.

E = Young's modulus in tons per square inch.

Then Longitudinal strain = =fc.

Ais >

P = EA/tons, .............................. (2)

p E/ tons per square inch............. (3)

EXAMPLE. If the bar be of steel for which =13,500 tons per square

inch, and if the rise in temperature be 100 F., find the stress in the

material under the conditions expressed above. Take
= 0-000007,

J>=Et
= 13,500 x 100 x 0-000007
= 9-45 tons per square inch.

Suppose now that the bar be heated and at the same time held

rigidly between abutments which prevent entirely any change in the

length. These conditions may be imagined as follows : first allow the

bar to expand freely on heating ; then apply forces to the ends and

let these be sufficient to compress the bar back to its original length.

Length of the bar before applying the forces = L(i

Change in length produced by P = L/e.

Elastic strain produced by P =

i + U

Now E= p
.-

stram

E/e
, x

rz (4)

The denominator will be nearly unity, as U is usually very small
;

hence, (4) will have the same value nearly as (3).

Effects produced by unequal heating. Fig. 141 illustrates three

bars A, B and C attached to rigid cross pieces D and E
;
E is fixed
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and D may rise or fall freely. B is centrally situated between A and
C ;

A and C have equal sectional areas and B may have a different

sectional area. All three bars are of the same material.

If all three bars be at the same tempera-

ture at first, and if they be raised through
the same range of temperature, all will

attempt to expand equally in the direction

of length, and no stress will be produced
in any of them. Suppose, however, that B
is raised to a certain temperature and that

A and C are both raised to the same

higher temperature, then B attempts to

expand to a smaller extent than A and C.

The cross pieces D and E will compel all

three to come to the same length ; hence,

B will be under pull and A and C will be FIG. 141. stresses due to unequal

under push. This is indicated in the figure

by the forces P and Q. As no force whatever is required from the

outside in order to balance the arrangement under the altered

conditions of temperature, it follows that

1> = 2Q (i)

Let the equal sectional areas of A and C be denoted by x
and

the sectional area of B by a
2 ; then

Stress in A = stress in C =/j = ; .'. Q =pl
a

l
.

Stress in B = =

Hence, from (i),

or

This result indicates that if all three bars have the same sectional

area, then the stress in B will be double that in A or C, irrespective

of the actual values of the changes of temperature.
To find the numerical values of/x and/2 , proceed as follows :

Let L = the original length of each bar.

t
} change in temperature of A and C.

/.,
= change in temperature of B.

= the coefficient of expansion.

E = the common value of Young's modulus.
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First assume that all three bars expand freely ;
then

Extension of A = extension of C =
L/^.

Extension of B = L^.
New length of A or C = L(i + ^)

= ^L,
where ^ = i + ^e.

New length of B = L(i + t
zc)

where A
2
= i

Let the bars now be compelled to come to the same final length
LF by application of the forces P and Q.

Shortening of A or C produced by Q = ^L -
L,..

Extension of B produced by P = LF
- ^

2
L.

Strain of A or C

Strain

Hence, for A or C,

And for B,

Lp

or

As the ratio of pl
and p>2 is known from (2), this result may be

used for calculating LF ,
the final distance between the cross pieces;

substitution in (3) and (4) will then give the values of/j and/2
.

EXAMPLE. Take the following data for the arrangement shown in

Fig. 141 and calculate the final distance between the cross pieces, also the

stress in each mild steel bar.

#!= i square inch. . L=ioo inches.

a%=3 square inches. -30,000,000 Ib. per sq. inch.

/i=iooF. = 0-000007.
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AlSO,

From (5),

whence

;= i 4- ( ioo x 0-000007) :

:
= I + (50 x 0-000007) =

iL= 1-0007 x ioo =100-07.
A2L= 1-00035 x 100= 100-035.

3-002 1 _ 1 00-07
- LF

2-0007

I -0007.

LF- 100-035'

LF= 100-04899.

(Note, as the changes of length are calculated by taking the differences
;n the lengths of the bars, it is necessary in examples of this kind to use a

larger number of significant figures than that employed usually.)

From (3), 30,000,000 :

whence p l
-.

From (4), 30,000,000=^2

whence

100-07
'* l

100-07
-

100-04899'
= 6298 Ib. per square inch.

100-035

100-04899- 100-035'
= 4195 Ib. per square inch.

These stresses have the calculated ratio of 1-5.

This problem may be varied by using bars of

different materials and raising the temperatures
of all to the same extent. The differences in

the elastic moduli will produce a similar effect

to that caused by unequal heating, and the

calculation is effected in a similar manner,

making use of the proper values of the co-

efficients of expansion and of the elastic moduli.

Reinforced concrete column. In Fig. 142 is

shown a concrete column reinforced by steel

bars arranged as shown in the plan. Appli-

cation of an axial load to the column will cause

both steel and concrete to shorten to the same

extent
;

as the lengths of both are equal, it

follows that the strains are also equal. Using
the suffixes c and s to denote the concrete and

steel respectively, let
s _ s

FIG. 142. Reinforced con-
crete column.

Then

the strains in the direction of the

length of the column.

fs andfc
= the stresses in Ib. per square inch.

Eg and Ec
= Young's moduli in Ib. per square inch.

A8 and Ac
= the sectional areas in square inches.

T? _f* /T\
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Dividing (i) by (2), we have

E* = S* fc

EC fc S8

The ratio of Es to Ec varies somewhat
;
the average value of 1 5 is

usually taken. With this value, equation (3) shows that the stress in

the steel will always be 15 times that in the concrete irrespective of the

relation of the sectional areas of the concrete and steel. If 500 Ib.

per square inch be taken as a safe stress for the concrete, then the

stress in the steel will be 7500 Ib. per square inch.

Suppose VV to be the load in Ib. applied to the column
;
then

..................... (4)

a result which enables the safe load to be calculated if the sectional

areas of the steel and concrete are given.

The stresses produced in other composite bars under push or pull

are calculated in a similar manner, making use of the proper values

of Young's modulus. Such bars may take the form of a steel rod

cased in some alloy such as gun-metal, or the arrangement may be

as illustrated in Fig. 141, with A and C of one material and B of a

different material. A central load applied to the top cross piece 1)

will produce equal strains in all the bars, and the stresses will thus be

proportional to the values of Young's modulus for the materials of

the bars.

Classification of stresses. Stresses may be either normal or tan-

gential ; oblique stress is compounded of normal and tangential stresses.

Stress is purely normal when its lines of direction are perpendicular
to the surface over which it is distributed. Normal stresses may be

either tensile or compressive. Stress is tangential or shearing when

FIG. 143. Stress in a tie-bar.

its lines of direction coincide with the surface over which it is

distributed. Oblique stress may have its lines of direction inclined

at any angle between o and 90 to the surface over which it is

distributed. Normal tensile stress occurs in any section AB of a tie-

bar subjected to axial pulls (Fig. 143), the section being perpendicular
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FIG. 144. Stress
in a column.

to the axis of the bar. The stress in this case will be uniformly
distributed except for sections near the ends of the bar, and its

intensity will be given by
P

p = : .f area of section AB
Normal compressive stress will be found on any

horizontal section AB of a vertical column (Fig. 144)

carrying a weight W. If the line of W coincides with

the axis of the column, the stress will be uniformly

distributed and of intensity given by

W
* ~

area of section AB'

Relation of oblique stress with normal and

tangential components. Let ABCD (Fig. 145) represent the eleva-

tion of a cube of unit edge, the top face being subjected to normal

stress pn and also to tangential stress pi. On the supposition that

these stresses are uniformly distributed,

we may substitute resultant forces PN
and PT , acting at the centre O of the

top face, in a plane parallel to that

of the paper, the values of PN and P
,

being pn and pt as the face is of unit

area. The resultant of PN and PT
will be

R =VPN
2 + PT2,

and will act at an angle 6 to the

normal, the tangent of which is

FIG. 145. Relation of stresses. tan " = ^

Now R may be taken to be the resultant of an infinite number of

forces having the same direction as R,

and uniformly distributed over the top
face of the cube (Fig. 146), these forces

constituting an oblique stress r, the value

of which will be
FIG. 146.

R
area of top face

(0
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Other useful relations deduced easily from the figure are :

pt = r . sin 0, (3)

(4)
Pn

The angle is defined as the angle of obliquity of the stress.

Some examples of oblique stress. A useful method of determining
the stresses on any section of a loaded body consists in first imagining
that the body has been actually cut at the given section. One portion

only of the body is then taken, and the resultant forces are determined

which must be applied to the section in order to produce equilibrium

in this portion. The stresses and their distribution may then be found.

Consider a column carrying a load P, the line of which coincides

with the axis of the column (Fig. 147 (a)). Let the column be cut at

a section AB and consider the upper portion (Fig. 147 (^)). For

equilibrium, a resultant force P' = P must be applied in the same line

as P. This will give rise to a stress which will be seen afterwards

to be uniformly distributed over AB. Let the area of the section

AB be S
;
then p

Stress intensity on AB=/=^ (i)o

(a)

, ,

tfflttt
IP'

(b)

B

FIG. 147. Normal and shear stresses in a column.

Supposing the column to be cut along CD (Fig. 147 (a)), the angle

between AB and CD being 0. Considering the equilibrium of the

top portion (Fig. 147 (<:)), we see that a resultant force P' = P must be

applied in the same line as P. P' will give rise to an oblique stress

uniformly distributed over the section CD
;

let ON be drawn normal

to the section, when it will be evident that the angle between P' and

ON, which is the angle of obliquity, is equal to 0. To find the

stress intensity, we have
P'

Stress intensity=A= ? = 7^7^-J 2 area of section CD
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Now cos 6
;

cos 6'

area of section AB
area of section CD

.'. area of section CD =

. = p
, ^ S

'

cos

P'= .COS0

=/.cos (2)

The intensity of the oblique stress on CD is therefore equal to the

stress intensity on AB multiplied by the cosine of the angle between

the two sections.

It is of interest to determine the components of / normal and

tangential to CD (Figs. 147 (c) and (d}}. From equations (2) and (3),

p. 122, we have
/n =A cos0, (3)

/=/ sin0 (4)

By substituting the value of / from equation (2) above, we obtain

1 11 / *

^"^ ' \j/

/=/.sin0cos0 (6)

Pn
HO

0-8

O6

0-4

0-2

30 60 90

Q degrees
FIG. 148. Variation ot normal stress in a column.

It will be easily seen, from equation (5), that pn has its maximum
value when is zero, the value being then p and the section AB
in Fig. 147 (a). The value of pn diminishes as is increased, being
zero when = 90. Equation (6) may be written as

^ = i/.sin20, (7)

an equation which shows that t>t has zero value when is zero, and

that the value is again zero when is 90. The maximum value will
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occur when 26 is 90, the value of the sine being then unity; will

then be 45, and the value of/ will be

Maximum value ofpt
= \p (8)

The fact that the section at 45 to the axis of the column has

maximum intensity of shearing stress explains the reason why some

Pt
0-5

04
0-3

02
O-l

30 60

A C

90
6

degrees
FIG. 149. Variation of shear stress in a column.

materials, such as brick, stone or cement under compression, fracture

along planes at 45 instead of simply crushing. Such materials are

comparatively weak under shearing.

The curves in Figs. 148 and 149 have

been plotted from equations (5) and

(6), taking the maximum value of pn
as i ton per square inch, and illustrate

the way in which pn and pi vary,

I
ft depending on the angle at which the
"

section is taken.
__^ ; ___.. " r ^
P ^ p' The case of a rod under axial pulls

I
,

- ft) may be worked out in a similar

manner and the results will be iden-

P P .s tical, with the substitution of normal

^\+-^*e
pull stress for the normal push stress

~~oS~^
Jk

~*p' which occurs in the column. Fig. 150

_Sr^~ (c) illustrates this case, and as it is

lettered to correspond with the column

D diagrams there will be no difficulty in

rfa^Pn tracing the connection.

-<-l "V'S Stresses which are not uniformlyH K T*^^>^

I TJ; (d\
distributed. A varying stress may be

realised by considering a horizontal

surface ABC (Fig. 151), having a

number of slender vertical heavy rods

of varying heights standing on it. Some of these rods are shown
in the figure. The effect on the surface ABC, which is supposed to

Flu 150. Normal and shear stresses in

a tie-bar.
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FIG. 151. Representation of a

varying stress.

be covered entirely by the rods, will be to produce stress of varying

intensity. There is, however, no difficulty in seeing that the resultant

force on ABC will be the total weight of

the rods, and that the line of the resultant

force must pass through the centre of gravity

of the whole of the rods taken together.

We may deduce from this that, if a stress

figure be drawn for a given section by

erecting ordinates at all points of the

section, of length to scale to represent

the intensity of normal stress at each point,

the resultant force will pass through the

centre of volume of the stress figure. The magnitude of the resultant

force may be found thus :

Let / = stress intensity at a given point,

&z = a small area surrounding this point.

Then Resultant force = ^p . Sa, (i)

the summation being taken all over the section.

Equation (i) may be interpreted as meaning the volume of the'

stress figure, stress intensities being used for ordinates and square

inches or other convenient units for units of area.

EXAMPLE. A rectangular surface ABCD is subjected to normal

stress, which varies uniformly from zero along AD to 4 tons per square
inch along BC (Fig. 152). AB is 4"

and BC is 3". Find the resultant force,

and show where it acts.

The stress figure will be drawn in this

case by erecting ordinates BE and CF,
each to scale, representing 4 tons per

square inch. Join EF, AE and DF,
thus giving a stress figure of wedge

shape. To find the magnitude of the

resultant force, calculate the volume of

the wedge by multiplying the area of
FIG. 152. A uniformly varying stress.

the base by the ordinate of average height, viz. 2 tons per square inch.

Resultant force=R=4X3X2Thus,

The centre of volume of the wedge will lie vertically over a point O,

found by the intersection of two lines GH and KL, G and H bisecting

respectively AD and BC, and KB and LC being one-third of AB and CD
respectively. R will then pass through O as shown.
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It will be clear that, in the case of a uniform normal stress, the

centre of volume of the stress figure lies in the normal drawn from the

centre of area of the section. It therefore follows that, if a resultant

normal force acts through the centre of area of a given section, a

stress which will be distributed uniformly over the section will result.

In drawing stress figures, a useful convention is to draw the stress

figure standing on one side of the section, for those parts of the section

which are subjected to push stress, while pull stresses are represented

by a stress figure standing on the other side of the section.

Shearing stress. In Fig. i53(#) is shown a rectangular plate

ABCD having shearing stress pt distributed over its top edge. Let

(a) (b)
'

FIG. 153- A plate under shearing stress.

H Pt

the thickness of the plate from front to back be unity, then the total

force along AB will be P=/,xAB (i)

Substituting P as shown in Fig. 153^), the plate may be

equilibrated horizontally by the application along CD of an equal

opposite force P
;
as P, P form a couple, equilibrium is completed by

the application of equal opposite forces Q, Q along the edges AD and

BC respectively, these forming a couple of moment equal and oppo-
site to that of the first couple. For equilibrium we have

Px AD = Qx AB (2)

Let all these forces be produced from shearing stresses applied to

the edges of the plate (Fig. 153 (r)), and let qt be the shearing stress

which gives rise to Q, so that

Q =#xAD (3)

Substituting in (2), we have

pt x AB x AD =qt x AD x AB,
or pt = qt (4)

For the general equilibrium of the plate it is therefore necessary that

equal shearing stresses be applied to all four edges.

Take any section EF of the plate as now stressed (Fig. 153^")),

and consider the equilibrium of the portion ABFE (Fig. 154). From

what has been said it will be seen by inspection of Fig. 154 that a
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shearing stress.// must act along FE. Again, take another section

GH (Fig. 153 (c)), and consider the equilibrium of the portion AGHI)
(Fig. 155). Inspection shows that a shearing stress /< must act along

FIG. 154.

GH. We conclude that if any rectangular block be subjected to

shearing stresses, such stresses must be equal on all four edges, and

there will be an equal shearing stress on any section which is parallel

to any edge of the block.

Cube under shear stress. For simplicity, consider a cube of unit

edge, the elevation of which is ABCD (Fig. 156). Let shearing
stresses pt be applied as shown to those

faces of the cube which are perpendicular
to the paper. To find the stress on the

diagonal section AC, cut the cube and

consider the portion ABC (Fig. 157).

The stresses along AB and CB produce
forces /, pt9 acting at B; these will have

a resultant r, acting at 45 to AB, and

hence perpendicular to AC. The mag-
nitude of r will be

/=/. N/2.

If r be produced it will evidently cut the diagonal AC at its middle

point O, and may be balanced by an equal opposite force r applied

at O as shown. Now r may be considered to be the resultant of a

normal stress pn uniformly distributed over the diagonal section AC,
the intensity of this stress being

FIG. 156. Cube under shear
stress.

_
AB.x/

=Pt-

This result shows that the diagonal AC is subjected to a normal

pull stress of intensity equal to the given shearing stress. In the

same way, by considering the portion ABD (Fig. 158), we may show
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that the diagonal BD is subjected to a normal push stress /w of inten-

sity also equal to the given shearing stress.

Supposing we have a rectangular plate ABCD (Fig. 159) having

shearing stresses pt applied to its edges. Consider any square portion

FIG. 157. The diagonal AC is under pure
normal pull stress.

FIG. 158. The diagonal BD is under pure
normal push stress.

abed having its edges parallel to the sides of the rectangle. We have

already seen that these edges have equal shearing stresses pt acting

on them. Hence the diagonal

sections of the square have normal

pull stress on ac and normal push
stress on &d, the intensity of each of

these being//;. We therefore infer

that any section of the plate at 45
to an edge will have normal stress of

push or pull acting on it of intensity

equal to the given shearing stress,

intersecting at 90, and having purely

'/J

'

FIG. 159. Stresses in a rectangular plate.

Two sections of a body
normal stresses acting on them, are called principal axes of stress ; the

stresses are called principal stresses.

[For laboratory experiments on stress and strain, see Chapter XIII.]

EXERCISES ON CHAPTER VI.

Find the diameter if1. A round rod has to carry a pull of 15 tons,

the safe stress is 6 tons per square inch.

2. A short hollow cast-iron column is 6 inches in external and 4^ inches

in internal diameter. Calculate the safe load if the stress allowed is

7 tons per square inch.

3. Plates 0-5 inch thick are to be connected by a double-riveted lap

joint. Find the principal dimensions of the joint. Take d= \-2*Jt : /=6,
/s
= 5,/6= 10, in tons per square inch. Find the efficiency of the joint.
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4. Answer Question 3 for a double-riveted butt joint with two cover-

straps. The plates are | inch thick. Allow 1-75 rivet sections per rivet

under shear.

5. Two plates, each 16 inches by 0-5 inch thick, are to be connected

by a butt joint having two cover-straps. The joint is to be under pull.
Take stresses as given in Question 3, and find the required number of
rivets

|-
inch in diameter. What would be the safe load for the joint ?

6. A cylindrical boiler shell is 7-5 feet in diameter
;

the working
pressure is 150 Ib. per square inch. If the efficiency of the longitudinal
riveted joint is 75 per cent., find the thickness of the plate for a safe stress

of 5 tons per square inch. What will be the stress on a longitudinal
section of the plate at some distance from the joint ? Find also the stress

on a circumferential section of the plate.

7. A spherical vessel, 6 feet in diameter, is subjected to an internal

gaseous pressure of 120 Ib. per square inch. Find the thickness of plate

required for a joint efficiency of 70 per cent, and a safe stress of 12,000 Ib.

per square inch.

8. A steel bar, 6 inches wide, 0-5 inch thick and 30 feet long, carries a

pull of 1 8 tons. Find the extension in length and the contractions in

width and thickness when the load is applied. Take E = 13,500 tons per
square inch and m= y^.

9. A vertical square plate of steel, 6 feet edge and 0-75 inch thick, has

shearing forces of 200 tons acting along each edge. Suppose the lower

edge to be horizontal and to be fixed rigidly, what will be the horizontal

movement of the top edge when the load is applied ? Take C = 5500 tons

per square inch.

10. A cylinder for storing compressed oxygen under a pressure of 120

atmospheres is 3 feet long and 5 inches diameter
; the thickness of the

steel plate of which it is constructed is | inch. Find the alterations in

diameter and length when the cylinder is being charged, and hence find

the change in cubic capacity of the cylinder. Take = 13,000 tons per
square inch and 7/2= 4.

11. A rod of brass 4 feet long and 0-5 inch diameter is cooled from
1 50 F. to 60 F. Find what forces are required in order to prevent any
change in the length. Take = 5700 tons per square inch and the

coefficient of expansion = 0-00001.

12. A steel boiler tube is 1 5 feet long, 3 inches internal diameter and is

made of metal 0-3 inch thick. Supposing that half its natural expansion
due to a range of temperature of 240 F. is prevented, what forces will the

tube exert in the direction of its length ? What will be the stress in the
tube ? Take E = 13,500 tons per square inch and = 0-000007.

13. A tube of copper i 5 inch bore and 4 feet long, of metal o- 1 inch thick,
has an internal steel rod 0-5 inch diameter, having swelled ends to which
the tube is brazed. Suppose there to be no self-stressing at first, what will be
the stresses in the copper and in the steel if both are raised in temperature
to an extent of 100 F. ? Take Es= 13,500 and Ec= 62oo tons per square
inch

;
coefficient of expansion of steel = 0-000007 and ofcopper= 0-0000096.

14. A reinforced concrete column has a square section of 15 inches

edge, and has four reinforcement bars of steel 1-5 inches diameter. Find
the safe load if the stress in the concrete is 500 Ib. per square inch. How
much of this load is carried by the steel ? Take the ratio of Young's
modulus for the steel and for the concrete to be 15.

D.M. I
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15. A tie bar has a rectangular section 4 inches by 1-5 inches, and
carries a pull of 30 tons. Find the normal and tangential stresses on

sections making angles of o, 30, 45, 60 and 90 with the axis of the

bar. Plot curves showing the relation of the stresses and angles.

16. Draw the stress figure for a rectangular section 30 feet by i foot
;

there is a normal push stress of 4 tons per square foot at one short edge,
and the stress varies uniformly to a normal push stress of 0-5 ton per

square foot at the opposite edge. What is the resultant force on the

section ? Show where it acts.

17. A ferro-concrete column is 14 inches square in cross section
;
the

main reinforcement consists of four longitudinal 2-inch diameter round

steel rods, one rod being placed close to each angle of the cross section.

The value of E (Young's modulus) for the steel is 29,000,000 Ib. per square
inch and for the concrete 3,000,000 Ib. per square inch. If a gross com-

pressive load of 60 tons is supported by this column, what is the gross load

and the compressive stress per square inch in (a) the concrete, (b} the

reinforcing bars ? (B.E.)

18- A column which carries a load of 300,000 Ib. rests on a foundation

whose area is 10 square feet ;
find the normal and tangential components

of the stress on a plane in the foundation, whose inclination to the

horizontal is 15. Find also the inclination of the plane on which the

tangential stress is a maximum, and calculate this maximum value. (L.U.)

19. The London Building Act, 1909, allows stresses in steel of 5^ tons

per square inch in shear and 1 1 tons per square inch of bearing area, but

limits the shearing strength of a rivet in double shear to 1-75 times that of

a like rivet in single shear. Prepare a table of rivet strengths, with these

stresses, for i-inch rivets in single and double shear with plates of f inch,

| inch, | inch, f inch and f inch in thickness. (I.C.E.)

20. A cylinder, 8 inches external and 4 inches internal diameter, has an

internal fluid pressure of 2000 Ib. per square inch. Find the maximum
and minimum hoop tensions.



CHAPTER VII.

STRENGTH OF BEAMS.

Some definitions. Beams are parts of a structure, usually supported

horizontally, for the purpose of carrying loads applied transversely to

their lengths. The term beam or joist is understood generally to refer

to a structure of moderate size and constructed of one piece of

material, such as the timber beams or joists used for supporting

floors, or rolled steel beams also often used for floors. Beams of

larger size and constructed of several parts secured together are

called girders.

Any beam will bend when loaded, owing to the strains which take

place in the material. If straight initially, it will take the shape of

some curve ;
if curved initially, it will alter its curvature. The theory

of the strength and stiffness of beams may be developed from the

fundamental principles that (a) the beam as a whole is in equilibrium

under the action of the external forces, which term embraces the

applied loads and the reactions of the supports ; (b) any portion of

the beam lying between two sections is in

equilibrium under the action of any external

forces applied to that portion, together with

the stresses communicated across the sections

from the other parts of the beam.

Pure bending occurs when the following

conditions are complied with, (a) There

must be no resultant push or pull along the

beam due to the action of the external forces ;

this condition will be realised in the case

of a horizontal beam carrying vertical loads

and so supported that the reactions are

vertical, (b) The external forces must be all

applied in the plane in which the beam bends.
T . -ii-i T FIG. 160. Unsymmetrical and
111 Connection With the latter Condition, It symmetrical angle sections.

(a)
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may be explained here that it does not follow necessarily that a

beam carrying vertical loads will bend in a vertical plane. Side or

horizontal bending as well as vertical bending will occur if the beam
section be not symmetrical about a vertical line passing through the

(e)

FIG. 161. -Examples of symmetrical and unsymmetrical sections.

w

centre of area of the section. For example, the angle section shown

in Fig. 1 60 (a) is not symmetrical about the vertical ab, and hence

pure bending cannot occur with vertical loads. If the angle be

situated as in Fig. i6o(), symmetry about ab is secured, and pure

bending will occur, i.e. the beam when loaded vertically will bend in

the vertical plane, of which ab

is the trace. Figs. 161 (a\ (b)

and (c) show other examples of

symmetrical sections. An un-

symmetrical bulb angle and Z
bar are shown in Figs. 161 (d)

and (e). Pure bending alone

will be considered.

Nature of the stresses in a

beam. In practice, the problem
which has to be solved first is

generally that of finding the re-

actions of the supports for given

loading. In simple cases of pure

bending, in which the beam rests

on two supports, but is not fixed,

the solution may be obtained by
the methods given in Chaps. III.

and IV. We now proceed to examine the stresses in the material of

a loaded beam. The nature of these may be understood by considera-

tion of the beam shown in Fig. 162 (a), which carries a single load W,
and is supported at its ends. Supposing a number of saw cuts to be

made in the lower portion of the beam (Fig. 162 (b} ),
it is evident that

these will tend to open out on the beam being loaded. Had the saw

FIG. 162. Longitudinal tension and compression
in a loaded beam.
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FIG. 163. Shearing tendency in a loaded
beam.

cuts been made in the upper portion (Fig. 162 (c)), it is clear that these

would tend to close on loading the beam. We are therefore justified

in concluding that longitudinal fibres situated in the lower portion

of this beam are under pull, while

those lying in the upper portion are

under push.

Again, it will be evident that if a

vertical section AB be taken
( Fig. 1 63),

there is a tendency for the left-hand

portion to slide upwards and for the

right-hand portion to slide downwards,

indicating that th^re must be shear stresses acting on the section.

Bending moment and shearing force. Let the beam shown in

Fig. 164 (a) be cut at any section AB, and consider the problem of

restoration to equilibrium of the left-hand portion (Fig. 164 (b) ).
In

general, the external forces will not be in equilibrium unaided, hence

stresses will be required at the section AB. Whatever may be the

magnitudes and directions of these stresses, they may be resolved into

components along and perpendicular to AB, and their resultant

forces X, Y and S substituted for the

actual stresses. The problem may
now be solved by application of the

equations (p. 64), denoting horizontal

and vertical forces by the suffixes x

and y respectively :

SP.-o, (i)

2Py
=

o, (2)

= o (3)

K _K

Y Since there are no forces other than

X and Y acting along the beam, it

FIG. 164. Bending moment and shearing follows from equation (l) that these are
force at a beam section. 111 i r i

equal, and hence they form a couple.

Equation (2) shows that the algebraic sum of the forces parallel to

AB must be zero, and hence S must be equal to the algebraic sum of

the external forces applied to the portion of the beam under con-

sideration. S is called the shearing force, and will produce shear

stress distributed in some manner over the section AB.

The meaning of equation (3) may be ascertained by taking

moments about any axis in the section AB, the axis beipg perpendi-

cular to the plane of bending and indicated by O in Fig. 164 (b). The
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second term clearly refers to the resultant moment of the external

forces applied to the portion of the beam considered (notice S has

no moment about this axis) ;
the first term refers to the moment of

the couple produced by the equal forces X and Y. The equation

shows that these moments must be equal. The resultant moment of

the external forces is termed the bending moment, and the moment of

the couple is termed the moment of resistance.

Equation (3) may thus be read :

Bending moment at AB = moment of resistance at AB.

It will be evident, since the forces X, Y and S are communicated

as stresses from the right-hand portion to the left-hand portion of the

beam, and hence are mutual interactions, that their values would be

unaltered had the calculation been performed by considering the

right-hand portion of the beam instead of the left-hand portion.

Hence the bending moment and shearing force at any section may
be calculated from the loads and reactions applied to either portion of

the beam. If the calculations be made for both portions the results

should agree, thus affording a check on the accuracy of the work.

Rules for bending moment and shearing force. The bending
moment at any section of a beam means the tendency to rotate either

portion of the beam about that section, and is calculated by taking

FIG. 165. Positive and negative bending. FIG. 166. Positive and negative shear.

the algebraic sum of the moments about the section of all the forces

acting either on one or other portion of the beam.

The shearing force at any section of a beam means the tendency

of one portion of the beam to slide on the other portion, and is

calculated by taking the algebraic sum of all the forces acting

either on one or other portion of the beam.

It is usual to call bending moments positive when the tendency is

to cause the beam to become convex downwards, as in Fig. 165 (a).

Fig. 165^) shows a case of negative bending moment. Shearing

forces are denoted as positive if the tendency to slide is that shown

in Fig. 1 66 (a), and negative if that in Fig. 166 (b).
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Bending-moment and shearing-force diagrams. Such diagrams

are often required in the solution of beam and girder problems, and

may be drawn by first calculating the values of the bending moments

and shearing forces at a sufficient number of sections of the given

beam. A horizontal datum line is chosen of length to scale to

represent the length of the beam ;
the calculated values are then set

I ton per foot length

FIG. 167. Bending moment and shearing force diagrams for a beam carrying a

uniformly distributed load.

off as ordinates, above or below the datum line according as they are

positive or negative. The ends of the ordinates being joined by

straight lines, or a curve depending on the circumstances, the result

gives complete representations of the bending moments and shearing

forces throughout the beam.

EXAMPLE. A beam of 2o-feet span is supported at its ends and carries

a uniformly distributed load of i ton per foot length (Fig. 1,67 ()). Draw

bending-moment and shearing-force diagrams.
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To do this, first calculate the bending moments and shearing forces at

sections 2 feet apart throughout the length of the beam. The reaction of

each support will be 10 tons. Sample calculations are given below for the

section 6 feet from the left-hand support, together with a complete table

of the results from which the diagrams in Fig. 167^) and (d) have been

plotted. As the loading is continuous, it is evident that both the bending
moment and shearing force vary continuously ;

hence neither diagram
shows any break or sudden change in direction.

For section 6 (Fig. 167 (b)\

Bending moment = (iox6)-(6x 3)

= 60-18
= 42 ton-feet, positive.

Shearing force = 10 6

= 4 tons, positive.

Diagrams of bending moment and shearing force for four important

cases are given in Fig. 168. These cases are of constant occurrence

in practice, and should be worked out independently by the student.

Shearing force at a concentrated load. Any difficulty which may
occur in dealing with the shearing force at a concentrated load will

disappear if it is remembered that there is never any case of

a load being concentrated on a geometrical point, or line. This

arises from the fact that such would produce an infinitely great stress,

the area being zero. All loads are distributed really over a small

portion of the length of the beam. In Fig. 169 (a), a load W is

shown resting on a beam, and it may be convenient for some pur-

poses, such as the calculation of the reactions, to speak of it as

concentrated at its centre of gravity C ; actually it is distributed over

a short length DE of the beam. The shearing force at any section

lying between A and D will be positive and equal to P
;
for any

section between B and E the shearing force will be negative and

equal to Q. For sections lying.between D and E, the shearing force

will be + P at D, and will gradually diminish to zero, then will
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change sign to negative, and will increase numerically to - Q at E.

The section at which zero shearing force occirrs may be determined

w

M

wCiL-x)

FIG. 168. Bending moment and shearing force diagrams for four important cases.

from the consideration that the portion ofW lying to the left of the

section must be equal to P. Thus :

PxAB = WxCB;

Let F be the section of zero shear, then

DF : P = DE : W ;

P- DF W
~DE'

Hence

or

DE~AB
DF:DE = CB": AB. .(3)
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We infer from this result, that the section of zero shear divides the

load into segments which are

inversely proportional to the

segments into which the centre

of gravity of the load divides

the beam. The shearing-force

diagram for this case is shown

in Fig. 169 (I)}).

In solving problems of this

character, it is usually sufficient

to state the shearing forces on

each side of the load given as

FIG. ^.-Shearing force at a load. Concentrated.

EXAMPLE. Draw the bending-moment and shearing-force diagrams
for the beam shown in Fig. 170 (<*).

2 tons

Shearing Forces

5 tons

1*5 tons per foot

* * 10

20i

16-

12

61

4

P-ltttom

Ton- ft.
(a)

Bending Moments

Feet

-16-

-20

-24

Jons

5-

(b)

-5

S'hearing Forces

I0

FIG. 170. Bending moment and shearing force diagrams for a loaded beam.
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Sections at 2-feet intervals have been chosen, and the calculations have
been made in each case by considering the left-hand portion. Clockwise

moments have been considered as positive and anti-clockwise as negative,
thus giving the proper sign for the results of the bending-moment calcu-

lations. Forces acting upwards have been taken as positive and down-
ward forces as negative, giving the proper sign for the shearing-force
results. The calculations are given in the table, and the diagrams have
been plotted from the results as shown in Fig. ijo(b} and (c). Two
results are given for the shearing force at the 6-feet and the 1 2-feet

sections
;

the first is that immediately to the left of the section, the

second is that just to the right of the section. The shearing force at

16 feet from P is that immediately to the left of the 5-ton load.

BENDING MOMENTS AND SHEARING FORCES FOR A LOADED BEAM.

Graphical methods of obtaining the bending-moment diagram. In

Fig. 171 (a) is shown a beam carrying two loads W
1
and W

2
. The

reactions of the supports P and Q have been determined by means

of the force polygon shown in Fig. 171 (b), and the link polygon,

Fig. 171 (c\ as has been explained on p. 70. It will happen usually

that the closing link ab of the link polygon is not horizontal, and it is

convenient for our present purpose that it should be so. To obtain

this result, the pole O of the force polygon in Fig. 1 7 1 (b) has been

moved vertically to O' in. the horizontal line through A. A new link

polygon (Fig. i
t

ji(d)) is then drawn, having its sides parallel to the

dotted lines radiating from O' in Fig. 1 7 1 (b) ;
ab' will now be horizontal.

The triangles a'ed' and O'AB are similar; hence

^v = A:B

a'e
~
O'A

or d'exO'A = ARxa'e (i)
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Now AB represents the reaction P
;
hence AB x de represents the

moment of P about the section at Wv i.e. represents the bending
moment at Wr Therefore the ordinate d'e of the link polygon, when

multiplied by the horizontal polar distance O'A, gives the bending
moment at Wj.

In the same way, from the similar triangles c'fb' and DAO' we may
show that c'fy. O'A represents the bending moment at W

2
. Therefore,

the link polygon drfc'b' is the bending-moment diagram for the

whole beam.

To obtain the scale of the diagram, it will be noted that both d'e

and AB in (i) above should be measured to the scale of force used

in drawing the force diagram, Fig. 171 (b); also, both de and O'A

-- -cc

FIG. 171. Bending-moment diagram by the link polygon method.

should be measured to the scale of length used in drawing the beam
in Fig. 171 (a). Let these scales be/ tons per inch height of DB in

Fig. 171 (b) and / feet per inch length in Fig. 171 (a). Then, if any
ordinate y of Fig. 171(^0 be measured in inches, and if O'A be

measured also in inches, the bending moment at the section of the

beam vertically above y will be given by
Mx =y. O'A .//ton-feet (2)

Another useful graphical method of obtaining the bending-moment

diagram is illustrated in Figs. 172 (a) and (b). A base line OA is

selected of length equal to that of the beam. Choosing a convenient

scale of moments, AB is set off equal to PL, and is divided at E by

setting off BE equal to W^. The remainder EA of BA will

evidently be equal to W
2
o
2 ,

as is shown by the equation of moments

about the right-hand support, viz. :

(i)
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Join OB cutting the vertical through Wl
in C

; join CE cutting W2

produced in F; join FA. Then OCFA is the bending-moment
diagram for the complete beam.

w,

,, ,
G A

(
&)

FIG. 172. Bending-moment diagram by the method of graphical moments.

To prove this, take any ordinate y1
. From similar triangles, we

have A"R M
*

AB
.x,.

Now AB = P x L and OA = L
; hence

that is, y1 represents the moment of P about the section of the beam

vertically over yl ; hence OCD is the bending-moment diagram for

the portion of the beam lying between P and W
1

. In the same way,
it may be shown that yz represents the moment of W

1 about the

section vertically overj3 ; y2 represents the moment of P about the

same section, and has the opposite sign to that ofW
1 ;

hence (yz -ys )

is the bending moment for this section. Similarly (y4 y6 y$) is the

bending moment for the section vertically over jy4 .

In applying either of these graphical methods to the case of

distributed loads, these loads may be cut up into portions of short

length and the weight of each concentrated at its centre of gravity.

The result will give a nearly equivalent system of concentrated loads.
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Bending of a beam. Suppose we have a beam consisting of a

number of planks of equal lengths laid one on the other, and sup-

ported at the ends. A load W, applied at the centre of the span, will

cause all the planks to bend in a similar fashion, and, as their lengths

will remain equal, the planks will overlap at the ends as shown

(Fig. 173 (a) ). Strapping the planks firmly together will prevent this

FIG. 173 (). Plank beam. FIG. 173 (). Strapped plank beam.

occurring, and the beam will now bend as a whole, the ends of the

planks remaining in one plane (Fig. 173 (b) ).
The upper planks have

become shorter and the lower planks longer ; hence, one intermediate

plank will be unaltered in length. Assuming the middle plank to

remain the same length as at first, it is clear that all planks above

the middle must have become shorter, and all below the middle,

longer than at first. It will also be evident that the change of

length, and consequently the longitudinal strain, of any plank will

depend on its distance above or below the middle, being greater as

the distance is increased.

For ordinary practical beams, it is assumed that no section is

warped when loads are applied ;
thus transverse sections which were

plane in the unloaded beam remain plane when the loads are applied.

While this assumption is justified on appeal to experiment, it must be

noted that it is no longer true if the

beam has been loaded excessively

so that the elastic limit of the

material has been exceeded.

Some important definitions. In

Fig. 174 is shown a portion of an

unloaded beam. We have seen already that there will be one

longitudinal section which will not suffer change of length when the

beam is loaded; let NL represent this section, which is called the

neutral lamina. Any plane transverse section, such as AB or CD,
will intersect the neutral lamina in a straight line, which is shown by
NA in the cross section; this line is called the neutral axis of the

section.

Longitudinal strains. In Fig. 175 (a) is shown a portion of a bent

beam. Two adjacent and originally parallel sections AB and CD

t
FIG.

B D

174. Neutral axis of a beam section.
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have been altered in position by the bending to A'B' and C'D'. ab

is any longitudinal fibre parallel to the neutral lamina NL, and has

been changed in length from ab to ab
',
the change being one of

shortening if ab lies on the concave side of NL and of extension if

ab lies on the convex side. The actual change of length is made up
of the two pieces aa and bb'. It is clear from the geometry of the

B' B D

FIG. 175. Longitudinal strains and stresses in a beam.

figure that the combined length of these pieces will be proportional

to the distance of ab from NL
;
thus :

(aa' + bb'} : (AA' + CC) = Ea : EA.

The strain of ab will be given by

aa + bb'
Strain of ab =

Also, Strain of AC =

ab

AA' + CC'

AC
Now all fibres lying between AB and CD were originally of equal

lengths, viz. EF
;
hence their strains are proportional simply to their

changes in length, and hence to the distances of the fibres from NL.

We may therefore write, taking y and m to be the distances respec-

tively of ab and AC from NL :

Strain of ab : strain of AC y : m,

strain of any fibre
or -T. r -,

J
c ^pp-

= a constant.
distance of fibre from NL

Longitudinal stresses. Changes of length of any fibre must have

been brought about by longitudinal stresses of push or pull, depend-

ing upon whether shortening or extension has been produced. Thus

ab' in Fig. 175 (a) must be under longitudinal push ; any fibre lying

on the convex side of NL will be under longitudinal pull. Assuming
the elastic limit not to be exceeded, these stresses will be proportional

to the strains. Hence, from what has been said above regarding

the strains, the longitudinal stress on any fibre will be proportional

to its distance from NL.
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Let

Then

f= longitudinal stress on A'C' (Fig. 175 (^)),

P 5>

or m y
a constant.

The student will observe that fibres under longitudinal push stress

not only shorten, but also expand laterally, while those under pull

stress contract laterally. The ordinary theory of beams assumes that

such lateral changes take place freely, the justification being that

calculations based on the ordinary theory agree

very closely with experimental results. The effect

of the lateral changes on the section of a beam bent

convex downwards will be understood by reference

to Fig. 176, in which the lateral contractions of the

lower fibres and the lateral expansions of those

above the neutral lamina have the effect shown of

causing the cross section apparently to be bent

convex upwards, i.e. in the opposite sense to that of the length of the

beam. The transverse curvature is called anticlastic, and may be

observed very well if a rubber beam be experimented upon. The
interference of anticlastic bending with the ordinary theory of beams

will be most marked with'a very broad beam of little depth, a strip of

clock spring, for example.
Moment of resistance. Knowing the nature of the distribution of

the stresses over the cross section, we may now proceed to find an

FIG. 176. Anticlastic

curvature.

FIG. 177. Moment of resistance of a beam.

expression for the moment of resistance. Referring to Fig. 177,

showing a part side elevation and section of a loaded beam under

pure bending, let a be the cross-sectional area of any fibre.

Stress on a =p.

Now p '.f=y
' m

;
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Also, Force on a =pa = fa

The force on any other fibre would be obtained in a similar

manner, and, as these forces will be both push and pull when taken

over the whole section, we may obtain the resultant force by

summing algebraically. Thus :

Resultant force on section ^ aym J

The factor 2ay simply means the moment of area of the whole

section about NA, and, as in pure bending there is no resultant

force along the length of the beam, we may equate equation (3)

to zero. Now i- will not be zero ;
hence

m
?ay = o...................... (4)

This latter result can only be true provided NA, the axis about

which moments of area are to be taken, passes through the centre

of area of the section and is perpendicular to the plane of bending.

Hence, we have a simple rule for the position of the neutral axis of

any section. The methods of finding the centres of gravity of thin

sheets, discussed in Chapter III., may be applied.

Again, taking moments about NA, and using equation (2) for the

force on a, we have

Moment of the force on a = ay xym

.

A similar expression would give the moment of the force on any
other fibre, and it will be noticed that all such moments will have the

same sign independent of that ofy, as they has been squared in each

case. The total moment may be obtained by summation, thus :

Total moment of resistance = 20y2.................. (6)
wi

In this result, ^ay
2
may be termed the second moment of area of the

section, thus distinguishing it from the first moment, which would be

?ay. The name moment of inertia is applied more commonly to Say
2

.

arising on account of its similarity to the expression used in cal-

culating the moment of inertia of a thin plate.

D.M. K
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The moments of inertia of many simple sections may be calculated

easily by application of the methods of the integral calculus. Rolled

sections are dealt with more easily by a graphical process, which will

be explained later. Writing INA for the moment of inertia of the

section with reference to the neutral axis, and making use of what has

been said on p. 134, we have

Bending moment = moment of resistance,

or

This expression may be applied by first calculating the bending

moment at the given section of the beam. It is useful to choose m
as the greatest ordinate of the section, using NA as a datum line,

when/ which is the stress on the fibre at a distance m from NA, will

be the maximum value of the stress on the section. An example will

render the method clear.

EXAMPLE. A beam of i2-feet span carries a uniformly distributed

load of 0-5 ton per foot run, together

Jn
t

with a load of 2 tons at 3 feet from
nS K ton per foot one end (Fig. 178). Given that the

moment of inertia of the rectangular

section is 180 in inch units, find the

greatest stress on the section at the

FIG. 178.
middle of the span, which is 10 inches

deep.

To find the reactions, take moments about B (Fig. 178) :

Total distributed load =6 tons.

= =
4' tons.

As a check, take moments about A :

Qx i2 = (6

42 =
3-5 tons.

= 8 ton s = total load.

Now find the bending moment at C, thus :

Mc= (Px6)-(2X 3)-(3X 3)

= 27-6-9
= 12 ton-feet

= 144 ton-inches.

Or Mc= (Qx6)-(3 x 3)

= 21-9
= 12 ton-feet, as before.
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Again, taking m = 5 inches, we have

i44= -180,

/
.= 5 X U4

J
1 80

= 4 tons per square inch.

In solving beam problems it is advisable to take all dimensions for

bending moments and resisting moments in inches.

Modulus of a beam section. The modulus of a beam section

may be denned as the quantity by which the stress intensity at unit

distance from the neutral axis must be multiplied in order to give
the moment of resistance of the section. Taking the equation,

Moment of resistance = INA ,

let y be unity, and let/x
be the stress corresponding to this value ofj>.

Then Moment of resistance =/x
INA

=AZi>
where Z

l
is a modulus of the section.

Another modulus may be obtained by making use of the maximum
stress form of the equation for the strength of a beam, viz.

Moment of resistance = INAm

where Z is the modulus of the section, and is found from

r7 _ INA
f_i
-

.

m
The latter is the more useful form of modulus in practice ;

its

value differs numerically from that of Z
1

. It will be noted that only

sections which are symmetrical above and below the neutral axis

will have equal values of m and / for tension and compression.
Such sections have one value only for the modulus, all others having
two values, one corresponding to the maximum tensile stress, the

other to the maximum compression stress.

Let ft
= maximum tensile stress,

mt = distance of/ from the neutral axis,

fc
= maximum compressive stress,

mc
= distance offc from the neutral axis.
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Then, since the bending moment M at any section equals the

moment of resistance at that section, we may write

M -

where Z = INA/*0* is the tension modulus.

Also, M =^INA

where Zc
= INA/wc is the compression modulus.

These results may be written

M

from which it may be inferred that the given safe stresses in tension

and compression respectively must not be exceeded by the values

obtained by dividing the bending moment at any section by the

tension or compression modulus of the section.

Graphical method of finding the neutral axis and moment of

inertia of a section. Advantage is taken of the fact that the neutral

axis passes through the

centre of area of the sec-

tion. To illustrate the

method, reference is made

to Fig. 179, in which is

given an irregular figure,

and it is required to draw

a line through the centre

of area parallel to OX,
and also to find the

1 moment of inertia of the

~x figure about OX.
Draw any convenient

e\ \m f

\ I

FIG. 179. Graphical method of finding the neutral axis and
moment of inertia.

JK axis OY perpendicular to

OX, and take any narrow strip ab parallel to OX. Let the breadth

of ab be 8y and let y be the distance of ab from OX. The area of

the strip will be (ab . 8v) and its moment of area about OX will be

Moment of area of strip
= a. fy.y (i)
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Draw cd parallel to OX through the highest point on the figure ;

draw ac and bd parallel to OY and join cQ and dO, cutting ab in e

and /respectively. Then, from similar triangles, we nave

or

Substituting in (i) gives
H

Moment of area of strip
= . ef. 8y.y

= ef.Sy.H................... (3)

Now (ef. By) is the area of the strip ef; hence, if the whole section

were cut into strips such as ab, and the construction repeated for

each strip, the total moment of area would be given by the sum of

the areas of the reduced strips such as ^multiplied by the constant

factor H. In practice, a few breadths only are taken
;
the reduced

breadth for each is found by application of the above construction,

and a fair curve is drawn through the ends. The area inclosed by
this curve when multiplied by H will give the moment of area about

OX of the given figure. Now the moment of area may also be

found by taking the product of the area of the given figure and the

distance of its centre of area from OX.
Let A

x
= the area of the given figure, in square inches.

A
2
= the area of the reduced figure, in square inches.

Then

y = the distance of the centre of area from OX, in inches.

H = the height of the figure, in inches.

-iiO TT / \

T-H (4)

Fig. 1 80 shows the appli-

cation of this method to a T
section. The area A

T
of the

section and the shaded area

A
2
of the reduced figure were

found by use of a planimeter.

The neutral axis NA is drawn

parallel to OX and at a dis-

tance y from it. FIG. 180. Neutral axis of a T section.
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Referring again to Fig. 179, draw eg and fa parallel to OY, and join

and hO, cutting ab in m and respectively. Then, from

similar triangles : ^ H
mn~ y

9

or
mn y

.'. ef=mn. I

Now, from the definition,

IGX of strip #^ = area of strip xj/
2

H
(from (2), p. 149)

H . mn . . Sy . y
y

(from (5) above)

(6)

Again, (mn . Sy) is the area of the strip mn ; hence the total moment
of inertia may be obtained by multiplying the sum of the areas of all

,
such strips by the constant

factor H2
. Choose a number

of strips and repeat the con-

struction on each, thus finding

a number of points such as

m and n. Draw a fair curve

through them, when its area

A
3 , multiplied by H2

,
will give

the total moment of inertia.

The moment of inertia of

the same T section is worked

out in Fig. 181. Greater

accuracy is secured by using the neutral axis instead of OX in

Fig. 1 80, thus producing two reduced figures, one for the original
area above NA and another for that below NA.

Let

A
3

' = shaded area of reduced figure above NA, in square inches.

A
3

" = shaded area of reduced figure below NA, in square inches.

Hj = height above NA, in inches.

H
2
=
height below NA, in inches.

Then,
Total moment of inertia about NA = A

Z'H\ + A3
"H2

2 (7)

FIG. 181. Moment of inertia about NA of a T section.
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PROPERTIES OF SECTIONS.

Name of

section.

Rectangle

Square

Square

Box

I on side

Cruciform

Circle

Hollow
circle

Section.

IH...H

4-i
<

I

U---B
->|

T-T

uifi/T*- ~0

e

Area.

BD

BD-^

BD-

2B/ + ^/

_/l

7TR2

Distance of
NA from
bottom.

I

^'

4B

BD3

12

BD3-^3

12

12

(BD2-^2
)
2

7rR_
4

4

D2

12

12

BD3 -

BD3 -

I2(2D/-/
2
)

I

R2

4
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Radius of gyration. The radius of gyration of a section may be

defined thus : Let k be such a quantity that the product of the area A
of the section and k^ is equal to the moment of inertia of the section

with reference to a given axis
;
thus :

Then k is called the radius of gyration of the section with reference

to the stated axis. The square of its value may be found in any given
case by first ascertaining the moment of inertia and then dividing by
the area of the section. There are many cases where the use of k in

preference to I is advantageous in the working of problems.
Some commonly occurring sections and their properties are given

in the Table, p. 151. No fillets or tapers have been taken into account

in the tabulated results, which will therefore be of service in obtaining

approximate solutions only in the case of ordinary practical sections.

A rule, by use of which may be calculated the moment of inertia

about an axis OX parallel to another axis CX passing through the

centre of area, is expressed in the equation

where A is the area of the section and d is the distance between the

parallel axes.

Proportional laws for the strength of beams. Suppose we have

two beams of rectangular sections, both supported at the ends and

carrying central loads, but of differing dimensions, the following

equations will hold for the sections at the middle of the span :

4 m
1

]

\d^ 12

... 2 f^d*W
>
=

3 LT
In the same way,

Hence

If the beams are made of the same material, the safe stress/x
will

be equal to/2 ,
and we may write

Measuring the strengths of the beams by the central loads which they

can carry safely, we may state this result as follows : The strengths of
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beams of rectangular sections and of the same material are propor-
tional to their breadths, to the squares of their depths, and are

inversely proportional to their lengths.

Proportional laws for beams of other sections may be obtained in

a similar manner. Thus the strengths of solid circular sections

are proportional to the cubes of the diameters, and are inversely

proportional to the lengths.

Approximate calculation for beams of I section. The following

simple method is often used and has sufficient accuracy for many
practical purposes. Fig. 182

shows the section and part

side elevation of a rolled

beam of I section. The

approximate moment of re-

sistance is obtained by con-

sidering the maximum stress

K----6

r
(a.) (b)

FIG. 182. Approximate moment of resistance for a
beam of I section.

intensity f due to bending
to be distributed uniformly
over the flanges only, the

web being neglected excepting for its resistance to shearing. The
width of each flange being b and the thickness /, the total stress P
on each flange will be obtained by taking the product of/ and the

flange area.

Thus: P=/&/.

Assuming each force P to act as though concentrated at the centre

of area of the flange (Fig. 182 (ti)\ and that the distance between the

centres is d, the moment of the couple formed by P, P, will give the

moment of resistance. Thus :

Moment of resistance = d

This method may be used with fair results for rolled sections, and is

used more extensively for built-up girders. To obtain the area of

flange required at any section in such girders, the bending moment
at the section is first calculated. Let this be M ; then

M =fbtd

=fd x area of flange ;

.'. area of flange
=
-^

In order to secure the most economical results in built-up girders,

f should be constant throughout the girder. This result may be



154 MATERIALS AND STRUCTURES

obtained by either of two methods : (a) d may be made proportional
to M, in which case the area of the flange will be uniform throughout
the length ; (ti)

d may be constant and also the breadth b of the

flanges; in this case the thickness of the flanges is increased by

using two or more plates riveted together and extending along a

portion of the length of the girder, more plates being used where the

bending moment is greatest.

It may be shown that, in beams of I section, the distribution of

shear stress is practically uniform over the web
\ hence, if S is the

shearing force in tons and Aw is the area of the web in square inches,

then g
Shearing stress = q = tons per square inch.

AM;

Beams of uniform strength. A beam is said to have uniform

strength when the maximum stress intensity is the same for all

cross sections. Considering the equation

M = ^I,m

/=Mf,
m and I depend on the dimensions and shape of the section, and if

these are constant throughout the beam, the only condition under

which uniform maximum stress intensity f will occur is that M must

be constant. Uniform bending moment may be produced in a por-

tion of a beam by the application of couples. For example, if P
and W be equal in the carriage axle shown on p. 186, then the

bending moment throughout CD will be equal to the moment of

the couple W x BD, and hence will be constant.

More usually M is not constant, in which case uniform f may be

obtained by varying the section in such a manner that M -- is

constant.

EXAMPLE i. In Fig. 183, let AB be a cantilever carrying a load W at

B. Supposing that the cantilever has a rectangular section of uniform

depth d) what must be the profile in the plan in order that uniform

strength may be obtained ?

d
Here m = -,

.}b&
~I2 '

m 6
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Again, the bending moment at any section distant x from B is

or

For uniform strength, M-r-= a constant
;

6
.*. Wx . -7-75

= a constant.
bdl

-,=& constant ;

/. b=xx a constant.

The required profile in the plan will therefore be triangular (Fig. 183).

U

FIG. 183. FIG. 184.

EXAMPLE 2. Supposing in Example i that the breadth had been

uniform, and that it is required to find the profile in the elevation for

uniform strength. As before, we have (Fig. 184)

W;r. -7-75
= a constant ;

:.
-y2
= a constant,

*/
2=.rxa constant,

or d= *Jx x a constant.

Hence the profile is parabolic (Fig. 184).

EXAMPLE 3. Suppose in Example I that the load is uniformly dis-

tributed and that the breadth is uniform.

Find the profile in the elevation for uniform . w Per unit length

strength (Fig. 185).

hence iw^r2
T-F,

= a constant,
bet

2-

or
-Tg
= a constant

;

:.d=xx a constant.
FIG. 185.

The profile in the elevation is therefore triangular (Fig. 185).
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Other cases the student may work out easily for himself. It should

be noted that, for practical reasons, the profile is often modified

somewhat from that given by
G (. AC ^ /2 H calculation.

Distribution of the shearing

stress over a beam section.

In Fig. 1 86, AB and CD are

two cross sections of a loaded

uniform beam, separated by a

small distance &r. Let the

shearing force at AB be S and

FIG. 186. Stress figures due to bending.
let and M

2
be the bend-

ing moments at AB and CD
respectively ; also, let M

2
be greater than Mr Whatever may be the

numerical value of the bending moment at AB, that at CD will be

greater by an amount equal to the moment of S about any point on

CD. Hence, M -M =S Sx d)

This result will not be affected by any load which the beam may be

carrying on AC, as the distance Sx is supposed to be taken of too

small a value to permit either the magnitude of the load, or its arm

in taking moments about any point on CD, to attain an appreciable

value. The reader is here reminded again that all loads must be

distributed over a definite area
;
hence no concentrated load can be

applied to AC.

Owing to the bending moments Mj and M
2 ,

there will be push
stresses yj and f% at A and C respectively. Let EF be a portion of

the neutral layer and let m be the distance EA or FC ;
then

MT = I, (2),* X /

.(3)

As I and m have the same value for both sections, and since M
2

is

greater than M
15/2

will be greater than /j . The stress figures will be

AEG and CFH for the portions of the sections AE and CF respec-

tively. It is clear that there will be a resultant force acting on CF
which will be greater than that acting on AE ;

hence the net tendency
will be to push the block AEFC towards the left. This block is

shown separately in Fig. 187 in order that the question of restoring its

equilibrium may be examined.
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When the block forms a part of the beam it is clear that the only

place where horizontal stresses may be applied in order to balance

the resultants ~F
l
and F

2
is the horizontal section EF. Let Q be

the total force produced by these stresses
; then, for equilibrium,

Q = F
2
-F

X (4)

Q

I

i

...*.

FIG. 187. Equilibrium of the block AEFC. FIG. 188. Cross section of the block.

To find the values of F2 and Y
l ,

let a be a small portion of the

sectional area of AE (Fig. 188) situated at a distance y from the

neutral axis and let p be the stress on a
;
then

m y

or,

Also, Force on a =pa = ^

- '^ ' 4
.', total force on AE =

m

or

where A is the area of the portion of the section lying above the

neutral axis, and Y is the distance of its centre of area from the

neutral axis. AY will be the moment of area about the neutral axis

of that portion of the section lying above the neutral axis. In the

same way :

F = -4\Y (6)m

Hence,

m m (7)
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Now, from (2) and (3),

and t^ = 2.m I

Substitution of these in (7) gives

AV
-^.(M.-M,)................ (8)

AV
Hence, from (i), Q*=FJeS.to................... (9)

Let b be the breadth of the section at NA (Fig. 188) ; then the area

of the horizontal section over which Q is distributed is (8x x b) ; hence,
from (9), Q

Shear stress on EF = F-^TSx .b

SAY

This expression gives the intensity of shearing stress along the

neutral layer ;
it also gives the shearing stress at points on the vertical

sections AB and CD (Fig. 186) lying on the neutral axis. This may
be understood by considering the thin rectangular block EFF'E'

(Fig. 187); if there is a shear stress q on its lower face, there must

be equal shear stresses on all its faces perpendicular to the

paper (p. 126).

UV (Fig. 189) is another horizontal section of the block AEFC.
The shearing stress on this section arises from the fact that the stress

figure CHXV for CV has a

greater volume than the stress

figure AGWU for AU. The
determination of the intensity

of shear stress on this section,

FIG. i89.-Shear stresses at U and V. an^ hence at the points U
and V on the vertical sections,

is proceeded with in the same manner as has been detailed above.

AY in equation (5) will now mean the moment of area about the

neutral axis of that portion of the section which lies above UV.
b will be the breadth at U and V, and the final result will be

SAY

where I, as before, is the moment of inertia of the whole section.
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The student will observe that if there is no variation in the bending

moment, i.e. if M is constant, between two sections of a beam, there

can be no shearing force and hence no shear stress on the sections.

EXAMPLE. A beam has a rectangular section 4 inches broad and

12 inches deep, and has a shearing force of 6000 Ib. (Fig. 190). Find the

FIG. 190. Distribution of shear stress on a rectangular section.

shearing stress at the neutral axis and at intervals of 2 inches from the

BD 3neutral axis.

1 =
12

4X 12 X I2X 12

12
= 576 inch units.

At the neutral axis,
= 24 square inches,

= 3 inches,

SAY

4x576
= 187-5 Ib. per square inch.

At 2 inches from the neutral axis,

A=4X4=i6 square inches,

Y=4 inches,

_6ooox 16x4
9*~

4X576
= 166-7 Ib- per square inch.

At 4 inches from the neutral axis,

A= 2 X4= 8 square inches,

Y= 5 inches,

_ 6000 x 8 x 5
q*~

4X576
= 104-2 Ib. per square inch.

At 6 inches from the neutral axis,

A=o;
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These values have been used in constructing the diagram BCD
(Fig. 190), the horizontal breadths of which show the shearing stress at

any point of the section. The diagram is parabolic in outline. Fig. 191

shows the diagram of shear stress distribution for an I section. The

FIG. 191. Distribution of shear stress on an I section.

quantities required for drawing it may be calculated by the same method.

The result indicates the justification of ignoring the flanges and assuming
that the web supplies the whole of the shearing resistance by means of a

uniform shear stress (p. 154).

EXERCISES ON CHAPTER VII.

1. A beam 2o-feet span, supported at its ends, carries a load of 4 tons

at the centre, another of 6 tons at 4 feet from one end, and a third load of

2 tons at 6 feet from the other end. Calculate the bending moments and

shearing forces at each load, and draw the diagrams of bending moment
and shearing force.

2. A beam AB, 16 feet long, rests on a support at A and on another

support at C, which is four feet from B. The beam carries a uniformly
distributed load of 0-5 ton per foot run, together with a load of 4 tons at

6 feet from A and another of two tons at C. Calculate the bending
moments and shearing forces at intervals of 2 feet, and draw diagrams
of bending moment and shearing force.

3. A beam AB, lo-feet span, supported at its ends, carries a distri-

buted load which varies uniformly from 100 Ib. per inch run at A to

200 Ib. per inch run at B. Find the bending moments and shearing forces

at intervals of 2 feet, and draw diagrams of bending moment and shearing
force.

4. Making use of a graphical method, draw the bending-moment
diagram for the beam given in Question i. State the scale clearly.

5. Draw the bending-moment diagram for the beam given in

Question 2, using a graphical method. Give the scale of your diagram.

6. Find by calculation the neutral axis of a T section 4^ inches broad,

5 inches deep, metal ^ inch thick. Neglect any fillets.

7. A cast-iron beam has an I section, in which the top flange is

3 inches broad, the bottom flange is 7 inches broad and the depth is

10 inches over all. The metal has a uniform thickness of 0-75 inch.

Neglect fillets and calculate the position of the neutral axis.



EXERCISES ON CHAPTER VII. 161

8. Draw the section given in Question 6 as it would be made in

practice. Find the neutral axis and moment of inertia, using a graphical
method.

9. Answer Question 7 in the manner directed in Question 8, giving
the neutral axis the moment of inertia.

10. A timber beam of rectangular section, 3 inches broad by 9 inches

deep by 12-feet span, carries a uniformly distributed load. Find the load
if the stress due to bending is limited to 400 Ib. per square inch.

11. A flat steel bar, section 2 inches by I inch, is 20 feet long, and is

stored in a rack in which the two supports are each 4 feet from the end of

the bar. Find the stress due to bending (a) at the middle of the length of

the bar, (b) at the supports. Suppose the bar to be resting on its edge, what
would be these stresses ? Take the weight of the material to be 0-28 Ib.

per cubic inch.

12. A beam of I section 10 inches deep, 6 inches wide, thickness of

flanges | inch, thickness of web | inch, has a span of 1 5 feet and rests on
the supports. If a load of 2 tons is carried at the centre, find the

maximum stress due to bending (a) by an approximate method, (b) by
first calculating the moment of inertia. Assuming the shearing force to

be carried by the web and to be distributed uniformly, find the shear stress

on the web. Neglect the weight of the beam.

13. A pipe 24 inches internal diameter is constructed of mild steel plate

| inch thick, and is full of water
; the ends are closed by blank flanges.

If the pipe is supported at its ends, find the maximum span if the stress

due to bending is not to exceed 5 tons per square inch. Take the weight
of steel to be 0-28 Ib. per cubic inch and of water to be 62-5 Ib. per cubic
foot.

14. A timber beam of rectangular section, supported at its ends, carries

a uniformly distributed load, and has been made to a certain drawing.
Another timber beam has been made to the same drawing by simply
altering the scale, so that span, breadth and depth are each multiplied by
a constant factor n. Suppose both beams to be able to carry the same
maximum stress due to bending, what will be the ratio of the uniformly
distributed loads which may be applied ?

15. A cast-iron bar of rectangular section is used as a beam of 3-feet

span, supported at the ends, and carries a central load of 3000 Ib. The
stress due to bending is not to exceed 1-5 tons per square inch. The bar
is to have uniform strength, (a) Draw the profile in the elevation if the

breadth is uniform and equal to 1-5 inches, (b) Suppose the depth to be
uniform and equal to 3 inches, draw the profile in the plan.

16. Take the data of Question 10, and find the maximum shearing
stress in the beam.

17. A beam of I section, 10 inches deep, 5 inches

wide, metal | inch thick, has a maximum shear stress

at a certain section of I ton per. square inch. Find the
shear stress at places i, 2, 3, 4 and 4| inches from the
neutral axis. Plot a shear-stress diagram.

18. How is the section-modulus and radius of gyration
of a section of a bar obtained, and how is this applied
when ascertaining the strength of a beam ? Calculate
the section-modulus and radius of gyration of the section

given in Fig. 192 about the axis YY. (I.C.E.)
D.M. L
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19. A girder AB, 25 feet long, carries three loads of 6, 1 1 and 7 tons

respectively, placed at distances of 7, 16 and 21 feet from the end A.

Find the reactions at either end and the bending moment at the centre.

(I.C.E.)

20. Fig. 193 represents a station roof, the centre pillars being 25 feet

apart. The dead load can be taken as evenly distributed over the roof,

I (on

2 tons

\ ton

and of magnitude 15 Ib. per square foot of projected plan area. The
wind pressure is to be taken as shown. Find the magnitude and direction

of the resultant force on the roof, and give the bending moment at the base

of the pillar. (L.U.)



CHAPTER VIII.

DEFLECTION OF BEAMS.

Curve assumed by a loaded beam. Any beam when loaded will

bend ;
if the neutral lamina is straight, as seen in elevation in the

unloaded beam, it will assume some curve when the loads are

applied; any initial curvature of the neutral lamina will be altered

FIG. 194. Curve of a beam supported at ends and loaded at middle.

to a new curvature on applying the loads. A useful way of studying
the curves of a loaded beam is to employ a thin steel knitting

needle; this may be laid on a sheet of drawing paper and "loaded"

by means of drawing pins pushed into the board. Figs. 194-196
show some curves produced in this way.

Examining Fig. 196, which represents the curve of a cantilever

carrying a load at its free end, and taking two points P and P
x lying

95. Curve of a beam overhanging the supports.

close together, two normals drawn from P and P
l

will intersect in

O. It is evident that a short piece PPj of the curve could be drawn

as a circular arc struck from O as centre with radius OP. If P and

P
x
are taken very close together, O is called the centre of curvature for

the curve at P, and OP = R is called the radius of curvature. It can
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be seen readily in Fig. 196 that the radii of curvature for points near

A are smaller than for others near B. In fact, as we shall see

FIG. 196. Curve of a cantilever loaded at the free end.

presently, the radius of curvature at any place is inversely proportional

to the bending moment at that place.

Curvature is a term used by mathematicians to express the rate of

change of direction of a curve. Referring to Fig. 197, and taking

points P and P
: lying close together, O will be the centre of curvature

and R = OP. Draw tangents PT and

PjTj . The direction of the curve at P
is along PT, and that at P

x
is along PjTj ;

the change of direction between P and Pj
will be the angle a in the figure. It will

be evident that the angle PjOP is equal

to
,
and stating its value in radians,

_ PPi

FIG. 197. Curvature. &
-p

The rate of change of direction may be expressed by dividing the

change in direction by the distance PPj along the curve in which the

change is effected
;
hence

Curvature = rate of change of direction = =5-
"i

RxPP
x

i

R'



CURVATURE OF BEAMS 165

FIG. 198. Slope and deflection of a cantilever.

Curvature at a given point may therefore be stated as being the

reciprocal of the radius of curvature. The units for curvature will

be change of direction in radians per foot, or per inch, length of the

curve according as R is in feet or inches.

It will be understood that, for ordinary beams which are straight

when unloaded, the radius of cur-

vature at any place when the

beam is loaded will be very large

and that the curvature will be

very small.

Fig. 198 shows again the curve

AB' of a loaded cantilever.

Taking any point P on the curve and drawing a tangent PT, the

angle i which PT makes with the original direction AB is called

the slope at P
;

i should be stated in radians. P is at a distance y
below AB, andjy is called the deflection at P. For our purposes it

is sufficient to be able to state R, i and y for any point.

Curvature of a beam. Fig. 199 shows a portion of a loaded beam.

Two cross sections occupying originally the positions AB and CD
have been strained to A'B' and CD'.

Assuming that they lie close together, the

point of intersection O will be the centre

of curvature for the portion EF of the

neutral lamina. Bisecting EF in M and

joining OM cutting AC in K, we have

similar triangles OME and EAA'. Hence,

using a similar method to that on p. 143,

EM AA'

or

MO
AK
R

EA !

AA'
"3m

8' B D D
FIG. 199. Curvature of a beam.

^ _

R~ AK' m .(i)

Again,

Also,

Strain of AK AA'
AK'

strain of AK'

strain <>t\\K
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Substituting in (i), we have

! =/ -
R E

'

m

Again,

NA

_ AB
Substituting in (2) gives R

=
ET~ ...............................w

We see therefore that the curvature at any place on the neutral

lamina is proportional to the bending moment and inversely pro-

portional to the moment of inertia of the section at that place.

Mathematical expressions for the slope and curvature of a curve,

such as that shown in Fig. 198, are :

RlDl
I \dxj j

.(5)

dy means the change in deflection as we pass along the beam by
a small amount dx. For curves which are very flat, and hence for

all beams, equation (5) simplifies by the denominator becoming

unity; thus T &y
R
=^ (6)

dly _ MAB . ,

Hence, from (3) and (6), ^2~ ElNA
' W

Slopes and deflections may be calculated from (7) by first evaluat-

ing the bending moment ; integration of both sides will then give

the slope ;
further integration of both sides will give the deflection.

The method is rather complicated, excepting in cases where the

conditions of loading and supporting are simple.

The following examples of an easier method are given as leading

to a graphical solution which is simple in its application. It will be

assumed that the bending is pure and that the beam is of uniform

section unless the contrary be stated
;
the latter assumption is made

in order that I NA may be constant throughout the length of the beam.
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Cantilever having a load at the free end. In Fig. 200 (a) is shown
a cantilever of length L and of uniform cross section, so that I NA is

constant. We may consider for a moment that the whole of the

material is perfectly rigid, excepting the portion lying between the two

adjacent transverse parallel sections AB and CD. Supposing a loadW
to be applied to the free end (Fig. 200 (b)\ deflection of this end will

FIG. 200. A rigid cantilever having a small elastic portion ABDC.

take place by reason of the strains in the portion ABDC. AE and
CF' will remain straight as at first, but C'F will now be inclined at

an angle i to its original position. CD', the new position of CD,
will be still perpendicular to C'F, so that the angle made by CD'
with its original position CD will also be equal to i. Let the deflec-

tion of F under these conditions be 8, and let NP be a portion of

the neutral lamina. As both 8 and i will be exceedingly small in

any practical beam, we may write

. 8 ..
2 = radians,

oc

or 8 = ix (i)

The strain of AC, produced by a tensile stress / induced by the

bending moment M^, will be CC divided' by AC ; hence we have

(*)

AC
AC

'CC'
Again, from the general expression for the strength of a beam

(p. 146) we have, noting that / is the stress intensity at a distance

CP from the neutral plane,

" =
/~*n *
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or
<^r

f=CP ^ t*' J T" \O/

Substitution in (2) gives
W* AC

p --r'cc
CP

2 =

I WX.SX
r i

W^.S^c

El

W
Hence, from (i),

8 = ~.x^.8x (5)

Had any other portion been taken similar in properties to ABCD,
we should have obtained a similar expression for the deflection due

to its strains. Hence the total deflection A of F will be obtained by

integrating (5) between the limits x = o and x = L.

W

WL"

The slope /max at the end F may be obtained by integrating result

(4), which gives the slope produced by the strains of the small portion

ABDC of the cantilever.

W

WL2
, N

radians............................ (7)

Cantilever having a distributed load. The case of a uniform

cantilever having a uniformly distributed load w per unit length

may be worked out in a similar manner, the only difference being

that wx*

M* =-
2
-

Inserting this value in place of Wx in (4) and (5) gives

. wx2 .Sx v
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Integrating (9) to obtain A, we have

A _~ W
fa

8EI'
'

The slope at the free end may be obtained from (8).

.(10)

wl*
6EI'

Beam having a load at the middle. The results now obtained

enable the case of a uniform beam simply supported at its ends to

be solved easily by considering the beam as a double cantilever

held fixed at the middle of the span and deflected upwards by the

reactions W at each end (Fig. 201). It is evident that the deflection

FIG. 201. Deflection of a simply-supported beam carrying a central load.

of C below AB will be equal to the elevation of A and B above the

horizontal line through C when the beam is loaded. Hence, using

the result obtained in (6) above, we have, by writing JW for W and

^LforL'

A ^W.(L)3

3EI

WL3
, x=

48ET <
I2

>

The slope at the ends may be obtained similarly from (7).

*max=
2*EI

WL2

T6EI'

Beam having a uniformly distributed load. This case (Fig. 202 (a) )

may be regarded also as a double cantilever fixed at the middle of

the span. The loading will consist of a downward load \wL, on
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each half span together with a concentrated upward load of \wL at

each free end. The solution may be derived from the results already

obtained by use of the axiom that the resultant deflection and slope

of a beam under a combined system of loads will be the algebraic

sum of those produced by each load taken separately.

W per unit
Ungth, Q

I
(a)

FIG. 202. Deflection of a simply-supported beam carrying a uniformly distributed load.

In Fig. 202 (b] the effect of the distributed load may be examined.

Let Aj be the downward deflection of the ends, when we have, by
substitution in (10),

, ,

~i28EI'

Fig. 202 (c) shows the effect of the reactions considered alone in

producing an upward deflection A2
. From (6) we have

3EI

The resultant upward deflection A at the supports, and hence the

downward deflection at the middle of the span under the proposed

loading, will be A = A - A

I28EI

384
'

El
' .(16)
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Due to the distributed load there will be a downward slope at the

supports the value of which, t\, may be obtained from (u).

The upward reactions will produce an upward slope z'
2 ,

obtained

from W-
. _>L(JL)2

2EI

<">

Combining these results, we have for the slope zmax at the supports :

*max = *2
~~

*1

ze/L3

i6EI 48EI

-24 EI

Graphical solution. The method of obtaining the slope and

deflection at the free end of a uniform cantilever, employed on p. 167,

may be extended in such a manner as to enable the slope and

deflection in more complicated cases to be found graphically.

Referring to Fig. 203 (a), the slope i caused by a portion ACDB
being elastic, while the remainder of the cantilever is supposed to

be rigid, is equal to the angle CPC', and will be given by

Now CC divided by AC is the strain of AC caused by the stress/;

hence,

AC

or CC' = -

E

Substituting this value in (i) gives

(a)
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Again, from the general expression for the strength of a beam,

we have /

M J TAB
~~

-"-NA)

or
/ M,
m (4)

Inserting this in (3) gives

2 =
EL (5)

r
i

L.

Let the diagram HKL (Fig. 203 (^)) be the bending-moment

diagram for the cantilever. It

will be clear that the product

MAB &e is the area of the shaded

strip of the diagram. Hence

we may say that the change of

slope i produced by the elastic -

bending of the portion between

AB and CD is given by the

area of the strip of the bending-
moment diagram lying under

BD multiplied by the constant

i
Consider now the whole

FIG. 203. Graphical method of deducing slope
and deflection.

cantilever to be elastic, then,

the slope at E being zero, it

follows that the slope at AB will

be the sum of the areas of all

strips between HL and QR

multiplied by ,
or

Slope at AB = z'AB = area HQRL x
EL .(6)

In cases where the bending-moment diagram has a simple outline,

it may be possible to calculate the required area, otherwise it will be

necessary to use a planimeter. If the area has been found in square

inches, the result should be corrected by multiplying by the scale in

inch-tons per inch used in setting out the ordinates such as QR, and

by further multiplying by the scale in inches per inch used in setting

out the abscissae such as HQ ;
E should be taken in tons per square

inch, and INA in inch units.
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HK being divided at a convenient number of points, the slope at

each point may be found by the above method and a diagram drawn

showing the slope at all parts of the cantilever by means of plotting
the results and drawing a fair curve through them (Fig. 203 (<:)).

Again, referring to Fig. 203 (a), let y be the deflection at a point S,

distant z from C, owing to the elasticity of ACDB. Then

z*

or y = iz.

Now, i is given by the area of the shaded strip in the bending-

moment diagram multiplied by -
; hence,

y =
tpj

x area of shaded strip x z.

That is to say, the increment y of the total deflection at S caused

by the elasticity of ACDB is given by the moment about S of the

shaded strip of the bending-moment diagram multiplied by =TJ

To obtain the total deflection 3 at S, we must therefore evaluate the

moment of area of HTVL about T (Fig. 20$ (ft)) and multiply the

result by gj , paying regard to the scales in the manner already

noted. Repeating the same operation in order to obtain the deflec-

tion at several sections, data will be obtained from which the

deflection curve (Fig. 203 (d)) may be drawn.

Some applications of the graphical method. Taking again the

case of a uniform cantilever carrying a load W at its free end (p. 167),

and referring to Fig. 204, we have

slope at P = ip = area CFGD x =

The maximum slope will be at B, and may be obtained by writing

x = o.

WL2
v
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To obtain the deflection at P, we have

8P = moment about F of area CFGD x =^
rLl

= (moment of CFHD - moment of DGH)^

The maximum deflection will occur at B, and may be obtained by

writing x = o.

W

The case of a uniform beam simply supported at both ends and

carrying a central load may be worked out in a similar manner, and

is left as an exercise for the student.

A
W per unit length

FIG. 204.204. Graphical method applied
cantilever loaded at the free end.

FIG. 205. Graphical method applied to a
cantilever uniformly loaded.

A uniform cantilever carrying a uniformly distributed load w per unit

length may be worked out easily so far as its maximum slope

and deflection are concerned. The bending-moment diagram is

parabolic (Fig. 205), and it may be noted that its area is one-third of

the area of the circumscribing rectangle, i.e. one-third of CD multi-

plied by CE, and that its centre of area G is distant horizontally

three-quarters of CE from E.
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Hence,

L j_
2

'

3

'

El

~6E! <5)

AB = moment about E of area CED x =|-

L 3, j_
a TI H

Also,

^8EI <
6
>

In the case of a uniform beam supported at both ends, and carrying

a uniformly distributed load (Fig. 206), the bending-moment diagram

k L . >J

; Wper unit Length \

D
(b)

FIG. 206. Uniformly loaded beam.

is also parabolic. The maximum bending-moment occurs at the

middle of the span, and is given by
ze/L2FK =
8

The slopes at A and B will be equal, and may be found by apply-

ing the rule to the area KFE, noting that the slope at the middle

will be zero.

*'A
= 4 = area KFE x ==

rL.1

= - area of circumscribing rectangle x ^=

L i

8
'

2 "El
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Noting that the centre of area G of KFE is at a horizontal distance

|FE from E, we have, reckoning the deflection of A or B upwards
from the middle,

AA = AB = moment of area KFE about E x =^=

L 5L
T'8l

i

El

__
384 El .(8)

Encastrd beams. We may now examine the case of a uniform

beam which is fixed rigidly at both ends by being built into walls or by
some other method (Fig. 207 (a)). In such cases it may be assumed

that the sections at A and B, which

are in the plane of the wall before

loading, remain in the same plane
after loading ;

hence the slopes at

A and B will be zero. In order

that this may be the case it is

necessary that the means used

for fixing the ends should apply

restraining bending moments at A
and B. We may obtain a fair idea

of the conditions by examining
the beam shown in Fig. 207 (/;).

Here the bending moments at A
and B, applied by the loads WjWj
on the overhanging ends, have the

effect of keeping vertical the sections at A and B. Hence, in the

beam shown in Fig. 207 (a), the walls must supply the bending
moments at A and B, which in Fig. 207 (b) are given by the loads Wr
The curve of the bent beam will resemble Fig. 207 (c), and will be

convex downwards between two points K and N, and convex up-

wards between D and K and also between E and N. This comes

about from the fact that the resultant curve is produced from two

component curves, one (Fig. 208(0)) caused by the action of W
tending to produce a curve wholly convex downwards, and the other

(Fig. 208 (<)), caused by the action of the bending moments MA and MB

(which are obviously equal and are transmitted uniformly throughout
the length of the beam), tending to produce a curve which is wholly

convex upwards. The resultant bending moment at any section may

FIG. 207. Encastre beam loaded at

middle.
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be obtained by taking the algebraic sum of these moments for that

section.

Fig. 209 (a) gives the bending-moment diagram for a beam simply

supported and carrying a central load W. Its ordinates give the

(b)

FIG. 208. Component curves of an
encastre beam.

FIG. 209. Component bending moment
diagrams for an encastre beam.

positive bending moments at any section of the beam under con-

sideration due to W alone. Fig. 209^) shows the uniform negative

bending moments due to the fixing of the ends. These diagrams

may be combined as shown in Fig. 210 (a), when the shaded portions,

which show the algebraic sum of the component diagrams, will give

the resultant bending moments for the beam.

The maximum bending moment due to W alone is represented by
WL

ch in Fig. 210(0), and is of value --
4

To obtain the values of MA and MB ,

represented by ad and fa, we have the

consideration that the slopes at D and E

(see Fig. 207 (<:)) are zero. Hence the

areas of the bending-moment diagram

adf and fern (Fig. 210(0) must be equal,

because the slope at the centre is given

by their algebraic sum, and this must

be zero for zero slope. For a similar

reason the areas cmg and geb are equal ;

FlG
-,?

I0--Resuitant bending moment
diagram for an encastre beam.

hence it is easily seen from the figure

that the triangular area acb must be equal to the rectangular area

adeb. Thus, hm must be one-half of he, giving

It will also be obvious from Fig. 210(0) that the points /and g,
D.M. M
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Kwt
it

8
'

2 4 8 2 4 i2/ El

where the resultant bending moments are of zero value, must lie at

one-quarter span.

The deflection upwards of E above F (Fig. 207 (<:)) may be obtained

by taking the algebraic sum of the moments about e of the areas

cmgaxid. geb (Fig. 210(6)), and dividing the result by El. This will

give the central deflection A of the beam.

A = (moment of area cmg - moment of area geb)^
i L 5L\ /WL i L

8 2 4 12

i WL3
, ,

"192 El
'

An encastre* beam of uniform section carrying a uniformly distributed load

(Fig. 2 1 1 (a) ) may be worked out in a similar manner. The parabolic

curve afcgb (Fig. 211(6)) re-

presents the bending-moment a w per unit Length B
diagram for a beam simply sup- ^

ported at the ends and carrying L.|
w per unit length. The maxi-

mum bending moment will

occur at the middle of the span,
T 9

and is represented by ch
^-.

The rectangle adeb represents

the uniform bending moment

due to the fixing in the walls.

The shaded area gives the resultant bending-moment diagram.

Here, as in the last case, there is zero slope at A, C and B
;
hence

the areas adf, fcm, cmg and geb are equal ; consequently the parabolic

area afcgb must be equal to the rectangular area adeb, giving

2

FIG. 211. An encastre beam uniformly loaded.

(i)

The bending moment at C will be given by

-MA

; Z/L2

24
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Thus, we see that the bending moment at the walls is double that

at the middle of the span.

To obtain the deflection at C, we must find the algebraic sum of

the moments about h of the areas cmg and geb, or, since the result

will be the same if the moment of the area mgbh be added to each,

the calculation may be simplified by taking the algebraic sum of the

moments about h of the areas chbg and hmeb. Hence,

Ac = (moment of area chbg
- moment of area hmeb) El

K23
L 3

8 2 8/ 12 2 EI

ze;L4\ i

96 J El

/-\

384 EI'

The distance of/and g, the points of zero bending moment, from

d and e respectively will be equal, and may be found by obtaining an

expression for the bending moment at a distance x from the wall and

then equating this to zero. Thus,

MS = MA
-
bending moment at x for a beam

simply supported

12

fwL zvx2\
I _ yy__ \

*Af

V 2 2 /

i

12 2 2

Equating this to zero gives

x2 Lx L2

or

2

= 0-2 1 iL or o-ySSL (4)

Hence the points of zero bending moment lie at 0-21 iL from each

wall.
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Points of contraflexure. The two last cases considered provide

examples of beams in which the curvature is partly convex down-

wards and elsewhere convex upwards. The centres of curvature for

a portion of the length of the beam lie on the upper side, and for

other portions lie on the lower side. Points on a beam where the

curvature changes from convex upwards to convex downwards, i.e,

where the centre of curvature changes from one side of the beam
to the other, are called points of contraflexure. Curvature which is

convex downwards may be called positive, and that which is convex

upwards may be considered negative. The curvature changes sign

at points of contraflexure, and hence must have zero value at such

points.

Considering the equation (p. 166),

~ i M
Curvature = ^ = ^,R H/l

it is evident that, for the curvature to be zero, M must be zero. A
point of contraflexure may hence be defined as a point of zero

bending moment. Such points occur at quarter span for an encastre

beam carrying a single load

B
at the middle of the span

(p. 176) and at 0-2uL from

, , the walls in the case of a

L J
iw uniformly distributed load

W per unit Length B (p. T 78). It should be noted

777/f77777///////////////////////w ^ that encastre beams differ

from beams which are simply

supported at both ends in that

one or both supports in the
FIG. 212. Encastre beams.

latter may suffer sinkage when

the load is applied, or by reason of some alteration in the foundation

conditions, without thereby affecting the distribution of bending

moment along the beam. No such alteration in either of the walls

fixing the ends of an encastre beam can occur without affecting the

bending moments on the beam. For example, if the encastre beam in

Fig. 212(0) should for any reason become loose in the holes in the wall,

so that the fixing couples MA and M B disappear, the bending-moment

diagram will change from that shown in Fig. 210(0) to that for a simply

supported beam, and the maximum bending moment, and consequently

the maximum stress due to bending, will be doubled. In the case

of a uniform load (Fig. 2 1 2
(l>) )

such an alteration in the wall fixings

would produce a change in the maximum bending moment from
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FIG. 213. Beam cut at the points of
contraflexure.

_ to +~, that is, a numerical increase of 50 per cent. It
12

should also be noted that these alterations would be accompanied

by very small alterations in the slope and deflection, the inference

being that quite a small alteration in the shape or position of

the fixing arrangements due to sinkage, or otherwise, will be

sufficient to produce a large alteration in the bending moments and

stresses.

The difficulty may be overcome, if desired, by noting that at

points of contraflexure there is zero bending moment, and that the

beam may be cut at these points

provided that means are provided
there for taking up the shear.

Fig. 2 13 (a) shows diagrammati-

cally how this may be effected

for an encastre beam carrying a

central load W. The beam is

cut at quarter span, and links CD
and EF are used for suspend-

ing the middle portion. These

links will be under pulls of JW
owing to the shearing force. Obviously no moderate changes in

the supports can now affect the bending moments in the com-

ponent parts of the beam. A practical method of designing the

arrangement is shown in Fig. 213^), where the central portion is

supported on a rocker at E and by a short column at CD. It will

be observed that alterations of length, etc., due to expansion on

heating, are taken up by this device without inducing stresses on

the beam. The artifice of cutting a beam, or an arch, at places

where it is desirable that there should be no possibility of any

bending moment arising is often resorted to in practice.

Propped cantilevers and beams. In Fig. 214(0) is shown a

cantilever AB carrying a uniformly distributed load. The fixing in the

wall at A is sufficient alone for the equilibrium of the cantilever,

but an additional support or prop has been placed under B.

The pressure on this prop depends on the elastic properties of the

material of the cantilever and also on the level of the top of the

prop. Assuming that the cantilever just touches the top of the prop
before application of the load, the reaction of the prop may be

calculated as follows.

Supposing the prop to be removed (Fig. 214 (<)), the deflection Aj
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of the cantilever under the action of the distributed load would be

given by w\j ,

1
=
8El (P ' I75 ^ W

Now suppose that the distributed load is removed and that the

prop is applied and pushed upwards until a deflection at B of the

same magnitude as\ is obtained

(Fig. 2 14 (<:)). The upward de-

flection A
2
thus produced by the

force P exerted by the prop will

PT 3

-
(p. 174)-

(d)
FIG. 214. Propped cantilever.

be

If both P and the distributed

load be applied simultaneously,
p*.i_ 2

the levels will be the same at

both A and B (Fig. 2 14 (</)), for

Aj and A
2
are equal and opposite.

Hence,
PL3 wL4 WL3

where W is the total distributed load.

3EI

Hence,

8EI SET*

(3)

The bending moment at any section C may be calculated now :

<7/?l'V%2

(4)

Points of contraflexure may be found by equating Mc to zero

(p. 180). Thus, wx2

- = o.

Zero is one value of x satisfying this equation, hence B is a point

of contraflexure. To obtain the other point, we have

WX--- =o,

or * = JL............................... (5)

The bending-moment diagram is shown in Fig. 215 (a). The bend-

ing moment at the wall may be found by writing x = L in (4), giving

.(6)
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To obtain the bending moment at fL from B, we have, from (4),

It will be understood that

any vertical displacement of

the prop, whether by reason

of sinkage of the foundations

or by changes in temperature,
will alter the bending moment,
and hence the stresses through-
out the cantilever. The shear-

ing-force diagram is given in

Fig. 215 (b) ; the values of the

(7)

Bending Moments,

fa)

Shearing Forces

w
FIG. 215. Bending moment and shearing-force

diagrams for a propped cantilever.

shearing force are -f fW at the wall and - fW at the prop.

The case of a beam resting on three supports at A, B and C is

illustrated in Fig. 2 1 6 (a). The supports at A and B alone are

W per unit length

rWL
BendingX *S
Moments \\T-*

Shearing
Forces

FIG. 216. A beam resting on three supports.

sufficient for the equilibrium of the beam ; hence, in this case also, the

reactions, bending moments, and stresses depend on the levels of the

supports being preserved.
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Suppose the supports to divide the beam into two equal spans and

that the supports are all at the same level. If the support at C be

removed (Fig. 2 1 6 (b) ),
there will be a deflection A

x
at C given by

Replace the support at C by pushing upwards until the level is

restored (Fig. 2i6(r)). The upward deflection A2 produced by Pc

will be given by p T 3

Clearly Ax
and A

2 are equal. Hence,

PCL3
5

48EI~384 El '

Pc-fwL
= |W, ..................................(3)

where W is the total load.

It will be evident that PA and PB are equal. Hence,

PA = PB =&W........................... (4)

The bending moment at D may be found from

wx
(5)

Points of contraflexure occur where MD is zero
;
to find these, we

have *

The value zero for x satisfies this equation ; hence, A is one point

and, from symmetry, B is another point of contraflexure. To obtain

others, wx
T\^L - =

o,

* = |L.................................. (6)

Points of contraflexure therefore occur at f L from A and also at

an equal distance from B. The complete bending-moment diagram
is given in Fig. 2i6(</) and the shearing-force diagram appears in

Fig. 2 1 6 (e).

The beam here discussed is a simple illustration of continuous

beams, t.e. beams continuous over several spans and resting on several

supports.
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Beams of uniform curvature. Considering again the equation

it will be remembered that it has been assumed that the moment of

inertia is uniform in all the cases considered. This is the case very

often in practice ;
for example, beams of comparatively short span

generally consist of a rolled steel beam or of two or more similar

beams placed side by side. When we consider larger beams, we
find that the section in general is not uniform, but is varied so as to

produce more nearly a beam of uniform strength (p. 154). The
above equation may be modified so as to include a great number
of such cases. Thus,

M =
^I (p. 146);

L= = _L f
* R El El' m

Abeam of uniform strength is one having uniform maximum stress f.

This may be secured by having constant depth and varying the breadth,

in which case m will be constant. In equation (i) above, the right-

hand side will contain nothing but constants, and therefore ^ will
_K

be constant. Such a beam will have constant radius of curvature,

and hence will bend into the arc of a circle. In other cases of

built-up plate girders having parallel flanges, the breadth is constant,

and uniformity in f is secured by adjusting the thickness of the

flanges, the number of flange plates becoming greater towards the

middle of the span. Assuming that this variation of flange thickness

does not alter the depth sensibly, we have a constant value of m, and

the girder will have constant curvature.

Constant curvature may also occur in a beam of uniform section.

To obtain such a result, M must be constant in the equation

JL_M
R~ET

This condition may be brought about by the loads and reactions

being applied in the form of two equal opposing couples. A carriage

axle is a common example (Fig. 217). Here AC = BD; equal

loads W, W are applied at A and B, and the wheel reactions P, P at
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C and D will be each equal to W. The portion CD of the axle will

therefore have uniform bending moment, given by

MCD =WxAC,
and hence will bend into the arc of a circle. The curvature in the

w
B

TP p t
FIG. 217. A carriage axle.

overhanging portions AC and BD will vary, following the law for the

cantilever worked out on p. 167.

In Fig. 218 AB is a beam of length L bent into a circular curve

ACB. Drawing the diameter EODC perpendicular to the chord AB,
and remembering that the deflec-

tion will be very small in practice

we have, by application of the

principle that the products of the

segments of two intersecting chords

in a circle are equal,

EDxDC =ADxDB,
or, very nearly,

2RxDC =(|L)
2

;

hence the deflection DC at the

middle will be

FIG. 218. Beam bent into a circular curve. \J\^> = TTFr-

Substituting -^y for ^ in this result gives

It will also be evident that the inclination of the tangents at A and

B will be equal to the angle AOC. Expressing this in radians so as

to obtain the slope at A and B, we have

AC L
AO 2R

ML
2fiT
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Relation of stress and deflection. In all the cases of deflection

which have been considered, it will be noted that the expression for

the maximum deflection has the form

WL3

where c is a numerical coefficient, the value of which depends on the

circumstances of the case. Hence we may write,

Taking the general equation for the strength of a beam (p. 146),

it will be noted that M is always proportional to WL, and that m is

always proportional to d, the overall depth of the beam. Hence,
from (2), ,

.

a

Substitution of this in (i) gives

/L2
-

Hence, in beams constructed of the same material, for which E
will be constant, we may state that the maximum deflection will be

directly proportional to the square of the length and inversely pro-

portional to the depth when the beams are carrying loads which

produce the same maximum value off.

EXAMPLE. A steel bar of rectangular section is supported at its ends

and carries a central load. The ratio of maximum deflection to span is

not to exceed -%$$ ; the maximum stress is not to exceed 5 tons per square
inch. Find the ratio of span to depth if E = 13,500 tons per square inch.
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WL / T 2/1
T~

=P I== ~^ ;

8
(2)

Hence, from (i), A=^ .^
jL

1

YT7*

6E A

EXERCISES ON CHAPTER VIII.

1. A bar of steel of square section, 2 inches edge, is used as a canti-

lever, projecting 24 inches beyond the support, and has a load of 400 Ib.

at its free end. Find the values of the radius of curvature for sections at

3 inches intervals throughout the length. Plot R and the length of the

cantilever. E = 13,500 tons per square inch.

2. Find the slope and deflection at the free end of the cantilever given
in Question i.

3. A beam of I section, 8 inches deep, 4-5 inches wide, metal 0-5 inch

thick, is simply supported on a span of 10 feet and carries a central load

of 1-5 tons. Calculate the maximum deflection and also the slope at the

ends. What will be the radius of curvature at the middle of the span ?

Take =13,500 tons per square inch.

4. Answer Question 3, supposing that the beam carries only a uniformly
distributed load of 2 tons.

5. An encastrd beam of I section has its ends fixed into walls 12 feet

apart. The depth is 12 inches, and I is 50 in inch units. If the stress is

limited to 5 tons per square inch, what central load would be safe ?

Draw the diagrams of bending moment and shearing force.

6. Answer Question 5, supposing that the load is to be distributed

uniformly.

7. Calculate the deflections at the middle of the span for the beams

given in Questions 5 and 6.

8. A cantilever projects 8 feet from a wall and carries a load of

1-5 tons at 4 feet from the wall and another load of 075 ton at the free

end. Draw the diagrams of bending moment, slope and -deflection, in

each case giving the scale of the diagram. State the values of the slope
and deflection at the free end. Take 1 = 350 in inch units and E= 13,500
tons per square inch.

9. Calculate the uniform bending moment which must be applied to a

bar of steel of 0-25 inch in diameter in order to make it bend into the arc
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of a circle of 20 feet radius. = 30,000,000 Ib. per square inch. If the
bar is 5 feet in length, what will be the deflection at its centre ?

10. A girder is 40 feet span by 4 feet deep, and rests on its supports.
The uniformly distributed load produces a maximum stress due to bending
of 5 tons per square inch. Find the deflection at the middle of the span.

=13,500 tons per square inch.

11. Supposing the girder given in Question 10 to have uniform flange
stress of 5 tons per square inch, what will be its radius of curvature ?

Calculate the deflection at the centre.

12. A cantilever of uniform section is built securely into a wall, and its

outer end just touches a prop when there is no load. The cantilever is

8 feet long, and carries a uniformly distributed load of 1000 Ib. per foot

length. Find the reaction of the prop, and draw the diagrams of bending
moment and shearing force ; give the calculations required for these.

13. A beam 40 feet in length rests on three supports A, C and B at the

same level ; the supports divide the beam into two equal spans. If there

is a uniformly distributed load of 1-5 tons per foot length, find the reactions

of the supports, and draw the diagrams of bending moments and shearing
force, showing the necessary calculations.

14. A piece of flat steel has to be bent round a drum 5 feet in diameter
;

what is the maximum thickness which the strip can be made so that there

shall be no permanent deformation when it is removed from the drum ?

The steel has an elastic limit of 14 tons per square inch. E= 14,000 tons

per square inch. (I.C.E.)

15. Three rolled steel joists 6 inches deep are placed side by side

spanning an opening of 10 feet
;
the moment of inertia of the two outer

joists is 20 and that of the inner one 44 inch-units. A central load of

5 tons is so placed as to deflect each of the three joists equally ;
state the

amount of the load carried by each joist and the maximum unit stress (i.e.

stress in tons per square inch) in the centre joist only. (I.C.E.)

16. A beam is firmly built into a wall at one end, and rests freely at its

other end on a vertical column whose centre line is distant 8 feet from the

wall. The beam supports a wall, whose weight added to that of the beam
itself is equivalent to a uniformly distributed load of 3200 Ib. per foot run

of the beam. Find (a) the total load supported by the column ; (b} the

bending moment and shear force at the section of the beam adjoining the

wall
; (c) the position of the point of zero bending moment. Sketch

complete bending moment and shear diagrams. (B.E.)

17. A rectangular timber beam, supported at the ends, is of uniform
section from end to end, and it carries a uniformly distributed load. If

the working intensity of stress in the wood is not to exceed 2000 Ib. per

square inch, and if the modulus of elasticity of the wood is 1,700,000 Ib. per

square inch, determine the ratio of the depth of cross-section of beam to

span of beam in order that the deflection may not exceed 5^th

part of the

span. (B.E.)

18. A horizontal beam, span 25 feet, is fixed at the ends. It carries a
central load of 5 tons, and loads of 2 tons each at 5 feet from the ends.

Determine the maximum bending moment, the bending moment at the

centre of the span and the position of the points of contraflexure ;
sketch

also a diagram of shear force. (L.U.)
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19. A floor, carrying a uniformly distributed load of 2 cwt. per square
foot over a span of 20 feet, is proposed to be carried by either : (a) I joists,
10 inches deep ; area, 12-35 square inches ; I (maximum), 212 inch-units

;

pitch, 4 feet. Or, () I joists, 12 inches deep ; area, 15-9 square inches ;

I (maximum), 375 inch-units
; pitch, 6 feet. Compare these two pro-

positions by rinding the ratio of strengths, deflections and total weights of

girders. Find the maximum skin stress in case (a). (L.U.)

20. A uniform beam, 30 feet long, fixed at the ends, has a load of

20 tons spread uniformly along it. It has also two loads of 3 tons, each

hung from points which are 10 feet from the ends. What is the bending
moment everywhere, and what is its greatest value ? (B.E.)



CHAPTER IX.

WORKING LOADS. BEAMS AND GIRDERS.

Dead and live loads. The loads to which any structure is

subjected may be divided into dead and live loads. The dead loads

include the weights of all the permanent parts of the

structure
;
the live loads may consist of travelling weights

and other forces, such as wind pressure, which may occur

periodically. Dead loads produce stress of constant

magnitude in the parts of the structure; the live loads

produce fluctuating stresses; hence each part of the

structure may be called upon to withstand stresses which

fluctuate between maximum and minimum values.

A load may be applied to a bar in three different

ways : (a) in gradual application, the load on the bar

is at first zero and the magnitude of the load is increased

uniformly and slowly until the bar is carrying the whole

load ; (b) sudden application may be realised by reference

to Fig. 219, in which the load W is supported by short

rods so that it is just touching the collar at the lower end of AB ;

if the rods be knocked out, the load will suddenly rest on the

collar; (c) impulsive application may be

obtained by allowing W in Fig. 219 to

drop from a height on to the collar.

Eesilience. Fig. 220 illustrates the case

of gradual application of pull to a bar.

The bar extends by an amount propor-
tional to the load, up to the elastic limit,

and at any instance the resistance of the

applied. When

FIG. 219.

Load

; Ext ?

* e

FIG.

220,-DiagramJor
a gradually oar [s equal to th

the load applied is P
19 the extension of

the bar is e
l
and its resistance is equal to Pr It will be evident

from the figure, that the average value of the load is IP, and as
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this force acts through a distance e, the work done will be given by
the product of these quantities (p. 325).

Work done in stretching the bar = ^P^ (i)

As the resistance of the bar is at all times equal to the pull, it

follows that the energy stored in the bar will be equal to |P<?.

Let a ^e sectional area of the bar in square inches.

P = the final pull in tons.

p
/= = the stress produced by P in tons per square inch.

L = the original length of the bar in inches.

e = the extension produced by P in inches.

E = Young's modulus in tons per square inch.

P L
Then a" 7'

* = = /-

Also, P = fl/

Substituting these values in (i) gives :

Energy stored in the bar =
|/"./^

f2

=
L^p inch-tons (2)

This quantity is called the resilience of the bar. The resilience of

the material is stated usually as the energy which can be stored in

a cubic inch when stressed up to the elastic limit. This may be

obtained from (2) by taking f to be the elastic limit stress and

noting that aL is the volume of the bar in cubic inches. Hence

f2

Resilience =
j=

inch-tons per cubic inch.

Load suddenly applied. If the load be applied suddenly as in

Fig. 219, and if the bar extends by an amount e, gravity is doing work

on W throughout this extension. Hence,

Work done on W = We inch-tons.

This work may be represented by the rectangular diagram OKLM
(Fig. 221), in which OK represents W and OM represents e. The

resistance offered by the bar during the extension still follows the

same law as before, i.e. at first the resistance is zero and it gradually

increases, being proportional to the extension up to the elastic limit
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, ,

This may be represented by the triangular diagram OMQ. At PN
the resistance of the bar and the weight of the load are equal, but

extension does not stop here, since more work has been done by

gravity than can be stored in the rod. Extension will go on until

the work done by gravity has been stored

entirely in the rod, i.e. until the area

OKLM is equal to the area OMQ.
This will occur evidently when OM is

equal to twice OP, or when MQ is

twice OK. Now, had W been applied

gradually, the stretch would have been o P M Ext?
OP; hence the Sudden application Of FIG. 221. Diagram for a load applied

W has produced a stretch double of

this amount. Also PN would have been the final resistance of the

bar had W been applied gradually; hence the sudden application
has produced a resistance of twice this magnitude, and therefore

also a stress equal to double of that which would have occurred

with gradual application.

The conditions are not attained easily in practice, but the effects

of live loads in producing stress are often taken account of by

estimating what the stress would be had the load been applied

gradually and then taking double this stress as that which the part
will be called upon to carry.

Impulsive application of a load. In an impulsive application,

let W be dropped from a height H inches (Fig. 219). Then

Total work done by gravity
= W(H + *) inch-tons.

Extension will go on until the whole of this work is stored in the

bar. From equation (2) (p. 192), we have

ft
(i \ j ip^2E

Hence, aL~
Energy stored in the

If e is small compared with H, as is the case generally, then

2EWH

Working stresses. The stresses which may occur in any part of a

structure are estimated by first calculating the stress produced by the

dead load. Separate calculations are then made in order to determine

D.M.
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the stress produced by the live loads. The stress in the part under

consideration will then fluctuate between known limits, and it remains

to determine what ought to be the safe stress permitted in the part.

The determination may be based on the known breaking strength of

the material by taking the working stress as a fraction of the ultimate

strength. The reciprocal of this fraction is called a factor of safety,

and its value depends on the kind of material and the nature of the

loads. Thus, for wrought iron and steel, the factor of safety may
be 3 for a dead load, 5 for a stress which does not change from pull

to push, 8 for a stress which alternates from a certain pull to an

equal push and 12 for parts subjected to shock. Somewhat higher

factors may be taken for cast iron and for timber, as these materials

are less trustworthy.

It may be noted here that a load which a piece of material may

carry for an indefinite time, if applied steadily, will ultimately cause

fracture if it is applied and removed many times. The effect is more

marked if the load be alternated, i.e. applied first as a pull and then

as a push, in the manner in which the piston rod of a steam engine is

loaded. The experiments of Bauschinger, Wohler, Stanton and

others, on the effects of repeatedly applied and alternating loads

show that the strength to resist an indefinite number of repetitions

depends on the range of stress rather than on the actual values of

the maximum and minimum stresses.

The following rule has been deduced by Unwin* from the results

of Wohler's experiments, and applies to cases of varying stresses.

Let fg the breaking strength of the material in tons per square

inch under a load applied gradually,

/j
= the breaking strength of the same material in tons per

square inch when subjected to a variable load which

fluctuates from
,/j

to /2
and is repeated an indefinite

number of times. Let this be of the same kind (push or

pull) as/s .

/2
= the lower limit, in tons per square inch, to which the

material is subjected, + if /2
is of the same kind as

/! and/*,
- if/2 is of the opposite kind.

r=/1 -/2 = the range of stress.

Then Unwin's formula is

(0

*Machine Design, Part I. Prof. W. C. Unwin. (Longmans, 1909.)
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n has the value 1-5 for wrought iron and mild steel. From

equation (i), we have

or

w
in which the negative sign has been disregarded. Equation (2) gives

a dead-load stress yS which would produce, when applied steadily to

the member, the same effect as the actual fluctuating stresses.

If each side of (2) be multiplied by the sectional area of the bar,

the stresses in the equation become total forces on the bar. Using

capital letters to represent the total forces corresponding to the

stressesfst rand/j, we have

Equivalent stea dy load = F = ~ . ... (3)

The Launhardt-Weyrauch formula also takes account of stress varia-

tion. Let Fj and F
2

tons be the maximum and minimum forces

to which the bar may be subjected, and \etfs tons per square inch

be the breaking strength of the material under a gradually applied
stress. Then

Breaking stress = ^fs ( i + - ^ J
tons per square inch..... (4)

Applying a factor of safety of 3 to this, we have

Working stress =
ifi\

T + ~ ^ )
tons per square inch..... (5)

EXAMPLE. A certain bar in a structure carries a pull of 80 tons due
to the dead load ; the live load produces forces in the same bar varying
from 20 tons pull to 40 tons push. Find the working stress and the cross-

sectional area of the bar. The breaking strength of the material under a

gradually applied pull is 30 tons per square inch.

First Method. By doubling the live load pull and adding the result

to the dead load pull, we have

Equivalent dead load = 80+ (2 x 20) =120 tons.

Taking 9 tons per square inch as the working stress, we have

Sectional area of bar= 1
5 =13-3 sq. inches.
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Second Method. By Unwin's formula (3),

R = 6o tons.

F
1
= 8o+ 2o=ioo tons

n=i'$.

o-i j ji j (1-5 x 60)W(?x 3600)+ 4(100 -30)2
Equivalent dead load=^

= 128 tons.

Again using 9 tons per square inch as the working stress, we have

Sectional area of bar= 1 & = 14-2 sq. inches.

Third Method. By the Launhardt-Weyrauch formula (5), we have

fs= 30 tons per square inch.
*

^

F1
= 8o+ 2o=ioo tons pull.

F2=8o~4O= 4o tons pull.

Working stress = f x 30(1 + /<&)

= 8 tons per square inch.

F, 100
Cross-sectional area=

g
= ~o~

= I25 square inches.

Wind pressure. If wind pressure be treated as a live load, then

30 Ib. per square foot of vertical surface may be assumed to be the

maximum. If treated as a dead load, then pressures up to 55 Ib.

per square foot of vertical surface may be taken. Stanton's experi-

ments at the National Physical Laboratory give, for small plates,

p 0-0027V2 Ib. per square foot,

or, for large plates,

/^o-oo32V2 Ib. per square foot,

where V is the velocity of the wind in miles per hour. Hutton's

formula may be used in calculating the normal pressure on inclined

surfaces.

Let p the pressure in Ib. per square foot on a surface perpen-

dicular to the direction of the wind.

/n = the normal pressure in Ib. per square foot on a surface

inclined at an angle to the direction of the wind.

Then Hutton's formula gives

where a is a coefficient depending on the value of 0. Values of a
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corresponding to different values of have been plotted in Fig. 222,

and the value of a appropriate to any given surface may be taken

from the curve.

a.

1-2

10

0-8

0-6

0-4

O2

10* 20' 30' 40* 50* 60* 70* 80* 90*

FIG. 222. Values of a in Mutton's formula.

