## AN INTRODUCTION TO MATHEMATICS

# AN INTRODUCTION TO MATHEMATICS 

With Applications to Science and Agriculture

BY<br>ISAIAII LESLIE MILLER<br>Professor of Mathematics, South Dakota State College of Agriculture and Mcchanic Arts

## F. S. CROFTS \& CO.

Copyright, 1930, by F. S. Croits \& Co., Inc.

## PREFACE

After some fourteen years of teaching in American colleges and universities the author finds that the average high school graduate has not developed in himself a mathematical type of reasoning. He therefore hopes that this treatment may in some measure accomplish this purpose.

The first few chapters are devoted to a thorough review of high school algebra, for the author is convinced that most college freshmen need considerable drill on the fundamental processes of algebra before attempting a very extensive study of mathematics.

In preparing this book the author has kept in mind two types of students: first, those who will never take additional work in mathematics, and second, those who will continue the work in science or agriculture for advanced degrees and will doubtless desire to pursue additional courses in mathematics. He has therefore attempted to write a book basic in the fundamental principles of mathematics and at the same time has endeavored to make practical applications to the ficlds of science and agriculture, wherever possible. He feels that a thorough knowledge of the material covered in this work will enable the second type of student to successfully pursue a course in analytical geometry followed by a course in the calculus.

The author gratefully acknowledges his indebtedness to his colleagues, Professor Wm. Asker for preparing the chapter on statistics, and Mr. H. B. MacDougal for ehecking much of the material, to Professor I. W. Smith of the North Dakota Agricultural College for using the material in mimeographed form and offering many valuable suggestions, to Dean D. $\Lambda$. Roth-
rock of Indiana University for reading most of the manuscript and to Professor Wm. Marshall of Purdue University for encouraging him in the work.

The author also desires to thank Professor E. S. Crawley of the University of Pennsylvania for his generous permission to use the greater part of his Tables of Logarithms as a portion of this book.
I. L. Miller

South Dakota State College

## CONTENTS

CHAPTER I
ALGEBRAIC OPERATIONS
Article Page

1. Four Fundamental Operations ..... 1
2. Addition and Subtraction ..... 1
3. Use of Parenthenes, Sigins of Aggregation ..... 1
4. Multiplication ..... 3
5. Division ..... 4
6. Division of a Polynomial by a Polynomial ..... 4
7. Zero in Division ..... 4
CIIAPTER II
FACTORING:
8. Important Type Products ..... 6
9. Other Important Pronucts ..... 8
10. Highest Common Factor ..... 9
11. Lowest Common Multiple ..... 10
CHAPTEIR III
LINEAR EQUATIONS IN ONE UNKNOWN
12. Equalities ..... 12
13. Solution or Root of an Equation ..... 12
14. Equivalent Equations ..... 13
15. Operations on Equations ..... 13
16. Type Form of the Linear Equation in One Unknown. ..... 13
17. Verification by Substitution ..... 13
CIIAPTER IV
FRACTIONS
18. Algebraic Fraction ..... 16
19. Operations ..... 16
ARTICLE PAGE
20. Reduction of a Fraction to its Lowest Terms ..... 17
21. Addition and Subtraction ..... 18
22. Multiplication and Division ..... 19
23. Complex Fractions ..... 20
24. Fractional Equations ..... 21
CIIAPTER V
FUNCTIIONS
25. Constants and Variables ..... 24
26. Definition of a Function ..... 24
27. Functional Notation ..... 24
28. Functional Relations ..... 25
29. Formulas Tahen from (ieometry ..... 26
30. Grapiical Repiesentation of Functional Relations ..... 29
31. Statistical Data ..... 34
CHAPTER VI
SYSTEMS OF LINEAR EQUATIONS
32. Graphs of Linear Equations ..... 39
33. Grapiical Solution ..... 41
34. Algebraic Solution ..... 43
35. Solution of Three Linear Equations in Three Uninowns. ..... 44
36. Slope of a Straight Line ..... 48
37. Distance betwefn Two Points ..... 50
38. Elquation of a Straight Ling ..... 50
39. Problem (Two Point Form of the Equation of a Line) ..... 51
40. Prorlem (Slope and One Point Form of the Equation of a Line) ..... 53
41. Parallel Lines ..... 54
42. Perpendicular Lines ..... 55
CHAP'TER VII
QUADRATIC EQUATIONS
43. Typical Form ..... 58
44. Solution of the Quadratic liquation ..... 59
45. Classification of Numbers ..... 62
ARTICLE PAGE
46. Character of Roots. Discriminant ..... 63
47. Sum and Product of the Roots ..... 65
48. Graphical Solution ..... 65
49. Minimum Value of a Quadratic Function ..... 67
CIIAPTER VIII
EXPONENTS, RADICALS, BINOMIAL EXPANSION AND LOGARITHMS
50. Definition of a Number. ..... 74
51. Radicals ..... 77
52. Binomial Expansion ..... 79
53. Logarithms. Definition ..... 81
54. Properties of Logaritims ..... 82
55. Common Logarithms ..... 83
56. Use of Tables ..... 84
CHAPTER IX
PROGRESSIONS
57. Arithmetical Progression ..... 88
58. Elements of an Arithmetical Progression ..... 88
59. Relations among the Llements ..... 88
60. Arithmetic Means ..... 89
61. Geometrical Progression ..... 90
62. Hlements of a Geometrical Progression ..... 90
63. Relations among the Elements ..... 90
CHAPTER X
INTEREST, ANNUITIES, SINKING FUND
64. Simple Interest ..... 92
65. Compound Interest ..... 95
66. Compound Interest Formulas ..... 95
67. Annuities ..... 97
68. Amount of an Annuity ..... 97
69. Amount of an Annuity, where the Annual Payment is Made in $P$ Installments. ..... 100
70. Present Value ..... 101
article PAGE
71. Present Value of an Annulty ..... 104
72. Present Valuf of an Annuity, where the Annual Payment is Made in $P$ Equal Installments ..... 105
73. Sinking Funds. ..... 108
74. Amortization ..... 110
75. Amortization Schedule . ..... 110
76. Interest and Annuity Tables ..... 112
CHAPTER XI
TRIGONOMETRIC FUNCTIONS
77. Meaning of Trigonometry ..... 115
78. Trigonometric Definitions ..... 115
79. Co-Functions and Complementaily Angles ..... 117
80. Relations among the Functions. ..... 118
81. Functions of $30^{\circ}, 45^{\circ}, 60^{\circ}$ ..... 120
82. Line Values of the Functions ..... 121
83. Variations of the Functions ..... 122
84. Natural 'Trigonometric Functions and Logarithms of the Trigonometric Functions. ..... 122
CIIAPTER XII
SOLUTION OF THE RIGHT ANGLE TRIANGLE
85. Formulas for the Solution of a Right Triangle ..... 125
86. Applying tie Formulas ..... 125
CHAPTER XIII
TRIGONOMETRIC FUNC'TIONS OF ANY ANGLE SOLUTION OF THE OBLIQUE TRIANGLE
87. Trigonometric Definitions ..... 130
88. Laws of Sigins ..... 131
89. Functions of Negative an(iles ..... 131
90. Functions of $180^{\circ}$ - $\Theta$, Supplementary Angles ..... 132
91. Functions of the Sum of Two Angles ..... 135
92. Functions of the Difference of Two Angles ..... 136
article PAGE
93. Functions of Twice an Angle ..... 136
94. Half-angle Formulas ..... 137
95. Sum and Difference Formulas ..... 138
96. Theorem of Sines ..... 140
97. Theorem of Cosines ..... 144
98. Theorem of Tangents ..... 147
99. Area of a Triangle ..... 149
100. Summary of Methods of Solving Any Triangle ..... 151
CHAPTER XIV
THE DERIVATIVE AND SOME APPLICATIONS
101. The Meaning of a 'Tangent to a Curve ..... 153
102. The Derivative ..... 153
103. Derivative of a Constant ..... 157
104. Derivative of a Sum. ..... 158
105. Derivative of a Prodict ..... 158
106. Derivative of a Quotient. ..... 159
107. Formulas Stated in Words ..... 160
108. Derivative of $u^{n}$ ..... 160
109. Increasing and Decreasing Functions ..... 163
110. Maxima and Minima ..... 165
111. Applications of the Theory of Maxima and Minima ..... 168
CHAPTER XV
STATISTICS AND APPLICATION
112. Introduction. ..... 170
113. Frequency Tarles ..... 170
114. Measures of Central Tendency ..... 171
115. Determination of the Arithmetic Mean from a Frequency Table ..... 173
116. Determination of tie Median from a Fiequency Table. ..... 174
117. Variability ..... 174
118. Correlation ..... 179
119. The Rank Method of Corkelation ..... 181
120. The Product Moment Formula or the Pearson Correla- tion Coefricient ..... 183

## CHAPTER XVI

## PROBABILITY

ARTICLE PAGE
121. Meaning of Probability ..... 186
122. Probability Based Upon Observation or Experience ..... 187
123. Meaning of Mortality Table ..... 188
124. Permutations ..... 189
125. Combinations. ..... 191
126. Compound Livents ..... 192
CHAPTER XVII
ANNUITIES AND INSURANCE
127. Meaning of Life Annuity. ..... 195
128. Pure Lndowments ..... 195
129. Present Value (Cost) of a Life Annuity ..... 196
130. Life Annuity Due ..... 197
131. Temporary Annuity ..... 197
132. Life Insurance Definitions ..... 200
133. Ordinary Ilfe Policy ..... 201
134. Limited Payment Life Policy ..... 202
135. Term Instirance ..... 204
136. Endowment Insurance ..... 206
137. Meaning of Reserve ..... 207

## TABLES

TABLE PAGE
I. Common Logarithms of Numbers ..... 211
II. Logarithms of the Trigonometric Functions ..... 231
III. Values of the Thigonometile Functions ..... 277
IV. American Sixperience Table of Mortality ..... 282
V. Commutation Columns ..... 233
VI. Amount of 1 ..... 285
VII. Present Value of 1 ..... 287
ViII. Amount of 1 per Annum at Compound Interest ..... 289
IX. Present Value of 1 per Annum ..... 291
Index ..... 293

## an INTRODUCTION T0 MATHEMATICS

## CHAPTER I

## ALGEBRAIC OPERATIONS

1. Four fundamental operations. The operations with numbers are made up of additions, subtractions, multiplications and divisions. These operations are known as the four fundamental operations of algebra.

## 2. Addition and subtraction.

$a$. Addition is commutative. This means that $a+b=b+a$.
$b$. The sum of two or more numbers is the same, irrespective of the way in which they are grouped. Thus:

$$
a+b+c=(a+b)+c=a+(b+c) .
$$

3. Use of parentheses. Signs of aggregation. The signs of aggregation are:

| Parentheses | $\left(\begin{array}{l}\text { ) } \\ \text { Brackets }\end{array}\right.$ |
| :--- | :---: |
| Braces | $\{$ |
| Vinculum |  |
| Bar |  |

Signs of aggregation may be removed with or without change of sign of each term included within the signs of aggregation, according as the sign - or + precedes the sign of aggregation. Thus:

$$
\begin{aligned}
& x-\{3 y-2[z-(y-3)-(2 y+4)]\} \\
= & x-\{3 y-2[z-y+3-2 y-4]\} \\
= & x-\{3 y-2 z+6 y+2\} \\
= & x-9 y+2 z-2
\end{aligned}
$$

## Exercises

Add:

1. $3 x-2 y, 7 x+6 y,-5 x+4 y$.
2. $2 x+3 y-7 z, 4 x-9 y+6 z, 8 x+7 y+3 z$.
3. $4 a^{2} b^{2}+5 a c^{2}-2 c^{3}, 7 a^{2} b^{2}-2 a c^{2}, 7 a c^{2}+4 c^{3}$.
4. $2 x^{2}-3 a x+3 c, 3 x^{2}+a x-c, x^{2}-2 a x-5 c$.
Б. $7 x^{3}-4 x+2 x^{2}-5,-2 x+5 x^{3}+1-2 x^{2}, 4+3 x+2 x^{2}+x^{3}$.

Subtract the first expression from the second in the following:
6. $3 m+2 n, 4 m-5 n$.
7. $2 a^{2}+3 a-5,4 a^{2}-2 a+4$.
8. $3 x^{2}+5 x y-4 y^{2}-3 x, 4 x^{2}-2 x y+y^{2}+2 x$.
9. $5 a^{3}+6 a y^{2}+3 a y-2 a+3,2 a^{3}+a y-5 a y^{2}+3 a-7$.
10. From the sum of $3 a-4 b+5 c$ and $8 b-2 a-3 c$, subtract the sum of $3 a-2 b+4 c$ and $4 b-5 a-2 c$.

Combine coefficients of similar terms:
11. $a y+b y+c y$.

Solution. $a y+b y+c y=(a+b+c) y$.
12. $2 a x+6 b x-3 c x$.
13. $4 x-2 a b x+7 c x$.
14. $a m+b m+a n+b n$.

Simplify by removing signs of aggregation and combining like terms:
15. $2 a-3+(x-5 a)-2(3 a-2 x)$.
16. $2(a-3)-7(a+2)+8(a-3)$.
17. $7 y-3[4-2(y+1)+3(y-4)-(y-7)]$.
18. $3 a-[2 a-b-\{3 a-2 b-(2 a+\overline{b-a})+3 a\}-3 b]$.
19. $x-(-2 x-\{-5 x+[x-\overline{3 x-2}]-3\}-[3 x-\overline{2} \overline{x+3}])$.
20. $7 y-5[4-3(y-4-b)-4\{b-(5 y+b)-5\}]$.
21. $4 z-\{-5 z+(2 z-4 w-\overline{3 z+2})-3(2 z-5 w)-8\}$.

## 4. Multiplication.

$a$. The factors of a product may be taken in any order. Thus, $c d=d c$.
$b$. The factors of a product may be grouped in any manner. Thus, $a b c=(a b) c=a(b c)=b(a c)$.
c. When $m$ and $n$ are positive integers, $a^{m} \cdot a^{n}=a^{m+n}$.

That is, the exponent of the product of two or more powers of a number is the sum of the exponents of the powers taken singly. This is known as the first law of exponents for positive integers.*

## Exercises

Multiply:

1. $2 a b c,-3 a^{2} b c^{2}, 5 a b^{3} c$.

Solution. (2abc) (-3a $\left.{ }^{2} b c^{2}\right)\left(5 a b^{3} c\right)$

$$
\begin{aligned}
& \text { lution. } \quad(2 a b c)\left(-3 a^{2} b c^{2}\right)\left(5 a b^{3} c\right) \\
& =(2 \cdot-3 \cdot 5)\left(a \cdot a^{2} \cdot a\right)\left(b \cdot b \cdot b^{3}\right)\left(c \cdot c^{2} \cdot c\right) \\
& =-30 a^{4} b^{5} c^{4} . \quad[(c), \text { Art. 4] }
\end{aligned} \quad\left[\begin{array}{c}
(a) \text { and }(b), \\
\text { Art. } 4
\end{array}\right]
$$

2. $3 x^{2}, 7 x y^{2}+3 x^{2} y-2 x^{3} y^{2}$.
3. $5 a^{2}+2 a y^{2}, 3 a-4 a^{2} y$.
4. $(x+y)(x+y)(x+y)$.
5. $(a-b-c)(a+b+c)$.
6. $(x+y+2 z)^{2}$.
7. $\left(x-\frac{y}{3}\right)\left(x+\frac{y}{3}\right)$.
8. $\left(x^{2}-y\right)^{3}$.
9. $\left(m^{2}-m n+n^{2}\right)\left(m^{2}+m n+n^{2}\right)$.
10. $(a-b)^{n}(a-b)^{3}$.

[^0]5. Division. If $a$ and $b$ are any given numbers and $b$ is not zero, there is only one number $x$ such that $a=b x$. The process of finding $x$ is the process of dividing $a$ by $b . \quad a$ is called the dividend, $b$ the divisor and $x$ the quotient.
Example. $\frac{a^{m}}{a^{n}}=a^{m-n}$, where $m>n$.
That is, the exponent in the quotient of two powers of a number is the exponent of the dividend minus the exponent of the divisor.
Note the condition that $b$ is not to be zero. This means that the divisor can not be zero.
6. Division of a polynomial by a polynomial. Before performing the indicated division the dividend and divisor should be arranged according to ascending or descending powers of some letter.

Example. Divide $19 a-9 a^{2}+a^{4}+3 a^{3}-6$ by $3+a^{2}-2 a$.
$\begin{array}{ll}\text { Solution. } & a^{4}+3 a^{3}-9 a^{2}+19 a-6 \left\lvert\, \frac{a^{2}-2 a+3}{\mid a}\right. \\ & a^{4}-2 a^{3}+3 a^{2}\end{array}$

$$
\begin{aligned}
& 5 a^{3}-12 a^{2} \\
& 5 a^{3}-10 a^{2}+15 a \\
& \hline-2 a^{2}+4 a-6 \\
& -2 a^{2}+4 a-6
\end{aligned}
$$

7. Zero in division. Division by zero is excluded from the operations in algebra. That is to say, the divisor can not be zero. If the dividend is zero, the quotient is zero. That is, $\frac{0}{a}=0$.

Where is the fallacy in the following?
Let

$$
\begin{align*}
x & =m .  \tag{1}\\
x^{2} & =m x . \tag{2}
\end{align*}
$$

Multiply both sides by $x$,

Subtract $m^{2}$ from both sides, $x^{2}-m^{2}=m x-m^{2}$.
Divide both sides by $x-m, \quad x+m=m$.
But by (1)

$$
\begin{equation*}
x=m . \tag{4}
\end{equation*}
$$

By (4) and (5)
$2 m=m$.
Hence
$2=1$.

## Exercises

Divide:

1. $33 a^{3} b^{3} c^{3}-9 a^{2} b c^{2}+15 a b^{2} c$ by $3 a b c$.
2. $20 c 4 d^{3}+15 c^{2} d^{2}-10 c d$ by $5 c d$.
3. $\frac{x^{4}-13 x^{3} y+5 x^{2}}{x^{2}}$.
4. $\frac{-5 y^{3}+15 y^{4}-10 y^{2}}{5 y^{2}}$.
5. $\frac{16 x^{3} y^{2}-8 x y^{3}+12 x^{2} y^{2}}{4 x y^{2}}$.
6. $x^{2} y^{2}-y^{4}+x^{4}$ by $x^{2}-x y+y^{2}$.

The solution of this example gives $x^{2}+x y+y^{2}$ as a quotient and $-2 y^{4}$ as a remainder. And as in arithmetic, the complete quotient may be written.

$$
x^{2}+x y+y^{2}+\frac{-2 y^{4}}{x^{2}-x y+y^{2}}
$$

7. $y^{3}+27$ by $y+3$.
8. $a^{3}-8$ by $a-2$.
9. $x^{3}-5 x^{2}-17 x+66$ by $x-6$.
10. $2 x^{4}-8 x^{3}+7+3 x^{2}+10 x$ by $2 x^{2}-4 x-7$.
11. $a^{4}+a^{2} b^{2}+b^{4}$ by $a^{2}+a b+b^{2}$.
12. $2 x^{3}-9 x^{2} y-12 y^{3}+17 x y^{2}$ by $2 x-3 y$.
13. $2 x^{4}-x^{3} y-3 x^{2} y^{2}+x y^{3}$ by $x^{2}+x y$.
14. $4 a^{3}-3 a-15 a^{2}+4$ by $a^{2}-3 a-3$.
15. $8 a^{3}+27 b^{3}$ by $2 a+3 b$.

## CHAPTER II

## FACTORING

8. Important type products. The following type forms have already been treated in high school algebra. They should be reviewed here and memorized.
$a$. Common monomial factor.

$$
a b+a c=a(b+c) .
$$

Example. $\quad 2 a x-6 a^{3}=2 a\left(x-3 a^{2}\right.$.
b. Trinomial square.

$$
a^{2}+2 a b+b^{2}=(a+b)^{2} .
$$

Example.

$$
9+6 a+a^{2}=(3+a)^{2} .
$$

c. Difference of two squares.

$$
m^{2}-n^{2}=(m-n)(m+n) .
$$

Example. $\quad(a+2 b)^{2}-c^{2}=(a+2 b-c)(a+2 b+c)$.
$d$. Trinomial of the form.

$$
x^{2}+(m+n) x+m n=(x+m)(x+n) .
$$

Example.

$$
x^{2}+5 x+6=(x+2)(x+3) .
$$

$e$. Difference of two cubes.

$$
m^{3}-n^{3}=(m-n)\left(m^{2}+m n+n^{2}\right)
$$

Example.

$$
\begin{aligned}
& 8 m^{6}-n^{3} s^{3}=\left(2 m^{2}\right)^{3}-(n s)^{3} \\
& =\left(2 m^{2}-n s\right)\left(4 m^{4}+2 m^{2} n s+n^{2} s^{2}\right) \\
& 6
\end{aligned}
$$

$f$. Sum of two cubes.

$$
\begin{gathered}
m^{3}+n^{3}=(m+n)\left(m^{2}-m n+n^{2}\right) . \\
8 x^{3}+27 y^{6}=(2 x)^{3}+\left(3 y^{2}\right)^{3} \\
=\left(2 x+3 y^{2}\right)\left(4 x^{2}-6 x y^{2}+9 y^{4}\right)
\end{gathered}
$$

Example.
$g$. Trinomial of the form.

$$
a x^{2}+b x+c
$$

Certain expressions of this form may be factored by inspection. The factors are two binomials whose first terms are factors of $a x^{2}$ and whose last terms are factors of $c$. Now we must choose the terms of binomials so that the algebraic sum of the cross products is $b x$.

Example. Factor $6 x^{2}-x-15$.
The first terms of the factors are $3 x$ and $2 x$ or $6 x$ and $x$, and the last terms of the factors are $\pm 3$ and $\mp 5$, or $\pm 1$ and $\mp 15$. Choosing the terms so that the algebraic sum of the cross products is $-x$, we find the factors to be $2 x+3$ and $3 x-5$.

Hence

$$
6 x^{2}-x-15=(2 x+3)(3 x-5)
$$

$h$. Grouping of terms.

$$
m x+n y+n x+m y=(m+n)(x+y)
$$

Example.

$$
\begin{aligned}
14 a x+21 b x-4 a y-6 b y & =7 x(2 a+3 b)-3 y(2 a+3 b) \\
& =(7 x-2 y)(2 a+3 b)
\end{aligned}
$$

## Exercises

Factor the following:

1. $2 m+3 m n$.
2. $a^{2}-9 b^{2}$.
3. $x^{2}-9 x+8$.
4. $t^{2}+9 t-36$.
5. $x^{3}-8 y^{6}$.
6. $a^{2}-c^{2}-b^{2}+2 b c$.
7. $7 m x-9 n y+7 n x-9 m y$.
8. $x^{2}-m x+2 n x-2 m n$.
9. $8 m^{3} n^{6}+27 p^{3}$.
10. $(m+2)^{2}-5(m+2)-176$.
11. $(a-b)^{3}-3(a-b)^{2}-4(a-b)$.
12. $y^{2}-8 y z-9 x^{2}+16 z^{2}$.
13. $21 x^{2}-26 x-15$.
14. $a^{4}-16 b^{4}=\left(a^{2}\right)^{2}-(4 b)^{2}$.
15. $16 a^{2}+56 a b+49 b^{2}$.
16. $x^{3 n}-y^{3}=\left(x^{n}\right)^{3}-y^{3}$. (Find two factors only.)
17. $(x+y)^{3}-(v-w)^{3}$.
18. $x^{4}-3 x^{3} y-10 x^{2} y^{2}$.

## 9. Other important products.

i. Square of a polynomial. The square of a polynomial equals the sum of the squares of the terms of the polynomial plus twice the product of each term by every term that follows. Thus,

$$
\begin{aligned}
\left(x+y+z+w^{\prime}\right)^{2}= & x^{2}+y^{2}+z^{2}+w^{2}+2 x y+2 x z+2 x w \\
& +2 y z+2 y w+2 z w
\end{aligned}
$$

j. Expressions that can be written as the difference of two squares.

Example. Factor $4 a^{4}+b^{4}$.
By the addition of $4 a^{2} b^{2}$ and the subtraction of the same term we have

$$
\begin{aligned}
4 a^{4}+b^{4} & =4 a^{4}+4 a^{2} b^{2}+b^{4}-4 a^{2} b^{2} \\
& =\left(2 a^{2}+b^{2}\right)^{2}-(2 a b)^{2} \\
& =\left(2 a^{2}+b^{2}-2 a b\right)\left(2 a^{2}+b^{2}+2 a b\right)
\end{aligned}
$$

$k$. Cube of a binomiar. By actual multiplication, we find that
and

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

$$
(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
$$

Note.-If a polynomial can be put into the form of the product under (i), it can be factored.

Example. $a^{2}+b^{2}+16 c^{2}+2 a b+8 a c+8 b c$

$$
\begin{aligned}
& =(a)^{2}+(y)^{2}+(\cdot 4 c)^{2}+2 \cdot a \cdot b+2 \cdot a \cdot 4 c+2 b \cdot 4 c \\
& =(a+b+4 c)^{2} .
\end{aligned}
$$

## Exercises

1. $x^{2}+9 y^{2}+4 z^{2}+6 x y-4 x z-12 y z$. (See 9 (i).)
2. $l^{2}+4 m^{2}-4 l m+4 l-8 m+4$.
3. $x^{3}-9 x^{2} y+27 x y^{2}-27 y^{3}$. (See $9(k)$.)
4. $a^{3}+6 a^{2} b+12 a b^{2}+8 b^{3}$.
5. $x^{4}-6 x^{2}+1$.
6. $a^{4}-a^{2}+1$.
7. $x^{4}+4 y^{4}$.
8. $x^{2}+y^{2}+16 z^{2}-z x y+8 x z-8 y z$.
9. Highest common factor. A number or expression which will divide two or more expressions without a remainder, is called a common factor of those expressions.

The product of all the common prime factors of two or more expressions is called their highest common factor (H.C.F.).

To find the H.C.F. of two or more expressions, resolve cach into its prime factors, and then find the product of the common prime factors.

Example. Find the H.C.F. of $a^{2}-b^{2}$ and $a^{2}-5 a b+4 b^{2}$.

Solution.

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

$$
\begin{aligned}
a^{2}-5 a b+4 b^{2} & =(a-b)(a-4 b) . \\
(a-b) & =\text { II.C.F. }
\end{aligned}
$$

## Exercises

Find the II.C.F. of the following sets of expressions:

1. $a x^{2}, 2 a b x, 3 a^{2} b^{2}$.
2. $52,117,78$.
3. $x^{2}+2 x y+y^{2}, x^{2}+x y$, and $x^{2}-7 x y-8 y^{2}$.
4. $x^{3}-1, x^{2}+13 x-14, x^{2}-1$.
5. $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}, x^{3}+2 x^{2} y+x y^{2}$, and $x^{2} y+2 x y^{2}+y^{3}$.
6. $r^{2}-6 r+9, r^{2}+5 r-24$, and $r^{2}-9 r+18$.
7. $\left(. x^{2} y-x y^{2}\right)^{2}, x y\left(x^{2}-y^{2}\right)$.
8. $x^{2}-3 x-40, x^{2}-x-30, x^{2}+3 x-10$.
9. $x^{2}-(y+\mathbf{c})^{2},(y-x)^{2}-z^{2}, y^{2}-(x-z)^{2}$.
10. $\left(x^{2}-1\right)\left(x^{2}+5 x+6\right),\left(x^{2}+3 x\right)\left(x^{2}-x-6\right)$.
11. Lowest common multiple. The lowest common multiple (L.C.M.) of two or more expressions is defined as the product of all their prime factors, each taken the greatest number of times that it occurs in any of the expressions. It is evident that the L.C.M. of two or more expressions is the expression of lowest degree which contains each of the given expressions as a factor.

Example. Find the L.C.M. of $x^{2}-x-2 ; x^{2}-8 x+12$; $x^{2}-5 x-6$.

$$
\begin{aligned}
\text { Solution. } \quad x^{2}-x-2 & =(x-2)(x+1), \\
x^{2}-8 x+12 & =(x-2)(x-6), \\
x^{2}-5 x-6 & =(x-6)(x+1) . \\
\therefore \quad(x-2)(x+1)(x-6) & =\text { L.C.M. }
\end{aligned}
$$

## Exercises

Find the I.C.M. of each of the following sets of expressions:

1. $3 a x^{2} ; a^{2} b x ; 2 a b^{2} x$.
2. $x^{2}+x y ; x^{3}+y^{3} ; x^{2}-3 x y-4 y^{2}$.
3. $x+1 ; x+2 ; x^{2}+3 x+2$.
4. $a^{2}+7 a+10 ; a^{2}+4 a-5$.
5. $a^{3}+8 ; a^{3}-8 ; a^{2}-4$.
6. $x^{2}-x-6 ; x^{2}-6 x+9 ; 6 x-18$.
7. $a^{2}-b^{2} ; a^{2}-2 a b-3 b^{2} ;(a+b)^{2}$.
8. $6 x^{2}+18 x-60 ; 3 x^{2}+24 x+45 ; 8 x^{2}-24 x+16$.

## CHAPTER III

## LINEAR EQUATIONS IN ONE UNKNOWN

12. Equalities. A statement that two expressions are equal is called an equality.

There are two kinds of equalities, identical equalities or identities, and conditional equalities or equations.
In an identity the two members are equal for all values of the symbols for which the expressions are defined. Thus,

$$
x^{2}-4=(x-2)(x+2) \text { is an identity } .
$$

A conditional equality or an equation is true for only certain values of the letters involved. Thus, $x-3=7$ is an equation and is true for the value $x=10$ only.

## Exercises

Which are the following, equations or identities?

1. $(l+m)^{2}=l^{2}+2 l m+m^{2}$.
2. $\frac{y^{2}-b^{2}}{y-b}=y+b$.
3. $x^{3}-3 x+2=0$.
4. $y^{2}-2 y+3=0$.
5. Solution or root of an equation. By the solution or root of an equation in one unknown we mean the value of the unknown that reduces the equation to an identity. Thus, 6 is a solution of $x-2=4$, for when $x=6$ the equation becomes the identity $4=4$.
6. Equivalent equations. Two equations having the same roots are said to be equivalent. Thus the equations $\boldsymbol{x - 5}=\mathbf{0}$ and $2 x-10=0$ are equivalent.
7. Operations on equations. The following operations may be performed on the members of an equation:
(1) Adding the same number to both members.
(2) Subtracting the same number from both members.
(3) Multiplying both members by the same number, zero excluded.
(4) Dividing both members by the same number, zero excluded.
8. Type form of the linear equation in one unknown. The linear equation in a single unknown is of the form:

$$
\begin{equation*}
A x+B=0, \quad A \neq 0 . \tag{1}
\end{equation*}
$$

In fact every linear equation in one unknown can be reduced to the form of (1). Its solution is $x=-\frac{B}{A}$, as may be verified by substitution.
17. Verification by substitution. The operations of Art. 15 are useful in finding solutions but the solution is not complete until the values of the unknown are substituted in the equation to be solved. If such substitution produces an identity the solution is correct.

## Exercises and Problems

Solve the following for $x$ and verify the results:

1. $4 x+5=2 x-3$.

Solution.

$$
\begin{align*}
4 x+5 & =2 x-3 .  \tag{1}\\
2 x & =-8 .  \tag{2}\\
x & =-4 . \tag{3}
\end{align*}
$$

Divide bv 2

Check. Substitute (3) in (1) and

$$
\begin{aligned}
4(-4)+5 & =2(-4)-3 \\
-11 & =-11
\end{aligned}
$$

2. $3 x+5=7 x-9$.
3. $2 x(3 x+2)=6 x^{2}-8$.
4. $4(x+2)+x^{2}=x^{2}-8$.
5. $(x+1)(x+2)=x(x+4)$.
6. $2[x+x(x-1)+1]=(x+2)(2 x-1)$.
7. $(a+b) x+(a-b) x=a b$.
8. $\frac{x}{2}+\frac{2 x}{5}=\frac{3 x}{10}+6$.
9. $1.5 x+3.2 x=2.3 x+12.72$.
10. $\frac{x}{m}+\frac{y}{n}=1$.
11. Given $s=v t$, solve for $v$ and $t$.
12. Given $s=\frac{1}{2} g t^{2}$, solve for $g$.
13. Given $F=\frac{9}{5} C+32$, solve for $C$.
14. A miller has wheat worth $\$ 2.20$ per bushel and another lot worth $\$ 1.80$ per bushel. He wishes to mix these to make 40 bushels of wheat which shall be worth $\$ 2.10$ per bushel. How much of each shall he take?
15. A farmer has a cow whose milk contains $4 \%$ of butter fat (called a $4 \%$ milk) and another one which gives $5 \%$ milk. How shall he mix the milks to obtain 40 pounds of a $4 \frac{1}{4} \%$ milk?
16. How much cream that contains $30 \%$ butter fat should be added to 500 pounds of milk that contains $3 \frac{1}{2} \%$ butter fat to produce a standard milk with $4 \%$ of butter fat?
17. The milk from a certain cow contains $3 \frac{1}{2} \%$ butter fat while that of another cow contains $4 \frac{3}{4} \%$ butter fat. What will be the percentage of fat in an equal mixture?
18. A man made two investments amounting together to $\$ 5,000$. On the first he gained $8 \%$, and on the second he lost $6 \%$. His net gain on the two was $\$ 120$. What was the amount of each investment?
19. How heavy a stone can a man, by exerting a force of 175 pounds, lift with a crow-bar 6 feet in length if the fulcrum be six inches from the stone (neglect the weight of the crow-bar)?

Remember that $W \cdot w=F \cdot f$, where $W$ is the weight to be lifted, $F$ the force applied, $w$ the distance between weight and fulcrum and $f$ the distance between force and fulcrum.
20. A man can do a piece of work in 5 days, another in 6 days, and a third in 12 days. How many days will it require all to do it when working together?
21. The milk from a cow that gives 4 gallons of milk containing $3 \%$ butter fat is mixed with 9 gallons of milk containing $5 \%$ butter fat. What is the percentage of butter fat in the mixture?

## CHAPTER IV

## FRACTIONS

18. Algebraic fraction. An algebraic fraction is the indicated quotient of two expressions. Thus, $\frac{m}{n}$ means $m$ divided by $n$.
19. Operations. The following operations and principles are used in the treatment of fractions:
I. The value of a fraction is not changed by multiplying or dividing both numerator and denominator by the same number. That is,

$$
\frac{m}{n}=\frac{a m}{a n} \quad \text { and } \quad \frac{m}{n}=\frac{\frac{m}{a}}{\frac{n}{a}} .
$$

II. Changing the sign of either the numerator or denominator of a fraction is equivalent to changing the sign of the fraction. That is,

$$
\frac{-a}{b}=-\frac{a}{b}=\frac{a}{-b} .
$$

III. Adding two fractions having a common denominator gives a fraction whose numerator is the sum of the numerators and whose denominator is the common denominator. That is,

$$
\frac{l}{n}+\frac{m}{n}=\frac{l+m}{n}
$$

Also,

$$
\frac{l}{n}-\frac{m}{n}=\frac{l-m}{n}
$$

IV. The sum and the difference of any two fractions, $\frac{a}{b}$ and $\frac{c}{d}$, are equal to $\frac{a d+b c}{b d}$ and $\frac{a d-b c}{b d}$ respectively.

For, by I,

$$
\frac{a}{b}=\frac{a d}{b d}, \quad \text { and } \quad \frac{c}{d}=\frac{b c}{b d} .
$$

Hence by III, $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$ and $\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}$.
V . The product of two or more fractions is a fraction whose numerator is the product of their numerators and whose denominator is the product of their denominators. That is,

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} .
$$

VI. To divide one fraction by another, invert the divisor and then multiply. That is,

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

The reciprocal of a number is 1 divided by the number. Thus the reciprocal of $a$ is $\frac{1}{a}$; of $\frac{m}{n}$ is $\frac{n}{m}$.
20. Reduction of a fraction to its lowest terms. Separate the numerator and the denominator into their prime factors and then cancel common factors by division.
Reduce to its lowest terms, $\frac{x^{2}+6 x+9}{x^{2}-9}$.
Solution. $\frac{x^{2}+6 x+9}{x^{2}-9}=\frac{(x+3)(x+3)}{(x-3)(x+3)}=\frac{x+3}{x-3}$.

## Exercises

Reduce to lowest terms:

1. $\frac{51 x}{85 y}$.
2. $\frac{a^{2}+a b}{a^{2}-a b}$.
3. $\frac{a^{3}-b^{3}}{a^{2}-b^{2}}$.
4. $\frac{(m+n)^{3}}{m^{3}+n^{3}}$.
5. $\frac{(a-b)(c-d)(b-c)}{(a-c)(c-b)(a-b)}$.
6. $\frac{x+1}{(x+1)+(x+1)^{2}}$.
7. $\frac{\left(x^{4}-y^{4}\right)\left(x^{3}-y^{3}\right)}{\left(x^{3}+y^{3}\right)\left(x^{2}+y^{2}\right)}$.
8. $\frac{a^{2}-3 a+2}{a^{2}+4 a-5}$.
9. $\frac{x^{2}+x-20}{x^{2}+4 x-5}$.
10. $\frac{m-m^{2}-n+m n}{m-m n+n^{2}-n}$.
11. Addition and subtraction. Reduce the fractions to be added or subtracted to a common denominator and then add or subtract numerators.

Example. Add $\frac{3}{a^{2}+2 a+1}+\frac{4 a}{a^{2}-1}$.
Solution. $\quad \frac{3}{a^{2}+2 a+1}+\frac{4 a}{a^{2}-1}=\frac{3}{(a+1)(a+1)}$

$$
\begin{aligned}
& +\frac{4 a}{(a+1)(a-1)}=\frac{3(a-1)}{(a+1)(a+1)(a-1)} \\
& +\frac{4 a(a+1)}{(a+1)(a+1)(a-1)}=\frac{4 a^{2}+7 a-3}{(a+1)(a+1)(a-1)}
\end{aligned}
$$

## Exercises

Perform the following additions and subtractions:

1. $\frac{x}{5}+\frac{y}{6}$.
2. $\frac{a}{x}-\frac{a+b}{2 x}$.
3. $\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}$.
4. $\frac{1}{x^{2}-4}-\frac{1}{(x-2)^{2}}$.
5. $\frac{7}{a+b}-\frac{2}{a}-\frac{5}{b}$.
6. $\frac{a+b}{a-b}-\frac{a-b}{a+b}$.
7. $\frac{x}{a+1}-\frac{x}{a-1}$.
8. $x+y+\frac{x}{y}-1$.
9. $\frac{4}{x+1}-\frac{x-2}{x^{2}-x}-\frac{3 x}{x^{2}-1}$.
10. $\frac{5}{3 x-3}-\frac{8}{5 x-15}$.
11. $\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y}+\frac{1}{x-y}$.
12. $\frac{x^{2}+8 x+13}{x^{2}+7 x+10}-\frac{x-1}{x+2}$.
13. $\frac{3}{2(x+2)}-\frac{2}{(x+2)^{2}}+\frac{1}{2(x-2)}$.
14. $\frac{a+b}{a-b}-\frac{a-b}{a+b}-\frac{6 a^{2}-2 b^{2}}{a^{2}-b^{2}}$.
15. $\frac{a+4}{a^{2}+a+1}-\frac{a^{2}+4 a-2}{1-a^{3}}-\frac{-1}{1-a}$.
16. $\frac{3 a}{a^{2}+a-20}+\frac{2}{a^{2}-6 a-55}-\frac{a-1}{a^{2}-15 a+44}$.
17. $\frac{x+3}{x^{2}+5 x+6}+\frac{x+2}{x^{2}+8 x+12}$.
18. $\frac{1}{(a-b)(b-c)}+\frac{1}{(a-c)(c-b)}-\frac{1}{(b-a)(c-a)}$.
19. Multiplication and division. See principles $V$ and VI. (Art. 19.)

Example (a). Find $\frac{x^{2}-2 x+1}{x^{2}-1} \cdot \frac{x+1}{x^{2}+1}$.

$$
\begin{aligned}
& x-1 \\
& \frac{x^{2}-2 x+1}{x^{2}-1} \cdot \frac{x+1}{x^{2}+1}=\frac{x-1}{x^{2}+1}
\end{aligned}
$$

Solution.

Example (b). $\frac{(a-b)^{2}}{a+b} \div \frac{a^{2}-a b}{b}$.
Solution. $\quad \frac{(a-b)^{2}}{a+b} \div \frac{a^{2}-a b}{b}=\frac{(a-b)^{2}}{a+b} \cdot \frac{b}{a^{2}-a b}$

$$
=\frac{(a-b)(a-b)}{a+b} \cdot \frac{b}{a(a-b)}=\frac{b(a-b)}{a(a+b)}
$$

## Exercises

Perform the following multiplications and divisions:

1. $\frac{2}{(1+x)^{2}} \cdot \frac{x+1}{x-1}$.
2. $\frac{1}{a-b}\left(\frac{1}{y-a}-\frac{1}{y-b}\right)$.
3. $\frac{m^{2}-m n}{a^{2}-a b} \cdot \frac{a^{2}+a b}{m^{2}+m n}$.
4. $\frac{6 a b}{a-b} \div \frac{8 a x}{a+b}$.
5. $\frac{m^{2}+2 m n}{m^{2}+4 n^{2}} \div \frac{m^{2}-4 n^{2}}{m n-2 n^{2}}$.
6. $\frac{a+b}{c} \div \frac{a^{2}-b^{2}}{2 c^{2}}$.
7. $\left(\frac{x^{2}}{a^{2}}-\frac{x}{a}+1\right) \div\left(\frac{x^{2}}{a^{2}}+\frac{x}{a}+1\right)$.
8. $\frac{n^{2}-n-20}{n^{2}-25} \cdot \frac{n^{2}-25}{n+1} \div \frac{n^{2}+2 n-8}{n^{2}-n-2}$.
9. $\left(a+\frac{a b}{a-b}\right)\left(b-\frac{a b}{a+b}\right)$.
10. $\frac{x^{2}+y^{2}}{x^{3}-y^{3}} \cdot \frac{x^{4}+y^{4}}{x^{4}-y^{4}} \div \frac{x+y}{(x-y)^{2}}$.
11. Complex fractions. A fraction with a fraction in its numerator or denominator or in both is called a complex fraction.

To simplify a complex fraction multiply both the numerator and the denominator of the complex fraction by the L.C.M. of the denominators of the simple fractions that make up the terms.

Example. $\frac{\frac{1}{x}+\frac{1}{y+x}}{\frac{1}{y}-\frac{1}{y-x}}=\frac{x y\left(y^{2}-x^{2}\right)\left[\frac{1}{x}+\frac{1}{y+x}\right]}{x y\left(y^{2}-x^{2}\right)\left[\frac{1}{y}-\frac{1}{y-x}\right]}$

$$
=\frac{y\left(y^{2}-x^{2}\right)+x y(y-x)}{x\left(y^{2}-x^{2}\right)-x y(y+x)}=-\frac{y\left(y^{2}-2 x^{2}+x y\right)}{x^{2}(x+y)}
$$

## Exercises

Simplify the following fractions:

1. $\frac{\frac{1}{3}+\frac{1}{4}}{\frac{7}{6}}$.
2. $\frac{2 x+3-\frac{1}{x-1}}{x-1}$.
3. $\frac{x-\frac{1}{y}}{y-\frac{1}{x}}$.
4. $\frac{1-\frac{x-1}{2}-x}{1-\frac{1-x}{2}-x}$
5. $\frac{p}{1-\frac{1}{p+1}}$.
6. $\frac{x-y+\frac{1}{x}}{\frac{1}{x^{2}}+\frac{1}{x}+1}$.
7. $\frac{\frac{1}{1-2 x}}{\frac{x^{2}}{1-2 x}+1}$.
8. $\frac{m-n}{m-n+\frac{1}{m+n+\frac{1}{m-n}}}$.
9. $\frac{\frac{x}{x-1}-1}{1+\frac{x}{1-x}}$.
10. 


24. Fractional equations. To solve an equation that involves fractions, clear it of fractions by multiplying each
member by the lowest common denominator (L.C.D.) of the fractions. (See Art. 23.)

When the unknown occurs in the denominator, multiplying by the L.C.D. may or may not introduce new roots that do not satisfy the equation to be solved. Such roots that do not satisfy the original equation are called extraneous roots.

Example 1. Solve $\frac{5}{x-1}+\frac{3}{x-5}=1$.

Solution.

$$
\begin{equation*}
\frac{5}{x-1}+\frac{3}{x-5}=1 \tag{1}
\end{equation*}
$$

Multiplying (1) by $(x-1)(x-5)$ gives

$$
\begin{equation*}
5(x-5)+3(x-1)=(x-1)(x-5) \tag{2}
\end{equation*}
$$

Simplifying (2), $\quad x^{2}-14 x+33=0$,

$$
\begin{equation*}
(x-11)(x-3)=0 \tag{3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
x=11 \tag{4}
\end{equation*}
$$

or

$$
x=3
$$

The roots of (2) are 11 and 3 and both satisfy (1).
Example 2. Solve $\frac{x-3}{x^{2}-9}=\frac{1}{7}$.
Solution. $\quad \frac{x-3}{x^{2}-9}=\frac{1}{7}$.
Multiplying (1) by ( $x^{2}-9$ )7 gives

$$
\begin{equation*}
x^{2}-7 x+12=0 \tag{2}
\end{equation*}
$$

or

$$
(x-3)(x-4)=0
$$

Hence,

$$
\begin{equation*}
x=3, \quad x=4 \tag{3}
\end{equation*}
$$

The roots of (2) are 3 and 4. Now $x=4$ satisfies (1), but
$x=3$ does not satisfy (1) since the left hand member has no meaning when $x=3$. Hence the extraneous root $x=3$ is introduced in clearing of fractions.

The above example shows the importance of checking each solution by substituting the original equation.

## Exercises

Solve the following equations and check the results:

1. $\frac{3}{x-2}=\frac{2}{x-3}$.
2. $\frac{5 x}{x+1}-\frac{2}{x-3}=2$.
3. $\frac{x-9}{x-5}+\frac{x-5}{x-8}=2$.
4. $\frac{3 x}{x-2}=\frac{14}{x+2}+3$.
5. $\frac{4 x+17}{x+3}-\frac{10-3 x}{x-4}-7=0$.
c. $\frac{3}{x-7}-\frac{4}{x-8}+\frac{1}{x-9}=0$.
6. $\frac{m+x}{m-x}=\frac{m+n}{m-n}$.
7. $\frac{x^{2}-4}{x-2}=\frac{x^{2}+1}{x-1}$.

## CHAPTER V

## FUNCTIONS

25. Constants and variables. A constant is a symbol which represents the same number throughout a discussion.

A variable is a symbol which may represent different numbers in the discussion or problem into which it enters.
Thus, in the formula for the volume $V$ of a sphere of radius $r$, $V=\frac{4}{3} \pi r^{3}$, the symbol $\pi$ is a constant, whatever values $V$ and $r$ may have, while $V$ and $r$ are variables.

In most cases the letters $a, b, c, \ldots$ from the beginning of the alphabet are used to denote constants while the letters $x$, $y, z$ at the end of the alphabet are used to denote variables.
26. Definition of a Function. When two variables, $x$ and $y$, are so related that to definitely assigned values of $x$ there correspond definite values of $y$, then $y$ is said to be a function of $x$.

Thus in the equation, $V=\frac{4}{3} \pi r^{3}$, volume $V$ is a function of $r$, the radius, for to every value of $r$ there corresponds a definite volume. The expression, $x^{2}+3 x-5$ is a function of $x$, for to every value of $x$ there corresponds a definite value for the expression. If we make $x=2$, the expression takes the value 5 , and when $x=3$, the expression equals 13.
27. Functional Notation. When the same function of $x$ occurs several times in a single algebraic discussion, we may simplify the work by representing the given function by some symbol. It is the custom to represent a function of $x$ by the symbol of $f(x)$ which is read " $f$ " function of " $x$ " If another function of $x$ occurs in the same discussion it can be represented
by $F(x)$, which is read " $F$ major function of $x$," while $f(x)$ is read " $f$ minor function of $x$."

Thus, we may let,

$$
f(x)=x^{2}+3 x-5
$$

Then,
$f(2)=2^{2}+3.2-5=5$
and
$f(a)=a^{2}+3 a-5$.
that is, $f(2)$ and $f(a)$ mean the values of the function when $x=2$ and $a$, respectively.

## Exercises

1. Given $f(x)=2 x-5$, find $f(1), f(3), f(-2)$.
2. Given $F(x)=x^{3}-x^{2}+3$, find $F(1), F(-a)$.
3. Given $f(n)=\frac{n^{2}+n+2}{n^{2}-n-1}$, find $f(1), f(2), f\left(\frac{1}{2}\right)$.
4. If $f(x)=x^{3}+x$ and $F(x)=2 x^{2}-4 x-5$, find the quotients $\frac{f(1)}{F(1)}$ and $\frac{f(3)}{F(2)}$.
5. Functional relations. Whenever two variables are so related that one depends, for its value, on the value of the other there is said to exist a functional relation between these two variables. There are many examples of functional relations in most every line of endeavor. However, it is possible to express only a few of these relations in the form of an algebraic equation.

Illustration (a). There exists a functional relation between the area and radius of a circle. The algebraic equation expressing this relation is, $A=\pi r^{2}$.

Illustration (b). The temperature of a place depends upon the time, altitude and latitude of the place. Hence, we have a functional relation existing, but this relation can not be expressed by an algebraic equation.

## Exercises

1. Does there exist a functional relation among the volume, altitude and radius of base of a cylinder? Can this relation be expressed by an algebraic equation? If so, what is the equation?
2. What functional relation exists between the Fahrenheit and centigrade temperatures?
3. Formulas taken from geometry. Most of the formulas of mensuration are algebraic equations expressing functional relations.
The following is a list of useful common formulas:
4. Area $A$ of a rectangle of sides $a$ and $b$.

$$
A=a b .
$$

2. Area $A$ of a parallelogram of base $b$ and altitude $h$.

$$
A=b h . \quad \text { (Fig. 1.) }
$$

3. Area $A$ of triangle of base $b$ and altitude $h$.

$$
A=\frac{1}{2} b h . \quad \text { (Fig. 2.) }
$$

4. Area $A$ of triangle in terms of its sides $a, b$, and $c$.


Fig. 1.


Fig. 2.

$$
A=\sqrt{s(s-a)(s-b)(s-c)},
$$

where,

$$
s=\frac{a+b+c}{2} \quad \text { (Fig. 3.) }
$$



Fia. 3
5. Area $A$ of a circle of radius $r$, or diameter $D$.

$$
A=\pi r^{2}, \quad \text { or } \quad A=\frac{1}{4} \pi D^{2} .
$$

6. Circumference $C$ of a circle of diameter $D$ or of radius $r$.

$$
C=\pi D, \quad \text { or } \quad C=2 \pi r .
$$

As an approximation which is sufficiently close for our purpose we may use 3.14159 as the value of $\pi$. For many practical purposes we may use $\pi=\frac{22}{7}=3.14+$.
7. Area $A$ of a trapezoid of base $b$ and $c$ and altitude $h$.

$$
A=\frac{1}{2}(b+c) h . \quad \text { (Fig. 4.) }
$$


8. Length $c$ of the hypotenuse of a right triangle of sides $a$ and $b$.

$$
c=\sqrt{a^{2}+b^{2}} . \quad \text { (Fig. 5.) }
$$



Fig. 5.
9. Volume $V$ of a cube of edge $a$.

$$
V=a^{3} . \quad \text { (Fig. 6.) }
$$



Fig. 6.
10. Volume $V$ of a rectangular solid of length $l$, width $w$ and altitude. $h$.

$$
V=l w h . \quad \text { (Fig. } 7 .)
$$



Fig. 7.
11. Volume $V$ of a cylinder of altitude $h$, and radius of base $r$.

$$
V=\pi r^{2} h . \quad \text { (Fig. 8.) }
$$



Fig. 8.
12. Volume $V$ of a cone of altitude $h$ and radius of base $r$.

$$
V=\frac{1}{3} \pi r^{2} h . \quad \text { (Fig. 9.) }
$$



Fia. 9.
13. Volume $V$ of a sphere of radius $r$, or diameter $D$.

$$
V=\frac{4}{3} \pi r, \quad \text { or } \quad V=\frac{1}{6} \pi D^{3} . \quad \text { (Fig. 10.) }
$$



Fig. 10.
14. Surface $S$ of a sphere of radius $r$, or diameter $D$.

$$
S=4 \pi r^{2}, \quad \text { or } \quad S=\pi D^{2}
$$

## Problems

1. The height of a cylinder is 5 feet greater than the radius. Express the volume as a function of the height; as a function of the radius.
2. The altitude of a right triangle is $k$ feet less than the base $b$. Express the hypotenuse in terms of the base $b$.
3. How many cubic yards must be excavated in digging a ditch 300 rods long, 18 inches wide at the bottom, 6 feet wide at the top and 5 feet deep? How much water would be discharged by such a ditch in 3 hours' time if it flows 3 feet deep at the rate of 1.2 feet per second?
4. How much concrete is there in a circular silo whose walls are 9 inches thick, 14 feet outside diameter and 32 feet high?
5. What is the capacity of a silo of the dimensions of Ex. 4? How many cows will it maintain for 150 days? (One ton of silage occupies 50 cubic feet, and the daily ration per cow is 35 pounds.)
6. How much concrete will be required to build a water tank 6 feet long 3 feet wide and 2 feet high (all inside dimensions) if the walls and bottom are 8 inches thick? The proportions of the mixture are to be 1:2:3 ( 1 sack of cement, 2 cubic feet sand, 3 cubic feet gravel). It is figured that one cubic yard of concrete of the above proportions requires 7 sacks cement, 14 cubic feet of sand and 21 cubic feet of gravel.

What would be the total cost of material, if cement costs 90 cents per sack and sand and gravel $\$ 2.00$ each per cubic yard?
30. Graphical representation of functional relations. Functional relations may be represented graphically. This may be done whether the relation can be expressed by an algebraic equation or not. (See Art. 28.) Let $X^{\prime} X$ and $Y^{\prime} Y$ (Fig. 11) be two straight lines meeting at right angles. Let them be considered as two number scales having the point of intersection as the zero point of each. Let $A$ be any point in the plane. From $A$ drop perpendiculars to the two lines. Let $x$ represent
the distance to $Y^{\prime} Y$, and $y$ the distance to $X^{\prime} X$. If $A$ lies to the left of $Y^{\prime} Y, x$ is considered negative and if $A$ lies below $X^{\prime} X, y$ is considered negative. It is evident that no matter where $A$ lies in the plane there corresponds to it two and only two numbers and those numbers are the perpendiculars to $Y^{\prime} Y$ and $X^{\prime} X$ respectively.

The lines $X^{\prime} X$ and $Y^{\prime} Y$ are called the coordinate axes, and


Fig. 11.
their point of intersection, $O$, is called the origin. The first line is called the $X$-axis and the second line is called the $Y$-axis. The distance from the point to the $Y$-axis is called the abscissa and the distance to the $X$-axis is called the ordinate. The two values are called the coordinates of the point. A customary notation is $A(x, y)$ which means the point $A$ whose coordinates are $x$ and $y$.

If we have any two numbers given it is evident that there is one and only one point in the plane having these numbers as its coordinates. The first number is the abscissa and the second number is the ordinate of the point. If for example we have the numbers 3 and -4 , we measure from the origin in the positive direction a distance 3 on the $X$-axis and at this point we erect a perpendicular and measure downwards a distance 4. This gives us the point whose $x=3$ and whose $y=-4$. The point may be represented by the symbol $(3,-4)$.
When a point is thus located, it is said to be plotted. In plotting points and representing graphically functional relations, it will be convenient to use coordinate paper. Then to represent a number the side of a square may be used as the unit of length. To plot a point, count off from the origin along the $X$-axis the number of divisions required to represent the abscissa and from this point count off the number of divisions parallel to the $Y$-axis required to represent the ordinate.
The change in a function can be represented on coordinate paper. As an example the change in the area of a square due to a change in the length of the sides can be represented in the following way: Let $A$ be the area and $l$ the length of the side. Now construct a table showing the area for different values of $l$.

| $l=$ | $\frac{1}{2}$ | 1 | $\frac{3}{2}$ | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A=$ | $\frac{1}{4}$ | 1 | $2 \frac{1}{4}$ | 4 | 9 | 16 | 25 |

Draw coordinate axes on paper and plot the points ( $\frac{1}{2}, \frac{1}{4}$ ), ( 1,1 ), $\left(\frac{3}{2}, 2 \frac{1}{4}\right),(2,4)$ and so on. (Fig. 12.) Connect the points by a smooth curve. From the table of values we see that the
area increases more rapidly than the side. This fact is also


Fig. 12. shown by the upward bending of the curve.

By this method any function may be represented on coordinate paper. This representation of a function is called the graph of the function. The graph of the function $f(x)$ contains all the points whose coordinates are $x, f(x)$ and no other points.

As an example let us obtain the graph of $x+3$ for values of $x$ between -5 and +3 . Let $f(x)=x+3$. Any value of $x$ with the corresponding value of $f(x)$ determines a point whose ordinate is $f(x)$. Now, assuming values of $x$ and computing the corresponding values of $f(x)$, we obtain the following table of values:

| $x=$ | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)=$ | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

The corresponding points, $(-5,-2),(-4,-1), \ldots$, are plotted in Fig. 13. It is seen that the curve connecting these points in order is a straight line. This shows that the function $x+3$ increases at a uniform rate as $x$ increases.


Fig. 13.

## Exercises and Problems

1. Plot the points $(3,4),(5,-6),(-2,3),(-3,-4)$.
2. Draw the triangle having for vertices the points $(0,0),(3,2)$, $(-3,3)$.
3. Draw the quadrilateral having for vertices the points (2, 2), $(6,5),(5,-1),(-1,-5)$.
4. What is the abscissa of a point on the $Y$-axis? The ordinate of a point on the $X$-axis?
5. Find the distance between the points $(1,2)$ and $(4,6)$.
6. Draw a curve showing the change in the volume of a cube as the length of the edge 1 changes from 0 to 5 .
7. One side of a rectangle is $l$, the other side is $l+2$. Show by a graph the change in the area as $l$ changes from 0 to 5 .
8. Show by a graph the change in volume of a sphere as the diameter $d$ changes.

Graph the following functions on coordinate paper.
9. $2 x+3$.
10. $3 x-2$.
13. $2 x^{2}+x$.
11. $x^{2}$.
12. $x^{2}+1$.
14. $x^{2}+x+1$.
15. $x-x^{2}$.
16. $x^{3}$.
31. Statistical Data. In Art. 30 it was shown how to graph a functional relation where the relation can be expressed by an algebraic equation. As stated before there are many functional relations that can not be expressed by an algebraic equation. As an example there is a relation between the weight of a calf


Fig. 14.-Timc-Temperature Graph.
and its age, but we can not express this relation by an algebraic equation. Such relations may be exhibited by means of a graph as will now be shown.

Example. On a winter's day the thermometer was read at 6 a.m. and every hour afterward until 6 p.m. The readings were $-10^{\circ},-8^{\circ},-7^{\circ},-5^{\circ},-2^{\circ}, 0^{\circ}, 2^{\circ}, 8^{\circ}, 9^{\circ}, 10^{\circ}, 5^{\circ}, 0^{\circ}$, $-4^{\circ}$. Make a graph showing the relation between temperature and time.

Choose two lines at right angles as axes, Fig. 14. Time in
hours is measured on the horizontal axis. The temperature in degrees is measured vertically upward and downward. Thus for 10 a.m. we count 4 spaces to the right and 2 spaces down locating a point. In a similar way we locate points for all of the data. By joining these points in order the graph is obtained.

From this temperature curve we may obtain much information, e.g.: When was the temperature changing most rapidly? When was it warmest? When coldest? When was the change a rise? When a fall?

## Exercises

1. The daily gain in weight of a calf in pounds for period of one hundred days is given in the following table:

| Age in days | 0 | 100 | 200 | 300 | 400 | 500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Daily gain in pounds | 32 | 2.8 | 2.55 | 2.3 | 216 | 2 |
| Age in days. | 600 | 700 | 800 | 1000 | 1100 | 1200 |
| Daily gain in pounds. . . . . | 1.9 | 1.8 | 1.7 | 1.57 | 1.5 | 1.47 |

Draw a curve showing this information. Plot days on the horizontal scale and pounds on the vertical scale.
2. The Statistical Abstract for 1915 gives the following figures for the values of exports and imports of merchandise for the years 19001915.

| Year | Exports | Imports | Year | Exports | Imports |
| :---: | ---: | ---: | :---: | :---: | :---: |
| 1900 | $\$ 1,394,483,082$ | $\$ 849,941,184$ | 1908 | $\$ 1,860,773,346$ | $\$ 1,194,341,792$ |
| 1901 | $1,487,764,991$ | $823,172,165$ | 1909 | $1,663,011,104$ | $1,311,920,224$ |
| 1902 | $1,381,719,401$ | $903,320,948$ | 1910 | $1,744,984,720$ | $1,556,947,430$ |
| 1903 | $1,420,141,679$ | $1,025,719,237$ | 1911 | $2,049,320,199$ | $1,527,226,105$ |
| 1904 | $1,460,827,271$ | $991,087,371$ | 1912 | $2,204,322,409$ | $1,653,264,934$ |
| 1905 | $1,518,561,666$ | $1,117,513,071$ | 1913 | $2,465,884,149$ | $1,813,008,234$ |
| 1906 | $1,743,864,500$ | $1,226,562,446$ | 1914 | $2,364,579,148$ | $1,893,925,657$ |
| 1907 | $1,880,851,078$ | $1,434,421,425$ | 1915 | $2,768,589,340$ | $1,674,169,740$ |

Make a graphical representation of these statistics.
3. The Year Book, Department of Agriculture, gives the following South Dakota Farm prices of corn and hay for the years 1899-1919:

| Year | Corn | Hay | Year | Corn | Hay | Year | Corn | Hay |
| :---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1899 | $\$ 026$ | $\$ 3.10$ | 1906 | $\$ 0.29$ | $\$ 4.50$ | 1913 | $\$ 0.56$ | $\$ 6.50$ |
| 1900 | 0.29 | 3.95 | 1907 | 0.46 | 5.50 | 1914 | 0.50 | 5.70 |
| 1901 | 0.45 | 4.49 | 1908 | 0.50 | 4.10 | 1915 | 0.49 | 5.30 |
| 1902 | 0.41 | 4.15 | 1909 | 0.50 | 5.10 | 1916 | 0.77 | 540 |
| 1903 | 0.35 | 4.63 | 1910 | 0.40 | 7.10 | 1917 | 1.20 | 10.60 |
| 1904 | 0.36 | 4.29 | 1911 | 0.53 | 8.50 | 1918 | 1.10 | 1000 |
| 1905 | 0.31 | 4.02 | 1912 | 0.37 | 6.10 | 1919 | 1.19 | 13.50 |

Make a graph showing the price of corn also a graph showing the price of hay.
4. Plot a graph of the attendance of students at your college or university for the years 1910-1930.
5. Using the data below, plot a curve using years as abscissa and price of corn as ordinates. Do you notice any regularity in the number of years elapsing between successive high prices? Successive low prices? Draw like graphs for the other crops listed.

## Average Farm Price December First

Data from the Year Book of the Department of Agriculture

| Year | Corn | Wheat | Oats | Barley | Rye | Potatoes | Hay, Dollars per Ton |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1870 | \$49.4 | \$94.4 | \$39.0 | \$79 1 | \$73.2 | \$65.0 | 12.47 |
| 1871 | 434 | 114.5 | 362 | 758 | 71.1 | 53.9 | 14.30 |
| 1872 | 35.3 | 1114 | 29.9 | 886 | 67.6 | 53.5 | 1294 |
| 1873 | 442 | 1069 | 346 | 86.7 | 70.3 | 65.2 | 12.53 |
| 1874 | 584 | 863 | 471 | 86.0 | 77.4 | 615 | 11.94 |
| 1875 | 367 | 89.5 | 320 | 74.1 | 671 | 34.4 | 10.78 |
| 1876 | 340 | 97.0 | 324 | 63.0 | 61.4 | 619 | 8.97 |
| 1877 | 348 | 1057 | 28.4 | 62.5 | 57.6 | 43.7 | 8.37 |
| 1878 | 317 | 77.6 | 246 | 57.9 | 52.5 | 58.7 | 7.20 |
| 1879 | 37.5 | 1108 | 33.1 | 589 | 65.6 | 436 | 9.32 |
| 1880 | 396 | 95.1 | 36.0 | 66.6 | 75.6 | 48.3 | 11.65 |
| 1881 | 636 | 119.2 | 46.4 | 823 | 93.3 | 91.0 | 11.82 |
| 1882 | 48.5 | 884 | 37.5 | 62.9 | 61.5 | 55.7 | 973 |
| 1883 | 42.4 | 91.1 | 32.7 | 58.7 | 58.1 | 42.2 | 8.19 |
| 1884 | 35.7 | 645 | 27.7 | 48.7 | 51.9 | 39.6 | 8.17 |
| 1885 | 328 | 77.1 | 28.5 | 56.3 | 57.9 | 44.7 | 8.71 |
| 1886 | 366 | 687 | 29.8 | 536 | 53.8 | 46.7 | 8.46 |
| 1887 | 444 | 68.1 | 304 | 51.9 | 54.5 | 68.2 | 997 |
| 1888 | 34.1 | 926 | 27.8 | 59.0 | 588 | 40.2 | 8.76 |
| 1889 | 283 | 698 | 22.9 | 41.6 | 42.3 | 354 | 7.04 |
| 1890 | 506 | 838 | 42.4 | 627 | 62.9 | 75.8 | 787 |
| 1891 | 40.6 | 839 | 315 | 52.4 | 77.4 | 35.8 | 8.12 |
| 1892 | 39.4 | 62.4 | 31.7 | 47.5 | 54.2 | 66.1 | 820 |
| 1893 | 36.5 | 53.8 | 29.4 | 41.1 | 51.3 | 59.4 | 8.68 |
| 1894 | 45.7 | 49.1 | 32.4 | 44.2 | 50.1 | 53.6 | 8.54 |
| 1895 | 25.3 | 50.9 | 19.9 | 33.7 | 44.0 | 26.6 | 8.35 |
| 1896 | 21.5 | 726 | 18.7 | 32.3 | 40.9 | 28.6 | 6.55 |
| 1897 | 26.3 | 80.8 | 21.2 | 37.7 | 44.7 | 54.7 | 6.62 |
| 1898 | 28.7 | 58.2 | 25.5 | 41.3 | 46.3 | 41.4 | 6.00 |
| 1899 | 303 | 58.4 | 24.9 | 403 | 51.0 | 39.0 | 7.27 |
| 1900 | 35.7 | 61.9 | 25.8 | 40.9 | 51.2 | 43.1 | 8.89 |
| 1901 | 60.5 | 62.4 | 39.9 | 45.2 | 55.7 | 76.7 | 10.01 |

.Average Farm Price December First-Continued

|  |  |  |  |  |  |  | Hay, <br> Year |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Corn | Wheat | Oats | Barley | Rye | Potatoes | Dollars <br> per Ton |
| 1902 | $\$ 40.3$ | $\$ 63.0$ | $\$ 30.7$ | $\$ 45.9$ | $\$ 50.8$ | $\$ 47.1$ | 9.06 |
| 1903 | 42.5 | 69.5 | 34.1 | 45.6 | 54.5 | 61.4 | 9.07 |
| 1904 | 44.1 | 92.4 | 31.3 | 42.0 | 68.8 | 45.3 | 8.72 |
| 1905 | 41.2 | 74.8 | 29.1 | 40.5 | 61.1 | 61.7 | 8.52 |
| 1906 | 39.9 | 66.7 | 31.7 | 41.5 | 58.9 | 51.1 | 10.37 |
| 1907 | 51.6 | 87.4 | 44.3 | 66.6 | 73.1 | 61.8 | 11.68 |
| 1908 | 60.6 | 92.8 | 47.2 | 55.4 | 73.6 | 70.6 | 8.98 |
| 1909 | 57.9 | 986 | 40.2 | 54.0 | 71.8 | 54.1 | 10.50 |
| 1910 | 48.0 | 88.3 | 34.4 | 57.8 | 71.5 | 55.7 | 12.14 |
| 1911 | 61.8 | 87.4 | 45.0 | 869 | 83.2 | 799 | 14.29 |
| 1912 | 48.7 | 76.0 | 31.9 | 50.5 | 66.3 | 50.5 | 11.79 |
| 1913 | 69.1 | 79.9 | 39.2 | 537 | 63.4 | 68.7 | 12.43 |
| 1914 | 64.4 | 98.6 | 43.8 | 543 | 86.5 | 489 | 11.12 |
| 1915 | 57.5 | 92.0 | 36.1 | 51.7 | 83.9 | 61.6 | 10.70 |
| 1916 | 88.9 | 1603 | 52.4 | 88.2 | 122.1 | 146.1 | 10.59 |
| 1917 | 127.9 | 200.8 | 66.6 | 113.7 | 166.0 | 1228 | 17.09 |
| 1918 | 136.5 | 204.2 | 70.9 | 91.7 | 151.6 | 1193 | 20.13 |
| 1919 | 134.5 | 214.9 | 70.4 | 120.6 | 133.2 | 159.5 | 20.08 |
| 1920 | 67.0 | 143.7 | 46.0 | 71.3 | 126.8 | 1145 | 17.76 |
| 1921 | 42.3 | 92.7 | 30.3 | 42.2 | 70.2 | 111.1 | 12.13 |
| 1922 | 65.8 | 100.7 | 39.4 | 52.5 | 68.5 | 58.1 | 12.56 |
| 1923 | 72.6 | 92.3 | 41.4 | 54.1 | 65.0 | 781 | 14.13 |
| 1924 | 98.2 | 129.9 | 477 | 74.1 | 1065 | 625 | 13.77 |
| 1925 | 67.4 | 141.6 | 38.0 | 589 | 78.2 | 186.8 | 1394 |
| 1926 | 64.4 | 119.9 | 39.8 | 57.4 | 83.5 | 141.7 | 14.09 |
|  |  |  |  |  |  |  |  |

## CHAPTER VI

## SYSTEMS OF LINEAR EQUATIONS

32. Graphs of Linear Equations. In Art. 30 the graphical representation of functional relations was discussed and the graphs of some functions were given.

## Review Questions

1. What is meant by (a) coordinate axes, (b) abscissa, (c) ordinate, (d) coordinates of a point?
2. What is meant by the origin? What are its coordinates?
3. Locate points represented by $(-3,4),(5,-3),(-2,-3),(3,2)$.
4. What is the plane figure having the points (3, 2), $-3,2$ ), $(-3,-2),(3,-2)$ for its vertices?

An equation of the form $A x+B y+C=0$ (1) is called a linear equation. If $B \neq 0$, this equation may be thrown into the form

$$
\begin{equation*}
y=-\frac{A x}{B}-\frac{C}{B} \tag{2}
\end{equation*}
$$

In (2) we may assume $A, B$ and $C$ as fixed and assign values to $x$ and compute the corresponding values of $y$. This will give any number of pairs of values which may be plotted as coordinates of points. Equation (2) expresses $y$ as a function of $x$, and the graph of this function is called the graph of equation (1).

It may be easily shown that the graph of all equations of the form of (1) is a straight line.

It is because of this fact that such equations are called linear equations. When $A$ or $B$ is zero, the graph is a line parallel to the $X$-axis or to the $Y$-axis respectively. Thus, the equation $y-3=0$ gives a line parallel to the $X$-axis, and 3 units above it. And the equation
$x-2=0$ gives a line parallel to the $Y$-axis, and 2 units to the right of that axis.

## Exercises and Problems

Obtain the graphs of the following equations:

1. $x+2 y-6=0$.

Solution. Solve the equation for $y$, thus getting $y=3-\frac{x}{2}$. This expresses $y$ as a function of $x$. Now, assigning values to $x$ and computing the corresponding values of $y$, we obtain the following table of values:

| $x=$ | -4 | -2 | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y=$ | 5 | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 |



Fig. 15.
2. $2 x-3 y-6=0$.
3. $4 x-6 y+6=0$.
4. $3 x+2 y-4=0$.
5. $4 x-5 y=0$
9. Construct the graph of the equation $F=\frac{9}{5} C+32$, taking the values of $C$ along the horizontal and the corresponding values of $F$ along the vertical axis.
10. Where does the graph $3 x-2 y-6=0$ cut the $X$-axis? The $Y$-axis? The abscissa of the point where the line intersects the $X$-axis is called the $X$-intercept and the ordinate of the point where it cuts the $Y$-axis is called the $Y$-intercept. What is the ordinate for the $X$-intercept? The abscissa for the $Y$-intercept?
11. Find the intercepts of the following:

$$
\begin{aligned}
& \text { a. } 3 x-2 y-12=0 . \\
& \text { b. } 5 x+2 y-4=0 . \\
& \text { c. } 2 x+3 y=0 .
\end{aligned}
$$

12. Graph the equations $2 x-y-4=0$ and $x+y-2=0$ using the same coordinate axes for both graphs. Do the two lines have a point in common? What are its coordinates? Do these coordinates satisfy both equations?
13. Graph $x-2 y-4=0$ and $x-2 y-8=0$. Do these lines have a point in common?
14. Graph $x-2 y-4=0$ and $2 x-4 y-8=0$. Do these lines have a point in common?
15. Graphical Solution. In Art. 32 it was stated that the graph of a linear equation in two unknowns, $x$ and $y$, is a straight line. The equation of this line will be satisfied by any number of pairs of values for $x$ and $y$ and these values will be the coordinates of the points on the graph.
Now assume that we have a second linear equation and that its graph is drawn using the same coordinate axes. This equation too will be satisfied by any number of pairs of values for $x$ and $y$ and these pairs of values will be the coordinates of the points on its graph.

Further assume that these two graphs intersect in some point $P$. Since this point lies on both graphs, its coordinates will satisfy both equations. In the solution of a system of linear equations in two unknowns $x$ and $y$ we are seeking a pair of values for $x$ and $y$ which will satisfy both equations simultane-
ously. The coordinates of this point then is the solution of the system.
Example. Solve graphically the system of equations

$$
\begin{equation*}
x-y+1=0 ; \quad \text { (2) } 2 x+y-7=0 . \tag{1}
\end{equation*}
$$

The graphs of equations (1) and (2) are numbered (1) and


Fig. 16. (2) in Figure 16. They intersect in the point whose coordinates are ( 2,3 ), and consequently $x=2, y=3$ is the solution of the system.

The graphs of two equations may be parallel lines. Then the lines have no point in common and their equations have no solution. Such equations are said to be incompatible or inconsistent. (See Ex. 13, Art. 32.)

Again the graphs of two equations may be coincident. Then the lines have an indefinitely large number of points in common and their equations do not have a unique solution. The two equations of the system are in this case equivalent or dependent. (See Ex. 14, Art. 32.)

## Exercises

Find the solutions of the following systems of equations by plotting their graphs.

1. $2 x+y=4$, $3 x+2 y=10$.
2. $4 x+6 y=8$,
$2 x+3 y=6$.
3. $6 x-5 y=14$,
$7 x+2 y=32$.
4. $3 x+y=19$,
$2 x-y=1$.
5. $2 x+3 y=10$,
6. $7 x-3 y=26$,
$5 x+3 y=7$.
$2 x+11 y=43$.
7. Algebraic solution: Two simple equations in two unknowns may be solved simultaneously for the two values of the unknowns by the process of elimination as is illustrated below.

Example. Solve the equations

$$
\begin{align*}
x-y & =4  \tag{1}\\
x-4 y & =-14 \tag{2}
\end{align*}
$$

Solution. First Method.
From (1) we have

$$
\begin{equation*}
x=4+y \tag{3}
\end{equation*}
$$

Substituting this value for $x$ in (2), we find
or

$$
\begin{align*}
& 4+y-4 y=-14  \tag{4}\\
& -3 y=-18, \quad y=6
\end{align*}
$$

Substituting 6 for $y$ in (1), we find

$$
x-6=4, \quad \text { or } \quad x=10
$$

Hence the required values for $x$ and $y$ are 10 and 6 respectively. This method is known as elimination by substitution.
Solution. Second Method.
From (1) subtract (2) and we get

$$
\begin{equation*}
3 y=18, \quad y=6 \tag{3}
\end{equation*}
$$

Multiplying (1) by 4 and (2) by -1 , the two equations become

$$
\begin{array}{r}
4 x-4 y=16 \\
-x+4 y=14 \tag{5}
\end{array}
$$

Adding (4) and (5), we get

$$
3 x=30, \quad x=10
$$

Hence the required solution is $x=10, y=6$.

This method is known as elimination by addition and subtraction.

## Exercises and Problems

1. $3 x-4 y=26$,

$$
x-8 y-22=0
$$

2. $x+\frac{y}{3}=11$,

$$
\frac{x}{3}+3 y=21
$$

3. $\frac{x+y}{2}-\frac{x-y}{3}=8$,

$$
\frac{x+y}{3}+\frac{x-y}{4}=11 .
$$

4. $\begin{aligned} y+1 & =3 x, \\ 5 x+9 & =3 y .\end{aligned}$
5. $\frac{4}{x}-\frac{3}{y}=\frac{14}{5}$,

$$
\frac{2}{x}+\frac{5}{y}=\frac{25}{3} .
$$

(Hint: Solve first for $\frac{1}{x}$ and $\frac{1}{y}$ )
6. $x+y=m+n$,

$$
m x-n y=m^{2}-n^{2} .
$$

$7 a x+b y=2 a b$,
$b x+a y=a^{2}+b^{2}$.
8. A rectangular field is 35 rods longer than it is wide. The length of the fence around it is 310 rods. Find the dimensions of the field.
9. A man has $\$ 25,000$ at interest. For one part he receives $6 \%$ and for the other part $5 \%$. His total income is $\$ 1,350$. How is the money divided?
10. What quantities of two liquids, one $95 \%$ alcohol and the other $20 \%$ alcohol, must be used to give a 20 gallon mixture of $50 \%$,alcohol?

## 35. Solution of three linear equations in three unknowns.

The process of solving three linear equations in three unknowns may be illustrated by the following example:
: Solve the equations

$$
\begin{align*}
& 3 x+2 y-z=4  \tag{1}\\
& 5 x-3 y+2 z=5  \tag{2}\\
& 6 x-4 y+3 z=7 \tag{3}
\end{align*}
$$

for $x, y$, and $z$.

Solution. Eliminate $z$ between (1) and (2). This may be done by multiplying (1) by 2 and adding the result to (2), we have,

$$
\begin{array}{r}
6 x+4 y-2 z=8 \\
5 x-3 y+2 z=5 \\
\hline 11 x+y=13 \tag{6}
\end{array}
$$

Now eliminating $z$ between (1) and (3), we have,

$$
\begin{align*}
9 x+6 y-3 z & =12  \tag{7}\\
6 x-4 y+3 z & =7  \tag{8}\\
\hline 15 x+2 y & =19 \tag{9}
\end{align*}
$$

Now solve (6) and (9) for $x$ and $y$ as illustrated in Art. 34. Multiply (6) by -2 and add the result to (9) and we obtain,

$$
\begin{array}{r}
7 x=7 \\
x=1
\end{array}
$$

Substituting $x=1$ in (6), we have,

$$
y=2
$$

Substituting $x=1, y=2$ in (1) and solving for $z$, we have,

$$
z=3
$$

Hence the solution of equations (1), (2), and (3) is

$$
x=1, \quad y=2, \quad z=3
$$

## Exercises

Solve for $x, y$, and $z$ :

1. $2 x-4 y+5 z=18$, $5 x+3 y-4 z=5$,
$x+2 y+3 z=19$.
2. $x+y=1$,
$y+z=2$,
$z+x=4$.
3. Make up 100 pounds of an ice cream mixture which will contain $12 \%$ fat and $10 \%$ milk solids, not fat. The following ingredients are used:

| Sugar, | 14 pounds. |
| :--- | :--- |
| Gelatine, | $\frac{1}{2}$ pound. |
| Flavoring, | $\frac{1}{2}$ pound. |
| Condensed milk, | 8 pounds. |
| Cream, whole milk |  |

The composition of the products are:
Condensed milk, $\quad 9 \%$ fat and $20 \%$ solids.

Cream, $30 \%$ fat and $6.3 \%$ solids.
Whole milk, $\quad 3 \%$ fat and $8.73 \%$ solids.
Skim milk powder, $100 \%$ solids.

Solution.
Let $\quad x=$ no. of pounds of cream,
$y=$ no. of pounds of milk,
$z=$ no. of pounds of skim milk powder.
Then,

$$
\begin{array}{ll}
0.30 x+0.03 y+0.09(8) & =12 \\
0.063 x+0.0873 y+0.020(8)+z & =10 \\
x+y+z+14+8+\frac{1}{2}+\frac{1}{2} & =100 .
\end{array}
$$

Or
(1) $10 x+y=376$,
(2) $630 x+873 y+10000 z=84000$,
(3) $x+y+z=77$.
(4) $9370 x+9127 y=686000$, (3) $-(2)$
(5) $10 x+y=376$.

Multiply (5) by 937 and subtract it from (4).
We have,
(6) $8190 y=333688$,

$$
y=40.74 \text { pounds of milk. }
$$

$$
\text { (7) } \begin{aligned}
10 x & =376-40.74=335.26 \\
x & =33.53 \text { pounds of cream. } \\
z & =77-40.74-33.53 \\
z & =2.73 \text { pounds of milk powder. }
\end{aligned}
$$

Check:

| Cream, | 33.53 |
| :--- | ---: |
| Milk, | 40.74 |
| Milk powder, | 2.73 |
| Sugar, | 14.00 |
| Gelatine, | .50 |
| Flavor, | .50 |
| Condensed milk, | 8.00 |

$$
\begin{aligned}
& \text { Total, } \quad 100.00 \text { pounds } \\
& .3(33.53)+.03(40.74)+.09(8)=12.0012 \\
& .063(33.53+.0873(40.74)+.2(8)+2.73=9.9990
\end{aligned}
$$

Suppose skim milk powder is not added. We will have three equations in two unknowns which may not be solved. We would have,
(1) $10 x+y=376$,
(2) $630 x+873 y=84000$,
(3) $x+y=77$.

Any two of the above equations may be solved for $x$ and $y$ but these values of $x$ and $y$ will not satisfy the other equation. Hence, the mixture is impossible, without adding skim milk or some other ingredient to make the balance.
4. Make up 100 pounds of ice cream mixture which will have $12 \%$ fat and $10 \%$ milk solids. The following ingredients are used: 14 pounds of sugar, $\frac{1}{2}$ pound of gelatine, $\frac{1}{2}$ pound of flavoring, 16 pounds of condensed milk, whole milk, cream and skim milk powder. The composition of the products are: condensed milk, $9 \%$ fat and $20 \%$ solids; cream, $34 \%$ fat and $5.95 \%$ solids; whole milk, $4 \%$ fat and $8.75 \%$ solids; skim milk powder, $100 \%$ solids. Find the proper amounts of cream, whole milk and skim milk powder and check the results.
36. Slope of a straight line. Given a line $A B$, Fig. 17. Take any point $P$ on the line and through $P$ draw a line $P Q$, toward the right, parallel to the $X$-axis and at $Q$ erect a perpendicular to $P Q$ intersecting $A B$ in $R . Q R$ is defined as the rise of the line as the point $R$ moves along the line from $P$ toward the right, and $P Q$ is known as the run. The rise divided by the corresponding run is defined as the slope of the line $A B$.
It is evident that one line can have but one slope, for if we take any other point $S$ on $A B$ and draw through it a line parallel to the $X$-axis, say $S T$, and erect at $T$ a perpendicular $T V$, we get the triangles $P Q R$ and $S T V$ which are similar. Therefore the slope of $A B=\frac{Q R}{P Q}=\frac{T V}{S T}$ (a constant vaiue).
Problem. Given two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$. Express the slope of the line joining these points in terms of the coordinates of the points, Fig. 18.
Solution. Drop perpendiculars to the axes as shown. Then,

$$
\begin{equation*}
\text { Slope of } P Q=\frac{A Q}{P A}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{1}
\end{equation*}
$$

Thus the slope of a line between two points is equal to the difference of the ordinates of the points divided by the difference of their abscissas subtracted in the same order.

In Fig. 18 (a), the slope is positive since both $A Q$ and $P A$
are positive, but in Fig. 18 (b) the slope is negative for $A Q$ is negative and $P A$ is positive.

In Fig. 18 (a) $A Q$ is a rise but in Fig. 18 (b) $A Q$ is a fall.


Fig. $18 a$.


Fig. $18 b$

We observe that a rise gives us a positive slope, while a fall gives us a negative slope.

## Exercises

1. Construct a line through $(2,3)$ whose slope is $\frac{3}{5}$. (Hint: A slope $\frac{3}{8}$ means a rise of 3 and a run of 5 . Therefore begin at ( 2,3 ), rise 3 units and run 5 units to the right. Connect the final point with $(2,3)$. The resulting line will have the slope $\frac{3}{5}$.)
2. Construct a line through (1, -2) having $\frac{2}{3}$ for its slope, also, one having - $\frac{2}{3}$ for its slope.

For each of the following pairs of points:
(a) Plot the points,
(b) Draw the straight line through them,
(c) Find the slope of the line.
3. $(1,2)$ and $(3,5)$.
6. (-3, -4) and (-2, -3).
4. $(3,2)$ and $(-3,-5)$.
7. $(6,7)$ and $(-3,2)$.
5. $(-2,3)$ and $(2,-2)$.
8. $(0,5)$ and 2,0$)$.
37. Distance between two points, $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ in terms of the coordinates of the points. In Fig. 18 we see that

$$
\begin{align*}
& P Q=\sqrt{(P A)^{2}+(A Q)^{2}} \\
& P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}, \tag{2}
\end{align*}
$$

since

$$
P A=x_{2}-x_{1} \quad \text { and } \quad A Q=\left(y_{2}-y_{1}\right) .
$$

Example. Find the distance between the points ( 5,6 ) and $(1,3)$.
Solution. $P Q=\sqrt{(5-1)^{2}+(6-3)^{2}}=\sqrt{16+9}=5$.

## Exercises

1. Find the distance between the pairs of point in Exercises 3 to 8, Art. 36.
2. Find the distance from the origin to the point ( $a, b$ ).
3. Prove that the triangle having for its vertices the points $(-1,2)$, $(4,-3),(5,3)$ is an isosceles triangle.
4. Find the lengths of the sides of the triangle having the points $(2,1),(5,5)$ and $(-5,0)$ for its vertices.
5. Equation of a straight line. Up to this time we have had certain equations given to find the graphs of these equations. Our problem now is to find the equation when the graph is given. We must find an algebraic expression for the relation existing between the $x$-distance and the $y$-distance of a point which will hold for all points on the line.

For example, if a point is located anywhere on the $y$-axis, its $x$-coordinate is always zero. The algebraic statement for this fact is the equation $x=0$, hence this is the equation of the $Y$-axis, for it is the one statement that is true for all points on the $Y$-axis, and for no other points.

What is the equation of the $X$-axis.

As another example let us find the equation of the line parallel to the $X$-axis and 2 units above it?

In this case $y$ will always be 2 , regardless of the value of $x$. The algebraic statement of this fact is the equation $y=2$, or $y-2=0$, and this is the required equation.

What is the equation of the line that is always the same distance from each of the coordinate axes?
39. Problem. To derive the equation of a straight line in terms of the coordinates of two given points on the line. Let $L M$ be the line determined by the two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ and let $R(x, y)$ be any other point on $L M$. Since $R, P, Q$ are all on the same line $L M$, the slopes of $R P$ and $P Q$ are equal. Hence by (1) Art. 36 , the required equation is

$$
\begin{equation*}
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \tag{3}
\end{equation*}
$$



Fig. 19.
which may also be written in the form

$$
\begin{equation*}
y-y_{1}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\left(x-x_{1}\right) \tag{4}
\end{equation*}
$$

Either (3) or (4) is known as the two-point form of the equation of the straight line.

If one of the given points, say $\left(x_{1}, y_{1}\right)$, is the origin ( 0,0 ) equation (4) takes the form

$$
\begin{equation*}
y=\frac{y_{2}}{x_{2}} x \tag{5}
\end{equation*}
$$

which is the equation of the line through the origin and another given point.

## Exercises

1. Find the equation of the line determined by the points ( 1,2 ) and ( 5,4 ).
Solution. Construct the line determined by these points and take


Fig. 20. any other point $R$ on the line having ( $x, y$ ) for its coordinates. Then, the slopes of $P Q$ and $Q R$ are equal, and we have,

$$
\begin{array}{r}
\frac{4-2}{5-1}=\frac{y-4}{x-5} \\
\frac{1}{2}=\frac{y-4}{x-5}
\end{array}
$$

from which $y=\frac{1}{2} x+\frac{3}{2}$. What is the slope of the straight line? Does the equation show this slope? The equation could be gotten by substituting the coordinates of the points in equation (4). This would give us

$$
\begin{aligned}
y-4 & =\frac{4-2}{5-1}(x-5) \\
y-4 & =\frac{1}{2}(x-5) \\
y & =\frac{1}{2} x+\frac{3}{2}
\end{aligned}
$$

which is the same result as obtained above.
2. Find the equations of the straight lines determined by the following points. Reduce each equation to the form showing its slope.
(a) $(3,4)$ and $(-2,2)$.
(c) $(2,3)$ and $(-2,4)$.
(b) $(3,2)$ and $(5,6)$.
(d) $(-3,5)$ and $(2,3)$.
3. Find the equations of the sides of a triangle whose vertices are the points $(4,3),(2,-2),(-3,4)$.
40. Problem. To derive the equation of a straight line in terms of its slope and the coordinates of a given point on the line. Let $P\left(x_{1}, y_{1}\right)$ be the given point and $m$ the given slope. And let $R(x, y)$ be any other point on the line. From Fig. 21 we sce that the slope of the line is $\frac{y-y_{1}}{x-x_{1}}$. But the slope of the line is given as $m$. Hence we may write,

$$
\begin{align*}
\frac{y-y_{1}}{x-x_{1}} & =m  \tag{6}\\
\text { or } \quad y-y_{1} & =m\left(x-x_{1}\right) \tag{7}
\end{align*}
$$



Fig. 21.

Equation (7) is known as the slope and one-point form of the equation of the line.

## Exercises

1. Find the equation of the line which passes through the point $(3,2)$ and has the slope 3.
Solution. Substituting direct in equation (7) (3, 2) for ( $x_{1}, y_{1}$ ) and 3 for $m$, we get, $y-2=3(x-3)$ or $y=3 x-7$ as the required equation. Does the equation of this line show its slope?
2. Find the equations of the lines passing through the following points and having the given slopes.
(a) Through $(2,3)$ with slope $\frac{3}{4}$.
(b) Through $(-3,4)$ with slope -2 .
(c) Through $(5,-3)$ with slope $-\frac{2}{3}$.
3. What are the slopes of the lines whose equations are:
(a) $2 x-3 y+6=0$ ? Ans. $m=\frac{2}{3}$.
(b) $a x+b y+c=0 ?$ Ans. $m=\frac{-a}{b}$.
4. Find the equation of each of the straight lines described below.
(a) A line whose $X$-intercept is 3 and whose slope is $\frac{2}{5}$.
(b) A line whose $Y$-intercept is $k$ and whose slope is $m$.

Answer (b); $y=m x+k$. This equation is known as the slope $Y$-intercept form of the equation of a line.
41. Parallel lines. If two straight lines are parallel, their slopes are equal.

Draw two parallel lines and select any two points on each line. (See Fig. 22.) The


Fig. 22. slopes are respectively, $\frac{a_{1}}{b_{1}}$ and $\frac{a_{2}}{b_{2}}$. The triangles $A B C$ and $D E F$ are similar, since their corresponding sides are parallel. Hence $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$, and the two slopes are equal. Therefore, if two lines are parallel, their slopes are equal.

And conversely, if the slopes of two lines are
equal, the lines are parallel.
Example. Find the equation of the line which passes through the point $(1,2)$ and is parallel to the line $3 x-y$ $-7=0$.

Solution. The equation of the given line may be written in the form, $y=3 x-7$, which shows that its slope is 3 . Since the line, whose equation we are seeking, is parallel to the given
line it will likewise have 3 for its slope. Hence, substituting in equation (7) Art. 40, we get
or

$$
\begin{aligned}
y-2 & =3(x-1) \\
3 x-y-1 & =0
\end{aligned}
$$

42. Perpendicular lines. If two straight lines are perpen-


Fig. 23.
dicular to each other, the slope of one is the negative reciprocal of the slope of the other.

Draw two perpendicular lines as shown in Fig. 23. The slope of the one line is $m_{1}=\frac{-a_{1}}{b_{1}}$. (Why negative?) The other slope is

$$
m_{2}=\frac{a_{2}}{b_{2}}
$$

The triangles $A B C$ and $E D F$ are similar, since their corresponding sides are perpendicular to each other. Hence we have,
or

$$
\begin{gathered}
\frac{a_{2}}{b_{2}}=\frac{b_{1}}{a_{1}}=\frac{1}{\frac{a_{1}}{b_{1}}}=-\left[\frac{1}{\frac{-a_{1}}{b_{1}}}\right] \\
m_{2}=-\frac{1}{m_{1}} .
\end{gathered}
$$

Therefore, if two lines are perpendicular, the slope of one is the negative reciprocal of the slope of the other.
And conversely, if the slope of one line is the negative reciprocal of the slope of another, the lines are perpendicular to each other.

Example. Show that the lines (1) $3 x-y+6=0$ and (2) $2 x+6 y-5=0$ are perpendicular to each other.

Writing the above equations in the slope $Y$-intercept form. (See Ex. 4 (b) Art. 40), we get,

$$
\begin{align*}
& y=3 x+6, \text { and }  \tag{1}\\
& y=\frac{-1}{3} x+\frac{5}{6} . \tag{2}
\end{align*}
$$

We observe that their respective slopes are 3 and $-\frac{1}{3}$. The lines are therefore perpendicular.

## Exercises on Chapter VI

1. Write the equation of the line which shall pass through the intersection of $x+y+1=0$ and $x-3 y+8=0$, and have a slope equal to 4 .
2. Find the equations of the lines satisfying the following conditions:
(a) Passing through $(2,3)$ and with slope $=-4$.
(b) Having the $X$-intercept $=4, Y$-intercept $=-5$.
(c) Slope $=-3, X$-intercept $=8$.
3. Prove by means of slopes that $(0,-2),(4,2),(0,6),(-4,2)$ are the vertices of a rectangle.
4. What are the equations of the sides of the figure in example 3 ?
5. Find the equation of the straight line passing through the point of intersection of $2 x+5 y-8=0$ and $2 x-y+4=0$ and perpendicular to the line $5 x-10 y=0$.
6. Show that the points $(2,4),(-1,0),(5,8)$ are on the same straight line.
7. Show that the points $(-1,2),(4,-3),(5,3)$ are the vertices of an isosceles triangle.
8. Prove that the diagonals of a square are equal and perpendicular to each other.
9. Find the equation of the line which passes through $(2,-1)$ and is:
(a) Parallel to $3 x+2 y+3=0$,
(b) Perpendicular to $3 x+2 y+3=0$.

## CHAPTER VII

## QUADRATIC EQUATIONS

43. Typical form. We may regard the equation

$$
\begin{equation*}
A x^{2}+B x+C=0 \tag{1}
\end{equation*}
$$

as the typical form of every quadratic equation in a single unknown $x$, for every quadratic equation can be thrown into the form (1) by the proper rearrangement of its terms. The coefficients $A, B$, and $C$ represent numbers which are in no way dependent upon the unknown number $x$ and $A$ is not zero, for if it were equation (1) would become $B x+C=0$ which is not a quadratic equation but a linear equation.
The function $A x^{2}+B x+c(A \neq 0)$ is the typical quadratic function.

