AN INTRODUCTION TO MATHEMATICS

AN INTRODUCTION TO MATHEMATICS

With Applications to Science and Agriculture

BY

ISAIAH LESLIE MILLER

Professor of Mathematics, South Dakota State College of Agriculture and Mechanic Arts

F. S. CROFTS & CO. NEW YORK -:- -:- MCMXXX COPYRIGHT, 1930, BY F. S. CROFTS & Co., INC.

MANUFACTURED IN THE UNITED STATES OF AMERICA BY BRAUNWORTH & CO., INC., BROOKLYN, NEW YORK

PREFACE

AFTER some fourteen years of teaching in American colleges and universities the author finds that the average high school graduate has not developed in himself a mathematical type of reasoning. He therefore hopes that this treatment may in some measure accomplish this purpose.

The first few chapters are devoted to a thorough review of high school algebra, for the author is convinced that most college freshmen need considerable drill on the fundamental processes of algebra before attempting a very extensive study of mathematics.

In preparing this book the author has kept in mind two types of students: *first*, those who will never take additional work in mathematics, and *second*, those who will continue the work in science or agriculture for advanced degrees and will doubtless desire to pursue additional courses in mathematics. He has therefore attempted to write a book basic in the fundamental principles of mathematics and at the same time has endeavored to make practical applications to the fields of science and agriculture, wherever possible. He feels that a thorough knowledge of the material covered in this work will enable the second type of student to successfully pursue a course in analytical geometry followed by a course in the calculus.

The author gratefully acknowledges his indebtedness to his colleagues, Professor Wm. Asker for preparing the chapter on statistics, and Mr. H. B. MacDougal for checking much of the material, to Professor I. W. Smith of the North Dakota Agricultural College for using the material in mimeographed form and offering many valuable suggestions, to Dean D. A. RothPREFACE

rock of Indiana University for reading most of the manuscript and to Professor Wm. Marshall of Purdue University for encouraging him in the work.

The author also desires to thank Professor E. S. Crawley of the University of Pennsylvania for his generous permission to use the greater part of his *Tables of Logarithms* as a portion of this book.

I. L. MILLER

SOUTH DAKOTA STATE COLLEGE

CHAPTER I

ALGEBRAIC OPERATIONS

ARTICLE	PAGE
1. FOUR FUNDAMENTAL OPERATIONS	. 1
2. Addition and Subtraction	1
3. Use of Parentheses, Signs of Aggregation	1
4. MULTIPLICATION	. 3
5. Division.	. 4
6. DIVISION OF A POLYNOMIAL BY A POLYNOMIAL	. 4
7. ZERO IN DIVISION	. 4

CHAPTER II

FACTORING

8.	Important Type Products	6
9.	OTHER IMPORTANT PRODUCTS	8
10.	HIGHEST COMMON FACTOR	9
11.	LOWEST COMMON MULTIPLE.	10

CHAPTER III

LINEAR EQUATIONS IN ONE UNKNOWN

12.	EQUALITIES.	12
13.	Solution or Root of an Equation	12
14.	EQUIVALENT EQUATIONS	13
15.	Operations on Equations	13
16.	TYPE FORM OF THE LINEAR EQUATION IN ONE UNKNOWN	13
17.	VERIFICATION BY SUBSTITUTION	13

CHAPTER IV

FRACTIONS

18.	Algebraic Fraction	16
19.	Operations	16

ARTICLE	P	AGE
20. REDUCTION OF A FRACTION TO ITS LOWEST TERMS	 	17
21. Addition and Subtraction	 	18
22. Multiplication and Division	 	19
23. COMPLEX FRACTIONS	 	20
24. FRACTIONAL EQUATIONS.	 	21

CHAPTER V

FUNCTIONS

25.	CONSTANTS AND VARIABLES			•	24
26.	DEFINITION OF A FUNCTION			-	24
27.	FUNCTIONAL NOTATION				24
28.	FUNCTIONAL RELATIONS				25
29.	FORMULAS TAKEN FROM GEOMETRY				26
30.	GRAPHICAL REPRESENTATION OF FUNCTIONAL RELATIONS	5.			29
31.	STATISTICAL DATA				34

CHAPTER VI

SYSTEMS OF LINEAR EQUATIONS

32.	GRAPHS OF LINEAR EQUATIONS
33.	GRAPHICAL SOLUTION 41
34.	ALGEBRAIC SOLUTION 43
35.	SOLUTION OF THREE LINEAR EQUATIONS IN THREE UNKNOWNS. 44
36.	SLOPE OF A STRAIGHT LINE 48
37.	DISTANCE BETWEEN TWO POINTS
38.	Equation of a Straight Line 50
39.	PROBLEM (TWO POINT FORM OF THE EQUATION OF A LINE) . 51
40.	PROBLEM (SLOPE AND ONE POINT FORM OF THE EQUATION OF A
	LINE)
41.	PARALLEL LINES
42.	Perpendicular Lines

CHAPTER VII

QUADRATIC EQUATIONS

43.	TYPICAL FORM	58
44.	Solution of the Quadratic Equation	59
45.	CLASSIFICATION OF NUMBERS	62

viii

ARTI	CLE	AGE
46.	CHARACTER OF ROOTS. DISCRIMINANT	63
47.	SUM AND PRODUCT OF THE ROOTS	65
48.	GRAPHICAL SOLUTION	65
49.	MINIMUM VALUE OF A QUADRATIC FUNCTION.	67

CHAPTER VIII

EXPONENTS, RADICALS, BINOMIAL EXPANSION AND LOGARITHMS

5 0.	DEFINITION OF A NUMBER			•									-	74
51.	RADICALS													77
52.	BINOMIAL EXPANSION								•					79
53.	LOGARITHMS. DEFINITION									 				81
54.	PROPERTIES OF LOGARITHMS													82
55.	Common Logarithms							 	•	 				- 83
56.	USE OF TABLES				• •	•	 •	 	•	 		•		84

CHAPTER IX

PROGRESSIONS

57.	ARITHMETICAL PROGRESSION	88
58.	ELEMENTS OF AN ARITHMETICAL PROGRESSION	88
59.	Relations among the Elements.	88
60.	ARITHMETIC MEANS	89
61.	Geometrical Progression	90
62.	ELEMENTS OF A GEOMETRICAL PROGRESSION	90
63.	Relations among the Elements.	90

CHAPTER X

INTEREST, ANNUITIES, SINKING FUND

64.	SIMPLE INTEREST	92
65.	Compound Interest	95
66.	Compound Interest Formulas	95
67.	Annuities	97
68.	Amount of an Annuity	97
69.	Amount of an Annuity, where the Annual Payment is	
	MADE IN P INSTALLMENTS	100
70.	PRESENT VALUE	101

RTICLE PAG	эE
71. Present Value of an Annuity 10)4
72. PRESENT VALUE OF AN ANNUITY, WHERE THE ANNUAL PAYMENT	
is Made in P Equal Installments 10)5
73. Sinking Funds 10)8
74. Amortization 11	10
75. Amortization Schedule	10
76. Interest and Annuity Tables 11	12

CHAPTER XI

TRIGONOMETRIC FUNCTIONS

77.	MEANING OF TRIGONOMETRY	115
78.	TRIGONOMETRIC DEFINITIONS	115
79.	CO-FUNCTIONS AND COMPLEMENTARY ANGLES	117
80.	RELATIONS AMONG THE FUNCTIONS	118
81.	Functions of 30°, 45°, 60°	120
82.	LINE VALUES OF THE FUNCTIONS	121
83.	VARIATIONS OF THE FUNCTIONS	122
84.	NATURAL TRIGONOMETRIC FUNCTIONS AND LOGARITHMS OF THE	
	TRIGONOMETRIC FUNCTIONS	122

CHAPTER XII

SOLUTION OF THE RIGHT ANGLE TRIANGLE

85.	FORMULAS F	OR THE	Solution	OFA	Right	Triangle	125
86.	APPLYING TH	ie For	MULAS .				125

CHAPTER XIII

TRIGONOMETRIC FUNCTIONS OF ANY ANGLE SOLUTION OF THE OBLIQUE TRIANGLE

87.	TRIGONOMETRIC DEFINITIONS	130
88.	LAWS OF SIGNS	131
89.	FUNCTIONS OF NEGATIVE ANGLES	131
90.	Functions of 180° — Θ , Supplementary Angles	132
91.	FUNCTIONS OF THE SUM OF TWO ANGLES	135
92.	FUNCTIONS OF THE DIFFERENCE OF TWO ANGLES	136

PA PA	GE
3. Functions of Twice an Angle 1	36
4. Half-angle Formulas 1	37
5. Sum and Difference Formulas 1	38
6. Theorem of Sines	40
7. THEOREM OF COSINES 1	44
8. THEOREM OF TANGENTS 1	47
9. Area of a Triangle 1	49
0. SUMMARY OF METHODS OF SOLVING ANY TRIANGLE 1	51

CHAPTER XIV

THE DERIVATIVE AND SOME APPLICATIONS

101.	THE MEANING OF A TANGENT TO A CURVE	153
102.	THE DERIVATIVE	153
103.	DERIVATIVE OF A CONSTANT	157
104.	DERIVATIVE OF A SUM.	158
105.	DERIVATIVE OF A PRODUCT	158
106.	DERIVATIVE OF A QUOTIENT	159
107.	FORMULAS STATED IN WORDS	160
108.	DERIVATIVE OF u^n	160
109.	INCREASING AND DECREASING FUNCTIONS	163
110.	MAXIMA AND MINIMA	165
111.	Applications of the Theory of Maxima and Minima	168

CHAPTER XV

STATISTICS AND APPLICATION

112.	INTRODUCTION	170
113.	FREQUENCY TABLES	170
114.	MEASURES OF CENTRAL TENDENCY	171
115.	DETERMINATION OF THE ARITHMETIC MEAN FROM A FREQUENCY	
	Тавье	173
116.	DETERMINATION OF THE MEDIAN FROM A FREQUENCY TABLE.	174
117.	VARIABILITY	174
118.	CORRELATION	179
119.	THE RANK METHOD OF CORRELATION	181
120.	THE PRODUCT MOMENT FORMULA OR THE PEARSON CORRELA-	
	TION COEFFICIENT	183

CHAPTER XVI

PROBABILITY

ARTICLE P.	AGE
121. MEANING OF PROBABILITY	186
122. PROBABILITY BASED UPON OBSERVATION OR EXPERIENCE	187
123. MEANING OF MORTALITY TABLE	188
124. Permutations	189
125. Combinations	191
126. Compound Events	192

CHAPTER XVII

ANNUITIES AND INSURANCE

127.	MEANING OF LIFE ANNUITY		• • •	195
128.	PURE ENDOWMENTS	• •		195
129.	PRESENT VALUE (COST) OF A LIFE ANNUITY			196
130.	LIFE ANNUITY DUE			197
131.	TEMPORARY ANNUITY			197
132.	LIFE INSURANCE DEFINITIONS .			200
133.	Ordinary Life Policy			201
134.	LIMITED PAYMENT LIFE POLICY	• • •		202
135.	TERM INSURANCE			204
136.	ENDOWMENT INSURANCE			206
137.	MEANING OF RESERVE	••	•	207

TABLES

TABLE	I	PAGE
Ι.	Common Logarithms of Numbers	211
11.	LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS	231
III.	VALUES OF THE TRIGONOMETRIC FUNCTIONS	277
IV.	American Experience Table of Mortality	282
V.	COMMUTATION COLUMNS	283
VI.	Amount of 1	285
VII.	PRESENT VALUE OF 1	287
VIII.	Amount of 1 per Annum at Compound Interest	289
IX.	PRESENT VALUE OF 1 PER ANNUM	291
	Index	293

AN INTRODUCTION TO MATHEMATICS

CHAPTER I

ALGEBRAIC OPERATIONS

1. Four fundamental operations. The operations with numbers are made up of additions, subtractions, multiplications and divisions. These operations are known as the four fundamental operations of algebra.

2. Addition and subtraction.

a. Addition is commutative. This means that a + b = b + a.

b. The sum of two or more numbers is the same, irrespective of the way in which they are grouped. Thus:

a + b + c = (a + b) + c = a + (b + c).

3. Use of parentheses. Signs of aggregation. The signs of aggregation are:

Parentheses	()	
Brackets	[]	
Braces	{	}	
Vinculum			
Bar			

Signs of aggregation may be removed with or without change of sign of each term included within the signs of aggregation, according as the sign - or + precedes the sign of aggregation. Thus:

$$x - \{3y - 2[z - (y - 3) - (2y + 4)]\}$$

= $x - \{3y - 2[z - y + 3 - 2y - 4]\}$
= $x - \{3y - 2z + 6y + 2\}$
= $x - 9y + 2z - 2$

Exercises

1.
$$3x - 2y$$
, $7x + 6y$, $-5x + 4y$.
2. $2x + 3y - 7z$, $4x - 9y + 6z$, $8x + 7y + 3z$.
3. $4a^{2}b^{2} + 5ac^{2} - 2c^{3}$, $7a^{2}b^{2} - 2ac^{2}$, $7ac^{2} + 4c^{3}$.
4. $2x^{2} - 3ax + 3c$, $3x^{2} + ax - c$, $x^{2} - 2ax - 5c$.
5. $7x^{3} - 4x + 2x^{2} - 5$, $-2x + 5x^{3} + 1 - 2x^{2}$, $4 + 3x + 2x^{2} + x^{3}$.

Subtract the first expression from the second in the following:

6. 3m + 2n, 4m - 5n.7. $2a^2 + 3a - 5, 4a^2 - 2a + 4.$ 8. $3x^2 + 5xy - 4y^2 - 3x, 4x^2 - 2xy + y^2 + 2x.$ 9. $5a^3 + 6ay^2 + 3ay - 2a + 3, 2a^3 + ay - 5ay^2 + 3a - 7.$ 10. From the sum of 3a - 4b + 5c and 8b - 2a - 3c, subtract the

sum of 3a - 2b + 4c and 4b - 5a - 2c.

Combine coefficients of similar terms:

11. ay + by + cy. Solution. ay + by + cy = (a + b + c)y. **12.** 2ax + 6bx - 3cx. **13.** 4x - 2abx + 7cx. **14.** am + bm + an + bn.

Simplify by removing signs of aggregation and combining like terms: **15.** 2a - 3 + (x - 5a) - 2(3a - 2x). **16.** 2(a - 3) - 7(a + 2) + 8(a - 3). **17.** 7y - 3[4 - 2(y + 1) + 3(y - 4) - (y - 7)]. **18.** $3a - [2a - b - \{3a - 2b - (2a + \overline{b - a}) + 3a\} - 3b]$. ART. 4]

19. $x - (-2x - \{-5x + [x - \overline{3x - 2}] - 3\} - [3x - \overline{2x + 3}]).$ **20.** $7y - 5[4 - 3(y - 4 - b) - 4\{b - (5y + b) - 5\}].$ **21.** $4z - \{-5z + (2z - 4w - \overline{3z + 2}) - 3(2z - 5w) - 8\}.$

4. Multiplication.

a. The factors of a product may be taken in any order. Thus, cd = dc.

b. The factors of a product may be grouped in any manner. Thus, abc = (ab)c = a(bc) = b(ac).

c. When m and n are positive integers, $a^m \cdot a^n = a^{m+n}$.

That is, the exponent of the product of two or more powers of a number is the sum of the exponents of the powers taken singly. This is known as the first law of exponents for positive integers.*

Exercises

1.
$$2abc, -3a^{2}bc^{2}, 5ab^{3}c.$$

Solution. $(2abc)(-3a^{2}bc^{2})(5ab^{3}c)$
 $= (2 \cdot -3 \cdot 5)(a \cdot a^{2} \cdot a)(b \cdot b \cdot b^{3})(c \cdot c^{2} \cdot c)$
 $= -30a^{3}b^{5}c^{4}.$ [(c), Art. 4]
2. $3x^{2}, 7xy^{2} + 3x^{2}y - 2x^{3}y^{2}.$
3. $5a^{2} + 2ay^{2}, 3a - 4a^{2}y.$
4. $(x + y)(x + y)(x + y).$
5. $(a - b - c)(a + b + c).$
6. $(x + y + 2z)^{2}.$
7. $(x - \frac{y}{3})(x + \frac{y}{3}).$
8. $(x^{2} - y)^{3}.$
9. $(m^{2} - mn + n^{2})(m^{2} + mn + n^{2}).$
10. $(a - b)^{n}(a - b)^{3}.$

* For a complete discussion of exponents see Chapter VIII.

5. Division. If a and b are any given numbers and b is not zero, there is only one number x such that a = bx. The process of finding x is the process of dividing a by b. a is called the dividend, b the divisor and x the quotient.

Example.
$$\frac{a^m}{a^n} = a^{m-n}$$
, where $m > n$.

That is, the exponent in the quotient of two powers of a number is the exponent of the dividend minus the exponent of the divisor.

Note the condition that b is not to be zero. This means that the divisor can not be zero.

6. Division of a polynomial by a polynomial. Before performing the indicated division the dividend and divisor should be arranged according to ascending or descending powers of some letter.

Example. Divide $19a - 9a^2 + a^4 + 3a^3 - 6$ by $3 + a^2 - 2a$. Solution. $a^4 + 3a^3 - 9a^2 + 19a - 6 | a^2 - 2a + 3 | a^2 + 5a - 2 | a^2 + 5a - 2 | a^2 + 5a^3 - 12a^2 | a^2 + 5a - 2 | a^2 + 5a - |$

7. Zero in division. Division by zero is excluded from the operations in algebra. That is to say, the divisor can not be zero. If the dividend is zero, the quotient is zero. That is, $\frac{0}{2} = 0$.

Where is the fallacy in the following?

Let

 $x = m. \tag{1}$

Multiply both sides by x, $x^2 = mx$. (2)

Subtract m^2 from both sides,	$x^2 - m^2 = mx - m^2.$	(3)
Divide both sides by $x - m$,	x+m=m.	(4)
But by (1)	x = m.	(5)
By (4) and (5)	2m = m.	(6)
Hence	2 = 1.	(7)

Exercises

Divide:

1. $33a^{3}b^{3}c^{3} - 9a^{2}bc^{2} + 15ab^{2}c$ by 3abc. 2. $20c4d^{3} + 15c^{2}d^{2} - 10cd$ by 5cd. 3. $\frac{x^{4} - 13x^{3}y + 5x^{2}}{x^{2}}$. 4. $\frac{-5y^{3} + 15y^{4} - 10y^{2}}{5y^{2}}$. 5. $\frac{16x^{3}y^{2} - 8xy^{3} + 12x^{2}y^{2}}{4xy^{2}}$. 6. $x^{2}y^{2} - y^{4} + x^{4}$ by $x^{2} - xy + y^{2}$.

The solution of this example gives $x^2 + xy + y^2$ as a quotient and $-2y^4$ as a remainder. And as in arithmetic, the complete quotient may be written.

 $x^{2} + xy + y^{2} + \frac{-2y^{4}}{x^{2} - xy + y^{2}}$ 7. $y^{3} + 27$ by y + 3. 8. $a^{3} - 8$ by a - 2. 9. $x^{3} - 5x^{2} - 17x + 66$ by x - 6. 10. $2x^{4} - 8x^{3} + 7 + 3x^{2} + 10x$ by $2x^{2} - 4x - 7$. 11. $a^{4} + a^{2}b^{2} + b^{4}$ by $a^{2} + ab + b^{2}$. 12. $2x^{3} - 9x^{2}y - 12y^{3} + 17xy^{2}$ by 2x - 3y. 13. $2x^{4} - x^{3}y - 3x^{2}y^{2} + xy^{3}$ by $x^{2} + xy$. 14. $4a^{3} - 3a - 15a^{2} + 4$ by $a^{2} - 3a - 3$. 15. $8a^{3} + 27b^{3}$ by 2a + 3b.

CHAPTER II

FACTORING

8. Important type products. The following type forms have already been treated in high school algebra. They should be reviewed here and memorized.

a. Common monomial factor.

$$ab + ac = a(b + c).$$

Example. $2ax - 6a^3 = 2a(x - 3a^2)$.

b. Trinomial square.

 $a^2 + 2ab + b^2 = (a + b)^2$.

Example. $9 + 6a + a^2 = (3 + a)^2$.

c. Difference of two squares.

$$m^2 - n^2 = (m - n)(m + n).$$

Example. $(a + 2b)^2 - c^2 = (a + 2b - c)(a + 2b + c).$ d. Trinomial of the form.

$$x^{2} + (m + n)x + mn = (x + m)(x + n).$$

Example. $x^{2} + 5x + 6 = (x + 2)(x + 3).$

e. Difference of two cubes.

$$m^{3} - n^{3} = (m - n)(m^{2} + mn + n^{2}).$$

Example. $8m^{6} - n^{3}s^{3} = (2m^{2})^{3} - (ns)^{3}$
 $= (2m^{2} - ns)(4m^{4} + 2m^{2}ns + n^{2}s^{2}).$

ART. 8]

FACTORING

f. Sum of two cubes.

Example.

$$8x^3 + 27y^6 = (2x)^3 + (3y^2)^3$$
$$= (2x + 3y^2)(4x^2 - 6xy^2 + 9y^4).$$

 $m^3 + n^3 = (m + n)(m^2 - mn + n^2).$

g. Trinomial of the form.

$$ax^2 + bx + c$$
.

Certain expressions of this form may be factored by inspection. The factors are two binomials whose first terms are factors of ax^2 and whose last terms are factors of c. Now we must choose the terms of binomials so that the algebraic sum of the cross products is bx.

Example. Factor $6x^2 - x - 15$.

The first terms of the factors are 3x and 2x or 6x and x, and the last terms of the factors are ± 3 and ± 5 , or ± 1 and ± 15 . Choosing the terms so that the algebraic sum of the cross products is -x, we find the factors to be 2x + 3 and 3x - 5.

$$6x^2 - x - 15 = (2x + 3)(3x - 5).$$

h. Grouping of terms.

$$mx + ny + nx + my = (m + n)(x + y).$$

Example.

Hence

$$14ax + 21bx - 4ay - 6by = 7x(2a + 3b) - 3y(2a + 3b)$$
$$= (7x - 2y)(2a + 3b).$$

Exercises

Factor the following:

1. 2m + 3mn. **2.** $a^2 - 9b^2$. **3.** $x^2 - 9x + 8$. **4.** $t^2 + 9t - 36$. 7

5.
$$x^3 - 8y^6$$
.
6. $a^2 - c^2 - b^2 + 2bc$.
7. $7mx - 9ny + 7nx - 9my$.
8. $x^2 - mx + 2nx - 2mn$.
9. $8m^3n^6 + 27p^3$.
10. $(m + 2)^2 - 5(m + 2) - 176$.
11. $(a - b)^3 - 3(a - b)^2 - 4(a - b)$.
12. $y^2 - 8yz - 9x^2 + 16z^2$.
13. $21x^2 - 26x - 15$.
14. $a^4 - 16b^4 = (a^2)^2 - (4b)^2$.
15. $16a^2 + 56ab + 49b^2$.
16. $x^{3n} - y^3 = (x^n)^3 - y^3$. (Find two factors only.)
17. $(x + y)^3 - (v - w)^3$.
18. $x^4 - 3x^3y - 10x^2y^2$.

9. Other important products.

i. Square of a polynomial. The square of a polynomial equals the sum of the squares of the terms of the polynomial plus twice the product of each term by every term that follows. Thus,

$$(x + y + z + w)^2 = x^2 + y^2 + z^2 + w^2 + 2xy + 2xz + 2xw + 2yz + 2yw + 2zw.$$

j. Expressions that can be written as the difference of two squares.

Example. Factor $4a^4 + b^4$.

By the addition of $4a^2b^2$ and the subtraction of the same term we have

$$\begin{aligned} 4a^4 + b^4 &= 4a^4 + 4a^2b^2 + b^4 - 4a^2b^2 \\ &= (2a^2 + b^2)^2 - (2ab)^2 \\ &= (2a^2 + b^2 - 2ab)(2a^2 + b^2 + 2ab). \end{aligned}$$

ART. 10]

FACTORING

k. Cube of a binomial. By actual multiplication, we find that

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

and

Note.—If a polynomial can be put into the form of the product under (i), it can be factored.

Example.
$$a^2 + b^2 + 16c^2 + 2ab + 8ac + 8bc$$

= $(a)^2 + (y)^2 + (4c)^2 + 2 \cdot a \cdot b + 2 \cdot a \cdot 4c + 2b \cdot 4c$
= $(a + b + 4c)^2$.

Exercises

1.
$$x^2 + 9y^2 + 4z^2 + 6xy - 4xz - 12yz$$
. (See 9 (i).)
2. $l^2 + 4m^2 - 4lm + 4l - 8m + 4$.
3. $x^3 - 9x^2y + 27xy^2 - 27y^3$. (See 9 (k).)
4. $a^3 + 6a^2b + 12ab^2 + 8b^3$.
5. $x^4 - 6x^2 + 1$.
6. $a^4 - a^2 + 1$.
7. $x^4 + 4y^4$.
8. $x^2 + y^2 + 16z^2 - zxy + 8xz - 8yz$.

10. Highest common factor. A number or expression which will divide two or more expressions without a remainder, is called a common factor of those expressions.

The product of all the common prime factors of two or more expressions is called their highest common factor (H.C.F.).

To find the H.C.F. of two or more expressions, resolve each into its prime factors, and then find the product of the common prime factors.

Example. Find the H.C.F. of $a^2 - b^2$ and $a^2 - 5ab + 4b^2$.

Solution.
$$a^2 - b^2 = (a - b)(a + b),$$

 $a^2 - 5ab + 4b^2 = (a - b)(a - 4b).$
 \therefore $(a - b) = \text{II.C.F.}$

Exercises

Find the H.C.F. of the following sets of expressions:

1. ax^2 , 2abx, $3a^2b^2$. 2. 52, 117, 78. 3. $x^2 + 2xy + y^2$, $x^2 + xy$, and $x^2 - 7xy - 8y^2$. 4. $x^3 - 1$, $x^2 + 13x - 14$, $x^2 - 1$. 5. $x^3 + 3x^2y + 3xy^2 + y^3$, $x^3 + 2x^2y + xy^2$, and $x^2y + 2xy^2 + y^3$. 6. $r^2 - 6r + 9$, $r^2 + 5r - 24$, and $r^2 - 9r + 18$. 7. $(x^2y - xy^2)^2$, $xy(x^2 - y^2)$. 8. $x^2 - 3x - 40$, $x^2 - x - 30$, $x^2 + 3x - 10$. 9. $x^2 - (y + c)^2$, $(y - x)^2 - z^2$, $y^2 - (x - z)^2$. 10. $(x^2 - 1)(x^2 + 5x + 6)$, $(x^2 + 3x)(x^2 - x - 6)$.

11. Lowest common multiple. The lowest common multiple (L.C.M.) of two or more expressions is defined as the product of all their prime factors, each taken the greatest number of times that it occurs in any of the expressions. It is evident that the L.C.M. of two or more expressions is the expression of lowest degree which contains each of the given expressions as a factor.

Example. Find the L.C.M. of $x^2 - x - 2$; $x^2 - 8x + 12$; $x^2 - 5x - 6$.

Solution. $x^2 - x - 2 = (x - 2)(x + 1),$ $x^2 - 8x + 12 = (x - 2)(x - 6),$ $x^2 - 5x - 6 = (x - 6)(x + 1).$ $\therefore (x - 2)(x + 1)(x - 6) = \text{L.C.M.}$ ART. 11]

FACTORING

Exercises

Find the L.C.M. of each of the following sets of expressions:

1. $3ax^2$; a^2bx ; $2ab^2x$. 2. $x^2 + xy$; $x^3 + y^3$; $x^2 - 3xy - 4y^2$. 3. x + 1; x + 2; $x^2 + 3x + 2$. 4. $a^2 + 7a + 10$; $a^2 + 4a - 5$. 5. $a^3 + 8$; $a^3 - 8$; $a^2 - 4$. 6. $x^2 - x - 6$; $x^2 - 6x + 9$; 6x - 18. 7. $a^2 - b^2$; $a^2 - 2ab - 3b^2$; $(a + b)^2$. 8. $6x^2 + 18x - 60$; $3x^2 + 24x + 45$; $8x^2 - 24x + 16$.

CHAPTER III

LINEAR EQUATIONS IN ONE UNKNOWN

12. Equalities. A statement that two expressions are equal is called an *equality*.

There are two kinds of equalities, identical equalities or identities, and conditional equalities or equations.

In an identity the two members are equal for all values of the symbols for which the expressions are defined. Thus,

 $x^2 - 4 = (x - 2)(x + 2)$ is an identity.

A conditional equality or an equation is true for only certain values of the letters involved. Thus, x - 3 = 7 is an equation and is true for the value x = 10 only.

Exercises

Which are the following, equations or identities?

1.
$$(l + m)^2 = l^2 + 2lm + m^2$$
.
2. $\frac{y^2 - b^2}{y - b} = y + b$.
3. $x^3 - 3x + 2 = 0$.
4. $y^2 - 2y + 3 = 0$.

13. Solution or root of an equation. By the solution or root of an equation in one unknown we mean the value of the unknown that reduces the equation to an identity. Thus, 6 is a solution of x - 2 = 4, for when x = 6 the equation becomes the identity 4 = 4.

14. Equivalent equations. Two equations having the same roots are said to be equivalent. Thus the equations x - 5 = 0 and 2x - 10 = 0 are equivalent.

15. Operations on equations. The following operations may be performed on the members of an equation:

(1) Adding the same number to both members.

(2) Subtracting the same number from both members.

(3) Multiplying both members by the same number, zero excluded.

(4) Dividing both members by the same number, zero excluded.

16. Type form of the linear equation in one unknown. The linear equation in a single unknown is of the form:

$$Ax + B = 0, \quad A \neq 0. \tag{1}$$

In fact every linear equation in one unknown can be reduced to the form of (1). Its solution is $x = -\frac{B}{A}$, as may be verified by substitution.

17. Verification by substitution. The operations of Art. 15 are useful in finding solutions but the solution is not complete until the values of the unknown are substituted in the equation to be solved. If such substitution produces an identity the solution is correct.

Exercises and Problems

Solve the following for x and verify the results:

1. 4x + 5 = 2x - 3.

Solution.	4x+5=2x-3.	(1)
Transpose and collect	2x = -8.	(2)
Divide by 2	x = -4.	(3)

Check. Substitute (3) in (1) and

$$4(-4) + 5 = 2(-4) - 3,$$

 $-11 = -11.$

2. 3x + 5 = 7x - 9. 3. $2x(3x + 2) = 6x^2 - 8$. 4. $4(x + 2) + x^2 = x^2 - 8$. 5. (x + 1)(x + 2) = x(x + 4). 6. 2[x + x(x - 1) + 1] = (x + 2)(2x - 1). 7. (a + b)x + (a - b)x = ab. 8. $\frac{x}{2} + \frac{2x}{5} = \frac{3x}{10} + 6$. 9. 1.5x + 3.2x = 2.3x + 12.72. 10. $\frac{x}{m} + \frac{y}{n} = 1$. 11. Given s = vt, solve for v and t.

12. Given $s = \frac{1}{2}gt^2$, solve for g.

13. Given $F = \frac{9}{5}C + 32$, solve for C.

14. A miller has wheat worth \$2.20 per bushel and another lot worth \$1.80 per bushel. He wishes to mix these to make 40 bushels of wheat which shall be worth \$2.10 per bushel. How much of each shall he take?

15. A farmer has a cow whose milk contains 4% of butter fat (called a 4% milk) and another one which gives 5% milk. How shall he mix the milks to obtain 40 pounds of a $4\frac{1}{4}$ % milk?

16. How much cream that contains 30% butter fat should be added to 500 pounds of milk that contains $3\frac{1}{2}\%$ butter fat to produce a standard milk with 4% of butter fat?

17. The milk from a certain cow contains $3\frac{1}{2}\%$ butter fat while that of another cow contains $4\frac{3}{4}\%$ butter fat. What will be the percentage of fat in an equal mixture?

18. A man made two investments amounting together to \$5,000. On the first he gained 8%, and on the second he lost 6%. His net gain on the two was \$120. What was the amount of each investment?

19. How heavy a stone can a man, by exerting a force of 175 pounds, lift with a crow-bar 6 feet in length if the fulcrum be six inches from the stone (neglect the weight of the crow-bar)?

Remember that $W \cdot w = F \cdot f$, where W is the weight to be lifted, F the force applied, w the distance between weight and fulcrum and f the distance between force and fulcrum.

20. A man can do a piece of work in 5 days, another in 6 days, and a third in 12 days. How many days will it require all to do it when working together?

21. The milk from a cow that gives 4 gallons of milk containing 3% butter fat is mixed with 9 gallons of milk containing 5% butter fat. What is the percentage of butter fat in the mixture?

CHAPTER IV

FRACTIONS

18. Algebraic fraction. An algebraic fraction is the indicated quotient of two expressions. Thus, $\frac{m}{n}$ means m divided by n.

19. Operations. The following operations and principles are used in the treatment of fractions:

I. The value of a fraction is not changed by multiplying or dividing both numerator and denominator by the same number. That is,

				\underline{m}
<u>m</u> _	$= \frac{am}{am}$	and	$\frac{m}{n} =$	<u>a</u>
n	an			n
				a

II. Changing the sign of either the numerator or denominator of a fraction is equivalent to changing the sign of the fraction. That is,

$$\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$$

III. Adding two fractions having a common denominator gives a fraction whose numerator is the sum of the numerators and whose denominator is the common denominator. That is,

$$\frac{l}{n} + \frac{m}{n} = \frac{l+m}{n}$$

ART. 20]

FRACTIONS

Also,
$$\frac{l}{n} - \frac{m}{n} = \frac{l-m}{n}$$

IV. The sum and the difference of any two fractions, $\frac{a}{b}$ and $\frac{c}{d}$, are equal to $\frac{ad + bc}{bd}$ and $\frac{ad - bc}{bd}$ respectively. For, by I, $\frac{a}{b} = \frac{ad}{bd}$, and $\frac{c}{d} = \frac{bc}{bd}$. Hence by III, $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ and $\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$.

V. The product of two or more fractions is a fraction whose numerator is the product of their numerators and whose denominator is the product of their denominators. That is,

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

VI. To divide one fraction by another, invert the divisor and then multiply. That is,

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

The reciprocal of a number is 1 divided by the number. Thus the reciprocal of a is $\frac{1}{a}$; of $\frac{m}{n}$ is $\frac{n}{m}$.

20. Reduction of a fraction to its lowest terms. Separate the numerator and the denominator into their prime factors and then cancel common factors by division.

Reduce to its lowest terms,
$$\frac{x^2 + 6x + 9}{x^2 - 9}$$
.
Solution. $\frac{x^2 + 6x + 9}{x^2 - 9} = \frac{(x + 3)(x + 3)}{(x - 3)(x + 3)} = \frac{x + 3}{x - 3}$

Exercises

Reduce to lowest terms:

1. $\frac{51x}{85y}$ 2. $\frac{a^2 + ab}{a^2 - ab}$ 3. $\frac{a^3 - b^3}{a^2 - b^2}$ 4. $\frac{(m+n)^3}{m^3 + n^3}$ 5. $\frac{(a-b)(c-d)(b-c)}{(a-c)(c-b)(a-b)}$ 6. $\frac{x+1}{(x+1)+(x+1)^2}$ 7. $\frac{x+1}{(x+1)+(x+1)^2}$ 7. $\frac{(x+1)+(x+1)^2}{(x^3+y^3)(x^2+y^2)}$ 8. $\frac{a^2 - 3a + 2}{a^2 + 4a - 5}$ 9. $\frac{x^2 + x - 20}{x^2 + 4x - 5}$ 10. $\frac{m-m^2 - n + mn}{m-mn + n^2 - n}$

21. Addition and subtraction. Reduce the fractions to be added or subtracted to a common denominator and then add or subtract numerators.

Example. Add $\frac{3}{a^2 + 2a + 1} + \frac{4a}{a^2 - 1}$. Solution. $\frac{3}{a^2 + 2a + 1} + \frac{4a}{a^2 - 1} = \frac{3}{(a + 1)(a + 1)}$ $+ \frac{4a}{(a + 1)(a - 1)} = \frac{3(a - 1)}{(a + 1)(a + 1)(a - 1)}$ $+ \frac{4a(a + 1)}{(a + 1)(a - 1)} = \frac{4a^2 + 7a - 3}{(a + 1)(a + 1)(a - 1)}$.

Exercises

Perform the following additions and subtractions:

1. $\frac{x}{5} + \frac{y}{6}$ 2. $\frac{a}{x} - \frac{a+b}{2x}$ 3. $\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$ 4. $\frac{1}{x^2 - 4} - \frac{1}{(x-2)^2}$ ART. 22]

22. Multiplication and division. See principles V and VI. (Art. 19.)

Example (a). Find $\frac{x^2 - 2x + 1}{x^2 - 1} \cdot \frac{x + 1}{x^2 + 1}$.

Solution.
$$\frac{x-1}{\frac{x^2-2x+1}{x^2-1}} \cdot \frac{x+1}{x^2+1} = \frac{x-1}{x^2+1}$$

Example (b).
$$\frac{(a-b)^2}{a+b} \div \frac{a^2-ab}{b}$$
.
Solution.
$$\frac{(a-b)^2}{a+b} \div \frac{a^2-ab}{b} = \frac{(a-b)^2}{a+b} \cdot \frac{b}{a^2-ab}$$
$$= \frac{(a-b)(a-b)}{a+b} \cdot \frac{b}{a(a-b)} = \frac{b(a-b)}{a(a+b)}$$

Exercises

Perform the following multiplications and divisions:

1.
$$\frac{2}{(1+x)^2} \cdot \frac{x+1}{x-1}$$

2. $\frac{1}{a-b} \left(\frac{1}{y-a} - \frac{1}{y-b} \right)$
3. $\frac{m^2 - mn}{a^2 - ab} \cdot \frac{a^2 + ab}{m^2 + mn}$
5. $\frac{m^2 + 2mn}{m^2 + 4n^2} \div \frac{m^2 - 4n^2}{mn - 2n^2}$
6. $\frac{a+b}{c} \div \frac{a^2 - b^2}{2c^2}$
7. $\left(\frac{x^2}{a^2} - \frac{x}{a} + 1 \right) \div \left(\frac{x^2}{a^2} + \frac{x}{a} + 1 \right)$
8. $\frac{n^2 - n - 20}{n^2 - 25} \cdot \frac{n^2 - 25}{n+1} \div \frac{n^2 + 2n - 8}{n^2 - n - 2}$
9. $\left(a + \frac{ab}{a-b} \right) \left(b - \frac{ab}{a+b} \right)$
10. $\frac{x^2 + y^2}{x^3 - y^3} \cdot \frac{x^4 + y^4}{x^4 - y^4} \div \frac{x+y}{(x-y)^2}$

23. Complex fractions. A fraction with a fraction in its numerator or denominator or in both is called a complex fraction.

To simplify a complex fraction multiply both the numerator and the denominator of the complex fraction by the L.C.M. of the denominators of the simple fractions that make up the terms. ART. 24]

FRACTIONS

Example.
$$\frac{\frac{1}{x} + \frac{1}{y+x}}{\frac{1}{y-x}} = \frac{xy(y^2 - x^2)\left[\frac{1}{x} + \frac{1}{y+x}\right]}{xy(y^2 - x^2)\left[\frac{1}{y} - \frac{1}{y-x}\right]}$$
$$= \frac{y(y^2 - x^2) + xy(y-x)}{x(y^2 - x^2) - xy(y+x)} = -\frac{y(y^2 - 2x^2 + xy)}{x^2(x+y)}.$$

Exercises

Simplify the following fractions:

24. Fractional equations. To solve an equation that involves fractions, clear it of fractions by multiplying each

member by the lowest common denominator (L.C.D.) of the fractions. (See Art. 23.)

When the unknown occurs in the denominator, multiplying by the L.C.D. may or may not introduce new roots that do not satisfy the equation to be solved. Such roots that do not satisfy the original equation are called *extraneous* roots.

Example 1. Solve
$$\frac{5}{x-1} + \frac{3}{x-5} = 1$$
.
Solution. $\frac{5}{x-1} + \frac{3}{x-5} = 1$. (1)
Multiplying (1) by $(x-1)(x-5)$ gives
 $5(x-5) + 3(x-1) = (x-1)(x-5)$. (2)
Simplifying (2), $x^2 - 14x + 33 = 0$, (3)
 $(x-11)(x-3) = 0$. (4)
Hence, $x = 11$
or $x = 3$.
The roots of (2) are 11 and 3 and both satisfy (1).
Example 2. Solve $\frac{x-3}{x^2-9} = \frac{1}{7}$.
Solution. $\frac{x-3}{x^2-9} = \frac{1}{7}$. (1)

Multiplying (1) by
$$(x^2 - 9)7$$
 gives

$$x^2 - 7x + 12 = 0. \tag{2}$$

(1)

or

Solution.

Hence,

$$(x-3)(x-4) = 0.$$

$$x=3, \quad x=4. \tag{3}$$

The roots of (2) are 3 and 4. Now x = 4 satisfies (1), but

22

ART. 24]

FRACTIONS

x = 3 does not satisfy (1) since the left hand member has no meaning when x = 3. Hence the extraneous root x = 3 is introduced in clearing of fractions.

The above example shows the importance of checking each solution by substituting the original equation.

Exercises

Solve the following equations and check the results:

1.	$\frac{3}{x-2} = \frac{2}{x-3}.$	5. $\frac{4x+17}{x+3} - \frac{10-3x}{x-4} - 7 = 0.$
2.	$\frac{5x}{x+1} - \frac{2}{x-3} = 2.$	6. $\frac{3}{x-7} - \frac{4}{x-8} + \frac{1}{x-9} = 0.$
3.	$\frac{x-9}{x-5} + \frac{x-5}{x-8} = 2.$	7. $\frac{m+x}{m-x} = \frac{m+n}{m-n}$
4 .	$\frac{3x}{x-2} = \frac{14}{x+2} + 3.$	8. $\frac{x^2-4}{x-2} = \frac{x^2+1}{x-1}$.
CHAPTER V

FUNCTIONS

25. Constants and variables. A constant is a symbol which represents the same number throughout a discussion.

A variable is a symbol which may represent different numbers in the discussion or problem into which it enters.

Thus, in the formula for the volume V of a sphere of radius r, $V = \frac{4}{3}\pi r^3$, the symbol π is a constant, whatever values V and r may have, while V and r are variables.

In most cases the letters a, b, c, \ldots from the beginning of the alphabet are used to denote constants while the letters x, y, z at the end of the alphabet are used to denote variables.

26. Definition of a Function. When two variables, x and y, are so related that to definitely assigned values of x there correspond definite values of y, then y is said to be a function of x.

Thus in the equation, $V = \frac{4}{3}\pi r^3$, volume V is a function of r, the radius, for to every value of r there corresponds a definite volume. The expression, $x^2 + 3x - 5$ is a function of x, for to every value of x there corresponds a definite value for the expression. If we make x = 2, the expression takes the value 5, and when x = 3, the expression equals 13.

27. Functional Notation. When the same function of x occurs several times in a single algebraic discussion, we may simplify the work by representing the given function by some symbol. It is the custom to represent a function of x by the symbol of f(x) which is read "f" function of "x" If another function of x occurs in the same discussion it can be represented

ART. 28]

FUNCTIONS

by F(x), which is read "F major function of x," while f(x) is read "f minor function of x."

Thus, we may let,

 $f(x) = x^{2} + 3x - 5.$ Then, $f(2) = 2^{2} + 3.2 - 5 = 5$ and $f(a) = a^{2} + 3a - 5.$

that is, f(2) and f(a) mean the values of the function when x = 2 and a, respectively.

Exercises

1. Given
$$f(x) = 2x - 5$$
, find $f(1)$, $f(3)$, $f(-2)$.
2. Given $F(x) = x^3 - x^2 + 3$, find $F(1)$, $F(-a)$.
3. Given $f(n) = \frac{n^2 + n + 2}{n^2 - n - 1}$, find $f(1)$, $f(2)$, $f(\frac{1}{2})$.
4. If $f(x) = x^3 + x$ and $F(x) = 2x^2 - 4x - 5$, find the quotients $\frac{f(1)}{F(1)}$ and $\frac{f(3)}{F(2)}$.

28. Functional relations. Whenever two variables are so related that one depends, for its value, on the value of the other there is said to exist a functional relation between these two variables. There are many examples of functional relations in most every line of endeavor. However, it is possible to express only a few of these relations in the form of an algebraic equation.

Illustration (a). There exists a functional relation between the area and radius of a circle. The algebraic equation expressing this relation is, $A = \pi r^2$.

Illustration (b). The temperature of a place depends upon the time, altitude and latitude of the place. Hence, we have a functional relation existing, but this relation can not be expressed by an algebraic equation.

h

FIG. 1.

h

FIG. 2.

h

Exercises

1. Does there exist a functional relation among the volume, altitude and radius of base of a cylinder? Can this relation be expressed by an algebraic equation? If so, what is the equation?

2. What functional relation exists between the Fahrenheit and centigrade temperatures?

29. Formulas taken from geometry. Most of the formulas of mensuration are algebraic equations expressing functional relations.

The following is a list of useful common formulas:

1. Area A of a rectangle of sides a and b.

$$A = ab.$$

2. Area A of a parallelogram of base b and altitude h.

A = bh. (Fig. 1.)

3. Area A of triangle of base b and altitude h.

 $A = \frac{1}{2}bh.$ (Fig. 2.)

4. Area A of triangle in terms of its sides a, b, and c.

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$s = \frac{a+b+c}{2}$$
 (Fig. 3.)

where,

ART. 29]

FUNCTIONS

5. Area A of a circle of radius r, or diameter D.

 $A = \pi r^2$, or $A = \frac{1}{4}\pi D^2$.

6. Circumference C of a circle of diameter D or of radius r.

$$C = \pi D$$
, or $C = 2\pi r$.

As an approximation which is sufficiently close for our purpose we may use 3.14159 as the value of π . For many practical purposes we may use $\pi = \frac{22}{7} = 3.14 + .$

8. Length c of the hypotenuse of a right triangle of sides a and b.

$$c = \sqrt{a^2 + b^2}$$
. (Fig. 5.)

9. Volume V of a cube of edge a.

 $V = a^3$. (Fig. 6.)

10. Volume V of a rectangular solid of length l, width w and altitude h.

V = lwh. (Fig. 7.)

11. Volume V of a cylinder of altitude h, and radius of base r.

$$V = \pi r^2 h.$$
 (Fig. 8.)

12. Volume V of a cone of altitude h and radius of base r.

 $V = \frac{1}{3}\pi r^2 h.$ (Fig. 9.)

13. Volume V of a sphere of radius r, or

 $V = \frac{4}{3}\pi r$, or $V = \frac{1}{6}\pi D^3$. (Fig. 10.)

diameter D.

14. Surface S of a sphere of radius r, or diameter D.

 $S = 4\pi r^2$, or $S = \pi D^2$.

FIG. 10.

FUNCTIONS

Problems

1. The height of a cylinder is 5 feet greater than the radius. Express the volume as a function of the height; as a function of the radius.

2. The altitude of a right triangle is k feet less than the base b. Express the hypotenuse in terms of the base b.

3. How many cubic yards must be excavated in digging a ditch 300 rods long, 18 inches wide at the bottom, 6 feet wide at the top and 5 feet deep? How much water would be discharged by such a ditch in 3 hours' time if it flows 3 feet deep at the rate of 1.2 feet per second?

4. How much concrete is there in a circular silo whose walls are 9 inches thick, 14 feet outside diameter and 32 feet high?

5. What is the capacity of a silo of the dimensions of Ex. 4? How many cows will it maintain for 150 days? (One ton of silage occupies 50 cubic feet, and the daily ration per cow is 35 pounds.)

6. How much concrete will be required to build a water tank 6 feet long 3 feet wide and 2 feet high (all inside dimensions) if the walls and bottom are 8 inches thick? The proportions of the mixture are to be 1:2:3 (1 sack of cement, 2 cubic feet sand, 3 cubic feet gravel). It is figured that one cubic yard of concrete of the above proportions requires 7 sacks cement, 14 cubic feet of sand and 21 cubic feet of gravel.

What would be the total cost of material, if cement costs 90 cents per sack and sand and gravel \$2.00 each per cubic yard?

30. Graphical representation of functional relations. Functional relations may be represented graphically. This may be done whether the relation can be expressed by an algebraic equation or not. (See Art. 28.) Let X'X and Y'Y (Fig. 11) be two straight lines meeting at right angles. Let them be considered as two number scales having the point of intersection as the zero point of each. Let A be any point in the plane. From A drop perpendiculars to the two lines. Let x represent

the distance to Y'Y, and y the distance to X'X. If A lies to the left of Y'Y, x is considered negative and if A lies below X'X, y is considered negative. It is evident that no matter where A lies in the plane there corresponds to it two and only two numbers and those numbers are the perpendiculars to Y'Y and X'X respectively.

The lines X'X and Y'Y are called the coordinate axes, and

FIG. 11.

their point of intersection, O, is called the *origin*. The first line is called the X-axis and the second line is called the Y-axis. The distance from the point to the Y-axis is called the *abscissa* and the distance to the X-axis is called the *ordinate*. The two values are called the *coordinates* of the point. A customary notation is A(x, y) which means the point A whose coordinates are x and y.

FUNCTIONS

If we have any two numbers given it is evident that there is one and only one point in the plane having these numbers as its coordinates. The first number is the abscissa and the second number is the ordinate of the point. If for example we have the numbers 3 and -4, we measure from the origin in the positive direction a distance 3 on the X-axis and at this point we erect a perpendicular and measure downwards a distance 4. This gives us the point whose x = 3 and whose y = -4. The point may be represented by the symbol (3, -4).

When a point is thus located, it is said to be plotted. In plotting points and representing graphically functional relations, it will be convenient to use coordinate paper. Then to represent a number the side of a square may be used as the unit of length. To plot a point, count off from the origin along the X-axis the number of divisions required to represent the abscissa and from this point count off the number of divisions parallel to the Y-axis required to represent the ordinate.

The change in a function can be represented on coordinate paper. As an example the change in the area of a square due to a change in the length of the sides can be represented in the following way: Let A be the area and l the length of the side. Now construct a table showing the area for different values of l.

<i>l</i> =	$\frac{1}{2}$	1	<u>3</u> 2	2	3	4	5
<i>A</i> =	ł	1	$2\frac{1}{4}$	4	9	16	25

Draw coordinate axes on paper and plot the points $(\frac{1}{2}, \frac{1}{4})$, $(1, 1), (\frac{3}{2}, 2\frac{1}{4}), (2, 4)$ and so on. (Fig. 12.) Connect the points by a smooth curve. From the table of values we see that the

Y (2,4) (3/2.2 1/4) (1,1) (1/2 1/4) X

dly than the side. This fact is also shown by the upward bending of the curve.

By this method any function may be represented on coordinate paper. This representation of a function is called the graph of the function. The graph of the function f(x) contains all the points whose coordinates are x, f(x) and no other points.

As an example let us obtain the graph of x + 3 for values of x between -5 and +3. Let f(x) = x + 3. Any value of x with the corresponding value of f(x) determines a point whose ordinate is f(x). Now, assuming

values of x and computing the corresponding values of f(x), we obtain the following table of values:

<i>x</i> =	-5	-4	-3	-2	-1	0	1	2	3
f(x) =	-2	-1	0	1	2	3	4	5	6

The corresponding points, (-5, -2), (-4, -1), ..., are plotted in Fig. 13. It is seen that the curve connecting these points in order is a straight line. This shows that the function x + 3 increases at a uniform rate as x increases.

area increases more rapidly than the side. This fact is also

FIG. 13.

Exercises and Problems

1. Plot the points (3, 4), (5, -6), (-2, 3), (-3, -4).

2. Draw the triangle having for vertices the points (0, 0), (3, 2), (-3, 3).

3. Draw the quadrilateral having for vertices the points (2, 2), (6, 5), (5, -1), (-1, -5).

4. What is the abscissa of a point on the Y-axis? The ordinate of a point on the X-axis?

5. Find the distance between the points (1, 2) and (4, 6).

6. Draw a curve showing the change in the volume of a cube as the length of the edge 1 changes from 0 to 5.

7. One side of a rectangle is l, the other side is l + 2. Show by a graph the change in the area as l changes from 0 to 5.

8. Show by a graph the change in volume of a sphere as the diameter d changes.

Graph the following functions on coordinate paper.

9. $2x + 3$.	13. $2x^2 + x$.
10. $3x - 2$.	14. $x^2 + x + 1$.
11. x^2 .	15. $x - x^2$.
12. $x^2 + 1$.	16. x ³ .

31. Statistical Data. In Art. 30 it was shown how to graph a functional relation where the relation can be expressed by an algebraic equation. As stated before there are many functional relations that can not be expressed by an algebraic equation. As an example there is a relation between the weight of a calf

FIG. 14.-Time-Temperature Graph.

and its age, but we can not express this relation by an algebraic equation. Such relations may be exhibited by means of a graph as will now be shown.

Example. On a winter's day the thermometer was read at 6 a.m. and every hour afterward until 6 p.m. The readings were -10° , -8° , -7° , -5° , -2° , 0° , 2° , 8° , 9° , 10° , 5° , 0° , -4° . Make a graph showing the relation between temperature and time.

Choose two lines at right angles as axes, Fig. 14. Time in

34

FUNCTIONS

hours is measured on the horizontal axis. The temperature in degrees is measured vertically upward and downward. Thus for 10 a.m. we count 4 spaces to the right and 2 spaces down locating a point. In a similar way we locate points for all of the data. By joining these points in order the graph is obtained.

From this temperature curve we may obtain much information, e.g.: When was the temperature changing most rapidly? When was it warmest? When coldest? When was the change a rise? When a fall?

Exercises

1. The daily gain in weight of a calf in pounds for period of one hundred days is given in the following table:

Age in days	0	100	200	300	400	500
Daily gain in pounds	32	2.8	2.55	2.3	2 16	2
Age in days	600	700	800	1000	1100	1200
Daily gain in pounds	1.9	1.8	1.7	1.57	1.5	1.47

Draw a curve showing this information. Plot days on the horizontal scale and pounds on the vertical scale.

2. The Statistical Abstract for 1915 gives the following figures for the values of exports and imports of merchandise for the years 1900-1915.

1900\$1,394,483,082\$849,941,1841908\$1,860,773,346\$1,194,341,7919011,487,764,991823,172,16519091,663,011,1041,311,920,2219021,381,719,401903,320,94819101,744,984,7201,556,947,4319031,420,141,6791,025,719,23719112,049,320,1991,527,226,1019041,460,827,271991,087,37119122,204,322,4091,653,264,93	Year	Exports	Imports	Year	Exports	Imports
19051,518,561,6661,117,513,07119132,465,884,1491,813,008,2319061,743,864,5001,226,562,44619142,364,579,1481,893,925,6519071,880,851,0781,434,421,42519152,768,589,3401,674,169,74	1900	\$1,394,483,082	\$849,941,184	1908	\$1,860,773,346	\$1,194,341,792
	1901	1,487,764,991	823,172,165	1909	1,663,011,104	1,311,920,224
	1902	1,381,719,401	903,320,948	1910	1,744,984,720	1,556,947,430
	1903	1,420,141,679	1,025,719,237	1911	2,049,320,199	1,527,226,105
	1904	1,460,827,271	991,087,371	1912	2,204,322,409	1,653,264,934
	1905	1,518,561,666	1,117,513,071	1913	2,465,884,149	1,813,008,234
	1906	1,743,864,500	1,226,562,446	1914	2,364,579,148	1,893,925,657
	1907	1,880,851,078	1,434,421,425	1915	2,768,589,340	1,674,169,740

Make a graphical representation of these statistics.

3. The Year Book, Department of Agriculture, gives the following South Dakota Farm prices of corn and hay for the years 1899–1919:

Year	Corn	Нау	Year	Corn	Hay	Year	Corn	Hay
1899	\$0 26	\$3.10	1906	\$0.29	\$4.50	1913	\$0.56	\$6.50
1900	0.29	3.95	1907	0.46	5.50	1914	0.50	5.70
1901	0.45	4.49	1908	0.50	4.10	1915	0.49	5.30
1902	0.41	4.15	1909	0.50	5.10	1916	0.77	5 40
1903	0.35	4.63	1910	0.40	7.10	1917	1.20	10.60
1904	0.36	4.29	1911	0.53	8.50	1918	1.10	10 00
1905	0.31	4.02	1912	0.37	6.10	1919	1.19	13.50

Make a graph showing the price of corn also a graph showing the price of hay.

4. Plot a graph of the attendance of students at your college or university for the years 1910-1930.

5. Using the data below, plot a curve using years as abscissa and price of corn as ordinates. Do you notice any regularity in the number of years elapsing between successive high prices? Successive low prices? Draw like graphs for the other crops listed.

ART. 31]

FUNCTIONS

Data from the Year Book of the Department of Agriculture										
Year	Corn	Wheat	Oats	Barley	Rye	Potatoes	Hay, Dollars per Ton			
1870	\$49.4	\$94 4	\$39.0	\$79 1	\$73 2	\$ 65 0	12 47			
1871	43 4	114.5	36.2	75 8	71.1	53.9	14.30			
1872	35.3	111 4	29.9	68 6	67.6	53.5	12 94			
1873	44 2	106 9	34 6	86.7	70.3	65.2	12.53			
1874	58 4	86 3	47 1	86.0	77.4	61 5	11.94			
1875	36 7	89.5	32 0	74.1	67 1	34.4	10.78			
1876	34 0	97.0	32 4	63.0	61.4	61 9	8.97			
1877	34 8	105 7	28.4	62.5	57.6	43.7	8.37			
1878	31 7	77.6	24 6	57.9	52.5	58.7	7.20			
1879	37.5	110 8	33.1	58 9	65.6	43 6	9.32			
1880	396	95.1	36.0	66.6	75.6	48.3	11.65			
1881	63 6	119.2	46.4	82 3	93.3	91.0	11.82			
1882	48.5	88 4	37.5	62.9	61.5	55.7	9 73			
1883	42.4	91.1	32.7	58.7	58.1	42.2	8.19			
1884	35.7	64 5	27.7	48.7	51.9	39.6	8.17			
1885	32 8	77.1	28.5	56.3	57.9	44.7	8.71			
1886	366	68 7	29 .8	53 6	53.8	46.7	8.46			
1887	44 4	68.1	30 4	51.9	54.5	68.2	997			
1888	34.1	926	27.8	59.0	58 8	40.2	8.76			
1889	28 3	69 8	22.9	41.6	42.3	3 5 4	7.04			
1890	50 6	83 8	42.4	62 7	62.9	75.8	787			
1891	40.6	839	31 5	52.4	77.4	35.8	8.12			
1892	39.4	62.4	31.7	47.5	54.2	66.1	8 20			
1893	36.5	53.8	29.4	41.1	51.3	59.4	8.68			
1894	45.7	49.1	32.4	44.2	50.1	53.6	8.54			
1895	25.3	50.9	19.9	33.7	44.0	26.6	8.35			
1896	21.5	72 6	18.7	32.3	40.9	28.6	6.55			
1897	26.3	80.8	21.2	37.7	44.7	54.7	6.62			
1898	28.7	58.2	25.5	41.3	46.3	41.4	6.00			
1899	30 3	58.4	24.9	40 3	51.0	39 .0	7.27			
1900	35.7	61.9	25.8	40.9	51.2	43.1	8.89			
1901	60.5	62.4	39.9	45.2	55. 7	76.7	10.01			

AVERAGE FARM PRICE DECEMBER FIRST

37

Year	Corn	Wheat	Oats	Barley	Rye	Potatoes	Hay, Dollars per Ton
1902	\$40.3	\$63.0	\$30.7	\$45.9	\$50.8	\$47.1	9.06
1903	42.5	69.5	34.1	45.6	54.5	61.4	9.07
1904	44.1	92.4	31.3	42.0	68.8	45.3	8.72
1905	41.2	74.8	29.1	40.5	61.1	61.7	8.52
1906	39.9	66.7	31.7	41.5	58.9	51.1	10.37
1907	51.6	87.4	44.3	66.6	73 1	61.8	11.68
1908	60.6	92.8	47.2	55.4	73.6	70.6	8.98
1909	57.9	98 6	40.2	54.0	71.8	54.1	10.50
1910	48.0	88.3	34.4	57.8	71.5	55.7	12.14
1911	61.8	87.4	45.0	869	83.2	799	14.29
1912	48.7	76.0	31.9	50.5	66.3	50.5	11.79
1913	69.1	79.9	39.2	537	63.4	68.7	12.43
1914	64.4	98.6	43.8	54 3	86.5	48 9	11.12
1915	57.5	92 .0	36.1	51.7	83.9	61.6	10. 70
1916	88.9	160 3	52.4	88.2	122.1	146.1	10. 59
1917	127.9	200.8	66.6	113.7	166.0	122 8	17.09
1918	136.5	204.2	70.9	91.7	151.6	119 3	20.13
1919	134.5	214.9	70.4	120.6	133.2	159.5	20.08
1920	67.0	143.7	46.0	71.3	126.8	114 5	17.76
1921	42.3	92.7	30.3	42.2	70.2	111 1	12.13
1922	65.8	100.7	39.4	52.5	68.5	58.1	12.56
1923	72.6	92.3	41.4	54.1	65.0	78 1	14.13
1924	98.2	129.9	477	74.1	106 5	62 5	13.77
1925	67.4	141.6	38.0	58 9	78.2	186.8	13 94
1926	64.4	119.9	39.8	57.4	83.5	141.7	14.09

AVERAGE FARM PRICE DECEMBER FIRST-Continued

CHAPTER VI

SYSTEMS OF LINEAR EQUATIONS

32. Graphs of Linear Equations. In Art. 30 the graphical representation of functional relations was discussed and the graphs of some functions were given.

Review Questions

1. What is meant by (a) coordinate axes, (b) abscissa, (c) ordinate, (d) coordinates of a point?

2. What is meant by the origin? What are its coordinates?

3. Locate points represented by (-3, 4), (5, -3), (-2, -3), (3, 2).

4. What is the plane figure having the points (3, 2), -3, 2), (-3, -2), (3, -2) for its vertices?

An equation of the form Ax + By + C = 0 (1) is called a *linear* equation. If $B \neq 0$, this equation may be thrown into the form

$$y = -\frac{Ax}{B} - \frac{C}{B} \cdot$$
 (2)

In (2) we may assume A, B and C as fixed and assign values to x and compute the corresponding values of y. This will give any number of pairs of values which may be plotted as coordinates of points. Equation (2) expresses y as a function of x, and the graph of this function is called the graph of equation (1).

It may be easily shown that the graph of all equations of the form of (1) is a straight line.

It is because of this fact that such equations are called linear equations. When A or B is zero, the graph is a line parallel to the X-axis or to the Y-axis respectively. Thus, the equation y - 3 = 0 gives a line parallel to the X-axis, and 3 units above it. And the equation x - 2 = 0 gives a line parallel to the Y-axis, and 2 units to the right of that axis.

Exercises and Problems

Obtain the graphs of the following equations:

1. x + 2y - 6 = 0.

Solution. Solve the equation for y, thus getting $y = 3 - \frac{x}{2}$. This

expresses y as a function of x. Now, assigning values to x and computing the corresponding values of y, we obtain the following table of values:

<i>x</i> =	-4	-2	0	2	4	6	8	10	12	
<i>y</i> =	5	4	3	2	1	0	-1	-2	-3	

FIG. 15.

2. 2x - 3y - 6 = 0. **3.** 4x - 6y + 6 = 0. **4.** 3x + 2y - 4 = 0. **5.** 4x - 5y = 0 Plotting the points (-4, 5), (-2, 4), ... we obtain the graph (Fig. 15), of the above equation. We might have plotted only two of the above points and connected them by a straight line, thus obtaining the required graph. Why? Thus in graphing any other linear equation, we need only to locate two points and connect them by a straight line.

6. 4x - 5y - 10 = 0.

7.
$$2y - 3 = 0$$
.

8. 3x - 4 = 0.

9. Construct the graph of the equation $F = \frac{4}{5}C + 32$, taking the values of C along the horizontal and the corresponding values of F along the vertical axis.

art. 33]

10. Where does the graph 3x - 2y - 6 = 0 cut the X-axis? The Y-axis? The abscissa of the point where the line intersects the X-axis is called the X-intercept and the ordinate of the point where it cuts the Y-axis is called the Y-intercept. What is the ordinate for the X-intercept? The abscissa for the Y-intercept?

11. Find the intercepts of the following:

a.
$$3x - 2y - 12 = 0$$
.
b. $5x + 2y - 4 = 0$.
c. $2x + 3y = 0$.

12. Graph the equations 2x - y - 4 = 0 and x + y - 2 = 0 using the same coordinate axes for both graphs. Do the two lines have a point in common? What are its coordinates? Do these coordinates satisfy both equations?

13. Graph x - 2y - 4 = 0 and x - 2y - 8 = 0. Do these lines have a point in common?

14. Graph x - 2y - 4 = 0 and 2x - 4y - 8 = 0. Do these lines have a point in common?

33. Graphical Solution. In Art. 32 it was stated that the graph of a linear equation in two unknowns, x and y, is a straight line. The equation of this line will be satisfied by any number of pairs of values for x and y and these values will be the coordinates of the points on the graph.

Now assume that we have a second linear equation and that its graph is drawn using the same coordinate axes. This equation too will be satisfied by any number of pairs of values for xand y and these pairs of values will be the coordinates of the points on its graph.

Further assume that these two graphs intersect in some point P. Since this point lies on both graphs, its coordinates will satisfy both equations. In the solution of a system of linear equations in two unknowns x and y we are seeking a pair of values for x and y which will satisfy both equations simultane-

ously. The coordinates of this point then is the solution of the system.

Example. Solve graphically the system of equations

$$x - y + 1 = 0;$$
 (2) $2x + y - 7 = 0.$ (1)

The graphs of equations (1) and (2) are numbered (1) and

FIG. 16.

(2) in Figure 16. They intersect in the point whose coordinates are (2, 3), and consequently x = 2, y = 3 is the solution of the system.

The graphs of two equations may be parallel lines. Then the lines have no point in common and their equations have no solution. Such equations are said to be *incompatible* or *inconsistent*. (See Ex. 13, Art. 32.) Again the graphs of two equa-

tions may be coincident. Then

the lines have an indefinitely large number of points in common and their equations do not have a unique solution. The two equations of the system are in this case *equivalent* or *dependent*. (See Ex. 14, Art. 32.)

Exercises

Find the solutions of the following systems of equations by plotting their graphs.

1.	2x + y = 4,	4.	4x +	6y =	8,
	3x+2y=10.		2x +	3y =	6.
2.	6x-5y=14,	5.	3x +	y =	19,
	7x+2y=32.		2x -	y =	1.
3.	2x+3y=10,	6.	7x -	3y =	26,
	5x + 3y = 7.		2x +	11y =	43.

34. Algebraic solution: Two simple equations in two unknowns may be solved simultaneously for the two values of the unknowns by the process of elimination as is illustrated below.

Example. Solve the equations

$$x-y=4, \tag{1}$$

$$x - 4y = -14.$$
 (2)

Solution. First Method. From (1) we have

$$x = 4 + y. \tag{3}$$

Substituting this value for x in (2), we find

$$4 + y - 4y = -14,$$
 (4)
$$-3y = -18, \quad y = 6.$$

or

Substituting 6 for y in (1), we find

x - 6 = 4, or x = 10.

Hence the required values for x and y are 10 and 6 respectively. This method is known as elimination by substitution.

Solution. Second Method. From (1) subtract (2) and we get

$$3y = 18, y = 6.$$
 (3)

Multiplying (1) by 4 and (2) by -1, the two equations become

$$4x - 4y = 16, (4)$$

$$-x + 4y = 14.$$
 (5)

Adding (4) and (5), we get

$$3x = 30, x = 10.$$

Hence the required solution is x = 10, y = 6.

This method is known as elimination by addition and subtraction.

Exercises and Problems

1.	3x - 4y = 26,	5. $\frac{4}{2} - \frac{3}{2} = \frac{14}{2}$,
2.	x - 3y - 22 = 0. $x + \frac{y}{2} = 11,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	x^{-3}	$\frac{-}{x} + \frac{-}{y} = \frac{-}{3}$
	$\frac{1}{3} + 3y = 21.$	(Hint: Solve first for $\frac{1}{x}$ and $\frac{1}{y}$)
3.	$\frac{x+y}{2} - \frac{x-y}{3} = 8,$	6. $x + y = m + n$,
	$\frac{x+y}{3} + \frac{x-y}{4} = 11.$	$mx - ny = m^2 - n^2.$
4.	y+1=3x,	7 ax + by = 2ab,
	5x+9=3y.	$bx + ay = a^2 + b^2.$

8. A rectangular field is 35 rods longer than it is wide. The length of the fence around it is 310 rods. Find the dimensions of the field.

9. A man has \$25,000 at interest. For one part he receives 6% and for the other part 5%. His total income is \$1,350. How is the money divided?

10. What quantities of two liquids, one 95% alcohol and the other 20% alcohol, must be used to give a 20 gallon mixture of 50% alcohol?

35. Solution of three linear equations in three unknowns.

The process of solving three linear equations in three unknowns may be illustrated by the following example:

Solve the equations

$$3x + 2y - z = 4, (1)$$

$$5x - 3y + 2z = 5, (2)$$

$$6x - 4y + 3z = 7, (3)$$

for x, y, and z.

:

ART. 35]

Solution. Eliminate z between (1) and (2). This may be done by multiplying (1) by 2 and adding the result to (2), we have,

$$6x + 4y - 2z = 8, (4)$$

$$5x - 3y + 2z = 5, (5)$$

$$11x + y = 13.$$
 (6)

Now eliminating z between (1) and (3), we have,

$$9x + 6y - 3z = 12, (7)$$

$$6x - 4y + 3z = 7, (8)$$

$$15x + 2y = 19.$$
 (9)

Now solve (6) and (9) for x and y as illustrated in Art. 34. Multiply (6) by -2 and add the result to (9) and we obtain,

$$7x = 7,$$
$$x = 1.$$

Substituting x = 1 in (6), we have,

y = 2.

Substituting x = 1, y = 2 in (1) and solving for z, we have,

z = 3.

Hence the solution of equations (1), (2), and (3) is

x = 1, y = 2, z = 3.

Exercises

Solve for x, y, and z:

1.	2x - 4y + 5z	= 18,	2.	x	+	y	-	1,
	5x + 3y - 4z	= 5,		y	+	z	=	2,
	x+2y+3z	= 19.		z	+	x	-	4.

3. Make up 100 pounds of an ice cream mixture which will contain 12% fat and 10% milk solids, not fat. The following ingredients are used:

Sugar,	14 pounds.
Gelatine,	$\frac{1}{2}$ pound.
Flavoring,	¹ / ₂ pound.
Condensed milk,	8 pounds.
Cream, whole mi	lk and skim milk powder.

The composition of the products are:

Condensed milk,	9%	fat	and	20%	solids.
Cream,	30%	fat	and	6.3%	solids.
Whole milk,	3%	fat	and	8.73%	solids.
Skim milk powder,				100%	solids.

Solution.

Let x = no. of pounds of cream, y = no. of pounds of milk, z = no. of pounds of skim milk powder.

Then,

0.30x + 0.03y + 0.09(8)	=	12,
0.063x + 0.0873y + 0.020(8) + z	=	10,
$x + y + z + 14 + 8 + \frac{1}{2} + \frac{1}{2}$	=	100.

Or

- (1) 10x + y = 376,
- $(2) \ 630x + 873y + 10000z = 84000,$
- (3) x + y + z = 77.
- (4) 9370x + 9127y = 686000, (3) (2)
- (5) 10x + y = 376.

Multiply (5) by 937 and subtract it from (4). We have,

(6) 8190y = 333688,

y = 40.74 pounds of milk.

(7) 10x = 376 - 40.74 = 335.26, x = 33.53 pounds of cream. z = 77 - 40.74 - 33.53, z = 2.73 pounds of milk powder.

Check:

Cream,	33.53
Milk,	40.74
Milk powder,	2.73
Sugar,	14.00
Gelatine,	.50
Flavor,	.50
Condensed milk,	8.00

Total, 100.00 pounds

.3(33.53) + .03(40.74) + .09(8) = 12.0012.063(33.53 + .0873(40.74) + .2(8) + 2.73 = 9.9990.

Suppose skim milk powder is not added. We will have three equations in two unknowns which may not be solved. We would have,

- (1) 10x + y = 376,
- (2) 630x + 873y = 84000,
- (3) x + y = 77.

Any two of the above equations may be solved for x and y but these values of x and y will not satisfy the other equation. Hence, the mixture is impossible, without adding skim milk or some other ingredient to make the balance.

4. Make up 100 pounds of ice cream mixture which will have 12% fat and 10% milk solids. The following ingredients are used: 14 pounds of sugar, $\frac{1}{2}$ pound of gelatine, $\frac{1}{2}$ pound of flavoring, 16 pounds of condensed milk, whole milk, cream and skim milk powder. The composition of the products are: condensed milk, 9% fat and 20% solids; cream, 34% fat and 5.95% solids; whole milk, 4% fat and 8.75% solids; skim milk powder, 100% solids. Find the proper amounts of cream, whole milk and skim milk powder and check the results.

36. Slope of a straight line. Given a line AB, Fig. 17. Take any point P on the line and through P draw a line PQ, toward the right, parallel to the X-axis and at Q erect a per-

FIG. 17.

pendicular to PQ intersecting AB in R. QR is defined as the rise of the line as the point Rmoves along the line from Ptoward the right, and PQ is known as the run. The rise divided by the corresponding run is defined as the slope of the line AB.

It is evident that one line can have but one slope, for if we x take any other point S on AB and draw through it a line parallel to the X-axis, say ST, and erect at T a perpendicular

TV, we get the triangles PQR and STV which are similar. Therefore the slope of $AB = \frac{QR}{PQ} = \frac{TV}{ST}$ (a constant value).

Problem. Given two points $P(x_1, y_1)$ and $Q(x_2, y_2)$. Express the slope of the line joining these points in terms of the coordinates of the points, Fig. 18.

Solution. Drop perpendiculars to the axes as shown. Then,

Slope of
$$PQ = \frac{AQ}{PA} = \frac{y_2 - y_1}{x_2 - x_1}$$
 (1)

Thus the slope of a line between two points is equal to the difference of the ordinates of the points divided by the difference of their abscissas subtracted in the same order.

In Fig. 18 (a), the slope is positive since both AQ and PA

ART. 36]

are positive, but in Fig. 18 (b) the slope is negative for AQ is negative and PA is positive.

In Fig. 18 (a) AQ is a rise but in Fig. 18 (b) AQ is a fall.

We observe that a rise gives us a positive slope, while a fall gives us a negative slope.

Exercises

1. Construct a line through (2, 3) whose slope is $\frac{3}{2}$. (Hint: A slope $\frac{3}{5}$ means a rise of 3 and a run of 5. Therefore begin at (2, 3), rise 3 units and run 5 units to the right. Connect the final point with (2, 3). The resulting line will have the slope $\frac{3}{5}$.)

2. Construct a line through (1, -2) having $\frac{2}{3}$ for its slope, also, one having $-\frac{2}{3}$ for its slope.

For each of the following pairs of points:

(a) Plot the points,

(b) Draw the straight line through them,

- (c) Find the slope of the line.
- **3.** (1, 2) and (3, 5). 6. (-3, -4) and (-2, -3).
- 4. (3, 2) and (-3, -5).
- 5. (-2, 3) and (2, -2).
- 7. (6, 7) and (-3, 2).
 - 8. (0, 5) and 2, 0).

37. Distance between two points, $P(x_1, y_1)$ and $Q(x_2, y_2)$ in terms of the coordinates of the points. In Fig. 18 we see that

$$PQ = \sqrt{(PA)^{2} + (AQ)^{2}}.$$

$$PQ = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}},$$

$$PA = x_{2} - x_{1} \text{ and } AQ = (y_{2} - y_{1}).$$
(2)

since

Example. Find the distance between the points (5, 6) and (1, 3).

Solution.
$$PQ = \sqrt{(5-1)^2 + (6-3)^2} = \sqrt{16+9} = 5.$$

Exercises

1. Find the distance between the pairs of point in Exercises 3 to 8, Art. 36.

2. Find the distance from the origin to the point (a, b).

3. Prove that the triangle having for its vertices the points (-1, 2), (4, -3), (5, 3) is an isosceles triangle.

4. Find the lengths of the sides of the triangle having the points (2, 1), (5, 5) and (-5, 0) for its vertices.

38. Equation of a straight line. Up to this time we have had certain equations given to find the graphs of these equations. Our problem now is to find the equation when the graph is given. We must find an algebraic expression for the relation existing between the x-distance and the y-distance of a point which will hold for all points on the line.

For example, if a point is located anywhere on the y-axis, its x-coordinate is always zero. The algebraic statement for this fact is the equation x = 0, hence this is the equation of the Y-axis, for it is the one statement that is true for all points on the Y-axis, and for no other points.

What is the equation of the X-axis.

50

As another example let us find the equation of the line parallel to the X-axis and 2 units above it?

In this case y will always be 2, regardless of the value of x. The algebraic statement of this fact is the equation y = 2, or y - 2 = 0, and this is the required equation.

What is the equation of the line that is always the same distance from each of the coordinate axes?

39. Problem. To derive the equation of a straight line in terms of the coordinates of two Y given points on the line. Let LMbe the line determined by the two Ľ points $P(x_1, y_1)$ and $Q(x_2, y_2)$ and let R(x, y) be any other point on R(x,y)LM. Since R, P, Q are all on the same line LM, the slopes of RP and $P(x_1, y_1)$ PQ are equal. Hence by (1) Art. 36, the required equation is

$$\frac{y-y_1}{x-x_1}=\frac{y_1-y_2}{x_1-x_2},$$

which may also be written in the form

$$y - y_1 = \frac{y_1 - y_2}{x_1 - x_2}(x - x_1). \tag{4}$$

Either (3) or (4) is known as the two-point form of the equation of the straight line.

If one of the given points, say (x_1, y_1) , is the origin (0, 0)equation (4) takes the form

$$y = \frac{y_2}{x_2}x,\tag{5}$$

which is the equation of the line through the origin and another given point.

Exercises

1. Find the equation of the line determined by the points (1, 2) and (5, 4).

Solution. Construct the line determined by these points and take

any other point R on the line having (x, y) for its coordinates. Then, the slopes of PQ and QR are equal, and we have,

$\frac{4}{5}$ -	$\frac{2}{1} =$	$\frac{y-4}{x-5},$
	$\frac{1}{2} =$	$\frac{y-4}{x-5},$

from which $y = \frac{1}{2}x + \frac{3}{2}$. What is the slope of the straight line? Does the equation show this slope? The equation could be

gotten by substituting the coordinates of the points in equation (4). This would give us

or

$$y - 4 = \frac{4 - 2}{5 - 1}(x - 5),$$

$$y - 4 = \frac{1}{2}(x - 5),$$

$$y = \frac{1}{2}x + \frac{3}{2},$$

01

or

which is the same result as obtained above.

2. Find the equations of the straight lines determined by the following points. Reduce each equation to the form showing its slope.

- (a) (3, 4) and (-2, 2). (c) (2, 3) and (-2, 4).
- (b) (3, 2) and (5, 6). (d) (-3, 5) and (2, 3).

3. Find the equations of the sides of a triangle whose vertices are the points (4, 3), (2, -2), (-3, 4).

ART. 40]

40. Problem. To derive the equation of a straight line in terms of its slope and the coordinates of a given point on the line. Let $P(x_1, y_1)$ be the given Y point and m the given slope. And let R(x, y) be any other point on the line. From Fig. 21 we see that the slope of the line is $\frac{y-y_1}{x-x_1}$. But the slope of R(x,y) the line is given as m. Hence P(x, y, we may write. X $\frac{y-y_1}{r-r_1}=m,$ 0 (6)

FIG. 21.

or $y - y_1 = m(x - x_1)$. (7)

Equation (7) is known as the *slope* and *one-point form* of the equation of the line.

Exercises

1. Find the equation of the line which passes through the point (3, 2) and has the slope 3.

Solution. Substituting direct in equation (7) (3, 2) for (x_1, y_1) and 3 for m, we get, y - 2 = 3(x - 3) or y = 3x - 7 as the required equation. Does the equation of this line show its slope?

2. Find the equations of the lines passing through the following points and having the given slopes.

- (a) Through (2, 3) with slope $\frac{3}{4}$.
- (b) Through (-3, 4) with slope -2.
- (c) Through (5, -3) with slope $-\frac{2}{3}$.

3. What are the slopes of the lines whose equations are:

(a)
$$2x - 3y + 6 = 0$$
? Ans. $m = \frac{2}{3}$.
(b) $ax + by + c = 0$? Ans. $m = \frac{-a}{b}$.

4. Find the equation of each of the straight lines described below.

(a) A line whose X-intercept is 3 and whose slope is $\frac{2}{3}$.