Travelling load. In Fig. 223(0;) AB is a beam simply supported
at A and B and carrying a load W. The effects of W alone will be

considered, any other, loads

being disregarded. If W
remains fixed in position,

the reactions P and Q as

well as the bending moment
and shearing force at any

section, such as D, have

definite values. These values

will alter if W travels along
the beam, and it then be-

comes necessary to determine

what position W must occupy
when a given section is sub-

jected to the greatest bending
moment it will be called upon
to resist, as well as the value

of this bending moment.

The same questions must

also be considered in relation to the shearing force at any given

section.

Let x = the distance of W from A.

a = the distance of the given section D from A.

L = the span of the beam, all in the same units.

Max
FIG. 223. Beam carrying a single rolling load.
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Then, taking moments about B, we have

Let W be on the right-hand side of D as shown in Fig. 2 23 (

Then the bending moment at D will be

Hence, as x diminishes, i.e. as W travels towards the left and so

approaches the section D, the bending moment at D increases.

Now let W be on the left-hand side of D as shown in Fig. 223 (ti).

Writing down the bending moment at D, we have

MD-Pa-W(a-)

(3)

This result indicates that as x diminishes, i.e. as W, still travelling

towards the left, recedes from the section D, the bending moment

at D is becoming smaller. Therefore, the greatest bending moment

which the section D will be called upon to resist will occur when W
is immediately over the section. The value of this bending moment

may be obtained by writing x = a in either (2) or (3) above, giving

Maximum bending moment M n = i - -r

If a be varied so as to obtain the maximum bending moments
for other sections of the beam, and if the results of calculation

from equation (4) be plotted, a parabolic curve will be obtained

(Fig. 223 (c)), the ordinates of which will show the maximum bending
moment for all sections of the beam. The centre section C is

called upon to resist a bending moment -. It will, of course, be
4

understood that the values shown by the ordinates in Fig. 223 (c) are

not attained simultaneously. The diagram must be interpreted as

indicating that the bending moment at any section, say D, is zero
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when W is off the beam, and increases gradually as W travels

towards the section
;
the maximum value MD is attained when W

reaches the section.

The shearing force at D, when W occupies any position on the

beam lying on the right of D, will be positive and equal to P
;

hence, from (i),

(5)

This result shows that the shearing force increases as x diminishes,

i.e. as W approaches the section D from the right.

Taking W in a position on the left of D, the shearing force will

be negative, and will be given by

We infer from this result that the negative shearing force at D
diminishes as x becomes smaller, i.e. as W recedes from the section

and approaches the left-hand support.

The inferences from this discussion are that the shearing force

at any section attains a maximum positive value when W lies close

to the right-hand side of the section, that it becomes zero as W
crosses the section, and attains a maximum negative value when

W lies close to the left-hand side of the section. To obtain

the values of these shearing forces, write x = a in equations (5) and

(6), giving

Maximum positive shearing force SD = 1 1 - =-
J
W.......... (7)

Maximum negative shearing force SD = - y W............... (8)
L/

Varying a so as to obtain values of the shearing forces for other

sections and plotting the values so found (Fig. 223 (d}\ we obtain two

sloping straight lines. This diagram must be interpreted as follows :

the shearing force at any section is zero when W is off the beam ;

as W travels along the beam from right to left, the shearing force

at any section D is positive and increases gradually, until the

maximum value DE is attained when W is on the point of arriving

at the section. As W crosses the section, the shearing force becomes

negative and attains the maximum value DF when W reaches the

other side of the section.
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W per unit Length

Uniform travelling load. In Fig. 224 (a) is illustrated the case

of a beam AB simply supported at A and B and subjected to a

uniform load w per unit length. Taking the load of sufficient

length to cover the whole span,

it will be evident that the maxi-

mum bending moment at any
section will occur when the

beam is loaded fully, i.e. when

the whole span is covered by
the load. The bending-moment

diagram will therefore be para-

bolic (Fig. 224^)) and of maxi-
FIG. 224. Beam carrying a uniform travelling

load ; maximum bending-moment diagram. mum height
8

In Fig. 224 (a) the nose E of the load is advancing towards a given

section D. The shearing force at D is positive and is equal to P
;

hence it increases as E approaches D. When E has crossed to the

other side of D (Fig. 225 (a)), the shearing force is P diminished by
the portion of the load lying between D and E. This shearing

force will be less than that

existing at D when the nose

is vertically over D, for P
will then have a certain

value, and this value will

be increased in Fig. 225 (a)

by a fraction only of the

portion of the load lying

between D and E
;
as the

whole of the latter must be

deducted from P in calcu-

lating the shearing force in

Fig. 225 (a), it follows that

the positive shearing force

at D in Fig. 225 (a) is

diminishing. Hence the maximum positive shearing force at any
section occurs when the whole of the part of the beam lying to

the right of the section is covered by the load, the end of the load

being vertically over the section. In the same manner it may
be shown that the maximum negative shearing force at any section

occurs when the part of the beam lying on the left of the section

is covered by the load (Fig. 225

FIG. 225. Beam carrying a uniform travelling load ;

maximum shearing-force diagram.
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To obtain the values of these shearing forces, first let the load

cover DB (Fig. 225 (a)) and take moments about B
;

.'. maximum positive shearing force SD = P =
-j- (L

-
a)

2....... (9)
2 1 v

Now let the load cover AD (Fig. 225 (0)) and take moments

about A ;

QL
a

wa-
2

wa2

Hence, Maximum negative shearing force SD = Q
^ j_/

Variation of a in (9) and (10) so as to obtain values for other

sections will evidently produce two parabolic curves when plotted

(Fig. 2 25 (<:)). The interpretation of this diagram is similar to that

of Fig. 223 (d)). The end ordinates are of magnitudes z#L.

Combined dead and travelling loads. If, in addition to the

travelling or live loads, the dead loads be considered, diagrams of

bending moments and shearing

forces may be drawn separately < f\
for the latter. Combined dia-

grams of bending moments and

shearing forces may then be con-

structed by adding algebraically

the corresponding ordinates of

the diagrams. This has been

done in Fig. 226 for a uniformly
distributed dead load and a

single rolling load.

In Fig. 226(0), ACB is the

bending-moment diagram for the

dead load and ADB is that for

the live load
;
AEB is the com-

bined diagram. In Fig. 226
(<r),

FGKH is the shearing-force

diagram for the dead load
;
FGL

and FGM are the shear diagrams
for the live load; FGKRN is

P 1G. 226. Diagrams for a beam carrying a dead
the shear diagram lor the com- load and a ingi rolling load.
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bined loads, and shows the shearing force on any section lying close

to the left of the live load ; GFHTQ is a similar diagram for sections

lying close to the right of the live load. The construction consists in

making FN = FH + FL and joining NK ;
also make GQ =GK +GM

and join QH. Zero shearing force occurs at T and at R. Sections

lying between F and T are subjected to positive shear only,

those lying between R and G have negative shearing force only ;

sections lying between T and R have to resist both kinds of shearing
force.

Maximum bending moments for a non-uniform travelling load.

In designing bridge girders, it is necessary sometimes to consider the

IB.

FIG. 227. Bending-moment diagrams for a system of rolling loads.

effects of a non-uniform travelling load. Fig. 227 illustrates a con-

venient method
; bending-moment diagrams for the girder when the

load is occupying several given positions are obtained first ; from these

diagrams the maximum bending moment at any section is determined.

AB is the girder resting on supports at A and B
;
sections at E, D

and C divide the girder into four equal bays. Three loads Wj ,
W

2

and W
3

at fixed distances apart have been chosen, but it will be

understood that the method applies to any number of loads.

First let W
l
be vertically over B, and let the distances of W

2
and

W
3 from A be a and b respectively.

Take moments about A and set these off along AN, which is

drawn at right angles to AB.

Moment of W
l
= WjL, represented by AF.

W
2
=W

,
FH.

W =WJ HN.
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Let Q! be the reaction at B, then the sum of the above moments

is equal to the moment of QT
about A ;

hence the moment of Qj
about A is represented by AN.

Join BF and produce the line of W
2
to cut BF in G. Join GH

and produce the line of W
3

to cut GH in K. Join KN and also

BN. Draw the vertical ESTUV.
From the laws of proportion applied to similar triangles, the fol-

lowing statements may be made :

Moment of Qj about E = EV.

W
x

E = ES.

W
2

E = ST.

W
3

E = TU.

Now, by taking moments about E, we have

Bending moment at E = moment of Qj
- moment of W

l

- moment of VV
2
- moment of W8

= EV - ES - ST - TU
= uv.

In the same way MD =WX and MC
= YZ. Hence the bending-

moment diagram for the given position of the loads is the shaded

diagram in Fig. 227.

To obtain the bending-moment diagram when W
l

is vertically over

the section C, instead of moving the loads, leave them in their

original position and shift the girder towards the right until C is

vertically under Wj. The end B will then be at B
2
and A will

coincide with the original position of E. The reaction Q2 at B
2
will

be obtained by taking moments about E, giving

Q2
x B

2
E = moment of W

x + moment of W
2 + moment of W

3

= EU.

Join UB.
2 ,
when it will follow, by similar reasoning to that already

employed, that the bending-moment diagram for Wj over C is

B
2
BGKWUB

2
.

Similarly, when W
x

is at D, the diagram of bending moments will

be B
3B.jBGKWB3 ;

also when Wj is at E, the bending-moment

diagram will be B
4
B

8
B

2
BGYB4

.

Measure these diagrams so as to obtain from each the bending
moments at E, D and C. If these are tabulated, there will be no
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difficulty in obtaining the maximum value of the bending moment at

each section by inspection of the table.

It should be noted that the loads may run on to the bridge girder

from either end, and that either W
1
or W

3 may lead. The effect

of this on sections lying equidistant from the middle of the span,

such as E and C, may be taken account of fully by choosing the

maximum of the tabular values for C and E as being the bending
moment to which both E and C may be subjected depending on

which way the load runs on to the bridge.

W per unit Length

FIG. 228. Portion of a continuous beam.

Continuous beams. Let ABC (Fig. 228) be a portion of a beam

which is continuous over several supports ;
three of the supports are

situated at A, B and C respectively, the spans being /
x
and L

2 respec-

tively. For simplicity, the load is taken as w per unit length,

uniformly distributed throughout.

There will be bending moments at each support owing to the

beam being one continuous piece ; let these be MA ,
M B and Mc

respectively. Erect perpendiculars AD, BE and CF to represent

these bending moments (Fig. 228 (It)) and join DE and EF. Draw

also the parabolic bending-moment diagrams AGB and BHC for the
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two segments AB and BC taken as cut at A, B and C, and simply

resting on the supports. Then, as has been shown for an encastre

beam (p. 176), the difference between the bending-moment diagrams,
shown shaded, will be the bending-moment diagram for the portion
ABC of the continuous beam.

It is evident that the solution will depend on the determination of

MA ,
MB and Mc . To determine these, we have the principle that

if all the supports are at the same level, then the deflections at A, B
and C must be zero, whatever may be the changes in deflection

occurring in the spans. Hence, taking moments of area about A,
the moment of ADEB must equal that of AGB

;
also taking moments

of area about C, the moment of BEFC must equal that of BHC.

Taking moments about A, and remembering that the parabolic

area is two-thirds that of the circumscribing rectangle, we have

2 Wl?
,

L , , 7 /l /,, r \l\ 2 7

-. ^
L ./1

.-
1 =MA/] ^

+ (M B -M A)^--/1 .

It will be noted that the right-hand side has been obtained by

splitting ADEB into a rectangle of height AD and base AB, and

a triangle of height (BE - AD) and base equal to AB. The equation
is reduced as follows :

^M^ + JMB/i ............................... (l)

Taking moments about C in the same manner, we have

2 Wlz 4 /2 , ,4 2

3' ^4.-
= Mc4- + (MB -Mc)---4,

= JMC4 + JMB4 ............................... (2)
Add (i) and (2) :

(/i

3 + /a
8

)
= JMAA + iMB (I, + 4) + JMc/2 ,

24

or (/1
3 + 4

3

)
= MA/1 + 2M B (/1 + 4) + Mc4 ................... (3)

4

Should the spans be carrying uniformly distributed loads of

different values, let w
l
and w.

2
be the loads per unit length on AB

and BC respectively. Then (i) and (2) will become
7H 7 3

24
=*MA/1 + ptB/1 ,
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Adding these and reducing as before gives

(4)

Equations (3) and (4) are cases of Clapeyron's theorem of three

moments. By use of these, an equation may be written down for

any three successive supports of a continuous beam. If there are

n supports, there will be (n
-

2) equations ; other two equations may
also be written from the data supplied for the ends of the beam.

Thus, if the beam simply rests on the support at each end, the

bending moments at these supports will be zero, and the other

equations will be sufficient in order to obtain the complete solution.

i ton per foot

A

Tons
16

12

8
4

-4
-8
-12

-16
FIG. 229. A continuous beam having three spans.

EXAMPLE i. A continuous beam rests on four supports on the same

level and carries loads as shown in Fig. 229. Find the bending moments

at the supports.

Equation (4) applied to A, B and C gives
x i

3\ /i - X203N
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Also, MA = o;

.'. 422 + 3000= 7oM B + 2oM c ............................(i)

Equation (4) applied to B, C and D gives

Also, MD= O;

/. 3000+ 375 =2oMB+6oMc ............................ (2)

From (i) and (2), 2ioM B+6oMc= 10,266,

MB= 6\3 ton-feet.

From (2),

6oMc = 2649,

Mc = 44-i5 ton-feet.

EXAMPLE 2. Find the reactions of the supports of the beam given in

Example i.

To find RA, write down an expression for the bending moment at B,

obtained by calculating the moments about B of the forces acting on AB.

56-25
-

1 5RA= 36-3,

RA= i-33 tons.

In the same way, RB may be found by writing down an expression for

Me, taking moments about C of all the forces acting on ABC.

306-25 + 200 - (1-33 x 35)
- 2oRB =44-i5,

RB= 20-77 tons.

To find RC, take moments about D of all the forces acting on the beam.

506-25 +45o-(45xi-33)-(3ox 20-77) -ioRc = o,

ioRc = 273-25,

Rc = 27-32 tons.

Also, RA + RB + Re + RD = the total load on the beam,

Ro = 52-5 -(1-33 + 20-77 + 27-32)

= 3-08 tons.

In order to check the accuracy, calculate RD by taking moments about

C of the forces acting on CD.

(1-5 x 10 x 1
o )-(R D x io)

=Mc =44-i5,

ioRD = 30-85,

RD = 3.08 tons.
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EXAMPLE 3. Draw the diagrams of bending moment and shearing
force.

S on the right of A= + RA = + 1-33 tons.

S on the left of B = RA - (0-5 x 15)
= i-33-7-5 = -6vi7 tons.

S on the right of B = RA+ RB -(o-5 x 15)
= i -33 + 2077 - 7- 5

= + U-6 tons.

S on the left of C = RA+ R B -(o-5 X35)-(i X2o)
=

1.33 + 20-77-17.5-20
= -

15-4 tons.

S on the right of C = RA+R B + RC - 17-5-20
=

1-33 + 2077 + 27.32-37-5
= + 11-92 tons.

S on the left of D = - RD= -3-08 tons.

The shearing force varies uniformly between the supports ;
the com-

plete shearing-force diagram is given in Fig. 229 (c).

The following quantities, together with the bending moments at the

supports, are required for the bending-moment diagram. They are

obtained by calculating the bending moments at the middle of each span,

assuming that the beam is cut at B and C.

,. 'Zfi/i
2 0-5XI5XI5

Bending moment at the centre of A.B = ~ =. -
Q
J J

o o

= 14-06 ton-feet.

Bending moment at the centre of BC=^^= 1 '

5 * 2 X 2

o o

=
7j

ton-feet.

Bending moment at the centre of CD= |
3 =

5o o

= 18-75 ton-feet.

The bending-moment diagram is given in Fig. 229 (b\ and is drawn by
making BE and CF equal to MB and Me respectively and joining AE,
EF and FD. GH, KL and MN are then set up from the centres of AB,
BC and CD, and are made equal to 14-06, 75 and 18-75 ton-feet respec-

tively. The curves AGB, BKC and CMD are parabolic. The difference

of these diagrams, shown shaded, is the bending-moment diagram for

the beam. Points of contraflexure (p. 180) occur at O, P, Q and R, as

the bending moments are zero there.

Plate girders. Plate girders are used instead of rolled I sections

when the dimensions of the girder become large. Such girders con-

sist of top and bottom flange plates (Fig. 231) and a web plate

secured to the flanges by riveted angles. The flange plates, as may
be observed in Fig. 230, increase in number towards the middle of
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the span, where the bending moment is large. The web plate is

generally of uniform thickness in girders of comparatively small span ;

in very large girders, in which the web is built of several plates

placed end to end, the plates near the supports may be made thicker

than those at the middle, thus making allowance for the larger

shearing forces near the supports. In calculating the dimensions of

Flo. 230. Side elevation of a plate girder.

the parts, it is customary to assume that the flanges supply the whole

of the resistance to bending and that the web supplies the whole of

the resistance to shearing. The web is liable to buckling, and

requires to be stiffened at intervals. For this purpose vertical

stiffeners are riveted to the web plate at intervals as shown in

Fig. 230 ;
these are of closer pitch near the supports, and may be

constructed of angles as in Fig. 231, or may be of T section.

The method of finding the principal dimensions may be understood

by study of the following example :

EXAMPLE. A plate girder of 30 feet span with parallel flanges has to

carry a uniformly distributed dead load of 2 tons per foot length, including

the weight of the girder. Find the principal dimensions.

Taking the depth as ^j
th of the span gives a depth of 2-5 feet. The

breadths of the flanges may be BVh f the span, giving 10-5 inches

for this dimension.

The total load will be 60 tons. The maximum bending moment will be

WL 60x30Mmax =--Q-= ^-= 225 ton-feet.
o o

Taking working stresses of 7 tons per square inch pull and 6 tons per

square inch push, the sectional areas of the flanges at the centre of

the span may be found. Let these be At and Ac square inches for the

bottom and top flanges respectively. The moment of resistance of the

section to bending will be 7At x the depth of the girder, or 6AC x the depth,

according as the bottom or the top flange is considered. Equating these

to the bending moment at the centre of the span gives

?A t x 2^= 225,

At = --=12-85 square inches.
17-5

2

6Ac x 2^=225,
225

Ac *== 15 square inches.
^

D.M. O
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I0i"x|"

FIG. 231. Section of a plate girder.

It will be noted, from inspection of the section given in Fig. 231, that two

rivet holes occur in each flange. In the case of the flange under push, it may
be assumed that the rivets fill the holes

|- rivets
_ perfectly and that no compensation is

necessary. In the case of the flange

under pull the sectional area of the two

rivet holes must be deducted from the

total sectional area of the flange plates.

The rivets in the present example may be

taken as f" in diameter
;

it is not customary
to exceed this dimension to any extent on

account of the difficulty of closing larger

rivets by hand, as has sometimes to be

done during erection. The sectional area

of the horizontal limbs of the angles used

for securing the flange plates to the web

plate may be included in the flange area. Angles 3^" x 3^" x ^" are used

in the present case.

Taking the bottom flange first, in which the rivet hole allowance must

be made, we have

Net area of the horizontal limbs of two angles = 2(3^-})^
=

2-75 square inches.

Using plates f" thick,

Net area of one plate 10-5" x %" (io-$
-

1-5)!
=

3-375 square inches.

If three such plates are used, Net area = 3 x 3-375
= 10-125 square inches.

Adding this to the area provided by the angles, we have

Sectional area supplied in bottom flange = 2- 7 5 + 10-125
= 12-875 square inches.

This is slightly in excess of the area actually required, viz. 12-85 square

inches, and may thus be adopted with safety.

Considering now the top flange, which is under push, and using

the same dimensions of angles and also the same thickness of plates,

we have

Area of the horizontal limbs of two angles= 2 x 3^ x \
=

3-5 square inches.

Area of one plate, 10-5" x
"= 3-94 square inches.

Area of three plates
= 11-84 square inches.

Total flange area = 3- 5 + 1 1 -84

= 15-34 square inches.

The area actually required is 15 square inches
;
hence the assumed

dimensions may be adopted.
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The method of finding the lengths of the flange plates may be under-

stood by reference to Fig. 232. The bending-moment diagram for the

girder is drawn on a base AB, and is also redrawn inverted. The moment
of resistance of the angle limbs is calculated, and also the moment of

resistance of each plate separately, making allowance for rivet holes in

the cases of those under pull. These are set off vertically from AB and

horizontal lines ruled. The angles and the plates adjacent to the web
must run the whole length of the girder. The other plates may stop at

Ton-feet.
250

200

150

Upper flange

Plate N?2

100-

50

A

50-

100-

150-

200

Plate NI

Angle

Angle

Plate N? i

Plate N2

Plate N.3

25QJ Lower flange
FIG. 232. Construction for obtaining the flange-plate lengths in a plate girder.

the points where their moment-of-resistance lines cut the bending-
moment diagram, but are made a little longer in order that the riveting

at the ends of the plates may be carried out properly.

The thickness of the web plate may be found on the assumption that

the shearing force is distributed uniformly over the section of the web.

Assuming a shearing stress of 6 tons per square inch and taking a section

close up to either support where the shearing force is a maximum and

attains the value of 30 tons, the area required will be

Sectional area of web =^ =
5 square inches.

For a plate 30 inches deep this would give a thickness of o
5
o
= inch.

To guard against the effects of rusting, no plate should be less than

;4
inch thick ; further, buckling has to be considered

;
hence the web may

be taken as 2 inch thick
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The stiffeners should have a pitch not exceeding the depth of the girder,

and the pitch may be halved near the supports.

To find the pitch of the rivets connecting the flanges to the web, taking

a section near the end of the girder, the shearing force is 30 tons, and as

the girder is 2-5 feet deep this will be equivalent to an average shearing

force of 304-2-5 = 12 tons per foot. Now the shearing force per foot of

vertical section must be equal to the shearing force per foot of horizontal

section (p. 126) ;
hence the resistance which must be provided by the

rivets will be 12 tons per horizontal foot.

Taking rivets | inch in diameter, a shearing stress of 6 tons per square
inch and a bearing stress of 10 tons per square inch, we have

Bearing resistance of a f inch rivet in a f inch plate
=

| x |x 10

= 2-81 tons.

Shearing resistance, under double shear= if x x 6

= 4-64 tons.

Hence the bearing resistance must be taken.

12
Number of rivets per foot= ~- = 4 ;

2 fo I

.'. pitch = 3 inches.

As the shearing force diminishes for sections taken nearer to the centre

of the span, the pitch may be increased towards the centre. It is, how-

ever, undesirable that the pitch should change too frequently. To find

the section at which the pitch may be changed to 6 inches is equivalent

to finding the section at which the shearing force is half the maximum,
viz. 1 5 tons. This will occur evidently at quarter span ;

hence the middle

1 5 feet of the girder may have a rivet pitch of 6 inches.

Parallel braced bridge girder. Fig. 233 shows in outline a bridge

constructed of two Pratt girders A and B, one on each side of the

FIG. 233. Bridge having two Pratt girders.

bridge ;
the roadway is supported by cross girders C which are

attached to the main girders at the lower panel points a, b, d,f, etc.,

and transmit the road loads W15
W

2 ,
W

3 , etc., to the girders at these

points. The main girders each consist of two parallel booms, con-

nected by inclined web bracings and vertical bars. The forces in

the various parts of the girders are found generally by calculation

in the following manner.
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Forces in the top boom. Consider the bar ce (Fig. 233) ;
if this bar

were dropped out, the portion acd would rotate about d. Take
moments about d of all the forces acting on

acd which is shown separately in Fig. 234.

Tce is the force in ce; W3 has zero moment.

(Tce x D) + (Wl
x ad) + (W2

x bd) = P x ad,

or Tce x D = (P x ad)
- (Wx

x ad)
- (W2

x bd).

The right-hand side of this expresses the

bending moment at d\ writing this as the equation gives

r~r* J-TJ
-f-6

(')

In the same way,

And

There is no necessity for calculating the forces in the bars on the

other side of k, as, with symmetrical loading, it is evident that the

forces will repeat themselves.

Forces in the bottom boom. It is evident that, as there are only
horizontal and vertical forces at the joint b (Fig. 233), the force in

ab will be equal to that in bd. If the bar bd be dropped out, then

the portion abc will rotate about c. Taking moments about c of

all the forces acting on abc (Fig. 235), we have

(T6d x D) + (Wl xat) = Px ab,

w
b T

bd
W B

FIG. 235.

D

Hence,

dropped out (Fig. 233), adec will rotate about e (Fig. 236).

(Tv x D) + (Wj x ad) + (W2
x bd) = P x

*/,

T,// x D - (P x ^) -
(Wj x ^)

- (W2
x ^)
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J D"' ">'

In the same way, T/yt
=
-^.

Forces in the inclined braces. Considering the bar ae (Fig. 233),

evidently the horizontal component of the force in it will

be balanced by the force in abd. Let be the angle of

inclination of the brace to the horizontal (Fig. 237). Then

Tad Tac COS 0,

or Tac = Tad sec (4)

In the same way, the horizontal component of the FT
~j

force in cd is balanced by the forces in bd and df

-Tw =

cd

(Fig. 238). Hence,
bd df

FIG. 238.

or Ted = (Tc//
- TM) sec ..................... (5)'

In the same manner, Te/= (T//t
-

T,//) sec

The force in gh requires special treatment. If the forces in gh
and hm be both resolved vertically, the sum will be

equal to W
5 (Fig. 239). Hence,

W
Tgh = *. cosec0 (7)

FIG. 239. 2

Forces in the vertical bars. The only force possible in be is the

load W2 applied at its lower end (Fig. 233). There can be no force

in hk
y
as there is no load at its upper end. Consider

the bar de\ the force in this bar is balanced by the ir

vertical component of the force in the inclined brace

ef which is connected to its top. Hence (Fig. 240), FIG. 240.

In the same way, T/r/

= T
(Jtt

sin 0.

The forces in the various members due to the dead load may be
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found also by graphical methods,

for the girder under discussion.

P'ig. 241 shows the force diagram

M

FIG. 241. Graphical solution of a Pratt girder carrying a dead load.

Live load forces. Suppose that a uniform live load, of length
sufficient to cover the entire span, may run from either end on to

the girder shown in Fig. 233. It is evident that maximum bending
moment will occur at all sections when the span is covered wholly

by the live load
;
hence maximum forces will then occur in all the

members of both top and bottom booms. If both live and dead

loads are uniform, producing a ratio of live to dead load per foot

length of girder equal to
,
then the bending moments at any section,

produced by these loads, will also have the ratio
,
and the force in

any boom member due to the live load will be n times the force in

the same member due to the dead load.

In finding the maximum live-load forces in the inclined bars of

the web, it may be taken that the shearing force in any panel is

balanced by the vertical component of the force in the inclined bar

belonging to that panel. Maximum force in any inclined bar will

therefore occur when maximum shearing force exists in the panel to

which the bar belongs. The following simple practical rule gives

results sufficiently accurate. Assume that maximum pull in the

inclined bars cd, eft gh (Fig. 233) occurs when each panel point

situated on the right of the bar is carrying a load W, W being the

live load per panel ;
also that the maximum push in the inclined

bars hm, fo, tiq, occurs when each panel point situated on the right

of the bar is carrying a load equal to W. Under these conditions.
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the shearing force in the panel will be equal to the left-hand

reaction P, P being calculated from the loads applied to the selected

panel points. The force in the bar may then be found from the

product P cosec 6. The maximum forces in the end bars ac and qr

(Fig. 233) may be found by resolving vertically and horizontally the

forces at a and r when the span is wholly covered by the live load.

It will be noted that corresponding bars on each side of the

middle of the span, such as cd and tiq^ undergo reversal from pull to

push, owing to the condition that the live load may run on to the

girder from either end of the bridge. In general it will be found,

when the dead-load forces are combined with the live-load forces,

that the inclined bars near the ends of the girder have forces fluctu-

ating between maximum and minimum pulls, and that a few only

near the middle of the span undergo actual reversal from pull to

push. It is customary to design the inclined bars in such girders

to withstand pull only, and to counterbrace those panels in which

the inclined bars suffer reversal from pull to push as shown by the

results of the calculations indicated above. Counterbracing is

shown by dotted lines in the two centre panels of the girder shown

in Fig. 233. It is assumed that the counterbraces fk and kl take

as pulls the forces which would otherwise have to be carried as

pushes by gh and km.

Having found the maximum forces which may occur in the

inclined bars due to the live load, the forces in the verticals may
be found by considering the upper panel points c, e, g, etc. (Fig. 233).

The force in any vertical bar will be equal to the vertical component
of the force in the inclined bar which is connected to the same upper

panel point.

Bridge girder of varying depth. The principles underlying the

solution of a bridge girder of varying depth may be understood by

q
FIG. 242. Bridge girder of varying depth.

reference to Fig. 242. A single load W is alone considered, and

P and Q are calculated first.
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To find the force in the member be belonging to the bottom boom,
it will be noticed that, if the bar be removed, Kbed will rotate about

e. Taking moments about e, we have

Force in be x be = P x Kb = M& ;

. . force in vc=^.
be (I)

To find the force in the member ef of the top boom, the rotatiop

point would be c if the bar were dropped out. Taking moments
about c, first drawing ex perpendicular to ef, we have

Force in efx cx= P x Ac= Mc ;

.'. force in ef=
c

(2)

To find the force in ce, reference is made to Fig. 243, showing
hbed together with all the forces acting on it. 1\ ,

T
2
and T are the

FIG. 243. Construction for finding the force in a diagonal brace.

forces in ef, be and ec respectively. T
l and T2 intersect, when pro-

duced, at z, and hence have no moment about z. Draw zm perpen-
dicular to the line of T and take moments about z.

P x Az = T x zm,

zm (3)

To find the force in be, resolve horizon-

tally and vertically all the forces acting at

FIG. ^--Construction for finding
the tOP J mt '

(
Fig' 244)- For balance

the force in a vertical member. of the Vertical Components, W6 haVC

T sin 7 + T! sin a = T
4 + T3

sin ft

T
3 sin/2 (4)
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Double Warren girder. As an example of another method of

solution, consider the double Warren girder shown in Fig. 245 (a).

The girder may be taken as made up of two component girders

shown separately in Figs. 245 (b} and (c\ each carrying the loads which

hang, in the complete girder, from panel points belonging to the

component girder. Each component girder should be solved

separately. The force in any member of the complete girder may
.then be found by adding algebraically the forces in the corresponding

bars of the component girders.

FIG. 245. Double Warren girder and the component girders.

Assume that the bracing is at 45, as is often the case in this

type of girder ;
also that the proportion of each load which is borne

by each support takes the shortest route between the panel point and

the support. Consider W
x (Fig. 245 (b)) ; |Wa

is supported at & and

-J-Wj is supported at n. The iWj arrives atg after traversing ha as pull

and ag as push, thus producing forces -fWjv/2 pull in ah and W
1

push in ag. The -J-Wj arrives at n after traversing /zras pull, cl as

push, le as pull and en as push, and proauces forces equal to

iWlN/2 in each of these bars.

In the same manner, W
3 arrives at n by producing sW3 \/2 pull in

le and fW3 \/2 push in en
;
also |W3 arrives at^by producing |W3 \/2

pull in le, |W3 s/2 push in c/t, |-W3 v/2 pull in ha and ?W
3 push in ag.
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The total forces in these bars in Fig. 245 (/;) may be found now by

adding algebraically the results calculated for each. The forces in

the boom members are best found by calculation from the bending
moments in the manner described on p. 213. It will be noted that

there are no forces in gh, e/Sindfti.

The solution of the other component girder (Fig. 245 (<r))
is obtained

in a similar manner. The force in any member such as be in

Fig. 245 (a) will be found by adding algebraically the forces in ac

(Fig. 245 (b)) and bd (Fig. 245 (c)).

In girders of the double Warren type containing a large number
of panels and uniformly loaded, the assumption may be made that

the inclined bars in any panel share equally the shearing force in

that panel. This assumption should not be made if the number of

panels is small, as it then leads to absurd results.

If vertical bars bh, ck, etc., be added to the girder shown in

Fig. 245 (a), it may be assumed that each vertical bar transfers

one half the load applied at the lower panel point to the upper

panel point, and the solution may then be obtained in the same

manner as before, with the vertical bars left out.

Reinforced concrete beams. In Fig. 246 (a) is shown the section of a

concrete beam having steel reinforcement bars near the bottom edge.

k 6

H

d(Hx)

(d)

FIG. 246. Reinforced concrete beam.

In making calculations regarding the strength of beams of this type,

it may be assumed, as has been done for metal beams, that there is

pure bending, that there is no resultant pull or push along the length
of the beam and that cross sections which were plane in the unloaded

beam remain plane when the beam is loaded. It follows from the

last assumption, that the strains of longitudinal filaments will be pro-

portional to the distance from the neutral layer (p. 1 43). Hence the

strains all over any section AB (Fig. 246 (/;)) may be represented in the

side elevation of the beam by a sloping straight line CE which passes

through the neutral axis at O, giving the two strain diagrams AOC
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and BOE, the horizontal breadths of which show the strain at any

point.

Let sc be the maximum strain in the concrete under compression,

represented by AC (Fig. 246 (<)), and let ss , represented by DF, be

the strain in the steel. Let d be the depth of the beam measured

from the top to the centre of the reinforcement bars, and let xd be

the distance of the neutral axis from the top. Then

**- xd x
/ r \

sg (i-x)J~i-x
Let cc be the push stress in the concrete corresponding to the

strain sc and connected with it by

E - Cc
Ec~V

where Ec is Young's modulus for the concrete. Also let tK be the

pull stress in the steel corresponding to the strain s^ the connection

being fi
Es=v

where E6 is Young's modulus for the steel. Then

E6
. _ t^ f^. _ ^ ^_

Ec

~
ss cc

~
cc

'

ss

The ratio of -^, denoted by m, is rather variable owing to the
Ec

nature of concrete ;
the average value of 15 is taken in practice ;

hence the above result may be written

*. *.
s ........

( )
cc (XT*)

It is customary to allow safe stresses of 600 Ib. per square inch

push in the concrete and 16,000 Ib. per square inch pull in the

steel. Suppose that the section is so proportioned as to secure that

these values occur simultaneously on a certain load being applied.

Then, from (3), l6j000 x

~~6oo~" F^ =I5 '

whence ^ = -^ = 0-36...................... (4)

A section so designed is referred to generally as an economic

section.

In estimating the strength of the section to resist bending, it is
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usual to disregard the stresses in that portion of the concrete lying

below the neutral axis, and hence under pull stress. It follows that

the stress diagram for the section will resemble that shown shaded in

Fig. 246 (<r),
in which push stress on the concrete is proportional to the

distance from the neutral axis, cc being the maximum value, and the

stress tg on the steel is assumed to be distributed uniformly over

the steel. These stresses will give rise to equal resultant forces C
and T on the concrete and steel respectively (Fig. 246 (</)), equal
because there is no resultant force along the length of the beam.

Let p be the ratio of the area of the steel to the rectangular area

bd (Fig. 246 ()), and let A,9 be the total sectional area of the steel bars

in square inches. Then As
= pbd, (5)

and T = tsp&d. (6)

Also, Area of the concrete under push = bxd (Fig. 246 (a)).

Average push stress in the concrete = |^c .

Total push in the concrete = C = \c(bxd. (7)

Also T = C;

or tsp

I Hi* (8)

I , 1 ^^)<fr m ^)) (9>

If the beam is of the economic section, then x is 036 from (4), and

(9) becomes
, = 0-00675
= 0-675 percent (10)

To obtain the moment of resistance to bending, we must calcu-

late the moment of the couple formed by T and C. C acts at a

distance \xd from the top : hence the distance between C and T is

Hence, Moment of resistance = Cd( i - J#), (
1 1

)

or =Td(i-x) (12)

From (7) and (n), we have

Moment of resistance = ^dbxd^ (
i - \x\ (13)

or, from (6) and (12),

Moment of resistance -f8 pbd'
2
(\

-
i.r) (14)
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FIG. 247.- Reinforced concrete T beam, NA below the

Reinforced concrete T beams are much used. There are two

cases, one in which the neutral axis falls below the slab (Fig. 247 (a))

and the other in which the

neutral axis falls within

the slab (Fig. 248(0)). As

the concrete under pull is

neglected, the stress diagram
for the latter (Fig. 248^))
is identical with that for a

beam of rectangular section

(Fig. 246 (<:)); hence all the

results already found apply
to this case. In the former

case (Fig. 247 ()), it is

customary to disregard the shaded area, representing a small portion
of the concrete under push. The stress diagram will then take the

form shown in Fig. 247 (/;),

and the equations become some-

what altered.

It should be noted that re-

inforced concrete buildings are

practically monolithic; columns,

beams and floors are so con-

structed as to form one piece.

Hence all such beams must be

regarded as fixed at the ends. It has been shown already (p. 177)

that in such beams the bending moment reverses in sense near

the walls ; hence the top sides of the beams near the walls will be

under pull, and some of the reinforcement bars should be brought

diagonally upwards and run near the top of the section over the

supports.

EXAMPLE i. A reinforced concrete beam is 9 inches wide, and is to

have a moment of resistance of 200,000 Ib.-inches. The stresses of 600 Ib.

per square inch on the concrete and 16,000 Ib. per square inch on the steel

are to be attained simultaneously. Ratio of elastic moduli = 15. Find

the depth of the beam and also the sectional area of steel required and

the position of the neutral axis.

FIG. 248. Reinforced concrete T beam, NA
within the slab.

From (10),

From (4),

From (13),

0675 per cent.
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2 X 2OO,CXX)

0-36x9x600(1 -0-12)
=

15-3 inches.

Distance from the top to the neutral axis

=^=0-36 x 15-3

=
5-51 inches.

Sectional area of steel =A =
/>&j?

= 0-00675 XQX 15-3

=0-93 square inch.

EXAMPLE 2. A reinforced concrete beam 9 inches wide by 18 inches

deep has three steel reinforcement bars, each 075 inch in diameter.

Find the position of the neutral axis and the moment of resistance.

Neither of the stresses of 600 Ib. per square inch for the concrete and

16,000 Ib. per square inch for the steel may be exceeded. Take the ratio

of E to 0=15.

Sectional area of steel= A,= 3 x gg= 3X22X9
4 4x7x16

=
1-33 square inches.

From (3), ^^^ .................................(0

Also, T= C;

Equating (i) and (2) above, we have

I5(i-,r)= 8ur

x 1-33'

19-95 -19.95^=

8 ix* + 1 9'95-r -19-95=0;
whence ;tr =0-387.

Distance of the neutral axis from the top=^=0-387 x 18

= 6-96 inches.

or /

Suppose ts be taken as 16,000. Then

16,000
cc=

-g- -=673 Ib. per square inch,
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a value inadmissible by the data. Take, therefore, cc as 600 it), per

square inch, giving
/s = 6oox 23-8

= 14,280 Ib. per square inch,

and cc= 600 Ib. per square inch.

From (14),

Moment of resistance = tspbd*( i
-
$x)

= 14,280 x 1-33 XI8(I-^2?7)
= 298,000 Ib.-inches.

EXAMPLES ON CHAPTER IX.

1. A steel bar is 20 feet long and has a sectional area of 4 square
inches. Find the work done while a pull of 24 tons is applied gradually.
Take = 13,500 tons per square inch. Find also the energy stored in a
cubic inch of the bar.

2. Suppose, in Question i, that the load is applied suddenly, and
calculate the maximum stress produced. What will be the momentary
extension of the bar ?

3. It is found that a steady load of 400 Ib. resting at the middle of a
beam produces a deflection at the centre of o-oi inch. What central

deflection would be produced by a load of 100 Ib. dropped on to the
middle of the beam from a height of 16 inches ?

4. A certain steel bar in a girder carries a constant pull of 20 tons

owing to the dead load. The live load produces in the same bar forces

which range from 60 tons pull to 10 tons push. Find the working stress

and the sectional area of the bar. Take ultimate tensile strength = 30 tons

per square inch.

5. A single load of 10 tons rolls along a girder of 30 feet span. Draw
curves showing the maximum bending moments and shearing forces at

every section. State the scales.

6. Answer Question 5 for a uniformly distributed travelling load of 1-5

tons per foot length which may cover the whole span.

7. Supposing that the girder in Question 5 is uniform in section and

weighs 8 tons. Draw the diagrams of M and S for the dead load. Then
combine these diagrams with those already drawn for the single rolling
load in order to show the effects of combined live and dead loads.

8. A girder of 40 feet span is traversed by three concentrated loads of

6 tons each at 7 feet centres, followed at an interval of 6 feet by a

uniformly distributed load of 0-5 ton per foot. Find graphically the

maximum bending moments at sections of the girder taken at 5 feet

intervals. The load may run on to the girder from either end.

9. A continuous beam of length 50 feet rests on four supports on the

same level. The left-hand span is 20 feet and the others are 1 5 feet each.

The left-hand span carries a uniform load of 2 tons per foot, the other
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spans carry uniform loads of I ton per foot. Find the bending moments
at the supports.

10. In Question 9, find the reactions of the supports.

11. In Question 9, draw diagrams of bending moments and shearing
forces for the complete beam. State the scales.

12. A plate girder 24 feet span, 2 feet deep, flanges 10 inches wide,
carries a uniformly distributed load of 45 tons. The angle sections are

3' 5 x 3'5 x *5 m inches. Take stresses as follows : pull, 7 tons per square
inch

; push, 6 tons per square inch
; shearing, 6 tons per square inch

;

bearing, 10 tons per square inch. Find the sectional area of each flange ;

state the number and thickness of plates required for each flange at the

middle of the span. What thickness of web plate would be suitable?
If the rivets are 075 inch in diameter, what will be the pitch of those near
the ends of the girder ?

13. In Question 12, find the length of each plate in (a) the top flange,

() the bottom flange.

14. A Pratt girder (Fig. 241) 48 feet span has 6 equal bays of 8 feet

each. The bracing bars make angles of 45 with the horizontal. There
is a uniform dead load of i ton per foot length. Find the forces in the

horizontal top and bottom bars of the two central bays ;
also those in

the two inclined bars nearest to one support. Find also the force in the

vertical bar second from one support.

15. In Question 14 a uniform live load of 1-25 tons per foot travels

along the girder. Find the maximum forces it will produce in the same
bars. The load is long enough to cover the whole girder.

16. A model reinforced concrete beam 3-5 inches wide by 4-25 inches

deep from the top to the centre of the reinforcement has to be made so

that stresses of 600 and 16,000 Ib. per square inch will occur in the con-
crete and in the steel respectively. Taking the ratio of the elastic moduli
as 15, find the percentage of reinforcement required, the sectional area of

the steel, the position of the neutral axis and the moment of resistance of

the section.

17. A reinforced concrete beam of rectangular section 12 inches wide

by 1 8 inches deep has three steel reinforcement bars each 1-25 inches in

diameter. Find the position of the neutral axis and the moment of

resistance. Stresses of 600 and 16,000 Ib. per square inch respectively
for the concrete and steel must not be exceeded. Take the ratio of the

elastic moduli as 15.

18. Experiments upon some wrought-iron bars showed that a per-
manent set was taken when the bars were strained to a degree greater
than that produced by a stress of 20,000 Ib. per square inch, but not when
strained to a less degree. At that point the average strain was 0-0006

foot per foot of length ;
what was the resilience of this quality of iron in

foot-pounds per square inch section per foot of length ? (I.C.E.)

19. An iron bar 10 feet long having = 14,000 tons per square inch

and a limit of elasticity
= 14 tons per square inch is subjected to shocks of

a total value of 224 foot-pounds. The bar is not to have any permanent
set produced in it, this being guaranteed by the adoption of a factor of

safety of 2. Find the required sectional area of the bar. (I.C.E.)
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20. A vertical steel rod, 10 feet long, the cross section or which is

i square inch, is fixed at its upper end and has a collar at its lower end.
An annular weight of 300 Ib. is allowed to fall through a height of

3 inches upon this collar. Determine the maximum intensity of stress

produced in the steel rod if Young's modulus is 12,500 tons per square
inch. (B.E.)

21. Two bars, A and B, of circular section and the same material, are

each 1 6 inches long. A is I inch in diameter for 4 inches of its length
and 2 inches in diameter for the remainder

;
B is i inch in diameter for

12 inches of its length and 2 inches in diameter for the remainder. A
receives an axial blow which produces a maximum stress in it of 10 tons

per square inch. Calculate the maximum stress produced by the same
blow on B. How much more energy can B absorb in this way than A
without exceeding a given stress within the elastic limit of the material. ?

(L.U.)

22. A double Warren girder (Fig. 245) is 50 feet span and 10 feet deep
and has five equal bays of 10 feet each. It is supported at the ends
and carries a load of 12 tons at each of the four lower panel points
(48 tons in all). Find the forces in the members. State the assumptions
made. (L.U.)



CHAPTER X.

COLUMNS. ARCHES.

Ties and struts. Those portions of a structure which are intended

to be under pull are called ties
; parts under push are called struts,

or columns. Columns are usually vertical pieces intended to carry

weights. There is an essential difference which modifies greatly the

method of calculating the strengths of ties and struts
;
a loaded tie

exhibits no tendency to bend if it is straight originally, and will tend

to become straight if originally curved. A strut, if originally curved,
will have its curvature increased

by application of the load, and, P /- 9
r^\

P

if straight at first, may very easily

be under such conditions of load-
FlG> 2^_A straight tie>

ing as will produce bending; want

of uniformity in the elastic properties of the material may produce
a similar effect.

A straight tie AB is shown in Fig. 249, loaded with pulls P, P,

applied in the axis of the bar. It is evident there is no tendency to

bend the tie, and any cross section CD, at 90 to the axis of the bar,

will have a uniformly distributed

pull stress. A bent tie bar AB
is shown in Fig. 250(0). The
nature of the stresses on CD may
be understood by considering the

equilibrium of one half of the bar

(c) (Fig. 250 (^)). It will be observed

that there is a bending couple of

FIG. 25o.-Bent ties and struts.
clockwise moment ?d

;
this is

balanced by the moment of resist-

ance at the section CD, the latter being represented by the forces

Q, Q. It is apparent that the bending couple IV is endeavouring
to straighten the bar.
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Had a strut of similar shape been chosen, the forces acting on one

half of it would be as shown in Fig. 250 (c}. Here the couple Pd is

anti-clockwise, and tends to produce further bending.
In each of these cases there will be two kinds of stresses on the

section CD : (a) a stress of uniform distribution due to the axial

force P'
; (<) a stress due to the bending couple, varying from a

maximum push stress at one edge to a maximum pull stress at the

opposite edge. An initially straight strut which has been allowed to

bend under the load will have a similar stress distribution. It may
be taken that the effects of bending may be disregarded in axially

loaded straight ties, but must be taken account of in all struts.

Euler's formula for long columns. This formula may be deduced

by considering the bending of a long flexible column of uniform

cross section and carrying a load applied

axially. If such a column is perfectly straight

to begin with, and there are no inequalities

in the elastic properties of the material, the

application of an axial load will not tend to

bend the column. On increasing the load,

a certain critical load is reached, the mag-
nitude of which depends on the method of

fixing the ends of the column; under this

load the material of the column becomes

elastically unstable. This condition is evi-

denced by the column refusing to spring back

if slightly deflected from the vertical, while

it does so readily for loads lower than the

critical load. The slightest increase in the

FIG. 251. Euler's theory of load beyond the critical value will cause a

small deflection imparted to the column to

increase without limit, and the column collapses. It will be evident

from what has been said regarding the conditions to be realised, that

it is not possible to obtain a column of such ideal material and

construction as will show perfect agreement under test with Euler's

result. But the formula is of service in enabling other more

practical formulae to be devised.

Considering a long column AB (Fig. 251(0)) of uniform cross

section and length L. Let both ends be rounded, or pivoted, in such

a manner that, if bending does occur, the column will assume a

curve resembling a bow (Fig.25i (<)). The effect of a load P applied

at A in producing stresses at any section D will be understood by

(a)
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shifting P from A to D as shown by P'; the section at D will

evidently be under an axial load P' = P producing uniform stress,

together with a couple of moment Py. The couple gives a bending
moment, and the effect of this alone is considered in the following ;

the stress at D caused by the axial load P' is disregarded, as it is

small compared with that produced by the bending moment in the

case of a long column. The maximum bending moment will be

found at the middle section C, at which the maximum value of j,

viz. A (Fig. 251 ()), occurs, and will be given by

Maximum bending moment = MC = PA (i)

Taking the equation for the curvature of a beam (p. 166), we have

for the curvature at D :

i M

p
Since will be constant for a given load on a given column,

we may write i

It may be shown readily that a curve, plotted so that its ordinates

y (Fig. 252) are the sines of the angles a represented by its

JH TT radians

FIG. 252. Curve of sines.

abscissae, possesses the same property, viz. the curvature at any

point is directly proportional to the ordinate j>
= sina. It may

thus be inferred that the curve of the bent column is a curve of sines

to some scale. The scales of x and y may be stated by taking the

origin at A (Fig. 251 (<)), when AB = L will represent TT radians,

AE =
-|L will represent \K radians; also CE = A will represent

sin-= i, and y will represent the sine of an angle AF, which will

have a value -- IT. Hence,
!_/

A X 7T

y : A = sin TT : sin -,

~
:

* (4)
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It can be shown that, if a curve be given by an equation show-

ing the relation of y and x, the curvature at any point may be

d^v
obtained by finding the second differential coefficient, viz.

, pro-
doc

vided that the curvature is not too great. Application of this

process to equation (4) will lead to a result which may be equated
to that of equation (2) above. Thus,

dy A TT TT

~r = A T ' cos T~dx L L

2

=
-pJ- (from 4) ..................... (5)

This gives the curvature at D (Fig. 251 (b}\ viz. . The negative
RD

sign may be disregarded, as its only significance has reference to the

position of the centre of curvature. Equating (2) and (5), we have

P 7T
2- y _ i>

Ely L2>

It is important to note that y cancels, giving

P__7^
El L2 '

P =^..................................... (6)

This is Euler's formula for a long column having both ends

rounded. The meaning to be attached to the deflection y disappear-

ing from the final result is that no deflection will occur until a

certain load P given by (6) is applied. When the load attains

this value, any small deflection will increase indefinitely with the

consequent collapse of the column.

A more general way of writing Euler's formula is

...................................

where / is a function of the length L of the column. The value of /

depends on the method of fixing the ends, a point which we now

proceed to examine.
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Effect of fixing the ends of columns. In the case of the column
discussed in finding Euler's formula, the ends were taken as rounded

and the column bent as a whole. There was no bending moment at

the ends, and these may be looked upon as points of contraflexure

(p. 1 80). Fixing the ends will produce a stiffer and consequently

stronger column. This may be taken account of in the formula by

writing, instead of L, the length of the column, the distance /

v-JL

FIG. 253. Various methods of end-fixing in columns.

between the points of contraflexure in the actual curve of the

bent column. Some cases are noted below; reference is made to

Fig- 253.

CASE A. Both ends rounded. This is the case examined above
;

/=L.

CASE B. Both ends fixed and so controlled that the forces P, P
remain in the same vertical line. Here /= ^L.
CASE C. One end (the lower) fixed

;
the other end guided so

that the forces P, P remain in the same vertical, but the column is

otherwise free at this end to take up any direction. In this case

/=o-7L.
CASE D. Both ends are fixed so that the directions at the ends

of the curve of the column remain vertical, but one end is free to

move horizontally relative to the other end, so that the forces P, P
are not in the same vertical when the column bends. Only one

point of contraflexure will occur in the column itself; the position of

the second point may be seen by producing the curve of the column

downwards (shown dotted in Fig. 253 D). In this case /=L.
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CASE E. One end fixed, the other end perfectly free. In this

case, the free end is a point of contraflexure. The second point

may be obtained by producing the curve of the column downwards.

Here /= iL.

Using Euler's formula, it will be noticed that, as / has to be

squared, the effect of fixing both ends of the column as in Case B will

be to give the column four times the strength of the same column

having both ends rounded.

Curve illustrating Euler's formula. Euler's formula may be

modified by writing

where A is the sectional area of the column and k is the least radius

of gyration of the section, i.e. k is taken with reference to that axis

containing the centre of the area of the section

for which I has the minimum possible value.

It is evident that the column will bend in a

plane perpendicular to this axis. Two instances

are given in Fig. 254 (a) and (b) ;
in each of

these OX is the axis perpendicular to the

plane of bending, and k should be taken with

respect to OX. Inserting this expression for I

in equation (7), (p. 230), we have

Let /= #L, where n is a coefficient depending
on the method of fixing the ends. Then

p? *EA/*y# \L/

FIG. 254. Plane of bending
in columns. Or

2E

The left-hand side of this expresses the collapsing load p per unit

of sectional area. Hence, 2 i7 / 7, \ 2

/-^F(f) (8)
\Li/

This will be in tons per square inch, provided the following units

are employed :

E = Young's modulus, in tons per square inch.

k = the least radius of gyration, in inch units.

L = the length of the column, in inches.
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In columns of a given material and having a stated method of
op

fixing the ends, the quantity ^ will be constant ; hence / may be

calculated for different ratios of L to k, and a curve may be plotted

from the results. Fig.
r .,, Collapsing load

gives such a curve for mild
Ton/per ^ Ln ^

steel struts having both ends 250

hinged. In this case = i

and E has been taken as 200

13,500 tons per square inch.

It will be noticed from 150

Fig. 255 that, for small ratios

of L to /&, the collapsing stress 100

obtained is absurd. Only
when the ratio is large is 50

a reasonable value obtained.

This leads to the conclusion

that agreement of Euler's for-
50 100 150 200 250

Ratio

with practical results Of FlG - 255. Euler's curve for mild steel struts, both
ends hinged.

tests should be looked for

only in the case of struts which are very long as compared with the

cross-sectional dimensions.

Ewing's composite formula. Sir J. A. Ewing has suggested a

composite formula made up of the crushing strength of a very short

block together with the elastic instability load of a very long column,
both composed of the same material as the actual column.

Let ft = the crushing strength of a short block, in tons per square
inch.

P!
= the crushing load, in tons, applied axially.

A = the area over which Px is distributed, in square inches.

Then Pi=/cA (i)

Let P
2
= the elastic instability load of a long column, in tons;

the column having the same sectional area A as the

short block.

Then
7T
2EI

2
~

/2

Combining these in accordance with Ewing's method gives the

following formula for P, the collapsing load of the ordinary practical

column when loaded axially : f .

P-
.

/C
,, (3)

7T
2EI
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This formula has the advantage of being continuous, and does not

give an absurd result for a column of any practical length. If / is

very short, the second term in the denominator becomes very small,

and may be disregarded. The formula then reduces to the expression

(i) for the crushing load of a short block. If / is very long, the

formula reduces to Euler's formula by neglecting the unimportant
terms.

Rankine's formula for columns. This formula is the one in most

frequent practical use. It is practically the same as Ewing's, although
in a slightly altered form. Thus,

P-

fcA

Now, I may be written as I =

where A is the sectional area and k is the least radius of gyration.

Hence,

/CA
~

It is apparent that J/= will be constant for a given material, and
TT^hi

may be written c, the value of which is to be determined by experi-

ments on the collapsing strength of columns. Hence,

This is Rankine's form of the formula, and gives the total collapsing

load on the column. The collapsing load per square unit of sectional

area will be given by P

This will be in tons per square inch, providedfc is in tons per

square inch and / and k are in inch units. It is assumed that the
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column is of uniform section and is loaded axially. The least value

of k should be chosen as in the case of the Euler formula, and the

value of / is the same as in the cases given on p. 231 for various methods
of fixing the ends. Values of fe and c are given in the table below

;

a suitable factor of safety should be applied in order to obtain the

safe load :

COEFFICIENTS IN RANKINE'S FORMULA.

It will be evident on inspection of the Rankine formula that

allowance is made both for direct crushing and for bending. Owing
to the radius of gyration entering into the formula, due regard
has been paid to the distribution of the material in the section,

i.e. the shape as well as the area of the section has been taken into

account.

It is useful to plot curves from equation (2) showing the collapsing
load per square inch of sectional area for different ratios of L to /&,

varying the material and the method of fixing the ends. Such a

curve for mild steel, both ends hinged, is shown in Fig. 256, the

corresponding Euler curve being given on the same diagram.
Another useful set of curves is given in Fig. 257 ; here the safe loads

per square inch of sectional area for mild-steel, wrought-iron and cast-

iron columns have been plotted for different ratios of l\k. The
factor of safety employed is 5. The curves indicate that mild steel

may always carry a higher stress than wrought iron
;
also that, at the

ratio of //
= 4o approximately, the safe stresses on mild steel and

cast iron are equal; hence equal columns of cast iron and mild steel

having this ratio of
/// would carry equal safe loads. Wrought iron

and cast iron have equal safe stresses at a ratio of Ijk of 65 approxi-

mately. In designing a column to carry a given load, cast iron

is the material calling for the smallest sectional area for ratios of L to

* Note that / should be taken from the cases shown in Fig. 253. For values

of 2
, see p. 151.



236 MATERIALS AND STRUCTURES

k under 40, and mild steel demands the smallest sectional area for

ratios of L to k above 40. Wrought iron would require a smaller

sectional area than cast iron for ratios of L to k over 65.

Breaking Load

Tons per ay in.

Sale load

Tons per of In.

6

40 80 200
Ratio

FlG. 256. Rankine and Euler curves for mild
steel columns, both ends hinged.

FIG. 257. Rankine curves for columns of
different materials ; ends hinged.

Gordon's formula. The formula bearing Gordon's name, and

formerly in common use, is

where fc and a are experimental coefficients and d is the least

transverse dimension of the section. The formula is objectionable,

from the fact that no allowance is

made for the distribution of the

material over the section. For ex-

ample, referring to Fig. 258, in which

are shown an I section and a box

section of equal areas, and alsx) having

equal over-all dimensions, Gordon's

formula would have the same value of

d for both sections, viz. B, and would

give the same value of collapsing load

for both. Rankine's formula would give fairer consideration to the

box section, which is obviously the stiffer and stronger, from the

fact that the radius of gyration of the box section with reference to

..*.
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OX is greater than that for the I section, and hence would give a

greater load for the box section.

Secondary flexure in columns. Professor Lilly has pointed out

that columns constructed of thin plates are liable to fail by secondary

flexure, i.e. the column may not fail by bending as a whole, but by
the material buckling over a short length. Lilly has made many
experiments in support of his views, and has proposed a formula in

which account is taken of the ratio of the thickness of the plate to

the radius of gyration. Further experimental
work is required in order to settle the values

of the experimental factors involved.

Recent tests made at the University of

Illinois on built-up columns indicate that the

stress distribution may be very erratic
;

especially in the neighbourhood of riveted

joints. It is admitted that our knowledge of

the strength of columns, struts and com-

pression members generally is far from being

complete. At present, most designers rely

on the Rankine formula coupled with a

liberal factor of safety.

Effect of a non-axial load. In Fig. 259 (a)

is shown a column the axis of which is AB,
i.e. AB passes through the centres of area of

all horizontal sections of the column. A
load P is applied at C at a distance a from

the axis. P may be moved from C to A
provided a couple of moment Pa is applied.

We have now an axial load P' = P together
with a couple Pa which will give a uniform

bending moment at all horizontal sections

of the column. Let A be the area of the

section, then P' will produce a uniformly
distributed push stress ^ given by

..*

FIG. 259. Column carrying
a non-axial load.

A=A-

The bending moment Pa will give a stress distribution similiar to

that of a beam under pure bending, which will vary from a pull stress

ft at the edge DE (Fig. 259 ()), to a push stress /. at the edge FG.
Let m t and m c be the distance of these edges respectively from OX.
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Then, using the equation (p. 146)

M = ^I,m

we have Pa = ^l=^-l.

Tin / x

Whence p t
= ....................................... (2)

Pam c , .

and C
=~~.....................................

The stress due to the bending moment will vary uniformly between

these values, being zero at OX. The stress figure for the direct

stress combined with the bending stress may be drawn as shown in

Fig. 259 (r), where HKML shows the uniformly distributed stress/!
and MNRQL shows the varying stress due to the bending moment.
The resultant stress figure is shaded, and shows that the maximum

push stress occurs at the edge FG (Fig. 259 ()), and is given by

Maximum push stress =pl +pc ................... (4)

In the case shown there will be no stress at S (Fig. 259^)); the

portion SK will be under push stress, and SH will be under pull

stress, the maximum value of the latter occurring at the edge DE
(Fig. 259 (I})) and given by

Maximum pull stress =pt~Pi ................... (5)

The presence of pull stress in a metal column is permissible, but

is objectionable in a column of stone, brick, or other construction in

which the jointing of the blocks of material is not considered to be

trustworthy under pull. The extreme limit of stress distribution in

such cases is taken usually to be zero stress at one edge and

increasing gradually to a maximum push stress at the opposite edge.

Taking a rectangular section (Fig. 260 (a)) of dimensions b and d,

the values of mc and m t will be equal ; hence pc and pt will also be

equal, and the stress figure (Fig. 260
(/;)) shows that the condition

of no pull stress is

A-A = ........................................... (6)

Also
'

and

6Pa
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Hence,
6Pa P
M2 bd

or -(9)

(a) o

It therefore follows that P may be applied at a distance not

exceeding \d from the centre of the section
j^ ^ _ _^

in a direction parallel to d. Similarly P

may be applied at a distance not exceeding

\b in a direction parallel to b. We may
thus state that P may be applied within the

middle third of OX and OY (Fig. 260(0))
without giving rise to pull stress.

In the same way it may be shown, for

a column of solid circular cross section of

radius r, that the load may be applied

anywhere inside a circle of radius 0-25^,

having its centre on the axis of the
(fr)

Column, Without the production Of pull FIG. 260. - Rectangular section

s j.ress
carrying a non-axial load.

EXAMPLE i. A wrought-iron stanchion of square section 2 inches x 2

inches is 8 feet high. Both ends are fixed. Find the safe axial load,

using a factor of safety of 5.

-JL
K

Here /=IL= 48 inches.

I=A 2=
;

12
'

, s2 4 i . ,

k*= = --=- inch units.

fc
= 16 tons per square inch,

i

9oob'

P= -

l6x 2X2 64

+0768

= 36-2 tons.

Safe load=^^ =7-24 tons.

EXAMPLE 2. A cast-iron column, of circular solid cross section 6

inches diameter is bolted down firmly at its lower end and is perfectly
free at the top. If the length is 15 feet, what axial load would cause

rupture ?
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Here /=2L= 36o inches. */c
= 36 tons per square inch.

r 9 i= = - inch units. =-7

K

37x7
= 27-5 tons.

EXAMPLE 3. Taking a factor of safety of 5, find the diameter of a solid

mild-steel strut 6 feet long to carry safely a load of 3 tons. Both ends

are rounded.

Let d= diameter of strut in inches.

Then &= = ^ inch units.
4 16

/=L= 72 inches. yc
= 2i-4 tons per square inch.

A=V- C=
7^'

Also, Collapsing load= P = 3X5 = i5 tons.

15
=

or

i6-8i^4 - i$d'
2 - 165-9=0 ;

whence d=
1^9

inches.

Straight-line formula. Very fair approximation to the strength of

a strut may be obtained by use of a straight-line formula, i.e. one for

which the graph is a straight line, and the calculations required in

designing a strut to fulfil given conditions become much simpler.

The usual form of such formulae is
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where fc is the safe stress per square inch of sectional area of the

column, /is the safe stress for a short block of the same material and
c is a coefficient depending on the material, and ranging in value from

0-005 for mild steel and wrought iron to 0-008 for cast iron and timber.

Arches. In Fig. 261 (a) is shown a number of loads W
1}
W

2 , etc.,

supported by an arrangement of links ABCDE, forming part of a

link polygon. The construction necessary to determine the directions

of the links is given in Fig. 261 (b) and has been explained on p. 67.

|w. jw +w -I

Aj-tyJ

FIG. 261. Principle of the arch.

The thrusts in the links are T
1?
T

2 , etc., and may be scaled from the

lines radiating from O. OF = P and NO = Q give the forces required
to maintain the links in position. Instead of links we might have

employed blocks (Fig. 261
(<:)), drawing the joints ab, cd, ef, etc., per-

pendicular to the lines of P, Tl
and T

2 respectively. The arrange-

ment now gives an arch such as might be constructed in masonry or

brickwork. The original link polygon is called the line of resistance

of the arch
;
the forces acting at the joints of the blocks will have

the same values P
lt
T

1?
T

2 , etc., as in the link polygon.

The best arrangement would be produced by having the line -of

resistance passing through the centre of each joint and perpendicular
to the joint Such would give a uniform distribution of stress over the

joints, and there would be no tendency for any block to slide on its

neighbours. Generally, it is not possible to secure these conditions,

but it is usual to endeavour to satisfy the following conditions :

(i) The line of resistance is arranged to come within the middle

third of each joint ;
this secures that there will be no tendency for

the joints to open out either at the top or the bottom (p. 239).

D.M. Q
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FIG. 262. Stress at an arch joint.

(2) The stress on the joint produced by the forces P, T1?
T

2 , etc.,

is limited to a value which can be carried safely by the material.

(3) The line of resistance should not be inclined to the normal to

the joint at an angle greater than the limiting angle of resistance

(see p. 363) ;
this secures that there shall be no slip, independently

of any binding effect owing to the mortar.

Condition (2) above may be understood more clearly by reference

to Fig. 262, in which are shown two of the blocks in equilibrium

under the action of W
1}
W

2 ,
P

and T
2

. T
2 may be split into

components Tj and S, normal

and tangential respectively to

the section ef. If T
:
acts at the

centre of the joint, a uniformly

distributed normal stress will be

produced. Otherwise, as ex-

plained for a column on p. 237,

a varying normal stress will act

on the section and may be represented by the stress figure efhg.

The maximum stress p^ is limited to a safe value depending on the

material of the blocks.

Reference to Fig. 261 (b) will show that the horizontal component of

any of the forces PI} Q,
r

l\, T2 , etc., is given by OR = H. H is called

the horizontal thrust of the arch, and is constant throughout a given

arch carrying given vertical loads.

It will be understood that the link polygon ABCDE (Fig. 261(0))

may have a greater or smaller vertical height depending on the position

chosen for the pole O in Fig. 261 (b). The effect of this on the arch

will be to give it a greater rise if O is nearer FN in Fig. 261 (b) ;
H

will be diminished thereby. Hence, an arch of given span and

carrying given loads will have the horizontal thrust diminished by

increasing the rise.

Metal arches. From what has been said regarding the line of

resistance falling within the middle third of the joints, it will be clear

that the bending moment at any section of a masonry arch is limited

to a small quantity only. The rule is unnecessary in the case of metal

arches, as these are capable of withstanding large bending moments.

Metal arches are of three principal types : (a) arches continuous

from abutment to abutment, and firmly anchored to the abutments

or springings; (b) arches continuous throughout their length, but

hinged at the abutments by means of pin joints ; (c) arches having
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(a)

pin joints at the abutments, and also a pin joint at the crown. These

types are shown in outline in Fig. 263 (a), (b) and (c}.

In the types (a) and (b) difficulties arise in the solution by reason

of the inability of the arch to change its shape freely in order to

accommodate changes in dimensions

due to elastic strains of the metal, or to

changes in temperature. In type (a),

both the span and the directions of

the tangents to the arch at the abut-

ments are unaltered when the arch is

under strain. In type (b) the direc-

tions of the tangents at the abutments

may alter, but the span remains con-

stant. In type (c) the arch may rise

freely at the crown to accommodate any strains of the metal
;
hence

this type is not liable to being self-stressed, nor can changes in

temperature produce any stresses in the metal. Type (c) alone is

considered here.

Three-pin arch. In Fig. 264 (a) is shown an arch having pins A
and B at the abutments, or springings, and one at the crown C. A

w

FIG. 264. Three-pin arch.

single load W is being supported and all other weights are dis-

regarded meanwhile. Let TA and TB be the abutment reactions.

Acting on the arch are three external forces only, viz. W, TA and

TB ,
and these are in equilibrium; hence their lines must meet at a

point. Further, there will be two forces only acting on the portion
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AC, viz TA and a reaction Tc at C coming from the right-hand

portion of the arch ; these forces are in equilibrium, and must there-

fore act in the same straight line AC (Fig. 264 (/)). It follows that

the line of TA in Fig. 264 (a) is AC, and production of AC to cut the

line of W in D will give the point where TB must also intersect W
;

therefore T B acts in the line BD. The equilibrium of the right-hand

portion CB is indicated in Fig. 264 (c).
Tc (now reversed in sense),

TB and W intersect at D and are in equilibrium. Both TA and TB

may be found from the parallelogram of forces \)abc.

It may be noted that W (Fig. 264(0)) might be supported by means

of straight rods, or links, AD and BD jointed at A, D and B, and

that these rods would be under thrust only. ADB is usually termed

the linear arch. Again, if W were supported by a beam simply resting

on supports at A and B, then ADB would be the bending-moment

diagram for the beam to a scale in which the bending moment at

E is represented by DE.

The bending moment at any section of the arch may be found in

the following manner. Let AB (Fig. 265) be a transverse section of

an arch, let OX be the centre line of the arch,

i.e. the line containing the centres of area of

all transverse sections, and let OX intersect

AB at C. Draw DC vertically to meet the
T"T

linear arch at D. The thrust T in the linear

arch at D will act in the direction of the

tangent DE to the linear arch at D, and may
be transferred to C as shown by T' = T,

provided a couple of moment T x CE be

applied, CE being perpendicular to DE.
The moment of this couple is the bending

FIG. 265. Bending moment, .

thrust and shear at a section moment at AB
;

the normal thrust and

shearing forces at AB may be obtained by re-

solving T' into components respectively normal and tangential to AB.

A convenient manner of expressing the bending moment may be

obtained : Resolve T at D into horizontal and vertical components
H and V by means of the triangle of forces DFE (Fig. 265). The

triangles EFD and DEC are similar
; hence

T_DE_DC
H
=
FD

=
CE ;

:. TxCE = HxDC.
Now, since the linear arch is also the link polygon for the given

loads, H is constant for any point in the arch (p. 242). Hence the
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intercepts DC (measured to the same scale as that used in drawing
the arch), when multiplied by the constant horizontal thrust H, will

give the bending moment at AB. It will be noted that DC 'is the

vertical intercept between the arch centre line OX and the linear

arch ; hence the area between these will represent the bending-
moment diagram for the arch.

The bending-moment diagram for the arch in Fig. 264 (a) is

shaded. H may be found by first obtaining TA or TB and then

taking the horizontal component. It will be noted that the diagram
for AC falls below the arch centre line AFC ;

the inference is that

this portion of the arch is under negative bending. Reference to

Fig. 264^) will render this point more clear; the forces TA and Tc

tend to increase the curvature of AC. The bending-moment diagram
for CGB falls above the centre line

; CGB is under positive bending
and will have its curvature diminished on application of the load.

The following directions will be of service in dealing with more

complicated loading ; reference is made to Fig. 266, in which ACB
is the arch centre line.

FIG. 266. Bending moments and reactions for a three-pin arch.

Consider a simply supported beam having the same span as the arch

and carrying the same loads. Draw the bending-moment diagram
ADEB for this beam, using any convenient scale. The arch has

zero bending moment at A, C and B
;
hence the linear arch may be

obtained by redrawing ADEB so that it passes through A, C and B.

To do this, reduce all the ordinates of ADEB in the ratio of CF to

EF, giving the linear arch AGCKB. The shaded area will be the

bending-moment diagram for the arch. To obtain its scale, CF
represents MF ,

the bending moment at F for the simply supported
beam

;
hence the scale of the shaded area is found by equating CF

to this bending moment.
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The horizontal thrust H may be found from

MF = HxCF,

or
CF'

CF being measured to the scale used in drawing the arch. TA and

TB may be found by compounding with H the reactions P and Q
for the simply supported beam at A and B respectively.

Suspension bridges. A simple type of suspension bridge is shown

in Fig. 267, in which the roadway FG is supported by means of two

FIG. 267. Suspension bridge.

chains AB, one on each side of the bridge. The chains pass over

rollers or sliding pieces on the tops of towers at A and B and are

anchored securely at D and E. Suspending bars connected to the

chain support the weight of the roadway.

Assuming that the weight of the roadway is distributed uniformly

and that the weight of the chain is small by comparison, also that

the roadway is fairly flexible, the tensions at the points B and C

may be found as shown in Fig. 268. The portion of the chain

(a)

FIG. 268. Tensions at B and C in a suspension bridge chain.

hanging between B and C will support one quarter of the whole

weight of the bridge, and this may be concentrated at its centre ot

gravity. The horizontal pull H at C passes through the line of |\V at

G
;
T

,
the pull at B, must pass through the same point. The triangle

of forces abc (Fig. 268 (<)) will then give the values of H and T .

Let w (Fig. 269 (a)) be the load communicated by each suspender
to the chain. T and H in this figure are the pulls at B and C

respectively. To obtain the directions of the chain throughout, the
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pull in ab, together with H, supports the load carried by the four

suspenders passing through fr, <r,
d and e. The resultant of the four

loads will intersect H at their centre Glt and the. pull in ab must

pass through the same point, thus determining the direction of ab.

FIG. 269. Shape of a suspension bridge chain.

be will pass through G2 ,
the point in which the resultant force in the

suspenders c, d and e intersects the line of H. Similarly cd passes

through G3 and de completes the half-chain. If a curve were drawn

to touch the lines ab, be, etc., its shape would be parabolic, owing to

the geometrical property involved in the above construction.

It will be evident that abcde is a link polygon capable of supporting
the given loads. The pull in any link may be found from the force

diagram (Fig. 269^)).
The effect of a load passing along the bridge may be observed by

inspection of Fig. 270. As both chain and roadway are flexible, the

A

FIG. 270. Effect of a load on a suspension bridge.

chain alters in shape as shown. To avoid this undesirable effect,

the roadway may be stiffened by the insertion of stiffening girders.

The best type of such girders consists of two on each side of the road-

way (Fig. 2 7 1 (a ) ),
connected at the middle C by a hinge and also

having hinges at the piers of the bridge, D and F. Girders of this

type are free to rise or fall at the middle of the span and thus avoid

any complications of stress which would result from any alteration in

the length of the chain owing to changes of temperature or stretching.

To understand the effect of a live load W on the chain in Fig. 271 (a\
it should be noted that the chain will alter its curve to a very small

extent only, owing to the action of the stiffening girders; any
alteration will be due to the elastic strains. Supposing the chain
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to be parabolic initially, ancj to remain parabolic, it follows that the

effect of W on the chain must be the same as would be produced by

equal pulls in all the suspenders, this being the condition under

which alone will the chain assume a parabolic curve. Hence, if

W
there be N suspending rods, the pull in each will be . The forces

acting on the left-hand stiffening girder will be as shown in Fig. 271 (b);

A B

VV W W W W
N IN IN IN IN

J I -r-{ w w w w w
TP *W (b) tN tN tN tN tN-

fc (c)
FIG. 271. Stiffening girders for a suspension bridge.

those acting on the right-hand girder are indicated in Fig. 271 (c). It

will be noted that a reaction P from the left-hand abutment together
with another Q communicated through the pin at C from the right-

hand girder are required for the equilibrium of the left-hand girder.

The right-hand girder requires holding down against the pulls of the

suspending rods ; hence the reactions Q and S act downwards.

Knowing the loads, these reactions can be calculated, and the

diagrams of bending moments and shearing forces for the girders

may be drawn by application of methods already described.

The length of parabolic chain required for a suspension bridge

may be calculated approximately from the following formula :

Let- L = the half length of the chain, in feet.

S = the span, in feet.

D = the dip, in feet.

Then L =
f
+ i

EXERCISES ON CHAPTER X.

1. Calculate the elastic instability load by Euler's formula for a bar of

mild steel 10 feet long and 0-5 inch in diameter, fixed at both ends.

Take = 13,500 tons per square inch.

2. A mild-steel tube i-i inches in external diameter and i-o inch
internal diameter and 8 feet long is used as a strut, having both ends

hinged. What would be the collapsing load by Euler's formula?
= 13,500 tons per square inch.
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3. A series of struts, having both ends rounded, have ratios of L to k
of 40, 60, 80, etc., up to 200. Calculate the collapsing loads per square
inch of sectional area, using Euler's formula, and plot these loads with the

ratios of L to k. =13,000 tons per square inch.

4. Answer Question 3 if both ends are fixed.

5. Find the breaking load of the strut given in Question i by applica-
tion of Rankine's formula. Take the coefficients from the table on p. 235.

6. A solid mild-steel strut 2 inches diameter is 6 feet high. Use
Rankine's formula and find the safe axial load if both ends are rounded.
Factor of safety

=
5.

7. A wrought-iron tube is 4 inches in external diameter, and is made
of metal 0-25 inch thick. It is used as a column 8 feet high, and has both
ends fixed. Find the breaking load by use of Rankine's formula.

8. A rolled I section of mild steel, flanges 5 inches wide, depth
9 inches, metal 0-6 inch thick, is used as a strut 10 feet long, having one
end fixed and the other end perfectly free. Find the safe axial load by
Rankine's formula, taking a factor of safety of 6.

9. A solid strut of mild steel is 1-5 inches in diameter and has both
ends fixed. Find the length for which the breaking loads by Rankine
and by Euler will be equal. Take E = 13,500 tons per square inch.

10. The column given in Question 8 carries a load of one ton at the
centre of area of one flange. Calculate the maximum and minimum
stresses, and draw a stress diagram for a horizontal cross section of the
column.

11. Take the tube given in Question 7 and calculate at what distance
from the axis a load may be applied without thereby producing tensile

stress.

12. A semicircular arch of 4 feet radius, hinged at the crown and

springings, carries a uniform load of 500 Ib. per horizontal foot. Draw
the bending-moment diagram. State from the diagram the maximum
bending moment.

13. The centre line of a three-pinned arch is a circular arc
; the

horizontal distance from springing to springing is 150 feet and the rise is

15 feet. There is a uniformly distributed load of 0-5 ton per horizontal

foot together with concentrated loads of 10, 15 and 5 tons at horizontal

distances from one springing of 20, 40 and 60 feet respectively. Draw
the bending-moment diagram and state its scale ; find the horizontal thrust

and the reactions at the springings.

14. A suspension bridge is 100 feet span and the chains have a dip of
12 feet. Suppose the uniform load on one chain to be 500 Ib. per
horizontal foot, and find the maximum and minimum pulls in the chain.

15. Find the length of chain required for the bridge in Question' 14.

Suppose the chain were to stretch 0-25 inch, what will be the change in

the dip ?

16. A hollow cast-iron column, 12 inches in external diameter, 10 inches
in internal diameter and 8 feet long, is subjected to a direct compressive
load of 40 tons. A bracket bolted to the side of the column supports the
end of a girder, which transmits to the bracket a load of 5 tons. The line

of action of this load maybe assumed to be 12 inches from the axis of the

column. Find the maximum and minimum stresses in a cross section of

the column due to these loads. (B.E.)
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17. A horizontal link of rectangular section 4 inches deep and 2 inches
thick is subjected to tension, the load being P tons. The line of action of
the load is in the central plane of the thickness and 2-25 inches from the
bottom face of the link, (a) Find the load P if the greatest tensile stress

in the straight part of the link is 6 tons per square inch, (b) If the tensile

stress on a cross section of the link varies uniformly from 6 tons per
square inch at the top to 2 tons per square inch at the bottom, find P and
the position of its line of action. (L.U.)

x joist 1?.
A. hollow cylindrical steel strut has to be

-i
J

designed for the following conditions : Length 6 feet,

16*6/015^
axial load 12 tons, ratio of internal to external

diameter 0-8, factor of safety 10. Determine the

necessary external diameter of the strut and the

thickness of the metal if the ends of the strut are

firmly built in. Use the Rankine formula, taking
f2i tons per square inch, and a for rounded8 x6joist

19. Find the radii of gyration of a column con-

sisting of three steel rolled joists, riveted together as shown in the sketch

(Fig. 272), their properties being

What would be the working load of such a column 24 feet long and
with fixed ends, using the following straight-line formula :

/c=( 14560 -56-
Jib.,

where fc is the working stress in Ibs. per square inch
;
/ is the length of

the column in inches
;
r is the least radius of gyration in inches. (I.C.E.)



CHAPTER XL

SHAFTS. SPRINGS.

Twisting moment on a shaft. A shaft is a piece used for the

transmission by rotation of motion and power. A moment tending
to rotate the shaft is communicated at one place and is transmitted,

by stresses in the material of the shaft, to the desired place. Con-

sidering a shaft AB (Fig. 273 ()), having one end A fixed rigidly, and

FIG. 273. Twisting moments on shafts.

having an arm BC mounted at the other end. The effect of a force

P applied at C may be examined by applying equal and opposite

forces P' and P", each equal and parallel to P, at B so as to act

through the axis of the shaft. These forces equilibrate and con-

sequently do not interfere with P. The system now consists of a

couple formed by the forces P and P", the sole tendency of which

will be to rotate the shaft about its axis, together with a force P',

the tendency of which will be to bend the shaft. The shaft as a

whole would be equilibrated by the application of forces (not shown

in the figure) at the rigid connection at A.

A shaft is said to be under pure twist when there is no tendency to

bend it, nor to produce push or pull in the direction of its axis. The
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shaft in Fig. 273 (a) would have been under pure twist had the couple
formed by P and P" been applied alone. One method of securing

this result is shown in Fig. 273^), in which a double arm CBD is

used and two forces P, P, forming a couple of moment Pa, are applied

at its ends. The moment of the couple is called the twisting moment,

or torque, and is written T generally. Neglecting the weight of the

shaft, the equilibrium of the whole as in Fig. 273^) requires the appli-

cation at A of a couple having a moment equal and contrary to that

of T. The condition to be fulfilled in order that a shaft may be

under pure twist is that it must be equilibrated by two equal opposing

couples acting in planes perpendicular to the axis of the shaft.

Shearing stresses produced by torque. Consider the shaft to be

cut at any cross section E in Fig. 273 (^), the section being perpendi-

cular to the axis of the shaft. To equilibrate the outer portion of the

shaft under the action of the applied couple P, P requires an equal

contrary couple at the section E, and acting in the plane of the

section. Such a couple can be brought about in the uncut shaft

only by the existence of shearing stresses distributed in some

manner over the section. The nature of the distribution may be

understood by considering the straining of the shaft under the action

of the couples. Experiment justifies the assumptions that, in a

round shaft, sections such as that at E remain plane, i.e. unwarped,

when the couples are applied, and that any
radius of such a section changes its direction

but remains straight ;
it is assumed in this

that the elastic limit is not exceeded.

In Fig. 274, AB is a line drawn on the

surface of the shaft parallel to the axis before

straining. As A is fixed rigidly, it will remain

unaltered in position, but the other end will

rotate under the straining ;
the result is that

AB will change position to AB'. Any small

rectangle such as CDFE drawn on the

surface of the shaft will change its position

and shape as shown at C'D'F'E'. The angle

through which CD has rotated in order to

assume the new position CD' is clearly equal to that through which

AB has turned. This angle, BAB', equal to 0, is therefore the

shear strain at all parts of the surface of the shaft. Had we been

able to draw a rectangle inside the material at a radius OG, its

circumferential movement and change of shape evidently would have

B B

FIG. 274. Torsional strains.



SHAFTS
253

crossbeen proportional to its radius. Thus, on the outer end

section, G would move to G' and B to B', and we have ,

GG':BB' = OG:OB.
We may therefore state that, since the shear strain at any point on

a cross section of the shaft is proportional to the radius, the shear

stress at that point will also be proportional to the radius, provided
the elastic limit is not exceeded. It will also be

evident that the shear stress at any point on a cross

section will have a direction perpendicular to the

radius of the point.

Moment of resistance to torsion. In Fig. 275
is shown a cross section of a shaft under pure twist.

Consider a small area a.

Let R = radius of shaft, in inches
;

r= radius of a, in inches
;

pt intensity of stress at outer skin, in Ib. or

tons per square inch
;

pt = intensity of stress on a.

Then /':/ = r:R,

FIG. 275.

and Force on a =ta = =.

R _,=|. fl,*.

Taking the sum of such moments all over the section, we have

pt _pt vrR4

R loz ~R' 2

= Ib.- or ton-inches.

Moment of force on a about

Total moment =

This expression is called the moment of resistance

to torsion for a solid round shaft. The case of

a hollow round shaft of external radius R
x
and

internal radius R9 (Fig. 276) would be worked out

similarly, with the substitution of limits R
2
and Rj

for o and R in the integration. Thus,

^ , t> o

Total moment = %-2 at* =^K R2 K

._ or ton-inches.
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B B'

Any question regarding the safe strength of a round shaft under

pure twist may be solved by equating the given torque to the proper

expression for the moment of resistance to torsion. It will be clear

that a hollow. shaft will have a greater strength than a solid one

of the same weight. Apart from the practical

consideration that the boring of an axial hole

may lead to the detection of otherwise un-

suspected flaws in the material, there are the

considerations that the intensity of shear stress,

as well as the arm for taking moments, are

small near the axis in a solid shaft, so

that material near the axis is being employed

unprofitably.

Torsional rigidity of a round shaft. It is

often of importance to estimate the angle through
which one end of a shaft will twist relatively

to the other end briefly the angle of torsion.B B'

FIG. 277. Angle of twist Referring to Fig. 277, one end of the shaft
of a shaft.

'

being fixed rigidly, the other end rotates through
a small angle BOB', denoted by a, on application of a torque T, and
the shear strain is given by the angle BAB', equal to radians.

Taking the expression for the modulus of rigidity (p. 109), viz.

Pt

we

i/

may substitute for pt and as follows :

-(0

2

2T
(*)

Again,
BB' , . _.=

6, in radians

or

Also,
BB'

or

a, m radians
;

' = BO.a;

BO R
-(3)
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where R and L are the radius and length of the shaft in inches.

Substituting the values found in (2) and (3) in (i) gives

2T

2TL
radians

The result for a hollow round shaft of external radius R
x
and

internal R
2 may be found in a similar manner, using the expressions

The final result is

2TL

By substitution from (3) in (i) an expression may be obtained

suitable for cases where the maximum shear stress is given. Thus,

P AL
-iR'

or a = t
,
radians............................... (6)CK

This expression is applicable to both solid and hollow shafts by

taking R as the external radius.

The torsional rigidity, or stiffness, of a shaft may be measured by
the reciprocal of a.

Comparison of hollow with solid shafts. The relative strengths

of two shafts may be estimated by comparing the torques, which may
be applied without exceeding a given intensity of stress. Let two

shafts, one hollow, the other solid, have the same external radius

R. Let the internal radius of the hollow shaft be R, where n is a

numerical coefficient. Let/ be the maximum intensity of shearing

stress in each case. Then, for the solid shaft,

(i)

and for the hollow shaft,

_/t7T(R*-*R*)
2R

^)
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Hence, =i-^4.................................... (3)
is

For example, if the internal radius of the hollow shaft is one-third

of the external radius, n J, and

= 8
81'

Comparison may also be made of the strength of a hollow with

a solid shaft having the same cross-sectional area, i,e, having the

same weight per unit length. We have, for the solid shaft,

(4)

and for the hollow shaft, TA

Putting R2
= ^R

15 gives

_

2

Also, as the cross-sectional areas are equal,

Hence>

.-. R^R^i-w2
); ............................ (6)

RL _i_
R2 i-ri>'

(7)
V I - W

TA T j_ I
For example, if n = ^,

=-' =
V-
1-18.
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Thin tube under torsion. In the case of a thin tube under torsion

it may be assumed that the shearing stress is distributed uniformly.

Let pt
= stress intensity, Ib. per sq. inch,

R = mean radius of tube, inches,

/= thickness of the tube walls, inch.

Then Cross-sectional area =
27TR/*,

Total shearing force =
Moment of this force =
Moment of resistance to torsion = 2TrR2^, Ib.-inches.

Horse-power transmitted by shafting. Formulae connecting the

horse-power (see p. 326) with the dimensions of the shaft and its

speed are based on the average torque transmitted, and should there-

fore be used with caution. The maximum torque, on which will

depend the maximum intensity of shearing stress, may exceed the

average torque considerably, leading to a result for the diameter of

the shaft which may be much too small.

Considering a solid round shaft under pure twist, let

T = torque transmitted, Ib.-inches ;

R = radius of shaft, inches
;

pt = maximum shear stress, Ib. per sq. inch
;

N = revolutions per min.

T
Then Work per revolution = . 2ir (p. 339)

Now

.'. work per revolution =
12

Work per minute =
12

. . H.P. =
12 x 33,000

40,081"

EXAMPLE. Find the horse-power which may be transmitted by a

shaft 2 inches in diameter at 180 revolutions per minute. The maximum
shearing stress is 10,000 Ib. per square inch.

_^R3N _ 10,000 x i x 1 80
H 'P

'~4o,o8i
~

40,081

=45 nearly.

D.M. R
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.Equation (i) above may be altered so as to give the diameter of

shaft required for a given power. Thus,

40,081 x H.P.

or
x 40,081 x H.P.

D = a coefficient x

A common value of the coefficient is about 3-3 for steel shafts.

Principal stresses for pure torque. In Fig. 278 is shown a shaft

FIG. 278. Principal stresses for pure torque.

under pure torque. A small square abcd^ having its edges ab and cd

parallel to the axis of the shaft, has been sketched on the surface.

Each edge of the square will be subjected to shearing stresses of

magnitude pt\ hence the diagonals ac and bd have purely normal pull

and push stresses respectively, the magnitude being also/* (p. 128).

These diagonals are therefore principal axes of stress, and the

stresses on them are the principal stresses for the case of the shaft

being under pure torque. If the diagonals be produced round the

shaft surface, it is evident that they will form helices having an

inclination of 45 to the shaft axis.

A shaft made of material weak under pull, and strong under both

shear and push, would fracture along the helix of which ac forms a

part. This fact may be illustrated by means of a stick of blackboard

chalk
;
on applying opposite couples by the fingers to the ends of

the chalk, the fracture will be found to follow very closely a helix of

45 inclination. Pure bending applied to the chalk will cause it to
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fracture across a section at 90 to the axis; it is therefore evident

that bending and torque simultaneously applied will cause fracture

to take place on some section intermediate between 45 and 90.
A shaft made of cast iron would behave in a similar manner to the

stick of chalk, as the stress properties are similar.

Shafts made of ductile material, such as mild steel, behave in a

different way. Fracture under pure torque takes place across a

section at 90 to the axis, as the strength under pull and also under

push is higher than that under shear. It may be shown that materials

loaded in a complex manner have sections mutually perpendicular

on which the stress is purely normal, i.e. the stresses are principal

stresses. There is also a particular section which has a shearing

stress greater than that on any other section. There is strong

evidence for believing that brittle materials break down when the

principal stress of tension reaches a certain value depending on

the material
; many ductile materials break down, or yield, when

the maximum shearing stress reaches a certain value.

More general case of principal stresses. Let AB and BC be

two sections of a body intersecting at 90 at B (Fig. 279 (a)). Let

r.AC
1 r. A C cos Q

FIG. 279. Principal stresses and axes.

AB and BC have normal stresses pl
and /2 respectively, and let each

be subjected to equal shearing stresses pt. Let AC represent a third

section of the body, cutting AB at an angle 0, and let the stress

r on AC be purely normal. The wedge ABC will be in equilibrium

under the action of these stresses, and it is required to determine

from this condition the values of and of r. AC and r will then be

a principal axis of stress and a principal stress respectively. For

simplicity, let the thickness of the wedge from front to back be

unity.

Due to the given stresses /15 /2 and/*, the faces AB and BC will

have resultant forces acting as shown in Fig. 279(^). The forces
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pi . AB and /2
. BC will act at the centres of AB and BC respec-

tively. The forces p t . AB and p t . BC will act along AB and BC
respectively. Due to r, a normal force r . AC will act at the centre

of AC and will have an inclination to the vertical equal to 6. Hence
its vertical and horizontal components will be r . AC . cos and

r. AC . sin respectively. For equilibrium of the wedge, the sum
of the vertical upward forces must be equal to the sum of the vertical

downward forces
;
also the sum of the horizontal forces acting towards

the left must be equal to the sum of those acting towards the right.

The algebraic expressions for these conditions are :

r. AC. cos (9=^. AB+^.BC................... (i)

7-.AC.sin6>=/2 .BC+/,.AB................... (2)

To simplify (i), divide by AC, giving

AB BC

=pl
. cos +pt . sin 0.

Divide this by cos 0, giving

*=/!+/. tan0...................... (3)

Equation (2) may be simplified in a similar manner by dividing

first by AC and then by sin &, giving

>'=A+A- cot<9...................... (4)

Equations (3) and (4) are simultaneous equations, from which the

values of r and may be obtained by the ordinary rules of algebra ;

thus, as the right-hand sicfes are equal, we have

/!+/,. tan 0=/2 +/t. cot 6>,

or /! -/2 =pt (cot 6 - tan 0)

= 2pt . COt 20,

or cot20= 2
............................... (5)

Again, writing equations (3) and (4) thus,

r-^/, tan 0, ........................... (6)

r-Sz =f t cotO, ........................... (7)

and taking products, we have

(r-AX^-AHA2......................... (8)

The solution of this quadratic equation may be obtained in the

usual manner, giving
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The two roots of r in (9) indicate two principal stresses
; also

equation (5) gives two values of 20 differing by 180 for which the

cotangents are equal, and hence indicates two sections differing by

90. The determination of which root of r acts on one section or

the other may be obtained by inserting one of the calculated values

of r in either (6) or (7) ;
the resulting value of tan 6 or cot will

indicate the particular section on which this value of r acts.

In the above, both p and p* have been taken as pulls ;
if either

or both be pushes, the sign of p l
and p.2 or both should be reversed

in (5) and (9). A positive value for r indicates pull and a negative

value indicates push. If any of the given stresses plt p% or pt be

absent in the data, write zero where these missing values occur in

the equations found above.

For example, taking a cube having shearing stressespt only (p. 127),

Pi
=

o,A = o.

Equation (5) gives cot 20 = = o
;

.'. 20 = 90 or 270,

= 45 or 135.
/ T-g

Equation (9) gives r = ^

=
pt.

The principal axes are therefore the diagonals of the cube, and

the principal stresses are a push and a pull each equal to the given
shear stress, thus agreeing with the results already obtained in a

different manner.

Stress on a section inclined to the principal axes. Having deter-

mined the principal axes of stress and the principal stresses, the

stresses on other sections may be found by the following construction.

Reference is made to Fig. 280.

Let OA and OB be the principal axes of stress (Fig. 280(0)), and

let OA=/! and OB=/2
be the stresses acting on the sections OB

and OA respectively. To find the stress acting on any other section

OK, carry out the following construction. With centre O and radii

OA and OB describe circles
;
draw ON perpendicular to OK, cutting

these circles in N and E respectively. Draw NC parallel to OB,
and also ED parallel to OA and cutting NC in D. Join OD ;

OD
will represent the stress p acting on OK.
To prove this, draw EF parallel to OB, and let the angle KOB,

which is equal to the angle NOA, be called 0. Due to p there will
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be an oblique stress of magnitude pl
cos 6 acting on OK (p. 121

).

OC
Now cos is given by ^- in the diagram and ON is equal to p^ to

scale
;
hence OC represents the oblique stress. Again, due to /2

there will be an oblique stress of magnitude /2
cos (90

-
6) =/2

sin

p-p

acting on OK. But sin 6 is given by ^, and OE is equal to /2
to

scale ; hence the latter oblique stress is given by EF, which is equal

to CD. The resultant of these oblique stresses, represented by OC
and CD respectively, will be OD, which accordingly gives the stress

p on OK. The construction employed for finding D is a well known

7" A

- '

fa)

FIG. 280. Ellipse of stress.

method of finding points on the circumference of an ellipse having

OA and OB for its semi axes. The ellipse is shown in Fig. 280 (a),

and is called the ellipse of stress.

Both principal stresses have been taken as pulls in the above con-

struction. Had one been a push, as/j (Fig. 280
(//)), and the other a

pull, then the construction is modified by producing ND to cut the

remote circumference of the ellipse as shown.

Maximum shearing stress. An important fact depends on the

noting that the angle EDN (Figs. 280(0) and (&)) is 90, and that there-

fore D lies always on the circumference of a circle having EN for its

diameter. The radius of this circle will be |(ON - OE) = \(p\ -/2)

for principal stresses of the same kind (Fig. 280 (a)); and will be

J(ON + OE) = (/1 +/2)
for unlike principal stresses (Fig. 2 So (/)).

The stress / may be resolved into normal and shear stresses in each

case (Fig. 281 (a) and (/;)),
indicated by OG and OH respectively. It

will be clear that the maximum possible value of the shear stress in
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both cases is represented by the radius of the circle having EN for

diameter
; hence, for like stresses,

Maximum shear stress = \(p^ -/2)> (
T
)

and for unlike stresses,

Maximum shear stress = \(p\+/2) (
2
)

FIG. 281. Normal and shearing stresses.

These equations require further examination. Both (i) and (2)

refer to sections taken perpendicular to the paper, and give the

maximum shearing stresses for such sections. Fig. 282 (a) shows a

bar under axial pull stress p l
and transverse pull stress /2 , both

stresses in (a) being in the plane

of the paper. The principal

axes of stress are OX and OY
;

the maximum shearing stress

for sections perpendicular to the

paper in (a) will be \ (pl -/2)-

Examine now Fig. 282 (), show- '

ing a side elevation of the bar
;

/>2
acts perpendicular to the

plane of the paper, and it will

uli

* w
F'G. 282. Maximum shear stress in a bar under

longitudinal and transverse pulls.

be evident that the section AB,
at 45 to the axis, has a shearing

stress of magnitude J/x acting

on it (p. 124). Hence AB is

the section of the bar which carries a shearing stress greater in

magnitude than that on any other section.

It will be noted therefore that with like principal stresses, e.g. the

longitudinal and circumferential stresses in a boiler shell, the greater

principal stress alone determines the value of the maximum shearing
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stress, and the latter has a value equal to one-half of the greater

principal stress. In the case of unlike principal stresses the maximum
shear stress must be calculated from J (p l +/2)-

The points above noted are of importance in dealing with crank

shafts and other cases where the combinations of loading give rise to

unlike principal stresses. The experimental work of Guest and
others shows that elastic break-down occurs when the shearing stress

attains a certain value in many ductile materials, as has been noted

already, and the results above discussed enable us to determine the

relation of the maximum shear stress to the loading.

Shaft under combined bending and torsion. An example of this

kind of loading will be found in any crank shaft. Considering a

solid shaft :

Let M = the maximum bending moment on the shaft, in Ib.-ifiches ;

T = the maximum torque, in Ib.-inches ;

R = the radius of the shaft, in inches.

It is understood that M and T occur both at the same cross

section. The stresses due to these may be found from :

M
4

A7TR3

or,

or, pi =
2T

Reference to Fig. 283, in which a rectangle abed has been sketched

on the shaft surface, shows that pz
is

absent. The principal stresses may be

calculated from equation (9) (p. 260) :

m

(3)

FIG. 283.- Shaft under combined

This result indicates unlike principal

stresses, as the quantity under the square
root sign is greater than/j

2
.

In the Rankine hypothesis, the maximum

principal stress is the criterion of break-down,

and this assumption may be applied to

brittle materials. The Rankine equation

Taking thetorque and bending. may be ODtained as follows.

larger principal stress, viz.
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and substituting from (i) and (2), we have
'

or

The left-hand side of this result has the same form as the ex-

pression for the moment of resistance of a shaft to torsion ; the only

difference lies in the fact that r is a. push or pull stress, whereas, in

the torque expression, a shear stress appears. It may be said that

if a pure torque Te were applied to the shaft, of magnitude given

by (4), a shear stress would be produced thereby equal in magnitude
to the maximum principal stress. Hence,

T, =MWM* + T2............................ (5)

The result is convenient for practical use, and is usually referred

to as Rankine's formula.

If the maximum shear stress be taken as determining the point of

failure, the reduction is as follows :

From equation (3) (p. 264), remembering that one value of r is

push and the other pull :

Also, Maximum shearing stress = q= ---

2

(6)

Inserting the values of/j and ft in terms of M and T, we have
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Let Te be a torque which, if applied alone, would produce a shear

stress equal to q. Then

(7)

It will be noted that this expression gives an equivalent twisting

moment of smaller value than that permitted by the Rankine

equation (5).

Springs. Springs are pieces intended to take a large amount of

strain, and are used for minimising the effects of shocks, for storing

energy, and for measuring forces. The load on any spring is kept well

within the elastic limit; hence the change of

length, or the distortion, of the spring will be

proportional to the load applied. Springs vary

in form, depending on the purpose for which they

are intended
;
a few common forms are discussed

below.

Helical springs. Helical springs are made by

coiling a rod or wire of the material, generally

steel, into a helix. If the spring is to be under

pul^ the coils of the unstrained spring are made

so as to lie close together; open-coiled helical

springs are necessary in cases where the load is

to be applied as a push, causing the spring to

become shorter. Reference is made to Fig. 284,

which shows a close-coiled helical spring under pull, and made of

material having a round section. It may be assumed that the effect

of the load is to put the material of the spring under pure torsion.

Bending is also present, and must be taken into account in open-

coiled springs, but is small enough to be disregarded in the close-

coiled spring under consideration.

Let P = load applied, Ib.
;

R = the mean radius of the helix, inches
;

r = the radius of the section, inches.

Any cross section of the wire will be sub-

jected to a torque given by

T = PR Ib.-inches (i)

Consider a short piece of the helix lying

between two cross sections AB and CD
(Fig. 285), and imagine AB to be fixed rigidly.

Let F be the centre of the section CD,
and take a horizontal radius which, when FIG. 285.

FIG. 284. Helical spring

F D
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produced, cuts the axis of the spring at O. The effect of the torque
will be to cause CD to twist through an angle relative to AB, and
FO will rotate into the position FO', the point O undergoing a

deflection OO'. Let the mean length of the portion considered

be /; then the angle of twist may be written from the equation
for that of a shaft (p. 255).

2T/ 2PR/

A
'

'

Again, a =

Now OO' gives the extension of the spring along its axis owing to

the straining of the small portion considered. The total extension

will be the sum of the quantities such as OO' for the whole length of

material in the helix, and can be obtained by writing the total length

of wire instead of / in (20). In the case of a close-coiled spring the

total length will be given with sufficient accuracy by multiplying the

mean circumference of the helix by the number of complete turns N.

Length of wire in helix = 2?rRN (3)

2PR2

Hence, Total extension of spring
= ~ j. 2?rRN

4PR3N
O4

8PD3N

-(4)

-(5)

where D = mean diameter of helix, inches
;

d= diameter of wire, inches;

P = load applied, in Ib.
;

C = the modulus of rigidity, Ib. per square inch ;

N = number of complete coils.

The result shows, as had been anticipated, that the extension is

proportional to the load applied.

An equation connecting the shearing stress with the extension may
be obtained from (4). Thus,

Total extension of spring
=

.
4
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Now PR =T=(p. 253).

Hence, Total extension =

This result enables the maximum extension to be found for a

given spring when a given safe shear stress pt Ib. per square inch must

not be exceeded.

Beginning with no load on the spring, the gradual application of

a load P Ib., producing an extension e inches, will require the per-

formance of a quantity of work given by (see p. 325)

Work done = average force x e

= JPxe.

Inserting the value of e given in (6), we have

.

This work is stored in the extended spring, and represents the

energy which can be given out when the spring is recovering its

original length, on the assumption of perfect elastic qualities.

The above formulae, being based on those for a shaft of round

section, should be used only for helical springs made of round wire.

A formula which may be used for the extension of a spring of square

section, having sides equal to s inches, is

Extension of spring =
44

4
........... . ................ (8)

V^O

Helical spring under torsion. Helical springs are loaded occa-

sionally under torsion in the manner indicated in Fig. 286, where a

spring AB is subjected to equal opposing couples by means of forces

applied to arms attached to the ends of the spring. It is evident that

the material of the coil is subjected to bending and that the torque

produced by the couples is balanced at any cross section of the wire

by the moment of resistance of that section to bending. The. neutral
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axis of any cross section will be parallel to the axis of the helix

(Fig. 287). Further, the change of curvature of the helix produced

by the application of the torque will follow the same law as that for

a beam (p. 166).

'ofjielix

FIG. 286. Helical spring under torsion.

Let T = Pa = torque applied, Ib.-inches
;

R! = initial mean radius of helix, inches
;

R
2
= final mean radius of helix, inches ;

Nj = initial number of complete coils in helix ;

N
2
= final number of complete coils in helix

;

L = length of wire in helix, inches
;

INA = moment of inertia of section of wire, inch units.

Then Initial curvature = =r- .

Final curvature ==
^-.K

2

Suppose that the tendency is to increase the number of coils,

then R 2
will be less than Rr

Change of curvature produced by T = ^-
-
^-.K2 KJ

By use of the equation,

Change of curvature = ^F (p. 166),
Hi-LiMA

we have
I I

RT>9 K
l

LNA

T
EIV

-(0

Again, assuming that the coils lie fairly close together, we have

for the length of the helix,

L=2irR
1
N

1

Hence,
2?rN

1

L '

2irN
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Substituting these values in (i) gives

2?rN 27rN T_
TT ~TT~EI

This expression gives the angle as a fraction of a revolution through
which B will rotate relative to A when the torque is applied (Fig 286).
To obtain the angle of twist in degrees we have

TL
Angle of twist = 360

(3)
NA

It will be noted from this result that the angle of twist is pro-

portional to the torque, a property which leads to the use of springs

of this type in certain cases, for example, the hair spring controlling

the escapement of a chronometer. The use of such a spring permits

the balance wheel to alter its angle of swing somewhat without

altering the time in which it vibrates. The same kind of spring is

often used for controlling the movement of the drum in engine

indicators, as its property produces a more even stretching of the

string driving the drum, and in consequence a less erratic distortion

of the diagram drawn on the paper surrounding the drum.

The maximum torque which may be applied without exceeding a

stated stress,^ may be found as in a beam (p. 146) from

T-S 1- <4>

These results may be applied to helical springs under torsion and

made of wire having circular, square or rectangular sections.

Piston rings. Spring rings are often usfed for the purpose of the

prevention of leakage past the piston in steam, gas and oil engines.
A common way of making spring rings of moderate size is to turn a

ring of uniform section, making the diameter somewhat larger than

that of the cylinder. A piece is then cut out of the ring sufficient

to allow the ring to be sprung into the cylinder, when the ends will

come together. Cast iron is often used as the material. In this

method of manufacture, the ring does not take a truly circular form
when sprung to the diameter of the cylinder, and does not exert a

uniform pressure all round the cylinder wall. To secure uniformity
in the pressure and a truly circular shape, the thickness of the ring
must be varied. The breadth will of course be uniform, as the ring
fits accurately a groove turned in the piston.
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Fig. 288 (a) shows a piston ring of varying thickness ; the split is

situated at C, and the ring as drawn has been sprung into a cylinder
so that the gap at C is closed. The ring is subjected to a uniform

radial pressure as shown.

Let </=the diameter of the cylinder, inches
;

p = the pressure in Ib. per square inch of rubbing surface ;

b = the breadth of the ring, inches
;

/AB = the thickness of the ring at AB, diametrically opposite

C, in inches.

x-6 -H

FIG. 288. Piston ring giving uniform bearing pressure.

The half ring on the right-hand side between A and C is under
similar conditions of loading to those of a boiler shell (p. 95).

Hence, we may write for the resultant force on it :

Pr /lx'
v

4 ttx

This force will produce a bending moment on AB of amount

The relation of the maximum stress f at AB and the thickness of

the ring there will be given by

MAB=-(seep. 152),

,

ff AB

./
.(0
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The relation between the thickness at any other section and that

at AB may be found from the consideration that the ring is to be

circular both before and after springing it into the cylinder. Hence
the change of curvature all round it will be uniform. Now,

M
Change of curvature =

^y,

and, since E is constant for a given material, it follows that for

uniform change in curvature

y = a constant......................... (2)

To obtain the bending moment at any section such as DE, con-

sider the portion of the ring lying between C and DE (Fig. 288 ()).

Join CD, and let the angle COD be a. The resultant pressure P
2

acting on the arc CD may be found in the following way. A solid

piece of the same breadth of the ring, viz. b, bounded by the chord

and arc CD will be in equilibrium if subjected to hydrostatic stress/.

The resultant pressure R on the chord produced by the hydrostatic
stress is

and this must be equal and opposite to P
2

. Hence,

Again, MDE = P2
x DF = *pb x DF2

.

Also, DF = DO sin Ja = |</sin Ja ;

1
OL

.'. MDE = 2p& sin2-
4 2

(3)

Also, 1 = ................................... (4)
12

Hence, substituting the values of (3) and (4) in (2), we have

-

- = a constant,
btDE

12

or, since p, b and d are constant for a given ring under a given pressure,

*t\
.

3
= a constant (5)
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For the section AB, a is 180, and sin|a will be unity. Hence,

2 sin2 90" _ i

Ts =
7a ~/3~~

*DE *AH 'AB

(6)

This result enables the thickness of any section to be calculated

after first having determined the thickness at AB.

Carriage spring. Carriage springs are constructed of a number of

plates of gradually diminishing length, clamped together at the

L 4,
Cj*

-a: J 1

FIG. 289. Carriage spring.

middle and loaded as shown in Fig. 289. Generally the strips

have the same breadth and thickness. The material will be under

bending.
Let P = the load in lb., applied at each end ;

L = the distance between the loads, inches ;

N = the number of strips ;

b the breadth of each strip, inches
;

t= the thickness of each strip, inches.

The maximum bending moment will occur at the middle section

AB, and will be given by

MAB = -|PLlb.-inches.

This bending moment will be balanced by the total moment of

resistance obtained by adding together the moments of resistance

of all the strips. Assuming that each strip touches the strip immedi-

ately above it throughout its whole length, both before and after

loading, it follows that all the strips will experience equal changes in.

P.M. s
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curvature on the spring being loaded. Considering the curvature

at AB, we have

bending moment on strip
Change of curvature of any strip

=
.,

_ moment of resistance of strip

El

= a constant for all the strips.

Hence, as E and I are both constant, it follows that all the strips

have equal moments of resistance.