## Exercises

Arrange the following equations in the typical form. What are the values of $A, B$, and $C$ ?

1. $x^{2}+(3 x-5)^{2}+2 x-5=0$.

Expanding and collecting terms, we get,
or

$$
\begin{aligned}
& 10 x^{2}-28 x+20=0 \\
& 5 x^{2}-14 x+10=0 \\
& A=5, B=-14, C=10
\end{aligned}
$$

and
2. $3 x(x-1)=x^{2}-2 x-3$.
3. $\frac{1}{x}-\frac{1}{x+1}=2$.
4. $(z+2)^{3}-(z-3)^{3}+3=(z-2)^{2}$.
5. $(x+m)^{2}+(x-m)^{2}=4 m x+3 x^{2}$.

Solution of Ex. 5: We get,

$$
x^{2}+2 m x+m^{2}+x^{2}-2 m x+m^{2}-4 m x-3 x^{2}=0,
$$

and combining terms,
or

$$
\begin{array}{r}
-x^{2}-4 m x+2 m^{2}=0 \\
x^{2}+4 m x-2 m^{2}=0
\end{array}
$$

This is of form (1) and $A=1, B=4 m, C=-2 m^{2}$.
6. $4 m^{2} x^{2}+3 k^{2} x^{2}-8 m x+3 x-m+k=0$.
7. $x^{2}+(m x+b)^{2}=r^{2}-m x$.
44. Solution of the quadratic equation. The quadratic formula. A quadratic equation may be solved by the process known as " completing the square."

As an example, solve $9 x^{2}+3 x=2$.
Solution. Write the equation in the form,

$$
\begin{equation*}
x^{2}+\frac{1}{3} x=\frac{2}{8} \tag{1}
\end{equation*}
$$

Add $\left(\frac{1}{2} \cdot \frac{1}{3}\right)^{2}=\frac{1}{36}$ to both members, and the left hand member is a perfect square. That is,
or

$$
\begin{equation*}
x^{2}+\frac{1}{3} x+\frac{1}{36}=\frac{2}{9}+\frac{1}{36}=\frac{9}{36}=\frac{1}{4}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(x+\frac{1}{6}\right)^{2}=\frac{1}{4} \tag{3}
\end{equation*}
$$

Extract the square root of both members.

$$
\begin{align*}
x+\frac{1}{6} & = \pm \frac{1}{2}  \tag{4}\\
x & =-\frac{1}{6} \pm \frac{1}{2}, \\
x & =\frac{1}{3} \text { or }-\frac{2}{3} .
\end{align*}
$$

Both of these values of $x$ satisfy the original equation, as may be seen by substituting them for $x$ in the original equation.

Apply the method of "completing the square" to the typical form,

$$
\begin{equation*}
A x^{2}+B x+C=0 \tag{1}
\end{equation*}
$$

Transpose $C$ and divide through by $A$,

$$
\begin{equation*}
x^{2}+\frac{B}{A} x=-\frac{C}{A} . \tag{2}
\end{equation*}
$$

Add $\left(\frac{1}{2} \cdot \frac{B}{A}\right)^{2}$ to both members,

$$
\begin{gather*}
x^{2}+\frac{B}{A} x+\frac{B^{2}}{4 A^{2}}=\frac{B^{2}}{4 A^{2}}-\frac{C}{A}=\frac{B^{2}-4 A C}{4 A^{2}},  \tag{3}\\
\left(x+\frac{B}{2 A}\right)^{2}=\frac{B^{2}-4 A C}{4 A^{2}} . \tag{4}
\end{gather*}
$$

or

$$
\begin{align*}
& x=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C},  \tag{6}\\
& x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} .
\end{align*}
$$

The roots, then, of the typical form (1) are
and

$$
\begin{aligned}
& x_{1}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A} \\
& x_{2}=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A}
\end{aligned}
$$

which could be verified by substitution.

We may therefore use the expression,

$$
\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A},
$$

as the formula for the solution of any quadratic equation.
As an example, solve $3 x^{2}+7 x-6=0$. In this equation, $A=3, B=7, C=-6$, and substituting these values of $A$, $B$ and $C$ in the formula, we get,

$$
x=\frac{-7 \pm \sqrt{49-4 \cdot 3(-6)}}{2 \cdot 3}=\frac{-7 \pm 11}{6},
$$

or
and

$$
x_{1}=\frac{-7+11}{6}=\frac{2}{3},
$$

$$
x_{2}=\frac{-7-11}{6}=-3 .
$$

Our solutions then are $\frac{2}{3}$ and -3 .
As another example, solve $x^{2}-x-1=0$.
By formula,

$$
\begin{aligned}
& x_{1}=\frac{1+\sqrt{5}}{2}, \\
& x_{2}=\frac{1-\sqrt{5}}{2} .
\end{aligned}
$$

Here the quantity under the radical is not a perfect square and we say the solutions are irrational. We will now define rational and irrational numbers.

A rational number is defined as one that can be expressed as the quotient of two integers. An irrational number is one that can not be thus expressed.

Thus $15, \frac{1}{2}, \frac{8}{8}$ are rational numbers; $\sqrt{2}, \sqrt{3}, \sqrt{5}, 1+\sqrt{5}$, $\frac{1-\sqrt{5}}{2}$ are irrational numbers.

## Exercises

Solve the following equations by formula and check the results:

1. $6 x^{2}-11 x+4=0$.
2. $5 x^{2}-3 x-14=0$.
3. $\frac{x+3}{2 x-7}-\frac{2 x-1}{x-3}=0$.
4. $14 x^{2}+11 x-15=0$.
5. $x^{2}-2 a x+3 x-6 a=0$.
6. $2 x^{2}-5 x+2=0$.
7. $3 x^{2}+8 x-3=0$.
8. $7 y^{2}+9 y-10=0$.
9. $x^{2}+x-1=0$.
10. $x^{2}+2 x-1=0$.
11. $2 x^{2}+3 x-9=0$.
12. $\frac{w+\frac{1}{w}}{w-\frac{1}{w}}+\frac{1+\frac{1}{w}}{1-\frac{1}{w}}=\frac{13}{4}$.
13. $x^{2}+l x+m=0$.
14. $(2 x-3)^{2}=8 x$.
15. $2 x^{2}-x-2=0$.
16. $2 x^{2}-3 x-2=0$.
17. $\frac{2 x}{x+2}+\frac{x+2}{2 x}=2$.
18. Classification of numbers. Algebraic numbers are divided into two classes, real numbers and imaginary numbers.

Real numbers are of two kinds, rational and irrational (see Art. 44 for definition of rational and irrational numbers).

In order to care for the square root of a negative number, we introduce the symbol $\sqrt{-1}=i$ and define it as the imaginary unit just as 1 is defined as the real unit. Then any number of the form $a i$, where $a$ is real, is defined as a pure imaginary; and any number of the form $a+b i$, where $a$ and $b$ are real is defined as a complex number.

For example, $\quad \sqrt{-25}=5 \sqrt{-1}=5 i$,
and

$$
\sqrt{-37}=\sqrt{37} \sqrt{-1}=\sqrt{37} i
$$

also,

$$
3+\sqrt{-37}=3+\sqrt{37} i .
$$

Imaginary numbers occur in the solution of certain quadratic equations.

As an example, solve $2 x^{2}-3 x+4=0$.
By formula:

$$
x_{1}=\frac{3+\sqrt{(-3)^{2}-4 \cdot 2 \cdot 4}}{4}=\frac{3+\sqrt{-23}}{4},
$$

$$
=\frac{3+\sqrt{23} i}{4}
$$

and

$$
x_{2}=\frac{3-\sqrt{23 i}}{4}
$$

Here, both roots are of the form $a+b i$ and are complex.
We can interpret the number $\sqrt{17}$ as the length of the hypotenuse of a right triangle whose sides are 4 and 1 , but we can not interpret in an elementary way the number $\sqrt{-17}$ or $\sqrt{17 i}$. However, the new number $\sqrt{-1}$ is of great importance in studying the physical world, particularly in the theory of alternating currents in electricity.

## Exercises

Solve for $x$ :

1. $2 x^{2}-5 x+4=0$.
2. $x^{2}-x+1=0$.
3. $3 x^{2}-x+2=0$.
4. $7 x^{2}-3 x+1=0$.
5. Character of the roots of the quadratic. Discriminant. We have shown in Art. 44 that the solutions of the quadratic equation, $A x^{2}+B x+C=0$, are given by the formula,

$$
\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

The expression $B^{2}-4 A C$ which appears under the radical sign is called the discriminant of the equation. An inspection of the value of the discriminant is sufficient to determine the character of the roots. It is easily observed that the following statements are true:
I. When $B^{2}-4 A C$ is negative, the roots are imaginary.
II. When $B^{2}-4 A C=0$, the roots are real and equal.
III. When $B^{2}-4 A C$ is positive, the roots are real and unequal.
IV. When $B^{2}-4 A C$ is positive and a perfect square, the roots are real, unequal and rational.

V: When $B^{2}-4 A C$ is positive and not a perfect square, the roots are real and unequal and irrational.

Why is the expression $B^{2}-4 A C$ called the discriminant?

## Exercises

Without solving, determine the character of the roots of the following equations:

1. $2 x^{2}-7 x+3=0$.

Solution of example 1.
Here $A=2, B=-7, C=3$.
Then $B^{2}-4 A C=(-7)^{2}-4 \cdot 2 \cdot 3=49-24=25$, which is positive. Therefore by III, the roots are real and unequal.

Also, since 25 is a perfect square, we have from IV that the roots are rational.
2. $3 x^{2}+2 x+1=0$.
3. $2 x^{2}-4 x+3=0$.
4. $x^{2}+6 x-8=0$.
5. $4 x^{2}+4 x+1=0$.
6. $x^{2}+x=-1$.
7. $3 x^{2}-x-10=0$.
8. $x^{2}+x=1$.
9. $4 x^{2}+16 x+7=0$.
10. For what values of $k$ will the roots of the quadratic $k^{2} y^{2}+5 y+1$ $=0$, be equal?

Solution of Ex. 10.
Here $A=k^{2}, B=5, C=1$, and $B^{2}-4 A C=(5)^{2}-4 k^{2}=25-4 k^{2}$.
According to II, the roots will be equal when $k$ is so determined that $25-4 k^{2}=0$ or $4 k^{2}=25$, or $k= \pm \frac{5}{2}$.
11. For what value (or values) of $m$ will the solutions of the following be equal?
(a) $y^{2}+12 y+8 m=0$.
(c) $(m+1) y^{2}+m y+m+1=0$.
(b) $(2 z+m)^{2}=8 z$.
(d) $a^{2}(m x+1)+b^{2} x^{2}=a^{2} b^{2}$.
47. The sum and product of the roots. The two roots of the typical quadratic equation are

$$
x_{1}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A} \text { and } x_{2}=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A}
$$

The sum of these roots is $-\frac{B}{A}$, and their product is $\frac{C}{A}$, which is easily obtained by adding and multiplying them together, respectively.

Summing up, we have,

$$
\begin{align*}
x_{1}+x_{2} & =-\frac{B}{A}  \tag{1}\\
x_{1} x_{2} & =\frac{C}{A} . \tag{2}
\end{align*}
$$

and
Thus, by means of (1) and (2) above, we can find the sum and product of the roots without solving the equation. Thus, in the equation, $2 x^{2}-5 x+3=0$, the sum of the roots is $\frac{5}{2}$, and the product is $\frac{3}{2}$.

## Exercises

What is the sum and product of the solutions of each of the following equations?

1. $3 x^{2}+6 x-1=0$.
2. $5 x^{2}-4 x+2=0$.
3. $x^{2}+\frac{1}{2} x+\frac{1}{7}=0$.
4. $x^{2}-10 x+13=0$.
5. $m^{2} x^{2}-m(a-b) x-a b=0$.
6. $a c x^{2}-b c x+a d x-b d=0$.
7. $4 a+a x^{2}=2 x+2 a^{2} x$.
8. $x^{2}-2 a x+a^{2}+b^{2}=0$.
9. Graphical solution of a quadratic equation. In order to solve graphically the equation $x^{2}-4 x+3=0$, we let $y=x^{2}-4 x+3$ and compute a table of values as follows:

| $x=$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y=$ | 24 | 15 | 8 | 3 | 0 | -1 | 0 | 3 | 8 | 15 | 24 |

Plotting the points $(-2,15),(-1,8) \ldots$ from the table and drawing a smooth curve through them we get the curve in Fig. 24. The graph crosses the $X$-axis at 1 and 3 ; hence, for


Fig. 24.


Fig. 25.
these values of $x$ the function $x^{2}-4 x+3$ is zero. That is to say, 1 and 3 are the solutions of the equation $x^{2}-4 x+3=0$.

These solutions are represented graphically by the abscissas of the points where the graph crosses the $X$-axis.

Were we to graph the function $A x^{2}+B x+C$ where $A$ is positive and not zero, we would get a curve having the same general shape as the curve in Fig. 25. This curve is called a
parabola. If the graph crosses the $X$-axis, the $X$-intercepts give the real solutions of the equation $A x^{2}+B x+C=0$. If the curve has no point in common with the $X$-axis, the roots are imaginary. If the curve touches the $X$-axis, the roots are real and equal.

We have just stated above that the graph of the general quadratic function, $A x^{2}+B x+C$, is called a parabola and is similar in shape to Fig. 25. We note that the parabola is symmetrical with respect to a certain line. The curve in Fig. 25 is symmetrical with respect to the line $A B$. This line $A B$ is called the axis of the parabola. If we draw any line $L M$ perpendicular to the axis $A B$ intersecting the parabola in $L$ and $M$ and the axis in $N$ we find that $L N=M N$. Then, what do we mean by the parabola being symmetrical with respect to its axis?

The curve in Fig. 24 is a parabola and we notice that it is symmetrical with respect to the line parallel to the $Y$-axis and two units to the right. What are the coordinates of the lowest point on this curve?

## Exercises

Construct the graphs of the functions in the following equations and determine the roots if they are real. Determine the axis of symmetry of each of the curves. What are the coordinates of the lowest point on each curve?

1. $x^{2}-2 x-3=0$.
2. $4 x^{2}-12 x+9=0$.
3. $x^{2}-2 x+5=0$.
4. $x^{2}-9 x+14=0$.
5. $x^{2}+2 x-1=0$.
6. $x^{2}-2 x-1=0$.
7. $x^{2}+4 x+3=0$.
8. $x^{2}+x+1=0$.
9. $x^{2}+4 x+6=0$.
10. $x^{2}+2 x+2=0$.
11. Minimum value of a quadratic function. We have just shown in Art. 48 that the graph of a quadratic function is a parabola symmetrical with respect to a certain vertical line
called the axis of the parabola. (See Fig. 25.) We notice that the axis intersects the parabola in a single point $B$ and that this point $B$ is the lowest point on the curve. Such a point is called a minimum point and the ordinate of such a point is defined as the minimum value of the quudratic function, $A x^{2}+B x+C$. In figure 24 the coordinates of the lowest point on the graph are $(2,-1)$ and -1 is the minimum value of the quadratic function $x^{2}-4 x+3$.

Consider again the equation, (1) $y=x^{2}-4 x+3$. The graph of this equation is Fig. 24. From the table of values we see that to a given value of $y$ there corresponds two values of $x$. When $y=3, x=0$ and 4. When $y=0, x=1$ and 3. When $y=-1, x=2$. We observe, then, that to every value of $y$ there corresponds two values of $x$ and that as $y$ decreases the two corresponding values of $x$ approach each other and finally for a certain value of $y$ the two corresponding values of $x$ are equal. In the above example the value of $y$, which causes the two values of $x$ to be equal, is -1 . But this value of $y$ is the minimum value of the function, $x^{2}-4 x+3$.

Then, to determine the minimum value of the function, $x^{2}-4 x+3$, we must determine the value of $y$ which will make equation (1) have equal values for $x$. Equation (1) may be written (2) $x^{2}-4 x+3-y=0$. Now, the roots of (2) will be equal when the discriminant equals zero.

We have,
or

$$
\begin{gather*}
(-4)^{2}-4(3-y)=0,  \tag{3}\\
y=-1, \tag{4}
\end{gather*}
$$

which is the minimum value of the function.
Example. Find the minimum value of the function,

$$
x^{2}+3 x+4
$$

Solution.
Let

$$
\begin{equation*}
y=x^{2}+3 x+4 . \tag{1}
\end{equation*}
$$

Then $x^{2}+3 x+(4-y)=0$.
Setting the discriminant equal to zero, we get,

$$
\begin{align*}
9-4(4-y) & =0, \text { or }  \tag{3}\\
y & =\frac{7}{4}, \tag{4}
\end{align*}
$$

which is the minimum value of $x^{2}+3 x+4$.
Let us now find the minimum value of the typical quadratic function, $A x^{2}+B x+C$.

Let

$$
\begin{equation*}
y=A x^{2}+B x+C \tag{1}
\end{equation*}
$$

Then $\quad A x^{2}+B x+(C-y)=0$.
Setting the discriminant equal to zero, we get,

$$
\begin{align*}
B^{2}-4 A(C-y) & =0  \tag{3}\\
y & =\frac{4 A C-B^{2}}{4 A} \tag{4}
\end{align*}
$$

and
which is the minimum value of the quadratic, $A x^{2}+B x+C$.

Thus far in the discussion of the quadratic, $A x^{2}+B x+C$, we have assumed that " $A$ " was a positive number. Now, if " $A$ " were a negative number, the graph would not be similar to Fig. 25, but would have the same general shape as Fig. 26. Fig. 26 is a parabola also, but here the point $B$ is a maximum and not a minimum as in Fig. 25. The expression, $4 A C-B^{2}$ $\frac{4 A C-B}{4 A}$, gives us the minimum or


Fig. 26. maximum value of the quadratic according as " $A$ " is positive or negative.

Thus the maximum value of $-2 x^{2}+3 x+5$ is

$$
\frac{4(-2) 5-3^{3}}{4(-2)}=\frac{-40-9}{-8}=\frac{49}{8}=6 \frac{1}{8} .
$$

## Exercises

Find the maximum or minimum values of the following:

1. $x^{2}-6 x+10$.
2. $2 x^{2}-x-3$.
3. $-3 x^{2}+2 x-10$.
4. $1-x-2 x^{2}$.
5. $x^{2}+2 x+2$.
6. $2+2 x-x^{2}$.
7. $n x^{2}+n x+k$.
8. $-5 x^{2}+x+1$.

## Exercises on Chapter VII

1. Solve:
(a) $12 x^{2}+x-1=0$.
(b) $\frac{3 y-6}{y+2}=y-2$.
(c) $x^{2}-4 x+1=0$.
(d) $x^{2}-5.3 x+2.1=0$.
2. Find by the graphical method the approximate values of the roots of the equations

$$
\begin{array}{ll}
\text { (a) } x^{2}-4 x-13=0, & \text { (b) } x^{2}+2 x-13=0
\end{array}
$$

3. Find the sum and product of the roots of the following equations:
(a) $3 x^{2}=5-2 x$,
(b) $2 x^{2}+5 x+3=0$,
(c) $(m x+2)^{2}=4 x$.
4. Determine the character of the roots of the following:

> (a) $3 x^{2}+x+1=0, \quad$ (b) $2 x^{2}-5 x+1=0$ (c) $16 x^{2}+8 x+1=0$
5. Find the number of acres in the largest rectangular field that can be inclosed by a mile of fence.

Solution.
Let $x$ equal length of the field.

Then, $160-x=$ width of field and $A$ (the area) $=x(160-x)=$ $160 x-x^{2}$ or $A=-x^{2}+160 x$. Thus the maximum area is given by

$$
A=\frac{4(-1) .0-(160)^{2}}{4(-1)}=\frac{(160)^{2}}{4}=6400 \text { square rods, }
$$

or 40 acres. When $A$ equals 6400 , we find that $x$ equals 80 rods and the field is in the shape of a square.
6. Divide 20 into two parts such that the sum of their squares shall be a minimum.

## Solution:

Let $x=$ one part.
Then, $20-x=$ other part and $S$ (the sum of their squares) $=$ $x^{2}+(20-x)^{2}$ or $S=2 x^{2}-40 x+400$, and the minimum value of $S$ is given by

$$
S=\frac{4 \cdot 2 \cdot 400-(-40)^{2}}{4 \cdot 2}=200 .
$$

When $S=200$, we have,

$$
200=2 x^{2}-40 x+400
$$

or

$$
x^{2}-20 x+100=0
$$

$$
x=10, \text { one part }
$$

and
$20-x=10$, other part.
7. A window is to be constructed in the shape of a rectangle surmounted by a semicircle. Find the dimensions that will admit the maximum amount of light, if its perimeter is to be 48 feet.
8. A rectangular piece of ground is to be fenced off and divided into four equal parts by fences parallel to one of the sides. What should the dimensions be in order that as much ground as possible may be enclosed by 200 rods of fence?
9. A rectangular field is to be fenced off along the bank of a straight river, using 160 rods of fence. If no fence is needed along the river, what is the shape of the field in order that the enclosed area shall be the greatest possible?
10. A park is 150 rods long and 90 rods wide. It is decided to double the area of the park, still keeping it rectangular, by adding strips of equal width to one end and one side. Find the width of the strips.
11. A farmer starts cutting grain around a field 120 rods long and 80 rods wide. How wide a strip must he cut to make 10 acres?
12. A rectangular piece of ground is to be fenced off in the corner of a rectangular field and divided into four equal lots by fences parallel to one of the sides. What should the dimensions be in order that as much ground as possible may be enclosed by 200 rods of fence, the fences of the given field being used for two sides of the required field?
13. Build a water tank to hold 100 cubic feet. The length of the base is to be twice the width. Find the dimensions that will make the cost a minimum.
Solution. The cost will be a minimum when the surface is a minimum.
Let

$$
x=\text { width of the base. }
$$

Then,

$$
2 x=\text { length of the base. }
$$

Let

$$
y=\text { depth. }
$$

Then,

$$
\begin{align*}
2 x^{2} y & =100 \text { (volume) },  \tag{1}\\
2 x^{2}+6 x y & =S \text { (surface). } \tag{2}
\end{align*}
$$

Substituting (1) in (2), we obtain,

$$
\begin{align*}
S & =2 x^{2}+\frac{300}{x}  \tag{3}\\
& =\frac{2 x^{3}+300}{x} .
\end{align*}
$$

Our problem is to determine a value of $x$ that will make $S$ a minimum. This may be done by giving $x$ values and computing the corresponding values of $S$.

| $x=$ | 1 | 2 | 3 | 4 | $4 \frac{1}{4}$ | $4 \frac{1}{2}$ | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S=$ | 302 | 158 | 118 | 107 | 106.7 | 107.16 | 110 | 122 | $140 \frac{8}{7}$ |

We notice that when $x=4 \frac{1}{4}, S=106.7$ and this value is approximately the least value $S$ can take. Hence the dimensions are (approx.) $4 \frac{1}{4}$ feet, $8 \frac{1}{2}$ feet and $2 \frac{4}{3}$ feet.
This problem illustrates another method for obtaining a minimum value of a function.
14. A covered box is to hold 200 cubic feet. The length of the base is to be two times the width. Find the dimensions that will make the cost a minimum.

## CHAPTER VIII

## EXPONENTS, RADICALS, BINOMIAL EXPANSION AND LOGARITHMS

50. Definition of a number. Laws of exponents. Any number $N$ may be dcfined as some other number a (a fixed number) raised to the nth power. Thus we may write

$$
\begin{equation*}
N=a^{n} . \tag{1}
\end{equation*}
$$

In (1) $N$ is the number, $a$ is defined as the base of the system of numbers and $n$ is the exponent or the power to which $a$, the base must be raised to produce the number. For example, $1000=10^{3}$. Here 1000 is the number, 10 is the base and 3 is the power to which 10 must be raised to produce 1000 .

By $a^{n}$, we mean the product of $a \cdot a \cdot a \ldots$ to $n$ factors, by $a^{4}$, we mean $a \cdot a \cdot a \cdot a$.
The laws of exponents are as follows:
I. $a^{m} \cdot a^{n}=a^{m+n}$. To multiply numbers having the same base, we add their exponents. Thus, $5^{2} \cdot 5^{4}=5^{6}$.
II. $a^{m} \div a^{n}=a^{m-n}$. To divide numbers having the same base, we subtract the exponent of the divisor from the exponent of the dividend. Thus, $5^{5} \div 5^{3}=5^{5-3}=5^{2}$.
III. $\left(a^{m}\right)^{n}=a^{m n}$. Thus, $\left(5^{3}\right)^{2}=5^{3 \cdot 2}=5^{6}$.
IV. $(a b)^{m}=a^{m} b^{m}$. Thus, $(3 \cdot 4)^{3}=3^{3} \cdot 4^{3}$.
V. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$. Thus, $\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}$.

The above formulas apply not only when $m$ and $n$ are positive integers, but in all cases.

For example: $3^{2 / 5 \cdot 5^{-1 / 3}}=3^{2 / 5-1 / 3}=3^{1 / 15}$.
By $a^{p / q}$ we mean the $q$ th root of $a^{p}$. That is,
VI. $a^{p / q}=\sqrt[1]{a^{p}}$. Thus, $3^{2 / 5}=\sqrt[5]{3^{2}}$ and $5^{1 / 3}=\sqrt[3]{5}$.
VII. $a^{\circ}=1$. For $a^{\circ} \cdot a^{n}=a^{\circ+n}=a^{n}$, and $a^{\circ}=\frac{a^{n}}{a^{n}}=1$
VIII. $a^{-n}=\frac{1}{a^{n}}$. For $a^{-n} \cdot a^{n}=a^{-n+n}=a^{\circ}=1$, and $a^{-n}=\frac{1}{a^{n}}$.

Thus, $7^{-2 / 3}=\frac{1}{7^{2 / 3}}=\frac{1}{\sqrt[3]{7^{2}}}=\frac{1}{\sqrt[3]{49}}$.

## Exercises

Simplify the following indicated operations:

1. $x^{3} \cdot x^{5} \cdot x^{1 / 2}$.
2. $\left(x^{2} y^{3}\right)^{4}$.
3. $a^{7} \div a^{3}$.
4. $\left(\frac{2}{3}\right)^{5} \div\left(\frac{2}{3}\right)^{3}$.
5. $\left(a^{-1 / 2}\right)^{3}$.
6. $\left(m^{1 / 3}+n^{1 / 3}\right) m^{1 / 3} n^{1 / 3}$.
7. $\left(8 a^{3} b^{6}\right)^{1 / 3}$.

Write each of the following with a radical sign and simplify:
8. $(16)^{1 / 4}$.
9. $(27)^{2 / 3}$.
10. $(3)^{2 / 3}$.
11. $x^{1 / 3} y^{1 / 3}$.
12. $\left(\frac{8 a^{6}}{27 b^{9}}\right)^{1 / 3}$.

Write the following in a form such that negative exponents do not appear and reduce to simplest form:
13. $12 a^{-2 / 3}$.
14. $\frac{1}{(a+b)^{-2}}$.
15. $a^{2} b^{-3} c^{-2}$.
16. $\frac{1}{2 a^{-2} b^{-3}}$.
17. $\frac{1}{a^{-2}+b^{-2}}$.
18. $\left(\frac{2}{3}\right)^{-2}\left(\frac{225}{16}\right)^{-1 / 2}$.
19. $\frac{1}{a^{-3}}+\frac{1}{b^{-3}}$.
20. $\left(8 x^{-3} y^{-6}\right)^{1 / 3}$.
21. $2^{-2}-2^{-3}$.
22. $\left(a^{2}+b^{2}\right)^{\circ}$.

Change the following into expressions without radical signs or negative exponents:
23. $\sqrt{\bar{b}}$.
24. $\sqrt[3]{x^{4}}$.
25. $\sqrt{a^{2} b^{4} c^{8}}$.
26. $\sqrt[3]{x^{-6} y^{-2}}$.
27. $\sqrt[3]{(a+b)^{6}}$.
28. $\sqrt{(x+y)^{-4}}$.
29. $\sqrt[3]{\left(a^{3}\right)^{-2}}$.
30. $\sqrt[3]{a} \cdot \sqrt[5]{b}$.
31. $\sqrt[3]{\sqrt{a^{4}}}$.
32. $\sqrt[4]{(x+y)^{-3}}$.
33. $\sqrt{9(x+y)^{3}}$.
34. $\sqrt[3]{a^{6} b^{3} c^{-3}}$.

Solve the equation:
35. $y^{-2 / 3}=9$.

Solution.

$$
\begin{aligned}
\frac{1}{y^{2 / 3}} & =9 \\
\frac{1}{y} & =9^{3 / 2}, \quad \text { or } \quad y=\frac{1}{9^{3 / 2}}
\end{aligned}
$$

But

$$
9^{3 / 2}=\sqrt{9^{3}}=27
$$

Therefore,

$$
y=\frac{1}{27} .
$$

Solve the following for $x$ :
36. $x^{1 / 3}=2$.
37. $x^{-1 / 3}=4$.
38. $\frac{1}{2} x^{-1 / 3}=3$.
39. $x^{2 / 3}=4$.

Multiply the following:
40. $a^{2 / 3}-a^{1 / 3} b^{1 / 3}+b^{2 / 3}$ by $a^{1 / 3}+b^{1 / 3}$.
41. $\sqrt{a^{3}}+\sqrt{b^{3}}$ by $a^{3 / 2}-b^{3 / 2}$.

Divide the following:
42. $x^{3 / 5}+b^{3 / 4}$ by $x^{1 / 5}+b^{1 / 4}$.
43. $16 x^{2}-81 y^{4}$ by $2 x^{1 / 2}-3 y$.
44. $\sqrt[4]{a^{3}}-\sqrt[5]{b^{8}}$ by $a^{1 / 4}-b^{2 / 5}$.
51. Radicals. Simplification of radicals. An indicated root of a number is called a radical. Thus the expression $\sqrt[n]{a}$ is a radical. The quantity $a$ under the radical sign is known as the radicand; $n$ the number which indicates the root of the radicand is known as the index of the root.

For the purpose of computation it is often convenient to be able to change the form of radicals. A few examples will illustrate the processes:

Example 1. Simplify $\sqrt{\mathbf{3 2}}$.
Solution. $\sqrt{32}=\sqrt{16 \cdot 2}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$.
Example 2. Simplify $\sqrt[3]{128}$.
Solution. $\quad \sqrt[3]{128}=\sqrt[3]{64 \cdot 2}=\sqrt[3]{64} \sqrt[3]{2}=4 \sqrt[3]{2}$.
Example 3. Simplify $\sqrt{\frac{32}{27}}$.
Solution. $\quad \sqrt{\frac{32}{27}}=\frac{\sqrt{32}}{\sqrt{27}}=\frac{4 \sqrt{2}}{3 \sqrt{3}}$.
Example 4. Simplify $\sqrt{20}+8 \sqrt{45}-\sqrt{5}$.
Solution.

$$
\sqrt{20}+8 \sqrt{45}-\sqrt{5}=2 \sqrt{5}+24 \sqrt{5}-\sqrt{5}=25 \sqrt{5} .
$$

In example 4 we reduced each radical to the same radicand and then added terms.

Example 5. Simplify $\sqrt[3]{27 x^{5} y^{3} z^{4}}$.
Solution. $\quad \sqrt[3]{27 x^{5} y^{3} z^{4}}=\sqrt[3]{27 x^{3} y^{3} z^{3} x^{2} z}$

$$
=\sqrt[3]{27 x^{3} y^{3} z^{3}} \sqrt[3]{x^{2} z}=3 x y z \sqrt[3]{x^{2} z}
$$

## Exercises

Simplify the following radicals:

1. $\sqrt{75}$.
2. $\sqrt[6]{a^{3} x^{3}}$.
3. $\sqrt[3]{81}$.
4. $7 \sqrt{147}$.
Solution. $\quad \sqrt[6]{a^{3} x^{3}}=\left(a^{3} x^{3}\right)^{1 / 6}$
5. $\sqrt[4]{81}$.
$=a^{3 / 6} x^{3 / 6}=a^{1 / 2} x^{1 / 2}=\sqrt{a x}$.
6. $5 \sqrt[3]{32}$.
7. $\sqrt{m^{6}+m^{3} n^{2}}$.
8. $\sqrt[3]{(x+y)^{4}}$.
9. $\left(\frac{1}{x^{3}}+\frac{1}{y^{3}}\right)^{1 / 3}$.
10. $\sqrt[4]{4 x^{2} y^{2}}$.
11. $\sqrt[6]{216 x^{3} y^{6}}$.
12. $\sqrt[6]{8}$.
13. $\sqrt[4]{9}$.
14. $\sqrt{3}-2 \sqrt{3}+11 \sqrt{3}$.
15. $\sqrt{4 a^{2} b^{3} c}$.
16. $3 \sqrt[3]{28}-\sqrt[3]{63}+4 \sqrt[3]{175}$.
17. $\sqrt{(x+y)^{2}(x-y)^{3}}$.
18. $\sqrt[3]{81}+5 \sqrt[3]{24}-\sqrt[3]{375}$.
19. $3 \sqrt{b^{3}}+4 \sqrt{a^{2} b c^{4}}+\sqrt{4 b^{5} c^{2}}$.
20. $\frac{1+\sqrt{2}}{\sqrt{5}}$.

Solution. $\frac{1+\sqrt{2}}{\sqrt{5}}=\frac{1+\sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{5}+\sqrt{10}}{5}$.
21. $\frac{3}{\sqrt{3}-\sqrt{2}}$.

Solution. $\frac{3}{\sqrt{ } 3-\sqrt{2}}=\frac{3}{\sqrt{3}-\sqrt{2}} \cdot \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
$=\frac{3 \sqrt{3}+3 \sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}=\frac{3 \sqrt{3}+3 \sqrt{2}}{3-2}=3 \sqrt{3}+3 \sqrt{2}$.
In examples 20 and 21 we have multiplied both the numerator and the denominator by the same expression. This expression was chosen so as to free the denominators of radicals. This process is known as the rationalization of the denominator.
22. $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$.
23.

24. $\frac{2}{2-\sqrt{3}}$.
25. $\frac{2+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$.
26. $\sqrt{80} \div \sqrt{5}$.
27. $\sqrt[3]{135} \div \sqrt[3]{5}$.
28. $\sqrt[3]{a^{2 b} c^{2}} \div \sqrt[3]{a c^{2}}$.

Solution. $\sqrt[3]{a^{2} b c^{2}} \div \sqrt[3]{a c^{2}}$

$$
=\sqrt[3]{\frac{a^{2} b c^{2}}{a c^{2}}}=\sqrt[3]{a b .}
$$

To divide radicals having the same index, divide the radicand of the numerator by the radicand of the denominator. If the radicals do not have the same index, reduce them to radicals having the same index and then divide.
29. $\sqrt[3]{25} \div \sqrt{5}$.

Solution. $\quad \sqrt[3]{25}=(25)^{1 / 3}=(25)^{2 / 6}=\sqrt[6]{(25)^{2}}=\sqrt[6]{625}$,
and

$$
\begin{aligned}
\sqrt{5}=(5)^{1 / 2} & =(5)^{3 / 8}=\sqrt[6]{(5)^{3}}
\end{aligned}=\sqrt[6]{125}, ~=\sqrt[3]{25} \div \sqrt{5}=\sqrt[6]{625} \div \sqrt[6]{125}=\sqrt[6]{5} .
$$

30. $6 \sqrt{150} \div 5 \sqrt{45}$.
31. $\sqrt[3]{a^{2} n} \div \sqrt[3]{a n^{2}}$.
32. $(\sqrt{5}+2 \sqrt{3})^{2}$
33. $\sqrt{2} \div \sqrt[3]{2}$.
34. $\sqrt[4]{9} \div \sqrt[3]{3}$.
35. $\sqrt{\frac{3}{5}} \div \sqrt{\frac{5}{6}}$.
36. $\sqrt{\frac{n^{2}}{n+1}} \div \sqrt{\frac{n^{3}}{n-1}}$.
37. $\sqrt{\frac{n-1}{n+1}} \div \sqrt{\frac{n+1}{n-1}}$.
38. Binomial expansion; positive integral exponents. By multiplication we find:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2}, \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}, \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

From the above expansion we observe the following properties:
(1) The first term of the expansion is the first term of the binomial raised to the same power as that of the binomial.
(2) The exponents of a decrease by unity from term to term while the exponents of $b$ increase by unity.
(3) The coefficient of the second term of the expansion is equal to the exponent of the binomial.
(4) If in any term the coefficient be multiplied by the exponent of $a$ and divided by the exponent of $b$ increased by unity, we get the coefficient of the next term.

The question now arises: Do the four properties stated above hold for the expansion of $(a+b)^{n}$, for all positive integral values of $n$ ? By actual multiplication we see that these properties do hold for all positive integral values of $n$ up to $n=4$, and we assume that they hold for all positive integral values of $n$. This gives us the expansion.

$$
\begin{align*}
(a+b)^{n}=a^{n} & +n a^{n-1} b+\frac{n(n-1)}{2} a^{n-2} b^{2} \\
& +\frac{n(n-1)(n-2)}{2 \cdot 3} a^{n-3} b^{3}+\ldots \\
& +\frac{n(n-1) \ldots(n-r+2)}{2 \cdot 3 \cdot 4 \ldots(r-1)} a^{n-r+1} b^{r-1} \\
& +\ldots+b^{n} \tag{1}
\end{align*}
$$

Expansion (1) is known as the binomial expansion or binomial theorem. We have assumed that it is true for all positive integral values of $n$. This fact may be proven by the process known as mathematical induction but that is beyond the scope of this text.

In the expansion of $(a+b)^{n}$, the $r$ th term is

$$
\begin{equation*}
\frac{n(n-1)(n-2) \ldots(n-r+2)}{2 \cdot 3 \cdot 4 \ldots(r-1)} a^{n-r+1} b^{r-1} \tag{2}
\end{equation*}
$$

## Exercises

Expand:

1. $(2-3 x)^{5}$.

Solution. Here $a=2, b=-3 x, n=5$.
Then, $(2-3 x)^{5}=(2)^{5}+5(2)^{4}(-3 x)+10(2)^{3}(-3 x)^{2}$

$$
\begin{gathered}
+10(2)^{2}(-3 x)^{3}+5(2)(-3 x)^{4}+(-3 x)^{5} \\
=32-240 x+720 x^{2}-1080 x^{3}+810 x^{4}-243 x^{5} .
\end{gathered}
$$

2. $(a+b)^{\text {b }}$.
3. $(a-b)^{5}$.
4. $\left(\frac{a}{2}+3\right)^{5}$.
5. $(2+a)^{4}$.
6. $(a+\sqrt{c})^{3}$.
7. $(2 x-5)^{5}$.
8. $(x+y+z)^{3}$.
9. $(2 x+y)^{4}$.
(Hint: Consider $x+y$ as representing one number.)
10. Find the fourth term of $(a+3 b)^{8}$.

Solution. The $r$ th term is given by the expression

$$
\frac{n(n-1)(n-2) \ldots(n-r+2)}{2 \cdot 3 \cdot 4 \ldots(r-1)} a^{n-r+1} b^{r-1}
$$

Here, $n=8, r=4, a=a, b=3 b, n-r+2=6, n-r+1=5$, $r-1=3$. Substituting these values in the above expression, we have, $\frac{8 \cdot 7 \cdot 6}{2 \cdot 3} a^{5}(3 b)^{3}=1512 a^{5} b^{3}$.
11. Find the 13 th term of $(2 x+y)^{18}$.
12. Find the middle term of $\left(x^{2}+2 y\right)^{8}$.
13. Find the 9 th term of $(3-2 y)^{13}$.
14. Use the binomial theorem to find (1.1) ${ }^{15}$, correct to four significant figures. (Hint: Write (1.1) ${ }^{15}$ as $(1+.1)^{15}$.)
15. Find (1.01) ${ }^{10}$ correct to 5 significant figures.
53. Logarithms. Definition. In Article 50 a number $N$ was defined by the equation, (1) $N=a^{n}$, where $a$ was defined
as the base of the system of numbers and $n$ as the power to which the base must be raised to produce the number $N$. We there assumed that the definition held for all positive and negative values of $n$ both integral and fractional. It could be shown that it also holds for irrational values of $n$, and we now assume this without proof. That is, we now give a meaning to such numbers as $a^{\sqrt{2}}, a^{\sqrt{3}}$, where $a>0$.

If $a^{n}=N(a>0, a \neq 1)$ then $n$ is said to be the logarithm of $N$ to the base $a$, and this is written $n=\log _{a} N$.

The two equations $\quad a^{n}=N$
and

$$
\begin{equation*}
n=\log _{a} N \tag{2}
\end{equation*}
$$

thus mean the same thing; and the terms exponent and logarithm are equivalent.

We assume that the laws of exponents given in Article 50 which apply to rational exponents are also valid when irrational exponents are involved.

## Exercises

1. $\log _{6} 25=$ ?
$\log _{10} 100=$ ?
$\log _{2} 16=$ ?
2. $\log _{2} \frac{1}{4}=$ ?
$\log _{a} a=$ ?
$\log _{16} 4=$ ?
3. Fill out the following table:

| Base | Number | Logarithm |
| :---: | :---: | :---: |
|  | 1000 | 3 |
| 5 | $\cdots \ldots \cdots$ | 4 |
| 2 | $\frac{1}{32}$ | -5 |
| 7 | 32 | -5 |
| 6 | $\cdots \cdots \cdots$ | 3 |

54. Properties of logarithms.
55. The logarithm of a product equals the sum of the logarithms of its factors.

Let $\log N=n$ and $\log M=m$, then $a^{n}=N, a^{m}=M$, (definition of logarithm) and $N M=a^{n+m}$ (1. Art. 50).
Hence $\quad \log _{a} N M=n+m$.
That is,
$\log _{a} N M=\log _{a} N+\log _{2} M$.
This property is true for any number of factors in the product.
Example. $\log _{10} 105=\log _{10} 3+\log _{10} 5+\log _{10} 7$.
2. The logarithm of a quotient is equal to the logarithm of the dividend minus the logarithm of the divisor. The proof of this property is left as an exercise for the student.

Example. $\log _{10} \frac{125}{73}=\log _{10} 125-\log _{10} 73$.
3. The logarithm of $N^{n}$ equals $n$ times the logarithm of $N$. This property is true for any value of the exponent $n$, whether positive or negative, integer or fraction. The proof is left for the student.

Example. $\log _{10}(153)^{3}=3 \log _{10} 153$.

## Exercises

1. With 10 as base, $\log 2=0.30103, \log 3=0.47712, \log 5=0.69897$. Find $\log 4, \log 6, \log 8, \log 9, \log 12, \log 15, \log 20$.

Ans.: $0.60206,0.77815,0.90309,0.95424,1.07918,1.17609,1.30103$.
2. From the results of Ex. 1 above find $\log \left(\frac{9}{5}\right), \log \left(\frac{15}{8}\right), \log 144$.
55. Common logarithms. Characteristic and mantissa. Any positive number (except 0 and 1) may be used as a base for a logarithmic system. Logarithms with 10 as a base are called common logarithms. This is the system used for all ordinary calculations.

From the table

$$
\begin{array}{ll}
10^{3}=1000 & 10^{-1}=.1 \\
10^{2}=100 & 10^{-2}=.01 \\
10^{1}=10 & 10^{-3}=.001 \\
10^{0}=8 &
\end{array}
$$

it is evident that the logarithm of an integral power of 10 is an integer; either positive or negative. The logarithms of numbers between 1 and 10 are between 0 and 1 , logarithms of numbers between 10 and 100 are between 1 and 2, and so on. For example, $\log 7=0.84510, \log 70=1.84510, \log 700=2.84510$, $\log 7000=3.84510$.

The integral part of a logarithm is called the characteristc; the decimal part is called the mantissa.
(A) Law of the characteristic. From the above examples, we observe that $\log 7$ has a characteristic $0, \log 70$ has 1 , $\log 700$ has 2, and $\log 7000$ has 3 . From this we see that the characteristic of a logarithm of a whole number is one less than the number of digits in the number. We also observe from the table that the characteristics of the logarithms of numbers less than 1 are negative and equal to the number of places which the first significant figure occupies to the right of the decimal point. Thus

$$
\log 0.00325=-3+.51188
$$

In such cases the characteristic is negative and the mantissa is positive. It is customary in case of negative characteristics to write
or

$$
\begin{aligned}
& \log 0.00325=\overline{3} .51188 \\
& \log 0.00325=7.51188-10 .
\end{aligned}
$$

(B) Law of the mantissa. The mantissa is the same for any sequence of digits and does not depend upon the position of the decimal point.
For example, $\log 3256=3.51268$
$\log 325.6=2.51268$
$\log 32.56=1.51268$
$\log \quad 3.256=0.51268$
56. Use of tables. In Table I in the back of this book fiveplace logarithms are given. The mantissas of the logarithms
of all integeis from 1 to 9999 are recorded correct to five decimal places. The methods by which such a table can be made will not be discussed here as it is beyond the scope oi this text. In order to use the tables intelligently we must know how to read from the tables the logarithm of a given number, and also the number having a given logarithm.

## Examples

1. Find the logarithm of 2354 . Read down the column headed $N$ for the first three significant figures, then at the top of the table for the fourth figure. In the row with 235 and the column with 4 is found 37181.

Hence,

$$
\log 2354=3.37181 .
$$

2. Find the logarithm of 32.625 . This number has more than four significant figures, so we must obtain its logarithm by the process known as interpolation. As in example 1, we find that the mantissas of 32620 and 32630 are 51348 and 51362 , respectively. The difference between these two mantissas is 14 . Since 32625 is five tenths of the interval from 32620 to 32630 , we add to 51348

$$
0.5 \times 14=7
$$

Hence,
$\log 32.625=1.51355$.
3. Find the number whose logarithm is 1.78147 . The mantissa 78147 is found in the table and is in the column headed by 6 and opposite the digits 604 in the column headed by $N$. Thus the digits corresponding to mantissa 78147 are 6046.

Hence,

$$
\log 60.46=1.78147
$$

4. Find the number whose logarithm is $\overline{2} .62029$. The mantissa 62029 is hot found in the table, but it lies between the two adjacent mantissas 62024 and 62034 . The mantissa 62024 corresponds to the number 4171 and 62034 corresponds to 4172 . The mantissa 62029 is $\frac{5}{10}$ of the interval from 62024 to 62034 . Thus the number whose mantissa is 62029 is $41710+\frac{5}{10} \times 10=41715$.

Hence,

$$
\log 0.041715=\overline{2} .62029 .
$$

5. Find the value of $N=\frac{3.26 \times 72.65}{2.72}$ to five significant figures.

Solution.

$$
\begin{aligned}
\log N & =\log 3.26+\log 72.65-\log 2.72 \\
\log 3.26 & =0.51322 \\
\log 72.65 & =\frac{1.86124}{2.37446} \\
\log (3.26)(72.65) & =\frac{0.43457}{\log 2.72} \\
\log N & =1.93989 \\
N & =87.074 .
\end{aligned}
$$

6. Find the value of

$$
N=\frac{\sqrt[3]{0.345} \sqrt{7.5}}{\sqrt{52.3}}
$$

Solution.

$$
\begin{aligned}
\log N & =\frac{1}{3} \log 0.345+\frac{1}{2} \log 7.5-\frac{1}{2} \log 52.3 \\
\log 0.345 & =\overline{1} .53782=29.53782-30 \\
\log 7.5 & =0.87506 \\
\log 52.3 & =1.71850 \\
\frac{1}{3} \log 0.345 & =9.84594-10 \\
\frac{1}{2} \log 7.5 & =\frac{0.43753}{10.28347-10} \\
\frac{1}{2} \log 52.3 & =0.85925 \\
\log N & =9.42422-10 \\
N & =0.26559
\end{aligned}
$$

Why did we write $\log 0.345=29.53782-30$ ?
7. Find the value of $N=\sqrt[5]{0.235}$.
8. Find the value of $N=\frac{78.54 \times 9.67}{8.269}$.
9. Find the value of $N=\frac{(104.6)^{1 / 2} \times(0.2536)^{1 / 3}}{(5.87)^{1 / 2}}$.
10. Find the value of $S=P(1+i)^{n}$, when $P=235, i=.06$, $n=7$.
11. Find the value of $\frac{0.07}{(1.07)^{11}-1}$.

## CHAPTER IX

## PROGRESSIONS

57. Arithmetical progressions. An arithmetical progression is a succession of numbers so related that each one is obtained by adding a fixed number to the preceding number.

The numbers forming the progression are called its terms. The fixed amount which must be added to any term to get the next term is called the common difference.
Thus, $1,3,5,7,9, \ldots$ is an arithmetical progression, having 2 for its common difference.
58. Elements of an arithmetical progression. Let $a$ represent the first term, $d$ the common difference, $n$ the number of terms, $l$ the $n$th or last term, $s$ the sum of the terms. The five numbers $a, d, n, l$ and $s$ are called elements of the arithmetical progression.
59. Relations among the elements. If $a$ is the first term and $d$ the common difference, the progression is $a$, $(a+d)$, $(a+2 d),(a+3 d), \ldots(a+(n-1) d)$. It is evident that the $n$th or last term is

$$
\begin{equation*}
l=a+(n-1) d . \tag{1}
\end{equation*}
$$

Since $s$ denotes the sum of the progression, we may write,

$$
\begin{align*}
s=a+(a & +d)+(a+2 d)+\ldots(l-2 d) \\
& +(l-d)+l,  \tag{2}\\
& 88
\end{align*}
$$

or $\quad s=l+(l-d)+(l-2 d)+\ldots(a+2 d)$

$$
\begin{equation*}
+(a+d)+a \tag{3}
\end{equation*}
$$

By adding (2) and (3) we get,

$$
\begin{align*}
2 s=(a+l) & +(a+l)+\ldots(a+l)+(a+l) \\
& +(a+l)=n(a+l) \tag{4}
\end{align*}
$$

Hence, $s=\frac{n}{2}(a+l)$.
Equations (1) and (4) are the two relations among the five elements that always exist. If we know any three of these elements, we may find the other two by using (1) and (4).
60. Arithmetic means. The first and last terms of an arithmetical progression are called the extremes, and the remaining terms in between are called the arithmetical means. By the aid of (1) any number of means may be inserted between any two numbers.

## Exercises

Find $l$ and $s$ for the following arithmetical progressions:

1. $3,5,7,9, \ldots$ to 15 terms.

Solution.
$l=a+(n-1) d$.
Here, $\quad a=3, d=2, n=15$.
Then, $\quad l=3+14 \cdot 2=31$.
And $\quad s=\frac{15}{2}(3+31)=15 \times 17=255$.
2. $5 ; 2,-1,-4$, to 12 terms.
3. $\frac{2}{3}, \frac{7}{12}, \frac{1}{2}$, to 10 terms.
4. $2,9,16,23$, to 9 terms.
5. Given $d=4, n=15, l=59$; find $a$ and $s$.
6. Given $a=12, l=-64, s=-520$; find $n$ and $d$.
7. Insert 5 arithmetical means between 2 and 14 .
8. Insert 11 arithmetical means between 3 and 7 .
61. Geometrical progression. A geometric progression is a succession of numbers so related that the ratio of each one to the preceding one is a fixed number, called the ratio. Thus 2, 6, 18, $54, \ldots$ is a geometrical progression having three for its ratio.
62. Elements of a geometrical progression. Let a represent the first term, $r$ the ratio, $n$ the number of terms, $l$ the $n$ th, or last, term and $s$ the sum of the terms. The numbers $a, r, n, l$, and $s$ are called the elements of the geometrical progression.
63. Relations among the elements. If $a$ is the first term and $r$ the ratio, the progression is $a, a r, a r^{2}, a r^{3}, \ldots a r^{n-1}$.
It is evident that the $n$th or last term is

$$
\begin{equation*}
l=a r^{n-1} \tag{5}
\end{equation*}
$$

Since $s$ denotes the sum of the progression, we may write,

$$
\begin{equation*}
s=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1} \tag{6}
\end{equation*}
$$

Then, $s r=a r+a r^{2}+a r^{3}+a r^{4}+\ldots a r^{n-1}+a r^{n}$.
Subtracting (6) from (7), we have $s r-s=a r^{n}-a$.
Hence, $s=\frac{a\left(r^{n}-1\right)}{r-1}$.
Equations (5) and (8) are the two relations among the five elements that always exist. If we know any three of these elements we may find the other two by using (5) and (8).

The first and last term of a geometrical progression are called the extremes, and the remaining terms in between are called the geometrical means. By the aid of (5), any number of means may be inserted between two numbers.

## Exercises

1. Given $a=2, r=3, n=8$; find $l$ and $s$.
2. Given $a=3, r=2, n=10$; find $l$ and $s$.
3. Given $s=242, a=2, n=5$; find $r$ and $l$.
4. Insert 4 geometrical means between 3 and 96 .
5. The first term of a geometrical progression is 3 , and the last term 81. If there are four terms in the progression, find the ratio and the sum of the terms.
6. An employer hires a clerk for five years at a beginning salary of $\$ 500$ per year with either a raise of $\$ 100$ each year after the first, or a raise of $\$ 25$ every six months after the first half year. Which is the better proposition for the clerk?
7. Find the sum of the progression

$$
\begin{array}{r}
1+(1+i)+(1+i)^{2}+(1+i)^{3}+\ldots(1+i)^{n-1} \\
\text { Ans. } \frac{(1+i)^{n}-1}{i} .
\end{array}
$$

8. Find the sum of the progression

$$
\begin{array}{r}
(1+i)^{-1}+(1+i)^{-2}+(1+i)^{-3}+\ldots(1+i)^{-n} \\
\text { Ans. } \frac{1-(1+i)^{-n}}{i}
\end{array}
$$

9. By the use of logarithms find the value of $\frac{(1+i)^{n}-1}{i}$, when $i=.06$ and $n=8$.
Solution. We have $\frac{(1.06)^{8}-1}{.06}$

$$
\begin{aligned}
\log (1.06) & =0.02531 \\
\log (1.06)^{8} & =0.20248 \\
(1.06)^{8} & =1.59396 \\
(1.06)^{8}-1 & =0.59396 \\
\frac{(1.06)^{8}-1}{.06} & =\frac{0.59396}{.06}=9.899
\end{aligned}
$$

10. Find the value of $255\left[\frac{(1.07)^{10}-1}{.07}\right]$.

## CHAPTER X

## INTEREST, ANNUITIES, SINKING FUND

64. Simple interest. Simple interest at any rate is most readily computed by the application of the principle of aliquot parts.

If we consider a year as composed of 12 months of 30 days each (360 days),

At $6 \%$, the interest on $\$ 1$ for 1 year is $\$ 0.06$,
At $6 \%$, the interest on $\$ 1$ for 2 mo . ( 60 days) is $\$ 0.01$,
At $6 \%$, the interest on $\$ 1$ for 6 days is $\$ 0.001$.
That is, to find the interest on any sum of money at $6 \%$ for 6 days, point off three places in the principal sum; and for 60 days. point off two places in the principal sum.

The interest on $\$ 1357$ for 6 days at $6 \%$ is $\$ 1.357$ and the interest on $\$ 1357$ for 60 days is $\$ 13.57$.

## Illustrations:

Find the interest on:

1. $\$ 385.60$ for 32 days at $6 \%$.
$\$ 0.3856=$ int. for 6 days

$$
\begin{aligned}
\$ 1.9280 & =\text { int. for } 30 \text { days }(5 \cdot 6 \text { days }) \\
.1285 & =\text { int. for } 2 \text { days }\left(\frac{1}{3} \cdot 6 \text { days }\right)
\end{aligned}
$$

$$
\$ 2.0565 \text { or } \$ 2.06=\text { int. for } 32 \text { days. }
$$

2. $\$ 435.00$ for 115 days at $6 \%$.

$$
\begin{aligned}
\$ 4.350 & =\text { int. for } 60 \text { days } \\
2.175 & =\text { int. for } 30 \text { days }\left(\frac{1}{2} \cdot 60 \text { days }\right) \\
1.450 & =\text { int. for } 20 \text { days }\left(\frac{1}{3} \cdot 60 \text { days }\right) \\
.362 & =\text { int. for } \quad 5 \text { days }\left(\frac{1}{4} \cdot 20 \text { days }\right)
\end{aligned}
$$

$\$ 8.337=$ int. for 115 days.
3. $\$ 520.00$ for 93 days at $8 \%$.

$$
\begin{aligned}
\$ 5.20 & =\text { int. for } 60 \text { days at } 6 \% \\
2.60 & =\text { int. for } 30 \text { days at } 6 \%\left(\frac{1}{2} \cdot 60 \text { days }\right) \\
.26 & =\text { int. for } 3 \text { days at } 6 \%\left(\frac{1}{10} \cdot 30 \text { days }\right)
\end{aligned}
$$

$\$ 8.06=$ int. for 93 days at $6 \%$
$2.69=$ int. for 93 days at $2 \%\left(\frac{1}{3} \cdot 6 \%\right)$
$\$ 10.75=$ int. for 93 days at $8 \%$.
4. $\$ 285.50$ for 78 days at $5 \%$.
$\$ 2.855=$ int. for 60 days at $6 \%$
$.714=$ int. for 15 days at $6 \%$ ( $\frac{1}{4} \cdot 60$ days)
$.143=$ int. for 3 days at $6 \%$ ( $\frac{1}{3} \cdot 15$ days)

$$
\begin{aligned}
\$ 3.712 & =\text { int. for } 78 \text { days at } 6 \% \\
.619 & =\text { int. for } 78 \text { days at } 1 \%
\end{aligned}
$$

$\$ 3.093=$ int. for 78 days at $5 \%$.
5. $\$ 275.00$ from March 3, 1928 to January 2, 1929 at $7 \%$.
$1929-1-2$
$1928-3-3$

9 mo. 29 days
$\$ 2.75$ = int. for 60 days ( 2 mo .) at $6 \%$
$\$ 11.00$ = int. for 240 days ( 8 mo .) at $6 \%$
$1.375=$ int. for 30 days ( 1 mo .) at $6 \%$
$.917=$ int. for 20 days at $6 \%$ ( $\frac{1}{3} \cdot 60$ days)
$.275=$ int. for 6 days at $6 \%$
$.137=$ int. for 3 days at $6 \%$ ( $\frac{1}{2} \cdot 6$ days)
$\$ 13.704=$ int. for 9 mo .29 days at $6 \%$
$2.284=$ int. for 9 mo. 29 days at $1 \%$
$\$ 15.988=$ int. for 9 mo .29 days at $7 \%$.

## Exercises

1. Find the interest at $6 \%$ on:
$\$ 825$ for 50 days,
$\$ 753.40$ for 70 days,
2. Solve 1 , if the rate is $7 \%$.
3. Find the interest at $8 \%$ on:
$\$ 425$ for 38 days,
$\$ 575$ for 68 days, $\$ 545$ for 90 days,
$\$ 365.50$ for 97 days,
$\$ 847.60$ for 125 days.
$\$ 750$ for 115 days,
$\$ 800$ for 100 days,
$\$ 250$ for 83 days.

Find the interest at $6 \%$ on the following:
4. $\$ 756.50$ from Feb. 20,1928 to Sept. 15, 1928,
5. $\$ 3756.40$ from March 1, 1927 to July 10, 1928,
6. $\$ 5250.00$ from April 10, 1928 to March 5, 1929.
7. A note for $\$ 350$ was given July 7, 1927. What was the interest at $7 \%$ due Sept. 5, 1928 ?
(Ans. \$28.45)
8. Find the interest on 4, 5, 6 at $8 \%$.
65. Compound interest. Simple interest is calculated on the original principal only, and is proportional to the time. If the interest, when due, is added to the principal, and the interest for the next period is calculated on the principal thus increased and this process is continued with each succeeding accumulation of interest, the interest is said to be compound. Interest may be computed annually, semi-annually, quarterly, or at some other regular interval. That is, interest is converted into principal at these regular intervals.
66. Compound interest formulas. Let $P$ be the principal, $i$ the rate of interest, and $S$ the amount to which $P$ will accumulate in $n$ years. The interest for one year will be $P i$, and the amount at the end of the year will be $P+P i=P(1+i)$. This is the principal for the second year, and the interest for the second year will be $P(1+i) i$. The amount at the end of the second year will be

$$
P(1+i)+P(1+i) i=P(1+i)^{2} .
$$

By similar reasoning we find that the amount at the end of the third year is $P(1+i)^{3}$, and in general the amount at the end of $n$ years is $P(1+i)^{n}$. We thus have the formula

$$
\begin{equation*}
S=P(1+i)^{n} . \tag{1}
\end{equation*}
$$

In equation (1) $i$ is the annual rate of interest and the formula is used when the interest is converted into principal annually. If the interest were converted into principal $m$ times per year, we would replace $i$ in the formula by $\frac{i}{m}$ and $n$ by $m n$. That is we would find the compound amount at $\frac{i}{m}$ per cent per period for $m n$ periods.

Example. Find the compound amount of $\$ 100$ for 15 years at $6 \%$ converted semi-annually. The amount would be $\$ 100(1.03)^{30}$.
Then in general, if interest is at rate $j$ converted $m$ times per year, formula (1) is replaced by

$$
\begin{equation*}
S=P\left(1+\frac{j}{m}\right)^{m n} \tag{2}
\end{equation*}
$$

## Exercises

1. Find the amount of $\$ 250$ at $6 \%$ interest converted annually for 5 years.
2. Solve example 1 if the interest is converted semi-annually.
3. How long will it take $\$ 100$ to double itself at $6 \%$ interest converted annually?
Solution. Here $P=\$ 100$ and $S=\$ 200$, since it is to be double the value of $P$. We then have, $200=100(1.06)^{n}$. Our problem now is to find $n$. Taking logarithms of both sides of the above equation, we have,

$$
\log 200=\log 100+n \log (1.06)
$$

and solving for $n$ we get,

$$
n=\frac{\log 200-\log 100}{\log 1.06}=\frac{2.3010-2.0000}{.0253}=11.9 \text { years. }
$$

Notr. This is the time required for any principal to double itself at $6 \%$.
4. How long will it require $\$ 75$ to double itself at $5 \%$ interest converted annually?
b. How long will it take any principal to double itself at $i \%$ converted annually?
6. What principal will amount to $\$ 1000$ in 6 years at $6 \%$ converted annually?
7. A father wishes to have $\$ 2000$ to give his son on his 21 st birthday. What sum should he deposit at his birth in a savings bank paying $5 \%$ interest converted annually?

6\%. Annuities. Any series of equal payments, made at equal intervals of time, is known as an annuity. The word annuity implies yearly payments, but in a broader sense the term annuity is used to describe any series of equal payments made at equal intervals of time. Unless otherwise designated, the payments are understood to be made at the end of the interval of time and to continue for a specified number of periods. The dividends from an investment, income from rented property, and insurance premiums are some examples of an annuity.
68. Amount of an annuity. The sum to which the entire number of payments accumulate is called the amount of the annuity. We now find the amount of an annuity of one dollar per annum. The symbol $s_{n}$, is universally used to represent the amount of an annuity of 1 per annum, payable annually for $n$ years at rate $i$ per annum. The first payment made at the end of the first year will be at interest for $n-1$ years and its compound amount will be $(1+i)^{n-1}$. (See (1) Art. 66.) The second payment made at the end of the second year will accumulate to $(1+i)^{n-2}$ and the third payment made at the end of the third year will accumulate to $(1+i)^{n-3}$ and so on. The last payment will be a cash payment of 1 and will draw no interest. We then have

$$
\begin{aligned}
s_{\bar{n} \mid}=(1 & +i)^{n-1}+(1+i)^{n-2}+(1+i)^{n-3}+\ldots+(1+i) \\
& +1=1+(1+i)+(1+i)^{2}+\ldots+(1+i)^{n-2} \\
& +(1+i)^{n-1}
\end{aligned}
$$

This is a geometrical progression of $n$ terms, having 1 for first term and ( $1+i$ ) for ratio.

The sum of this series is $\frac{(1+i)^{n}-1}{i}$. (See ex. 7, Art. 63.)

Hence,

$$
\begin{equation*}
s_{n}=\frac{(1+i)^{n}-1}{i} \tag{1}
\end{equation*}
$$

If the annual payment is $R$ and if $K$ represents the amount, we have, $\quad K=R s_{\bar{n} \mid}=R \frac{(1+i)^{n}-1}{i}$.

Formulas (1) and (2) are true where the interest is converted once a year. Now, if the interest is converted $m$ times a year, we replace $(1+i)$ by $\left(1+\frac{j}{m}\right)^{m}$ and $i$ by $\left(1+\frac{j}{m}\right)^{m}-1$ in (1) and (2) and get,

$$
\begin{equation*}
s_{\bar{n} \mid}=\frac{\left(1+\frac{j}{m}\right)^{m n}-1}{\left(1+\frac{j}{m}\right)^{m}-1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
K=R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{\left(1+\frac{j}{m}\right)^{m}-1} \tag{4}
\end{equation*}
$$

## Exercises

1. Find the amount of an annuity of $\$ 200$ per ammun for 15 years at $5 \%$ interest.

Solution. From equation (2) above we have,

$$
\begin{aligned}
K & =\$ 200 s_{\bar{n} \mid}=200 \frac{(1.05)^{15}-1}{.05} \\
& =4000\left((1.05)^{15}-1\right) \\
\log 1.05 & =0.02119 \\
15 \log 1.05 & =0.31785 \\
(1.05)^{15} & =2.0790 \\
(1.05)^{15}-1 & =1.0790
\end{aligned}
$$

and

$$
K=4000 \times 1.0790=\$ 4316.00
$$

Note. If the number of conversions is not specified in a problem, it will be understood that the interest is converted annually.
2. If in example 1 the interest is converted semi-annually, find the amount of the annuity.

Solution. From equation (4) above we have,

$$
K=200 \frac{(1.025)^{30}-1}{(1.025)^{2}-1}
$$

$\log 1.025=0.01072$
$30 \log 1.025=0.32160$
$(1.025)^{30}=2.0970$
$(1.025)^{30}-1=1.0970$
$2 \log 1.025=0.02144$
$(1.025)^{2}=1.0506$
$(1.025)^{2}-1=0.0506$
and

$$
K=\frac{200 \times 1.0970}{.0506}=\$ 4,336
$$

3. The annual rent of a house is $\$ 500$. Find the amount of this annuity for 20 years at $5 \%$.
4. A man deposits in a savings bank at the end of each year $\$ 400$. What will be the amount of his savings at the end of 16 years, if the bank pays $4 \%$ interest converted semi-annually?
5. What sum must be deposited in a savings bank at the end of each year to amount to $\$ 5000$ at the end of 10 years, if the bank pays $4 \%$ interest?

Solution. Here we have the amount of an annuity to find the annual deposit.

From (2) we have, $5000=R \frac{(1.04)^{10}-1}{.04}$.

Solving for $R$ we get, $R=\frac{.04(5000)}{(1.04)^{10}-1}$

$$
=\frac{\$ 200}{0.4801}=\$ 416.58 .
$$

6. What sum must be deposited in a savings bank paying $5 \%$ interest, converted semi-annually, to provide for the payment of a debt of $\$ 5000$ due in 6 years?
7. A man gives a mortgage on his farm for $\$ 3000$, which is to be paid in 5 years. How much money must he deposit at the end of each year in a savings bank, paying $4 \%$ interest, to care for the debt when due? The interest on the mortgage is $6 \%$. What will be his total yearly outlay to care for this debt?
8. Amount of an annuity, where the annual payment, $R$ is payable in $p$ equal installments. The amount of an annuity of 1 per annum, payable in $p$ equal installments at equal intervals during the year, will be denoted by the symbol, $s \frac{(p)}{n}$. If the interest is converted yearly and $i$ is the rate, $s \frac{(p)}{n \mid}$ can be expressed in terms of $n, i$, and $p$ as follows. At the end of the $p$ th part of a year, $\frac{1}{p}$ is paid. This sum will remain at interest for $\left(n-\frac{1}{p}\right)$ years and will amount to

$$
\frac{1}{p}(1+i)^{n-1 / p}
$$

The second installment of $\frac{1}{p}$ will be at interest for $\left(n-\frac{2}{p}\right)$ years and will amount to $\frac{1}{p}(1+i)^{n-2 / p}$, and so on until $n p$ installments are paid. The last installment will be paid at the
end of $n$ years and will draw no interest. Adding all these installments beginning with the last one, we have

$$
\begin{align*}
s \frac{(p)}{n}=\frac{1}{p}+\frac{1}{p}(1+i)^{1 / p} & +\frac{1}{p}(1+i)^{2 / p}+\ldots \frac{1}{p}(1+i)^{n-2 / p} \\
& +\frac{1}{p}(1+i)^{n-1 / p} . \tag{1}
\end{align*}
$$

This is a geometrical progression of $n p$ terms having $\frac{1}{p}$ for first term and $(1+i)^{1 / p}$ as the ratio.

Hence,

$$
\begin{equation*}
s \frac{(p)}{n}=\frac{(1+i)^{n}-1}{p\left[(1+i)^{1 / p}-1\right]} . \tag{2}
\end{equation*}
$$

and $\quad K=R s \frac{(p)}{n}=R \frac{(1+i)^{n}-1}{p\left[(1+i)^{1 / \nu}-1\right]}$.
If the interest is converted $m$ times a year, we substitute $\left(1+\frac{j}{m}\right)^{m}$ for $(1+i)$ and (3) becomes

$$
\begin{equation*}
K=R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{p\left[\left(1+\frac{j}{m}\right)^{m / p}-1\right]} \tag{4}
\end{equation*}
$$

If the number of conversion periods is equal to the number of installments per year, i.e., $m=p$, equation (4) takes a simpler form. Then,

$$
\begin{equation*}
K=\frac{R\left[\left(1+\frac{j}{p}\right)^{n p}-1\right]}{p\left[\left(1+\frac{j}{p}\right)^{p / p}-1\right]}=\frac{R}{p} \frac{\left(1+\frac{j}{p}\right)^{n p}-1}{\frac{j}{p}} \tag{5}
\end{equation*}
$$

Equation (5) is the same as equation (2) Art. 68, $\frac{R}{p}$ being the periodic payment for $n p$ periods at rate $\frac{j}{p}$ per period.

## Exercises and Problems

1. Find the amount of an annuity of $\$ 400$ per year paid in four quarterly installments of $\$ 100$ for 6 years if the rate of interest is $6 \%$.

Solution. Here $R=\$ 400, i=.06, p=4, n=6$, and using (3), Art. 69, we get,

$$
K=\frac{400\left[(1.06)^{6}-1\right]}{4\left[(1.06)^{1 / 4}-1\right]}=100 \frac{(1.06)^{6}-1}{(1.06)^{1 / 4}-1}
$$

$$
\begin{aligned}
\log 1.06 & =0.02531 \\
\log (1.06)^{1 / 4} & =0.00633 \\
(1.06)^{1 / 4} & =1.01467 \\
(1.06)^{1 / 4}-1 & =0.01467 \\
\log (1.06)^{6} & =0.15186 \\
(1.06)^{6} & =1.41860 \\
(1.06)^{6}-1 & =0.41860 \\
K & =\frac{100(0.41860)}{0.01467}=\$ 2853 .
\end{aligned}
$$

Hence,
2. If in Ex. 1, the interest were converted scmi-annually, what would be the amount of the annuity?
Solution. Here $R=400, p=4, n=6, m=2$ and $j=.06$. Using equation (4), Art. 69, we get,

$$
K=\frac{400\left[(1.03)^{12}-1\right]}{4\left[(1.03)^{1 / 2}-1\right]}=100 \frac{(1.03)^{12}-1}{(1.03)^{1 / 2}-1}
$$

$$
\begin{aligned}
\log 1.03 & =0.01284 \\
\log (1.03)^{1 / 2} & =0.00642
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(1.03)^{1 / 2} & =1.01488 \\
(1.03)^{1 / 2}-1 & =0.01488 \\
\log (1.03)^{12} & =0.15408 \\
(1.03)^{12} & =1.42587 \\
(1.03)^{12}-1 & =0.42587 \\
K & =\frac{100(0.42587)}{0.01488}=\$ 2862 .
\end{aligned}
$$

3. What would be the amount of the annuity defined in Ex. 1, if the interest were converted quarterly?

Solution. Here $R=400, p=4, n=6, m=4$, and $j=.06$. Since $m=p$, we use (5), Art. 69, and

$$
K=\frac{100(1.015)^{24}-1}{.015}
$$

$$
\begin{aligned}
\log 1.015 & =0.00647 \\
\log (1.015)^{24} & =0.15528 \\
(1.015)^{24} & =1.42980 \\
(1.015)^{24}-1 & =0.42980
\end{aligned}
$$

Hence,

$$
K=\frac{100(0.42980)}{.015}=\$ 2865
$$

Note. In solving Examples 1, 2, 3 above, 5 place logarithms were used. Had 7 place interest and annuity tables been used the results would have been $\$ 2852.15, \$ 2859.53$ and $\$ 2863.35$ respectively, which are correct to the nearest cent. But ordinarily 5 place logarithms will give results which are accurate enough. Should the student desire complete interest and annuity tables, he is referred to "Tables of Compound Interest Functions and Logarithms of Compound Interest Functions," by James W. Glover and Harry C. Carver, published by George Wahr, Ann Arbor, Michigan.
4. Find the amount of an annuity of $\$ 400$ per year, payable in two semi-annual installments of $\$ 200$ for 8 years, if the rate of interest is $4 \%$ converted quarterly.
5. A man pays into a Building and Loan Association $\$ 25$ at the end of each month for 10 years. If the association pays $6 \%$ interest and computes its interest at the end of each six months, what will he have to his credit at the end of the 10 years?
6. In purchasing a house priced at $\$ 6000$, a man pays $\$ 3000$ down and gives a five-year mortgage for the balance. In order to meet the mortgage when due he deposits in a $5 \%$ savings bank at the end of each month a portion of his monthly salary. Find the monthly deposit. (Hint: Use equation (3), Art. 69 and solve for $\frac{R}{12}$ as $R$ was solved for in Ex. 5, Art. 68.)
70. Present value. We may need to find the value of a sum of money at some time before it is due. By the present value of a sum $S$, due in $n$ years, we mean the principal that will at a given rate amount to $S$ in $n$ years. This problem is solved by equation (1) Art 66 . Solving this equation for $P$, we get

$$
\begin{equation*}
P=\frac{S}{(1+i)^{n}}=S v^{n}, \text { where } v=\frac{1}{1+i} . \tag{1}
\end{equation*}
$$

Example. Find the present value of a note of $\$ 200$ due in 5 years if money is worth $5 \%$ interest.

Solution. Here we have,

$$
P=\frac{\$ 200}{(1.05)^{5}}=\frac{\$ 200}{1.2763}=\$ 156.70 .
$$

71. Present value of an annuity. By the present value of an annuity we mean the sum of the present values of all the payments. The present value of an annuity of 1 per annum is represented by the symbol $a_{\bar{n}}$. We now find the present value of an annuity of 1 per annum for $n$ years at rate $i$ per annum. The present value of the first payment made at the end of the first year will be

$$
\frac{1}{1+i}=(1+i)^{-1} .
$$

The present value of the second payment made at the end of the second year will be $(1+i)^{-2}$ and the third payment made at the end of the third year will have for its present value $(1+i)^{-3}$ and so on. The last payment made at the end of $n$ years will have $(1+i)^{-n}$ for its present value. We have then,
$a_{\bar{n}}=(1+i)^{-1}+(1+i)^{-2}+(1+i)^{-3}+\ldots(1+i)^{-n}$.
This is a geometrical progression of $n$ terms, having $(1+i)^{-1}$ for first term and $(1+i)^{-1}$ for ratio. The sum of this series is

$$
\begin{align*}
a_{\bar{n}} & =\frac{(1+i)^{-1}\left[(1+i)^{-n}-1\right]}{(1+i)^{-1}-1} \\
& =\frac{(1+i)^{-n}-1}{1-(1+i)} \\
& =\frac{(1+i)^{-n}-1}{-i}=\frac{1-(1+i)^{-n}}{i} . \tag{2}
\end{align*}
$$

If the annual payment is $R$ and $A$ represents the present value, we have,

$$
\begin{equation*}
A=R a_{\bar{n} \mid}=R \frac{1-(1+i)^{-n}}{i} \tag{3}
\end{equation*}
$$

If the interest is converted $m$ times a year, we substitute $\left(1+\frac{j}{m}\right)^{m}$ for $(1+i)$ and $\left(1+\frac{j}{m}\right)^{m}-1$ for $i$ in (3) and get,

$$
\begin{equation*}
A=R \frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{\left(1+\frac{j}{m}\right)^{m}-1} \tag{4}
\end{equation*}
$$

72. Present value of an annuity, where the annual payment $R$ is payable in $p$ equal installments. The present value of an
annuity of 1 per annum payable in $p$ equal installments will be denoted by $a \frac{(p)}{n}$. If the interest is converted yearly and $i$ is the rate, $a \frac{(p)}{n}$ can be expressed in terms of $n, i$, and $p$ as follows. The first payment will be made at the end of the $p$ th part of the year and its present value will be $\frac{1}{p}(1+i)^{-1 / p}$. Similarly, the present value of the second payment will be $\frac{1}{p}(1+i)^{-2 / p}$ and so on. The present value of the last payment will be $\frac{1}{p}(1+i)^{-n}$. Adding the present values of all these payments we get,

$$
\begin{equation*}
a \frac{(p)}{n}=\frac{1}{p}(1+i)^{-1 / p}+\frac{1}{p}(1+i)^{-2 / p}+\ldots \frac{1}{p}(1+i)^{-n} \tag{1}
\end{equation*}
$$

This is a geometrical progression of $n p$ terms having $\frac{1}{p}(1+i)^{-1 / p}$ for first term and $(1+i)^{-1 / p}$ for ratio.

Hence,

$$
\begin{align*}
a \frac{(p)}{n \mid} & =\frac{1-(1+i)^{-n}}{p\left[(1+i)^{1 / p}-1\right]}  \tag{2}\\
A & =R \frac{1-(1+i)^{-n}}{p\left[(1+i)^{1 / p}-1\right]} . \tag{3}
\end{align*}
$$

If the interest is converted $m$ times per year, (3) becomes

$$
\begin{equation*}
A=R \frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{p\left[\left(1+\frac{j}{m}\right)^{m / p}-1\right]} \tag{4}
\end{equation*}
$$

When $m=p$, (see (5) Art. 69), (4) takes the form,

$$
\begin{equation*}
A=R \frac{1-\left(1+\frac{j}{p}\right)^{-n p}}{p\left[\left(1+\frac{j}{p}\right)^{p / p}-1\right]}=\frac{R}{p} \frac{1-\left(1+\frac{j}{p}\right)^{-n p}}{\frac{j}{p}} \tag{5}
\end{equation*}
$$

which is similar to (3) Art. 71, $\frac{R}{p}$ being the periodic payment for $n p$ periods at rate $\frac{j}{p}$ per period.

## Exercises and Problems

1. What is the present value of an annuity of $\$ 200$, payable at the end of each year, for 12 years, if money is worth $6 \%$ ?

Solution. $\quad A=200 \frac{1-(1.06)^{-12}}{.06}$.

$$
\begin{aligned}
\log 1.06 & =0.02531 \\
\log (1.06)^{-12} & =-(0.30372)=9.69628-10 \\
(1.06)^{-12} & =0.49691 \\
1-(1.06)^{-12} & =0.50309 \\
A & =\frac{200(0.50309)}{.06}=\$ 1676.97
\end{aligned}
$$

2. Find the cost of an annuity of $\$ 500$, to run 20 years and payable at the end of the year if money is worth $6 \%$, converted semi-annually.
3. A man purchased a house, paying $\$ 5000$ down and $\$ 500$ at the end of each year for 8 years. What would be the equivalent price if he paid all in cash at the time of purchase, money being worth $8 \%$ ?
4. Find the cost of an annuity of $\$ 100$ payable at the end of each month and to run for 10 years, if money is worth $4 \%$. (Hint: Use equation (3), Art. 72.)
5. A house is purchased for $\$ 10,000$ and it is arranged that $\$ 5000$ cash be paid and the balance in 10 equal annual installments, including interest at $6 \%$. Find the annual payment.

Solution. $\$ 10,000-\$ 5000=\$ 5000$, balance to be paid in 10 equal annual payments including interest. Here we have the present value of an annuity and are required to find the annual payment. Substituting in equation (3), Art. 71, we get,

$$
5000=R \frac{1-(1.06)^{-10}}{.06},
$$

and

$$
R=\frac{.06(5000)}{1-(1.06)^{-10}}=\frac{.06(5000)}{0.44160}=\$ 679.34 .
$$

6. A piece of property is offered for sale for $\$ 500$ cash and $\$ 1000$, at the end of each year for 5 years, or for $\$ 5000$ cash. Which is the better plan for the buyer if money is worth $5 \%$ ?
7. A man wishes to provide an income for old age. He assumes that at the age of 25 years he will have 35 years of productive activity ahead of him, and that he can save $\$ 300$ per year during that time. This accumulation at $5 \%$ compound interest at age of 60 will purchase what annual payments for 20 years, if money is worth $5 \%$ ?

Ans. \$2174.40.
73. Sinking funds. When an obligation becomes due at some future date, it is usually desirable to provide for the payments by accumulating a fund by periodic contributions, together with interest earnings. Such an accumulated fund is called a sinking fund.

Example. A debt of $\$ 8000$, bearing $8 \%$ interest is due in 4 years. A sinking fund is to be accumulated at $6 \%$. What sum must be deposited in the sinking fund at the end of each year to care for the principal when due? Ans. \$1828.73.
The amount in the sinking fund at any particular time may be shown by the following schedule known as an accumulation schedule:

Accumulation Schedule

| Years | Annual <br> Deposit | Interest on <br> Fund | Total Annual <br> Increment | Value of Fund <br> at End of <br> Each Year |
| :--- | :---: | :---: | :---: | :---: |
| 1 | 1828.73 | $\ldots \ldots \ldots \ldots$ | $\ldots \ldots \ldots \ldots$ | 1828.73 |
| 2 | 1828.73 | 10972 | 1938.45 | 3767.18 |
| 3 | 182873 | 226.03 | 205476 | 5821.94 |
| 4 | 182873 | 34932 | 217805 | 7999.99 |

We notice that at the end of the fourth year the value of the fund is $\$ 7999.99$ or one cent less than the amount of the debt. This would have been avoided had we used the nearest mill instead of the nearest cent in our computations.

Depreciation Schedule

| Age in <br> Years | Book Value <br> at End of Year | Annual <br> Payment to <br> Sinking Fund <br> to Cover <br> Depreciation | Interest on <br> Depreciation <br> Allowance | Total in <br> Sinking Fund |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 23500 |  |  |  |
| 1 | 211.44 | 2356 | 0.00 | 23.56 |
| 2 | 18670 | 23.56 | 1.18 | 4830 |
| 3 | 160.72 | 2356 | 2.42 | 74.28 |
| 4 | 13345 | 2356 | 3.71 | 101.55 |
| 5 | 104.81 | 23.56 | 5.08 | 130.19 |
| 6 | 74.74 | 23.56 | 651 | 160.26 |
| 7 | 43.17 | 2356 | 8.01 | 191.83 |
| 8 | 10.02 | 23.56 | 9.59 | 224.98 |

Example. A farmer pays $\$ 235$ for a binder. The best estimates show that it will have a life of 8 years and a scrap value of $\$ 10$. He wishes to create a sinking fund to provide
for its depreciation. Assuming money worth $5 \%$, what is the annual depreciation charge? Make a schedule showing the book value of the machine at the end of each year and the total amount in the sinking fund at any time.

Solution. The annual depreciation charge will equal the annual deposit required to accumulate in 8 years at $5 \%$ to \$225 (\$235-\$10).
Using (2) Art. 68, we find the annual charge to be $\$ 23.56$.
We notice that the book value of the machine at the end of any year equals the original cost less the total amount in the sinking fund at that time.
74. Amortization. Instead of leaving the entire principal of a debt standing until the end to be cancelled by a sinking fund, we may consider any payment over what is needed to pay interest on the principal to be applied at once toward liquidation of the debt. As the debt is being paid off, a less and less amount goes towards the payment of interest, so that with a uniform payment per year, a greater amount goes towards the payment of principal. This method of extinguishing a debt is called the method of amortization of principal.

## 75. Amortization schedules.

Consider a debt of $\$ 2000$ bearing $6 \%$ interest. Suppose that it is desired to repay this in 8 equal annual installments, including interest.

Substituting in equation (3) Art 71, we get,

$$
2000=R \frac{1-(1.06)^{-8}}{.06}
$$

and

$$
R=\frac{.06(2000)}{1-(1.06)^{-8}}=\$ 322.07
$$

The interest for the first year will be $\$ 120$; hence $\$ 202.07$ of first payment would be used for the reduction of principal,
leaving $\$ 1797.93$ due on principal at the beginning of the second year. The interest on this amount is $\$ 107.88$; hence, the principal is reduced by $\$ 214.19$, leaving $\$ 1583.74$ due on principal at the beginning of the third year, and so on. This process may be continued by means of the following schedule known as an amortization schedule:

| Year | Principal <br> at Beginning <br> of Year | Interest at 6\% | Principal Repaid |
| :---: | :---: | :---: | :---: |
| 1 | 200000 | 120.00 | 202.07 |
| 2 | 179793 | 10788 | 214.19 |
| 3 | 1583.74 | 9502 | 227.05 |
| 4 | 135669 | 8140 | 240.67 |
| 5 | 1116.02 | 6696 | 255.11 |
| 6 | 86091 | 5165 | 270.42 |
| 7 | 59049 | 35.43 | 28664 |
| 8 | 30385 | 18.23 | 303.84 |
|  | 960963 | 576.57 | 1999.99 |

Such a schedule gives us the amount remaining due on the principal at the beginning of any year during the amortization period. The principal at the beginning of the last year should equal the last principal repaid and the sum of the principals repaid should equal the original principal. You will notice that there is a discrepancy in the above example of only one cent. This would have been avoided had we used the nearest mill instead of the nearest cent in our computations. As a further check we notice that the interest on the sum of all the principals outstanding is equal to the sum of all the interest paid. In the above example we see that the sum of the principals outstanding is $\$ 9609.63$ and that the interest on this sum at $6 \%$ is $\$ 576.57$.

The Federal Farm Loan Act provides for the lending of money to farmers at a reasonable rate of interest, with the privilege of amortizing the principal by equal annual payments over a long period of time. The maximum loan on a farm is for $40 \%$ of the appraised value. The rate is $5 \%$ and the usual time allowed is 30 years.

Example. A farmer buys a farm for $\$ 10,000$. He has $\$ 6000$ to pay down and secures a Federal farm loan for the balance to be amortized in 30 years at $5 \%$.

Using equation (3), Art. 71 we find the annual payment to be $\$ 260.206$ or $\$ 260.21$.

The following table shows the progress of this loan for the first five years:

| Year | Principal <br> at Beginning <br> of Year | Interest at 5\% | Principal Repaid |
| :--- | :---: | :---: | :---: |
| 1 | 4000.00 | 20000 | 6021 |
| 2 | 393979 | 196.99 | 6322 |
| 3 | 387657 | 193.83 | 66.38 |
| 4 | 381019 | 190.51 | 6970 |
| 5 | 3740.49 | 187.02 | 73.19 |

76. Interest and annuity tables. In the note of Art. 69 we referred to certain interest and annuity tables. Tables giving the values of $(1+i)^{n}(1+i)^{-n}, \frac{(1+i)^{n}-1}{i}$, $\frac{1-(1+i)^{-n}}{i}$, and other interest functions for all integral values of $n$ up to 200 and for different values of $i$ have been computed accurately to seven decimal places. Time and space do not permit of the inclusion of such complete tables in this text. However, it seems advisable to spend a little time here
in pointing out the use of such tables and their value as time saving devices. For this reason brief tables for $(1+i)^{n}$, $(1+i)^{-n}, \frac{(1+i)^{n}-1}{i}$ and $\frac{1-(1+i)^{-n}}{i}$ have been included.

In solving Ex. (1), Art. 68, we would have,

$$
K=200 s_{15} \text { at } 5 \%
$$

Here, $n=15, i=.05$ and the tabular value of $s \overline{15} \mid$ at $5 \%$ is 21.5785636.

Hence, $K=200 \times 21.5785636=\$ 4315.71$.
It would be interesting to discuss the methods used in constructing such tables but time and space do not permit of this discussion.

The student may now solve by tables, excrcises $1,2,6,7$, Art. 66; exercises 1, 3, 4, 5, 6, 7, Art. 68; exercises 1, 2, 5, 6, 7, Art. 72.

## Exercises and Problems

1. Find the annual payment that will be necessary to amortize in 10 years a debt of $\$ 2000$, bearing interest at $8 \%$. Construct a schedule.
2. The Federal Farm Loan Bank loaned a farmer $\$ 5000$ at $5 \%$ interest, convertible semi-annually. The agreement was that the farmer should repay principal and interest in equal semi-annual installments covering a period of 15 years. Find the amount of each semiannual payment.
3. At the age of 25 a young man resolves that, when he is 60 years of age, he will have $\$ 40,000$ saved. If he invests his savings semiannually at $6 \%$ interest, convertible semi-annually, what amount must he save semi-annually? If at age 60 he desired to have it paid back to him as an annual annuity payable at the end of each year, what would be his annual income over a period of 25 years if money at that time were worth $5 \%$ interest?
4. The beneficiary of a policy of insurance is offered a cash payment of $\$ 20,000$ or an annuity of $\$ 1500$ for 20 years certain, the first pay-
ment to be made one year hence. Allowing interest at $4 \%$ per annum, which is the better option, and how much better per annum?
5. A house is purchased for $\$ 15,000$ and it is arranged that $\$ 5000$ cash be paid, and the balance in 10 equal annual installments, including interest at $6 \%$. Find the annual payment and construct a schedule.
6. Complete the farm loan schedule in Art. 75.
7. What would have been the equal payment if made semi-annually with interest at $5 \%$ semi-annually?
8. A tractor costs $\$ 1200$. It is estimated that with proper care it will have a life of 8 years with a scrap value of $\$ 50$ at the end of this time. Construct a depreciation schedule on a $4 \%$ interest basis.

## CHAPTER XI

## TRIGONOMETRIC FUNCTIONS

7\%. Meaning of trigonometry. The word trigonometry comes from two Greek words meaning triangle and measurement. This would suggest that the subject deals with the solution of the triangle. This is one of the important applications of trigonometry, but the subject is much broader than this for it is the basis of many important topics.

The development of trigonometry depends entirely upon six fundamental definitions whichare called the trigonometric functions. These are sine, cosine, tangent, cotangent, secant and cosecant and will be defined in Art. 78.

Any triangle is composed of six parts, three sides and three angles. If any three parts are given, provided at least one of them is a side, geometry enables us to construct the triangle, and trigonometry enables us to compute the unknown parts from the numerical values of the known parts.
78. Trigonometric definitions. Consider the right-angled triangle $A B C$ (Fig. 27). $A$ and $B$ are acute angles, $C$ is the right angle, and $a, b, c$, are the sides opposite the respective


Frg. 27. angles. The six different ratios among the three sides are $\frac{a}{c}, \frac{b}{c}, \frac{a}{b}, \frac{b}{a}, \frac{c}{b}$, and $\frac{c}{a}$, and these are defined as the six trigonometric functions of the angle $A$. Thus we have,
$\frac{a}{c}=\frac{\text { side opposite } A}{\text { hypotenuse }}=$ sine of $A$, written $\sin A$.
$\frac{b}{c}=\frac{\text { side adjacent } A}{\text { hypotenuse }}=$ cosine of $A$, written $\cos A$.
$\frac{a}{b}=\frac{\text { side opposite } A}{\text { side adjacent } A}=$ tangent of $A$, written $\tan A$.
$\frac{b}{a}=\frac{\text { side adjacent } A}{\text { side opposite } A}=$ cotangent of $A$, written $\cot A$.
$\frac{c}{b}=\frac{\text { hypotenuse }}{\text { side adjacent } A}=\operatorname{secant}$ of $A$, written sec $A$.
$\frac{c}{a}=\frac{\text { hypotenuse }}{\text { side opposite } A}=\operatorname{cosec} a n t$ of $A$, written csc $A$.
Since the trigonometric functions of the angle $A$ are ratios of the sides of a right triangle, it is evident that they are constant for any fixed angle and do not change value for different lengths of the sides of the triangle. (This follows from the definition of similar triangles.)

Applying the definitions to angle $B$, we may write

$$
\left.\begin{array}{l}
\sin B=\frac{b}{c}=\cos A, \\
\cos B=\frac{a}{c}=\sin A, \\
\tan B=\frac{b}{a}=\cot A, \\
\cot B=\frac{a}{b}=\tan A,  \tag{2}\\
\sec B=\frac{c}{a}=\csc A, \\
\csc B=\frac{c}{b}=\sec A .
\end{array}\right\}
$$

79. Co-functions and complementary angles. The cosine, cotangent and cosecant of an angle are co-functions of the sine, tangent and secant, respectively. Since in Fig. 27, $A$ and $B$ are complementary angles, $A+B=90^{\circ}$, it follows from (2) that any function of an angle equals the co-function of the complement of that angle. For example,

$$
\sin 25^{\circ}=\cos 65^{\circ}, \quad \tan 29^{\circ}=\cot 61^{\circ}
$$

## Exercises

Fill the blanks in the following with the proper co-function:

1. $\sin 75^{\circ}=$ ?
2. $\tan 18^{\circ} 20^{\prime}=$ ?
3. $\cot 75^{\circ} 18^{\prime}=$ ?
4. $\sec 19^{\circ} 37^{\prime}=$ ?
5. $\csc 47^{\circ} 29^{\prime}=$ ?
6. $\sec \left(90^{\circ}-A\right)=$ ?
7. $\tan 38^{\circ} 15^{\prime}=$ ?
8. $\cos 72^{\circ} 18^{\prime}=$ ?
9. Construct an acute angle $A$ such that $\tan A=\frac{3}{4}$ and write the other trigonometric functions of the angle.

Solution. From the definition of the tangent, we know that $A$ is an angle of a triangle having 3 for opposite side and 4 for adjacent side. The hypotenuse then is 5 (8, Art. 29). The functions are,

$$
\begin{array}{ll}
\sin A=\frac{3}{5}, & \cot A=\frac{4}{3}, \\
\cos A=\frac{4}{5}, & \sec A=\frac{5}{4}, \\
\tan A=\frac{3}{4}, & \csc A=\frac{5}{3} .
\end{array}
$$

Construct the angle $A$ in the following


Fig. 28. and write the other functions:
10. $\sin A=\frac{8}{17}$.
11. $\cos A=\frac{2}{3}$.
13. $\sec A=3$.
14. $\csc A=2$.
12. $\cot A=\frac{5}{4}$.
15. $\tan A=\frac{4}{3}$.

If in Fig. 27,
16. $\sin A=\frac{1}{b}, \quad c=15$, find $a$ and $b$.
17. $\tan A=\frac{4}{3}, \quad b=24$, find $a$ and $c$.
18. $\cos A=0.325, \quad b=10$, find $c$.
80. Relations among the functions. From Fig. 27 we have,

$$
\begin{align*}
& a^{2}+b^{2}=c^{2}(8, \text { Art. } 29)  \tag{3}\\
& \frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=1\left(\text { dividing (3) by } c^{2}\right) \tag{4}
\end{align*}
$$

But,

$$
\sin A=\frac{a}{c}, \quad \cos A=\frac{b}{c}
$$

Hence,

$$
\begin{equation*}
\sin ^{2} A^{*}+\cos ^{2} A=1 \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a^{2}}{b^{2}}+1=\frac{c^{2}}{b^{2}}\left(\text { dividing (3) by } b^{2}\right) \tag{5}
\end{equation*}
$$

But,

$$
\tan A=\frac{a}{b} \quad \text { and } \quad \sec A=\frac{c}{b} .
$$

Hence,

$$
\begin{equation*}
\tan ^{2} A+1=\sec ^{2} A, \tag{B}
\end{equation*}
$$

It is left for the student to show that,

$$
\begin{align*}
& \cot ^{2} A+1=\csc ^{2} A .  \tag{C}\\
& \tan A=\frac{1}{\cot A}=\frac{\sin A}{\cos A} .  \tag{D}\\
& \cot A=\frac{1}{\tan A}=\frac{\cos A}{\sin A} .  \tag{E}\\
& \sec A=\frac{1}{\cos A} .  \tag{F}\\
& \csc A=\frac{1}{\sin A} . \tag{G}
\end{align*}
$$

The above relations are important and should be learned. They are known as fundamental identities.

$$
{ }^{*} \sin ^{2} A, \text { means }(\sin A)^{2} .
$$

## Exercises

Making use of the fundamental identities verify the following identities:

1. $\frac{\tan A-1}{\tan A+1}=\frac{1-\cot A}{1+\cot A}$.