(b) A line whose Y-intercept is k and whose slope is m.

Answer (b); y = mx + k. This equation is known as the slope *Y*-intercept form of the equation of a line.

41. Parallel lines. If two straight lines are parallel, their slopes are equal.

Draw two parallel lines and select any two points on each

line. (See Fig. 22.) The slopes are respectively, $\frac{a_1}{b_1}$ and $\frac{a_2}{b_2}$. The triangles *ABC* and *DEF* are similar, since their corresponding sides are parallel. Hence $\frac{a_1}{b_1} = \frac{a_2}{b_2}$, and the two slopes are equal. -X Therefore, if two lines are parallel, their slopes are equal.

And conversely, if the slopes of two lines are

equal, the lines are parallel.

Example. Find the equation of the line which passes through the point (1, 2) and is parallel to the line 3x - y - 7 = 0.

Solution. The equation of the given line may be written in the form, y = 3x - 7, which shows that its slope is 3. Since the line, whose equation we are seeking, is parallel to the given

54

ART. 42]

line it will likewise have 3 for its slope. Hence, substituting in equation (7) Art. 40, we get

$$y - 2 = 3(x - 1),$$

or $3x - y - 1 = 0.$

42. Perpendicular lines. If two straight lines are perpen-

FIG. 23.

dicular to each other, the slope of one is the negative reciprocal of the slope of the other.

Draw two perpendicular lines as shown in Fig. 23. The slope of the one line is $m_1 = \frac{-a_1}{b_1}$. (Why negative?) The other slope is

$$m_2=\frac{a_2}{b_2}$$

The triangles ABC and EDF are similar, since their corresponding sides are perpendicular to each other. Hence we have,

$$\frac{a_2}{b_2} = \frac{b_1}{a_1} = \frac{1}{\frac{a_1}{b_1}} = -\left[\frac{1}{\frac{-a_1}{b_1}}\right]$$
$$m_2 = -\frac{1}{m_1}$$

or

Therefore, if two lines are perpendicular, the slope of one is the negative reciprocal of the slope of the other.

And conversely, if the slope of one line is the negative reciprocal of the slope of another, the lines are perpendicular to each other.

Example. Show that the lines (1) 3x - y + 6 = 0 and (2) 2x + 6y - 5 = 0 are perpendicular to each other.

Writing the above equations in the slope Y-intercept form. (See Ex. 4 (b) Art. 40), we get,

$$y = 3x + 6, \text{ and} \tag{1}$$

$$y = \frac{-1}{3}x + \frac{5}{6}.$$
 (2)

We observe that their respective slopes are 3 and $-\frac{1}{3}$. The lines are therefore perpendicular.

Exercises on Chapter VI

1. Write the equation of the line which shall pass through the intersection of x + y + 1 = 0 and x - 3y + 8 = 0, and have a slope equal to 4.

2. Find the equations of the lines satisfying the following conditions:

- (a) Passing through (2, 3) and with slope = -4.
- (b) Having the X-intercept = 4, Y-intercept = -5.
- (c) Slope = -3, X-intercept = 8.

ART. 42] SYSTEMS OF LINEAR EQUATIONS

3. Prove by means of slopes that (0, -2), (4, 2), (0, 6), (-4, 2) are the vertices of a rectangle.

4. What are the equations of the sides of the figure in example 3?

5. Find the equation of the straight line passing through the point of intersection of 2x + 5y - 8 = 0 and 2x - y + 4 = 0 and perpendicular to the line 5x - 10y = 0.

6. Show that the points (2, 4), (-1, 0), (5, 8) are on the same straight line.

7. Show that the points (-1, 2), (4, -3), (5, 3) are the vertices of an isosceles triangle.

8. Prove that the diagonals of a square are equal and perpendicular to each other.

9. Find the equation of the line which passes through (2, -1) and is:

- (a) Parallel to 3x + 2y + 3 = 0,
- (b) Perpendicular to 3x + 2y + 3 = 0.

CHAPTER VII

QUADRATIC EQUATIONS

43. Typical form. We may regard the equation

$$Ax^2 + Bx + C = 0 \tag{1}$$

as the typical form of every quadratic equation in a single unknown x, for every quadratic equation can be thrown into the form (1) by the proper rearrangement of its terms. The coefficients A, B, and C represent numbers which are in no way dependent upon the unknown number x and A is not zero, for if it were equation (1) would become Bx + C = 0 which is not a quadratic equation but a linear equation.

The function $Ax^2 + Bx + c(A \neq 0)$ is the typical quadratic function.

Exercises

Arrange the following equations in the typical form. What are the values of A, B, and C?

1. $x^2 + (3x - 5)^2 + 2x - 5 = 0$.

Expanding and collecting terms, we get,

$$10x^2 - 28x + 20 = 0,$$

$$5x^2 - 14x + 10 = 0,$$

or

$$A = 5, B = -14, C = 10.$$

and

2.
$$3x(x-1) = x^2 - 2x - 3$$
.
3. $\frac{1}{x} - \frac{1}{x+1} = 2$.

ART. 44]

or

4. $(z + 2)^3 - (z - 3)^3 + 3 = (z - 2)^2$. **5.** $(x + m)^2 + (x - m)^2 = 4mx + 3x^2$. Solution of Ex. 5: We get,

 $x^2 + 2mx + m^2 + x^2 - 2mx + m^2 - 4mx - 3x^2 = 0,$

and combining terms,

$$-x^2 - 4mx + 2m^2 = 0,$$

$$x^2 + 4mx - 2m^2 = 0.$$

This is of form (1) and A = 1, B = 4m, $C = -2m^2$. 6. $4m^2x^2 + 3k^2x^2 - 8mx + 3x - m + k = 0$. 7. $x^2 + (mx + b)^2 = r^2 - mx$.

44. Solution of the quadratic equation. The quadratic formula. A quadratic equation may be solved by the process known as " completing the square."

As an example, solve $9x^2 + 3x = 2$.

Solution. Write the equation in the form,

$$x^2 + \frac{1}{3}x = \frac{2}{9}.\tag{1}$$

Add $(\frac{1}{2} \cdot \frac{1}{3})^2 = \frac{1}{36}$ to both members, and the left hand member is a perfect square. That is,

$$x^{2} + \frac{1}{3}x + \frac{1}{36} = \frac{2}{9} + \frac{1}{36} = \frac{9}{36} = \frac{1}{4},$$
 (2)

$$(x+\frac{1}{6})^2 = \frac{1}{4}.$$
 (3)

Extract the square root of both members.

$$x + \frac{1}{6} = \pm \frac{1}{2},$$

$$x = -\frac{1}{6} \pm \frac{1}{2},$$

$$x = \frac{1}{3} \text{ or } -\frac{2}{3}.$$
(4)

Both of these values of x satisfy the original equation, as may be seen by substituting them for x in the original equation.

or
Apply the method of "completing the square" to the typical form,

$$Ax^2 + Bx + C = 0. (1)$$

Transpose C and divide through by A,

$$x^2 + \frac{B}{A}x = -\frac{C}{A}.$$
 (2)

Add $\left(\frac{1}{2} \cdot \frac{B}{A}\right)^2$ to both members,

$$x^{2} + \frac{B}{A}x + \frac{B^{2}}{4A^{2}} = \frac{B^{2}}{4A^{2}} - \frac{C}{A} = \frac{B^{2} - 4AC}{4A^{2}},$$
 (3)

or
$$\left(x + \frac{B}{2A}\right)^2 = \frac{B^2 - 4AC}{4A^2}$$
 (4)

Extracting the square root of both members,

$$x + \frac{B}{2A} = \pm \frac{1}{2A}\sqrt{B^2 - 4AC},$$

$$x = \frac{-B}{2A} \pm \frac{1}{2A}\sqrt{B^2 - 4AC},$$

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}.$$
(6)

The roots, then, of the typical form (1) are

$$x_{1} = \frac{-B + \sqrt{B^{2} - 4AC}}{2A},$$
$$x_{2} = \frac{-B - \sqrt{B^{2} - 4AC}}{2A},$$

which could be verified by substitution.

60

and

ART. 44]

or

We may therefore use the expression,

$$\frac{-B\pm\sqrt{B^2-4AC}}{2A},$$

as the formula for the solution of any quadratic equation.

As an example, solve $3x^2 + 7x - 6 = 0$. In this equation, A = 3, B = 7, C = -6, and substituting these values of A, B and C in the formula, we get,

$$x = \frac{-7 \pm \sqrt{49 - 4 \cdot 3(-6)}}{2 \cdot 3} = \frac{-7 \pm 11}{6},$$
$$x_1 = \frac{-7 \pm 11}{6} = \frac{2}{3},$$

and
$$x_2 = \frac{-7 - 11}{6} = -3.$$

Our solutions then are $\frac{2}{3}$ and -3. As another example, solve $x^2 - x - 1 = 0$.

By formula, $x_1 = \frac{1 + \sqrt{5}}{2}$, $x_2 = \frac{1 - \sqrt{5}}{2}$.

Here the quantity under the radical is not a perfect square and we say the solutions are irrational. We will now define rational and irrational numbers.

A rational number is defined as one that can be expressed as the quotient of two integers. An irrational number is one that can not be thus expressed.

Thus 15, $\frac{1}{2}$, $\frac{3}{2}$ are rational numbers; $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $1 + \sqrt{5}$, $\frac{1 - \sqrt{5}}{2}$ are *irrational numbers*.

Exercises

Solve the following equations by formula and check the results:

1. $6x^2 - 11x + 4 = 0$. **13.** $\frac{x+3}{2x-7} - \frac{2x-1}{x-3} = 0.$ 2. $5x^2 - 3x - 14 = 0$. 3. $14x^2 + 11x - 15 = 0$. 14. $x^2 - 2ax + 3x - 6a = 0$. 4. $2x^2 - 5x + 2 = 0$. 15. $\frac{w+\frac{1}{w}}{w-\frac{1}{w}} + \frac{1+\frac{1}{w}}{1-\frac{1}{w}} = \frac{13}{4}$ 5. $3x^2 + 8x - 3 = 0$. 6. $7y^2 + 9y - 10 = 0$. 7. $x^2 + x - 1 = 0$. 8. $x^2 + 2x - 1 = 0$. 16. $x^2 + lx + m = 0$. 9. $2x^2 + 3x - 9 = 0$. 17. $(2x - 3)^2 = 8x$. 10. $7x^2 - 32 = -2x$. 11. $2x^2 - x - 2 = 0$. 18. $\frac{2x}{x+2} + \frac{x+2}{2x} = 2.$ 12. $2x^2 - 3x - 2 = 0$.

45. Classification of numbers. Algebraic numbers are divided into two classes, *real numbers* and *imaginary numbers*.

Real numbers are of two kinds, *rational* and *irrational* (see Art. 44 for definition of rational and irrational numbers).

In order to care for the square root of a negative number, we introduce the symbol $\sqrt{-1} = i$ and define it as the *imaginary* unit just as 1 is defined as the real unit. Then any number of the form ai, where a is real, is defined as a *pure imaginary*; and any number of the form a + bi, where a and b are real is defined as a *complex number*.

For example,
$$\sqrt{-25} = 5\sqrt{-1} = 5i$$
,

and

also, $3 + \sqrt{-37} = 3 + \sqrt{37}i$.

Imaginary numbers occur in the solution of certain quadratic equations.

 $\sqrt{-37} = \sqrt{37} \sqrt{-1} = \sqrt{37}i$

.

ART. 46]

As an example, solve $2x^2 - 3x + 4 = 0$. By formula:

$$x_{1} = \frac{3 + \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 4}}{4} = \frac{3 + \sqrt{-23}}{4},$$
$$= \frac{3 + \sqrt{23i}}{4},$$
$$x_{2} = \frac{3 - \sqrt{23i}}{4}.$$

and

Here, both roots are of the form a + bi and are complex.

We can interpret the number $\sqrt{17}$ as the length of the hypotenuse of a right triangle whose sides are 4 and 1, but we can not interpret in an elementary way the number $\sqrt{-17}$ or $\sqrt{17i}$. However, the new number $\sqrt{-1}$ is of great importance in studying the physical world, particularly in the theory of alternating currents in electricity.

Exercises

Solve for x :	
1. $2x^2 - 5x + 4 = 0$.	3. $3x^2 - x + 2 = 0$.
2. $x^2 - x + 1 = 0$.	4. $7x^2 - 3x + 1 = 0$.

46. Character of the roots of the quadratic. Discriminant. We have shown in Art. 44 that the solutions of the quadratic equation, $Ax^2 + Bx + C = 0$, are given by the formula,

$$\frac{-B\pm\sqrt{B^2-4AC}}{2A}.$$

The expression $B^2 - 4AC$ which appears under the radical sign is called the *discriminant* of the equation. An inspection of the value of the discriminant is sufficient to determine the character of the roots. It is easily observed that the following statements are true: I. When $B^2 - 4AC$ is negative, the roots are imaginary.

II. When $B^2 - 4AC = 0$, the roots are real and equal.

III. When $B^2 - 4AC$ is positive, the roots are real and unequal.

IV. When $B^2 - 4AC$ is positive and a perfect square, the roots are real, unequal and rational.

V. When $B^2 - 4AC$ is positive and not a perfect square, the roots are real and unequal and irrational.

Why is the expression $B^2 - 4AC$ called the discriminant?

Exercises

Without solving, determine the character of the roots of the following equations:

1. $2x^2 - 7x + 3 = 0$.

Solution of example 1.

Here A = 2, B = -7, C = 3.

Then $B^2 - 4AC = (-7)^2 - 4 \cdot 2 \cdot 3 = 49 - 24 = 25$, which is positive. Therefore by III, the roots are real and unequal.

Also, since 25 is a perfect square, we have from IV that the roots are rational.

2. $3x^2 + 2x + 1 = 0$.	6. $x^2 + x = -1$.
3. $2x^2 - 4x + 3 = 0$.	7. $3x^2 - x - 10 = 0$.
$4. \ x^2 + 6x - 8 = 0.$	8. $x^2 + x = 1$.
5. $4x^2 + 4x + 1 = 0$.	9. $4x^2 + 16x + 7 = 0$.

10. For what values of k will the roots of the quadratic $k^2y^2 + 5y + 1 = 0$, be equal?

Solution of Ex. 10.

Here $A = k^3$, B = 5, C = 1, and $B^2 - 4AC = (5)^2 - 4k^2 = 25 - 4k^2$. According to II, the roots will be equal when k is so determined that $25 - 4k^2 = 0$ or $4k^2 = 25$, or $k = \pm \frac{5}{2}$.

11. For what value (or values) of m will the solutions of the following be equal?

ART. 48]

(a)
$$y^2 + 12y + 8m = 0$$
. (c) $(m+1)y^2 + my + m + 1 = 0$.
(b) $(2z + m)^2 = 8z$. (d) $a^2(mx + 1) + b^2x^2 = a^2b^2$.

47. The sum and product of the roots. The two roots of the typical quadratic equation are

$$x_1 = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$
 and $x_2 = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$.

The sum of these roots is $-\frac{B}{A}$, and their product is $\frac{C}{A}$, which is easily obtained by adding and multiplying them together, respectively.

Summing up, we have,

$$x_1 + x_2 = -\frac{B}{A} \tag{1}$$

and

$$x_1 x_2 = \frac{C}{A}$$
 (2)

Thus, by means of (1) and (2) above, we can find the sum and product of the roots without solving the equation. Thus, in the equation, $2x^2 - 5x + 3 = 0$, the sum of the roots is $\frac{5}{2}$, and the product is $\frac{3}{2}$.

Exercises

What is the sum and product of the solutions of each of the following equations?

1. $3x^2 + 6x - 1 = 0.$ 5. $m^2x^2 - m(a - b)x - ab = 0.$ 2. $5x^2 - 4x + 2 = 0.$ 6. $acx^2 - bcx + adx - bd = 0.$ 3. $x^2 + \frac{1}{2}x + \frac{1}{7} = 0.$ 7. $4a + ax^2 = 2x + 2a^2x.$ 4. $x^2 - 10x + 13 = 0.$ 8. $x^2 - 2ax + a^2 + b^2 = 0.$

48. Graphical solution of a quadratic equation. In order to solve graphically the equation $x^2 - 4x + 3 = 0$, we let $y = x^2 - 4x + 3$ and compute a table of values as follows:

<i>x</i> =	-3	-2	-1	0	1	2	3	4	5	6	7
y =	24	15	8	3	0	-1	0	3	8	15	24

Plotting the points (-2, 15), (-1, 8) ... from the table and drawing a smooth curve through them we get the curve in Fig. 24. The graph crosses the X-axis at 1 and 3; hence, for

these values of x the function $x^2 - 4x + 3$ is zero. That is to say, 1 and 3 are the solutions of the equation $x^2 - 4x + 3 = 0$. These solutions are represented graphically by the abscissas

of the points where the graph crosses the X-axis.

Were we to graph the function $Ax^2 + Bx + C$ where A is positive and not zero, we would get a curve having the same general shape as the curve in Fig. 25. This curve is called a parabola. If the graph crosses the X-axis, the X-intercepts give the real solutions of the equation $Ax^2 + Bx + C = 0$. If the curve has no point in common with the X-axis, the roots are imaginary. If the curve touches the X-axis, the roots are real and equal.

We have just stated above that the graph of the general quadratic function, $Ax^2 + Bx + C$, is called a parabola and is similar in shape to Fig. 25. We note that the parabola is symmetrical with respect to a certain line. The curve in Fig. 25 is symmetrical with respect to the line AB. This line AB is called the axis of the parabola. If we draw any line LM perpendicular to the axis AB intersecting the parabola in L and M and the axis in N we find that LN = MN. Then, what do we mean by the parabola being symmetrical with respect to its axis?

The curve in Fig. 24 is a parabola and we notice that it is symmetrical with respect to the line parallel to the Y-axis and two units to the right. What are the coordinates of the lowest point on this curve?

Exercises

Construct the graphs of the functions in the following equations and determine the roots if they are real. Determine the axis of symmetry of each of the curves. What are the coordinates of the lowest point on each curve?

1. $x^2 - 2x - 3 = 0$.	6. $x^2 - 2x - 1 = 0$.
$2. 4x^2 - 12x + 9 = 0.$	7. $x^2 + 4x + 3 = 0$.
3. $x^2 - 2x + 5 = 0$.	8. $x^2 + x + 1 = 0$.
4. $x^2 - 9x + 14 = 0$.	9. $x^2 + 4x + 6 = 0$.
5. $x^2 + 2x - 1 = 0$.	10. $x^2 + 2x + 2 = 0$.

49. Minimum value of a quadratic function. We have just shown in Art. 48 that the graph of a quadratic function is a parabola symmetrical with respect to a certain vertical line called the axis of the parabola. (See Fig. 25.) We notice that the axis intersects the parabola in a single point *B* and that this point *B* is the lowest point on the curve. Such a point is called a minimum point and the ordinate of such a point is defined as the minimum value of the quadratic function, $Ax^2 + Bx + C$. In figure 24 the coordinates of the lowest point on the graph are (2, -1) and -1 is the minimum value of the quadratic function $x^2 - 4x + 3$.

Consider again the equation, (1) $y = x^2 - 4x + 3$. The graph of this equation is Fig. 24. From the table of values we see that to a given value of y there corresponds two values of x. When y = 3, x = 0 and 4. When y = 0, x = 1 and 3. When y = -1, x = 2. We observe, then, that to every value of y there corresponds two values of x and that as y decreases the two corresponding values of x approach each other and finally for a certain value of y the two corresponding values of x are equal. In the above example the value of y, which causes the two values of x to be equal, is -1. But this value of y is the minimum value of the function, $x^2 - 4x + 3$.

Then, to determine the minimum value of the function, $x^2 - 4x + 3$, we must determine the value of y which will make equation (1) have equal values for x. Equation (1) may be written (2) $x^2 - 4x + 3 - y = 0$. Now, the roots of (2) will be equal when the discriminant equals zero.

We have,

$$(-4)^2 - 4(3 - y) = 0, (3)$$

or

$$y = -1, \tag{4}$$

which is the minimum value of the function.

Example. Find the minimum value of the function,

 $x^2 + 3x + 4$.

Solution.

Let

 $y = x^2 + 3x + 4. \tag{1}$

art. 49]

Then
$$x^2 + 3x + (4 - y) = 0.$$
 (2)

Setting the discriminant equal to zero, we get,

$$9 - 4(4 - y) = 0$$
, or (3)

$$y = \frac{7}{4}, \tag{4}$$

which is the minimum value of $x^2 + 3x + 4$.

Let us now find the minimum value of the typical quadratic function, $Ax^2 + Bx + C$.

Let
$$y = Ax^2 + Bx + C.$$
 (1)

Then
$$Ax^2 + Bx + (C - y) = 0.$$
 (2)

Setting the discriminant equal to zero, we get,

$$B^2 - 4A(C - y) = 0, (3)$$

and

$$y = \frac{4AC - B^2}{4A},\tag{4}$$

which is the minimum value of the quadratic, $Ax^2 + Bx + C$.

Thus far in the discussion of the quadratic, $Ax^2 + Bx + C$, we have assumed that "A" was a positive number. Now, if "A" were a negative number, the graph would not be similar to Fig. 25, but would have the same general shape as Fig. 26. Fig. 26 is a parabola also, but here the point B is a maximum and not a minimum as in Fig. 25. The expression, $\frac{4AC - B^2}{4A}$, gives us the minimum or

FIG. 26.

maximum value of the quadratic according as "A" is positive or negative.

Thus the maximum value of $-2x^2 + 3x + 5$ is

$$\frac{4(-2)5-3^3}{4(-2)} = \frac{-40-9}{-8} = \frac{49}{8} = 6\frac{1}{8}$$

Exercises

Find the maximum or minimum values of the following:

1. $x^2 - 6x + 10.$ 5. $x^2 + 2x + 2.$ 2. $2x^2 - x - 3.$ 6. $2 + 2x - x^2.$ 3. $-3x^2 + 2x - 10.$ 7. $mx^2 + nx + k.$ 4. $1 - x - 2x^2.$ 8. $-5x^2 + x + 1.$

Exercises on Chapter VII

1. Solve:

(a)
$$12x^2 + x - 1 = 0$$
. (b) $\frac{3y - 6}{y + 2} = y - 2$.
(c) $x^2 - 4x + 1 = 0$. (d) $x^2 - 5.3x + 2.1 = 0$

2. Find by the graphical method the approximate values of the roots of the equations

(a) $x^2 - 4x - 13 = 0$, (b) $x^2 + 2x - 13 = 0$.

3. Find the sum and product of the roots of the following equations:

(a)
$$3x^2 = 5 - 2x$$
, (b) $2x^2 + 5x + 3 = 0$,
(c) $(mx + 2)^2 = 4x$.

4. Determine the character of the roots of the following:

(a)
$$3x^2 + x + 1 = 0$$
, (b) $2x^2 - 5x + 1 = 0$,
(c) $16x^2 + 8x + 1 = 0$.

5. Find the number of acres in the largest rectangular field that can be inclosed by a mile of fence.

Solution. Let x equal length of the field. ART. 49]

Then, 160 - x = width of field and A (the area) = $x(160 - x) = 160x - x^2$ or $A = -x^2 + 160x$. Thus the maximum area is given by

$$A = \frac{4(-1) \cdot 0 - (160)^2}{4(-1)} = \frac{(160)^2}{4} = 6400 \text{ square rods,}$$

or 40 acres. When A equals 6400, we find that x equals 80 rods and the field is in the shape of a square.

6. Divide 20 into two parts such that the sum of their squares shall be a minimum.

Solution:

or

Let x =one part.

Then, 20 - x = other part and S (the sum of their squares) = $x^2 + (20 - x)^2$ or $S = 2x^2 - 40x + 400$, and the minimum value of S is given by

$$S = \frac{4 \cdot 2 \cdot 400 - (-40)^2}{4 \cdot 2} = 200.$$

When S = 200, we have,

 $200 = 2x^2 - 40x + 400,$ $x^2 - 20x + 100 = 0,$

x = 10, one part,

and 20 - x = 10, other part.

7. A window is to be constructed in the shape of a rectangle surmounted by a semicircle. Find the dimensions that will admit the maximum amount of light, if its perimeter is to be 48 feet.

8. A rectangular piece of ground is to be fenced off and divided into four equal parts by fences parallel to one of the sides. What should the dimensions be in order that as much ground as possible may be enclosed by 200 rods of fence?

9. A rectangular field is to be fenced off along the bank of a straight river, using 160 rods of fence. If no fence is needed along the river, what is the shape of the field in order that the enclosed area shall be the greatest possible? 10. A park is 150 rods long and 90 rods wide. It is decided to double the area of the park, still keeping it rectangular, by adding strips of equal width to one end and one side. Find the width of the strips.

11. A farmer starts cutting grain around a field 120 rods long and 80 rods wide. How wide a strip must he cut to make 10 acres?

12. A rectangular piece of ground is to be fenced off in the corner of a rectangular field and divided into four equal lots by fences parallel to one of the sides. What should the dimensions be in order that as much ground as possible may be enclosed by 200 rods of fence, the fences of the given field being used for two sides of the required field?

13. Build a water tank to hold 100 cubic feet. The length of the base is to be twice the width. Find the dimensions that will make the cost a minimum.

Solution. The cost will be a minimum when the surface is a minimum.

Let	x =	width	of	\mathbf{the}	base.

Then, 2x = length of the base.

Let y = depth.

Then, $2x^2y = 100$ (volume), (1)

$$2x^2 + 6xy = S \text{ (surface)}. \tag{2}$$

Substituting (1) in (2), we obtain,

$$S = 2x^{2} + \frac{300}{x}$$

$$= \frac{2x^{3} + 300}{x}$$
(3)

Our problem is to determine a value of x that will make S a minimum. This may be done by giving x values and computing the corresponding values of S.

<i>x</i> =	1	2	3	4	41	41/2	5	6	7
<i>S</i> =	302	158	118	107	106.7	107.16	110	122	140 9

ART. 49]

We notice that when $x = 4\frac{1}{4}$, S = 106.7 and this value is approximately the least value S can take. Hence the dimensions are (approx.) $4\frac{1}{4}$ feet, $8\frac{1}{2}$ feet and $2\frac{4}{5}$ feet.

This problem illustrates another method for obtaining a minimum value of a function.

14. A covered box is to hold 200 cubic feet. The length of the base is to be two times the width. Find the dimensions that will make the cost a minimum.

CHAPTER VIII

EXPONENTS, RADICALS, BINOMIAL EXPANSION AND LOGARITHMS

50. Definition of a number. Laws of exponents. Any number N may be defined as some other number a (a fixed number) raised to the nth power. Thus we may write

$$N = a^n. \tag{1}$$

In (1) N is the number, a is defined as the base of the system of numbers and n is the exponent or the power to which a, the base must be raised to produce the number. For example, $1000 = 10^3$. Here 1000 is the number, 10 is the base and 3 is the power to which 10 must be raised to produce 1000.

By a^n , we mean the product of $a \cdot a \cdot a \cdot a$... to *n* factors, by a^4 , we mean $a \cdot a \cdot a \cdot a$.

The laws of exponents are as follows:

I. $a^m \cdot a^n = a^{m+n}$. To multiply numbers having the same base, we add their exponents. Thus, $5^2 \cdot 5^4 = 5^6$.

II. $a^m \div a^n = a^{m-n}$. To divide numbers having the same base, we subtract the exponent of the divisor from the exponent of the dividend. Thus, $5^5 \div 5^3 = 5^{5-3} = 5^2$.

III.
$$(a^m)^n = a^{mn}$$
. Thus, $(5^3)^2 = 5^{3 \cdot 2} = 5^6$.
IV. $(ab)^m = a^m b^m$. Thus, $(3 \cdot 4)^3 = 3^3 \cdot 4^3$.
V. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$. Thus, $\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3}$.

The above formulas apply not only when m and n are positive integers, but in all cases.

For example:
$$3^{2/5} \cdot 5^{-1/3} = 3^{2/5-1/3} = 3^{1/15}$$
.
By $a^{p/q}$ we mean the *q*th root of a^p . That is,
VI. $a^{p/q} = \sqrt[q]{a^p}$. Thus, $3^{2/5} = \sqrt[5]{3^2}$ and $5^{1/3} = \sqrt[3]{5}$.
VII. $a^\circ = 1$. For $a^\circ \cdot a^n = a^{\circ+n} = a^n$, and $a^\circ = \frac{a^n}{a^n} = 1$
VIII. $a^{-n} = \frac{1}{a^n}$. For $a^{-n} \cdot a^n = a^{-n+n} = a^\circ = 1$, and $a^{-n} = \frac{1}{a^n}$.
Thus, $7^{-2/3} = \frac{1}{7^{2/3}} = \frac{1}{\sqrt[3]{7^2}} = \frac{1}{\sqrt[3]{49}}$.

Exercises

Simplify the following indicated operations:

1. $x^3 \cdot x^5 \cdot x^{1/2}$.5. $(a^{-1/2})^3$.2. $(x^2y^3)^4$.6. $(m^{1/3} + n^{1/3})m^{1/3}n^{1/3}$.3. $a^7 \div a^3$.7. $(8a^3b^6)^{1/3}$.

Write each of the following with a radical sign and simplify:

8.
$$(16)^{1/4}$$
.
 11. $x^{1/3}y^{1/3}$.

 9. $(27)^{2/3}$.
 12. $\left(\frac{8a^6}{27b^9}\right)^{1/3}$.

 10. $(3)^{2/3}$.
 12. $\left(\frac{8a^6}{27b^9}\right)^{1/3}$.

Write the following in a form such that negative exponents do not appear and reduce to simplest form:

13.
$$12a^{-2/3}$$
.
 18. $\left(\frac{2}{3}\right)^{-2} \left(\frac{225}{16}\right)^{-1/2}$.

 14. $\frac{1}{(a+b)^{-2}}$.
 19. $\frac{1}{a^{-3}} + \frac{1}{b^{-3}}$.

 15. $a^{2}b^{-3}c^{-2}$.
 19. $\frac{1}{a^{-3}} + \frac{1}{b^{-3}}$.

 16. $\frac{1}{2a^{-2}b^{-3}}$.
 20. $(8x^{-3}y^{-6})^{1/3}$.

 17. $\frac{1}{a^{-2} + b^{-2}}$.
 21. $2^{-2} - 2^{-3}$.

 22. $(a^2 + b^2)^\circ$.

Change the following into expressions without radical signs or negative exponents:

23. \sqrt{b} .	29. $\sqrt[3]{(a^3)^{-2}}$.					
24. $\sqrt[3]{x^4}$.	30. $\sqrt[3]{a} \cdot \sqrt[5]{b}$.					
25. $\sqrt{a^2b^4c^8}$.	31. $\sqrt[3]{\sqrt{a^4}}$.					
26. $\sqrt[3]{x^{-6}y^{-2}}$.	32. $\sqrt[4]{(x+y)^{-3}}$.					
27. $\sqrt[3]{(a+b)^6}$.	33. $\sqrt{9(x+y)^3}$.					
28. $\sqrt{(x+y)^{-4}}$.	34. $\sqrt[3]{a^6b^3c^{-3}}$.					
Solve the equation:						
35. $y^{-2/3} = 9.$						
Solution. $\frac{1}{y^{2/3}} = 9.$						
$\frac{1}{y} = 9^{3/2}$, or	$y = \frac{1}{9^{3/2}}.$					
But $9^{3/2} = \sqrt{9^3} = 2$	27.					
Therefore, $y = \frac{1}{27}$.						
Solve the following for x :						
36. $x^{1/3} = 2$.	38. $\frac{1}{2}x^{-1/3} = 3.$					
37. $x^{-1/3} = 4$.	39. $x^{2/3} = 4$.					
Multiply the following:						
40. $a^{2/3} - a^{1/3}b^{1/3} + b^{2/3}$ by $a^{1/3} + b^{1/3} $	$b^{1/3}$.					
41. $\sqrt{a^3} + \sqrt{b^3}$ by $a^{3/2} - b^{3/2}$.						
Divide the following:						
42. $x^{3/5} + b^{3/4}$ by $x^{1/5} + b^{1/4}$.						
43. $16x^2 - 81y^4$ by $2x^{1/2} - 3y$.						
44. $\sqrt[4]{a^3} - \sqrt[5]{b^6}$ by $a^{1/4} - b^{2/5}$.						

76

51. Radicals. Simplification of radicals. An indicated root of a number is called a radical. Thus the expression $\sqrt[n]{a}$ is a radical. The quantity a under the radical sign is known as the radicand; n the number which indicates the root of the radicand is known as the index of the root.

For the purpose of computation it is often convenient to be able to change the form of radicals. A few examples will illustrate the processes:

Example 1. Simplify $\sqrt{32}$. Solution. $\sqrt{32} = \sqrt{16 \cdot 2} = \sqrt{16} \sqrt{2} = 4\sqrt{2}$. Example 2. Simplify $\sqrt[3]{128}$. Solution. $\sqrt[3]{128} = \sqrt[3]{64 \cdot 2} = \sqrt[3]{64} \sqrt[3]{2} = 4\sqrt[3]{2}$. Example 3. Simplify $\sqrt{\frac{32}{27}}$. Solution. $\sqrt{\frac{32}{27}} = \frac{\sqrt{32}}{\sqrt{27}} = \frac{4\sqrt{2}}{3\sqrt{3}}$. Example 4. Simplify $\sqrt{20} + 8\sqrt{45} - \sqrt{5}$. Solution. $\sqrt{20} + 8\sqrt{45} - \sqrt{5} = 2\sqrt{5} + 24\sqrt{5} - \sqrt{5} = 25\sqrt{5}$.

In example 4 we reduced each radical to the same radicand and then added terms.

Example 5. Simplify $\sqrt[3]{27x^5y^3z^4}$. Solution. $\sqrt[3]{27x^5y^3z^4} = \sqrt[3]{27x^3y^3z^3x^2z}$ $= \sqrt[3]{27x^3y^3z^3} \sqrt[3]{x^2z} = 3xyz \sqrt[3]{x^2z}$.

Exercises

Simplify the following radicals:

1.
$$\sqrt{75}$$
.
2. $\sqrt[3]{81}$.
3. $7\sqrt{147}$.
4. $\sqrt[4]{81}$.
5. $5\sqrt[3]{32}$.
6. $\sqrt{m^6 + m^3n^2}$.
7. $\sqrt[3]{(x+y)^4}$.
8. $\left(\frac{1}{x^3} + \frac{1}{y^3}\right)^{1/3}$.
9. $\sqrt{4a^2b^3c}$.
10. $\sqrt{(x+y)^2(x-y)^3}$.
11. $\sqrt[6]{a^3x^3}$.
12. $\sqrt[4]{4x^2y^2}$.
13. $\sqrt[6]{216x^3y^6}$.
14. $\sqrt[6]{8}$.
7. $\sqrt[3]{(x+y)^4}$.
15. $\sqrt[4]{9}$.
8. $\left(\frac{1}{x^3} + \frac{1}{y^3}\right)^{1/3}$.
16. $\sqrt{3} - 2\sqrt{3} + 11\sqrt{3}$.
17. $3\sqrt[3]{28} - \sqrt[3]{63} + 4\sqrt[3]{175}$.
10. $\sqrt{(x+y)^2(x-y)^3}$.
18. $\sqrt[3]{81} + 5\sqrt[3]{24} - \sqrt[3]{375}$.
19. $3\sqrt{b^3} + 4\sqrt{a^2bc^4} + \sqrt{4b^4c^2}$.
20. $\frac{1+\sqrt{2}}{\sqrt{5}}$.
Solution. $\frac{1+\sqrt{2}}{\sqrt{5}} = \frac{1+\sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5} + \sqrt{10}}{5}$.
21. $\frac{3}{\sqrt{3} - \sqrt{2}}$.
Solution. $\frac{3}{\sqrt{3} - \sqrt{2}} = \frac{3}{\sqrt{3} - \sqrt{2}} \cdot \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}}$.
 $\frac{3\sqrt{3} + 3\sqrt{2}}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} = \frac{3\sqrt{3} + 3\sqrt{2}}{3 - 2} = 3\sqrt{3} + 3\sqrt{2}$.

In examples 20 and 21 we have multiplied both the numerator and the denominator by the same expression. This expression was chosen so as to free the denominators of radicals. This process is known as the rationalization of the denominator.

=

22.
$$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$

23. $\frac{3}{\sqrt{6} + 3}$
24. $\frac{2}{2 - \sqrt{3}}$
25. $\frac{2 + \sqrt{3}}{\sqrt{2} - \sqrt{3}}$
26. $\sqrt{80} \div \sqrt{5}$.
27. $\sqrt[3]{135} \div \sqrt[3]{5}$.
28. $\sqrt[3]{a^2bc^2} \div \sqrt[3]{ac^2}$.
Solution. $\sqrt[3]{a^2bc^2} \div \sqrt[3]{ac^2}$
 $= \sqrt[3]{\frac{a^2bc^2}{ac^2}} = \sqrt[3]{ab}$.

To divide radicals having the same index, divide the radicand of the numerator by the radicand of the denominator. If the radicals do not have the same index, reduce them to radicals having the same index and then divide.

$$\begin{array}{rll} \textbf{29.} & \sqrt[3]{25} \div \sqrt{5}.\\ Solution. & \sqrt[3]{25} = (25)^{1/3} = (25)^{2/6} = \sqrt[6]{(25)^2} = \sqrt[6]{625},\\ & \sqrt{5} = (5)^{1/2} = (5)^{3/6} = \sqrt[6]{(5)^3} = \sqrt[6]{125},\\ \text{and} & \sqrt[3]{25} \div \sqrt{5} = \sqrt[6]{625} \div \sqrt[6]{125} = \sqrt[6]{5}.\\ \textbf{30.} & 6\sqrt{150} \div 5\sqrt{45}.\\ \textbf{31.} & \sqrt[3]{a^2n} \div \sqrt[3]{an^2}.\\ \textbf{32.} & (\sqrt{5} + 2\sqrt{3})^2\\ \textbf{33.} & \sqrt{2} \div \sqrt[3]{2}.\\ \textbf{34.} & \sqrt[6]{9} \div \sqrt[3]{3}. \end{array}$$

$$\begin{array}{l} \textbf{37.} & \sqrt{\frac{n-1}{n+1}} \div \sqrt{\frac{n+1}{n-1}}.\\ \textbf{37.} & \sqrt{\frac{n-1}{n+1}} \div \sqrt{\frac{n+1}{n-1}}.\\ \end{array}$$

52. Binomial expansion; positive integral exponents. By multiplication we find:

$$\begin{array}{l} (a+b)^2 = a^2 + 2ab + b^2, \\ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3, \\ (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 \end{array}$$

From the above expansion we observe the following properties: (1) The first term of the expansion is the first term of the binomial raised to the same power as that of the binomial.

(2) The exponents of a decrease by unity from term to term while the exponents of b increase by unity.

(3) The coefficient of the second term of the expansion is equal to the exponent of the binomial.

(4) If in any term the coefficient be multiplied by the exponent of a and divided by the exponent of b increased by unity, we get the coefficient of the next term.

The question now arises: Do the four properties stated above hold for the expansion of $(a + b)^n$, for all positive integral values of n? By actual multiplication we see that these properties do hold for all positive integral values of n up to n = 4, and we assume that they hold for all positive integral values of n. This gives us the expansion.

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{2\cdot 3}a^{n-3}b^{3} + \dots + \frac{n(n-1)\dots(n-r+2)}{2\cdot 3\cdot 4\dots(r-1)}a^{n-r+1}b^{r-1} + \dots + b^{n}.$$
(1)

Expansion (1) is known as the binomial expansion or binomial theorem. We have assumed that it is true for all positive integral values of n. This fact may be proven by the process known as mathematical induction but that is beyond the scope of this text.

In the expansion of $(a + b)^n$, the *r*th term is

$$\frac{n(n-1)(n-2)\ldots(n-r+2)}{2\cdot 3\cdot 4\ldots(r-1)}a^{n-r+1}b^{r-1}.$$
 (2)

Exercises

Expand:

1. $(2 - 3x)^5$. Solution. Here a = 2, b = -3x, n = 5. Then, $(2 - 3x)^5 = (2)^5 + 5(2)^4(-3x) + 10(2)^3(-3x)^2 + 10(2)^2(-3x)^3 + 5(2)(-3x)^4 + (-3x)^5 = 32 - 240x + 720x^2 - 1080x^3 + 810x^4 - 243x^5$. 2. $(a + b)^7$. 3. $(a - b)^5$. 4. $(2 + a)^4$. 5. $(2x - 5)^5$. 6. $(2x + y)^4$. 7. $\left(\frac{a}{2} + 3\right)^5$. 8. $(a + \sqrt{c})^3$. 9. $(x + y + z)^3$. 5. $(2x - 5)^5$. 6. $(2x + y)^4$. 9. $(x + y + z)^5$. 6. $(2x + y)^4$. 9. $(x + y + z)^5$. 9. $(x + y + z)^5$. 9. $(x + y + z)^5$. 1. $(2x - 5)^5$

10. Find the fourth term of $(a + 3b)^8$.

Solution. The rth term is given by the expression

$$\frac{n(n-1)(n-2)\dots(n-r+2)}{2\cdot 3\cdot 4\dots(r-1)}a^{n-r+1}b^{r-1}.$$

Here, n = 8, r = 4, a = a, b = 3b, n - r + 2 = 6, n - r + 1 = 5, r - 1 = 3. Substituting these values in the above expression, we have, $\frac{8 \cdot 7 \cdot 6}{2 \cdot 3} a^{5}(3b)^{3} = 1512a^{5}b^{3}$.

11. Find the 13th term of $(2x + y)^{18}$.

12. Find the middle term of $(x^2 + 2y)^8$.

13. Find the 9th term of $(3 - 2y)^{13}$.

14. Use the binomial theorem to find $(1.1)^{15}$, correct to four significant figures. (Hint: Write $(1.1)^{15}$ as $(1 + .1)^{15}$.)

15. Find (1.01)¹⁰ correct to 5 significant figures.

53. Logarithms. Definition. In Article 50 a number N was defined by the equation, (1) $N = a^n$, where a was defined

as the base of the system of numbers and n as the power to which the base must be raised to produce the number N. We there assumed that the definition held for all positive and negative values of n both integral and fractional. It could be shown that it also holds for irrational values of n, and we now assume this without proof. That is, we now give a meaning to such numbers as $a\sqrt{2}$, $a\sqrt{3}$, where a > 0.

If $a^n = N(a > 0, a \neq 1)$ then n is said to be the *logarithm* of N to the base a, and this is written $n = \log_a N$.

The two equations $a^a = N$ (2)And $n = \log_a N$ (3)

thus mean the same thing; and the terms exponent and logarithm are equivalent.

We assume that the laws of exponents given in Article 50 which apply to rational exponents are also valid when irrational exponents are involved.

Exercises

1. $\log_5 25 = ?$ **2.** $\log_2 \frac{1}{4} = ?$ $\log_{10} 100 = ?$ $\log_a a = ?$ $\log_2 16 = ?$ $\log_{16} 4 = ?$

3. Fill out the following table:

Base	Numbe r	Logarithm
	1000	3
5		4
2	$\frac{1}{32}$	
	32	-5
7	343	
6		3

54. Properties of logarithms.

1. The logarithm of a product equals the sum of the logarithms of its factors. Let $\log N = n$ and $\log M = m$, then $a^n = N$, $a^m = M$, (definition of logarithm) and $NM = a^{n+m}$ (1. Art. 50).

Hence $\log_a NM = n + m$.

That is, $\log_a NM = \log_a N + \log_a M$.

This property is true for any number of factors in the product.

Example. $\log_{10} 105 = \log_{10} 3 + \log_{10} 5 + \log_{10} 7$.

2. The logarithm of a quotient is equal to the logarithm of the dividend minus the logarithm of the divisor. The proof of this property is left as an exercise for the student.

Example. $\log_{10} \frac{1.25}{73} = \log_{10} 125 - \log_{10} 73.$

3. The logarithm of N^n equals n times the logarithm of N. This property is true for any value of the exponent n, whether positive or negative, integer or fraction. The proof is left for the student.

Example. $\log_{10} (153)^3 = 3 \log_{10} 153.$

Exercises

1. With 10 as base, $\log 2 = 0.30103$, $\log 3 = 0.47712$, $\log 5 = 0.69897$. Find $\log 4$, $\log 6$, $\log 8$, $\log 9$, $\log 12$, $\log 15$, $\log 20$.

Ans.: 0.60206, 0.77815, 0.90309, 0.95424, 1.07918, 1.17609, 1.30103. **2.** From the results of Ex. 1 above find $\log \left(\frac{9}{5}\right)$, $\log \left(\frac{15}{5}\right)$, $\log 144$.

55. Common logarithms. Characteristic and mantissa. Any positive number (except 0 and 1) may be used as a base for a logarithmic system. Logarithms with 10 as a base are called *common logarithms*. This is the system used for all ordinary calculations.

From the table

$$10^3 = 1000$$
 $10^{-1} = .1$
 $10^2 = 100$
 $10^{-2} = .01$
 $10^1 = 10$
 $10^{-3} = .001$
 $10^0 = 1$
 $10^{-3} = .001$

it is evident that the logarithm of an integral power of 10 is an integer, either positive or negative. The logarithms of numbers between 1 and 10 are between 0 and 1, logarithms of numbers between 10 and 100 are between 1 and 2, and so on. For example, $\log 7 = 0.84510$, $\log 70 = 1.84510$, $\log 700 = 2.84510$, $\log 7000 = 3.84510$.

The integral part of a logarithm is called the *characteristic*; the decimal part is called the *mantissa*.

(A) Law of the characteristic. From the above examples, we observe that $\log 7$ has a characteristic 0, $\log 70$ has 1, $\log 700$ has 2, and $\log 7000$ has 3. From this we see that the characteristic of a logarithm of a whole number is one less than the number of digits in the number. We also observe from the table that the characteristics of the logarithms of numbers less than 1 are negative and equal to the number of places which the first significant figure occupies to the right of the decimal point. Thus

 $\log 0.00325 = -3 + .51188$

In such cases the characteristic is negative and the mantissa is positive. It is customary in case of negative characteristics to write

 $\log 0.00325 = \overline{3}.51188$ $\log 0.00325 = 7.51188-10.$

or

(B) Law of the mantissa. The mantissa is the same for any sequence of digits and does not depend upon the position of the decimal point.

For example, log	3256	=	3.51268
\log	325.6	-	2.51268
\log	32.56	=	1.51268
\log	3.256	-	0.51268

56. Use of tables. In Table I in the back of this book fiveplace logarithms are given. The mantissas of the logarithms of all integers from 1 to 9999 are recorded correct to five decimal places. The methods by which such a table can be made will not be discussed here as it is beyond the scope of this text. In order to use the tables intelligently we must know how to read from the tables the logarithm of a given number, and also the number having a given logarithm.

Examples

1. Find the logarithm of 2354. Read down the column headed N for the first three significant figures, then at the top of the table for the fourth figure. In the row with 235 and the column with 4 is found 37181.

Hence,
$$\log 2354 = 3.37181$$

2. Find the logarithm of 32.625. This number has more than four significant figures, so we must obtain its logarithm by the process known as interpolation. As in example 1, we find that the mantissas of 32620 and 32630 are 51348 and 51362, respectively. The difference between these two mantissas is 14. Since 32625 is five tenths of the interval from 32620 to 32630, we add to 51348

 $0.5 \times 14 = 7.$ Hence. $\log 32.625 = 1.51355.$

3. Find the number whose logarithm is 1.78147. The mantissa 78147 is found in the table and is in the column headed by 6 and opposite the digits 604 in the column headed by N. Thus the digits corresponding to mantissa 78147 are 6046.

Hence,
$$\log 60.46 = 1.78147$$
.

4. Find the number whose logarithm is $\overline{2}.62029$. The mantissa 62029 is not found in the table, but it lies between the two adjacent mantissas 62024 and 62034. The mantissa 62024 corresponds to the number 4171 and 62034 corresponds to 4172. The mantissa 62029 is $\frac{5}{10}$ of the interval from 62024 to 62034. Thus the number whose mantissa is 62029 is 41710 + $\frac{5}{10} \times 10 = 41715$.

Hence,

 $\log 0.041715 = \overline{2}.62029.$

5. Find the value of $N = \frac{3.26 \times 72.65}{2.72}$ to five significant figures. Solution.

 $\log N = \log 3.26 + \log 72.65 - \log 2.72$ $\log 3.26 = 0.51322$ $\log 72.65 = 1.86124$ $\log (3.26)(72.65) = 2.37446$ $\log 2.72 = 0.43457$ $\log N = 1.93989$ N = 87.074.

6. Find the value of

$$N = \frac{\sqrt[3]{0.345}\sqrt{7.5}}{\sqrt{52.3}}$$

Solution.

.

$$\log N = \frac{1}{3} \log 0.345 + \frac{1}{2} \log 7.5 - \frac{1}{2} \log 52.3$$

$$\log 0.345 = \overline{1.53782} = 29.53782 - 30$$

$$\log 7.5 = 0.87506$$

$$\log 52.3 = 1.71850$$

$$\frac{1}{3} \log 0.345 = 9.84594 - 10$$

$$\frac{1}{2} \log 7.5 = 0.43753$$

$$10.28347 - 10$$

$$\frac{1}{2} \log 52.3 = 0.85925$$

$$\log N = 9.42422 - 10$$

$$N = 0.26559$$

Why did we write $\log 0.345 = 29.53782 - 30?$

ART. 56] EXPONENTS, RADICALS, AND LOGARITHMS

7. Find the value of $N = \sqrt[5]{0.235}$. 8. Find the value of $N = \frac{78.54 \times 9.67}{8.269}$. 9. Find the value of $N = \frac{(104.6)^{1/2} \times (0.2536)^{1/3}}{(5.87)^{1/2}}$. 10. Find the value of $S = P(1 + i)^n$, when P = 235, i = .06, n = 7.

11. Find the value of $\frac{0.07}{(1.07)^{11}-1}$

CHAPTER IX

PROGRESSIONS

57. Arithmetical progressions. An arithmetical progression is a succession of numbers so related that each one is obtained by adding a fixed number to the preceding number.

The numbers forming the progression are called its *terms*. The fixed amount which must be added to any term to get the next term is called the *common difference*.

Thus, 1, 3, 5, 7, 9, \ldots is an arithmetical progression, having 2 for its common difference.

58. Elements of an arithmetical progression. Let a represent the first term, d the common difference, n the number of terms, l the *n*th or last term, s the sum of the terms. The five numbers a, d, n, l and s are called elements of the arithmetical progression.

59. Relations among the elements. If a is the first term and d the common difference, the progression is a, (a + d), (a + 2d), (a + 3d), ... (a + (n - 1)d). It is evident that the nth or last term is

$$l = a + (n-1)d. \tag{1}$$

Since s denotes the sum of the progression, we may write,

$$s = a + (a + d) + (a + 2d) + \dots (l - 2d) + (l - d) + l,$$
(2)

88

ART. 60]

PROGRESSIONS

or

$$s = l + (l - d) + (l - 2d) + \dots (a + 2d) + (a + d) + a.$$
(3)

By adding (2) and (3) we get,

$$2s = (a + l) + (a + l) + \dots (a + l) + (a + l) + (a + l) + (a + l) = n(a + l).$$

Hence, $s = \frac{n}{2}(a + l).$ (4)

Equations (1) and (4) are the two relations among the five elements that always exist. If we know any three of these elements, we may find the other two by using (1) and (4).

60. Arithmetic means. The first and last terms of an arithmetical progression are called the *extremes*, and the remaining terms in between are called the *arithmetical means*. By the aid of (1) any number of means may be inserted between any two numbers.

Exercises

Find l and s for the following arithmetical progressions:

1. 3, 5, 7, 9, ... to 15 terms. Solution. l = a + (n - 1)d. Here, a = 3, d = 2, n = 15. Then, $l = 3 + 14 \cdot 2 = 31$. And $s = \frac{15}{2}(3 + 31) = 15 \times 17 = 255$. 2. 5, 2, -1, -4, to 12 terms. 3. $\frac{2}{3}, \frac{7}{13}, \frac{1}{2}$, to 10 terms. 4. 2, 9, 16, 23, to 9 terms. 5. Given d = 4, n = 15, l = 59; find a and s. 6. Given a = 12, l = -64, s = -520; find n and d. 7. Insert 5 arithmetical means between 2 and 14. 8. Insert 11 arithmetical means between 3 and 7. 89

61. Geometrical progression. A geometric progression is a succession of numbers so related that the ratio of each one to the preceding one is a fixed number, called the ratio. Thus 2, 6, 18, 54, \ldots is a geometrical progression having three for its ratio.

62. Elements of a geometrical progression. Let a represent the first term, r the ratio, n the number of terms, l the nth, or last, term and s the sum of the terms. The numbers a, r, n, l, and s are called the elements of the geometrical progression.

63. Relations among the elements. If a is the first term and r the ratio, the progression is $a, ar, ar^2, ar^3, \ldots ar^{n-1}$.

It is evident that the nth or last term is

$$l = ar^{n-1}. (5)$$

Since s denotes the sum of the progression, we may write,

$$s = a + ar + ar^2 + ar^3 + \ldots + ar^{n-1}.$$
 (6)

Then,
$$sr = ar + ar^2 + ar^3 + ar^4 + \dots ar^{n-1} + ar^n$$
. (7)

Subtracting (6) from (7), we have $sr - s = ar^n - a$.

Hence,
$$s = \frac{a(r^n - 1)}{r - 1}$$
 (8)

Equations (5) and (8) are the two relations among the five elements that always exist. If we know any three of these elements we may find the other two by using (5) and (8).

The first and last term of a geometrical progression are called the *extremes*, and the remaining terms in between are called the *geometrical means*. By the aid of (5), any number of means may be inserted between two numbers. ART. 63]

Exercises

1. Given a = 2, r = 3, n = 8; find *l* and *s*.

- 2. Given a = 3, r = 2, n = 10; find l and s.
- **3.** Given s = 242, a = 2, n = 5; find r and l.

4. Insert 4 geometrical means between 3 and 96.

5. The first term of a geometrical progression is 3, and the last term 81. If there are four terms in the progression, find the ratio and the sum of the terms.

6. An employer hires a clerk for five years at a beginning salary of \$500 per year with either a raise of \$100 each year after the first, or a raise of \$25 every six months after the first half year. Which is the better proposition for the clerk?

7. Find the sum of the progression

$$1 + (1 + i) + (1 + i)^{2} + (1 + i)^{3} + \dots (1 + i)^{n-1}.$$
Ans.
$$\frac{(1 + i)^{n} - 1}{i}$$

8. Find the sum of the progression

$$(1+i)^{-1} + (1+i)^{-2} + (1+i)^{-3} + \dots (1+i)^{-n}.$$

Ans. $\frac{1-(1+i)^{-n}}{i}.$

9. By the use of logarithms find the value of $\frac{(1+i)^n-1}{i}$, when i = 06 and n = 8

Solution. We have
$$\frac{(1.06)^8 - 1}{.06}$$

 $\log (1.06) = 0.02531$
 $\log (1.06)^8 = 0.20248$
 $(1.06)^8 = 1.59396$
 $\frac{(1.06)^8 - 1}{.06} = \frac{0.59396}{.06} = 9.899.$
10. Find the value of $255\left[\frac{(1.07)^{10} - 1}{.07}\right]$.

CHAPTER X

INTEREST, ANNUITIES, SINKING FUND

64. Simple interest. Simple interest at any rate is most readily computed by the application of the principle of aliquot parts.

If we consider a year as composed of 12 months of 30 days each (360 days),

At 6%, the interest on \$1 for 1 year is \$0.06,

At 6%, the interest on \$1 for 2 mo. (60 days) is \$0.01,

At 6%, the interest on \$1 for 6 days is \$0.001.

That is, to find the interest on any sum of money at 6% for 6 days, point off three places in the principal sum; and for 60 days, point off two places in the principal sum.

The interest on \$1357 for 6 days at 6% is \$1.357 and the interest on \$1357 for 60 days is \$13.57.

Illustrations:

Find the interest on:

1. \$385.60 for 32 days at 6%.

0.3856 = int. for 6 days

1.9280 = int. for 30 days (5.6 days)

.1285 =int. for 2 days $(\frac{1}{3} \cdot 6 \text{ days})$

2.0565 or 2.06 = int. for 32 days.

ART. 64] INTEREST, ANNUITIES, SINKING FUND

2. \$435.00 for 115 days at 6%.

\$4.350 = int. for 60 days 2.175 = int. for 30 days ($\frac{1}{2} \cdot 60$ days) 1.450 = int. for 20 days ($\frac{1}{3} \cdot 60$ days) .362 = int. for 5 days ($\frac{1}{4} \cdot 20$ days)

8.337 = int. for 115 days.

3. \$520.00 for 93 days at 8%.

\$5.20 = int. for 60 days at 6%
2.60 = int. for 30 days at 6% (¹/₂ ⋅ 60 days)
.26 = int. for 3 days at 6% (¹/₁₀ ⋅ 30 days)
\$8.06 = int. for 93 days at 6%
2.69 = int. for 93 days at 2% (¹/₃ ⋅ 6%)
\$10.75 = int. for 93 days at 8%.

4. \$285.50 for 78 days at 5%.

\$2.855 = int. for 60 days at 6% .714 = int. for 15 days at 6% ($\frac{1}{4} \cdot 60$ days) .143 = int. for 3 days at 6% ($\frac{1}{5} \cdot 15$ days)

\$3.712 = int. for 78 days at 6%.
.619 = int. for 78 days at 1%

3.093 =int. for 78 days at 5%.

5. \$275.00 from March 3, 1928 to January 2, 1929 at 7%.

9 mo. 29 days

\$ 2.75 = int. for 60 days (2 mo.) at 6%
\$11.00 = int. for 240 days (8 mo.) at 6%
1.375 = int. for 30 days (1 mo.) at 6%
.917 = int. for 20 days at 6% (¹/₃⋅60 days)
.275 = int. for 6 days at 6%
.137 = int. for 3 days at 6% (¹/₂⋅6 days)
\$13.704 = int. for 9 mo. 29 days at 6%

2.284 = int. for 9 mo. 29 days at 1%

15.988 =int. for 9 mo. 29 days at 7%.

Exercises

1.	Find the interest at 6% on:	
	\$825 for 50 days,	\$365.50 for 97 days,
	\$753.40 for 70 days,	\$847.60 for 125 days.
2.	Solve 1, if the rate is 7%.	
3.	Find the interest at 8% on:	
	\$425 for 38 days,	\$750 for 115 days,
	\$ 575 for 68 days,	\$800 for 100 days,
	\$545 for 90 days,	\$250 for 83 days.

Find the interest at 6% on the following:

4. \$756.50 from Feb. 20, 1928 to Sept. 15, 1928,

5. \$3756.40 from March 1, 1927 to July 10, 1928,

6. \$5250.00 from April 10, 1928 to March 5, 1929.

7. A note for \$350 was given July 7, 1927. What was the interest at 7% due Sept. 5, 1928? (Ans. \$28.45)

8. Find the interest on 4, 5, 6 at 8%.

65. Compound interest. Simple interest is calculated on the original principal only, and is proportional to the time. If the interest, when due, is added to the principal, and the interest for the next period is calculated on the principal thus increased and this process is continued with each succeeding accumulation of interest, the interest is said to be compound. Interest may be computed annually, semi-annually, quarterly, or at some other regular interval. That is, interest is converted into principal at these regular intervals.

66. Compound interest formulas. Let P be the principal, i the rate of interest, and S the amount to which P will accumulate in n years. The interest for one year will be Pi, and the amount at the end of the year will be P + Pi = P(1 + i). This is the principal for the second year, and the interest for the second year will be P(1 + i)i. The amount at the end of the second year will be

$$P(1 + i) + P(1 + i)i = P(1 + i)^2.$$

By similar reasoning we find that the amount at the end of the third year is $P(1 + i)^3$, and in general the amount at the end of *n* years is $P(1 + i)^n$. We thus have the formula

$$S = P(1+i)^n.$$
(1)

In equation (1) i is the annual rate of interest and the formula is used when the interest is converted into principal annually. If the interest were converted into principal m times per year, we would replace i in the formula by $\frac{i}{m}$ and n by mn. That is we would find the compound amount at $\frac{i}{m}$ per cent per period for mn periods.
Example. Find the compound amount of \$100 for 15 years at 6% converted semi-annually. The amount would be \$100(1.03)³⁰.

Then in general, if interest is at rate j converted m times per year, formula (1) is replaced by

$$S = P\left(1 + \frac{j}{m}\right)^{mn}.$$
 (2)

Exercises

1. Find the amount of \$250 at 6% interest converted annually for 5 years.

2. Solve example 1 if the interest is converted semi-annually.

3. How long will it take \$100 to double itself at 6% interest converted annually?

Solution. Here P = \$100 and S = \$200, since it is to be double the value of P. We then have, $200 = 100(1.06)^n$. Our problem now is to find n. Taking logarithms of both sides of the above equation, we have,

 $\log 200 = \log 100 + n \log (1.06),$

and solving for n we get,

$$n = \frac{\log 200 - \log 100}{\log 1.06} = \frac{2.3010 - 2.0000}{.0253} = 11.9 \text{ years.}$$

Note. This is the time required for any principal to double itself at 6%.

4. How long will it require \$75 to double itself at 5% interest converted annually?

5. How long will it take any principal to double itself at i% converted annually?

6. What principal will amount to \$1000 in 6 years at 6% converted annually?

7. A father wishes to have \$2000 to give his son on his 21st birthday. What sum should he deposit at his birth in a savings bank paying 5% interest converted annually?

ART. 68] INTEREST, ANNUITIES, SINKING FUND

67. Annuities. Any series of equal payments, made at equal intervals of time, is known as an annuity. The word annuity implies yearly payments, but in a broader sense the term annuity is used to describe any series of equal payments made at equal intervals of time. Unless otherwise designated, the payments are understood to be made at the end of the interval of time and to continue for a specified number of periods. The dividends from an investment, income from rented property, and insurance premiums are some examples of an annuity.

68. Amount of an annuity. The sum to which the entire number of payments accumulate is called the amount of the annuity. We now find the amount of an annuity of one dollar per annum. The symbol $s_{\overline{n}}$, is universally used to represent the amount of an annuity of 1 per annum, payable annually for n years at rate i per annum. The first payment made at the end of the first year will be at interest for n - 1 years and its compound amount will be $(1 + i)^{n-1}$. (See (1) Art. 66.) The second payment made at the end of the second year will accumulate to $(1 + i)^{n-2}$ and the third payment made at the end of the third year will accumulate to $(1 + i)^{n-3}$ and so on. The last payment will be a cash payment of 1 and will draw no interest. We then have

$$s_{\overline{n}|} = (1+i)^{n-1} + (1+i)^{n-2} + (1+i)^{n-3} + \ldots + (1+i) + 1 = 1 + (1+i) + (1+i)^2 + \ldots + (1+i)^{n-2} + (1+i)^{n-1}.$$

This is a geometrical progression of n terms, having 1 for first term and (1 + i) for ratio.

The sum of this series is $\frac{(1+i)^n - 1}{i}$. (See ex. 7, Art. 63.)

Hence,
$$s_{n} = \frac{(1+i)^n - 1}{i}$$
 (1)

If the annual payment is R and if K represents the amount,

we have,
$$K = Rs_{\overline{n}} = R \frac{(1+i)^n - 1}{i}$$
 (2)

Formulas (1) and (2) are true where the interest is converted once a year. Now, if the interest is converted *m* times a year, we replace (1 + i) by $\left(1 + \frac{j}{m}\right)^m$ and *i* by $\left(1 + \frac{j}{m}\right)^m - 1$ in (1) and (2) and get,

$$s_{\bar{n}|l} = \frac{\left(1 + \frac{j}{m}\right)^{mn} - 1}{\left(1 + \frac{j}{m}\right)^m - 1},$$
(3)

$$K = R \frac{\left(1 + \frac{j}{m}\right)^m - 1}{\left(1 + \frac{j}{m}\right)^m - 1}$$
(4)

and

Exercises

1. Find the amount of an annuity of \$200 per annum for 15 years at 5% interest.

Solution. From equation (2) above we have,

$$K = \$200s_{\overline{n}|} = 200 \frac{(1.05)^{15} - 1}{.05}$$

= 4000((1.05)^{15} - 1)
log 1.05 = 0.02119
15 log 1.05 = 0.31785
(1.05)^{15} = 2.0790
(1.05)^{15} - 1 = 1.0790
and $K = 4000 \times 1.0790 = \$4316.00.$

ART. 68] INTEREST, ANNUITIES, SINKING FUND

Note. If the number of conversions is not specified in a problem, it will be understood that the interest is converted annually.

2. If in example 1 the interest is converted semi-annually, find the amount of the annuity.

Solution. From equation (4) above we have,

$$K = 200 \frac{(1.025)^{30} - 1}{(1.025)^2 - 1}$$

log 1.025 = 0.01072
30 log 1.025 = 0.32160
(1.025)^{30} = 2.0970
(1.025)^{30} - 1 = 1.0970
2 log 1.025 = 0.02144
(1.025)^2 = 1.0506
(1.025)^2 - 1 = 0.0506
$$K = \frac{200 \times 1.0970}{.0506} = \$4,336.$$

and

3. The annual rent of a house is \$500. Find the amount of this annuity for 20 years at 5%.

4. A man deposits in a savings bank at the end of each year \$400. What will be the amount of his savings at the end of 16 years, if the bank pays 4% interest converted semi-annually?

5. What sum must be deposited in a savings bank at the end of each year to amount to \$5000 at the end of 10 years, if the bank pays 4% interest?

Solution. Here we have the amount of an annuity to find the annual deposit.

From (2) we have,
$$5000 = R \frac{(1.04)^{10} - 1}{.04}$$
.

Solving for R we get,
$$R = \frac{.04(5000)}{(1.04)^{10} - 1}$$

= $\frac{\$200}{0.4801} = \$416.58.$

6. What sum must be deposited in a savings bank paying 5% interest, converted semi-annually, to provide for the payment of a debt of \$5000 due in 6 years?

7. A man gives a mortgage on his farm for \$3000, which is to be paid in 5 years. How much money must he deposit at the end of each year in a savings bank, paying 4% interest, to care for the debt when due? The interest on the mortgage is 6%. What will be his total yearly outlay to care for this debt?

69. Amount of an annuity, where the annual payment, R is payable in p equal installments. The amount of an annuity of 1 per annum, payable in p equal installments at equal intervals during the year, will be denoted by the symbol, $s\frac{(p)}{n}$. If the interest is converted yearly and i is the rate, $s\frac{(p)}{n}$ can be expressed in terms of n, i, and p as follows. At the end of the pth part of a year, $\frac{1}{p}$ is paid. This sum will remain at interest for $\left(n-\frac{1}{p}\right)$ years and will amount to

$$\frac{1}{p}(1+i)^{n-1/p}$$

The second installment of $\frac{1}{p}$ will be at interest for $\left(n - \frac{2}{p}\right)$ years and will amount to $\frac{1}{p}(1+i)^{n-2/p}$, and so on until np installments are paid. The last installment will be paid at the end of n years and will draw no interest. Adding all these installments beginning with the last one, we have

$$s\frac{(p)}{n} = \frac{1}{p} + \frac{1}{p}(1+i)^{1/p} + \frac{1}{p}(1+i)^{2/p} + \dots \frac{1}{p}(1+i)^{n-2/p} + \frac{1}{p}(1+i)^{n-1/p}.$$
 (1)

This is a geometrical progression of np terms having $\frac{1}{p}$ for first term and $(1 + i)^{1/p}$ as the ratio.

Hence,
$$s\frac{(p)}{n} = \frac{(1+i)^n - 1}{p[(1+i)^{1/p} - 1]}$$
 (2)

and
$$K = Rs \frac{(p)}{n} = R \frac{(1+i)^n - 1}{p[(1+i)^{1/\nu} - 1]}$$
 (3)

If the interest is converted *m* times a year, we substitute $\left(1 + \frac{j}{m}\right)^m$ for (1 + i) and (3) becomes

$$K = R \frac{\left(1 + \frac{j}{m}\right)^{mn} - 1}{p\left[\left(1 + \frac{j}{m}\right)^{m/p} - 1\right]}.$$
 (4)

If the number of conversion periods is equal to the number of installments per year, i.e., m = p, equation (4) takes a simpler form. Then,

$$K = \frac{R\left[\left(1 + \frac{j}{p}\right)^{np} - 1\right]}{p\left[\left(1 + \frac{j}{p}\right)^{p/p} - 1\right]} = \frac{R}{p} \frac{\left(1 + \frac{j}{p}\right)^{np} - 1}{\frac{j}{p}}.$$
 (5)

Equation (5) is the same as equation (2) Art. 68, $\frac{R}{p}$ being the periodic payment for np periods at rate $\frac{j}{p}$ per period.

Exercises and Problems

1. Find the amount of an annuity of \$400 per year paid in four quarterly installments of \$100 for 6 years if the rate of interest is 6%.

Solution. Here R = \$400, i = .06, p = 4, n = 6, and using (3), Art. 69, we get,

$$K = \frac{400[(1.06)^6 - 1]}{4[(1.06)^{1/4} - 1]} = 100\frac{(1.06)^8 - 1}{(1.06)^{1/4} - 1}$$
$$\log 1.06 = 0.02531$$
$$\log (1.06)^{1/4} = 0.00633$$
$$(1.06)^{1/4} = 1.01467$$
$$(1.06)^{1/4} - 1 = 0.01467$$
$$\cdot \log (1.06)^6 = 0.15186$$
$$(1.06)^6 = 1.41860$$
$$(1.06)^6 - 1 = 0.41860$$
$$K = \frac{100(0.41860)}{0.01467} = \$2853.$$

Hence,

2. If in Ex. 1, the interest were converted semi-annually, what would be the amount of the annuity?

Solution. Here R = 400, p = 4, n = 6, m = 2 and j = .06. Using equation (4), Art. 69, we get,

$$K = \frac{400[(1.03)^{12} - 1]}{4[(1.03)^{1/2} - 1]} = 100\frac{(1.03)^{12} - 1}{(1.03)^{1/2} - 1}$$
$$\log 1.03 = 0.01284$$
$$\log (1.03)^{1/2} = 0.00642$$

102

$$(1.03)^{1/2} = 1.01488$$

$$(1.03)^{1/2} - 1 = 0.01488$$

$$\log (1.03)^{12} = 0.15408$$

$$(1.03)^{12} = 1.42587$$

$$(1.03)^{12} - 1 = 0.42587$$
Hence,
$$K = \frac{100(0.42587)}{0.01488} = \$2862.$$

3. What would be the amount of the annuity defined in Ex. 1, if the interest were converted quarterly?

Solution. Here R = 400, p = 4, n = 6, m = 4, and j = .06. Since m = p, we use (5), Art. 69, and

$$K = \frac{100(1.015)^{24} - 1}{.015}$$
$$\log 1.015 = 0.00647$$
$$\log (1.015)^{24} = 0.15528$$
$$(1.015)^{24} = 1.42980$$
$$(1.015)^{24} - 1 = 0.42980$$
$$K = \frac{100(0.42980)}{.015} = $2865.$$

Hence,

Note. In solving Examples 1, 2, 3 above, 5 place logarithms were used. Had 7 place interest and annuity tables been used the results would have been \$2852.15, \$2859.53 and \$2863.35 respectively, which are correct to the nearest cent. But ordinarily 5 place logarithms will give results which are accurate enough. Should the student desire complete interest and annuity tables, he is referred to "Tables of Compound Interest Functions and Logarithms of Compound Interest Functions," by James W. Glover and Harry C. Carver, published by George Wahr, Ann Arbor, Michigan.

4. Find the amount of an annuity of \$400 per year, payable in two semi-annual installments of \$200 for 8 years, if the rate of interest is 4% converted quarterly.

5. A man pays into a Building and Loan Association \$25 at the end of each month for 10 years. If the association pays 6% interest and computes its interest at the end of each six months, what will he have to his credit at the end of the 10 years?

6. In purchasing a house priced at \$6000, a man pays \$3000 down and gives a five-year mortgage for the balance. In order to meet the mortgage when due he deposits in a 5% savings bank at the end of each month a portion of his monthly salary. Find the monthly deposit. (Hint: Use equation (3), Art. 69 and solve for $\frac{R}{12}$ as R was solved for

in Ex. 5, Art. 68.)

70. Present value. We may need to find the value of a sum of money at some time before it is due. By the present value of a sum S, due in n years, we mean the principal that will at a given rate amount to S in n years. This problem is solved by equation (1) Art 66. Solving this equation for P, we get

$$P = \frac{S}{(1+i)^n} = Sv^n, \text{ where } v = \frac{1}{1+i}.$$
 (1)

Example. Find the present value of a note of \$200 due in 5 years if money is worth 5% interest.

Solution. Here we have,

$$P = \frac{\$200}{(1.05)^5} = \frac{\$200}{1.2763} = \$156.70.$$

71. Present value of an annuity. By the present value of an annuity we mean the sum of the present values of all the payments. The present value of an annuity of 1 per annum is represented by the symbol $a_{\overline{n}}$. We now find the present value of an annuity of 1 per annum for n years at rate *i* per annum. The present value of the first payment made at the end of the first year will be

$$\frac{1}{1+i} = (1+i)^{-1}.$$

The present value of the second payment made at the end of the second year will be $(1 + i)^{-2}$ and the third payment made at the end of the third year will have for its present value $(1 + i)^{-3}$ and so on. The last payment made at the end of n years will have $(1 + i)^{-n}$ for its present value. We have then,

$$a_{\overline{n}|} = (1+i)^{-1} + (1+i)^{-2} + (1+i)^{-3} + \dots + (1+i)^{-n}.$$
 (1)

This is a geometrical progression of n terms, having $(1 + i)^{-1}$ for first term and $(1 + i)^{-1}$ for ratio. The sum of this series is

$$a_{\overline{n}} = \frac{(1+i)^{-1}[(1+i)^{-n} - 1]}{(1+i)^{-1} - 1}$$
$$= \frac{(1+i)^{-n} - 1}{1 - (1+i)}$$
$$= \frac{(1+i)^{-n} - 1}{-i} = \frac{1 - (1+i)^{-n}}{i}.$$
 (2)

If the annual payment is R and A represents the present value, we have,

$$A = Ra_{\overline{n}} = R \frac{1 - (1 + i)^{-n}}{i}$$
(3)

If the interest is converted *m* times a year, we substitute $\left(1+\frac{j}{m}\right)^{m}$ for (1+i) and $\left(1+\frac{j}{m}\right)^{m}-1$ for *i* in (3) and get, $A = R \frac{1-\left(1+\frac{j}{m}\right)^{-mn}}{\left(1+\frac{j}{m}\right)^{m}-1}$ (4)

72. Present value of an annuity, where the annual payment R is payable in p equal installments. The present value of an

annuity of 1 per annum payable in p equal installments will be denoted by $a\frac{(p)}{n}$. If the interest is converted yearly and i is the rate, $a\frac{(p)}{n}$ can be expressed in terms of n, i, and p as follows. The first payment will be made at the end of the pth part of the year and its present value will be $\frac{1}{p}(1+i)^{-1/p}$. Similarly, the present value of the second payment will be $\frac{1}{p}(1+i)^{-2/p}$ and so on. The present value of the last payment will be $\frac{1}{p}(1+i)^{-n}$. Adding the present values of all these payments we get,

$$a\frac{(p)}{n} = \frac{1}{p}(1+i)^{-1/p} + \frac{1}{p}(1+i)^{-2/p} + \dots + \frac{1}{p}(1+i)^{-n}.$$
 (1)

This is a geometrical progression of np terms having $\frac{1}{p}(1+i)^{-1/p}$ for first term and $(1+i)^{-1/p}$ for ratio.

Hence,
$$a\frac{(p)}{n} = \frac{1-(1+i)^{-n}}{p[(1+i)^{1/p}-1]}$$
 (2)

And
$$A = R \frac{1 - (1 + i)^{-n}}{p[(1 + i)^{1/p} - 1]}$$
 (3)

If the interest is converted m times per year, (3) becomes

$$A = R \frac{1 - \left(1 + \frac{j}{m}\right)^{-mn}}{p\left[\left(1 + \frac{j}{m}\right)^{m/p} - 1\right]}.$$
 (4)

When m = p, (see (5) Art. 69), (4) takes the form,

$$A = R \frac{1 - \left(1 + \frac{j}{p}\right)^{-np}}{p\left[\left(1 + \frac{j}{p}\right)^{p/p} - 1\right]} = \frac{R}{p} \frac{1 - \left(1 + \frac{j}{p}\right)^{-np}}{\frac{j}{p}}.$$
 (5)

which is similar to (3) Art. 71, $\frac{R}{p}$ being the periodic payment for np periods at rate $\frac{j}{p}$ per period.

Exercises and Problems

1. What is the present value of an annuity of \$200, payable at the end of each year, for 12 years, if money is worth 6%?

Solution.
$$A = 200 \frac{1 - (1.06)^{-12}}{.06}$$
.
 $\log 1.06 = 0.02531$
 $\log (1.06)^{-12} = -(0.30372) = 9.69628 - 10$
 $(1.06)^{-12} = 0.49691$
 $1 - (1.06)^{-12} = 0.50309$
 $A = \frac{200(0.50309)}{.06} = \$1676.97.$

2. Find the cost of an annuity of \$500, to run 20 years and payable at the end of the year if money is worth 6%, converted semi-annually.

3. A man purchased a house, paying \$5000 down and \$500 at the end of each year for 8 years. What would be the equivalent price if he paid all in cash at the time of purchase, money being worth 8%?

4. Find the cost of an annuity of \$100 payable at the end of each month and to run for 10 years, if money is worth 4%. (Hint: Use equation (3), Art. 72.)

5. A house is purchased for 10,000 and it is arranged that 5000 cash be paid and the balance in 10 equal annual installments, including interest at 6%. Find the annual payment.

Solution. \$10,000 - \$5000 = \$5000, balance to be paid in 10 equal annual payments including interest. Here we have the present value of an annuity and are required to find the annual payment. Substituting in equation (3), Art. 71, we get,

$$5000 = R \frac{1 - (1.06)^{-10}}{.06},$$

 $R = \frac{.06(5000)}{1 - (1.06)^{-10}} = \frac{.06(5000)}{0.44160} =$ \$679.34.

and

6. A piece of property is offered for sale for \$500 cash and \$1000, at the end of each year for 5 years, or for \$5000 cash. Which is the better plan for the buyer if money is worth 5%?

7. A man wishes to provide an income for old age. He assumes that at the age of 25 years he will have 35 years of productive activity ahead of him, and that he can save \$300 per year during that time. This accumulation at 5% compound interest at age of 60 will purchase what annual payments for 20 years, if money is worth 5%?

Ans. \$2174.40.

73. Sinking funds. When an obligation becomes due at some future date, it is usually desirable to provide for the payments by accumulating a fund by periodic contributions, together with interest earnings. Such an accumulated fund is called a sinking fund.

Example. A debt of \$8000, bearing 8% interest is due in 4 years. A sinking fund is to be accumulated at 6%. What sum must be deposited in the sinking fund at the end of each year to care for the principal when due? Ans. \$1828.73.

The amount in the sinking fund at any particular time may be shown by the following schedule known as an *accumulation* schedule:

108

Years	Annual Deposit	Interest on Fund	Total Annual Increment	Value of Fund at End of Each Year
1	1828.73			1828.73
2	1828.73	109 72	1938.45	3767.18
3	1828 73	226.03	2054 76	5821.94
4	1828 73	349 32	2178 05	7999.99

ACCUMULATION SCHEDULE

We notice that at the end of the fourth year the value of the fund is \$7999.99 or one cent less than the amount of the debt. This would have been avoided had we used the nearest mill instead of the nearest cent in our computations.

DEPRECIATION SCHEDULE

Age in Years	Book Value at End of Year	Annual Payment to Sinking Fund to Cover Depreciation	Interest on Depreciation Allowance	Total in Sinking Fund
0	235 00			
1	211.44	23 56	0.00	23.56
2	186 70	23.56	1.18	48 30
3	160.72	23 56	2.42	74.28
4	133 45	23 56	3 71	101.55
5	104.81	23.56	5.08	130.19
6	74.74	23.56	6 51	160.26
7	43.17	23 56	8 01	191.83
8	10.02	23.56	9.59	224.98
	1	1		l

Example. A farmer pays \$235 for a binder. The best estimates show that it will have a life of 8 years and a scrap value of \$10. He wishes to create a sinking fund to provide

for its depreciation. Assuming money worth 5%, what is the annual depreciation charge? Make a schedule showing the book value of the machine at the end of each year and the total amount in the sinking fund at any time.

Solution. The annual depreciation charge will equal the annual deposit required to accumulate in 8 years at 5% to \$225 (\$235 - \$10).

Using (2) Art. 68, we find the annual charge to be \$23.56.

We notice that the book value of the machine at the end of any year equals the original cost less the total amount in the sinking fund at that time.

