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CHAPTER I

NUMBER

1. FUNDAMENTAL LAWS OF ALGEBRA

1. ALGEBRA may be described as the general science of arithmetic

In arithmetic the processes of addition, subtraction, multiplication,

division and other derived operations arise and are applied in con-

nection with particular numbers. It is seen that the methods

employed, being applicable to all particular numbers encountered,

with certain well-defined exceptions, must be capable of a general
formulation. It is this general formulation which is the primary

object of algebra.

In order to express the truths of arithmetic in the general

(algebraic) form it is necessary to employ some kind of symbolism.

The choice of a symbolism is to some extent arbitrary, but not

without effect on the development of the science; the lack of an

appropriate symbolism having caused in some instances a delay of

hundreds of years in the progress of different branches of mathe-

matics. In the present matter of the algebraic statement of the

facts of arithmetic the use of the letters of the alphabet to repre-

sent the unidentified numbers under consideration is singularly

appropriate and has been universal since the sixteenth century,

Its fertility is sufficiently apparent in the use of formulae in

elementary algebra, and in all branches of science, for it to be un-

necessary here to enlarge upon it. It may be noted in passing

however that the letters occurring in algebraic theorems do not

always represent numbers with the same scope of generality. Thus

in some theorems the letters (or some of them) may represent

numbers belonging to the widest class contemplated, that of the

real or complex numbers, including under this head, not only the

whole numbers 1, 2, 3, etc., but also such entities as -
1, J, V2>

V-1, which are defined below; or they may be restricted to

represent numbers of only a particular class, such as the whole

numbers, or proper fractions, etc. On the other hand it is always

'the method of algebra to state theorems with the greatest possible

generality, and the fewer the restrictions placed on the
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(i.e. letters) occurring in a theorem the more important (in general)

will the theorem be.

2. Fundamental laws. The theorems on which algebra is built,

the fundamental laws of algebra, are based on our intuitive

ideas of counting, and therefore in the first instance are stated only
for the ordinary whole numbers 1, 2, 3, etc. The laws are:

(I) The associative law for addition, viz.: The terms of a sum of

three numbers may be added together in any way preserving the

original order without altering the sum; or, symbolically, if a, 6, c

are any three whole numbers then a -f (b + c)
= (a -f b) 4- c.

(II) The associative law for multiplication, viz. : The terms of a

product of three terms may be multiplied in any way preserving

the original order without altering the product, or

a x (b x c)
== (a x b) x c,

where a, 6, c have the same significance as in (I).

(III) The commutative law for addition, viz. : The terms in a sum

of two numbers may be added together in either order without

altering the sum, or a + b b 4- a.

(IV) The commutative law for multiplication, viz.: The terms in

a product may be multiplied in either order without altering the

product, or a x b = 6 x a.

(V) Tlie distributive law, viz. : The product of a sum of two num-

bers by any third number is the sum of the products of the separate

terms of the sum by the common multiplier, or

(a 4- b) x c = (a x c) -f (6 x. c).

In the statement of these laws we must be quite clear as to the

meaning of the terms and symbols used. The simplest definition

of the sum a + b is to consider it as the number finally obtained

if, having counted up to the number a. we continue the process

of counting until an additional stock of b objects is exhausted.

Multiplication is repeated addition. Subtraction and division will

be the inverses of addition and multiplication respectively.

Probably no argument which could be put forward would make

the student more convinced of the truth of (I) and (III) than he

already is, though such argument might prove useful in helping
'

^e student to appreciate the difficulties inherent in the foundation^

We will therefore be content to assume these lawsi
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as axioms. We shall have a few further remarks to make in this

connection shortly. We can however convince ourselves of the

truth of (II), (IV) and (V) by arguments similar to the following,

dealing with the commutative law for multiplication (IV): From
the definition of multiplication a x b is the number of objects in

an imagined array consisting of b rows each containing a objects*;

by intuition, or by extending the laws (I) and (III) to cover the

case of any number of terms, we see that the number of objects in

our array is the same in whatever order we count the objects; in

particular therefore this number is the same as that obtained by

considering the array of objects as a columns of b objects, i.e.

b x a; and the theorem is proved.
The fundamental laws can be extended to deal with sums, etc.,

of an}7- number of terms; these extensions follow from the laws

themselves and will provide an excellent exercise for the student.

In most algebraic deductions from the fundamental laws it will be

found most desirable to employ such simple extensions of the laws

instead of the original laws themselves.

3. The fundamental laws are at the base of all algebraical

analysis, and in fact bear to algebra much the same relation as do

the axioms of Euclid to ordinary elementary geometry. Taking, as

suggested above, counting as the basis of our definitions, we cannot

avoid beliefin the truth of the laws; our intuitive ideas on counting
would be at variance with a denial of the fundamental laws of

addition; and, having accepted these intuitions, expressed in the

form of these laws or in any other equivalent form, all the laws,

and thence briefly all algebra, follow as a logical consequence.
But it is interesting to see whether any contrary laws are logically

possible, that is, whether, either by distrusting our intuitions or

by adopting other more or less arbitrary definitions of "addition/'

etc., we could without contradiction build up a system of '*

algebra"
on the supposition that our fundamental laws (or some of them)
were untrue. In geometry it is possible to deny the Euclidean

system of axioms and build up perfectly logical non-Euclidean

geometries, in which for example it is no longer impossible

* The symbol a x b is to be read as "a multiplied by 6"
;
and in general in any

such arithmetical symbol the operations occurring are to be performed successively

from the left to the right, except when brackets or special conventions otherwise direct*

12
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for two straight lines to enclose a space. In algebra likewise the

answer to this question is in the affirmative. There are in fact, for

example, non-commutative algebras, i.e. algebras in which the symbols
a x 6 and 6 x a (say) are not equivalent. In such systems the symbols
used cannot represent the same entities as in the ordinary algebra

of whole numbers unless we are prepared to deny our intuitions of

counting. But by using the symbols to represent different opera-

tions and combinations of operations of a more general character

than our elementary addition, multiplication, etc. (a process to

which we have to resort even in ordinary algebra once we pass on

to consider the addition, etc., of non-integral numbers), quite

definite non-commutative algebras can be obtained.

A trivial example of such a system would be obtained if a were taken to

represent a motion of a point through a distance a in an easterly direction on

the spherical earth, b a motion through a distance b in a northerly direction,

and the multiplication of a by b the motion a followed by the motion b. The
results of the two combined motions a x b and b x a would then differ by an

amount depending on the latitudes of the points considered.

In this course, however, we shall not be concerned with non-

commutative or other algebras in which the fundamental laws do

not hold. But we shall use these laws as a guide to help us to

introduce into algebra and arithmetic entities, other than whole

numbers, which will also satisfy these laws and therefore be capable
of being dealt with in the same way as the whole numbers.

4. Subtraction and division. If we introduce the notions

inverse to those of addition and multiplication, viz., subtraction

and division, the fundamental laws are capable of extension to a

certain extent. Thus the distributive law (V) will remain true

if the sum of the numbers be replaced by the difference, or the

product with the third number by the quotient, or both sum and

product be replaced by difference and quotient simultaneously, thus

e.g. (a b)
~- c = (a

-~
c)
-

(6
-~

c)*. The associative and commutative
laws cease to hold when addition or multiplication is replaced by
subtraction or division; it is known for example that a b is not
the same as 6 a and that a ~ (b

~-
c) is not the same as (a ~ b)

~- c.

But it is easy to modify the two associative laws so that they will

*
It is tacitly assumed here that the operations involved are possible. Thus a> b

(i.e. a is greater than b), so that b can be subtracted from
; and so on.
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remain true in these cases by simply introducing appropriate rules

of signs, e.g. by replacing a (b + c) by a b c or a H- (6 x c) by
a -^ 6 ~ c or a (6 c) by a b -h c* provided the operations con-

sidered do not lead at any stage to any impossible operation, i.e.

provided, for example, we are not led to the operation of subtracting

a number from one not greater than itself nor to the operation of

dividing a number by a number of which the first is not a multiple.

It will be seen incidentally that any attempt to modify similarly

the two commutative laws would, except in trivial cases, essentially

lead to some such impossible operation.

EXAMPLES 1.

1. Prove the extensions of the fundamental laws to the operations of sub-

traction and division mentioned above.

2. Prove by imagining m? units arranged in a square and adding up in suit-

able orders that

(i) l+3+ 5 + ...+(2m-l) = 2
,

and (ii) 1 + 2 + 3+ . ..+m=- (m? + m).

3. Prove by direct reference to the fundamental laws that

(i)

(ii)

(iii)

a and b being any whole numbers (with the restriction that in (iii) a must

exceed b) ;
the definitions of the square and cube of a number being supposed

known.

4. Prove that if a > b and c > d then

(a
-

b) x (c
-
d)= (ac+bd) - (ad+ be).

5. Prove that if a > b and c > d then

(a b}(c-d) = ac ad-bc+ bd,

provided also ac > ad -f be.

[If ac is not greater than ad+bc the expression ac ad-bc+ bd is meaning-
less as a whole number.]

2. RATIONAL NUMBERS

5. The inverse operations, subtraction and division, cannot, as

we have seen, be applied to all whole numbers indiscriminately.

For example (as we are at present dealing exclusively with whole
* To prove for example that a + (b -c)~a + b~c we argue : From the definition

of subtraction, if b- c=x, 6=#-t-c; whence (a + x) + c=:a+(x+ c)
= a + b and there-

fote a + (b-c) = a + x=:(a + b)-c. Or to prove a~ (b +c)a- b~c, let a- (b + c)~x,
so that a = x + (b + c)

= (x -f
c)

4- b whence a-b = x + c whence again a - b - c = x.
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numbers) 6 cannot be subtracted from 4, because there is no whole

number which when added to 6 will give the result 4; and again

7 cannot be divided by 3 because there is no whole number which

when multiplied by 3 will give the result 7. The problem confronts

us therefore, whether these impossibilities can be surmounted in

any way; i.e. whether we can invent new entities, which we may
wish to call "numbers," and new operations with these "numbers,"

which we may call "addition," etc., so that such hitherto impossible

operations will be possible in the sense that, considered as an

operation in our new "arithmetic/' it gives a definite result which

is a "number" of the new type. Whether or not such a new

arbitrary "arithmetic" can be of any use for practical applica-

tions is not primarily the concern of pure mathematics; but as a

matter of fact we shall find that our new arithmetic will have

useful applications, in particular to the important problem of

measurement.

6. Fraetional-number-pairs. Let us define first the fractional
numbers or fractions. We observe first that to some pairs of

numbers (e.g. 8 and 2) correspond, by the process of division,

single numbers (4), whereas to other pairs (e.g. 7 and 3) there are

no such corresponding numbers. For the first kind of pairs of

numbers,- such as (8 and 2), or f , which represent, or correspond
to, whole numbers, we have the following laws of addition, etc.:

If p, q,r,s are whole numbers such that p and r are respectively
divisible by q and s, then:

p r ^ ps 4- qr p r
__ pr

q s qs q s
~

qs
'

for (to prove the first relation)

X qs by the distributive law,

(P \=
V/

X v X S *
(s

X S
)
X q by the associative

= (p x s) + (r x q) by the definition of division,

and therefore
q s qs

by the definition of division, all the numbers concerned bei^g
whole numbers.
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Or, using the notation (p, q) instead of -
,
we have the following

laws for the addition and multiplication of pairs of numbers of the

type considered:

(ft ?) + fc *)
= (p* + <r> ?*)!

j

In the statement of these laws there is no need for the restriction

that the numbers p, r should be divisible by q, s as supposed, i.e.

should be such that the various pairs of numbers correspond to (or

represent) whole numbers; the pairs of numbers

(P> ?)> (r >
s
)> (Ps + <l

r
> ?*)> (Pr> ?*)

exist equally whether the whole numbers p, r are divisible by the

numbers q, s or not. Let us then relax this restriction and use these

laws as the definitions of "addition" and "multiplication" of "frac-

tional-number-pairs" or, as we will say for the sake of brevity,

fractional numbers, or fractions*.

With these definitions we see easily that the fundamental laws

which we have found for addition, etc., of whole numbers, are still

formally true. Thus, if A and B are two fractional-number-pairs,

say A =
(p, q) and B (r, s), then

r, qs),

and B + A=(r,s) + (p, q)

=
(rq + sp, sq)

= (ps + qr, qs),

by the commutative laws for whole numbers. Hence A+BB+A,
or the commutative law for addition holds. Similarly the other

fundamental laws can be proved to be still true for our "fractional

numbers," i.e. if we call a "fractional-number-pair" a number and

if we call the operations on these fractional-number-pairs defined

in equations (1) addition and multiplication, then the fundamental

laws can be applied to these numbers and operations of addition,

etc., verbally unchanged. Consequently all general statements

about arithmetical operations on whole numbers deducible from the

fundamental laws are equally true of these arbitrary operations
* Or positive rational numbers.
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on these arbitrary fractional numbers; for example, in particular,

if A and B are any two fractional numbers, then

7. Order. Our arithmetic is not yet the arithmetic of fractional

numbers which we desire. The definitions so far given do not

enable us to assign any order to the fractional numbers, whereas

the notion of order is certainly essential in connection with whole

numbers. If we wish to use our fractional numbers as numbers in

any complete sense it is therefore necessary to give a definition

determining which of two fractional numbers is the "greater" and

which the "less."

We say that the fraction (p, q) is greater than, equal to, or less

than, the fraction (r, s) according as the whole number ps is greater

than, equal to, or less than, the whole number qr; or, in symbols,

0>>?)>.=>
-<('-'*>J (2).

according as ps >, =, or < qr )

In this definition we assume a knowledge of the notions of greater

than, etc., as applied to whole numbers.

We notice that from the relations (2) we have

(ps, qs)
=

(p, q) (2a).

This relation, which corresponds with the characteristic property

of a quotient
-- that -- = -

,
is interesting as being a statement

of eqitality between two fractioiial-number-pairs which are plainly

different pairs of numbers. The use of the notion and sign of

equality in this somewhat arbitrary sense is logically important
and interesting, but we will not dwell on it. It is sufficient for us

to realise that with this use of the sign of equality, whatever it may
mean, no contradiction can arise.

8. Number-pairs corresponding to whole numbers. We
notice the following particular facts about the new arithmetic

concerning the special class of fractional-number-pairs whose second

number is 1 :

(p, ]) + (#, l) = (p-f q, 1) and (p, l)x (q, l) = (p^, 1).

It follows that this particular class of number-pairs can be treated

for addition and multiplication as a class by itself, for such operations)

lead only to number-pairs of this kind, having 1 tor the second
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number. In fact a little reflection will shew that in dealing with

such special number-pairs we can operate with them just as with

the ordinary whole numbers p and q and the ordinary arithmetical

operations of addition and multiplication; that in fact the new

arithmetic of these special number-pairs is identical with the old

arithmetic; i.e. that every result in either arithmetic is capable of

interpretation as a result in the other. If therefore in our arithmetic

of fractional-number-pairs we agree to replace any number-pair

whose second number is 1 by the ordinary whole number which is

the first number, i.e. to put
(p,D = P ............ - .............. (3),

the results we shall get will be quite valid, that is to say any alge-

braic result we obtain for whole numbers will be true as a result in

ordinary arithmetic arid any result for our fractional-number-pairs

will be a true result in our new arithmetic; if in any case the

numbers concerned are of both kinds the apparently whole numbers

(e.g. p) are to be replaced by the corresponding fractional-number-

pair [(p, 1)] and the result interpreted as a result in the new

arithmetic. Also, applying the relation (2a) to these fractional-

number-pairs having the second number 1 and coupling it with our

convention (3), we obtain the other fundamental characteristic of a

fraction that

for (p, q) x (q, 1) = (pq, q)
=

(p, 1).

From this it follows that

(p, <?)
=

0>, !)/(?, 1).

This last relation is a relation in the new arithmetic and the

operation of division is the new arbitrary kind of division (the in-

verse of the new multiplication).

But we notice that if p is divisible by q (with the quotient r say),

in the ordinary sense, then the expression (p, !)/(</, 1) can be

replaced by p/q or r
;

i.e. if p is divisible by q the fractional-number-

pair (/>, q) represents the ordinary quotient p/q; or, a fractional-

number-pair (p, q) for which p is divisible by q behaves

as far as arithmetical facts are concerned just like the quotient

^
, In future we shall write (p, q) as - or p/q, whether p is divisible

by q or riot.
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9. The arithmetic of our fractional-number-pairs may therefore

be said to include the arithmetic of such quotients. Our fractional-

number-pairs and their "arithmetic" are seen to be the extension

of the number system and arithmetic of which we have been in

search. In our new system such an operation as 3 -r 8 is possible.

The advantage of this extended arithmetic from the point of view

of the original arithmetic is considerable. We may, in proving a

certain result, even in ordinary arithmetic of whole numbers, find

it more convenient to use fractional numbers in the intermediate

steps of the proof. The proof will nevertheless be a valid proof of

the theorem concerned, provided only the final stages of the argu-

ment can be interpreted (by the convention (3)) as a relation

between whole numbers.

Thus, to take a fundamental, if simple, example: if a, 6, and c

are whole numbers such that b is a multiple of c and ac a multiple
of i, we can argue

a ~ (6/c)
=

(ajb) x c - (ac)/b

by using the simple extension to division of the associative law;

and in this the expression (a/b) x c will be meaningless as a whole

number unless a is a multiple of 6; but nevertheless the result

a (b/c)
= (ac)/b is a true result holding between whole numbers

and this proof is quite valid.

10. Subtractive-immber-pairs. In the same way we can extend

the meaning of subtraction to cases hitherto impossible by intro-

ducing subtractive-nurnber-pairs* {p, q} subject to the definitions:

\P> <l]
x k> s

\
=

[Pr + </*> Ps + 9rl >

lp> 9} >> =. r <
l
r

> $}

according as p 4- s >, =, or < q + r
;

b + ?,?}=jpt;

where p, q, r, s represent any whole numbers or fractions as hitherto

defined.

It is necessary here also to introduce a new number, zero or 0,

defined as the subtractive-number-pair {p, p}.

* These are the positive and negative rational numbers.

t This relation could be replaced by {p + 1, l}~p and so brought more into

agreement with relation (3) of p. 9.
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It is at once evident that, with these definitions,

{p>q}^p-q
if the operation on the right is possible, for, from the fourth relation above,

i.e. {p, q} p q ifp -
q is a whole number or a fraction.

We see also that the operation p- q can always be performed if p and q are

interpreted as subtractive-number-pairs ;
for

and therefore {p -f r, r}
-

{q+ r
y r} {p, <?},

i.e. p-q^{p>q}-
The number 0, as denned, possesses the usual properties, such as those

expressed by the relations

for

and

= 0.

11. Rational numbers. It is easy to see that, with our system
of definitions, the fundamental laws will continue to hold if these

subtractive-number-pairs are used as numbers. We are justified in

considering them as numbers. We call them the rational numbers.

We shall call a rational number positive or negative according as

it is greater than or less than in accordance with our definitions.

We shall use the term integer to denote either a whole number or

a negative whole number, i.e. a negative number expressible as

{q, p + q] where p and q are ordinary whole numbers. We shall

write in future the negative rational number {q, p -f q} as p, and,

where needed to avoid ambiguity, we shall write 4- p for the positive

number p.

12. Zero. In our system of positive and negative rational

numbers there is one arithmetical operationwhich is still impossible;

division by the number zero. For there is evidently no rational

number x whatever such that 2/0 = x or x x = 2. We could over-

come this limitation by adding to our system a new number,

infinity, (denoted by GO
), defined to have the property that if x is
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any rational number (other than zero) x oo = x. But we should

then have introduced further difficulties. The operations oo /oo ,

x oo as well as 0/0 would be meaningless, (or at least have in-

definite meanings), and evidently some vital alteration in our system
of algebra would have to be made to render these operations definite.

We therefore prefer to avoid the use of such a notion of infinity,

more especially as it is often convenient to use the term infinity

in another connection. With this special exception of division by
zero our system of rational numbers is complete in tliat all operations

of addition, subtraction, multiplication and division applied not only
to the original whole numbers, but to any rational numbers, are

possible and obey the fundamental laws of algebra.

EXAMPLES II.

1. Prove from the definition of a fraction as a fractional-number-pair that

b
~^~

/
~

7
'
a

' ^' r
'
^ being whole numbers.

2. Prove from the definition of a rational number as a subtractive-number-

pair that

a+ (-a)=0, -(-&) = + &, (-a)x(-fc)=ax6, (-a)x6= -a&,
a and b being whole numbers or fractions.

3. Prove from the definitions of the text that if a and b are two rational

numbers then a >, =, or < b according as the difference a b is positive, zero,
or negative.

4. It is a consequence of the fundamental laws that

a a+ />2 _ tab -= a2- 26 4- />
2= (a

-
b)*
= (b

-
a)

2
.

Jf a and b are whole numbers and a < b,
2 26-f 62 and (a ft)

2 are both

meaningless considered as ordinary arithmetical combinations of whole num-
bers, but a2

H-/>
2 2a& and (b a)'

2 nevertheless represent whole numbers and
the relation '- + b~ - 26 (b

~ <?
)
2 is true. Compare this with the remarks and

example on p. 10 (Par. 9).

6. The equality of Ex. 5, p. 5, (a-b)(c-d) ac-ad-hc + bd can now be
stated without any restrictions on the magnitudes of the letters; and if

a > />, and c > t/, both sides of the equality can in all cases be interpreted as

whole numbers.

a- > = a

7. Shew that if it is possible in any way to define the sums and products,
etc., of negative numbers so as to conform to the fundamental laws, then the

rule of signs, (-)(- 6)= aft, must be satisfied.

[The negative numbers are supposed to be denned as subtractive-number-

pairs for which the notions of addition, etc., have not yet been defined.]
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3. THE PROBLEM OF MEASUREMENT. IRRATIONAL NUMBERS

13. The system of rational numbers which has now been

established can be applied to the problem of measurement, and the

operations of addition, etc., can then be given a simple geometrical

(or physical) interpretation. The practical problem of the measure-

ment of any physical quantity such as a speed, an electric current,

a temperature, a weight, a time interval, or a length may be typi-

fied by the single problem of the measurement of a length along
a straight line. Most often in actual fact these measurements are

made by means of readings along a scale and in all cases the

measurement may be reduced to this method. We may consider

the problem of measurement then as that of the representation of

lengths along a straight line by means of numbers.

14. Rational numbers represented by points on a straight

line. Let X'OX (Fig. 1) be an unlimited straight line, and a

fixed point on it. Take some unit of measurement (say one inch)

and mark off distances of 1 unit, 2 units, 3 units, etc., from in one

(

*

-3 -2 -1 H 1 I 2 3 *

Fig. 1.

direction, say to the right, and also similar distances in the other

direction from U. We have thus a geometrical representation of

the positive and negative integers which is evidently appropriate,

for we see that we can represent the operations of addition and

subtraction simply as motions of translation to the right or left

respectively. Thus the point numbered 3 is the point obtained

when we follow the motion of say 2 units to the right from the

origin by a motion of 5 units to the left; i.e. the point numbered

3 is the point which corresponds to the operation of subtracting

the number 5 from the number 2 in this representation of subtrac-

tion as a motion to the left. We need not stress this point; it is

evident that this representation is appropriate for all operations

of addition and subtraction of positive and negative integers. We
have a point on the line corresponding to (or numbered) any

positive or negative integer.
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We can mark also points on the line corresponding to all the

(positive and negative) rational numbers (e.g. 1/2, 2/3, 5/6 etc.);

the point which will correspond to the number 5/7, for example,

will be obtained by dividing the portion of the line between the

point and the point 1 into 7 equal portions and taking the fifth

of the points of division, or by taking the first of the 7 points of

division dividing the portion of the line from to the point marked

5 into 7 equal parts; and these two methods will evidently give

the same point to be numbered 5/7. We have now a point num-

bered by every rational number, and our representation of addition

and subtraction as motions of translation is evidently still applicable;

the straight line is now available to represent all rational numbers

and 'all operations of addition and subtraction of such rational

numbers.

15. The position we have reached in regard to rational numbers

may be summarised thus :

We can perform all the arithmetical operations of addition, mul-

tiplication, subtraction and division for all rational numbers what-

ever, (with the single exception that division by the number zero

is impossible), and the results will be rational numbers; we can

represent the rational numbers as points on a straight line and

give geometrical interpretations, if so desired, of the arithmetical

operations. It appears moreover at first sight that the line will be

entirely covered by the rational numbers and that therefore the

system of rational numbers is complete in two directions, (1) as

a system allowing all arithmetical operations, and (2) as affording
a complete representation of the straight line and measurements

along the straight line; or briefly the system appears adequate
for all arithmetical problems and all problems of measurement.

16. Inadequacy of rational numbers for problem of measure-

ment. It is true that the four elementary arithmetical operations

(with the exception of division by zero) are always possible with

numbers of this system, and it is true that between any two rational

points on the line (however close together) any number of other

rational points can be interpolated (thus between 1/2 and 4/7
there is certainly at least one rational number with any number

greater than 14 as denominator and therefore any number of such
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points can be so interpolated). So far the above presumption is true,

but it is not true that the system is adequate for the solution of

the problem of measurement along a straight line
;
as will be seen

in a moment, there are points on the line which correspond to no

rational number whatever. Moreover if we consider certain ex-

tended arithmetical operations such as extracting the square root

(even of positive integers) we shall find the system inadequate in

this respect also. We can easily prove, for example^ that there is no

rational number whatever whose square is 2, thus : If there were

such a rational number it could be expressed as a fraction in its

lowest terms as p/q say, p and q being whole numbers having no

common divisor, and we should then have

(p/qY = 2, i.e. p
2 =

2<f (1),

but cf is a whole number and thereforep2
is an even number, whence

it follows that p must also be even (because if p were odd p2 would

be odd also); hence p
z must be a multiple of 4 whence equation (1)

shews that q
2 must be a multiple of 2 whence as before q must be

a multiple of 2 ; i.e. p and q must both be divisible by 2, which is

contrary to the hypothesis thatp/g was a fraction in its lowest terms;

whence it follows that there can be no rational number (such as

p/q) whose square is 2.

But, in geometry (e.g. Euclid, Book II) a geometrical construction

for the side of a square equal in area to a given rectangle is given,

We can therefore, for example, construct geometrically a straight

line of a length such that the square on it is 2 square units in area;

i.e. we can mark on our straight line a point corresponding to what

we should naturally call /\/2. Since there is no rational number *J2

this point cannot be one of the rational points already numbered.

Though, in a sense, the rational points cover the line infinitely

densely yet there are other points on the line. Or, expressed dif-

ferently, there are distances which cannot be measured by numbers

of the system of rational numbers; i.e. the rational numbers are

inadequate for the problem of measurement.

17. In order to make the system of numbers adequate to measure

all conceivable lengtrhs, the so-called irrational numbers must be

introduced. If we were content to let the foundations of analysis

rest on our intuitions concerning the nature of a straight line
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(instead of basing it entirely on the arithmetical concept of whole

number) we could say that to every point on the straight line of

Fig. 1 there corresponds a number, rational or irrational. The

addition of such numbers could then moreover easily be represented

as motions to the right, and similarly for subtraction. But*, while

willing to accept any help in the way of suggestions which we can

get from our geometrical intuitions, it is of fundamental importance
that we should give strictly arithmetical definitions of all the notions

used in analysis, and in particular therefore of the irrational

numbers.

18. A property of the straight line. Let us first investigate the

problem geometrically. We have seen that the rational points on

the line of Fig. 1 (p. 13) are arranged infinitely densely on the line.

It follows that if P is any point on the line which is not a rational

point, rational points can be found on either side of P, as close to

P as we may desire (short of actual coincidence with P). There

are therefore rational numbers which are u
approximations" to the

number corresponding to P (if there is to be such a number), the

degree of approximation being as close as we like. Thus, for ex-

ample, we readily agree, because

I 2 < 1-42 < 1-41 2 < 1-4142 < 2 < 1-415 2 < 1'42 2 < 152 < 22
,

that the irrational number V2 must "lie between" the numbers

1, 1-4, 1'41, T414, on the one hand and 1-415, T42, T5, 2 on the

other. This idea cannot be used directly as an arithmetic method

of definition of the irrational number \/2, because in it we have

presupposed the existence (arid properties) of this irrational number

V2 ;
but we notice that the point P (or the point \/2) divides the

rational points of the line into two classes such that (1) every
rational point lies in one or other of the classes, and (2) every point

of one class (the lower class) lies to the left of every point of the

other class (the upper class). This simple property of a point on a

line, of dividing the line into two parts, gives us the clue to

the strict arithmetical definition of irrational numbers.

19. Dedekind's definition of a real number. If the whole set

of rational numbers is divided into two classes, L and R> such that

(1) every rational number whatever is in one or other of the two

classes and (2) every number of the one class, L, is less than every
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number of the other class, R, then the classification or division cor-

responds to, or defines, a real number. There is no logical objection
to saying that the real number is the classification, or even one of

the classes of rational numbers concerned (say L\ but the student

will probably find it more satisfactory to say that the real number

corresponds to the classification and is defined by it. The essential

thing to notice is that we have defined the new system of real

numbers by means of the previously defined rational numbers; not

as pairs of such numbers (as in the case of the definition of the

rational numbers by means of the whole numbers, 2 above) but

as classes (or pairs of classes) of such rational numbers. It is an

essentially arithmetical definition.

20. As an example of the use of this definition we may note the

example of \/2 just mentioned. We know that, if x typifies any

positive rational number such that #2 < 2 or any negative (or zero)

rational number and y any positive rational number such that

y
2 > 2, then every rational number whatever will belong to the class

of #'s or to the class of y's; and every number of the $ class is less

than every number of the y class
;

i.e. this division of the rational

numbers into these two classes has the two essential properties

necessary (and sufficient) for the definition of a real number. The
real number so defined is called \/2. It is easily seen that the point
of division on the line which will divide the rational numbers

marked on the line into these two classes will be the point which

would be obtained as V^ by any geometrical or other method.

Or again, take the classification into a's and t/'s such that x ^ 1
,

y > 1. Here again the two fundamental properties are satisfied

and a real number is therefore defined. The number evidently

corresponds to the rational point 1. In such a case it is convenient

to identify the real number with the corresponding rational number

(in this case 1).

If a real number does not correspond to a rational number in

this way it is said to be irrational.

If the real number concerned corresponds to a rational number the definition

may be expressed in alternative forms
; e.g. the real number corresponding to

the rational number 1 may be defined as the classification into (1) all rational

numbers ^ 1 and rational numbers > 1, or (2) all rational numbers < 1 arid

all rational numbers ^ 1. This suggests a modification of the definition, by



18 NUMBER [CH. I

omitting the number to be denned (e.g. 1) from both classes. These differences

of definition are evidently not vital and we shall in this course use whichever

method of classification is most convenient for the matter in hand.

21. Arithmetical properties of real numbers. We have still

to define the arithmetical operations of addition etc. on these real

numbers. Reference once more to the straight line of Fig. 1 will

make clear how these definitions have to be made. Expressed

strictly arithmetically they will be as follows.

Denoting by (x\y) the Dedekindian classification into classes

typified by x and j/,then if (x \ y) is the classificationwhich defines the

real number a and (x'\y') is that which defines the real number /3,

a 4- ft is the number defined by the classification (x + x
\ y 4- y').

That the classification (#4- ocf \y-\- y') does fulfil the two funda-

mental conditions of p. 16, and so in all cases actually defines a real

number, is easily seen; and it is at the same time easily seen that

the commutative law for addition, a + @ = /? + a, is true.

To define the product of two real numbers it is simplest first

to define positive and negative real numbers and then consider the

different cases separately. The real number a defined by the classi-

fication (x\y) is said to be positive if some of the numbers x (of the

lower class) are positive ;
it is negative if some of the numbers y

are negative*. Now if a and /3 are two positive real numbers

defined by the classifications (x \ y) and (x \ y') the product aft is

the member defined by the classification (xx'\yy') y
the lower class

being completed by the addition of all numbers which ^ 0.

This definition is easily extended to the other possibilities which

may arise
;
and it is easily seen that the fundamental laws affecting

multiplication are still true.

Subtraction and division are defined as the inverses of addition

and multiplication.

The notions of inequality as applied to two irrational numbers

G, will agree with the case of rational numbers already dealt with

if we agree to call a greater or less than /3 according as a-~/3 is

positive or negative.

22. Adequacy of real numbers. We do not develop in detail

this Dedekindian theory of irrational numbers, the general lines of
* See p. 11 above. The student should verify that these definitions correspond

with the plain facts ol Fig, 1 and agree with the definitions for rational numbers.
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which are now sufficiently clear. The details may be left to the

student. The essential point is that we have a purely arithmetical

definition of real numbers which not only corresponds to our ordinary

notion of distance on a straight line and so solves the problem of

measurement, but also ensures that all the fundamental laws (p. 2)

are satisfied by irrational numbers, which can accordingly be mani-

pulated by ordinary algebraical rules in the same way as integral

and rational numbers. As in the extension from whole numbers

to rational numbers in 2 above, the new "arithmetic" of real

numbers includes our old arithmetic of rational numbers as a

special case.

It may be noted that the introduction of real (irrational) numbers has made

certain operations, such as extracting the square root of 2, possible ;
but not

all such operations have been rendered possible by this extension. For example

it is still impossible to extract the square root of -2, i.e. there is no real

number whose square is - 2. The number system can be extended further-

by the introduction of imaginary or complex numbers so as to make all such

operations possible ;
but this extension lies outside the main scope of this

course*.

The system of all real numbers is called the arithmetic continuum

of reaTnumbers. Henceforth in this course all numbers wltFwTiicli

^we shall be concerned will be real numbers unless the contrary is

stated or implied.

It will occur to the student that we may have Dedekindian classifications

of the real numbers (rational and irrational). But every Dedekindian classifi-

cation of the system of real numbers corresponds to one and only one such

classification of the system of rational numbers, i.e. to a real number. The

introduction of such classifications therefore does not introduce a new class

of numbers. It will often be desirable in this course to use such classifications

of the real numbers instead of the corresponding classifications of the rational

numbers.

EXAMPLES III.

1. Prove that there is no rational number whose square is 3.

2. Prove that /^2 is irrational.

3. Give Dedekind's definition of ^2 and, by finding numbers of the two

classes of rational numbers by which the number ^2 is defined, find rational

approximations to /v/2 correct to within !.

4. Prove from the definition of addition and multiplication of real numbers,

* A short account of complex numbers is given in the Appendix,

22
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defined as Dedekindian classifications of the rational numbers, that the asso-

ciative, commutative and distributive laws, viz.

a+(h+ c)*=:(a+b)+ c, ax (6xc) = (ax6)xc, a-t-&= 6-fa, ax6= 6xa,

and (a 4- b) c ac 4- fa,

hold when the numbers concerned (a, 6, c) are any real numbers.

6. Prove that the number ^/2, as defined on p. 17, is such that ^2x^2 (as

defined on p. 18) is equal to 2.

6. Prove that between any two real numbers there lie both rational and

irrational numbers.

4. ALGEBRAIC CONSEQUENCES OF THE FUNDAMENTAL LAWS.

EQUALITIES AND EQUATIONS

23. Equalities. Mathematics has been described as tautology.

Without entering upon a discussion as to the full meaning or

limitations of this description it may be useful to keep it in mind

while considering equalities. Two numbers are equal simply if

they are the same number. The notion of equality thus appears,

at first sight as somewhat unnecessary, but this is far from being
the case. The fact is that in algebra we do not know what actual

numbers our letters represent ;
it being in fact essential to algebra

that we should not know. It is possible that different calculations-

performed on the same set of numbers may lead to the same

number as result, no matter what the particular numbers may
have been. Our notion of equality applied in such a case (e.g. in

the relation (a H- 6)
2 = a2

-f- 2a6 -f 62

) thus implies rather more than

the mere identity of two numbers
;

it implies the equivalence of

the two different calculations concerned, an equivalence which

may quite possibly be of interest and provide a definite addition to

our knowledge (as we know in fact to be repeatedly the case).

Formally an equality (or identity) is the statement of the identity
of two numbers represented in general by two different sets of

symbols. We have already met equalities of wide scope in the

fundamental laws
, e.g. a + b = b -f a, a and b being any two real

numbers. We collect here for reference other standard equalities-

which we shall find of constant use, all of which can be proved by
application of the fundamental laws,

(i) (a b)
2 = a2 2ab -f &3

,

(ii) (a + 6) (a -6) = a2 -6s
,
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(iii) (a b)
s = a3 3a26 -f 3a&2 6s

,

(iv) (a6)(a2 + a& + &2
)
= a3 &3

,

(v) a? + 6s
-f c3 - 3a6c = (a 4- 6 -f c)(a

2
-f 6

2
-f c2 - be - ca - a&),

(vi) (# a) (# 6)
= tf

2 x (a -f 6) + ab,

(vii) (# a)(# &)(# c)=x*-~x*(a H- 6 4- c)

H- x (be + ca -f a&) a&c,

(viii) (1 + x + #2 + 0* -f ... + a**- 1

) (1
-

a?)
= 1 - #n

,

(ix) tt + (a + 6) + (a-f 26) 4- (a + 36) -h ...

4- (a + n - 16) = ^ (2a -f n - 16).
&

In these equalities a, 6, c, # represent any real numbers without

restriction and n any positive integer ;
and in (i), (iii), (iv) and (vi)

the ambiguous signs , + are used "
respectively," i.e. either the

upper signs only or the lower signs only must be used throughout
the equality,

24. Induction. A special method of proof which is of consider-

able use and power is that known as mathematical induction. The

method is useful in proving general results, such as (viii) and (ix),

concerning positive integers where the result is easily seen to hold

for the first few integers, 1, 2, etc. It will be understood by a

consideration of its application to the proof of equality (viii) above.

We know from (ii) that

therefore (1

and therefore again

(1 + x 4- x* + &) (1
-

x) = (1 -f x -f #2
) (1

-
x) 4-

s
(1
-

x)

= 1 -

and so on; the argument by which we prove the truth of our

desired result for n == 4 from the known result for n = 3 is evidently

general. To make the argument sound we argue :

If the equality (viii), viz.

(1 4-
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is true for some value of n then

1 -^+1
,

i.e. the result of the same form is true for the next greater integral

value of n
;
but we have seen that the result is true when n = 2,

therefore it is true when n 3, and again when n = 4, and when

n = 5, and so on; the result is therefore true for all positive integral

values of n (the case when n 1 being trivial).

25. Binomial theorem. Another equality of great importance
is the binomial theorem. We shall have occasion later to establish

this theorem in its general form. We here state and prove the

special case known as the binomial theorem for a positive integral

index :

If x is any real number and n any positive integer then

(1+ )
= 1 + nx +

n

The expression on the right contains n+1 terms of which the

term
'*'

xr
,
which is the (r 4- l)th (r being any

integer from 1 to ri), may be called the typical term.

We prove the theorem by induction, thus :

If

^i , \ i , , , w(w-l)(w,-2)...(n-r+l)(l+)-.l + + ... +__-
i:
__r '.**+...+**

then

r&(/i 1)

E2 ' + '"

t
w(w-l)... (W _r4-l) r+ . xr 4- . . . + xn

L , , , r

, n(w 1) ... (n r 4-2)
4- - ^ 7r-~~rr~--

z ^ + - + naP 4- xn+1

!
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because

n (n- 1) ...(n-r + 1) n(n-I) ... (n-r + 2)

1 . 2 . . . r
~~"

1 . 2...(r~l)

.n(n-l) (n-r + 2)

1 . 2 . . . r
v

-r -f--)

1.2.3 :777~~~
~~

'

for all integral values of r from 1 to n.

Therefore if the equality holds for some given positive integral

value of n it holds also for the next greater integral value of n
t

and therefore similarly for all greater values of n.

But the theorem is true when n = 2 because we know that

(1 + #)
2 = 1 + 20 + v?

;

therefore the theorem is true for all integral values of n greater

than or equal to 2
;
and the theorem is proved (it being obviously

true also for n = 1).

26. Equations. In all equalities the numbers concerned may,

broadly speaking, be any numbers whatever, without affecting the

fact of the identity of the two numbers represented ;
there may

be broad restrictions placed on some of the numbers, but, provided

the numbers belong to certain specified classes the equality always

holds.

Equations on the contrary are not statements of the equality of

two numbers except for certain exceptional values of the numbers

concerned. In fact the sign
" = "

in an equation is essentially

hypothetical ;
it does not state a universal fact as in an equality.

The equation #2 + 2# -f 1 = 4 for example does not state the fact

that x* + 2# 4- 1 = 4, for we know that a? + 2# + 1 = (x + I)
2 for all

real values of x and therefore X* -f 2# + 1 can never be equal to 4

except in the two special cases when x represents one of the two

numbers 1 and 3 ; the equation is in effect meaningless by itself

and has a meaning only in reference to some such context as
"
if

x is a number such that x* 4 2# -f 1 = 4." There is always an
" answer

"
or solution (possible or impossible) implied in an equa-

tion. To avoid confusion therefore it might be preferable to use

two different signs for the " = "
in equations and equalities, and in

fact when attention is directed to this difference the sign
" == "

is
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often used in equalities and the sign
" = "

reserved for equations ;

but there is really no vital need for this duplication of symbols.

After all, the meanings of the " = "
in equalities and equations are

similar
;
moreover a mere glance will in general suffice to decide

whether a statement containing the sign
" = "

is an equality or an

equation, no one could, for example, for a moment consider the

equation oc 4- 1 = 2 to be an equality ;
and finally the use of the

same sign for the two ideas has definite advantages in that in

dealing with equations the use of equalities is facilitated by such

use. This method of using the same symbol and word to represent

two different but similar ideas, when this can be done without

confusion and with advantage, is characteristic of mathematics.

It is the method we have adopted above in introducing the notions

of non-integral
" numbers " and operations of " addition

"
etc. with

such numbers.

27. Reversible and irreversible operations. To solve an equa-
tion involving an unknown, say x, we have to determine all possible

values of #, if any, which satisfy the equation. In simple cases we
aim at simplifying the equation by ordinary algebraical manipula-
tion until we have reduced it to a form in which it is obvious that

o) can only have a certain value, or one of certain several values.

For example, in the case of a simple equation, by collecting on the

left-hand side all terms containing x and on the right-hand side

all terms not containing x
t we reduce the equation to the form

ax * 6, whence, by division (if a={= 0)> x ^ necessarily b/a.

We have hitherto applied algebraic operations only to numbers
;

and, in thus extending the operations to equations, we have to

take special care in some points. In the example mentioned it is

easily seen, by reversing the process used, that x = b/a is actually

a solution. There may however be cases in which a value of x

obtained by some such process does not satisfy the equation. Thus

if *Jx 5= 1 (where */x is understood to mean as always in this

course the positive number whose square is x), by squaring we

get x = 1. What we have proved is that no number other than 1

can satisfy the equation ;
but x = 1 is obviously not a solution. If

we try to reverse the steps of our original argument we cannot

pass from the last equation x 1 to the preceding equation

Jx - 1,
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Generally if, by algebraic manipulation, we reduce an equation
to a simpler form, from which we can infer that x has only certain

values, any one of these values of x will satisfy the original equa-
tion if all the operations used are reversible, but not necessarily if

any of the operations is irreversible. The two irreversible opera-

tions most relevant to the solution of equations are that of squaring,

just considered, and that of multiplying by zero.

28. Polynomial equations. Standard processes ofsolving simple
and quadratic equations are given in all books on elementary

algebra. These equations are the simplest forms of an important
class of equation expressed in the form

anxn + a
ni^xn-l + ... +a1 a? + o ............ (1),

where n is an integer and aa , ... an are independent of x. The

expression on the left-hand side of this equation is called a poly-

nomial; and n is called the degree (or order) of the polynomial
and of the equation.

For n 3 or 4, standard processes of solution, of a complicated

kind, are given in books on higher algebra or the theory of

equations.

An equation of the above type can be reduced to one of lower

degree if one root is known or can be found by any means, by

using the factor theorem, viz :

The polynomial anx
n

-\- an^xn~l + ... -f a has x a. as a factor

if, and only if, #=a is a root of the equation (1) obtained by

equating this polynomial to zero.

To prove this theorem we observe that the expression

(anx
n+ an _ lxn

~ l + ...+a lx+a()}-(ana
n + an^ l a

n- 1 ^
is necessarily divisible by x - a because it can be written

and each of the terms of this last expression is divisible by x a. It follows

that the expression in the first bracket of (2) is divisible by x a if and only

if the expression in the second bracket is zero, i.e. if and only if x~a is a root

of equation (1).

The factor theorem shews at once that if x a is a root of the

equation (1) the polynomial is divisible by XOL. The quotient
will be of degree one lower than equation (1), and the roots of (1)

other than a are the roots of the equation obtained by equating this

new polynomial to zero.
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With equations of degree higher than the second the processes

of solution are often impracticable. In such cases it is often

simple to obtain approximate solutions of the equation correct to

any desired degree of accuracy. We shall see later (Ch. Ill) that

if the expression anxn + . . . + aQ is positive for one value of x and

negative for another value of x, then it must be zero for some

intermediate value of x, i.e. there is a root of equation (1) between

these two values of x. By continued application of this principle

the two values of x between which the root lies can be brought
closer arid closer together and thence the root sought for obtained

more and more accurately.

29. Equations involving more than one unknown also occur.

If the number of equations is equal to the number of unknowns,

the equations being simultaneous, the solution is generally reduced

to that of equations each containing only one unknown. If the

equations are all simple (or of the first degree), i.e. of the form

ax -f by -f cz d

(taking the case of three unknowns x, y, z), the solution, if it exists,

can always be obtained simply or can be written down at once by
means of determinants, as shewn in advanced books on algebra.

There is no other important class of simultaneous equations which

can be solved simply.
EXAMPLES IV.

1. Establish the equalities enunciated in the text (pp. 20, 21).

2. Prove the divisibility of a
n ~ bn by a - h

; and of an+ bn by a+ b if n is odd.

3. Prove that if a\ , a% ,
... an and 6X , b% ,

. . . bn are two sets of n real numbers

and if

then

a
1

[This is sometimes called Abel's equality.]

4. Deduce equality (ix) of p. 21 from Ex. 2, p. 5.

5. Shew that if a1? a
2 ,

... an are the n roots of the equation

of the ftth degree, then

^n-l
ai + a2+...-t'an=--

and that , aia2 ... an=(~l)w .

an

6, Prove by factorising the quadratic equation ax*+ bz+ c= that the roots
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If x, being positive, is less than 1, the number xnj(\.x) is

necessarily positive, and it will follow that

for all values of n.

The condition of convergence is satisfied (with K =
1/(1 x)) and

therefore the series is convergent for all positive values of x less than

1. If, however, x > 1, the number xnj(\ x) is negative, and it will

not follow that sn <!/(! x). Moreover we can easily prove that no

number, K, can be found in this case so that sn < K for all values

of n\ for, if x> 1,

sn = 1 + # + #2 + . . . + x"-1

>1 +1 + 1 + ... + 1

= w;

and, whatever number K be taken, n can be taken to exceed it;

i.e. by adding together sufficient terms of the series we can obtain

a sum exceeding any assigned number whatever, however great.

The necessary and sufficient condition of convergence is not satisfied

and therefore the series is not convergent for values of a? exceeding 1.

It is similarly evident that when x = 1 the scries is again not

convergent.

(ii) The series 1 +
^,

+
g ^ +

3 ^ +
4 ^ + "*

has its terms all positive and the sum of the first n terms

11111 1 1
sn 1 +

^
+

g 2'2

~t"

3 ^3
~*~ " ' "*"

n 1 2n-1

This last expression is the sum of the first n terms of a geometrical

progression with common ratio ^ and therefore equals

which is necessarily less than 2, no matter how great n may be.

Hence sn is bounded, and the series is convergent.

(iii) The series 1 + 1 + + -- + - --~ + . . .
- --~

111
or +r

. + _

has its terms all positive.
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in which the rth term is (J)
r~2

; because, if r > 2, the rth term of

the original series

whence, by summing the geometrical progression,

8<l + 2-(i)'
= 3 - (i)

n~2 < 3.

Hence sn is bounded and the series is convergent.

(iv) The series 1 +
j ^

-f
^-~

+
^-^+

...

also has its terms all positive.

J_ J 1__* ~ x +
i . 2

+
2. 3

+ " +
(n~^ 1)7?*-

In this case a little trial will soon convince us that we cannot

replace the terms of sn by the corresponding terms of any geo-
metrical progression, with common ratio less than 1, whose terms

would exceed the terms of sn ;
we could argue that111 1

*n _ l + + +_ + ... +
(w

-_- i

_

but this number increases indefinitely as n increases and therefore

we cannot by these means find a number K such that, for all values

of n, sn < K,

However, it happens exceptionally in this case thatwe can actually

find an algebraic expression for sn ,
thus:11 1

2
"

3
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Hence, for all values of n, sn < 2, and therefore the series is con-

vergent.

(v) The series 1 + - -f - + - 4- ...

has all its terms positive.

,n _i + l + . .. + 1.

Attempts either to find an algebraic expression for the sum of the

n terms of sny or to find a geometrical progression with a common
ratio less than 1 whose terms exceed those of sny will, in this

case, fail
;
but we notice that the terms of this series, after the first,

are all less than the corresponding terms of the series (iv) just

considered, i.e.

1/2
2 < 1/1 . 2, 1/3

2 < 1/2 . 3, ... I/n* < l/(n
-

1) . n\

and therefore

_!_ JL
T72

+
273

by the preceding work; and therefore the series is convergent.

(vi) The harmonic series !-{-+-++...

has all its terms positive and

'11 1
* asl +

2
+

8
+ - +

n'

As with the series (v), the methods which have succeeded with

series (i) (iv) will not apply. Also, here we cannot argue that the

terms of this series are less than the corresponding terms of one of

the series dealt with and so prove the convergence as with the

series (v). The fact is that this series is not convergent, for it is

possible, by taking n sufficiently great, to make sn (i.e. the sum
of n terms of the series) exceed any number whatever, however

great.

In fact: the sum of the first two terms = 1 + ^
= 1,

52
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the sum of the first 22

(i.e. 4) terms = l + H + ^
+ T

1/11
2 \4 4

the sum of the first 23

'(i.e. 8) terms

1111111
, 1 /I 1\ /I 1 1 1

the sum of the first 2m terms

1 2 2-1

> 1 +
2
+
4
+ '" + l^

rrl+i + J+.-.+i,
there being m terms

,

=i+? -

Thus, by adding the first 2W terms of the series, we get a sum
Ttii

greater than 1 -h -W ;
whatever integer m may be, however great.

2t

Hence we shall get a sum exceeding any number, K, if we add

the first 22Af terms of the series, where M is any integer not less

than the number K
,
for the sum of WM terms

e.g. sn > 5 if n> 210 = 1024, i.e. the sum of the first 1024 terms of

the series exceeds 5
;
or sn > 100 if n ^ 2200

, or $n > 1000 if n ^ 22000
.

The necessary and sufficient condition for convergence is not satisfied

and therefore the series is not convergent.

51. Evaluation of the sum. The above examples will suffice

to shew the nature of convergent (and non-convergent) series of

positive terms, and to shew how, in the most usual cases, the
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question as to whether or not such a series is convergent may be

settled. We will now consider the question of the actual evaluation

of the sums of such series as are convergent, partly for its own

sake, and partly for the light it throws on the question of conver-

gence itself. In cases (e.g. series (i) and (v)) where a simple precise

formula for sn can be obtained, the sum, being the limit of the

sequence whose nth term is sn ,
can generally be obtained precisely.

Thus, in (i), if % < 1,

and, as we saw above ((iii), p. 50), >0 as n increases in-
JL X

definitely, and therefore sn >^ , i.e. the sum of the infinite

series is precisely 1/(1 x).

Or, in (iv), sn 2 - l/n, and we know that l/n -*- 0, and therefore

sn -> 2, and the sum of the series is 2.

In cases, however, where a formula for sn cannot be found, the

precise evaluation of the limit of the sequence slt s2i ... will not, in

general, be possible, and we have therefore, in general, to be content

with approximations to the actual sum. If, as is most often the

case, the sum of the series is an irrational number, this approxi-
mate evaluation is necessarily the most that is possible if (as is

usual) we wish to express the result as a decimal. WT
hat is essential

in such approximate evaluation of the sum of a series (as with the

limit of a sequence) is that we should know with certainty the

degree of accuracy of our approximation, and that we should be

able to obtain approximations of any desired degree of accuracy.

52. Estimate of error. Let us consider series (ii) above, viz.

1 +
2
+
225+ 32i+

""

Call the sum of this infinite series s and let sn denote, as before,

the sum of the first n terms.

We will call the difference between the sum of the series (s)

and the sum of the first n terms (sn) (i.e. s sn) the error after

n terms* of the series, and we will denote it by En ]
so that

* Often called the remainder after n terms.
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We will try to obtain an estimate to the value of En for any

value of n.

We have evidently that En is the sum of the infinite series

beginning with the (n+ l)th term of the original series, viz.

11 _1__1_
n2

+
n + l 2n+1

~4~ '"'

which is clearly the unique limit and upper bound of the sequence

whose (m + l)th term is

!JL J _ J[ l
I

n2n + n +1 2"+ 1
*'" +

n + m 2n+"t
'

m being any positive integer.

The sum of these m + 1 terms is clearly less than

(ir+a^+.-.+ur'*,

[1

__ (I \m-fi~I

~r~f J'
u (i)wr

"
1 "

(*)11+m'

which is less than (J)*""
1

,
no matter what integer m may be (i.e. no

matter how great).

Hence En < (I)*-
1
.

If now we add up say the first five terms of the given series :

1-00

50

12

04

02

Fes

we know that this number is less than the sum of the infinite

series, but that the error, E8) is less than (J)
M

,
i.e. '0625, which

< '07*. Therefore the true sum of the infinite series lies between

1*68 and T75, and the sum of the series correct to the first

decimal place is certainly known to be 1*7, the five terms of the

series considered sufficing for this degree of accuracy.

Moreover, if we desired to find the sum of the series to within

*0001 say, it is easily seen, by using the estimate for the error

En < (i)*
1""1

,
that the first 15 terms will suffice; for

(^)
n-1 < -0001 if 2*-1 > 10,000,

*
Strictly s6 exceeds 168 by something less than '003, but the sum of this error

and $6 i8 still less than '07.
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which is the case if n 1 > 14, i.e. if n ^ 15
;
and therefore E16 ,

which is less than ()
14

,
is less than *0001, and the sum of the

infinite series is given by the sum of the first fifteen terms with

an error less than '0001.

Evidently the sum of the series can be found correct to any
desired degree of accuracy simply by ascertaining what value of n

will suffice to make En less than the assigned degree of error and

adding up the first n terms of the series.

The student may have noticed that in passing from the ex-

pression

1 L J- JL L _ l

n 2n
+
n~+ 1 2n+1

^ '" + n+m 2'H
"m

to the expression _+_. + ...+
^n+m

we have made a very generous allowance; not only is the first

of these expressions less than the second, but it is very consider-

ably less, being in fact, almost as evidently, less than one nth of

it. We can indeed assert that

1 1 1 1

and from this we deduce that

E 1 1

This estimate for En is clearly less than the former estimate, (J)
w~ l

;

by using this estimate we can assure ourselves that the error after

five terms, Es ,
is not only less than (J)

4
(i.e. '0625), but is actually

less than ^(J)
4

(i.e. '0125); so that, by summing the first five

terms, we know that the sum of the infinite series lies between

1-68 and 170.

Further, in order to obtain the sum of the infinite series to

within "0001, we need only have

-
(J)*"""

1 ^
'0001 > i- e - n - %1

-1 > 10,000,
Tfl/

which is so if n ^11 ;
so that, by using this new, closer, estimate
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for the error, we know that 11 terms will suffice, instead of the

15 terms which appeared to be necessary when we used the less

accurate estimate for the error.

We could go further and get even closer estimates to the error,

but in this case, to obtain any considerably closer estimate would

entail an amount of labour not commensurate with the advantages
to be gained. We have always, in estimating the error after n terms

of a series, to find an estimate as close as possible without involving
an inordinate amount of labour.

Consider now series (iii) above,

1 1 1 -

!_

I!
4"

2!
4
"3!

+
4!"

f ""

We have J^. __

or, to obtain a closer estimate,

F - l
"~

= ir1+ j_i+
^ j + i

<i,[i
+j 1+(^T)2+

.

n\ _
n + 1

From the first estimate, (a), we see that, to calculate the sum
of the series (iii) to within '0001 say, 16 terms will suffice, for

(i)
w"a ^ '0001 if 2n

-2 ^ 10,000, which is so if n - 2 > 14.

From the second estimate, (6), we see that, for the same degree
of accuracy, 8 terms will in fact suffice, for

'0001 if n I
-5- ^ 10,000,.

n . n I

which is so if n ^ 8.
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Actual calculation gives

s,
= 1-000000

+ I'OOOOOO

+ '500000

-f '166667

+ '041667

+ -008333

+ -001389

+ '000198

= 2-718254

which therefore gives the sum of the series (iii) with an error less

than -0001.

The sum of this series is e. (See pp. 51 56 above.)

For the series (v) above,

1 1

we have

^n = ;-

1
__ ,

(+i)(n + 2)
T '"

/I __1_\ /I___1\~
(n ^+l)

+
Vw+1 w + 2/

whence, in order to obtain the sum of the series to within '0001,

10,000 terms will suffice.

This series is, as a matter of fact, only very slowly convergent,

and it is easily seen that no substantially closer approximation to

the error can be found, for

TI -f 1
'

so that the sum of the first 9,999 terms will differ from the sum

of the series by more than '0001.
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We can argue, if we wish, that, since -
= <En <~> the sum of the series

tl ~\~ 1 'Tl

lies between sn+- - and %+- ,
so that the sum, though differing from sn by

Tit "T" t- %

more than--
. is yet known from sn to within ---- _-. i.e. -

. --.. which-' '

n(n+ly
is less than '0001 if 7^^100; so that the sum of the series may be found to

within -0001 by adding only the first 100 terms.

53. Diminishing series of alternating signs. Consider the

series

t*i Ma + t*s
- ...........................(5),

in which the terms are any real numbers of alternating signs,

subject to the condition that the moduli of the terms form

a monotonely decreasing, or non-increasing, sequence, or, more

precisely, that

Wl>Ws>13>...>0 ..................... (6).