Let f- maximum stress on any strip at the section AB,
Ib. per square inch.

f] /2

Then, Moment of resistance of each strip
= ~~,

fbfi
Total moment of resistance at AB = N *y - Ib.-inches.

6

Hence, MAB =N-, ........................... (i)

, PL
or '

=

The profile of the spring in the elevation may be arranged so as to

secure that this value of the maximum stress on any strip shall be

constant throughout its length. Considering any section CD, let the

number of strips be NCD . Then, from (i),

* =

If/ is constant, the only variables in this expression will be x and

NCD- Hence, NCD c *, .................................... (4)

or, the number of strips and hence the depth of the spring vary as

the distance from the end. The

""^^ ^*"^
profile in the elevation will there-

^^^^^^ fore be triangular (Fig. 290).

FIG. 29o.-Ideal profile of a carriage spring. .As this is an awkward shape tp
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produce, the ends of the strips are shaped usually as shown dotted

in plan in Fig. 289, which produces practically the same result.

The deflection of the spring may be calculated in the following

manner :

its moment of resistance
Change of curvature of any strip

= rT

_
El

As / is constant throughout the length of the strip, the change of

curvature throughout will be uniform. Supposing the strips to be

straight at first, each strip will bend into the arc of a circle when the

spring is loaded. The conditions as regards any one strip might be

attained by subjecting that strip separately to a uniform bending

moment :
- PL. Hence,N 2

v'

Now, for a beam bent into a circular arc, the deflection is given by

Hence,

4

In the above, the frictional resistances of the strips rubbing on

each other has been neglected. The effect of this will be to make
the spring appear to be stiffer, as evidenced by a deflection smaller

than that calculated, when the load is being increased. When the

load is being removed, the deflection will be found to be somewhat

larger than that calculated. Of course, work will be absorbed by
these frictional resistances, with the effect that any vibrations
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communicated to the spring by impulsive forces, or shock, will die

out more rapidly than would be the case with a spring formed out

of a single piece of material.

EXERCISES ON CHAPTER XI.

1. A mild-steel shaft is 6 inches diameter. If the safe shear stress

allowed is 10,000 Ib. per square inch, what torque may be applied ?

2. Find the diameter of a solid round shaft of mild steel to transmit a

torque of 12,000 Ib.-inches with a safe shear stress of 9000 Ib. per square
inch.

3. A hollow shaft has an outside diameter of 18 inches and an inside

diameter of 6 inches. Calculate the torque for a safe shear stress of 4-5
tons per square inch.

4. A solid shaft has the same weight and the same length as the shaft

given in Question 3 and is made of similar material. Calculate the safe

torque which may be applied. Give the value of the ratio Torque for

the hollow shaft : torque for the solid shaft.

5. What torque may be applied to a tube 3 inches in external diameter,
of metal 0-125 mcn thick, if the stress is not to exceed 10,000 Ib. per square
inch ?

6. The shaft given in Question I is 60 feet in length. What will be
the angle of twist when the maximum permissible torque is applied ? Take
C = 13,000,000 Ib. per square inch.

7. Find the angle of twist for the shaft given in Question 3 when the

shear stress is 4-5 tons per square inch. The shaft is 100 feet in length.
Take C = 55oo tons per square inch.

8. What horse-power may be transmitted by a solid shaft 3 inches in

diameter at 120 revolutions per minute ? The shear stress is 8000 Ib. per

square inch.

9. What diameter of steel shaft is required in order to transmit

20 horse-power at 250 revolutions per minute?

10. AB and BC are two sections of a body meeting at 90. Normal

pull stresses of 5 and 4 tons per square inch act on AB and BC respec-

tively. Shearing stresses of 3 tons per square inch act from A towards B
and from C towards B. Find the principal stresses and the principal axes

of stress. Draw a diagram showing the axes and stresses.

11. Answer Question 10 if the normal stress of 5 tons per square inch

on AB is a push.

12. A mild-steel shaft 3 inches in diameter has a bending moment of

4000 Ib.-inches together with a twisting moment of 6000 Ib.-inches.

Calculate the following : (a) The equivalent torque according to Rankine ;

(b} the equivalent torque on the maximum shear stress hypothesis ; (c) the

maximum and minimum principal stresses ; (d] the maximum shearing
stress.

13. Supposing that a constant bending moment of 4000 Ib.-inches be

applied to a shaft 3 inches in diameter, what torque may be applied if

the maximum shear stress is limited to 10,000 Ib. per square inch?
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14. A cylindrical boiler is 7 feet in diameter and is made of plates 0-5
inch thick. The steam pressure is 100 Ib. per square inch, (a) Find the

stresses on longitudinal and circumferential sections
;
also the stresses on

sections at 30, 45 and 60 degrees to the axis. (A) What is the maximum
shear stress on the plate ?

15. A helical spring is made of round steel wire 0-25 inch in diameter.
The mean radius of the helix is 1-25 inches

;
number of complete

turns 120
; the spring is close-coiled. Take C= 12,000,000 Ib. per square

inch, and find the pull required to extend the spring one inch.

16. A helical spring, material of circular section, has to extend i inch

with a pull of 50 Ib. The mean radius of the helix is 2 inches, and the

length of the helical part of the spring is one foot. Assume that the coils

are close together, and find the diameter of the wire. C = 12,000,000 Ib.

per square inch.

17. Suppose that the spring given in Question 1 5 is put under torsion

by couples applied at its ends. Find the torque required to twist the

spring through one radian. = 30,000,000 Ib. per square inch.

18. A helical spring is made of steel of square section, 0-3 inch edge,
close-coiled. The mean radius of the helix is one inch, and there are

20 complete turns. Take C = 12,000,000 Ib. per square inch, and find the

pull required to extend the spring one inch.

19. A piston ring for a cylinder 24 inches in diameter has to give a
uniform pressure of 2 Ib. per square inch of rubbing surface. Find the

maximum thickness of the ring if the stress is not to exceed 6000 Ib. per
square inch. Find also the thickness at a section 90 from the split.

20. A carriage spring of length 30 inches is made of steel plates

2-5 inches wide by 0-25 inch thick. Find the number of plates

required to carry a central load of 800 Ib. if the maximum stress is limited

to 12 tons per square inch. Find the deflection under this load if

E = 30,000,000 Ib. per square inch.

21. A load is applied to the crank fixed to a wrought-iron shaft 6 inches

diameter and 20 feet long, which twists the ends to the extent of 2
;

assuming the modulus of transverse elasticity (or coefficient of rigidity) to

be 4000 tons per square inch, what is the extreme fibre-stress? (I.C.E.)

22. A closely-coiled spiral spring has 24 coils
;
the mean diameter of

the coil is 4 inches and the diameter of the wire from which the spring is

made is 0-5 inch. Determine the axial load which will elongate this

spring 6 inches if the modulus of rigidity is 12,000,000 Ib. per square inch.

(B.E.)

23. A hollow steel shaft is to be used to transmit 1000 H.P. at 90
revolutions per minute

;
the internal diameter of the shaft is to be f of

the external diameter. The maximum twisting moment exceeds the

mean by 20 per cent. If the maximum intensity of shear stress is not to

exceed 4-5 tons per square inch, find the external diameter of the shaft.

24. At a certain point in a loaded body the principal stresses are a

tension of 5 tons per square inch and a pressure of 3 tons per square inch,

the latter acting in a horizontal direction. Another load is then applied
to the body, giving rise to a second stress system, the principal com-

ponents of which at the same point are a tension of 3 tons per square
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inch and a pressure of 4 tons per square inch, the latter acting at an

angle of 40 to the horizontal. Find the magnitudes and directions of

the principal stresses of the resultant stress system. There is no stress

at right angles to the plane of the paper. (B.E.)



CHAPTER XII.

EARTH PRESSURE.

Earth pressure. Questions regarding the pressure of earth enter

into the design of foundations and of retaining walls for holding
back earth. It is not possible to obtain exact solutions owing to

the variable properties of the material,

and also to the fact that the pro-

perties are altered very considerably

by the presence or absence of water

mixed with the earth.

Referring to Fig. 291, if a mass of

earth be cut to a vertical face OY, it

will weather down by breaking away
of the earth until a permanent surface

OA is attained ultimately. Let < be

the angle which OA makes with the

horizontal, and consider a particle of

earth resting on the slope at P. Its weight W may be resolved into

two forces, one R perpendicular to the slope and another Q acting

down the slope. Balance is obtained by the force of friction F acting

up the slope, F being equal to Q. Defining the coefficient of friction

/A as the ratio of F and R when sliding is just on the point of taking

place (p. 353), i.e. F

FIG. 291. Natural slope of earth.

ab

the triangle of forces Pal? gives

Q=F

Hence, ^

The coefficient of friction may range from 0-25 to i-o for earth

sliding on earth, < ranging from 14 to 45 degrees.

(i)
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Rankine's theory of earth pressure. The effect of the weight W
resting on the slope OA is to produce a stress on OA having an

angle of obliquity equal to
c/> when sliding is just possible. < may

be called the natural angle of repose of the earth
; sliding will not

occur if the angle of slope has any value less than
<f>.

In the Rankine theory, it is asumed that the shearing effects at

any section in the earth follow the ordinary frictional laws, and that

the obliquity of stress on any section of the earth cannot exceed the

natural angle of repose of the earth.

Referring to Fig. 292, AB is the horizontal earth surface and abed

is a small rectangular block of earth having its top and bottom faces

B

FIG. 292. Conjugate stresses, earth FIG. 293. Conjugate stresses, earth
surface level. surface sloping.

horizontal. Let the area of the top face be one square foot, let y be

the depth below the surface and let w be the weight of the earth in

Ib. per cubic foot. The stress /j on the top face will be produced

by the weight of the superincumbent column of earth, and will be

given by p i
= wy ib. per square foot (2)

The stress /2 acting on the vertical faces must be determined

from the relation mentioned above, viz.
</>

must not be exceeded on

any section of the block.

In Fig. 293 the earth surface is sloping at an angle a to the

horizontal, and ab and cd are at the same slope, be and ad being

vertical. The stress p l
will be given by

p, = ? + = = wy cos a Ib. per square foot (*)
area of top face ab

It is evident that/!,/, acting on ab and cd respectively balance

each other, neglecting the weight of the block ;
hence /2

and /2 must

balance independently, and must therefore act in the same straight

line. It therefore follows that/2
must be parallel to ab. /, parallel to

be and/2 parallel to ab are called conjugate stresses. /2
is determined

by the same consideration as before, viz. $ must not be exceeded.
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In Fig. 294, OA and OB represent principal stresses p^ and

respectively, and the construction is shown for obtaining the stress

on a section OK (p. 261). ON
is perpendicular to OK, NP and

MP are parallel respectively to

the principal axes of stress OB
and OA, and PO is the stress

on OK. P lies always on the

circumference of the circle de-

scribed on MN as diameter.

The angle of obliquity of/ as

shown is PON; the maximum

angle of obliquity will occur

when OP is tangential to the

circle NPM as shown by OT.

The angle COT will correspond
with the value of

<$>
in earthwork problems.

CT

*+*
From Fig. 294, we have

=AzA (4)A+A
Pressure on retaining walls by Rankine's theory. The foregoing

principles may be applied to give a simple graphical solution for the

Y
earth pressure on retaining

walls. In Fig. 295 XY is

the vertical earth face of a

retaining wall, the earth sur-

face being horizontal and level

with the top of the wall.

Produce the horizontal base

of the wall and select a

point O on it. Draw OA
X p2

E O
"

T>t D vertically and make it equal

FIG. 295. Earth pressure on a wall, earth surface tO /j = Z#H lb. per Square

foot. Draw OT, making the

angle <f> with OA. Find, by trial, a circle having its centre C
in OA, to pass through A and to touch OT. This circle will cut

OA in B, and will correspond to the circle NPM in Fig. 294.
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Make OD equal to OB, and DO will represent the other principal

stress p.2 . The stress /2
will be transmitted horizontally through the

earth along OX, and an equal stress p.2 will be produced on the

wall at X. Make XE equal to /2 ,
and join YE. The stress diagram

for the face of the wall will be YXE. The average stress will be

J/2 ,
and if one foot length of wall be taken, the total pressure P

P will act at a point JH from the foot of the wall.

Fig. 296 illustrates the procedure if the earth surface is surcharged,

or inclined to the horizontal, at an angle a. Draw XO parallel to

the earth surface. Draw

OA vertically, and make

OA equal to p l
= wH cos a

(p. 280). Draw OM per-

pendicular to XO, and

draw also OT, making the

angle < with OM. Find,

by trial, a circle having its

centre C in OM, to pass

through A and to touch

OT. This circle cuts OM
in M and B, and will

correspond to the circle

FIG. 296.-Earth pressure on a wall, earth surface sur- NPM in Fig. 294. Join

MA and BA ; these will

correspond with NP and PM in Fig. 294; hence the principal

axes of stress will be parallel to MA and BA respectively, and the

principal stresses will be represented by OM and OB respectively.

Draw OD and OE parallel respectively to BA and AM
;
make

OD equal to OM and OE equal to OB. The ellipse of stress

passes through D and E, and cuts XO produced in F. Hence FO
is the value of /2

. The quarter DFE alone of the ellipse need be

drawn.

Draw the stress diagram for the wall by making XG equal to /2

and joining GY. The average stress will be \p^ and for one foot

length of wall we have p _ \p^n
P acts parallel to the earth surface, and is at a height JH above

the foot of the wall.

If the earth surface be not surcharged, a simple formula may be

obtained for the stress on the wall at any depth :
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Let pl
= wh~\he earth pressure on a horizontal foot at a

depth h feet.

p^
= the pressure on the wall at the same depth.

Then, from equation (4), p. 281,

A+A

i - sin
</> 2/

And

i - sin </>=--r j O^.
i + sm </>

If the earth surface is surcharged at an angle to the horizontal

equal to <, then p l
= wh cos

</>,
and it may be shown that the other

conjugate stress, /2 ,
is equal to p^ and acts on the wall at an angle </>

to the horizontal.

If the angle of surcharge is a, the following equation may be used

in order to find the value of :

.

wh cos a
COS a - v/CGS2a - COSW- ---

-^ \-
COS a + >/COS

2a - COS2<J

Wedge theory of earth pressure. Let AB (Fig. 297) be the

vertical face of a retaining wall, and let AC be the surface of the

earth
;
also let BC be a plane

making the angle < with the

horizontal. Considering the

wedge of earth BAC, imagine
that its particles are cemented

together so as to form a solid

body. Under this condition,

the wedge would just rest

without slipping on the in-

clined plane BC if the wall

were removed ; in other

words, so far as the wedge
-P.

. . . . . FIG. 297. Wedge theory of earth pressure on a wall.

BAG is concerned, there is

no pressure on the wall. Again, considering an indefinitely thin

wedge ABA', at rest between the plane BA' and the wall, as its

weight is negligible, there will be no -pressure on the wall. Hence
the pressure on the wall, being zero for the inclined planes BC
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and BA', will attain a maximum value for some plane such as BD
lying between BC and BA'. If the wall were removed, the earth

would break away at once along the section BD and the wedge ABD
would fall, subsequently weathering would remove the wedge DBC.

BD is called the plane of rupture ;
the force acting on the wall may

be obtained by considering the weight of ABD and the reaction

of the earth lying under the section BD.

The force P which the earth communicates to the wall may be

assumed to be horizontal, thus ignoring any friction between the

C

FIG. 298. Equilibrium of the wedge ABD.

vertical face of the wall and the earth
;
also P may be assumed to act

at ^H from the base of the wall (Fig. 298). W is the weight of the

wedge ABD, and is calculated by taking account of one foot length

of the wall. The reaction Q of the earth underneath BD acts at

the angle < to the normal OE to the section BD. These three forces

meet at O and are in equilibrium. If 6 is the angle DBC, the angle

between the lines of W produced and Q will be equal to 0. abc is

the triangle of forces for W, P, and Q, from which we have

P

or P = Wtan<9 (i)

Draw DK and AL, each perpendicular to BC. Then, if w is the

weight of the earth in Ib. per cubic foot,

W = area ABD x w
=

(area BAG - area BDC)w
={1BC .AL -PC . DK)w
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Let DK be called x. Then

W = o;BC(AL-*) (2)

DK x
Also, tan = ==BK BC - KG '

and KC = DKcot(<-a)
= X COt (<

-
a).

*Y*

Hence, tan Q =^^ TT
-

\
...................... (3)BC - x cot

(<
-

a)

Substitute the values of (2) and (3) in (i), giving

p_i,. TJP (AL x)x /

^
-

The whole of the quantities involved in this expression, with the

exception of x, are constant for a given wall, the earth having a

known value for < and a given slope at the surface. The maximum
value of P may be found by differentiating the right-hand side and

equating the result to zero. Thus,

d f AL.x-x* }

dx (VC-xcot(<j>-a))

_ (AL -
2x) {BC - x cot (<

-
a)} + (AL .x - x*) cot (ft

-
a)

{BC-*COt(</>-a)}2
This will be zero when the numerator is zero. Hence,

AL . BC - AL . x cot
(<#>

- a) - 2x . BC + 2X2 cot
(<

-
a)

= - AL . x cot
(<

-
a) + x* cot

(<
-

a),

AL.BC-2#.BC = - x2 cot
(<

-
a),

AL . BC - *BC = x . BC - *2 cot
(<f>

-
a)

By reference to Fig. 298, it will be noticed that this may be written

or 2AABC - 2ABDC = 2ADKB,
or ABAD =ADKB .(5)

The condition for the maximum value of P is therefore that the area
of the triangle BAD should be equal to the area of the triangle DKB.
From (i), P = Wtan0

=w . A BAD . tan 9

(6)
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Graphical solutions by the wedge theory. The following geo-

metrical constructions may be used for the determination of x :

CASE i. Earth surface level with the top of the wall. Reference is

made to Fig. 299. Draw BC making the angle < with the horizontal.

Draw BE perpendicular to BC and cutting the earth surface produced

FIG. 299. Graphical solution, wedge theory, earth surface level.

in E. Make EF equal to EA. Then BF is equal to x. Draw FD
parallel to BC and join BD; BD will be the plane of rupture. P will

be found by measuring BF = x to the same scale as that used in draw-

ing the wall and inserting the value in (6). Apply P horizontally at

^H from the base.

CASE 2. Earth surface surcharged at an angle a. Draw BC (Fig. 300)

making the angle </>
with the horizontal. Draw BE perpendicular to

FIG. 300. Graphical solution, wedge theory, earth surcharged,

BC and cutting the earth surface produced in E. On BE describe a

semicircle, and draw AF perpendicular to BE. Make EG equal to

EF
;
then BG is equal to x. Draw GD parallel to BC and join DB ;

DB will be the plane of rupture. Calculate the value of P and apply
it as in Case i.
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CASE 3. Earth surface surcharged at the angle </>.

BE perpendicular to the earth surface and

cutting it produced in E. Then BE is

equal to x. P is calculated and applied
as before.

CASE 4. Earth surface surcharged at an

angle a and friction between the earth and

Draw BC (Fig. 302)
the horizontal to cut

in C. On BC as

a semicircle. Make

In Fig. 301, draw

the wall considered.

at the angle < to

the earth surface

diameter describe FIG. 301. Earth surface surcharged
at

<f>, wedge theory.AD equal to AB, and draw DE per-

pendicular to BC. Make BF equal to BE, and draw FG parallel to

AD. Make FK equal to FG. Join BG. Then the pressure P on one

foot length of the wall is equal to the weight of the prism of earth

FIG. 302. Wedge theory ; solution when friction of earth on wall is taken account of.

having an area in square feet equal to the area FGK and a length of

one foot. P will act at JH from the base of the wall, and will be

inclined at an angle <\> to the horizontal. The plane of rupture is BG.
It is assumed in the last case that the value of < is the same for

earth sliding upon earth and for earth sliding upon masonry.

Distribution of normal pressure on the base of the wall. Having
found P by application of one of the above methods, the resultant

pressure on the base of the wall may be found in the manner shown

in Fig. 303. W is the weight of one foot length of the wall, acting

vertically through its centre of gravity G. P and W intersect at O,
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and R is their resultant. For stability, R should pass within the

middle third DE of the base of the wall (p. 259).

FIG. 303. Resultant pressure on wall

base.

FIG. 304. Distribution of normal
stress on the wall base.

In Fig. 304, F is the point in which R intersects the base of the

wall, and O is the middle of the base. R may be resolved into two

forces, Rv and RH ',
the latter produces shearing stress on the base,

having a somewhat indefinite distribution ;
the former produces

normal stress. To determine the latter, shift Rv from F to O, and

apply a compensating couple Rv x FO = M. Rv acting at O will

produce a uniform normal stress p^ of value given by

p, = f
v

.. ,
= = lb. per square foot.^ area of wall base BC

M will produce a stress which will vary from a push /2 at C to an

equal pull /2
at B. These may be found from

M h
m I,

where m is |BC and I is the moment of inertia of i foot length

of the wall base taken with reference to the axis passing through O
and perpendicular to the plane of the paper.

i x BC3

12

Hence, Rv x FO =
-%m^ 1 2

6RV .FOA- BC
A stress diagram CBED is drawn in Fig. 304, in which

CD = A+A> and BE=A-A>-
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Eankine's theory applied to foundations. In Fig. 305 is shown a
wall the weight of which is supported by a vertical reaction coming
from the earth on which it rests. Consider one foot length of the

wall, and find its weight W lb. The vertical stress p l
on the earth

will be
-yy

1
area of base AB

=
-p5 lb. per square foot.A >

The horizontal stress f>2 acting on the vertical faces of a small

rectangular block of earth immediately under the foot of the wall
will be found from the con-

sideration that the angle <

must not be exceeded by
the obliquity of the stress.

Make OC to represent pl

draw OT making the angle

<f>
with OC; find by trial a

circle CTF having its centre

E in OC. passing through C
and touching OT ; make OG
equal to OF; then GO is

equal to /2
. Part of the

ellipse of stress has been

drawn, although this is not

required in the construction,

tally through the earth, and will act on the vertical faces of a small

rectangular block of earth at K. There will be a stress /3 acting on

the horizontal faces of this block and caused by the weight of the

column of earth resting on the top face of the block. /3
is found

by a second application of the same construction. Make KH equal

to/2 ;
draw KL making the angle < with KH

;
the circle HLM has

its centre in KH, passes through H- and touches KL. Make KN
equal to KM, when NK will be equal to/3

.

Let D be the depth of the foot of the wall below the earth surface,

and let w be the weight of the earth in lb. per cubic foot. Then

/3
= wl) lb. per square foot

;

/. Defect,w
This result gives the minimum depth of the foundation, and

represents the case of the earth surrounding the wall being just on

D.M. T

FIG. 305. Rankine's theory applied to foundations.

The stress /2
is transmitted horizon-
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the point of heaving up. The actual depth of the foundation may
be obtained by application of a factor of safety.

D may be found by calculation from equation (4), p. 281. Thus,

i - sin
</> 2/2

_ /i -sin</>\
P*P\

\^ + sm< y'

Also, sin 4>

-sin^

Again,

sin MV
x

, .

: 5 ,
from (2) ;+ sin </>/

z^ ze/ \i

W /i -sin<^)\
2

>. AB\i^^y (4)
i + sin </>/

EXAMPLE. A wall carries a weight of 800 tons. The area of the foot

of the wall is 200 square feet. Find the minimum depth of foundation if

the weight of the earth is 1 20 Ib. per cubic foot and if
</>

is 30.

b
l
= =4 tons per square foot.

-sinew

120

= 8- feet.

EXERCISES ON CHAPTER XII.

1. Given principal stresses of 6 tons and 3 tons per square foot, both

pushes, find the angle of greatest obliquity of stress.

2. A retaining wall for earth, 12 feet high, has its earth face vertical.

The surface of the earth is horizontal and is level with the top of the wall.

Find the total force per foot length on the wall by Rankine's theory, taking
the weight of the earth as 1 10 Ib. per cubic foot and < as 40.

3. Answer Question 2 if the earth surface is surcharged at 20 to the

horizontal.
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4. Answer Question 2 by application of the wedge theory.

5. Answer Question 3 by application of the wedge theory.

6. Answer Question 3 by the wedge theory, taking account of the

friction between the earth and the wall. It may be assumed that <

has the same value for earth sliding on earth and for earth sliding on

masonry.

7. A masonry retaining wall for earth has its earth face vertical, and
the earth is surcharged at an angle of 30 to the horizontal. The wall

is 9 feet high, 2 feet broad at the top, and 5 feet broad at the base. The
earth weighs 1 10 Ib. per cubic foot and < is 30. Find the total earth

pressure on the wall by the wedge theory.

8. In Question 7, the masonry weighs 120 Ib. per cubic foot. Find the
resultant pressure on the horizontal base of the wall. Does it pass within

the middle third of the base ? Find the maximum and minimum normal
stresses on the base, and draw a diagram showing the distribution of
normal stress.

9. A wall and the load which it carries produce a stress of 3 tons per
square foot on the earth underneath the wall. If the weight of earth is

1 10 Ib. per cubic foot and if
</>

is 35, find the minimum depth of the
foundation below the surface of the earth.

10. A brick wall 25 feet high, of uniform thickness and weighing I2olb.

per cubic foot, has to withstand a wind pressure of 56 Ib. per square foot.

What must be the thickness of the wall in order to satisfy the condition
that there shall be no tension in any joint of the brickwork ? (I.C.E.)

11. Concrete exerts on earth at the bottom of a trench a downward
pressure of 2 tons per square foot ; the earth weighs 130 Ib. per cubic foot

and its angle of repose (in Rankine's theory) is 30 ;
what is the least safe

depth below the earth's natural surface of the bottom of the concrete ?

Why are we unable to make much practical use of the theory of earth

pressure? (B.E.)

12. A concrete retaining wall is trapezoidal in cross section, 24 feet

high ; thickness at top, 3 feet
;
at base, 10 feet

;
the back face, which is

subjected to earth pressure, being vertical. The wall is not surcharged.
If the concrete weighs 140 Ib. per cubic foot, the earth-filling behind the
wall 125 Ib. per cubic foot, and if the angle of repose of the earth is

22 degrees, investigate the stability of the wall. (B.E.)

13. Give the assumptions upon which Rankine's theory of earth pres-
sure is based. Show that the intensity of horizontal pressure on a

retaining wall at a depth d feet below the horizontal earth surface is

i sin <f> ,

where w is the weight of I cubic foot of earth and < is the angle of

repose of the earth. A practical rule takes the pressure as equivalent
to that given by a fluid weighing 20 Ib. per cubic foot. Find the angle of

repose corresponding to this, assuming iv equals 100 Ib. per cubic'foot.

(L.U.)



CHAPTER XIII.

TESTING OF MATERIALS.

Wires under pull. A simple apparatus is illustrated in Fig. 306
and will enable the elastic properties of wires under pull to be studied.

Two wires, A and B, are hung from the same

support, which should be fixed to the wall as high
as possible in order that long wires may be used.

One wire, B, is permanent and carries a fixed load

W
T ,

in order to keep it taut. The other wire, A,

is that under test, and may be changed readily for

another of different material. The test wire may
be loaded with gradually increasing weights W.
The extension is measured by means of a vernier

D, clamped to the test wire and moving over a

scale E, which is clamped to the permanent wire.

The arrangement of two wires prevents any droop-

ing of the support being measured as an extension

of the wire.

EXPT. 15. Elastic stretching of wires. See that

the wires are free from kinks. Measure the

FIG. 306. Apparatus for length L in inches from C to the vernier. Measure
son wires. ^ diameter of the wjre gtate the material of

the wire and also whatever is known of its treatment before it came
into your hands. Apply gradually increasing loads to the wire A,
and read the vernier after the application of each load. Stop the

test when it becomes- evident that the extensions are increasing more

rapidly than the loads. Tabulate the readings thus :

TENSION TEST ON A WIRE.
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Plot the loads in column i as ordinates and the corresponding
extensions in column 3 as abscissae (Fig. 307). It will be found that

a straight line will pass through most
of the points between O and a point
A, after which the line turns towards
the right. The point A indicates the

*"

break-down of Hooke's law.

Let Wj = load in Ib. at A in Fig. 307. w
,

!

*/=the diameter of the wire in

inches.

Then,

Stress at elastic break-down
W

1

~i^

OL
^ Extension

. per square inch.
FIG. 307. Graph of a tensile test

on a wire.

Select a point P on the straight line OA (Fig. 307), and measure
W

2
and e from the diagram.

Let W
2
= load in Ib. at P,

= extension in inches at P,

L = length of test wire in inches.

rp,, T7 . stress W L
Then, Young's modulus = E = r-= , fe

-
strain \ird* e

Several wires of different material should be
tested in a similar manner.

In Fig. 308 is shown in outline a simple form

of machine for testing wires to breaking; the

machine is fitted with an arrangement whereby an

autographic diagram is produced, i.e. a diagram is

drawn by the apparatus showing the loads and

corresponding extensions.

AB is the test wire, fixed at A and carrying a

receptacle B at its lower end. The load is

applied by means of lead shot, stored in another

receptacle C, which is fitted with an orifice and

a control shutter at its lower end
;
D is a shoot

for guiding the shot into B. C is hung from a

helical spring E, which is extended when C is full

and shortens uniformly as the weight is removed

by the shot running out of C. A cord F is

attached to E, passes round a guide pulley and
FIG. 308.-Apparatus aiso two or three times round a drum G, and

for testing wires to

rupture. has a small weight H attached in order to keep
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it tight. A piece of paper is wrapped round G, and circumferential

movements of this paper will be proportional to the load removed

from C and applied to the test wire. A small guided frame carrying

a pencil is attached to the test wire at P
;
vertical movements of the

pencil will indicate the extensions of the portion of test wire between

A and P. In action, a curve is drawn on the paper which shows

loads horizontally and extensions vertically.

EXPT. 1 6. Tensile test to rupture. Arrange the apparatus and
fit the test wire

j
see that all the arrangements are working properly.

Draw the lines of zero extension and zero

load by rotating the drum for the first

and by moving the pencil frame vertically

for the second. Measure the diameter of

the test wire and the length from A to P.

Allow the shot to run into B until the

test wire breaks. To obtain the breaking

load, weigh the receptacle B together with

its contents.

Let W = breaking load in lb.,

d= diameter of the wire in inches.

W
Breaking stress = -.

-

2
lb. per square inch of original cross-

i 7
sectional area.

Load

Extension

FIG. 309. Autographic record of
a test on copper wire.

Then,

In Fig. 309 is given a reproduction of a

diagram after removal from a machine of this

kind. The scale of loads may be found by
placing different weights in C and observing the

resulting movements of the paper on the drum.
The diagram shown is for copper wire, and the

point of elastic break-down may be stated

roughly from it.

Experiments should be made on several

wires of different materials, such as copper,
brass and iron.

Wires under torsion. Apparatus by means

of which may be measured the angle of twist

produced in a wire by a given torque is illus-

trated in Fig. 310. AB is a test wire, firmly

fixed at A to a rigid clamp and carrying a heavy

cylinder at B. The cylinder serves to keep the

wire tight, and also provides means of apply-

ing the torque. The torque must be applied FIG. 310. Apparatus for

as a couple in order to avoid bending, and is torsion tests on wires.
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produced by means of cords wound round B
; these cords pass over

guide pulleys, and carry equal weights Wx
and W2 at the ends.

Pointers C and I) are clamped to the wire, and move as the wire

twists over fixed graduated scales E and F. The angle of twist

produced in the portion CD of the wire is thus indicated.

EXPT. 17. Torsion test on wires. Arrange the apparatus as shown.

State the material of the wire
;
measure its diameter d and the length

L between the pointers C and D, both in inches. Measure also the

diameter D of the cylinder B, in inches. Apply gradually increasing

loads, and read the scales E and F after each load is applied. Tabu-
late the readings.

EXPERIMENT ON TWISTING.

Torque.

Plot the torques in column 2 as ordinates and the corresponding

angles of twist as abscissae. A typical diagram is given in Fig. 311,
from which it will be observed that the graph is practically a

straight line, indicating that the angle of

twist is proportional to the torque. Select

a point P on the straight line, and measure
the torque T Ib.-inches and the angle a

from the diagram. If the diagram is

plotted in degrees, convert a to radians.

The value of the modulus of rigidity of

the material may be calculated.

Let
T = the torque, in Ib.-inches ;

L = the length of the wire, in inches
;

R = the radius of the wire, in inches
;

a = angle of twist, in radians ;

0}< a, *| Angle
FIG. 311. Uraph of a torsion test

on a wire.

or

C = the modulus of rigidity, in Ib. per square inch.

Then, from equation (4), p. 255, we have

_ 2TL
~7rR4C'

2TL

Several wires of brass, copper and steel should be tested. In each

case, any information regarding the previous history of the wire

should be noted.
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Helical springs under pull. The extensions of a helical spring

under pull may be investigated by use of the apparatus illustrated in

Fig. 312. A is the spring under test
;

it is hung from a hook at the

top of a stand. A graduated scale B is hung
from the spring, and carries a hook on which

loads W may be placed. The vertical move-

ments of the scale indicate the extensions of

the spring, and are read by means of a telescope

atC.

EXPT. 1 8. Extensions of helical springs.

Make a helical spring by coiling round a round

bar, or mandril, some wire for which you
have found C previously, as directed on p. 295.
Test this spring under gradually increasing

loads, noting the extension produced by each

load. Plot loads and extensions ;
these should

give a straight line if the extensions are pro-

portional to the loads. Select a point on the

plotted line, and read the load W Ib. and
the corresponding extension e inches.

Let
D = the mean diameter of the helix, inches

;

*/=the diameter of the wire, inches
;

N = the number of complete turns in the

helix.

FIG. 312. Apparatus for

testing helical springs.

Then, from equation (5), p. 267,

8WD3N

Or C =
8WI)3N

Ib. per square inch.

Calculate the value of C from this equation, and compare it with

the value of C found by the direct method of applying torque.

Other springs made of wire of circular section are supplied. Make
similar experiments, and find the value of C for each spring.

Springs of material having a square section are also supplied. If

the side of the square is s in inches, find the numerical values of the

coefficient c for each spring by inserting experimental values in the

following equation : WD3N

Maxwell's needle. A useful piece of apparatus for making vibra-

tional experiments on wires is the Maxwell's needle shown in

Fig. 313 (a). The wire AB is fixed firmly at A and is clamped at B
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FIG. 313. Maxwells needle.

to a brass tube C. Four inner tubes D, E, F and G of equal lengths

can be pushed into C ;
the total length of the four tubes is equal to

the length of C. Two of the short tubes are empty, and the other two

are closed at the ends and are

loaded with lead shot. Experi-

ments are made by first having the

loaded tubes at I) and G and the

empty ones at E and F. A few

degrees of twist are given to the

wire, and the needle is then allowed

to oscillate horizontally. The time

taken to execute, say 100 vibra-

tions, is observed, and hence the

time of one vibration is obtained.

The tubes are then exchanged by

placing the loaded pair at E and F
and the empty pair at D and G,r J

.

and the experiment repeated in

order to find the time of one vibration. The distribution of mass in

the system has been altered without altering the actual quantity of

matter, and the second time will be found to be shorter than the first.

Let t
l
= the time in seconds to execute a vibration, the needle

starting from the end of a swing and coming back

again to the same position ;
loaded tubes at D and G.

/
2
= the corresponding time in seconds when the loaded

tubes are at E and F.

m
1
= the mass in pounds of one loaded tube.

m
2
= the mass in pounds of one empty tube.

a = the half length of C in feet.

L = the length of the test wire, in inches.

d=\.\\Q diameter of the test wire, in inches.

g=\he acceleration due to gravity
=

32-2 feet per second

per second.

C = modulus of rigidity of material of wire, Ib. per sq. inch.

Then c

EXPT. 19. Determination of C by Maxwell's needle. Test several

wires of different materials by this method, and calculate C for each.

If wires of the same material have been tested for the values of C
by other methods, compare the results.
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Torsional oscillations of a helical spring. Maxwell's needle may
be used for determining the value of Young's modulus for a wire of

given material. The wire is first wound into a helical spring and

arranged as shown in Fig. 3 1 3 (), where C is the Maxwell's needle.

Take the same symbols as before, with the addition of the following :

R = the mean radius of the helix, in inches.

N = the number of complete turns in the helix.

E = Young's modulus, in Ib. per square inch.

Then E

EXPT. 20. Determination of E by torsional oscillations of a spring.

Twist the needle through a small horizontal angle, taking care not

to raise or lower it while doing so. On being released, it will

execute torsional oscillations. Ascertain the times as before for the

loaded tubes in the outer position and also in the inner position.

Measure the dimensions required, and calculate E from the above

equation. No correction is required for the mass of the spring in

this experiment.

Longitudinal vibrations of a helical spring. Using the same

apparatus, illustrated in Fig. 313^), the value of the modulus of

rigidity may be found for the material of the spring. The spring,

loaded with the needle, is pulled downwards a little and released ;

it will then execute vibrations vertically.

Let /=time in seconds to execute one vibration from the

lowest position and back to the starting-point.

M = the mass of the needle, or other load, hung on + one-

third the mass of the spring, in pounds.

N = the number of complete turns in the helix.

R = the mean radius of the helix, in inches.

</=the diameter of the wire, in inches.

C = the modulus of rigidity, Ib. per square inch.

Then C =
6-*
3

EXPT. 21. Determination of C by longitudinal vibrations of a spring.

Use a spring made of wire which has been tested already for the

value of C by the direct method of torque (p. 295), and also by the

method of torsional oscillations (p. 297). Find C for the material

by application of the method described above, and compare the

results by the three methods.

The direct determination of Poisson's ratio, ,
and also of the

m
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bulk modulus K for a material presents considerable difficulty.

These may be calculated easily from the known experimental values

of E and C by use of the following relations :

i E-2C
Poisson's ratio = - = ^ .

EC

m

Bulk modulus = K =
3(3C-E)

Take the results for E and C which you have obtained for wires of

the same material, and calculate and K for each material.
M

EXAMPLE. A series of tests on steel wires gave average values as

follows :
= 13,500 and = 5500 tons per square inch. Find the values

of Poisson's ratio and of the bulk modulus.

=E-2C
2C

_ 13,500- i i,ooo_

K=

11,000

EC

i

41

3(3C-E)

n,t;oox 5 coo
=-T r= 825o tons per sq. inch.
3(3x5500-13,500) i-

Elastic bending of beams. The apparatus shown in Fig. 314 is

capable of giving very accurate experimental results on the elastic

FIG. 314. Apparatus for elastic bending of beams.

bending of beams. The test beam A rests on steel knife-edges

supported by blocks B, B. The blocks may be bolted at any distance

apart on a lathe bed C. The load W is applied by means of a

shackle D having a steel knife-edge which rests on the beam. The

piece E, carried by the shackle, is pierced by a hole which is covered
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by a piece of transparent celluloid having a fine line ruled on it.

This line is observed through a micrometer microscope F, and will

travel over the eyepiece scale as the beam deflects. The value of a

scale division of the eyepiece scale may be ascertained by use of a

scale engraved on the vertical pillar of the microscope ;
a rack and

pinion movement permits of vertical movement of the microscope up
or down the pillar.

For testing beams fixed at the ends, the knife-edges at B, B are

removed
;
these are merely dropped into V grooves on the top of the

blocks. The test beam now rests on the top of the blocks (Fig. 315),

and is held down firmly at each end by a strong cast-iron cap and

four studs.

The angle of slope at any position of the beam may be measured

by means of the arrangement shown in Fig. 316. A is a small three-

Pic. 315. Test beam fixed at ends. FIG. 316. Apparatus for measuring
the slope of a beam.

legged stool carrying a mirror and rests on the test beam. B is a

reading telescope having a hair line in the eyepiece, and is used to

observe the reading of a scale C reflected to the telescope by the

aid of the mirror at A.

The apparatus may be used for a large number of experiments ;

the following indicates some of the more simple.

EXPT. 22. Take a bar of mild steel of rectangular section about
2 inches x i inch and about 3-5 feet in length. Arrange it as a beam
simply supported on a span of 3 feet and loaded at the centre of the

span. Apply gradually increasing loads, and measure the deflection

at the centre of the span after the application of each load. Verify
these readings by removing the loads, one at a time, and observing
the deflections after the removal of each load. Tabulate these

readings, and plot loads and deflections. If the resulting diagram is

a straight line, then the deflections of the beam are proportional to

the load. Select a point on the plotted line, and note the load W Ib.

and corresponding deflection A inches ; also let L be the span in

inches. Calculate the value of Young's modulus for the material,

using the equation given on p. 169, viz.:

.

48EI
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For the given section, breadth B and depth D, both in inches,

T _ BD3 -

1 - j

or

WL3

=

E =
WL3

ABI)
Ib. per square inch.

EXPT. 23. Use the same piece of material (a) as a cantilever, (ft)

as a beam fixed at both ends. In each case measure the deflections

for loads gradually increased and gradually diminished. Plot the

results and determine Young's modulus, making use of the following

equation for case (a) :

WI 3

WL3

For case (b) use A =
7^I ^P ' I?8^

Compare the values of E obtained by the three methods employed.

EXPT. 24. Arrange a test bar as a cantilever (Fig. 317). Let the

load be applied at B, and arrange the three-legged mirror stool at C,

FIG. 317. Slope of a cantilever.

a scale divided decimally in inches at D, and a reading telescope at E.

On loading the cantilever a certain angle of slope will occur at B
;

as there is no load, and consequently no bending moment between
B and C, whatever slope exists at B will occur uniformly between B
and C. Hence the slope measured at C will be the slope at the

point of application of B. The slope at B may be calculated from

WL,2

*B = =y
radians (p. 168).

If the piece of material used in the previous bending experiments
is employed in this experiment, E is known, and hence iB may be
calculated for any given load. To verify the calculation, observe the

scale readings for gradually increasing and gradually diminishing
loads ; plot the results, and select from the diagram the value of /B

corresponding to the value ofW used in the calculation.
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In reducing the scale readings to radians, it must be noted that if

the mirror at C tilts through an angle /, the ray of light CD will

travel through an angle of magnitude 22. Let a be the change of

scale reading due to an increment of load, and let b be the distance

from the mirror to the scale, both in inches. The angle turned

through by the ray CD will be

DCD' = -. radian
;

o

..

t = r radian.
2b

Ten-ton testing machine. In Fig. 318 is shown in outline the

principal parts of a testing machine constructed by Messrs. Joshua

FIG. 318. Ten-ton Buckton testing machine.

Buckton to the design of Mr. J. H. Wicksteed. As illustrated, the

machine is arranged for applying pull. The test piece, AB, is held

by grips in two crossheads C and D
;
D is guided by the main column

E of the machine, and may be drawn downwards by means of a screw

F and a wheel G ; the latter serves as a nut for F, and is prevented
from moving vertically. The rotation of G is effected by gearing and

belt drive from some source of power; open and crossed belts permit
of either direction of rotation being given to G. The belts are under

the control of the operator by means of striking gear. The upper
crosshead C is hung from a knife-edge H fixed in the beam K. The
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beam is supported by a knife-edge L resting on the top of the

column E. Its movement in a vertical plane is limited by spring-

buffer stops M and N. A counter-poise P can be moved along the

beam by means of a screw and hand-wheel under the control of the

operator until the pull transmitted through the test piece to the beam
is equilibrated. The magnitude of the pull is shown by the position

of the counterpoise in relation to a scale of pounds which is attached

to the beam.

For applying push to the test piece, the machine is modified as

shown in Fig. 319. The specimen AB is placed between crossheads

,01 FIG. 321. Shearing
device.

FIG. 319. Arrangement FIG. 320. Arrangement for bending
for applying push. tests.

FIG. 322. Punching
device.

Q and R, the former being connected to the screw F and the latter

being hung from the beam.

In carrying out bending tests, arrangements are made as shown in

Fig. 320. The test beam AB rests on supports T, V, which in turn

are carried by a beam S secured to the crosshead R. The weighing

beam on the machine thus supports the beam under test. A central

load is applied by means of a ram attached to the crosshead Q and

drawn downwards by means of the screw F.

Simple shearing tests are carried out by means of the appliance

illustrated in Fig. 321. The piece X may slide inside W; the test

piece AB is pushed into cylindrical steel dies carried by W ;
X has

another steel die which bears on the central portion of the test piece.
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The machine is arranged for pull as in Fig. 318; W is attached to C
and X to D. On operating the machine, the test piece is put under

double shear under much the same conditions as a rivet in a

double-strapped butt-joint (p. 102).

Fig. 322 shows an appliance which may be used for

n
punching tests. The upper block a can move vertically

relative to the lower block b, and is guided by pins c

and d. a carries a punch Y and b has a die Z.

AB is the test piece. The machine is arranged for

compression as shown in Fig. 319, and the punching

appliance is placed between the crossheads Q and R.

. The same machine may be used for torsion tests,

but it will be found more convenient to have a

separate torsion machine. One such is described on
FIG. 323.-Flat 6

test piece. P' 6 1 u -

A flat bar tension test piece is shown in Fig. 323.

The enlarged ends ensure that fracture shall not take place in

the grips. Fig. 324 shows the pair of steel wedge grips used for

holding each end of this test piece. The grips have serrated

faces for gripping securely the specimen. Round test pieces may
be gripped in a similar manner, but a better plan is to have each

B , , C

FIG. 324. Wedge grips. FIG. 325. Spherical seated
screwed grip.

FIG. 326. Grip for

brittle materials.

end of the specimen A screwed into a holder B (Fig. 325) ;
the

holder has a nut C resting in a spherical seat formed in D, and

permits of better alignment of the specimen in the machine than is

possible with wedge grips. Both patterns of grip are used for ductile

materials.

For holding hard non-ductile materials like cast iron, the holder

shown in Fig. 326 is employed. The specimen A is round, and has

each end enlarged as shown at B. A split nut C screwed into the

holder D supports A.
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The arrangement shown in Fig. 327 will be found to give satis-

factory working in compression tests. The ends of the specimen AB
are screwed into holders C and D. Hard
steel balls are placed at E and F in conical

depressions, and enable the load to be applied

very nearly axially.

Columns made of cycle tubes provide a

large range of useful tests. The arrangement
when both ends are rounded is shown in

Fig. 328. Conical hard steel plugs C and
D are inserted in the ends of the tube AB
and bear on hard steel seats E and F. It

will be found useful to carry out a series of

tests on specimens having a range of ratios

of L to k. The breaking loads for these

should be plotted in the manner described

on p. 235. Great care should be taken in

order to secure initial straightness, and the

load should be applied as smoothly as .possible

in order to avoid shocks which would pre-

cipitate rupture.

Autographic recorder. The autographic

B

FIG. 327. Test piece arranged
for compression.

/////tVf////i

ft?

recorder fitted to the machine in the laboratory at West Ham was

designed by Professor Barr of Glasgow University, and is shown in

I

outline in Fig. 329. AB is the test piece under pull,

and has two clamps D and E attached to it at a

measured distance apart. A cord F is attached to D,

passes over a pulley at E and thence to a drum C.

Any extension of the test piece between D and E
will be shown by rotation of the drum. The drum C
has a paper wrapped round it on which the diagram
of loads and extensions is drawn by a pencil G.

Horizontal distances on this paper will represent

extensions of the portion DE of the test piece.

The pencil G is given vertical movements propor-

tional to the load on the specimen by means of

the following mechanism. The counterpoise of the

machine is driven along the beam by means of the

operating wheel H and gearing connected to the

spindle K. The same spindle is connected also by gear wheels L to

a screwed spindle M, on which is threaded a guided frame N carrying
D.M. u

^A
FIG. 328. Tubular

test column.
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the pencil G. Vertical movements of the pencil will therefore be

reduced copies of horizontal movements of the counterpoise, and

thus will represent to scale the load on the specimen.
In testing ductile materials there are generally two points where

the piece stretches so rapidly that the beam of the machine is certain

to drop on to the lower buffer-stop; these are the yield point and

the part of the test where local contraction is occurring preparatory to

fracture. Should the beam drop on the buffer-stop, a portion of the

H

FIG. 329. Autographic recorder.

diagram will be lost, as the load on the specimen is no longer re-

presented by the position of the counterpoise on the beam. To
obtain the complete diagram, a special spring Q is suspended from

the end column of the machine (Fig. 329). Adjustable lock nuts

are provided at R, and a bracket S is fixed to the end of the machine

beam P.

As the beam descends, S will come into contact with R and

the spring Q will extend, thus removing some of the load from

the test piece. The movement of the beam while extending Q is



TESTING OF MATERIALS 307

utilised for lowering the pencil G by an amount proportional to the

load removed from the test specimen. The screwed spindle M is

capable of vertical movement, and is held up in normal circum-

stances by means of a lever T and balance weight W, the collar U
thus being pressed against the fixed bracket V. A rod X is con-

nected to the lever T, and has its end hooked to engage a pin Y
fixed to a lever Z which is secured to the machine beam P. As the

beam descends, S comes into contact with R and Y arrives at the

hooked end of X simultaneously. Further movement of the beam
will extend Q and lower M, and so will lower the pencil by an

amount proportional to the load taken off the specimen by the spring.

It will be evident that the apparatus can be used for the produc-
tion of an autographic record of any of the tests made in the machine;
the cord which rotates the drum is connected in each case to the

part the movements of which are to be recorded as horizontal dis-

tances on the paper.

Extensometers. In tension tests which do not exceed the elastic

limit, it is necessary to attach some form of extensometer to the

specimen for the purposes of detecting and measuring the very small

extensions which occur. The instrument devised by Sir J. A. Ewing
is probably the most useful in general practice, and is shown in outline

in Fig. 330. The test piece AB has clamped to it two blocks or levers

C and D, by means of pairs of pointed pinching screws at E and F.

C and D are connected by a bar G which is pivoted to D at H and

is pulled against C at its upper end by means of a spring M ; the

end of G has a ball K formed on it which beds in a conical recess in

the end of the micrometer screw L. At the other end of C is sus-

pended a rod N having a ball at its upper end
;

this ball is pulled

upwards into a conical recess by means of a light spring O. The lower

end of N is guided by pins on D and carries a fine hair line at P.

This hair line is observed through a micrometer microscope Q.

Suppose that the test piece extends under pull and that the rod G
remains unaltered in length. The hair line P will be displaced up-

wards relative to the microscope, and so will appear to travel over

the eyepiece scale. Each scale division represents approximately one

five-thousandth of an inch, and it is easy with a little experience to

subdivide each division into ten parts, thus enabling readings to be

taken to the nearest fifty-thousandth of an inch.

The precise value of a scale division of the microscope is ascertained

as follows : After focussing the instrument and reading the scale, the

micrometer L is given one complete turn. As its pitch is 0-02 inch,
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the effect is to change the length of G by this amount. The arms of

the lever C on either side of the specimen are equal ;
hence P will be

moved relative to the microscope by 0-02 inch. The microscope
scale is read again, and the difference between this and the original

reading corresponds to a movement of P of 0-02 inch. Now
in use, G remains unaltered in length, and the movement of P is

produced by the extension of the specimen ;
the effect of the levers

is to produce a movement at P equal to double the extension of the

specimen. Accordingly o-oi inch extension of the specimen will

produce a movement of 0-02 inch at P. Hence the scale divisions

D

B

FIG. 330. Ewing's extensometer.

movement in the microscope found as directed above correspond to

o-o i inch extension. Once focussed and calibrated, the instrument

requires no further adjustment during the test unless the extension is

sufficiently large to run the risk of moving the hair line beyond the

limit of the microscope scale. In this event, it may be brought to a

working position again by giving the micrometer L one turn, when

the test will proceed as before. The loads are applied best in equal

increments, and the reading of the microscope taken after application

of each increment. The following record of a tensile test may assist

in indicating the methods of noting the observations and of reducing

the results :
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TENSILE TEST ON A MILD-STEEL SPECIMEN.

Laboratory No. A, M.S., 14.10.10.
Form of test piece ; round, with swelled ends ;

ends rough turned

to 0-75 inch diameter; body turned and polished. A length of

10 inches of the body was marked off at i inch intervals by light

centre punch dots.

Diameter of specimen, 0-445 inch-

Area of cross section, 0-1556 inch.

Elastic test with Ewing's extensometer.

CALIBRATION OF INSTRUMENT.

47-2 microscope scale divisions are equivalent to an extension of

o-oi inch.

.'. i microscope scale division = jyVtf
= 0-0002 1 1 8 inch.

The load was applied in increments of 100 Ib. A number of these

readings are omitted in the following table in order to economise

space. None of the omitted readings depart from the plotted curve

(Fig- 330-

LOG OF TEST.
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The loads and scale readings are shown plotted in Fig. 331. It

will be observed that the line ceases to be straight at A, which point

accordingly indicates the break-down of Hooke's law.

Load at elastic break-down, 4700 Ib.

Stress at elastic break-down =
0-1556 x 2240

= 13-48 tons per sq. inch.

Load at which creeping started = 5700 Ib.

5700

0-1556 x 2240

=
16-35 tons Per sc

l-
i

Stress

The creeping of the hair line in the instrument marks the com-
mencement of a stage in which the beam of the testing machine
would exhibit a tendency to descend slowly towards the lower buffer-

30 40 50 60 70 80 90

Microscope scale

FIG. 331. Elastic limit tensile test ; mild steel.

stop while a constant load is maintained on the specimen. When
this stage is developed fully, the material is said to be in a plastic

state, and the point is called the yield point. The autographic record

(Fig. 332) shows the yield point clearly.
To determine Young's modulus :

From the diagram (Fig. 331), a load of 4000 Ib. produced an ex-

tension corresponding to 29 microscope scale divisions.

Extension of specimen = 29 x 0-0002 1 18

= 0-00614 inch.
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Gauge points of extensometer are 8 inches apart.

. 0-00614
Strain = = 0-000768.o

Stress = -^^-=2 5, 7oo Ib. per sq. inch.

Young's modulus = E = = 33,500,000 Ib. per sq. inch.
000700

= 14,900 tons per sq. inch.

Test to maximum load. The extensometer being removed, the

autographic recorder was connected to the specimen at 10 inch

gauge points, and the load was increased from zero until the test

piece began to form a neck preparatory to breaking. The resulting

diagram is shown in Fig. 332, and gives the yield load as 6600 Ib.

From this we calculate

Yield stress =-z = 18-93 tons Per SQ- mcn -

0-1556 x 2240

The maximum load which the specimen could carry was 9600 Ib.

Hence,

Breaking stress
9600

0-1556 x 2240
27-5 tons per sq. inch.

The autographic record (Fig. 332) shows an interesting point

regarding the effects of overstrain (i.e. straining beyond the yield

point) on the elastic properties of

the material. After the specimen -L,b.

had been stretched 1-2 inches on

4000

2000

10000-

a length of 10 inches, the load

was removed. Reapplication of 8000-

the load ca.used the diagram to

rise from zero along a practically 6000-

straight line until the former

curve was reached again at a

load of about 9500 Ib. Yielding

along the curve then continued

as before. The overstraining had
hardened the material and raised

the yield load from 6600 Ib. to

about 9500 Ib., i.e. only slightly

below the ultimate load.

The test piece was removed from the machine and the lengths of

the intervals between the centre punch dots were measured ;
also the

diameters at each dot. From these the curves in Fig. 333 were

plotted. It will be noted that both extensions and diameters vary

considerably, and illustrate the necessity for stating the distance

between the gauge points as well as the percentage extension of a

IQ 2'0 3 :

Inches

FIG. 332. Autographic record ; mild steel

under tension.
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test piece. A good method is to measure the total extension on a

length of 10 inches, also the extension on the 2 inches interval

0-38

039-

040-

041

Inch,.

FIG. 333. Dimensions of a mild steel specimen after a tension test.

which includes the fracture ;
the difference between these will be

the general extension on the remaining 8 inches of the specimen.
These extensions, expressed as per-

centages, give useful information re-

garding the ductility of the material.

Another measure of the ductility may
be obtained by measuring the cross-

sectional area of the fracture. The
loss in area may be found from this

measurement, and may be expressed
as a percentage of the original sectional

area.

Fig. 334, copied from the autographic

record of a specimen of Delta metal

under pull, is given as illustrating

totally different characteristics from the

mild-steel diagram shown in Fig. 332.

In particular, the absence of any yield

point will be noticed.

Bending tests. The records given

in Figs. 335 and 336 illustrate an

instructive test made on a mild-steel bar having a span of 36

inches, breadth 2-01 inches and depth 2-015 inches. The bar was

05 l-O 1-5 Inches

FIG. 334. Autographic record ; Delta
metal under tension.
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arranged as shown in Fig. 320 and bent by application of a central

load until the deflection was 2-6 inches. The record (Fig. 335)
shows that yielding was reached at about 7200 Ib. The test was

arrested at about 2-1 inch deflection, and the load brought to zero

and then reapplied ; the diagram shows that the new yield load is

about 9000 Ib.

Then the load was removed entirely and the bar turned over;
central loading was applied again so as to straighten the bar. The

diagram given in Fig. 336 shows the result. There is practically no

part of this test where the elastic law is followed, a fact which will

be understood readily when it is realised that the bar came out of

the former test badly overstrained both on its compression side and

10 20 s-o

Inchef
FIG. 335. Mild steel bar under bending ;

first test.

1-0 2-0 3-0

inches
FIG. 336. Mild steel bar under bending ;

second test.

on its tensile side, and, in the effort to recover some of the deflection

imposed on it, the material became self-stressed throughout. The
second test began therefore with the material in a complicated state

of stress. This test was also arrested at about 2-2 inch deflection.

On reapplication of the load, a yield load of about 10,000 Ib. will be

observed in the diagram. Had the bar been annealed after straighten-

ing, it is probable that a diagram somewhat resembling Fig. 335 for

the first test would be obtained. The tendency of the annealing is

to remove self-stressing from the material.

Fig. 337 has been copied from the autographic record obtained in

testing a cast-iron bar under bending. The bar was rectangular in

section, 2 inches wide and i^V inches deep, span 20 inches. Rupture
occurred with a central load of 3200 Ib., the maximum deflection

recorded being 0-2 inch. It will be noted that the load and
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deflection remain approximately proportional up to fracture. The
contrast of the ductile and brittle materials is rendered clear by

inspection of Figs. 335 and 337. The mild-steel bar could not be

broken by bending ;
the cast-iron bar could take a very small

deflection only.

The usual test for timber is by bending under similar conditions

to those noted above. The specimens should be of as large size

as is possible, then the effect of any local flaws such as shakes and

knots will not be emphasised, as would be the case with a smaller

specimen containing the same flaws. In Fig. 338 are given copies of

2000

o 0-2 04- Inch
FIG. 337. Cast-iron test bar under bending.

W Ib

12000

8000

4000-

Yellow deal

Teak

Oak

10 20 Inches
Deflection

FIG. 338. Bending tests on timber.

records of bending tests on yellow deal, teak and oak. The yellow

deal specimen was arranged with the annual rings nearly horizontal,

and failed by shearing horizontally along the fibres and round the

annual rings. The dimensions and results are given in the following

table:

BENDING TESTS ON THREE TIMBER SPECIMENS.

In reducing the results of tests on cast-iron and timber specimens,
it is usual to state the value of the coefficient of rupture. This

coefficient represents the value which the maximum stress at rupture
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due to bending would have if Hooke's elastic law were followed

throughout. For a beam of rectangular section supported at the

ends and having the load applied at the middle of the span, the

calculation will be as follows :

Let W = maximum load, in Ibs.

L = the span, in inches.

b = the breadth, in inches.

^=the depth, in inches.

Then

WL
4

m

L
\d 12

and Coefficient of rupture =/= -
-r-^.

Shearing tests. Autographic records of two shearing tests carried

out in the apparatus de-

scribed on p. 303 are given
in Figs. 339 and 340. The
former is for a mild-steel

specimen and the latter is

for a specimen of gun-
metal. It should be noted

that pure shear is not ob-

tained with this apparatus,

the specimen being under

bending as well as shearing.

In Older to minimise the

bending effect, the speci-

mens should be turned to

fit the bored holes in the

dies. The results of the

tests are given below.

4000

FIG. 339. Mild steel under

shearing.

0'5 Inch
FIG. 340. Gun-metal

under shearing.

SHEARING TESTS.
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Punching tests. In punching a hole in a piece of material,

the action of the punch is first to increase the pressure on the

material until the plastic stage is reached
;

in this stage, some of the metal flows from

under the punch into the surrounding plate,

the plate immediately under the punch be-

coming thinner. This effect continues until,

partly by the increasing force on the punch
and partly by the diminishing thickness of

the plate, the rupturing shear stress on the

material is attained and a wad is pushed out.

The following results of a punching test may
be of interest; the autographic record is

given in Fig. 341.

PUNCHING TEST ON A WROUGHT-!RON
PLATE.

O'-l 0'2 /rich

4000-

FIG. 341. Punching test on

wrought iron.

Thickness of the plate
= 0-265 mcn -

Diameter of the wad punched out = 0-38
inch.

Area under shear stress = ^dt=^ xo-38xo-265
= 0-317 square inch.

Maximum load on the punch = 15,750 Ib.

r 5>75Maximum shearing stress 22-2 tons per sq. inch.
0-317 x 2240

Thickness of the plate round the hole after punching = 0-268 inch.

Thickness of the wad = 0-2 5 7 inch.

Loss of thickness of material in the wad = 0-008 inch.

Gain of thickness of material round the hole = 0-003 inch.

Total work done in punching the hole, represented by the area of

the autographic record, is about 810 inch-lb.

Avery torsion machine. An outline diagram of this machine is

given in Fig. 342, where AB is the test piece. The end B is con-

nected to a worm wheel C, which may be rotated by means of a

worm D and hand wheel E. The wheel C has 90 teeth ;
hence each

quarter turn of the hand wheel twists the specimen through one

degree. The torque is measured by means of a system of levers

FG, MK and NP, connected to the end A of the specimen. NP
carries a counterpoise Q, which may be run along the lever by means

of a screw and hand wheel, and shows the torque by its position

relative to a scale attached to the lever. The scale reads from zero

to 1000 Ib.-inches: to obtain higher torque the counterpoise is run
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back to zero, and a load R is suspended from the end of the lever

and is sufficient to give a torque of 1000 Ib.-inches. The test then

proceeds to 2000 Ib.-inches by traversing the counterpoise. This

process repeated enables 5000 Ib.-inches torque to be obtained, the

lever MK resting on the knife-edge M during this stage. To increase

the torque further, the knife-edge M is lowered and L is raised

P

F
FIG. 342. Arrangement of Avery torsion machine.

simultaneously by means of a lever ;
the effect of this is to double

the value of the scale divisions on the lever NP. The effects of the

loads at R also are doubled. To reset the torque at 5000 Ib.-inches,

hang two weights at R (equivalent now to 4000 Ib.-inches) and set

the counterpoise at 500 (equivalent to 1000 Ib.-inches). The test

then proceeds as before, the capacity of the machine being now

10,000 Ib.-inches.

In testing a piece to destruction, readings are taken of the torques

and of the corresponding angles of twist by counting the number of

teeth passed by the worm-wheel
;
each tooth represents 4 degrees of

twist. Plotting these readings will give a curve such as is illustrated

in Fig. 343. The principal results of this test are given below.

TORSION TEST ON A MILD-STEEL SPECIMEN.

Laboratory No. 6, M.S., 22.3.10.

Original diameter, 0-756 inch.

Original length, 5-625 inches.

Diameter after fracture, 0-754 inch.
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Length after fracture, 5-750 inches.

Yield torque, estimated by the dropping of the beam, 2000

Ib.-inches.

Breaking torque, 6400 Ib.-inches.

Angle of twist at yield, 3-5 degrees on 5-75 inches length.

Angle of twist at breaking, 1896 degrees on 5-75 inches length.
Mean torque, from diagram, 5650 Ib.-inches.

Total work done in fracturing specimen, 187,000 inch-lb.

Work done per cubic inch of material, 74,200 inch-lb.

Lb- inches
7000

5000

4000

3000

8000

1000

400 800 1200 1600 2000

Degrees
FIG. 343. Graph of a torsion test on mild steel.

The form of the test specimen is indicated at AB in Fig. 344 ; the

same diagram also illustrates an appliance whereby angles of twist

G

FIG. 3<v. Apparatus for measuring angles of twist within the elastic limit.

within the elastic limit may be measured. C and D are two pieces

of wrought-iron steam tube turned and bored at L to an easy fit.
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Three steel pinching screws nip the specimen at E and other three

screws engage it at F. The angle of twist is measured on the length
of the specimen between E and F. C carries a micrometer micro-

scope G, balanced by means of a weight K, and D carries a rod

having a small piece of transparent celluloid at H. A radial line is

scratched on the celluloid, and is sighted through the microscope.

Lb.-inches

2000

1600

1200

800

400

Angle of twist

FIG. 345. Graph of an elastic torsion test, mild steel.

The circumferential movement of the line is given by the scale

readings of the microscope ;
these reduced to inches, and divided by

the radius of the mark sighted on the scratched line, will give angles of

twist in radians. These numbers may be plotted as shown in Fig. 345,

which illustrates the results obtained in testing the following specimen.

ELASTIC TORSION TEST ON A MILD-STEEL SPECIMEN.

Laboratory No. 2, M.S., 17.2.10.

Diameter, 0-753 inch.

Gauge points, 7-5 inches.

Value of one scale division of the microscope, 0-000377 radian.

Hooke's law broke down at 1750 Ib.-inches of torque (point A in

Fig- 345)-

Angle of twist at break-down of Hooke's law, 0-0358 radian.

Maximum stress at break-down of Hooke's law, 9-3 tons per

square inch.

From the diagram, torque T=i65o Ib.-inches, when the angle of

twist a is 0-0336 radian.

Hence,
TPT

Modulus of rigidity
= C =

4
= 5200 tons per square inch.

"
Creeping

"
of the specimen was noticed first distinctly when the

torque was 2000 Ib.-inches, i.e. at this load the machine beam would

begin to show an inclination gradually to droop under a steady load.

The point is marked B in Fig. 345, and, as will be seen, occurs a

considerable interval beyond the point A of elastic break-down.
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The total work done up to the elastic limit will be found by taking
the product of the mean torque and the angle of twist, and is 30-3
inch-lb.

To obtain the resilience, i.e. the work done per cubic inch of

material, divide the total work by the volume of the specimen
between the gauge points. The result is 9-3 inch-lb.

Cement testing. Portland cement is made by mixing chalk and

fine clay in certain proportions, burning the mixture at a clinkering

temperature, and finely grinding the resulting product. Cement of

this kind is much used for making concrete for constructional pur-

poses. Concrete consists of an aggregate of clean broken stones,

etc., to which sufficient clean sand is added to fill completely the

voids between the stones. A quantity of Portland cement is inti-

mately mixed with these, sufficient to coat the surface of every stone

and every particle of sand with cement. Water is added, and the

whole is mixed thoroughly in order to produce a plastic mass, which is

rammed into moulds prepared to give the required structural shape.

The qualities which Portland cement should possess have been

laid down by the Engineering Standards Committee, and the tests

should be carried out in accordance with the terms of their specifica-

tion,
1 a copy of which should be in the hands of the experimenter.

The fineness to which the cement has been ground is of great

importance, and is tested by means of sieves, one having 5776 holes

per square inch and another having 32,400 holes per square inch.

These sieves are made in a special way of wire having standard

diameters in terms of the specification. The residue left on the first

sieve should not exceed 3 per cent., and on the latter 18 per cent.

The specific gravity of the cement is taken now in place of

weighing the cement in bulk. This may be ascertained by use of a

specific gravity bottle having a graduated stem and containing a

measured quantity of turpentine (cement will not set in turpentine).

A measured weight W of cement is introduced into the bottle,

and its volume V may be observed from the rise in level of the

turpentine in the stem of the bottle. Then

where w is the weight of a cubic unit of water and p is the specific

gravity of the cement. The specific gravity should be not less than

3-15 for cement freshly burned and ground. 3-10 is permitted at a

period not less than four weeks after grinding.

1 British Standard Specificationfor Portland Cement, Crosby, Lockwood & Son.

Revised 1910.
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The strength of cement is determined usually by means of tensile

tests, although cement in practice is generally under compression.
Tensile tests may be carried out in a comparatively small machine,
while compression tests require a machine capable of exerting great

pressure. When compression tests are made, the test briquettes are

generally cubical ; briquettes for tensile tests are prepared in moulds

having a shape in accordance with that laid down in the standard

specification. Considerable experience is required in order satisfac-

torily to gauge or mix the cement intended for test briquettes. The

quantity of water to be used depends on the kind of cement, and

greatly influences the strength of the cement. The student can

test this easily by preparing several briquettes having water per-

centages of from 1 8 to 25, and testing these for tensile strength.

The moulds should rest on an iron plate while being filled; no

severe mechanical ramming should be necessary if the correct per-

centage of water has been used. During the first 24 hours after

filling, a damp cloth should be placed over the moulds. The

briquettes are removed from the moulds then and placed in clean

water until the strength test is carried out. The temperature

throughout should be near 60 Fah. The tensile strength of neat

cement briquettes (i.e. briquettes made of cement alone, without sand

or other material) at 7 days from gauging should not be less than

400 Ib. per square inch. Briquettes consisting of one part by weight
of cement to three parts by weight of Leighton Buzzard sand, prepared
in accordance with the terms of the standard specification, should

have a tensile strength of 150 Ib. per square inch at 7 days after

gauging.

The setting time is tested by means of a standard needle having a

flat point one millimetre square and having a total weight of 300

grams. The cement 'is taken as set when the application of the

needle fails to make an impression.

The soundness of the cement is tested by the Le Chatelier method.

A cylindrical mould having an axial split and furnished with two

long pointers is filled with cement, as directed in the standard

specification. This is kept in water for 24 hours, and then the

distance between the ends of the pointers is measured. The mould

and. cement are then boiled for 6 hours and allowed to cool. The

distance is measured again, and the increase should not exceed a

stated amount.

Cubical cement and concrete blocks, bricks and stones are tested

under compression. It is best to prepare the top and bottom

P.M. X
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surfaces by smoothly coating them with plaster of Paris in order to

give level parallel surfaces for the testing machine plates to bear

upon. Generally, the fracture is by shearing on planes roughly at

45 to the horizontal. Broken cement compression briquettes

generally resemble two square based pyramids standing apex on apex.

EXERCISES ON CHAPTER XIII.

1. The following is the experimental record of a test on a specimen of

cast iron. The object of the experiment was to determine the compres-
sion value of E for the material : Ewing's extensometer was employed.
The specimen was turned and polished.

Diameter of specimen, 0-474 inch
; gauge points, 8 inches

;
calibration

of extensometer, i scale division= j^ inch.

Find the value of E.

2. Tensile tests were carried out on a turned and polished specimen of

gun-metal. The following observations were made : Diameter of speci-

men, 0-534 inch
; gauge points, 8 inches

;
calibration of Ewing's exten-

someter, i scale division = 4 gigft inch. The extensometer readings are

given below :

Creeping was first observed at 1600 Ib. load.

Find the value of E. What is the stress when Hooke's law breaks

down for this material ? How much permanent set was given ?

3. The gun-metal specimen given in Question 2 was tested to breaking
under tension after five weeks rest. The following observations were
made :

Breaking load, 5480 Ib. ;
load at which the beam of the machine

dropped, 3600 Ib.
; stretch on a length of 8 inches, 0-85 inch ; stretch on
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a length of 2 inches, including the fracture, 0-3 inch
;
diameter at fracture,

0-479 inch. Reduce these observations, following the procedure indicated
on p. 311.

4. A mild-steel bar of square section 2 inches x 2 inches was arranged
as a beam of 60 inches span, simply supported ;

the load was applied at

the middle of the span, and the deflections at the load were measured by
means of a micrometer microscope, the calibration of which gave one

eyepiece-scale division =0-065 mm - The following observations were
taken :

Find the value of E for the material, also the maximum stress in the
bar when Hooke's law broke down.

5. A mild-steel bar 1-478 inches broad x 0-091 inch deep was arranged
as a cantilever, the load being 16-3 inches from the support. Deflection
and slope at the load were measured by means of the apparatus illustrated

in Figs. 314 and 317. The calibration of the micrometer microscope used
for observing the deflections gave one eyepiece-scale division = 0-6 mm.
In the slope observations a scale of millimetres was used

; distance from
the mirror to the scale = 566 mm. The following observations were
taken :

The beam theory gives for the ratio of deflection to slope of a cantilever

carrying a load at its free end :

A_WL3 2EI _2
z~3EI

X WL2
3

Compare the experimental ratio of A : z with that calculated.

6. A cast-iron test bar was tested under bending ; span 36 inches,

simply supported ;
breadth 1-02 inches

; depth 2-04 inches. The obser-
vations gave the central breaking load = 41 20 Ib. and the maximum
central deflection =0-5 inch. Find the coefficient of rupture.

7. The following particulars relate to tests on a model reinforced
concrete column. Height of column 24 inches

; section square, of

3 inches edge ;
main reinforcement, four mild-steel bars, each 0-31 inch

diameter, arranged at the corners of a square of i| inches edge ; secondary
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reinforcement, thirteen horizontal lacings of iron wire, 0-067 inch diameter,
about 2 inches pitch. Concrete mixture, cement 7 lb., granite chips 14 lb.,

water 3 lb. The column was made in a wooden mould, removed five days
after making and tested fourteen days after making ;

it was kept damp
throughout this time.

Observations taken : Hooke's law broke down sensibly at 9000 lb. load
;

8000 lb. load shortened the column to the extent of 0-0154 inch
;

the

column ruptured when the load reached 20,670 lb.

Taking 7/2=15, find the stress in the steel and in the concrete when
Hooke's law broke down. Assuming the elastic laws to hold up to

rupture, find these stresses at rupture. What is the value of E for the

complete column ?

8. The following observations were made during a torsion test on a

mild-steel specimen : Diameter of specimen, 0-714 inch
; gauge points of

strain indicator, 7-81 inches ;
calibration of indicator, one scale division

= 0-04 degree twist.

Find the value of C ;
also the stress at break-down of Hooke's law and

the resilience in inch-lb. per cubic inch of material.

9. A test was made in order to determine C for a copper wire by the

torsional oscillation method, using Maxwell's needle. Employing the

symbols explained on p. 297, the following observations were taken :

Find the value of C for this material.

10. Using the same Maxwell's needle, particulars of which are given in

Question 9, the following observations were made during a test for the

determination of E for steel wire by the torsional oscillations of a helical

spring. Diameter of wire, 0-081 inch
;
mean radius of helix, 0-4945 inch ;

number of complete turns in helix, 133; ^= 4-21 seconds; t^
= 2-666

seconds. Find the value of E.

11. The spring given in Question 10 was tested by the longitudinal
vibration method in order to determine C. Mass of load hung from

spring, 1-575 pounds ; mass of spring, 0-6048 pound ; time of one complete
vibration, 0-631 second. Find the value of C.

12. Use the results obtained in Questions 10 and 11, and calculate the

value of the bulk modulus K for the material of the spring ;
find also

the value of Poisson's ratio.



PART II.

MACHINES AND HYDRAULICS.

CHAPTER XIV.

WORK, ENERGY, POWER, SIMPLE MACHINES.

Work. Work is said to be done by a force when it acts through a

distance. If a body A (Fig. 346) is at rest under the action of two

equal forces P and R, no work is being done by either force
;

if the

body is moving with constant speed towards the right, work is being
done by P against the resistance R. Work is measured by the pro-

duct of the magnitude of the force and the distance through which it

acts, the latter being measured along, or parallel to, the line of the

force. In the case of a car travelling along a level road (Fig. 347) no

W

FIG. 346. FIG. 347. FIG. 348.

work is done by the weight W, nor by the reactions of the ground, as

none of these forces advance through any distance in the directions of

their lines of action. Work is done by the weight of the car in

descending an incline (Fig. 348). If the total height of descent is H,
then the work done by W will be WH. Or, the solution may be

obtained by resolving W into components P and Q respectively,

parallel and at right angles to the incline. Q does no work while the

car is descending ;
P does work to the amount P x AB.

The unit of work in general use in this country is the foot-pound,

and is performed when a force of one pound weight acts through a

distance of one foot. The foot-ton, inch-pound, and inch-ton are
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used occasionally. Metric units of work are the gram-centimetre,

the kilogram-centimetre and the kilogram-metre.

Energy. Energy means capability of doing work, and is measured

by stating the units of work capable of being performed. There are

many different forms of energy, such as potential energy, said to be

possessed by a raised body in virtue of the fact that its weight may
perform work while the body is descending ;

kinetic energy, which a

body possesses when in motion and gives up while coming to rest
;

elastic energy, possessed by a body under strain and given out while

coming back to its original form or dimensions ;
heat energy, which a

body may give up in cooling to a lower temperature ;
chemical energy,

which may be present in a substance owing to its constituents being

capable of combining in such a way as to liberate energy in the form

of heat; electrical energy, possessed by a body by virtue of its

electric potential being higher than that of surrounding bodies.

Conservation of energy. The experience of all observers shows

that the following general law is true : Energy cannot be created nor

destroyed, but can be converted from one form into another form. This law

is known as the conservation of energy. If no waste of energy were to

occur during the conversion, a given quantity of energy in one form

could be converted into an equal quantity in a different form. Exact

equality never is obtained in practice ;
there is always waste, some-

times to a very large extent. For example, in converting the energy

available in coal into mechanical work by means of a steam boiler

and engine, it is common to find wasted 90 per cent, of the energy

available, only 10 per cent, appearing in the desired form.

In measuring heat energy, the British thermal unit may be used,

one such unit being the quantity of heat required to raise the tem-

perature of one pound of water through one degree Fahrenheit. The

pound-calorie unit is likely to be used more extensively- in future,

and is the quantity of heat required to raise the temperature of one

pound of water through one degree Centigrade. The experiments of

Dr. Joule and others show that an expenditure of 778 foot-pounds

of energy will produce one British thermal unit
; 1400 foot-pounds is

the energy equivalent to a pound-calorie unit. Mechanical energy

may be converted into heat without very large waste occurring (for

example, in mechanically stirring water), but the reverse operation is

always accompanied with great waste.

Power. Power means rate of doing work. The British unit of

power is the horse-power, and is developed when work is being done

at the rate of 33,000 foot-pounds per minute. The horse-power in
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any given case may be calculated by dividing by 33,000 the work

done per minute in foot-pounds.

The electrical power unit is the watt, and is the rate of working
when an electric current of one ampere flows from one point of

a conductor to another, the potential difference between the points

being one volt. The product of amperes and volts gives watts.

746 watts are equivalent to the mechanical horse-power. When the

amperes and volts are stated, we have

amperes x volts
Mechanical horse-power

746
The Board of Trade unit of electrical energy is- one kilowatt main-

tained for one hour. One horse-power maintained for one hour

would produce 33,000 x 60 or 1,980,000 foot-pounds. The kilowatt-

hour would therefore produce energy given by

Energy = 1,980,000 x -Vrrr

= 2,654,000 foot-pounds.

Machines. A machine is an arrangement designed for the purpose
of taking in energy in some definite form, modifying it, and delivering

it in a form more suitable for the purpose
in view. Machines for raising weights are

arranged conveniently in most mechanical

laboratories, and experiments on such are

very instructive. Fig. 349 shows, in outline,

a small crab which may be taken as a type

of such machines. A loadW Ib. is suspended
from a cord wrapped round a drum, and is

raised by the action of another load P Ib.

attached to a cord coiled round an operating

wheel. The wheel and drum are connected

by means of toothed wheels, so that P descends as W ascends.

The velocity ratio of such a machine is defined as the ratio of the

distance moved by P while W ascends a measured distance. Let H
and h be these distances respectively in inches (Fig. 349) ; they may
be measured direct in the machine. Then

TT

Velocity ratio = V = -- r
(

i
)

Let P be so adjusted that it will descend with steady speed on

being started by hand, thus raising a load W. The mechanical

advantage of the machine is defined by

Mechanical advantage = -= (2)

FIG. 349. Outline diagram of

an experimental crab.
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By the principle of the conservation of energy, if no waste of

energy occurs in the machine, the work done by P would be equal
to the work done on the load. Suppose, in these circumstances,

that the same working force P is employed, a larger load W
1
Ib. could

be raised than would be the case in the actual machine. W
1 may be

calculated as follows :

Work done by P = work done on W
1 ,

PH^Wj/z,

W
l
= P - = PV

= P x the velocity ratio............. (3)

The effect of frictional and other sources of waste in the actual

machine has been to diminish the load from W
1
to W. Hence,

Effect of friction = F = Wj - W
-FV-W............................ (4)

Efficiency of machines. The energy supplied to the machine is

PH inch-lb. ^Fig. 349), the energy actually given out by the machine

is Wh inch-lb. The efficiency of the machine is denned by

. energy given out
Efficiency = p =-

energy supplied

__
PH~PV

_ mechanical advantage

velocity ratio

The efficiency thus stated will be always less than unity. Efficiency

is often given as a percentage, obtained by multiplying the result

given in (5) by 100. 100 per cent, efficiency could be obtained only

under the condition of no energy being wasted in the machine, a

condition impossible to attain in practice.

From equation (3), we have

w,,pH,

A result which shows that the mechanical advantage of an ideal

machine having no waste of energy is equal to the velocity ratio.

For machines of the type described above, the following equation

may be stated :

Energy supplied = energy given out + energy wasted in the machine.
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Occasionally machines have to be considered in which there are

internal springs or other devices for storing energy. In such cases

the equation becomes :

Energy supplied
= energy given out + energy stored in the machine

+ energy wasted in the machine.

A machine is said to be running light when no energy is being

given out. If no energy is being stored in a machine running light,

then the energy supplied must be sufficient to make good the energy
wasted in overcoming the resistances in the machine.

Reversal of machines. A machine in which the frictional re-

sistances are small may reverse if P is removed. To investigate this

point, consider the machine when W i being raised (Fig. 349) :

Energy supplied
= PH,

Energy given out = W/,

Energy wasted =PH-W> (7)

Now let P be removed and let the conditions be such that W is

just able to reverse the machine. Let W descend through a height h.

1 hen Energy supplied and wasted in the machine = Vfh (8)

Assuming that this waste has the same

value as when W is being raised, we

have, from (7) and (8),

FIG. 350. A small lifting crab.

W* i

Or, Efficiency = p^y
= -

Hence, when W is being raised, the

efficiency will be 50 per cent, for reversal

to be possible if P is removed. Any
value of the efficiency exceeding 50 per

cent, would be accompanied by the

same effect.

The following record of tests on a lifting crab will serve as a

model for carrying out experiments on laboratory machines.

EXPERIMENT ON A SMALL LIFTING CRAB.

Date of test, loth February, 1911.

The machine used was constructed by students in the workshops
of the West Ham Technical Institute. Its general arrangement in
"
single-gear

"
is shown in Fig. 350. A weight W is suspended from
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a cord wrapped round a drum A. Motion is communicated to A by
means of toothed wheels B and C ; these are of gun-metal with

machine-cut teeth. Energy is supplied by a descending weight P,
which is attached to a cord wrapped round a wheel D.

The object of the experiments was the determination of the

mechanical advantage and efficiency for various loads.

By direct measurement of the distances moved by P and W, the

velocity ratio was found to be = 8-78.
The weight of the hook from which W was suspended is 1-75 Ib.

The weight of the scale pan in which were placed the weights

making up P is 0-665 Ib.

The machine having been first oiled, the weights W and P were

adjusted so as to secure descent of P with steady speed. The
results obtained are given below.

RECORD OF EXPERIMENTS AND RESULTS.

Curves are plotted in Fig. 351 showing the relation of P and W
and also that of F and W. It will be noted that these give straight

lines. Curves of mechanical advantage and of efficiency in relation

to W are shown in Fig. 352. It will be noted that both increase

rapidly when the values of W are small and tend to become constant

when the value of W is about 120 Ib. The efficiency tends to

attain a constant value of 86 per cent.
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FIG. 351. Graphs of F and W, and P and W, for a small crab.

EFFICIENCY
PER CENT

100

MECHANICAL
ADVANTAGE

10 20 30 40 50 60 70 80 90 100 MO 120

FIG. 352. Graphs of efficiency and mechanical advantage for a small crab.

As both of the curves showing the relation of P and of F with W
are straight lines, it follows that the following equations will represent

these relations : p = a\y + b, (
i )

F = <W + 4 (2)

where a, b, c and d are constants to be determined.



332 MACHINES AND HYDRAULICS

Select two points on the PW graph, and read the corresponding
values of P and W.

P= 3-5 Ib. when W= 22-7 Ib.

P=i6-olb. when W=i2o-olb.

Hence, from (i), 3.5
= 22-7^ + ^,

16= i2oa + l>.

Solving these simultaneous equations, we obtain

= 0-128,

^ = 0-64;

Similarly,

When F= 8 Ib., W= 20 Ib.

WhenF=i81b., W=ioolb.

Hence, from (2), 8= 2oc + d,

1 8 = i ooc + d.

The solution of these gives

;= 0-125,

FIG. 353. Pulley
blocks.

Hence, F = o-i25W + 5'5 (4)

Suppose the machine to be running light, then

W =
o, and the corresponding values of P and F obtained from

(3) and (4) are p = .64 ft.,

F= 5
.

5 lb.

The interpretation is that a force of 0-64 Ib. is required to work
the machine when running light, and that, if there

were no frictional waste, a load of 5-5 Ib. could be
raised by this force.

Hoisting tackle. The fact that the mechanical

advantage of a machine, neglecting friction, is equal
to the velocity ratio, enables the latter to be cal-

culated easily in cases of hoisting tackle. A few

such appliances, which may be found in most

laboratories, are here given.

In the pulley-block arrangement shown in Fig. 353,

let n be the number of ropes leading from the

lower to the upper block. Neglecting friction,

i
th

each of these ropes will support
- of W, and this

will also be the value of P. Hence,

W_W_ TW
V

-p- "TIT" ^* FIG. 354- Weston's
* differential blocks.
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A set of Western's differential blocks is shown in outline in Fig. 354 ;

the upper block has two pulleys of different diameters, and a chain,

shown dotted, is used. The links of the chain passing round these

pulleys engage with recesses which prevent slipping. Neglecting

friction, each of the chains A and B will support JW. Taking
moments about the centre C of the upper pulleys, and calling the

radii R and r respectively, we have

!\V x CD = (P x CF) + (|W x CE),

Instead of R and r, the number of links which can be fitted round

B

W
FRONT ELEVATION END ELEVATION

FIG. 355. Wheel and differential axle. FIG. 356. Helical blocks.

the circumferences of the pulleys may be used : evidently these will

be numbers proportional to R and r.

The wheel and differential axle (Fig. 355) is a similar contrivance,

but has a separate pulley A for receiving the hoisting rope. Taking

moments as before, we have

y.-
W =
p

A set of helical blocks is shown in outline in Fig. 356. A is
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operated by hand by means of a hanging endless chain and rotates

a worm B, which in turn advances the worm wheel C one tooth for

each revolution of A. If there be nc teeth on C, then A will rotate

nc times for one revolution of C, and P will advance a distance

CLA ,
which is equal to nc times the length of the number of links

of the hanging chain which will pass once round A. The chain

sustaining the load W is fixed at E to the upper block, passes round

F, and then is led round D, which has recesses fitting the links in

order to prevent slipping. Let LD be the length of the number

of links which will pass once round D. Then in one revolution of

D, W will be raised through a height equal to4LD . Hence,

EXPTS. 33 to 37. Experiments on the hoisting appliances de-

scribed above should be carried out and the results reduced by
methods similar to those explained for a small crab on p. 329.

Diagram of work. Since work is measured by the product of

force and distance, it follows that the area of a diagram in which

ordinates represent force and abscissae represent distances will

p

Oi. -D -J
FIG. 357. Diagram of work
done by a uniform force.

o o
FIG. 358. Diagram of work
done by a varying force.

represent the work done. A uniform force P pounds acting through
a distance D feet does work which may be represented by the area

of a rectangle (Fig. 357). To obtain the scale of the diagram :

Let i inch height represent p Ib.
;

i inch length represent d feet.

Then one square inch of area will represent pd foot-pounds of

work. If the area of the rectangle is A square inches, then

Work done =pdK foot-lb.

In the case of a varying force, the work diagram is drawn by

setting off ordinates to represent the magnitude of the force at

different intervals of the distance acted through (Fig. 358). A fair

curve drawn through the tops of the ordinates will enable the force

to be measured at any stage of the distance. The work done is the

product of the average force and the distance, and as the average
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force is given, to scale, by the average height of the diagram, and

the distance, to scale, b^ the length of the diagram, we have, as

before, the work done represented by the area of the diagram.

Using the same symbols as before, one square inch of area represents

pd foot-pounds of work, and the total work done will be given by

Work done=dA foot-lb.

The area A may be measured by means of a planimeter, or by use

of any convenient mensuration rule (p. 6).

The case of hoisting at steady speed a load from a deep pit is of

interest (Fig. 359). Let W
l

Ib. be the weight of the cage and load,

and let W
2 Ib. be the total weight of the vertical rope when the cage

is at the bottom, a depth of H feet. At first the pull P Ib. required

at the top of the rope will be (Wl
+W2)

Ib. P will diminish gradually

FIG. 359. Diagram of work
done in hoisting a load.

FIG. 360. Work done in raising
a body.

as the cage ascends, and will become equal to \V
l
when the cage

is at the top. The work diagram for hoisting the cage and load alone

is a rectangle ABCD, BC and AB representing Wj and H respec-

tively ;
the diagram for hoisting the rope alone is DCE, in which

W
2

is represented by CE. From the diagrams, we have

Total work done = (
W

l + 1W2)
H foot-lb.

Work done in elevating a body. It will be shown now that the

work done in raising vertically a given body may be calculated by

concentrating the total weight at the centre of gravity. Referring to

Fig. 360, let ze^, z#
2 , etc., be the weights of the small particles of

which the body is composed, and let h^ //
2 , etc., be their initial
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heights above ground level, and let //, /*
2 ', etc., be their final

heights. Then
Work done on w

l
=w

l (h-{
-

h-^

and Work done on w^ w^(h^-h^^ etc.

Hence,

Total work done = (w^ +w^ + etc.)
-
(wji^ +w2

/i
2 + etc.)

FIG. 361. Thomson indicator.

Let G and G' be the initial and final positions of the centre of

gravity of the body, situated respectively at heights H and H', and

let W be the total weight of the body. Then
WH' = 2ze/#(P- 49)

and
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Hence, Total work done = WH' -WH
= W(H'-H).

Therefore the total work done in raising a body may be calculated

by taking the product of the weight of the body and the vertical

height through which the centre of gravity has been raised. This

method is equivalent to concentrating the total weight at the centre

of gravity.

Indicated work and horse-power. An indicator is an instrument

used in obtaining a diagram of work done in the cylinder of an

engine. The essential parts of an indicator are shown in Fig. 361.

A small cylinder A is fitted with a piston B, which is controlled by a

helical spring C. Connection is made at D to the engine cylinder ;

E is a stop cock. The piston B is connected by means of a piston

rod to a lever system having a pencil fixed at P
;
the function of the

lever system is to guide P in a straight vertical line, and to give it an

enlarged copy of the motion of the piston B. As the spring follows

Hooke's law, it follows that the movement of P will represent a

definite pressure in pounds per square inch for each inch of vertical

travel. The pencil moves over a piece of paper wrapped round a

drum F. The drum is rotated in one direction by means of a cord

G, and is brought back again by means of an internal spring. The
cord G is actuated by some reciprocat-

ing part of the engine which gives it

a reduced copy of the motion of the

engine piston. Hence a diagram will be

drawn on the paper showing pressures

in the engine cylinder by its ordinates,
*

L

and distances travelled by the engine FIG. 362.-Work done during the

piston by its abscissae (Fig. 362). The
curve abc is for the forward travel of the piston, actuated by the

steam or other pressure, and the curve cde is for the backward travel,

and shows the exhaust.

The work done during the stroke may be found by first obtaining

the average height of the diagram inclosed by the curves in inches

and multiplying this by the scale of pressure ;
the result gives the

average pressure on the piston in pounds per square inch.

Let A = the effective area of the piston, in square inches.

L = the length of the stroke, in feet.

pm = the average pressure, in Ib. per square inch,

Then Work done per stroke =/mAL foot-lb.

P.M. Y
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In the case of a double-acting steam engine, the diagram of work

for the other side of the piston will resemble Fig. 363. The effective

T^\2

area of one side of the piston (Fig. 364) will be -
,
and of the other

IT
4

side -
(D

2 -
d^\ Let p'm be the average pressure for the latter side

4

of the piston. Then

Work done per revolution = (/m +/m -
(I)

2 - </
2
)) L ft.-lb.144 J

The work done per minute will be obtained by multiplying by N,
the revolutions per minute, and the indicated horse-power, written I.H.P.,

by dividing the result by 33,000.

Rough calculations are made often by neglecting the piston rod;
T-J2

thus A will be assumed as -- for each side of the piston. A mean
4

pressure / is taken as \(pm,+p'ni) and used for both sides of the

FIG. 363. Work done during the
return stroke.

Id

r
FIG. 364. Double-acting steam

engine cylinder.

piston. The calculation for indicated horse-power will be given

approximately by 2MLN
I.H.P. = -^

,

33000

where N, as before, is the revolutions per minute.

In the case of a gas or oil engine, in which one side only of the

piston is used, the other side being open to the atmosphere, the

indicator diagram (Fig. 365) is used in the same manner to obtain

the mean pressure. The work done during the cycle will be given
by Work done =/AL.

Let NE = number of explosions per minute.

Then ,.H.P.=-^k
33000

The indicated horse-power may be taken as a measure of the

energy given to the engine piston during a stated time. A fraction

only of this can be given out by the engine, the difference represent-
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ing horse-power expended in driving the engine itself and overcoming
the fractional resistances of its mechanism.

FIG. 365. Indicator diagram from a gas engine cylinder.

Brake horse-power. Provided the engine is not too large, the

horse-power which the engine is capable of giving out in doing
useful work may be measured by means of a brake. The result is

called the brake horse-power, written B.H.P. It is evident that the

efficiency of the engine mechanism will be given by

a. . power given out
Mechanical efficiency

= rr -

power supplied

B.H.P.

I.H.P.

This may be expressed as a percentage by multiplying by 100.

The horse-power expended in overcoming the frictional resistances

of the mechanism will be

H.P. wasted in the engine = I.H.P. -B.H.P.

Work done by a couple. Let equal forces P
l
and P

2 lb., forming
a couple (Fig. 366), act on a body free to rotate about an axis at O
and let the body make one revolution. As P

]
does not advance

through any distance, it does no work. P
2

advances through a distance 2ird feet, where d
is the arm of the couple in feet. Hence,
Work done by the couple per revolution

= Po x 2ird

27T

FIG. 366. Work done
by a couple.

= moment of couple x angle of rotation

in radians.

The units of this result will be foot-lb. if the moment of the couple
is stated in Ib.-feet units. It is evident that any axis of rotation
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perpendicular to the plane of the couple may be chosen without

altering the numerical result, because a couple has the same moment
about any point in its plane (p. 59). Since the work done will be

proportional to the angle of rotation, we have

Work done = (moment of couple in Ib.-feet x a) foot-lb.,

where a is the total angle turned through in radians.

Let N = revolutions per minute,

T = moment of couple, in Ib.-feet.

Then Angle of rotation = 2?rN radians per minute ;

Work done per minute = T x 2?rN foot.-lb.

Advantage is taken of this result in estimating the brake horse-

power of an engine.

Brakes. In the more usual form of brakes, frictional resistance is

applied to the flywheel of the engine by means of a band. Rotation

of the band is prevented by means of pulls applied by dead weights,

or by spring balances. From the observed values of the pulls, the

moment of the applied couple may be calculated. This, together

with the revolutions per minute, enables the work done per minute

and the horse-power to be calculated.

As the work done against the frictional resistance of the band is

transformed into heat, and thus will cause the temperature of the

wheel to rise, it is often necessary to adopt some means of cooling

the wheel.

Rope brakes. A simple form of brake is shown in Fig. 367, and

consists of two ropes passed round the wheel and prevented from

slipping off sideways by means of wooden brake blocks, four of which

are shown. A dead weight W is applied to one end of the ropes

and a spring balance applies a force P to the other end. The net

resistance to rotation will be (W -
P), and this constitutes one force

of the couple. The other equal force is Q, and arises from a pressure

applied to the wheel shaft by its bearings. The forces W and P are

applied at a radius R, measured to the centre of the rope. Hence,

the moment of the couple applied is (W -
P)R.

Let W = dead load, in Ib.

P = spring balance pull, in Ib.

R = radius to the rope centre in feet.

N = revolutions per min.
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Then Work done per revolution = (W -
P)R . 2ir foot-lb.

min. =
(
W -

P) 27rRN foot-lb.

(W-P)27rRNBrake horse-power = .

33000

In using a brake of this pattern, it is advisable to have W attached

by a loose rope to an eyebolt fixed to the floor. This device will

prevent any accident should the brake jam or seize.

Section of
wheel rim

FIG. 367. Simple rope brake. FIG. 368. Rope brake for small powers.

In cases when the power is small, it may be better to pass the

ropes round half the circumference of the wheel only (Fig. 368),

using a spring balance at each end. The brake horse-power may be

calculated from

(P1
-P

2)
27rRN

B.H.P. = V *
.

33000

This plan has an advantage in the fact that

both spring balances are assisting to sustain the

weight of the wheel, and thus partially relieve

the shaft bearings of pressure. Hence there

will be lower frictional resistances in the engine
and a slightly improved mechanical efficiency.

A leather strap may be substituted for ropes
in this kind of brake.

Cooling of the wheel may be effected by

having its rim of channel section (Fig. 369) and

running cold water in through a pipe A having a regulating valve.

Centrifugal action maintains the water in the rim recess, provided

FIG. 369. Arrangement for

cooling the brake wheel.
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the speed of rotation be sufficient. The heated water is removed

gradually by means of a scoop pipe B having a sharpened edge,

.and thus a continuous water circulation is maintained.

Band brake. An excellent form of brake has been designed by

Professor Mellanby of the Royal Technical College, Glasgow. An

application of this brake to the flywheel of a steam engine of about 1 5

horse-power in the author's laboratory is shown in Fig. 370. A number

of wooden blocks A are arranged round the circumference of the wheel,

B

View of the

togglejoint

FIG. 370. Mellanby type of band brake.

and are held in position by hoop iron bands B, B. The brake bands

are in halves, connected at C by means of long adjusting bolts fitted

with lock nuts, and at D by means of toggle joints, by use of which

the tension of the bands may be adjusted. A dead load W is hung
from a pin E, which is attached to the brake hoops by four rods. A
spring balance applies a pull P through a similar arrangement on

the other side of the brake. There is a short column G fixed to the

floor and slotted at its top end so as to restrict the movements of the

pin F. Details of the toggle joint are shown separately. Two
blocks Kj and K

2
are connected by four links H and pins to the
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brake bands B. The blocks Kj and K
2 may be made to approach one

another and thus shorten the brake bands by means of the long bolt

and the hand wheel M
;
a feather key in K

x prevents rotation of the

bolt. Helical springs N, N assist the adjustment,

In use, P and W are adjusted very easily so as to be equal. Hence

a pure couple is applied to the wheel, and the shaft bearings are

relieved of carrying any of the dead load W. The toggle-joint

adjustment is very good, and enables the frictional resistance of this

particular brake to be adjusted within very fine limits. In the ori-

ginal large form, a dash-pot is introduced at G to subdue oscillations

of the brake. This has not been found necessary in the smaller

brake used by the author.

It will be noted that both P and W offer resistance to rotation.

Let d= horizontal distance between P and W in feet.

Then B.H.P. =
33000 33000

provided P and W are adjusted so as to be equal. If they are not

exactly equal, then their mean, J(W + P), should be taken, giving

B.H.P. =
33000

33000

FIG. 371. Brake for high speeds of rotation.

High-speed brake. In Fig. 371 is shown a brake for high speeds
of rotation. The brake wheel consists of a flanged wheel mounted
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on the second motion shaft of a De Laval steam turbine, and runs

at 3750 revolutions per minute. The brake blocks A, A are made of

Wood, and are pressed to the wheel by means of two bolts B, B fitted

with wing nuts and helical springs C, C, the latter rendering it easy

to adjust and maintain the desired pressure, A steel band 1) is fixed

to the brake blocks, and serves to keep the parts together when
the brake is removed and also for the application of the loads W

x

and W2
. The whole contrivance is balanced when Wj and W

2 are

removed (leaving the suspending rods F, F in position); hence the

effective force is (W l
- W

2)
Ib. at a radius R feet.

(W,- W2)2jrRN
B.H.P. =- 3 .

33000

Other methods of estimating effective horse-power. Hydraulic
brakes have been used for fairly high powers. The principle of

such brakes is to fit a badly designed centrifugal pump to the

engine shaft. The pump wheel and casing are so constructed as

to set up violent eddies in the water, with the result that there is

considerable resistance opposed to rotation of the wheel. The pump
casing is capable of rotating with the wheel, but is prevented from so

doing by an attached lever and dead weight. The moment of this

weight gives the couple required for the estimation of the energy

absorbed. Brakes of this type were introduced by Professor Osborne

Reynolds, and in his hands served not only for determining the horse-

power of the engine, but also for the determination of the mechanical

equivalent of heat. The latter experiment was carried out by

observing the quantity and rise of temperature of the water passed

through the brake in a given time.

The brake or effective horse-power of very large engines cannot be

determined experimentally by use of a brake. If electrical generators

are being driven, a close estimation may be made from the electrical

energy delivered from the generator, making allowance for electrical

and mechanical waste in the machine.

In electrical installations driven by steam turbines, the electrical

horse-power alone can be measured, as no indicator diagrams can be

obtained from turbines.

Shaft horse-power. Where turbines are adopted on board ships

for driving the propellers, the shaft horse-power is measured, and corre-

sponds to the brake horse-power. The method consists in measuring

the angle of twist in a test length of the propeller shafting by means

of a torsion-meter. The test length is calibrated carefully before

being placed on board, and should be re-calibrated at intervals, so
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that a curve is available showing the moment of the couple required

to produce a given angle of twist. The turning moment on the shaft

is obtained from the angle of twist indicated by the torsion-meter.

Let T = turning moment, in Ib.-feet.

N = revolutions per min.

TX 27TN
Then Shaft horse-power =

33000

Shaft calibration In Fig. 372 is shown the method employed
at the Thames Iron Works engine department for calibrating the

M

P

Pf

FIG. 372. Arrangement for calibrating a shaft for shaft horse-power.

test length of shaft
;

the view is a plan. The shaft AB has

flanged ends solid with the shaft, and is bolted at A to a

very rigid bracket C
;
a bearing at D supports the other end. A

beam EF is bolted to the end B of the shaft, and couples may
be applied by means of the upward pull of a 5 -ton Denison

weigher at E, and the equal downward force applied by placing

weights in a skip hung from F. GH, KL and MN are balanced

arms fixed to the shaft, and have verniers and scales at the ends

H, L and N which serve to measure the angle of twist inde-

pendently of the torsion-meter. The arm GH is bolted to the

flange at A, and indicates any yielding of the bracket C or of the fix-

ing of the shaft to the bracket. The difference of the readings at L
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and N will give the angle of twist of the shaft between the arms KL
and MN, and will not be affected by any yielding of the bracket or

other fixings.

The torsion-meter is fixed to the shaft at OP, and is of the

Hopkinson-Thring type ;
the lamp and scale are situated at Q. In

Fig. 373 is shown the arrangement of the torsion-meter. C is a

sleeve made in halves and clamped to the shaft AB, which it grips at

its left-hand end. D is a collar, also made in halves, and clamped to

the shaft. The angle through which C twists relative to D is

measured by means of a small mirror at E. The mirror may rotate

slightly about a radial axis on the collar D, and is controlled by a

short rod attached to the sleeve

C at F. A ray of light from the

lamp H is reflected and changed
in direction horizontally by the

mirror. Two mirrors are used

at E, placed back to back, and

the ray is reflected to the scale

when E arrives at the top and

also when it is at the bottom
;

FIG. 373. Hopkinson-Thring torsion-meter.

when at the top, the ray is re-

flected to the left part of the

scale, and is reflected to the

right part when E arrives at the

bottom. Owing to the rapid

rotation of the shaft, these inter-

mittent rays produce practically a continuous light on the scale. A
separate fixed mirror (not shown in the illustration) is attached to the

sleeve and serves as a zero .pointer on the scale. The scale and lamp
are carried on trunnions to facilitate the preliminary adjustment

required in order to secure that both zero mirror and movable mirror

give the same scale reading when there is no torque on the shaft.

The following records were obtained by Mr. C. H. Cheltnam

during a calibration test with the apparatus described above :

CALIBRATION OF A PROPELLER SHAFT.

External diameters of the shaft between the vernier arms :

12-25 inches for a length of 6 inches ;

11-375 inches for a length of 24-75 inches;

11-25 inches for a length of 134 inches.

Diameter of the hole in the shaft, 6-75 inches.
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Distance between the clamping planes of the vernier arms, 164-75
inches.

Radius of the vernier arms, 114-6 inches.

(Since one radian = 5 7-3 degrees, a movement of 2 inches at the

vernier represents one degree twist on a length of shaft of 164-75

inches.)
External diameter of the shaft at the torsion meter, 11-25 inches.

Diameter of the shaft hole at the torsion meter, 6-75 inches.

Distance between the clamping planes of the meter, 33-625 inches.

One division on the torsion-meter scale corresponds to an angle of

twist of -- degrees.

LOG OF TEST.

The torques and angles of twist obtained from the vernier readings
are plotted in Fig. 374; in Fig. 375 the torsion-meter readings and

torques have been plotted ;
both give straight lines.

Deynu Scott readings

Fiu 374. Graph of the vernier readings. FIG. 373. Graph of the torsion-meter readings.
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To check the meter readings, the modulus of rigidity is calculated

(a) from the vernier readings, (b) from the meter readings.

(a) The torque at No. 6 is 100800 x 12 = 1,209,600 Ib.-inches, and

gives an angle of twist of 0-6950 degree = 0-012 13 radian. Using

equation (5) (p. 255) for the angle of twist of a hollow shaft, viz.

2TL
a =

/T. d T) 4\r- radians, (i)

and modifying it to suit the case of a shaft of three different external

radii Ra , R&, Rc ,
and corresponding lengths La , L&, Lc ,

the same

torque being applied throughout, we have

2TLC

or

4

Lc 1

e
4 - R2

4
JRa

4 - R2
4

R&
4 - R2

4

= 2X 12096001" 6 24-75
,

T 34 "I~
TT x 0-01213 [>i25

4 -
3-375

4

s-687
4 -

3-375' 5-625^
-
3'375

4
J

= 11,774,000 lb. per square inch.

(b) The torque at No. 6 is 1,209,600 Ib.-inches, and gives a scale

reading on the meter of 92-5. Hence,

a =
638

* 92 '

5 *
5^3

= '00253 radian>

From (i), C

2 x 1209600 x 33-625

~7r(5-625
4

3'375
4

)
x 0-00253

= 11,742,000 lb. per square inch.

The agreement of these values of C is close enough testimony to

the accuracy of the meter. To obtain the shaft horse-power constant,

we have ^ XT
ou r u T X 27rN
Shaft horse-power = ,

33000

where T is the torque in Ib.-feet and N is the revolutions per minute.

At No. 6, the torque is 100,800 Ib.-feet and the meter reading is

92-5 scale divisions. Hence,
100800

Torque for one scale division = -
92-5

= 1090 Ib.-feet.
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Let the meter reading be n scale divisions. Then

T= logon Ib.-feet.

109072 x 27rN

33000"
i
#N

4-82

Hence, Shaft horse-power =

EXAMPLE. At the steam trial of the vessel to which this shaft was

fitted, the mean meter reading was 98 scale divisions at 300 revolutions

per minute. Find the shaft horse-power.

Shaft horse-power= - N
4-02

Transmission dynamometers are sometimes used for estimating

the horse-power required to drive a given machine. The principle of

the Froude or Thorneycroft dynamometer is shown

in Fig. 376. A is a pulley on the line shaft
;
B is

a pulley on a shaft connected to the machine to be

driven. A drives B by means of a belt passing

round pulleys C and D which are mounted on a

frame pivoted at F. When power is being trans-

mitted, the pulls Tj, Tj of the belt are greater than

T
2 ,
T

2 ; hence a force P applied to the frame at G
is necessary in order to preserve equilibrium. Taking
moments about F, we have

P x GF = (2TX
x FC) -

(2T2
x FD).

The arms FC and FD are usually equal. Hence,

PxGF = 2FC(T1
-T

2),

or

FIG. 376. Froude or

Thorneycroft dyna-
mometer.

Let

Then

R = the radius of pulley B in feet.

N = revs, per min. of pulley B.

(T 1
-T

2) 27rRN
H.P. = * * K .

33000

The more usual method now adopted is to drive the machine
direct by means of an electro-motor and measure the electrical

horse-power consumed.
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EXERCISES ON CHAPTER XIV.

1. Calculate what useful work is done in pumping 1000 gallons of

water to a height of 60 feet. If this work is done in 25 minutes, what

horse-power is being developed? Suppose that the efficiency of the

pumping arrangements is 55 per cent., and find what horse-power must be

supplied.

2. A load of 4000 Ib. is raised at steady speed from the bottom of a,

shaft 360 feet deep by means of a rope weighing 10 Ib. per yard. Calcu-
late the total work done, and draw a diagram of work.

3. A loaded truck has a total weight of 15 tons. The frictional

resistances amount to 12 Ib. per ton. Calculate the work done in hauling
it a distance of half a mile (a) on a level track, (b) up an incline of

i in 80.

4. Find the price in pence per 1000 foot-lb. of energy purchased in

the following cases :

(a) Coal, of heating value 15,000 British thermal units per pound, at

16 shillings per ton.

(b) Petroleum, of heating value 19,500 British thermal units per pound,
at lod. per gallon weighing 8-2 Ib.

(c) Gas, of heating value 520 British thermal units per cubic foot, at

2-25 shillings per 1000 cubic feet.

(d} Electricity, at i-$d. per Board of Trade unit.

5. In a machine used for hoisting a load the velocity ratio is 45, and
it is found that a load of 180 Ib. can be raised steadily by application of a

force of 12 Ib. Find the mechanical advantage, effect of friction and the

efficiency. Would there be any danger of reversal if the force of 12 Ib.

were removed ?