Verification: An identity may be verified by reducing the left-hand member to the form of the right, the right-hand member to the form of the left or both members to a common form. Thus,

$$
\begin{aligned}
\frac{\tan A-1}{\tan A+1} & =\frac{\frac{1}{\cot A}-1}{\frac{1}{\cot A}+1}, \text { by }(D) \\
& =\frac{\frac{1-\cot A}{\cot A}}{\frac{1+\cot A}{\cot A}} \\
& =\frac{1-\cot A}{1+\cot A} .
\end{aligned}
$$

an $A+\cot A=\sec A \csc A$.
3. $\tan A \cos A=\sin A$.
4. $\frac{\sin A}{\csc A}+\frac{\cos A}{\sec A}=1$.
5. $\cot A+\frac{\sin A}{1+\cos A}=\csc A$.
6. $\frac{1+\cot ^{2} A}{1+\tan ^{2} A}=\cot ^{2} A$.
7. $\sin A \sec A \cot A=1$.
8. $\sec A-\cos A=\sin A \tan A$.
81. Functions of $30^{\circ}, 45^{\circ}, 60^{\circ}$. From Fig. 29, we have,
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{1}{2} \sqrt{2}$,
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{1}{2} \sqrt{2}$,
$\tan 45^{\circ}=1, \quad \csc 45^{\circ}=\frac{\sqrt{2}}{1}=\sqrt{2}$,
$\cot 45^{\circ}=1, \quad \sec 45^{\circ}=\frac{\sqrt{2}}{1}=\sqrt{2}$.


Fig. 29.

From Fig. 30, we have,
$\sin 30^{\circ}=\frac{1}{2}=\cos 60^{\circ}$,
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=\sin 60^{\circ}$,
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{1}{3} \sqrt{3}=\cot 60^{\circ}$,
$\cot 30^{\circ}=\frac{\sqrt{3}}{1}=\tan 60^{\circ}$,
$\sec 30^{\circ}=\frac{2}{\sqrt{3}}=\frac{2}{3} \sqrt{3}=\csc 60^{\circ}$,
$\csc 30^{\circ}=2=\sec 60^{\circ}$.

## Exercises

Making use of the results of Art. 81, find the numerical values of the following:

1. $7 \cos 60^{\circ}-2 \sin 30^{\circ}+3 \cot 45^{\circ}$.
2. $6 \sin 60^{\circ}\left(\sin 30^{\circ} \tan 60^{\circ}-\cot 60^{\circ}\right)$.

Ans. $5 \frac{1}{2}$.
3. $\left(\frac{\sin ^{2} 60^{\circ}-\cos ^{2} 60^{\circ}}{\tan ^{2} 30^{\circ}}\right)\left(\frac{\cot ^{2} 45^{\circ}+\tan ^{2} 45^{\circ}}{\cot ^{2} 30^{\circ}}\right)$.

Ans. $\frac{3}{2}$.
Ans. 1.
4. $\tan 45^{\circ} \cot 30^{\circ}+\sec 30^{\circ} \cos 45^{\circ}$.

Ans $\sqrt{3}+\frac{1}{3} \sqrt{6}$.
82. Line values of the functions. Fig. 31 is a circle having unity for its radius. $D B$ and $E C$ are perpendicular to $A C$ and $F G$ is perpendicular to $A F$. Then we may write,


Fig. 31.

$$
\sin A=\frac{B D}{A D}=B D .
$$

since, $A D$ is the unit.

$$
\begin{aligned}
& \cos A=\frac{A B}{A D}=A B \\
& \tan A=\frac{C E}{A C}=C E . \\
& \sec A=\frac{A E}{A C}=A E \\
& \cot A=\cot G=\frac{F G}{A F}=F G . \\
& \csc A=\csc G=\frac{A G}{A F}=A G .
\end{aligned}
$$

83. Variations of the functions. As $A$ increases from $0^{\circ}$ to $90^{\circ}$, it is easily seen from Fig. 31 that

$$
\begin{aligned}
& \sin A \text { varies from } 0 \text { to } 1, \\
& \cos A \text { varies from } \\
& \tan A \text { to } 0, \\
& \cot A \text { varies from } \\
& \sec \text { to } \infty, \\
& \sec A \text { varies from } 1 \text { to } \infty, \\
& \csc A \text { varies from } \infty * \text { to } 1 .
\end{aligned}
$$

84. Natural trigonometric functions and logarithms of the trigonometric functions. In Table III in the back of this text, the values of the sine, cosine, tangent and cotangent are given correct to five decimal places, and in Table II, the logarithms of these functions are given. The method of using these tables differs very little from that employed in the use of Table I. A few exercises will illustrate the process.

## Exercises

1. Find the value of $\sin 14^{\circ} 35^{\prime}$. This value as found in the table is 0.25179 .
2. Find the value of $\tan 35^{\circ} 47^{\prime}$. This value is not given in the tables, but we find the values of $\tan 35^{\circ} 45^{\prime}$ and $\tan 35^{\circ} 50^{\prime}$ to be 0.71990 and 0.72211 , respectively. The difference between these two values is 0.00221 . Since $35^{\circ} 47^{\prime}$ is two-fifths of the way from $35^{\circ} 45^{\prime}$ to $35^{\circ} 50^{\prime}$, we add to 0.71990

Hence,

$$
\frac{2}{5} \cdot 0.00211=0.00084 .
$$

$$
\tan 35^{\circ} 47^{\prime}=0.72074 .
$$

[^1]3. Find the value of $\cot 66^{\circ} 38^{\prime}$. When the angle is greater than $45^{\circ}$ we must read up the page, reading the function at the bottom of the page and the angle on the right. We find the values of cot $66^{\circ} 35^{\prime}$ and cot $66^{\circ} 40^{\prime}$ to be 0.43308 and 0.43136 , respectively. The difference between these two values is 0.00172 . Since $66^{\circ} 38^{\prime}$ is threefifths of the way from $66^{\circ} 35^{\prime}$ to $66^{\circ} 40^{\prime}$, we subtract from 0.43308
\[

$$
\begin{aligned}
\frac{3}{5} \cdot 0.00172 & =0.00103 \\
\cot 66^{\circ} 38^{\prime} & =0.43205
\end{aligned}
$$
\]

4. Find the angle whose tangent is 0.41856 . The angle is not found in these tables, but it lies between the angles $22^{\circ} 40^{\prime}$ and $22^{\circ} 45^{\prime}$, the values of whose tangents are 0.41763 and 0.41933 , respectively. Now, 0.41856 is $\frac{93}{170}$ of the way from 0.41763 to 0.41933 . Thus the angle, whose tangent is 0.41856 , is

Hence,

$$
\begin{aligned}
22^{\circ} 40^{\prime}+\frac{93}{170} \cdot 5^{\prime} & =22^{\circ} 43^{\prime} \\
\tan 22^{\circ} 43^{\prime} & =0.41856 .
\end{aligned}
$$

5. Find $\log \sin 43^{\circ} 29^{\prime} 45^{\prime \prime}$. We find $\log \sin 43^{\circ} 29^{\prime}$ and $\log \sin$ $43^{\circ} 30^{\prime}$ to be $9.83768-10$ and $9.83781-10$, respectively. The difference between these two values is 0.00013 . Since $43^{\circ} 29^{\prime} 45^{\prime \prime}$ is three fourths of the way from $43^{\circ} 29^{\prime}$ to $43^{\circ} 30^{\prime}$, we add to $9.83768-10$

$$
\frac{3}{4} \cdot 0.00013=0.00010 \text {. }
$$

Hence,

$$
\log \sin 43^{\circ} 29^{\prime} 45^{\prime \prime}=9.83778-10 .
$$

6. Find the angle the logarithm of whose cosine is $9.90504-10$. The angle lies between $36^{\circ} 31^{\prime}$ and $36^{\circ} 32^{\prime}$, the logarithms of whose cosines are $9.90509-10$ and $9.90499-10$, respectively. Now, $9.90504-10$ is $\frac{5}{10}$ of the way from $9.90509-10$ to $9.90499-10$.
Thus the angle, the logarithm of whose cosine is $9.90504-10$, is

$$
36^{\circ} 31^{\prime}+\frac{5}{10} \cdot 60^{\prime \prime}=36^{\circ} 31^{\prime} 30^{\prime \prime} .
$$

Hence,

$$
\log \cos 36^{\circ} 31^{\prime} 30^{\prime \prime}=9.90504-10 .
$$

7. Find the following:
(a) $\tan 38^{\circ} 27^{\prime}$,
(b) $\sin 75^{\circ} 18^{\prime}$,
(c) $\cot 5^{\circ} 29^{\prime}$.

Ans. (a) 0.79421, (b) 0.96727, (c) 10.417.
8. Find the angle $A$ when:
(a) $\sin A=0.37820$,
(b) $\cot A=2.3424$.

$$
\text { Ans. (a) } A=22^{\circ} 13^{\prime}, \quad \text { (b) } A=23^{\circ} 7^{\prime}
$$

9. Find the following:
(a) $\log \cos 41^{\circ} 28^{\prime}$,
(b) $\log \tan 76^{\circ} 18^{\prime} 40^{\prime \prime}$.
Ans. (a) $9.87468-10$, (b) 0.61333.
10. Find the angle $A$ when:
(a) $\log \sin A=9.32860-10$,
(b) $\log \cot A=9.36200-10$.
Ans. (a) $A=12^{\circ} 18^{\prime} 17^{\prime \prime}, \quad$ (b) $A=77^{\circ} 2^{\prime} 22^{\prime \prime}$.

## CHAPTER XII

## SOLUTION OF THE RIGHT ANGLE TRIANGLE

85. Formulas for the solution of a rigit triangle. If any two parts of a right triangle (at least one side) are known the following formulas are employed to obtain the other parts:

$$
\begin{align*}
a^{2}+b^{2} & =c^{2}  \tag{1}\\
A+B & =90^{\circ}  \tag{2}\\
\sin A & =\frac{a}{c}=\cos B  \tag{3}\\
\cos A & =\frac{b}{c}=\sin B  \tag{4}\\
\tan A & =\frac{a}{b}=\cot B \tag{5}
\end{align*}
$$



Fig. 32.
86. Applying the Formulas. Before attempting to solve any problem, a careful drawing should be made of the required triangle (enough parts will be given to completely construct it). The proper formulas should be chosen and an outline for the solution be made before making use of the tables. This will usually save much time. An exercise will illustrate the plan.

Illustrated Problem I. In a right triangle $A=37^{\circ} 50^{\prime}$, $b=15.6$. Find $a$ and $c$.

Solution. Approximate construction.
(a) By trigonometric functions:

$$
\begin{aligned}
& \tan A=\frac{a}{b}, \quad \cos A=\frac{b}{c}, \\
& \therefore \quad a=b \tan A, \quad c=\frac{b}{\cos A} . \\
& a=15.6 \times 0.77661, \quad c=\frac{15.6}{0.78980}, \\
& B=90-A=52^{\circ} 10^{\prime} . \\
& \quad a=12.115, \quad c=19.75 .
\end{aligned}
$$

(b) By logarithms:

$$
\begin{aligned}
& \quad a=b \tan A, \quad c=\frac{b}{\cos A} \\
& B=90-A .
\end{aligned}
$$

Data and Results

| $A$ | $37^{\circ} 50^{\prime}$ |
| :--- | :--- |
| $b$ | 15.6 |
| $B$ | $52^{\circ} 10^{\prime}$ |
| $a$ | 12.115 |
| $c$ | 19751 |

Logs

| $\tan A$ | $9.89020-10$ |
| ---: | ---: |
| $b$ | 119312 |
| $a$ | 1.08332 |
| $b$ | $11.19312-10$ |
| $\cos A$ | $9.89752-10$ |
| $c$ | 1.29560 |

Illustrated Problem II. In a right triangle $a=25.6$, $c=31.3$. Find $A, B$ and $b$.

Solution. Figure

$$
\begin{array}{rlrl}
\sin A & =\frac{a}{c}, & \cos A=\frac{b}{c} . \\
\sin A & =\frac{25.6}{31.3}, & & b=c \cos A . \\
\sin A & =0.81789, & b=31.3 \times 0.57548 . \\
A & =54^{\circ} 52^{\prime}, & b=18.012, \\
B & =90^{\circ}-A=35^{\circ} 8^{\prime} .
\end{array}
$$



Fig. 34.

## Exercises

Solve the first five exercises making use of the trigonometric functions. Use logarithms on the next three.

1. Given, $a=17.5, \quad A=47^{\circ} 10^{\prime} ; \quad$ Find $b, c$, and $B$.
2. Given, $a=13.7$,

$$
b=35.3
$$

Find $A, B$, and $c$.
3. Given, $c=340$, $B=29^{\circ} 30^{\prime} ; \quad$ Find $A, b$, and $a$.
4. Given, $b=275$, $A=52^{\circ} 25^{\prime} ; \quad$ Find $a, B$, and $c$.
5. Given, $a=37.5, \quad b=122$; $\quad$ Find $A, B$, and $c$.
6. Given, $a=25.62$, $A=33^{\circ} 20^{\prime} ; \quad$ Find $B, b$, and $c$.
7. Given, $c=67.7$,
$A=23^{\circ} 30^{\prime} ; \quad$ Find $a, b$, and $B$.
8. Given, $a=32.56$,
$c=42.82 ; \quad$ Find $A, B$, and $b$.
9. In measuring the width of a river, a line $A B$ is measured 500 feet along one bank. A perpendicular to $A B$ at $A$ is erected which locates a point $C$ upon the opposite bank, and the angle $A B C$ is found to be $38^{\circ} 10^{\prime}$. Find the width of the stream. Ans. 393 feet.
10. Find the height of a tree which casts a horizontal shadow of 75.5 feet when the sun's angle of elevation is $57^{\circ} 50^{\prime}$. Ans. 120 feet.

Note. The angle which the line of sight to an object makes with a horizontal line in the same vertical plane is called an angle of elevation
when the object is above the êye of the observer and an angle of depression when the object is below the eye of the observer.


Fig. 35.
11. A building 30 feet wide and 50 feet long has a gable roof with a pitch (angle of elevation) of $35^{\circ}$. The rafters project 16 inches beyond the walls and the roof projects 16 inches beyond the ends. Find the length of the rafters and the number of squares of roofing required. (A square is $100 \mathrm{sq} . \mathrm{ft}$.)
12. A line segment $A B$, has an angle of elevation of $\theta . *$ Find its horizontal and vertical projections.

Solution. The horizontal and vertical projections of $A B$ are gotten by dropping the perpendiculars $A C, B D$, and $A E, B F$ to the horizontal


Fig. 36. and vertical lines respectively. $C D$ and $E F$ are the required projections. We see then that the horizontal and vertical projections of a line segment are equal to the base and altitude of a right triangle of which the line segment is the hypotenuse. Hence,

$$
C D=A G=A B \cos \theta
$$ and

$$
E F=G B=A B \sin \theta
$$

13. Find the projection of a line 560 feet long running $\mathrm{N} .35^{\circ} 20^{\prime} \mathrm{E}$. upon a line running East and West.

[^2]14. A force of 250 lbs . making an angle of $36^{\circ} 10^{\prime}$ with the horizontal acts upon a heavy body. Find the forces which tend to move the body horizontally and vertically. (These horizontal and vertical forces are called the horizontal and vertical components.)
15. Horizontal and vertical forces of 150 lbs . and $80 \mathrm{lbs} .$, respectively, act upon a body. What is the resultant of these forces and what angle does the line of this resultant force make with the horizontal?
16. A flag pole 75 ft . high casts a shadow 122 ft . long. What is the angle of elevation of the sun at that time?
17. A telephone post is anchored to a stone buried in the ground by a stay wire which makes an angle of $63^{\circ}$ with the horizontal. The tension in the wire is 500 lbs . Find the horizontal and vertical pull on the stone.
18. From a point $A$ in a level plain the angle of elevation of the top of a hill is $38^{\circ}$. From a point $B, 750 \mathrm{ft}$. closer to the hill the angle of elevation is $70^{\circ}$. How high is the top of the hill above the plain?

Ans. 818.9 ft .

## CHAPTER XIII

## TRIGONOMETRIC FUNCTIONS OF ANY ANGLE SOLUTION OF THE OBLIQUE TRIANGLE

87. Trigonometric definitions. In Art. 78 the trigonometric functions for an acute angle were given. We shall now extend these definitions to include any angle. Coordinate axes (Art. 30, Fig. 11) will be employed in the location of the angle. Starting with the positive extremity of the $X$-axis and going in a counter-clockwise direction the coordinate axes divide the plane into four quadrants numbered I, II, III, IV (Fig. 37).

A positive angle is described when a radius $O P$ is rotated about $O$, counter clockwise, from the initial position $O X$ into a terminal position $O P$.


These definitions hold for an angle whose terminal side lies in any one of the four quadrants.
88. Laws of signs. The algebraic signs of the trigonometric functions for angles terminating in the respective quadrants are determined by the signs of $x$ and $y$ for that quadrant. The student may show that these signs are as indicated by the following diagram:

| Quadrant | sin | cos | t.n | cot | sec | csc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | + | + | + | + | + | + |
| II | + | - | - | - | - | + |
| III | - | - | + | + | - | - |
| IV | - | + | - | - | + | - |

89. Functions of negative angles. A negative angle is described when a radius, $O P$ is rotated about $O$, clockwise, from the initial position $O X$.

In Fig. 38 angle $A O P_{2}$ is equal to $-\theta$, angle $A O P_{1}$ is equal to $\theta$. $r_{2}=r_{1}, \quad x_{2}=x_{1}, \quad y_{2}=-y_{1}$.

We may write,

$$
\left.\begin{array}{l}
\sin (-\theta)=\frac{y_{2}}{r_{2}}=\frac{-y_{1}}{r_{1}}=-\sin \theta, \\
\cos (-\theta)=\frac{x_{2}}{r_{2}}=\frac{x_{1}}{r_{1}}=\cos \theta \\
\tan (-\theta)=\frac{y_{2}}{x_{2}}=\frac{-y_{1}}{x_{1}}=-\tan \theta  \tag{1}\\
\cot (-\theta)=\frac{x_{2}}{y_{2}}=\frac{x_{1}}{-y_{1}}=-\cot \theta
\end{array}\right\}
$$



Fra. 38.
The above relations hold for angles whose terminal sides lie in any one of the four quadrants.
90. Functions of $180^{\circ}-\theta$. Supplementary angles. In Fig. 39 triangle $O A_{2} P_{2}$ equals triangle $O A_{1} P_{1}$, and $x_{2}=-x_{1}$, $y_{2}=y_{1}, r_{2}=r_{1}$. Hence,


Fra. 39.

$$
\left.\begin{array}{l}
\sin (180-\theta)=\frac{y_{2}}{r_{2}}=\frac{y_{1}}{r_{1}}=\sin \theta \\
\cos (180-\theta)=\frac{x_{2}}{r_{2}}=\frac{-x_{1}}{r_{1}}=-\cos \theta \\
\tan (180-\theta)=\frac{y_{2}}{x_{2}}=\frac{y_{1}}{-x_{1}}=-\tan \theta  \tag{2}\\
\cot (180-\theta)=\frac{x_{2}}{y_{2}}=\frac{-x_{1}}{y_{1}}=-\cot \theta
\end{array}\right\}
$$

The student may show that the above relations hold when $\theta$ is an angle of the second quadrant.

## Exercises

1. Show that the fundamental identities (Art. 80) hold for angles in any quadrant.
2. Writing $180^{\circ}+\theta$ as $(180-(-\theta))$ and making use of relations (2), Art. 90, and (1), Art. 89 show that

$$
\left.\begin{array}{l}
\sin (180+\theta)=-\sin \theta  \tag{3}\\
\cos (180+\theta)=-\cos \theta \\
\tan (180+\theta)=\tan \theta \\
\cot (180+\theta)=\cot \theta
\end{array}\right\}
$$

3. Make the proper drawings and show that the functions of $90^{\circ}-\theta$ are equal to the co-functions of $\theta$.
4. Write $90^{\circ}+\theta$ as $(90-(-\theta))$ and making use of (1), Art. 89 show that

$$
\left.\begin{array}{l}
\sin (90+\theta)=\cos \theta \\
\cos (90+\theta)=-\sin \theta \\
\tan (90+\theta)=-\cot \theta  \tag{4}\\
\cot (90+\theta)=-\tan \theta .
\end{array}\right\}
$$

5. Fill the blanks with the proper function of the supplement of each angle:
(a) $\sin 110^{\circ}=\sin 70^{\circ}$
(e) $\cot 109^{\circ} 15^{\prime}=$
(b) $\tan 99^{\circ} 18^{\prime}=$
(f) $\cos 135^{\circ}=$
(c) $\tan \left(90^{\circ}+\theta\right)=$
(g) $\cos \left(90^{\circ}-\alpha\right)=$
(d) $\sin 175^{\circ}=$
(h) $\cot 120^{\circ}=$
6. Draw figures and show:
(a) $\sin 70^{\circ}=\cos 20^{\circ}=\sin 110^{\circ}$,
(b) $\sin 130^{\circ}=\sin 50^{\circ}$,
(c) $\sin 220^{\circ}=-\sin 40^{\circ}$,
(d) $\cos 190^{\circ}=-\cos 10^{\circ}$.


Fig. 40.
Solution (a). In Fig. 40

$$
r_{1}=r_{2}, x_{2}=-x_{1}, y_{2}=y_{1}
$$

Hence, $\sin 70^{\circ}=\frac{y_{1}}{r_{1}}=\frac{y_{2}}{r_{2}}=\sin 110^{\circ}$.
Also, $\sin 70^{\circ}=\cos 20^{\circ}$, (Art. 79) $\sin 70^{\circ}=\cos 20^{\circ}=\sin 110^{\circ}$.
91. Functions of the sum of two angles. In Fig. 41, $S R$ is perpendicular to $O R$ and $S N$ is perpendicular to $O M$, and $\triangle S T R$ is similar to $\triangle O M R$.

We may write,

$$
\sin (\theta+\phi)=\frac{N S}{O S}=\frac{M R+T S}{O S}
$$

But $M R=O R \sin \theta=O S \cos \phi \sin \theta$,
and $T S=S R \cos \theta=O S \sin \phi \cos \theta$.


Fig. 41.
Hence, $\sin (\theta+\phi)=\sin \theta \cos \phi+\sin \phi \cos \theta$.
Also, $\quad \cos (\theta+\phi)=\frac{O N}{O S}=\frac{O M-T R}{O S}$.
But
$O M=O R \cos \theta=O S \cos \phi \cos \theta$,
and $T R=S R \sin \theta=O S \sin \phi \sin \theta$.

Hence, $\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$.
From (5) and (6) we have,

$$
\tan (\theta+\phi)=\frac{\sin (\theta+\phi)}{\cos (\theta+\phi)}=\frac{\sin \theta \cos \phi+\sin \phi \cos \theta}{\cos \theta \cos \phi-\sin \phi \sin \theta} .
$$

If we divide both numerator and denominator of the above expression by $\cos \theta \cos \phi$, we get,

$$
\begin{align*}
& \tan (\theta+\phi)=\frac{\frac{\sin \theta}{\cos \theta}+\frac{\sin \phi}{\cos \phi}}{1-\frac{\sin \theta}{\cos \theta} \cdot \frac{\sin \phi}{\cos \phi}} . \\
& \tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi} . \tag{7}
\end{align*}
$$

In Fig. 41, $\theta$ and $\phi$ are acute angles and their sum is also acute. However, relations (5), (6), and (7) hold for all angles of any magnitude, and we assume this without proof.
92. Functions of the difference of two angles. If we write $\sin (\theta-\phi)$ as $\sin (\theta+(-\phi))$ and substitute in (5), Art. 91, we get,

$$
\sin (\theta-\phi)=\sin \theta \cos (-\phi)+\cos \theta \sin (-\phi) .
$$

But $\quad \cos (-\phi)=\cos \phi, \sin (-\phi)=-\sin \phi$. ((1), Art. 89.)
Hence,

$$
\begin{equation*}
\sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi \tag{8}
\end{equation*}
$$

The student may show that,

$$
\begin{equation*}
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi, \tag{9}
\end{equation*}
$$

and $\tan (\theta-\phi)=\frac{\tan \theta-\tan \phi}{1+\tan \theta \tan \phi}$.
93. Functions of twice an angle. If we make $\phi=\theta$ and substitute in (5), Art. 91, we get,

$$
\begin{equation*}
\sin 2 \theta=2 \sin \theta \cos \theta . \tag{11}
\end{equation*}
$$

When $\phi=\theta$ (6) becomes,

$$
\begin{align*}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta  \tag{12}\\
& =1-2 \sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \tag{A}
\end{align*}
$$

((A), Art. 80.)

The student may show that,

$$
\begin{equation*}
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} . \tag{13}
\end{equation*}
$$

94. Half-angle formulas. In (11), (12), (13), Art. 93, let $\theta=\frac{x}{2}$, and we get,

$$
\begin{align*}
\sin x & =2 \sin \frac{x}{2} \cos \frac{x}{2}  \tag{14}\\
\cos x & =\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}  \tag{15}\\
& =1-2 \sin ^{2} \frac{x}{2} \\
& =2 \cos ^{2} \frac{x}{2}-1 \\
\tan x & =\frac{2 \tan \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}} \tag{16}
\end{align*}
$$

Solving the second, and third forms of (15) respectively for $\sin \frac{x}{2}$ and $\cos \frac{x}{2}$, we get,

$$
\begin{equation*}
\sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{2}} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\cos \frac{x}{2}= \pm \sqrt{\frac{1+\cos x}{2}} \tag{18}
\end{equation*}
$$

95. Sum and difference formulas. If we add (5) and (8), subtract (8) from (5), add (6) and (9), and subtract (9) from (6), respectively, we get,

$$
\left.\begin{array}{rl}
\sin (\theta+\phi)+\sin (\theta-\phi) & =2 \sin \theta \cos \phi, \\
\sin (\theta+\phi)-\sin (\theta-\phi) & =2 \cos \theta \sin \phi, \\
\cos (\theta+\phi)+\cos (\theta-\phi) & =2 \cos \theta \cos \phi,  \tag{19}\\
\cos (\theta+\phi)-\cos (\theta-\phi) & =-2 \sin \theta \sin \phi .
\end{array}\right\}
$$

Let $\theta+\phi=x, \quad \theta-\phi=y$, then,

$$
\theta=\frac{x+y}{2}, \quad \phi=\frac{x-y}{2} .
$$

Making these substitutions in (19), we have,

$$
\begin{align*}
& \sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}  \tag{20}\\
& \sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}  \tag{21}\\
& \cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}  \tag{22}\\
& \cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2} . \tag{23}
\end{align*}
$$

## Exercises

1. Show that $\cos 75^{\circ}=\frac{1}{4}(\sqrt{6}-\sqrt{2})$.

Solution. $\cos 75^{\circ}=\cos \left(45^{\circ}+30^{\circ}\right)$

$$
\begin{aligned}
& =\cos 45^{\circ} \cos 30^{\circ}-\sin 45^{\circ} \sin 30^{\circ},((6), \text { Art. 91) } \\
& =\frac{1}{2} \sqrt{2} \cdot \frac{1}{2} \sqrt{3}-\frac{1}{2} \sqrt{2} \cdot \frac{1}{2},(\text { Art. } 81) \\
& =\frac{1}{4} \sqrt{6}-\frac{1}{4} \sqrt{2} .
\end{aligned}
$$

2. Show that $\cos 15^{\circ}=\sin 75^{\circ}=\frac{1}{4}(\sqrt{6}+\sqrt{2})$.
3. Show that $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)=2-\sqrt{3}$.
4. Draw a figure and show that (5) and (6) hold when $(\theta+\phi)$ lies in the second quadrant.
5. If $\sin x=\frac{1}{3}$, find $\sin 2 x$, also $\cos 2 x$, and $\tan 2 x$.

Solution. By the method of exercise 9, Art. 79, we find that if $\sin x=\frac{1}{3}, \quad \cos x=\frac{2}{3} \sqrt{2}$, and $\tan x=\frac{1}{4} \sqrt{2}$.
Then by (11), Art. 93, we have,

$$
\sin 2 x=2 \cdot \frac{1}{3} \cdot \frac{2}{3} \sqrt{2}=\frac{4}{8} \sqrt{2} . \quad \cos 2 x=? \quad \tan 2 x=?
$$

6. Find $\tan 43^{\circ} 36^{\prime}$, if $\tan 21^{\circ} 48^{\prime}=.4$.
7. Find $\sin 15^{\circ}$, knowing $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$.
8. Show that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.

Hint: Write $\sin 3 \theta$ as $\sin (2 \theta+\theta)$, and expand by (5), Art. 91, and apply (11), (12), Art. 93, and (A), Art. 80.)
9. Show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
10. Show that $\sin 40^{\circ}+\sin 10^{\circ}=2 \sin 25^{\circ} \cos 15^{\circ}$.
11. Show that $\sin 70^{\circ}-\sin 40^{\circ}=2 \cos 55^{\circ} \sin 15^{\circ}$.
12. Show that $\frac{\sin 5 x+\sin x}{\cos 5 x+\cos x}=\tan 3 x$.
13. Show that $\frac{\sin x+\sin y}{\sin x-\sin y}=\frac{\tan \frac{x+y}{2}}{\tan \frac{x-y}{2}}$.
96. Theorem of sines. The lettering in figures 42 and 43 is similar to that in figure 27. Draw a perpendicular $p$ from


Fig. 42.


Fig. 43.
vertex $B$ to opposite side $b$ (opposite side produced in Fig. 43). Then, from the right triangles $A K B$ and $C K B$, we get,

$$
\sin A=\frac{p}{c}, \quad \sin C=\frac{p}{a}
$$

Dividing $\sin A$ by $\sin C$, we have

$$
\text { (a) } \frac{\sin A}{\sin C}=\frac{a}{c}
$$

This is true for both Figures 42 and 43, for in Fig. 43, we have

$$
\sin (180-C)=\sin C
$$

Drawing a perpendicular from vertex $C$ to side $c$, we would get, similarly,

$$
\text { (b) } \frac{\sin A}{\sin B}=\frac{a}{b} \text {. }
$$

Also, drawing a perpendicular from vertex $A$ to side $a$, we would have,

$$
\text { (c) } \frac{\sin C}{\sin B}=\frac{c}{b}
$$

The above results may be written in the form,

$$
\begin{equation*}
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \tag{24}
\end{equation*}
$$

Theorem. In any triangle the sines of the angles are proportional to the opposite sides.

By observing (a), (b) and (c) it is easily seen that the Theorem of Sines may be used to solve a triangle when two sides and an angle opposite one of the sides are given, or when the angles and a side are given.

Example I. Given $a=$ 5.63, $b=42.3$ and $A=25^{\circ}$ $10^{\prime}$; find $B, C$, and $c$.


Fig. 44.
Solution. Construction, Formulas,

$$
\begin{aligned}
\sin B & =\frac{b \sin A}{a} \\
C & =180-(A+B) \\
c & =\frac{a \sin C}{\sin A}
\end{aligned}
$$



This example admits of two solutions which is evident from the above construction, i.e., both triangles $A B C$ and $A B^{\prime} C$ are solutions.

Second solution $\left(A B^{\prime} C\right)$ :

$$
\begin{aligned}
B^{\prime} & =180^{\circ}-B=149^{\circ} 39^{\prime} \\
C & =180^{\circ}-\left(A+B^{\prime}\right)=5^{\circ} 11^{\prime} \\
c & =\frac{a \sin C}{\sin A}=7.567
\end{aligned}
$$

As a matter of fact, when two sides and an angle opposite one of the sides are given, the data may admit of two solutions, one solution or no solution, but these facts will come out in the solution and we need not generalize on them.


Example II. Given $a=45.6$, $A=35^{\circ} 15^{\prime}, B=76^{\circ} 10^{\prime}$; find $b, c$, and $C$.

Fig. 45.

Solution. Construction, Formulas,

$$
\begin{aligned}
C & =180-(A+B) \\
b & =\frac{a \sin B}{\sin A} \\
c & =\frac{a \sin C}{\sin A}
\end{aligned}
$$

Data and Results

|  |  |
| :--- | :--- |
| $a$ | 45.6 |
| $A$ | $35^{\circ} 15^{\prime}$ |
| $B$ | $76^{\circ} 10^{\prime}$ |
| $C$ | $68^{\circ} 35^{\prime}$ |
| $b$ | 76.717 |
| $c$ | 73.553 |

Logs

| $\begin{array}{r} a \\ \sin B \end{array}$ | $\begin{aligned} & 1.65896 \\ & 9.98722-10 \end{aligned}$ |
| :---: | :---: |
|  | 11.64618-10 |
| $\sin A$ | 9.76129-10 |
| $b$ | 1.88489 |
| $\begin{array}{r} \sin C \\ a \end{array}$ | $\begin{aligned} & 996893-10 \\ & 1.65896 \end{aligned}$ |
| $\sin A$ | $\begin{array}{r} 11.62789-10 \\ 9.76129-10 \end{array}$ |
| c | 1.86660 |

## Exercises

1. Make drawings to show that when two sides of a triangle and an angle opposite one of these sides are given there may be two solutions, one solution or no solution.
2. Given $a=48.3, \quad A=48^{\circ} 30^{\prime}, \quad B=75^{\circ} 15^{\prime}$; find $b, c$.
3. Given $a=149.5, \quad b=115.6, \quad A=71^{\circ} 20^{\prime}$; find $B, C, c$.
4. Given $a=23.1, \quad c=16.5, \quad C=33^{\circ} 10^{\prime} ;$ find $A, B, b$.
5. Given $b=125.6, \quad B=39^{\circ} 45^{\prime}, C=105^{\circ} 15^{\prime} ;$ find $A, a, c$.
6. Theorem of cosines. In triangle $A B C$ drop a perpendicular $h$ from $B$ to side $b$. From the right triangle BHC, we get,

$$
\text { (a) } \begin{aligned}
a^{2} & =h^{2}+\overline{H C}^{2} \\
& =h^{2}+(b-A H)^{2} \\
& =h^{2}+{\overline{A H^{2}}}^{2}+b^{2}-2 b \overline{A H} .
\end{aligned}
$$

But from the right triangle $A B H$, we have,
(b) $h^{2}+\overline{A H}^{2}=c^{2}$, and $A H=c \cos A$.


Fig. 46.


Fig. 47.

Substituting (b) in (a) we get,

$$
\begin{equation*}
a^{2}=b^{2}+c^{2}-2 b c \cos A . \tag{25}
\end{equation*}
$$

It may also be shown that,
and

$$
\begin{align*}
& b^{2}=a^{2}+c^{2}-2 a c \cos B  \tag{26}\\
& c^{2}=a^{2}+b^{2}-2 a b \cos C \tag{27}
\end{align*}
$$

Theorem. In any triangle the square on any side is equal to the sum of the squares on the other two sides minus twice the product of the other two sides and the cosine of the included angle.

It is evident that the Theorem of Cosines may be used to find the third side of a triangle when two sides and the included angle
are given. It may also be used to find the angles of a triangle when the three sides are given.

Example I. Given $a=37.5, b=18.5$ and $C=39^{\circ} 45^{\prime}$; find $c$.

Solution. From (27) we have,

$$
\begin{aligned}
c^{2} & =(37.5)^{2}+(18.5)^{2}-2(37.5)(18.5)(0.7688) \\
& =681.79 \\
\therefore \quad c & =26.11
\end{aligned}
$$

Example II. Given $a=42, b=17, c=53$; find the angles.
Solution. Solving (25) for $\cos A$, we get,

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

and substituting for $a, b$, and $c$ their values, we have,

$$
\begin{array}{rlrl}
\cos A & =\frac{(17)^{2}+(53)^{2}-(42)^{2}}{2 \times 17 \times 53}=0.7403 \\
\therefore \quad A & & =42^{\circ} 15^{\prime}
\end{array}
$$

And by using (26) and (27) we could get angles $B$ and $C$.
Exercises

1. In example II, find angles $B$ and $C$.
2. Show that the Theorem of Pythagoras is a special case of the Cosine Theorem.
3. Making use of the Theorem of Sines, find angles $A$ and $B$ of Example I.
4. Given $b=52.5, \quad c=43.4$, $A=45^{\circ} 20^{\prime}$; find $B, C$, and $a$.


Fig. 48.

Solution. Construct the triangle and drop perpendicular $h$ from $B$ to side $b$. This gives us two right triangles, $A B H$ and $C B H$. Let $A H$ be represented by $m$ and $H C$ by $n$.

Formulas:
(1) $h=c \sin A$,
(4) $\tan C=\frac{h}{n}$,
(2) $m=c \cos A$,
(5) $B=180-(A+C)$,
(3) $n=b-m$,
(6) $a=\frac{c \sin A}{\sin C}=\frac{h}{\sin C}$.

| Data and Results |  |
| :---: | :--- |
|  |  |
| $b$ | 52.5 |
| $c$ | 434 |
| $A$ | $45^{\circ} 20^{\prime}$ |
| $h$ | 30866 |
| $m$ | 30.509 |
| $n$ | 21.991 |
| $C$ | $54^{\circ} 32^{\prime}$ |
| $B$ | $80^{\circ} 8^{\prime}$ |
| $a$ | 37.898 |


| Logs |  |
| ---: | ---: |
| $c$ 1.63749 <br> $\sin \Lambda$ $9.85200-10$ |  |
| $h$ | 1.48949 |
| $\cos A$ | $9884694-10$ |
| $c$ | 1.63749 |
| $m$ | 1.48443 |
| $h$ | 1.48949 |
| $n$ | 1.34225 |
| $\tan C$ | 0.14724 |
| $h$ | $11.48949-10$ |
| $\sin C$ | $991087-10$ |
| $a$ | 1.57862 |

Check: $\frac{a}{\sin A}=\frac{b}{\sin B} ; \quad a \sin B=b \sin A$.

$$
\begin{aligned}
\log a & =1.57862 & \log b & =1.72016 \\
\log \sin B & =\frac{9.99353-10}{1.57215} & \log \sin A & =\frac{9.85200-10}{1.57216}
\end{aligned}
$$

5. Given $a=296, c=236, b=75^{\circ} 20^{\prime}$; find $A, C$, and $b$. (Solve similar to exercise 4.)
6. Given $a=385, b=476, c=225$; find angles $A, B$ and $C$ and check by the Sine Theorem.
7. Theorem of tangents.* From the Theorem of Sines, we have
(a) $\quad \frac{a}{b}=\frac{\sin A}{\sin B}$,
(b)

$$
\frac{a+b}{b}=\frac{\sin A+\sin B}{\sin B}
$$

adding 1 to both members of (a).
(c)

$$
\frac{a-b}{b}=\frac{\sin A-\sin B}{\sin B}
$$

subtracting 1 from both members of (a).

$$
\begin{equation*}
\frac{a+b}{a-b}=\frac{\sin A+\sin B}{\sin A-\sin B} \tag{d}
\end{equation*}
$$

dividing (b) by (c).
From (20) and (21), Art. 95, we have,
(e) $\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}}{2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}}$,
$=\tan \frac{A+B}{2} \cot \frac{A-B}{2}$,

$$
=\frac{\tan \frac{A+B}{2}}{\tan \frac{A-B}{2}}
$$

* Art. 98 may be omitted from this course.

Combining (d) and (e), we get,

$$
\begin{equation*}
\frac{a+b}{a-b}=\frac{\tan \frac{A+B}{2}}{\tan \frac{A-B}{2}} . \tag{28}
\end{equation*}
$$

We may show in a similar manner,

$$
\begin{equation*}
\frac{b+c}{b-c}=\frac{\tan \frac{B+C}{2}}{\tan \frac{B-C}{2}}, \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a+c}{a-c}=\frac{\tan \frac{A+C}{2}}{\tan \frac{A-C}{2}} \tag{30}
\end{equation*}
$$

Theorem. In any triangle the sum of two sides divided by their difference, is equal to the tangent of half the sum of the opposite angles divided by the tangent of half the difference of these angles.

The Theorem of Tangents may be used to solve a triangle when two sides and the included angle are given. This will be illustrated by an example.

Example I. Given $a=255, b=182, C=48^{\circ} 20^{\prime}$; find $A$, $B$ and $c$.

Solution. Construction, Formulas,


Fig. 49.
$\tan \frac{1}{2}(A-B)$
$=\frac{a-b}{a+b} \tan \frac{1}{2}(A+B)$.
$A+B=180-C$.
$c=\frac{a \sin C}{\sin A}$.

Data and "Results

| $a$ $b$ | $\begin{aligned} & 255 \\ & 182 \end{aligned}$ |
| :---: | :---: |
| $\begin{aligned} & a+b \\ & a-b \end{aligned}$ | $\begin{array}{r} 437 \\ 73 \end{array}$ |
| $\begin{array}{r} C \\ \frac{A+B}{2} \\ \frac{A-B}{2} \end{array}$ | $\begin{aligned} & 48^{\circ} 20^{\prime} \\ & 65^{\circ} 50^{\prime} \\ & 20^{\circ} 25^{\prime} \end{aligned}$ |
| A $B$ $C$ | $\begin{aligned} & 86^{\circ} 15^{\prime} \\ & 45^{\circ} 25^{\prime} \\ & 190.9 \end{aligned}$ |


| $a-b$ <br> $\tan \frac{1}{2}(A+B)$ | 1.86332 <br> 0.34803 |
| :--- | :--- |
| $(a+b)$ | $12.21135-10$ <br> 2.64048 |
| $\tan \frac{1}{2}(A-B)$ | $9.57087-10$ |
| $a$ | 2.40654 |
| $\sin C$ | $9.87334-10$ |
|  | $12.27988-10$ |
| $\sin A$ | $9.99907-10$ |
| $c$ | 2.28081 |

Check: $b \sin A=a \sin B$.

$$
\begin{aligned}
\log b & =2.26007 & \log a & =2.40654 \\
\log \sin A & =\frac{9.99907-10}{2.25914} & \log \sin B & =\frac{9.85262-10}{2.25916}
\end{aligned}
$$

99. Area of a triangle. We know that the area of any triangle is equal to one half of any side multiplied by the altitude to that side (Formula 3, Art. 29). Also, 4, Art. 29 gives us the area of a triangle when the three sides are given.

Formulas expressing the area of a triangle in terms of any three of its parts (not all three angles and no side) might be derived, but we prefer to have the student remember the above principle and work out each problem separately. A problem or two will illustrate the method of procedure.

Example I. Given $a=25.6, b=37.5, C=42^{\circ} 20^{\prime}$; find the area of the triangle.

Solution. Construction,
Formulas,
(a) Area $=\frac{1}{2} b h$,
(b) $\quad h=a \sin C$,
(c) Area $=\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& =\frac{1}{2} \times 25.6 \times 37.5 \sin 42^{\circ} 20^{\prime} \\
& =\frac{1}{2} \times 25.6 \times 37.5 \times 0.67344=323.25 .
\end{aligned}
$$



Fig. 50.
Example II. Given $a=225, A=45^{\circ} 30^{\prime}$, $B=75^{\circ} 10^{\prime}$; find the area.

Solution. Construction, Formulas,
(a) Area $=\frac{1}{2} a h$,
(b) $C=180-(A+B)$,
(c) $c=\frac{a \sin C}{\sin A}$,


Fig. 51.
(d) $h=c \sin B=\frac{a \sin B \sin C}{\sin A}$,

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} a^{2} \frac{\sin B \sin C}{\sin A} \\
& =\frac{1}{2} \frac{(225)^{2} \sin 59^{\circ} 20^{\prime} \sin 75^{\circ} 10^{\prime}}{\sin 45^{\circ} 30^{\prime}} \\
& =29508
\end{aligned}
$$

## Exercises

1. Given $a=75, b=38, A=37^{\circ}$; find the area of the triangle.
2. Given $a=65, b=75, c=92$; find the area of the triangle.
3. Given $c=492, a=525, A=76^{\circ} 40^{\prime}$; find the area of the triangle.
4. Given $A=47^{\circ} 20^{\prime}, B=75^{\circ} 25^{\prime}, c=75.2$; find the area of the triangle.
5. Summary of methods of solving any triangle. We will divide the discussion up into four cases.

Case I. Given two angles and a side. The Sine Theorem will be applied in this case.

Case II. Given two sides and an angle opposite one of the sides. The Sine Theorem will be applied here.

Case III. Given two sides and the included angle. If only the third side is required, it may be obtained directly by using the Cosine Theorem. But if the other angles are also required, one of two methods may be used; , we may apply the method of example 4, Art. 97, or we may use the Theorem of Tangents, Art. 98.

Case IV. Given the three sides to find the angles. The Cosine Theorem may be used in this case as illustrated in Example II, Art. 97.

## Examples on Chapter XIII

1. Solve the following triangles for the unknown parts:
(1) $a=372, b=450, c=525$; find the angles and the area.
(2) $a=52, b=75, C=37^{\circ} 10^{\prime}$; find $c, A$, and $B$ and area.
(3) $b=62.8, a=73.7, A=35^{\circ} 45^{\prime}$; find $c, B$ and $C$ and the area.
(4) Given $A=75^{\circ} 25^{\prime}, B=37^{\circ} 45^{\prime}, c=455$; find $a, b, C$ and the area.
2. Given $b=875, c=458, A=72^{\circ} 20^{\prime}$; find $B, C$ and $a$, using the theorem of tangents.
3. Given $a, b, A$; write down the proper equations for obtaining the unknown parts, including the area.
4. In order to find the distance between two points, $A$ and $B$, separated by a high hill, a point $C$ was taken where both $A$ and $B$ could be seen. $C A, C B$ and angle $A C B$ were measured and found to be 2521 feet, 3623 feet and $70^{\circ} 45^{\prime}$ respectively. Find the distance from $A$ to $B$.
5. To determine the distance of a point $A$ across a lake from a point $B$ on the near shore, a line $B C$ and the angles $A B C$ and $B C A$ were measured and found to be $2562 \mathrm{yd} .75^{\circ}$, and $62^{\circ} 20^{\prime}$, respectively. Find the distance $A B$.
6. Two streets meet at an angle of $80^{\circ} 10^{\prime}$. How much land is there in the triangular corner lot which fronts 425 feet on one street and 315 feet on the other?
7. From the top of a hill 650 feet high the angles of depression of the top and bottom of a tower are $52^{\circ}$ and $65^{\circ}$ respectively, what is the height of the tower?
8. Two forces of 200 lbs . and 175 lbs . act at an angle of $50^{\circ}$ with each other. Find the resultant force and also the angle that the resultant makes with the 200 lb . force.

## CHAPTER XIV

## THE DERIVATIVE AND SOME APPLICATIONS

101. The meaning of a tangent to a curve. In Fig. 52 we have a curve $C$ cut by a line $l$ in the two points $P$ and $Q$. Now assume that $P$ is a fixed point and that $Q$ moves along the curve towards $P$. As $Q$ moves towards $P$ the line $l$ turns about $P$ and approaches, in general, a limiting position ( $P T$ in the figure), and at the instant when $Q$ coincides with $P$ the line $l$ coincides with PT. The line PT is called the tangent to the curve $C$ at the point $P$.
102. The derivative. Let us consider the curve, Fig. 53, whose equation is $y=f(x)$. Take any point $P(x, y)$ on the curve and increase the abscissa of the point by an amount $\Delta x$ (read delta $x$, and not delta times $x$ ) and let $\Delta y$ denote the corresponding increase of $y$. We notice that this gives us a second point $Q(x+\Delta x, y+\Delta y)$ on the curve. We note that $y$ has changed by an amount $\Delta y$ while $x$ was changing by an amount $\Delta x$. The ratio $\frac{\Delta y}{\Delta x}$ is the average rate of change in $y$ with respect to $x$ within the interval $\Delta x$. We also observe that this ratio is
the slope of the chord PQ. (See Art. 36.) If we now let $\Delta x$ approach 0 , the ratio $\frac{\Delta y}{\Delta x}$ generally approaches a fixed value which is defined as the rate of change of $y$ with respect to $x$ at the point $P$. It is also evident that as $\Delta x$ approaches 0 , the


Fig. 53.
point $Q$ approaches the point $P$, the chord $P Q$ approaches the tangent $t$, and the ratio $\frac{\Delta y}{\Delta x}$ approaches as its value the slope of the tangent at the point $P$. The limiting value of $\frac{\Delta y}{\Delta x}$ as $\Delta x$ approaches 0 is defined as the derivative of $y$ with respect to $x$ at any point $P(x, y)$. The derivative is designated by the symbol $\frac{d y}{d x}$, and we write,

$$
\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}
$$

We shall now find $\frac{d y}{d x}$ for $y=x^{2}$. We have,

$$
\begin{gather*}
y=x^{2}  \tag{1}\\
y+\Delta y=(x+\Delta x)^{2}=x^{2}+2 x \Delta x+\Delta x^{2} \tag{2}
\end{gather*}
$$

Subtracting (1) from (2) we have,

$$
\begin{equation*}
\Delta y=2 x \Delta x+\Delta x^{2} \tag{3}
\end{equation*}
$$

Dividing (3) by $\Delta x$,

$$
\frac{\Delta y}{\Delta x}=2 x+\Delta x
$$

and $\quad \frac{d y}{d x}=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\operatorname{Lim}_{\Delta x \rightarrow 0}(2 x+\Delta x)=2 x$.

## Exercises

1. Find the slope of the curve $y=3 x^{2}-5 x+2$ at the point $(2,4)$. Solution.

$$
\begin{align*}
y & =3 x^{2}-5 x+2 .  \tag{1}\\
y+\Delta y & =3(x+\Delta x)^{2}-5(x+\Delta x)+2 .  \tag{2}\\
\Delta y & =6 x \Delta x+3 \Delta x^{2}-5 \Delta x .  \tag{3}\\
\frac{\Delta y}{\Delta x} & =6 x+3 \Delta x-5 .  \tag{4}\\
\frac{d y}{d x} & =6 x-5 . \tag{5}
\end{align*}
$$

The slope at any point $(x, y)$ is $(6 x-5)$.
The slope at the point $(2,4)$ is obtained by substituting 2 for $x$ in (5), which gives us 7. Hence the tangent to the curve, $y=3 x^{2}-5 x+2$, at the point $(2,4)$ has 7 for its slope.
2. Find the derivative of $y=\frac{1}{x}$.

Solution.

$$
\begin{align*}
y & =\frac{1}{x} .  \tag{1}\\
y+\Delta y & =\frac{1}{x+\Delta x} .  \tag{2}\\
\Delta y & =\frac{1}{x+\Delta x}-\frac{1}{x}=\frac{-\Delta x}{x(x+\Delta x)} .  \tag{3}\\
\frac{\Delta y}{\Delta x} & =\frac{-1}{x(x+\Delta x)} .  \tag{4}\\
\frac{d y}{d x} & =\frac{-1}{x^{2}} . \tag{5}
\end{align*}
$$

3. Find the derivative of $y=\sqrt{x}$.

Solution.

$$
\begin{align*}
y & =\sqrt{x .}  \tag{1}\\
y+\Delta y & =\sqrt{x+\Delta x} .  \tag{2}\\
\Delta y & =\sqrt{x+\Delta x}-\sqrt{x} .  \tag{3}\\
& =\frac{(\sqrt{x+\Delta x}-\sqrt{x})(\sqrt{x+\Delta x}+\sqrt{x})}{(\sqrt{x+\Delta x}+\sqrt{x})}
\end{align*}
$$

(See Ex. 21, page 78)
$=\frac{(x+\Delta x)-x}{\sqrt{x+\Delta x}+\sqrt{x}}=\frac{\Delta x}{\sqrt{x+\Delta x}+\sqrt{x}}$.

$$
\begin{align*}
& \frac{\Delta y}{\Delta x}=\frac{1}{\sqrt{x+\Delta x}+\sqrt{x}} .  \tag{4}\\
& \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} . \tag{5}
\end{align*}
$$

Find the slopes of the following curves at the points indicated.
4. $y=x^{2}-3 x+2$, at the point where $x=3$. Trace the curve.
5. $y=2 x^{3}+x^{2}+x$, at $x=2$.
6. $y=\frac{1}{x^{2}+1}$, at $x=1$.
7. At what point does the curve $y=x^{2}+3 x+5$ have the slope 5 ? Ans. (1, 9).
8. At what point does the curve $y=x^{2}-4 x+10$ have the slope 0 ? Trace the curve and notice carefully its shape at the point where the slope is 0 . (See Art. 48.) Ans. (2, 6).
9. If $l$ is the length of the side of a square, the area $A$ is given by $A=l^{2}$. If $l$ is changing, find the rate at which $A$ is changing when $l=4 \mathrm{ft}$.

Solution.

$$
\begin{align*}
A & =l^{2} .  \tag{1}\\
A+\Delta A & =(l+\Delta l)^{2} .  \tag{2}\\
\Delta A & =2 l \Delta l+\Delta l^{2} .  \tag{3}\\
\frac{\Delta A}{\Delta l} & =2 l+\Delta l .  \tag{4}\\
\frac{d A}{d l} & =2 l . \tag{5}
\end{align*}
$$

When $l=4$, the rate of change is $\left.\frac{d A}{d l}\right]_{l=4}=8$. That is to say, the rate of change of $A$ with respect to $l$ when $l=4$, is 8 times the rate at which $l$ is changing.
10. If the radius of a circle is changing, what is the rate of change of the area A when the radius is 3 feet? (See 5, Art. 29.)
103. Derivative of a constant. If $y=c$, then it does not matter what the values of $x$ and $\Delta x$ are; $y$ will remain unchanged, and $\Delta y=0$.

Hence,

$$
\frac{\Delta y}{\Delta x}=0, \quad \text { and } \quad \frac{d y}{d x}=0 .
$$

Thus,

$$
\begin{equation*}
\frac{d c}{d x}=0 \tag{I}
\end{equation*}
$$

104. Derivative of a sum. If $u$ and $v$ are functions of $x$, then,

$$
\begin{equation*}
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} . \tag{II}
\end{equation*}
$$

Proof. Let $y=u+v$.

$$
\begin{align*}
y+\Delta y & =u+\Delta u+v+\Delta v .  \tag{1}\\
\Delta y & =\Delta u+\Delta v .  \tag{2}\\
\frac{\Delta y}{\Delta x} & =\frac{\Delta u}{\Delta x}+\frac{\Delta v .}{\Delta x} .  \tag{3}\\
\frac{d y}{d x} & =\frac{d u}{d x}+\frac{d v}{d x} . \tag{4}
\end{align*}
$$

105. Derivative of a product. If $u$ and $v$ are functions of $x$, then

$$
\begin{equation*}
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} . \tag{III}
\end{equation*}
$$

Proof. Let $y=u \cdot v$.

$$
\begin{align*}
y+\Delta y & =(u+\Delta u)(v+\Delta v)  \tag{1}\\
& =u v+u \Delta v+v \Delta u+\Delta u \Delta v . \\
\Delta y & =u \Delta v+v \Delta u+\Delta u \Delta v .  \tag{2}\\
\frac{\Delta y}{\Delta x} & =u \frac{\Delta v}{\Delta x}+v \frac{\Delta u}{\Delta x}+\Delta u \frac{\Delta v}{\Delta x} .  \tag{3}\\
\frac{d y}{d x} & =u \frac{d v}{d x}+v \frac{d u}{d x}, \tag{4}
\end{align*}
$$

since, $\quad \operatorname{Lim}_{\Delta x \rightarrow 0}\left(\Delta u \cdot \frac{\Delta v}{\Delta x}\right)=0 \cdot \frac{d v}{d x}=0$.
If $u=c$ (constant), we have from (III),

$$
\frac{d}{d x}(c v)=c \frac{d v}{d x}
$$

106. Derivative of a quotient. If $u$ and $v$ are functions of $x$, then,

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \tag{IV}
\end{equation*}
$$

Proof. Let $y=\frac{u}{v}$.

$$
\begin{align*}
& y+\Delta y=\frac{u+\Delta u}{v+\Delta v}  \tag{1}\\
& \Delta y=\frac{u+\Delta u}{v+\Delta v}-\frac{u}{v}  \tag{2}\\
&=\frac{u v+v \Delta u-u v-u \Delta v}{v(v+\Delta v)} \\
&=\frac{v \Delta u-u \Delta v}{v(v+\Delta v)} \\
& \frac{\Delta y}{\Delta x}=\frac{v \frac{\Delta u}{\Delta x}-u \frac{\Delta v}{\Delta x}}{v(v+\Delta v)}  \tag{3}\\
& \frac{d y}{d x}=\frac{v x}{v \frac{d u}{d x}-u \frac{d v}{d x}}  \tag{4}\\
& v^{2}
\end{align*}
$$

If $u=c$ (constant), we have from (IV),

$$
\frac{d}{d x}\left(\frac{c}{v}\right)=\frac{-c \frac{d v}{d x}}{v^{2}}
$$

## 107. Formulas stated in words.

I. The derivative of a constant is 0 .
II. The derivative of the sum of two functions is equal to the sum of their derivatives.
III. The derivative of the product of two functions is equal to the first function times the derivative of the second plus the second times the derivative of the first.

III'. The derivative of a constant times a variable is equal to the constant times the derivative of the variable.
IV. The derivative of the quotient of two functions is equal to the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, divided by the square of the denominator.

IV'. The derivative of a constant divided by a function is equal to minus the constant times the derivative of the function divided by the square of the function.
108. Derivative of $u^{n}$. If $y=u^{n}$, where $u$ is a function of $x$ and $n$ is a positive integer, then,

$$
\begin{equation*}
\frac{d y}{d x}=n u^{n-1} \frac{d u}{d x} \tag{V}
\end{equation*}
$$

Proof:

$$
\begin{align*}
y+\Delta y & =(u+\Delta u)^{n} \\
& =u^{n}+n u^{n-1} \Delta u+\frac{n(n-1)}{2!} u^{n-2} \Delta u^{2}+\ldots+\Delta u^{n} \tag{1}
\end{align*}
$$

(See Art. 52.)

$$
\begin{align*}
& \Delta y=n u^{n-1} \Delta u+\frac{n(n-1)}{2!} u^{n-2} \Delta u^{2}+\ldots+\Delta u^{n} \\
& \frac{\Delta y}{\Delta x}=n u^{n-1} \frac{\Delta u}{\Delta x}+\frac{(n-1)}{2!} u^{n-2} \Delta u \frac{\Delta u}{\Delta x}+\ldots+\Delta u^{n-1} \frac{\Delta u}{\Delta x}  \tag{3}\\
& \frac{d y}{d x}=n u^{n-1} \frac{d u}{d x} \tag{4}
\end{align*}
$$

since $\quad \operatorname{Lim}_{\Delta x \rightarrow 0}\left(\Delta u^{n-1} \frac{\Delta u}{\Delta x}\right)=0 \cdot \frac{d u}{d x}=0$.
If $y=x^{n}(u=x),(\mathrm{V})$ takes the particular form,

$$
\frac{d y}{d x}=n x^{n-1}
$$

Although the above proof is valid only for positive integral values of $n$, formulas $(\mathrm{V})$ and $\left(\mathrm{V}^{\prime}\right)$ are true for all values of the exponent. This we shall assume without proof.

## Exercises

Find the derivative of the following functions:

1. $y=3 x^{3}-5 x^{2}+2 x+4$.

Solution. $\frac{d y}{d x}=3 \frac{d}{d x}\left(x^{3}\right)-5 \frac{d}{d x}\left(x^{2}\right)+2 \frac{d}{d x}(x) . \quad$ (See (II) and (III').)

$$
=9 x^{2}-10 x+2 . \quad\left(\text { See }\left(V^{\prime}\right) .\right)
$$

Hence, $\frac{d}{d x}\left(3 x^{3}-5 x^{2}+2 x+4\right)=9 x^{2}-10 x+2$.
2. $y=\left(x^{2}+2\right)\left(3 x^{3}+4 x\right)$.

Solution. $\frac{d y}{d x}=\left(x^{2}+2\right) \frac{d}{d x}\left(3 x^{3}+4 x\right)+\left(3 x^{3}+4 x\right) \frac{d}{d x}\left(x^{2}+2\right)$.
(See (III).)

$$
\begin{aligned}
& =\left(x^{2}+2\right)\left(9 x^{2}+4\right)+\left(3 x^{3}+4 x\right) 2 x \\
& =15 x^{4}+30 x^{2}+8
\end{aligned}
$$

Hence, $\frac{l}{d x}\left(x^{2}+2\right)\left(3 x^{3}+4 x\right)=15 x^{4}+30 x^{2}+8$.
3. $y=\frac{x^{2}+3 x}{x-2}$.

Solution. $\frac{d y}{d x}=\frac{(x-2) \frac{d}{d x}\left(x^{2}+3 x\right)-\left(x^{2}+3 x\right) \frac{d}{d x}(x-2)}{(x-2)^{2}}$,
(See (IV).)
$=\frac{(x-2)(2 x+3)-\left(x^{2}+3 x\right)}{(x-2)^{2}}$

$$
=\frac{x^{2}-4 x-6}{(x-2)^{2}}
$$

Hence,

$$
\frac{d}{d x}\left(\frac{x^{2}+3 x}{x-2}\right)=\frac{x^{2}-4 x-6}{(x-2)^{2}}
$$

4. $y=\left(2 x^{3}+3 x+2\right)^{3}$.

Solution. This function is of the form $u^{n}$, where $u=2 x^{3}+3 x+2$ and $n=3$.

Hence, using ( $V$ ) we obtain,

$$
\frac{d y}{d x}=3\left(2 x^{3}+3 x+2\right)^{2}\left(6 x^{2}+3\right)
$$

5. $y=\sqrt[3]{3 x^{2}+2 x+5}$.

Solution. $y=\left(3 x^{2}+2 x+5\right)^{1 / 3}$.

$$
\frac{d y}{d x}=\frac{1}{3}\left(3 x^{2}+2 x+5\right)^{-2 / 3}(6 x+2) . \quad \text { (See (V).) }
$$

Hence, $\quad \frac{d}{d x} \sqrt[3]{3 x^{2}+2 x+5}=\frac{6 x+2}{3\left(3 x^{2}+2 x+5\right)^{3 / 3}}$.
6. $y=1-3 x-5 x^{2}-x^{3}$.
7. $y=x-3 x^{3}-2 x^{5}$.
8. $y=\frac{1}{x}-\frac{1}{x^{2}}+\frac{3}{x^{3}} . \quad$ (Use (IV').)
9. $y=\frac{3 x-1}{2-2 x}$.
10. $y=\left(4 x^{3}-5 x\right)\left(x^{2}-5 x+2\right)$.
11. $y=\left(x^{2}+3 x\right)^{3}\left(x^{3}+5 x+2\right)$.
12. $y=\sqrt{x^{3}-9 x^{2}+4}$.
13. $y=\frac{(1+x)\left(1-x^{2}\right)}{x^{2}}$.

Find the slope of each of the following curves at the point indicated:
14. $y=3 x^{2}+2 x+5$, where $x=-1$.

Solution. The slope at any point $(x, y)$ is $\frac{d y}{d x}=6 x+2$. (See Ex. 1, page 155.)

The slope at the point where $x=-1$ is therefore -4 .
15. $y=\frac{x}{x+3}$, where $x=3$.
16. $y=(x+2)\left(x^{2}+1\right)$, where $x=-1$.

Find the equation of the tangent to each of the following curves at the points indicated:
17. $y=2 x^{2}+3 x+1$, where $x=-2$.

Solution. At the point where $x=-2, y=2(-2)^{2}+3(-2)+$ $1=3$. The slope of the tangent at the point $(-2,3)$ is -5 .

Hence, the equation of the tangent is

$$
y-3=-5(x+2) . \quad \text { (See equation (7), page } 53 \text { ), or, }
$$

$$
5 x+y+7=0
$$

18. $y=x^{3}-3 x^{2}+4 x+5$, where $x=2$.
19. $y=2 x^{3}-x^{2}-4$, where $x=1$.
20. Find the tangent to the curve $y=3 x^{2}-x$ which shall have 5 for its slope. Ans. $5 x-y-3=0$.
21. Increasing and decreasing functions. A function, $y=f(x)$, is said to be increasing when it increases as $x$ increases and is said to be decreasing when it decreases as $x$ increases. Assume that figure 54 is the graph of $y=f(x)$. Going from left to right, we notice that the curve is rising between the points $P_{1}$ and $P_{2}$, falling between the points $P_{2}$ and $P_{3}$, and rising to the right of $P_{3}$. In other words, the function $f(x)$ is
increasing as $x$ increases from $x_{1}$ to $x_{2}$, decreasing as $x$ increases from $x_{2}$ to $x_{3}$, and increasing as $x$ increases from $x_{3}$ to $x_{4}$, and so on. We notice also that the slope of the tangent is positive when the curve is rising and negative when the curve is falling. (See Figs. 18a and 18b.) That is, the derivative of $f(x)$


Fig. 54.
is positive when $f(x)$ is increasing and negative when $f(x)$ is decreasing.

Hence, we conclude,
If $\frac{d y}{d x}>0, \quad y=f(x)$ increases.
If $\frac{d y}{d x}<0, \quad y=f(x)$ decreases.
Example. Show that $y=x^{2}+4 x+3$ is decreasing when $x=-4$ and increasing when $x=0$. Graph the function.

Solution.

$$
\begin{aligned}
y & =x^{2}+4 x+3 \\
\frac{d y}{d x} & =2 x+4
\end{aligned}
$$

When $\quad x=-4, \quad \frac{d y}{d x}=-4$.
Hence, $y$ is decreasing.
When $\quad x=0, \quad \frac{d y}{d x}=4$.
Hence, $y$ is increasing.


Fig. 55.
110. Maxima and minima. Maxima and minima values of quadratic functions were discussed in Art. 49. Maxima and minima values in general will now be discussed. A maximum value of a function is that value where the function ceases to increase and begins to decrease. A minimum value of a function is that value where the function ceases to decrease and begins to increase. A maximum point is that point on the graph of a function where the graph ceases to rise and begins to fall. A minimum point is that point where the graph ceases to fall and begins to rise.

Observing Fig. 54, we notice that $P_{2}$ is a maximum point and $P_{3}$ is a minimum point. It is evident that at such points the tangent is parallel to the $X$-axis; that is,

$$
\frac{d y}{d x}=0 .
$$

However, the vanishing of the derivative does not mean that the function necessarily has a maximum or a minimum. The tangent is parallel to the $X$-axis at the point $P_{4}$, but the function
has neither a maximum nor a minimum there. It appears from the figure that the test is as follows:

At a point where $\frac{d y}{d x}=0$, if $\frac{d y}{d x}$ changes from positive to negative (as $x$ increases), $y$ is a maximum; if $\frac{d y}{d x}$ changes from negative to positive, $y$ is a minimum; if $\frac{d y}{d x}$ does not change sign, $y$ is neither a maximum nor a minimum.

Example. Find the maximum and minimum values of the function, $y=\frac{x^{3}}{3}-\frac{x^{2}}{2}-6 x+5$. Graph the function.

Solution.

$$
\begin{equation*}
y=\frac{x^{3}}{3}-\frac{x^{2}}{2}-6 x+5 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d y}{d x}=x^{2}-x-6=(x+2)(x-3) . \tag{2}
\end{equation*}
$$

When $\quad \frac{d y}{d x}=0, \quad x=-2,3$.
When $\quad x=-2, \quad y=12 \frac{1}{3}$.
When $\quad x=3, \quad y=-8 \frac{1}{2}$.
When $x<-2$, we notice that $\frac{d y}{d x}>0$ and when $x>-2$ we find that $\frac{d y}{d x}<0$. Hence, the point $\left(-2,12 \frac{1}{3}\right)$ is a maximum point on the graph of the function and $12 \frac{1}{3}$ is a maximum value of the function.

When $x<3, \frac{d y}{d x}<0$; and when $x>3, \frac{d y}{d x}>0$. Hence, the point ( $3,-8 \frac{1}{2}$ ) is a minimum point on the graph and $-8 \frac{1}{2}$ is a minimum value of the function. (See Fig. 56.)


Fig. 56.

## Exercises

In the following exercises determine the value of $x$ for which $\frac{d y}{d x}=0$. Determine the corresponding values of $y$ and show whether these values are a maximum or a minimum.

1. $y=x^{2}-4 x+5$. Minimum at $(2,1)$.
2. $y=-x^{2}+6 x+7$. Maximum at (3, 16).
3. $y=x^{3}+3 x^{2}-9 x-27$. Maximum at $(-3,0)$, minimum at (1, - 32).
4. $y=3 x^{3}-9 x^{2}-27 x+30 . \quad x=-1$, gives $y=45$, maximum.

$$
x=3, \text { gives } y=-51, \text { minimum }
$$

5. $y=x^{3}-8, x=0$, gives neither a maximum nor a minimum.
6. $y \doteq x^{3}-3 x^{2}+6 x+10$. Neither maximum nor minimum.
7. $y=\frac{1-x+x^{2}}{1+x-x^{2}} \quad \quad x=\frac{1}{2}$, gives $y=\frac{3}{5}$, minimum.
8. $y=\frac{x^{2}-7 x+6}{x-10} . \quad x=4$, gives maximim; $x=16$, gives minimum.
9. Applications of the theory of maxima and minima. It was shown in Art. 110 that, at a point where the first derivative is 0 , a function has either a maximum or a minimum value (provided the derivative changes sign at the point). This theory will now be applied to some practical problems.

Example. A box is to be made of a piece of card board 8 inches square by cutting equal squares out of the corners and turning up the sides. Find the volume of the largest box that can be made in this way.
Solution. Let $x=$ the length of the side of each of the squares cut out. Then the volume of the box is

$$
\begin{align*}
V & =x(8-2 x)^{2}  \tag{1}\\
\frac{d y}{d x} & =(8-2 x)(8-6 x) . \tag{2}
\end{align*}
$$

Making $\quad \frac{d V}{d x}=0$, we find,

$$
x=4, \frac{4}{3} .
$$

When $x=4, V=0$. Hence, the value $x=4$ can not be used.

When $x=\frac{4}{3}, V=\frac{1024}{27}$, and this is a maximum value.

## Problems

1. Solve problems $5,6,7,8$, and 9 , pages 70 and 71 , making use of the derivative.
2. A box with a square base and open top is to hold 108 cubic feet. Find the dimensions that will make its construction most economical.

Solution. Let us assume one side of the base to be $x$ and the altitude to be $y$. It is evident here that the thing desired is to minimize the surface. Now the surface consists of the four sides and the base. Hence, we may write:

$$
\begin{equation*}
S=4 x y+x^{2} \tag{1}
\end{equation*}
$$

Since the volume is to be 108 cubic feet, we may write

$$
\begin{equation*}
x^{2} y=108, \text { or } y=\frac{108}{x^{2}} \tag{2}
\end{equation*}
$$

Substituting the above value of $y$ in (1) we obtain,

$$
\begin{align*}
S & =\frac{432}{x}+x^{2}  \tag{3}\\
\frac{d S}{d x} & =\frac{-432}{x^{2}}+2 x .  \tag{4}\\
\frac{d S}{d x} & =0 \\
2 x^{3} & =432, x=6 \tag{5}
\end{align*}
$$

Making $x=6$ in (2), we see that $y=3$. Hence, the dimensions of the box are $6 \times 6 \times 3$.
3. A silo is made in the form of a cylinder, with a hemispherical roof; there is a floor of the same thickness as the wall and roof. Find the most economical shape. Ans. Diameter $=$ total height.

Silos are not built this way. Why not?
4. A watering trough is to hold 500 gallons. Find the dimensions that will make its construction most economical if its base is to be a rectangle with one side three times the other. (There are 231 cubic inches in one gallon.)

Ans. Base 3.1 feet by 9.3 feet.
Altitude 2.32 feet.

## CHAPTER XV

## STATISTICS AND APPLICATIONS

112. Introduction. In Chapter $V$ it was pointed out that many functional relations that can not be expressed by an algebraic equation may be exhibited by means of a graph. The graph usually gives a better view of a numerical situation than a table. By letting the eye follow the graph we get at once an approximate picture of fluctuations in the series of values. If we want to study such variations more closely or make comparisons between two or more sets of data, numerical methods are usually clearer and more convenient. The branch of mathematics that deals with quantitative data affected to a marked extent by a multiplicity of causes is called statistics.
113. Frequency tables. The simplest way of presenting a series of numerical values is simply to list the values in their natural order in a table. As for instance Average Farm Prices December First on pages 37 and 38 . We may, however, group the values and get what we call a frequency table. The price of corn in the table referred to varies from $21.5 \phi$ in 1896 to $136.5 \phi$ in 1918. We divide the total range into classes, for instance $20 \phi$ but less than $30 \phi, 30 \phi$ but less than $40 \phi$, and so on, and count the number of cases in each group. We find 5 cases between $20 \phi$ and $29.9 \phi, 16$ cases between $30 \phi$ and $39.9 \phi$, 15 cases between $40 \phi$ and $49.9 \phi, 5$ cases between $50 \phi$ and $59.9 \phi$, 10 cases between $60 \phi$ and $69.9 \phi, 1$ case between $70 \phi$ and $79.9 \phi$, 1 case between $80 \phi$ and $89.9 \phi, 1$ casc between $90 \phi$ and $99.9 \phi$, 0 case between $100 \phi$ and $109.9 \phi, 0$ case between $110 \phi$ and
$119.9 \phi, 1$ case between $120 \phi$ and $129.9 \phi$, and 2 cases between $130 \phi$ and $139.9 \phi$. These facts are recorded in a frequency table as follows:

| Price | Number of Cases | Price | Number of Cases |
| :---: | :---: | :---: | :---: |
| $20-299$ | 5 | $80-899$ | 1 |
| $30-39.9$ | 16 | $90-99.9$ | 1 |
| $40-499$ | 15 | $100-109.9$ | 0 |
| $50-599$ | 5 | $110-119.9$ | 0 |
| $60-69.9$ | 10 | $120-129.9$ | 1 |
| $70-79.9$ | 1 | $130-1399$ | 2 |

The size of the class, or the class interval, is arbitrary, but should be governed by the total range and the number of cases.

## Exercises

Construct similar frequency tables for prices on the other farm products listed, using the following class intervals:

1. Wheat, 10 ¢.
2. Rye, 10 ¢.
3. Oats, 5申.
4. Potatoes, $10 \phi$.
5. Barley, 5¢.
6. Hay, 50ф.
7. Measures of Central Tendency. If we study, for instance, two tables giving prices for a certain grade of hogs day by day for two years, we will find that there is much overlapping in prices. The question in which year were hog prices higher could not be answered directly from such tables. To make a comparison we must have a single price that is in some measure representative of the prices for the year, or what we call a measure of central tendency. We shall consider three such measures: arithmetic mean, median, and mode.

Arithmetic mean (or what is commonly called the average)
is simply the sum of the measures divided by their number. Or, expressed in a formula,

$$
\begin{equation*}
M=\frac{\Sigma X}{N} . \tag{1}
\end{equation*}
$$

Median is the middlemost measure, when the measures have been arranged in order of magnitude. For cxample, in the series

$$
1,3,5,9,10,12,15,19,24,30,35
$$

12 is the median, for there are five measures smaller than 12 and five measures larger than 12.

If the series has an even number of terms there is no middlemost measure, and we define the median as a measure halfway between the two middle measures. For example in the series

$$
1,3,5,9,10,12,15,19,24,30
$$

11 is the median, because it is halfway between 10, the fifth measure, and 12 , the sixth measure.

Mode is the measure that occurs most frequently in the series. Consider for example the following table of representative hog sales at Sioux City Stock Yard, January 4, 1926:

| Number | Weight | Price | Number | Weight | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 233 | $\$ 10.90$ | 4 | 237 | $\$ 11.00$ |
| 33 | 208 | 10.90 | 27 | 163 | 11.10 |
| 35 | 226 | 10.95 | 50 | 153 | 11.25 |
| 22 | 240 | 11.00 | 36 | 162 | 11.25 |
| 6 | 250 | 11.00 | 2 | 165 | 11.30 |
| 6 | 245 | 11.00 | 11 | 175 | 11.30 |

$\$ 11.25$ is the mode, because the greatest number of hogs, or 86, were sold at this price. In market reports a modification of
the mode is often used, namely the bulk of sales. For instance in the above report, bulk of sales is $\$ 10.95$ to $\$ 11.25$.
115. Determination of the arithmetic mean from a frequency table. We here make the assumption that the measures within the class are all concentrated at the midpoint of the class interval. For example, in the frequency table of prices of corn (Art. 113) there were 5 cases where the price was between $20.0 ¢$ and 29.9 ¢. We here assume the price for all five cases within this class to be $25 ¢$, the price for all 16 cases within the next class to be $35 \phi$, and so on. We then obtain the following table ( $f$ stands for frequency, or number of cases in the class):


This value of the arithmetic mean is only approximate and usually differs somewhat from the value obtained from the summation of the original values divided by their number. In our example we would have found $51.9 \&$ from the original
data. The values computed by the two methods become more nearly equal as the number of cases increases and the size of the class interval decreases.

Example. Compute the average prices of wheat, oats, barley, rye, potatoes, and hay for the years 1870 to 1926 from the original data and from the frequency tables.
116. Determination of the median from a frequency table. If the values are arranged in a frequency table we make the assumption, when computing the median, that the values within an interval are uniformly distributed in the interval. For example take the frequency table showing the price of corn. There are 57 cases and according to the definition $\frac{57}{2}$ or 28.5 measures must be below and 28.5 measures above the median. If we start at the lower end we find that there are 21 cases below 40c and 15 cases in the class $40-49.9 \phi$. The median must therefore be somewhere in this interval. Subtracting 21 from 28.5 we obtain 7.5 , and the median must be the 7.5 th measure in the class $40-49.9 \phi$. As there are 15 measures in this class the 7.5 th measure must be $\frac{7.5}{15} \cdot 10$ or 5 . Add this value to 40 and we get $45 \phi$ as the median. The same value would be obtained if we started at the higher end. In the groups above 50 there are 21 measures, and the median must be the ( $28.5-21$ ) or 7.5 th measure in the interval $40-49.9 \phi$ counting from the top. $\frac{7.5}{15} \cdot 10=5$, which value should be subtracted from 50\& which again gives us 45 \&
117. Variability. It is often desirable to have some measure of the variability of a series of values; for instance, prices of some farm product during a year. We have several such values of variability. Those considered here are the range,
the mean deviation, the quartile deviation, and the standard deviation.

The range. Take the two series
(1) $5,9,10,14,16,16,18,24,31$.
(2) $9,12,14,15,16,17,19,20,22$.

Both have a mean of 16 and a median of 16 ; hence they are alike as far as central tendency is concerned. Yet, they are rather different. Serics (1) includes measures from 5 to 31, while (2) varies only from 9 to 22 . The difference between the highest and the lowest value in a series of measures is called the range. Series (1) has a range of 26 , while series (2) has a range of only 13 . The range is a measure of variability but gives a very incomplete picture of a series, being dependent only upon the highest and lowest measures.

The mean deviation. If we determine the amount that each of the terms in series (1) varies from the mean, we get the series

$$
11,7,6,2,0,1,2,8,15 .
$$

the mean of which is : 78. This value is called the mean deviation. For series (2) we get a mean deviation of 3.11. The mean deviation is a measure of the tendency of the individual measures in a series to scatter. The mean deviation may be calculated from any measures of central tendency, the mean, median or mode. It should, therefore, always be indicated from which measure of central tendency the mean deviation is calculated.

## Exercise

Calculate the mean deviation from the mean for prices of corn, wheat, oats, barley, rye, potatoes, and hay for the years 1870-1926. Try to do this with prices arranged in frequency tables and compare the value so determined for one of the products with the value obtained from the use of the original tabulation.

The quartile deviation or semi-interquartile range. As we determined the median as a point on a scale of values below which half of the number of cases are found and above which the other half are found, so we may determine two other points such that one-fourth of the number of values are found below and three-fourths above one of these points, and three-fourths below and one-fourth above the other point. Half of the difference between these two measures is called the semi-interquartile range and is a measure of the spread or variability of the series.
If the series of values are given in order of their magnitude we may simply count off one-fourth of the number of cases from the top and one-fourth from the bottom of the scries and take the mean of the values so obtaincd. If the series is given as a frequency table the work is done practically the same way as in calculating the median. In our previous example on prices of corn we have 57 cases or 14.25 in each quartile. The first quartile point is at $30+\frac{14.25-5}{16} \times 10$ or $35.8 \phi$ and the third quartile point (first from the top) at $70-\frac{14.25-6}{10} \times 10$ or 61.8 . The semi-interquartile range is therefore $\frac{61.8-35.8}{2}$ or $13 \phi$.

## Exercise

Calculate the semi-interquartile ranges for prices of wheat, oats, barley, rye, potatoes and hay for the years 1870-1916.

The standard deviation. The most generally used measure of variability is the standard deviation, obtained in the following way: Calculate the deviations from the mean, square these deviations, add the squares, divide by the number of cases, and extract the square root of the quotient. The standard deviation is usually
designated by the Greek letter $\sigma$ (sigma) and may be expressed by the following formula,

$$
\begin{equation*}
\sigma=\sqrt{\frac{d^{2}}{N}}, \tag{2}
\end{equation*}
$$

where $d$ represents deviations from the mean, and $N$ the number of cases.

As the deviations are usually rather awkward numbers to handle the formula may be expressed in the original measures $X$. By substituting $d=X-M ; M=\frac{\Sigma X}{N} ; d=X-\frac{\Sigma X}{N}$ in we have

$$
\begin{align*}
& \sigma=\sqrt{\frac{\Sigma\left(X-\frac{\Sigma X}{N}\right)^{2}}{N}},  \tag{2}\\
& \sigma=\sqrt{\frac{\Sigma\left(X^{2}-\frac{2 X \Sigma X}{N}+\left(\frac{\Sigma X}{N}\right)^{2}\right)}{N}}, \\
& \sigma=\sqrt{\frac{\Sigma X^{2}}{N}-\frac{2 \Sigma(X \Sigma X)}{N}+\frac{\Sigma(\Sigma X)^{2}}{N^{3}}}, \\
& \sigma=\sqrt{\frac{\Sigma X^{2}}{N}-\left(\frac{\Sigma X}{N}\right)^{2}}, \tag{3}
\end{align*}
$$

since, $\Sigma(X \Sigma X)=(\Sigma X)^{2}$,
and $\quad \frac{\Sigma(\Sigma X)^{2}}{N^{3}}=\frac{(\Sigma X)^{2}}{N^{2}}$.
Although formula (3) looks more formidable than (2), it is in reality much simpler. Expressed in words, the operations are as follows: Square the original measures, add the squares, and divide by the number of cases. This gives $\frac{\Sigma X^{2}}{N}$. Next,
add the original measures, divide the sum by $N$, and square the quotient. This gives $\left(\frac{\Sigma X}{N}\right)^{2}$. Subtract $\left(\frac{\Sigma X}{N}\right)^{2}$ from $\frac{\Sigma X^{2}}{N}$ and extract the square root of the difference. This gives $\sigma$.

If the series of values is given in the form of a frequency table, we must multiply each valuc by its frequency, and our formulas become

$$
\begin{align*}
& \sigma=\sqrt{\frac{\Sigma f d^{2}}{N}}  \tag{4}\\
& \sigma=\sqrt{\frac{\Sigma f X^{2}}{N}-\left(\frac{\Sigma f X}{N}\right)^{2}} . \tag{5}
\end{align*}
$$

The chief objection to the range as a measure of variability has already been illustrated. The addition of one or two extreme cases may increase the range to scveral times its former value without actually causing any great change in the tendency of the cases to group themselves about some central value. The quartile deviation almost entirely eliminates the effect of extreme cases, a condition which is not always wholly desirable. It is also unreliable in those instances in which the distribution of the items under discussion departs decidedly from symmetry. In such situations the mean deviation is much more useful. The standard deviation, making use, as it does, of the squares of the deviations of all items from the mean, is affected strongly by extreme cases but reduces the effect somewhat by taking the square root of the sum. The greatest advantage of this measure is the ease with which it lends itself to algebraic manipulation. In making use of any of these measures of variability to compare distributions, the size of the objects involved must be kept in mind. As an example, suppose we consider the physical measurements of a group of men. A range of two inches in their heights would be almost negligible, while a range of two inches in the lengths of their feet would indicate a wide variety of sizes.

If we divide the quartile measure by the sum of the two values which were used in its computation, and divide each of the other measures by the arithmetic mean of the distribution to which they are applied, our measures become coefficients and allow us to compare more convenientiy distributions of items of widely different magnitudes.

Example. Calculate the standard deviation of prices of corn for 1870-1926.


## Exercises

1. Calculate the standard deviation of prices of wheat, oats, barley, rye, potatoes, and hay during the years 1870-1926.
2. Show that formula (3) follows from (2).
3. Correlation. In the physical sciences the value of a variable is usually dependent upon, or, as we say, is a function
of a single variable or at least very few other variables, and one or more constants. For example, the electric current that flows through a conductor depends upon the electromotive force and the resistance of the conductor. Expressed as a functional relationship we may write

$$
C=f(E, R) .
$$

In the laboratory we are usually able to keep all of the independent variables except one constant and allow this one to vary at will, thus arriving at a mathematical formula for the relationship. We may for instance keep the electromotive force constant and vary the resistance; we than find that the current varies inversely as the resistance. Again we may keep the resistance constant and vary the electromotive force, thus finding that the current varies directly as the electromotive force. By properly selecting the units in which we measure we may reduce all the constants to the value 1 and establish the formula,

$$
C=\frac{E}{R},
$$

where $C=$ the current in amperes, $E=$ electromotive force in volts, and $R=$ resistance in ohms.

In the biological and still more so in the social sciences the number of variables is usually large and it is difficult or in many cases impossible to keep certain variables constant while varying others in the course of an experiment. We often have to measure the various factors of a phenomenon as it occurs without our controlling influence and by means of statistical analysis of the observed values draw conclusions regarding their interdependence. We may be able to establish a degree of relationship even if we are unable to determine the nature of this relationship.

The degree of relationship between two series of values of two variables is usually measured by the coefficient of corrclation. This coefficient may have values from +1 through 0 to -1 . If there is a perfect agreement between the variation of the two variables so that both increase or decrease together the correlation is said to be perfect and positive. Such a correlation exists between the values of current and electromotive force if the resistance is kept constant. The coefficient of correlation would in this case be +1 . If on the other hand an increase in one variable always is accompanied by a decrease in the other variable the correlation is perfect and negative, $=-1$. Such would be the relationship between current and resistance if voltage is kept constant. If there is no relationship between the variables but an increase in one is just as likely to be accompanied by a decrease as by an increase in the other variable, the coefficient of correlation is 0 .
There may, however, be a tendency for one variable to increase or decrease as the other variable increases or decreases, although the correspondence is not perfect. In such a case we get a coefficient of correlation between 0 and +1 . If, on the other hand one variable tends to increase as the other variable decreases although imperfectly, we get values of the coefficient of correlation between 0 and -1 .

After this description of the meaning of the term coefficient of correlation we shall give the two most commonly used methods of computing said coefficient, omitting the rather complicated mathematical theory on which they are based.
119. The rank method of correlation. This coefficient is usually designated by $\rho$ (rho, Greek letter) and differs slightly from the coefficient $r$ determined by the product-moment formula as described below.

Let the following two series of values be the mean prices of wheat and corn for ten weeks:

| . | Wheat | Corn |
| :---: | :---: | :---: |
| 1st week. | \$1.25 | \$0 67 |
| 2nd week. | 1.28 | 0.65 |
| 3rd week | 1.33 | 0.75 |
| 4th week | 1.40 | 0.76 |
| 5 th week | 1.36 | 0.74 |
| 6th week | 1.41 | 0.77 |
| 7th week | 1.34 | 0.72 |
| 8th week | 1.30 | 070 |
| 9 th week | 1.35 | 0.73 |
| 10th week. | 1.38 | 0.71 |

Rank the prices of each, assigning to the lowest price the rank 1 and to highest price the rank 10. We then get

|  | Wheat Rank | Corn <br> Rank | Rank of Wheat Minus Rank of Corn $=d$ | $d^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1st week. | 1 | 2 | -1 | 1 |
| 2nd week. | 2 | 1 | 1 | 1 |
| 3rd week. | 4 | 8 | -4 | 16 |
| 4th week. | 9 | 9 | 0 | 0 |
| 5th week. | 7 | 7 | 0 | 0 |
| 6th week. | 10 | 10 | 0 | 0 |
| 7th week. | \% | 5 | 0 | 0 |
| 8th week. | 3 | 3 | 0 | 0 |
| 9th week. | 6 | 0 | 0 | 0 |
| 10th week. | 8 | 4 | 4 | 16 |
|  |  |  |  | $\Sigma d^{2}=34$ |

The coefficient of rank correlation, $C$, is then obtained by the formula,

$$
\begin{equation*}
C=1-\frac{6 \Sigma d^{2}}{N\left(N^{2}-1\right)}, \tag{6}
\end{equation*}
$$

where $N$ is the number of cases and $d$ is the differences in rank.

$$
\begin{aligned}
C & =1-\frac{6 \times 34}{10\left(10^{2}-1\right)} \\
& =1-\frac{20}{8} \frac{4}{80}=1-0.206=0.794 .
\end{aligned}
$$

The coefficient of rank correlation takes into account the ranks of the variables only, but not their magnitude. If two or more terms are equal they are given the same rank. For instance, if the 12 th and 13 th terms are equal, they are both given the rank 12.5. If the 12 th, 13 th, and 14 th are alike, all three are given the rank 13 , etc.

## Exercise

Determine by the rank method the correlations between prices of wheat on the one hand and prices of (a) corn, (b) oats, (c) barley, (d) rye, (e) potatoes, ( $f$ ) hay, on the other hand, as given on pp. 37 ff .
120. The product moment formula or the Pearson correlation coefficient. This formula is

$$
\begin{equation*}
r=\frac{\Sigma x y}{N \cdot \sigma_{x} \cdot \sigma_{y}}, \tag{7}
\end{equation*}
$$

where $x$ are the deviations of the terms in the $X$-series from their mean (with proper signs), $y$ the variations of the terms in the $Y$-series from their mean, $N$ the number of cases, $\sigma_{x}$ the standard deviation of the $X$-series, and $\sigma_{\nu}$ the standard deviation of the $Y$-series.

Recalling that $\sigma_{x}=\sqrt{\frac{\Sigma x^{2}}{N}}$ and $\sigma_{\nu}=\sqrt{\frac{\Sigma y^{2}}{N}}$ we may substitute these values in (7) and get

$$
r=\frac{\Sigma x y}{N \sqrt{\frac{\Sigma x^{2}}{N}} \sqrt{\frac{\Sigma y^{2}}{N}}}
$$

or

$$
\begin{equation*}
r=\frac{\Sigma x y}{\sqrt{\Sigma x^{2} \cdot \Sigma y^{2}}} \tag{8}
\end{equation*}
$$

## Example

|  | Price of Wheat in Cents $\boldsymbol{X}$ | Price of Corn in Cents $\boldsymbol{Y}$ | $\begin{gathered} X-M_{x} \\ \text { or } \\ x \end{gathered}$ | $\begin{gathered} Y-M_{y} \\ \text { or } \\ y \end{gathered}$ | $x y$ | $x^{2}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1st ... | 125 | 67 | -9 | -5 | +45 | 81 | 25 |
| 2nd. | 128 | 65 | -6 | -7 | +42 | 36 | 49 |
| 3rd | 133 | 75 | -1 | +3 | $-3$ | 1 | 9 |
| 4th | 140 | 76 | +6 | +4 | $+24$ | 36 | 16 |
| 5th | 136 | 74 | +2 | +2 | + 4 | 4 | 4 |
| 6th | 141 | 77 | +7 | +5 | +35 | 49 | 25 |
| 7th | 134 | 72 | 0 | 0 | 0 | 0 | 0 |
| 8th | 130 | 70 | -4 | -2 | $+8$ | 16 | 4 |
| 9th | 135 | 73 | +1 | +1 | +1 | 1 | 1 |
| 10th | 138 | 71 | +4 | -1 | - 4 | 16 | 1 |
| $\Sigma X=1340$ |  | $\mathbf{\Sigma} \boldsymbol{Y}=\mathbf{7 2 0}$ |  | 240 | $\Sigma y^{2}=$ |  | = |

$$
\begin{aligned}
M_{x} & =\frac{\Sigma X}{N}=134 \quad \quad M_{y}=\frac{\Sigma Y}{N}=72 \\
r & =\frac{\Sigma x y}{\sqrt{\Sigma x^{2} \Sigma y^{2}}}=\frac{+152}{\sqrt{240 \times 134}}=0.847
\end{aligned}
$$

If the means of the $X$ - and $Y$-series come out with decimals, this method involves considerable numerical work. We may then employ to advantage a modification of the formula that uses the original $X$ - and $Y$-values.

Recalling that

$$
\begin{aligned}
& x=X-M_{x}=X-\frac{\Sigma X}{N} \\
& y=Y-M_{y}=Y-\frac{\Sigma Y}{N}
\end{aligned}
$$

and substituting these values in (8), we get,

$$
\begin{align*}
r & =\frac{\Sigma\left(X-\frac{\Sigma X}{N}\right)\left(Y-\frac{\Sigma Y}{N}\right)}{\sqrt{\Sigma\left(X-\frac{\Sigma X}{N}\right)^{2} \Sigma\left(Y-\frac{\Sigma Y}{N}\right)^{2}}} \\
& =\frac{\Sigma X Y-\frac{\Sigma X \Sigma Y}{N}}{\sqrt{\left(\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}\right)\left(\Sigma Y^{2}-\frac{(\Sigma Y)^{2}}{N}\right)}} \tag{9}
\end{align*}
$$

The work can be further reduced due to the fact that the subtraction of a constant term from either series does not affect the coefficient of correlation. We could, for instance, in our example subtract 124 from all the $X$-values and 64 from all the $Y$-values, thus materially reducing the size of the figures with which we have to operate.

## Exercise

Determine by the product moment formula the correlations between prices of wheat, on the one hand, and prices of (a) corn, (b) oats, (c) barley, (d) rye, (e) potatoes, $(f)$ hay, on the other hand, as given on pp. 37ff.

## CHAPTER XVI

## PROBABILITY

121. Meaning of probability. A box contains four white and five black balls. One ball is drawn at random and then replaced and this process is continued indefinitely. What proportion of the balls drawn will be black? Here there are nine balls to be drawn or we may say there are nine possibilities, and either of the nine balls is equally likely to be drawn or any one of the nine possibilities is equally likely to happen. Of the nine possibilities, any one of four would result in drawing a white ball and any one of five would result in drawing a black ball. We would say, then, that four possibilities of the nine are favorable to drawing a white ball and the other five possibilities are favorable to drawing a black ball. We put the above statement in another way by saying that in a single draw the probability of drawing a white ball is $\frac{4}{8}$ and the probability of drawing a black ball is $\frac{5}{9}$. This does not mean that out of only nine draws, exactly four would be white and five black. But it does mean that, if a single ball were drawn at random and were replaced and this process continued indefinitely, 垂 of the balls drawn would be white and $\frac{5}{8}$ would be black. Or the ratio of the number of white balls drawn to the number of black balls drawn would be as 4 to 5 .
Reasoning similar to the above led LaPlace to formulate the following definition of probability: If $h$ is the number of possible ways that an event will happen and $f$ is the number of possible ways that it will fail and all of the possibilities are equally likely,
the probability that the event will happen is $\frac{h}{h+f}$ and the probability that it will fail is $\frac{f}{h+f}$.