74. Amortization. Instead of leaving the entire principal of a debt standing until the end to be cancelled by a sinking fund, we may consider any payment over what is needed to pay interest on the principal to be applied at once toward liquidation of the debt. As the debt is being paid off, a less and less amount goes towards the payment of interest, so that with a uniform payment per year, a greater amount goes towards the payment of principal. This method of extinguishing a debt is called the method of *amortization of principal*.

75. Amortization schedules.

Consider a debt of \$2000 bearing 6% interest. Suppose that it is desired to repay this in 8 equal annual installments, including interest.

Substituting in equation (3) Art 71, we get,

$$2000 = R \frac{1 - (1.06)^{-8}}{.06},$$

and
$$R = \frac{.06(2000)}{1 - (1.06)^{-8}} = $322.07.$$

The interest for the first year will be \$120; hence \$202.07 of first payment would be used for the reduction of principal,

110

ART. 75] INTEREST, ANNUITIES, SINKING FUND

leaving \$1797.93 due on principal at the beginning of the second year. The interest on this amount is \$107.88; hence, the principal is reduced by \$214.19, leaving \$1583.74 due on principal at the beginning of the third year, and so on. This process may be continued by means of the following schedule known as an *amortization schedule*:

Year	Principal at Beginning of Year	Interest at 6%	Principal Repaid
1	2000 00	120.00	202.07
2	1797 93	107 88	214.19
3	1583.74	95 02	227.05
4	1356 69	81 40	240.67
5	1116.02	66 96	255.11
6	860 91	51 65	270.42
7	590 49	35.43	286 64
8	303 85	18.23	303.84
	9609 63	576.57	1999.99

Such a schedule gives us the amount remaining due on the principal at the beginning of any year during the amortization period. The principal at the beginning of the last year should equal the last principal repaid and the sum of the principals repaid should equal the original principal. You will notice that there is a discrepancy in the above example of only one cent. This would have been avoided had we used the nearest mill instead of the nearest cent in our computations. As a further check we notice that the interest on the sum of all the principals outstanding is equal to the sum of all the interest paid. In the above example we see that the sum of the principals outstanding is \$9609.63 and that the interest on this sum at 6% is \$576.57.

The Federal Farm Loan Act provides for the lending of money to farmers at a reasonable rate of interest, with the privilege of amortizing the principal by equal annual payments over a long period of time. The maximum loan on a farm is for 40%of the appraised value. The rate is 5% and the usual time allowed is 30 years.

Example. A farmer buys a farm for \$10,000. He has \$6000 to pay down and secures a Federal farm loan for the balance to be amortized in 30 years at 5%.

Using equation (3), Art. 71 we find the annual payment to be \$260.206 or \$260.21.

The following table shows the progress of this loan for the first five years:

Year	Principal at Beginning of Year	Interest at 5%	Principal Repaid
1	4000.00	200 00	60 21
2	3939 79	196.99	63 22
3	3876 57	193.83	66.38
4	3810 19	190.51	69 70
5	3740.49	187.02	73.19

76. Interest and annuity tables. In the note of Art. 69 we referred to certain interest and annuity tables. Tables giving the values of $(1+i)^n$ $(1+i)^{-n}$, $\frac{(1+i)^n-1}{i}$, $\frac{1-(1+i)^{-n}}{i}$, and other interest functions for all integral values of n up to 200 and for different values of i have been computed accurately to seven decimal places. Time and space do not permit of the inclusion of such complete tables in this text. However, it seems advisable to spend a little time here

in pointing out the use of such tables and their value as time saving devices. For this reason brief tables for $(1 + i)^n$, $(1 + i)^{-n}$, $\frac{(1 + i)^n - 1}{i}$ and $\frac{1 - (1 + i)^{-n}}{i}$ have been included.

In solving Ex. (1), Art. 68, we would have,

$$K = 200s_{15}$$
 at 5%.

Here, n = 15, i = .05 and the tabular value of $s_{\overline{15}}$ at 5% is 21.5785636.

Hence, $K = 200 \times 21.5785636 =$ \$4315.71.

It would be interesting to discuss the methods used in constructing such tables but time and space do not permit of this discussion.

The student may now solve by tables, exercises 1, 2, 6, 7, Art. 66; exercises 1, 3, 4, 5, 6, 7, Art. 68; exercises 1, 2, 5, 6, 7, Art. 72.

Exercises and Problems

1. Find the annual payment that will be necessary to amortize in 10 years a debt of \$2000, bearing interest at 8%. Construct a schedule.

2. The Federal Farm Loan Bank loaned a farmer \$5000 at 5% interest, convertible semi-annually. The agreement was that the farmer should repay principal and interest in equal semi-annual installments covering a period of 15 years. Find the amount of each semi-annual payment.

3. At the age of 25 a young man resolves that, when he is 60 years of age, he will have \$40,000 saved. If he invests his savings semiannually at 6% interest, convertible semi-annually, what amount must he save semi-annually? If at age 60 he desired to have it paid back to him as an annual annuity payable at the end of each year, what would be his annual income over a period of 25 years if money at that time were worth 5% interest?

4. The beneficiary of a policy of insurance is offered a cash payment of \$20,000 or an annuity of \$1500 for 20 years certain, the first pay-

ment to be made one year hence. Allowing interest at 4% per annum, which is the better option, and how much better per annum?

5. A house is purchased for 15,000 and it is arranged that 5000 cash be paid, and the balance in 10 equal annual installments, including interest at 6%. Find the annual payment and construct a schedule.

6. Complete the farm loan schedule in Art. 75.

7. What would have been the equal payment if made semi-annually with interest at 5% semi-annually?

8. A tractor costs \$1200. It is estimated that with proper care it will have a life of 8 years with a scrap value of 50 at the end of this time. Construct a depreciation schedule on a 4% interest basis.

114

CHAPTER XI

TRIGONOMETRIC FUNCTIONS

77. Meaning of trigonometry. The word trigonometry comes from two Greek words meaning *triangle* and *measurement*. This would suggest that the subject deals with the solution of the triangle. This is one of the important applications of trigonometry, but the subject is much broader than this for it is the basis of many important topics.

The development of trigonometry depends entirely upon six fundamental definitions which are called the trigonometric functions. These are sine, cosine, tangent, cotangent, secant and cosecant and will be defined in Art. 78.

Any triangle is composed of six parts, three sides and three angles. If any three parts are given, provided at least one of them is a side, geometry enables us to construct the triangle, and trigonometry enables us to compute the unknown parts from the numerical values of the B known parts.

78. Trigonometric definitions. Consider the right-angled triangle ABC (Fig. 27). A and B are acute angles, C is the right A_A angle, and a, b, c, are the sides opposite the respective

angles. The six different ratios among the three sides are $\frac{a}{c}$, $\frac{b}{c}$, $\frac{a}{b}$, $\frac{b}{a}$, $\frac{c}{b}$, and $\frac{c}{a}$, and these are defined as the six trigonometric functions of the angle A. Thus we have,

a c	-	$\frac{\text{side opposite } A}{\text{hypotenuse}} = \text{sine of } A, \text{ written sin } A.$	
b c	=	$\frac{\text{side adjacent } A}{\text{hypotenuse}} = \text{cosine of } A, \text{ written } \cos A$	•
a b	=	$\frac{\text{side opposite } A}{\text{side adjacent } A} = \text{tangent of } A, \text{ written tan}$	A. (1)
b a	-	$\frac{\text{side adjacent } A}{\text{side opposite } A} = \text{cotangent of } A, \text{ written constraints}$	ot A. (1)
c b	=	$\frac{\text{hypotenuse}}{\text{side adjacent } A} = \text{secant of } A, \text{ written sec } A$	
c a	=	$\frac{\text{hypotenuse}}{\text{side opposite } A} = \text{cosecant of } A, \text{ written csc}$	<i>A</i> .

Since the trigonometric functions of the angle A are ratios of the sides of a right triangle, it is evident that they are constant for any fixed angle and do not change value for different lengths of the sides of the triangle. (This follows from the definition of similar triangles.)

Applying the definitions to angle B, we may write

$$\sin B = \frac{b}{c} = \cos A,$$

$$\cos B = \frac{a}{c} = \sin A,$$

$$\tan B = \frac{b}{a} = \cot A,$$

$$\cot B = \frac{a}{b} = \tan A,$$

$$\sec B = \frac{c}{a} = \csc A,$$

$$\csc B = \frac{c}{b} = \sec A.$$
(2)

116

ART. 79]

79. Co-functions and complementary angles. The cosine, cotangent and cosecant of an angle are co-functions of the sine. tangent and secant, respectively. Since in Fig. 27, A and B are complementary angles, $A + B = 90^{\circ}$, it follows from (2) that any function of an angle equals the co-function of the complement of that angle. For example,

 $\sin 25^{\circ} = \cos 65^{\circ}$. $\tan 29^{\circ} = \cot 61^{\circ}$.

Exercises

Fill the blanks in the following with the proper co-function:

1.	$\sin 75^\circ = ?$	5. $\csc 47^{\circ} 29' = ?$
2.	$\tan 18^{\circ} 20' = ?$	6. sec $(90^{\circ} - A) = ?$
3.	$\cot 75^{\circ} 18' = ?$	7. $\tan 38^\circ 15' = ?$
4.	$\sec 19^{\circ} 37' = ?$	8. $\cos 72^{\circ} 18' = ?$
^	O	4 1 4 1 4 4 8 1

9. Construct an acute angle A such that $\tan A = \frac{3}{4}$ and write the other trigonometric functions of the angle.

Solution. From the definition of the tangent, we know that A is an angle of a triangle having 3 for opposite side and 4 for adjacent side. The hypotenuse then is 5 (8, Art. 29). The functions are.

$\sin A = \frac{3}{5},$	$\cot A = \frac{4}{3},$
$\cos A = \frac{4}{5},$	$\sec A = \frac{5}{4},$
$\tan A = \frac{3}{4},$	$\csc A = \frac{5}{3}.$

Construct the angle A in the following and write the other functions:

10. $\sin A = \frac{8}{17}$. 13. sec A = 3. 14. $\csc A = 2$. 11. $\cos A = \frac{2}{3}$. 15. $\tan A = \frac{4}{3}$. 12. $\cot A = \frac{5}{4}$. If in Fig. 27, **16.** sin $A = \frac{1}{2}$, c = 15, find a and b. 17. $\tan A = \frac{4}{3}$, b = 24, find a and c. **18.** $\cos A = 0.325$, b = 10, find c,

80. Relations among the functions. From Fig. 27 we have,

$$a^2 + b^2 = c^2 (8, \text{Art. 29})$$
 (3)

$$\frac{a^2}{c^2} + \frac{b^2}{c^2} = 1 \text{ (dividing (3) by } c^2)$$
(4)

But,
$$\sin A = \frac{a}{c}, \cos A = \frac{b}{c}$$

Hence,
$$\sin^2 A^* + \cos^2 A = 1.$$
 (A)

$$\frac{a^2}{b^2} + 1 = \frac{c^2}{b^2} \text{ (dividing (3) by } b^2)$$
(5)

But,
$$\tan A = \frac{a}{b}$$
 and $\sec A = \frac{c}{b}$.
Hence, $\tan^2 A + 1 = \sec^2 A$, (B)

It is left for the student to show that,

$$\cot^2 A + 1 = \csc^2 A. \tag{C}$$

$$\tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}.$$
 (D)

$$\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A}.$$
 (E)

$$\sec A = \frac{1}{\cos A}$$
 (F)

$$\csc A = \frac{1}{\sin A}$$
(G)

The above relations are important and should be learned. They are known as *fundamental identities*.

* $\sin^2 A$, means $(\sin A)^2$.

118

ART. 80]

Exercises

Making use of the fundamental identities verify the following identities:

1.
$$\frac{\tan A - 1}{\tan A + 1} = \frac{1 - \cot A}{1 + \cot A}$$
.

Verification: An identity may be verified by reducing the left-hand member to the form of the right, the right-hand member to the form of the left or both members to a common form. Thus,

$$\frac{\tan A - 1}{\tan A + 1} = \frac{\frac{1}{\cot A} - 1}{\frac{1}{\cot A} + 1}, \quad \text{by } (D)$$

$$= \frac{\frac{1 - \cot A}{\frac{1}{\cot A} + 1}}{\frac{1 - \cot A}{\frac{1 + \cot A}{\cot A}}}$$

$$= \frac{1 - \cot A}{1 + \cot A}$$

$$= \frac{1 - \cot A}{1 + \cot A}.$$
an $A + \cot A = \sec A \csc A.$
3. $\tan A \cos A = \sin A.$
4. $\frac{\sin A}{\csc A} + \frac{\cos A}{\sec A} = 1.$
5. $\cot A + \frac{\sin A}{1 + \cos A} = \csc A.$
6. $\frac{1 + \cot^2 A}{1 + \tan^2 A} = \cot^2 A.$
7. $\sin A \sec A \cot A = 1.$
8. $\sec A - \cos A = \sin A \tan A.$

81. Functions of 30°, 45°, 60°. From Fig. 29, we have,

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2},$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2},$$

$$\tan 45^{\circ} = 1, \quad \csc 45^{\circ} = \frac{\sqrt{2}}{1} = \sqrt{2},$$

$$\cot 45^{\circ} = 1, \quad \sec 45^{\circ} = \frac{\sqrt{2}}{1} = \sqrt{2}.$$

From Fig. 30, we have,

$$\sin 30^{\circ} = \frac{1}{2} = \cos 60^{\circ},$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2} = \sin 60^{\circ},$$

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3} = \cot 60^{\circ},$$

$$\cot 30^{\circ} = \frac{\sqrt{3}}{1} = \tan 60^{\circ},$$

$$\sec 30^{\circ} = \frac{2}{\sqrt{3}} = \frac{2}{3}\sqrt{3} = \csc 60^{\circ},$$

$$\csc 30^{\circ} = 2 = \sec 60^{\circ}.$$

Exercises

Making use of the results of Art. 81, find the numerical values of the following:

- **1.** $7 \cos 60^\circ 2 \sin 30^\circ + 3 \cot 45^\circ$. Ans. $5\frac{1}{2}$.
- **2.** $6 \sin 60^\circ (\sin 30^\circ \tan 60^\circ \cot 60^\circ)$. Ans. $\frac{3}{2}$.

3.
$$\left(\frac{\sin^2 60^\circ - \cos^2 60^\circ}{\tan^2 30^\circ}\right) \left(\frac{\cot^2 45^\circ + \tan^2 45^\circ}{\cot^2 30^\circ}\right)$$
. Ans. 1.

4. tan 45° cot 30° + sec 30° cos 45°. Ans $\sqrt{3} + \frac{1}{3}\sqrt{6}$.

82. Line values of the functions. Fig. 31 is a circle having unity for its radius. DB and EC are perpendicular to AC and FG is perpendicular to AF. Then we may write,

FIG. 31.

$$\sin A = \frac{BD}{AD} = BD$$

since, AD is the unit.

$$\cos A = \frac{AB}{AD} = AB.$$

$$\tan A = \frac{CE}{AC} = CE.$$

$$\sec A = \frac{AE}{AC} = AE.$$

$$\cot A = \cot G = \frac{FG}{AF} = FG.$$

$$\csc A = \csc G = \frac{AG}{AF} = AG.$$

83. Variations of the functions. As A increases from 0° to 90°, it is easily seen from Fig. 31 that

sin A varies from0 to1, $\cos A$ varies from1 to0, $\tan A$ varies from0 to ∞ , $\cot A$ varies from ∞ to0, $\sec A$ varies from1 to ∞ , $\csc A$ varies from $\infty *$ to1.

84. Natural trigonometric functions and logarithms of the trigonometric functions. In Table III in the back of this text, the values of the sine, cosine, tangent and cotangent are given correct to five decimal places, and in Table II, the logarithms of these functions are given. The method of using these tables differs very little from that employed in the use of Table I. A few exercises will illustrate the process.

Exercises

1. Find the value of $\sin 14^{\circ} 35'$. This value as found in the table is 0.25179.

2. Find the value of $\tan 35^{\circ} 47'$. This value is not given in the tables, but we find the values of $\tan 35^{\circ} 45'$ and $\tan 35^{\circ} 50'$ to be 0.71990 and 0.72211, respectively. The difference between these two values is 0.00221. Since $35^{\circ} 47'$ is two-fifths of the way from $35^{\circ} 45'$ to $35^{\circ} 50'$, we add to 0.71990

 $\frac{2}{5} \cdot 0.00211 = 0.00084.$ Hence, $\tan 35^{\circ} 47' = 0.72074.$

* ∞ is the symbol for infinity. It is evident that as A increases CE increases and when A becomes 90°, CE becomes larger than any finite value. We say then that $\tan 90^\circ = \infty$.

ART. 84]

Hence,

3. Find the value of $\cot 66^{\circ} 38'$. When the angle is greater than 45° we must read up the page, reading the function at the bottom of the page and the angle on the right. We find the values of $\cot 66^{\circ} 35'$ and $\cot 66^{\circ} 40'$ to be 0.43308 and 0.43136, respectively. The difference between these two values is 0.00172. Since $66^{\circ} 38'$ is three-fifths of the way from $66^{\circ} 35'$ to $66^{\circ} 40'$, we subtract from 0.43308

$$\frac{3}{5} \cdot 0.00172 = 0.00103.$$

Hence, $\cot 66^{\circ} 38' = 0.43205.$

4. Find the angle whose tangent is 0.41856. The angle is not found in these tables, but it lies between the angles 22° 40′ and 22° 45′, the values of whose tangents are 0.41763 and 0.41933, respectively. Now, 0.41856 is $\frac{93}{170}$ of the way from 0.41763 to 0.41933. Thus the angle, whose tangent is 0.41856, is

> $22^{\circ} 40' + \frac{93}{170} \cdot 5' = 22^{\circ} 43'.$ tan 22° 43′ = 0.41856.

5. Find $\log \sin 43^{\circ} 29' 45''$. We find $\log \sin 43^{\circ} 29'$ and $\log \sin 43^{\circ} 30'$ to be 9.83768 - 10 and 9.83781 - 10, respectively. The difference between these two values is 0.00013. Since $43^{\circ} 29' 45''$ is three fourths of the way from $43^{\circ} 29'$ to $43^{\circ} 30'$, we add to 9.83768 - 10

$$\frac{3}{4} \cdot 0.00013 = 0.00010.$$

Hence, $\log \sin 43^{\circ} 29' 45'' = 9.83778 - 10.$

6. Find the angle the logarithm of whose cosine is 9.90504 - 10. The angle lies between $36^{\circ} 31'$ and $36^{\circ} 32'$, the logarithms of whose cosines are 9.90509 - 10 and 9.90499 - 10, respectively. Now, 9.90504 - 10 is $\frac{5}{10}$ of the way from 9.90509 - 10 to 9.90499 - 10.

Thus the angle, the logarithm of whose cosine is 9.90504 - 10, is

$$36^{\circ} \, 31' + \frac{5}{10} \cdot 60'' = 36^{\circ} \, 31' \, 30''.$$

Hence, $\log \cos 36^{\circ} 31' 30'' = 9.90504 - 10.$

7. Find the following:

(a)
$$\tan 38^{\circ} 27'$$
, (b) $\sin 75^{\circ} 18'$, (c) $\cot 5^{\circ} 29'$.
Ans. (a) 0.79421, (b) 0.96727, (c) 10.417.

- 124 AN INTRODUCTION TO MATHEMATICS [CHAP. XI 8. Find the angle A when: (a) $\sin A = 0.37820$, (b) $\cot A = 2.3424$. Ans. (a) $A = 22^{\circ} 13'$, (b) $A = 23^{\circ} 7'$. 9. Find the following:
 - 9. Find the following:
 - (a) log cos 41° 28', (b) log tan 76° 18' 40''. Ans. (a) 9.87468 - 10, (b) 0.61333.
 - 10. Find the angle A when:
 - (a) $\log \sin A = 9.32860 10$, (b) $\log \cot A = 9.36200 10$. Ans. (a) $A = 12^{\circ} 18' 17''$, (b) $A = 77^{\circ} 2' 22''$.

CHAPTER XII

SOLUTION OF THE RIGHT ANGLE TRIANGLE

85. Formulas for the solution of a right triangle. If any two parts of a right triangle (at least one side) are known the following formulas are employed to obtain the other parts:

86. Applying the Formulas. Before attempting to solve any problem, a careful drawing should be made of the required triangle (enough parts will be given to completely construct it). The proper formulas should be chosen and an outline for the solution be made before making use of the tables. This will usually save much time. An exercise will illustrate the plan.

Illustrated Problem I. In a right triangle $A = 37^{\circ} 50'$, b = 15.6. Find a and c.

Solution. Approximate construction. (a) By trigonometric functions: $\tan A = \frac{a}{b}$, $\cos A = \frac{b}{c}$, $\therefore a = b \tan A$, $c = \frac{b}{\cos A}$. $a = 15.6 \times 0.77661$, $c = \frac{15.6}{0.78980}$, $A = \frac{37^{\circ}50'}{b^{\circ}15.6}$ $B = 90 - A = 52^{\circ} 10'$.

$$a = b \tan A$$
, $c = \frac{b}{\cos A}$,
 $B = 90 - A$.

 $a = 12.115, \qquad c = 19.75.$

DATA AND RESULTS

LOG	s

A b	37° 50′ 15.6	tan A b	9.89020-10 1 19312
В	52° 10′	a	1.08332
a			11 10312-10
i	19 701	$\cos A$	9.89752 - 10
	<u></u>	c	1.29560

Illustrated Problem II. In a right triangle a = 25.6, c = 31.3. Find A, B and b.

Exercises

Solve the first five exercises making use of the trigonometric functions. Use logarithms on the next three.

1.	Given, $a =$	17.5,	A =	47° 10′;	Find	b, c, :	and i	В.
2.	Given, $a =$	13.7,	b =	35.3;	Find .	A, B, a	and	c.
3.	Given, $c = c$	340,	B =	29° 30′;	Find .	A, b,	and	a.
4.	Given, $b =$	275,	A =	52° 25′;	Find	a, B,	and	c.
5.	Given, $a =$	37.5,	b =	122;	Find	A, B,	and	c.
6.	Given, $a =$	25.62,	A =	33° 20′;	Find	B, b,	and	с.
7.	Given, $c =$	67.7,	A =	23° 30′;	Find	a, b,	and	B .
8.	Given, $a =$	32.56,	<i>c</i> =	42.82;	Find	A, B,	and	b.

9. In measuring the width of a river, a line AB is measured 500 feet along one bank. A perpendicular to AB at A is erected which locates a point C upon the opposite bank, and the angle ABC is found to be 38° 10′. Find the width of the stream. Ans. 393 feet.

10. Find the height of a tree which casts a horizontal shadow of 75.5 feet when the sun's angle of elevation is 57° 50'. Ans. 120 feet.

NOTE. The angle which the line of sight to an object makes with a horizontal line in the same vertical plane is called an *angle of elevation* when the object is above the eye of the observer and an *angle of depression* when the object is below the eye of the observer.

11. A building 30 feet wide and 50 feet long has a gable roof with a pitch (angle of elevation) of 35°. The rafters project 16 inches beyond the walls and the roof projects 16 inches beyond the ends. Find the length of the rafters and the number of squares of roofing required. (A square is 100 sq. ft.)

12. A line segment AB, has an angle of elevation of θ .* Find its horizontal and vertical projections.

Solution. The horizontal and vertical projections of AB are gotten by dropping the perpendiculars AC, BD, and AE, BF to the horizontal

R

G

FIG. 36.

Ŋ

and vertical lines respectively. CD and EF are the required projections. We see then that the horizontal and vertical projections of a line segment are equal to the base and altitude of a right triangle of which the line segment is the hypotenuse. Hence,

$$CD = AG = AB\cos\theta$$
,
and

 $EF = GB = AB \sin \theta$.

13. Find the projection of a line 560 feet long running N. $35^{\circ} 20' E$. upon a line running East and West.

E

8

* θ is the Greek letter theta. Some of the other Greek letters that we shall use to denote angles are α , alpha; β , beta; γ , gamma; ϕ , phi.

14. A force of 250 lbs. making an angle of 36° 10' with the horizontal acts upon a heavy body. Find the forces which tend to move the body horizontally and vertically. (These horizontal and vertical forces are called the horizontal and vertical components.)

15. Horizontal and vertical forces of 150 lbs. and 80 lbs., respectively, act upon a body. What is the resultant of these forces and what angle does the line of this resultant force make with the horizontal?

16. A flag pole 75 ft. high casts a shadow 122 ft. long. What is the angle of elevation of the sun at that time?

17. A telephone post is anchored to a stone buried in the ground by a stay wire which makes an angle of 63° with the horizontal. The tension in the wire is 500 lbs. Find the horizontal and vertical pull on the stone.

18. From a point A in a level plain the angle of elevation of the top of a hill is 38°. From a point B, 750 ft. closer to the hill the angle of elevation is 70°. How high is the top of the hill above the plain? Ans. 818.9 ft.

CHAPTER XIII

TRIGONOMETRIC FUNCTIONS OF ANY ANGLE SOLUTION OF THE OBLIQUE TRIANGLE

87. Trigonometric definitions. In Art. 78 the trigonometric functions for an acute angle were given. We shall now extend these definitions to include any angle. Coordinate axes (Art. 30, Fig. 11) will be employed in the location of the angle. Starting with the positive extremity of the X-axis and going in a counter-clockwise direction the coordinate axes divide the plane into four quadrants numbered I, II, III, IV (Fig. 37).

A positive angle is described when a radius OP is rotated about O, counter clockwise, from the initial position OX into a

These definitions hold for an angle whose terminal side lies in any one of the four quadrants. **88.** Laws of signs. The algebraic signs of the trigonometric functions for angles terminating in the respective quadrants are determined by the signs of x and y for that quadrant. The student may show that these signs are as indicated by the following diagram:

Quadrant	sin	COS	tan	\cot	sec	CSC
I	+	+	+	+	+	+
II	+	-	_	-	-	+
III		-	+	+	-	-
IV	-	+	-	-	+	_

89. Functions of negative angles. A negative angle is described when a radius, OP is rotated about O, clockwise, from the initial position OX.

In Fig. 38 angle AOP_2 is equal to $-\theta$, angle AOP_1 is equal to θ .

 $r_2 = r_1, \quad x_2 = x_1, \quad y_2 = -y_1.$

We may write,

$$\sin (-\theta) = \frac{y_2}{r_2} = \frac{-y_1}{r_1} = -\sin \theta,$$

$$\cos (-\theta) = \frac{x_2}{r_2} = \frac{x_1}{r_1} = \cos \theta,$$

$$\tan (-\theta) = \frac{y_2}{x_2} = \frac{-y_1}{x_1} = -\tan \theta,$$

$$\cot (-\theta) = \frac{x_2}{y_2} = \frac{x_1}{-y_1} = -\cot \theta.$$
(1)

F1G. 38.

The above relations hold for angles whose terminal sides lie in any one of the four quadrants.

90. Functions of $180^{\circ} - \theta$. Supplementary angles. In Fig. 39 triangle OA_2P_2 equals triangle OA_1P_1 , and $x_2 = -x_1$, $y_2 = y_1$, $r_2 = r_1$. Hence,

$$\sin (180 - \theta) = \frac{y_2}{r_2} = \frac{y_1}{r_1} = \sin \theta,$$

$$\cos (180 - \theta) = \frac{x_2}{r_2} = \frac{-x_1}{r_1} = -\cos \theta,$$

$$\tan (180 - \theta) = \frac{y_2}{x_2} = \frac{y_1}{-x_1} = -\tan \theta,$$

$$\cot (180 - \theta) = \frac{x_2}{y_2} = \frac{-x_1}{y_1} = -\cot \theta.$$
(2)

The student may show that the above relations hold when θ is an angle of the second quadrant.

Exercises

1. Show that the fundamental identities (Art. 80) hold for angles in any quadrant.

2. Writing $180^{\circ} + \theta$ as $(180 - (-\theta))$ and making use of relations (2), Art. 90, and (1), Art. 89 show that

$$\begin{array}{l}
\sin (180 + \theta) = -\sin \theta, \\
\cos (180 + \theta) = -\cos \theta, \\
\tan (180 + \theta) = -\tan \theta, \\
\cot (180 + \theta) = -\cot \theta.
\end{array}$$
(3)

3. Make the proper drawings and show that the functions of $90^{\circ} - \theta$ are equal to the co-functions of θ .

4. Write 90° + θ as (90 - (- θ)) and making use of (1), Art. 89 show that

$$\begin{array}{l}
\sin (90 + \theta) = \cos \theta, \\
\cos (90 + \theta) = -\sin \theta, \\
\tan (90 + \theta) = -\cot \theta, \\
\cot (90 + \theta) = -\tan \theta.
\end{array}$$
(4)

5. Fill the blanks with the proper function of the supplement of each angle:

(a) $\sin 110^{\circ} = \sin 70^{\circ}$ (e) $\cot 109^{\circ} 15' =$ (b) $\tan 99^{\circ} 18' =$ (f) $\cos 135^{\circ} =$ (c) $\tan (90^{\circ} + \theta) =$ (g) $\cos (90^{\circ} - \alpha) =$ (d) $\sin 175^{\circ} =$ (h) $\cot 120^{\circ} =$

6. Draw figures and show:

(a) sin 70° = cos 20° = sin 110°,
(b) sin 130° = sin 50°,
(c) sin 220° = - sin 40°,
(d) cos 190° = - cos 10°.

FIG. 40.

 $r_1 = r_2, x_2 = -x_1, y_2 = y_1.$

Solution (a). In Fig. 40

Hence, $\sin 70^{\circ} = \frac{y_1}{r_1} = \frac{y_2}{r_2} = \sin 110^{\circ}.$ Also, $\sin 70^{\circ} = \cos 20^{\circ}, (Art. 79)$ $\sin 70^{\circ} = \cos 20^{\circ} = \sin 110^{\circ}.$

91. Functions of the sum of two angles. In Fig. 41, SR is perpendicular to OR and SN is perpendicular to OM, and ΔSTR is similar to ΔOMR .

We may write,

$$\sin (\theta + \phi) = \frac{NS}{OS} = \frac{MR + TS}{OS}$$

But

 $MR = OR\sin\theta = OS\cos\phi\sin\theta.$

and $TS = SR \cos \theta = OS \sin \phi \cos \theta.$

FIG. 41.

Hence, $\sin(\theta + \phi) = \sin \theta \cos \phi + \sin \phi \cos \theta$. (5)

Also, $\cos(\theta + \phi) = \frac{ON}{OS} = \frac{OM - TR}{OS}$.

But $OM = OR \cos \theta = OS \cos \phi \cos \theta$,

 $TR = SR \sin \theta = OS \sin \phi \sin \theta.$ and

Hence, $\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$. (6)

From (5) and (6) we have,

$$\tan \left(\theta + \phi\right) = \frac{\sin \left(\theta + \phi\right)}{\cos \left(\theta + \phi\right)} = \frac{\sin \theta \cos \phi + \sin \phi \cos \theta}{\cos \theta \cos \phi - \sin \phi \sin \theta}.$$

If we divide both numerator and denominator of the above expression by $\cos \theta \cos \phi$, we get,

$$\tan (\theta + \phi) = \frac{\frac{\sin \theta}{\cos \theta} + \frac{\sin \phi}{\cos \phi}}{1 - \frac{\sin \theta}{\cos \theta} \cdot \frac{\sin \phi}{\cos \phi}}$$

Hence,
$$\tan (\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}.$$
 (7)

In Fig. 41, θ and ϕ are acute angles and their sum is also acute. However, relations (5), (6), and (7) hold for all angles of any magnitude, and we assume this without proof.

92. Functions of the difference of two angles. If we write $\sin(\theta - \phi)$ as $\sin(\theta + (-\phi))$ and substitute in (5), Art. 91, we get,

$$\sin (\theta - \phi) = \sin \theta \cos (-\phi) + \cos \theta \sin (-\phi).$$

But $\cos(-\phi) = \cos \phi$, $\sin(-\phi) = -\sin \phi$. ((1), Art. 89.)

Hence,

$$\sin (\theta - \phi) = \sin \theta \cos \phi - \cos \theta \sin \phi.$$
 (8)

The student may show that,

$$\cos (\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi, \qquad (9)$$

and
$$\tan (\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi}$$
 (10)

93. Functions of twice an angle. If we make $\phi = \theta$ and substitute in (5), Art. 91, we get,

$$\sin 2\theta = 2\sin\theta\cos\theta. \tag{11}$$

136

When $\phi = \theta$ (6) becomes,

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta, \tag{12}$$

$$= 1 - 2 \sin^2 \theta$$
 ((A), Art. 80.)

$$= 2 \cos^2 \theta - 1.$$
 ((A), Art. 80.)

The student may show that,

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}.$$
 (13)

94. Half-angle formulas. In (11), (12), (13), Art. 93, let $\theta = \frac{x}{2}$, and we get,

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}.$$
 (14)

$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$
(15)
= $1 - 2 \sin^2 \frac{x}{2}$
= $2 \cos^2 \frac{x}{2} - 1.$
$$\tan x = \frac{2 \tan \frac{x}{2}}{1 - \tan^2 \frac{x}{2}}.$$
(16)

Solving the second, and third forms of (15) respectively for $\sin\frac{x}{2}$ and $\cos\frac{x}{2}$, we get, £

$$\sin\frac{x}{2} = \pm\sqrt{\frac{1-\cos x}{2}},$$
 (17)

and
$$\cdot \qquad \cos\frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}}$$
 (18)

95. Sum and difference formulas. If we add (5) and (8), subtract (8) from (5), add (6) and (9), and subtract (9) from (6), respectively, we get,

$$\sin (\theta + \phi) + \sin (\theta - \phi) = 2 \sin \theta \cos \phi,
\sin (\theta + \phi) - \sin (\theta - \phi) = 2 \cos \theta \sin \phi,
\cos (\theta + \phi) + \cos (\theta - \phi) = 2 \cos \theta \cos \phi,
\cos (\theta + \phi) - \cos (\theta - \phi) = -2 \sin \theta \sin \phi.$$
(19)

Let $\theta + \phi = x$, $\theta - \phi = y$, then,

$$\theta = \frac{x+y}{2}, \quad \phi = \frac{x-y}{2}.$$

Making these substitutions in (19), we have,

$$\sin x + \sin y = 2 \sin \frac{x + y}{2} \cos \frac{x - y}{2}.$$
 (20)

$$\sin x - \sin y = 2\cos \frac{x+y}{2}\sin \frac{x-y}{2}$$
 (21)

$$\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}.$$
 (22)

$$\cos x - \cos y = -2\sin \frac{x+y}{2}\sin \frac{x-y}{2}$$
 (23)

138

Exercises

1. Show that $\cos 75^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$

Solution. $\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ})$

 $= \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}, ((6), \text{ Art. 91})$ $= \frac{1}{2} \sqrt{2} \cdot \frac{1}{2} \sqrt{3} - \frac{1}{2} \sqrt{2} \cdot \frac{1}{2}, (\text{Art. 81})$ $= \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2}.$

2. Show that $\cos 15^\circ = \sin 75^\circ = \frac{1}{4}(\sqrt{6} + \sqrt{2}).$

3. Show that $\tan 15^\circ = \tan (45^\circ - 30^\circ) = 2 - \sqrt{3}$.

4. Draw a figure and show that (5) and (6) hold when $(\theta + \phi)$ lies in the second quadrant.

5. If sin $x = \frac{1}{3}$, find sin 2x, also cos 2x, and tan 2x.

Solution. By the method of exercise 9, Art. 79, we find that if $\sin x = \frac{1}{3}$, $\cos x = \frac{2}{3}\sqrt{2}$, and $\tan x = \frac{1}{4}\sqrt{2}$. Then by (11), Art. 93, we have,

sin $2x = 2 \cdot \frac{1}{3} \cdot \frac{2}{3} \sqrt{2} = \frac{4}{9} \sqrt{2}$. cos 2x = ? tan 2x = ?6. Find tan 43° 36', if tan 21° 48' = .4. 7. Find sin 15°, knowing cos 30° = $\frac{\sqrt{3}}{2}$.

8. Show that $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$.

Hint: Write sin 3 θ as sin $(2\theta + \theta)$, and expand by (5), Art. 91, and apply (11), (12), Art. 93, and (A), Art. 80.)

9. Show that $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$.

10. Show that $\sin 40^\circ + \sin 10^\circ = 2 \sin 25^\circ \cos 15^\circ$.

11. Show that
$$\sin 70^\circ - \sin 40^\circ = 2 \cos 55^\circ \sin 15^\circ$$
.

12. Show that
$$\frac{\sin 5x + \sin x}{\cos 5x + \cos x} = \tan 3x.$$

13. Show that
$$\frac{\sin x + \sin y}{\sin x - \sin y} = \frac{\tan \frac{x + y}{2}}{\tan \frac{x - y}{2}}$$

96. Theorem of sines. The lettering in figures 42 and 43 is similar to that in figure 27. Draw a perpendicular p from

vertex B to opposite side b (opposite side produced in Fig. 43). Then, from the right triangles AKB and CKB, we get,

$$\sin A = \frac{p}{c}, \quad \sin C = \frac{p}{a}.$$

Dividing $\sin A$ by $\sin C$, we have

(a)
$$\frac{\sin A}{\sin C} = \frac{a}{c}$$

This is true for both Figures 42 and 43, for in Fig. 43, we have

$$\sin\left(180-C\right)=\sin C.$$

Drawing a perpendicular from vertex C to side c, we would get, similarly,

(b)
$$\frac{\sin A}{\sin B} = \frac{a}{b}$$

140

Also, drawing a perpendicular from vertex A to side a, we would have,

(c)
$$\frac{\sin C}{\sin B} = \frac{c}{b}$$

The above results may be written in the form,

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$
 (24)

Theorem. In any triangle the sines of the angles are proportional to the opposite sides.

By observing (a), (b) and (c) it is easily seen that the Theorem of Sines may be used to solve a triangle when two sides and an angle opposite one of the sides are given, or when the angles and a side are given.

F1G. 44.

Solution. Construction, Formulas,

$$\sin B = \frac{b \sin A}{a},$$

$$C = 180 - (A + B),$$

$$c = \frac{a \sin C}{\sin A}.$$

DATA AND RESULTS

a	35.6
b	42.3
A	25° 10′
B	30° 21′
C	124° 29′
c	69.005

	Logs		
b sin A	1.62634 9.62865—10		
a	11.25499 – 10 1.55145		
sin B	9.70354-10		
a sin C	1.55145 9.91608-10		
sin A	$11.46753 - 10 \\9.62865 - 10$		
С	1.83888-10		

This example admits of two solutions which is evident from the above construction, i.e., both triangles ABC and AB'C are solutions.

Second solution (AB'C):

$$B' = 180^{\circ} - B = 149^{\circ} 39',$$

$$C = 180^{\circ} - (A + B') = 5^{\circ} 11',$$

$$c = \frac{a \sin C}{\sin A} = 7.567.$$

As a matter of fact, when two sides and an angle opposite one of the sides are given, the data may admit of two solutions, one solution or no solution, but these facts will come out in the solution and we need not generalize on them.

Solution. Construction, Formulas,

$$C = 180 - (A + B),$$

$$b = \frac{a \sin B}{\sin A},$$

$$c = \frac{a \sin C}{\sin A}.$$

DATA AND RESULTS

C 68° 35' b 76.717 c 73.553	a A B	45.6 35° 15′ 76° 10′
b 76.717 c 73.553	C	68° 35′
c 73.553	b	76.717
	с	73.553

a sin B	1.65896 9.98722 - 10
sin A	11.64618-10 9.76129-10
ь	1.88489
sin C a	9 96893 - 10 1.65896
sin A	$\frac{11.62789 - 10}{9.76129 - 10}$
c	1.86660

Logs

Exercises

1. Make drawings to show that when two sides of a triangle and an angle opposite one of these sides are given there may be two solutions, one solution or no solution.

2. Given a = 48.3, $A = 48^{\circ} 30'$, $B = 75^{\circ} 15'$; find b, c. **3.** Given a = 149.5, b = 115.6, $A = 71^{\circ} 20'$; find B, C, c. **4.** Given a = 23.1, c = 16.5, $C = 33^{\circ} 10'$; find A, B, b. **5.** Given b = 125.6, $B = 39^{\circ} 45'$, $C = 105^{\circ} 15'$; find A, a, c. **97.** Theorem of cosines. In triangle ABC drop a perpendicular h from B to side b. From the right triangle BHC, we get,

(a)
$$a^2 = h^2 + \overline{HC^2}$$

= $h^2 + (b - AH)^2$
= $h^2 + \overline{AH^2} + b^2 - 2b\overline{AH}$.

But from the right triangle ABH, we have,

(b) $h^2 + \overline{AH^2} = c^2$, and $AH = c \cos A$.

Substituting (b) in (a) we get,

$$a^2 = b^2 + c^2 - 2 bc \cos A. \tag{25}$$

It may also be shown that,

$$b^2 = a^2 + c^2 - 2 ac \cos B, \tag{26}$$

and

$$c^2 = a^2 + b^2 - 2 ab \cos C. \tag{27}$$

Theorem. In any triangle the square on any side is equal to the sum of the squares on the other two sides minus twice the product of the other two sides and the cosine of the included angle.

It is evident that the Theorem of Cosines may be used to find the third side of a triangle when two sides and the included angle

144

are given. It may also be used to find the angles of a triangle when the three sides are given.

Example I. Given a = 37.5, b = 18.5 and $C = 39^{\circ} 45'$; find c.

Solution. From (27) we have, $c^2 = (37.5)^2 + (18.5)^2 - 2(37.5)(18.5)(0.7688)$

= 681.79.

$$c = 26.11$$

Example II. Given a = 42, b = 17, c = 53; find the angles. Solution. Solving (25) for $\cos A$, we get,

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

and substituting for a, b, and c their values, we have,

$$\cos A = \frac{(17)^2 + (53)^2 - (42)^2}{2 \times 17 \times 53} = 0.7403.$$

A = 42° 15′.

..

And by using (26) and (27) we could get angles B and C.

Exercises

1. In example II, find angles B and C.

2. Show that the Theorem of Pythagoras is a special case of the Cosine Theorem.

3. Making use of the Theorem of Sines, find angles A and B of Example I.

4. Given b = 52.5, c = 43.4, $A = 45^{\circ} 20'$; find B, C, and a.

Solution. Construct the triangle and drop perpendicular h from Bto side b. This gives us two right triangles, ABH and CBH. Let AHbe represented by m and HC by n.

Formulas:

(1) $h = c \sin A$,

(2)
$$m = c \cos A$$

(3)
$$n = b - m_{0}$$

DATA AND RESULTS

1

(4)	te	in (C =	h n'			
(5)	B	=	180	_	(A	+	C),
(6)	a	=	$\frac{c \sin}{\sin}$	$\frac{A}{C}$	=	$\frac{h}{\sin}$	$\frac{1}{C}$

Logs

b c A	52.5 43 4 45° 20′
h m C B a	30 866 30.509 21.991 54° 32' 80° 8' 37.898

C	1.00/49
sin A	9.85200-10
h	1.48949
$\cos A$	9 84694-10
С	1.63749
m	1.48443
h	1.48949
n	1.34225
tan C	0.14724
h	11.48949-10
$\sin C$	9 91087-10
a	1.57862
Sector Contractor Contractor Contractor	

Check:
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
; $a \sin B = b \sin A$.
 $\log a = 1.57862$ $\log b = 1.72016$
 $\log \sin B = \frac{9.99353 - 10}{1.57215}$ $\log \sin A = \frac{9.85200 - 10}{1.57216}$

5. Given a = 296, c = 236, $b = 75^{\circ} 20'$; find A, C, and b. (Solve similar to exercise 4.)

6. Given a = 385, b = 476, c = 225; find angles A, B and C and check by the Sine Theorem.

98. Theorem of tangents.* From the Theorem of Sines, we have

(a)
$$\frac{a}{b} = \frac{\sin A}{\sin B}$$
,
(b) $\frac{a+b}{b} = \frac{\sin A + \sin B}{\sin B}$,

adding 1 to both members of (a).

(c)
$$\frac{a-b}{b} = \frac{\sin A - \sin B}{\sin B}$$

subtracting 1 from both members of (a).

(d)
$$\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B},$$

dividing (b) by (c).

From (20) and (21), Art. 95, we have,

$$(e) \quad \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}}{2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}},$$
$$= \tan \frac{A + B}{2} \cot \frac{A - B}{2},$$
$$= \frac{\tan \frac{A + B}{2}}{\tan \frac{A - B}{2}}.$$

* Art. 98 may be omitted from this course.

147

Combining (d) and (e), we get,

$$\frac{a+b}{a-b} = \frac{\tan\frac{A+B}{2}}{\tan\frac{A-B}{2}}.$$
(28)

We may show in a similar manner,

$$\frac{b+c}{b-c} = \frac{\tan\frac{B+C}{2}}{\tan\frac{B-C}{2}},$$
(29)

and

$$\frac{a+c}{a-c} = \frac{\tan\frac{A+C}{2}}{\tan\frac{A-C}{2}}$$
(30)

Theorem. In any triangle the sum of two sides divided by their difference, is equal to the tangent of half the sum of the opposite angles divided by the tangent of half the difference of these angles.

The Theorem of Tangents may be used to solve a triangle when two sides and the included angle are given. This will be illustrated by an example.

Example I. Given a = 255, b = 182, $C = 48^{\circ} 20'$; find A, B and c.

Solution. Construction, Formulas,

$$c \xrightarrow{a}_{\text{Fig. 49.}} A \qquad \tan \frac{1}{2}(A - B)$$

$$= \frac{a - b}{a + b} \tan \frac{1}{2}(A + B).$$

$$A + B = 180 - C.$$

$$c = \frac{a \sin C}{\sin A}.$$

148

DATA	AND	RESULTS	
a		255	

a b	255 182	$\begin{array}{l} a - b \\ \tan \frac{1}{2}(A + B) \end{array}$	1.86332 0.34803
a+b a-b	437 73	(a+b)	$12.21135 - 10 \\ 2.64048$
C	48° 20'	$\tan \frac{1}{2}(A - B)$	9.57087-10
$\frac{A+B}{2}$	65° 50′	a	2.40654
$\frac{A-B}{R}$	20° 25′	sin C	9.87334-10
2		$\sin A$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
A B c	86° 15' 45° 25' 190.9	c	2.28081
-			1

Check: $b \sin A = a \sin B$.

 $\log b = 2.26007$ $\log a = 2.40654$ $\log \sin A = 9.99907 - 10 \log \sin B = 9.85262 - 10$ 2 25916 2 25914

99. Area of a triangle. We know that the area of any triangle is equal to one half of any side multiplied by the altitude to that side (Formula 3, Art. 29). Also, 4, Art. 29 gives us the area of a triangle when the three sides are given.

Formulas expressing the area of a triangle in terms of any three of its parts (not all three angles and no side) might be derived, but we prefer to have the student remember the above principle and work out each problem separately. A problem or two will illustrate the method of procedure.

Example I. Given a = 25.6, b = 37.5, $C = 42^{\circ} 20'$; find the area of the triangle.

LOGS

Solution. Construction,

Formulas,

(a) Area =
$$\frac{1}{2}bh$$
,
(b) $h = a \sin C$,
(c) Area = $\frac{1}{2}ab \sin C$
= $\frac{1}{2} \times 25.6 \times 37.5 \sin 42^{\circ} 20'$
= $\frac{1}{2} \times 25.6 \times 37.5 \times 0.67344 = 323.25$.

(d) $h = c \sin B = \frac{a \sin B \sin C}{\sin A}$,

Area =
$$\frac{1}{2}a^2 \frac{\sin B \sin C}{\sin A}$$

= $\frac{1}{2} \frac{(225)^2 \sin 59^\circ 20' \sin 75^\circ 10'}{\sin 45^\circ 30'}$
= 29508.

Exercises

1. Given a = 75, b = 38, $A = 37^{\circ}$; find the area of the triangle.

2. Given a = 65, b = 75, c = 92; find the area of the triangle.

3. Given c = 492, a = 525, $A = 76^{\circ} 40'$; find the area of the triangle.

4. Given $A = 47^{\circ} 20'$, $B = 75^{\circ} 25'$, c = 75.2; find the area of the triangle.

100. Summary of methods of solving any triangle. We will divide the discussion up into four cases.

Case I. Given two angles and a side. The Sine Theorem will be applied in this case.

Case II. Given two sides and an angle opposite one of the sides. The Sine Theorem will be applied here.

Case III. Given two sides and the included angle. If only the third side is required, it may be obtained directly by using the Cosine Theorem. But if the other angles are also required, one of two methods may be used; we may apply the method of example 4, Art. 97, or we may use the Theorem of Tangents, Art. 98.

Case IV. Given the three sides to find the angles. The Cosine Theorem may be used in this case as illustrated in Example II, Art. 97.

Examples on Chapter XIII

1. Solve the following triangles for the unknown parts:

- (1) a = 372, b = 450, c = 525; find the angles and the area.
- (2) $a = 52, b = 75, C = 37^{\circ} 10'$; find c, A, and B and area.
- (3) b = 62.8, a = 73.7, $A = 35^{\circ} 45'$; find c, B and C and the area.
- (4) Given $A = 75^{\circ} 25'$, $B = 37^{\circ} 45'$, c = 455; find a, b, C and the area.

2. Given b = 875, c = 458, $A = 72^{\circ} 20'$; find B, C and a, using the theorem of tangents.

3. Given a, b, A; write down the proper equations for obtaining the unknown parts, including the area.

4. In order to find the distance between two points, A and B, separated by a high hill, a point C was taken where both A and B could be seen. CA, CB and angle ACB were measured and found to be 2521 feet, 3623 feet and 70° 45' respectively. Find the distance from A to B.

5. To determine the distance of a point A across a lake from a point B on the near shore, a line BC and the angles ABC and BCA were measured and found to be 2562 yd. 75°, and 62° 20', respectively. Find the distance AB.

6. Two streets meet at an angle of 80° 10'. How much land is there in the triangular corner lot which fronts 425 feet on one street and 315 feet on the other?

7. From the top of a hill 650 feet high the angles of depression of the top and bottom of a tower are 52° and 65° respectively, what is the height of the tower?

8. Two forces of 200 lbs. and 175 lbs. act at an angle of 50° with each other. Find the resultant force and also the angle that the resultant makes with the 200 lb. force.

CHAPTER XIV

THE DERIVATIVE AND SOME APPLICATIONS

101. The meaning of a tangent to a curve. In Fig. 52 we

have a curve C cut by a line lin the two points P and Q. Now assume that P is a fixed point and that Q moves along the curve towards P. As Q moves towards P the line lturns about P and approaches, in general, a limiting position (PT in the figure), and at the instant when Q coincides with P the line l coincides with PT. The line PT is called the tangent to the curve C at the point P.

102. The derivative. Let us consider the curve, Fig. 53. whose equation is y = f(x). Take any point P(x, y) on the curve and increase the abscissa of the point by an amount Δx (read delta x, and not delta times x) and let Δy denote the corresponding increase of y. We notice that this gives us a second point $Q(x + \Delta x, y + \Delta y)$ on the curve. We note that y has changed by an amount Δy while x was changing by an amount The ratio $\frac{\Delta y}{\Delta x}$ is the average rate of change in y with respect Δx . to x within the interval Δx . We also observe that this ratio is

the slope of the chord PQ. (See Art. 36.) If we now let Δx approach 0, the ratio $\frac{\Delta y}{\Delta x}$ generally approaches a fixed value which is defined as the rate of change of y with respect to x at the point P. It is also evident that as Δx approaches 0, the

FIG. 53.

point Q approaches the point P, the chord PQ approaches the tangent t, and the ratio $\frac{\Delta y}{\Delta x}$ approaches as its value the slope of the tangent at the point P. The limiting value of $\frac{\Delta y}{\Delta x}$ as Δx approaches 0 is defined as the derivative of y with respect to x at any point P(x, y). The derivative is designated by the symbol $\frac{dy}{dx}$, and we write,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}.$$

We shall now find $\frac{dy}{dx}$ for $y = x^2$. We have, $y = x^2$. (1)

$$y + \Delta y = (x + \Delta x)^2 = x^2 + 2x\Delta x + \Delta x^2.$$
 (2)

Subtracting (1) from (2) we have,

$$\Delta y = 2x\Delta x + \Delta x^2. \tag{3}$$

Dividing (3) by Δx ,

$$\frac{\Delta y}{\Delta x}=2x+\Delta x,$$

and

ad
$$\frac{dy}{dx} = \frac{\lim}{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{\lim}{\Delta x \to 0} (2x + \Delta x) = 2x.$$
 (4)

Exercises

1. Find the slope of the curve $y = 3x^2 - 5x + 2$ at the point (2, 4). Solution.

$$y = 3x^2 - 5x + 2. \tag{1}$$

$$y + \Delta y = 3(x + \Delta x)^2 - 5(x + \Delta x) + 2.$$
 (2)

$$\Delta y = 6x \Delta x + 3\Delta x^2 - 5\Delta x. \tag{3}$$

$$\frac{\Delta y}{\Delta x} = 6x + 3\Delta x - 5. \tag{4}$$

$$\frac{dy}{dx} = 6x - 5. \tag{5}$$

The slope at any point (x, y) is (6x - 5).

The slope at the point (2, 4) is obtained by substituting 2 for x in (5), which gives us 7. Hence the tangent to the curve, $y = 3x^2 - 5x + 2$, at the point (2, 4) has 7 for its slope.

2. Find the derivative of $y = \frac{1}{x}$.

Solution.

$$y = \frac{1}{x}.$$
 (1)

$$y + \Delta y = \frac{1}{x + \Delta x}.$$
 (2)

$$\Delta y = \frac{1}{x + \Delta x} - \frac{1}{x} = \frac{-\Delta x}{x(x + \Delta x)}.$$
(3)

$$\frac{\Delta y}{\Delta x} = \frac{-1}{x(x+\Delta x)}.$$
(4)

$$\frac{dy}{dx} = \frac{-1}{x^2}.$$
(5)

3. Find the derivative of $y = \sqrt{x}$. Solution.

$$y = \sqrt{x}.$$
 (1)

$$y + \Delta y = \sqrt{x + \Delta x}.$$
 (2)

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x}.$$
 (3)

$$= \frac{(\sqrt{x} + \Delta x - \sqrt{x})(\sqrt{x} + \Delta x + \sqrt{x})}{(\sqrt{x} + \Delta x + \sqrt{x})}$$
(See Ex. 21, page 78)

$$= \frac{(x + \Delta x) - x}{\sqrt{x} + \Delta x + \sqrt{x}} = \frac{\Delta x}{\sqrt{x} + \Delta x + \sqrt{x}}$$

$$\frac{\Delta y}{\Delta x} = \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$$
(4)

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x}}.$$
(5)

Find the slopes of the following curves at the points indicated. **4.** $y = x^2 - 3x + 2$, at the point where x = 3. Trace the curve. **5.** $y = 2x^3 + x^2 + x$, at x = 2.

6.
$$y = \frac{1}{x^2 + 1}$$
, at $x = 1$.

7. At what point does the curve $y = x^2 + 3x + 5$ have the slope 5? Ans. (1, 9).

8. At what point does the curve $y = x^2 - 4x + 10$ have the slope 0? Trace the curve and notice carefully its shape at the point where the slope is 0. (See Art. 48.) Ans. (2, 6).

9. If l is the length of the side of a square, the area A is given by $A = l^2$. If l is changing, find the rate at which A is changing when l = 4 ft.

Solution.

$$A = l^2. \tag{1}$$

$$A + \Delta A = (l + \Delta l)^2. \tag{2}$$

$$\Delta A = 2l\,\Delta l + \Delta l^2. \tag{3}$$

$$\frac{\Delta A}{\Delta l} = 2l + \Delta l. \tag{4}$$

$$\frac{dA}{dl} = 2l.$$
 (5)

When l = 4, the rate of change is $\frac{dA}{dl}\Big]_{l=4} = 8$. That is to say, the rate of change of A with respect to l when l = 4, is 8 times the rate at which l is changing.

10. If the radius of a circle is changing, what is the rate of change of the area A when the radius is 3 feet? (See 5, Art. 29.)

103. Derivative of a constant. If y = c, then it does not matter what the values of x and Δx are; y will remain unchanged, and $\Delta y = 0$.

Hence,
$$\frac{\Delta y}{\Delta x} = 0$$
, and $\frac{dy}{dx} = 0$.
Thus, $\frac{dc}{dx} = 0$. (I)

104. Derivative of a sum. If u and v are functions of x, then,

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}.$$
 (II)

Proof. Let y = u + v.

$$y + \Delta y = u + \Delta u + v + \Delta v. \tag{1}$$

$$\Delta y = \Delta u + \Delta v. \tag{2}$$

$$\frac{\Delta y}{\Delta x} = \frac{\Delta u}{\Delta x} + \frac{\Delta v}{\Delta x}.$$
(3)

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}.$$
(4)

105. Derivative of a product. If u and v are functions of x, then

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$
 (III)

Proof. Let $y = u \cdot v$.

$$y + \Delta y = (u + \Delta u)(v + \Delta v)$$
(1)
= $uv + u\Delta v + v\Delta u + \Delta u\Delta v.$

$$\Delta y = u \Delta v + v \Delta u + \Delta u \Delta v. \tag{2}$$

$$\frac{\Delta y}{\Delta x} = u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + \Delta u \frac{\Delta v}{\Delta x}.$$
(3)

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx},\tag{4}$$

$$\lim_{\Delta x \to 0} \left(\Delta u \cdot \frac{\Delta v}{\Delta x} \right) = 0 \cdot \frac{dv}{dx} = 0.$$

since,

.

If u = c (constant), we have from (III),

ART. 106] THE DERIVATIVE AND SOME APPLICATIONS

$$\frac{d}{dx}(cv) = c\frac{dv}{dx}.$$
 (III')

159

106. Derivative of a quotient. If u and v are functions of x, then,

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$
 (IV)

Proof. Let $y = \frac{u}{v}$.

$$y + \Delta y = \frac{u + \Delta u}{v + \Delta v}.$$
 (1)

$$\Delta y = \frac{u + \Delta u}{v + \Delta v} - \frac{u}{v} \tag{2}$$

$$= \frac{uv + v\Delta u - uv - u\Delta v}{v(v + \Delta v)}$$
$$= \frac{v\Delta u - u\Delta v}{v(v + \Delta v)}$$
$$\frac{\Delta y}{\Delta x} = \frac{v\frac{\Delta u}{\Delta x} - u\frac{\Delta v}{\Delta x}}{v(v + \Delta v)}.$$
(3)

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$
 (4)

If u = c (constant), we have from (IV),

$$\frac{d}{dx}\left(\frac{c}{v}\right) = \frac{-c\frac{dv}{dx}}{v^2}.$$
 (IV')

107. Formulas stated in words.

I. The derivative of a constant is 0.

II. The derivative of the sum of two functions is equal to the sum of their derivatives.

III. The derivative of the product of two functions is equal to the first function times the derivative of the second plus the second times the derivative of the first.

III'. The derivative of a constant times a variable is equal to the constant times the derivative of the variable.

IV. The derivative of the quotient of two functions is equal to the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, divided by the square of the denominator.

IV'. The derivative of a constant divided by a function is equal to minus the constant times the derivative of the function divided by the square of the function.

108. Derivative of u^n . If $y = u^n$, where u is a function of x and n is a positive integer, then,

$$\frac{dy}{dx} = nu^{n-1}\frac{du}{dx}.$$
 (V)

Proof:

$$y + \Delta y = (u + \Delta u)^{n}$$

= $u^{n} + nu^{n-1}\Delta u + \frac{n(n-1)}{2!}u^{n-2}\Delta u^{2} + \ldots + \Delta u^{n}$. (1)
(See Art. 52.)

$$\Delta y = nu^{n-1}\Delta u + \frac{n(n-1)}{2!}u^{n-2}\Delta u^2 + \ldots + \Delta u^n.$$
 (2)

$$\frac{\Delta y}{\Delta x} = nu^{n-1}\frac{\Delta u}{\Delta x} + \frac{(n-1)}{2!}u^{n-2}\Delta u\frac{\Delta u}{\Delta x} + \ldots + \Delta u^{n-1}\frac{\Delta u}{\Delta x}.$$
 (3)

$$\frac{dy}{dx} = nu^{n-1}\frac{du}{dx},\tag{4}$$

ART. 108] THE DERIVATIVE AND SOME APPLICATIONS

since
$$\lim_{\Delta x \to 0} \left(\Delta u^{n-1} \frac{\Delta u}{\Delta x} \right) = 0 \cdot \frac{du}{dx} = 0.$$

If $y = x^{n}(u = x)$, (V) takes the particular form,

$$\frac{dy}{dx} = nx^{n-1}.$$
 (V')

Although the above proof is valid only for positive integral values of n, formulas (V) and (V') are true for all values of the exponent. This we shall assume without proof.

Exercises

Find the derivative of the following functions:

1.
$$y = 3x^{3} - 5x^{2} + 2x + 4$$
.
Solution. $\frac{dy}{dx} = 3\frac{d}{dx}(x^{3}) - 5\frac{d}{dx}(x^{2}) + 2\frac{d}{dx}(x)$. (See (II) and (III').)
 $= 9x^{2} - 10x + 2$. (See (V').)
Hence, $\frac{d}{dx}(3x^{3} - 5x^{2} + 2x + 4) = 9x^{2} - 10x + 2$.
2. $y = (x^{2} + 2) (3x^{3} + 4x)$.
Solution. $\frac{dy}{dx} = (x^{2} + 2)\frac{d}{dx}(3x^{3} + 4x) + (3x^{3} + 4x)\frac{d}{dx}(x^{2} + 2)$.
(See (III).)
 $= (x^{2} + 2) (9x^{2} + 4) + (3x^{3} + 4x) 2x$.
 $= 15x^{4} + 30x^{2} + 8$.
Hence, $\frac{d}{dx}(x^{2} + 2) (3x^{3} + 4x) = 15x^{4} + 30x^{2} + 8$.
3. $y = \frac{x^{2} + 3x}{x - 2}$.

Solution.
$$\frac{dy}{dx} = \frac{(x-2)\frac{d}{dx}(x^2+3x) - (x^2+3x)\frac{d}{dx}(x-2)}{(x-2)^2},$$

$$(\text{See (IV).)}$$

$$= \frac{(x-2)(2x+3) - (x^2+3x)}{(x-2)^2}$$

$$= \frac{x^2 - 4x - 6}{(x-2)^2}.$$
Hence,
$$\frac{d}{dx}\left(\frac{x^2+3x}{x-2}\right) = \frac{x^2 - 4x - 6}{(x-2)^2}.$$
4. $y = (2x^3 + 3x + 2)^3.$

Solution. This function is of the form u^n , where $u = 2x^3 + 3x + 2$ and n = 3.

Hence, using (V) we obtain,

$$\frac{dy}{dx} = 3(2x^3 + 3x + 2)^2(6x^2 + 3).$$
5. $y = \sqrt[3]{3x^2 + 2x + 5}.$
Solution. $y = (3x^2 + 2x + 5)^{1/3}.$
 $\frac{dy}{dx} = \frac{1}{3}(3x^2 + 2x + 5)^{-2/3}(6x + 2).$ (See (V).)
Hence, $\frac{d}{dx}\sqrt[3]{3x^2 + 2x + 5} = \frac{6x + 2}{3(3x^2 + 2x + 5)^{2/3}}.$
6. $y = 1 - 3x - 5x^2 - x^3.$
7. $y = x - 3x^3 - 2x^5.$
8. $y = \frac{1}{x} - \frac{1}{x^2} + \frac{3}{x^3}.$ (Use (IV').)
9. $y = \frac{3x - 1}{2 - 2x}.$
10. $y = (4x^3 - 5x)(x^2 - 5x + 2).$
11. $y = (x^2 + 3x)^3(x^3 + 5x + 2).$

.

12.
$$y = \sqrt{x^3 - 9x^2 + 4}$$
.
13. $y = \frac{(1+x)(1-x^2)}{x^2}$.

Find the slope of each of the following curves at the point indicated: 14. $y = 3x^2 + 2x + 5$, where x = -1.

Solution. The slope at any point (x, y) is $\frac{dy}{dx} = 6x + 2$. (See Ex. 1,

page 155.)

The slope at the point where x = -1 is therefore -4.

15.
$$y = \frac{x}{x+3}$$
, where $x = 3$.
16. $y = (x+2) (x^2 + 1)$, where $x = -1$.

Find the equation of the tangent to each of the following curves at the points indicated:

17. $y = 2x^2 + 3x + 1$, where x = -2.

Solution. At the point where x = -2, $y = 2(-2)^2 + 3(-2) + 1 = 3$. The slope of the tangent at the point (-2, 3) is -5. Hence, the equation of the tangent is

y - 3 = -5(x + 2). (See equation (7), page 53), or, 5x + y + 7 = 0.

18. $y = x^3 - 3x^2 + 4x + 5$, where x = 2.

19. $y = 2x^3 - x^2 - 4$, where x = 1.

20. Find the tangent to the curve $y = 3x^2 - x$ which shall have 5 for its slope. Ans. 5x - y - 3 = 0.

109. Increasing and decreasing functions. A function, y = f(x), is said to be increasing when it increases as x increases and is said to be decreasing when it decreases as x increases. Assume that figure 54 is the graph of y = f(x). Going from left to right, we notice that the curve is rising between the points P_1 and P_2 , falling between the points P_2 and P_3 , and rising to the right of P_3 . In other words, the function f(x) is increasing as x increases from x_1 to x_2 , decreasing as x increases from x_2 to x_3 , and increasing as x increases from x_3 to x_4 , and so on. We notice also that the slope of the tangent is positive when the curve is rising and negative when the curve is falling. (See Figs. 18a and 18b.) That is, the derivative of f(x)

is positive when f(x) is increasing and negative when f(x) is decreasing.

Hence, we conclude,

If $\frac{dy}{dx} > 0$, y = f(x) increases. If $\frac{dy}{dx} < 0$, y = f(x) decreases.

Example. Show that $y = x^2 + 4x + 3$ is decreasing when x = -4 and increasing when x = 0. Graph the function.

Solution.

110. Maxima and minima. Maxima and minima values of quadratic functions were discussed in Art. 49. Maxima and minima values in general will now be discussed. A maximum value of a function is that value where the function ceases to increase and begins to decrease. A minimum value of a function is that value where the function ceases to decrease and begins to increase. A maximum point is that point on the graph of a function where the graph ceases to rise and begins to fall. A minimum point is that point where the graph ceases to fall and begins to rise.

Observing Fig. 54, we notice that P_2 is a maximum point and P_3 is a minimum point. It is evident that at such points the tangent is parallel to the X-axis; that is,

$$\frac{dy}{dx}=0$$

However, the vanishing of the derivative does not mean that the function necessarily has a maximum or a minimum. The tangent is parallel to the X-axis at the point P_4 , but the function has neither a maximum nor a minimum there. It appears from the figure that the test is as follows:

At a point where $\frac{dy}{dx} = 0$, if $\frac{dy}{dx}$ changes from positive to negative (as x increases), y is a maximum; if $\frac{dy}{dx}$ changes from negative to positive, y is a minimum; if $\frac{dy}{dx}$ does not change sign, y is neither a maximum nor a minimum.

Example. Find the maximum and minimum values of the function, $y = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 5$. Graph the function.

Solution.

$$y = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 5.$$
 (1)

$$\frac{dy}{dx} = x^2 - x - 6 = (x+2)(x-3).$$
(2)

When $\frac{dy}{dx} = 0$, x = -2, 3.

When $x = -2, y = 12\frac{1}{3}$.

When x = 3, $y = -8\frac{1}{2}$.

When x < -2, we notice that $\frac{dy}{dx} > 0$ and when x > -2we find that $\frac{dy}{dx} < 0$. Hence, the point $(-2, 12\frac{1}{3})$ is a maximum point on the graph of the function and $12\frac{1}{3}$ is a maximum value of the function. When x < 3, $\frac{dy}{dx} < 0$; and when x > 3, $\frac{dy}{dx} > 0$. Hence, the point $(3, -8\frac{1}{2})$ is a minimum point on the graph and $-8\frac{1}{2}$ is a minimum value of the function. (See Fig. 56.)

FIG. 56.

Exercises

In the following exercises determine the value of x for which $\frac{dy}{dx} = 0$. Determine the corresponding values of y and show whether these values are a maximum or a minimum.

1. $y = x^2 - 4x + 5$. Minimum at (2, 1). 2. $y = -x^2 + 6x + 7$. Maximum at (3, 16). 3. $y = x^3 + 3x^2 - 9x - 27$. Maximum at (-3, 0), minimum at (1, -32). 4. $y = 3x^3 - 9x^2 - 27x + 30$. x = -1, gives y = 45, maximum. x = 3, gives y = -51, minimum.
5. $y = x^3 - 8, x = 0$, gives neither a maximum nor a minimum. 6. $y = x^3 - 3x^2 + 6x + 10$. Neither maximum nor minimum. 7. $y = \frac{1 - x + x^2}{1 + x - x^2}$. $x = \frac{1}{2}$, gives $y = \frac{3}{5}$, minimum. 8. $y = \frac{x^2 - 7x + 6}{x - 10}$. x = 4, gives maximin; x = 16, gives mini-

mum.

111. Applications of the theory of maxima and minima. It was shown in Art. 110 that, at a point where the first derivative is 0, a function has either a maximum or a minimum value (provided the derivative changes sign at the point). This theory will now be applied to some practical problems.

Example. A box is to be made of a piece of card board 8 inches square by cutting equal squares out of the corners and turning up the sides. Find the volume of the largest box that can be made in this way.

Solution. Let x = the length of the side of each of the squares cut out. Then the volume of the box is

$$V = x(8 - 2x)^2. (1)$$

$$\frac{dy}{dx} = (8 - 2x)(8 - 6x).$$
 (2)

Making

$$\frac{dV}{dx} = 0$$
, we find,

 $x=4,\frac{4}{3}.$

When x = 4, V = 0. Hence, the value x = 4 can not be used.

When $x = \frac{4}{3}$, $V = \frac{1024}{27}$, and this is a maximum value.

Problems

1. Solve problems 5, 6, 7, 8, and 9, pages 70 and 71, making use of the derivative.

2. A box with a square base and open top is to hold 108 cubic feet. Find the dimensions that will make its construction most economical.

Solution. Let us assume one side of the base to be x and the altitude to be y. It is evident here that the thing desired is to minimize the surface. Now the surface consists of the four sides and the base. Hence, we may write:

$$S = 4xy + x^2. \tag{1}$$

Since the volume is to be 108 cubic feet, we may write

$$x^2y = 108, \text{ or } y = \frac{108}{x^2}.$$
 (2)

Substituting the above value of y in (1) we obtain,

$$S = \frac{432}{x} + x^2.$$
 (3)

$$\frac{dS}{dx} = \frac{-432}{x^2} + 2x.$$
 (4)

When

$$\frac{dS}{dx} = 0,$$

2x³ = 432, x = 6. (5)

Making x = 6 in (2), we see that y = 3. Hence, the dimensions of the box are $6 \times 6 \times 3$.

3. A silo is made in the form of a cylinder, with a hemispherical roof; there is a floor of the same thickness as the wall and roof. Find the most economical shape. Ans. Diameter = total height.

Silos are not built this way. Why not?

лg

4. A watering trough is to hold 500 gallons. Find the dimensions that will make its construction most economical if its base is to be a rectangle with one side three times the other. (There are 231 cubic inches in one gallon.) Ans. Base 3.1 feet by 9.3 feet.

Altitude 2.32 feet.

CHAPTER XV

STATISTICS AND APPLICATIONS

112. Introduction. In Chapter V it was pointed out that many functional relations that can not be expressed by an algebraic equation may be exhibited by means of a graph. The graph usually gives a better view of a numerical situation than a table. By letting the eye follow the graph we get at once an approximate picture of fluctuations in the series of values. If we want to study such variations more closely or make comparisons between two or more sets of data, numerical methods are usually clearer and more convenient. The branch of mathematics that deals with quantitative data affected to a marked extent by a multiplicity of causes is called statistics.

113. Frequency tables. The simplest way of presenting a series of numerical values is simply to list the values in their natural order in a table. As for instance Average Farm Prices December First on pages 37 and 38. We may, however, group the values and get what we call a frequency table. The price of corn in the table referred to varies from $21.5 \notin$ in 1896 to $136.5 \notin$ in 1918. We divide the total range into classes, for instance $20 \notin$ but less than $30 \notin$, $30 \notin$ but less than $40 \notin$, and so on, and count the number of cases in each group. We find 5 cases between $20 \notin$ and 29.9 %, 16 cases between $30 \notin$ and 39.9 %, 15 cases between $40 \notin$ and 49.9 %, 5 cases between $50 \notin$ and 59.9 %, 1 case between $70 \notin$ and 79.9 %, 1 case between $90 \notin$ and 99.9 %, 0 case between $100 \notin$ and 109.9 %, 0 case between $110 \notin$ and

ART. 114]

119.9¢, 1 case between 120¢ and 129.9¢, and 2 cases between 130¢ and 139.9¢. These facts are recorded in a frequency table as follows:

Price	Number of Cases	Price	Number of Cases
20-29 9	5	80- 89 9	1
30-39.9	16	90-99.9	1
40-49 9	15	100-109.9	0
50 - 599	5	110-119.9	0
60-69.9	10	120-129.9	1
70-79.9	1	130-139 9	2

The size of the class, or the *class interval*, is arbitrary, but should be governed by the total range and the number of cases.

Exercises

Construct similar frequency tables for prices on the other farm products listed, using the following class intervals:

1.	Wheat, 10¢.	4.	Rye, 10¢.
2.	Oats, 5¢.	5.	Potatoes, 10¢.
3.	Barley, 5¢.	6.	Hay, 50¢.

114. Measures of Central Tendency. If we study, for instance, two tables giving prices for a certain grade of hogs day by day for two years, we will find that there is much overlapping in prices. The question in which year were hog prices higher could not be answered directly from such tables. To make a comparison we must have a single price that is in some measure representative of the prices for the year, or what we call a *measure of central tendency*. We shall consider three such measures: *arithmetic mean, median, and mode*.

Arithmetic mean (or what is commonly called the average)

is simply the sum of the measures divided by their number. Or, expressed in a formula,

$$M = \frac{\Sigma X}{N}.$$
 (1)

Median is the middlemost measure, when the measures have been arranged in order of magnitude. For example, in the series

1, 3, 5, 9, 10, 12, 15, 19, 24, 30, 35

12 is the median, for there are five measures smaller than 12 and five measures larger than 12.

If the series has an even number of terms there is no middlemost measure, and we define the median as a measure halfway between the two middle measures. For example in the series

11 is the median, because it is halfway between 10, the fifth measure, and 12, the sixth measure.

Mode is the measure that occurs most frequently in the series. Consider for example the following table of representative hog sales at Sioux City Stock Yard, January 4, 1926:

Number	Weight	Price	Number	Weight	Price
14	233	\$10.90	4	237	\$11.00
33	208	10.90	27	163	11.10
35	226	10.95	50	153	11.25
22	240	11.00	36	162	11.25
6	250	11.00	2	165	11.30
6	245	11.00	· 11	175	11.30

\$11.25 is the mode, because the greatest number of hogs, or 86, were sold at this price. In market reports a modification of

the mode is often used, namely the *bulk of sales*. For instance in the above report, bulk of sales is \$10.95 to \$11.25.

115. Determination of the arithmetic mean from a frequency table. We here make the assumption that the measures within the class are all concentrated at the *midpoint of the class interval*. For example, in the frequency table of prices of corn (Art. 113) there were 5 cases where the price was between $20.0 \notin$ and $29.9 \notin$. We here assume the price for all five cases within this class to be $25 \notin$, the price for all 16 cases within the next class to be $35 \notin$, and so on. We then obtain the following table (f stands for frequency, or number of cases in the class):

Class Interval	f	X	fX		
20-29.9	5	25	125		
30-39.9	16	35	560		
40-49.9	15	45	675		
50-59.9	5	55	275		
60-69.9	10	65	650		
70-79.9	1	75	75		
80 89 S	1	85	85		
90 99.9	1	95	95		
100-109 9	0	105	0		
110-119 9	0	115	0		
120-129.9	1	125	125		
130-139 9	2	135	270		
		$\Sigma f X =$	2935		
$M = \frac{\Sigma f X}{N}$ $M = \frac{2935}{57} = 51.5 e$					

This value of the arithmetic mean is only approximate and usually differs somewhat from the value obtained from the summation of the original values divided by their number. In our example we would have found 51.9 ¢ from the original data. The values computed by the two methods become more nearly equal as the number of cases increases and the size of the class interval decreases.

Example. Compute the average prices of wheat, oats, barley, rye, potatoes, and hay for the years 1870 to 1926 from the original data and from the frequency tables.

116. Determination of the median from a frequency table. If the values are arranged in a frequency table we make the assumption, when computing the median, that the values within an interval are uniformly distributed in the interval. For example take the frequency table showing the price of corn. There are 57 cases and according to the definition $\frac{5.7}{2}$ or 28.5 measures must be below and 28.5 measures above the median. If we start at the lower end we find that there are 21 cases below 40c and 15 cases in the class 40 - 49.9e. The median must therefore be somewhere in this interval. Subtracting 21 from 28.5 we obtain 7.5, and the median must be the 7.5th measure in the class 40 - 49.9 e. As there are 15 measures in this class the 7.5th measure must be $\frac{7.5}{15}$ · 10 or 5. Add this value to 40 and we get 45¢ as the median. The same value would be obtained if we started at the higher end. In the groups above 50 there are 21 measures, and the median must be the (28.5 - 21) or 7.5th measure in the interval 40 - 49.9ccounting from the top. $\frac{7.5}{15} \cdot 10 = 5$, which value should be subtracted from 50c which again gives us 45c.

117. Variability. It is often desirable to have some measure of the variability of a series of values; for instance, prices of some farm product during a year. We have several such values of variability. Those considered here are the *range*,

ART. 117] STATISTICS AND APPLICATIONS

the mean deviation, the quartile deviation, and the standard deviation.

The range. Take the two series

- (1) 5, 9, 10, 14, 16, 16, 18, 24, 31.
- $(2) \quad 9, 12, 14, 15, 16, 17, 19, 20, 22.$

Both have a mean of 16 and a median of 16; hence they are alike as far as central tendency is concerned. Yet, they are rather different. Series (1) includes measures from 5 to 31, while (2) varies only from 9 to 22. The difference between the highest and the lowest value in a series of measures is called the range. Series (1) has a range of 26, while series (2) has a range of only 13. The range is a measure of variability but gives a very incomplete picture of a series, being dependent only upon the highest and lowest measures.

The mean deviation. If we determine the amount that each of the terms in series (1) varies from the mean, we get the series

the mean of which is 578. This value is called the mean deviation. For series (2) we get a mean deviation of 3.11. The mean deviation is a measure of the tendency of the individual measures in a series to scatter. The mean deviation may be calculated from any measures of central tendency, the mean, median or mode. It should, therefore, always be indicated from which measure of central tendency the mean deviation is calculated.

Exercise

Calculate the mean deviation from the mean for prices of corn, wheat, oats, barley, rye, potatoes, and hay for the years 1870–1926. Try to do this with prices arranged in frequency tables and compare the value so determined for one of the products with the value obtained from the use of the original tabulation. The quartile deviation or semi-interquartile range. As we determined the median as a point on a scale of values below which half of the number of cases are found and above which the other half are found, so we may determine two other points such that one-fourth of the number of values are found below and three-fourths above one of these points, and three-fourths below and one-fourth above the other point. Half of the difference between these two measures is called the semi-interquartile range and is a measure of the spread or variability of the series.

If the series of values are given in order of their magnitude we may simply count off one-fourth of the number of cases from the top and one-fourth from the bottom of the series and take the mean of the values so obtained. If the series is given as a frequency table the work is done practically the same way as in calculating the median. In our previous example on prices of corn we have 57 cases or 14.25 in each quartile. The first quartile point is at $30 + \frac{14.25 - 5}{16} \times 10$ or $35.8 \not \epsilon$ and the third quartile point (first from the top) at $70 - \frac{14.25 - 6}{10} \times 10$ or $61.8 \not \epsilon$. The semi-interquartile range is therefore $\frac{61.8 - 35.8}{2}$ or $13 \not \epsilon$.

Exercise

Calculate the semi-interquartile ranges for prices of wheat, oats, barley, rye, potatoes and hay for the years 1870-1916.

The standard deviation. The most generally used measure of variability is the standard deviation, obtained in the following way: Calculate the deviations from the mean, square these deviations, add the squares, divide by the number of cases, and extract the square root of the quotient. The standard deviation is usually

ART. 117] STATISTICS AND APPLICATIONS

designated by the Greek letter σ (sigma) and may be expressed by the following formula,

$$\sigma = \sqrt{\frac{d^2}{N'}},\tag{2}$$

where d represents deviations from the mean, and N the number of cases.

As the deviations are usually rather awkward numbers to handle the formula may be expressed in the original measures X.