6. A load of 1200 Ib. is raised by means of a rope provided with an

arrangement for indicating the pull at any instant. The following obser-

vations were made :

Find approximately the work done on the load.

7. The cylinder of a steam engine is 30 inches in diameter, and the

stroke of the piston is 4 feet. The piston rod is 5 inches in diameter.

Suppose the mean pressure for both sides of the piston to be 65 Ib. per

square inch, what will be the horse-power at 75 revolutions per minute?

8. A rope brake is fitted to a flywheel 3 feet in diameter to the rope
centre and running at 220 revolutions per minute. It is desired to absorb

7 brake horse-power. What should be the difference in the pulls at the

two ends of the rope ?

9. A shaft 6 inches in diameter runs at 180 revolutions per minute
and transmits 900 horse-power. Assume the torque to be uniform, and
calculate its value.
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10. In Question 9 a torsion-meter is fitted to a shaft at points 6 feet

apart. Taking C to be 5500 tons per square inch, what angle of twist, in

degrees, will be indicated by the instrument ?

11. In calibrating a propeller shaft by use of the apparatus illustrated

in Fig. 372, the following observations were made : External and internal

diameters of the hollow shaft, 7 inches and 4-017 inches respectively ;

distance between the clamping planes of the vernier arms, 51 inches
;

distance between the clamping planes of the torsion-meter, 25-5 inches
;

radius of the vernier arms, 105 inches. 24,000 divisions on the meter scale

correspond to an angle of twist of i radian.

Fill in the blank columns. Plot (a) torque and angle of twist by
verniers, (b] torque and angle of twist by meter. Find and compare the

torques required to produce o-ooi radian twist on a length of 51 inches,

(c] by verniers, (d) by meter
; (e) find the modulus of rigidity from the

vernier readings ; (/) find the shaft horse-power constant from the meter

readings. On steam trials the mean torsion-meter reading was 98-5 and
the revolutions per minute 665 ; (g) find the shaft horse-power.

12. Estimate in ton-inches the maximum torsion of a shaft driven by
an engine of 500 I.H.P. at a speed of 200 revolutions per minute, allowing
an efficiency of 85 per cent, and a ratio of maximum to mean turning
effort of 1-25. (I.C.E.)

13. A destroyer has a solid circular propeller shaft, 9^ inches in

diameter, which makes 400 revolutions per minute. A torsion-meter,
fixed to the shaft, shows that the angle of twist over a length of 20 inches
is 0-15. If the modulus of rigidity is 5000 tons per square inch, find the

horse-power transmitted through this shaft. (B.E.)

14. Explain how the work done by a varying force can be measured by
means of an indicator diagram. The pressure on a piston P working in

a cylinder AB of length 3 feet is proportional to its distance from A. If

the pressure on the piston at B is 150 Ib. weight, draw a diagram showing
the pressure in any position, and find the work done as the piston moves
from B to A. (L.U.)

15. Describe a differential pulley block. The diameters of the two
grooves are 12 and 11-5 inches, what is the velocity ratio? Experiments
are made on this pulley block when a load W is lifted by an effort E.
When W was 600 Ib. E was 26 Ib., and when W was 300 Ib. E was 18 Ib. :

what is E probably when W is 800 Ib.? What is the efficiency when W
is8oolb.? (B.E.)
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16. An electrometer lifts 80 tons of grain 100 feet high ;
the electric

energy costs 40 pence at the rate of 2 pence per unit. How much electric

energy is used ? What is the efficiency of the lifting arrangements ?

(B.E.)
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CHAPTER XV.

FRICTION

Definitions. When two bodies are pressed together it will be

found that there is a resistance offered to the sliding of one upon the

other. This resistance is called the force of friction. The force which

friction offers always acts contrary to the direction of motion of the

body, or, if the body is at rest, the force tends to prevent motion.

Let two bodies A and B (Fig. 377 (a)) be pressed together so that

the mutual pressure perpendicular to the surfaces in contact is R. Let

B be fixed, and let a force P,

parallel to the surfaces in
>[,R

contact, be applied. If P is A
not large enough to produce //)//////! ;// .

sliding, or, if sliding with B
jR ^/AI!

R

steady speed takes place, B '*'

will apply to A a frictional

force F equal and opposite to P (Fig. 37 7 ()). The force F may
have any value lower than a certain maximum, which depends on the

magnitude of R and on the nature and condition of the surfaces in

contact. If P is less than the maximum value of F, sliding will

not occur
; sliding will be on the point of occurring when P is

equal to the maximum possible value of F. It is found that the

frictional resistance offered after steady sliding conditions have been

attained is less than that offered when the body is on the point

of sliding.

Let YS
= frictional resistance in Ib. when the body is on the

point of sliding.

Ffc = frictional resistance in Ib. when steady sliding has

been attained.

R = perpendicular pressure in Ib. between the surfaces

in contact.

D.M. z
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Then

are called respectively the static and kinetic coefficients of friction.

Friction of dry surfaces. For dry clean surfaces, experiments
show that the following laws are complied with approximately :

The force of friction is practically proportional to the perpendicular

pressure between the surfaces in contact, and is independent of the extent

of such surfaces and of the speed of rubbing, if moderate. Another way
of expressing the same laws is to say that for two given bodies, the

kinetic coefficient of friction is practically constant for moderate pressures

and speeds. It is very difficult to secure any consistent experimental

results on the static coefficient of friction
;

it is roughly constant for

two given bodies.

The value of the coefficient of friction in any given case depends
on the nature of the materials, especially on the hardness and ability

to take on a smooth regular surface, and on the state of the rubbing
surfaces as regards cleanliness. Rubbing surfaces are made usually

of fair shape and are well fitted to one another. If clean and dry, a

film of air may be present between the surfaces and prevent actual

contact. Pressure and working may squeeze this film out, and the

bodies will then adhere strongly together, or seize. Seizing takes

place more rapidly with bodies of the same than with those of

different materials.

Considerable increase in the speed of rubbing and also heating of

the bodies tend to lower the value of the coefficient of friction. For

this reason, the frictional force produced by the application of the

brakes to the wheels of a locomotive running at high speed is higher

during the first few seconds than is ultimately the case after the

temperature has risen owing to the conversion of mechanical work

into heat. The coefficient rises again when the speed becomes very

slow, and may become sufficiently high to cause the wheels to skid

just before stopping. The coefficient of friction for light pressures

on large areas is a little greater than for heavy pressures on small

areas.

The value of the coefficient of friction to be expected in any given

case cannot be predicted with accuracy on account of the erratic

nature of the conditions. The following table gives average values

only; experimental results will often show considerable variance

with the tabular values.
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COEFFICIENTS OF FRICTION.

AVERAGE VALUES.

Metal on metal, dry, 0-2 ; oiled continuously, 0-05.

Metal on wood, dry, 0-6; greasy, 0-2.

Wood on wood, dry, 0-2 to 0-5 ; greasy, o-i.

Hemp ropes on metal, dry, 0-25; greasy, 0-15.

Leather belts on iron pulleys, 0-3 to 0-5.

Leather on wood, 0-3 to 0-5.

Stone on stone, 07.
Wood on stone, 0-6.

Metal on stone, 0-5.

Fluid friction. For liquids such as water and oils flowing in a

pipe, the following laws are followed approximately :

The Motional resistance is independent of the pressure to which the

liquid is subjected, and is proportional to the extent of the surface wetted

by the liquid.

The resistance is very small at slow speeds ; below a certain critical speed
the motion of the liquid is steady and the resistance is proportional to the

speed; at speeds above this, the liquid breaks up into eddies, and the

resistance is proportional approximately to the square of the speed.

The critical speed depends on the nature of the liquid and on its tem-

perature. Rise of temperature of the liquid diminishes the resistance.

The resistance is independent of the material of which the pipe or channel

is made, but the wetted surface should be smooth ; rough surfaces increase

the resistance.

Friction in machine bearings. The frictional laws for lubricated

machine bearings are intermediate between those for liquids and for

dry surfaces. The ideal bearing would have a film of oil of uniform

thickness, and would run at constant temperature. There would be
no metallic contact anywhere, and the resistance would be that of

metal rubbing on oil. In such a bearing, the laws of liquid friction

would be followed, and the resistance would be independent of the

load and proportional to the speed of rubbing. In ordinary bearings
the resistances experienced depend on the success which is achieved

in getting the oil into the bearing and in preserving the oil film
;

the working load is kept sufficiently low to avoid the danger of the

film being squeezed out and seizing occurring.
Friction of journals. The value of the coefficient of friction to

be expected in any given case depends largely on the method of

lubrication. In Beauchamp Tower's* experiments, one method
of lubrication adopted was to have an oil bath under the journal

*
Proc. Inst. Mechanical Engineers, 1883 and 1884.
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(Fig. 378). Remarkably steady conditions were obtained, and it was

found that the coefficient of friction could be expressed by

c-Jv (
v

^ =
-7-'

<0

where c is a coefficient the value of which depends on the kind of

lubricant used, v is the speed of rubbing in feet per second, / is the

pressure per square inch of projected area of the journal.

Let

FIG. 378. Oil bath lubrication. FIG. 379. Projected area of a journal.

P = the total load on the bearing, in Ib.

d= diameter of bearing, in inches.

L = length of bearing, in inches (Fig. 379).

Projected area of bearing =Then

p=z Ib. per sq. inch ...... (2)d Li

The following table gives some of Tower's results :

JOURNAL FRICTION, OIL-BATH LUBRICATION.
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It will be noted in (i) above that the coefficient of friction is

inversely proportional to /, and hence is independent of the total

pressure P on the bearing with oil-bath lubrication. It also follows

that the frictional resistance of the bearing will be constant for all

working loads, and will vary as the square root of the speed. Thus,

referring to Fig. 380 :

Let F = the frictional resistance of the bearing, Ib.

P = the load on the bearing, Ib.

Then, from (i) and (2) above

F F fjv

............ ................................. (3)

an expression which is independent of P.

With less perfect systems of lubrication, there is a tendency for the

oil film to be broken partially, and higher coefficients of friction are

obtained. In some cases the coefficient may
reach values from 0-03 to 0-08.

Heating of journals. Work is done against

the frictional resistance and is converted into

heat. Referring to Fig. 380, in which D is the

diameter of the journal in feet, we have

Work done in one revolution = /xPTrD foot-lb.

T T\XT r A. iu FIG. 380. Friction of a

per minute = /xP?rDN foot-lb.,
J

journal.

where N is the number of revolutions per minute.

Heat produced =
^

British thermal units per minute.

This heat is dissipated by conduction and radiation, but the

temperature of the bearing will rise during the early period of

running. At higher temperatures the oil possesses lower viscosity,

i.e. it flows more easily and offers less resistance to rubbing; hence

less work will be done, and consequently less heat will be produced
as the temperature rises. The tendency is therefore to attain a steady

temperature, in which condition the heat developed will be exactly

balanced by the heat carried away by conduction and radiation. It

must be noted, however, that the lower viscosity possessed by the

oil at the higher temperatures increases its liability to be squeezed
out

; hence, if steady conditions are to be attained, the load must not

be too great and the oil must be of suitable quality. 100 Fahrenheit

may be regarded as a safe limit of temperature under full working
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load. Occasionally the bearings are made hollow, and a water

circulation is provided in order to keep the temperature low. Bearing

pressures up to 3000 Ib. per square inch are used, depending on the

nature of the materials, method of lubrication, means of cooling,

speed of rubbing, and on the consideration of whether the load

always pushes on one side of the bearing or is alternately push and

pull. Forced lubrication is often used, the oil being supplied under

pressure to the bearings by means of a pump.*

Friction of a flat pivot. The case of a flat pivot or foot-step

bearing (Fig. 381) may be worked on the assumption that the

coefficient of friction /* is constant for all parts of the rubbing surface;

the resultant frictional force F will then be found from

If it is assumed that the distribution of bearing pressure is uniform,
we have p

Load per unit

FIG. 381. Flat pivot bearing. FIG. 382.

Consider a narrow ring (Fig. 382) having a radius r and a breadth 6>.

Area of the ring
= 2irr . &>.

Load on the ring
=-^ 27rr - *

Frictional force on the ring
=

-=sf?
. r. o>.

R2

2?

Moment of this force =
-^-

'

To obtain the total moment, this expression should be integrated
over the whole rubbing surface

;
thus :

2 p fR 2 p R3
Total frictional moment ^^oT 1

r^- r̂~~w^ '

Jo o

=SR.A*P (0
= Fx|R (i')

* An excellent discussion of the theory of lubrication and design of machine bear-

ings will be found in Machine Design, Part I.
, by Prof. W. C. Unwin. Longmans,

1909.
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It is seen thus that the resultant frictional resistance F may be
taken to act at a radius equal to two-thirds the radius of the bearing.
The frictional moment of a flat pivot may also be solved on the

assumption that the wear is uniform and is proportional to the

product pv, where / is the bearing pressure in Ib. per square inch

and v is the speed of rubbing at any given part of the rubbing
surfaces. Thus, pv = a constant.

Also the velocity v at any point varies as the radius r. Hence,

pr= & constant = a say ;

Considering the narrow ring (Fig. 382) :

Load on the ring =/. 2irr. Sr= 2ira . &r.

Friction on the ring
=

27r//^ .r.

Integrating over the whole rubbing surface, we have

f
R

Total frictional resistance = F = 2^^a . I dr
Jo

=
27T/AflR (2)

Again,

Moment of the friction on the ring
= 2ir^ . r. 8r.

The total moment will be obtained by integration of this expression
over the whole rubbing surface

;
thus :

f
R R2

Total moment of friction =
27r/xa .1 r.dr 2ir^a .

Jo 2

=
TT/ZtfR2

= FxlR(from( 2 )) (3)

= i/*PR (30

It is probable that the actual value of the moment of friction will

fall between the limits expressed in (i') and (3).

In the case of a collar (Fig. 383), no great error will be made by
assuming that F acts at the mean radius i(Rj + R2 ). Hence,

Moment of F = -|/*P(R 1 + R 2)
Ib. inches (4)

Tower's experiments on collar friction show that ft is independent
both of speed and pressure unless the pressure I

p
is very small. The average value of /* found \ ^.
was 0-036. The bearing pressure should not J

[

L

exceed 50 Ib. per square inch. i

|*"
R

i

Tower also experimented with a flat pivot _^a

bearing 3 inches in diameter. If Tower's

results obtained lor the moments of friction

be reduced from equation (
i
),

thus : i

> i

= moment of F x >

FIG. 383. Collar bearings.
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values of /A are found which vary from about 0-015 at 5 revolutions

per minute and 40 Ib. per square inch, bearing pressure to about
0-006 at 350 revolutions per minute and 100 Ib. per square inch

bearing pressure.
Schiele pivot. In the Schiele pivot (Fig. 384), the bearing is

curved so as to secure uni-

form axial wear all over the

surface. There is thus less

likelihood of the oil film

being squeezed out.

Supposing the bearing to

wear so that the point F
descends ultimately to E,
then EF is the axial wear,
and is constant for any point
on the bearing. EG is normal
to the surface at E and FG
is parallel to the tangent EH
at E. The normal wear is

EG, and may be assumed to

be proportional to the speed
of rubbing. The intensity of

normal pressure at E is p ;
it

is assumed that p is constant for all points on the surface. The

velocity of rubbing v feet per second at any point evidently will be

proportional to the radius r. Hence,

EG oc v oc r
;

where k is a constant. The triangles EFG and HEK are similar.

Hence, EF_EH_EH.
EG~EK~ r

;

EGxEH Jr.EH
. . xLr = =

r r

= /.EH =a constant (i)

Hence EH is constant
;
a curve such as AB having this property

is called a tractrix.

Considering a narrow ring having a radius r and a horizontal

breadth 8r (Fig. 384), we have

Horizontal projected area of the ring
= 2irr. Sr.

Actual area of the ring
= 2irr.&r.

sin<9

Also,
sin

EH
EK

EH .

r
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Actual area of the ring
= 21?. r. EH.

Normal pressure on the ring=/x 27r.8r.EH (2)

Friction on the ring
= 27r.pn.8r. EH.

Moment of this friction =
2-n-p^. EH . r. Br.

Total moment of friction = 27r/^EH I r.dr
JRS

A .,-jR^-R,
2

= 27T^/xEH
1

-R22). ...(3)

Again, (2) gives

Normal pressure on the ring
=

2?r/.EH ,8r.

The vertical component of this = 2irp. EH. Br. sin

= 2Trp.r.r. ............... (4)

The sum of the vertical components for all the rings composing
the curved surface of the bearing will be equal to W. Hence,

fRi r.dr

-R
22) (5)

Substitution of this in (3) gives

Total moment of friction = /*W. EH (6)

The Schiele pivot is not much used in practice on account of the

difficulty of manufacture.

Rolling friction. In rolling friction, such as that of a wheel or

roller travelling on a flat surface, the frictional resistances are roughly

proportional to the load and inversely proportional to the radius of

the wheel or roller. The resistance also depends on the hardness of

the materials, and is comparatively small for very hard surfaces. In

ball bearings, both balls and ball races are made of hardened steel ;

the races are best made concave, to a radius about 0-66 the diameter

of the balls. This plan both reduces the resistance and enables a

heavier load to be carried. In such bearings, the value of /* is

practically constant through wide ranges of speeds and loads; 0-0015

is an average value.

Fig. 385 shows a heavy pattern of ball bearing made by The

Hoffmann Co. and applied to a shackle B for holding one end of a
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test piece A undergoing both tension and torsion. The test piece is

screwed to the shackle, the end of which is furnished with a nut C,

which rests on the top ball race D.

The bottom ball race E has its lower

face made spherical to fit the corre-

sponding spherical bottom of the cup
F. This arrangement permits the test

piece to accommodate itself to any
want of alignment. A cage G made
of two thin plates, secured together by
means of four distance pieces, holds

the balls in position and prevents them

from coming into contact with one

another
;
the cage also prevents any of

the balls being lost when the bearing
is taken to pieces. A similar bearing
is applied to the other end of the test

piece. The moment of friction is very

small
;
with a tensile load of four tons

and a test piece i inch in diameter,

it is possible to rotate the whole by

simply gripping the test piece with one

hand.

Resultant reaction between twoPlan of Cage
F,a.38s.-Hoffmann thrust ball bearing.

g

block A resting on a horizontal table BC. The weight W of the

block will be constant, and will act in a line perpendicular to BC

(b)

FIG. 386. Reactions at the surfaces in contact.

Let a horizontal force P
1
be applied to the block ;

P
l
and W have a

resultant R
x

. For equilibrium, the table must exert a resultant force
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on the block equal and opposite to Rj and in the same straight line ;

let this force be E
15 cutting BC in I). E

x may be resolved into two

forces, one Q perpendicular to BC and the other F
x along BC. Let

</>!
be the angle which E

x
makes with GD. Then

F HG

Now, when P
x

is zero, <j and hence tan <^ will also be zero, and

Q will act in the same line as W. <
x

will increase as P
l increases,

and will reach a maximum value when the block is on the point of

slipping. It is evident that Q will always be equal to W. Let
<J> be

the value of the angle when the block slips, and let F be the corre-

sponding value of the frictional force. Then

-p
Coefficient of friction = /A

= = tan <.

There will be two values of tan
</> corresponding to the static and

kinetic coefficients of friction respectively. When the block is on the

point of sliding, < is called the friction angle or the limiting angle of

resistance
;
when steady sliding is occurring, < is lower in value, and

may be termed the angle of sliding friction.

It is evident from Fig. 386 (a) that P
1
and Fj are always equal

(assuming no sliding, or sliding with steady speed), so also are

W and Q. These forces form couples having equal opposing

moments, and so balance the block. The force

Q acting at D will give rise to normal stress of

a distribution as shown by the stress figure in

Fig. 386 (b). The action is partially to relieve

the pressure near the right-hand edge of the

block and to increase it near the left-hand edge.

With a sufficiently large value of /x, and by

applying P at a large enough height above the

table, the block can be made to overturn instead f'T

of sliding. The condition of overturning may ' /

also be stated by reference to Fig. 387. Here FIG. 387 .-Condition that

. ,
a block may overturn.

the resultant R of P and W may fall outside the

base AB before sliding begins. Hence E, which must act on AB,
cannot get into the same line as R, and the block will overturn.

For overturning to be impossible, R must fall within AB.

EXAMPLE. A wall of rectangular section 2 feet thick is subjected to a

uniform normal pressure on one side of 50 Ib. per square foot (Fig. 388).

Taking the weight of material as 150 Ib. per cubic foot and /A=O7, find
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whether sliding at the base is possible. For what height of wall would

overturning just occur ?

Consider a portion of wall one foot in length, and let H feet be the

height. Then

W= 2H x i5o= 3OoH Ib. per foot run,

F*-
i

i

w

= 2ioH Ib. per foot run.

This result represents the maximum possible

value of F.

Again, P= 5oH Ib. per foot run.

Hence, as P will always be much less than the

maximum frictional resistance possible, the wall
FIG. 388.-Stability of a w ju nQt ^^

When overturning is just possible, the resultant

of P and W will act through O, and the moments of P and W about C
will be equal. Taking moments about O, we have

Moment of P 5oH x = Ib.-feet.

Moment of W=3ooH x i = 3ooH Ib.-feet.

Equating these moments gives

H = r2 feet.

Friction on inclined planes. In Fig. 389 (a) is shown a block of

weight W Ib. sliding steadily up a plane of inclination a to the

FIG. 389. Friction on an incline ; P horizontal.

horizontal, under the action of a horizontal force P Ib. Draw AN
perpendicular to the plane ;

then the angle between W and AN is

equal to a. Draw AC making with AN an angle < equal to the

angle of sliding friction ; the resultant reaction R of the plane will

act in the line CA. The relation of P to W is deduced from the

triangle of forces ABC.
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or

P _ tan a + tan <

W ~
i - tan a tan <k

P =

(P. 8),

i - /A tan a/

The case of the block sliding down is shown in Fig. 389 ().
R acts at an angle <f>

to AN, but on the other side of it.

P"D/~'-DV^ / , x

...(I)

Here

P _ tan <j>
- tan a

W ~
i+ tan a tan </>'

p_w/>-tanaY
+ /Uana/

It will be noted in the last case, that if
<f>

is less than a, the block
will slide down without the necessity for the application of a force P.

Rest is just possible, unaided, if a is equal to the limiting angle
of resistance.

When P is applied parallel to the incline, the forces are as shown
in Fig. 390 (a) and (<). For sliding up (Fig. 390 (a)), we have

P EC = sin BAG
W~AB~sin ACB

sin (a -f ft) _ sin a cos <ft 4- cos a sin (ft~
sin (90

-
<f>)

~
cos

<j>

= sin a + cos a tan <
;

FIG. 390. Friction on an incline ;
P parallel to the incline.

For sliding down (Fig. 390 ()), we have

P _ EC _ sin BAG
W~AB~sinACB

sin (<
-

a) sin cos a - cos < sin a

sin (90
-

<f>)

= tan
(f)
cos a - sin a ;

P =W (/* cos a - sin a).

cos

(4)
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Friction of a screw. The results for a block on an inclined plane
and acted on by a horizontal force may be applied to a square threaded
screw. Such a screw may be regarded as an inclined plane wrapped
round a cylinder. In Fig. 391 are shown two successive positions
A and B of a block of weight W Ib. being pushed up such an inclined

FIG. 391. Inclined plane wrapped
round a cylinder.

1

FIG. 392. Friction ofa square threaded
screw.

plane by means of a horizontal force P Ib. In the actual mechanism,
the load is applied over a considerable portion of the surface of the

incline (Fig. 392), and P may be assumed to act at the mean radius

R inches of the screw. Let p inches be the pitch of the screw, and
let one turn of the thread be developed as shown in Fig. 393.

^_ p
~27rR

Using equation (i), p. 365, we have, for raising W,

P-wf tanct +/*\
\i -/A tan a/

'T / /
P ___/7ru+/^

=w 27rR

I -

FIG. 393. Development of one turn of a
screw thread.

27TR,

For lowering the load, P in Fig. 393 will be reversed in direction

usually, and equation (2), p. 365, should be used :

i + /x tan
\

a/
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If p = tan a, or if 27rR/z =pt
P will be zero, and the load will be

on the point of running down unaided. Running down with

continually increasing speed may occur if tan a is less than /*, and

may be prevented by application of a force P given by (2) above
and applied in the same sense as for raising the load. If rotation

of the screw is produced by means of a force Q Ib. applied to a

spanner at a radius L inches, the nut being fixed, we have

= PR,

p (3)

The above solution is applicable to the case of a screw-jack

(Fig. 411), the friction of the screw alone enters into the problem.
The efficiency of such an arrangement may be calculated by con,

sidering the screw to make one revolution in raising the load. Then

^ r/. . Work done on W
Efficiency

=

Also,

.'. Efficiency
=

Substituting for W/P from equation (i) above, we have

,- . / 2?rR pli<\ p / x

Efficiency
=

(

~-
) -*-=; (4)

V/+27TR/V 27TR

If n be the ratio of the mean circumference 2?rR to the pitch /,
so that 2?rR ==

np) equation (4) may be written :

Efficiency
=

p + npp. n

l

EXAMPLE. In a certain square threaded screw, n=io and ^=0125.
Find the efficiency while raising a load.

10-0-125

=0-44
= 44 per cent.

In tightening a nut on a bolt (Fig. 394), not only has the moment
of the friction of the screw to be considered, but also the friction

between the nut and the part against which it is being rotated.
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Let R
x
be the mean radius of the bearing surface in inches and W Ib.

be the pull on the bolt. Then

Moment of F = /xWRj Ib.-inches (6)

FIG. 394. Friction of a nut. FIG. 395. Friction of a V thread.

Let P Ib. be the frictional resistance of the screw, found from

equation (i), p. 366, and let R be the mean radius of the threads.

Then QL = /xWR1 + PR (7)

In V threaded screws (Fig. 395), the pressure between the bearing
surfaces of the nut and the bolt threads is increased. If W is the

load, it should be resolved into a force S perpendicular to the thread

section and another horizontal force. Then
W

s-
w

, o 7)

COS/5

where /? is half the angle of the V. All the results found for square
threaded screws may be used for V threaded screws by writing

fi sec /3 instead of
/x.

in the equations.

Friction circle for a journal. It is useful to consider the friction

of a journal A resting on a loosely fitting bearing B (Fig. 396(0)).

I I

FIG. 396. Friction of a loose bearing.

If there is no rotation, the load W on the journal will be balanced

by an equal opposite reaction Q applied by the bearing. Let a
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couple of moment T be applied to the journal, of sufficient magni-
tude to produce steady rotation in the direction shown (Fig. 396 (b) ).

The journal will roll up the bearing until the place of contact is
,

at which steady slipping will occur. The condition which fixes the

position of b is that the vertical force Q acting at b must make an

angle <f>
with the normal ab, <f> being the angle of sliding friction. Q

and W being still equal, form a couple of moment W x fa, and this

couple balances T, the couple applied. Hence,

be
,

be .= tan <P
=

, very nearly ;

ac ab J J 'Also,

(I)

This will be in Ib.-feet if r is in feet and W is in Ib.

It will be noted that Q is tangential to a small circle of radius f,

drawn with centre a. This circle is called the friction circle, and its

radius is equal to be. Hence,
Radius of friction circle =/= r tan < very nearly

= nr feet, (2)

where ft
= tan <, is the coefficient of friction,

r= radius of journal in feet.

The same result is true for a closely fitting bearing (Fig. 397).

Here R Ib. is the resultant reaction of the bearing, the components
of which are Q, the resultant vertical reaction and F the resultant

frictional force. R acts at an angle </> to Q for the direction of

rotation as shown, or on the other side of Q for i

the contrary direction of rotation In either

case, R is tangential to the friction circle, and

gives a moment R/ Ib.-feet opposing rotation.

To obtain the work done, we have

Frictional couple = R/ Ib.-feet,

Work done in one revolution = R/x 2?r foot-lb.

Let N = revolutions per minute.

Then Work done per minute = 27rNR/foot-lb.,

, 27TNR/
H.P. wasted = -

33000
The value of R is given actually by FIG. 397.-Friction circle

a bearing.

but as the coefficient of friction and hence the frictional resistance is

very small for well lubricated journals, no great error is made by

taking R equal to Q, the load on the journal.

D.M. 2 A
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EXAMPLE i. In a machine for raising a load W the load is suspended
from a rope wound round a drum A, 8 inches in diameter, to the rope
centre (Fig. 398). The axle on which the drum is fixed has journals

1-5 inches in diameter, and is rotated by a toothed

wheel B, 18 inches in diameter, to which a force

P is applied. Find the mechanical advantage
and efficiency of the machine, taking the co-

efficient of friction of the bearings to be o-i and

W to be a load of 500 Ib.

Neglecting friction, and taking moments about

the centre of the drum, we have

W x 4 = P x 9,

W 9
-p
=
7
= 2 '2 5 (0

FIG. 398. Friction of a simple
machine. (2)

Taking account of friction, and assuming that R is equal sensibly to

(P-f-W), we have, by taking moments about the centre of the drum,

Also,

inch.

.'. 2000+ (P+ 500)

Hence,

p^ 2037-5x40
357

= 228-3 Ib. -

W 500
Mechanical advantage =-5- = -^-Qr 220-3

(3)

(4)

Let the drum make one revolution. Then
Work done by P = Px;r. 18 inch-lb.

Work done on W=W x TT . 8 inch-lb.

, . 87rW 8x500
Efficiency-^- i

=0-97
= 97 per cent............................ (5)

EXAMPLE 2. The mechanism shown in Fig. 399 consists of a crank OA
fixed to a shaft having OZ for its axis of rotation. The crank is driven in

the direction of rotation shown, by means of a slotted bar B ; a block C

may slide in the slot, and has a hole to receive the crank pin. The force

P pushes during the stroke from right to left, and pulls during the return

stroke. Show by drawing how the turning moment on the crank, as

modified by friction, may be obtained. Give the construction for each

quadrant, assuming /x tan <> is the same for both block and pin.
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In answering this question it is essential to remember that the force

which the block gives to the crank pin must be tangential to the friction

circle, and must act so as to oppose the motion of rotation of the pin.

PLAN
FIG. 399. Crank and slotted-bar mechanism.

Further, the force which the slotted bar gives to the block must act at an

angle <f>
to the normal, and must be applied so as to oppose the sliding

motion of the block. For ordinary values of the coefficient of friction

these forces, shown by R in Fig. 400, will be very nearly equal to P.

M _.-

FIG. 400. Friction of the block and crank pin in Fig. 399.

The constructions required are shown in Fig. 400 (a) to (d}. In the first

and fourth quadrants (a) and (d} the block is sliding upwards, and in the
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second and third quadrants (b) and (c) it is sliding downwards. In each

case the turning moment is RxOM, OM being drawn perpendicular to

R from O, the centre of the crank shaft.

Friction of the crank pin and the crosshead pin. Figs. 401 (a)

and (b) show the application of the friction circle method to the

determination of the line of thrust along a connecting rod, when
account is taken of the friction at the crank pin and the crosshead

pin. The diameters of the friction circles at A and B are calculated

and the circles drawn. The line of thrust Q will be a common

tangent to these circles for any given crank position. Draw OM
perpendicular to the line of Q; the turning moment on the crank will

be Q x OM. No difficulty will be experienced in choosing the line

of Q if it is remembered that the frictional moments at A and B both

tend to reduce the turning moment on the crank; hence the common

tangent which gives the line of Q must be so drawn as to make OM

S'3-

FIG. 401. Friction of the crank pin and crosshead pin in a crank and connecting rod
mechanism.

a minimum. Thus, in Fig. 401 (a), Q touches the top of the circle at

A and the bottom of that at B; in Fig. 401 (b\ Q touches the bottom

of both circles. The change in the line of Q from the top to the

bottom of the circle at A takes place when the crank makes 90 with

the centre line OA ;
in this position, the connecting rod makes its

maximum angle with the centre line OA and has no angular motion

for an instant, i.e. at this point the crosshead pin is not rubbing in its

bearing. The solution for other positions is given at Q' in Figs. 401

(a) and (b).

In Fig. 401 (b), it will be noted that, as B' approaches the inner

dead point, the line of Q' will pass through O. In this position there

is no turning moment oh the crank. Further, the crank must rotate

through a small angle beyond the dead point before the line of Q will

pass above O. There will, therefore, be a small crank angle near

each dead point in which there will be no turning moment tending to

rotate the crank in the direction of rotation of the crank shaft. These

angles may be determined approximately as follows: In Fig. 402, O is

the crank shaft centre and A is the crosshead pin at the end of the
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stroke. Draw the friction circle at A
;
draw the lines of Q and Q'

touching the circle at A and passing through O. Draw the friction

FIG. 402. Angle of zero turning moment due to friction at the crank and crosshead pins ;

inner dead point.

circles at B and B', touching the lines of Q and Q' ; then BOB' is the

angle within which there is zero turning moment near the inner dead

B

FIG. 403. Angle of zero turning moment due to friction at the crank and crosshead pins ;

outer dead point.

point. The construction for the outer dead point is given in Fig.

403, and will be followed readily.

Friction of the crank-shaft bearings. The loads producing
frictional resistances at the crank-shaft bearings include the weight
of the shaft and its attachments, belt

pulls or other forces due to the driving

of machinery and a reaction owing
to the thrust of the connecting rod.

Considering the latter alone, and

referring to Fig. 404, Q is the thrust

of the connecting rod, making allow-

ance for the friction of the crosshead

pin and the crank pin as illustrated

in Fig. 401 (a). A force Q', equal,

opposite and parallel to Q is applied by the crank-shaft bearing to

the shaft, Q and Q' together forming a couple which causes the shaft

FIG. 404. Friction of the crank-shaft

bearings.
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to rotate. During rotation, Q' will be tangential to the friction circle

for the shaft and is so shown in Fig. 404. Draw OM perpendicular

to Q and cutting the shaft friction circle at O'. The effective turning

moment will be Q x O'M, and has been diminished by an amount

Q x OO' by reason of the friction produced by Q in the shaft bearings.

Near the dead points, the effect of the friction at the crosshead pin,

crank pin and crank-shaft bearings is that there will be a small angle

embracing each dead point within which no force, however great,

along the piston rod will cause the shaft to rotate if at rest. These

FIG. 405. Dead angle at inner dead point.

angles are called dead angles and are shown at BOB' in Figs. 405 and

406. The construction is similar to that in Figs. 401 (a) and (b\

with the addition of the friction circle at O for the crank-shaft

bearings. The lines of the forces Q and Q' are tangential to the

friction circles at A and O, and the friction circles at B and B' are

drawn to touch the lines of the forces, produced if necessary.

FIG. 406. Dead angle at outer dead point.

The student will note that the dead angles so found take account

only of the friction at the crank-shaft bearings produced by the

thrust of the connecting rod. If at rest, the crank shaft will not

commence rotation until the turning moment Q x O'M (Fig. 404) is

large enough to overcome the resisting moment due to the total

.friction at the crank-shaft bearings together with the resistances

offered by any machinery to be driven.

Experiments on friction. Experiments have been described in

Chapter XIV., in which the general effect of friction in the complete

machine was one of the factors to be determined. The following

additional experiments may be performed usefully.
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EXPT. 38. Friction of a slider. AB is a wooden board or flat piece
of metal having its top surface brought horizontal by means of a spirit
level (Fig. 407). A slider C, of wood or metal, may be drawn along
AB by means of a horizontal force P applied by using a cord, pulley
and scale pan. The upper
surface of AB and the under
surface of C should be clean

and dry. Weigh the slider C
and also the scale pan. R is

the perpendicular reaction of

the surfaces in contact, and
is equal to the weight of the

P

FIG. 407. Friction of a slider.
slider together with the load

placed on it. Add loads to

the scale pan, tapping AB gently after each load is applied, until the

slider is drawn steadily along AB. P will be nearly equal to the

weight of the scale pan together with the loads placed in it, and
the kinetic friction F will have the same value. Calculate the kinetic

coefficient of friction from
F

The experiment should be repeated with several different loads on
the slider, and F and R should be tabulated for each. Plot F and R

;

if this gives a straight line, find the average value of ^ from the graph.

Repeat the experiment, using different materials for the board and
for the slider. It is useful to have a set of sliders, all of the same

material, but having the under sides cut away so as to give different

areas of contact.

EXPT. 39. Determination of the angle of sliding friction. In Fig. 408
AB is a board which may be
set at different angles to the

horizontal. A block C is

placed
on it, and the angle

is varied until the block will

slide steadily down after being
assisted to start. Measure
the angle BAD which AB
makes with the horizontal

;

this will give the value of the

,,,,,,,,,,, ,,',,,,,.,,,,,,,,,,,,,,, f^n angle of sliding friction. Cal-

FIG. 408. Apparatus for determining the angle of
CU ^ate A* from *

sliding friction. ^ = fan BAD.

Repeat the experiment using different materials.

EXPT. 40. Rolling friction. In Fig. 409 is shown apparatus similar

to that of Fig. 407, but having a small carriage mounted on wheels
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having bearings constructed to reduce friction as much as possible.
The board should be levelled carefully, and the tractive effort P

required to draw the carriage steadily along should be found for

different loads on the carriage. It is useful to have three or four

different roads for the carriage to run on; these may be of plate glass,

SH

FIG. 409. Apparatus for rolling friction.

metal, wood and rubber. The effect of the varying degrees of hard-

ness should be contrasted by comparing the results for the different

roads, and this may be done easily by plotting tractive effort and load

for each road on the same sheet of squared paper.

EXPT. 41. Effect of speed of rubbing. In Fig. 410, A is a wheel

which may be rotated at different speeds by some source of power.
B is a block which is pressed on the rim of the wheel by means of a

shackle C and a load D. The block B is restrained from rotation

FIG. 410. Apparatus for investigating the

effect of speed of rubbing.

FIG. 411. Experimental screw-jack.

by a cord and another load at E. The perpendicular pressure
between the block and the wheel will be the weight of the block,

together with those of the shackle, scale pan and load. The force

of friction will be nearly equal to the combined weights of the scale

pan and load at E. Hence /* may be determined for different speeds
of rubbing. It will be observed that the friction is greater on

starting with both wheel and block cold, and diminishes after a few

seconds as the rubbing parts become warm. The experiment should

be repeated with blocks of different materials.
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EXPT. 42. Friction of a screw. The screw-jack shown in Fig. 411
may be experimented on in the same manner as that explained in

Chapter XIV. for other types of lifting machines.

Testing of lubricants. The mechanical testing of lubricants is

performed usually by feeding the lubricant into a test bearing, which

may be loaded and run at varying speeds. Provision is made for

measuring the torque required to rotate the shaft and also for

measuring the temperature of the oil. There are many different

forms of machine. One which has given useful information in the

hands of Messrs. W. W. F. Pullen and W. T. Finlay at the South-

western Polytechnic* is shown in Fig. 412. A shaft AB is loaded

FIG. 412. Pullen's machine for testing lubricants.

with two equal flywheels C and D
; the central enlarged portion of

the shaft runs in a bearing and is lubricated by means of a loose

ring G, which hangs freely on the shaft and dips into an oil bath
;

the ring revolves slowly as the shaft rotates. The oil leaving the

bearing is spun off by collars F, F fixed to the shaft and having several

sharp edges to prevent the oil travelling axially along the shaft ; the

oil is thus returned to the oil bath and is used again. K is a gauge
tube indicating the quantity of oil in the bath. The temperature of

the oil is controlled by a U tube H, through which water may be

circulated. A gas flame in the space J under the bath can be used

to raise the temperature of the oil. The temperature is measured

by a thermometer suspended in the oil. The machine is direct

driven by an electromotor arranged as shown in Fig. 413. The
motor A has its bearings supported by rollers B, C and D, and is

*
Proc. Inst. Meek. Eng., 1909.
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therefore free to rock about its axis. A balance weight is fitted at E,
and a counterpoise F serves to measure the torque. The shaft

runs in the direction of the arrow, and the rotor of the machine

applies a torque of opposite
sense to the stator; this torque
is balanced by the counter-

poise, and is equal to the

torque required to drive the

oil-testing machine. This

type of machine is very useful

for testing oils under steady
load and under different con-

ditions as regards speed and
FIG. 413. Arrangement of electromotor for diiving

Pullen's machine. temperature.

EXERCISES ON CHAPTER XV.

1. A shaft journal is 4 inches in diameter and has a load of 4000 Ib.

If the coefficient of friction is 0-06, find the torque resisting the motion.
Calculate also the energy absorbed in foot-lb. per minute in overcoming
friction

; to what heat in B.T.U. is this energy equivalent ? The shaft
revolves 150 times per minute.

2. A vertical shaft is supported on a flat pivot bearing 2 inches in

diameter and carries a load of 150 Ib. The shaft revolves 300 times

per minute. Take ^=0-03, and calculate the moment of the frictional

resistance, (a) assuming that the distribution of bearing pressure is uniform,
(b] assuming that the wear is uniform. In each case calculate the horse-

power absorbed by the pivot.

3. The thrust of a propeller shaft is taken by 6 collars, 12 inches

diameter, the rubbing surface inner diameter being 8 inches. The shaft
runs at 120 revolutions per minute. Take /x

=
o-o5, the bearing pressure

60 Ib. per square inch of rubbing surface, and find the horse-power
absorbed by the bearing.

4. A block weighing W Ib. is dragged along a level table by a force
P Ib. acting at an angle 6 to the horizontal. The coefficient of friction

may be taken of constant value 0-25. Obtain the values in terms of W,
(a) of P, (b) of the work done in dragging the block a distance of one foot.

Give the results when 6 is o, 15, 30, 45, 60, and 75 degrees. Plot graphs
showing the relation of P and 0, and also the relation of the work done
by P and 6.

5. A block weighing W Ib. is pushed up an incline, making an angle
with the horizontal. The coefficient of friction has a constant value of

0-25. Find in terms ofW (a) the values of the force P Ib., parallel to the

incline, (&) the work done in raising the block through a vertical height of
one foot. Give the results for 6 equal to o, 15, 30, 45, 60, 75 and 90
degrees. Plot graphs for each case, (a) and (^
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6. Answer Question 5 if P is horizontal. What is the value of 6 when
P becomes infinitely great ?

7. In a screw-jack the pitch of the square threaded screw is 0-5 inch

and the mean diameter is 2 inches. The force exerted on the bar used in

turning the screw is applied at a radius of 21 inches. Find this force if

a load of 3 tons is being raised. Take ^=0-2. What is the efficiency of

this machine ?

8. With the screw-jack given in Question 7, find the force required at

the end of the bar in order to lower the load of 3 tons.

9. Show that the horizontal force required to move a weight W up a

plane whose slope is i is W % ,
where fi is the coefficient of friction.

A right- and left-hand square-threaded screw (pitch 0-25 inch, mean
diameter of thread I inch) is used as a strainer. Find the couple required
to tighten against a pull of looo Ib. ^=0-15. (I.C.E.)

10. In a i -inch Whitworth bolt and nut take the dimensions as

follows : pitch, 0-125 inch
; angle of the V thread, 60 degrees ;

mean
diameter of the thread, 0-8 inch

;
mean radius of the bearing surface of

the nut, 0-9 inch. Take the coefficient of friction to be 0-2 for both the

screw and the nut. Find the force required at the end of a spanner
15 inches long in order to obtain a pull of 1000 Ib. on the bolt.

11. A horizontal lever, instead of having a knife edge as a fulcrum, is

pivoted on a pin 2 inches in diameter. The arms of the lever are 8 inches

and 5 feet respectively. The coefficient of friction for the pin is 0-2.

What load at the end of the short arm can be raised by a vertical pull of
loo Ib. at the end of the long arm ? (B.E.)

12. The arms of a bent lever ACS are at right angles to one another
;

AC is 12 inches long and is horizontal ; BC is 27 inches long, and B is

vertically above C. The lever may turn on a fixed shaft 3 inches in

diameter at C. A load of 2000 Ib. is hung from A. Find what horizontal

force is required at B (a) if A is ascending, (b) if A is descending. Take
the coefficient of friction for the shaft to be o-i.

13. In the mechanism shown in Fig. 399, the crank OA is 6 inches

long and has anti-clockwise rotation
;
the crank pin at A is 2 inches in

diameter and the width of the slot in the bar is 2-75 inches. Take the

force P as constant and equal to 1000 Ib.
;
find the turning moment on

the crank in each of the four positions when the crank makes 45 degrees
with the line of P, (a) neglecting friction, (b) taking account of friction.

The coefficient of friction for all rubbing surfaces may be taken as o-i.

14. In the crank and connecting-rod mechanism of an ordinary steam-

engine, the crank and connecting-rod are 7 inches and 30 inches long
respectively. The diameter of the crank pin is 3-5 inches and that of

the crosshead pin is 3 inches. When the crank has travelled 45 degrees
from the inner dead point the total force urging the crosshead is

3000 Ib. Find the turning moment on the crank for this position, taking
/z for the crank pin and crosshead pin to be 0-06. Find both angles in

which there is zero turning moment on the crank.

15. Determine an expression for the work absorbed per minute in

overcoming the friction of a collar bearing. State the assumptions made
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in deriving the formula. The thrust in a shaft is taken by 8 collars

26 inches external diameter, the diameter of the shaft between the collars

being 17 inches. The thrust pressure is 60 lb.- per square inch, the
coefficient of friction is 0-04, and the speed of the shaft is 90 revolutions

per minute. Find the horse-power absorbed by the friction of the thrust

bearing. (L.U.)



CHAPTER XVI.

VELOCITY. ACCELERATION.

Velocity. The Velocity of a body may be defined as the rate at

which the body is changing its position. The four elements which

enter into a body's velocity are : (a) the distance travelled, (b, the

time taken to travel this distance, (c) the direction in which the body
is moving, (d) the sense along the line of direction ; the sense may be

described as positive or negative. A body having uniform velocity will

travel equal distances in equal intervals of time, and the velocity

may be calculated by dividing the distance by the time. In the

case of varying velocity, the result of this calculation will be the

average velocity of the body.
The units of time employed are the mean solar second, minute, or

hour. The unit of distance may be the foot, mile, centimetre, metre

or kilometre. Common units of velocity are the foot per second, the

mile per hour, the centimetre per second, and the kilometre per hour.

Let s = distance travelled in feet,

t= time taken, in seconds,

v = the velocity.

Then v = - feet per second.

This will be the velocity at any instant if the rate of travelling is

uniform, and will give the average velocity if the rate is varying.

Distance-time diagrams. In Fig. 414, the distances travelled by
a given body have been set off as ordinates on a time base. Thus

iA is the distance travelled during the first second of the motion,

26 is the distance travelled in the first two seconds, and so on. 6F
is the total distance travelled in 6 seconds. Drawing AG, BH, CK,
etc., horizontally, it is evident that BG is the distance travelled

between the end of the first second and the beginning of the third,

CH is the distance travelled during the third second, DK, EL and



MACHINES AND HYDRAULICS

FM are the distances travelled during the fourth, fifth and sixth

seconds respectively. If all these distances were equal, the velocity

would be uniform and the line OF would be straight (Fig. 415). A

FIG. 414. Distance-time diagram.

4 5 ^
Seconds

FIG. 415. Distance-time diagram,
velocity uniform.

straight-line distance-time diagram therefore represents the case of

uniform velocity.

Referring again to Fig. 414, the average velocity during the six

seconds would be obtained by dividing 6F in feet by 6 seconds.

The average velocity during any second such as the fourth may be

calculated by dividing DK in feet by i second.

In Fig. 416, let AB = 5
>

1
and CD = J

2
be the distances in feet

travelled during the times t^ and /
2 seconds respectively. Drawing

AE parallel to OD, the distance travelled

during the interval /
2 ~^i will be

CE = s
2
- s

l
. Hence,

Average velocity during the interval BD

Feet

Sa

Seconds
The actual velocity at any instant of

the interval may differ somewhat from

this. If the interval be made very small

we may write the difference in the distances by the symbol 8s and

the difference in the time by 8t.

Average velocity during a small interval =
^-.

Now let S/, represented by BD or AE in Fig. 416, be reduced

indefinitely until finally it gives us the conception of an "
instant." If

dt is its value when so reduced, and if ds is the distance travelled,

then, at the instant considered,
ds v



VELOCITY 383

The velocity of a body at any instant may be described as the

distance which would be travelled during the next second had the

velocity possessed at the instant considered remained uniform.

The mathematical calculation involved in (i) above is performed

by use of the rules of the differential calculus (p. 9).

EXAMPLE. Suppose the equation connecting s and / for the motion of

a given body to be _ ! ,2

where a is a constant. Find the velocity at any instant.

ds d

= at.

If the time up to the required instant be inseited in this result, the

velocity at that instant will be obtained.

In dealing with a moving point in a machine the space-time

diagram may be drawn by setting out the mechanism in a number

of positions differing by equal intervals of time, and then measuring
the distances travelled by the point in question. The average

velocity over each of the intervals may be obtained very closely

from the diagram.

EXAMPLE i. A rigid bar AB, 3-1 feet in length, moves so that one

end A is always in OX (Fig. 417), and the other end B is always in OY,
which is perpendicular to OX. A is

at first 3 feet from O and travels to

O in 6 seconds with uniform velocity.

Draw the space-time diagram for B.

Divide AO into six equal intervals

as shown. A will traverse each

interval in one second.

Velocity of A (uniform)
= 1=0-5 foot per sec.

Find the positions of B for each

position of A ;
these are numbered

i', 2', 3', etc. to correspond with the

numbering of the positions of A.

Measure Bi', 62', 63', etc.; these X

will be the distances travelled by B
in I, 2 and 3 seconds respectively.

FIG. 417. A rigid bar AB ; A moves in OX ;

B moves in OY.

Choose suitable scales and draw the space-time diagram (Fig. 418), by

setting off the distances travelled by B up to the stated times. The

numbering i', 2', 3', etc. in this diagram agrees with that in Fig. 417.
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EXAMPLE 2. Find from Fig. 418 the average velocity of B for each

interval of time and draw a velocity-time diagram.
The average velocity during the third second may be obtained by

dividing H3' in feet by 0-5 second. It is preferable to measure 33' and

Feet

O I 2 3 4

FIG. 418. Space-time diagram for the point B in Fig. 417.

5 6
Seconds

22' and take the difference as the value of H3'. The average velocity so

calculated may be taken to be the actual velocity at the middle of the

interval, and is set off as BC in Fig. 419, which is the velocity-time

diagram. It is best to set out the quantities in a table thus :

The last column is plotted at the middle of the intervals in Fig. 419 ;
a

fair curve through the plotted points gives the required velocity-time

diagram.

A useful property of the velocity-time diagram is that its area

represents the distance travelled. The distance is equal to the

average velocity multiplied by the time, and the average velocity

evidently will be given to scale by the average height of the diagram.
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Seconds
FIG. 419. Velocity-time diagram for the point B

in Fig. 417.

while its base represents the time to scale. The area of the diagram
is its average height multiplied by its base and therefore represents
the distance travelled. To
obtain the scale: Feetper sec.

Let

i inch of height represent v

feet per second,

i inch of length represent /

seconds.

Then
i square inch of area repre-

sents vt feet.

Hence, the area of the velo-

city-time diagram, in square

inches, multiplied by vt will give the distance travelled.

Acceleration. Acceleration means rate of change of velocity ;
it is

measured by dividing the change in velocity by the time in which

the change is effected. The change in velocity may be either positive
or negative, depending on whether the velocity is increasing or

diminishing, and the accelera-

tion will have the same sign.

If the change in velocity is

stated in feet per second, and

if the time in which the change
takes place is stated in seconds,

__ then the units of the accelera-

tion will be feet per second per
second.

Acceleration may be studied

from the velocity-time diagram.

Fig. 420 shows such a diagram
in which a velocity z/

x
occurs at the end of a time /

x
and a velocity

v
2

at the end of /
2 ;

these velocities are represented by AB and
CD respectively. The change in velocity an increase in this

case is DE.

Change in velocity
= v* - v

l
.

Time in which this change is effected = /
2
-

.'. Acceleration during the interval AC

This expression will be strictly correct if the gain in velocity is

D.M. 2 B

Velocity

FIG. 420. Deduction of acceleration from a
velocity-time diagram.
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acquired uniformly throughout the interval, in which case BD would

be straight. If BD is curved, then the value given by (i) will be the

average acceleration over the interval. The acceleration at any
instant may be calculated by diminishing /

2
-
^ indefinitely, when

dv
Acceleration = a = .

at
<*)

Feet per sec

2 -ix

In the interval FH (Fig. 420), the change in velocity is a decrease,

shown by GL. If the acceleration at A is positive, that at F will be

negative. At M, where the tan-

gent to the curve is horizontal,

there is no change in the

velocity over an indefinitely

small interval of time, and

hence there is no acceleration.

An acceleration-time diagram

may be deduced from the

velocity-time diagram by the

method already applied in

Example 2, p. 384, for obtain-

ing a velocity-time diagram from a space-time diagram. The average

acceleration over any interval is set out as an ordinate at the middle

of the interval.

EXAMPLE. Taking the data of Example i, p. 383, and the velocity-

time diagram (Fig. 421, redrawn from Fig. 419) from Example 2, p. 384.

draw an acceleration-time diagram.
The tabular form of calculation may be adopted as follows :

Seconds
FIG. 421. Velocity-time diagram for the point B

in Fig. 417.
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The last column is plotted at the middle of the intervals as shown in

Fig. 422, and a fair curve is drawn through the plotted points, thus

obtaining the acceleration-time diagram.

6 Seconds

-1-0-

Feet per sec.persec.

FIG. 422. Acceleration-time diagram for the point B in Fig. 417.

If the distance travelled is given by an equation connecting s and

/, the acceleration may be found by two successive differentiations.

Thus : Let -

where c is a constant. Then
ds

dv

The indices in simply indicate that s has been differentiated

twice with respect to / (p. 12).

Equations for uniform acceleration. Reference is made to Figs.

423 and 424, the former showing the velocity-time diagram for a

Vetoed
Velocity

k -------
\Time

FIG. 423. Velocity-time diagram,
starting from rest.

FIG. 424. Velocity-time diagram,
starting with velocity z>j.

body starting from rest
; Fig. 424 shows the diagram if the body starts

with a given velocity v
l ; in both cases the acceleration is uniform.
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Starting from rest (Fig. 423) :

Let v = the velocity in feet per second,

/= the time in seconds taken to acquire ,

s = the distance travelled, in feet,

a = the acceleration, feet per sec. per sec.

By definition, a = ->

or, v = at...........................................
(
i )

s = the average velocity x t
;

'. s = Jvt........................................... (2)

Or, s = the area of the diagram
= / x ^v t x \at (from (

i
) ) ;

'. - = JaA ....................................... (3)

From(i), / = -

v2 v2

Inserting this in (3), s = \a-^
=

;

.'. v2 = 2as........................................... (4)

Starting with a velocity i\ (Fig. 424) :

Let ^ and v.
2
= the initial and final velocities respectively

in feet per second,

/=the time in seconds in which v\ increases

to
2 ,

s = the distance travelled, in feet,

a = the acceleration, in feet per sec. per sec.

Then v
2
-v

l
= &t........................................... (5)

s = the average velocity x /

Or, s = the area of the diagram
=
rectangle OCDA + triangle CDB

= !/+(/x JDB).

Also, BD = /;

/. B = v
1t+Jat2.................................. (7)

From (5), ;= -
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Inserting this in (6), s =

(8)

The case of a body falling under the action of gravity is one of

nearly uniform acceleration. The acceleration would be quite

constant, but for the resistance offered by the atmosphere, and for

the fact that a body weighs less when at a height above the surface

of the earth. The symbol g is used to denote the acceleration of a

body falling freely, that is, neglecting atmospheric resistances. The
value of g varies to a small extent, being about 32-088 feet per second

per second at the equator and about 32-252 at the poles. The value

32-2 may be taken for all parts of the British Isles. The equations
found above may be modified to suit a body falling freely, by writing

g instead of a, and the height h feet instead of s.

Composition and resolution of velocities and accelerations. A
given velocity is a vector quantity and may be represented in the

B a

FIG. 425. Triangle and parallelogram of velocities.

same manner as a force by a straight line having an arrow point.

Hence problems involving the resolution or composition of velocities

may be solved in the same way as for forces by the application of the

triangle or polygon of velocities.

Let a point A have component velocities V
x
and V

2
in the plane

of the paper (Fig. 425). The resultant velocity may be found from

the triangle abc in which ab represents V]5
be represents V2

and ac

gives the resultant velocity V which should be shown applied at A.

A parallelogram of velocities, ABDC, may be used by making AB = V
l

and AC =V
2 ;

the diagonal AD gives the resultant velocity.

Rectangular components of a given velocity V (Fig. 426) along two

axes OX and OY may be calculated from

V^ =V cos a,

Vy -Vsina.
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EXAMPLE. A body slides down an incline of 30 (Fig. 427) with a

velocity of 10 feet per second. Find the horizontal and vertical com-

ponents of its velocity.

V/i=V cos 30 = 10 x -$ = 8-66 feet per sec.

Vv= Vsin 30= 10x^ = 5 feet per sec.

It will be understood that, as acceleration has magnitude, direction

and sense, this quantity can be represented also by a straight line

FIG. 426. Rectangular components
of a velocity.

FIG. 427.

having an arrow point. Problems involving the composition and

resolution of accelerations may be solved by use of the same con-

structions as for velocities.

EXAMPLE. A body slides down an inclined plane with an acceleration

a feet per second per second (Fig. 428). If the plane makes an angle a

to the horizontal, find the component accelerations () normal to the plane,

(b} vertical.

Make OA to represent a to scale and draw the

parallelogram of accelerations OBAC, OB being
normal to the plane and OC being vertical. The

angle OBA will be equal to a. Hence,

and

OB
OA

= C ta
'

Normal acceleration = an = a cot a.

OC

FIG. 428.

OA
= cosec a,Also,

and Vertical acceleration =av= acosec a.

The relation of an and av is given by

=
^rr^

= cos a
;

.'. an =avCQsa.

Angular velocity. When a body is rotating about a fixed axis,

the radius of any point in the body turns through a definite angle
in unit time. The term angular velocity is given to the rate of
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describing angles, and may be measured in revolutions per minute

or per second, or, more conveniently for the purposes of calculation,

in radians per second ; the symbol to is taken usually to denote the

latter.

Since there are 2-rr radians in a complete revolution, the connection

between <o and N, the revolutions per minute, will be
'

N TrN
to = 27r = radians per second.

60 30

Let a line OA (Fig. 429) have uniform speed of rotation in the

plane of the paper about O as centre. The point A will have a

uniform linear velocity v feet per second in

the circumference of a circle
;

let r be the

radius of the circle in feet. It is evident

that the length of the arc described by A
in one second will be v feet, and the angle

subtended by this arc will be - radians. OA

turns through this angle in one second, hence

its angular velocity is

v FIG. 429. Relation of angular
= - radians per second. and linear velocities.

It will be noticed that the linear velocities of other points in the

line OA will be proportional to their radii, hence such velocities will

be unequal. The same numerical result will be obtained for the

angular velocity by dividing the linear velocity of any point by its

radius. It is obvious that, under given conditions of speed of

rotation, all radii of a body turn through equal angles per second,

hence only one numerical result is possible for the angular velocity.

Equations of angular motion. In uniform angular velocity equal

angles are described in equal intervals of time. The total angle a

described by a rotating line in a time / seconds will be, if the angular

velocity is uniform, a = wtradians .

If the angular velocity varies, the body is said to have angular

acceleration. Angular acceleration is measured in radians per second

per second and is written 6. Suppose a line to start from rest with

a uniform angular acceleration 0, its angular velocity at the end of t

seconds will be w = 0t? mdians per second (j)

The average angular velocity will be |o>, hence the total angle

described will be a= i_wt ^
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Substituting for <o from (i) gives

=4 2............................... (3)
a

Again, from
(
i
), /=^,

.'. / 2 =
^-

Substituting this value in (3), we obtain

.'
2 = 20a................................... (4)

It will be observed that the above results are similar to those given
on p. 388 for rectilinear motion with the substitution of w for v, and
# for a. Making these substitutions, we may obtain the corresponding

equations for angular motion when the body has an initial angular

velocity <or
W2

-
Wl
= 0t.................................. (5)

*-? = **................................... (8)

The relation between the linear acceleration of a point in a revolving
line and the angular acceleration of the line will be given by

6 = - radians per sec. per sec., ..................... (9)

where a = linear acceleration of A (Fig. 429) in feet per sec. per sec.,

r= radius of A in feet.

Denning the angular velocity of a rotating line as its rate of

describing angles, and its angular acceleration as the rate of change
of angular velocity, suppose a line to describe a small angle So, in

an interval of time S/. The average angular velocity during the

interval will be *

w" =r
If Sa be taken indefinitely small and written da, the time dt in

which it is traversed will be our conception of an instant, and the

angular velocity at this instant will be

da, . .

If the angular velocity alters by a small amount Sw during an

interval of time S/, then

Average angular acceleration = 8a = --
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If these be reduced indefinitely, the result will give the angular
acceleration at the instant considered, viz.,

The results (10) and (n) are suitable for application of the rules

of the differential calculus (p. 9).

EXAMPLE i. An engine starts from rest and acquires a speed of

300 revolutions per minute in 40 seconds from the start. What has been

its angular acceleration ?

300
(0=4 -277=107?

60

= 31-41 radians per sec.

=w= 3J^41
/ 40

=0-785 radian per sec. per sec.

EXAMPLE 2. The driving wheel of a locomotive is 6 feet in diameter.

Assuming no slipping between the wheel and the rail, what is the angular

velocity of the wheel when the engine is running at 60 miles per hour.

Velocity of engine = - = 88 feet per sec.

As the distance travelled in one second is 88 feet, we may find the

revolutions per second of the wheel by imagining 88 feet of rail to be

wrapped round the circumference of the wheel.

OQ
Number of turns= -, ;

ird

88x7 ,

.'. Revolutions per sec. =----^A-by.22x6

(0 = 4-67x277

= 29-33 radians per sec.

Or the following method may be used. Referring to Fig. 430, if there

is no slipping, the point A on the rim of the wheel is in contact with the

rail for an instant and is therefore at rest. Hence the whole wheel is

rotating about A for an instant. The angular velocity will therefore be

ivenb>'
velocity of O= --JL

oo
= 29-33 radians per sec.

EXAMPLE 3. Using the data of Example 2 and referring to Fig. 431,

find the velocities of the points on the rim of the wheel marked B, C and

D, supposing no slipping.
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In answering this, it will be assumed that the whole wheel is rotating

about A for an instant, and that the velocity of any point is proportional

FIG. 430. Angular velocity
of a rolling wheel.

FIG. 431. Velocities of points in

a rolling wheel.

to the radius of that point frgm A as centre and has a direction perpen-
dicular to that radius.

The angular velocities of AB, AC and AD are equal and are given by
the angular velocity of OA in Fig. 430, viz.

00 = 29-33 radians per sec.

Also, 'Z/^wR ;

*

2>B= 29-33 xAB_
= 29-33 X3V/2
= 124-4 feet per sec.

?/c = 29-33 x AC
= 29-33x6
= 176 feet per sec.

^D = 29-33 x AD
= 29-33x3^2
= 124-4 feet per sec.

Angular velocity and acceleration diagrams. Diagrams showing
the angle traversed, the angular velocity, and the angular acceleration,

all three on bases representing time may be drawn by the same methods

as have been explained on pp. 381-387 for linear velocities, etc.

The angle traversed is treated in the same manner as the distance

travelled and an angle-time diagram is drawn. The angular-velocity

diagram is then deduced from the angle-time diagram and an angular-

velocity-time diagram is drawn. The angular-acceleration-time

diagram may then be deduced from the angular-velocity-time diagram.

Velocity changed in direction. Hitherto the acceleration due to

changes in the magnitude of a body's velocity alone have been con-

sidered. There may be also changes effected in the direction of the

velocity, and such will give rise to accelerations.
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Let a point move along a straight line AB (Fig. 432 (a)) with a

velocity TJ
I ;

on reaching the point B, let the point move along BC
with a velocity v

2
. To determine the change in velocity which has

taken place at B, the following method may be used. Stop the

point on reaching B by applying a velocity equal and opposite to v^ ;

this is represented by DB in the figure. The point now being at

rest can be dispatched along any line with any velocity ;
to comply

with the given conditions, give it a velocity v<> in the line BC, repre-

sented by EB in the figure. The total change in velocity has com-

ponents represented by DB and EB
;
hence the parallelogram BDFE

gives FB = vc as the resultant or total change in velocity.

FIG. 432. Velocity changed in direction.

A convenient construction is shown in Fig. 432 (&). Take any point

O, and draw OA and OC to represent completely v
l
and v.-, respec-

tively. Then the change in velocity will be AC = vc . The sense of

the change in velocity may be found from the rule that it is directed

from the end A of the initial velocity toivards the end C of the final

velocity (Fig. 432 (/;)).

For reasons that will be apparent later, it is not possible to make a

body take a sudden change in velocity ;
the transition from AB to

BC in Fig. 432 (a) will take place along some curve, such as GHK.
This makes no difference in the construction for finding the total

change in velocity. Suppose that the body takes / seconds to pass

from G to K along the curve, then this gives the time taken to effect

the total change in velocity vc - Hence,
7)

Resultant acceleration =
-y,

and has the same direction and sense as vc .

Motion in a circle. A small body moving in the circumference of

a circle with uniform velocity v is continually changing the direction

of its velocity. At any point of the circumference the direction of

the velocity will be along the tangent ; at P
1 (Fig. 433 (a)) the velocity

will be #j
=

v, and at P
2 the velocity will be z>

2
= v. To obtain the

change in velocity between P
1
and P

2 ,
draw the triangle OAB
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(Fig. 433 (<)). AB = vc will be the change in velocity, and is shown in

Fig. 433 (a) passing through the point C where v and u
2
intersect. It is

y.

(b)

FIG. 433. Motion in a circular path.

evident that if vc be produced it will pass through O l ,
the centre of

the circle, and this will be the case no matter what may be the

positions chosen for P
l
and P

2
. The acceleration due to vc will also

pass through Or The follow

ing method may be used to

obtain the acceleration.

Referring to Fig. 434, in

p which a point P is moving in

the circumference of a circle of

radius R with uniform velocity

v. At Pj the velocity v
l

is

along the tangent, and its hori-

zontal and vertical components
will be #! sin a

x
and v^ cos a

t

respectively, where a, is the

angle OP l
makes with the hori-

zontal diameter AB. Similarly
FIG. 434. Acceleration of a point moving in the

circumference of a circle.

at P
2 ,

the components will be

V
2
sin a

2
and v.

2
cos a

2 respectively. As v
l
= v.

2
=

v, we have

Change in horizontal velocity
= v sin a

2
- v sin a

l

= V (sin a.,
- sin a

T )

OP
2

OP
l

=|.P,K. (0
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Again, the time, /, taken to pass from Pj to P
2

will be the time in

which this change in velocity has been effected, and may be cal-

culated from p p
tf
= Vf

t

Hence, Horizontal acceleration of P = -

v2 P
2
K=

R' pV &)

If
ctj

and a
2 are very nearly equal, the angle P!OP2

will be very
small and the arc P

X
P

2
will be a straight line practically. The angle

PjP2
K will be equal to ar Hence,

P
2
K =

.*. horizontal acceleration of P = =? cos
ctj (4)

This acceleration will be directed always towards the vertical

diameter NS, as the sign of the acceleration will be the same as that

of cos a.

Let P be at A. Then a = o, cosa= i, and the acceleration will be

""' (5)

and will be directed along AO. As any reference diameter might
have been taken instead of AB, it follows that for any position of P,

the acceleration towards the centre of the circle will be given by (5).

The result will be in feet per second per second if

v = the velocity in feet per second,

R = the radius of the circle in feet.

The acceleration may be stated in terms of the angular velocity by

writing v
to =

,
or v = wR.R

From (5), tf = L=:o,2R............................ (6)

EXAMPLE i. A motor car is travelling at 20 miles per hour round a

curve of 600 feet radius. What is the acceleration towards the centre of

thecircle?

z/
2 88 x 88 ,

#= --= -. = 1-434 feet per sec. per sec.R 3x3x600 -^
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EXAMPLE 2. What is the acceleration, towards the centre, of a point

on the rim of a wheel 4 feet diameter and running at 300 revolutions per
minute ?

<o =^ x 27r = IOTT radians per second,

a = w'2R = loo x Y x Y x 2

= 1975 feet per sec. per sec.

Simple harmonic motion. In Fig. 435, the point P travels in the

circumference of the circle ANBS with uniform velocity v. Drawing
PM perpendicular to the diameter AB, it will be noticed that M, the

projection of P on AB, will vibrate in AB as P rotates. The velocity

and acceleration of M at any instant will be the horizontal com-

ponents of the velocity and acceleration of P, viz.

a =wRsina, (i)

a = =. cos a = a>
2R cos a, (2}K

where R is the radius of the circle.

The vibratory motion of M is called simple harmonic motion. One
of its properties is that the acceleration is directed always towards

the middle point O of the vibration. Again, since cos a =
-y^-,

and

is therefore proportional to OM, the acceleration is proportional to

N VV

FIG. 435. The motion of M is

simple harmonic.
FIG. 436. Acceleration diagram for M,

on a space base.

OM, the distance of M at any instant from the middle of the

vibration. When M is at A, the acceleration is proportional to OA
and is positive, i.e. directed towards the left

;
when M is at B, the

acceleration has the same value, but is directed towards the right and

js negative. M has no acceleration when at O. An acceleration

diagram may be drawn by erecting ordinates AA' and BB', each

equal to R, on the diameter AB and joining A'B' (Fig. 436). Any
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ordinate MC will then give the acceleration for the position M. The
scale of this diagram is obtained from the consideration that when P
is at A (Fig. 435), cos a = i and a = a>

2R
; hence the scale is such

that AA' = o>'
2R. As the diagram has been drawn on a distance, not

a time, base, it may be called a distance-acceleration diagram.

The velocity of M at any instant is proportional to sin a. Now
PM

sina = -
(Fig. 435), and is therefore proportional to PM

; hence

the velocity is proportional to PM. When M is at A the velocity
is zero, and has also zero value at B. Maximum velocity is attained

at O, when V = z/. The circle in Fig. 435 is a velocity diagram on a

distance base AB, as any ordinate PM will give the velocity of M at

the instant considered, the scale being such that ON represents v.

V is positive, i.e. towards the left, if PM is above AB, and negative
if PM is below AB.

Velocity-time and acceleration-time diagrams may be drawn by

noting that, as the velocity of P in Fig. 435 is uniform, equal angles
will be described by OP in equal times. Divide the circle into

twelve equal angles of 30 each, and calculate V = v sin a, and also

a = R COS a * r ea k Pos^^on f p - Set off a base of angles from

o to 360 (Fig. 437), and erect ordinates having the calculated values

FIG. 437. Velocity-time and acceleration-time diagrams for simple harmonic motion.

V and a. The base represents angles or time to different scales
;
the

scale of time is such that the total. length of the base line represents
the time of one revolution of OP in Fig. 435.

Fig- 399 (p- 371) shows a well-known mechanism, used in pumps,
which realises simple harmonic motion. The slotted bar has a

sliding block, in which is bored a hole to receive the crank pin.

The vertical components of the velocity and acceleration of the crank
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pin .are thus eliminated, and the horizontal components alone are

communicated to the piston rods.

The time of a complete vibration in simple harmonic motion from

A to B and back again (Fig. 435) may be estimated from the fact

that it will be equal to that of a complete revolution of P.

Let T = the time of one vibration in seconds.

v = the velocity of P, in feet per second.

R = the radius of the circle = the amplitude of the

vibration, in feet.

Then z;T = 27rR,

T = 2:r ...................................... (3)

27T / v

,
.............................. (4)

o>

where w is the angular velocity of OP in radians per second.

EXAMPLE. A point is describing simple harmonic vibrations in a line

4 feet long. Its velocity at the instant of passing through the centre of

the line is 12 feet per second. What is the time of a complete vibration ?

V

where R is 2 feet and v is 12 feet per second. Hence,

2X22X2
7 x 12

=
1-05 seconds.

Change in angular velocity. A given angular velocity may be

represented by means of a vector in the following manner. In

Fig. 438 (a) is shown a wheel rotating about an axis OA with an

angular velocity w. A person situated on the right-hand side sees

the wheel rotating in the clockwise direction, and may represent

the angular velocity by drawing a line OA perpendicular to the

plane of rotation of the wheel and on the same side of this plane

as the person is situated. OA is made, to scale, of length to

represent o>. A person situated on the left-hand side will see the

wheel rotating in the anti-clockwise direction, and may represent

the angular velocity by means of a perpendicular to the plane of

rotation drawn on the opposite side of this plane. Both observers

will thus agree in erecting the perpendicular on the same side of the

plane of rotation. The perpendicular represents the magnitude and

direction of rotation of an angular velocity in a plane perpendicular to
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the line, and will thus obey the same laws as a vector. Two or more

component angular velocities represented in this way may be dealt

with and their resultant found by means of a triangle or polygon of

velocities.

In Fig. 438 (a) the wheel is revolving in a vertical plane ;
at

the same time its axis is revolving in a horizontal plane as indicated

by the arrows at the ends of the axis. A plan of the wheel is given
in Fig. 438 (b) ; OA represents the angular velocity of the wheel at

one instant, and OA' represents its angular velocity after a short

interval of time during which the wheel has turned horizontally into

the position indicated by dotted lines. Since OA and OA' represent

the initial and final angular velocities respectively, it follows, by the

same reasoning as for linear velocity (p. 395), that the change in

FIG. 438. Change in angular
velocity.

FIG. 439. Change in angular velocity
by method of linear velocities.

angular velocity is represented by AA'. The actual change in angular

velocity takes place in a plane perpendicular to AA', i.e. a vertical

plane in the given case, and is anti-clockwise to an observer situated

at B.

It may be of assistance to the student to consider the problem from

the point of view of linear velocities. In Fig. 439 (a) is given a plan
of the wheel. OA represents v

lt
the initial velocity of a point on the

top of the wheel ; OA' represents the final velocity v.2 of the point on

the top of the wheel; AA' represents vc ,
the change in velocity of

this point. In the same way BB' represents vc ,
the change in linear

velocity of a point at the bottom of the wheel. Fig. 439 (b) shows

these changes in linear velocity in their proper positions, and indicates

that a change in angular velocity is taking place in a vertical plane

containing the axis of the wheel.

D.M. 2 c
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In Fig. 440 OA represents o>, the angular velocity of the wheel. It

will be evident that the successive additions of small changes in

angular velocity such as that represented by AA' will cause A to

describe a complete circle. The total change
in angular velocity during one rotation of the

wheel axis in the horizontal plane will be the

circumference of the circle, and will be given by

Change in angular velocity
= 27r<o.

If this result be divided by the time taken by
A in describing the complete circle, i.e. the time

in which the wheel axis makes one complete
rotation in the horizontal plane, the result will

give the angular acceleration. It is evident that the angular accelera-

tion will take place in the same plane as that in which the change in

angular velocity occurs, viz. a vertical plane containing the wheel axis.

Relative velocity. The relative velocity of two bodies may be defined as

the velocity which an observer situated on one of them would perceive in the

other. An observer in one of two trains, moving side by side with

equal velocities of the same sense, would perceive no velocity in the

other and would therefore say that the relative velocity is zero. If

the train carrying the observer has a velocity of 30 miles per hour,

and the other, one of 35 miles per hour, he will see the other train

moving past him at a rate of 5 miles per hour, which velocity he

FIG. 440. Plan of the wheel
shown in Fig. 438.

(a)
V
B (b>

FIG. 441. Velocity of B relative to A.

would call the relative velocity of the trains. Had the trains been

moving in opposite directions, the relative velocity would be 65 miles

per hour. A stream of water moving at 8 feet per second reaching a

water wheel, the buckets of which are moving away from the stream

at 6 feet per second, will enter the buckets with a relative velocity of

2 feet per second.

If two bodies A and B have velocities as shown at VA and VB

(Fig. 441 (a)), their relative velocity may be obtained in the following
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manner. Stop A by giving both A and B a velocity VA equal and

opposite to that originally possessed by A ;
this artifice will not alter

their relative velocities. B has now component velocities VB and
VA ,

the resultant of which is VR . As A is at rest, the velocity of B
relative to A will be VR .

In Fig. 442, B has been brought to rest by giving both A and B a

velocity V B equal and opposite to that originally possessed by B.

The resultant velocity of A will now
be VR , and, as B is at rest, this will be

the velocity of A relative to B.

It will be clear that VR in Fig. 441 (a)

is equal and opposite to VR in Fig. 442,

showing that the velocity of B relative

to A is equal and opposite to the

velocity of A relative to B. A

FIG. 442. Velocity of A relative to B.

A convenient construction is given
in Fig. 441 (b). From any point O draw OA and OB to represent

respectively VA and VB ,
both being placed so that the senses are

away from O. Then AB represents the relative velocity of sense

from A towards B if the velocity of B relative to A is required,

and of opposite sense if the velocity of A relative to B is required.

EXERCISES ON CHAPTER XVI.

1. In a crank and connecting-rod mechanism, the crank is i foot and
the connecting rod is 4 feet in length. The line of stroke of the cross-

head pin passes through the axis of the crank shaft. Find, by drawing,
the distances of the crosshead from the beginning of the stroke for crank
intervals of 30 throughout the revolution. Plot a distance-time diagram."

2. Use the data obtained in the solution of Question i, and calculate
the mean velocity of the crosshead for each interval. The crank rotates

uniformly at 180 revolutions per minute. Draw a velocity-time diagram.

3. Using the results of Question 2, calculate the mean acceleration
for each interval. Plot an acceleration-time diagram.

4. Answer Questions i, 2 and 3 for the case in which the line of
stroke of the crosshead passes the axis of the crank shaft at a distance of
6 inches.

5. The distance between two stations is 1-6 miles. A locomotive,

starting from one station, gives the train an acceleration of 25 miles per
hour in 0-5 minute until the speed reaches 30 miles per hour. This speed
is maintained until brakes are applied and the train is brought to rest at

the second station under a negative acceleration of 3 feet per second

per second. Find the time taken to perform the journey.
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6. The distance travelled by a body is given in feet by the equation
,y=o-02/ 2+ 3, / being the time in seconds from the start. Find the

distance travelled, the velocity and the acceleration at the end of

4 seconds, starting from rest.

7. A body, falling freely under the action of gravity, passes two

points 30 feet apart vertically in 0-2 second. From what height above
the higher point did it start to fall ?

8. A body is thrown upwards from the foot of a cliff 40 feet high and
reaches a height of 12 feet above the cliff. It finally alights on the cliff

top. Find the total time of the flight and the initial velocity.

9. A body slides down a plane inclined at 10 degrees to the horizontal

under the action of gravity. What is the acceleration in the direction of

the motion, neglecting frictional effects ? Suppose the body to start from

rest, what will be the velocity after it has travelled 1 2 feet ?

10. A boat is steered across a river 100 yards wide in such a way that,

if there were no current, its line of motion would be at 90 degrees to the

banks. Actually it reaches a point 40 yards further down stream, and
takes 3 minutes to cross. What is the speed of the current ?

11. A pistol fires a bullet with a velocity of 1000 feet per second.

Suppose it to be fired by a person in a train travelling at 60 miles per

hour, (a) forward in the line of the motion of the train, (fr) backward

along the same line, (c) in a line parallel to the partitions of the com-

partments, and calculate in each case the resultant velocity of the bullet.

12. A wheel slows from 120 to no revolutions per minute. What has

been the change in angular velocity in radians per second ? If the

change took place in 2 minutes, find the angular acceleration.

13. A wheel starts from rest and acquires a speed of 150 revolutions

per minute in 30 seconds. Find the angular acceleration and the revolu-

tions made by the wheel while getting up speed.

14. Starting from rest, a wheel 2 feet in diameter rolls without

slipping through a distance of 40 yards in 8 seconds. Find the angular
acceleration and the angular velocity at the end of the given time. Plot

an angular velocity-time diagram.

15. Water travels along a horizontal pipe with a uniform speed of

4 feet per second. The pipe changes direction to the extent of 30 degrees.
Find the change in the velocity of the water.

16. A wheel 12 inches in diameter revolves 18,000 times per minute.

Find the central acceleration of a point on the rim.

17. Calculate the central acceleration of a train running at 50 miles

per hour round a curve having a radius of 0-75 mile.

18. A point describes simple harmonic vibrations in a line 2 feet long.
The time of one complete vibration is 0-3 second. Find the maximum
velocity.

19. A wheel revolves in a vertical plane 300 times per minute. The

plane keeps vertical, but rotates through an angle of 90. Find the change
in angular velocity, and show it in a diagram. If the change took place
in 2-5 seconds, find the angular acceleration.
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20. A carriage wheel is 4 feet in diameter and is travelling at 6 miles

per hour. What is the velocity of a point at the top of the wheel relative

to (cz) a person seated in the carriage, (b} a person standing on the ground.
Answer the same regarding a point at the bottom of the wheel.

21. A railway line A crosses another B by means of a bridge, the

angle of intersection, as seen in the plan, being 30 degrees. A train

on A is approaching the point of intersection with a velocity of 40
miles per hour and another train on B is receding from the intersection,
on the same side of it, with a velocity of 20 miles per hour. Find the

relative velocity of the trains.

22. A particle moves with simple harmonic motion
;
show that its

time of complete oscillation is independent of the amplitude of its motion.

The amplitude of the motion is 5 feet and the complete time of oscillation

is 4 seconds ;
find the time occupied by the particle in passing between

points which are distant 4 feet and 2 feet from the centre of force and are

on the same side of it. (L.U.)

23. At midnight a vessel A was 40 miles due N. of a vessel B
;
A

steamed 20 miles per hour on a S.W. course and B 12 miles per hour
due W. They can exchange signals when 10 miles apart. When can

they begin to signal, and how long can they continue ? (I.C.E.)



CHAPTER XVII

INERTIA.

Inertia. Inertia is that property of matter by virtue of which a

body tends to preserve its state of rest or of uniform velocity in a

straight line, and offers resistance to any change being made in the

velocity possessed by it at any instant, whether the change be one of

magnitude or of direction of velocity. Hence, in order to effect any
such change, it will be necessary to employ force to overcome the

inertia of the body. There will be no resultant force acting on any

body which is travelling with uniform velocity in a straight line
;

in

such a case the external forces, if any, applied to the body are in

equilibrium. The existence of acceleration in a body implies the

presence of a resultant external force, and this force must be applied
in the line of, and must have the same sense as the proposed
acceleration.

The estimation of the magnitude of the force required to produce
a given acceleration may be obtained from an experimental law. All

bodies at the same place fall freely with the same acceleration g.

Now their weights are proportional to their masses, and as these

weights are the resultant forces producing acceleration, it follows that

the force required to produce a given acceleration is proportional to

the mass of the body. It may also be shown by experiment that the

force required to produce acceleration in a body of given mass is

proportional to the acceleration. Hence, we have the law that the

force required is proportional jointly to the body's mass and accelera-

tion, and consequently will be measured by the product of the

mass and the acceleration.

From the case of a body falling freely we know that a force of i Ib.

weight acting on a mass of i pound gives an acceleration of g feet

per second per second. It follows that the algebraic statement of

the above law will be

P = Ib. weight, (i)
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where m = the mass of the body in pounds,
a = its acceleration in feet per sec. per sec.

The result of the calculation by use of equation (i) will vary to a

small extent depending on the value ofg at the particular place. An
absolute unit of force may be employed which does not vary, and is

denned as the force required to give unit acceleration to a body

having unit mass. The British absolute unit of force is the poundal,

and is the force that would give an acceleration of one foot per
second per second to a body free to move and having a mass of one

pound. The metric absolute unit is the dyne ; a force of one dyne

acting on a body free to move and of mass one gram would produce
an acceleration of one centimetre per second per second. Using
these units, equation (i) becomes

F = ma, in absolute units, (2)

the result being in poundals, or dynes, respectively if

m = the mass of the body in pounds, or grams,
a = its acceleration in feet, or centimetres per sec. per sec.

The weight of a body expressed in absolute units will be given by
W = mg (3)

Also, a force stated in poundals or dynes may be converted into

Ib. weight or grams weight by dividing by the proper value of g,

which may be taken as 32-2 feet per second per second in the

British system, or as 981 centimetres per second per second in the

metric system, for all parts of the British Isles.

In using the above equations, it must be understood clearly that

each side of the equation represents a force
;

the left-hand side

represents the resultant force applied to the body from the outside
;

the right-hand side represents the force due to the collective resist-

ance of all the particles of the body to any change being made in

the velocity. The whole equation expresses the equality of these

forces. The student would do well to recall again the fact that a

force cannot act alone
;
there must always be an equal opposite force,

and if the latter is not wholly supplied by some resistance given by
an outside agency such as friction, etc., it must be supplied in part

by the inertia of the body. Equality of the forces is an invariable

law.

EXAMPLE i. A train has a mass of 200 tons. If frictional resistances

amount to 12 Ib. weight per ton, what steady pull must the locomotive

exert in order to increase the speed on a level road from 20 to 40 miles

per hour, the change to take place in i^ minutes ?
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Let

Then

Also,

T = pull required, in Ib. weight units.

F = total frictional resistance, Ib. weight.

P = resultant force producing acceleration, Ib.

weight.

r>_T T? __"**
JL 1 JT "

F = 200 x 1 2 = 2400 Ib. weight.

(I)

, . .
, . . ZU X kJOU OO ,.

Initial velocity = -7 ^ = feet per sec.7 60x60 3

Final velocity = feet per sec.

/i;6 88\
Acceleration = <2 = l-rQO

\ 3 3 /

= foot per sec. per sec.
270

Substituting these values in (i) gives
200 x 2240 x 88

32-2 x 270
7-2400=

= 6935 Ib. weight.

EXAMPLE 2. The mass of a train is 250 tons and frictional resistances

amount to 1 1 Ib. weight per ton. The speed
on reaching the top of an incline of i in 80

is 30 miles per hour, and the train runs

down with steam shut off. If the incline is

is 0-5 mile long, what will be the speed at

the bottom ?

Referring to Fig. 443, the weight of the

train, W, may be resolved into two forces T
and R respectively, parallel and perpendicular to the incline. Let a be

the angle made by the incline with the horizontal. Then

T =W sin a=W tan a, very nearly,

= 250 x 2240 x^j
= 7000 Ib. weight.

Also, Friction = F = 25ox 11=2750 Ib. weight.

P =T-F
= 7000-2750= 4250 Ib. weight.

ma .

Also,

Again, Initial velocity
= v

a = 1^ = 4250x32-2
m 250x2240

= 0-244 foot per sec. per sec.

30 x 5280
60x60 44 feet per sec.
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And 2/2
a - v^= 2as (p. 389) ;

.-. Z/2
2 - (44X44)= 2X0-244X^-2,

feet per sec.

38-8 miles per hour.

Kinetic energy. In Fig. 444 is shown a body of mass m pounds
able to move freely. Let the body be at rest at A and let a force

P Ib.-weight be applied, in consequence of which the body moves
with continually increasing velocity to B, a horizontal distance of

s feet. Work wall be done by P

against the resistance due to the

inertia of the body.
p

Work done by P = Pjfoot-lb. '*- ..... ~ 5 ...... *'

As there has been no external
FlGl ^-Kinetic energy of a body.

resistances of any kind, it follows that the whole of the work done

by P will be stored in the body at B in the form of kinetic energy.
Let v feet per second be the velocity at B, and let a be the accelera-

tion in feet per second per second.

Then P = Ib. weight.

,2

Also, s = feet (p. 388).

Hence, Work done by P =-- or,
g 2a

cy

Kinetic energy of body = foot-lb............................... (i)
2g

Note that the velocity is squared in this result, hence its sign,

positive or negative, is immaterial. The interpretation of this is that

kinetic energy is not a directed, or vector, quantity, and a body
moving in any direction will have kinetic energy which may be
calculated by use of the expression found above. The kinetic energy

may be expressed in absolute units by omitting g.
9

Kinetic energy = - foot-poundals................... (2)

EXAMPLE i. A railway truck of mass 20 tons moving at 6 feet per
second comes into collision with buffer stops and is brought to rest in a
distance of 9 inches. What has been the average resistance of the

buffers? mtf 2ox6x6
Kinetic energy=-=

^
- = 1 1 1 8 foot-tons.

2g 04-4
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Let P = the average resistance in tons weight.

Then, Work done against P = P x ^ foot-tons.

Hence, Px^=u-i8,
ii-i8x 12

9
= 14-9 tons weight.

Average forces calculated in this manner are described sometimes as

space-average forces.

EXAMPLE 2. A vessel of mass 10,000 tons and having a speed of

30 feet per second is slowed to 10 feet per second in travelling a distance

of 3000 feet. Calculate the average resistance to the motion.

Here we have
. , . . mi>? mv>?

Change in kinetic energy =-^-----
r,

"v> **<S

10,000

= 124,100 foot-tons.

Let P = the average resistance in tons weight.

Then, Work done against P = P x 3000 foot-tons.

Hence, 3000 P = 1 24, 100,

P =
4jj37

tons weight.

Momentum. The momentum of a body in motion is measured by
the product of its mass and velocity. The units will be stated by

giving the units of mass and velocity employed ; thus, if the pound
and the foot-second units are employed, then

Momentum = mv pound-foot-seconds.

Suppose a body of mass m pounds, free to move, to be acted on

by a force P Ib. weight during a time / seconds, and that the body is

at rest at first. An acceleration a feet per second per second will be

produced, such that p w<2
.

=
Ib. weight........................ (i)

Since P acts for a time / seconds, the velocity of the body at the end

of this time will be

v = at feet per second (p. 388) ;

i)

.'. a - feet per second per second.
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And from (i), by substitution,

mv
P Ib. weight (2)

Now mv is the momentum possessed by the body at the end of

the time t seconds, consequently
- will be the momentum it acquires

each second, i.e. the rate of change of momentum. Hence, the

force in Ib. weight generating momentum will be numerically equal to the

rate of change of momentum in pound-foot-second units divided by g.

Or, we may write F = poundals, (3)
t

showing that the force in absolute units is equal to the rate of change
of momentum.

Suppose equal forces P, P, to act during the same interval of time

on two bodies A and B, free to move and initially at rest. Let the

masses be mA and mE respectively, and let VA and VB be the velocities

acquired at the end of the time /.

From (2) above, P = A A
,
for the body A;

5

,
for the body B

;

<s*

*A^A
= ^B_B

g* g*

It may be stated therefore that equal forces, acting during the same time,

generate equal momenta irrespective of the masses of the bodies.

Impulsive forces. Supposing a body in motion to possess a

momentum mv, which is abstracted by the body encountering a

uniform resistance P. If this is accomplished in / seconds, then

P =
gt

It will be noticed that if / becomes very small, P will become very

large, and is then said to be impulsive. If P be not uniform, its

average value may be found from the above equation. In the case

of impulsive action, P is called the average force of the blow.

Change of momentum. Momentum depends on the velocity of

a body, and, since velocity has direction, momentum will also be a

directed quality and so can be represented by a vector. Momentum
differs in this respect from kinetic energy which depends on v2

-
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Change of momentum must be estimated always by taking the

change in the body's velocity, paying attention to both magnitude
and direction. Having found the magnitude and direction of the

change in momentum, the force required may be calculated and will

act in the same line of direction.

EXAMPLE i. A locomotive picks up a supply of water from a long

trough laid between the rails (Fig. 445) while travelling at 40 miles per
hour. Suppose the speed to remain un-

altered, what additional resistance is offered

if 5 tons of water be picked up in 50
seconds ?

The water in the trough has no momen-
tum ; after it is picked up it has the same

velocity as the train, hence

p_mv_ 5x40x5280
FIG. 445. Locomotive picking up gt $2-2 X 50 X 60 X 60

water. .= 0-182 ton weight.

EXAMPLE 2. A gun discharges 350 bullets per minute, each of mass

0-025 pound, with a velocity of 2000 feet per second. Neglecting the mass
cf the powder gases, find the backward force on the gun.

Mass of bullets ejected per second = -|^
**5

=0-146 pound.

Momentum generated per second

Force required to eject the bullets

Momentum generated per second =0-146 x 2000 pound-foot-sec.

0-146 x 2000

32-2

= 9*07 Ib. weight.

It is evident that the backward force acting on the gun will be equal to

the force required to eject the bullets, viz. 9-07 Ib. weight.

EXAMPLE 3. A hammer head of mass 2 pounds and having a velocity

of 24 feet per second is brought to rest in 0-005 second. Find the average
force of the blow. m7j 2 x 24~

gt "32-2x0-005

= 298 Ib. weight.

Average forces calculated in this manner are described sometimes as

time-average forces.

Centre of mass. It will be understood that every particle in a

body offers resistance, due to its inertia, to any attempted change
in its velocity. In Fig. 446 is shown a body travelling in a straight

line towards the left and having an acceleration a. There being
no rotation of the body, every particle will experience the same
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acceleration a. Calling the masses of the particles mv ;#.,, etc.,

the resultant resistance will be

R = m^a + rn^a + m^a -f etc.

This force will act through the centre C of the parallel forces

m^ m.
2a, etc. (p. 48), a centre which is called the centre of mass of

the body. It may be assumed for all practical purposes that the

centre of mass and the centre of gravity of a body coincide.

Let C be the centre cf mass of a body (Fig. 447), and let R
acting through C be the resultant inertia resistance. The resultant

external force F producing acceleration must clearly act in the same

straight line as R if there is to be no rotation of the body. Hence,
we have the principle that if the external forces acting on a body free to

FIG. 446 Centre of mass of a body. FIG. 447.

move are to produce no rotation, their resultant must pass through the

centre of mass of the body. The truth of this may be tested easily by

laying a pencil on the table and flicking it with the finger nail. An
impulse applied near the end will cause the pencil to fly off rotating

as it goes ;
an impulse applied through the centre will produce no

rotation.

Eotational inertia. In Fig. 448 is shown a body which is capable

of turning freely about an axis OZ perpendicular to the plane of the

paper. In order to produce rotation, without

tendency to displace or translate the body, a

couple must be applied. Let the two forces

P, P, form a couple, one of the forces being

applied at the axis, and let the forces rotate

with the body so that a constant moment
is exerted. The forces being in Ib. weight
and the arm D being in feet, the moment F'G. 448.-Rotationai inertia,

will be T = PD Ib.-feet (i)

As the body is free to rotate, the only resistance which will be

opposed to the couple must be due to the inertia of the body

causing it to endeavour to rotate with uniform angular velocity. For

inertia resistance to be possible there must be angular acceleration,
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consequently each particle of the body will have a linear acceleration

in the direction of its path of motion.

Considering one such particle m
1 pound at radius r^ feet

;
its

linear acceleration will be a^ feet per sec. per sec., and the resistance

which the particle will offer is

/^^Ib. weight.
(*>

Now, flj
=

Or-L ,

where 0is the angular acceleration in radians per sec. per sec. (p. 392).

.

To obtain the moment of this resistance, multiply p l by r^ giving

m+QrfMoment of resistance of particle =/1
^

1
=

A
i\

= --Vi 2................ (2)

Now had any other particle been chosen, a similar expression for

its moment of resistance would result. Hence

Total moment of resistance due to inertia of body

=
;r2W, ................................. (3)
o

the summation being taken throughout the body. The quantity

2mr2
may be called the second moment of mass, or more commonly,

the moment of inertia of the body, written I. Using a suffix OZ to

indicate the axis about which moments must be taken, (3) becomes
n

Total moment of resistance = - Ioz................. ,
. . (4)

o

Clearly this moment must be equal to the moment of the couple

applied to the body. Hence equating (i) and (4) we have

T = PD =^ ............................... (5)
s

If the couple is measured in absolute units, say L poundal-feet,

(5) becomes L = IOZ ....... , ............................. (6)

The analogy between this equation and the corresponding one for

rectilinear motion may be noted
;

viz.

F = ma..................................... (7)

In (7) a force appears on the left hand side, and in (6) the moment

of a force
;
in (7) the product of mass and linear acceleration are on
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the right hand side, and in (6) the product of second moment of

mass or moment of inertia and angular acceleration.

The following common cases of moments of inertia may be noted

MOMENTS OF INERTIA.

The results are all in pound-(foot)
2 units if the mass M is taken in

pounds and the linear dimensions in feet.

I. A slender uniform rod.

(a) Axis OX parallel to rod and at a distance D from it (Fig. 449).

iox=MD2
.

(b} Axis OX perpendicular to rod through one end (Fig. 450).

ML2

(c) Axis OX perpendicular to rod through its centre of gravity

(Fig. 451). ML2

O x X
FIG. 449. FIG. 450. FIG. 451. FIG. 452.

II. A thin uniform rectangular plate.

(a) Axis OX coinciding with a long edge (Fig. 452).

! = MH2

3

(^) Axis OY coinciding with a short edge (Fig. 452).

MB2

(c) Axis GX through centre of gravity and parallel to long

edge (Fig. 453).

(d) Axis GY through centre of gravity and parallel to short

edge (Fig. 453)- MB,
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(e) Axis OZ through one corner and perpendicular to plate

(Fig- 454).

i = M(H^ B2
)

3

(f) Axis GZ through the centre of gravity and perpendicular to

plate (Fig. 454). M(H2 + B2
)

fcr '-^-
III. A thick uniform plate.

(a) Axis OY coinciding with one edge (Fig. 455).

= M(B
2

J1
T2

)

3

(b) Axis GZ parallel to OY and passing through the centre of

gravity (Fig. 455).

M(B2 + T2
)L

12

FIG. 454. FIG.

IV. A thin circular plate.

(a) Axis OX forming any diameter of the plate (Fig. 456).

I _ MR2
4

(b) Axis TV forming any tangent to the plate (Fig, 456).

_5MR2

1TV

(f) Axis OZ passing through the centre and perpendicular to

the plate (Fig. 456).
MR2

Axis TZ touching the circumference and perpendicular to

the plate (Fig. 456).

3MR2
2
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V. A thin circular plate having a concentric hole.

(a) Axis OX forming any diameter of the plate (Fig. 457).

M(R1

2 + R2
2
)

~T
(I))

Axis OZ passing through the centre and perpendicular to

the plate (Fig. 457).

Ioz =

FIG. 457.

VI. A solid cylinder.

Axis OX coinciding with axis of cylinder.

MR2

lox-

VII. A hollow concentric cylinder.

Axis OX coinciding with axis of cylinder.

M(R1

2 + R2
2
)

Iox=
2

VIII. A solid sphere.

Axis OX forming any diameter.

2MR2

IQX-

The following rules are useful in calculating moments of inertia.

(a) Given Iox and I y for a thin uniform plate, to find IOZt OZ
being perpendicular to the plane containing OX and OY :

IQZ = Iox + IOY-

(b) Given IGX for a thin uniform plate, GX being an axis passing

through the centre of gravity, to find I x> OX being parallel to GX
at a distance D : Iox = JGX + MD2

.

(c) Routh's rule : If a body is symmetrical about three axes

which are mutually perpendicular, the moment of inertia about one

axis is equal to the mass of the body multiplied by the sum of the

squares of the other two semi-axes and divided by 3, 4, or 5 according
as the body is rectangular, elliptical or ellipsoidal.

D.M. 2 D
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EXAMPLE i. A rectangular plate, as shown in Fig. 455, is symmetrical
about GZ and other two axes passing through G, and parallel to B and T
respectively.

IGZ
12

EXAMPLE 2. A solid cylinder (special case of an elliptical body) is

symmetrical about the axis of the cylinder OX and about other two axes

forming diameters at 90 and passing through the centre of gravity
of the cylinder. Hence :

Iox= M(R
2+R2

)

EXAMPLE 3. A solid sphere is symmetrical about any three diameters

which are mutually perpendicular. Hence, about one diameter, OX :

M(R2 + R2
) 2MR2

Iox=

The radius of gyration of a body is defined as a quantity k such that,

if its square be multiplied by the mass of the

body, the result gives the moment of inertia of

the body about a given axis. Taking the case

of a solid cylinder as an example, the moment
of inertia about OZ, the axis of the cylinder, is

MR2

Let

Then

l

=
, or ***,

/a

FIG. 458. An experimental
flywheel.

which gives the value of the radius of

for this particular axis.

EXAMPLE i. A flywheel has a moment of inertia of 8000 in pound and

foot units, and is brought from rest to a speed of 180 revolutions per
minute in 25 seconds. What average couple must have acted ?

Final angular velocity= w=
-j

X27r = 6ir radians per sec.

Angular acceleration =0= - = radians per sec. per sec.

T== =*m^ =l8? ib._feet
g 25x32-2

EXAMPLE 2. In a laboratory experiment, a flywheel of mass 100 pounds
and radius of gyration 1-25 feet (Fig. 458) is mounted so that it may be

rotated by a falling weight attached to a cord wrapped round the wheel

axle. Neglect friction and find what will be the accelerations if a body
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of 10 pound weight is attached to the cord and if the radius of the axle is

2 inches.

Let M = mass hung on, in pounds.

Mg-\ts weight, in absolute units.

T-=pull in cord, in absolute units.

r= radius of axle, in feet.

I =moment of inertia of wheel
= ioox 1-25 x 1-25

= 156-2 pound and foot units.

= the linear acceleration of M, in feet per sec. per sec.

0=the angular acceleration of the wheel, in radians per sec.

per sec.

Then, considering M, we have :

Resultant force producing acceleration= Mg-Tg-=Ma (i)

Considering the wheel, we have :

Couple producing acceleration = Tgr= 10 (2)

Also, e=-
r

. (3)

These three equations will enable the solutions to be obtained. Thus :

From (2) and (3), Tgr\- ;

.'. 1g-\% (4)

Substitute this value in (i), giving

T a

10x32-2Mg-
"", .

I

~~

io+ (i56-2 x6x6)

=0-0572 feet per sec. per sec.

From (3),
= =0-0572x6

=0-343 radian per sec. per sec.

Kinetic energy of rotation. In Fig. 459 is shown a body rotating

with uniform angular velocity w about an axis OZ
perpendicular to the plane of the paper. Con-

sidering one of its particles mly
the linear velocity

of which is v
l ,
we have

Kinetic energy of particle
= 1 1

.

Now, v
i
= <*>rlt

FIG. 459. Kinetic

1)-^
= (D f] . energy of rotation.
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to
2

Hence, Kinetic energy of particle
= m^ (i)

A similar expression would result for any other particle, hence

o>
2

Total kinetic energy of body = 2mr2
, or,

Kinetic energy = Ioz (2)

In using this equation with o> in radians per second, g should be in

feet per second per second and I in pound-(foot)
2 units to obtain the

result in foot-lb. The corresponding equation for foot-poundals

would be W2

Kinetic energy = - Ioz (3)

EXAMPLE i. A flywheel has a mass of 5000 pound and a radius of

gyration of 4 feet. Find its kinetic energy at 1 50 revolutions per minute.

o>= 1
^> . 27r= 5?r radians per sec. per sec.

I = M/ 2= 5000 x 1 6 = 80,000 pound-(foot)
2
.

o>
2

T 25 x?r2 x 80,000
Kinetic energy= I= z

"2.g 64-4

;oo foot-lb.

EXAMPLE 2. The above flywheel slows from 150 to 148 revolutions

per minute. Find the energy which has been abstracted.

Change in kinetic energy=^
--

^j
=

(o^
2 - o>2

2
).

Also, &!
=

57T,

o>
2
= W.27r = 4-93377;

/. Energy abstracted= (<DI
- a>2)(a>1 + o>2)

= 8160 foot-lb.

Energy of a rolling wheel. The total kinetic energy of a wheel

rolling along a road will be made up of kinetic energy of rotation

together with kinetic energy of translation.

Let o> = the angular velocity, radians per sec.

v the linear velocity in feet per sec. of the carriage to which

the wheel is attached (this will also be the velocity

of the centre of the wheel).

M = the mass of the wheel in pounds.
k its radius of gyration, in feet, with reference to the axle.
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Then, Kinetic energy of rotation = - = foot-lb.

Kinetic energy of translation =-- foot-lb.

<o
2!

Total kinetic energy =--1

-- .............. (i)
2.T 2g

Again, if there be no slipping between the wheel and the road, we

have (p. 393) v
................................. (j)

-K

where R is the radius of the wheel in feet.

Substituting in
(
i
),
we obtain, for perfect rolling :

_ . . . . v*M& Mv*
Total kinetic energy = =^ +- 2

2g

Energy of a wheel rolling down an inclined plane. The

principle of the conservation of energy may be applied to the case

of a body rolling down an inclined plane (Fig. 460). In rolling from

A to B, the body descends through a vertical height H feet ; hence,

if M is the mass in pounds,
Work done by gravity

= M^H foot-poundals.............. (i)

Assuming that none of this is wasted,

the total kinetic energy at B will be

equal to the same quantity. The energy
at B is made up of translational kinetic

energy owing to the linear velocity v feet

per second of the mass centre and of

rotational kinetic energy owing to the FIG. 460. Energy of a wheel rolling
. , . . , down an incline.

angular velocity w radians per second.

Hence, Total energy at B = (- + Ioz
j
foot-poundals, ....... (2)

I z being the moment of inertia in pound and feet units about the

axis of rotation passing through the mass centre of the body.

Equating (i) and (2), we have

Writing M> 2 for I z> this will give

Mz/2 eo
2

------- +

or ^H = J(^ + o,2#)......................... (3)
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If there is no slipping between the wheel and the plane, we have

v=

where R is the radius of the body in feet.

Hence,

or

(4)

Motion of a wheel rolling down an incline. The following
way of regarding the same problem should be studied. Fig. 461

Couple FR

Q =
My.

coset

Mg.cosa

FIG. 461. Forces acting on a wheel rolling down an incline.

shows a body rolling down a plane inclined at an angle a to the
horizontal. The weight M^ may be resolved into two forces respec-
tively parallel to and at right angles to the plane ;

these will be

M^sina and M^cosa. The normal reaction Q of the plane will

be equal to M^cosa. If there is no friction, all these forces act

through the mass centre O, and there will be no rotation, i.e. the

body will slip down the plane without any rolling. Suppose that

a maximum frictional force F may act between the plane and the

body and that /A is the coefficient of friction, then

F = fJ<Mg cos a.

To investigate the effect of F, transfer it to the mass centre O as

shown and apply an anti-clockwise couple of magnitude FR. Then

P = Resultant force at O acting down the plane

= Mg sin a - F
= M^sin a - /xM^cos a.
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Let a be the linear acceleration of O down the plane. Then

or M^-(sin a -
/x cos a)

= M#,

.'. a=g(sma -/x cos a)................... (5)

Also, owing to the couple FR, an angular acceleration 6 will be

produced, to be obtained from

M/fc2

If the rolling is perfect, i.e. no slip, we have

9- a

Hence, from (5) and (6),

g /
. v wRcosa

^- (sin a
-

/z cos a) =g' I

'

uR2 cos a
Sin a -

[JL
COS a = ! -; ,

Sina = /xcosa(-^

tan a . .

~A2 "*" ^

This expresses the minimum value of the coefficient of friction

consistent with perfect rolling. Ass'uming that the rolling is perfect,
the value of the linear acceleration a may be calculated as follows :

From (6), p cos a = = ^

a & /0 \

Substituting this value in (5) gives

..'sin a
. . a
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Suppose that the body starts from rest at A (Fig. 462) and rolls

^ to B. The linear velocity v of the mass
' A

centre at B may be calculated thus,

FIG. 462.

?. 388).

Also, y-
= sin a

; or, L

H
sin a

Inserting the value of a from (9), we have

2^ sin a H 2^-H
1r = W~ =

Z5 J

* sin a kz

I +
R2

I+
R2

Comparison of (4) with (10) will show that the same result has
been obtained by both methods.

EXAMPLE. In a laboratory experiment, a small steel ball was allowed
to roll down a plane of length 6 feet and inclination i 40'. The average
time taken (six experiments) was 4-25 seconds. Compare the experimental
and calculated accelerations of the ball.

To obtain the experimental acceleration, we have

s=\a^
where s is the length of the incline and t is the time of descent. Hence,

_2_ 2x6
*

1

~72~4.25X4-25
= 0-664 feet per sec. per sec.

To calculate the acceleration, take equation (9), p. 423.

For a ball,

Hence,

=
f x 32-2 x 0-02908

=0-669 feet per sec. per sec.

The experimental and calculated accelerations differ by about three-

quarters of one per cent.; the agreement is good.
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Centrifugal force. It has been shown (p. 397) that, when a small

body moves in the circumference of a circle of radius R feet with

uniform velocity v feet per second (Fig. 463), there is a constant

acceleration towards the centre of the circle given by

a =
^-

feet per sec. per sec.

To produce this acceleration requires the application of a uniform

force P, also continually directed towards the centre of the circle,

and given by ma
or.

g

ft. weight (i)

This force overcomes the inertia of the body, which would other-

wise pursue a straight line path, and may be called the central force.

FIG. 463. Central and centri- FIG. 464. Resultant

fugal forces. centrifugal force.

It is resisted by an equal and opposite force Q (Fig. 463), produced

by the inertia of the body. Q is called the centrifugal force.

Expressed in terms of the angular velocity w radians per second,

--. ,

2

p = .mR lb. weight................... (2)

A large body rotating about an axis may be considered as being
made of a large number of small bodies

;
for each of these, rf/g will

be the same, hence the total central force will be
2

P = ~
(
W

1
R

1 + W2
R

2 + W3
R

3 + etC
')'

o

The quantity inside the brackets would have the same numerical

value if the whole mass were concentrated at the centre of mass.

Let M = mass of whole body, in pounds,
Y = radius of the centre of mass, in feet (Fig. 464).
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-(3)Then P = Q = MY lb. weight
g

= 2MY poundals (3')

It follows from this result that if a body rotates about an axis

passing through its centre of mass (in which case Y = o), there will be

no resultant pull on the axis due to centrifugal action. There may
be a disturbance set up if the body is not symmetrical about an axis

at right angles to the axis of rotation, and passing through the centre

of mass. For example, in Fig. 465 is shown a rod rotating about an

FIG. 465. An unsymmetrical load produces rocking couples.

axis GX, G being the centre of mass. The rod is not symmetrical

about GY, hence, considering the halves separately, there will be

centrifugal forces as shown by Q, Q, forming a couple tending to

bring the rod into the axis GY. If this tendency is to be balanced,

forces S, S, forming an equal opposite couple must be applied by the

bearings. These forces will, of course, rotate with the rod and

produce what is called a rocking couple. In Fig. 466 is shown a

FIG. 466. A balanced

symmetrical body.