It is evident, then, that the sum of the probability that an event will happen and the probability that it will fail is 1 , the symbol for certainty.
In analyzing a number of possibilities we must be sure that each of them is equally likely to happen before we attempt to apply the above definition of probability.

Example. What is the probability that a man, age 30 and in good health, will die before age 35 ? In this case we might reason thus: The event can happen in only one way and fail in only one way, and consequently, the probability that he will die before age 35 is $\frac{1}{2}$. But this reasoning is false for we are assuming that living five years and dying within five years are equally likely for a man now 30 years old. But this is not the actual experience. This example will be discussed in Art. 122.
122. Probability based upon observation or experience. There are many events in which it is impossible to enumerate all the equally likely ways in which the event can happen or fail. Yet by means of experience we may determine to a fair degree of accuracy the probability that a future event will happen at a certain time. If we have observed that an event has happened $h$ times out of $n$ possible ways, where $n$ is a large number, we conclude that $h / n$ is a fair estimate of the probability that the event will again happen and our confidence in this estimate increases as the number of possibilities, $n$, increases.

We are now ready to solve the problem which was stated in Art. 121. The American Experience Table of Mortality shows that out of 85,441 men living at age 30 , the number of living at age 35 will be 81,822 . Then the number dying before age

35 is $85,441-81,822$ or 3619 . Hence the probability that a man aged 30 will die before age 35 is $\frac{3619}{85,441}=.04235$. In this problem $n=85,441$ and $h=3619$.

We have previously stated that the value $h / n$ is only an estimate, but it is accurate enough (when $n$ is large enough) for many practical purposes.
123. Meaning of mortality table. If it were possible to trace a large number of persons, say 100,000 , living at age 10 until the death of each occurred, and a record kept of the number living at each age $x$ and the number dying between the ages $x$ and $x+1$, we would have a mortality table.

However, mortality tables are not constructed by observing a large number of individuals living at a certain age until the death of each, for it is evident that this method would not be practicable, but would be next to impossible, if not impossible. Mechanical methods have been devised for the construction of such tables, but the scope of this text does not permit of the discussion of these methods.

Table IV (back of book) is known as the American Experience Table of Mortality and is based upon the records of the Mutual Life Insurance Company of New York. It was first published in 1868 and is used by life insurance companies in America to determine the premium to charge for their policies. It will be used in this book as a basis for all computations dealing with mortality statistics. It consists of five columns as follows: The first gives the ages running from 10 to 95 , the different ages being denoted by $x$; the second gives the number living at the beginning of each age $x$ and is denoted by $l_{x}$; the third gives the number dying between ages $x$ and $x+1$ and is denoted by $d_{x}$; the fourth gives the probability of dying in the year from age $x$ to age $x+1$ and is denoted by $q_{x}$; and the fifth gives the probability of living a year from age $x$ to age $x+1$ and is denoted by $p_{x}$.

## Exercises

1. What is the probability that a man aged 40 will live to be 65 ? What is the probability that a man of the same age will die before reaching age 65? What is the sum of the two probabilities? (See solution of problem in art. 122.)
2. Suppose 100,000 lives age 10 were insured for one year, by a company for $\$ 1000$ each. Using the American Experience Table as a basis and not figuring intcrest, what would be the cost to each individual? Ans. \$7.49.
3. What would be the cost of $\$ 1000$ insurance for one year on the life of an individual 30 years old? (Assume for convenience that 85,441 individuals are insured by the same company.) Ans. \$8.43.
4. Permutations. Number of permutations of things all different. Before discussing permutations we state the following principle, which is fundamental: If one thing may be done in $p$ ways and after it has been done in one of these ways, another thing may be done in $q$ ways, then the two things together may be done in the order named in pq ways.

It is evident that for each of the $p$ ways of doing the first thing there are $q$ ways of doing the second thing and the total number of ways of doing the two in succession is $p q$.

This principle may be extended to three or more things.
Example. A man may go from $A$ to $B$ over any one of 4 routes and from $B$ to $C$ over any one of 7 routes. In how many ways may he go from $A$ to $C$ through $B$ ? Ans. 28.

Each of the different ways that a number of things may be arranged is known as a permutation of those things. For example the different arrangements of the letters $a b c$ are- $a b c, a c b, b a c$, $b c a, c a b, c b a$. There are 3 different ways of selecting the first letter and after it has been selected in one of these ways there remain 2 ways of selecting the second letter. Then the first two letters may be selected in $3 \times 2$ or 6 ways. It is clear
that we have no choice in the selection of the third letter and consequently the total number of permutations (or arrangements) of the three letters is 6 .

Now suppose there are $n$ things all different and we wish to find the number of permutations of these things taken $r$ at a time, $n>r$.

Since only $r$ of the $n$ things are to be used at a time, there are only $r$ places to be filled. The first place may be filled by any one of the $n$ things and the second place by any one of the $n-1$ remaining things. Then, the first and second places together may be filled in $n(n-1)$ ways. The third place may be filled by any one of the $n-2$ remaining things. Hence the first three places may be filled in $n(n-1)(n-2)$ ways. Reasoning in a similar way we see that after $r-1$ places have been filled, there remain $n-(r-1)$ things from which to fill the $r$ th place. Applying the fundamental principle stated above we have

$$
\begin{equation*}
{ }_{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1) \tag{1}
\end{equation*}
$$

When $r=n$, (1) becomes,

$$
\begin{equation*}
{ }_{n} P_{n}=n(n-1)(n-2) \ldots 3 \cdot 2 \cdot 1=n! \tag{2}
\end{equation*}
$$

Note. The symbol $n^{\prime} r$ is used to denote the number of permutations of $n$ things taken $r$ at a time. $n$ ! is a symbol which stands for the product of all the integers from 1 up to and including $n$, and is read "factorial" $n$.

## Exercises

1. A man has two suits of clothes, three shirts, four ties and two hats. In how many ways may he dress by changing suits, shirts, ties and hats?
2. How many arrangements of the letters in the word "Vermont" can be made, using in each arrangement
(a) 4 letters?
(b) all the letters?
3. How many signals could be made from 4 different flags?
4. Four persons enter a street car in which there are 7 vacant seats. In how many ways may they be seated?
5. Combinations. Number of combinations of things all different. By a combination we mean a group of things without any regard for order of arrangement of the individuals within the group. For example $a b c, a c b, b a c, b c a, c a b, c b a$ are the same combination of the letters $a b c$, but each arrangement is a different permutation.

By the number of combinations of $n$ things taken $r$ at a time is meant the number of different groups that may be formed from $n$ individuals when $r$ individuals are placed in each group. For example $a b, a c, b c$ are the different combinations of the letters $a b c$ when two letters are used at a time.

The symbol ${ }_{n} C_{r}$ is used to stand for the number of combinations of $n$ things taken $r$ at a time. We will now derive an expression for ${ }_{n} C_{r}$. For each one of the ${ }_{n} C_{r}$ combinations there are $r$ ! different permutations. And for all of the ${ }_{n} C_{r}$ combinations there are ${ }_{n} C_{r} r$ ! permutations, which is the number of permutations of $n$ things taken $r$ at a time. Hence,
and

$$
\begin{aligned}
{ }_{n} C_{r} r! & ={ }_{n} P_{r}, \\
{ }_{n} C_{r} & =\frac{{ }_{n} P_{r}}{r!} .
\end{aligned}
$$

Since,
we have

$$
\begin{align*}
{ }_{n} P_{r} & =n(n-1)(n-2) \ldots(n-r+1), \\
{ }_{n} C_{r} & =\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!} . \tag{3}
\end{align*}
$$

## Exercises

1. Find the number of combinations of 8 things taken 5 at a time.

Solution. Herc $n=8$ and $r=5$.
Then, ${ }_{8} C_{b}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{5 \cdot 4 \cdot 3 \cdot 2}=56$.
2. How many committees of 5 men can be selected from a group of 12 men?
3. Out of 7 Englishmen and 6 Americans, how many committees of 3 Englishmen and 2 Americans can be chosen? Ans. 525.
4. How many different sums can be made up from a cent, a nickel, a dime, a quarter, and a dollar?

Ans. 31.
5. An urn contains 4 white and 9 black balls. If 5 balls are drawn at random, what is the probability that (a) all are black, (b) 2 white and 3 black?

Solution. (a) The total number of ways that 5 balls may be drawn from 13 balls is ${ }_{13} C_{5}$ or 1287 ways. And the number of ways that 5 black balls may be drawn is ${ }_{9} C_{5}$ or 126 ways. Hence, the probability of drawing 5 black balls is $\frac{128}{1287}$ or $\frac{14}{143}$.
(b) 2 white balls may be drawn in ${ }_{4} C_{2}$ ways or 6 ways. And for each one of these 6 ways of drawing 2 white balls, 3 black balls may be drawn in ${ }_{9} C_{3}$ or 84 ways. Then 2 white balls and 3 black balls may be drawn together in 6.84 or 504 ways (see fundamental principle, art. 124). Hence, the probability of drawing 2 white and 3 black balls is $\frac{504}{1287}$ or $\frac{58}{143}$.
6. A bag contains 5 white, 6 black and 8 red balls. If 4 balls are drawn at random, what is the probability that (a) all are black, (b) 2 white and 2 red, (c) 2 black and 2 white, (d) 1 white, 1 black and 2 red?
126. Compound events. We may think of an event as composed of two or more simpler events. These component simpler events may be independent, dependent or exclusive. Two or more events are said to be independent or dependent when the occurrence of any one of them at a given trial does not or does affect the occurrence of the others. Two or more events are said to be exclusive when the occurrence of any one of them on a particular occasion excludes the occurrence of another on that occasion. We give now three theorems without proof.

Theorem I. If $p_{1}, p_{2} \ldots p_{r}$ are the separate probabilities of $r$ independent events, the probability that all of these events will
happen together at a given trial is the product of their separate probabilities, that is,

$$
\begin{equation*}
p=p_{1} \cdot p_{2} \cdot p_{3} \ldots p_{r} \tag{4}
\end{equation*}
$$

Theorem II. Let $p_{1}$ be the probability of a first event; let $p_{2}$ be the probability of a second event after the first has happened; let $p_{3}$ be the probability of a third event after the first two have happened; and so on. Then the probability that all of these events will occur in order is

$$
\begin{equation*}
p=p_{1} \cdot p_{2} \cdot p_{3} \ldots p_{r} \tag{5}
\end{equation*}
$$

Theorem III. If $p_{1}, p_{2}, \ldots p_{r}$ are the separate probabilities of $r$ mutually exclusive events, the probability that one of these events will happen on a particular occasion when all of them are in question is

$$
\begin{equation*}
P=p_{1}+p_{2}+p_{3} \ldots+p_{r} \tag{6}
\end{equation*}
$$

## Exercises

1. The probability that A will live 15 years is $\frac{1}{7}$, the probability that $B$ will live 15 years is $\frac{1}{8}$, and the probability that $C$ will live 15 years is $\frac{1}{8}$. What is the probability that all three will live 15 years?

Solution. We have here three independent events, where $p_{1}=\frac{1}{7}$, $p_{2}=\frac{1}{6}, p_{3}=\frac{1}{8}$.

Hence, $P=\frac{1}{7} \cdot \frac{1}{6} \cdot \frac{1}{8}=\frac{1}{3^{36}}$.
2. Find the probability of drawing 2 white balls in succession from a bag containing 5 white and 6 black balls, if the first ball drawn is not replaced before the second drawing is made.
Solution. We have here two dependent events. The probability that the first draw will be white is $\frac{5}{5+6}=\frac{5}{11}$ the probability that the second draw will be white is $\frac{4}{4+6}=\frac{2}{5}$. Then $p_{1}=\frac{5}{11}$ and $p_{2}$ $=\frac{2}{5}$. Hence,

$$
\begin{equation*}
P=\frac{5}{11} \cdot \frac{2}{5}=\frac{2}{11} . \tag{5}
\end{equation*}
$$

3. Five coins are tossed at once. What is the probability that all will be heads?
4. A bag contains 3 white, 4 black, and 6 red balls. One ball is drawn and not replaced, then a second ball is drawn and not replaced and then a third ball is drawn. What is the probability (a) that a ball of each color will be drawn, (b) that 2 blacks and 1 red will be drawn, (c) that all will be red?
5. Suppose that in example 4 the balls were replaced after each draw. Then answer (a), (b), and (c).
6. Three men of ages $25,30,32$ respectively form a partnership. What is the probability (a) that all three will be living at the end of 8 years, (b) that the first two will be living, (c) that one only of the three will be living? Use the American Experience Table of Mortality.
7. A man and wife are 24 and 23 when they marry. What is the probability that they will both live to celebrate their Golden Wedding?

## CHAPTER XVII

## ANNUITIES AND INSURANCE

127. Meaning of life annuity. In Chapter $X$ annuities certain (those that continue a certain time regardless of any future happening) were discussed. By a life annuity we mean a succession of periodical payments which continue only during the life of the individual concerned. It is clear then that the cost of such an annuity will depend upon the probability of living as well as upon the rate of interest. Before computing the cost of a life annuity we will discuss pure endowments.
128. Pure endowments. A pure endowment is a sum of money payable to a person aged $x$, at a specified future date, provided the person survives until that date. We will now find the cost of an endowment of 1 to be paid at the end of $n$ years to a person whose present age is $x$. The symbol, $n^{E} x$, will stand for the cost of such an endowment.
Suppose $l_{x}$ individuals, all of age $x$, agree to contribute equally to a fund that will assure the payment of one dollar to each of the survivors at the end of $n$ years. From the mortality table we see that out of the $l_{x}$ individuals entering this agreement, $l_{x+n}$ of them would be living at the end of $n$ years. Consequently, it would require $l_{x+n}$ dollars at that time. But the present value of this sum is

$$
v^{n} \cdot l_{x+n}
$$

(Equation (1), Art. 70)
and since $l_{x}$ persons are contributing equally to this fund, the share of each will be

$$
v^{n} l_{x+n} \div l_{x}
$$

Hence,

$$
\begin{equation*}
{ }_{n} E_{x}=\frac{v^{n} l_{x+n}}{l_{x}} . \tag{1}
\end{equation*}
$$

If the numerator and the denominator of (1) be multiplied by $v_{x}$, it becomes

$$
\frac{v^{x+n} l_{x+n}}{v^{x} l_{x}},
$$

and if we agree that the product $v^{x} l_{x}$ shall be denoted by $D_{x}$, then (1) becomes,

$$
\begin{equation*}
{ }_{n} E_{x}=\frac{D_{x+n}}{D_{x}} . \tag{2}
\end{equation*}
$$

$D_{x}$ is one of four symbols, called commutation symbols, that are used to facilitate insurance computations. See Table V in the back of this book. This table is based on the American Experience Table of Mortality and a $3 \frac{1}{2} \%$ interest rate is used. There are other commutation tables based upon different tables of mortality and different rates of interest are used.
129. Present value (cost) of a life annuity. We now propose to find the present value of a life annuity of one dollar per annum payable to an individual, now aged $x$. The symbol, $a_{x}$, is used to denote such an annuity. We sec that the present value of this annuity is merely the sum of pure endowments, payable at the end of one, two, three and so on years. Consequently,

$$
\begin{align*}
a_{x} & ={ }_{1} E_{x}+{ }_{2} E_{x}+{ }_{3} E_{x}+\ldots \text { to end of table. } \\
& =\frac{D_{x+1}}{D_{x}}+\frac{D_{x+2}}{D_{x}}+\frac{D_{x+3}}{D x}+\ldots \text { to end of table. } \\
& =\frac{D_{x+1}+D_{x+2}+D_{x+3}+\ldots((2), \text { Art. } 128 .)}{D_{x}}  \tag{3}\\
a_{x} & =\frac{N_{x+1}}{D_{x}} \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
* N_{x+1}=D_{x+1}+D_{x+2}+D_{x+3}+\ldots \text { to end of table } \tag{5}
\end{equation*}
$$

130. Life annuity due. When the first payment under an annuity is made immediately, we have what is called an annuity due. The present value of an annuity due of 1 per annum to a person aged $x$ is denoted by $a_{x}$. An annuity due differs from an ordinary annuity (Art. 129) only by an immediate payment. Consequently ve heve

$$
\begin{align*}
a_{x} & =1+a_{x} \\
& =1+\frac{N_{x+1}}{D_{x}}=\frac{D_{x}+N_{x+1}}{D_{x}} \\
& =\frac{D_{x}+D_{x+1}+D_{x+2}+D_{x+3}+\ldots \text { to end of table. }}{D_{x}}  \tag{6}\\
& =\frac{N_{x}}{D_{x}} \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
N_{x}=D_{x}+D_{x+1}+D_{x+2}+\ldots \text { to end of table. } \tag{8}
\end{equation*}
$$

131. Temporary annuity. When the payments under a life annuity stop after a certain time although the individual be still living, we have what is called a temporary annuity. Such an annuity which ceases after $n$ years is denoted by the symbol $a_{x \overline{n \mid}}$.

It is clear that the present value of a temporary annuity is equal to the sum of present values of pure endowments payable at end of $1,2,3, \ldots, n$ years. Thus,

[^3]\[

$$
\begin{align*}
a_{x \bar{n} \mid} & ={ }_{1} E_{x}+{ }_{2} E_{x}+\ldots+{ }_{n} E_{x} \\
& =\frac{D_{x+1}+D_{x+2}+\ldots+D_{x+n}}{D_{x}} \\
& =\frac{D_{x+1}+D_{x+2}+\ldots \text { to end of table }}{D_{x}} \\
& -\frac{D_{x+n+1}+D_{x+n+2}+\ldots \text { to end of table }}{D_{x}}  \tag{9}\\
a_{x \bar{n} \mid} & =\frac{N_{x+1}-N_{x+n+1}}{D_{x}} . \tag{10}
\end{align*}
$$
\]

If the first of the $n$ payments be made immediately and the last payment be made at the end of $n-1$ years, we then have a temporary annuity due. Letting $\mathrm{a}_{x \bar{n}\rceil}$ represent such an annuity, we get,

$$
\begin{align*}
\mathbf{a}_{x \bar{n} \mid} & =1+a_{x \bar{n}-1}, \\
& =1+\frac{D_{x+1}+D_{x+2}+\ldots+D_{x+n-1}}{D_{x}} \\
& =\frac{D_{x}+D_{x+1}+D_{x+2}+\ldots+D_{x+n-1} .}{D_{x}}  \tag{11}\\
& =\frac{N_{x}-N_{x+n} .}{D_{x}} . \tag{12}
\end{align*}
$$

## Exercises

1. Find the cost of a pure endowment of $\$ 5000$ due in 15 years and purchased at age 25 , interest at $3 \frac{1}{2} \%$.

Solution. Here $x=25, n=15$, and

$$
{ }_{15} E_{25}=\frac{D_{40}}{D_{25}}=\frac{19727.4}{37673.6}=.523639 .
$$

Hence, $5000{ }_{15} E_{25}=\$ 2618.20$.
2. What is the cost of a life annuity of $\$ 500$ per annum for a person aged 50 , interest at $3 \frac{1}{2} \%$ ?

Solution. From (4) Art. 129,

$$
\begin{aligned}
a_{50} & =\frac{N_{51}}{D_{50}}=\frac{1691650}{12498.6} \\
& =13.534716
\end{aligned}
$$

The annuity of $\$ 500$ has a cost of

$$
500 a_{50}=500(13.534716)=\$ 6767.36
$$

3. A man aged 60 has $\$ 10,000$ with which to buy a life annuity. What will be his annual income on a $3 \frac{1}{2} \%$ basis?

Solution. Here we have the cost of an annuity and are required to find the annual rent. Hence, from (4) Art. 129, we have,

$$
\begin{aligned}
R a_{60} & =\$ 10,000 \\
R & =\frac{\$ 10,000}{a_{60}} .
\end{aligned}
$$

But,

$$
a_{60}=\frac{N_{61}}{D_{60}}=\frac{73754.7}{7351.65}=10.032401,
$$

$$
R=\frac{10,000}{10.032401}=\$ 996.77
$$

4. An heir, aged 14 , is to receive $\$ 30,000$ when he becomes 21. What is the present value of his estate on a $3 \frac{1}{2} \%$ basis?
5. What would be the present value of the estate in Ex. 4 on a $4 \%$ basis?

Ans. $\$ 21,597.30$.
6. According to the terms of a will a person aged 30 is to receive a life income of $\$ 6000$, first payment at once An inheritance tax of $3 \%$ on the present value of the income must be paid immediate.y. Find the present value of the income and the amount of the tax. Ans. $\$ 117,632.40$, $\$ 3,528.97$.
7. A man carrying a $\$ 10,000$ life insurance policy arranges it so that the proceeds at his death shall be payable to his wife in annual install-
ments for 20 years cortain, first payment upon due proof of death. What would be the annual installment?
8. What would be the annual installment in Ex. 7, if payments were to be made throughout the life of his wife, assuming that she was 55 years of age at his death?
9. What would be the annual installment in Ex. 8, if the wife took a twenty-year temporary annuity?
132. Life insurance definitions. Life insurance is fundamentally sound only when a large group of individuals is considered. Each person contributes to a general fund from which the losses sustained by individuals of the group are paid. The organization that takes care of this fund and settles the claim for all losses is known as an insurance company. The deposit made to this fund by the individuals is called a premium. Since, the payment of this premium by the individuals insures a certain sum or benefit at his death, he is spoken of as the insured and the person to whom the benefit is paid at the death of the insured is called the beneficiary. The agreement made between the insured and the company is called a policy and the insured is sometimes spoken of as the policy holder. If all of those insured were of the same age all premiums would be the same, but since the policy holders are of different ages it is evident that the premiums vary. One of the main problems is to determine the premium to be paid for a certain benefit. It is clear that the premium will depend upon the probability of dying and also upon the rate of interest to be paid on funds left with the company. The premium based upon these two things only is known as a net premium. However, the insurance company has many expenses, in connection with the securing of policy holders, such as advertising, commissions, salaries, office supplies, et cetera, and consequently, must make a charge in addition to the net premium. The net premium plus this additional charge is called the gross or office premium. The premium may be single, or it may be
paid annually, and this annual premium may sometimes be paid in semiannual, quarterly or even monthly installments. All premiums are paid in advance.
133. Ordinary life policy. An ordinary life policy is one wherein the benefit is payable at death and at death only. The net single premium on an ordinary life policy is the present value of this benefit. The symbol $A_{x}$ will stand for the net single premium of a benefit of 1 .
Let us assume that each of $l_{x}$ persons all of age $x$, buys an ordinary life policy of 1 . During the first year there will be $d_{x}$ deaths, and consequently, at the end of the first year * the company will have to pay $d_{x}$ in benefits. Hence, the present value of these benefits will be $v d_{x}$. There will be $d_{x+1}$ deaths during the second year and the present value of these benefits will be $v^{2} d_{x+1}$, and so on. The sum of the present values of all future benefits will be given by the expression,

$$
v d_{x}+v^{2} d_{x+1}+v^{3} d_{x+2}+\ldots \text { to end of table. }
$$

Since $l_{x}$ persons buy benefits of 1 each, we will obtain the present value of each person's benefit by dividing the above expression by $l_{x}$. Therefore,

$$
\begin{equation*}
A_{x}=\frac{v d_{x}+v^{2} d_{x+1}+v^{3} d_{x+3}+}{l_{x}} \cdot \ldots \text { to end of table. } \tag{13}
\end{equation*}
$$

If both numerator and denominator of (9) be multiplied by $v^{x}$, we get,

$$
\begin{align*}
A_{x} & =\frac{v^{x+1} d_{x}+v^{x+2} d_{x+1}+\ldots \text { to end of table },}{v^{x} l_{x}} \\
& =\frac{C_{x}+C_{x+1}+C_{x+2}+\ldots \text { to end of table } .}{D_{x}} \\
A_{x} & =\frac{M_{x}}{D_{x}} \tag{14}
\end{align*}
$$

[^4]where,
$$
C_{x}^{*}=v^{x+1} d_{x}, \quad C_{x+1}=v^{x+2} d_{x+1}, \text { and so on, }
$$
and $M_{x}^{*}=C_{x}+C_{x+1}+C_{x+2}+\ldots$ to end of table.
Life insurance policies are seldom bought by a single premium. The common plan is to pay a fixed annual premium throughout the life of the policy. We denote the annual premium of an ordinary life policy of 1 by the symbol $P_{x}$. The payment of $P_{x}$, at the beginning of each year, for life forms a life annuity due and the present value of this annuity must be equivalent to the net single premium. Thus we have,
\[

$$
\begin{equation*}
P_{x} a_{x}=A_{x} \tag{15}
\end{equation*}
$$

\]

Solving for $P_{x}$, we get,
since,

$$
\begin{gather*}
P_{x}=\frac{A_{x}}{\mathrm{a}_{x}}=\frac{M_{x}}{N_{x}}  \tag{16}\\
A_{x}=\frac{M_{x}}{D_{x}} \text { and } \mathrm{a}_{x}=\frac{N_{x}}{D_{x}}
\end{gather*}
$$

## Exercises

1. What is the net single premium for an ordinary life policy for $\$ 10,000$ on a person aged 25 ?
2. What is the annual premium on the policy of Ex. 1?
3. Compare annual premiums on ordinary life policies of $\$ 10,000$ for ages 20 and 21 and for ages 50 and 51. Note the annual change in cost for the two periods of life.
4. Limited payment life policy. The limited payment life policy is like the ordinary life policy $\dagger$ in that the benefit is payable at death and death only, but differs from it in that the

* See Table V.
$\dagger$ The ordinary life policy and the limited payment life policy, are often spoken of as whole life policies in that the benefit of either is not payable until death.
equivalent of the net single premium is arranged to be paid in $n$ annual payments. Here $n$ is the number of annual payments that are to be made unless death should occur earlier. The standard forms of limited payment policies are usually for ten, fifteen, twenty or thirty payments but other forms may be written.

It is evident that the $n$ annual premiums on the limited payment life policy form a temporary life annuity due. It is also evident that this annuity is equivalent to the net single premium $A_{x}$. Hence, if the net annual premium for a benefit of 1 be denoted by ${ }_{n} P_{x}$, we may write,

$$
\begin{equation*}
{ }_{n} P_{x} \mathrm{a}_{x \bar{n}}=A_{x} . \quad((11), \text { Art. 131. }) \tag{17}
\end{equation*}
$$

Solving for ${ }_{n} P_{x}$ and substituting for $\mathrm{a}_{x \bar{n} \mid}$ and $A_{x}$, we get,

$$
\begin{equation*}
{ }_{n} P_{x}=\frac{M_{x}}{N_{x}-N_{x}+n} \tag{18}
\end{equation*}
$$

## Exercises

1. Find the net annual premium on a twenty-payment life policy for $\$ 2500$ on a person aged 30 .

Solution. Using (18), Art. 131, we have,

$$
\begin{aligned}
{ }_{20} P_{30} & =\frac{M_{30}}{N_{30}-N_{50}}=\frac{10,259}{596,804-181,663} \\
& =\frac{10,259}{415,141}=0.024712 . \\
2500_{20} P_{30} & =\$ 61.78 .
\end{aligned}
$$

2. Find the net annual premium for a fifteen-payment life policy of $\$ 10,000$ issued at age 45.
3. Find the net annual premium on a twenty-payment life policy of $\$ 5000$ for your age at nearest birthday.
4. Compare annual premiums on twenty-payment life policies of $\$ 20,000$ for ages 25 and 26 and for ages 50 and 51 . Note the annual change in cost for the two periods of life.
5. Term insurance. Term insurance is temporary insurance as it provides for the payment of the benefit only in case death occurs within a certain period of $n$ years. After $n$ years the policy becomes void. The stated period may be any number of years, but usually term policies are for five years, ten years, fifteen years and twenty years.

The symbol $A^{1}{ }_{x \bar{n} \mid}$ is used to denote the net single premium on a $n$-year term policy of benefit 1 , bought at age $x$.

If we assume that each of $l_{x}$ persons all of age $x$, buys a term policy for $n$ years, the present value of the payments made by the company will be given by

$$
\begin{equation*}
v d_{x}+v^{2} d_{x+1}+v^{\prime} d_{x+2}+\ldots v^{n} d_{x+n-1} \tag{19}
\end{equation*}
$$

Since each of $l_{x}$ persons buys a benefit of 1 , the present value of the benefit of each person will be gotten by dividing expression (19) by $l_{x}$, Hence,

$$
\begin{equation*}
A^{1}{ }_{x \bar{n} \mid}=\frac{v d_{x}+v^{2} d_{x+1}+\ldots+v^{n} d_{x+n-1} .}{l_{x}} \tag{20}
\end{equation*}
$$

If both the numerator and the denominator of (20) be multiplied by $v^{x}$, we get,

$$
\begin{align*}
& A^{1}{ }_{x \bar{n} 1}=\frac{v^{x+1} d_{x}+v^{x+2} d_{x+1}+\ldots v^{x+n} d_{x+n-1}}{v^{2} l_{x}} \\
&=\frac{\left(v^{x+1} d_{x}+v^{x+2} d_{x+1}+\ldots \text { to end of table }\right)}{v^{x} l_{x}} \\
&\left.-\frac{\left(v^{x+n+1} d_{x+n}+v^{x}+n+2\right.}{} d_{x+n+1}+\text { to end of table }\right) \\
& v^{x} l_{x} \tag{21}
\end{align*},
$$

When the term insurance is for one year only, the net pre-
mium is called the natural premium. It is given by making $n=1$ in (21) Thus,

$$
\begin{equation*}
A^{1}{ }_{x \overline{11}}=\frac{M_{x}-M_{x+1}}{D_{x}}=\frac{C_{x}}{D_{x}} . \tag{22}
\end{equation*}
$$

The net annual premium for a term policy of 1 for $n$ years will be denoted by the symbol $P^{1}{ }_{x \bar{n} \mid}$. It is evident that the annual premiums for a term policy constitute a temporary annuity due. This annuity is equivalent to the net single premium. Thus,

$$
\begin{equation*}
P^{1}{ }_{x \bar{n} \mathrm{i}} \mathrm{a}_{x \bar{n}}=A^{1}{ }_{x \bar{n} \overline{1} .} . \tag{23}
\end{equation*}
$$

Solving for $P^{1}{ }_{x n\rceil}$ and substituting for $\mathrm{a}_{x \bar{\eta}\rceil}$ and $A^{\left.{ }^{1}{ }_{x n}\right] \text {, we get, }}$

$$
P^{1}{ }_{x \bar{n} \mid}=\frac{M_{x}-M_{x+n}}{N_{x}-N_{x+n}} \quad \begin{gather*}
\text { ((12), Art. } 131 \text { and }  \tag{24}\\
\text { (21), Art. 135.) }
\end{gather*}
$$

## Exercises

1. Find the net single premium for a term insurance of $\$ 1000$ for 15 years for a man aged 30 .
Solution. From (21), Art. 135, we have,

$$
\begin{aligned}
A^{1}{ }_{30} \overline{151} & =\frac{M_{30}-M_{45}}{D_{30}}=\frac{10259-7192.81}{30,440.8} \\
& =\frac{3066.19}{20440.8}=0.10072,
\end{aligned}
$$

$$
\text { and } \quad 1000 A^{1}{ }_{30} \overline{151}=\$ 100.72 .
$$

2. Find the net single premium for a term insurance of $\$ 25,000$ for 5 years for a man aged 50 .
3. What is the net annual premium for the insurance described in Ex. 2?
4. What are the natural premiums for ages $20,30,40$, and 50 for an insurance of $\$ 1000$ ?
5. A person aged 35 buys a $\$ 10,000$ term policy which will terminate at age 65 . Find the net annual premium.
6. Endowment insurance. In an endowment policy the company agrees to pay a certain sum in event of the death of the insured within a specified period, known as the endowment period, and also agrees to pay this sum at the end of the endowment period, provided the insured be living to receive it. From the above definition it is evident that an endowment insurance of 1 for $n$ years may be considered as a term insurance of 1 for $n$ years plus an $n$-year pure endowment of 1 . (See Art. 128 and Art. 135.)

Thus, if we let the symbol $A_{x \bar{n} \mid}$ stand for the net single premium for an endowment of 1 for $n$ years we have,

$$
\begin{align*}
A_{x \bar{n} \mid} & =A^{1}{ }_{x \bar{n} \mid}+{ }_{n} E_{x} \\
& =\frac{M_{x}-M_{x+n}}{D_{x}}+\frac{D_{x+n}}{D_{x}} .  \tag{25}\\
A_{x \bar{n} \mid} & =\frac{M_{x}-M_{x+n}+D_{x+n} .}{D_{x}} . \tag{26}
\end{align*}
$$

We shall now find the net annual premium for an endowment of 1 for $n$ years, the premiums to be payable for $k$ years. The symbol ${ }_{k} P_{\bar{x} \overline{1}}$ will stand for the annual premium of such an endowment. It is clear that these premiums constitute a temporary annuity due that is equivalent to the net single premium. Hence,

$$
\begin{equation*}
{ }_{k} P_{x \bar{n} \mid} a_{x \bar{n} \mid}=A_{x \bar{n}} . \tag{27}
\end{equation*}
$$

Solving for ${ }_{k} P_{x \bar{n} \mid}$ and substituting for $\mathrm{a}_{x \overline{\mathrm{k}} \mid}$ and $A_{x \bar{n} \bar{n}}$, we get,

$$
\begin{equation*}
{ }_{k} P_{x \bar{n} \mid}=\frac{M_{x}-M_{x+n}+D_{x+n}}{N_{x}-N_{x+k}} . \tag{28}
\end{equation*}
$$

If the number of annual payments are to be equal to the
number of years in the endowment period, then $k=n$, and (28) becomes,

$$
\begin{equation*}
P_{x \bar{n} \mid}=\frac{M_{x}-M_{x+n}+D_{x+n}}{N_{x}-N_{x+n}} \tag{29}
\end{equation*}
$$

## Exercises

1. Find the net annual premium on a $\$ 10,00020$-payment, 30 -year endowment policy taken at age 25 .

Solution. From (28), we have,

$$
\begin{aligned}
{ }_{20} P_{25 \overline{30 \mid}} & =\frac{M_{25}-M_{55}+D_{55}}{N_{25}-N_{45}} \\
& =\frac{11,631.1-5510.54+9733.40}{770,113-253,745} \\
& =\frac{15,853.96}{516,368}=0.0307028 . \\
10,000{ }_{20} P_{25 \text { 万ुण }} & =\$ 307.03 .
\end{aligned}
$$

2. Find the net single promium on a $\$ 1000$ 20-year endowment policy for a person aged 35 .
3. Find the net annual premium for a $\$ 10,00020$-payment endowment policy maturing at age 60, taken at age 25.
4. Find the net annual premium on a $\$ 20,00015$-year endowment policy taken at age 55 .
5. Meaning of reserves. By observing the table of mortality, we see that the probability of dying within any one year increases each year after the tenth year of age. Consequently, the natural premium will increase with each year's increase of age. The net annual premium will be much larger than the natural premium during the earlier years of the policy, but finally for the later years the natural premium will become larger than the net annual premium.

During the earlier years the difference between the net annual premium and the natural premium is set aside at interest annually. This fund grows from year to year and is held intact to meet the heavier mortality of the later years. This amount so held by the company is known as the reserve * or the value of its policies. This is unlike the reserve of a bank for it is not held to meet some unexpected emergency but it is a real liability of the company to be used to settle the claims of its policy-holders.

The above remarks may be illustrated as follows: Suppose a man aged 35 takes out a $\$ 1000$ ordinary life policy. His net annual premium for that age on a $3 \frac{1}{2} \%$ basis would be $\$ 19.91$. The natural premium for that year would be $\$ 8.65$, leaving a difference of $\$ 11.26 \dagger$ to be placed in the reserve. However, at age 60 the natural premium would be $\$ 25.79$, which is $\$ 5.88$ larger than the net annual premium, this deficiency being cared for by the reserve.

Let us assume that each of 81,822 persons, all aged 25, buy an ordinary life policy of $\$ 1000$. The total net annual premiums would amount to $\$ 1,629,076.02$. This amount would accumulate to $\$ 1,686,093.68$ by the end of the first year. According to the table of mortality the death losses to be paid at the end of the first year would amount to $\$ 732,000.00$, leaving $\$ 954,093.68$ in the reserve. This would leave a terminal reserve of $\$ 11.77$ to each of the 81,090 survivors. The premiums received at the beginning of the second year amount to $\$ 1,614,501.90$, which, when added to $\$ 954,093.68$, makes a total of $\$ 2,568,595.58$, and so on. The following table is self explanatory.

Table showing terminal reserves on an ordinary life policy for $\$ 1000$ on the life of an individual aged 35 years.

[^5]| Policy Year | Funds on Hand at Beginning of Year | Funds Accumulated at $3 \frac{1}{2} \%$ | Death <br> Losses | Funds at End of Year | Amount of Credit of Each Survivor |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1st. | 1,629,076.02 | 1,686,093.68 | 732,000 | 954,093.68 | 11.77 |
| 2nd. | 2,568,595.58 | 2,658,496.43 | 737,000 | 1,921,496.43 | 23.91 |
| 3rd. | 3,521,324.66 | 3,644,571.02 | 742,000 | 2,902,571.02 | 36.46 |
| 4th. | 4,487,625.03 | 4,644,692.94 | 749,000 | 3,895,692.94 | 49.40 |
| 5 th. | 5,465,835.36 | 5,657,139.60 | 756,000 | 4,901,139.60 | 62.75 |

The above table illustrates what we mean by a reserve. Reserves, however, are not figured in this way. Formulas for finding the reserves on different kinds of policies and for any year may be derived but we shall not attempt this discussion here.

TABLE I.

## COMMON LOGARITHMS OF NUMBERS.


$213$


214

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 30103 | 125 | 146 | 168 | 190 | 211 | 233 | 255 | 276 | 298 |  |  |
| or | 320 | 341 | 363 | 384 | 406 | 428 | 449 | 471 | 492 | 514 |  | 22 21 |
| 02 | 535 | 557 | 578 | 600 | 621 | 643 | 664 | 685 | 707 | 728 | 1 | 2.22.1 |
| $\bigcirc$ | 750 | 771 | 792 | 814 | 835 | 856 | 878 | 899 | 920 | 942 | 2 | $\begin{array}{lll}4.4 & 4.2\end{array}$ |
| 04 | 963 | 984 | *006 | *027 | *048 | ${ }^{+} 069$ | *091 | *112 | ${ }^{1} 133$ | * 154 366 | 3 4 | 6.6 6.3 <br> 8.8 8.4 |
| 05 | 31175 | 197 | 218 | 239 | 260 | 28 I | 302 | 323 | 345 | 366 | 4 | 8.8 8.4 <br> 11.0 10.5 |
| 06 | 387 | 408 | 429 | 450 | 471 | 492 | 513 | 534 | 555 | 576 | 5 | 11.0 10.5 <br> 13.2 12.6 |
| 07 | 597 | 618 | 639 | 660 | 68I | 702 | 723 | 744 | 765 | 785 | 7 | 15.4 14.7 <br> 17.8  |
| 08 | 806 | 827 | 848 | 869 | 890 | 911 | 931 | 952 | 973 | 994 | 8 | 17.616 .8 |
| 09 | 32 O 5 | 035 | 056 | 077 | 098 | 118 | 139 | 160 | 181 | 201 | 9 | 19.8, 18.9 |
| 210 | 222 | 243 | 263 | 284 | 305 | 325. | 346 | 366 | 387 | 408 |  |  |
| 11 | 428 | 449 | 469 | 490 | 510 | 53 I | 552 | 572 | 593 | 613 |  | 20 |
| 12 | 634 | 654 | 675 | 695 | 715 | 736 | 756 | 777 | 797 | 818 |  | 12.0 |
| 13 | 838 | 858 | 879 | 899 | 919 | 940 | 960 | 980 | *OOI | * 021 |  | 24.0 |
| 14 | 33041 | 062 | 082 | 102 | 122 | 143 | 163 | 183 | 203 | 224 |  | 3 6.0 <br> 4 8.0 |
| 15 | 244 | 264 | 284 | 304 | 325 | 345 | 365 | 385 | 405 | 425 |  | 4 8.0 <br> 5 10.0 |
| 16 | 445 | 465 | 486 | 506 | 526 | 546 | 566 | 586 | 606 | 626 |  | 6 10.0 |
| 17 | 646 | 666 | 686 | 706 | 726 | 746 | 766 | 786 | 806 | ${ }^{826}$ |  | 714.0 |
| 18 | 846 | 866 | 885 | 905 | 925 | 945 | 965 | 985 | *005 | *025 |  | 816.0 |
| 19 | 34044 | 064 | 084 | 104 | 124 | 143 | 163 | 183 | 203 | 223 |  | 9118.0 |
| 220 | 242 | 262 | 282 | 301 | 321 | 341 | 361 | 380 | 400 | 420 |  |  |
| 21 | 439 | 459 | 479 | 498 | 518 | 537 | 557 | 577 | 596 | 616 |  | 19 |
| 22 | 635 | 655 | 674 | 694 | 713 | 733 | 753 | 772 | 792 | 811 |  | 1 1.9 |
| 23 | 830 | 850 | 869 | 889 | 908 | 928 | 947 | 967 | 986 | *005 |  | $\begin{array}{ll}2 & 3.8\end{array}$ |
| 24 | 35025 | 044 | 064 | 083 | 102 | 122 | 141 | 160 | 180 | 199 |  |  |
| 25 | 218 | 238 | 257 | 276 | 295 | 315 | 334 | 353 | 372 | 392 |  | 4 7.6 <br> 5 9.5 |
| 26 | 411 | 430 | 449 | 468 | 488 | 507 | 526 | 545 | 564 | 583 |  | 5 $\begin{array}{r}9.5 \\ 6\end{array} 1.4$ |
| 27 | 603 | 622 | 641 | 660 | 679 | 698 | 717 | 736 | 755 | 774 |  | 7 13.3 |
| 28 | 793 | 813 | * $\begin{array}{r}832 \\ \text { O2I }\end{array}$ | 851 $* 040$ | * 870 | *889 | *908 | * 927 | *946 | *965 |  | 8 15.2 |
| 29 | 984 | *003 | ${ }^{*} \mathbf{0 2 1}$ | *040 | *059 | *078 | *097 | *I16 | ${ }^{1} 135$ | ${ }^{*} 154$ |  | 9.17.1 |
| 230 | $36 \quad 173$ | 192 | 211 | 229 | 248 | 267 | 286 | $30 \overline{5}$ | 324 | 342 |  |  |
| 3 I | 361 | 380 | 399 | 418 | 436 | 455 | 474 | 493 | 511 | 530 |  |  |
| 32 | 549 | 568 | 586 | 605 | 624 | 642 | 661 | 680 | 698 | 717 |  | $\begin{array}{lll}1 & 1.8\end{array}$ |
| $\times 33$ | 736 | 754 | 773 | 791 | 810 | 829 | 847 | 866 | 884 | 903 |  | 2 3.6 |
| 34 | 922 | 940 | 959 | 977 | 996 | * 14 | *033 | *051 | *070 | *088 |  | 3.4 |
| 35 | 37107 | 125 | 144 | 162 | 181 | 199 | 218 | 236 | 254 | 273 |  | 4 7.2 <br> 5 9.0 |
| 36 | 291 | 310 | 328 | 346 | 365 | 383 | 401 | 420 | 438 | 457 |  | 5 9.0 <br> 6 10.8 |
|  | 475 | 493 | 511 | 530 | 548 | 566 | 585 | 603 | 621 | 639 |  | 712.6 |
| 38 | 658 | 676 | 694 | 712 | 731 | 749 | 767 | 785 | 803 | *22 |  | 8814.4 |
| 39 | 840 | 858 | 876 | 894 | $\underline{912}$ | 93 I | 949 | 967 | 985 | ${ }^{*} \mathrm{OO} 3$ |  | $9{ }^{9} 16.2$ |
| 240 | 38-021 | C39 | 057 | 075 | 093 | 112 | 130 | 148 | 166 | 184 |  |  |
| 41 | 202 | 220 | 238 | 256 | 274 | 292 | 310 | 328 | 346 | 364 |  | 17 |
| 42 | 382 | 399 | 417 | 435 | 453 | 471 | 489 | 507 | 525 | 543 |  | 1.7 |
| 43 | 561 | 578 | 596 | 614 | 632 | 650 | 668 | 686 | 703 | 721 |  | 23.4 |
| 44 | 739 | 757 | 775 | 792 | 810 | *28 | *46 | *63 | *81 | *999 |  | 3 5.1 <br> 4 6.8 |
| 45 | $\begin{array}{r}917 \\ \hline 99\end{array}$ | 934 | 952 | 970 | 987 | *005 | *023 | *041 | * 058 | *076 |  | 4 6.8 <br> 5 8.5 |
|  | 39094 | 111 | 129 | 146 | 164 | 182 | 199 | 217 | 235 | 252 |  | 610.2 |
| 47 48 | 270 | $\begin{aligned} & 287 \\ & 463 \end{aligned}$ | 305 | 322 | 340 | 358 | 375 | 393 | 410 585 | 428 602 |  | 7 11.9 <br> 8 13.6 |
| 49 | 620 | $\begin{array}{r}463 \\ 637 \\ \hline 81\end{array}$ | 4655 | 498 672 | 515 | 535 | 550 | 742 | 585 | 602 <br> 777 |  | 8 13.6 <br> 9 15.3 |
| 250 | 794 | 8II | 829 | 846 | $86_{3}$ | 881 | 898 | 915 | 933 | 950 |  |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | rop. Pts. |

215

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 250 | 39794 | 8II | 829 | 846 | 863 | 881 | 898 | 915 | 933 | 950 |  |
| 51 | 967 | 985 | * 002 | *019 | *037 | *054 | *071 | *088 | * 106 | *123 | 18 |
| 52 | 40140 | 157 | 175 | 192 | 209 | 226 | 243 | 261 | 278 | 295 | 1.8 |
| 53 | 312 | 329 | 346 | 364 | 381 | 398 | 415 | 432 | 449 | 466 | 3.6 |
| 54 | 483 | 500 | 518 | $53 \overline{5}$ | 552 | 569 | 586 | 603 | 620 | 637 | 3 5.4 |
| 55 | 654 | 671 | 688 | 705 | 722 | 739 | 756 | 773 | 790 | 807 | 4 7.2 <br> 5 9.0 |
| 56 | 824 | 841 | 858 | 875 | 892 | 909 | 926 | 943 | 960 | 976 | 5 9.0 <br> 6 10.8 |
| 57 58 | 41 993 | *010 | *027 196 | *044 | *061 | * ${ }^{+} 78$ | $\begin{array}{r} { }^{*} 09 \overline{5} \\ 263 \end{array}$ | $* 111$ <br> 280 | * ${ }_{1} 128$ | $* 145$ ${ }^{1} 13$ 313 | 7 12.8 <br> 8 12.6 <br>  14.4 |
| 59 | 330 | - 347 | 363 | 380 | -397 | 414 | 430 | 447 | 464 | 481 | 9 16.2 |
| 260 | 497 | 514 | 53 I | 547 | 564 | 581 | 597 | 614 | 631 | 647 |  |
| 61 | 664 | 681 | 697 | 714 | 731 | 747 | 764 | 780 | 797 | 814 | 17 |
| 62 | 830 | 847 | 863 | 880 | 896 | 913 | 929 | 946 | 963 | 979 | 1.7 |
| 63 | 996 | ${ }^{0} 12$ | *029 | *045 | *062 | *078 | *095 | *III | *127 | * 144 | 3.4 |
| 64 | 42160 | 177 | 193 | 210 | 226 | 243 | 259 | 275 | 292 | 308 | $\begin{array}{lll}3 & 5.1 \\ 4 & 5.1\end{array}$ |
| 65 | 325 | 341 | 357 | 374 | 390 | 406 | 423 | 439 | 455 | 472 | 4 0.8 <br> 5 8.5 |
| 66 | 488 | 504 | 52 I | 537 | 553 | 570 | 586 | 602 | 619 | 635 | 5 8.5 <br> 6 10.2 |
| 67 | 651 | 667 | 684 | 700 | 716 | 732 | 749 | 765 | 781 | 797 | 711.9 |
| 68 69 | 813 | 830 | 846 | 862 | 878 | 894 | 911 | 927 | 943 | *959 | 813.6 |
| 270 | 975 | 991 | ${ }^{0} 8$ | *024 | ${ }^{8} \mathbf{4 0}$ | *O56 | *072 | *088 | I04 | - 22 | $9{ }^{9} 15.3$ |
|  | 43-136 | 152 | 169 | 185 | 201 | 217 | 233 | 249 | 265 | 281 | 16 |
| 71 72 | 297 | 313 | 329 | 345 | 361 | 377 | 393 | 409 | 425 | 441 |  |
| 73 | 616 | 632 | 648 | 664 | 680 | 696 | 712 | 727 | 743 | 759 | 1 1.6 <br> 2 3.2 |
| 74 | 775 | 791 | 807 | 823 | 838 | 854 | 870 | 886 | 902 | 917 | 3 4.8 |
| 75 | 933 | 949 | 965 | 981 | 996 | *OI2 | *028 | *044 | *059 | *075 | 4 6.4 <br> 5 8.0 |
| 76 | 44091 | 107 | 122 | 138 | 154 | 170 | 185 | 201 | 217 | 232 | 5 8.0 <br> 6 9.6 |
| 77 | 248 | 264 | 279 | 295 | 311 | 326 | 342 | 358 | 373 | 389 | 7 II. 2 |
| 78 | 404 | 420 | 436 | 451 | 467 | 483 | 498 | 514 | 529 | 545 | 812.8 |
| 79 | 560 | 576 | 592 | 607 | 623 | 638 | 654 | 669 | 685 | 700 | $9{ }^{9} 14.4$ |
| 250 | 716 | 731 | 747 | 762 | 778 | 793 | 809 | 824 | 840 | 855 |  |
| 81 | 871 | 886 | 902 | 917 | 932 | 948 | 963 | 979 | 994 | *010 | 15 |
| 82 | 45025 | 040 | 056 | ${ }^{2} 71$ | 086 | 102 | 117 | 133 | 148 | 163 | 1. 5 |
| 83 | 179 | 194 | 209 | 225 | 240 | 255 | 271 | 286 | 301 | 317 | 23.0 |
| 84 | 332 | 347 | 362 | 378 | 393 | 408 | 423 | 439 | 454 | 469 | 4.5 6.0 |
| 85 | 484 | 5 50 | 515 | 530 | 545 | 561 | 576 | 591 | 606 | 621 | 6.0 |
| 86 | 637 | 652 | 667 | 682 | 697 | 712 | 728 | 743 | 758 | 773 | 5 7.5 <br> 6 9.0 |
| 87 | 788 | 803 | 818 | 834 | 849 | 864 | *79 | *94 | 909 | * 924 | 7110.5 |
| 88 | 46939 | 954 | 969 | 984 | '000 | *015 | *030 | *045 | *060 | *075 | 812.0 |
| 89 | 46 O90 | 105 | 120 | 135 | ${ }^{1} 5 \mathrm{O}$ | 165 | 180 | 195 | 210 | 225 | 9113.5 |
| 290 | 240 | 255 | 270 | 285 | -300 | $3{ }^{5} 5$ | 330 | 345 | 359 | 374 |  |
| 91 | 389 | 404 |  | 434 | 449 | 464 |  |  | 509 |  | I 14 |
| 92 | 538 | 553 | 568 | 583 | 598 | 613 | 627 | 642 790 | 657 805 | 672 820 | 1 1.4 <br> 2 28 |
| 93 | 687 | 702 | 716 | 73 I | 746 | 761 | 776 | 790 | 805 | 820 | 2 2.8 <br>   |
| 94 | 835 | 850 | * 86 | * 879 | 894 | *909 | *923 | *938 | *953 | * 967 | 3 4.2 <br> 4 5.6 |
| 95 | + $\begin{array}{r}982 \\ 4729\end{array}$ | 197 | * 15 | *026 | *041 | *056 | * 217 | *085 | * 100 | *114 | 4 5.6 <br> 5 7.0 |
| 96 | 47129 | 144 | 159 | 173 | 188 | 202 | 217 | 232 | 246 | 261 | 5 8.0 |
| 97 | 276 | 290 | 305 | 319 | 334 | 349 | 363 | 378 | 392 | 407 | $7 \quad 9.8$ |
| 98 99 | 422 567 | 436 582 | 451 596 | 465 | 482 | 494 | 509 654 | 524 | 538 683 88 | 553 698 | $\begin{array}{l\|l} 81.2 \\ 9 & 12.6 \end{array}$ |
| 800 | 712 | 727 | 74 I | 756 | 770 | 784 | 799 | 813 | 828 | 842 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 47712 | 727 | 741 | 756 | 770 | 784 | 799 | 813 | 828 | 842 |  |
| OI | 857 | 871 | 885 | 900 | 914 | 929 | 943 | 958 | 972 | 986 |  |
| 02 | 48 001 | O15 | 029 | 044 | 058 | 073 | 087 | IoI | 116 | 130 |  |
| 03 | 144 | 159 | 173 | 187 | 202 | 216 | 230 | 244 | 259 | 273 | 15 |
| 04 | 287 | 302 | 316 | 330 | 344 | 359 | 373 | 387 | 401 | 416 |  |
| 05 | 430 | 444 | 458 | 473 | 487 | 501 | 515 | 530 | 544 | 558 | $\begin{array}{lll}1 & 1.5 \\ 2 & 3.0\end{array}$ |
| 06 | 572 | 586 | 601 | 615 | 629 | 643 | 657 | 671 | 686 | 700 | 4.5 |
| 07 | 714 | 728 | 742 | 756 | 770 | 785 | 799 | 813 | 827 | 841 | 46.0 |
| 08 | 855 | *69 | *83 | *978 | 911 | *266 | *940 | *54 | *98 | ${ }_{*} 982$ | 57.5 |
| 09 | 996 | *oro | *024 | *038 | *052 | *066 | *080 | *094. | *108 | * 122 | $6 \quad 9.0$ |
| 810 | 49 136 | 150 | 164 | 178 | 192 | 206 | 220 | 234 | 248 | 262 | 7 10.5 <br> 8 12.0 |
| 11 | 276 | 290 | 304 | 318 | 332 | 346 | 360 | 374 | 388 | 402 | 8 12.0 <br> 9 13.5 |
| 12 | 415 | 429 | 443 | 457 | 471 | 485 | 499 | 513 | 527 | 541 |  |
| 13 | 554 | 568 | 582 | 596 | 610 | 624 | 638 | 651 | 665 | 679 |  |
| 14 | 693 | 707 | 721 | 734 | 748 | 762 | 776 | 790 | 803 | 817 |  |
| 15 | 831 | 845 | 859 | 872 | 886 | 900 | 914 | 927 | 941 | 955 | 14 |
| 16 | 969 | 982 | 996 | *010 | *024 | *037 | *051 | *065 | *079 | *092 | I 1.4 |
| 17 | 50106 | 120 | 133 | 147 | 161 | 174 | 188 | 202 | 215 | 229 | 22.8 |
| 18 | 243 | 256 | 270 | 284 | 297 | 311 | 325 | 338 | 352 | 365 | 3 4.2 |
| 19 | 379 | 393 | 406 | 420 | 433 | 447 | 4 I | 474 | 488 | 501 | 45.6 |
| 820 | 515 | 529 | 542 | 556 | 569 | 583 | 596 | 10 | 623 | 637 | 5 7.0 <br> 6 8.4 |
| 21 | 651 | 664 | 678 | 691 | 705 | 718 | 732 | 745 | 759 | 772 | 7 8.4 |
| 22 | 786 | 799 | 813 | 826 | 840 | 853 | 866 | 880 | *93 | ${ }^{907}$ | 811.2 |
| 23 | 920 | 934 | 947 | 961 | 974 | 987 | *OOI | *014 | *028 | *04I | 9712.6 |
| 24 | 51055 | 068 | 08I | 095 | 108 | 121 | 135 | 148 | 162 | 175 |  |
| 25 | 188 | 202 | 215 | 228 | 242 | 255 | 268 | 282 | 295 | 308 |  |
| 26 | 322 | 335 | 348 | 362 | 375 | 388 | 402 | 415 | 428 | 44 I |  |
| 27 | 455 | 468 | 481 | 495 | 508 | 521 | 534 | 548 | 561 | 574 | 113 <br> 1.3 |
| 28 | 587 720 | 601 | 614 | 627 | 640 | 654 786 | 667 799 | 680 | 693 825 | 706 <br> 838 | 1 1.3 <br> 2 2.6 |
| 330 | 851 | 865 | 878 | 891 | 904 | 917 | 930 | 943 | 957 | 970 | $3 \quad 3.9$ |
| 31 | 983 | 996 | *009 | ${ }^{\circ} \mathrm{O} 22$ | *035 | ${ }^{*} 048$ | *06I | ${ }^{*} 075$ | * ${ }^{2} 88$ | *IOI | 4 5.2 <br> 5 6.5 |
| 32 | 52114 | 127 | 140 | 153 | 166 | 179 | 192 | 205 | 218 | 231 |  |
| 33 | 244 | 257 | 270 | 284 | 297 | 310 | 323 | 336 | 349 | 362 | 7 9.1 |
| 34 | 375 | 388 | 401 | 414 | 427 | 440 | 453 | 466 | 479 | 492 | 8 10.4 |
| 35 | 504 | 517 | 530 | 543 | 556 | 569 | 582 | 595 | 608 | 621 | 9 I1.7 |
| 36 | 634 | 647 | 660 | 673 | 686 | 699 | 711 | 724 | 737 | 750 |  |
| 37 | 763 | 776 | 789 | 802 | 8r 5 | 827 | 840 | 853 | 866 | 879 |  |
| 38 | 892 | 905 | 917 | 930 | 943 | 956 | 969 | 982 | 994 | *007 | 12 |
| 39 | 53020 | 033 | 046 | 058 | -071 | 084 | 097 | 110 | 122 | 135 |  |
| 840 | 148 | 16 I | 173 | 186 | 199 | 212 | 224 | 237 | 25 O | 263 | 1 1.2 <br> 2 2.4 |
| 41 | 275 | 288 | 301 | 314 | 326 | 339 | 352 | 364 | 377 | 390 | 2 2.4 <br> 3 3.6 |
| 42 | 403 | 415 | 428 | 441 | 453 | 466 | 479 | 491 | 504 | 517 643 | 4 4.8 |
| 43 | 529 | 542 | $55 \overline{5}$ | 567 | 580 | 593 | 605 | 618 | 631 | 643 | 5 5 6.0 |
| 44 | 656 | 668 | 681 | 694 | 706 | 719 | 732 | 744 | 757 | 769 | 6 7.2 |
| 45 | 782 | 794 | 807 | 820 | 832 | 845 | 857 | 870 | *882 | * 895 |  |
| 46 | 908 | 920 | 933 | 945 | 958 | 970 | 983 | 995 | *008 | *020 | 8 9.6 <br> 9 10.8 |
| 47 | 54033 | 045 | 058 | 070 | 083 | 095 | 108 | 120 | 133 | 145 |  |
| 48 49 | 158 | 170 | 183 | 195 | 208 | 220 | 233 | 245 | 258 | 270 |  |
| 49 $\mathbf{8 5 0}$ | 283 | 295 | 307 | 320 | -332 | 345 | 357 | 370 | $\frac{382}{506}$ | 394 |  |
|  | 407 | 419 | 432 | 444 | 456 | 469 | 481 | 494 | 50 | 518 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |



| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 400 | 60206 | 217 | 228 | 239 | 249 | 260 | 271 | 282 | 293 | 304 |  |
| OI | 314 | 325 | 336 | 347 | 358 | 369 | 379 | 390 | 401 | 412 |  |
| 02 | 423 | 433 | 444 | 455 | 466 | 477 | 487 | 498 | 509 | 520 |  |
| $\bigcirc 3$ | 531 | 541 | 552 | 563 | 574 | 584 | 595 | 606 | 617 | 627 |  |
| 04 | 638 | 649 | 660 | 670 | 681 | 692 | 703 | 713 | 724 | 735 |  |
| 05 06 | 746 | 756 | 767 874 | 778 | 788 | 799 | 810 | 821 | 831 | 842 |  |
| 06 | 353 | 863 | 874 | 885 | 895 | 906 | 917 | 927 | 938 | 949 | II |
| $\stackrel{\circ}{\circ} \mathrm{o}$ | 61 959 | 970 077 | 981 087 | 991 <br> 098 <br> 98 | * ${ }_{\text {* }}$ | *013 | $*$ $*$ 130 |  | ${ }^{*} \mathbf{0} 4 \overline{5}$ | * ${ }^{\text {\% }}$ +55 | 1 1.1 <br> 2 2.2 |
| 09 | 172 | 183 | 194 | 204 | 215 | 225 | 236 | 247 | 257 | 268 | $3 \mathrm{3} \cdot 3$ |
| 410 | 278 | 289 | - 300 | 310 | 321 | 33 I | 342 | 352 | 363 | 374 | 4 4.4 <br> 5 5.5 |
| 11 | 384 | 395 | 405 | 416 | 426 | 437 | 448 | 458 | 469 | 479 | 65.5 |
| 12 | 490 | 500 | 511 | 521 | 532 | 542 | 553 | 563 | 574 | 584 |  |
| 13 | 595 | 606 | 616 | 627 | 637 | 648 | 658 | 669 | 679 | 690 | 88.8 |
| 14 | 700 | 711 | 721 | 73 I | 742 | 752 | 763 | 773 | 784 | 794 | 919.9 |
| 15 | 805 | 815 | 826 | 836 | 847 | 857 | 868 | 878 | 888 | 899 |  |
| 16 | 909 | 920 | 930 | 941 | 951 | 962 | 972 | 982 | 993 | *003 |  |
| 17 | 62014 | 024 | 034 | 045 | 055 | 066 | 076 | 086 | 097 | 107 |  |
| 18 | 118 | 128 | 138 | 149 | 159 | 170 | 180 | 190 | 201 | 211 |  |
| 19 | 221 | 232 | 242 | 252 | 263 | 273 | 284 | 294 | 304 | 315 |  |
| 420 | 325 | 335 | 346 | 356 | 366 | 377 | 387 | 397 | 408 | 413 |  |
| 21 | 428 | 439 | 449 | 459 | 469 | 480 | 490 | 500 | 511 | 521 | 10 |
| 22 | 535 | 542 | 552 | 562 | 572 | 583 | 593 | 603 | 613 | 624 | 11.0 |
| 23 | 634 | 644 | 655 | 665 | 675 | 685 | 696 | 706 | 716 | 726 | 22.0 |
| 24 | 737 | 747 | 757 | 767 | 778 | 788 | 798 | 808 | 818 | 829 | 3 3.0 <br> 4 4.0 |
| 25 | 839 | 849 | 859 | 870 | 880 | 890 | *002 | * 910 | ${ }_{*}^{922}$ | *931 | 4 4.0 <br> 5 5.0 |
| 26 | 941 | 951 | 961 | 972 | 982 | 992 | *002 | *012 | *022 | *033 | 5 5.0 <br> 6 6.0 |
| 27 | 63043 | 053 | 063 | 073 | 083 | 094 | 104 | 114 | 124 |  |  |
| 28 29 | 144 | 15 | 165 | 175 276 | 185 286 | 195 | 205 | 215 | 225 | 236 337 | 888.0 |
| 430 | 347 | 357 | 367 | 377 | $\bigcirc 38$ | 397 | 407 | 417 | 428 | 438 | 919.0 |
| 31 | 448 | 458 | 468 | 478 | 488 | 498 | 508 | 518 | 528 | 538 |  |
| 32 | 548 | 558 | 568 | 579 | 589 | 599 | 609 | 619 | 629 | 639 |  |
| 33 | 649 | 659 | 669 | 679 | 689 | 699 | 709 | 719 | 729 | 739 |  |
| 34 | 749 | 759 | 769 | 779 | 789 | 799 | 809 | 819 | 829 | 839 |  |
| 35 | 849 | 859 | 869 | 879 | 889 | 899 | *909 | *19 | * 929 | 939 |  |
| 36 | 949 | 959 | 969 | 979 | 988 | 998 | *008 | *018 | *028 | *038 | 9 |
| 37 | 64048 | 058 | 068 | 078 | 088 | 098 | 108 | 118 | 128 | 137 | 10.9 |
| 38 | 147 | 157 | 167 | 177 | 187 | 197 | 207 | 217 | 227 | 237 | 2 l |
| 39 | 246 | 256 | 266 | 276 | 286 | 296 | 306 | 316 | 326 | 335 | 32.7 |
| 440 | 345 | 355 | 365 | $37 \overline{5}$ | 385 | 395 | 404 | 414 | 424 | 434 | 43.6 |
| 41 | 444 | 454 | 464 | 473 | 483 | 493 | 503 | 513 | 523 | 532 | 5 4.5 <br> 6 5 |
| 42 | 542 | 552 | 562 | 572 | 582 | 591 | 601 | 611 | 621 | 631 | ${ }^{6} 515.4$ |
| 43 | 640 | 650 | 660 | 670 | 680 | 689 | 699 | 709 | 719 | 729 |  |
| 44 |  | 748 | 758 | 768 | 777 | 787 | 797 | 807 | 816 | 826 | 98.1 |
| 45 46 | 836 933 | 846 943 | 856 953 | 865 963 | 875 972 | 885 982 | 895 992 | * $\begin{array}{r}904 \\ 002\end{array}$ | *914 | 924 $* 021$ |  |
| 47 | 6503 I | 040 | 050 | 060 | 070 | 079 | 089 | 099 | 108 | 118 |  |
| 48 | 128 | 137 | 147 | 157 | 167 | 176 | 186 | 196 | 205 | 215 |  |
| 49 | $22 \overline{5}$ | 234 | 244 | 254 | 263 | 273 | 283 | 292 | 302 | 312 |  |
| 450 | 321 | 33I | 341 | 350 | 360 | 369 | 379 | 389 | 398 | 408 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |

$219$


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\mathbf{5} 00}$ | 69897 | 906 | 914 | 923 | 932 | 940 | 949 | 958 | 966 | 975 |  |
| OI | 984 | 992 | *OOI | *010 | *018 | ${ }^{\circ} \mathrm{O} 27$ | *036 | *044 | \%053 | *062 |  |
| 02 | 70070 | 079 | 088 | 096 | 105 | 114 | 122 | 131 | 140 | 148 |  |
| 03 | 157 | 165 | 174 | 183 | 191 | 200 | 209 | 217 | 226 | 234 |  |
| 04 | 243 | 252 | 260 | 269 | 278 | 286 | 295 | 303 | 312 | 321 |  |
| 05 | 329 | 338 | 346 | 355 | 364 | 372 | 381 | 389 | 398 | 406 |  |
| 06 | 415 | 424 | 432 | 441 | 449 | 458 | 467 | 475 | 484 | $49^{2}$ | 9 |
| 07 | 501 | 509 | 518 | 526 | 535 | 544 | 552 | 561 | 569 | 578 | 1 0.9 <br> 2 18 |
| 08 | 586 | 595 | 603 | 612 | 621 | 629 | 638 | 646 | 655 | 663 | 2 1.8 <br> 3 2.7 |
| 09 | 672 | 680 | 689 | 697 | 706 | 714 | 723 | 731 | 740 | 749 | 3 2.7 <br> 4 3.6 |
| 510 | 757 | 766 | 774 | 783 | 791 | 800 | 808 | 817 | 825 | 834 | 4 3.6 <br> 5 4.5 |
| 11 | 842 | 851 | 859 | 868 | 876 | 885 | 893 | 902 | 910 | 919 | 65.4 |
| 12 | 927 | 935 | 944 | 952 | 961 | 969 | 978 | 986 | 995 | *003 | 76.3 |
| 13 | 71012 | 020 | 029 | 037 | 046 | 054 | 063 | 071 | 079 | 088 | 87.2 |
| 14 | 096 | $10 \overline{1}$ | 113 | 122 | 130 | 139 | 147 | 155 | 164 | 172 | 98.1 |
| 15 | 181 | 189 | 198 | 206 | 214 | 223 | 231 | 240 | 248 | 257 |  |
| 16 | 265 | 273 | 282 | 290 | 299 | 307 | 315 | 324 | 332 | 341 |  |
| 17 | 349 | 357 | 366 | 374 | 383 | 391 | 399 | 408 | 416 | 425 |  |
| 18 | 433 | 441 | 450 | 458 | 466 | 475 | 483 | 492 | 500 | 508 |  |
| 19 | 517 | 525 | 533 | 542 | 550 | 559 | 567 | 575 | 584 | 592 |  |
| 520 | 600 | 609 | 617 | 625 | 634 | 642 | 650 | 659 | 667 | 675 |  |
| 21 | 684 | 692 | 700 | 709 | 717 | 725 | 734 | 742 | 750 | 759 | 8 |
| 22 | 767 | 775 | 784 | 792 | 800 | 899 | 817 | 825 | 834 | 842 | 10.8 |
| 23 | 850 | 858 | 867 | 875 | 883 | 892 | 900 | 908 | 917 | 925 | 2 l .6 |
| 24 | 933 | 941 | 950 | 958 | 966 | 975 | 983 | 991 | 999 | *008 | 32.4 |
| 25 | 72016 | 024 | 032 | 041 | 049 | 057 | 066 | 074 | 082 | 090 | 43.2 |
| 26 | 099 | 107 | II5 | 123 | 132 | 140 | 148 | 156 | 165 | 173 | 5 4.0 <br> 6 4.8 |
| 27 | 181 | 189 | 198 | 206 | 214 | 222 | 230 | 239 | 247 | 255 | 75.6 |
| 28 | 263 | 272 | 280 | 288 | 296 | 304 | 313 | 321 | 329 | 337 | 86.4 |
| 29 | 346 | 354 | 362 | 370 | 378 | 387 | 395 | 403 | 4II | 419 | 97.2 |
| 580 | 428 | 436 | 444 | 452 | 460 | 469 | 477 | 48. | 493 | 501 |  |
| 31 | 509 | 518 | 526 | 534 | 542 | 550 | 558 | 567 | 575 | 583 |  |
| 32 | 591 | 599 | 607 | 616 | 624 | 632 | 640 | 648 | 656 | 665 |  |
| 33 | 673 | 681 | 689 | 697 | 705 | 713 | 722 | 730 | 738 | 746 |  |
| 34 | 754 | 762 | 770 | 779 | 787 | 795 | 803 | 811 | 819 | 827 |  |
| 35 | 835 | 843 | 852 | 860 | 868 | 876 | 884 | 892 | 900 | 908 |  |
| 36 | 916 | 925 | 933 | 941 | 949 | 957 | 965 | 973 | 98 I | 989 | 7 |
| 37 | 997 | *006 | *O14 | *022 | *030 | *038 | *046 | *054 | *062 | *070 | 10.7 |
| 38 | 73' 078 | 086 | 094 | 102 | III | 119 | 127 | 135 | 143 | 151 | 2 I .4 |
| 39 | 159 | 167 | 175 | 183 | 191 | 199 | 207 | 215 | 223 | 231 | 3 2.1 |
| 540 | 239 | 247 | 255 | 263 | 272 | 280 | 288 | 296 | 304 | 312 | $1 \cdot 8$ |
| 4I | 320 | 328 | 336 | 344 | 352 | 360 | 368 | 376 | 384 | 392 | 5 1.5 <br> 6 .2 |
| 42 | 400 | 408 | 416 | 424 | 432 | 440 | 448 | 456 | 464 | 472 |  |
| 43 | 480 | 488 | 496 | 504 | 512 | 520 | 528 | 536 | 544 | 552 | 7 4.9 <br> 8 5.6 |
| 44 | 560 | 568 | 576 | 584 | 592 | 600 | 608 | 616 | 624 | 632 | 96.3 |
| 45 | 640 | 648 | 656 | 664 | 672 | 679 | 687 | 695 | 703 | 711 |  |
| 46 | 719 | 727 | 735 | 743 | 751 | 759 | 767 | 775 | 783 | 791 |  |
| 47 | 799 | 807 | 8 8 5 | 823 | 830 | 838 | 846 | 854 | 862 | 870 |  |
| 48 | 878 | 886 | 894 | 902 | 910 | 918 | 926 | 933 | *41 | +949 |  |
| 49 | 957 | 965 | 973 | 981 | 989 | 997 | *005 | ${ }^{*} \mathrm{O} 33$ | * 020 | *028 |  |
| 550 | $74 \bigcirc$ | 044 | 052 | 060 | 068 | 076 | 084 | 092 | 099 | 107 |  |
| N. | O | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | D | Prop. Pts. |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 550 | $74 \bigcirc 036$ | 044 | 052 | 060 | 068 | 076 | 084 | 092 | 099 | 107 |  |
| 51 | 115 | 123 | 131 | 139 | 147 | 155 | 162 | 170 | 178 | 186 |  |
| 52 | 194 | 202 | 210 | 218 | 225 | 233 | 241 | 249 | 257 | 265 |  |
| 53 | 273 | 280 | 288 | 296 | 304 | 312 | 320 | 327 | 335 | 343 |  |
| 54 | 351 | 359 | 367 | 374 | 382 | 390 | 398 | 406 | 414 | 421 |  |
| 55 | 429 | 437 | 445 | 453 | 461 | 468 | 476 | 484 | 492 | 500 |  |
| 56 | 507 | 515 | 523 | 531 | 539 | 547 | 554 | 562 | 570 | 578 |  |
| 57 | 586 | 593 | 601 | 609 | 617 | 624 | 632 | 640 | 648 | 656 |  |
| 58 | 663 | 671 | 679 | 687 | 695 | 702 | 710 | 718 | 726 | 733 |  |
| 59 | 741 | 749 | 757 | 764 | 772 | 780 | 788 | 796 | 803 | 811 |  |
| 560 | 819 | 827 | 834 | 842 | -850 | 858 | 865 | 873 | 881 | 889 |  |
| 61 | 896 | 904 | 912 | 920 | * 927 | 935 | *43 | *50 | 958 | *66 | 8 |
| 62 | 974 | 981 | 989 | 997 | *005 |  | * 220 | *028 | *035 | * 043 | ${ }^{8}$ |
| 63 | 75051 | 059 | 066 | 074 | 082 | 089 | 097 | 105 | 113 | 120 | 1 0.8 <br> 2 1.6 |
| 64 | 128 | 136 | 143 | 151 | 159 | 166 | 174 | 182 | 189 | 197 | 2 1.6 <br> 3 2.4 |
| 65 | 205 | 213 | 220 | 228 | 236 | 243 | 251 | 259 | 266 | 274 | 3 2.4 <br> 4 3.2 |
| 66 | 282 | 289 | 297 | 305 | 312 | 320 | 328 | 335 | 343 | 351 | 4 3.2 <br> 5 4.0 |
| 67 | 358 | 366 | 374 | 38I | 389 | 397 | 404 | 412 | 420 | 427 | 64.8 |
| 68 | 435 | 442 | 450 | 458 | 465 | 473 | 481 | 488 | 496 | 504 | 75.6 |
| 69 570 | 511 | 519 | 526 | 534 | 542 | 549 | 557 | 565 | 572 | 580 | 8 6.4 <br> 9 7.2 |
| 570 | 587 | -595 | 603 | 610 | 618 | 626 | 633 | 641 | 648 | 656 | 977 |
| 71 72 | 664 | 671 | 679 | 686 | 694 | 702 | 709 | 717 | 724 | 732 |  |
| 72 73 | 740 | 747 | 755 | 762 | 770 846 | 778 853 | 785 | 793 | 800 876 | 808 884 |  |
| 73 | 815 | 823 | 831 | 838 | 846 | 853 | 861 | 868 | 876 | 884 |  |
| 74 | 891 | 899 | 906 | 914 | 921 | *929 | *937 | * 944 | *952 | 959 |  |
| 75 | 967 | 974 | 982 | 989 | 997 | *005 | * 012 | *020 | * 027 | *035 |  |
| 76 | 76042 | 050 | 057 | 065 | 072 | 080 | 087 | 095 | 103 | 110 |  |
| 77 | 118 | 125 | 133 | 140 | 148 | 155 | 163 | 170 | 178 | 185 |  |
| 78 | 193 | 200 | 208 | 215 | 223 | 230 | 238 | 245 | 253 | 260 |  |
| 79 | 268 | 275 | 283 | 290 | 298 | 305 | 313 | 320 | 328 | 335 |  |
| 580 | 343 | 350 | 358 | $3 \mathrm{F5}$ | 373 | 380 | 388 | 395 | 403 | 410 |  |
| 81 | 418 | 425 | 433 | 440 | 448 | 455 | 462 | 47 O | 477 | $48 \overline{5}$ |  |
| 82 83 | 492 | 500 | 507 | 515 | 522 | 530 | 537 | 545 | 552 | 559 |  |
| 83 | 567 | 574 | 582 | 589 | 597 | 604 | 612 | 619 | 626 | 634 |  |
| 84 | 641 | 649 | 656 | 664 | 671 | 678 | 686 | 693 | 7 T | 708 | 1 0.7 <br> 2 1.4 |
| 85 86 | 716 | 723 | 730 805 | 738 812 | 745 | 753 827 | 760 834 | 768 842 | 775 | 782 | 2 1.4 <br> 3 2.1 |
| 87 | 86 | 871 | 879 | 886 | 893 | 901 | 908 | 916 | 923 |  | 42.8 |
| 88 | 938 | 945 | 95.3 | 960 | 967 | 975 | 982 | 989 | 923 | *004 | 5 3.5 <br> 6 4.2 |
| 89 | 77 O12 | -19 | 026 | - 34 | 041 | 048 | 056 | ${ }^{-63}$ | -70 | -78 |   <br> 7 4.2 <br> 4.9  |
| .)90 | -85 | 093 | 100 | 107 | 1 I 5 | 122 | 129 | 137 | 144 | 151 | 85.6 |
| 91 | 159 | 166 | 173 | 181 | 188 | 195 | 203 | 210 | 217 | 225 | 96.3 |
| 92 | 232 | 240 | 247 | 254 | 262 | 269 | 276 | 283 | 291 | 298 |  |
| 93 | 305 | 313 | 320 | 327 | 335 | 342 | 349 | 357 | 364 | 371 |  |
| 94 | 379 | 386 | 393 | 401 | 408 | 415 | 422 | 430 | 437 | 444 |  |
| 95 | 452 | 459 | 466 | 474 | 481 | 488 | 495 | 503 | 510 | 517 |  |
| 96 | 525 | 532 | 539 | 546 | 554 | 561 | 568 | 576 | 583 | 590 |  |
| 97 | 597 | 605 | 612 | 619 | 627 | 634 | 641 | 648 | 656 | 663 |  |
| 98 | 670 | 677 | 685 | 692 | 699 | 706 | 714 | 121 | 728 | 735 808 |  |
| 99 | 743 | 750 | 757 | 764 | 772 | 779 | 786 | 793 | 801 | 808 |  |
| 600 | 815 | 822 | 830 | 837 | 844 | 851 | 859 | 866 | 873 | 880 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | 77-815 | 822 | 830 | 837 | 844 | 851 | 859 | 866 | 873 | 880 |  |
| OI | 887 | 895 | 902 | 909 | 916 | 924 | 93I | 938 | 945 | 952 |  |
| 02 | 960 | 967 | 974 | 981 | 988 | 996 | *003 | *OIO | *017 | *025 |  |
| 03 | $78 \quad 032$ | 039 | 046 | 053 | 061 | 068 | 075 | 082 | 089 | 097 |  |
| 04 | 10. | 111 | 118 | 125 | 132 | 140 | 147 | 154 | 161 | 168 |  |
| 05 | 176 | 183 | 190 | 197 | 204 | 211 | 219 | 226 | 233 | 240 | 8 |
| 06 | 247 | 254 | 262 | 269 | 276 | 283 | 290 | 297 | 305 | 312 |  |
| 07 | 315 | 326 | 333 | 340 | 347 | 355 | 362 | 369 | 376 | 383 | 1 0.8 <br> 2 1.6 |
| 08 | 390 | 398 | 405 | 412 | 419 | 426 | 433 | 440 | 447 | 455 | 2  <br> 3 1.6 <br> 3 2. |
| 09 | 462 | 469 | 476 | 483 | 490 | 497 | 5 | 512 | 519 | 526 | 3 2.4 <br> 4 3.2 |
| 610 | 533 | 540 | 547 | 554 | 561 | 569 | $こ ゙ \underline{-r t}$ | 583 | 590 | 597 | 54.0 |
| 11 | 604 | 611 | 618 | 625 | 63.1 | 640 | 647 | 654 | 661 | 668 | 64.8 |
| 12 | 675 | 682 | 689 | 696 | 701 | 711 | 718 | 725 | 732 | 739 | 75.6 |
| 13 | 746 | 753 | 760 | 767 | 774 | 781 | 789 | 796 | 803 | 810 | 86.4 |
| 14 | 817 | 824 | 831 | 838 | 845 | 852 | 859 | 866 | 873 | 880 | 97 72 |
| 15 | 888 | 895 | 902 | 909 | 916 | 923 | *930 | *937 | *944 | +95I |  |
| 16 | 958 | 965 | 972 | 979 | 986 | 993 | *000 | *007 | *014 | *O2I |  |
| 17 | 79029 | 036 | 043 | 0 50 | 057 | 064 | 071 | 078 | 085 | 092 |  |
| 18 | 099 | 106 | 113 | 120 | 127 | 134 | 14 I | 148 | 155 | 162 |  |
| 19 | 169 | 176 | 183 | 190 | 197 | 204 | 211 | 218 | 225 | 232 |  |
| 620 | 239 | 246 | 253 | 260 | 267 | 274 | 281 | 288 | 295 | 302 |  |
| 21 | 309 | 316 | 323 | 330 | 337 | 344 | 351 | 358 | 365 | 372 | 7 |
| 22 | 379 | 386 | 393 | 400 | 407 | 414 | 421 | 428 | 435 | 442 | 10.7 |
| 23 | 449 | 456 | 463 | 470 | 477 | 484 | 491 | 498 | 505 | 511 | 2 I .4 |
| 24 | 518 | 525 | 532 | 539 | 546 | 553 | 560 | 567 | 574 | 58 r | $\begin{array}{lll}3 & 2.1 \\ 4 & 2.8\end{array}$ |
| 25 | 588 | 5955 | 602 | 609 | 616 | 623 | 630 | 637 | 644 |  | 4 2.8 <br> 5 3.5 |
| 26 | 657 | 664 | 671 | 678 | 685 | 692 | 699 | 706 | 713 | 720 | 684.2 |
| 27 | 727 | 734 | 741 | 748 | 754 | 761 | 763 | 775 844 | 782 | 789 858 | 74.9 |
| 28 29 | 796 | 803 | 810 879 | 817 <br> 886 | 824 893 | 831 900 | 837 | 844 | 851 | 858 927 | 8 5.6 <br> 9 6.3 |
| 630 | 934 | 941 | 948 | 955 | 962 | 969 | 975 | 982 | 989 | 996 |  |
| 3 I | 80.003 | 010 | 017 | 024 | 030 | 037 | 044 | 05I | 058 | 065 |  |
| 32 | 072 | 079 | 085 | 092 | 099 | 106 | 113 | 120 | 127 | 134 |  |
| 33 | 140 | 147 | 154 | 161 | 168 | 175 | 182 | 188 | 195 | 202 |  |
| 34 | 209 | 216 | 223 | 229 | 236 | 243 | 250 | 257 | 264 | 271 |  |
| 35 | 277 | 284 | 291 | 298 | 305 | 312 | 318 | 325 | 332 | 339 |  |
| 36 | 346 | 353 | 359 | 366 | 373 | 380 | 387 | 393 | 400 | 407 | 6 |
| 37 | 414 | 421 | 428 | 434 | 441 | 448 | 455 | 462 | 468 | 475 | 10.6 |
| 38 | 482 | 489 | 496 | 502 | 509 | 516 | 523 | 530 | 536 | 543 | 2 I .2 |
| 39 | 550 | 557 | 564 | 570 | 577 | 584 | 591 | 598 | 604 | 611 | 31.8 |
| 640 | 618 | 625 | 632 | 638 | 645 | 652 | 659 | 665 | 672 | 679 | 42.4 |
| 41 | 686 | 693 | 699 | 706 | 713 | 720 | 726 |  |  | 747 | 5 3.0 <br> 6 3.6 |
| 42 | 754 | 760 | 767 | 774 | 781 | 787 855 | 794 862 | 801 868 | 808 | 814 882 | 6  <br> 7 3.6 <br> 4.2  |
| 43 | 821 | 828 | 835 | 841 | 848 | 855 | 862 | 868 | 875 | 882 | 7 4.2 <br> 8 4.8 |
| 44 | 889 | 895 | 902 | 909 | 916 | 922 | 929 | *936 | *943 | *949 | 915 |
| 45 | $95{ }^{6}$ | 963 | 969 | 976 | 983 | 990 | 996 | *003 | *010 | $*$ $*$ 084 |  |
| 46 | 81023 | 030 | 037 | 0.43 | 050 | 057 | 064 | 070 | 077 | 084 |  |
| 47 | 090 | 097 | 104 | 111 | 117 | 124 | 13 I | 137 | 144 | 151 |  |
| 48 | 158 | 164 | 171 | 178 | 184 | 191 | 198 | 204 | 211 | 218 |  |
| 49 | 224 | 231 | 238 | 245 | 251 | 258 | 265 | 271 | 278 | 285 |  |
| 650 | 291 | 298 | 305 | 311 | 318 | 325 | 33I | 338 | 345 | 351 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prup. Pts. |

223

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 650 | 81_291 | 298 | 305 | 311 | 318 | 325 | . 331 | 338 | 345 | 351 |  |
| 51 | 358 | 365 | 371 | 378 | 385 | 391 | 398 | 405 | 4 II | 418 |  |
| 52 | 425 | 431 | 438 | $44 \overline{5}$ | 451 | 458 | 465 | 47 I | 478 | 485 |  |
| 53 | 491 | 498 | $50 \overline{5}$ | 511 | 518 | $52 \overline{5}$ | 53 r | 538 | 544 | 55 I |  |
| 54 | 558 | 564 | 571 | 578 | 584 | 591 | 598 | 604 | 611 | 617 |  |
| 55 | 624 | 631 | 637 | 644 | 651 | 657 | 664 | 67 I | 677 | 684 |  |
| 56 | 690 | 697 | 704 | 710 | 717 | 723 | 730 | 737 | 743 | 750 |  |
| 57 | 757 | 763 | 770 | 776 | 783 | 790 | 796 | 803 | 809 | 816 |  |
| 58 | 823 | 829 | 836 | 842 | 849 | 856 | 862 | 869 | 875 | 882 |  |
| 59 | 889 | 895 | 902 | 908 | 915 | 921 | 928 | 935 | 941 | 948 |  |
| 660 | 954 | 961 | 968 | 974 | 981 | 987 | 994 | ${ }^{*} 000$ | *-07 | *014 |  |
| 61 | 82020 | 027 | 033 | 040 | 046 | 053 | 060 | 066 | 073 | 079 |  |
| 62 | 086 | 092 | -999 | 105 | 112 | 119 | 125 | 132 | 138 | 145 | ${ }^{7}$ |
| 63 | 151 | 158 | 164 | 171 | 178 | 184 | 191 | 197 | 204 | 210 | 1 0.7 <br> 2 1.4 |
| 64 | 217 | 223 | 230 | 236 | 243 | 249 | 256 | 263 | 269 | 276 | 2 1.4 <br> 3 2.1 |
| 65 66 | 282 | 289 | 295 | 302 | 308 | 315 | 321 | 328 | 334 | 341 |  |
|  | 347 | 354 | 360 | 367 | 373 | 380 | 387 | 393 | 400 | 406 | $5{ }^{5} \mathbf{3 . 5}$ |
| 67 | 413 | 419 | 426 | 432 | 439 | 445 | 452 | 458 | 465 | 47 I | $6{ }^{6} 4.2$ |
| 68 | 478 | 484 | 491 | 497 | 504 | 510 | 517 | 523 | 530 | 536 |  |
| 69 | 543 | 549 | 556 | 562 | 569 | 575 | 582 | 588 | 595 | 601 |  |
| 670 | 607 | 614 | 620 | 627 | 633 | 640 | 646 | 653 | 659 | 666 | 9 9.3 |
| 71 | 672 | 679 | $6{ }^{6} 5$ | 692 | 698 | 705 | 711 | 718 | 724 | 730 |  |
| 72 | 737 | 743 | 750 | 756 | 763 | 769 | 776 | 782 | 789 | 795 |  |
| 73 | 802 | 808 | 814 | 821 | 827 | $8_{34}$ | 840 | 847 | 853 | 860 |  |
| 74 | 866 | 872 | S79 | 885 | 892 | 898 | 905 | 911 | 918 | 924 |  |
| 75 | 930 | *937 | *943 | *550 | 956 | *963 | . 969 | *975 | *982 | *988 |  |
| 76 | 995 | *OOI | *008 | *014 | *020 | *027 | -033 | *040 | *046 | *052 |  |
| 77 | $83 \quad 059$ | 065 | C72 | 078 | 085 | -91 | 097 | 104 | 110 | 117 |  |
| 78 | 123 | 129 | 136 | 142 | 149 | 155 | 161 | 168 | 174 | 18 I |  |
| 79 | 187 | 193 | 200 | 206 | 213 | 219 | 225 | 232 | 238 | $\frac{245}{308}$ |  |
| 680 | 251 | 257 | 264 | 270 | 276 | 283 | 289 | 296 | 302 | 308 |  |
| 81 82 | 315 | 321 | 327 | 334 | 340 | 347 | 353 | 359 | 366 | 372 |  |
| 82 83 | 442 | 448 | $45 \overline{5}$ | 46 r | 467 | 474 | 480 | 48 | 429 | 499 | 6 |
| 84 | 506 | 512 | 518 | 525 | 531 | 537 | 544 | 550 | 556 | 563 | 10.6 |
| 85 | 569 | 575 | 582 | 588 | 594 | 601 | 607 | 613 | 620 | 626 | 2 1.2 <br> 3 18 |
| 86 | 632 | 639 | 645 | 651 | 658 | 664 | 670 | 677 | 683 | 689 | 3 1.8 <br> 4 2.4 |
| 87 | 696 | 702 | 708 | 715 | 721 | 727 | 734 | 740 | 746 | 753 | 5 3.0 |
| 88 | 759 | 765 | 771 | 778 | 784 | 790 | 797 | 803 | 809 | 816 | 63.6 |
| 89 | 822 | 828 | 835 | 841 | 847 | 853 | 860 | 866 | 872 | 879 | $7{ }^{7} \mathbf{4 . 2}$ |
| 690 | 885 | 891 | -897 | 904 | 910 | 916 | 923 | 929 | 935 | 942 | 84.8 |
| 91 | 948 | 954 | 960 | 967 | 973 | 979 | 985 | 992 | 998 | *004 | 915.4 |
| 92 | 84 OII | O17 080 | 023 | 029 | o36 | ${ }^{0} 42$ | 048 | 1055 | O6I | 067 130 |  |
| 93 | 073 | 080 | 086 | 092 | 098 | $10 \overline{5}$ | 111 | 117 | 123 | 130 |  |
| 94 | 136 | 142 | 148 | $15 \overline{5}$ | 161 | 167 | 173 | 180 | 186 | 192 |  |
| 95 | 198 | 205 | 211 | 217 | 223 | 230 | 236 | 242 | 248 | $25 \overline{5}$ |  |
| 96 | 261 | 267 | 273 | 280 | 286 | 292 | 298 | 305 | 311 | 317 |  |
| 97 | 323 | 330 | 336 | 342 | 348 | 354 | 361 | 367 | 373 | 379 |  |
| 98 | 386 | 392 | 398 | 404 | 410 | 417 | 423 | 429 | 435 | 442 |  |
| 99 | 448 | 454 | 460 | 466 | 473 | 479 | 485 | 491 | 497 | 504 |  |
| 700 | 510 | 516 | 522 | 528 | 535 | 541 | 547 | 553 | 559 | 566 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop, Pts. |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pis. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 700 | 84510 | 516 | 522 | 528 | 535 | 541 | 547 | 553 | 559 | 566 |  |
| or | 572 | 578 | 584 | 590 | 597 | 603 | 609 | 615 | 621 | 628 |  |
| 02 | 634 | 640 | 646 | 652 | 658 | 665 | 671 | 677 | 683 | 689 |  |
| 03 | 696 | 702 | 708 | 714 | 720 | 726 | 733 | 739 | 745 | 751 |  |
| 04 | 757 | 763 | 770 | 776 | 782 | 788 | 794 | 800 | 807 | 813 |  |
| 05 | 819 | 825 | 831 | 837 | 844 | 850 | 856 | 862 | 868 | 874 |  |
| 06 | 880 | 887 | 893 | 899 | 905 | 911 | 917 | 924 | 930 | 936 | 7 |
| 07 | 942 | 948 | 954 | 960 | 967 | 973 | 979 | 985 | 991 | 997 | $\begin{array}{lll}1 & 0.7\end{array}$ |
| 08 | 85003 | 009 | 016 | 022 | 028 | O34 | 040 | 046 | 052 | 058 | 2 l |
| 09 | -655 | 07 I | 077 | 083 | 089 | 095 | 101 | 107 | 114 | 120 | 3 2.1 <br> 4 2.8 |
| 710 | 126 | 132 | 138 | 144 | 150 | 156 | 163 | 169 | 175 | 181 | 4 2.8 <br> 5 3.5 |
| 11 | 187 | 193 | 199 | 205 | 211 | 217 | 224 | 230 | 236 | 242 |   <br> 6 4.2 <br> 4.2  |
| 12 | 248 | 254 | 260 | 266 | 272 | 278 | 285 | 291 | 297 | 303 | 74.9 |
| 13 | 309 | 315 | 321 | 327 | 333 | 339 | 345 | 352 | 358 | 364 | 85.6 |
| 14 | 370 | 376 | 382 | 388 | 394 | 400 | 406 | 412 | 418 | 425 | 96.3 |
| 15 | 43 I | 437 | 443 | 449 | 455 | 46 I | 467 | 473 | 479 | 485 |  |
| 16 | 491 | 497 | 503 | 509 | 516 | 522 | 528 | 534 | 540 | 546 |  |
| 17 | 552 | 558 | 564 | 570 | 576 | 582 | 588 | 594 | 600 | 606 |  |
| 18 | 612 | 618 | 625 | 631 | 637 | 643 | 649 | 655 | 661 | 667 |  |
| 19 | 673 | 679 | 685 | 691 | 697 | 703 | 709 | 715 | 72 I | 727 |  |
| 720 | 733 | 739 | 745 | 751 | 757 | 763 | 769 | 775 | 78 r | 788 |  |
| 21 | 794 | 800 | 806 | 812 | 818 | 824 | 830 | 836 | 842 | 848 | 6 |
| 22 | 854 | 860 | 866 | 872 | 878 | 884 | 890 | 896 | 902 | 908 | 10.6 |
| 23 | 914 | 920 | 926 | 932 | 938 | 944 | 950 | 956 | 962 | 968 | 2 I .2 |
| 24 | 974 | 980 | 986 | 992 | 998 | *004 | *010 | *016 | *022 | *028 | $3{ }^{1} \mathrm{I} .8$ |
| 25 | 86034 | 040 | 046 | 052 | 058 | 064 | 070 | 076 | 082 | 088 | 4 2.4 <br> 5 3.0 |
| 26 | 094 | 100 | 106 | 112 | 118 | 124 | 130 | 136 | 14 I | 147 | 5 3.0 <br> 6 3.6 |
| 27 | 153 | 159 | 165 | 171 | 177 | 183 | 189 | 195 | 201 | 207 | 74.2 |
| 28 | 213 | 219 | 225 | 231 | 237 | 243 | 249 | 255 | 261 | 267 | 84.8 |
| 29 | 273 | 279. | 285 | 291 | 297 | 303 | 308 | 314 | 320 | 326 | 9 9 5 |
| 730 | 332 | 338 | 344 | 350 | 356 | 362 | 368 | 374 | 380 | 386 |  |
| 31 | 392 | 398 | 404 | 410 | 415 | 42 I | 427 | 433 | 439 | 445 |  |
| 32 | 451 | 457 | 463 | 469 | 475 | 481 | 487 | 493 | 499 | 504 |  |
| 33 | 510 | 516 | 522 | 528 | 534 | 540 | 546 | 552 | 558 | 564 |  |
| 34 | 570 | 576 | 581 | 587 | 593 | 599 | 605 | 611 | 617 | 623 |  |
| 35 | 629 | 635 | 641 | 646 | 652 | 658 | 664 | 670 | 676 | 682 |  |
| 36 | 688 | 694 | 700 | 705 | 711 | 717 | 723 | 729 | 735 | 741 | 5 |
| 37 38 |  | 753 | 759 | 764 | 770 | 776 | 782 | 788 | 794 | 800 | 10.5 |
| 38 38 39 | 806 864 | 812 870 | 817 876 | 823 882 | 888 | 835 | 841 900 | 847 906 | 853 911 | 859 | 21.0 |
| 740 | 923 | 929 | 935 | 941 | 947 | 953 | 958 | 964 | 970 | 976 | 42.0 |
| 41 | 982 | 988 | 994 | 999 | *005 | *OII | *017 | *023 | *029 | ${ }^{*} 035$ | 52.5 |
| 42 | 87040 | 046 | 052 | 058 | 064 | 070 | 075 | 081 | 087 | 093 | 63.0 |
| 43 | 099 | 105 | 111 | 116 | 122 | 128 | 134 | 140 | 146 | 151 | 7 3.5 <br> 8 4.0 |
| 44 | 157 | 163 | 169 | 175 | 181 | 186 | 192 | 198 | 204 | 210 |  |
| 45 | 216 | 221 | 227 | 233 | 239 | 245 | 251 | 256 | 262 | 268 |  |
| 46 | 274 | 280 | 286 | 291 | 297 | 303 | 309 | 315 | 320 | 326 |  |
| 47 | 332 | 338 | 344 | 349 | 355 | 361 | 367 | 373 | 379 | 384 |  |
| 48 | 390 | 396 | 402 | 408 | 413 | 419 | 425 | 431 | 437 | 442 |  |
| 49 | 448 | 454 | 460 | 466 | 471 | 477 | 483 | 489 | 495 | 500 |  |
| 750 | 506 | 512 | 518 | 523 | 529 | 535 | 541 | 547 | 552 | 558 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |

225

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 750 | 87_506 | 512 | 518 | 523 | 529 | 535 | 541 | 547 | 552 | 558 |  |
| 5 I | 564 | 570 | 576 | 581 | 587 | 593 | 599 | 604 | 610 | 616 |  |
| 52 | 622 | 628 | 633 | 639 | 645 | 651 | 656 | 662 | 668 | 674 |  |
| 53 | 679 | 685 | 691 | 697 | 703 | 708 | 714 | 720 | 726 | 731 |  |
| 54 | 737 | 743 | 749 | 754 | 760 | 766 | 772 | 777 | 783 | 789 |  |
| 55 | 795 | 800 | 806 | 812 | 818 | S23 | 829 | 835 | 84 I | 846 |  |
| 56 | 852 | 858 | 864 | 869 | 875 | 881 | 887 | 892 | 898 | 904 |  |
| 57 | 910 | 915 | 921 | 927 | 933 | 938 | 944 | 950 | 955 | 961 |  |
| 58 | 967 | 973 | 978 | 984 | 990 | 996 | *001 | *007 | * ${ }^{1} 3$ | *018 |  |
| 59 | 88.024 | -330 | -236 | 041 | 047. | 053 | 058 | 064 | 070 | 076 |  |
| 760 | 08r | -887 | - 093 | 098 | 104 | 110 | 116 | 121 | 127 | 133 |  |
| 61 | 138 | 144 | 150 | 156 | 16I | 167 | 173 | 178 | 184 | 190 | ${ }^{6}$ |
| 62 | 195 | 201 | 207 | 213 | 218 | 224 | 230 | 235 | 241 | 247 | 10.6 |
| 63 | 252 | 258 | 264 | 270 | 275 | 281 | 287 | 292 | 298 | 304 | 2 1.2 <br> 3  <br> l  |
| 64 | 309 | 315 | 32 I | 326 | 332 | 338 | 343 | 349 | 355 | 360 | 3 1.8 <br> 4 2.4 |
| 65 | 366 | 372 | 377 | 383 | 389 | 395 | 400 | 406 | 412 | 417 | 4 2.4 <br> 5 3.0 |
| 66 | 423 | 429 | 434 | 440 | 446 | 451 | 457 | 463 | 468 | 474 | 5 3.0 <br> 6 3.6 |
| 67 | 480 | 485 | 491 | 497 | 502 | 508 | 513 | 519 | $52 \overline{5}$ | 530 | 74.2 |
| 68 | 536 | 542 | 547 | 553 | 559 | 564 | 570 | 576 | 581 | 587 | 84.8 |
| 69 | 593 | 598 | 604 | 610 | 615 | 621 | 627 | 632 | 638 | 643 | 9 9.4 |
| 770 | 649 | $65 \overline{5}$ | 660 | 666 | 672 | 677 | 683 | 689 | 694 | 700 |  |
| 71 | 705 | 711 | 717 | 722 | 728 | 734 | 739 | 745 | 750 | 756 |  |
| 72 | 762 | 767 | 773 | 779 | 784 | 790 | 795 | 801 | 807 | 812 |  |
| 73 | 818 | 824 | 829 | 835 | 840 | 846 | 852 | 857 | 863 | 868 |  |
| 74 | 874 | 880 | 885 | 891 | 897 | 902 | 908 | 913 | 919 | 925 |  |
| 75 | 930 | 936 | 941 | *947 | 953 | *958 | *964 | 969 | 975 | *81 |  |
| 76 | 986 | 992 | 997 | *003 | *009 | *OI4 | *020 | *025 | *03I | *037 |  |
| 77 | 89042 | 048 | 053 | 059 | 064 | 070 | 076 | 081 | 087 | 092 |  |
| 78 | 098 | 104 | 109 | 115 | 120 | 126 | 131 | 137 | 143 | 148 |  |
| 79 | 154 | 159 | 165 | 170 | 176 | 182 | 187 | 193 | 198 | 204 |  |
| 780 | 209 | 215 | 221 | 226 | 232 | 237 | 243 | 248 | 254 | 260 |  |
| 81 | 265 | 271 | 276 | 282 | 287 | 293 | 298 | 304 | 310 | 315 | 5 |
| 82 | 32 I | 326 | 332 | 337 | 343 | 348 | 354 | 360 | 365 | 371 | 10.5 |
| 83 | 376 | 382 | 387 | 393 | 398 | 404 | 409 | 415 | 42 I | 426 | 21.0 |
| 84 | 432 | 437 | 443 | 448 | 454 | 459 | 465 | 470 | 476 | 481 | 31.5 |
| 85 | 487 | 492 | 498 | 504 | 509 | 515 | 520 | 526 | 531 | 537 | 42.0 |
| 86 | 542 | 548 | 553 | 559 | 564 | 570 | 575 | 581 | 586 | 592 | 55 2.5 <br> 6 3.0 |
| 87 | 597 | 603 | 609 | 614 | 620 | 625 | 631 | 636 | 642 | 647 | 6 3.0 <br> 7 3.5 |
| 88 89 | 653 | 658 | 664 | 669 | 675 | 680 | 686 | 691 | 697 | 702 | 8 <br> 8 <br> 4.0 |
| 89 790 | $\frac{708}{763}$ | 713 | 719 | 724 | 738 | 735 | 741 | $\frac{746}{801}$ | $\frac{752}{807}$ | 757 | 94.5 |
| 91 | 818 | 823 | 829 | 834 | 840 | 845 | 851 | 856 | 862 | 867 |  |
| 92 | 873 | 878 | 883 | 889 | 894 | 900 | 905 | 9 II | 916 | 922 |  |
| 93 | 927 | 933 | 938 | 944 | 949 | 955 | 960 | 966 | 971 | 977 |  |
| 94 | 982 | 988 | 993 | 998 | *004 | *009 | *OI5 | *020 | *026 | ${ }^{\text {\% }} 31$ |  |
| 95 | 90037 | 042 | 048 | 053 | 059 | 064 | 069 | 075 | 080 | 086 |  |
| 96 | 091 | 097 | 102 | 108 | $\mathrm{II}_{3}$ | 119 | 124 | 129 | 135 | 140 |  |
| 97 | 146 | 151 | 157 | 162 | 168 | 173 | 179 | 184 | 189 | 195 |  |
| 98 | 200 | 206 | 211 | 217 | 222 | 227 | 233 | 238 | 244 | 249 |  |
| 99 | $25 \overline{5}$ | 260 | 266 | 271 | 276 | 282 | 287 | 293 | 298 | 304 |  |
| 800 | 309 | 314 | 320 | 325 | 331 | 336 | 342 | 347 | 352 | 358 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 800 | 90_309 | 314 | 320 | 325 | 331 | 336 | 342 | 347 | 352 | 358 |  |
| or | 363 | 369 | 374 | 380 | 385 | 390 | 396 | 401 | 407 | 412 |  |
| 02 | 417 | 423 | 428 | 434 | 439 | 445 | 450 | 455 | 461 | 466 |  |
| 03 | 472 | 477 | 482 | 488 | 493 | 499 | 504 | 509 | 515 | 520 |  |
| 04 | 526 | 53 I | 536 | 542 | 547 | 553 | 558 | 563 | 569 | 574 |  |
| 05 | 580 | 585 | 590 | 596 | 601 | 607 | 612 | 617 | 623 | 628 |  |
| 06 | 634 | 639 | 644 | 650 | 655 | 660 | 666 | 671 | 677 | 682 |  |
| 07 | 687 | 693 | 698 | 703 | 709 | 714 | 720 | 725 | 730 | 736 |  |
| 08 | 741 | 747 | 752 | 757 | 763 | 768 | 773 | 779 | 784 | 789 |  |
| 09 | 795 | 800 | 806 | 8 IJ | 816 | 822 | -827 | 832 | 838 | 843 |  |
| 810 | 849 | 854 | 859 | 865 | 870 | 875 | 881 | 886 | 891 | 897 |  |
| 11 | 902 | 907 | 913 | 918 | 924 | 929 | 934 | 940 | 945 | 950 | 6 |
| 12 | 956 | 961 | 966 | 972 | 977 | 982 | 988 | 993 | 998 | *004 |  |
| 13 | 91009 | O14 | 020 | 025 | 030 | 036 | 041 | 046 | 052 | 057 | 1 0.6 <br> 2 1.2 |
| 14 | 062 | 068 | 073 | 078 | 084 | 089 | 094 | 100 | 105 | 110 | 2 1.2 <br> 3 1.8 |
| 15 | 116 | 121 | 126 | 132 | 137 | 142 | 148 | 153 | 158 | 164 | 4 4 2.4 |
| 16 | 169 | 174 | 180 | 185 | 190 | 196 | 201 | 206 | 212 | 217 | 53.0 |
| 17 | 222 | 228 | 233 | 238 | 243 | 249 | 254 | 259 | 265 | 270 | 63.6 |
| 18 | 275 | 281 | 286 | 291 | 297 | 302 | 307 | 312 | 318 | 323 | 7 4.2 <br> 8 4.8 |
| 19 | 328 | 334 | 339 | 344 | 350 | 355 | 360 | 365 | 371 | 376 | 8 4.8 |
| 820 | 38 : | 387 | 392 | - 297 | 403 | 408 | 4 I 3 | 418 | 424 | 429 | 9 9.4 |
| 21 | 434 | 440 | 445 | 4:0 | 455 | 46 I | 466 | 471 | 477 | 482 |  |
| 22 | 487 | 492 | 498 | 503 | 508 | 514 | 519 | 524 | 529 | 535 |  |
| 23 | 540 | 545 | 551 | 556 | 561 | 566 | 572 | 577 | 582 | 587 |  |
| 24 | 593 | 598 | 603 | 609 | 614 | 619 | 624 | 630 | 635 | 640 |  |
| 25 | 645 | 651 | 656 | 661 | 666 | 672 | 677 | 682 | 687 | 693 |  |
| 26 | 698 | 703 | 709 | 714 | 719 | 724 | 730 | 735 | 740 | 745 |  |
| 27 | 751 | 756 | 761 | 766 | 772 | 777 | 782 | 787 | 793 | 798 |  |
| 28 | 803 | 808 | 814 | 819 | 824 | 829 | 834 | 840 | 845 | 850 |  |
| 29 | 855 | 861 | 866 | 871 | 876 | 882 | 887 | 892 | 897 | 903 |  |
| 830 | 908 | 913 | 918 | 924 | 929. | 934 | 939 | 944 | 950 | $95 \overline{5}$ |  |
| 31 | 960 | 965 | 971 | 976 | 981 | 986 | 991 | 997 | *002 | *007 |  |
| 32 | 92012 | or8 | 023 | 028 | 033 | 038 | 044 | 049 | 054 | 059 |  |
| 33 | 065 | 070 | 075 | 080 | 085 | 09 I | 096 | 101 | 106 | III | ${ }^{5}$ |
| 34 | 117 | 122 | 127 | 132 | 137 | 143 | 148 | 153 | 158 | 163 | 1 0.5 <br> 2 1.0 |
| 35 36 | 169 | 174 | 179 231 | 184 | 189 | 195 | 200 | 205 | 210 | 215 267 | 2 1.0 <br> 3 1.5 |
| 36 | 221 | 226 | 231 | 236 | 24 I | 247 | 252 | 257 | 262 | 267 | 3 1.5 <br> 4 2.0 |
| 37 38 | 273 | 278 | 283 | 288 | 293 | 298 | 304 | 309 | 314 366 | 319 371 | 52.5 |
| 39 | 324 376 | 330 | 335 387 | 340 392 | 345 | 350 402 | 355 | 361 <br> 412 | 366 418 | 371 <br> 423 | 6 3.0 <br> 7 3.5 |
| 840 | 428 | 433 | 438 | 443 | 449 | 454 | 459 | 464 | 469 | 474 | 84.0 |
| 4 I | 480 | 485 | 490 | 495 | 500 | 505 | 511 | 516 | 521 | 526 | 914.5 |
| 42 | 531 | 536 | 542 | 547 | 552 | 557 | 562 | 567 | 572 | 578 |  |
| 43 | 583 | 588 | 593 | 598 | 603 | 609 | 614 | 619 | 624 | 629 |  |
| 44 | 634 | 639 | 645 | 650 | 655 | 660 | 665 | 670 | 675 | 681 |  |
| 45 | 686 | 691 | 696 | 701 | 706 | 711 | 716 | 722 | 727 | 732 |  |
| 46 | 737 | 742 | 747 | 752 | 758 | 763 | 768 | 773 | 778 | 783 |  |
| 47 | 788 | 793 | 799 | 804 | 809 | 814 | 819 | 824 | 829 | 834 |  |
| 48 | 840 | 845 | 850 | 855 | 860 | 865 | 870 | 875 | 88I | 886 |  |
| 49 | 891 | 896 | 9 I | 905 | 911 | 916 | 921 | 927 | 932 | 937 |  |
| 850 | 942 | 947 | 952 | 957 | 962 | 967 | 973 | 978 | 983 | 988 |  |
| N. | O | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 850 | 92942 | . 947 | 952 | 957 | 962 | 967 | 973 | 978 | 983 | 988 |  |
| 51 | 993 | 998 | *003 | *008 | *013 | *018 | *024 | *029 | *034 | *039 |  |
| 52 | 93044 | 049 | 054 | 059 | 064 | 069 | 075 | 080 | 085 | 090 |  |
| 53 | 095 | 100 | 105 | 110 | 115 | 120 | 125 | 131 | 136 | 141 |  |
| 54 | 146 | 151 | 156 | 16r | 166 | 171 | 176 | 181 | 186 | 192 |  |
| 55 | 197 | 202 | 207 | 212 | 217 | 222 | 227 | 232 | 237 | 242 | 6 |
| 56 | 247 | 252 | 258 | 263 | 268 | 273 | 278 | 283 | 288 | 293 | 6 |
| 57 | 298 | 303 | 308 | 313 | 318 | 323 | 328 | 334 | 339 | 344 | I 0.6 <br> 2 1.2 |
| 58 59 | 349 | 354 404 | 359 409 | 364 414 | 369 420 | 374 | 379 430 | 384 435 | 389 440 | 394 445 | 2 1.2 <br> 3 1.8 |
| 860 | $45 \overline{0}$ | $45 \overline{5}$ | 460 | 465 | 470 | 475 | 480 | 485 | 490 | 495 | $4{ }^{4} 2.4$ |
| 61 | 500 | 505 | 510 | 515 | 520 | 526 | 531 | 536 | 541 | 546 | 5 3.0 <br> 6 3.6 |
| 62 | 551 | 556 | 561 | 566 | 571 | 576 | 581 | 586 | 591 | 596 |   <br> 7 4.2 |
| 63 | 601 | 606 | 6ıI | 616 | 621 | 626 | 631 | 636 | 641 | 646 | 84.8 |
| 64 | 651 | 656 | 66r | 666 | 671 | 676 | 682 | 687 | 692 | 697 | $9 \longdiv { 5 . 4 }$ |
| 65 | 702 | 707 | 712 | 717 | 722 | 727 | 732 | 737 | 742 | 747 |  |
| 66 | 752 | 757 | 762 | 767 | 772 | 777 | 782 | 787 | 792 | 797 |  |
| 67 | 802 | 807 | 812 | 817 | 822 | 827 | 832 | 837 | 842 | 847 |  |
| 68 | 852 | 857 | 862 | 867 | 872 | 877 | 882 | 887 | 892 | 897 |  |
| 69 | 902 | 907 | 912 | 917. | 922 | 927 | 932 | 937 | 942 | 947 |  |
| 870 | 952 | 957 | 962 | 967 | 972 | 977 | 982 | 987 | 992 | 997 |  |
| 71 | 94002 | -07 | 012 | 017 | 022 | 027 | 032 | 037 | 042 | 047 |  |
| 72 | 052 | 057 | o62 | 067 | 072 | 077 | 082 | 086 | 091 | 096 | 10.5 |
| 73 | 101 | 106 | III | 116 | 121 | 126 | 131 | 136 | 141 | 146 | 21.0 |
| 74 | 151 | 156 | 16ı | 166 | 171 | 176 | 181 | 186 | 191 | 196 |  |
| 75 | 201 | 206 | 211 | 216 | 221 | 226 | 231 | 236 | 240 | 245 | 4 2.0 <br> 5 2.5 |
| 76 | 250 | 255 | 260 | 265 | 270 | 275 | 280 | 285 | 290 | 295 | 5 2.5 <br> 6 3.0 |
| 77 | 300 | 305 | 310 | 315 | 320 | $32 \overline{5}$ | 330 | 335 | 340 | $34 \overline{5}$ | 73.5 |
| 78 | 349 | 354 | 359 | 364 | 369 | 374 | 379 | 384 | 389 | 394 | 84.0 |
| 79 | 399 | 404 | 409 | 414 | 419 | 424 | 429 | 433 | 438 | 443 | 9 9.5 |
| 880 | 448 | 453 | 458 | 463 | 468 | 473 | 478 | 483 | 488 | 493 |  |
| $8 \mathrm{8r}$ | 498 | 503 | 507 | 512 | 517 | 522 | 527 | 532 | 537 | 542 |  |
| 82 | 547 | 552 | 557 | 562 | 567 | 571 | 576 | 581 | 586 | 591 |  |
| 83 | 596 | 601 | 606 | 611 | 616 | 621 | 626 | 630 | 635 | 640 |  |
| 84 | 645 | 650 | 655 | 660 | 665 | 670 | 675 | 680 | 685 | 689 |  |
| 85 | 694 | 699 | 704 | 709 | 714 | 719 | 724 | 720 | 734 | 738 |  |
| 86 | 743 | 748 | 753 | 758 | 763 | 768 | 773 | 778 | 783 | 787 | 4 |
| 87 | 792 | 797 | 802 | 807 | 8 r 2 | 817 | 822 | 827 | 832 | 836 | 1 0.4 |
| 88 | 841 | 846 | 851 | 856 | 861 | 866 | 871 | 876 | 880 | 885 | 20.8 |
| 89 | 890 | 895 | 900 | 905 | 910 | 915 | 919 | 924 | 929 | 934 | 31.2 |
| 890 | 939 | 944 | 949 | 954 | 959 | 963 | 968 | 973 | 978 | 983 | 41.6 |
| 91 | 988 | 993 | 998 | *002 | *007 | * 12 | *017 | *022 | ${ }^{*} 027$ | *032 | 5 2.0 <br> 6 2.4 |
| 92 | 95036 | 041 | 046 | 051 | 056 | 061 | 066 | 071 | 075 | 080 | 6 2.4 <br> 7 2.8 |
| 93 | 085 | 090 | 095 | 100 | 105 | 109 | 114 | 119 | 124 | 129 | 7 2.8 <br> 8 3.2 |
| 94 | 134 | 139 | 143 | 148 | 153 | 158 | 163 | 168 | 173 | 177 | 913.6 |
| 95 | 182 | 187 | 192 | 197 | 202 | 207 | 211 | 216 | 221 | 226 |  |
|  |  |  | 289 | 294 | 299 |  |  |  |  | 274 |  |
| 97 98 | 279 | 284 | 289 337 | 294 | 299 | 303 | 308 | 313 361 | 318 | 323 371 |  |
| 99 | 376 | 381 | 386 | 390 | 395 | 400 | 405 | 410 | 415 | 419 |  |
| 900 | 424 | 429 | 434 | 439 | 444 | 448 | 453 | 458 | 463 | 468 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 900 | 95424 | 429 | 434 | 439 | 444 | 448 | 453 | 458 | 463 | 468 |  |
| or | 472 | 477 | 482 | 487 | 492 | 497 | 501 | 506 | 5 II | 516 |  |
| 02 | 521 | 525 | 530 | 535 | 540 | 545 | 550 | 554 | 559 | 564 |  |
| 03 | 569 | 574 | 578 | 583 | 588 | 593 | 598 | 602 | 607 | 612 |  |
| 04 | 617 | 622 | 626 | 631 | 636 | 641 | 646 | 650 | 655 | 660 |  |
| 05 | 665 | 670 | 674 | 679 | 684 | 689 | 694 | 698 | 703 | 708 |  |
| 06 | 713 | 718 | 722 | 727 | 732 | 737 | 742 | 746 | 751 | 756 |  |
| 07 | 76.I | 766 | 770 | 775 | 780 | 785 | 789 | 794 | 799 | 804 |  |
| 08 | 809 | 813 | 818 | 823 | 828 | 832 | 837 | 842 | 847 | 852 |  |
| 09 | 856 | 86 I | 866 | 87 I | 875 | 880 | 885 | 890 | 895 | 899. |  |
| 910 | 904 | 909 | 914 | 918 | 923 | 928 | 933 | 938 | 942 | 947 |  |
| 11 | 952 | 957 | 961 | 966 | 971 | 976 | 980 | 985 | 990 | 995 |  |
| 12 | 999 | *004 | *009 | *014 | *019 | ${ }^{+023}$ | *028 | *033 | $\times 038$ | * 042 | 1 0.5 |
| 13 | 96047 | 052 | 057 | 061 | 066 | 071 | 076 | 080 | 085 | 090 | 2 I. ${ }^{\text {a }}$ |
| 14 | 095 | 099 | 104 | 109 | 114 | 118 | 123 | 128 | 133 | 137 | 3 1.5 <br> 4 2.0 |
| 15 | 142 | 147 | 152 | 156 | 161 | 166 | 171 | 175 | 180 | 185 | 45 |
| 16 | 190 | 194 | 199 | 204 | 209 | 213 | 218 | 223 | 227 | 232 | 63.0 |
| 17 | 237 | 242 | 246 | 251 | 256 | 26 I | 265 | 270 | 275 | 280 | 73.5 |
| 18 | 284 | 289 | 294 | 298 | 303 | 308 | 313 | 317 | 322 | 327 | 84.0 |
| 19 | 332 | -336 | 341 | 346 | 350 | 355 | 360 | 365 | 369 | 374 | 94.5 |
| 020 | 379 | 384 | 388 | 393 | $3{ }^{8}$ | 402 | 407 | 412 | 417 | 42 I |  |
| 21 | 426 | 431 | 435 | 440 | $44 \overline{5}$ | 450 | 454 | 459 | 464 | 468 |  |
| 22 | 473 | 478 | 483 | 487 | 492 | 497 | 501 | 506 | 511 | 515 |  |
| 23 | 520 | 525 | 530 | 534 | 539 | 544 | 548 | 553 | 558 | 562 |  |
| 24 | 567 | 572 | 577 | 581 | 586 | 591 | 595 | 600 | 605 | 609 |  |
| 25 | 614 | 619 | 624 | 628 | 633 | 638 | 642 | 647 | 652 | 656 |  |
| 26 | 661 | 666 | 670 | 675 | 680 | 685 | 689 | 694 | 699 | 703 |  |
| 27 | 708 | 713 | 717 | 722 | 727 | 731 | 736 | 741 | 745 | 750 |  |
| 28 | 755 | 759 806 | 764 811 | 769 816 | 774 | 778 | 783 830 | 788 | 792 839 | 797 |  |
| 930 | 848 | 853 | 858 | 862 | 867 | 872 | 876 | 881 | 886 | 890 |  |
| 31 | $89 \overline{5}$ | 900 | 904 | 909 | 914 | 918 | 923 | 928 | 932 | 937 | 4 |
| 32 | 942 | 946 | 951 | *956 | *960 | . 965 | *970 | *974 | *979 | *884 | 1 l |
| 33 | 988 | 993 | 997 | *002 | *007 | 'OII | *016 | ${ }^{*} \mathrm{O} 21$ | *025 | *030 | 20.8 |
| 34 | $\begin{array}{lll}97 & 035\end{array}$ | 039 | 044 | 049 | 053 | 058 | 063 | 067 | 072 | 077 |  |
| 35 | 081 | 086 | 090 | oc 5 | 100 | 104 | 109 | 114 | 118 | 123 | 4 1.6 <br> 5 2.0 |
| 36 | 128 | 132 | 137 | $1{ }^{2}$ | 146 | 151 | 155 | 160 | 165 | 169 |  |
| 37 38 | 174 | 179 | 183 | 188 | 192 | 197 | 202 | 206 | 211 | 216 | 72.8 |
| 38 39 | 220 267 | 225 | 230 | 234 <br> 280 | 239 | 243 | 298 | 253 | 257 <br> 304 | 262 <br> 308 | 8 2.8 <br> 9 3.2 <br> 9.6  |
| 940 | 313 | 317 | 322 | 327 | 33I | 336 | 340 | 345 | $3 \overline{5} \mathrm{O}$ | 354 |  |
| 4I | 359 | 364 | 368 | 373 | 377 | 382 | 387 | 391 | 396 | 400 |  |
| 42 | 405 | 410 | 414 | 419 | 424 | 428 | 433 | 437 | 442 | 447 |  |
| 43 | 45I | 456 | 460 | 465 | 470 | 474 | 479 | 483 | 488 | 493 |  |
| 44 | 497 | 502 | 506 | 511 | 516 | 520 | 525 | 529 | 534 | 539 |  |
| 45 | 543 | 548 | 552 | 557 | 562 | 566 | 571 | 575 | 580 | 585 |  |
| 46 | 589 | 594 | 598 | 603 | 607 | 612 | 617 | 621 | 626 | 630 |  |
| 47 | 635 | 640 | 644 | 649 | 653 | 658 | 663 | 667 | 672 | 676 |  |
| 48 | 681 | 685 | 690 | 695 | 699 | 704 | 708 | 713 | 717 | 722 |  |
| 49 | 727 | 731 | 736 | 740 | 745 | 749 | 754 | 759 | 763 | 768 |  |
| 950 | 772 | 777 | 782 | 786 | 791 | 795 | 800 | 804 | 809 | 813 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 950 | 97772 | 777 | 782 | 736 | 791 | 795 | 800 | 804 | 809 | 813 |  |
| 5 I | 818 | 823 | 827 | 832 | 836 | 841 | 845 | 850 | $85 \overline{5}$ | 859 |  |
| 52 | 864 | 868 | 873 | 877 | 882 | 886 | 891 | 896 | 900 | 905 |  |
| 53 | 909 | 914 | 918 | 923 | 928 | 932 | 937 | 941 | 946 | 950 |  |
| 54 | 955 | 959 | 964 | 968 | 973 | 978 | 982 | 987 | 991 | 996 |  |
| 55 | 98000 | 005 | 009 | 014 | O19 | 023 | 028 | 032 | 037 | 041 |  |
| 56 | 046 | 050 | 055 | 059 | 064 | 068 | 073 | 078 | 082 | 087 |  |
| 57 | 091 | 096 | 100 | 105 | 109 | 114 | 118 | 123 | 127 | 132 |  |
| 58 | 137 | 141 | 146 | 150 | 155 | 159 | 164 | 168 | 173 | 177 |  |
| 59 | 182 | 186 | 191 | 195 | 200 | 204 | 209 | 214 | 218 | 223 |  |
| 960 | 227 | 232 | 236 | 24 I | 245 | 250 | 254 | 259 | 263 | 268 |  |
| 61 | 272 | 277 | 281 | 286 | 290 | 295 | 299 | 304 | 308 | 313 | - 5 |
| 62 | 318 | 322 | 327 | 33 I | 336 | 340 | 345 | 349 | 354 | 358 | 1 l 0.5 |
| 63 | 363 | 367 | 372 | 376 | 381 | 385 | 390 | 394 | 399 | 403 | 2 l |
| 64 | 408 | 412 | 417 | 42 I | 426 | 430 | $43 \overline{5}$ | 439 | 444 | 448 | 3 1.5 <br> 4 2.0 |
| 65 | 453 | 457 | 462 | 466 | 471 | 475 | 480 | 484 | 489 | 493 | 4 2.0 <br> 5 2.5 |
| 66 | 498 | 502 | 507 | 511 | 516 | 520 | 525 | 529 | 534 | 538 | 5  <br> 6 2.5 <br> 3.0  |
| 67 | 543 | 547 | 552 | 556 | 561 | 565 | 570 | 574 | 579 | 583 | 73.5 |
| 68 | 588 | 592 | 597 | 601 | 605 | 610 | 614 | 619 | 623 | 628 | 84.0 |
| 69 | 632 | 637 | 641 | 646 | 650 | 655 | 659 | 664 | 668 | 673 | 94.5 |
| 970 | 677 | 682 | 686 | 691 | 695 | 700 | 704 | 709 | 713 | 717 |  |
| 71 | 722 | 726 | 731 | 735 | 740 | 744 | 749 | 753 | 758 | 762 |  |
| 72 | 767 | 771 | 776 | 780 | 784 | 789 | 793 | 798 | 802 | 807 |  |
| 73 | 8 II | 816 | 820 | 825 | 829 | 834 | 838 | 843 | 847 | 851 |  |
| 74 | 856 | 860 | 865 | 869 | 874 | 878 | 883 | 887 | 892 | 896 |  |
| 75 | 900 | 905 | 909 | 914 | 918 | 923 | 927 | 932 | 936 | 941 |  |
| 76 | 945 | 949 | 954 | 958 | 963 | 967 | 972 | 976 | 981 | 985 |  |
| 77 | 989 | 994 | 998 | ${ }^{\text {x } 003 ~}$ | *007 | *OI2 | *016 | *021 | *025 | *029 |  |
| 78 | 99034 | 038 | 043 | 047 | 052 | 056 | ${ }^{061}$ | 065 | 069 | 074 |  |
| 79 | $\bigcirc$ | 083 | 087 | 092 | -96 | 100 | $10 \overline{5}$ | 109 | 114 | 118 |  |
| 980 | 123 | 127 | 131 | 136 | 140 | $14 \overline{5}$ | 149 | 154 | 158 | 162 |  |
| 8 r | 167 | 171 | 176 | 180 | $18 \overline{5}$ | 189 | 193 | 198 | 202 | 207 | 4 |
| 82 | 211 | 216 | 220 | 224 | 229 | 233 | 238 | 242 | 247 | 251 | 1 l |
| 83 | 255 | 260 | 264 | 269 | 273 | 277 | 282 | 286 | 291 | 295 | 20.8 |
| 84 | 300 | 304 | 308 | 313 | 317 | 322 | 326 | 330 | 335 | 339 | 3 1.2 <br> 4 1.6 |
| 85 | 344 | 348 | 352 | 357 | 361 | 366 | 370 | 374 | 379 | 383 | 4 1.6 <br> 5 2.0 |
| 86 | 388 | 392 | 396 | 401 | 405 | 410 | 414 | 419 | 423 | 427 | 5 2.0 <br> 6 2.4 |
| 87 | 432 | 436 | 44 I | $44 \overline{5}$ | 449 | 454 | 458 | 463 | 467 | 471 | 72.8 |
| 88 | 476 | 480 | 484 | 489 | 493 | 498 | 502 | 506 | 511 | 515 | 83.2 |
| 89 | 520 | 524 | 528 | 533 | 537 | 542 | 546 | 550 | 555 | 559 | 93.6 |
| 090 | 564 | 568 | 572 | 577 | 581 | 585 | 590 | 594 | 599 | 603 |  |
| 91 | 607 | 612 | 616 | 621 | $62 \overline{5}$ | 629 | 634 | 638 | 642 | 647 |  |
| 92 | 651 | 656 | 660 | 664 | 669 | 673 | 677 | 682 | 686 | 691 |  |
| 93 | 695 | 699 | 704 | 708 | 712 | 717 | 721 | 726 | 730 | 734 |  |
| 94 | 739 | 743 | 747 | 752 | 756 | 760 | 765 | 769 | 774 | 778 |  |
| 95 | 782 | 787 | 791 | 795 | 800 | 804 | 808 | 813 | 817 | 822 |  |
| 96 | 826 | 830 | 835 | 839 | 843 | 848 | 852 | 856 | 861 | 865 |  |
| 97 | 870 | 874 | 878 | 883 | 887 | 891 | 896 | 900 | 904 | 909 |  |
| 98 | 913 | 917 | 922 | 926 | 930 | 935 | 939 | 944 | 948 | 952 |  |
|  | 957 | 961 | 965 | 970 | 974 | 978 | 983 | 987 | 991 | 996 |  |
| 1000 | 00000 | 004 | 009 | O13 | 017 | 022 | 026 | 030 | 035 | 039 |  |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Prop. Pts. |

## TABLE II.

## LOGARITHMS <br> OF IIF

## SINE, COSINE, TANGENT, AND COTANGENT <br> FOR

EACH MINUTE OF THE QUADRANT.

| , | L. Sin. | d. | L. 'Tang. | c. d. | L. Cotg. | 1. Cos. |  | Prop. Pts. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 30103 <br> 17609 <br> 12494 <br> 9691 |  |  |  | 0.00000 | 60 | d. $\mathrm{Plpl}^{\text {I' }}$ |  |  |  |
| 1 | 6.46373 |  | 6.46373 |  | 3.53627 | 0.00000 | 59 |  |  |  |  |
| 2 | 676476 $6.9+085$ |  | 6.76476 6.94085 |  | 3.23524 3.05915 | 0.00000 | 58 | 30103501.7 |  |  |  |
| 3 | $6.9+085$ 7.06579 |  | 6.94085 |  | 3.05915 2.93421 | 0.00000 0.00000 | $\begin{aligned} & 57 \\ & 56 \end{aligned}$ | $\begin{aligned} & 17609 \\ & 12494 \end{aligned}$ |  | 293.48 |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 7.16270 7.24188 | 7918 | 7.16270 7.24188 | 7918 | 2.83730 | 0.00000 | 55 |  | 9691 |  |  |
| 7 | 7.24188 730882 | 6694 | 7.24188 7.30882 | 6694 | 2.75812 2.69 II8 | 0.00000 0.00000 | 54 |  | 7918 | 131 |  |
| 8 | 7.36682 | 5800 | 7.36682 | 5800 | 2.63318 | 0.00000 | 52 |  |  | 111 |  |
| 9 | $7 .+1797$ | 41556 | 7.417977.46373 | $\begin{aligned} & 5115 \\ & 4576 \end{aligned}$ | 2.58203 | 000000 | 51 | 51154576 |  |  |  |
| 10 | $7+6373$ |  |  |  | 2.53627 | -00 000 | 50 |  |  | 76.2 |  |
| 11 | 750512 | 4139 | 7.50512 | 4139 | 2.49488 | 0.00000 | 49 |  | 4139 | 68 |  |
| 12 | 7.54 291 | 3779 3476 | 7.54291 | 3779 3476 | 2.45709 | 0.00000 | 48 |  | 3779 | 62.9 |  |
| 13 | 7.57767 | 3476 | 7.57767 | 3476 | 2.42233 | 0.00000 | 47 |  | 3476 | 57.9 |  |
| 14 | 7.60985 | $\begin{aligned} & 3218 \\ & 2997 \end{aligned}$ | $7.60-986$ | $\begin{aligned} & 3219 \\ & 2996 \end{aligned}$ | 2.39 O14 | 0.0000 | 46 | 32193218 |  | 53.6 |  |
| 15 | 7.63982 | 2997 | $763{ }^{-782}$ |  | $-2.36^{-} 018$ |  | 45 |  |  | 53.63 |  |
| 16 | $7.6678+$ | 2802 | 766785 | $\begin{aligned} & 2990 \\ & 2803 \end{aligned}$ | 2.33215 | 000000 | 44 |  |  | 49.95 |  |
| 17 | 7.69417 | 2483 | 769418 | $\begin{array}{r} 2633 \\ 2482 \\ \hline \end{array}$ | 2.30582 | 999999 | 43 |  |  | 2996 49 93 |  |
| 18 | 7.71900 | 2483 2348 | 7.71900 |  | $\begin{aligned} & 2.28100 \\ & 225752 \end{aligned}$ | $\begin{aligned} & 999999 \\ & 999999 \end{aligned}$ |  | 2802 |  | 49934672 |  |
| 19 | $7.742+8$ | 2348 | $7742{ }^{+8}$ | $\begin{aligned} & 2348 \\ & 2228 \end{aligned}$ |  |  |  | 2633 |  |  |  |
| 20 | 7.76475 | 2119 | $77^{6}$ 475 | 21192020 | 2.23524 | 999999 | $40^{-}$ |  |  | 41.38 |  |
| 21 | 7.78594 |  | 778595 |  | 2.214052.19385 | 9.99999 | 39 | 2482 41.37 <br> 2348 3913 |  |  |  |
| 22 | 780615 | 2021 | 780615 78256 | 20 |  | 99999938 |  |  |  |  |  |
| 23 | 7.82545 | 19301848 | 7.82546 784 | $\begin{aligned} & 1931 \\ & 1848 \end{aligned}$ | 2.19385 2.17454 | $\begin{aligned} & 9.99999 \\ & 9.99999 \end{aligned}$ | $\begin{array}{r} 37 \\ 36 \\ \hline \end{array}$ | 2228 37.13 |  |  |  |
| 24 | 7:84393 |  | 784394 |  | $\begin{aligned} & 2.17454 \\ & 215606 \end{aligned}$ |  |  | 2227 37 |  |  |  |
| 25 | 7.86166 | 1773 | 7.86167 |  | 2.13833 | $9.99999$ | 36 35 | 2119 |  | 35.32 |  |
| 26 | 7.87870 | 1704 1639 | 7.87871 | $\begin{aligned} & 1704 \\ & 1639 \end{aligned}$ | 2.12129 | 999999 | 3433 | 2021 |  | 33.6 |  |
| 27 | 7.89509 | $\begin{array}{r} 1579 \\ \times 524 \end{array}$ | 7.89510 |  | 210490 | 999999 |  |  |  | 33.67 |  |
| 28 | 7.91088 |  | 7.91089 | $\begin{array}{r} 1579 \\ 1524 \end{array}$ | $\begin{aligned} & 2.08911 \\ & 207387 \end{aligned}$ | $\begin{aligned} & 9.99999 \\ & 999998 \end{aligned}$ | $\begin{aligned} & 32 \\ & 31 \end{aligned}$ | $\begin{aligned} & 1931 \\ & 1930 \end{aligned}$ |  | 32.18 |  |
| 29 | 792612 |  | 7.92613 |  |  |  |  |  |  | 32.1 |  |
| 30 | $7.9+08.4$ | 1472 | 7.94080 | $\begin{aligned} & 1524 \\ & 1473 \end{aligned}$ | 205914 | 999998 | 30 | 1848 |  | 30.80 |  |
| 3 I | 7.95508 | 1424 | 795510 | 1424 | 204490 | 999998 | $\begin{aligned} & 29 \\ & 28 \end{aligned}$ | 1773 |  | 29.55 |  |
| 32 | 796887 | 1379 1336 | 796889 | 13791336 | 2031115 | 999998 |  | 163927.32 |  |  |  |
| 33 | 7.98223 | $\begin{array}{r} 1336 \\ 1297 \end{array}$ | 798225 |  |  |  | $\begin{aligned} & 28 \\ & 27 \end{aligned}$ |  |  |  |  |
| 34 | 799520 |  | 799522 | 1297 | $\begin{aligned} & 2.01775 \\ & 200478 \end{aligned}$ | $\begin{aligned} & 9.99998 \\ & 9.99998 \end{aligned}$ | 26 | 15792632 |  |  |  |
|  | 8.00779 | 12591223 | 8.00781 | 12591223 | $1 \overline{99} 219$ | 9.99998 | 25 | 1524 25.40 <br> 1473 24.55 |  |  |  |
| 36 | 8.02002 |  | 8.02004 |  | $\begin{aligned} & 197996 \\ & 1.96806 \end{aligned}$ | 999998 | 24 |  |  |  |  |
| 37 | 8.03192 | $\begin{aligned} & 1190 \\ & 1158 \end{aligned}$ | 8.03194 | 1190 1159 |  | $\begin{aligned} & 9.99997 \\ & 999997 \end{aligned}$ |  |  |  |  |  |
| 38 | 8.04350 |  | 8.04353 | $\begin{aligned} & 1159 \\ & 1128 \end{aligned}$ | $\text { I. } 95647$ |  | 23 22 21 | $=579$ |  | 23.7322.98 |  |
| 39 | 8.05478 | $1128$ | 805481 |  | $19+519$ | 9.99997 | 21 |  |  | 22.9 |  |
| 40 | 8.06578 |  | 80658 I | 1072 | 1.93419 | 999997 | 20 |  |  |  |  |
| 41 | 8.07650 | $\begin{aligned} & 1046 \\ & 1022 \end{aligned}$ | 807653 |  | $\begin{aligned} & 192347 \\ & 191300 \end{aligned}$ | $\begin{aligned} & 9.99997 \\ & 999997 \end{aligned}$ | 19 |  |  |  |  |  |
| 42 | 8.08696 |  | 8.08700 | $\begin{aligned} & 1047 \\ & 1022 \end{aligned}$ |  |  | 18 |  | 22.27 915 15.25 |  |  |
| 43 | 8.09718 |  | 8.09722 | $\begin{array}{r}1022 \\ 998 \\ \hline 986\end{array}$ | $\begin{array}{r} 190278 \\ 189280 \\ \hline \end{array}$ | $\begin{aligned} & 999997 \\ & 999996 \end{aligned}$ | $\begin{aligned} & 17 \\ & 16 \end{aligned}$ |  | 21.62 | 914 | 1523 |
| 44 | 8.10717 |  | 810720 |  |  |  |  | 1259 | 20.98 | 896 | 14.93 |
| 45 | 8.11 693 |  | 8 Ir 696 |  | 1.88304 | 999996 | 15 | 1223 | 20.38 |  | 14.92 |
| 46 | 8.12647 | 954 | 812651 | 955 | 1.87349 | 999996 | 14 | 1190 | 19.83 | 878 | 14.63 |
| 47 | 8.13581 | 934 | 8.13585 | 934 | 1.86415 | 999996 | 13 | 1159 | 19.32 | 877 | 14.62 |
| 48 | 814.495 | 914 | $8.1+500$ | 915 | 1.85500 | 999996 | 12 | 1158 | 1930 | 860 | 14.33 |
| 49 | 8.15391 | 896 877 | 815305 | 895 878 | 184605 | 0.09 996 | 11 | 1128 | 1880 | 843 | 14.05 |
| 50 | 8.16268 | 860 | 8.16273 |  | 183727 |  | 10 |  | 18.33 | 828 | 13.80 |
| 51 | 8.17128 | 860 | 8.17133 | 860 | 182867 | 999995 | 9 | 1072 | 17.87 |  | 13.78 |
| 52 | 8.17971 | 843 827 | 817976 | 843 828 | 182024 | 999995 | 8 |  | 17.45 | 812 | 13.53 |
| 53 | 8.18798 | 827 812 | 8.18804 | 828 812 | 1.81 196 | 9.99905 | 7 | 1046 | 17.43 | 797 | 13.28 |
| 54 | 8.19610 | 812 | 8.19616 | 812 | 1.80384 | 9.99 905 | 6 | 1022 999 |  |  | 13.03 |
|  | $820+07$ |  | 820413 | 797 782 | 1.79587 | 999994 | 5 | 998 | 16.63 |  | 12.60 |
| 56 | 8.21189 | 782 | 8.21195 | 782 | 1 78805 | 999994 | 4 | 976 | 16.27 | 755 | 12.58 |
| 57 | 8.21958 | 755 | 8.21964 | 756 | 1.78036 | 999994 | 3 | 955 | 15.92 | 743 | 12.38 |
| 58 | 822713 | 755 | 8.22720 | 742 | 1.77280 | 9.99994 | 2 | 954 | 15.90 |  | 12.37 |
| 59 | 823456 | 743 | 823462 | 742 | 1.76538 | 999994 | 1 | 934 | 15.57 | 730 | 12.17 |
| 60 | 8.24186 |  | 8.24192 |  | 1.75808 | 9.99993 | 0 |  |  |  |  |
|  | L. Cos. | d. | L. Cotg. | . d. | L. Tang. | L. Sin. | $\digamma$ |  | Prop | Pta |  |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\digamma\) \& L. Sin. \& d. \& L.Tang \& d. \& L. Cotg. \& L. Cos. \& \& \multicolumn{4}{|c|}{Prop, Pte.} \\
\hline 0 \& 8.24186 \& \& 8.24192 \& \& 1.75808 \& 9.99993 \& 60 \& \multicolumn{4}{|l|}{\multirow[b]{10}{*}{d. |p.p.1" \({ }^{\prime \prime}\) d. |p.p. \(1^{\prime \prime}\)}} \\
\hline 1 \& 8.24903 \& 717
706 \& 8.24910 \& \(7 \times 8\)
706 \& 1.75090 \& 9.99993 \& 59 \& \& \& \& \\
\hline 2 \& 8.25609 \& 706
695 \& \begin{tabular}{l}
8.25616 \\
8.26 \\
\hline 12
\end{tabular} \& 706
696 \& 1.74384

1 \& 9.99993 \& 58 \& \& \& \& <br>
\hline 3 \& 8.26304 \& 695
684 \& 8.26312 \& 696
684 \& 1.73688 \& 9.99993 \& 57 \& \& \& \& <br>
\hline \& 8.26988 \& \multirow[b]{2}{*}{673} \& 8.26996 \& 684
673 \& 1.73004 \& 099992 \& 56 \& \& \& \& <br>
\hline 5 \& 8.27 661 \& \& 8.27669 \& 673 \& 1.7233 I \& 9.99992 \& 55 \& \& \& \& <br>
\hline 6 \& 8.28324 \& 663
653 \& 8.28332 \& 663
654 \& 1.71668 \& 9.99992 \& 54 \& \& \& \& <br>
\hline 7 \& 8.28977 \& 653
644 \& 8.28986 \& 654
643 \& 1.71014 \& 9.99992 \& 53 \& \& \& \& <br>
\hline 8 \& 8.29621 \& 644
634 \& 8.29629 \& 643
634 \& 1.70371 \& 9.99992 \& 52 \& \& \& \& <br>
\hline 9 \& 8.30255 \& 634 \& 8.30263 \& 634
625 \& 1.69737 \& 9.99991 \& 51 \& \& \& \& <br>
\hline 10 \& 8.30879 \& 616 \& 8.30888 \&  \& 1.69112 \& 9.99991 \& 50 \& 718 \& 11.97 \& 485 \& 8.08 <br>
\hline 11 \& 8.31495 \& \multirow[t]{2}{*}{608} \& 8.31505
$8.32 \mathrm{II2}$ \& \multirow[t]{2}{*}{607} \& \multirow[t]{2}{*}{1.67888} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9.9999048}} \& 717 \& 11.97 \& \multicolumn{2}{|l|}{480} <br>

\hline 12 \& 8.32 103 \& \& 8.32112 \& \& \& \& \& 706 \& \multirow[t]{2}{*}{| 11.77 |
| :--- |
| 11.60 |} \& \multicolumn{2}{|l|}{475} <br>

\hline 13 \& 8.32702 \& \multirow[b]{2}{*}{$$
\begin{aligned}
& 590 \\
& 583
\end{aligned}
$$} \& 832711

833302 \& \multirow[t]{2}{*}{$$
591
$$} \& 1.67289

1.6668 \& \multirow[b]{2}{*}{999990.} \& 47 \& 96 \& \& \multicolumn{2}{|l|}{4747.90} <br>
\hline 14 \& 8.33292 \& \& 8.33302 \& \& 1.66698 \& \& 46 \& 695 \& 11.58 \& 470 \& 7.83 <br>
\hline 15 \& 8.33875 \& \& 8.33886 \& \& 1.66114 \& 9.99990 \& 45 \& 684 \& 11.40 \& 464 \& 7.73 <br>
\hline 16 \& 8.34450 \& 575
568 \& 8.34461 \& 575 \& 1.65539 \& 9.99989 \& 44 \& 673 \& 11.22 \& 46 \& 7.67 <br>
\hline 17 \& 835 O18 \& 568
560 \& 8.35029 \& 568
568 \& 1.64971 \& 9.99989 \& 43 \& 663 \& 11.05 \& 459 \& 7.65 <br>
\hline 18 \& 8.35578 \& 560
553 \& 8.35590 \& 561
553 \& 1. 64410 \& 9.99989 \& 42 \& 654 \& 10.90 \& 455 \& 7.58 <br>

\hline 19 \& 8.36131 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 553 \\
& 547
\end{aligned}
$$} \& 8.36143 \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 553 \\
& 546
\end{aligned}
$$

\]} \& 1.63857 \& 9.99 .989. \& 4 I \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 653 \\
& 644
\end{aligned}
$$
\]} \& 10.88 \& \multicolumn{2}{|l|}{450} <br>

\hline 20 \& 8.36678 \& \& 8.36689 \& \& 1.63 3II \& 9.99988 \& 40 \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 10.73 \\
& 10.72
\end{aligned}
$$} \& \multicolumn{2}{|l|}{4467.43} <br>

\hline 21 \& 8.37217 \& 539 \& 8.37229 \& 540 \& 1.62771 \& 999988 \& 39 \& 643 \& \& \multicolumn{2}{|l|}{44578} <br>
\hline 22 \& 8.37750 \& 533 \& 8.37762 \& 53 \& 1.62238
1.6171 \& 9.99988 \& 38 \& \multirow[t]{2}{*}{634} \& 10.57 \& 44 I \& 7.35 <br>
\hline 23 \& 8.38276 \& 526 \& 838289 \& \multirow[t]{2}{*}{527
520} \& \multirow[t]{2}{*}{1.61711

16191} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 9.99987 \\
& 9.99987
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 37 \\
& 36
\end{aligned}
$$

\]} \& \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 10.42 \\
& 10.40
\end{aligned}
$$
\]} \& \multicolumn{2}{|l|}{437 7.28} <br>

\hline 24 \& 8.38796 \& 520 \& 838809 \& \& \& \& \& 625
624 \& \& 436 \& 7.27 <br>

\hline 25 \& 8.39310 \& 808 \& 8.39323 \& $$
\begin{aligned}
& 520 \\
& 514
\end{aligned}
$$ \& 1.60677 \& \multicolumn{2}{|l|}{9.99987} \& 617 \& 10.28 \& \multicolumn{2}{|l|}{4337.22} <br>

\hline 26 \& 8.39818 \& 508 \& 8.39832 \& 509 \& 160168 \& 9.99986 \& 34 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 616 \\
& 608
\end{aligned}
$$} \& 10.27 \& \multicolumn{2}{|l|}{4327.20} <br>

\hline 27 \& 8.40320 \& 502 \& 8.40334 \& 502 \& 1. 59666 \& $$
\begin{aligned}
& 9.99986 \\
& 9.90
\end{aligned}
$$ \& \[

33
\] \& \& 10.13 \& \multicolumn{2}{|l|}{4287.13} <br>

\hline 28 \& 8.40816 \& 496 \& 8.40830 \& \multirow[t]{2}{*}{$$
\begin{array}{r}
496 \\
49 \mathrm{I}
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1.59170 \\
& 158679
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
999986 \\
999985 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 33 \\
& 32 \\
& 31
\end{aligned}
$$

\]} \& \[

$$
\begin{aligned}
& 608 \\
& 607
\end{aligned}
$$
\] \& \multirow[t]{2}{*}{10.12

9.98} \& \multicolumn{2}{|l|}{427 7.12} <br>

\hline 29 \& 8.41307 \& $$
\begin{aligned}
& 491 \\
& 485
\end{aligned}
$$ \& 8.41 321 \& \& \& \& \& \[

$$
\begin{aligned}
& 607 \\
& 599
\end{aligned}
$$
\] \& \& 424 \& 7.07 <br>

\hline 30 \& 8.41792 \& \multirow[b]{2}{*}{480} \& 841807 \& $$
\begin{aligned}
& 491 \\
& 486
\end{aligned}
$$ \& 1.58 193 \& -9.99 985 \& 30 \& \[

$$
\begin{aligned}
& 591 \\
& 590
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 9.85 \\
& 9.83
\end{aligned}
$$
\] \& \multicolumn{2}{|l|}{4207.00} <br>

\hline 31 \& 8.42272 \& \& 8.42287 \& 480 \& 1.57713 \& 999985 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 29 \\
& 28
\end{aligned}
$$} \& \[

$$
\begin{aligned}
& 590 \\
& 584
\end{aligned}
$$

\] \& 9.73 \& \multicolumn{2}{|l|}{| 419 | 6.98 |
| :--- | :--- | :--- |
| 416 | 6.93 |} <br>

\hline 32 \& 8.42746 \& 474

47.0 \& 842762 \& 475 \& 1. 57238 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 9.99984 \\
& 999984
\end{aligned}
$$} \& \& 583 \& 9.72 \& \multicolumn{2}{|l|}{4126.87} <br>

\hline 33 \& 8.43216 \& 47.3

464 \& 8.43232 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 470 \\
& 464
\end{aligned}
$$} \& \multirow[t]{2}{*}{1. 56768} \& \& 28 \& \multirow[t]{2}{*}{575

558} \& 9.58 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{4116.85}} <br>

\hline 34 \& 8.43680 \& 464 \& 8.43696 \& \& \& $$
\begin{array}{r}
999984 \\
999984 \\
\hline
\end{array}
$$ \& 26 \& \& \[

9.47
\] \& \& 6.80 <br>

\hline 35 \& 8.44139 \& 459 \& 8.44 I56 \& \multirow[t]{2}{*}{$$
455
$$} \& 1 55844 \& 999983 \& 25 \& 56 r \& 9.35 \& \multicolumn{2}{|l|}{4046.73} <br>

\hline 36 \& 8.44594 \& 455 \& 8.44615 \& \& 1.55389 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 9.99983 \\
& 9.99983
\end{aligned}
$$} \& 24 \& 560 \& 9.33 \& \multicolumn{2}{|l|}{4016.68} <br>

\hline 37 \& 8.45044 \& 450 \& 8.45 061 \& \& \multirow[t]{2}{*}{1.54939} \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 23 \\
& 22
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
553 \\
547
\end{array}
$$
\]} \& 9.33

9.22 \& 400 \& 6.67 <br>

\hline 38 \& 8.45489 \& 445 \& 8.45507 \& 446 \& \& $$
\begin{aligned}
& 9.99983 \\
& 9.99982
\end{aligned}
$$ \& \& \& \[

9.12
\] \& \multicolumn{2}{|l|}{397 6.62} <br>

\hline 39 \& 8.45930 \& 44 x

436 \& 8.45948 \& 44 4 \& $$
\begin{aligned}
& 1.54493 \\
& 1.54052
\end{aligned}
$$ \& \[

9.99982

\] \& \[

21

\] \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 547 \\
& 546 \\
& 540
\end{aligned}
$$

\]} \& \[

9.10
\] \& \multicolumn{2}{|l|}{3966} <br>

\hline 40 \& 8.46366 \& 436 \& 8.46385 \& \multirow[t]{2}{*}{438} \& 1.53615 \& 999982 \& 20 \& \& \multirow[t]{2}{*}{9.00
8.98} \& 393 \& 6.55 <br>
\hline 41 \& 8.46799 \& 433 \& 8.46817 \& \& 1.53 183 \& 9.99981 \& 19 \& 539 \& \& 39 \& 6.50 <br>
\hline 42 \& 8.47226 \& 427 \& 8.47245 \& 428 \& 1.52755 \& 99998 r \& 18 \& 533 \& 8.88 \& 386 \& 6.43 <br>
\hline 43 \& 8.47650 \& 424 \& 8.47669 \& 424 \& 152331 \& 9.99 981 \& 17 \& 527 \& 8.78 \& 383 \& 6.38 <br>
\hline 44 \& 8.48069 \& 419 \& 848 o89 \& 420 \& 1.51911 \& 999980 \& 16 \& 526 \& 8.77 \& 382 \& 6.37 <br>
\hline 45 \& 8.48485 \& \& 8.48505 \& \& 1.51495 \& 9.99980 \& 15 \& 520
514 \& 8.67
8.57 \& \& 6.33
6.32 <br>
\hline 46 \& 8.48896 \& 411 \& 8.48917 \& 412
408 \& 1.51083 \& 9.99979 \& 14 \& 514
509 \& 8.57
8.48 \& 379
376 \& <br>
\hline 47 \& 8.49304 \& 408 \& 8.49325 \& 408 \& 1.50675 \& 999979 \& 13 \& 509
508 \& 8.48
8.47 \& 376
373 \& 6.27
6.22 <br>
\hline 48 \& 8.49708 \& 404 \& 8.49729 \& 404 \& 1.50271 \& 999979 \& 12 \& 508
502 \& 8.47
8.37 \& 373
370 \& 6.22
6.17 <br>
\hline 49 \& 8.50108 \& \& 8.50130 \& \& 1.49870 \& 9.99978 \& 11 \& 496 \& 8.37
8.27 \& 369 \& 6.15 <br>
\hline 50 \& 8.50504 \& 3 \& 8.50527 \& \& 1.49473 \& 999978 \& 10 \& 491 \& 8.18 \& 367 \& 6.12 <br>
\hline 51 \& 8.50897 \& 393 \& 8.50920 \& 393 \& 1.49080 \& 999977 \& 9 \& 486 \& 8.10 \& 363 \& 6.05 <br>
\hline 52 \& 8.51287 \& 390 \& 8.51310 \& 390 \& 1.48690 \& 999977 \& 8 \& \& \& \& <br>
\hline 53 \& 8.51673 \& $3^{86}$ \& 8.51696 \& 386 \& 1.48304 \& 9.99977 \& 7 \& \& \& \& <br>
\hline 54 \& 8.52055 \& 382 \& 8.52079 \& 383 \& 1.47 .921 \& 999976 \& 6 \& \& \& \& <br>
\hline 55 \& 8.52434 \& 3 \& 8.52459 \& \& 1.4754 I \& 9.99976 \& 5 \& \& \& \& <br>
\hline 56 \& 8.52810 \& 376 \& 8.52835 \& 376
373 \& 1 47165 \& 9.99975 \& 4 \& \& \& \& <br>
\hline 57 \& 8.53183 \& 373 \& 8.53208 \& 373 \& 1.46792 \& 9.99975 \& 3 \& \& \& \& <br>
\hline 58 \& 8.53552 \& 369 \& 8.53578 \& 370 \& 1.46422 \& 9.99974 \& \& \& \& \& <br>
\hline 59 \& 8.53919 \& 367
363 \& 8.53945 \& 367
363 \& 1.46055 \& 9.99974 \& I \& \& \& \& <br>
\hline 60 \& 8.54282 \& \& 8.54308 \& \& 1.45692 \& 9.99974 \& 0 \& \& \& \& <br>
\hline \& L. Cos. \& d. \& L. Cota. \& c. d. \& L. Tang \& L. Sin. \& $\digamma$ \& \& Prop. \& Pt \& <br>
\hline
\end{tabular}

| 7 | L. Sin. | d. | L. T'ang. | c. d. | L. Cotg. | L. Cos. |  | Prop. Pts. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 8.54282 |  | 8.54308 |  | 1.45692 | 999974 | 60 |  |  |  |  |
| 1 | 8.54642 | 360 | 8.54669 | 361 | 1.4533 I | 9.99973 | 59 |  |  |  |  |
| 2 | 8.54999 | 357 | 8.55027 | 358 | $\pm .44973$ | 9.99973 | 58 |  |  |  |  |
|  | 8.55354 | 355 | 8.55382 | 355 <br> 352 | 1. 44 618 | 9.99972 | 57 |  |  |  |  |
| 4 | 8.55705 | 351 | 8.55734 | 352 | 1.44266 | 9.99972 | 56 |  |  |  |  |
|  | 8.56054 | 346 | 8.56083 | 349 | 1.43917 | 9.99971 | 55 |  |  |  |  |
| 6 | 8.56400 | 346 | 8.56429 | 346 | 1.43571 | 9.99971 | 54 |  |  |  |  |
| 7 | 8.56743 | 343 | 8.56773 | 344 | I. 43227 | 9.99970 | 53 |  |  |  |  |
| 8 | $8.57{ }^{084}$ | 341 | 8.57114 | 3418 | 1. 42886 | 9.99970 | 52 |  |  |  |  |
| 9 | 8.57421 | 337 | 8.57452 | $33^{8}$ | 1.42548 | 9.99969 | 51 | d. | \|p. p. ${ }^{\prime \prime}{ }^{\prime \prime}$ |  | p.p.1" |
| 10 | 8.57757 | 332 | 8.57788 |  | 1.42212 | 999969 | 50 | 361 | 6.02 | 29 | 4.85 |
| 11 | 8.58089 | 332 | 858121 | 333 | 1.41879 | 9.99968 | 49 | 360 | 6.00 |  | 4.83 |
| 12 | 8.58419 | 330 | $858+51$ | 330 | 1.41 549 | 9.99968 | 48 | 358 | 5.97 | 289 | 4.82 |
| 13 | 8.58747 | 328 | 8.58779 | 328 326 | I. 41221 | 9.99967 | 47 | 357 | 595 | 288 | 4.80 |
| 14 | 8.59072 | 325 | 8.59105 | 326 | 1.40895 | 999967 | 46 | 355 | 5.92 | 287 | 4.78 |
| 15 | 8.59395 | 323 | 8.59428 | 32 I | 1.40572 | 999967 | 45 | 352 | 5.37 5.85 | 285 | 4.75 |
| 16 | 8.59715 | 320 | 859749 | 32 I | 1.40251 | 999966 | 44 | 351 | 5.85 | 284 | 473 |
| 17 | 8.60033 | 318 | 8.60063 | 329 | I 39932 | 9.99966 | 43 | 349 346 |  | 283 | 4.72 4.68 |
| 18 | 8.60349 | 316 | 8.60384 | 316 | 1.39 6ı6 | 999965 | 42 | 346 344 | 5.77 5.73 | 280 | 4.68 4.67 |
| 19 | 8.60662 | 313 | 8.60698 | 354 | 1.39302 | 9.99964 | 4 I | 344 343 | 5.73 5.72 | 279 | 4.67 4.65 |
| 20 | 860973 | 3 II | 8.61009 | 311 310 | 1.38991 | 999964 | 40 | 341 | 5.68 | 278 | 4.63 |
| 21 | 8.61282 | 309 | 8.61319 | 307 | 1. 38681 | 999963 | 39 | $33^{8}$ | 563 | 277 | 4.62 |
| 22 | 8.61589 | 307 | 861626 | 307 | I. 38374 | 9.99963 | 38 | 337 | 5.62 | 276 | 4.60 |
| 23 | 8.61 894 | 305 | 8.61731 | 305 | 1 38069 | 9.99962 | 37 | 336 | 560 | 274 | 4.57 |
| 24 | 8.62196 | 302 | 862234 | 303 | I 37766 | 9.99962 | 36 | 333 | 5.55 | 273 | 4.55 |
| 25 | 862497 | 298 | 8.62535 | 299 | 1.37465 | 9.99 961 | 35 | 332 | 5.53 | 272 | 4.53 |
| 26 | 8.62795 | 298 | $8.6283+$ | 299 | 137166 | 9.99 961 | 34 | 330 | 5.50 | 271 | 4.52 |
| 27 | 8.63091 | 296 | 8.63131 | 297 | 1 36869 | 9.99960 | 33 | 328 | 5.47 | 270 | 4.50 |
| 28 | 8.63385 | 294 | 8.63426 | 295 | 1.36574 | 9.99960 | 32 | 326 | 5.43 | 269 | 448 |
| 29 | 8.63678 | 293 | 8.63718 | 292 | 1 36282 | 9.99959 | 3 I | 325 | 5.42 | 268 | 4.47 |
| 30 | 8.63968 | 290 | 864009 | 291 | I 3599 I |  | 30 | 323 | $5 \cdot 38$ | 267 | 4.45 |
| 31 | 8.64256 | 288 | 8.64298 | 289 | 1.35702 | 9.99958 | 29 | 321 | 5.35 | 266 | 4.43 |
| 32 | 8.64543 | 287 | 8.64585 | 287 | 1.35415 | 9.99958 | 28 | 320 | 5.33 | 264 | 4.40 |
| 33 | 8.64827 | 284 | 8.64870 | 285 | 1.35130 | 9.99957 | 27 | 319 | 5.32 | 263 | 4.38 |
| 34 | 8.65110 | 283 | $8.65 \times 54$ | 284 | 1.34846 | 999956 | 26 | 318 | 5.30 | 261 | 4.35 |
|  | 8.65 391 | 281 | 865435 |  | I 34565 | 999956 | 25 | 314 | 5.27 | 260 | 4.33 |
| 36 | 8.65670 | 279 | 8.65715 | 280 | $13+285$ | 9.99955 | 24 | 314 313 | 5.23 5.22 | 259 | 432 |
| 37 | 8.65947 | 277 | 865993 | 278 276 | $1.3+007$ | 9.99955 | 23 | 3II | 5.18 | 257 | 4.38 4.28 |
| 38 | 8.66223 | 276 | 8.66269 | 276 | 1.33731 | 9.99954 | 22 | 310 | 5.17 | 256 | 4.28 4.27 |
| 39 | 866497 | 274 | 8.66543 | 274 | 1.33457 | 999954 | 2 I | 309 | 5.15 | 255 | 4.27 4.25 |
| 40 | 8.66769 | 272 | 8.66816 | 273 | 1.33184 | 999953 | 20 | 309 | 5.12 5.12 | 254 | 4.25 4.23 |
| 4 I | 8.67039 | 270 | 8.67087 | 271 | 1.32913 | 9.99952 | 19 | 305 | 5.08 | 253 | 422 |
| 42 | 8.67308 | 269 | 8.67356 | 269 | 1.32644 | 9.99952 | 18 | 303 | 5.05 | 252 | 4.20 |
| 43 | 8.67575 | 267 | 8.67624 | 268 266 | 1.32376 | 999951 | 17 | 302 | 5.03 | 251 | 4.18 |
| 44 | 8.67841 | 266 | 8.67890 | 266 | 1.32110 | 9.99951 | $\underline{1}$ | 301 | 5.02 | 250 | 4.17 |
| 45 | 8.68104 | 263 | 8.68154 |  | 131846 | 9.99950 | 15 | 299 | 4.98 | 249 | 4.15 |
| 46 | 8.68367 | 263 260 | 8.68417 | 265 | 1.31583 | 9.99949 | 14 | 298 | 4.97 | 248 | 413 |
| 47 | 8.68627 | 260 | 8.68678 | 261 | 1.31 322 | 999949 | 13 | 297 | 4.95 | 247 | 4.12 |
| 48 | 8.68886 | 259 | 8.68938 | 260 | 131062 | 999948 | 12 | 296 | 4.93 | 246 | +10 |
| 49 | 8.69144 | 258 | 8.69 196 | 258 | 1.30804 | 999948 | 1 | 295 | 4.92 | 245 | 408 |
| 50 | 8.69400 | 256 | 8.69453 | 257 |  |  | 10 | 294 | 4.90 | 244 | 4.07 |
| 51 | 8.69654 | 254 | 8.69708 | 255 | $1.30292$ | $\begin{aligned} & 9.999+\prime \\ & 9.99976 \end{aligned}$ | 9 | 293 | 4.88 4.87 | 243 | 405 |
| 52 | 869907 | 253 | 8.69962 | 254 | 1.30038 | $999946$ | 8 | 292 | 4.87 | 242 | 4.03 |
| 53 | 8.70159 | 252 250 | 8.70214 | 252 | 1.29786 | 9.99945 | 7 |  |  |  |  |
| 54 | 870409 | 250 | 8.70465 | 251 | 1.29535 | 999944 | 6 |  |  |  |  |
|  | 8.70658 | 249 | 8.70714 |  | 1.29286 | 9.99944 | 5 |  |  |  |  |
| 56 | 8.70905 | 247 | 8.70962 | 248 | 129038 | 9.99943 | 4 |  |  |  |  |
| 57 | 8.71151 | 246 | 8.71208 | 246 | 1.28792 | 999942 | 3 |  |  |  |  |
| 58 | 8.71395 | 244 243 | 8.71453 | 245 | 1.28547 | 9.99942 | 3 |  |  |  |  |
| 59 | 8.71638 | 243 | 8.71697 | 344 | 1.28303 | 999941 | 1 |  |  |  |  |
| 60 | 8.71880 |  | 8.71940 |  | 1.28060 | 9.99940 | 0 |  |  |  |  |
|  | L. Cos. | d. | L. Cotg. | c. d. | L.Tang. | 1. Sin. | ' |  | Prop. | Pts |  |



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline $\prime$ \& L．Sin． \& d． \& L．Tang． \& c．d． \& H．Cotg． \& L．Cos． \& \& \multicolumn{4}{|c|}{Prop．Pts．} <br>
\hline 0 \& 8.84358 \& \& 8.84464 \& \& 1.15536 \& 9.99894 \& 60 \& \& \& \& <br>
\hline \& 8.84539 \& 181 \& 8.84646 \& 182
180 \& 1.155354 \& 9.99893 \& 59 \& \& \& \& 174 <br>
\hline \& 8.84718 \& 79 \& 8.84826 \& 180 \& 1.15174 \& 9.99892 \& 58 \& 6 \& 18.0 \& 17.7 \& 17.4 <br>
\hline 3 \& 8.84897 \& 179
178 \& 8.85006 \& 179 \& I．I4 994 \& 9.99891 \& 57 \& 8 \& 21.0 \& 20.7 \& 20.3 <br>
\hline \& 8.85075 \& 178 \& 8.85185 \& 179
178 \& 1.14 .815 \& 9.99891 \& 56 \& 8 \& 24.0 \& 23.6 \& 23.2 <br>
\hline 5 \& 8.85252 \& \& 885363 \& \& 1.14637 \& 999890 \& 55 \& 10 \& 7.0 \& \& 26.1 <br>
\hline 6 \& 8.85429 \& 177
176 \& 8.85540 \& 177 \& 1.14460 \& 999889 \& 54 \& 10 \& 30.0 \& 29.5 \& 29.0 <br>
\hline 7 \& 8.85605 \& 176 \& 8.85717 \& 177 \& 1.14283 \& 999888 \& 53 \& 20 \& 60.0 \& 59.0
88.5 \& 58.0
87.0 <br>
\hline 8 \& 8.85780 \& 175 \& 8.85893 \& 176 \& 1.14107 \& 9.99887 \& 52 \& 30
40 \& 90.0
120.0 \& 88.5
118.0 \& 87.0
116.0 <br>
\hline 9 \& 885955 \& 175 \& 8.86069 \& 176
174 \& 1.13931 \& 9.99886 \& 51 \& \& 120.0
150.0 \& 118.0 \& 116.0 <br>
\hline 10 \& 8.86128 \& 173 \& 8.86243 \& 174 \& 1．13 757 \& 999885 \& 50 \& \& \& 147.5 \& 145.0
167 <br>
\hline 11 \& 8.86301 \& 173
173 \& 8.86417 \& 174
174
172 \& 1．13 583 \& 999884 \& 49 \& \& 171 \& 169 \& 167 <br>
\hline 12 \& 8.86474 \& 173 \& 8.86591 \& 174 \& 1．13 409 \& 999883 \& 48 \& 6 \& 17.1 \& 16.9 \& 16.7 <br>
\hline 13 \& 8.86645 \& 171 \& 8.86763 \& 172 \& 1.13237 \& 9.99882 \& 47 \& 7 \& 20.0 \& 19.7 \& 19.5 <br>
\hline 14. \& 8.86816 \& 171 \& 886935 \& 172 \& 1.13065 \& 999881 \& 46 \& 8 \& 22.8 \& 22.5 \& 22.3 <br>
\hline 15 \& $8.86 ⿳ 亠 丷 厂$ \& 171 \& 8.87106 \& 171 \& 1.12894 \& 999880 \& 45 \& 9 \& 25.7 \& 25.4 \& 25.1 <br>
\hline 16 \& 8.87156 \& 169
169 \& 887277 \& 171 \& 1.12723 \& 999879 \& 44 \& 10 \& 28.5 \& 28.2 \& 27.8 <br>
\hline 17 \& 8.87325 \& 169 \& 8.87447 \& 170 \& 1.12553 \& 999879 \& 43 \& \& 57.0 \& 56.3 \& 55.7 <br>
\hline 18 \& $8.8749+$ \& 169 \& 8.87616 \& 169 \& 1．12 384 \& 999878 \& 42 \& 30 \& 85.5 \& 845 \& 83.5 <br>
\hline 19 \& 8.87 66I \& 167 \& 887785 \& 169 \& 1.12215 \& 999877 \& 4 I \& 40 \& 114.0 \& 1127 \& 1113 <br>
\hline 20 \& 887829 \& \& 887953 \& 168 \& 1.120 .47 \& 999876 \& $40^{\circ}$ \& \& 142.5 \& 140.8 \& 139.2 <br>
\hline 21 \& 8.87995 \& 166 \& 888120 \& 167 \& I．11880 \& 999875 \& 39 \& \& 165 \& 163 \& 160 <br>
\hline 22 \& 8.88 16I \& 166 \& 8.88287 \& 167 \& 1.11713 \& 999874 \& 38 \& 6 \& 16.5 \& 16.3 \& 16．0 <br>
\hline 23 \& 8.88326 \& 165 \& $8.88+53$ \& 166 \& 1.11547 \& 999873 \& 37 \& 7 \& 19.3 \& 190 \& 18.7 <br>
\hline 24 \& 8.88490 \& 164 \& 888618 \& 165 \& I．11 382 \& 999872 \& 36 \& 8 \& 22.0 \& 21.7 \& 21.3 <br>
\hline 25 \& 888654 \& \& 8.88783 \& \& 1.11217 \& 9.99871 \& 35 \& 9 \& 24.8 \& 24.5 \& 24.0 <br>
\hline 26 \& 8.88817 \& 163 \& 8.889 .4 \& 165 \& I．11 052 \& 9.99870 \& 34 \& \& 27.5 \& 27.2 \& 26.7 <br>
\hline 27 \& 8.88980 \& 163
162 \& 889111 \& 163 \& 1.10889 \& 999869 \& 33 \& \& 55.0 \& 543 \& 53.3 <br>
\hline 28 \& 889142 \& 162 \& 8.89274 \& 163 \& 110726 \& 999868 \& 32 \& \& 82.5 \& 81.5 \& 80.0 <br>
\hline 29 \& 889304 \& 162 \& 8.89437 \& 163 \& I． 10563 \& 9.99867 \& 31 \& \& 110.0 \& 108.7 \& 106.7 <br>
\hline 30 \& 8.89464 \& \& 889598 \& \& 1.10402 \& 9.99866 \& 30 \& 50 \& 137.5 \& 135.8 \& 133.3 <br>
\hline 31 \& 8.89625 \& \& 889760 \& 160 \& 1．10 240 \& 999865 \& 29 \& \& 157 \& 155 \& 153 <br>
\hline 32 \& 889784 \& 159 \& 8.89920 \& 160 \& 1.10080 \& 99986 \& 28 \& 6 \& 15.7 \& 15.5 \& 15.3 <br>
\hline 33 \& 8.89943 \& 159 \& 8.90080 \& 160 \& 109920 \& 999863 \& 27 \& 7 \& 18.3 \& 18.1 \& 17.9 <br>
\hline 34 \& 8.90102 \& 159. \& 8.90240 \& 160 \& 109760 \& 999862 \& 26 \& 8 \& 20.9 \& 20.7 \& 20.4 <br>
\hline 35 \& 8.90260 \& 58 \& 8.90399 \& 158 \& 1.09601 \& 999861 \& 25 \& 9 \& 23.6 \& 23.3 \& 23.0 <br>
\hline 36 \& 8.90417 \& 157 \& 8.90557 \& $\begin{array}{r}158 \\ 158 \\ \hline\end{array}$ \& $1094+3$ \& 999860 \& 24 \& 10 \& 26.2 \& 25.8 \& 25.5 <br>
\hline 37 \& 8.90574 \& 157 \& 8.90715 \& 158 \& 1.09285 \& 999859 \& 23 \& 20 \& 52.3 \& 51.7 \& 51.0 <br>
\hline 38 \& 8.90730 \& 156 \& 8.99872 \& 157

157 \& 109128 \& 999858 \& 22 \& 30 \& 78.5 \& 77.5 \& 76.5 <br>
\hline 39 \& 8.90885 \& 55 \& 8.91029 \& 57 \& 1.08971 \& 999857 \& 21 \& \& 1047 \& 103.3 \& 102.0 <br>
\hline 40 \& 8.910 .40 \& 155 \& 8.91185 \& 156 \& 1.08815 \& 999856 \& 20 \& \& 130.8 \& 29.2 \& 127.5 <br>
\hline 41 \& 8.91195 \& 155 \& 8.91340 \& 155 \& 1.08660 \& $99985 \overline{5}$ \& 19 \& \& 151 \& 149 \& 147 <br>
\hline 42 \& 8.91349 \& 154 \& $8.91+95$ \& 155 \& $1.0850 \overline{5}$ \& 999854 \& 18 \& 6 \& 15.1 \& 149 \& 14.7 <br>
\hline 43 \& 8.91502 \& 153 \& 8.91650 \& 155 \& $1.0835^{\prime}$ \& 999853 \& 17 \& 7 \& 176 \& 17.4 \& 17.2 <br>
\hline 44 \& 8.91655 \& 153 \& 891803 \& 153 \& 108197 \& 9.99852 \& 16 \& 8 \& 201 \& 199 \& 19.6 <br>
\hline 45 \& 891807 \& 152 \& 8.91957 \& 154 \& 108043 \& 999851 \& 15 \& 9 \& 227 \& 22.4 \& 22.1 <br>
\hline 46 \& 891959 \& 152 \& 8.92110 \& 153
152 \& 1.07890 \& 999850 \& 14 \& \& 25.2 \& 24.8 \& 24.5 <br>
\hline 47 \& 8.92110 \& 15 x \& 8.92262 \& $\begin{array}{r}152 \\ \\ 52 \\ \hline\end{array}$ \& 107738 \& 9998.48 \& 13 \& 20 \& 50.3 \& 49.7 \& 49.0 <br>
\hline 48 \& 8.92261 \& 151 \& 8.92414 \& 152 \& 1.07586 \& 999847 \& 12 \& 30 \& 75.5 \& 74.5 \& 73.5 <br>
\hline 49 \& ¢ 92.411 \& 150 \& 892565 \& 151 \& 1.07435 \& 999846 \& 11 \& \& 100.7 \& 99.3 \& 98.0 <br>
\hline 50 \& 8.92561 \& \& 8.92716 \& \& 1.07284 \& 9.99845 \& 10 \& \& 5 \& 24．2 \& 122.5 <br>
\hline 51 \& 892710 \& 149 \& 892866 \& 150 \& 1.07134 \& 999844 \& 9 \& \& \& \& 1 <br>
\hline 52 \& 8.92859 \& 149 \& 8.93016 \& 50 \& 1.06984 \& 999843 \& 8 \& \& 14.6 \& 0.2 \& 0.1 <br>
\hline 53 \& 893007 \& 148 \& 8.93165 \& 149 \& 1．06 835 \& 9.99842 \& 7 \& 7 \& 17. \& 0.2 \& 0.1 <br>
\hline 54 \& 8.93154 \& 147 \& 893313 \& 148 \& 106687 \& 999841 \& 6 \& 8 \& 19. \& 0.3 \& ． 1 <br>
\hline 55 \& 8.93301 \& 147 \& 8.93462 \& \& 1 06538 \& 9.998 .40 \& 5 \& 9 \& 21 \& 0.3 \& 0.2 <br>
\hline 56 \& 893448 \& 147 \& 8.93609 \& 147 \& 1.06 391 \& 999839 \& 4 \& 10 \& 24.3 \& 0.3 \& 0.2 <br>
\hline 57 \& 893594 \& 146 \& 8.93756 \& 147 \& 1.06244 \& 9.99838 \& 3 \& 20 \& 48.7 \& $\bigcirc 7$ \& 0.3 <br>
\hline 58 \& 8.93740 \& 146 \& 893903 \& 147 \& 1．06 097 \& 9.99837 \& 2 \& 30 \& 73.0 \& 1.0 \& 0.5 <br>
\hline 59 \& 893885 \& 145 \& 8.94049 \& 146
146 \& 1.05951 \& 999836 \& 1 \& \& 97. \& I． 3 \& 0.7
0.8 <br>
\hline 60 \& 8.94030 \& \& 8.94195 \& \& 1.05805 \& 999834 \& 0 \& \& 121 \& \& <br>
\hline \& H．Cos． \& d． \& L．Cotg． \& ． $\mathbf{d}$ \& L．Tang． \& L．Sin． \& ＇ \& \& Prop \& Pts． \& <br>
\hline
\end{tabular}

| 7 | L. Sin. | $d$. | L.'Tang. | . d. | L. Cotg. | L. Cos. |  | Prop. Pts. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 8.94030 |  | $89+195$ |  | 1.05805 | 9.99834 | 60 |  |  |  |  |
| $\underline{1}$ | 8.94174 | 144 | 8.94340 | 145 145 | 1.05660 | 9.99833 | 59 |  |  |  | 141 |
| 2 | 8.94317 | 143 | 8.94485 | 45 | 1.05515 | 9.99832 | 58 | 6 | 14.5 | 14.3 | 14.1 |
| 3 | 8.9446 I | 144 142 | 89.4630 | 145 | 1.05370 | 9.9983 I | 57 | 7 | 16.9 | 16.7 | 16.5 |
| 4 | $8.9+603$ | 142 | 8.94773 | 143 | 1.05227 | 9.99830 | 56 | 8 | 19.3 | 19.1 | 18.8 |
| 5 | 894746 | 143 | 8.94917 | 144 | 1.05083 | 9.99829 | 55 | 9 | 21.8 | 21.5 | 2 |
| 6 | 8.94887 | 141 | 8.95060 | 143 | 1.049 .0 | 999888 | 54 | 10 | 24.2 | 23.8 | 23.5 |
| 7 | 8.95029 |  | 895202 | 142 | 1.04798 | 9.99827 | 53 | 20 | 48.3 | 47.7 | 47.0 |
| 8 | 8.95170 | 141 | 8.95344 | 142 | 1.04656 | 999825 | 52 | 30 | 72.5 | 71.5 | 70.5 |
| 9 | 8.95310 | 140 | 895486 | 142 | 1.0451 .4 | 999824 | 51 | 40 | 96.7 | 95.3 | 94.0 |
| 10 | $8.954 \overline{5} 0$ |  | 895627 | 141 | 1.04373 | 999823 | 50 | 50 | 120 | 119.2 | 117.5 |
| II | 8.95589 | 39 | 895767 | 140 | 1.04233 | 999822 | 49 |  | 139 | 138 | 136 |
| 12 | 8.95728 | 139 | 895908 | 14 I | 104092 | 9.9982 L | 48 | 6 | 13.9 | 13.8 | 13.6 |
| 13 | 8.95867 | 139 | 8960.47 | 139 | r.03 953 | 999820 | 47 | 7 | 16.2 | 16.1 | 15.9 |
| 14 | 896005 |  | 895187 | 140 | 1.03813 | 999819 | 46 | 8 | 18.5 | 18.4 | 18.1 |
| 15 | 896143 |  | 896325 | 139 | 1.03675 | 999817 | 45 | 9 | 209 | 20.7 | 20.4 |
| 16 | 8.96280 | 137 | 896464 | 139 | 1.03 536 | 9.99816 | 44 | 10 | 23.2 | 23.0 | 22.7 |
| 17 | 8.96417 | 137 | 896602 | 138 | 1.03398 | 9.99815 | 43 | 20 | 46.3 | 460 | 45.3 |
| 18 | 8.96553 | 136 | 896739 | 137 | 1.03261 | 999814 | 42 | 30 | 69.5 | 690 | 68.0 |
| 19 | 8.96689 | ${ }^{1} 36$ | 8.96877 | 138 | 103123 | 999813 | 41 | 40 | 92.7 | 92.0 | 90.7 |
| 20 | 8.96825 |  | 8.97013 |  | 1.02987 | 999812 | 40 |  | 115 | 115.0 | 1133 |
| 21 | 8.96960 | $\pm 35$ | 89715 | 137 | $1.0285^{\circ}$ | 999810 | 39 |  | 135 | 133 | 131 |
| 22 | 897095 | 135 | 8.97285 | 135 | 1.02715 | 999809 | 38 | 6 | 135 | 13.3 | 13.1 |
| 23 | 897229 | 134 | 897421 | 136 | 1.02579 | 999808 | 37 | 7 | 15.8 | 15.5 | 15.3 |
| 24 | 897363 | 134 | 897556 | 135 | 1.02444 | 999807 | 36 | 8 | 18.0 | 17.7 | 175 |
| 25 | 8.97496 | 133 | 8.97691 | 135 | 1.02309 | 999806 | 35 | 9 | 20.3 | 20.0 | 19.7 |
| 26 | 897629 | 133 | 897825 | 134 | 1.02175 | 999804 | 34 | 10 | 22.5 | 22.2 | 21.8 |
| 27 | 8.97762 | 133 | 897959 | 134 | 1.02041 | 999803 | 33 | 20 | $45 \circ$ | 44.3 | 43.7 |
| 28 | 897894 | 132 | 898092 | 133 | r Or 908 | 9.99802 | 32 | 30 | 67.5 | 66.5 | 65.5 |
| 29 | 898026 | 132 | 808225 | 133 | 1 or 775 | 999801 | 3 3 | 40 | 900 | 88.7 | 87.3 |
| 30 | 898157 | 131 | 898358 | 133 | 1.016 .42 | 999800 | 30 | 50 | 112. |  | 109.2 |
| 3 I | 8.98288 | 131 131 | 8.98490 | 32 | 1.01 510 | 999798 | 29 |  | 129 | 128 | 126 |
| 32 | 893419 | 131 | 898622 | 132 | I Or 378 | 999797 | 28 | 6 | 12.9 | 12. 8 | 12.6 |
| 33 | 898549 | 130 | 8.98753 | 131 | 1.01 2.47 | 9.99796 | 27 | 7 | 15.1 | 14.9 | 14.7 |
| 34 | 8.98679 | 130 | $89888+$ | 131 | 1.01116 | 999795 | 26 | 8 | 17.2 | 17.1 | 168 |
| 35 | 8.98808 | 129 | 8.99015 | 131 | 1.00985 | 999793 | 25 | 9 | 194 | 19.2 | 18.9 |
| 36 | 8.98937 | 129 | 899145 | 130 | 1.00855 | 999792 | 24 | 10 | 21.5 | 213 | 21.0 |
| 37 | 8.99066 | 129 128 | 899275 | 30 | 1.00 725 | 999791 | 23 | 20 | 43.0 | 42.7 | 420 |
| 38 | 8.99197 | 128 | 899405 | 130 | 1.00595 | 999790 | 3 | 30 | 64.5 | 64.0 | 63.0 |
| 39 | 8.99322 | 128 | 899534 | 129 | 1.00466 | 999788 | 21 | 40 | 86.0 | 85.3 | 84.0 |
| 40 | 8.994 ¢0 |  | 899662 |  | 1.00338 | 999787 | 20 |  |  | 06.7 | 105.0 |
| 4 I | 899577 | 127 | 8.99791 | 129 | 1.002309 | 999786 | 19 |  | 125 | 123 | 122 |
| 42 | 89970.4 | 127 126 | 899919 | 128 | 1.00081 | 9.99785 | 18 | 6 | 12.5 | 12.3 | 12.2 |
| 43 | 899830 | 126 | 9.00016 | 127 | - 99954 | 9.99783 | 17 | 7 | 14.6 | 14.4 | 14.2 |
| 44 | 899956 |  | 9.00174 | 128 | 0.99826 | -999782 | 16 | 8 | 16.7 | 16.4 | 16.3 |
| 45 | 900082 |  | 9.00301 |  | 0.99699 | 9.99781 | 15 | 9 | 18.8 | 18.5 | 18.3 |
| 46 | 900207 | 125 | 900427 |  | 0.99573 | 999780 | 14 | 10 | 20.8 | 20.5 | 20.3 |
| 47 | 9.00332 | 25 | 9.00553 | 126 | 0.99447 | 9.99778 | 13 | 20 | 41.7 | 41.0 | 40.7 |
| 48 | 9.00456 | 124 | 9.00679 | 126 | - 99321 | 999777 | 12 | 3 C | 62.5 | 61.5 | 61.0 |
| 49 | 9.00581 |  | 9.00805 |  | 0.99195 | 999776 | 11 | 40 | 83.3 | 82.0 | 8 r .3 |
| 50 | 9.00704 |  | 900930 |  | 0.99070 | 9.99775 | 10 | 50 | 104.2 | 102. | Or. 7 |
| 51 | 900828 | 124 | 9 Or 055 | 124 | - 98945 | 9.99773 | 9 |  | 121 | 120 | 1 |
| 52 | 9.00951 | 123 | 9 OI 179 | 124 | 0.98821 | 9.99772 | 8 | 6 | 12.1 | 12. | 0.1 |
| 53 | 901074 | 123 | 9.01303 | 124 | 0.98697 | 9.99771 | 7 |  | 14.1 | 14. | 0.1 |
| 54 | 9.01195 | 122 | 9.01427 | 124 | $\bigcirc 98573$ | 999769 | 6 | 8 | 16.1 | 16.0 | 0.1 |
| 55 | 9.01318 |  | 9.01550 |  | 0.98450 | 9.99768 |  | 9 | 18.2 | 18. | 0.2 |
| 56 | 9.01440 | 122 | 9.01673 | 123 | 0.98327 | 9.99767 | 4 | 10 | 20.2 | 20. | 0.2 |
| 57 | 9.01561 | 121 | 9.01795 | 123 | - 98204 | 999765 | 3 | 20 | 40.3 | 40.0 | 0.3 |
| 58 | 9.01682 | 121 | 9.01918 | 122 | 098082 | 999764 |  | 30 | 60.5 | 60. | 0.5 |
| 59 | 901803 |  | 9.02040 | 122 | - 97960 | 9.99763 | 1 |  | 80.7 | 80.0 | 0.7 |
| 60 | 9.01923 |  | 9.02162 |  | - 97838 | 9.99761 | 0 |  |  |  |  |
|  | L. Cos. | d. | L. Cotg. | c. d | L. Tang | L. Sin. | , |  | Pro | - Pts |  |