By substituting d = X - M; $M = \frac{\Sigma X}{N}$; $d = X - \frac{\Sigma X}{N}$ in (2) we have

$$\sigma = \sqrt{\frac{\Sigma\left(X - \frac{\Sigma X}{N}\right)^2}{N}},$$

$$\sigma = \sqrt{\frac{\Sigma\left(X^2 - \frac{2X\Sigma X}{N} + \left(\frac{\Sigma X}{N}\right)^2\right)}{N}},$$

$$\sigma = \sqrt{\frac{\Sigma X^2}{N} - \frac{2\Sigma(X\Sigma X)}{N} + \frac{\Sigma(\Sigma X)^2}{N^3}},$$

$$\sigma = \sqrt{\frac{\Sigma X^2}{N} - \left(\frac{\Sigma X}{N}\right)^2},$$
(3)

since, $\Sigma(X\Sigma X) = (\Sigma X)^2$, and $\frac{\Sigma(\Sigma X)^2}{N^3} = \frac{(\Sigma X)^2}{N^2}$.

Although formula (3) looks more formidable than (2), it is in reality much simpler. Expressed in words, the operations are as follows: Square the original measures, add the squares, and divide by the number of cases. This gives $\frac{\Sigma X^2}{N}$. Next, add the original measures, divide the sum by N, and square the quotient. This gives $\left(\frac{\Sigma X}{N}\right)^2$. Subtract $\left(\frac{\Sigma X}{N}\right)^2$ from $\frac{\Sigma X^2}{N}$ and extract the square root of the difference. This gives σ .

If the series of values is given in the form of a frequency table, we must multiply each value by its frequency, and our formulas become

$$\sigma = \sqrt{\frac{\Sigma f d^2}{N}},\tag{4}$$

$$\sigma = \sqrt{\frac{2fX^2}{N} - \left(\frac{2fX}{N}\right)^2}.$$
(5)

The chief objection to the range as a measure of variability has already been illustrated. The addition of one or two extreme cases may increase the range to several times its former value without actually causing any great change in the tendency of the cases to group themselves about some central value. The quartile deviation almost entirely eliminates the effect of extreme cases, a condition which is not always wholly desirable. It is also unreliable in those instances in which the distribution of the items under discussion departs decidedly from symmetry. In such situations the mean deviation is much more useful. The standard deviation, making use, as it does, of the squares of the deviations of all items from the mean, is affected strongly by extreme cases but reduces the effect somewhat by taking the square root of the sum. The greatest advantage of this measure is the ease with which it lends itself to algebraic manipulation. In making use of any of these measures of variability to compare distributions, the size of the objects involved must be kept in mind. As an example, suppose we consider the physical measurements of a group of men. A range of two inches in their heights would be almost negligible, while a range of two inches in the lengths of their feet would indicate a wide variety of sizes.

If we divide the quartile measure by the sum of the two values which were used in its computation, and divide each of the other measures by the arithmetic mean of the distribution to which they are applied, our measures become coefficients and allow us to compare more conveniently distributions of items of widely different magnitudes.

Example. Calculate the standard deviation of prices of corn for 1870–1926.

Class Interval	f	X	fX	fX^2
20-29.9	5	25	125	3,125
30-399	16	35	560	19,6CO
40-499	15	45	675	30,375
50-599	5	55	275	15,125
60-69.9	10	65	650	42,250
70-79.9	1	75	75	5,625
80-899	1	85	85	7,225
90-999	1	95	95	9,025
100-109.9	0	105	0	0
110-119.9	0	115	0	0
120-129 9	1	125	125	15,625
130-139 9	2	135	270	36,450
	$\Sigma f = 57$		$\Sigma f X = 2935$	$184,425 = \Sigma f X^2$

$$\sigma = \sqrt{\frac{184,425}{57} - \left(\frac{2935}{57}\right)^2} = 25.2\phi$$

Exercises

1. Calculate the standard deviation of prices of wheat, oats, barley, rye, potatoes, and hay during the years 1870–1926.

2. Show that formula (3) follows from (2).

118. Correlation. In the physical sciences the value of a variable is usually dependent upon, or, as we say, is a function

of a single variable or at least very few other variables, and one or more constants. For example, the electric current that flows through a conductor depends upon the electromotive force and the resistance of the conductor. Expressed as a functional relationship we may write

$$C = f(E,R).$$

In the laboratory we are usually able to keep all of the independent variables except one constant and allow this one to vary at will, thus arriving at a mathematical formula for the relationship. We may for instance keep the electromotive force constant and vary the resistance; we than find that the current varies inversely as the resistance. Again we may keep the resistance constant and vary the electromotive force, thus finding that the current varies directly as the electromotive force. By properly selecting the units in which we measure we may reduce all the constants to the value 1 and establish the formula,

$$C = \frac{E}{R}$$

where C = the current in amperes, E = electromotive force in volts, and R = resistance in ohms.

In the biological and still more so in the social sciences the number of variables is usually large and it is difficult or in many cases impossible to keep certain variables constant while varying others in the course of an experiment. We often have to measure the various factors of a phenomenon as it occurs without our controlling influence and by means of statistical analysis of the observed values draw conclusions regarding their interdependence. We may be able to establish a *degree* of relationship even if we are unable to determine the *nature* of this relationship.

The degree of relationship between two series of values of two variables is usually measured by the *coefficient of correlation*. This coefficient may have values from +1 through 0 to -1. If there is a perfect agreement between the variation of the two variables so that both increase or decrease together the correlation is said to be perfect and positive. Such a correlation exists between the values of current and electromotive force if the resistance is kept constant. The coefficient of correlation would in this case be +1. If on the other hand an increase in one variable always is accompanied by a decrease in the other variable the correlation is perfect and negative, = -1. Such would be the relationship between current and resistance if voltage is kept constant. If there is no relationship between the variables but an increase in one is just as likely to be accompanied by a decrease as by an increase in the other variable, the coefficient of correlation is 0.

There may, however, be a *tendency* for one variable to increase or decrease as the other variable increases or decreases, although the correspondence is not perfect. In such a case we get a coefficient of correlation between 0 and +1. If, on the other hand one variable tends to increase as the other variable decreases although imperfectly, we get values of the coefficient of correlation between 0 and -1.

After this description of the meaning of the term coefficient of correlation we shall give the two most commonly used methods of computing said coefficient, omitting the rather complicated mathematical theory on which they are based.

119. The rank method of correlation. This coefficient is usually designated by ρ (rho, Greek letter) and differs slightly from the coefficient r determined by the product-moment formula as described below.

Let the following two series of values be the mean prices of wheat and corn for ten weeks:

	Wheat	Corn
1st week	\$1.25	\$0 67
2nd week	1.28	0.65
3rd week	1.33	0.75
4th week	1.40	0.76
5th week	1.36	0.74
6th week	1.41	0.77
7th week	1.34	0.72
8th week	1.30	0 70
9th week	1.35	0.73
10th week	1.38	0.71

Rank the prices of each, assigning to the lowest price the rank 1 and to highest price the rank 10. We then get

	Wheat Rank	Corn Rank	Rank of Wheat Minus Rank of Corn $= d$	d^2
1st week	1	2	-1	1
2nd week	2	1	1	1
3rd week	4	8	-4	16
4th week	9	9	0	0
5th week	7	7	0	0
6th week	10	10	0	0
7th week	5	5	0	0
8th week	3	3	0	0
9th week	6	6	0	0
10th week	8	4	4	16
				$\Sigma d^2 = 34$

The coefficient of rank correlation, C, is then obtained by the formula,

$$C = 1 - \frac{6\Sigma d^2}{N(N^2 - 1)},\tag{6}$$

ART. 120]

where N is the number of cases and d is the differences in rank.

$$C = 1 - \frac{6 \times 34}{10(10^2 - 1)}$$

= 1 - $\frac{2}{9} \frac{94}{96} = 1 - 0.206 = 0.794.$

The coefficient of rank correlation takes into account the ranks of the variables only, but not their magnitude. If two or more terms are equal they are given the same rank. For instance, if the 12th and 13th terms are equal, they are both given the rank 12.5. If the 12th, 13th, and 14th are alike, all three are given the rank 13, etc.

Exercise

Determine by the rank method the correlations between prices of wheat on the one hand and prices of (a) corn, (b) oats, (c) barley, (d) rye, (e) potatoes, (f) hay, on the other hand, as given on pp. 37ff.

120. The product moment formula or the Pearson correlation coefficient. This formula is

$$r = \frac{\Sigma x y}{N \cdot \sigma_x \cdot \sigma_y},\tag{7}$$

where x are the deviations of the terms in the X-series from their mean (with proper signs), y the variations of the terms in the Y-series from their mean, N the number of cases, σ_x the standard deviation of the X-series, and σ_y the standard deviation of the Y-series.

Recalling that $\sigma_x = \sqrt{\frac{\Sigma x^2}{N}}$ and $\sigma_y = \sqrt{\frac{\Sigma y^2}{N}}$ we may substitute these values in (7) and get

$$r = \frac{\Sigma xy}{N \sqrt{\frac{\Sigma x^2}{N}} \sqrt{\frac{\Sigma y^2}{N}}},$$

AN INTRODUCTION TO MATHEMATICS [CHAP. XV

$$r = \frac{\Sigma xy}{\sqrt{\Sigma x^2 \cdot \Sigma y^2}}.$$
(8)

	Price of Wheat in Cents X	Price of Corn in Cents Y	$X - M_x$ or x	Y – M _y or y	xy	x^2	y ²
1st	125	67	-9	- 5	+45	81	25
2nd.	128	65	-6	-7	+42	36	49
3rd .	133	75	-1	+3	- 3	1	9
4th	140	76	+6	+4	+24	36	16
5th	136	74	+2	+2	+ 4	4	4
6th	141	77	+7	+5	+35	49	25
7th.	134	72	0	0	0	0	0
8th	130	70	-4	-2	+8	16	4
9th	135	73	+1	+1	+ 1	1	1
10th	138	71	+4	-1	- 4	16	1
•	1						

Example

 $\Sigma X = 1340$

 $\Sigma x^2 = 240$ $\Sigma y^2 = 134$

$$\Sigma xy = +152$$

$$M_x = \frac{\Sigma X}{N} = 134 \qquad M_y = \frac{\Sigma Y}{N} = 72$$
$$r = \frac{\Sigma xy}{\sqrt{\Sigma x^2 \Sigma y^2}} = \frac{+152}{\sqrt{240 \times 134}} = 0.847.$$

 $\Sigma Y = 720$

If the means of the X- and Y-series come out with decimals, this method involves considerable numerical work. We may then employ to advantage a modification of the formula that uses the original X- and Y-values.

Recalling that

$$x = X - M_x = X - \frac{\Sigma X}{N},$$
$$y = Y - M_y = Y - \frac{\Sigma Y}{N},$$

and substituting these values in (8), we get,

$$r = \frac{\Sigma\left(X - \frac{\Sigma X}{N}\right)\left(Y - \frac{\Sigma Y}{N}\right)}{\sqrt{\Sigma\left(X - \frac{\Sigma X}{N}\right)^2 \Sigma\left(Y - \frac{\Sigma Y}{N}\right)^2}}$$
$$= \frac{\Sigma X Y - \frac{\Sigma X \Sigma Y}{N}}{\sqrt{\left(\Sigma X^2 - \frac{(\Sigma X)^2}{N}\right)\left(\Sigma Y^2 - \frac{(\Sigma Y)^2}{N}\right)}}$$
(9)

The work can be further reduced due to the fact that the subtraction of a constant term from either series does not affect the coefficient of correlation. We could, for instance, in our example subtract 124 from all the X-values and 64 from all the Y-values, thus materially reducing the size of the figures with which we have to operate.

Exercise

Determine by the product moment formula the correlations between prices of wheat, on the one hand, and prices of (a) corn, (b) oats, (c) barley, (d) rye, (e) potatoes, (f) hay, on the other hand, as given on pp. 37ff.

CHAPTER XVI

PROBABILITY

121. Meaning of probability. A box contains four white and five black balls. One ball is drawn at random and then replaced and this process is continued indefinitely. What proportion of the balls drawn will be black? Here there are nine balls to be drawn or we may say there are nine possibilities, and either of the nine balls is equally likely to be drawn or any one of the nine possibilities is equally likely to happen. Of the nine possibilities, any one of four would result in drawing a white ball and any one of five would result in drawing a black ball. We would say, then, that four possibilities of the nine are favorable to drawing a white ball and the other five possibilities are favorable to drawing a black ball. We put the above statement in another way by saying that in a single draw the probability of drawing a white ball is $\frac{1}{2}$ and the probability of drawing a black ball is §. This does not mean that out of only nine draws, exactly four would be white and five black. But it does mean that, if a single ball were drawn at random and were replaced and this process continued indefinitely, # of the balls drawn would be white and § would be black. Or the ratio of the number of white balls drawn to the number of black balls drawn would be as 4 to 5.

Reasoning similar to the above led LaPlace to formulate the following definition of probability: If h is the number of possible ways that an event will happen and f is the number of possible ways that it will fail and all of the possibilities are equally likely, the probability that the event will happen is $\frac{h}{h+f}$ and the prob-

ability that it will fail is
$$\frac{f}{h+f}$$
.

It is evident, then, that the sum of the probability that an event will happen and the probability that it will fail is 1, the symbol for certainty.

In analyzing a number of possibilities we must be sure that each of them is *equally likely* to happen before we attempt to apply the above definition of probability.

Example. What is the probability that a man, age 30 and in good health, will die before age 35? In this case we might reason thus: The event can happen in only one way and fail in only one way, and consequently, the probability that he will die before age 35 is $\frac{1}{2}$. But this reasoning is false for we are assuming that living five years and dying within five years are equally likely for a man now 30 years old. But this is not the actual experience. This example will be discussed in Art. 122.

122. Probability based upon observation or experience. There are many events in which it is impossible to enumerate all the equally likely ways in which the event can happen or fail. Yet by means of experience we may determine to a fair degree of accuracy the probability that a future event will happen at a certain time. If we have observed that an event has happened h times out of n possible ways, where n is a large number, we conclude that h/n is a fair estimate of the probability that the event will again happen and our confidence in this estimate increases as the number of possibilities, n, increases.

We are now ready to solve the problem which was stated in Art. 121. The American Experience Table of Mortality shows that out of 85,441 men living at age 30, the number of living at age 35 will be 81,822. Then the number dying before age 35 is 85,441 - 81,822 or 3619. Hence the probability that a man aged 30 will die before age 35 is $\frac{3619}{85,441} = .04235$. In this problem n = 85,441 and h = 3619.

We have previously stated that the value h/n is only an estimate, but it is accurate enough (when n is large enough) for many practical purposes.

123. Meaning of mortality table. If it were possible to trace a large number of persons, say 100,000, living at age 10 until the death of each occurred, and a record kept of the number living at each age x and the number dying between the ages x and x + 1, we would have a mortality table.

However, mortality tables are not constructed by observing a large number of individuals living at a certain age until the death of each, for it is evident that this method would not be practicable, but would be next to impossible, if not impossible. Mechanical methods have been devised for the construction of such tables, but the scope of this text does not permit of the discussion of these methods.

Table IV (back of book) is known as the American Experience Table of Mortality and is based upon the records of the Mutual Life Insurance Company of New York. It was first published in 1868 and is used by life insurance companies in America to determine the premium to charge for their policies. It will be used in this book as a basis for all computations dealing with mortality statistics. It consists of five columns as follows: The first gives the ages running from 10 to 95, the different ages being denoted by x; the second gives the number living at the beginning of each age x and is denoted by l_x ; the third gives the number dying between ages x and x + 1 and is denoted by d_x ; the fourth gives the probability of dying in the year from age x to age x + 1 and is denoted by q_x ; and the fifth gives the probability of living a year from age x to age x + 1 and is denoted by p_x .

18**9**

Exercises

1. What is the probability that a man aged 40 will live to be 65? What is the probability that a man of the same age will die before reaching age 65? What is the sum of the two probabilities? (See solution of problem in art. 122.)

2. Suppose 100,000 lives age 10 were insured for one year, by a company for \$1000 each. Using the American Experience Table as a basis and not figuring interest, what would be the cost to each individual? Ans. \$7.49.

3. What would be the cost of \$1000 insurance for one year on the life of an individual 30 years old? (Assume for convenience that 85,441 individuals are insured by the same company.) Ans. \$8.43.

124. Permutations. Number of permutations of things all different. Before discussing permutations we state the following principle, which is fundamental: If one thing may be done in p ways and after it has been done in one of these ways, another thing may be done in q ways, then the two things together may be done in the order named in pq ways.

It is evident that for each of the p ways of doing the first thing there are q ways of doing the second thing and the total number of ways of doing the two in succession is pq.

This principle may be extended to three or more things.

Example. A man may go from A to B over any one of 4 routes and from B to C over any one of 7 routes. In how many ways may he go from A to C through B? Ans. 28.

Each of the different ways that a number of things may be arranged is known as a permutation of those things. For example the different arrangements of the letters abc are—abc, acb, bac, bca, cab, cba. There are 3 different ways of selecting the first letter and after it has been selected in one of these ways there remain 2 ways of selecting the second letter. Then the first two letters may be selected in 3×2 or 6 ways. It is clear that we have no choice in the selection of the third letter and consequently the total number of permutations (or arrangements) of the three letters is 6.

Now suppose there are n things all different and we wish to find the number of permutations of these things taken r at a time, n > r.

Since only r of the n things are to be used at a time, there are only r places to be filled. The first place may be filled by any one of the n things and the second place by any one of the n-1 remaining things. Then, the first and second places together may be filled in n(n-1) ways. The third place may be filled by any one of the n-2 remaining things. Hence the first three places may be filled in n(n-1)(n-2) ways. Reasoning in a similar way we see that after r-1 places have been filled, there remain n - (r-1) things from which to fill the rth place. Applying the fundamental principle stated above we have

$${}_{n}P_{r} = n(n-1)(n-2) \dots (n-r+1)$$
 (1)

When r = n, (1) becomes,

$${}_{n}P_{n} = n(n - 1)(n - 2) \dots 3 \cdot 2 \cdot 1 = n!$$
 (2)

Note. The symbol $n^{P}r$ is used to denote the number of permutations of *n* things taken *r* at a time. n! is a symbol which stands for the product of all the integers from 1 up to and including *n*, and is read "factorial" *n*.

Exercises

1. A man has two suits of clothes, three shirts, four ties and two hats. In how many ways may he dress by changing suits, shirts, ties and hats?

2. How many arrangements of the letters in the word "Vermont" can be made, using in each arrangement

(a) 4 letters? (b) all the letters?

3. How many signals could be made from 4 different flags?

4. Four persons enter a street car in which there are 7 vacant seats. In how many ways may they be seated?

125. Combinations. Number of combinations of things all different. By a combination we mean a group of things without any regard for order of arrangement of the individuals within the group. For example abc, acb, bac, bca, cab, cba are the same combination of the letters abc, but each arrangement is a different permutation.

By the number of combinations of n things taken r at a time is meant the number of different groups that may be formed from n individuals when r individuals are placed in each group. For example ab, ac, bc are the different combinations of the letters abc when two letters are used at a time.

The symbol ${}_{n}C_{r}$ is used to stand for the number of combinations of *n* things taken *r* at a time. We will now derive an expression for ${}_{n}C_{r}$. For each one of the ${}_{n}C_{r}$ combinations there are *r*! different permutations. And for all of the ${}_{n}C_{r}$ combinations there are ${}_{n}C_{r}r!$ permutations, which is the number of permutations of *n* things taken *r* at a time. Hence,

$$_{n}C_{r}r! = _{n}P_{r}$$

 $_{n}C_{r} = \frac{_{n}P_{r}}{_{r!}}$

and

Since,

Since,
$${}_{n}P_{r} = n(n-1)(n-2) \dots (n-r+1),$$

we have ${}_{n}C_{r} = \frac{n(n-1)(n-2) \dots (n-r+1)}{r!}.$ (3)

Exercises

1. Find the number of combinations of 8 things taken 5 at a time. Solution. Here n = 8 and r = 5.

Then, ${}_{b}C_{b} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{5 \cdot 4 \cdot 3 \cdot 2} = 56.$

2. How many committees of 5 men can be selected from a group of 12 men?

3. Out of 7 Englishmen and 6 Americans, how many committees of 3 Englishmen and 2 Americans can be chosen? Ans. 525.

4. How many different sums can be made up from a cent, a nickel, a dime, a quarter, and a dollar? Ans. 31.

5. An urn contains 4 white and 9 black balls. If 5 balls are drawn at random, what is the probability that (a) all are black, (b) 2 white and 3 black?

Solution. (a) The total number of ways that 5 balls may be drawn from 13 balls is ${}_{13}C_5$ or 1287 ways. And the number of ways that 5 black balls may be drawn is ${}_{6}C_5$ or 126 ways. Hence, the probability of drawing 5 black balls is $\frac{126}{1287}$ or $\frac{14}{143}$.

(b) 2 white balls may be drawn in ${}_{4}C_{2}$ ways or 6 ways. And for each one of these 6 ways of drawing 2 white balls, 3 black balls may be drawn in ${}_{9}C_{3}$ or 84 ways. Then 2 white balls and 3 black balls may be drawn together in 6.84 or 504 ways (see fundamental principle, art. 124). Hence, the probability of drawing 2 white and 3 black balls is $\frac{5.64}{12.87}$ or $\frac{5.6}{14.8}$.

6. A bag contains 5 white, 6 black and 8 red balls. If 4 balls are drawn at random, what is the probability that (a) all are black, (b) 2 white and 2 red, (c) 2 black and 2 white, (d) 1 white, 1 black and 2 red?

126. Compound events. We may think of an event as composed of two or more simpler events. These component simpler events may be independent, dependent or exclusive. Two or more events are said to be independent or dependent when the occurrence of any one of them at a given trial does not or does affect the occurrence of the others. Two or more events are said to be exclusive when the occurrence of any one of them on a particular occasion excludes the occurrence of another on that occasion. We give now three theorems without proof.

Theorem I. If $p_1, p_2 \ldots p_r$ are the separate probabilities of r independent events, the probability that all of these events will

ART. 126]

PROBABILITY

happen together at a given trial is the product of their separate probabilities, that is,

$$p = p_1 \cdot p_2 \cdot p_3 \ldots p_r. \tag{4}$$

Theorem II. Let p_1 be the probability of a first event; let p_2 be the probability of a second event after the first has happened; let p_3 be the probability of a third event after the first two have happened; and so on. Then the probability that all of these events will occur in order is

$$p = p_1 \cdot p_2 \cdot p_3 \ldots p_r. \tag{5}$$

Theorem III. If p_1, p_2, \ldots, p_r are the separate probabilities of r mutually exclusive events, the probability that one of these events will happen on a particular occasion when all of them are in question is

$$P = p_1 + p_2 + p_3 \ldots + p_r.$$
 (6)

Exercises

1. The probability that A will live 15 years is $\frac{1}{7}$, the probability that *B* will live 15 years is $\frac{1}{6}$, and the probability that *C* will live 15 years is $\frac{1}{8}$. What is the probability that all three will live 15 years?

Solution. We have here three independent events, where $p_1 = \frac{1}{7}$, $p_2 = \frac{1}{6}$, $p_3 = \frac{1}{8}$.

Hence, $P = \frac{1}{7} \cdot \frac{1}{6} \cdot \frac{1}{8} = \frac{1}{336}$.

2. Find the probability of drawing 2 white balls in succession from a bag containing 5 white and 6 black balls, if the first ball drawn is not replaced before the second drawing is made.

Solution. We have here two dependent events. The probability that the first draw will be white is $\frac{5}{5+6} = \frac{5}{11}$ the probability that the second draw will be white is $\frac{4}{4+6} = \frac{2}{5}$. Then $p_1 = \frac{5}{11}$ and $p_2 = \frac{2}{5}$. Hence,

$$P = \frac{5}{11} \cdot \frac{2}{5} = \frac{2}{11} \cdot (5) \text{ Art. 126}$$

3. Five coins are tossed at once. What is the probability that all will be heads?

4. A bag contains 3 white, 4 black, and 6 red balls. One ball is drawn and not replaced, then a second ball is drawn and not replaced and then a third ball is drawn. What is the probability (a) that a ball of each color will be drawn, (b) that 2 blacks and 1 red will be drawn, (c) that all will be red?

5. Suppose that in example 4 the balls were replaced after each draw. Then answer (a), (b), and (c).

6. Three men of ages 25, 30, 32 respectively form a partnership. What is the probability (a) that all three will be living at the end of 8 years, (b) that the first two will be living, (c) that one only of the three will be living? Use the American Experience Table of Mortality.

7. A man and wife are 24 and 23 when they marry. What is the probability that they will both live to celebrate their Golden Wedding?

CHAPTER XVII

ANNUITIES AND INSURANCE

127. Meaning of life annuity. In Chapter X annuities certain (those that continue a certain time regardless of any future happening) were discussed. By a life annuity we mean a succession of periodical payments which continue only during the life of the individual concerned. It is clear then that the cost of such an annuity will depend upon the probability of living as well as upon the rate of interest. Before computing the cost of a life annuity we will discuss pure endowments.

128. Pure endowments. A pure endowment is a sum of money payable to a person aged x, at a specified future date, provided the person survives until that date. We will now find the cost of an endowment of 1 to be paid at the end of n years to a person whose present age is x. The symbol, $n^{E}x$, will stand for the cost of such an endowment.

Suppose l_x individuals, all of age x, agree to contribute equally to a fund that will assure the payment of one dollar to each of the survivors at the end of n years. From the mortality table we see that out of the l_x individuals entering this agreement, l_{x+n} of them would be living at the end of n years. Consequently, it would require l_{x+n} dollars at that time. But the present value of this sum is

 $v^n \cdot l_{x+n}$ (Equation (1), Art. 70)

and since l_x persons are contributing equally to this fund, the share of each will be

$$\frac{v^n l_{x+n} \div l_x}{195}$$

$$_{n}E_{x} = \frac{v^{n}l_{x+n}}{l_{x}}.$$
 (1)

If the numerator and the denominator of (1) be multiplied by v_x , it becomes

$$\frac{v^{x+n}l_{x+n}}{v^x l_x},$$

and if we agree that the product $v^{x}l_{x}$ shall be denoted by D_{x} , then (1) becomes,

$${}_{n}E_{x} = \frac{D_{x+n}}{D_{x}}$$
(2)

 D_x is one of four symbols, called commutation symbols, that are used to facilitate insurance computations. See Table V in the back of this book. This table is based on the American Experience Table of Mortality and a $3\frac{1}{2}\%$ interest rate is used. There are other commutation tables based upon different tables of mortality and different rates of interest are used.

129. Present value (cost) of a life annuity. We now propose to find the present value of a life annuity of one dollar per annum payable to an individual, now aged x. The symbol, a_x , is used to denote such an annuity. We see that the present value of this annuity is merely the sum of pure endowments, payable at the end of one, two, three and so on years. Consequently,

$$a_{x} = {}_{1}E_{x} + {}_{2}E_{x} + {}_{3}E_{x} + \dots \text{ to end of table.}$$

$$= \frac{D_{x+1}}{D_{x}} + \frac{D_{x+2}}{D_{x}} + \frac{D_{x+3}}{Dx} + \dots \text{ to end of table.}$$

$$= \frac{D_{x+1} + D_{x+2} + D_{x+3} + \dots ((2), \text{ Art. 128.})}{D_{x}} \quad (3)$$

$$a_{x} = \frac{N_{x+1}}{D_{x}}, \quad (4)$$

196

Hence, ·

ART. 131]

where

$$N_{x+1} = D_{x+1} + D_{x+2} + D_{x+3} + \dots$$
 to end of table. (5)

130. Life annuity due. When the first payment under an annuity is made immediately, we have what is called an annuity due. The present value of an annuity due of 1 per annum to a person aged x is denoted by a_x . An annuity due differs from an ordinary annuity (Art. 129) only by an immediate payment. Consequently we have

$$a_{x} = 1 + a_{x},$$

$$= 1 + \frac{N_{x+1}}{D_{x}} = \frac{D_{x} + N_{x+1}}{D_{x}}$$

$$= \frac{D_{x} + D_{x+1} + D_{x+2} + D_{x+3} + \dots \text{ to end of table. (6)}}{D_{x}}$$

$$= \frac{N_{x}}{D_{x}},$$
(7)

where

$$N_x = D_x + D_{x+1} + D_{x+2} + \dots$$
 to end of table. (8)

131. Temporary annuity. When the payments under a life annuity stop after a certain time although the individual be still living, we have what is called a temporary annuity. Such an annuity which ceases after n years is denoted by the symbol $a_{x \overline{n}}$.

It is clear that the present value of a temporary annuity is equal to the sum of present values of pure endowments payable at end of $1, 2, 3, \ldots, n$ years. Thus,

$$a_{x\overline{n}} = {}_{1}E_{x} + {}_{2}E_{x} + \dots + {}_{n}E_{x},$$

$$= \frac{D_{x+1} + D_{x+2} + \dots + D_{x+n}}{D_{x}}$$

$$= \frac{D_{x+1} + D_{x+2} + \dots \text{ to end of table}}{D_{x}}$$

$$- \frac{D_{x+n+1} + D_{x+n+2} + \dots \text{ to end of table}}{D_{x}}$$

$$a_{x\overline{n}} = \frac{N_{x+1} - N_{x+n+1}}{D_{x}}.$$
(10)

If the first of the *n* payments be made immediately and the last payment be made at the end of n - 1 years, we then have a temporary annuity due. Letting $a_{x\bar{n}}$ represent such an annuity, we get,

$$a_{x\overline{n}} = 1 + a_{x\overline{n-1}},$$

$$= 1 + \frac{D_{x+1} + D_{x+2} + \ldots + D_{x+n-1}}{D_x}$$

$$= \frac{D_x + D_{x+1} + D_{x+2} + \ldots + D_{x+n-1}}{D_x} \qquad (11)$$

$$= \frac{N_x - N_{x+n}}{D_x}. \qquad (12)$$

Exercises

1. Find the cost of a pure endowment of \$5000 due in 15 years and purchased at age 25, interest at $3\frac{1}{2}\%$.

Solution. Here x = 25, n = 15, and

$$_{1b}E_{2b} = \frac{D_{40}}{D_{2b}} = \frac{19727.4}{37673.6} = .523639.$$

Hence, 5000 $_{15}E_{25}$ = \$2618.20.

ART. 131]

2. What is the cost of a life annuity of \$500 per annum for a person aged 50, interest at $3\frac{1}{2}\%$?

Solution. From (4) Art. 129,

$$a_{50} = \frac{N_{51}}{D_{50}} = \frac{1691650}{12498.6}$$
$$= 13.534716.$$

The annuity of \$500 has a cost of

$$500a_{50} = 500(13.534716) =$$
\$6767.36.

3. A man aged 60 has \$10,000 with which to buy a life annuity. What will be his annual income on a $3\frac{1}{2}\%$ basis?

Solution. Here we have the cost of an annuity and are required to find the annual rent. Hence, from (4) Art. 129, we have,

$$Ra_{60} = \$10,000,$$
$$R = \frac{\$10,000}{a_{60}}.$$

 $a_{60} = \frac{N_{61}}{D_{60}} = \frac{73754.7}{7351.65} = 10.032401,$

But,

$$R = \frac{10,000}{10.032401} = \$996.77.$$

4. An heir, aged 14, is to receive \$30,000 when he becomes 21. What is the present value of his estate on a $3\frac{1}{2}\%$ basis?

5. What would be the present value of the estate in Ex. 4 on a 4% basis? Ans. \$21,597.30.

6. According to the terms of a will a person aged 30 is to receive a life income of \$6000, first payment at once An inheritance tax of 3% on the present value of the income must be paid immediately. Find the present value of the income and the amount of the tax. Ans. \$117,632.40, \$3,528.97.

7. A man carrying a \$10,000 life insurance policy arranges it so that the proceeds at his death shall be payable to his wife in annual installments for 20 years certain, first payment upon due proof of death. What would be the annual installment?

8. What would be the annual installment in Ex. 7, if payments were to be made throughout the life of his wife, assuming that she was 55 years of age at his death?

9. What would be the annual installment in Ex. 8, if the wife took a twenty-year temporary annuity?

132. Life insurance definitions. Life insurance is fundamentally sound only when a large group of individuals is considered. Each person contributes to a general fund from which the losses sustained by individuals of the group are paid. The organization that takes care of this fund and settles the claim for all losses is known as an *insurance company*. The deposit made to this fund by the individuals is called a premium. Since, the payment of this premium by the individuals insures a certain sum or benefit at his death, he is spoken of as the insured and the person to whom the benefit is paid at the death of the insured is called the *beneficiary*. The agreement made between the insured and the company is called a *policy* and the insured is sometimes spoken of as the *policy* holder. If all of those insured were of the same age all premiums would be the same, but since the policy holders are of different ages it is evident that the premiums vary. One of the main problems is to determine the premium to be paid for a certain benefit. It is clear that the premium will depend upon the probability of dving and also upon the rate of interest to be paid on funds left with the company. The premium based upon these two things only is known as a net premium. However, the insurance company has many expenses, in connection with the securing of policy holders, such as advertising, commissions, salaries, office supplies, et cetera, and consequently, must make a charge in addition to the net premium. The net premium plus this additional charge is called the gross or office premium. The premium may be single, or it may be

paid annually, and this annual premium may sometimes be paid in semiannual, quarterly or even monthly installments. All premiums are paid in advance.

133. Ordinary life policy. An ordinary life policy is one wherein the benefit is payable at death and at death only. The net single premium on an ordinary life policy is the present value of this benefit. The symbol A_x will stand for the net single premium of a benefit of 1.

Let us assume that each of l_x persons all of age x, buys an ordinary life policy of 1. During the first year there will be d_x deaths, and consequently, at the end of the first year * the company will have to pay d_x in benefits. Hence, the present value of these benefits will be vd_x . There will be d_{x+1} deaths during the second year and the present value of these benefits will be v^2d_{x+1} , and so on. The sum of the present values of all future benefits will be given by the expression,

$$vd_x + v^2d_{x+1} + v^3d_{x+2} + \ldots$$
 to end of table.

Since l_x persons buy benefits of 1 each, we will obtain the present value of each person's benefit by dividing the above expression by l_x . Therefore,

$$A_{x} = \frac{vd_{x} + v^{2}d_{x+1} + v^{3}d_{x+3} + \dots \text{ to end of table.}}{l_{x}}$$
(13)

If both numerator and denominator of (9) be multiplied by v^{x} , we get,

$$A_{x} = \frac{v^{x+1}d_{x} + v^{x+2}d_{x+1} + \dots \text{ to end of table,}}{v^{x}l_{x}}$$

$$= \frac{C_{x} + C_{x+1} + C_{x+2} + \dots \text{ to end of table.}}{D_{x}}$$

$$A_{x} = \frac{M_{x}}{D_{x}}, \qquad (14)$$

* In reality claims are paid upon due proof of the death of the insured, but we here assume that they are not paid until the end of the year. where,

$$C_x^* = v^{x+1}d_x$$
, $C_{x+1} = v^{x+2}d_{x+1}$, and so on,

and $M_x^* = C_x + C_{x+1} + C_{x+2} + ...$ to end of table.

Life insurance policies are seldom bought by a single premium. The common plan is to pay a fixed annual premium throughout the life of the policy. We denote the annual premium of an ordinary life policy of 1 by the symbol P_x . The payment of P_x , at the beginning of each year, for life forms a life annuity due and the present value of this annuity must be equivalent to the net single premium. Thus we have,

$$P_x \mathbf{a}_x = A_x. \tag{15}$$

Solving for P_x , we get,

$$P_{x} = \frac{A_{x}}{a_{x}} = \frac{M_{x}}{N_{x}},$$

$$A_{x} = \frac{M_{x}}{D_{x}} \text{ and } a_{x} = \frac{N_{x}}{D_{x}}.$$
(16)

since,

Exercises

1. What is the net single premium for an ordinary life policy for \$10,000 on a person aged 25?

2. What is the annual premium on the policy of Ex. 1?

3. Compare annual premiums on ordinary life policies of \$10,000 for ages 20 and 21 and for ages 50 and 51. Note the annual change in cost for the two periods of life.

134. Limited payment life policy. The limited payment life policy is like the ordinary life policy \dagger in that the benefit is payable at death and death only, but differs from it in that the

* See Table V.

[†] The ordinary life policy and the limited payment life policy, are often spoken of as *whole life policies* in that the benefit of either is not payable until death.

equivalent of the net single premium is arranged to be paid in n annual payments. Here n is the number of annual payments that are to be made unless death should occur earlier. The standard forms of limited payment policies are usually for ten, fifteen, twenty or thirty payments but other forms may be written.

It is evident that the *n* annual premiums on the limited payment life policy form a temporary life annuity due. It is also evident that this annuity is equivalent to the net single premium A_x . Hence, if the net annual premium for a benefit of 1 be denoted by ${}_nP_x$, we may write,

$$_{n}P_{x} a_{x\overline{n}} = A_{x}.$$
 ((11), Art. 131.) (17)

Solving for ${}_{n}P_{x}$ and substituting for $a_{x\overline{n}}$ and A_{x} , we get,

$${}_{n}P_{x} = \frac{M_{x}}{N_{x} - N_{x} + n}$$
(18)

Exercises

1. Find the net annual premium on a twenty-payment life policy for \$2500 on a person aged 30.

Solution. Using (18), Art. 131, we have,

$${}_{20}P_{30} = \frac{M_{30}}{N_{30} - N_{50}} = \frac{10,259}{596,804 - 181,663}$$

= $\frac{10,259}{415,141} = 0.024712.$

 $2500_{20}P_{30} = $61.78.$

2. Find the net annual premium for a fifteen-payment life policy of \$10,000 issued at age 45.

3. Find the net annual premium on a twenty-payment life policy of \$5000 for your age at nearest birthday.

4. Compare annual premiums on twenty-payment life policies of \$20,000 for ages 25 and 26 and for ages 50 and 51. Note the annual change in cost for the two periods of life.
135. Term insurance. Term insurance is temporary insurance as it provides for the payment of the benefit only in case death occurs within a certain period of n years. After n years the policy becomes void. The stated period may be any number of years, but usually term policies are for five years, ten years, fifteen years and twenty years.

The symbol $A^{1}_{x\overline{n}}$ is used to denote the net single premium on a *n*-year term policy of benefit 1, bought at age x.

If we assume that each of l_x persons all of age x, buys a term policy for n years, the present value of the payments made by the company will be given by

$$vd_x + v^2d_{x+1} + v d_{x+2} + \dots v^n d_{x+n-1}.$$
 (19)

Since each of l_x persons buys a benefit of 1, the present value of the benefit of each person will be gotten by dividing expression (19) by l_x , Hence,

$$A^{1}_{x\overline{n}} = \frac{vd_{x} + v^{2}d_{x+1} + \ldots + v^{n}d_{x+n-1}}{l_{x}}$$
(20)

If both the numerator and the denominator of (20) be multiplied by v^x , we get,

$$A^{1}_{x\overline{n_{1}}} = \frac{v^{x+1}d_{x} + v^{x+2}d_{x+1} + \dots v^{x+n}d_{x+n-1}}{v^{z}l_{x}}$$

$$= \frac{(v^{x+1}d_{x} + v^{x+2}d_{x+1} + \dots \text{ to end of table})}{v^{z}l_{x}}$$

$$- \frac{(v^{x+n+1}d_{x+n} + v^{x+n+2}d_{x+n+1} + \text{ to end of table})}{v^{x}l_{x}}.$$

$$A^{1}_{x\overline{n_{1}}} = \frac{M_{x} - M_{x+n}}{D_{x}}.$$
 ((14), Art. 133.) (21)

When the term insurance is for one year only, the net pre-

ART. 135]

mium is called the *natural premium*. It is given by making n = 1 in (21) Thus,

$$A^{1}_{x\overline{1}|} = \frac{M_{x} - M_{x+1}}{D_{x}} = \frac{C_{x}}{D_{x}}$$
(22)

The net annual premium for a term policy of 1 for *n* years will be denoted by the symbol $P_{x\overline{n}|}^{1}$. It is evident that the annual premiums for a term policy constitute a temporary annuity due. This annuity is equivalent to the net single premium. Thus,

$$P^{1}_{x\overline{n}} a_{x\overline{n}} = A^{1}_{x\overline{n}}.$$

$$(23)$$

Solving for P_{xn} and substituting for a_{xn} and A_{xn} , we get,

$$P_{x\overline{n}|}^{1} = \frac{M_{x} - M_{x+n}}{N_{x} - N_{x+n}}$$
 ((12), Art. 131 and
(21), Art. 135.) (24)

Exercises

1. Find the net single premium for a term insurance of \$1000 for 15 years for a man aged 30.

Solution. From (21), Art. 135, we have,

$$A_{a_{0}}^{1} = \frac{M_{a_{0}} - M_{45}}{D_{a_{0}}} = \frac{10259 - 7192.81}{30,440.8}$$
$$= \frac{3066.19}{20440.8} = 0.10072,$$

and 1000 $A_{1_{30}} = 100.72 .

2. Find the net single premium for a term insurance of \$25,000 for 5 years for a man aged 50.

3. What is the net annual premium for the insurance described in Ex. 2?

4. What are the natural premiums for ages 20, 30, 40, and 50 for an insurance of \$1000?

5. A person aged 35 buys a \$10,000 term policy which will terminate at age 65. Find the net annual premium.

136. Endowment insurance. In an endowment policy the company agrees to pay a certain sum in event of the death of the insured within a specified period, known as the endowment period, and also agrees to pay this sum at the end of the endowment period, provided the insured be living to receive it. From the above definition it is evident that an endowment insurance of 1 for n years may be considered as a term insurance of 1 for n years plus an n-year pure endowment of 1. (See Art. 128 and Art. 135.)

Thus, if we let the symbol $A_{x\overline{n}|}$ stand for the net single premium for an endowment of 1 for *n* years we have,

$$A_{x\overline{n}|} = A^{1}_{x\overline{n}|} + {}_{n}E_{x}$$
$$= \frac{M_{x} - M_{x+n}}{D_{x}} + \frac{D_{x+n}}{D_{x}}.$$
(25)

$$A_{x\overline{n}|} = \frac{M_x - M_{x+n} + D_{x+n}}{D_x}.$$
 (26)

We shall now find the net annual premium for an endowment of 1 for *n* years, the premiums to be payable for *k* years. The symbol $_{k}P_{x\overline{n}|}$ will stand for the annual premium of such an endowment. It is clear that these premiums constitute a temporary annuity due that is equivalent to the net single premium. Hence,

$${}_{k}P_{x\overline{n}} a_{x\overline{k}} = A_{x\overline{n}}.$$
⁽²⁷⁾

Solving for $_{k}P_{x\overline{n}|}$ and substituting for $a_{x\overline{k}|}$ and $A_{x\overline{n}|}$, we get,

$${}_{k}P_{x\overline{n}|} = \frac{M_{x} - M_{x+n} + D_{x+n}}{N_{x} - N_{x+k}}.$$
 (28)

If the number of annual payments are to be equal to the

ART. 137]

number of years in the endowment period, then k = n, and (28) becomes,

$$P_{x\overline{n}|} = \frac{M_x - M_{x+n} + D_{x+n}}{N_x - N_{x+n}}.$$
 (29)

Exercises

1. Find the net annual premium on a \$10,000 20-payment, 30-year endowment policy taken at age 25.

Solution. From (28), we have,

$${}_{20}P_{25} = \frac{M_{25} - M_{55} + D_{55}}{N_{25} - N_{45}}$$

= $\frac{11,631.1 - 5510.54 + 9733.40}{770,113 - 253,745}$
= $\frac{15,853.96}{516,368} = 0.0307028.$

 $10,000_{20}P_{25\overline{30}} = $307.03.$

2. Find the net single premium on a \$1000 20-year endowment policy for a person aged 35.

3. Find the net annual premium for a \$10,000 20-payment endowment policy maturing at age 60, taken at age 25.

4. Find the net annual premium on a \$20,000 15-year endowment policy taken at age 55.

137. Meaning of reserves. By observing the table of mortality, we see that the probability of dying within any one year increases each year after the tenth year of age. Consequently, the natural premium will increase with each year's increase of age. The net annual premium will be much larger than the natural premium during the earlier years of the policy, but finally for the later years the natural premium will become larger than the net annual premium.

During the earlier years the difference between the net annual premium and the natural premium is set aside at interest annually. This fund grows from year to year and is held intact to meet the heavier mortality of the later years. This amount so held by the company is known as the reserve * or the value of its policies. This is unlike the reserve of a bank for it is not held to meet some unexpected emergency but it is a real liability of the company to be used to settle the claims of its policy-holders.

The above remarks may be illustrated as follows: Suppose a man aged 35 takes out a \$1000 ordinary life policy. His net annual premium for that age on a $3\frac{1}{2}\%$ basis would be \$19.91. The natural premium for that year would be \$8.65, leaving a difference of \$11.26 † to be placed in the reserve. However, at age 60 the natural premium would be \$25.79, which is \$5.88 larger than the net annual premium, this deficiency being cared for by the reserve.

Let us assume that each of 81,822 persons, all aged 25, buy an ordinary life policy of \$1000. The total net annual premiums would amount to \$1,629,076.02. This amount would accumulate to \$1,686,093.68 by the end of the first year. According to the table of mortality the death losses to be paid at the end of the first year would amount to \$732,000.00, leaving \$954,093.68 in the reserve. This would leave a terminal reserve of \$11.77 to each of the 81,090 survivors. The premiums received at the beginning of the second year amount to \$1,614,501.90, which, when added to \$954,093.68, makes a total of \$2,568,595.58, and so on. The following table is self explanatory.

Table showing terminal reserves on an ordinary life policy for \$1000 on the life of an individual aged 35 years.

* The reserve on any one policy at the end of any policy year is known as the terminal reserve for that year, or the policy value.

† This is the initial reserve for the first year.

ART. 137]

Policy Year	Funds on Hand at Beginning of Year	Funds Accumulated at 3½%	Death Losses	Funds at End of Year	Amount of Credit of Each Survivor
1st	1,629,076.02	1,686,093.68	732,000	954,093.68	11.77
2nd	2,568,595.58	2,658,496.43	737,000	1,921,496.43	23.91
3rd	3,521,324.66	3,644,571.02	742,000	2,902,571.02	36.46
4th	4,487,625.03	4,644,692.94	749,000	3,895,692.94	49.40
5th	5,465,835.36	5,657,139.60	756,000	4,901,139.60	62.75

The above table illustrates what we mean by a reserve. Reserves, however, are not figured in this way. Formulas for finding the reserves on different kinds of policies and for any year may be derived but we shall not attempt this discussion here.

TABLE I.

COMMON LOGARITHMS OF NUMBERS.

	-
-	

N.	Τ	0	1	2	3	4	5	6	17	8	9	Prop. Pts.
100	o	000	043	087	130	173	217	260	303	346	389	
OI		432	475	518	561	604	647	689	732	775	817	44 43 42
02	1	860	903	945	988	*030	*072	*115	*157	*199	*242	I 4.4 4.3 4.2
•3	01	284	320	368	410	452	494	536	578	620	002	2 8.8 8.6 8.4
04		703	745	787	828	870	912	953	995	*036	*078	4 17.6 17.2 16.8
6	1 "	531	572	012	653	694	735	776	816	857	898	5 22.0 21.5 21.0
07		028	070	*010	*060	*100	*141	*181	*222	*262	*302	6 26.4 25.8 25.2
08	O,	342	383	423	463	503	543	583	623	663	703	8 35.2 34.4 33.6
09		743	782	822	862	902	941	981	*021	*060	*100	9 39.6 38.7 37.8
110	04	139	179	218	258	297	336	_376	415	454	493	
II		532	571	610	650	689	727	766	805	844	883	41 40 39
12	0.5	308	346	385	423	461	500	538	576	614	652	1 4.1 4.0 3.9
14	ľ	600	720	767	805	843	881	018	056	00/	1032	3 12.3 12.0 11.7
15	06	070	108	145	183	221	258	296	333	371	408	4 16.4 16.0 15.6
16	I	446	483	521	558	595	633	670	707	744	781	5 20.5 20.0 19.5
17		819	856	893	930	967	^t 004	*041	*078	*115	*151	7 28.7 28.0 27.3
18	07	188	225	262	298	335	372	408	445	482	518	8 32.8 32.0 31.2
120		018	054	020	*027	*062	4000	-//3 *125	*171	207	243	9; 30.9; 30.0; 35.1
21	08	270	214	350	386	122	158	403	520	565	600	38 37 36
22		636	672	707	743	778	814	849	884	920	\$55	I 3.8 3.7 3.6
23		991	*026	*061	*096	*132	*167	*202	*237	272	* 307	2 7.6 7.4 7.2
24	09	342	377	412	447	482	517	552	587	621	656	3 11.4 11.1 10.8
25 26	10	691	726	760	795	830	864	899	934	968	7003	5 19.0 18.5 18.0
20	10	-037	0/2	100	140	1/3	209	-43	2/0	6	20-	6 22.8 22.2 21.6
27 28		380	415	449 780	403	517 857	551 800	024	019	053	*025	7 26.6 25.9 25.2
29	11	059	093	126	160	193	227	261	294	327	361	9 34.2 33.3 32.4
180		394	428	461	494	528	561	594	628	661	694	
31		727	760	793	826	860	893	926	959	992	° 024	35 34 33
32	12	057	090	123	156	189	222	254	287	320	352	1 3.5 3.4 3.3
33		303	410	450	403	310	540	501	013	040	*070	2 7.0 0.8 0.0
34	12	022	743	775	130	640 162	10/2	226	258	200	322	4 14.0 13.6 13.2
36		354	386	418	450	481	513	545	577	609	640	5 17.5 17.0 16.5
37		672	704	735	767	799	830	862	893	925	956	7 24.5 23.8 23.1
38		988	*019	*051	*082	*114	*145	*176	*208	239	*270	8 28.0 27.2 26.4
39	14	301	333	364	395	426	457_	_489	_520	551	582	9 31.5 30.6 29.7
14U 41		013	044	075	700	737	708	799 *tof	829	006	105	32 31 30
41	15	220	250	200	320	351	381	412	442	473	502	1 32 31 30
43	ľ	534	564	594	625	655	685	715	746	776	806	2 6.4 6.2 6.0
44		836	866	897	927	957	987	*017	*047	*077	*107	3 9.6 9.3 9.0
45	16	137	167	197	227	256	286	316	346	376	406	5 16.0 15.5 15.0
40		435	405	495	524	554	584	013	043	073	702	6 19.2 18.6 18.0
47 48	17	732	761	791	820	8 <u>5</u> 0	879	909	938	967	997	7 22.4 21.7 21.0
49	1 */	319	348	377	406	435	464	493	522	551	580	9 28.8 27.9 27.0
150	· ·	609	638	667	696	725	754	782	811	840	869	<i>y</i> ,, . . ,
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
150	17	609	638	667	696	725	754	782	811	840	869	
51		898	926	955	984	*013	*041	*070	*099	*127	*156	29 28
52	18	184	213	241	270	298	327	355	384	412	44 I	1 2.9 2.8
53		409	498	520	554	583	011	039	007	690	724	2 5.8 5.6
54		752	780	808	837	865	893	921	949	977	*005	3 8.7 8.4
50 56	19	212	2/0	268	206	145	173	170	229	257	205	5 14.5 14.0
50		500	678	540	670	4-4	40.	4/3	507	0	0.0	6 17.4 16.8
57 58		866	803	045	0/3	076	*003	*010	*058	*085	030 *112	7 20.3 19.6
59	20	140	167	194	222	249	276	303	330	358	385	9 26.1 25.2
160		412	439	466	493	520	548	575	602	629	656	J1
61		683	710	737	763	790	817	844	871	898	925	27 25
62		952	978	*005	*032	*059	*085	*112	*139	*165	*192	1 2.7 2.6
03	21	219	245	272	299	325	352	370	405	431	450	2 5.4 5.2
64		484	511	537	564	590	617	643	669	696	722	3 0.1 7.8
66	22	740	775	001	027	054	000 141	900	932 104	950	905 246	5 13 5 13.0
67		070	208	224	120	276	407	407	450	470	505	6 16.2 15.6
68		531	557	583	500 608	634	660	686	455	479	763	7 18.9 18.2
69		789	814	840	866	891	917	943	968	994	*019	9 24.3 23.4
170	23	045	070	096	121	147	172	198	223	249	274	
71		300	325	350	376	401	426	452	477	502	528	25
72		<u>553</u>	578	603	629	654	679	704	729	*754	779	1 2.5
73		805	030	°35 _	000	905	930	955	900	-005	~030	2 5.0
74	24	055	080	105	130	155	180	204	229	254	279	4 10.0
75 76		551	576	555 601	625	650	674	452	4//	748	54/ 773	5 12.5
		707	822	846	871	805	020	044	060	002	*018	6 15.0
78	25	042	066	091	115	I39	164	188	212	237	261	8 20.0
79		285	310	334	358	382	406	43I	455	479	503	9 22.5
180		527	551	575	600	624	648	672	696	720	744	
81		768	792	816	840	864	888	912	935	959	983	24 23
82	26	007	031	055	079	102	120	150	174	198	221	I 2.4 2.3
03		245	209	293	310	340	304	30/	411	433	450	2 4.0 4.0,
84 85		482	505 741	529 764	553 788	570 811	824	858	047 881	070	094	4 9.6 9.2
86		951	975	998	*021	*045	*068	*091	*114	*138	*161	5 12.0 11.5
87	27	184	207	221	254	277	200	222	346	270	303	0 14.4 13.8 7 16 8 16 T
88	-	416	439	462	485	508	531	554	577	600	623	8 19.2 18.4
89		646	669	692	715	738	761	784	807	830	852	9 21.6 20.7
190		875	898	921	944	967	_989	*012	*035	*058	*081	
91	28	103	126	149	171	194	217	240	262	285	307	
92		330	353	375 601	390 623	421 646	443 668	400 601	713	725	533 758	
5 5		780	807	827	847	870	800	074	027	100	087	3 6.6 6.3
94 95	20	003	026	048	070	092	115	137	150	959 181	203	4 8.8 8.4
9ĕ	_,	226	248	270	292	314	336	358	380	403	425	5 11.0 10.5
97		447	469	491	513	535	557	579	601	623	645	7 15.4 14.7
<u> 9</u> 8		667	688	710	732	754	776	798	820	842	863	8 17.6 16.8
99		885	_907_	929	951	973	<u>994</u>	*016	<u>*038</u>	*060	180*	9 19.8 1 8.9
200	30	103	125	146	168	190	211	233	255	276	298	
N.		0	1	2	3	4	5	A	7	8	0	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
200	30 103	125	146	168	190	211	233	255	276	298	
01	320	341	363	384	406	428	449	47 I	492	514	22 21
02	5 <u>3</u> 5	557	578	600	621	643	664	685	707	728	I 2.2 2.I
°3	750	771	792	814	835	850	878	899	920	942	2 4.4 4.2
04	963	984	*006	*027	*048	*069	*091	*112	*133	*154	3 0.0 0.3
05	31 175	197	218	239	200	201	302	323	345	300	5 11.0 10.5
	307	6.0	600	450	691	49-	5.3	534	555	5/0	6 13.2 12.6
07	597 806	827	848	860	800	011	031	052	072	004	7 15.4 14.7
09	32 015	035	056	077	098	118	139	160	181	201	9 19.8 18.9
210	222	243	263	284	305	325	346	366	387	408	
11	428	449	469	490	510	531	552	572	593	613	20
12	634	654	675	695	715	736	756	777	797	818	I 2.0
13	030	050	079	099	919	940	900	980	-001	-021	2 4.0
14	33 041	062	082	102	122	143	163	183	203	224	3 0.0 4 8.0
15	244	465	486	506	525 526	345 546	566	586	606	626	5 10.0
17	-++5	666	696	706	505	746	766	786	806	806	6 12 0
17	846	866	885	905	025	945	965	985	*005	*025	7 14.0
19	34 044	064	084	104	124	143	163	183	203	223	9 18.0
220	242	262	282	301	321	341	361	380	400	420	
21	439	459	479	498	518	537	557	577	596	616	19
22	635	655	674	694	713	733	753	772	792	811	I I.9
23	830	050	009	009	903	920	947	907	900	-005	2 3.8
24	35 025	044	064	083	102	122	141	160	180	199	4 7.6
25 26	411	430	449	468	488	507	526	545	564	583	5 9.5
27	601	622	641	660	670	608	717	726	755	774	6 11.4
28	793	813	832	851	870	889	908	927	946	965	8 15.2
29	984	*003	*021	*040	*059	*078	*097	*116	*135	*154	9 17.1
280	36 173	192	211	229	248	267	286	_305	_324	342	1 - 9
31	361	380	399	418	436	455	474	493	511	530	13
32	549	500 754	500	005 701	024 810	820	847	866	884	717	I I.8
*33	730	734	113	077	010	*~*	*~~~	*	*	*-90	3 5.4
34	37 107	125	959 144	9//	990 181	100	218	226	254	272	4 7.2
36	291	310	328	346	363	383	401	420	438	457	5 9.0
37	475	493	511	530	548	566	585	603	621	630	7 12.6
38	658	676	694	712	731	749	767	785	803	822	8 14.4
39	840	858	876	894	912	931	949	967	985	*003	9 16.2
240	38 021	<u>c39</u>	<u>•57</u>	075	093	112	130	148	166	184	17
41	202	220	238	256	274	292	310	328	346	364	
42	561	578	596	433 614	433	650	668	686	343 702	543 721	1 1.7
	720	757	777	702	810	828	846	862	88-	800	3 5.1
44	739 917	934	952	970	987	*005	*023	*041	*058	*076	4 6.8
4Ğ	39 094	ΪΪΪ	129	146	164	182	199	217	235	252	5 8.5
47	270	287	303	322	340	358	375	393	410	428	7 11.9
48	445	463	480	498	5 15	533	550	568	585	602	8 13.6
49	020	037	655	672	690	707	724	742	759	777	9 15.3
290	794	811	829	846	863	881	898	915	933	950	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
250	39	794	811	829	846	863	88 I	898	915	933	950	
51		967	985	*002	*019	*037	*054	*071	*088	*106	*123	18
52	40	140	157	175	192	209	226	243	261	278	295	I 1.8
53		312	329	340	304	301	390	413	432	449	400	2 3.0
54		483	500	518 688	535	552	509	500	772	700	807	4 7.2
56		824	841	858	875	892	909	926	943	960	976	5 9.0
57		993	*010	*027	*044	*061	*078	*095	*111	*128	*145	6 10.8 7 12 6
58	41	162	179	196	212	229	246	263	280	296	313	8 14.4
59		330	_347_	363	380	397	414	430	447	464	481	9 16.2
260		497	514	531	547	564	581	597	614	631	647	177
61 62		664 810	681	697	880	806	747	764	780	797	814	-/
63		996	*012	*029	*045	*062	*078	*095	*111	*127	*144	1 1.7 2 3.4
64	12	160	177	102	210	226	242	250	275	202	308	3 5.1
65		325	341	357	374	390	406	423	439	455	472	4 6.8
66		488	504	521	537	553	570	586	602	619	635	5 8.5
67		651	667	684	700	716	732	749	763	781	797	7 11.9
68 60		813	830	846	862	878	894	911	927	943	959	8 13.6
970	4.7	9/5	991	160	197	-040	050	0/2	000	-104 	-120	9 15.3
71	43	207	152	109	247	201	21/	233	249	-205	201	16
72		457	473	489	505	521	537	553	569	584	600	т 1.6
73		616	632	648	664	68 0	696	712	727	743	759	2 3.2
74		775	791	807	823	838	854	870	886	902	917	3 4.8
75		933	949	963	981	996	*012	*028	*044	*059	*075	4 0.4 5 8.0
70	44	091	107	122	138	154	170	185	201	217	232	6 9.6
77		248	264	279	295	311	326	342	358	373	389	7 11.2
79		404 560	576	592	607	623	638	654	660	685	343 700	8 12.8 0 14.4
280		716	731	747	762	778	793	809	824	840	855	31.444
81	-	871	886	902	917	932	948	963	979	994	*010	15
82	45	025	040	056	071	686	102	117	133	148	163	I I.5
83		179	194	209	225	240	255	271	280	301	317	2 3.0
84		332	347	362	378	393	408	423	439	454	469	3 4·5 4 6.0
86		404 637	500 652	667	530 682	545 607	712	728	743	758	773	5 7.5
87		788	807	818	824	840	864	870	804	000	024	6 9.0
88		939	954	969	984	6000	*015	*0.30	*045	*060	*075	8 12.0
89	46	<u>ó</u> 9ó	105	120	135	150	165	180	195	210	225	9 13.5
290		240	255	270	285	300	315	_330	345	359	_374	1.14
91		389	404	419	434	449	464	479	494	509	523	- 4
92 02		538 687	553	508	583	598	761	776	042 700	805	072 820	I I.4
93		0.7	070	04.	0-0	940	701	110	190	000		3 4.2
94		035	050 997	*012	*026	°94 *041	*056	923 *070	930 *085	953 *100	*114	4 5.6
<u>9</u> 6	47	129	144	159	173	188	202	217	232	246	261	5 7.0
97		276	290	305	310	334	340	363	378	392	407	7 9.8
<u></u> 98		422	436	451	465	480	494	509	524	538	553	8 11.2
. 99	-	567	582	596	611	625	640	654	669	683	698	9 12.6
500		712	727	741	756	770	784	799	813	828	842	
N		0	1	0	9	4	5	a		•	6	Prop Pte

n	1	C
4	T	.O

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
800	47	712	727	741	756	770	784	799	813	828	842	
IO		857	871	885	900	914	929	943	958	972	986	
02 03	44	144	159	173	187	202	216	230	244	259	273	1 70
04		287	302	316	330	344	359	373	387	401	416	15 T T E
05		430	444	458	473	487	501	515	530	544	558	2 3.0
00		5/4	728	742	7:6	770	787	700	812	827	841	3 4.5
08		855	869	883	897	911	926	940	954	968	982	5 7.5
09		996	*010	*024	*038	*052	*066	*080	*094	*108	*122	6 9.0 7 10 5
810	49	276	150	104	170	192	200	220	234	248	202	8 12.0
12		415	429	443	457	471	485	499	513	527	541	9 13.5
13		554	568	582	596	610	624	638	651	665	679	
14		693 821	707	721	734	748	762	776	790	803	817	14
16		969	982	996	*010	*024	*037	*051	*065	*079	*092	-+ T I.4
17	50	106	120	133	147	161	174	188	202	215	229	2 2.8
18 TO		243	256	270	284	297	311	325	338	352	365	3 4.2
820		515	529	542	556	569	583	596	10	623	637	5 7.0
21		651	664	678	691	705	718	732	745	759	772	6 8.4 7 9.8
22		786	799	813	826 061	840	853	866 *001	880 *014	893	907 *041	8 11.2
-3	51	055	068	081	005	108	121	125	148	162	175	9 12.6
25	5-	188	202	215	228	242	255	268	282	295	308	
26		322	335	348	362	375	388	402	415	428	441	1 13
27 28		455	468 601	481	495	508 640	521 654	534	548 680	561 603	574	I I.3
29		720	733	746	759	772	786	799	812	825	838	2 2.6
880		851	865	878	891	904	917	930	_943	957	970	3 3.9 4 5.2
31 32	52	983 114	996 127	*009 140	*022 153	*035 166	*048	*061	*075	218	*101 231	5 6.5
33	J-	244	257	270	284	297	310	323	336	349	362	0 7.8 7 9.1
34		375	388	401	414	427	440	453	466	479	492	8 10.4
35 36		504 634	517 647	530 660	543 673	550 686	509 600	582 711	595 724	737	021 750	9 11.7
37		763	776	789	802	815	827	840	853	866	879	
38		892	903	917	930	943	956	969	982	994	*007	12
39 840	53	148	161	173	186	100	212	224	237	250	263	I I.2
41	· ·	275	288	301	314	326	339	352	364	377	390	2 2.4
42		403	415	428	441	453	466	479	491	504	517	4 4.8
43		549	542	555	50/	300	393	005	010	031	043	5 6.0
44		782	794	807	820	832	845	857	744 870	882	895	7 8.4
46		908	920	933	945	958	970	983	995	*008	*020	8 9.6 9 10.8
47	54	033	045	058	070	083 208	095	108	120	133	145	9,10,0
49		283	295	307	320	332	345	3 57	245 370	382	394	
830		407	419	432	444	456	469	481	494	506	518	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

2	1	7
_		

N.	0		1	2	3	4	5	6	7	8	9	Prop. Pts.
850	54 <u>4</u> 9	27	419	432	444	456	469	481	494	506	518	
51 52	5.	31 54	543 667	555 679	568 691	580 704	593 716	605 728	617 741	630 753	642 765	
53	73	77	79 0	802	814	827	839	851	864	876	888	13
54 55	55 02	23	035	925 047	937 060	949 072	902 084	974 096	108	998	133	I I.3 2 2.6
56 57	14	45	157	169	182	194	206	218	230	242	255	3 3.9
57 58	38	88	400	413	425	437	449	461	473	485	497	5 6.5
59 860	- 50	30 30	522 642	<u>534</u> 654	666	550 678	570 691	532 703	<u>594</u> 715	727	739	0 7.8 7 9.1
61 62	75	51	763	775	787	799	811	823	835	847	859	8 10.4 9 11.7
63	99	91	*003	*015	*027	*038	*050	*062	*074	*086	*098	
64 65	56 II 23	10 20	122 241	134	146 265	158	170 280	182 301	194 312	205	217	12
őő	34	1 8	360	372	384	396	407	419	431	443	455	I I.2
67 68	40 58	57 83	478 597	490 608	502 620	514 632	526 644	538 656	549 667	561 679	573 691	2 2.4 3 3.6
69 970	70	23	714	726	738	750	761	773	785	797	8ú8	4 4.8 5 6.0
71		37	949	961	972	984	996	*008	*019	*031	*043	6 7.2 7 8 4
72 73	57 OS	54	066 183	078 194	089 206	101 217	113	124 241	136 252	148 264	159 276	8 9.6
74	28	37	299	310	322	334	345	357	368	380	392	9 †10.8
75 76	40 51	53 19	415 530	426 542	438	449 565	461 576	473 588	484 600	496 611	507 623	
77	6	34	646	657	669	68o	692	703	713	726	738	II
79 79	- 86	54	875	887	898	795 910	921	_933	944	955	967	2 2.2
3 %0 81	<u>9</u>	78	9 90	100*	*013	*024 128	*035	*047	*058	*070	*081	3 3.3 4 4.4
82 82	20	56	218	229	240	252	263	274	286	297	309	5 5.5 6 6.6
84	4	33	331 444	3+3	467	305 478	3// 490	501	512	524	535	7 7.7 8 8.8
85 86	54 61	46 59	557 670	559 681	580 692	591 704	602	614 726	625	636 740	647 760	9 9.9
87	7	71	782	794	803	816	827	838	850	861	872	
88 89	88	33 95 1	894 *006	906 *017	917 *028	92 8 *040	,939 *051	950 *062	961 *073	973 *084	984 *095	10
890	59 10	6	118	129	140	151	162	173	184	195	207	I I.O 2 2.0
91 92	21 32	29	229 340	240 351	251 362	262 373	273 384	284 395	295 406	300 417	318 428	3 3.0 4 4.0
93 04	43	39	450	461	472	483	494 607	506	517	528 628	539	5 5.0
94 95	55	50	671	682	503 693	594 704	715	726	737	748	759	7 7.0
90 97	77	70	780 800	791. 001	012	022	824 024	835 042	846 056	o57	000 077	9 9.0
98 00	96	38	999	*010	*021	*032	*043	*054	*065	*076	*086	
99 400	20	56	217	228	239	249	260	271	282	293	304	
N.	0	1	1	2	3	4	5	6	7	8	9	Prop. Pts.

١ð

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
400	60	206	217	228	239	249	260	271	282	293	304	
01		314	325	336	347	358	369	379	390	401	412	
02		423 531	433	444	455	574	477	407	498	617	520 627	
04	1	638	649	660	670	681	692	703	713	724	735	
05	1	746	756	767	778	788	799	810	821	831	842)
06		853	863	874	885	895	906	917	927	938	949	
07 08	61	959	970	981	991	1002	*013	*023	*034	*045	*055	2 2.2
09		172	183	194	204	215	225	236	247	257	268	3 3.3
410		278	289	_300	310	321	331	342	352	363	_374	4 4.4
11		384	395	405	416	426	437	448	458	469	479	6 6.6
13		5 95	606	616	627	637	648	658	669	679	690	7 7.7 8 8.8
14		700	711	721	731	742	752	763	773	784	794	9 9.9
15		803	815	826	836	847	857	868	878	888	899	
10	67	909 1014	920	930	941	951	066	076	086	007	107	
17	02	118	128	138	149	159	170	180	190	201	211	
19		221	232	242	252	263	273	284	294	_304	315	
420		_325	335	346	356	366	_377_	387	397	408	418	1 10
21 22		420 531	439 542	449 552	459 562	409 572	- 480 - 583	490 593	500 603	613	521 624	T TO
23		634	641	655	<u>ĕ6</u> 5	675	685	696	70Ğ	71Ğ	726	2 2.0
24		737	747	757	767	778	788	79 ⁸	808	818	829	3 3.0
25 26		839 941	849 951	859 961	870 972	880 982	890	900 *002	910 *012	921 *022	*033	5 5.0
27	63	043	053	063	073	083	094	104	114	124	134	6 6.0 7 7 0
28		144	155	165	175	185	195	205	215	225	236	8 8.0
29 480		240	250	200	270	287	290	300	_317	327	337	9 9.0
31		448	458	468	478	488	498	508	518	528	538	
32		548	558	568	579	589	599	609	619	629	639	
33		649	659	669	679	689	699	709	719	729	739	
34		749 840	759 850	709 86a	779 870	789 880	799 800	000	819	829 929	039	
36		949	959	969	979	988	998	*008	*018	*028	*038	9
37	64	048	058	068	078	088	098	108	118	128	137	1 0.9
38 30		147 246	157 256	167 266	177 276	187 286	197 206	207 306	217 316	326	237	2 1.8
440	· ·	345	355	365	375	385	395	404	414	424	434	4 3.6
41		444	454	464	473	483	493	503	513	523	532	5 4.5
42 43		542 640	552 650	562 660	572 670	582 680	591 680	601 600	611 700	021 710	031 720	7 6.3
44		738	748	758	768	777	787	707	807	816	826	8 7.2
45		836	846	856	865	875	885	895	904	914	<u>9</u> 24	9101
46		933	943	953	963	972	982	992	*002	110-	^02I	
47 48	65	031 128	040	050	060	070 167	079 176	089 186	099 106	108	118 215	
49		225	234	244	254	263	273	283	292	302	312	
450		321	331	341	350	360	369	379	389	398	408	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
450 51 52 53	65	321 418 514 610	331 427 523 619	341 437 533 629	350 447 543 639	360 456 552 648	369 466 562 658	379 475 571 667	389 485 581 677	398 495 591 685	408 504 600 696	
54 55 56		706 801 896	715 811 906	725 820 916	734 830 925	744 839 935	753 849 944	763 858 954	772 868 963	782 877 973	792 887 982	10
57 58 59 460	66	992 087 181 276	*001 096 191 285	*011 106 200 295	*020 115 210 304	*030 124 219 314	*039 134 229 323	*049 143 238 332	*058 153 247 342	*068 162 <u>257</u> 351	*077 172 266 361	I 1.0 2 2.0 3 3.0 4 4.0
61 62 63		370 464 558	380 474 567	389 483 577	398 492 586	408 502 596	417 511 603	427 521 614	436 530 624	445 539 633	455 549 642	5 5.0 6 6.0 7 7.0 8 8.0
64 65 66		652 745 839	661 755 848	671 764 857	680 773 867	689 783 876	699 792 885	708 801 894	717 811 904	727 820 913	736 829 922	9 9.0
67 68 69 470	67	932 025 117 210	941 034 127 219	950 043 136 228	960 052 145 237	969 062 154 247	978 071 164 256	987 080 173 265	997 089 182 274	*006 099 191 284	*015 108 201 293	
71 72 73	-	302 394 486	311 403 495	321 413 504	330 422 514	339 431 523	348 440 532	357 449 541	367 459 550	376 468 560	385 477 569	9 1 0.9 2 1.8
74 75 76		578 669 761	587 679 770	596 688 779	605 697 788	614 706 797	624 715 806	633 724 815	642 733 825	651 742 834	660 752 843	3 2.7 4 3.6 5 4.5 6 5.4
77 78 79 480	68	852 943 034 124	801 952 04 <u>3</u> 133	870 961 052 142	879 970 061 151	888 979 070 160	897 988 079 169	900 997 088 178	910 *006 _097 _187	925 *015 106 196	934 *024 115 205	7 6.3 8 7.2 9 8.1
81 82 83	-	21 <u>5</u> 30 <u>5</u> 395	224 314 404	233 323 413	242 332 422	251 341 431	260 350 440	269 359 449	278 368 458	287 377 467	296 386 476	
84 85 86		48 <u>5</u> 574 664	494 583 673	502 592 681	511 601 690	520 610 699	529 619 708	538 628 717	547 637 726	556 646 735	565 655 744	8
87 88 89 490	69	753 842 931 020	762 851 940 028	771 860 9 <u>49</u> 937	780 869 9 <u>58</u> 046	789 878 966 055	797 886 97 <u>5</u> 064	805 895 984 073	815 904 993 082	824 913 *002 090	833 922 ^x 011 099	1 0.8 2 1.6 3 2.4 4 3.2
91 92 93		108 197 285	117 205 294	126 214 302	135 223 311	144 232 320	152 241 329	161 249 338	170 258 346	179 267 355	188 276 364	5 4.0 6 4.8 7 5.6 8 6.4
94 95 96		373 461 548	381 469 557	390 478 566	399 487 574	408 496 583	417 504 592	425 513 601	434 522 609	443 531 618	452 539 627	9 7.2
97 98 99 300		636 723 810 897	644 732 819 906	653 740 827 914	662 749 836 923	671 758 845 932	679 767 854 940	688 775 862 949	697 784 871 958	705 793 880 966	714 So1 888 975	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
500	69	897	906	914	923	932	9 40	949	958	966	975	
10		984	992	*001	*010	*018	*027	*036	*044	*053	*062	
02	79	070	079	088	182	105	200	122	217	226	234	
04		242	252	260	260	278	286	207	202	212	221	
04		329	338	346	355	364	372	381	389	398	406	
o6		415	424	432	441	449	458	467	475	484	492	9
0 7		501	509	518	526	535	544	552	561	569	578	I 0.9
00		500 672	595 680	680	607	706	714	723	731	740	749	3 2.7
510		757	766	774	783	791	800	808	817	825	834	4 3.6
II		842	851	859	868	876	885	893	902	910	919	5 4.5
12		927	935	944	952	961	969	978	986	995	*003	7 6.3
13	71	012	020	029	037	040	054	003	071	0/9	000	8 7.2 0 8 T
14		181	105	108	206	214	223	231	240	248	257	9
16		265	273	282	290	299	307	315	324	332	341	
17		349	357	366	374	383	391	399	408	416	425	
18		433	441	450	458	466	475	483	492	500	508	
19 590		<u>517</u>	525	533	625	624	559	507	575	667	592	
21		684	602	700	700	717	725	734	742	750	750	8
22		767	775	784	792	800	809	817	825	834	842	1 0.8
23		850	858	867	875	883	892	900	908	917	923	2 1.6
24		933	94 I	950	958	966	975	983	991	999	*008	3 2.4
25 26	72	000	024	032	041	049	057	148	074	165	090	5 4.0
27		181	180	108	206	214	222	220	220	247	255	6 4.8
28		263	272	280	288	296	304	313	321	329	337	8 6.4
29		346	354	362	370	378	387	_395	403	411	419	9 7.2
580		428	436	444	452	460	469	477	48	493	501	
31		509 501	518	520	534	542 621	550 622	558 640	507 648	575	583	
33		673	681	689	697	705	713	722	730	738	746	
34		754	762	770	779	787	795	803	811	819	827	
35		835	<u>843</u>	852	860	868	876	884	892	900	908	
30		910	925	933	941	949	957	905	973	981	909	7
37	72	997	~000 086	°014 004	°022 102	°030	1038	127	12Ē	"002 1/12	^070	1 0.7
39	15	159	167	175	183	191	199	207	215	223	231	3 2.1
540		239	247	255	263	272	28 0	288	296	304	312	4 '8
41		320	328	336	344	352	360	368	376	384	392	5 3.5
42		400 480	408 488	410	424 504	432 512	440 520	448 528	450	404 544	472	7 4.9
		560	568	576	584	502	600	608	616	624	632	8 5.6
45		640	648	656	664	672	679	687	695	703	711	910.3
46		719	727	735	743	75I	759	767	775	783	791	
47		799	807	813	823	830	838	846	854	862	870	
48 49		078 057	880 965	894 972	902 081	910 080	918	925 *00ਵ	933 *012	941 *020	949 *028	
550	74	036	044	052	060	068	076	084	092	099	107	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

n	0	1	
4	4	T	

N.	0	1	2	3	4	5	6	17	8	9	Prop. Pts.
ŏ 50	74 036	044	052	060	o68	076	084	092	099	107	
51	115	123	131	139	147	155	162	170	178	186	
52	273	280	288	296	304	233 312	320	327	335	343	
54	351	359	367	374	382	390	398	406	414	421	
55 56	429	437	445	453	461	468	476	484	492	500	
57	586	503	601	600	617	624	632	640	648	656	
58	663	671	679	687	695	702	710	718	726	733	
59 560	741	749	757	704	772 870	780	788	796	803	811	
61	896	904	912	920	927	935	943	950	958	966	
62	974	981	989	997	*005	*012	*020	*028	*035	*043	о Т 09
64	75 051	059	000	074	150	166	097	105	113	120	2 1.6
65	205	213	220	228	236	243	251	259	266	274	3 2.4
66	282	289	297	305	312	320	328	335	343	351	5 4.0
67 68	358	366	374	381	389	397	404 481	412	420	427	6 4.8 7 5.6
69	511	519	526	5 <u>34</u>	542	549	557	565	572	580	8 6.4
570	_587	_595	603	610	618	626	633	641	648	656	9 7.2
71 72	664 740	671	679	686	694 770	702 778	709	717	724 800	732 808	
73	815	823	831	838	846	853	861	868	876	884	
74	891	899	300	914	921	92 <u>9</u>	,937	,944	952	<u>_959</u>	
75 76	907 76 042	974 05ັບ	982 057	989 063	997 072	~005 080	087	^020 09 <u>5</u>	1027	110	
77	118	125	133	140	148	155	163	170	178	185	
78 70	193	200	208	215	223	230	238	245	253	260	
580	343	350	358	365	373	380	388	395	403	_335 410	
81	418	425	433	440	448	455	462	470	477	485	
82 82	492 567	500	507 582	515 580	522 507	530 604	537	545	552 626	559 624	17
84	64 I	640	656	661	671	678	686	603	701	708	1 0.7
85	716	723	730	738	745	753	760	768	775	782	2 I.4 2 2 I
06 	790	797	805	812	819	827	834 899	042 016	849	850 860	4 2.8
88	938 938	945	953	960	093 967	901 975	908 982	989	923 997	*004	5 3.5
89	77 012	019	026	034	041	048	056	663	070	078	7 4.9
0060 10	085	093 166	100	107	115	122	129	210	144	225	o 5.0 9 6.3
92	232	240	247	254	262	269	276	283	291	298	
93	305	313	320	327	335	342	349	357	364	371	
94 95	379 452	386	393 466	401 474	408 481	415 488	422 495	430 503	437	444 517	
9ĕ	525	532	539	546	554	561	568	576	583	590	
97	597	603	612	619	627	634	641	648	656	663	
98 99	670 743	077 730	005 757	092 764	099 772	700 779	714 786	793	728 801	735 808	
600	815	822	830	837	844	851	859	866	873	88 0	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
600	77	815	822	830	837	844	851	859	866	873	880	
01		887	895	902	909	916	924	<u>931</u>	938	945	952	
02	78	960 032	907 039	974 046	981 053	988 061	990 068	003	010	089	025	
04		10.1	111	118	125	132	140	147	154	161	168	
05		176	183	190	197	204	211	219	226	233	240	18
06		247	254	202	269	270	283	290	297	305	312	I 0.8
07 08		319.	320 398	33 <u>3</u> 405	340 412	347 419	355 426	433	440	447	30 <u>3</u> 455	2 1.6
09		462	469	476	483	490	497_	5:04	512	519	526	3 2.4
610		_533	540	547	554	561	569	276	583	590	597	5 4.0
II I2		604 675	611 682	618 68a	625 606	03.1 701	640 711	047 718	725	732	7.39	6 4.8 7 5.6
13		746	753	760	767	774	781	789	796	803	810	8 6.4
14		817	824	831	838	845	852	859	866	873	880	9 7.2
15		888	895	902 072	909 070	916 086	923	930 *000	937 *007	944 *014	951 *021	
17	70	020	026	0/2	030	057	064	071	078	085	002	
18	19	099	106	113	120	127	134	141	148	155	162	
19		169	176	183	190	197	204	211	218	225	232	
620		239	240	253	200	207	2/4	201	258	365	372	7
22		379	386	393	400	407	414	421	428	435	442	I 0.7
23		449	456	463	470	477	484	491	498	503	511	2 1.4
24		518	525	532	539	546	553	560	567	574	581	3 2.1 4 2.8
25 26		657	595 664	671	678	685	692	699	706	713	720	5 3.5
27		727	734	74I	748	754	761	768	775	782	789	7 4.9
28		796	803	810	817	824 802	831	837	844	851	858	8 5.6
680		034	0/2	048	955	093	969	975	982	989	996	910.3
31	80	003	010	017	024	030	037	044	051	058	065	
32		072	079	085	092 761	099	106	113	120	127	134	
33		140	147	154	101	100	1/3	102	257	264	202	
34 35		209	284	291	298	305	243 312	318	325	332	339	
36		346	353	359	366	373	380	387	393	400	407	6
37		414	421	428	434	441	448	455	462	468	475	1 0.6
30 39		550	409 557	564	570	577	584	591	598	604	611	3 1.8
640		618	625	632	638	6 45	652	659	665	672	679	4 2.4
41		686	693	699	706	713	720	726	733	740	747	6 3.6
42 43		754 821	700 828	707 835	774 841	848	855	794 862	868	875	882	7 4.2
44		889	895	902	909	916	922	929	936	943	.949	9 5.4
45	Q	95 ⁶	963	969	976	983	990	996	*003	*010	*017	
40	01	023	030	037	043	050	05/	127	127	144	1 ET	
47 48		090 I58	097 164	104 171	178	117	124	131	204	211	218	
49		224	231	238	245	251	258	265	271	278	285	
650		291	298	303	311	318	325	331	338	345	351	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