FIG. 467. Balancing a piece of

work in a lathe.

body symmetrical about GY and consequently having neither rocking

couple nor resultant centrifugal force.

In Fig. 467 is shown the face plate of a turning lathe with a piece

of work B attached to the face plate by means of an angle plate C.
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-ThL"^-- R ---

To the other side of the face plate is attached a balance weight

which is adjusted until there is no tendency to rotate the spindle

of the lathe from any position of rest, i.e. the centre of gravity

of the whole falls on the axis of rotation. This is called static

balancing and will serve very well for low speeds. It will be

observed, however, that the bodies attached to the face plate are not

symmetrical. G
l
and G2 ,

the centres

of gravity of the work and of the balance

weight, are not in the same vertical

line, hence the centrifugal forces P
x

and P
2 , being equal, form a rocking

couple which will set up troublesome

vibrations if the speed be increased.

The effect may be reduced by having
the balance weight further from the

face of the plate.

In Fig 468 is shown a motor car travelling in a curved path. To

prevent side slipping, the road is banked up to such an extent that

the resultant Q of the centrifugal force and the weight falls perpen-

dicularly to the road surface.

Let M = mass of car, in pounds.

v = its speed, in feet per sec.

R = radius of curve, in feet.

FIG. 468. Section of a banked
motor track.

Then, Weight of car = M^ poundals.

Centrifugal force = -=r- poundals.

Also, ABG is the triangle of forces. Hence,

Centrifugal force _ M^2
_ v2

_ AB

Now,

Weight of car

AB
BG

EG

= tan a,

and a is also the angle which the section of the road surface makes
with the horizontal

; hence,

Railway tracks are also banked up in a similar manner
;
the super-

elevation of the outer rail prevents the flanges of the outer wheels

grinding against the rail in rounding a curve.
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EXERCISES ON CHAPTER XVII.

1. A body of mass 200 pounds has an acceleration of 150 feet per
second per second at a given instant. Calculate the resistance due to

the inertia of the body.

2. A resultant force of 1220 dynes acts on a body of mass 1-25 grams.
Calculate the acceleration in cm. per sec. per sec.

3. A train has a mass of 250 tons, and starts with an acceleration of

i-i feet per second per second. Frictional resistances amount to n Ib.

weight per ton. Find the pull which the locomotive must exert.

4. A body slides down a plane inclined at 20 degrees to the horizontal.

The coefficient of friction is o-i
;
find the acceleration and the time taken

to travel the first 20 feet.

5. A load of 10 pounds is attached to a cord which exerts a steady
upward pull less than 10 Ib. weight. Starting from rest, the load is found
to descend 6 feet vertically in 4 seconds. Find the pull in the cord.

6. A shot has a mass of 20 pounds and a speed of 1500 feet per
second. Find its kinetic energy in foot-tons. Supposing an obstacle to

be encountered and that the shot is brought to rest in a distance of

12 feet, what is the average resistance?

7. Calculate the momentum of the shot given in Question 6. Suppose
that the shot had been brought to rest in 0-02 second, and calculate the

average resistance.

8. A man stands on a small truck mounted on wheels which are

practically frictionless. If the man jumps off at the rear end, what will

happen to the truck ? Take the masses of the man and the truck to be

150 and 200 pounds respectively, and assume that the man is travelling
at 8 feet per second immediately he has left the truck.

9. A jet of water delivers 50 pounds of water per second with a

velocity of 35 feet per second. The jet strikes a plate which is fixed with

its plane at 90 degrees to the jet. Find the pressure on the plate.

n 10. Suppose in Question 9 that the plate had been curved in such

v a manner that the jet slides on to it and has the direction of its velocity
on leaving the plate inclined at 90 degrees to its original direction. Find
the change in velocity, and hence find the pressure on the plate.

11. A wheel has a moment of inertia of 10,000 in pound and feet units,
and is brought from rest to 200 revolutions per minute in 25 seconds.

Calculate what steady couple must have acted on it.

12. An iron plate 4 feet high, 2 feet wide and 2 inches thick is hinged
at a vertical edge. Calculate its moment of inertia about the axis of the

hinges. Take the density of iron to be 480 pounds per cubic foot.

13. Find the moment of inertia about the axis of rotation of a hollow

shaft 20 inches external and 8 inches internal diameter by 60 feet long.
Take the density as given iri Question 12.

14. A solid ball of cast iron is 12 inches in diameter ; density of metal

450 pounds per cubic foot. Find the moment of inertia about an axis

which touches the surface of the ball.
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15. Referring to Question 5 : The upper part of the cord is wrapped
round a drum 6 inches diameter measured to the cord centre, and a

flywheel is attached to the same shaft as the drum. Find the moment
of inertia of the flywheel.

16. A solid disc of cast iron is 4 feet in diameter and 6 inches thick,
and rotates about an axis at 90 degrees to its plane and passing through
its centre. For the density, see Question 14. Speed 150 revolutions per
minute. Find the radius of gyration and the kinetic energy of the disc.

17. If the disc given in Question 16 slows to 140 revolutions per
minute, how much energy will be given up ?

18. Suppose that the disc given in Question 16 were to roll without

slip down an incline of I in 10, what would be the linear acceleration of
its centre ?

19. A blade of a small steam turbine has a mass of 0-05 pound and
revolves in the circumference of a circle 8 inches in diameter 24,000 times

per minute. Find the centrifugal force.

20. An oval track for motor cycles has a minimum radius of 80 yards,
and has to be banked to suit a maximum speed of 65 miles per hour.
Find the slope of the cross section at the places where the minimum
radii occur.

21. A tramcar weighs 12 tons complete. Each of the axles with its

wheels, etc., weighs 0-5 ton, and has a radius of gyration of I foot. The
diameter of the wheel tread is 3 feet, and the car is travelling at 12 miles

per hour. Find (a) the energy of translation of the car
; (b) the energy

of rotation of the two axles
; (c) the total kinetic energy of the vehicle.

(B.E.)
22. Prove the formula for the acceleration of a point moving with

uniform speed in a circle. Find in direction and magnitude the force

required to compel a body weighing 10 Ib. to move in a curved path, the
radius of curvature at the point considered being 20 feet, the velocity of
the body 40 feet per second, and the acceleration in its path 48 feet per
second per second. (I.C.E.)

23. A motor car, whose resistance to motion on the level is supposed
to be the same at all speeds, has been running steadily on the level at

20 miles per hour; it now gets into a rise of i in 12. What is the
maximum length of this rising road which may be traversed by the car
without changing gear ? (B.E.)

24. A train weighing 300 tons, travelling at 60 miles per hour down a

slope of i in no, with steam shut off, has the brakes applied and stops in

450 yards. Find the space-average of the retarding force in tons exerted

by the brakes
;

if the time that elapses between the putting on of the
brakes and the moment of stopping is 36 seconds, find the time-average
of the retarding force in tons. (I.C.E.)
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INERTIA CONTINUED.

Angular momentum. The angular momentum or moment of momentum

of a particle may be defined by reference to Fig. 469. A particle of

mass m pounds revolving in a circle of r feet in

n radius has a linear velocity of v feet per second

'
r/" \ at any instant in the direction of the tangent.

/ / \ Hence its linear momentum at any instant will be

i -t****2 Linear momentum of particle
= mv,

t O i ,

;

' and v = ur\

\ / .'. Linear momentum of particle
= umr. (i)

v ^ -'' The moment of this about OZ (Fig. 469) may
FIG. 469 -Angular mo- be obtained by multiplying by r> the result being

called the moment of momentum, or angular
momentum of the particle.

Angular momentum of particle
= umr2

(2)

A body having many particles would have a similar expression for

each. Hence, v
Angular momentum of a body = vtLmr1

I. (3)

Consider now a body free to rotate about a fixed axis, and,

starting from rest, acted on by a constant couple T Ib.-feet. The
constant angular acceleration being 0, we have, as in equation (5)

P- 4H, T ^IOZ

Let T act during a time / seconds, then the angular velocity w at

the end of this time will be
(j)

w = 0t, or, 9 = -.

Hence, T =
" *

Ib.-feet, (4)
gt

or
L^^'poundals-feet (5)
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Now, (ol (}7 is the angular momentum acquired in the time /seconds,

hence <oloz// will be the gain of angular momentum per second.

We may therefore state that the couple in Ib.-feet acting on a body free

to rotate about a fixed axis is numerically equal to the rate of change of

angular momentum divided by g ; or, omitting g, the couple will be in

poundal-feet. This statement should be compared with those for

linear momentum given on p. 411.

It will be evident that the applied couple must be acting in the

plane of rotation of the body ;
should this not be the case, then

rectangular components of the couple should be taken, and. that

component which is in the plane of rotation used in applying

equation (4).

Gyrostatic action. In Fig. 470 is shown a cycle wheel suspended

by means of a long cord attached at C to one end of the bearing pin.

n

i-Q w.

FIG. 470. A cycle wheel showing
gyrostatic action.

FIG 471. Angular velocities of
the wheel shown in Fig. 470.

If the wheel be at rest, it cannot maintain the position shown without

assistance, but, if set revolving, it will be found to be capable of

maintaining its plane of revolution vertical. It will be noticed,

however, that the wheel spindle slowly revolves in azimuth, i.e. in

a horizontal plane ;
the vertical plane of revolution of the wheel will,

of course, be always perpendicular to the wheel axis. The effect is

owing to the action of the couple formed by the equal forces T, the

pull of the cord, and Mg, the weight of the wheel. This couple acts

in a vertical plane containing the wheel axis, and will produce

changes in the angular velocity of the wheel ; these changes must

occur in the plane containing the couple.
In Fig. 471 is shown a plan of the wheel

;
as it is revolving clock-

wise when viewed from the right hand side, Oa may be drawn to
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represent w, the angular velocity of the wheel in its present position.

The couple acting is clockwise when viewed from the front side,

hence ab will represent the change of angular velocity occurring in

a brief interval of time (p. 401). Hence the angular velocity of the

wheel at the end of the interval will be represented by Ob. The
vertical plane of revolution of the wheel will turn from the position

OA to OA' during the interval, and the wheel spindle which

occupied the position Oa at first will revolve clockwise when viewed

from above.

Let L = the couple applied, poundal-feet.

I = the moment of inertia of the wheel about its axis, pound
and foot units.

Wj
= the angular velocity of the wheel about its axis, radians

per second.

co
2
= the angular velocity of the wheel axis in the horizontal

plane, radians per second.

/=the time in which the axis makes a complete revolution in

the horizontal plane, seconds.

Then, in one horizontal revolution of the axis, change in angular

velocity of the wheel = 2Tro>r (p. 402.)

Also, L- *I. (p. 414.)

Also, = 27T

In Figs. 470 and 471,

L = M^xCO;
R

or (*)

where CO is the horizontal distance

between the centre of gravity of the

wheel and the suspending cord.

; ; Gyrostatic action in motor cars.

FIG. 472. Gyrostatic action in an ordinary In Fig. 472 IS shown a motor Car

travelling round a curve
;

when

looked at from the front, the engine flywheel has a clockwise angular

velocity. Let OA represent the angular velocity of the flywheel

when the car is in the position shown, and let OB represent the
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angular velocity after a short interval of time
; then the change in

angular velocity will be represented by AB, and indicates that a

clockwise couple must be acting on the car as seen in the side

elevation. This couple can come only from the reactions of the

ground, hence the front wheels are exerting a greater pressure and
the back wheels a smaller pressure than when the car is running in

a straight line. If the car is turning towards the right instead of

towards the left, there will be an increase in pressure on the back

wheels and a, diminution in pressure on the front wheels; the

student should make a diagram of this case for himself.

Let P = the change in pressure on each axle of the car, in poundals.

Wj
= the angular velocity of the engine, in radians per second.

I = the moment of inertia of the revolving parts of the engine,
in pound and foot units.

V = the velocity of the car, in feet per second.

R = the radius of the curve, in feet.

w
2
= V/R = the angular velocity in azimuth of the engine shaft,

radians per second.

D the distance, centre to centre of the wheel axles, in feet

Then, \ Couple acting =

P =
~Fyp- poundals

-Jg height

In Fig. 473 is shown a car having a wheel at O rotating in a

<f QJ

FIG. 473. Gyrostatic action of a revolving wheel in a car.

vertical plane parallel to the planes of revolution of the back wheels

of the car. In the side elevation the wheel rotates clockwise
;
the car

D.M. 2 K
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is shown in plan turning towards the right. Oa will represent the

initial angular velocity of the wheel, Qb represents the angular velocity

after a brief interval, and ab represents the change in angular

velocity during this interval. Viewed from the front of the car,

the change in angular velocity is anti-clockwise, hence an anti-clock-

wise couple P, P, must act on the wheel in a vertical plane con-

taining the wheel axis. This will give rise to an equal opposite

couple Q, Q, acting on the car, and will cause the wheels at AA to

exert greater pressure on the ground and those at BB to tend

to lift. It will be noted that in this case both centrifugal force and

gyrostatic action conspire to upset the car. If the wheel at O be

made to rotate anti clockwise, the gyrostatic couple will have the

opposite sense to that in Fig. 473, and will tend to equilibrate the

effects of centrifugal force on the car. The student should sketch

the diagram for this case, and also for the case of the car turning

towards the left.

Further points regarding gyrostatic action. A wheel revolving

in a given plane may be shifted to any parallel plane without any

FIG. 474. An experimental gyrostat.

gyrostatic action being evidenced. This is in consequence of such a

change in position being unaccompanied by any change in the

angular velocity of the wheel ;
hence there is no change in angular



GYROSTATIC ACTION 435

momentum, and therefore no couple is required. A couple is

required in every case where the new plane of revolution is inclined

to the initial plane.

In Fig. 474 is shown a common form of gyrostat by use of which

useful information regarding the behaviour of gyrostats may be

obtained. The revolving wheel A rotates on a spindle BC, the

bearings of which at B and C are formed in a ring which has freedom

to rotate about an axis DE. The ring has bearings at D and E in

another semicircular ring DFE, which has freedom to rotate about

the vertical axis FG. The spindle FG is dropped into a vertical

hole in a heavy stand. The effect of a weight W hung from C will

be to cause the axis BC to rotate in a horizontal plane, accompanied,
of course, by the whole frame

;
the direction of this rotation, as

viewed from above, will be either clockwise or anti-clockwise, depend-

ing on the direction of rotation of the wheel.

It will be noted that the original vertical plane of rotation gradu-

ally becomes inclined to the vertical as the motion goes on. This is

owing to the action of a horizontal couple acting
on the frame, and produced by the frictional

resistance offered by the stand to the rotation

of the spindle FG. In Fig. 475 an elevation of

the wheel is shown, rotating in the vertical plane
OA. Oa represents the angular- velocity of the

wheel
;
ab represents the change in angular velocity

in a given interval of time in the horizontal plane

containing the wheel axis, and produced by the frictional couple.
Qb is the altered angular velocity of the wheel at the end of the

interval. The wheel will now be rotating in the plane OA', per-

pendicular to Ob and inclined at an angle AOA' to the vertical.

While the wheel is rotating, if the free motion of the semi-circular

ring DFE be impeded by application of a finger, it will be noted that

the wheel turns over. This effect is precisely the same as the effect of

the frictional couple, only it is more marked, as the horizontal couple

produced by the finger is larger than that produced by the friction.

If DFE be held forcibly from rotating, the wheel will assume
a horizontal plane of rotation instantly. In fact, the wheel is only

capable of exerting a couple which will equilibrate the couple applied

by means of W, provided its motion in azimuth is allowed to take

place freely.

Schlick's anti-rolling gyrostat. Fig. 476 illustrates in outline

the method used by Schlick for reducing the rolling of a ship



436 MACHINES AND HYDRAULICS

among waves. The view is a cross section of the ship ;
A is a

heavy wheel revolving in a horizontal plane about the axis BC
The frame in which the wheel rotates can rock about a hori-

zontal axis DE, which works in bearings secured to the ship's

frames. DE is perpendicular to the direc-

tion of length of the ship. When the ship

B rolls, the axis DE is forced out of the hori-

zontal, and the axis BC will be inclined

by either B or C coming out of the paper.

A couple, applied by vertical forces acting

at D and E, is required to give the wheel

FIG. 476. Schiick's anti-rolling frame this motion, and an equal opposite
gyrostat. .

n
.

couple acts on the ship, tending to give

to it a motion opposite to the rolling motion. In consequence of

this reaction on the ship, the rolling effect is made much smaller.

Freedom of motion about DE must be provided, otherwise the wheel

is incapable, as has been shown above, of offering any resistance to

rolling.

There are many other applications of the principle of the gyrostat,

such as in the gyro-compass used on board ships, in the Brennan

monorail cars, and in steering torpedoes.

Simple harmonic vibrations. It has been shown (p. 398) that a

body, in describing simple harmonic vibrations, possesses at any
instant an acceleration directed towards the centre of the vibration,

and proportional to the distance of the body from the centre of the

vibration. A force will be necessary in order to produce this acceler-

ation, and the force will evidently follow the same law as the

acceleration, i.e. it will be constantly directed

towards the centre of the vibration, and K--
R----

+{

will be proportional to the distance of the_i 9 <
F

*

body from the centre. B O m A

(

In
Fig._

477 a body of mass m pounds
Fir" 477\^^harmonic

vibrates with simple harmonic motion in the

line AB. Let v feet per second be the velocity when the body is

passing through the centre O, then the accelerations at A and B will be

2,2

ai=f ^ feet per second per second,

R being the length of OA in feet (p. 397).

Let Fj be the force in poundals required at A and B, then

= -=r- poundals............................ (
i
)
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Supposing the body to be situated at C, its acceleration a may be
found from ^_OC_OC

<^~OA~ll
'

OC
.. a = ai .

Also, the force F required to produce the acceleration may be
found from jr QC OC

F!

=
OA

=
^: ;

. F _ F OC_^ OC
*' R

~
R

'

R
mv^ ~~=
~RZ~ poundals (2)

Suppose OC to be one foot, and that /x represents the value of the

force required when the body is at this distance from O, then

JiT
P undals (3)

The time of one complete vibration from A to B and back to A is

given by (p. 400) R
T = 27T .

V

From (3), -*-=;

. R Im

Substitution of this value gives

T = 2irA/ seconds (5)

EXAMPLE. A body of mass 2 pounds executes simple harmonic

vibrations. When at a distance of 3 inches from the centre of the

vibration, a force of 0-4 Ib. weight is acting on it. Find the time of

vibration.

The force required at a distance of one foot from the centre will be

four times that required at 3 inches. Hence,

fji
= 0-4 x 4= i -6 Ib. weight
= i -6 g poundals.

2X22
Hence>

1-238 seconds.
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Simple harmonic torsional oscillations. A body will execute

simple harmonic torsional oscillations if it is under the influence of a

couple which varies as the angle described by the body from the

mean position, the couple having a sense of rotation always tending
to restore the body to the mean position. Thus, a body secured to

the lower end of a vertical wire, the upper end of which is fixed

rigidly, will hang, when at rest, in a position which may be described

as the mean position. As has been explained on pp. 255 and 295, if the

wire be twisted by rotation of the body, it will exert a couple which will

be proportional to the angle of twist
;

this couple will be constantly

endeavouring to restore the body to the mean position, hence the

body will describe simple harmonic torsional oscillations. The time

of vibration may be deduced by analogy from equation (5), p. 437,

showing the time of simple harmonic rectilinear vibrations
;

the

moment of inertia of the body about the wire axis must be substituted

for m, and the couple acting at unit angle (one radian) from the mean

position must be substituted for /x. Thus

Let M = the mass of the body, in pounds.

k = its radius of gyration about the axis of vibration, in

feet.

I = M/fc2 = the moment of inertia about the same axis, in pound
and foot units.

A = the couple acting at one radian displacement from the

mean position, in poundal-feet.

T = the time elapsing between successive passages of the

body through the same position.

Then, T = 2^

V
Mk2

2-n-A / seconds.
A

EXAMPLE. A flywheel having a mass of 1000 pounds and a radius of

gyration of 2 feet, is fixed to the end of a shaft 4 feet long and 3 inches in

diameter. It has been found from a separate calculation that the shaft

has an angle of twist of 0-0005 radian when a torque of 1000 Ib.-inches is

applied. Find the time of a free torsional oscillation. Take ^-=32-2.
The term "

free
"
indicates that the frictional effects of the bearings and

of the atmosphere are to be disregarded.

= looo x 2 x 2 = 4000 pound and foot units.
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The angle of twist is proportional to the torque, and if this were true up
to one radian, we have

Torque at one radian _ i
.

looo "0-0005
'

.'. Torque at one radian =
0-0005

= 2,000,000 Ib.-inches ;

= 2,000,000 Xg
12

= 5)3^7,000 poundal-feet.

Hence,

= 44 J~ 4ocx

7 ^5>367,<

Suppose n to be the number of torsional oscillations per minute
;
then

60
=

o-i7is

If this shaft were driven by means of an engine connected to a

crank fixed to the shaft at the end remote from the flywheel, and if

the shaft were to have a speed of 350 revolutions per minute, the

engine would be delivering impulses to the shaft which would keep
time with the free oscillations of the shaft. In

these circumstances, the angle of oscillation would

rapidly increase in magnitude. As the stress in

the shaft is proportional to the angle of twist, a

very large stress would be produced and the shaft

would be in danger of breaking. A somewhat

higher or lower speed of revolution is necessary

in order to avoid these effects
;

in no case should

the impulses given to the shaft synchronise with

the free torsional oscillations.
V tTli

The simple pendulum. A simple pendulum may
be realised by suspending a small heavy body at FIG. 478.-A simple

the end of a very light thread and allowing it to

vibrate through small angles under the action of gravity. In Fig. 478
the body at B is under the action of its weight mg and the pull T
of the thread. The resultant of these forces is F, a force which
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is urging the body towards the vertical. The triangle of forces

will be ABD, and we have

JF = BD
mg~A&

T7
BD

F = m? --T-.=r-or

Now, if the angle BAD is kept very small, AC and AD will be

very nearly equal. Let L be the length of the thread in feet
;
then

F = w<r =-^-BD. ...(i)

Hence we may say that F is proportional to BD. For very small

angles of swing BD and BC coincide practically, therefore the body
will execute simple harmonic vibrations under the action of a force F
which varies as the distance from the vertical through A. To obtain

the value of
/*, the force at unit distance, make BD equal to one foot

in(i); then

poundals.

Now, =
(p. 437)

EXAMPLE. Find the time of vibration of a simple pendulum of length

4 feet at a place where g is 32 feet per
second per second.

2X22

7

= 2-222 seconds.

The compound pendulum. Any
body vibrating about an axis under the

action of gravity and having dimensions

which do not comply with those re-

quired for a simple pendulum may be

called a compound pendulum. In

Fig. 479 (a) is shown a compound
pendulum consisting of a body vibrating

FIG. 479. A compound pendulum and
an equivalent simple pendulum.
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about A. G is the centre of mass of the body, and the line AG
makes an angle a with the vertical passing through A in the position

under consideration. In Fig. 479 (b} is shown a simple pendulum
CD vibrating about C ;

at the instant considered CD makes the

same angle a with the vertical passing through C. Both pendulums
will execute small vibrations in the same time provided that their

angular accelerations in the given positions are equal.

Considering the compound pendulum,
Let M = its mass, in pounds.

Y = the distance AG, in feet.

IA = M^A = its moment of inertia about A, in pound and
foot units.

1
= the angular acceleration in radians per sec. per sec.

in the given position.

r~, n couple applied M^ x GB
Inen "\

=~
^r

= -
2

IA M/ A

_"x GAsina . .

~~# '^
A

Considering now the simple pendulum,
Let m = its mass, in pounds.

L = its length, in feet.

Ic = wL2 = its moment of inertia about C, in pound and
foot units.

2
= its angular acceleration in radians per sec. per sec. in

the given position.

Then couple applied

mgx DE _g x DC sin a

L2

L
To comply with the required conditions, we have

.

N

.(3)
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The length L of the corresponding simple pendulum may be

calculated from this result, and hence the time of vibration of both

pendulums may be found. If AG be produced to Z (Fig. 479 (#)),

making AZ equal to L, the point so found is called the centre of

oscillation. The centre of oscillation may be denned as the point at

which the whole mass of a compound pendulum may be concen-

trated without thereby altering the time of vibration.

Centre of percussion. If a body is capable of rotating freely

about a fixed axis, it will be found that, in general, a blow delivered

to the body will produce an impulse on the axis.

There is, however, one point in the body at which

a blow will produce no impulse on the axis
;

this

point is called the centre of percussion.

In Fig. 480, C is the axis about which the body

may turn freely and G is the centre of mass. Let

an impulse F be delivered to the body at a point Z.

The effects of F may be examined by transferring

F to the centre of mass, applying at the same time

a clockwise couple of moment F x GZ. The force

F acting at G will produce pure translation, and

if the mass of the body is M pounds, every point in it will have an

acceleration a
l
feet per second per second, found from

FIG. 480. Centre of

percussion.

or M
In particular, C will have this acceleration a^ towards the left.

Further, the couple F x GZ will produce a clockwise angular
acceleration 6. found from T? v r-y

ya JT X \J/_J

~~IG~~*

where IG is the moment of inertia of the body about an axis passing

through G and parallel to the axis at C.

moment of inertia, we have
FxGZ

:
~

Writing M/ G for this

As a consequence of this angular acceleration, C will have a linear

acceleration a
2

feet per second per second towards the right, to be

found from a
.,
= x CG
F x GZ x CG
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If there is to be no impulse on the axis at C, there must be

equality of a
t
and

2
. Hence,

F = FxGZxCG

GZxCG
or i= -

z ;

kG

.'. c = GZxCG (3)

Also, Ic
= Ic + M . CG2

, (p. 417.)
2 o

.*. G = c-CG 2
(4)

Also, GZ = CZ-CG (5)

Substituting these values in (3) gives :

/C -CG2 = (CZ-CG)CG,

Comparison of this result with that found for the position of the

centre of oscillation (p. 441, equation (3)), indicates that the centre

of percussion of a body coincides with the centre of oscillation.

Reduction of a given body to an equivalent dynamical system.

It is often convenient to substitute for a given body two separate
bodies connected by means of

an imaginary rigid rod, and

arranged in such a way that the

substituted bodies behave under

the action of any force or forces

in exactly the same manner as

the given body. In Fig. 481 (a) (ft-)-
.

/

is shown a body of mass M, /L\

and having its centre of mass at
FlG> 48l._Equivalent dynamical system.

G ; Fig. 48 1
(I))

shows an equi-

valent system, consisting of two bodies at A' and B', having masses

m
l
and m

2 respectively, and having their centre of mass at G'. A
and B in Fig. 481 (a) correspond with A' and B'. The conditions

of equivalence may be stated as follows :

(i) The mass M must be equal to the sum of m^ and m
2 ,
and the

points G and G' must divide AB and A'B' respectively in the same

proportion. A force applied at G or at G' will then produce pure
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translation with equal accelerations in the given body or in the

substituted system. Hence,
m

1
+ m2

= 'M
t (i)

m
l
x AG = #z

2
x BG,

or m^a = mj) (2)

(2) The moment of inertia of the given body about any axis pass-

ing through its centre of mass must be the same as the moment of

inertia of the substituted system about a similarly situated axis.

This condition ensures that the given body and the substituted

system shall possess equal angular accelerations when acted on by

equal couples. Hence,
m

l
d2 + m i>P = Ukl (3)

These equations may be reduced as follows :

b a
From (2), m^-m^ m

2
=

~l
m

\-

Substituting these in (i) gives :

m
1 + -rm l

= M
;

M M

Also,
-

-J-s

M Ma

a

Inserting these values in (3), we have

or

.' ab =& (6)

The required equivalent system may thus be obtained by first

selecting a. b may then be calculated from (6), having first deter-

mined the value of Ĝ . m^ and m% may now be calculated from (4)

and (5).
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EXAMPLE. A connecting rod (Fig. 482) 4 feet long has its centre of

mass G at 2-8 feet from the small end. The mass of the rod is 200

u 3-5

m,

<P
rb*?-

------- a ------*

FIG. 482. Equivalent dynamical system for a connecting rod.

pounds, and an equivalent system is required in which one of the two

masses is to be situated at the small end. k*G is 2 in foot units. Find the

system.
Here a is 2-8 feet

; hence, from (6),

/From (4),

From (5),

=0714 foot

200 X 0-7 14 200 X 0-7 14

3-514

= 40-6 pounds.

Ma

200X2-8

3-5I4

= 159-4 pounds.

If it is desired to give the body shown in Fig. 481 (a) any assigned

motion, the forces required may be obtained as follows : Find the

linear accelerations at A and B, both in direction and magnitude ;

let these be a
l
and a

2 respectively. In Fig. 481 (<), showing the

equivalent system, m
l
and m

2
will have accelerations

<Zj
and a

2

respectively, and forces will be required acting in the lines of these

accelerations, and given by

both in absolute units. The same forces applied at A and B respec-

tively in Fig. 481 (a) will give the proposed motion to the body.
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EXPT. 43. The law F = ma may be verified roughly by means of

the apparatus illustrated in Fig. 483. A and B are two similar scale

pans connected to a fine cord C which passes over two aluminium

pulleys D and E. A cord Cj ,
of the same kind as C, is attached to

the bottom of each pan, and compensates for the

extra weight of cord on the B side of the pulleys.
A fall of about 10 feet should be arranged for

the scale pans.
Place equal masses in the scale pans, and

find by trial what additional mass placed in A
will cause it to descend with uniform velocity
when given a start. Any additional mass placed
in A will now give A an acceleration downwards
and B an equal acceleration upwards. Let A
have a total fall of H feet, and make several

experiments without changing the masses,

noting the time in seconds for each descent by
means of a stop-watch. Take the average time
/ seconds and calculate the acceleration a, from

FIG. 483. Apparatus for TT
verifying the law F = ma. a

l
=
~^

feet per S6C. per S6C
(

I
)

The acceleration should also be calculated as follows :

Let Ms
= mass of each scale pan, pounds.

Mw = the equal masses added, pounds.
Me

= the additional mass in A required to secure uniform

velocity, pounds.
Ma = mass added to A for the purpose of producing

acceleration, pounds.

The total mass to which acceleration has been given, neglecting
the cord and pulleys, is

The force F which has produced the acceleration is the weight
of Ma ,

i.e. Mag in poundals. Hence,

or Mag= {2(MS + M lo) + M + Ma}a2 ,

feet er sec ' sec........

This value should agree fairly well with that experimentally found
and given by 1

in equation (i).

Repeat the experiment two or three times with different masses.
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EXPT. 44. To find the moment of inertia of a small flywheel by the

method of a falling load. The apparatus used consists of a small

flywheel (Fig. 458, p. 418) having a drum on its shaft and capable of

being rotated by means of a cord wrapped round the drum, and

having a scale pan containing a load attached to its end. The cord

is attached to the drum in such a manner that it drops off when the

scale pan reaches the floor.

Allow the scale pan to descend slowly through a measured height,
and note the number of revolutions made by the wheel during this

operation. Wind up the scale pan to the same height, place a load

in it, then allow the wheel to start unaided, at the same moment

starting a stop-watch. Stop the watch at the instant the scale pan
reaches the floor, and note the time of descent. Allow the wheel to

go on revolving until friction brings it to rest, and note the total

number of revolutions which it makes from start to stop.

Let m
l
= the mass of the scale pan, in pounds.

m% = the mass placed in the scale pan, in pounds.
M = m

l + m2
= the total falling mass, in pounds.

H = the height of fall of the scale pan, in feet.

^=the time of fall, in seconds.

N
x
= number of revolutions made by the wheel during the fall.

N
2
= the total number of revolutions from start to stop.

The total work done by gravity will be M^H foot-poundals, and,

up to the instant that the scale pan is on the point of touching the

floor, this work has been expended as follows: (a) in giving kinetic

energy to the falling mass M; (b) in overcoming frictional resistances;

(f) in giving kinetic energy to the wheel. If v be the velocity of M
when the scale pan arrives at the floor, the average velocity of

descent will be \v feet per second. Hence,

2H ,
. . v = feet per second.

. Mv* M 4H2

. . Kinetic energy acquired by M =- = ~-

2MH2
f=

-g
-

foot-poundals.

The difference between M
ĉ H and the kinetic energy acquired by

the falling mass M represents the energy reaching the drum, and is

expended in overcoming friction and in giving kinetic energy to

the wheel.
2MH2

Energy reaching the drum = M^H -
2

MHf --
2~ ) foQt;-poundals

.
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Ultimately, the whole of this energy is dissipated in overcoming
frictional resistances throughout the entire motion of the wheel, i.e.

in N
2 revolutions. Assuming that the frictional waste per revolution

is constant, we have

Energy wasted per revolution = MHuf- -rj- J
-f- N

2 ,

Energy wasted while M is falling
= MH(^- ^- j^

1
foot-poundals.

Y t /JN 2

Let E = the kinetic energy possessed by the wheel at the instant

the scale pan reaches the floor.

rp, ,-, ATTT/ 2H\ ,,/ 2HXN,
Then E =MH- -- - MHg- .J

-- 1

foot-poundals

N

The angular velocity of the wheel at the instant the scale pan
reaches the floor may be calculated as follows :

Revolutions described in / seconds = N\
= average revs, per sec. x t\

.'. Average revolutions per sec. = -
.

2N,
And, maximum revolutions per sec. = -

;

2N
.". Maximum angular velocity of wheel = w= 1. 2^

47rN
1

,.= ^ 1 radians per sec.

Now,
o

Maximum kinetic energy of the wheel = I = E foot-lb. ;

MH _ 2 -
N/ foot units.

The experiment should be repeated several times with different

masses m
2
and with different heights of fall H

;
the values of I

should be calculated for each experiment and the mean value taken.
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EXPT. 45. To find the centre of oscillation, or the centre of percussion,

of a given body. A connecting rod has been selected as a useful

example (Fig. 484). The rod AB is suspended from a knife edge
consisting of a square bar of tool steel

CD, passing through the hole in the
G

small end and resting on V blocks at

E and F. The rod can vibrate now
in the same plane as that in which it

will vibrate when built into the engine.
GH is a simple pendulum consisting
of a small heavy bob and a light cord.

Cause both rod and simple pendulum
to execute small vibrations, starting

both together at the end of a swing.

Adjust the length of GH until both

vibrate in the same time. Measure
GH and mark a point on the con-

necting rod at this length from its axis

of vibration. This will give the centre

of oscillation or percussion when the

rod is vibrating about the upper edge
of the tool steel bar.

EXPT. 46. Take a uniform bar of metal about 3 feet long and of

section about i inch by f inch. Referring to p. 443, it will be seen

that the centre of percussion Z for this bar will be at a distance from

C given by

B B
FIG. 484. Centre of oscillation by

experiment.

Let L be the length of the bar. Then

Mark clearly the position of Z on the bar
;
allow the bar to hang

vertically, using a finger and thumb at C. Use another short bar

and strike the bar sharply at different points. The absence of any
jar on the fingers when the bar is struck at Z will be observed

readily, and gives confirmation of the calculated position of Z.

EXPT. 47. To find the radius. of gyration of a given body about an axis

passing through its centre of mass. In Fig. 485 is shown a flywheel

arranged in the same manner as the connecting rod in Fig. 484.
Find the length of the corresponding simple pendulum as directed

previously, being careful to cause the flywheel to vibrate in the same

plane as that in which it will rotate subsequently. Measure BK, the

distance from the axis of vibration to the centre of mass of the wheel.

Weigh the wheel in order to estimate its mass.

D.M. 2 F
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Taking equation (3), p. 441, and applying it to the present case,

we have ,2

where

Hence,

Now,

L= GH, in feet;

Y = BK, in feet;

B = the radius of gyration about B, in feet.

4-LY.
IK = IB -MY2

,

or

/&K = s/Y(L- Y) feet (i)

G

<>

FIG. 485. Radius of gyration of a flywheel by experiment.

The moment of inertia of the wheel about its axis of rotation

willbe
IK = M/
= MY(L -

Y) pound and foot units. . . .(2)

This experiment therefore provides a means of finding the data

required for estimating the kinetic energy and the rotational inertia

of a given flywheel.

EXPT. 48. To find the velocity acquired by a wheel in rolling down an

incline. In Fig. 486 is shown a long incline AB consisting of two

angle bars with a gap between them. The angle bars are pivoted to

a bracket at A, and a prop at F enables the angle of inclination to

be altered.

The wheel D has a spindle projecting on each side of the wheel,
and has a collar E on each side secured by a nut to the spindle.
The collars are coned slightly for the purpose of keeping the wheel

centrally in the gap as it rolls down and to prevent the wheel from

rubbing on the angles. A fixed stop is fitted at C. The object of

the arrangement is to increase the time taken in rolling down the

incline.
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First determine the square of the radius of gyration of the wheel
and its attachments about the axis of the spindle, by the method

explained in the last experiment. Let this be & in foot units.

FIG. 486. Apparatus for investigating the motion of a wheel rolling down an incline.

Set the incline to a suitable angle by means of the prop. Measure
the difference in level between the centre of the wheel spindle when
in the starting position and when in the stopping position ;

let this be
H feet. Measure also the distance travelled, parallel to the incline,

by the wheel centre
;

let this be L feet. Let the wheel start unaided,
and note the time taken in rolling down ; let this be / seconds. Let
the linear velocity of the wheel centre at the instant of arriving at

the bottom be v feet per second. Then

L= the average velocity x /

2L
.'. v = feet per second......................... (i)

Taking equation (4), p. 422, and writing r instead of R, where r
is the mean radius of the collars E in feet,

v= /
-75

feet per second. * ...... . ........ (2)

(i) and (2) are expressions for the velocity found by entirely

independent methods, and the results obtained from them should

agree. Give the results for v by both methods
; repeat the experi-

ment, using different angles of inclination and collars having a
different diameter.

EXERCISES ON CHAPTER XVIII.

1. A wheel has a moment of inertia of 24,000 in pound and foot units,
and runs at 90 revolutions per minute. Find its moment of momentum.
Suppose that the speed changes to 88 revolutions per minute in 0-5 second,
what couple must have acted ?

2. A wheel has a moment of inertia of 20 in pound and foot units,
and has a speed of 90 revolutions per minute

;
the plane of revolution is

vertical. The wheel is mounted so that its axis is capable of turning in a
horizontal plane (i.e. in azimuth). The axis is found to have an angular
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velocity of - radian per second in azimuth. Calculate the couple
10

acting. Show the couple and the directions of both angular velocities

clearly in a diagram.

3. A cycle wheel has a mass of 5 pounds and its radius of gyration is

one foot. It is suspended as shown in Fig. 470, the distance between
the suspending cord and the mass centre being 2-5 inches. The wheel is

spun and revolves with its plane vertical 120 times per minute. Find
the angular velocity in azimuth.

4. A body having a mass of 12 pounds vibrates in a straight line 18

inches long with simple harmonic motion. The time of one complete
vibration is 0-25 second. Find what force must act on it at the end of

each stroke and the velocity at the middle of the stroke.

5. A small wheel having a moment of inertia of 0-4 in pound and foot

units has its plane horizontal and is attached firmly at its centre to a

vertical steel wire, the top end of which is fixed to a rigid bracket. The
wheel can execute torsional oscillations under the control of the wire.

The wire is 0-06 inch in diameter and 36 inches long, and its modulus of

rigidity is known to be 11,000,000 Ib. per square inch. Find the time

of one complete oscillation.

6. A thin disc 24 inches in diameter can execute small vibrations under
the influence of gravity about a horizontal axis at 90 degrees to the plane
of the disc and bisecting a radius. Find the length of the equivalent

simple pendulum and the time of one complete vibration.

7. A thin uniform steel rod 3 feet long hangs freely from its top end.

Find the centre of percussion.

8. A uniform bar of mild steel, section 2 inches by I inch, 4 feet long,
has masses of 4 and 2 pounds attached at distances of I foot and 3-5 feet

respectively from one end. Take the density of the bar to be 0-28 pound
per cubic inch. Find the mass centre and the moment of inertia about
an axis at 90 degrees to the flat face of the bar and passing through the

mass centre.

9. Take the system given in Question 8 and reduce it to an equivalent

dynamic system having a mass situated at the end of the bar adjacent
to the given 2 pound mass.

10. Take the equivalent dynamic system found in answer to Question
9. A force of 100 Ib. weight is applied at 90 degrees to the bar (a) at the

mass centre, (^) at 3 inches from the mass centre. Find, in each case,
the translational acceleration of the mass centre and the angular acceler-

ation, if any, of the bar.

11. Explain what is meant by moment of momentum. Calculate the

moment of momentum of a body weighing 300 Ib. rotating at 1250 revolu-

tions per minute, the radius of gyration of the body about the axis of

rotation being 1-7 foot. What property is measured by rate of change of

moment of momentum ? (I.C.E.)

12. A body of 40 pounds hangs from a spiral spring, which it elongates

2-5 inches. The body is then pulled down a short distance and let go.
Determine the number of complete oscillations the body will make per
minute, assuming that the weight of the spring is 20 Ib. (B.E.)



EXERCISES ON CHAPTER XVIII. 453

13. A body weighing 161 Ib. has a simple harmonic motion, the total

length of one swing being 2 feet
;
the periodic time is i second. Make a

1

diagram showing its velocity and another showing its acceleration at

every point of its path. What force is giving to the body this motion ?

What is its greatest value ? (B.E.)

14. A heavy circular disc is supported on a shaft 3 inches in diameter,
carried on roller bearings ;

a cord is wrapped round the shaft. It is

found by experiment that a weight of 6 Ib. suspended from this cord is

just sufficient to overcome the friction of the roller bearings and maintain
a uniform speed of rotation of the disc. When a weight of 30 Ib. is

suspended from the cord, it is found that this weight descends vertically

14 feet in 2 seconds of time. Determine the moment of inertia of the
disc in pound-foot

2 units. Neglect the inertia of shaft and cord, and
assume that the speed of rotation of the disc increases at a uniform rate

in the second experiment. (B.E.)

15. Obtain the magnitude and position of the single force which when
applied perpendicularly to the axis of a uniform bar (48 inches long,

weighing 200 Ib.) will give it a translational acceleration of 40 feet per
second per second and a rotational acceleration of 10 radians per second

per second. (I.C.E.)

16. In a hoisting gear a load of 300 Ib. is attached to a rope wound
round a drum, the diameter to the centre of the rope being 4 feet. A
brake drum is attached to the rope drum and fitted with a band brake.
The combined weight of the two drums is 720 Ib., and the radius of

gyration of the two together is 20 inches. The weight starts from rest

and attains a speed of 10 feet per second. The brake is then applied and
the speed is maintained constant until the load reaches 20 feet from the

bottom, when the brake is tightened so as to give uniform retardation
until the load comes to rest. The total descent is 100 feet, find the time
taken for the descent and the tension in the rope during slowing. (I.C.E.)

17. Show that the natural period of vertical oscillation of a load

supported by a spring is the same as the period of a simple pendulum
whose length is equal to the static deflection of the spring due to the load.

When a carriage underframe and body are mounted on the springs,
these are observed to deflect i^ inch. Calculate the time of a vertical

oscillation. (I.C.E.)

18. Show that a body having plane motion may be represented by two
masses supposed concentrated at points. A rocking lever (mass 600 pounds)
has a radius of gyration about its centre of gravity of 18 inches, and the
centre of gravity is distant 6 inches from the axis round which the lever

rocks. Find the magnitude of the equivalent masses if one is supposed
to be concentrated at the axis, and find also the distance of the other
mass from the axis. Find the torque required to give the lever an
acceleration of 10 radians per second per second. (L.U.)

19. The revolving parts of a motor car engine rotate clockwise when
looked at from the front of the car, and have a moment of inertia of 400
in pound and foot units. The car is being steered in a circular path of

400 feet radius at 12 miles per hour, and the engine runs at Sop revolutions

per minute, (a) What are the effects on the steering and driving axles due
to gyroscopic action ? The distance between these axles is 8 feet, (b}

Suppose the car to be turned and driven in the reverse direction over the
same curve at the same speed, what will be the effects on the axles ? (L.U.)
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20. A hollow circular cylinder, of mass M, can rotate freely about an
external generator, which is horizontal. Its cross-section consists of
concentric circles of radii 3 and 5 feet. Show that its moment of inertia

about the fixed generator is 42 M units, and find the least angular velocity
with which the cylinder must be started when it is in equilibrium, so that

it may just make a complete revolution. (L.U.)



CHAPTER XIX.

x B

LINK MECHANISMS.

Link mechanisms. Links are used for transmitting motion from
one point to another in a mechanism. In any complete mechanism

containing links, usually each

part is constrained so as to

move always over the same path /

in the same definite manner;
f

the whole may then be defined \

as a kinematic chain. The slider-

crank-chain is a well known

example of complete restraint

(Fig. 487) here the crank CB revolves about an axis C and forms

one link in the chain
;
the connecting rod AB is connected to the

crank at B, hence this end of the rod revolves about the centre C ;

its other end A is constrained by the sliding block D and slotted

frame E so as to move always in a straight line.

Fig. 488 (a) shows a case of incomplete restraint ; there are two

cranks AB and CD, capable of rotation about A and C respectively,

FIG. 487. Slider-crank-chain.

FIG. 488. Examples of incompletely and completely restrained mechanisms.

and connected by two links BE and DE, jointed at E. It is impossible
to make any calculations in a case such as this. Complete restraint

may be secured by having a block at the joint E and guiding it to

move in a definite line (Fig. 488 ()) ; the addition of another crank

GF and a connecting rod FE will secure definite motion for every
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part of the mechanism. In cases of complete restraint, problems

regarding the path, velocity and acceleration of any point may be

solved, and calculations made regarding the effects of inertia in pro-

ducing stresses in the parts and in modifying the forces given to the

mechanism by outside agencies.

The path of any point in a mechanism is found best by drawing
the mechanism in several different positions and marking in each

the position of the point under consideration
;
a fair curve may be

drawn through these points and will give the desired path. The path

FIG. 489. Path of a point in a connecting-rod,

i'

of a point D in the connecting rod of a slider-crank-chain is shown in

Fig. 489 as an illustration of the method. A simple method of

obtaining velocity and acceleration diagrams has been given in

Chapter XVI.
;
some special methods will now be examined.

Velocity of any point in a rotating body. In Fig. 490 is shown a

body rotating about an axis at C which is perpendicular to the plane
of the paper. The direction of the

velocity of any point, such as A or B,

will be perpendicular to the radius.

To calculate the velocity of B, if the

\ velocity of A is given, let the body
\ make one revolution ; then

|
Distance travelled by A = 2ir . CA.

i Distance travelled by B = 2?r . CB.

i As these distances are travelled in
' the same time, we have

V2= 27T.CB~
27T

FIG. 490. Velocities of points in a

rotating body.

This result shows that the velocities of different points in a body having

motion of rotation only are proportional to the radii.
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Possible velocities in a link. Let AB be a rigid rod or link

(Fig. 491), and let A have a velocity VA at a given instant. VA will

have components VA cos a and VA sin a along and perpendicular to the

rod respectively. Let B have a velocity VB at the same instant, the

components of VB in the same directions will be VB cos/2 and

VB sin/3. As the rod is rigid, i.e. cannot bend or alter its length, it

follows that VB cos ft and VA cos a must be equal, otherwise the rod

is becoming shorter or longer. The other component of the velocity

of B may be of any magnitude and of either sense along BY. The
result may be expressed by saying that the velocity of B relative to A, or

of A relative to B must be perpendicular to the line AB.

I 9CT-i

-,

FlG. 491. Possible velocities of the
ends of a link.

FIG. 492. Instantaneous centre
of a link.

Instantaneous centre. The relations of the velocities of the ends

of the rod AB may be examined by the following method, which is

suitable for graphical solutions. Reference is made to Fig. 492.

Here the velocity of A is along VA ,
but for an instant it might be

imagined that A is rotating about any centre in AI which is perpen-
dicular to VA ;

this will not alter the direction of the velocity, which

will still be along VA . In the same way, we may imagine that B is

rotating about any centre in BI for an instant, Bl being perpendicular
to VB . Hence I, the point of intersection of AI and BI may be

looked upon as a centre about which both A and B are rotating for

an instant, and is called the instantaneous centre. We have, therefore,

=
VB BI*

The application of this method to a crank and connecting- rod is

shown in Fig. 493 (a). Given the velocity of B, equal to VB ,
to find

the velocity of A draw AI perpendicular to VA ,
i.e. to AC, and also
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produce CB, which is perpendicular to VB ,
to cut AI in I. Then

y* IA
VB IB'

A more convenient construction is to produce, if necessary, the line

of the connecting rod AB to cut CN in Z. The triangles IAB and

CBZ are similar. Hence,

CZ_IA_XA
CB~IB~VB

'

CZ=^.VA.

V B

If the crank is rotating with uniform angular velocity, VB will be

constant and CZ may be taken to represent the velocity of A to a

scale in which VB is represented by CB, the length of the crank. It

is evident that VA is zero when the crank pin is at either L or R
;

360Y 270* /ISO*

FIG. 493. Velocity diagram for the point A, deduced by the instantaneous centre method.

also, when the crank is at 90* to LR, Z coincides with N, and CZ
will be equal to the crank, therefore VA and V B will be equal.

Fig. 493 (b) shows a velocity-time curve for A, drawn by setting off

the values of CZ on a base of equal crank angles.

Four-bar chain. Fig. 494 shows an example of a double crank and

connecting rod. Two cranks, one AB, revolving about A, and another

CD, revolving about C, are connected by a link BD
;

the frame

forms the fourth bar of the chain. For the position shown, I is the

instantaneous centre, obtained by producing BA and CD. As before

VD_ID
VB IB*

If VB is given, VD may be found from this construction, and the

angular velocity of CD may be calculated from

Angular velocity of CD =7-
In Fig. 495 is shown another pair of cranks AB revolving about A,



FOUR-BAR CHAIN 459

and CD revolving about C ;
BD is the connecting link, and I is its

instantaneous centre. As before

VB_IB . ,

VD"IP'
o>j
= the angular velocity of AB,

o>
2
= the angular velocity of CD.

VB = o>
1 .AB,

VD = <o
2 .CD.

(Q
1 .AB_VB _IB

w
2 .CD~VD ~ID'

IB CD , x

ID 'AS < (2)

Let

Then

Hence,

a D

r
FIG. 494. A four-bar chain.

V..V
FIG. 495. Angular velocities in a

four-bar chain.

Produce DB and CA to meet in Z, and \nark the angles a, ft,
6

and < as shown ; then, in the triangle ZAB,

and, in the triangle ZCD,
ZC sin (

180- a) _ sina

ZD
"

sin
~~

sin
'

AB ZC sin a sin^>
Hence, ZD' ZA~sin6>' sin^'

. ZC _ sin a sin <ft
ZD

" ZA~sin' sin^' AB
'

Now, in the triangle IBD, sin a/sin ft
= IB/ID; and in the triangle

ZCD, sin <ft/sin
6 = CD/ZD. Hence,

ZC_IB CD ZD
ZA~ID' ZD' AB

.

ID AB
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Therefore, from (2) and (3),

Wl ZC
'f

*
2

=
ZA <4>

The result shows that the angular velocities of AB and CD are inversely

proportional to the segments in which CA is divided toy DB produced.

Wheel and racks. As a further example of the use of the instan-

taneous centre, Fig. 496 (a) shows a wheel between two racks. If the

wheel is moving towards the left with a velocity Vc ,
and if the rack

AD is fixed, then A will be the instantaneous centre of the wheel.

Hence, VR BA_
VC ~CA

_~

showing that the velocity of the top rack is twice that of -the centre

of the wheel.

If the racks are moving as shown in Fig. 496 (b\ then I may be

found from the given values of VA and VB ;
thus

ZA = IA
VB IB'

Having found the position of I, the velocity Vc of the centre of

the wheel may be calculated from

W (b)

FIG. 496. Wheel and racks. FIG. 497. Scott-Russell parallel motion.

Parallel motions. By the term parallel motion is meant an

arrangement for constraining a point to move in a straight line. In

the Scott-Russell parallel motion (Fig. 497), .a link AP has one end A
guided so as to move in the straight line AB. Another link BC is

pivoted at B, and is connected by a pin to the centre C of AP.

AC = CP=: BC, hence P, B and A will always lie on a semicircle

which has AP for diameter. The angle ABP will always be 90, and

hence P will move in a straight ^vertical line passing through B.
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It will be noted that the instantaneous centre for AP is at the

intersection of BC produced and AI drawn perpendicular to AB.

Further, from the geometry of the figure, P will lie always on a

horizontal line drawn from I, and will, therefore, be moving vertically

in any position of the mechanism. This confirms the result already
noted.

In practice it is often convenient to guide A as shown in Fig. 498.

The short arc in which A now moves interferes with the straight line

motion of P to a small extent only.

This modification of the Scott-

Russell parallel motion is used

sometimes in indicators for guiding

the pencil in a straight line. The

arrangement permits of P having
a magnified copy of the motion of

the piston G. The instantaneous

centre I for AP is the point of

intersection of DA and BC when

produced, and IP, drawn hori-

zontally through I, gives the position

of P on the link AP. Joining AB,
it will be seen that the triangles

ABC and ICP are nearly similar. Also AC and 1C are nearly equal

for all practicable 'positions of the mechanism. Hence,

IC = BC
CP AC'

AC = BC
CP AC'

AC2

FIG. 498. Parallel motion for an
indicator.

or

CP =
BC '

a result which enables CP to be calculated when AC and BC are

given.

In the Watt parallel motion (Fig. 499), two equal links AB and

DC are pivoted at A and D respectively, and connected by a

third link BC. It is evident that movement of the mechanism

will cause B and C to deviate to the left and right respectively ;

hence P, the centre of BC, will move in a straight vertical line

for a considerable distance. If the movement of the mechanism

continues, P will describe a curve resembling a rough figure eight

(the lemniscate).
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In Fig. 500 is shown a Watt parallel motion in which AB and DC
are not equal. I will be the point of intersection of AB and DC,

FIG. 499. Watt parallel motion ; equal arms. FIG. 500. Watt parallel motion

unequal arms.

and P may be found by drawing IP horizontally from I. From

the geometry of the figure, it may be shown that

BP:PC = CD:AB.

In Fig. 501 is shown the arrangement of Watt's parallel motion

used in beam engines. AB and DC are

equal, and P, the centre of BC, moves in a

straight vertical line. DC is extended to E,

CE being equal to DC, and bars EF and

FB are added so as to form a parallelogram

CEFB. EF will then be double of CP, and

F, P and D will lie in a straight line always.

FD will be double of PD, consequently, if

P is moving in a straight vertical line, so also

will F. In the engine, F and P serve to guide the ends of the low

pressure and high pressure piston rods respectively.

Inertia effects in a mechanism. In investigating problems re-

garding the forces or turning moments which may be delivered by a

machine, it is often necessary to consider the effects of the inertia

of the parts of the machine. The following case of a slotted bar

mechanism (Fig. 502) giving simple harmonic motion to a piston A
should be studied. Frictional effects have been considered already

partly (p. 371), and are disregarded here.

Fig. 502 (a) is a diagram showing the effective pressure on the

piston throughout the stroke ; any ordinate such as p^ gives the

difference in pressure on the two sides of the piston at the moment
considered. Hence, the net force P urging the piston towards the

left is 7TY/2

P=/!--lb. weight,
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where d is the diameter of the cylinder in inches and pl
is the

pressure in pounds per square inch.

But for the inertia of the piston, piston rod, and slotted bar, the

whole of this force would be transmitted to the crank pin. These

parts will all have equal accelerations in this mechanism.

Let M = mass of reciprocating parts, pounds.
a = their acceleration, feet per sec. per sec.

Then the force required to overcome inertia will be

^ Ma ., . .

F = Ib. weight.
<5

The force Q actually reaching the crank pin in the position
considered will be given by

Q = P-F
Ma

The acceleration a may be found for any position by the method

(c)

360* 270 180' 90

FIG. 502. Diagrams for a slotted bar mechanism, taking account of inertia.

explained on p. 398. Fig. 502 (b) is a diagram in which the

ordinates/2 , etc., have been calculated from

.

S 4

These ordinates will then represent the forces required to over-

come inertia per square inch of piston area. The scales used in

Fig. 502 (b} are the same as for Fig. 502 (a), hence a combined

diagram (Fig. 502 (c)) may be drawn by simply adding the ordinates



464 MACHINES AND HYDRAULICS

algebraically, the result showing ^, the force per square inch of

piston area which is transmitted to the crank pin.

The turning moment on the crank pin will be

T = QxOM,
where OM is perpendicular to the line of Q. A polar turning-moment

diagram may be drawn by producing the crank OB and making BC
equal to T to a convenient scale. This being done for a number

of crank angles, a fair curve drawn through the ends will give the

required diagram. Or a turning-moment diagram may be drawn as

in Fig. 502 (d) by using a base of equal crank angles and setting off

the values of T at the chosen angles.

Locomotive side rod. In Fig. 503, A and C are the centres of

two driving wheels of a locomotive
;
the equal cranks AB and CD

I, 'a

FIG. 503. Motion of a locomotive side rod.

are connected by the side rod BD. The velocities VB and VD for

the given position may be found by taking I
x
and I

2
as the instan-

taneous centres of the wheels, assuming that there is no slipping

between the wheels and the rails. VA and Vc will be equal to the

velocity of the locomotive. Hence,

VR LB IjB
t T A Aor

Also,
IjD
I2C

The velocities of B and D being equal in all respects, it follows

that the velocity of any point in the side rod will be equal to that

of B or D
;
thus VG is equal to VB or VD .

Assuming that the speed of the locomotive is constant, and that

the consequent angular velocity of each wheel is w radians per
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second, the accelerations of B and D will be unaltered if we

imagine that the wheels rotate with an angular velocity w, and that

their centres remain fixed in position. B and D will therefore have

accelerations directed towards A and C respectively, and of amount
w2R feet per second per second, R being the crank radius in feet.

These accelerations are equal in all respects ; hence the acceleration

of any point in the rod will have an equal value and will have the

same direction.

Since the side rod is always moving parallel to the rail and has no

angular motion, the resultant force required to give it its motion

must act through its centre of mass, and must be in the same line as

the acceleration of the mass centre. If the rod is uniform, the

centre of mass G will bisect BD
;

let M be the mass of the rod in

pounds, then the resultant force R
x required to overcome the inertia

of the rod will be Mw2R- , .

Ib. weight.

Obviously Rj is the resultant of two equal and parallel forces, one

acting at each crank pin.

The force R
I}

reversed in sense, gives the effect of the inertia

resistance of the rod on the wheel bearings at A and C. It is

evident that there will be a lifting

effort when the side rod is in its

highest position (Fig. 504^)), and

an additional pressure on the rails

when the rod is in its lowest position

(Fig. 504 (a)). Rj acts towards the

right (Fig. 504^)), or towards the

left (Fig. 504 (d} ), when the cranks

are horizontal.

Fig. 504 also indicates the effect

of Rj in producing a transverse load

on the rod. For a uniform rod, Rx

is the resultant of an inertia load

which has a uniform distribution per

unit length of the rod, and in this

respect resembles the weight W of

the rod. As will be Seen by inspec

tion of Figs. 504 (a) and (^), R T
and

W conspire when the rod is in the lowest position, and are opposed
when the rod is in its highest position. The maximum bending

D.M. 2 G

*>.-

* * *
%

D t
*

i I A

!%>*' tw (d;
>r?

FIG. 504. Inertia effects in a locomotive
side rod.
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effect on the rod will, therefore, occur in the position shown in

Fig. 504 (a). If W is the weight of the rod in lb., the total uniformly

distributed load producing bending moment will be

Total distributed load = R
x
+W

M<o2R ...= +W lb. weight.
&

The calculation of the maximum bending moment and stresses

produced by this may be performed by the methods explained in

Chapter VII.

Crank and connecting rod. The inertia of the moving parts in

the crank and connecting rod mechanism produces effects similar to

those in the slotted bar mechanism (p. 462), but the problem is

somewhat more complicated owing to the oblique action of the

connecting rod. In the slotted bar mechanism, the piston has

simple harmonic vibrations, and hence has equal accelerations when

at equal distances from the centre of the stroke
;
the connecting rod

causes the accelerations to be unequal to an extent which is more

marked if the connecting rod is short. A very long rod produces

nearly equal accelerations, a rod of infinite length would give simple

harmonic motion
;
hence the name infinite connecting rod mechanism

sometimes given to the slotted bar arrangement. Further, the piston,

piston rod and crosshead have straight-line motion, and hence are

dealt with easily, while the connecting rod has one end moving in

a straight line and the other end in a circle. For simplicity, it is

customary to treat the rod in two parts, a fraction, say one-half, of its

mass being assumed to be concentrated at the centre of the crank pin

and rotating with it, while the remainder of the mass is assumed to

move in a straight line with the crosshead. The mass of the recipro-

cating parts will then include the piston, piston rod, crosshead and

the assigned part of the connecting rod, and this mass will require

forces in order to overcome its inertia.

The acceleration diagram may be drawn by the method described

for another mechanism on p. 386. The work may be made more

accurate by first drawing a velocity-time diagram for the piston by
the instantaneous centre method (p. 458) ;

then the average accelera-

tions over equal intervals may be calculated, and the results set off at

the centres of the intervals. .Or Klein's construction may be used as

follows to obtain an acceleration diagram direct on a base repre-

senting the stroke.

Klein's construction. In Fig. 505 is shown a crank CB ot radius
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R feet and a connecting rod AB in a given position. On AB as

diameter describe a circle ; produce AB, if necessary, to cut NS
in Z; describe another circle with centre B and radius BZ, cutting

FIG. 505. Klein's construction for the acceleration of the piston.

the first circle in D and E. Join DE, cutting AB in F and AC
in K, producing DE if necessary. Then, as will be proved later,

KC represents the acceleration of the piston to a scale in which the
vl

central acceleration of B, viz. ^ is represented by BC. It is assumed

usually that B is moving with uniform velocity v feet per second.

FIG. 506. Klein's construction, crank in second quadrant.

The construction should be repeated for crank angles differing by
30 ;

KC should be measured for each position, and the results set

off as at AL on a base GH, which represents the stroke of the

piston. The acceleration diagram is obtained by drawing a fair

curve through the ordinals, and is shown at GMLPH. Fig. 506
shows the construction when the crank is in the second quadrant,
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and in Fig. 507 is given the construction when the crank is on the

dead points B and B'.

. -. .,."
e\ T E\

FIG. 507. Klein's construction, crank at dead points.

Accelerations at ends of the stroke. The accelerations of the

piston when the crank is at the dead points may be found also by the

following method. In Fig. 508 the crank is shown at a very small

angle from the dead point ; imagine that the connecting rod is so

guided that it is moving parallel to the line of the stroke, i.e. BA'

is parallel to AC. Every part of the connecting rod will have the
9

same acceleration as B, viz. -=r towards the left. Now, the connect-
K.

ing rod is actually moving in such a manner that one end, B, has a

velocity v at right angles to the rod
;
to bring A' into the centre line

AC, give A' a velocity v as shown. Owing to this, A will have
vi

an acceleration =- towards the left
;
hence total acceleration of A

LJ

will be
2,2 vi tf/ R\

* = R+ L
=
RA

I +
L/ Per SeC * P6r SeC '

5 (*'

when v = the velocity of the crank pin, feet per sec.
;

R = the radius of the crank, in feet
;

L = the length -of the connecting rod, in feet.

FIG. 508. Acceleration of the piston at the

inner dead point.

FIG. 509. Acceleration of the piston
at the outer dead point.

At the outer dead centre (Fig. 509) a similar method may be used,

vi vi

but now ^ is towards the right and -=- is towards the left. Hence
K. Li
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the resultant acceleration of A will be towards the right, and will be

given by ^ tf & ( R\ .

* =g- L
=RVL/ feet Persec Per sec

These results, (i) and (2), are of service in making preliminary

calculations of the accelerations of the piston when at the ends of

the stroke.

The effective force Q acting on the crosshead in the line of the

stroke may be estimated now.

Let d=i\\Q diameter of the cylinder, in inches.

pl
= the effective pressure on the piston at a given position,

Ib. per square inch.

M = the mass of the reciprocating parts, including the

assigned part of the connecting rod, pounds.

flj
= their acceleration in the given position.

Then Q=A^-Ma ib . weight.................................... (3)
4 <5 .

Turning moment. The turning moment produced by Q may be

calculated as follows, reference being made to Fig. 510 and friction

FIG. 510. Turning moment on the crank.

being neglected. I is the instantaneous centre for the given position,

from which it appears that rotation of the rod round I is produced

by Q and resisted by the crank pin with a force S. Hence,

QxIA = SxIB,

|i ;>;;;;:;
s=Qra (4)

Produce AB to cut CN in Z; then the triangles ABI and BZC
are similar. Hence, IA CZ CZ

IB
=
BC

=
1T

Substitution in (4) gives CZ .
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S is the reaction of the crank pin, and, if reversed, will be the

crank effort given by the connecting rod to the crank pin. Hence,

Turning moment = T = S x R
~CZ .

= Q.CZ (6)

This result will be in Ib.-feet if Q is in Ib.-weight units and CZ is

measured in feet to the same scale as that used in drawing the

mechanism.

With the alterations and additions noted above, the method of

obtaining a turning moment diagram used on p. 463 may be employed.

360* 180*

FIG. 511. Diagrams for a slider-crank-chain, taking account of inertia.

The various diagrams required are shown in Fig. 511, and will be

followed readily.

General effects of inertia. The student will observe that the

general effect of the inertia of the moving parts is to produce a

more uniform turning moment on the crank. During the early

part of the stroke, the gaseous pressure on the piston is high, but is

absorbed partly in accelerating the moving parts, hence the turning
moment is smaller

;
later in the stroke, the gaseous pressure is low,

but the moving parts are losing velocity now, and their inertia assists

the gaseous pressure in making the turning moment larger.

Greater uniformity in the turning moment may be obtained by

having two or more cylinders with pistons operating on separate

cranks. If there are two cylinders, the cranks are placed generally
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at 90 to each other
;
in the case of three cylinders, the cranks are

generally at 120; with a larger number of cranks, the precise crank

angles cannot be stated, as other considerations are involved. Usually

an attempt is made in such cases to

produce a self-balanced machine,

i,e. one in which the inertia effects

balance one another without pro-

ducing disturbances in the frame or

foundation.

Turning moment diagrams are

given in Fig. 512 for two cylinders

similar to the case illustrated in

Fig. 511. The cranks are at 90,
and the turning moment diagrams
for each crank separately are shown

by ABCDA and EFGHE ;
these

are displaced relatively to each other

by 90. Summing the corresponding ordinates, the combined

turning moment diagram is HKBLFMDNH. Greater uniformity

has been obtained, and there is no point where the turning point

is zero.

Further points regarding the motion of the connecting rod. It

has been explained that, for positions near the dead points, the

motion of the connecting rod may be assumed to be compounded of

FIG. 512. Turning moment diagram fot

two cranks at 90.

FIG. 513. Analysis of the motion of a connecting rod.

a motion of translation together with another motion of rotation

round the crank pin (p. 468). The same assumptions may be made
when the rod is in any other position (Fig. 513). The first of these
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motions would cause the rod always to move parallel to the centre

line AC, and it would occupy the position A'B when the crank is at

CB ;
the latter motion produces the effect of rotating the rod into its

proper position AB. Owing to the first of these component motions,
all points in the rod will possess the same velocity and acceleration as the

crank pin B
;
in this respect, the motion is precisely the same as that

of the side rod of a locomotive (p. 464). The acceleration thus pro-

V2

duced at A will be _?, and may be represented by the length of the
R

crank BC. Hence,

or VB = BCxR = BC2
...................... (i)

The point A will possess other accelerations owing to the com-

ponent motion of rotation of the rod about B
;

in consequence of

this angular motion, A will have a variable velocity v in a direction

at right angles to the rod. The value of v will depend on the posi-

tion of the crank, and hence will be undergoing change in most

positions of the mechanism. Owing to this, there will be an acceler-

ation of A in the line of z>, i.e. at right angles to the connecting rod.

Further, A will possess the ordinary central acceleration towards B, of

v2-

magnitude given by =-. Hence in all A possesses three component
.L/

accelerations, and the resultant of these must have a direction coinciding

with that of AC.

To find an expression for #, reference is made to Fig. 513, show-

ing I, the instantaneous centre of the rod. The angular velocity of

V v
the rod will be

,
and will be given also by T

-. Hence,
J..D LJ

*_VB
L IB'

Also,

v1
i V2

Central acceleration of A towards B = y-
= ^ ' f^^2

\-i !_/ IJj

-SBT Vl...................... (3)

Referring to Fig. 514, showing Klein's construction together with
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the position of I, join BD and DA. The triangles BFD and BDA
are similar. Hence, -gp -g^

BD
=
AB'

BD2

or BF =
AB'

Also, by the construction, BD is equal to BZ, and AB is equal to

L. Hence,

\

FIG. 514. Proof of Klein's construction.

Again, the triangles BCZ and IAB are similar. Hence,

BZ AB , L
BC~ IB~IB ;

LxBCBZ =

From (4),

IB

L2 .BC2
i BC2 x L

"L
=

IB S IB2

(5)

Comparison of (3) and (5) will show that FB represents the

central acceleration of A towards B to the same scale in which BC
V2

represents 5.

The resultant acceleration of A along AC may be found now by
means of a polygon of accelerations. In Fig. 514, FB is the central

V2

acceleration of A towards B ; BC is the component -=5 the com-
ix.

ponent acceleration at 90 to the rod owing to variation in v is
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represented by KF, and the closing line KC gives the resultant accelera-

tion of A along AC. It will be noted that this result proves the truth

of Klein's construction.

Since KF gives the linear acceleration of A in the direction at 90
to that of the rod, it follows that the angular acceleration of the rod

will be given by

Angular acceleration of the connecting rod = -= (6)
LJ

Acceleration image of the connecting rod. In Fig. 5 1 5 KF and

FB have been copied from Fig. 514. The resultant of these

FK;. 515. Acceleration image of a connecting rod.

accelerations will be KB, the closing line of the triangle of accelera-

tions FBK. The acceleration of A along AC may be taken to be the

resultant of the accelerations KB and BC, and is represented by the

closing line of the triangle of accelerations KBC. Consider any
other point in the connecting rod, such as G. Its velocity at 90
to the rod, and hence its accelerations, owing to the rod rotating

about B, will be simply proportional to BG, that is,

acceleration of G : acceleration of A = BG : BA.

Draw.GH parallel to AC, and cutting KB in H
;
then

Acceleration of G : acceleration of A = BH : BK.

Now KB represents the resultant of the two component accelera-

tions of A which are respectively along and at 90 to AB hence H.B

will represent the resultant of the similar components of G. The

component acceleration of G, owing to B rotating about C, remains

V2

of unaltered value -^, and is represented by BC. Hence the re-
Jx

resultant acceleration of G will be the closing line HC of the triangle

of accelerations HBC. The resultant acceleration of any other point in

the rod may be found in a similar manner by drawing a line from the point

parallel to AC to cut KB, and joining the point so found on KB to C. On
account of this property of KB it is called usually the acceleration

image of the connecting rod.
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Eesultant force required to give acceleration to the connecting

rod. In Fig. 516, let G be the mass centre of the connecting rod.

FIG. 516. Resultant force required to overcome the inertia of the connecting rod.

The acceleration of G is HC, and might be produced by a force R
acting at G in a line parallel to HC. The magnitude of R, if the

rod has a mass M pounds, will be

M . HC , V .. V. / \R= - Ib. weight (i)
>

This force would not produce any angular acceleration in the

connecting rod on account of its line of action passing through the

mass centre of the rod. In order to obtain the actual motion of

the rod, which includes angular acceleration in most positions, R will

require to be shifted from G, thereby giving a couple which will

produce the required angular acceleration. A convenient way is to

use an equivalent dynamic system by substituting two masses, m
l

and m
2 pounds (Fig. 517), for the actual mass of the rod. One of

'

/T5N G
m

c 'B \T T 9/"
*

^
i

FIG. 517. A dynamical system equivalent to the connecting rod.

these, m l , may be situated at the centre of the crosshead pin A, at a

distance a from G
;
the other mass, m.2 ,

will be at a distance b on

the other side of G. For this arrangement to be equivalent to the

actual rod, the following conditions must be complied with (p. 444) :

m
l + m2

= M. (2)

m^a = m.J) (3)

^2 +^2 = M>G .

(4)
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kc is the radius of gyration of the connecting rod about an axis

passing through G and parallel to the crank shaft. The solution of

these equations gives a& = A*G
9
................................... (5)

* =f.................................... (6)

From this result b may be calculated when a and kG are known
;

the masses m
L
and m

2 may be determined then from equations (2)

and (3).

Reference may be made now to Fig. 516, which shows the crank

and connecting rod, the latter being represented by the equivalent

masses m
l
and m

2
. To accelerate m

1 requires a force R
T acting in

the line of the acceleration of A, viz. AC. To accelerate m
2 requires

a force R
2 acting in the line of the acceleration of D

;
this line may be

found by drawing DE parallel to AC and cutting BK in E
;

the

acceleration of D will be represented then by EC. R
2

will be

parallel to EC, and cuts the line of Rj produced in F. Hence the

resultant of R
t
and R2 ,

which will be the resultant force R required

to accelerate the rod, must pass through F. The line of R will be

parallel to the acceleration of the mass centre G, viz. HC, and the

magnitude of R will be given by equation (i) (p. 475). The couple

giving angular acceleration to the connecting rod will be R x GM,
GM being the perpendicular from G to the line of R.

Reactions on the engine frame produced by the inertia of the

connecting rod. In Fig. 518, R is the resultant force required to

D

FIG. 518. Components of R at the crank and crosshead pins.

overcome the inertia of the connecting rod in the given position.

R is actually the resultant of two forces, one of which, P, is applied

by the guide bar to the pin at A
;
the other force, Q, is applied to

the rod at B by the crank pin. If the friction of the slipper be

neglected, P will act at right angles to AC, and its line will intersect
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the line of R at D ; hence Q also acts through D. . The magnitudes

of P and Q may be determined by drawing the parallelogram of

forces DGEF, in which DE is made equal to R, and P and Q will

be represented by DG and DF respectively. The reaction on the

guide bar at A will be obtained by reversing the sense of P (Fig. 519) ;

in the same diagram, the reaction on the crank pin is shown by

reversing the sense of Q.

The force Q in Fig. 519 is equivalent to an equal and parallel

force Q, of the same sense, acting at C together with a couple ot

moment Q x CH, CH being perpendicular to the line of Q. Q

FIG. 519. Reactions of the engine frame due to the inertia of the connecting rod.

acting at C produces a pressure on the main bearing and hence on

the engine frame
;
the couple Q x CH modifies the turning moment

on the crank.

Bending moment on the connecting rod produced by its inertia.

Assuming that the inertia effects on the connecting rod will be

FIG. 520. Transverse inertia load on the connecting rod.

greatest when the crank and connecting rod are at 90 to each other,

the bending-moment diagram may be drawn as follows : In Fig. 520
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ABC is 90, and- BD is the acceleration image of the rod. The
acceleration of B will be towards C and will be o>

2R feet per second

per second, where w is the angular velocity of the crank in radians

per second and R is the radius of the crank in feet. The acceleration

of A will be represented by DC, and its component perpendicular
to AB will be found by drawing DE perpendicular to CB. CE
will be the required component. Neglecting the very small acceler-

ation represented by CE, the acceleration of any point on the

connecting rod may be found by making BF perpendicular to AB
and equal to o>

2R and by joining FA. The acceleration normal to

AB of any point H in the rod will be represented by HK, perpen-
dicular to AB.

Let m be the mass of the rod in pounds per inch length at H
;

then the transverse inertia load on the rod at H will be

Inertia load per inch length
= - Ib. weight,

cb

HK being measured to the acceleration scale in feet per second per
second. A similar calculation should be made for a number of

FIG. 521. Bending moment diagram produced by the inertia load on the connecting rod.

points on the rod
;
the calculations are somewhat simpler in the case

of a rod of uniform cross section, and in other caset may sometimes

be simplified by taking m to be the average mass per inch length.

A load curve is constructed then by drawing AB (Fig. 521 (a)) to

represent the length of the rod and setting off the calculated loads

per inch at the various points chosen, as at PQ, Considering the

portion BP, the average load per inch will be |(BN + PQ) and the

load on BP will be
Wl = l(BN-r-PQ)BP.
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Wj will act through tfie centre of area of BNQP. Carrying out

the same process for the other portions of the rod, we obtain the

equivalent system of concentrated loads W1?
W

2 ,
W

3 ,
etc. The

bending-moment diagram may be drawn now by the link polygon

method (p. 140) ,the construction being shown in Fig. 521 (fi) and (c).

Simple slide-valve gear. In ordinary reciprocating engines, the

valve employed to distribute the steam to each end of the cylinder

consists of an inverted rectangular box V (Fig. 522), which slides on

VlL
^vC^&x<^^css>s

Bi

FIG. 522. Simple slide-valve for a steam engine.

a flat face formed on the cylinder. Two steam passages, or ports Sj

and S
2 ,

lead to each end of the cylinder, and another E leads to the

atmosphere or to the condenser. Movement of the valve to the

right will permit steam to flow through S
x
into the left-hand side of

the cylinder, and at the same time permits the steam in the right-hand

side to flow out through S
2
and E. Movement of the valve to the

left will admit steam to the right-hand side through S
2 ,

and will

permit exhaust from the left-hand side through S
x
and E.

CD is the centre line of the valve and AB is the centre line of the

cylinder ports ;
the valve is in its mid-position when these lines are

coincident vertically. In this position, the valve generally laps over

the edge of the ports ;
/ is called the outside lap, and gives an earlier

cut-off than if there were no outside lap ;
e
l

is called positive inside

lap ;
if the inside lap is made as shown at e% it is called negative ;

the inside lap determines the point at which the exhaust steam is

stopped from flowing out of the cylinder. Cut-off of the steam supply
is effected when some fraction of the piston stroke has been com-

pleted; the remainder of the stroke is then completed under the

expansive action of the steam. Closing of the exhaust is effected

before the end of the return stroke in ordsr to entrap some of the
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exhaust steam in the cylinder ;
this is compressed by the returning

piston, and acts as a cushion in bringing it to rest. To understand

the complete distribution of the steam, it is necessary that the

displacement of the valve from its mid-position should be known
for any given crank position, and hence for any piston position.

The slide valve is driven generally by means of an eccentric, con-

sisting of a disc A secured to the crank shaft B and revolving with it

(Fig. 523). The hole in the disc is bored at a small distance from

FIG. 523. Eccentric driving a slide valve.

the centre of the disc. A strap C surrounds the disc and is connected

by an eccentric rod DE to the valve rod EF. The eccentric is

equivalent to a crank having a radius equal to the distance from the

centre of the shaft to the centre of the disc. This radius is generally

very small compared with the length of the connecting rod
; hence it

may be assumed that the motion of the valve is simply harmonic.

Let the circle ABCD (Fig. 524) represent the path described by
the centre of the eccentric, which is rotating in the direction of the

arrow. AC may be taken to represent

the travel of the valve, which will be

in its mid-position O when the eccentric

is at OB or at OD. Assuming simple
harmonic motion, when the eccentric

is in any position, such as OE, if EM
and EN are perpendicular to AC and

to BD respectively, OM or NE will be

the displacement of the valve. If the

angle separating the eccentric and

the crank be EOK, then OK will be

the corresponding crank position

Since the valve displacement towards the right must be equal to / at

admission, if OL, equal to /, be measured and LE
X
drawn perpen-

dicular to AC, OEj will be the position of the eccentric at admission.

By setting off the angle EjOKj equal to EOK, the position of the

crank at admission OK
X may be found. Producing EjL to E

2
will
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determine the eccentric position OE
2

at cut-off. Release and

cushioning are controlled by the inner edge of the valve. Make
OQ equal to e, measuring it to the left of O if positive and to the

right if negative, and draw E
3QE4 perpendicular to AC ; OE

3 and
OE4

will be the eccentric positions at release and cushioning

respectively. In each case, the corresponding crank position may
be obtained by setting back angles equal to EOK.

Valve diagrams are based on the idea of obtaining direct the

displacement of the valve by merely drawing the crank in any given

position. In the Reuleaux valve diagram (Fig. 525), OSj and OS
2

are the crank positions at admission and

cut-off; it is evident that the angle S-f>S2

in this figure is equal to EjOEg in Fig. 524.

Hence DjDg, parallel to S^, will cor-

respond to BD in Fig. 524, and the valve

displacement for any crank position OK
will be KN, which is drawn perpendicular
to DjDg, and hence corresponds to EN
in Fig. 524. Draw 8^2 and E^ parallel FlG. 525.^~~x^ diagt3im .

to DjDo and at distances from it equal
to / and e respectively. Then, of the total displacement KN, SN is

equal to the outside lap, and hence KS will be the amount by which

the valve edge has opened the port to steam. Similarly, at OK',
K'N' will be the displacement on the left of the mid position and EK'
will be the amount by which the inner edge of the valve has

uncovered the port to exhaust. At admission and cut-off, the

crank will be at OS
l
and OS2 respectively, as has been used in the

construction
;
in these positions the port opening is zero. At release

and cushioning the crank will be at OE
2
and OE

l respectively, because

in these positions the exhaust opening will be zero.

There are many other types of valve diagrams ; any standard text

book may be consulted for the principles on which they are based.*

Component eccentrics for a valve gear. In Fig. 526 (a), OC is

the crank on the dead centre and OE is the corresponding eccentric

position ;
the angle EOV is called the angle of advance and is denoted

by a. Suppose that, instead of using OE, component eccentrics OV
and OH are employed, these being found by drawing EV and EH
respectively parallel and at right angles to CO. It is to be under-

stood that the actual motion of the valve is to be obtained by adding
* A complete discussion is given in Valves and Valve Gear Mechanisms,

by Prof. W. E. Dalby ; (Arnold).

D.M. 2 H
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together the displacement produced by the component eccentric OH
and that produced by OV. OV and OH are called the 90 and the

1 80 components respectively, and are given by

OV = OE cos a.

OH = OEsina.

In Fig. 526(^)5 the crank has moved through an angle 6 from the

dead point. We have

Displacement produced by OE = OM = OE sin (a + 0)

= OE sin a cos 6 + OE cos a sin 6.

Displacement produced by OV = ON = OV sin = OE cos a sin 6.

Displacement produced by OH = ON' = OH cos 6 = OE sin a cos 6.

Sum of displacements produced by OH and OV = OE sin a cos

+ OE cos a sin 0.

Hence the resultant displacement produced by the component
eccentrics is equal to that produced by the actual eccentric.

Let OH and OV be written a and b respectively ;
then

Displacement of the valve = a cos + ^sin B (i)

FIG. 526. Component eccentrics. , , m .

a and b are both constant in a simple valve motion having a single

eccentric. In many cases of more complicated valve gears the

motion of the valve may be represented approximately by an

equation of form similar to (i), showing that the valve may be

imagined to derive its motion from a single eccentric acting direct on

the valve.

Hackworth valve gear. An example is shown in Fig. 527 of a

Hackworth valve gear: BC is the crank and AB is the connecting
rod. The eccentric CE is at 180 to the crank and is connected
to a rod EF, the end F of which may slide on a guide GH.
GH is pivoted at K, and the angle /3 which it makes with CK may
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be adjusted by hand. Alterations in the cut-off and reversal of the

direction of motion of the engine are effected by altering /?. The
valve rod LN is connected to EF at L.

FIG. 527. Hackworth valve gear.

The displacements of the valve will be very nearly equal to the

displacement of L vertically.

Let r= the radius of the eccentric.

</=LF. Then

Displacement of E vertically from CK = r cos 9.

If F were to move in the straight line CK, the displacement of L
vertically owing to the above displacement of E would be

Vertical displacement of L = - r cos 6......................... (
i )

Again,
Displacement of E horizontally from AC = r sin 0.

In Fig. 528 CP represents this displacement, and F is supposed to

be connected direct to P. KQ will be very nearly equal to CP.
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Hence,

r sin 6 tan /?.

Hence, Vertical displacement of L = -
. r sin 6 tan ,8 . (

2
)

FIG. 528. Approximations in the motions in the Hackworth valve gear.

To obtain the total displacement of L, take the sum of (i) and (2),

noting that the result of (2) may be either positive or negative, de-

pending on the setting of the guide bar HG. Thus

Displacement of L = (- Acos 9 ft- rte,n/3}sin& (3)

The result shows that the radii of the component eccentrics are

Radius of the 1 80 component eccentric = a = ~r. (4)

Radius of the 90 component eccentric = b = r tan /?. ... (5)

The first of these, a, is evidently constant. The other, /;, depends
on the value of /?. To obtain the maximum value of b take the

maximum values of /3, positive and

negative, and hence of tan/:?, and
obtain the numerical value of (4)
and (5). In Fig. 529 CY is made

equal to the 180 component eccentric

a, and CX and CX' are respectively

equal to the maximum positive and

negative values of the 90 component
eccentric b. The centre of the re-

sultant eccentric will lie on E'YE,
drawn parallel to XX', for all settings of the guide bar GH. Its

limiting positions will be CE and CE' respectively. The resultant

eccentric for any other setting of the guide bar may be obtained by
calculating CX" from (5) ;

the resultant eccentric will then be CE".
The motion of the valve may be obtained thus for any setting of

the guide bar GH by connecting it direct to the resultant eccentric

found in this manner. E'YE in Fig. 529 is called the characteristic

line of the gear.

FIG. 529. Characteristic line for the
Hackworth valve gear.
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Oscillating engine mechanism. This mechanism is illustrated in

Fig. 530 (a) ; a crank BC revolves about B, and the cylinder is

capable of oscillating about an axis or trunnion at A. There is no

connecting rod ; the piston rod is connected direct to the crank pin

as shown. In Fig. 530 (ft)
is shown a slider crank chain, in which the

FIG. 530. Oscillating engine mechanism.

crank BC revolves about C and A moves in the straight line AC.

Comparison of (a) and (ft)
will show that (a) has been produced

from (ft) by an inversion of the mechanism. In
(ft),

AB is capable of

swinging about AC, while in (a) AB is fixed and AC is capable of

swinging about AB.

In Fig. 530 (<r),
let the lengths of AB and BC be denoted by L and

R respectively in feet, and let the velocity of the crank pin be uni-

formly equal to v feet per second. The- angular velocity of the

crank pin will be given by

w
1

=
: radians per second.

To obtain the angular velocity of the cylinder, resolve v into

velocities respectively along and perpendicular to AC by means of

the parallelogram CEFB. CD = V will be the component per-

pendicular to AC. It is evident that the angular velocities of the
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cylinder and of the piston rod AC about A will be equal. Hence the

angular velocity of the cylinder is

V
to
2
= ^ radians per second (2)ALx

Draw BG perpendicular to AC and GH parallel to BC
;

the

triangles BCA and HGA will be similar. Hence,

CA^BA^ L
CG~BH~BH ;

Substitution in (2) gives

BH

V.BH
W2 ~L.CG*

Again, the triangles BGC and FDC are similar. Hence,

CG^CD^V
CB CF v '

V V
.-. CG= --R = .

V
(Wj

Substitute this value in (3), giving

-(3)

V.BH
wj

BH
L V

(4)

This result shows that the angular velocity of the cylinder is repre-

sented by BH to a scale in which the angular velocity of the crank

pin is represented by the constant length L.

The cylinder has zero angular velocity in the

two positions in which the crank and piston rod

are at right angles. For positions of the crank

below these, the cylinder is swinging towards

the right, and its angular velocity may be called

positive ;
for crank positions above the zero

positions, the angular velocity will be of op-

posite sense, and may be described as negative.

A polar diagram of angular velocity (Fig. 531)

may be drawn by carrying out the construction

for crank angles differing by 30. BH (Fig.

530 (<:))
is measured for each position and set

FIG. 531. Angular velocity off from C along the radius BC, towards B for

%. f r " sdllating
negative and away from B for positive values.
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The points D and E may be found by describing a circle on AB as

diameter
;
the angles BEA and BDA will then be each 90. At G

and F the angular velocities of the cylinder will be v/AG and vjAF

respectively.

Examining Fig. 531, it will be noted that the crank, rotating

uniformly, takes a longer time to traverse the arc DOE than it does

to traverse the arc EFD. Hence the average angular velocity of the

cylinder towards the left will be less than that towards the right. In-

spection of the angular-velocity diagram will illustrate the same point.

Quick-return motions. Advantage is taken of these facts in the

quick-return motion fitted sometimes to shaping machines (Fig. 532).

FIG. 532. Quick-return motion for a shaping machine.

The tool G cuts the work H on the stroke towards the right only,

and it is advantageous that this cutting stroke should be executed

at a slower speed than that of the idle return stroke. The tool is

fixed to a sliding ram F, guided so as to move horizontally. F is

connected by a short link ED to the top of a slotted bar AD, which

may oscillate about A. AD is driven by means of a uniformly-

rotating crank BC, the crank pin of which engages a block at C
which may slide in the slot of AD. The tool will be at the ends of

its travel when BC is in the positions BK and BL, both of which are

at 90 to AD (Fig. 533).

Neglecting the effect of the obliquity of DE (Fig. 532), the travel

of the tool may be found thus

Half travel of tool = DO (Fig. 533).
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A1 DO AD
A1S

' BK=AB>
. BK.AD AD

~AB~
=
AB'

R
'

AD
and Travel of tool = d= 2-^ . R,

AJo

where R is the radius of the crank BC.

FIG. 533. Quick-return motion ; mechanism at the ends of the travel.

The average speed on the cutting and return strokes may be
calculated by first finding the times taken by the crank to traverse

the arcs LMK and KNL respectively.

Let T = time of i revolution of crank, in seconds.

/c = time to traverse arc LMK, in seconds.

/r = time to traverse arc KNL, in seconds.

Then tc : tr : T = arc LMK : arc KNL : 2:rR.

arc LMK
27TR

_arc KNL~~
Also, Average cutting speed = -

.

*c

d
Average return speed = -.

IT

The maximum cutting and return speeds may be obtained easily
from Figs. 534 (d) and (ft) respectively.
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Vc AD AD

And

A

(a) (b)

FIG. 534. Quick-return motion ; maximum cutting and return speeds.

The Whitworth quick-return motion (Fig. 535) is produced by
another inversion of the slider-crank-chain. A slotted link CD
revolves on an axis at C, and is connected to the ram of the shaping
machine by the rod DK. Motion is given to CD by means of a

crank AB revolving round an axis at B
;

its crank pin A has a block

FIG. 536. Outline of Whitworth quick-
return motion.

it
FIG. 535.^ Whitworth quick-return motion.

bearing which slides in the slot of CD. Inspection of the outline

diagram (Fig. 536) will show that BC is the crank in the slider-crank-
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chain, and now is fixed
;
AB was formerly the connecting rod, and

ACD was the line of stroke.

The travel of the tool will be twice CD, and the tool will be at the

ends of the stroke when CD is passing through its horizontal positions
CE and CF. The arc through which BA turns during the cutting
stroke is FHE, and the arc during the return stroke is EGF. The
average speeds may be calculated in the same manner as for the

quick-return motion discussed above. The maximum speed during
the cutting stroke will occur when A is at H, and that during the

return stroke will occur when A is at G.

Let v = velocity of A, assumed uniform.

Vc = maximum cutting velocity.

VR = maximum return velocity.

TU Vc CD _, CD
, xThen = ^^, or, Vc =->v (i)CH'

Also, or,
CD

V.
v CG'

Comparison of (i) and (2) shows that

VC :VR = CG:CH.
Cams. Cams are employed when the reciprocating motion to be

given to the end of a rod or lever is of an irregular character. In

Fig. 537 (a) the rod OA reciprocates vertically in the line OA, and is

;A

FIG. 537. Two examples of cams.

driven by a disc B fixed to a revolving shaft C. The rim of B is

shaped so as to give the required motion to the rod. In Fig. 537 (/>)

is shown another example, in which the direction of motion of OA
does not pass through the axis of the shaft C.
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The outline of the cam in Fig. 537 (a) is drawn by setting off equal

angles oCi, iC2, 2C3, etc., and marking off the distances along OA,

through which the rod is to travel while the cam is describing these

equal angles. The points of division on OA are then brought to the

corresponding radii by means of arcs described with C as centre.

The outline in Fig. 537 (ft)
is obtained by first drawing a circle with

centre C and touching the line AO produced. Tangents are then

drawn to this circle at equal angular intervals, and the distances

along OA to be described during each of these intervals are brought

to the corresponding tangent by means of arcs drawn with centre C.

EXERCISES ON CHAPTER XIX.

1. A link AB, 2 feet long, is horizontal at a given instant and is

moving in a vertical plane. The velocity of the left-hand end A is lofeet

per second upwards to the right at 45 degrees to AB. The velocity of B
relative to A is 4 feet per second downwards. Find the actual velocity
of B.

2. In Question i, find the instantaneous centre of the rod and the

velocity of the centre of the link.

3. In a crank and connecting-rod mechanism, the crank CB is i foot

long and the connecting rod AB is 4 feet long. The velocity of the

crank pin B is uniform and equal to 10 feet per second. Divide the

crank circle into intervals of 30 degrees, and find the velocity of the cross-

head A for each of the crank positions so determined. Draw diagrams
of velocity for a complete revolution (a) on a time base, (b) on a space
base, of length to represent twice the stroke of the crosshead.

4. In a double crank and connecting rod (four-bar chain) the cranks

are AB, 1-5 feet long, and CD, 2-5 feet long; the connecting link BC
is 2 feet long ;

the bar AD is fixed and is 2-25 feet long. B has a linear

velocity of 2 feet per second. For the position in which AB makes
60 degrees with AD, find (a) the angular velocity of AB, (b) the velocity
of C, (c) the angular velocity of DC. Use the instantaneous centre

method, and check the result for (c) by the ratio given on p. 460.

5. A four-bar chain has cranks AB and DC 2 and 175 feet long

respectively ;
the connecting link BC is 1-5 feet long and the bar AD is-

fixed horizontally and is 1-5 feet long. The cranks are crossed. Draw
the mechanism when AB makes 45 degrees with AD, and find a point E
in the link BC (produced if necessary) which is moving in a vertical

direction in this position of the mechanism.

6. In the parallel motion shown in Fig. 498, AC is i inch and BC
is inch long. The line joining AB is horizontal and ijj

inch long.- AD
is 1-5 inch long and is vertical when AC is horizontal. Find the length
of CF, and confirm the result by drawing for the positions when AC
makes 15 degrees with AB.

7. In the mechanism shown in Fig. 502, the crank is 3 inches long
and has a uniform speed of 60 revolutions per minute. The mass of the
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reciprocating parts is 80 pounds. Find the forces in Ib. weight required to

overcome inertia for crank positions differing by 30 degrees throughout the

revolution. Plot these forces on a base line representing twice the stroke.

8. In Question 7 the steam cylinder driving the mechanism is

5 inches in diameter ; the net pressure of the steam urging the piston
is 50 Ib. per square inch up to half stroke, and is 35, 24 and 20 Ib. per

square inch at 0-6, 0-8 and the end of the stroke respectively. Draw the

pressure diagram, and find the turning moment on the crank for each

position given in Question 7, making allowance for inertia. Draw the

turning-moment diagram.

9. Two parallel shafts, 30 inches axis to axis, have each a crank
6 inches long connected by a uniform steel rod 30 inches long, 2 inches

deep and i inch wide. The shafts are driven at equal speeds. Take the

density of steel to be 0-28 pound per cubic inch, and find the maximum
upward and downward forces due to the inertia and weight of the rod
when the speed is 150 revolutions per minute.

10. In Question 9, the stress due to bending of the rod is limited to

10,000 Ib. per square inch. What is the maximum permissible speed of

the shafts in revolutions per minute ?

11. Take the data of Question 3 and find the acceleration of the

crosshead in the line of the stroke when the crank has travelled

60 degrees from the inner dead point. Do this by use of Klein's con-
struction. Calculate also the accelerations when the crosshead is at

each end of the stroke. The mass of the reciprocating parts is

500 pounds ;
calculate the forces required to overcome their inertia in

these positions.

12. In Question 11, the total effective steam pressure on the piston
when the crank is 60 degrees from the inner dead point is 9000 Ib.

What will be the turning moment on the crank, (a) neglecting inertia,

(&) taking account of inertia ?

13. With the data of Question 3, find the acceleration image of the

connecting rod when the crank is at 90 degrees to the connecting rod,
and hence find the acceleration of the centre of the rod.

14. In Question 13, take the connecting rod to be of uniform section

and of mass 3 pounds per inch length. Find the resultant force which
must act on the rod in order to overcome its inertia.

15. Draw the bending-moment diagram for the connecting rod as given
in Question 14, and state the value of the maximum bending moment.

16. In an oscillating-engine mechanism, the crank is 2 feet long and
makes 50 revolutions per minute. The distance between the centre of
the crank shaft and the cylinder trunnion is 5 feet. Find the angular
velocity of the cylinder when the crank is passing each dead point.
Answer the same when the crank is at 45 degrees from the outer dead

point.

17. In Question 16, if the crank rotates clockwise, find the time of

swing of the cylinder (a) from left to right, (b) from right to left. Cal-

culate the angle through which the cylinder oscillates.

18. The axis of a vertical rod passes through the axis of a horizontal

shaft when produced downwards. The rod has a roller I inch diameter
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at its lower end and is driven vertically by a cam fixed to the shaft. The
minimum radius of the cam is 2 inches, and it gives simple harmonic
motion to the rod during the upward travel of 2 inches, followed by a

period of rest while the shaft rotates through 45 degrees. The downward
travel is simple harmonic. Draw the outline of the cam.

19. Answer Question 18, supposing that the axis of the rod passes

0-5 inch from the shaft axis when produced.

20. Describe the character of the straining actions to which the

coupling-rod of a locomotive engine is subject, and sketch an appropriate
form of transverse section. In a locomotive having driving wheels of

6 feet 6 inches diameter, the coupling-rod is 8 feet long between its

centres, and is attached to cranks of I foot radius. Suppose the locomo-
tive to travel at 60 miles an hour, and the weight W of the coupling-rod
to be uniformly distributed along the 8 feet of its length, estimate the

maximum bending moment to which it will be subjected. (I.C.E.)

21. Describe, without proof, a construction for determining the

acceleration of the slider in the slider-crank mechanism. Apply the

construction to find the acceleration of the piston of an ordinary direct-

acting engine when the crank is 30 from the inner dead centre. Length
of crank, 8 inches. Length of connecting rod, 36 inches. Speed of

crank shaft, 200 revolutions per minute. State the answer in feet per
second per second. (L.U.)

22. In a slider-crank chain AB is the connecting rod, 30 inches long,
BC the crank and AC the horizontal line of stroke. In AB produced
beyond B a point P is taken, BP being 18 inches. If the locus of P
is an approximately vertical straight line, while AB travels through angles
from o to 30 with the line of stroke, find a suitable length for BC. A
load of 2000 pounds at P acts at right angles to the line of stroke

;
find

the pressure on the crosshead required to equilibrate, and find also the

thrusts on the guides and crank when BAG = 30. (L.U.)

23. In a four-bar chain ABCD, AB is the driving, CD the driven

crank, and BC the coupler, DA being fixed. BC, produced if necessary,
cuts AD in P. Show that the ratio of the angular velocity of CD to that

of AB is PA/PD. Draw the velocity diagram for this chain when AB,
BC, CD and DA are i, 6, 3 and 7 feet respectively, the angle BAD being
90 and AB and CD being on the same side of AD. If the velocity of B
is i foot per second, find the velocity of C, and check by using the ratio

given above. (L.U.)

24. A simple slide valve driven by an eccentric has a travel of 5 inches.

The cut-off is at of the stroke of the piston, and the release takes place
at | of the stroke. The lead is J inch. Assuming that the valve and

piston have simple harmonic motions, find the outside and inside laps
of the valve and the position of the piston when compression begins.

(L.U.)

25. A connecting rod is 5 feet long and 5 inches in diameter, assumed
uniform throughout its length. Stroke of piston, 2 feet 6 inches.

Revolutions per minute, 180. Weight of material, 480 Ib. per cubic foot.

When the crank angle is 60 measured from the inner dead centre, draw
the load and bending-moment curves on the connecting rod due to its

inertia, and state the value of the maximum bending moment. (L.U.)



CHAPTER XX.

FLYWHEELS. GOVERNORS.

Fluctuations in angular velocity. It frequently is the case that

it is important to secure uniformity of angular velocity in some shaft

belonging to a machine. This condition is usually very desirable in

engines supplying motive power. In such cases there may be two

kinds of disturbance owing to lack of equality in the rates of supply
of energy to the engine and of abstraction of energy for driving

purposes. In any machine we have the following equation (p. 328)
for the balance of energies during a stated time :

Energy supplied
= energy abstracted + energy wasted in the machine.

Suppose the energy supplied exceeds that required in order to

satisfy the above equation, then the machine must be increasing

its speed, as the excess energy must be disposed of, and the only
method available is by the storage of additional kinetic energy in the

parts of the machine. The converse will be the case if the energy

supplied falls below that required in order to satisfy the equation.

For simplicity, suppose the moment of resistance to rotation of

the engine shaft, supplied by the machinery to be driven, to be

uniform. There will be a demand then for a constant amount of

energy during each revolution of the shaft. But the rate of supply
of energy to the shaft is never uniform, depending as it does on the

turning-moment diagram (p. 470), which may show great lack of

uniformity. The result would be evidenced in rapid alterations in

the angular velocity of the shaft, a jerky action which it is the

function of the flywheel to remedy. This the flywheel does by storing

the excess energy in the kinetic form, and its large moment of inertia

enables it to do so with comparatively small changes in its speed.
It is evident that, if the energy supplied during the revolution is

exactly sufficient to satisfy the equation, the angular velocity of the

flywheel at the end of the revolution will be equal to that at the
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beginning, i.e. there is no net gain or loss of speed despite inter-

mediate small fluctuations.

A second kind of variation in the angular velocity may occur

during a period extending over several revolutions of the shaft.

This would be owing to the supply of working fluid to the engine

being too la-rge or not enough, and would be evidenced by a steady
rise or fall in the speed of rotation. The flywheel alone is incom-

petent to deal with this matter, which must be remedied by a

contrivance called a governor. The governor is driven by the

engine, and is constructed so that the relative positions of its parts

alter with change of speed. These movements may be made to

operate valves which control the supply of working fluid, and thus

the shaft is kept rotating at a speed which may vary only slightly

above and below the mean speed. Absolute steadiness of speed
cannot be attained, for change of speed must occur before the

governor will move into another position, and so operate the control

valve.

Kinetic energy of a flywheel. Some calculations regarding the

capacity for energy of a given wheel and of its change of angular

velocity in giving up a stated amount of energy will be found on

p. 420.

Let I = the moment of inertia of the wheel, pound and foot units.

<o = its angular velocity, in radians per second.

o>2

Then Kinetic energy of wheel = I foot-lb................ (i)

Let the wheel change its speed from Nj to N
2 revolutions per

minute. Then
o 9

Change in kinetic energy = L I 2_ j

Al N
l

AlSO, (0, = ^
. 27T = -

60 30

TT
. Hence,

3030
I /7T

2N
Change in kinetic energy = (

--l

2g\ 900

-^-

= 0-00548 (Nj
2 - N

2
2
) foot-lb. . . .( 2)

<b

Again, the kinetic energy at any speed N revolutions per minute

varies as N2
; hence, if M be the kinetic energy at one revolution per
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minute, the kinetic energy at N revolutions per minute will be
MN 2

. Hence, the change in kinetic energy in passing from Nj to N,,

revolutions per minute may be written :

Change in kinetic energy = M(Nj
2 - N2

'

J
)............. (3)

The fluctuation in speed of the wheel may be defined as (N\
- N

2),

and the coefficient of fluctuation of speed is taken as the ratio which the

fluctuation in speed bears to the mean speed. It is sufficiently

accurate to write

Mean speed = J(Nj + N2).

N N
Hence, Coefficient of fluctuation of speed = -j-r^f

-
In practice, values of the coefficient of fluctuation of speed are

found varying from 0-05 to 0-008 depending on the type of

machinery.
Dimensions of an engine flywheel. In estimating the dimensions

of a flywheel for an engine, sufficient information must be given or

assumed to enable the fluctuation of energy during a complete cycle
to be ascertained. The process consists in reducing the driving
effort on the piston to a tangential force acting on the crank pin,

making proper allowance for the inertia of the reciprocating parts of

the engine. A crank-effort diagram showing the values of this force

throughout a cycle is drawn. Another diagram is drawn on the same

base, showing the driving resistances to be overcome reduced to

another tangential force acting at the crank pin. Comparison of

these diagrams will enable the fluctuation of energy to be obtained.

The turning-moment diagram may be used in order to calculate R,
the tangential force acting on the crank pin. Thus,

T = RxBC,

where BC is the length of the crank in feet and T is the turning
moment in Ib.-feet.

Values of R for a steam engine having a single cylinder are set off

in Fig. 538 on a base having a length equal to the circumference

of the crank-pin circle. The resulting crank-effort diagram OCBDA
shows the work done on the crank pin per revolution, neglecting
friction.

The whole of the work done on the crank pin is utilised in

overcoming (a) frictional resistances in the engine, (b) the external

resistances which are opposed by the machinery being driven.
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Assuming both of these to be uniform when reduced to a tangential

force at the crank pin, it is evident that both will be taken account

of by constructing a rectangular diagram OEFA of height equal to

the average height of the crank-effort diagram. This rectangle will

express graphically the equality of energy supplied and energy
abstracted during the revolution. The driving effort and the resist-

ance to be overcome are equal at G, H, K and L.

F Q

A L K B H GO
FIG. 538. Fluctuation in energy in a steam engine.

Consider the portions of the diagram showing the energies while

the crank pin travels through the arc represented by GH. Work is

done on the crank to an amount represented by the area GMCNH,
and the work abstracted is represented by the area GMNH. Hence,

surplus work, represented by the area MCN, has been done, with

the result that the flywheel will have its angular velocity increased

while the crank is passing from G to H.

In the same way, while the crank is passing from H to K, energy

represented by the sum of the areas HNB and BPK has been given
to the crank and energy represented by the rectangle HNPK has

been abstracted. Insufficient energy, represented by the area NBP,
has been supplied during this interval and the flywheel will be

decreasing its angular velocity. Hence, maximum speed will occur

when the crank is at H and minimum speed when the crank is at K.

Assuming that the speeds of the flywheel at G and K are equal, it

follows that the excess energy represented by MCN will be equal to

the deficient energy NBP, and it may be said that the energy repre-

sented by the area MCN has been given to the flywheel and taken

away again while the crank is passing from G to K. The fluctuation

of energy is therefore given by either of the equal areas MCN or

NBP. In the same way, the area PDQ is equal to the sum of the

areas QAF and EMO, and represents the fluctuation of energy

during the remainder of the revolution.

The coefficient of fluctuation of energy may be defined as the ratio of

the maximum fluctuation in energy to the total work done in one

cycle, the cycle occupying one revolution in a steam engine and
two revolutions in an internal combustion engine working on the

four-stroke cycle.

P.M. 2 1
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Let E = the area MCN, expressed in foot-lb., representing

the maximum fluctuation.

a>!
and CD.,

= the angular velocities of the flywheel at H and K
respectively, in radians per sec.

I = the moment of inertia of the wheel, in pound and

foot units.

Then
*g *g

i(<V-<^) = E...................... ........... (i)

Let a>
2
=

TztOp

where n is a fraction expressing the minimum permissible ratio of to
2

to w,. Then T
- / o o o\ T-^-W-a-VHE.

or I- ( 2 \A o / .-)\
..................... \*t

u*(i-n
2
)

The moment of inertia which the flywheel must possess may be

calculated from this equation.

Centrifugal tension in flywheels. In Fig. 539 is shown the rim

of a revolving flywheel, the other parts of the wheel being disregarded

in what follows. The centrifugal forces produce radial loads on the

FIG. 539. Rim of a revolving flywheel. FIG. 540.

rim of a kind similar to those produced by internal pressure on a

cylindrical shell (p. 94).

Let v = the velocity of the rim, in feet per second.

r = the mean radius of the rim, in feet.

m = the mass of the rim, in pounds per foot circumference.

Then Centrifugal force per foot circumference = Ib.
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The resultant centrifugal force for half the wheel, corresponding to

x d) in the cylindrical shell, will be

mv'1 2ml)1
nR= X2r = - Ib.& g

Let a = sectional area of the rim, in sq. inches.

f/
= tensile stress on

,
Ib. per sq. inch.

Then, assuming q to be distributed uniformly,

R = 2qa (Fig. 540),

or --- = 2qa,

mv' ,, . ,= Ib. per sq. inch.

Let p = the density of the material, in pounds per cubic foot.

Then m = px i x ---
pounds per foot circumference,

144

pav
1

=and

or - Ib. per sq. inch.................................. (i)
J 44A

r

This result shows that the stress due to centrifugal force is inde-

pendent of the sectional area of the rim and of the radius of the

wheel. Equation (i) may be written

(2)

We may deduce from this result that, for a given material having
a density />, there is a maximum speed of rim corresponding to a safe

stress q for the material in question, and that this speed is independent
of the dimensions of the wheel.

Governors. In Fig 541 is shown a simple type of governor such

as was used by James Watt for controlling the speed of steam engines.

Two heavy revolving masses A
l
and A

2 are suspended by links AjB
and A

2
B to the upper end of a shaft BF ; the joints at B permit of

A
l
and A2 moving outwards or inwards in circular arcs. Another

pair of links A
l
C

l
and A9C2 connect A

l
and A2

to a sleeve D, which

will move upwards if A
1
and A2 move, to a larger radius. The sleeve

is connected by means of a bent lever, pivoted at G, and a rod H
to a throttle valve K, which is situated in the pipe supplying steam
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to the engine and controls the supply of steam. The shaft BF is

driven by the engine by means of bevel wheels at F, and hence the

masses A
1
and A

2 will revolve

about the axis of BF. The
action of the centrifugal force,

the weight, and the pull of the

links on each revolving mass,

will cause the mass to take up
a definite radius depending on

the engine speed. The working

positions of the revolving masses

are settled by the considera-

tions that when they are at the

extreme outer or inner working

radius, the throttle valve should

be closed completely or opened

fully respectively. Each of these

radii will correspond to a definite

speed of rotation, and the engine
controlled by the governor will

be capable of a range of speed
between these limits. In order

that the range of speed should not be too great, the difference

between the extreme working radii of the revolving masses should

not be too large.