The sequence of partial sums

*i, s*> *si .............................. (7),

where SH = u
l
- u2 + us

-
. . . + un ,

is not steadily increasing, but is alternately increasing and de-

creasing.

By resort to the necessary and sufficient condition of convergence
of general sequences (p. 48 above) we can see at once that our series

(5) will converge if (and only if) the sequence ult u2 ,
u9 , ... has the

unique limit zero.

For the sequence (7) is convergent if
| n + p ~*n |< any arbitrary positive

number e, if n is sufficiently great, for all positive integral values of p, i.e. if

which is so if
|

un + 1
1

< e

[because, ifp is odd,

^ +1-^ + 3 4*. ..? + p== !* + !-- (tt^ 2 -Mn + 3)--...-0 + p-l--Wn+j9)

and, if jo is even,

^ + l- M* + 2+...i + p^tl-(?' + 2-^H.3)-'---(w + p-a-M + p- 1)-MH^p,
and therefore, all the bracketed and unbracketed numbers here in either case

being positive or zero,

i.e. the sequence (7) is convergent if w +1 ~>0 as n increases indefinitely ;
i.e.

if itn ~>() as n increases indefinitely.
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Or we may argue directly thus* :

Let us divide the sequence (7) into two sequences :

the sequence of odd partial sums slt ss ,
s5 ,

......(7 a)

and the sequence of even partial sums s2 ,
s4 ,

s6 ,
...... (76).

The sequence (7 a) is steadily decreasing and bounded below,

because the typical term

S2n+i
= MI Ma 4- H 3 4- ^2*1+1

= Wj tta 4- M8 ... + Wan-i (Man
-

^an+i) ^ $i-i

because um - u2n+l ^ 0,

and 8m+i = (Ui
-

'Ma) 4- (MS
-O 4- . . . 4- (tan-i

-
Wan) 4- */2>H-i ^ -

Therefore (p. 43) the sequence (7 a) has a lower bound and

unique limit, 8 say; or sl} ss ,
s5 ,

... V &
Similarly the sequence (76) has an upper bound and unique

limit, S' say; or s2 ,
s4 ,

SQ ,
... (* S'.

Furthermore, every number s2n+i of the sequence (7 a) ^ every
number 52m of the sequence (7 6), for

*an+i
- szrn = (^2m+i

-
^1+2) 4- ... 4- (lln-i

~ uzn) + U'm+i if W ^ m,

Or =
(Wgn+a

- i<2n+3) 4- ... 4- (ttam-a
-

'^2m-i) 4- W2m if W < m.

Therefore the lower bound S of the first sequence (7 a), which

exceeds (or equals) every number less than all the numbers slt ss ,
. . .

of the sequence (7 a), must exceed (or equal) every number of the

second sequence (76); and therefore 8 exceeds, or is equal to, the

upper bound 8' of this sequence. Thus 8 ^ 8'.

But, on the other hand, we have also 8 ^ 8'. For s2n+l ^ 8 and

&m ^ 8', and therefore

for all values of n\ and this would be impossible if 8 > S f

because,

by hypothesis, un (and therefore u2n+i) tends to zero.

Hence the two limits 8 and S' are identical.

Finally this common unique limit (S or S') of the two sequences

(To) and (76) must evidently be the unique limit of the original

sequence (7); and the proof that the series (5) is convergent

under the conditions stated is complete. That the series is con-

vergent only if un -* follows from the simple general necessary

condition for convergence (p. 63 above).

* The student is advised to sketch rough graphs, as suggested in the footnote to

p. 57 above, to represent the sequences (7), (7 a) and (76).
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We may state this theorem shortly thus :

The series
#

u u2 4~ ^3 . . .

converges

In dealing with series of this type it is again necessary to

discuss the error after n terms. In this case the discussion is

particularly simple.

We have in fact

En =

which is clearly less in absolute value than the term un+li and has

the same sign as that term*.

Or we may argue that the sum of the series lies between the

sum of any odd number of terms and of any even number, with

the same conclusion, viz.:

The error after n terms of a convergent series of the type (5) of

alternating signs is less than the next (the (n-f- l)th) term.

The remarks of pp. 71 72 above, concerning the scope for choice

in the degree ofcloseness of the estimate for the error, are applicable

here also. In view of the simplicity of this estimate, however, it is

not usually advisable to attempt to obtain any closer estimate for

series of this kind.

54. Examples of diminishing series of alternating signs. As
an example, consider the geometrical progression

(a) i +a . + 02+.. .

in which the common ratio, x, is negative.
The terms alternate in sign. The sequence whose nth term is

I

x
I*

1"1V if and only if
}

x
\

< 1.

Therefore the condition for convergence is fulfilled if x is negative
and greater than 1 .

(6) The series i _ + _...

has its terms alternating in sign and steadily decreasing to the

limit zero. It is therefore convergent and the error after n terms

is less than the (w-f l)th term, i.e. En < r~----
--.-j,

in absolute

value.

*
Excluding the case when the terms from the (n + l)th all =0.
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To calculate the sum of this series correct to within '0001 it will

suffice to take the first four terms, for

En < "0001 if (Zn + 1)! > 10,000,

i.e. if n ^ 4.

We have s,
= 1'00000 - 16666

+ -00833 - -00020

= 1-00833 - -16686

= -84147;

giving the sum of the series (b) with an error of less than '0001.

(c) The series 1 H + o
~~ T +

has its terms alternately positive and negative and steadily de-

creasing to zero in absolute value, and is therefore convergent.

En <-- in absolute value
;
so that, to obtain the sum correct to

within '0001, 9,999 terms will suffice.

This series is only very slowly convergent ;
it is easily proved,

in fact, that En >^.-= in absolute value, so that, in order to
tit ~T~ JL

obtain the sum to within '0001, at least 4,999 terms will be

needed.

55. Absolutely convergent series. Series which do not belong
to either of the above two types may give more difficulty. There

is, however, one important type of series which is in fact sub-

stantially as simple as that of series with only positive terms.

If a series ih -f u 2 + u3 + ........................... (8)

is convergent, and the series would remain convergent if all the

negative terms it may have were replaced by their moduli, then the

series (8) is said to be absolutely convergent.

It is seen that not all convergent series are absolutely con-

vergent. For example, the series (c) above is convergent, whilst

if its negative terms are replaced by their positive absolute values

the series becomes

1+
2
+
3
+ 4+""

which is the harmonic series (v), p. 67 above, and is not convergent.
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A theorem of fundamental importance in connection with abso-

lutely convergent series is:

If a series of positive terms HI + u% + u 4- . . is convergent, then, if

the signs of any of the terms are altered, the series is still convergent.

This theorem can be proved easily by an appeal to the necessary

and sufficient condition of convergence (p. 48) or thus:

For convenience, let us suppose that the modified series is

Uj, U2
~ U3 -f HI U6 + UQ+ ....

The positive terms of this series, viz.

Vi + u^ + u -f . . .
,

if not finite in number, will form a convergent series of positive

terms, because the sum of any number of them is clearly bounded,

being less than the sum of the original series. Call the sum of this

series (or of the finite number of terms) P. Similarly the negative

terms 2
~ u*

~~ u&
~

- f rm a convergent series (or a finite

number of terms) having a sum N say. If, now, enough terms

of the series are taken, i.e. for a certain value of n and all larger

values, if sn
'

is the sum of the first n terms of the modified series,

sn
' >(P-e)-N and *n

' < P - (N - e)

for all positive values (however small) of the arbitrary number e;

i.e. s^ lies between (P-N)-e and (P - N) + .

It follows that sn
'

-** P N and the modified series is convergent,

having P N for its sum.

The argument is plainly general.

From this theorem we are able to reduce the consideration of

absolute convergence of series to the consideration of series of

positive terms. We have clearly that if the series of moduli

|
MI I

4-
1

wa
I

+
|
MB + is convergent then the series u + u^ + uz + ... is

also convergent (and absolutely convergent). Thus we could argue that

the series (a), p. 76, is convergent (and absolutely convergent) if x is

negative and greater than 1, because, when the terms of the series

are replaced by their moduli, the series is the series of positive terms

(i), p. 64, which is known to be convergent; or again, the series (6),

p. 76, is convergent (and absolutely convergent) because the series

of positive terms formed by replacing all its terms by their moduli,

viz. 1 -f- ~. 4- =-. -f . . .
,
is convergent (because the sum of any numbero ! o !
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of terms of this series is clearly less than the sum of the same
number of terms of the series (iii), p. 65, and is therefore known to

be bounded).

56. Comparison theorems and tests for convergence. Series

of positive terms are therefore seen to be of added importance. In

view of this we add here two theorems by which the convergence

(or otherwise) of a series of positive terms (or, therefore, the absolute

convergence or otherwise of any series) may be established in some

cases of frequent occurrence.

I. If (?! 4- cz + c3 4- . . . is a convergent series ofpositive terms and if

every term, e.g. unt of another series ofpositive terms UY 4- u2 4- u3 + . . .

is less than the corresponding term, cny of the first series, then the

second series, u^ 4- u2 4- us 4- . . .
,
is also convergent.

II. // GI 4 c2 4 c3 4- . . . is a convergent series ofpositive terms, and

if, for all values of n, the ratio -^ of two consecutive terms ofun

another series of positive terms, u^ 4- u^ 4- u3 4- . . .
,

is less than the

corresponding ratio -
for the first series, then the second series,

Ui + u 4- us + . . .
,
is also convergent.

The proof of I is almost intuitive and is left to the student. For

II we see that the sum of the first n terms of the second series

= M! + U2 4- % 4 ... 4- 'Un

[~~\14- ?
4.

_? _
2
4.
_4 _* ..? 4 _ . -|

*L _zi
. g t

-? _?

=
(Cj 4- C2 4- C3 4- . . . 4- cn),

cl

which is less than a fixed number, K, however great n may be;

whence the theorem follows from the necessary and sufficient con-

dition for the convergence of series of positive terms (p. 64).

Knowing that a geometrical progression of common ratio k is convergent if

<k< 1, we have, as direct corollaries of these two theorems, the following

practical tests for convergence of series of positive terms or for absolute con-

vergence :

Cauchy's test: The series Ui+u%+ u$ -f ... is absolutely convergent if, for all

values of n^ %J\un ^ some fixed number k, which is less :han 1.
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d'Alembert's (ratio) test: The series u
l+u%+u$+... is absolutely convergent

iftfor ^ values of n, the ratio un + x | / 1

un
\
^ some fixed number ,

which is less

than 1.

For the series may be compared with the convergent series l + ;k+&2 +....

In using these tests a possible value of the number k should always be deter-

mined
;

it is not true that if the ratio
|

un + 1 1 / 1

un
\

< I the series is absolutely

convergent. (See Ex. 11 below.)

57. Operations with series. It is sometimes desired to effect

arithmetical operations on series; e.g. to add or multiply two series

together. The following two theorems are fundamental:

A. If the series ^ -f- u2 4- u3 4- . . . is convergent and has the sum U,

and the series v
l -f v2 -f v3 -f . . . is convergent and has the sum V, then

the series (ul + vl) + (u2 + vz) + (us + v3)+ ... is also convergent and
has the sum U 4- V.

B. If the series i^ 4- wa -f u* 4- . . . is absolutely convergent and has

the sum U
y
and the series v l + vz + vs + ... is absolutely convergent and

has the sum V, then the series

UiVj 4- (U^ 4- U2 Vl ) 4- (ut V3 4- W a Vfl + UyVj) + . . .

is absolutely convergent and has the sum UV.
Theorem A is simple and the proof is left to the student.

In theorem B the "product series"

MI^I -f (ttj Va + WaVi) -f- (Wi ys + Wat;2 + U^V^ + ...

is the series, as we should normally write it, if we wrote down the

two series i^ -f u2 -f ws + . . . and v l + v2 + v9 + ... and proceeded to

multiply them systematically, as a u
long multiplication" sum. The

term of this series is therefore

l^Vn 4- W2 ^n-i + ... + ^n-iV2

To prove theorem B, we suppose first that all the terms of the

series are positive.

We then have that the sum of the first n terms of the product
series

= U1Vl + (U, V2 -f U^) -f . . . -f (U^n -f . . . + UnVi)

whence it follows that the product series is convergent and its sum
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But the sum of n terms of the product series

= U^ 4- (^V2 4 WaVi) + + O'i% + ... 4-

>(ll!+ ... + tt)(Vi + ...+VW )
2 2

if ?i is even, or

if n is odd, and, by taking n sufficiently great,

^! 4- . . . 4- Un (or M! H- . . . -f t^+i)
2 ~2~

and ^ 4- ... 4- ^ (or vl + ... 4 VH+I)
2 2"

differ from f/" and V respectively by arbitrarily little, and therefore

the product differs from UV by arbitrarily little; whence it follows

that the sum of the product series ^ UV. Therefore the sum of the

product series = UV. Q.E.D.

If now the terms are not all positive, let us denote their positive

absolute values by u^, u2', ...; v/, a',

The difference between n terms of the product series, viz.

and the product (wj -f u^ -h . . . +
consists of a certain set of terms, which, if replaced by their positive

absolute values, would be precisely the difference between

M!V 4- ( 4- w aV) 4- ... 4- (M!V -4- ... 4- wV)
and (it/ 4 UQ' 4 ... 4 wn') (v/ 4-< 4- . - - + v'),

which is known to tend to zero as n increases indefinitely, by the

part of the theorem just proved.

Therefore the difference between

u^ 4 (MI V2 4- 1*2 fi) 4- ... 4- (u^ 4 . . . -f un v^)

and the product (u^ 4- w2 4- . . . 4 ^i) (0i 4 v2 4- 4- vn)

must, a fortiori, tend to zero; whence it follows at once that the

product series is convergent and has the sum UV. Q.E.D.

We do not here lay stress on these theorems (nor on the comparison theorems

and tests for convergence proved above) but they are nevertheless of great

importance and utility. We have only touched the fringe of the subject of

convergence, but the results obtained and the methods discussed will suffice

for our purposes*.
* For further information on convergence of series and sequences the student is

referred to Hardy's Pure Mathematics and to Bromwich's Infinite Series.
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58. We have now laid the foundations of analysis. That is

to say, we have placed on a sound basis the notion of real

number. In 1 3 we observed the nature and fundamental

properties of the different types of real number, and in 6 and 7

we have considered a systematic method of effectively representing

all real numbers (rational and irrational). We shall find later that

this notion of real number, and the considerations involved in its

discussion, lead to other notions of far-reaching importance such

as that of a function of a real variable, continuity, differentiation,

etc. and that many other similar notions, acquired from other

sources, are satisfactorily explicable by means of our knowledge
of the real number. In the next chapter we shall consider the

somewhat special problem of logarithms in particular the problem
of their evaluation in the course of which we shall be led to

consider certain aspects of the notion of function and the behaviour

of functions, which it will be our concern in the third and fourth

chapters to consider more fully.

EXAMPLES VII.

1. Discuss the convergence of the following series, giving in each case an

estimate to the error after n terms and finding the number of terms sufficient

to obtain the sum of the series to within -0001
; calculate to this degree of

accuracy the sums of the series (a), (c), (e), (/), (t), and (j) :

(a) 1 + 22 + 32S+423 +

<*> '+?+IT + H*
lj.IJL.j-i L j. 1 JL j_w io
+

2" io2
+

a2 To3 "*"
4" lo4

+ "

_ _
' 2 22 23

m _L_! JL + ! x _IJL _
(f } 10 2* IO2

"*"

32 IO3 42 IO4
"

(ff) 1-2 + 2-2 + -

__
2 2 22 3 23 4 2*"
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U) 1 - + -+-

2. Shew that the series

(a) 1 + 2 + 22 +23 + ...

+!+;+;*-
1.3 1.3.5

(0) 1-1 + 1-1 + .. .

(/) 1-2+3-4 + .. .

are not convergent.

3. Shew that the series _-
2! 31 4! 5! 6! 71

(in which two positive terms are followed by two negative terms) is convergent
and find its sum correct to two decimal places.

4. Discuss the convergence (or otherwise) of the series :

. \
sin 1 sin 2 sin 3

(a)
- r

g
+

2 +...,

(b) sm

,
. sin 1 sin 2 sin 3W -T-+-2-+ 3-

[By Abel's equality lemma (p. 26, Ex. 3)

sin 1 sin 2 sinn-
r-+^~ + ... + -^r

-

I 1

where *!, *2 > >* represent sin 1, sml+sin2, ..., sinl-i- ...+sin^. All

the sums sl9 s2j ... sn are positive and less than some number (< 180). There-

fore sn * 0, and the remaining terms

Are the first n - 1 terms of a positive convergent series. The series (c) is

therefore convergent.]

5. Shew that the series 1 +#+#2
/2 +^/3+ ... is convergent if - 1 ^# < 1.

6. Shew that the series

(a) l

(6) l-a,-/

-are convergent for all real values of #.

62
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7. Shew that the series

where n is any real number other than or a positive integer, is convergent

for all values of x between 1 and 1.

Under what circumstances is the series convergent also for x~\ and for

#=-1?
8. Shew that if u\ + ^2+%+ . . . is a series of positive terms, and if, for all

values of n sufficiently great, the ratio -^^1, then the series is not con-
un

vergent.

9. If %-M2+%+ is a series of positive terms, shew that if *jun ^. 1 for

all values of n sufficiently great, then the series is not convergent.

10. Use d'Alembert's ratio test to establish the absolute convergence, for

all values of the real number #, of the series of Ex. 6.

11. Shew that no number k, as required in the tests of pp. 79 80, can be

found for the series

ugh in each case %Jun < 1 and un+1/un < 1 for all values of n.

The tests will not apply. We know otherwise (p. 67) that (a) is not con-

gent but that (b) is convergent.]

12. If a series is absolutely convergent the terms may be deranged (without

missions) in any way without affecting the convergence or the sum. This is

iot true of a series which, though convergent, is not absolutely convergent.

[Non-absolutely convergent series are said to be conditionally convergent.]

13. Shew that the conditionally convergent series

() 1-J-
+ 5-J + ...,

when deranged into the series

<"i-i+i+f~l+i*A-J+
(whose law of formation is evident), remains convergent, but that the sum of

series (b) is greater than 1 whilst that of series (a) is less than 1.

14. Shew that the absolutely convergent series

(a) 1
~^2

+
.y2~ 42+---J

when deranged into the series

(b) l +
32~ 2***"P

+
7*~"P

+ '"'

mains absolutely convergent, and that the sums of the two series are

>ntical.



CHAPTER II

LOGARITHMS

1. INDICES

59. Exponentiation with positive integral indices. Laws
of indices. In the preceding chapter we have considered the four

cardinal operations of arithmetic addition, subtraction, multipli-

cation and division applied to real numbers. A fifth operation

that of exponentiation will now be considered.

Just as the repetition of the operation of addition leads to

multiplication (by a whole number) so the operation of exponen-
tiation is arrived at by the repetition of multiplication. In symbols,

a being any real number and m any positive integer, we write am

to mean the continued product of m a's, and we call am the mth

power of a, a being the base, and m the index. It is essential here

(as it was in the first instance in the case of multiplication) that

the index m should be a positive integer.

The laws governing calculations with powers are easily obtained.

The addition and subtraction of two powers are operations which

cannot in general be simplified to any extent, but multiplication

and division lead to the laws expressed in symbols as

(I) am x an = am+n
,
and

(II) am + an **am-*ifm>n-
9

m and n being positive integers and a any real number whatever.

To prove (II) for example we have, direct from the definition of the

powers am
y
an

,
and am~n

,
that

am + an = (a x a x a x ...)-r(ax a x a x ...),

there being m a's in the first bracket and n a's in the second,

= a x a x a x ...,

there being (m n) a's,

and the law (II) is established.

A third law arises from the application of the operation of

exponentiation to powers ;
in symbols it is

(III) (a
m
)
n = amn

,
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a being, as before, any real number, and ra and n any positive

integers.

The proof of this is also simple, thus

(a
m
)
n = am x am x a x ...,

there being n terms am in this product, which, therefore, by law (I),

there being n terms m in the sum ra -f m 4- m + . . . figuring as

index, whence

(a
TO

)
= amn,

and the theorem is proved.

The law corresponding to the distributive law, viz.

a, b and c being any real numbers, is also easily established.

Observing that the operation of extracting the root is inverse to

exponentiation, if we assume that roots necessarily exist and are

unique*, we can deduce certain laws for this operation, such as,

for example, that

but it is essential here to introduce restrictions on the.numbers

a, ra, n ; for if m or n were 2, for example, and a negative, >/a or

tya would be meaningless as real numbers.

60. Negative integral and zero indices. Our laws of indices

deal with the ordinary simple operations, but slight consideration

shews that all such operations are not covered by the laws. Our
law (II) for division is valid only if m > n, or, in other words, such

an operation as a2
-r a8

is not covered by the law. In the spirit of

generalisation, however, there are two points which suggest them-

selves : firstly, such an operation is not in the least meaningless,
it being evident that a2 a8

(or in fact am -~an if n =m + 1) is

equal to I/a (provided a ^ 0) I
and secondly, the law (II) ceases

to be applicable in this case only because of the meaninglessness
of such a symbol as a"1

,

These two remarks suggest that we may "generalise" the

notion of exponentiation to include "
powers

"
with negative or

* That this is the case if all the numbers (and roots) occurring are restricted to

be positive will be proved below (pp. 88 89).
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zero indices, by ascribing to the meaningless symbol am~n (where

m^n) the quite definite meaning am/a
n

. That is, we use the

equality
fjin

a =
,

a
which is a statement of fact in cases for which m>n, as the

definition of the left-hand side of the equality in other cases.

Any self-consistent definition of a hitherto meaningless symbol is

logical, but it remains to prove (if possible) that our definition will

preserve the same laws of indices as hold in the ordinary cases, for

then our extension will prove useful, in that we shall be enabled

to operate with both the old and new symbols (the positive and

negative integral powers) with equal facility and to use, if need be,

the new powers to help in discussions concerning the old powers.
Our definition may evidently be expressed in the simpler form :

a~m = l/a
m if m is a positive integer, )

a' = l, J

where a may be any real number except zero.

That law (I) still holds is seen as follows :

If m and n are positive integers,

am x a-n _ am x
an

by our new definition;

i.e. = am~n if in > n,

by law (II) for positive integral indices, or

, vti
if m < n-

by our new definition.

by our definition of a.

Also a
-

by our definition;

i.e. m+n

by our definition.

That laws (II) and (III) also still hold can be proved similarly.
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Our extension of the notion of exponentiation to negative

integral and zero indices is thus a useful extension with no

disadvantages.

61. Fractional indices. In the same way, assuming tentatively
that roots can be defined uniquely*, the question as to the possi-

bility of a useful extension of the notion of exponentiation to

include fractional indices would lead to the definition

p and q being positive integers ; for we know that a^/, whenever

pfq is a positive integer, docs equal /{to*, and by arguments similar

to the above for negative indices it is seen that the same laws of

indices continue to hold. Thus, to prove the law (I),

a*l<* x arl* = I/a? x j/a
r

by definition,

=
"{/a** x

from the laws for positive integral indices,

= V(a^ x ar

ps -f rq

We argue similarly for negative fractional indices, and for the other

two laws (II) and (III) in all cases. Our suggested definition there-

fore leads to the desired results whenever properly applicable.

62. Existence theorem for root extraction and fractional

powers. The definition will be properly applicable only if the

operations involved are possible a somewhat drastic restriction

if we were to confine ourselves to rational numbers, since (as we
have shewn in the case of V2) the majority of roots of the type tya
cannot exist as rational numbers. As we saw in the case of \/2,

however, it is easy to see that any positive real number necessarily
has one and only one positive real root of any order whatever, i.e.

whatever positive real number a, and whatever positive integer q
may be, there exists one and only one positive real number b whose

qth power is a, i.e. such that 6? = a, or 6 = tya.

* The proof follows immediately below.
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To prove this we observe that if all real numbers are classified

into those positive numbers y whose qth powers exceed a and

those numbers x which are negative or have their qth powers less

than or equal to a, a real number, denoted by (x
\ y), is defined in

accordance with Dedekind's definition, because it is clear that

such classification includes all real numbers and every x is less

than every y (because if x ^ y and both x and y are positive,

ocft ^ 3/0,
and therefore if afl ^ a and y

(i > a we must have x < y).

From the definition of multiplication of real numbers (p. 18) we

see at once that the qth power of this number (x \ y) y
which is

(a#
| yt), is the real number a

; any positive number other than

this number (x
\ y} evidently has a qth power differing from a.

Our statement which we may call the existence theorem for root

extraction is therefore proved.
It follows from this existence theorem that if a is any positive

real number, there exists one and only one positive qth root of a**,

P

i.e. one and only one positive p/qth power of a, viz. aq = $ap . Our

definition of a non-integral rational power of a real number, a, is

therefore properly applicable in all cases when that number, a, is

positive.

The restriction we have introduced that the base, a, should be

positive is essential in any theory of indices confined to deal only
with real numbers. It is also very desirable in any such theory to

consider only positive values of the powers, i.e. for example, to

consider 4^ or /y/4 to mean only -f 2 and not 2. In this course

we shall adhere to these restrictions. With these restrictions the

power a, where a is any positive real number and m any rational

number, necessarily exists and is unique*.

63. Irrational indices. The question now arises : Can powers
with irrational indices be satisfactorily defined ?

Let a be any positive real number and m any real number de-

fined by the Dedekindian classification (x \ y), where the numbers x

are all rational numbers not exceeding m and the numbers y all

greater rational numbers. We have defined all such powers as ax

and ay ,
x and y being rational, and it therefore seems natural to

* With the altered definition appropriate when complex numbers are used, this

statement must be modified. See Appendix.
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lay down the definition of the power am as the real number defined

by the classification (a* |

ay)*. This definition is in fact sound, but

in order to assure ourselves that this is so we must first prove that

the classification (a
x

\

ay) is
.
in fact a Dedekindian classification,

i.e. (1) that all rational (or real) numbers are included in the

classification, and (2) that every number of the a*> class exceeds

every number of the ax class (or conversely).

The proof of (2) is not difficult. If x and y are rational numbers, say p/q and

r/s, then av > ax
,

i.e. ar/8 > cpto, if ar > aP*
; i.e. if rq >ps if a> 1, or vq <ps

if a < 1
; i.e. if y> x or y < x according as a> 1 or a < 1

; so that if y > #,

av> ax or ay < ax according as a > 1 or a< I.

'To prove (1) we remark that, supposing a> 1, if 6 is any real number ex-

ceeding the upper bound of the set of numbers ax
,
there is a positive number e

such that b ax> for all numbers ax of the ax class
; but there are numbers

x and y of the two classes respectively for which a? - ax < c, because

av-ax **ax (ay-
x-1)<ax

(y-x)(a-l)
by the inequality of Ex. 2, opposite, for rational index (taking y x < 1),

<c if y-x<cl(a- I) A,
where A is any number exceeding all the powers ax. But y x can be taken

as small as we like
;

it therefore follows that any such number b must exceed

some number a* of the upper class.

On the other hand any number less than the upper bound of the numbers ax

must be exceeded by some numbers of the lower class.

We are therefore justified in asserting that the classification

(a
x av) defines a real number and in calling this number the

power am.

64. It is easy to see that this definition of am agrees with the

other definitions in those cases where the index m happens to be

rational (or integral). That the same laws of indices hold and

that therefore there is no inconvenience in this introduction of the

idea of irrational powers is intuitively evident ; the formal proof
of the first law is as follows :

Let m and 71 be the real numbers defined by the classifications

(xl
| y^ and (?2

1 y2) of the rational numbers ; then a x an is the

product of the two real numbers (a
Xl

\
a**) and (a

x*

\ a^), i.e. is the

real number (a* 1

"
1

"**]
a'/i

~
f!/2

), where x^ #2 , yl3 y2 are given all values

admissible.

* We use the notation (a*|a) to denote the classification, not merely of the

numbers expressible in the forme ax , atf
, but of all numbers respectively less than

or greater than the numbers so expressed. Thus, if a>l, the lower class consists

of all numbers which ^ any number of the type a35
,
and the upper class of all

numbers which ^ any number of the type av.
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But the classification (^ -f- #a | yl 4- ya) defines the real number
m 4- w, and the classification (a^

+^ a^+^) defines therefore the

real number a 4" 71

;
whence it follows that aman = am+ri. Q.E.D.

We are now in a position to use and develop the properties of

powers of any positive real number to any real index, and in doing
so to assume any algebraic developments of the original laws of

indices for positive integral powers, since the laws are formally

the same. Such irrational powers are of vital importance, not only

from the theoretical standpoint of the theory of functions, but also

in the practical matter of logarithms. In future we shall use such

irrational powers as may be desired without distinction except
where special discussion is desirable.

EXAMPLES VIII.

1. Prove that the inequality (ii) of p. 29 above, viz. (l+x)
n> 1 -f nx> holds

if n be a negative integer provided x > - 1. (See also Ex. 3, p. 132 below.)

dn bn

2. Prove that the inequality (iii) of p. 29 above, that T- lies between

nan ~ l and nbn ~ 1
J
a and b being unequal and either both positive or both negative,

is true for all real values of n, positive or negative, rational or irrational (except

when n= Q or 1, in which cases all the three numbers are equal).

[For the rational case use the inequality (iv) of p. 29.]

3. Prove that if a is any real number greater than 1 then ax > av if x> y
in cases : (a) when x and y are positive integers, (b) when x and y are any
rational numbers, and (c) when x and y are any real numbers

;
and that if a,

is positive and less than 1 then ax< av under the same circumstances.

[This property may be described by saying that the exponential function ax

is monotone. Case (a) is proved by direct application of the fundamental laws

of inequalities to the definition of ax etc. ; case (6) can be deduced from case

(a) by raising ax and av to the qsth power where x and y are taken to be p/q
and r/s respectively, with simple extension to the case of negative indices

;
case

(c) follows from case (6) and the definition of an irrational power as a Dede-

kindian classification obtained from rational powers.]

4. Shew that if x\^ #2 ,
#3 , ... is (a) any monotone sequence, or (b) any

sequence, monotone or not, tending to the unique limit m, then the sequence
of corresponding powers of a, viz. a*i, a*a, ax

a, ... is convergent and tends to

the unique limit aw
,
where a denotes any positive real number, and xl9 #2 ,

...

are supposed all positive.

[This property is the continuity of the exponential function. The proof of

this property is essentially.contained in the proof that if (x \ y} is a Dedekindian

classification then the corresponding classification (a
x

\

ay
) is also Dedekindian.

The proof of (a) may be expressed differently thus :

Let X be the upper bound of the sequence #j, #2 , ... (supposed increasing)

and suppose a>l ; the sequence a^i, ax2, ... is increasing and has its upper
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bound ^ ax . We prove that the upper bound of this sequence actually *=a* by

shewing that there are numbers of the sequence exceeding any number (A) less

than ax . If b is any numberless than X, ax - ab =^ab (a
x - b-l)<ab

(a
-

1)(X- b)

by Ex. 2 above (taking X b < 1). Hence if A is any number less than ax and

if 6 (< X] is chosen so that

X-b<(a*-A )/[a
x
(a
- 1

)],

the number ab will be such that

ax -ab <ax
-A,

i.e. such that ab> A. But there are numbers xn of the sequence #1, #2* #3

which exceed 6, and therefore there are numbers axn of the sequence a*i, aa2, ...

which exceed ab and therefore, a fortiori, exceed A, any number less than ax .

The case when a < 1 can be dealt with similarly, or can be made to depend
on the case discussed.

For case (b) we notice that the sequence y^ y^ 3/3, ..., where
;?/!
= upper

bound of a?!, #2 1 #3 -> ^"UPP61* bound of #2 , #a #4 > #3= upper bound of

#3 , #4, %, ..., ..., is steadily decreasing and has the unique limit X and that

the corresponding sequence of lower bounds is increasing and has the same

unique limit X\ whence case (a) shews that the sequence aF\, av*
9 a% ...

steadily decreases (and the corresponding sequence of lower bounds steadily

increases) to the unique limit ax . By shewing now that the upper bound of

a% aK2, ax&, ... equals ay
i, etc. the proof is completed. See also p. 47 above.]

5. Shew that if a > b > then an > bn if n is (a) any positive rational number,

(b) any positive real number. [Monotony of x
n
.}

6. Shew that if x^ x%, #3, ... is any convergent sequence of positive numbers

having the limit a, and if n is any real number, the sequence #i
w

,
#

2
W

, xg
1

,
... isr

convergent and has the limit ct
n

. [Continuity o/*#
n
.]

[See the proof when n is a positive integer, Ex. 14, p. 60 above.]

7. Shew that if the sequence Xi, #2 #3* tends to the unique limit a, and

n is any real number, then the sequence

tends to the limit -waH
~ l

. [Differentiability of x
n
.]

8. Taking as an alternative definition of a fractional power that aplq
($/a)

p
,

prove from first principles the laws of indices.

9. Shew that if the base, a, were allowed to be negative in the definition of.

fractional powers, or if double values for square roots (and other even roots)
were admitted, a?1'1 and a2^/2 might differ. Shew also that the definition of

a*/ as j*/ai> might apply when the alternative definition as (^a)
p would not

apply.
p

10. Shew that if a? when a is negative were defined as tya* (or (^a) p),
*
having been reduced to its lowest terms, then, independently of the fact that
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the exponential function ax would not exist for some rational values of the

index, the function would not be "continuous" for any value of #; and that

similar difficulties would arise if the definition were modified to tya
2 when q

is even.

2. LOGARITHMS

65. Definition and existence theorem for logarithms. We
have seen that the equation am = 6, in which a is any positive and

m any real number, can always be solved for b in terms of a and m
(b being, in fact, always positive). The operation involved is that

of exponentiation the raising of a to the rath power an opera-
tion always possible within the system of real numbers, whether

m be integral or not. If a be regarded as the unknown, the equation
can still be solved, again by the operation of exponentiation,

for a = bllm. If however m be regarded as the unknown, we have

as yet no regular means of solving the equation. The operation
involved is a new operation. Such a solution is however possible
for all positive values of a and b (except for a=l), as can be

proved as follows :

If z is any real number, and a any positive real number other

than 1, az exists and necessarily either >b or ^6.

Let x denote any real number for which a* ^ 6, and y any real

number for which ay > b.

Then the classification (x
\ y) divides the system of real numbers

into two classes, such that there are numbers in each class.

To prove this: If a>l, let al+c. Then, if n is any positive integer,

an (l + c)
w> \+nc by inequality (ii) of p. 29; and therefore n can be found

so that an > b. This number n belongs to the y class. Also, since 6> 0, another

integer m can be found so that a ~m
/ n< <^ an(* therefore the

number m belongs to the x class. If a< 1, we write a = and the proof1 -f-c

proceeds on the same lines. If a= 1 the statement is of course untrue, for then

a*= 1 for all values of z.

Also (1) all real numbers are included in one or other of the

classes, and (2) every x < every y ; because, if any x ^ any y, the

corresponding ax would be ^ the corresponding ay (Ex. 3, p. 91

above)*, which would contradict the supposition that ax ^b< ay.

Therefore this classification (x \ y) is a Dedekindian classification

*
Assuming a> 1. If a< 1, the signs of inequality must be reversed.
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and defines a real number, m say. The number am is then the

number defined by the classification (a* a^), i.e. is the number b,

i.e. a
m = 6

;
and it is evident that there is only one such number m

having this property.

Hence the equation am = 6, in which a and b are any positive real

numbers, and a is not equal to 1, necessarily has a unique real

solution for m. This real number m is called the logarithm ofbto
the base a, and is written loga &*.

66. It is interesting to notice that, except in rare cases, one at

least of the three numbers a, &, m must be irrational
;
and in fact

that the logarithm to a rational base (a) of a rational number (b)

must be irrational, unless the numbers (a and b) are positive or

negative integral powers of a single rational number.

To prove this in the special case when a=10 and b 2 i.e. to prove that

the logarithm of 2 to the base 10 is irrational we argue : If Iog10 2 were rational

it could be expressed as a fraction pjq, p and q being (positive or negative)

integers, and we should have the relation 10^~2; whence 10P=2, an im-

possible relation, since 1CM3 is an integer ending in (or a decimal consisting
of the digit 1 following a number of O's following the decimal point) whilst 2<*

must be an integer ending in 2, 4, 8, or 6 (or a decimal whose last figure is 5).

Therefore Ioglo 2 is irrational. The proof of the general case is left to the

student. The student will notice, in consequence of this property, that the
introduction of irrational numbers (in particular as indices) was essential if

we are to use logarithms at all generally.

67. Properties of logarithms. In virtue of our knowledge of

the power, or exponential function, of which the logarithm is

the inverse, we at once see that logarithms have the following
two important properties:

(1) If the base a is greafcer than 1, and x and y are two positive

numbers, then Ioga #>loga 2/
if and onty if <e>y; and if a< 1,

loga # >loga y if and only if y > x. We say in either case that

the logarithmic function is monotone.

(2) If 0!, ofe, ... is any sequence of positive numbers tending
to the unique positive limit 6, the corresponding sequence of

logarithms, viz. loga ^, loga #2 , ..., tends to the unique limit loga &.

We say the logarithmic function is continuous.

* With the introduction of complex numbers logarithms can be defined even
if the number or the base is negative (or complex). Such logarithms are not
unique. Sea Appendix.
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The proofs of these properties are almost immediate.

The proof of (2) may be expressed in terms of monotone sequences (see

pp. 47 48) thus:

Because the sequence #A ,
#2 ,

... >
ft,

we know that the sequence #i, 72 , ... V*. b
y

and the sequence Z1? Z2 , ... f ft,

where U represents the upper bound of x^ ,v2 ,
x-A , ..., U2 the upper bound

of #2 , #3, #4, ... etc., and Liy Z2 ,
etc. represent the corresponding lower

bounds.

Hence the sequence loga /i, loga (72> loga 73 ,
... V loga ft,

and the sequence loga LI , log X2 , loga L3 ,
. . . /^ loga ft,

supposing a> 1* and using property (1) to -prove that if yi9 y2 i f^b, then

logyi, Iogay2 , loga ys ,
... ^loga ftt.

But loga Ui upper bound of loga xl9 loga ^2 , loga ^3 ,
... ; etc.

Therefore the sequence

(upper bound of loga ^, loga #2 > ...)> (
uPPer bound of loga #2 > loga ^3, ...),

.

and the sequence

(lower bound of log^, loga o?2 , ...), (lower bound of loga #2 , loga ^?3 , ...),

whence the sequence loga x\ , loga x^ ,
,..- loga ft. Q. E. D.

We notice further that, whatever the base (a\ loga 1 = 0, because

a = l.

Thus we know that if the base (a) is greater than 1, every positive

number b has a logarithm, which is positive or negative according as

the number is greater than or less than 1, and that the logarithm
increases steadily (and continuously) as the number increases. If the

base is less than 1, the logarithm is positive or negative according
as the number is less or greater than 1 and the logarithm decreases

as the number increases.

* The modifications when a< 1 are evident.

t That the sequence Ioga y1} Ioga y2 > ...is increasing and therefore has its upper
bound as its unique limit and that this upper bound <loga ft is evident from (1).

That this upper bound is loga & is proved thus: if B is any number less than

loga &
}
aB < alog 6= 6, and therefore some of the numbers y^ t y2 ,

... exceed att

and therefore some of the numbers loga ^i, loga i/2 , .,. exceed B, so that B is

less than the upper bound of the sequence log^j, loga ^2 ,... and the actual

upper bound =loga &. Similar remarks apply to decreasing sequences and to lower

bounds.
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It should be noticed that negative numbers have no logarithms
and that the base of the logarithms must in all cases be positive*.

We shall in this course, wherever for the sake of definiteness

appears desirable, always assume that the base of the logarithms
is greater than 1

;
the modifications necessary to cover the case

of a base less than 1 will be found to be nowhere vital. In practice

the base is invariably taken to be either e (2*7 18...) or 10.

68. Laws of logarithms. It is of natural interest (and of

practical utility) to discover laws concerning the logarithms to

a fixed base of various combinations of different numbers. We
have in fact already found three laws of indices, which in view of

the fact that logaiithms are indices, can evidently be restated as

laws of logarithms.

Thus we have firstly, from the first law that am x an = am+n,
that

the logarithm to the same base a, of the product of two numbers,

is the sum of the two logarithms of those numbers
;
or

loga (X X y)
=

loga X + loga y,

x and y being any two positive numbers
;
it having been seen that,

whatever numbers x and y may be, their logarithms, m and n, exist

such that am = x and a tl =
y.

Secondly, am -f- an dm~n gives at once

As in the case of indices this law is only a particular case of the

first law, for we have, in virtue of the relation l/a
n = a~n

, that

toga (V#) = ~ toga V> and thence

loga
(|)

=
loga r x

yj
==

loga x + (~~ loga^ =
loga x

~
loga y'

Thirdly, the law (a
m
)
n = amn gives

loga (a
n
)
= n loga x,

n being any real number.

To sum up these three laws : logarithms ofproducts and quotients

are equivalent to sums and differences of logarithms, and the loga-
rithm of a poiver is equivalent to the product of a number and a

* With definitions in terms of complex numbers this statement is untrue. See

Appendix.
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logarithm. If we happen to know the logarithms to any base of

all numbers we need, we can therefore replace the operation of

multiplication by that of addition, division by subtraction, and

exponentiation by multiplication. In numerical calculations in-

volving such operations of multiplication, etc. operations which

are tedious if the numbers concerned are large (or have many
significant figures) we can therefore simplify the work by using

logarithms, thereby reducing the operations of multiplication, etc.

to the simpler operations of addition, etc. Since in practical work

numbers with many figures are of frequent occurrence, the reduction

in labour involved in such a use of logarithms is of considerable

importance, provided only that tables of logarithms can be con-

structed and used with ease.

69. Logarithms to different bases. Common logarithms.

There is so far in our logarithms an element of arbitrariness the

base a may be any positive number whatever. The choice of the

most suitable base is not of much theoretical* but of considerable

practical importance. If we take for example a = 2, we have

evidently (straight from the definition) the following logarithms

to the base 2 :

log, 1=0, loga 2 = 1, log, 4 = 2, Iog2 8 = 3,

logo 10 = an irrational number greater than 3 and less than 4,

Iog2 20 = Iog8 2 -f logs 10 = 14- log, 10, log, 80 = 3 + Iog2 10,

and generally

loga (2
W
#) = n -f log.2 #, and Iog2 (10

n
a?)
= n loga 10 -f loga as.

The last two relations shew that if a number is multiplied by a

power (positive or negative) of 2 its logarithm is modified only by
the addition of the index of that power, whereas if multiplied by
a power of 10 the logarithm is modified by the addition of a multiple

of the irrational logarithm of 10. Or, if the logarithm of a number

to the base 2 is known, the logarithms of all numbers got by

multiplying (or dividing) the number by powers of 2 are also

known immediately, whereas the logarithms of the numbers got

by multiplying by the powers of 10 are not so known. Since,

however, the normal system of notation is the decimal notation,

* But see 4 below.

WMA 7
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it is easier to see the similarity between numbers whose ratio

is a power of 10 than that between numbers whose ratio is a

power of 2. If we chose 2 for the base of our logarithms we should

therefore lose the particular advantages of our customary notation.

It is therefore preferable to discard 2 as our standard base of

logarithms and to choose 10 for base. We then have the relation

Iogi (IQ
n
x) = n + log]0 #, so that if we find (from tables) the single

logarithm Iog10 # (e.g. Iog10 1*2345) we have immediately all the

logarithms of the numbers got by shifting the decimal point

in x (e.g. Iog10 1234
<5 or log, '001 2345), and it becomes thereby

sufficient for the tables of logarithms to take no cognizance oLthe

position of the decimal point but to tabulate only for values of x

(with a sufficient number of digits) within a certain range (e.g.

between 1 and 10). It is for this reason that 10 is nearly always
chosen as the base of tables of logarithms designed for numerical

calculation. Such logarithms are called common logarithms*. If

ever the decimal system of notation were displaced by the duo-

decimal system it would be necessary to replace all tables of common

logarithms by tables of logarithms to the base 12.

It is nevertheless desirable in some kinds of work to use a

base other than 10. The investigation of the relation between

logarithms of the same number to different bases is, therefore, of

practical importance.
An appeal to the definition of logarithms shews at once that :

// a and b are the bases (positive) of two systems of logarithms,

and x any given positive number, then log& x Iog6 a x loga x, or

For, if loga x = a and log& x = /?, we have a" = x 6^, whence

a loga a
=

loga # = /3 loga b and a log& a log& x = ft log& 6,

giving Iog6 x = Iog6 a x loga x and Iog6 x = loga x.

We can now at once obtain the logarithm of any number to any
base if only we know the logarithm of both the number and the

base to any particular base.
* In elementary and practical work the suffix denoting the base (10) of common

logarithms is usually omitted. We shall follow this custom in the next section, but

not elsewhere in this course. In theoretical work the suffix is usually omitted when
the base is the irrational number e

t
but we shall avoid this practice.



2, 3] LOGARITHMS 99

EXAMPLES IX.

1. Given that Iog10 2= '30103, find the common logarithms of

32, 8, 1/2, 1/8, V2, l/(#2).

2. Given that Iog10 3= -47712 and Iog10 2= -30103,

find the common logarithm of

o /372 l6/37210

V ~62/3~

3. Given that Iog10 e -4343 ("e" being the irrational number, defined above

(p. 51), which is the base of the Napierian logarithms), and given the common

logarithms of the preceding questions, calculate loge 2 and loge 3.

4. Shew that loga b lies between

-
and

-
T. / T\ <*ii*-* /

&(!) a-1

Hence prove directly that if Jil9 h%, A3 ,
... is a sequence of positive numbers

tending to the unique limit zero, then the sequence whose nth term is

logIO (1 +/O has zero as unique limit ; deduce the continuity of the logarithmic

function for all values of x.

5. Shew that the logarithm of a fixed number is a continuous function of

the base (i.e. if al9 a2 , 3 ,
... -^ a then logai 6, Iogtt2 6, Ioga3 6, ... -> loga b) for

all positive values of the base except unity ;
and monotone for all values of

the base exceeding unity (i.e. loga| b > Ioga2 b if and only if c^ > 2 or else if

.and only if a
v < 2 ).

6. If a> 1 and n is any real number arid x positive, prove :

(i) a35 > xn and a~ x < xn for all values of x greater than a certain value ;

(ii) xn> loga x for all values of x sufficiently great ;

(iii) xn>
\ loga # |

for all (positive) values of x sufficiently small.

[For (i) put #H=X. ax= (a
x'x

)
x> X by Ex. 10, p. 36.]

3. LOGARITHMIC TABLES

70. By the use of logarithms the operations of multiplication,

division, and exponentiation can be replaced by the operations of

addition, subtraction, and .multiplication. In practical calculations

these latter operations, as explained above (p. 97), are simpler

than the former. If the logarithms of all numbers could be tabu-

lated once for all, such calculations would be made easy, for all that

would be necessary in any particular calculation would be to look

up directly in the tables the logarithms required and the numbers

corresponding to given logarithms. Such a complete tabulation

is, however, manifestly impossible. But it might be possible to

72
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tabulate all the integers up to, say, 10,000, and their logarithms

correct to, say, four decimal places. Before entering on the question

as to whether (and how) such a tabulation can actually be carried

out, it will be well to inquire whether such limited tables can be

of sufficient utility to make the labour of compilation worth while.

71. The first remark which suggests itself in this connection is

that any tables of logarithms, however accurate, cannot be used for

arithmetical calculations where absolute accuracy is required (except

in certain trivial cases), for, as we have seen, logarithms are in

general irrational numbers and therefore cannot be obtained ac-

curately as decimals, but only to some degree of approximation

(though this degree of approximation is variable at our choice).

This lack of absolute accuracy is not however a vital objection to

the use of logarithmic tables, for, generally speaking, numerical

calculations are met with only in practical work (in the physical

sciences and elsewhere) where the accuracy of the actual data of the

calculations is by no means absolute; in some surveying problems
the direct measurements may be in error to the extent of one per

cent., and in very few measurements are the errors known to be as

small as one in a million. It would be absurd to desire absolute

accuracy in calculations on such approximate data.

Thus, if only the tables can be so constructed and used as to*

preserve any desired degree of accuracy, the lack ofabsolute accuracy
will be of no consequence. Our object will be attained if the suc-

cessive numbers tabulated are so chosen as to differ only by the

range of error to be allowed for in the data of the calculations, so

that there will be a separate entry giving the logarithm of every

distinguishable number, and, if, at the same time, the logarithms-

tabulated are obtained to such a degree of approximation as to

render successive entries of logarithms distinguishable; that is to

say, if the numbers for successive entries are taken sufficiently near

together and the corresponding logarithms are tabulated to a suffi-

cient number of decimal places. If, in using such a table, we en-

counter a logarithm which does not occur in the table, it will lie

between two of the entries of logarithms and therefore, in view of

the monotoneness of the logarithmic function, the corresponding
number will lie between the two corresponding number-entries; and
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this will suffice for our needs. One proviso only is needed, that

the number of decimal places to which the tables are carried must

be the same throughout and sufficient for the accuracy of the least

favourable part of the tables. For work of different degrees of accu-

racy different tables will be needed, e.g. four-figure tables for most

practical work, or seven-figure tables for more accurate work. As
has been noticed before, there is no need in a table of common

logarithms to tabulate numbers beyond a certain stage, since, e.g.,

in four-figure tables 16013 would be indistinguishable from 16010,

whose logarithm is 1 4- log 1601; so that in four-figure tables we

need only tabulate logarithms of integers from 1000 to 9999.

It should be observed that it does not follow that the sum (say)

of a number of logarithms will have the same degree of accuracy
as the several logarithms. It is true that in some cases the various

errors may compensate each other, but on the other hand it is

possible that they may be all of defect (or of excess) and thus add

up, or accumulate, to a considerable total error. In performing
calculations we must of course allow for this possible accumulation

of errors, and it is best always to write down the limits between

which the numbers and logarithms occurring are known to lie.

Thus, for example, if we know that a measurement x, given as 2*000,

is liable to an error (of excess or defect) of *001, we read from the

tables that log 1 '999 = '3008 and log 2'001 = '3012, to four places

of decimals (i.e. with a possible error of '00005). All we can guar-

antee about log# from these data is that '30075 ^ log #^'30125.

Ifwe work with inequalities of this kind we shall know with certainty

the outside limits of error of the result. This method can be simpli-

fied in practice.

72. Tables of common logarithms. In tables of common

logarithms in actual use certain conventions are used, which it is

desirable to mention here. The logarithm of any number will in

general consist of an integral part and a decimal part; the integral

part is called the characteristic and the decimal part the mantissa

of the logarithm; in the case of a negative logarithm the character-

istic is always taken to be the negative integer next less than the

logarithm itself, and the mantissa is the positive decimal by which

the logarithm exceeds the characteristic. Thus for log 20, which
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= 1*30103, the characteristic and mantissa are respectively 1 and

30103; for log '5, which = - '30103 = - 1 + '69897, the character-

istic and mantissa are respectively 1 and '69897, Such a loga-

rithm is written T'69897.

Tables of logarithms tabulate only the mantissae, and the decimal

point is usually omitted; the characteristics and decimal points

have to be added. The determination of the characteristic of a

common logarithm is simple, for we have from the laws of logarithms

that if, e.g., log 2 = '3010, then

log 20 = log (10 x 2) = log 10 + log 2 = 1-3010,

log 2000 = log (10-
5 x 2) = 3 + log 2 = 3-3010,

log '2 = log (2/10) = log 2 - log 10 = log 2 - 1 = 1-3010,

log '00002
=

log (2/10
5
)
=

log 2 - 5 = 5'3010;

or if log 1-302 = '1146, then

log 130-2 = 2-1146, log -001302 - 3-1 146.

The characteristic of the logarithm of a number greater than 1

is always one less than the number of digits preceding the decimal

point ;
the characteristic of the logarithm of a number less than 1

is always negative, and is numerically one more than the number
of zeros immediately following the decimal point.

In most published tables space is saved by the use of a "column

of differences," the precise form of which varies with the publica-

tion, and the use of which will give no difficulty to the student.

The "principle of proportional parts" is of considerable use in mathematical

tables in order (e.g.) to obtain the logarithm of a number intermediate to two
numbers tabulated. It is, briefly, that if the difference between the inter-

mediate number and the smaller of the two tabulated numbers is e.g. 1/10 or

2/10 of the difference between the two tabulated numbers, then the corre-

sponding difference between the intermediate logarithm and the smaller of the

two tabulated logarithms is 1/10 or 2/10 of the difference between the tabulated

logarithms. The investigation of the degree of accuracy of this principle and
its general justification depend on the notions of differential calculus and will

not be given here. Generally speaking, the principle will be reliable only in

parts of the table where the "differences" do not vary rapidly.

The student will probably already have had sufficient exercise

in the performance of calculations with the help of logarithms, but

in any case he will be able to find, in the course of practical work



3] LOGARITHMIC TABLES 103

in natural science or elsewhere, practical examples for practice*.

In all cases the student should use tables appropriate to the

degree of accuracy of the work in question, and should so use

the tables that he will be able to assign with certainty outside

limits of error.

73. Construction of tables. Having satisfied ourselves of the

utility of such tables as those contemplated, it remains for us to

investigate how such tables can be compiled. That is to say, we
wish to calculate the logarithms to any desired degree of accuracy

(e.g. within *00005 or "00000005) of all numbers of a certain number

(e.g. 4 or 7) of significant figures. Our problem is that of calculating

the logarithm of any given number to any desired degree 'of accuracy,

For definiteness we will suppose that the logarithms required

are common logarithms, i.e. logarithms to the base 10.

The logarithms of certain numbers are known at once; e.g.

log 10 = 1, log 100 = 2, log 1000 = 3, log 1-0,

log -1 = -
1, log -01 = - 2, etc.

To find the logarithm of another number, e.g. 2, we have firstly

that log 1 < log 2 < log 10, i.e. that log 2 is positive and less than 1
;

but we notice further that 28 = 8<10 and therefore 2<10* and

therefore log 2 < 1/3, i.e. log 2 < '3. Also 24 = 1 6 > 10 and therefore

2 > 10*, whence log 2 > 1/4 = '25. We have thus already obtained

log 2 correct to one decimal place, viz. log 2 = *3.

For further accuracy we may try repeating this process of raising

2 to some integral power and comparing with a power of 10; we

have

25 = 32, 26 = 64, 27 = 128, 28 = 256, 29 = 512, 2 10 = 1024;

whence we have, selecting the one actually useful result,

210 = 1024 > 1000 and therefore log 2 >
^ log 1000 = "3.

From these results we have found that log 2 lies between "3 and "3.

We can find other logarithms similarly.

74. Two-figure tables. Evidently this process has limitations,

which must be removed if it is to be useful for our purpose.

* Worked examples and detailed instructions on the use of logarithmic tables will

be found in any good modern book on elementary algebra.



104 LOGARITHMS [CH. II

We could, as a last resort, calculate the values of 2^, 2*, 2
,

... by re-

peated application of the operation of extracting the square root, or we

could calculate the values of 2T\ 2 1\ 2^, etc. and then 2T^, 2TH ...

by the fundamental method of "trial" (e.g. to find 2T̂ we argue 1 10 -1<2,

ri lo=2'6,..>2; therefore 2 lies between VO and M, etc.). But clearly,

no matter what simplifications be made in this method, the work involved is

prohibitive.

We have used the fact (e.g.) that 8 < 10 to shew that log 8 (i.e.

3 log 2) < log 10; but we have no information as to how much log 8

is less than log 10. Clearly what is needed is some estimate of the

magnitude of the difference between two neighbouring logarithms,
such as log 10 log 8, or, what comes to the same thing, an estimate

of log(l + a?), where x is fairly small, for

log 10 - log 8 - log (10/8) = log (1 4- J).

Let us consider this question in the simplified form when x is the

reciprocal of a positive integer; i.e. let us try to find an estimate

of log ( 1 H
]

,
where n is a positive integer.

Taking first the case mentioned, that of log (1 4- ), we notice

that the successive powers of (1 + J) are 5/4, 25/16, 125/64, etc.,

and of these, the third, viz. (1 -f-)
3 =

125/64, differs only slightly

from 2 and that 3 log (1 + J) < log 2, i.e. 3 - 9 log 2 < log 2, whence

log 2 > '3, a result which we found before by proceeding to the

tenth power of 2. Similarly for other logarithms.

However, we know in general (see pp. 52 53 above) that if m
is any positive integer not exceeding ??,

(1 + l/n)
m
^ (1 + l/n)

n < 3,

and therefore in general

log (1 4- l/n)
m < log 3,

or indeed log (1 + l/w)
n < log 3,

n log (1 -f l/n) < log 3, or log (1 + l/?i) < -- '--
,

.e.

so that if we can obtain a close upper estimate to log 3, we shall

have here a close estimate for, log (1 + l/n) for all integral values

of n, and there will be no need to carry out the process of raising

the particular value of (1 -f l/n) to the various powers each time.
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Moreover, we see that the greater the number ft, the more accurate

will be the result. Using the evident fact that log 3 < '5, we may
state our result as

log(l + l/w)<~ or 1/2;?,.

We can also improve our results if we obtain an under estimate

for log(l + l/r&) as well as the over estimate found. A sufficiently

good estimate is obtained at once if we notice that if n is any

positive integer whatever,

(l + l/w)
n
^2,

and therefore ft log (1 4- I/ft) ^ log 2, which we know >*3; whence

log(] + ]>-.
ft

Combining our two results, we have proved that log (1 4- I/ft/)
lies

between '3/n and "5/n: whence we have log (1 4-
-

)
correct to

'

\ n)
within an error of less than *2//i.

Certain logarithms can now be found to a considerable degree
of accuracy; for example log 101 = log 100 4- log (1 4- 1/100) and

therefore lies between 2*003 and 2*005.

The logarithms of the integers from 1 to 10 can now be deter-

mined to a substantial degree of accuracy. Thus log 2 can be found

correct to three decimal places thus:

2 10 = 1024, which lies between 1020 and 1025, and therefore

10 log 2 lies between log 1020 and log 1025, i.e. between

3 4- log (14- 20/1000) and 3 4- log (1 4- 25/1000),

i.e. between 3 4- log (1 4- 1/50) and 3 4- log (1 4- 1/40), whence 10 log 2

lies between 3 4- '3/50 and 3 4- '5/40. Therefore log 2 lies between

3 4- '0006 and %3 4- '00125, i.e. log 2 lies between -3006 and '30125,

whence, correct to three decimal places, log 2 = "301.