| $\boldsymbol{\Gamma}$ | L. Sill. | d. | L.'T'ang.'c. d. L. Cotg. |  |  | L. Cos. |  | Prop. Pts. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.01923 |  | 9.02162 |  | 0.97838 |  | $60$ |  |  |  |  |
| 1 | 9.02043 | 120 | 902283 | 121 | - 97717 | $9.99760$ | $59$ |  |  |  |  |
| 2 | 902163 | 120 | 902404 | 121 | 0.97596 | 9.99759 | 58 | 6 | 12.1 | 1 | 11.9 |
| 3 | 9.02283 | 119 | 9.02525 | 120 | 0.97475 | 9.99757 | 57 | 8 | 14.1 | 14. | 13.9 |
| 4 | 9.02402 | 119 | 9.02645 | 120 | $\bigcirc 97355$ | 9.99756 | 56 | 8 | 16.1 | 16. |  |
| 5 | 9.02 |  | 9.02766 |  | 0.97234 | $99975 \overline{5}$ | 55 | 9 | 18.2 | 20. | 17.9 19.8 |
| 6 | 9.02639 | 118 | 9.02885 | 120 | 0.97115 | 9.99753 | 54 | 20 | 40.3 | 40. | 19.8 39.7 |
| 8 | 902757 | 118 | 9.03005 | 120 119 | 0.96995 | 9.99752 | 53 | 30 | 40.3 60.5 | 60. | 39.7 59.5 |
| 9 | -902992 | 118 | 9.03124 903242 | 118 | 096876 096758 | 9.99751 999749 | 52 51 |  | 80 | 80 | 79.3 |
| 10 | 9.03109 | 117 | 9.03361 | 119 | 0.96639 | 9.99748 | 50 |  |  | 100 | 99.2 |
| 11 | 9.03226 | 117 116 | 9.03479 | 118 | 0.96521 | 9.99747 | 49 |  | 18 | 117 | 126 |
| 12 | 9.03342 | 116 | 9.03597 | 118 | 0.96403 | 9.99745 | 48 |  | 11.8 | 11.7 | 11.6 |
| 13 | 903458 | 116 | 903714 | 117 | 0.96286 | 999744 | 47 |  | 13.8 | 13.7 | 13.5 |
| 14 | 903574 | 116 | 903832 | 118 | 0.96168 | 999742 | 46 | 8 | 15.7 | 15.6 | 15.5 |
| 15 | 9.03690 |  | 903948 |  | 0.96052 | 9.99741 | 45 | 9 | 17.7 | 17.6 | 17.4 |
| 16 | 903805 | 115 | 904065 | 117 | 0.95935 | 999740 | 44 |  | 19.7 | 19.5 | 19.3 38.7 |
| 17 | 9.03920 | 115 | $90+181$ | 116 | 0.95819 | 999738 | 43 | 20 | 39.3 59 | 39.0 58.5 | 38.7 58.0 |
| 18 | 9.04034 | II4 | $90+297$ | 116 | 0.95703 | 9.99737 | 42 | 30 40 | 79.7 | 58.5 78.0 | 58.0 77.3 |
| 19 | 9.04149 | 1:5 | $90+413$ | 116 | 095587 | 999736 | 41 | 40 | 78.7 | 78.0 | 77.3 |
| 20 | 9.04262 |  | 904528 |  | - 95472 | 999734 | 40 |  |  |  |  |
| 21 | 904376 | 114 | 90.4643 | 115 | - 95357 | 999733 | 39 |  | 115 | 114 | 113 |
| 22 | 9.04490 | 114 113 | 904758 | 115 | 0952.42 | 999731 | 38 | 6 | 11.5 | 11.4 | 11.3 |
| 23 | 9.04603 | 113 | 9.04873 | 115 | 0.95127 | 9.99730 | 37 | 7 | 13.4 | 133 | 132 |
| 24 | 904715 | 112 | 904987 | 114 | 095013 | 999728 | 36 |  | 15.3 | 15.2 | 15.1 |
| 25 | 9.04828 | 113 112 | 905101 |  | 094899 | 9.99727 | 35 | 9 | 17.3 | 17.1 | 17.0 |
| 26 | 9.04940 | 112 | 905214 | 113 | 0.94786 | 999726 | 34 | 10 | 19.2 | 190 | 18.8 |
| 27 | 9.05053 | 112 | 905328 | 114 | 0.94672 | 9.99724 | 33 | 20 | 38.3 | 38.0 | 37.7 |
| 28 | 9.05164 | III | 9.05441 | 113 | $0.9+559$ | 999723 | 32 | 30 | 57.5 | 57.0 | 56.5 |
| 29 | 905275 | III | 905553 | 112 | 0.94 447 | 999721 | 3 I | 40 | 76.7 | 76.0 | 75.3 |
| 30 | 9.05380 |  | 9.05666 |  | 094334 | 999720 | 30 |  |  | 95 | 94.2 |
| 31 | 9.05497 | 1110 | 9.05778 | 112 | 0.94222 | 999718 | 29 |  | 112 | III | 110 |
| 32 | 9.05607 | 110 | 905890 | 112 | -94110 | 999717 | 28 | 6 | 11.2 | 11.1 | 110 |
| 33 | 9.05717 | 150 | 906002 | 112 | 0.93998 | 9.99716 | 27 | 7 | 13.1 | 13.0 | 128 |
| 34 | 9.05827 | 110 | 9.06113 | 111 | $\bigcirc 93887$ | 999714 | 26 | 8 | 149 | 14.8 | 14.7 |
| 35 | 9.05937 |  | 90622.4 | 111 | -93776 |  | 25 |  | 16.8 | 16.7 | 16.5 |
| 36 | 9.06046 | 109 109 | 906335 | 1110 | - 93665 | 999711 | 24 | 10 | 18.7 | 18.5 | 18.3 |
| 37 | 9.06155 | 109 | 906445 | 110 | - $9355 \overline{5}$ | 999710 | 23 | 30 | 37.3 56.0 | 37.0 55.5 | 36.7 55.0 |
| 38 | 9.06264 | 109 108 | 9.06556 | 1110 | $\bigcirc 93444$ | 999708 | 22 | $3{ }^{30}$ | 56.0 74.7 | 55.5 | 55.0 73.3 |
| 39 | 9.06372 | 108 | 9.06666 | 109 | - 93334 | 999707 | 21 | 50 | 74.7 | 74.0 | 73.3 |
| 40 | 90648 I | 108 | 9.06773 | 109 | $09322 \overline{5}$ | 999705 | 20 |  | 93 |  |  |
| 41 | 906589 | 108 | 9.06885 | 109 | 0.93115 | 999704 | 19 |  | 109 | 108 | 107 |
| 42 | 9.06696 | 107 | $90699+$ | 109 | 093006 | 999702 | 18 | 6 | 10.9 | 10.8 | 10.7 |
| 43 | 9.0680 .4 | 108 | 9.07103 | 109 | - 92897 | 999701 | 17 | 7 | 12.7 | 12.6 | 12.5 |
| 44 | 9.06911 | 107 | 907211 |  | 0.92789 | 9.99699 | 16 | 8 | 14.5 | 14.4 | 14.3 |
| 45 | $9.07{ }^{\circ} \mathrm{O} 8$ | 106 | 9.07320 | 8 | 0.92680 | 999698 | 15 | 10 | 16.4 | 16.2 | 16.1 17.8 |
| 46 | 9.07124 | 106 | 9.07428 | 108 | 0.92572 | 9.99696 | 14 | 10 |  |  | 17.8 35.7 |
| 47 | 907231 | 107 | 9.07536 | 108 | 0.92464 | 9.99695 | 13 | 20 | 36.3 54.5 | 36.0 | 35.7 |
| 48 | 9.07337 | 106 | 9.07643 | 107 | 0.92357 | 999693 | 12 | 30 | 54.5 | 54.0 | 53.5 |
| 49 | 9.07442 | 106 | 907751 | 108 | 0.92249 | 9.99692 | II | 40 | 72.7 908 | 72.0 | 71.3 |
| 50 | 9.07548 | 106 | 9.07858 |  | - 92142 | 999690 | 10 |  |  |  |  |
| 51 | 9.07653 | 105 | 9.07964 |  | 0.92036 | 9.99689 | 9 |  | 106 | 105 | 104 |
| 52 | 907758 | 105 | 9.08071 | 107 | 0.91929 | 999687 | 8 | 6 | 10.6 | 10.5 | 10.4 |
| 53 | 9.07863 | 105 | 9.08177 | 106 | -91823 | 999686 | 7 | 7 | 12.4 | 12.3 | 12.1 |
| 54 | 9.07968 | 105 | 9.08283 | 106 | 091717 | 999684 | 6 | 8 | 14.1 | 14.0 | 13.9 |
|  | 9.08072 | 104 | 9.08389 | 106 | 0.91611 | 9.99683 |  | 9 | 15.9 | 15.8 | 15.6 |
| 56 | 9.08176 | 104 | 9.08495 | 106 | 0.91505 | 9.99681 | 4 | 10 | 17.7 | 17.5 | 17.3 |
| 57 | 9.08280 | 104 | 9.08600 | 105 | 0.91400 | 9.99680 | 3 | 20 | 35.3 | 35.0 | 34.7 |
| 58 | 9.08383 | 103 | 9.08705 | 105 | - 91295 | 9.99678 | 3 | 30 | 53.0 70.7 | 52.5 | 52.0 |
| 59 | 9.08486 | 103 | 9.08810 |  | 091190 | 999677 | 1 |  | 70.7 | 70 | 693 86.7 |
| 60 | 9.08589 |  | 9.08914 |  | 091086 | 9.99675 | 0 |  |  |  |  |
|  | L. Cos. | d. | I.. Cotm. | d. | L.Tang. | L. Sin. | \% |  | Pro | . P1 |  |


| ' | L. Sin. | d. |  |  | L. Cotg. | L. Cos. |  | Prop. Pts. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $908589$ |  | 9.08914 |  | $0.91086$ | $9.99675$ | 60 |  |  |  |  |
|  | $9.08692$ | 103 | $9.09 \text { OI9 }$ | 105 104 | $0.90981$ | $9.99674$ | $59$ |  |  |  |  |
| 2 | 9.08795 | 3 | 9.09123 | 104 | -90 877 | 999672 | 58 | 6 | 10.5 | 10.4 | 10.3 |
| 3 | 9.08897 | 102 102 | 9.09227 | 104 103 | 0.90773 | 9.99670 | 57 | 7 | 12.3 | 12.1 | 12.0 |
| 4 | 9.08999 | 102 | 9.09330 | 103 | 0.90670 | 9.99669 | 56 | 8 | 14.9 | 13.9 | 13.7 |
| 5 | 9.09101 |  | 9.09434 |  | 0.90566 | 9.99667 | 55 | 9 | 15.8 | 15.6 | 15.5 |
| 6 | 909202 | rox | 9.09537 | 103 | 0.90463 | 9.99666 | 54 | 10 | 17.5 | 17.3 | 17.2 |
| 7 | 9.09304 | 102 | 909640 | 103 | 0.90360 | 9.99664 | 53 | 20 | 35.0 | 347 | 34.3 |
| 8 | 9.09405 | 101 | 9.09742 | 102 | 0.90258 | 9.99663 | 52 | 30 | 525 | 52.0 | 51.5 68.7 |
| 9 | 9.09506 | 101 | 909845 | 103 | 090155 | 9.99661 | 51 | 40 |  |  | 68.7 85.8 |
| 10 | 9.09606 |  | 9.09947 | 102 | 0.90053 | 9.99659 | 50 |  |  |  |  |
| II | 9.09707 | 108 100 | 9.10049 | 102 | 0.8995 I | 999658 | 49 |  | 102 | 101 | 0 |
| 12 | 9.09807 | 100 | 9.10150 | 101 | c. 89850 | 9.99656 | 48 | 6 | 10.2 | 10.1 | 10.0 |
| 13 | 9.09907 | 100 | 9.10252 | 102 | 0.89748 | $9.9965 \overline{5}$ | 47 | 8 | 11.9 | 11.8 | 11.7 |
| 14 | 9.10 006 | 99 | 9.10 353 | 101 | 0.89647 | 999653 | 46 | 8 | 136 | $13 \overline{5}$ | 13.3 |
| 15 | 9.10106 |  | 9.10454 | 101 | 089546 | 9.99651 | 45 |  | 153 | 15.2 | 15.0 |
| r6 | 9.10205 | 99 | 9.10555 | 101 | 0.89445 | 999650 | 44 | 10 | 17.0 | 16.8 | 16.7 |
| 17 | 9.10304 | 99 98 | 9.10656 | 101 | 0.89344 | 9.99648 | 43 | 20 | 34.0 51.0 | 33.7 | 33.3 |
| 18 | 9.10402 | 98 | 910756 | 100 | 0.89244 | 999647 | 42 | 30 40 | 51.0 | $i 0.5$ 673 | 50.0 66.7 |
| 19 | 9.10501 | 99 98 | 910856 | 100 | - 89144 | 999645 | 4 I | 50 | 88.0 | 67.3 84.2 | 60.7 83.3 |
| 20 | 9.10599 | 98 | 9.10956 | 100 | 0.89044 | 999643 | 40 |  |  |  |  |
| 2 I | 9.10 697 | 98 | 9.11 056 | 100 99 | $0.889+4$ | 9.99642 | 39 |  |  | 98 | 97 |
| 22 | 9.10795 | 98 | 9.11155 | 99 99 | $0.888 .4 \overline{5}$ | 9.99640 | 38 | 6 | 99 | 98 | 9.7 |
| 23 | 9.10893 | 98 | 9.II 254 | 99 | 0.88746 | 999638 | 37 | 7 | 11.6 | 114 | 11.3 |
| 24 | 9.10990 | 97 | 9.11353 | 99 | 0.88647 | 999637 | 36 | 8 | 13.2 | 13.1 | 12.9 |
| 25 | 9.11087 | 7 | 9.11452 | 99 | 0.88548 | 9.99635 | 35 | 10 | 16.5 | 16.3 |  |
| 26 | 9.11184 | 97 | 9.11551 | 99 98 | 0.88449 | 999633 | 34 | 10 | 16.5 33.0 | 16.3 32.7 | 16.2 32.3 |
| 27 | 9.11281 | 97 96 | 9.11649 | 9888 | 0.88351 | 999632 | 33 | 30 | 33.0 49.5 | 32.7 490 | 32.3 48.5 |
| 28 | 9.11377 | 97 | 911747 | 988888 | 0.88253 0.88155 | 999630 | 32 | 40 | 49.5 66.0 | 49.3 | 48.5 64.7 |
| 29 | 9.11 474 | 97 96 | 9.11845 | 988 | 0.88155 | 999629 | 3 I | 50 | 82.5 | 65.3 81.7 | 64.7 80.8 |
| 30 | 9.11570 |  | 9.11943 |  | 0.88057 | 999627 | 30 |  |  |  |  |
| 31 | 911666 | 96 | 9.12040 | 97 | 0.87960 | 9.99625 | 29 |  | 96 | 95 | 94 |
| 32 | 9.11761 | 95 | 9.12138 | 98 | 0.87862 | 999624 | 28 | 6 | 96 | 9.5 | 9.4 |
| 33 | 9.11857 | 96 | 9.12235 | 97 | 0.87765 | 999622 | 27 | 7 | 1.2 | 11.1 | 11.0 |
| 34 | 9.11952 | 95 | 9.12332 | 97 | - 87668 | 999620 | 26 | 8 | 12.8 | 12.7 | 12.5 |
| 35 | 9.12047 | 95 | 912428 |  | 0.87572 | 999618 | 25 | 9 | 144 | 14.3 | 14.1 |
| 36 | 9.12142 | 95 | 9.12525 | 97 | 0.87475 | 9.99617 | 24 | 10 | 16.0 | 15.8 | 15.7 |
| 37 | 9.12236 | 94 | 9.12621 | 96 | 0.87379 | 999615 | 23 | 20 | 320 | 31.7 | 313 |
| 38 | 9.1233 I | 95 | 912717 | 96 | 0.87283 | 999613 | 22 | 30 | 48.0 | 47.5 | 47.0 |
| 39 | 9.12425 | 94 | 9.12813 | 96 | - 87187 | 999612 | 21 | 40 | 64.0 | 63.3 | 62.7 |
| 40 | 9.12519 | 94 | 9.12909 | 96 | 0.87091 | 999610 | 20 | 50 |  |  | 78.3 |
| 41 | 9.12612 | 93 | 9.13004 | 95 | 0.86996 | 999608 | 19 |  | 93 | 92 | 91 |
| 42 | 9.12706 | 94 | 9.13099 | 95 | 0.86 901 | 999607 | 18 | 6 | 9.3 | 9.2 | 9 I |
| 43 | 9.12799 | 93 | 9.13194 | 95 | 0.86806 | 999605 | 17 | 7 | 10.4 | Io 7 | 10.6 |
| 44 | 9.12892 | 93 | 9.13289 | 95 | 0.86711 | 999603 | 16 | 8 | 12.4 | 12.3 | 12.1 |
| 45 | 9.12985 | 93 | 9.13384 | 95 | 086616 | 999601 | 15 | 19 | 14.0 <br> 15. | 13.8 | 13.7 15.2 |
| 46 | 9.13078 | 93 | 913478 | 94 | 0.86522 | 999600 | 14 | 10 | $15 . r$ 31.0 | 15.3 30.7 | 15.2 30.3 |
| 47 | 9.13171 | 93 | 9.13573 | 95 | 0.86427 | 999598 | 13 | 30 | 31.0 46.5 | 30.7 46.0 | 30.3 45.5 |
| 48 | 9.13263 | 92 92 | 9.13667 | 94 | 0.86333 | 9.99596 | 12 | 30 40 | 46.5 62.0 | 46.0 | 45.5 607 |
| 49 | 9.13355 | 92 | 9.13761 | 94 | 0.862339 | 999595 | 11 | 40 | 72.5 | 61.3 76.7 | 60.7 75.8 |
| 50 | 9.13447 | 92 | 9.13854 | 94 | 0.86146 |  | 10 |  |  |  |  |
| 51 | 9.13539 | 92 | 9.13948 | 94 | 0.86052 | 999591 | 9 |  |  |  | ${ }^{1}$ |
| 52 | 9.13630 | $9{ }^{92}$ | 914041 | 93 | 0.85959 | 999589 | 8 | 6 |  | 0.2 | 0.1 |
| 53 | 9.13722 | 92 | 9.14134 | 93 | 0.85866 | 999588 | 7 | 7 | 10.5 | 0.2 | 0.1 |
| 54 | 9.13813 | 9 t | 9.14227 | 93 | 0.85773 | 999586 | 6 | 8 | 12.0 | 0.3 | 0.1 |
| 55 | 9.13904 | 90 | 9.14320 |  | 0.85680 | 9.99584 | 5 | 9 | 13.5 | 0.3 | 0.2 |
| 56 | 9.13994 | 90 | 9.14412 | 92 | 0.85588 | 9.99582 | 4 | 10 | 15.0 | 0.3 | 0.2 |
| 57 | 9.14085 | 98 90 | 9.14504 | 92 93 | 0.85496 | 99958 I | 3 | 20 | 30.0 |  | 0.3 |
| 58 | 9.14175 | 90 | 9.14597 |  | 0.85403 0.85312 | 9.99579 | 2 | 30 |  |  | 0.5 |
| 59 | 9.14266 | 91 90 | 9.14688 | 91 92 | 0.85312 | 9.99577. |  | 50 | 60.0 | 1.3 <br> 1.7 |  |
| 60 | 9.14356 |  | 9.14780 |  | 0.85220 | 9.99575 | 0 |  |  |  |  |
|  | L. Cos. | d. | L. Cotg. | . | L. Tang. | L. Sin. | , |  | Prop | PIE |  |




| ' | L. Sin. | d. | L.'I'ang. | d. | L. Cotg. | L. Cus. | d. |  | Prop. Pts. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.23967 9.24039 | 72 | 9.24632 9.24706 | 74 | 0.75368 0.75294 | $\begin{aligned} & 9.99335 \\ & 9.99333 \end{aligned}$ | 2 | 60 59 |  | 74 | 73 |
| 2 | 9.24110 | 71 | 9.24706 9.24779 | 73 | 0.75329 0.75221 | 9.99333 9.99331 | 2 | 59 | 6 | 7.4 | 7.3 |
| 3 | 9.24181 | 71 | $9.2+853$ | 74 | 0.75147 | 999328 | 3 | 57 | 7 | 8.6 | 8.5 |
| 4 | 9.24253 | 72 | $9.2+926$ | 73 | 0.75074 | 9.99326 |  | 56 | 8 | 9.9 | 9.7 |
| 5 | 9.24324 |  | 9.25000 | 73 | 0.75000 | 999324 |  | 55 | ro |  | 1.0 |
| 6 | $92+395$ | 71 | 9.25073 | 73 | 0.74927 | 9.99322 | 2 | 54 | 20 | 2.4 | 12.2 24.3 |
| 7 | 9.24466 | 71 | 9.25146 | 73 | 0.74 854 | 999319 | 3 | 53 | 20 | 2.4 | 24.3 |
| 8 | 9.24536 | 70 | 9.25219 | 73 | 0.74781 | 9.99317 | 2 | 52 | 40 | 37.0 | 36.5 |
| 9 | $92+607$ | 71 | 9.25292 | 73 | 0.74708 | 9.99315 | 2 | 51 | 40 | 49.3 | 48.7 |
| 10 | 9.24677 | 7 | 9.25365 | 73 | 0.74635 | 9.99313 |  | 50 |  |  |  |
| 11 | $9.2+748$ | $7{ }^{1}$ | 9.25437 | 73 | 0.74563 | 9.99310 | 3 | 49 |  | 72 | 71 |
| 12 | 9.24818 | 70 | 9.25510 | 73 | 0.74490 | 9.99308 | 2 | 48 | 6 | 7.2 | 7.1 |
| 13 | 9.24888 | 70 | 9.25582 | 72 | $0.7+418$ | 9.99306 | 2 | 47 | 8 | 8.4 | 8.3 |
| 14 | 9.24958 | 70 | 925655 | 73 | 0.7. 3 345 | 999304 | 2 | 46 | 8 | 9.6 | 9.5 |
| 15 | 9.25023 |  | 9.25727 | 72 | 0.74273 | 9.99301 | 3 | 45 | 19 |  | 10.7 |
| 16 | 9.25098 | 70 | 9.25799 | 72 | 0.74201 | 9.99299 | 2 | 44 |  |  | . 8 |
| 17 | 9.25168 | 70 | 9.25871 | 72 | $0.7+129$ | 9.99297 | 2 | 43 |  | 24.0 | 23.7 |
| 18 | 9.25237 | 69 | 925943 | 72 | $0.7+057$ | 9.99294 | 3 | 42 |  | 35.0 | $35 \cdot 5$ |
| 19 | 9.25307 | 70 | 926015 | 72 | -73985 | 9.99292 | 2 | 4 I | 40 | 48.0 | 473 |
| 20 | 9.25376 | 69 | 9.26086 |  | 073914 | 9.99290 |  | 40 |  |  | 59.2 |
| 21 | 9.25445 | 69 69 | 926158 | 72 | 0.73 8+2 | 999288 |  | 39 |  |  | 69 |
| 22 | 9.25514 | 69 69 | 9.26229 | 71 72 | 0.73771 | 999285 | 3 | 38 | 6 | 7.0 | 6.9 |
| 23 | 9.25583 | 69 69 | 9.26301 | 72 | 0.73699 | 999283 | 2 | 37 | 7 | 8.2 | 8.1 |
| 24 | 9.25652 | 69 69 | 9.26372 | $7{ }^{1}$ | 0.73628 | 9.99 281 | 2 | 36 | 8 | 9.3 | 9.2 |
| 25 | 9.25721 |  | 9.26443 | 71 | 0.73557 | 999278 | 3 | 35 | , | 10.5 | 10.4 |
| 26 | 9.25790 | 69 68 | 9.26514 | 71 | - 73486 | 9.99276 | 2 | 34 | 10 | 11.7 | 11.5 |
| 27 | 925858 | 68 69 | 9.26585 | 71 | $0.73+15$ | 9.99274 | 2 | 33 | 20 | 23.3 | 23.0 |
| 28 | 9.25927 | 69 68 | 9.26655 | 70 | 0.73345 | 9.99271 | 3 | 32 | 30 | 350 | 34.5 |
| 29 | 9.25995 | 68 68 | 9.26726 | 71 | $\bigcirc 73274$ | 9.99269 | 2 | 3 I | 40 | 467 | 46.0 |
| 30 | 9.26063 |  | 9.26797 | 70 | 0.73203 | 9.99267 |  | 30 |  | 58.3 | 57.5 |
| 31 | 9.26131 | 68 68 | 9.26867 | 70 | 0.73133 | 999264 | 3 | 29 |  | 68 | 67 |
| 32 | 9.26199 | 68 68 | 9.26937 | 70 | 0.73063 | 9.99262 | 2 | 28 | 6 | 6.8 | 6.7 |
| 33 | 926267 | 68 68 | 9.27008 | 71 | 0.72992 | 999260 | 2 | 27 | 7 | 7.9 | 7.8 |
| 34 | 926335 | 68 | $9.27 \bigcirc 078$ | 70 | 0.72922 | 999257 | 3 | 26 | 8 | 9.1 | 8.9 |
| 35 | 9.26403 |  | 9.27148 |  | - 72852 | $99925 \overline{5}$ |  | 25 | 10 | 102 | 10.1 |
| 36 | 9.26470 | 67 68 | 9.27218 | 70 | 0.72782 | 9.99252 | 3 | 24 |  | 11.3 | 11.2 |
| 37 | 926538 | 68 67 | 9.27288 |  | 0.72712 | 999250 | 2 | 23 |  | 22.7 | 22.3 |
| 38 | 9.26605 | 67 67 | 9.27357 | 69 | 0.72643 | 999248 | 2 | 22 | 30 | 34.0 | 335 |
| 39 | 9.26672 | 67 67 | $927+27$ | 70 69 | 0.72573 | 999245 | 3 2 | 21 | 40 | 45.3 | 44.7 |
| 40 | 9.26739 | 67 | 9.27496 |  | 0.7250 .4 | 999243 | 2 | 20 |  | 56.7 | 55.8 |
| 41 | 9.26806 | 67 | 927566 | 70 69 | 0.72434 | 999241 | 2 | 19 |  | 66 | 65 |
| 42 | 9.26873 | 67 67 | 927635 | 69 | 0.72365 | 999238 | 3 | 18 | 6 | 6.6 | 6.5 |
| 43 | 9.26970 | 67 67 | 9.27704 | 69 | - 72296 | 9.99236 | 2 | 17 | 7 | 77 | 7.6 |
| 44 | 927007 | 67 66 | 927773 | 69 69 | $\bigcirc 72227$ | 999233 | 3 | 16 | 8 | 8.8 | 8.7 |
|  | 927073 |  | 927842 | 69 | 0.72158 | 999231 | 2 | 15 | 9 | 9.9 | 9.8 |
| 46 | 9.27140 | 67 66 | 9.27911 | 69 69 | $072 \mathrm{C89}$ | 9.99229 | 2 | 14 |  | 11.0 | 10.8 |
| 47 | 9.27206 | 66 67 | 9.27980 | 69 69 | 0.72020 | 9.99226 | 3 | 13 | 20 | 22.0 | 21.7 |
| 48 | 9.27273 | 67 66 | 9.28049 | 69 68 | 0.71951 | 999224 | 2 | I | 30 | 33.0 | 32.5 |
| 49 | 927339 | 66 66 | 928117 | 68 69 | 071883 | 9.99221 | 3 | II |  | 44.0 | 43.3 |
| 50 | 9.27405 | 66 | 928186 | 68 | 0.71814 | 9.99219 | 2 | 10 |  |  | 54. |
| 51 | 9.27471 | 66 | 9.28254 | 68 | 0.71746 | 9.99217 | 2 | 9 |  | , | 2 |
| 52 | 9.27537 | 66 65 | 9.28323 | 69 68 | 0.71677 | 999214 | 3 | 8 | 6 | 0.3 | 0.2 |
| 53 | 9.27602 | 65 66 | 9.28391 | 68 68 | 0.71609 | 9.99212 | 2 | 7 | 7 | 0.4 | 0.2 |
| 54 | 9.27668 | 66 | 9.28459 | 68 | 0.71541 | 9.99209 | 3 | 6 | 8 | 0.4 | 0.3 |
| 55 | 9.27734 |  | 9.28527 | 68 | 0.71473 | 9.99207 |  | 5 |  | 0.5 | 0.3 |
| 56 | 9.27799 | 65 65 | 9.28595 | 67 | 0.71405 | 9.99204 | 3 | 4 |  | 0.5 | 0.3 |
| 57 | 9.2786 .4 | 65 66 | 9.28662 | 67 68 | - 71338 | 999202 | 2 | 3 | 20 | 1.0 | 0.7 |
| 58 | 9.27930 | 65 65 | $9.2873{ }^{\circ}$ | 68 68 | 0.71270 | 999200 | 2 | 2 | 40 |  | 1. ${ }^{\text {c }}$ |
| 59 | 9.27995 | 65 65 | 9.28798 | 68 67 | 0.71202 | 9.99197 | a | $\underline{1}$ | 40 | 2.0 | 1.3 1.7 |
| 60 | 9.28060 |  | 9.28865 |  | 0.71135 | 9.99195 |  | 0 |  |  |  |
|  | L. Cos. | d. | L. Cotg. | c. d. | L.Tang. | L. Sin. | d. | $\prime$ | $\mathbf{P r}$ | p. 1 | ts. |


| $\Gamma$ | L. Sill. | d. | L. 'Tung.'c. d.! |  | L. Cotg. | L. Cos. | d. |  | Prop. Ptm. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.28 00́o |  | $9.28865$ |  | 0.71135 0.71067 |  |  | $60$ |  |  |  |
| 1 | 9.28125 <br> 988 <br> 120 | 65 | $9.28933$ | 68 67 | 0.71067 0.71000 | $9.99192$ | 3 | $59$ |  |  |  |
| 2 | 928190 9.28254 | 65 | 9.29000 | 67 67 | 0.71000 | 9.99190 | 3 | 58 | 6 | 6.8 | 6.7 |
| 3 | 9.28254 | 64 | 9.29067 | 67 67 | 0.70933 | 9.99187 | 3 2 | 57 | 8 | 7.9 9.1 | 7.8 |
| 4 | 928319 | 65 65 | 9.29134 | 67 67 | 0.70866 | 9.99185 | 2 | 56 | 8 | 9.1 | 8.9 |
| 6 | $9.283^{3} 4$ | 64 | 9.29201 | 67 | 0.70799 | 9.99182 | 2 | 55 | 10 | 10.2 | 10.1 |
| 6 | 9.284 .48 | 64 | 929268 9.29335 | 67 | 0.70732 | 9.99180 | 3 | 54 | 20 | 22.7 | 22.3 |
| 7 | 9.28512 | 65 | 9.29335 | 67 67 | 0.70665 | 999177 | 3 | 53 | 30 | 34.0 | 33.5 |
| 8 | 9.28577 | 65 64 | 9.29402 9.29 468 | 67 66 | 0.70598 | 9.99175 | 2 | 52 | 40 | 45.3 | 33.5 44.7 |
| 9 | 9286 | 64 64 | 9.29468 | 66 67 | 0.70532 | 9.99172 | 3 | 51 | 50 | 45.3 56.7 | 44.7 55.8 |
| 10 | 9.28705 | 64 | 9.29535 | 66 | 0.70465 | 9.99170 |  | 50 |  |  |  |
| II | 9.28769 | 64 64 | 9.29601 | 66 67 | 0.70399 | 9.99167 | 3 | 49 | 6 | 6.6 | 65 6.5 |
| 12 | 9.28833 | 63 | 9.29668 | 67 | 0.70332 | 9.99165 | 3 | 48 | 6 | 6.6 | 6.5 |
| 13 | 9.28896 | 64 | 9.29734 9.29800 | 66 | 0.70266 | 9.99162 | 3 2 | 47 | 7 | 7.7 8.8 | 7.6 8.7 |
| 14 | 9.28960 | 64 | 9.29800 | 66 | 0.70200 | 9.99160 | 3 | 46 | 8 | 8.8 99 | 8.7 9.8 |
| 15 | 9.29024 | 63 | 9.29866 | 66 | 0.70134 0.70068 | 999157 | 2 | 45 | 10 | 11.0 | 10.8 |
| 16 | 9.29087 | 63 | 9.29932 9.29998 | 66 | 0.70068 | 999155 | 3 | 44 | 20 | 22.0 | 21.7 |
| 17 18 | 9.29150 9.29214 | 63 64 | 9.29998 9.30064 | 66 | 0.70002 0.69936 | 9.99152 9.99150 | 2 | 43 42 | 30 | 33.0 | 32.5 |
| 19 | 9.29277 | 63 | 9.30130 | 66 | 0.69870 | 9.99147 | 3 | 4 I | 40 | 44.0 | 43.3 |
| 20 | 9.29340 | 6 | 93,195 | 65 | 0.69805 | $99914 \overline{3}$ | 2 | 40 | 50 | 55.0 | 54.2 |
| 21 | 929403 | 63 63 | 9.30261 | 66 | 0.69739 | 999142 | 3 | 39 |  | 64 | 63 |
| 22 | 9.29466 | 63 63 | 930326 | 65 65 | 0.69 674 | 999140 | 2 | 38 | 6 | 6.4 | 6.3 |
| 23 | 9.29529 | 63 | 9.30391 | 65 | 0.69609 | 9.99137 | 3 | 37 | 7 | 7.5 | 7.4 |
| 24 | 9.29591 | 62 | 9.30457 | 66 | 0.69543 | 999135 | 2 | 36 | 8 | 8.5 | 8.4 |
| 25 | 92965 | $6_{2}$ | 9.30522 | 65 | 0.69478 | 999132 | 3 | 35 | 9 | . 6 | 95 |
| 26 | 929716 | 62 63 | 9.30587 | 65 65 | 0.69413 | 999130 | 2 | 34 |  | 10.7 | 10.5 |
| 27 | 927779 | 63 62 | 930652 | 65 65 | 0.69348 | 9.99127 | 3 | 33 | 20 | 21.3 | 21.0 |
| 28 | 929841 | 62 62 | 930717 | 65 | 0.69283 | 9.99124 | 3 | 32 | 30 | 32.0 | 31.5 |
| 29 | 929903 | 62 63 | 930782 | 65 64 | 0.69218 | 9.99122 | 2 | 31 | 40 | 427 | 420 |
| 30 | 9.29966 | 6 62 | 9.30846 | 64 | 0.69154 | 9.99119 | 3 | 30 |  |  |  |
| 31 | 9.30028 | 62 | 930911 | 65 | 0.69089 | 999117 | 2 | 29 |  | 62 | 61 |
| 32 | 9.30090 | 62 | 930975 | 64 | 0.69025 | 999114 | 3 | 28 | 6 | 6.2 | 6.1 |
| 33 | 9.30151 | 61 62 | 931040 | 65 | 0.68960 | 9.99112 | 2 | 27 | 7 | 7.2 | 71 |
| 34 | 9.30213 | 62 62 | 931104 | 64 | - 68896 | 9.99109 | 3 | 26 | 8 | 83 | 81 |
| 35 | 9.30275 |  | 9.31168 | 64 65 | 0.68832 | 999106 | 3 | 25 | 9 | 9.3 | 9.2 |
| 36 | 9.30336 | 61 62 | 9.31233 | 65 64 | 0.68767 | 9.99104 | 2 | 24 | 10 | 10.3 | 102 |
| 37 | 930398 | 62 61 | 9.31297 | 64 | -68703 | 999101 | 3 | 23 | 20 | 20.7 | 20.3 |
| 38 | 9.30459 | 61 62 | 9.31361 | 64 | 0.68639 | 9.99099 | 2 | 22 | 30 | 31.0 | 305 |
| 39 | $9.30 \div 21$ | 62 | 9.31425 | 64 | 0.6857 .5 | 9.99096 | 3 | 21 | 40 | 41.3 | 40.7 |
| 40 | 9.30582 | 6 t | 9.31489 | 64 | 0.68511 | 999093 | 3 | 20 |  |  |  |
| 41 | 930613 | 68 | 931552 | 63 | 068448 | 999091 | 2 | 19 |  | 60 | 59 |
| 42 | 9.30704 | 61 61 | 9.31616 | 64 | - 68384 | 999088 | 3 | 18 | 6 | 60 | 5.9 |
| 43 | 9.30765 | 61 61 | 9.31679 | 63 64 | 0.68321 | 999086 | 2 | 17 | 7 | 7.0 | 6.9 |
| 44 | 9.30825 | 61 | 931743 | 64 63 | -68257 | 999083 | 3 | 16 | 8 | 8.0 | 7.9 |
| 45 | 9.30887 | 60 | 9.31806 | 64 | 0.68194 | 999080 | 2 | 15 | 9 | 9.0 | 89 98 |
| 46 | 930947 | 67 68 | 9.31870 | 64 63 | 0.68130 | 9.99078 | 2 | 14 |  |  | 9.8 |
| 47 | 9.31008 | 68 60 | 9.31933 | 63 63 | 0.68067 | 9 96 ${ }^{\text {¢ }}$ | 3 | 13 | 20 | 20.0 | 197 |
| 48 | 9.31068 | 60 68 | 9.31996 | 63 63 | 0.68 c04 | $99^{\prime} 072$ | 3 | 12 | 30 | 30.0 | 295 |
| 49 | 9.31 129 | 6 r 60 | 932059 | 63 63 | 0.67941 | 9.09070 | 2 | II | 40 | 40.0 | 393 |
| 50 | 9.31189 | 6 x | 932122 | 6 | 0.67878 | 999067 | 3 | 10 |  | 50. | 49.2 |
| 5 I | 9.3125 ) | 6 | 9.32185 | 63 | 067315 | 9.99064 | 3 | 9 |  |  | 2 |
| 52 | 931310 | 60 | 9.32248 | 63 | 0.67752 | 9.99062 | 2 | 8 |  | 0.3 | 0.2 |
| 53 | 9.31370 | 60 60 | 9.32311 | 63 62 | 067689 | 999059 | 3 | 7 |  | 0.4 | 0.2 |
| 54 | 9.31430 | 60 | 9.32373 | 62 | 0.67627 | 9.09056 | 3 | 6 |  | 0.4 | 0.3 |
| 55 | $931+90$ |  | 932436 | 63 62 | 0.67564 | 999054 | 2 | 5 |  | 0.5 | 0.3 |
| 56 | 9.31 549 | 59 60 | 9.32498 | 62 63 | 0.67502 | 999051 | 3 | 4 | 10 | 0.5 | 0.3 |
| 57 | 9.31 609 | 60 60 | 9.32561 | 63 62 | 0.67439 | 9.99048 | 3 | 3 | 20 | 1.0 | 0.7 |
| 58 | 9.31 669 | 60 | 9.32623 | 62 | 0.67377 | 9.99046 | 2 | 2 | 30 | 1.5 | 1.0 |
| 59 | 9.31728 | 59 | 9.32685 | 62 | 0.67315 | 909043 | 3 | 1 |  | 2.0 | 1.3 |
| 60 | 9.31798 |  | 932747 |  | 0.67253 | 999040 | 3 | 0 |  |  |  |
|  | L. Cos. | d. | L. Cote. | . d | L. Tang. | L. Sin. | d. | $\digamma$ |  | P. 1 | Pts. |



| $\digamma$ | L. Sin. | $d$. | L. Tang. | c. d. | L. Cotg. | L. Cos. | d. |  | Prop. Pts. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.35209 |  | 9.36336 |  | 0.63664 | 9.98872 |  | 60 |  |  |  |
| 1 | 9.35263 | 54 | 9.36394 | 58 | 0.63606 | 998869 |  | 59 |  |  |  |
| 2 | 9.35318 | 55 | 9.36452 | 58 | 0.63548 | 9.98867 | 2 | 58 | 6 | 5.8 | 5.7 |
| 3 | 9.35373 | 55 | 936509 | 57 | 0.63491 | 9.98864 | 3 | 57 | 7 | 6.8 | 6.7 |
| 4 | $935+27$ | 54 | 9.36566 | 57 | 0.63434 | 998861 | 3 | 56 | 8 | 7.7 | 7.6 |
| 5 | $9.35+8 \mathrm{I}$ | 55 | 9.36624 | 58 | 063376 | 9.98858 | 3 | 55 | 9 | 8.7 | 8.6 |
| 6 | 9.35536 | 55 | 9.36681 | 57 | 0.63319 | $99885 \overline{5}$ | 3 | 54 | 10 | 9.7 | 9.5 |
| 7 | 9.35590 | 54 | 9.36738 | 57 | 0.63262 | 9.98852 | 3 | 53 |  | 19.3 | 19.0 |
| 8 | $9.356+4$ | 54 54 | 9.36795 | 57 | 0.63205 | 9.98849 | 3 | 52 |  | 29.0 | 28.5 |
| 9 | 9.35698 | 54 | 9.36852 | 57 | 0.63148 | 998846 | 3 3 | 51 |  | 38.7 | 38.0 47.5 |
| 10 | 9.35752 | 54 | 936909 | 57 | 0.63091 | 9.98843 | 3 | 50 |  |  |  |
| 11 | 9.35806 | 54 54 | 9.36966 | 57 | 0.63034 | 9.98840 | 3 | 49 |  | 56 | 55 |
| 12 | 9.35860 | 54 | 9.37023 | 57 | 0.62977 | 9.98837 | 3 | 48 | 6 | 5.6 | $5 \cdot 5$ |
| 13 | 935914 | 54 54 | 9.37080 | 57 | 0.62920 | 998834 | 3 | 47 | 7 | 6.5 | 6.4 |
| 14 | 9.35968 | 54 54 | 9.37137 | 57 | 0.62863 | 9.98831 | 3 3 | 46 | 8 | 7.5 | $7 \cdot 3$ |
| 15 | 9.36022 | 54 | 9.37193 |  | 0.62807 | 998828 | 3 | 45 | 9 | 8.4 | 8.3 |
| 16 | 936075 | 54 | 937250 | 57 | 0.62750 | 9.98825 | 3 | 44 |  | 9.3 | 9.2 |
| 17 | 9.36129 | 54 | 937306 | 56 | 0.62694 | 998822 | 3 | 43 |  | 18.7 | 18.3 |
| 18 | 9.36182 | 53 | $9.373^{6} 3$ | 57 | 0.62637 | 998819 | 3 | 42 |  | 28.0 | 27.5 |
| 19 | 9.36236 | 54 | 9.37419 | 56 | $0.625^{81}$ | 998816 | 3 | 41 |  | 37.3 | 36.7 |
| 20 | 9.36289 | 53 | 9.37476 | 57 | 0.62524 | 9.98813 | 3 | 40 |  | 46 | 45.8 |
| 21 | $9.363+2$ | 53 | 9.37532 | 56 | 062468 | 9988 ro | 3 | 39 |  | - 54 |  |
| 22 | 936395 | 53 | 937588 | 56 | 0.62412 | 998807 | 3 | 38 |  |  |  |
| 23 | 9.36449 | 54 53 | 9.3764 | 56 | 0.62356 | 9.98804 | 3 3 3 | 37 |  | 6 |  |
| 24 | -936502 | 53 53 | 937700 | 56 | 0.62300 | 998801 | 3 3 | 36 |  |  |  |
| 25 | $9.3655 \overline{5}$ |  | $9 \cdot 37756$ |  | 0.62244 | 9.98798 | 3 | 35 |  |  |  |
| 26 | 936608 | 53 52 | 9.37812 | 56 56 | 0.62188 | 9.98795 | 3 | 34 |  | 9. |  |
| 27 | 9.36660 | 52 53 | 9.37868 | 56 | 0.62132 | 9.98792 | 3 | 33 |  | 18. |  |
| 28 | 9.36713 | 53 | 9.3792 .4 | 56 | 0.62076 | 998789 | 3 | 32 |  | 27. |  |
| 29 | 9.36766 | 53 53 | 937980 | 56 | 0.62020 | 9.98786 | 3 | 31 |  | 36. |  |
| 30 | 9.36819 | 53 | 9.38035 | 55 | 0.61965 | 9.98783 | 3 | 30 |  | 4 |  |
| 31 | 9.36871 | 52 53 | 9.38091 | 56 | 0.61909 | 998780 | 3 | 29 |  | 53 | 52 |
| 32 | 9.36924 | 53 | $9.38{ }^{1} 47$ | 56 | -61853 | 998777 | 3 | 28 | 6 | 53 | 5.2 |
| 33 | 9.36976 | 52 52 | 9.38202 | 55 | 0.61798 | 9.98774 | 3 | 27 |  | 6.2 | 6.1 |
| 34 | 9.37028 | 52 | 938257 | 55 | -61743 | 998771 | 3 | 26 | 8 | 7.1 | 6.9 |
|  | 9.37081 | 53 | $93^{8} 313$ | 56 | 0.61687 | 998768 | 3 | 25 | 9 | 80 | 7.8 |
| 36 | 937133 | 52 | 9.38368 | 55 | 0.61632 | 998765 | 3 | 24 |  | 8.8 | 8.7 |
| 37 | 9.37185 | 52 52 | 9.38423 | 55 | 0.61577 | 9.98762 | 3 | 23 |  | 7.7 | 17.3 |
| 38 | 9.37237 | 52 | 9.38479 | 56 | 0.61521 | 9.98759 | 3 | 22 |  | 36.5 | 26.0 |
| 39 | 9.37289 | 52 | $93^{8} 534$ | 55 | 0.61466 | 9.98756 | 3 | 21 | 40 | 35.3 | 34.7 |
| 40 | 9.37 3+1 | 52 | $9.385^{89}$ | 55 | 0.61411 | 9.98753 |  | 20 |  | 4.2 | $43 \cdot 3$ |
| 41 | 9.37393 | 52 | $9.3864+$ | 55 | 0.61 356 | 9.98750 | 3 | 19 |  | 51 | 4 |
| 42 | 937445 | 52 | 9.38699 | 55 | 0.61301 | 9.98746 | 4 | 18 | 6 | 5.1 | 0.4 |
| 43 | 9.37497 | 52 | $93^{8} 754$ | 54 | - 6ı 246 | 9.98743 | 3 | 17 | 7 | 6.0 | 0.5 |
| 44 | $9.37 \quad 549$ | 52 | 9.38808 | 54 | 0.61192 | 9.98740 | 3 | 16 | 8 | 68 | 0.5 |
| 45 | 9.37600 | 5 | 9.38863 | 55 | 0.61137 | 998737 | 3 | 15 | 10 | 77 | 0.6 |
| 40 | 9.37652 | 52 | 9.38918 | 55 | - 61 082 | 998734 | 3 | 14 |  | 8.5 | 0.7 |
| 47 | 9.37703 | $5 \times$ | 9.38972 | 54 | 0.61028 | 998731 | 3 | 13 | 20 | 17.0 | 1.3 |
| 48 | 937755 | 52 58 | 9.39027 | 55 | 0.60973 | 998728 | 3 | 12 | 30 | 25.5 | 2.0 |
| 49 | 9.37806 | 5 I | 9.39082 | 55 | 0.60918 | 9.98725 | 3 | 11 | 40 | 34.0 | 2.7 |
| 50 | 937858 | 52 | 9.39136 | 54 | 0.60864 | 998722 | 3 | 10 |  | 42.5 | $3 \cdot 3$ |
| 51 | 9.37909 | 51 | 939190 | 54 | 0.60810 | 9.98719 | 3 | 9 |  | 3 | 2 |
| 52 | 9.37960 | 51 | $93924 \overline{5}$ | 55 | 0.60755 | 9.98715 | 4 | 8 | 6 | 0.3 | 0.2 |
| 53 | 9.38 O11 | 51 51 | 9.39299 | 54 | 0.60701 | 9.98712 | 3 | 7 | 7 | 0.4 | 0.2 |
| 54 | $9.38 \quad 66$ | 51 | 9.39353 | 54 | 0.60647 | 9.98709 | 3 | 6 | 8 | 0.4 | 0.3 |
| 55 | 938113 | 51 | 9.39407 | 54 | 0.60593 | 998706 | 3 | 5 | 9 | 0.5 | 0.3 |
| 56 | 9.3816 .4 | 51 | 9.39461 | 54 | 0.60539 | 9.98703 | 3 | 4 | 10 | 0.5 | 0.3 |
| 57 | 9.38215 | 51 | 9.39515 | 54 | 0.60485 | 9.98700 | 3 | 3 | 20 |  | 0.7 |
| 58 | 9.38266 | 51 51 | 939569 | 54 | 0.6043 I | $9.9 \times 697$ | 3 | 2 | 30 | 1.5 | 1. 1.3 |
| 59 | 9.38317 | 51 | 9.39623 | 54 | 0.60377 | 998694 | 3 | 1 | 40 | 2.0 | 1.3 |
| 60 | 9.38368 |  | 9.39677 |  | 0.60323 | 9.98690 | 4 | 0 |  |  | 1.7 |
|  | L. Cos. | d. | L. Cotg. | c. d. | L. Tang. | L. Sin. | d. | $厂$ | Pr | p. 1 | ts. |



| 1 | L. Sin. | d. | L. ${ }^{\text {Trang. }}$ | c. d. | L. Cotge | L. Cos. | d. |  | Prop. Pts. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.41300 |  | 9.42805 |  | 0.57195 | 9.98494 |  | 60 |  |  |
| 1 | 9.41347 | 47 | 9.42856 | 5 5 | 0.57144 | 9.98491 | 3 | 59 |  |  |
| 2 | 9.41394 | 47 47 | 9.42906 | 50 | 0.57094 | 9.98488 | 3 | 58 | 51 |  |
| 4 | 9.41441 | 47 47 | 942957 | 51 | 0.57043 | 9.98484 | 3 | 57 | 6 5.1 | 5.0 |
| 4 | 9.41 488 | 47 | 9.43007 | 50 | 0.56993 |  | 3 |  | 76.0 | 5.8 |
| 5 | $94^{11535}$ | 47 | 9.43057 |  | 0.56943 | 9.98477 | 3 | 55 | 86.8 | 6.7 |
| 6 | 9.41582 | 47 46 | 9.43108 <br> .43 <br> 158 | 51 50 | 0.56892 | 9.98474 | 3 | 54 | 977 | 7.5 |
| 7 | 9.41 628 | 46 | 9.43158 | 50 | 0.56842 | 9.98471 | 3 | 53 | 108.5 | 8.3 |
| 8 | 9.41675 | 47 47 | 9.43208 | 50 | 0.56792 | 998467 | 4 | 52 | 2017.0 | 16.7 |
| 9 | 9+1722 | 47 46 | $\underline{9}+3258$ | 50 | 0.56742 | $9.98{ }^{96}+$ | 3 4 | 51 | 3025.5 | 25.0 |
| 10 | 941703 | 46 | 9.43308 | 50 | 0.56692 | 998460 | 4 | 50 | 4034.0 | 33.3 |
| 11 | 9.41815 | 47 | 943358 | 50 | 0.56642 | 998457 | 3 | 49 | $50 \mid 42.5$ | 41.7 |
| 12 | 9.41861 | 47 | $9.43+08$ | 50 | 0.56592 | 9.98453 | 4 | 48 |  |  |
| 13 | 9.41903 | 47 | 9.43458 | 50 | 0.56542 | 998450 | 3 | 47 |  |  |
| 14 | 9:41954 | 47 | 943508 | 50 | 0.56492 | 9.98447 | 3 | 46 | 49 | 8 |
| 15 | 9.42001 | 46 | 943558 |  | - 56442 | 9.98443 |  | 45 | 6.49 | 4.8 |
| 16 | 9.42047 | 46 | $9+3607$ | 49 | 0.56393 | 9.98440 | 4 | 44 | 7 5.7 | 5.6 |
| 17 | 9.42093 | 46 | 9.43657 | 50 | - 56343 | 9.98436 | 4 | 43 | 86.5 | 6.4 |
| 18 | 942 I 10 | 47 | $9 .+3707$ | 50 | 0.56293 | 998433 | 3 4 | 42 | $9 \quad 74$ | 7.2 |
| 19 | 9.42186 | 46 | 9.43756 | 49 | 0.56244 | 998429 | 4 | 4 I | I0 8.2 | 8.0 |
| 230 | 9.42232 | 46 | 9.43806 |  | 0.56194 | 998426 | 4 | 40 | 2016.3 | 16.0 |
| 2 I | 942278 | 46 | 9.43855 | 49 50 | 0.56145 | 998422 | 4 | 39 | 30.24 .5 | 24.0 |
| 22 | 9.42324 | 46 | 943905 | 50 | 0.56095 | 998419 | 3 | 38 | 40 32.7 <br> 50 40.8 | 32.0 |
| 23 | 9.42370 | 46 | 9.43954 | 49 50 | 0.56046 | 998415 | 3 | 37 | $50 \mid 40.8$ | 40.0 |
| 24 | $9.42+16$ | 46 | 9.44004 | 50 | 0.55996 | 998412 | 3 | 36 |  |  |
| 25 | $9.42{ }^{461}$ | 46 | 9.44053 |  | 0.55947 | 9.98409 |  | 35 |  |  |
| 26 | 9.42507 | 46 | $9+4$ IO2 | 49 49 | - 55898 | 998405 | 4 | 34 | 47 | 46 |
| 27 | 9.42553 | 46 | 9.44151 | 49 50 | 0.55849 | 998402 | 3 | 33 | 6 47 | 4.6 |
| 28 | 9.42599 | 46 | 944201 | 50 | 0.55799 | 9.98398 | 4 | 32 | $7 \quad 5 \cdot \overline{5}$ | 5.4 |
| 29 | 9.42644 | 45 | $9.44<5$ 了 | 49 | 0.55750 | 9.98395 | 3 | 31 | $8 \quad 6.3$ | 6.1 |
| 30 | 9.42690 |  | 9.44299 |  | 0.55701 | 99839 I |  | 30 | 978 | 6.9 |
| 31 | 9.42735 | 45 | 9.44348 | 49 | 0.55652 | 9.98388 | 3 | 29 | 1078 | 7.7 |
| 32 | 9.4278 I | 45 | 9.44397 | 49 | 0.55603 | 9.98384 | 4 | 28 | 2015 | 15.3 |
| 33 | 9.42826 | 45 | 9.44446 | 49 | 0.55554 | 998381 | 3 | 27 | 3023.5 | 23.0 |
| 34 | 9.42872 | 46 | 9.44495 | 49 | 055505 | 9.98377 | 4 | 26 | 40 | 30.7 |
| 35 | 9.42917 |  | 9.44544 | 48 | 0.55456 | 998373 |  | 25 | 39.2 | 38.3 |
| 36 | 942962 | 46 | 9.44592 | 49 | 0.55408 | 998370 | 3 | 24 |  |  |
| 37 | 943008 | 45 | 9.44541 | 49 | 0.55359 | 998366 | 4 | 23 |  |  |
| 38 | 9.43053 | 45 | 9.44690 | 49 | 0.55310 | 9.98363 | 3 | 22 | 45 | 44 |
| 39 | 943098 | 45 | 9.44738 | 48 | 0.55262 | 998359 |  | 21 | $6 \quad 4.5$ | 4.4 |
| 40 | 9.43143 |  | 9.44787 |  | 0.55213 | 9.98356 | 3 | 20 | $7 \quad 5 \cdot 3$ | 5.1 |
| 41 | 9.43188 | 45 | 9.44836 |  | 0.55164 | 998352 | 4 | 19 | 8 8.0 | 5.9 |
| 42 | 9.43233 | 45 | 9.44884 | 48 | 0.55116 | 9.98349 | 3 | 18 | 9 6.8 | 6.6 |
| 43 | 943278 | 45 | 9.44933 | 48 | 0.55067 | 9.98345 | 4 | 17 | 1077 | 7.3 |
| 44 | 9.43323 | 45 44 | 9.44981 | 48 | 0.55019 | 9.98342 | 3 4 | 16 | 20.150 | 14.7 |
| 45 | 9.43367 | 45 | 9.45029 |  | 0.54971 | 9.98338 | 4 | 15 | 30 22.5 <br> 40 30.0 | 22.0 |
| 46 | 9.43412 | 45 | 9.45078 | 48 | 0.54922 | 998334 | 4 | 14 | 40 30.0 <br> 50 37.5 | 29.3 36.7 |
| 47 | 9.43457 | 45 | 9.45126 | 48 | 0.54874 | 9.98 33I | 3 | 13 |  | 36.7 |
| 48 | 943502 | 45 | 9.45174 | 48 | 0.54826 | 9.98327 | 4 | 12 |  |  |
| 49 | 943545 | 44 | 9.45222 | 48 | 0.54778 | 998324 | 3 | 11 |  |  |
| 50 | 943591 | 45 | 9.45271 |  | 0.54729 | 9.98320 | 4 | 10 |  | 3 |
| 51 | 9.43635 | 44 | 9.45319 | 48 | 0.54681 | 9.98317 | 3 | 9 | 60.4 | 0.3 |
| 52 | 943680 | 45 | 945367 | 48 | 0.54633 | 9.98313 | 4 | 8 | 7 0.5 <br> 8 0.5 | 0.4 |
| 53 | 9.43724 | 44 | $9+5415$ | 48 | 0.54585 | 9.98309 | 4 | 7 | 80.5 | 0.4 |
| 54 | 9.43769 | 45 | 9.45463 | 48 | 0.54537 | 9.98306 | 3 | 8 | 90.6 | 0.5 |
| 55 | 9.43813 | 44 | 9.4551 I | 48 |  |  | 4 |  | 10 0.7 <br> 20 1.3 | 0.5 |
| 56 | 9.43857 | 44 | 9.45559 | 48 | 0.54441 | 9988299 | 3 | 4 | 20 1.3 <br> 30 2.0 | 1.0 1.5 |
| 57 | 9.43 901 | 44 | 945606 | 47 | 0.54394 | 9.98295 | 4 | 3 | 30 2.0 <br> 40 27 | 1.5 |
| 58 | 9.43946 | 45 | 9.45654 | 48 | 0.54346 | 9.98291 | 4 | 2 |  | 2.5 |
| 59 | 9.43990 | 44 | 9.45702 | 48 | 0.54298 | 9.98288 | 3 | I |  |  |
| 60 | 9.44034 |  | 9.457 .30 |  | 0.54250 | 9.98284 |  | 0 |  |  |
|  | L. Cos. | d. | L. Cotg. | c. d. | L. Tang. | L. Sin. | d. | , | Prop. | Pts. |



| $\ldots$ | L. Sin. | d. | L.Tang. | c. d. | L. Cotg- | L. Cos. | d. |  | Prop. Pts. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.46594 |  | 9.48534 |  | 0.51466 | 9.98060 |  | 60 |  |  |  |
| 1 | 9.46635 | 4 x | 9.48579 | 45 | 0.51421 | 9.98056 | 4 | 59 |  |  |  |
| 2 | 9.46676 | 4 x | 9.48624 | 45 | 0.51376 | 9.98052 | 4 | 58 |  |  | 44 |
| 3 | 9.46717 | 4x | 948669 | 45 | 0.51331 | 9.98048 | 4 | 57 | 6 | 4.5 | 4.4 |
| 4 | 9.46758 | 41 | 9.48714 | 45 |  | 9.98044 | 4 | 56 | 7 | 5.3 | 5.1 |
| 5 | 9.46800 | 42 | 9.48759 | 45 | 0.51241 | 9.98040 | 4 | 55 | 8 | 6.0 | 5.9 |
| 6 | 9.4684 I | 41 | 9.4888 | 45 | 0.51246 | 9.98036 | 4 | 54 | 9 | 6.8 | 6.6 |
| 7 | 9.46882 | 4 I | 948849 | 45 | 0.51151 | 9.98032 | 4 | 53 | 10 | 7.57 | 7.3 |
| 8 | 9.46923 | $4 \mathrm{4r}$ | 9.48894 | 45 | 0.51106 | 998029 | 3 | 52 | 20 | 15.01 | 14.7 |
| 9 | 9.46964 | 41 | 9.48939 | 45 | 0.51061 | 998025 | 4 | 51 | 30 | 22.522 | 22.0 |
| 10 | 9.47005 | 41 | 9.48984 | 45 | 0.51016 | 998021 | 4 | 50 | 40 | 30.0 | 29.3 |
| II | 947045 | 40 | 949029 | 45 | 0.50971 | 998017 | 4 | 49 |  | 37.53 |  |
| 12 | 9.47086 | 4 x | 9.49073 | 44 | 0.50927 | 998013 | 4 | 48 |  |  |  |
| 13 | 9.47127 | 4 x | 949118 | 45 | 0.50882 | 9.98009 | 4 | 47 |  |  |  |
| 14 | 9.47168 | 4 4 | 9.49163 | 45 | 0.50837 | 998005 | 4 | 46 |  | 43 |  |
| 15 | 9.47209 | 40 | 949207 | 45 | 0.50793 | 998001 | 4 | 45 |  | 64.3 |  |
| 16 | 9.472 .49 | 40 | 9.49252 | 45 | - 50748 | 997997 | 4 | 44 |  | 5.0 |  |
| 17 | 9.47290 | 41 | 949296 | 44 | 0.50704 | 997993 | 4 | 43 |  | 8.7 |  |
| 18 | 9.47330 | 40 | 949341 | 45 | 0.50659 | 997989 | 4 | 42 |  | 9.5 |  |
| 19 | 9.47371 | 4 x | 9.49385 | 44 | ก.50 615 | 997986 | 3 | 41 |  | 7.2 |  |
| [10 | 947411 | 40 | 9.49430 | 45 | 050570 | 997982 | 4 | 40 |  | 14.3 |  |
| 21 | 947452 | 41 | 9.49 474 | 44 | 0.50526 | 997978 | 4 | 39 |  | 21.5 |  |
| 22 | 9.47492 | 40 | 949519 | 45 | - 5048 I | 997974 | 4 | 38 |  | 28.7 |  |
| 23 | 9.47533 | 40 | 9.49563 | 44 | 0.50437 | 9.97970 | 4 | 37 |  | 35.8 |  |
| $2+$ | 9.47573 | 40 | 9.49607 | 44 | $\bigcirc 50393$ | 997.966 | 4 | 36 |  |  |  |
| 25 | $9.47{ }^{613}$ | 4 4 | 949652 | 45 | - 50348 | 997962 | 4 | 35 |  |  |  |
| 26 | 9.47654 | 41 40 | 949696 | 44 | 0.50304 | 997958 | 4 | 34 |  | $42{ }^{42}$ |  |
| 27 | 9.47694 | 40 | 949740 | 44 | 0.50260 | 997954 | 4 | 33 | 6 | 4.2 |  |
| 28 | 9.47734 | 40 | 949784 | 44 | 0.50216 | 9.97950 | 4 | 32 | 7 | 4.9 | 4.8 |
| 29 | 9.47774 | 40 | 949823 | 44 | - 50172 | 997946 | 4 | 31 | 8 | 5.6 | 5.5 |
| 30 | 9.47814 | 40 | 949872 | 44 | 0.50128 | 997942 | 4 | 30 |  |  | 62 6.8 |
| 31 | 9.47854 | 40 | 9.49916 | 44 | - 50084 | 9.97938 | 4 | 29 |  | 74.0 |  |
| 32 | 9.47894 | 40 | 9.49960 | 44 44 | 0.50040 | 9.97934 | 4 | 28 |  |  |  |
| 33 | 9.47934 | 40 40 | 9.50004 | 44 44 | 0.49996 | 997930 | 4 | 27 |  | 21.0 20.0 <br> 28.0 27. |  |
| 34 | 9.47 97+ | 40 | 9.50048 | 44 | 0.49952 | 997926 | 4 | 26 | 40 | 28.0 27 <br> 35.0 3 |  |
| 35 | 9.48014 | 40 | 9.50092 |  | 0.49908 | 997922 |  | 25 |  |  |  |
| 36 | 9.48054 | 40 | 9.50136 | 44 | 0.49864 | 9.97918 | 4 | 24 |  |  |  |
| 37 | 9.48094 | 40 | 9.50180 | 44 | 049820 | 9.97914 | 4 | 23 |  |  |  |
| 38 | 9.48 133 | 39 | 9.50223 | 43 | 0.49777 | 997910 | 4 | 22 |  | 40 | 39 |
| 39 | 9.48173 | 40 | 9.50267 | 44 | - 49733 | 9.97906 | 4 | 21 | 6 | 4.0 |  |
| 40 | 9.48213 | 40 | 9.50311 | 44 | 0.49689 | 997902 | 4 | 20 | 7 | 4.7 | 4.6 |
| 4 I | 9.48252 | 39 | 950355 | 44 | 0.49645 | 997898 | 4 | 19 | 8 | 5.3 6.0 | 52 59 |
| 42 | 9.48292 | 40 | 9.50398 | 43 | - 49602 | 997894 | 4 | 18 | 0 | 6.0 | 59 |
| 43 | 9.48332 | 40 | 9.50442 | 44 | 0.49558 | 9.97890 | 4 | 17 |  | 6.713 | 6.5 |
| 44 | 9.4837 I | 39 | 9.50485 | 43 | 0.49515 | 997886 | 4 | 16 | 20 | 13.31 | 30 |
|  | $9.48{ }^{41 \mathrm{I}}$ | 40 | 9.50529 | 44 | 0.49471 | 997882 | 4 | 15 |  | 20.0 19. <br> 26.7 26. | 9.5 |
| 46 | 948450 | 39 | 950572 | 43 | 0.49428 | 997878 | 4 | 14 |  | 33.3 3 |  |
| 47 | 9.48490 | 40 | 9.50616 | 44 | 049384 | 9.97874 | 4 | 13 |  |  |  |
| 48 | 9.48529 | 39 39 | 950659 | 43 | 0.49341 | 997870 | 4 | 12 |  |  |  |
| 49 | 9.48568 | 39 | 9.50703 | 44 | 0.49297 | 997866 | 4 | 11 |  |  |  |
| 50 | 9.48607 | 39 | 9.50746 | 43 | 0.49254 | 9.97861 |  | 10 |  | 50.4 |  |
| 51 | 9.48647 | 40 | 950789 | 43 | 0.49211 | 9.97857 | 4 | 8 |  |  |  |
| 52 | 9.48686 | 39 | 950833 | 44 | 0.49167 | 997853 | 4 | 8 | 7 | 7 70.5 |  |
| 53 | 9.48725 | 39 39 | 9.50876 | 43 43 | 0.49124 | 9.97849 | 4 | 7 | 8  <br> 9 0.7 | 8 0  <br> 8 06  | 0.4 0.5 |
| 54 | 9.48764 | 39 | 9.50919 | 43 | 0.49081 | 9.97845 | 4 |  | 9 | 88.8 | 0.5 0.5 |
| 55 | 9.48803 | 39 | 950962 |  | 0.49038 | 9.97841 |  | 5 | 20 | 71.3 | 10 |
| 56 | 9.48842 | 39 | 9.51005 | 43 | 0.48995 | 9.97837 | 4 | 4 | 30 | 520 | 1.5 |
| 57 | 9.48881 | 39 | 9.51048 | 43 | 0.48952 | 997833 | 4 | 3 | 0 | 3.7 | 2.0 |
| 58 | 9.48920 | 39 | 9.51092 | 44 | 0.48908 | 9.97829 | 4 | 2 | 0 | 231 | 2.5 |
| 59 | 9.48959 | 39 | 9.51135 | 43 | 048865 | 9.97825 | 4 | 1 |  |  |  |
| 60 | 9.48998 |  | 9.51178 |  | 0.48822 | 9.97821 |  | 0 |  |  |  |
|  | L. Cos. | d. | L. Cotg. | c. d. | L. Tang. | L. Sin. | d. | $\digamma$ | $\mathbf{P r}$ | p. Pt |  |


$19^{\circ}$

| $\digamma$ | L. Sin. | d. | L. Tang. | c. d. | L. Cotg. | L. Cos. | d. |  | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.51264 |  | 9.53697 |  | 0.46303 | 9.97567 |  | 60 |  |
| 1 | 9.51301 | 37 37 | 9.53738 | 4 4 | 0.46262 | 9.97563 | 4 | 59 |  |
| 2 | 9.51338 | 37 36 | 9.53779 | 41 | 0.46221 | 9.97558 | 4 | 58 |  |
| 3 | 9.51374 | 36 37 | 9.53820 | 4 4 | 0.46180 | 9.97554 | 4 | 57 | $6{ }^{6}$ 4.1 4.0 |
| 4 | 9.51411 | 37 36 | 9.53861 | 41 | 0.46139 | 9.97550 | 4 | 56 | 7 4.18 4.0 |
| 5 | 9.51447 |  | 9.53902 | 41 | 0.46098 | 997545 | 5 | 55 | 8 5.5.3 5.3 |
| 6 | 9.51484 | 37 36 | 9.53 9+3 | 41 | 046057 | 9.975 .41 | 4 | 54 | $\begin{array}{llll}9 & 62 & 6.0\end{array}$ |
| 7 | 9.51520 | 36 37 | 9.53984 | 4 I | 0.46016 | 9.97536 | 5 | 53 | 10 6.8 6.7 |
| 8 | 951557 | 37 36 | $95402 \overline{5}$ | 4 4 | - 45975 | 9.97532 | 4 | 52 | 20 13.7 13.3 |
| 9 | 9.51593 | 36 36 | 9.54065 | 40 | -45935 | 997528 | 4 | 51 | 30 20.5 20.0 |
| 10 | 9.51629 | 36 | 9.54106 | 41 | $0.4589+$ | 9.97523 | 5 | 50 | 40 |
| 11 | 9.51666 | 37 36 | 9.54147 | 4 4 | 0.45853 | 9.97519 | 4 | 49 | 50 34.2 33.3 |
| 12 | 9.51702 | 36 | 9.54187 | 40 | 0.45813 | 9.97515 | 4 | 48 |  |
| 13 | 951738 | $3^{36}$ | 9.54228 | 4 x | 0.45772 | 9.97510 | 5 | 47 |  |
| 14 | 9.51774 | 36 | 9.54269 | 41 | 045731 | 9.97506 | 4 | 46 | 39 |
| 15 | 9.51811 | 36 | 9.54309 | 41 | 0.45691 | 9.97501 | 4 | 45 | 6 3.9 |
| 16 | 9.51847 | 36 36 | 9.54350 | 4 4 | - 45650 | 9.97497 | 4 | 44 | 78.6 |
| 17 | 9.51883 | 36 36 | 9.54390 | 40 | 0.45610 | 9.97492 | 5 | 43 | $8 \quad 5.2$ |
| 18 | 9.51919 | 36 36 | 954431 | 4 4 | 0.45569 | 9.97488 | 4 | 42 | 9 5.9 |
| 19 | 9.51955 | 36 36 | 954471 | 40 | 0.45529 | 9.97484 | 4 | 41 | $10 \quad 6.5$ |
| 20 | 9.51991 | 36 | 9.54512 | 41 | 0.45488 | 9.97479 |  | 40 | 20 13.0 <br> 30 19.5 |
| 21 | 9.52027 | 36 36 | 9.54552 | 40 | 0.45448 | 9.97475 | 5 | 39 | 30 19.5 <br> 40 26.0 |
| 22 | 952063 | 36 36 | 9.54593 | 418 | 0.45407 | 9.97470 | 5 | 38 | 40 20.0 <br> 50 32.5 |
| 23 24 | 9.52009 | 36 36 | 9.54633 | 40 | 0.45367 | $9.974^{66}$ | 4 | 37 | 5032.5 |
| 24 | 9.52135 | 36 36 | 9.54673 | 40 | 0.45327 | 9.97461 | 5 | 36 |  |
| 25 | 9.52171 |  | 954714 | 40 | 0.45286 | 997457 | 4 | 35 |  |
| 26 | 9.52207 | 36 35 | 9.54754 | 40 | 0.452 .46 | 997453 | 4 | 34 | 37 $\mathbf{3 6}$ |
| 27 | 9.52242 | 35 36 | $9.5+794$ | 40 | 0.45206 | 997448 | 5 | 33 | 6 3.7 3.6 |
| 28 | 952278 | 36 36 | 9.54835 | 41 | 045165 | 997444 | 4 | 32 | 7 4.3 4.2 |
| 29 | 9.52314 | 36 | 954875 | 4 | 0.45125 | 997439 | 5 | 3 I | 8 4.9 4.8 |
| 30 | 9.5235 ) | 36 | 9.54915 | 40 | 0.45085 | 997435 | 4 | 30 | 9 5.6 5.4 <br> 10 6.2 6.0 |
| 31 | 9.52385 | 35 36 | 9.54955 | 40 | 0.450 .45 | 997430 | 5 | 29 | 10 62  <br> 20 12.3 120 |
| 32 33 | 9.52421 | 36 35 | 9.54995 | 40 | 0.45005 | 997426 | 4 | 28 | 20 12.3 120 <br> 30 18.5 18.0 |
| 33 | 952456 | 35 36 | 9.55035 | 40 | - 44965 | 9.97421 | 5 | 27 26 | 30 18.5 18.0 <br> 40 24.7 24.0 |
| 34 | 952492 | 36 35 | 9.55077 | 40 | 0.44925 | 997417 | 4 | 26 | 40 20.8  <br> 50 30.8 30.0 |
| 35 | 9.52527 | 36 | $9.55 \mathrm{II5}$ |  | 0.44885 | 997412 | 4 | 25 |  |
| 36 | 9.52563 | 36 | 9.55155 | 40 | 0.44845 | 997408 | 5 | 24 |  |
| 37 | 9.52598 | 35 36 | 955195 | 40 | 0.44805 | 997403 | 4 | 23 |  |
| 38 | 9.52634 | 36 | 9.55235 | 40 | 0.44765 | 997399 | 4 | 22 | 35 34 |
| 39 | 9.52669 | 35 36 | 9.55275 | 40 | 0.44725 | 997394 | 5 | 21 | 6 3.5 3.4 |
| 40 | 9.52705 |  | 955315 | 40 | 0.44685 | 9.97390 | 4 | 20 | 7 4.1  <br> 8 4.7 4.0 |
| 4 I | 9.52740 | 35 | 9.55355 | 40 | 0.44645 | 997385 | 5 | 19 | 8 4.7 4.5 <br> 9 5 5.1 |
| 42 | 9.52775 | 35 36 | 955395 | 40 | 0.44605 | 997381 | 4 | 18 | 9 53 5.1 <br> 10 5.8 5.7 |
| 43 | 9.52811 | 36 | 955434 | 39 | 0.44566 | 997376 | 5 | 17 | 10 5.8 5.7 <br> 20 11.7 113 |
| 44 | 9.52846 | 35 | 955474 | 40 | 0.44526 | 997372 | 4 | 16 | 20 11.7 113 <br> 30 17.5 17.0 |
| 45 | 9.52 881 | 35 | 955514 | 40 | 0.44486 | 997367 | 5 | 15 | 40 23.3 22.7 |
| 46 | 9.52916 | 35 35 | 9.55554 | 40 | 0.44446 | 9.97363 | 4 | 14 | 50 29.2 28.3 |
| 47 | 9.52951 | 35 | 9.55593 | 39 | 0.44407 | 9.97358 | 5 | 13 | 50 |
| 48 | 9.52986 | 35 | 9.55633 | 40 | 0.44367 | 9.97353 | 5 | 12 |  |
| 49 | 9.53 O21 | 35 | 9.55673 | 40 | - 44327 | 9.97349 | 4 | 11 |  |
| 50 | 9.53056 | 35 | 9.55712 | 39 | 0.44288 | 9.97344 | 5 | 10 |  |
| 51 | 9.53092 | $3^{6}$ | 9.55752 | 40 | 0.44248 | 9.97340 | 4 | 9 | 6 0.5 0.4 <br> 7 0.6 0.5 |
| 52 | 9.53126 | 34 | 9.55791 | 39 | 0.44209 | 9.97335 | 5 | 8 | 7 0.6 0.5 <br> 8 0.7 0.5 |
| 53 | 9.53161 | 35 35 | 9.55831 | 40 | 0.44169 | 9.97331 | 4 5 | 7 |    <br> 9 0.8 0.6 |
| 54 | 953195 | 35 | 955870 | 39 | 0.44130 | 997326 | 5 4 | 6 | 9 0.8 0.6 <br> 10 0.8 0.7 |
| 55 | 9.53231 | 35 | 9.57 910 |  | 044090 | 9.97322 |  | 5 | 20 1.7 1.3 |
| 56 | 9.53266 | 35 35 | 9.55949 | 40 | 0.44051 | 9.97317 | 5 | 4 | 30 2.5 2.0 |
| 57 | 9.53 301 | 35 35 | 955989 | 40 | 0.44 OII | 997312 | 5 | 3 | 40 3.3 2.7 |
| 58 | 9.53336 | 35 | $956028$ | 39 39 | 0.43972 | 9.97308 | 4 | 2 |  50  |
| 59 | 9.53370 | 34 | 9.56067 | 39 | 0.43933 | 997303 | 5 | 1 |  |
| 60 | 9.53405 |  | 956107 |  | 043893 | 997299 |  | 0 |  |
|  | L. Cos. | d. | L. Cotg. | c. 1. | L.'Inng. | L. Sin. | d. | , | Prop. Pts. |


| $\bigcirc$ | L. Nin. | d. | L. 'Tang. | c. d. | L. Cotg. | L. Cos. | d. |  | Prop. Pts. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.53405 |  | 9.56107 |  | 0.43893 | 9.97299 |  | 60 |  |  |  |
| I | $9.5344{ }^{\circ}$ | 35 35 | 9.56146 | 39 | 0.43854 | 9.97294 | 5 | 59 |  |  |  |
| 2 | 9.53475 | 35 | 9.56185 | 39 | 0.43815 | 9.97289 | 5 | 58 |  |  |  |
| 3 | 9.53509 | 34 35 | 9.56224 | 39 40 | 0.43776 | 9.97285 | 4 5 | 57 | 6 | 4.0 | 3.9 |
| 4 | 9.53 .544 | 35 | 9.56264 | 40 | 0.43736 | 9.97280 | 5 |  | 7 | 4.7 | 4.6 |
| 5 | 9.53578 | 34 | 9.56303 | 39 | 0.43697 | 997276 | 4 | 55 | 8 | 5.3 | 5.2 |
| 6 | 9.53613 | 35 | 9.56342 | 39 | 0.43658 | 997271 | 5 | 54 | 9 | 6.0 | 5.9 |
| 7 | 9.53647 | 34 | $9.563^{81}$ | 39 | 0.43619 | 9.97266 | 5 | 53 | 10 | 6.7 | 6.5 |
| 8 | 9.53682. | 35 | 9.56420 | 39 | 0.43580 | 9.97262 | 4 | 52 |  | 13.3 | 13.0 |
| 9 | $9.53716^{\circ}$ | 34 | 9.56459 | 39 | $0+3541$ | 9.97257 | 5 | 51 |  | 20.0 | 19.5 |
| 10 | 9.53751 | 35 | 9.56498 | 39 | 0.43502 | 9.97252 | 5 | 50 |  | 26.7 | 26.0 |
| 11 | 9.53785 | 34 | 956537 | 39 | 0.43463 | $9.972{ }^{2} 8$ | 4 | 49 |  | 33.3 | 32.5 |
| 12 | 9.53819 | 34 | 9.56576 | 39 | 0.43424 | 9.97243 | 5 | 48 |  |  |  |
| 13 | 9.53854 | 35 | 956615 | 39 | 0.43385 | 997238 | 5 | 47 |  |  |  |
| 14 | 9.53888 | 34 | 956654 | 39 | 0.43346 | 9.97234 | 4 | 46 |  | 38 | 37 |
| 15 | 9.53922 | 34 | 9.56693 | 39 | 0.43307 | 9.97229 | 5 | 45 | 6 | 3.8 | 3.7 |
| 16 | 9.53957 | 35 | 9.56732 | 39 | 0.43268 | 9.97224 | 5 | 44 | 7 | 4.4 | $4 \cdot 3$ |
| 17 | 9.53 991 | 34 | 9.56771 | 39 | 0.43229 | 9.97220 | 4 | 43 | 8 | 5.1 | 4.9 |
| 18 | 9.54025 | 34 | 9.56810 | 39 | 0.43190 | 997215 | 5 | 42 | 9 | 5.7 | 5.6 |
| 19 | 9.540 .59 | 34 | $9568+9$ | 39 | 043151 | 997210 | 5 | 41 | 10 | 6.3 | 6.2 |
| 20 | 9.54093 | 34 | 9.56887 |  | 043113 | 9.97206 | 4 | 40 |  | 12.7 | 12.3 |
| 21 | 9.54127 | 34 | 956926 | 39 | 0.43074 | 9.97201 | 5 | 39 |  | 19.0 | 185 |
| 22 | 9.54 161 | 34 | 9.56965 | 39 | 0.43035 | 997196 | 5 | 38 |  | 25.3 31.7 | 247 30.8 |
| 23 | 9.54195 | 34 | 9.57004 | 39 | 0. 42996 | 9.97192 | 4 | 37 |  | 31.7 |  |
| 24 | 954229 | 34 | 9.570 .42 | $3^{8}$ | $0 .+2958$ | 9.97187 | 5 | 36 |  |  |  |
| 25 | 9.54263 | 34 | 9.57 081 | 39 | 042919 | 997182 | 5 | 35 |  |  |  |
| 26 | 9.54297 | 34 34 | 9.57120 | 39 | 0.42880 | 9.97178 | 4 | 34 |  | 35 |  |
| 27 | 95433 I | 34 34 | 957158 | 38 | 0.428 .42 | 997173 | 5 | 33 |  | 6. |  |
| 28 | 9.54365 | 34 34 | 9.57197 | 39 38 | 0.42803 | 9.97163 | 5 | 32 |  | 7. |  |
| 29 | 9.5+399 | 34 | 9.57235 | 38 | 0 +2765 | 997163 | 5 | 31 |  | 8. |  |
| 30 | 9.54433 | 34 33 | 957274 | 38 | 0+2726 | 997159 | 5 | 30 |  | 5.3 |  |
| 31 | 9.54466 | 33 34 | 9.57312 | 38 39 | 0.42688 | 9.97154 | $5$ | 29 |  | 11. |  |
| 32 | 9.54500 | 34 34 | 9.57351 |  | 0.42649 | 997149 | $5$ | 28 |  | 17. |  |
| 33 | $9.5+534$ 95456 | 34 33 | 9.57389 95723 | 38 39 | 0.42611 0.42572 | 997145 997140 | 4 | 27 |  | \|l|l| |  |
| 34 | 954567 | 34 34 | 957423 | 39 38 | 042572 | 997140 | 5 | 26 |  | \|29. |  |
| 35 | 9.54601 |  | $9.57+66$ | 38 | $0.4253+$ | 9.97135 | 5 | 25 |  |  |  |
| 36 | 9.54635 | 34 33 | 9.57504 | 3 | 0.42496 | 9.97130 | 5 | 24 |  |  |  |
| 37 | 9.54663 | 34 34 | 957543 | 39 38 | 0.42457 | 9.97126 | 4 | 23 |  |  |  |
| 38 | 9.54702 | 34 | 95758 I | 38 38 38 | 0.42419 | 9.97121 | 5 | 22 |  | 34 |  |
| 39 | 9.54735 | 33 | 957619 | 38 | 0.12381 | 9.97116 | 5 | 21 |  | 3.4 |  |
| 40 | 9.54769 | 34 | 9.57638 | 38 | 0.42342 | 997 III | 5 | 20 |  | 4.0 |  |
| 41 | 9.54802 | 33 | 9.57696 | 38 38 | 0.42304 | 997107 | 4 | 19 |  | 4.5 |  |
| 42 | 9.54836 | 34 | 9.57734 | 38 38 | 0.42266 | 9.97102 | 5 | 18 |  | 5.7 5.7 |  |
| 43 | 9.54869 | 33 | 9.57772 | 38 38 | 0.42228 | 997097 | 5 | 17 |  |  |  |
| 44 | 9.54903 | 34 | 9.57810 | 38 | 0.42190 | 997092 | 5 | 16 |  | 11.3 | 11.0 16.5 |
| 45 | 9.54936 | 33 | $9578+9$ |  | 042151 | 997087 | 4 | 15 |  | 22.7 | 22.0 |
| 46 | $9.5+969$ | 33 | 957887 | 38 <br> 38 | $0{ }^{+12113}$ | 9.97083 | 4 | 14 |  | 28.3 |  |
| 47 | 9.55003 | 34 33 | 9.57925 | 38 38 | 0.42075 | 9.97078 | 5 | 13 |  |  |  |
| 48 | 9.55036 | 33 33 | 957963 | 38 38 38 | 042037 | 9.97073 | 5 | 12 |  |  |  |
| 49 | 9.55069 | 33 | 958 OOI | 38 <br> 38 <br> 8 | 041999 | 9.97068 | 5 | II |  |  |  |
| 50 | 9.55 102 | 33 |  |  | 0.41961 |  | 5 | 10 |  |  |  |
| 51 | 9.55136 | 34 | 9.58077 | 38 38 | 0.41923 | 9.97059 | 4 | 9 | 7 | 0.5 | 0.4 |
| 52 | 9.55169 | 33 33 | 958115 | 38 38 | 0.41 885 | 997054 | 5 | 8 | 8 | 0.7 | 0.5 |
| 53 | 9.55202 | 33 33 | 9.58 953 | 38 38 | 0.418847 0.418009 | 9.97049 997044 | 5 | 7 | 8 | 0.7 | 0.5 0.6 |
| 54 | 9.55235 | 33 | 9.58 Igr | 38 <br> 38 | 0.41809 | 997044 | 5 | 6 | 10 | 0.8 | 0.7 |
|  | 9.55268 | 33 | 9.58229 |  | 0.41771 | 9.97039 |  | 5 | 20 | 1.7 | 1.3 |
| 56 | 9.55301 | 33 33 | 9.58267 | 38 37 | 0.41733 | $9.97{ }^{\circ} \mathrm{O} 35$ |  | 4 | 30 | 2.5 | 2.0 |
| 57 | 9.55334 | 33 33 | 9.58304 | 37 <br> 38 | 0.41 696 | 9.97030 | 5 | 3 |  | 3.3 | 2.7 |
| 58 | 9.55367 | $\begin{array}{r}33 \\ .33 \\ \hline\end{array}$ | 9.58342 | 38 38 38 | 0.41 658 | 9.97025 | 5 | 2 |  | 4.2 |  |
| 59 | 9.55400 | . 33 | 958380 | ${ }^{38}$ | 0.41620 | 9.97020 | 5 | 1 |  |  |  |
| 60 | 955433 |  | 9.58418 |  | 041582 | 9.97 Or 5 |  | 0 |  |  |  |
|  | L. Cos. | d. | L. Cotg. | d | L. Tang. | L. Sin. | d. | 1 | $\mathbf{P}$ | p. $\mathbf{P}$ | ts. |


$68^{\circ}$

| 7 | H. Nin. | d. | L. 'Tanty. | C. d. | 1.0Cotg. | L. Clors. | $d$. |  | Prop. Pis. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| () | 957358 |  | 9606.41 |  | - 39359 | $99^{6} 717$ | 6 | 60 |  |  |  |
| I | $9573^{89}$ | 3 I | 960677 | 36 | 0.39323 | 9.96711 | 5 | 59 |  |  |  |
| 2 | 957.120 | 3 I | $96071+$ | 37 | 0.39286 | 996706 | 5 | 58 |  | 37 |  |
| 3 | 957451 | 31 | 960750 | 36 | - 39250 | $99^{\text {b }} 701$ | 5 | 57 | 6 | 37 | 36 |
| 4 | $957 \underline{482}$ | 31 32 | 960786 | $3{ }^{6}$ | - 39214 | 996096 | 5 | 56 | 7 | 43 | 42 |
| 5 | 957514 |  | 960823 | 37 | 039177 | $99^{3}$ O91 | 5 | 55 | 8 | 49 | 48 |
| 6 | 9 57515 | $3{ }^{1}$ | 960859 | $3^{6}$ | $0.391+1$ | 996686 | 5 | 5.4 | 9 | 56 | 54 |
| 7 | 957576 | 31 | 960895 | $3^{6}$ | $\bigcirc 39105$ | $99^{6} 681$ | $5$ | 53 | 10 | 6.2 | 60 |
| 8 | 957607 | 31 | 960931 | 30 36 | $039 \text { ot }$ | 9) $9^{\text {か }} 076$ | $\begin{aligned} & 5 \\ & 6 \end{aligned}$ | 52 |  | 123 | 120 |
| 9 | 957638 | 31 | 96096 | 36 | ${ }^{0} 39033$ | 9 9 670 | 6 | 51 |  | 185 | 180 |
| 10 | 9.57609 | 31 | 961004 | 36 | - 384090 | 996665 |  | \%0 |  | 24.7 308 | 240 300 |
| I 1 | 957700 | 31 31 | 9610 | 36 36 | 03890 | 996600 | 5 | 49 |  |  |  |
| 12 | 957731 | 31 31 | 965076 | 36 36 | - 38924 | 996655 | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | 48 |  |  |  |
| 13 | 957762 | 31 31 | 961512 | 36 36 | $\bigcirc 38888$ | 9) 9650 | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | 47 |  |  |  |
| 14 | 957793 | 31 | $96 \mathrm{tr} \mathrm{c}^{8}$ | 36 | $03^{8885}$ | 996645 | 5 | 46 |  |  |  |
| 15 | $95782 t$ |  | 96184 |  | 0.3886 | 9906.40 | 6 | 45 |  | 6 |  |
| 16 | 957855 | 31 30 | 961220 |  | $\bigcirc 38780$ | 9 gt .034 |  | 44 |  | 7 |  |
| 17 | 957885 | 30 | 961256 |  | - 38711 | $99^{0629}$ | 5 | 43 |  | 8 |  |
| 18 | 957916 | 31 | 961202 |  | - 38708 | $99^{9} 62.4$ | 5 | 42 |  | 9. |  |
| 19 | 957917 | 31 31 | 961.328 |  | 0 $3^{86} 972$ | 930614 | 5 | 41 |  | 0 |  |
| 20) | 957978 | 31 | 96130 | 36 | - 38036 | 440614 | 6 | 46 |  | 0 |  |
| 21 | 958008 | 30 | 961100 | 36 | - 3860 | 9) 96608 | 6 | 39 |  | 0 1 <br> 0 2 | $\begin{aligned} & 5 \\ & 3 \end{aligned}$ |
| 2 | 958039 | 31 | $961+36$ | 36 | - 3856 | 996603 | 5 | 38 |  | 0 23 <br> 0 29 | 3 |
| 23 | 958070 | 31 31 | 961472 | 36 36 | - 38.528 | 946.598 | 5 | 37 |  |  |  |
| 24 | 958101 | 31 | 961508 | 36 | 038172 | 490593 | 5 | 36 |  |  |  |
| 25 | 958131 | 3 | 961544 | 36 35 | 038156 | 99658 | 6 | 35 |  |  |  |
| 26 | 958162 | 30 | 961579 |  | 0.38421 | 906582 | 5 | 34 |  |  |  |
| 27 | 958192 | 3 x | 965015 | 36 36 | $\bigcirc 3^{8} .3^{85}$ | 996577 | 5 | 33 |  | 32 37 | 31 |
| 28 | 958223 9 | 31 30 | 961651 | 36 36 | -38349 | 996572 | 5 | 32 | 7 | 37 | 6 |
| 29. | 958253 | 3 | 961687 | 36 | - $3^{8} 3^{13}$ | $99^{6} 5^{67}$ | 5 | 3 I |  | 43 | 41 47 |
| 30 | 958284 | 30 | 9 以1722 | 36 | 0 38278 | 99656 | 6 | 30 |  | 53 | 47 52 |
| 31 32 | 95831 <br> 958 <br> 154 | 30 31 | 961758 | 36 | $\begin{array}{ll}0.38 & 2+2\end{array}$ | 996550 | 5 | 29 28 | 10 | ro 7 | 52 103 |
| 32 33 | $\begin{array}{llll}9 & 58 & 345 \\ 9 & 5 & 375\end{array}$ | 31 30 | 961794 961830 | 36 36 | $0.3820 t$ 0.38170 | 996551 | 5 | 28 27 | 30 | 107 160 | 103 155 |
| 33 34 | 958375 958406 | 30 31 | 961830 961865 | 36 | 0.38170 0.38125 | $99^{6} 54^{6}$ 906541 | 5 | 27 26 |  | 160 213 | 15 20 |
| 34 | 958406 | 31 | 961865 | 35 36 | 0.38125 | 9 96541 | 5 6 | 26 | 50 | 20.7 | 25.8 |
| 35 | $9 \cdot 58+3^{\text {t }}$ |  | 961301 |  | $\bigcirc 3^{8} \mathrm{cog}$ | $99^{()} 535$ |  | 5 |  |  |  |
| $3{ }^{3}$ | 9.58467 | 31 | 961936 | 35 | -. 38004 | 9 96 530 | 5 | 2.4 |  |  |  |
| 37 | 958497 | 30 | 961972 | 36 36 | - 38028 | $99^{6} 525$ | 5 | 23 |  |  |  |
| 38 | 958527 | $3{ }^{\circ}$ | $9{ }^{6} 008$ | $3^{6}$ | 0.3790 | $99^{\prime} 5.520$ | 5 | 22 |  | 30 |  |
| 39 | 958577 | 30 | 962013 | 35 | -3797 | $99^{6} 514$ | 6 | 21 |  | 30 | 29 |
| 40 | 958588 | 31 30 | 902079 | 36 | - 37421 | $99^{(3)} 509$ | 5 | $\because 2$ | 7 | 35 40 |  |
| 41 | 958618 | 30 | 962114 | 36 | $\bigcirc 37880$ | $99^{1,504}$ | 5 | 19 |  |  |  |
| $+2$ | 958648 | 30 30 | 962150 | 36 | - 378 8= | $99^{6}+498$ | 5 | 18 |  | 45 50 | + 8 |
| 43 | 9.58678 | 30 | 962185 | 35 | -37815 | $99^{6}, 493$ | 5 | 17 | 20 | 100 | 4 |
| 4.4 | $95^{87} 7 \mathrm{cx}$ | 36 | 962221 |  | - 37779 | $99^{6} 488$ | 5 | 16 |  | 150 | 97 145 |
| 45 | 958739 | 30 | 972256 | 35 36 | $\bigcirc 37744$ | 9 96) 483 | 6 | 15 |  | 200 | 193 |
| 46 | 958769 | 30 | 962292 | 36 35 | 0.37708 | $99^{9} 477$ | 5 | 1.4 |  | 250 | $2+2$ |
| 47 | 958799 | 30 | 962327 | 35 | - 37673 | $99^{\prime \prime} 472$ | 5 | 13 |  |  |  |
| 48 | 958829 | 30 | $9623^{\text {¢ } 2}$ | 35 | $\bigcirc 3763^{8}$ | $99^{6}+67$ | 5 6 | 12 |  |  |  |
| 49 | 958859 | 30 | 962398 | $3^{\text {n }}$ | - 37 602 | $99^{6} \underline{4}^{61}$ | 6 | $1{ }^{1}$ |  |  |  |
| 50 | 958889 | 30 | $962+33$ | 35 | 0 37567 | $99^{6} 456$ | 5 | 10 |  | 0.6 | ${ }_{0}^{5} 5$ |
| 51 | 958919 | 30 | 962468 | 35 36 | - 37532 | $99^{t}+45 x$ | 5 6 | 9 |  | 0.6 | -6 |
| 52 | 958919 | 30 30 | 962504 | 36 | - 37496 | $99^{6} 4.45$ | 6 | 8 |  | 07 <br> 08 | - 0 |
| 53 | 958979 | 30 30 | 9625.39 | 35 | 037 4't | $99^{6}+40$ | 5 | 6 |  | 08 09 | 07 08 |
| 54 | 959009 | 30 | 9) 62574 | 35 | 037426 | $99^{6} 4.35$ | 5 | 6 |  | 0 1 | 088 |
|  | 959039 | 30 | 9.62 609 | 36 | - 37.391 | $99^{6}+29$ | 5 | 5 |  | 20 | 17 |
| 56 | 959 of9 | 30 29 | 962645 | 36 35 | - 37355 | $99^{6} 421$ | 5 | $4$ | 30 | 30 | 25 |
| 57 | 959098 | 29 30 | $962680$ | 35 | $037320$ | $99^{6}+19$ | 5 | 3 | 40 | 40 | 33 |
| 58 | 959128 959158 | 30 30 | 962715 962750 | 35 35 | $037285$ | $996413$ | 5 | 2 |  | 50 | 42 |
| 59 | 959158 | 30 | 962750 | 35 35 | 0.37250 | $99^{66} 408$ | 5 | I |  |  |  |
| 60 | 959188 |  | 962785 |  | 0.37215 | 996403 |  | () |  |  |  |
|  | L. Cos. | 1. | I... (iotg. | c. 1. | L. 'İang. | I. Nin. | $d$. | $\digamma$ |  | (1). | ts. |