20	0
44	o

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
650	81_291	298	305	311	318	325	331	338	<u>345</u>	351	
51	358	365	371	378	385	391	398	405	411	418	
52	425	431	438	445	451	458	465	471	478	485	
53	491	498	505	511	518	525	531	538	544	551	
54	558	564	571	578	584	591	598	604	611	617	
55	624	631	637	644	651	657	664	671	677	684	
56	690	697	704	710	717	723	730	737	743	750	
57	757	763	770	776	783	790	796	803	809	816	
58	823	829	836	842	849	856	862	869	875	882	
59	889	895	902	908	915	921	928	935	941	948	
61 62 63	954 82 020 086 151	027 092 158	033 099 164	974 040 105 171	931 046 112 178	937 053 119 184	994 060 125 191	066 132 197	073 138 204	079 145 210	7 1 0.7
64 65 66	217 282 347	223 289 354	230 295 360	236 302 367	243 308 373	249 315 380	256 321 387	263 328 393	269 334 400	276 341 406	2 I.4 3 2.1 4 2.8 5 3.5
67	413	419	426	432	439	445	452	458	46 <u>5</u>	471	6 4.2
68	478	484	491	497	504	510	517	523	530	536	7 4.9
69	_543	549	556	562	569	575	582	588	595	601	8 5.6
670	_607	614	620	627	633	640	646	653	650	666	9 6.3
71	672	679	685	692	698	70 5	711	718	724	73º	
72	737	743	750	756	763	769	776	782	789	795	
73	802	808	814	821	827	834	840	847	853	860	
74	866	872	879	885	892	898	905	911	918	924	
75	930	937	943	9 <u>5</u> 0	956	963	969	975	982	988	
76	995	*001	*008	*014	*020	*027	`033	*040	*046	*052	
77	83 059	065	C72	078	085	091	097	104	110	117	
78	123	129	136	142	149	155	161	168	174	181	
79	187	193	200	206	213	219	225	232	238	245	
680	251	257	264	270	276	283	289	296	302	308	
81	31 <u>5</u>	321	327	334	340	347	353	359	366	372	6
82	378	385	391	398	404	410	417	423	429	436	
83	442	448	455	461	467	474	480	487	493	499	
84 85 86	506 569 632	512 575 639	518 582 645	52 <u>5</u> 588 651	531 594 658	537 601 664	544 607 670	550 613 677	556 620 683	563 626 689	1 0.6 2 1.2 3 1.8 4 2.4
87	696	702	708	715	721	727	734	740	746	753	5 3.0
88	759	765	771	778	784	790	797	803	809	816	6 3.6
89	822	828	835	841	847	853	860	866	872	879	7 4.2
690	885	891	897	904	910	916	923	929	935	942	8 4.8
91	948	954	960	967	973	979	985	992	998	*004	9 5.4
92	84 011	017	023	029	036	042	048	055	061	067	
93	073	080	086	092	098	105	111	117	123	130	
94	136	142	148	15 <u>5</u>	161	167	173	180	186	192	
95	198	205	211	217	223	230	236	242	248	255	
96	261	267	273	280	286	292	298	305	311	317	
97 98 99 700	323 386 448	330 392 454	336 398 460	342 404 466 528	348 410 473	354 417 479	361 423 485 547	367 429 491 552	373 435 497	379 442 504 566	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

•	۱n	• 4
-		

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
700 01 02	84	510 572 634	516 578 640	522 584 646	528 590 652	533 597 658	541 603 665	547 609 671	553 615 677	559 621 683	566 628 689	
03 04 05 06		090 757 819 880	702 763 825 887	708 770 831 893	714 776 837 899	720 782 844 905	726 788 8 <u>5</u> 0 911	733 794 856 917	739 800 862 924	745 807 868 930	751 813 874 936	7
07 08 09 710	85	942 5 003 065 126	948 009 071 132	954 016 077 138	960 022 083 144	967 028 089 150	973 034 095 156	979 040 101 163	98 <u>5</u> 046 107 169	991 052 114 175	997 058 120 181	I 0.7 2 I.4 3 2.1 4 2.8
11 12 13		187 248 309	193 254 315	199 260 321	205 266 327	211 272 333	217 278 339	224 285 345	230 291 352	236 297 358	242 303 364	5 3.5 6 4.2 7 4.9 8 5.6 9 6.3
14 15 16 17		370 431 491 552	370 437 497 558	382 443 503 564	300 449 509 570	394 455 516 576	400 461 522 582	400 467 528 588	412 473 534 594	418 479 540 600	425 485 546 606	91013
18 19 720		612 673 733	618 679 739	62 <u>5</u> 68 <u>5</u> 745	631 691 751	637 697 757	643 703 763	649 709 769	655 715 775	661 721 781	667 727 788	↓ 6
21 22 23 24		794 854 914 974	800 860 920 980	800 866 926 986	812 872 932	818 878 938	824 884 944 *004	830 890 950 *010	836 896 956 *016	842 902 962 *022	848 908 968 *028	1 0.6 2 1.2 3 1.8
25 26 27	86	034 094 153	040 100 159	046 106 165	052 112 171	058 118 177	064 124 183	070 130 189	076 136 195	082 141 201	088 147 207	4 2.4 5 3.0 6 3.6 7 4.2
28 29 780		213 273 332	219 279 338	225 285 344	231 291 350	237 297 356	243 303 362	249 308 368	255 314 374	261 320 380	267 326 386	8 4.8 9 5.4
32 33 34		451 510 570	457 516 576	463 522 581	469 528 587	475 534 593	481 540 599	487 546 605	433 493 552 611	439 499 558 617	504 564 623	
35 36 37		629 688 747	635 694 753	641 700 759	646 705 764	652 711 770	658 717 776	664 723 782	670 729 788	676 735 794	682 741 800	5 1 0.5
39 39 740 41		864 923 982	870 929 988	876 935 994	882 941 999	888 947 *005	894 953 *011	900 958 *017	906 964 *023	911 970 *029	917 976 *035	2 1.0 3 1.5 4 2.0 5 2.5
42 43 44	87	040 099 157	046 105 163	052 111 169	058 116 175	064 122 181	070 128 186	075 134 192	081 140 198	087 146 204	093 151 210	6 3.0 7 3.5 8 4.0 9 4.5
45 46 47 48		210 274 332 390	221 280 338 396	227 286 344 402	233 291 349 408	239 297 355 413	245 303 361 410	251 309 367 425	250 315 373 431	202 320 379 437	208 326 384 442	
49 750		448 506	454 512	460 518	466 523	471 529	477 535	48 <u>3</u> 541	489 547	495 552	500 558	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

00	2
44	J

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
750	87	7 506	512	518	523	529	535	541	547	552	558	
51		564	570	576	581	587	593	599	604	610	616	
52 53		679	685	691	697	703	708	714	720	726	7.31	
54		737	743	749	754	760	766	772	777	783	789	
55		795	800	806	812	818	823	829	835	841	846	
50		852	858	864	869	875	881	887	892	898	904	
57 58		910 967	915	921	927	933	930 996	944 *001	950 *007	955 *013	*018	
59	88	024	030	036	041	047	053	058	064	070	076	
760	[081	087	093	098	104	110	116	121	127	133	16
61 62	[138	201	150	213	218	107 224	230	235	184	190	1 0.6
63		252	258	264	270	275	281	287	292	298	304	2 1.2
64		309	315	321	326	332	338	343	349	355	360	3 1.8
65 66		300 423	372	377	383 440	389	395	400	400	412	417	5 3.0
67	ł	480	485	491	497	502	508	513	519	525	530	6 3.6 7 4.2
68		536	542	547	553	559	564	570	576	581	587	8 4.8
59 770		_593	598	660	610	615	021	681	680	638	643	9 5.4
71		705	711	717	722	728	734	730	745	750	756	
72		762	767	773	779	784	790	795	801	807	812	
73		818	824	829	835	840	846	852	857	863	868	
74		874	880	885	891	897	902	908	913	919	925 081	
76		986	992	997	*003	*009	*014	*020	*025	*031	*037	
77	89	042	o48	053	059	064	070	076	081	087	092	
78 70		098	104	109	115	120	126 182	131	137	143	148	
780		200	215	221	226	232	237	243	248	254	260	
81		265	271	276	282	287	293	298	304	310	315	5
82 81		321	326	332	337	343	348	354	360	365	371	I 0.5
84		370	302	307	393	390	404	409	415	421	420	2 I.O 3 I.5
85		487	437	443 498	504	434 509	459 515	520	526	531	537	4 2.0
86		542	548	553	559	564	570	575	581	586	592	5 2.5
87 88		597 652	603 658	609 664	614 660	620	625 680	631	636	642	647	7 3.5
89		708	713	719	724	730	735	741	746	752	757	8 4.0
790		763	768	774	779	785	790	796	801	807	812	7140
91		818	823	829	834	840	845	851	856	862	867	
92 93		927	933	938	944	949 949	955	905	966	97I	977	
94		982	988	993	998	*004	*009	*015	*020	*026	*031	
95	90	037	042	048	053	059	064	069	075	080	086	
90		746	· · · · ·	102	100	113	119	124	129	+35	140	
97 98		200	206	15/ 211	217	222	227	233	238	244	249	
99		255	260	266	271	276	282	287	293	298	304	
800		309	314	320	325	331	336	342	347	352	358	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

220	Э

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
800 01 02	90_3 3 4	63 17	314 369 423	320 374 428	325 380 434	331 385 439	336 390 445	342 396 450	<u>347</u> 401 455	352 407 461	358 412 466	
03 04 05 06	4 5 5 6	26 80 34	477 531 585 639	482 536 590 644	488 542 596 650	493 547 601 655	499 553 607 660	504 558 612 666	509 563 617 671	515 569 623 677	520 574 628 682	
07 08 09 810	6 7 <u>7</u> 8	87 41 95	693 747 800	698 752 806	703 757 811 865	709 763 816	714 768 822 875	720 773 827 881	725 779 832 886	730 784 838	736 789 843	
11 12 13	9 9 91 0	02 56 09	907 961 014	913 966 020	918 972 025	924 977 030	929 982 036	934 988 041	940 993 046	945 998 052	950 *004 057	6 1 0.6 2 1 2
14 15 16		62 16 69	068 121 174	073 126 180	078 132 185	084 137 190	089 142 196	094 148 201	100 153 206	105 158 212	110 164 217	3 1.8 4 2.4 5 3.0
17 18 19 820	2 2 _3 _3	22 75 28 8 ¹	228 281 _334 _387	233 286 <u>339</u> 392	238 291 344 397	243 297 350 403	249 302 355 408	254 307 360 413	259 312 365 418	265 318 371 424	270 323 376 429	0 3.6 7 4.2 8 4.8 9 5.4
21 22 23	4 4 5	34 87 40	440 492 545	445 498 551	4 :3 503 556	455 508 561	461 514 566	466 519 572	47 I 524 577	477 529 582	482 535 587	
24 25 26	5 6 6	93 45 98	598 651 703	603 656 709	609 661 714	614 666 719	619 672 724	624 677 730	630 682 735	635 687 740	640 693 745	
27 28 29 880	7 8 8 9	03 55 08	750 808 861 913	814 866 918	700 819 871 924	772 824 876 929	777 829 882 934	782 834 887 939	707 840 892 944	79 <u>3</u> 845 897 950	790 850 903 955	
31 32 33	92 0 92 0	60 12 65	965 018 070	971 023 075	976 028 080	981 033 085	986 038 091	991 044 096	997 049 101	*002 054 106	*007 059 111	5
34 35 36	1 1(2:	17 69 21	122 174 226	127 179 231	132 184 236	137 189 241	14 <u>3</u> 195 247	148 200 252	153 205 257	158 210 262	163 215 267	1 0.5 2 1.0 3 1.5 4 2.0
37 38 39 840	- 3 _3 _3	73 24 76 28	278 330 381 433	203 335 387 438	340 392 443	293 345 _397 449	290 350 402 454	304 355 407 459	309 361 412 464	314 366 418 469	319 371 423 474	5 2.5 6 3.0 7 3.5 8 4.0
41 42 43	48 53 58	30 31 33	485 536 588	490 542 593	495 547 598	500 552 603	505 557 609	511 562 614	516 567 619	521 572 624	526 578 629	9 4-5
44 45 46	63 68 73	34 36 37	639 691 742	645 696 747	6 <u>3</u> 0 701 752	65 <u>5</u> 706 758	660 711 763	665 716 768	670 722 773	675 727 778	681 732 783	
47 48 49 850	84 84 94	40 91 12	793 845 896 947	901 952	855 906 957	860 911 962	865 916 967	870 921 973	875 927 978	881 932 983	886 937 988	
N.	0		1	2	3	4	5	6	7	8	9	Prop. Pts.

00	-
44	1

N.	Û	1	2	3	4	5	6	7	8	9	Prop. Pts.
850 51	92 <u>942</u> 903	947 008	952 *003	957 *008	<u>962</u>	<u>967</u> *018	973 *024	978 *020	983 *034	988 *030	
52	93 044	049	054	059	064	069	075	080	085	090	
53	095	100	105	110	115	120	125	131	136	141	
54	146	151	156	161	166	171	176	181	186	192	6
55	197	202	207	212	217	222	227	232	237	242	
56	247	252	258	263	268	273	278	283	288	293	
57	298	303	308	313	318	323	328	334	339	344	I 0.6
58	349	354	359	364	369	374	379	3 ⁸ 4	389	394	2 I.2
59	_399	404	409	414	420	425	430	435	440	445	3 I.8
860	_450	455	460	465	470	475	480	485	490	495	4 2.4
61 62 63	500 551 601	505 556 606	510 561 611	515 566 616	520 571 621	526 576 626	531 581 631	536 586 636	541 591 641	546 596 646	5 3.6 6 3.6 7 4.2 8 4.8
64	651	656	661	666	671	676	682	687	692	697	9 5-4
65	702	707	712	717	722	727	732	737	742	747	
66	752	757	762	767	772	777	782	787	792	797	
67	802	807	812	817	822	827	832	837	842	847	
68	852	857	862	867	872	877	882	887	892	897	
69	902	907	912	917	922	927	932	937	942	947	
71 72 73	_95 <u>2</u> 94 002 052 101	957 007 057 106	962 012 062 111	967 017 067 116	972 022 072 121	977 027 077 126	982 032 082 131	987 037 086 136	992 042 091	997 047 096 146	5 1 0.5
74	151	156	161	166	171	176	181	186	191	196	3 1.5
75	201	206	211	216	221	226	231	236	240	245	4 2.0
76	250	255	260	265	270	275	280	285	290	295	5 2.5
77	300	305	310	315	320	325	330	335	340	345	7 3.5
78	349	354	359	364	369	374	379	384	389	394	8 4.0
79	399	404	409	414	419	42 <u>4</u>	429	433	438	443	9 4.5
880	_448	453	458	463	468	473	478	483	488	493	
81	498	503	507	512	517	522	527	532	537	542	
82	547	552	557	562	567	571	576	581	586	591	
83	596	601	606	611	616	621	626	630	635	640	
84 85 86	645 694 743	650 699 748	655 704 753	660 709 758	66 <u>5</u> 714 763	670 719 768	67 <u>5</u> 724 773	680 720 775	-33 685 734 783	689 738 787	14
87	792	797	802	807	812	817	822	827	832	836	1 0.4
88	841	846	851	856	861	866	871	876	880	885	2 0.8
89	890	895	900	90 <u>5</u>	910	915	919	924	929	934	3 1.2
890 91 92 93	_939 988 95 036 085	944 993 041 090	949 998 046 093	954 *002 051 100	959 *007 056 105	963 *012 061 109	968 *017 066 114	973 *022 071 119	978 *027 075 124	983 *032 080 129	4 1.6 5 2.0 6 2.4 7 2.8 8 3.2
94	134	139	143	148	153	158	163	168	173	177	9)3.6
95	182	187	192	197	202	207	211	216	221	226	
96	231	236	240	245	250	255	260	265	270	274	
97	279	284	289	294	299	303	308	313	318	323	
98	328	332	337	342	347	352	357	361	366	371	
99	376	381	386	390	395	400	405	410	415	419	
N.	424 0	429 1	434 2	439 3	444 4	448 5	453 6	450 7	403 8	408 9	Prop. Pts.

220								-			· · · · ·
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
900	95 424	429	434	439	444	448	453	458	463	468	
10	472	477	482	487	492	497	501	506	511	516	
02	521	525	530	535	540	545	550	554	559	564	
03	509	5/4	570	503	500	593	590	6	6	660	
04	017 667	670	674	670	684	680	601	608	703	708	
06	713	718	722	727	732	737	742	746	751	756	
07	761	766	770	775	780	783	789	794	799	804	
oŚ	809	813	818	823	828	832	837	842	847	852	
09	_856	861	866	871	875	880	885	890	895	899	
910	_904	909	914	918	923	928	933	938	942	947	5
11	952	957 *004	*000	*014	*010	1023	*028	*033	*038	995 *042	1 0.5
13	96 047	052	057	061	066	071	076	080	o85	090	2 1.0
14	095	099	104	109	114	118	123	128	133	137	3 1.5
15	142	147	152	156	161	166	171	175	180	185	4 2.0
16	190	194	199	204	209	213	218	223	227	232	6 3.0
17	237	242	246	251	256	261	265	270	275	280	7 3.5
10 10	204 332	336	294 341	298	303	300	313	317	322	327	9 4.5
920	379	384	388	393	398	402	407	412	417	421	914.0
21	426	431	435	440	445	450	454	459	464	468	
22	473	478	483	487	492	497	501	506	511	515	
23	520	525	530	534	539	544	548	553	558	502	
24	567	572	577	581	586	591 628	595	600	605	609	
25 26	661	666	670	675	680	685	689	694	699	703	
27	708	713	717	722	727	731	736	741	745	750	
28	755	759	764	769	774	778	783	788	792	797	
29	_802	806	811	816	820	825	830	834	839	844	
980	_848_	853	858	862	867	872	876	881	886	890	
31	895	900	904	909	914	918	923	928	932	937 084	4
33	988	993	997	*002	*007	,011	*016	*021	*025	*030	I 0.4
34	97 035	030	044	049	053	058	063	067	072	077	3 1.2
35	081	oŠć	090	0.2	100	104	109	114	118	123	4 1.6
36	128	132	137	J 12	146	151	155	160	165	169	5 2.0
37	174	179	183	188	192	197	202	206	211	216	7 2.8
30	220 267	225	230 276	234 280	239 285	243 290	240	253 200	257 304	308	8 3.2
940	313	317	322	327	331	336	340	345	350	354	9 3.0
41		364	368	373	377	382	387	391	396	400	
42	405	410	414	419	424	428	433	437	442	447	
43	451	456	400	405	470	474	479	4 ð 3	400	493	
44	497	502	506	511	516	520	525	529	534	<u>539</u>	
45 46	543 580	5940 594	598	55/ 603	502 607	612	571 617	575 621	626	505 630	
47	62F	6/0	611	640	652	6<8	662	667	672	676	
48	681	685	690	695	699	704	708	713	717	722	
49	_727	731	736	740	745	749	754	759	763	768	
950	772	777	782	786	791	795	800	804	809	813	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

•

n	n	n
4	4	Э

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
950 51 52 53	97	772 818 864 909	777 823 868 914	782 827 873 918	786 832 877 923	791 836 882 928	795 841 886 932	800 845 891 937	804 850 896 941	809 855 900 946	813 859 905 950	
54 55 56	98	955 000 046	95 <u>9</u> 005 050	964 009 055	968 014 059	973 019 064	978 023 068	982 028 073	987 032 078	991 037 082	996 041 087	
57 58 59 960 61 62		091 137 182 227 272 318	096 141 186 232 277 322	100 146 191 236 281 327	10 <u>5</u> 150 195 241 286 331	109 155 200 245 290 336	114 159 204 250 295 340	118 164 209 254 299 345	123 168 214 259 304 349	127 173 218 263 308 354	132 177 223 268 313 358	5 1 0.5
63 64 65 66		363 408 453 498	307 412 457 502	372 417 462 507	376 421 466 511	381 426 471 516	385 430 475 520	390 435 480 525	394 439 484 529	399 444 489 534	403 448 493 538	2 1.0 3 1.5 4 2.0 5 2.5 6 3.0
67 68 69 970		543 588 632 677	547 592 637 682	552 597 641 686	556 601 646 691	561 605 650 695	565 610 65 <u>5</u> 700	570 614 659 704	574 619 664 709	579 623 668 713	583 628 673 717	7 3.5 8 4.0 9 4.5
71 72 73		722 767 811	726 771 816	731 776 820	735 780 825	740 784 829	744 789 834	749 793 838	753 798 843	758 802 847	762 807 851	
74 75 76		856 900 945	860 90 <u>5</u> 949	86 <u>5</u> 909 954	869 914 958	874 918 963	878 923 967	883 927 972	887 932 976	892 936 981	896 941 985	
77 78 79 980	99	989 034 078	994 038 083 127	998 043 087	~003 047 092 136	^007 052 096	*012 056 100	010 061 105	-021 065 109	-025 069 114 158	^{~029} 074 118 162	
81 82 83		167 211 255	171 216 260	176 220 264	180 224 269	185 229 273	189 233 277	193 238 282	198 242 286	202 247 291	207 251 295	4 I 0.4 2 0.8
84 85 86		300 344 388	304 348 392	308 352 396	313 357 401	317 361 405	322 366 410	326 370 414	330 374 419	33 5 379 423	339 383 427	3 1.2 4 1.6 5 2.0 6 2.4
87 88 89 990		432 476 520 564	436 480 524 568	441 484 528 572	445 489 533 577	449 493 537 581	454 498 542 585	458 502 546 590	463 506 550 594	467 511 555 599	471 515 559 603	7 2.8 8 3.2 9 3.6
91 92 93		607 651 695	612 656 699	616 660 704	621 664 708	62 <u>5</u> 669 712	629 673 717	634 677 721	638 682 726	642 686 730	647 691 734	
94 95 96		739 782 826	743 787 830	747 791 835 879	752 795 839	756 800 843	760 804 848	765 808 852 806	769 813 856	774 817 861	778 822 865	
97 98 99 1000	00	913 957 000	874 917 961 004	070 922 965 009	926 970 013	930 974 974	935 978 022	939 983 983	900 944 987 030	904 948 991 035	909 952 996 039	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

TABLE II.

LOGARITHMS

OF THF

SINE, COSINE, TANGENT, AND COTANGENT

FOR

EACH MINUTE OF THE QUADRANT.

n	n	n
- 2	J	4

O°

1	L. Sin.	d.	L. Tang	. c. d	L. Cotg.	L. Cos.		Prop. Pts.
U						0.00 000	60	
1	6.46 373	10101	6.46 373	30103	3.53 627	0.00 000	59	d. p p 1"
2	6 70 470	17609	6.76 476	17609	3.23 524	0.00 000	58	30103 501.72
3	7.06 570	12494	7 06 570	12494	2.03 421	0.00 000	57	17609 293.48
	7.16 270	9691	7.16 270	9691	2.83 730	0.00 000	55	12494 208 23
6	7.24 188	7918	7.24 188	7918	2.75 812	0.00 000	54	7018 131.07
7	7 30 882	5800	7.30 882	5800	2.69 118	0.00 000	53	6694 111.57
8	7.36 682	5145	7.36 682	5115	2.63 318	0.00 000	52	5800 96.67
-9-	7.41 797	4576	7.41 797	4576	2.56 203	0 00 000	51	5115 85 25
10	7 40 373	4139	7.40 373	4139	2.53 027	0.00.000	40	4570 70.27
12	7.54 291	3779	7.54 291	3779	2.45 709	0.00 000	48	3779 62.98
13	7.57 767	3476	7.57 767	3476	2.42 233	0.00 000	47	3476 57.93
14	7.60 985	3218	7.60 986	3219	2.39 014	0.00 000	46	3219 53.65
15	7.63 982	2802	7 63 982	2802	2.36 018	0.00 000	45	3218 53.03
10	7.60 784	2633	7 00 785	2633	2.33 215	0 00 000	44	2996 49.93
17	7.09 417	2483	7 71 000	2482	2.30 502	9 99 999	43	2803 46 72
19	7.74 248	2348	7 74 248	2348	2 25 752	9 99 999	41	2802 46.70
20	7.76 475	2227	7 76 475	2228	2.23 524	9 99 999	40	2033 43.88
21	7.78 594	2119	7 78 595	2119	2.21 405	9.99 999	39	2403 41.30
22	7 80 615	2021	7 80 615	2020	2.19 385	9 99 999	38	2348 39 13
23	7.82 545	1848	7.82 540	1848	2.17 454	9.99 999	37	2228 37.13
24	7.04 393	1773	7 84 394	1773	2 15 000	9.99 999	_30	2227 37.12
25	7 87 870	1704	7.87 871	1704	2.13 033	9.99 999	35	2119 35.32
27	7.89 509	1639	7.89 510	1639	2 10 490	9 99 999	33	2020 33.67
28	7.91 088	1579	7.91 089	1579	2.08 911	9.99 999	32	1931 32.18
29	7 92 612	1524	7.92 613	1524	2 07 387	9 99 998	31	1930 32.17
30	7.9.1 08.1	1424	7.94 086	1473	2 05 914	9 99 998	30	1848 30.80
31	7.95 508	1379	7 95 510	1379	2 04 490	9 99 998	29	1773 29.55
34	7.08 223	1336	7 08 225	1336	2.01 775	0.00 008	20 27	1639 27.32
34	7 99 520	1297	7 99 522	1297	2 00 478	9.99 998	26	1579 26 32
35	8.00 779	1259	8.00 781	1259	1 99 219	9.99 998	25	1524 25.40
36	8.02 002	1100	8.02 004	11223	I 97 996	9 99 998	24	1473 24-55
37	8.03 192	1158	8.03 194	1159	1.90 800	9.99 997	23	1424 23.73
30	8.05 478	1128	8 05 181	1128	1.95 04/	9 99 997	22	5379 22.98
40	8 06 578	1100	8 06 581	1100	1.02 410	0.00.007	20	
41	8.07 650	1072	8 07 653	1072	1 92 347	9.99.997	10	d. p. p. 1" d. p. p. 1"
42	8.08 696	1040	8.08 700	1047	1 91 300	9 99 997	18	1336 22.27 915 15.25
43	8.09 718	000	8.09 722	008	1 90 278	9 99 997	17	1297 21.62 914 15 23
44	6.10 717	976	6 10 720	976	1 89 280	9 99 996	10	1259 20.98 890 14.93
45	8.11 093	954	8 12 657	955	1.88 304	9 99 996	15	1100 10.83 878 14.63
40	8.13 581	934	8.13 58=	934	1.86 412	0 00 006	14	1159 19.32 877 14.62
48	8 14 495	914	8.14 500	915	1.85 500	9 99 996	12	1158 19 30 860 14.33
49	8.15 391	896 875	8 15 305	895	1 84 603	9.09 996	11	1128 18 80 843 14.05
50	8.16 268	860	8.16 273	960	I 83 727	9 99 995	10	100 10.33 020 13.80
51	8.17 128	842	8.17 133	840	1 82 867	9 99 99 5	2	1047 17.45 812 13.53
52	8.17 971	827	8 17 976	828	1 82 024	9 99 995	8	1046 17.43 797 13.28
55 54	8.10 610	812	8.19 616	812	1.80 384	9.99 995	6	1022 17.03 782 13.03
55	8 20 107	797	8 20 412	797	1.70 587	0 00 004		999 10.05 709 12.82
56	8.21 189	782	8.21 195	782	1 78 805	9 99 994	4	076 16.27 755 12.58
57	8.21 958	769	8.21 964	769	1.78 036	9 99 994	3	955 15.92 743 12.38
58	8 22 713	755	8.22 720	750	1.77 280	9.99 994	2	954 15.90 742 12.37
- 59	0 23 450	730	0 23 402	730	1.70 538	9 99 994	I	934 15.57 730 12.17
60	8.24 186		8.24 192		1.75 808	9.99 993	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	1	Prop. Pts.

89°

1	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.			
0	8.24 186		8.24 192		1.75 808	9.99 993	60				
I	8.24 903	717	8.24 910	718	1.75 090	9.99 993	59				
2	8.25 609	605	8.25 616	606	1.74 384	9.99 993	58				
3	8.20 304	684	8.20 312	684	1.73 088	9.99 993	57				
1÷	8 27 667	673	8 27 660	673	1.73 004	999992	50				
6	8.28 324	663	8.28 332	663	1.71 668	9.99 992	55 54				
7	8.28 977	653	8.28 986	654	1.71 014	9.99 992	53				
8	8.29 621	614	8.29 629	643	1.70 371	9.99 992	52				
	8.30 255	624	8.30 203	625	1.69 737	9.99 991	51	d. p. p. 1"	d. p.p.1″		
10	8.30 879	616	8.30 888	617	1.69 112	9.99 991	50	718 11.97	485 8.08		
12	8.32 103	608	8.32 112	607	1.67 888	0.00 000	49	717 11.95	480 8.00		
13	8.32 702	599	8 32 711	599	1.67 289	9.99 990	47	700 11.77	475 7.92		
14	8.33 292	590	8.33 302	591	1.66 698	9 99 990	46	605 11.58	470 7.83		
15	8.33 875	503	8.33 886	504	1.66 114	9.99 990	45	684 11.40	464 7.73		
16	8.34 450	575	8.34 461	575	1.65 539	9.99 989	44	673 11.22	460 7.67		
17	8 35 018	560	8.35 029	561	1.64 971	9.99 989	43	663 11.05	459 7.65		
IQ	8.36 131	553	8.36 143	553	1.63 857	9.99 909	41	652 10.90	455 7.50		
20	8.36 678	547	8.36 680	546	1.63 311	0.00 088	40	644 10.73	446 7.43		
21	8.37 217	539	8.37 229	540	1.62 771	9 99 988	39	643 10.72	445 7.42		
22	8.37 750	533	8.37 762	533	1.62 238	9.99 988	38	634 10.57	441 7.35		
23	8.38 276	520	8 38 289	527	1.61 711	9.99 987	37	625 10.42	437 7.28		
24	8.38 790	514	8 38 809	514	1 01 191	9.99 987	30	617 10.28	430 7.27		
25	8.39 310	508	8.39 323	509	1.00 077	9.99 987	35	616 10.27	432 7.20		
27	8.40 320	502	8.40 334	502	1.50 666	9.99 980	34	608 10.13	428 7.13		
28	8.40 816	496	8.40 830	496	1.59 170	9 99 986	32	607 10.12	427 7.12		
29	8.41 307	491	8.41 321	491	1 58 679	9 99 985	31	599 9.98	424 7.07		
30	8.41 792	405	8 41 807	400	1.58 193	9.99 985	30	590 0.83	419 6.98		
31	8.42 272	400	8.42 287	400	1.57 713	9 99 985	29	584 9.73	416 6.93		
32	8.42 740	47.2	8 42 702	470	1.57 238	9.99 984	28	583 9.72	412 6.87		
34	8.43 680	464	8.43 606	464	1 56 304	9 99 904	26	575 9.58	411 0.85		
35	8.44 130	459	8.44 156	460	1 55 844	9 00 083	25	561 0.35	404 6.73		
36	8.44 594	455	8.44 611	455	1.55 389	9.99 983	24	560 9.33	401 6.68		
37	8.45 044	450	8.45 061	450	I.54 939	9.99 983	23	553 9.22	400 6.67		
38	8.45 489	44I	8.45 507	441	1.54 493	9.99 982	22	547 9.12	397 0.02		
39	8 16 266	436	8.45 948	437	1.54 0.52	9.99 982	20	540 9.10	390 0.00		
41	8.46 700	433	8.46 817	432	1.53 015	9 99 962	TO	539 8.98	390 6.50		
42	8.47 226	427	8.47 245	428	1.52 755	9 99 981	18	533 8.88	386 6.43		
43	8.47 630	424	8.47 669	424	1 52 331	9.99 981	17	527 8.78	383 6.38		
44	8.48 069	419	8 48 089	416	1.51 911	9 99 980	16	520 8.77	302 0.37		
45	8.48 485	411	8.48 505	412	1.51 495	9.99 980	15	514 8.57	379 6.32		
40	8 40 204	408	0.48 917 8 40 227	408	1.51 083	9.99 979	14	509 8.48	376 6.27		
48	8.49 708	404	8.49 720	404	1.50 271	9 99 979	12	508 8.47	373 6.22		
49	8.50 108	400	8.50 130	401	1.49 870	9.99 978	11	502 8.37	370 0.17		
50	8.50 504	390	8.50 527	397	I.49 473	9 99 978	10	490 8.27	367 6.12		
51	8.50 897	393	8.50 920	393	1.49 080	9 99 977	9	486 8.10	363 6.05		
52	8.51 287	390 386	8.51 310	390	1.48 690	9 99 977	8	•			
53	8.52.073	382	8 52 070	383	1.48 304	9.99 977	6				
- 34	8.52.424	379	8 52 450	380	1 47 EAT	9 99 970	- č				
56	8.52 810	376	8.52 837	376	1 47 165	9.99 970	4				
57	8.53 183	373	8.53 208	373	1.46 792	9.99 975	3				
58	8.53 552	309	8.53 578	370	1.46 422	9-99 974	2				
59_	8.53 919	363	8.53 945	363	1.46 055	9.99 974	I				
60	8.54 282		8.54 308		1.45 692	9.99 974	0				
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	1	Prop.	Pts.		

1°

234					2*			
/	L. Sin.	d.	L. Tang	. c. d.	L. Cotg.	L. Cos.		Prop. Pts.
0	8.54 282	260	8.54 308	261	1.45 692	9 99 974	60	
I	8.54 042	357	8.54 669	358	1.45 331	9.99 973	59	1
3	8.55 351	355	8.55 382	355	1.44 9/3	0.00 072	57	
4	8.55 705	35×	8.55 734	352	1.44 266	9.99 972	56	
5	8.56 054	349	8.56 083	349	1.43 917	9.99 971	55	
6	8.56 400	340	8.56 429	340	1.43 571	9.99 971	54	
7	8.50 743	343	8.50 773	341	1.43 227	9.99 970	53	
ő	8.57 421	337	8.57 452	338	1.42 548	9.99 970	52	d. [p. p. 1"] d. [p. p.1"
10	8.57 757	336	8.57 788	- 336	1.42 212	9 99 969	50	361 6.02 291 4.85
11	8.58 089	332	8 58 121	333	1.41 879	9.99 968	49	360 6.00 290 4.83
12	8.58 419	330	8 58 451	330	1.41 549	9.99 968	48	358 5.97 289 4.82
13	8 50 072	325	8.58 779	326	1.41 221	9.99 907	47	355 5.92 287 4.78
	8 50 205	323	8 50 409	323	1.40 693	9 99 907	40	352 5.37 285 4.75
16	8.59 715	320	8 59 749	321	1.40 251	9 99 966	45	351 5.85 284 473
17	8.60 033	318	8.60 063	319	1 39 932	9.99 966	43	349 5.82 283 4.72
18	8.60 349	310	8.60 384	310	1.39 616	9 99 965	42	344 5.73 280 4.67
19	8.00 002	311	8.00 098	311	1.39 302	9.99 904	41	343 5.72 279 4.65
20	8 61 973	309	8.61.009	310	1.38 991	9 99 904	40	341 5.68 278 4.63
22	8.61 589	307	8 61 626	307	1.38 374	9.99.903	39	338 5 03 277 4.02
23	8.61 894	305	8.61 731	305	1 38 069	9.99 962	37	336 5 60 274 4.57
24	8.62 196	302	8 62 234	303	I 37 766	9.99 962	36	333 5.55 273 4.55
25	8 62 497	208	8.62 535	200	1.37 465	9.99 961	35	332 5.53 272 4.53
20	8.02 795	206	8.02 834	297	1 37 166	9.99 961	34	330 5.50 271 4.52
28	8.63 385	294	8.63 426	295	1.36 574	0.00 060	33	326 5.47 270 4.50
29	8.63 678	293	8.63 718	292	1 36 282	9.99 959	31	325 5.42 268 4.47
30	8.63 968	290	8 64 009	291	1 35 991	9 99 959	30	323 5.38 267 4.45
31	8.64 256	288	8.64 298	289	1.35 702	9.99 958	29	321 5.35 200 4.43
32	8.04 543	284	8.04 585	285	1.35 415	9.99 958	28	310 5.32 263 4.38
33	8.65 110	283	8.65 154	284	1.35 130	9.99 957	27	318 5.30 261 4.35
35	8.65 391	281	8 65 435	281	1 34 565	0 00 056	25	316 5.27 260 4.33
36	8.65 670	279	8.65 715	280	1 34 285	9.99 955	24	314 5.23 259 4 32
37	8.65 947	277	8 65 993	270	1.34 007	9.99 955	23	311 5.18 257 4.28
38	8.00 223	274	8.00 209	274	1.33 731	9.99 954	22	310 5.17 256 4.27
<u>39</u> <u>A0</u>	8 66 760	272	8 66 816	273	1.33 43/	9 99 954	20	309 5.15 255 4.25
41	8.67 030	270	8.67 087	271	1.33 104	999953	10	307 5.12 254 4.23
42	8.67 308	269	8.67 356	269	1.32 644	9.99 952	18	303 5.05 252 4.20
43	8.67 575	207 266	8.67 624	200 266	1.32 376	9 99 95I	17	302 5.03 251 4.18
44	0.07 041	263	0.07 890	264	1.32 110	9.99 951	10	301 5.02 250 4.17
45	8.68 267	263	0.08 154 8 68 417	263	1 31 840	9.99 950	15	208 4.07 249 4.15 208 4.07 248 4 13
47	8.68 627	260	8.68 678	261	1.31 322	9.99 949	13	297 4.95 247 4.12
48	8.68 886	259	8.68 938	260	1 31 062	9 99 948	12	296 4.93 246 4 10
49	8.69 144	250	8.69 196	250	1.30 804	9 99 948	11	295 4.92 245 4 08
50	8.69 400	254	8.69 453	-37	1.30 547	9.99 947	10	294 4.90 244 4.07
51	8 60 007	253	8.09 708	254	1.30 292	9.99 946	2	292 4.87 242 4.03
53	8.70 150	252	8.70 214	252	1.30 030	9 99 940 0.00 04 7	2	
54	8 70 409	250	8.70 465	251	1.29 535	9 99 944	6	
55	8.70 658	249	8.70 714	249	1.29 286	9.99 944	5	
56	8.70 903	247	8.70 962	248	1 29 038	9.99 943	4	
57	8.71 151	244	8.71 208	245	1.28 792	9 99 942	3	
50	8.71 638	243	8,71 607	244	1.20 547	9.99 942	2	
80	8 77 880	242	8 77 040	243	T 08 060	0.00.040	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,	Prop. Pts.

rL. Sin.d.L. Tang. c. d.L. Cotg.L. Cot.Prop. Pts.08.71 8808.71 898.71 898.71 898.71 89999 9406059613383343343343343343343343343343343343343343343343343343343348.72 8963371.27 150999 935559935559337335338336 <th></th> <th></th> <th></th> <th></th> <th></th> <th>3°</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>235</th>						3°						235
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.			Pro	p. Pts	
a $8.72 \ 420$ age $1.77 \ 619$ age $1.77 \ 619$ age	0	8.71 880	240	8.71 940	241	1.28 060	9 99 940	60		1 238	1 234	1 220
3 $3,7_2$ $37,3$ $39,7$ </td <td></td> <td>8.72 350</td> <td>239</td> <td>8.72 120</td> <td>239</td> <td>1.27 580</td> <td>0 00 030</td> <td>58</td> <td>6</td> <td>23.8</td> <td>23.4</td> <td>22.9</td>		8.72 350	239	8.72 120	239	1.27 580	0 00 030	58	6	23.8	23.4	22.9
48.728.728.731271.271.249.999.385833.123.1258.739.739.733.739.733.739.733.741.269.999.573.573.573.5778.739.733.739.733.739.733.749.793.779.793.777.757.75.7 <td< td=""><td>3</td><td>8.72 597</td><td>238</td><td>8.72 659</td><td>239</td><td>1 27 341</td><td>9.99 938</td><td>57</td><td>2</td><td>27.8</td><td>27.3</td><td>26.7</td></td<>	3	8.72 597	238	8.72 659	239	1 27 341	9.99 938	57	2	27.8	27.3	26.7
5 8.73 666 3.73 3.73 3.74 1.26 866 9.99 927 55 9 3.57 35.1 7 8.73 366 3.73 3.73 3.73 3.73 3.73 3.74 3.73 3.73 3.73 3.73 3.73 3.73 3.73 3.73 3.73 3.97 3.74 3.73 3.97 3.73 3.99 3.74 3.74 3.73 3.97 3.99 3.99 3.99 3.97 3.97 3.97 3.97 3.97 3.97 3.97 3.97 3.97 3.97 3.99 3.99 3.99 3.97 3.97 3.97 3.97 3.97 3.97 <t< td=""><td>4</td><td>8.72 834</td><td>237</td><td>8.72 896</td><td>237</td><td>1.27 104</td><td>9.99 938</td><td>56</td><td>8</td><td>31.7</td><td>31.2</td><td>30.5</td></t<>	4	8.72 834	237	8.72 896	237	1.27 104	9.99 938	56	8	31.7	31.2	30.5
6 8.73 303 334 8.73 600 344 1.26 634 9.99 936 53 30 1100. 1170.	5	8.73 069	235	8.73 132	230	1.26 868	9.99 937	55	1.2	35.7	35.1	34.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	8.73 303	232	8.73 366	234	1.26 634	9.99 936	54	20	70.3	78 0	76.3
0 0.73 0.73 0.73 0.73 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.71 0.75 <td>7</td> <td>8.73 535</td> <td>232</td> <td>8.73 000</td> <td>232</td> <td>1.20 400</td> <td>9.99 936</td> <td>53</td> <td>30</td> <td>119.0</td> <td>117.0</td> <td>114 5</td>	7	8.73 535	232	8.73 000	232	1.20 400	9.99 936	53	30	119.0	117.0	114 5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ů	8 73 207	230	8.74 063	231	1.25 027	9 99 935	52	40	158.7	156.0	152.7
11 $3,74$ 226 $8,74$ 527 229 999 932 45 6 22 <td>10</td> <td>8.74 220</td> <td>229</td> <td>8.74 202</td> <td>229</td> <td>1.25 5.3</td> <td>0.00 021</td> <td>50</td> <td>50</td> <td>198.3</td> <td>195.0</td> <td>190.8</td>	10	8.74 220	229	8.74 202	229	1.25 5.3	0.00 021	50	50	198.3	195.0	190.8
1 a8.74, 4502268.74, 9742271.25, 3220.90, 9324367722.522.522.522.51.48.75, 1002248.75, 1002248.75, 1002241.25, 0260.90, 9324778.75, 0333, 31.58.75, 5752208.75, 64, 52221.24, 8579.99, 9294330112, 510037, 536, 71.68.75, 7552208.75, 66, 52221.24, 1339.99, 9294330112, 5116, 011.98.76, 6152208.76, 63, 62191.23, 6199.99, 9264330112, 5180, 0167, 183, 312.08.76, 6412178.76, 5062191.23, 4759.99, 92636640100, 146, 183, 112.18.77, 6072138.77, 7372141.22, 4209.99, 92335931.8, 31, 22.58.77, 7322118.77, 7372141.22, 4209.99, 92335931.8, 31, 22.68.77, 7332118.77, 7372141.22, 4209.99, 92335931.8, 31, 22.68.77, 7322118.77, 7342111.22, 4209.99, 92335931.8, 31, 22.68.77, 7332111.22, 4209.99, 92335931.8, 31, 31, 21035.3, 34.72.68.77, 7332111.22, 4209.99, 90, 9172340	11	8.74 454	228	8 74 521	229	1.25 479	9.99 933	49		225	220	316
138.74 9062408.75 1902428.75 1972431.24 801 $9.99 931$ 47778.75 3325.7158.75 3532238.75 4232241.24 801 $9.99 931$ 451037.530.7168.75 5752208.75 6772201.24 1339.99 9294420150.01.67198.76 62342108.76 5672201.24 1339.99 9294420150.01.67108.76 64312178.76 5352191.23 4759.99 9263930112.220.8218.76 6472171.23 6429.99 9243772.472.432.77218.77 6672131.22 1639.99 9243772.472.432.77258.77 5222178.77 6002111.22 1899.99 92435931.83.1.2258.77 5332128.77 6002111.22 1899.99 9233230106.010.4.01268.77 4332108.78 6222111.22 1899.99 924321035.33.4.7278.78 15220928482061.21 5599.99 924321035.33.4.7278.78 742828262.21 5599.99 924321035.33.4.7278.78 950288.78 6492.12 1661.22 180	12	8.74 680	220	8.74 748	227	1.25 252	9.99 932	48	6	22.5	22.0	21.6
118.751101148.751101148.009.999.90 <td>13</td> <td>8.74 906</td> <td>220</td> <td>8.74 974</td> <td>220</td> <td>1.25 026</td> <td>9.99 932</td> <td>47</td> <td>7</td> <td>26.3</td> <td>25.7</td> <td>25.2</td>	13	8.74 906	220	8.74 974	220	1.25 026	9.99 932	47	7	26.3	25.7	25.2
158.753.3ar a8.754.753.83.753.973	14	8.75 130	223	8.75 199	224	1.24 801	9.99 931	40	å	30.0	293	20.0
108.755.752208.758.777.72.472.433.122.077.72.472.433.122.077.72.472.433.122.077.72.472.433.122.077.72.472.433.122.077.773.311.222.087.077.033.123.122.077.772.472.433.122.077.773.311.222.073.072.072.07	15	8.75 353	222	8.75 423	222	1.24 577	9.99 930	45	10	37.5	36.7	36.0
168.760.322208.760.760.730.740.730.740.75011.2.511.0.01198.760.752101.2.30.712.350.999.99 <td< td=""><td>10</td><td>8.75 705</td><td>220</td><td>8 75 867</td><td>222</td><td>1.24 355</td><td>9 99 929</td><td>44</td><td>20</td><td>75.0</td><td>73.3</td><td>72.0</td></td<>	10	8.75 705	220	8 75 867	222	1.24 355	9 99 929	44	20	75.0	73.3	72.0
19 $8.76 234$ 219 $8.76 3n6$ 219 $1.23 694$ $9.99 926$ 41 50 150.0 1407 1 20 $8.76 451$ 177 $8.76 572$ 217 $1.23 258$ $9.99 926$ 400 187.5 183.3 1 22 $8.76 667$ 216 $8.76 742$ 217 $1.23 258$ $9.99 923$ 38 6 21.2 20.8 23 $8.77 007$ 213 $8.77 387$ 213 $8.77 387$ 213 $1.22 847$ $9.99 923$ 35 9 $8.83.3$ 27.7 25 $8.77 733$ 213 $8.77 387$ 211 $1.22 163$ $9.99 923$ 35 9 31.8 $8.83.3$ 27.7 25 $8.77 733$ 211 $8.77 807$ 211 $1.22 169$ $9.99 923$ 35 $9 31.8$ 31.2 26 $8.77 733$ 217 $8.77 807$ 211 $1.22 169$ $9.99 923$ 32 00.60 104.01 29 $8.78 360$ 208 $8.78 042$ 211 $1.21 165$ $9.99 923$ 32 00.60 104.01 29 $8.78 679$ 208 $8.78 649$ 200 $1.21 157$ $999 913$ 30 106.01 104.77 $17.3.31$ 17.77 31 $8.79 877$ $a06$ $8.79 673$ $a02$ $1.20 337$ $999 917$ 27 7 23.5 27.6 36 $8.79 673$ $a02$ $8.79 673$ $a02$ $1.20 327$ $999 913$ 23 30 100.5 </td <td>18</td> <td>8.76 015</td> <td>220</td> <td>8.76 087</td> <td>220</td> <td>1.23 013</td> <td>0.00 028</td> <td>43</td> <td>30</td> <td>112.5</td> <td>110.0</td> <td>108.0</td>	18	8.76 015	220	8.76 087	220	1.23 013	0.00 028	43	30	112.5	110.0	108.0
	19	8.76 234	219	8.76 306	219	1.23 694	9.99 927	41	40	150.0	140 7	144.0
121 $3.76 667$ 210 $8.76 742$ 217 $1.23 358$ $0.99 925$ 38 6 21.2 20.8 22 $8.76 9583$ 214 $8.77 173$ 213 $8.27 099$ $999 923$ 36 6 21.2 20.8 23 $8.77 097$ 213 $8.77 387$ 214 $1.22 613$ $9.99 923$ 35 9 8 $28.3 27.7$ 25 $8.77 522$ 218 $8.77 600$ 213 $1.22 400$ $999 923$ 35 9 31.8 31.2 26 $8.77 733$ 211 $8.77 600$ 213 $1.22 409$ $999 923$ 35 9 70.7 70.7 693 27 $8.78 352$ 200 $8.78 022$ 211 12.978 $999 923$ 30 106.0 104.0 29 $8.78 356$ 208 $8.78 649$ 209 $1.21 768$ $999 923$ 30 106.0 104.0 29 $8.78 658$ $a06$ $8.78 649$ $a06$ $1.21 145$ $999 913$ 250 1707.7 173.3 30 $C.78 568$ $a06$ $8.79 673$ $a06$ $1.20 339$ $999 917$ 27 7 23.5 27 31 $8.79 386$ $a03$ $8.79 673$ $a02$ $1.20 127$ $999 915$ 250 107.5 164.2 33 $8.79 875$ $a01$ $1.20 127$ $999 913$ 22 30 100.5 98.5 39 $8.0 785$ 307 $8.80 767$ 302 $1.20 127$ $999 913$ <td< td=""><td>20</td><td>8 76 451</td><td>217</td><td>8 76 525</td><td>219</td><td>1.23 475</td><td>9 99 926</td><td>40</td><td>50</td><td>107.5</td><td>1033</td><td>100.0</td></td<>	20	8 76 451	217	8 76 525	219	1.23 475	9 99 926	40	50	107.5	1033	100.0
228.768.72148.769.6321611230.729.999.2336021.220.8238.779.772138.773072141.222139.9992336828.327.7258.777732118.77817111221239.99992336931.831.2268.777332118.7787111221224009.99922341035.334.7278.779.322088.782322101.2117689.99922342070.769.3288.783208.788.222101.211769.999203150176.7177.3176.7318.788.782081.213519.999.993150176.7177.3176.7338.791832038.796402051.202309.9991727723.527.69348.798.796732021.202309.9991727723.527.69358.797832028.796732021.202309991525930.229.6368.798.806741081.192249.99 <td>21</td> <td>8.76 667</td> <td>210</td> <td>8.76 742</td> <td>217</td> <td>1.23 258</td> <td>9.99 926</td> <td>39</td> <td></td> <td>212</td> <td>208</td> <td>204</td>	21	8.76 667	210	8.76 742	217	1.23 258	9.99 926	39		212	208	204
23 8.77 0.97 24 8.77 24 7 26 27 7 23 36 7 64 37 81 11 1.22 10 99 99 23 30 106.0 104.0 104 138 7 14 31 35 37 99 99 30 140 141.3 138.7 11 11 12 99 99 30 106 104 11 173 31 14 130 136 17 143 136.7 17 23.1 12 12 17 23 12 12 114	22	8.76 883	210	8 76 958	210	I 23 042	9.99 923	38		21.2	20.8	20.4
z_5 8.77 Siz2 z_12 8.77 Siz z_12 8.77 Siz z_12 z_12 Siz 9.99 923 z_10 z_12 z_12 z_12 s_122 z_10 9.99 923 z_10 z_12 z_12 z_12 z_10 9.99 z_12 z_12 z_10 z_12 z_12 z_10 z_12 z_10 z_12 <td>23</td> <td>8.77 097</td> <td>213</td> <td>8 77 173</td> <td>214</td> <td>1.22 827</td> <td>9 99 924</td> <td>37</td> <td>Ś.</td> <td>247</td> <td>243</td> <td>23.0</td>	23	8.77 097	213	8 77 173	214	1.22 827	9 99 924	37	Ś.	247	243	23.0
256.775.775.775.775.775.775.775.775.775.775.735.776.777.737.7	- 24	8.77 310	212	0.77 307	213	1.22 013	9 99 923	30	ŏ	31.8	31.2	30.6
27 8.77 943 200 8.78 8.22 211 1.21 379 999 921 33 30 106.0 104.0 1 28 8.78 352 200 8.78 323 210 1.21 579 999 9920 31 30 141.3 138.7 11 30 $C.78$ 568 208 8.78 421 200 1.21 579 999 9920 31 50 141.3 138.7 11 31 8.78 774 206 8.78 649 206 1.21 157 999920 310 50 141.3 138.7 11 31 8.78 876 649 206 1.21 351 999917 226 6 201 11977 31 8.79 78072 206 205 1.20 330 990 917 226 6 20.1 11977 33 8.79 830 8.79 877 202 1.20 530 990 915 255 9 302 22.27 7 23.25 27.77 7 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 27.77 23.25 <th< td=""><td>25 26</td><td>8.77 722</td><td>211</td><td>8 77 811</td><td>211</td><td>1.22 400</td><td>9 99 923</td><td>35</td><td>10</td><td>35-3</td><td>34.7</td><td>34.0</td></th<>	25 26	8.77 722	211	8 77 811	211	1.22 400	9 99 923	35	10	35-3	34.7	34.0
28 8.78 1.21 768 9.99 9.92 32 30 100. 104.0 114.3 138.7 1 29 8.78 360 208 8.78 441 200 1.21 559 9.99 99 32 40 141.3 138.7 1 30 1.78 7.87 568 206 8.78 649 208 1.21 351 999 918 20 177.7 173.3 1 31 8.78 749 204 8.79 205 1.20 999 918 20 20.1 197 32 8.79 979 204 8.79 203 1.20 32 99 915 25 9 930 22 7 7 23.5 27 0 33 8.79 40 13.20 32 99 915 25 9 9 24 20.0 107.5 33.5 32.8 20.1 19.7 23.5 32.1 0 100.5 98 930 12 10 33.5 <	27	8.77 943	210	8.78 022	211	1 21 078	0 00 021	34	20	70.7	693	68.0
29 878 360 286 878 441 290 1.21 559 999 99 31 50 124.3 133.7 173.3 113.77 173.3 113.77 173.3 113.77 173.3 133.7 173.3 133.7 173.7 173.7 113.77 173.7 113.77 173.7 113.77 173.7 113.77 173.7 113.77 173.7 113.77 173.7 113.77 173.7 113.77 173.7 113.77 173.7 113.77 173.7 113.77 133.77 277 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 27.7 23.5 27.6 <	28	8.78 152	209	8.78 232	210	1.21 768	9 99 920	32	30	106.0	104.0	102.0
30 C.78 568 266 8.78 649 203 I.21 351 9.99 9.16 20 207 177.57 31 8.78 774 205 8.78 855 206 I.21 145 9.99 918 29 20 201 197 32 8.78 979 204 8.79 061 205 I.20 734 9.99 917 27 7 23.5 27 7 23.5 27 7 23.5 27 7 23.5 27 9 9.99 917 27 7 23.5 27 9 30.2 29.6 30.2 29.6 30.2 29.6 30.2 29.9 99.9 1.20 53.0 99.99.15 25 9 30.2 29.6 6.5,7 32.8 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.5 32.8 30.6 55.7 32.8 30.6 55.7 30.8 30.6 30.7 30.8	29	8 78 360	208	8 78 441	209	1.21 559	9 99 920	31	40	141.3	138.7	130.0
31 8.78 77.4 205. 8.79 78.7 205. 1.20 1.21 1.20 9.99 9.99 9.90 72.8 6.7 200.1 1.97 32 8.79 8.79 9.79 28.6 8.79 205.1 1.20 73.9 9.99 9.99 9.77 27.7 7 23.5 27.6 32.6 20.1 1.97 33 8.79 8.79 8.79 202 1.20 53.0 9.99 9.915 25 9 30.2 29.6 30.2	30	C.78 568	206	8.78 649	208	1.21 351	9 99 919	30	30	1/0./	-/3.3	170.0
33 8.79 9789 avequal 8.79 081 avequal 1.20 039 9.99 917 27 7 23.5 27 34 8.79 183 avequal 1.20 039 9.99 917 27 7 23.5 27 0 22.1 197 34 8.79 380 avequal 1.20 530 9.99 915 32 8 26.8 26.8 26.8 26.8 26.8 22.6 9 30.2 29.6 9 30.2 29.6 9 99.915 32 9 30.2 29.6 6.7 9 30.2 29.6 6.7 9 30.2 29.6 6.5.7 30.8 8.60 767 avequal 1.10 723 99.99 912 21 40 33.6 6.7 6.7 13.4 10.3 39.9 99.9 12 20 6.7 6.5.7 38 8.60 180 199 8.80 767 avequal 1.10 728 9.99 912 21 40 13.4 13.4 13.4 9.99 907 17 7 22.1 13.6 13.4 13.4 13.4 13.4 13.4	31	8.78 774	205	8 78 855	206	1.21 145	9 99 918	29	6	201	197	193
338.79338.792338.792742041.207349.999172125.826.826.3358.798.798.796732031.201.201.20999152599 0229.6368.797892018.798752021.201.2799991424101026933.532.8378.799992018.80772011.1992499991322230100.598.5388.80189998.802772011.1972399991322230100.598.5398.803881978.806741981.19119220999122140131.41408.807821978.86681051.1829999122050167.5164.21418.807821981.1912899990017722.121.624.727.8428.809781938.816531941.1834799999915923.224.727.8448.8115501938.814531931.1815499999015923.224.727.8458.81 <td>32</td> <td>8.78 979</td> <td>204</td> <td>8.79 001</td> <td>205</td> <td>1 20 939</td> <td>9 99 917</td> <td>28</td> <td>7</td> <td>20.1</td> <td>197</td> <td>19.3</td>	32	8.78 979	204	8.79 001	205	1 20 939	9 99 917	28	7	20.1	197	19.3
37 8.79 588 acc 8.79 673 acg 1.20 337 999 995 12 9 930 2 250 999 913 325 999 913 325 999 913 325 930 225 910 33.5 32.8 378 8.79 899 800 8.79 875 acc 1.10 224 999 913 22 400 13.40 $13.1.4$ 11 38 8.80 159 8.80 277 acc 1.19 929 912 224 400 13.40 $13.1.4$ 11 40 8.80 880 177 8.80 77 999 911 224 400 13.40 $13.1.4$ 11 41 8.80 788 197 8.80 872 198 1.19 228 999 911 224 50 167.5 164.2 11 41 8.80 788 197 8.80 872 198 1.19 128 999 9010 19 6 18.9 185 42 8.80 787 798 8.20 999 9016 19 6 81.9 185 185 43 8.81 1653 195 1.18 364 999 907 15 82.84 27.8 45 8.81 455 195 1.18 184 999 905 11 10 31.5	33	8.70 386	203	8.79 470	204	1.20 520	9.99 917	26	8	26.8	26.3	25.7
36 8.79 789 200 1.20 32.2 99 97.5 21 10 33.5 32.8 37 8.79 979 201 8.79 752 201 1.20 129 999 913 23 23 0 77.0 57.0 65.7 38 8.80 189 98 8.80 77 201 1.19 723 999 913 22 30 100.5 98.5 39 8.80 388 199 8.80 77 109 31.9 224 999 911 124 134.0 131.3 1 134.2 134.0 134.3 134.1 134.2 134.0 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.2 134.3 134.3 134.3 134.3 134.3 134.3 149 149.99.907 15 22.1 14.0 135.3 30.8 144.3 136.3	25	8.70 588	202	8 70 672	203	1 20 337	0.00.015	- 25	9	30 2	29.6	29.0
37 8.70 000 201 8.80 076 201 1.19 924 9.99 913 23 20 b7.0 b57.0 b	36	8.79 789	201	8.79 875	202	1.20 125	9 99 914	21	10	33.5	32.8	32.2
38 8.80 189 199 8.80 277 201 1.19 723 9 99 913 22 21 103.0 13.0 1 39 8.80 388 197 8.80 277 198 1.19 524 9 99 912 21 40 13.40 13.3.1 1 40 8.80 585 197 8.80 674 198 1.19 128 9 99 912 20 50 167.5 164.2 1 41 8.80 782 197 8.80 674 198 1.19 128 9 99 901 19 189 185 42 8.80 783 195 8.81 264 195 1.18 736 9 99 900 17 7 22.1 21.6 18.9 185 43 8.11 570 193 8.81 455 195 1.18 544 9 99 905 14 10 31.5 30.8 30.6 1.17 36.8 109 90.6 14 10 31.5 30.8 120.6 30.9 94.5 92.5 1 120.6 30.0 120.6 30.0 1.17 36.8 99.99.00 14 16.8 12.5 10.5 15.4 21.7<	37	8.79 990	201	8.80 076	201	1.19 924	9 99 913	23	20	67.0	65.7	64.3
39 8.80 39 8.80 470 199 1.19 524 9.99 912 21 50 167.5 164.2 1 40 8.80 585 197 8.80 674 198 1.19 326 9.99 911 20 50 167.5 164.2 1 41 8.80 585 197 8.80 80 872 196 1.19 326 999 900 19 6 18.9 185 185 18 18 19 19 180 185 185 18 19 18 999 900 17 7 22.1 21.6 18 14 8.81 16 13 18 14 999 900 14 10 31.5 30.8 16 8 22.2 2.4 7.7 8 30.8 16 9 9.99 11 10 31.5 30.8 16 9 10 13.5 30.8 16 13 10 31.5 30.8 16 10 31.5 30.8 <td< td=""><td>38</td><td>8.80 189</td><td>199</td><td>8.80 277</td><td>201</td><td>1.19 723</td><td>9 99 913</td><td>22</td><td>30</td><td>100.5</td><td>98.5</td><td>90.5</td></td<>	38	8.80 189	199	8.80 277	201	1.19 723	9 99 913	22	30	100.5	98.5	90.5
410 8.80 5782 179 8.80 574 199 119 128 999 911 20 189 185 41 8.80 782 197 8.80 572 196 1.19 128 999 910 19 189 185 42 8.80 978 196 8.81 o68 196 1.18 932 999 900 18 6 18.9 185 43 8.81 177 194 8.81 c64 196 1.18 736 999 900 17 7 22.1 21.6 44 8.81 367 193 8.81 c53 194 1.18 347 999 907 15 9 28.4 27.2 24.7 45 8.81 944 190 8.82 c38 192 1.17 970 999 907 12 30.9 1.5 30.8 47 8.82 134 190 8.82 c30 192 1.17 201 999 907 12 30 94.5 92.5 157.5 154.2 1 50 8.82 133 188 8.82 c97 188 1.17 201 999 901 8 6 0.4 0.3 0.2	39	8.80 388	197	8.40 476	199	1.19 524	9 39 912	21	50	167.5	164.2	160.8
41 0.80 978 106 8.80 972 106 1.18 9126 9 99 900 11 129 120 121 120 120 1	40	8.80 585	197	8.80 67.4	x98	1.19 326	9 99 911	20	ľ	180	 8e	1 181
4.38.811731958.812641961.187369 9990717722.122.04.48.811571948.812641951.187369 9990715928.427.84.58.815601928.816501938.816501921.185419 9990715928.427.84.68.817521928.81681631941.183479 9990715928.427.84.68.817521928.81681631741.18144909905141031.530.84.78.821341908.822301921.177709999.041140126.0123.315.08.822301921.177309.9999.0014126.0123.31154.215.08.8227011888.82791891.177019.99900770.50.40.25.18.827011888.82791881.177399.99900770.50.40.25.38.837511868.833011861.168259.99900770.50.40.25.38.83 <td>41</td> <td>8.80 078</td> <td>196</td> <td>8 81 068</td> <td>196</td> <td>1.19 120</td> <td>9 99 910</td> <td>19</td> <td>6</td> <td>18.0</td> <td>78 5</td> <td>18 1</td>	41	8.80 078	196	8 81 068	196	1.19 120	9 99 910	19	6	18.0	78 5	18 1
448.81 30^7 1948.81 450 1951.18 541 999 905 16825.2 247 458.81 550 938.81 653 1941.18 347 999 907 15928.4 27.8 468.81 752 938.81 653 1941.18 1347 999 907 15928.4 27.8 468.81 752 1928.81 846 1931.18 154 909 906 141031.530.8478.81 944 1928.82 038 1921.17 7062 909 9054 1230 94.5 92.5 488.82 134 1908.82 420 1901.17 750 9.99 9044 11 70 157.5 154.2 1508.82 701 1888.82 707 1888.82 987 188 $1.17 013$ $999 902$ 96 6 4 3 2 518.82 2701 1888.82 987 188 $1.17 013$ $999 902$ 6 6 0.4 0.3 0.2 528.83 2651 1868.83 547 186 $1.16 632$ $999 9900$ 7 7 0.5 0.4 0.2 538.83 2651 1848.83 732 186 $1.16 6453$ $999 868$ 5 10 0.7 0.5 0.4 0.2 558.83 446 1888.83 173 188 $1.16 6268$ $999 896$ 4 0.7 0.7 0.7 0.7 0.7 0.7 0.7	43	8.81 173	195	8.81 261	196	1.18 736	9 99 909	17	7	22.1	21.6	21.1
45 8.81 560 193 8.81 653 194 1.18 347 9 99 907 15 9 28.4 27.8 46 8.81 752 192 8.81 846 93 1.18 154 9 99 907 15 10 31.5 30.8 47 8.81 944 190 8.82 038 192 1.17 960 999 907 12 30 94.5 92.5 13 20 63.0 61.7 48 8.82 134 190 8.82 230 192 1.17 770 9.99 904 11 40 126.0 123.3 1 40 126.0 123.3 1 40 126.0 123.3 1 70 157.5 154.4 1 70 9.99 902 9 6 6.4 0.3 0.2 2 54 8.82 3075 188 1.17 201 9.99 900 7 7 55 154.4 1 75 8.81 75 185 1.16 639 9.99 900 7 7 50 6.4 0.3 0.2 55 8.83 63 61 1.16 637 9.99 808 9 0.6 0.4	44	8.81 367	194	8.81 459	195	1.18 541	9 99 908	16	8	25.2	247	24.I
46 8.81 75 102 8.81 8.66 193 1.18 54 9 05 006 1.1 10 31.5 30.8 47 8.81 944 190 8.82 038 192 1.17 909 905 13 20 63.0 61.7 48 8.82 134 190 8.82 038 192 1.17 909 904 11 40 126.0 123.5 1 49 8.82 134 190 8.82 190 1.17 70 999 904 11 70 157.5 154.2 1 50 8.82 190 1.17 70 999 902 9 6 0.4 0.3 0.2 123.5 154 1 75 157.5 154.2 1 75 154.2 1 75 154.2 1 75 154.2 1 76 157.5 154.2 1 76 154.2 1 76 157.5 154.2 1 75 55.3 8.30 77 <t< td=""><td>45</td><td>8.81 560</td><td>193</td><td>8.81 653</td><td>194</td><td>1.18 347</td><td>9 99 907</td><td>15</td><td>9</td><td>28.4</td><td>27.8</td><td>27.2</td></t<>	45	8.81 560	193	8.81 653	194	1.18 347	9 99 907	15	9	28.4	27.8	27.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	8.81 752	192	8.81 846	193	1.18 154	9 99 906	14	10	31.5	30.8	30.2
43 8.82 134 130 8.82 230 127 770 9.99 90 112 50 120.5 123.3 1 50 8.82 231 189 8.82 230 190 1.17 580 9.99 90.4 11 40 120.5 123.3 1 50 8.82 713 8.82 2420 190 1.17 580 9.99 90.4 11 40 120.5 123.3 1 51 8.82 713 88 8.82 799 189 1.17 720 9.99 9002 9 4 3 2 52 8.82 888 187 883 1177 180 9.99 900 7 7 0.5 0.4 0.3 0.2 53 8.83 967 185 1.16 823 999 900 7 7 0.5 0.4 0.3 0.2 4 0.2 0.4 0.3 0.2 0.5 0.4 0.3 0.4 0.3 0.4 0.	47	8.81 944	190	8.82 038	192	1.17 962	9 99 905	13	20	03.0	02.5	00.3
449 6.02 424 100 1.1.7 500 9.99 9.4 11 ro 157.5 154.2 1 50 8.8.2 513 188 8.8.2 10 100 1.17 300 9.99 9.90 10 4 3 2 51 8.8.2 718 1.17 201 9.99 9.90 10 4 3 2 52 8.8.2 8.88 17 8.82 987 188 1.17 201 9.99 900 8 6 0.4 0.3 0.2 53 8.83 975 18 1.16 815 9.99 900 7 7 5.5 0.4 0.3 0.2 54 8.83 957 186 1.16 639 9.99 900 7 7 0.5 0.4 0.3 0.2 55 8.83 961 186 1.16 639 9.99 898 4 10 0.7 0.5 0.4 0.3 2 1.3 1.0<07	48	8.82 134	190	8 82 230	100	1.17 770	9 99 904	12	40	126.0	123.3	120.7
30 6.62 513 188 8.62 610 1.77 390 9.99 903 10 4 3 2 51 8.82 701 188 8.82 99 1.77 999 900 6 64 0.3 0.2 52 8.82 88 187 7.88 1.77 999 900 7 7 0.5 0.4 0.3 0.2 53 8.83 075 186 1.16 825 9.99 900 7 7 0.5 0.4 0.2 0.4 0.3 0.2 54 8.83 075 186 1.16 655 9.99 890 6 8 0.5 0.4 0.2 55 8.83 461 183 547 186 1.16 635 9.99 898 5 9 0.6 0.5 0.3 0.5 0.3 1.3 1.0 0.7 0.5 0.3 1.3 1.0 0.7 0.5 0.3 1.3 1.0 0.7 1.5 0.3	49	0.02 324	189	0.02 420	190	1.17 500	9.99 904		FO.	157.5	154 2	150.8
52 8.82 888 187 8.82 987 188 1.17 999 909 909 8 6 0.4 0.3 0.2 53 8.82 888 187 8 83 175 188 1.17 999 909 00 7 7 0.5 0.4 0.2 54 8.83 261 185 8.83 361 186 1.16 639 9.99 909 00 7 7 0.5 0.4 0.2 55 8.83 261 185 8.83 361 186 1.16 639 9.99 898 5 9 0.6 0.5 0.4 0.2 55 8.83 630 184 8.83 732 183 1.16 268 999 898 4 10 0.7 0.5 0.3 56 8.83 93 963 184 1.16 0.99 896 2 30 0.0 1.5 1.0 0.7 0.5 0.3 20 1.3 1.0 <t< td=""><td>50</td><td>8.82 701</td><td>188</td><td>8 82 700</td><td>189</td><td>1.17 390</td><td>9.99 903</td><td>10</td><td></td><td>141</td><td>3 2</td><td>1 1</td></t<>	50	8.82 701	188	8 82 700	189	1.17 390	9.99 903	10		141	3 2	1 1
53 8.83 075 187 8 83 175 188 1.16 825 9 99 900 7 7 0.5 0.4 0.2 54 8.83 261 186 8.83 361 186 1.16 639 9.99 898 5 9 0.6 0.5 0.4 0.2 55 8.83 446 184 8.83 361 186 1.16 453 9 99 898 5 9 0.6 0.5 0.4 0.2 56 8.83 630 184 8.83 732 18 1.16 684 9 99 898 4 100.7 0.5 0.3 57 8.83 813 183 8.83 916 184 1.16 084 9 99 895 20 1.3 1.0 0.7 0.5 0.3 58 8.83 996 183 8.84 100 184 1.15 900 9 99 895 1 20 1.3 1.0 0.7 1.0 0.7 1.0 1.5 1.0 0.7 1.5 1.0 0.7 1.5 1.0 1.5 1.0 0.7 1.0 1.5 1.0 0.7 1.0 1.5 1.0 1.5 1.0 1.5	52	8.82 888	187	8.82 087	188	1.17 013	0 00 001	8	6	0.4	0.3 0.2	01
54 8.83 261 100 100 1.16 639 9.99 899 6 8 0.5 0.4 0.3 55 8.83 446 185 8.83 547 186 1.16 643 9.99 898 5 9.0.6 0.5 0.4 0.3 0.5 0.3 1.3 1.0 0.7 0.5 0.3 2.0 1.3 1.0 0.7 1.0 0.7 1.0 0.7 1.0 0.5 0.4 0.1 1.1 0.7 1.0 0.7 1.0 0.7 1.0 0.7 1.0 0.7 1.0 0.7	53	8.83 075	187	8 83 175	188	1.16 825	9 99 900	7	7	0.5	0.4 0.2	0.I
55 8.83 446 446 100 1.16 453 9 99 898 5 9 0.6 0.5 0.5 0.3 56 8.83 630 183 8.83 732 183 1.16 453 9 99 898 5 10 0.7 0.5 0.3 57 8.83 813 183 8.83 732 184 1.16 026 9 99 897 3 20 1.3 1.0 0.7 58 8.83 996 183 8.83 106 184 1.15 006 9 99 897 3 20 1.3 1.0 0.7 59 8.84 177 18 8.84 28 182 115 718 9 99 895 1 40 2.7 1.3 60 8.84 358 8.84 464 1.15 536 9.99 894 0 50 3.3 2.5 1.7 60 8.84 358 d. L. Cotg. c. d. L. Tang. L. Sin. 7 Prop. Pts.	54	8.83 261	180	8.83 361	180	1.16 639	9.99 899	6	e e	0.5	0. <u>4</u> 0.3	0.I
50 8.83 630 100 100 105 1.16 268 9 99 898 4 10 0.7 0.5 0.3 57 8.83 813 183 8.83 916 184 1.16 084 9 99 897 3 20 1.3 1.0 0.7 58 8.83 996 183 8.83 916 184 1.16 084 9 99 897 3 20 1.3 1.0 0.7 59 8.84 177 181 8.84 282 182 1.15 718 9 99 895 1 40 2.7 2.0 1.3 60 8.84 358 8.84 464 1.15 536 9.99 894 0 0 2.0 3.3 2.5 1.7	55	8.83 446	184	8.83 547	100	1.16 453	9 99 898	5	9	0.6	0.5 0.3	0.2
57 8.83 906 183 8.83 910 164 1.15 084 9 99 897 3 30 2.0 1.5 1.0 7 58 8.83 906 183 8.84 100 184 1.15 900 99 897 3 30 2.0 1.5 1.0 7 59 8.84 177 181 8.84 282 182 1.15 900 9.99 895 1 40 2.7 2.0 1.3 60 8.84 358 8.84 464 182 1.15 536 9.99 895 1 50 3.3 2.5 1.7 60 8.84 358 64 1.15 536 9.99 894 0 50 3.3 2.5 1.7	56	8.83 630	183	8.83 732	105	1.16 268	9 99 898	4	10	0.7	5.5 0.3	0.2
59 8.84 177 181 8 84 282 183 1.15 9 99 955 1 40 2.7 2.0 1.3 60 8.84 358 8.84 464 12.15 718 9.99 855 1 40 2.7 2.0 1.3 60 8.84 358 8.84 464 12.15 536 9.99 894 0 1	57	882 006	183	8.84 100	184	1.10 084	9 99 897	3	30	2.0	1.5 1.0	0.5
60 8.84 358 8.84 464 182 1.15 536 9.99 894 0 L. Cos. d. L. Cotg. c. d. L. Tang. L. Sin. / Prov. Pts.	59	8.84 177	181	8 84 282	189	1.15 718	9 99 590 9 99 80 T	í	4	2.7	2.0 1.3	0.7
L. Cos. d. L. Cotg. c. d. L. Tang. L. Sin. / Prop. Pts.	80	884.259	181	884 16.	182	7 75 506	0 00 80	0	50	3.3	2.5 1.7	0.8
		L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,		Pro	p. Pts	

1	L. Sin.	d.	L. Tang	. c. d	L. Cotg	L. Cos.			Prop. Pts.			
0	8.84 358	-9.	8.84 464	180	1.15 536	9.99 894	60			1		
I	8.84 539	179	8.84 646	180	1.15 354	9.99 893	59	6	180	177	174	
	8.84 807	179	8.85 006	180	1.15 174	9.99 892	50	1 7	21.0	20.7	20.3	
4	8.85 075	178	8.85 185	179	1.14 815	9 99 891	56	8	24.0	23.6	23.2	
5	8.85 252	177	8 85 363	178	1.14 637	9 99 890	55	9	27.0	26.6	26.1	
Ğ	8.85 429	177	8.85 540	177	1.14 460	9 99 889	54	10	30.0	29.5	29.0	
7	8.85 603	170	8.85 717	177	1.14 283	9 99 888	53	30	00.0	88.5	87.0	
	8 85 057	175	8 86 060	176	1.14 107	9.99 887	52	40	120.0	118.0	116.0	
10	8 86 128	173	8 86 242	174	1.13 931	9.99 885	50	50	150.0	147.5	145.0	
л	8.86 301	173	8.86 417	174	1.13 583	0 00 884	40		171	169	167	
12	8.86 474	173	8.86 591	174	1.13 409	9 99 883	48	6	17.1	16.9	16.7	
13	8.86 645	171	8.86 763	172	1.13 237	9.99 882	47	7	20.0	19.7	19.5	
<u>_14</u>	8.86 816	171	8 86 935	172	1.13 065	9 99 881	. 46	8	22.8	22.5	22.3	
15	8.86 987	160	8.87 106	171	1.12 894	9 99 880	45	10	28.5	28.2	27.8	
17	8.87 225	169	8 87 447	170	1.12 723	9 99 079	44	20	57.0	56.3	55.7	
18	8.87 494	169	8.87 616	169	1.12 384	9 99 878	42	30	85.5	84 5	83.5	
19	8.87 661	167	8 87 783	169	1.12 215	9 99 877	41	40	114.0	1127	111 3	
20	8 87 829	100	8 87 953	100	1.12 0.47	9 99 876	40	50	142.5	140.0	139.2	
21	8.87 995	100	8 88 120	167	1.11 880	9 99 875	39		165	163	160	
22	8.88 101	165	8.88 287	166	1.11 713	9 99 874	38	0	10.5	10.3	10.0	
23	8.88 400	164	8 88 618	165	1.11 382	9 99 0/3	37	8	22.0	21.7	21.3	
25	8 88 654	164	8.88 783	165	1.11 217	0.00 871	35	9	24.8	24.5	24.0	
26	8.88 817	163	8.88 9.18	165	1.11 052	9.99 870	34	10	27.5	27.2	26.7	
27	8.88 980	163	8 89 111	163	1.10 889	9 99 869	33	20	55.0	543	53.3	
28	8 89 142	162	8.89 274	163	1 10 726	9 99 868	32	30	110.0	108.7	106.7	
29	8 89 304	160	0.89 437	161	1.10 503	9.99 807	_ 31	50	137.5	135.8	133.3	
21	8.89 404	161	8 89 598	162	1.10 402	9.99 800	30	- 1	157	155	153	
32	8 80 781	159	8.80 020	160	1.10 240	0 00 861	28	6	15.7	15.5	15.3	
33	8.89 943	159	8.90 080	160	1 09 920	9 99 863	27	7	18.3	18.1	17.9	
34	8.90 102	159,	8.90 240	100	I 09 760	9 99 862	26	8	20.9	20.7	20.4	
35	8.90 260	157	8.90 399	-39	1.09 601	9 99 861	25	9	23.0	23.3	23.0	
30	8.90 417	157	8.90 557	158	1 09 443	9 99 860	24	20	52.3	25.0	\$1.0	
37	8.00 730	156	8.02 872	157	1.00 128	0 00 858	22	30	78.5	77.5	76.5	
39	8.90 885	155	8.91 029	157	1.08 971	9 99 857	21	40	104 7	103.3	102,0	
40	8.91 040	155	8.91 185	150	1.08 815	9 99 8 56	20	50	130.8	129.2	127.5	
41	8.91 195	155	8.91 340	155	1.08 660	9 99 855	19	1	151	149	147	
42	8.91 349	154	8.91 495	155	1.08 505	9 99 854	18	6	15.1	149	14.7	
43	8.91 502	153	8.91 050	153	1.08 350	9 99 853	17	7	176	17.4	17.2	
45	8 01 807	152	8 01 057	154	1 08 042	- 0.00 857	1.		22 7	22.4	22.1	
45	8 91 950	152	8.92 110	153	1.07 800	0 99 850	14	10	25.2	24.8	24.5	
47	8.92 110	151	8.92 262	152	1 07 738	9 99 8.48	13	20	50.3	49.7	49.0	
48	8.92 261	151	8.92 414	152	1.07 586	9 99 847	12	30	75.5	74.5	73.5	
_ 49_	492 411	150	8 92 565	151	1.07 435	9 99 846	II	40	125.8	99.3 124 2	98.0 122 F	
50	8.92 561	140	8.92 716	150	1.07 284	9.99 845	10	307				
51	8 92 710 8 92 859	149	8 92 800	150	1.07 134	9 99 844	8		140	6 9	I	
53	891007	148	8.93 167	149	1.06 835	9.99 842	7		7 17	0 0.2	0.1	
54	8.93 154	147	8 93 313	148	1 06 687	9 99 841	6	1	3 19.	5 0.3	0.1	
55	8.93 301	147	8.93 462	149	1 06 538	9.99 8.40	5		21	9 0.3	0.2	
56	8 93 448	147	8.93 609	147	1.06 391	9 99 839	4	10	24.	3 0.3	0.2	
57	8 93 594	146	8.93 756	147 147	1.00 244	9.99 838	3	20	48.	07	0.3	
50	8 93 887	145	8.04 040	146	1.05 057	9.99 037	Ĩ	40	97.	3 1.3	0.7	
60	8.94 030	145	8.94 195	146	1.05 805	9 99 834	0	59	121.	7 1.7	0.8	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	/		Prop. Pts.			