There is now no real difficulty in calculating the logarithms of

all integers, say up to 100, to a degree of accuracy corresponding

roughly to "two-figure tables/' The student is advised, as an exer-

cise, to calculate by this method the common logarithms of all the

integers up to 20; there is scope for much ingenuity in choice of

the particular numerical relations used, but the student will not

have much difficulty in obtaining the results correct to within

005.
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75. Limitations of method. There is still a fundamental draw-

back to this method of calculating logarithms. We cannot obtain

unlimited accuracy.

The possible error in our approximation to log(l + I/ft), on which the

calculations rest, is *2/ft, which, even in the favourable case of

log 101 =2 + log (1 + 1/100),

allows an error of -002. We can improve the method by realising that the

result used that log (1 + l/ri) lies between *3/ft and '5/w is not the best

possible result of the kind. For we can easily shew that log 3 is not only less

than -5 but less than '48. We know also that the inequality (1 + l/w)
w <3 is

not the best result of its kind
;

it is in fact not hard to prove directly that

(1 + l/n)
n < 2f for all values of the positive integer ft, or we know already (see

pp. 51 55) that the upper bound of the increasing sequence whose ftth term

is (l + l/ft)
n is e, which, correct to six places of decimals= 2*7 18282, and there-

fore (1 + l/n)
n < e < 272.

We can therefore replace '5/ft in our upper estimate for log (! + !/?&) by

48/ft or Iog2'72/ft, or even loge/w.

At the same time, the lower estimate (*3/ft) for log (1 + 1 In) can be increased.

Using the result of Ex. 7 of p. 59 above, viz. that the increasing sequence
/ i \n + i

whose ftth term is ( 1 r I has l/'e for its upper bound, we have
\ ft+1/

' Lt

and therefore

\ ft /

whence log (1 + I/ft) > --- for all positive integral values of n. Our result can
ft+1

now be modified to

lg ^ /i 1\ lg e

ft+ 1 \ ft/ . ft
*

If we had the precise value of loge, we should now have an estimate for

log (1 + l/?i) with an error of less than log e/n
-

log e/(n +1), i.e. 1V Since
ft (7li+ 1

y

log e is certainly less than
,
our possible error is seen to be less than

1

2ft (ft+1)'

If ft is large, this error is very small, and indeed is much less than our

previously obtained possible error; e.g. if n =100, we obtain log (1 + 1/100)

with an error of less than _ ---
,
i.e. less than '00005, as compared with

A lOv/ . J.UA

002.

The degree of accuracy of this method is however still limited.
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Evidently further modifications of a vital character are necessary
before we achieve the unlimited accuracy we need. In the next

section we shall see how the result that log(l + l/n) lies between

loge/(n -f 1) and loge/n can be extended and developed to gain this

end.
EXAMPLES X.

1. Given that the square, fourth, eighth, 16th, 32nd, 64th, 128th, 256th, and

512th roots of 2 are (to three places of decimals) 1'414, 1-189, T090, 1-044, 1'022,

1-011, 1-006, 1-003, and 1*001 respectively, calculate the logarithms of all the

integers from 1 to 20 to the base 2, correct to two decimal places.

2. Shew, by the methods of the text, that log 3 lies between '476 and "478

and log 7 between -844 and -847.

3. Construct that portion of a "two-figure table" of common logarithms

which gives the logarithms of integers between 30 and 40.

4. Use tables to calculate the sum of 20 terms of the geometrical progression

having 13 for its first term and 11)45 for common ratio. State the degree of

accuracy of the result.

5. Given the four-figure values of the common logarithms of 8 and 21,

obtained from tables, and that log e lies between *4 and '5, use the relation

132=169 to obtain, by the method of the text, log 13 correct to four decimal

places.

6. Calculate the common logarithms correct to three decimal places of 10-1,

10-2, 10-3, 10-4, 10-5, 10-6, 10'7, 10'8, 10'9, and 11.

7. Calculate the logarithms of the integers from 1 to 12, to the base 12,

correct to one decimal place.

8. Calculate to one place of decimals :

(Iog20-logl())/10, (logl5-loglO)/5, (log 12 -log 10)/2,

(logll-loglO)/l, (Iogl0-log9)/l, (loglO-log8)/2;
and to two places of decimals :

(log 10-5- log 10)1 -5, (log 10-4- log 10)/'4, (log 10'3-log 10)/'3,

(log 10-2- log 10)/-2, (log 10-1- log 10)/-1, (Iogl0~log9'9)/-l,

and (loglO-log9'8)/-2.

4. THE LOGARITHMIC SERIES

76. Proof of inequality. In view of the role which the relation

proved in the last section, viz.

plays in the development of the logarithmic series which is the

means whereby we are to be enabled to calculate logarithms to an

unlimited degree of accuracy we here set out the proof in full.
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Firstly, the two sequences, whose typical terms are (1 -f 1/n)
n

and (1 l/n)~
n

,
are respectively steadily increasing and decreasing,

are convergent and have the same unique limit e.

Combining the two proofs by using the alternative signs , T in

the respective sense, we have, if n is any positive integer greater

than 1,

1 Yl+1
f 1 - 1 l n+1

n
T TI

(l\n
/ 1

l ^)( l
n

l) I

l)]'n n [ n(n+l)(n

by the inequality (ii) of p. 29, since - -
. > 1.

(1
\n-fi / l\ w Av 4- TV*? f 1\ n

i !-
] >(! + -)

(

;

* }~ =
f i + -

j
.

H-1/ \
~ W w(7il) V

-
n)

(\\n1 4-
-

j

and

l\ n
-) are increasing.

These sequences are bounded above because, as proved on p. 52,

and

The sequences, therefore, have unique limits. That of the first is

denoted by e*.

-P. /, l\ n /n-l\ n~l n-l
Finally (1

--
)
= -----

J
\ n/ \ n I n

1 1

(i+ !,)"

(1 Y1" 1

1+ --
) -*~e and 1 -f

n I/
v

n 1

* The irrational number e, thus denned, has been proved (p. 55) to be approxi-
mately 2-718282.
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(l\
n 1

1 --
) f - and we have established the two results

n) e'

Secondly, from this double result, we deduce at once, since

\-(n-H)

that loga (l
+ -) < loga e<-(n+l)loga (l- -*) >

\ ivj \ It, -f I/

where the base a is any number greater than 1
;

i.e. n loga
(l
+

~)
< logft e<(n+ 1) loga

^~-
,

i.e. n ioga (1 -I- l/n) < loga e < (n + 1) loga (1 + !//),

or loga (l -f- l/^) lies between loga e/(n-i- 1) and loga e/n
m

,
and the

relation at the head of the section is proved, where the logarithms

may be taken to any base greater than 1.

77. Extension of inequality. Omitting from this point the

suffix a, the relation we have proved is

, < log (n + 1) log n
/i 4- 1

&

From it we deduce at once the relation

wy '/!)__JL_
lOpr e < loop ( -f p) log o < -

los: e

q-T-p
OVJ.I/ 01

^

log e log (g + p)-logg log e--__ . ...... - -

where p and q are any two positive integers.

For log(g -f-jp)
-
log? = log(q + p) - log(q +p-l)

+ log (? + !)- log 5f,

and to each of the differences of logarithms occurring, the proved
relation applies ; whence

) loga < log e (
-- H-------- rt -h ... -f

-
)/ 5^ &\^ +p_i^g + ^_2 ^

~~
log *,
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there being p terms in the bracket, each at most l/q ; and

1 g(g+P)- lo8g> 1 g g

(^k +^p, 1
+ - + -

l

> ~
loge.q+p B

The relation stated is proved.

78. Fundamental inequality. From this we deduce that if h

is any rational number greater than 1, log(l-f A) lies between

h log e and h log e/(1 -f A); for the rational number A can be ex-

pressed as a fraction p/q where p and q are positive integers* and

log (1 + A) = log (
1 -

J
=

log (q p) log q, which lies between

p log e/(q p) and p log e/q, i.e. log (1 + A) lies between

A log e/(l 4- A) and A log e.

Finally if A is any ra& number greater than 1, log(l -f A) lies

between A log e/(l + A) anrf A log e.

For, if A is defined as the Dedekindian classification of the rational numbers

(x
| y), we have

and log (1 + h)- (log [1 +#] log [1 +y]),

where, in the last two classifications, x is restricted to exceed 1, and the

classes determining h log e/(l+h) are completed by the addition of all numbers

less than and greater than those expressed.

But we know, by the result just proved for rational numbers, that

arid '--- < log (1 +y) <y log e
;

whence, by direct reference to the geometrical t or arithmetical idea of

Dedekindian classifications,

i.e. <log(l-hA)<Aloge. Q.E.D.

By an evident slight modification of this result we obtain at once

thefundamental inequality

log e log (x + A) log x log e

A x '

If h~ , q > p. f i.e. by reference to the straight line of Fig. 1.
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if x and h are any positive real numbers, or

loge log (x + h) log x loge^ - , _ ^ _

x h x -f h

if x is any positive real number and h any negative real number

greater than x.

This fundamental inequality gives upper and lower estimates for

the ratio

log (x 4- h) log x_
t

and determines not only the difference log (x + li) log x, but also

this ratio [log (x -h h) log #]//t, with an error which is small if the

number h is small,

79. Limit of incrementary ratio of log x. The ratio

log (x + h) log x__

is a kind of relative difference between the logarithms of the numbers

x and x + h, compared, that is, with the difference between the

numbers themselves. If the difference h between two numbers

(x + h and x) is small, we knew before that the difference between

the corresponding logarithms is also small (see p. 94 above), but

we had previously no knowledge as to how this difference between

the logarithms compares with the difference between the numbers.

By a study of this " relative difference" we shall be likely to obtain

more precise knowledge of the logarithmic relation and of the values

of the logarithms themselves. In conformity with the custom of the

differential calculus we shall call this ratio the incrementary ratio

of log xfrom x to x + h, or over the range (x, x -f h).

Let us consider .this incrementary ratio

log (x + h) log x

h
~~

for a sequence of values of h (other than zero) having the unique
limit zero. The corresponding sequence of values of \oge/(x + h)

clearly is also convergent and has the unique limit loge/a*. But,

by our fundamental inequality, the incrementary ratio

log (x + h) log x_

* The proof of this is left to the student.
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lies between loge/x and log e/(x + A); whence it follows at once

that:

lfhlt h.2> ...be any sequence of real numbers tending to the unique

limit zero (and such that x -f hn > for all values of n), then the

corresponding sequence of incrementary ratios,

log (x ~h Aj) log x log(# -f Aa) log x-'--
, ^ -,...,

is convergent and tends to the limit ^-
,
x being any positive real

x

number.

80. The student will have noticed that as the sequence for h tends to zero,

the numerators of the incrementary ratios (viz. log (x -\- h] log x) themselves

tend to zero, and it might be tempting to argue that therefore the ratios tend

to -
. But this expression, 0/0, as we know, is quite meaningless, whereas the

limit to which the incromentary ratios have been proved to tend (viz. log ej.v)

is a perfectly definite number. The student sUbuld find no difficulty in this and

will realise that the limit of a sequence such as ------- --'- ----
, correspond-

ing to a sequence An ,
which tends to zero, means something totally different

from the value of the expression
-

* ----- when hn is put equal to zero,
>ln

which, as we have said, is meaningless.

81. Graph of log x. Inclination of tangent. Derivative. A
recourse here to the ideas of graphs will be suggestive and useful.

From the knowledge of logarithms we have so far acquired, we can

sketch a rough graph of log x. It is as drawn in Fig. 2.

Let P, Q be the points on the graph corresponding to the values

,
x + h of the variable x\ PM, QN the respective ordinates; so that

MP =
log x, NQ = log (x + A)*.

The incrementary ratio of logx from x to x -f A is

log (x + h)- log x _ NQ-MP------- __ ________ ________
where RPQ is the angle of inclination of the chord PQ to the x axis;

i.e. the incrementary ratio from x to x + h is the trigonometrical

tangent of the inclination to the x axis of the chord joining the points

on the graph corresponding to the values x and x + h of the variable x.

* In the figure, h is taken to be positive. This is unnecessary, provided .r and
are both positive and the usual conventions as to sign are followed.
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If we take a sequence of values of h, say hlf h2 ,
A8 ,

. . .
, tending to

the unique limit zero, we obtain a sequence of chords PQly PQ2>

PQS , ..., angles RPQ^ RPQ2 , RPQ3 , ..., and incrementary ratios

[log (x + Aj)
-

log #]/&!, [log (x + Aa)
-

log x]/hv,

[log (x -f A8)
-

log afJ/As,

such that

"1

etc.

X O

Fig. 2.

The points Qly Q2> ... visibly tend to approach P indefinitely

closely along the graph, and the chords PQi, PQ%, . . . tend to coincide

with the tangent PT to the graph at P; so that the angles

RPQlf RPQz, ... tend to coincide with the angle RPT, which the

tangent at P makes with the x axis.

Therefore the incrementary ratios, which are thesame as tanBPQi ,

tan RPQ2 , ..., tend to tan RPT*', or the limit of the sequence of
* This is, of course, not meant to be a proof.

WMA 8
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incrementary ratios is the trigonometrical tangent of the inclination

to the x axis of the tangent PT to the graph at the point P (#, log x)

on the graph corresponding to the value x of the variable.

It is customary to call this trigonometrical tangent simply the

slope or gradient of the graph at the point P.

Thus we have seen intuitively and without any kind of proof
that the limit of the incrementary ratios represents this important

property of the graph, its slope,

In view of its importance we give this limit of the sequence of in-

crementary ratios a name, the differential coefficient or the derivative

with respect to x of the function logx, and we write it Dlogx,
We have in fact, for any function*, that if the sequence of in-

crementary ratios (defined as above for log.r) has a unique limit,

this limit is called the differential coefficient, or derivative ,
of the

function and the function is said to be differentiable.

Thus we have proved, on p. 112 (Par. 79), that log x has a deri-

vative with respect to x for all positive values of x> viz, loge/#,

or 1) log x = log e/as.

82, Graph determined by its slope. Reverting to geometrical

language, we observe that we have here the slope of the graph of

log&', for all (positive) values of x. A little reflection of a practical

nature will convince us that this knowledge of the slope of the graph
at all points carries with it implicitly a complete knowledge of the

graph ifany part of the graph is known. It seems evident that there

can be only one graph starting from a given point and having, for

every value of &, a given slope. Thus we can expect to be able to

determine the behaviour (and value) of log x for all values of x by a

use of this relation,

D log x a=
log ejx,

giving the slope.

Arithmetically this seems at least slightly hopeful as a way of

calculating log# for all values of x, because the expression giving
the slope (viz. loge/o?) is in a very simple form in terms of the

calculable expression l/# (assuming that we know the single loga-
rithm log e). We will therefore consider this relation and how it may
be possible to deduce from it the nature of log x,

*
y is a function of x if y is given in terms of J. A function may be represented

by a graph.
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83. Modification of problem. We will first modify the problem
in two ways:

For the sake of brevity we will consider logarithms to the base e\

for then all the preceding work is valid and we have loge e = l, so

that our relation giving the derivative of loge # is

D loge X \JX.

We shall find also (because loge l=0) that it will be more con-

venient to consider loge (1 -I- x), with x> 1, rather than log*,
x.

It is clear that

D log, (1 +*) = -[- .................. (1),
JL ~T" ifj

because

loge (1 + a? + /O - loge (1 4- x)

k

lies between 1/(1 + x) and 1/(1 + x + h\ whence the limit of the

sequence of incrementary ratios is 1/(1 + x).

Our problem is to find, if possible, expressed in calculable form,

a function of x which has 1/(1 -f x) for its derivative for all values

of x (exceeding 1). It would then be necessary for us to prove
that the function obtained actually is identical with loge (l +x).

84. Polynomial approximations to derivative. We have

where n is any positive integer and the upper or lower signs are

to be taken according as n is even or odd.

Since we are assuming x > 1, let be a negative number-

between 1 and x
y
so that < 9 < 1

;
we have

1 +x 1-0 (if x 4=0),

and therefore D loge (1 + x) lies between

- ... xn

xn+l
(2)

and 1 a? + # - ... xn T T- Q \

...............

1-0)
for all values ofx exceeding 0, and of these expressions the second

is the greater, except for positive values of x and even values of n

taken together*.
*

If = 0, D loge (1 + x) is equal to both of the expressions (2).

82
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85. Differentiation of simple functions involved. Now*, the

incrementary ratio of the function x from x to x -f h is

[(x H- h) #]/A, i.e. 1
;
and therefore the sequence of incrementary

ratios for this function x, corresponding to the sequence hlt A2 ,
As ,

. . . ,

is 1, 1, 1, ..., which is convergent and has the unique limit 1; or

the function x is differentiable and its derivative is I for all values

of*
Again, the incrementary ratio of the function a? from x to

x + h is [(x -f h}
2

#*]/A, i.e. 2#-f A; and therefore the sequence of

incrementary ratios is 2x + hlt 2x + A2 , ..., which is evidently con-

vergent and has the unique limit 2x if the sequence hlt A2 ,
... has

the unique limit 0; or the function x2 is differentiable and its deri-

vative is 2 for all values of x.

Also the incrementary ratio for x* is [(x -f A)
3

a^J/A, i.e.

and therefore the sequence of incrementary ratios, viz.

3&'
2 + 3h)X -f hi, 3#2 + 3A2# + A*,

is convergent and has the unique limit 3#2
;
or the function a? is

differentiable and its derivative is So? for all values of x. And so on.

In general, if n is any positive integer, the incrementary ratio-

of the function xn from x to x + h is [(x -f h)
n xn]/h, which, by

the inequality (iii) of p. 29, lies between n(x + h)
n~l and nxn~l

But the sequence

n (x + A,)*
1""1

, n(x + h2)
n
'\ . . .

is convergent and tends to nxn~~l if the sequence Alf A2 , ...-^0;
for [n (# + A)

n~l nxn
~

l

]/h lies between n (/i l)(#-f A)
n~2 and

71 (n l)#
n~"2

,
whence the numerator, n (# H- A)*

1"1 na?71*" 1

,
is less-

numerically than the numerically greater of n (n 1) (x + h)
n~~2 h

and n (n l)x
n~'2

h, and therefore the sequence

n (x -f AO"-
1 - nxn~\ n(x + h^)

n~l - nxu~\ . . . -^ 0,

whence the sequence

n (x + AO
74-1

,
n (# + As)

71-1
,

. . . -> nxn~\

Therefore the sequence of incrementary ratios

__
f ^ f

...

* The student familiar with the facts of elementary differential calculus will realise

the truth of the equalities (3) and (4) below without the discussion of Par. 85.
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itself is convergent and tends to nxn
~l

]
Le. the function x

n is differ^

entiable and its derivative is nxn
~l

for all values of x.

We notice further that the incrementary ratios of 2#, 2#2
,

. . . 2#u

are twice the incrementary ratios of a?, x2
,
... xn

\
and therefore

D2x = Wx = 2, D2#2 = 2Dx* = 40, . . . D2#n = 2D#n = 2n#71- 1

;

and in general, if & is any fixed (positive or negative) number (i.e.

independent of #),

Dkx = &D# = &, Dte2 = &Ite;2 2fo, . . . ZWh?n = kDxn

Hence, in particular, we have

j_ 1 / a. 1
^ '

Finally if we have a function, such as 3x -f 4#2 6#3
, composed of

several ofthe functions just considered combined by signs ofaddition

arid subtraction, the incrementary ratio of the compound function is

just the same combination of the incrementary ratios of the separate

functions as the combined function is of the separate functions.

Such a compound function is therefore differentiable and its deri-

vative is the same combination of the derivatives of the separate

functions as the compound function is of the separate functions.

In the case instanced,

D (3x -f 4x2 - 6<) = D (3x) + D (4a?
2
)
- D (6x*)

= %Dx + 4iDx* 6Dx*

= 3 . 1 + 4 . 2x - 6 . 3a?
2

86. Applying these results to the compound function

x - #2

/2 + #Y3 - . . . xn+1/(n + 1),

n being any positive integer, we have

D [x
- #2

/2 -I- . . .

= Dx - \Dx~ -f ^Dx* - ... --r Dxn+l

n *T" J.

= 1 -ay + ai
8 -... ^n .............................. (3),
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which is the first of the two expressions (2) of p. 115; and

D - * 2 + *V3 - - <*
n+1

l(n + 1) *
! 1

(4),...tfn :F i AXn+l
1 u

which is the second of the two expressions (2).

87. Graphical illustration. Reverting once more temporarily
to the geometrical ideas of graphs, let us interpret the results (2),

(3) and (4) and see what we may expect to deduce from them.

Let us consider first the simple case when n = 1.

Our results may now be stated: D loge (1 -f #) lies between

D (x
- #2

/2) and D \x
-

x*/2 + a*/3 (1
-

0)], where is some fixed

number between and ]
, except for x = when all three ex-

pressions are equal.

Sketch the graphs of y = x - x-/'2 and y = x- %2
/2 + &>3

/3 (1
-

0).

The graphs are drawn roughly in Fig. 3 with =
2/3.

Fig. 3.

Compare with these two graphs, which we will call C^ and C2t

that of logc (l -f #), which we will call (73 .

When x = 0, loge (1 + #) = 0, i.e. the graph 3 of loge (1 + oo) passes

through the origin 0, through which both the graphs Cl and (72 pass.
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Also the slope of the graph of loge (l -f x) for all values of x is

intermediate between the slopes of the two graphs Cl and (72 .

It is therefore geometrically intuitively evident that the graph
G3 lies entirely between the two graphs Gl and C2 .

Granting this intuition, we have obtained the result that

loge (l+o?) lies between oc - a?/2 and x a?/2 + x*/3 (1 0) for all

values of x exceeding 6, being any positive number less than 1*.

If now, for example, x is positive and less than *1 say, 6 can be

taken to be and a? < '001, and therefore a*/3 (1
-

0) < '0003, so

that we have obtained the value of loge (l + #) expressed in the

simple rational calculable form # #2

/2, correct to within '0003.

This result is itself an improvement ori the results of the last

section. It is moreover evident that the argument used is general,
and will shew similarly that loge (l + o?) lies between

x a?/2 + ... xnjn and x- x'
2

/2 + ... xn/n + xn+ l

/(n + 1)(1
-

0),

for all values of the integer n, however great*; and therefore, by

taking n sufficiently great, we can calculate the value of \oge (1 + x)

to any desired degree of accuracy if x is small and positive, or in

fact, if x is any number between 1 arid + 1 (i.e. 1 < x < 1).

88. General theorem on derivatives. We prefer however not

to rely on "geometrical intuition," a misleading, if suggestive, pro-

cess. It therefore behoves us now to substantiate, by a strict ana-

lytical proof, the deductions we have thus made. We must prove
that if ylt y<2 ,

and yz are any three functions of x which are differ-

entiable for all values of x in a certain rangef, and whose derivatives

throughout that range satisfy the relation

and if the three functions all have the same value for the lower bound

of the range, then throughout the range,

Vi^y^ 2/2-

This will follow at once if we can prove the following theorem.

Ifyisa function of x which, for all values of x in a certain range

(a, 6) and for the upper and lower bounds^ b, a, of the range,
* Or equal to both expressions if #=0.

t A range is any connected set of values of x. The range (a, 6) means all the real

numbers between a and 6, with or without the addition of either or both of the upper
and lower bounds, b and a. If a range (a, b) includes the upper and lower hounds

(as in the above theorem) it is called an internal, and the bounds a and 6 are called

the end-points. If a <x< 6, x is said to be interior to the range or interval (a, b).
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is differentiable and has its derivative positive (or zero) (i.e. Dy ^ 0)

whilst the function y has the value when x = the lower bound a, then

7/^0 throughout the range; or, if y = when x = the upper bound b,

then 2/^0 throughout the range.

Because, assuming this theorem, ifDyl ^.Dy.iy we haveD (y:i y^^ 0,

and if y l y3 for x equal to the lower bound of the range, ys y^
=

for that value of x, and therefore ys 3/1 ^0 throughout the range,

i-e - y\^y*\ and similarly y^y2 .

89. Proof. To prove the theorem we have:

For definiteness take the first part of the theorem and suppose that

the range of values for x is (0, K\ where K > 0. If the theorem is

untrue there will be at least one number (k say) for which the value

of the function, y (k) say, is negative.

The incrementary ratio of y from to k, which

= [y(*)-y(0)]/fc-y (*)/*,

would then be negative.

From this it would follow that at least one of the two incre-

mentary ratios:

(1) that from to A;/2, viz. y(k/2)/(k/2\

(2) that from k/2 to k, viz. [y(k)-y(k/2)]/(k/2\
is also negative, and in fact ^y(k)/k, for the sum of these two

incrementary ratios is twice the incrementary ratio between arid k.

If (e.g.) the first of these ratios is negative and ^y(k)jk)
it

will follow similarly that at least one of the two incrementary ratios:

(3) that from to fc/4, (4) that from fc/4 to k/2,

is negative and ^y(k)/k.
If (e.g.) the second of these ratios is negative and ^ y (k)/k, it

will follow again that at least one of the two incrementary ratios:

(5) that from A?/4 to 3&/8, (6) that from 3fc/8 to A?/2,

is negative and ^y(k)/k.
And so on, repeating this halving process indefinitely.

We thus obtain an unending succession of negative incrementary

ratios, for the ranges (0, fc), fo, ^ J
, (TI H)>

which are such

that the sequence of lower bounds 0, 0, A/4, ..., is non-decreasing,
is bounded above, and therefore (* a unique limit which ^ and ^ k,

and the sequence of upper bounds, Ar, k/2, &/2, ..., is non-in-
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creasing, is bounded below, and therefore V a unique limit which ^0
and ^k'}

and these two limits are the same, since the sequence of

differences between corresponding terms of the two sequences, viz.

A?, &/2,&/4, .. .,-*().

Call this common limit a.

This number a will belong to all the above ranges, and it will

be possible to find a sequence, hlt h,2 ,
hS) ..., tending to the limit 0,

such that the corresponding incrementary ratios,

A) i > y

] ^2

are all negative, and in fact, ^ the negative number y(k)/k. If

this sequence of incrementary ratios has a limit, the limit must

^. this negative number y (k)/k.

But, by hypothesis, the function y(x) is differentiate for the

value a, and the derivative >0, i.e. any such sequence of incre-

mentary ratios as this has the unique limit Dy()^0.
Our supposition that there was a value of #, viz. k, for which

y (k) < 0, involving the existence of such a sequence of incrementary

ratios less than or equal to the negative number y(k)/k, is un-

tenable; and the theorem is proved*.

90. Corollaries. The slightly modified theorem where the signs "^" and

"^" are replaced by
" >" and " <" respectively is proved similarly. The cor-

responding theorems when the derivative is negative (or not positive) are also

proved similarly, or deduced by considering the function y.

An important theorem which is needed belojv (Chapter iv, 6, and else-

where) is :

If the derivative Dy ofa function y is zero throughout a range then thefunction

y is constant throughout the range, i.e. y has the same value for all values of x

belonging to the range.
* The student is unlikely on a first reading to appreciate fully the above arith-

metical proof. The idea of the proof is more easily grasped if recourse be had onc

more to the graph. The above proof may then be expressed in the form:

If there is a point P of the graph (which passes through the origin 0) below the

x axis, then the chord OP will slope downwards, and therefore if Q be the point on

the graph midway (horizontally) between and P, at least one of the chords OQ,

QP, must also slope downwards (and at least as steeply as OP) ; whence again if R
be the mid-point of the graph between the ends of this downward-sloping chord, one

at least of the chords so formed, having one extremity at JR, will also slope down-

wards as steeply as OP. Proceeding in this way we see that there must then be a

point. A say, at which the tangent to the graph slopes downwards, contradictory

to the supposition that the graph everywhere slopes upwards or is horizontal (because

the derivative, i.e. the slope, is positive or zero).
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For, if c is the value of y for x equal to the lower bound of the range, a say,

and if/ denotes the function y - c, we have

ly^O and Zty'^0

throughout the range and

y=0 for x a\

whence y'^0 and y'^0,

i.e. y' 0, or y**c

throughout the range.

The above theorems are true even if nothing is known as to the existence or

values of Dy at the bounds a, &, provided the function y is known to be "con-

tinuous on the right" at a and "continuous on the left" at 6, in the terminology
of the next Chapter (p. 139). The above proof (modified) will apply.

91. Upper and lower approximations to loge (l+x). From

(2), (3) and (4) above, we know that, for x > 1 (and x
=j= 0),

D \oge (1 + x) lies between D {x
- #2

/2 + . . . xn+l/(n + 1)1 and

Also, of the two derivatives,

D [log, (1 +*)-{- rf/2 + ... s+V(n + 1)} J,

and

D

the first is positive and the second negative for all (non-zero) values

of x greater than 6 (where 6 is any number between and 1)*,

whilst both = for x = 0. Further the functions in square brackets,

viz.

loge (1 + ,7;)
-

\X
- tf

2

/
2 + ... X^I(U + 1)}

and

are zero for the value x = 0.

Therefore, by the theorem of p. 119, of these two functions last

written, the first must be positive and the other negative for all

*
Except when n is even ; in which case the first and second of the two derivatives

mentioned are respectively positive and negative only for negative values of x and

are respectively negative and positive for positive values of x.
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positive values of x, and the first 'negative and the other positive

for all negative values of x exceeding 0*.

Hence, whatever real number x may be greater than 1, loge (1-f x)

lies between x a*/2 -f ... xn+lj(n + 1) and
/v.W+2

.-*/* + ... *-/( + 1) T
(T_-,)(B + 2)

(5),

where may be taken to be ifx is positive, or any positive number
between x and 1 if x is negative; if x 0, loge (1 + #) is equal to

both the expressions (5). This is true for all values of the positive

integer n.

92. Logarithmic series. If x lies between 1 and 4- 1, or, more

precisely, if 1 < x ^ 1, the difference between the two expressions

(5), viz. a?
n+2

/(l 6) (n 4- 2), diminishes indefinitely as n increases

indefinitely, and in fact,

^1+2

(l-*)(n + 2)-*
0aBn -* ao -

Hence the sequences whose nth terms are, respectively, tha ex-

pressions (5) are, in these circumstances, convergent, and have

loge (l +#) for unique limit.

Or the infinite series

x - #2

/2 + tf/3
-

(6)

is convergent for all values of x between I and 1(1 included but

1 excluded) and its sum is then loge (1 -f x).

The series (6) is called the logarithmic series.

By its help we are able to calculate logarithms to the unlimited

degree of accuracy we need for the complete solution of the problem
of the tabulation of logarithms, stated in the last section.

93. Calculation of Napierian logarithms. Certain Napierian

logarithms, i.e. logarithms to the base e> can be calculated direct

from the logarithmic series.

Thus, e.g. loge 1-1
= "I - C1)V2 + 01);Y3

- ....

The error after n terms of this series (see p. 76 above) is less

than the (n -f l)th term, viz. ('l)
n+1

/(n -f 1), which < '00005 if

n -f 1 > 4, i.e. if n ^ 3; so that loge 1*1 is obtained correct to within

'00005 from the first three terms of this series; giving loge 11

to four decimal places as '0953.

*
Except when n is even ;

in which case the first of the two functions is negative

and the second positive for all values of x greater than - 0.
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Or again loge 2 = 1 1/2 + 1/3...; but this series (see p. 77

above), though convergent, is only very slowly convergent, and in

order to guarantee an error less than '00005 it would be necessary

to sum the first 20,000 terms; or even to obtain the result correct

to within !, we need to sum the first nine terms.

In such cases, however, the problem may be tackled in modified ways. One

simple way in which the logarithmic series may be modified for this purpose
is as follows :

-1/3)

_i 1
+ \ !_ W-i- 1 l - l l- \

3 2 3* 3 3s '") \ 3 2 32 3 33
'"/

by using theorem A of p. 80.

The error after n terms of this series

/ 1
JL__

I I~
\2V+i a 51"* 1 ^ + 33^Ty{4

""

2.1

and therefore, in order to obtain loge 2 correct to within !, one term of this

series (7) will suffice, or, to obtain log^ 2 correct to within -000005, five terms of

the series will suffice, for 8 . 5 . 39 > 20,000 and therefore 1/8 . 5 . 39 < -000005.

The result is :

s
r>
=: -666667

+ -024691

+ -001646

+ 000131

+ -000011

= 693146

and Eb < 1/8.5. 39 < -000002; whence loge 2, correct to five decimal places, is

69315.

In general, if x is any positive number greater than 1, integers m and n can

always be found such that m > n and x , (or. if x< 1, #= --
) . Wem - n \ m+ n)

have then
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-.

n 2m?
I^!_ !_[*_!!:_ j

1 ?^!?!^-. 1
3m* "j L~wi~2^ 3w^ ""J

1 ft
3 1 ft

6

s'3
"
1"^"1

"

The sum of this convergent series of positive terms can always be evaluated

as above.

94. Calculation ofcommon logarithms and Iog10 e. In order to

calculate common logarithms we need to calculate first the Napierian

logarithms and transform by means of the formula (p. 98)

logic # = log10 e.log,#.

To calculate Iog10 e correct to four decimal places we have

log, 10 = log, (84-2) = log, 8 4- log, (1 + J)

with an error of defect of less than '000006 (p. 124).

Five terms of the series in brackets will suffice to ensure an error

of less than -00005, for E, < 1/6 . 46 = 1/24576 < '00005.

The sum of the first five terms of the series

= s5
= -250000 -'031 250

+ '005208 - -000977

+ -000195

= -255403 - -032227 = -2231 76.

Hence, with an error of defect of less than -000006 or an error of

excess of less than '00005, we have

log, 10 = 2-079435 + '223176 = 2'302611.

Finally Iog10 e = I/log, 10 = 1/2-3026 = '43429, with an error of

less than '00002; whence, to four decimal places, Iog10 e = '4343.

Common logarithms, such as Iog10 2, can now be found thus:

Iog10 2 = log10 e.log,2
= -4343 x '6931, with an error of less than '00004 (p. 124),
= '30101, with an error less than '00004,

= '3010 to four places of decimals.

The student will have no difficulty in calculating, correct to four

places of decimals, the common logarithms of all the integers from
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1 to 10 and those of the interpolated fractional numbers, and

thus to construct a "four-figure table" of common logarithms. In

using series for such calculations it is essential (see Chapter I, 7)

always to estimate the error involved, so as to be able to

guarantee the degree of accuracy obtained and to save the extra

labour which would otherwise often be involved in evaluating terms

of the series which are not in fact relevant.

EXAMPLES XI.

1. Use the result that, if as is positive, Z)[loge (l-f x) x\ is negative and

> x to shew that, if x is positive, loge (1 -f- x) < x and > x - #2
/2, sketching the

graphs of all the functions concerned.

2. Given that 2>[loge (l-f #) #-f-#
2
/2] lies between and '01 for all values

of x between and ^ ,
shew that loge 1*1 lies between '095 and '096.

3. Obtain with the help of trigonometrical tables the angles of inclination

to the x axis of the tangents to the graph of loge # at the points where

# 1/100, 1/2, 1, 2, 100; and of the tangent to the graph of Iog10 x at the point

where x 10. Compare the trigonometrical tangent of this last angle with the

numerical results of Ex. 8, p. 107.

4. Express in precise analytical language the theorems described as :

(a) If the slope of a graph is at all points zero, then the graph is a straight

line parallel to the x axis.

(b) If the slope of a graph which passes through the origin lies between

+ 1/10 at all points, then, for all values of x between
,
the ordinate y of the

point on the graph lies between k/10.

Give strict analytical proofs of these theorems.

5. Express the theorem of p. 119, and the corollaries of pp. 121 122, in

general geometrical language (as in Ex. 4). Give proofs of these theorems

(a) in geometrical language, as in the footnote to p. 121, and (b) in precise

analytical language.

6. Calculate to four places of decimals the common logarithms of the integers

between 2000 and 2010.

7. Shew that if y> 1 whilst H]y differs from 1 by less than 10
~ 8

, then,

correct to within 10~ 2a4-1
, logey=/i (\/y 1)> where n and s are positive integers

and n < 20.

nty _. 1

Under what conditions is the formula Iog10 y= r7~r correct to the same
1

degree of approximation ?

8. Use the formulae of Ex. 7 to calculate Iog10 e and Iog10 3 correct to four

decimal places.

9. Prove the formula

(^/10 1) ^ w * v *
7 , ...

where n is such an integer that %/y and #10 lie between 1 and 2, and use it

to calculate Iog10 2 correct to four decimal places.
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10. Shew that if the positive real number a is less than 1, the fundamental

inequality of p. 110 remains true when a is the base of the logarithms, provided
the signs of inequality are reversed.

11. Shew that if the sequence of real numbers (positive or negative)

#1> #2> ^'3, ...-*<),
then the sequence

12. Shew that the logarithmic series is not convergent if x>\ or x ^ 1.

[If \x\ >1 the terms of the series do not tend to zero. If #= 1 the series

is the known non-convergent harmonic series (vi) of p. 67, with signs changed.]

13. Prove by induction that, if n is a positive integer, xn is differentiate for

all values of #, and Dxn=nxn ~ l
. Also x~ n is differentiate (except for #=0),

and Dx~ n~ nx~n ~ l
.

[The incrementary ratio for #w + 1
,
viz. [(#+/i)'

i + 1 #n4" 1
]//*, c"an be rewritten

(x+hy-3P, , M , n----
h
~ ~" ^+ ^ ~*~ '

which tends to (n+ l}x
n if xn is differentiablc and Dx )l~nx"~ l

. Similarly for

#-*.]

14. By consideringthe derivatives ofthe functions, ?/!
= 1 + nxandy%~(\ -M)

n
,

and using the methods of the text (pp. 1 18 122), obtain an independent proof

of the inequality (ii) of p. 29.

15. Obtain similar proofs of the inequalities (i) and (iii) of p. 29.

[For (i) consider the functions #i= (#+ &)/2, y* ij(xb). For (iii) consider
~

5. THE EXPONENTIAL SERIES

95. Evaluation of powers. The problem inverse to that dealt

with in the last two sections, viz. that of the evaluation of the

powers of a given base (or anti-logarithms of numbers to a given

base), leads to a similar solution. The power ax can be expressed

as the sum of an infinite series similar in type to the logarithmic

series for loge (l 4- x). A tabulation of anti-logarithms is not, of

course, a practical necessity, once tables of logarithms are con-

structed, for it is easy (it is in fact customary) to use a table of

logarithms for the dual purpose of' finding logarithms of given

numbers and of finding the numbers corresponding to given

logarithms; but theoretically the solution of this problem is, like

the solution of the corresponding problem for logarithms, of con-

siderable interest and importance. The importance of the expo-

nential function in the physical sciences is moreover sufficient
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justification for the study of this problem. The problem can be

tackled on the same lines as those which have proved successful

in the last section in the establishment of the logarithmic series.

96. Lemma on differentiation of a product. We need a simple

lemma concerning the derivative of the product of two functions :

If u and v are any two functions ofx which are dijflerentiable, then

the product uv is also differentiate and

2) (Uv) = uDv + vDu.

To prove this we argue :

The incrementary ratio of uv from x to x H- h is

[u (x -f h) v (x + 'h) u(x)v (#)]/A

,
,

. v (x 4- h) v (x) , .u(x-\-h)u (x)= u (x + h)
- ----- v--

4- v (x)
-^-----

j

--v '
,

where u (x + h), etc. are written for the value of u corresponding to

the value x -f h of x, etc.

But, if h takes on the values hlt A2 , ... of a sequence which tends

to zero, the corresponding sequences for

[v (x 4- h) v (#)]/A and [u (x 4- h) u (a)]/h

respectively tend to Dv (x) and Du (x\ whilst the sequence for

u (x 4- A) must also -*- u (x), because the sequence for

u (x + A) u (x) clearly -> 0.

Hence the incrementary ratio for uv tends to

u (x) Dv (x) -f- v (x) Du (x\ Q.E.D.

97. Derivative of ex. Let x, h be any real numbers
; put

y 6*, y + & = <?*+*,

so that x = loge y, x 4- h = loge (y + k).

The incrementary ratio for ex with respect to x from x to x + h

Now, if h has the values Aj, A2 , ... of any sequence which tends

to zero, k has the corresponding values

and the sequence klt k.2 ,
... is convergent and ->0, for

(e-l)/(-l)
lies between Ae^""1 and A, by the inequality of Ex. 2, p. 91.
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But we have proved in the last section (p. 112), that if a sequence

A?!, A?2 ,
. . . -> 0, the sequence

{lge (y + A?0
-

log, y}/klf {log. (y + A2)
-

log, y}/kZ) . . . -^ 1/y.

Therefore the sequence of incrementary ratios for ex from x to

# -f A!, # to a? + A2 , . . .
,
which is

^/{log* (y + *0 - loge y}, fe/{loge (y + *) - ioge y},

tends to the unique limit y, i.e. e**.

The function ex is differentiable and De^^e*.

Similarly we prove that 0-* is differentiable and De~x = e~x.

A difficulty here arises in that the derivative obtained, ex
,
is the

function whose properties we are investigating and not a simpler

function, as was the case with log. (1 4- #). It is clearly hopeless to

expect to use the fact De* = e
x to discover a simple infinite series

to represent e*. We have, in fact, at this stage to resort to other-

methods to suggest what the result might be
;
and then we shall

be able to use this method to prove the result.

98. Suggestion as to exponential series. We defined e as the limit

of the sequence whose nth terra is (1 -f l/n)
H

. From our fundamental inequality

of the last section it is easy to deduce that the sequence whose nth term is

(1 +a/n)
nJx is also convergent and has the same limit e

; whence it follows that

the sequence whose nth term is

** (2)-
/

But, by the binomial theorem (p. 22),

............

As n -* oo the first few terms of this expression (3) clearly > 1,

etc., and, though there appears to be some doubt as to how the terms near the

end of the expression (3) behave, yet it at least seems plausible t that, as

n > oo
,
the expression (3) tends to become the infinite series

We will use this suggestion and proceed with the proof.

* The proof of the obvious theorem in sequences that if a sequence *1$ *2 , ... ->

a unique limit s (which 4=0) then the sequence 1/Sj, l/*a , ... > the unique limit 1/s

is left to the student.

f See alternative proof below.
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99. Proof of exponential expansion. For brevity write

sn (x) for 1 +x + a?/2l+ ... +atn/nl,
n being any positive integer;

and y for ex - sn (x).

As in the last section (pp. 116 117), sn (x) is differentiable with

lespect to x and its derivative is

Dsn (x) ^Dl+Dx + LO2

/2 \) + D (a?/3 !) + ... + D (x
n
\n !)

= 4 1 4 x 4 tf
2

/2 ! 4 ... 4 xn~l

l(n
-

1)1

= 5n_j (x).

Therefore

Dy = D {e*
- *n (a?)}

= Dg - JD*n (x)**&
= ^ *n (^) H-

W
/^ 1 = 2/4-

Hence D (e""
25

. y)
= e~x Dy

by the lemma proved above,

= e~x Dy e~* y = e~^ . a?
n
/?i

! ............... (4).

Therefore, if x is positive and less than some positive number, K,
we have

0<D(e~*.y)<Kn
/nl ..................(5 a),

or, if x is negative and greater than some negative number, K'
,

we have

-e^J7/nI<D(^.y)<0) ,,

or 0<D(6-aJ
. 2/)<^

/^/w
/n! J

............... ^ ; '

according as n is odd or even.

Now for the value x = 0, y = e
x - sn (V) 1 - 1 = and e~x .y = 0.

Our theorem of the last section (p. 119) will therefore apply and

we thus deduce that, for all positive values of x less than K,
e~x .y is positive and less than xKn

jn \ < Rn+1
/n I

;
and for all

negative values of x greater than K', e~x .y lies between and

x (- K')
n eK'jn \

, or, a fortiori, between and (- K')
n+1 eK'/n\ .

Now, whatever positive number K may be, Kn+l
/nl-*Q as

n -* oo
;
and similarly for ( K')

n+l eK'/n\*.
* This may be proved thus: Let m be the integer next greater than K, so that

Kl(m -f 1) < 1. Then for all positive integral values of jp,

#m+P+}/(w4.^)
(
~
(#m+i/m {) ^^

and therefore, as n m+p -> oo , p > oo

and Kn
+*ln

f=tf^1/^ + p) I < (*T*+
x
/w !) {Kl(m+ 1) }

*>~> 0.
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Hence as n -> oo
, e~x . y -> and therefore y ->

;

i.e. e
x

sn (x) -> ;
whence ^n (^)~> ^>

i.e. 1 -f # + #2

/2! + ... + <xn/nl-+eF9

or Ae infinite series 1+^4- #2

/2 1 + #V3 1 + . . . is convergent for all

values ofx and its sum is ex.

This series is called the exponential series.

100. Alternative proof. An alternative proof of this expansion can be

obtained starting from the relation (3) above. We have only to prove that the

sequence whose nth term is

tends to the sum of the infinite series 1 -4-#+#2
/2 !+..., proved convergent.

If m is any number less than n we have that the expression (3)

Now, the line last written, if x > 0,

r 4.

\ n -m - 1

']

<
ml m+l-x'

or, if x< 0, the same terms < tf* + 1
/(m+ 1) ! numerically if - x< m+ 2.

Both the expressions and -
t rrr-. are numerically less than

m \ m + 1 x (m+ 1)1

any positive number *
,
however small, if wi is chosen sufficiently great, as can

be done (see footnote to p. 130).

The first line of expression (6) clearly tends to

Hence, from (3),

{say), where A -*- as n -* oo and B< c numerically.

But (l+j?/) -*.
Therefore l+#4-#2

/2!-f ... + 4?
B
*/ml+B-*~e* as

92
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Therefore 1 +x+#2
/2 ! + ...+ #w/w 1 differs from ex by leas than e ;

and it follows

that the infinite series l+#+#2
/2 ! + ... is convergent and its sum=ex. Q.E.D.

A third and simpler proof (using only the theorem of p. 119 and the relation

J}^ssex) is given in Ex. 5.

101. The exponential series differs from the logarithmic series*

in that it is convergent and its sum = ex for all real values

of x, whereas the logarithmic series is convergent only for values

of x such that 1 < x ^ 1 *. The rate of convergence of the ex-

ponential series will of course depend on the value of x. Thus if

x = *!, the error after three terms will be less than *0002, whilst

if # = 10, 33 terms will be needed to" obtain the sum correct to

within this same error.

The corresponding series for ax and 10* are :

. ax elog*M = e
xl z* a = 1 + loge a + (x log, a)

2

/2 ! + ...

and 10* = e
x lo^ 10 = <?<*H where p,

=
Iog10 e = '43429. . .

,

EXAMPLES XII.

1. Calculate the common antilogarithms of -5, 2*5, 2-5 correct to within O05.

2. Evaluate to two significant figures ex and e~ x for #=0, , 1, 2, 10, 100,

using the exponential series or logarithmic tables.

3. Prove that if c> 1, then for all real values of x, (1 -f-c)*> 1 -f#c, except

that, when 0<# <1, the inequality is reversed, and when #=0 or 1, or c=0,

(I + c)
x~I+xc. (Compare inequality ii, p. 29 and Ex. 1, p. 91.)

[Consider the derivative D [(1 +c)
x -

(1 +#c)] and use the theorem of p. 119.

Or apply method of Ex. 2, p. 36 to Ex. 2, p. 91. See also Ex. 14, p. 127.]

4. Shew that Dax=ax
. loge a, where a is any positive number.

5. By argument similar to that of Ex. 3, prove successively that

& > 1, ex > 1 +#,

if # is positive, and

if x is negative. Deduce the exponential expansion.

[J)e
x =e*' > for all values of x and ex= 1 when #=

; therefore ex> 1 for all

positive values of x and ex< 1 for all negative values of x. J)(e
x l ^}=^x ~-l

and therefore > for x > and < for oc < 0, whilst ex - 1 -#=0 whon #=0 ;

and therefore ex- 1 - x> for all values of x. Again

* Ex. 12, p. 127 above.
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and therefore >0 for all values of x, whilst e* 1 x-x*j2 !=0 when #=0;
therefore & - 1 - x - #2

/2 ! > for x> and < for x< 0. This process may
be repeated indefinitely and gives ex> I +x+x2

/% I + ...+xnln \ for x> and,

if n is odd, also for x< ;
and <P< 1 -M-M2

/2 ! + . . . +xn
/n ! for #< if ?& is

even. This suffices to establish the exponential series for negative values

of x. To complete the proof for positive values of x we proceed: Also if

x< K, ex< eK~ A say and we have as before D (e*
- 1 - Ax)= e? - A < for all

values of x concerned; whence ex I- Ax<0 for ,#>0, and so on; whence

e*<l+x+x*l2\ + ...+xn/n\+Axn+l/(n+l)\. Since Axn+l/(n+l)l-*Q as

n > oo
,
it follows that the exponential series is convergent and its sum is ex

for all values of x. The student will find it instructive to sketch the graphs of

the functions concerned, say for values of n up to 3 and x between 10 and 10.]

6. Prove that if a > 1, whatever number n may be, ax> x11 for all values of

x exceeding a certain value.

[Let yn =*a
x-xn

, yn -i= Dyn=ax
\oge a-nxn-\ etc., 3/0

= a* (log. a)
n - n ! .

Then Dyl=y()
>I if #>[loge (l + rc!)-^loge loge a]/logeaa say. For#>oo,

the slope of the graph of yl exceeds that of a straight line inclined at 45 to

the x axis (because tan 45 =
1) and therefore, however small (e.g. K) yl may be

when .2*=a
,
for some value of x (certainly for #^a -f K) y\ is positive, and in

fact y\>\ for all values of x exceeding some value, say at , by the theorem

of p. 119. That is Z)y2 >l for x>a
l >

and the argument can be repeated to

prove y<L > 1 for x> 02 ;
and so on. Finally ?/w> 1 for x > aw.]

7. If x is sufficiently great, loge x <xn < e* < [x] ! < xx
, however great or

small the positive number n may be (n 4= 0), or loge x and ex may be replaced by

loga# and ax if a is any real number greater than 1. ([a?] denotes the integral

part of X, i.e. the greatest integer riot exceeding x.) In fact the sequences whose

^th terms are the successive ratios loge xjx
n

,
etc. all have the unique Mmit 0.

[See also Ex. 6, p. 99.]

8. The monotony of ex and of loge x are direct consequences (via the theorem

of p. 1 19) of the facts Dex= ex > and D loge x= Ifx > for all significant values

of x, independently of any special knowledge of the functions e? and loge x.

9. Shew that the series

X #
and (ii) ^+3! + 5~j

+ ---

are convergent for all values ofx and that the sums of the series are respectively

(e
x+ e

~
*)/2 and (e

x -e~ x
)l2.



CHAPTER III

FUNCTIONS

102. So far we have been concerned almost exclusively with

fixed numbers: the letters employed have denoted numbers which,

though most often indefinite, have been looked on as remaining the

same throughout the operations applied to them. In many places,

however, we have been implicitly concerned with the notion of a

variable, i.e. of a letter capable of taking up various values. We
wish now to direct our attention to the variability of the numbers.

The idea of a variable is itself of great practical utility in the

sciences from the fact of the variability of almost all measured

quantities. Thus the time, measured in solar or sidereal units, varies

as the world's history progresses; or, while a train is travelling from

one station to another, both the time and the distance travelled from

the station vary; or, again, the temperature of a chemical mixture

varies while the mixture chemically combines; or, the score in a

cricket match varies as the game proceeds; and so on. While these

practical variables are not capable of assuming all real values, as the

completely general real variable is, yet they are capable of taking
' on all real values within certain ranges (except in the last example,
where the variable score is restricted to integral values). In addition,

in such a case as that ofthe train, ifwe know the speed ofthe trainwe

can express the variable distance from the station interms of the vari-

able time: or we may say that the distance is &function of the time.

In directing attention to the notion of variability we are led to the

notion of a function. In this chapter we shall study these notions of

variables and functions in various cases ofsimplicityandimportance

1. THE GRAPH OF x*

103. Functions of a real variable. Let x be any real number,

or, as we may say in order to bring into prominence the possibilities

of variability, a real variable. We have already a graphical repre-

sentation of this real variable in our straight line of Chapter I, 3.

Suppose now y is a second number, or variable, depending on #;

i.e. suppose we have some means whereby for every value of the

* We have to some extent already used the notions of variable and function in the

last chapter. In this chapter we begin the study independently.
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number x considered (which may include all real numbers), a definite

corresponding number y can be found. Thus, for example, if we

agreed that whatever x is y should be its double (y = 2#), we should

know at once the number y corresponding to any given number x.

When y can be determined in this way for every number x belonging
to a certain class of numbers, we say that y is afunction ofx, defined

for x belonging to that class. Thus if x is any real variable, 2#, #
2
,

\jx would be functions of x, the first two defined for all real values

of x, the last for all real values of x other than zero. We shall in-

variably use y to denote the function (or dependent variable), and x

the original (or independent) variable. If the function is not specified,

it is often denoted by f(x). The value of y (or, simply, the number

if) corresponding to a value, a, of x (or the number a) is then written

/()*
In analysis the functions with which we are mainly concerned

are functions defined by means of algebraic and similar operations;

that is to say such functions of x as

x\ 2x* + 3a? - 2, xj(l
-

x), (I + xf, (1 4- x)
n

,

10*, a, log,.*, loga fl?, (1 + 1/0)*, (1
~

l/xy*,

and sums of infinite series, such as

104. The function x2
. Let us begin with the function x2

.

For convenience we shall denote the function by y.

For different values of x, y will have different values. If we wish,

we can draw up a table giving the values of y corresponding to any
number of values of x

t
thus:

* In this definition of a function, appropriate to the case of functions of a real

variable, it is implied that the value of y corresponding to a given value of x is

unique ; and the function is one-valued. For functions of a complex variable it is

essential to consider multiple-valued functions, where y may have more than one

value corresponding to a single value of x. See Appendix. Multiple-valued functions

of real variables are definable, but are not important in analysis.
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Such a table, if arranged in orderly fashion (e.g. on the model of

logarithmic and other tables), would give at a glance the value of y

corresponding to any tabulated value of x. Such tables, however,

do not give at a glance any kind of a picture of the function. To

get such a picture a graphical representation is desirable. In

Chapter i, 3, we had occasion to represent the single real variable

x by points along a straight line. We could represent our function

by using a second such straight line for the values of y. But the

extension best suited for the graphical representation of such a

functional correspondence of one variable, y, with another, x, is

that obtained by applying the elementary ideas of Cartesian (or

analytical or coordinate) geometry.

105. The graph of x2
. The principle of Cartesian geometry is

the correspondence of a point of a plane with a pair of numbers, in

the same way as our representation of Chapter I, 3 relied on the

correspondence of a point in a line with a single number. The actual

machinery effecting the correspondence is, to some extent, arbitrary;

but the most useful method is to erect through a point 0, called

the origin, two mutually perpendicular straight lines, X'OX,
Y'OY, called the axes of reference, and to assign the two

numbers, or coordinates, x, y, to the point P, x (the abscissa)

being the distance (measured in terms of some appropriate unit)

from Y'OY of the point P, and y (the ordinate) the distance from

X'OX', with the convention that

these distances are to be con-

sidered positive or negative ac-

cording to their directions. It is x= ~

customary to agree that, taking -7 1

OX to be horizontal and OF
vertical, x is positive if the point
P represented by (x, y) lies to ^=-2}
the right of F'OF and negative

Y

if to the left; and y is positive or

negative according as P is above or below X'OX. See Fig. 4.

Ifnow we take the pairs of numbers (x, y) which we have tabulated

for the relation y = x2
,
and mark off on the plane on which our axes

OX, OF are drawn, the corresponding points, we obtain a figure like

that of Fig. 5, consisting of an indefinite number of points.
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It is seen, by taking more and more values of x, e.g. by taking
all x's differing by *1, and then all #'s differ-

ing by '01, and then all #'s differing by "001, \

and so on, that the points lie on some kind \

of curve. This curve is the graph of the \

function x*. We cannot as yet say definitely \

that the graph is a continuous curve: it may \

be broken. But the graph in any case gives \
some kind of picture of the whole function \
simultaneously. Properties and questions jp i

at once suggest themselves which were ob-

scured in the tabular representation. Fig. 5.

106. Monotony. In the first place it seems probable, from its

appearance, that the graph slopes upwards everywhere to the right
of the origin 0, or, in more precise language, if P and Q are two

points on the graph (to the right of the origin) and Q is to the

right of P, then Q is also above P. Is this surmise definitely

provable ?

That is, in analytical language:
Does it follow from the relation y~x* that if xl > #2 >

xl and #a

being any two positive real numbers, then y l >y>2 , yi and y^ being
the T/'S corresponding to x1 and #2 ?

That is, can we prove that if

x
l
> #2 > then x^ > x ?

The answer is evident. This inequality is indeed an immediate

consequence of the law of inequalities that if a > b and c> d> a, 6, c, d

being positive, then ac>bd\ for we have xl >x2 and x1 >#3 and

therefore x^ >x2x2 ,
i.e. x?>x.

At the same time we see that if xl > x2 and x1 and #a are both

negative, then x-f < x%
2

.

What we have proved may be stated: the function x* steadily

increases as x increases when x is positive and decreases as x increases

when x is negative. When a function of x either steadily increases

(or never decreases) throughout a certain range of values of the

variable x (e.g. for a ^ x ^ b) or steadily decreases (or never increases)

throughout the range, we say that the function is monotone (or

monotonic) throughout that range.
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Monotone functions belong to a wider class of functions, known as functions

of bounded variation. A function is said to be of bounded variation throughout
a range (or over, or in, a range) if it can be expressed as the sum or difference

of two functions each of which is bounded and monotone throughout the range.

Thus the function x2 is of bounded variation over any range because it can be

expressed as the difference y\y<i, where yl is the non-decreasing function

which is zero for all negative values of x and equals x* for all positive (or zero)

values of #, and y2 is the non-decreasing function which equals #2 for all

negative values of x and is zero for all positive (or zero) values of x.

Another definition is given in Ex. 14, p. 152 below.

107. Continuity. A second important question has already arisen:

Is the curve continuous?

Let P (Fig. 6) be any point (x, y) on the graph to the right of

the origin; Ql any other point (xlt y^
on the graph to the right of P.