$30^{\circ}$


| $\prime$ | H．Sill． | d． | I．＇Tring． | c．d． | I．Cotg． | L．Cos． | d． |  | Prop．Pts． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.71184 |  | 9.77877 |  | 022123 | 993307 |  | 60 |  |
| 1 | 471205 | 21 21 | 977906 | 29 29 | O 22094 | 993299 | 8 | 59 58 58 |  |
| 2 | 971225 | 21 | 977935 | 29 28 | － 22 のb5 | 99.3291 | $\begin{aligned} & 8 \\ & 7 \end{aligned}$ | 58 | 129 |
| 3 | $\begin{array}{lll}971 & 2.47 \\ 971 & 268\end{array}$ | 21 | 977963 $9779^{602}$ | 28 | 0.22037 022008 |  | $\begin{aligned} & 7 \\ & 8 \end{aligned}$ | 57 | $6 \quad 29$ |
| $\pm$ | 971268 | 21 | 977 992 | 29 48 | O 22008 | 993276 | 8 | 5\％ | $73+$ |
| i | 971289 | 21 | 978020 478049 | 29 | 021980 | 493269 | 8 | 55 | 89  <br>  39 |
| 0 | 971310 971312 | 21 | 978089 978077 | 28 | 021951 021923 | 993261 943253 | 8 | 54 53 | 9 4 <br> 1 4 <br> 20  |
| 8 | 971.352 | 21 | 978 10\％ | 29 | － 21894 | 99324 | 7 | 5 | 10 78 <br> 20 97 |
| 9 | 971373 | 21 20 | 978135 | 29 28 | $\bigcirc 21865$ | 9.932 .38 | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ | 51 | 30.145 |
| 10 | 971393 |  | 978153 |  | 0.21837 | $9.9323^{\circ}$ |  | 50 | 40193 |
| 1 | $971+1$ | 21 | 978192 | 29 28 | － 21808 | 993223 | 7 | 49 | 50 2．4．2 |
| 12 | $971+35$ | 21 | 973220 | 28 | －21780 | 993215 | 8 | 48 |  |
| 13 | $971+5{ }^{5}$ | 21 | 978249 | 29 | 021751 | 993207 | 8 | 47 |  |
| ${ }_{1}{ }^{1}$ | $971+77$ | 21 | 978277 | 23 | 021723 | 9.93200 | 7 | 46 | 28 |
| 15 | 971488 |  | $9733^{006}$ | ． 8 | 021694 | 993192 |  | 45 | $6{ }^{6} 28$ |
| 10 | 971519 | 21 | 978331 | ．8 | 021006 | 993181 | 8 | 4 | $7{ }^{7} 33$ |
| 17 | 971539 | 20 | $9783^{\text {（）}} 3$ | 29 | 021637 | 993177 | 8 | 43 | $8 \quad 37$ |
| 18 | 971500 | 21 | 978391 | 28 | 0.21609 | 993169 | 8 | 42 | $9+2$ |
| 19 | 971581 | 21 | $978+44$ | 28 | 021581 | C93 161 | 8 | 4 | $10+7$ |
| 20 | 971602 | 2 x | $978+{ }^{3}$ | 29 | （） 21552 | 993154 | 8 | 10 | 20 9 |
| 21 | 971622 | 20 | $978+76$ | 28 | － $2155^{24}$ | 99316 | 8 | 39 | 30：140 |
| 22 | $4716+3$ | 2 r | 978505 | 29 | 0 21495 | 993138 | 8 | 38 | +0 18 |
| 23 | 971664 | 21 | 978533 | 28 | 021407 | 993131 | 7 8 | 37 | 501233 |
| 24 | 971885 | 21 | 978 5ハ2 | ${ }^{2}$ | $021+38$ | 043123 | 8 | 36 |  |
| 25 | 971705 | ${ }^{1}$ | 978 －90 |  | 021410 | 993115 |  | 35 |  |
| 26 | 971726 | 21 | 978 ¢ 98 | 28 | 021382 | ${ }^{4} 93108$ |  | 34 | 121 |
| 27 | 971747 | 1 | $\bigcirc 78047$ | 29 28 28 | 021353 | 993100 | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ | 33 | $6{ }^{6} 21$ |
| 28 | 971767 | 20 | 973 万75 | 28 | 021325 | 993092 | 8 | 32 | 725 |
| 29. | 971783 | 21 | $9787^{011}$ | 29 | 021296 | 943084 | 8 | 31 | 8 28 |
| 30 | 971809 | 2 | 9.78732 | 28 | 021268 | 993077 |  | 30 | 9 32 <br>  35 |
| 31 | 971889 | 20 | $9787^{\prime \prime}(x)$ | 28 | 021240 | 993 otr9 | 8 | 29 | 10 35 <br> 20 70 |
| 32 | 971850 | 25 | 978789 | 29 | 021211 | 94.3 of 1 | 8 | 28 | 20  <br> 30 70 |
| 33 | 971870 | 20 | 978817 | 28 | 021183 | 993053 | 8 | 27 | 30 I0 5 |
| 34 | 9.71891 | 21 | 9.788 .45 | 28 | 021155 | 9930.46 | 7 | 26 | 40  <br> 50 17.5 |
| 35 | 971911 |  | 978871 |  | 021126 | 993038 |  | 25 |  |
| 36 | 971432 | 21 | 978902 | 28 | 021098 | 993030 | 8 | 24 |  |
| 37 | 971932 | 20 | 978930 | 28 | 021070 | 993022 | 8 | 23 |  |
| 38 | 971973 | 21 | 9.781559 | 29 | 0210.41 | 94301 | 8 | 22 | 120 |
| 39 | 9.7109 | 21 | 978987 | －8 | 021013 | 9093007 | 7 8 | 21 | $6: 20$ |
| 40 | 97201t | 20 | 979015 |  | － 200885 | 942 cegy |  | 20 | 7 <br> $8:$ |
| 41 | 972031 | 20 | 979043 |  | 020957 | 992991 | 8 | 19 | $\begin{array}{ll}8: 27 \\ 9 & 3\end{array}$ |
| ＋2 | 972055 | 20 | 979072 | $\therefore 9$ | － 20928 | 992983 | 8 | 18 | 9  <br> 10 3 |
| 43 | 972075 $472(0,0)$ | 21 | 979100 479128 | －98 | 0120900 020872 | 992976 4020808 | 7 | 17 14 14 | 10 33 <br> 20 67 |
| $4+$ |  | 21 20 | 479128 | 28 | （）20）872 | 902988 | 8 | $1{ }^{13}$ | 30100 |
| 15 | 972110 972137 | 21 | $97915{ }^{\prime}$ <br> 979 <br> 85 | $\bigcirc$ | $02084+4$ 020815 | 9 9 9 02960 | 8 | 15 | $40: 133$ |
| $4{ }^{6}$ | 972137 | 20 | 979185 474213 | $\bigcirc$ | 020815 020787 | 902952 | 8 | 14 | 50107 |
| 47 | ソ 72157 | 20 | 470213 | －8 | 020787 | 992944 | 8 | 13 |  |
| $4^{88}$ | 972177 | 20 | 979211 | 88 | 020759 | 90.936 | 8 | 12 |  |
| 49 | 972143 | 21 | 9.79 | 8 | 020731 | 4 92929 | 7 8 | 11 |  |
| 50 | 972248 | 20 | 9.79207 |  | 0 0－203 | 992921 | 8 | 10 | 8.8 7 <br> 6.08 07 |
| 51 | 972 23 | － | 979326 | 28 | 0.206174 | 4192013 | 8 | 8 | 6   <br> 7 0 0 |
| 52 | 972 959 | $\pm$ | 979351 |  | － 20646 | 902905 | 8 | 8 | 8 I 0.9 |
| 53 54 54 | 972271 9722010 | － | 9.79382 <br> 979 <br> 980 | $\begin{array}{r}28 \\ 23 \\ \hline 8\end{array}$ | 020618 020590 | $\begin{aligned} & 902807 \\ & 9.42889 \end{aligned}$ | 8 | 7 6 | 9 1 2 I． |
| 55 | 9.72320 | 2 O | $979+39$ |  | － 20562 | 992881 | 8 | 5 |  |
| 53 | 972340 | $\cdots$ | 979 ＋6） | 0 | 0.20537 | $99^{2874}$ | 7 8 | 4 |    <br> 30 40 3.5 |
| 57 | 972360 | 21 | 979195 | 8 | － 20505 | $9028 t 5$ 902858 | 8 | 3 | $\begin{array}{l:l:}40 & 47\end{array}$ |
| 58 | 972381 | 21 20 | 97953 |  | 020.477 | 992858 | 8 | 2 | $50.67: 58$ |
| 9\％ | Q72fol | 20 | 974551 |  | $020+19$ | 99250 | 8 | $\underline{1}$ |  |
| 60 | $972+21$ |  | 9.79579 |  | $020{ }^{\circ} \mathrm{fl}$ | 992842 |  | 0 |  |
|  | 1．Con． | d． | L．Cotg． | c．d | I．＇Tang． | 1．．Sin． | $d$. | ， | Prop．Pts． |


| ' | 1. Sin. | d. | L. Tang. | c. d. | L. Cotg. | L. Cos. | d. |  | Prop. Pts. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.7242 I | $\begin{aligned} & 20 \\ & 20 \\ & 21 \\ & 20 \\ & 20 \end{aligned}$ | 9.79579 |  | 0.20421 | 9.92842 |  | 60 |  |  |  |
|  | 9.7244 I |  | 9.79607 | 28 | 0.20393 | 9.92834 |  | 59 |  |  |  |
| 2 | 9.72461 |  | 9.79635 | 28 | 0.20365 | 9.92826 | 8 | 58 |  |  |  |
| 3 | 9.72482 |  | 9.79663 | 28 | 0.20337 | 9.92818 | 8 | 57 | 6 | 2.9 | 2.8 |
| 4 | 9.72502 |  |  | 28 | 0.20339 | 9.92810 | 8 |  | 7 |  |  |
| 5 | 9.72522 | 20 | 9.79719 | 28 | 0.20281 | 9.92803 | 8 | 55 | 8 | 3.9 | 3.7 |
| 6 | 972542 | 20 | 9.79747 | 28 | 0.20253 | 992795 | 8 | 54 | 9 | 4.4 | 4.2 |
| 7 | 9.72562 | 20 | 9.79776 | 29 28 | 0.20224 | 9.92787 | 8 | 53 |  | 4.8 | 4.7 |
| 8 | 9.72582 9.72602 | 20 | 9.79804 9.79832 | 28 28 28 | 0.20196 0.20168 | 9.92779 | 8 | 52 | 20 | 9.7 | 9.3 |
| 9 | 9.72602 | 80 | 9.79832 | 28 | 0.20168 | 9.92771 | 8 | 51 |  | 14.5 | 14.0 |
| 10 | 9.72622 |  | 9.79860 | 28 | 0.20140 | 992763 |  | 50 |  | 19.3 | 18.7 |
| II | 9.72643 | 21 20 | 9.79888 | 28 28 | 0.20112 | 9.92755 | 8 | 49 |  | 242 | 23.3 |
| 12 | 9.72663 | 20 20 | 9.79916 | 28 28 | 0.20084 | 9.92747 | $8$ | 48 |  |  |  |
| 13 | 9.72683 | 20 | 9.79944 | 28 28 | 0.20056 | 9.92739 | 8 | 47 |  |  |  |
| 14 | 9.72703 | 20 | 9.79972 | 28 | 0.20028 | 9.92731 | 8 | 46 |  | 27 |  |
| 15 | 9.72723 | 20 | 980000 | 28 | 0.20000 | 9.92723 | 8 | 45 |  | 6 |  |
| 16 | 9.72743 | 20 | 9.80028 | 28 | 0.19972 | 9.92715 | $8$ | 44 |  |  |  |
| 17 | 9.72763 | 20 | 9.80056 | 28 | 0.19944 | 9.92707 | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ | 43 |  | 3 |  |
| 18 | 9.72783 | 20 | 9.80084 | 28 28 | 0.19916 | 9.92699 |  | 42 |  | 9. |  |
| 19 | 972803 | 20 | 9.80112 | 28 28 | 0.19888 | 992691 | 8 | 41 |  | 4.5 |  |
| 20 | 9.72823 |  | 9.80140 |  | 0.19 860 | 9.92683 |  | 40 |  | 9 |  |
| 21 | 9.72843 | 20 | 9.80168 | 28 | 0.19832 | 9.92675 | 8 | 39 |  | 13.5 |  |
| 22 | 9.72863 | 20 | 9.80195 | 27 | 0.19805 | 992667 | 8 | 38 |  | 18. |  |
| 23 | 9.72883 | 20 | 9.80223 | 28 | 0.19777 | 9.92659 | 8 | 37 |  | \| 22. |  |
| 24 | 9.72902 | 19 | 9.80251 | 28 | 0. 19749 | 9.92651 | 8 | 36 |  |  |  |
| 25 | 972922 |  | 9.80279 | 28 | 0.19721 | 992643 |  | 35 |  |  |  |
| 26 | 9.729 .12 | 20 | 9.80307 | 28 | 0.19693 | 9.92635 | 8 | 34 |  | 21 |  |
| 27 | 9.72962 | 20 | 9.80335 | 28 | 0.19 665 | 9.92627 | 8 | 33 | 6 | 2.1 | 2.0 |
| 28 | 9.72982 | 20 | 9.80363 | 28 | -.19 637 | 9.92619 | 8 | 32 | 7 | 2.5 | 2.3 |
| 29 | 9.73002 | 20 | 9.80391 | 28 | - 19609 | 9.92611 |  | 31 | 8 | 2.8 | 2.7 |
| 30 | 9.73022 | 20 | 9.80419 | 28 | 0.19581 | 9.92603 |  | 30 | 9 | 3.2 | 3.0 |
| 31 | 9.7304 I | 19 | 9.80447 | 28 | -. 19553 | 992595 | 8 | 29 |  | 3.5 | 3.3 |
| 32 | 9.73 06I | 20 | 9.80474 | 27 28 | -. 19526 | 992587 | 8 | 28 |  | 7.0 | 6.7 |
| 33 | 973 08I | 20 | 9.80502 | 28 | 0.19498 | 992579 | 8 | 27 |  | 10.5 | 10.0 |
| 34 | 9.73 101 | 20 | $9.80 \quad 530$ | 28 | -19470 | 992571 | 8 | 26 |  | $4{ }^{\circ}$ | 13.3 |
|  | 9.73121 |  | 9.80558 | 28 | - 19442 | 9.92563 |  | 25 |  |  | 16.7 |
| 36 | 9.73140 | 19 | 9.80586 | 28 | 0.19414 | 9.92555 | 8 | 24 |  |  |  |
| 37 | 9.73160 | 20 | 9.80614 | 28 | 0.19386 | 9.92546 | 8 | 23 |  |  |  |
| 38 | 9.73180 | 20 | 980642 | 28 | -. 19358 | 992538 | 8 | 22 |  | 19 | 9 |
| 39 | 9.73200 | 20 | 9.80669 | 27 | 0.19331 | 992530 |  | 21 | 6 | 1.9 | 0.9 |
| 40 | 973219 | 20 | 9.80697 | 28 | 0.19303 | 992522 |  | 20 | 8 | 2.2 |  |
| 41 | 9.73239 | 20 | 9.80725 | 28 | 0.19 275 | 992514 | 8 | 19 | 8 | 25 |  |
| 42 | 9.73259 | 20 | 9.80753 | 28 28 | - 19 247 | 992506 | 8 | 18 | 9 | 29 | 1.4 |
| 43 | 9.73278 | 19 | 9.80781 | 28 | 0.19219 | 9.92498 | 8 | 17 | 10 | 32 | 1.5 |
| 44 | 973298 | 20 | 9.80808 | 27 | -.19 192 | 9.92490 | 8 | 16 |  | 6.3 | 3.0 |
| 45 | 973318 |  | 9.80836 | 28 | -.19 164 | 992482 |  | 15 |  | 95 12.7 | 4.5 6.0 |
| 46 | 9.73337 | 19 20 | 9.8086 | 28 | - 19136 | 992473 | $\begin{aligned} & 9 \\ & 8 \end{aligned}$ | 14 |  | 15.8 |  |
| 47 | 9.73357 | 20 | 980892 | 28 | -.19 108 | 9.92465 | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ | 13 |  |  |  |
| 48 | 9.73377 | 20 | 9.80919 | 27 28 | 0.19081 | 9.92457 | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ | 12 |  |  |  |
| 49 | 9.73 .395 | 19 | 980947 | 28 | 0.19053 | 9.92449 | 8 | II |  |  |  |
| 50 | 9.73410 |  | 9.80975 |  | 0.19025 | 9.9244 I |  | 10 |  |  | 7 |
| 5 L | 9.73435 | 19 | 9.81003 | 28 | 0.18997 | 9.92433 | 8 |  | 6 | 0.8 | 0.7 |
| 52 | 9.73455 | 20 | 9.81030 | 27 28 | 0.18970 | 9.92425 | 8 | 8 | 7 | 0.9 | 0.8 |
| 53 | 9.73474 | 19 | 9.8x 058 | 28 | 0.189 .42 | 9.92416 | 9 | 7 | 8 | 1.1 | 0.9 |
| 54 | 9.73494 | 20 | 9.81086 | 28 | 0.18914 | 992408 | 8 | 6 | 9 | 1.2 | 1.I |
|  | 9.73513 | 19 | 9.81 113 |  | 0.18887 | 9.92400 | 8 | 5 |  | 1.3 | 1.2 |
| 56 | 9.73533 | 20 | 9.81 141 | 28 | 0.18859 | 992392 |  | 4 |  |  |  |
| 57 | 9.73552 | 19 | 9.81169 | 28 | 0.18831 | 9.92384 | 8 | 3 | 40 | 4.0 | 3.5 |
| 58 | 9.73572 | 20 | 9.81196 | 27 | 0.18804 | 9.92376 | 9 | 2 |  |  |  |
| 59 | 9.73591 | 19 | 9.81224 | 28 | 0.18776 | 9.92367 | 8 | 1 |  |  |  |
| 60 | 9.73 6II |  | 9.8x 252 |  | 0.18748 | 9.92359 |  | 0 |  |  |  |
|  | K. Cos. | d. | L. Cotg. | c. d. | L. Tang. | H. Sin. | d. | ¢ | Pro | p. $\mathbf{P}$ | ts. |






| $\ell$ | L. Sin. | d. | L.'Tang. | c. d. | L. Cotg. | L. Cos. | d. |  | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $9.7794^{6}$ | $\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 16 \\ & 17 \end{aligned}$ | 9.87711 | $\begin{aligned} & 27 \\ & 26 \\ & 26 \\ & 27 \\ & 26 \end{aligned}$ | 0.12289 | 9.90235 | $\begin{array}{r} 10 \\ 9 \\ 10 \\ 9 \\ 90 \end{array}$ | 60 | 6 27 |
| $\underline{1}$ | 9.77963 |  | 9.87738 |  | 0.12262 | $9.90225$ |  | $59$ |  |
| 2 | 9.77980 |  | 9.87764 |  | 0.12236 | 9.90216 |  | 58 57 |  |
| 3 | 9.77997 |  | 9.87790 9.87817 |  | 0.12210 0.12183 | 9.90206 9.90197 |  | $\begin{aligned} & 57 \\ & 56 \end{aligned}$ |  |
| 4 | 9.78013 |  | 9.87817 |  | 0.12183 |  |  |  |  |
| 5 | 9.78030 |  | 9.87843 | 26 | 0.12157 | 9.90187 | $9$ | 55 | 8 |
| 6 | 9.78047 | 17 16 | 9.87869 |  | 0.12131 | 9.90178 |  | 54 | 9 4.1 <br> 10 4.5 |
| 7 | 9.78063 | 17 | 9.87895 | 26 | 0.12105 | 9.90168 |  | 53 |  |
| 8 | 9.78080 | 17 17 | 9.87922 9.87948 | 27 | 0.12078 0.12052 | 9.90159 9.90 I49 | 10 | 52 51 | 3013. |
| 9 | 9.78097 | 17 16 | 9.87948 |  | 0.12052 | 9.90149 | 10 | 51 |  |
| 10 | 9.78 II3 |  | 9.87974 9.88000 | 26 | 0.12000 | 9.90139 9.90 I30 | 10910 | 49 | 40 <br> 50 |
| 11 | 9.78 130 | 17 | 9.88000 9.88027 |  |  | 9.90130 |  |  | $50 \mid 22.5$ |
| 12 | 9.78 I47 | 17 | 9.88027 9.88053 | 26 | 0.11973 | 9.90120 |  | 48 |  |
| 13 | 9.78 I63 | 17 | 9.88053 9.88079 |  | $\begin{aligned} & 0.11947 \\ & 0.11921 \end{aligned}$ | $\begin{aligned} & 9.90 \text { III } \\ & 990 \text { IOI } \end{aligned}$ |  | 47 |  |
| 14 | 978180 | 17 | 9.88079 |  |  |  |  |  | 26 |
| 15 | 9.78197 | x 6 | 9.88105 | 26 | 011895 | 9.90091 | 10 | 45 | 6 |
| 16 | 9.78213 | 17 | 9.88 13I | 26 | 0.11869 | $990082$ | $\begin{gathered} 9 \\ 10 \end{gathered}$ | 44 | 7 |
| 17 | 9.78230 | 17 16 | 9.88158 |  | O.II 8420.110.15 | 9.90072 | $\begin{array}{r} 10 \\ 9 \\ 10 \end{array}$ | 43 | 8 3.5 |
| 18 | 9.78246 | 16 17 | 9.88 I84 | 26 |  | $\begin{aligned} & 990063 \\ & 990053 \end{aligned}$ |  | 42 | $9 \quad 3.9$ |
| 19 | 9.78263 | 17 17 | 9.88210 |  | 0.11790 |  | 10 | 4 I | 10 4.3 |
| 20 | 9.78280 | 16 | 9.88236 | 26 |  | $\begin{aligned} & 990043 \\ & 990034 \end{aligned}$ | 10 | 40 | 2088 |
| 21 | 9.78296 | 16 | 9.88262 |  | $\begin{aligned} & 0.11764 \\ & \text { O.II } 73^{8} \end{aligned}$ |  | $\begin{array}{r} 9 \\ 10 \end{array}$ | 39 | 30 13.0 <br> 40 17.3 |
| 22 | 9.78313 | 17 16 | 9.88289 | 2726 | 0.117110.11685 | 990024 | $10$ | 38 | 40 17.3 <br> 50 21.7 |
| 23 | 9.78329 | 16 17 | 9.8835 |  |  | $\begin{array}{r} 9.90014 \\ 990005 \\ \hline \end{array}$ |  | 3736 |  |
| 24 | 978346 | 17 16 | 988341 | 26 | $\begin{array}{r} 011685 \\ 0.11659 \end{array}$ |  | $9$ |  | $50 \mid 21.7$ |
| 25 | 9.78362 | 16 | 9.88367 | 26 | 0.11633 | 989995 | 10 | 35 | ${ }^{17}$ |
| 26 | 9.78379 | 17 16 | 9.88393 | 26 | 0.115607 0.11580 | 9.89985 | 10 | 34 |  |
| 27 | 9.78395 | 16 17 | 9.88420 |  | $\begin{aligned} & 0.11580 \\ & 0.11554 \end{aligned}$ | $\begin{aligned} & 9.89976 \\ & 989966 \end{aligned}$ | 91010 | 333231 | 6 1.7 |
| 28 | 978412 | 17 16 | 9.88446 |  |  |  |  |  | 7 |
| 29 | 978428 | 16 | 9.88472 | 26 | 0.11528 | 9.89956 |  |  | 8 2.3 <br> 9 2.6 |
| 30 | $9.7844 \overline{5}$ | 17 16 | 9.88498 | 26 | 0.11502 | 9.89947 | 9 10 | 30 | 10.8 |
| 31 | 9.7846 I | 16 | 9.88524 |  | $\begin{aligned} & 0.1147^{6} \\ & 0.11450 \end{aligned}$ | $\begin{aligned} & 989937 \\ & 080977 \end{aligned}$ | 10 |  | 20.7 |
| 32 | 9.78478 | 17 16 | 9.88550 |  |  |  | $\begin{array}{r} 9 \\ \text { ro } \end{array}$ | $28$ | 30 8.5 |
| 33 | 9.78494 <br> 9785 t | 16 16 | 988577 |  | $0.11423$ | 9.89918 <br> 989908 |  | $\begin{aligned} & 27 \\ & 26 \end{aligned}$ | 4011.3 |
| 34 | 9785 n | 17 | 9.88603 |  | O.II 397 |  |  |  | 5014. |
| 35 | 978527 |  | 9.88629 | 26 | $\begin{aligned} & \text { O.II } 371 \\ & \text { O.II } 345 \end{aligned}$ | 9.898989.89888 | 10 | 25 |  |
| 36 | 978543 | 16 | 9.88655 |  |  |  | 10 | 24 | 2 |
| 37 | 9.78560 | 17 16 | 9.88 681 | 262626 | 011319 <br> 0.11293 | 9.898799.89869 | $\begin{aligned} & 9 \\ & \text { xo } \\ & \text { 10 } \end{aligned}$ | 23 |  |
| $3^{8}$ | 978576 | 16 | 9.88707 |  |  |  |  | 22 | 6 1. 6 |
| 39 | 9.78592 | 16 | 9.88733 | 2626 | 0.11267 | 9.89859 |  | 21 |  |
| 10 | 9.78609 | 16 | 9.88759 |  | 0.11241 | 9.89849 |  | 20 | 7 |
| 41 | 9.78625 | 16 | 9.88786 | 27 | $\begin{aligned} & \text { O.II } 214 \\ & \text { O.II } 1888 \end{aligned}$ | $\begin{aligned} & 9.89840 \\ & 9.89830 \end{aligned}$ | so | 18 | 9 a |
| 42 | 9.78642 | 17 16 | 988812 | 26 |  |  |  |  | 10 2.7 |
| 43 | 9.78658 | 16 | 9.88838 |  | 0.11 0.11 162 0.11 136 | $\begin{aligned} & 9.89820 \\ & 9.89810 \end{aligned}$ | 10 | 1716 | (1) $\begin{aligned} & 2.7 \\ & 5.3 \\ & 8.0\end{aligned}$ |
| 4.4 | 978674 | 16 | 9.88864 | 26 | 0.11136 |  |  |  |  |
| 45 | 978691 | 16 | 9.88890 | 26 | O.II 110 | 9.89801 |  | 15 | 40 |
| 46 | 9.78707 | 16 | 9.88916 | 26 | 0.11084 | 9.89791 | 10 | 14 | 5015 |
| 47 | 978723 | 16 | 9.88942 988968 | 26 | 0.11058 | 9.8978 I | 10 | 13 12 |  |
| 48 | 9.78739 | 16 | 988968 | 26 | 0.11032 | 9.89771 | 10 | 12 |  |
| 49 | 978756 | 17 16 | 9.88994 | 26 | 0.11006 | 9.89761 | 10 | II |  |
| 50 | 9.78772 | 16 | 9.89020 | 26 | 0.10980 | 989752 |  | 10 | 6 6 1.0 |
| 51 | 9.78788 | 16 | 9.89046 | 26 | 0.10954 | 9.89742 |  | 9 | 7 I .2 I .1 |
| 52 | 978805 | 17 | 9.89073 | 27 | 0.10927 | 9.89732 | 10 | 8 | 8 1.2 1.2 |
| 53 | 9.78821 | 16 | 9.89099 | 26 | 0.10901 | 9.89722 | 10 | 7 | 9 1.5 1.4 |
| 54 | 9.78837 | 16 | 989125 | 26 | 0.10875 | 989712 | 10 | 6 |  |
| 55 | 9.78853 | 16 | 9.89 I 5 I | 26 | 0.10 849 | 9.89702 |  | 5 | 20 3.3 3.0 |
| 56 | 9.78869 | 17 | 9.89177 | 26 | 0 10 823 | 9.89693 | 1 | 4 | 30 5.0 4.5 |
| 57 | 9.78886 | 17 16 | 9.89203 | 26 | 0.10797 | 9.89683 | 0 | 3 | 40 6.7 6.0 |
| 58 | 9.78902 | 16 | 9.89229 | 26 | 0.10771 | 989673 | 10 | 2 | 50\|8.3 7.5 |
| 59 | 978918 | 16 | 989255 |  | 0.10745 | 9.89663 | 10 |  |  |
| 60 | 978934 |  | 9.8928 r |  | 0.10719 | 9.89653 |  | 0 |  |
|  | L. Cos. | d. | L. Cotg | c. d | L. Tang. | L. Sin. | d. | $\gamma$ | Prop. Pts. |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ¢ \& 1. Sin. \& d. \& L. 'Tang. \& c. d. \& L. Cotg. \& L. Cos. \& d. \& \& \multicolumn{3}{|l|}{Prop. Pts.} <br>
\hline 0 \& 9.78934 \& 16 \& 9.89 281 \& \& 0.10719 \& 9.89653 \& \& 60 \& \& \& <br>
\hline 1 \& 9.78950 \& 16 \& 9.89307 \& 26 \& 0.10693 \& 9.89643 \& 10 \& 59 \& \& \& <br>
\hline 2 \& 9.78967 \& 17
16 \& 9.89333 \& 26 \& 0.10667 \& 9.89633 \& 10 \& 58 \& \& \& <br>
\hline 3 \& 9.78983 \& 16
16 \& 9.89359 \& 26
26 \& 0.10641 \& 9.89624 \& 9 \& 57 \& 6 \& 2.6 \& 2.5 <br>
\hline 4 \& 9.78999 \& 16 \& 9.89385 \& 26 \& 0.10615 \& \& 10 \& 56 \& 7 \& 30 \& <br>
\hline 6 \& 9.79015 \& 16 \& 9.8941 I \& 26 \& 0.10589 \& 9.89604 \& \& 55 \& 8 \& 3.5 \& 33 <br>
\hline 6 \& 9.7903 I \& 16 \& 9.89437 \& 26 \& 0.10563 \& 9.89594 \& 10 \& 54 \& 9 \& 39 \& <br>
\hline 7 \& 9.79047 \& 16
16 \& 9.89463 \& 26 \& 0.10 537 \& 9.89584 \& 10 \& 53 \& 10 \& $4 \cdot 3$ \& <br>
\hline 8 \& 9.79063 \& 16 \& 9.89489 \& 26
26 \& 0.10511 \& 9.89574 \& 10 \& 52 \& \& 8.7 \& 8.3 <br>
\hline 9 \& 9.79079 \& 16 \& 9.89515 \& 26 \& 0.10485 \& 9.89564 \& 10 \& 51 \& \& 13.0 \& 12.5 <br>
\hline 10 \& 9.79095 \& 16 \& 9.8954 I \& 26 \& 0.10459 \& 9.89554 \& 10 \& 50 \& \& 17.3 \& 16.7 <br>
\hline 11 \& 9.79 III \& 17 \& 989567 \& 26 \& 0.10 433 \& 9.89544 \& 10 \& 49 \& \& 21.7 \& 20.8 <br>
\hline 12 \& 9.79128 \& 17
16 \& 9.89593 \& 26 \& 0.10407 \& 9.89534 \& 10 \& 48 \& \& \& <br>
\hline 13 \& 9.79144 \& 16 \& 9.89619 \& 26 \& $0.103^{81}$ \& 989524 \& 10 \& 47 \& \& \& <br>
\hline 14 \& 9.79160 \& 16 \& 989645 \& 26 \& 0.10355 \& 989514 \& 10 \& 46 \& \& \& <br>
\hline 15 \& 9.79176 \& 16 \& 989671 \& 26 \& 0.10329 \& 9.89504 \& 10 \& 45 \& \& 6 \& <br>
\hline 16 \& 9.79192 \& 16 \& 9.89697 \& 26 \& 0.10303 \& 989495 \& 10 \& 44 \& \& 7 \& . 0 <br>
\hline 17 \& 9.79208 \& 16 \& 9.89723 \& 26 \& - 10277 \& 989485 \& 10 \& 43 \& \& 8 \& . 3 <br>
\hline 18 \& 9.79224 \& 16
16 \& 9.89749 \& 26 \& 0.10251 \& 9.89475 \& 10 \& 42 \& \& 9 \& . 6 <br>
\hline 19 \& 979240 \& 16 \& 9.89775 \& 26 \& 0.10 225 \& 989465 \& 10 \& 4 I \& \& 0 \& . 8 <br>
\hline 20 \& 9.79256 \& \& 9.89801 \& \& 0.10 199 \& $9.8945 \overline{5}$ \& \& 40 \& \& 0 \& . 7 <br>
\hline 21 \& 979272 \& 126 \& 989827 \& 26 \& 0.10 173 \& 9.89445 \& 10 \& 39 \& \& 0 \& . 5 <br>
\hline 22 \& 9.79288 \& 16 \& 9.89853 \& 26 \& 0.10147 \& 9.89435 \& 10 \& 38 \& \& II \& <br>
\hline 23 \& 9.79304 \& 16 \& 9.89879 \& 26 \& 0.10121 \& 9.89425 \& 10 \& 37 \& \& 14 \& <br>
\hline 24 \& 9.79319 \& 15 \& 9.89905 \& 26 \& 0.10095 \& . 989415 \& 10 \& 36 \& \& \& <br>
\hline 25 \& 9.79335 \& 16 \& 9.89931 \& 26 \& 0.10069 \& $9.8940 \overline{5}$ \& \& 35 \& \& \& <br>
\hline 26 \& 9.79351 \& 16 \& 9.89957 \& 26 \& 0.10043 \& 9.89395 \& 10 \& 34 \& \& 16 \& <br>
\hline 27 \& 9.79367 \& 16 \& 9.89983 \& 26 \& 0.10017 \& 989385 \& 10 \& 33 \& \& 16 \& 1.5 <br>
\hline 28 \& 9.79383 \& 16 \& 9.90009 \& 26 \& 0.09991 \& 9.89375 \& 10 \& 32 \& \& 1.9 \& 1.8 <br>
\hline 29 \& 9.79399 \& 16

16 \& 9.90035 \& 26 \& 0.09965 \& 9.89364 \& 11 \& 31 \& 8 \& 2.1 \& 2.0 <br>
\hline 30 \& 9.79 415 \& \& 9.90061 \& \& 0.09939 \& 9.89354 \& 10 \& 30 \& \& 2.4 \& 2.3 <br>
\hline 31 \& 9.7943 x \& 16 \& 9.90086 \& 25 \& 0.09914 \& 9.89344 \& 10 \& 29 \& \& 2.7 \& 2.5 <br>
\hline 32 \& 9.79447 \& 16 \& 9.90112 \& 26 \& 0.09 888 \& 9.89334 \& 10 \& 28 \& \& 5.3 \& 5.0 <br>
\hline 33 \& 9.79463 \& 16 \& 9.90138 \& 26 \& 0.09 862 \& 989324 \& 10 \& 27 \& 30 \& 8.0 \& 7.5 <br>
\hline 34 \& 9.79478 \& 15
16 \& 9.90164 \& 26 \& -09836 \& 9.89314 \& 10 \& 26 \& \& 10.7 \& 10.0 <br>
\hline 35 \& 9.79494 . \& 16 \& 9.90190 \& \& 0.09810 \& 989304 \& \& 25 \& \& 13.3 \& 12.5 <br>
\hline 36 \& 9.79510 \& 16 \& 9.90216 \& 26 \& 0.09784 \& 9.89294 \& \& 24 \& \& \& <br>
\hline 37 \& 9.79526 \& 16 \& 9.90242 \& 26 \& 0.09758 \& 989284 \& 10 \& 23 \& \& \& <br>
\hline 38 \& 9.79342 \& 16 \& 9.90268 \& 26 \& 0.09732 \& 9.89274 \& 10 \& 22 \& \& ${ }^{11}$ \& <br>
\hline 39 \& 9.79558 \& 16 \& 9.90294 \& 26 \& 0.09706 \& 989264 \& 10 \& 21 \& \& \& <br>
\hline 40 \& 9.79573 \& 15 \& 9.90320 \& \& 0.09680 \& 989254 \& 10 \& 20 \& \& \& <br>
\hline 4 I \& 9.79589 \& 16 \& 9.90346 \& 26 \& 0.09654 \& 989244 \& 10 \& 19 \& \& \& <br>
\hline 42 \& 9.79605 \& 16 \& 990371 \& 25 \& 0.09629 \& 9.89233 \& 11 \& 18 \& \&  \& <br>
\hline 43 \& 9.79621 \& 16 \& 990397 \& 26 \& 0.09603 \& 989223 \& 10 \& 17 \& \& O 1.8 \& <br>
\hline ' 44 \& 9.79636 \& 15 \& 9.90423 \& 26 \& -0.09 577 \& 9.89213 \& 10 \& 16 \& \& \& <br>
\hline 45 \& 9.79652 \& 16 \& 9.90449 \& 26 \& 0.09551 \& 9.89203 \& \& 15 \& \& 7.3 \& <br>
\hline 46 \& 9.79668 \& 16 \& 990475 \& 26 \& 0.09525 \& 989193 \& 10 \& 14 \& \& O 9.2 \& <br>
\hline 47 \& 9.79684 \& 16 \& 9.90501 \& 26 \& 0.09499 \& 9.89183 \& 10 \& 13 \& \& \& <br>
\hline 48 \& 9.79699 \& 15
16 \& 9.90527 \& 26 \& 0.09473 \& 9.89173 \& 10 \& 12 \& \& \& <br>
\hline 49 \& 9.79715 \& 16 \& 990553 \& 26 \& 0.09447 \& 989162 \& 11 \& II \& \& \& <br>
\hline 50 \& 9.79731 \& \& 9.90578 \& 26 \& \& \& \& 10 \& \& \& <br>
\hline 51 \& 9.79746 \& 15
16 \& 990604 \& 26 \& 0.09396 \& 9.89142 \& 10 \& 9 \& 7 \& 1.0 \& 0.9
1.1 <br>
\hline 52 \& 979762 \& 16 \& 9.90630 \& 26
26 \& 0.09370 \& 9.89132 \& 10 \& 8 \& 8 \& 1.2
1.3 \& <br>
\hline 53 \& 9.79778 \& 16 \& 990656 \& 26 \& 0.09344 \& 9.89122 \& 10 \& 7 \& \& 1.5 \& <br>
\hline 54 \& 9.79793 \& 15
16 \& 9.90682 \& 26
26 \& 0.09318 \& 9.89112 \& 10 \& 6 \& 19 \& 1.7
1.7 \& 1. 5 <br>
\hline 55 \& 9.79809 \& 16 \& 9.90708 \& 26 \& 0.09292 \& 9.89 IOI \& \& 5 \& 20 \& 3.3 \& 3 <br>
\hline 56 \& 9.79825
97985 \& 16
15 \& 9.90734 \& 26 \& 0.09266 \& 9.89091 \& 10 \& \& 30 \& 5.0 \& 4 <br>
\hline 57 \& 979840
9.79856 \& 15
16 \& 990759 \& 25
26 \& 0.09241 \& 9.89081 \& 10 \& 3 \& \& 6.7 \& 6.0 <br>
\hline 58 \& 9.79856
9.79872 \& 16
16 \& 9.90785
99085 \& 26 \& 0.09215 \& 9.89071 \& 15 \& 2 \& \& 8.3 \& <br>
\hline 59 \& 9.79872 \& 16 \& 990811 \& 26 \& 0.09189 \& 9.89060 \& \& 1 \& \& \& <br>
\hline 60 \& 9.79887 \& \& 9.90837 \& \& 0.09163 \& 9.89050 \& \& 0 \& \& \& <br>
\hline \& L. Cos. \& d. \& L. Cotg. \& c. d. \& L. Tang. \& L. Sin. \& d. \& $\digamma$ \& Pro \& p. P \& Pts. <br>
\hline
\end{tabular}

$39^{\circ}$

| 1 | L. Sin. | d. | L.Tang. | c. d. | L. Cotg. | L. Cos. | d. |  | Prop. Pte. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.79887 |  | 9.90837 |  | 0.09163 | 9.89050 |  | 60 |  |
| 1 | 9.79903 | 16 | 9.90863 | 26 | 0.09137 | $9.89040$ | 10 | 59 |  |
| 2 | 9.79918 9.79934 | 15 16 | 9.90889 | 26 | 0.09 1111 | 989030 989020 | 10 | 58 | ${ }^{6}{ }^{26}$ |
| 3 <br> 4 | 9.79934 9.79950 | 16 | 9.90914 9.90940 | 25 | 0.09086 <br> 0.09 <br> 0.060 | 989020 9.89009 | 12 | 57 56 | 6.2 .6 |
| 5 | 9.79965 | 15 | 9.90966 | 26 | 0.09034 | 9.88999 |  | 55 | 7 3.0 <br> 8 3.5 |
| 6 | 979 981 | 16 | 990992 | 26 | 0.09008 | 9.88989 | 10 | 54 | 93.9 |
| 7 | 9.79996 980012 | 15 16 | 9.91018 | 26 | 0.08982 | 9.88978 | 10 | 53 | 1084.3 |
| 8 | 980012 | 16 | 991043 | 25 26 | 0.08957 | 988968 | 10 | 52 | 2088 |
| 9 | 9.80027 | 15 16 | 9.91069 | 26 | 0.08931 | 988958 | 10 | 5 I | 3013.0 |
| 10 | 9.80043 |  | 991095 | 26 | 0.08905 | 9.88948 | 10 | 50 | 40 |
| 11 | 9.80058 | 15 16 | 991121 | 26 | 0.08879 | 9.88937 | 10 | 49 | 50121.7 |
| 12 | 9.80074 | 15 | 9.91147 | 26 | 0.08853 | 9.88927 | 10 | 48 |  |
| 13 | 9.80089 | 15 | 9.91172 | 25 | 0.08828 | 9.88917 | 12 | 47 |  |
| 14 | 9.80105 | 16 | 9.91198 | 26 | 0.08802 | 9.88 906 | 11 | 46 | 25 |
| 15 | 9.80120 | 16 | 9.9122 .4 | 26 | 0.08776 | 9.88896 |  | 45 | $6{ }^{6} 2.5$ |
| 16 | 9.80136 | 15 | 991250 | 26 | 0.08750 | 988886 | 11 | 44 | 7 2.9 |
| 17 | 9.80151 | 15 $\times 5$ | 9.91276 | 26 | 0.08724 | 988875 | 11 | 43 | 8 3.3 |
| 18 | 9.80166 | 15 16 | 991301 | 25 | 0.08699 | 9.88865 | 10 | 42 | $9{ }^{9} 3.8$ |
| 19 | 9.80182 | 16 15 | 9.91327 | 26 | 0.08673 | 9.88855 | 10 | 41 | 10.4 .2 |
| 20 | 9.80197 | 16 | 9.91353 | 26 | 008647 | 988844 |  | 40 | 208.3 |
| 21 | 9.80213 | 16 | 9.91379 | 26 | 0.08621 | 9.88834 | 10 | 39 | 30 12.5 <br> 40 16.7 |
| 22 | 9.80228 | 15 16 | 9.9140 | 25 26 | 0.08596 | 988824 | 10 | 38 | 40 16.7 <br> 50 20.8 |
| 23 | 9.80244 | 16 15 | 9.91 430 | 26 | 008570 | 9.88813 | 110 | 37 | 50 20.8 |
| $2+$ | 9.80259 | 15 | 9.91456 | 26 | 0.08544 | 988803 | 10 | 36 |  |
| 25 | 9.80274 | 16 | 9.91482 |  | 0.08518 | 988793 | 11 | 35 |  |
| 26 | 9.80290 | 16 15 | 9.91507 | 25 26 | 0.08493 | 9.88782 | 11 | 34 | 16 |
| 27 | 9.80305 | 15 | 9.91533 | 26 26 | 0.08467 | 9.88772 | 10 | 33 | $6{ }^{6}$ 1.6 |
| 28 | 980320 | 15 16 | 9.91559 | 26 | 0.08441 | 988761 | 11 | 32 | 781.9 |
| 29 | 9.8c 336 | 16 | 991585 | 26 | 0.08415 | 9.88751 | 10 | 31 | 8 2.1 |
| 30 | 9.80351 | 15 | 9.91 6ro | 26 | 0.08390 | 9.88741 |  | 30 | 9 2.4 <br> 0 2.7 |
| 31 | 9.80366 | 15 16 | 9.91636 | 26 | $0.0^{9} 364$ | 9.88730 | 118 | 39 | 10 2.7 <br> 20 5.3 |
| 32 | 9.80382 | 16 | 9.91662 | 26 26 | - 8338 | 988720 | 10 | 28 | 20 5.3 <br> 30 8.0 |
| 33 | 9.80397 | 15 15 | 9.91688 | 25 | c. 08312 | 9.88709 | II | 27 |  |
| 34 | 9.80412 | 15 16 | 9.91713 | 25 | 0.08287 | 9.88699 | 10 | 26 | 50 13.3 |
| 35 | 9.80428 | 15 | 9.91739 | 26 | 008261 | 9.88688 | 10 | 25 |  |
| 36 | 9.80443 | 15 | 9.91765 | 26 | 008235 | 9.88678 | 10 | 24 |  |
| 37 | 980458 | 15 | 9.91791 | 26 | 0.08209 | 988668 | 10 | 23 |  |
| 38 | 980473 | 15 16 | 9.91816 | 25 | 0.0818 .4 | 988657 | 110 | 22 | 15 |
| 39 | 9.80489 | 16 | 9.91842 | 26 26 | 0.08158 | 9.88647 | 10 | 21 | 6 I.5 |
| 40 | 9.80504 | 15 | 9.91868 |  | 0.08132 | 9.88636 | 12 | 20 | 7 1.8 <br> 8 2.0 |
| 41 | 980519 | 15 15 | 9.91893 | 25 | 0.08107 | 988626 | 10 | 19 | 8 2.0 <br> 9 2.3 |
| 42 | 9.80534 | 15 16 | 9.91919 | 26 26 | 0.08081 | 9.88615 | 11 | 18 |  |
| 43 | 980550 | 16 | 991945 | 26 | 0.08055 | 9.88605 | 10 | 17 16 | 20 5.0 |
| 44 | 9.80565 | 15 | 991971 | 26 | 0.08029 | 9.88594 | 11 | 16 | 20 5.0 <br> 30 7.5 |
| 45 | 9.80580 | 15 | 9.91996 | 26 | 008004 | 988584 | 11 | 15 | 40 10.0 |
| 46 | 9.80595 | 15 15 | 9.92022 | 26 26 | 0.07978 | 9.88573 | 110 | 14 | 5012.5 |
| 47 | 9.80610 | 15 15 | 9.92048 | 26 | 0.07952 | 9.88563 | 10 | 13 |  |
| 48 | 9.80625 | 15 16 | 9.92073 | 25 26 | 0.07927 | 988552 | II | 12 |  |
| 49 | 9.80641 | 16 | 9.92099 | 26 26 | 0.07901 | 9.88542 | 10 | 11 |  |
| 50 | 9.80656 | 15 | 9.92125 |  | 0.07875 | 9.8853 I | 10 | 10 |  |
| 51 | 9.80671 | 15 | 9.92150 | 25 26 | 0.07850 | 9.88521 | 11 | 9 | 7 1.1 1.0 <br> 7 1.3 1.2 |
| 52 | 9.80686 | 15 $\times 5$ | 9.92176 | 26 | 0.07824 | 9.88510 | 12 | 8 | 88 |
| 53 | 9.80701 | 15 15 | 9.92202 | 25 | 0.07798 | 9.88499 | 110 | 7 |    <br> 9 1.7 1.5 |
| 54 | 9.80716 | 15 | 9.92227 | 25 26 | 0.07773 | 9.88489 | 111 | 6 | 9 1.7 1.5 <br> 10 1.8 1.7 |
| 55 | 9.80731 |  | 9.92253 | 26 | 0.07747 | 9.88478 <br> 988 <br> 888 | Io | 5 | 20 3.7 3.3 |
| 56 | 9.80746 | 15 16 | 9.92279 | 25 | 0.07721 | 9.88468 9.88457 | $\begin{aligned} & \text { IO } \\ & \text { In } \end{aligned}$ | 4 | 30 |
| 57 | 9.80762 | 16 15 | 992304 992330 | 25 26 | 0.07696 | 9.88457 | $\begin{aligned} & \text { II } \\ & 10 \end{aligned}$ | 3 | 40 7.3 6.7 |
| 58 .59 | 9.80777 9.80792 | 16 75 75 | $\begin{aligned} & 992330 \\ & 9.92356 \end{aligned}$ | 26 | 0.07670 0.07644 | $\begin{aligned} & 9.88447 \\ & 9.88436 \end{aligned}$ | 11 | 2 1 |  |
| 60 | 9.80807 | 15 | 992381 | 25 | 007619 | 9.88425 | 12 | 0 |  |
|  | L. Cos. | d. | L. Coter. | c. d. | L.Tang. | L. Sin. | d. | 7 | Prop. Pts. |


| $\prime$ | L. Sin. | d. | L. Tang. | c. d. | L. Cotge | L. Cos. | d. |  | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.80807 |  | 9.92381 |  | 0.07619 | 9.88425 |  |  |  |
| 1 | 9.80822 | 15 | 9.92407 | 26 | 0.07593 | 9.88415 | 12 | 59 |  |
| 2 | 9.80837 | 15 | 9.92433 | 26 | 0.07567 | 9.88404 | 118 | 58 |  |
| 3 | 980852 | 15 15 | 9.92458 | 25 26 | 0.07542 | 9.88394 | 11 | 57 | $6 \quad 2.6$ |
| 4 | 9.80867 | 15 | $9.924^{8}+$ | 26 | 0.07516 | $9.88 \quad 383$ | 11 |  | 780 |
| 5 | 9.80882 |  | 9.92510 |  | 0.07490 | 9.88372 | 10 | 55 | 8 3.5 |
| 6 | 9.80897 | 15 15 | 992535 | 25 26 | 0.07465 | 9.88362 | 11 | 54 | $9 \quad 3.9$ |
| 7 | 9.80912 | 15 15 | 9.92561 | 26 26 | 0.07439 | 9.88351 | II | 53 | 10.43 |
| 8 | 9.80927 | 15 | 9.92587 | 26 | 0.07413 | 9.88340 | 10 | 52 | 208.7 |
| 9 | 9.80942 | 15 | 992612 | 25 26 | 0.07388 | 9.88330 | 10 | 51 | 3013.0 |
| 10 | 9.80957 | 15 | 9.92638 |  | 0.07362 | 9.88319 |  | 50 | 40 |
| 112 | 9.80972 | 15 | 992663 | 25 | 0.07337 | 9.88308 | 11 | 49 | $50 \mid 21.7$ |
| 12 | 9.80987 | 15 | 9.92689 | 26 | 0.07311 | 9.88298 | 10 | 48 |  |
| 13 | 9.81002 | 15 | 9.92715 | 26 | 0.07285 | 9.88287 | 11 | 47 |  |
| 14 | 9.81 017 | 15 | 992740 | 25 26 | 0.07260 | 988276 | 11 | 46 | 25 |
| 15 | 9.81032 | 15 | 992766 |  | 0.07234 | 9.88266 |  | 45 | $6{ }^{6} 2.5$ |
| 16 | 9.81047 | 15 14 | 992792 | 26 | 0.07208 | $9.8825 \overline{5}$ | 11 | 44 | $7{ }^{7} 2.9$ |
| 17 | 9.81061 | 14 | 9.92817 | 25 | 0.07183 | 9.88244 | 11 | 43 | 8 3.3 |
| 18 | 9.81076 | 15 15 | 992843 | 26 | 0.07157 | 9.88234 | 10 | 42 | 93.8 |
| 19 | 9.81091 | 15 | 992868 | 25 | 007132 | 988223 | 11 | 41 | 10 4.2 |
| 20 | 9.81 106 | 15 | 9.92894 | 26 | 0.07106 | 9.88212 | 11 | 40 | 2088 |
| 21 | 9.81 I2I | 15 15 | 9.92920 | 26 | 0.07080 | 9.88201 | 11 | 39 | 30 12.5 <br> 0 16.7 |
| 22 | 9.81136 | 15 | 9.92945 | 25 26 | 0.07055 | 9.88191 | 10 | 38 | 40 |
| 23 24 | 9.81151 | 15 | 9.92971 | 26 | 0.07029 | 9.88180 | 11 | 37 | $50 \mid 20.8$ |
| 24 | 9.81 166 | 15 | 9.92996 | 25 26 | 0.07004 | 9.88 r 69 | 11 | 36 |  |
| 25 | 981 I80 | 15 | 9.93022 | 26 | 0.06978 | 988158 |  | 35 |  |
| 26 | 9.81195 | 15 | 9.930 .48 | 26 | -06952 | 9.88 I48 | 10 | 34 | 15 |
| 27 | 9.81210 | 15 15 | 993073 | 25 26 | 0.06927 | 988137 | 11 | 33 | 6 I.5 |
| 28 | 9.81225 | 15 | 9.93099 | 26 | 0.06901 | 9.88126 | 11 | 32 | $7{ }^{7} 1.8$ |
| 29 | 9.81240 | 15 | $99312+$ | 25 | 0.06876 | 9.88115 | 11 | 31 | 82.0 |
| 30 | 9.81254 | 15 | $993 \times 5$ |  | 0.06850 | 9.88105 | 10 | 30 | $9 \quad 2.3$ |
| 31 | 9.81269 | 15 15 | 993175 | 25 | 006825 | 9.88094 | 11 | 29 | 10.5 |
| 32 | 9.81284 | 15 | 9.93201 | 26 | 0.06799 | 9.88083 | 11 | 28 | 205 |
| 33 | 9.81299 | 15 15 | 993227 | 26 | 0.06773 | 988072 | 11 | 27 | 30 7.5 |
| 34 | 9.81314 | 15 | 9.93252 | 25 26 | -06 748 | 9.88 O61 | 11 | 26 | 40 |
| 35 | 9.81328 | 15 | 9.93278 |  | 0.06722 | 9.88 051 |  | 25 |  |
| 36 | 9.81343 | 15 | 9.93303 | 25 | 0.06697 | 9.88040 | II | 24 |  |
| 37 | 9.8 I 358 | 15 | 993329 | 26 | 0.06671 | 9.88029 | 11 | 23 |  |
| 38 | 9.81372 | 14 | 9.93354 | 25 | 0.066 .46 | 9.88 or 8 | 11 | 22 | 14 |
| 39 | 9.81 387 | 15 | 993380 | 26 | 0.06620 | 9.88007 | 11 | 21 | $6{ }^{6} \quad 1.4$ |
| 40 | 9.81402 | 15 | 9.93406 |  | 006594 | 987996 | 11 | 20 | $7{ }^{7} 1.6$ |
| 41 | 9.81417 | 15 | 9.93431 | 25 | 0.06569 | 9.87985 | 11 | 19 | 8 1.9 |
| 42 | 9.8143 I | 14 | 9.93457 | 26 | 0.06543 | 987975 | 10 | 18 | 9 2.1 <br> 0 2.3 |
| 43 | 9.81446 | 15 | $993+82$ | 25 | 0.06518 | 9.87964 | 11 | 17 | 10 2.3 <br> 20 4 |
| 44. | 9.81461 | 15 | 9.93508 | 26 | 006492 | 987953 | 11 | 16 | 20 47 <br> 30 7.0 |
| 45 | $9.8 \mathrm{I}+75$ | 15 | 9.93533 | 25 | 006467 | 987942 | 11 | 15 | 30 7.0 <br> 40 9.3 |
| 46 | 9.81493 | 15 15 | 9.93557 | 26 | $006+41$ | 9.8793 r | II | 14 | 40 9.3 <br> 50 11.7 |
| 47 | 9.81505 | 15 14 | $99358+$ | 25 | 0.06416 | 9.87920 | 11 | 13 |  |
| 48 | 9.81519 | 14 | 993610 | 26 | 006390 | 9.87909 | 11 | 12 |  |
| 49 | 9.81 534 | 15 | 993636 | 26 | $\bigcirc 006364$ | 9.87898 | 11 | I |  |
| 50 | 9.81549 | 15 | 9.93 6'I | 26 | 0.06339 | 9.87887 |  | 10 | 6 1.1 10 |
| 51 | 9.81563 | 14 | 993687 | 26 | 0.06313 | 9.87877 | 10 | 9 | 6 1.1 10 <br> 7 1.3 1.2 |
| 52 | 9.81578 | 15 | 993712 | 25 | - 06288 | 987866 | 11 | 8 | 7 1.3 1.2 <br> 8 1.5 1.3 |
| 53 | 9.81592 | 14 15 | 9.93738 | 26 | 0.06262 | $9.8785 \overline{5}$ | 11 | 7 | 8 1.5 1.3 <br> 9 1.7 1.5 |
| 54 | 9.81607 | 15 15 | 97375 | 25 26 | 0.06237 | 9.87844 | 11 | 6 | 9 1.5 1.5 <br> 0 1.8 1.7 |
| 55 | 981622 |  | 9.93789 |  | 0.06211 | 9.87833 |  | 5 | 10 3.7 3.7 |
| 56 | 981635 | 14 15 | 9.93814 | 25 26 | 0.06186 | 9.87822 | II | 4 |  30 5.7 3.3 |
| 57 | 9.81651 | 15 14 | 9.93840 9.9385 | 26 25 | 0.06160 | 987811 | 12 | 3 |    <br> 40 7.3 6.7 |
| 58 59 | 9.81665 9.81680 | 15 | 9.93865 993891 | 25 | 0.06135 | 9.87800 | 12 | 2 | 50 9.2 8.3 |
| 59 | 9.81680 | 14 | 993891 | 25 | 0.06109 | 9.87789 | 1 | 1 |  |
| 60 | 9.81 694 |  | 9.93916 |  | 0.06084 | 9.87778 |  | 0 |  |
|  | L. Cos. | d. | L. Cotg. | c. d. | L.Tang. | L. Sin. | d. | ' | Prop. Pts. |


| 1 | L. Sin. | d. | L.Tang. | c. d. | L. Cotg. | L. Cos. | d. |  | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.81694 |  | 9.93916 |  | 0.06084 | $9.87778$ |  | 60 |  |
| 1 | 981709 | 15 14 | 9.93942 | 26 | 0.06058 | $9.87767$ | 12 | 59 |  |
| 2 | 9.31723 | 14 15 | 9.93967 | 25 | 0.06033 | 9.87756 | II | 58 | 26 |
| 3 | 9.81 738 | 15 14 | 9.93993 | 26 25 | 0.06007 | 9.87745 | 111 | 57 | $6 \quad 2.6$ |
| 4 | 9.81752 | 14 | $9.9+018$ | 25 26 | 0.05982 | 9.87734 | 11 |  | 73.0 |
| 5 | 981767 | 14 | 9.94044 | 25 | 0.05956 | 9.87723 | 11 | 55 | 8 3. 3 |
| 6 |  | 14 | 9.94069 9.94095 | 25 | 0.05931 0.05905 | 9.87712 9.87701 | 11 | 54 | $9{ }^{9} 3.9$ |
| 8 | 9.81796 | 15 14 | 9.94095 9.94120 | 26 25 | 0.05905 | 9.87701 | 11 | 53 | $10 \quad 4.3$ |
| 8 | 981810 | 14 15 | 9.94120 9.94146 | 26 26 | 0.05880 0.05854 | 9.87690 | 11 | 52 | 208.7 |
| 9 | 9.81825 | 15 14 | 9.94146 |  | 0.05854 | 9.87679 | II | 51 | 3013.0 |
| 10 | 9.81 839 | 14 | 994171 | 25 | 0.05829 | 9.87668 | IX | 50 | 40 |
| 11 | 9.81854 | 15 | 9.94197 | 26 | 0.05803 | 9.87657 | II | 49 | $50 \mid 21.7$ |
| 12 | 9.81868 | 14 | $9.9+222$ | 25 26 | 0.05778 | 9.87646 | 11 | 48 |  |
| 13 | 9.81882 | 14 | 9.94248 | 26 | 0.05752 | 987635 | 11 | 47 |  |
| 14 | 9.81 897 | 15 | $99+273$ | 25 | 0.05727 | 9.87624 | 11 | 46 | 25 |
| 15 | 9.8191 | 24 | 9.9.4 299 |  | 0.05701 | 9.87613 | 12 | 45 | $6 \quad 2.5$ |
| 16 | 9.81926 | 15 | $99+324$ | 25 | 0.05676 | 987601 | 12 | 44 | $7 \quad 2.9$ |
| 17 | 9.81940 | 14 15 | $9.9+350$ | 26 | 0.05650 | 9.87590 | 11 | 43 | $8 \quad 3.3$ |
| 18 | 9.81955 | 15 | 9.94375 | 25 | 0.05625 | 9.87579 | 12 | 42 | 93.8 |
| 19 | 981969 | 14 | 994401 | 26 | 0.05599 | 9.87568 | 11 | 41 | Io 4.2 |
| 20 | 9.81 983 | 14 | 9.94426 | 26 | 0.05574 | 9.87557 | Ix | 40 | 2088 |
| 21 | 9.8I 998 | 15 14 | $9.9+452$ | 25 | 0.05548 | 9.87546 | II | 39 | 3012.5 |
| 22 | 982012 | 14 | $99+477$ | 25 26 | 0.05523 | 9.87535 | II | 38 | 40 16.7 <br> 50 20.8 |
| 23 | 9.82026 | 14 | $99+503$ | 26 25 | 0.05497 | 9.87524 | II | 37 | 50\|20.8 |
| 24 | 9.82041 | 15 | 99+528 | 25 26 | 005472 | 9.87513 | 11 | 36 |  |
| 25 | 982055 | 14 | 994554 |  | 0.05446 | 987501 |  | 35 |  |
| 26 | 982069 | 14 | $99+579$ | 25 25 | 0.05421 | 9.87490 | II | 34 | 15 |
| 27 | 9.8208. | 15 | $99+60+$ | 25 | 0.55396 | 9.87479 | 11 | 33 | 6 1.5 |
| 28 | 9.82098 | 14 | 994630 | 26 | 0.05370 | 9.87468 | 11 | 32 | 7 l |
| 29 | 9.82112 | 14 | 9.94655 | 25 | $0.053+5$ | 987457 | 11 | 31 | 82.0 |
| 30 | 9.82120 | 14 | $9.9+6.15$ |  | 0.05319 | 9.87446 |  | 30 | 9 2.3 <br> 0 2.5 |
| 31 | 982 I 11 | 15 | $99+706$ | 25 | 0.05394 | 987434 | 12 | 29 | 10.2 |
| 32 | 9.82155 | 14 | $9.9+732$ | 26 | - 05263 | 9.87423 | 11 | 28 | 20.5 |
| 33 | 9.82169 | 14 | $9.9+757$ | 25 | 0.05243 | 987412 | 11 | 27 | $30 \quad 7.5$ |
| 34 | 9.8218 .4 | 15 | $99+733$ | 26 | - 05217 | 987401 | 11 | 26 | 4010.0 |
| 35 | 9.82198 | 14 | 994808 | 26 | 0.05192 | 987390 | 12 | 25 | 50112 |
| 36 | 9.82212 | 14 | 9.94834 | 25 | 0.05166 | 9.87378 | 12 | 24 |  |
| 37 | 982226 | 14 | 9.94859 | 25 | 0.05141 | 9.87367 | 11 | 23 |  |
| 38 | 9.82240 | 14 | 9.94884 | 25 | 0.05116 | 9.87356 | 12 | 22 | 14 |
| 39 | 9.82255 | 15 | $99+910$ | 26 | 0.05090 | 987345 | 11 | 21 | 6 1.4 |
| 40 | 982269 | 14 | 9.94935 | 26 | 005065 | 9.87334 | 2 | 20 | $7{ }^{7} 1.6$ |
| 41 | 9.82283 | 14 | 9.94961 | 26 | 0.05039 | 9.87322 | 12 | 19 | $8 \quad 1.9$ |
| 42 | 9.82297 | 14 14 | 9.94986 | 25 | 0.05014 | 9.87311 | 11 | 18 | 92.1 |
| 43 | 9.82311 | 14 | 9.95012 | 26 | 0.04988 | 9.87300 | 12 | 17 | $10 \quad 2.3$ |
| 44 | 9.82326 | 15 | 9.95037 | 25 | 0.04963 | 9.87288 | 12 | 16 | 20 |
| 45 | 9.82340 | 14 | 9.95062 | 26 | 0.04938 | 9.87277 | 15 | 15 | 30 7.0 <br> 40 9.3 |
| 46 | 9.82354 | 14 | 9.95088 | 26 | 0.04912 | 9.87266 | 11 | 14 | 40 9.3 <br> 50 11.7 |
| 47 | 9.82368 | 14 | 9.95113 | 25 | 0.04887 | $9.8725 \overline{5}$ | 12 | 13 | 50\|11.7 |
| 48 | $9.823^{82}$ | 14 | 995139 | 26 | 0.04861 | 987243 | 12 | 12 |  |
| 49 | 9.82396 | 14 | 9.95164 | 25 | 0.04836 | 9.87232 | 12 | II |  |
| 50 | 9.82410 | 14 | 9.95190 |  | 0.04810 | 9.8722 I |  | 10 |  |
| 51 | 9.8242 .4 | 14 | 9.95215 | 25 25 | 0.04785 | 9.87209 | 12 | 9 | 6 1.2 1.1 <br> 7 1.4 1.3 |
| 52 | 982439 | 15 | 9.95240 | 25 | 0.04760 | 9.87198 | 11 | 8 |  |
| 53 | 9.82453 | 14 | 9.95266 | 26 | 0.04734 | 9.87187 | 11 | 7 | 8 1.6 1.5 <br> 9 1.8 1.7 |
| 54 | 9.82467 | 14 | 9.95291 | 25 | 0.04709 | 9.87175 | 12 | 6 | 9 1.8 1.7 <br> 10 2.0 1.8 |
| 55 | 9.8248 I | 14 | 9.95317 |  | 0.04683 | 9.87164 | Iz | 5 | 10 2.0 1.8 <br> 20   |
| 56 | 9.82495 | 14 | 9.95342 | 25 | 0.04658 | 9.87153 | \% | 4 |  30 6.0 5.5 |
| 57 | 9.82509 | 14 | 9.95368 | 26 | 0.04632 | 9.87141 | 12 | 3 | 40 8.0 7.3 |
| 58 | 9.82523 | 14 | 9.95393 | 25 | 0.04607 | 9.87130 | 12 | 2 | 50 10.0 9.2 |
| 59 | 9.82537 | 14 | 9.95418 | 25 | 0.04582 | 9.87 I19 | 11 | 1 | 50110.019 .2 |
| 60 | 9.82551 |  | 9.95444 |  | 0.04556 | 9.87107 |  | 0 |  |
|  | L. Cos. | d. | L. Cotg. | c. d. | L. Tang. | L. Sin. | d. | 1 | Prop. Pts. |


| 7 | L. Sin. | d. | L. Tang. | c. d. | L. Cotg. | L. Cos. | $d$. |  | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.82551 |  | 9.95444 |  | 0.04556 | 9.87107 |  | 60 |  |
| 1 | 9.82565 | 14 | 9.95469 | 25 | 0.04531 | 9.87096 | II | 59 |  |
| 2 | 9.82579 | 14 14 | 995495 | 26 | 0.04505 | 9.37085 | 12 | 58 |  |
| 3 | 9.82593 9.82607 | 14 14 14 | 995520 | 25 25 | 0.04480 | 987073 9870062 | 12 | 57 | 62.6 |
| 4 | 9.82607 | 14 | 9.95545 | 25 26 | $0.0445 \overline{5}$ |  | 11 |  | 73.0 |
| 5 | 9.82621 | 14 | 9.95571 | 25 | 0.04429 | 9.87050 | 1 I | 55 | 8 3.5 |
| 6 | 9.82635 | 14 | 9.95596 | 25 | 0.04404 | 9.87039 | 12 | 54 | $9 \quad 3.9$ |
| 7 | 9.82649 | 14 | 9.95622 | 26 | 0.04378 | 9.87028 | 11 | 53 | I0 4.3 |
| 8 | 9.82663 | 14 | 9.95647 | 25 | 0.04353 | 9.87016 | 12 | 52 | 208.7 |
| 9 | 9.82677 | 14 | 9.95672 | 25 | 0.04328 | 9.87005 | 11 | 51 | 3013.0 |
| 10 | 9.82691 | 14 | 9.95698 |  | 0.04302 | 9.86993 |  | 50 | 40 |
| 11 | 9.82705 | 14 | 9.95723 | 25 | 0.04277 | 986982 | 12 | 49 | $50 \mid 21.7$ |
| 12 | 9.82719 | 14 | 9.95748 | 25 | 0.04252 | 986970 | ${ }^{12}$ | 48 |  |
| 13 | 9.82733 | 14 | 995774 | 26 | $0.0 .+226$ | 9.86959 | 12 | 47 |  |
| 14 | 9.82747 | 14 | 995799 | 25 | 0.O. +201 | $9869+7$ | 12 | 46 | 25 |
| 15 | 9.82761 | 14 | 9.95825 |  | 0.04175 | 9.86936 | 12 | 45 | $6{ }^{6} 2.5$ |
| 16 | $9.8277 \overline{5}$ | 14 | 995850 | 25 | 0.04150 | 98692. | 12 | 44 | $7 \quad 2.9$ |
| 17 | 9.82788 | 13 | 995875 | 25 | 0.04125 | 9.86913 | 11 | 43 | 8 3.3 |
| 18 | 9.82802 | 14 | 995901 | 26 | 0.04099 | 986902 | 11 | 42 | 93.8 |
| 19 | 9.82816 | 14 | 9.95926 | 25 | 0.04074 | 986890 | 12 | 41 | 104.2 |
| 20 | 9.82830 | 14 | 9.95952 |  | 0.04048 | 986879 | 12 | 40 | 20.8 .3 |
| 21 | 9.82844 | 14 | 9.95977 | 25 | 0.04023 | 9.86867 | 12 | 39 | 30.125 |
| 22 | 9.82858 | 14 | 9.96002 | 25 26 | 0.03998 | 986855 | 12 | 38 | 40 16.7 |
| 23 | 9.82872 | 14 13 | 9.96028 | 26 | -03 972 | 986844 | 11 | 37 | $50 \mid 20.8$ |
| 24 | 9.82885 | 13 | 9.96053 | 25 25 | 0.03 .9 .47 | 986832 | 12 | 36 |  |
| 25 | 9.82899 |  | 9.96078 | 26 | 0.03922 | 98682 I |  | 35 |  |
| 26 | 9.82913 | 14 | 9.96 IO4 | 25 | 0.03896 | 9.86809 | 12 | 34 | 14 |
| 27 | 9.82927 | 14 | 9.96129 | 25 26 | 0.03871 | 9.86798 | 11 | 33 | $6 \quad 1.4$ |
| 28 | 9.8294 x | 14 | 9.96155 | 26 | $0.038+5$ | 9.86786 | 12 | 32 | 7 1. 6 |
| 29 | 9.82955 | 14 | 9.96180 | 25 | 0.03820 | 986775 | 11 | 31 | 8 1.9 |
| 30 | 9.82968 | 13 | 9.96205 | 25 | 0.03795 | 986763 | 12 | 30 | $9 \quad 2.1$ |
| 31 | 9.82982 | 14 | 9.96231 | 26 | 0.03769 | 986752 | 11 | 29 | 10 2.3 |
| 32 | 9.82996 | 14 14 | 9.96256 | 25 | 0.03744 | 9.86740 | 12 | 28 | 20 4.7 |
| 33 | 9.83 Oro | 14 13 | 9.96281 | 25 | 0.03719 | 9.86728 | 12 | 27 | 30 |
| 34 | 9.83023 | 13 14 | 9.96307 | 26 | -03 693 | 9.86717 | 11 | 26 | $40 \quad 9.3$ |
|  | 9.83037 | 14 | 9.96332 | 25 | 0.03668 | 986705 |  | 25 | $50 \mid 11.7$ |
| 36 | 9.83051 | 14 | 9.96357 | 25 | 0.03643 | $98669+$ | 12 | 24 |  |
| 37 | 9.83065 | 14 13 | 9.96383 | 26 | 0.03617 | 9.86682 | 12 | 23 |  |
| 38 | 9.83078 | 13 14 | 9.96408 | 25 25 | 0.03592 | 9.86670 | 12 | 22 | 13 |
| 39 | 9.83092 | 14 | $9.96+33$ | 25 | 0.03567 | 986659 | 11 | 25 | 6 1.3 |
| 40 | 9.83106 | 14 | 9.96459 |  | 0.03541 | 9.866 .77 | 12 | 20 | 7 7 1.5 |
| 41 | 9.83120 | 14 13 | 99648.4 | 25 | 0.03516 | 9.86635 | 12 | 19 | 8 1.7 |
| 42 | 9.83133 | 13 | 9.96510 | 26 | $0.0349^{\circ}$ | 986624 | 11 | 18 | 92.0 |
| 43 | 9.83547 | 14 | 9.96535 | 25 | 0.03465 | 9.86612 | 12 | 17 | 10.2 |
| 44 | 9.83 165 | 14 13 | 9.96560 | 25 | 0.03440 | 9.86600 | 12 | 16 | 20.4 .3 |
| 45 | 9.83174 | 13 | 9.96586 |  | 0.03414 | 986589 | 11 | 15 | 30 6.5 <br> 40 8.7 |
| 46 | 9.83188 | 14 14 | 9.96611 | 25 25 | 0.03389 | 9.86577 |  | 14 | 40 8.7 <br> 50 10.8 |
| 47 | 9.83202 | 14 13 | 9.96636 | 25 | 0.03364 | 9.86565 | 12 | 13 |  |
| 48 | 9.83215 | 13 | 9.96662 | 26 | 0.03338 | 9.86554 | 12 | 12 |  |
| 49 | 9.83229 | 14 | 9.96687 | 25 | 0.03313 | 986542 | 12 | II |  |
| 50 | 9.83242 | 13 | 9.96712 | 26 | 0.03288 | 9.86530 | 2 | 10 | 6 T2 |
| 51 | 9.83256 | 14 | 9.96738 | 26 | 0.03262 | 9.86518 | 12 | 9 |  |
| 52 | 9.83270 | 14 | 9.96763 | 25 | 0.03237 | 9.86507 | 12 | 8 |  |
| 53 | 9.83283 | 13 | 9.96788 | 25 | 0.03212 | 986495 | 12 | 7 | 8 1.6 1.5 <br> 9 1.8 1.7 |
| 54 | 9.83297 | 14 | 9.96814 | 26 | 0.03186 | 9.86483 | 12 | 6 | 9 1.8 1.7 <br> 10 20 1.8 |
|  | 9.83310 | 14 | 9.96839 | 25 | 0.03 161 | 9.86472 | 12 |  | 10 2.0 1.8 <br> 20 4.0 3.7 |
| 56 | 9.83324 | 14 14 | 9.96864 | 25 | 0.03136 | 9.86460 | 12 | 4 | 20 4.0 3.7 <br> 30 6.0 5.5 |
| 57 | 9.83338 | 14 13 | 9.96890 9.96915 | 26 | 0.03110 0.03085 | 986448 9.86436 | 12 | 3 | 40 8.0 7.3 |
| 58 | 9.83351 | 13 14 | 9.96915 | 25 25 | 0.03085 | 9.86436 | 12 | 2 | 50 110.0 9.2 |
| 59 | 9.83365 | 14 | 9.96940 | 25 | 0.03060 | 9.86425 | 15 | 1 |  |
| 60 | 9.83378 |  | 9.96966 |  | 0.03034 | 986413 |  | 0 |  |
|  | L. Cos. | d. | L. Cotg. | c. d. | L. Tang. | L. Sin. | d. | 「 | Prop. Pts. |


| $\Gamma$ | L. Sin. | d. | L.'I'ang. | c. d. | L. Cutg. | L. Cos. | d. |  | Prop. Pts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9.83378 |  | 9.96966 |  | 0.03034 | 9.86413 |  | 60 |  |
| 1 | 9.83392 | 14 | $9.96991$ | 25 | 0.03009 | $9.86401$ | 12 | 59 |  |
| 2 | 9.83405 | 13 | 9.97016 | 25 | 0.02984 | 9.86389 | 12 | 58 |  |
| 3 | 9.83419 9.83432 | 14 13 | 9.97042 9.97067 | 26 25 | 0.02958 0.02933 | 9.86377 986366 | 12 | 57 56 | 62.6 |
| 4 | 9.83432 | 13 | 9.97067 | 25 | 0.02933 | 986366 | 12 | 56 | 73.0 |
| 5 | 9.83446 | 13 | 997092 | 26 | 0.02908 | 9.86354 |  | 55 | 8 3.5 |
| 6 | $9.83+59$ | 13 | 9.97118 | 26 | 0.02882 | $9863+2$ | 12 | 54 | 93.9 |
| 7 | 9.83473 | 14 | 9.97143 | 25 | 0.02857 | 9.86330 | 12 | 53 | ro 4.3 |
| 8 | 9.83486 | 13 | 9.97168 | 25 | 0.02832 | 986318 | 12 | 52 | 208.7 |
| 9 | 9.83500 | 14 13 13 | 9.97193 | 25 | 002807 | 9.86306 | 12 | 51 | 3013.0 |
| 10 | 9.83513 | 14 | 9.97219 |  | 0.02781 | 9.86295 |  | 50 | 40 |
| 11 | 9.83527 | 14 | 9.97244 | 25 | 0.02756 | 9.86283 | 12 | 49 | $50 \mid 21.7$ |
| 12 | 983540 | 13 | 9.97269 | 25 | 0.02731 | 9.86271 | 12 | 48 |  |
| 13 | 983554 | 14 | 9.97295 | 26 | 0.02705 | 9.86259 | 12 | 47 |  |
| 14 | $9.8,567$ | 13 | 997320 | 25 | 0.02680 | 986247 | 12 | 46 | 25 |
| 15 | 9.8358 x | 14 | 997345 | 6 | 0.02655 | 9.86235 | 12 | 45 | $6 \quad 2.5$ |
| 16 | 9.83594 | 13 | 9.97371 | 26 | 0.02629 | 9.86223 | 12 | 44 | 72.9 |
| 17 | 9.83608 | 14 | 997396 | 25 | 0.02604 | 9.86211 | 12 | 43 | 83.3 |
| 18 | 9.83621 | 13 | 99742 I | 25 | 0.02579 | 9.86200 | 11 | 42 | 93.8 |
| 19 | 9.83634 | 13 | 997447 | 26 | 0.02553 | 9.86188 | 12 | 4 I | 104.2 |
| 20 | 983648 | 14 | 9.97472 | 25 | 0.02528 | 9.86176 | 12 | 40 | 20 8.3 |
| 21 | 9.8366 x | 13 | 997497 | 25 | 002503 | 9.86164 | 12 | 39 | 30 |
| 22 | 9.83674 | 13 | 9.97523 | 26 | 0.02477 | 9.86152 | 12 | 38 | 40 16.7 <br> 50 20.8 |
| 23 | 9.83688 | 14 | 9.97548 | 25 | 0.02452 | 9.86140 | 12 | 37 | $50 \mid 20.8$ |
| 24 | 9.83701 | 13 | 9.97573 | 25 | 0.02427 | 9.86128 | 12 | 36 |  |
| 25 | 9.83715 | 14 | 9.97598 | 25 | 0.02402 | $9.86 \mathrm{II6}$ | 12 | 35 |  |
| 26 | 9.83728 | 13 | 997624 | 26 | 002376 | 9.86104 | 12 | 34 | 14 |
| 27 | $9.8374 \frac{1}{}$ | 13 | 997649 | 25 | 0.02351 | 986092 | 12 | 33 | $6{ }^{6}$ 1.4 |
| 28 | 9.83755 | 14 | $99767+$ | 25 | 0.02326 | 9.86080 | 12 | 32 | 7 1.6 |
| 29 | 9.83768 | 13 | 997700 | 26 | 002300 | 986068 | 12 | 31 | $8 \quad 1.9$ |
| 30 | 9.83781 | 13 | 9.97725 | 25 | 0.02275 | 9.86056 | 12 | 30 | 9 |
| 31 | 9.83795 | 14 | 9.97750 | 25 | 0.02250 | 9.86044 | 12 | 29 | 10 2.3 <br> 20 47 |
| 32 | 9.83808 | 13 | 9.97776 | 26 | 0.02224 | 986032 | 12 | 28 | 20 4.7 |
| 33 | 9.83821 | 13 | 9.97801 | 25 | 0.02199 | 986020 | 12 | 27 | 30 7.0 <br> 40 9.3 |
| 34 | 9.83834 | 13 | 9.97826 | 25 | 0.02174 | 986008 | 12 | 26 | 40 |
| 35 | 9.83848 | 24 | 9.97851 | 25 | - 02149 | 9.85996 | 12 | 25 |  |
| 35 | 9.83861 | 13 | 9.97877 | 26 | 0.02123 | 9.85984 | 12 | 24 |  |
| 37 | 9.83874 | 13 | 997902 | 25 | 0.02098 | 9.85972 | 12 | 23 |  |
| 38 | 9.83887 | 13 | 997927 | 25 | 0.02073 | 9.85960 | 12 | 22 | 13 |
| 39 | 9.83 gor | 14 | 997953 | 26 | 0.02047 | 9.85948 | 12 | 21 | 6 1.3 |
| 40 | 9.83914 | 13 | 997978 | 25 | 0.02022 | 9.85936 | 12 | 20 | 7  <br> 8 1.5 |
| 4 I | 9.83927 | 13 | 9.98003 | 25 | 0.01997 | 9.85924 | 12 | 19 | 8 l |
| 42 | 9.83940 | 13 | 998029 | 26 | 0.01 971 | 9.85912 | 12 | 18 | 9 2.0 <br> 10 2.2 |
| 43 | 9.83954 | 14 | 998054 | 25 | 0.01 946 | 9.85900 | 12 | 17 | 10 2.2 <br> 20 4.3 |
| 44 | 983967 | 13 | 998079 | 25 | - ol 921 | 9.85888 | 12 | 16 | 20 4.3 <br> 30 6.5 |
|  | 9.83980 | 13 | 9.98104 | 25 | 0.01 896 | 9.85876 | 12 | 15 | 30 6.5 <br> 40 8.7 |
| 46 | 9.83993 | $\begin{array}{r}13 \\ 13 \\ \hline\end{array}$ | 998130 | 26 | - or 870 | 985864 | 13 | 14 | 50 10.8 |
| 47 | 9.84006 | 13 | 998155 | 25 | O.or 845 | 9.85851 | 13 | 13 |  |
| 48 | $9.8+020$ | 14 | 9.98180 | 25 | O.01 820 | 9.85839 | 12 | 12 |  |
| 49 | $9.8+033$ | 13 | 9.98206 | 26 | 0.01 794 | 985827 | 12 | 11 |  |
| 50 | 9.84046 | 13 13 | 9.98231 | 25 | 0.01769 | 9.85815 | 12 | 10 | $6{ }^{1} \mathrm{IL} 22^{12}$ |
| 5 I | 9.84059 | 13 13 | 9.98256 | 25 25 | 0.01 744 | 9.85803 | 12 | 8 | 7 1.2 1.1 <br>  1.4 1.3 |
| 52 | 9.84072 | 13 13 | 998281 | 25 26 | 0.01 719 | 9.85791 | 12 | 8 |     <br> 8 1.4 1.6 1.5 |
| 53 | 9.84085 | 13 13 | 9.98307 9.98332 | 26 | 0.01693 0.01668 | 9.85779 0.85766 | 12 13 | 7 | 9 l 1.8 1.7 |
| 54 | 9.84 098 | 13 | 9.98332 | 25 25 | 0.01 668 | 9.85766 | 12 | 6 | 90 2.0 1.8 |
| 55 | 9.84112 | 13 | 9.98357 | 26 | 0.01 643 | 9.85754 | 12 | 5 | 20 4.0 3.7 |
| 56 | $98+12 \overline{5}$ | 13 13 | 9.98383 | 26 25 | 0.01 617 | 9.85742 | 12 | 4 | 3086.0 |
| 57 |  | 13 13 | 9.98408 998433 | 25 25 | 0.01592 0.01567 | 9.85730 | 12 | 3 | 40 8.0 7.3 |
| 58 59 | 9.84151 9.84164 | 13 13 | 998433 9.98458 | 25 25 | O.O1 567 | 9.85718 | 12 | 2 | $50\|10.0\| 9.2$ |
| 59 | 9.84164 | 13 13 | 9.98458 | 25 | 0.01542 | 9.85706 | 12 | 1 |  |
| 60 | 9.84177 |  | 9.98484 |  | 0.01 516 | 9.85693 |  | 0 |  |
|  | L. Cos. | d. | L. Cotg. | c. d | L.Tang. | L. ®in. | d. | / | Prop. Pts. |



## TABLE III.

NATURAL

SINES, COSINES, TANGENTS, AND COTANGENTS.

| - 1 | N. Sin. | N. Tan. | N. Cot. | N. Cos. |  |  | N. 8 in . | I. Tan. | N. Cot. | N. Cos. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 o | . 0000 | . 00000 | Infinty. | Unity. | 90 - | 230 | . 04362 | . 04366 | 22.904 | . 99 905 | 30 |
|  | 145 | 145 | 687.55 |  |  |  | 507 | 512 | 22.164 | 898 | 25 |
| 10 | 29 I | 291 | 34377 |  | 45 | 45 | 653 798 | 658 803 | 21.470 20.819 | 882 885 | 20 15 |
| 15 20 | 436 582 58 | 436 582 | 229.18 171.89 | $\begin{array}{r}\text {. } 99999 \\ \hline 988\end{array}$ | 45 | 45 | 798 .0493 | 803 .04949 | 20.819 20.206 | 885 878 87 | 15 |
| 20 <br> 25 | 582 <br> 727 | 582 727 | 171.89 <br> 137.51 | 998 997 | $\begin{array}{r}40 \\ 3 \\ \hline\end{array}$ | 50 55 | $.049+3$ <br> .05088 <br> 8 | -04949 | 20.206 19.627 | 878 870 | 10 |
| 30 | $\bigcirc 078$ | . 00873 | 114.59 | . 99996 | 30 | 3 \% | . 05234 | . 0524 | 19.081 | . 99863 | 87 |
| 35 | . 01018 | OI 018 | 98.218 | 995 | 25 | 5 | 379 | 387 | 18.564 | 855 | 55 |
| 45 | 164 | 164 | $85.94{ }^{\circ}$ | 993 | 20 | - | 524 | 533 | 18075 | 847 | 50 |
| 45 | 309 | 309 | 76.390 | 991 | 15 | 15 | 669 | 678 | 17.611 | 839 | 45 |
| 50 | 454 600 | 455 600 | 68750 | 989 | 10 | 20 | 814 | 824 | 17.169 | 831 | 40 |
| 55 | $\underline{600}$ | 600 | 62.499 | 987 | -5 | 25 | . 05960 | . 05970 | 16.750 | 822 | 35 |
| 1 O | . 01745 | .01746 | 57.290 | . 99985 | 89 | 30 | . 06105 | . 06116 | 16.350 | . 99813 | 30 |
|  | .01891 |  | 52882 |  |  |  |  |  | 15.969 |  | 5 |
| 10 | [02036 | -02036 182 | 49.104 | 979 | $50$ | $4{ }^{\circ}$ | 395 | 408 | $.605$ | 795 |  |
| 15 20 | 181 327 | 182 <br> 328 | 45.829 42.964 | 976 | 45 | 45 50 | 540 685 | 554 700 | 15257 14.924 | 786 776 | 15 10 |
| 25 | 472 | 473 | $\begin{array}{r}4.829 \\ -4.436 \\ \hline\end{array}$ | 969 | 35 | 55 | 83 I | 847 | $\begin{array}{r} 4.924 \\ +.606 \end{array}$ | 766 | 5 |
| 30 | . 02618 | . 02619 | 38.188 | . 99966 | 30 | 4 - | . 06976 | .06993 | 14.301 | . 99756 | 36 |
| 35 | 763 | 764 | 36.178 | 962 | 25 | 5 | . 07121 | . 07139 | 14.008 | 746 | 55 |
| 40 | . 02908 | . 02910 | 3+368 | 958 | 20 | 10 | 266 | 285 | 13.727 | 736 | 50 |
| 45 | . 03054 | . 03055 | 32.730 | 953 | 15 | 15 | 411 | 43 I | . 457 | 725 | 45 |
| 50 | 199 | 201 | 31.242 | 949 | 10 | 20 | 556 | 578 | 13.197 | 714 | 45 |
| 55 | 345 | 346 | 29.882 | 944 | 5 | 25 | 701 | 724 | 12.947 | 703 | 35 |
| 20 | . 03490 | . 03492 | 28.636 | . 99939 | 88 - | 30 | . 07846 | . 07870 | 12.706 | . 99692 |  |
|  | 635 | 638 | 27.490 | 934 | 55 | 35 | . 07991 | . 08017 | . 474 |  | 25 |
| 10 | 781 | 783 | 26.432 | 929 | 50 | 40 | . 08136 | 163 | . 251 | 668 |  |
| 15 | . 03926 | . 03929 | 25.452 | 923 | 45 | 45 | 281 | 309 | 12.035 | 657 | 15 |
| 20 | . 04071 | . $0+075$ | 24.542 | 917 | 40 | 50 | 426 | 456 | 11.826 | 644 | 10 |
| 25 | 217 | 220 | 23.695 | 911 | 35 | 55 | 571 | 60 | 625 | 632 | 5 |
| $23^{\circ}$ | . $0+362$ | . 04366 | 22904 | . 99905 | 730 |  | . 08716 | . 08749 | 11.430 | .99619 | 350 |
|  | IN. Con. | N. Cot. | N.Tan. | H. Sin. |  |  | N. Cos. | 2r. Cot. | N. Tan. | N. 8in. |  |