85°

	5° 237										
/	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.			
U	8.94 030	144	8 94 195	145	1.05 803	9.99 834	60		145	143	141
2	8.94 317	143	8.04 485	145	1.05 515	0.00 832	59 58	6	14.5	14.3	14.1
3	8.94 461	144	8 94 630	145	1.05 370	9.99 831	57	7	16.9	16.7	16.5
4	8.94 603	142	8.94 773	143	1.05 227	9.99 830	56	8	19.3	19.1	18.8
5	8 94 746	141	8.94 917	141	1.05 083	9.99 829	55	9 10	21.0	21.5	21.2
2	8.94 887	142	8.95 000	142	1.04 940	9 99 828	54	20	48.3	47.7	47.0
8	8.95 170	141	8.95 344	142	1.04 656	9.99 02/	52	30	72.5	71.5	70.5
9	8.95 310	140	8 95 486	142	1.04 514	9 99 824	51	40	96.7	95.3	94.0
10	8.95 450	140	8 95 627	141	1.04 373	9 99 823	50	501	120.0	119.21	117.5
II	8.95 589	139	8 95 767	140	1.04 233	9 99 822	49	4	139	138	130
12	8.05 728	139	8 95 908	139	104092	9.99 821	48	7	13.9 T6.2	13.0	13.0
-3 14	8 96 005	138	8 95 187	140	1.03 813	9 99 819	46	8	18.5	18.4	18.1
15	8 96 143	138	8 96 325	138	1.03 675	9 99 817	45	9	209	20.7	20.4
16	8.96 280	137	8 96 464	139	1.03 536	9.99 816	44	10	23.2	23.0	22.7
17	8.96 417	137	8 96 602	130	1.03 398	9.99 815	43	20	40.3	60.0	45-3 68.0
18	8.90 553	136	8 96 739	138	1.03 201	9 99 814	42	40	92.7	92.0	90.7
20	8 06 827	7 36	8 07 012	136	1 03 123	9 99 813	41 30	50	115.8	115.0	1133
21	8.96 960	135	8 97 150	137	1.02 850	0 00 810	30		135	133	131
22	8 97 093	135	8.97 285	135	1.02 715	9 99 809	38	6	13 5	13.3	13.1
23	8 97 229	134	8 97 421	130	1.02 579	9 99 808	37	7	15.8	15.5	15.3
	8 97 303	133	8 97 550	135	1.02 444	9 99 807	36	8	18.0	17.7	175
25	8.97 490	133	8.97 091	134	1.02 309	9 99 800	35	10	22.5	22.2	21.8
27	8.97 762	133	8 97 959	134	1.02 041	9 99 804	34	20	45 0	44.3	43.7
28	8 97 894	132	8 98 092	133	1 01 908	9.99 802	32	30	67.5	66.5	65.5
29	8 98 026	132	8 98 225	133	1 01 775	9 99 801	31	40	900	110.8	100.2
30	8 98 157	131	8 98 358	-33	1.01 642	9 99 800	30	30			109.2
31	8.98 288	131	8.98 490	132	1.01 510	9 99 798	29	6	129	120	120
33	8 98 549	130	8.98 753	131	1.01 247	9.99.797	20	7	12.9	14.0	14.7
34	8.98 679	130	8 98 884	131	1.01 116	9 99 795	26	8	17.2	17.1	168
35	8.98 808	129	8.99 013	131	1.00 985	9 99 793	25	9	194	19.2	18.9
36	8.98 937	120	8 99 145	130	1.00 855	9 99 792	24	10	21.5	21 3	21.0
37	8.99 000	128	8 99 275	130	1.00 725	9 99 791	23	30	64.5	64.0	63.0
30	8.00 322	128	8 99 531	129	1.00 466	0 00 788	21	40	86.o	85.3	84.0
40	8.99 450	128	8 00 662	128	1.00 338	0 00 787	20	50	107.5	106.7	105.0
41	8 99 577	127	8.99 791	129	1.00 209	9 99 786	19		125	123	132
42	8 99 704	127	8 99 919	128	1.00 081	9.99 783	18	6	12.5	12.3	12.2
43	8 99 830	126	9.00 010	128	0 99 954	9.99 783	17	7	14.6	14.4	14.2
44	0 00 082	126	9.00 174	127	0.99 820	9 99 782	-10	å	10.7	18.5	18.2
45 46	9 00 207	125	9.00 301	126	0.99 099	0.00 780	15	10	20.8	20.5	20.3
47	9.00 332	125	9.00 553	126	0.99 447	9.99 778	13	20	41.7	41.0	40.7
48	9.00 456	124	9.00 679	120	0 99 321	9 99 777	12	3C	62.5	61.5	61.0
49	9.00 581	123	9.00 805	125	0.99 195	9 99 776	11	50	03.3	102.5	01.3 101.7
50	9.00 70.4	124	9 00 930	125	0.99 070	9.99 775	10	30	1	102.31	
52	0.00 051	123	9 01 055	124	0 98 945	9.99 773	8	6	121	120	1
53	901071	123	9.01 303	124	0.98 697	9.99 771	7	7	12.1	14.0	0.1
54	9.01 195	122	9.01 427	124	0 98 573	9 99 769	6	8	16.1	16.0	0.1
55	9.01 318	100	9.01 550	123	0.98 450	9.99 768	5	9	18.2	18.0	0.2
50	9.01 440	121	9.01 673	123	0.98 327	9.99 767	4	10	20.2	20.0	0.2
57	9.01 501	131	9.01 795	122	0 98 204	9 99 705	3	30	60.5	60.0	0.5
59	9 OI 803	121	9.02 040	122	0 97 960	9.99 763	I	40	80.7	80.0	0.7
60	9.01 923	120	9.02 162	122	0 97 838	9.99 761	0	50	100.8	100.0	0.8
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	1	Prop. Pts.			

238	238 6°										
'	L. Sin.	d.	L.Tang.	'c. d.	L. Cotg.	L. Cos.		Prop. Pts.			
0	9.01 923	120	9.02 162	121	0.97 838	9.99 761	60		121	1 720	1 110
2	9.02 043	120	9 02 203	121	0 07 506	9.99 700	59	6	12.1	12.0	11.9
3	9.02 283	120	9.02 525	121	0.97 475	9.99 757	57	7	14.1	14.0	13.9
4	9.02 402	119	9.02 645	120	o 97 355	9.99 756	56	8	16.1	16.0	15.9
5	9.02 520	110	9.02 766	121	0.97 234	9 99 755	55	9 10	18.2	18.0	17.9
6	9.02 639	118	9.02 885	120	0.97 115	9.99 753	54	20	40.3	40.0	39.7
l ő	0 02 757	117	0.03 005	119	0.90 995	9.99 752	53	30	60.5	60,0	59.5
9	9 02 992	118	9 03 242	118	0 96 758	9 99 749	51	40	80 7	80.0	79.3
10	9.03 109	117	9.03 361	119	0.96 639	9.99 748	50	50	100.8	100.0	99.2
11	9.03 226	117	9.03 479	118	0.96 521	9.99 747	49		118	117	116
12	9.03 342	116	9.03 597	117	0.96 40 3	9.99 745	48	07	11.8	11.7	11.0 T2 E
13	9 03 450	116	0 03 714	118	0.90 280	9 99 744	47	8	15.7	15.6	15.5
15	0.03 600	116	0.03.018	116	0.06 052	0.00 741	45	9	17.7	17.6	17.4
16	9 03 805	115	9 04 065	117	0.95 935	9 99 740	44	10	19.7	19.5	19.3
17	9.03 920	115	9 04 181	116	0.95 819	9 99 738	43	20	39.3	39.0	38.7
18	9.04 034	114	9 04 297	110	0.95 703	9.99 737	42	40	78.7	78.0	77.3
19	9.04 149	113	904 413	115	0 95 507	9 99 7.30	41	50	98.3	97.5	96.7
21	9.04 202	114	9 04 528	115	0 95 472	9 99 734	40		115	114	113
22	9.04 490	114	9 04 758	115	0 95 242	9 99 731	38	6	11.5	11.4	11.3
23	9.04 603	113	9.04 873	115	0.95 127	9.99 730	37	7	13.4	133	13 2
24	9 04 715	112	9 04 987	114	0 95 013	9 99 728	36	8	15.3	15.2	15.1
25	9.04 828	112	9 05 101	112	0 94 899	9.99 727	35	10	10.2	10.0	17.0
20	9.04 940	112	9 05 214	114	0.94 780	9 99 726	34	20	38.3	38.0	37.7
28	9.05 164	112	9.05 441	113	0.94 559	9 99 723	32	30	57.5	57.0	56.5
29	9 05 275	111	9 05 553	112	0.94 447	9 99 721	31	40	70.7	76.0	75.3
30	9.05 380	111	9.05 666	113	0 94 334	9 99 720	30	50	195.0	95.0	94.2
31	9.05 497	111	9.05 778	112	0.94 222	9 99 718	29	6	112	111	110
32	9.05 007	110	9 05 890	112	0 94 110	9 99 717	28	2	11.2	13.0	128
34	9.05 827	110	9.06 113	111	0 93 887	9 99 714	26	8	149	14.8	14.7
35	9.05 937	110	9 06 224	111	0 93 776	9 99 713	25	9	16.8	16.7	16.5
36	9.06 046	109	9 06 335	111	0 93 665	9 99 711	24	10	18.7	18.5	18.3
37	9.06 155	100	9 06 445	110	o 93 555	9 99 710	23	30	56.0	55.5	55.0
30	9.00 204	108	0.00 550	110	0 93 444	9 99 708	22	40	74.7	74.0	73.3
40	0.06 481	109	0.06.77:	109	0 02 22	9 99 707	20	50	93-3	92.5	91.7
41	9 06 589	108	9.06 885	110	0.93 115	9 99 703	19		109	108	107
42	9.06 696	107	9 06 991	109	0 93 006	9 99 702	18	6	10.9	10.8	10. <u>7</u>
43	9.06 80.4	105	9.07 103	109	0 92 897	9 99 701	17	7	12.7	12.0	12.5
44	9.00 911	107	9 07 211	109	0.92 789	9.99 699	10	ő	14.5	14.4	14.3
45	9.07 018	106	9.07 320	801	0.92 080	9 99 698	15	IÓ	18.2	180	17.8
47	9 07 231	107	9.07 536	108	0.92 464	9.99 695	13	20	36.3	36.0	35.7
48	9.07 337	106	9.07 643	107	0.92 357	9 99 693	12	30	54.5	54.0	53.5
49	9.07 442	105	9 07 751	100	0.92 249	9.99 692	II	50	00 8	00.0	80.2
50	9.07 548	105	9.07 858	106	0 92 142	9 99 690	10	5-	1 705	105	104
51	9.07 053	105	9.07 904	107	0.92 036	9.99 689	2	6	10.6	10.5	10.4
53	9.07 863	105	9.08 177	106	0 91 821	9 99 686	7	7	12.4	12.3	12.1
54	9.07 968	105	9.08 283	106	0 91 717	9 99 684	6	8	14.1	14.0	13.9
55	9.08 072	104	9.08 389	100	0.91 611	9.99 683	5	9	15.9	15.8	15.6
56	9.08 176	104	9.08 495	100	0.91 505	9.99 681	4	20	25.2	17.5	17.3
57 58	9.08 280	103	9.08 000	105	0.91 400	9.99 080	3	30	53.0	52.5	52.0
59	9.08 486	103	9.08 810	105	0 01 100	9.99 070	Ĩ	40	70.7	70.0	693
60	0.08 580	103	0.08.014	104	0.01.096	0.00 677	0	50	88.3	87.5	86.7
	L. Cos.	d.	J. Cotg.	c. d.	L.Tang.	J. J. Sin.		Prop. Pts.			

82	0

	1- 207									
1	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.		
U	9 08 589		9.08 914		0.91 086	9.99 675	60			
I	9.08 692	103	9.09 019	105	0.90 981	9.99 674	59	105 104 103		
2	9.08 795	102	9.09 123	104	0 90 877	9 99 072	58	7 12.3 12.1 12.0		
3	0.08 000	102	0.00 330	103	0.00 670	0.00 660	57	8 14.0 13.9 13.7		
	0.00 101	102	0.00 424	104	0.00 566	0.00.667		9 15.8 15.6 15.5		
6	9 09 202	101	9.09 434	103	0.90 463	9.99 666	55 54	10 17.5 17.3 17.2		
7	9.09 304	102	9 09 640	103	0.90 360	9.99 664	53	20 35.0 347 34.3		
8	9.09 403	101	9.09 742	102	0.90 258	9.99 663	52	40 70 0 60 2 68 7		
9	9.09 506	100	9 09 845	103	0 90 155	9.99 661	_51	50 87.5 86.7 85.8		
10	9.09 606	101	9.09 947	102	0.90 053	9.99 659	50	102 101 100		
11	9.09 707	100	9.10 049	101	0.89 951	9 99 058	49	6 10.2 10.1 10.0		
13	9.09 007	100	0.10 252	102	0.80 748	0.00 653	40	7 11.9 11.8 11.7		
14	9.10 006	99	9.10 353	101	0.89 647	9 99 653	46	8 136 135 13.3		
15	9.10 106	100	9.10 454	101	0 89 546	9.99 651	45	9 15 3 15.2 15.0		
ıŏ	9.10 203	99	9.10 555	101	0.89 445	9 99 6 3 0	44	10 17.0 10.8 10.7		
17	9.10 304	99	9.10 656	101	0.89 344	9.99 648	43	20 34.0 33.7 33.3		
18	9.10 402	98	9 10 756	100	0.89 244	9 99 647	42	40 68.0 67 3 66.7		
19	9.10 501	98	9 10 850	100	0 89 144	9 99 045	-41	50 85.0 84.2 83.3		
20	9.10 599	98	9.10 950	100	0.89 044	9 99 043	40	00 08 07		
21	0.10.007	98	9.11 050	99	0.88 817	9.99 0.12	39	6 00 08 9.7		
23	9.10 893	98	9.11 254	99	0.88 746	9.99 648	37	7 11.6 11 4 11.3		
24	9.10 990	97	9.11 353	99	0.88 647	9 99 637	36	8 13.2 13.1 12.9		
25	9.11 087	97	9.11 452	99	0.88 548	9.99 635	35	9 149 14.7 14.6		
26	9.11 184	97	9.11 551	99	0.88 449	9 99 633	34	10 16.5 16.3 10.2		
27	9.11 281	97	9.11 649	98	0.88 351	9 99 632	33	20 33.0 32.7 32.3		
28	9.11 377	97	9 11 747	98	0.88 253	9 99 630	32	40 66.0 65.3 64.7		
29	9.11 4/4	96	9.11 845	98	0.88 155	999029	31	50 82.5 81.7 80.8		
30	9.11 570	96	9.11 943	97	0.88 057	9 99 027	30	06 05 04		
31	0.11 761	95	0.12 138	98	0.87 862	0.00 624	29 28	6 96 9.5 9.4		
33	9.11 857	96	9.12 235	97	0.87 765	9 99 622	27	7 11.2 11.1 11.0		
34	9.11 952	95	9.12 332	97	o 87 668	9 99 620	26	8 12.8 12.7 12.5		
35	9.12 047	95	9 12 428	90	0.87 572	9 99 618	25	9 I4 4 I4.3 I4.I		
36	9.12 142	95	9.12 523	97	0.87 475	9.99 617	24	20 22 0 21.7 21 3		
37	9.12 230	97	9.12 021	96	0.87 379	9 99 615	23	30 48.0 47.5 47.0		
30	9.12 331	94	0.12 813	96	0.87 187	0 00 612	22	40 64.0 63.3 62.7		
40	0.12 510	94	0.12.000	96	0.87.001	0.00.610	20	50 80.0 79.2 78.3		
41	0.12 612	93	0.13 004	95	0.86 006	0 00 608	10	93 92 91		
42	9.12 706	94	9.13 099	95	0.86 901	9 99 607	18	6 9.3 9.2 9 I		
43	9.12 799	93	9.13 194	95	0.86 806	9 99 605	17	7 10.4 10 7 10.6		
_44	9.12 892	93	9.13 289	95	0.86 711	9 99 603	16	8 12.4 12.3 12.1		
45	9.12 985	03	9.13 384	04	0 86 616	9 99 601	15	10 157 159 159		
40	9.13 078	93	9 13 478	95	0.80 522	9 99 000	14	20 31.0 30.7 30.3		
47 18	0.13 262	92	9.13 5/3	94	0.86 222	9 99 590	13	30 46.5 46.0 45.5		
40	9.13 355	92	0.13 761	94	0.86 230	9 99 590	iĩ	40 62.0 61.3 60 7		
50	0.13 447	92	0.13 854	93	0.86 146	0 00 503	io	50 77.5 76.7 75.8		
51	9.13 539	92	9.13 948	94	0.86 052	9 99 591	9	90 2 I		
52	9.13 630	91 91	9 14 041	93	0.85 959	9 99 589	8	6 90 0.2 0.1		
53	9.13 722	92 01	9.14 134	93	0.85 866	9 99 588	7	7 10.5 0.2 0.1		
54	9.13 813	91	9.14 227	93	0.85 773	9 99 586	·°	6 12.0 0.3 0.1		
55	9.13 904	00	9.14 320	92	0.85 680	9.99 584	5	10 15.0 0.3 0.2		
50	9.13 994	91 91	9.14 412	92	0.85 588	9.99 582	4	20 30.0 0.7 0.3		
58	9.14 175	90	9.14 504	93	0.85 490	9.99 501	2	30 45 0 1.0 0.5		
59	9.14 266	9 x	9.14 688	91	0.85 312	9.99 577	1	40 60.0 1.3 0.7		
60	9.14 356	90	0.14 780	92	0.85 220	0.00 575	0	50 75.0 1.7 0.8		
	L. Cos.	d.	L. Cota	c. d.	I. Tang	7.99 373		Prop. Pie		
240					8°					
------------	------------------	----------	-----------	-------	------------	-----------	----	-------------------		
,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.		
0	9.14 356		9.14 780		0.85 220	9 99 575	60			
I	9.14 44 <u>5</u>	00	9.14 872	01	0.85 128	9 99 574	59	92 91 90		
2	9.14 535	80	9.14 963	91	0.85 037	9 99 572	58	7 107 106 105		
3	914 024	90	0.15 145	9x	0.84 857	9 99 570	57	8 12.3 12.1 12.0		
1	0 14 802	- 89	9.15 143	91	0.84 764	9 99 500	50	9 13.8 13.7 13.5		
6	0 11 801	88	0.15 327	91	0.84 673	0.00 565	55	10 15.3 15.2 15.0		
7	9.14 980	89	9 15 417	90	0.84 583	9 99 563	53	20 30.7 30 3 30.0		
8	9.15 069	89	9.15 508	91	0.84 492	9 99 56 I	52	30 40.0 45.5 45.0		
9	9 15 157	88	9.15 598	90	0.84 402	9.99 559	51	50 76 7 75 8 75 0		
10	9.15 245	88	9 15 688	80	0.84 312	9 99 557	50			
II	9.15 333	88	9.15 777	09	0 84 223	9 99 556	49	6 9 9 99		
12	9.15 421	87	915 007	89	0.84 133	9 99 554	40	7 10.4 10.2		
14	9 15 596	83	9.16 046	90	0.83 054	0 00 550	46	8 11 9 11.7		
15	0.15 683	87	0 16 135	89	0 83 865	0.00 548	45	9 13.4 13.2		
16	9.15 770	87	9 16 224	89	0 83 776	9 99 546	44	10 14.8 14.7		
17	9.15 857	87	9.16 312	88	0.83 688	9.99 545	43	20 29.7 29.3		
18	9.15 914	86	9.16 401	89	0.83 599	9 99 543	42	40 50 2 58 7		
19	9.10 030	86	9 16 489	88	0.83 511	9 99 541	41	50 74.2 73.3		
20	9.16 116	87	9.16 577	88	0 83 423	9.99 539	40	1 8m 1 85 1 8m		
21	9 10 203	86	9.10 005	88	0 83 335	9 99 537	39	6 87 86 85		
22	0.16 37.1	85	0.16 8.1	88	0.83 150	9 99 535	30	7 10 2 10 0 0.0		
24	9.16 465	86	9 16 928	87	0 83 072	9 99 532	36	8 11.6 11.3 11.3		
25	9.16 545	85	9 17 016	88	0 82 084	9.09 530	35	9 13.1 12.9 12.8		
26	9.16 631	86	9 17 103	87	0.82 897	9 99 528	34	10 14.5 14.3 14.2		
27	9.16 716	85	9.17 190	87	0.82 810	9 99 526	33	20 20 28.7 28.3		
28	9.16 801	85	9.17 277	86	0 82 723	9.99 524	32	40 58 0 57 1 56 7		
29	9.10 880	84	9 17 303	87	0 82 037	9 99 522	31	50 72.5 71 7 70.8		
30	9.16 970	85	9 17 450	86	0.82 550	9 99 520	30	84 89		
31	917035	84	9 17 530	86	0 82 278	9 99 510	29	6 84 83		
33	9 17 223	84	9.17 708	86	0.82 202	0.00 515	27	7 9.8 9.7		
34	9.17 307	84	9 17 794	86	0 82 206	9.99 513	26	8 11.2 11 1		
35	9.17 391	84	9.17 880	80	0 82 120	9.99 5II	25	9 126 125		
36	9.17 474	83	9.17 965	85	0.82 035	9.99 509	24	10 14.0 13.8		
37	9.17 558	804	9.18 051	00	0 81 949	9.99 507	23			
38	9.17 641	83	9 18 136	85	0 81 804	9 99 505	22	40 56.0 55.3		
39	91/ 724	83	9 18 221	85	0.81 779	9 99 503	21	50 70.0 69.2		
40	9.17 807	83	9 18 300	85	0 81 600	9 99 501	20	82 81 80		
41	0.17 073	83	9.18 391	84	0.81 525	9.99 499	18	6 82 81 8.0		
43	9.18 055	82	9.18 550	85	0 81 440	9.99 495	17	7 96 95 93		
44	9.18 137	82	9 18 6 14	84	0.81 356	9.99 494	16	8 10.9 10.8 10.7		
45	9 18 220	83	9 18 728	84	0 81 272	9 99 492	15	9 12.3 12.2 12.0		
46	9 18 302	82	9 18 812	84	0,81 188	9 99 490	14	10 137 135 133		
47	9.18 383	82	9 18 896	81	0.81 104	9.99 488	13	20 27.3 27.0 20.7		
48	9.10 405	82	9 18 979	84	0.81 021	9 99 480	12	40 54 7 54.0 53.3		
-49-	9.10 547	16	9 19 003	83	0.00 937	9 99 404	10	50 68.3 67.5 66.7		
51	0.18 700	81	9.19.140	83	0.80 054	9.99 402	10	1211		
52	9.18 790	81 81	0 10 312	83	0.80 688	9.99 478	8	6 0.2 0.I		
53	9.18 871	81	9 19 395	83	0.80 605	9 99 476	7	7 0.2 0.I		
54	9.18 952	81	9 19 478	83	0.80 522	9.99 474	6	8 0.3 0.I		
55	9.19 033	80	9 19 561	80	0 80 439	9.99 472	5	9 0.3 0.2		
56	9.19 113	80	9.19 643	82	0.80 357	9.99 470	4	10 0.3 0.2		
57	9.19 193	80	9.19 725	82	0.80 275	9 99 468	3	20 0.7 0.3		
50	9.19 2/3	80	9 19 807	82	0.80 193	9 99 400	Ť	40 1.3 0.7		
39	7.29 333	80	9.19 009	82 -	0.00 111	9.99 404		50 1.7 0.8		
	A TA 144			1	A 1/A A AA					

Prop. Pts.

0.80 029

0

1

9.99 462

L. Sin.

60

9.19 433

L. Cos.

d.

9 19 971

L. Cotg. c. d. L. Tang.

_					9°			941
1	L. sin.	d.	L. Tang	.c. d.	L. Cotg.	L. Cos.		Prop. Pts.
0	9.19 433	80	9.19 971	82	0.80 029	9.99 462	60	1 81 81 80
I	9.19 513	79	9.20 053	81	0.79 947	9.99 400	59	6 8.2 8.1 8.0
3	9.19 592	80	9.20 216	82	0.79 784	9.99 450	57	7 9.6 95 93
4	9.19 751	79	9.20 297	81	0.79 703	9.99 454	56	8 10.9 10 8 10 7
5	9.19 830	79	9 20 378	81	0.79 622	9.99 452	55	9 12.3 12.2 12.0
6	9.19 909	79	9.20 459	81	0 79 541	9.99 450	54	20 27.3 27.0 26 7
7	9 19 988	79	9.20 540	81	0.79 400	9.99 448	53	30 41.0 40.5 40.0
ŏ	0.20 145	78	0 20 701	80	0.79 379	0.00 440	51	40 54.7 54.0 53.3
10	0.20 223	78	9.20 782	81	0.70 218	0 00 442	50	50 08 3 07 5 00.7
II	9.20 302	79	9.20 862	80	0.79 138	9.99 440	49	79 78
12	9.20 380	70	9.20 9.42	80	0.79 058	9.99 438	48	0 7.9 7.8
13	9.20 458	77	9.21 022	80	0.78 978	9.99 436	47	8 10 5 10.4
	9.20 535	78	9.21 102	80	0 78 818	9.99 434	40	9 11.9 11.7
16	9.20 601	78	9.21 102	79	0.78 730	0.00 432	45	10 13.2 13.0
17	9.20 768	77	9 21 341	80	0.78 659	9.99 427	43	20 20.3 20 0
18	9.20 845	77	9.21 420	79	0.78 580	9.99 425	42	40 52.7 52.0
19	9.20 922	77	9.21 499	79	0.78 501	9.99 423	41	50 65.8 65 0
20	9 20 999	77	9.21 578	79	0.78 422	9 99 421	40	1 77 1 76
22	9.21 0/0	77	9.21 057	79	0.78 261	9 99 419	39	6 7.7 7.6
23	9.21 229	76	9.21 814	78	0.78 186	9.99 415	37	7 9.0 8.9
21	9 21 306	77	9 21 893	79	0.78 107	9 99 413	36	8 10.3 10.1
25	9.21 382	76	9 21 971	78	0.78 029	9.99 411	35	9 110 11.4
20	9.21 458	76	9 22 049	78	0.77 951	9 99 409	34	20 25.7 25.3
28	9.21 534	76	9.22 127	78	0.77 705	0.00 407	33	30 38.5 38.0
29	9.21 685	75	9 22 283	78	0.77 717	9 99 402	31	40 51.3 50.7
30	9.21 761	70	9.22 361	78	0.77 639	9 99 400	30	50 04.2 03.3
31	9.21 836	75	9.22 438	77	0 77 562	9 99 398	29	75 74
32	9.21 912	75	9.22 516	70	0 77 484	9 99 396	28	0 7.5 7.4
33	0 22 062	75	9.22 593	77	077 330	9.99 394	27	8 100 9.9
35	0.22 137	75	0 22 7.17	77	0 77 253	0.00 300	25	9 11.3 11.1
36	9.22 211	74	9.22 824	77	077 176	9 99 388	24	10 125 12.3
37	9.22 286	75	9 22 901	77	0.77 099	9 99 385	23	20 25.0 24.7
38	9.22 301	75	9.22 977	70	0.77 023	9 99 383	22	40 50.0 49.3
40	9 22 435	74	9.23 0.4	76	0.70 940	9 99 301	30	50 62.5 61.7
41	0.22 583	74	0.23 206	76	0.76 70.1	9.99 3/9	10	73 73 71
42	9.22 657	74	9 23 283	77	0.76 717	9 99 375	18	6 7.3 7.2 7.I
43	9.22 731	74	9.23 359	70	0.76 641	9.99 372	17	7 8.5 8.4 83
44	9.22 805	74	9.23 435	75	0.76 565	9 99 370	16	0 9.7 9.0 9.5 0 11.0 10.8 70.7
45	9.22 878	74	9 23 510	76	0.76 490	9 99 368	15	10 12.2 12.0 11.8
40	9.22 952	73	9.23 500 9.23 66⊺	75	0.70 414	0 00 361	14	20 24.3 24.0 23.7
48	9.23 098	73	9.23 737	76	0.76 263	9 99 362	12	30 36.5 36.0 35.5
49	9.23 171	73	9.23 812	75	0.76 188	9.99 359	11	50 60.8 60.0 50 9
50	9.23 244	73	9.23 887	75	0.76 113	9.99 357	10	
51	9.23 317	73	9.23 902	75	0.70 038	9.99 355	2	6 0,2 0,2
53	9.23 462	72	9 24 03/ 9.21 II2	75	0.75 888	9.99 353	7	7 0.4 0.2
54	9 23 535	73	9 24 186	74	0.75 814	9.99 348	6	8 0.4 0.3
55	9.23 607	72	9.24 261	75	0.75 739	9.99 346	5	9 0.5 0.3
56	9.23 679	72	9.24 335	74	0.75 665	9.99 344	4	20 1.0 0.7
57	9.23 752	73 71	9.24 410	75	0.75 590	9 99 342	3	30 1.5 1.0
50	923 895	72	9 21 558	74	0.75 510	9.99 340	Ĩ	40 20 1.3
80	0.92.067	72	0 94 620	74	0.75 269	2.22 3.57		50 2.5 1.7
	L. Cos	đ.	y #4 03#	c. d.	- /5 300 L. Tang-	9 99 335	,	Prop. Pts.
						~~~~~~		

<b>2</b> 42					10°				
1	L. Sin.	d.	L. Tang	. c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.23 967		9.24 632	1	0.75 368	9.99 335		60	
I	9.24 039	72	9.24 706	74	0.75 294	9.99 333	2	59	6 74 73
2	9.24 110	71	9.24 779	74	0.75 221	9.99 331	3	58	7 8.6 8.5
3	0.24 253	72	9.24 053	73	0.75 074	0.00 326	2	5/	8 9.9 9.7
1	0 24 224	- 71	0.25.000	- 74	0.75 000	0.00 324	2	55	9 11.1 11.0
6	9 24 395	71	9.25 073	73	0.74 927	9.99 322	2	54	10 12.3 12.2
7	9.24 466	71	9.25 146	73	0.74 854	9 99 319	3	53	20 24.7 24.3
8	9.24 536	70	9.25 219	73	0.74 781	9.99 317	2	52	40 49.3 48.7
-9	9 24 007	70	9.25 292	- 73	0.74 708	9.99 315	2	51	50 61.7 60.8
	9.24 077	71	9.25 305	72	0.74 035	9.99 313	3	10	72 71
12	9.24 818	70	9.25 510	73	0.74 400	9.99 308	2	48	6 7.2 7.1
13	9.24 888	70	9.25 582	72	0.74 418	9.99 306	2	47	7 8.4 8.3
<u>14</u>	9.24 958	70	9 25 655	73	0.74 345	9 99 304	2	.46	8 9.6 9.5
15	9.25 023	70	9.25 727	72	0.74 273	9.99 301	2	45	10 12.0 11.8
10	9.25 098	70	9.25 799	72	0.74 201	9.99 299	2	44	20 24.0 23.7
178	9.25 108	69	9.25 0/1	72	0.71 057	9.99 297	3	43	30 35.0 35.5
19	9.25 307	70	9 26 015	72	0 73 985	9.99 292	2	41	40 48.0 47 3
20	9.25 376	69	9.26 086	71	073914	9.99 290	2	40	50 00.0 59.2
21	9.25 445	69	9 26 158	72	0.73 842	9 99 288	2	39	70 69
22	9.25 514	60	9.26 229	71	0.73 771	9 99 285	3	38	6 7.0 6.9
23	9.25 583	69	9.20 301	71	0.73 099	9 99 283	2	37	8 0.3 0.2
	9.23 032	69	9.20 3/2	71	0.73 026	9.99 201	3	30	9 10.5 10.4
26	9.25 721	69	0.26 51.1	71	0.73 557	0.00 276	2	33	10 11.7 11.5
27	9 25 858	68	9.26 585	7×	0.73 415	9.99 274	2	33	20 23.3 23.0
28	9.25 927	69	9.26 655	70	0.73 345	9.99 271	3	32	30 35 0 34.5
29	9.25 995	68	9.26 726	71	073 274	9.99 269	2	31	50 58.3 57.5
30	9.26 063	68	9.26 797	70	0.73 203	9.99 267		30	5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1 5 - 1
31	9.26 131	68	9.20 867	70	0.73 133	9 99 204	2	29	6 68 67
33	g 26 267	68	9.20 937	71	0.72 003	0 00 260	2	20	7 7.9 7.8
34	9 26 335	68	9.27 078	70	0.72 922	9 99 257	3	26	8 9.1 8.9
35	9.26 403	68	9.27 148	70	0 72 852	9 99 255	2	25	9 10 2 10.1
36	9.26 470	67	9.27 218	70	0.72 782	9.99 252	3	24	10 11.3 11.2
37	9 26 538	67	9.27 288	60	0.72 712	9 99 250	2	23	30 34.0 33 5
30	9.20 005	67	9.27 357	70	0.72 043	0 00 215	3	22	40 45.3 44.7
40	0.26 720	67	9 -7 4-7	69	0.72 501	9 99 - 43	2	20	50 56.7 55.8
41	9.26 806	67	9.27 566	70	0.72 434	0 00 211	2	IQ	66 65
42	9.26 873	67	9 27 635	69	0.72 365	9 99 238	3	18	6 6.6 6.5
43	9.26 9 10	07 67	9.27 704	60 60	0 72 296	9.99 236	2	17	7 77 7.6
44	9 27 007	66	9 27 773	69	0 72 227	9 99 233	2	10	0 0.0 0.7
45	9 27 073	67	9 27 842	69	0.72 158	9 99 231	2	15	10 11.0 10.8
40	9.27 206	66	9.27 911	69	0.72 020	9.99 229	3	13	20 22.0 21.7
48	9.27 273	67	9.28 049	69	0.71 951	9 99 224	2	12	30 33.0 32.5
49	9 27 339	66	9 28 117	68	071 883	9.99 221	3	11	40 44.0 43.3
50	9.27 405	66	9 28 186	69	0.71 814	9.99 219	2	10	50   55.0   54.2
51	9.27 471	66	9.28 254	60	0.71 746	9.99 217	2	2	3 2
52	9.27 537	65	9.28 323	68	0.71 077	9 99 214	2	ð 7	0 0.3 0.2
53 51	9.27 668	66	9.28 391	68	0.71 541	9.99 212	3	6	8 0.4 0.3
55	9.27 734	66	9.28 527	68	0.71 473	9.99 207	2	5	9 0.5 0.3
56	9.27 799	65	9.28 595	68	0.71 405	9.99 204	3	4	10 0.5 0.3
57	9.27 864	05 66	9.28 662	67	0 71 338	9 99 202		3	20 1.0 0.7
58	9.27 930	65	9.28 730	68	0.71 270	9 99 200	3	2	40 2.0 1.3
39	9.27 995	65	9.20 798	67	0.71 202	9.99 197	a		50 2.5 1.7
60	9.28 060		9.28 865		0.71 135	9.99 195		0	
	L. Cos.	۹.	L. Cotg.	c. d.	L. Tang.	L. Sin.	a.	1	Prop. Pts.

1	1	•

0		n
2	4	

	11 243								
1	L. Sin.	d.	L. Tang.	'c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
U	9.28 oóo	6	9.28 865	(0)	0.71 135	9.99 193		60	
I	9.28 125	05	9.28 933	68	0.71 067	9.99 192	3	59	08 07
3	9 28 190	64	9.29 000	67	0.71 000	9.99 190		58	0 0.8 0.7
3	9.28 254	65	9.29 007	67	0.70 933	9.99 187	2	57	7 7.9 7.0
4	9 26 319	65	9.29 134	67	0.70 800	9.99 185	3	50	
5	9.28 364	64	9.29 201	67	0.70 799	9.99 182	3	55	10 11.3 11.2
07	9.20 440	64	9 20 208	67	0.70 732	9.99 180	3	54	20 22.7 22.3
á	0.28 577	65	9.29 335	67	0.70 508	9.00 175	2	53	30 34.0 33.5
ġ	9 28 611	64	9.29 468	66	0.70 532	9.99 172	3	51	40 45.3 44.7
τó	0.28 705	64	0.20 535	67	0.70.465	0.00 170	2	50	50   56.7 ' 55.8
II	9.28 769	64	9.29 601	66	0.70 399	9.99 167	3	49	66 65
12	9.28 833	64	9.29 668	67	0.70 332	9.99 165	2	48	6 6.6 6.5
13	9.28 896	03	9.29 734	66	0.70 266	9.99 162	3	47	7 7.7 7.6
14	9.28 960	64	9.29 800	66	0.70 200	9.99 160	2	46	8 8.8 8.7
15	9.29 024	62	9.29 866	66	0.70 134	9 99 157	3	45	9 99 9.6
16	9.29 087	63	9.29 932	66	0.70 068	9 99 155	3	44	20 22.0 21.7
17	9.29 150	64	9.29 998	66	0.70 002	9.99 152	2	43	30 33.0 32.5
10	9.29 214	63	9.30 004	66	0.60 870	9.99 150	3	42	40 44.0 43.3
20	0.20.210	63	9.30 130	65	0.60 807	9 99 14/	2	4	50 55.0 54.2
21	9.29 340	63	93,195	66	0.09 805	9 99 145	3	20	64 63
22	9.20 466	63	9.30 326	65	0.60 674	0 00 140	2	38	6 6.4 6.3
23	9.29 529	63	9.30 391	65	0.69 609	9.99 137	3	37	7 7.5 7.4
24	9.29 591	62	9.30 457	66	0.69 543	9 99 135	2	36	8 8.5 8.4
25	9 29 651	•3	9.30 522	05	0.69 478	9 99 132	3	35	9 9.6 95
26	9 29 716	02	9.30 587	65	0.69 413	9 99 130	2	34	10 10.7 10.5
27	9 29 779	03	9 30 652	05 67	0.69 348	9.99 127	3	33	20 21.3 21.0
28	9 29 841	62	9 30 717	65	0.69 283	9.99 124	3	32	40 427 420
29	9 29 903	63	9 30 782	64	0.09 218	9.99 122	3	31	50 53.3 52 5
30	9.29 966	62	9.30 840	65	0.69 154	9.99 119	3	30	1 6a 1 6t
31	9.30 028	62	9 30 911	64	0.09 009	9 99 117	3	29	6 62 61
33	0.30 151	61	031040	65	0.68 060	0.00 112	2	27	7 7.2 71
34	9.30 213	62	9 31 104	64	0 68 896	9.99 109	3	26	8 83 81
35	9.30 275	62	0.31 168	64	0.68 832	0 00 106	3	25	9 9.3 9.2
36	9.30 336	61	9.31 233	65	0.68 767	9.99 104	2	24	10 10.3 10 2
37	9 30 398	62	9.31 297	64	0 68 703	9 99 101	3	23	20 20.7 20.3
38	9.30 459	62	9.31 361	04 64	0.68 639	9.99 099	2	22	30 31.0 30 5
39	9.30 521	61	9.31 425	64	0.08 575	9.99 096	3	21	50 51.7 50.8
40	9.30 582	61	9.31 489	62	0.68 511	9 99 093	2	20	
41	9 30 0 13	61	9 31 552	64	0 08 448	9 99 091	3	19	6 60 59
42	9.30 704	61	9.31 010	63	0 68 384	999088	2	10	7 70 60
44	9.30 825	61	9 31 743	64	0 68 257	0 00 082	3	16	8 8.0 7.0
15	0.20 887	61	0.21.806	63	0.68 104	0.00.080	3	TE	9 9.0 89
46	0 30 047	60	9.31 870	64	0.68 130	0.00 078	2	14	10 10.0 9.8
47	9.31 008	61	9.31 933	63	0.68 067	9 00 175	3	13	20 20.0 19 7
48	9.31 068	60 6	9.31 996	63	0.68 004	99 072	3	12	30 30.0 29 5
49	9.31 129	01 60	9 32 059	03	0.67 941	9.09 070	2	II	40 40.0 39 3
50	9.31 189	6-	9 32 122	6- 6-	0.67 878	9 99 <b>0</b> 67	3	10	
51	9.31 23)	01 60	9.32 185	03 63	0 67 813	9.99 064	3	2	3 2
52	9 31 310	60	9.32 218	61	0.67 752	9.99 <b>062</b>		8	0 0.3 0.2
53	9.31 370	60	9.32 311	62	0 67 689	9 99 059	3	7	7 0.4 0.2
- 34	9.34 430	60	<u>9.30 1/3</u>	63	0.07 02/	9.09.050	2	<u> </u>	0 0.5 0.2
55	931 490	59	9 32 430	62	0.07 504	9 99 054	3	5	10,0.5 0.3
57	0.31 600	60	9.32 490	63	0.67 430	0.00 048	3	4	20 1.0 0.7
58	9.31 669	60	9.32 627	62	0.67 377	9.99 046	2	2	30 1.5 1.0
59	9.31 728	59	9.32 685	62	0.67 315	9 09 043	3	I	40 2.0 1.3
60	9.31 798	00	9 32 747	02	0.67 253	9 99 040	3	0	50   2.5 1.7
	L. Cos.	d.	L. Cotg.	c. d.	L. Taug.	L. Sin.	d.	,	Prop. Pts.

244					12°				
1	L. Sin.	d.	L. Taug	. c. d	L. Cotg.	L. Cos.	d.		Prop. Pts.
10	9.31 788		9.32 747	6	0.67 253	9.99 040		60	
I	9.31 847	60	9 32 810	62	0.67 190	9.99 038	3	59	6 62 62
	9.31 907	59	9.32 872	61	0.07 128	9.99 035	3	58	7 7.4 7.2
	9.32 025	59	9.32 995	62	0.67 005	9 99 030	2	56	8 8.4 8.3
5	9.32 084	- 59	9.33 057	- 02	0.66 943	9.99 027	3	55	9 93 93
6	9.32 143	50	9.33 119	61	0.66 881	9.99 024	3	54	20 21.0 20.7
7	9.32 202	59	9 33 180	62	0.00 820	9 99 022	3	53	30 31.5 31.0
, o	9.32 319	. 58	9.33 303	бт	0.66 697	9.99 019	3	51	40 42.0 41.3
Ъб	9.32 378	- 59	9 33 365	- 62	0.66 635	0.00 013	3	50	50   52.5   51 7
11	9.32 437	59	9.33 426	61	0.66 574	9 99 011	2	49	61 60
12	9.32 495	58	9.33 487	61	0.66 513	9 99 008	3	48	6 6.1 6.0
13	9.32 553	59	9.33 548	61	0.00 452	9.99.005	3	47	8 8.1 8.0
17	0.32 670	58	0.33 670	61	0.66 330	0.00.000	2	45	9 9.2 90
16	9.32 728	58	9.33 731	61	0 66 269	9.98 997	3	44	10 10.2 10.0
17	9.32 786	58	9.33 792	61	0.66 208	9 98 994	3	43	20 20.3 20.0
18	9.32 844	58	9.33 853	60	0.66 147	9 98 991	2	42	40 40.7 40.0
20	9.32 902	58	9.33 913	61	0.00 007	9 90 909	3	41	50 50.8 50.0
21	9.32 900	58	9.33 974	60	0.65 066	0.08 083	3	30	59
22	9.33 075	57	9 34 095	61	0.65 905	9.98 980	3	38	6 5.9
23	9.33 133	58	9.34 155	60	0.65 845	9.98 978	2	37	7 6.9
24	9.13 190	58	9.34 215	61	0.05 785	9 98 975	3	30	8 7.9
25	9.33 248	57	9.34 270	60	0.05 724	9 98 972	3	35	10 98
27	9.33 362	57	9.34 336	60	0.65 604	9.98 967	2	33	20 19.7
28	9 33 420	58	9 34 456	60	0.65 544	9.98 964	3	32	30 29.5
29	9.33 477	57	9.34 516	60	0.65 484	9.98 961	3	31	40 39.3 50 40.2
30	9.33 534	57	9.34 576	59	0.65 424	9.98 958	3	30	58 57
31	9.33 591	56	9.34 035	60	0.05 305	9.98 955	2	29	6 58 57
33	9.33 704	57	9 34 755	60	0.65 245	9 98 950	3	27	7 6.8 6.7
34	9.33 761	57	9.34 814	59	0.65 186	9 98 947	3	26	8 7.7 7.6
35	9.33 818	57	9 34 ⁸ 74	50	0.65 126	9 98 944		25	9 8.7 86
30	9.33 874	57	9.34 933	59	0.65 067	9 98 941	3	24	20 19.3 19.0
37	9.33 934	56	9.34 992	59	0.61 949	9,98,930	2	22	30 29.0 28.5
39	9.34 043	56	9.35 111	60	0.64 889	9 98 933	3	21	40 38.7 38.0
40	9.34 100	57	9 35 170	59	0.64 830	9.98 930	3	20	50   40.3   47 5
4I	9.34 156	56	9 35 229	59 50	0.64 771	9 98 927	3	12	50 55
42	9.34 212	56	9.35 288	59	0.61 652	9 98 924	3	10	7 6 5 6 4
44	9.34 324	56	9.35 405	58	0.64 595	9 98 919	2	16	8 7.5 7.3
45	9.34 380	56	9.35 464	59	0.64 536	9.98 916	3	15	9 8.4 8.3
4Ŏ	9.34 436	56	9 35 523	59 59	0.64 477	9 98 913	3	14	10 93 9.2
47	9.34 - 91	55 56	9 35 581	50	0.64 419	9.98 910	3	13	30 28.0 27.5
40	9.34 547	55	0.35 608	58	0.64 300	0.08 004	3	12	40 37.3 36.7
50	9.34 658	56	0.35 757	59	0.64 243	0.08 00I	3	10	50 46.7 45.8
51	9.34 713	55	9.35 815	58	0.64 185	9 98 898	3	9	3 2
52	9.34 769	50	9 35 873	58 58	0.64 127	9.98 896	2	8	6 0.3 0.2
53	9.34 824	55	9.35 931	58	0.04 009	9.98 893	3	7	7 0.4 0.2
54	0.24 034	55	0.26 047	58	0 62 052	0.08 887	3	Ť	9 0 5 0.3
56	9.34 980	55	9.36 105	58	0 63 895	9.98 884	3	4	10 0.5 0.3
57	9.35 044	55	9.36 163	58	0.63 837	9.98 881	3	3	20 1.0 0.7
58	9.35 099	55	9.36 221	50	0.63 779	9 98 878	3	2	30 1.5 1.0
59	9.35 154	55	9.30 279	57	0.03 721	9.90 0/5	3		50 2.5 1.7
60	9.35 209		9.36 336		0.63 664	9.98 872		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

~ ~
_

_									
1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
U	9.35 209		9.36 336		0.63 664	9.98 872		60	
I	9.35 263	54	9.36 394	58	0.63 606	9 98 869	3	59	58 57
2	9.35 318	55	9.36 452	57	0.63 548	9.98 867		58	0 5.8 5.7
3	9.35 373	54	9 30 509	57	0.03 491	9.98 804	3	57	8 77 76
4	935 +2/	54	9.30 500	58	0.03 434	9 98 801	3	- 30	9 8.7 8.6
5	9.35 401	55	9.30 024	57	0 63 370	0.90 050	3	55	10 9.7 9.5
7	9.35 590	54	9.36 738	57	0.63 262	9.98 852	3	53	20 19.3 19.0
8	9.35 644	54	9.36 795	57	0.63 205	9.98 849	3	52	30 29.0 28.5
9	9.35 698	54	9.36 852	57	0.63 148	9 98 846	3	51	40 30.7 30.0
10	9.35 752	54	9 36 909	57	0.63 091	9.98 843	2	50	30 4003 4703
11	9.35 800	54	9.36 966	57	0.63 034	9.98 840	3	49	50 55
12	9.35 800	54	9.37 023	57	0.02 977	9.98 837	3	40	7 6.5 6.4
11	0.35 068	54	9.37 137	57	0.62 863	0.08 831	3	46	8 7.5 7.3
15	0.36 022	54	0.37 103	56	0.62 807	0.08.828	3	45	9 8.4 8.3
16	9 36 075	53	9 37 250	57	0.62 750	9.98 825	3	44	10 9.3 9.2
17	9.36 129	54	9 37 306	50	0.62 694	9 98 822	3	43	20 18.7 18.3
18	9.36 182	53	9.37 363	57	0.62 637	9 98 819	3	42	10 27 2 26 7
19	9.30 230	53	9.37 419	57	0.02 581	9 98 816	3	41	50 46 7 45.8
20	9.36 289	53	9.37 476	56	0.62 524	9.98 813	3	40	1 54
21	9.30 342	53	9.37 532	56	0 62 408	9 98 810	3	39	6 5.4
23	9.36 393	54	0.37 611	56	0.62 356	9,08 804	3	37	7 6.3
24	9 36 502	53	9 37 700	56	0.62 300	9 98 801	3	36	8 7.2
25	9.36 535	53	9.37 756	50	0.62 244	9.98 798	3	35	9 8.I
26	9 36 608	53	9.37 812	50	0.62 188	9.98 795	3	34	10 9.0
27	9.36 660	52	9.37 868	50	0.62 132	9.98 792	3	33	30 27.0
28	9.30 713	53	9.37 924	56	0.02 076	9 98 789	3	32	40 36.0
29	9.30 700	53	937980	55	0.02 020	9.98 780	3	31	50 45.0
21	9.30 819	52	9.30 035	56	0.01 905	9.96 763	3	30	53 52
32	9.36 921	53	9.38 117	56	0 61 853	9 98 777	3	28	6 53 5.2
33	9.36 976	52	9.38 202	55	0.61 798	9.98 774	3	27	7 6.2 6.I
34	9.37 028	52	9 38 257	55	0 61 743	9 98 771	3	26	8 7.1 6.9
35	9.37 081	52	9 38 313	55	0.61 687	9 98 768	2	25	9 00 7.0 TO 88 87
36	9 37 133	52	9.38 368	55	0.01 032	9 98 765	3	24	20 17.7 17.3
37	9.37 105	52	9.38 423	56	0.01 577	9.98 702	3	23	30 26.5 26.0
39	9.37 289	52	9 38 534	55	0.61 466	9.98 756	3	21	4º 35·3 34·7
40	0.37 3.11	52	0.38 580	55	0.61 411	9.08 753	3	20	50   44.2   43.3
41	9.37 393	52	9.38 644	55	0.61 356	9.98 750	3	19	51 4
42	9 37 445	52	9.38 699	55	0.61 301	9.98 7.46	4	18	6 5.1 0.4
43	9.37 497	52	9 38 754	50	0 61 246	9.98 743	3	17	7 0.0 0.5
44	9.37 549	51	9.30 008	55	0.01 192	9.96 740	3	10	0 77 0.6
45	9.37 000	52	9.38 803	55	0.01 137	9 98 737	3	15 14	10 8.5 0.7
47	9.37 703	5X	9.38 972	54	0.61 028	9 98 731	3	13	20 17.0 1.3
48	9 37 755	52	9.39 027	55	0.60 973	9 98 728	3	12	30 25.5 2.0
49	9.37 806	51	9.39 082	55	0,60 918	9.98 725	3	II	40 34.0 2.7
50	9 37 858	5*	9.39 136	54	0.60 864	9 98 722	3	10	50 42.5 3.3
51	9.37 909	51	9 39 190	54	0.60 810	9.98 719	3	2	3 2
52	9.37 900	51	9 39 245	55	0.00 755	9.98 715	3	×	0 0.3 0.2
53	9.38 062	51	9.39 299	54	0.60 647	0.08 700	3	6	8 0.4 0.2
55	0 38 112	51	0.30 407	54	0.60 502	0.08.706	3		9 0.5 0.3
56	9.38 161	51	9.39 401	54	0.60 530	9.98 703	3	4	10 0.5 0.3
57	9.38 215	51	9.39 515	54	0.60 485	9.98 700	3	3	20 1.0 0.7
58	9.38 266	51	9 39 569	54	0.60 431	9.94 697	3	2	30 1.5 1.0
59	9.38 317	51	9.39 623	54 54	0.60 377	9 98 694	3	I	40 2.0 1.3 50 2.5 1.7
60	9.38 368	•-	9.39 677		0.60 323	9.98 690		0	J
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

246					14°				
1	L. Sin.	d.	L. Tang	.c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.38 358		9.39 677		0.60 323	9.9. 090		60	
I	9.38 418	51	9.39 731	54	0.60 269	9.98 687	3	59	
	9.38 409	50	9.39 705	53	0.00 215	9.98 084	3	58	54 53
	9.38 570	51	0.30 802	54	0.60 108	9.98 678	3	36	0 5.4 5.3
1	9.38 620	- 50	0.30 945	53	0.60 055	0.98 675	3	55	8 7.2 7.1
Ğ	9.38 670	50	9.39 999	54	0.60 001	9.98 671	4	54	9 8.1 8.0
7	9.38 721	51	9.40 052	53	0.59 948	9.98 668	3	53	10 9.0 8.8
8	9.38 771	50	9.40 100	53	0.59 894	9 98 665	3	52	20 18.0 17.7
1	9.30 021	- 50	9.40 139	53	0.39 041	9.98 652	3	51	40 36.0 35.3
11	0.38 021	50	0.40 266	54	0.59 734	0.08.656	3	40	50 45.0 44.2
12	9 38 971	50	9.40 319	53	0.59 681	9.98 652	4	48	
13	9.39 021	50	9.40 372	53	0.59 628	9 98 649	3	47	
14	9.39 071	50	9 40 425	53	0.59 575	9 98 646	3	46	52 5I
15	9.39 121	49	9.40 478	53	0.59 522	9.98 643	3	45	0 5.2 5.1
10	0.30 220	50	9.40 531	53	0.59 409	0.96 040	4	44	8 6.9 6.8
18	9.39 270	50	9 40 636	52	0.59 364	9 98 633	3	43	9 7.8 7.7
19	9.39 319	49	9 40 689	53	0.59 311	9 98 630	3	41	10 8.7 8.5
20	9 39 369	50	9 40 742	53	0.59 258	9.98 627	3	40	20 17.3 17.0
21	9 39 418	49	9 40 793	53	0.59 205	9 98 623	1	39	40 31.7 34.9
22	9.39 407	50	9.40 847	53	0 59 153	9.98 020	3	38	50 43.3 42.5
24	9.39 566	49	9.40 952	52	0.59 048	9.98 614	3	36	
25	9.39 615	49	9.41 005	53	0.58 995	9.98 610	4	35	
26	9.39 664	49	9.41 057	52	0.58 943	9.98 607	3	34	50 49
27	9 39 713	49	9.41 109	52	0.58 891	9.98 604	3	33	0 5.0 4.9
20	9.39 702 0.30 8TT	49	9.41 101	53	0.50 039	9.98 507	4	32	8 6.7 6.5
30	0.30 860	49	0.41 266	52	0.58 734	0 08 50.1	3	30	9 7.5 7.4
31	9.39 909	49	9.41 318	52	0.58 682	9.98 591	3	29	IO 8.3 8.2
32	9.39 958	49	9.41 370	52	0.58 630	9.98 588	3	28	30 25.0 24.5
33	9.40 000	49	9.41 422	52	0 58 578	9.98 584	3	27	40 33.3 32.7
34	9.40 033	48	9.41 4/4	52	0.50 320	9 90 301	3	20	50 41.7 40.8
35	9.40 103	49	9.41 520	52	0.58 474	9.90 570	4	23 24	
37	9.40 200	48	9.41 629	51	0.58 371	9.98 571	3	23	
38	9 40 249	49	9.41 681	52	0.58 319	9.98 568	3	22	6 48 47
39	9.40 297	49	9.41 733	51	0.58 207	9.98 505	4	21	7 5.6 5.5
40	9.40 346	48	9.41 784	52	0.58 210	9.98 501	3	20	8 6.4 6.3
41	0.40 394	48	9.41 830	51	0.58 112	9.90 550	3	18	9 7.2 7.1
43	9.40 490	48	9 41 939	52	0.58 061	9.98 551	4	17	10 8.0 7.8 20 TGO TE 7
44	9 40 538	40 48	9 41 990	51	0.58 010	9.98 548	3	16	30 24.0 23.5
45	9.40 586	48	9.42 041	52	0.57 959	9.98 545	4	15	40 32.0 31.3
40	9.40 034	48	9.42 093	51	0 57 907	9.98 541	3	14	50 40.0 39.2
47 48	9.40 082	48	94-144	52	0.57 807	0.08 535	3	13 12	
49	9.40 778	48	9.42 246	5X	0.57 754	9.98 531	4	11	
50	9.40 825	47	9.42 297	51	0.57 703	9.98 528	3	10	6 0 4 3
51	9.40 873	48	9.42 348	51	0.57 652	9.98 525	3	9	7 0.5 0.4
52	9.40 921	40	9 42 399	51	0.57 601	9.98 521	4	8	8 0.5 0.4
55 54	9.41 016	48	9.42 450	51	0.57 550	9.08 518	3	6	9 0.6 0.3
55	9.41 063	47	9.42 552	51	0 57 448	9.98 511	4	5	20 1.3 1.0
56	9.41 111	48	9.42 603	51	0.57 397	9.98 508	3	4	30 2.0 1.5
57	9.41 158	47	9.42 653	50	0.57 347	9.98 503	3	3	40 2.7 2.0
58	9.41 205	4	9.42 704	51	0.57 290	9.98 501	3	2	50 3.3 2.5
39	9.41 238	41 1	9.4# / 55	50	<u></u>	9.90 490	4		
00	9.41 300		9.42 805	c. d.	0.57 195	9.98 494	d.	, ·	Prop. Pts.

۰.	

S	4	7
2	4	:1

	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.41 300	47	9.42 805	67	0.57 195	9.98 494		60	
I	9.41 347	47	9.42 856	50	0.57 144	9.98 491	3	59	
3	9.41 441	47	9 42 957	51	0.57 043	9.98 484	4	57	51 50 6 51 50
4	9.41 488	47	9.43 007	50	0.56 993	9.98 481	3	56	7 6.0 5.8
5	9 4I 535	47	9.43 057	51	0.56 943	9.98 477	1	55	8 6.8 6.7
07	9.41 582	46	9.43 108	50	0.50 892	9.98 474	3	54	9 7.7 7.5
8	9.41 675	47	9.43 208	50	0.56 792	9 98 467	4	53 52	20 17.0 16.7
9	9 41 722	47	9 43 258	50	0.56 742	9.98 464	3	51	30 25.5 25.0
10	9 41 703	40	9.43 308	50	0.56 692	9 98 460	1	50	40 34.0 33.3
II	9.41 815	46	9 43 358	50	0.56 642	9 98 457	4	49	50 42.5 41.7
12	0.41 003	47	9.43 408	50	0.50 592	9.90 453	3	40	
14	9.41 954	46	9 43 508	50	0.56 492	9.98 447	3	46	84   04
15	9.42 001	47	9 43 558	50	0 56 442	9.98 443	4	45	6 49 4.8
16	9.42 047	46	9 43 607	50	0.56 393	9.98 440	3	44	7 5.7 5.6
17	9.42 093	47	9.43 057	50	0 50 343	9.98 436	3	43	8 0.5 6.4
19	9.42 186	46	9.43 756	49	0.56 244	9 98 433	4	42	10 8.2 8.0
20	9.42 232	46	9.43 806	50	0.56 104	9 98 426	3	40	20 16.3 16.0
21	9 42 278	40	9.43 855	49	0.56 145	9 98 422	4	39	30 24.5 24.0
22	9.42 324	46	9 43 905	40	0.56 095	9 98 419	د ۵	38	40 32.7 32.0
23	9.42 370	46	9.43 954	50	0.50 046	9 98 415	3	37	50140.0140.0
25	0.42 161	45	9.44 004	49	0.55 990	9 90 412	3	30	
26	9.42 507	46	9.44 102	49	0 55 808	9.90 409	4	35	47 46
27	9.42 553	40	9.44 151	49	0.55 849	9 98 402	3	33	6 47 4.6
28	9.42 599	45	9 44 201	49	0.55 799	9.98 398	3	32	7 5.5 5.4
29	9.42 044	46	9.44 255	49	0.55 750	9.98 395	4	31	8 0.3 0.1
21	9.42 090	45	9.44 299	49	0.55 701	9 98 391	3	30	10 7.8 7.7
32	9.42 781	46	9.44 397	49	0.55 603	9.98 384	4	28	20 15.7 15.3
33	9.42 826	45	9.44 446	49 40	0.55 554	9 98 381	3	27	30 23.5 23.0
34	9.42 872	45	9.44 495	49	0 55 505	9.98 377	4	26	40 31.3 30.7 50 30.2 38.3
35	9.42 917	45	9.44 544	48	0.55 456	9 98 373	3	25	J= 7 JJ= 7 J= J
30	9 42 902	46	9.44 592	49	0.55 408	0 08 366	4	24	
38	9.43 053	45	9.44 690	49	0.55 310	9.98 363	3	22	45 44
39	9 43 098	45	9.44 738	40	0.55 262	9 98 359	4	21	6 4.5 4.4
40	9.43 143	45	9.44 787	49	0.55 213	9.98 356	4	20	7 5.3 5.I 8 60 50
41	9.43 188	45	9.44 836	48	0.55 104	9 98 352	3	19	9 6.8 6.6
43	943 278	45	9.44 933	49	0.55 067	9.98 345	4	17	10 7.5 7.3
44	9.43 323	45	9.44 981	48	0.55 019	9.98 342	3	16	20 15 0 14.7
45	9.43 367	45	9.45 029	40	0.54 971	9.98 338		15	40 30.0 20.3
46	9.43 412	45	9.45 078	48	0.54 922	9 98 334	3	14	50 37.5 36.7
47	9.43 457	45	9.45 120	48	0.54 074	9.96 331	4	13	
49	9 43 545	44	9.45 222	48	0.54 778	9 98 324	3	11	
50	9 43 591	45	9.45 271	49	0.54 729	9.98 320	4	10	4 3
51	9.43 635	44	9.45 319	48	0.54 681	9.98 317	3	9	0 0.4 0.3
52	9 43 680	43	9 45 367	40	0.54 633	9.98 313		8	8 0.5 0.4
53	9.43 724	45	9 45 415	48	0.54 505	9.96 309	3	7	9 0.6 0.5
55	0.43 812	44	9.45 511	48	0.54 480	0.08.302	4		10 0.7 0.5
56	9.43 857	44	9.45 559	48	0.54 441	9.98 299	3	4	20 I.3 I.0 20 2.0 I.F
57	9.43 901	44	9 45 606	47	0.54 394	9.98 295	4	3	40 27 2.0
58	9.43 946	43	9.45 054	48	0.54 346	9.98 291	3	8	50 3 3 2.5
59 60	0.44 034	- 44	9.45 750	48	0.54 290	9.90 200	4		•
						1 0.00 207 1			-

<b>24</b> 8					16°				
/	L. Sin.	d.	L. Tang	.c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.44 034		9.45 750		0.54 250	9.98 284		60	
I	9.44 078	44	9 45 797	48	0.54 203	9.98 281	4	59	
4	0.44 122	44	9.45 802	47	0.54 155	0.08 277	4	57	48 47
4	9 44 210	44	9 45 940	48	0 54 060	9.98 270	3	56	7 56 57
5	9.44 253	43	9.45 987	47	0.54 013	9 98 266	4	55	8 64 6.3
6	9.44 297	44	9 46 035	40	0.53 965	9 98 262	4	54	9 7.2 7.1
7	9 44 341	44	9.40 082	48	0.53 918	9 98 259	4	53	10 8.0 78
å	944 305	• 43	9.46 177	47	0.53 823	9 98 251	4	51	30 24.0 23.5
10	9.44 472	44	9.46 224	47	0.53 776	9 98 248	3	50	40 32 0 31.3
11	9.44 516	44	9.46 271	47	0.53 729	9.98 244	4	49	50 40.0 39.2
12	9.44 559	43	9 46 319	40	0.53 681	9.98 240	4	48	
13	9.44 602	44	9 40 300	47	0.53 034	9.98 237	4	47	
14	9.44 040	43	0 46 460	47	0.53 507	9.90 233	4	45	6 46 45
16	9.44 733	44	9 46 507	47	0.53 403	9 98 226	3	44	7 5.4 5.3
17	9.44 776	43	9.46 554	47	0.53 446	9 98 222	4	43	8 6.1 6.0
18	9.44 819	43	9.46 601	47	0.53 399	9 98 218	4	42	9 6.9 6.8
19	9 44 802	43	9 46 648	46	0.53 352	9 98 215	4	41	10 7.7 7.5
20	9.44 905	43	9.40 094	47	0.53 300	9 98 211	4	40	30 23.0 22.5
22	9.44 940	44	9.16 788	47	0.53 212	9.98 204	3	38	40 30 7 30.0
23	9.45 033	43	9.46 835	47	0.53 165	9.98 200	4	37	50 38.3 37.5
24	9 45 077	42	9 46 881	40	0.53 119	9 98 196		36	1
25	9.45 120	43	9.46 928	47	0.53 072	9 98 192	3	35	
20	9.45 103	43	9.40 975	46	0.53 025	9 98 189	4	34	6 44 43
28	9.45 249	43	9.47 068	47	0.52 979	9 98 181	4	32	7 5.1 5.0
29	9.45 292	43	9.47 114	46	0.52 886	9 98 177	4	31	8 59 5.7
30	9.45 334	42	9.47 160	40	0.52 840	9 98 174	3	30	9 6.6 6.5
31	9.45 377	43 42	9.47 207	4/	0.52 793	9 98 170	4	29	20 14 7 14 2
32	9.45 419	43	9.47 253	46	0.52 747	9.98 100	4	28	30 22.0 21.5
34	9.45 504	42	9.47 346	47	0.52 654	9 98 159	3	26	40 29 3 28.7
35	9.45 547	43	9.47 392	45	0.52 608	9 98 155	4	25	50   36.7   35.8
36	9.45 589	42	9 47 438	40	0.52 562	9 98 151		24	
37	9.45 632	42	9.47 484	46	0.52 516	9 98 147	3	23	1 42 1 47
30	945 716	42	9.47 530	46	0.52 470	0 08 144	4	21	6 42 4.1
40	0.45 758	42	0.17 622	46	0.52 278	0.08 126	4	20	7 49 4.8
41	9.45 801	43	9.47 668	46	0.52 332	9 98 132	4	19	8 56 5.3
42	9.45 843	42	9.47 714	40	0.52 286	9 98 1 29	3	18	9 0.3 6.2
43	9 45 885	42	9.47 760	46	0.52 240	9 98 125	4	17	20 14.0 13.7
44	9.45 927	42	9.47 800	46	0.52 194	9.90 121	4	10	30 21.0 20.5
45 46	9.45 909 9.46 01 1	42	9.47 807	45	0.52 148	9 98 117	4	15	40 28.0 27.3
47	9.46 053	42	9.47 943	46	0.52 057	9.98 110	Э	13	50   35.0   34 2
48	9.46 095	42	9.47 989	46	0.52 011	9.98 106	4	12	
49	9.40 136	41	9.48 035	40 45	0.51 965	9 98 102	4	11	1 4 1 4
50	9.46 178	42	9.48 080	<b>4</b> 6	0.51 920	9 98 098	4	10	6 0.4 0.3
51	9.40 220	42	9.40 120	45	0.51 074	9.90 094	4	8	7 0.5 0.4
53	9.46 303	4×	9.48 217	46	0.51 783	9.98 087	3	7	8 0.5 0.4
54	9.46 345	42	9.48 262	45	0.51 738	9.98 083	4	6	9 0.0 0.5 10 0.7 0 f
55	9.46 386	41	9.48 307	45	0.51 693	9.98 079		5	20 1.3 1.0
56	9.46 428	41	9.48 353	40	0.51 647	9.98 075	1	4	30 2.0 1.5
57	9.40 409	42	9.40 398	45	0.51 002	9.98 071	4	3	40 2.7 2.0
59	9.46 552	4I	9 48 489	46	0.51 511	9.98 063	4	ī	50   3.3   2.5
60	0.46 504	42	0.48 534	45	0.51 466	9.98 060	3	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	· Prop. Pts.

	•
1	<b>7</b> °

n	. 4	n
2	4	э

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.46 594		9.48 534		0.51 466	9.98 060		60	
I	9.46 635	4 <b>1</b>	9.48 579	45	0.51 421	9.98 056	4	59	
2	9.46 676	41	9.48 624	45	0.51 376	9.98 052	4	58	45 44
3	9.46 717	41	9 48 669	45	0.51 331	9.98 048		57	6 4.5 4.4
4	9.40 758	42	9.48 714	45	0.51 280	9.98 044	4	50	7 5.3 5.I
5	9.46 800	41	9.48 759	45	0.51 241	9.98 040		55	8 6.0 5.9
0	9.40 841	41	9.48 804	45	0.51 190	9.98 030	4	54	9 0.8 0.0
7	9.40 002	41	9 40 049	45	0.51 151	9.90 032	3	53	20 15 0 14.7
0	0.46 064	41	0.48 030	45	0.51 061	0.08.025	4	51	30 22.5 22.0
10	0.47.005	41 41	0.18.084	45	0.51.016	0.08.001	4	50	40 30.0 29.3
TT	0 47 045	40	9.40 904	45	0.50 071	0.08.017	4	40	50 37.5 36.7
12	9.47 086	4X	9.49 073	44	0.50 927	0 08 013	4	48	
13	9.47 127	41 41	9 49 118	45	0.50 882	9.98 009	4	47	
14	9.47 168	41	9.49 163	45	0.50 837	9 98 003	4	46	43
15	9.47 209	41	9 49 207	44	0.50 793	9 98 001	4	45	6 4.3
16	9.47 249	40	9.49 252	45	0 50 748	9 97 997	4	44	7 5.0
17	9.47 290	41	9 49 296	44	0.50 704	9 97 993	4	43	8 5.7
18	9.47 330	40	9 49 341	45	0.50 659	9 97 989	1	42	9 0.5
19	9.47 371	40	9.49 385	45	0.50 015	9 97 980	4	41	20 14.2
20	9 47 411	41	9.49 430	44	0 50 570	9 97 982		40	30 21.5
21	9 47 452	40	9.49 474	45	0.50 520	9 97 978	4	39	40 28.7
22	9.47 492	41	9 49 519	44	0.50 401	9 97 974	4	30	50 35.8
21	9.47 573	40	9.49 503	44	0 50 303	9 97 066	4	36	
25	0.47 612	40	0.40.652	45	0 50 348	0.07.062	4	25	
26	0.47 654	4T	0 40 606	44	0.50 301	0 07 058	4	34	42   4I
27	9.47 694	40	9 49 740	44	0.50 260	9 97 954	4	33	6 4.2 4.I
28	9.47 734	40	9 49 784	44	0.50 216	9.97 950	4	32	7 4.9 4.8
29	9.47 774	40	9 49 829	44	0 50 172	9 97 946	4	31	8 5.6 5.5
30	9.47 814	40	9 49 872	44	0.50 128	9 97 942	4	30	9 0.3 02
31	9.47 854	40	9.49 916	44	0 50 084	9.97 938	4	29	20 14 0 12 7
32	9.47 ⁸ 94	40	9.49 960	44	0.50 040	9.97 934	4	28	30 21.0 20.5
33	9.47 934	40	9.50 004	44	0.49 990	9 97 930		27	40 28.0 27.3
34	9.47 974	40	9.50 040	44	0.49 952	99/920	4	-20	50 35.0 34 2
35	9.48 014	40	9.50 092	44	0.49 908	9 97 922	4	25	
30	9.48 054	40	9.50 130	44	0.49 804	9.97 916	4	24	
38	0.48 133	39	0.50 223	43	0.40 777	0.07 010	4	22	40 39
39	9.48 173	40	9.50 267	44	0 49 733	9.97 906	4	21	6 4.0 39
40	0.48 213	40	0.50 211	44	0 40 680	0.07.002	4	20	7 4.7 4.6
41	9.48 252	39	9 50 35	44	0.49 64	9 97 898	4	19	8 5.3 52
42	9.48 292	40	9.50 398	43	0 49 602	9 97 894	4	18	9 0.0 59
43	9.48 332	40	9.50 442	44	0.49 558	9.97 890	4	17	20 13.2 12.0
44	9.48 371	39	9.50 485	43	0 49 515	9 97 886		16	30 20.0 10.5
45	9.48 411		9.50 529	44	0.49 471	9 97 882		15	40 26.7 26.0
46	9 48 450	39 40	9 50 572	43	0.49 428	9 97 878		14	50 33.3 32.5
47	9.48 490	30	9.50 010	43	0 49 384	9.97 874	4	13	
40	9.40 529	39	9 50 059	44	0.49 341	997866	4		
50	0.48 607	39	3.30 703	43	0.40.05.1	0.07.867	5	10	5 4 3
51	0.48 647	40	9.50 740	43	0.49 254	9.97 857	4	10	6 0.5 0.4 03
52	9.48 686	39	0 50 833	44	0.40 167	9 97 852	4	8	7 0.6 0.5 0.4
53	9.48 725	39	9.50 876	43	0.49 124	9.97 849	4	7	8 0.7 0 5 0.4
54	9.48 764	39	9.50 919	43	0.49 081	9.97 845	4	6	9 0.8 00 0.5
55	9.48 803	39	9 50 962	43	0.49 038	9.97 841	4	5	20 1.7 1.3 10
56	9.48 842	39	9.51 005	43	0.48 995	9.97 837	4	4	30 2.5 20 1.5
57	9.48 881	39	9.51 048	43	0.48 952	9 97 833	4	3	40 3.3 2.7 2.0
58	9.48 920	39	9.51 092	44	0.48 908	9.97 829	1	2	50 4 2 3 3 2 5
59	9.48 959	39	9.51 135	43	0 48 805	9.97 825	4	I	
60	9.48 998		9.51 178		0.48 822	9.97 821		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

250					18°				
1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9 48 998	20	9.51 178	42	o <u>t</u> 8 822	9 97 821		60	
I	9.49.037	39	9.51 221	43	0 48 779	9 97 817	5	59	
2	9 49 070	39	9.51 204	42	0.48 730	9 97 812	4	50	43 42
4	9 49 153	38	9 51 340	43	0.48 651	9 97 804	4	56	7 50 40
5	9 49 192	39	9 51 392	43	0.48 608	9 97 800	4	55	8 57 56
Ğ	9 49 231	39	9.51 433	43	0 48 565	9 97 796	4	54	9 65 6.3
7	9 49 269	30	9 51 478	43	0 48 522	9 97 792	4	53	10 7.2 70
8	9 49 308	39	9 51 520	42	0 48 480	9 97 788	4	52	20 14 3 14 0
	9 +9 3+7	38	951 503	43	0.40 437	9 97 784	5	51	40 28.7 28.0
	9 49 305	39	951 000	42	0 18 394	9 97 779	4	30	50 35 8 35.0
12	9 49 462	38	9 51 601	43	0 18 300	997771	4	48	
13	9 49 500	38	9 51 73+	43	0 48 200	9 97 767	4	47	
_14_	9 49 539	39	9.51 776	42	0 48 22 1	9 97 763	4	46	41 41
15	9 49 577	30	9 51 819	43	0 48 181	9 97 759	-	45	6 4.1
16	9 49 615	30	9 51 861	42	0 48 139	9 97 754	4	44	7 40
17	9 19 054	38	9 51 903	43	0 18 007	9 97 750	4	43	0 62
19	9 19 730	38	9 51 088	42	0.48 012	9 97 742	4	41	10 68
20	9 19 768	38	9 52 031	43	0 17 900	9 97 738	4	10	20 13.7
21	9.49 806	38	9 52 073	42	0.17 927	9 97 731	4	39	30 20 5
22	9 +9 844	38	9 52 115	42	0 47 885	9 97 729	5	38	40 27 3
23	9 49 882	30 38	9 52 157	42	0 17 843	9 97 725	4	37	301312
24	9 19 920	38	9 52 200	42	0.17 800	9 97 721	4	30	
25 26	9 49 958	38	9 52 242	42	0.47 758	9 97 717	4	35	39 38
20	9 49 990	38	9 52 204	42	0.47 /10	9 97 708	5	34	6 39 38
28	9 50 072	38	9 52 368	42	0 47 632	9 97 704	4	32	7 46 44
29	9 50 110	38	9 52 410	42	0 47 590	9 97 700	4	31	8 5.2 51
30	9 50 148	30	9 52 452	42	0.47 548	9 97 696	4	30	9 59 57 IO 65 62
31	9 50 185	37	9 52 494	42	0 47 506	9 97 691	5	29	20 130 127
32	9 50 223	38	9 52 530	42	0.47 40.4	9 97 087	4	28	30 195 190
33	0 50 201	37	9.52 570	42	0 47 422	997083	4	2/	.10 20 0 25.3
35	0 50 330	38	0.52 661	41	0.17 320	- 	5		50   32 5   31 7
36	9 50 374	38	9.52 703	42	0 47 297	997 670	4	24	
37	9 50 411	37	9.52 745	42	0 47 255	9 97 666	4	23	1 07 1 05
38	9 50 449	38	9 52 787	42	0 47 213	9 97 662	4	22	5 37 30 6 37 36
39	9 50 480	37	9 52 829	41	0 17 171	9 97 057	4	21	7 43 42
40	9 50 523	38	9 52 870	42	0.47 130	9 97 653	4	20	8 49 48
41	0 50 501	37	9.52 912	41	0 47 088	0 07 615	4	19	9 56 5.4
43	9 50 635	37	9 52 995	42	0 47 005	9 97 640	5	17	10 62 50
44	9 50 673	38	9 53 037	42	0.46 - 63	9 97 636	4	16	30, 18 5, 18.0
45	9 50 710	37	9.53 078	41	0 46 922	9 97 632	4	15	40 24 7 24.0
46	9 50 747	37	9 53 120	42	0.46 880	9 97 628	4	1.4	50   30.8   30.0
47	9 50 784	37	9.53 101	41	0 46 839	9 97 023	4	13	
40	0 50 858	37	953202	42	0.40 798	0 07 615	4	12	
50	9 50 800	38	0.52 285	4 <b>I</b>	0.16.715	0.07.610	5	10	5 4
51	9 50 933	37	9 53 327	42	0.46 673	9 97 606	4	9	6 0.5 0.4
52	9 50 970	37	9 53 368	4 <b>1</b>	0.46 632	9 97 602	4	8	7 0.0 0.5
53	9 51 007	37	9 53 409	41	0.46 591	9 97 597	5	7	9 0.8 0.6
- 54	951 043	37	9 53 450	41	0.40 550	9 97 593	4	0	10 0.8 0.7
55	9 51 080	37	9 53 492	41	0 46 508	9 97 589	5	5	20 1.7 1.3
50	951117	37	9 53 533	41	0 40 407	997501	4	4	30 25 20
58	951 191	37	9.53 615	41	0 46 385	9 97 576	4	2	40 33 27
59	9 51 227	36	9.53 656	41	0 46 344	9 97 571	5	1	J
60	9.51 264	37	9 53 697	41	0 46 303	9.97 567	4	0	
	L. Cos.	d	L. Cote.	c. d.	L. Tang.	L. Sin.	d		Prop. Pts.