In Fig. 542, three forms of simple governor are shown in outline
;

these differ merely in the position of the point of suspension of the

FIG. 541. Simple unloaded governor.

(c)

FIG. 542. Forms of simple governors.

upper links. In (a\ the joint B is on the axis of rotation
;
in

(/;), the

joints B x
and B

2 are outside the axis, and are situated at the ends of

a short cross piece ^E 2 which is fixed to the shaft; the same

arrangement is used in (*), but the links are open in (b) and are
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crossed in (c). The following argument applies equally to each of

these cases :

Let w = the angular velocity of the governor shaft, in radians

per sec.

m = t\\Q mass of either A
l
or A

2 ,
in pounds.

r=the radius in feet of the revolving masses, corresponding
to (o.

h = the height in feet of the cone of revolution described by
the links and shown by YB in (a) and by YO in (b)

and (c).

T = the pull in each link.

Considering one revolving mass, it will be in equilibrium under

the action of three forces, viz. its weight mg poundals, the centrifugal

force u2mr poundals, and the pull T. It is evident that AjYB in (a)

and AjYO in
(ff)

and (c) will be the triangle of forces for these

forces in equilibrium. Hence,

F r taPmr r= T> or
>

* = 7
mg h mg h

and h = .................................... (i')
(0-

This result neglects the effects of the mass of the link and also

friction, and shows that the height is independent of the weight of

the revolving masses.

Such governors can be used for low speeds only. For example,
if (o = 47r radians per second, corresponding to 120 revolutions per

minute, h would be 0-2 foot nearly, a height which is not practicable.

Running at low speeds, comparatively small forces will be available

for operating the throttle valve unless the revolving masses are made

heavy. Accordingly, simple governors usually have revolving masses

of large dimensions, and are run at speeds rarely exceeding 60

revolutions per minute.

Loaded governor. The speed may be increased and the revolving

masses kept small by the addition of a load on the sleeve (Fig.

543 (a)). If M be the mass of this load, half its weight M^ will be

carried by each pin Cj and C
2

. Cj is in equilibrium under the

action of the three forces JMjf, the pull P in C
1
A

1
and a horizontal

force Q supplied by the sleeve (Fig. 543 (&)). The pull P is trans-

mitted to Aj by the link, and applies a force P to the revolving
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mass which may be resolved into a vertical force ^M^ and a

horizontal force Q. If all four links be equal, the triangle of forces

AjDjCj will give 1M> O = h r

where h and rare equal respectively to BY and A
T
Y in Fig. 543 (a).

Hence, Q

(ft) (b)

FIG. 543. Loaded Porter governor.

The revolving mass A
l

is now subjected to three forces, viz. T, the

resultant (F- Q) of the centrifugal force F and Q, and the resultant

(mg+ Mg) of the weights (Fig. 543 (a)). AjBY will be the triangle

of forces. Hence,

F-Q_ *
h!

or

m ()

mmm (2")

Comparison of these results with equations (i) and (i') for the

simple governor will show that, for the same value of w, h in the loaded

governor will be greater than that for the simple governor in the

r /M + m\
ratio of - -

).m /
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Equation (2") for the loaded governor shows that h will be made

larger or smaller by an increase or diminution of M without alteration

in the values of m and to. The arrangement therefore admits of

adjustment of the working radii of the revolving masses by means of

varying the load.

Frictional effects in the governor mechanism may be taken into account

by the artifice of eliminating the frictional forces and applying instead

a force to the sleeve, which will have the same effect. This force

must be applied always of sense opposite to that of the direction of

motion of the sleeve. The effect might be produced by imagining
a mass M F pounds to be added to the load M if the sleeve is rising,

and to be abstracted if the sleeve is falling. Equation (2) then

becomes : ^MF ^ g_/MMF \g
>m )h \ m ) 1i

the positive sign being used if the sleeve is rising or attempting to

rise, and the negative sign if the sleeve is falling or attempting to fall.

Two extreme values of h may thus be calculated from (3), indi-

cating that, owing to friction, the governor may remain at any height

intermediate between these extreme values while running at a given

steady speed w. The effect on the engine is to permit some variation

in speed to occur before the governor will begin to respond by

altering its height.

Effect of the governor arms. In Fig. 544, AB is a rod hinged at

A and rotating about the vertical axis AK. Centrifugal force and

gravity will compel the rod to assume an angle a to the vertical, the

value of a depending on the speed of rotation. Steady conditions

will be obtained when the total moment of gravity about A is equal
to the total moment of the centrifugal force. Consider a small

portion of the mass of the rod at P, and let the rod be uniform.

Let m = the mass of the small portion, in pounds.

r = the radius of the small portion, in feet.

y = its distance from A, in feet.

M = the total mass of the rod, in pounds.

Y = the distance of the centre of mass G from A in feet.

L = the length of the rod, in feet.

R = the radius of B, in feet.

H = the vertical height of A over B, in feet.
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Then, taking moments about A of the forces acting on the small

P9rtion, we have
mg x Np = m^r x AN?

(i)or mgxysma ma2
}' sin a xycos ,

g , my = (o cos a . my.
The total moments for the whole rod will be obtained by

integrating both sides of this equation,

giving

g my = w2 cos a
i:

= (o'
2 cosal

where IA is the moment of inertia of

the rod with respect to A, viz. 4ML2

(p. 415). Hence,

.(2)

( R jj

FIG. 544. A revolving uniform load.

This result determines the required
relation of a and w for a given uniform

rod.

In the actual governor the arm is constrained by the action of the

revolving mass to rotate at an angle to the vertical, differing from
that given for a free arm in (2) above. In this

case, the moment of the weight of the arm may be
calculated still as above by imagining that the whole

;

arm is concentrated at the centre of gravity. The
moment of the centrifugal force may be calculated -

by first imagining that the whole arm is concentrated
at the centre of mass and calculating the centrifugal
force f produced thereby. Then find the position
off (Fig. 545) in order that its moment may agree with the integrated
result of the right-hand side of (i). Thus,

R f
L

Moment off=fx = Mw2 x = w2 sin a cos a I my
2

= w2 sin a cos a -..--

3

,,R H ML2
, _,. x= 0,2_ . __ . ___

; (See Fig. 544)

2
MR RHM

. . or x = or -
5

2 3
2TJx Trri (3)
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Effect of the arms in a loaded governor. This result may be

applied to a loaded Porter governor having equal arms (Fig. 546 (#)).

mg is the weight of each arm, and in the case of AB is equivalent to

a force \mg at A and an equal force at B (Fig. 546 ()). /for each

arm is equivalent to a force f/ acting at B, together with a force y
acting at the vertical spindle AC. The mass of the revolving mass

being M, its weight will be M,^ and the centrifugal force will be

FIG. 546. Forces in a loaded Porter governor, including effects due to the arms.

Mw2 R. The mass of the load is L, and half its weight, viz.

will be borne by the right-hand arms as shown. The forces at A are

balanced direct by the reactions of the -pin securing AB to the

spindle at A. The force J/ at C is balanced by the reaction on the

sleeve produced by the spindle. Draw CD perpendicular to AC,
and produce AB to cut CD at D (Fig. 546 ()).
Take moments about D of the remaining forces, remembering

that /=ww2 .

(MVR

0)2(M

)
R 2 R,

or

}
H =

/M
i V (4)

Stability of a governor. Considering one revolving mass of a

governor, the centrifugal force is given by

(i)
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Suppose a> to be increased by a small amount Sw, and that, in con-

sequence, r increases by 8r and F by 8F. For the new position
we have

m(^r-\- 2wr. &w -f- w2
. 8rJ, (2)

by neglecting the square of 6w, and also the term involving the pro-
duct of the small quantities Sw and 8r. Subtraction of (2) and (i)

gives
8 = m(2(ur. Sa> + w2

. 8r) (3)

Dividing (3) by (i), we have

8F 2<D) = 2 H ,

10 r

or
Sto 8

(4)

If 8(D is an increase in angular velocity, the left-hand side is posi-

tive
;
hence

-pr
must be greater than

,
i.e. the rate of increase of

the centrifugal force must be greater than the rate of increase of the

B
radius. The result expresses
the condition of stability in a

governor, i.e. the moving to a

definite new radius and remain-

ing there when the revolving

masses suffer a change in speed.

An interesting example of a

governor which exhibits neutral

equilibrium is produced by
FIG. 547. Parabolic governor.

arranging that the revolving masses move about . B in parabolic

instead of circular arcs (Fig. 547). Here the pull of the link on

A is supplied by a normal pressure T given by the guide. Hence
we have, as before,

or,

mg

K
Now h BY is the subnormal to the dotted parabola, and it is

known from geometry that the subnormal to a given parabola is

constant
; hence h is constant, and therefore w must also be constant.
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A governor of this type is isochronous, i.e. it will run at one speed

only if friction be absent, and any change from this speed will send

the revolving masses immediately to one or other extreme end of the

range.

The question of sensitiveness of a governor is allied closely to its

stability. The change of radius for a given fractional change in

speed is large in a sensitive governor, but if too large, as in the para-

bolic governor, the stability may disappear.

Hartnell governor. In the spring loaded Hartnell governor (Fig.

548), the revolving masses A
l
and A

2
are supported by bent

levers, which are pivoted at B
x
and B

2
on

pins supported by a bracket (not shown in

the illustration) which is fixed to and driven

by the shaft. A spring E bearing on a sleeve

1) presses downwards the ends CjC2
of the

bent levers. The revolving masses travel a

small distance only from the verticals passing

through Bj and B
2 ;

hence the effect of their

weights in exercising control may be neglected.

Supposing, for simplicity, that A
l
E

l
and BjCj

are equal, then, by taking moments about Bj, we see that the

centrifugal force F acting on A
x

will be equal to one-half of the

total force 2Q exerted by the spring. Provided that the adjustment

of the spring is correct, this governor will possess great sensitiveness,

but easily may be made unstable.

Suppose that the revolving masses are displaced from r^ to a

slightly greater radius r^ without changing the angular velocity u>, the

centrifugal force will be increased to F + SF, and Q will be increased

to Q + SQ, owing to the additional compression of the spring.

Assuming that these forces are equal, we have

or

B,

FIG. 548. Hartnell governor.

o,v
2
= Q +

Also, initially, mvrr^ Q ;

.'. m>'2

(r.2
-r

l )
= SQ.

Hence, Q '

<V_SQ

The condition, therefore, that the governor may remain in the

new position with the speed unaltered is that the rate of increase of
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the force in the spring is equal to the rate of increase of the radius

of the revolving masses. This condition may be secured by adjusting
the spring; but as the stability of the governor then would be

neutral, the practical adjustment is made so as to disagree with the

condition above expressed.

Effort of a governor. Suppose that the speed of a governor is

increased from
<0j

to w.
2 ,
and that the sleeve is held so as to prevent

outward movement of the revolving masses. There will be additional

centrifugal force, and consequently an effort will be exerted on the

sleeve which may be utilised in overcoming the resistance offered by
the control valve mechanism. It is evident that the effort will

diminish if outward movement of the revolving masses be permitted,

and will attain zero value when they reach the position corresponding
with the new speed of rotation. The effort of the governor may be

defined as the average effort exerted on the sleeve during a given

change of speed executed in the manner described above, and may
be taken as 0-5 of the maximum effort.

Taking a simple governor (p. 501) for which

if P is the maximum effort in lb., it may be imagined that P is

produced by the weight of a load M, arranged as in the loaded

governor (p. 502). Hence,
w

2
2 =

(-
-U

(2)

Hence, from (i) and (2),
=

o>
2
2 -

Wl
2
_

MH^?V (3)

Let P = weight of M, in lb.

w = weight of m, in lb.

Then
_ /w.S-wA /a>

2
2 \

P =
(
-* l -

)
w =

( -\ - i I w.
\ w, / VWj

2
/

Let Wo = wwj ,

so that n expresses the fractional change in speed. Then

P =
( -i)w
\ <v

= (2 -i)W ;

.". effort of a simple governor = 4- (n
2 -

i)ze/lb.................... (4)
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In the case of a loaded governor (p. 502), P may be taken as being

equivalent to the weight of an additional mass M
l applied to M.

Similar reasoning to that employed for the simple governor will give

<5)

where w and W are the weights of one revolving mass and of the

load respectively in lb.

Balancing. The complete treatment of the principles of balancing

the moving parts of an engine or other machine is beyond the scope
of this book. * Reference will be made to some

of the easier principles.

Two rotating bodies may be made to balance

each other if both have their centres of mass

in the same plane which is perpendicular to the

axis of rotation, and if the centre of mass of

the combined bodies is in the axis of rotation

(p. 426).

Thus, in Fig. 549, m
l
and m., will balance,

provided the forces F, F are equal and are in

the same straight line. This will be the case

if m-
[
r
1
= m

z
r.
2
and if the line joining G1

and G.
2

passes through the axis at right angles.

Three revolving bodies may balance, provided the resultant centri-

fugal force of two of them, F
l
and F

3
in Fig. 550, is equal and

opposite to the centrifugal force, F2 ,
of the other. It is thus evident

FIG. 549. Balance of two
revolving bodies.

FIG. 550. Balance of three revolving bodies.

that all three centres of mass must be contained by the same plane

*For a complete discussion on this subject, the student is referred to The

Balancing of Engines, by Prof. W. E. Dalby ; (Arnold).
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which also contains the axis of rotation, and that the bodies must be

disposed as shown in Fig. 550.

Taking dimensions as indicated in Fig. 550,

F
1
+ F3

= F
2

................................. (i)

and F
1 1

= F
3
#
3
............................... (2)

These equations indicate the conditions of equilibrium to be

fulfilled, and may be reduced thus :

From (
i
),

to
2w

1
r
1
+ w2w

3
r
3
= to

2/0
2?2 ,

or m^ + m3
r
3
=
m^r* ............................ (3)

This result shows that the centre of mass of the combined bodies

falls on the axis of rotation.

From (2),
iD

2m
l
r
l
a

l
= <t)

2m
s
r
3
a
3J

or 0^0! = vyz3
............................. (4)

This equation secures that there shall be no rocking couple set up.

In this case, there are two equations, (3) and (4), and eight quantities

involved ;
hence six of these must be given or assumed.

The balancing of four or more revolving masses is capable of

many solutions, and graphical or semi-graphical methods are best.

Locomotive balancing. As an illustration of the method by
means of which the balancing of four revolving masses may be
carried out, the following example of a locomotive should be studied.

Equal masses m^ and m are given (Fig. 551), rotating at equal
radii r, r, and symmetrically disposed in relation to the wheels A
and B in the planes of which balance weights are to be placed.
The term " balance weights

"
is used to denote bodies which must be

attached to the mechanism for the purpose of obtaining balance.

a is the distance of m^ from A and of m
z
from B

; $ is the distance

of m
l
from B and of m.

2
from A.

Balance the centrifugal force of m
l separately by attaching balance

weights to A and B at the same radius r
;

if these balance weights
be represented by A

l
and Bj respectively, their masses will be

given by A^K^m, ........

'

......................... (,)

and Ajfl^B/............................... (2)

i i
,

From which, A
l
= ^

-T) \, ,
x

and B
i=ri>

............................... (4)

In the same way, balance F
2 by attaching balance weights to A

and B at the same radius r. Let these be A
2 and B

2 respectively.
Then it is evident from symmetry that A

l
and B

2
are equal ;

also A2
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is equal to B
x

. These balance weights are shown in the elevations

of the wheels in Fig. 551 ;
the views are taken in the directions of

the arrows c and d shown in the plan. Find the centres of gravity
of AjA2

and also of B
T
B

2 by joining their centres and dividing the

distances in GA and G so that

and

Elev? of B

FIG. 551. Balancing in an inside cylinder locomotive.

Now, since A
l
+ B

x
= m

l
and Bj

= A
2 ,

it follows that A
l + A2

= m
l ,

and for a similar reason B
1
+ B

2
= w

2
. Hence, if instead of A

lt
A

2 ,

Bp B
2 ,

a mass equal to m
l
be placed at GA ,

and if another equal to

m.
2
be placed at G B ,

the four masses will be in balance. Or the

ordinary practical solution may be obtained by applying balance

weights having their centres of mass in OGA and OG B produced.
Let MA and M B be their masses respectively. Then balance will be

secured if MA x KAO = m
l
x GAO

and M B x K BO = m.
2
x GBO.

MA and M B will be equal, provided their radii KAO and K BO are

equal.

Graphical solution of balancing problems. This solution depends
on the principles that the centrifugal forces must not produce (a) a

resultant force
; () a resultant couple. Reference is made to

Fig- 55 2 -
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Since the angular velocities of all the bodies are equal, the centri-

fugal forces Fj, F2 , etc., may be represented by the products m^r^
w

2
r.
2 ,

etc. Each force, such as Flt lies in a plane which also con-

tains the axis of rotation, and may be moved along this plane until

it comes into a reference plane OZ which is perpendicular to the

axis of rotation. To leave matters unaltered, with F
l acting in OZ,

a couple must be applied in the plane containing F
x
and the axis of

rotation; the moment of this couple will be L
1
= F

1
a

1 ,
where a

x
is

the distance of the plane of rotation of F
1
from the reference plane.

z

FIG. 552. Graphical solution of balancing four revolving bodies.

The couple can be represented by an axis, or vector similar to that

used in representing angular velocities (p. 400), and this may be

drawn as Lj from O in the reference plane. Treating similarly the

other forces, we have four forces F
19
F

2 ,
F

3
and F4 acting in the

reference plane at O, together with four couples represented by
the axes Llf

L
2 ,
L

3
and L4 also in the reference plane.

The first condition of equilibrium will be satisfied if the polygon
of forces ABCD closes. The second condition of equilibrium will

be satisfied if the polygon of axes of couples EFGH closes.

It will be clear that, in order to satisfy these conditions, some
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attention must be paid to the data. The polygon of forces will be

impossible or insoluble if there be less or more than two unknown

quantities. These may be the magnitudes of two of the forces, or

the direction of two forces, or one magnitude and one direction.

Similarly, the polygon of couples requires two unknowns, viz. the

magnitudes of two couples, or the directions of two axes, or one

magnitude and one direction.

Apparatus for testing balance. The above solution may be

applied to any number of revolving masses exceeding three in

number. A convenient apparatus for testing its truth is illustrated

in Fig. 553. A wooden frame is

slung from a support by three

chains and carries a shaft having
four discs. Various weights may
be attached to the discs, which

may be placed at any angle rela-

tive to one another and may be

fixed at any place on the length

of the shaft. The shaft is driven

by means of a small electro-motor

also carried by the frame. If the

revolving masses are in balance,

no vibration of the frame will

occur when the machine is

running. A problem worked out

on paper therefore can be tested

easily. Another interesting point FIG. 553. Apparatus for experiments on the

n j i_ . i balancing of revolving bodies.
illustrated by this apparatus may
be noticed as the speed rises

;
if there be want of balance, violent

vibrations will occur at a certain speed, viz. that speed at which

the natural period of oscillation of the whole apparatus is equal to

the speed of rotation of the shaft.

EXPT. 49. The following data will serve to illustrate one of the

many problems which may arise. Let there be four revolving

masses, ml
m

3 ,
m all known and of values selected from the

weights supplied with the apparatus. Let the radii be equal. Then
m

lt mz ,
m

s
and m may be taken to represent F

15
F

2 ,
F3 and F4

respectively. Assume the directions of F
l
and F

2 ,
and find, by the

polygon of forces, the remaining two directions. This will also

settle the directions of all the axes of couples, and, as there must be
still two unknowns, assume values for a^ and a

2
in Fig. 552, and

find the remaining axes by use of the polygon of couples.

VM. 2 K
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The values taken to represent the couples may be m-^a^ m^a^ etc.,

as the radii are equal. The polygon gives the values of m
B
a
3 and

#/
4 4 ,

and aB and #
4 may be found by dividing these by m3 and m4

respectively. Having worked out the solution on paper, arrange the

apparatus in accordance with your solution, and then test by actually

running it.

Balance of reciprocating masses.

is shown a set of four balanced rotating masses,

fi

Referring to Fig. 554, in which

Wo, wio and m A .

[t]m

FIG. 554. Components of the centrifugal forces in a set of four balanced revolving bodies.

the balance will not be affected if we imagine F
1? F2 ,

F3 and F4 to

be resolved horizontally and vertically. It will be evident now that

the horizontal components must

balance independently, and so

also must the vertical com-

ponents.

Let the masses be removed
and arranged so that they may
be driven in vertical lines by
means of cranks taking the places

of the discs, and connected by
rods of length sufficient to give
the masses practically simple
harmonic motion (Fig. 555). It

is evident that we have got rid

FIG. 555. The bodies in Fig. 554 arranged as simply of the horizontal COm-
reciprocatmg masses. r J

ponents of the forces F
lt
F

2 , etc.,

and retained the vertical components. Hence, if the masses were
in balance in their original positions on the discs, the forces

due to their inertia will also be in balance when the same masses
vibrate in the manner illustrated in Fig. 555 with simple harmonic
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motion. This leads to the rule that primary balance (i.e. balance

neglecting the oblique action of the connecting rods) may be secured

by imagining the reciprocating masses to be attached to discs, and

treating the problem as one in revolving masses.

Approximate equations for the velocity and acceleration of the

reciprocating parts. In Fig. 556, let the crank and connecting rod
be R and L feet long respectively, and let the crank make an angle

I

FIG. 556. Motion of the reciprocating masses.

a with the centre line, the angle which the connecting rod makes
with the same line being /3. BD is perpendicular to AC and x is

the distance between A and C.

Let the angular velocity to of CB be uniform. Then

= R COS a + L COS /3 (
I )

Also, BD = R sin a = L sin ft

a R
. . sin p = :=r- sm a

;

and cos ft
= \/i - sin2

/?

/ R2=
(i

-
j-2sin

Substituting this value in (i) gives

/ R2
x = R cos a -f L i - -o sin

2 a
/ R2
(

i -
y-o

V L

On expanding the factor in brackets by the binomial theorem,
two terms only need be taken, as, for ordinary ratios of R to L,
the remaining terms are negligible. Hence,

x = R cos a -f L
\

R2

-Rcosa + L--r sin (3)
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To obtain the velocity of A in the direction of AC, differentiate x
with respect to the time, giving

dx d& R2
. da

.. da.

Also, ^ = w

and 2 sin a cos a = sin 2 a.

dx . . wR2
.

Hence, VA = = - wR sin a -- - sin 2a................... (4)dt 2 .L/

From this equation, the velocity of A may be calculated for any
crank position. To obtain the acceleration of A in the line of AC,
differentiate (4) with respect to the time, giving

da co

9T> w2R2

= - cofK COS a --- COS 2<x...... , ............ (5)

The acceleration of A may be calculated from this equation for

any crank angle. Let M be the mass of the reciprocating parts.

Then the force required in order to overcome their inertia when the

crank is at an angle a is

MV2R2

P= -Mw2Rcosa- cos 20,................... (6)
I j

Suppose that the mass M is concentrated at the crank-pin centre B

I / (Fig- 55?)- Then the central force
I VMU^R required will be Mo>2

R, and the

_ _ , fid/ component of this force parallel to
"

Mw*RcoscL t*16 centre nne AC will be Mw2R cos a.

Evidently this is equal to the first

term of (6). The factor cos 2 a in

tne second term, having reference to

/ an angle 2 a, which will be double of

/ the crank angle in all crank positions,
*"- -*' may be interpreted by reference to

FIG. 557. Equivalent imaginary primary an imaginary crank rotating at twice

the angular velocity of the real crank,

i.e. o> for the imaginary crank would be equal to 2w. Hence,

4

Therefore the second term in (6) becomes

'-j
COS2a = ^ COS 2a ..(7)
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Let a mass equal to M be concentrated at a crank radius r

(Fig. 558), set at an angle 2 a and rotating
with angular velocity w . Then

Central force = Mo> V. - _>__^ ,.2oi \
Component of this force parallel to the

a; r
^ _^s^_ A_ .\_

line of stroke = M<o V cos 2 a.
^ y

If this be made equal to (7), we have \ /
Mw 2R2-

j
.

4L secondary mass.

w
Mto VcOS2<X =- - cos 20tj FlG 558. Equivalent imaginary

or r = .................................................. (8)
4L

Hence the second term in equation (6) would be produced by a

mass M equal to that of the reciprocating parts, concentrated at

R 2

a crank radius
, its crank rotating at an angular velocity double

4-L

that of the engine crank and making an angle with CA in Fig. 556
double of that made by the engine crank. The complete equivalent

system is shown in Fig. 559, where CB is the real crank and CD is

the imaginary crank. The balancing of the effects of M at B is

Mti/Rcosa

FIG. 559. Effects of the reciprocating masses produced by an imaginary revolving system.

called primary balancing, and balancing the effects of M at D is called

secondary balancing. The disturbances produced in the direction of

the line of the stroke, if no attempt at balancing is made, may be

calculated easily from the first term of equation (6) for primary

disturbances and from the second term of the same equation for

secondary disturbances. It will be understood, of course, that, if

the disturbances on the engine frame are being calculated, the senses

of the forces shown in Fig. 559 must be reversed.

EXAMPLE. A horizontal engine, stroke 2 feet, mass of reciprocating

parts 300 pounds, has a speed of 240 revolutions per minute. Find the
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primary and secondary disturbances on the frame when the crank is at o,

45> 9j 1 3S arjd 1 80 from the inner dead point. The connecting rod is

4 feet long.

Primary disturbance : P
l
= cos a Ib. weight.

T- . 27r = 87r radians per sec.

300 X 6ATT2 X I= cos a

5880 cos a Ib. weight.

P! is denoted positive when the disturbance on the frame is in the sense

from B towards A (Fig. 556), and negative when of the opposite sense.

Secondary disturbances :

_ Mft>2R 2

P8?__c6s2a

300 x 6471-- x i= J cos 20,

32-2x4
= 1470 cos 2a Ib. weight.

The same convention regarding signs being adopted, the disturbances

will have values as given below :

The combined primary and secondary disturbances will be obtained by

taking the algebraic sum of the corresponding values of P, and P2 :
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Whirling of shafts. In Fig. 560 is shown a vertical shaft AB
running in swivel bearings at A and B

;
these bearings do not in any

way restrain the directions of the shaft axis

at A and B
; hence, bending of the shaft

will correspond to the case of a
'

^am simply

supported at the ends. A heavy wheel is

mounted on the shaft midway between the

bearings, and it is assumed that its centre

of mass C does not fall quite in the shaft

axis. The effects of centrifugal force may
be examined as follows :

Let M = the mass of the wheel, in pounds.
R = the distance in feet of the centre

of mass of the wheel from the

shaft axis.

A = the deflection produced by cen-

trifugal force, in feet.

w = the angular velocity, in radians

per sec.

L = the length of the shaft, in inches.

I = the moment of inertia, or second
moment of area, of the shaft

section about a diameter, inch

units.

E = Young's modulus, Ib. per sq. inch.
FlG" s6 -WSng of a loaded

Centrifugal force = P

Also,
PL3

Mo>2
(R + A)

S

inches (p. i

Ib. weight

PL3

--
feet,

576EI

and
L3

Equating (i) and (2), we have

L3

or Mw2L3R =

.

- a>
2ML3A

It is evident that a critical speed will occur when the denominator
of this fraction becomes zero

;
the deflection will become very large
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then, and the shaft is said to whirl. To obtain this speed, we have

If the shaft is of steel, this equation will reduce to the following
form by using the usual values of the coefficients :

o>= 746000^^ ...................... (5)

If the wheel in Fig. 560 be removed, the plain shaft will whirl, but

at a much higher speed of revolution. The effect is owing to some-

what similar conditions to those which produce elastic instability in a

long strut (p. 228), viz. want of perfect straightness and of perfect

uniformity in elastic properties. Any slight deflection will be in-

creased indefinitely when the whirling speed is attained.

-*- K

fb)

FIG. 561. Whirling of a uniform shaft having swivel bearings.

Fig. 561 (a) shows a uniform shaft in swivel bearings at A and B
and deflected to the curve ACB by whirling.

Let m = the mass in pounds per inch length.

L = the length of the shaft, in inches.

y = the radius in inches at P, distant x inches from O.

A = the maximum radius OC, in inches,

w = the angular velocity, in radians per second.

F'= the centrifugal force at any point, in Ib. weight per inch

length.

M = the bending moment at any section, in Ib. -inches.

I = the moment of inertia of the shaft section, in inch units.

E = Young's modulus, in Ib. weight per square inch.

g= acceleration due to gravitation, inches per second per
second.
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Then, at P, F = Ib. weight per inch length; ...(i)
<b

.'. Focj.

This result indicates that the curve in Fig. 561 (a) not only repre-

sents the deflection, but also the load per unit length to another

scale. Hence, we may write

F-y,
where c is a numerical coefficient rectifying the scale.

Now, if the coordinates y and x refer to a given deflection curve,

the second differential coefficients, when plotted, will represent a

curve of bending moments, and the fourth differential coefficients

will represent a curve of loads which would produce the given deflec-

tion curve. Hence, in the present case,

From this expression, the shape of the deflection curve has to be

obtained, and may be inferred to be a curve of cosines. Thus, take

the equation ,jy
= cos and obtain the fourth differential coefficient :

y = cos
; -j-

= - sin 6 -= = _ Cos 6 -~ = sin
; -^-

= cos 0.
' dx dx* dx* dx^

Therefore, in the curve representing the equation y = cos 0,

d*y-~ = cos 9 =y.
dx*

In Fig. 561 (a\ there is zero deflection at A and B and maximum
deflection at C. Hence the corresponding cosine curve (Fig. 561 (/>))

7T 7T

will have the origin at O, OE and CD will represent +- and -

respectively (for which the cosines are zero), and OG will represent
cos 0=1. HK, corresponding to y in Fig. 561 (), will represent
cos 0, where is the angle represented by OH, corresponding to x in

Fig. 561 (a). From the diagrams, we have

0- x 7r _ 7r

r
-L'2-L*-.

y cos TT

Also, TT = - - = cos x
;A coso L '

Obtaining the fourth differential coefficient of this,

d^V . 7T
4

7T

(3)

,
,

(4)
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d^y MN W
'

=
>

AISO, ^ =F ;

.-. g=... (V)

Hence, from (i) and (5),

*
= ~^; ... (6)

dx^ EI^-

Equating (4) and (6),
2 4

= A
, cos^-^. ...(7)

This equation is true for any corresponding values of y and x,

Take the value x o, when
7T

COS -,T = COS O = I

and = A.

. 7T
4

Hence, = A ...................................... (8 )

The deflection cancels from both sides of this equation, indicating
that a critical speed w has been attained, and giving the result

<

This result expresses the whirling speed. If the bearings restrain

axially the directions of the shaft at A and B (Fig. 561 (#)), then it

may be shown that the whirling speed is given by
' 2

EXERCISES ON CHAPTER XX.

1. Find the M of a flywheel which, when running at 200 revolutions

per minute, will increase its speed by i per cent, while storing 5000
foot-lb. of energy.

2. A solid disc of cast iron, density 450 pounds per cubic foot, is

8 inches in diameter by 2 inches thick and runs at 2500 revolutions per
minute. What percentage increase in speed will occur if it is called upon
to store an additional 200 foot-lb. of energy ?
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3. A cast-iron flywheel is 30 feet in mean diameter. The safe tensile

stress is 2000 Ib. per square inch. Find the maximum permissible speed
of revolution of the wheel. Take the density as 450 pounds per cubic foot.

4. A mild-steel hoop is 18 inches in mean diameter and the elastic

limit of the material is 18 tons per square inch. At what speed of revolu-
tion would permanent damage begin to occur ? Take the density as 480
pounds per cubic foot.

5. M/Tiat is the limit to the velocity of the rim of an ordinary flywheel?
Does it depend on the diameter? Prove your statements (B.E.)

6. In the manufacture of a large drum for a steam turbine a hollow,
red-hot steel billet is, at a high gpeed, rolled between internal and
external rollers, which effect a gradual increase of diameter and diminu-
tion of thickness. Show that the intensity of the tangential stress of
the material of the drum remains constant during the rolling operation,
assuming a constant speed of the rollers. Determine the limiting speed
of the rollers to keep the tensile stress within i ton per square inch.

(Weight of steel, 485 Ib. per cubic foot.) (I.C.E.)

7. The indicated horse-power of a steam engine is 100 ; the mean
crank shaft speed is 200 revolutions per minute. The energy to be
taken up by the flywheel of the engine between its minimum and maxi-
mum speeds is 10 per cent, of the work done in the cylinders per revolu-
tion of the crank shaft. If the radius of gyration of the flywheel is 2 feet

6 inches, determine its weight in order that the total fluctuation of speed
may not exceed 2 per cent, of the mean speed. (L.U.)

8. Show from first principles that two flywheels of the same dimensions
but of materials of different densities will have equal kinetic energies
when run at the speeds which give equal hoop stresses. Calculate the
kinetic energy stored per pound of rim in a cast-iron flywheel, when the

hoop stress is 800 pounds per square inch. Cast iron weighs 450 pounds
per cubic foot. (L.U.)

9. In a simple Watt governor, the height of the cone of revolution is

4 inches. What is the speed in revolutions per minute ?

10. A Porter governor has revolving masses of 2 pounds each. The
arms are all equal and 8 inches long. If the height of the cone of revolution

is to be 5 inches at 180 revolutions per minute, find the dead load

required.

11. In Question 10, the throttle valve is full open when the height is

5-5 inches and closed entirely when the height is 4-5 inches. Find the

limits of speed of revolution controlled by the governor. State the

total variation in speed as a percentage of the mean speed of 180 revolu-

tions per minute.

12. A uniform rod 8 inches long, mass 4 pounds, is hinged at its upper
end to a vertical axis of revolution. Find the speed at which the arm
will describe a-cone of semi -vertical angle 45 degrees. Supposing this

speed to be doubled without alteration in the position of the rod, what

controlling couple must be applied to the rod ?

13. The mass of each of the balls of a spring-loaded governor
arranged as in Fig. 548 is 5 pounds. When the radius of the balls is

6 inches the governor makes 250 revolutions per minute. Find the total
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compressive force in the spring, and, neglecting friction, find the stiffness,
i.e. the force per inch compression, of the spring that the governor may
be isochronous. Show that the effect of friction would be to make the

governor stable. (L.U.)

14. A Porter governor has equal links 10 inches long, each ball weighs
5 pounds and the load is 25 pounds. When the ball radius is 6 inches
the valve is full open, and when the radius is 7-5 inches the valve is

closed. Find the maximum speed and the range of speed. .If the
maximum speed is to be increased 20 per cent, by an addition to the

load, find what addition is required. (L.U.)

15. Three bodies of 2, 3 and 5 pounds mass respectively revolve at

equal radii round a horizontal axis. The axial distance between the
outer pair of bodies is 18 inches. Arrange the bodies so that they shall be
in balance.

16. The four weights ivlt o/2 ,
-ze/3 ,

w4 (Fig. 562) rotate in one plane
about an axis, their magnitudes and the radii at which they act being

given in the table :

FIG. 562.

Find graphically the equivalent single mass in magnitude and direction,

acting at a radius of i foot
;
and calculate the total displacing force on

the shaft when the revolutions are 200 per minute. (I.C.E.)

17. A shaft runs in bearings A, B, 15 feet apart, and carries three

pulleys C, D and E, which weigh 360, 400 and 200 pounds respectively,
and are placed at 4, 9 and 12 feet from A. Their centres of gravity are

distant from the shaft centre line by amounts : C ^ inch, D inch and
E I inch. Arrange the angular positions of the pulleys on the shaft so

that there should be no dynamic force on B, and find for that arrange-
ment the dynamic force on A when the shaft runs at 100 revolutions per
minute. (L.U.)

18. Find the positions and magnitudes of the balance weights required
to balance all the revolving and of the reciprocating masses in a simple
inside cylinder locomotive specified as follows : masses per cylinder at 12

inch radius, revolving 720 pounds, reciprocating 630 pounds ;
centre to

centre of cylinders, 26 inches
; planes of balance weights, 58 inches

apart ; radius of balance weights, 32 inches. (L.U.)

19. The reciprocating masses for the first, second and third cylinders
of a four-cylinder engine are 4, 6 and 8 tons, and the centre lines of these

cylinders are 13, 9 and 4 feet respectively from that of the fourth cylinder.
Find the fourth reciprocating mass, and the angles between the various

cranks, in order that these may be balanced. (B.E.)

20. Show that the disturbing effect of a reciprocating mass connected
to a crank by the equivalent of an infinite connecting rod is the same as
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that produced in the line of stroke by an equal mass placed at the crank

pin. An engine has three cylinders A, B and C whose axes are parallel.
The axis of B is at a distance a from the axis of A and a distance c from
the axis of C. The mass of the reciprocating parts of B is M. Assuming
that all the pistons have harmonic motion and the same length of stroke,
show how the cranks on the crank shaft must be placed, and find the
masses of the reciprocating parts of A and C in order that all the

reciprocating parts may be completely balanced. (L.U.)

21. A four-cylinder vertical engine, cranks at right angles, has its

cranks equally spaced between the bearings, the pitch being
4>. Taken from the left, the order is A, B, C, D. The
revolving mass for each cylinder is M

t
and the reciprocating

mass M 2 ,
and the speed is w radians per second. The

crank radius is r and the connecting-rod length /. Examine D
the primary and secondary balance, forces and couples
when (a) the cranks are as shown in Fig. 563, (b} the cranks C
are at 45 degrees to the line of stroke. (L.U.) FIG. 563.

22. A vertical steel shaft i inch in diameter runs in swivel bearings 36
inches centre to centre. A wheel of mass 20 pounds is mounted at the

centre of the shaft, and its centre of mass is at a small distance from the

shaft axis. At what speed of revolution will whirling occur? Take
E = 30,000,000 Ib. per square inch.

23. A steel shaft 2 inches in diameter runs in swivel bearings 9 feet

centre to centre. At what speed will whirling occur ? Take = 30,000,000
Ib. per square inch and the density 0-28 pound per cubic inch..

24. Answer Question 24 if the bearings constrain the directions of the
shaft at its ends.

25. In Question 23, the speed of the shaft is 600 revolutions per
minute. Find the limiting distance centre to centre of the bearings.
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TRANSMISSION OF MOTION BY BELTS, ROPES, CHAINS
AND TOOTHED WHEELS.

Driving by belt. Motion may be transmitted from one shaft to

another by means of a belt running on the rims of pulleys which are

fixed to the shafts. The driving effort is transmitted from the belt

to the pulley by the agency of the frictional resistance to slipping of

the belt on the pulley. A will drive B in the same direction of

rotation if the belt is open (Fig. 564), and in the opposite direction

if the belt is crossed (Fig. 565). In the latter case, each portion of

FIG. 564. Open belt. FIG. 565. Crossed belt.

the belt is given a half turn in order that the same side of the

material may bear against the rims of both A and B. In these

diagrams the shafts are parallel, and both pulleys are arranged so that

their planes of revolution coincide
;

if this condition be not attended

to, the belt will not remain on the

pulleys. It is customary also to

round slightly the rims of the pulleys

(Fig. 566), with a view to enable

the belt to ride on the centre of the

rim
; the action will be understood

by reference to Fig. 567, which

shows the exaggerated case of two

frusta of cones placed base to base.

The belt, in bedding down on the conical surface, bends as shown
;

consequently the points a and a will be higher up the cone than b

FIG. 566. FIG. 567.
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and //, which came into contact a little before a and a. Hence
the belt will climb to the highest part and remain there.

It will be evident that the part of the belt which is advancing
towards the pulley must be moving in the same plane as that in

which the pulley is rotating. The part receding from the pulley may
do so in a plane which does not coincide with the plane of rotation.

Advantage is taken of these conditions in the case of two shafts

having directions at right angles (Fig. 568). A is so arranged on

the lower shaft that the part C of the belt leaving it is moving in the

plane in which B rotates
; similarly B is so arranged that the portion

D of the belt leaves B in the same plane as that in which A is

rotating. The belt will ride safely on both pulleys, provided that

the directions of rotation are not reversed at any time. Reversal of

FIG. 568. Two shafts at 90 connected
by a belt.

FIG. 569. Use of jockey pulleys.

direction must be preceded by a rearrangement of the pulleys. The
distance between the shafts should not be small enough to render

excessive the angle at which the belt leaves the pulleys.

In Fig. 569 is shown an arrangement in which A drives B by
means of a belt which is guided into the proper planes by jockey

pulleys running freely at C and D.

Velocity ratio of belt pulleys. A certain amount of slipping is

always present in belt driving ;
in the best cases there may be i to 2

per cent, of the motion of the driven pulley lost in slipping. The
belt usually comes off the pulleys if the slip exceeds 10 per cent.

Neglecting slipping, it will be evident that the speed of the belt will

be equal to the speeds of the rims of both pulleys. Referring to

Fig. 57>
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Let DA = the diameter of A, in feet.

DB = the diameter of B, in feet.

V = the velocity of the belt, in feet per minute.

NA = revolutions per minute of A.

NB = revolutions per minute of B.

Then, Distance travelled by rim of each pulley = V feet per minute.

-^rv

N V
B ~7rDB

and - = -.FIG. 570. Velocity ratio of belt

pulleys.

Hence the speeds of revolution are inversely proportional to the

diameters of the pulleys.

Strictly speaking, the diameters should be measured to the mean

thickness of the belt, i.e. the thickness of the belt should be added

to DA and DB . The presence of slip usually renders this correction

an unnecessary refinement.

In Fig. 571, A is an engine pulley driving a line shaft pulley B;
a countershaft has a pulley D driven from a pulley C on the line

FIG. 571. A belt pulley arrangement.

shaft
;
a machine pulley F is driven from the countershaft puiiey E,

Assuming that there is no slip,

NB = D_A. N = D_A NNA DB
' '!>*

N=Pc. - N = DC
Nc P ' D VD

c 'Also,
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And NE = ND ;

DA x Dr x D,
.N,DB x DD x Dp

Now A, C and E are drivers and B, D and F are driven pulleys ;

hence we have the rule : To obtain the speed of revolution of the last

wheel, multiply the speed of the first wheel by the product of the diameters

of all the drivers and divide by the product of the diameters of all the

driven pulleys.

Supposing that each pair of pulleys connected by a belt experiences
a percentage slip /, i.e. the driven pulley loses by slip p revolutions

in every 100; then

NB=-A
ADB \ 100

Since N B = NC and ND = NE ,
these reduce to

100

and N^Acn -

DB xI)D xDF
A
\ ioo

Friction of a belt on a pulley. The greatest possible difference

which can exist between the pulls on the tight and slack sides of a

belt will depend on the maximum frictional resistance to slipping of

the belt on the pulley. In Fig. 572 (a) is shown a pulley having a

belt embracing it over an arc of contact AB. Let T
l
and T

2 be the

pulls at the ends when the belt is on the point of slipping, and let T
a

be the larger pull. Let the angle subtended by AB at the centre of

the pulley be radians, and consider a small arc CD subtending a

small angle 8a radian. The portion CD of the belt will be in

equilibrium under the action of forces T and T 4- <$T, these being the

pulls at D and C respectively (Fig. 572 (/;)), together with a normal

reaction p from the pulley rim and also the frictional resistance to

slipping.

D.M. 2 L
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Resolve T into components along and at right angles to/; these

will be T sin JSa and T cos JSa respectively. In the same manner,

T + ST will have components (T + ST)sinJSa and (T + ST)cosSa

(a) (b)

FIG. 572. Friction of a belt on a pulley.

respectively along the same lines. The sum of the components

along / must be equal to /, hence

/ = T sin JSa + (T + 8T) sin J8a

= (2T + 8T) sin J8a.

Neglecting the products of small quantities, this reduces to

Again, the difference between the sine of a very small angle and

its radian measure is infinitesimal. Hence,

p = 2T . |8a

= T.8a........................................... (i)

Let the coefficient of friction be /*. Then

Frictional resistance of arc CD =
/*/

= /xT.Sa............. (2)

This frictional resistance must be equal to the difference in the

components of T and T + 8T taken at right angles to /, hence

/xT . Ba = (T + 6T) cos JSa
- T cos JSa

= 8TcosiSa.

The angle J8a being very small, its cosine may be taken as unity

and the equation reduces to

(3)
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In the limit, writing da. and dTT, and integrating both sides, we
have ,T^T ,*

-T/M d^
JTo L Jo

or
(3')

This equation may be written

-(4)

_^ _ fHO- pfp
r~r\

C
1 Vx *

T~ = a constant.
AD

FIG. 573. Tensions in the belt at

different parts of the arc of contact.

where e is the base of the hyperbolic logarithms (p. n).
The physical meaning of this equation may be understood by

dividing the total arc of contact into a number of equal arcs AB, BC,
CD, etc. (Fig. 573). Let each arc sub-

tend an angle a at the centre, and let the

tensions in the belt at B, C, D, etc., be

denoted by TB ,
Tc ,

TD ,
etc. Equation

(4) above applies to each arc. Hence,

T1
1 = MO.

T*- nr
~"* T1

B AC A D

As the right-hand side is constant in

each of these expressions, the ratios of

the tensions will be constant, i.e.

T1= TB

TB Tc

Hence, if the value of the constant for a given angle is known, the

ratio of the tensions for any angle when slipping is about to occur

may be calculated easily.

EXAMPLE i. A rope is coiled round a fixed drum over an arc of

contact of 90. It is found that slipping occurs when the ratio of the

pulls is f . Find the ratio of the pulls for an arc of contact of 270.

To = T9o = Ilso= 3.

TISO T27o 4

T> !i
Ti80 T27o

T0= 27

T270 64'

EXAMPLE 2. A leather belt laps 180 round a cast-iron pulley.

Taking ft =0-5, calculate the pull on the slack side when slipping is about

to occur, if the pull on the tight side is 300 Ib.

-no

OO

'=2 X 3 X 3,444
or,
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log*
1 =^= o-57r= 1-5708 ;

Here 6 1 80 = TT radians. Hence,

1

or T2
=_= 2.4 .

4-01

Horse-power transmitted by a belt. It will be observed that the

diameter of the pulley does not enter into the expression for the

ratios of the pulls of a belt or rope. For example, in the last result,

the pulls would be 300 Ib. and 62-4 Ib. when the belt is embracing
a pulley 3 feet in diameter or 6 feet in diameter, provided the arc of

contact is 180 in each case. Some other cause must be looked for

to explain the known fact that a belt which constantly slips on a

certain drive may be remedied by substituting pulleys of larger

diameter on both shafts, keeping the ratio of the diameters as at first

so as not to alter the speeds of the shafts. The explanation lies

in the fact that the belt is now running at a higher

speed, and will therefore do the same work per

minute, or will transmit the same horse-power, with

a smaller difference in pulls. Thus,

Let Tj = pull on tight side, Ib.

T
2
=

pull on slack side, Ib.

V =
velocity of belt in feet per minute.

Considering the driven pulley (Fig. 574), Tl
is

urging it to turn and T
2

is tending to prevent rotation
;
hence the

net driving force is (Tl
- T

2 ).

Work done per minute = (Tl
-T

2)V foot-lb.

(T T )V
Horse-power transmitted = * -- ...................... (i)

33,000

Now let V be increased to V
2
feet per minute by the substitution

of larger pulleys running at the same revolutions per minute. The

horse-power transmitted being the same as at first, we have

(T1
-T

2)V_(T/-T2QV2

33,000 33>

where T/ and T2

'

denoted the altered pulls in the belt. This gives

(T^T^V-Ciy-T^V,
............. . ........ (2)

As V
2 is greater than V, it follows that (T/

- T
2')

must be less

than (Tj-Tg). Hence there is now less frictional resistance to

slipping called for, and consequently the risk of slipping is reduced.
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Equation (i) above for the horse-power may be written in terms of

the maximum pull Tj in the belt. Thus,

' T -
*
2
-

Substituting in (i) gives

Horse-power transmitted =

(3)

33,000

From this equation the dimensions of a belt suitable for trans-

mitting a given horse-power may be obtained. The strength of a

belt is stated in pounds per inch of width generally.

Let b = width of belt in inches.

p = safe pull per inch width of belt.

Then T
l ----pb

and Horse- (5)

The width b may be calculated from this result when the other

quantities involved are given.

Driving by rope. Ropes of cotton, hemp, manila or steel wire

may be used for transmitting motion. In such cases the rims of the

pulleys are grooved to receive the ropes. The section of a pulley

FIG. 575. Section of the rim of a rope
pulley.

FIG. 576. Pressures on the

groove of a rope pulley.

rim suitable for ropes of cotton or similar material is given in

Fig. 575. The ropes bear on the sides of the wedge-shaped grooves,

thus increasing the frictional resistance to slipping. In Fig. 576,

Let a = half the angle of the wedge.

p = the normal force on a small arc of the rim, in Ib.

ju.
= the coefficient of friction.
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Then / will be equal to the sum of the vertical components of

the normal pressures q, q on the sides of the groove. Hence,

p=2q sin a,

q = \p cosec a.................................. (
i
)

Now the frictional resistance to sliding on the small arc considered is

f= 2^q = 2\*\p cosec a

=p ,
fji
cosec a................................. (2)

Had the case been that of a flat belt on an ordinary pulley, the

frictional resistance would be /x/. Hence, the results already

obtained for flat belts may be used for ropes which bear on the sides

of the groove by writing ft cosec a instead of /x. Thus, from equation

(4), p. 531, and equation (4), p. 533, we have

In the case of wire ropes, the rope should not bear on the sides of

the groove, as it would suffer injury thereby. Fig. 577 shows a

suitable form of rim, in which the rope beds on the bottom of the

groove ;
it is found advantageous to line the bottom of the groove

FIG. 577. Section of a wire

rope pulley.

FIG. 578. Section of an idle

pulley for a wire rope.

with leather, with a view of increasing the frictional resistance.

Where the ropes are very long, idle bearer pulleys may be used at

intervals to support the ropes. These run loose on their bearings,

and may have rims of a section shown in Fig. 578.

The equations for a flat belt apply without alteration to the case of

a wire rope bedding on the bottom of the groove.

Centrifugal tension in belts and ropes. The portion of a belt or

rope which laps on the pulley is subject to centrifugal forces when

the belt is running (Fig. 579).
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Let m = the mass of the belt per foot run, in pounds.

v = the velocity of the belt, in feet per sec.

r = radius, in feet, to the centre of the belt.

Then the centrifugal force per foot length of arc will be given by

/= Ib. weight.
gr

These radial forces will have a

resultant R directed towards the

left in Fig. 579, and will be balanced

by tensions T, T in the belt, which

are in addition to those required

for driving purposes. The case is
v

... .... FIG. 579. Centrifugal tension in a belt.

analogous to a boiler shell sub-

jected to internal pressure, and may be solved by the method given
on pp. 95 and 96. R=/X 2r

mV* 21HV1
., . ,

. 2r= - Ib. weight
gr g

Also, 2T = R
;

.*. T = - Ib. weight.

For leather belts, m may be taken as

m = o4A pounds per foot run,

where A is the cross-sectional area of the belt in square inches.

The general effects of centrifugal force are to increase the pulls in

the belt, and also to reduce partially the radial pressures on the rim

of the pulley. As the latter are relied on for the production of the

frictional driving effort, it follows that excessive slipping will occur at

speeds which are too high, and the power transmitted will be reduced

thereby.

Belt striking gears. The intermittent motion required for driving

many classes of machines may be obtained by means of two pulleys

on the countershaft driving the machine. In Fig. 580 a pulley A on

the main or line shaft drives a countershaft having two pulleys, one

Bj running loosely on the countershaft and the other B
2
fixed to the

shaft. The belt may be moved from one pulley to the other by
means of forks C, C, which loosely embrace the belt. The forks are

operated by a sliding bar D and a handle E, carried to a suitable

position for the operator. The pulley A is made specially wide, so
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as to permit the belt to ride on either Bj or B
2 ;

in the former case,

the countershaft and machine will be at rest.

FIG. 580. Belt striking gear.

Another arrangement is shown in Fig. 581. The countershaft B
has two loose pulleys Lj_ and L

2 ,
and also a pulley F fixed to the

shaft. There are two belts, one D open and one E crossed
;
these

are operated by the belt-striking forks and bar shown at C. No
motion will be transmitted to the countershaft if both belts are on

the loose pulleys, and motion in either one or the other direction will

UA

FIG. 581. Arrangement for reversing
a machine.

FIG. 582. Stepped cones.

occur, depending on which belt is made to ride on F. The arrange-

ment forms a convenient reversing gear.

Variation in the velocity of rotation of the driven shaft may be

accomplished by means of stepped cones or speed pulleys (Fig. 582).

These consist of a number of pulleys of different diameters mounted

on the shafts so as to oppose the smallest and the greatest. The belt

may ride on any corresponding pair.
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The length of belt required enters into the question of stepped

cones, as the belt has to fit any corresponding pair without alteration

being made in its length. For a crossed belt it may be shown that

the sum of the diameters of any corresponding pulleys should be

constant for the whole set. With an open belt there is a small

divergence from this rule, which becomes negligible if the distance

between the shafts is large compared with the pulley diameters ;
such

is usually the case.

Transmission of motion by chains. In cases where the driving

effort is too large to be transmitted by a belt or rope, or where

slipping is inadmissible, chains may be used in combination with

toothed or sprocket wheels. A few patterns of suitable chains are

given in Fig. 583. (a) is a block chain in which a number of small

(a)

(b)

FIG. 583. Types of driving chains. FIG. 584. Sprocket wheel for chain driving,

showing the effect produced by the chain

stretching.

blocks are connected by pairs of links and riveted pins. Chains of

this pattern are used for conveyors, as the carriers are attached

readily to the blocks. () is a similar pattern, but made entirely of

links,
(c) is a better form, and works more easily. The inner links

are connected by a tube riveted over at its ends, and a roller runs

on the tube
;
the outer links are connected by a pin passing through

the tube and riveted over at its ends.

A sprocket wheel is shown in Fig. 584. The centres of the chain

pins lie at the corners of a polygon having sides equal to the pitch p
of the chain. The driving force P may act at radii which will vary
from Rj to R

2 ,
and thus cause variations in the turning moment and
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in the velocity ratio. These variations will be small, provided the

number of teeth on the sprocket wheel be sufficiently large.

The form of the teeth may be constructed by first drawing semi-

circles of radius r equal to that of the chain pin, or roller. Using
radii slightly smaller than (p-r) and centres nearly coinciding with

the adjacent pin centres, the sides of the teeth may be drawn. These
will be such as to enable the chain to leave the wheel at the top
without the pin or roller touching the face of the tooth.

In general there is practically no pull on the slack side of a chain
;

hence, the work done per minute is given by the product of P and
the velocity of the chain in feet per minute. The chain is liable to

stretching of the links and to wear at the pins, both of which tend to

increase the pitch. The effect of this will be ultimately that the top

pin, or roller alone, as is shown in Fig. 584, will be bearing against

its tooth, and this tooth accordingly will carry the whole load. The

FIG. 585. Renold's silent chain.

effect is manifest in the chain grinding on the teeth, thus introducing

additional frictional resistance and also wearing the teeth. These

effects may be obviated somewhat by using a roller chain, and by

making the spaces between the teeth wider than the diameter of the

chain pin or roller. Increase in the pitch is provided for perfectly

in the Renold's silent chain. The links are of the form shown in

Fig. 585 ; any increase in the pitch, caused by wear or stretching,

has simply the effect of causing the links to ride on the teeth at a

larger radius from the centre of the wheel. Speeds of 1250 feet per

minute and horse-powers up to 500 have been attained with these

chains.

Friction gearing. In cases where the shafts are close enough

together, motion may be communicated from one to the other by
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means of friction gearing. In Fig. 586 two parallel shafts have wheels

A and B fixed on them ;
A is pressed against B by application of

forces P, P, and the frictional resistance between the rims enables a

driving effort F to be communicated from A to B. B may be made

of cast iron and A of compressed millboard or leather
;
the coefficient

of friction is thus increased somewhat. There will always be a certain

amount of slipping, but such gear is advantageous where heavy parts

connected to B have to be brought from rest to a high speed. The

slipping which occurs enables the desired speed to be attained without

giving impulses or shocks to the mechanism. Further, owing to the

small movement required to bring A out of gear with B, the driving

effort can be got rid of quickly. As in belt pulleys, the angular

velocities are inversely proportional to the diameters of the wheels.

U
FIG. 586. Friction wheels for parallel shafts.

X-R,--:.

FIG. 587. Bevel friction wheels.

If the shafts are not parallel but have their axes intersecting, the

friction wheels must form part of conical surfaces in order that

perfect rolling may be possible at all parts of contact (Fig. 587).

The vertex of each cone coincides with O, the point in which the

axes of the shafts intersect. Let R
x
and R2 be the largest radii of A

and B respectively. These radii, GF and HF, come into contact at

F
;
hence the revolutions per minute of the wheels, neglecting slipping,

will be given by N^ RF R
^

N;
=
GF

=
RV

Further, for any other point of contact C, the geometry of the

figure shows that Rp -^^ -^

GF
=
EC

=
~Ri'

Hence the relative angular velocities communicated at C will be

the same at C as at F, showing that, if there be no slip at F, there
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will be no slip anywhere, i.e. the rolling will be perfect. Wheels of

this kind are called bevel wheels.

Driving by toothed wheels. Motion lost by reason of slipping may
be eliminated entirely by the addition of teeth to the rims of friction

wheels. Fig. 588 shows two toothed wheels in gear; the original

friction wheels are shown dotted,

and come into contact at a point

on the line joining the centres

of the wheels. This point is

called the pitch point, and the

circles are called pitch circles.

The length of the arc on the

pitch circle between the centres

of an adjacent pair of teeth is

called the circular pitch of the

teeth. It is evident that the

pitch must be the same for both wheels. For practical purposes,

the diametral pitch is used often, and is the result of dividing the

diameter of the wheel by the number of teeth.

FIG. 588. Toothed wheels in gear.

Let

Then

D = the diameter of the wheel.

n = the number of teeth.

p = the circular pitch.

pd = the diametral pitch.

or

Also,

Unless otherwise specified, the term "pitch
"

will be taken to mean the circular pitch.

Referring to Fig. 589, other definitions are

as follows : The portion EFGC of the tooth

which lies outside the pitch circle is called the addendum;
dotted circle FGL is the addendum circle

;
the working sides of the

tooth at EF and CG are called faces. The portion EHKG which

lies within the pitch circle is called the root of the tooth ;
the dotted

circle HKM is the root circle; the working sides EH and CK are

called flanks. EC is the thickness of the tooth and CD is the width

of the space between the teeth.

FIG. 589. Proportions of

wheel teeth.

the
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Ordinary proportions of teeth may be stated. Reference is made
to Fig. 589, and p is the circular pitch.

Thickness of tooth = 0-48^.

Space between teeth = o-52/.

Total length of tooth = (a + )
= 0-7^.

Length of addendum = a = o-$p.

Length of root = b = o-^p.

Width of tooth = 2p to 3\p.

These proportions allow of a clearance equal to 0-04^ between

the thickness of the tooth and the space into which it enters on the

other wheel; also a clearance of o-ip between the point of the tooth

and the bottom of the space. With accurate machine-cut teeth, these

clearances are often made smaller.

Power transmitted by toothed wheels. Let P Ib. be the driving

effort applied to a toothed wheel tangential to the pitch circle, and

let R feet be the radius of the pitch circle. In one revolution, work

will be done equal to 2?rRP foot-lb. If the wheel makes N revolu-

tions per minute, we have

Work done per minute = 2?rRPN.

27TRPN
Horse-power transmitted

33000
'

p _ 33000 x horse-power
27TRN

If the horse-power be given, P may be calculated, and hence the

dimensions of the tooth may be estimated in order that sufficient

strength may be secured. It is best to use the rules of proportional

strength. Suppose it is known that a certain wheel made of a

given material has transmitted a force Pj successfully, and that

the width, length and thickness of its teeth are ^, /j
and t

} respec-

tively. The connection of these dimensions with those of the teeth

of another wheel of the same material which has to transmit a

force P
2
will be given by (p. 152)

It has been assumed here that P
a
and P

2
are applied at the extreme

point of the tooth, as in practice might be the case by accident.

Also that the whole of the driving effort may act possibly on one

tooth.
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Angular velocity ratio of toothed wheels. It is evident from

Fig- 590 that two toothed wheels in gear revolve in opposite
directions

;
also that the speeds of the circumferences of the pitch

circles will be equal. Hence, NA_DB
NB DA

'

Also,

Number of teeth on A = nA =
'**

-
;

f

Number of teeth on B = nE = -
\

D R ;ZR

FIG. 590. Angular velocity ratio of
toothed wheels. and = "2.

N B nA

Hence, the revolutions per minute are inversely proportional to the

numbers of teeth. It will be obvious, from what has been said on

p. 539 regarding friction bevel wheels, that the same rule applies also

to such wheels.

If the wheels A and B are required to revolve in the same direction,

an idle wheel C may be interposed (Fig. 591). Since the velocities

FIG. 591. Use of an idle wheel. FIG. 592. Two idle wheels.

of all three pitch circle circumferences must be equal, it follows that

there will be no change in the angular-velocity ratio of A and B.

Hence, N

Any number of idle wheels (Fig. 592) may be inserted without

affecting the angular-velocity ratio of A and B.

Trains of wheels. Fig. 593 shows a train of toothed wheels. In

this case we have :

N R

Also,

p
' NC

NE = ND ;

^C N_B
r

J NA

NC=NB .
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Hence,

or

NE Nc NA

NF
NA

nv

B

PLAN
FIG. 593. Train of wheels.

If F, D and B be called drivers, and E, C and A followers, the

above result gives us the rule that the angular-velocity ratio of the

first and last wheels in the train is equal

to the product of the numbers of teeth on

the followers divided by the product of

the numbers of teeth on the drivers.

Fig. 594 shows the gearing wheels

used in the Wolseley motor cars for

enabling the car to run at different

speeds. The shaft AB is driven by
the engine, and has a wheel C fixed

to it and gearing always with a wheel

G on the secondary shaft EF. When
the clutch between the engine and

AB is "in," the secondary shaft EF
will be revolving. H, K and L are wheels of different sizes mounted

on, and revolving with, EF. The shaft RS is connected at S to the

road wheel axle by means of gearing

not shown in Fig. 594 ;
this shaft

runs freely in the hollow shaft AB,
and is made square between R and

S. M, N, P and Q are wheels which

may slide on the square shaft RS,
and are under the control of the

driver by means of an arrangement
of interlocking bars (not shown in

the figure). The wheel C is hollow,

and is furnished with internal teeth

at D. M may be slid into C, and,

when so situated, AB will drive RS
direct, the secondary shaft EF then

running idle. Other speeds may be

obtained by withdrawing M from C
and gearing N with H, or P with

K, or Q with L. The lever system

FIG. S94.-Gear wheels for a motor car. for sliding the wheels is SO devised
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FIG. 595. Bevel wheels.

as to prevent two pairs of wheels being in gear simultaneously.
Reversal of the car is obtained by sliding idle wheels (not shown in

the figure) on another secondary shaft.

Bevel wheels. If the directions of the shaft axes intersect, it has

been shown (p. 539) that cones may be used for driving; hence

conical pitch surfaces are em-

ployed for toothed wheels on

intersecting shafts. In Fig.

595, the axes of the shafts

intersect at O, and OAB and

OBC are the conical pitch

surfaces. The dimensions

are settled from the relation

NOD = BC
NOE AB'

To obtain the shape of

the teeth, ADB and EEC
are other conical surfaces

obtained by drawing BD and BE perpendicular to OB. These
conical surfaces are developed by describing arcs BF and BG, using
D and E respectively as centres. The teeth may then be drawn on
these arcs as pitch circles by ordinary methods. The teeth are

tapered along the conical surfaces AOB and BOC, 'and finally vanish

at O; hence portions only of the conical surfaces are used, shown
in the figure at BKHC and BKLA.

Mitre wheels are bevel wheels of equal size on shafts meeting at

90, and are used in cases where the shafts are to have equal speeds
of rotation.

In Fig. 596 is shown an example of the use of mitre wheels. A
is a continuously revolving shaft having a mitre wheel B fixed to it,

and driving other two mitre wheels C and D which run loose on the

shaft EF. Each of the mitre wheels C and D has projecting claws on
its inner face, which may engage with the claws of a clutch G. G
may slide on the shaft, and has a long feather key which compels it

to rotate with the shaft
;
a pivoted lever H enables the clutch to be

operated. In the position shown no motion will be communicated
to the shaft EF

; motion of either sense of rotation may be obtained

by causing G to engage with either C or D
;
the arrows indicate the

directions of rotation. The arrangement thus provides for inter-

mittent motion and for reversal.

Fie. 597 illustrates a common type of differential gearing used for the



DIFFERENTIAL GEARING 545

driving axle of a motor car. A toothed wheel A, shown in section,

runs loose on the axle EF, and has two bevel wheels B, B mounted on

radial spindles. EF is the axle to which the road wheels are attached,

FIG. 596. Arrangement for intermittent motion and for reversal.

and is made in two pieces. A bevel wheel C is fixed to the portion

E, and another bevel wheel D is fixed to F
; C and D gear with the

bevel wheels B, B. The wheel A is driven by the engine, and, if

both road wheels are rotating at the same speed, the wheels B, B

M

FIG. 597. Differential gear for a motor car. FIG. 598. Milne's-Daimler differential gear.

will not rotate on their spindles. In rounding a curve, the inner

road wheel must rotate at a lower speed than the outer wheel, and

this difference in speed is permitted by the bevel wheels B, B
D.M. 2 M
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rotating on their spindles. It will be evident that, if C were held

fixed, D would rotate at twice its former speed.

Fig. 598 shows the application of the same arrangement in the

Milne's-Daimler differential gear.* AB is a shaft driven by the

engine and carries mitre wheels D, D, running loose on cross

spindles C, C. These wheels gear into mitre wheels E and K at

the inner ends of sleeves which run loose on AB, thus permitting

differential motion to the sleeves. F and L are bevel wheels at the

outer ends of the sleeves, and gear with wheels G and M fixed

respectively to the halves H and N of the road-wheel axle.

Epicyclic trains of wheels. In trains of this kind there is usually

one fixed wheel A (Fig. 599) i.e. A does not rotate together with

one or more wheels mounted on an

,153.
jcn. P

-go, arm D which may rotate about the

centre of A. The solution of such

trains may be obtained by the

following method. Imagine the

whole set of wheels to be locked

and that the bracket carrying A
is free to rotate. Give the whole

arrangement one rotation in the

clockwise direction, then, keeping
the arm fixed in position, apply

a correction by giving A one revolution in the anti-clockwise

direction. Calling clockwise rotation positive, the process may be

tabulated thus :

PLAN

FIG. 599. An epicyclic train of wheels.

The result shows that, if A and B have the same number of teeth,

B will rotate twice clockwise for one clockwise rotation of the arm.

If A and C have the same number of teeth, C will not rotate on its

spindle ;
a radial arrow sketched on the upper side of C will point

always in the same direction as the arm D is rotated.

*
Proc. Inst. Mech. Eng., 1907.
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Epicyclic reducing gears. In Fig. 600, showing an arrangement
for reducing the speed of rotation, the wheel D is fixed and has

internal teeth ;
E is an arm fixed

to the shaft F, and carries two

wheels B and C fixed together

so as to revolve as one wheel.

C gears with the internal teeth

of D, and B is driven by a

wheel A. It will be noted that,

if D drives C with the arm E
fixed, both wheels will have the

same sense of rotation. The
solution is as follows : FIG. 600. Speed reduction gear.

In Fig. 60 1, showing another type of speed reduction gear, the

shaft AB is driven by a wheel at A, and has an arm C fixed to it

FIG. 601. Another type of speed reduction gear.

carrying a loose bevel wheel D. D gears with two bevel wheels E
and G runnfng loose on the shaft AB. E may be a fixed wheel, or

may be rotated in the same or in the opposite sense to that of AB.

It is evident that D does not rotate on C during the locked operation,

and that E and G will rotate in opposite directions during the
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correction operation with AB and C fixed, D being an idle wheel

during this operation. Supposing E to be a fixed wheel, the solution

will be as follows :

Suppose now that E is not a fixed wheel, but is rotated NE times

during + i revolution of AB. The solution will be :

In the result for G, the -
sign is to be taken if A and E are

driven in the same direction, and the + sign if they are driven in

opposite directions.

The Humpage gear is shown diagrammatically in Fig. 602. A is

the driving shaft and has a bevel wheel B fixed to it Two bevel

wheels C and D, made in one

piece so as to rotate together,

run on an arm E fixed to a sleeve

F, which runs loose on the shaft

A. C gears with a fixed bevel

wheel G, and D gears with a

bevel wheel H, which is secured

to the driven shaft K. For the

sake of obtaining balance and of

producing practically a driving
FIG. 602. Humpage gear. , , ""'__* iv''"'

'

i_ i

couple, the arm E and the wheels

C and D are duplicated. The solution may be obtained by giving

the whole gear + i revolution with the wheels locked ; apply a

correction by keeping the sleeve F and the arm E fixed and giving
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- i revolution to G. During this correction, C will act as an idle

wheel between G and B
;

also G will drive H in the anti-clock-

wise sense through the wheels C and D
;

the ratio of the revolutions

of G and H during this operation will be

Tabulating the operations, we have

Hence,
NA
NK inG x nD\

\nc x nj
Shape of teeth. The shape of the teeth must be such as to fulfil

the condition of a uniform ratio of angular velocities in the wheels

which gear together. If this condition be neglected, the teeth will

work together badly, producing excessive wear and rattling owing to

back lash.

Referring to Fig. 603, let P be the point of contact of two teeth,

one on the wheel which has its centre at A and the other on the

wheel which revolves about B. At P a point on wheel A is moving

FIG. 603. Condition for securing a constant angular velocity ratio in toothed wheels.
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at right angles to AP, and a point on wheel B is moving at right

angles to BP. Let VA and VR be these velocities, represented by DP
and CP respectively. Let PO be the direction of a common normal

to the tooth surfaces at P ;
it is clear that, if contact is to be main-

tained, and if there is to be no interpenetration of the teeth on A and

B, the components of z/A and VB along PO must be equal. Resolving
VB along and at right angles to PO by means of the triangle CEP, the

equal normal components of z>A and z>B will be represented by
EP = z/N . Produce the line of #N ,

and draw AM and BN perpen-
dicular to #N . Then, if WA and <OB are the angular velocities of the

wheels A and B respectively,

WA = J/N BN = BN
o>B AM z>N AM'

Again, from the similar triangles AMO and BNO,
BN = BO = (oA

AM~AO~<oB
>

If O be selected as the pitch point, the ratio BO/AO will be

constant, as O is then a fixed point. Hence,
WA BO RB=

-r-pr
= =r = a constant.

O>B AO RA

Thus, the condition to be fulfilled in order to maintain a constant

angular-velocity ratio is that the common normal at any point of contact

of two teeth must pass through the pitch point. Theoretically, for a

given design of tooth on one wheel, the teeth on the other wheel may
be shaped so as to enable the common normal to comply with this

condition. In practice, however, cycloidal teeth and involute teeth

alone are used, and, in modern machine-cut wheels, the teeth are

generally of the involute form.

Cycloidal teeth. The cycloid is a curve traced by a point P on

FIG. 604. A cycloid.

the circumference of a circle which may roll along a straight line

(Fig. 604). In any given position, the point of contact I is the
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instantaneous centre for the rolling wheel ;
hence the direction of the

cycloidal curve at P is perpendicular to IP ; therefore the normal at

P passes through the point of contact I.

If the rolling circle having a centre Q (Fig. 605) rolls on the

circumference of another circle having A for centre, an epicycloid OD
will be traced. If the rolling circle rolls on the inside of the circum-

ference' of the circle, a hypocycloid OE will be traced (Fig. 605). In

FIG. 605. Epicycloid and hypocycloid.

the epicycloid, if N\ is the point of contact of the circles, and Pj is the

corresponding position of the tracing point, it will be clear that

the direction of the epicycloidal curve at P
l

is at right angles to NjPj,

as Nj will be the instantaneous centre of the rolling circle in the

given position. Hence N^ is the normal to the curve at Pr For

similar reasons, N2
is the instantaneous centre of the rolling circle

FIG. 606. Mechanical construction of an epicycloid.

when the tracing point is at P
2
on the hypocycloidal curve, and N2

P
2

is the normal to the hypocycloid at P
2

.

In Fig. 606 is shown a useful way of producing an epicycloid. The

wheel A and the rolling circle revolve about fixed centres at A and C,
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and drive one another in the same manner as friction wheels but with-

out slip, A piece of paper D is fixed to the wheel A and revolves

with it, and a pencil P on the

rolling circle bears on the paper.

The result is the epicycloid P P.

It is evident that the normal at

P passes through the pitch point

O. In Fig. 607 is shown a

similar method of drawing a

hypocycloid by means of another

wheel having its centre at B,

and the same rolling circle

revolving about a fixed centre

C. A piece of paper attached

to B will have drawn on it a

hypocycloid P 'P. If there has

been no slip, in each of these

figures the arcs OP and OP,
on the wheels and on the

rolling circles respectively, will

be equal. Let the arcs OP in each figure be equal, and imagine
that the two figures are superposed, so that the wheels A and B
come into contact at the pitch point O (Fig. 608). The arcs OP
on the rolling circles in Figs. 606 and 607 will also be equal, and

the points P will coincide in Fig. 608. OP will now be simul-

FIG. 607. Mechanical construction of a

hypocycloid.

FIG. 608. The constructions of Figs. 606 and 607 superposed.

taneously the normal to the epicycloid and also to the hypocycloid,

and these curves will be in contact at P. Therefore the curves comply
with the condition that the common normal must pass through the
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pitch point, and thus may be used for the faces of the teeth on A, and

for the flanks of the teeth on B. The flanks of the teeth on A and

the faces of those on B may be produced in the same manner. It is

evidently essential that the same rolling circle must be used both for

the faces of A and for the flanks of B ; the rolling circle used for the

flanks of A and for the faces of B may be of the same or of another

diameter. It should be noted that the hypocycloid becomes a

straight line, forming a diameter of the wheel if the rolling circle has

a diameter equal to the wheel radius
;
hence the flanks of the teeth

would be radial lines. Any larger diameter of rolling circle would

produce teeth thin and weak at the roots. In designing a set of

wheels, the rolling circle should not have a diameter larger than the

radius of the smallest wheel of the set.

Path of contact. From Figs. 606, 607 and 608, it will be evident

that P and P' on the cycloidal curves were initially in contact at O,
and that the point of contact has travelled along the arc OP of the

rolling circle. Contact will cease when the circumference of the

tolling circle passes outside the addendum circle. In Fig. 609, EFG

p
s

v, ty

-UL 1
M I" To IF T B

FIG. 609. Path of contact in cycloidal teeth.

and LMN are parts of the addendum circles of the wheels A and B

respectively. These intersect the rolling circles at P and Q respec-

tively ;
hence the complete path of contact is POQ, and is formed of

two circular arcs.

In Fig. 610 two teeth are just starting contact at P. The point C
will be in contact when it reaches O, and the arc CO on the pitch

circle is called the arc of approach. In the same figure, two teeth are

just finishing contact at Q ;
E was in contact when passing through

O, and OE is called the arc of recess. PO and OQ are called the

paths of approach and of recess respectively. Let the arc OF be equal
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to the arc OE. Then COF is the length of arc which passes the

pitch point while a tooth on A remains in contact with one on B, and

FIG. 610. Arcs and paths of approach and recess.

may be called the axe of contact. If the condition is to be fulfilled

that two pairs of teeth are to be in contact always, the arc of contact

should be twice the pitch.

Involute teeth. Fig. 611 shows an involute P P
4

to a circular

curve PQOfii ',
the curve may be drawn by wrapping a string round

the circular curve and having a tracing

pencil attached at its end P . On the

string being unwrapped, the pencil will

trace out the involute P P4 . It is evident

that the string, in any position such as

O
2
P

2 ,
is perpendicular to the direction of

motion of the pencil ;
O

2
is therefore the

instantaneous centre of the string O
2
P

2

and O2
P

2
is normal to the involute at P

2
.

In Fig. 612 is shown a mechanical method of drawing an involute

to the circle having A for its centre. Let a crossed belt be passed

FIG. 611. Involute to a circle.

FIG. 612. Mechanical construction of an involute to the circle having centre at A.

round two wheels revolving about A and B respectively, and let a piece
of paper be fastened to wheel A and revolve with it. A tracing
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pencil secured to the belt at P will draw an involute on the paper.

It is evident that CP, the normal to the involute at P, passes always

through a point O on AB, and the two parts of the belt intersect in

the same point. An involute to the wheel B may be drawn in a

similar manner (Fig. 613) by securing the paper to wheel B. The

FIG. 613. Mechanical construction ot an involute to the circle having centre at B.

normal at P' passes through the same point O. If the diagrams

(Figs. 612 and 613) be superposed so that P and P' coincide, it is

evident that the two involute curves fulfil the condition that the

common normal passes through a fixed point O, which accordingly

may be taken for the pitch point of a pair of wheels having teeth

shaped to the involute curves.

Let v be the velocity of the belt. Then, in Fig. 612,

WA v DB DB
- =

-r-p, .
= -r-^ = a constant.

W B AC v AC

Also, from the similar triangles AOC and BOD,
DB = BO
AC~AO ;

Hence the radii AC and DB of the generating circles should be

inversely proportional to the angular velocities of the wheels.

It is clear that part of the straight line CD (Fig. 612) will be

the path of contact. Practical considerations rule that this line

should make about 15 with the common tangent to the pitch circles

at O (Fig. 614). The intersections P and Q of CD with the

addendum circles of the wheels will determine the length PQ of

the path of contact.

Using the same pair of generating circles connected by a belt as in
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Fig. 612, the same involute curves will be produced irrespective of the

distance AB separating the wheel centres. As the resulting teeth will

be of the same shape as at first, it follows that the distance apart of a

To A

to

Fio. 615. An involute rack.

FIG. 614. Path of contact in involute teeth.

pair of involute toothed wheels may be varied to a small extent

without interfering with their correct working. This may be advan-

tageous for taking up back lash.

If one of the two wheels in gear becomes of infinitely large radius,

A
the case of a rack is obtained

(Fig. 615). The pitch line CD is

straight, and the involute is a straight

line perpendicular to the line of

contact OA. Hence the sides of

the teeth in involute racks are straight lines.

Helical and screw gearing. Greater smoothness of running may
be obtained by using wheels possessing several sets of teeth (Fig. 616),

each set stepped back a little from the adjacent set on one side. If

the steps are made indefinitely narrow (Fig. 617), we obtain a helical

wheel. Single helical wheels would produce axial thrusts on the

shafts, and this objection is obviated, as is indicated in Fig. 617, by

employing double helical teeth sloping in opposite ways. Such

wheels, with machine-cut teeth, run with remarkable smoothness,
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and are equally suitable for low and high speeds of running and for

heavy loads. When the speed is high, it is best to run the wheels in

an oil bath.

A pair of screw wheels is shown diagrammatically in Fig. 618. The

cylindrical pitch surfaces of two wheels A and B touch at O. CD

FIG. 616. Stepped teeth. FIG. 617. Double helical teeth.

and EF are the axes of A and B respectively. Imagine a sheet of

paper having a straight line GOH drawn on it to be placed between

the cylinders. If the paper is wrapped round A, GOH will map

FIG. 618. Pair of screw wheels.

out a helix, and, if wrapped round B, a corresponding helix will be

described by GOH. These helices define the shape of screw teeth ;

the other teeth may be produced by having a number of lines parallel

to GOH and drawn on the sheet of paper. In Fig. 619 GOH and

ed show two of these lines. The perpendicular distance Qb separating

these lines is called the divided normal pitch, and is evidently the
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same for both wheels A and B. Oa, measured along the circum-

ference of A, and Or, measured along the circumference of B, are

called divided circumferential pitches ; it will be clear that these pitches

must divide evenly into the circumferences of A and B respectively.*

FIG. 619. Pitches in a screw wheel. FIG. 620. Pawl and ratchet wheel.

Ratchet wheels. In Fig. 620, a wheel A is to have intermittent

motion to be derived from an arm B which vibrates about the axis

of A. A pawl C is pivoted to B, and will

engage the teeth of A when B is moving
anti-clockwise

;
the pawl slips over the teeth

of A when B is moving clockwise. Clockwise

rotation of A may be prevented by a pawl D
pivoted to some fixed part of the machine.

It will be noted that lost motion to the extent

of one tooth may occur between A and B
;

this may be reduced by means of a second

pawl E pivoted to B. The possible lost motion

will now be half the former amount. In cycle

free wheels, several pawls are often fitted so as

to reduce lost motion to a minimum.

Couplings for shafts. The Oldham coupling

is illustrated in Fig. 621. A flanged coupling
A is fixed to a shaft B, and has a groove cut

in its face. Another similar coupling C is fixed

to the shaft D. The axes of the shafts B
and D are parallel. A plate E is interposed
between the faces of these couplings, and has

a projection on each side which is a sliding

FIG. 621.- Oldham coupling, fit in the grooves ; the projections are at 90 to

* For a complete discussion on toothed wheels, see Machine Design, Part /.,

by Prof. W. C. Unwin. Longmans, 1909.
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each other. One shaft can thus drive the other, and as the grooves
will always make 90 with each other, the shafts will have equal

angular velocities in all positions.

Hooke's coupling is illustrated in Fig. 622, and is used for con-

necting shafts in which the axes OA and OB intersect, but are not

necessarily in the same straight

line. The end of each shaft is

formed with a jaw, and the con-

nection is made by means of a

cross C, which is free to swivel on

the set-screws D. The arrange-

ment is shown in outline in
FIG. 622. Hooke's coupling.

Fig. 623, in which the ends of the arms OC and OC1? attached to the

shaft A (Fig. 623 ()), rotate in the circle YC'XQ' (Fig. 623(0));
the ends of the arms OD and OD15

attached to the shaft B (Fig.

623^)), also rotate in a circular path, but this path projects as an

ellipse YjXYg (Fig. 623 (a)) owing to the inclination of the shaft

axes OA and OB.

Suppose OC rotates from OY to OC' through an angle 6 (Fig.

623 (a)), and that the shafts OA and OB are in the same straight line.

Then OD would rotate through an equal angle from OX and D
would be situated at D", OD" being at 90 to OC'. If OB makes
an angle a with OA (Fig. 623 (/;)),

then D will occupy a position on

FIG. 623. Diagram of a Hooke's coupling.

the ellipse, obtained by rotating the cross about C'C/ (Fig. 623 (a)) ;

this operation will cause D" to move at 90 to C'OC/, and gives the

position of D as D' on the ellipse, i.e. OC' and OD' are still at 90.
The angle XOD' is not the true magnitude of the angle through
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which OD' has rotated from OX ;
the true angle may be obtained by

drawing D'E parallel to OY, cutting the circle at E
;
XOE = < will

then be the angle from OX through which OD rotates while OC
rotates through an angle from OY. Produce ED' to cut OX in M,
and let a be the angle between the directions of OD and OC

X
as

seen in Fig. 623 (ft).
Then

D'M = ME cos a.

D'M ME
Also, =OM =

OM COS

= tan
<j> cos a,

tan , x

or tan</>
=- ..................................... (i)
cos a

This gives the relation of <f> and 6. The relation of the angular
velocities of A and B may be obtained by differentiating both sides

of (i) with respect to time. Thus,

, d$ cosasec2 dd sec2 dO
cpr*(h - =_ __ =_ _9

dt COS2a dt COS a dt

d$> dd .

Now, O>B
=
^p

and u>A = ,

sec2

sec2

<DA SCC2
</>
COS a

Now, sec2< = i + tan2<

tan2

WB
WA

COS a

COS a

COS a

cos2
6/(i

- sin2a)

COS a

i - sin2a cos2^

This ratio will have maxima values when cos2
is a maximum ;

this will occur when cos 6 is + i or i, i.e. when 6 is o or 180.

The minimum value of the ratio will occur when cos2 has its

minimum value ;
this occurs when cos is o, i.e. when 6 is 90 or
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270. Equality in the angular velocities occurs when the numerator
and denominator in (2) are equal, giving

i - sin2 cos'2 = cos a,

sin'
2a cos'J# = i

- cos a,

2f) _

cos<9= . = ......................... (3)

The student will find it a useful exercise to plot values of the ratio

of WB to WA for values of from o to 360.

EXERCISES ON CHAPTER XXI.

1. An engine runs at 200 revolutions per minute and drives a line

shaft by means of a belt. The engine pulley is 24 inches diameter and
the line-shaft pulley is 20 inches diameter. A dynamo is driven from a

pulley 36 inches diameter on the line shaft by a belt running on a pulley
8 inches diameter on the dynamo shaft. Find the speeds of the line shaft

and of the dynamo (a) if there is no slip, (b) if there is 5 per cent, slip at

each belt.

2. A line shaft runs at 150 revolutions per minute. A machine has

to be driven at 1800 revolutions per minute by belts from the line shaft ;

the pulley on the machine is 6 inches in diameter. In this particular case

it is not desirable to use pulleys exceeding 36 inches or less than 6 inches

in diameter, and it may be assumed that there will be 4 per cent, slip at

each belt. Sketch a suitable arrangement giving the diameters of the

pulleys and the speeds of any counter shafts employed.

3. A belt laps 180 degrees round a pulley rim. The larger pull

applied is 400 Ib. and the coefficient of friction is 0-5. Find the smaller

pull, T2 ,
when slipping just occurs. Find also the pull in the belt at

intervals of 30 degrees round the half-circumference of the pulley, and

plot these on a base representing angles.

4. A rope is wound three times round a rough post, and one end of

the rope is pulled with a force of 20 Ib. If the coefficient of friction

between the rope and the post is 0-35, what pull at the other end of the

rope would cause it to slip round the post? (B.E.)

5. Find, from the following data, what width of leather belt is needed
to transmit 25 horse-power to a certain machine : (a) Diameter of belt

pulley, 30 inches, (b) The belt is in contact with ^ of the circumference
of the pulley, (c) Revolutions of pulley per minute, 150. (d) Coefficient

of friction between belt and pulley 0-22. (e) Safe maximum tension per
inch width of belt, 80 Ib. (B.E.)

6. A factory engine develops 400 horse-power, which is transmitted

to the line shafting in the various mill floors by 20 hemp ropes. Find, from
the following data, the maximum tension in any one of the ropes, if they

P,M, 2 N
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all transmit an equal share of the total power : (a) Diameter of grooved
flywheel on which ropes work, 20 feet. (&} Angle of groove, 60 degrees.

(c) Angle of contact of ropes with flywheel rim, 240 degrees, (d)
Coefficient of friction, 0-18. (e) Revolutions of flywheel per minute, 80.

(B.E.)

7. A compressor is driven by a gas engine of 18 indicated horse-

power, running at 240 revolutions per minute, by means of a belt 0-5 inch

thick from the engine pulley, which is i foot in diameter. The com-

pressor is double-acting, mean pressure 50 Ib. per square inch, cylinder
diameter 8 inches, stroke 14 inches. If the mechanical efficiency of the

engine is 82 per cent., of the compressor 86 per cent., and if the slip of

the belt is 5 per cent., find the maximum speed at which the compressor
can be run and the minimum diameter of the pulley fitted to it. (L.U.)

8. A rope drives a grooved pulley, the speed of the rope being 5000
feet per minute. Find the horse-power transmitted by the rope from the

following data : ^=0-25 ; angle of groove 45 ; angle of lap 200
; weight

of rope per foot run 0-28 pound ;
maximum permissible tension in the

rope 200 pounds. (You are expected to make allowance for centrifugal
effects on the rope.) (L.U.)

9. A machine demands 6 horse-power, and is driven by means of a

spur wheel 18 inches in diameter and running at 150 revolutions per
minute. Find the tangential driving effort on the teeth of the spur wheel.

10. In a turning lathe, the slide-rest holding the tool is driven by a

leading screw having 3 threads per inch. It is desired to cut a screw of

1 8 threads per inch. Give suitable numbers of teeth for a wheel train

connecting the lathe mandrel to the leading screw.

11. A watch is wound up at the same time each night and the main

spring spindle receives 3-5 turns during the winding. What is the velocity
ratio of the train of wheels connecting the hour hand with the main spring

spindle ? What is the velocity ratio of the train connecting the minute
hand with the hour hand? Give suitable numbers of teeth. for the latter

train, no wheels to have more than 36 nor less than 8 teeth.

12. The driving wheels of a motor car are 3-5 feet in diameter, and
the engine runs at a constant speed of 900 revolutions per minute. Find
the velocity ratios of wheel trains suitable for car speeds of 20, 12 and 5

miles per hour respectively.

13. Sketch and discuss the use of a differential gear (a) as a suitable

means of connecting the driving wheels on a motor car, (b} as a speed-

reducing gear : show how to calculate the speed ratio. (L.U.)

14. In the epicyclic train shown in Fig. 600, the wheels have teeth

as follows: D, 48; B, 10
; C, 12

; A, 30. If F makes one clockwise

revolution, find the revolutions of A.

15. In the gear shown in Fig. 601, the numbers of teeth are : D, 40 ;

E, 20
; G, 40. If E is fixed, find the revolutions of G for one clockwise

revolution of A. Answer the same if E is driven at the rate of 3 anti-

clockwise revolutions for one clockwise revolution of A.

16. In the Humpage gear illustrated in Fig. 602, the wheels have teeth

as follows : B, 25 ; C, 30 ; G, 45. Calculate the numbers of teeth on D
and H, so that the ratio of the rotational speed of A to that of K is 56 : =;.

(L.U.)
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17. State and prove the geometrical condition which must be satisfied

in order that a pair of spur wheels may gear together with a constant

angular-velocity ratio. (I.C.E.)

18. The centres of two spur wheels in gear with one another are
12 inches apart. One wheel has 40 teeth, and the other has 20 teeth.

Neglecting friction, the line of pressure between the teeth in gear makes
a constant angle of 75 with the line of centres. The teeth are designed
so that the path of contact of a pair of teeth in gear is 2 inches long, and
is bisected by the line of centres. Draw full-size a side elevation of two
teeth in gear. (L.U.)

19. The axes of two shafts intersect at an angle of 1 50. The shafts

are connected by a Hooke's coupling. On a straight base 8 inches long,

representing 360, draw a curve whose ordinates represent the angular
velocity of the driven shaft for one revolution, the angular velocity of the

driving shaft being constant and represented by an ordinate 2 inches long.

(L.U.)



CHAPTER XXII.

HYDRAULIC PRESSURE. HYDRAULIC MACHINES.

Some properties of fluids. A fluid may be defined as a substance

which cannot offer permanent resistance to forces which tend to change its

shape. Fluids are either liquid or gaseous ; gases possess the

property of indefinite expansion. Liquids alter their bulk but

slightly under pressure, and such small changes may be disregarded

usually. Gases exist either as vapours or as so-called perfect gases ;

the perfect gas was supposed to exist as a gas under all conditions of

pressure and temperature ;
but it is now well known that all gases

can be liquefied by great pressure and cold. A vapour may be

defined as a gas near its liquefying point, and a perfect gas as the

same substance far removed from its liquefying point.

Liquids are said to be mobile when they change their shape very

easily ;
chloroform is an example showing great mobility, a property

which renders it useful for delicate spirit levels. Viscous liquids are

those which change their shape with difficulty ; examples of such are

cylinder oil and treacle.

Change of shape of a body always occurs as a consequence of the

application of shearing stresses. A rectangular block under the

action of equal push stresses on all its faces will have its volume

diminished, but will remain rectangular; shearing stresses applied

to the block would alter its shape (p. 107). Hence, if shearing

stresses be applied to a fluid, change of shape of the fluid will go on

continuously during the application of the stresses, i.e. the fluid will

be in motion. Conversely, if the fluid is at rest, there cannot be any

shearing stresses acting on it ; the stresses must be normal at all parts.

Frictional forces always occur as tangential or shearing forces, and

hence must be absent from any fluid at rest.

The principal liquid in use in hydraulics is water, and it. will be

understood that water is being referred to in the following sections

unless some other liquid is specified,
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fifH

FIG. 624. Stress on a horizontal immersed
surface.

Stress on horizontal immersed surfaces. In Fig. 624 is shown a

tank containing a liquid at rest. Consider the equilibrium of a

vertical column of the liquid stand-

ing on one square foot of the tank

bottom. The forces acting will be

(a) the weight of the column, (b)

an upward reaction from the tank

bottom, (c) normal forces which the

surrounding liquid applies to the

vertical sides of the column. The
normal forces, being horizontal, can-

not contribute to the support of the

weight of the column, which is a

vertical force
;

hence (a) and (ft)

equilibrate each other.

Let H = the height of the column, in feet.

w = the weight of a cubic foot of the liquid, in Ib.

A = the total area of the tank bottom, in square feet.

Then Weight of the column = H x i x i x w
= ?e/H Ib.,

and this will be the reaction of one square foot of the tank bottom.

Hence,

Stress on the tank bottom = zvH Ib. per square foot.

The tank bottom being horizontal, the stress on any other square

foot will be 7t>H
;
hence the total pressure on the bottom may be

calculated by multiplying the area of the bottom by ze/H. Thus,

Total pressure on the tank bottom = ze/HA Ib.

It will be noted that this result is quite independent of the shape

of the tank, provided the bottom is horizontal. All tanks having

horizontal bottoms of equal areas and charged with the same liquid

to equal depths will have equal total pressures on their bottoms

irrespective of the actual weights of liquid in the tanks. The student

should guard against the error of supposing that the weight of liquid

in the tank gives the pressure on the bottom.

Stress on inclined immersed surfaces. Let abc (Fig. 625) be the

end elevation of a triangular prism immersed in a liquid and having

its axis horizontal. The triangular ends are taken perpendicular to

the axis and are vertical. Considering the equilibrium of the prism,

the fluid pressures on the ends will evidently equilibrate each other.
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If the sides of the prism be taken to be very small, then the weight of

the prism may be disregarded, and the fluid stresses/, q and r, acting on

ab, be and ca respectively, may be assumed to be distributed uniformly

FIG. 625. Stress on inclined immersed surfaces.

over the faces of the prism. Let the length of the prism be unity,

when the resultant forces on the three faces will be given by

P =p . ab.

For equilibrium of the prism, these forces must balance. It will

be noted that P, Q and R meet at the centre of the circle passing

through a, b and c, and hence comply with the condition that the

three forces must pass through the same point. ABC (Fig. 625) is

the triangle of forces, in which AB, BC and CA represent P, Q and

R respectively. As these sides are drawn perpendicular to ab, be

and ca respectively, the triangles ABC and abc are similar. Hence,

P:Q:R=/-.a:?. &:*-. <ra ..................... (i)

= AB : BC : CA ....................... (2)

= ab : be : ca........................ (3)

From (i) and (3),

p . ab : q . be : r . ca = ab : be : ca
;

.'. p = q = r.

We may say therefore that the fluid stresses on the faces of the

prism are equal. Considering the limiting case of the end elevation

of the prism being reduced practically to a point by reason of the

sides being taken indefinitely small, the law may be stated thus :

The stress at a point in a fluid is the same on all planes passing through

that point, or fluids transmit stresses equally in all directions. We have

already seen that the stress on a horizontal plane is ze>H Ib. per
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square foot, and it follows that the stress at a point H feet deep on

any plane will be given by the same expression.

It will be noted that the stress at any point is proportional to the

depth, and hence varies uniformly from zero value at the free surface

of the liquid, i.e. the surface exposed
to the atmosphere. Stress diagrams

may be employed with advantage ;

such a diagram is given in Fig. 626

for the water stresses on each side of

a lock gate having differing depths of

water on the two sides. The stress at

B will be/1
= ?^H

1
and that at E will

be/2
=wH

2 ,
and these are represented

by CB and FE respectively. The

complete stress diagrams are ABC and

DEF, and their breadths will give the stress at any depth. The

term stress at a point in a fluid may be defined as the pressure which

would be exerted on unit area embracing that point if the stresses were

distributed uniformly.

Total pressure on an immersed surface. In Fig. 627 (a) and (ft)

are shown front and end elevations of immersed surfaces, the former

being vertical and the latter inclined. The method of finding the

F D; E B o.

FIG. 626. Stresses on a lock gate.

FIG. 627. Total pressure on immersed surfaces.

total pressure applies equally to both surfaces. Consider a small

area a at a depth y. The stress on a will be

p = ivy

and Force on a = wya

The total force on the surface may be found by integrating this

expression over the whole area. Thus,

Total force w^ay.

If the total area is A square feet and the depth of the centre of

area is Y feet, then 2aj' = AY (pp. 49 and 145). Hence,

Total force =>wAY Ib.
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The expression wY is the stress at a depth Y, and may be defined

as the average stress on the immersed surface. Hence the rule :

To find the total pressure on an immersed surface multiply the average

stress (which will be found at the centre of area) by the total area.

It will be noted that the force acting on the small area a, given
above as wya, will have the same value in the case of the whole

surface being curved. The rule for the total pressure is therefore not

confined to flat surfaces, but may be applied to any immersed surface.

Distinction should be made between the terms total pressure and

resultant pressure. The latter term refers to the resultant of all the

fluid stresses acting on a surface, and is obtained by resolving

these stresses along chosen axes and then reducing by the methods

explained in Chapter IV. Usually the operation is simple; for

example, the resultant pressure on any vessel containing a liquid is

evidently equal to the weight of the contained liquid. A method of

dealing with the resultant pressure on floating or immersed bodies

will be explained below.

EXAMPLE i. A cylindrical tank, diameter 7 feet, contains water to a

depth of 4 feet. The bottom is horizontal. Calculate the total pressure
and the resultant pressure on the wetted surface. Take 62-5 Ib. per
cubic foot for the weight of water.

Total pressure on the bottom wA
i
y

i

ir<P= 62-5 x X4

= 62-5x(
2
7
*x Y)X4

= 9625 Ib.

Total pressure on the curved surface =wA2Y2

=
62-5 X(?JY/X4)X2

= 62-5 x(
2
T
- x;x4)x2

= ii,ooo Ib.

Total pressure on the wetted surface= 962 5 + 1 1,000
= 20,625 Ib.

The stresses on the curved surface will equilibrate each other
;
hence

the resultant pressure is simply the total pressure on the bottom, or

Resultant pressure= 9625 Ib.

EXAMPLE 2. A spherical vessel 3^- feet in diameter is sunk in sea

water, its centre being at a depth of 40 feet. Calculate the total pressure
on its surface. Sea water weighs 64 Ib. per cubic foot.

Total pressure =wAY
= 64 x 47rr

2 x 40
= 64 x 4 x

2
7
2 x J x

|
x 40

= 98,560 Ib.
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Resultant pressure on a floating or immersed body. When a

body is floating at rest in a fluid which is also at rest, it is subjected

to two resultant forces its weight and the resultant fluid pressure

on its surfaces. The weight is a downward vertical force acting

through G, the centre of gravity of the body (Fig. 628 (a)). The
resultant fluid pressure balances W, and therefore must be an

upward vertical force R = W, and must act in the same straight line

with W. R is due to the buoyant effect of the fluid, and is called

the buoyancy.

Imagine for a moment that the surrounding fluid becomes solid,

and so can preserve its shape, and let the body be removed, leaving

a cavity which it fits exactly (Fig. 628 (<)). Let this cavity be filled

with the fluid, and let the surrounding fluid return again to its original

condition. The pressures on the fluid now filling the cavity will be

identical with those which acted on the body, and the effect will be

V 5

W ()
FIG. 628. Resultant pressure on a floating body.

the same the weight of the fluid will be supported. Hence the

weights of the fluid filling the cavity and of the body must be equal,

as each is equal to R, the resultant pressure of the surrounding fluid.

Further, R must act through the centre of gravity of the fluid filling

the cavity ;
this centre is called the centre of buoyancy, and from

what has been said it will be clear that the centre of buoyancy B

(Fig. 628 (/>)) and G (Fig. 628 (a)) must be in the same vertical line.

We may state, therefore, that when a body is floating at rest in still fluid,

the weight of the body is equal to the weight of the fluid displaced, and that

the centres of gravity of the body and of the displaced fluid are both in the

same vertical line.

A ship floating at rest in still water, a submarine boat wholly

immersed and at rest, and a balloon preserving constant elevation

are examples of this principle. In each case it will be noted that

the resultant pressure of the surrounding fluid is equal to the weight
of the body, and acts vertically upwards through the centre of

gravity of the body.
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A body wholly immersed will experience a resultant upward fluid

pressure equal to the weight of the fluid displaced ;
it follows that,

to maintain the equilibrium of the body, an upward or a downward
force will be required, depending on whether the weight of the body
or the weight of the fluid displaced is the greater. Fig. 629 (a)

illustrates the former case
;
W is the weight of the body, B is the

buoyancy, and, W being greater than B,

an upward force P is required given by

P + B-W.
r \ i Fig. 629 (b) shows the case of B being

^*"T*
-'^ T"~ greater than W, when a downward force

P is required, given by
fWf

FIG. 629. Equilibrium of immersed The specific gravity of a Substance IS

defined as its weight in air as compared
with the weight of an equal volume of pure water, usually taken at a

temperature of 60 F.

Let W8
= weight of a given substance in air.

Ww = weight of an equal volume of water.

W
Then Specific gravity p =Ŵ w

and Ww = '-.

P

It therefore follows that we may calculate the buoyancy of a solid

body wholly immersed in pure water by dividing the weight of the

body by the specific gravity of its material. This principle may be

applied to find the specific gravity of a given substance which is

heavier than water. In Fig. 629 (a), let P be measured by suspending
the body by means of a fine wire or cord from a balance

;
also

weigh the body in air to find Ws . Then

Also,

Since (Ws
-
P) is the apparent loss of weight of the body when

immersed in water, we may state that the specific gravity of a body is
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equal to the weight of the body in air divided by its apparent loss of weight

when immersed in water.

Centre of pressure. In Fig. 630 (a) is shown a flat vertical plate

immersed in a liquid. R is the resultant pressure acting on one

side of the plate and passes through a point C, which is denned as

the centre of pressure. The position vertically of C may be found

J.'
if
-5

R

fa)
FIG. 630. Centre of pressure.

by taking moments about OX, the line in which the plate produced
cuts the surface of the liquid. Considering a small area a at a depth

y, we have Pressure on a = way,

Moment of this pressure
= way1

.

Integration of this will give the total moment. Thus,

Total moment = w^ay2
.

Now 2#y
2

is the second moment of area or moment of inertia

(p. 145) of the surface of the plate about OX and may be written

lox or A/ 2
,
where A is the area of the plate and k is the radius of

gyration about OX. Hence,

Total moment = whk2
(i)

Again, if D be the depth of the centre of pressure,

R = ze/AY

and Moment of R = z#AYD (2)

Hence, from (i) and (2),

a/AYD

D =
f... ..-(3)

Both k and Y should be taken in foot units, when D will be in the

same units.

The case of an inclined surface is shown in Fig. 630 (/>).
If $ is

the angle of inclination to the horizontal, it may be shown that

D = sin2
, (4)
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where k is the radius of gyration about OX, the line in which the

plate cuts the surface of the water, and Y is the vertical depth of

the centre of area.

In practical examples, usually the position of C horizontally may
be easily determined from the symmetry of the plate.

EXAMPLE. A dock gate is 60 feet wide and has water on one side to a

depth of 24 feet. Find the centre of pressure.

Let b = the breadth of the wetted surface.

</=the depth

Then Iox= J- = bd '-
;

:. &= .

Also.

=
5 x 24= 1 6 feet.

The centre of pressure is therefore at a depth of 16 feet, and lies in

the central vertical of the gate.

Stability of a floating body. A body floating at rest in a still

liquid will be in stable equilibrium when, if rotated through a small

vertical angle, it experiences a resultant couple tending to return it to

(a)

R-wT
FIG. 631. Stability of a floating body.

the original position ;
the equilibrium will be unstable if the resultant

couple has a moment tending to increase the angle of rotation. In

Figs. 631 (a) and (/^).are shown floating bodies which have been

disturbed slightly from their positions of equilibrium : the weight, in

each case, is a vertical force W, acting through the centre of gravity G ;

the buoyancy in each case is a vertical force R = W, acting through

the centre of buoyancy B. It will be observed that in Fig. 631 (a) a

couple is formed by R and W tending to restore the body to its

original position ;
the equilibrium in the original position is therefore
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stable. In Fig. 63 r
(/>) the couple tends to increase the angle through

which the body has been turned, and the equilibrium in the original

position is therefore unstable. A floating ball would be in neutral

equilibrium.

It will be noticed that the line of R cuts the original vertical

through G in a point M, which lies above G in Fig. 631 (a) and below

G in Fig. 631 (l>). Clearly the sense of rotation of the couple formed

by R and W is determined by consideration of the position of M above

or below G
;
the couple will be of righting moment if M is above G,

and of upsetting moment if M is below G. The point M is called

the metacentre. The metacentre is of importance in calculations

regarding the stability of ships ; generally the naval architect finds

the metacentre for transverse angles of displacement, which affects

questions of the ship rolling, and also the metacentre for longitudinal

angles of displacement, which affects questions of the ship pitching.

In Fig. 632, G is the centre of gravity and B is the centre of

buoyancy of a body floating at

rest in still water. G and Bin

must fall in the same vertical,

and the conditions of equili-
brium are satisfied by the re-

sultant water pressure R being
equal to W, the weight of the

body, both forces falling in

the same straight line BG.
To test for stability, the body
is rotated through a very
small angle 6, which, in order

to avoid complication in the

figure, has been secured by
rotating the water plane from
its original position ab into

the position db
'

. G will remain
unaltered in position, and B
will move to B' in consequence
of the body now being immersed

deeper on the right-hand side.

The weight of the body is now
W' =W and acts through G in

a direction perpendicular to

ab'
;

the resultant pressure of

the water will be R' =W = W,
acting through B' and also perpendicular to ab'.

BG produced in the metacentre M.

"*

Plan

FIG. 632. Metacentric height for a floating vessel.

R' produced cuts
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As we assume that W and W are equal, it follows that the weight
of the wedge l>Cb\ which has been added to the volume of water

displaced, must be equal to that of the wedge aCa, which has been
taken away. In the plan of the plane of flotation ab (Fig. 632),
small areas a and a trace out arcs / and /' as seen in the elevation.

Volume swept by a = al.

NOW,
l
-=e-,

Hence, Volume swept by a = axO.

Weight of this = waxO, .............^ ........... (i)

w being the weight of the water per cubic unit.

The total weight of both wedges must be zero from what has been

said, and may be obtained by integrating (i) over the whole plane
of flotation.

Total weight of wedges = ivB^ax = 0.

Hence, ^ax = 0.

This shows that the axis CZ in the plan must pass through the

centre of area of the plane of flotation.

The resultant effect of the altered distribution of displacement
will be found by calculating the total moment of weight of both

wedges about CZ.
From (i), weight of the small volume = wOax.

Moment of this about CZ =

Total moment of both wedges =

= U>OICZ ................ (2)

In this result, Icz is the second moment of area of the plane of

flotation about CZ.

Now, if R' be brought back to its original position R, we see that

the effect of the altered distribution of displacement will be the

couple, of moment R x BB', which must be supplied in consequence
of the shift.

Moment of couple = R x BB' =W x BB'.

Now,

:. BB' = 6>xBM.

.*. moment 01 couple =Wx 6 x BM........................ (3)

Hence, from (2) and (3),

(4)
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Let V = volume of water displaced by the body.

Then W = 70V,

or V =
w

Substituting in (4), we have

BM =^
Z

. ....(5)

Writing AJt*cz for Icz ,
we obtain a well-known equation for BM,

EM =^' ..-(6)

From Fig. 632, we have

GM will be positive if M falls above G, in which case we have

stable equilibrium ;
the equilibrium will be unstable if G falls below

M, leading to a negative value of GM.
It will be noticed that the completion of the calculation depends

on a knowledge of the position of the centre of gravity of the body.
In the case of a body of simple outline and homogeneous in structure,

this point is determined easily, but, in the case of a ship, is obtained

only by long and laborious calculation. The calculations for

A/&CZ and for V required in equation (6), and also for the position of

B, are carried out easily for a ship-shape body, and the result may be

applied to the finished ship, in an experimental determination of the

centre of gravity. This is effected by moving weights on board so as

to produce a small angle of heel, which is measured carefully by
means of long plumb lines suspended in the holds. From a

knowledge of the positions of M and B, together with the moment of

the weights which have been moved and the angle of heel produced
by this movement, the position of G is calculated easily. Thus,

referring to Fig. 632, let the line of W cut BB' in N and draw GQ
perpendicular to B'M.

Let w = the weight moved, in tons.

d= the distance through which the weight is moved, in feet.

6 the angle of heel produced by moving w, in radians-

Then Capsizing moment due to moving w = wd ton-feet.

Righting moment = R' x B'N

=WxGQ
=W x GM x B.

Hence, W x GM x 6 = wd,

wd
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The author is indebted to Mr. E. L. Attwood, Member of the

Royal Corps of Naval Constructors, for the following example of a

recent inclining experiment on a large ship.

EXAMPLE. Draught of ship, forward, 24' 4".

Draught of ship, aft, 26' 2\".

These dimensions correspond to a displacement of 15,357 tons, and a

position of the transverse metacentre of 6-76 feet above the load water-

line of the ship. 100 tons of ballast was used, arranged on the upper

deck, in four lots of 25 tons each. The following measurements were

taken by means of pendulums 20 feet in length, one forward, one aft :

Taking the mean of these gives a deflection of 15-84" for a shift of

50 tons through 62 feet. Hence,

GM wd

50X62

V->C7X 15
'84

K

~^o~
= 3-06 feet.

The centre of gravity of the ship is therefore (676 -3-06) =3-7 feet

above the load water-line.

Retaining wall for water. Referring to Fig. 633, ABCD is the

section of a wall subjected to water pressure on its vertical face AB.