We have \

11 == #2
, 7/1

= ,,-; a?, > x, ?/, > vj > i/i j) i -^ > *s i &

by the property just proved.

If Q2 be another point (x.2i y>2)
on the

graph horizontally between P and Qlt

i.e. so that #, >#2 ># we shall have x' o MN3N2N., x

Take a sequence of points Qi 9 Q^QS9 ... g *

corresponding to the sequence of abscissae xlt #2 , ^s> >
which is

such that x
l
> a?2 > o?8 > . . . > x and xl9 #2 >

a?8 ,
. . . V^ a?. Then we have

!/i>y*>y*>~. >y and yi , ya , 7/3, ... Vy; because, if *z is any
number greater than y, \]z > \Jy

=
a?, and therefore *Jz must exceed

some number of the sequence x^x^ ..., which V x, so that z must

exceed the corresponding number of the sequence y^ y2y ...; the

lower bound and unique limit of the sequence yl9 y2i ... therefore

^y; it evidently ^y\ therefore it =T/.

Hence, ifwe take any sequence of abscissae,xltx2 ,
. . .

,
such that the

feet of the corresponding ordinates, viz. Nlt N2> . ..
,
tend to coincide

from the right with M, the foot of the ordinate from P, the

corresponding points Q1} Qa ,
. . . on the graph tend to coincide with P.

Whatever our ideas of continuity, or unbrokenness, may have

been*, it seems clear that this property will satisfy them, at least

*
E.g. if we look on a continuous curve as one which could be drawn without

removing the pen from the paper.
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as regards the continuity of the graph at the point P on the right-

hand side. We have not so far* given any definition of continuity.
Let us then lay down the definitions:

The graph of afunction f(x) is said to be continuous on the right

at a point P (x, y) if, corresponding to any convergent decreasing

sequence of abscissae xlt #2 > which ^ x, the sequence of ordinates

2/i > 2/2 > (i-e-f(i),f(2), ") is convergent and ~>t/, i.e.f(x).

Similarly the graph is continuous on the left at P if the sequence

2/i > 2/2 >
-* y corresponding to any increasing sequence oclt x%, ...

which (* x.

The graph is continuous at P if it is both continuous on the right

and continuous on the left.

108. Continuous functions. These definitions specify properties
of the function defining the graph. We therefore express them

directly in terms of the function:

The functionf\x) is continuous on the right for the value x (or at

the point a?) if, corresponding to any sequence xlt a?2 ,
... which V x,

the sequence /(X), /(^a), ~*~f(x)'> f(x) is continuous on the left

at x iff(x1) Jf(x2 ) )
. . . ->/(#) corresponding to any sequence x^ ,

#2 , ...

which f* x\ f(x) is continuous at x if it is continuous on the right

and on the left at P, or, expressed differently, f(x) is continuous at

x if the sequence f(tfi), /(%), - -*"./(#)> corresponding to any sequence

#1? #2 which ~>
#"f*.

We have proved that our graph, y = x2
,
or the function #2

, is con-

tinuous on the right at any point P to the right of the origin. It is

proved si milarly that it is also continuous on th e left, and it is therefore

Continuous at P. It is easy to see that these properties hold equally

well ifP lies to the left of the origin, or ifP actually is the origin 0.

109. These two simple properties proved of the function a?
2
,

its

partial monotony (decreasing for x negative and increasing for x

positive) and its continuity, are properties of considerable im-

portance and are possessed (often only in a limited range) by all

the most useful functions of elementary analysis. It would perhaps
even seem somewhat unreasonable to expect to be able to use, for

purposes of analysis, functions which do not have such properties.
* In this chapter.

f The proof that these last two statements are equivalent is left to the student.
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Continuous functions possess the fundamental property :

Iff(x) is continuous at allpoints from a to 6, and k is any number between f (a)

and f(b\ then there is at least one value of x between a and b for which f(x)~k*

This theorem, which is easily verified for simple functions such as #2
,

is

merely the precise analytical statement of the geometrically intuitive fact that a

continuous graph cannot pass from one side of the straight lineykio the other

without cutting it. We can avoid use of this theorem throughout the greater

part of this course. A proof is outlined in Ex. 8, p. 151. See also Chapter iv, 5.

110. Tangent and slope. There is a third question suggested

by the graph. The graph is visibly steeper in some parts than

others. Can we obtain an expression for this steepness or slope?

We must first settle, in more or less geometrical language, what

we mean by the slope of the curve at a point P. To find practically

the slope at the point P we should evidently draw the tangent and

measure the angle it makes with OX. Agreeing to this we must

now ask what is the tangent?
In elementary geometry (e.g. Euclid, Book ill) the tangent to a

circle is defined as the straight line perpendicular to the radius

passing through the point concerned. Such a definition will clearly

nob do for such a curve as that under consideration. Instead the

following more general definition is used:

A curve is said to have a tangent at a point P on it if the chords

joining P to points Qlf Q2) etc. on the curve become closer to a fixed

line PT through P as the points Ql} Q2 , ... are taken nearer to P,

so that the degree of closeness of approximation is greater than any

assigned degree if only the points Q be taken sufficiently near P*;
and in this the points Q may be on either side of P.

That this definition is the natural definition of a tangent to a

curve the student will readily agree f Though it is still somewhat

vague, let \is try to apply it to our graph y x*.

Let P (Fig. 7) be the point (x, y) on the graph, so that y = x*.

Let Q^ Q2 , ... be the points (alt yT), (#2 , 7/2), ... where

#! = x 4- ^ ,
#2
= x -f h2t . . .

;

yl
= x<?

= (x -f AjV = y + &! say,

7/2
= x =- (x -f /i2)

2 = y + k2 say,
etc.

*
I.e. for all points Q nearer to P than a certain distance depending on the

assigned degree of closeness of approximation. It is not necessary that the chords

should become steadily closer to Pl\

f This definition is in fact given in many modern textbooks on Geometry.
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Let the numbers hif A2 ,
... be all positive, so that the

Qi, Q2 , lie to the right of P; and

let the sequence hlt A2 ,
... S. 0, so that

#1, #2 , ... V x and yl9 yz , ... -^ y and
klt &2) ... > 0, in virtue of the proved

continuity of the graph on the right

at P.

The angle RiPQi, which the chord

PQt makes with the x axis, OJf, is

determined by the ratio R^/PR^
which is in fact tan R1PQl . Let us

take this ratio as the measure of the

slope of the chord PQj. The slope of the chord

x1 M

Fig. 7.

- (^ + &i)
8 #2

_ 9""

AT
= # + i.

Corresponding to the sequence of numbers A! ,
A2 , ... which tends

to zero, i.e. corresponding to the sequence of points Q19 Q2 , . . . which
tend to coincide with P, in the manner contemplated in the geo-
metrical definition of the tangent, the chords PQ19 PQ2 ,

... have

slopes 2o? 4- Aj, 2# 4- A2

This sequence of slopes tends to a unique limit, viz. 2#. Hence
the chords PQ1? PQ2 ,

... tend to coincide with a definite straight
line through P, viz. that line which has a slope 2#. This line,

PT, is independent of the particular sequence of points Qlt Q2 ,
...

chosen, and clearly fulfils the conditions of the geometrical definition

of the tangent, as regards the portion of the graph lying to the

right of P.

We can now lay down the strict definitions for graphs in general.
The graph of a function f(oc) has a tangent on the right at a point

P (x, y) if, corresponding to any convergent decreasing sequence of

positive numbers Aj, A2 , ... having the limit 0, the corresponding

sequence of ratios (called incrementary ratios)

is convergent and has the same limit, whatever such sequence
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hl} A2 ,
be taken. The limit of this sequence of incrementary

ratios is called the slope on the right at P.

Similarly the graph has a tangent on the left at P if the sequence

/(*-*!)-/(*) /(a~A,)_-/(aO
-Ai

'

-A,

or [f(x) -f(x - A0]/Ai, [/(*) -/(a?
~ A2)]/A2 ,

. . .

is convergent when AnV 0, and has the same limit, whatever such

sequence A1? A2 ,
... be taken.

It will clearly not suffice for the existence of a tangent to the

complete graph at P for the tangents on the right and left to

exist; they must also coincide.

The graph off(x) has a tangent at P if it has a tangent on the

right and a tangent on the left and if these "semi-tangents" coincide.

The slope of the tangent is the slope of either of these "semi-

tangents."

Our graph, y = #2
, evidently has a tangent on the left, with the

same slope (2) as that of its tangent on the right. It has therefore

a (complete) tangent.

111. Differentiability on the right and on the left. Differ-

ential coefficients. These definitions apply primarily to properties

of the function defining the graph. Hence we have the following
definitions for functions:

A function f(x) is differentiate on the right for the value x (or

at the point x) if} corresponding to every positive decreasing sequence

A!, A2 ,
... which V 0, the sequence of incrementary ratios

is convergent and has the same limit ivhatever such sequence hly h2 , . ..

be taken. The limit of this sequence is then called the differential

coefficient off(x) on the right at x.

A function f(x) is differentiate on the left at x
if, corresponding

to any positive decreasing sequence A1? A2 > which V 0, the sequence

of incrementary ratios

f(*-^-f(x\ /^jzMr/(*)
f- ..

Aj
'

A2

is convergent and has the same limit whatever such sequence hlt A2 , . ..
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be taken. The limit of this sequence is then called the differential

coefficient off(x) on the left at x*.

A function f(x) is differentiate at x (or for the value x) if it is

differentiate on the right and differentiate on the left at x and if the

differential coefficient on the right equals the differential coefficient on

the left. The common value of the two "semi-differential coefficients"

is then called the differential coefficient off(x) at x.

The term derivative is often used for differential coefficient.

Alternative notations for the differential coefficient of a function

/O)> or y, are:

Dy or Df(x), Dxy or Dxf(x),
d

or &-, f (x).

d'u
The notation ,- is most commonly used. We shall here use Dy or

112. Tangents parallel to y axis. There is one qualification

needed. Geometrically a graph or a curve may have a tangent in

any direction, and in particular parallel to either of the axes. If the

tangent is parallel to the x axis, its slope is and the function has

a differential coefficient equal to zero. But if the tangent is parallel

to the y axis, the slope is not represented by any of our real numbers.

(It would be oo if this number had been introduced into our system.)

The function concerned will not be differentiate, for the sequence
of incrementary ratios would clearly be unbounded. We could get
over this difficulty by introducing infinite differential coefficients,

under specified conditions. But the difficulty is avoided simply by

interchanging the x and y axes.

113. Area bounded by graph of x2 by simple process. A
fourth question of interest arises. In elementaryEuclidean geometry
areas of plane figures are discussed. The areas there dealt with are

bounded by straight lines. The consideration of other areas is

however desirable. For many practical purposes the area enclosed

between the x axis, a curve and two bounding ordinates (called the

area under the curve between the ordinates) is of importance. Thus

if a graph is drawn to represent the velocity of a moving particle

*
It should be observed that the differential coefficient on the right at x may exist

even if the function is not defined for values of the variable less than x ; and similarly

as regards the differential coefficient on the left.
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at a given time, the area under the curve between two given

ordinates will represent the distance covered in the time concerned;

or, if x be taken to represent the distance, in a certain direction,

moved through by a particle under the influence of a force, repre-

sented by y, the area under the curve will represent the work

done by the force in the motion.

Let us consider the case of an area bounded above by a portion

of our curved graph, y = #2
.

Let A be the point (1, 1) on the graph y=*cc\ (Fig. 8.)

Fig. 8.

For definiteness we will consider the "curved triangle" OBA and

investigate its "area."

As we did in building up a definition of the tangent, we will

begin by assuming what appears geometrically to be evident and

then prove strictly that a property which clearly ensures all that

we need geometrically, actually is possessed by the graph. We shall

then be able to lay down a general analytical definition of area to

be applied to other graphs.

Complete the square OBAC. The area required of the "curved

triangle" OBA clearly is less than the area of this square.

Calling the required area A, we have

0< A<1 (1).

Draw the straight line Q^i, bisecting OB at right angles, and let
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Q,j^ cut the graph at P!. Through 1\ draw fl^PA parallel to OX
cutting BA, OF in Rlt Slt

We have A < the sum of the areas of the rectangles N!BAQl and

ONiP^t and > area of the rectangle N-^BR^P^ i.e.

ia)2 -i^Pi<-4<i(^Pi +^) = i[(i)
2 + l] ...... (2).

Bisect OJVi and .A^JS at right angles by straight lines NZP2> NSP8 ,

cutting the graph at P2 ,
P3 .

Drawing through P2 ,
Ps parallels to OX as before, we form

altogv,Jaer seven new rectangles, ofheightsN2P2)NlPl)N3PS) BA,
and equal widths OB/4< = . We have A < sum of areas of rectangles

and A > sum of areas of rectangles

i.e. i [0 + (i)* + (4)" + (|)
2
] < A < i [(i)

2 + (i)* + (f)
2 + 1] . . .(3).

Bisect again the bases of all these rectangles, obtaining four new

points on the graph, say P4 ,
P5 ,

P6 ,
P7 , and corresponding new

rectangles of width OJ3/8 = . As before A < sum of larger rect-

angles

, .N2P2 + N,N5 . N5

and A > sum of smaller rectangles

(5).

Continuing this process we obtain a succession of results of this

kind. Corresponding to the nth division we have that the area A
lies between the sum of rectangles of total area

The process may be continued indefinitely, and evidently provides
closer and closer approximations to the desired area. In fact, the

smaller rectangles have total areas

i to + (i>
2 + (Da +cm HO + (i)

a + d)
a + . . . + (m,

10
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and, either by recourse to the figure, or directly from these arith-

metical expressions, it is seen that this sequence last written is

steadily increasing and bounded. It therefore tends increasingly to

a unique limit, say AI.

Similarly the sequence of the sums of the areas of the larger

rectangles, viz.

i- i C(i)
2 + il 1 Ki)

2 + (*)
2 + (I)

2 + 1], ,

tends decreasingly to a unique limit, say A 2 .

And these two limits, A lt A 3 ,
are identical, for the differences

between the total areas of the larger and smaller rectangles form

a sequence, viz. 1, , |, , ..., which > 0.

This common limit, A l or A 2 , evidently is the area sought,

viz. A.

114. More general process. We can clearly generalise this

process. We could have divided the interval OB* into any number

(m) of parts, say by the points xlt x2 > m (where xm = OB 1),

erected perpendiculars through these points, and formed two sets

of rectangles, larger and smaller, as before. If we denote by yx

the ordinate through the point x^ etc., so that yl
= xf, etc., the sum

of the areas of the smaller set of rectangles formed equals

(xl
-

0) + (x2
- #0 y! + (x*

and the sum of the larger rectangles equals

(X - 0) yl + (x2
- #0 1/2 4- (a?8

-
#a) 2/s + . -f (am ~

The required area will lie between these two sums.

If we divide up further, by introducing additional points of

division, we shall obtain new rectangles, which, as before, will form

closer estimates to the required area, from below and above re-

spectively. Continuing the division indefinitely in such a way that

the width of the widest rectangle decreases indefinitely, we shall

obtain two sequences, whose typical terms are respectively

(i) the sum of the areas of the smaller rectangles, such as (8).

(ii) the sum of the areas of the larger rectangles, such as (9).

* An interval is any limited portion of the axis, such as OB, or NiB> etc. See

footnote, p. 119 above.
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The sequence (i) steadily increases, is bounded above, and there-

fore /* a limit, say Slt

The sequence (ii) steadily decreases, is bounded below, and there-

fore V* a limit, say B2 .