278

|  | N. Bin. | N. Tan. | N. Cot. | 15. Cos. |  | - 1 | N. 8 in. | N. Tan. | N. Cot. | N. Cos. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | . 0 | . 08749 | 11.430 | .99619 | 850 | 10 o | . ${ }^{7} 765$ | .17633 | 5.6713 | .9848 I | 800 |
|  | . 08860 | . 08895 | . 242 | 607 | 55 | 5 | 50 | 783 | . 6234 | 455 | 55 |
|  | . 09005 | . 09042 | I 1.059 | 594 | 50 | 10 | 651 | . 17933 | . 5764 | 430 | 50 |
| 15 | 150 | 189 | 10.883 | 580 | 45 | 15 | 794 | . 18083 | . 5301 | 404 | 45 |
| 20 | 295 | 335 | . 712 | 567 | 40 | 20 | . 17937 | 233 | . 4845 | 378 | 40 |
| 25 | $44^{\circ}$ | 482 | . 546 | 553 | 35 | 25 | . 18 081 | 384 | . 4397 | 352 | 35 |
| 30 | . 09585 | . 09629 | 10.385 | 540 | 30 | 30 | . 18224 | . 18534 | 5.3955 | 325 | 30 |
| 35 | 729 | 775 | . 229 | 526 | 25 | 35 | 367 | 684 | . 3521 | 299 | 25 |
| 40 | .09•874 | . 09 9*3 | 10.078 | 511 | 20 | 40 | 509 | $83 \overline{5}$ | . 3093 | 272 | 20 |
| 45 | . 10 O19 | .10 069 | 9.9310 | 497 | 15 | 45 | 652 | .18986 | . 2672 | 2.45 | 15 |
| 50 | 4 | 6 | . 7882 | 482 | 10 | 50 | 795 | . 19136 | . 2257 | 218 | 0 |
| 55 | 308 | 363 | . 6493 | 467 | 5 | 55 | . 8 ¢ 4.8 | 287 | . 18.48 | 190 | 5 |
| 6 \% | .10 453 | . 10510 | 9.51 | . 99452 | 840 | 11 o | .190il | . 19438 | 5 I 446 | . 98163 | 780 |
| 5 | 597 | 657 | . 3 | 437 | 55 | 5 | 24 | 589 | . 1049 | 135 | 55 |
| 10 | 2 | 805 | . 2553 | 421 | 5 | 10 | 366 | $74^{\circ}$ | . 0658 | 107 | 50 |
| 15 | .10 887 | . 10952 | . 1309 | 406 | 45 | 15 | 509 | .19 891 | 5.0273 | 079 | 45 |
| 20 | .15 O3I | .11 099 | 9.0098 | 390 | 40 | 20 | 652 | . 20042 | 49894 | 050 | 40 |
| 25 | 176 | $2+6$ | 8.8919 | 374 | 35 | 25 | 794 | 194 | . 9520 | . 98021 | 35 |
| 30 | . 11320 | . 11394 | 8.7 | . 99357 | 30 | 30 | . 19937 | . $203+5$ | 49152 | 992 | 30 |
| 35 | 465 | $5+1$ | . 66.48 | $3+1$ | 25 | 35 | . 20079 | 497 | . 8788 | 963 | 25 |
| 40 | 609 | 688 | . 5555 | 324 | 20 | 40 | 222 | 648 | . 8430 | 934 | 20 |
| 45 | 754 | 836 | . 4490 | 307 | 15 | 45 | 364 | 800 | . 8077 | 905 | 15 |
| 50 | . 11898 | .11 983 | - $34 \overline{5} 0$ | 290 | 10 | 50 | 507 | 20952 | . 7729 | 875 | 10 |
| 55 | $\underline{.120+3}$ | . 12131 | . 2.434 | 272 | 5 | 55 | 649 | . 21104 | .7385 | 845 | 5 |
| 70 | .12187 | . 12278 | 8. | . $9925 \overline{5}$ | 83 - | $12 \%$ | . 20791 | .21 256 | 4.7046 | .97815 | 780 |
| 5 | 1 | 26 | 8 | 37 | 55 | 5 | . 20933 | 08 | . 6712 | 784 | 55 |
| 10 | 476 | 4 | 79530 | 9 | 50 | 10 | . 21076 | 560 | . 6382 | 754 | 50 |
| 15 | 0 | 72 | . 8606 | 200 | 45 | 15 | 218 | 712 | . 6057 | 723 | 45 |
| 20 | 764 | . 12869 | .770.4 | 182 | 40 | 20 | 360 | . 21864 | . 5736 | 692 | 40 |
| 25 | . 12908 | .13017 | . 68 | 163 | 35 | 25 | 502 | . 22017 | . 5420 | 661 | 35 |
| 30 | . 13053 | .13 165 | 7.5938 | . 99 I | 30 | 30 | . $216+4$ | . 22169 | 45107 | 630 | 3 C |
| 35 | 197 | 313 | .5113 | 125 | 25 | 35 | 786 | 322 | . 4799 | 598 | 25 |
| 40 | 341 | 461 | . 4287 | 106 | 20 | 40 | 21928 | 475 | . 4494 | 566 | 20 |
| 45 | 485 | 609 | . 3479 | 087 | 15 | 45 | . 22070 | 628 | . 4194 | 534 | 15 |
| 50 | 629 | 758 | . 2687 | 067 | 10 | 50 | 12 | 781 | . 3897 | 502 |  |
| 55 | 773 | 13906 | . 1912 | 0.47 | 5 | 55 | 353 | . 22934 | . 3604 | 470 | 5 |
| 80 | . 13 | . 14054 | 7.1 | 99 | 820 | 130 | .22495 | . 23087 | 4.33 I 5 | 7437 | 70 |
| 5 | .14 061 | 202 | 7.0 | . 990 | 55 | 5 | 37 | 240 | . 3029 | 404 | 55 |
| ro | 205 | 351 | 6.9682 | 98986 | 50 | 10 | 778 | 393 | . 2747 | 371 | 50 |
| 15 | 349 | 499 | . 8969 | 965 | 45 | 15 | . 22920 | 547 | . 2468 | $33^{8}$ | 45 |
| 20 | 493 | 648 | . 8269 | 944 | 40 | 20 | . 23062 | 700 | . 2193 | 304 | 40 |
| 25 | 537 | 796 | . 7584 | 923 | 35 | 25 | 203 | . 23854 | . 1922 | 271 | 35 |
| 30 | . $1+781$ | . 14945 | 6.6912 | 8 | 30 | 30 | . 23345 | . 24008 | 4.1653 | 7237 | 30 |
| 35 | .14 925 | . 15094 | . 6252 | 88 | 25 | 35 | 486 | 62 | . 1388 | 203 | 25 |
| 40 | .15069 | 243 | . 5606 | 858 | 20 | 40 | 627 | 316 | . 1126 | 169 | 20 |
| 45 | 212 | 391 | . 4971 | 836 | 15 | 45 | 769 | 470 | . 0867 | 134 | 15 |
| 50 | 356 | 540 | . 4348 | 814 | 10 | 50 | . 23910 | 624 | .0611 | 00 | 10 |
| 55 | 500 | 689 | . 3737 | 791 | 5 | 55 | . 24051 | 778 | . 0358 | 065 | 5 |
| 90 | . 156 |  | $6.313^{8}$ | 76 | 810 | 140 | . 24192 | . 24933 | 4.0108 | . 97030 | 760 |
| 5 | 787 | . 15988 | . 2549 | 746 | 55 | 5 | 333 | . 25087 | 3.9861 | . 96994 | 55 |
| 10 | .15931 | .16 137 | . 1970 | 723 | 50 |  | 474 | 242 | . 9617 | 959 | 50 |
| 15 | 16074 | 286 | . 1402 | 700 | 45 | 15 | 615 | 397 | . 9375 | 923 | 45 |
| 20 | 218 | 435 | . 0844 | 676 | 40 | 20 | 756 | 552 | . 9136 | 887 | 40 |
| 25 | 361 | 585 | 6.0296 | 652 | 35 | 25 | . 24897 | 707 | . 8900 | 851 | 35 |
| 30 | .16 505 | . 16734 | 5.9758 | .98629 | 30 | 30 | . 25038 | . 25862 | 3.8667 | . $9681 \overline{5}$ | 30 |
| 35 | 648 | . 16884 | . 9228 | 604 | 25 | 35 | 179 | . 26017 | . 8436 | 778 | 25 |
| 40 | 792 | $.17{ }^{1} 7033$ | . 8708 | 580 | 20 | 40 | 320 | 172 | . 8208 | 742 | 20 |
| 45 | . 16935 | 183 | .8197 | 556 | 15 | 45 | 460 | 328 | . 7983 | 705 | 15 |
| 50 | . 17078 | 333 | . 7694 | 53 I | 10 | 50 | 601 | 483 | . 7760 | 667 | 10 |
| 55 | 222 | 483 | . 7199 | 506 | 5 | 55 | 741 | 639 | . 7539 | 630 | 5 |
| 10 ○ | . 17365 | .17633 | 5.6713 | .9848 I | 80 - | 150 | .25882 | . 26795 | 3.732 I | . 96593 | 750 |
|  | 12.008. | N. Cot. | N.Tan. | $N$ sin. | - 1 |  | N. Cos. | N. Cot. | N. Tan. | , 8in | - 1 |


| $\bigcirc$ | N. 8in. | I. Tan. | N. Cot. | IN. Con. |  |  | IN. Sin. | IV. Tan. | N. Cot. | E. ${ }^{\text {Nos. }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | . 25882 | $26795$ | 3.7321 | .96593 | 750 | 20 - | .34202 | . 36397 | 2.7475 | . 93969 | 70 |
|  | . 26022 | $.26951$ | $.7 I$ | 55 | 55 | 5 | 339 | 562 | .735 | 919 | 55 |
| Io | 163 | . 27107 | .6891 | 517 | 50 | 10 | 475 | 727 | . 7228 | 869 | 50 |
| 15 | 303 | 263 | . 6680 | 479 | 45 | 15 | 612 | . 36892 | . 7106 | 819 | 45 |
| 20 | 443 | 419 | . 6470 | 440 | 40 | 20 | $74^{8}$ | . 37 C57 | . 6985 | 769 | 40 |
| 25 | $58+$ | 576 | . 6264 | 402 | 35 | 25 | . 3488 | 223 | . 6865 | 718 | 35 |
| 30 | . 2672 | . 27732 | 36059 | .96363 | 30 | 30 | . 35021 | .37 $3^{88}$ | $2.67+6$ | . 93667 | 30 |
| 35 | .26864 | . 2788 | . 5856 | 324 | 25 | 35 | 157 | 554 | . 6628 | ${ }^{63} 6$ | 25 |
| 40 | . 27004 | . 28 0.46 | . 5656 | 285 | 20 | 40 | 293 | 720 | . 6511 | 565 | 20 |
| 45 | $1++$ | 203 | . 5457 | 246 | 15 | 45 | 429 | . 37887 | . 6395 | 514 | 15 |
| 50 | 23.4 | 360 | . 5261 | 206 | 10 | 50 | 565 | $.38 \quad 053$ | . 6279 | 462 | 10 |
| 55 | $42+$ | 517 | . 5067 | 66 | 5 | 55 | 701 | 220 | . 6165 | 410 | 5 |
| 160 | . 27564 | . 28675 | 3.4874 | .96126 | 740 | 21. | . 35837 | -38 $3^{86}$ | 2.6051 | 358 | 690 |
| 5 | 704 8 | 832 | . 468 | 6 | 55 | 5 | . 35973 | 553 | . 5938 | 306 | 55 |
| 10 | $8+3$ | 28990 | . 449 | 046 | 50 | 10 | . 36108 | $\begin{array}{r}721 \\ \hline 888\end{array}$ | . 5826 | 253 | 50 |
| 15 | 27983 | . 29147 | . 4308 | . 96005 | 45 | 15 | 244 | . 38888 | . 5715 | 201 | 45 |
| 20 | . 28123 | 305 | .4124 | . 95964 | 40 | 20 | 379 | .39055 | . 5605 | 148 | 40 |
| 25 | 262 | 463 | . $39+1$ | - 923 | 35 | 25 | 515 | 223 | . 5495 | 095 | 35 |
| 30 | 28402 | . 29621 | 3.3759 | . 95882 | 30 | 30 | . 36650 | . 39391 | 2.5386 | 3042 | 30 |
| 35 | 541 | 780 | . 3580 | 841 | 25 | 35 | 785 | 559 | . 5279 | 2988 | 25 |
| 40 | 680 | . 29938 | . 3402 | 799 | 20 | 40 | . 36921 | 727 | . 5172 | 935 | 20 |
| 45 | 820 | . 30097 | . 3226 | 757 | 15 | 45 | . 37056 | . 39896 | . 5065 | 881 | 15 |
| 50 | . 2895 | 255 | - 3 | 715 | 10 | 50 | 191 | . 40065 | . 4960 | 827 | Io |
| 55 | .29098 | 414 | . 2879 | 673 | 5 | 55 | 326 | 234 | . 4855 | 773 | 5 |
| 170 | . 29237 | - 3 | 3.2 | . 95630 | 730 | 220 | . 37461 | 03 | 2.4751 | 718 | 80 |
| 5 | 376 | 73 | . 2 | 588 | 55 | 5 | 595 | 72 | . 4648 | $66_{4}$ | 55 |
| 10 | 515 | . 30891 | . 2371 | 545 | 50 | 10 | 730 | 741 | . 4545 | 609 | 50 |
| 15 | 654 | .31051 | . 22 | 502 | 45 | 15 | 865 | . 40911 | . 4443 | 54 | 45 |
| 20 | 793 | 210 | . 20 | 459 | 40 | 20 | . 37999 | . 41081 | . 4342 | 499 | 40 |
| 25 | . 29932 | 370 | . 1878 | 415 | 35 | 25 | $\underline{.38134}$ | 251 | . 4242 | 444 | 35 |
|  | . 30071 | . 31 | 3.17 | . 95372 | 30 | 30 | . 38268 | . 4142 I | 2.4142 | 2388 | 30 |
| 35 | 209 | 690 | . 155 | 328 | 25 | 35 | 403 | 592 | . 4043 | 332 | 25 |
| 40 | 348 | . 31850 | . 1397 | 28. | 20 | 40 | 537 | 763 | . 3945 | 276 | 20 |
| 45 | 486 | . 32 OIO | . 12.40 | 240 | 15 | 45 | 671 | .41933 | . 3847 | 220 | 15 |
| 50 | 625 | 171 | .1084 | 195 | 10 | O | 805 | . 42105 | . 3750 | 164 | 10 |
| 55 | 763 | 331 | . 0930 | 150 | 5 | 55 | .38939 | 276 | . 3654 | 107 | 5 |
| 180 | . 309 | . 3 |  | 95106 | 720 | 230 | . 39073 | 447 | 2.35 | 50 | 0 |
| 5 | . 310 | 81 |  | 061 | 55 | 5 | 207 | 619 | . 34 | 994 | 55 |
| Io | 178 | 814 |  | 95 O15 | 50 | 0 | 341 | 791 | . 3369 | 936 | 50 |
| 15 | 316 | . 32975 | . 0326 | $9+970$ | 45 | 15 | 474 | . 42963 | . 3276 | 879 | 45 |
| 20 | 454 | . 33136 | . 0178 | 924 | 40 | 20 | 608 | . 43136 | .3183 | 822 | 40 |
| 25 | 593 | 298 | 3.0032 | 878 | 35 | 25 | 741 | 308 | . 3090 | 764 | 35 |
| 30 | -31730 | 33460 | 29887 | 786 | 25 | 0 | . 39875 | . 4348 I | 2.2998 | I 706 | 30 |
| 35 | . 31868 | 621 | . 9743 | 786 | 25 | 35 | . 40008 | 654 | . 2907 | 648 | 25 |
| 40 | . 32006 | 783 | . 960 | 740 | 20 | 40 | 141 | . 43828 | . 2817 | 590 | 20 |
| 45 | 144 | . 33945 | . 9459 | 69 | 15 | 45 | $27 \overline{5}$ | .44 001 | . 2727 | 531 | 15 |
| 50 | 282 | .34108 | . 9319 | 646 | 10 | 50 | 408 | 175 | . 2637 | 472 | 10 |
| 55 | 419 | 270 | . 918 | 599 | 5 | 55 | 541 | 349 | . 2549 | 414 | 5 |
| 180 | . 325 | . 34433 | 2.9042 | . 94552 | 71. | 240 | 40674 |  | 2.2460 | .91355 | 6 |
|  | $094$ | 596 | . 8905 | 504 | 55 | 5 | 806 |  | . 2373 | 295 | 55 |
| 10 | 832 | 758 | .8770 | 457 | 50 | 10 | . 40939 | . 44872 | . 2286 | 236 | 50 |
| 15 | 32969 | . 34922 | . 8636 | 409 | 45 | 15 | . 41072 | . 45047 | . 2199 | 176 | 45 |
| 20 | .33106 | . 35085 | . 8502 | 361 | 40 | 20 | 204 | 222 | . 2113 | 116 | 40 |
| 25 | 244 | 248 | . 8370 | 313 | 35 | 25 | 337 | 397 | . 2028 | 91056 | 35 |
| 30 |  |  | 2.8239 | .94 264 |  | 30 | $.41469$ |  | . 1943 |  | 30 |
| 35 | $518$ | 576 | . 81 | 215 | 25 | 35 | 602 | 748 | . 1859 | $936$ | 25 |
| 40 | 655 | 740 | . 7980 | 167 | 20 | 40 | 734 | . 45924 | . 1775 | 875 | 20 |
| 45 | 792 | . 35904 | . 7852 | 118 | 15 | 45 | 866 | . 46101 | . 1692 | 814 | 15 |
| 50 | . 33929 | . 36068 | . 7725 | 068 | 10 | 50 | .41998 | 277 | . 1609 | 753 | 10 |
| 55 | .34065 | 232 | . 7600 | . 94019 | 5 | 55 | .42130 | 454 | . 1527 | 692 | 5 |
| 800 | . 34202 | .36397 | $2.747 \overline{5}$ | . 93969 | 70 - | 25 o | . 42262 | . 4663 I | 2.1445 | . 9063 r | 650 |
|  | Ni, Cos. | N. Oot. | N. Tan. | N. 81 | $\bigcirc 1$ |  | N. Cos. | N. Cot. | N. Tan. | N. 8in. | 0 ) |


| - | N. 8in. | N. Tan. | N. Cot. | IN. Cos. |  |  | N. Sin. | N. Tan. | N. Cot. | 2N. Cos. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 250 | . 42262 | .46631 | 2.1445 | . 90631 | 650 | 30 o | 50000 | . 57735 | 1.7321 | . 86603 | 60 - |
| 5 | 394 |  | . 136 | 569 | 55 | 5 | 126 | . 57929 | 7262 | 530 | 55 |
| 10 | 525 | . 46985 | .1283 | 507 | 50 | 0 | 252 | . 58124 | . 7205 | 457 | 50 |
| 15 | 657 | .47 163 | . 1203 | 446 | 45 | 15 | 377 | 318 | . 7147 | 384 | 45 |
| 20 | 788 | 341 | . 1123 | 383 | 40 | 20 | 503 | 513 | . 7090 | 310 | 40 |
| 25 | . 42920 | 519 | . 1044 | 321 | 35. | 25 | 628 | 709 | . 7033 | 237 | 35 |
| 30 | . 43051 | . 47698 | 2.0965 | .90 259 | 30 | 30 | 754 | . 58905 | 1.6977 | . 86163 | 30 |
| 35 | - 182 | . 47876 | . 0887 | 196 | 25 | 35 | . 50879 | . 59 101 | . 6920 | 089 | 25 |
| 40 | 313 | . 48055 | . 0809 | 133 | 20 | 40 | .51 004 | 297 | . 6864 | . 86 or $\overline{5}$ | 20 |
| 45 | 445 | 234 | . 0732 | 070 | 15 | 45 | 129 | $49+$ | . 6808 | . 85941 | 15 |
| 50 | 575 | 414 | . 0655 | . 90007 | 10 | 50 | 254 | 691 | . 6753 | 866 | 10 |
| 55 | 706 | 593 | . 0579 | . 89943 | 5 | 55 | 379 | . 59888 | . 6698 | 792 | 5 |
| 260 | .43837 | . 48773 | 2.0503 | . 89879 | 340 | 310 | .51 504 | . 60086 | 1.6643 | . 857217 | 690 |
| 5 | . 43968 | . $4^{89} 953$ | . $0+128$ | 816 | 5 | 5 | 628 | 284 | . 6588 | 642 | 55 |
| 10 | .44098 | . 49134 | . 0353 | 752 | 50 | 10 | 753 | 483 | . 6534 | 567 | 50 |
| 15 | 229 | 315 | . 0 | 687 | 45 | 15 | .51877 | 681 | . 6479 | 491 | 45 |
| 20 | 359 | 495 | . 0 | 623 | 40 | 20 | . 52002 | . 6088 I | . 6426 | 416 | 40 |
| 25 | 490 | 677 | . 0130 | 558 | 35 | 25 | 126 | .61080 | .6372 | 340 | 35 |
| 30 | . 44620 | 49858 | 2.0057 | . 89493 | 30 | 30 | $.522 \overline{5} 0$ | . 61280 | 1.6319 | . 85264 | 30 |
| 35 | $75 \overline{0}$ | . 50040 | 1.9984 | 428 | 25 | 35 | 374 | 480 | . 6265 | 188 | 25 |
| 40 | . 44880 | 222 | . 99 | 363 | 20 | 40 | 498 | 681 | . 6212 | 112 | 20 |
| 45 | . 45010 | 404 | . 98 | 298 | 15 | 45 | 621 | .61 882 | . 6160 | . 85035 | 5 |
| 50 | $14^{\circ}$ | 587 | . 9768 | 232 | 10 | 50 | 745 | . 62083 | . 6107 | . 84959 | 10 |
| 55 | 269 | 769 | . 9697 | 167 | 5 | 55 | 869 | 285 | . 6055 | 882 | 5 |
| 270 | 45399 | . 50953 | 1.9626 | . 89101 | 630 | 320 | . 52992 | . $62487^{-}$ | 1.6003 | . 84805 | 0 |
| 5 | 529 | .51 136 | . 9556 | . 89035 | 55 | 5 | . 53115 | 689 | . 5952 | 728 | 55 |
| 0 |  | 319 | . 9.486 | . 88968 | 50 | 10 | 238 | . 62892 | . 5900 | 650 | 50 |
| 15 | 787 | 503 | . $9+416$ | 902 | 45 | 15 | 36 r | . 63095 | . 5849 | 573 | 45 |
| 20 | . 45917 | 688 | . 93 | 83.5 | 40 | 20 | 484 | 299 | . 5798 | 495 | 40 |
| 25 | 46046 | . 51872 | . 9278 | 768 | 35 | 25 | 607 | 503 | . 5747 | 417 | 35 |
| 30 | . 46175 | . 52057 | 19 | . 887 | 30 | 30 | . 53730 | . 63707 | 1.5697 | . 84339 | 30 |
| 35 | 304 | $2+2$ | . 9142 |  | 25 | 35 | 853 | . 63912 | . 5647 | 261 | 25 |
| 40 | 433 | 427 | . 9074 | 566 | 20 | 40 | . 53975 | . 64117 | . 5597 | 182 | 20 |
| 45 | 561 | 613 | . 9007 | 499 | 15 | 45 | . $54 \quad 097$ | 322 | . 5547 | 104 | 15 |
| 50 | 690 | 798 | . 894 | 43 I | 10 | 50 | 220 | 528 | . 5497 | . 84025 | 10 |
| 55 | 819 | . 52985 | . 8873 | 363 | 5 | 55 | 342 | 734 | . 5448 | .83946 | 5 |
| 28 o | . 46 | . 53171 | 1.8807 | . 88295 | 620 | 330 | . 54464 | . 6494 I | 1.5399 | . 83867 | - |
| 5 | . 47076 | 358 | .874r | 5 | 55 | 5 | 586 | . 65148 | . 5350 | 788 | 55 |
| 10 | 204 | $54 \overline{5}$ | . 867 | 158 | 50 | 10 | 708 | 355 | . 5301 | 708 | 50 |
| 15 | 332 | 732 | . 861 | 089 | 45 | 15 | 829 | 563 | . 5253 | 629 | 45 |
| 20 | 460 | . 53920 | . 8546 | . 88020 | 40 | 20 | . 54951 | 771 | . 5204 | 549 | 40 |
| 25 | 588 | . 54107 | . 8482 | . 87951 | 35 | 25 | . 55072 | . 65980 | . 5156 | 469 | 35 |
| 30 | 47710 | . 54296 | 1.8418 | . 87882 | 30 | 30 | . 55 194 | . 66189 | 1.5108 | . 83389 | 30 |
| 35 | 8+4 | 484 | . 8354 | 812 | 25 | 35 | 315 | 398 | .5061 | 308 | 25 |
| '40 | . 47971 | 673 | . 8291 | 743 | 20 | 40 | 436 | 608 | . 5013 | 228 | 0 |
| 45 | 48099 | . 54862 | . 8228 | 673 | 15 | 45 | 557 | . 668 x 8 | . 4966 | 147 | 15 |
| 50 | 226 | .55051 | . 8165 | 603 | 10 | 50 | 678 | .67028 | . 4919 | . 83066 | 10 |
| 55 | $35 \pm$ | 241 | .8103 | 532 | 5 | 55 | 799 | 239 | . 4872 | .82985 | 5 |
| 290 | . $+^{8}+81$ | . 554 | 1.80 | . 87462 | 610 | 340 | . 55919 | . 67451 | I. 4826 | . 82904 | 80 |
| 5 | 608 | 62 I | -7 | 3 | 55 | 5 | . 56040 | - 61 | . 4779 | 822 | 55 |
| 10 | 735 | . 55812 | . 7917 | 321 | 50 | 0 | 160 | . 67875 | . 4733 | 741 | 50 |
| 15 | 862 | . 56003 | .7856 | 250 | 45 | 15 | 280 | . 68088 | . 4687 | 659 | 45 |
| 20 | . 48989 | 194 | . 7796 | 178 | 40 | 20 | 401 | 301 | .4641 | 577 | 40 |
| 25 | -49 116 | 385 | . 7735 | 107 | 35 | 25 | 52 I | 514 | . 4596 | 495 | 35 |
| 30 | - $492+2$ | . 56577 | 1.76 | . 87036 | 30 | 30 | 641 | . 68728 | 1.4550 | .82 413 | 30 |
| 35 | 369 | - 769 | . 7615 | . 86964 | 25 | 35 | 760 | . 68942 | . 4505 | 330 | 25 |
| 40 | 495 | . 56962 | . 7556 | 892 | 20 | 40 | . 56880 | . 69157 | . 4460 | 248 | 20 |
| 45 | 622 | . 57155 | . 7496 | 820 | 15 | 45 | . 57000 | 372 | .4415 | 165 | 15 |
| 50 | 748 | 348 | . 7437 | 748 | 10 | 5 | 119 | 588 | . 4370 | . 82082 | 0 |
| 55 | .49874 | 54 I | . 7379 | 675 | 5 | 55 | 238 | . 69804 | . 4326 | .81999 | 5 |
| 80 o | . 50000 | . 57735 | 1.7321 | . 86603 | 60 - | 350 | . 57358 | . 70021 | 1.4281 | .81915 | 550 |
|  | N. Oos. | N. Cot. | N. Tan. | J. 8in. | - 1 |  | N. Cos. | N. Cot. | N. Tan. | N. 8in. | - 1 |


| 1 | N. 8in. | N. Tan. | IN. Cot. | N. Cos. |  |  | N. Sin. | N. Tan. | N. Cot. | IT. Cos. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 350 | .57358 | .70 02 | 1.428I | .81915 | 55 - | 40 o | . 64279 | . 83910 | 1.1918 | .76604 | 50 - |
| 5 | 477 | 238 | . 4237 | 832 | 55 | 5 | 390 | . 84158 | . 1882 | 5 II | 55 |
| 10 | 596 | 455 | . 4193 | 748 | 50 | 0 | 501 | 407 | . 1847 | 417 | 50 |
| 15 | 715 | 673 | .4150 | 664 | 45 | 15 | 612 | 656 | . 1812 | 323 | 45 |
| 20 | 833 | . 70891 | . 4106 | 580 | 40 | 20 | 723 | . 84906 | . 1778 | 229 | 40 |
| 25 | . 57952 | .71 110 | . 4063 | 496 | 35 | 25 | 834 | .85 157 | . 1743 | 135 | 35 |
| 30 | . 58070 | .71 329 | 1. 4019 | .81 412 | 30 | 30 | . $649+5$ | .85 408 | 1.1708 | .76041 | 30 |
| 35 | 189 | 549 | . 3976 | 327 | 25 | 35 | . 65055 | 660 | . 1674 | . 75946 | 25 |
| 40 | 307 | 769 | - 3934 | 242 | 20 | 40 | 166 | . 85912 | .1640 | 851 | 20 |
| 45 | 425 | 71990 | . 3891 | 157 | 15 | 45 | 276 | . 86166 | . 1606 | 756 | 15 |
| 50 | 543 | . 72211 | . 38.48 | .81072 | 10 | 50 | 386 | 419 | . 1571 | 661 | 10 |
| 55 | 661 | 432 | . 3806 | . 80987 | 5 | 55 | 496 | 674 | .1538 | 566 | 5 |
| 360 | . 58779 | -72654 | 1.3764 | .80 902 | 540 | 410 | . 65606 | .86929 | 1.1504 | .75 471 | 90 |
| 5 | . 58896 | . 72877 | . 3722 | 816 | 55 | 5 | 716 | . 87184 | . 1470 | 375 | 55 |
| 10 | . 59 OI 4 | .73100 | .3680 | 730 | 50 | 10 | 825 | 441 | . 1436 | 280 | 50 |
| 15 | 131 | 323 | . 3638 | 6.4 | 45 | 15 | . 65935 | 698 | . 1403 | 184 | 45 |
| 20 | 248 | 547 | . 3597 | 558 | 40 | 20 | . $660+4$ | . 87955 | . 1369 | . 75088 | 40 |
| 25 | 365 | 771 | 3555 | 472 | 35 | 25 | 153 | . $88 \quad 214$ | . 1336 | . 74.992 | 35 |
| 30 | . 59482 | . 73996 | 13514 | . 80386 | 30 | 30 | . 66262 | . $88 \quad 473$ | 1. 1303 | .74 896 | 30 |
| 35 | 599 | . 7422 T | . 3473 | 299 | 25 | 35 | 371 | 732 | . 1270 | 799 | 25 |
| 40 | 716 | 447 | . 3432 | 212 | 20 | 40 | 480 | . 88992 | . 1237 | 703 | 20 |
| 45 | 832 | $67+$ | . 3392 | 125 | 15 | 45 | 588 | . 89253 | . 1204 | 606 | 15 |
| 50 | . 59949 | . 74900 | .3351 | . 80 038 | 10 | 50 | 697 | 515 | .1171 | 509 | 10 |
| 55 | . 60.665 | .75 128 | .3311 | . 79 951 | 5 | 55 | 805 | .89777 | . 1139 | 412 | 5 |
| 370 | 60182 | .75355 | 1.3270 | .79864 | 53 - | 420 | 66913 | . 90040 | 1.1106 | . 74314 | 48 o |
| 5 | 298 | 58.4 | . 3230 | 776 | 55 | 5 | 67021 | 304 | . 1074 | 217 | 55 |
| 10 | 414 | . 75812 | .3190 | 688 | 50 | 10 | 129 | 569 | . 1041 | 120 | 50 |
| 15 | 529 | 760.42 | .315I | 600 | 45 | 15 | 237 | . 90834 | . 1009 | . 74022 | 45 |
| 20 | 645 | 272 | -3111 | 2 | 40 | 20 | 344 | .91099 | . 0977 | .73924 | 40 |
| 25 | 761 | 502 | . 3072 | 42. | 35 | 25 | 452 | 366 | . 0945 | 826 | 35 |
| 30 | 876 | . 76733 | 13032 | . 79335 | 30 | 30 | . 67559 | .91 633 | 1.0913 | .73 728 | 30 |
| 35 | . 60991 | . 7696.4 | . 2993 | 247 | 25 | 35 | 666 | .91901 | .0881 | 629 | 25 |
| 40 | .61 107 | .77 196 | . 2954 | 158 | 20 | 40 | 773 | .92 170 | . 085 | 531 | 20 |
| 45 | 222 | 428 | . 2915 | .79069 | 15 | 45 | 880 | 439 | .0818 | 432 | 15 |
| 50 | 337 | 661 | . 2876 | . 78 980 | 10 | 50 | .67987 | 709 | . 0786 | 333 | 10 |
| 55 | 45 I | . 77898 | . 2838 | 891 | 5 | 55 | . $68 \quad 093$ | . 92980 | . 0755 | 234 | 5 |
| 880 | .61566 | .78 129 | 1.2799 | . 788 oI | 520 | 430 | . 68200 | .93252 | 1.0724 | .73 135 | 470 |
| 5 | 681 | 363 | .2761 |  | 55 | 5 | 306 | 524 | . 0692 | .73 036 | 55 |
| 10 | 795 | 598 | . 2723 | 622 | 50 | 10 | 412 | . 93797 | .066I | . 72937 | 50 |
| 15 | .61 909 | . 78834 | . 2685 | 532 | 45 | 15 | 518 | . 9407 I | . 0630 | 837 | 45 |
| 20 | . 62024 | . 79070 | . 2647 | 442 | 40 | 20 | 624 | 345 | . 0599 | 737 | 40 |
| 25 | 138 | 306 | . 2609 | 351 | 35 | 25 | 730 | 620 | .0569 | 637 | 35 |
| 30 | . 62251 | . 79544 | 1.2572 | .78261 | 30 | 30 | . 68835 | -94 896 | 1.0538 | . 72537 | 30 |
| 35 | 365 | . 7978 I | . 2534 | 170 | 25 | 35 | . 6894 I | .95 173 | . 0507 | 437 | 25 |
| 40 | 479 | . 80020 | . 2.497 | . 78079 | 20 | 40 | . 69046 | 451 | . 0477 | 337 | 20 |
| 45 | 592 | 258 | . 2.460 | . 77988 | 15 | 45 | 151 | . 95729 | . 0446 | 236 | 15 |
| 50 | 706 | 498 | . 2423 | 897 | 10 | 50 | 256 | . 96008 | . 0416 | 136 | 10 |
| 55 | 819 | 738 | . 2386 | 806 | 5 | 55 | 361 | 288 | . 0385 | . 72035 | 5 |
| 890 | . 62932 | . 80978 | 1.2349 | . 77715 | 51.0 | 440 | . 69466 | .96569 | 1.0355 | .71 934 | 460 |
| 5 | . 63045 | .81 220 | . 2312 | 623 | 55 | 5 | 570 | . 96850 | . 0325 | 833 | 55 |
| Io | 158 | 461 | . 2276 | 531 | 50 | 10 | 675 | .97133 | . 0295 | 732 | 50 |
| 15 | 271 | 703 | . 2239 | 439 | 45 | 15 | 779 | 416 | . 0265 | 630 | 45 |
| 20 | 383 | .81 946 | . 2203 | 347 | 40 | 20 | 883 688 | \% 700 | . 0235 | 529 | 40 |
| 25 | 496 | .82190 | . 2167 | 255 | 35 | 25 | . 69987 | .97984 | . 0206 | 427 | 35 |
| 30 | . 63608 | . 82434 | 1.2131 | . 77162 | 30 | 30 | . 7009 I | . 98270 | 1.0176 | .71 325 | 30 |
| 35 | 720 | 678 | . 2095 | . 77070 | 25 | 35 | 195 | 556 | . 0147 | 223 | 25 |
| 40 | 832 | . 82923 | . 2059 | . 76977 | 20 | 40 | 298 | . 98843 | . 0117 | 121 | 20 |
| 45 | . 63944 | . $83 \quad 169$ | . 2024 | 884 | 15 | 45 | 401 | .99131 | . 0088 | .71019 | 15 |
| 50 | . 64056 | 415 662 | . 1988 | 791 | 10 | 50 | 505 | 420 | . 00058 | . 70916 | 10 |
| 55 | 167 | 662 | . 1953 | 698 | 5 | 55 | 608 | .99710 | .0029 | 813 | 5 |
| 400 | . 64279 | . 83910 | 1.r918 | . 76604 | 50 - | 450 | . 70711 | 1.00000 | 1.0000 | . 70711 | 450 |
|  | A. Cos. | N. Cot | N. Tan. | N. Sin. | - 1 |  | N. Cos. | IN, Cot. | N. Tan. | N. Sin. | - 1 |


| Age | Number Living $l_{x}$ | Number of Deaths $d_{x}$ | Yearly <br> Probability of Dying $q x$ | Yearly Probability of Living $p_{x}$ | Age | Number Living $l_{x}$ | $\left\|\begin{array}{c} \text { Num- } \\ \text { ber } \\ \text { of } \\ \text { Deaths } \\ d_{x} \end{array}\right\|$ | Yearly Probability of Dying $q_{x}$ | Yearly Probability of Living $p_{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 100, | 749 | 0.007490 | 0.99251 | 53 |  | 10 | 0.016333 | 0.983667 |
| 11 | 99,25 | 746 | 0.007516 | 0.99248 | 54 |  | 1143 | 0.017396 | 0.982604 |
| 12 | 98,505 | 743 | 0.007543 | 0.992457 | 55 | 64,563 | 1199 | 0.018571 | 0.981429 |
| 13 | 97,762 | 740 | 0.007569 | 0.992431 | 56 | 63,364 | 1260 | 0.019885 | 0.980115 |
| 14 | 97,022 | 737 | 0.007596 | 0.992404 | 57 | 62,104 | 1325 | 0.021335 | 0.978665 |
| 15 | 96,28 | 735 | 0.0 | 0.992366 | 58 | 60, | 139 | 36 |  |
| 16 | 95,550 | 732 | 0.007661 | 0.992339 | 59 | 59,385 | 1468 | 0.024720 | 0.975280 |
| 17 | 94,818 | 729 | 0.007688 | 0.992312 | 60 | 57,917 | 1546 | 0.026693 | 0.973307 |
| 18 | 94,089 | 727 | 0.007727 | 0.992273 | 61 | 56,371 | 1628 | 0.028880 | 0.9711120 |
| 19 | 93,362 | 725 | 0.007765 | 0.992235 | 62 | 54,743 | 1713 | 0.031292 | 0.968708 |
| 25 | 92, | 723 | 0.007805 | 0.992 | 63 | 53,030 | 1800 |  | 0.966057 |
| 21 | 91.9 | 722 | 0.007855 | $0.9921+5$ | 64 | 51,230 | 1889 | 0.036873 | 0.963127 |
| 22 | 91,1 | 721 | 0.007906 | 0.992094 | 65 | 49,34 | 1980 | 0.040129 | 0.959871 |
| 23 | 90, | 720 | 0.007958 | 0.992042 | 66 | 47,361 | 2070 | 0.043707 | 0.956293 |
| 24 | 89,751 | 719 | 0.008011 | -.991 989 | 67 | 45,291 | 2158 | 0.047647 | 0.952353 |
| 25 | 89,032 | 718 | 0.008065 | 0.991935 | 68 | 43,1 | 2243 | 2 | 0.947998 |
| 26 | 88,314 | 718 | 0.008130 | 0.991 870 | 69 | 40,89 | 2321 | 0.056762 | 0.943238 |
| 27 | 87,596 | 718 | 0.008197 | -.991803 | 70 | 38,569 | 2391 | 0.061993 | 0.938007 |
| 28 | 86,878 | 718 | $0.00826_{4}$ | 0.991736 | 71 | 36,178 | 2448 | 0.067665 | 0.932335 |
| 29 | 86,160 | 719 | 0.008345 | 0.991655 | 72 | 3,3,730 | 2487 | 0.073733 | 0.926267 |
| 30 |  | 720 | 0.008427 | 0.991573 | 73 | 31,24 | 2505 |  | 0.919822 |
| 31 | 84,721 | 721 | 0.008510 | 0.991490 | 74 | 28,738 | 2501 | 0.087028 | 0.912972 |
| 32 | 84,000 | 723 | 0.008607 | -.991 393 | 75 | 26,237 | 2476 | 0.094371 |  |
| 33 | 83,277 | 726 | 0.008718 | 0.991282 | 76 | 23,76 1 | 2431 | 0.102311 |  |
| 37 | 82,551 | 729 | 0.008831 | 0.991169 | 77 | 21,330 | 2369 | 0.11106 | 0.888936 |
| 35 | 81 , | 732 | 0.00 | 0.991 | 78 |  | 22 | 0.120827 |  |
| 36 | 81,090 | 737 | 0.009 | 0.990911 | 79 | 16,670 | 2196 | 0.131734 | 0.868266 |
| 37 | 80,353 | 742 | 0.009234 | 0.990766 | 80 | 14,4 | 2091 | 0.144466 | 0.955534 |
| 39 | 79,611 | 749 | 0.00 | 0.990592 | 81 | ${ }^{12}, 383$ |  | 0.153605 | 0.841395 |
| 39 | 78,862 | 756 | 0.009586 | 0.990414 | 82 | 10,419 | 1816 | 0.174297 | 0.825703 |
| 4.0 | 78,106 | 765 | 0.00 | 0.990 | 83 |  | 1648 | 0.191561 |  |
| 41 | 77,3+1 | 774 | 0.01 | 0.989992 | 84 | 6,955 | 1470 | 0.211353 | 0.788641 |
| 42 | 76,567 | 785 | 0.010252 | 0.989748 | 85 | 5,485 | 1292 | 0.235552 | 0.764448 |
| 43 | 75,782 | 797 | 0.010517 | 0.989483 | 86 | 4,193 | 1114 | 0.265681 |  |
| 44 | 74,985 | 812 | 0.010829 | 0.989 171 | 87 | 3,079 | 933 | 0.303020 | 0.696980 |
| 45 | 74,173 | 829 | 0.011163 | 0.988837 | 88 | 2,146 | 744 | 0.346692 | 0.653308 |
| 46 | 73,345 | 848 | 0.011 562 | 0.988438 | 89 | 1,402 | 555 | 0.395863 | 0.604137 |
| 47 | 72,497 | 870 | 0.01 | 0.988000 | 90 | 847 | 335 | 0.454545 | 0.545455 |
| 48 | 71,627 | 896 | 0.012 | 0.987491 | 91 | 462 | 246 | 0.532466 | 0.467534 |
| 49 | 7.3,731 | 927 | 0.013106 | c. 986894 | 92 | 216 | 137 | 0.634259 | 0.365741 |
| 50 |  | 962 | $0.0137^{81}$ | 0.986219 | 93 | 79 | 58 | 0.734177 | 0.265823 |
| 51 | 68,842 | 1011 | 0.014511 | 0.995459 | 94 | 21 | 13 | 0.857143 | 0.142857 |
| 52 | 67,841 | 1044 | 0.015399 | 0.934611 | 95 | 3 | 3 | 1.000000 | 0.00000 |

table V.-Commutation Columns, Single Premiums, and Annuities 283 due, american Experience Table, 3六 Per Cent

| $\begin{gathered} \mathrm{A} x \mathrm{e}^{x} \\ \hline \end{gathered}$ | $D_{x}$ | $N_{x}$ |  | $C_{x}$ | $M_{x}$ | $\underline{1+} a_{x}$ | $A_{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 70891.9 | 1575 | 535. | 513.02 | 17612.9 | 22.2245 | 0.24845 |
| 11 | 67981.5 | 1504 | 643. | 493.69 | 17099.9 | 22.1331 | 0.25154 |
| 12 | 65189.0 | 1436 | 662. | 475.08 | 16606.2 | 22.0384 | 0.25474 |
| 13 | 62509.4 | 1371 | 473. | 457.16 | 16131.1 | 21.9403 | 0.25806 |
| 14 | 59938.4 | 1303 | 963. | 439.91 | 15674.0 | 21.8385 | 0.26151 |
| 15 | 57471.6 | 1249 | 025. | 423.88 | 15234.1 | 21.7329 | 0.26508 |
| 16 | 55104.2 | 1191 | 553. | 407.87 | 14810.2 | 21.6236 | 0.26877 |
| 17 | 52832.9 | 1136 | 449. | 392.47 | 14402.3 | 21.5102 | 0.27261 |
| 18 | 50653.9 | 1033 | 616. | 378.15 | 14009.8 | 21.3926 | 0.27659 |
| 19 | 48562.8 | 1032 | 962. | 364.36 | 13631.7 | 21.2707 | 0.28071 |
| 20 | 46556.2 | 984 | 400. | 351.07 | 13267.3 | 21.1443 | 0.28497 |
| 21 | 44630.8 | 937 | 843. | 338.73 | 12916.3 | 21.0134 | 0.28940 |
| 22 | 42782.8 | 893 | 213. | 326.82 | 12577.5 | 20.8779 | 0.29399 |
| 23 | 41009.2 | 850 | 430. | 315.33 | 12250.7 | 20.7375 | 0.29873 |
| 24 | 39307.1 | 809 | 421. | 304.24 | 11935.4 | 20.5922 | 0.30365 |
| 25 | 3767.3 .6 | 770 | 113. | 293.55 | 11631.1 | 20.4417 | 0.30873 |
| 26 | 36106.1 | 732 | 440. | 28.3.62 | 11337.6 | 20.2858 | 0.31401 |
| 27 | 34601.5 | 696 | 334. | 274.03 | 11054.0 | 20.1244 | 0.31947 |
| 28 | 33157.4 | 661 | 732. | 264.76 | 10779.9 | 19.9573 | 0.32512 |
| 29 | 31771.3 | 628 | 575. | 256.16 | 10515.2 | 19.7843 | 0.33097 |
| 30 | 30440.8 | 596 | $80_{4}$. | 247.85 | 10259.0 | 19.6054 | 0.33702 |
| 31 | 29163.5 | 566 | 363. | 239.797 | 10011.2 | 19.4202 | 0.34328 |
| 32 | 27937.5 | 537 | 199. | 232.331 | 9771.38 | 19.2286 | 0.34976 |
| 33 | 26760.5 | 509 | 262. | 225.406 | 9539.04 | 19.0304 | 0.35646 |
| 34 | 25630.1 | 482 | 501. | 218.683 | 9313.64 | 18.8256 | 0.36339 |
| 35 | 24544.7 | 456 | 871. | 212.157 | 9094.96 | 18.6138 | 0.37055 |
| 36 | 23502.5 | 432 | 326. | 206.383 | 8882.80 | 18.3949 | 0.37795 |
| 37 | 22501.4 | 408 | 824. | 200.757 | 8676.42 | 18.1688 | 0.38560 |
| 38 | 21539.7 | 386 | 323. | 195.798 | 8475.66 | 17.9354 | 0.39349 |
| 39 | 20615.5 | 364 | 783. | 190.945 | 8279.86 | 17.6946 | 0.40163 |
| 40 | 19727.4 | 344 | 167. | 186.684 | 8088.92 | 17.4461 | 0.41003 |
| 41 | 18873.6 | 324 | 440. | 182.493 | 7902.23 | 17.1901 | 0.41869 |
| 42 | 18052.9 | 305 | 566. | 178.828 | 7719.74 | 16.9262 | 0.42762 |
| 43 | 17263.6 | 287 | 513. | 175.421 | 7540.91 | 16.6543 | 0.43681 |
| 44 | 1650+4 | 270 | 250. | 172.680 | 7365.49 | 16.3744 | 0.44628 |
| 45 | 15773.6 | 253 | 745. | 170.127 | 7192.81 | 16.0867 | 0.45600 |
| 46 | 15070.0 | 237 | 972. | 168.345 | 7022.68 | 15.7911 | 0.46600 |
| 47 | 14392.1 | 222 | 902. | 166.872 | 6854.34 | 15.4878 | 0.47626 |
| 48 | 13738.5 | 208 | 510. | 166.047 | 6687.47 | 15.1770 | 0.48677 |
| 49 | 13107.9 | 194 | 771. | 165.983 | 6521.42 | 14.8591 | 0.49752 |
| 50 | 12498.6 | 181 | 663. | 166.424 | 6355.44 | 14.5346 | 0.50849 |
| 51 | 11909.6 | 169 | 165. | 167.316 | 6 I 89.01 | 14.2041 | 0.51967 |
| 52 | 11339.5 | 157 | 252. | 168.601 | 6021.70 | 13.8679 | 0.53104 | Due, Americar Experibnce Table, $3 \frac{1}{2}$ Per Cent


| $\begin{gathered} \text { Age } \\ x \end{gathered}$ | $D_{x}$ | $N_{x}$ | $C_{x}$ | $M_{x}$ | $\mathrm{I}+\mathrm{a}_{\mathrm{x}}$ | $A_{x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53 54 | 10787.4 10252.4 | 145916. 135128. | 170.234 172.317 | 5853.10 5682.86 | 13.5264 13.1801 | 0.54258 0.55430 |
| 55 | 9733.40 | 124876. | 174.646 | 5510.54 | 12.8296 | 0.56615 |
| 56 | 9229.60 | 115142. | 177.325 | 5335.90 | 12.4753 | 0.57813 |
| 57 | 8740.17 | 105912.8 | 180.168 | 5158.57 | 12.1179 | 0.59022 |
| 58 | 8264.44 | 97172.6 | 183.139 | 4978.40 | 11.7579 | 0.60239 |
| 59 | 7801.82 | 88908.2 | 186.340 | 4795.27 | 11.3958 | 0.61463 |
| 60 | 7351.65 | 81106.4 | 189.604 | 4608.93 | 11.0324 | 0.62692 |
| 61 | 6913.44 | 73754.7 | 192.909 | 4419.32 | 10.6683 | 0.63924 |
| 62 | 6486.75 | 66841.3 | 196.117 | 4226.41 | 10.3043 | 0.65155 |
| 63 | 6071.27 | 60354.5 | 199.109 | 40.30 .30 | 9.9410 | 0.66383 |
| 64 | 5666.85 | 54283.3 | 201.887 | 3831.19 | 9.5791 | 0.67607 |
| 65 | 5273.33 | 48616.4 | 204.457 | 3629.30 | 9.2193 | 0.68824 |
| 66 | 4890.55 | 43343.1 | 206.522 | 3424.84 | 8.8626 | 0.70030 |
| 67 | 4518.65 | 38452.5 | 208.022 | 3218.32 | 8.5097 | 0.71223 |
| 63 | 4157.82 | 33933.9 | 208.903 | 3010.30 | 8.1615 | 0.72401 |
| 69 | 3808.32 | 29776.1 | 208.858 | 2801.40 | 7.8187 | 0.73560 |
| 70 | 3470.67 | 25967.7 | 207.881 | 2592.54 | 7.4820 | 0.74698 |
| 71 | 3145.43 | 22497.1 | 205.639 | 2384.66 | 7.1523 | 0.75813 |
| 72 | 2833.42 | 19351.6 | 201.851 | 2179.02 | 6.8298 | 0.76904 |
| 73 | 2535.75 | 16518.2 | 196.436 | 1977.17 | 6.5141 | 0.77972 |
| 74 | 2253.57 | 13982.5 | 189.491 | 1780.73 | 6.2046 | 0.79018 |
| 75 | 1987.87 | 11728.9 | 181.253 | 1591.24 | 5.9002 | 0.80048 |
| 76 | 1739.39 | 9741.02 | 17 I .940 | 1409.99 | 5.6002 | 0.81062 |
| 77 | 1508.63 | 8001.63 | 161.889 | 1238.05 | 5.3039 | 0.82064 |
| 78 | 1295.73 | 6493.00 | 151.2646 | 1076.158 | 5.0111 | 0.83054 |
| 79 | 1100.647 | 5197.27 | 140.0891 | 924.894 | 4.7220 | 0.84032 |
| 80 | 923.338 | 4096.62 | 128.8801 | 784.805 | 4.4368 | 0.84997 |
| 81 | 763.234 | 3173.29 | 116.9588 | 655.924 | 4.1577 | 0.85940 |
| 82 | 620.465 | 2410.05 | 104.4881 | 5.38 .966 | 3.8843 | 0.86865 |
| 83 | 494.995 | 1789.59 | 91.6152 | 434.478 | 3.6154 | 0.87774 |
| 84 | 386.641 | 1294.59 | 78.9565 | $34^{2.862}$ | 3.3483 | 0.88677 |
| $85^{\circ}$ | 294.610 | 907.95 | 67.0490 | 263.906 | 3.0819 | 0.89578 |
| 86 | 217.598 | 613.34 | 55.8566 | 196.857 | 2.8187 | 0.90468 |
| 87 | 154.383 | 395.74 | 45.1992 | 141.000 | 2.5634 | 0.91332 |
| 88 | 103.963 | 24 I .36 | 34.82426 | 95.8011 | 2.3216 | 0.92149 |
| 89 | 65.6231 | 137.398 | 25.09929 | 60.9768 | 2.0937 | 0.92920 |
| 90 | 38.3047 | 71.775 | 16.82244 | 35.8775 | 1.8738 | 0.93664 |
| 91 | 20.18692 | 33.4700 | 10.385393 | 19.05509 | 1.6580 | 0.94393 |
| 92 | 9.11888 | 13.2831 | 5.588150 | 8.66970 | 1.4567 | 0.95074 |
| 93 | 3.22236 | 4.16420 | 2.285484 | 3.08155 | 1.2923 | 0.95630 |
| 94 | 0.827611 | 0.94184 | 0.685393 | 0.79576 | 1.1380 | 0.96152 |
| 95 | 0.114232 | 0.114232 | 0.110369 | 0.110369 | 1.0000 | 0.96618 |

Table VI.-Amount of 1
$s=(\mathrm{r}+i)^{n}$

| $n$ | 1\% | 1 $17 \%$ | 2\% | 3\% | :2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.01000000 | 1.01500000 | 1.02000000 | 1.03000000 | 1 |
| 2 | 1.02010000 | 1.03022500 | 1.04040000 | 1.06090000 | 2 |
| 3 | 1.03030100 | 1.04567838 | 1.06120800 | 1.09272700 | 3 |
| 4 | 1.0406 O401 | 1.06136355 | 1.08243216 | 1.1255088 I | 4 |
| 5 | 1.05101005 | 1.07728400 | 1.10408080 | 1.15927407 | 5 |
| 6 | 1.06152015 | 1.09344326 | 1.12616242 | 1.1940 5230 | 6 |
| 7 | 1.07213535 | 1.1098 4491 | I. 14868567 | $1.229873^{87}$ | 7 |
| 8 | 1.08285671 | 1.12649259 | I. 17165938 | 1.26677008 | 8 |
| 9 | 1.09368527 | 1.14338998 | I.1950 9257 | 1.3047 7318 | 9 |
| 10 | 1.1046 2213 | 1.16054083 | 1.2189 9442 | 1.34391638 | 10 |
| 11 | 1.11566835 | 1.17794894 | I. 24337431 | 1.3842 $33^{87}$ | 11 |
| 12 | 1.12682503 | 1.19561817 | 1.26824179 | 1.42576089 | 12 |
| 13 | 1.13809328 | 1.21355244 | 1.29360663 | 1.46853371 | 13 |
| 14 | I.1494 7421 | 1.23175573 | I. 31947876 | 1.51258972 | 14 |
| 15 | 1.160\% 6896 | 1.25023207 | I. 34586834 | 1.55796742 | 15 |
| 16 | 1.17257864 | 1.26898555 | 1.37278571 | 1.60470644 | 16 |
| 17 | 1.1843 044.3 | 1.28802033 | I. $4002414{ }^{2}$ | 1.65284763 | 17 |
| 18 | 1.19614748 | 1.30734064 | 1.4282 4625 | 1.70243306 | 18 |
| 19 | 1.2081 0895 | I. 32695075 | 1.45681117 | I. 75350605 | 19 |
| 20 | 1.22019004 | 1.34685501 | 1.48594740 | 1.80611123 | 20 |
| 21 | 1.23239194 | 1.36705783 | 1.51566634 | 1.86029457 | 21 |
| 22 | 1.24471586 | 1.38756370 | 1.54597967 | 1.91610341 | 22 |
| 23 | 1.25716302 | 1.40837715 | 1.57689926 | 1.97358651 | 23 |
| 24 | 1.26973465 | 1.42950281 | 1.60843725 | 2.03279411 | 24 |
| 25 | 1.28243200 | 1.45094535 | 1.64060599 | 2.09377793 | 25 |
| 26 | 1.29525631 | 1.47270953 | 1.67341811 | 2.15659127 | 26 |
| 27 | 1.30820888 | 1.49480018 | 1.70688648 | 2.22128901 | 27 |
| 28 | 1.32129097 | 1.51722218 | 1.74102421 | 2.28792768 | 28 |
| 29 | 1.3345 0388 | 1.53998051 | 1.77584469 | 2.35656551 | 29 |
| 30 | 1.34784892 | 1.56308022 | 1.81136158 | 2.42726247 | 30 |
| 31 | 1.3613 2740 | 1.58652642 | 1.84758882 | 2.50008035 | 31 |
| 32 | 1. 37494068 | 1.6103 2432 | 1.88454059 | 2.57508276 | 32 |
| 33 | 1. 38869009 | 1. 63447918 | 1.92223140 | 2.65233524 | 33 |
| 34 | 1.40257699 | 1.65899637 | 1.96067603 | 2.73190530 | 34 |
| 35 | 1.41660276 | г. $6838{ }^{813}{ }^{2}$ | 1.99988955 | $2.813^{8} 6245$ | 35 |
| 36 | 1.43076878 | 1.7091 3954 | 2.03988734 | 2.89827833 | 36 |
| 37 | 1.44507647 | 1.73477663 | 2.08068509 | 2.98522668 | 37 |
| 38 | 1.45952724 | 1.76079828 | 2.12229879 | 3.07478348 | 38 |
| 39. | 1.47412251 | 1.78721025 | 2.16474477 | 3.16702698 | 39 |
| 40 | 1.4888 6373 | 1.8140 1841 | 2.20803966 | 3.26203779 | 40 |
|  | r. 50375237 | 1.84122868 | 2.25220046 | 3.35989893 | 41 |
| 42 | 1.51878989 | 1.86884712 | 2.29724447 | 3.46069589 | 42 |
| 43 | 1.5339 7779 | 1.89687982 | 2.34318936 | 3.56451677 | 43 |
| 44 | I.5493 1757 | 1.92533302 | 2.39005314 | 3.67145227 | 44 |
| 45 | 1.56481075 | 1.95421301 | 2.43785421 | 3.78159584 | 45 |
|  | 1.58045885 | 1.98352621 | 2.48661129 |  | 46 |
| 47 | 1.5962 6344 | 2.01327910 | 2.53634351 | 4.01189503 | 47 |
| 48 | 1.61222688 | 2.04347829 | 2.58707039 | 4.13225188 | 48 |
| 49 | 1.62834834 | 2.07413046 | 2.63881179 | 4.25621944 | 49 |
| 50 | 1.6446 2182 | 2.10521212 | 2.69158803 | 4.38390602 | 50 |

$$
s=(\mathrm{I}+i)^{n}
$$

| $n$ | $3^{\frac{1}{2}} \%$ | 4\% | 5\% | 6\% | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.03500000 | 1.04000000 | 1.05000000 | 1.06000000 | I |
| 2 | 1.07122500 | 1.08160000 | 1.10250000 | 1.12360000 | 2 |
| 3 | 1.10871788 | 1.12486400 | 1.15762500 | 1.19101600 | 3 |
| 4 | 1.14752300 | 1.1698 5856 | 1.21550625 | 1.26247696 | 4 |
| 5 | I. 18768631 | 1.21665290 | 1.27628156 | 1.33822558 | 5 |
| 6 | 1.22925533 | 1.26531902 | 1.34009564 | 1.41851911 | 6 |
| 7 | 1.27227926 | 1.31593178 | 1.40710042 | 1.50363026 | 7 |
| 8 | 1.31680904 | 1.36856905 | 1.47745544 | 1.59384807 | 8 |
| 9 | 1.36289735 | 1.4233 I 181 | 1.55132822 | 1.68947896 | 9 |
| 10 | 1.41059876 | I. 48024428 | 1.62889463 | 1.79084770 | 10 |
| 11 | 1.4599 6972 | 1.53945406 | 1.71033936 | 1.89829856 | II |
| 12 | 1.51106866 | 1.60103222 | 1.795856 .33 | 2.01219647 | 12 |
| 13 | 1.5639 5606 | 1.66507351 | 1.88564914 | 2.1329 2826 | 13 |
| 14 | 1.61869452 | 1.73167645 | 1.97993160 | 2.26090396 | 14 |
| 15 | 1.67534883 | 1.80094351 | 2.078928 I 8 | 2.39655819 | 15 |
| 16 | 1.7339 8604 | 1.87298125 | 2.18287459 | 2.54035168 | 16 |
| 17 | 1.79467555 | 1.94790050 | 2.29201832 | 2.69277279 | 17 |
| 18 | 1.85748920 | 2.02581652 | 2.40661923 | 2.85433915 | 18 |
| 19 | 1.92250132 | 2.1068 4918 | 2.52695020 | 3.02559950 | 19 |
| 20 | 1.98978886 | 2.19112314 | 2.65329771 | 3.20713547 | 20 |
| 21 | 2.05943147 | 2.27876807 | 2.78596259 | 3.39956360 | 21 |
| 22 | 2.13151158 | 2.36991879 | 2.92526072 | 3.60353742 | 22 |
| 23 | 2.20611448 | 2.46471554 | 3.07152376 | 3.81974966 | 23 |
| 24 | 2.28332849 | 2.56330416 | 3.22509994 | 4.04893464 | 24 |
| 25 | 2.36324498 | 2.6658363 .3 | 3.38635494 | 4.29187072 | 25 |
| 26 | 2.44595856 | 2.77246978 | 3.55567269 | 4.54938296 | 26 |
| 27 | 2.53156711 | 2.88336858 | $3.733+5632$ | 4.82234594 | 27 |
| 28 | 2.62017196 | 2.99870332 | 3.92012914 | 5.11168670 | 28 |
| 29 | 2.71187798 | 3.1186 5145 | 4.11613560 | 5.41838790 | 29 |
| 30 | 2.80679370 | 3.24339751 | 4.32194238 | 5.74349117 | 30 |
| 31 | 2.90503148 | 3.37313341 | 4.5380 .3949 | 6.08810064 | 31 |
| 32 | 3.00670759 | 3.50805875 | 4.76494147 | 6.45338668 | 32 |
| 33 | 3.11194235 | 3.6483 8110 | 5.00318854 | 6.84058988 | 33 |
| 34 | 3.22086033 | 3.79431634 | 5.253 .34797 | 7.25102528 | 34 |
| 35 | $3 \cdot 33359045$ | 3.94608899 | 5.51601537 | 7.68608679 | 35 |
| 36 | 3.45026611 |  | 5.79181614 | 8.14725200 | 36 |
| 37 | 3.57102543 | 4.26808986 | 6.08140694 | 8.63608712 | 37 |
| $3^{8}$ | 3.69601132 | 4.4388 I 345 | 6.38547729 | 9.1542 5235 | 38 |
| 39 | 3.82537171 | 4.61636599 | 6.70475115 | 9.70350749 | 39 |
| 40 | 3.95925972 | 4.80102063 | 7.03998871 | 10.28571794 | 40 |
| 41 | 4.0978338 I |  |  | 10.90286101 | 41 |
| 42 | 4.24125799 | 5.19278391 | 7.76158756 | 11.55703267 | 42 |
| 43 | 4.38970202 | 5.40049527 | 8.14966693 | 12.25045463 | 43 |
| 44 | 4.54334160 | 5.61651508 | 8.55715028 | 12.9854819 I | 44 |
| 45 | 4.70235855 | 5.84117568 | 8.98500779 | 13.76461083 | 45 |
| 46 | 4.86694110 |  |  |  | 46 |
| 47 | 5.03728404 | 6.31781562 | 9.90597109 | 15.46591673 | 47 |
| 48 | 5.21358898 | 6.57052824 | 10.40126965 | 16.39387173 | 48 |
| 49 | 5.39606459 | 6.83334937 | 10.92133313 | 17.37750403 | 49 |
| 50 | 5.58402686 | 7.10668335 | 11.46739979 | 18.42015427 | 50 |

Table VII.-Present Valde of $y_{\text {' }}$
$\boldsymbol{v}^{\boldsymbol{n}}=(\mathrm{I}+i)^{-n} \quad *$

| $n$ | $1 \%$ | 12\% | 2\% | 3\% | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.99009901 | 0.98522167 | 0.98039216 | 0.97087379 | 1 |
| 2 | 0.98029605 | 0.97066175 | 0.96116878 | 0.94259591 | 2 |
| 3 | 0.97059015 | 0.95631699 | 0.94232233 | 0.91514166 | 3 |
| 4 | 0.96098034 | 0.94218423 | 0.92384543 | 0.88848705 | 4 |
| 5 | 0.95146569 | 0.92826033 | 0.90573081 | 0.86260878 | 5 |
| 6 | 0.94234524 | 0.91454219 | 0.88797138 | 0.83748426 | 6 |
| 7 | 0.93271805 | 0.90102679 | 0.87056018 | 0.81309151 | 7 |
| 8 | 0.92348322 | 0.88771112 | 0.85349037 | 0.78940923 | 8 |
| 9 | 0.91433982 | 0.87459224 | 0.83675527 | 0.76641673 | 9 |
| 10 | 0.90528695 | 0.86166723 | 0.82034830 | 0.74409391 | 0 |
| II | 0.89632372 | 0.84893323 | 0.80426304 | 0.72242128 | 11 |
| 12 | 0.88744923 | 0.83638742 | 0.78849318 | 0.70137988 | 12 |
| 13 | 0.87866260 | 0.82402702 | 0.77303253 | 0.68095134 | 13 |
| 14 | 0.86996297 | 0.81184928 | 0.75787502 | 0.66111781 | 14 |
| 15 | 0.86134947 | 0.79985150 | 0.74301473 | 0.64186195 | 15 |
| 16 | 0.85282126 | 0.78803104 | 0.7284458 I | 0.62316694 | 16 |
| 17 | 0.84437749 | 0.77638526 | 0.71416256 | 0.60501645 | 17 |
| 18 | 0.83601731 | 0.76491159 | 0.70015937 | 0.5873946 I | 18 |
| 19 | 0.82773992 | 0.75360747 | 0.68643076 | 0.57028603 | 19 |
| 20 | 0.81954447 | 0.74247042 | 0.67297133 | 0.55367575 | 20 |
| 21 | 0.81143017 | 0.73149795 | 0.65977582 | 0.53754928 | 21 |
| 22 | 0.80339621 | 0.72068763 | 0.64683904 | 0.52189250 | 22 |
| 23 | 0.79544179 | 0.71003708 | 0.63415592 | 0.50669175 | 23 |
| 24 | 0.78756613 | 0.69954392 | 0.62172149 | 0.49193374 | 24 |
| 25 | 0.77976844 | 0.68920583 | 0.60953087 | 0.47760557 | 25 |
| 26 | 0.77204796 | 0.67902052 | 0.59757928 | 0.46 .369473 | 26 |
| 27 | 0.76 .140392 | 0.66898574 | 0.58586204 | 0.45018906 | 27 |
| 28 | 0.75683557 | 0.65909925 | 0.57437455 | 0.43707675 | 28 |
| 29 | 0.74934215 | 0.64935887 | 0.56311231 | 0.42434636 | 29 |
| 30 | 0.74192292 | 0.63976243 | 0.55207089 | 0.41198676 | 30 |
| 31 | 0.73457715 | 0.630 .30781 | 0.54124597 | 0.39998715 | $3{ }^{1}$ |
| 32 | 0.7273041 I | 0.62099292 | 0.53063330 | 0.38833703 | 32 |
| 33 | 0.72010307 | 0.61181568 | 0.52022873 | 0.37702625 | 33 |
| 34 | 0.71297334 | 0.60277407 | 0.51002817 | 0.36604490 | 34 |
| 35 | 0.70591420 | 0.59386608 | 0.50002761 | 0.35538340 | 35 |
| 36 | 0.69892495 | 0.58508974 | 0.49022351 | 0.34503243 | 36 |
| 37 | 0.69200490 | 0.57644309 | 0.48061093 | 0.33498294 | 37 |
| 38 | 0.68515337 | 0.56792423 | 0.47118719 | 0.32522615 | 38 |
| 39 | 0.67836967 | 0.55953126 | 0.46194822 | 0.31575355 | 39 |
| 40 | 0.67165314 | 0.55126232 | 0.45289042 | c. 30655684 | 40 |
| 41 | 0.66500311 | 0.5431 1559 | 0.44401021 | c. 29762800 | 41 |
| 42 | 0.65841892 | 0.5350 8925 | 0.43530413 | 0.28895922 | 42 |
| 43 | 0.65189992 | -. 52718153 | 0.42676875 | 0.28054294 | 43 |
| 44 | 0.64544546 | 0.51939067 | 0.41840074 | 0.27237178 | 44 |
| 45 | 0.63905492 | 0.51171494 | 0.41019680 | c. 26443862 | 45 |
| 46 | 0.63272764 | 0.50415265 | 0.40215373 | 0.25673653 | 46 |
| 47 | 0.62646301 | 0.49670212 | 0.39426836 | 0.24925876 | 47 |
| 48 | 0.6202604 I | 0.4893 6170 | 0.3865 .3761 | 0.24199880 | 48 |
| 49 | 0.61411921 | 0.48212975 | 0.37895844 | 0.23495029 | 49 |
| 50 | 0.6080 2882 | 0.47500468 | 0.37152788 | 0.22810708 | 50 |

$$
v^{n}=(1+i)^{-n}
$$

| $n$ | 32\% | 4\% | 5\% | 6\% | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.96618357 | 0.96153846 | 0.95238095 | 0.94339623 | I |
| 2 | 0.93351070 | 0.92455621 | 0.90702948 | 0.88999644 | 2 |
| 3 | 0.90194271 | 0.88899636 | $0.8633^{8} 3760$ | 0.83961928 | 3 |
| 4 | 0.87144223 | 0.85480419 | 0.82270247 | 0.79209366 | 4 |
| 5 | 0.84197317 | 0.82192711 | 0.78352617 | 0.74725817 | 5 |
| 6 | 0.81350064 | 0.79031453 | 0.74621540 | 0.70496054 | 6 |
| 7 | 0.78599096 | 0.75991781 | 0.71068133 | 0.66505711 | 7 |
| 8 | 0.75941156 | 0.73069021 | 0.67683936 | 0.62741237 | 8 |
| 9 | 0.73373097 | 0.70258674 | 0.64460892 | 0.59189846 | 9 |
| 10 | 0.70891881 | 0.67556417 | 0.61391325 | 0.55839478 | \% |
| 11 | 0.68494571 | 0.64958093 | 0.58467929 | 0.52678753 | 12 |
| 12 | 0.66178330 | 0.62459705 | 0.55683742 | 0.49696936 | 12 |
| 13 | 0.63940415 | 0.60577409 | 0.53032135 | 0.46883902 | 13 |
| 14 | 0.61778179 | 0.57747508 | 0.50506795 | 0.44230096 | 14 |
| 15 | 0.59689062 | 0.55526450 | 0.48101710 | 0.41726506 | 15 |
| 16 | 0.57670591 | 0.53390818 | 0.45811152 | 0.39364628 | 16 |
| 17 | 0.55720378 | 0.51337325 | 0.43629669 | 0.37136442 | 17 |
| 18 | 0.53836114 | 0.49362812 | 0.41552065 | 0.35034379 | 18 |
| 19 | 0.52015569 | 0.47464242 | 0.39573396 | 0.33051301 | 19 |
| 20 | 0.50256588 | 0.45638695 | 0.37688948 | 0.31180473 | 20 |
| 21 | 0.48557090 | 0.43883360 | 0.35894236 | 0.29415540 | 21 |
| 22 | 0.46915063 | 0.42195539 | 0.34184987 | 0.27750510 | 22 |
| 23 | 0.45328563 | 0.40572633 | 0.32557131 | 0.26179726 | 23 |
| 24 | 0.43795713 | 0.39012147 | 0.31006791 | 0.24697855 | 24 |
| 25 | $0.423^{14699}$ | 0.37511680 | 0.29530277 | 0.23299863 | 25 |
| 26 | 0.40883767 | 0.36068923 | 0.28124073 | 0.21981003 | 26 |
| 27 | 0.39501224 | 0.34681657 | 0.26784832 | 0.20736795 | 27 |
| 28 | 0.38165434 | 0.33347747 | 0.25509364 | 0.19563014 | 28 |
| 29 | 0.36874815 | 0.32065141 | 0.24294632 | 0.18455674 | 29 |
| 30 | 0.3562784 I | 0.30831867 | 0.23137745 | 0.17411013 | $3{ }^{\circ}$ |
| 31 | 0.34423035 | 0.29646026 | 0.22035947 | 0.1642 5484 | 3 I |
| 32 | 0.33258971 | 0.28505794 | 0.20986617 | 0.15495740 | 32 |
| 33 | 0.32134271 | 0.27409417 | 0.19987254 | 0.14618622 | 33 |
| 34 | 0.31047605 | 0.26355209 | -.1903 5480 | -. 13791153 | 34 |
| 35 | 0.29997686 | 0.25341547 | 0.18129029 | 0.13010522 | 35 |
| 36 | 0.28983272 | 0.24366872 | 0.17265741 | 0.12274077 | 36 |
| 37 | 0.28003161 | 0.23429685 | 0.16443563 | 0.11579318 | 37 |
| $3^{8}$ | 0.27056194 | 0.22528543 | 0.15660536 | 0.10923885 | 38 |
| 39 | 0.26141250 | 0.21662061 | 0.14914797 | 0.10305552 | 39 |
| 40 | 0.25257247 | 0.20828904 | 0.14204568 | 0.09722219 | 40 |
|  | 0.24403137 | 0.20027793 | 0.13528160 | 0.09171905 | 4 I |
| 42 | 0.23577910 | 0.19257493 | 0.12883962 | 0.08652740 | 42 |
| 43 | 0.22780590 | 0.18516820 | 0.12270440 | 0.08162962 | 43 |
| 44 | 0.22010231 | 0.17804635 | 0.11686133 | 0.07700908 | 44 |
| 45 | 0.21265924 | 0.17119841 | 0.11129651 | 0.07265007 | 45 |
| 46 | 0.20546787 | 0.16461386 | 0.10599668 | 0.0685378 I | 46 |
| 47 | 0.19851968 | 0.15828256 | 0.10094921 | 0.0646583 I | 47 |
| 48 | 0.19180645 | 0.15219476 | 0.09614211 | 0.06099840 | 48 |
| 49 | 0.18532024 | 0.14634112 | 0.09156391 | 0.05754566 | 49 |
| 50 | $0.1700<2.37$ | 0.14071262 | 0.08720373 | 0.054288 .36 | 50 |

Table VIII.-Amount of 1 pre Annum at Compound INterest
$s_{n}=\frac{(1+i)^{n}-1}{i}$

| $n$ | 1\% | 1 $\frac{1}{2} \%$ | $2 \%$ | 3\% | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.00000000 | 1.00000000 | 1.00000000 | 1.00000000 | 1 |
| 2 | 2.01000000 | 2.01500000 | 2.0200000 | 2.03000000 | 2 |
| 3 | 3.03010000 | 3.04522500 | 3.06040000 | 3.09090000 | 3 |
| 4 | 4.06040100 | 4.09090338 | 4.12160800 | 4.18362700 | 4 |
| 5 | 5.10100501 | 5.15226693 | 5.20404016 | 5.30913581 | 5 |
| 6 | 6.15201506 | 6.22955093 | 6.30812096 | 6.46840988 | 6 |
| 7 | 7.21353521 | 7.32299419 | 7.43428338 | 7.66246218 | 7 |
| 8 | 8.28567056 | 8.43283911 | 8.58296905 | 8.89233605 | 8 |
| 9 | 9.36852727 | 9.55933169 | 9.75462843 | 10.15910613 | 9 |
| 10 | 10.46221254 | 10.70272167 | 10.94972100 | 11.46387931 | 10 |
| 11 | 11.5668 3467 | 11.86326249 | 12.16871542 | 12.80779569 | 11 |
| 12 | 12.68250301 | 13.04121143 | 13.41208973 | 14.19202956 | 12 |
| 13 | 13.80932804 | 14.23682960 | 14.68033152 | 15.61779045 | 13 |
| 14 | 14.94742132 | 15.45038205 | 15.97393815 | 17.08632416 | 14 |
| 15 | 16.09689554 | 16.68213778 | 17.29341692 | 18.59891389 | 15 |
| 16 | 17.25786449 | 17.93236984 | 18.63928525 | 20.15688130 | 16 |
| 17 | 18.43044314 | 19.20135539 | 20.01207096 | 21.76158774 | 17 |
| 18 | 19.61474757 | 20.48937572 | 21.41231238 | 23.41443537 | 18 |
| 19 | 20.81089504 | 21.79671636 | 22.84055863 | 25.11686844 | 19 |
| 20 | 22.01900399 | 23.12366710 | 24.29736980 | 26.87037449 | 20 |
| 21 | 23.23919403 | 24.47052211 | 25.78331719 | 28.67648572 | 21 |
| 22 | 24.47158598 | 25.83757994 | 27.29898354 | 30.53678030 | 22 |
| 23 | 25.71630183 | 27.22514364 | 28.84496321 | 32.45288370 | 23 |
| 24 | 26.97346485 | 28.63352080 | 30.42186247 | 34.42647022 | 24 |
| 25 | 28.24319950 | 30.0630 2361 | 32.03029972 | 36.45926432 | 25 |
| 26 | 29.52563150 | 31.51396896 | 33.67090572 | 38.55304225 | 26 |
| 27 | 30.82088781 | 32.98667850 | 35.34432383 | 40.70963352 | 27 |
| 28 | 32.12909669 | 34.48147867 | 37.05121031 | 42.93092252 | 28 |
| 29 | 33.45038766 | 35.99870085 | 38.79223451 | 45.21885020 | 29 |
| 30 | 34.78489153 | 37.53868137 | 40.56807921 | 47.5754 1571 | 30 |
| 31 | 36.13274045 | 39.10176159 | 42.37944079 | 50.00267818 | 31 |
| 32 | 37.49406785 | 40.68828801 | 44.22702961 | 52.50275852 | 32 |
| 33 | 38.86920853 | 42.29861233 | 46.11157020 | 55.07784128 | 33 |
| 34 | 40.25769862 | 43.93309152 | $48.033^{8} 0160$ | 57.73017652 | 34 |
| 35 | +1.66027560 | 45.59208789 | 49.99447763 | 60.46208181 | 35 |
| 36 | 43.07687836 | 47.27596921 | 51.99436719 | 63.27594427 | 36 |
| 37 | 44.50764714 | 48.98510874 | 54.03425453 | 66.17422259 | 37 |
| 38 | 45.95272361 | 50.71988538 | 56.11493962 | 69.15944927 | 38 |
| 39 | 47.41225085 | 52.48068366 | 58.23723841 | 72.23423275 | 39 |
| 40 | 48.88637336 | 54.26789391 | 60.40198318 | 75.40125973 | 40 |
| 41 | 50.37523709 | 56.08191232 |  |  | 41 |
| 42 | 51.87898946 | 57.92314100 | 64.86222330 | 82.02319645 | 42 |
| 43 | 53.39777936 | 59.79198812 | 67.15946777 | 85.48389234 | 43 |
| 44 | 54.93175715 | 61.68886794 | 69.50265712 | 89.04840911 | 44 |
| 45 | 56.48107472 | 63.61420096 | 71.89271027 | 92.71986139 | 45 |
| 46 | 58.04588547 | 65.56841398 |  | 96.50145723 | 46 |
| 47 | 59.62634432 | 67.55194018 | 76.81717576 | 100.39650095 | 47 |
| 48 | 61.22260777 | 69.56521929 | 79.35351927 | 104.40839598 | 48 |
| 49 | 62.83483385 | 71.60869758 | 81.94058966 | 108.54064785 | 49 |
| 50 | 64.46318218 | 73.68282804 | 84.5794 OI 45 | 112.79686729 | 50 |

$$
s_{\bar{n}}=\frac{(1+i)^{n}-1}{i}
$$

| $n$ | $3 \frac{1}{2} \%$ | 4\% | 5\% | 6\% | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | 1.00000000 | 1.00000000 | 1.00000000 | 1.00000000 | 1 |
| 2 | 2.03500000 | 2.04000000 | 2.05000000 | 2.06000000 | 2 |
| 3 | 3.10622500 | 3.12160000 | 3.15250000 | 3.18360000 | 3 |
| 4 | 4.21494288 | 4.24646400 | 4.31012500 | 4.37461600 | 4 |
| 5 | 5.36246588 | 5.41632256 | 5.52563125 | 5.63709296 | 5 |
| 6 | 6.55015218 | 6.63297546 | 6.80191281 | 6.97531854 | 6 |
| 7 | 7.77940751 | 7.89929448 | 8.14200845 | 8.39383765 | 7 |
| 8 | 9.05168677 | 9.21422626 | 9.54910888 | 9.89746791 | 8 |
| 9 | 10.36849581 | 10.58279531 | 11.02656432 | I I 49131598 | 9 |
| 10 | 11.73139316 | 12.00610712 | 12.57789254 | 13.18079494 | 10 |
| 11 | 13.14199192 | 13.48635141 | 14.20678716 | 14.97164264 | 11 |
| 12 | 14.60196164 | 15.02580546 | 15.91712652 | 16.86994120 | 12 |
| 13 | 16.11303030 | 16.62683768 | 17.71298285 | 18.88213767 | 13 |
| 14 | 17.67698636 | 18.2919 III9 | 19.59863199 | 21.01506593 | 14 |
| 15 | 19.29568088 | 20.02358764 | 21.57856359 | 23.27596988 | 15 |
| 16 | 20.97102971 | 21.82453114 | 23.65749177 | 25.67252808 | 16 |
| 17 | 22.70501575 | 23.69751239 | 25.84036636 | 28.21287976 | 17 |
| 18 | 24-49969130 | 25.64541288 | 28.13238467 | 30.90565255 | 18 |
| 19 | 26.35718050 | 27.67122940 | 30.5390039 I | 33.75999170 | 19 |
| 20 | 28.2796 8181 | 29.77807858 | 33.06595410 | 36.78559120 | 20 |
| 21 | 30.26947068 | 31.96921072 | 35.71925181 | 39.99272668 | 21 |
| 22 | 32.32890215 | 34.24796979 | 38.50521440 | 43.39229028 | 22 |
| 23 | 3+.4604 1373 | 36.61788858 | 41.43047512 | 46.99582769 | 23 |
| 24 | 36.66652821 | 39.08260412 | 44.50199887 | 50.81557735 | 24 |
| 25 | 38.94985669 | 41.64590829 | 47.72709882 | 54.86451200 | 25 |
| 26 | 41.3131 O168 | 44.31174462 | 51.11345376 | 59.15638272 | 26 |
| 27 | 43.75906024 | 47.08421440 | 54.66912645 | 63.70576568 | 27 |
| 28 | 46.29062734 | 49.96758298 | 58.40258277 | 68.52811162 | 28 |
| 29 | 48.91079930 | 52.96628630 | 62.32271191 | 73.63979832 | 29 |
| 30 | 51.62267728 | 56.08493775 | 66.43884750 | 79.05818622 | 30 |
| 31 | 54.42947098 | 59.32833526 | 70.76078988 | 84.80167739 | 3 I |
| 32 | 57.33450247 | 62.70146867 | 75.29882937 | 90.88977803 | 32 |
| 33 | 60.34121005 | 66.20952742 | 80.06377084 | 97.34316471 | 33 |
| 34 | 63.45315240 | 69.85790851 | 85.06695938 | 10.48375460 | 34 |
| 35 | 66.67401274 | 73.65222486 | 90.32030735 | I II 43477987 | 35 |
| 36 | 70.00760318 | 77.59831385 | 95.83632272 | 119.12086666 | 36 |
| 37 | 73.45786930 | 81.70224640 | 101.62813886 | 127.26811866 | 37 |
| 38 | 77.02889472 | 85.97033626 | 107.70954580 | 135.90420578 | 38 |
| 39 | 80.72490604 | 90.40914971 | 114.09502309 | 145.05845813 | 39 |
| 40 | 84.55027775 | 95.02551570 | 120.79977424 | 154.76196562 | 40 |
| 41 | 88.50953747 | 99.82653633 | 127.83976295 | 165.04768356 | 41 |
| 42 | 92.60737128 | 104.81959778 | 135.23175110 | 175.95054457 | 42 |
| 43 | 96.84862928 | 110.01238169 | 142.99333866 | 187.50757724 | 43 |
| 44 | 101.23833130 | 115.41287696 | 151.14300559 | 199.75803188 | 44 |
| 45 | 105.78167290 | 121.02939204 | 159.70015587 | 212.74351379 | 45 |
| 46 | 110.48403145 | 126.87056772 | 168.68516366 | 226.50812462 | 46 |
| 47 | 115.35097255 | 132.94539043 | 178.11942185 | 241.09861210 | 47 |
| 48 | 120.38825659 | 139.26320604 | 188.02539294 | 256.56452882 | 48 |
| 49 | 125.60184557 | 145.83373429 | 198.42666259 | 272.95840055 | 49 |
| 50 | 130.99791016 | I 52.66708366 | 209.34799572 | 290.33590458 | 50 |

$$
a_{\bar{n} \mid}=\frac{\left(1-v^{n}\right)}{i}
$$

| $n$ | 1\% | $11 \%$ | 2\% | 3\% | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.99009901 | 0.98522167 | 0.98039216 | 0.97087379 | 1 |
| 2 | 1.97039506 | 1.95588342 | 1.94156094 | 1.9134 6970 | 2 |
| 3 | 2.94098521 | 2.91220042 | 2.88388327 | 2.82861135 | 3 |
| 4 | 3.90196555 | 3.85438465 | 3.80772870 | 3.71709840 | 4 |
| 5 | 4.85343124 | 4.78264497 | 4.71345951 | 4.57970719 | 5 |
| 6 | 5.79547647 | 5.69718717 | 5.60143089 | 5.41719144 | 6 |
| 7 | 6.72819453 | 6.59821396 | 6.47199107 | 6.23028296 | 7 |
| 8 | 7.65167775 | 7.48592508 | 7.32548144 | 7.01969219 | 8 |
| 9 | 8.56601758 | 8.36051732 | 8.16223671 | 7.78610892 | 9 |
| 10 | 9.47130453 | 9.22218455 | 8.98258501 | 8.53020284 | 10 |
| II | 10.36762825 | 10.07111779 | 9.78684805 | 9.25262411 | II |
| 12 | 11.25507747 | 10.90750521 | 10.57534122 | 9.95400399 | 12 |
| 13 | 12.13374007 | 11.73153222 | 11.34837375 | 10.6349 5533 | 13 |
| 14 | 13.00370304 | 12.54338150 | 12.1062 4877 | 11.29607314 | 14 |
| 15 | 13.86505252 | 13.34323301 | 12.84926350 | 11.93793509 | 15 |
| 16 | 14.71787378 | 14.13126405 | 13.57770931 | 12.56110203 | 16 |
| 17 | 15.56225127 | 14.90764931 | 14.29187188 | 13.16611847 | 17 |
| 18 | 16.39826858 | 15.67256089 | I4.9920 3125 | 13.75351308 | 18 |
| 19 | 17.22600850 | 16.42616837 | 15.678 .46201 | 14.32379911 | 19 |
| 20 | 18.04555297 | 17.16863879 | 16.35143334 | 14.87747486 | 20 |
| 21 | 18.85698313 | 17.90013673 | 17.01120916 | 15.41502414 | 21 |
| 22 | 19.66037934 | 18.62082437 | 17.65804820 | 15.93691664 | 22 |
| 23 | 20.45582113 | 19.33086145 | 18.29220 .412 | 16.44360839 | 23 |
| 24 | 21.24338726 | $20.030+0537$ | 18.91392560 | 16.93554212 | 24 |
| 25 | 22.02315570 | 20.71961120 | $19.523+5647$ | 17.41314769 | 25 |
| 26 | 22.79520366 | 21.39863172 | 20.12103576 | 17.87684242 | 26 |
| 27 | 23.55960759 | 22.06761746 | 20.70689780 | 18.32703147 | 27 |
| 23 | 24.31644316 | 22.72671671 | 21.28127236 | 18.76410823 | 28 |
| 29 | 25.06578530 | 23.37607558 | $21.84+38466$ | 19.18845459 | 29 |
| 30 | 25.80770822 | $24.01583^{801}$ | 22.39645555 | $19.6004+135$ | 30 |
| 31 | 26.54228537 | 24.64614582 | 22.93770152 | $20.0004{ }^{28+9}$ | 3 r |
| 32 | 27.26958947 | 25.26713874 | 23.46833482 | 20.38876553 | 32 |
| 33 | 27.98969255 | 25.87895442 | 23.98856355 | 20.76579178 | 33 |
| 34 | 28.70266589 | 26.48172849 | 24.49859172 | 21.13183668 | 34 |
| 35 | 29.40858009 | 27.07559458 | 24.99861933 | 21.48722007 | 35 |
| 36 | 30.10750504 | 27.66068431 | 25.48884248 | 21.83225250 | 36 |
| 37 | 30.79950994 | 28.23712740 | 25.9694534 I | 22.16723544 | 37 |
| 38 | 31.48466330 | 28.80505163 | 26.44064060 | 22.49246159 | $3^{8}$ |
| 39 | 32.16303298 | 29.36458288 | 26.90258883 | 22.80821513 | 39 |
| 40 | 32.83468611 | 29.91584520 | $27.355+7924$ | 23.11477197 | 40 |
|  | 33.49968922 | 30.45896079 |  | 23.41239997 | 41 |
| 42 | 34.15810814 | 30.99405004 | 28.23479358 | 23.70135920 | 42 |
| 43 | 34.81000806 | 31.52123157 | 28.66156233 | 23.98190213 | 43 |
| 44 | 35.45545352 | 32.04062223 | 29.07996307 | 24.25427392 | 44 |
| 45 | 36.09450844 | 32.55233718 | 29.49015987 | 24.51871254 | 45 |
| 46 | 36.72723608 | 33.05648983 | 29.89231360 | 24.77544907 | 46 |
| 47 | 37.35369909 | 33.55319195 | 30.28658196 | 25.02470783 | 47 |
| 48 | 37.97395949 | 34.04255365 | 30.67311957 | 25.26670664 | 48 |
| 49 | 38.58807871 | 34.52468339 | 31.05207801 | 25.50165693 | 49 |
| 50 | 39.1961 1753 | 34.99968807 | 31.42360589 | 25.72976401 | 50 |

$$
a_{\bar{n} \mid}=\frac{\left(\mathrm{x}-v^{n}\right)}{i}
$$

| $n$ | $3 \frac{1}{2} \%$ | 4\% | 5\% | 6\% | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.96618357 | 0.96153846 | 0.95238095 | 0.94339623 | 1 |
| 2 | I. 89969428 | 1.88609467 | 1.85941043 | r.8333 9267 | 2 |
| 3 | 2.80163698 | 2.77509103 | 2.72324803 | 2.67301195 | 3 |
| 4 | 3.67307921 | 3.62989522 | 3.54595050 | 3.46510561 | 4 |
| 5 | 4.51505238 | 4.45182233 | 4.32947667 | 4.21236379 | 5 |
| 6 | $5 \cdot 32855302$ | 5.24213686 | 5.07569206 | 4.91732433 | 6 |
| 7 | 6.11454398 | 6.00205467 | 5.78637340 | 5.58238144 | 7 |
| 8 | 6.87395554 | 6.73274487 | 6.46321276 | 6.20979381 | 8 |
| 9 | 7.60768651 | 7.43533161 | 7.10782168 | 6.80169227 | 9 |
| 10 | 8.316605 .32 | 8.11089578 | 7.72173493 | 7.36008705 | 10 |
| II | 9.00155104 | 8.76047671 | 8.30641422 | 7.88687458 | 11 |
| 12 | 9.66333433 | 9.38507376 | 8.86325164 | $8.383^{8} 4394$ | 12 |
| 13 | 10.30273849 | 9.98564785 | 9.39357299 | 8.85268296 | 13 |
| 1.4 | 10.92052028 | 10.56312293 | 9.89864094 | 9.29498393 | 14 |
| 15 | $11.517+1090$ | II.II 838743 | 10.37965804 | 9.71224899 | 15 |
| 16 | 12.09411681 | 11.65229561 | 10.83776956 | $10.105^{8} 9527$ | 16 |
| 17 | 12.65132059 | 12.16566885 | 11.27406625 | 10.47725969 | 17 |
| 18 | 13.18968173 | 12.65929697 | 11.68958690 | 10.82760348 | 18 |
| 19 | 13.70983742 | 13.13393940 | 12.08532086 | 11.15811649 | 19 |
| 20 | 14.21240330 | 13.59032634 | 12.46221034 | 11.46992122 | 20 |
| 21 | 14.69797420 | 14.02915995 | 12.82115271 | 11.76407662 | 21 |
| 22 | 15.16712484 | 14.45115533 | 13.16300258 | 12.04158172 | 22 |
| 23 | 15.62041047 | 14.85684167 | 13.48857388 | 12.30337898 | 23 |
| 24 | 16.05836760 | r5.2469 6314 | 13.79864179 | 12.55035753 | 24 |
| 25 | 16.48151459 | 15.62207994 | 14.09394457 | 12.78335616 | 25 |
| 26 | 16.89035226 | 15.98276918 | 14.37518530 | 13.00316619 | 26 |
| 27 | 17.28536451 | 16.32958575 | 14.64303362 | 1.3.2105 3414 | 27 |
| 28 | 17.66701885 | 16.66306322 | 14.89812726 | 13.40616428 | 28 |
| 29 | 18.03576700 | 16.98371463 | 15.14107358 | 13.59072102 | 29 |
| 30 | 18.39204541 | 17.29203330 | 15.37245103 | 13.76483115 | 30 |
| 31 | 18.73627576 | 17.58849356 | 15.59281050 | 13.92908599 | 31 |
| 32 | 19.06886547 | 17.87355150 | 15.80267667 | 14.0840 4339 | 32 |
| 33 | 19.39020818 | 18.14764567 | 16.00254921 | 14.23022961 | 33 |
| 34 | 19.70068423 | 18.41119776 | 16.19290401 | $14.3681{ }^{4} 1{ }^{1} 4$ | 34 |
| 35 | 20.00066110 | 18.66461323 | 16.37419429 | 14.49824636 | 35 |
| 36 | 20.29049381 | 18.90828195 | 16.54685171 | 14.62098713 | 36 |
| 37 | 20.57052542 | 19.14257880 | 16.71128734 | 14.73678031 | 37 |
| 38 | 20.84108736 | 19.36786423 | 16.86789271 | 14.84601916 | 38 |
| 39 | 21.10249987 | 19.58448484 | 17.01704067 | 14.94907468 | 39 |
| 40 | 21.35507234 | 19.79277388 | I7.15908635 | 15.04629687 | 40 |
| 41 | 21.59910371 | 19.99305181 | 17.29436796 | 15.13801592 | 41 |
| 42 | 21.83488881 | 20.18562674 | 17.42320758 | 15.22454332 | 42 |
| 43 | 22.06268870 | 20.37079494 | 17.54591198 | 15.30617294 | 43 |
| 44 | 22.28279102 | 20.54884129 | 17.66277331 | 15.38318202 | 44 |
| 45 | 22.49545026 | 20.72003970 | 17.77406982 | 15.45583209 | 45 |
| 46 | 22.70091813 | 20.88465356 | 17.88006650 | 15.52436990 | 46 |
| 47 | 22.89943780 | 21.04293612 | 17.98101571 | 15.58902821 | 47 |
| 48 | 23.09124425 | 21.1951 3088 | 18.07715782 | 15.65002661 | 48 |
| 49 | 23.27656450 | 21.34147200 | 18.16872173 | 15.70757227 | 49 |
| 50 | 23.45561787 | 21.48218462 | 18.25592546 | 15.76186064 | 50 |

## INDEX

## (The Numbers Refer to Pages)

Abscissa, 30.
Accumulation schedule, 108, 109.
Addition, 1.
of fractions, 18.
of radicals, 77.
Algebraic fraction; 16.
addition and subtraction of, 18. multiplication and division of, 19.
Algebraic operations, 1-5.
American Experience Table, 188.
Amortization of principal, 110.
Amortization schedule, 110.
Amount of an annuity, 97, 100.
Annuity, definition of, 97.
Area of a triangle, 26, 149.
Arithmetical means, 89, 171, 173.
Arithmetical progression, 88.
common difference of, 88.
elements of, 88.
$n$th term of, 88.
sum of, 88.
Axes, coordinate, 30.
Base of a system of numbers, 81.
Beneficiary, 200.
Benefit, 200.
Binomial expansion, 79.
Change in a function, 31.
Characteristic of a logarithm, 83.
Circle
area of, 27 .
circumference of, 27.

Classification of numbers, 62.
Co-functions and complementary angles, 117.
Combinations, 191.
Complex fractions, 20.
Complex numbers, 62.
Compound events, 192.
Compound interest, 95.
Constants, 24.
Coordinate axes, 30.
Coordinates of a point, 30.
Correlation, 179.
coefficient of, 181.
the rank method of, 181.
Cosecant, defined
for acute angle, 116.
for any angle, 130.
Cosine, defined
for acute angle, 116.
for any angle, 130.
Cosine of a difference, 136.
Cosine of a sum, 135.
Cosines, theorem of, 144.
Cotangent, defined.
for acute angle, 116.
for any angle, 130.
Decreasing functions, 163.
Dependent events, 192.
Depreciation schedule, 109.
Depression, angle of, 128.
Derivative, definition, 153.
of a constant, 157.

Derivative, definition-Continued.
of a product, 158.
of a cuotient, 159.
of a sum, 158 .
of $u^{n}, 160$.
Deviation, 176.
mean deviation, 176.
quartile deviation, 176.
standard deviation, 176.
Difference, trigonometric functions of, 136.
Discriminant of a quadratic equation, 63.
Distance between two points, 50 .
Division, 4.
Ditision by zero, 4.

Elevation, angle of, 128.
Endowment insurance, 206.
Equalities, 12.
Equation of a line, 50 .
slope and point form, 53.
two point form, 51.
Lquations, 12.
equivalent, 13.
extraneous roots of, 22.
fractional, 21.
linear, 12.
quadratic, 58.
simultaneous, 39.
solution or root of, 12.
Exclusive events, 193.
Exponents, laws of, 74.
Extremes
of arithmetical progression, 89.
of geometrical progression, 90 .

Factorial, 190.
Factoring, 6-11.
Formulas taken from geometry, 26.

Fractions, 16-23.
addition and subtraction oi, 18.
complex, 20.
multiplication and division of, 19.
operations of, 16.
Frequency tables, 170.
Function, 24-38.
definition of, 24.
graph of $a, 29$.
trigonometric, 115.
Functional notation, 24.
Functional relations, 25.
Geometric mean, 90.
Geometrical progression, 90.
elements of, 90.
$n$th term of, 90.
ratio of, 90 .
sum of, 90.
Graphical solution
of a quadratic equation, 65.
of simultancous linear equations, 41.

Half angle formulas, 137.
Highest Common factor, 9.
Identities, 12.
Imaginary numbers, 62.
Inconsistent equations, 42.
Increasing functions, 163.
Independent events, 192.
Infinity, meaning of, 122.
Insurance, definitions, 200.
endowment, 206.
limited payment life, 202.
ordinary life, 201.
term, 204.
Intercepts on the axes, 41.
Interest, 92-96.
compound, 95.

Interest, simple, 92.
Interpolation, 85.
Irrational numbers, 61.
Irrational roots of a quadratic equation, 61.
Law of cosines, 144.
Law of sines, 140.
Law of tangents, 147.
Life annuity, 195-200.
due, 197.
meaning of, 195.
present value of, 196.
temporary, 197.
Life insurance definitions, 200.
Limited payment life policy, 202.
Linear equations, 12.
Line representation of trigonometric functions, 121.
Logarithms, 81-87.
characteristic, 83.
common, 83.
definition of, 81 .
mantissa, 83.
properties of, 82.
Lowest common multiple, 10.
Mantissa, 83.
Maxima, 67, 165.
Mean deviation, 175.
Means, 89, 90, 171.
arithmetical, 80.
geometrical, 90.
Measures of central tendency, 171.
Median, determination of, from a frequency table, 174.
Minima, 67, 165.
Mode, 172.
Mortality table, 188.
Multiplication
of fractions, 19.
of polynomials, 3.

Natural premium, 205.
Negative angles, 131.
Net premium, 200. annual, 201. single, 201.
Numbers
complex, 62.
imaginary, 62.
irrational, 61.
rational, 61.
real, 62.
Office premium, 200.
Ordinary life policy, 201.
Ordinate, 30.
Origin of coordinates, 30.
Parallel lines, 54.
Parentheses, 1.
Pearson correlation coefficient, 183.
Permutations, 189-190.
definition of, 189.
of $n$ things $r$ at a time, 190.
Perpendicular lines, 55.
Policy, 200.
endowment, 206.
limited payment life, 202.
ordinary life, 201.
term, 204.
Policy holder, 200.
Premium, 200.
annual, 201.
gross, 200.
natural, 205.
net, 200.
net annual, 201.
net single, 201.
office, 200.
Present value, 104.
of an annuity, 104, 105.
of a life annuity, 196.

## Principal

amortization of, 110.
Probability, 186-194.
based upon observation or experience, 187.
definition of La Place, 186.
meaning of, 186.
Product moment formula, 183.
Product of the roots of a quadratic, 65.

Progressions, 88-91.
arithmetical, 88.
elements of, 88, 90.
geometrical, 90 .
Pure endowment, 195.

Quadrants, 130.
Quadratic equations, 58-73.
solution of, 59.
typical form of, 58.
Quadratic function, 58.
Quartile deviation, 176.

Radicals, 77.
Radicand, 77.
Rank method of correlation, 181.
Rational numbers, 61.
Real numbers, 62.
Reserve, 207-209.
Right triangles, solution of, 125129.

Roots, 12.
imaginary, 63.
nature of, 63.
of an equation, 12.
of a quadratic equation, 59.
product of, 65.
rational, 64.
real, 64. -
sum of, 65.

## Secant, defined

for acute angle, 116 .
for any angle, 130.
Signs of agregation, 1.
Simple interest, 92.
Sine, defined
for acute angle, 116.
for any angle, 130.
Sine of a sum, 135.
Sines, law of, 140.
Sinking fund, 108.
Slope of a line, 48.
Solution
of an equation, 12.
of an oblique triangle, 141-151.
of a quadratic equation, 59 .
of a right triangle, 125-129.
of simultaneous linear equations, 43, 44.
Standard deviation, 176.
Statistics, definition of, 170.
Straight line, equation of, 50.
in point slope form, 53 .
through two points, 51.
Subtraction
of fractions, 18.
of polynomials, 1.
Sum and difference formulas, 138.
Sum, trigonometric functions of, 135.

Tangent, defined
for acute angle, 116.
for any angle, 130.
Tangents, law of, 147.
Tangent of a sum, 135.
Tangent to a curve, 153.
definition of, 153.
equation of, 163.
slope of, 154.

Temporary annuity, 197.
Term insurance, 204.
Terminal reserve, 208.
Triangle, area of, 26, 149.
Trigonometric functions, 115-123.
defined, 115.
of complementary angles, 117.
of difference, 136.
of half an angle, 137.
of sum, 135.
of supplementary angles, 132 .
of twice an angle, 136.

Twice an angle, functions of, 136.
Typical form
of linear equation, 13.
of quadratic equation, 58.

Variable, definition of, 24.
Variations of the trigonometric functions, 122.

Zero, division by, 4.


[^0]:    * For a complete discussion of exponents see Chapter VIII.

[^1]:    * $\infty$ is the symbol for infinity. It is evident that as $A$ increases $C E$ increases and when $A$ becomes $90^{\circ}, C E$ becomes larger than any finite value. We say then that $\tan 90^{\circ}=\infty$.

[^2]:    * $\theta$ is the Greek letter theta. Some of the other Greek letters that we shall use to denote angles are $\alpha$, alpha; $\beta$, beta; $\gamma$, gamma; $\phi$, phi.

[^3]:    * See Table V.

[^4]:    * In reality claims are paid upon due proof of the death of the insured, but we here assume that they are not paid until the end of the year.

[^5]:    * The reserve on any one policy at the end of any policy year is known as the terminal reserve for that year, or the policy value.
    $\dagger$ This is the initial reserve for the first year.