	19°										
,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.		
0	9.51 264	27	9.53 697	41	0.46 303	9.97 567		60			
I	9.51 301	37	9.53 738	41	0.40 202	9.97 503	5	59			
3	9.51 374	36	9.53 820	4 <b>1</b>	0.46 180	9.97 554	4	57	6 41 40		
4	9.51 411	37	9.53 861	41	0.46 139	9.97 550	4	56	7 48 4.7		
5	9.51 447	30	9.53 902	41	0.46 098	9 97 545		55	8 5.5 5.3		
6	9.51 484	37	9.53 943	41	0 46 057	9.97 54I	3	54	9 62 6.0		
	9.51 520	37	9.53 984	41	0.40 010	9.97 530	4	53	20 13.7 13.3		
9	9.51 593	36	9.54 065	40	0 45 935	9 97 528	4	51	30 20.5 20.0		
10	9.51 629	36	9.54 106	4 <b>1</b>	0.45 894	9.97 523	5	50	40 27.3 26.7		
11	9.51 666	37	9.54 147	41	0.45 853	9.97 519		49	50   34.2   33.3		
12	9.51 702	30	9.54 187	40	0.45 813	9.97 515	1	48			
13	9 51 730	36	9.54 220	41	0.45 772	9.97 510	4	47	1 30		
15	0.51 811	37	9.54 300	40	0.45 601	9.97 501	5	45	6 3.9		
16	9.51 847	36	9.54 350	41 ·	0 45 650	9.97 497	4	44	7 4.6		
17	9.51 883	30	9.54 390	40	0.45 610	9.97 492	5	43	8 5.2		
18	9.51 919	30	9 54 43 ¹	41	0.45 569	9.97 488		42	9 5.9		
19	9.51 955	36	9 54 471	41	0.45 529	9.97 484	5	41	20 13.0		
20	9.51 991	36	9.54 512	40	0.45 488	9.97 479	4	40	30 19.5		
22	9 52 063	36	9.54 593	41 4	0.45 407	9.97 475	5	38	40 26.0		
23	9.52 099	36	9.54 633	40	0.45 367	9.97 466	4	37	50   32.5		
24	9.52 135	30	9.54 673	40	0.45 327	9.97 461	4	36			
25	9.52 171	36	9 54 714	40	0.45 286	9 97 457	Å	35	1 27 1 26		
20	9.52 207	35	9.54 754	40	0.45 240	9 97 453	5	34	6 3.7 3.6		
28	9 52 278	36	9.54 835	41	0 45 165	9 97 444	4	32	7 4.3 4.2		
29	9.52 314	36	9 54 875	49	0.45 125	9 97 439	5	31	8 4.9 4.8		
30	9.52 35 >	30	9.54 915	40	0.45 085	9 97 435	4	30	9 5.0 5.4		
31	9.52 385	35	9.54 955	40	0.45 045	9 97 430	5	29	20 12.3 12 0		
32	9.52 421	35	9.54 995	40	0.45 005	997420	5	20	30 18.5 18.0		
34	9 52 492	36	9.55 075	40	0.44 925	9 97 417	4	26	40 24.7 24.0		
35	9.52 527	35	9.55 115	40	0.44 885	9 97 412	5	25	50   30.8   30.0		
36	9.52 563	30	9.55 155	40	0.44 845	9 97 408	4	24			
37	9.52 598	35	9 55 195	40	0.44 805	9 97 403	4	23	35 34		
30	0.52 660	35	9.55 235	40	0.44 705	9 97 399	5	21	6 3.5 3.4		
40	9.52 705	36	0 55 317	40	0.44 685	9.07 300	4	20	7 4.1 4.0		
41	9.52 740	35	9.55 355	40	0.44 645	9 97 385	5	19	8 4.7 4.5		
42	9.52 775	35	9 55 395	40	0.44 605	9 97 381	4	18	9 53 51		
43	9.52 811	35	9 55 434	39 40	0.44 500	9 97 375	4	17	20 11.7 11 3		
44	9.52 840	35	9 55 474	40	0.44 520	997 372	5	-10	30 17.5 17.0		
45 ∡6	9.52 001	35	9 55 514	40	0.44 480	997 307	4	15	40 23.3 22.7		
47	9.52 951	35	9.55 593	39	0.44 407	9.97 358	5	13	- 30 + 29,2 + 20.3		
48	9.52 986	35	9.55 633	40	0.44 367	9.97 353	5	12			
49	9.53 021	35	9.55 673	40 30	0 44 327	9.97 349	4	11	15 4		
50	9.53 056	36	9.55 712	40	0.44 288	9.97 344	4	10	6 0.5 0.4		
52	9.53 092	34	9.55 752	39	0.44 246	9.97 340	5	8	7 0.6 0.5		
53	9.53 161	35	9.55 831	40	0.44 169	9.97 331	4	7	8 0.7 0.5		
54	9 53 195	35	9 55 870	39	0.44 130	9 97 326	5	6	10 0.8 0.7		
55	9.53 231	33 75	9.57 910	40	0 44 090	9.97 322	4	5	20 1.7 1.3		
50	9.53 266	35	9.55 949	.19	0.44 051	9.97 317	5	4	30 2.5 2.0		
57	9.53 301	35	9 55 989	39	0.44 011	9 97 312	4	3	40 3.3 2.7		
59	9.53 370	34	9.56 067	39	0.43 933	9 97 303	5	ĩ	50 4.2 3.3		
60	9.53 405	35	9 56 107	40	0 43 893	9 97 299	4	0			
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.		Prop. Pts.		

252					<b>20°</b>				
1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
U	9.53 405	35	9.56 107	30	0.43 893	9.97 299	5	60	
1 2	9.53 440	35	9.50 140	39	0.43 854	9.97 294	5	59	1 40 1 30
3	9.53 509	34	9.56 224	39	0.43 776	9.97 285	4	57	6 4.0 3.9
4	9.53 544	35	9.56 264	20	0.43 736	9.97 280	5	56	7 4.7 4.6
5	9.53 578	35	9.56 303	39	0.43 697	9 97 276	5	55	8 5.3 5.2
7	9.53 613	34	9.50 342	39	0.43 610	9.97 2/1	5	54	10 6.7 6.5
8	9.53 682	35	9.56 420	39	0.43 580	9.97 262	4	52	20 13.3 13.0
9	9.53 716	34	9.56 459	39	0 43 541	9.97 257	5	_51_	30 20.0 19.5
	9.53 751	34	9.50 498	39	0.43 502	9.97 252	4	50	50 33.3 32.5
12	9.53 819	34	9.56 576	39	0.43 424	9.97 243	5	48	
13	9.53 854	35	9 56 615	39	0.43 385	9 97 238	5	47	
14	9.53 888	34	9 56 654	39 39	0.43 340	9.97 234	5	40	38 37
15 16	9.53 922	35	9.50 093	39	0.43 307	9.97 229	5	45	7 4.4 4.2
17	9.53 991	34	9.56 771	39	0.43 229	9.97 220	4	43	8 5.1 4.9
18	9.54 025	34	9.56 810	39 30	0.43 190	9 97 215	5	42	9 5.7 5.6
19	9.54 059	34	9 56 849	39 38	0 43 151	9 97 210	4	41	20 12.7 12.2
20	9.54 093	34	9.50 887	39	0 43 113	9.97 200	5	40	30 19.0 18 5
22	9.54 161	34	9.56 965	39	0.43 035	9 97 196	5	38	40 25.3 24 7
23	9.54 195	34	9.57 004	39	0.42 996	9.97 192	4	37	50   31.7   30.8
24	9 54 229	34	9.57 0.42	39	0.42 958	9.97 187	5	36	
25 26	9.54 203	34	9.57 081	39	0 42 919	9 97 182	4	35	35
27	9 54 331	34	9 57 158	38	0.42 842	9 97 173	5	33	6 3.5
28	9.54 365	34	9.57 197	39	0.42 803	9.97 168	5	32	7 4.1
29	9.54 399	34	9.57 235	39	0 42 705	9 97 163	4	31	° 4.7 9 5.3
30	9.54 433	33	9 57 274	38	0 42 720	9 97 159	5	20	10 5.8
32	9.54 500	34	9.57 351	39	0.42 649	9 97 149	5	28	20 11.7
33	9.54 534	34	9.57 389	38	0.42 611	9 97 145	4	27	40 23.3
34	9 54 507	34	9 57 428	38	0 42 572	9 97 140	5	20	50 29.2
35	9.54 601	34	9.57 100	38	0.42 534	9.97 135	5	25 24	
37	9.54 663	33	9 57 543	39	0.42 457	9.97 126	4	23	
38	9.54 702	34	9 57 581	30	0.42 419	9.97 121	5	22	6 34 33
39	9.54 735	34	9 57 619	39	0.42 381	9.97 116	5	21	7 4.0 3.9
41	9.54 709	33	9.57 038	38	0.42 342	9 97 111	4	10	8 4.5 4.4
42	9.54 836	34	9.57 734	38	0.42 266	9.97 102	5	18	9 5.I 5.0
43	9.54 869	33 34	9.57 772	38	0.42 228	9 97 097	5	17	20 11.3 11.0
44	9.54 903	33	9.57 810	39	0.42 190	997092	5	10	30 17.0 16.5
45 46	9.54 930	33	9 57 887	38	0 42 151	9.97 087	4	14 14	40 22.7 22.0
47	9.55 003	34	9 57 925	38	0.42 075	9.97 078	5	13	30   20.3   2/.5
48	9.55 036	33	9 57 963	3ð 18	0 42 037	9.97 073	5	12	
49	9.55 009	33	9 58 001	38	0 41 999	9.97 008	5	10	5 4
51	9.55 136	34	9.58 039	38	0.41 901	9.97 003	4	6	6 0.5 0.4
52	9.55 169	33	9 58 115	38	0.41 885	9 97 054	5	8	7 0.0 0.5
53	9.55 202	33 33	9.58 153	30	0.41 847	9.97 049	5	7	9 0.8 0.6
54	9.55 235	33	9.50 191	38	0.41 009	9 97 044	5		10 0.8 0.7
55	9.55 301	33	9.58 267	38	0.41 733	9.97 039	4	4	20 1.7 1.3
57	9.55 334	33	9.58 304	37	0.41 696	9.97 030	5	3	40 3.3 2.7
58	9.55 367	33	9.58 342	30	0.41 658	9.97 025	5	2	50 4.2 3.3
59 60	9 55 433	33	9.58 418	38	0 41 582	9.97 015	5	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	/	Prop. Pts.

•

69°

/	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
U	9.55 433	1	9.58 418	1	0.41 582	9.97 015		60	
II	9.55 466	33	9.58 455	37	0.41 545	9.97 010	5	59	
2	9.55 499	33	9.58 493	38	0.41 507	9.97 005	5	58	1 38 1 37
3	9.55 532	33	9.58 531	38	0 41 469	9 97 001	4	57	6 3.8 3.7
4	9.55 564	32	9.58 569	30	0.41 431	9.96 9 <b>9</b> 6	5	56	7 4.4 4.3
5	9.55 597	33	9.58 606	3/	0.41 394	9.96 991		55	8 5.1 4.9
6	9.55 630	33	9.58 644	36	0.41 356	9 96 986	5	54	9 5.7 5.6
7	9 55 663	33	9.58 681	37	0.41 319	9 96 981	5	53	10 6.3 6.2
8	9.55 695	32	9 58 719	28	0.41 281	9.90 976	5	52	20 12.7 12.3
	9.55 728	22	9.58 757	37	0.41 243	9 96 971	5	_51	30 19.0 18.5
10	9.55 761	33	9 58 794	1 .9	0.41 206	9 96 966		50	40 25.3 24 7
11	9.55 793	32	9 58 832	30	0.41 168	9.96 962	4 c	49	50   31.7   30.8
12	9.55 826	22	9 58 869	37	041 131	9 96 957	5	48	
13	9.55 858	22	9.58 907	37	0.41 093	9.90 952	5	47	
14	9.55 891	32	9.58 944	37	0 41 050	9.90 947	5	_40	30 33
15	9.55 923	22	9.58 981	28	0.41 019	9 96 942		45	0 3.0 3.3
10	9.55 950	22	9 59 019	37	0.40 981	9 90 937	5	44	7 4.2 3.9
17	9.55 988	22	9.59 050	28	0 40 944	9.90 932	Š	43	o 4.0 <u>4</u> .4
18	9.55 021	32	9.59 094	37	0.40 900	9.90 927	5	42	9 5.4 5.0
19	9.50 053	32	9 59 131	37	0 10 809	9 90 922	5	41	20 120 110
20	9.56 085	22	9 59 168	27	0.40 832	9 90 917	5	40	20 18.0 16.5
21	9 56 118	33	9 59 275	28	0.40 795	9.96 912	5	39	40 24.0 22.0
22	9.50 150	32	9 59 243	37	0 40 757	9 90 907	Å.	38	50 30.0 27.5
23	9 50 102	33	9 59 280	37	0.40 720	9 90 903	5	37	0 10 10 10 10 10
	9.30 213	32	9 59 31/	37	0.40 003	990 090	5		
25	9.50 247	32	9 59 354	37	0 10 010	9 90 893	5	35	1 92
20	9 50 279	32	9.59 391	38	0.40 000	9.90 888	5	34	6 22
27	9 50 311	32	9 59 420	37	0 40 571	0 06 878	5	33	7 3.7
20	9.30 343	32	0 50 503	37	0.10.107	0.06 873	5	21	8 4.3
50	9.30 373	33	9 39 303	37		9.90 073	5	30	9 4.8
30	9.50 408	32	9.59 540	37	0.10 100	9 90 808	5	30	10 5.3
31	0 56 472	32	9 59 577	57	0.40 286	0 06 858	5	29	20 10.7
32	0.56 501	32	0.50 651	37	0.40 310	0.06 852	5	27	30 16.0
34	9.56 536	32	0 50 688	37	0.10 212	0 06 848	5	26	40 21.3
25	0.56.568	32	0.50.707	37	0.40.075	0.00.812	5		50 20.7
35	9.56 500	31	0.50 762	37	0.10.238	0.06 838	5	-3 24	
37	0.56 631	32	0 50 700	37	0.10 201	0 06 833	5	23	
38	9.56 663	32	9.59 815	36	0.40 165	9.96 828	5	22	31   <b>5</b>
39	9.56 695	32	9 59 872	37	0.40 128	9 96 823	5	21	6 31 0.6
40	0.56 727	32	0.50 000	37	100 01 0	0 06 818	5	20	7 3.6 0.7
41	9.56 759	32	9 59 9 16	37	0 10 054	9 96 813	5	19	8 4.1 0.8
42	9.56 790	31	9.59 983	37	0 40 017	9 96 808	5	18	9 4.7 0.9
43	9.56 822	32	9.60 019	36	0.39 981	9 96 803	5	17	10 5.2 1.0
44	9.56 854	32	960 056	37	o 39 944	9 96 798	5	16	20 10.3 2.0
45	9.56 886	32	9.60 093	37	0.39 907	9.96 793	5	15	40 20.7 4.0
46	9.56 917	31	9 60 130	37	0.39 870	9 96 788	5	14	50 25.8 5.0
47	9.56 949	32	9 60 166	30	0.39 834	9 96 783	5	13	0.1-010.0
48	9.56 980	31	9 60 203	37	0.39 797	9 96 778	5	12	
49	9.57 012	32	9 60 240	37	0.39 760	9.96 772	5	11	
50	9 57 044	34	9 60 276	30	0.39 724	9 96 767	2	10	6 0 0 0 0
51	9.57 <b>07</b> 3	31	9 60 313	37	0.39 687	9.96 762	ş	9	7 0.6 0.2
52	9 57 107	32	9.60 349	30	0.39 6 ; 1	9.96 757	2	8	8 0.7 0.5
53	9.57 138	31	9 60 386	37	0 39 614	9.96 752	2	7	9 0.8 0.6
54	9 57 109	32	9 00 422	37	0.39 578	9.90 747	5		10 0.8 0.7
55	9.57 201		9.60 459	26	0.39 5 <u>1</u>	9 96 742	ž	5	20 1.7 1.3
56	9.57 232	34	9.60 495	37	0.39 505	9.96 737	5	4	30 2.5 2.0
57	9.57 204	34	9.00 532	36	0.39 408	9 90 732	2 2	3	40 3.3 2.7
58	9.57 295	31	9.00 508	37	0.39 432	9.90 727	5	2	50 4.2 3.3
- 59	9.57 320	32	9.00 005	36	0.39 395	9.90 722	5		
60	9.57 358	-	9.60 641	-	0.39 359	9.96 717		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

68°

-				1				00	
0	9 57 358	1 27	9 60 641	26	0 39 359	9 90 717	6	00	
I	9 57 389	3.	9 60 677	30	0.39 323	9.96 711		59	
2	9 57 420	31	9 60 714	37	0 39 280	9 96 706	2	58	37 36
3	9 57 45 ¹	31	9 60 750	30	0 39 250	99670I	5	57	6 37 36
ŭ	0 57 182	31	9 60 786	30	0 10 214	9 96 696	5	56	7 42 49
		32		37		- ut hur	5		
5	9 57 514	21	9 00 823	26	0 39 177	9 90 091	5	55	0 49 40
6	9 57 5 15		9 10 859	0	0 39 141	9 90 080	E	54	9 50 54
7	9 57 576	31	9 60 895	30	0 39 105	996681	5	53	10 0.2 00
8	9 57 607	31	9 60 931	30	0 39 009	9 95 676	5	52	20 12 3 12 0
q	9 57 638	31	9 60 907	30	0 39 033	9 96 670	0	51	30 185 180
10	0.57.600	31	0.61.001	37	0.00 0000	0.06.667	5	50	40 24.7 24 0
10	9.57 000	31	901004	26	0 38 440	990.005	5		50 30 8 30 0
п	9 57 700	27	0 01 040	56	0 38 900	9.90.000	ŝ	49	5
12	9 57 73 ¹	34	9 61 076	30	0 38 921	9 90 055	1	-18	
13	9 57 762	31	9 61 112	30	038888	9 96 650	5	-47	
14	9 57 793	31	961 148	30	0 38 852	9 96 645	5	-46	35
	0.57.8.11	31	0.07 18	36	0 18 816	a ob b ia	5	- i 1	6 25
12	9 5/ 02+	41	901 104	36	0 30 0 0	999040	6	45	
10	9 57 055	20	9 01 220	36	0 30 700	9 40 034	5	44	/ 41
17	9 57 885		9 01 250	26	0 38 7 11	9 90 029	e	43	0 4/
18	9 57 916	31	9 61 202	30	0 38 708	990 624	1	42	9 53
19	9 57 9 17	31	9 61 328	30	0 38 672	9 90 619	5	41	10 58
20	0.57.078	31	0.61.701	30	0.28 (120	0 00 614	5	40	20 11 7
21	0 58 008	30	0.61 100	36	0.38.600	0.06.608	6	20	30 17.5
21	9 50 000	ат	901 100	36	0 30 000	9 90 000	5	39	40 23 3
22	9 50 039	21	9 01 430	26	030504	9 90 003	5	30	50 20 2
23	9 58 070		9 01 472	6	0 38 528	9 90 598	-	37	5-1-5-
24	9 58 101	. 31	9 61 508	30	0 38 102	4 90 593	2	- 36	
25	0 58 131	30	0.61 511	30	0 38 150	0.00 588	5	35	
26	0 58 162	31	0.61 570	35	0.28 121	0.00 582	6	21	32 31
20	9 50 102	30	061 615	36	0.30 421	0 06 577	5	34	6 32 31
2/	9 50 192	Ξ.	901 015	36	0 30 305	990 577	5	33	7 27 26
28	9 50 223	30	901 051	56	0 30 349	9 90 572	š	32	
29	9 58 253	30	9 51 687	1 30	0 38 313	9 96 567		_31	0 43 41
30	9 58 284	51	9 01 722	35	0 38 278	9 96 562	3	30	9 40 47
31	0 58 31 1	30	0.61 758	36	0.38 212	0 06 550	6	20	10 53 52
22	058 215	31	0.61.701	36	0.28.200	0.06 551	5	28	20 107 103
3~	9 50 545	30	9 61 830	36	0.30 200	0.06 5.6	5	07	30 160 155
33	9 50 375	21	901 030	25	0.30 1/0	9 99 549	5	-6	40 21 3 20 7
34	9 58 400	3-	901 805	35	0.38 1 15	9 90 541	6	20	50 20.7 25.8
35	9.58 430	30	9.61.901	30	0 38 099	9.90 535	, v	25	5 1 7 7 5
30	9.58 407	31	961 936	35	0.38 004	9 96 530	5	2.1	
37	0 58 407	30	0 61 072	36	0 18 028	0 46 525	5	23	
28	0 58 5 27	30	0 02 008	36	0 27 002	0.00 520	5	22	30 29
30	9 30 307	30	0 (1) 010	35	037992	0 00 520	6		6 20 20
39_	- <u>A 20 27/</u>	'n	9.02.042	16	03/97	-9 99 5+4	5		7 75 24
40	9 58 588	5	9 62 079		0 37 421	9.96 509		20	8 40 30
41	958618	30	962 114	35	0 37 880	9.90 504	5	19	0 40 39
42	9 58 6 18	30	9 62 150	30	0.37 8:0	9 96 498	6	18	9 43 44
43	0.58 678	30	0 62 185	35	0 37 815	501 000	5	17	10 50 48
4.1	0 58 700	31	0 62 221	36	0 37 770	946 188	5	16	20 100 97
	, , , , , ,	30		35			5		30 150 145
45	9 58 739	20	9 02 250	26	0 37 74 <u>4</u>	9 99 483	6	15	40 200 193
-46	9 58 769	, 20	9 02 292	3~	0.37 708	9 99 477	Ĭ	14	50 25 0 24 2
47	9 58 799	30	9 62 327	55	0 37 673	9 9 472	2	13	
48	9 58 829	30	0.62.352	35	0 37 638	9 96 467	5	12	
49	9 58 859	30	9 62 398	36	0 37 602	9 96 461	0	11	
50	0 58 880	30	0.62 122	35	0 37 567	0.06.156	5	110	0 5
<b>.</b>	9 50 009	30	902 433	35	0 37 507	9 90 450	5		6 0.6 05
51	9 50 919	10	902408	16	0 47 532	9 90 451	6	8	7 07 06
52	9 58 9 <del>1</del> 9	20	9 02 501	25	0 37 490	9 99 445	-	0	8 08 07
53	9 58 979	3.9	9 62 539	35	0 37 401	9.95 440	2	7	0 00 08
54	9 59 009	30	9 62 574	35	0 37 426	996435	2	6	
55	0 50 030	30	0.62 600	35	0 37 301	0.05.120	U	5	
66	9 59 - 59	30	0.62.617	36	0 27 391	0.06.424	5		20 20 17
20	9 59 009	20	0 60 69	35	0 37 355	990 421	5	4	30 30 25
57	9 59 098	20	902080	35	0 37 320	999419	6	3	40 40 33
58	9 59 128		9 02 715	25	0 37 285	9 90 413	Ĩ	2	50 50 42
59	9 59 158		9 62 750	25	0.37 250	9 96 408		I	
60	0 50 188	J ⁽⁾	0.62 785	35	0 27 217	0.06.102	2	0	
	9 59 100		902705		0.3/ 215	990 403			
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L Sin.	d.	1	Prop. Pts.

254 1

L. Sin.

d.

L. Cos.

d.

L. Tang. c. d. L. Cotg.

Prop. Pts.

-	~	•	
•••	-	-	
- <b>A</b>	~		1.5

_						_	-	_	
1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg	L. Cos.	d.		Prop. Pts.
U	9.59 188		9.62 785		0.37 215	. 9.96 403		60	
I	9.59 218	30	9.62 820	35	0.37 180	9.96 397	Ŷ	59	
2	9.59 247	10	9.62 855	35	0.37 145	9 96 392	5	58	36 35
3	9.59 277	30	9.02 890	36	0.37 110	9.90 387	6	57	6 3.6 3.5
4	9.39 307	29	9.02 920	35	0.37 074	9.90 301	5	- 30	7 4.2 4.1
6	9.59 330	30	0.62.000	35	0.37 039	9.90 370	6	55	9 5.4 5.3
7	9.59 396	30	9.63 031	35	0.36 969	9.96 365	5	53	10 6.0 5.8
8	9.59 425	29	9.63 066	35	0.36 934	9.96 360	5	52	20 12.0 11.7
9	9.59 455	30	9.63 101	35	0.36 899	9 96 354	ŝ	51	30 18.0 17.5
10	9.59 484	29	9.63 135	34	0.36 865	9 96 349	5	50	40 24.0 23.3
II	9.59 514	20	9.63 170	35	0.36 830	9 96 343	5	49	50   30.0   29.2
12	9.59 543	30	9.03 205	35	0 30 795	9.90 338	5	48	
13	9.59 57 5	29	0.63 275	35	0.36 725	9.90 333	6	4/	1 24
	0.50.622	30	0.63 210	35	0.26.600	0.06.322	5	45	6 3.4
16	0.50 661	29	0.63 343	35	0.36 655	0.06 316	6	45	7 4.0
17	9.59 690	29	9.63 379	34	0.36 621	9 96 311	5	43	8 4.5
18	9.59 720	30	9.63 414	35	0.36 586	9 96 305	ŝ	42	9 5 I
19	9-59 749	20	9 63 449	35	0.36 551	9 96 300	6	41	10 5.7
20	9.59 778	30	9.63 484	35	0.36 516	9.96 294	5	40	20 11.3
21	9.59 808	20	9.63 519	34	0.36 481	9.96 289	5	39	40 22.7
22	9.59 837	29	9.03 553	35	0 30 447	9.90 284	6	38	50 28.3
23 24	0.50 805	29	9.03 500	35	0.30 412	9.90 278	5	37	
-7	0.50 024	29	0.62.657	34	0 26 242	0.06.267	6	25	
26	9.59 954	30	9.63 692	35	0.36 308	9 96 262	5	34	30 29
27	9.59 983	29	9.63 726	34	0.36 274	9.96 256	0	33	6 3.0 2.9
28	9.60 012	29	9 63 761	35	0 36 239	9 96 251	5	32	7 3.5 3.4
29	9 60 041	29	9.63 796	35	0.36 204	9 96 245	5	31	8 4.0 3.9
30	9.60 070	-9	9.63 830	25	0.36 170	9.96 240	6	30	9 4.5 4.4
31	9.60 099	20	9.63 865	35	0.36 135	9 96 234	5	29	20 10.0 9.7
32	9.00 128	29	9.03 899	35	0.30 101	9 90 229	ő	28	30 15.0 14.5
33	9.60 15/ 9.60 186	29	0.63 068	34	0.36 032	0.06 218	5	26	40 20.0 19.3
- 37	0.60.217	29	0.61.002	35	0.35.007	0.06.212	6	25	50   25.0   24.2
35	0.60 211	29	0 64 037	34	0 35 063	0 06 207	5	24	
37	9.60 273	29	9.64 072	35	0.35 928	9.96 201	6	23	
38	9.60 302	29	9.64 106	34	0.35 894	9.96 196	5	22	28
39	9.60 331	29	9.64 1.40	34	0.35 860	9.96 190	°,	21	0 2.6
40	9.60 359	20	9.64 175	35	035825	9 96 185	6	20	8 3.7
41	9.60 388	20	9.64 209	34	0 35 791	9 96 179	5	19	9 4.2
42	9.00 417	29	9 04 243	35	0 35 757	9 90 174	6	18	10 4.7
43	0.60 440	28	0.64 312	34	0 35 688	0 06 162	6	16	20 9.3
45	0.60.502	29	0.61 216	34	0.25 654	0.00 157	5	те	30 14.0
43 46	9.60 532	29	9.61 381	35	0.35 610	0 06 151	6	14	50 23.3
47	9.60 561	29	9.64 415	34	0.35 585	9.96 146	5	13	5-1-5-5
48	9.60 589	26	9 64 449	34	0.35 551	9 96 140	0	12	
_49_	9.60 618	29	9 64 483	34	0 35 517	9 96 135	6	11	1615
50	9.60 646	20	9.64 517	35	0.35 483	9 96 129	6	10	6 0.6 0.5
51	9.00 075	29	9.04 552	34	0.35 448	9 90 123	5	8	7 0.7 06
52	0.60 702	28	9.04 500	34	0.35 414	0.06 112	6	~	8 0.8 0.7
55 54	9.60 761	29	9 64 654	34	0 35 346	9.96 107	5	6	9 0.9 0.8
55	0.60 780	28	0.64 688	34	0.35 312	0.06 101	6		20 2.0 17
56	9.60 818	29	9.64 722	34	0.35 278	0.06 005	6	4	30 3.0 2.5
57	9.60 846	28	9 64 756	34	0.35 244	9.96 090	5	3	40 4.0 3.3
58	9.60 875	29 29	9.64 790	34	0.35 210	9.96 084	2 e	2	50 5.0 4.2
59	9.00 903	28	9.04 824	34	0.35 176	9.90 079	6	1	
60	9:60 931		9.64 858		0.35 142	9.96 073	-	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

256

24°

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.60 931		9.64 858		0.35 142	9.96 073	6	60	
I	9.60 960	29	9.64 892	34	0.35 108	9.96 067	5	59	
	9.00 9 <b>86</b> 0 61 016	28	9.04 920	34.	0.35 074	0.06 052	6	50	34 33
4	9.61 0.15	29	9.64 994	34	0.35 006	9 96 050	6	56	7 4.0 3.9
5	9 61 073	28	9.65 028	34	0.34 972	9.96 043	5	55	8 4.5 4.4
ð	9.61 101	28	9.65 062	34	0.34 938	9.96 039		54	9 <b>5.1 <u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></b>
7	9.61 129	20	9.65 096	34	0.34 904	9.96 034	6	53	10 5.7 5.5
å	9.01 158	28	0.05.130	34	0.34 870	0.06.022	6	52	30 17.0 16.5
10	0.61 214	28	0.65 107	38	0.31 803	0.06 017	5	50	40 22.7 22.0
11	9.61 242	28	9.65 231	34	0.34 769	9 96 011	6	49	50 28.3 27.5
12	9 61 270	28	9.65 265	34	0.34 735	9.96 005		48	
13	9.61 298	28	9.65 299	34	0.34 701	9 96 000	6	47	
14	9.01 320	28	905333	33	0.34 007	995994	6	40	6 20
16	0.61 354	28	0.65 400	34	0.34 634	0 05 082	6	45	7 3.4
17	9.61 411	29	9 65 434	34	0.34 566	9 95 977	5	43	8 3.9
18	9.61 438	27	9.65 467	33	0.34 533	9 95 971	6	42	9 4.4
19	9.61 466	28	9.65 501	34	0.34 499	9 95 965	5	41	10 4.8
20	9 61 494	28	9.65 535	33	0.34 465	9.95 960	6	40	30 14.5
21	0.61 522	28	0.65 602	34	0.34 432	9 95 954	6	39	40 19.3
23	9.61 578	28	9.65 636	34	0.34 364	9.95 942	6	37	50 24.2
24	9.61 606	28	9.65 669	33	0 34 331	9 95 937	5	36	
25	9.61 634	20	9.65 703	34	0.34 297	9.95 931	6	35	
26	9.61 662	20	9.65 736	33	0.34 264	9.95 925	5	34	6 28
27	9.01 089	28	0.65 803	33	0.34 230	9.95 920	6	33	7 3.3
29	9.61 7.15	28	9.65 837	34	0.34 163	9 95 908	6	31	8 3.7
30	9.61 773	28	9 65 870	33	0.34 130	9.95 902	0	30	9 4.2
31	9.61 800	27	9.65 904	34	0.34 096	9.95 897	5	29	10 4.7
32	9.61 828	28	9.65 937	33	0.34 063	9.95 891	6	28	30 14.0
33	9.01 850	27	9.05 971	33	0.34 029	9 95 805	6	27	40 18.7
25	0.61.011	28	0.66.028	34	0.33 990	0.05 873	6	25	50 23.3
36	9.61 939	28	9.66 071	33	0.33 929	9.95 868	5	24	
37	9 61 966	27	9 66 104	33	0 33 896	9.95 862	6	23	1 97
38	9 61 991	27	9.66 138	34	0.33 862	9.95 856	6	22	6 2.7
39	9.02 021	28	9.00 1/1	33	0,33 829	993 030	6	20	7 3.2
41	9.62 075	27	9.66 238	34	0.33 762	9.95 044	5	10	8 3.6
42	9.62 104	28	9 66 271	33	0 33 729	9 95 833	6	18	9 4.1
43	9.62 131	27 28	9.66 304	33	o 33 696	9.95 827	6	17	20 9.0
44	9 02 1 19	27	9 00 337	34	0.33 003	9.95 821	6	10	30 13.5
45	9.02 133	28	9.00 371	33	0.33 029	9.95 815	5	15	40 18.0
40	9.62 241	27	9.66 437	33	0.33 500	9.95 804	6	13	50   22.5
48	9 62 268	27	9.66 470	33	<b>0.</b> 33 530	9.95 798	6	12	
49	9 62 295	20	9.66 503	33	0.33 497	9 95 792	6	II	1615
50	9.62 323	27	9.66 537	22	0.33 463	9.95 786	6	10	6 0.6 0.4
51	9.02 350	27	9.00 570	33	0.33 430	9.95 780	5	8	7 0.7 0.6
53	9.62 405	28	9.66 636	33	0.33 364	9 95 769	6	7	8 0.8 0.7
54	9 62 432	27	9.66 669	33	0.33 331	9.95 763	6	6	9 0.9 0.8
55	9.62 459	27	9.66 702	33	0.33 298	9.95 757	6	5	20 20 1.7
56	9 62 485	27 27	9.66 735	33	0.33 263	9.95 751	6	4	30 3.0 2.5
57	9.02 513	28	9.00 708	33	0.33 232	9.95 745	6	3	40 4.0 3.3
59	9.62 568	27	9.66 834	33	0.33 166	9.95 739	6	ĩ	50   5.0   4.2
60	9.62 593	274	9.66 867	33	0.33 133	9.95 728	5	0	
	L. Cos.	'd.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.
		_	<u> </u>				-		

25°	·	

a	2	-7
	Э	1

Γ,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	<b>9.62</b> 595		9.66 867	1	0.33 133	9.95 728	1.	60	-
I	9.62 622	27	9.66 900	33	0.33 100	9.95 722	6	59	
3	<b>9.02 049</b>	27	9.00 933	33	0.33 007	9.95 710	6	50	. 33 32
4	<b>G.62 703</b>	27	9.66 999	33	0.33 001	9 95 704	6	56	7 3.0 3.7
Ş	9.62 730	27	9.67 032	33	<b>0.</b> 32 968	9 95 698	6	55	8 4.4 4.3
6	9.02 757	27	9.67 005	33	0.32 935	9 95 692	6	54	9 30 4.8
8	9.62 811	27	9.67 131	33	0.32 869	9 95 680	6	52	20 11.0 10.7
9	9.62 838	27	9 67 163	32	0.32 837	9.95 674	Å'	51	30 16.5 16.0
10	9.62 865	27	9.67 196	33	0.32 804	9.95 668	5	50	40 22.0 21.3
12	9.62 918	26	9.67 262	33	0.32 778	9.95 003	6	49	30   27.3   20.7
13	9.62 945	27	9.67 293	33	0.32 775	9 95 651	6	47	
14	9.62 972	27	9 67 32	32	0.32 673	9 95 643	6	46	27
15	9.02 999	27	9.07 300	33	0.32 040	9.95 039	6	45	6 2.7
17	9 63 052	26	9 67 426	33	0.32 574	9.95 627	6	43	8 36
18	9.63 079	27	9.67 458	32	0.32 542	9 95 621	6	42	9 4.I
19	9 03 100	27	9 07 491	33	0.32 509	9 5' 15	6	41	10 4.5
21	0.63 150	26	9 07 524	32	0.32 470	9 95 609	6	20	30 13.5
22	9.63 186	97	9 67 589	33	0.32 411	9.95 597	6	38	40 18.0
23	9.63 213	27	9.67 622	33	0.32 378	9 95 591	6	37	50 22.5
24	9.03 239	27	9 67 654	33	0.32 340	995 505	6	30	
26	9.63 292	26	9.67 719	32	0.32 3 3	9 95 579	6	35	26
27	9.63 319	27	9.67 752	33	0.32 248	9 95 567	6	33	6 2.6
28	9.03 345	27	9.07 785	32	0.32 215	9.95 561	6	32	7 3.0
30	9.03 3/2	26	0.67 850	33	0.32 103	995 555	6	30	9 3.9
31	9.63 425	27	9.67 882	32	0.32 118	9 95 543	6	29	10 4.3
32	9.63 451	20	9.67 913	33	0.32 085	9 95 537	6	28	20 8.7
33	9.03 478	26	9.07 947	33	0.32 053	9 95 531	6	27 26	40 17.3
35	0.63 531	27	0.68 012	32	0.31 088	9 95 519	6	25	50 21.7
36	9.63 557	26	9.68 0.14	32	0.31 956	9 95 513	6	24	
37	9.63 583	20	9.68 077	33	0.31 923	9.95 507	7	23	1 7
39	9.63 636	26	9.68 142	33	0.31 858	9 95 494	6	21	6 0.7
40	9.63 662	26	9.68 174	32	0.31 826	9 95 488	6	20	7 0.8
4I	9.63 689	27	9.68 206	32	0.31 794	9 95 482	6	IÕ	8 0.9
42	9.03 715	26	0.68 239	32	0.31 701	9 95 470	6	18	10 1.2
44	9.63 767	26	9.68 301	32	0.31 697	9 95 464	6	16	20 2.3
45	9.63 794	27	9.68 336	33	0.31 664	9 95 458	6	15	30 3.5 40 4.7
46	9.63 820	20	9 68 368	32	0.31 632	9 95 452	6	14	50 5.8
47	9.03 840	26	9.68 432	32	0.31 568	9.95 440	6	13	
49	<u>9.63</u> 898	26	9.68 463	33	0.31 535	9 95 434	6	11	
50	9.63 924	20	9.68 497	32	0.31 503	9 95 427	6	10	6 0.6 0.5
51	9.03 950	26	9.08 529 0.68 561	32	0.31 471	9.95 421 0.05 415	6	9 8	7 0.7 0.6
53	9.64 002	26	9 68 593	32	0.31 407	9.95 409	6	7	8 0 8 0.7
54	9.61 028	26 26	9.68 626	33	0.31 374	9 95 403	6	6	9 0.9 0.8 10 1.0 0.8
55	964 054	26	9 68 658	32	0.31 342	9 95 397	6	5	20 2.0 1.7
57	9.64 106	26	9 68 722	32	0.31 310	9.95 391	7	4	30 3.0 2.5
58	9.64 132	26	9 68 754	32	0.31 246	9 95 378	6	ž	50 5.0 4.2
59	9.64 158	20	9 68 786	32	0.31 214	9.95 372	6	I	<b>9</b> 10 14-
60	9.64 184		9.68 818	-	0.31 182	9.95 <u>3</u> 66		ď,	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

1	L. Sin.	d.	L. Tang	. c. d	L. Cotg.	L. Cos.	a.	T	Prop. Pt
0	9.64 184	26	9.68 818	39	0.31 182	9.95 366	6	60	
I	9.04 210	26	9.08 850	32	0.31 150	9.95 360	6	59	
3	9.64 262	96	9.68 914	32	0.31 086	9.95 348	6	57	6 3 2 3.1
4	9.64 288	25	9.68 946	32	0.31 054	9.95 341	6	56	7 3.7 3.6
5	9.64 313	26	9.68 978	32	0.31 022	9.95 335	6	55	8 4.3 4.I
2	9 04 339	26	9.09 010	32	0.30 990	9.95 329	6	54	9 4.0 4.7 IO 5.3 5.2
8	9 64 391	26	9.69 074	32	0.30 926	9.95 317	6	52	20 10.7 10.3
9	9.64 417	20	9.69 106	32	0.30 894	9 95 310	6	51	30 16.0 15.5
10	9.64 442	26	9.69 138	32	0.30 862	9.95 304	6	50	40 21.3 20.7 50 26.7 25.8
12	9.64 408	26	0.60 202	32	0.30 830	9.95 290	6	49	5,
13	9.64 519	25	9 69 234	32	0.30 766	9.95 286	6	47	
14	9.64 543	26	9.69 266	32	0.30 734	9.95 279	6	6	26
15	9.64 571	25	9.69 298	31	0.30 702	9.95 273	6	45	0 2.0
17	9.64 622	26	9.69 329	32	0.30 630	9.95 207	6	44	8 3.5
18	9.64 647	25	9.69 393	32	0.30 607	9.95 254	17	42	9 3.9
19	9.64 673	20	9 69 425	32	0.30 575	9 95 248	6	41	10 4.3
20	9.64 698	26	9.69 457	31	0.30 543	9.95 242	6	40	30 13.0
22	9.64 740	25	9.69 520	32	0.30 512	9.95 230	7	39	40 17.3
23	9.64 775	26	9.69 552	32	0.30 448	9.95 223	6	37	50   21.7
24	9 64 800	26	9.69 584	32 31	0.30 416	9 95 217	6	36	
25 26	9.64 820	25	9.69 615	32	0.30 385	9.95 211	7	35	1 25
27	9.64 877	26	9.69 679	32	0.30 321	9.95 198	6	33	6 2.5
28	9.64 902	25	9.69 710	31	0.30 290	9 95 192	6	32	7 2.9
29	9.64 927	26	9.69 742	32	0.30 258	9.95 185	6	31	8 3.3
30	9.04 9.53	25	9.09 774	31	0.30 220	9.95 179	6	30	10 4.2
32	9.65 003	25	9.69 837	32	0.30 163	9.95 167	6	28	20 8.3
33	9.65 029	26 25	9.69 868	31	0.30 132	9.95 160	7	27	30 12.5
34	9.05 054	25	9.09 900	32	0.30 100	9.95 154	6	20	50 20.8
35	9.05 079 0.65 104	25	9.09 932	31	0.30 008	995 148	7	25 24	
37	9.65 130	26	9 69 995	32	0.30 005	9 95 135	6	23	
38	9.65 155	25 25	9.70 026	31	0.29 974	9.95 129	7	22	6 24
39	9.05 180	25	9.70 058	31	0.29 942	9.95 122	6	21	7 2.8
40	9.65 205	25	9.70 069	32	0.29 911	9.95 110	6	10	8 3.2
42	9.65 255	25	9.70 152	31	0.29 848	9.95 103	2	18	9 3.6 TO 1.0
43	9.65 281	20	9.70 184	32 31	0.29 816	9.95 097	7	17	20 8 0
44	9.05 300	25	970 215	32	0.29 785	9.95 090	6	10	30 12.0
45 46	9.65 356	25	9.70 247	31	0.29 753	9.95 004	6	14	40 10.0 F0 20.0
47	9.65 381	25	9.70 309	31	0.29 691	9.95 071	7	13	50 / 20,0
48	9.65 406	25 25	9.70 341	32	0.29 659	9.95 063	6	12	
49	9.03 431	25	9.70 3/2	32	0.29 020	9.95 059	7	10	7 6
51	9.65 481	25	9.70 404	31	0.29 590	9.95 054	6	9	6 0.7 0.6
52	9.65 506	25	9.70 466	31	0.29 534	9.95 039	7	8	7 0.8 0.7
53	9.05 531	25	9.70 498	32 31	0.29 502	9.95 033	6	7	9 1.1 0.9
- 34 - 22	0.65 = 80	34	0.70 529	31	0.20 440	9 95 027	7	2	10 1.2 1.0
56	9.65 605	25	9.70 592	32	0.29 408	9.95 014	6	3	20 2.3 2.0
57	9.65 630	25	9.70 623	31	0.29 377	9.95 007	7	3	40 4.7 4.0
58	9.05 055	*3 25	9.70 654	31	0.29 346	9.95 001	6	2	50 5.8 5.0
<del>60</del>	9.65 703	\$5	9.70 717	38	0.29 283	9.94 988	7	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	. Prop. Pts.

63°

0	7°
~	

	۰
25	,

•	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.65 703		9.70 717		0.29 283	9.94 988	6	60	
I	9.65 729	24	9.70 748	31	0.29 252	9.94 982	7	59	
2	9.05 754	25	9.70 779	31	0.29 221	9.94 975	6	58	32 31
3	9.65 804	25	9.70 841	31	0.29 159	9.94 962	7	56	0 3.2 3.1
5	9.65 828	24	9.70 873	32	0.29 127	9 94 956	6	55	8 4.3 4.I
ŏ	9.65 853	25	9.70 904	31	0.29 096	9 94 949	7	54	9 4.8 4.7
7	9.65 878	25	9.70 935	21	0.29 065	9 94 943	7	53	10 5.3 5.2
ő	9.05 902	25	9.70 900	31	0.20 034	9.94 930	6	52	20 10.7 10.3
10	0.65.052	25	0.71.028	31	0.29 003	0.01.022	7	50	40 21.3 20.7
11	9.65 976	24	971 059	31	0.28 941	99495	6	49	50 26.7 25.8
12	9.66 001	25	9.71 090	31	0.28 910	9 94 911	0	48	
13	9.66 025	25	9.71 121	31	0.28 879	9.94 904	6	47	
14	9.00 050	25	971153	31	0.28 647	9 94 898	7	40	30
15	0.66 000	24	9.71 104	3 <b>x</b>	0.28 785	9 94 891	6	45	7 3.5
17	9.66 124	25	9.71 246	31	0 28 754	9.94 878	7	43	8 4.0
18	9.66 148	24 07	9.71 277	31	0.28 723	9 94 871	7	42	9 4.5
19	9 66 173	25 24	9.71 308	31 91	0.28 692	9 94 865	7	41	10 5.0
20	9.66 197	24	9.71 339	31	0.28 661	9 94 858	6	40	30 15.0
21	9 00 221	25	9.71 370	31	0.28 030	9 94 852	7	39	40 20.0
23	9.66 270	24	9.71 431	30	0.28 569	9 94 839	6	37	50 25.0
24	9 66 295	25	971 462	31	0.28 538	9 94 832	7	36	
25	9.66 319	24	9.71 493	31	0.28 507	9 94 826		35	1
26	9.66 343	25	971 524	31	0.28 476	9 94 819	6	34	25 24
27	9.00 308	24	9.71 555	31	0.28 445	9 94 813	7	33	7 2.0 2.8
20	9.66 416	24	9.71 617	31	0.28 383	9 94 799	7	31	8 3.3 3.2
30	9.66 441	25	971 648	31	0.28 352	9.94 793	6	30	9 3.8 3.6
31	9.66 465	24	9.71 679	31	0.28 321	9 94 786	7	29	10 4.2 4.0
32	9.66 489	24	9.71 709	30	0.28 291	9 94 780	7	28	30 12.5 12.0
33	0.66 513	24	0.71 740	31	0.28 220	9 94 773	6	26	40 16.7 16.0
35	0.66 562	25	0 71 802	31	0.28 108	0 01 760	7	25	50 20.8 20.0
36	9.66 586	24	9.71 833	31	0.28 167	9 94 753	7	24	
37	9.66 610	24	9.71 863	30	0.28 137	9.94 747	0	23	1 00
38	9 00 034	24	9.71 891	31	0.28 100	9.94 740	6	22	6 2.3
39	9.00 030	24	9.71 925	30	0.28 0/5	9 94 734	7	21	7 2.7
41	9.66 706	24	9.71 955	31	0.28 045	991720	7	10	8 31
42	9.66 731	25	9 72 017	31	0.27 983	9.94 714	6	18	9 3.5
43	9.66 755	24 24	9.72 048	31	0.27 952	9 94 707	7	17	20 7.7
44	9.00 779	24	9.72 078	31	0.27 922	9 94 700	6	10	30 11.5
45	9.00 803	24	9.72 109	31	0.27 891	9.94 094	7	15	40 15.3
47	9.66 851	24	9.72 170	30	0.27 830	9.94 680	7	13	50 19.2
48	9.66 875	24	9.72 201	31	0.27 799	9 94 674	6	12	
49	9.66 899	24 23	9 72 231	30 31	0.27 769	9 94 667	7	11	1716
50	9.66 922	24	9.72 262	31	0.27 738	9.94 660	6	10	6 0.7 0.6
51	9.00 940	24	9.72 293	30	0.27 707	9.94 054	7	8	7 0.8 0.7
53	9.66 994	24	9.72 354	31	0.27 646	9.94 640	7	7	8 0.9 0.8
54	9.67 018	24	9.72 384	30	0.27 616	9.94 634	6	6	9 1.1 0.9 10 1.2 1.0
55	9.67 042	24	9.72 415	31	0.27 585	9.94 627	7	5	20 2.3 2.0
56	9.67 066	24	9.72 445	31	0.27 555	9.94 620	6	4	30 3.5 3.0
57	9.07 090	23	9.72 4/0	30	0.27 524	9.94 014	7	3	40 4.7 4.0
59	9.67 137	24	9.72 537	31	0.27 463	9.94 600	7	I	301 3.01 3.0
60	9.67 161	24	9.72 567	30	0.27 433	9.94 593	7	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

260

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.67 161	24	9.72 567	21	0.27 433	9.94 593	6	60	
I	9.67 185	23	9.72 598	30	0.27 402	9 94 587	7	59	
2	9.07 200	24	0.72 020	31	0.27 372	9.94 500	7	50	31 30
4	9.67 256	24	9.72 689	30	0.27 311	9.94 567	6	56	0 3.1 3.0
5	9.67 280	24	9 72 720	31	0.27 280	9 94 560	7	55	8 4.I 4.0
ŏ	9.67 303	23	9 72 750	30	0.27 250	9-94 553	7	54	9 47 4.5
7	9.67 327	24	9 72 780	30	0.27 220	9.94 546	6	53	10 5.2 5.0
8	9 07 350	.24	972 811	30	0.27 189	9 94 540	7	52	20 10.3 10.0
10	9 67 374	24	972 041	31	0.27 139	994 555	7	50	40 20.7 20.0
	9.07 398	23	0.72 072	30	0.27 008	0 04 510	7	40	50 25.8 25.0
12	9.67 445	24	9 72 932	30	0.27 068	9.94 513	6	48	
13	9.67 468	23	9 72 963	31	0.27 037	9 94 506	7	47	
14	9 67 492	24	9 72 993	30	0.27 007	9 94 499	7	46	29
15	9.67 515	24	9.73 023	21	0.26 977	9 94 492	7	45	6 2.9
10	9.07 539	23	973 054	30	0.20 940	9 94 485	6	44	7 34
18	0.67 586	24	0 73 11.1	30	0.26 886	0 01 472	7	43	0 4.4
19	9.67 600	23	973 144	30	0.26 856	9 94 465	7	41	10 48
20	9.67 613	24	9.73 175	31	0 26 825	9 94 458	7	40	20 97
21	9 67 636	23	9 73 205	30	0 26 795	9 94 45I	7	39	30 14.5
22	9.67 680	24	9 73 235	30	0 26 765	9 94 445	7	38	40 19 3
23	9.67 703	23	9 73 205	30	0.20 735	9 94 438	7	37	50   24.2
24	9.67 720	24	973 291	31	0 25 /03	994431	7	30	
25 26	0.67 750	23	973 320	30	0.26 64.1	994424	7	35	24 23
27	9 67 796	23	9 73 386	30	0.26 614	994410	7	33	6 2.4 2.3
28	9 67 820	24	9.73 416	30	0.26 584	9.94 404	6	32	7 2.8 2.7
29	9.67 843	23	9 73 446	30	0.26 554	9 94 397	7	31	8 3.2 31
30	9.67 860	-3	973 476	30	0.26 524	9 94 390	<i>'</i> ,	30	9 3.0 3.5
31	9 67 890	23	9 73 507	30	0.20 493	9 94 383	7	29	20 80 7.7
32	9.67 913	23	973537	30	0.26 433	9 94 3/0	7	27	30 120 115
34	9 67 959	23	9 73 597	30	0 26 403	9 94 362	7	26	40 16.0 15 3
35	9.67 982	23	9 73 627	30	0.26 373	9 94 355	7	25	50 200 19.2
36	9.68 006	24	9 73 657	30	0 26 343	9 94 349	0	24	
37	9.68 029	23	9.73 687	30	0.26 313	9.94 342	7	23	
30	0.68 075	23	9.73 717	30	0.20 203	9 94 335	7	22	6 22
40	0 68 000	23	973747	30	0 26 203	0.01.321	7	20	7 2.6
41	9.68 121	23	973 807	30	0.26 103	994 311	7	19	8 29
42	9 68 144	23	9 73 837	30	0 26 163	9 94 307	7	18	9 33
43	9 68 167	23	9.73 867	30	0.26 133	9.94 300	7	17	10 3.7
44	9.68 190	23 23	9 73 897	30	0 26 103	9 94 293	7	15	30 11.0
45	9 68 213	24	9 73 927	30	0.26 073	9 94 286	7	15	40 147
40	9 08 237	23	973957	30	0 20 043	9 94 279	6	14	50 18.3
48	9.68 283	23	974017	30	0 25 08 1	9 94 2/3	7	12	
49	9.68 305	22	9 74 047	30	0.25 953	9 94 259	7	11	
50	9.68 328	23	9.74 077	30	0 25 923	9.94 252	7	10	7 0
51	9.68 351	23	9 74 107	30	0.25 893	9 94 245	7	2	7 0.8 0.7
52	9.68 374	23	974 137	20	0 25 863	9 94 238	7	8	8 0 9 0.8
53	0.68 422	23	9.74 100	30	0.25 034	994 231	7		9 1.Í 0.9
54	0.68 4.12	23	0.74.226	30	0.25 774	0.01 217	7	۱ <u> </u>	10 1.2 1.0
56	9 68 466	23	9.74 256	30	0.25 74	994 210	7	4	20 2 3 2.0
57	9.68 489	23	9.74 286	30	0.25 714	9 94 203	7	3	40 4.7 4.0
58	9.68 512	23 22	9.74 316	30 20	0.25 684	9 94 196	7	2	50 5.8 5.0
59	9.08 534	23	9.74 345	30	0 25 055	9.94 189	7	I	
60	9.68 557		9 74 375	-	0.25 625	9 94 182		0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	1	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
V	9.68 557		9.74 375		0.25 623	9.94 182		60	
1	9.68 580	23	9.74 405	30	0.25 595	9.94 175	7	59	
	9.08 625	22	9.74 435	30	0.25 505	9.94 108	7	50	30
4	9.68 6.48	23	9.74 494	29	0.25 506	9.94 154	7	56	7 3.5
5	9.68 671	23	9 74 524	30	0.25 476	9.94 147	7	55	8 4.0
6	9 68 694	23	9.74 554	30	0.25 446	9.94 140	7	54	9 4.5
7	9.08 710	23	974583	30	0.25 417	9.94 133	7	53	10 5.0
9	9 68 762	23	9.74 643	30	0.25 357	9.94 119	7	51	30 15.0
10	9.68 784	92	9.74 673	30	0.25 327	9.94 112	7	50	40 20.0
11	9 68 807	23	9.74 702	29	0.25 298	9.94 105	7	49	50 25.0
12	9.63 829	23	9.74 732	30	0.25 208	9.94 098	8	48	
13	0 68 875	23	9.74 791	29	0.25 230	9 94 090	7	4/	
15	0.68 807	22	9.74 821	30	0.25 170	9.94 076	7	45	6 2.0
10	9 68 920	23	9 74 851	30	0.25 149	9 94 069	7	44	7 3.4
17	9 68 942	22	9.74 880	29	0.25 120	9 94 062	7	43	8 3.9
18	9 68 905	22	974910	29	0.25 090	9.94 055	1 2	42	9 4.4
20	9.00 907	23	974939	30	0 25 021	9 94 048	7	40	20 9.7
21	9.69 010	22	9.74 909	29	0.25 002	9 94 034	7	39	30 14.5
22	9.69 055	23	9.75 028	30	0.24 972	9 94 027	7	38	40 19.3
23	9 69 077	22	9.75 058	20	0.24 942	9.94 020	7	37	50 24.2
-24	9.09 100	22	975 007	30	0.24 913	994012	7	-30	
25	9.09 122	22	975 117	29	0.24 863	994005	7	35	23
27	9.69 167	23	9.75 176	30	0.24 824	ς 93 99I	7	33	6 2.3
28	9 69 189	22	9.75 205	29	0 21 795	9 93 984	7	32	7 27
29	9.69 212	23	9.75 235	20	0.24 765	9 93 977		31	8 3.1
30	9.69 234	22	9 75 20 1	30	0.24 736	9 93 970	7	30	10 3.8
31	0.60 270	23	975 49+	29	0.21 677	993903	8	28	20 7.7
33	9 69 301	22	9.75 353	30	0.24 047	9 93 948	7	27	30 11.5
34_	9.69 323	22	9.75 382	29 20	0.24 618	9 93 941	7	26	40 15.3
35	9.69 345	22	9.75 411	30	0 24 589	9.93 934	1	25	5-(-9.5
30	9.09 308	22	9.75 441	29	0.24 559	0.03 927	7	24	
38	9 69 412	23	9 75 500	30	0.24 500	9 93 912	8	22	22
_39_	9.69 434	22	9.75 529	29	0.24 471	9 93 905	7	21	6 2.2
40	9.69 456	22	9.75 558	20	0.24 442	9 93 898	,	20	7 2.0
41	9.69 479	22	9 75 588	20	0.24 412	9.93 891	7	19 18	9 3.3
42	9.69 523	22	9.75 647	30	0.24 353	9.93 876	8	17	10 3.7
44	9.69 545	22	9.75 676	29	0.24 324	9 93 869	7	īģ	20 7.3
45	9.69 567	22	9.75 705	29	0.24 295	9 93 862	7	15	40 14.7
46	9.69 589	22	9.75 735	30	0.24 265	9 93 855	7	14	50 18.3
47 ⊿8	9.09 011	22	9.75 704	29	0.24 230	9.93 847	7	13	
49	9.69 655	22	9.75 822	29	0.24 178	9.93 833	7	11	
50	9.69 677	22	9.75 852	30	0.24 148	9.93 826	7	10	8 7
51	9.69 699	22	9.75 881	29 00	0.24 119	9 93 819	7	9	0 0.8 0.7
52	9.69 721	22	9 75 910	29	0.24 090	9.93 811	7	8	8 1.1 00
53 54	9.09 743	22	0.75 060	30	0.24 001	9.93 004	7	6	9 1.2 1.Í
55	0 60 787	22	0.75 008	29	0.24 002	0.03 780	8	5	10 1.3 1.2
56	9.69 809	22	9.76 027	29	0 23 973	9.93 782	7	4	20 2.7 2.3
57	9.69 831	22	9.76 056	29	0.23 944	9 93 775	7	3	40 5.3 4.7
58	9.69 853	22	9.70 086	20	0.23 914	9 93 768	8	2	50 6.7 5.8
59	9.09 075	22	970 115	29	0.23 005	9 93 700	7		
00	9.09 897		9.70 144		0.23 850	9.93 753			Dece Dec

$\prime$ L. Sin.d.L. Tang. c. d.L. Cotg.L. Cos.d.Prog09.69 897229.76 17390.23 8579.93 74676019.69 941299.76 221900.23 8779.93 7467576339.69 963299.76 221900.23 7699.93 72475573359.70 026299.76 231900.23 6519.93 7717558469.70 028299.76 348900.23 6539.93 7098549989.70 072299.76 348900.23 5659.93 765851301599.70 073299.76 406290.23 5659.93 66575040505595045119.70 135229.76 406290.23 3679.93 66574475050555045139.70 202229.76 653390.23 3619.93 64374564747429515040303274384388474742951507447750447775074380.23 3219.93 64374477456650743833 <th></th>	
	p. Pts.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 99
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	.0 2.9
$\vec{c}$ $c$	.0 3.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-5 4.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	.0 4.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 9.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 19.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	.0 24.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5U         9.70         97         21         9.77         591         29         0.22         409         9.93         382         6         10         6         0.           51         9.70         994         21         9.77         591         29         0.22         409         9.93         382         7         10         6         0.           52         9.71         015         21         9.77         619         a8         0.22         381         9.93         357         8         8         7         0.           53         9.71         036         21         9.77         677         29         0.22         233         9.93         360         7         7         8         1.           54         9.71         058         22         9.77         763         29         0.22         265         9.93         352         8         6         10         1.           55         9.71         058         22         9.77         763         48         0.22         265         9.93         343         7         4         20         2.         20         20         20         23	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I 0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1.1
56 9.71 100 21 9.77 763 29 9.22 237 9.03 337 7 4 29 2.	3 1.2
	0 3.5
57 9.71 121 21 9.77 791 28 0.22 209 9 93 329 8 3 40 5.	3 4.7
50   9.71   142   -   977   820   9   0.22   180   9.93   322   7   2   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50   6.5   50	7 5.8
L. Cos. d. L. Cots. c. d. L. Tang. L. Sin. d. / Pron.	Pts.

	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	1	Prop. Pts.
60	972421		9.79 579		0 20 421	9 92 842	1	<u> </u>	
-79	974 101	20	474 51	28		9,92,050	8		
58	972 381	20	979523	28	0 20 477	9 92 858 9 92 859	8	2 T	50 07 58
57	9 72 360	20)	9 79 195	20 28	0 20 505	9 92 800	8	3	40 53 47
50	972 340	20 	9 79 406	28	0.20 531	9 92 874	7	4	30 4 0 3.5
55	9.72 320	21	9 79 438	38	0 20 562	9 92 881	8	5	$10^{-1.3}$ 1 2 20, 2.7 2.2
54	972 290	۰	9 79 410	28	0 20 590	9.92 889	8	6	9'12 1.1
52	0.72.270	20	979351	28	0 20 018	0 02 807	8	7	8 1 1 0.9
51	972233	.1	979326	28	0.20 074	9 92 913	8	Q S	7 0 9 0.8
50	9 72 218	20	9.79 207	20	0 20 703	9 92 921	8	10	6 08 07
49	9 72 198	21	9.79 209	20 28	0 20 7 31	0.92.929	8	11	8 7
48	9 72 177	20	9 79 2 I I	·8 .8	0 20 750	9 92 936	8	12	
47	9 72 157	20	979213	-9	0 20 787	9 92 9 14	8	13	201107
46	9 72 137	21	979 185	30	0 20 815	9 92 952	8	14	40 133
	0.72 110	20	9 79 150	28	0 20 81.1	0 42 960	8	15	30 100
43	972.000	21	9 79 128	28	0 20 872	4 92 908	8	10	20 67
4-2	972 055	20	0 70 100	.9	0 20 020	0 02 076	7	10	10 33
41	972031	21	979043	39	0 20 957	9 92 991	8	19 18	9 30
40	972014	20	9 79 015	28	0.20.085	9 92 999	8	20	8 27
39	9.71.994	20	978 987	28	0 21 01 3	- 9 93 007	8	21	7 23
38	971 973	21	9.78 959	29	0 21 041	9 43 014	7	22	6 20
37	971 952	20	9 78 030	28	0 21 070	9 93 022	8	23	1 20
36	971 432	21	9 78 902	28	0 21 098	9 93 030	8	24	
35	971911	20	9 78 871	29	0 21 126	9 93 038	8	25	50   17.5
34	9.71 891	21	9.78 8.45	28	0 21 155	993 046	7	26	40 14 0
34	971 870	20	978 817	28	0 21 183	9 93 053	8	27	30 10 5
31	971 829	21	970700	29	021240	993009	8	29	20 70
30	971809	20	9.78 732	28 I	0 21 208	9 93 977	8	30	10 35
20	971788	21	975701	28	0 21 290	9 03 084	7	_3I	0 28
28	971 767	20	9 78 675	20	0 21 325	9 43 092	8	32	7 25
27	971747	21	9 78 047	20	0 21 353	993 100	8 g	33	6 21
26	9 71 726	21	9780.8	28	0 21 382	0 93 108	7	34	21
25	9 71 705	20	9 78 590	28	0 21 410	993115	8	35	
24	971 685	21	9 78 502	29	0 21 438	9 43 123	8	36	
23	971 661	31	978 533	28	0 21 407	993131	7	37	50 23 3
21 22	971022	21	0.78 505	29	0 21 524	9 93 138	8	39	40 18 7
20	971 602	20	9 78 4 48	28	0 21 552	9 93 154	8	10	30 110
10	971 581	21	-978 419	29	0 21 581	9 93 161	7	$\frac{4^{I}}{4^{I}}$	10 47
18	9 71 500	51	9 78 391	20 28	0 21 609	9 93 169	8	42	9 42
17	971 539	20	9 78 303	20	0 21 637	9 93 177	7	43	8 37
10	971 519	21	978 331	-8	0 21 000	9 93 181	8	44	7 33
15	971 448	31	9 78 306	29	0 21 694	9 93 192	8	45	6 28
14	971 477	21	978 277	28	0 21 723	9.93 200	7	46	28
13	971 455	21	978 240	29	0 21 751	993207	8	47	
12	97141	21	976 192	28	0 21 780	993223	8	49	501 -4
10	971393	21	978 103	29	0.21 837	9.93 230	7	30	50 21.2
%	971 373	20	970135	28	- 0 21 005	9.93 238	8	51	30 14 5
8	971 352	21	978 100	20	0 21 894	9 93 240	8	52	20 97
7	971 331	21	9 78 077	20	021923	9 93 253	。 7	53	10 48
Ū.	971 310	21	9 78 049	29	0 21 951	9 93 201	8	54	9 4 4
5	9 71 289	21	9 78 020	48	0 21 980	993269	7	55	8 39
4	971 208	21	977 993	29	0 22 008	9 93 276	8	50	0 29
2	971 220	21	977935	28	0 22 005	993291	7	50	29
I	971 205	21	9 77 906	20	0 22 094	9 93 299	8	59	
v	9.71 104	27	9.11 011	20	0 22 123	993307	8	00	

ЗI°

L. Sin. d. L. Tang. c. d. L. Cotg. L. Cos. d.

Ľ

58°

263

Prop. Pts.

<b>26</b> 4					32°				
1	L. Sin.	d.	L. Tang	. c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.72 421	20	9.79 579	28	0.20 421	9.92 842	8	60	
I	9.72 441	20	9.79 607	28	0.20 393	9.92 834	8	59	
2	9.72 401	21	9.79 035	28	0.20 305	0.02 818	8	50	29 28
4	9.72 502	20	9.79 691	28	0.20 309	9.92 810	8	56	0 2.9 2.8
5	9.72 522	20	9.79 719	- 28	0.20 281	9.92 803	7	55	8 3.0 3.7
ŏ	9 72 542	20	9.79 747	28	0.20 253	9 92 795	8	54	9 4.4 4.2
7	9.72 562	20	9.79 776	29	0.20 224	9.92 787	8	53	IO 4.8 4.7
8	9.72 582	20	9.79 804	28	0.20 190	9.92 779	8	52	20 9.7 9.3
10	9.72 002	- 20	9.79 032	- 28	0.20 100	9.92 7/1	8	50	30 14.5 14.0
10	0.72 643	21	0.70 888	28	0.20 140	9.92 703	8	40	50 24 2 23.3
12	9.72 663	20	9.79 916	28	0.20 084	9.92 747	8	48	
13	9.72 683	20	9.79 944	28	0.20 056	9.92 739	8	47	
14	9.72 703	20	9.79 972	- 28	0.20 028	9.92 731	8	46	27
15	9.72 723	20	9 80 000	28	0.20 000	9.92 723	8	45	6 27
10	9.72 743	20	9.80 028	28	0.19 972	9.92 715	8	44	7 3.2
18	0.72 783	20	0.80 050	28	0.10 016	9.92 /0/	8	43	0 4 1
19	9 72 803	20	9.80 112	28	0.19 888	9 92 691	8	41	10 4.5
20	9.72 823	20	9.80 140	- 28	0.19 860	9.92 683	8	40	20 90
21	9.72 843	20	9.80 168	28	0.19 832	9.92 675	8	39	30 13.5
22	9.72 863	20	9.80 195	27	0.19 805	9 92 667	8	38	40 18.0
23	9.72 883	10	9.80 223	28	0.19 777	9.92 059	8	37	50 22.5
24	9.72 902	20	9.80 251	- 28	0.19 749	9.92 031	8	30	
25	9 /2 922	20	0.80 279	28	0.19 721	0.02 635	8	35	21 20
27	9.72 962	20	9.80 335	28	0.19 665	9.92 627	8	33	6 2.1 2.0
28	9.72 982	20	9.80 363	28	0.19 637	9.92 619	8	32	7 2.5 2.3
29	9.73 002	20	9.80 391	28	0 19 609	9.92 611	ŝ	31	8 2.8 2.7
30	9.73 022	TO	9.80 419	28	0.19 581	9.92 603	8	30	9 3.2 3.0
31	9.73 041	20	9.80 447	27	0.19 553	9 92 595	8	29	20 7.0 6.7
32	9.73 001	20	9.80 474	28	0.19 520	992 507	8	20	30 10.5 10.0
34	9.73 101	20	9.80 530	28	0.19 470	992 571	8	26	40 14 0 13.3
35	9.73 121	20	9.80 558	28	0 19 442	9.92 563	8	25	50   17.5   16.7
36	9.73 140	19	9.80 586	28	0.19 414	9.92 555	8	24	
37	9.73 160	20	9.80 614	28	0.19 386	9.92 546	9	23	
38	9.73 180	20	9 80 642	27	0.19 358	9 92 538	8	22	19 9 6 70 00
39	9.73 200	19	9.00 009	28	0.19 331	992 530	8	50-	7 2.2 1.1
40	973 219	20	9.80 097	28	0.19 303	992522	8	10	8 25 1.2
42	9.73 259	20	9.80 753	28	0 19 247	9 92 506	8	18	9 29 1.4
43	9.73 278	19	9.80 781	28	0.19 219	9.92 498	8	17	10 32 1.5
44	973 298	20	9.80 808	27	0.19 192	9.92 490	8	16	20 0.3 3.0
45	9 73 318		9.80 836	28	0.19 164	9 92 482		15	40 12.7 6.0
46	9.73 337	20	9.80 864	28	0 19 136	9 92 473	8	14	50 15.8 7.5
47	9.73 357	20	0.80 010	27	0.19 108	9.92 405	8	13 12	
49	9.73 395	19	9 80 947	28	0.19 053	9.92 449	8	11	
50	9.73 410	20	9.80 975	28	0.19 025	9.92 441	8	10	8 7
51	9.73 435	19	9.81 003	28	0.18 997	9.92 433	8	9	6 0.8 0.7
52	9.73 455	20	9.81 030	27	0.18 970	9.92 425	× م	8	7 0.9 0.8 8 T.T 0.0
53	9.73 474	20	9.81 058	28	0.18 942	9.92 410	8	7	9 1.2 1.1
51	9.73 494	19	9.81 080	27	0.10 914	9 92 408	8	- <u>-</u> -	10 1.3 1.2
55	9.73 513	20	9.81 113	28	0.18 850	9.92 400	8	5	20 2.7 2.3
57	9.73 552	19	9.81 160	28	0.18 831	9.92 384	8	3	30 4.0 3.5
58	9.73 572	20	9.81 196	27	0.18 804	9.92 376	8	ž	40 5.3 4.7
59	9.73 591	19	9.81 224	28	0.18 776	9.92 367	9	I	3010.713.0
60	9.73 611		9.81 252		0.18 748	9.92 359	3	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

0	00
0	0

<u> </u>	L. Sin.	d	I. Tong	c d	L. Cote	I. Cos	d.		Prop. Pte.
۲ <u>ہ</u>	1. 51m	- u.	Li Lang.	<b>c. u.</b>	Li Cotg.	<u> </u>	u.	64)	11001110
I	9.73 630	19	9.81 252	27	0.18 748	9.92 359	8	59	
2	9.73 650	20	9.81 307	28	0.18 693	9.92 34 <u>3</u>	8	58	28 27
3	9.73 669	20	9.81 335	27	0.18 665	9.92 335	9	57	6 28 2.7
4	9.73 009	19	9.81 302	28	0.18 038	992 320	8	- 50	7 3.3 32
6	9.73 727	19	9.81 390	28	0.18 582	9.92 310	8	55 54	9 4.2 4.I
7	9.73 747	20	9.81 445	27	0.18 555	9.92 302	8	53	10 4.7 4.5
8	9.73 766	19	9.81 473	20	0.18 527	9 92 293	8	52	20 9.3 9.0
9	9.73 785	20	9.81 500	28	0 18 500	9 92 285	8	51	30 14 0 13.5
	9.73 805	19	9.01 520	28	0.18 472	9 92 277	8	40	50 23.3 22.5
12	9.73 843	19	9.81 583	27	0.18 417	9.92 260	9	48	
13	9 73 863	20	9.81 611	28	0.18 389	9 92 252	8	47	
14	9.73 882	19	9 81 638	28	0.18 302	9 92 244	9	_40	20
15	973 901	20	981 606	27	0.18 334	9.92 235	8	45	0 20
17	9.73 921	19	9.81 093	28	0.18 279	9.92 219	8	44	8 2.7
18	9.73 959	19	9.81 748	27	0.18 252	9.92 211	8	42	9 3.0
19	9.73 978	19	9.81 776	20	0.18 22.4	9.92 202	9	41	10 3.3
20	9 73 997	20	981803	28	0.18 197	9.92 194	8	40	30 10.0
21	974 017	19	0 81 858	27	0.18 142	9 92 180	9	39	40 13.3
23	9.74 055	19	9.81 886	28	0.18 114	9 92 169	8	37	50 16.7
24	9.74 074	19	9.81 913	27	0 18 087	9.92 161	8	36	
25	9.74 093	19	9.81 941	27	0.18 059	9.92 152	8	35	
26	9.74 113	10	9 81 968	28	0.18 032	9.92 144	8	34	6 10
27	9.74 132	19	0.82 023	27	0.17 977	9.92 130	9	33	7 2.2
29	9.74 170	19	9 82 051	28	0 17 949	9 92 119	8	31	8 2.5
30	9.74 189	19	9 82 078	27	0.17 922	9.92 111	ů	30	9 2.9
31	9.74 208	19	9 82 106	20	0.17 894	9 92 102	9	29	20 6.3
32	9.74 227	19	9.82 133	28	0.17 807	9.92 094	8	28	30 9.5
34	974 265	19	9.82 188	27	0.17 812	9 92 077	9	26	40 12.7
35	9.74 284	19	9.82 215	27	0.17 785	9.92 069	8	25	50   15.8
36	9.74 303	19	9.82 243	28	0.17 757	9 92 060	9	24	
37	9.74 322	19	9.82 270	28	0.17 730	9.92 052	8	23	18
30	9.74 360	19	9.82 325	27	0.17 675	9 92 035	9	21	6 18
40	9.74 379	19	9.82 352	27	0.17 648	9.92 027	8	20	7 2.1
41	9.74 398	19	9.82 380	28	0.17 620	9.92 018	9	19	8 2.4
42	9.74 417	19	9 82 407	27	0.17 593	9 92 010	8	18	10 30
43	9.74 430	19	9 62 435	27	0.17 505	9.92 002	9	17	20 60
45	9.71 171	19	9.82 480	27	0.17 511	0.01 087	8	15	30 9.0
46	9.74 493	19	9 82 517	28	0 17 483	9 91 976	8	14	50 15.0
47	9.74 512	19	9 82 544	27	0.17 456	9.91 968	0	13	541-5-
48	9.74 53I	18	9 82 571	28	0.17 429	9 91 959	8	12	
50	974 749	19	0 82 626	27	0.17 27	0.01 012	9	10	9 8
51	9.74 587	19	9 82 653	27	0.17 347	9.91 934	8	Ĩ ĝ	6 0 9 0.8
52	9.74 606	19	9 82 681	28	0.17 319	9 91 925	9	8	7 1.1 0.9
53	9.7 + 625	19	982708	27	0.17 292	991917	å	7	9 1 4 1.2
54	974 044	18	9 02 735	27	0.17 205	9 91 908	8		10 1.5 1.3
55 56	974 681	19	9 82 702	28	0.17 230	9.91 900	9	1	20 3.0 27
57	974 700	19	9.82 817	27	0.17 183	9.91 883	8	3.	30 4.5 4.0
58	974719	19 18	9 82 844	27	0.17 156	9.91 874	9	2	50 7.5 6.7
59	9.74 737	19	9.82 871	28	0.17 129	9.91 806	9		
60	9·74 75 ⁶		9.82 899		0.17 101	9.91 857		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	/	Prop. Pts.
					56°				

<b>26</b> 6					34°				
1	L. Sin.	d.	L. Tang	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.74 756	70	9.82 899	07	0.17 101	9.91 857	8	60	
I	9.74 775	19	9.82 920	27	0.17 074	9.91 849	9	59	
1	9.74 794	18	9.82 953	27	0.17 020	0.01 832	8	57	6 28 27
4	9.74 831	19	9.83 008	28	0.16 992	9 91 823	2	56	7 3.3 3.2
5	9.74 850	- 19	9.83 035	27	0.16 965	991 815		55	8 3.7 3.6
6	9.74 868	10	9.83 062	27	0.16 938	9.91 806	8	54	9 4.2 4.I
	9.74 007	19	0.83 117	28	0.16 911	9.91 798	9	53	20 0.3 0.0
9	9.74 924	18	9.83 144	27	0.16 856	9.91 781	8	51	30 14.0 13.5
10	974 943	19	9.83 171	27	0.16 829	9.91 772	9	50	40 18.7 18.0
11	9.74 961	18	9.83 198	27	0.16 802	9.91 763	9	49	50   23.3   22.5
12	9.74 980	19	9.83 225	27	0.16 775	9.91 755	Q	48	
13	974 999	18	9.03 252	28	0.16 748	9.91 740	8	47	1 26
15	0.75 036	- 19	0.83 307	27	0.16 602	0.01 720	9	45	6 2.6
16	9.75 054	18	9.83 334	27	0.16 666	991 720	9	44	7 3.0
17	9 75 073	19	9.83 361	27	0.16 639	9.91 712	8	43	8 3.5
18	9.75 091	10	9.83 388	27	0.16 612	9.91 703	8	42	9 3.9 TO 1.2
19	975 110	18	9.03 415	27	0.10 505	9 91 095	9	41	20 8.7
21	0.75 120	19	0.83 442	28	0.10 550	0.01 677	9	20	30 13.0
22	9.75 165	18	9 83 497	27	0.16 503	9 91 669	8	38	40 17.3
23	9.75 184	19	9.83 524	27	0.16 476	9 91 660	9	37	50   21.7
24	9.75 202	10	983 551	27	0.16 449	9.91 651	8	36	
25	975 221	18	9.83 578	27	0 16 422	9.91 643	0	35	) IQ
20	9.75 239	19	0.83 632	27	0.10 395	0.01 625	9	34	6 1.9
28	9.75 276	18	9.83 659	27	0.16 341	9.91 617	8	32	7 2.2
29	9.75 294	18	9.83 686	27	0.16 314	9.91 608	9	31	8 2.5
30	9.75 313	19	9.83 713	27	0.16 287	9.91 599	8	30	9 2.9 TO 2.2
31	9.75 331	10	9.83 740	28	0.16 200	9.91 591	å	29	20 6.3
32	9.75 350	3	0.83 708	27	0.16 232	0.01 573	9	20	30 9.5
34	9.75 385	18	983822	27	0 16 178	9.91 565	8	26	40 12.7
35	9.75 405	19	9 83 849	27	0.16 151	9.91 556	9	25	50   15.0
36	9 75 423	18	9.83 876	27	0.16 124	9 91 547	9	24	
37	9.75 441	18	9 83 903	27	0.16 097	9.91 538	8	23	18
30	9.75 459	19	0.83 057	27	0.16 043	0.01 530	9	22	6 1.8
40	0.75 496	18	0.83 084	27	0.16 016	0.01 512	9	20	7 2.1
41	9.75 514	78	9.84 011	27	0.15 989	9.91 504	8	19	8 2.4
42	9.75 533	19	9.84 038	27	0.15 962	9.91 495	9	18	10 3.0
43	9.75 551	18	9.84 005	27	0.15 935	9.91 480	9	17	20 6.0
44	9.13 309	<b>r</b> 8	0.84 110	27	0.15 900	9.9. 4//	8	10	30 9.0
45	9.75 605	78	9.84 146	27	0 15 854	9 91 460	9	14	40 12.0
47	9.75 624	19	9.84 173	27	0.15 827	9.91 451	9	13	30,13.0
48	9 75 642	18 78	9.84 200	27	0.15 800	9.91 442	9	12	
49	9.75 000	18	9.84 227	27	0.15 773	9.91 433	8	11	9 8
50	9.75 078	18	9.84 254	26	0.15 746	991 425	9	10	6 0 9 0.8
52	9.75 714	18	9.84 307	27	0.15 603	9.91 407	9	8	7 1.1 0.9
53	9.75 733	19	9.84 334	27	0.15 666	9.91 398	9	7	8 I.2 I.I 0 I.4 T.2
54	9.75 751	18 18	9.84 361	27	0.15 639	991 389	9	6	IO I 5 I.S
55	975769	18	9.84 388	27	0.15 612	9 91 381		5	20 3.0 2.7
50	9.75 787	x8	9.84 415	27	0.15 585	991 372	ŝ	4	30 4.5 4.0
58	9.75 823	18	9.84 469	27	0.15 531	9 91 354	9	2	40 0.0 5.3 50 7.5 6.7
59	9.75 841	18 	9.84 496	27	0.15 504	9.91 345	9	I	3-17.3107
60	9.75 859	10	9.84 523	-7	0.15 477	9.91 336	y	0	
	L. Cos.	a.	L. Cotz.	c. d.	L. Tang.	L'. Sin.	d.		Pron Pte.