If A denotes the greatest of the widths of the rectangles, such as

Xi 0, $2
~~~

&i> &a ^2> &m ^m 1>

at any stage, then the difference between the larger and smaller

areas

=
(a?!

-
0) (yl

- 0) + (>2
-

a?,) (ya
- yO + + Ow - 0W-i) (y

-
ym-i)

< A . [(ft
-

0) + (ya
-

ft) + . . . + (fttt
-
ym-i)l

because all the multiplying factors

ft
~

0, 3/2
-

ft, ... ym - ym^
are positive, the graph being known to be monotonely increasing.

Therefore this difference < Aym = A, because ym = OB*~ 1. The
division being continued in such a way that the maximum -width

A V 0, it follows that this difference between the larger and smaller

areas tends to 0, and therefore the two limits Blt B2 , as before, are

identical, = B say.

It is indeed true that this limit B} whatever mode of division (of

the type described) may have been adopted (provided the maximum
width of the rectangles tends to zero), is identical with the limit A

y

obtained by the specialised mode of bisection first considered.

For it can be proved easily analytically*,

or it is clear from Fig. 9, in which the

letters Pj etc., P/ etc. refer to the two

systems of division, that the total area

of any set of "small rectangles" for the

second system of division is less than the

total area of any set of
"
large rectangles

"

for the first system, and it therefore

follows that the limit Bl :̂
the limit A 2 ', ^o Iv/jv, jv2

'

N^N^ "B~X

and similarly B^ A^ i.e. B^A and

We have not quite proved that, if we divide up the interval anew at each stage

(instead of subdividing the divisions already made), the sequences of total areas

of small .and large rectangles tend to this limit if the maximum width of the

rectangles tends to zero. This is however true. For, if A is the maximum
* See Chapter iv, 6 below.

102
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width of any set of rectangles and S and s the total areas of the corresponding

large and small rectangles, we have S~A<S-8<&, as above, and there-

fore A {and similarly s^ ,4) as A > 0, no matter how the divisions are

chosen. It is not however the case in general that S V^ A and s (*A as A V^ 0,

as it is with the modes of subdivision adopted above.

115. We have now proved that the graph y = x2
is such that ifthe

region between x = and # = 1 be divided up into strips by lines

parallel to OF, then the total areas of the smaller and larger rect-

angles so formed, having one vertex on the graph, as above, form

two sequences; and if the strips be taken successively narrower, so

that the widths tend to zero, these sequences are both convergent;
and their limits are identical, and the same whatever the particular
mode of division.

This much has been proved analytically, without presupposing
a,ny idea of area except as applied to rectangles.

1 We have seen that this common limit will evidently represent
the area of the region OBA, if any definition of area is given which

agrees at all with our preconceived geometrical ideas. We may say
then that we have proved that the area of this region (supposed, if

possible, defined geometrically) is this common limit. Or, more

logically, in our desire for strict analytical definitions of all mathe-
matical entities,---we may define the area of such a region as such
a limit if (as is here the case) it exists.

116. Definition of area under a graph. The general definition

may be laid down thus: Consider the region bounded by the graph
y ~f(x} (supposed bounded and, in the first instance, everywhere
positive or zero), the x axis, and the parallels x = a, # = &; and

suppose, for definiteness, a < b. Divide the region up into strips

by parallels to OF. Within any strip the values of the function

f(x) will have an upper bound*; with this value for ordinate draw
a line parallel to OX to complete within that strip a "large" rect-

angle with its base on F. Do this for every strip. Call the sum of
the areas of all the "

large
"
rectangles so formed S. Form similarly s,

the total area of all tLe "small" rectangles of heights equal to the
lower bounds of/(#) in the various strips. If the s be subdivided

indefinitely, so that the width of the widest st _nds to zero, the

corresponding numbers S and s will form two sequences. If these

*
I.e. a least number not exceeded by any value off(x) in the strip.
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two sequences have a common unique limit, which is the samefor all

such modes of division, the region is said to have an area. The

common limit is called the area of the region. Iff(x) is anywhere

negative, one or both of the upper and lower bounds off(x) in s6rne

of the strips will be negative. The "areas" of the corresponding

rectangles in such strips are to be considered negative. The area

of such a region will be positive if it lies entirely above the x axis

and negative if entirely below the x axis. If it lies on both sides

of the axis it may be positive or negative or zero.

117. Definitions of integrable function and definite integral.

As in the case of the tangent to a graph and the differential co-

efficient of the function concerned, so here we give a name to those

functions whose graphs between two ordinates, x = a and x= b (a<b),
bound a region which has an area in accordance with this definition.

Such (i function f(x) is said to be integrable between a and 6. The

limit which defines the area between the graph and the x axis, cut off

between the ordinates a and b, is called the definite integral off(x)

(b
from a to b, or over the range (a, b\ and is written \ f(x} dx.

J a

We have proved that the function x* is integrable between and 1.

ri

The area required of the "curved triangle" OBA = I x*dx.
Jo

118. Evaluation of area. The actual evaluation of the area of

the region OBA, now defined and proved to exist, can in this

special case be carried out directly from the above process:

The expression (6), p. 145, giving the total area of the smaller

rectangles at the nth stage of bisection

where N is written for 2n
,

= -

The expressic
'

the bracket can be proved, by induction or

otherwise to u, hal toOtnerwise, to LK
jiueii

tu

k(2f-l)N(21f-I')**N*/3-N
r

*/2 + Nl6.

The expression (6) therefore equals 1/3
- 1/2JV" 4- 1/6N*.



150 FUNCTIONS [CH. Ill

As the process of division continues, as contemplated in the

definition, N-+ oo *, and the expression (6)~>l/3. The required

area of the region OBA =
1/3.

This direct method is, however, only possible in specially simple

cases. In other cases the evaluation is carried out by a much more

powerful indirect method resting on the property which may be

described as the inverse character of integration and differentiation.

It is postponed to the next chapter, 6.

119. Properties of the function x2 summarised. To return to

our special function x2
, let us sum up our acquired knowledge:

(i) it is monotonely decreasing for all negative real values of x

and monotonely increasing for all positive values of x\

(ii) it is bounded above and below (i.e. < a fixed number K and

> a fixed number K') for all bounded values of x\ (for, if
|

x
\

< K,

(iii) it is unbounded as x increases beyond all limit positively or

negatively; (this is easily proved);

(iv) it is continuous for all values of x\

(v) it is differentiate for all values of x, and its differential

coefficient is 2#;

(vi) its differential coefficient is positive when x is positive and

negative when x is negative;

(vii) it is integrable between and 1, and in fact between any
two values a and 6;

(viii) the area bounded by the graph, the x axis, and the ordinate

x = 1, is 1/3; and in fact the area bounded by the graph, the x axis,

and the ordinate x, is ^/3; (this is easily proved as above);

(ix) it is of bounded variation in any bounded range.

We notice that the function is increasing wherever the differ-

ential coefficient is positive, and decreasing wherever it is negative.

This fact is not a mere accident f.

We leave as an exercise to the student the proof that the only

point at which the tangent is parallel to the x axis is where x = 0.

Such a value of x is called a turning value (or a maximum or

minimum), if, as in this case, the function is, on one side of the

point increasing, and on the other decreasing. The function has at

*
I.e. N increases indefinitely.

t See p. 157 and Chapter iv, 5 below and Ex. 8, p. 133 above.
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this point its least value. The curve which is the graph of the

function a? is & parabola, with OF for "axis" and for "vertex."

EXAMPLES XIII.

1. Prove that the tangent to the graph of ,r
2 becomes more and more nearly

parallel to the y axis as x increases or decreases indefinitely but is nowhere

actually parallel to it.

2. Prove the "fundamental property of continuous functions" for the

function x2
(p. 140).

3. Prove that the area cut off' between the graph of #2 and the x axis by the

two ordinates x a, xb (6>a>0), is 63/3-
3
/3.

4. Draw the graph of the function #, and establish all the essential properties

of this function. Apply the general process of the text to evaluate / xdx.
yo

Shew that / xd.v*=Q. The graph of the "function" 1 may be similarly dis-

cussed, but the results are trivial.

5. Draw the graph of x\ shewing in particular that the function is increasing

for all values of x and unbounded above and below, that it is continuous,

differentiable and integrable for all values of x, that Z)#3=3#2
,
and that the

differential coefficient is zero when j?=0 but that this is not a turning value.

6. The fundamental properties of the functions loga# and ax (where a is

any positive number, 4=1) have been established in Chapter ir. Sketch the

graphs of these functions for a 2, finding the slopes at all points and shewing
that the area under the graph of ax between the ordinates #=0, # 1 is Iog2 <?.

7. Prove that a circle has a tangent at all points according to the definition

of p. 142. (See also p. 143.)

8. Prove the "fundamental property of continuous functions" (p. 140).

[Suppose for definiteness, a< &, f(a) </(&). The set of numbers x for which

f(x') < k for all numbers x' from a to x inclusive, has an upper bound, X say.

Because f(x) is continuous at X,f(x) differs from K by an arbitrarily small

amount for all values of x sufficiently near to X. Therefore if (i) K">k,
then /(#) > k for all values of x sufficiently near to X

9
and therefore, in par-

ticular, f(x) > k for values of x less than X
;
and if (ii) K< &, similarly f(x)< k

for all values of x greater than X but sufficiently near to X.

Both these conclusions contradict the definition of X. Herice/(^f) = &, and

the theorem is proved.]

9. Prove that if f(x) is continuous and monotone between a and b and

/(a) <0 </(&), then f(x) for only one value of x between a and b.

10. Prove that the definition of differentiability may be expressed as

[/(A'-H^I) /(#)]/Ai, [/(#+ ^2) -/(#)]/^2> tends to a unique limit, the same

for any sequence A1? A2 ,
... which tends to zero.
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11. If f(x) is differentiable at x it must be continuous there, but the con-

verse theorem is not true.

12. The function y denned as sin \]x when x^O and =0 when # (sin 1/0

being meaningless) is not continuous at .#=0.

[If e.g. for the sequence x, x%, ...
,
which V^ 0, I/TT, 1/27T, l/Sw, ... be chosen,

the corresponding sequence y^ y%, ... is 0, 0, 0, ... and has the unique limit ;

if 2/7T, S/STT, 2/9?r, ... be chosen for x\, x%, ..., the corresponding sequence for

Vit y-2> is 1> 1> 1 and has the unique limit 1
;

if the sequence 2/?r, 2/27T,

2/37T, 2/47T, 2/57T, ... be chosen, the sequence for y1? y2 ,
... is 1, 0, 1, 0, 1, ...,

which is not convergent. Sequences #j, #2 >
can in fact be found for which

the corresponding sequence 3/1,3/2' tends to any limit between 1.]

13. The function x\ is continuous at all points and differentiable at all

points except x= 0. At #= it is differentiable on the right and differentiable

on the left but not differentiable.

[The two "semi-differential coefficients" are -f-1 and 1.]

14. The (positive) difference Mk mk between the upper and lower bounds

of a bounded function /(a?) in an interval d& (%_!, %)> is called the oscillation

off(x) in the interval 8k . If the sum-total of the oscillations off(x) in all the

intervals into which (a, 6) is divided (as in the text, p. 146) is bounded, i.e.

is less than a fixed number, K say, no matter how the points of division,

#i> #2> #?n-i> are chosen, the function f(x) is said to be of bounded variation

in the interval (a, b). If f(x) is of bounded variation in (a, b) there must be

an upper bound of the sum-totals of the oscillations of f(x) in the intervals

into which (a, b) is divided, i.e. a least number which is greater than or equal
to all possible sum-totals of oscillations. This upper bound is called the total

variation off(x) in the interval (a, b). Prove :

(i) If a bounded function f(x) is monotone throughout (a, 6), it is of

bounded variation in (<x, 6) and its total variation is \f(b) /(a)|.

(ii) If/(#) is expressible as the sum or difference oftwo bounded monotone

functions then /(#) is of bounded variation.

[If f(x) u (x) v (x), where n and v are non-decreasing, oscillation of

/(&) in any interval d* ^ sum of oscillations of u and v in 5
fc ; therefore

total oscillations of /(#) in the intervals dividing (a, 6) ^ sum of total

oscillations of u and v in those intervals. Therefore total oscillations of

(iii) If F(a, x) denotes the total variation in the interval (a, x) of a

function of bounded variation /(a?), then F(a, #) is a positive non-decreasing
bounded function of x.

(iv) If F(o, a?) and /(#) are as in (iii), the functions V(a, #)+/(#) and

F(a, 5?) -/(#) are bounded non-decreasing functions of #.

(v) Any function of bounded variation can be expressed as the sum or

difference of two bounded monotone functions.

15. Prove that if u (x) and v (x) are any two bounded monotone functions
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of x, the product uv and the quotient u/v are functions of bounded variation,

provided, in the case of the quotient, that the lower bound of
|

v
\

is not zero.

[For the product, if u and v are non-decreasing, u (x)
= U (x)

- A arid

v (#)
=

V(3c} B^ where U(x\ V(x) are positive non-decreasing bounded func-

tions and A and B positive constants. uv=(UV+AB)~ (A V+BU). From
laws of inequalities (Chapter i, 5) UV, etc. are non-decreasing (positive)

functions. The result follows. For the quotient put u/v= {u ( 1/v)}.]

1 6. Prove that, if u and v are functions of bounded variation in (a, 6), then

u-\- ?;,
u -

v, uv and ujv are also of bounded variation, provided, in the case of

u/v, that the lower bound of\v\ is not zero.

[Result for uv obvious. That for uv follows from Ex. 15. Result for

quotient will follow if it is first proved that - = ---- is of bounded variation,^ r v y~z
'

y and z being non-decreasing. To prove this (with obvious notation) : oscilla-

tion of \l(y-z) in djt upper bound of

-; -7 .
-,- N

---r - -r~\ ^ ~n~9 - (oscillation of y+ oscillation of z\
(y(#i)-*(#i) y (*$ -z fa)) Bf ^ J

where B
1c lower bound of y~z\ in d^', result follows.]

2. POLYNOMIALS

120. The function xn
. The properties of the function xn

t
where

n is any positive integer, are easily investigated similarly.

(i) Since, if ^ > x2 > then x? > x?1 > 0, it follows that the

function xn is monotonely increasing for all positive values of x and

increases beyond all limit as x increases indefinitely, whilst for nega-
tive values of x, as x decreases indefinitely the modulus of xn in-

creases indefinitely, but the sign of x will then be positive or

negative according as n is even or odd.

(ii) xn is bounded above and below in any bounded range.

(iii) xn is continuous for all values of #, for, by inequality (iii),

p. 29 above, [(# + h)
n %n]/h .lies between n(x + h)

n~l and nxn
~l

\

therefore, as h^O or as h (* 0, (x 4- h)
n xn

,
which lies between

h.n(x + h)
n-1 and h . nxn

~\ must -> 0*.

(iv) xn is differentiable for all values of x and Dxn = nxn~~l
,
for

[(x -f- h)
n xn~\/h lies between n (x + h)

n~ l and nxn~l
,
and by property

(iii), applied to the function xn"~1
y
we know (x -f h)

n~ l ~* xn~~l as

h V or hf ;
whence the incrementary ratio

[(x

*
I.e. as /* takes on any sequence of values hi, h%, ..., which V^O or /^*0 as the

case may be, the corresponding sequence of values of (x + h)
n - xn >- 0. The ab-

breviation h > is also convenient.
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(v) Dxn is positive for x positive whether n be odd or even; it is

also positive when x is negative if n be odd, but is negative when
x is negative if n be even.

(vi) The only value of x giving a horizontal tangent is #=*0,

which will be a turning value (in fact a minimum) if n is even but

not if n is odd.

(vii) xn is integrable between a and 6, any two real numbers,
for the proof given in the last section of the integrability of x*

depends only on the boundedness and monotony of #2
;
these pro-

perties have been proved, (i) and (ii) above, to be possessed also

by the function xn
,
and the proof of the last section will therefore

apply here also.

(viii) xn is "even
"
if n is even, i.e. the values of ( x)

n and of xn

are the same; whilst xn is "odd" if n is odd, i.e. the values of

( x)
n and of xn are numerically equal but are opposite in sign.

Typical graphs are drawn in Fig. 10.

XX' X X1

* The graph of

completeness.

'

Fig. 10*.

(or y = l), though not of the type discussed, is added for
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121. Example of a polynomial. Let us now consider the graph
of a function defined by an expression consisting of two or more of

the functions 1, #, #2
, #, . . . combined by the operations of addition

and of multiplication by "constants," i.e. fixed numbers inde-

pendent of the variable x. For example let us consider the

function as* 3a? 4- 2# 4- 4.

We have firstly that ifx increases indefinitely, the function (which
we will call y) will also increase indefinitely, and, corresponding to

any indefinitely increasing sequence for x, the sequence for y will be

unbounded; for we have (for x positive) y>x* So?, but #*/2 > 3#2 if

x* > 6 and therefore certainly if x > 3 say, hence for x > 3, y > #4
/2

and therefore as x increases indefinitely y is unbounded.

Also if x is negative and decreases indefinitely, y is similarly

proved to be unbounded (above, as before), for

y > -5- if x4 - 3#2
4- Zx + 4 = x4 - 4a? 4 x (2 4- x) + 4 >

Zi

which is certainly so if x < 2 and x* > 8.

Considering the question of continuity, we have, from the

definition, that the function is continuous at a point x if and only
if the sequence

where yl
= (x 4 Aj)

4 3 (a? 4- AJ2
4- 2 (a? 4- A,) 4- 4,

2/2
=

(a? 4- A 2)
4 - 3 (x 4- A2)

2
4- 2 (x + Aa) + 4, etc.,

tends to the unique limit x* 3#2
4- 2# 4- 4 for all sequences A1; A,, ...

which ~> 0.

Now we know that the function x* is continuous and therefore

the sequence (x -f Ax )
4
, (x 4- A2)

4
, ... -> #4

;

and a?
2 is continuous and therefore (#-f A^

2
, (x 4- A 2)

2
,

. . . -*- as
2

,
and

therefore also the sequence 3 (# 4 A^, 3 (x 4- A3)
2

,
...- 3#3

;

and the function a? is continuous and therefore the sequence
x 4- Aj, a? 4- A2 , . . . -> #, and 2 (# 4- Aa),

2 (x 4- A2), . . . -+ 2#; and the

sequence 4, 4, 4, ... clearly -> 4.

It is easily proved in general that if the sequence slt #2 ,
... - a

unique limit 5, and the sequence /, ^, . . . ~> a unique limit *', then

the sequences (^ 4 s/), ( 2 ^O* are convergent and tend to s s'

respectively*.
*
By the condition for a unique limit (p. 45), for a certain value of n and all

greater values
|

sn -f sn
' - s ~ s'

\

< e because both
|

sn
- *

|

and
j
sn

' - s'
\

are less than

~ say for all sufficiently large values of n.
l
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Hence we deduce that the sequence (1) -> a? 3#2 + 2a? -f 4, and

the continuity of the function for all values of x is established.

In precisely the same way, arguing from the sequences of incre-

mentary ratios, we see that, since the component functions ^, 3#2
,

2#, and 4 are each differentiate for all values of x, the compound
function y is itself differentiate and we have

D (x
4 - 3#2 + 2# -f 4) = Dtf - D3x2 + D2/ 4- #4

= Ib4 - 3D&-2
-f Wx + 4D1

= 4^-6^ + 2.

122. Integrability of sum of two functions. Generalisation.

The integrability of this function y between any two values a

and b rests on the same principles.

We first prove the general theorem:

If yl and y2 are two functions which are integrable between a

and b, then the function y1 -f 2/2
is a^ integrable and its integral

[
b

(2/1 + 2/a) doc is the sum of the two separate integrals, viz.

rb rb

2/jcfe-f-
J a J a

The proof of this theorem is immediate from the definition of

a definite integral; for if M1 and M2 are the upper bounds of yl

and
2/2

in any strip used in the definition of the definite integral,

the upper bound of the compound function in that strip is clearly

< JkfjH- M2 . It therefore follows that at every stage of the division

used in the definition the total area of the "large" rectangles relative

to the compound function yl -f- y.2 is less than or equal to the sum
of the total areas of the large rectangles relative to the two functions

yl and y2 separately ;
and similarly the total area of the " small

"
rect-

angles for
2/1 + 3/2

is greater than or equal to the sum of the total

areas of the small rectangles for yl
and y2 separately.

That the conditions for integrability for
2/1 + 3/2

must be fulfilled

if they are fulfilled for y and
2/2 separately is now evident. At the

same time it is evident that the integral of the compound function

t
b

y\ -f 2/2'
i-e -

(2/i + #2) d&, = the sum of the twp separate integrals,
J a

fb (b
viz. I yid+l y%dx. Q.E.D.

J a J a
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As a corollary to this theorem we have:

Ifylf y2 ,
. . . yn are any functions which are each integrable between

a and 6, then yl + y2 + . . . + yn is also integrable between a and 6,

and

fb
rb rb rb

I (2/1 + 2/2+ ... + yn)dx=\ yidx+l y2cfe+...+ yn dx.
J a J a J a J a

We can in fact state a second corollary to include both the

theorem and this first corollary as special cases.

Under the same circumstances, if kly k2 , ... kn are any fixed

numbers, or
"
constants" the function k^ 4- k.2y2 4- , . . -f knyn is

integrable and
rb

(kiVi + kyt + ...+knyn)dx
J a

fb
rb rb

= &!/ yl dx + k2 l y2dx+...+kn l yn dw.
J a J a J a

t
b

This follows from the evident fact that kydx exists and
J a

[
b

= k \ y dx if y is integrable.
J a

123. Applying the second corollary to our compound function

x* 3#2
4- 2x -f 4, knowing that the functions #4

,
a2

, x, 1 are inte-

grable, we have that the function y = x* 3x~ 4- 2x 4- 4 is integrable

between any two values a and b. The actual evaluation of the

definite integral
rb

fb
rb rb rb

I ydx y
which equals a?da 3 aPdx+2 I xdx + k I Ida,

J a J a -'a J a J a

f
b

depends on a knowledge of the separate integrals I x*dx, etc.
J a

124. Question of monotony. We have seen that xn is either

monotone for all values of x or monotone for positive values of x

and also monotone for negative values of x. Neither result is in

general true for a polynomial, such as the function a?
4 3#a+ 2#4-4

under discussion. It can however be shewn that there are ranges
in each of which the polynomial is monotone.

To handle this question in a general manner we need the theorem that where

Dy is positive y is increasing (and where Dy is negative y is decreasing). This

theorem is an immediate consequence of the theorems of pp. 119, 121. For let

#i> #2 (#2> xi) be any two values of a? in a range throughout which -Df(x\ the

derivative of the function /(#), is positive, and let y denote the difference

f(x) /(#!). Then Dy is positive as long as x^ <^x^#2l and therefore/^) >/(#i)

by the theorems cited. Similarly for a range where Df(x) is negative.
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(as is seen by noticing that when #=1, Zty=0, whence #-1 is one factor of

.Zty, and the other two are obtained by division).

Thus Dy > for x between -
\ ^^3 and i+\/3 and for x > 1 ; whilst

Dy < for x < -
1 v/3 and for x between \ +^/3 and 1.

Hence our function decreases as x increases up to x~\ v^ then

increases up to #= J+^\/3, then decreases from there to #=1, and, finally,

increases as x increases beyond 1.

The function therefore, though not monotone, as were (e.g.) the functions x,

#3
, is, we may say, monotone in stretches,

as was the function &* (in two stretches, viz.

up to #0, .v
2 is decreasing and for #>0,

#2 is increasing).

At each of the three points where the differ-

ential coefficient vanishes, viz. the points

and #=1, #=4;
the function changes from being increasing to

decreasing or vice versa.

Our polynomial is also of bounded variation

in any bounded range. (See p. 138 and Ex. 16,

p. 153, above.)

The graph is sketched in Fig. 11.

In discussing the above and similar

graphs the student will observe the great Fig. n.

utility of the differential coefficient as a means of arriving quickly
and surely at the fundamental properties ofthe function, properties

which could only laboriously and doubtfully be discovered by mere

plotting of points.

125. The general polynomial. We now proceed to discuss the

general features of polynomials of any degree whatever.

Let us consider the general polynomial

y = anx
n + an- lxP-

1 + ... + OiX + a ,

where the coefficients an ,
an_j, ... alt aQ are real numbers, with the

proviso that the first (a-n) at least is not zero ; the degree (n) of

the polynomial is odd or even.

The value of y when x = is a .
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As x increases through positive values y may increase or de-

crease, but we can see, without much discussion, that as x increases,

sooner or later the sign of y will be that of the first term anxn ;
for

evidently |

anxn
\

will exceed
|
nan-iX

n~~l

\

so soon as x >
\

?ian_!/an |,

will exceed \nan^xn"z so soon as x2 >
|

nan_2/an \
,
and so on, so

that
|

nanx
n

\
will exceed n (an^xn~l

-f an^xn~~- + . . . + a ) |

so soon

as x exceeds the greatest of the values

nan_ly
/an

|
,
V

|

nan_2/an ]
,

. . . V
|

naQ/an |
,

i.e. bhe first term anx
n will sooner or later exceed the sum of all

the remaining terms in modulus and therefore the sign of the

complete polynomial will be that of the first term.

Moreover, riot only will the polynomial remain of one fixed sign

for all values of x greater than a certain value, but its modulus will

also increase beyond all limit
; for, by similar reasoning, we can

prove that
|

anxn exceeds say twice the sum of the remaining terms,

and therefore that the value of the polynomial certainly lies be-

tween \anx
n and anx

n
\
but each of these expressions increases

indefinitely in the same sense, and therefore the polynomial in-

creases likewise. By realising that if n is even xn is positive what-

ever the sign of x, and that if n is odd xn is positive or negative

according as x is positive or negative, we see that, if n is even, for

large positive and negative values of x the function is large and of

the same sign as the first coefficient an ,
and that if n is odd, the

function is large for large values ofx and of opposite signs according
as x is positive or negative.

The fundamental questions of continuity, differentiability, and

integrability are easily disposed of:

If ?/! and y.2 are the values of the polynomial corresponding to

the two values x1 and x2 of x, we have

= an (xf - x2
n
) + ...

=
(x,

- #2) [an (xf-
1 + x^Xz + . . . -f xj

l~l

)

+ a/i-i (#i
w~ 2

4- x^x, + . . . 4- xf-*) + . . . + a,].

The expression in the square bracket is evidently bounded in

magnitude (if xl and xz are bounded) and hence as x,
t
-*-xl the

right-hand side tends to zero, i.e. as a sequence for x2 tends to xl
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the corresponding sequence for y2 tends to yl ;
or the function y is

continuous for all values x^ of x.

The incrementary ratio

(2/1
-

y*)l(vi
- ^)

= an (xi
n~l + . . . +^n~l

) + o-i 0i
n~* + + #2

n- 2

) + . . . + a,

itself is a continuous function of #2 which tends to the limiting

value nanx^~
l + (n 1) an^x-^ -h . .. + al as #2 tends to #1? i.e. Ae

original polynomial is differentiate for all values of x, and its

differential coefficient is

nanx
n~l + (71

-
1) an.!^-

2 + . . . + Ox.

The integrability of the polynomial follows immediately from the

theorem and corollaries of pp. 156 157 above. We have

rb

(anx
n + an-ix

n~~l
-f . . . + a^x -f a ) dx

rb

J a

exists and equals

an I xndx -f an_j I xn~ldx -f . . . -f a^ I xdx + a 1 1 dx.
J a Jo, J a J a

[
f}

Once the separate integrals I xn dx, etc. are known the integral of
J a

the polynomial is known.

126. Let us now examine the differential coefficient

We notice that it is itself a polynomial in x of the (n
-
l)th degree. It may be

positive or negative for all values of x, or it may be positive for some and

negative for other values of x. In virtue of the proved continuity of any poly-
nomial and of the fundamental property of continuous functions*, the values

(if any) of x for which it is positive must be separated from those for which it

is negative by values for which it is zero.

Now there is an elementary proposition in the theory of equations to the

effect that an equation of the mth degree cannot have more than m roots (unless

it is an identity) t.

Applying this theorem to our differential coefficient, we see that it cannot

vanish for more than n 1 values of x (unless it is identically zero for all values

of x, which can only happen if the "polynomial" reduces to the constant )

and thence that it cannot change sign more than n 1 times
; or there are at

most n ranges in each of which the differential coefficient is of constant sign,

separated by points at which it vanishes.

* See p. 140 and Ex. 8, p. 151 above.

t See Ex. 4, p. 161 opposite.
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Now, in ranges where the differential coefficient of a function is positive, the

function is increasing, and where negative, decreasing. Hence we have proved
that the graph of the general polynomial of degree n consists of at most n

stretches in each of which it constantly increases or decreases, separated by
points where the graph is stationary.

It may happen that the graph does not have as many as n such stretches,

and it may happen that the differential coefficient may vanish for some values

of x other than the turning points (e.g. the point (0, 0) on the graph of x3 ) ;

but we know that it cannot have more than n such stretches nor more than

n 1 such turning points, and that all the maxima and minima are included in

the points where the differential coefficient vanishes. More than this cannot

well be said. The details of the graph depend on the peculiarities of the

particular polynomial concerned.

The polynomial is not, in general, monotone
; but, since it is formed by the

addition and subtraction of functions which are severally monotone (or ex-

pressible as the difference of two monotone functions), it follows that the

polynomial is necessarily expressible as the difference of two non-decreasing
functions, i.e. is of bounded variation over any bounded range (p. 138).

We have now seen that polynomials behave in all essential

respects like the simple functions x, #2
, ar\ etc. They are the simplest

class of function considered in analysis.

EXAMPLES XIV.

1. Trace the graph of the cubic polynomial 4a;3 + 9.tf
2 - 12# 1, marking the

turning points.

2. Trace the graph of a? -f- 3x2+ 9# 4. Verify from first principles that this

function is continuous and differentiate. Given that

=(V-a?)fa I* x*dx**(&-a?)fa
J a

ri> /&
I #6&t'= (&

2 -a2
)/2, lcfo= &-o,

J a J a

find the area enclosed between the curve, the x axis, and the two ordinates

#=!, ^=2.

3. Sketch the graph of 12# 4 4#a
. Find its maximum value and the area

enclosed in the loop above the x axis.

4. Prove that an equation of the mth degree cannot have more than m roots.

[If the equation Pm=amxm -\- ... -}-
= could have more than m roots, al5 a2 ,

etc., the relations am a1
TO
-K..-f-a =0, etc. are all satisfied; therefore

which =(# -
aj) PTO _i, where Pm -i is a polynomial of degree m-l. If a2 be

substituted for x in Pm - l9 the result is zero, for with this substitution Pm is

rendered zero and a2 - QJ is not zero. Therefore as before Pm _ j
=

(a? a2) Pm _ 2 ,

Pm-2 being a polynomial of degree m 2 ; so that

2 .

11
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And so on. Thus Pm=(#-a 1)(#-a2)...(#-am)P ,
where P is a constant

(P =am). It is now evident that Pm cannot be zero for any value of x (e.g. Om+i)
different from the m values aj ,

. . . am unless P (and therefore also Pm)
is itself

identically zero for all values of x.]

5. Prove that any equation of odd degree PM (#)=0 necessarily has at least

one real root and that any equation of even degree will necessarily have at

least two real roots if the coefficient of the term of highest degree and the

constant term in Pn (a) are of opposite signs.

6. Prove that a polynomial is necessarily of bounded variation over any
bounded range.

7. Express the polynomials of Exs. 1, 2, 3 as sums of monotone functions,

(i) applicable to a range including only positive values of #, (ii) applicable to

any bounded range.

8. Prove that any bounded function whose graph consists of a (finite)

number of monotone stretches is of bounded variation over any bounded range.

9. Prove that any function which is of bounded variation over a range is

iutegrable over that range.

3. RATIONAL FUNCTIONS

127. Polynomials are the simplest kind of the larger class of

functions known as rational functions.

Briefly, a rational function of the real variable x is any expression
in x in which the only signs of operation employed on x are those

of addition, subtraction, multiplication, and division. The constants

which occur need not be rational numbers.

Thus (3a? + 2)/(5#
2 -

4) + 1/x
- x* and (V2 . x - a?)/(a? + 3) are

rational functions of a?, while loga #, 2*, eP, sin#, tyxt ^(x* -2x- 3),

and the sum of such an infinite series as 1 -f x -f o?/2 1+ ... are

irrational.

It may happen exceptionally that a function defined in irrational form is in

fact a rational function. Thus the sum of the infinite series

is the rational function --- .

1-j1

Like a polynomial, a rational function is defined precisely by
means of the elementary arithmetical operations, and its value is

a rational number for all rational values of x if the coefficients are

rational, with the possible exception of isolated values of x where

any denominator is zero.

We will now consider the nature of the graphs of one or two of
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the simpler rational functions (other than polynomials) and observe

the resemblances and differences between such functions and poly-

nomials.

128. The function 1/x. Consider the function y = l/o?.

Ifwe try to plot the points of the graph corresponding to different

values of x we find that this can be done without difficulty except
for one value, x = 0. If we substitute x = in 1 jx we get 1/0, which

is meaningless. We cannot divide 1 by 0. In fact the function is

not defined for this value of x.

We notice, however, that no matter how small we take x (not

actually zero) there is a perfectly definite corresponding value of

y, and the corresponding point on the graph can be plotted. Con-

fining ourselves for the moment to positive values of x, we get in

fact a succession of greater and greater values of y corresponding
to smaller and smaller values of x\ moreover these values of y
increase beyond all limit as x is made to decrease indefinitely:

corresponding to any positive sequence of values for x having as

limit, the sequence of values of y is unbounded and not convergent.
We say the function is unbounded (above) in the neighbourhood of

# = 0. It is also not continuous on the right at x = 0, independently
of the fact that the function is not defined at that point. Similarly

if we consider negative values ofx tending to zero, the corresponding
values of y decrease beyond all limit, and the function is unbounded

below and not continuous on the left.

In other essential respects this function behaves like a poly-

nomial. If x
=(= 0, y is continuous at x, for

l/(x + h)
-

l/sc
= -

&/|> (x + &)],

and therefore > corresponding to any sequence for h which

tends to 0.

If x
=)= 0, y is differentiable and Dy 1/&

2
, for the incrementary

ratio = T ( j ]
= - - which clearly tends to 1/x

2
.

h \x + h x) x(x + h)
J '

]}y = i/$* < for all values of x (except x = 0) ; and, as is seen

independently, y decreases steadily for all negative values of x and

for all positive values of x. As x increases positively y steadily de-

creases and VO as #-^oo; and if x is negative and decreases

indefinitely, y is negative, increases and
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The function is also integrable over any range (a, 6), where a

and b are both positive or both negative; for in any such range

y is continuous and monotone and the proof of the integrability

of xz above will apply. The function is not integrable in any range

which includes the point of discontinuity #= 0.

The evaluation of the integral is postponed
to the next chapter*. There are no maxima

or minima. The graph is as drawn in Fig. 12.

It is a rectangular hyperbola.

Similarly the graphs of the functions

!/(# 1) and I/O' + 2) are also rectangular

hyperbolas. They have points of infinite

discontinuity (similar to that of the graph

y=l/x at # = 0) at the points # = 1 and

x = 2 respectively.

129. The function l/[(x
-

1) (x
-

2)]. A slightly more com-

plicated rational function is

!/[(* -!)(*- 2)].

This function is undefined for two values of x, viz. x = 1 and x = 2 ;

these are both points of infinite discontinuity of the same type as

that in the case of y = \jx.

The function is continuous at all other points, for the difference

l/[(x + h - l)(a? + A - 2)]
-

l/[(a?
-

])(a?
-

2)]

x2 - 3a? + 2 - (x + A ) + 3 (x + A)
- 2

(a? + A- )(*? + A -2) (#-.

ft (_. 2a? - A + 3)

(# -2)_""

O +~A - 1 ) (a? + A - 2) (x
-

1) (a?
-

2)
'

and the fraction last written is less than some fixed number, .fiTsay,

no matter how small h be taken
; the difference therefore -> if A

takes on a sequence of values which -~>- 0.

The function is also differentiate at all such points, for the in-

crementary ratio

A
__
A - 1) (x + A

LI
-

2) (a?
-

1) (x
-

2)J
- 2a? ~ A _

-2)(- 1)00-2)"'
See also Ex. 5, p. 166 below.



3] RATIONAL FUNCTIONS 165

which, by argument similar to that by which the continuity has

2^ 3
been established, ->

~^r\a"7 o\2
as ^ tends to zero, for all

(x L) (x A)

values of x other than 1 and 2. The differential coefficient is

^-r
-

-^- . This is clearly

positive when x< 3/2, negative when
x > 3/2, and zero when x = 3/2. Ex-

cluding the points of discontinuity,

x = 1 and x 2, the function is steadily x'

increasing as x increases for x < 3/2

and decreasing for x > 3/2. At x 3/2

the function has a maximum. It

should be noted that a maximum
does not mean the greatest value but

only a value which exceeds all others

within a certain neighbourhood. In Fig * 13t

this example at x ~ 3/2 the function = 4, which is greater than

its value for any other value of x between 1 and 2 but is not

greater than the values of y outside these limits; we have seen

in fact that y is unbounded.

As before, y is integrable over any range (a, 6) which avoids the

points of discontinuity.

The graph is drawn in Fig. 13.

130. Properties of rational functions in general. These two

examples will suffice to shew the chief resemblances and differences

between polynomials and rational functions which are not poly-

nomials. The essential point to notice is that while polynomials

are defined, continuous, and differentiate for all values of x and

bounded and integrable in any bounded range for x, other rational

functions may cease to be continuous, differentiate, or defined for

some values of x, or bounded or integrable in some bounded ranges

for x.

A rational function can always be expressed as the quotient of

two polynomials, say Pm (x)IQn (x) t
where Pm (x) and Qn (x) are

polynomials of degrees m and n respectively. It can be shewn that

the number of points of discontinuity of the function will not

exceed n. The points are in fact given by the roots of the equation
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of the nth degree Qn (x)
= 0. The function is continuous, difier-

entiable and integrable throughout all ranges excluding these

points, and it is monotone in stretches.

Rational functions are easily seen to be of bounded variation over any range

(a, b) which includes no point of discontinuity, either interior to the range or

at either end (a or b). (See Ex. 8 below.)

Non-rational functions may have other peculiarities. Thus Jx and log x$

though monotone, continuous, differentiable, integrable and bounded for all

bounded positive values of x, are undefined for all negative values of x (and in

the case of log # also for #()).

EXAMPLES XV.
1. Draw the graphs of

!/(#+ 2), #/(#-!), (,

2 - 3.tf+ 2)/(.# +1), and (2ff-

Find in each case the turning points (if any).

2. Draw the graphs of 1/(1 x\ 1/(1

pi
3. Prove that the definite integral I -dx> any number /if, however great,

J k %

if k is sufficiently small (and positive).

4. Sketch the graphs of \jx* and l/#
3 and prove from the principles of

section 1 above that

Pi, 1 1 . P 1 , /I 1\ /
/ -5 dx^ -

j
and

/ ~^dx= (
-

I9 ) / 2,
J a x* a b ] a x* \a* b*)l

where a and b are both positive or both negative.

5. Prove from the principles of section 1 that

where a and b are both positive or both negative.

[Use the "fundamental inequality" of p. 110 above.]

6. Prove that the number of points of discontinuity of the function

A(#WnOrX where Fm (x) and (#) are polynomials of degrees m and n

respectively, cannot exceed n.

7. Given that the differential coefficient of the rational function

where Pm (o?), (#), Rm + n-\(x) are polynomials of degrees m,

respectively, prove that, if the points of discontinuity be disregarded, the graph
of/(#) consists of at most m + n stretches in each of which /(#) is monotone.

8. Prove (i) from Ex. 7 and the definition of p. 138, and (ii) from Exs. 14

16, pp. 152-153, that a rational function is of bounded variation in any interval

excluding the points of discontinuity.

9. Shew that the graph of the function log^;
2

1) consists of two separate
infinite branches and that there is a strip of the coordinate plane (between the

two lines #= 1, a?*!) where there is no point of the graph. Trace also the

graph of the function log(l -^r2).
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4. FUNCTIONS DEFINED BY POWER SERIES

131. Functions defined by convergent sequences and series

of functions. In Chapter I we defined numbers by means of con-

vergent sequences and series of numbers and, in particular,

irrational numbers by sequences and series of rational numbers.

In the same way we can define functions by sequences and series

of functions and, in particular, irrational functions by sequences
and series of rational functions or even simple polynomials. A series

whose terms are functions of a real variable x may be convergent for

certain ranges of values of #, thus the series 1 ,r -f a? ,r'
}

-f . . .
,

whose terms are simple powers of x with alternating signs, is con-

vergent for all values of x between 1 and 1, and the sum of the

series will in general depend on x and be in fact a function of x,

viz. 1/(1 -M')- There is only one obvious point of difficulty. If the

series is convergent only for a restricted range of values of x
t
the

function is thus defined only for values of x in that range. There is

however nothing logically surprising or new about the idea of a

function defined only for a restricted range of values of the variable.

For example, log x is defined only for positive real values of x. In

such a case then we shall content ourselves with the 1 restricted

definition.

The extension of the range of definition of such functions is in fact possible

in some cases, but lies outside the scope of this course.

132. Approximation by sequences of polynomials. We can

approach this question from a different point of view. We can

endeavour to approximate to a given function which is not a

polynomial by means of a set of polynomials. It is evident a priori

that such a function as 1/(1 -fa?) has properties not possessed by

any polynomial whatsoever, and therefore cannot be accurately re-

presented as such. Just as it is possible however to find rational

approximations to irrational numbers, it may here be possible to

find polynomial appi^oximations.

Let us consider the rational function 1/(1 4- x).

By dividing out, we obtain, as successive quotients, the poly-

nomials 1, 1 x, 1 x + xz
,

....

Drawing the graphs (Oj, C2 , etc.) of these successive polynomials,

as well as that (C) of the rational function itself (see Fig. 14), we
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see that the successive polynomials form better and better approxi-
mations to the rational function within the limited range 1 < x< 1

x'

c

-i

y-i

c

X

Fig. 14.

Outside this range, however, the polynomials seem to have no
connection with the rational function.

In this case we know already that for any value of x between
1 and 1 the series 1 x -f x? . . . is convergent and has 1/(1 -f x)

as its sum. This is clearly only another way of stating that the

sequence of polynomials 1, 1 x, 1 x -f x2
, ... gives indefinitely

close approximations to the rational function in the range 1 <x< 1.

It is in fact evident that the representation of<i function by the sum

of a convergent infinite series of poivers of x is equivalent to the

indefinitely close approximation to the function by means of a

sequence ofpolynomials of this type*.

133. Binomial theorem for negative integral index. Other
*

I.e. a sequence of polynomials of steadily increasing degree, say Pl (x), P2 (x),

where any polynomial differs from the preceding one only by the (possible) addition
of a single power of x (i.e. Pn (x)-Pn-l (x)--anx

n
, where an is a constant). The

problem of the approximation to a function by sequences of polynomials in general
lies quite beyond the scope of this course.
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known rational functions may be discussed similarly. A particularly

interesting set of such rational functions are the inverse powers of

1+x, the corresponding series being the binomial series.

We have proved that

- 1 _ X _|_ #2 _ ^8 _|_ ^ ^ ^ for _ 1 < # < l f

1 -{-x

Dividing this infinite series in the ordinary way by 1 -I- x, we obtain

as successive quotients the sequence

It is easy to see by direct multiplication that

(1
- 20? H- 30? - . . . nxn~ l

) (1 + a?)
2 = 1 [(n 4- 1) x

n + nxn+ l

~\.

If 1 < x < 1, (n -f l)^
n-+ w^n+1 -^ as /I -> oo *, and therefore

1 - 2# + 3#2 - ... n^-1 ~> 1/(1 + xf\

i.e. the infinite series 1 2# 4- 3^?2 ... is convergent for 1 < a? < 1

and its sum is 1/(1 -f xf.

Again in the same way

And so on.

By induction we can shew in general that if n is any positive

integer then

. - _

( 1 -l_ ^rA""*1 1 _ 'M /y _J_ _JL JL __ 7
/r2 _ ^ / v

^1 -h it/;
1 19 T~2~3

.........(1)

/or 1 <&< 1.

Thus

* See sequence (ii), p. 50 above.
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1 \ *-/ r t
v '

The last term in this expression (2) can be shewn to tend to zero

as r -^ oc if 1 <x<\. Thus, writing sr for
^

-*-|
xr+l

,

we have
1

sr/sr_i |

=
| (n 4- r) #/r |

< a number less than 1 so soon as

1 .|- n/
r < 0/| # |

,
i.e. so soon as r > n

\

x
\ /(O \

x
\ )
= m say ;

and

such a number 6 can be chosen, between \x\ and 1, to make this

choice of m always possible. It will follow that

Sm, 8m4-'>

ml as p -> oo .

SHI i $)n+p-

Hence, as r = m -f p -*> QO
,

|

sr
\

> 0.

It follows now from (2) that if the sequence whose ?
ith term is

. ...._..
is convergent for 1 < # < 1 and has (1 + x)~~

n for its unique limit,

then the sequence whose rth term is

.

is also convergent and has the same limit.

TT -/ ,i -.
>1 (W + 1)Hence i/ the series 1 nx H----^ ^,'J ... is convergent for

1 < a? < 1 and has (1 4- %)~
n for its sum, the series

l-(n + l), +
^ + lK?>^-...

is also convergent for - 1 < x< 1 and has (1 + x)~
(nJrl} for its sum.

1 2We have already proved that (l4-^)~
1 = l--l^ + -~- a? ...\

2 3
hence (1 + x)~

2 = 1 2# +
-^y-

x2
. . .

, and, in general, the relation

(1) is true. Q.E.D.

The student will notice that the substitution of m say for n

m being then a negative integer, gives the result

... for - 1 <x< 1,
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formally identical with the binomial theorem for a positive integral

index (p. 22 above). The binomial theorem is in fact true for all

real values of the index, but the distinction between the case of a

positive integral index, where the "
series

"
consists of only m -f 1

terms and the expansion is valid for all values of x
9

and the other

cases, where the series is an infinite series, convergent only for

values of x between 1 and 1, is essential*.

134. Power series. Expansions of this type can be used as a

means of studying the known rational functions represented. We
have in fact already, in obtaining the logarithmic series, essentially

made use of the expansion (1 -f x)~
l = 1 x 4- x2

. . . in this way.
The most fundamental purpose of sequences and series of functions

is however to define new functions. Various types of such sequences
and series are possible, but sequences of polynomials and series of

positive integral powers are the simplest and most generally useful.

In this course we shall confine ourselves entirely to such series of

powers, or power series.

A power series in a real variable x is a series of the type

a
(} + a^x -f a^x* + a%x

3
4- . . .

,

where the coefficients a
,
alt a2 , ... are real numbers independent

of x, i.e. are real constants.

135. Monotony, continuity, etc. It is seen at once that, if the

coefficients a
,
a1? a2 ,

... of a power series are all of the same sign,

then, for all positive values of x, the function defined as the sum

of the series is monotone.

In this case, for negative values of x, the function is not monotone,

but it can be expressed as the sum of two monotone functions, viz.

y\ ao H- a%x*
4- a4#

4
-h . . .

,
and y2

= a^-ftM?8 + a5x
5
-f ...

,

-

for those values of x for which these two series are convergent (and

therefore for those values of x for which the original power series

is absolutely convergent).

It follows that the function so defined is integrdble over any
interval (a, b) which is such that the series is absolutely convergent
for all values of x belonging to the interval (i.e. for a ^ x ^ 6).

* The cases when the index is fractional or irrational are dealt with in Chapter iv,

8 below.
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For, if b > a ^ 0, the proof of the integrability of the function #2
,

given in section 1 above, which depends solely on the monotony
of the function, will apply to our function; and, if a<6^0, the

theorem of p. 156 above will apply. Recourse to the fundamental

idea of the definite integral completes the proof, for the case when

a < < b.

In this connection it is easy to see that the function defined by any power
series is necessarily of bounded variation over any range throughout which the

power series is absolutely convergent.

For, the terms having positive coefficients will form a convergent series*

and so define a function yi say, which will be monotone over any range in-*

eluding only positive values of x
;
and the terms having negative coefficients

will form another convergent series, denning another function y% say, which

will also be monotone over any such range. The function defined by the power
series equals y\+yi and therefore is of bounded variation (p. 138) over any
such range including only positive values of x.

The completion of the proof, to apply to any bounded range throughout
which the power series is absolutely convergent, is left to the student.

From this result we can deduce, as above, the important result that the

function defined by any power series is necessarily integrable over any range

throughout which the power series is absolutely convergent.

It can be provedt that a power series, if convergent for any (non-zero) values

of x whatever, is convergent for all values within a range (
- R9 R\ called the

range of convergence, and may be convergent also for one or both of the

extreme values, R and R and that, in any case, the series is absolutely

convergent for all values of x within the range, i.e. for - R< x < R. The results

stated are therefore true throughout any interval wholly included within the

range for which the function is defined.

It might appear that, just as the continuity and differentiability

of the general polynomial follow immediately from the same pro-

perties of the simple powers, these properties will follow at once

for the sums of power series in general. It is as a matter of feet

true that these properties hold in general for power series, but the

following considerations will shew that they are not immediately
evident.

If i*j (x) -f uz (x) + ... is any convergent series of functions, having
the properties of continuity, etc., we have that the sum function

f(x) = [Ul (x) + UZ (#) -f . . . 4- Un O)

say.

* See p. 78 above. f See Ex. 18, p. 194 below.
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We are entitled to argue that ifthe separate functions w^ (x\ u^(x)t . . .

are continuous and differentiable, then sn (x) is also continuous and

differentiable, and, e.g. that the differential coefficient of sn (x) is

the sum of the differential coefficients of the separate functions

Ui(x)9
..\un (x). But all we obviously know about Rn (x) is that it

-^ as n -* oo . It is conceivable that Rn (x) may be a function like

(sin nx)/n *. This function -> as n -*- oo for all values of #, is

differentiable and Dsinnx/n = cosmi

;
but this differential coefficient

cos nx does not tend to as n -> oo
,
nor in fact does it tend to any

unique limit. In this case it would be clearly unjustifiable to

assume either that the infinite series of differential coefficients

Du (x) 4- Du.2 (x) -f . . . is convergent, or that the function f(x) is

differentiable, or that the sum of the series of differential coefficients

equals the differential coefficient of the sum function f(ai).

A closer examination of the properties of such series is needed.

This will be best carried out directly when needed in dealing with

special functions.

136. The series 1 +x + x2
/2! + x3

/3 ! + .... As an illustration

of how power series may be used to define and discuss functions,

let us consider the series

(3),

which we have found (Chapter n, 5) to be convergent for all values

of x and to have for its sum the exponential function ex. Ignoring

for the moment that the sum of this series is the known function

e*, let us call the sum of (3) E(x)\.
We have

= 1 + (x + K) + (x*/2l + xh +

Now E(x) = 1 + x 4- 0*/2! + ...

and ^(A) = H-fc + A8

/
2I +->

and these series are both absolutely convergent J for all values of

x and h.

* The series in this case would not of course be a power series.

f The direct proof that (3) is convergent for all values of x is easy, by applica-

tion of the " ratio test" (p. 80 above) or otherwise.

$ See Chapter i, 7, p. 77 etc. above.
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Therefore the two series may be "multiplied"* and we have

The typical terms of (4) and (5) are identical, being both equal to

That is, the two series (4) and (5) are identical and we have the

addition theorem for the exponential function

E(a + h) = E(a;).E(h) .................. (6).

From this relation we can at once deduce that, since the sum of the

series 1 + 1 + 1/2! + 1/3! + ... is the number ef, so that e = E(\)9

therefore E(x) = eF for all positive integral values of x, because

there being x 1's in the bracket,

=

there being x factors E(l),

The same is true if x is any positive rational number, p/q say, for

and therefore E (x)
= E (p/q) = e plq = eF. Q. E. D.

If x is any positive rational number,

whence E(x) = l/E(x) = e~x,
and the identity of the function

E (x) with the exponential function ex for all rational values of X,

positive and negative, is established.

The identity holds for all real values of x\.

The continuity, etc., of the function E (x) may be deduced from

the addition theorem, thus:

The incrementary ratio

.-.
* See p. 80 above. t See p. 73 above,

$ See Ex. 4, p. 175 opposite.
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Now [E (A)
-

1]/A
= (1 + A + A2

/2 ! 4- ... - 1)/A

= l + A/2!+A
2
/3!+...

->1 as A->0*,

for the difference between the last expression and 1 is certainly

less than r if A < 3. Hence the incrementary ratio -> E (a)

'-3
and the function is differentiable and DE (#)

= E (#).

The continuity is implied in the differentiability.

The integrability follows from the monotony, which is easily

established from the equation (6).

Thus we have established by direct consideration of the series

all the essential properties of the exponential function E (x) or eF.

137. General power series. It is not of course to be expected
that the functions defined by all power series will be so easily

discussed as the very special exponential function.

With the exception of the properties proved on pp. 171 172

above and another general property of power series, which will

be proved in 6, pp. 191 192 below, we omit all discussion of

general power series. In the next two sections we shall discuss in

detail the nature of the functions defined by certain important

power series of a type resembling the exponential series.

EXAMPLES XVI.

1. Draw the graphs of (1 + #)~
2 and of the functions 1 2#, 1 2#+ 30s

,
etc.

formed from the first few terms of the expansion. Compare the values of the

functions considered for x J, + *1, "01
;
and for #= 2.

2. Draw the graphs of !/(#+ 2) and 1/2 -x/4+x2
/8-x*/l6. Expand 1j(x+ 2)

in an infinite series of powers of x. For what values of x is the expansion
valid?

3. Use the binomial theorem to evaluate 1/(M)
6
, l/('99)

10
, (99/101)

10 correct

to three decimal places.

4. Prove that if a is any real number, E(a)= e
a

.

[Let a(x\y\x and y being rational. Then e
a
=(e?\ev) by Chapter n, 1,

~(E(x)\E(y)} by the rational case proved in the text, E(a) by the same

kind of argument by which the fact that (e
x
\e

y
)
is a Dedekindian classification

defining e
a was established in Chapter IL]

* See footnote, p. 153 above.
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5. Prove directly from the series for E (x) and E(-x} that E(x)E(~x}^\.
6. Prove directly from the series and Ex. 5 that the function E(x) is

monotonely increasing for all values of #.

7. Shew that the series 1-f #-*- ^-^^-H a~~~A~'B^+ ^s convergent for

1 < x< 1, and that its sum = (1 x}~k.

8. Deduce from Ex. 7 that

for-

9. Prove that if in any power series the error (or "remainder") after n terms

= /?% (#) < Kxn
numerically, where K is a fixed constant, independent of x and

n, then the function denned by the power series is continuous for all values of

x numerically less than 1.

[If the function is/(#), the difference

where sn denotes the sum of the first n terms.

Then \Rn (x+ K)~ Rn (x)\< K\x + h,\
n + K\x

where 6 is some number between \x\ and 1 and between x + h
\

and 1, \x + h
\

being supposed < 1. This -> as n ~> QO . n can be chosen sufficiently great

to make \Rn (x + Ii)
Rn (x)\ as small as we please. When this is done, the

difference sn (tf-\-h) sn (x)~->0 as A^0, because sn (x) is a continuous poly-

nomial.]

10. Prove that if the coefficients of the power series -f a^ x -f a2x2
-f . . . are

bounded, i.e.
|

an
\

< K for all values of n, the series is absolutely convergent
for

|

x
|

< 1 and that the function defined by the sum of the series is differentiable

for \x\<\.

[With the notation of Ex. 9, the incrementary ratio off(x) is the sum of the

incrementary ratios of Sn (x) and Rn (x). Argue about these separately.]

5. THE TRIGONOMETRICAL FUNCTIONS*

138. The functions C (x) and S (x) denned by the series

. X2 X4
, X3 X5

1
-2!

+
4!'"

Consider the two series

a? x6 x7

These series have their terms alternately positive and negative ;

* The definitions and main results of this section are applicable also if x is any
complex number. See Appendix.
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from and after the Nth term, where N is the integer next greater
than ^ (|

x
|
-f 1), the terms of both series certainly steadily decrease

in modulus and they tend to zero, whatever real number x may be.

The series are therefore convergent and their sums define functions

of x for all real values of x.

We will denote these functions by C(x) and S(x) respectively.

We have (7(0)= 1, S(0)= 0, and, to two places of decimals,

l-i + ~-... = -84, flf(-l)---84,

l-| +
J-...

= --42, ,8(2) = 2-1 + ... = -91.

Other values may be obtained.

G (x) is an even function, i.e. (7 ( a?)
= (#) ; and $ (#) is odrf,

139. The addition theorems. Let us try to establish addition

theorems, expressing G (x 4- y) and S(x + y) in terms of G (x\

We shall find that, not only do these, functions possess addition

theorems of this kind, but also the theorems themselves will give
us very valuable information about the functions.

The series (1) and (2) are not only convergent for all values of

x\ they are absolutely convergent*.

For, arguing from first principles, if the terms of the series (1),

for example, be replaced by their moduli, the terms from the Nth
onwards, N being the integer next greater than J (|<*?|

-f 1), are less

than (or equal to)

(2N^2)l
9

(2N-2)l
'

(2N-2)!
6*'"' 3

where d

These are the terms of a convergent geometrical progression, of

common ratio 6, and the sum of any number of them

See p. 77 above.

12
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Hence the sum of any number of terms of the series (1) as modified

is bounded, being less than the fixed number

T
2!
T " T

(2N - 4)1
T
(2# - 2)! 1 -

'

The modified series of positive terms is therefore convergent and

the original series (1) is absolutely convergent for all values of x.

Similarly the series (2) is also absolutely convergent.

An appeal to d'Alembert's ratio test for absolute convergence

(p. 80 above) would dispense with this proof, for in each case

I ttn+iMi | ^ a fixed number k which < 1, for all values of n beyond
a certain value.

Let, now, x and y be any two real numbers.

Then

............

'

......(3)

and S (x + y) = (x + y)
- +...

...

(4).

Also the series for G(x), C(y), 8(0)), S(y) are absolutely convergent
and therefore any two of these four series may be "multiplied*."
We have in fact

* See p. 80 (theorem B) above.
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and these series are all absolutely convergent.

Comparing the series (3) with series (5) and (6) we notice that

the terms of (3) are precisely the differences of corresponding terms

of series (5) and (6), i.e. the nih term (or bracket) of series (3)

= (- l)n+l f-^-~!_ + Jf^'y , afw-'y*
v '

L(2n-2)! (2/i-3)r (2*1-4)! 2r**'

- -
(2n - 2)! (2n

-
4)! 2! (2n

~
2)!

= the nth term of series (5) the (n l)th term of series (6).

This is true for all values of n greater than 1
;
and for n = 1 we

have that the first term of (3)
= 1 = the first term of ,(5).

Hence* the sum of the series (3) = the sum of (5) the sum of

(6), or

0(a, + y)
= C(a,')C(y)-S(ai)8(y) ............(9),

the required addition theorem for C(x + y).

Comparing similarly scries (4) with series (7) and (8), we obtain

the addition theorem for 3 (x + y), viz.

8(x + y)
= 8(:)C(y)+C(x)S(y) .........(10).

The student will notice that the two functions G(x) and S(x)
are intimately connected, both addition theorems involving all the

four functions C (#), (y), S (#), S (y).

140. Consequences of addition theorems. We can at once

deduce from the addition theorems various important algebraical

consequences :

Putting y x, we have

c(2x) = [C(x)y-[S(x)y\

S(2x) =
<

2,S(x)C(x) j

............... V
and

* P. 80 (theorem A) above.

122
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Putting y = x,

1 = (7(0) = C(x) C(- x} ~S(x)S(- x)

and therefore [C (x)J + [S (x)f = 1 .................. (12).

This relation (12) reveals still more clearly the intimate con-

nection between the two functions C (x) and 8(x\ for either can

now be expressed directly in terms of the other
;
thus

G(x) = V{1
- [S(x)n 8(*) = V{1

- [CO)]
2

}.

An important deduction from this relation (12) is that
| G(x) \

and

S(x)\ are less than or equal to 1 for all values of x ......... (13).

* x+y x y , x+ y x y
Again, since x= + -- and y= - - -- *

,
we have

Hence

and similarly

expressing the sums and differences of the two functions C(x) and C(y] (and

8 (x) and 8 (y)) as products of two C and S functions.

Other formulae will occur to the student of elementary trigo-

nometry when he realises that our addition theorems are formally

identical with the formulae for the sines and cosines of the sum of

two angles, x and y, the function S(x) replacing the sine and G(x)
the cosine. All the formulae of elementary trigonometry which can

be deduced algebraically from these addition formulae can be

establishedfor our functions S(x) and C(x).

141. Continuity and differentiability of C (x) and S (x). With

the help of the relations (14) (deduced from the addition theorems),

or direct from the addition theorems, we can prove that thefunctions

G(x) and 8(x) are continuous and differentiate for all values of x

and DC (x)
= - S (*), DS (*) - C (x).



THE TRIGONOMETRICAL FUNCTIONS 181

We have in fact from (14), if x is any number and h any number
other than zero,

G (a + A)
-

(x)
- 28 (x + A/2) B (A/2)

and S (* + A)
- S (a?)

- 20 (a? + A/2) 8 (A/2).

From (13), S(# -f A/2) and (7(# 4- A/2) are numerically less than

1
;
and therefore each of these differences is less numerically than

But 2S(A/2) f= 2 -
( -j -f- ... and is less numerically than

A provided only that
07 (H)

< 1 (i-e certainly if
|

A
|

< 4), for then
07

the series last written is of the "alternating" type*.

Hence if A takes on any sequence of values tending to the limit

0, the corresponding sequence for 28 (A/2) also tends to 0, and the

sequences for G (x + h) - C (x) and S (x 4- A) S (on) therefore both

tend to zero. The continuity of G(x) and 8(x) for all values of x

is established.

To establish the differentiability, we have that the incrementary
ratios for G (x) and S (x) are respectively

and -.
In virtue of the proved continuity, if A takes on a sequence of

values tending to zero, S (a; + h/2) -* S (x) and C (x + A/2) -> (x).

But

(16).
-

The series (16), certainly if
|

A
|

< 4, is of the alternating type

and its sum differs from the first term (viz. 1) by less than the

second term (A/2)
2
/3!. As A ~* Of, (A/2)

2

/3! -*0. Therefore the

sum of the series (16) -^ 1.

Hence, from (15), if A takes on a sequence of values tending to

the unique limit 0, the corresponding sequences of the values of

the incrementary ratios for C(x} and S(x) are convergent and tend

to the unique limits S (x) and G(x) respectively, no matter what

such sequence for A be taken.

*
Pp. 7476 above. t See footnote p. 153 above.
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That is, the functions G(x) and S(x) are differentiate for all

142. Monotony of C (x) for x positive and less than 2. It

also follows from the formulae (14), or direct from the addition

theorems, that the function C (#) is monotonely decreasing at least

for positive values of x less than 2.

For, if

and 8 (x + A/2)
= 8 (x) say

which is positive since #/a

/3 !
= x

(#?'
2

/3 !) < x

and the series for S(x') is of the alternating type; while

because ^ < 1 and-
.

o!

and therefore the difference C (x + A)
- C (a?) is negative and (7(#)

is decreasing for < x < 2 *.

143. Existence of a least positive number (or/2) for which

C (r/2) = 0. We now know that

0(0) = 1 and (7(2)= 1 -2a

/2! + 24

/4! -...<- 1/3;

and the function C (x) is continuous and monotonely decreasing as

x increases from to 2.

By an appeal to the fundamental property of continuous

functionsf we could deduce at once, firstly that for at least one

value of x between and 2, C (x) 0, and secondly, in virtue of the

monotony of 0(#), that there is only one such value of x in this range.

Or we can prove this directly thus :

If x is any number between and 2, C(x) is either positive,

negative, or zero. Let y denote any number between and 2 for

which C(y)^0 and z denote any number between and 2 for

which 0(*)<0.
Then every number y < every number z, because if a number

y ^& number z, G (y) would ^ C (z), which would be incompatible
with C(y)>Q>C(z).

* This fact also follows immediately from the fact that the differential coefficient

of C(x), viz. - S (ar), is negative for 0<#<2. We do not imply that C (x) ceases to

decrease as soon as x is as large as 2. It does not.

t P. 140 above.
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The classification (y \ z) is therefore a Dedekindian classification

of the system of real numbers if to the class y be added all numbers

less than or equal to and to the class z all numbers ^2; for theii

every real number is included in one of thte two classes. Let us

call the real number defined by this classification a, i.e. (y \ z)
= a.

Now the function C (x) is continuous at the point a and therefore,

if an increasing sequence of numbers ylt t/2 >
be taken, having

a as upper bound and unique limit, the corresponding sequence
G

(t/j), G (7/2), ... is also convergent and has G (a) for unique limit.

But these numbers ylt y2t ..., being less than d, belong to the

lower class (y) of the classification (y \
#); so that

and it follows that G (a) ^ 0.

Similarly, by taking a decreasing sequence of numbers zl9 #2 , ...,

tending to the unique limit a, we prove C(a) ^0.

Since G (a) > and ^ it follows that G (a)
= 0.

That a is the only such number between and 2 is evident from

the monotony. The theorem stated is completely proved.

This number a, thus defined as the least positive number for
which G (a)

= 0, is destined to play an important part in the

theory of these functions G (x) and S(oc) and elsewhere. We shall

find later that a = ?r/2, where TT is the ratio of the circumference

to the diameter of a circle. We will call it r/2.

144. So far, all we know as to the value of this number isr/2 is that

it is positive and less than 2. However, we know that (7(1) is positive

and G (2) negative and therefore (by the fundamental property of

continuous functions, or by the argument of the last paragraph)
this number -sr/2,

for which (7 (r/2) = 0, must lie between 1 and 2.

By evaluating to a sufficient degree of accuracy (7(1*5) and (7(1*6),

which are respectively positive and negative, txr/2 is proved to lie

between 1*5 and 1'6. It is possible to evaluate tar to any desired

degree of accuracy in this way, but the work involved in thus

obtaining any considerable degree of accuracy would be prohibitive^

Special series can be found for this purpose*. The value of the

number sr correct to six places of decimals is 3'141593.

145. Periodicity formulae. We have proved that G (r/2) = 0.

* See Exs. 16 and 19, p. 189 below.
.
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By the relation [C(a?)]
2 + [#(a?)]

2 = 1 it follows that flf(w/2)
= 1.

Since S (x) is known to be positive for all positive values of x less

than 2, it follows that 8 (m/2) = 1.

Thus <7(flr/2)
= and flf(r/2)*l (17).

From (17) and the addition theorems we get

<7(2r)=l, S(2r) = 0; etc.

Also, if x is any number,

C (r/2 + a?)
= G (w/2) (x) 8 (w/2) S (0),

whence C(cr/2 + a?)
=

5f(aj)|
and similarly #(r/2 + #) = (7 (a?) )

( ''

Also similarly, (tsr x) = (7
(,

and

These formulae (18) (20), called briefly the periodicity for-
mulae shew that the functions C (x) and 8(x) are both completely
known for all values of x if either G (x) or S (x) is known in the