In considering the stability of the wall, a portion one foot in length

may be taken. For the simple trapezoidal section of wall illustrated,

the weight may be calculated easily. Thus,

W , /AD + BC\ 1U= w ( ]H lb.,

where w' is the weight of the material in lb. per cubic foot. H is the

height of the wall, and AD and BC are the thicknesses at the top and

bottom respectively, all in foot units.

The centre of gravity of the wall section may be found by applica-

tion of the following graphical method, Bisect AD in a and also
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BC in b
;
then G lies in ab. Make Kc and G/ equal to BC and AD

respectively, and join cd cutting ab in G.

If the reservoir is empty, the point m, in which the line of W cuts

the base BC, will be the centre of pressure of the base of the wall,

D a A

FIG. 633. Stability of a reservoir wall.

and the pressure on the base will be owing to W only, and hence

will be entirely normal to the base. To find the pressure on the

base and the centre of pressure when the reservoir is full, proceed as

follows :

Total water pressure on the wall = P = z#AY (p. 567)

where w is the weight of the water in Ib. per cubic foot. P will act

at JH feet from B (p. 572), and will meet the line of W &tf. Con-

struct the parallelogram of forces fgkh for P and W acting at /, thus

finding the resultant pressure R on the wall base. R intersects BC
at n, thus giving the centre of pressure of the base for the case of the

reservoir being full. It is taken usually that the wall will be safe if

both m and n fall within the middle third of the base.

Every horizontal section of the wall will have a centre of pressure

for the reservoir empty and another for reservoir full. If these

centres be found, curves joining them may be drawn and give the

lines of pressure for the wall. Fig. 634 shows how the construction

may be carried out for sections 22', 33' and 44'. P
x

is the total

water pressure on the whole wall, P
2 ,

P
3 and P4 are the pressures

respectively for the portions lying above 22', 33' and 44'. W^ is the

P.M, 2 o
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total weight, and W
2 ,
W

3 and W4
are the weights corresponding to

P
2 ,
P

3 and P
4

. The centres of gravity GI} G2 ,
G3

and G4
are found

D

B

FIG. 634. Lines of pressure for a reservoir wall.

as before, and the lines of weight passing vertically through them

give mlt
m

2 ,
m

B
and m4 on the line of pressure for reservoir empty.

D u a s A
Rj of Pj and W

l
is found by

means of the triangle of

forces, and a line drawn from

the point of intersection of

Pj and Wj parallel to R
x ,
and

cutting BC in
j gives a point

on the line of pressure for

reservoir full. The triangles

of forces for the remaining
forces are shown, and enable

points ;z
2 , n^ and n

4
to be

found similarly. The lines

of pressure have been drawn

separately in Fig. 635 for the

sake of clearness. In Fig. 635
uv and st inclose the middle

thirds of all sections, and the

FIG. 63S.-Lines of pressure, reservoir full and empty. lines of pressure an^ and am^
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fall throughout within the middle thirds. The student will note that

the upper ends of the lines of pressure bisect AD in a.

Work done by a fluid under pressure. Work may be done by a

fluid, either liquid or gaseous, by allowing it to exert pressure on a

piston which may move in a cylinder. In

Fig. 636,

Let D = the diameter of the cylinder,

in feet.

L = the length of the stroke, in feet.

P = the pressure of the fluid, in

Ib. per square foot.

B

FIG. 636. Work done by a fluid.

Then, if a liquid be employed, owing to the absence of any

expansive property, the pressure P must be maintained by continuous

admission of liquid to the cylinder. The work done while the piston

moves from A to B will be

-D2

Work done = P x ----- x L foot-lb.
4

Now L is the volume swept by the piston, and also represents
4

the volume of liquid admitted in cubic feet
; writing this volume V,

we have Work done = PV foot-lb.

This expression also applies to the case of a gas supplied under

constant pressure throughout the stroke.

Fig. 637 shows in outline a hydraulic engine using water as the

working fluid. There are three cylinders, A, B and C, arranged
at angles of 120; the water

pressure acts on one side of

the pistons only, and all the

pistons are connected to a

single crank DE. The arrange-

ment produces a fairly uniform

turning moment. In engines
of this type, as the cylinders

must be filled completely with

water during each stroke, the

efficiency will fall very rapidly

unless the demand for power
is maintained steadily at its

FIG. 637. Three cylinder hydiaulic engine.

maximum amount. Otherwise, devices may be applied by means

of which the capacity of the engine may be reduced when a

diminished demand for power occurs. These devices usually take
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the form of having the crank of variable throw
; the strokes of the

pistons will then vary to correspond. The crank adjustment may be

effected either by means of a governor or by means of an automatic

spring coupling between the engine and the machine to be driven.

If a gas is used in the cylinder in Fig. 636, advantage may be

taken of its expansive property by cutting off the supply after the

piston has moved a short distance and allowing the remainder of the

stroke to be completed under the continually diminishing pressure of

the gas. In Fig. 638 is plotted

a curve AB, showing the relation

of pressure (vertical) and volume

(horizontal) while a gas is ex-

panding and doing work. Usually
the law of the curve AB takes

the form

_ v _ I
x PVn = a constant,

V

. v"*^- -J
where P is the pressure of the gas

2
in Ib. per square foot measured

FIG. 638. Work done by an expanding gas.
from zero. On this basis the

pressure of the atmosphere is about 14-7 Ib. per square inch or

2116 Ib. per square foot. V is the volume in cubic feet, n is an

index which depends on the conditions under which the expansion is

performed. If the temperature is preserved constant, then Boyle's

law is being followed, n is unity, and the expansion law will be

PV = a constant \

n usually lies between i and 1-5.

The work done may be found from the area of the diagram under

AB in Fig. 638. Thus, assuming Boyle's law to be followed and

taking a narrow strip EF, for which the pressure is P, the volume V
and the increase in volume represented by the breadth of the strip is

8V, we have
Area of the strip

= P . 8V.

Now, from Boyle's law, PV = P
1
V

1 ;

SV
Hence, Area of the strip

= PjVa

Total area under AB = P
l
V

l I

-y-
j

,". work done = PjVj log,,^ foot-lb.
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If the expansion law is PVn = a constant, we have, in the same
manner : Area of the strip

= P . 8V.

Also, PV = P
1
V

1

' 1

,

P Vp_ r
l
v

l

v*
8V

Hence, Area of the strip
= PjV^

1

Total area under AB
PWV= PjV^ ^~

Remembering that P
1
V

1

n = P
2
V

2
n

,
the above becomes, by multi-

plication, p V - P V
Work done = l YI 2 2

foot-lb.
n - i

Hydraulic transmission of energy. In Fig. 639 A and C are two

cylinders charged fully with water, and connected by a pipe E.

B and D are plungers or rams fitted to cylinders,

and carrying loads P and W. Owing to the

practical incompressibility of water, any descent

of B will produce an ascent of D, and hence work
done on P may be transmitted by the medium of

the moving water under pressure, and be given
out in the form of work done on W. The con-

necting pipe E may be of any length. In practice,

A represents a set of power-driven pumps, which supply water under
a pressure of 700 to 1000 Ib. per square inch. A pipe system distri-

butes the water over the district to be supplied, and D may be taken

to represent one of the machines to be operated. The principal

appliances required in a hydraulic power distribution plant are

shown diagrammatically in Fig. 640. A is one of the power-driven

pumps supplying water to the pipe line BC. A safety valve is placed
at D. E is an accumulator consisting of a large cylinder fitted with

a loaded ram, and connected to the pipe line; its function is to

absorb energy by raising the weight if the machines are stopped and
the pumps are still working ;

it also assists in preserving a steady

pressure of water. A stop valve F is under the control of the

consumer, and another safety valve is placed at G in order to guard

against damage to his pipes and machines. H, H represent two of

the machines being driven; each is fitted with a control valve K,
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K, for the use of the operator. Usually the exhaust water from the

machines is collected and passed through a meter, where it is

measured for the purposes of charging for power.

FIG. 640. Diagram of a hydraulic installation.

Referring again to Fig. 639, let d
1
and d^ be the diameter of B and

D respectively in inches, and let p be the water pressure in Ib. per

square inch ; also let W and P be measured in Ib. Then, neglecting

friction : ^d 2

P = l

-p,

Hence, 5~
==

;^2*A (t-i

This gives the mechanical advantage of the arrangement neglecting

friction. If P descends one inch, then the volume of water delivered

from A into C will be cubic inches. To accommodate this

volume in C, D will rise a height h inches say, and the additional
7

volume in D will be h cubic inches.
4

Hence,
rc , tr-i*- h = Li
4 4

Now i -h is the velocity ratio of the arrangement. Hence,
d^

Velocity ratio = -h'
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Comparison of these results shows that in this hydraulic arrange-

ment, as in other machines, the mechanical advantage when friction

is neglected is equal to the velocity ratio

(p. 328). The resistance W, which may be

overcome by the ram T) in this arrangement,

may be very large if the ram is made of

sufficient diameter. For example, a ram

10 inches in diameter, and supplied with

water at 700 Ib. per square inch, will exert a

total force of about 24^ tons. The principle

is made use of in hydraulic presses, forging

and other machines.

Some examples of hydraulic machinery.

The cylinder for a hydraulic lift is shown in

some detail in Fig. 641. The ram passes

through a stuffing box in the lower end of

the cylinder, and carries two pulleys mounted

on its end and both running on the same

spindle. Another pulley is placed on the top

end of the cylinder. The wire rope used for

hoisting the cage is attached to a fixed point

at A, and is led round the pulleys, as shown,

before being taken away at B to the cage.

The object is to multiply the comparatively

small movement of the ram into the larger

travel required for the cage. The same type

of cylinder is made use of in hydraulic cranes.

Some types of leather

packing are shown in

Fig. 642. (a) is a U-

leather, used for keeping

water-tight rams of fairly

large diameter ;
the

water may enter the

hollow interior of the U,
and presses the leather outwards against the

wall of the recess and also against the ram.

FIG. 642. Types of leather In (b] is shown a hat leather, used for sliding
packing. i i / \ ' 11

plungers and rods
; (c) is a cup leather, used

for pistons in cases where the water acts on one side of the piston

only.

FIG. 641. Cylinder for a

hydraulic lift.
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A simple hydraulic accumulator is illustrated in Fig. 643. The ram

A is fixed to the base plate, and the cylinder B is loaded with a

number of cast-iron plates and may move vertically. A tail rod C is

fixed to the cylinder, and serves as a guide. Water enters the

cylinder by way of an axial hole bored through the ram. When the

cylinder is nearing the top of its lift, it raises the end U of the lever

DE
;
the movement of this lever is transmitted to the belt-striking

n.

FIG. 643. Hydraulic accumulator.

gear on the pump, or to the throttle of the pump engine, and so stops

the pump. A spring F pulls the levers back to working position

when permitted by the descent of the accumulator, and so starts the

pump again. The following simple calculations may be made

regarding hydraulic accumulators :

Let //=the diameter of the ram, in inches.

/ = the water pressure, in Ib. per square inch.

W = the total accumulator load, in Ib.

H = the height of lift, in inches.
72

Then W=/ x - -
Ib., neglecting friction.

4
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When the accumulator is
"
up," the volume of water stored will be

70

Volume stored = H cubic inches.
4

Also, Energy stored =WH inch-lb.

Occasionally it occurs that a hydraulic machine requires a greater

pressure of water than that supplied in the mains, and an intensifier

is used in order to secure this. In Fig. 644 a cylinder A has a

hollow ram B which passes through its right-hand end. A fixed

FIG. 644. Hydraulic intensifier.

hollow ram C passes into the interior of B as shown. Low-pressure
water is supplied at D, and water of a higher pressure is discharged
at E.

Let /j
= the lower pressure, in Ib. per square inch.

p.2
= higher

d
l
= the external diameter of B, in inches.

d^ the external diameter of C, in inches.

Then, neglecting friction,

or

A 42

With a ratio of diameters of 2 to i, the supply pressure of 700 Ib.

per square inch may be intensified to 2800 Ib. per square inch,

neglecting friction. Valve arrangements are provided for enabling
the lower pressure to be used in the machine, and at the moment
when the higher-pressure water is required, low-pressure water is

admitted to A in the intensifier, and at the same time the machine is

connected to E.

Pumps. Fig. 645 shows a hydraulic pump suitable for supplying
water for operating hydraulic machines. A cylinder A is fitted with
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a piston B operated by a plunger rod C. Water enters the cylinder
at D, and is prevented from flowing back by the suction valve E.

G is a discharge valve opening to the discharge branch H, and F is a

passage connecting the right-hand side of the piston to the discharge.

The valves E and G are cushioned on lifting against rubber discs,

separated by metal washers
;
the piston packing consists of two cup

leathers. The action is as follows : Suppose the piston to be moving

FIG. 645. Hydraulic pump.

towards the right as shown
;
E is open and G is closed. WT

ater will

flow into the pump through E, and will fill the space vacated by
the receding piston ;

at the same time, the water on the right-hand

side of the piston is being forced into the discharge pipe through F.

If the diameters of the piston and of the plunger rod are d^ and d^

respectively, and if the stroke is L inches, then the volume discharged
from the right-hand side of the piston during this stroke will be

f--t__~a-)L cubic inches.
\ 4 4 /

Now let the piston be moving towards the left
;
E will be closed

and G will open, and the water on the left-hand side of the piston

will be discharged through G. The volume so discharged will be
7 2

L cubic inches, but a portion of this only will be sent into the

discharge pipe, the remainder finding its way through F to the right-

hand side of the piston ; the amount so passing through F will be

( )
L cubic inches

;
hence the volume discharged from the

\ 4 4 /

pump during this stroke will be

\ 4 4 /
L cubic inches.
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The pump is thus double-acting, i.e. water is discharged during both

strokes. For equality of discharge, we have

V 4

or

Ln t*-o= i.

4 / 4

^l
2 ~ 42 =

^2
2

'

This result may be expressed also by stating that the sectional area

of the plunger rod should be half that of the piston.

Fig. 646 illustrates a type of bucket pump used in raising water from

a lower to a higher level. The piston or bucket is shown ascending,
and water is passing into the cylinder A
through B and the suction valve C. The
water already on the top of the bucket is

being discharged through the discharge valve

F and the passage G. During this stroke, the

bucket valve is closed. On the downward

stroke, the suction and discharge valves C and

F both close, and the bucket valve opens, per-

mitting water to pass from the lower to the

upper side of the bucket. It is not absolutely

necessary to have a discharge valve F in this

type of pump, but, if fitted, it serves as a

check on the suction valve during the down-

ward stroke of the bucket. This pump is

single-acting.

In Fig. 647 is shown a single-acting plunger

pump. On the upward stroke of the plunger

B, water enters the pump through the suction

valve C, and is delivered, during the downward

stroke, through the discharge valve D. E is an air vessel, the

function of which is to get rid of shocks. The water coming from

the pump flows partly into the air vessel, during the early part of the

discharge stroke, and compresses the air contained therein; during

the later part of the discharge stroke, and also possibly during part of

the suction stroke, the pressure of the compressed air drives some

of the water out of the air vessel into the discharge pipe. The accele-

ration required to be given to the column of water in the discharge

pipe in starting it into motion is lowered by the action of the air

vessel, and hence the force required is also lowered, and shock is

FIG. 646. Bucket pump.
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avoided entirely. The cushion of compressed air is also beneficial

in quietly closing the discharge valve at the end of the stroke without

depending on any backward movement of the mass of water in the

discharge pipe; thus hammering of the valve is avoided. The air

FIG. 647. Boiler feed pump. FIG. 648. Combined plunger and
bucket pump.

vessel should be situated always as close as possible to the discharge

valve. The type of pump illustrated is much used for forcing the

feed water into steam boilers.

Fig. 648 illustrates a combined plunger and bucket pump. During the

downward stroke, the suction valve C is closed, and the bucket valve

D is open; the plunger E is thus operating in discharging water
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through F. During the upward stroke, the bucket valve D is closed

and the suction valve C opens. Fresh water thus flows into the

cylinder A from B, and the water already on the top of the bucket is

discharged through F. As is the case in the pump shown in

Fig. 645, the area of the plunger should be one-half that of the

bucket for equality of discharge on the two strokes.

Pumps may be placed at some height above the supply water, and

in this case depend on the pressure of the atmosphere acting on the

supply water and forcing it up the suction pipe into the partial

vacuum created by the action of the pump bucket or plunger. The
maximum possible height through which the atmospheric pressure

will raise water thus is about 34 feet; from 25 to 30 feet is the

greatest practical height.

EXERCISES ON CHAPTER XXII.

1. A rectangular tank is 4 feet long, 3 feet wide and 2 feet deep.
Find the total pressures on the bottom, on one side and on one end when
the tank is full of oil which weighs 50 Ib. per cubic foot.

2. A tank 10 feet long has a horizontal bottom 4 feet wide. The ends
of the tank are vertical, and both the sides are inclined at 45 to the

horizontal. Water is contained to a depth of 6 feet. Find the total

pressures on the bottom, on one side and on one end. Take 2^= 62-5 Ib.

per cubic foot.

3. A dock gate is 80 feet wide and has sea water to a depth of 30 feet

on one side and 9 feet on the other side. Find the total pressure on each
side of the gate, and show the lines of action. Find also the resultant

force on the gate, and show its position. Take 1^= 64 Ib. per cubic foot.

4. A tank is in the form of an inverted cone, 6 feet diameter at the

top and 4 feet vertical depth. When full of oil having a specific gravity

0-8, find the weight of the contained oil and the total pressure on the

curved surface of the tank.

5. A rectangular opening in a reservoir wall is 4 feet high and 3 feet

wide, and has its top edge 20 feet below the water level. Find the total

water pressure on the door or gate closing the opening, and find also the

centre of pressure.

6. A rectangular pontoon 100 feet long and 30 feet wide has a draught
in fresh water of 8 feet (i.e. the bottom of the pontoon is 8 feet below the

surface of the water). Find the weight of the pontoon. Supposing the

weight to remain unaltered^ and the pontoon to be floating in sea water,
what will be the draught? For fresh water 2/= 62'5, and for sea water

ze/=64 Ib. per cubic foot.

7. The weight of a submarine is 200 tons, and it lies damaged and
full of water at the bottom of the sea. Supposing the specific gravity of

its material to be 7-8, find what total pull must be exerted by the lifting
chains in order to raise the vessel from the bottom. Take 1^= 64 Ib. per
cubic foot.
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8. For the pontoon in Question 6, when floating in fresh water, find

the heights of the transverse and longitudinal metacentres above the
centre of buoyancy.

9. The pontoon in Question 8 carries a crane, and is hoisting a load

which produces a transverse capsizing moment of 200 ton-feet. Calculate
the angle of heel. It may be assumed that the centre of gravity of the

complete pontoon is 0-5 foot below the surface level of the fresh water.

10. A retaining wall for water is triangular in section and has the

wetted surface vertical. The height is 30 feet and the breadth of the

base is 25 feet. Fresh water has its surface level 3 feet below the top of

the wall. The weight of the material is 140 Ib. per cubic foot. Take one
foot length of wall and find the resultant force acting on the base.

Answer the same if the reservoir is empty. Do these forces fall within

the middle third of the base ?

11. Answer Question 10 for sections at 3 feet, 10 feet and 20 feet from
the top of the wall, using graphical methods so far as is possible. Plot

the lines of pressure for the reservoir full and empty.

12. Water is supplied by a hydraulic company at a pressure of 700 Ib.

per square inch, and is charged at the rate of 18 pence per thousand

gallons. How much water must be used in an hour to obtain one horse-

power, and what would be the cost ? Neglect waste.

13. A single-acting hydraulic engine has three rams, each 3^ inches

diameter by 6 inches stroke. The effective mean water pressure on the

rams is 120 Ib. per square inch, and the engine runs at 90 revolutions per
minute. Neglect all sources of waste and calculate the horse-power. If

the efficiency is 65 per cent., what is the useful horse-power ?

14. 2 cubic feet of air at an absolute pressure of 80 Ib. per square inch

are expanded in a cylinder until the volume is 5 cubic feet. Assuming
that the law PV= a constant is obeyed, calculate what work is done.

15. Answer Question 14 if the law of expansion is PV 1-41 = a constant.

16. A hydraulic accumulator has a ram 7 inches in diameter and the

lift is 12 feet. If the water pressure is to be 700 Ib. per square inch, find

the weight required. How much water is stored when the accumulator is

up ? Find also the energy stored.

17. In the hydraulic lift cylinder shown in Fig. 641, find the velocity
ratio if there are three rope pulleys on the ram end and two pulleys on
the cylinder top. Suppose the ram to be 4 inches diameter and that the

water pressure is 700 Ib. per square inch, and calculate the pull on the

cage rope, neglecting frictional waste. What is the pull if the total

efficiency is 65 per cent. ? What stroke of ram is required for a total cage
lift of 60 feet ?

18. A hydraulic pump, similar to that shown in Fig. 645, has a piston

4-25 inches and a plunger rod of 3 inches in diameter ; the stroke is

1 8 inches. If the pump makes 60 double strokes per minute, how much
water will be delivered, neglecting waste ? If the water pressure is 750 Ib.

per square inch, find the force which must be applied to the rod (a] when
the piston is moving towards the valves, (&) when the piston is moving in

the contrary direction, assuming the pressure on the suction side to be

15 Ib. per square inch. Neglect friction.



EXERCISES ON CHAPTER XXII. 591

19. A bucket pump (Fig. 646) has to raise 400 gallons of water per
minute to a height of 30 feet. If the pump makes 30 double strokes (one

up and one down) per minute, and if the length of the stroke is 1-5 times

ftie diameter of the bucket, find the stroke and the bucket diameter,

neglecting waste. Calculate the useful work done per minute, and, if the

efficiency is 60 per cent., find the horse-power required.

20. A boiler feed pump has a plunger 3 inches in diameter. The
delivery pipe leading to the boiler is 40 feet in length and 3 inches in

diameter. The pressure in the boiler is 100 Ib. per square inch. There
is no air vessel. Supposing that the acceleration of the plunger at the

beginning of the stroke (the water in the delivery pipe being then at rest)
to be 90 feet per second per second, what total force must be exerted by
the plunger in order to start the water into motion ? If a perfect-acting
air vessel were fitted, what total force would be required ?

21. In finding the total force in the axial direction which a fluid

exercises upon a piston or ram, we calculate from the cross section of the

cylinder or ram ; why is the actual shape of the face of the piston or end
of the ram of no importance ? (B.E.)

22. A vertical flap closes the end of a pipe 2 feet in diameter
; the

pressure at the centre of the pipe is equal to a head of 10 feet of water.
Find the total pressure on the valve in pounds. (You may neglect the

atmospheric pressure.) (B.E.)

23. The ram of a vertical accumulator is 4 inches in diameter
; the

cylinder is 6 inches in internal diameter and 50 feet high. The ram
carries a total load of 5 tons. Find the water pressure, in Ib. per square
inch, at the top and bottom of the cylinder. (B.E.)

24. Determine the depth from the surface of the centre of pressure on
a rectangular sluice valve, 6 feet long and 3 feet wide. The centre of the
valve is at a depth of 8 feet below the surface of the water, and the valve
lies in a plane inclined at an angle of 30 degrees to the horizontal, with
one of the long edges of the valve parallel to the surface of the water.

(B.E.)

25. A horizontal channel of V section, whose sides are inclined at 45,
is closed at the end by a vertical partition. The water-surface has a
width of 4 feet, and consequently a maximum depth of 2 feet. Calculate
the total hydrostatic pressure upon the partition and the height of the
centre of pressure. (I.C.E.)

26. Define metacentric height. A vessel has a length of 150 feet
between perpendiculars and a beam of 28 feet. The mean load draft in
sea water is 1 1 feet, and the coefficient of fineness, or ratio between the

product of length, breadth and draft and the displacement volume is 0-47.
The second moment of the load water-plane about its fore and aft axis is

63 per cent, of the moment of the circumscribing rectangle about the
same axis. The centre of buoyancy is situated 3-95 feet below the water-
line. If the transverse metacentric height is to be limited to 3-62 feet,
determine the distance from the centre of gravity to the water-line.

'

(L.U.)

27. A masonry dam with vertical water face is 20 feet high and 13 feet
wide at the bottom, sloping gradually till it is 6 feet wide at the top. The
water reaches 2 feet from the top. Draw the line of thrust throughout the
dam. Specific gravity of masonry, 2-25. (L.U.)



CHAPTER XXIII.

HYDRAULICS. FLOW OF FLUIDS.

Fluid friction. We have seen already that there can be no friction

in any fluid at rest
;
considerable frictional resistances exist, however,

when the fluid is in motion. For liquids, the laws of fluid friction, as

deduced from experimental evidence, have been mentioned in

Chap. XV., and are stated again for reference as follows :

(a) The resistance is proportional to the extent of the surface

wetted by the liquid.

(b) The resistance is independent of the material of which the

boundary is made, but depends on the roughness of its surface.

(c) The resistance is independent of the pressure to which the

liquid is subjected.

(d) Rise of temperature of the liquid diminishes the resistance.

(e) At slow speeds the resistance is very small.

(f) Below a certain critical speed, the resistance is proportional to

the speed ;
at speeds above this, the resistance is proportional to some

power, approximately the square, of the speed.

The critical speed depends on the liquid used and its temperature.

Below this speed the motion of the liquid is steady, the particles

moving in stream lines; above it, the liquid breaks up into eddies.

As the flow of water is the most important case in practice, we will

confine attention to this liquid.

Kinds of energy of flowing water. Neglecting effects due to

changes of temperature and of volume, we may state that the total

energy of a particle of water is made up of (a) potential energy,

(b) pressure energy, (c) kinetic energy. The potential energy will

be proportional to the elevation of the particle above some datum

level ; the kinetic energy will be proportional to the square of the

velocity of the particle. The pressure energy requires some fuller

explanation.



ENERGY OF FLOWING WATER 593

In Fig. 649 is shown a cylinder fitted with a piston and supplied
with water from an overhead tank, in which the level is maintained

constant. If the piston is allowed to move outwards slowly, work
will be done by the water pressure on the

piston overcoming the external resistance

acting on the other side of the piston or on

the piston rod.

Let P = fluid stress on piston, in Ib. per

square foot.

A = area of piston, in square feet.

L = the distance piston is moved, in

feet. FIG. 649. Pressure energy of

Then Work done = PAL foot-lb.

In performing this work, a volume AL cubic feet of water has been

admitted to the cylinder, and the work has been done at the expense
of the energy of this water. The work done per cubic foot of water

may be found by dividing the above result by AL, giving

Work done per cubic foot of water = P foot-lb.

Let w = weight of one cubic foot of water in Ib.

Then = volume of one Ib. of water.w
P

Hence, Work done per Ib. of water = foot-lb.w
It has been assumed that there has been no waste of energy;

p
therefore represents the whole energy available in one pound of

water due to its pressure. We may say therefore that water at rest

and under pressure possesses energy due to its pressure to the

p
amount of foot-lb. per pound of water.

w
Transformations of energy in flowing water. In Fig. 650 is

shown two tanks at different levels, and connected by a pipe so

that water may flow from the upper into the lower tank. OX is

an arbitrary datum level. Considering a pound of water at A and

assuming it to be at rest, there will be no kinetic energy; it will,

however, possess HA foot-lb. of potential energy owing to its elevation

HA feet above OX. The water, being exposed to atmospheric

pressure Pa Ib. per square foot, will also possess pressure energy to

p
the amount of foot-lb. per pound. Hence,w

Total energy at A =
^HA + -

j
ft.-lb. per Ib. of water.

D.M. 2 P
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It is reasonable to suppose that the bulk of the water in the upper
tank is at rest, only a portion near the pipe entrance, mapped out

by the dotted curve abc (Fig. 650), will possess any considerable

velocity. Hence, at B, a pound of water will have potential energy
pHB foot-lb., together with pressure energy -- foot-lb. owing to its

absolute pressure PB Ib. per square foot. Therefore,

(P \H B -r-

J
ft.-lb. per Ib. of water.

FIG. 650. Transformation of energy of flowing water.

Consider now a pound of water at C, having acquired a velocity of

#c feet per second, under pressure Pc Ib. per square foot and at an

elevation Hc above OX. The total energy will be given by

Total energy at C =
(HC +^ +~] ft.-lb. per Ib. of water.

In the same way, a pound of water at D will have a total energy

given by

Total energy at D = (HD + + ft.-lb. per Ib. of water.

At the surface level E in the lower, tank, the water may be assumed
to be at rest again, and also exposed to atmospheric pressure. The
total energy here will be

Total energy at E = HE + ft.-lb. per Ib. of water.

We may now trace the transformations of energy which have taken

place during the passage of the water from A to E. It may be
assumed that a pound of water moves from A to B very slowly, and



BERNOULLI'S LAW 595

arrives without any appreciable diminution of energy, since the

frictional resistances will be very small. Hence,

Total energy at A = total energy at B,

or HA + = H B + ^.w w
The water has given up potential energy represented by (HA - HB)

ft.-lb. per pound, and has acquired an equal amount of pressure energy

(P

P \^___^\ ft.-lb. per pound.

During the passage from B to C, considerable velocity has been

acquired, and hence the frictional resistance will produce correspond-

ing waste of energy. In passing along the pipe from C to D there

will be further frictional waste of energy. If these sources of waste

be disregarded we may apply the principle of the conservation of

energy in asserting that the total energies at B, C and D are equal.

Hence,
Total energy at C = total energy at D,

c + +W 2g W 2g

This equation is the algebraic expression of Bernoulli's law, which

asserts that if there be no waste of energy, the total energy of water flowing

from one place to another remains constant. Calculations may be made
on this assumption, and then corrections can be applied in order to

account for known sources of waste.

Referring again to Fig. 650, the water leaving the pipe and entering
the lower tank will produce surging of the water in this tank, accom-

panied by a considerable waste of energy. The total waste of energy
in the complete passage from A to E may be estimated by taking the

difference in total energies at these places. Thus,

Total waste of energy = (HA +~)
-
(HE +^

= (HA - HE)
ft.-lb. per lb. of water.

It will be noted that (HA - HE)
is simply the difference in surface

levels of the water in the two tanks, H feet say (Fig. 650). Hence, in

the case before us, the total waste of energy per pound of water is

represented by H foot-lb.

Venturi water meter. In Fig. 651 is shown a straight horizontal

pipe, which converges from A to B and then enlarges again between
B and C. As the pipe is horizontal, there will be no change in the

potential energy of the water flowing through it ; there will, however,
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be interchanges of pressure and kinetic energies, and if pressure

gauges be fitted as shown so that the pressure heads may be measured,
it is possible to calculate the velocity of flow, and hence the quantity
of water flowing, from a knowledge of the pipe diameters.

A C
FIG. 651. Principle of the Venturi meter.

The same quantity of water, Q cubic feet, will pass all sections of

the pipe per second. If the sectional areas be A
l ,
A

2 and A3 square
feet at A, B and C respectively, and if the velocities v

l9 v2 and v
3 be

measured in feet per second, we have

Q =
v^Aj = z/

2
A

2
= #

3
A

3 (i)

Applying Bernoulli's law and neglecting any frictional waste, we
have ,,2 -.2 ,7, 2

2g 2g 2g

H
1?
H

2
and H

3 being the pressure heads in feet.

If the pipe diameters at A and C are equal, as is usually the case,

v
l
and vz

will be equal, and H
l
and H 3

will also be equal, neglecting
friction. Using the first two terms of (2),

From (i),

Hence,

or

Now

\/2< -(H 1
- H

2) /

'

2

2
cubic feet per sec. ...

V Aj
- A

2
" (3)
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Practically, the quantity flowing differs somewhat from the result

calculated from equation (3). A coefficient, the value of which is

approximately 0-98, may be used for multiplying the right-hand

side of (3). Small Venturi meters used in laboratories for testing

purposes usually require calibration, especially for low heads and

velocities.

Steady motion. Steady motion of a fluid may be denned as that

state of motion when all particles passing through any fixed point
arrive at the point with the same velocity, both as regards magnitude
and direction. Thus, in steady motion, the particles will be

travelling in lines or filaments either straight or curved, these

filaments being called stream lines. For example, if a fine jet of

coloured water be injected into a mass of water moving with steady

motion, the coloured water will follow the stream line which passes

through the point of injection, and will

move unbroken through the mass of

water, giving a coloured band which

will be straight or curved depending on

the circumstances of the flow, but will

appear to remain fixed in position.

A fluid can only move in straight

stream lines provided there is no resul-

tant force acting on the boundary of

the filament in a direction perpendicular
tO that of the motion of the filament. FIG. 652. Transverse pressures on
. i r -11 j i curved stream lines.

Any such force will produce a change in

the direction of the motion, and the path of the filament will be

curved, the resultant force being found on the convex side of the

filament (Fig. 652).

In a mass of fluid moving in curved stream lines, each stream

line communicates pressures to the adjacent stream lines and is

itself reacted on. As the concave side of any stream line is in

contact with the convex side of the adjacent stream line, the pressure

on the concave side ab of the first will be equal to that on the convex

side ab of the second; let this pressure be p (Fig. 652 (a)). The

pressure on the concave side cd will be less than / by an amount S/,

and that on ef will be greater than / by another small amount /.

Applying the same reasoning to all stream lines in a body of fluid

moving steadily in a curved path (Fig. 652 (&)), we see that the

pressure p^ on the convex boundary ab will diminish gradually across

the stream, attaining a lower value /2
at the concave boundary cd.
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Discharge from an orifice. One of the simplest cases of the flow of

water is found in a jet discharged through a small sharp-edged circular

hole in a thin plate. In Fig. 653
such a hole is formed in the

vertical side of a tank, WL being
the free surface

steady head H
orifice de. OX

level, giving a

feet over the

may be taken

as a datum level. At A, a pound
of water being at rest will have

a total energy given by

FIG. 653. Discharge through
orifice.

Pa being, as before, the atmo-

spheric pressure in Ib. per square
a sharp-edged foot, and w the weight of the

water in Ib. per cubic foot.

Passing to a point B on the same level as the centre of the orifice,

some of the potential energy possessed at A will have been converted

into pressure energy, giving a total energy at B of

T? TT
,

r B
^B = -tl B + - (2)

As the motion of a particle passing from A to B will be very

slow, it is reasonable to suppose that frictional losses may be

disregarded. Hence,

or

Again,

EA=EB ,

Pa
w

w w
or H = HA -H B ......................... (3)

This equation simply expresses the fact that the superatmospheric

pressure head at B is H.

Assuming that the motion inside the region of important velocity,

abC) is stream line, we may state that a particle situated at />, level

with the centre of the orifice, will move along a straight horizontal

stream line and so pass out ; particles crossing the boundary abc at

other points will approach the orifice in curved stream lines. Clearly

the sharp edges of the orifice de cannot produce a sudden change in
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the direction of any stream line
;
hence the curvature will be main-

tained for some distance after the plane of the orifice has been

passed. This leads to contraction of the issuing jet, and such

contraction will not be complete until a section CD has been

reached
;

this section is called the contracted vein.

In the body of water between de and CD, the stream lines are

convex towards the axis of the jet ;
hence there must be resultant

fluid pressures acting transversely to each stream line and directed

outwards towards the boundary of the jet. As the boundary is

exposed to atmospheric pressure /a ,
it follows that superatmospheric

pressure, of values gradually increasing towards the axis of the jet,

will be found in the interior of the jet, the maximum pressure

occurring at the axis. From CD onwards the stream lines will be

parallel ;
hence the water in the jet beyond CD will be under

uniform pressure equal to Pa ,
and will possess pressure energy

p
given by ft.-lb. per pound.w
The velocity of any particle has been increased gradually in passing

from the boundary abc to the section CD, and hence the particle has

been acquiring kinetic energy gradually, this being obtained at the

expense of its other kinds of energy. For example, a pound of water

at b has had its superatmospheric pressure energy, H foot-lb, changed
into an equal quantity of kinetic energy (neglecting frictional losses)

while passing from b to CD. The conversion is completed on arriving

at CD, and hence we find the maximum velocity at this section.

Supposing V feet per second to be the velocity of the jet at CD,
then the total energy per pound of water at CD will be

ECD =HCD + + ...................... (4)

Applying Bernoulli's law and neglecting frictional effects, the total

energies at A and CD will be equal. Hence,

v2

.'. HA -HCD = ,

H=5
..................................... (5)

This equation may be written

or V = v/^H............................... (6)
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The actual velocity at CD will be somewhat less than V, due to

waste of energy in overcoming frictional resistances in the flow

between abc and CD.

Experimentally it is found that the actual velocity Va is about

o-97V, this number being called the coefficient of velocity, written cv .

Hence,
V =W^H............................... (7)

The quantity of water discharged can be obtained, provided we

know the area of the section CD. For a small round orifice this will

be about 0-64 of the area of the orifice
;

this number is called the

coefficient of contraction, written cc .

Let Q = the quantity discharged per second, in cubic feet.

A = the area of the orifice, in square feet.

H = the head over the centre of the orifice, in feet.

Then

(8)

In this result, ca c^v is called the coefficient of discharge. For a

round orifice its value will be

^ = 0-64 x 0-97

= 0-62.

The discharge from a small round sharp-edged orifice therefore will

be given by Q ^ .62A^/^H cubic feet per second.

If the orifice is situated in the tank bottom so that the jet dis-

charges vertically downwards (Fig. 654), contraction does not cease

at CD. This is owing to the potential
d & energy of the water in the falling jet con-

tinually diminishing; hence the kinetic energy,

and therefore the velocity, must be increasing

continually. In a steady jet (prior to its

breaking up into drops) the same quantity of

water passes each section per second, and there-
FlG ' 6

inTtl
h
nk
rp
bot

d
t5m

orifice fore the area of the J
et must be diminishing

as the jet recedes from the orifice. The
approximate velocity at any section may be estimated from

v <rv\2^H,
where H is the head measured from the free surface level in the tank

to the section considered.
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Contraction of the jet after passing the orifice may be got rid of by
means of a trumpet orifice (Fig. 655). In this case the discharge is

estimated by applying a coefficient of velocity only.

Thus, Q = ^A\/^H.
Flow of a gas through an orifice. Assuming that

the pressure in the reservoir containing the gas is

only slightly greater than the pressure in the space
into which the jet of gas is discharged, and that

there is no change in temperature, there will be FIG. 655. Trumpet

very little change in the weight of the gas per cubic

foot, and the flow through the orifice may be estimated in the same

manner as for a liquid.

Let ij
l

= the velocity in the reservoir.

#2
= the maximum velocity of the jet, in feet per second.

pl
= the pressure in the reservoir, in Ib. per square foot.

/2
= the pressure in the space which the jet enters, in Ib.

per square foot.

w = the weight of a cubic foot of the gas, in Ib., under the

conditions existing in the reservoir.

A = the area of the orifice, in square feet.

Then A,n_A

Hence, applying a coefficient of discharge C<z, we have

cubic feet per sec.w
Experiments show that for circular sharp-edged orifices discharging

air, the value of ca is in the neighbourhood of 0-6.

Reaction of a jet. In Fig. 656 is shown a tank mounted on

wheels and discharging water through a trumpet
orifice in one side. The issuing water has

acquired momentum in passing out of the

orifice, and a resultant force acting towards

the right on the water in the mouthpiece is

required in order to produce this change of

FIG. 656. Reaction of a jet.
momentum. There must also be an equal
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opposite reaction, and hence there will be a tendency to move the

tank towards the left when the jet is flowing. The magnitude of

this force may be found by estimating the change of momentum

per second.

Let H = the head over the centre of the orifice, in feet.

v velocity of jet, in feet per second.

A = area of jet, in square feet.

w = mass in pounds of a cubic foot of water.

Then Quantity flowing per second = Avw pounds ;

.'. momentum acquired per second = Avw . v.

Force required =- Ib.

Neglecting the coefficient of velocity, we have

,, . , Aw . 2gYL
Hence, Force required =--

Ib.

If the orifice be closed by a plate, the pressure on the plate would

be AwH Ib.
;
hence the reaction of the jet is double the pressure on

a plate closing the orifice.

In the Borda mouthpiece, a short tube projects into the interior of

the tank, and has its inner edge sharpened (Fig. 657). This orifice

I produces an effect differing considerably from a

trumpet orifice or from a simple hole in the tank

C'
' side. In the latter cases, owing to the curvature of

--+ v the stream lines in the vicinity of the orifice, the

walls of the tank there are somewhat relieved of

pressure, the pressure diminishing from a maximum

FIG. 657 . Borda at the axis of the orifice to a minimum at the
mouthpiece.

boundary. In the Borda mouthpiece, the curved

portions of the stream lines are removed sufficiently from the tank

side as not to modify the pressures on the sides. Hence, the force

producing change of momentum in the issuing water will be simply

that which would exist on a plate closing the orifice.

L61 A = area of orifice, in square feet.

H = head of water, in feet.

a = area of jet, in square feet.

v = velocity of jet, in feet per sec.
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Then Force producing change of momentum = wHA Ib.

Quantity flowing per second = wav pounds ;

Change of momentum per second =

wav2
.,

. . reaction of jet
= Ib.

o

__ wav2

Hence, wHA =

Neglecting the coefficient of velocity, we have

or A =
20,

= JA.

This mouthpiece has therefore a coefficient of contraction of 0-5.

Thomson's principle of similar flow. Prof. James Thomson's

principle of similarity is of importance in dealing with the flow

through orifices and over weirs
;

it may be stated as follows.

Supposing we have a drawing of a vessel containing a frictionless

liquid up to a fixed level, and that the liquid is flowing out through
an orifice, the stream lines being shown on the drawing. The

principle states that this drawing will serve for the discharge from

any similar vessel containing the same liquid, the vessel having
been constructed by merely altering the scale of the drawing; the

stream lines in the similar vessel will also have the form shown in

the original drawing to the altered scale. Further,

Let d any linear dimension on the drawing.

v = velocity of flow at any point.

a = sectional area of a stream line at this point.

q = discharge through this stream line.

Then v oc rf

and a oc d"2.

Also, q = va\

A convenient linear dimension to choose is the head of liquid H
from the point considered up to the free surface level. Then
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Gauge notches. A gauge notch is a device used for measuring
the quantity of water flowing along a stream. The stream is

dammed by vertical boards, and a notch is cut in the dam to

permit the water to flow through. The usual form is triangular

(Fig. 658) or rectangular (Fig. 659). In the case of a triangular notch,

it will be evident that the streams flowing through the notch will be

FIG. 658. Triangular gauge notch.

similar, whatever may be the head
;
hence Thomson's principle may

be applied to any filament such as ab. Thus,

where a is an experimental coefficient.

The same expression will serve for any other filament in the

stream. Hence the total quantity flowing will be given by

(i)

The value of a for a notch having an angle of 90 may be taken

as 2-635 ;
if H be measured in feet, we have for such a notch :

_5

Q = 2-635H
2 cubic feet per second.

Care must be taken in measuring H ;
this must be the head from

the bottom of the notch to the level of still water. As the water in

the stream approaching the notch is increasing its velocity, its kinetic

energy is increasing, and consequently its potential energy is dim-

inishing. Hence there will be a gradual fall of surface level in the

water in the vicinity of the notch. The still water level will be

found at some distance from the notch.

The water flowing over a rectangular notch under different heads

will not present the same similarity which would exist in a triangular

notch in the same circumstances. Reference to Fig. 659 shows

that the water may be divided into three portions, one in the middle
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of the notch, in which the stream lines as seen in front elevation are

moving parallel and vertically, together with two side portions in

which the water is moving partly inwards, due to the contraction

produced by the sharp vertical edges of the notch. The breadth of

the middle portion evidently will increase if

the quantity of water flowing diminishes by
reason of a reduction in head. Hence the

lack of similarity when the entire section of

the stream is considered.

The side contracted portions may be got

rid of by having sides fitted on the up-

stream face. In Fig. 660 (a) and (b) such

a notch is shown discharging water under a

head H
x
in (a) and under a smaller head H

2

in (b}. Let the whole section in (a) be

divided into Nj portions by vertical sections,

and let that of (b} be divided in the same

manner into N
2 portions. The discharges through all the portions

in (a) will be equal, as will also be the discharges through all the

portions in (b). Further, any one portion in (a) will be similar

to any one portion in (b) provided the following proportion is

complied with: ^ . >r =H . u
( 2 )

}-"-L --

K L --

FIG 659. Rectangular gauge
notch having two side contrac-

tions.

I II I I II I II JH

(b)

FIG. 660. Rectangular gauge notches having both side contractions suppressed.

Let q^ and g.2 be the discharges per portion in (a) and (

respectively. Then, by Thomson's principle of similarity, we have

or (3)
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The total discharges Q! and Q2
in (a] and (b) respectively may be

obtained by multiplying ql
and ^2 by N\ and N

2 respectively. Hence,

H

3

H\ 2

(from (2) and (3) above)

(4)

It is therefore apparent that Q varies as H 2 in a notch of this type,

and is also proportional to the width L. Hence,

Q = 'iLH
f

(5)

where ^ is an experimental coefficient.

Suppose that, in the rectangular notch shown in Fig. 659, the

relation of L and H is such that there is no central portion showing

parallel flow, the side contracted portions filling the whole section of

the stream. It is evident that this drawing would serve for a notch

of this type, having any dimensions by merely altering the scale.

Hence, Thomson's principle of similarity may be applied at once,

and we may write

Q = '
2
H* (6)

Consider now the notch shown in Fig. 659, having side contractions.

Let LI be the width of the middle portion which

is unaffected by the contractions, and let L
2 be

the width of each side contracted portion. L,,

will depend upon H, and may be written #H,
where a is a constant. If there be n side

contracted portions,

LJ
= L - L

2

= L -

FIG. 661. Rectangular
gauge notch with one side

contraction suppressed.

!*- L --*

The values of n will be 2, i and o in the

notches shown in Figs. 659, 66 1 and 660

respectively ;
the value may be greater than 2

if the notch is divided into several portions by means of vertical

posts.

From (5) above,
3

Flow through the middle portion^LjH 2

^
(7)
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From (6), Flow through each side portion ccH
2

;

.'. flow through n side portions = nc
2
H

Hence, Total flow = ^(L-

<r
15

a and r
2 being constant coefficients, this result may be simplified

by using other coefficients a and ft giving

Total flow -o(L-/3H)H*...................... (8)

This is the Francis or Lowell formula. Experiments show that

the value of a is 3-33, and that of j3 is o-i. L and H being in feet,

we have
3^

Total flow in cubic feet per second = 3*33(L
- o-i^H)H

2
. ...(9)

Pitot tube. The Pitot tube may be used for determining the

velocity of flow in a stream
; the principle may be understood by

reference to Fig. 662. A, B and

C are similar tubes, each having a

small hole at the end of the hori-

zontal limb. A points up stream,

C points down stream and B is at

right angles to the stream. On
account of impact, the head shown

in A will be greater than in B or

C ;
a certain amount of suction

occurs in C, and B will show the pressure head nearly. Experiment
shows that, if h^, h

z
and h% are the heads in feet shown by A, B and

C respectively, and if v is the velocity of the stream in feet per

second, then 2,2
h\- h

i
= - very nearly....................... (i)

h>A
ABC
FIG. 662. Pitot tubes.

Also, i- hs= very nearly

In Fig. 662, the gauges are supposed to be inserted in a pipe,

with the mouths of the tubes in the axis of the pipe. If the velocity

be calculated from (2), the result will be the maximum velocity in the

pipe ;
the velocity diminishes near the boundary of the pipe and the

average velocity may be taken as 0-84 of the calculated result for the

maximum velocity.
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Flow through a uniform pipe. Let A and B (Fig. 663) be two

tanks or reservoirs connected by a pipe of uniform bore through
which the water is flowing from A into B. Let the free surface

levels at a and b be preserved at constant heights Ha and H&

respectively above the datum level OX, and let the difference

in levels be H = (Ha - H&) feet. The diminution in energy of a

pound of water in passing from a to b will be H foot-lb. (p. 595),

and this quantity represents the total energy wasted pe
r pound

of water.

FIG. 663. Flow through a uniform pipe.

The wasted energy is made up of three quantities :

(a) The kinetic energy possessed by the water flowing in the pipe

is wasted when the water enters B by the production of surging and

eddies. It may be noted that, as the pipe is uniform in bore and is

assumed to be filled completely throughout its length, the velocity,

and hence the kinetic energy of the water, will be constant while it is

in the pipe.

(b) The water entering the pipe from A loses energy by the

production of eddies in the pipe, especially if the pipe entrance

is sharp-edged.

(c) Energy is wasted in overcoming frictional resistances to motion

in the pipe.

Of these sources of waste, (a) and (b) are of importance in a

short pipe, but become negligible by comparison with (c) in a pipe

of great length.

If a number of glass tubes be inserted in the top of the pipe,

it will be found that the water stands in these tubes at levels as

shown at c, d, e and / (Fig. 663). These heights above the pipe

indicate the pressure heads of the water in the pipe. A line joining

cdef is called the hydraulic gradient. The slope of the hydraulic

gradient between two points, c and / say, measured by dividing the

difference in level of c and^/j say h feet, by the total length of
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the pipe between m and ;/, say L feet, is called the virtual slope

of the pipe, and is written /. Hence,

. h , .

"-L
................................... (I)

Note that, in measuring the virtual slope, the actual length of

the pipe, whether straight or curved, must be taken.

\Ve have the following expressions for the total energy of one

pound of water at m and n.

Let Hw = elevation of m over OX in feet.

Hn = ,, n
,, ,,

Pm = pressure at m, in Ib. per square foot.

* =
55 ft, ,, ,, ,,

cm = height of column at m, in feet.

fn= 55 55 , 5)

w = weight of one cubic foot of water.

v the constant velocity, in feet per sec.

Then

Total energy per Ib. of water at m = Hw + - '"

+ -'-

......... ....... (2)

P v2

Total energy per Ib. of water at n = Hn + +

; ................ (3)

.'. reduction of energy between m and n

= h foot-lb. per Ib. of water. . . .(4)

This reduction is clearly owing to frictional resistances having
to be overcome in the pipe between m and ;/. Hence we may write,

from (
i
)

:

Virtual slope of a pipe = head lost in overcoming frictional

resistances divided by the total length of the pipe.

In Fig. 664 (a) and (b) are shown the forms of the hydraulic

gradient ab and a'b' for a bell-mouthed and for a sharp-edged
entrance respectively. The more rapid drop near the entrance

in both is owing to some of the pressure head being utilised in

giving velocity to the water entering the pipe, and is complicated
further in (b) by the contraction and eddies set up by the sharp*

^M. 2 Q
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edged entrance. In a very long pipe, the drop at entrance may
be disregarded, and the virtual slope may be measured by dividing

(a) (b)

FIG. 664. Hydraulic gradients for bell-mouthed and sharp-edged entrances.

the difference in free surface levels in the two reservoirs by the

total length of the pipe.

Frictional resistance in a uniform pipe. Consider a uniform

horizontal pipe (Fig. 665) in which water is flowing steadily with

velocity v feet per second. As both the velocity and the elevation

over datum level are constant, it follows that the water will possess

constant kinetic energy and also constant potential energy ;
the

b : \d \d
e

/,/,//, ,,,,/,,//,/,////,,~,,,,~ /,,~
x

FIG. 665. Frictional resistance in a uniform horizontal pipe.

pressure energy alone will show variation. Let the portion of water

between cross sections ab and cd flow until ab reaches cd, and cd

reaches cd'
;

let / feet be the length of ac=cc. During this

movement, the energy required to overcome frictional resistances

will be obtained at the expense of the pressure energy of the water,

which accordingly will show a diminution. The pressure at cd will

therefore be less than that at ab.

Let Area of section of stream = A square feet.

Wetted perimeter of pipe = B feet.

Weight of water per cubic foot = w Ib.

Pressure at ab per square foot = P Ib.

Pressure at cd per square foot = (P
-
SP) Ib.

Frictional resistance per square foot

of wetted surface = F Ib,
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Then

Net pressure urging the water along the pipe = P -
(P

-
SP)

= SP lb. per sq. foot.

Hence,
Resultant pressure acting on abdc = SP . A lb.

Work done through a length / feet = SP . A/ foot-lb. ( i
)

Again,

Total frictional resistance on abdc=H? x wetted surface

= FB/lb.

Work done against this resistance = FB/2
foot-lb. ...(2)

Equating (i) and (2), we have

SP.A/=FB/2
(3)

In this equation, the whole weight of water in the portion abdc has

been included. To reduce it to the form for one pound of water,

divide each side by the weight of water in abdc. Thus,

Weight of abdc=Alw lb.

SP . Ac _ FB/
2

-~Afa>'
Hence, from (3),

--ob...................... (4)w Aw
ffiP

Now - - is the pressure energy lost by one pound of water in

flowing through a distance / feet along the pipe. The pressure head
h' feet lost will therefore be

w

It will be noted that this quantity is simply proportional to the

length /. If the pipe has a total length L feet, the total pressure
head lost will be given by

eet......................... (6)Aw

The hydraulic mean depth of a pipe or channel is defined as the

result of dividing the cross-sectional area of the stream by the wetted

perimeter. The idea is obtained by substitution of a stream of

rectangular section for the actual stream. The breadth being B and
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the depth being made equal to the hydraulic mean depth ;, the

cross-sectional area will remain unaltered, and we have

or
A m

Substitution of this in (6) gives

(7)

mw .(8)

The case of a sloping pipe may be examined by reference to

Fig. 666. The pipe is still of uniform cross section, and the water

FIG. 666. Frictional resistance in a sloping uniform pipe.

X

will therefore possess uniform velocity and also uniform kinetic

energy, provided the bore of the pipe is filled completely everywhere

with water. Hence,

(P v*\
Hj + +

j
ft.-lb. per Ib. of water.

Total energy at r^=H + +
)

ft.-lb. per Ib. of water.w

Energy expended in overcoming frictional resistances

P

or,

= h feet, (9)

an equation having the same form as (8) above for a horizontal pipe.

The result may be written in terms of the virtual slope, giving

___
L mw
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9

Practical formulae for the calculation of the flow through pipes

may be devised by making various assumptions regarding F.

Chezy formula. In this well-known formula it is assumed that

F is proportional to the square of the velocity. Hence, for a given

liquid such as water, for which w is constant, we may write, from

equation (10),
. v*
t a -,m

7 ,2

or /=>&
, (n)m

where k is a coefficient. Let k =
,-. Then

c1

v = cJmi. (12)

This is the Chezy formula. In using it, v will be in feet per

second if m is in feet. The value of c varies considerably, increasing

with the diameter of the pipe, and diminishing if the pipe surface

becomes roughened by incrustation.

EXAMPLE. Find the velocity of flow in an old cast-iron pipe, 24 inches

bore and 10,000 feet long, connecting two reservoirs in which the free

surface levels differ by 120 feet. Take c 100.

d i 120m - -

4 2
'

10,000
'

c^J mi

20

2 IO,OOO

= 7'74 feet per second.

The pressure head lost in overcoming frictional resistances may be

expressed conveniently in terms of the kinetic energy of the water.

Taking equation (n) and multiplying both numerator and de-

nominator by 2g, we obtain

t ^- = k
"
<s

,L m 2$

-or /L v1

^ = - -' (
r 3)
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in which the coefficient f is written instead of 2kg. To obtain the

relation of /with the coefficient c in equation (12), we may proceed
as follows :

v = c*jmi ;

= -^-.
c-m

Equating this result to the right-hand side of (13) gives

m . 2g

An equation suitable for a round pipe running full bore may be

obtained from (13). Thus,

area of section
Hydraulic mean depth = m = =

-
.

wetted penmeteLer

= -?- + ir<i=-,
4 4

where d is the diameter of the pipe. Hence, from (13),

m 2g

;(is)
2g

In using equations (13) and (15) h, L, m and d should be in feet,

v in feet per second, and "

may be taken as 32-2. In choosing values

of c and /it is safer to assume that the pipe is encrusted, or will be

very soon after it is put into service.

Darcy formula. The experiments of Darcy show that the value

of/in equation (15) can be expressed in the form

In this formula d is the diameter of the pipe in feet, and a and b

are coefficients. For clean pipes, a may be taken as 0-005

b as 12} for old pipes, the values are o-oi and 12 respectively.
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Inserting these values in (16), we have

For clean pipes, /=o-oo5(iH---^j
......................... (17)

For old pipes, /~=o-oi (i + ......................... (18)^

Values of /calculated thus may be used in equation (15). As has

been stated already, it is better to employ the value off for old or

encrusted pipes, and inserting this in (15) gives

i \L v2

0-01
d 2g

EXAMPLE. A pipe 18 inches in diameter and 4 miles long connects

two reservoirs, in which the difference in level is 200 feet. Find the

velocity of flow and the quantity discharged per hour.

Inserting the given quantities in (19), we have

/ i \4 x 4 x ^280 v'L

200= 0-01 i + -
)-

- *- -7
\ 12 x I-5/ 1-5 64-4

/ i 19 i6x528o\ <--- X -Z X ----
>-
- 7/

Vioo 18 I-X6-/5x64-4

feet per second.

Cross-sectional area of stream = =
~s x I '5 X I- 5

= 1-77 square feet.

Volume flowing per hour= 177 x 4-65 x 3600
= 29,600 cubic feet

= 185,000 gallons.

Flow through a pipe having two different diameters. In

Fig. 667 (a) are shown two pipes of different diameters joined in

|f LI L 2 $

d 2

(a)

t L 1

<b)

FIG. 667. Flow through a pipe having two different diameters.

series. The length L of a pipe of uniform diameter d (Fig. 667 (f] ),

which would discharge the same quantity per second, may be found
in the following manner.
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The virtual slope of the separate parts of (a) will be given by

". total loss of head in (a)
= /i = h

l
+ h^

z'jLj + 2
2
L

2 ...................... (20)

From
(
1 3) above, ^ =&> - ^

-*. ..........................<>d
\

2S
and a corresponding expression for 7i

2
. Assuming that f has the

same value for both portions of the pipe in Fig. 667 (a),

.()
!.j

Z' "2 ^tV /

Assuming that the uniform pipe in Fig. 667 (It) will have the same
total loss of head and the same value of/ then

Total loss of head in () = *2l. (23)

Equating (22) and (23) gives

4/L
d

j 22 x
,

or =-JUL +
-^-2_

........................... ...... (24)
rf ^1 ^2

Let Q be the quantity flowing per second in both (a) and (<). Then

Q

(^\2

/ ^\2

^j^
and pa*^ Jo

................ (25)

Inserting these values in (24) gives
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If the value chosen for d be the same as d
lt we may write

EXAMPLE. Two pipes are arranged in series, the first being i foot

in diameter and 1000 feet long and the second pipe being 9 inches in

diameter and 50x3 feet long. Find the length of an equivalent pipe of

diameter 12 inches.

/I2\5

From (27), L=iooo+(
j 500

= loco+ 2 107 = 3107 feet.

Impact of inelastic bodies. When two inelastic bodies collide,

deformation will occur during the impact, and, as there will be no

effort whatever to recover the original shapes, the bodies will move
on together after the impact as one body.

In Fig. 668 (a) a body having a mass m
l
and a velocity z\ is

travelling in the same straight line as another body having a mass
m.

2
and a velocity v%.

After m
1
has overtaken m m2

m
2 and impact is com- i i

plete, the bodies will *

move as shown at
(fr) and

'-' '

will possess a common
fa) (b)

velocity v. During im-
FlG> 668._Impact of inelastic bodies .

pact, it is evident that

equal forces have acted forwards on m
2 and backwards on m

lt
and

these forces have acted during the same interval of time ;
hence the

total change of momentum during impact will be zero (p. 411), or we

may say that the total momentum before collision is equal to the total

momentum after collision. Hence,

Energy will be wasted during the collision, and the amount of this

may be calculated as follows :

-n r ' .- 22 ,
x

Before impact, total energy =
l

-^-
+ 2 2

................ (3)

AT (
After impact, total energy = -

(mf)^ + *
2
?'
2\

V m
}
+ m,, J

+ m
2g(m l

4- w,)

,
,



6i8 MACHINES AND HYDRAULICS

Subtracting (4) from (3) gives

Energy wasted =

2g(ml
+ m

2)

(5)

Now (vl

- v
2)

is the relative velocity of the two bodies. Hence,

Energy wasted =
nff(^ ^^ \

x tne sQuare of the relative velocity.

For example, a jet of water falls into a pool of water (Fig. 669)
with velocity relative to the earth or pool of v feet per second.

FIG. 669.

Consider a mass m^ pounds of water in the jet; this will be very
small as compared with the mass m

2
of the water in the pool, backed

as it is by the mass of the earth. In this case,

T-,

Energy wasted = .

2g(ml

That is, the energy wasted is simply the kinetic energy of the

water in the jet.

Waste of energy at a sudden enlargement in a pipe. This case is

illustrated in Fig. 670. Water flowing from the small into the larger

pipe has its velocity diminished from v\ to v.
2
and mingles with the

water already in the larger pipe. Eddies will be set up in the

water as indicated in the illustration, and there will be a waste of

energy produced in a somewhat similar manner to the case of one
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body overtaking another which has been discussed above. The
relative velocity, will be (z^

-
z>
2),

and the waste of energy will be

given by

Energy wasted = -&- ft.-lb. per pound of water.

FIG. 670. A sudden enlargement in a pipe

St. Venant calculates the wasted energy by adding to the above

1. 1 ^9
2

result - -^-.

9 *g
Waste of energy at a sudden contraction in a pipe. Referring to

Fig. 671, the water flows in the larger pipe with velocity v
lt and will

contract as shown at cd on entering the smaller pipe. The velocity

v at cd will be greater than v
l ; hence, up to this section, the water

has not overtaken any water moving in front of it, and therefore

FIG. 671. Sudden contraction in a pipe.

there has been no impact and consequently no waste of energy from

this cause between ab and cd. Between cd and ef, the velocity of

the water is diminishing again, and ic will therefore be between these

sections that waste of energy will occur. Hence,

Energy wasted =
*

'-%- ft.-lb. per pound of water.

If a value for the coefficient of contraction be assumed, it becomes

possible to calculate v. Thus, let the sectional areas of the stream

at cd and ef be A and A
2 square feet respectively, and let cc be the

coefficient of contraction. Then
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The quantities of water flowing through cd and ef per second

will be equal. Hence,

.'. energy wasted =

/
T \ 2

^/2=
(

- i
)

ft.-lb. per pound of water.
Vc / 2g

The coefficient is not well known
;
the waste of energy at the pipe

entrance from a reservoir or tank, if sharp-edged, may be taken as

v2

Waste of energy = 0-5 ft.-lb. per pound of water,

where v is the velocity in the pipe in feet per second.

Energy is wasted also in pipe lines at bends and elbows. This is

a subject for experimental investigation, see, pp. 671 and 672, and

there is not much definite information available. The energy thus

wasted is small compared with the frictional waste in a long pipe line.

Resistance of ships. The principal causes of resistance to the

passage of a ship through water are (a) the friction of the wetted

surface, (&) the formation of waves owing to the vessel pushing the

water laterally near the bow, and the return of the water near the

stern to fill the space left by the vessel, (c) the formation of

eddies, owing principally to swirls set up in the water closing in at

the stern.

The first of these, viz. skin friction, may be taken as proportional

to the area of the wetted surface and to the square of the speed.

Wave formation resistances may be taken to be proportional to the

sixth power of the speed. Eddy resistances are proportional to

the area of the wetted skin and to the square of the speed.

The relation of the resistances of a ship and of those of a scale

model of the ship may be deduced from these laws. Let the scales

be such that any linear dimension of the ship is D times the corre-

sponding dimension of the model. Then if A* and Aw are the wetted

surfaces of the ship and model respectively, we have

A,:Am =D2:i (i)
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The frictional resistances will be given by

Fm =/AmV,
2

H ,

where f is a coefficient which may be assumed to have the same

value for both ship and model, and V.s
. and Vm . are the speeds of the

ship and model respectively. We may write

T

<s As /V,\a

r =
T-'(v~)'m "01 \ v m/

or, from (i),
= D2

(^-Y

The relation of the wave-forming resistances may be written

The relation of the eddy-forming resistances will be

2

(4)
in/

VA 2

Now, supposing D =
( Y7

1
), or Vt=VwV/D)

the results (2), (3)
in

and (4) may be written

Fw

T^
' * * *

\ / /

That is, the relation of each of the three kinds of resistance is

proportional to I)3 ; hence their sum, which gives the total resistance,

will also be proportional to D3
. The law has been expressed by

Mr. Froude as follows, and is known by his name : If the ship be

D times the linear dimensions of the model, and if at the speeds
v

i>
V

2 ,
V

3 , etc., the measured resistances of the model are R
15
R

2 ,
R

3 ,

etc., then for speeds VlV/D, V
2\/D, V3\/D, etc., of the ship, the

resistances will be D8R
1?
D3R

2 ,
D3R

3 ,
etc. The speeds of the model

and of the ship so related are called corresponding speeds.
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EXERCISES ON CHAPTER XXIII.

1. A straight horizontal pipe 6 inches in diameter gradually becomes
2 inches in diameter, and then diverges again to 6 inches diameter.
Water is flowing steadily through it with a velocity of 4 feet per second
in the larger portions. Find the velocity in the throat of the pipe, and
hence calculate the difference in pressures at the largest and smallest
sections of the pipe, neglecting friction.

2. In a pipe having the same dimensions as that in Question i, the
difference in head is observed to be 4 feet of water at a certain velocity
of flow. Calculate the flow of water in cubic feet per second, neglecting
friction.

3. Water is discharged through a circular sharp-edged orifice i inch
in diameter in the vertical side of a tank. The water-level in the tank is

3 feet above the level of the centre of the orifice. Calculate the discharge
in cubic feet per second and also in gallons per hour.

4. Answer Question 3 if a trumpet mouthpiece is fitted giving a jet
1 inch in diameter. Take the coefficient of velocity to be 0-95.

5. A circular sharp-edged orifice is situated in a tank bottom and

discharges a jet vertically downwards. The water level in the tank is

2 feet above the plane of the orifice. Calculate the velocity at a section

of the jet 6 inches below the plane of the orifice, neglecting friction.

6. A reservoir contains air at a pressure of 157 Ib. per square inch

absolute, and one pound weight of it may be taken to occupy a volume of

13 cubic feet. The air is being discharged through a sharp-edged orifice

2 inches in diameter into the atmosphere, the pressure of which is 14-7 Ib.

per square inch. Calculate the flow in cubic feet per second.

7. A jet of water is discharged from a trumpet orifice 3 inches in

diameter under a head of 200 feet. Calculate the reaction of the jet in Ib.,

neglecting any reduction in velocity owing to friction.

8. Taking the coefficient of velocity to be 0-96, calculate the flow in

cubic feet per second through a Borda mouthpiece 2 inches in diameter
under a head of 10 feet.

9. Water is flowing over a triangular gauge notch of 90 under a

head of 10 inches. Calculate the flow in gallons per hour.

10." A rectangular gauge notch has a width of 2 feet, and water is

flowing through it under a head of 6 inches. Calculate the flow in cubic

feet per second, (a) for two side contractions, (b] for one side contraction,

(c] for no side contractions.

11. Calculate the virtual slope of a pipe 2-5 miles long connecting two

reservoirs, in which the difference in levels is 35 feet.

12. A circular pipe 4 feet in diameter is running half full of water.

Find the hydraulic mean depth.

13. Use the Chezy formula to calculate the velocity of flow for a pipe

30 inches diameter and 10 miles long connecting two reservoirs, for which
the fall in level is 150 feet. Take <r=io5. Calculate also the quantity
flowing per day of 24 hours.
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14. Suppose in Question 13 that a sluice valve in the pipe close to the

lower reservoir is closed partially and that it is found that water rises in

a tube connected to the pipe side of the valve to a level 40 feet below the

water level in the upper reservoir. Calculate the velocity of flow, using
c=ioo.

15. Use the Darcy formula to calculate the velocity of flow and the

discharge in cubic feet per second in a pipe 24 inches in diameter and

having a virtual slope of o-oi. Give the answers both for a new pipe and
for an old one.

16. A pipe 1 8 inches in diameter and 2 miles long is connected to a
second pipe 15 inches in diameter and 0-5 mile long. Find the length of

an equivalent pipe of diameter 18 inches.

17. A pipe is enlarged suddenly from 4 inches to 6 inches diameter.

The velocity of flow in the smaller portion is 4 feet per second. Calculate

the energy wasted per pound of water.

18. Suppose in Question 17 that the direction of flow is reversed ancl

that the velocity in the smaller portion of the pipe is still 4 feet per second.

Calculate the energy wasted per pound of water, assuming that the

coefficient of contraction is 0-7.

19. Describe, with a sketch, the Venturi water meter, and state the

principle of its action. (B.E.)

20. A particle of water is at a place A, where the pressure is o, its

height above datum is 50 feet, its velocity is 5 feet per second, and it finds

its way without friction to a place B, where the pressure is o and height
above datum 30 feet. What is its velocity at B ? (B.E.)

21. A particle of air flows without friction. Its pressure p (in Ib. per
square foot) and its speed v (in feet per second) may both alter, but the
sum 7,2 p

2g W
remains constant. If w is the average weight of a cubic foot of air, g is

32-2. At a place A, p is i-i atmospheres and i> is o
;
a particle finds its

way from A to B. At B the pressure is i atmosphere ; what is the speed
at B ? Take w as 0-075 Ib. per cubic foot. (B.E.)

22. A fan drives air vertically downwards through a horizontal circular

opening 8 feet in diameter and so exerts a lifting force of 200 Ib. What
is the average downward velocity of the air in the opening? The
weight of I cubic foot of the air is 0-08 Ib. (B.E.)

23. A pipe, \\ inches in diameter, is enlarged gradually to 3 inches in

diameter; the pipe has a falling gradient of i in 15. At the point
where the diameter begins to enlarge, the velocity of flow is 4 feet per
second and the pressure is 30 Ib. per square inch. Find the velocity and

pressure in the 3 inch portion of the pipe at a point distant 45 feet,
measured along the horizontal from the point where the enlargement
began. Neglect all frictional losses. (B.E.)

24. A Venturi meter is fitted on to a 5o-inch diameter main. The
diameter of the throat of the meter is 20 inches. It is found that at a
certain instant the pressure in the main at the point of entry to the meter
is equal to a head of 1 10 feet of water, and in the throat of the meter it is

equal to a head of 97 feet of water. How many gallons of water is this

5o-inch main delivering per hour under these conditions ? (B.E.)
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25. Froude's law of corresponding speeds, which is used in model

experiments upon ships, applies also to flying machines. A certain flying
machine is to be constructed, weighing 2 tons and travelling at 100
miles per hour. The model is y^ full size. Find its weight and corre-

sponding speed. (See p. 621 for Froude's law.) (B.E.)

26. In the horizontal floor of a tank, in which the water is 3 feet deep
and in which the water-surface is 15 square feet in area, a sharp-edged
circular orifice 2 inches in diameter is opened. In what time will the

water-level in the tank sink I inch, if there be no supply of water to the

tank? In answering make no attempt at correction for the time spent
in starting the flow, that is, upon initial acceleration of the mass of the

first parts of the flow. (I.C.E.)

27. Water flows down a sloping pipe (running full) from a point where
the velocity is 10 feet per second and the pressure 15 Ib. per square inch

absolute to a point 100 feet lower, where the pipe diameter is three times
as- great. Calculate the pressure at this point, neglecting losses. (I.C.E.)

28. A straight pipe of circular section is 400 feet long and 4 inches

internal diameter. Its down gradient is I in 200. It discharges full-bore

into the atmosphere at the level of the lower end of the pipe, and draws

by a bell mouth from a reservoir with 12 feet head of water over the

mouth of the pipe. The gradient of the frictional loss of head in the pipe
is 000012 times the square of the velocity divided by the mean hydraulic

depth, the units being feet and seconds. Find the linear velocity

through the pipe and the discharge in gallons per hour. (I.C.E.)

29. A pipe of circular section of 30 inch diameter has a fall of 16 feet

in a straight run of 2000 feet. In the formula for loss of head in feet per
foot run i =ft/*/m, its coefficient is 0-00009, the units being feet and seconds.

What volumetric flow in cubic feet per second must there be through
this pipe to maintain throughout its length the level of the water at the

centre of the circular section? (I.C.E.)

30. State the nature of the losses that occur when a stream of water in

a pipe running full encounters, (a) a sudden enlargement, (b) a sudden
contraction of the channel area. A surface condenser contains 530 tubes

9 ft. 3 in. long and 0-65 inch internal diameter, through which 450 gallons
of water are pumped per minute. The water flows through half the

number of tubes and then back again through the other half. Calculate

the total loss of head in the condenser, assuming that the coefficient of

contraction at entrance to the tubes is 0-59 and/=o-oo7. What horse-

power is required to force the water through the condenser? (L.U.)

31. Two reservoirs are connected by a straight pipe i mile long. For
the first half of its length the pipe is 6 inches diameter ; its diameter is

then suddenly reduced to 3 inches. The surface of the water in the

upper reservoir is 100 feet above that in the lower. Tabulate the losses

of head which occur, including that at a sharp-edged entry, and determine
the flow in gallons per minute. (Assume /=o-oi). (L U.)

32. A Venturi meter is placed in a horizontal 6 inch pipe, the diameter

of the throat being 2 inches. If the difference of head is equivalent to

10 inches of mercury, find the flow in gallons per minute, and the

velocities. Assume the coefficient of the meter to be |-oq (L.U.)



CHAPTER XXIV.

HYDRAULICS. PRESSURES OF JETS.
CENTRIFUGAL PUMPS.

TURBINES.

Pressure caused by a jet impinging on a fixed plate. A jet of

water impinging on a fixed plate or vane will arrive at the plate with

a certain velocity, and will leave the plate with a velocity changed in

direction and also reduced in magnitude, owing to friction and
eddies. Disregarding the latter, we may examine the examples
shown in Fig. 672. The pressure in each case may be found by first

-v,

(a) () (c) '(d)

FIG. 672. Pressures of jets on plates ; impact cases.

estimating the change in velocity, and hence the change of momentum

per second. The jet section is assumed to be A square feet, and ^
is the velocity of the jet in feet per second.

(a) The jet impinges on a plate fixed at 90 to the axis of the jet.

The water spreads and leaves the plate tangentially in all directions.

Hence the whole of v
l
has been eliminated.

Mass of water reaching plate per second = Av-^w pounds.

Change of momentum per second = Awv-f

A.WV-? .,

Piessure on plate
= Ib.

o

(&) The plate is fixed at an angle to the axis of the jet. As in

(a\ the water will spread and leave the plate tangentially in all

directions. The change in velocity will be the component of v^

perpendicular to the plate, viz. v^ sin 0.

D.M. 2 R
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Mass of water reaching plate per second = Av-^w pounds.

Change of momentum per second = Av
l
zw

1
sin C

= Awv-f sin 6.

AwvS
Pressure on plate

= L
sin6>

Ib.

(c) The jet impinges on a hemispherical cup fixed so as to oppose
the jet axially. The leaving water will be directed backwards with a

velocity equal to v^. Hence the total change in velocity will be 2Vr
Mass of water reaching plate per second = Av-^v pounds.

Change of momentum per second =

Pressure on plate =
g

.,

Ib.

(d) A similar cup to that in case (c\ but the tangent at the cup
exit makes an angle 6 with the jet. The total change in velocity
will be (#! + v

l
cos 0).

Mass of water reaching plate per second = Av-pv pounds.

Change of momentum per second = A
1o/( 1 + ^ cos 0)

= Awv
1

2
(i + COS0).

Awv-? , ,

Pressure on plate
=-

(i + cos #).

In each of the above cases there has been impact, which may be

eliminated by the device of so shaping the vane as to allow of the jet

sliding on to it, i.e. the jet enters the vane tangentially. Fig. 673

-*,

FIG. 673. Pressures of jets on plates ; impact eliminated.

(e\ (/) and (g) are examples. The pressures in the cases of (e) and

(/) will be given by the same expression as that found in case (c),

viz -

2Aaw
1
8

1KPressure on plate
= Ib.

(g) Here the water enters a curved vane with a velocity v\ and
leaves it with an equal velocity #/ (neglecting friction). The change
in velocity is found from the diagram OAB, in which OA represents v

l

and OB represents #/. AB will give the change in velocity vc . Let
be the angle between the entering and leaving jets. Then the angle
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AOB will be (180
-

0), and as the triangle AOB is isosceles, each of

the angles OAB and OBA will be equal to \Q. Hence,

PC_ AB_sin(i8o-0) = sin

sin^0 "sinitf

2 sin 9 cos \0

sin

.*. Vc
=

2^j COS \B.

Mass of water reaching the vane per second = Av^w pounds.

Change of momentum per second = Av-flv x 2V
1
cos

COS Q.

- , nPressure on vane =-*- cos |#.
<b

This pressure acts in the same line as vc .

Pressure of jets on moving vanes. In Fig. 674 is shown a vane

AB making 90 with the axis of a jet of water having a velocity v^

feet per second and a sectional area of A
square feet. The vane is travelling in the

same direction as the jet and has a velocity

v
2
feet per second.

It is evident that the spreading water in

contact with the plate still possesses a forward

velocity z>
2 equal to that of the plate ;_hence

the change in velocity in the direction of

motion of the plate will be (^ - V
2)

feet per second. Further, owing
to the plate moving away from the jet, the length of jet arriving at

the plate per second will be (z^
- #

2). Hence,

Mass of water reaching the vane per second =A(^ v^)w pounds.

Change of momentum per second = A(v1
- v^w(v^ - v

2)

= Aw (v1
- #

2)
2

.

AW(VI-VJJ* 1U / N
Pressure on vane =-i-J-

lb....(i)
o

This case as stated above has no practical value, but becomes of

importance if we have a succession of vanes

brought perpendicularly into the jet one

after another, such as might be realised

by having a number of vanes mounted

on the circumference of a rotating wheel

(Fig. 675). In one second a length of jet

equal to v
l

feet will reach the wheel now.
FIG. 675. A succession of

moving plates.
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Mass reaching wheel per second = Av-^w pounds.

Change of momentum = Kv^v(v^
- v

2).

Pressure on vanes = P = (^
-
v^v^ Ib......... (2)

Work will be done on the wheel by P to the amount of Pv2 foot-lb.

per second, or

Work done per second = (^
-

z>2) v-p2 ft.-lb.......... (3)
o

The efficiency of the arrangement may be found by evaluating the

energy available in the jet. Since Av-pu pounds of water reach the

wheel per second with a velocity v19

T _. ., , . . Av^wv-!
2

Kinetic energy available per second = * -

_,-- . work done
Hence. Efficiency =

energy supplied

Aw , v

(^i-PaWa

Aw

(5)
v?

With a constant supply of water, the work done may be varied by

varying the velocity v
2
of the vanes.

Using (3), the work done per second will be greatest when

(Vi-vz)ViV2
attains its maximum value. Assuming a steady velocity

of supply, #! will be constant, and maximum work will occur when

(^i
"
^2)^2 nas its maximum value. To obtain this value, differentiate

(z/!
-

z>
2)#2

and equate the result to zero, giving

or ty*fa (6)

The efficiency under these conditions may be obtained by substi-

tution in (5), giving

Maximum efficiency = ^ -

v-f

= J = 50 per cent (7)

In connection with hydraulic machines, the term hydraulic efficiency

is employed often, and may be denned thus : Let H = the energy
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supplied per pound of water, and let h = the energy carried away in

the water leaving the machine. Then
TT 7.

Hydraulic efficiency
=

If it is known that there are hydraulic losses in the machine which

produce a waste of hf foot-lb. of energy per Ib. of water, then

H - h - hf
HHydraulic efficiency

Poncelet wheel blade. An efficiency much better than that

possible with a flat vane can be obtained by using vanes suitably

curved. Thus, in Fig. 676, AB
is one of a number of vanes

attached to the circumference of

a revolving wheel and receiving

a jet of water at A. The velocity

of the jet being Vi and that of

the vane at A being Vi, the

relative velocity may be obtained

from the parallelogram ADEC,
in which DA represents -Vi
and CA represents Vi. The

diagonal EA then gives the

relative velocity vr . If the tan-

gent to the vane at A coincides

with EA, the water will slide on
FIG. 676. Blade of a Poncelet water wheel.

to the vane without impact, and

hence there will be no wasted energy owing to shock, a waste which

must occur with the vane shown in Fig. 675.

The water travels round the curve of the vane, preserving unaltered

its relative velocity vr . At the point of exit, B, therefore it will

possess velocities represented by BF = v and BG =V ,
the latter

being the velocity of the vane at B relative to the earth. The

absolute velocity v of the leaving water may be found by completing

the parallelogram BGHF, giving v BH.
Since the water enters with the velocity Vi and leaves with a

velocity v09 the change of velocity may be found by making CK
equal and parallel to BH, when AK = z/c will be the change in

velocity. The resultant pressure P on the vane will be in a line

parallel to ve ,
and may be estimated by taking the change in

momentum per second.
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v z
The energy supplied per pound of water in the jet is foot-lb.

;

2
~

assuming the pressure throughout the stream to be constant and

equal to that of the atmosphere, and disregarding any change in

potential energy, the energy carried away in the water leaving the

v 2

vane will be foot-lb. per pound. The difference between these, viz.

(1)2

_
<D

2\-
i,

2g '
i, may be converted into work done on the wheel. This

v*
difference would be if v were zero, i.e. if vr and V were equal,

*g

opposite, and in the same straight line
;
in this case the whole of the

energy supplied would be converted into mechanical work, and the

efficiency would be TOO per cent. This, of course, neglects frictional

losses and the inevitable lashing of the water, which must occur as

the vanes successively enter the jet. In the Poncelet water wheel,

constructed after this method, an efficiency of nearly 70 per cent.

has been obtained.

Pelton wheel. In the Pelton wheel (Fig. 677), the vanes are similar

to those shown in Fig. 673 (/ ).
Let the velocities of the jet and of

the vane be v^ and V respectively, and

let the shape of the vane be such as to

cause the direction of the leaving water

to be parallel to the entering jet ; usually

#2
is not quite parallel to v

lt the blade

being shaped so as to throw the leaving

water clear of the entering jet as shown

in Fig. 677.

Relative velocity of entering jet and

vane = v^
- V. This relative velocity will

be preserved unaltered as the water

FIG. 677 . Action in a Pelton wheel, travels round the curved vane. At exit,

the water will have therefore a velocity

(v\
~
V) towards the left, together with a velocity V towards the right,

and its absolute velocity will be

v
2
= V-(vl -V) = 2V-v

1
.

As the initial velocity is v
lt we have

Change in velocity
=

v-^
- #2
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Mass of water reaching the wheel per second =

Change in momentum per second = wAv
l
x 2 (vl

-
V).

_ 2Wh.V^ (V,
- V) .,

Pressure on vane = P = - ID.

g
Work done on the wheel per second = PV

Assuming a constant velocity of supply, v
l9 the work done will have

a maximum value when V( 1 V) is a maximum. Differentiating

and equating to zero, we have

Substitution of this value in (2) gives

Maximum work per second =

(3)

^A^.^JLft.-lb.L

2g

Since wAv-^ is the mass of water reaching the wheel per second,
it follows from (4) that the whole of the kinetic energy available

in the jet has been converted into work done on the wheel, i.e.

the efficiency in these circumstances is TOO per cent. Actual

efficiencies of from 70 to 90 per cent, have been obtained.

The hydraulic efficiency may be obtained by dividing the result

given in (2) for the work done per second by the energy supplied
in the jet. Thus,

Hydraulic efficiency
ff

1
- V)

S

This will become unity when

v-jjv
Other types of water wheels, in

which gravity plays the most im-

portant part, have been much used.

In the over-shot water wheel (Fig. 678),

the water is led to the top of the

wheel, and there partially fills a

number of buckets fixed to the

wheel. The weight of these descend-

ing buckets enables work to be done

on the wheel. In the breast-shot FIG. 678. Over-shot water wheel.
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wheel, the water enters the buckets on a level about the same as that

of the wheel centre. The Poncelet wheel is an improved form of

under-shot wheel.

Hydraulic turbines. A hydraulic turbine is a machine in which the

energy of a supply of water is converted into mechanical work by

passage of the water through a wheel furnished with blades or vanes.

In general, the action consists of causing the water to whirl before it

enters the wheel. In this condition it possesses angular momentum,
and the function of the wheel blades is to abstract this angular

momentum and to discharge the water without whirl. A couple will

thus act on the revolving wheel (p. 430), and will produce mechanical

work.

Turbines may be classed generally as impulse turbines and reaction

or pressure turbines. In impulse turbines, the energy of the water is

practically entirely in the kinetic form before the water enters the

wheel, a result obtained by reduction of the pressure head to that of

the atmosphere and by giving the water a corresponding velocity.

In reaction turbines, the energy of the water at the wheel entrance is

partly in the pressure form and partly kinetic.

Turbines may be classed further with reference to the principal

direction of flow of the water. In axial-flow turbines, the flow is

parallel to the axis of rotation of the wheel
;
in inward-flow turbines,

the flow is radial towards the wheel centre ;
in outward-flow turbines,

the flow is radial from the centre to the circumference of the wheel ;

in mixed-flow turbines, the flow is partly radial and partly axial.

The energy available in a given stream or river depends on the

quantity of water flowing per second and on the height of the

available fall.

Let W = flow of water per second, in pounds.
H =

height of fall, in feet.

E = the efficiency of the turbine, all sources of waste being
included.

Then Energy available =WH foot-lb. per second.

Energy produced by the turbine =WHE foot-lb. per second.

H.P. delivered by the turbine = .

55o

If a given horse-power has to be delivered by the turbine, then the

quantity of water which must be passed through the wheel will be

given by 550 x H.P.W = JJ
pounds per second.
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The turbine must be proportioned so as to permit of this quantity

of water being dealt with per second. If the efficiency is not known

with precision, a value of from 70 to 75 per cent, may be assumed.

The general conditions of efficiency in any hydraulic turbine include

the entrance of the water into the wheel without shock, and its

leaving the wheel without whirl and with as little residual velocity as

possible. Further, the guide passages and the passages through the

wheel must be shaped so as to offer the minimum frictional and

eddy-forming resistance to the flow of water.

Impulse turbines. The Girard turbine shown in outline in Fig. 679
is an example of an impulse turbine. The water-supply flows from a

FIG. 679. Action of a Girard impulse turbine.

chamber AA through a ring of guide orifices BB. These orifices are

furnished with guide blades which cause the water to leave the orifices

with whirling velocity. The water then passes through a revolving
wheel CC fixed to a vertical shaft DD, and is discharged into the tail

water EE. The wheel passages are furnished with blades having
such a shape as to abstract the velocity of whirl from the water. The

guide passages BB run full of water, and at their discharge edges the

pressure of the water is equal to that of the atmosphere. The main-

tenance of atmospheric pressure in the wheel passages is obtained (a)

by having thin streams of water on the concave sides of the blades

only, (b) by having side openings in the wheel as shown at EE in

Fig. 680
;
these openings permit of free access of air to the streams of

water passing through the wheel.

It will be evident that the wheel of a turbine of this type must be

situated above the level of the tail water, so as to permit of the access

of air. If h feet is the height of the lower edges of the guide
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orifices above the tail water (Fig. 679), then the head available for

giving velocity to the water at these edges will be (H -
h) feet, where

H is the difference in levels of the supply and the tail water.

+ ' D

FIG. 680. Blades of an axial-flow impulse turbine.

Assuming a coefficient of velocity of 0-95, we have for the velocity

Vi of the water leaving the guide blade :

Vi = Q-g^2g(H-h) (i)

In Fig. 680, AB and CD are the guide blade and the wheel blade

respectively. Let a be the angle to the horizontal made by the

tangent to the guide blade at B. Vi will have horizontal and vertical

components, represented by Wi = da and Ui = ba respectively in

Fig. 68 1 (a\ the parallelogram of velocities being abed. Hence,

U{ = vl sin a, (
2
)

Z'i = >i COS a, (3)

Let V be the circumferential velocity of the wheel at its mean

radius. Then the relative velocity Vri of the inlet water and the wheel

I

FIG. 681. Velocity diagrams for an axial-flow impulse turbine.

maybe found by making ea represent -V (Fig. 68 1 (a)) and com-

pleting the parallelogram of velocities aefc; fa then represents VH.

Let be the angle whichfa makes with the horizontal. Then the

angle with the horizontal made by the tangent to the wheel blade at
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C (Fig. 680) should be made equal to 6
;
the inlet water will then

slide on to the wheel blade without shock. Referring again to

Fig. 68 1 (a), we have

Also,
=

Ui ba

'. Vri
= UiCOSecO............................... (5)

The relative velocity remains unchanged in magnitude by passage
over the wheel blades ; hence, at the exit D of the blade (Fig. 680),

the water will have an absolute velocity v
,
which is the resultant of

component velocities vro = Vri and V, the mean circumferential velocity

of the wheel at the outlet. In Fig. 68 1 (b\ make kl= V, draw km
vertical (as is required for the condition of no whirl at the outlet),

and describe an arc with centre / and radius Im = vro ;
the parallelo-

gram of velocities for the exit water will then be klmn. vro is at an

angle < to the horizontal, and the tangent to the wheel blade at D
(Fig. 680) should be at the same angle. In Fig. 68 1 (b\ we have

V kl= = cos $.
vro Im

kl V
cos < =

-j
= ................................. (6)Im vro

v km .

Also,
= j = sin

</> ;vro Im

.'. V = Vro Sm (f>
= Vri SU1 < ...................... (7)

Having found a, and <, the guide and wheel blades may be

constructed by drawing easy curves tangential to these directions.

Since the pressure at D (Fig. 680) is atmospheric, we may write

Total energy carried away by one pound of exit water = ft.-lb.

o

Total energy available in the fall, per pound of water = H ft.-lb.

Hence the hydraulic efficiency, i.e. the efficiency disregarding all

sources of waste excepting the energy carried away in the leaving

water, is given by V(?
rl --

2 ^*

Hydraulic efficiency
=

77-^-................... (8)
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EXAMPLE. Taking practical values as follows :

find the other velocities and angles of an axial-flow impulse turbine.

Find also the hydraulic efficiency.

From (i) and (2), sin
a=^*=^ =0-474 J

/. a= 29 nearly.

From (3), wi= -z/i cos a= (0-95 x o-<

From (4),

From (5),

n Wi-V 0-83-0-15= = *- -0735;
0-45ui

cot

.'. 0=54 nearly.

i
= Vro= Ui COSCC 8

From (6), cos <= = =0-898 ;

/. < = 26 nearly.

v = vri sin
<f>
=

(o- 5 5 7 x 0-438)

7/0= 0-24 V^H", we have, from (8),

H
Hydraulic efficiency =

From (7),

Taking

ig H-0-0576H
H^" H

=0-9424
= 94 per cent, nearly.

The actual efficiency after all sources of waste are taken account of in

this type of turbine is about 75 per cent.

Impulse wheel passages. It will be noted from the above example
that the ratio u . .4 r

= ^-=1-84.
V 0-244

Now Ui is the component velocity of the water entering the wheel

taken at 90 to the inlet surfaces of the wheel
;
the quantity of water

flowing into the wheel will be given by

Qi = UiAi cubic feet per second,

where A* is the total inlet surface in square feet.

Again v is the leaving velocity of the water, perpendicular to the
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exit surfaces of the wheel
;

hence the quantity of water leaving

the wheel will be

Qo = v A cubic feet per second,

A being the exit surface in square feet.

It is evident that Qi and Q must be equal. Hence,

or
A Ui

In practice, this increase of outlet surface is obtained by splaying

the wheel passages as shown in the section in Fig. 680. If Q, the

quantity of water in cubic feet per second which must be passed

through the wheel, be known, the dimensions of wheel required

may be calculated from

ji.^f/f) 2 "D 2\ / f\\

where R
x
and R

2
feet are the external and internal radii respectively

of the wheel at the inlet surface. A correction must be applied to

this for the area abstracted owing to the thickness of the wheel blades

at entry.

Work done and horse-power developed. In Fig. 682 is shown

roughly the actual path, or the path relative to the earth, of a particle

of water passing along the

guide blade AB and then

pursuing the curve CPD
through the wheel. At any

point P, the resultant velocity

v of the water is made up of

components w in the direc-

tion of the motion of the

wheel, and u in a direction

parallel to the axis of rota

tion. The water enters the

wheel with a velocity Vi at

an angle a; to the inlet

surface, and leaves with a

velocity v making an angle
a with the outlet surface,

and outlet respectively will be

FIG. 682. Change of angular momentum in an
axial-flow turbine.

The whirl components at the inlet
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Let R = the mean radius of the wheel, in feet.

V = the circumferential velocity of the wheel at its mean

radius, in feet per second.

V
o) = = the angular velocity of the wheel, in radians per

second.

W = the flow of water passing through the wheel per

second, in pounds.

Then, considering the momentum of the water in the direction

of motion of the wheel, we have

Momentum of one pound of water at the inlet = i xwi = Vi cos c^.

,, ,, ,, outlet = i x w =-v coso. .

Angular momentum per Ib. of water at the inlet = R^ cos c^.

outlet = Rz> cosa .

Change in angular momentum per Ib. of water

= R(#i cos a;
- v cos a

).

Total change in angular momentum per second

= WR(#; COS a;
- V COS <X

).

Couple required to effect this change (p. 431)

=WR (vj cos a.j
- v cos a

)

g
Work done per second by this couple

WR(7'i COS a-i
- V COS a )

^

If v is parallel to the axis of the wheel, as is required by the

condition of no whirl at the outlet, then
' r*os ex

*

Work done per second on the wheel = ft.-lb. ...(10)

j /N
H.P. developed = .......... (n)-

In this result, no allowance has been made for wasted energy

while the water is passing through the wheel, nor for the frictional

waste in the wheel bearings, etc.

Regulation of the power developed in this type of turbine is

effected by means of gates or sluices, which close as many as may be

required of the guide orifices.
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Fig. 683 shows in outline part of an outward flow impulse turbine

suitable for high falls. The water flows from a passage A through
nozzles B, and thence through the wheel

passages. As before, the water flows in

streams along the concave sides of the wheel

blades, and the pressure is kept equal to

that of the atmosphere by means of side

openings.

Reaction turbines. The Jonval turbine

may be taken as an example of an axial-flow

reaction turbine, and is shown in outline in

Fig. 684. The water flows from AA through
a ring of guide orifices BB, and thence

through the wheel passages CC. Both guide

passages and wheel passages run full of water, and the turbine wheel

may be below the level of the tail water, as shown. Hence the

I

I 'I

I

FIG. 684. Action in a Jonval reaction turbine.

whole head H is available in this type of turbine. For greater

accessibility, the turbine may be inclosed in a casing and placed
above the level of the tail water

;
the whole head H will be available

still if the discharge from the turbine casing is arranged through a

suction tube which has its mouth opening below the level of the

tail water. The suction tube must run full bore.

The diagrams showing the velocities of the water and the angles
of the guide and wheel blades are given in Figs. 685 (a) and (b}.

The constructions are the same as for the axial-flow impulse turbine

already described (p. 634), and the diagrams are lettered in the same
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manner. The guide and wheel blades are shown separately in

Fig. 686.

FIG. 685. Velocity diagrams for an axial-flow reaction turbine.

Pressure variation in an axial-flow reaction wheel. In this type

the inlet and discharge areas of the wheel are equal ;
hence the inlet

and outlet velocities of flow Ui and u in Fig. 685 (a) and (b) are equal.

It will be evident therefore from these diagrams that the relative

velocity at the outlet, vro represented by kn, must be considerably

larger than the relative velocity at the inlet, vri represented by fa.

D D

FIG. 686. Blades of an axial-flow reaction turbine.

In Fig. 687, CPD is the wheel blade, and EPF shows approximately
the path of the water through the wheel, the discharge velocity

u = v at F being axial. At any point P, the actual velocity v of the

water is made up of a constant component V, equal to the circum-

ferential velocity of the wheel and a component vr tangential to the

blade, and increasing from a value vri at the inlet to vro at the outlet.

In consequence of this increase in velocity, there will be a decrease

in pressure from the inlet to the outlet.

Let OX be taken as a datum level, the top of the wheel being at
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an elevation hw above OX, and apply Bernoulli's equation, neglecting
friction. Let Pi and P be the pressures in Ib. per square foot at the

FIG. 687. Pressure variation in an axial-flow reaction wheel.

inlet and outlet respectively, and let w be the weight of a cubic foot

of water. Then

.W 2g IV 2g

Let hi and h be the pressure heads corresponding to P, and

P respectively. Then the above equation may be written :

2 2

or (i)

(hi
- h

] represents the portion of the total available head H, which

is utilised in overcoming the pressure resistance in the wheel ; the

remainder of H may be used for giving the velocity vt to the water at

the discharge edge of the guide blade. In Fig. 685 (I))

As may be seen from inspection of Fig. 685 (a), no great error will

be made by assuming that HI and Vn are equal. Hence,

^arly.

We may therefore write (i),

hi
- h =

P.M.

V2

= --/^ nearly.

2 S
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Hence the head available for producing the velocity Vi is given by

Velocity head = H -
(hi- h

)

(3)

And ^ = A/'
V2

Practical values for the velocities are

u = Ui
= O'i&\/2glrL feet per second.

V = o-64\/2^H feet per second.

#i = o-7s/2-H to 0-8 \/2-H feet per second.

The relations of the velocities and angles may be deduced from

Fig. 685 (a) and (b\ giving equations similar to those already found

for the Girard turbine (p. 635). If there is no whirl at the outlet,

the work done per second and the horse-power may be found in the

same manner as for the impulse turbine, and will lead to equations
similar to (10) and (n) (p. 638).

Work done per second on the wheel = - foot-lb (4)
>

i , ,

H.P. developed =- ...................... (5)
55 <?^

"V^7/

Also, Work done per Ib. of water = *
foot-lb.

Energy available per Ib. of water = H foot-lb. ;

.". hydraulic efficiency
=
-^~ ......................... (6)

Inward-flow reaction. turbine. The Thomson turbine, of which an

outline diagram is given in Fig. 688, is an example of the inward-flow

reaction type. The water enters a large casing furnished with guide

blades, which cause the water to whirl as it moves towards the centre

of the casing. The water flows through the wheel, and is discharged

through central orifices which open sideways. Velocity diagrams are

given in Fig. 689, and a part cross section of the wheel is shown also

in this illustration. AB is one of the guide blades, and the water is

delivered from it at B with a velocity Vi . By means of the parallelo-

gram of velocities Bd^, Vi is resolved into a radial component Ui and

a tangential component wi. The guide blade at B is tangential to

<rB, which makes an angle a with </B, the latter being tangential to

the inlet surface of the wheel at C. The circumferential velocity of
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the wheel at C is Vi ; by making eC to represent
- V; and completing

the parallelogram <?/^C, the relative velocity vr i is found and is repre-

FIG. 688. Thomson inward-flow reaction turbine.

sented by /C, making an angle 9 with Cd. The wheel blade CD is

drawn so as to be tangential to/C at C.

At the wheel blade outlet D, the water possesses a velocity vn
relative to the blade, together with a velocity V ,

the latter being the

FIG. 689. Velocity diagrams for an inward-flow reaction wheel.

circumferential velocity of the wheel at D. The resultant of these

will give v
,
the absolute velocity of the water discharged from the

wheel. To meet the condition of no whirl at the wheel outlet, v
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should be radial. Draw Dm radial and equal to z>
,
make /D equal

to V and complete the parallelogram \)lmn
;
vro will be given then

by D, making an angle </> with the tangent /D to the wheel at D.

The wheel blade at D should be made tangential to riD.

The dimensions of a wheel of this type are determined from the

required flow of water and the area of the outlet passages required to

accommodate this flow. In Fig. 689, let

Ri and R = the inlet and outlet radii respectively, in feet.

Bi and B = breadths

Then, since the velocity of the water perpendicular to the exit

circumference of the wheel is %, we have

Flow of water = v x 27rR B cubic feet per second.

It is usual to have the same values for the radial components of

the inlet and outlet water ; hence ^ and V will be equal. Now, HI is

the velocity of the water perpendicular to the wheel inlet surface.

Hence,
Flow of water = ui x 27rR$Bf

= v x 27rR^B$ cubic feet per second.

As the inlet and outlet flows must be equal, it follows that

or

It is advantageous in the Thomson turbine to make R$ double of

RO ;
hence B will be double of B$. In making the above calcula-

tions of the flow of water, no allowance has been made for the area

abstracted by reason of the thickness of the wheel blades. The
wheel shown in section in Fig. 689 is double, and has two side

discharge orifices at the centre, each of radius R
; assuming that the

velocity of the water through these is v
,
we have

Flow of water = v x- 27rR 2 cubic feet per second,

a result which enables R
,
and hence the other wheel dimensions, to

be calculated when v is known.

Variation of pressure in a radial-flow reaction wheel. It will be

noted from the diagrams of velocity in Fig. 689 that the outlet

relative velocity vro is considerably larger than the inlet relative

velocity Vn. Hence, as explained on p. 640, there will be a fall in

pressure as the water passes through the wheel, the fall being given by

v
2 -v2

.

Fall in pressure due to the change in relative velocity
= feet.
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There is also centrifugal action on the water which is passing

through the wheel, the effect being also to cause the inlet pressure to

be greater than the outlet pressure.

In Fig. 690, the actual path of the water through the wheel is

BPE, and CD is the wheel blade. At any point P, the absolute

velocity v of the water may be resolved into components vr tangential

to the blade, and V in the direction of motion of the wheel. The

magnitude of V will be proportional to the wheel radius at P, and the

-h.

(b)

FIG. 690. Pressure variation in a radial-flow

reaction wheel.

D
jH

F

fr. R

FIG. 691.
- Pressure variation in a

whirling tube.

centrifugal effects owing to V may be examined by reference to

Fig. 691 (a). ABCD is a closed tube full of water and rotates with

angular velocity w about a vertical axis XY. The cross section of

the water is taken as one square foot in area, and the radii are

measured in feet. At any radius /*, the pressure on the section EF
may be found from the general equation :

(p. 425)-

In the present case,

M = mass of water in AEFD
= i y.rxw pounds.

Hence, lb. per square foot.
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Now, the circumferential velocity of the tube at radius r is given by

WV'
. . r =- Ib. per square foot.

Let h be the pressure head corresponding to P. Then

, P v* .

h = = feet.W 2g

At sections BC and GH, where the circumferential velocities are

TJ
I
and z>

2 respectively, the pressure heads will be

v 2 v 2

h~ = feet, /L = -2- feet.

2<T 2g

The difference in pressure heads at BC and GH will be

2 - 2
_

feet.

In Fig. 691 (/;),
h and r have been plotted; it is evident that, as

h varies as z/
2
,
and v varies as r, the shape of the curve is parabolic.

Application of this result to the radial flow turbine (Fig. 690) gives

for the difference in pressure caused by centrifugal action

Taking account of the change in pressure head due to the change
in relative velocity, we have for the total difference in pressure heads

at inlet and outlet 9
V-2 Vn2 V V -

This expression gives the portion of the total available head H
which is required in order to overcome the pressure in the wheel

;

the remainder is available for giving the velocity Vi to the water

leaving the guide blade. The result is applicable to both inward and

outward radial-flow turbines.

It will be noticed that any increase in the speed of rotation of the

/V -2 - V 2\
wheel will cause (- M to increase, and hence the difference in

the pressures at the inlet and the outlet also will increase. In

inward-flow turbines, the effect of this increase in pressure will be to

diminish the flow of water through the wheel
;

the water is held

back, as it were, by the increase in centrifugal force. Now, a

diminished flow of water results in less power being developed, and

thus will tend to lower the speed of the wheel; hence inward-flow
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turbines are to a certain extent self-governing. In the Thomson

wheel, advantage is taken of the self-regulating centrifugal action by

making the outer diameter of the wheel double of the inner diameter.

In outward-flow turbines, the centrifugal action causes an increase

in flow if the speed of rotation of the wheel becomes greater, and

thus is entirely opposed to self-regulation. For this reason, outward-

flow turbines have the wheel diameters at outlet and inlet more

nearly equal ;
the outer diameter in practice may be from 1-2 to

1-25 times the inner diameter. Practical values of the velocities

may be as follows :

Ui = u = o- 1 25N/2H feet per second.

V$ = o-66<x/2H feet per second.

Vi
= o-73\/2-H feet per second.

Efficiencies in practice of from 75 to 80 per cent, "have been

obtained with Thomson turbines.

Power developed in radial-flow reaction wheels. Let Wi and

w be the inlet and outlet velocities of whirl respectively, and consider

one pound of water passing through the wheel.

Angular momentum of inlet water = w^i .

outlet =w R .

Change in angular momentum per pound of water = w,Ri -
ze/ R .

Let W be the flow of water in pounds per second. Then

Total change in angular momentum, per second = W(wiRi - w R
).

W(o/iRi
- w R ) .,

Couple acting on the wheel = -^
- Ib.-feet.

A

Work done by this couple =
w

(Wi^ W R )
o> ft.-lb. per sec.

H.P. developed =

If there is no whirl at the outlet, w will be zero, and w may be

, W^R; V;
H.P. developed = - =-

55Ar R*

V-
written ~. Hence,

w-V-
Also, Work done per pound of water = l 1

ft.-lb. per sec,
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If H is the total fall available, then in each pound of water supplied
there is energy represented by H foot-lb. Hence,

Hydraulic efficiency
= ^ .

These results are applicable to both inward and outward-flow

turbines.
HD

A

s^

FIG. 692. Section of an outward-flow reaction wheel.

Outward-flow reaction turbine. A part section of an outward-

flow turbine is given in Fig. 692. The water flows through

FIG. 693. Velocity diagrams for an outward-flow reaction wheel.

a passage A furnished with guide blades, and passes through
the wheel C, which has blades at B. In this wheel, the passages

at B are divided into three

compartments by means of

horizontal partitions, the effect

being to produce three wheels.

Regulation of the power is

effected by means of a cylin-

drical gate* or sluice, shown in

section at D, and capable of

vertical movement. By adjust-

ing D, one, two or all of the

wheel compartments may be

used, thus giving considerable
FIG. 694. -Blades for an outward-flow reaction variation ill the DOWCr.

turbine.
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The velocity diagrams are given in Fig. 693 (a) and (), and the

guides and wheel blades are shown separately in Fig. 694. These

diagrams are lettered to correspond with those already given, and will

be understood readily. The following practical values may be

assumed: -^
feet per second.

feet per second.

^= 0-6 N/2^H feet per second.

Centrifugal pumps. Water may be raised from a lower to a higher
level by means of a centrifugal pump, in which the water flows

through a revolving wheel driven from some

source of power ;
the function of the wheel is

to impart additional energy to the water, and
this is converted into potential energy by

allowing the water to flow up a discharge

pipe into an elevated reservoir. The general

arrangement will be understood by reference

to Fig. 695, in which the wheel is situated at

B and takes its supply of water from A.

The water is discharged at C into a pipe which

opens at D into a tank E. A back-pressure
valve at A prevents the water flowing back

into the lower tank when the wheel is at rest.

The pump may be situated below the level of

the supply water, or above this level, as shown
in Fig. 695 ;

in the latter case, the pressure of

the atmosphere causes a flow up the pipe AB.
Before any centrifugal pump will start dis-

charging, it must be charged fully with water.

In Fig. 696 is shown a centrifugal pump
in more detail

;
water enters at A, and is led

to central orifices situated on both sides of the ^'^nHfogafp^p*
**

wheel B. The wheel is furnished with curved

blades, and is driven in the contra-clockwise direction. The water

is discharged at the outer circumference of the wheel into a chamber

C
;
the discharge pipe is connected to this chamber at D. The

action is very similar to that of a reversed inward-flow reaction

turbine, and the theory is also similar.

Velocity diagrams for a centrifugal pump. Velocity diagrams are

given in Fig. 697. At the inlet edge A of the wheel blade AB, the

absolute velocity vi of the inlet water may be assumed to be radial,
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and hence is equal to //;. The circumferential velocity of the wheel

at A is Vj ;
if <:A be made equal to - Vj and tangential to the circum-

ference at A, and aA drawn radial and equal to v^ then the diagonal
bh. will represent the relative velocity of the water and the wheel

blade at the inlet. The tangent to the blade at A should coincide

with ^A in order that the water may enter the wheel without shock.

FIG. 696. Sections of a centrifugal pump.

Let Q = flow of water through the wheel, in cubic feet

per second,

i and R = the inlet and outlet radii respectively of the

wheel, in feet.

^ and B = the inlet and outlet widths respectively of the

wheel, in feet.

Q = 2irRiBi//i

= 2;rR^B^ for radial velocity of inlet ( i
)

The wheel is made less in breadth at the outlet surface usually, and

as the same quantity Q is discharged, we have

Q=

Then
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Hence, = 27rR B ^

or

It is usual to preserve the velocity of flow constant, i.e.

Ui = u
;

(2)

Also,

R,
(3)

The velocity diagram may be constructed for the outlet B (Fig. 697)
as follows : Make B</ equal to V and tangential to the wheel circum-

ference ; draw <?/" parallel to B</ and at a distance u =
Ui, represented

FIG. 697. Velocity diagrams for a centrifugal pump.

by Eg from it. A value is then chosen for <, the angle which the

tangent to the blade at B makes with the outer circumference of

the wheel, and de is drawn at the angle <f>
to </B. Completion of the

parallelogram B^/will give the relative velocity vro , represented by

B/j and the absolute velocity v of the water leaving the wheel, repre-

sented by B<?. The wheel blade at B is drawn tangentially to B/!

vn has a radial component u = ^g and a whirl component w
,

represented by ge.

Work done on the wheel.

Let W = the flow of water, in pounds per second.

w = the angular velocity of the wheel, in radians per second.
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Then, as there is no whirl, and therefore no angular momentum in

the inlet water, we have

Change in angular momentum per second = Wz; R .

Couple which must be applied to the wheel = - Ib.-feet.

o

Work done per second by this couple = - w foot.-lb.

Also,

Ww V
.'. work done per second by the couple = - foot-lb. ...(4)

<b

H.P. required = . ...(5)
55*-

It will be noticed that these results take no account of any sources

of waste.

If Hm represents the maximum height through which the water

could be raised, neglecting wasted energy, then

Work done per second =WHm = W
(from 4) ;

<b

(6)

Let H feet be the actual height through which the water is raised

(Fig. 695), and let VD be the velocity in the discharge pipe. The

discharge energy at D will be

v 2

Energy of discharge = H + -^ foot-lb. per pound of water.

It will be evident that the kinetic energy at discharge is entirely

wasted in surging and eddies in the upper tank. Other sources of

wasted energy external to the pump casing are owing to frictional

resistances in the suction and discharge pipes. Let HF feet represent

the head equivalent to the frictional waste of energy in these pipes.

Then the gross lift of the pump will be denned as

Gross lift = HG = H + HF +^ feet.................. (7)

The total disposal of energy outside the pump casing will be

represented by

Energy disposed of outside the pump casing
=WHG foot-lb. per sec. (8)
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The ratio of this quantity to the work done per second in the

wheel, given by (4), is the hydraulic efficiency of the pump. Hence,
for radial flow at the wheel inlet, we have

Hydraulic efficiency
= EH =WHG

-Ww V = ..........
(9 )

Within the wheel casing, in addition to frictional waste in the

passages, there is waste from shock due to the velocity v at the

wheel exit being greater than the velocity #D in the discharge

pipe. It is rarely the case that any effective means are taken for

ensuring that v shall diminish to VD in such a manner as to produce
an effective increase in the pressure head. More usually the waste is

complete, and the pressure head at the connection of the discharge

pipe to the wheel case is equal to that at the exit circumference of

the wheel. As has been noted already, the kinetic energy of the

water in the discharge pipe is wasted entirely in the upper tank
;

it

therefore follows that the waste, in addition to that due to friction,

will be the whole kinetic energy of the water leaving the wheel exit,

Vo
2

viz. -- foot-lb. per pound, and the maximum height of lift given in

(6) will be reduced to this extent.

Again, a centrifugal pump, having been designed for a constant

speed of rotation and for a given flow of water, will have a definite

angle 6 (Fig. 697) for the wheel blade at the entrance A. If any

change be made in the speed of the wheel or in the velocity of flow,

the fixed angle will not suit the altered conditions, and there will

be waste of energy by reason of shock at A. Further, the assumption
of radial velocity of the entering water is approximate only, as there

are no guides in the central orifices of the wheel to ensure constant

direction in the flow of water.

In obtaining the actual efficiency EA of the whole arrangement, the

energy wasted in overcoming the frictional resistances of the wheel

bearings also must be considered. Taking, as before, a flow of W
pounds per second raised through an actual height H feet, we have

Useful work done =WH foot-lb. per sec.

The energy which must be supplied to the pump shaft will be

given by >

WH
Energy supplied to pump = -= foot-lb. per sec.......... (10)

^A

WH
Horse-power required to drive the pump = --=- ................... (

1 1
)
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Variation in pressure in the wheel. The change in pressure head

of the water passing through the wheel may be deduced in the same

manner as for the inward-flow turbine discussed on p. 644. Referring

to Fig. 697, it will be noted that the centrifugal action is to cause

the pressure . to increase in flowing from A to B
;
vro being greater

than Vrij there will be a decrease in pressure owing to the change in

relative velocity. Hence, the total difference in pressure heads at

A and B respectively will be

2 -
feet. .(12)

The changes of pressure which occur in the whirling mass of water

passing through the wheel and casing of a centrifugal pump may be

studied in more detail. In Fig.

698 is shown a tank A containing

a pump wheel B, which may be

rotated by means of a shaft and a

pulley at C. Water may flow into

the wheel through the pipe D.

Suppose that the wheel is revolving

at a given speed, sufficiently large

to cause the water to rise to the

level EF, and to remain constant

at this level. No more water will

flow into the wheel; the water

contained in the wheel passages

will whirl with the wheel, and the

water in the tank will be at rest, save for the frictional drag given
to it by the revolving wheel. As there is no flow, the changes
in pressure head inside the wheel will be owing entirely to centri-

fugal action, and these will follow the law already explained on p. 645.
The pressure heads are shown by the shaded diagrams abed and

a'b'c'd'
;

if the water were whirled in a revolving open cup instead of

in the wheel, the form of the vertical section of its surface would be

that of the curves ad and dd\ and the state of motion is called

a forced vortex. It will be noted from what has been said on p. 645
that the condition for a forced vortex is that the whole of the whirling

water possesses the same angular velocity.

The conditions illustrated in Fig. 698 are realised in a centrifugal

pump often if the speed of the wheel be insufficient to cause the

water to reach the level of the mouth of the discharge pipe. In such

FIG. 698. Pressure variation in a revolving
wheel : no flow of water.
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a case, there is, of course, no flow, and hence no work is done other

than that against frictional resistances.

Free vortex. A free vortex may be produced easily by rilling

with water a circular vessel having a central plug, stirring the water

and then drawing the plug. The shape
assumed by the water will be found

to resemble that shown in Fig. 699,

which has been plotted from calculated

results. In such a vortex, the condition

is that although interchanges of kinetic,

pressure, and potential energies may
take place freely throughout the mass

of water, the total energy per pound of

water remains constant.

FIG. 699. A free vortex.

In Fig. 700 (), AB is a portion of

the surface of a free vortex. At any
point P, at a distance y feet from the

free surface level OX, and at radius

x feet from the axis of the vortex, the resultant R of the centrifugal
force F and the weight W of a particle of water must cut the surface

of the vortex normally. This is owing to the fact that the surface at

P is exposed to the pressure of the atmosphere, which is a force

acting normally on the surface.

B 6

FIG. 700. Forces acting in a free vortex.

Consider a mass of m pounds of water at P. The centrifugal force

F will be poundals, where v is the velocity of whirl in feet per
oc

second
;
the weight W will be mg poundals. Hence,

W mg gx
F

~~

mzfi
~
v2

'

x

Now, owing to the change of potential energy into kinetic energy
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caused by the water descending through a height y at constant atmos-

pheric pressure, we have V2 _ 2gy
.

. W gx x
'

"F
=
2^

=
2/

In Fig. 700 (I)} another point P' has been taken very close to P
;

y is increased now by a small amount Sy, represented by P'd, and x
is diminished by a corresponding small amount (

-
8x), represented

by Pd. The triangles aPc in Fig. 700 (a) and dP'P in Fig. 700 (b)

are similar. Hence, W ac Pd

or ^- = .

Let Sx and 8y become very small, and integrate both sides, giving

i (dy (dx

*jy
=
~J^'

where c is a constant to be determined by the given conditions.

The result may be written i c

or
a

y= ^'
where a is an arbitrary constant.

\'J. 701. A free vortex formed outside a revolving wheel.
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In Fig. 701, water is discharged from a rotating wheel into a

circular tank, and allowed to form a free vortex. If H is the height
in feet of the free surface level above the whee\ centre, R the radius

of the wheel in feet and V its rim velocity in feet per second, then

or
V2

H = .

Hence, from (2),

or a =
V2R2

Hence, equation (2) becomes, in this case,

V2R2
y= (3)

This is the equation used in plotting the vortices shown in

Figs. 699 and 701.

In Fig. 702 is shown a wheel A surrounded by a chamber B,

which is open to an ordinary volute chamber C. The water whirled

FIG. 702. Pressure variation in a wheel having a whirlpool chamber.

out of the wheel moves through the chamber B in spiral stream lines,

and the changes in pressure follow the free vortex law approximately.

This is shown in the pressure diagrams by the curves cd and cd\

D.M. 2T
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The water in the wheel itself follows the forced vortex law approxi-

mately, shown by the curves de and d'e '. The chamber B, called

the whirlpool chamber, was suggested by Prof. James Thomson
;

it

has not been used to any great extent in practice on account of the

very large dimensions required if the chamber is to be effective in

permitting the changes from kinetic to pressure energy to be effected

gradually.*

High lift centrifugal pumps. The lift which can be obtained by
use of an ordinary centrifugal pump is limited by the speed at which

the wheel can be run without exceeding safe limits of stress in the

material. By the use of several wheels in series, so that the water

leaving one wheel is delivered to the next wheel of the series, almost

any lift can be obtained. Fig. 703 shows such a pump constructed

FIG. 703. Multiple-wheel centrifugal pump for high lifts.

by Messrs. Mather & Platt, for the purpose of mine drainage.! There
are seven wheels in series, the first being that on the right-hand end
of the shaft. This pump is capable of delivering 2500 gallons per
minute to a height of 2000 feet when running at 1450 revolutions

per minute, and absorbs over 1900 horse-power at the spindle.
Students desirous of further information in hydraulics are referred

to the following standard works :

(a) Hydraulics, Prof. A. H. Gibson (Constable); (b) Hydraulics,
Prof. W. C. Unwin (Black) ; (c) Hydraulics, F. C. Lea (Arnold).

*See "Experiments on the Efficiency of Centrifugal Pumps," by Dr. Stanton.

Proc. Inst. Meek. Eng., 1903, p. 726.

t
" The Evolution of the Turbine Pump

"
; Hopkinson & Chorlton. Proc. Inst.

Mech. Eng., January 1912.
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EXERCISES ON CHAPTER XXIV.

1. A jet of water having a sectional area of 0-5 square inch and
moving with a velocity of 40 feet per second impinges on a fixed flat plate.
Find the pressure on the plate when the jet makes angles of o, 30, 45,
60 and 90 with it. Plot a diagram showing the relation of pressure and
angles.

2. The jet of water in Question I slides tangentially on to a fixed vane.
Find the pressures on the following vanes, given that the tangents to the
vanes at the leaving edges make angles with the jet of o, 30, 60, 90,
120, 150, 1 80. Plot a diagram showing the relation of pressures and
angles.

3. A jet of water issues horizontally from a trumpet orifice one inch
diameter under a head of 4 feet. It impinges normally on a flat plate ;

calculate the pressure on the plate (a) when the plate is receding from the
orifice with a velocity of 2 feet per second, (ft) when the plate is approaching
the orifice with a velocity of 2 feet per second.

4. In Question 3, calculate the work done in each case. Under what
conditions of plate velocity would there be zero work done ? Sketch a

diagram showing approximately the work done between the limiting
velocities of plate (a) equal to and of the same sense as the velocity of the

jet, (b] equal to and of opposite sense to that of the jet.

5. An overshot water wheel is supplied with 2 cubic feet of water per
second. If the fall available is 30 feet and if the efficiency is 60 per cent,
what horse-power will be developed ?

6. In an undershot water wheel, the water is supplied under a head of

3 feet and passes through a sluice 4 feet in width and 6 inches in height.
Calculate the flow through the sluice, taking the coefficient of discharge
to be 0-6. Hence calculate the horse-power developed by the wheel if the

efficiency is 40 per cent.

7. In a Poncelet water wheel, the velocity of the jet is 25 feet per
second and the velocity of the rim of the wheel is 15 feet per second. If

the direction of the jet makes an angle of 15 with the tangent to the
wheel circumference at the entrance, what angle should the tip of the

wheel vane make with the same tangent ?

8. In a Poncelet water wheel, the velocity and direction of the jet are

the same as those given in Question 7. The tip of the wheel vane makes
an angle of 28 with the tangent to the wheel circumference. Find the
circumferential velocity of the wheel.

9. A wheel 3 feet in diameter makes 250 revolutions per minute and
has radial vanes. Water flows through the wheel from the outside to

the centre, and has a radial component of 6 feet per second at the inlet.

If shock is to be avoided, find and show in a diagram the direction angle
of the entering water.

10. A Pelton wheel is 30 inches in mean diameter and is supplied with
water under a head of 1500 feet. If the jet is i inch in diameter, find the
best speed in revolutions per minute of the wheel and also the horse-power
developed if the efficiency is 80 per cent.
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11. In a Girard axial-flow impulse turbine having a horizontal wheel,
the internal and external diameters of the wheel at the inlet are 33 and 39
inches respectively, the mean diameter being 36 inches. The total

available fall is 20 feet and the delivery edges of the guide vanes are

1 8 inches above the tail race.

(a) Find the velocity of the water leaving the delivery edges of the

guide vanes, taking the coefficient of velocity as 0-95.

() The axial component of the velocity (a) is to be 0-45 of the result

you have found in (a). Find the angle made by the tips of the guide
blades with the horizontal at the mean diameter.

(c) Calculate the flow of water through the wheel in Ib. per second,

neglecting the sectional area abstracted by the guide and wheel vanes.

(d) What is the total energy per second available in the fall? If

the efficiency of the wheel is 75 per cent., what is its probable horse-

power ?

(e) The mean circumferential velocity of the wheel is to be 0-5 of the

velocity calculated in (a\ and the water leaves the wheel with axial

velocity only. The relative velocities at inlet and outlet are equal. Find
the angles to the horizontal of the vanes at the mean wheel circumference
at inlet and outlet respectively. Draw the curve of the vane. Find also

the speed of the wheel in revolutions per minute.

(f) Find the absolute velocity of the leaving water, and hence calculate

the hydraulic efficiency.

(g) From (b\ find the velocity of whirl of the entering water.

Assuming no whirl at the outlet, calculate the couple in Ib.-feet acting on
the wheel, the work done by this couple in foot-lb. per second and the

horse-power developed by it.

12. In an axial-flow reaction turbine having a horizontal wheel, the

mean circumference velocity V of the wheel vane is 16 feet per second,
the inlet velocity Vi of the water is 18 feet per second and the axial com-

ponents HI and u of the velocity of the water at inlet and outlet are each

equal to 4-5 feet per second. The water is discharged from the wheel
without whirl. Find the angle of the guide blade

;
also the angles of the

wheel vane at inlet and outlet. Find the relative velocities vri and vr<> at

inlet and outlet, and calculate the change in pressure head in the wheel

passages if the depth of the wheel is 8 inches.

13. If a plate is inserted in a stream of fluid and held at right angles
to the direction of the stream, the total pressure on it is equal to the

momentum per second which would pass through its area if the plate
were absent, multiplied by a factor which, for the present purpose, may be
taken to be 0-65. Find the pressure upon a plate 4 feet square due to a

steady wind of 20 miles per hour. (One cubic foot of air weighs 0-08 Ib.)

(B.E.)

14. The radial vanes of an under-shot water wheel are acted upon by
water moving at a velocity of 45 feet per second. If the quantity of water

which reaches the wheel per second is 2 cubic feet, and if the vanes
of the wheel are moving at a velocity of 22-5 feet per second, find

(a) the pressure of the water on the vanes, () the theoretical efficiency
of the wheel and (c) the horse-power the wheel is capable of developing.

(B.E.)



EXERCISES ON CHAPTER XXIV. 661

15. An experiment with a small Pelton water wheel gave results shown
in the annexed table :

The cross-sectional area of the nozzle was 0-000764 square feet The
mean diameter of the wheel (centre to centre of buckets) was 10-7 inches.

The mean diameter of the brake wheel was 7-25 inches. Fill in the
columns left blank in the table. Plot a curve showing the variation of

efficiency of wheel with variation of ratio
^. According to simple theory,

"V
that is, neglecting all losses, what is the value of ^ which should give the

maximum efficiency, and what value would this maximum efficiency be ?

(B.E.)

16. An axial-flow impulse turbine is to be designed. Determine, from
the data given below, the angles of tips of the guide and of the moving
blades :

(1) Original head of water, 169 feet
;

(2) Head wasted in friction in the guide blades, I foot ;

(3) Head wasted in the tail race, 8-5 feet.

The horizontal velocity of the wheel blade is to be taken as half the
horizontal component of the velocity of the water as it enters the wheel.

(B.E.)

17. An inward-flow turbine, when running steadily, uses 40 cubic feet

of water per second. The water enters the wheel with an absolute

velocity of 45 feet per second, and its direction makes an angle of 23
degrees with the direction of motion of the wheel rim

; it leaves the
wheel with an absolute velocity of 8 feet per second, and its direction makes
an angle of 112 degrees with the direction of motion of the wheel rim.

The internal and external radii of the wheel are 1-6 and 2-8 feet re-

spectively. What horse-power is the turbine receiving? State the

principle on which you calculate. (B.E.)

18. An outward-flow turbine wheel has an internal diameter of 5-35 feet,
an external diameter of 6-50 feet, and it makes 250 revolutions per minute.
The wheel has 34 vanes, which may be taken as 0-75 of an inch thick at

the inlet, and 1-25 inches thick at the outlet. The head available above
the centre of the wheel is 145 feet, and the wheel exhausts into the

atmosphere. The effective width of the wheel face at inlet and outlet is

12 inches, the quantity of water supplied per second is 250 cubic feet.
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Determine the angles of the tips of the vanes at inlet and outlet, so that
the water shall leave the wheel radially. You may neglect all friction

losses. (B.E.)

19. The wheel of a centrifugal pump is delivering very little water
;
show

in a curve how the pressure varies from inside the wheel to a point
some distance outside the rim. Show this when there is a considerable

delivery of water. Draw the shape of the vane of the wheel. (B.E.)

20. The radial speed of the water in the wheel of a centrifugal pump is

6 feet per second
; the vanes are directed backwards at an angle of 35

degrees to the rim
; what is the real velocity of the water relatively to the

vanes ? What is the component of this which is tangential to the rim ?

When the water has left the wheel, what is its velocity in the tangential
direction if the rim of the wheel moves at 20 feet per second ? (B.E.)

21. The rim of a turbine is travelling at 60 feet per second
;
200 Ib. of

fluid enter the wheel per second with a velocity of 70 feet per second in

the tangential direction, leaving it at the same radius with no velocity in

the direction of the wheel's motion. Find the momentum lost per second

by the fluid, and calculate the horse-power given to the turbine. (I.C.E.)

22. In an inward-flow turbine the speed of the wheel at inlet is 0-6577 ;

the velocity of flow, assumed constant throughout, is 0-15^; the outer

radius is twice the inner radius, and the flow at outlet is radial. v= *Jigh,
where h is the head above the turbine centre. Find, in terms of h, the

centrifugal head in the turbine, the velocity at inlet and the hydraulic
efficiency. (L.U.)

23. A Pelton wheel runs at 900 revs, per min., its diameter being d feet.

750 gallons of water per minute are supplied from a hydraulic main at

250 Ib. per sq. in at the nozzle. Find the actual horse-power, allowing a
reasonable efficiency for the wheel. Find also a suitable value for d.

Sketch the form of bucket and shape of nozzle you would use, showing
how the sectional area of the jet may be varied. (L.U.)



CHAPTER XXV.

HYDRAULIC EXPERIMENTS.

Hydraulic experiments. -Most laboratories equipped for applied

mechanics now possess apparatus suitable for carrying out experi-

ments in hydraulics. Generally speaking, these are on a small

scale
; to carry out experimental hydraulics on a practical scale

requires very costly apparatus occupying much space ; owing to the

nature of the experiments, it is best to have a separate laboratory

entirely if completeness is aimed at. In this section, the experi-

ments described are on a small scale usually, and are such as may
find a place in any mechanical laboratory with great benefit to

the student. It must be borne in mind however, that the ex-

perimental results obtained by such apparatus cannot agree well

with those given by larger apparatus. For example, the results

for the flow through a drawn copper tube 0-5 inch in diameter

could scarcely be compared with those for a cast-iron or steel

water main 48 inches in diameter. This, however, does not detract

seriously from the educational value of the experiments, and the

student has the satisfaction of having the whole apparatus under

his own control without the necessity for a multitude of assistants.

Apparatus for some general hydraulic experiments. In Fig. 704
is shown apparatus in a compact form for enabling experiments to be

made on the flow of water through orifices and over gauge notches,

and also on the power and efficiency of a small Pelton wheel. A
is a closed vessel supplied with water from a pipe B having a

regulating valve C. The pipe B inside the vessel has its lower end

plugged, and is perforated with a number of small holes. This

portion is surrounded by a gauze cage, which has the effect of

stilling most of the eddies in the entering water. In cases where

the head in the ordinary water main is insufficient for experimental

purposes, a pump may be used for delivering water under pressure

into A. In the author's laboratory, the pressure of supply may
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be 100 Ib. per square inch. Any head up to this limit may be

obtained in the vessel A by regulating the valve C, and this head will

be maintained steadily by the action of the air cushion in the upper

part of A. If very low heads are required, an air valve D is opened,
thus reducing the pressure on the surface of the water in A to that of

the atmosphere. The head is measured then by means of a glass

tube gauge EF, which is connected to A near the top and bottom.

For higher pressures, the pressure gauge G is used ;
this is graduated

in feet of water.

FIG. 704. General arrangement of hydraulic apparatus.

For experiments on the flow through orifices, a flange J is secured

to the tank A, and brass plates having various orifices may be bolted

to it. The discharged jet is caught by a baffle plate K, and is

directed by it into the trough L, and thence into the measuring
tank M. The latter tank has a small compartment at one side, and

the water may be directed into this or into the larger compartment
as required, by means of a swinging shoot N. Each compartment
has a plug and waste pipe, and the larger holds a known quantity of

water when the surface is level with the point of the hook O
A small Pelton wheel is situated at P, and is connected by

means of a pipe to the tank A and has a regulating cock Q.
The exhaust water is led by a pipe R into the trough L

;
baffle

plates S, S, and a wire gauze screen T get rid of any turbulence

and ensure that the water will flow quietly in the left-hand portion of
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L. The Pelton wheel is fitted with a brake and a revolution

counter for the horse-power estimations.

The left-hand end of the trough L is fitted with a gauge notch V,

which may be exchanged for others of different types. The head of

water in L may be measured by means of the hook gauge U, which

consists of a graduated rod having a hook at its lower end and sliding

vertically in a fixed tube.

EXPT. 50. Flow through various orifices. Shut the cock Q, fix the

required orifice at J and arrange the shoot N so as to discharge the

water into the smaller compartment of M. Plug the larger com-

partment, which should be quite empty, and adjust the valve C so

as to secure steady conditions at the required head. When steadi-

ness has been secured, switch N over so as to discharge into the

larger compartment of M, and note the time. When M is full up to

O, again note the time, and record the duration of the test. The

experiment may be repeated by switching the water into the smaller

compartment, and then emptying the larger, which may be done
without any interference with the actual flow from the orifice. The
mean time of the two experiments should be taken. Several ex-

periments should be made under different heads, and the results

tabulated as follows :

EXPERIMENT ON THE DISCHARGE FROM AN ORIFICE.

Plot a curve showing the relation of H and Q. Useful shapes of

orifice are circular, square, rectangular, triangular, trumpet mouth-

piece and the Borda mouthpiece. Care must be taken in measuring
the dimensions required for calculating the area A. In the case of

the trumpet orifice, the coefficient of discharge found from the

experiment will be the coefficient of velocity. In the Borda mouth-

piece, assume that the coefficient of contraction is 0-5, and calculate

the coefficient of velocity from your experimental value of the co-

efficient of discharge. Thus,

EXPT. 51. Measurement of cv for a round orifice. It is difficult to

obtain the coefficient of contraction by direct measurement of the jet
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diameter in small scale experiments. The following method may be
used to determine roughly the coefficient of velocity, and the coeffi-

cient of contraction may be calculated then from the known coefficient

of discharge.
Use a circular orifice under low head, which should be maintained

very steady. The curve of the jet is shown at APB in Fig. 705, and
the dimensions H and D should

be measured carefully. The ori-

fice is at A. At any point P on
the curve, the actual velocity v

l

will be tangential to the curve,
and will have horizontal and
vertical components vx and vy

respectively. It may be assumed
that vx is equal to v, the velocity
with which the water leaves the

orifice, and that vy follows the law of a body falling freely. Hence,
if d and h are the coordinates of P, and t is the time taken to flow

from A to P, we have

d=vt. ...................................... (i)

FIG. 705.- Curve of a jet of water.

If HJ is the head under which the water leaves the orifice, then

v =

Hence (i) becomes

and

Division of (3) by (2) gives

</
2 /2 X

(3)

h

This result will be true for all points on the curve. Applying it

to B, we have 1Y2

H
or

D2

4H.H'

(5)

The experiment should be performed for three or four values of

H
1 ,

and D and H measured for each. The values of cv calculated

from each set of measurements should agree fairly well.

EXPT. 52. Flow over gauge notches. Close the orifices at J

(Fig. 704) by means of a blank flange. Secure the wheel of the
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Pelton motor so as to prevent rotation. Get ready the measuring
tank M as in the previous experiments. Fix the experimental gauge
notch at V. By means of a long steel straight edge laid on the sill of

the notch and on the point of the hook gauge U, and brought level

by use of a spirit level, find and note the zero reading of the hook

gauge. Open and regulate the cock Q until the desired head is

obtained in the trough L and the water is flowing steadily. Start

and stop the measurement of the water in M as directed previously.
The experiment should be repeated for several heads and the results

tabulated as follows :

EXPERIMENT ON THE FLOW OVER A GAUGE NOTCH.

Plot a curve for each notch showing the relation of Q and H.
Useful notches for experimental purposes are triangular, having

angles of 90 and 60
; rectangular, having two side contractions,

another having a vertical plate fitted so as to give one side con-

traction and a third having two such plates in order to eliminate

side contraction.

FIG. 7of. Apparatus for illustrating (a) Bernoulli's law ; (b) Osborne Reynolds' colour-band.

EXPT. 53. Bernoulli's law. In Fig. 706 (a) is shown a box A of

varying cross-sectional dimensions and fitted with a glass panel on
the front side. Water under a given head may be supplied from a
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tank B fitted with a glass tube gauge C. Other three tube gauges
are connected to A, and show the pressure heads at a, b and c. As
the box A is horizontal, there will be no change in potential energy ;

hence, neglecting friction, the sum of the pressure and kinetic

energies at a, I) and c will be equal. Thus,

(l)

2 7 . 2

= ^ + ,
............

2g 2g 2g

where ha ,
hb and he are the heads in feet and va , Vb and ve are the

velocities in feet per second at a, b and c respectively.
ha ,

hb and hc are given by the observed heads in the glass tube.

Find the quantity of water flowing per second by measuring the time
taken to discharge a given quantity ;

let this be Q cubic feet per
second. Measure the cross-sectional areas A

, A&, Ac ,
in square

feet, at a, b and c respectively. As the same quantity passes each
section per second, we have

.Q
A;

Substitution in (i) gives

Q2

Insert the observed quantities in equation (2) and note the

divergence from strict equality in the results.

EXPT. 54. The Venturi meter. A small meter of this type is

illustrated in Fig. 707. The axis of the meter is arranged horizontally
in order that the potential energy of the water may remain constant.

Section CD

FIG. 707. Sections of a Venturi meter.

The difference in pressure heads at the sections AB and CD is

measured by means of glass tube gauges containing water or by
means of a glass U-tube containing mercury. The meter is con-

nected at E to a water supply, and the discharge pipe, connected

to the meter at F, should have a regulating valve fitted. Discharge
takes place into a measuring tank or into a trough fitted with a gauge
notch. To make an experiment, maintain steady the pressure-head
difference as shown by the tube gauge, and measure the flow in cubic
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feet per second. Apply your results to equation (3) (p. 596), and
so ascertain the value of the coefficient which must be applied to the

right-hand side. Repeat the experiment with several different rates

of flow, and obtain the coefficient for each. Plot curves showing

(a) the relation of the flow in cubic feet per second and the pressure-

head difference in feet
; (b) the relation of the coefficient and the

pressure-head difference in feet.

EXPT. 55. Tne critical velocity in a pipe. Prof. Osborne Reynolds
has shown that, when water flows in a pipe, the motion may be

steady, i.e. free from eddies, or unsteady, i.e. sinuous or broken up in

eddies. The critical speed is that at which the flow ceases to be

steady; at higher speeds the water is broken up into eddies. In

Fig. 706 (b) is illustrated a simple form of Reynolds' experiment,
which serves to illustrate the point. A test tube of glass, A, having
a bell-mouthed entrance, is inclosed in a larger closed glass tube B
and discharges into a sink. B is supplied with water from a pipe C
having a regulating valve ;

two gauze screens D serve to prevent
turbulence in B. A small vessel E contains a coloured liquid (red
ink serves well), and has a small glass tube which enters B and

discharges a fine band of coloured liquid into the bell mouth of A.

At low velocities of flow through A, it will be found that the coloured

band will travel unbroken throughout A. If the velocity be increased

slowly, it will be found that the stream becomes broken up at a

certain velocity, thus showing the presence of eddies.

Reynolds also investigated the laws of resistance for these different

methods of flow, and found that the resistance varied as the speed at

speeds below the critical value. At speeds higher than the critical

value, the resistance varies as some power of the speed, approximately
the square.

FIG. 708. Apparatus for investigating frictional resistances in a pipe.

EXPT. 56 Frictional resistances in a pipe. The apparatus illustrated

in Fig. 708 consists of a straight pipe AB of as nearly uniform bore as

is possible (solid drawn copper or brass does well for a small scale

experiment), connected to a tap at A and discharging into a
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FIG. 709. Section of

pressure
gauge connec-

measuring vessel C. The pipe is arranged horizontally, and is con-

nected at D and E by means of rubber tubing to two open-topped
glass tubes F and G. A scale permits the levels of the water in

the glass tubes to be observed. The connections
at D and E are shown in more detail in Fig. 709.
A collar having a recess inside is soldered to the

pipe, and has three screw plugs and a nozzle for

connecting the rubber tube. Four very small

holes, two of which are shown in Fig. 709, are

bored through the pipe so as to connect the recess

in the collar to the interior of the pipe ; care

should be taken that no arras is left round these

j^ Qn ^ innef ^ Qf ^ pipe ^ ^^
rises to heights in the glass tubes proportional to

the pressures at D and E, and the difference in these heights gives
the loss in pressure head due to frictional resistances.

Measure the diameter of the pipe ;
this may be done by use of a

taper gauge inserted into the pipe end, or by filling a measured

length of pipe with water and removing the water to be weighed ;
its

volume may then be found and the diameter of the pipe may be
calculated. Measure also the length of the pipe between the small

holes at D and E. Turn on the water gently, and adjust the flow

until steady conditions are attained with the desired difference in

levels in the glass tubes. Care must be taken to get rid of air from
the pressure gauge tube connections. At a noted time, turn the

discharge into the measuring vessel and note the time taken to

discharge a measured quantity of water. Repeat and take the

average of the two times. Repeat the experiment several times,

using different velocities of flow, and note the difference in heads
and the times of flow for each. Tabulate these as follows :

EXPERIMENT ON THE FRICTIONAL RESISTANCES IN A PIPE.
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It is useful to experiment on two pipes of different diameters.

Very fair results may be obtained by use of solid drawn copper tubes

of | inch and f inch diameters on a length L of 5 feet.

EXPT. 57. Loss of head at bends. The apparatus is shown in

Fig. 710. The right-angled bend
AB is supplied with water at A
from a tap and discharges into a

measuring vessel C. Collars similar

to that in Fig. 709 are soldered

at the beginning and end of the

curved part, and are connected to

two glass tubes. The difference in

level shows the loss in head. The

pipe is arranged horizontally in

order that there shall be no change
in the potential energy of the water.

Measure the bore of the pipe
and the radius of the bend, and
find the flow in the same manner
as that used in the previous ex-

periment. Do this for several

different velocities of flow, and
tabulate. A coefficient for the head lost may be found from

, v*
h = c ,

FIG. 710. Apparatus for measuring the loss

of head at a bend.

or

This result expresses the head lost in terms of the kinetic energy
of the flowing water.

EXPERIMENT ON THE HEAD LOST AT A BEND.
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EXPT. 58 Loss of head at an elbow. This experiment is carried

out in the same general manner as for a bend. If the pipe ABC
(Fig. 711) is cut from a piece similar to that used
in finding the frictional loss in a straight pipe, the

frictional loss
h-^

feet per inch length of pipe will

be known. Measure AB and BC along the pipe
A C^O axis in inches, and let the sum be /. Then the

frictional loss apart from shock loss at the elbow
will be h^l feet. This should be deducted from
the difference in head shown in the tube gauges,
and the result will then be the shock loss. The

calculations in reducing the results are similar to those for the bend,
and the value of c is found in the same way.

EXPT. 59. Losses at sudden enlargements and contractions in a pipe.

The apparatus shown in Fig. 712 consists of a pipe AB having both
ends plugged and smaller pipes AC and BD fitted to the plugs.
Water is supplied at D and is discharged into a measuring vessel at

FIG. 711.

FIG. 712. Apparatus for measuring the losses at sudden enlargements and contractions.

C. There is thus a sudden enlargement at B and a sudden con-

traction at A. The pressure heads are measured at E, F, G, H, K
and L

;
collars resembling that in Fig. 709 are fitted at these places

and are connected to six glass tubes having graduated scales. The

following record of an actual experiment will illustrate the method of

recording and reducing the results.

The pipe diameters were found by filling a measured length of

pipe with water, and the areas A
T
and A

2
of the sections of the small

and the large pipe respectively were calculated then. These were

found to be Aj = 0-000331 and A
2
= 0-00386 square feet. The pipe

lengths are given in Fig. 713.
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OBSERVED QUANTITIES.

It will be noted that the pressure is lower at F than at G ; this is

owing to the formation of violent eddies at the sudden enlargement.

: .vK.'i'H . <

-*\'f-4-f- 14

FIG. 713. Section of the tube shown in Fig. 712.

The pressures at G, H and K were equal so far as could be detected

by means of the gauges employed. The absence of violent eddies
at K is shown by the pressure there being equal to that in the body
of the large pipe. The velocities of flow are as follows :

Flow per second

Velocity in the small pipe

Velocity in the large pipe

=
-^

= 0-00242 cub. ft.

= =
7-32 feet per sec.A

i

= -^ = 0-628 feet per sec.A
2

The pipe being horizontal, there were no changes in potential

energy, and pressure and kinetic energies alone are considered in

the following calculations :

SUDDEN ENLARGEMENT.

The energy wasted may be calculated from the equation given on
p 619 and the result compared with that found by experiment. Thus,

Energy wasted per Ib. of water

. experimental waste
Ratio, - = 1-34.

calculated waste

6-69 x 6-69
^ =

0-695
04-4

2 U
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SUDDEN CONTRACTION.

energy wasted, by expt. =o^g =
kinetic energy at L 0-835

Energy wasted = 0-873
-1- foot-lb. per Ib. of water.Hence,

Compare this result with the equation given on p. 620

EXPT. 60. Pressure of a jet impinging on a plate. The

apparatus used is illustrated in Fig. 714. A tank A is furnished with

r-;

FIG. 714. Apparatus for measuring the impact of jets.

a trumpet mouthpiece B in the bottom, and discharges a vertical

downward jet. The head may be observed by means of a glass
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tube C and a graduated scale. The head is maintained constant

during the experiment. The jet impinges on a plate D, which is

screwed to the end of a balance beam E. Equilibrium of E is

secured by moving the counterpoise F. G is a cylinder of transparent

celluloid, arranged so as to catch the waste water and deliver it

into a sink.

In making an experiment, it is best to proceed as follows. Place

a known weight, say 0-2 lb., centrally on the plate D, and move the

counterpoise until balance is restored. Remove the weight and
turn on the jet, gradually increasing the head until equilibrium
of the balance beam is restored. The pressure on the plate will

now be 0-2 lb., and the head H from the surface level in the tank

to the level of the plate should be noted. The experiment
should be repeated for several different pressures, and also for

several plates.

It is useful to have a flat plate, a hemispherical cup and a cup
having a tip angle of 45. Equations for these are given on pp. 625
and 626, and the experimental values of the pressures should be

compared with the calculated values.

The flow of water reaching the plate per second should be found

by a separate series of tests on the tank orifice. This series should

cover the range of heads used in the above experiments, and should be

carried out in the same manner as for the discharge from an orifice.

From the results of this series,

Let M = mass of water discharged under a head h^ feet, in pounds
per sec.

//!
= the head over the plane of the orifice, in feet.

h^
= the height from the plate to the orifice, in feet.

v = the velocity of the water reaching the plate, in feet per sec.

Then K = /^
1 + ^

2
.

Also v = x/2-H, nearly.

Momentum reaching the plate per second Mv

This result will take the place of (Av^w) in the equations given on

pp. 625 and 626, and will enable the pressures on the various plates
to be calculated.

EXPT. 6 1. Horse-power and efficiency of a Pelton wheel. Fig. 715
illustrates a small Pelton wheel specially constructed for experimental
work. There is one nozzle only, and the supply of water is controlled

by means of a needle valve. The buckets are of the Doble type,

shaped to receive the jet with as little shock as possible, and cut

away at the entrance edge as shown in the side elevation, in order
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that the bucket entering the jet may do so with the minimum
disturbance. The exhaust water is discharged from the lower part
of the casing into a trough having a gauge notch, thus enabling the

water consumption to be measured.

The brake horse-power is measured by a simple pattern of band

brake, consisting of a band lapped round half the circumference

of the brake wheel
;

the ends of the band are connected to a

pivoted wooden lever which is under the control of a spring
balance. A revolution counter driven by the shaft enables the

HZH

FIG. 715. An experimental Pelton wheel.

wheel speed to be measured. Provision is made for running water

into the interior of the brake wheel should it show any tendency to

become hot.

The supply water may be taken from an overhead tank, or from a

tank similar to that in Fig. 704. In the former case, the head H feet

may be measured from the constant surface level in the tank to the

level of the jet ; each pound of water leaving the nozzle will possess
H foot-lb. of energy, neglecting the frictional waste in the pipe and
nozzle.

'

In the latter case, the head H feet in the tank (Fig. 704)

may be measured by means of a pressure gauge, and, as the water in

the tank is practically at rest, this head will represent the energy

supplied to the wheel per pound of water, again neglecting friction in

the pipe connecting the tank to the wheel casing as well as the friction

of the nozzle.

Sometimes the arrangement consists of a power-driven centrifugal

pump, which delivers water to the nozzle of the Pelton wheel without

any tank intervening. In this case, the pressure head H
x
feet of the

supply water may be measured by means of a pressure gauge con-

nected to the supply pipe. From a knowledge of the diameter of the

pipe at the point of connection of the gauge and also of the flow of

water, the velocity v feet per second may be calculated, and hence
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2

the kinetic energy foot-lb. per pound of water may be found.
2

Suppose also that the point of connection of the gauge is h feet above
the nozzle level. The total energy of supply will then be

H = pressure energy -f kinetic energy + potential energy

= fH
1
H \-h\ foot-lb. per pound of water.

Constants required in reducing the results of the tests are the

radius Rj feet from the centre of the wheel to the axis of the jet, and
the radius from the wheel centre R

2 feet at which the brake spring
balance exerts its pull. We also have

Velocity of the jet
= V

x
= 0-93 to o-95\/2^H feet per sec.

Let N be the revolutions per minute. Then

Velocity of the bucket = V2
= ^ feet per sec.

oo

If the brake is of the type shown in Fig. 715, and if the spring
balance is exerting a pull P lb., then

P x 2?rR9 x N
B.H.P. = .

33000

Let W = the flow in pounds per minute.

Then Energy available in the supply water =WH foot-lb. per min.

WH
Horse-power supplied

=
33000

. . B.H.P.
Actual efficiency

=

To make a series of tests, maintain constant the head of the supply
water and keep constant the setting of the needle valve; the flow

will then be constant, as indicated by the gauge notch readings.
Put a given load on the brake and read the revolution counter

every minute for, say, five minutes. This completes one test. Alter

the brake load and again note the revolutions
;

this process should

be repeated until information has been obtained regarding the

revolutions per minute corresponding to brake loads ranging from

zero up to a load which nearly stops the wheel from rotating. A
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new series of tests can then be made by altering the head of the

supply water. The results should be tabulated as follows :

TESTS ON A PELTON WHEEL.

Plot the B.H.P. and the revolutions per minute; plot also the

y
efficiency and ratios ^.

EXERCISES ON CHAPTER XXV.

1. An experiment on the discharge through a round orifice in a thin

vertical plate gave the following results : Diameter of orifice, 0-5 inch
;

head of water over the centre of the orifice, 25 feet
;
time taken to

discharge 450 pounds of water, 216 seconds. Find the coefficient of

discharge.

2. A vertical jet discharged through a trumpet orifice I inch in

diameter. Under a head of 22-68 inches of water, the discharge was
found to be 112 pounds in 31 seconds. Find the coefficient of velocity.

3. In an experimental Borda mouthpiece, the internal diameter of the

tube was 0-89 inch. Experiments were made under heads of 1-6 and
2-12 feet, when the discharge was found to be 450 pounds in 314 and

278 seconds respectively. Assume the coefficient of velocity to be 0-98,

and calculate the coefficient of contraction in each case.

4. Experiments were made on the discharge over a 90 degree V notch.

At heads of 0-123 and 0-165 feet, the times taken to discharge

450 pounds were found to be 537 and 259 seconds respectively. Calculate

the values of the coefficient of discharge.

5. An experimental rectangular gauge notch, 4 inches long, had both

end contractions suppressed by means of vertical plates. At heads of

0-08 and 0-093 feet, the times taken to discharge 450 pounds were 296 and

240 seconds respectively. Calculate the values of the coefficient of

discharge.
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6. The following measurements were made in calibration tests on a
small Venturi meter : Diameter of tube, 0-75 inch

;
diameter at throat,

0-375 inch.

Fill in the columns left blank. Find the average value of the coefficient

c. Plot a curve showing the relation of the actual discharge in cubic feet

per second and the difference in pressure heads in inches of mercury.

7. Experiments were made on the frictional loss of head in a smooth
solid drawn copper tube, 0-77 inch bore and 5 feet between the gauge
branches. The following observations were made :

Fill in the blank columns
;

c is the coefficient in the Chezy formula.

Plot a curve showing the relation of the heads lost and the velocities.

8. Two pieces of smooth solid drawn copper tube, 0-337 inch bore,

were soldered together so as to form a right-angled elbow. A gauge
branch was attached in each portion at 4 inches from the junction. In

one experiment, the difference in head was 8 inches of water and 5 pounds
of water passed in 29 seconds. It was known that v= 80 simi for a

straight pipe of the same bore and material. Express the head lost at

the elbow in terms of the kinetic energy per pound of water flowing.

9. In the apparatus illustrated in Fig. 714 for determining the pressure
on plates, preliminary tests showed that the coefficient of discharge

through the trumpet orifice had an average value of 0-888. The orifice is

0-25 inch diameter. Tests were made on three plates : A, a flat plate at
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90 degrees to the jet ; B, a hemispherical cup, the jet discharging into its

centre ; C, a cup having its sides at 45 degrees to the horizontal, the jet

discharging into its centre. The following observations were taken :

Find the pressures on the plates in each case by calculation.



TABLES.

Useful Constants.

i inch =2-54 centimetres = 25-4 millimetres,

i metre =39*37 inches.

5 280 feet =i mile.

6 feet = i fathom.

I Gimlets chain =66 feet.

80 Gunter's chains = i mile.

i kilometre =0-621 mile.

I square inch =6-45 square centimetres.

I square metre =1550 square inches.

i cubic inch = 16-39 cubic centimetres.

i cubic metre =61,025 cubic inches= 1-308 cubic yards.

i litre = 1000 cubic centimetres = 1-762 pint.

i gallon =0-1605 cubic foot = 4- 541 litres.

i bushel =1-284 cubic feet.

i radian =57-3 degrees.

TT =3-1416.

i knot = 6080 feet per hour.

60 miles per hour= i mile per minute = 88 feet per second.

The value of^ at London = 32- 182 feet per sec. per sec.

One pound avoirdupois = 7000 grains = 45 3-6 grams.
One kilogram = 2-205 pounds.
One gallon of pure water at 62 F. weighs 10 Ib.

One cubic foot of pure water at 62 F. weighs 62-3 Ib.

Weight of i pound in London = 445,000 dynes.

One cubic foot of air at o C. and i atmosphere pressure weighs 0-0807 Ib.

One cubic foot of hydrogen at o C. and i atmosphere pressure weighs
0-00559 Ib.

i atmosphere =14-7 Ib. per square inch.

= 2116 Ib. per square foot

= io6 dynes per square centimetre nearly.
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I kilogram per square centimetre = 14-22 Ib. per square inch.

A column of mercury 760 millimetres (
= 30 inches) high produces at

its base a pressure of i atmosphere.
A column of water 2-3 feet high produces at its base a pressure of

i Ib. per sq. inch.

i foot-lb. =1-3562 x io7
ergs.

I metre-kilogram =7-235 foot-lb.

i horse-power = 33,000 foot-lb. per minute= 746 watts.

i horse-power-hour= 33,000x60 foot-lb.

Volts x amperes = watts.

i electrical unit = 1000 watt-hours.

i B.T.U. = f Ib.-degree-Cent, unit

= 252 gram-calories.

Absolute temperature T= /

Jou,e's equivalent
. unit .

To convert common into Napierian or hyperbolic logarithms, multiply
by 2-3026.

The base of the Napierian logarithms is =2-7183.

Table of Coefficients of Linear Expansion.

(These are given as the increase in length which a bar of unit length

undergoes when heated through one degree Fahrenheit.)

Steel alloyed with 36 % nickel - 0-000000483

Wrought iron and mild steel - - 0-00000673
Cast iron - 0-0000063

Copper - 0-0000096
Zinc 0-0000162

Brass -
0-0000105

Phosphor bronze - 0-0000107
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ANSWERS.

Chapter I. Page 17.

1. 19,500 Ib. 2. 4400 square feet. 3. 1200 square feet.

4. (a) i$x\ (b) 6*- 35^.

(c) 2 cos x + 3 sin x. (d) 2sinxcosx-2cosx smx = o.

(e) 3sin
2
^cosjtr-3cos

2jrsina;. (/) 3 sec2x + sin x.

5. i. 6. x=2;y=4.

(d) ^3 + sinjf. (e) o-4log,0.

8 - 1 = 30,550- 9 - 1 = 1707.

Chapter II. Page 36.

1. (a) 12-6 Ib. weight at 9 6' to the* 9 Ib. force.

(b) 12-15 13 27'

(c) 7-8 26 21'

2. (a) 5-87 -19 54'

(b) 6-77 -24 35'

(0 1 1-5 -17 30'

3. 4-9 Ib. weight. 4. 2-5 Ib. weight.

5. 90-1 Ib. weight ; 112 Ib. weight at 34 36' to AC.

6. 15-43 Ib. weight. 7. 20-14 Ib. weight.

8. Q= 19-24 tons weight ;
T = 776 tons weight. 9. I Ib. weight from O to D.

10.

11. P = 28-28 tons weight ; 8 = 45-95 tons weight ; =17-67 tons weight.

12. Tie BO, 5-92 tons weight pull ; strut CO, 7 tons weight push.

13.

14. 32-9 tons weight push in each leg ; 30 tons weight pull in the backstay.

D.M. 2X
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15. Push in AO=i-57 tons weight; push in BO = 0-59 ton weight; push in

CO = 8-17 tons weight.

16. 25 Ib. weight.

17. 38-8 Ib. weight pull ; 86-8 Ib. weight push at 26 40' to the vertical.

18. 3-464 Ib. weight ; 1-732 Ib. weight. 19. 4-08 Ib. weight.

Chapter III. Page 56.

1. 10-29 inches from C, on the same side as D ; 46 Ib. weight.

2. 10-95 inches from A. 3. 45-3 Ib. 4. 23-46 inches.

5. Reaction at A= 4-975 tons weight ; reaction at 6 = 4-275 tons weight.

6. 6-55 tons weight ; 7-44 tons weight.

7. Reaction at A= 4-571 tons ; reaction at 6 = 3-429 tons.

8. Measure CD = io inches along CB ; draw 00 = 3-464 inches at 90 to CB ,

G is the centre of gravity.

9. .* =0-583 inches; j/
= 1-083 inches. 10- 50 12'.

11. 30-5 Ib. ; 64-2 Ib. ; 17-3 Ib. 13. A, O-I54\V; B, 0-402W ; C, 0-444W.

Chapter IV. Page 74.

1. Top hinge, R= 100 Ib., acting upwards away from the gate at 29 48' to the
horizontal ; bottom hinge, R=ioo Ib., acting upwards towards the gate at

29 48' to the horizontal.

2. E= 2-828 Ib.
, acting downwards towards the right, at an angle of 45 to the

horizontal and at a perpendicular distance of 3-535 feet from the left lower
corner of the square and to the left of it.

8. R=i-732 Ib., acting downwards towards the left, at an angle of 30 to the
horizontal and at a perpendicular distance of 1-5 feet from the right-hand
end of the base.

4. An anti-clockwise couple of 5-196 Ib.-feet must be applied.

5. Vertical reaction = 1638 Ib.
; inclined reaction = 3992 Ib. acting at 37 30' to

the horizontal.

6. Reaction at A= 711-1 Ib. ; reaction at B= 1227 Ib. at 54 35' to the horizontal.

7. Reaction at 6 = 825-9 Ib.; reaction at A= 950 Ib. at 62 8' to the horizontal.

13. 4-47 Ib. at 26 34' to the horizontal.

14. Reaction at A= 5-44 tons ; reaction at 6= 5-56 tons.

17. 42-42 Ib. acting along DA from D towards A; 62-5 Ib. at C, downwards
towards the left at an angle of 36 54' to BC.

18. Let s= side of square; point required is outside the square, at distances s

from the 4 Ib. force and 0-55 from the 3 Ib. force.

Chapter V. Page 89.

1. See Fig. 716 (p. 691). 2. See Fig. 717 (p. 691). 3. See Fig. 718 (p. 692).

4. See Fig. 7 19 (p. 692). 5. See Fig. 720 (p. 693). 6. See Fig. 721 (p. 693).

8. See Fig. 722 (p. 694). 9. 2-308 tons.

10. The link polygon solution is shown in Fig. 723 (p. 695) ; reaction AB = 2400 Ib. ;

reaction KA= 3440 Ib.

11. The substituted frame solution is shown in Fig. 723 (p. 695) ; reaction
A6 = 2400 Ib.; reaction KA= 344O Ib.

12. Reaction A6 = 247i Ib. ; reaction KA= 343O Ib.
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400 Ib

B

FIG. 720.

400 I b.

FIG. 721.
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600 1 b

600 Ib.

Fir;. 722.
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1000 lb. 1000 Ib. 1000 lb.

F

FIG. 724.

I ton

BGH FIG. 725.
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13. See Fig. 723 (p. 695). 14. See Fig. 724 (p. 696).

15, 16. See Fig. 725 (p. 696).

17. Q=IIOO Ib. pull; P=I2,35O Ib. push; R= 14,300 Ib. push. Taking the

bars in order from the bottom, the forces are : 21,000 Ib. pull ; 9700 Ib.

push ; 10,500 Ib. push ; 21,000 pull.

18. AB, i -02 tons push; BC, 0-2 ton push; CD, 0-9 ton push; DA, 0-57 ton

pull ; AC, 0-46 ton push.

10.

11.

13.

14.

15.

16.

17.

18.

19.

Chapter VI. Page 128.

1-78 inches. 2. 867 tons.

d= - inch; /=2- inches; efficiency
= 69-6 per cent; bearing stress = 6-88

tons per sq. inch.

d= 1
1-

inches ; / = 4T
7

g-
inches ; efficiency

= 74-7 per cent. ; bearing stress = 8-83

tons per sq. inch.

n rivets on each side of the joint ; 45-37 tons.

jf inch ; 3-71 tons per sq. inch ; 1-85 tons per sq. inch. 7. 0-257 inch.

Extension in length = 0-16 inch ; contraction in width = 0-000763 inch ; contrac-

tion in thickness = 0-0000636 inch.

0-0485 inch.

Change in diameter = 0-001768 inch; change in length = 0-003635 inch ; change
in volume = 0-57 1 2 cubic inch.

Pulls of I -008 tons. 12. Pushes of 35-2 tons ; 11-32 tons per sq. inch.

In the copper, 0-739 ton per sq. inch ; in the steel, 1-895 tons Per S(
l-

incn -

i6i,99olb. ; 53,025 Ib.

67-5 tons ; at ii-i feet from the edge having the greatest stress.

(a) 36-1 tons; 0-197 ton per sq. inch, (b) 23-9 tons; 1-905 tons per sq. inch.

28,000 Ib. per sq. foot ; 7500 Ib. per sq. foot ; 15,000 Ib. per sq. foot at 45
to the horizontal.

3333 Ib. per sq. inch ; 1333 Ib. per sq. inch.

Chapter VII. Page 160.
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6.

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

1-5 inches from the 4-5 inches edge. 7. 4 inches from the bottom edge.

900 Ib.

Bar on flat : (a) 2420 Ib. per sq. inch ; (b} 1936 Ib. per sq. inch.

edge: (a] 1210 ,, (6) 968

(a) 2-56 tons per sq. inch; (6) 2-33 tons per sq. inch.; ^-0-228 ton per
sq. inch.

66-2 feet. 14. W^-.W^n2
:i.

(a) Parabolic; ^=I'335A^i where x= the distance of the section from one
end; dak centre = 5-67 inches, (b) Parallelogram ;

b = 0-298.*; b at centre
= 5-37 inches.

25 Ib. per sq. inch.

z= 1-357 inch units ; =0-799 inch.

RA 9-4 tons ; RB= 14-6 tons ;
M = 84<5 ton-feet.

R = 7>75 tons, passing through the column axis at 5-15 feet from the base and
inclined at 14-5 degrees to the axis ; M = 97 ton-feet.

Chapter VIII. Page 188.

2. 2 = 0-00286 radian ; A = 0-0457 inch.

3. 0-0515 inch ; 0-00129 radian ; 23,300 inches.
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4. 0-0429 inch ; o-OO 1 148 radian
; 34,950 inches.

5. 2-314 tons ; M at centre = +41-7 ton-inches ; M at ends = -41-7 ton-inches ;

S for left half of beam= + 1-157 tons ; S for right half= -
1-157 tons.

6. 3-472 tons; M at centre = 20-85 ton-inches ; M at ends = 41 -7 ton-inches;
S at left end = + 1-736 tons ; S at right end= -

1-736 tons ; S at centre O.

7. 0-055 inch; 0-0415 inch. 8. A = 0-0761 inch ; 2=0-001096 radian.

9. 23-9 Ib. -inches ; 1-875 inches. 10- 0-3704 inch.

11. 64,800 inches ; 0-444 inch.

12. 3000 Ib. ; M at wall= - 8000 Ib.-feet ;
maximum positive M=45oo Ib.-feet ;

points of contraflexure are at the free end and at 6 feet from the free end ;

S at free end = - 3000 Ib. ; S at wall= + 5000 Ib.

13. PA = P]3=ii'25 tons; PC 37'5 tons; the points of contraflexure occur at

5 feet on each side of C ; maximum positive M = 42-2 ton-feet ; maximum
negative M (at C) = -

75 ton -feet ; SA= + 1 1-25 tons ; S close to C on the

left= -
18-75 tons ; S close to C on the right= + 18-75 tons J SB= -

11-25
tons.

14. 0-06 inch.

15. 1-19 tons on each outer beam ; 2-62 tons on inner beam ; 5-36 tons per sq. inch.

16. (a) 9600 Ib.
; (b) 25,600 Ib.-feet; 16,000 Ib. ; (c) 2 feet from the wall.

17. 1:8-16.

18. Maximum M (at ends)= -
23-625 ton-feet ;

M at centre = + 17-625 ton-feet ;

points of contraflexure at 5-45 feet from each end.

19. W:W6=i-i65; _/":/&= 0-984; Aa:A&=i-i8; maximum ^= 5-66 tons

per sq. inch.

20. At x feet from one end, M = (i3jr-^
2
-7o) ton-feet for the end portions;

M = (iOjr-^
2
-4o) ton-feet for the centre portion; maximum M is at

the ends and is 70 ton-feet.

Chapter IX. Page 224.

1-28 inch-tons ; 0-00133 inch-ton per cubic inch.

12 tons per sq. inch ; 0-213 inch. 3. 0-57 inch.inch

4. 7-083 tons per sq. inch ; 11-29 sq. inches.

5. Maximum M (at centre) = 75 ton-feet ; maximum S (at ends)= 10 tons.

6. ,, ,,
= 168-7 ton-feet ; ,, =22-5 tons.

7. Maximum combined M=iO5 ton-feet; at the left end, S varies from +14
to +4 tons ; at the right end, S varies from -

14 to -4 tons ; the central

16-67 feet has shearing forces of both kinds.

9. MA= o; MB= 6-67 ton-feet; Mc = ii-6 ton-feet ;
MD = o.

10. RA = 23-3 tons ; RB= 2O-6 tons ;
Rc = 7-8 tons ; Ro = 8-3 tons.

11. Quantities required for the diagrams : Taking three simply supported spans,
M at centre of AB = 100 ton-feet ; M at centre of BC= 28-I2 ton-feet=M at

centre of CD.
SA= + 23-3 tons ; SB (left)

= -
16-7 tons ; SB (right)

= + 3-9 tons ;

Sc (left)
= - 1 1 i tons ; Sc (right)

= + 6-7 tons ; SD= -
8-3 tons.
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12. A = 9-64 sq. inches; Ac= 11-25 S(
l- inches; two plates in tension flange,

each
Yfl-"

thick
;
two plates in compression flange, inner plate -^" thick,

outer plate |-"
thick ; web plate

"
thick ; pitch of rivets, 3 inches.

13. Moments of resistance : Compression flange : angles, 39*6 ton-feet
;

I
st

plate,

50-5 ton-feet; 2nd plate, 45-6 ton -feet ; total, 1357 ton-feet. Tension

flange : angles, 36-4 ton-feet ;
I
st

plate, 51*4 ton-feet ; 2nd plate, 54-0 ton-

feet ; total, 141-8 ton-feet.

14. Central bars, upper boom, 36 tons push ; central bars, lower boom, 32 tons

pull ; inclined bar nearest support, 28-28 tons push ; inclined bar second
from support, 16-97 tons Pu^ > vertical bar second from support, 4 tons push.

15. 45 tons push ; 40 tons pull ; 42-42 tons ; 23-57 tons pull ;
10 tons push.

16. p= 0-675 Per cent. ; As= 0-1004 sq. inch ; N.A. is 1-53 inches from the top ;

M=6oo8 Ib. -inches.

17. N.A. is 9-07 inches from the top; use stresses Cc = 6oo, 4= 8865 Ib. per

sq. inch; M = 489,ooo Ib.-inches.

18. 6 foot-lb. 19. 5-72 sq. inches.

20. 9-13 tons per sq. inch. 21. 7-33 tons per sq. inch ; 1-86.

22. + denotes push ;
- denotes pull.

Chapter

1. 0-114

Page 248.

2. 0-3305 ton.

5. 0-1325 ton. 6. 3-576 tons. 7. 41-3 tons.

8. 5-1 tons. 9. 143-5 inches.

10. 0-2395 ton per sq. inch push ; 0-0521 ton per sq. inch pull.

11. 0-882 inch. 12. 1000 Ib. -feet.

13. H = 130 tons ; 137 tons ; 143 tons.

14. 57,700 Ib.
; 52,ioolb. 15. 103-84 fact ; 0-38 inch.

16. 1-98 tons per sq. inch push ; 0-6 1 8 tons per sq. inch push.

17. (a) 35 tons ; (b) 32 tons ; 1-667 inches from the top edge.

18. 4-67 inches ; 0-466 inch. 19. kx ^\ /i/
= 4'42 inch units ; 183 tons.
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Chapter XI. Page 276.

1. 35, 300 lb. -feet. 2. 1-89 inches. 3. 5090 ton -inches.

4. 4320 ton-inches ; 1-179. 5. 16,240 lb. -inches. 6. 10-58 degrees.

7. 6-25 degrees. 8. 80-7. 9. 1-42 inches.

10. 7-54 tons per sq. inch pull on a section at 40 16' to AB ;

1-46 ,, ,, 130 16' .

11. 4-905 tons per sq. inch pull on a section at 73 9' to AB
;

5-905 ,, push ,, 163 9' .

12. (a) 11,210 lb. -inches; (6) 7210 lb. inches ; (c) 2110 lb. per sq. inch push:
605 lb. per sq. inch pull ; (d) 1357 lb. per sq. inch.

13. 52,800 lb. -inches.

14. (a)

0-48 inch. 17. 6-

0-76 inch ; 0-603 inch.

1-745 tons per sq. inch.

(b) 4200 lb. per sq. inch.

15. 3-125 lb. 16. 0-48 inch. 17. 6- 1 lb. -inches.

18. iio-4lb. 19.

20. 9 plates ; 0-77 inch. 21.

22. 366 lb. 23. 8-534 inches.

24. 6-26 tons per sq. inch pull acting on a section inclined at 18 28' to horizontal ;

5-252 tons per sq. inch push acting on a section inclined at 108 28' to

horizontal.

Chapter XII. Page 290.
1. 19-27 degrees.

2. 1740 lb. at 4 feet from the base, and horizontal.

3. 2160 lb. ,, ,, at 20 to the horizontal.

4. 1752 lb. ,, horizontal.

5. 2180 lb. ,, ,, ,,

6. 2215 lb. at 4 feet from the base and inclined at 40 to the horizontal.

7. 3340 lb. at 3 feet from the base, and horizontal.

8. R falls outside the middle third, at I -97 feet from the centre of the base ;

maximum stress = 2543 lb. per sq. foot push; minimum stress =1031 lb.

per sq. foot pull.

9. 4-48 feet. 10. 5-91 feet. 11. 3-84 feet.

12. Resultant cuts the base at 9-55 feet from the earth face, hence outside the

middle third.

13. 41 50'.

Chapter XIII. Page 322.

1. 6000 tons per sq. inch.

2. 4950 tons per sq. inch ; 2-39 tons per sq. inch ; 0-00097 inch.

3. Ultimate tensile strength, 10-98 tons per sq. inch ; elastic limit as indicated

by the beam dropping, 7-2 tons per sq. inch ; percentage stretch on 8 inches,
10-6

; percentage stretch on 2 inches at fracture, 15 ; contraction of area at

fracture, 19-5 per cent.

4. 12,650 tons per sq. inch ; 19-6 tons per sq. inch.

5. Calculated ratio, 10-87; experimental ratio, 11-65.

6. 23-4 tons per sq. inch.
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7. At elastic break-down, Ce= 68o Ib. per sq. inch; Cs= 10,200 Ib. per sq. inch
at rupture, 60=1564 Ib. per sq. inch; 65= 23,420 Ib. per sq. inch

1,385,000 Ib. per sq. inch.

5120 tons per sq. inch ; 7-5 tons per sq. inch ; 6-19 inch-lb. per cubic inch.

10. 12,220 tons per sq. inch.

12. 839 tons per sq. inch ; -?.

8.

9. 2880 tons per sq. inch.

11. 4860 tons per sq. inch.

Chapter XIV. Page 350.

1. 600,000 foot-lb. ; 0727 ; 1-32. 2. 1,656,000 foot-lb.

3. 475,200 foot-lb. ; 1,584,000 foot-lb.

4. 0-00000735^; o-oooo8o4</; 0-0000667^; 0-000565^.
5. 15 ; 360 Ib. ; 33-33 per cent. ;

no. 6. 142,400 foot-lb.

8. in-4jb. 9. 26, 250 Ib. -feet. 10. 0-828 degree.

7. 823 H.P.

11.

6.

(c) 49,180 Ib. -inches ; (d) 48,940 Ib. -inches ; (e) C= 11,935,000 Ib. per sq.

inch; (f) shaft-horse-power= o-o647wN ; (g) shaft-horse-power= 4250.
12. 74-6 ton-inches. 13. 7450 H. p. 14. 225 foot-lb.

15. 48 ; 31-33 Ib. ; 53-1 per cent. 16. 20 units ; 33-8 per cent.

Chapter XV. Page 378.

1. 40 Ib.-feet; 37,700 foot-lb. ; 48-5 B.T.U.

2. (a) 3 Ib. -inches; 0-0143 H. P.; (b) 2-25 Ib. -inches ; 0-0107 H.P. 3. 10-77 H.P.

4.

= oo when = 76 degrees.
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7. 91 Ib. ; 28 per cent. 8. 38-5 Ib.

9. 232 Ib. -inches. 10. 19-57!^

11. 730 Ib. 12. (a) 900 Ib. ; () 875 Ib.

13. (a) 4242 Ib. -inches ; (b] 3660 Ib. -inches.

14. 16,860 Ib. -inches ; inner angle 2 ; outer angle 2-2. 15'. 89-6.

1, 2 and 3.

Chapter XVI. Page 403.
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5. 217-4 seconds.

6. 3-32 feet ; 0-16 feet per sec. ; 0-04 feet per sec. per sec.

7. 334 feet. 8. 2-66 seconds ; 57-8 feet per sec.

9. 5-59 feet per sec. per sec. ; 11-56 feet per sec. 10. 0-667 feet per sec.

11. 1088 feet per sec. ; 912 feet per sec. ; 1003-8 feet per sec. at 84 58' to the

line of motion of the train.

12. i -047 radian per sec. ; 0-0087 radian per sec. per sec.

13. 0-5236 radian per sec. per sec. ; 37-5 revolutions.

14. 3-75 radians per sec. per sec. ; 30 radians per sec.

15. 2-07 feet per sec. at 105 to original direction.

16. 1,778,000 feet per sec. per sec. 17. 1-358 feet per sec. per sec.

18. 20-94 feet per sec. 19. 49-5 radians per sec. ; 19-8 radians per sec. per sec.

20. (a) 8-8 feet per sec. forwards ; 8-8 feet per sec. backwards ; (b) 17-6 feet per
sec. forwards ; o.

21. 58-2 miles per hour at 20 to B. 22. 0-328 second.

23. 2 h. ii m. A.M. to 3 h. 16-9 m. A.M.

Chapter XVII. Page 428.

1. 932 lb. weight. 2. 976 cms. per sec. per sec

3. 977 tons weight. 4. 7-99 feet per sec. per sec. ; 2-237 seconds.

5. 9-767 lb. weight. 6. 3 1 2 foot-tons ; 26 tons weight.

7. 13-38 ton -foot-second ;
20-8 tons weight.

8. Truck has a velocity of 6 feet per sec. in direction opposite to that of the man.

9. 54-4 lb. weight.

10. 49-5 feet per sec. ; 76-9 lb. weight ; both at 135 to direction of jet.

11. 260 lb. -feet. 12. 860 pounds and feet units.

13. 9-49 tons and feet units. 14. 82-5 pounds and feet units.

15. 26-2 pounds and feet units. 16. 1-414 feet
; 9-7 foot-tons.

17. 1-25 foot-tons. 18. 2-147 feet per sec. per sec.

19. 3270 lb. weight. 20. 49 29'.

21. (a) 57-8 foot-tons ; (b) 2-138 foot-tons ; (c) 59-94 foot-tons.

22. 28-9 lb. weight, at 59 to the tangent.

23. 1 60- 1 feet. 24. 29-4 tons weight ; 25-5 tons weight.

Chapter XVIII. Page 451.

1. 226, 100 pound-foot-sec. ; 312 lb. -feet.

2. 1-84 Ib.-feet. 3. 0-533 radian per sec.

4. 176-4 lb. weight ; 18-85 feet per sec. 5. 3-9 second.

6. i -5 feet; 1-36 second. 7. 2 feet from the top end.

8. 0-97 foot from the 4 pound mass ; 44-42 pound and foot units.

9. 8-1 pounds at end of bar
; 24-78 pounds at 2-694 feet from the 8-1 pound

mass.

10. (a) 98 feet per sec. per sec. (b) 98 feet per sec. per sec. ; 18-1 radians per
sec. per sec.

11. 113,500 poun 1-foot-sec. 12. no.

15. 198 lb. weight. 14. 1-255 pound and foot units-
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15. 248 lb'. weight at 4 inches from the mass centre.

16. 12-41 seconds ; 323 lb. weight. 17. 0-392 second.

18. 540 pounds at axis ; 60 pounds at 5 feet from axis and on same side of it as

the centre of gravity ; 465-8 Ib.-feet.

19. (a) Car turning towards the right, front axle relieved by 5-725 lb. weight,
back axle loaded to same extent ; (b) car turning towards the left, the

former forces are reversed.

20. 0-69 \/- radians per sec.

Chapter XIX. Page 491.

1. 7-7 feet per sec., upwards to right at 23 28' to AB produced.

2. 87 feet per sec., upwards to right at 35 40' to AB.

3.

4. (a) 1-33 radians per sec. ; (b) 1-012 feet per sec. ; (c) 0-405 radian per sec.

5. BC produced to E, CE = 0-95 foot. 6. CP = 2-531 inches.

9.

11.

12.

14.

15.

16.

17.

1.

4.

8.

11.

47-7 lb. weight ; 81-3 lb. weight. 10. 785 revs, per min.

Accel, at 60, 37-5 feet per sec. per sec. ; at inner dead point, 125 feet per
sec. per sec.; at outer dead point, 75 feet per sec. per sec. 581 lb. ;

I940lb. ;
n62lb.

(a) 8770 lb. -feet ; (6) 8200 lb. feet. 13. 50 feet per sec. per sec.

R = 223-5 lb., at right angles to rod and i^ feet from the crank pin.

1378 lb. -inches.

Inner dead point,
= 3-49; outer dead point, w= 1-497; at 45, w= 1-341,

all in radians per sec.

(a) 0-757 sec. ; (b) 0-443 sec. ; 47 10'.

2375W Ib.-feet. 21. 286-2 feet per sec. per sec.

48 inches ; 3480 lb. ; 810 lb. upwards ; 3670 lb. in line of crank.

0-965 feet per sec. 24. 1-46 inches; -o-i inch ;
at 0-89 of the stroke.

1496 Ib.-feet.

Chapter XX. Page 522.

6-22 foot-lb. 2. 0-0035 per cent. 3. 91-2 revs, per min.

7940 revs, per min. 6. 146 feet per sec. 7. 970 pounds.

128 foot-lb. 9. 93-6 revs, per min. 10. 7-2 pounds.

171-2 revs, per min.
; 189-2 revs, per min. ; 10 per cent.

D.M. 2 Y
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12. i o- 1 radians per sec. ; 2-816 lb. -feet.

13. 106-6 lb. weight ; 17-76 Ib. weight per inch compression.

14. 179 revs, per min.
; 17 revs, per min. ; 13-3 lb. weight. 15. See Fig. 726.

I

5 lb

-J

*
> 3 to

FIG. 726.

16. 6-6 pounds at I foot radius ; 90 lb. weight.

17. Angles made with the direction of the force at A : C, 166

E, 30 ; 14-7 lb. weight.

18. 332 pounds making 159 with the adjacent crank.

19. 5-15 tons; angles with No. I crank: No. 2 crank, 144-6; No. 3 crank,

255-6 ;
No. 4 crank, 55-5.

20. Cranks A and C diametrically opposite crank B ; mass of A =
f _,^ M ;

mass of C = -, r M.

D, 235 ;

'(a + c)

(*+e)

21. (a] Revolving masses: let Fj = ^-^
; forces balance; resultant couple

= 2Fx/v/2 in a plane at 45 to the vertical. Reciprocating masses : let

F2
= -

; primary forces balance ; primary couple = F2 x 2p ; secondary

forces balance ; secondary couple = F2
x - x 2p.

(b) Revolving masses: forces balance; resultant couple = 2
lp>^2 in the

horizontal plane. Reciprocating masses : primary forces balance ; primary

couples balance ;
no secondary forces ;

no secondary couple.

22. 1635 revs - Per mm - 23. 822 revs, per min.

24. 1870 revs, per min. 25. 126-2 inches.

Chapter XXI. Page 561.

1. (a) 240 and 1080 revs, per min. (b} 228 and 974-7 revs, per min.

2. One countershaft. 36 inch pulley on line shaft ; 9 inch and 19-5 inch pulleys
on countershaft ; countershaft runs at 576 revs, per min.

3. T = 8-ilb. ;

11.

12.

4. 14,700 lb. 5. 15-77 inches. 6. 168 lb.

7. 68-2 revs, per min.
; 41-5 inches. 8. 19 H.P. 9. 280 lb.

10. 15 on lathe mandrel, gearing with 36 on stud ; 18 on stud gearing with 45 on
lead screw.

1-75 ;
12 ; 8 gearing with 36, 12 gearing with 32.

5-62 ; 9-38 ; 22-5. 14. 2^ clockwise revolutions.

1-5 clockwise revolutions ; 3 clockwise revolutions. 16. ;?D : H = I : 2,
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1.

3.

4.

5.

6.

8.

10.

11.

Chapter XXII. Page 589.

1200 lb. ; 400 Ib.
; 300 Ib. 2. 15,000 Ib. ; 15,910 lb. ; 9000 Ib.

1029 tons ; 92-6 tons ;
R = 936-4 tons at 10-69 feet from the bottom.

1885 lb. ; 3144 lb.

16,500 lb. ;
2-06 feet below the top edge of the opening.

670 tons ; 7-812 feet. 7. 173-8 tons.

Transverse BM = 9-38 feet ; longitudinal BM= 104-1 feet. 9. 2-91 degrees.

57,100 lb. at 23 30' to the vertical and intersecting the base at a point
12-25 feet fr m the water face, and hence falling within the middle third ;

52,500 lb. intersecting the base vertically at one-third its width from .the
water face.

12. 122-7 gallons per hour ; 2-21 pence per hour.

13. 4-72 H. P.; 3-075 H.i>. 14. 21,130 foot-lb. 15. 17,550 foot- lb.

16. 26,950 lb. ; 5550 cubic inches ; 323,400 foot-lb.

17. 6
; 1467 lb. ; 954 lb. ; 10 feet.

18. 8-88 cubic feet ; (a) 5330 lb. push ; (b) 5117 lb. pull.

19. 1 4-63 inches diameter ;
2 1-94 inches stroke; 1 20,000 foot-lb. per min.; 6-07 H. P.

20. 1049 lb. ; 707 lb. 22. 1965 lb.

23. Accumulator down : 869-3 lb. per sq. inch at the top ; 891 lb. per sq. inch at

the bottom. Accumulator up : 891 lb. per sq. inch at the top ; 912-7 lb.

per sq. inch at the bottom.

24. 8-03 feet. 25. 166-7 lb. ; I -o foot from the top. 26. 0-39 foot.

Chapter XXIII. Page 622.

1. 36 ft. per sec. ; 8-62 lb. per sq. inch. 2. 0-352 cubic feet per sec.

3. 0-047 cubic feet per sec. ; 1057 gallons per hour.

4. 0-072 cubic feet per sec. ; 1620 gallons per hour.

5. 12-68 feet per sec. 6. 4-54 cubic feet per sec. 7. 1228 lb.

8. 0-267 cubic feet per sec. 9. 37,600 gallons per hour.

10. 2-233 5 2-29 5 2-35, all in cubic feet per sec.

11. 0-00265. 12. i foot.

13. 4-42 feet per sec. ; 1,880,000 cubic feet per day, 14. 2-17 feet per 5ec,
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15. 7-85 feet per sec. ; 24-65 cubic feet per sec. ; 5-56 feet per sec. ; 17-45 cubic

feet per sec.

16. 3-244 miles. 17. 0-0767 foot-lb.

20. 36-2 feet per sec. 21. 426 feet per sec.

i foot per sec. ; 31-4 Ib. per sq. inch. 24.

1-094 Ib. ; 25 miles per hour. 26.

23.

25.

27.

29.

31.

9.

10.

11.

12.

13

15.

18. 0-046 foot-lb.

22. 40 feet per sec.

1,440,000 gallons per hour.

6-69 seconds.

59 Ib. per sq. inch. 28. 5 feet per sec. ; 9800 gallons per hour.

18-3 cubic feet per sec. 30. 0-74 foot ; o-ioi H.P.

Frictional loss in the 6 inch pipe
- - = 3-03 feet head.

t> 3
- =96-96

Loss at pipe entrance - = 0-0071 ,,

,, the contraction = 0-0257 ,,

Kinetic energy wasted in the lower reservoir = 0-0572 ,,

100-0800
70-6 gallons per mm. - ^~

222 gallons per min. ; 3-02 feet per sec. ; 27-18 feet per sec.

Chapter XXIV. Page 659.

3. l-99lb. ; 3-33 Ib.

4. (a) Work done by the jet
= 398 foot-lb. per sec. ; (b) work done against the

jet
= 6-66 foot-lb. per sec.

5. 4-09 H.P. 6. 16-65 cubic feet per sec. ; 2-27 H.P.

7. 35-25 degrees. 8. 12 feet per sec.

39-6 feet per sec., at 8 41' to the wheel circumference.

1184 revs, per min. ; 230-7 H.P.

(a) 32-78 feet per sec. ; (b) 26 45' ; (c) 2175 Ib. per sec. ; (d) 43, 500 foot-lb.;

59-3 H.P. ; (e) 48 49' ; 33 18' ; 104 revs, per min. ; (/) 10-7 feet per sec. ;

91-1 per cent.; () 29-2 feet per sec.; 2960 Ib. -feet ; 32,300 foot-lb. per sec. ;

58-7 H.P.

14 29' ; 72 23' ; 15 42' ; 4-72 feet per sec. ; 16-62 feet per sec. ; 3-27 feet.

22-3 Ib. 14. (a) 87-3 Ib. ; (6) 50 per cent. ; (c) 3-57 H.P.

Z i loo per cent.
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16. 26 26'; 45 * 8'. 17. iSoH.p. 18. 73; 9 52'.

20. 10-46 feet per sec. ; 8-57 feet per sec. ; 1 1 -43 feet per sec

21. 14,000 pound-foot-sec. ; 47-411.?.

22. 0-3169^; 6-i5\^; 97-7 per cent. 23. 98-2 H.P.; 1-91 feet.

Chapter XXV. Page 678.

1. 0-608. 2. 0-964. 3. 0-53; 0-52.

4. 2-52; 2-51. 5. 3-226; 3-17.

6.

Average value of c 0-943.

*=!.*.?!,
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Absolute units of force, 2, 407.
Acceleration, 385 ; and force, Law

for, 406, 446 ; Angular, 391 ; at
an instant, 386 ; Central, 397
due to change of direction, 395
due to gravitation, 389 ; Equa
tions for uniform, 387 ; image,
474 ; of the piston, 467 ; -space
diagrams, 399, 467 ;

-time dia-

grams, 386, 399.
Accelerations at ends of stroke, 468 ;

Composition and resolution of,

390-
Accumulator, Hydraulic, 584.
Air-vessel, 587.

Amplitude of vibration, 400.

Angle of advance, 481 ; of obliquity
of stress, 122 ; of repose of

earth, Natural, 280 ; of resist-

ance, Limiting, 363 ;
of sliding

friction, 363, 375 ;
of torsion,

254 ; of twist, 318.

Angular, acceleration, 391 ; and
linear velocity, Relation of, 391 ;

momentum, 430 ; motion, Equa-
tions of, 391.

Angular velocity, 390 ;
at an instant,

392 ; diagrams* 394 ; Change in,

400 ; Fluctuations in, 494 ; Re-

presentation of, 400.
Anticlastic curvature, 144.
Arch, Linear, 244 ; Three-pin, 243.
Arches, 241-246 ; Bending-moment

diagrams for, 245 ; Bending-
moment, shear and thrust in,

244 ; Horizontal thrust in, 242,

246 ; Line of resistance in, 241 ;

Masonry, 241 ; Metal, 242 ;
Re-

actions in, 246 ; Stresses in

joints of, 242.
Areas, Determination of, 5.

Autographic recorders, 293, 305 ;

records, 294, 311, 312, 313, 314,

315, 3i6.

Avery torsion machine, 316
Azimuth, Motion in, 431.

Balances, 4.

Balancing, 509-518 ; Apparatus
for testing, 513 ; Primary, 515,
517 ; problems solved graphi-
cally, 511 ; of locomotives, 510;
of reciprocating masses, 514 ; of

revolving masses, 426, 509 ; Se-

condary, 517 ; Static, 427.
Ball bearings, 361.
Barr's autographic recorder, 305.
Beam sections, Modulus of, 147.
Beams, Bending in, 142 ; Bending-
moment diagrams, 135, 139,

140 ; Bending-moment diagrams
by calculation, 135 ; Bending-
moment diagrams by graphical
moments, 140 ; Bending-moment
diagrams by link polygon, 139 ;

Bending moments and shearing
forces in, 133 ; Continuous, 204 ;

Curvature in, 163, 165 ; Deflec-

tion of, 163 ; Determination of

moment of resistance in, 144 ;

Elastic bending of, 299 ; Encas-
tre, 176 ; Experiments on, 299,

312 ; four typical cases of, 137 ;

Graphical solution of slope and
deflection in, 171-173 ; Longi-
tudinal strains in, 142 ; Longi-
tudinal stresses in, 143 ;

Moment
of resistance in, 134, 144 ; Nature
of stresses in, 132 ; Neutral axis

in, 142 ; of I section, Strength of,

153 ;
of uniform curvature, 185 ;

of uniform strength, 154-156;
Proportional laws of strength of,

152 ;
Pure bending in, 131 ;

Propped, 183 ; Reactions of, 46,

47. 53 55 I
Reinforced concrete,

219 ; Relations of slope and
curvature in, 166 ; Shearing



INDEX 712

force at a concentrated load,

136 ; Shearing force diagrams,
135 ; Slope and deflection in

simply supported, 169-171, 175 ;

Stresses due to bending in,

146.
Belt, Driving by, 526-533 ; Friction

of a, 529 ; Length of, 537 ; pulley
arrangement, 528 ; striking gears,

Belt pulleys, Effects of changing
diameter of, 532 ; Velocity ratio

of, 527, 529.
Belts, Centrifugal tension in, 535 ;

Horse-power transmitted by,
532 ; Open and crossed, 526 ;

Slip of, 527.

Bending moment, diagram for a

connecting rod, 478 ;
in beams,

133 ; on a side rod, 465 ; Points
of zero, 181.

Bending of a beam, 131, 142.

Bending test, Record of reversed,

312 ; tests, 303, 312.
Bends, Loss of head at, 671.
Bernoulli's law, 595, 667.
Bevel wheels, Friction, 539 ; toothed,

Blow, Average force of a, 411.
Borda mouthpiece, 602.
Bow's Notation, 25, 69.

Brake, Band, 342 ; High-speed.,
343 ; Hydraulic, 344.

Brakes, 34-344 ; Rope, 340.
Brake-wheels, Cooling of, 341.
Bridge girders, 212-219.
Bridges, Suspension, 246.
Bucket pump, 587.
Buffer-stops, Average resistance in,

409.
Bulk modulus, 109, 299.
Bulk modulus from experimental

data, 299.

Buoyancy, 569.

Calculus, 9.

Cams, 490.
Cantilevers, Propped, 181 ; Slope
and deflection in, 167-169, 173-

Carriage springs, 273.
Cast iron, Records of tests on, 313.
Cement, Composition of, 320 ; Fine-

ness of, 320 ; Setting time of,,

321 ; Soundness of, 321 ; Speci-
fic gravity of, 320 ; Strength of,.

321 ; testing, 320.
Central force, 425.
Centre, Instantaneous, 457.

Centre of gravity, by calculation,

49-51 ; by experiment, 56 ; gra-

phically, 52 ;
of a floating body,

575-
Centre, of mass, 412 ;

of parallel
forces, 48 ; of pressure, 571.

Centrifugal force, 425.

Centrifugal pumps, 649-658 ; Gross
lift in, 652 ; Hydraulic efficiency
of, 653 ; Multiple wheel, 658 ;

Variation of pressur? in, 654 ;

Velocities in, 649 ; Work done
on, 651.

Centrifugal tension in belts, 534.
Chain, Tension in a hanging, 73.

Chains, Transmission of motion by,

537 ; Types of driving, 537, 538 ;

Work transmitted by, 538.

Chezy formula for pipes, 613.
Circle, Motion in a, 395.
Circular bending, 186.

Clapeyron's theorem of three mo-
ments, 206.

Coach springs, 273.
Coefficient, of discharge, 600, 665 ;

of rupture, 314 ; of velocity, 600,

665.
Coefficients, of expansion, 115, 682 ;

of friction, 354, 355.
Collars, Friction of, 359.
Collision, Waste of energy during,

617.
Columns, 227-241 ; Euler's curve

for, 232 ; Euler's formula for

long, 228 ; Ewing's formula for,

233 ; Fixing the ends of, 231 ;

Gordon's formula for, 236 ; Least
radius of gyration in, 232 ;

Maximum shear stress in, 124 ;

Non-axial loads on, 237 ; Ran-
kine's formula for, 234 ; Rein-
forced concrete, 119 ; Secondary
flexure in, 237 ; Straight-line
formula for, 240 ; Stresses on

oblique sections of, 122 ; Table
of coefficients for, 235 ; Tests on,

SOS-

Components of a force, 21.

Compression tests on cement, brick

and stone, 321.
Concrete, composition of, 320.

Conjugate stresses, 280.

Connecting rod, Acceleration image
of, 474 ; Bending-moment due
to inertia on, 477 ;

Inertia re-

actions due to the, 476 ; Infinite,

466 ; Motion of, 471 ; Resultant
force on the, 475.

Constants, Useful, 681.
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Continuous beams, 204-208.
Contractions in test pieces, Lateral,

312.
Contraflexure, Points of, 180 ;

in

columns, Points of, 231.
Couple, and I of a body, Relation

of, 414 ; and rate of change of

angular momentum, 431 ; de-

nned, 43 ; Equilibrant of a, 59,

71 ; Moment of a, 59 ; Resultant
of a, 61 ; Work done by a, 339.

Couples, Properties of, 59 ; Rock-
ing, 426.

Couplings for shafts, 558.
Crab, Experiment on a, 329.
Crank-effort, 470 ; diagram, 496.
Crank pin, Friction of a, 371 .

Crank shaft bearings, Friction in,

373-
Crank, Turning moment on, 469-

471.

Creeping in test pieces, 310, 319.
Crosshead pin, Friction of a, 372.
Curvature, 164 ; in beams, Anti-

clastic, 144 ; in columns, 229 ;

Uniform, 185.

Cycloid, 550.

Cylinders, Thick, 112.

Darcy formula for pipes, 614.
Dead angles, 374.
Deflection and stress, Relation of,

187.
Deflection in beams, Measurement

of, 299 ;
of beams, 163.

Delta metal, Record of tensile

test on, 312.
Density, 2.

Derrick Crane, Forces in a, 33.
Differential, Calculus, 9 ; co-effi-

cients, Table of, n.
Differential gearing for motor cars,

545-
Distance-time diagrams, 381, 383.

Dynamical systems, Equivalent,
443-445, 475.

Earth pressure, 279-290 ;
Ran-

kine's theory of, 280 ; Wedge
theory of, 283.

Eccentric, 480.
Eccentrics, Component, 481, 484.
Efficiency of a screw, 367 ;

of

machines, 328.
Elastic break-down, Points of, 310,

319.
Elastic limit, 108

; changed by
overstraining, 311, 313.

Elasticity, 108.

Elbows, Loss of head at, 672.
Electrical horse-power, 344.
Electromotor arranged as a dyna-

mometer, 378.
Ellipse of stress, 262, 281.

Encastre beams, 176-181.
Energies of flowing water, 593.

Energy, 326 ; Chemical, 326 ; Con-
servation of, 326 ; Elastic, 326 ;

Electrical, 326 ; Fluctuations in,

494, 496 ; Heat, 326 ; Hydraulic
transmission of, 581 ; Kinetic,

326, 409, 419 ; of a rolling wheel,

420 ; Potential, 326 ; transfor-

mations in flowing water, 593.

Epicyclic reducing gears, 547-549 ;

trains of wheels, 546-545.

Epicycloid, 551.

Equations of equilibrium of uni-

planar forces, 65.

Equilibrant, denned, 21 ;
of any

uniplanar forces, 64 ; of forces

in the same straight line, 21 ;

of two intersecting forces, 22, 25 ;

of uniplanar forces, at a point ;

29.

Equilibrium of forces in parallel

planes, 512.

Equilibrium, States of, 52.
Euler's formula for columns, 228.

Ewing's extensometer, 307 ;
for-

mula for columns, 233.

Expansion, Coefficient of, 115; of

a gas, Work done during, 580 ;

Stresses due to, 115.
Extensions in test pieces, 311.
Extensometers, 307.

Factors of safety, 194.

Falling body, Equations for a, 389.
Feed pump, 588.

Flywheel, Dimensions of, 496 ; Ex-

perimental, 418 ;
Kinetic energy

of, 495 ; M of a, 495 ;
Moment

of inertia of, 447 ; Necessary
moment of inertia of a, 499 ; and
shaft, Torsional oscillations of,

438.

Flywheels, 418, 420, 494-499 ; Cen-

trifugal tension in, 498.

Flange stress, 153.

Floating bodies, Centre of gravity
of. 575 ; Pressure on, 569 ; Sta-

bility of, 572-576.
Fluctuation in energy, Coefficient

of, 497.
Fluid friction, 355, 592.
Fluid pressure, Resultant, 568 ;

Total, 567 ;
Work done by, 579-
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Fluid, Stresses in a, 565 ; stress

diagrams, 567 ; stress, Equality
of transmission of, 566.

Fluids, Normal stresses in, 564 ;

Properties of, 564.
Force, Absolute units of, 407 ;

Centrifugal, 425 ; diagrams, 79-

89 ; Definition of, i
; Measure-

ment of, 2, 3 ;
Moment of a, 41 ;

Rectangular components of a,

23 ; Representation of a, 19 ;

Space-average of a, 410 ; sys-
tems in parallel planes, 512 ;

Time-average of a, 412 ; Units

of, 2.

Forces, acting at a point, 19-36-;

(

External and Internal, 78 ; Im-

pulsive, 411 ;
in the same

straight line, 19 ; Parallel, 40 ;

Parallelogram of, 21, 22 ; Poly-
gon of, 28 ; Systems of uniplanar,
64 ; Systems' of uniplanar con-

current, 26 ; Triangle of, 24.
Foundations by Rankine's theory,

289.
Four-bar chain, 458.
Friction, 353 ; angles, 363 ; circle

for journals, 368 ; Coefficients

of, 354. 355. 356 ; Effect of speed
of rubbing on, 354, 355, 376 ;

gearing, 538 ; in fluids, 592 ;

in machine bearings, 355 ; in

screws, 366 ; of a slider, 375 ;

of belts, 529 ; of collars, 359 ; of

dry surfaces, 354 ; of flat pivots,

358 ;
of fluids, 355 ; of journals,

355-358, 368 ; on inclined planes,
364 ; Rolling, 361, 375.

Froude dynamometer, 349.
Froude's law, 621.

Gas jet from an orifice, 601.

Gauge notch, Rectangular, 604 ;

Triangular, 604.

Gauge notches, 604-607, 666.
Girard turbine, 633.
Girders, Parallel braced bridge, 212 ;

Plate, 208 ; of varying depth,
Bridge, 216 ; Warren, 218.

Gordon's formula for columns, 236.
Governor arms, Effect of, 503-505.
Governor, Effort of a, 508 ; Hart-

nell, 507 ; Isochronous, 507 ;

Parabolic, 506 ; Sensitiveness of

a, 507 ; Stability of a, 505 ;

Watt, 499.
Governors, 495, 499-509 ; Friction

in, 503 ; Loaded or Porter, 501 ;

Simple forms of, 500.

Gravitational units of force, 2.

Gravity, 2 ; Specific, 4, 570.
Gun-metal, Records of tests on, 315.

Gyration, Radius of, 151, 152, 418,

449.
Gyrostat, Effect of friction in, 435 ;

Model, 434 ; Schlick's anti-roll-

ing, 435 ; wheel, Change of

velocity in a, 401.

Gyrostatic action, 431-436 ; couple,
432.

Hanging cords, 72.

Heating, Stresses due to unequal,
116.

Helical blocks, 333.
Helical gearing, 556.

Hoisting tackle, 332.

Hopkinson-Thring torsion-meter,

346 -

Hooke's coupling, 559.
Hooke's law, 108.

Horse-power, 326 ; Brake, 339 ;

Indicated, 337 ; Shaft, 344 ;

transmitted by belts, 532 ; trans-
mitted by ropes, 534 ; transmit-
ted by shafting, 257 ; transmitted

by toothed wheels, 541.
Humpage gear, 548.
Hutton's formula for wind pres-

sure, 196.

Hydraulic, accumulator, 584 ; effi-

ciency, 628 ; engine, 579 ; ex-

periments, 663 ; gradient of a

pipe, 608
; intensifier, 585 ; lift,

583 ; mean depth, 611 ; power
installation, 582 ; press, 583 ;

pump, 585 ; transmission of

energy, 581.

Hydraulic turbine, Axial-flow im-

pulse, 633-638 ; Axial-flow re-

action, 639 ; Inward-flow re-

action, 642 ; Outward-flow im-

pulse, 639 ; Outward-flow re-

action, 648.

Hydraulic turbines, 632-649 ; Im-
pulse, 632-639 ; Pressure varia-
tion in, 640, 644 ; Reaction, 639-
649.

Hypocycloid, 551.

Idle wheels, 542.
Impact of inelastic bodies, 617.

Impulsive forces, 411.

Impulsive loads, 193.
Incline, Acceleration on an, 390 ;

Train running down an, 408 ;

Wheel rolling down an, 421-424,
450.
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Inclined planes, Friction on, 364.
Indicated work and power, 337.
Indicator, 337 ; diagrams, 337-339 ;

parallel motion, 336, 461.
Inertia, 3, 406-454 ; reactions on
an engine frame, 476, 518 ; Re-
sistance due to, 407 ; Rotational,

4 J 3-

Integral calculus, 13.

Integrals, Table of, 17.

Intensifier, Hydraulic, 585
Instantaneous centre, 457.
Introductory principles, i.

Jet, Path of a, 666 ; Work done by
a, 628.

Jets, Pressure of impinging, 625-
629, 674 ; Reaction of, 60 1.

Jonval turbine, 639.

Joule's mechanical equivalent of

heat, 326.

Journals, Friction of, 355-358, 368 ;

Heating of, 357 ; Horse-power
wasted in, 369.

Kinematic chains, 455.
Kinematics, Definition of, I .

Kinetic energy, 409 ;
of rotation,

419.
Kinetics, Definition of, i.

Klein's construction, 466, 473.

Lap of a valve, 479.
Launhardt-Weyrauch formula, 195.
Leather packings, Hydraulic, 583.
Le Chatelier cement test, 321.
Lever, Bent, 63.

Lift, Hydraulic, 583.
Link, mechanisms, 455 ; polygon,

67-70, 82 ;
Possible velocities in

a, 457-
Live load forces in bridge girders,

215.
Load, A single travelling, 197 ;

A
uniform travelling, 200.

Loads, Alternating and varying,

194 ; applied gradually, 191 ;

applied impulsively, 193 ; ap-
plied suddenly, 192 ; Combined
dead and travelling, 201 ; Dead
and live, 191 ;

in columns, Non-
axial, 237 ;

Non-uniform travel-

ling, 203 ; Working, 191.
Lock gate, Stresses on a, 567.
Locomotive, balancing, 510 ; pick-

ing up water, 412 ;
side rod, 464.

Logarithms, 684-687.
Lubricants, testing of, 377.

Mass, Centre of, 412 ; Measurement
of, 3 ; Units of, 2.

Materials, Testing of, 292-322.
Mathematical formulae, 5.

Matter, Definition of, i
; Measure-

ment of, 2.

Maxwell's needle, 296.
Machines, Effect of friction in, 328 ;

Efficiency of, 328 ; Equations
for, 332 ; Mechanical advantage
of, 327 ; Reversal of, 329 ;

Velocity ratio of, 327, 328, 332,
333, 334-

Mechanical advantage, 327.
Mechanical efficiency, 339.
Mechanisms, Accelerations in, 463 ;

Inertia effects in, 462 ; Paths in,

456 ; Velocities in, 456.
Mellanby brake, 342.
Mensuration, 5.

Metacentre, 573.
Middle-third rule, 239.
Milne's-Daimler differential gear,

546.
Mitre wheels, 544.
Moduli of elasticity, 683 ; Relations

of, 299.
Modulus, of beam sections, 147 ;

of elasticity, 108
; of rigidity by

direct torsion, 295, 319, 346-349 ;

of rigidity by Maxwell's needle,

297 ; of rigidity by pulling
springs, 296 ;

of rigidity by
vibrations of springs, 298.

Moment, of a force, 41 ; of inertia,

145 , 414 ; of inertia found

graphically, 150 ; of resistance
in beams, 134 ;

of resistance to

torsion, 253.
Momenta generated by equal forces,

411.
Moments, Method of graphical, 46

47, 83 ; of inertia, Rules for, 417
of inertia, Table of, 415 ;

Prin

ciple of, 41, 55.

Momentum, 3, 410 ; Angular, 430
Change of, 411 ; Moment of

430; Rate of change of, 411
Rate of change of angular, 431
Representation by a vector,

411.
Motion, Average resistance during

change of, 410.
Motion equations for uniform ac-

celeration, 388.
Motion in a circle, 395.
Motion, Newton's laws of, 3 ; Simple

harmonic, 398.
Motor car, Gear wheels of a, 543.
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Motor cars, Gyrostatic action in,

432.
Motor track, Banked, 427.

Neutral axis, 142 ; found graphi-

cally, 148 ; Position of, 145.
Neutral lamina, 142.
Newton's laws of motion, 3.

Oblique stress, 122.

Oldham coupling, 558.
Orifice Discharge of a gas from an,

60 1 in a thin horizontal plate,
600 in a thin vertical plate,

598 Trumpet, 601.

Orifices, Discharge from, 598-603,

665.

Oscillating engine, 485.
Oscillation, Centre of, 442, 449.
Oscillations, Simple harmonic tor-

sional, 438.

Overstraining, 311.

Overturning, Conditions of, 363.

Parabolic chain, Length of, 248.
Parallel forces, 40 ; Centre of, 48 ;

not in the same plane, 53 ; Re-
sultant of any number of, 43.

Parallel motions, 460-462.
Parallelogram, of forces, 21, 22 ; of

velocities, 389.
Paths in mechanisms, 456.
Pelton wheel, 630, 675.
Pendulum, Compound, 440 ; Corre-

sponding simple, 442 ; Forces
in a, 29 ; Simple, 439.

Percussion, Centre of, 442, 449.
Permanent set, 108.

Pipe, Critical velocity in a, 592, 669 ;

entrances, 609 ;
Flow through

a uniform, 608, 669.

Pipes, Friction in uniform, 610,

669 ;
Effect of change of dia-

meter in, 615 ;
Flow through,

608-620 ;
Sudden contractions

in, 619, 674 ; Sudden enlarge-
ments in, 618, 672.

Piston rings, 270.
Pitot tubes, 607.
Pivots, Friction of flat, 358.
Pivot, Schiele, 360.
Plate girders, 208-212.

Plates, Pressures of jets on fixed,

625 ;
Pressures of jets on moving,

627.

Plunger and bucket pump, 588.

Plunger pump, 587.
Poisson's ratio, 108, 299, 683.

Polygon, of axes of couples, 512 ;

of forces, 28, 29.
Poncelet Wheel, 629.
Portland cement, 320.
Power, 326 ; Electrical units oi

327-
Press, Hydraulic, 583.
Pressure energy of fluids, 593.
Pressure of a fluid, 567.

Principal axes, Stress on sections
inclined to, 261.

Principal stresses and axes, 259.

Principal stresses, for pure torque,
258 ;

for simple shear, 128.

Properties of materials, 683.

Properties of sections, Table of, 151.

Propped cantilevers and beams,
181-184.

Pulley blocks, 332.

Pulleys, for belts, 526 ; Jockey,
527-

Pull tests, 302, 309.
Pull, Wires under, 292.

Pumps, Centrifugal, 649-658 ; Re-

ciprocating, 585-589.
Punching rivet holes, 98.

Punching tests, 304, 316.
Pure bending of a beam, 131.
Pure twist, 251.
Push or pull in a structural mem-

ber, Rule for, 80.

Push tests, 303, 305.

Quadratic equations, Solution of, 9.

Quick-return motions, 487-490.

Rack, Involute, 556.
Racks, Wheel between, 460.
Radius of gyration, 152, 418.
Rankine's, formula for columns,

234 ; formula for combined tor-

sion and bending, 265 ; hypo-
thesis for shafts, 264 ; theory
of earth pressure, 280

; theory of

foundations, 289.
Ratchet wheels, 558.
Reaction defined, 20.

Reactions of a beam, 46 ; by link

polygon, 70.

Reciprocating masses, Inertia of,

466.

Reciprocating parts, Equations of

motion of, 515 ; Equivalent
revolving system, 517.

Rectangular components of a force,

23-

Reducing gears, Epicyclic, 547'549-
Reinforced concrete, beams, 219-

224 ; columns, 119.
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Relative velocities in a link, 457.
Relative velocity, 402.
Renold's silent chain, 538.
Resilience, 191 ; under torsion, 320.
Reservoir wall, Lines of pressure in

a, 5?8.
Resistance of ships, 620.

Resultant, denned, 21 ; of forces at

a point, 27, 28 ; of forces in

the same straight line, 21 ;
of

parallel forces, 40, 43 ; of two
intersecting forces, 21, 24 ;

re-

action between two bodies, 362.

Retaining walls, for earth, Graphical
solutions of, 281, 286 ;

Ran-
kine's theory of, 281 ; Wedge
theory of, 283 ; for water, 576-
579 ; Pressures on base of, 287.

Reuleaux valve diagram, 481.

Reversing gear, Belt, 536 ; by
mitre wheels, 544.

Rigidity modulus, 109.
Riveted butt joints, 102.

Riveted joints, 97-106 ; Efficiency
of, 103 ; Methods of failure of,

99.
Riveted lap joints, 100 ; tie-bar

joint, 105.

Rivets, Rule for diameter of, 103.

Rocking couples, 426.
Roof trusses, Calculations of re-

actions of, 66 ; Forces in, 30, 79-
89.

Rope pulleys, 533, 534.

Ropes, Centrifugal tension in, 535 ;

Driving by, 533.

Rotating body, Velocity of any
point in a, 456.

Rotational inertia, 413.
Rotation, Kinetic energy of, 419.
Routh's rule for I, 417.

Rupture, Coefficient of, 314.

Scalar quantities denned, 19.
Schiele pivot, 360.
Scott-Russell parallel motion, 460.
Screw gearing, 557.
Screw jack, 377.
Screws, Efficiency of, 367 ; Friction

in, 366.
Second moment of area, 145.
Sections of beams, Symmetrical
and unsymmetrical, 132.

Sections, Properties of
, 151.

Shaft-horse-power, 344.
Shafts, 251-266 ; Calibration of,

345-349 ; Comparison of hollow
and solid, 255 ; Couplings for,

558 ; Distribution of shear

stress in, 252 ; Horse-power
transmitted by, 257 ; Maximum
shear stress formula for, 266 ;

Moment of resistance to torsion

in, 253 ; Principal stresses in,

258 ; Pure torque in, 252 ; Ran-
kine's formula for, 265 ; Stiffness

of hollow round, 255 ; Stiffness
of solid round, 254 ; Strength
of hollow round, 253 ; Strength
of solid round, 253 ; Twisting
moment on, 251 ; under com-
bined bending and torsion, 264 ;

Whirling of, 519-522.
Shaping machine gears, 487-490.
Shear stresses, in a cube, 127 ; in a

rectangular plate, 126 ; produced
by torque, 252.

Shearing force in beams, 133.

Shearing stress, in beams, Distri-

bution of, 156-160 ; on inclined

sections, maximum, 262.

Shearing tests, 303, 315.
Sheer legs, Forces in a. pair of, 34.
Shells, Stresses in cylindrical, 94 ;

Stresses in spherical, 96.

Ships, Resistance of, 620.

Side contractions in gauge notches,

605.
Similar flow in fluids, 603.

Simple harmonic, motion, 398 ;

vibrations, 436.
Simultaneous equations, Solution

of, 9.

Slider-crank chain, 455, 456, 457 ;

Friction in a, 372 ; Inertia in the,

466.
Slide-valve gear, 479.

Slope and deflection, Experimental
relations of, 301.

Slope in beams, 165 ; Measurement
of, 300.

Slotted-bar and crank, Friction in

a, 370 ; Inertia of, 462 ; Velocity
and acceleration in a, 399.

Space, velocity, time, Relations of,

387-

Specific gravity, 4, 570.

Speed, Coefficient of fluctuation

in, 496 ; cones, 536 ; Fluctuation

in, 496.

Spring rings, 270.

Springs, 266-276 ; carriage, 273 ;

Longitudinal vibrations of, 298 ;

Torsional oscillations of, 298 ;

under pull, 266, 296 ;
under

torsion, 268.

Sprocket Wheels, 537.

Stability of floating bodies, 572-576.
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Stanton's formulae for wind pres-
sure, 196.

States of equilibrium, 52.

Statics, Definition of, i.

Steady motion of a fluid, 592, 597.
Steam-distribution diagram, 480.
Steel, Records of tests on, 309, 312,

315. 3i7-

Stiffening girders, 247.

Straight-line formula for columns,
240.

Stream lines, 597.
Strain, 106 ; Longitudinal, Volu-

metric and Shearing, 106
; Trans-

verse, 107.
Strains in a cylindrical shell, no-

112.

Strength, of beams, 131 ; of wires,
Ultimate tensile, 294 ; under

pull, Ultimate, 311 ; under

punching, Ultimate, 316 ; under
shear, Ultimate, 315 ; under
torsion, Ultimate, 318 .

Stress and deflection, Relation of,

187.
Stress, Bearing, 99 ; Components

of, 121 ; Ellipse of, 262
; figures,

125 ; Maximum angle of obli-

quity of, 281 ; Principal axes

of, 128, 259 ; produced by fluids,

565 ; Tensile, compressive and
shearing, 93 ; Units of, 93.

Stresses and strains, Simple, 93.
Stresses, Classification of, 120 ;

Conjugate, 280 ; having a vary-
ing distribution, 124 ; in shells,

94 ; in thick cylinders, 112 ;

Normal, tangential, oblique, 120 ;

Principal, 128, 259 ; produced
by change in temperature, 115 ;

Relation of, 121 ; Working, 193.
Structures, Conditions of equili-
brium in, 78 ; Classification of,

77 ; Simple, 77.
Substituted frames, 89.
Substitution, of a force and couple

for a given force, 62
; of a force

for a given force and couple, 63.

Super-elevation of outer rail, 427.
Suspension bridges, 246 ; Stiffen-

ing girders for, 247.
Systems of uniplanar forces, 64 ;

acting at a point, 26.

Table legs, Forces in, 54.
Teeth, Cycloidal, 550 ; Involute,

554 ; Path of contact of, 553,
555 ; Proportions of wheel, 541 ;

Shape of, 549 : Strength of wheel,

541 ; of wheels, 540, 541, 549-
558.

I ensile strength, Ultimate, 311.

Testing, of materials, 292 ; machine
accessories, 303-308 ; machine
Buckton's, 302 ; machine for

torsion, 316.
Test pieces, Forms of, 304, 305, 318.
Thomson's principle of similar flow,

603 ; turbine, 642.
Tie-bar joint, 105.
Tie, Bent, 227.
Ties and Struts, 227.
Ties, Stresses on oblique sections

of, 124.
Timber, Records of tests on, 314.
Time of vibration, 400.
Toothed wheels, Condition of uni-

form angular velocity in, 549 ;

Driving by, 540 ; Power trans-

mitted by, 541 ; Velocity ratio

of, 542 ; Trains of, 542.

Torques, Equivalent, 265, 266.

Torsion, Angle of, 254 ; -meter, 344,

346 ; Moment of resistance to,

253> 257 > tests, 317 ;
Thin tube

under, 257 ;
Wires under, 294.

Torsional, oscillations of springs,
298 ; oscillations of wires, 297 ;

rigidity, 254 ; strains, Measure-
ment of, 318.

Towers' experiments on friction,

355-
Tractrix, 360.
Trains of wheels, 542-549.
Translation, Conditions of pure, 413.
Transmission dynamometers, 349.
Travelling load on a suspension

bridge, 247.

Travelling loads, 197-204.
Triangle of forces, 24 ; Relation

of forces and angles, 26.

Trigonometrical ratios, 688.

Trigonometry, 6.

Tripod, Forces in a, 35.

Turbines, Horse-power developed
in, 637, 647 ; Hydraulic, 632-
649 ; Work done in, 637.

Turning moment diagrams, 464,
470.

Turning moments modified by
friction, 370, 372-374.

Turning moment on crank, 469.
Twist, Pure, 251.

Uniplanar concurrent forces, Equa-
tions for, 27.

Unwin's formula for varying loads.
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Valve diagrams, 481.
Valve, Equation for motion of a,

482.

Valve-gear, 479 ; characteristic line

for a, 484 ; Hackworth, 482.
Vector quantities denned, 19.

Velocities, Composition and resolu-

tion of, 389 ; in a link, 457 ;
in

a rotating body, 456 ; Parallelo-

gram and triangle of, 389.

Velocity, 381 ; at an instant, 382 ;

changed in direction, 394 ; ratio

in machines, 327, 328 ; Relative,

402 ; -space diagram, 399 ;

-time diagrams, 384, 399 ; Units

of, 381.
Venturi water meter, 595, 668.

Vibrations, Simple harmonic, 436 ;

Time of, 437, 438, 400, 440.
Virtual slope of a pipe, 609.

Viscosity of lubricants, 357.
Volumes, Determination of, 6.

Vortex, Forced, 654 ; Free, 655.

Wall crane, Forces in a, 34.

Walls, for earth, Retaining, 281 ;

Stability of, 363.
Warren girders, 218.

Water wheels, Types of, 631.
Watt parallel motion, 461.

Wedge theory of earth pressure,

283.

Weight in absolute units, 407.

Weights and Specific Gravities,
Table of, 5.

Weston's differential blocks, 333.

Wheel and axle, Friction in a,

37-
Wheel and differential axle, 333.
Wheel and racks, 460.
Wheel, Energy of a rolling, 420.
Wheels, Motion of rolling, 393 ;

Toothed, 54-558.
Whirling, of a loaded shaft, 519 ;

of unloaded shafts, 520.

Whirlpool chamber, Pressure varia-

tion in a, 657 .

Whitworth quick-return motion,

489.
Wind pressure, 82-86, 196.

Wires, Torsional oscillations of, 297 ;

under pull, 292 ; under torsion,

294-
Work, 325 ; Diagrams of, 334 ;

done by a couple, 339 ; done by
a jet ; 628 ; done in an engine
cylinder, 337 ;

done in elevating
a body, 335 ;

done in hoisting
a load" and rope, 335 ;

done in

punching, 316 ;
done in twisting

a test specimen, 318 ;
Units of,

325-

Working loads, 191-197.
Wrought iron, Records of tests on,

316.

Yield, point, 310, 318 ; stress, 311.

Young's modulus, 109 ; by bend-

ing, Determination of, 300 ; by
torsional oscillations, Determina-
tion of, 298 ; by direct pull,

Determination of, 293, 310.
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