restricted range to r/2.

If, for example, x lies between Qw cr/2 and 6tsr,

8 (x)
= flf (2r + 2^ + w -f w/2 + 2/)

where y is some number between and w/2 ;
arid therefore

6f

(a?)
= flf (-or -f to-/2 + y) by applying (20) twice

= -S(r/2+y)by(19)
= -0(y)by(18)

or -S(/2-y);
and ^ (#) is expressed in terms of C (y) where < y < cr/2 or

alternatively in terms of S(nr/2 y) where < r/2 y < w/2.

146. The graphs of C (x) and S (x). The complete graphs of

the functions 0(#) and S(x) can now be drawn. We have seen

that G (x) decreases steadily from 1 to as x increases from to

tar/2.
When x lies between r/2 and -or, (7 (x) = (7 (-GT #) and

therefore C (x) decreases from 1 to as a? decreases from -BJ to

r/2 in precisely the same way as G (x) decreases as x increases
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from to r/2 ; or as x increases from -or/2 to cr, G (x) is negative
and decreases from to 1 precisely as C(x) decreases from

to 1 as x decreases from -sj/2 to 0. When x lies between r and

2r, C(x) - C
(tsr + x) and therefore G (x) behaves in the range

-or to 2-Br precisely as C(x) behaves in the range to r.

Between 2r and 4-or, C (x) behaves precisely as between and

2-cr, because C (2r + #) = C (x) ; and the graph repeats itself be-

tween 2cr and 4<zr, again between 4w and Gtzr, and so on.

Since G (x) is an even function, the part of the graph to the left

of the origin is precisely similar to that part to the right of the

origin.

Also, since $(# + tar/2)
= C(x), and therefore $(#)= G(x w/2),

it follows that in any range, e.g. that from to txr/2, S (x) behaves

precisely as C (x) behaves in the range distant r/2 to the left of this

range, e.g. that from -"57/2 to 0; so that the graph of S(x) is

identical with that of (x) except that it is displaced a distance

tsr/2 to the right.

The graphs consist of endless successions of "waves" of length

2tsr; they are drawn in Fig. 15.

Y
1

Nw w>, y/
-i

Fig. 15,

147. Integrability of C(x) and S(x). The integrability of G(x}

and 8 (x) in the interval (0, r/2) (or any interval included in this)

is a direct consequence of the proved monotony of these functions*.

The integrability of these functions in any interval whatever follows

immediately. For, from the nature of a definite integral, since e.g,

G(x) is integrable in the interval (0, w/2) and also in the interval

(r/2, r)> it is also integrable in any interval (a, 6), including parts

of both these intervals
;
and similarly for any interval

; and for

the function 8 (x).

* The proof of pp. 144 148 above of the integrability of #8 is applicable with no

vital change.



186 FUNCTIONS [OH. Ill

148. The inverse functions, 6(x) and S(x). In the light of

our knowledge of the functions C (x) and 8 (x) our proof above of

the existence of one and only one number sr/2 between and 2

for which C( (

oi/2)
= 0, can, by an obvious and very slight modifi-

cation, be made to cover the important "existence theorem for

the inverse G function":

Ifx is any numberfrom 1 to 1 inclusive, there exists one and only

one number y from to & inclusive for which G(y) = x.

We have similarly also the companion theorem for S:

If x is any number from 1 to 1 inclusive, there exists one and

only one number y from tsr/2 to tar/
2 inclusivefor which S (y)

= x.

We will denote the inverse C and S functions thus established

by and S. G(x) is defined as that number y from to r inclusive

for which C(y) x, and S(x) is defined as that number y from
-

or/2 to r/2 inclusive for which S(y) = x.

The function G(x) is defined for all values of x from 1 to 1. It

is clearly monotonely decreasing and

easily proved to be continuous, differ-

entiable,and integrable throughout any

range in this range of definition (1,1),

except that, at x = 1 and x 1, the

continuity is restricted to continuity on

the right and on the left respectively,

and the property of differentiability

there fails entirely.

The function S(x) is also defined for

all values of x from 1 to 1. It is

likewise monotonely increasing, con- x '

tinuous. differentiable, and integrable

throughout any interval included in

the interval ( 1, 1\ with the same

exception.

The graphs of the functions C (x),

S (x) are drawn in Fig. 16.

It should be particularly noted that, in the definition of these

inverse functions C (x) and S(x), the restriction that y must lie in

the range from to -oj and w/2 to tr/2 respectively, is essential;

but it must not be thought, for example, that G(x) is the only
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number yy of any magnitude, for which (7(y)
= #. As we know,

from the periodicity of C (x) and 8 (#), this is far from being the case.

149. Resemblance to the functions of trigonometry. The
student conversant with elementary trigonometry cannot have failed

to notice the remarkable similarity between the functions (#), 8 (at)

and the trigonometrical ratios, or circular functions, cos#, sin#.

The properties considered above are shared in every particular bythe

two pairs of functions; and this agreement will be complete if the

unit of angle used is such that 180 is represented by the number

-sr, which will be the cae if radian measure be used if (as seems

probable) TS is identical with the number TT representing the ratio

of the circumference of a circle to its diameter. In spite of the

apparent total lack of connection of the sums of the infinite series

(1) and (2) with ratios of the sides of right-angled triangles (or

even with circles), the student will probably feel fairly confident

that the functions C (x) and S (x) actually are the same functions

as cos x and sin x
;

and his feeling will be correct. It is not indeed

difficult, once we have satisfactory analytical definitions of the

geometrically-defined trigonometrical ratios, to prove, on lines

similar to those adopted in Chapter II in obtaining the logarithmic
and exponential series, that C (x)

= cos x and 8 (x) = sin x for all

values of as, the angle x being measured in radians. The proof is

postponed to the next chapter*.
We call the functions C(x) and S(x) the trigonometricalfunctions,

and the functions G(x) andS(#) theinverse trigonometrical functions.

We do not of course assume any identity between these functions

and the functions cos x and sin x, arc cos x (or cos"1

x) and arc sin x

(or sin"1

^'); or between the numbers -or and TT.

EXAMPLES XVII.

1. Verify the addition theorems for C(x) and 8(x) if x and y are so small

that all terms occurring of degree exceeding three in x and y are negligible.

2. Evaluate correct to two decimal places S (-I), S(l\ S(2), (10), (20).

3. Calculate logC'('l) correct to three decimal places.

4. Prove <7(w/4)= S(c7/4)

* See p. 277. For the identity of ir and w see p. 272. See also Exs. 7, p. 231 ;

9 and 10, p. 200; 9, p. 266; and 8, 10 and 13, pp. 279, 280.
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5. Prove the "triple angle" formulae :

(3ar)
= 4 [C (a?)]

3 - 3C (x), S (3a?)
= 3 (ar)

-

6. Prove the " half angle
" formulae :

2
'

7. Prove (by induction) the formulae for "multiple angles":

where w is any positive integer and C and $ denote (7 (a?) and S(x) respectively.

8. Prove C (x} C (y} **\\C(x+y)+ C(x- y)} direct from the series. Establish

similar formulae for S(x)S(y), C(x)S(y), S(x) C(y).

9. Prove that S(l) is an irrational number.

[See Ex. 17, p. 60 above, where the irrationality of e is established. The

method there adopted will apply here also.]

10. Shew that the graphs of C(x} and S(x) cut the x axis at an angle of

45 at all points of intersection with the axis.

Prove also that the slope of either of the graphs at any point of intersection

of the two graphs is l//2.

11. Prove that C (x) has maxima at all the points 0, 2or, 4or, ... and

minima at all the points
i

zzr, 3ro, ... ;
the values of C(x) at the maxima and

minima being respectively 1 and 1.

Shew also that the maximum and minimum values of S (x) are 1 and 1

and that they occur at the points w/2, 6zsr/2, 9sr/2, ... ;
-

3o7/2,
-

7sr/2, ... ;
and

3o7/2, 7tzr/2, ... ; -or/2, -5ar/2, ... respectively.

12. Prove that

l + tf(a) + ff (2a) + 0(3a) + ... + ^

and 8(a) +8M+...+S[(-l^
n being any positive integer, and a any real number.

Deduce /"* C(x)dx**S(a) and [" S (at) dx= 1 - C (a).
Jo Jo

Hence prove that the area of the "wave" of the graph of C(x) between- or/2

and Q7/2 is 2.

[The summation formulae come by induction. For the integration cut up
the range into n equal parts ;

the total areas of the "small rectangles" are then

the above sums multiplied by a with a=
/?&.]

13. Prove the existence theorem for $(#), the inverse S function.

14. If x is any real number from 1 to 1 inclusive, shew that

(i) C(y}x if and only if y is one of the numbers Znw+C(x\ where n
has all positive and negative integral values (and zero), and

(ii) S (y) x if and only if y is one of the numbers nor+ (
-

l)
n
J5(x).
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15, Prove that the inverse trigonometrical functions C(x) and H(x) are

continuous and differentiable for 1 < x < 1
; and shew

[If ff(*)-y, so that *-ff(y), S(y)W[l-((y))2]W(l-*2
). Use the

method of pp. 128129.]
16. Establish the series

~ la;8 1.30* 1 . 3 . 5 x7

^ W-^+2 3"1
"

2T4 5"
+ 2^767 "*" -

for -1^#<1.
By taking x J deduce the value of w correct to two decimal places.

[Use the results of Ex. 15 and of Ex. 7, p. 176 and the general method used

in the deduction of the logarithmic series in Chapter n.]

17. Denning a function T(x) as the ratio [(#)]/[#(#)], obtain its funda-

mental properties and draw its graph.

Prove in particular that T (x+y)
=^-^^ffl and DT(x} = \l[C(x)]* for

1 ~~ * w l \y]

all values of x which are not positive or negative odd multiples of zsr/2.

Establish also the properties of the inverse T function, denned thus, T (x)

is that number y between or/2 and 07/2 for which T(y}x, this definition

being valid for all values of x. Prove in particular that DT(x}~\\(\. +#2
).

Discuss also the functions l/S(x-\ \fC(x\ C(x}jS(x) and the corresponding

inverse functions.

18. Deduce from Ex. 17 the power series for f(x) :

^3 ^5

*?+;-...,
valid for all values of x from - 1 to 1 inclusive. (Gregory's series.)

=-, T(4x-^J
=19. Shew that, if 7" (#)==-, T(4x- =

;
and thence deduce the

equality
~=

42^F j- ^(OOQ)-
From this formula and the series of Ex. 18

shew that, to six places of decimals, o;=3'141593.

6. THE HYPERBOLIC FUNCTIONS

150. The functions cosh x and sinh x. A pair of series similar

to the trigonometrical series and defining functions of importance
are

1+^/21 + ^/41+ ........................ (1)

and + #73! + a"/5! +
%
........................(2).

These series are absolutely convergent for all values of x. We will

call their sums cosh x and sinh x respectively. These functions are

the hyperbolic cosine and hyperbolic sine. Alternative definitions

are the equalities of Ex. 1 below.
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We can calculate the values and establish the properties of these

functions in just the same way as before. We have in fact

cosh = 1, sinh = 0; cosh x is an even function
;
sinh x is odd.

sinh x is monotonely increasing for all values of x.

cosh x is monotonely decreasing for negative values of x and

monotonely increasing for positive values of x.

Both cosh x and sinh x increase beyond all limit.

sinh x takes on all real values
; cosh x takes on all real values

greater than 1.

Both functions are integrable throughout any range.

The addition theorems are

cosh (x 4- y) cosh x cosh y + sinh x sinh yy

sinh (x + y)
= sinh x cosh y + cosh x sinh y.

A" -I

-2

-3

Y'

Fig. IT.
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We have the relation (cosh xf (sinh a?)
2 = 1 for all values of x*.

The functions are continuous and differentiable and

D cosh x = sinh x, D sinh x = cosh x.

The proofs of these properties are left to the student.

The hyperbolic functions are not periodic and there is no real

number x for which cosh x = 0.

The graphs of these functions are as drawn in Fig. 17.

From the functions sinh x and cosh x are derived other hyperbolic

functions, defined thus :

, sinh x , 1 .1
tanh#= i , sech'=

, ,
cosech x = -,- -

,

cosh x cosh x , sinh x

, ,
cosh x

coth # = -.-, .

sinh x

The properties of these functions can be deduced from those of

sinh x and cosh x.

151. The inverse hyperbolic functions. The existence of

inverse hyperbolic functions follows from the continuity and mono-

tony of the functions cosh x, sinh x. They are defined thus:

arg cosh x that positive number y for which cosh y = x.

This function, the inverse hyperbolic cosine, is defined for all

values of x greater than (or equal to) 1, but for no values of x less

than 1,

arg sinh x = that number y (positive or negative) for which

sinh y = x.

This function, the inverse hyperbolic sine, is defined for all

real values of x^.

The functions inverse to the other hyperbolic functions, tanh x,

etc., are defined similarly.

The properties of the inverse functions can be deduced from our

knowledge of the direct functions.

152. Differentiability of function defined by general power
series. In this and the preceding section we have established in

detail the properties of four functions defined by special power
series. As mentioned in the last section, it is not possible to discuss

so easily the functions defined by every power series. It is however

possible to prove, for example, that functions so defined necessarily
*

(cosh a;)
2 and (sinh a;)

2 are usually written cosh2
a; and sinh2 ^.

t arg cosh x and arg sinh x are -also denoted by cosh" 1 x and sinh" 1 x.
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possess (within certain limitations) the important property of

differentiabili ty.

Thus if the power series

a + MIX + a2a? 4 ........................(3)

is convergent for all values of a? and has its coefficients a , aly a2 , ...

all positive, then the function f(x) which is the sum of this series

is differentiable for all positive values of x, and

D/(<c) = 0! + 20,0 + 3a8#
2
4- ............... (4);

this series being itself convergent for all values of x.

To prove this, we have, if x and h are any positive numbers,

f(x -f h) -f (x) = a -f ! (x + h) 4 a2 (x 4- A)
2 + . . .

4- A2
) 4 as (3hx* 4- 3&2

a5 4 A3
) 4- . . .

,

by subtracting the two convergent series; and therefore the in-

crementary ratio [/(# + A) /(#)]/A equals

-h ............ (5)

/i
2
-h ......... (6),

(because all the terms of (6) are positive and the series (6) con-

verges because (5) converges)

=
0,1 -f 2a2# -f 3a3

<2
-f . . .

+ A [aa 4- 3a8^ + ash + 6a4^
2
4- 4<a4 a?/i 4- a4A

2
4- . . -1 ......(7),

by separating the terms which do not contain A, this derangement

being valid and the two series in (7) being convergent because all

the terms are positive*.

If h< 1 say, the sum of the series in the bracket in (7) is less

than
a + at (x + 1) -f aa (# 4 I)

2
4- as (x 4 I)

3
4- ...,

(because this series includes, besides other terms, all the terms of

the series concerned with h replaced by 1), and therefore is less than

OQ 4 ajR 4 2^2 4 . . .
,
i.e. f(R), where R is any number exceeding

a? 4 1. Hence the incrementary ratio tends to a^ 4 2a2# 4- 3a3#
3
4- ...

as h ^ 0, and the differentiability of/(#) on the right is established.

The modification of the proof needed to establish the complete

differentiability is slight and is left to the student.

* See Ex. 12, p. 84 above.
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By further modifications of the proofwe can prove the more general theorem :

// the power series aQ+aiX+a%x
2+... is absolutely convergent for all values

ofx between R and J?, then the sum-functionf (x} is continuous and differentiable

for all values of x between R and R, and in that range

Df(x)= al + 2a2#+ 3a3#
2+ . . . .

A proof of this important general theorem is given in Ex. 14 below.

In general (see Ex. 13 below) the range of convergence of a power series

consists of all values of x between - R and R where R is some number (called

the radius of convergence). The series may or may not be convergent also for

x R and x=R, but on the one hand it is not convergent for any value of

x such that
|

x > R and on the other hand it is absolutely convergent for all

values of x between -R and R (i.e. such that \x\<R). The above theorem

therefore applies to any power series over its entire range of convergence ( R,

R) except the extreme values x= - R, x R. As to the behaviour of the series

and the function for the extreme values, we say nothing. Not only may the

series be not convergent for these values but the function may be unbounded
in the complete interval

( R,R) and have other peculiarities for the extreme

values. The discussion of these questions belongs to the theory of functions.

In virtue of the above theorem, and the theorems of pp. 170 171 above,

we see the essential amenability of the sum-functions of power series to the

fundamental processes of analysis. Other types of series*, though often of very

great utility and importance, do not as a rule possess these general properties,

EXAMPLES XVIII.

1 . Prove that cosh x (e
x+ e

~
*)/2 and sinh x= (e

x- e
~
*)/2.

2. Evaluate to four decimal places cosh 1, sinh 1, cosh 10, sinh 10.

3. Prove that

cosh x + cosh y 2 cosh -& cosh ^
,

cosh x cosh y~ 2 sinh ^~- sinh ,

Z 2>

sinh x -H sinh y 2 sinh ~ cosh -
,

sinh x sinh y= 2 cosh sinh -~
.

4. Prove the addition theorems and other relations stated in the text.

Prove also that

cosh 2# (cosh #)
2+ (sinh #)

2 and sinh 2#= 2 sinh x cosh x.

5. Prove that the functions cosh x and sinh x are continuous, differentiable,

and integrable for all values of x and monotone in positive or negative ranges ;

and that they are bounded in any bounded range,

6. Prove that the graph of cosh# has one turning point, a minimum at

#=0, where cosh x 1 : and that the graph of sinh x has no turning point.
*

E.g. Fourier series.

WMA 13



194 FUNCTIONS [CH. Ill

7. Prove that the graph of sinh x cuts the x axis at the origin at an angle

of 45.

8. Prove that

I H- cosh a+ cosh 2a + cosh 3a 4- ... 4- cosh (n-\}a

sinh -
-f sinh (n

-

2 sinh
A

and

cosh (n
-

i) a
- cosh -

sinh a + sinh 2a + sinh 3a+ . . . + sinh (n 1
) a =

2 sinh -

Deduce that

/a
fa

cosh xdx sinh a and
/

sinh x dx= cosh a - 1
;

9 70

and thence

/*& , fi>
I cosh xdx sinh 6 - sinh a and I sinh xdx cosh 6 - cosh a.

Jo, J a

[The first part by induction. For the integrals, which are known to exist,

divide up (0, a) into n equal intervals a/n= a say. The total area of the "small "

rectangles of the 'definition then a [1 -f cosh a -h . . . + cosh (n
-

1) a], and the

/a
cosh xdx follows.]

9. Solve the equation sinh#=2#.

[A graphical solution can be obtained by drawing the graphs of sinh x and

2,27 and finding the abscissae of the points of intersection. Analytically, the

function sinh x 2# is continuous
;

it is negative when x = 1 and positive when

57= 4
;
whence there is a root between 1 and 4. And so on.]

10. Shew that if x is sufficiently great, cosh x and sinh x exceed #n
,
no

matter how great the index n.

11. Discuss the properties of tanh x, and the inverse hyperbolic tangent

arg tanh #, which k defined for all values of x between 1. Shew in particular

D tanh x ** (sech x)
2

;
D arg tanh x ^

Discuss also sech x and cosech x.
L X

12. Discuss the properties and sketch the graphs of the inverse hyperbolic
functions. Prove that

arg sinh x= log^ \x -f ^(x* -f 1
)], arg cosh x= logg [#+ V(^

2 - 1
)],

arg tanh x-\ loge [(1 +#)/(! -#)].

13. If a power series is convergent for #= a, it is absolutely convergent for

all values ofx numerically less than a.

[Use the "comparison theorem" for convergence of series of positive terms,

taking a geometrical progression as series of comparison.]
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14 Prove the theorem of the text that if a power series is absolutely con-

vergent for all values of x numerically less than R then its sum is a continuous

and differentiable function for all such values of x and the differential coefficient

is the sum of the series whose terms are the differential coefficients of the terms

of the original power series.

[ Use the notation of the text. If
|

x
\
+

1

h
\

< R, the series

aQ + a1x+a1 k + a2^+2a2^h^a2h
z+ a3^-\-3a^2

h-{-3ayxk
2
-{'a3h^+ ...... (1)

is absolutelyconvergent because, when the terms are replaced by their numerical

values, the series is equivalent to the series of positive terms

known to be convergent. The series (1) can therefore be deranged. On the one'

hand (\) a + a.i(x+ h}-{- ...=f(x+ h). On the other hand

The series in the last bracket is bounded. Therefore

/(?l^-/(*Uai+2w ... as

and the theorem is proved.]

15. Prove that if the series

is convergent and if the sum-function of the series

*2
/,

then f(x +h}~f

where Df(x) denotes the differential coefficient of/(#), D2
f(x) the differential

coefficient of the differential coefficient, and so on. (Taylor's theorem.)

132



CHAPTER IV

DIFFERENTIAL AND INTEGRAL CALCULUS

153. The most important practical application of the ideas of

limits of sequences is to be found in the differential and integral

calculus. The calculus is a very powerful instrument in geometry,

dynamics and almost all branches of mathematics and applications

of mathematics to the sciences. The main results of the calculus

were discovered independently ofany theory ofconvergent sequences,
or of irrational numbers, on which the theory of sequences depends,

as set out above. Historically the same order of progress has been

maintained in the case of the calculus as has been the case with

the rational numbers and with most instruments of mathematical

thought, the practical use has been fully and advantageously
understood long before the principles on which the instrument

logically rests have been at all clear. For some time after the

introduction of the calculus by Newton and Leibniz in the seven-

teenth century, there was considerable controversy as to the validity

of the new process, philosophers, such as Bishop Berkeley, main-

taining that it was without foundation and that all results obtained

by its aid were worthless. In so far as the attacks were restricted

to the lack of logical basis, these criticisms of the philosophers were

sound, but the great and obviously true results obtained by using
the calculus were sufficient justification for the mathematicians'

scepticism of the philosophers' arguments. This controversy, includ-

ing attempts by mathematicians such as Maclaurin and Lagrange
to put the calculus on a basis not liable to the attacks of the philo-

sophers, may be said to have lasted throughout the eighteenth

century. At the beginning of the nineteenth century, the great

rush of new results consequent on the introduction of the calculus

having somewhat abated, a new movement for rigour and criticism

of principles in mathematics began, initiated largely by Abel and

Cauchy. It is this movement which has resulted, towards the end

of the last century, in the complete clarification of the principles

of the calculus, as also of the ideas of irrational numbers and infinite

sequences, As a result of this movement we are now in a position
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to build up the calculus on the logically safe foundation of the ideas

of limits.

154. We have already, in Chapters II and in, in discussing the

behaviour of functions, been compelled to introduce some of the

special kinds of limits which are the special province of calculus.

In this chapter we shall discuss systematically the fundamental

notions of the calculus and illustrate these notions by simple

applications and developments in analysis, geometry, and applied
mathematics.

1. GENERAL IDEA OF A LIMIT

155. The fundamental idea of a limit is that of an infinite

sequence (Chapter I, 6) where we have an unending set of

numbers tending to a unique limit. Limits may occur in other

forms. In one form or another they are of great importance in the

application of mathematics to physical problems, because many
phenomena are measurable only in terms of limits. In geometry,
for example, the notions of the length of a curve, the area of a

region, the volume of a solid, and the tangent to a curve are of

considerable importance and yet none of these notions can be defined

satisfactorily (except in special simple cases) other than in terms

of limits*. And again in mechanics, velocity, acceleration, centres

of mass, and moments of inertia necessitate the consideration of

limits. And generally whenever we consider mathematically any
continuous change ofany measurable quantity, i.e. briefly through-

out all mathematical physics, the use of limits is unavoidable.

156. Limit of a function of an integral variable. The simple

notion of the limit of a sequence may be considered as the limit

of a function of an integral variable. The nth term of a sequence
is a number depending on the integer n, and is therefore a function

of n, defined for all positive integral values of n. If the sequence

is convergent, then we know that this function, f(n) say, tends to

coincide with the unique limit as the variable n increases inde-

finitely; and in fact the convergence of such a sequence is in

essence a description of the behaviour of the function for indefinitely

large values of n. It is therefore appropriate to consider the limit

of the sequence as the limit of the function /(n) as the variable n
* Or bounds.
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increases indefinitely. The notation lim f(n) L or f(n)-^>L as
n-*-oo

n -** oo
,
introduced in Chapter I as a convenient abbreviated state-

ment, is natural and appropriate, as directing attention to the

function f(n) and its behaviour as n increases indefinitely.

157. Limits of a function of a continuous variable. We have

already met, in our study of the properties of polynomials and other

functions, what may be looked on as another kind of limit, the

limit of a function of a continuous variable. We have seen that for

some functions of the continuous variable #, any decreasing sequence
of values of x which ^-a gives rise to a sequence of corresponding
Values of the function (y) which tends to a unique limit, and that

this limit (L t say) is the same for all such sequences. In such a

case we say that the function y has a unique limit on the right at

the point x = a, viz. L^

Similarly a function y has a unique limit on the left at x = a, viz.

L2 ,
if the sequence of the values of y corresponding to any increasing

sequence for x which (* a is convergent and has the unique limit L2 .

If a function has a unique limit on the right and also a unique
limit on the left at x = a and if these two limits are equal (= L), it is

said to have a unique limit (L) at x a*.

Denoting the function by /(#), we use the notation lim f(x) = L,
x-*-a

or alternatively, f(x) ~> L as x -^ af.

Another way of defining the limit of a function of a continuous

variable which in some ways appears simpler is the following:

The function f(x) of the continuous variable x tends to a unique
limit L as x tends bo a (i.e. \in\f(x) exists and = L) if, corresponding

X-fO,

to any positive number e however small, it is possible to choose

Another positive number 8 so small that for all values of x between

a 8 and a-f-8 (with the possible exception of the value x=a itself)

the difference between f(&) and the fixed number L is less than the

number e, i.e.

\f(x)-L <e for a S< x< a + S(.xa).
*

Corresponding to the more general limiting numbers of a sequence (p. 44) there

are non-unique limiting numbers (also often called limits) of a function at a point.

They lie beyond the scope of this course. The word limit in what follows means

Uniqufe limit.

t We have in fact already used this notation as an abbreviation. (See e.g. the

footnote to p. 153 above.)
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That these two definitions are equivalent will be obvious after a

little thought; for if f(x) has the limit L as x~*a in accordance

with the first definition, it will follow that, for all values of x suffi-

ciently near a (i.e. within some distance B of a) on either side of a,

/(#) differs from L by less than any arbitrarily small number; for

if, no matter how small we took S, there were always, for x within

the distance 8 of a, values off(x) differing from L by more than e,

we could then find a sequence of values of x tending to a as limit

for which
| / (x) L

\

> e and therefore not having L as the limit

of the sequence, contrary to the conditions of the first definition.

The conditions of the first definition therefore imply those of the

second. The converse is even more obvious.

It is with limits of this kind, limits of functions of a continuous

variable, that differential calculus is mainly concerned.

Examples of limits of functions are :

Km #2=0; lim #2=1; lim (sinh x\x] = I
;
lim #sin(l/#)=0; Km sin(l/#)

#-*() x-**\ 05--0 a;-*>0 x-^-Q

does not exist; lim log,r=0; lim log# does not exist; lim [#], where [#]
#-*! 05-*-0 -*

stands for the greatest integer not exceeding #, exists and =0; lira [x] does
-*!

not exist, though if we restrict ourselves to values of x greater than 1 the limit

("on the right") exists and =1 and if we restrict ourselves to values of x less

than 1 the limit ("on the left'') also exists but =0.

The notions of the limit of a function at a point and the value

of the function at that point are, of course, quite distinct and must

not be confused.

The student will notice that the definition of continuity

(Chapter ill, p. 139) may now be restated in the form:

The function f(x) is continuous at the point x = a if lim f(x)
x-^a

exists and =/(a).

158. First definition of the length of a curve. The length of
a curve provides an example of another type of limit, similar in

essentials to that needed in the definition of the definite integral

or area of a plane region. The measuring of a length is essentially

performed by means of straight lines, length having originally no

meaning except along a straight line. In practice it is true one

can often determine the length of a curve by replacing it by a

flexible string and measuring the string when straightened out;

but such a method will not answer the mathematical problem of
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the measurement of the length of the curve, for in such a method
we have to presuppose that the string has the same length in the

two positions (curved and straight), a supposition which is entirely

meaningless unless the length of the curve has been independently
defined. We can proceed thus: On the curve AB (supposed con-

tinuous) take a number of points, Pi,Pa ,
... Pn say, and join them

up in pairs in order, so that a "polygon" is formed of the straight
lines PiP2 ,

P2 P, ... Pn-iPn all of whose vertices lie on the curve.

(See Fig. 18.) If all these chords

PiP2 etc. are small the polygon will

appear (if the curve be a simple

one) very much like the curve. The pA
perimeter

of this polygon is known, being

merely the sum of a number of measurable straight lines. Suppose
now, each of the arcs of the curve cut off by the points Pl9 P2 , . .. Pn

is subdivided by taking other intermediate points on the curve, and
all the points so obtained are joined in the same way, thus forming
another polygon (P/P2'P3'P4

'

. . . Pw'

say) of a greater number of

sides than the first polygon. Since this polygon will, in general, lie

closer to the curve than the first, it will naturally be considered to

give a better approximation to the length of the curve than the

first. This process of interpolation of new vertices may be repeated

indefinitely. (The sequence of the perimeters of these polygons,

being increasing, will necessarily be convergent if bounded.) It may
happen (as it does in the case of most simple curves like circles,

conies, etc.) that the perimeters of the successive approximating
polygons not only tend to a definite limit as the length of the

greatest of the chords forming the sides is indefinitely diminished
in this way, but also have the same limit for all possible choices of

such a sequence of polygons (provided that the maximum chord is

made to tend to zero). // this is the case, the curve is said to be

rectifiable, or to have a length, and the limit of the perimeters of the

inscribed polygons is called the length of the curve. Ifno such unique
limit exists the curve is not rectifiable, i.e. has no length.

159. In this definition of the length of a curve it will be clearly
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understood that we do not confuse the curve with any of the

polygons. A polygon will always consist of straight sides and

angular vertices, and a smooth curve like a circle has neither

straight sides nor vertices. The object of the construction of

polygons of large numbers of sides is not to obtain a polygon "in-

distinguishable
"
from the curve and then to assert that any property

of such a polygon applies to the curve. Such an assertion would

be very like asserting, for example, that in an ideally constructed

American city with a large number of streets running all North

and South or East and West the path of a man who travels from

the S.W. to the N.E. corner of the city along the streets closest to

the diagonal is practically indistinguishable from the diagonal itself

and therefore is practically indistinguishable from this diagonal in

length, the truth being of course quite different, the ratios of the

two distances being /\/2 or 1*4

160. Proof of rectifiability of a circle. Using this definition

we will now prove that any arc, or the whole circumference, of a

circle is rectiftable. We know (from the first book of Euclid) that

if we take any inscribed polygon, say

PjPjPsP^s (Fig. 19), and interpolate,

on the arcs cut off, other points, with

which to form vertices of an inscribed

polygon of an extended number of sides,

and then interpolate further points, and

so on, the perimeter of the polygons
fj

steadily increases at each stage. But it

is also easy to prove that the perimeter

of any inscribed polygon is less than

(say) that of a square circumscribed to

the circle, viz. SR if R is the radius of the circle. Hence the

sequence of perimeters of inscribed polygons obtained by successive

interpolation of vertices on the circumference is a steadily increasing

sequence which is also bounded. Therefore this sequence has a

unique limit, say Llt which ^SR.
Ifwe circumscribe polygons to the circle by drawing the tangents

at the vertices of these inscribed polygons, we shall similarly obtain

a monotonely decreasing sequence of perimeters which is bounded
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below. This sequence has a lower bound and unique limit, say
Z8 .

Further, supposing that all the chords which are the sides of the

inscribed polygons tend to zero, these two limits are identical. For

the difference between the perimeters of an inscribed polygon

(e.g. P^P^P^P^P^) and the corresponding circumscribed polygon

(T^T^T^T^) equals the sum of such differences as

(P^+ZVPJ-IVP,;
and this difference equals

The difference of perimeters therefore < (P1P^+ ... +P5Pl )a. if a

is the greatest of the numbers OPl/ON1 1 etc.; i.e. < 8Uot.

But, by choosing the chords PjP2 etc. sufficiently small, a (and
therefore also 8jRa) can be made as small as we like, i.e. the peri-

meters of the circumscribed and inscribed polygons can be made
to differ by less than any pre-assigned positive number (however

small). The two limits L
l
and L of these perimeters therefore

cannot be unequal, i.e. Ll L^ L say.

It now follows easily that this common limit L is the same no

matter what systems ofpolygons may have been chosen (provided the

maximum side tends to zero). For if Z/ = LJ = L' are the limits

corresponding to any other system of polygons, we have easily

(since any circumscribed perimeter > any inscribed perimeter*)

L^ ^ Z2', LI ^ LI', i.e. L ^ J7, L^L'\ whence L = Z/.

The limit of any sequence of inscribed perimeters is thus in-

dependent of the particular set of polygons chosen, provided only

that the greatest side -* 0. The circumference of the circle has

therefore a length in accordance with the above definition. Slight

modifications will make the proof applicable to any arc of a circle.

The actual determination of bhe length of the circumference

of the circle can be carried out by calculating the perimeters of

successive inscribed and circumscribed polygons (preferably regular);

* If PiP2...Pn is any inscribed polygon, and Qi , (?2 , Qm ^e points of contact

with the circle of any circumscribed polygon and if we form two more polygons,
inscribed and circumscribed, having all the points JP1} P2t ... Pw , Qlt Q2y ... Qm
as vertices and points of contact with the circle, it follows (from Euclid i, 20) that

if p, q,ri ,re are the perimeters of the four polygons p f̂
r
i
< r

e^q; which proves
the statement.



1] GENERAL IDEA OF A LIMIT 203

the length of the circumference being intermediate to the inscribed

and circumscribed perimeters. By taking polygons of 96 sides, as

was done by Archimedes in the third century B.C., the value of the

ratio of the circumference of any circle to its diameter (TT) can be

calculated correct to two places of decimals.

The evaluation of lengths of curves and limits of similar type

depends in general on integration.

161. Second definition of length of a curve. The above

definition of the length of a curve is that which has up to the

present time been most established by custom. Such lengths may
however be defined in another way which is simpler and more

convenient in theory and practice.

Let us consider the set of all possible inscribed polygons (the

vertices being taken in order along the curve). The set of numbers

representing the perimeters of these polygons will not be a finite

set or even a sequence (as it is impossible to set them all down in

order as the terms of a sequence). But it is quite possible that all

these numbers are less than some fixed number (K say); i.e. that

the set is bounded in the same sense as a sequence or a finite set

may be bounded. If the set of perimeters of inscribed polygons is

bounded in this way, the curve is rectifiable. If this is the case, the

system of real numbers can be divided into two classes, x and y,

such that y typifies any number (such as K} exceeding all possible

inscribed perimeters and x is any number less than all such numbers

y\ and the number (x\y) defined by this classification is the least

number not exceeded by any perimeter. That is, the set of peri-

meters has an upper bound (x \ y). This upper bound of the perimeters

of inscribed polygons is the length of the curve.

It is easy to prove that a curve, rectifiable according to our first

definition, is rectifiable also according to this second definition and

that the lengths so obtained agree. The converse is also true but

the proof of this is more difficult.

Using this second definition, the rectifiability of the circle is

an immediate consequence of the fact that the perimeter of any
inscribed polygon is less than that of the circumscribed square.

162. Definitions of circular measure and the circular func-

tions. Having defined the length of a curve, and proved that any
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arc of a circle has a length, we are now in a position to measure

angles in radian measure and to define and discuss the circular

functions.

The radian measure of an angle AOP (Fig. 20) is the length of

the arc AP which the angle cuts off the

circumference of a circle, of centre and

unit radius OA = OP = 1. Thus if the length

of the arc AP = x, the radian measure of the
A

angle AOP = x.

We suppose in the first instance ^ x < 2?r

and the arc AP measured from A in a definite

direction, say that indicated in the figure by
the arrow. Through the centre erect OB,

perpendicular to OA, in the direction indi-
lg *

cated in the figure. Considering OA and OB as a pair ofrectangular

Cartesian axes, let the coordinates of P be X, F; so that, with due

attention to sign, XON, Y=NP. The circular functions cos a?

and sin x are defined as cos x = X, sin x = F.

If x ^ 2?r, an arc AP of length x will ^ the complete circum-

ference. In the measurement of such an arc the circumference is

followed a second time, and so on if necessary. Corresponding to

any positive angle x, there will always be a point P which marks

the extremity of the arc AP of length x. If x is negative, the arc

AP is measured similarly, but in the reverse direction. In all cases

there is a definite point P corresponding in this way to any real

number x. The above definition of cos x and sin x will therefore

apply to angles of any magnitude as so defined.

The derived circular functions are defined as:

tan x = sin x/cos x, cosec x = I/sin x,

sec x = 1/cos x, cot # = cos x/sin x ;

these definitions being valid for all values of x except those for

which the denominators are zero.

We notice that if x is positive and < Tr/2,

cos x = Ar
,

sin x = NP, 'tan x = AT
y

and are all positive.

From these definitions the usual results of elementary trigono-

metry are deduced. In particular the circular functions have
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addition theorems and periodicity formulae which are identical

with those of pp. 179, 184 above, with the substitution of

cos for (7, sin for 6', and TT for OT,

Inverse circularfunctions arc sin x, arc cos x
t
arc tan x (also written

sin"1
x, cos""1

x, tan"
1

x) can be defined in a manner similar to that in

which the inverse trigonometrical functions S (x), G (x), T(x) were

defined (p. 186 and Ex. 17, p. 189); thus arc sin x is defined for all

values ofxfrom 1 to 1 inclusive as that angle y, measured in radians,

restricted to lie in the interval TT/% to 7r/2 (i.e. ?r/2 ^ y ^ ir/2), for
which sin y = x.

In theoretical work angles are invariably measured in radians.

In what follows the angles are all so measured.

163. Important inequalities and limits. We have the useful

and important inequalities:

sin x < x < tan x if < x < ?r/2.

For the angle x is less than a right angle and we have from Fig. 20

that NP < arcAP < A T, because NP and A T are respectively less

and greater than inscribed and circumscribed polygons (viz. AP
and AS + SP respectively) belonging to sequences of which the

length of the arc AP is respectively the upper and the lower bound.

We deduce from these inequalities the important limits:

, . sin x , , . tan x
_,

iim- =
1, lim- = 1.

.r-^o x x-*o &

^ sin# . ON . At or - = cos x = 7T-7- -* 1 as x \>
tan x OA

,
J_ 1 f , . . sin# , , tan# t

. A ,

and therefore, a fortiori,
----- -* 1 and -^ 1 as x V 0; and
x x

as x f these functions behave in the same way.

164. Areas and tangents. The area of a portion of a plane
bounded by curved lines is another example of a similar kind of

limit, the area, as with the special case of Chapter III, being
defined as the limit, if it exists, of the areas of any set of rectangles

which tends to coincide with the area concerned.

The important case of the definition and determination of

tangents to curves has been considered before (in Chapter III) in

discussing the continuity and differentiability of polynomials and

other functions.
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165. Velocity. Let us take a kinematical illustration: What
is meant by the velocity at a certain time of a body moving along
a straight line ? The average velocity over a specified period of time

is simply the ratio of the distance covered to the time taken to

cover the distance
;
but the body may have been moving at different

velocities in different parts of its motion. Our problem is to define

the velocity at any particular instant.

Consider the average velocities over different intervals of time

beginning or ending at the instant under consideration; these

simply being the ratios of the distances covered by the intervals of

time. It may happen that these average velocities all approach
more and more nearly to some fixed velocity as the intervals of

time are taken smaller and smaller. If we represent the distance

travelled by the body in the time t (measured algebraically) by

y (t), y being a function of t, the average velocity between the times

t and t + h will be [y (t + h) y (t)]/h. If this average velocity,

which is a function of the continuous variable h, tends to a unique
limit as h -> 0, this limit is called the velocity of the body at the

time t. If there is no such limit the term velocity has in this case

no meaning. The naturalness of this definition as the mathematical

interpretation of our preconceived physical ideas of velocity will be

sufficiently apparent to the student.

166. Of the special types of limits, that of a function of a con-

tinuous variable is much the most important. Throughout the

remainder of this course we shall use the term limit solely in this

sense except where there is occasion to use it in its original sense

as the limit of a sequence (or as a limiting number).

EXAMPLES XIX.

1. The following are examples of limits of functions of an integral variable:

lim ()
n
=0, lira (l + l/tt)

n
=tf, lirn S (ri)fn

= (where S (n) is the trigono-

metrical function defined in Chapter in, 5), lim S (n) does riot exist.

2. The following are examples of limits of functions of a continuous

variable :

lim #= 0, lim [(#+A)
2-#2

]/A=2#, lim [S(h)]/h=l.
x-*Q h-*Q />-*.<)
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3. The curvature of a plane curve is the limit of the "average curvature"

over an arc of the curve as the arc tends to zero in length, the average curva-

ture being the ratio of the angle between the tangents at the two extremities

of the arc to its length.

4. Evaluate the ratio of the circumference to the diameter of a circle (rr)

correct to one decimal place by calculating the perimeters of polygons of a

sufficient number of sides inscribed and circumscribed to the circle.

5. The angle x being measured in radians, establish the inequalities

2/7T < (sin x]\x < I
,
where < x < tr/2.

6. Prove lim sin# 0, lirn cos#=l, lim (1 -cos #)/,#= 0,
-*() J7--0 a?-*0

lim (1
-

7. Prove the addition theorems for sin x and cos x. Hence prove that sin x

and cos x are continuous for all values of x.

8. The area of a circle may be denned as the limit of the areas of inscribed

polygons as in the text. With this definition shew that a circle has an area

and that it =7r/22 if R=the radius.

9. The circular measure of an angle AOP (Fig. 20) may be denned as half

the area of the sector A OP. Prove, from this definition, the inequalities and

limits of p. 205.

10. The notation lim f(x) is self-explanatory. Prove
#-* 00

lim #H
/e*
= 0, lim [(#)]/#= lim [^ (#)]/# =0, lim (log #)/a? = 0.

x--<x> -*< #-*< x-*-<x>

11. Prove that any part of the graph of a bounded function is rectifiable,

(i) if the function is monotone in the range considered, or (ii) if the range can

be divided into portions in each of which the function is monotone.

[Form polygons as in the definition. If the extremities of one of the chords

are (x^ yi) and (#2 , y%) the length of the chord is clearly less than the sum of

the two positive numbers x2
-
x\ , 3/2 y\ (supposing the function increasing for

definiteness). Adding up for all the chords we see that the perimeter of any
of the polygons is less than the total sum (6

-
a) 4- (B - A ), where the two

extremities of the arc are denoted by (a, A) and (6, B). The set of perimeters

is therefore bounded. The second part is obvious.]

12. Any part of the graph of any of the following functions is rectifiable:

,r2
, #, log x (both extremities of the arc lying to the right of the* origin), ex

,
C (#),

S(x\ V(x), S(x)j cosh#, sinh#, arg cosh#, argsinh#, any polynomial, any
rational function (the arc avoiding all points of discontinuity), sin x, cos a?, tan x,

(both extremities lying between x rr/2 and r/2), arc sin #, arc cos x, arc tan x,

any sum-function of a power series (the extremities in the interior of the range
of convergence).

[For the last see pp. 171172.]
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13. The curve defined by the Cartesian equation ^
2
/a

2
-fy2

/b
2 *=s 1 (the ellipse)

is rectifiable.

[Since y~b lj(\ x*la
i
) the curve is seen to consist of four monotone

continuous arcs.]

14. Prove that any part of the graph of a function formed by the addition

and subtraction of any number of monotone functions is rectifiable.

[Any such function can be expressed as
t
the difference of two increasing,

functions, sayf (x) f" (x). The length of any chord which is a side of the

defining polygons, as in Ex. 1 1, is less than the sum of the four positive numbers

#2 -#i, #2~#i> fa' yi 9 y<i -y\ corresponding to the two functions. Adding

up we get that the perimeters of the polygons are bounded by the number

(6-a)+ (6-a) + (JEr-4') + ("--4"), and the result follows.]

15. The function y, defined as x sin (l/#) [or x S (I/a?)] when #=fO and ~
when #= 0, is continuous for all values of x. Prove that any arc of the graph
of this function which passes through the origin is not rectifiable.

[We can, by taking the extremities of the chords at the points 2/(4w 1) TT,.

obtain for the perimeter of a polygon a number exceeding the sum of any

number of terms of the series -
-.

, I + r I + o VI + which is known

to be divergent. Hence the set of perimeters is not bounded.]

16. In order that the graph of a function should be rectifiable it is necessary
and sufficient that the function should be of bounded variation in the range
concerned.

17. If a bounded function f(x) is monotone, or of bounded variation, in

a range, the limits of f(x) on the right and left at any point a of the range

necessarily exist.

18. Let /(a?) be any bounded function, h any positive number, and let u(h)
denote the upper bound of f(x) in the range a to a + h (a excluded), i.e. the

least number not exceeded by the value of /(#) for any value of x such that

a<x^a+h. Shew that u(h) is a non-decreasing function of h] that the

correspondingly-defined lower bound l(h) is a non-increasing function of h
;

and that these functions u (h) and I (h) have (unique) limits on the right at

h= 0. [These limits, which are the lower bound of u (h) and the upper bound of

l(h\ are called respectively the upper and lower limits on the right at xa
of the function /(a?).]

19. Shew that if the upper and lower limits on the right at xa of a
bounded function f(x) coincide and ~Z, the (unique) limit of/(a?) on the right

at x**a exists arid equals L ; and conversely.

[For the first part, with obvious notation, u (h} V^ L as h V^ and I (h) (* L
as h V^ 0. Also if a < # ^ a+ A, I (h)^f(x}^u (h}. The result is now evident.

For the converse, call the upper limit LI . We have

/(#)^tt(A),-the upper bound off(x\ for all values of a? concerned,

< LI -f e, any number greater than LI the lower bound of u (h\ for some

values of x indefinitely close to a.............................................. (1)
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But f(x) >u(ti)- 6, any number less than u (h] the upper bound of/(#),
for some values of x indefinitely close to a,

> LI - , any number less than Zj (the Zo?0er bound of u (A)), for

values of a? sufficiently close to a (2)

By hypothesis,/^) -+ L. Relations (1) and (2) shew that L L^ . Similarly

Z=Z2 and the result is proved.]

20. Shew that if the upper and lower limits of a function f(x) on the right
at x a and the correspondingly-defined upper and lower limits on the left all

coincide and =*/() then/(#) is continuous at #=a; and conversely.

2. PROPERTIES OF LIMITS

167. There is no general method by which limits of functions

of a continuous variable can be evaluated. From the nature of the

case the evaluation will depend on the mode of definition of the

particular function whose limit is sought. When we reflect that the

determination of such limits may be regarded as the general problem
of which the evaluation of the sums of convergent series (or limits

of convergent sequences) is but a special case, and that there is no

general method of determining even such limits, the difficulty of the

general problem is realised. It is fortunately true however that the

most common types of function are so defined that it is usually

possible to determine their limits (when they exist).

168. Limits of sums, products, etc. We consider first the laws

dealing with the limit of the sum or product or other combinations

of two or more functions whose limits are known (or known to

exist)*. They are:

If u and v are two functions of x such that lim u and lim v
a;-*-a x~i*a

both exist (a being some real number) then

lim (u 4- v) exists and = lim u 4- lim v,

x-+*a x~^a x-*-a

lim (u x v) exists and = lim u x lim v,

x-^ct x~^n x-**o,

lim (w/0) exists and = (lim ?V)/(Hm v)
x^*-a x-fa x-*a

provided lim v is not zero.
x~^a

In the case of division, if lim v is zero whilst lim u is not zero,
x - a x~va

* These laws are also applicable to limits of simple sequences ;
lim has only to
x-*a

be replaced by lim in the symbolic statements,
w-^-oo

W M A 14
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the limit of the ratio, litn (u/v), cannot exist, excluding, as we do,
x -1*0,

"infinity" from our number system; but if lira u and lim v are both
x-^a x-^a

zero we cannot say without further information whether the

limit of the ratio exists or not, nor, if it does exist, what is its

value.

To prove these rules is necessary, though simple.

To prove the second law for example, let lim u~U and lirn v = V.
x -* a x -* a

The existence of the limits implies that \u\ and v\ arc bounded

(i.e, < some fixed number K) for all values of x concerned.

Therefore uv - UV\ = \(u-U)v + (v

if x is sufficiently near to a, K being some number exceeding all

values of \u \

and v concerned arid e any positive number whatever;
i.e. \uv UV\ <e, or uv~*UV. Q.E.D.

The third law may be proved similarly. The first is simpler.

It should be noticed that none of these laws is reciprocal, i.e.

the converse is not true. For example it may happen that neither

lim u nor lirn v exists but that lim (u + v) does exist [e.g. if
x~*.a #-* x-*-a

M=sin(l/#), or $(!/#), the trigonometrical function ofChapter ill,

v = u = sin (l/#), or S (l/#), and a 0].

The laws however imply that if any two of the three limits

occurring in the statement of any one of the laws exist, then the

third limit also exists and the equality holds; subject to the re-

striction that in the third law as stated lim v must not be zero,
x ~^a

and in the second law if, for example, the existence and value of

lim u are to be inferred from knowledge of the other two limits,
x->a

lim v must not be zero.
a;-*, a

169. We can evidently extend and restate these laws as one law:

If a function is defined as a combination offunctions all of whose

limits (as the variable x tends to some limiting value a) exist, then

the function has a limit (as x>a) which is the same function of the
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limits as the function is of the component functions, provided the

functions are combined only by thefour cardinal operations (addition,

etc.) and no divisions by zero are involved.

Or symbolically, using A (u, v, w, ...) to denote any such

arithmetical function of a number of functions u
t v, w, etc., then

lim A (u, v, w, ...)
= A (lim u, lim v, lim w, ...) provided the limits

x -* Of x "* a x -* u x *&

lim M, lim v, lim w, etc. exist and no divisions by zero are involved

in the right-hand side.

Other combinations which are not of this arithmetic type suggest^

themselves, such as powers like uv or \ogu v, and it is natural to ask

if it is still true that (e.g.) lim uv exists and = Uv
if the limits

lim u and lim v exist and equal U and F respectively.

As a matter of fact this particular relation is true (if lim u > 0),
#-<*

for if lim u^=U and lim v = F, we have (u being positive for all

values of x sufficiently near a), u
v Uv = (u

v uv ) + (u^ U v
)\ but

u v uv -> as x * a, in virtue of the continuity of the exponential
function (Ex. 4, p. 91), because as # *> a, v -> F; and ^F J7

K
also

-> as x -> a, in virtue of the continuity of the power function xn

(Ex. 6, p. 92), because as x -* a, w -> U.

It will in fact be seen in general that the truth or otherwise

of the law lim F (u, v, w, ...)
= F (lim u, lim v, lim w, ...), where

F(u) v,w) ...) is used to denote any mathematical combination (or

function) of u, v, w, etc., will depend on what may be termed the

continuity of the defining function F. It is out of place here to

make precise the meaning of this type of continuity.

An important special case of this general relation is the case

when only one component function occurs. For example, we may
want the limit of say n2 or au or loga ^, when we know the limiting

value of the function u. It is here seen plainly that the question

is simply that of the continuity or otherwise of the defining function

(a?t
ax

, loga #). As such, this question is that of the existence and

evaluation of limits of special functions, and belongs properly to the

study of the functions concerned. If we know that a function F(x)
is continuous for a certain value of x (x = U say) then we know that

142
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the relation lim F(u) exists and *=F(U) is true, U being the

limit, lim u, supposed to exist.

170. In virtue of these properties of limits and of the simple

knowledge that the single function x has a unique limit (a) as x

tends to any limiting value a, we can conclude that any power xn
,

or any polynomial Pn (x), has such a unique limit, an
t
or Pn (a\

as x tends to any value a; any rational function R (x) has a unique
limit R (a) as x -** a if a is any number other than a value for which

the function is not defined.

In fact the student will easily verify the general theorem :

If F(x) is any function of x defined by means of a combination

of symbols representing continuous functionst the function F (x) is

continuous. If any of the component functions is undefined or dis-

continuous for a value x = a, the function will in general be undefined

and discontinuous at x = a and lirn F(x) may not exist; otherwise

lim F(x) exists and equals F(a)*.

If the functions concerned are all defined and continuous for all

values of x there is no difficulty in applying this theorem
;
but in

the general case it may not always be easy to determine the ex-

ceptional values (or ranges of values) of x where the component
functions are discontinuous or not defined.

Thus for example x* + log (2 \/e*) is continuous for all values

of x less than 2 Ioge 2 and if a < 2 Ioge 2, lim [x
2 + log (2 \/e

x
)]

exists and equals a2
-f log (2 *Je

a
).

If a> 2 loge 2, \]e
a^2,2 */e

a^ 0,

and log (2 \l&) is not defined for values of x near to a; the limit

cannot then exist.

It is not true conversely that the function F(x) will be not

continuous if any of the defining functions is not continuous.

An important class of limits which exist but are not covered by the

above theorem is that class known as indeterminate forms, which

includes all differential coefficients. For example, the limits

r
(
= 2a ), lim (= H I (1 + atf (= e)-~

-
* Such a function as xj(x

-
a) will not be continuous at x= a because the symbol

of division by x - a defines a function which is not continuous.
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cannot be dealt with directly by the theorem, though the limits

are known to exist.

171. Distinction between combinations offunctions and their

limits. We can conclude from the above theorem that any ordinary

function (being a combination of a number of the functions studied

above and similar functions) has a limit at all ordinary points; and

we can usually see at once any exceptional points*. But in this

statement we cannot include under the term "
ordinaryfunction" any

function defined as a limit, e.g. the sum-function of a convergent

series, unless we have specially established the continuity of such

function. It is quite possible for the sum-function of a convergent

series of continuous functions to be not continuous*!". Using for

the moment the words "finite" and "infinite" in a loose manner,

we observe that this essential difference between the above "finite

combinations" of functions arid "infinite combinations," or series of

functions, is not really surprising; but it will serve as a reminder

that such "infinite combinations" are admitted to analysis only in

an arbitrary (and well defined) sense (as limits), and that the notion

of the "sum" of an infinite series is arbitrary and different from the

notion of the sum of a finite number of terms.

EXAMPLES XX.

1. Prove from first principles that the existence of two of the three limits

in the relation lim (u+v)~ lim u+ lim v is sufficient to ensure the exist-

x+ a x-*-a -*

ence of the third limit and the truth of the relation. Prove also the other

laws stated in the text.

2. Determine the limits:

lim (x 4- #2
),

lim (a? cos*), lim [*(*)], lim (^o-), lim [> sin (!/#)].-

[The last limit =0 because sin (I/*) lies between 1 and therefore a? sin (1/4?)

lies between x
;
but x -> 0.]

3. Shew that lim (1 -l/w
z
)
n =l, and that lini (1 -l/n)~

n8 does not exist.

n-*.oo n-^oo

4. Determine the limits lim (l-sin.*?)
008*

*, lim 2**, lim log cos*.
x-**Q *-0 x-*0

5. Shew that the function

-e-*)] -log (
10 - x)~

is continuous for all values of x between loge 2 and 10 except at*1 and #=2.

* See Ex. 5 below. t See Exs. 8 and 9 below,
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6. Shew that lim (logtt v) exists and equals log^F if U and V are the limits
X~*a

of u and v as x >a (supposed to exist). Is this true for all values of the letters

concerned ?

[See Ex. 5, p. 99.]

7. It is possible for the product of two functions, neither of which has a

limit as x > a, nevertheless to have a unique limit. The product yz, where

the function y is denned to be 1 for all rational values of x and for all irra-

tional values, whilst z is zero for all rational values of x and 1 for all irrational

values, is such a function ;
for neither of the limits lim y and lim z exists

x-*a x-*-a
but the product is identically zero for all values of x.

8. The terms of the series

|

arc tan 2# arc tan x
\

+
]

arc tan 3# - arc tan 2#
|
-f . . .

(where arc tan x is the inverse tangent, i.e. that angle y between - ?r/2 and ?r/2

in radian measure for which tan^=#) are continuous and the series is con-

vergent for all values of x. The sum-function is however not continuous at

the point #=0.

[If s(x) is the sum-function, lim s (#) exists and equals /r/2 but $(0)= 0.]
x -*

9. The series -. + - - + - _ + ... has all its

terms continuous and is convergent for all values of x. The sum-function

s(x) however is discontinuous at #=0 and in fact lim (#) does not exist.
a-*-0

10. Prove the laws of p. 209 by using the ideas of Exs. 1720 of the last

section, taking first the case of monotone functions and deducingthegeneral case.
11. The laws of limits (p. 209) will not apply to upper and lower bounds of

functions or sequences ;
but the following properties hold :

If B (y) and b (y) denote the upper and lower bounds of the function y, then

(i) b(u) + b(v)^b(u+v)^B(u+ v)^B(u) + B(v),
and (ii) 6 (u) b(v)^b (uv) ^ B (uv) ^B (u) B (v) ;

where 6(w), b(v\ B(u\ B(v) are supposed to exist, and, in
(ii), b(u) and b(v)

are not negative.

12. Shew that if u -** through positive values as x -+- a and if v -* F, then

(i) if F>0, lim uv exists and =0,
x-**a

(ii) ifF<0, liin uv does not exist,
x-^a

(iii) if F= 0, lim uv
may or may not exist.

x-*-a

3. DIFFERENTIAL COEFFICIENTS

172, We have seen in Chapters 11 and in that if the graph
y =/(^) of a function be drawn, the inclination of the chord joining
two points P (a?, y) and Q (x + A, y -f k) on the curve may be
measured ty the ratio A/A, i.e. [/(* + h) -/(*)]/A ;

_which is the
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trigonometrical tangent of the angle of inclination of PQ to the

axis OX. Considering the behaviour of this ratio as the incre-

ment h is diminished, we saw also that in certain cases the limit

lim [f(x -f h) / (x]\jh exists, and in those cases measures in the
&-*(>

same way the inclination of the tangent to the graph at P, or the

slope of the graph at P.

Again, if the variable x be taken to represent the time and y, or

f(w), is some measurable physical quantity depending on the time

(e.g. the distance moved through in time x by a moving body), the

same ratio [/(# 4- h) f(%)]/h will measure the average rate of

increase of the quantity y in the interval of time from x to x -f h

(e.g. the average speed of the body). And, considering in such a

case the behaviour of this ratio as the increment h is diminished,

we saw, in 1 of this chapter, that in cases where the limit

lim [f(x + h) f()]/h exists it will measure the rate of increase
h-+*0

of the quantity y at the time x (e.g. the velocity of the body at the

time x).

Limits of this kind are the primary concern of the differential

calculus.

173. Definitions and notation. For the sake of completeness
we restate the definitions.

Let f(x) be a function of the continuous (real) variable x. The

incrementary ratio of the function f(x) with respect to the variable

x and the increment h is defined to be the ratio -L-J~^~l^

h being any real number whatever other than zero. (If the function

is not defined for all real values of x we suppose x and h are such that

f(x) is defined for the values x, x -f h, and all intermediate values.)

This incrementary ratio depends on x and h. If we consider x
to be fixed and h to vary, it may be regarded as a function of the

continuous variable A, defined for all real values of h (sufficiently

small if/(#) is not defined for all real values), except h = 0. If the

unique limit lim '-- ~- -^> exists we say that the function
&--o h

f(x) is differentiate for the value of x concerned, and the limit is

called the differential coefficient or derivative of the function f(x)
with regard to the variable x.
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As a rule we shall use the term derivative only when we look on the limit

as itself a function of #, i.e. when we are concerned with the values of the

differential coefficient over a whole range of values of x rather than for a single

value. Otherwise we use the term differential coefficient.

dy
It is convenient in some connections to use the notation f~ to

dx

denote the differential coefficient of a function y with regard to x
y

and this notation is the most customary. We shall use this notation

in places where convenient. We shall often, however, continue to

use the notation Dy or Df(x). In using the notation ~- it must

be clearly understood that the fractional form is merely symbolic

of the definition of the differential coefficient as the limit of the

ratio of the increments of x and of y. It must be used as a whole

and not in any sense looked on as a quotient of two numbers dx

and dy. We shall also occasionally use the notationf (V).

It is to be noticed that in the evaluation of the limit of the

incrementary ratio, the exclusion of the limiting value (/^
= 0) is

essential, as the function concerned, the incrementary ratio, is not

defined for that value of h*. We observe also that for the same

reason the existence and value of the differential coefficient cannot

in general be deduced directly from the rules of the last section.

174. Non-differentiable functions. Differentiable functions

necessarily continuous. It should be noticed that the definition

does not presuppose that any functions actually are differentiate.

In order to use differential coefficients it will be necessary for us

to prove their existence in the cases which concern us. We know

already (see Chapter III) that some simple functions have differential

coefficients; but we must not therefore jump to the conclusion that

all functions have this property.

It is indeed evident that in order to be differentiate at a point x

(i.e. for a value x) a function must be continuous at that point.

For the ratio [/(# -f h) f(x)]/h cannot tend to any number as

unique limit as the denominator h -* unless the numerator also

-*-(), i.e. unless /(a?) is continuous at the point x.

Consider for example the function y defined thus : y= sin (l/#) for all values

of x except #=0, and y for #=0, this value being assigned to complete the

* This exclusion agrees with the definition of limit (p. 198).
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definition of the function (sin (1/0) having of course no meaning). This function

is discontinuous and not differentiable at the point x 0. In fact

lim y(h}= lim sin
(

and does not exist because sin(l/A) takes on all values between 1 and 1 for

values of h indefinitely close to 0. [The upper and lower limits of y at #=0,

(see Ex. 18, p. 208), are 1 and- 1.]

Also the incremeritary ratio = [sin(l//i)-0]/A and has all real numbers for

its values for values of h indefinitely close to and therefore has no unique
limit (even on the right or left). [The function [sin (!/#)]/# is unbounded in

any neighbourhood < x ^ h.]

It is not even true that all continuous functions are differentiable.

For example, if y=|.#|, y is continuous for all values of x but not differenti-

able at the point #=0 ; for the incrementary ratio there=
|

h |/A= + 1 according

as h is positive or negative and therefore has no unique limit as h * 0, though
the limits on the right and left, i.e. the differential coefficients on the right and

left, exist. (They are + 1 and - 1 respectively.)

Or again, the function defined thus :

y= # sin (l/o?) for all values of x except #=0, y for #= 0,

is continuous at x because
| y \

^
|

x
\

* as x *~ 0.

But this function is not differentiable at #= (nor differentiable on the right

or left) because the incrementary ratio, viz.

[A sin (I/A) -0]/A- sin (I/A),

does not tend to a unique limit as A -* 0.

In view of the existence of non-differentiable functions it would

be very rash to assume that all the functions met in the complex

reality of nature are differentiable. In analysis of course we assume

nothing whatever as to the amenability of our functions to such

operations as differentiation. The cases in which such operations

are possible will be the most useful in practical applications, though
the other cases are of importance in the fundamental theory of

functions. We are concerned here with the more practical class of

functions.

175. Differentiation of sums, products and quotients. There

are certaingeneral rules whereby the differentiabilityand differential

coefficients of functions which are combinations of simpler functions

can be deduced from knowledge of the simpler functions.

Let u and v be any two functions of # which are differentiable

for a certain value of x, and let their differential coefficients with

respect to x be Du and Dv.
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Then the functions u + v, u v, uxv, u/v are di/erentiable and

their differential coefficients are given by

D (u + v)
= Du + Dv, D(u-v) = Du-'Dv,

D(uxv)~ uDv -f vDu, D (u/v)
= (vDu uDv)/v

2
,

provided only that in the case of the quotient u/v, the denominator

v must not be zero for the value of x concerned.

The first two of these rules follow directly from the corresponding

rules of the last section for limits of sums and differences, for the

iricrementary ratio of u v = the incrementary ratio of u the in-

crementary ratio of v.

To prove the third, the incrementary ratio of uv

as [u (x + h) v (x -f- h) u (x) v (x)]/h

.. v (x) , .u(x+h?) u (x)= u (x + h)
- v ---

^
v '

-f v (x)
- --- --- '

-* u (x) Dv (x) -f v (x) Du (x\

by using the rules for the limit of a product and of a sum of two

functions (p. 209)*; and the rule is established.

Similarly for the quotient, the incrementary ratio of u/v

u (x 4- h) v (x) u (x) v (x + h)1 Ftt(fl5 + h) u(x)~\ _
h [v (x -f- h) v (#)J h v (x) v (x -f h)

-[

k ni ( /yi\ AI /,
I It \ */ / / x V \i.^ M (a.)_A.

-> [v (x) Du (x)
- u (x) Dv (x)]/[v (x}}

2
,

from the rules for limits, the denominator v (x) v(x + h) having the

unique limit [v (x)]* (which =}= 0) as h -> 0. The rule is established.

176. Differentiation of a function of a function. These rules

may evidently be extended to cover similar combinations of several

functions, but in practice it is best to make repeated applications
of these rules. A fifth rule, dealing with the differential coefficient

of & function of a function, is however of importance.

// u (x) is any function of x, differentiable with respect to x for
a certain value of x, and y(u) is any function of u, differentiate
with, respect to u for the value of u corresponding to this value of
x, then y may be regarded as a function of x; y is differentiate
with regard to x for the value concerned; and, if 11 is the differential

coefficient of u with respect to x and y' the differential coefficient
*
n(x + h) > w (x) because the function u (x) is necessarily continuous.
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of y with respect to u, then the differential coefficient of y with

respect to x y' x u. Expressed in the usual notation

dy dy (u) du (x) dy du , .
,

-/ = y v 7 x ~- = -, -

.
-=- for brevity.

dx du dx du dx

The proof of this is simple:

The incrementary ratio of y regarded as a function of x

A)} -y (()}]/*

=yfo + -y IMP*?) t^j)j-j4j> ^ , ,

ag h^
w (a? + A) w (a?)

'

A ^

because w (# + A) ^ (a?) ^0 as h -* and therefore the incre-

mentary ratio^M
l^.*^JLi!LW) ^ the differential coefficientJ u (x + A)

- u (x)

/
As an example of this theorem consider the function y = loge a?.

The differential coefficient of u (= x2
) with regard to x = dx*jdx

= 2#,

and the differential coefficient of y(=loge u) with regard to

u = d\oge u/dul/u (supposing u>0, i.e. x^Q). Therefore the

differential coefficient of y (= loge a?) with regard to x (for x =(= 0)

u

The student may verify from first principles that the function

loge #
2

is differentiable for all positive and negative values of x

and that its differential coefficient = 2/#.

177. Differentiation ofinverse functions. Existence theorem.

As a corollary of this theorem we have the following theorem, useful

in the differentiation of inverse functions:

If a pair of variables x and y are related in such a way that each

may be regarded as a function of the other (e.g. y = x* t x *Jy\ or

y ax
,
x loga y) then if y is differentiable with regard to x for

a value x and the differential coefficient =dyjdx, and if x is differ-

entiable with regard to y for the corresponding value of y and the

differential coefficient =dx/dy, then dx/dy l/(dy/dx).

For 1 = dxjdx (dx/dy) (dyjdx), i.e. dxjdy = l/(dy/dx).

Regarding the conditions under which a functional relation

y~f(x}> the function f(x) being for example continuous and
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differentiabie, leads to an inverse functional relation of the same

character, it is easy to prove the following theorem:

Ifafunction y -f(x) is steadily increasing (or steadily decreasing),

continuous and differentiabie in a certain range, then there is an

inversefunction ofy, viz. x = F(y) t defined in the corresponding range,

which is also steadily increasing (or decreasing), continuous and

differentiabie throughout its range, and the relation dx/dy = l/(dy/dx)
holds.

The analytical proof is left to the student.

Geometrically also this theorem is simple :

Draw (Fig. 21) the graph of y =/(#).

By interchanging the x and y axes this graph may be considered

as the graph of x as a function of y, for to

every value of y in the range (c, d) there

corresponds a definite value of x. The graph
is continuous and has at all points a tangent
PT which is not parallel to either axis,

and this is clearly independent of whether

the graph is looked on as the graph of y as

a function of x or that of x as a function of y. X*
~

Therefore #, considered as a function of y, is
Y

continuous and differentiabie at all points.
Also if a and @ are the angles PT makes with OX and OF re-

spectively, tan a = dy/d, tan /3
=

dxjdy.
But the angles a and /3 are complementary and therefore

tan /3 = cot a = I/tan a.

Therefore dx/dy = l/(dy/daf).

It will be noticed that for the truth of this theorem it is essential

that f(x) should be definitely increasing (or decreasing) (and that

dyjdx must not be zero). Unless we are prepared to consider

"multiple valued functions" and "infinite differential coefficients"

we cannot dispense with this condition.

EXAMPLES XXL
1. Prove directly from the rules for the differentiation of products and

quotients and the facts Zte^l, Z)l=*0, that any positive integral power of

a?, viz. #n
,
is difterentiable and 2)xn=nxn - 1 for all values of #; and that any

negative integral power of x (x
n where n is a negative integer) is differentiabie

for all values of x other than zero and
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Dx*=D (x . aF) -xDx*+ x*Dx=xZx+ x*l = 3#2
,
etc.

And D (Ijx)
= (tfDl

-
l/)#)/#

2= -
l/#

2
,

-
(I/a?) Dx]lx*-( - 1/#- l/#)/#

2= -
2/^, etc.

The proofs are completed by induction.]

2. Prove from the rules for differentiation of sums etc. that any polynomial
Pn (x) is differeritiable for all values of x and that any rational function

Pn (x)IQm (x) is differentiate for all values of x which are not roots of the

equation $m (o7)=0.

3. Prove that if HI ,
u2 ,

. . . un are differentiate functions of x and a
x ,
a2 ,

. . . an
are constants, then 1 w1+ a2w2+ ... + aHwn is differentiable and

4. If ?/j (.v)+w2 (^)4-... is a convergent series of differentiable functions, it

is not in general true that the sum-function is differentiable. If the series is-

a power series however,

it is true that D(a + a
l ^-{- a2x2

+...)

exists and equals

Z)a + Da^x -f Z> 2^2
-f . . .

[See Ex. 14, p. 195.]

5. Given Dxn nxn ~ l for all values of x if n is any positive integer, prove

that the inverse function $x is also differentiable and D$x -x . For

what values of x is the result valid ?

6. Using the results of Ex. 1 and that Dex= ex
,
shew that

[Function of a function.]

7. Given Z>loge o;l/^ (for #>0), DS(x)=C(x\
and DC(ai)=-S(iK),

shew that D log, S (x}= (7 (ar)/^ (*), ^> log C(x)**-S (x)jC (x\

DS (loge *)* C (log, x)lx, DC (log, a?)
= - 8 (Ipg. a?)/* ;

the functions $ (#) and C(x) being the trigonometrical functions of Chapter
State in each case the ranges of values of x for which the result is valid.

8. Given De*e*, De~ x e~ x and the differential coefficients in the last

example, shew that

/>e* 8 (x)= e* [C (a?) 4-S (x)], De* C (x} = e*[C (x)
-8 (#)],

a and b being any constants.
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df(x+a) df(x+a) df(ax+b) _df(a* + b) m

5
- == 77

-
;

-
: .

--
;
- =""":;-;-rdx d(x+ a) dx d(ax+ b)

a and b being any constants
;
the differential coefficients figuring on the right

being supposed to exist.

10. Using the results of the above examples, shew that

for

;)

11. If y is the distance moved through in time x by a moving body, then

the velocity of the body at the end of any time x is v= dyfdx and the accelera-

tion (the rate of increase of velocity) fdv/dx.
12. It can be proved experimentally that the distance (y) moved through by

a falling body (under gravity) in any time x is given approximately by the

formula #=16#2
, (x and y being measured in seconds and feet). Shew that

the velocity acquired in time x is 32# feet per second, and that the acceleration

is constant (=32 feet per second per second).

4. DIFFERENTIATION OF ELEMENTARY FUNCTIONS

178. Standard forms. In this section we will obtain the dif-

ferential coefficients of the simple functions which are of importance.

By using the general rules of the last section we shall then be in a

position to differentiate all functions which arise out of ordinary
combinations of these known functions.

We have the following standard forms:

I. Powers of x.

Docn nxn
~

l if n is any real number;
valid for all values of x if n is a positive integer,

for all values of x except x = if n is a negative integer or zero,

and for all positive values of x if n is any non-integral number.

II. Logarithmic function.

D\oge x=I/x, Dloga x = loga e/x if a is any positive number
other than 1

;

valid for all positive values of x.

III. Exponential function.

De = e*, Dax = ax . \oge a if a- is any positive number;
valid for all real values of x.

IV. Circular and trigonometrical functions,

(a) Dsmx = cos x, D cos x = sin #;

valid for all real values of x.
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D tan x = sec2
x. D sec x = sin x sec2

x\

valid for all values of x except odd multiples of ?r/2.

D cot x cosec2
a?, D cosec x cos a? cosec2

x\

valid for all values of x except and multiples of TT.

(6) DS(x) = G(x\ DG(x) = - S(#);
valid for all values of x.

l S

valid for all values of x except odd multiples of
tsr/2.

n_J___ 1_ nJ___ WV
T(x)~ [S(x)J

>
v
S(x)-

valid for all values of x except and multiples of ^r.

V. Inverse circular and trigonometrical functions.

(a) D arc sin x = 1/Vl #2
,
D arc cos x 1/Vl ^;

valid for all values of x interior to the range of definition, i.e. for

1 <x< 1.

D arc tan x = 1/(1 4- #2

), D arc cot x = -

valid for all values of x.

1 nD arc sec x = TTT
-

. , 1> arc cosec x = ---

valid for all values of # interior to the range of definition, i.e. for

which x > 1.

(6) ^^^, rw
Vl-^'2 Vl ~^

valid for all values of x interior to the range of definition, i.e. for

which x
\

< 1.

DT (x)
= -

,
valid for all values of x.

VI. Hyperbolic and inverse hyperbolic functions.

D sinh x = cosh xt D cosh x = sinh x, D tanh x = sech 2
x,

D sech x = ,-
;
valid for all values of x.

a

D coth x == cosech2
a?, D cosech a? = . , .

;
valid for all values

sinh2 x

of x except x = 0.
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D arg sinh x = -7=- , valid for all values of x.
vx2

-f 1

D arg cosh x = - - -.
, valid for x > 1,

v x* 1

D arg tanh a? = --
^

, valid for
|

x
\

< 1.

D arg coth x = ---

,
valid for

|

x > 1.
JL X

D arg sech x =-------
,
valid for < x < 1.

2

D arg cosech x = rr=^__
,
valid for all values of x except

xvx* -f 1

#=0.

VII. .4ft7/ power series.

D(a + CMJ + a2#
2
-f ...)

=
! -f 2oa# + 3a3#

2
-f ..., a

,
alf a2 , ...

being constants; valid for all values of x interior to the range of

convergence of the series.

179, Proofs. Powers, exponentials and logarithms. For the

sake of completeness we append (or recall) proofs :

I. If n is a positive integer the incrementary ratio [(x -f h)
n xn]/k

can be divided out by h and so reduced to

(x -f h)""
1 + (x -f h)

n~* x -f . . . -f (x - h) x
n~* + aP~\

which -* nxn~~l as h -> 0, by the rules of 2 of this chapter for the

evaluation of limits. Similarly if n is a negative integer,
= m say,

the incrementary ratio

a?
w
(x 4-

mxm~~l m

provided #
=|= (it being then always possible to choose h so small

that # and x -f A have the same sign).

In the general case we use the inequality (iii) of p. 29 as com-

pleted in Ex. 2, p. 91, viz. (a
n bn)/(a b) lies between nan~l and

nb^~~
l if n is any real number and a and b any two numbers of the

same sign.
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Taking x positive (x
n
being defined only for x > if n is not

integral), we can take
|

h
\

so small that x -f h is also positive. The

incrementary ratio [(# + A)
n #W]/A therefore lies between n(x+h)

n~~l

and nxn~~l
t

But the power function xn is continuous, as follows immediately,
as in the case of the integral power (p, 153 above). Therefore

n (x + h)
n~ l -+ nxn~ l as h -* 0.

Hence the incrementary ratio also -> nxn~~l and the result is

established.

Note. If n ^ 1, the differential coefficient on the right at x =
exists and = whether n be integral or not.

II. The inequality of p. 110 above, viz.

loga (X + h) loga X ,. , , loga , lo a 6
-,

- - - lies between &*- and s~-
h x

holds if x and x + h are any positive numbers and a any positive

number other than 1. Hence the incrementary ratio of loga #, viz.

[loga (a + A)-loga ff]/A,

tends to the common value of

lim 7 and lim ^-
,

i.e. (loga e)/^
1

.

/t^o ^-H/t A^O
Therefore

/) loga ^ = (loga e)\x and Z> loge x (loge e)jx
=

I/a?.

III. If a=j=l> le^
2/
= '

a;

,
so that ^ = loga y, and this pair of

inverse functions has been proved (Chapter n, 1 and 2) to exist

and be both monotone and continuous for all values of x and for

y>o.
By II above, dxjdy = d loga yjdy

=
(loga e)/y.

Therefore by the theorem of p. 220, or directly as on pp. 128 129,

dyldx exists and

= l/(dx/dy) - y/(loga e)
== a* log, a;

and this result is true for all positive values of y and all values of x.

When a = 1, y = 1 for all values of x and Dy = = ax log^ 1,

180. The circular and inverse circular functions. IV. To
differentiate the circular functions sin x and cos x we may use the

addition theorems for the circular functions and the method of

p. 181, or we may proceed independently thus:

WMA 15
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Let < x < 7T/2 and let (Fig. 22) the point P on a unit circle

represent the angle x, so that the arc AP = x.

Let Q be any point on the arc AB between

P and B, and let the arc PQ = h.

All distances concerned will be positive.

Let SPT be the tangent at P.

The incrementary ratios of cos x and sin x

with respect to the increment h are re-

spectively
-
EP/arc PQ and jRQ/arc PQ,

_EP PQ , ^9__j?^L1<e *

PQarcPQ PQarcPQ'
Now as Q -> P along the arc,

RP/PQ ^ OT/ST= sin OST = sin x

and RQ/PQ r OS/ST = cos OST = cos a?,

from the simple properties of the circle and of similar triangles.

Also

PQ/arc PQ =
[sin (&/2)]/(/</2) -^ 1

Fig. 22.

as h -> 0, because lirn 1 (p. 205).

Therefore, as h\Q, the incrementary ratios for cos x and

sin a? tend to sin x and cos x respectively.

This is true also as hf 0, and therefore

D cos x = sin a?, Z) sin a? = cos x.

This result, thus proved for < x < vr/2, is easily extended to

cover all cases.

To find Dtaii#, Dsec#, Dcosec# we use the rule for the dif-

ferentiation of a quotient (p. 218), thus:

/sin x\ _ cos x D sin x sin x D cos xD tan x = D
.COS XI COS2 X

cos2 x -f sin2 x

cos2 x cos2 x

valid for all values of x which do not make cos x = 0, i.e. for all

values of x except odd multiples of ?r/2.

The differential coefficients of the trigonometrical functions

G (x) and S(x) (defined in Chapter in, 5) have been obtained

before (pp. 180 182). DT(x} y
etc. are derived from these precisely

as D tan x, etc. are derived from D sin x and D cos a?.
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V. The inverse circular functions arc sin x and arc cos a? are

defined thus:

arc sin x is that angle y, measured in radians, belonging to the

(7T
71"\~

o > o (^ ~"
^/^ ^ y ^ 7r/^)> for which sin y = x;

z z /

arc cos x is that angle y, measured in radians, such that ^ y ^ TT,

for which cos y = x.

Both these functions are defined for all values of x between 1

and 1 and for # = 1 and # = 1, but for no other values. If the

restrictions ( ?r/2 ^ y ^ ?r/2 or ^ y ^ TT) were removed the functions

would be multiple-valued. The restrictions are arbitrary, but

desirable. We retain them*.

To differentiate these inverse functions, the theorem on p. 220

will apply.

y = arc sin x gives x = sin y.

Therefore dxjdy = cos y = Vl sin2

y = Vl #2
,

and this (=cosy) is positive (or zero) because vr/2 ^.y <7r/2.

Therefore cfo//d#
= + 1/YlT- #

2
.

Similarly, from y = arc cos x
t x = cos y,

dxjdy = sin y = Vl x* and dy/cta;
= I/Vl ^2

.

The inverse tangent arc tan a? is defined as that angle y between

7T/2 <md 7r/2/or which i&i&yx. It is defined for all real values

of x.

Using the theorem of p. 220, if y = arc tan x, x = tan y,

dxjdy = sec2
y = 1 + tan2

y = 1 4- #2
,

and therefore dyjdx = 1/(1 -f #2

).

The other inverse circular functions are defined and differentiated

similarly.

The inverse trigonometrical functions S (x), C(x)> T(x) are defined

and differentiated in precisely the same way as the inverse circular

functions, with the replacement of TT by TS, sin by 8, cos by (7, and

tan by T.

181. The hyperbolic and inverse hyperbolic functions. VI.

To differentiate sinh x
}
the incrementary ratio

= [sinh (x + h)
- sinh x]/h = [cosh (x + A/2) sinh (A/2)]/(A/2),

* When multiple values are admitted these functions are termed the principal
values of the functions arc sin x, etc. See also Ex. 4, p. 230 below.

152
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by Ex. 3, p. 193. This tends to cosh x as h -* by considerations

analogous to those used in the differentiation of S (x) and G (x).

Similarly for cosh x: the incrementary ratio

i , T^ i i/i i / 7 /\ /sinh h/2\= [cosh (x + h)
- cosh #]/A

= sinh (a? -f A/2) rj^-
\ flj

Zt J

-* sinh # as h -> 0.

To differentiate the hyperbolic tangent tanh x we have

~ . r% / i / i v cosn # ^ sinh # sinh x D cosh x
D tanh # = D (sinh #/cosh #) =

__
cosh 2 x sinh2 x _ 1

cosh2 x cosh2 x '

for all values of cc, because cosh x is never zero.

The other hyperbolic functions are differentiated similarly.

The inverse function theorem of p. 220 applies to all the inverse

hyperbolic functions and establishes their ranges of definition and

the differential coefficients, as given. These functions are neces-

sarily single-valued*.

182. Sum-function of a power series. VII. The theorem that

the sum-function of a power series a 4- a^x 4- a2x* + ... is continuous

and differentiate at all points interior to the range of convergence
has been proved above (p. 193 and Ex. 14, p. 195). Some series are

convergent for all values of x, but usually the values of x for which

a power series is convergent consist of all the values between R
and R, R being some positive number, called the "radius of con-

vergence." The series may or may not converge also for x = R and

x=Rt
but it is not convergent for any value of x for which \x\>R

and it is absolutely convergent for all values of x between R and

R. (See Ex. 13, p. 194.) If the terms of the power series are dif-

ferentiated (term by term) a second series, =al + 2a2# 4- 3a3x* 4- . ..
,

is obtained. The theorem of p. 193 shews at once that the radius

of convergence of this differentiated series is at least JK; it is in fact

precisely Ef.
If a power series is convergent for all values of x (e.g. the series of

Chapter ill, 5, 6) the differentiated series will also be convergent
for all values of x and its sum will be the differential coefficient of

the sum-function. By using this result the differential coefficients
* If complex numbers are introduced the hyperbolic functions are, like the circular

functions, periodic and the inverse hyperbolic functions many-valued,
t By the comparison theorem (I), p. 79 above.
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of the functions C (#), S (#), cosh x, sinh x (and E (x) of p. 173) could

be found without resort to the algebraic addition theorems.

183. Differentiation of compound functions. By means of the

results of this section and the rules of the last section we are now in

a position to differentiate any function which is defined by means

of a combination of the functions considered in this section, but not

to differentiate functions defined as limits of such functions except
in the special case VII. All functions met naturally in elementary

analysis and applications (with the exception of some infinite series

which are not power series) can therefore be so dealt with.

To shew the scope of our methods of differentiation let us

differentiate the somewhat complicated function

- ' I vU T^ J_

1 4- sin -^r
\a? 1

The function =
log^ [log<, {1 4- sin w}], where w = (x

2 + !)/(# 1),

=
logg [lge ^]> where v I + sin w,

=
logg w, where u loge v,

=
y, where y = loge u.

Therefore ^ =^^^^Xllv/ldUlv^ 1
" 777 7

a^; du dv dw dx

(by repeated application of the rule for the differentiation of a

function of a function)

d logg u d loge v d (1 -f sin w) \ x '.

du dv dw dx

- 1 1 & "" i)-P(0
8 + i)~(^ + i)flQp-- 1 )~

^ v (
-

1)
2

(by the rule for a quotient)

= COS W 7 =~v---

w v (a? Ir

COS

The range of validity of this result will depend on the range of

validity of the various steps. It is necessary that x
={= 1, that
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1 -f sin
\

+'

)
> 0, and that \oge \

1 + sin (
- -

)
I > 0;

\# I/ [ \#- 1 /)
#2

-I- 1
i.e. that sin > and x^\.

x 1

These inequations can be solved. Such functions are rare.

EXAMPLES XXII.

1. Differentiate

(#-l)/(#
2
+l), x*-ax-b, l/V[(l-#

2)(l- 2#2
)], sin 25?,

2 cos 2#, 1
1(a -f 6 cos #), (a -f 6#)

n
,

#>TC sin &#,

sin #/(# sin2 # -j- b cos2 #), 1 /V(1-2 cos #), e
~ ax cos >#, <?

~ *** sin 6d?
;

a, 6, &, and T& being constants.

2. Prove (under appropriate conditions) :

(i) D loge sin x cot #, [sin #>()],

(ii) /) loge cos x= - tan x, [cos #> 0],

(iii) D logg tan (J IT + #)=# loge (sec #+ tan x} sec ^r, [tan ( |- TT -f^)> 0],

(iv) ./) loge tan (J TT Jo?)
= /> loge (sec x tan #) * sec ^?,

[tan(iir-Jar)>0],

(v) /> loge Iog6^= l/(^ lgp ^) [lg ^;> J
i-e - ^ > 1]>

(vi) D logg loge lg #=!/(# loge *' lge loge #), [loge loge ^ > 0, i.e. x> e\

(vii) D (e
x
jx

n
} ex (x

-
n)lx

n + J

, [AT ^t= if n is a positive integer],

(viii) D (j/loge a?)
= a?

n - J
(n \oge x-l )/(log ^r)

2
, [x > and #* 1],

(ix)

(x)

3. By differentiating the logarithmic series term by term verify that

D loge x ^1% f r 0<.^<2.

4. Most of the inverse functions considered above in the text are capable
of extended definition. Thus arc sin x may be considered to be the multiple-
valued function y which is any number for which sin y= x. The different values

of the function constitute what are called branches of the function. The formula

for the differentiation of arc sin x is applicable to any branch, but the sign will

depend on the particular branch. Thus for the branch comprising the values

of y between Tr/2 and 3ir/2, Dy=> -
1/^(1 -^2

).

5. By means of the inverse function theorem of p. 220 a function which we

may call $x is denned for all values of x, positive and negative, if n is an odd

integer. We can similarly build up a power function xp/q for all values of x if

q is odd and thus extend the range of definition of the power function in such

p -1
cases. With this definition DaP1*=-

. aft for positive and negative values

of x.

[See p. 89 above.]

6. Shewthat />a? sin ( I/a?) sin (1 /a?) -(I/*) cos (I/a?)

and Dx* sin ( 1 /.v)
= 2# sin (l/x) cos (

1 jx).
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These functions are not denned for #=0. Prove thafc the first is not differenti-

able at ,#=0 whatever value be assigned to it to complete its definition, but

that the second function is differentiable at #=0 if the value be assigned to

it there.

7. Establish the series

l^3 1.3^ 1.3. 5#7

* +-~ +_y +
2 6̂Y + ...

for -

By comparing with Ex. 16, p. 189, deduce that arc sin #= (#), rr**w, and
that sin x=S (x\ firstly for Tr/2 ^ x < ir/2, and thence for all values of x. The

identity of cos x and tan x with C(x} and T(x) then follows, or may be proved

independently in the same way.

5. APPLICATIONS OF DIFFERENTIATION

184. In this section we shall discuss a few simple problems

capable of easy solution by a consideration of differential coefficients.

We shall suppose generally that the functions concerned are con-

tinuous and differentiable at all points of the ranges concerned.

These assumptions will be justified at all ordinary points for the

functions hitherto defined in this course. Any exceptional points,

of discontinuity, etc. can be dealt wi th separately.

185. Maxima and minima. Let a be a value of x for which a

(unction yy =/(#), has a differential coefficient Dy which is positive.

Then, from the definition of a differential coefficient, since the

differential coefficient on the right at a > 0, it follows that

/(a -f h) f(a)/h > for all positive values ofh sufficiently small; and

therefore/(a 4- h) >f(ct) for all positive values of A sufficiently small.

Also, because the differential coefficient on the left > 0,

/(a -*)</()
for all positive values of h sufficiently small.

That is, there is a neighbourhood to the right of a in which the

values of y exceed /(a) and a neighbourhood to the left in which

the values of y are less than /(a). We say that f(x) is increasing

at the point

Similarly if Dy is negative at o, there is a neighbourhood to the

right of a in which y </() and a neighbourhood to the left in which

y >/(ot); or/(X) is decreasing at a.

In these definitions we say nothing as to the magnitude of the

neighbourhood in which y > (or <) the value at the point a, but

only that there is some such neighbourhood, i.e. that h can be

chosen small enough to ensure the truth of the inequalities.
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If now f(x) is increasing at all points of a range, it is geometri-

cally intuitive that its least and greatest values will occur at the

beginning and end of the range respectively; and it is not difficult

to prove this strictly analytically*. Similarly (mutatis mutandis)

iff(x) is decreasing.

Suppose now J)y > at all points in a neighbourhood to the left

of a point a, and Dy < at all points in a neighbourhood to the

right of a. The function y increases up to a and decreases beyond

a; and the value of the function at a, viz. /(a), exceeds all other

values of the function in the neighbourhood. The function f(x) is

then said to have a maximum value at the point a. At such a point
the differential coefficient on the left

= lim t [/()-/( -A)]/A0,
h V^.0

and the differential coefficient on the right
= lirn [/(a + A) -/()]/*<<>;

h Vj.0

and therefore Dy, the common value of these two differential

coefficients, must = 0.

Similarly if Dy < at all points in a neighbourhood to the left

of a and Dy > at all points in a neighbourhood to the right of a
f

/(a) is the least value of y in the neighbourhood and f(x) has a

minimum value at a. Again Dy = 0.

Thus if yy =/(#), has a maximum or minimum value at a, Dy
at a. If Dy changes from being positive to being negative as x

increases through a, y is a maximum there; if from negative to

positive, y is a minimum.

It is possible that Dy = at a and is positive at all other points
in the neighbourhood of a on both sides. In this case the function

has neither a maximum nor a minimum there, and is in fact in-

creasing at the point. Also Dy may be zero at a and negative at

all other points in the neighbourhood. It is then decreasing at a.

In both these cases it is customary to say that y is stationary at

the point o. The point on the graph is then a point of inflexion.

Other cases may arise in which Dy= at a point a but has both positive

and negative values on one side (or both sides) of a indefinitely close to a, e.g.

the function #2
sin(l/#) of Ex. 6, p. 230. Other cases again arise if we relax

the condition that /(#) is differentiate.

* This is substantially the theorem of p. 119 above,

f This symbol is self-explanatory.
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186. The following are examples:

(i) The function x2 has a derivative 2# for all values of x, which

<0if,tf<0, =0 for = 0, and >0 for#>0.
Therefore a? decreases up to x 0, where it has a minimum value,

and thereafter increases.

(ii) The function Xs has a derivative 3#2 for all values of x, which

> for all values of x except x = 0, for which it = 0. Therefore x* is

increasing for all values of x though stationary at x = 0. The origin

is a point of inflexion on the graph y*=x*.

(iii) The maxima and minima of the polynomial x* 3#2
4- 2#? -f 4

have already been discussed on p. 158.

(iv) The rectangle of given perimeter which has the greatest area

is a square.

For, let the given perimeter be 47, and let the sides of the

rectangle be x and 2K x.

The area = y = x (2K x).

The area y depends on x and is in fact a continuous and dif-

ferentiable function of x.

Dy = 2K 2x, which = for x = K
,
and Dy decreases from

positive to negative as x increases through the value K. Therefore

y has its only maximum for x = K, i.e. when the rectangle is a

square of side K.

Note. In a practical problem of this kind it is quite possible for

the greatest or least value to occur for the extreme allowable values

of the variable x, in this example x or x =* 2/T. We see in this

example that these values correspond to the minimum and not the

required maximum.

187. Inequalities. Maxima and minima can be applied to

establish inequalities.

(i) The example just considered gives a proof of inequality (i)

of p. 29 above, that the arithmetic mean of two positive numbers

a and b ^ the geometric mean.

For, if a + b = 2K, putting a = x and b = 2K x, we have that

db = x (2K x) and has its maximum value, viz. K*, when x = K;
and therefore if x

=J= K, x (2K x) is less than K*.

Hence ab ^ ( 5 )
and the inequality is established.

\ 2 /
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(ii) Similarly we can establish the more general inequality

where a and b are any positive numbers and m and n any positive integers.

Put a-f 6= A", ax.
Then am bn xm (K x)

n~y say.

=x~ 1 (K- x}
n ~ l

[m (K-x) - nx],

which =0 when # = 0, #=Ar, and x*=mK\(m+ n\
When x - or A", y has its minimum value 0.

When x= mKI(m+ n\ y has its maximum value, because Dy decreases from

positive to negative as x increases through this value.

mu t f mK\m / mK \
Therefore y ^ (

--
) (A-- ) ,y

\m + nj \ m + nj
9

i.e. am bn ^, - M-i (a + b)
m + n

. Q.E.D.+

(iii) The inequality (iv) o/p. 29 mai/ fee established thus:

Consider the function

y = nan (x
m - aw)

- mam (x
n - an\

a being any positive number and m arid n positive integers; and

let m > n.

Dy =

Considering only positive values of a?, Dy = only for x = a.

Where < # < a, Di/ < 0; and where a? > a, Dy > 0.

Therefore y has its only minimum value (for positive values of a?)

at sc = a, where y = 0.

Hence if # is positive and
=(= , y > 0;

tC^
1

(X
w

7)1

i. e> - > __ am-n if ^,n _ ft
n > Q J e> if ^ > a;,n _ n '

, xm am m n . fand ---- < am~n if x < a.
xn an n

Hence, if <a < b and m>n,

n

and the inequality is proved.

188. Tangents. We have seen that the angle of inclination to

the x axis of the tangent at a point (x, y) of a curve given by the

equation y *=f(x) is ty, given by tan ^ = dyjdx. The equation of

the tangent at any point of such a curve can therefore be found.
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(i) To find the tangent at the point (1, 1) on the parabola y = a?
2
,

we have dyjdx = Dx3 = 2# = 2 at the point (1, 1).

Therefore the equation of the tangent is

y 1 = 2 (x 1) or y = 2# 1.

(ii) We can verify that the tangent to a circle (defined as the limit

of the chord) is the perpendicular to the radius, thus:

The half above the x axis of the circle whose centre is the origin

and radius R is given by the equation

We have

dyldx =

d (R2 - x2
) dx

Therefore the tangent at the point P (x, y) makes an angle -^

with OX, where tan -^
= x/*J(R

z x2
)
=

x/y.

But the radius OP makes the angle with OX, where tan 6 = yjx.

These two lines are therefore perpendicular, because

x //i , \
1 4- tan tan -vlr n

COt (9 - >lr)
= ---- -I- = 0.T ' tan tan ^

The result is proved.
The equation of the tangent at the point (xlt y^) is

(y
- y^Kx - ^0 = tan ^r

= -
^/2/j

or /wo?, -f y?/!
= ^i

2 + yi
= ^R2.

189. Velocity, etc. Let ?/ represent the distance in a given
direction moved through in time x by a body moving in a straight

line. We have seen that the velocity (v) at any time x is given by

dy/dx and the acceleration (/) by dvjdx.

(i) Suppose we know that a body moves so that y a-\-bx-\-cx^ >

a, 6 and c being known constants. We can at once deduce the

velocity and acceleration at any time during the motion, for

= dyjdx = b + 2cx, and f dvjdx 2c.

Thus the acceleration is constant and = 2c.

(ii) ^4. frod;*/ is observed to oscillate on a straight line according to

the formula y-a sin nx 4- 6 cos n#, a, 6 and n being constants. T/ie

acceleration at any time x during the motion is proportional to the

distance y from the origin.
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For, the velocity

= v = dy/dx
= na cos nx nb sin nx

and the acceleration

=f= cfo/<fe
= n2a sin n# rz,

2& cos nx =* n2

y,

and the result is proved.

Such motion is called simple harmonic motion.

(iii) A body is observed to oscillate according to the law

y ss e~~
mx

(a sin nx 4- 6 cos nx),

where a, b and n are as in (ii) and m is a positive constant.

2%e acceleration in this case may be divided up into two parts,

one proportional to y as in (ii) and the other proportional to the

velocity v.

For

-y = dy/dx = e~mx [n (a cos nx 6 sin nx) m(a sin nx -f b cos nx)\

ss ne~maj
(a cos nx b sin no?) my.

y =s dv/dx = g-* [ n2
(a sin no? -f 6 cos ?*#) mn (a cos nx b sin w#)

i/m (a cos nx b sin ??#) -f- m2
(a sin ?i#? -f- b cos ^^?)]

= e~mx [(m
2 n2

) (a sin nx + b cos nx) 2mn (a cos nx 6 sin na?)]

=
(?n

2 -
ri*)y 2m (v -f my)

= (m2 + ri*)y

190. Rolle's theorem. // a function y, =/(#), is di/erentiable

at all points of an interval (a, 6) andf(a) =/(&), ^en ttere is ai least

one point of the interval, other than a or b, at which the differential

coefficient vanishes, i.e. Dy = 0.

The proof of this theorem depends on the following generalisation

of the fundamental property of continuous functions:

If a function f(x) is continuous at all points of an interval (a, b)

and if M is the upper bound of f(x) in the interval (i.e. the least

number not exceeded by any value of f(x) concerned) and m is the

corresponding lower bound, then, whatever number k may be, from
m to M inclusive, there is at least one point x of the interval (from
a to b inclusive) at which f(x) k.

To prove this we first remark that, if, besides being continuous,

f(x) is monotone throughout the interval, the theorem follows easily

by the fundamental kind of argument of pp. 182 183 above, used

in establishing the existence of the number -sr/2.
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Secondly, if f(x) is not monotone, suppose for definiteness that

/(a) ^k^M. Consider the function F (#), defined as the upper bound
off(x) in the interval (a, x). This function is plainly monotone and

continuous for all values of x from a to b and hasy(a) and M for its

lower and upper bounds. Therefore there are values of x for which

F(x) = k. Denote by c the lower bound of these values (or the single
value if there is only one). We have F(c) = k.

It follows now that /(c) = k also. For, if/(c) + k, say/(c) = k < k,

the point c, being a point of continuity of/(#), could be enclosed in

an interval throughout which f(x)< (k + A?')/2jsay;
and F(x\ the

upper bound off(x) in the interval (a, x\ being less than k if x < c,

would then also be less than k for x = c, which is not the case.

Hence /(c) = k.

The theorem is now established for the case when/(a) ^ k ^ M\ it

follows immediately for the other possible case, when m ^ k^f(a)*
To deduce Rolle's theorem we remark in the first place that

the function /(#), being differentiate, is necessarily continuous

throughout the interval. It follows from the theorem just proved
that there must be values of x in the interval for which f(x) =M
and/(#) = m; and it is clear (because /(a) and/(6) are equal and

lie between m and M) that at least one of these values must be

different from both a and 6. For this value the function is a

maximum or a minimum and it follows (p. 232) that the differential

coefficient there is neither positive nor negative, whence Dy = for

this value.

It is worth noting that the above theorems are still true if nothing is known
about the behaviour of the function f(x) at the end-points a, b of the interval

except that/ (#) is continuous on the right at a, and continuous on the left at b+

If the function y is a polynomial,

y = anx
n + an^xn-1 + . . . + a

,

and if x = a, x = 6 are two roots of the equation y = 0] it follows

from Rolle's theorem that Dy Q for at least one value of x between

a and b. Hence if the equation Dy = has no roots in a certain

range for x, the original equation y =* can at most have one root in

that range. Since the equation Dy = is of degree one less than

that of the equation y = 0, it is often possible to discuss the roots

of this equation when the equation y = cannot be so discussed,.
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and thus obtain indirectly information as to the roots of the equation

y = o.

(i) For example, consider the cubic equation

XA + x - 2 = 0.

The derivative of a? + x 2 equals

J9y
= 30 + l.

The equation Dy = Q has no real roots. Therefore the original

cubic has at most one real root. Being of odd degree, it therefore

has one such root (Ex. 5, p. 162). It is evidently x= 1.

(ii) Again, consider the equation

& - 3a-
2 + 2# + 4 = 0.

Writing y for the left-hand side, we have

Dy = 4#3 - 6# 4- 2.

The roots of the equation Dy = 0, i.e. of 2&>3 Hx + 1 = 0, are x = 1

and the roots of the quadratic

^- 3

^
+1

. 2^ + 2,- 1 = 0;X 1

i.e. x = \ \ V3 and x = \ 4- | V^-

That is, the equation Z)y
= has roots

x ^ ^. ^/3 ?
^.

-- _
|. + ^ ^3^ an(j ^ = i

There is at most one root of y = between any two of these three

roots, or exceeding, or less than all these roots.

By the fundamental property of continuous functions, there is

at least one root of y = for x < ^ \/3 and at least one between

i 4\/3 and -
^ 4- \ \/3 (because the values of y for these critical

values of x are 7/4
-

(3 V3)/2 < and 7/4 + (3 V3)/2 > 0). Hence
there is precisely one root in each of these ranges.

There is no other real root, for y> 4 for all values of x greater
than - + \/3.

The equation has therefore precisely two real roots, situated as

described. Approximations to the actual values of the roots can

now be obtained as accurately as desired by considering the value

of y for different values of x in the ranges concerned. The graph
of the function y is sketched in Fig. 11, p. 158.

191. The mean value theorem (for derivatives). A corollary
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of Rolle's theorem of very wide applicability is the theorem known
as the mean value theorem:

Ify, =y(#), is afunction of x, differentiate throughout an interval

(a, 6), there is at least one value of x between a and b(a< x<b) for

which Dy = [/(&) -/()]/(&
-

a)*.

To prove this we need only consider the functionf

F(x) = [/(*) -/(a)]
-

F(x) is differentiate throughout (a, b) and F (a)
= F (b) = 0.

Rolle's theorem therefore applies to F(x).

The derivative of F(x) = Dy -
[f(b) -/(a)]/(6

-
a); therefore

Dy ~~
[/*(&) ~/(a)]/(fr

"" a)
= for some value ofx between a and 6

;
i.e.

Dy = [f(b) f(u)\l(b &)) ar*d the theorem is proved.

Looked at geometrically, this theorem expresses the evident fact

that the tangent at some point P of an arc AB of a curve is parallel

to the chord AB\.
The mean value theorem expresses the fact that, though it is in

general not true that the incrementary ratio [f(x + h) f(x)]/h
is equal to Df(x), the limiting value of the incrementary ratio as

h -> 0, yet there is a point between x and x -f- h at which the dif-

ferential coefficient equals the incrementary ratio [f(%+h)f(M)]/h,.
This is useful in particular in expressing limits (e.g. the length of

a curve) in the form of definite integrals, and in many questions

involving limits.

Thus, suppose f(x) and F (x) are two functions which are both

continuous and differentiate in the neighbourhood of a point x=a,
and both = when x~a. We may require the limit

lim f(x)jF(x).
x-*-a

We cannot say that this limit =f(a)/F(a) for this apparent

fraction is 0/0, which is meaningless.

But we have [f(x) f(a)~\l(x
-

a)
= Df(x) at some point between

* The remarks on p. 237 about the behaviour of f(x) at the end-points (a, 6)

apply also to this theorem.

t If -4, P, B are the points on the graph y=f(x) corresponding to the abscissae

a, a?, b and if Q is the point in which the chord AB cuts the ordinate through P,

the function F (x) represents the distance QP.

$ Of. geometrical interpretation of F(x), preceding footnote.
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a and #, and [F(x) F(a)]/(x a) = DF(x) at some (other) point
between a and x.

If therefore the derivatives Df(x) and DF(x) are continuous at

x = a, and if at a? = a, D/(#) =/' (a) and DF (x)
= JP' (a), then, if

lim f(x}IF(x}=f(a)IF'(a).

If for example, /(#) = sin x, F(x) = sinh x, a = 0; we have:

(0)
= cos x

y
DF (x)

= cosh x
t f (0)

= cos =
1,

and therefore lim (sin#)/(sinh x) =/' (0)/JF'(0) = 1. To such a
a;-*0

case none of the rules for limits previously obtained will apply.

By applying Rolle's theorem to the function

< (*)/(*) (F(a)
- F(b)]-F(*) [/() -/(6)],

where f(x) and F(x) are continuous and diflferentiable throughout the interval

(a, 6), we prove that jrpr =p\ wnere /' (^) and ^" (^) ai*e the dif-

ferential coefficients off(x) and F(x] at some point x of the interval, the same

for /(#) and /"(#).

If now, as before, /(#) and /T

(.^) are continuous and differentiable in the

neighbourhood of a point x a^ arid /(a)/
f

(a) = 0, then, if x is any point in

this neighbourhood, j^ =
F(x^-F\a)

=
^rF)'

wh re ^ lies between a and

a?. Tf Hm {T, /v{ exists and = Z, lim r( W*U ak e*ist and equal . -v\re
^-*a b \X ) x-**a*()

have established the more general theorem that lim ^-~ exists and equals
x-+aF(B) *

lim b,?\ if this latter limit exists.

x-^a^ \
x

)

This theorem does not require that /' (a), F' (a), lim /' (#), lim F' (x)
ir-*.a x-*-a

should exist.

EXAMPLES XXIII.

1 . Find the vertex of the parabola given by y=#2 - %x 5, and the minimum
value of y. Find also the tangents to the curve at the points where it cuts the

axes.

2. Shew that the tangent at any point P of the parabola yx* makes the

same angle with SP as it does with OY, S being the point (0, J).

3. The length (r) of the radius from the centre of an ellipse to a point on

the ellipse is given by the formula

where 6 is the angle the radius makes with a fixed line through the centre (the

major axis). Shew that the maximum and minimum values of r occur where

0=0 or TT and 6 TT/% ;
and those values are a and b.
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4. Assuming that the path of a ray of light in a homogeneous medium is a

straight line and that in passing from a point A in one medium (air) of re-

fractive index 1 to a point B in another medium (glass) of refractive index /*,

separated from the first by a plane face, the path APE is such that AP+p. . PB
is the least possible, verify the usual law of refraction, that if a and ft are

the angles (of incidence and refraction) which AP and PB make with the normal

to the surface, sma=^sinj3.

5. By considering the function (l+x)
n-nx prove (1 +x}

n> l + nx for all

values of x for which (l-f^?)
n is defined if n > 1 and is not an odd integer ;

and

for x> 1 in all cases if ^> 1. If <w< 1 the inequality is reversed. Consider

also the cases when n is negative.

[Of. inequality (ii) of p. 29; Ex. 1, p. 91
;
and Ex. 3, p. 132.]

6. Establish the inequality of Ex. 4, p. 36 by the method of this section.

7. Prove that, if x is any positive real number and m and n are positive

<pn . 1 y*m> _ \
integers such that m<n, '-- ^ -.

n m
8. Find the maxima and minima of the cubic polynomial

Shew (i) that of the three possible real roots of the equation y=0 only one

can satisfy each of the inequalities x < 1/5, 1/5 < x< 1, x> 1
; (ii) that there

can be no root satisfying the first of these inequalities ;
and (iii) that the only

real root of the equation is > 1.

Obtain this root correct to within *1.

9. Use the mean value theorem to verify that if x is positive loge (l-fx) is

positive and less than #. Prove in the same way (i) e* lies between 1 +x and

1/(1 #) if <x < 1
; (ii) (1 +x)n lies between 1 and 1 +nx if #>0 and n< 1,

or if 1 < x< and n> 1, but lies outside these limits if x> and n > 1 or

if - 1< x< and n<l.

10. The velocity v of a meteor falling vertically to the earth is given approxi-

mately in terms of its height (y) above the earth's surface by the relation

v2 KI(R+y\ where R is the radius of the earth (in appropriate units) and K
is some constant. Shew that the meteor is subject to a variable acceleration

towards the centre of the earth inversely proportional to the square of its

distance from the centre of the earth.

1 1 . Determine the limits

(a) lim (1 -cos#)/sin#, (b) lim [loge (l + #)]/#,
a?-*.0 x-*-0

(c) lim (**-!)/#, (d) lim (e-l)/poga (I-*)],
a;-*.0 x-**Q

(e) lim tanh #/arc sin (o?/2).
#--o

i

Deduce from (6) that lim (1 +#)*= <?.

x-*o

WMA 16
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12. The generalisation of the fundamental property of continuous functions

(p. 236) can be proved alternatively by the method used in the proof of the

theorem on derivatives on p. 119 above.

[To prove that there are values of x in the interval (a, b) for which/(#) ** J/,

the upper bound of /(#) in (a, 6), bisect the interval. The upper bound of

f(js) in at least one of these half intervals must =M. Bisect this half interval,

and so on. A sequence of intervals (as on p. 120) is obtained, converging to a

limit point, a say. The upper bound of f(x) in any neighbourhood of a is M.

It follows from the continuity of f(x) at a that /(a)=J/i and the result is

established. To prove that there are values of x for which /(#)=&, where

m^k^Jf, a sequence of intervals is obtained in which there are values of

x for which f(x)^k and values for which /(#)</. If a is the limit point

6. THE DEFINITE INTEGRAL AND ITS EVALUATION

192. Integration in general. In Chapter in, 1, in considering

the question of areas we defined the definite integral. The definition

is applicable to other questions. Briefly, where ageometrical, physical,

or other quantity can be divided into an indefinitely large number

of small portions (or elements) each of which can be measured

approximately (or may be regarded as so divided), the measure of

the whole quantity is given by a definite integral. Integration is

the process of summing the elements to arrive at the total quantity.

Areas, volumes, lengths of curves, moments of inertia, centres of

mass, etc. provide common practical examples of questions of this

kind; as also such questions as the determination of the distance

traversed in a given time by a body moving with variable velocity.

In mathematical physics most quantities are measured by means

of definite integrals. In this section we consider the matter ab initio.

193. Function assumed bounded. Let /(a?) be a function of x

defined for a ^ x ^ b, a and b being two real numbers (a < b). We
shall say that f(x) is defined throughout the interval (a, b). Let

f(x) be bounded in this interval, i.e. |/(#)| < a fixed number K
for all values of x in the interval*. Let M and m be the upper and

lower bounds of the values off(ac) in the interval.

194. Limits of larger and smaller sums. Suppose now the

interval (a, b) is divided into any number of parts, say by the

* Unbounded functions (such as x~l or af in an interval including x= 0) are

excluded from our discussion of integration. For such "infinite integrals" see

Hardy's Pure Mathematics.
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points (or numbers) a, xl9 #3 > #n-i, b (in order). In every one of

the sub-intervals so formed, e.g. (a, #1), f(x) is bounded and has an

upper and a lower bound (say MI and m,). Moreover it is clear that

Mi^M and ml ^ m. If we form the sum

Sl
=Ml (xl

-
a) 4- MS (#2

- #0 + . . . + Afn (6
-

tfn-O,

the terms of which are the products of the lengths of the various

sub-intervals* and the upper bounds off(x) in those sub-intervals,

we have Sl ^M (b a).

If now the sub-intervals (a, ^), (xlt #2)> (#-i, 6) are themselves

divided in the same way, in each of the smaller parts thus formed,

the upper bound of f(%) ^ the upper bound in the corresponding
sub-interval of the first system of division. The sum formed from

this second system in the same way as Sl was formed from the first

system, say

s<2 = MS -
a) + ir;K -

</) + . . . +Mn,

f

(b
-

av-i'X

is clearly ^^.
By further subdivision we get a third sum, S3 say, and so on.

We thus obtain a sequence of "larger sums" (as we may call

them),

Similarly by taking the lower bounds in each part of the interval

we obtain a sequence of " smaller sums,"

Of these sequences we know

and m (b a) ^ sl

and it is evident that every larger sum ^ every smaller sum.

We may write

m(b a) !̂
s

l ^s2 ^...^S<2 ^Sl ^M(b a) ......... (3).

It follows that the sequence (1) V a unique limit, B say, and

the sequence (2) (** a unique limit, S say; and S >$.

195. Upper and lower integrals. The definite integral.

Definitions. So far this is true whatever system of division has been

chosen, but the numbers S and S will depend on the way the division

is carried out. We could make the numbers S and S definite if we
* The length of an interval (a, b) is b - a.

162
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supposed that in the process of division the greatest of the parts is

made to diminish indefinitely to the limit zero. It is not a priori

evident that, even with this limitation, the numbers $ and 8 are

definite, the same for all possible modes of division of the above

type, though this is in fact true.

In any case however the set of all possible larger sums is bounded

below and has a definite lower bound, I say; and the set of smaller

sums is bounded above and has an upper bound, 1 say; and I^L
To prove that 1^1 we observe that any "larger sum" whatever

is greater than or equal to any "smaller sum"; for the upper bound

of a (bounded) function in any interval ^ the lower bound of the

function in any other interval with which the first interval has any

part in common, because the upper bound concerned ^ the upper
bound in the common part, which ^ the lower bound in the common

part, which > the lower bound concerned.

/ is called the upper integral of /*(#) over the interval and 1 the

lower integral. Both exist for any bounded function in any bounded

interval.

If the upper and lower integrals I and I coincide, f(x) is said to

be integrable over the interval, and the common value / = / = / say,

is called the definite integral off(x) over the interval (a, b), or between

the limits a, 6, orfrom a to b.

a and b are called respectively the lower and upper limits of

integration and the interval (a, 6) the range of integration.

It is evident that the function will certainly be integrable in this

sense if the limits S and $, obtained in the way described above,

coincide, because 8 ^ / ^ / ^ 8. The common value of 8 and 8 will

rb

then be the integral I /(a?) dx.
J a

It can be proved, conversely, that if a function is integrable in

this sense, the limits S and 8 are necessarily unique, identical, and

equal to the integral /, provided the greatest of the parts in the

division has been made to diminish indefinitely to the limit zero.

This definition thus agrees with that given in the last chapter

(pp. 143 149). We use the notation

The definition can be modified to cover the case when 6 < a; or
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fb
r a

we define I f(x) dx when b < a as I f(x) dx, supposing this
-a J b

latter integral exists.

196. Properties of the definite integral. From the definition

we have the following general theorems*:

(i) Iff(x) is integrable in an interval (a, 6) and also in an interval

(by c), then it is also integrable in the interval (a, c) and

\f(x)dx
= f /(*) dx + f f(a,)dx.

J a J a J b

(ii) Iffi(x) andf2 (x) are two functions which are both integrable

in an interval (a, 6), then the sum or difference ft (x) f2 (x) is also

integrable and

I" [/. (*) / (*)]**= fVi (*) dx f/. (*> dx-

J a J a J a

(iii) If f(x) is integrable in (a, b) and k is a constant, then kf(x)
is integrable and

rb rb

I kf(x) dx = k I f(x) dx.
J a J a

(iv) If /I (x) and f2 (x) are integrable in (a, 6) the product

fi(x) xf2 (x) is also integrable in (a, b).

The student will find it instructive to write out proofs of these

simple fundamental theorems.

To prove (ii) on the basis of the definition of this section, without

relying on geometrical intuition or on the unproved statements

concerning the limits S and $, we can proved thus:

The result will follow if it can be proved in general that the

upper integral of /x (x) +/2 (x), say /, is less than or equal to the

sum of the upper integrals of f\(x) and f%(x). say /i-f/2, and the

lower integral of /i (x)+f%(x\ say /, is greater than or equal to

the sum of the lower integrals of /i (x) and fz(x), say /! -f- /2 . For

then,/! (x) and /2 (x) being integrable, we should have /! = /! = I
l

say, and /2
= 72

= 72 say, and therefore /=/ = /! -f /2 .

To prove the first of the results stated, viz. 7 ^ fj -f- J2 , we observe

that /! and J2 are the lower bounds of the "larger sums" associated

with the functions fi (x) and/2 (x), and therefore systems of division

of the interval can be found for which these "larger sums" exceed

* These theorems are equally true whether a<b, etc. or not.
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/! and J2 respectively by arbitrarily little, say less than e. By
combining the points of division of these two systems a single

system of division is obtained for which the "larger sums" exceed

their respective lower bounds (Jj and /2) by less than e. For this

system, the "
larger sum" associated with the combined function

/i ,(#) + /a (#) ig less tnan or equal t the sum of the two "larger

sums'* and therefore is ^ Jj + /2 + e. It follows that the lower bound

of such "larger sums," viz. J, is ^ /j -f J2 . Q.E.D.

The result for the lower integrals follows similarly.

A proof of theorem (iv) is given in Ex. 12, p. 260 below.

197. Integrability of bounded monotone function and of all

elementary functions. So far in this section we have not proved
that any functions are integrable. We will now prove theorems

establishing the integrability of wide classes of functions, in-

cluding all the functions considered in this course, over any interval

excluding points of discontinuity.

1. If /(#) is any (bounded) monotone function in an interval

(a, 6) then it is integrable in (a, b).

For the difference between a "larger sum"

Ml (X a) 4-M2 (#2 ^) -f . . . -fMn (b xn^)
and the corresponding "smaller sum"

ml (xl -a)-\- m^-x^i- ... +wn (fo-#n_1)

is

(#! a) 4- (M2 m2) (#2
- x^ -f . . .

+ (Mn - mn) (b
-

&v-i) ...... (4) ;

for definiteness that/(#) is non-decreasing,

mi =f(a)>
MI =/<X) = Wa> ^2 = /(#2)

= m8 ,
. . . Mn =f(b).

Therefore, if the greatest of the parts,

#! a, #2 #!,... 6 #_!, equals A,

the difference (4)

^ A [(ifj
- mO + (^/2

- w2) + ... + (Jlfn
-

win)]

- A [/(,) -/(a)

which -*- as A -** 0; and it follows that the lower bound of the

larger sums and the upper bound of the smaller sums coincide;
i.e. I~l
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From theorem (i) above it now follows that any (bounded)
function which is monotone in stretches throughout an interval*

is integrable in that interval. From theorems (ii) and (iii) any
function which is a linear combination of such functions is also

integrable. From theorem (iv) and the fact that the reciprocal of

an integrable function is integrable over any interval in which

y(#)=|=0 it follows that any arithmetical combination of integrable
functions is integrable over any interval (excluding points where

the function is not defined). A II the particular functions considered

in this course are of these types in any interval excluding all points

of discontinuity.

All functions of bounded variation are integrable, in direct con-

sequence of theorems (ii), p. 245, and I, p. 246, and the definition

of p. 138 above.

198. The integrability of continuous functions. The proof of the

integrability (in appropriate intervals) of the functions of elementary analysis

can be made to rest alternatively on the following theorem :

II. Iff(x) is any continuous function in an interval (a, 6) then it is integrable

in (a, b)>

The proof rests on proving that the difference (4) -* as A -> 0. If the

greatest of the differences

Mi-nii, J/2-w2 ,
... Mn-mn

is $, the difference (4)

In virtue of the continuity of /(#) it can be proved that -* as A > Of.

Hence the difference (4) *> and the theorem follows.

199. It is neither evident nor true that a function defined in a certain range

as the sum of a convergent infinite series of monotone or continuous functions

is itself monotone or continuous (or is a linear combination of such functions).

But it is true that the sum-function of any power series is both monotone or

expressible as a linear combination of monotone functions, i.e. of bounded

variation, and continuous,throughout any intervalwholly interior to the range

of convergence of the series, ~r-though not necessarily if the interval includes

the whole range of convergence. These facts are proved above (pp. 171 172

and Ex. 14, p. 195). Any such function is therefore integrable in any such

interval.

*
I.e. such that the interval can be divided into a number of sub-intervals in each

of which the function is monotone.

t See Ex. 13, p. 260 below.
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200. Functions assumed integrable and continuous. Through-
out the remainder of this section we shall suppose the function /(#)
under consideration to be integrable and continuous.

201. The integral as a function of the upper limit. The

fundamental theorem. Let us consider now the definite integral
x
f(x)dx where a< X < b and/(#) is integrable and continuous

a

in the range (a, b). Drawing the graph of/(#) (Fig. 23) we see that

Y

P^

i,
f (x) dx represents the area ACMP. For brevity write

I(X) = (

X
f (x) dx = area A CMP.

J a

This area, or integral I (X) t depends on X and is a function of X .

(
x

The integral I (X) = I f(x) dx is also continuous and differen-
J a

tiable with respect to X for any value of X between a and b; and

I (X + h) -I (X) = area ACNQ - area ACMP
= area PMNQ

For

if U is the upper bound of/(#) in the range (X, X -f- h\ i.e. over

PQ. This -* as h -> and the continuity is established.

Moreover the incrementary ratio

[I (X + h) -I (X)]/h = (area PMNQ)/h ^ U
and similarly ^ u, the lower bound otf(x) in (X, X + h).

But as A-^0, U-+f(X)(= MP) and u -+f(X).
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Therefore the incrementary ratio

or the integral I (X) is differentiable with respect to X and

202. The inverse character of integration and differentiation.

This result, which is an analytical theorem clearly independent
of the graphical representation, establishes what we may call the

inverse character of integration and differentiation. It is the most

important property possessed by integrals and is known as the

fundamental theorem of the integral calculus. By means of this

theorem we are enabled to integrate, i.e. to evaluate the definite

integrals of, many of the common functions of mathematics. The

theorem is true under wider conditions than those here supposed,

f(x) integrable and continuous, but, as stated, it is sufficient for

all the needs of elementary analysis.

203. Tentative evaluation of definite integrals. To evaluate

f
l

-a definite integral, say I x2
dx, we might now argue that the

Jo
ex

integral / (X) ~ x*dx is differentiable and Dl (X) = X\

But D (Z 8

/3)
= X\

If therefore Jf 3
/3 were the only function whose derivative is X 2

,

ri

itwouldfollowthat/(JST) =Z 3

/3andthencethat #2
(fo= I(l)=l/3,

Jo
which is in fact the correct result.

There are, however, any number of functions having the same

derivative.

Thus D (1 +X 3

/3)
= D (- 2 + X/3) - D (Z/3) - X\

The suggested argument is therefore not sound. Nevertheless we

notice that the examples given of functions with the same derivative

JT 2
, though not identical, differ from one another by mere constants;

and the student will convince himself that this must be so.

204. Theorem on functions with same derivative. It is in

fact true that:

Iffi (x) and fz (x) are any two functions whose derivatives Dfi (x)

and Dfz(x) are equal for all values of x in a given range, then f^ (x)

and /2 (x) differ by a constant (or are equal) throughout the range.
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This follows at once from the theorem of p. 121 above, viz.

If ike derivative Df(x) of a function f(x) is zero throughout a

range, then f(x] is constant throughout the range;
for if Dfl (x)

= Df2 (x), D [/ (x) -/2 <] = and this theorem will

shew that f^ (x) f<2 (x)
= constant.

This last theorem may be proved alternatively by using the

mean value theorem of p. 239 above, thus:

If the values of f(x) at any two points a, b of the range were

different, the derivative Df(x) at some point between a and b

~[/(^)~/(a)]/(&"~ a
')

=
t

=
0> and the theorem follows by reductio ad

absurdum *.

205. We can now remodel the argument by which we sought to

determine I x*dx thus:

= Z 2 and

therefore I(X) = X*/& or differs from X 3
/3 by a constant.

Say I(X)**X'/Z + C.

It is now possible to determine the constant C from other con-

siderations; for we know that as X-^0, /(^f)-^O; and therefore

in this case (7 = 0.

We have proved therefore that
rX ri

x*dx=:X*/3 and that x*dx=l/3.
Jo Jo

206. The fundamental formula. The indefinite integral. This

process is evidently general. We have arrived at the standard

method of evaluating definite integrals:
rb

To evaluate the definite integral f(x) dx of a function f(x)
J a

(supposed to be continuous and integrable) we first find any function

F(x) whose derivative DF(x) ~f(x) for all values of x in the range

(a, b). We then have

For t* f(x) dx = F(X) + constant

f
A"

because f(x)dx-*Q when X-*a.
J a

* The theorem of p. 119 may also be proved by this method.
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Such a function as F(x) is an inverse derivative of f(x). In view

of the importance of such functions in integration they are also

called indefinite integrals. The indefinite integral of f(x) is any

function F(x) which has f(x) for its derivative at all points of a

range. The indefinite integral of f(x) is denoted by f(x)dx. As

the name itself implies, the indefinite integral is not a definite

unique function.

The formula
f f(x) dx = F(b)-F (a),
J a

which is often written

4= a
r

is called thefundamental formula of the integral calculus.

In view of the fact (Theorem II, p. 247) that a continuous function is

necessarily iritegrable, it is seen that the fundamental formula will always

apply if the function /(#) is known to be continuous throughout the range

concerned, F(x) being any function whose derivative is f(x) throughout the

range.

207. Standard indefinite integrals. The evaluation of definite

integrals depends on the determination of indefinite integrals. We
have at once from the list of differential coefficients of 4 above,

a corresponding list of indefinite integrals:

I. I xndx = xn+l/(n -f 1) for all values of n other than 1
;

valid

for all values of x for which xn is defined.

II. \x~l dx = \Q%e x\ validfor#>0. If#<0, I x~l dx= \oge(x).

Or, for all x except 0, 1 x~~
l dx = \oge \x\.

III. I e*dx = e
x

\
valid for all x.

IV. (a) I cos xdx = sin x, \ sinxdx = cos #; valid for all x.

I sec2 xdx tan x, \
= sec x\ valid for all values

J J cos2
a?

'

of x except odd multiples of ?r/2.
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I cosec2 xdx = cot x, \
.-- = cosec#: valid for all

J J sin 2 x '

values of so except and multiples of TT.

(b) JO (a) dx = S (a?), |flf()rf-
G (x)\ valid for all values

of x.

dx [S(x)dx 1 r , n ,

'
=

(a?)>
'

=
T ;

~valld for a11 values

of x except odd multiples of + r/2.

dx ____
S(x)~

m r aU

values of x except and multiples of r.

v- (a) /v(fe)
= arc sin x

'

/v(fe)
= ~ arc cos a;;

~valid for

-1 <x< 1.

I --
-^

= arc tan x,
^

-
2
= arc cot x\ valid for all

values of x.

[ dx [ dx ,..
I 77-9

-
x
= arc sec #, / 1N

=s arc cosec ^?
;

valid for
J xj^-l) J xj(x*-l)

f fa
I 2== T(x)\ valid for all values of x.
J JL -\- X

VI. I cosh xdx = sinh x, \ sinh xdx cosh #, sech2
a;dl^

fsinh^c&F
T ... . ,.

i sech ^ . valid for all x.
J cosh2 x '

I cosech2 xdx~ - coth ^?, I ~y^
^= cosech ^ ; valid for x =t= 0.

f cfe
__L_ . -. arg gin^ ^j- valid for all x.

~ =
arg cosh x\ valid for x > 1.

r d#
i _ 2

= arS ^an^
\

valid for
j

x
\

< 1.
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- --- =s arg coth x\ valid for
|

x
\

> 1.

dx

'(!-*>)

.

-j
-r-r= arg cosech x ;

valid for x =t= 0.

It is usually more convenient to use alternative forms

involving logarithms in preference to inverse hyperbolic functions;

thus

dx f dx 1

x+l vj
-
vahd

f dx f dx , 1 +x r , f .
, ,

J i^ =
-Jrf^-* Io*r^' valld for ^ l<c 1; and

/"
dx f dx

J i -^
= -J^I

VIL I (a -f a^ + a%x
2 -

valid for x within the range of convergence of either series.

In this list, in order to have the general form of the indefinite

integral, an arbitrary constant must be added to each result.

208. Evaluation of definite integrals. The definite integral of

any of the above functions over any range within which the function

is known to be integrable can now be written down at once.

Thus to evaluate I x*dx] the indefinite integral la?dx=sa?/3

(-H arbitrary constant 6r

); and therefore, from the fundamental

formula of p. 251,

P #2
cfo = 28

/3
--

P/3 = 7/3. ^

Or P
J -i

Or again to find the area of a wave of the graph of y = sin oo

(cf. Fig. 15, p. 185), i.e. to evaluate the definite integral

sin x dx,
o

we have I sin xdx = cos x -f

["
and therefore sin xdx~( cos TT) ( cos 0) = 2.

Jo
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209. Alternative forms for indefinite integrals. In the above

table, in V and VI, alternative forms are given for the same

integral; for example I
-,y- n

= arc sin x and also = arc cos a.

j y (1 & )

This arises from the essential indefiniteness of the indefinite

integral. The two functions arc sin x and arc cos x differ by a

constant, for if arc sin x = ylf and arccos# = y2 , sin.yl
^x and

cos
3/2
= #; and therefore yl and y2 are complementary (we know

-ir/2^yi^ir/2 and 0^yz ^TT); i.e. yj + y8
=

?r/2 ;
or

arc sin x ( arc cos x) yl + y<i
=

7T/2.

Both forms are included in the general forms

arc sin x + C, arc cos x + C,

C being an arbitrary constant.

Either form will of course give the same result for a definite

integral deduced from it.

210. Integration by substitution and by parts. From the

above table of standard forms the indefinite integrals of other

functions can to some extent be deduced, by use of theorems

similar to those of p. 245 above and by other methods.

There are two methods of frequent applicability by which an

integral may be transformed into a simpler one and thence evalu-

ated
; integration by substitution and integration by parts.

Integration by substitution rests on the law for the differentiation

of a function of a function (p. 219) and integration by parts on the

law for the differentiation of a product (p. 218).

Thus, if y is a function of x and x may be regarded as a function

of another variable u, we have (assuming the existence of all the

derivatives and integrals involved)

d / f _, \ d ( [ i \dx dx
-r- { lydx) = -,- ( I ydx ) -j-

= y T- ;

du\] J
/ dx\)* ) du

* du'

j e y _ is the derivative with respect to u of the function I ydx' ' y du J

(or any one of these indefinite integrals).

Therefore lydx= \ y -j-
du, the formula for integration by sub-

stitution.
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f dx
Thus, e.g.,

if in 7 ^ we put x = a sin it, so that
J \ \

^ """ ^ )

V(a
2 #2

)
= a V(l

- sin2
^) = a cos M and dxjdu = a cos u,

we have ,/- ox
=

I
- a cos udu = u = arc sin (a?/a).

J V(a - # ) > a cos w

This result verifies the first result of V above.

Or again feaxdx = I eax J-^T c? (ax) =~eax
]5

J J d(ad?)
^ ' a

or again

f dff f 1 dx ,, . [d(x~-a) .

= ^____ d(x a)=*\
- = loee (a? a).J#-a J^-arf(^-a)

v 7
J ^-a feev ;

The formula for the differentiation of a product is

which gives at once

d uv
__

dv du

dx
""

do? cfo?

f dv
j f du .

uv = I u -5 aa; -t- I
fl -r=- aa?,

J aa? J cte

whence the formula for integration by parts:

[ dv i f du
7

i* -7- aa? = MV I v -T- ate.

For example
f ,

/"
dsina? 7

I x cos a?aa? =
\
x , ax

J J dx

= x sin a? sin #aa?,

from the formula (putting u = a;,- v = sin x),

== a? sin x + cos a?.

The use of this formula depends on expressing the function to be

integrated in the form u
-^

and on the integration of the function

du

dx'

In both these formulae we tacitly suppose that the functions

concerned are differentiable (and integrable) as required. In the

practical work of evaluation of indefinite integrals these assumptions
need not be verified. If there is any doubt as to the validity of

either formula in any particular case the result is easily verified

by direct differentiation.
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211. Integration of rational functions. The integration of

elementary compound functions is not so systematic as is dif-

ferentiation. Certain wide classes of functions however can always
be integrated. It is also always possible to integrate any function

if it can be expressed as a power series, by standard form VII

above, a fact which is often useful in practical work.

If a rational function R (x) can be expressed as a sum of partial

fractions of the form

R (x)
= A^(x ax) + A^l(x a2) + . . . + An/(x an),

we have at once

I R (x) dx = A l log*, (# &0 + AZ loge (x aa) + ... + A n loge (x an\

Or the function I/(x
2
-fpx 4- q), p and q being constants, can be

rewritten as l/[(#+p/2)
2 + (g jp/ty].

If q j?
2
/4 > and = a2

say, form V above gives

f &X 1
, r/ i^ i n= - arc tan [(x + p/2)/aJ,

h a a

and the function is integrated.

If q p
2

/4 < and = a2
,
form VI above gives

f dx I

2
= -- arg tanh

l

and the function is integrated.

If -

Rational functions may usually be integrated by these methods.

212. Again the function \j(\/(x^
Jfpx -f q)) can be integrated

similarly and we have

dx
- = ar sinh

where a2 = g jp
2

/4 if ^ > ^}
2
/4,

or =* arg cosh [( H- p/2)/a], where a2
=p*/4< q if q< _p

a
/4,

or =loge (a?-f p/2) if qp2
/4<.

Other integrations will be found in the examples.
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EXAMPLES XXIV.

[In these examples all letters except x denote constants. The ranges of

validity of the results should be supplied.]

1. Verify the following integrations :

dx 1 . x-a

(
Reconcile this with the alternative form arg coth -

. )

\ a & a )
.... f dx 1

,
x , 1 ^x

(11) I -s--5
= - arc tan - and = arc cot --

:'

J #2+ a2 a a a a

(iii) I tan xdx= loge cos x ;

(iv) / cot x dx= + loge sin x ;

(v) I axdx = ax loga e axl\oge a',

(vii) I

2. Establish:

(i) I cos 2^0?^=-- sin 2#
; (ii) I sin %xdx - cos 2^

;

(iii) I cos nxdx~- sin nx
; (iv) I sin nxdx cos nx ;

(v) / cos2 ^o?^==-sin^cos^-|-^;
J 2t 2t

(vi) I sin2 xdx - cos .tr sin J7 4- - Jt'
;

J 2 2

f I 2
(vii) I cos3 xdx -- sin # cos2 ^+ ^ sin ^ ;

J & o

... f . I 2
(viii) I sin3 a? ofa?= - cos ^p sin2 ^ ^ cos x

;

7 ,3 A

(ix) / sin6 ^7dx cos ^? 4- ^
cos3 # - cos6 ^7.

3. Prove:

(i) I tanh ^(f^= loge cosh ^; (ii) /coth#ofo:=loge 8mhtf ;

(iii) I sech xdx= 2 arc tan e
x

', (iv) / cosech xdx log^ tanh - ^.

WM A 17
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4. By integrating by substitution prove :

(i) f^^2 6fo-|loge (#
2+a2

) [Substitution: aP~u];

(ii) 1-77-2 2\
dx~ \/(a

2 -#2
) [Substitution: x*~u or # a sin ft];

J v (
a ~~ x

)

(iH) /(iSjS-sa^f [Substitution: !-*-];

(iv) / cosec xdx~ loge tan (#/2) and

/ sec # afo?= loge ^an (w/4 4- #/2) [Substitution : tan #/2= w] ;

(v)
/ - ---?

->,-- ^ arc tan
( /v/^ ytan^j if a>6 [Substi-v y

J a+ 6 cos d? ^/(a
2 ~62

) \V a+ 6 2/
L

tution: tan (^/2)= ?^].
Determine the integral also if a<b and if

a

/ -\ f ^ ]
* /ft *

(Vl) I
7 o = -T arc ^an - ^an xv ;

J a2 cos2 #+ &2 sin2 # ab \a

[Substitution:

5. By integrating by parts prove :

(i) I arc tan xdx x arc tan x -
loge (

1 + x2
) ;

(ii)
/ arc sin xdx x arc sin x 4- /y/(l ,#

2
) ;

(Hi )
I arc cos xdx=*x arc cos x - *J( I

- x2
) ;

(iv) I loge xdxx log,, x x
;

(v) / xe dx^~ xeax - 9 eax
;

J a a2

(vi)

(vii) I ^si

,(viii) / i

/I 2 2 .

j?
2 cosaxdx- xl sin a# 4- -5 x cos a# ^

sin ax ;

a a2 or/I 2 2
a?

2 sin axdx= - - #2 cos a^? 4-
2
x sin

^-f^3
cos ^^ J

(xi) / arc sec xdx^x arc sec x arg cosh #.
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6. Prove:

(i) / e cos bx dx= eax (b sin bx+ a cos bx)/(a?+ 62
) ;

(ii) / eax sin fo? cfo?= e (a sin &# - b cos 6#)/(a
2

2
= log f(a

[Express the function to be integrated in the form of a sum of partial

fractions of the form.

By multiplying up and identifying the numerators by equating the coefficients,

J.-1, =
2, 0-0, />=0, E= -1. The integration follows.]
f

J irr

. ... (for -I 1 xl 1 . 3 A-
7

(VU)

7. Any rational function is expressible as a sum of partial fractions of the

types

Of these types all except those with a quadratic denominator raised to a power
^ 2 can be dealt with by the above methods. Shew how such a function as

(Bv-\-C)l(x
2
+px-\-qf can be integrated.

[The numerator Bx-\-C can be expressed as a (x
2+px 4- q) 4- (bx 4- c) (%x+p)

and the function then =al(x?+px+ q)
- (bx+c) ~j- ( ^ - --

)
. The first of'^ r ^-' ^ ' dx \x

l
-\-px- <i)

these two expressions is integrable as above. The second is reduced to a similar

form by integration by parts.

The integration of a rational function thus depends on factorising the

denominator into linear and quadratic factors (simple or repeated), for then

the function can be expressed in partial fractions of the above type, as in

Ex. 6 (iv). This factorisation can often (but not always) be carried out. Other

methods of integrating rational functions are often more convenient (e.g., in

particular, by the use of imaginary or complex factors).]

8. Evaluate the definite integrals

/

2 1 T 1
/" r 10

~
$ dx, I exdx, I e~ x smxdx, I \oge xdx,

i x J -i Jo J i

I
- -

dot, I

"
sin (x/n) dx, I

"
tan x dx, \ sin2 x dx.

J o 1 +x JQ j Q j

/T/2

/V/2sm2#cos3
#0fo?, I si

o Jo

172
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9. Shew that I -77^-*;

=
ir/6

= w/6.
J o vl 1 ~#

;

By expanding (l-#2
)""i in a power series and integrating term by term

deduce that

10. Establish the identity of the circular and trigonometrical functions

and S(x) (and thence also of the derived functions) from the relations

1f */{L-X')

11. The function l/x
2 is not denned and is discontinuous at # = 0. It is

also not integrable in any range including the point x=0. The argument

is not valid.

12. Prove that if two (bounded) functions fi (#) and /2 (x) are integrable and

positive throughout a range (a, &), then the product fi (x)fa(x) is also in-

tegrable. Deduce the same result whether the functions are positive or not.

[If MI and MI" are the upper bounds of /j (x) and fa(x) in the part (a, #j)

of the range (p. 243), the upper bound of/x (#)/2 (#) in (a, ^) ^ M{M{'. With
similar notation, the lower bound of /j (#)/2 (#) in (a, x^^mi'mi". Therefore

the difference between the upper and lower bounds of f\ (x)f2 (x) in (a, x\)

where K is any number exceeding all the values of /j (x) arid /2 (#) in (a, 6).

Similarly for all the other parts (x\ , x%) etc. The difference between the larger

and smaller sums for the function /J (x)f% (x) therefore < the sum of terms such

as K(Mi"-mi
f

)(xl -a) + K(Mi'-mi)(x1 -a\ and therefore -^0 as A->0,
because of the integrability of /i (#) and/2 (^)

When /! (4?) and/2 (4?) are not restricted to be positive, a constant K can be

found so that K+f\ (x) and K+f2 (x) are entirely positive. Theorems (ii) and

(iii) of p. 245 complete the proof.]

13. Prove that if a function f(x) is continuous at all points of an interval

(a, 6), then the difference between the upper and lower bounds of f(x) in any
and every part of the interval of width < A tends to as A -> 0. ( Uniformity

of continuity.)

[Let e be any positive number. Let (a, #j) be the greatest range starting

from a in which the difference between the upper and lower bounds of

f(x) < 6/2. Because the function is continuous at
, there must be such a range

^(a, b). If Xi^b, let (#1, #2) be the greatest range starting from x\ in which

the difference between the upper and lower bounds < /2.* Repeat this process.

There are two possibilities: (1) sooner or later the points #1, #2, ... arrive

at 6, or (2) all the points 4?!, a ,
... < 6. In case (1) the theorem is conceded^

for if A is the width of the least of the (finite number of) ranges (a, x^y
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(#!> #2)5 (#n-i> &)> any range whatever which ^ A overlaps at most two of

these ranges, and therefore in any such range the difference between the upper
and lower bounds of/(#)</2+ /2e. In case (2) the sequence #t , x%, ... has

an upper bound= a^6. a being a point of continuity of/(#), there is a range

(a ,
a + d) say with a as centre, within which the difference between the upper

and lower bounds of /(#)<e/2. This range must overlap some of the points

x\ ,
#2 If ^w is one such point, the range (#m ,

a -f $) is a range in which the

difference between the upper and lower bounds off(x) < */2 ;
and the next point

to ,#m in the sequence of points x\ ,
.v2 ,

... must ^a + 8. This contradicts the

fact that a is the upper bound of the unending sequence x\, x^ ____ Case (2)

therefore cannot arise.

It is interesting to see where this proof breaks down for the function \j(x
- 1

)

in the range (0, 1).]

14. Prove that, if/Or) is any bounded function which is integrable in (a, 6),

rx
the function f(X)^ = I /(#) dx, is a continuous function of X,

J a

15. With the notation of Ex. 14, prove that, if /(#) is monotone, or of

bounded variation, F(X) is differentiate on the right and on the left for all

values of X in the range and that the "semi-differential coefficients" are equal

to the limits on the right and on the left of the function f(X).

7. PKOPERTIES OF THE DEFINITE INTEGRAL

213. Functions assumed bounded and integrable. The definite

fb
integral I f(x)da) has several important properties, which are

J a

almost self-evident when the integral is looked on as representing
the area bounded by the graph y =/() The student should

interpret and verify geometrically all the results of this section.

The proofs, based on the analytical definition of the integral, are

likewise almost intuitive. We suppose throughout this section that

thefunctions under consideration are bounded and integrable through-

out the ranges concerned.

214. Obvious properties. We have already, in the last section,

stated the theorems expressed symbolically as

re rb re

I. f(x)dx=\ f(x) dx -f I f(x) doc, a, 6, c being any real
J a J a J b

numbers ;

II.

6

kf(x} dx = k \ f(x) dx, k being any real constant;

III. [/! (x) -f/2 (#)] dx = /! (a?) cfa? -f I f.2 (x)dx.
j a J a J a
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Some of the consequences of these theorems have also been

developed above.

215. The simple mean value theorem for integrals. No less

evident, geometrically or analytically, is the following important
theorem :

IV. If m and M are fixed numbers such that m ^/(#) < Mfor
all values of x in the range (a, 6), and a < b, then

rb

m (b a) ^ f() dx ^M (b a).
J a

For, the undivided interval (a, b) may be regarded as one of the

systems of division of the definition (p. 243). For this system,

the "smaller" and "larger sums" are ^m(6 a) and ^M(b a)

respectively. The result follows.

If b < a, the inequalities will be reversed.

This theorem is often valuable in giving upper and lower

approximations to the value of an integral. In the theorem m
and M may be taken to be the lower and upper bounds of f(x)
in the range (a, b). We may then, on the assumption that f(x) is

continuous throughout the range, express the theorem in the form

which will be described as the simple mean value theorem for

integrals, viz.

.' a

where X is some number between a and b.

For, by the generalised form of the fundamental property of

continuous functions (p. 236), there is at least one value X between

a and b for which f(X) = any number between m and M
; hence

ab
\ /

f(oo) dx \ (b a); and
. a If

the theorem is proved*.
As a corollary to Theorem IV we have the following theorem :

*
Otherwise, by the mean value theorem of p. 239. Denote the indefinite integral

/ f(x) dx by F(x). Then f(x) is differentiate and F(b)-F(a) = (b- a) F f

(X) 9

f*
where X lies between a and 6; i.e. / f(x)dx = (b-a)f(X)> by the fundamental
* i

J
formula.
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V f\ fa) md /s(#) are two functions such that /j (x) ^/2 (#) for
every value of x in a range (a, b), and a<b, then

/b
ft,

fi(x)dx$j f2 (x)dx.

For /i (*)-/, (0) $0 and .

I f, (x) dx - [*/, (*) cfe = T [/ (0) ~/2 (a?)] (fa ^ o.
'a J a J a

We can also deduce at once from Theorem IV that

If the function f(x) is everywhere positive in a range (a, 6), then

(
x

.

'

I f(x) dx (= F(X) say) is a positive increasing function of X for
J a

X in the range (a, b); and if f(x)<0, F (X) is negative and

decreasing.

This follows because, if a ^ X l < X2 ^ b,

then F(Z9) -F(XJ =
f^'/()

dx > 0;
J jf]

and similarly for/(^) < 0.

This theorem is in conformity with the fact that the function

F (x) is increasing throughout any range in which DF (x) > and

decreasing in any range in which DF (x) < 0*.

216. The first mean value theorem. Theorem IV may be

generalised so as to give upper and lower approximations to the

integral of the product of two functions, one of the functions being

everywhere positive.

V. If f(x) and
<f> (x) are two functions (both integrable) and

$(a))^Q throughout the range (a, 6), and a<b; and if m and M
are any numbers such that m ^f(x) ^M throughout the range, then

Cb rb rb

ml
<f> (x) dx ^ /(#) <f> (x) dx ^ M I <j>(x) dx.

J a J a J a

To prove this, we observe that, because
<f> (x) is positive (or zero)

and m -^f(x) ^ M,
we have m<f> (x) <f (x) <j> (x) ^ M<j> (x)

for all values of x in the range; and the result follows immediately
from the corollary to Theorem IV opposite.

The corresponding result when
<j> (x) is everywhere negative is

rb rb rb

M\ <f>(x)dx^\ f(x) $(x)dx^m I
<f>

J a J a J a

* P. 231 above.
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Theorem V can be expressed in the alternative form

f

"

/O) <t> (*) dx = f(X) f * (*) dx,
J a Jo*

where X is some number between a and 6, provided f (a) is con-

tinuous and < (#) everywhere positive. It is then known as the

first mean value theorem. This theorem and its more general form

(Thedrem V) are of importance in estimating the magnitude of

definite integrals which cannot be evaluated in ordinary terms.

Thus, for example, the graph of the function sin x\x consists of a succession

of waves. The area of the wave between the points #=2?&7r and #=(2/& + l) rr

A2 + l)ir Sin #
equals /

~ ax.
J2mr X

This cannot be evaluated in ordinary terms*; but the function sin.?; is

positive throughout the range and Ijx lies between l/2nir and l/(2w + l)w.

Therefore the area lies between

I /(2+l)ir , 1 f(2 + l)ir .

tinxdaff and ,_
-

N

- smxdx\
Znir J znir (2n + l)r J *niF

i.e. between 2/2w?r and 2/[(2w + l) IT].
If w is large this gives a good approxi-

mation.

217. The second mean value theorem is less obvious :

Iff(x) and
</> (#) are two integrable functions, and iff(x] is monotonety non-

decreasing and positive (or zero) throughout the range of integration (a, 6), then

[
b

f(x)<t>(x)dx
= f(a) I*

J a J a

where X is some number of the range, i.e. a ^ X ^ b.

To prove this theorem, we observe that the integral of the function f(x) $ (x)

is the common value of the lower and upper bounds of such sums as

/(a) J/! (#!- a) +/(#!) J/2(^
and f(a) ml (a?,

-
a)+/(#i) m* (x -**i) + +/(#n-i) *n(6 -*n-i)> (

1 &)

where M^ J/"2 ,
... -3/

tt
are tne upper bounds of <(#) in the intervals (a, ^),

(^i, ^2)1 - (^n-i, &) and wi, ?/i2 ^ tne corresponding lower bounds.

Taking the numbers

/(a),/(#i), ./(^-i); ^i(^-), â (^-^i), Mn (b-Xn-i)

for the numbers 61? 6
a ,

... 6n ; alt a2 > n of Abel's lemma (p. 29), we have

that the sum (la) >/()/*, where /z
is the least of all the numbers such as

Jf1 (^l -a)4-J/o( 2̂ -^1 ) + ... + ^/fc(^--^fc-i), (2)

where l^k^n.

It is easy to see that the expression (2) ^ I

*

<fr(x)dx, =*(#*) say, and

*
It can be evaluated as the sum of an infinite series.
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thence that
/* ^ ra, where m denotes the lower bound of the function *

(X)

( I <t> (&) dx
j
for all values of X in the interval (a, b).

Hence the sura (la)^f(a) m, and therefore / f(x)<f> (x) dx ^ f(a) m.

rb
Ja

*

Similarly I f(x) <f> (x) dx^f(a) M, if M is the upper bound of <f> (x).
J a

/b f(x) <J) (x) dx~f(a) Yy
where Y is some number between m and

a,

M, the lower and upper bounds of $ (X), inclusive.

But $(A
r

)
is continuous. The theorem follows from the fundamental

property (p. 236).

EXAMPLES XXV.
1. Give the geometrical interpretation of Theorem IV, p. 262.

2. Prove that if f(x) is integrable in a range (a, b) then \f(x) \

is also in-

I fb
f
b

tegrablc in (a, b) and / f(x)dx ^ I \f(x) \dx\a being supposed less than b.
I J a J a

[The difference between the upper and lower bounds of \f(x) \

in any range

< the difference between the upper and lower bounds of /(#) The difference

between the "larger" and "smaller sums" in the definition of I |/(#) |

dx ^
J a

rb
the corresponding difference in the definition of

/ f(x)dx. The integrability
Jo,"

of \f(x) follows. The corollary to Theorem IV establishes the inequality.]

3. Shew that /

"

dx lies between i and .

J if &

4. Deduce the theorem of p. 119 above from Theorem IV of p. 262 above

in the case where the derivative Dy is supposed continuous and integrable.

5. Rewrite the proof of the logarithmic expansion as given on pp. 122 123

above using Theorem IV of this section in place of the theorem of p. 119.

/b Df(x) dx, prove the mean
a

value theorem for derivatives (p. 239) in the case where the derivative Df(x)

off(x) is continuous.

Deduce from this theorem that sin x lies between x and x.

7. Apply the first mean value theorem to shew that

}dx=^^D[Df(X)l
where D[Df(X}~] is the derivative (supposed continuous) of the derivative of

f(x) at the point X, X being some number between a and b.

By integrating by parts deduce that

where / (a) denotes the value of the derivative Df(x) at the point a, and

Z>[/>/(JT)]isas before.
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8. Deduce from Ex. 7 that :

(i) cos x lies between 1 and 1 #2
/2 ;

(ii) if x is positive loge (1 + x) lies between x and x -

(in) if x is positive and < 1, (1
-
x)

n lies between

j -. n(w 1)
l nx and 1 nx+ ~~-- x1

,

n being any real number
;

and (iv) e*= 1 -M+ a?
2 e0a /2 !

,

where 6 is some positive number less than 1.

9. Use Theorem IV to prove successively :

sin x< x ;
- cos x< 1 4-

,
;
- sin x < - x+x*j% ! ;

cos x< 1
^

-f

etc. if x is positive ;
and similar results when x is negative.

Deduce sin# =#-#3
/3! + #6

/5 !
~ an(i cos#=l -#2

/2!+#4
/4 !-

/x cos .a? c&r < X) i.e. sin # < x. Again
o

/*
fx -

sin ^7 o?^7 < / d? dx, i.e. 1 cos x < ^2
/2.

1) JO

We get in general that cos x differs from 1 #2
/2 ! -f #*/4 !...+ #2n/(2n) ! by

less than #2w + 2
/(2?i+ 2) ! and sin x from x - Xs

/% ! + . . . x2n + l
/(2n+ 1

) ! by less

than #2w + 3
/(2n+ 3) ! . These -** as n ~* oo

,
whatever the value of x.]

10. Use Theorem IV to prove successively that, if x is positive and <loge K^

and deduce the exponential expansion for x> 0.

Discuss similarly the case where x < 0.

11. Shew that if #> 1 and n is any real number, (l-J-#)
n + 1 lies between

1 and l + /if
(tt+ l)tf, where K is any number exceeding (l-f#)

n
.

Thence prove successively that

* Hes between l+(w + 2)# and

that (
1 -I- x}

+ 3 lies between 1+ (n -f 3) x -f ?- #2

and l +(n+8)* +^M^J^ + (_i)^(^^^'

(!+*) lies between ...

and
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where w=n+r+ l, and none of the numbers

n, 7&+1, ... n+ r(i.Q, ra-1, m- 2, ... w r- 1)= - 1
;

(the results being then simpler).

Deduce the general binomial expansion

m(m-l) w(wi l)(w 2)
(l+ar)~-l+ M?+

a!
+ ----

3!
---

'r +-
for - 1 < #< l, and wi any real number.

r

[Apply Theorem IV to the integral (l+x)
n dx and repeat. The binomial

J o

theorem will follow if it can be shewn that the term

r,m (m 1) ... (m r) ..v__ \---- ' >__ ----
(r+1)!

That this is so if 1 < x < 1 is seen most easily by observing that the ratio of

the values of this expression for two successive values of r is (m r)xj(r+ \\
which numerically < a positive number k, less than 1, for all values of r suffi-

ciently large. The series which has this expression for its rth term is therefore

absolutely convergent and (a fortiori) this expression -* 0.]

12. Deduce the second mean value theorem (p. 264) from the first mean
value theorem in the special case when both the functions /(#) and (a?) are

positive (or zero).

8. VARIOUS APPLICATIONS OF INTEGRATION

AND DIFFERENTIATION

218. Areas. In this section we consider a few of the most

important simple applications of definite integrals and of dif-

ferentiation.

The area of any plane region bounded by straight lines and

curves which are the graphs of integrable functions is given in

terms of definite integrals *. For example to find the area cut off

the parabola y*
= 4a# by the straight line x a, we see on drawing

f
a

the figure that the required area = 2 I y dx, where y = + /v/(4a#).
Jo

The area = 4 >Ja I

*

*Jx dx = 4 *Ja | a3'2 = 8a2

/3.
Jo o

It is, however, often convenient to suppose the region whose area

is required divided up into elemental regions other than the rect-

angular strips used in defining the area below a graph y =f(x) as

fb
I f(x)dx. It is clear that other methods of division will not (in
a

any practical cases) lead to different values for the area of a region.

* See Chapter in, 1.
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To find the area of a sector of an ellipse (or circle).

An ellipse is the closed curve such that the coordinates (x, y)
of any point on it, referred

to suitably chosen axes, ^^- 1

*-
^L

satisfy the equation

where a and b are posi-

tive numbers. We have

y = b V(l ~ #2

/a
2
),
and the

curve is an oval curve as in

Fig. 24, with OA = a, OB= b.

If a = b it is a circle of centre and radius a. We wish to find
A

the area of the sector AOC, where the angle AOC = a < ?r/2 (say).

We could first find the areas of the triangle ODC'(= OD . DC)
( (

OA
\

and of the region A DC ydx, where y b^(l #2

/a
2

) i .

\ j OD /

Let us, however, divide the sector into sub-sectors such as OPQ,

where AOP =
0, OP =

r, POQ = 80 say.

The area of such a sub-sector, if 80 is small, will be approximately

^r
2
80, and we shall have roughly that the required area of the

sector AOC is the sum of such terms Jr
2 80.

Now r2
is a function of given by the equation

r* cos2
0/a

2
4- r2 sin2

0/6
2 = 1

(because x = r cos and y r sin 0);

ra

Hence the sum of the terms such as |r
2 S# -> I ^r

2d0 as the
.'o

greatest 80 ->- 0, from the definition of this definite integral,

i.e. r *
I nna2 tila*
o cos2

eftf + sn
2

(9/6
2

'

It is in fact easy to see now that the required area is precisely

For we have accurately that the area of the elemental sector OPQ
lies between OP2 S0 and |OQ2

80, and therefore =r2
80(l + ?;),

where i)
-* as 80 -*- 0; and it follows that the total area is the
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limit of the sum of the terms %r*&0 as the greatest $0 ~> 0, as in

f
6

the definition of the definite integral /(#) dx]
J a

i.e. = (

a

| r*d6, where r2 =
l/(cos

2
0/a

2
-f sin2

0/6
2
).

Jo

To evaluate this integral make the substitution tan# = w; so

that d0/du = cos2
6.

We then have

, J_.

2 , putting v =

arc tan v = \ab arc tan (a tan 0/b).

The required area of the sector AOC of angle a

= ^ at arc tan (a tan a/6) ab arc tan

= ^ arc tan (a tan a/6).

In the special case of a circle,

a = b and the area = \ a
2 arc tan tan a = a2

e>.

The area of the complete quadrant OAB
= lim (area(X4C)= lim \ob arc tan (a tan 0/6) = 7ra&/4;

a--7r/2

or we could use the alternative form

[?r/2
- arc tan (6 cot a/a)]

= Ja6 (?r/2
-

0).

The area of the complete ellipse
= ?ra6.

The ease with which the solution of a problem of this character

can be effected depends very largely on the choice of elemental

regions. The rectangular strips of the definiti<*n on p. 148 and the

sectors ar two of the most common types of elements.

In most practical cases such problems can be simplified by using

the method of integration by substitution or otherwise. Thus in

finding the area of the complete ellipse we require

ra / ^2
2 y dx, where y = b A / 1 - -

.

J -a V a

To evaluate the indefinite integral I 6 A/ 1 --
a dx, substitute

- = u and then u = cos 0, so that
a
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b
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~>

sin 20\

V-

of substituting for in terms of x and then deducing
the value of the definite integral from the indefinite integral so

found, we notice that as x ranges from a to a, u ranges from

1 to 1 and ranges from TT to 0.

Hence

ff
/

[_y

i1 ~

the required area.

219. Volumes. To find the volume of a sphere of radius R*

The sphere may be imagined cut up into slices by a set of parallel

planes. Let M and N (Fig. 25) be

the points in which the radius OG
is cut by two such planes, to which

00 is perpendicular. The slice (of

thickness MN~&x) between these

two planes will be circular
;
on one

side the radius will be MP, and on

the other NQ. The volume of this

slice (assuming that the volume

of such a region can be satis-

factorily defined) is clearly less

than MN x the area of a circle of

radius MP and greater thanMN x

the area of a circle of radius NQ.

Calling OM = x, MP =
y, MN=x\

the volume of the slice = &x . Try* (1 4 17) where 77
-*- as &# -* 0.

Dividing the diameter C'OC up into a number of portions such

as MN, and adding up, we see that the required volume is the sum
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of such terms as &x . Try* (1 4- 17) and therefore equals the limit of this

f
H

sum as the greatest Sac -** 0, if this limit exists
;

i.e. = / Try
2
dx,

J R

where y
2 = R* #2

,
if this integral exists.

The integral exists and equals

7T OR* - X*) dx = TTJR
2

[R - (- jR)]
- 7T

"

the required volume.

This discussion assumes that a satisfactory definition of the volume of such

regions which are not parallelepipeds has been given. It is not difficult to

give a definition, applicable to such solids as the sphere, on the lines of the

definition of the area under a curve given in Chapter in, 1. Being concerned

here with the practical question of the determination of such volumes, we omit

such a definition.

\ p

220. Centres of mass. Centres of mass and moments of inertia

of continuous bodies may be found similarly.

To find the centre of mass of a semi-circular lamina.

Let be the centre of the semi-circle ABA of radius R (Fig. 26).

Divide the region up into strips (e.g.

PQQ'P') by parallels to the diameter

so that y
2 = R2 x2

.
t

From mechanical principles, the /

moment of the strip about the line /

AA = (area of PQQF) x x'
',
where x A'

lies between OM and ON,

where q -> as &x -> 0.

Hence, as before, the total moment of the whole semi-circle about

A'A is equal to

o

Fig - 26 *

rR rR
I 2xydx=
Jo Jo

Putting R2 x* = u
t
we have
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Therefore

-#2

)#cfe = -!(,R
2 -.

[OH. IV

= 1?3
.

But the area of the semi-circle =

From mechanical principles therefore the centre of mass is on

2
the radius OB, distant

^ R*/%7rR
2
, i.e. 4E/3-7T, from 0.

Again we have omitted to give a definition of the moment of an area about

a line as the limit of a sum of a type similar to that employed in the definition

of an area. The precise definition and justification of the assumptions made

"on mechanical principles" are again not difficult.

221. Lengths of curves. The length of an arc of a curve was

defined in 1 of this chapter as the common limit (if it exists) of

all sequences of perimeters of inscribed polygons, as the sides are

indefinitely diminished in length. (Or as the upper bound of the

set of perimeters of all possible inscribed polygons.)

Let the curve be AB (Fig. 27), given by the equation y = f(x).
Let the x coordinates of A
and B be a and b (a< b). Let v

PQ be the chord joining the

points P (x, y) and Q(x + h,

y + k). We have

y
M N D X

Fig. 27.
Now k/h = the slope of the

chord PQ, and therefore, by
the mean value theorem for derivatives, k/h = dyjdx at some point
on the arc PQ, supposing the function /(#) is differentiable

throughout.

Adding up the lengths of all such chords PQ, we get a sum
intermediate to the "larger" and "smaller" sums correspond-

ing to the definite integral over the range (a, 6) of the function

V[l +(dyldxY\. The sum of these chords therefore tends to
6

V[l +(dy/d%y*]dx as the chords PQ are indefinitely diminished
%

in length, provided the definite integral exists. The curve is there-
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f
b

fore rectifiable* and its length is I *J[l + (dy/dx)*]dx, if this
J a

integral exists. This will always be the case if the derivative dyjdx,

i.e. Df(x), is monotone or continuous throughout the range (a, b).

In particular, any arc of a curve defined by y =/(#), where f(x) is

any of the functions considered in this course, will be rectifiable if

the arc avoids any exceptional points of discontinuity, etc. As the

derivative dyjdx ceases to exist at a point where the graph is

parallel to the y axis, the length of an arc which is anywhere
fb

parallel to OF cannot be expressed as *J[I + (dyjdxY] dx. Such
J a

a case can be dealt with by using y as independent variable

instead of x. The length of the curve is then expressed as

f
d

V[l + (dxldyY\dy, where c and d are the y coordinates of the
J c

extremities A and B of the curve.

222. Identity of the numbers & and TT. The circumference of
a circle is easily found in this way f.

Let R be the radius of the circle.

The upper semi-circle A'BA (Fig.

28) is given by the equation

Let AOG= 7T/4 (half a right angle).

Then OD =
JR/V2.

The arc BC
r

=
J

Now dy/dx = x/[*J(R* #2
)],

and therefore 1 + (dy/dx)* = R*/(R*
-

x*).

Therefore the circumference = 8 x arc BO
r-R/s/2

= 8 V[l + (dy/dx)*] dx
J o

R

Fig. 28.

* In accordance with either definition, pp. 200, 203.

t We know from the definition of the number IT that the circumference of a
circle of radius E=2wR. Our object is to find the circumference independently < of

TT and thus determine IT.

WM A 18
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To evaluate this integral use the trigonometrical substitution

x = RS (w), so that dx/du = RC (u) and R* - x* = jRa

[C (w)]
2
.

mi r f Rdx [R*C(u)du v i>a/ i r>\Therefore
J^rrpj-J M(iT

=^ =^ (* '^
Therefore the circumference = SRB (1/V2) = 8-Br/4, by Ex. 4,

p. 187, = 2<nR.

This establishes the identity of the two numbers w and TT.

The length of an arc of a parabola may be obtained similarly.

For the parabola y = #2
,
we have

dyjdx = 2#, 1 + (dyjdxf = 1 -t- 4iP
2

;

and therefore the length of the arc between the points whose

abscissae are a and 6 is

fvdJ a

This integral can be evaluated by the substitution 2# = sinh u.

223. Motion under constant acceleration. Suppose a particle

moves along a straight line under a constant acceleration, f say.

The formulae giving the velocity and position of the particle at

any time are easily deduced thus:

If v represents the velocity and x the time, we have

dv/dx /(= constant).

Hence, by integration, v = I -y~ dx = xf+ Cy
where C is a constant.

J ax

If at the commencement of the motion (i.e. for x = 0) the velocity

is u, we have u = C, and the formula giving the velocity at any time

x is therefore v = u +fx.

Again, if the distance moved through is represented by y, we have

dyjdx = v = u +fx.
Therefore, by integration,

y = I
-~ dx = I (u +fx) dx = ux +fx*/2 + (7,

where C' is a constant.

If the distance y is measured from the point where the particle

was at time x = 0, we have = C".

The lormuia giving the distance traversed is therefore

y = ux 4- \fx\
Motion under known variable acceleration can often be similarly

discussed.
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224. Taylor's series. We know that a power series

a -f &!# + aa#
2 + ..., ..................... (1)

if convergent for any value of x (besides x = 0), is convergent, and

absolutely convergent, for all values of x interior to an interval

( R, R) called the range of convergence*. We know also that the

sum function, /(#), is continuous and differentiate for all values

of x interior to the interval and that Df(x) = c&i + 2aa# + Sa^tf + . . .

if R < x < R, this derived series being also absolutely convergent
for all such values of #"f.

It follows therefore that the derivative Df(oc} is a function of x

which is continuous and differentiate and

D [Df(a>)]
= 2a,2 + 2 . 3a3# 4- 3 . 4rcX +

for - R < x < R, and so on indefinitely.

If we put x = in these results we have

&o =/(X) when oc = 0, =/(0) say; aa = Df(oc) when x = 0, =/' (0) say;

2a2
= D[D/(>)] when # = 0, =/"(0) say;

2 . 3 . as
= D [D [D/O)]} when x = 0, =/'" (0) say ;

and so on.

We can therefore express the function /(#) as

2 ^
f(x) =/(0) -f xf (0) + |j/" (0) + f" (0) + . . .

for all values of x interior to the range of convergence of this series.

This series is known as Maclciurins series. It may be regarded as

a special case of Taylor's series, which is

where /(a), /' (a), etc. denote the values of/(#;), Df(x), etc. at the

point x = a. Taylor's series can itself be deduced from Maclaurin's

series thus:

Put x = a + y, and write F(y) for /(a + y). By Maclaurin's

expansion we have

F(y) = F(0) + yF'(0) + j^F"(0)/2! + ....

But ^(0) =/(a), F' (0) =/ (a), etc.

Hence /(a + h) =/(a) + hf (a) + . . .
,

the result being valid for all values of h for which the series is

convergent, the function f(a -f h) being supposed defined for all

such values of h by such a series of powers of h.

* P. 193 and Ex. 13, p. 194. f Ex. 14, p. 195.

182
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225. We have not proved that any function/(#) can be expressed

as the sum of such a Maclaurin or Taylor series; but only, for

example, that the coefficients of such a series as (1) are given by
the values of the function and its successive differential coefficients

at the point x = 0. If we have a function f(x) whose differential

properties are known (so that we know for such a function the values

of /(O), /'(O), /"(O), etc.) we may desire to express it as the sum

of an infinite power series.

For example, take for/(#) the circular function sin a?.

We have/(0) = sin = \f (0) d sin xjdx when x0, =cosO = l;

f" (0)
= d cos scjdx when x = 0, = - sin = 0; /'" (0) = d ( sin x)jdx
= 0, =-cosO = -l; /

iv

(0) = 0; ^(0) = !; etc.

The corresponding Maclaurin series

(2)

is + + 0-^/3! + O+^/SH- ...,

.e.

It is tempting in such a case to conclude that the sum of the

series is the original function. In practice this is in fact often the

case (as it is in the example considered). But we have proved only
that if the series (2) is convergent for a range of values of x, and

if the sum function is called F(x), then F(0) =/(0), F' (0) =/(0),
etc. It is conceivable (i) that the Maclaurin series arising from a

given function f(x) may be not convergent for any value of #, and

(ii) that there may be two (or any number of) different functions

f(x) and F(x) such that F(0) = /(O), F' (0) =/ (0), etc.

These possibilities are indeed very real; and the suggested line

of argument is untenable.

226. We may however easily test, after the Maclaurin series is

obtained, whether or not it is convergent for any range of values

of x. It may also be possible to find some means to test also the

second possibility after the series is found. Realising this, we may
still use the above process as a suggestion as to what the power
series for a given function is likely to be. We will content ourselves

with this position; though it is possible to establish certain general
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conditions under which the series thus formed necessarily repre-

sents the original function*.

227. The identity of the trigonometrical and circular

functions. In the case mentioned above of the expansion of sin x

in a Maclaurin series, the series found, viz.

is the series considered in Chapter in, 5 above. This series was

there seen to be convergent for all values of
?,
and we called its

sum function S(x). We have now to prove that the two functions

S(x) and sin a? are identical.

We will prove also at the same time that the two functions

C(x) and cos# are identical. We shall then have established the

Maclaurin expansions of sinx and cos# and have identified the

trigonometrical functions of Chapter in, 5 (and their derived

functions T (x), etc.) with the circular functions of trigonometry.

228. Write C (x)
- cos x = y,

S (x) sin x z.

Differentiating with regard to x, we have

Dy S (x) + sin x = z,

Dz = C (x) cos x = y.

Multiplying these equations by y and z and adding, we get

yDy + zDz = 0,

i.e. D <y 4- z*)
= 0.

Therefore if -f z* = constant (= G say), by the theorem at the top

of p. 250, and (7 = because, when x = 0, y* + z1 = 0.

Hence t/
2 + s2 = for all values of x\

whence both y = and z = for all values of x, because y
2 and z2

cannot be negative.

That is cos x = G (x) and sin x = S (x). Q. E. D.

229. The binomial theorem. Let us try to establish similarly

the Maclaurin expansion of the general power of the binomial,

viz. (1 + x)
n

,
where n is any real number.

Writing/(#) = (1 + x)
n we have Df(x) = n (1 + x)

n~l

and therefore /' (0) = Df(x) where x = 0, = n.

* One such case, in which Taylor's expansion is necessarily valid, has been given

above, in Ex. 15, p. 195.
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Again D [Df(x)] w (n
- 1 ) (1 + x)

n~*

and therefore /" (0) = n (n - 1).

And so on,

/'" (0) = n (n
-

1) (n
-

2), /v
(0)

= n (n
-

1) (w
-

2) (n.
-

3), etc.

If n is a positive integer, one of the factors n, n - 1, etc. will be

zero, and from that stage the derivatives will all be zero. In all

other cases the series thus suggested as the expansion of (1 4- oc)
n

is

_ tt(n-l) n(n-l)(w-2)
1 4- TWJ + --57 #2

4-
- --

:
---

oc* + ..........(3)
Z ] O 1

230. Having found this series we now determine whether it is

convergent for any value of x. By the ratio test* or otherwise we

see that 'it is convergent for all values of x between 1 and 1.

We have still to prove that the sum function of the series (3) is

the function (1 -h x)
n

.

This may be proved thus:

Calling the sum function of (3) t/, we have

(w-l)(w-2)
Dy = n + n (n

-
1) as + n -- ----- -' #2

4- . . .

and

h / ix (w-l)(w-2) I= w l + (ft-l)ff + ^---
^ V+...

= n I 1 + (n
-

1) a? + <n ""

^r
2J^ + >>t

-f

or ( 1 + ^) Dy - Tiy
= 0, .....................(4)

valid for 1 < x < 1.

Multiply the relation (4) by (1 +xTn~\

We have (1 4- #)~
n Dy - yn (1 + ^)-

w~1 = 0,

i.e. D[(l +a?)-
w
y]
= 0.

Therefore (] -f x)~
n
y = constant

= i;

because when x = 0, (1 -f- #)~~
n = 1 and y == 1.

*
P. 80.
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Hence y (1 + #)
n

,
and the binomial theorem is proved; viz.

_. --
for all real values of the index n and all values of x between 1

and 1. If n is a positive integer the series terminates and the

result is true for all values of x.

231. The above proofs of the identity of the functions sin#, cos#, (l-f-#)
n

with their respective power series have been based on the differential properties

of the functions and of the sum functions of the series. The relation (4) in

fact, from which the binomial theorem has been deduced, is a "differential

equation" ;
and the above proof consists in determining from this differential

equation the nature of the function y involved. Such a process is called

solving the differential equation. Differential equations provide a weapon of

great power in several branches of mathematics. Their discussion however

lies beyond the scope of this course.

EXAMPLES XXVI.

1. Find the area of the segment of the hyperbola #2
/a

2
y
2
/6

2= 1 cut off the

branch which lies to the right of the y axis by the line #= 2a.

2. Find the volume and centre of mass of a square pyramid of height ^, the

length of a side of the base being a.

[Divide by planes parallel to the base.]

3. Find the volume and centre of mass of a right circular cone of height h

standing on a circular base of radius a.

4. Find the area and centre of mass of the segment of the parabola #
2=4cu?

cut off by the line #=4a.

5. Find the centre of mass of the plane area bounded by the half of the

ellipse aP/a*+y*/lP**l above the x axis and by the x axis.

6. Given that the acceleration of a body moving along a straight line is

f=e~
x
8iunx, where x represents the time and n is a constant, and that the

body started at time #=0 at a point with velocity u in a given direction,

find the velocity and position of the body at any time x.

dvldx=f=e-
x$m nx gives v \ fdx~ I e~ x smnxd^. Integrate by parts

(twice). Similarly for the distance y from 0, which= I vdx.

7. Given that the acceleration of a body moving along a straight line is

~kv
y
where v represents the velocity and k is a positive constant, find the

velocity and position of the body after a time x in terms of x, k and the initial

velocity (u).
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8. Find the lengths of the arcs of the curves
^/

coshx and y
between the points (0, !),(!, cosh 1) and (0, 0), (1, sinh 1). [The curvey cosh x
is the catenary.]

9. Establish the identity of s'mx and S (x) with cos# and C(x) by the

method of Ex. 5, p. 132.

10. Prove the binomial theorem by the method of Ex. 5, p. 132.

11. Assuming the derivatives of sin a;, cos#, S(x\ and C(x\ prove that

(#) sin #+#(#) cos #=! and S(x)cosx C (x) sin #=0,

and thence that S (x} sin x and C (x) cos x.

12. Prove that if
1/1

and y2 al*e two functions of x such that Dy~y l and

Dy<ty<i then y\ly^ constant. Hence, assuming De* e
x and DE(x)~E(x\

where E(x) denotes the sum function of the series 1 -M' -f -

2
/2 ! -f #3

/3 ! + ...,

prove that e*= E(x).

13. Given that the derivative Dy\ of the sum function #t of the binomial

series (3) of p. 278 satisfies the relation (4) of that page, and that the function

ya=(l + #)
n satisfies the same relation, use the formula for the differentiation

of a quotient to shew that y!/y2
= constant.

Deduce an independent proof of the binomial theorem.

1 4. By writing ?/
= 1 #2

/2
' + ^V4 - ^2n

/2n " co>s A'

prove that cos x 1 #2
/2 ! + /t

4
/4 !

-
. . .

without assuming any knowledge of the functions S (x\ C (x).

15. Obtain the Maclaurin expansions for the functions

e*, sinh x, cosh #, log (1 4- a;), e
~ * sin #,

~ * cos a?, cos .r cosh x.

16. Establish the expansions of Ex. 14 by the method of Ex. 12 or by the

method of Ex. 5, p. 132.



APPENDIX

COMPLEX NUMBERS
232. Inadequacy of real numbers for purposes of algebra.

In Chapter i, beginning with the notions of whole number and of the arith-

metical operations on whole numbers, we denned the new class of rational

numbers so as to render possible, in every case, certain arithmetical operations

(of division and subtraction) which are, in some cases, impossible so long as

we are restricted to whole numbers. We then introduced the wider class of

real numbers, in order, primarily, to overcome the deficiencies of the system
of rational numbers for the purposes of measurement. In doing so we had

occasion to prove that certain operations, such as the extraction of the square

root of a positive non-square number such as 2, which were not -possible when

our number-system was restricted to that of the rational numbers, were then

possible. But we noticed (p. 19) that there were still operations of a similar

character that are not possible (for example, extracting the square root of the

negative number 2). The question arises whether we can define a new class

of numbers so that all such operations are possible.

The answer to the question is that we can define a new system of "
numbers,"

called complex numbers (and laws of operation on these numbers), such that

all algebraical operations, applied either to real numbers or to these complex

numbers, are possible and preserve the validity of the fundamental laws (p. 2).

Such operations, however, will not always lead to unique results.

The algebraical operations contemplated include all those used in defining

a general polynomial and in the solution of polynomial equations. Thus, for

example, if z is any real or complex number, 23
, x/2, arid * 2/f) are definable as

complex numbers*.

233. Definitions of complex numbers. The definitions required

may be developed naturally by assuming tentatively the existence of such

"imaginary numbers" as J(-} and the truth of the laws of algebra when

applied to them. Thus, for example, we should see that */(
-

6) may be ex-

pressed as \/(6)x v/( 1) and that any imaginary number like >J(-} can be

expressed in terms of the standard imaginary number v/(
-

1) \
also

and {ffi+yiVC-l^fo+WC-^Hfo^a-yi^
In this way the definitions are suggested. They may be expressed thus :

I. Any (ordered) pair of real numbers #, y defines a complex number
[.#, y\

II. One complex number [^, y^\ equals a second complex number [x%, y^\

if and only if xl^x2 and yi =y2 .

III. The complex number [#, 0]
= the real number x.

*
Cf. the restrictions on pp. 19 and 89.
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IV. The sum and product of two complex numbers are defined by the

equalities

Oi, yj x [>2, yd=[
Differences and quotients are deduced from sums and products.
The two numbers #, y of a, pair [a?, y] are called respectively the real and

imaginary parts of the complex number. If y the complex number is said

to be wholly real; if #=0, wholly imaginary.

234. With these definitions we have at once that the fundamental laws of

p. 2 hold
; for, e.g.,

l>i> yi] x [#2> y2

establishing the commutative law for multiplication.

From the equality [x, 0]~# we have [1, 0]
= 1 and [#, 0]= [1, 0]x#.

Corresponding to this,

=
[0,

Also [0, yp*[0, y] x [0, #]=[-/, 0]- -/
and, in particular, [0, 1]

2= 1.

In view of this last relation, the fixed complex number [0, 1] may be regarded
as a square root of -I. It is usually denoted by the letter i.

We notice that another number, viz. [0,
-

1], is also a square root of - 1. It

clearly equals [0, 0]-[0, 1], i.e. 0-^, which is appropriately written -i.

That ordinary algebra can be applied to complex numbers follows from the

validity of the fundamental laws. If z is any complex number, the polynomial

anzn+ an_itP~ 1
-f ... + ! z -f

represents a unique complex number.

We may now, if we wish, change the notation and write the complex number

IX y] as # + *y and treat x+iy as an ordinary algebraical expression, replacing
i2 by - 1 wherever possible in any algebraical combination. This is always done

in using complex numbers.

235, The roots of real and complex numbers. We can shew that

every real number a (except 0) has two and only two square roots, i.e. complex
numbers z such that z2= a.

Thus let 2= #+ ?'#,
so that 22=(^~y2

) -Hi2#y; then z*a if and only if

x^ yi a and 2##*sO. This will be the case if and only if xQ and #2= a,

or y^O and #a= a.

If >0, this will be the case if and only if y=0 and x~ \/a; and then

z= Ja.
If a <0, it will be the case if and only if #=sO and y J( -a) ;

and then
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The square roots Jo,, *J(
-
a) occurring here are the ordinary unique (positive)

square roots of the positive number a or a.

With the help of the elementary properties of the trigonometrical (or circular)

functions it can be proved that every real (or complex) number (other than 0)

has precisely n roots of the nth degree, n being any positive integer. The n
nth roots of unity (i.e. 1) are

1, cosSTr/n+ ismQir/n, cos47r/7i-fisin47r/ft, ...

cos (TI l)27r/w-Hsin(n l)2rr/w.

It can also be proved* that every equation of the nth degree in one unknown
has precisely n roots t. This fact establishes with added precision the

statement of p. 281 as to the possibility of algebraic operations applied to all

real or complex numbers.

236. Geometrical representation. Modulus. Corresponding to the

use of real numbers for the purposes of measurement along a straight line,

complex numbers may be used to represent points in a plane. The complex
number x -f- iy is taken to correspond with the point whose rectangular Cartesian

coordinates (referred to a chosen pair of axes) are #, y. The resulting diagram
is called the A rffand diagram.

If is the origin of the Argand diagram, OX, Y the axes, and P the point

corresponding to the complex number z (x+iy\ the real numbers which

measure the distance OP and the angle XOP (in radians) are called the modulus

and the argument or amplitude of the complex number z. The modulus is

taken to be essentially positive. It is alternatively denned purely analytically

as -h \(x
2+y2

)'
It is written z

\

. The amplitude will here be denoted by am z.

The amplitude of z would be unique if we agreed to consider only angles from

(say) to 2?r radians. It is inconvenient as a rule to do this and the amplitude
is denned (again analytically) to be any one of those angles (or numbers) for

which cos =
.z/|2 ]

and sin0=#/|z| (or C(ff)xl\z\ and S(6)=*y/\e\). The
value B for which IT < 6 ^ TT is called the principal value of the amplitude.
If |a|

=r and am z 0, z can be expressed in terms of r and B as

z=r cos 6+ ir sin Br (cos + i sin 0).

The modulus of a wholly real number x is the modulus in the sense of p. 44.

237. Limits. The notions of greater and less do not apply to complex

numbers, but, with the introduction of the modulus, the definition of the unique
limit of a sequence of real numbers, as stated on p. 45 (that jsm Z| < * under

stated conditions), becomes applicable without change to the case of a sequence
of complex numbers. Convergent sequences and series of complex numbers

can therefore be used. In particular, functions of the complex variable z can

be defined by means of power series as in Chapter in, 4, 5, and 6. The

notions of continuity, differentiability, and integrability can also be extended

to functions of a complex variable.

* See Hardy's Pure Mathematics, Appendix I.

t On p. 238 above we have examples of cubic and quartic equations with only one

and two real roots respectively. They have of course respectively three and four real

or complex roots. Compare also Ex. 4, p. 161.
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These extensions in some cases (e.g. integration) involve the consideration

of multiple-valued functions, resembling the n-valued nth roots of a real (or

complex) number. The extension of the term logarithm which will apply to

the case of the logarithm of a negative number to a positive base involves such

considerations.

For detailed information on complex numbers the student is referred to

Hardy's Pure Mathematics, Whittaker and Watson's Modern Analysis and

books on the theory of functions of a complex variable.

EXAMPLES XXVII.

1. Shew, by direct multiplication, that if x and y are any real numbers,

(cos x -f- i si n x) (cos y -f i sin y)= cos (x -f- j/) -f i sin ($ +y),

and deduce de Moivre's theorem for a positive integral index, viz.

(cos x -f i sin x}
n= cos iix -f i- sin nx,

where n is any positive integer.

2. Deduce from Ex. 1 that the nth powers of every one of the numbers

cos (%&7r/n) + i sin (2kir/n), where k has every integral (or zero) value, is 1.

3. Prove that for any positive integral value of n there are precisely

n different nth roots of unity.

4. Prove that, if p and q are positive integers having no common factor

a,nd z any complex (or real) number, there are precisely q values of */, i.e.

complex numbers .? such that Z<i zp.

5. Prove that if z
l
and z.

2
are any complex numbers

(i)

(ii)

(Hi)

(iv) am
(

(v) am (zilz%)
=am ^ - am z% ;

where in (iv) and (v) the appropriate values of the amplitude are chosen, not

necessarily the principal values on both sides.

Interpret (i) geometrically on the Argand diagram.

6. Prove that a sequence of complex numbers is convergent if and only if

bhe two sequences formed respectively of the real and imaginary parts of the

berms are separately convergent ;
and that, in the case of convergence, if the

Limits of the separate sequences of real and imaginary parts are s and
,
the

limit of the complex sequence is s+ it.

[Denoting the typical term of the sequence by + tVn ,
if sw -*-s and n -*-,

\(s+it) -(sn+ itn)\^\8-sn \
+ \t-tn \ <| + |

=
fj for all values of n sufficiently

large, whatever positive number the arbitrary e may be; whence w -MVn * s+ it.

Conversely if sn+ itn >- s + it,

|

s - 5W |

and
1

1 - tn | , each of which ^
| (s+ it) (sn+ itn) \ ,

are clearly both less

than e whenever
| (s-f it) (sn+ itn) |

< e ; and the result follows.]
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7. Prove that if the real series of positive terms whose typical term is

Kn+wn | converges, the complex series whose typical term is un -\-wn also

converges. (Such a series is said to be absolutely convergent.)

[From the hypothesis, the sum of any number of terms of the first series is

bounded (i.e. < K) ;
whence (a fortiori) the sum of any number of terms of

each of the series whose typical terms are respectively \un \

and \vn \

is bounded,
and these series are convergent ;

whence it follows (p. 78) that the series whose

typical terms are un and vn are convergent. Hence the result.]

8. Prove that the series

(i)

(ii)

(iii) js-a

are convergent (and absolutely convergent) for all (complex) values of z.

9. Denoting the sum of series (i) of Ex. 8 by E(z\ shew that, if z=

(i) E(z) = ex (Q,o&y+i&iny'), where ex denotes the (unique) exponential
function of Chapters II and ill

;

(ii) cosy= [^(ty) + ^(-iy)]/2, siny= [(ty)-J(-iy)]/2t.

(Euler's equalities.)

10. Denoting the sums of series (ii) and (iii) of Ex. 8 by C(z) and S(z\
establish the addition theorems and other properties of the "trigonometrical

functions" of the complex variable z.

11. Shew that, if Z is any complex number for which E(Z)z, all the

numbers ( Z+'ZnTri (where n is any positive or negative integer or zero)

satisfy the equation E()= z-, so that, if the generalised logarithm logs is

denned to be any number f for which E(() = z, logz has an indefinite number
of values, viz. Z+ 2nni.

12. If z\~r and am 2= 0, the generalised logarithm (Ex. 11) has the values

log*=logc r-f i& + 2n7ri, where \oge r is the (real) Napierian logarithm of the

positive number r.

In particular log (
-

1)
= iV + %niri.

13. The generalised exponential e* is defined as E(z log e\ where log e is the

generalised logarithm of
<?, i.e. \oge=z\Qge e+ Zniri\ + %niri) where n is any

integer or zero. [This definition is equivalent to e*E(z) E (Zniriz).]

Shew (i) If z is an integer (or zero) this definition defines e9 uniquely and

agrees with the definition of Chapter n, 1.

(ii) If z is a fraction p/q, p and q being positive integers with no common

factor, e* has q values, which are those numbers Z for which Zve** (Ex. 4);

in particular e1 '2 has the two values ^e, Je.

(iii) If z is an irrational number, e* has an indefinite number of values,

one of which is the positive real number e* as defined in Chapter n, 1.

14. The generalised exponential a*, where a is any real or complex number

except 0, is defined similarly :

a*=E(zloga), where log a is the generalised logarithm.

15. The generalised logarithm Iog z, where a is any real or complex number

except and 1, is defined as any number Z such that the generalised expo-

nential az=2.



BIOGRAPHICAL NOTES
ON MATHEMATICIANS MENTIONED*

EUCLID, famous as the author of the Elements of Geometry, which has been

the basis of geometrical teaching for 2000 years, was born about 330 B.C. and

died about 275 B.C. He taught in the Greek University at Alexandria. The

Elements is a systematic text-book on geometry and arithmetic, as then known

to the Greeks, and includes the work of previous geometers such as Pythagoras.

ARCHIMEDES, perhaps the greatest mathematician of antiquity, was born at

the Greek city of Syracuse in Sicily in 287 B.C., studied at Alexandria and

returned to Syracuse, where he was killed by a Koman soldier at the fall of

the city in 212 B.C. His work covered most branches of mathematical know-

ledge, including the mensuration of the sphere, etc. and work on mechanics,

well-known to this day,

JOHN NAPIER, a Scotsman, was born in 1550 and died in 1617. Besides the

invention of logarithms, several trigonometrical formulae are due to him.

KEN DESCARTES, born in France in 1596, was perhaps even more famous

as a philosopher than as a mathematician. His invention of Cartesian geometry,

named after him, was epoch-making and may be considered to mark the com-

mencement of modern mathematics. He lived chiefly in Holland and died in

Sweden in 1650.

JAMES GREGORY, born in Scotland in 1638, was one of the various fore-

runners of Newton. He died in 1675.

ISAAC NEWTON, the son of a Lincolnshire farmer, born in 1642, has been

described as the greatest mathematician of all time. He was frail as a child,

but his mental powers were already phenomenal when an undergraduate at

Cambridge. In fact, most of his brilliant discoveries may be said to have been

born in his mind about that time or soon afterwards, though not elaborated

until many years later. His most important work was embodied in his

Principia, which contains his results in the theory of gravitation, many of them

discovered by the help of his method of "fluxions" (i.e. differential and integral

calculus) but expressed in the traditional geometrical form. His results in

calculus and geometry were to some extent developments of the work of his

predecessors, notably his tutor Isaac Barrow, and the time was undoubtedly

ripe for Newton's work
;
but this work alone would suffice to put Newton well

in the first rank. Newton was of an extremely modest disposition and of

high moral character. He died in London in 1727, having been a professor at

Cambridge since 1669, Master of the Mint since 1699 and a knight since 1705.

GOTTFRIED WILHELM LEIBNIZ, generally accepted as the co-discoverer with

Newton of the methods of the infinitesimal calculus, was born at Leipzig in

* Taken from W. W. K. Ball's Short Account of the History of Mathematics.
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1646 and died at Hanover in 1716. The differential notation which he used

has proved more convenient than Newton's fluxional notation and is still

retained. He took much interest in politics and visited England in that con-

nection. He was also a philosopher of-the first rank.

MICHEL ROLLE, born in 1652 and died in 1719, was a French professor who
wrote on algebra and the theory of equations.

ABRAHAM DE MOIVRE was of French birth (born 1667) but was brought up
and lived in England. He was one of the founders of that part of analysis

(developed later by Euler) which deals with the connection between complex
numbers and trigonometry. He died in 1754.

GEORGE BERKELEY, Bishop of Cloyne in Ireland, was born in 1685 and died

in 1753. He became famous as an idealist metaphysical philosopher, particu-

larly for his classical "proof" of the existence of God.

BROOK TAYLOR, born near London in 1685 and educated at Cambridge, was

one of Newton's admirers. He is chiefly known to mathematicians by his

theorem on expansions, He died in 1731.

COLIN MACLAURIN, Professor of Mathematics at Edinburgh, was born in

1698 and died as a result of military privations in opposing the Jacobites in

1745. He wrote a treatise on Fluxions, upholding the Newtonian ideas against

Berkeley's attacks.

LEONARD EULER was born in Switzerland in 1707 and died at St Petersburg
in 1783. He was the best-known mathematician of his time, his mathematical

studies covered a wide range, and he left very little without his impress. His

work showed very clearly the need for a new critical development of analysis

and in this sense he may be regarded as the father of modern analysis.

JEAN LE ROND D'ALEMBERT, born at Paris in 1717, is noted chiefly for his

solution of the problem of vibrating strings, which was the starting point of

much of modern mathematics. Much of his time was spent on the French

encyclopaedia. He died in 1783.

JOSEPH Louis LAGRANGE, the greatest mathematician of the eighteenth

century, was born at Turin in 1736 and died at Paris in 1813. For twenty

years he was at the court of Frederick the Great at Berlin. He was an ana-

lytical purist and in his hands analysis proved by no means a less beautiful

instrument than geometry had been by tradition. The modern subjects of

differential equations, calculus of variations, and theoretical dynamics are

almost entirely due to his genius; and his work in the theory of numbers and

in the calculus of finite differences is still of active importance. His classical

Mtcanique Analytique has been described as a scientific poem. His Fonctions

Analytiques, published in Paris at the time of the French Revolution, contains

his attempt to found infinitesimal calculus on pure algebraic analysis. He was

of a modest disposition and was liked by all, princes and revolutionaries.

JEAN ROBERT ARGAND, a Swiss, born in 1768 and died in 1822, dealt with

the geometrical representation of complex numbers before their more syste-
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matic development in the hands of the greater mathematicians Gauss and

Cauchy.

JEAN BAPTISTE JOSEPH FOURIER, famous for his Th&orie analytique de la

chaleur, in which, discussing questions of Heat, he uses the type of series-

now known by his name, was born in France in 1768 and died in 1830. Much
of modern analysis connected with the general notion of a function of a real

variable has arisen directly out of a study of the properties associated with

Fourier series.

BERNARD BOLZANO, born in Austria in 1781 and died in 1848, was not

well-known, but he anticipated in some points the great founders of modern

analysis.

AUGUBTIN Louis CAUCHY, the chief founder of modern analysis and the

theory of functions, was born at Paris in 1789. Though not as precise and

acute in mind as Abel and Weierstrass, he was remarkably active and fertile

in ideas. The subject of the theory of functions of a complex variable depends

fundamentally on Cauchy's well-known theorem in that subject. Cauchy is

typical of the French school of analysis of the nineteenth century. He died

in 1857.

NIELS HENRIK ABEL, a Norwegian, was born in 1802 and died in 1829. In

his short life he shewed remarkable brilliance, and his work on elliptic functions,.

Abelian integrals, and infinite series has been a model for later mathematicians.

KARL WEIERHTRABS, born in Westphalia in 1815 and later a Professor at

Berlin, where he died in 1897, is the chief German representative of the nine-

teenth century growth of modern analysis. In his development of the theory

of functions he insists on concrete algebraic definitions and hard logic, and in

this contrasts to some extent with the more transcendental methods of the

French school. Weierstrass's work, together with that of his shorter-lived

versatile and brilliant contemporary Riemann (1826 1866), forms the ideal

complement to the far-reaching ideas of the French analysts.

JULIUS WILHELM RICHARD DEDEKIND was born at Brunswick in 1831 and

died in 1916. He followed up Dirichlet's work on the theory of numbers. Of

his several fertile ideas his definition of irrational numbers by Dedekindian

sections is the best-known.
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INDEX OF SYMBOLS
The numbers denote pages.

>, <, ^, < 4, 8, 27 lim f(h) 232

=
,
s 23 & V
^

%, /><#,/ (*'), J >
etc. 143, 216

43
x 251

44

18 IWft 251

\x\ 44, \z\ 283 <*
w 85

am z 283 log6 94

e 51 cos#, sin a?, etc. 204

w, TT 183 <?(#),(*) 176

^ 282 cosh a?, sinh a?, tanh a?, etc. 189,191

f(x) 135
arccosji? (or cos"" 1

a?), etc. 205, 227

f(x)-+L 198 C(x),S(x} 186

lim 44 ^(#) ^W 189

n-*-oo arg cosh o; (or cosh" 1
^?), etc. 191

lim /(*) 198
*-** The symbols "4=," +," etc. de-
lim f(x) 207 , ,, . .

t

.r-*.oo no^e "ie negation of =, '*-, etc.
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The numbers denote pages; those enclosed in brackets refer to examples.

Abel's equality, (26)
lemma (inequality), 29

Absolute convergence, 77, (285)
,, value. See Modulus

Addition, 2, 7, 18; of series, 80

theorems, 173, 179, 205

Algebra, 1

Alternating sign series, 74
Alternative forms for integrals, 253, 254

Amplitude (argument), 283

Analytical geometry, 136

Antilogarithms, 127

Approximate solution of equations, 26,
238

Approximations; to functions by poly-

nomials, 167 ;
to irrational numbers,

16,38
Arbitrary constant, 253

Area, 148, 205; of ellipse, 269; under a

curve, 143

Argand diagram, 283

Argument (amplitude), 283
Arithmetic continuum, 19

mean, 29, 233

Base ;
of logarithm, 94, 97 ; of power,

85

Between, 29

Binomial; series, (84), 169, 278; theorem,
22, 169, 279

Bolzano-Weierstrass theorem, 46

Bound, upper (or lower), 39, 40, 148, 236
Bounded function, 150, 242
Bounded set or sequence, 39, 40
Bounded variation, 138, (152) ;

of special

functions; x2
, 138; polynomial, 161 ;

power series, 172; rational function,
166

Calculation ; of e, 53 et seq.] w (*-), (189);

logarithms, 103-106, (107), 123 et

seq.

Calculus, historical summary, 196
Cartesian (analytical) geometry, 136

Cauchy's test for convergence, 79
Centres of mass, 271

Characteristic, 101

Circular functions, 204
measure of angles, 204

Circumference of circle, 201, 273
Common logarithms, 98; calculation of,

103 cf seq., 125

Comparison tests for convergence, 79

Complex number, 281

Conditionally convergent series, (84)
Conditions for convergence, 45, 48, 63,

64, 74, 78. See also Tests

Constancy of function with zero deriva-

tive, 121, 248

Constant, 157; of integration, 253

Continuity, 139 ; of compound function,

212; of differentiate function, 216;
of power series, 247 ;

of polynomial,
159; of x*, 139; of a*, (59); of xn ,

(92) ;
of a*, (92) ; of loga #, 94 ;

of

E(x) t 174; of C(x), S (x) 9 181; of

sin a, (207)

Continuity on the right (or left), 139
Continuous function, 139

,, graph, 139

Convergent sequence, 43, 44, 283, (281)
,, series, 62, 63, 283

Coordinates, 136

D'Alembert's ratio test for convergence,
80

Dedekind's definition of irrational num-
bers, 16

Dedekindian classification, 19
Definite integral, 149, 244; evaluation,

253 ; properties, 245, 261 et seq.

Density of rational points on a line, 15

Dependent variable, 135

Derangement of series, (84)
Derivative. See Differential coefficient

Differentiability of special functions
;

a* etc., H6, 142; x, (59), (92), 116,

224; loga;, 114; e*
t 129; C (x), S (x),

180; cosh x, sinhg, 191
;
sin x etc.,

226
; power series, (176), 191, (195)

Differentiabilityon the right (or left), 142
Differentiable function, 143, 215
Differential coefficient (derivative), 114,

215
Differential equation, 279

Differentiation; of function of a function,

218; of sum, product, etc., 217; of

product, 128; of compound func-

tions, 229; of inverse functions, 219;
of simple functions, 116; of standard

functions, 222 et seq.

Discontinuity; of I/a:, 163; of rational

function, 165
Distinction between limit and value of

a function, 112, 199

Division, 4
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Ellipse, 268

Equal, 20

Equality (identity), 20

Equation, 23; of tangent, 234
Error (remainder) after n terms of series,

69 ;
for series of positive terms, 69 ;

for alternating series, 76
Euler's equalities, (285)
Evaluation; of integrals, 253 ; of limits,

48 et seq., 209; of sums of series,

68, 76 ;
of e, 51 et seq. ; of or, (189) ;

of TT, (207), 273
Existence theorem; for fractional powers,

89 ;
inverse functions, 220

;
inverse

trigonometrical functions, 186 ;

logarithms, 93 ; root extraction, 88

Exponential function (power), (91), 127

etseq.

Exponential series, 131

Exponentiation, 85

Factor theorem, 25

Factorial, 35
Finite and infinite combinations of

functions, 213
Finite set of numbers, 39
First mean value theorem, 263
Foundations of calculus, 196

Fraction, 6

Fractional indices, 88

Fractional-number-pair, 7

Function, 114, 134; bounded, 150, 242;
of bounded variation, 138, (152);

continuous, 139 ; differentiable, 143,

215; integrable, 149; monotone,
137

Fundamental formula of integral cal-

culus, 251
Fundamental inequality for [log (x + h)

-log*]/*, 110
Fundamental property of continuous

functions, 140; generalisation, 236

Fundamental theorem of integral cal-

culus, 248

Generalised exponential and logarithm,

(285)
Geometric mean, 29

,, series (progression), 64, 76

Gradient (slope), 114

Graph, 137; of logo;, 113; tf
2
, 137,^54;

a? etc., 154; C (x), S(x), 185 j
C

(a?),

8(x), 186; cosh a;, sinha, 190

Greater and less. See Order of magni-
tude

Greatest and least limits of sequence,
48

Gregory's series, (189)

Harmonic motion ; simple, 236; damped,
236

Harmonic series, 67

Hyperbola, rectangular, 164

Hyperbolic functions, 189

Identity (equality), 20

Identity of circular and trigonometric
functions and of ir and tzr, (231),

273, 277, (280)

Imaginary (complex) numbers, 19, 281

Increasing function, 231

,, sequence, 42

Incrementary ratio, 111, 141, 215
Indefinite integral, 251

Independent variable, 135
Indeterminate forms, 212, 239

Index, 85 ; positive integral, 85 ; negative

integral and zero, 87; fractional,

88
; irrational, 89

Induction, 21

Inequalities, 27; Abel's lemma, 29; for

arithmetic and geometric means, 29 ;

for (! + *), 29, (36), (91), (132),

(241); for (a
n -bn

)/(a -I), 29, (91);
for (a

m -b)l(a
n -bn

), 29, (234);

52, 108; for log

106
'
107 ;

for log

110 ;
for [log (x + h)

- log x]/h, 110 ;

for
|

a? |/| f (37), (284); for a*, x\
log*. Ml. **, (99), (133); sin*

<#<tan#, 205

Inequalities proved by differentiation,

233

Inequality, 8, 27

Inequation, 33
Infinite integrals, 242

Infinity, 11, 44

Inflexion, 232

Integer, 11

Integrability, 149; of x* t 149; of C(x),
S (x), 185; of continuous functions,

247; of elementary functions, 247 ;

of functions of bounded variation,

(162), 247; of monotone functions,

154, 246; of product of two functions,

245, (260) ; of sum of two functions,

156, 245
;
of sum-function of power

series, 172, 247

Integrable function, 149

Integral. See Definite integral, Indefinite

integral and Upper integral

Integral variable, 197

Integration, 242 ; by parts, 255 ; by sub-

stitution, 254; of a;
2

, 149; of rational

functions, 256; of standard func-

tions, 251; is inverse to differentia-

tion, 249
Interior point of range or interval, 119

Interval, 119
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Inverse character of differentiation and

integration, 249
Inverse derivative, 251
Inverse function, 220; circular, 205 ;

hyperbolic, 191
; trigonometric, 186;

derivative of, 219
Irrational function, 162

,, number, 17

Irrationality; of ^/2, 15; of e, (60); of

logarithms, 94

Laws; of algebra, 2; of bounds, (214) ;

of indices, 85; of limits, 209; of

logarithms, 96
Least and greatest limits of sequence,

48

Length; of curve, 199, 203, 272; of in-

terval, 243

Limit; ofcompound function, 210; of sum,

etc., 209; of (l + iY, 51 et seq.',

(1\n
/ T

li) , 108; of (1 + -
n) \ n

129; of #/wl, (130); of ar, 49;
of nxn, 50

;
of ^w, (58) ;

of sin x/x,
tan xjx t 205

Limit of function of continuous variable,
198 ; on right (or left), 198

Limit of function of integral variable,
197

Limit of indeterminate forms, 239, 240
Limit of sequence; unique, 43, 44, 283

;

general, see Limiting number
Limiting number (limit, limiting value,

etc.), 44, 45, 198

Limits of integration, 244

Logarithm, 94; of negative or complex
number, 96, (285)

Logarithmic function, 94 ; continuity of,

94; differentiability of, 114; mono-
tony of, 94

Logarithmic series, 123

Logarithmic tables, 99 et seq.] accuracy
of, 100 ; construction of, 103 et seq. ,

125; use of, 100-103
Lower. See Upper

Maclaurin's series, 275

Mantissa, 101

Maxima and minima, 231
Mean value theorem for derivatives, 239
Mean value theorem for integrals ; sim-

ple, 262; first, 263; second, 264

Measurement, 13

Modulus (absolute value, numerical

value), 44, 283
Monotone (monotonic) function, 137

sequence, 43

Monotony; ofM37; of a*, (91); of#H
,

(92); of loga#, 94; of polynomial,

161 ; of sum-function of power series,

171
Motion under constant and variable ac-

celeration, 235, 236, 274

Multiple-valued (many-valued) function,
135

Multiplication, 2, 7,10,18; of absolutely
convergent series, 80

Napierian logarithms, 123

Necessary and sufficient condition for

convergence; of general sequences,
48 ; of series of positive terms, 64 ;

of series with alternating signs, 74

Necessary condition for convergence, 63

Negative bases and powers; ruled out,

89; allowed, 282, (285)

Negative number; rational, 11; real, 18
Non-commutative algebras, 4
Non-differentiable function, 216
Non-Euclidean geometries, 3

Non-unique limits. See Limiting number
Number. See "Whole, Eational and Keal

number
Numerical value. See Modulus

One-valued (single-valued) function, 135
Order of magnitude; of rational numbers,

8
;
of real numbers, 18

Order of symbols, 3
Oscillation of function, (152)

Parabola, 151
Partial sum, 63

Periodicity of C (x) and S (x), 184
Point of inflexion, 232

Polynomial, 25; properties of, 153 et seq.
Positive integer, 11
Positive number; rational, 11; real, 18

Power, 85. See also Exponential func-
tion

Power series, 171; properties of, 171

etseq., (176), metseq. t (194), (195),
247

Principal value; of amplitude, 283; of
inverse circular functions, 227

Principle of convergence, 48
Product series, 80

Proportional parts, 102

Badian, 204
Radius of convergence, 193

Range, 111, 119; of convergence of power
series, 193 ;

of integration, 244
Bate of increase, 215
Batio test for convergence, 80
Bational functions, 162

,, numbers, 11

,, points on line, 15

Real number, 16 ; adequacy of, 18
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Real variable 134

Rectifiability, 200, 203; of circle, 201,
203 ; of ordinary graphs, (207) ; of

graph of bounded variation, (208)
Remainder (error) after n terms of series,

69
Reversible and irreversible operations, 24
Rolle's theorem, 236

Roots; of equations, 161, 237, 283; of

numbers, 17, 88, 282
Rules of signs, 5

Second mean value theorem, 264
Semi-differential coefficient, 143

Semi-tangent, 142

Sequence, 39 ; bounded, 40 ; convergent,
43, 44; monotone, 43; upper and
lower bounds of, 40; necessarily
convergent if bounded and mono-
tone, 43; with general term #n

, 49;

l Y^ fornxn
,
50

; Zjn, (58); (

51, 108; for e
x

, 129; of poly-
nomials to define new functions, 167

Series, infinite, 63
;
of positive terms ;

64 ; with diminishing terms of alter-

nating sign, 74; exponential, 131,

173; geometric, 64, 76; harmonic,
67; logarithmic, 123; trigonometric,
176; for e, 65, 72; for iff (*), (189),

(260). See also Power series

Set of numbers, 39

Simple harmonic motion, 236

,, mean value theorem, 262
Simultaneous equations 26

Slope (gradient), 114, 140

Square root; of 2, 17; of -
1, 282

Standard differential coefficients, 222 et

seq.
Standard equalities, 20
Standard inequalities, 29. See also In-

equalities
Standard integrals, 251 et seq.

Stationary, 232

Subtraction, 4

Subtractive-number-pairs, 10

Sufficient condition for convergence, 78.

See also Tests

Sam of convergent series, 63

Sum, product etc. of real numbers, 18

Symbolism, 1

Symbols, 289; order of, 3

Tables, logarithmic, 99 et seq.

Tangent to a curve, 140, 234; on the

right (or left), 141
; parallel to y

axis, 143

Taylor's series, 275

,, theorem, (195)
Tests for convergence, 79, 80
Theorem on derivatives, 119 ; on function

with zero derivative, 121, 250; on
functions with same derivative, 249

Total variation, (152)

Trigonometric functions, 177; identical

with circular functions, (231), 277,

(280)

Turning value, 150

Unbounded function, 242

,, sequence, 40

Uniformity of continuity, (260)

Unique limit, 43; of a function, 198 ;

of a sequence, 43, 45

Upper (or lower) bound, 39, 40; of a

function, 148, 236; of a range, 119

Upper (or lower) integral, 244

Upper (or lower) limit (greatest, or least,

of limits), 48; on right (or left),

208

Upper (or lower) limit of integration,
244

Value of function different from limit,
112

Variable, 134
Variation. See Bounded and Total varia-

tion

Velocity, 206, 235

Volume, 270

Whole number, 1

Zero, 10

derivative, 121, 250
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