•	
0	0

0	o	-
2	O	

			267						
1	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
U	9.75 859	18	9.84 523	37	0.15 477	9.91 336	8	60	
1 2	9.75 077	18	9.84 550	26	0.15 450	9.91 328	9	59 58	
3	9.75 913	18	9.84 603	27	0.15 397	9.91 310	9	57	6 07 06
4	9 75 931	18	9.84 630	27	0.15 370	9.91 301	9	56	7 3.2 3.0
5	9.75 949	10	9.84 657	2/	0.15 343	9 91 292	9	55	8 3.6 3.5
6	9 75 967	18	9.84 684	27	0.15 316	9 91 283	9	54	9 4.1 3.9
8	9.75 905	<b>18</b>	9.84 738	27	0.15 262	0.01 266	8	52	20 0.0 8.7
9	9.76 021	18	9.84 764	26	0.15 236	9.91 257	9	51	30 13.5 13.0
10	9.76 039	10	9.84 791	27	0.15 209	9.91 248	9	50	40 18.0 17.3
II	9.76 057	10	9.84 818	27	0.15 182	9.91 239	9	49	50   22.5   21.7
12	9.70 075	18	9 84 845	27	0.15 155	9.91 230	9	48	1 1
14	9 76 111	18	9.84 899	27	0.15 101	0.01 212	9	46	
15	9.76 129	18	9 84 925	26	0.15 075	9.91 203	9	45	6 1.8
16	9.76 146	17	9 84 952	27	0.15 048	9 91 194	9	44	7 2.I
17	9.76 164	18	9.84 979	27	0.15 021	9 91 185	9	43	8 2.4
18	9.70 182	18	9.85 000	27	0.14 994	9.91 176	9	42	9 2.7
20	976 200	18	903033	26	0.14 907	991 107	9	41	20 6.0
21	9.76 236	18	0.85 086	27	0.14 941	9.91 130 0.91 140	9	30	30 9.0
22	9.76 253	17	9 85 113	27	0.14 887	9.91 141	8	38	40 12.0
23	9.76 271	18	9.85 140	27	0.14 860	9.91 132	9	37	50 , 15.0
24	9.76 289	18	9 85 100	27	0.14 834	9 91 123	9		
25	9 70 307	17	9 85 193	27	0.14 807	9.91 114	9	35	1 17
27	9.76 342	18	9.85 217	27	0.14 753	0.01 006	9	34	6 1.7
28	9.76 360	18	9.85 273	26	0.14 727	9.91 087	9	32	7 2.0
29	9.76 378	18	9.85 300	27	0.14 700	9 91 078	9	31	8 2.3
30	9.76 395	78	9.85 327	27	0.14 673	9 91 069	, ,	30	9 2.0
31	9.70 413	18	9 85 354	26	0.14 640	9.91 000	9	29	20 5.7
33	9.76 448	17	9 85 407	27	0.14 503	9.91 0.12	9	27	30 8.5
34	9 76 466	18	9 85 434	27	0.14 566	9 91 033	9	26	40 11.3
35	9.76 484	18	9 85 460	20	0.14 540	9 91 023	10	25	50   14.2
36	9.76 501	17	9 85 487	27	0.14 513	991014	9	24	
37	9.70 519	18	985514	26	0.14 480	991005	9	23	1 10
30	9.76 554	17	9.85 567	27	0.11 433	9 90 990	9	21	6 1.0
40	9 76 572	18	9 85 594	27	0.14 406	9.90 978	9	20	7 1.2
41	9.76 590	18	9 85 620	26	<b>0</b> 14 380	9 90 969	9	19	8 1.3
42	9.76 607	17	9.85 647	27	0.14 353	9 90 960	9	18	9 1.5 10 1.7
43	0.76 612	17	9 05 074	26	0.14 320	9 90 951	9	17	20 3.3
44	0.76 600	18	0.85 727	27	0 14 272	0.00.022	9	TE	30 5.0
45	9.76 677	17	9.85 754	27	0.14 246	9 90 924	9	14	40 6.7
47	9.76 695	18	9 85 780	26	0.14 220	9.90 915	9	13	50 0.3
48	9.76 712	17 18	9.85 807	27 27	0.14 193	9 90 906	9	12	
49	9.70 730	17	9 85 834	26	0.14 100	9 90 896	ŷ	10	1918
80 27	9.70 747	18	9.85 800	27	0.14 140	9 90 887	9	10	6 0.9 0.8
52	9.76 782	17	9.85 013	26	0.14 087	9.90 860	9	8	7 1.1 0.9
53	9.76800	18	9 85 940	27	0,14 060	9.90 860	9	7	8 1.2 1.1
54	9.76817	17	9 85 967	27 26	0.14 033	9.90 851	9	6	10 1.5 1.3
55	9.76835	17	9 85 993	27	0.14 007	9.90 842	10	5	20 3.0 2.7
50	9.70 852	18	9 85 020	26	0.13 980	9.90 832	~	4	30 4.5 4.0
58	9.76 887	17	9.86 073	27	0.13 927	9.90 814	ģ	2	40 0.0 5.3
59	9.76 904	17	9.86 100	27	0.13 900	9.90 805	9	I	3017.310.7
60	9.76 922	10	9.86 126	30	0.13 874	9.90 796	9	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

268					<b>36°</b>				
1	L. Sin.	d.	L.Tang	. c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
U	9.76 922	17	9.86 126	27	0.13 874	9.90 796	0	60	
I	9.76 939	18	9.80 153	26	0.13 847	9.90 787	10	59	
3	9.76 974	17	9.86 206	27	0.13 794	9.90 768	9	57	27 20 6 07 06
4	9.76 991	17	9.86 232	26	0.13 768	9.90 759	9	56	7 3.2 3.0
5	9 77 009	10	9.86 259	2/	0.13 741	9.90 750	9	55	8 3.6 3.5
6	9.77 026	17	9.86 285	27	0.13 715	9.90 741	10	54	9 4.I 39
8	9.77-043	18	0.86 312	26	0.13 662	9.00 731	9	53	20 00 8.7
9	9 77 078	17	9.86 365	27	0.13 635	9 90 713	9	51	30 13.5 13.0
10	9.77 095	17	9 86 392	27	0.13 608	9.90 704	9	50	40 18.0 17.3
11	9.77 112	18	9 86 418	20	0.13 582	9 90 694	10	49	50   22.5   21.7
12	9.77 130	17	9 80 445	26	0.13 555	0.00 676	9	40	
14	9.77 164	17	9.86 498	27	0.13 502	9.90 667	9	46	1 18
15	9.77 181	17	9.86 524	20	0.13 476	9.90 657	10	45	б 1.8
16	9.77 199	18	9.86 551	27	0.13 449	9.90 648	9	44	7 2.1
17	9.77 210	17	9.80 577	26	0.13 423	9.90 039	9	43	8 2.4
10	9 77 250	17	9 86 630	27	0.13 370	9 90 620	10	41	10 3.0
20	9.77 268	18	9.80 656	26	0.13 344	9 90 611	9	40	20 6.0
21	9 77 283	17	9.86 683	27	0.13 317	9 90 602	9	39	30 9.0
22	9.77 302	17	9.86 709	20	0.13 291	9 90 592	10	38	40 120
23	9.77 319	17	9 80 730	26	0.13 204	9 90 583	9	37	30113.0
25	977 353	17	0 86 780	27	0.13 211	0.00 565	9	25	
26	9 77 370	17	9 86 815	26	0.13 185	9 90 555	IO	34	17
27	9.77 387	17	9 86 842	27	0.13 158	9.90 546	9	33	6 1.7
28	9.77 405	10	986868	20	0.13 132	9 90 537	10	32	7 2.0
30	9.77 422	17	0.86.031	27	0 13 100	990 32/	9	30	9 2.6
31	9.77 459	17	9.86 947	26	0.13 053	9.90 500	9	29	10 2.8
32	9.77 473	17	9 86 974	27	0.13 026	9 90 499	10	28	20 5.7
33	9.77 490	17	9 87 000	20	0.13 000	9 90 490	10	27	40 II.3
34	9.77 507	17	9.87 027	26	0.12 9/3	9.90 480	9	20	50 14.2
35	9.77 524	17	9.07 053	26	0.12 947	0.00 471	9	25	
37	9 77 558	17	9 87 106	27	0.12 894	9 90 452	10	23	
38	9.77 575	17	9 87 132	20 26	0.12 868	9 90 443	9	22	10 6 16
39	9.77 592	17	9.87 158	27	0.12 842	9.90 434	10	21	7 1.0
40	9.77 009	17	9 87 185	26	0.12 815	9.90 424	9	TO	8 2.1
42	9.77 643	17	9.87 238	27	0.12 762	9 90 405	10	18	9 2.4
43	9.77 660	17	9 87 264	26	0.12 736	9.90 396	9	17	10 2.7
44	9.77 677	17	9.87 290	20	0.12 710	9.90 386	9	.10	30 8.0
45	9.77 094	17	9.87 317	26	0.12 083	9 90 377	9	15	40 10.7
40	9.77 728	17	9.87 369	26	0 12 631	9 90 300	10	13	50   13 3
48	9.77 744	16	9.87 396	27	0.12 604	9.90 349	9	12	
49	9.77 761	17	9 87 422	20 26	0.12 578	9.90 339	10	II	
50	9.77 778	17	9.87 448	27	0.12 552	9.90 330	10	10	6 1.0 0.9
51	9.77 795	17	9.07 475	26	0.12 525	9.90 320	9	8	7 1.2 1.1
53	9.77 829	17	9.87 527	26	0.12 473	9.90 301	10	7	8 1.3 1.2
54	9.77 846	17 16	9 87 554	27	0.12 446	9 90 292	9	Ġ	9 1.5 1.4 10 1.7 1.5
55	9.77 852	17	9.87 580	26	0,12 420	9 90 282		5	20 3.3 3.0
50	9.77 879	17	9.87 600	27	0.12 394	9.90 273	10	4	30 5.0 4.5
57	9.77 913	17	9.87 659	26	0 12 341	9.90 203	9	2	40 0.7 0.0
59	9.77 930	17	9.87 685	26	0.12 315	9.90 244	10	I	5010-317-5
60	9.77 946	10	9.87 711	20	0.12 289	9.90 235	9	0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	,	Prop. Pts.

R	0	0
-	<b>.</b>	

rL. Sin.d.L. Taug. c. d.L. Cotg.L. Cos.d.Prop. Pts.0 $977946$ 17 $947711$ 7 $012 abc$ $000 a25$ 60551 $977968$ 17 $947768$ 17 $047790$ 10 $012 abc$ $090 a25$ 604 $977968$ 17 $947768$ 17 $947790$ 10 $012 abc$ $990 a25$ 576275 $978 607$ 17 $947790$ 10 $012 abc$ $990 a25$ 576275 $978 607$ 17 $947 805$ at $012 abc$ $990 abc$ 533647 $978 607$ 17 $947 948$ at $012 abc$ $990 139$ 5320908 $978 680$ 17 $947 948$ at $012 abc$ $990 139$ 55204011 $978 794$ at $012 abc$ $990 139$ 10572040 $980 a25$ 12 $978 127$ 17 $948 8053$ at $012 abc$ $990 139$ 104418.012 $978 127$ 17 $948 8053$ at $011 947$ $990 a24$ 4473013 $978 148$ 16 $048 053$ at $011 947$ $990 034$ 4418.33512 $978 245$ 16 $948 053$ at $011 947$ $990 034$ 4418.33513 $978 248$ 16 $018 837$ at $011 943$ $990 034$ 4413.						37°				269
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	L. Sin.	d.	L.Tang.	c <b>. d.</b>	L. Cotg.	L. Cos.	d.		Prop. Pts.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	9.77 946		9.87 711	27	0.12 289	9.90 235	10	60	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I	9.77 963	17	9.87 738	26	0.12 202	9.90 225	9	59 58	1 97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	9.77 980	17	9.87 790	26	0.12 210	9.90 206	10	57	6 2.7
s s 00.78 0.78 	4	9.78 013	16	9.87 817	27 26	0.12 183	9.90 197	9	56	7 3.2
	5	9.78 030	17	9.87 843	26	0.12 157	9.90 187		55	8 3.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	9.78 047	16 16	9.87 869	26	0.12 131	9.90 178	10	54	9 4.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	9.78 089	17	9.87 922	27	0.12 078	9.90 159	9	52	20 9.0
	9	9.78 097	17	9.87 948	20 06	0.12 052	9.90 149	10 TO	51	30 13.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	9.78 113	10	9.87 974	26	0.12 026	9.90 139	0	50	50 22.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	9.78 130	17	9.88 000	27	0.12 000	9.90 130	10	49	J- ( J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	9.76 147	<b>1</b> 6	0.88 053	26	0.11 9/3	9.90 111	9	47	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	9 78 180	17	9.88 079	26 26	0.11 921	9 90 101	10	46	26
16       9.78       213       17       9.78       233       17       9.78       245       17       9.78       245       17       9.78       245       17       9.78       233       27       0.11       842       9.90       90       93       443       8       3.5         10       9.78       263       17       9.88       18       26       0.11       764       9.90       90       033       10       440       3.5       3.5         21       9.78       263       17       9.88       26       0.11       764       9.90       90       041       10       433       8       7.7       3.7       20       7.83       30       17.9       9.90       0.04       10       38       40       17.3         23       9.78       364       17       9.88       31       26       0.11       639       9.90       0.44       10       37       7.0       30       13.7       20       33       6       1.7       33       7.0       33       6       1.7       33       7.0       20       13.7       20       13.7       20       20       13.7       20       2	15	9.78 197	17	9.88 105	20	0 11 895	9.90 091	10	45	6 2.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	9.78 213	17	9.88 131	27	0.11 869	9 90 082	10	44	7 3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	9.78 230	16	0.88 184	26	0.11 816	9.90 0/2	9	43 42	9 3.9
209.78 $280$ 179.88 $236$ 260.117.149.900.431040 $20$ 8.7 $21$ 9.78 $2313$ 169.88 $236$ 270.117119.900.2410383013.0 $23$ 9.78 $326$ 169.88 $235$ 260.117119.900.241038353013.0 $23$ 9.78 $326$ 169.88 $341$ 260.116359.900.031035375021.7 $24$ 9.78 $336$ 169.88 $341$ 260.116339.900.0510353521.7 $24$ 9.78 $395$ 169.88 $341$ 260.116079.89965103182.3 $29$ 9.78 $412$ 179.88 $446$ 260.11 $554$ 9.89<966103182.3 $30$ 9.78 $4445$ 169.88 $456$ 0.11 $526$ $9.89$ 9710202.65.7 $33$ 9.78 $474$ 169.88 $550$ 21 $313$ 9.78 $969$ 9310102.8 $33$ 9.78 $550$ 179.88 $653$ 260.11< $371$ $9.89$ $808$ 1022205.7 $33$ 9.785560179.88 $733$ 26<	19	9.78 263	17	9.88 210	26	0.11 790	9 90 053	10	4 <b>I</b>	10 4.3
1       9.78 206       10       9.88 262       20       0.11 738       9.90 034       9       39       30       17.3         22       9.78 313       17       9.88 215       26       0.11 711       9.90 0244       10       38       40       17.3         23       9.78 320       17       9.88 315       26       0.11 655       9.90 0.057       10       37       36       37       37       36       37       36       37       37       37       37       37       37       37       38       37       36       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       36       34       17       38       36       11.7       38       36       11.7       38       36       11.7       32       37       36       34       6       11.7       32       37       32       7       30       37       36       36       36       37       30       37       36       36       36       37       30       37       36 </td <td>20</td> <td>9.78 280</td> <td>17</td> <td>9.88 236</td> <td>20</td> <td>0.11 764</td> <td>9 90 043</td> <td>10</td> <td>40</td> <td>20 8.7</td>	20	9.78 280	17	9.88 236	20	0.11 764	9 90 043	10	40	20 8.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	9.78 296	10	9.88 262	20	0.11 738	9 90 034	10	39	40 17.3
23       9.76       340       17       9.88       341       26       0.11       633       9.90       10       35         24       9.78       360       17       9.88       341       26       0.11       633       9.90       10       35         26       9.78       379       15       9.88       393       27       0.11       633       9.89       9.76       10       35         28       9.78       412       17       9.88       420       27       0.11       554       9.89       9.76       10       32       37       2.0         30       9.78       445       16       9.88       446       0.11       554       9.89       9.976       10       32       31       8       2.3         31       9.78       445       16       9.88       52       46       0.11       470       9.89       9.937       10       28       30       85       30       31       8       2.3       30       9       2.7       30       8.5       30       31       30       30       30       30       30       30       30       30       30       30	22	9.78 313	16	9.88 289	26	0.11 711	9 90 024	10	30	50 21.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23 21	9.78 329	17	9.00 315	26	0.11 659	9 90 005	9	36	
26       9.78       379       17       9.88       9.3       40       0.11       607       9.89       96       10       34       17         27       9.78       379       15       9.88       420       47       0.11       580       9.89       976       10       32       7       2.0         28       9.78       412       17       9.88       446       46       0.11       580       98.9976       10       32       7       2.0         30       9.78       445       16       9.88       426       0.11       476       98.9967       10       28       20       5.7       31       9.78       478       17       9.88       58       0.11       476       9.89       978       10       2.8       20       5.7       30       8.57       30       8.57       10       11.3       39.78       9.89       9.99       20       5.7       30       8.57       30       8.57       30       8.57       30       8.57       30       8.57       30       8.57       30       8.57       30       8.57       30       8.57       30       8.57       30       8.57       30<	25	0.78 362	16	9.88 367	26	0.11 633	9 89 995	10	35	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	9.78 379	17	9.88 393	26	0.11 607	9.89 985	10	34	17
28       9 78 428       1       9.88 440       -6       0.11 534       9 99 900       10       32       8       2.3         30       9.78 445       16       9.88 498       26       0.11 534       9.89 957       10       32       32       9       30       9       2.6       31       9.78 491       16       9.88 534       26       0.11 520       9.89 937       10       28       20       5.7         33       9.78 478       16       9.88 553       6       0.11 423       9.89 918       9       27       40       11.3         34       9.78 541       17       9.88 653       26       0.11 377       9.89 688       10       25       50       14.2         35       9.78 560       17       9.88 653       26       0.11 377       9.89 686       10       22       23       16       1.6         37       9.78 560       17       9.88 733       26       0.11 233       9.89 849       10       22       23       16       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6 <td>27</td> <td>9.78 395</td> <td>10</td> <td>9.88 420</td> <td>27 26</td> <td>0.11 580</td> <td>9.89 976</td> <td>10</td> <td>33</td> <td>7 2.0</td>	27	9.78 395	10	9.88 420	27 26	0.11 580	9.89 976	10	33	7 2.0
-y       9       7.8       4.3       17       9.88       4.9       6       0.11       502       9.89       9.97       10       29       30       29       20       30       29       20       29       30       29       20       29       30       29       20       29       30       29       20       29       30       29       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       21       20       20       21	28	978412	16	9.88 440	26	0.11 554	9.89 955	10	31	8 2.3
31       9.78       473       9.88       524       26       0.11       476       9.89       9.93       10       2.0       20       5.7         33       9.78       478       17       9.88       550       27       0.11       430       9.89       997       10       2.0       20       5.7         34       9.78       478       17       9.88       633       26       0.11       370       9.89       9978       10       2.6       5.7       40       11.3         35       9.78       547       17       9.88       633       26       0.11       371       9.89       989       908       10       2.6       50       14.2         36       9.78       543       17       9.88       655       26       0.11       371       9.89       898       10       2.1       24       24       24       24       24       24       24       27       16       1.4.2       1.4.2       9.89       898       10       2.1       21       6       1.6       1.4.2       1.6       1.4.2       1.6       1.4.2       1.6       1.4.2       1.6       1.4.2       1.6 <t< td=""><td>30</td><td>978 445</td><td>17</td><td>0.88 408</td><td>26</td><td>0.11 502</td><td>9.89 947</td><td>9</td><td>30</td><td>9 2.6</td></t<>	30	978 445	17	0.88 408	26	0.11 502	9.89 947	9	30	9 2.6
32       9.78       47       9.88       550       10       0.11       4350       9.89       9.27       10       28       30       57.         33       9.78       494       16       9.88       50       11       4350       9.89       98       927       10       27       40       11.3         34       9.78       16       9.88       603       26       0.11       397       9.89       80       10       25       26       50       14.2         35       9.78       543       17       9.88       653       26       0.11       371       9.89       808       10       25       23       36       978       50       14       27       23       26       10       11.3       39       9.89       89       10       24       27       23       16       1.6       1.3       39       27       23       16       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.8       24       17       9.88       876       10       16       20       7       1.9       24       1.6       1.6       1.6       1.6	31	9.78 461	16	9.88 524	26	0.11 476	9 89 937	10	29	10 2.8
33       9.78       49       15       9.88       577       16       0.11       379       9.89       507       16       0.11       37       9.89       508       10       25       24       40       11.3         35       9.78       543       16       9.88       603       26       0.11       371       9.89       808       10       25       24       50       14.2         36       9.78       560       17       9.88       65       1337       9.89       888       10       25       24       50       14.2         37       9.78       560       17       9.88       73       26       0.11       27       9.89       89       10       22       16       1.6         39       9.78       502       17       9.88       73       26       0.11       21       89       849       9       19       8       2.1       1.9       8       21       1.0       21       6       1.6       20       5       53       16       9.88       78       10       1.1       8       9.89       840       9       19       8       2.1       1.0       2	32	9.78 478	17	9.88 550	20	0.11 430	9.89 927	10	28	30 8.5
35       9 78 537       17       9.88 659       26       0.11 371       9.89 689       10       25       50       14.2         36       9 78 543       16       9.88 653       a6       0.11 371       9.89 688       10       25         37       9.78 560       17       9.88 653       a6       0.11 345       9.89 889       9       23         38       9.78 576       16       9.88 707       a6       0.11 293       9.89 859       10       22       23         30       9.78 592       16       9.88 733       a6       0.11 293       9.89 849       9       20       7       1.9         41       9.78 662       17       9.88 735       a6       0.11 241       9.89 849       9       18       9       2.4         43       9.78 658       16       9.88 736       a7       0.11 214       9.89 840       9       18       9       2.4         43       9.78 654       16       9.88 854       a6       0.11 106       9.89 810       10       17       20       5.3       30       8.0       10       14       50       13       30       8.0       10       14       50       <	33	9.78 494	16	9 88 577	26	0.11 423	0.80 008	10	26	40 11.3
36       9 /8 /8 /3 /3       16       9.88 /655       26       0.11 /345       9.88 /888       10       24         37       9.78 /560       17       9.88 /651       26       0.11 /319       9.89 /879       9       23         38       9.78 /576       16       9.88 /671       9.88 /737       26       0.11 /241       9.89 /899       10       21       6       1.6         4U       9.78 /629       17       9.88 /730       27       0.11 /241       9.89 /839       10       21       7       1.9       2.1         41       9.78 643       17       9.88 /786       27       0.11 /241       9.89 /830       10       18       10       2.7         43       9.78 658       16       9.88 /786       26       0.11 /10       9.89 /830       10       17       7       8.2.7         44       9.78 674       16       9.88 /864       26       0.11 /10       9.89 /810       10       15       40       10.7         45       9.78 /730       16       9.88 9/42       26       0.11 /058       9.89 /751       10       13       30       8.0         51       9.78 /733       16       9.89 /942	25	0 78 527	17	0.88 620	26	0.11 371	9.89 898	IO	25	50   14.2
37       9.78       560       17       9.88       681       20       o II 319       9.88       898       70       23       23         38       9.78       550       16       9.88       733       26       0.11       29.89       898       70       22       21       6       1.6         4U       9.78       592       16       9.88       759       20       21       6       1.6       71       9.98       898       89       90       10       21       71       9.88       78       71       9.98       89.89       90       10       220       71       1.9         41       9.78       638       16       9.88       786       27       0.11       214       9.89       849       9       19       8       2.1         43       9.78       658       16       9.88       86       0.11       168       9.89       810       10       17       10       2.7       10       2.7       10       2.7       10       2.7       10       2.7       10       2.7       10       2.7       10       2.7       10       2.7       10       2.7       10	36	9 78 543	16	9.88 655	26	0.11 345	9.89 888	10	24	
33       9.78       570       10       9.88       707       10       0.11       293       9.89       009       10       22       6       1.6         4U       9.78       509       17       9.88       73       26       0.11       27       9.89       889       10       220       7       7       1.9         41       9.78       632       16       9.88       78       7       0.11       214       9.89       840       9       10       220       7       7       1.9         42       9.78       632       16       9.88       76       7       0.11       24       9.89       840       9       10       9       2.4         43       9.78       652       16       9.88       83       6       0.11       162       9.89       830       10       17       10       2.7         43       9.78       661       17       9.88       840       98       10       15       40       10.7         45       9.78       601       17       9.88       9.89       26       0.11       0.89       971       10       14       50	37	9.78 560	17 16	9.88 681	20 26	0 11 319	9.89 879	10	23	1 16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	9 78 570	16	9.88 707	26	0.11 293	0.80 850	10	21	6 1.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	0.78 600	17	0.88 750	26	0.11 241	0.80 840	10	20	7 1.9
42       9.78       6.12       17       9.88       812       20       0.11       188       9.89       830       10       17       10       2.7         43       9.78       658       16       9.88       836       26       0.11       136       9.89       830       10       17       2.7       20       5.3         44       9.78       674       16       9.88       864       26       0.11       10       9.89       810       10       16       30       8.0         45       9.78       674       16       9.88       806       26       0.11       10       9.89       801       9       15       40       10.7         47       9.78       723       16       9.88       942       26       0.11       0.89       9.89       781       10       13       13       13       13       13       13       13       13       13       14       9.78       78       78       79       9.89       9.89       752       9       10       6       1.0       0.9       13       13       13       13       12       11       10       9       12	41	9.78 625	16	9.88 786	27	0.11 214	9.89 840	9	19	8 2.1
43       9.78       6574       16       9.88       6854       26       0.11       102       9.89       9.80       10       17       20       5.3         45       9.78       661       17       9.88       864       26       0.11       1102       9.89       800       10       15       40       10.7         45       9.78       707       16       9.88       9.60       0.11       108       9.89       971       10       14       50       13.3         47       9.78       773       16       9.88       964       26       0.11       0.89       9.89       71       10       13       40       10.7       40       10.7       40       10.7       14       50       13.3         47       9.78       733       16       9.88       9.89       6       0.11       0.39       9.89       71       10       13       12       11       12       10       13       12       11       12       10       10       9       10       6       1.0       0.9       10       6       1.0       0.9       10       10       10       12       1.1       12 <td>42</td> <td>9.78 642</td> <td>17</td> <td>988 812</td> <td>20 26</td> <td>0.11 188</td> <td>9.89 830</td> <td>10</td> <td>18</td> <td>10 2.7</td>	42	9.78 642	17	988 812	20 26	0.11 188	9.89 830	10	18	10 2.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	9.78 658	16	9.88 838	26	0.11 102	0.80 810	10	16	20 5.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	0 78 601	17	0.88 800	26	0.11 110	9.89 801	9	15	30 8.0
47       9.78 723       10       0.88 942       20       0.11 058       9.89 781       10       13         48       9.78 730       17       9.88 964       26       0.11 058       9.89 781       10       13         49       9.78 735       17       9.88 964       26       0.11 058       9.89 771       10       12         50       9.78 775       15       9.88 904       26       0.11 032       9.89 752       9       9       6       1.0       0.9         51       9.78 778       16       9.89 073       27       0.10 927       9.89 732       10       8       7.1       1.1       1.1       12       1.1       1.1       1.1       10       9       6       1.0       0.9       7.1       1.1       1.1       10       9       7.1       1.1       1.1       10       9       7.1       1.1       1.1       1.1       10       9       7.1       1.1       1.1       10       9       7.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1 <td>46</td> <td>9.78 707</td> <td>16</td> <td>9.88 916</td> <td>26</td> <td>0.11 084</td> <td>9.89 791</td> <td>10</td> <td>14</td> <td>50 13.3</td>	46	9.78 707	16	9.88 916	26	0.11 084	9.89 791	10	14	50 13.3
48       9.78 739       73       76       9.88 908       26       0.11 032       9.89 711       10       12         49       9.78 736       16       9.88 904       26       0.11 032       9.89 712       10       10       9         50       9.78 772       16       9.89 040       26       0.10 954       9.89 712       10       9       7       1.2       11         51       9.78 78       16       9.89 042       26       0.10 954       9.89 742       10       9       7       1.2       1.1         52       9.78 805       17       9.89 073       27       0.10 927       9.89 732       10       7       8       1.3       1.2         53       9.78 831       16       9.89 073       26       0.10 927       9.89 732       10       7       9       1.5       1.4         54       9.78 853       16       9.89 125       26       0.10 875       9.89 712       10       7       10       1.7       1.5         55       9.78 869       17       9.89 213       26       0.10 849       9.89 702       9       4       30       50       4.3       30       5.0	47	9 78 723	10	9.88 942	20	0.11 058	9.89 781	10	13	
475       97.6 / 3.0       736       9.66 / 9.94       26       0.10 / 9.00       97.2 / 9.10       9       10       6       1.0       9         50       9.78 772       9       16       9.89 0,46       26       0.10 950       9.89 752       9       10       9       7       1.2       1.1         51       9.78 788       16       9.89 0,46       26       0.10 927       9.89 732       10       8       8       1.3       1.2         52       9.78 853       16       9.89 092       26       0.10 927       9.89 732       10       8       8       1.3       1.2         53       9.78 831       16       9.89 073       26       0.10 927       9.89 732       10       7       9       1.5       1.4         54       9.78 853       16       9.89 125       26       0.10 875       9.89 702       9       4       30       5.0       4.33       3.0       3.3       3.0         55       9.78 850       16       9.89 172       26       0.10 875       9.89 702       9       4       30       5.0       4.5       4.0       5.7       6.33       30       5.0       4.0       5.	48	9.78 739	17	9 88 968	26	0.11 032	9.80 771	10	112	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	970 750	16	0.80 020	26	0.10.080	0 80 752	9	10	10 9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	9.78 788	16	9.89 046	26	0.10 954	9.89 742	10	9	6 I.O 0.9
53     9.78     837     10     9.89     99     12     10     9.89     72       54     9.78     837     16     989     125     26     0.10     875     989     722     10     7     9     1.5     1.4       55     9.78     853     16     9.89     151     26     0.10     875     989     722     10     5     20     3.3     3.0       55     9.78     860     16     9.89     177     26     0.10     823     9.89     603     10     5     20     3.3     3.0       56     9.78     866     17     9.89     22     26     0.10     79     9.89     683     10     3     40     6.7     6.0       58     9.78     902     16     9.89     22     26     0.10     77     9.89     663     10     2     50     8.3     7.5       59     978     934     16     9.89     253     26     0.10     719     9.89     653     10     1       60     978     934     16     9.89     28     0.10     719     9.89     653     0     0  <	52	9 78 805	17	9.89 073	27	0.10 927	9.89 732	10	8	8 1.3 1.2
34       9.76       9.71       16       9.89       125       26       0.10       67.5       9.89       721       10       5       10       1.7       1.5         55       9.78       853       16       9.89       151       26       0.10       849       9.89       702       9       4       30       5.0       4.5         56       9.78       866       17       9.89       203       36       0.10       849       9.89       683       10       3       30       5.0       4.5         57       9.78       866       17       9.89       203       36       0.10       79       9.89       683       10       3       40       6.7       6.0         58       9.78       902       16       9.89       253       26       0.10       717       98.9       663       10       1       20       3.0       50       8.3       7.5       50       8.3       7.5       50       8.3       7.5       50       8.3       7.5       50       8.3       7.5       50       8.3       7.5       50       8.3       7.5       50       8.3       7.5       50 <td>53</td> <td>9.78 821</td> <td>16</td> <td>9.89 099</td> <td>26</td> <td>0.10 901</td> <td>9.89 722</td> <td>10</td> <td>6</td> <td>9 1.5 1.4</td>	53	9.78 821	16	9.89 099	26	0.10 901	9.89 722	10	6	9 1.5 1.4
55     9.78     860     16     9.89     12     26     0.10     879     9.89     603     9     4     30     5.0     4.5       55     9.78     860     17     9.89     203     26     0.10     823     9.89     633     10     3     40     6.7     6.0       57     9.78     886     17     9.89     203     26     0.10     797     9.89     683     10     3     40     6.7     6.0       58     9.78     9.81     16     9.89     257     26     0.10     777     9.89     663     10     2     50     8.3     7.5       59     9.78     9.84     16     9.89     255     26     0.10     777     9.89     663     10     1     50     8.3     7.5       59     9.78     9.34     16     9.89     253     26     0.10     719     9.89     653     10     1     1     50     8.3     7.5       60     9.78     9.34     16     9.89     653     10     0     0     0       60     9.78     9.89     8.3     10     10     10     10     <	54	9.70 037	16	0.80 151	26	0.10 840	0.80 702	10	5	10 1.7 1.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	0.78 860	16	9.89 177	26	0 10 823	9.89 693	9	4	30 5.0 4.5
58     9.78     902     10     9.89     229     10     0.10     771     9.89     9.89     73     10     1     1     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10	57	9.78 886	17	9.89 203	26	0.10 797	9.89 683	10	3	40 6.7 6.0
59         970 910         16         9 09 255         26         0.10 743         9.09 005         10           60         9 78 934         10         9.89 281         26         0.10 719         9.89 653         10         0           L. Cos.         d.         L. Cotg.         c. d.         L. Tang.         L. Sin.         d.         /         Prop. Pts.	58	9.78 902	16	9.89 229	26	0.10 771	9 89 073	10		50 8.3 7.5
U 978 934 9.89 281 0.10 719 9.09 055 0 L. Cos. d. L. Cotg. c. d. L. Tang. L. Sin, d. / Prop. Pts.	59	970 910	16	909 2.5	26	0.10 745	0.80 6=0	- 10	to	1
		9 78 934	d.	9.89 281	c. d	L. Tang	9.09 053	d.	+	Prop. Pts.

270	ļ				38°				
1	L. Sin.	d.	L. Tang	. c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.78 934	76	9.89 281	6	0.10 719	9.89 653	10	60	
I	9.78 950	17	9.89 307	26	0.10 693	9.89 643	10	59	
	9.78 907	16	0.80 350	26	0.10 641	0.80 624	9	50	20 25 6 26 25
4	9.78 999	16	9.89 385	26	0.10 615	9.89 614	10	56	7 30 2.9
5	9.79 015	- 10	9.89 411	- 20	0.10 589	9.89 604	10	55	8 3.5 3.3
6	9.79 031	10	9.89 437	26	0.10 563	9.89 594	10	54	9 39 3.8
	9.79 047	16	9.89 403	26	0.10 537	9.09 504	10	53	20 8.7 8.3
9	9.79 079	16	9.89 515	26	0.10 485	9.89 564	10	51	30 13.0 12.5
10	9.79 095	10	9.89 541	- 20	0.10 459	9.89 554	10	50	40 17.3 16.7
II	9.79 111	10	9 89 567	20	0.10 433	9.89 544	10	49	50   21.7   20.8
12	9.79 128	16	9.89 593	26	0.10 407	9.89 534	10	48	
14	9.79 160	16	9.89 645	26	0.10 355	9 89 514	10	46	17
15	9.79 176	IO	9 89 671	- 26	0.10 329	9.89 504	10	45	6 I.7
16	9.79 192	10	9.89 697	20	0.10 303	9 89 495	9	44	7 2.0
17	9.79 208	16	9.89 723	26	0 10 277	9 89 485	10	43	8 2.3
10	9.79 224	16	0.80 775	26	0.10 251	9.89 4/5	ю	42	10 2.8
20	9.79 250	16	9.89 801	26	0.10 100	9.89 455	10	40	20 5.7
21	9 79 272	16	9 89 827	26	0.10 173	9.89 445	10	39	30 8.5
22	9.79 288	16	9.89 853	20	0.10 147	9.89 43 <u>5</u>	10	38	50 14.2
23	9.79 304	15	9.89 879	26	0.10 121	0.80 425	10	37	J-1-4
25	9.79 3.9	16	9.09 903	26	0.10 000	0.80 405	10	25	
26	9.79 351	16	9.89 957	26	0.10 043	9.89 395	10	34	16 15
27	9.79 367	10	9.89 983	20	0.10 017	9 89 385	10	33	6 16 1.5
28	9.79 383	16	9.90 009	26	0.09 991	9.89 375	11	32	7 1.9 1.8
30	9.79 399	16	9.90 035	26	0.00 030	9.09 304	10	30	9 2.4 2.3
31	9.79 415	16	9.90 086	25	0.09 939	9.89 334	10	29	10 2.7 2.5
32	9.79 447	16	9.90 112	26	0.09 888	9.89 334	10	28	20 5.3 5.0
33	9.79 463	10	9.90 138	20	0.09 862	9 89 324	10	27	40 10.7 10.0
34	9.79 476	16	9.90 104	26	0 00 830	9.89 314	10	20	50 13.3 12.5
35	9.79 494	16	0.00 216	26	0.00 784	0.80 204	10	25	
37	9.79 526	16	9.90 242	26	0.09 758	9 89 284	10	23	
38	9.79 542	10 16	9.90 268	20	0.09 732	9.89 274	10	22	6 11
39	9.79 558	15	9.90 294	26	0.09 700	9 89 204	10	21	7 1.2
41	9.79 573	16	9.90 320	26	0.09 080	9 89 254	10	10	8 1.5
42	9.79 605	16	9 90 371	25	0.09 629	9.89 233	11	18	9 1.7
43	9.79 621	10 15	9 90 397	20	0.09 603	9 89 223	10	17	20 3 7
44	9.79 030	16	9.90 423	26	0.09 577	9.89 213	10	10	30 5.5
45	9.79 052	16	9.90 449	26	0.09 551	9.89 203	10	15	40 7.3
47	9.79 684	16	9.90 501	26	0.09 499	9.89 183	10	13	50   9.2
48	9.79 699	15	9.90 527	26	0.09 473	9.89 173	10	12	
49	9.79 715	16	9 90 553	20	0.09 447	9 89 162	10	11	<b>10</b>
50	9.79 731	15	9.90 578	26	0.09 422	9 89 152	10	10	6 1.0 0.9
52	9.79 740	16	9.90 630	26	0.00 370	9.89 142	10	8	7 1.2 1.1
53	9.79 778	16	9 90 656	26	0.09 344	9.89 122	10	7	8 1.3 1.2
54	9.79 793	15 16	9.90 682	20 26	0.09 318	9.89 112	10	6	10 1.7 1.5
55	9.79 809	16	9.90 708	26	0.09 292	9.89 101	10	5	20 3.3 3 1
50	9.79 825	15	9.90 734	25	0.09 200	9.89.091	10	4	30 5.0 4
58	9.79 856	16	9.90 785	26	0.09 215	9.89 071	10	2	40 0.7 0.0
59	9.79 872	16	9 90 811	26 26	0.09 189	9.89 060	11	I	5-10.317.3
60	9.79 887	*3	9.90 837	20	0.09 163	9.89 050	10	.0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

1	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.79 887	76	9.90 837	26	0.09 163	9.89 050	10	60	
1	9.79 903	15	9.90 863	26	0.09 137	9.89 040	20	59	
3	9.79 934	16	9.90 914	25	0.09 086	9 89 020	10	57	6 26
4	9.79 950	10	9.90 940	20	0.09 060	9.89 009	11	56	7 3.0
5	9.79 965	16	9.90 966	26	0.09 034	9.88 999	10	55	8 3.5
7	979981	15	9 90 992	26	0.09 008	9.88 989	11	54	9 3.9
8	9 80 012	16	9 91 043	25	0.08 957	9 88 968	IO	52	20 8.7
9	9.80 027	15	9.91 069	20	0.08 931	9 88 958	10	51	30 13.0
10	9.80 0.43	15	9 91 095	26	0.08 905	9.88 948	11	50	40 17.3
11	9.80 058	16	9.91 121	26	0.08 853	0.88 027	10	49 48	301-17
13	9.80 089	15	9.91 172	25	0.08 828	9.88 917	10	47	
14	9.80 105	10	9.91 198	20	0.08 802	9.88 906	10	46	25
15 76	9.80 120	16	9.91 224	26	0.08 776	9.88 896	10	45	6 2.5
17	9.80 151	15	9.91 276	26	0.08 750	9 88 875	11	44	8 3.3
18	9.80 166	15	9 91 301	25	0.08 699	9.88 865	10	42	9 3.8
19	9.80 182	15	9.91 327	26	0.08 673	9.88 855	10	41	10 4.2
20	9.80 197	16	9.91 353	26	0 08 647	9 88 844 0 88 824	10	40	30 12.5
22	9.80 228	15	9.91 404	25	0.08 596	9 88 824	10	38	40 16.7
23	9.80 244	IO	9.91 430	20	0 08 570	9.88 813	11	37	50 20.8
21	9.80 259	15	9.91 456	26	0.08 544	9 88 803	10	36	
25 26	9.80 274	ıб	9.91 482	25	0.08 518	9 88 793	11	35	16
27	9.80 305	15	9.91 533	26	0.08 467	9.88 772	10	33	6 1.6
28	9 80 320	15	9.91 559	20	0.08 441	9 88 761	11	32	7 1.9
29	9.80 336	15	9 91 585	25	0.08 415	9.88 751	10	31	8 2.1
30	0.80 351	15	9.91 010	26	0.08 390	9.88 741	11	30	10 2.7
32	9.80 382	ıð	9.91 662	26	0 8 338	9 88 720	10	28	20 5.3
33	9.80 397	15	9.91 688	20	C.08 312	9.88 709	11	27	30 8.0
34	9.80 412	16	9.91 713	26	0.08 287	9.88 699	11	20	50 13.3
35	9.60 428	15	9.91 739	26	0 08 201	9.88 088 0.88 678	10	25 24	
37	9 80 458	15	9.91 791	26	0.08 209	9 88 668	10	23	
38	9 80 473	15 16	9.91 816	25 26	0.08 184	9 88 657	11	22	6 15
39	9.80 489	15	9.91 842	26	0.08 158	9.88 647	11	21	7 1.8
41	9.80 519	15	9.91 808	25	0.08 132	9.88 626	10	10	8 2.0
42	9.80 534	15	9.91 919	26 26	0.08 081	9.88 615	11	18	9 2.3
43	980550	15	991945	26	0.08 055	9.88 605	10	17	20 5.0
44	0.80 580	15	9 91 9/1	25	0.08.004	0.88 584	10	10	30 7.5
45 46	9.80 595	15	9.92 022	26	0.07 978	9.88 573	11	14	40 10.0 50 12.5
47	9.80 610	15	9.92 048	20 25	0.07 952	9.88 563	10	13	30,3
48	9.80 025 0.80 64 T	16	9.92 073	26	0.07 927	9 88 552	10	12	
50	0.80 656	15	0.02 122	26	0.07 875	0.88 521	31	10	11 10
51	9.80 671	15	9.92 150	25	0.07 850	9.88 521	10	9	6 1.1 1.0
52	9.80 686	15	9.92 176	20 26	0.07 824	9.88 510	11	8	8 1.5 1.3
53 54	9.80 701	15	9.92 202	25	0.07 798	9.88 499 9.88 480	10	7	9 1.7 1.5
55	9.80 731	15	9.92 253	26	0.07 747	9.88 478	11	5	10 1.8 1.7
56	9.80 746	15	9.92 279	26 07	0.07 721	9.88 468	10	4	30 5.5 5.0
57	9.80 762	10	9 92 304	≥5 26	0.07 696	9.88 457	10	3	40 7.3 6.7
50	9.80 777	15	9.92 330	26	0.07 644	9.00 447	11	Ĩ	50   9.2   8.3
60	9.80 807	15	9 92 381	25	0 07 619	9.88 425	11	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.
					50°				

4:4					40°				
1	L. Sin.	d.	L. Tang	. c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.80 807	15	9.92 381	26	0.07 619	9.88 425	10	60	
	9.80 822	15	9.92 407	26	0.07 593	9.88 415	XX.	59	
3	9 80 852	15	9.92 458	25	0.07 542	9.88 394	IO	57	6 26
4	9.80 867	15	9.92 484	20	0.07 516	9.88 383	11	56	7 30
5	9.80 882	15	9.92 510	25	0.07 490	9.88 372	10	55	8 3.5
2	9.80 897	15	9 92 535	26	0.07 405	9.88 302	11	54	9 3.9
8	9.80 912	15	9.92 587	26	0.07 439	9.88 340	11	53	20 8.7
9	9.80 942	15	9 92 612	25	0.07 388	9.88 330	10	51	30 13.0
10	9.80 957	15	9.92 638	20	0.07 362	9.88 319		50	40 17.3
11	9.80 972	15	9 92 663	26	0.07 337	9.88 308	10	49	50 21.7
12	9.80 987	15	9.92 089	26	0.07 311	9.88 298	11	48	
14	9.81 017	15	9 92 740	25	0.07 260	9 88 276	11	46	1 25
15	9.81 032	15	9 92 766	20	0.07 234	9.88 266	10	45	6 2.5
16	9.81 047	15	9 92 792	20	0.07 208	9.88 255	11	44	7 2.9
17	9.81 061	14	9.92 817	26	0.07 183	9.88 244	10	43	8 3.3
10	9.81 070	15	9 92 043	25	0.07 132	0 88 223	11	42	9 3.0
20	0.81 100	15	0.02.801	26	0.07 106	0.88 212	11	40	20 8.3
21	9.81 121	15	9.92 920	26	0.07 080	9.88 201	11	39	30 12.5
22	9.81 136	15	9.92 945	25	0.07 055	9.88 191	10	38	40 16.7
23	9.81 151	15	9.92 971	25	0.07 029	9.88 180	11	37	50   20.0
24	9.81 100	14	9.92 990	26	0.07 004	9.00 109	11	30	
26	0.81 105	15	9.93 022	26	0.00 976	0.88 148	10	35	1 15
27	9.81 210	15	9 93 073	25	0.06 927	9 88 137	11	33	6 I.5
28	9.81 225	15	9.93 099	20	0.06 901	9.88 126	11	32	7 1.8
29	9.81 240	14	9 93 124	26	0.00 870	9.88 115	10	31	8 2.0
30	9.81 25.4	15	9 93 150	25	0.00 850	9.88 105	11	30	10 2.5
32	9.81 284	15	9.03 201	26	0.06 700	9.88 083	11	29	20 5.0
33	9.81 299	15	9 93 227	26	0.06 773	9 88 072	11	27	30 7.5
34	9.81 314	15	9.93 252	25	0 06 748	9.88 061	10	26	50 12.5
35	9.81 328	15	9.93 278	25	0.06 722	9.88 051	11	25	5= / ==+5
30	9.01 343	15	9.93 303	26	0.06 097	0.88 020	11	24	
38	9.81 372	14	9.93 354	25	0.06 646	9.88 018	11	22	1 14
39	9.81 387	15	9 93 380	20	0.06 620	9.88 007	11	21	6 1.4
40	9.81 402	15	9.93 406	20	0 06 594	9 87 996		20	7 1.0
41	9.81 417	14	9.93 431	26	0.06 569	9.87 985	10	19	0 2.I
42	0.81 430	15	9.93 457	25	0.00 543	9 07 975	11	18	10 2.3
44.	9.81 461	15	9.93 508	26	0 06 492	9 87 953	11	16	20 47
45	9.81 475	14	9.93 533	25	0 06 467	9 87 942	11	15	40 0.3
46	9.81 497	15	9.93 557	20	0 06 441	9.87 931	11	14	50 11.7
47	9.81 505	14	9 93 584	26	0.06 416	9.87 920	11	13	
40	0.81 514	15	993 636	26	0 00 300	0.87 808	11	12	
50	9.81 540	15	9.93 651	25	0.06 330	0.87 887	11	10	11 10
51	9.81 563	14	9 93 687	26	0.06 313	9.87 877	10	9	6 1.1 10
52	9.81 578	15	9 93 712	25 26	0 06 288	9 87 866	11	8	8 1.5 1.2
53 54	0.81 607	15	9.93 738	25	0.00 202	9.87 855	11	7	9 1.7 1.5
54	0 81 622	15	0.07 780	26	0.06.21	0.87 822	11	۲,	10 1.8 1.7
56	9 81 636	14	9.93 814	25	0.06 186	9.87 822	11	4	20 3.7 3.3
57	9.81 651	15	9.93 840	20 25	0.06 160	9 87 811	11	3	40 7.3 6.7
58	9.81 665	15	9.93 865	26	0.06 133	9.87 800	11	2	50 9.2 8.3
59 60	0.81 604	34	0.03 016	25	0.00 109	9.07 709	11	-	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	,	Prop. Pts.

11	0
4	•

-	T	1		1	1				
1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.81 694		9.93 916		0.06 084	9.87 778		60	
I	9 81 709	15	9.93 942	20	0.06 058	9.87 767	11	59	
2	9.81 723	14	9.93 967	26	0.00 033	9.87 756	11	58	26
3	9.61 736	14	9.93 993	25	0.00.007	9.07 745	11	57	6 2,6
4	9.01 /32	15	9.94 010	26	0.03 902	9.07 734	11		7 3.0
5	0 81 781	14	9.94 044	25	0.05 950	0.87 712	11	55	8 3.5
7	9.81 796	15	9.94 005	26	0.05 905	9.87 701	11	53	9 3·9 10 4.2
8	9 81 810	14	9.94 120	25	0.05 880	9.87 690	11	52	20 8.7
9	9.81 825	15	9.94 146	20	0.05 854	9.87 679	11	51	30 13.0
10	9.81 839	14	9 94 171	25	0.05 829	9.87 668		50	40 17.3
II	9.81 854	15	9.94 197	20	0.05 803	9.87 657	11	49	50 21.7
12	9.81 868	14	9.94 222	26	0.05 778	9.87 646	11	48	
13	9.81 882	15	9.94 248	25	0.05 752	9 87 035	11	47	
-14	9.81 89/	14	994 2/3	26	0.05 727	9.87 024	11	40	25
15	9.81 911	15	9.94 299	25	0.05 701	9.87 613	13	45	0 2.5
10	0.81 0.10	14	994 324	26	0.05 650	0.87 500	II	44	8 2.9
18	9.81 955	15	9.94 375	25	0.05 625	9.87 579	II	42	0 3.8
19	9 81 969	14	9 94 401	26	0.05 599	9.87 568	11	41	10 4.2
20	0.81 083	14	0.01 426	25	0.05 574	9.87 557	11	40	20 8.3
21	9.81 998	15	9.94 452	26	0.05 548	9.87 546	11	39	30 12.5
22	9 82 012	14	9 9 4 477	25	0.05 523	9.87 535	II	38	40 16.7
23	9.82 026	14	9 94 503	20	0.05 497	9.87 524	11	37	50   20.8
24	9.82 041	14	9 94 528	26	0 05 472	9.87 513	12		
25	9 82 055	14	9 94 554	25	0.05 446	9 87 501	11	35	
20	9 82 069	15	9 94 579	25	0.05 421	9.87 490	11	34	15
27	9.82 084	14	9 94 004	26	0.55 390	9.87 479	11	33	0 1.5
20	0.82 112	14	0 0 1 655	25	0.05 370	0.87 457	Χι	32	8 20
30	0.80 100	14	994 035	26	0.05 343	0 87 446	11	30	9 2.3
21	0.82 1.11	15	0.01 706	25	0.05 201	0 87 440	12	20	10 2.5
32	9.82 155	14	9.94 732	26	0 05 268	9.87 423	11	28	20 5.0
33	9.82 169	14	9.94 757	25	0.05 243	9 87 412	11	27	30 7.5
34	9.82 184	15	9 94 733	20	0 05 217	9 87 401	11	26	40 10.0
35	9.82 198	14	9 94 808		0.05 192	9 87 390		25	50,12.5
36	9.82 212	14	9.94 834	20	0.05 166	9.87 378	12	24	
37	9 82 226	14	9.94 859	25	0.05 141	9.87 367	1.1	23	1 74
38	9.82 240	15	9.94 884	26	0.05 110	9.87 350	11	22	6 7
39	9.02 275	14	994910	25	0.05 000	9 07 345	11	21	7 1.6
40	9 82 209	14	9.94 935	26	0 05 005	9.87 334	12	20	8 1.9
41	0.82 203	14	0.01 086	25	0.05 039	0.87 311	11	19	9 2.I
43	9.82 311	14	9.95 012	26	0.04 988	9.87 300	11	17	10 2.3
44	9.82 326	15	9.95 037	25	0.04 963	9.87 288	12	16	20 4.7
45	9.82 340	14	9.95 062	25	0.04 938	9.87 277	11	15	30 7.0
4Ğ	9.82 354	14	9.95 088	20	0.04 912	9.87 266	11	14	40 9.3 50 II.7
47	9.82 368	14	9.95 113	25	0.04 887	9.87 253	II	13	50,,
48	9.82 382	14	9 95 139	25	0.04 861	9 87 243	12	12	
49	9.82 395	14	9.95 104	26	0.04 830	9.87 232	11	11	1 12   11
50	9.82 410	14	9.95 190	25	0.04 810	9.87 221	12	10	6 1.2 1.1
51	9.82 424	15	9.95 215	25	0.04 785	9.87 209	11	2	7 1.4 1.3
53	9.82 452	14	9.95 240	26	0.04 734	9.87 187	11	7	8 1.6 1.5
54	9.82 467	14	9.95 291	25	0.04 700	9.87 175	12	6	9 1.8 1.7
55	9.82 481	14	9.95 317	26	0.01 682	9.87 164	11	5	10 2.0 1.8
56	9.82 495	14	9.95 342	25	0.04 658	9.87 153	II	4	20 4.0 3.7
57	9.82 509	14	9.95 368	26	0.04 632	9.87 141	12	3	40 8.0 7.3
58	9.82 523	14	9.95 393	25	0.04 607	9.87 130	11	2	50 10.0 9.2
59	9.82 537	14	9.95 418	25	0.04 582	9.87 119	11	I	
60	9.82 551	-7	9.95 444		0.04 556	9.87 107		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

.

274

**42°** 

1	L. Sin.	d.	L. Tang	. c. d	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.82 551		9.95 444		0.04 556	9.87 107		60	
I	9.82 565	14	9.95 469	25	0.04 531	9.87 096		59	
2	9.82 579	14	9 95 495	25	0.04 505	9.87 085	12	58	26
3	9.62 593	14	9 95 520	25	0.04 480	9 87 073	11	57	6 2.6
	0.82.621	14	9.95 545	- 26	0.04 433	9.07 002	12	50	7 3.9
6	0.82 635	14	0.05 506	25	0.01 401	0.87 030	11	55	0 3.5
7	9.82 649	14	9.95 622	26	0.04 378	9.87 028	11	53	IO 4.3
8	9.82 663	14	9.95 647	25	0.04 353	9.87 016	12	52	20 8.7
9	9.82 677	14	9.95 672	- 26	0.04 328	9.87 005	12	51	30 I3. <b>0</b>
10	9.82 691	14	9.95 698	25	0.04 302	9.86 993	11	50	40 17.3
11	9.82 705	14	9.95 723	25	0.04 277	9 80 982	12	49	50 21.7
12	0.82 733	14	9.95 740	26	0.01 226	0.86 050	71	40	
14	9.82 747	14	9 95 799	25	0.04 201	9 86 947	12	46	1 25
15	9.82 761	14	9.95 825	20	0.04 175	9.86 936	11	45	6 2.5
ığ	9.82 775	14	9 95 850	25	0.04 150	9 86 92.4	12	44	7 2.9
17	9.82 788	13	9 95 875	26	0.04 125	9.86 913	11	43	8 3.3
18	9.82 802	14	9 95 901	25	0.04 099	9 80 902	12	42	9 3.8
-19	9.02 010	14	9.95 920	26	0.04 0/4	9 85 890	11	41	20 8.3
21	9.62 630	14	9.95 952	25	0.04 048	0.86 867	12	20	30 12 5
22	0.82 858	14	9.96 002	25	0.03 008	9.86 855	12	38	40 16.7
23	9.82 872	14	9.96 028	26	0 03 972	9 86 844	*1	37	50 20.8
24	9.82 885	13	9.96 053	25	0.03 9.17	9 86 832	12	36	
25	9.82 899		9.96 078	-5	0.03 922	9 86 821		35	
26	9.82 913	14	9.96 104	25	0.03 896	9.86 809	12	34	14
27	9.82 927	14	9.90 129	26	0.03 871	9.80 798	12	33	0 1.4
20	0.82 053	14	0.06 180	25	0.03 820	0.86 775	11	32	8 1.0
30	0.82.068	13	0.06.205	25	0.03 705	0.86 762	12	30	9 2.1
31	9.82 982	14	9.96 231	26	0.03 769	9 86 752	11	20	10 2.3
32	9.82 996	14	9.96 256	25	0.03 744	9.86 740	12	28	20 4.7
33	9.83 010	14	9.96 281	25	0.03 719	9.86 728	12	27	30 7.0
34	9.83 023	14	9.96 307	25	0 03 693	9.86 717	12	20	50 11.7
35	9.83 037	14	9.96 332	25	0.03 668	9 86 705	11	25	5.17
30	9.03 051	14	9.90 357	26	0.03 043	0.86 682	12	24	
38	9.83 078	13	9.96 408	25	0.03 592	9.86 670	12	22	13
39	9.83 092	14	9.96 433	25	0.03 567	9 86 659	11	21	6 1.3
40	9.83 106	14	9.96 459	20	0.03 541	9.86 6.47	12	20	7 1.5
4 <b>I</b>	9.83 120	14	9 96 484	25	0.03 516	9.86 635	12	19	0 1.7 0 20
42	9.83 133	14	9.90 510	25	0.03 490	9 80 624	12	18	10 2.2
43	9.03 147 0.83 Th	14	0.06 535	25	0.03 405	9.86 600	12	16	20 4.3
	0 82 174	13	0.06 586	26	0.02 414	0.86 580	11	TE	30 6.5
45 46	0.83 188	14	0.06 611	25	0.03 380	9.86 577	12	14	40 8.7
47	9.83 202	14	9.96 636	25	0.03 364	9.86 565	12	13	50   10.8
48	9.83 215	13	9.96 662	20	0.03 338	9.86 554	11	12	
49	9.83 229	14	9.96 687	25	0.03 313	9 86 542	12	11	1 12 1 11
50	9.83 242	14	9.96 712	26	0.03 288	9.86 530	12	10	6 1.2 1.1
51	9.83 250	14	9.90 738	25	0.03 202	9.80 518	11	8	7 1.4 1.3
52	9.83 283	13	9.96 788	25	0.03 212	9.86 405	12	7	8 1.6 1.3
55	9.83 297	<b>14</b>	9.96 814	26	0.03 186	9.86 483	12	6	9 1.8 1.7
55	9.83 310	13	9.96 830	25	0.03 161	9.86 472	11	5	10 2.0 1.8
56	9.83 324	14	9.96 864	25	0.03 136	9.86 460	12	4	30 6.0 5.5
57	9.83 338	14	9.96 890	20	0.03 110	9 86 448	12	3	40 8.0 7.3
58	9.83 351	14	9.90 915	25	0.03 085	9.80 430	11	2	50 10.0 9.2
59 80	9.03 305	13	0.06.066	26	0.03.000	9.00 425	12	1	
	9.03 3/6		9.90 900		0.03 034	9 80 413		<b>—</b>	
	L. U08.	a.	L. Cotg.	c. d.	L. Tang.	L. Sin.	a.	1	Frop. Pts.

	00
-	0

-	-	
-63	-	-
_	_	

1	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.83 378		9.96 966		0.03 034	9.86 413		60	
I	9.83 392	14	9.96 991	25	0.03 009	9.86 401	12	59	
2	9.83 405	14	9.97 010	26	0.02 984	9.86 389	13	58	26
3	0.83 432	13	0.07 067	25	0.02 033	0.86 366	11	56	6 2.6
	0.83 446	14	0.07.002	25	0.02 008	0.86 35.1	12	55	7 3.0
ŏ	9.83 459	13	9.97 118	26	0.02 882	9 86 342	12	54	9 3.9
7	9.83 473	14	9.97 143	25	0.02 857	9.86 330	12	53	10 4.3
8	9.83 486	14	9.97 108	25	0.02 832	9 86 318	12	52	20 8.7
10	9.83 500	13	9.97 193	26	0 02 807	9.80 300	11	51	40 17.3
11	0.83 513	14	0.07 219	25	0.02 751	9.80 295 9.86 283	12	40	50 21.7
12	9 83 540	13	9.97 269	25	0.02 731	9.86 271	12	48	
13	9 83 554	14	9.97 295	20	0.02 705	9.86 259	19	47	
14	9.83 567	14	9 97 320	25	0.02 680	9 86 247	12		25
15	9.83 581	13	9 97 345	26	0.02 655	9.86 235	12	45	0 2.5
17	9.83 594	14	9.97 306	25	0.02 029	9.80 223	12	44	8 3.3
18	9.83 621	13	9 97 421	25	0.02 579	9.86 200		42	9 3.8
19	9.83 634	13	9 97 447	26	0.02 553	9.86 188	12	41	10 4.2
20	9 83 648	14	9.97 472	25	0.02 528	9.86 176	12	40	20 8.3
21	9.83 661	13	9 97 497	25	0 02 503	9.86 164	12	39	30 12.5 40 16.7
22	9.83 074	14	9.97 523	25	0.02 477	9.80 152	12	38	50 20.8
21	9.83 701	13	9.97 573	25	0.02 427	9.86 128	12	36	
25	9.83 715	14	9.97 598	25	0.02 402	9.86 116	12	35	
26	9.83 728	13	9 97 624	26	0 02 376	9.86 104	12	34	14
27	9.83 741	13	9 97 649	25	0.02 351	9 86 092	12	33	6 1.4
28	9.83 755	14	9 97 674	25	0.02 326	9.86 080	12	32	7 1.0
29	9.83 708	13	997 700	25	0.02 300	9 80 008	12	31	9 2.1
21	0.83 705	14	9.97 725	25	0.02 275	0.86 044	12	20	10 2.3
32	9.83 808	13	9.97 776	26	0.02 224	9 86 032	12	28	20 4.7
33	9.83 821	13	9.97 801	25	0.02 199	9 86 020	12	27	30 7.0
34	9.83 834	13	9.97 826	25	0.02 174	9 86 008	12	26	50 11.7
35	9.83 848	13	9.97 851	26	0 02 149	9.85 996	12	25	
30	9.83 874	13	9.97 077	25	0.02 123	9.05 904	12	24	
38	9.83 887	13	9 97 927	25	0.02 073	9.85 960	12	22	13
39	9.83 901	14	9 97 953	26	0.02 047	9.85 948	12	21	6 1.3
40	9.83 914	13	9 97 978	25	0.02 022	9.85 936	12	20	7 1.5
4 <b>I</b>	9.83 927	13	9.98 003	26	0.01 997	9.85 924	12	19	9 2.0
42	0.83 054	14	9 98 029	25	0.01 971	9.05 912	12	10	10 2.2
44	9 83 967	13	9 98 079	25	0 01 921	9.85 888	12	16	20 4.3
45	9.83 980	13	9.98 101	25	0.01 896	9.85 876	12	15	40 8.7
4Ğ	9.83 993	13	9 98 130	26	0 01 870	9 85 864	12	14	50 10.8
47	9.84 006	14	9 98 155	25	0.01 845	9.85 851	13	13	÷ .
48	9.04 020	13	9.98 180	26	0.01 820	9.05 839	12	12	
50	0.84.016	13	0.08 221	25	0.01 760	0 85 815	13	10	12 11
51	9.84 050	13	9.98 256	25	0.01 744	9.85 802	12	10	6 1.2 1.1
52	9.84 072	13	9 98 281	25	0.01 719	9.85 791	12	8	7 1.4 1.3
53	9.84 085	13	9.98 307	20	0.01 693	9.85 779	12	7	9 1.8 1.7
54	9.84 098	14	9.98 332	25	0.01 008	9.85 766	12		10 2.0 1.8
55	9.84 112	13	9.98 357	26	0.01 643	9.85 754	12	5	20 4.0 3.7
50	9 04 125 0.84 T28	13	9.98 383 9.98 408	25	0.01 017	9.85 742	12	4	30 0.0 5.5
58	9.84 151	13	9 98 433	25	0.01 567	9.85 718	13	2	50 10.0 9.2
59	9.84 164	13 13	9.98 458	25 26	0.01 542	9.85 706	12	I	
60	9.84 177	-•	9.98 484		0.01 516	9.85 693		0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	,	Prop. Pts.
**44°** 

,	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.84 177		9.98 484		0. <b>01</b> 516	9.85 693		60	
, т	9.84 190	13	9.98 509	25	0.01 491	9.85 681	12	59	
2	9.84 203	13	9 98 534	26	0.01 400	9.85 009	12	58	26
3	9 84 229	13	9 98 585	25	0.01 415	985645	12	56	0 2.0
5	9.84 242	13	9 98 610	25	0 01 300	9.85 632	13	55	8 3.5
ŏ	9.84 255	13	9 98 635	25	0.01 363	9.85 620	12	54	9 3.9
7	9,84 269	14	9 98 661	20	0.01 339	9.85 608	12	53	10 4.3
×	9.84 282	13	9.98 686	25	0.01 314	9.85 596	13	52	20 8.7
10	9.04 295	13	990 /11	26	0.01 209	9 05 503	12	50	40 17.3
11	0.84 321	13	0 08 762	25	0.01 238	0.85 550	12	40	50 21.7
12	9 84 334	13	9.98 787	25	0.01 213	9 85 547	12	48	
13	9 84 347	13	9.98 812	25	0.01 188	9.85 534	13	47	
14	9.84 300	13	9.98 838	25	0 01 102	9.85 522	12	40	25
15	9.84 373	12	9 98 803	25	001 137	9.85 510	13	45	0 2.5
17	9.84 305	13	9 98 888	25	0.01 087	9 05 497	12	44	8 3.3
18	9.84 411	13	9 98 939	26	0 01 061	9 85 473	12	42	9 3.8
19	9 84 424	13	9 98 964	25	0 01 036	9 85 460	13	41	10 4.2
20	9 84 437	1 j 1 j	9 98 989	25	0 01 011	9 85 448	12	40	20 8.3
21	9.84 450	13	9 99 015	25	0 00 985	9 85 436	13	39	40 16.7
22	9 64 403	13	0 00 065	25	0.00 000	9.05 423	21	30	50 20.8
24	9.84 489	13	9 99 005	25	0.00 910	9.85 399	12	36	
25	9.84 502	13	9 99 116	26	0 00 884	9.85 386	13	35	
аŏ	9.84 515	13	9.99 141	25	0.00 859	9 85 374	12	34	14
27	9.84 528	13	9 99 166	25	0.00 834	9.85 361	13	33	0 1.4
28	9.84 540	13	9 99 191	26	0.00 809	9 85 349	12	32	8 1.0
30	9.04 553	13	9 99 217	25	0.00 753	9 05 337	13	30	9 2.1
31	9.84 579	13	9 99 242	25	0.00 733	9 85 324	12	29	10 2.3
32	9 84 592	13	9.99 293	26	0 00 707	9.85 299	13	28	20 4.7
33	9.84 603	13	9 99 318	25	0.00 682	9.85 287	12	27	40 03
34	9.84 618	12	9 99 343	25	0 00 057	9 85 274	12	20	50 11.7
35	9.84 630	13	9 99 368	26	0 00 632	985 262	12	25	
37	0.81 656	¥3	9 99 394	25	0.00 581	0.85 237	13	23	
38	9 84 669	13	9 99 441	25	0 00 556	9.85 225	12	22	13
39	9.84 682	13	9 99 469	25 26	0 00 531	9 85 212	13	21	6 1.3
40	9.84 694	12	9 99 493	20	0.00 505	9.85 200	12	20	8 1.7
41	9.84 707	13	9.99 520	25	0.00 480	9 85 187	12	19	9 2.0
42	0 84 733	13	9 99 545	25	0.00 455	9.05 175	13	17	10 2.2
44	9.84 745	12	9 99 596	26	0.00 404	9 85 130	12	16	20 4.3
45	9.84 758	13	9 99 621	25	0 00 379	9 85 137	13	15	40 87
46	9.84 771	13	9 99 646	25 26	0.00 354	9 85 125	12	14	50 10.8
47	9.84 784	12	9 99 672	25	0.00 328	985112	13	13	-
40	9.84 800	13	9.99 097	25	0.00 278	9.85 100	13	12	
50	0.84 822	13	0.00 747	25	0.00 252	0.85.074	13	10	12
51	9.84 835	13	9 99 773	26	0.00 227	9 85 062	12	9	6 1.2
52	9.84 847	12	9 99 798	25	0.00 202	9 85 049	13	8	7 1.4
53	9.84 860	13	9.99 823	25	0.00 177	9.85 037	12	7	9 1.8
54	9.84 873	12	9.99 848	26	0.00 152	9 85 024	12		10 2.0
55 56	9 54 885	13	9 99 874	25	0.00 120	9 85 012	13	5	20 4.0
57	9.84 911	13	9 99 924	25	0.00 076	9.84 999	13	3	30 0.0 '
58	9.84 923	12	9.99 949	25	0.00 051	9 84 974	12	2	50 10.0
59	9.84 936	13	9.99 975	20 25	0.00 025	9.84 961	13 12	I	<b>3 a b b b b b b b b b b</b>
60	9.84 949		0.00 000	-	0.00 000	9.84 949		0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	1	Prop. Pts.

## TABLE III.

# NATURAL

SINES, COSINES, TANGENTS, AND COTANGENTS.

•	'	N. Sin.	N. Tan.	N. Cot.	N. Cos.		• /	<b>N. S</b> in.	N. Tan.	N. Cot.	N. Cos.	
0	0	.00 000	.00 000	Infinity.	Unity.	9 <b>0</b> o	2 30	.04 362	.04 366	22.904	.99 903	87 30
	5	145	145	687.55		55	35	507	512	22.164	898	25
	IO	291	291	343 77		50	40	653	658	21.470	892	20
	15	436	436	229.18	.99 999	45	45	798	803	20.819	885	15
	20	582	582	171.89	998	-40	50	.04 943	.04 949	20,206	878	10
	25	727	727	137.51	997	35	55	.05 088	.o5 093	19.627	870	5
	30	00 873	.00 873	114.59	.99 996	30	<b>3</b> o	.05 234	.05 241	19.081	.99 863	87 o
	35	810 IO.	01 018	98.218	995	25	5	379	387	18.564	855	55
	40	164	164	85.940	993	20	10	524	533	18 075	847	50
	45	309	309	76.390	991	15	15	669	678	17.611	839	45
	50	454	455	68 750	989	10	20	814	824	17.169	831	40
	55	000	600	02 499	987	5	25	.05 960	.05 970	16.750	822	35
1	0	.01 745	.01 746	57.290	.99 983	89 o	30	.06 103	.06 116	16.350	.99 813	30
	5	.01 891	108 10.	52 882	982	55	35	250	262	15.969	804	25
	10	.02 036	02 036	49.104	979	50	40	395	408	.605	795	20
	15	181	182	45.829	976	45	45	540	554	15 257	786	15
	20	327	328	42.964	973	40	50	685	700	14.924	776	10
	25	472	473	40.430	969	35	55	831	847	.606	760	5
	30	.02 618	.02 619	38.188	.99 966	30	<b>4</b> o	.06 976	.06 993	14.301	.99 756	86 o
	35	763	764	36.178	962	25	5	.07 121	.07 139	14.008	746	55
	40	.02 908	.02 910	34 368	958	20	10	266	285	13.727	736	50
	45	.03 054	.03 055	32.730	953	15	15	411	431	·457	725	45
	50	199	201	31.242	949	10	20	556	578	13.197	714	40
	55	345		29.882	944	5	25	701	724	12.947	703	35
2	0	.03 490	.03 492	28.636	.99 939	<b>88</b> o	30	.07 846	.07 870	12.706	.99 692	30
	5	635	638	27.490	934	55	35	.07 991	.08 017	•474	680	25
	10	781	783	26.432	929	50	40	.08 136	163	.251	668	20
	15	.03 926	.03 929	25.452	923	45	45	281	309	12.035	657	15
	20	.04 071	.04 <b>07</b> 3	24.542	917	40	50	426	456	11.826	644	10
	25	217	220	23.695	911	35	55	571	602	.623	632	5
8	30	.04 362	.04 366	22 904	.99 903	87 30	5 o	.08 716	.08 749	11.430	.99 619	85 o
		N. Cos.	N. Cot.	N. Tan.	N. 81n.	01		N. Cos.	N. Cot.	N. Tan.	N. Sin.	• /

278											
• /	N. Sin.	N. Tan	N. Cot.	N. Cos.		• /	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
5 0	.08 716	.08 749	11.430	.99 619	<b>85</b> o	10 o	.77 365	.17 633	5.6713	.98 481	80 o
5	.08 860	.08 895	.242	607	55	5	508	783	.6234	455	55
10	.09 005	.09 042	11.059	594	50	10	651	17 933	.5704	430	50
20	295	335	.712	567	40	20	.17 937	233	.4845	378	40
25	440	482	.546	553	35	25	.18 081	384	.4397	352	35
30	.09 585	.09 629	10.385	.99 540	30	30	.18 224	.18 534	5.3955	.98 325	30
35	729	775	.229	526	25	35	367	684	.3521	299	25
40	.10 010	10 060	0.0310	407	15	40	652	18 086	.3093	2/2	15
50	164	216	.7882	482	10	50	795	.19 136	.2257	218	10
55	308	363	.6493	467	5	55	. 28 4 - 8	287	.1848	190	5
6 0	.10 453	.10 510	9.5144	.99 452	<b>84</b> o	11 o	.19 051	.19 438	5 1446	.98 163	<b>79</b> o
5	597	807	.3831	437	55	5	224	589	.1049	135	55
15	.10 887	.10 952	.1300	406	45	15	500	.19 891	5.0273	079	45
20	.11 031	.11 099	9.0098	390	40	20	652	.20 042	4 9894	050	40
25	176	246	8.8919	374	35	25	794	194	.9520	.98 021	35
30	.11 320	.11 394	8.7769	.99 357	30	30	.19 937	.20 345	4 9152	.97 992	30
35	405	688	.5555	341	25	35	.20 0/9	497	.0700	903	25
45	754	836	.4490	307	15	45	364	800	.8077	905	15
50	.11 898	.11 983	·3450	290	10	50	507	20 952	.7729	875	IO
55	.12 043	.12 131	.2434	272	5	55	649	.21 104	.7385	845	5
7 0	.12 187	.12 278	8.1443	.99 255	88 0	12 0	.20 791	.21 256	4.7040	.97 815	78 0
10	476	571	7 0530	237	50	10	.20 933	560	.6382	704	50
15	620	722	.8606	200	45	15	218	712	.6057	723	45
20	764	.12 869	.7704	182	-40	20	360	.21 864	.5736	692	40
25	.12 908	.13 017	.0821	163	35	25	502	.22 017	.5420	601	35
30	.13 053	.13 105	7.5958	.99 144	30	30	.21 644	.22 169	4 5107	97 630	30
33	341	461	.4287	125	20	35 40	21 928	475	.4799	596	20
45	485	609	.3479	087	15	45	.22 070	628	.4194	534	15
50	629	758	.2687	067	10	50	212	781	.3897	502	10
55	773	13 900	.1912	047	<u>5</u>	55	353	.22 934	.3004	470	5
0 0	13 917	.14 054	7.0410	99 027	020	100	.22 495	.23 087	4.3315	.97 437	11 0
10	205	351	6,9682	98 986	50	10	778	393	.2747	371	50
15	349	499	.8969	965	45	15	.22 920	547	.2468	338	45
20	493	648	.8209	944	40	20	.23 062	700	.2193	304	40
- 25	71 797	790	6 6070	923		23	203	.23 054	.1922		- 33
30	.14 781	.14 945	.6252	.96 902	25	30	·23 345 486	162	.1388	203	25
40	.15 069	243	.5606	858	20	40	627	316	.1126	169	20
45	212	391	.4971	836	15	45	769	470	.0867	134	15
50	350	540 680	.4348	814	10	50	.23 910	024	,0011	100	10
9 0	.15 6.13	.15 838	6.3138	.08 760	81 0	14 0	.24 102	.24 033	4.0108	.07 030	76 0
5	787	.15 988	.2549	746	55	5	333	.25 087	3.9861	.96 994	55
10	.15 931	.16 137	.1970	723	50	IO	474	242	.9617	959	50
15	10 074	286	.1402	700	45	15	615	397	.9375	923	45
20	361	435	6.0206	652	40	20	.24 807	552 707	.9130	851	40
30	.16 507	.16 734	5.9758	.98 620	30	30	.25 038	.25 862	3.8667	.06 813	30
35	648	.16 884	.9228	604	25	35	179	.26 017	.8436	778	25
40	792	17 033	.8708	580	20	40	320	172	.8208	742	20
45	.10 935	183	.8197	550	15	45	400	328	.7983	705 667	15
55	222	483	.7199	506	5	55	741	639	.7539	630	5
10 0	.17 363	.17 633	5.6713	.98 481	<b>80</b> o	15 o	.25 882	.26 795	3.7321	.96 <b>59</b> 3	75 0
	N. Cos.	N. Cot.	N. Tan.	N Sin.	• /		N. Cos.	N. Cot.	N. Tan.	N. Sin.	• /

0/	N. Sin.	N. Tan.	N. Cot.	N. Cos.		• /	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
15 o	.25 882	.26 793	3.7321	.96 593	75 o	<b>20</b> o	.34 202	.36 397	2.7475	.93 969	70 o
5	.26 022	.26 951	.7105	555	55	5	339	562	.7351	919	55
10	103	.27 107	.0891	517	50	10	475	727	.7228	869	50
20	443	410	.6470	4/9	45 40	20	718	.30 092	.6085	760	45 40
25	584	576	.6264	402	35	25	.34 884	223	.6865	718	35
30	.26 724	.27 732	3 6059	.90 363	- 30	30	.35 021	.37 388	2.6746	.93 667	30
35	.26 864	.27 889	.5856	324	25	35	157	554	.6628	616	25
40	.27 00.4	.28 040	.5050	285	20	40	293	720	.0511	505	20
45 50	234	360	.5261	206	10	45 50	565	.38 053	.6279	462	10
55	421	517	.5067	166	5	55	701	220	.6165	410	5
16 o	.27 564	.28 675	3.4874	.96 126	7 <b>4</b> o	<b>21</b> o	.35 837	.38 386	2.6051	.93 358	<b>69</b> o
5	704	28 000	.4084	080	55	5	·35 973	553	.5938	306	55
15	27 983	.20 147	.4495	.06 003	45	15	214	.38 888	.5715	253 201	45
20	.28 123	305	.4124	.95 964	40	20	379	.39 055	.5605	148	40
25	262	463	.3941	923	35	25	515	223	.5495	<u> </u>	35
30	28 402	.29 621	3.3759	.95 882	30	30	.36 650	.39 391	2.5386	.93 042	30
35	680	.20 038	.3500	700	20	35	26 021	559	.5279	.92 900	¥5 20
45	820	.30 097	.3226	757	15	45	.37 056	.39 896	.5065	881	15
50	.28 959	<b>2</b> 55	.3052	715	10	50	191	.40 065	.4960	827	10
55	.29 098	414	.2879	673	5	55	320	234	.4855	773	5
11 0	.29 237	.30 573	3.2709	.95 630	730	22 0	.37 401	.40 403	2.4751	.92 718	680
10	515	.30 891	.2371	545	50	10	730	741	.4545	609	50
15	654	.31 051	.2205	502	45	15	865	.40 911	.4443	554	45
20	793	210	.2041	459	40	20	.37 999	.41 081	.4342	499	40
25	.29 932	370	.1070	415	$-\frac{35}{35}$	25	30 134	251	.4242	444	35
30	200	600	.1556	·95 372 328	25	30	.30 200	.41 421	.4043	.92 300	25
40	348	.31 8 <del>5</del> 0	.1397	28.4	20	40	537	763	-3945	276	20
45	486	.32 010	.1240	240	15	45	671	.41 933	.3847	220	15
50	762	221	.1084	195	10	50	28 020	.42 105	.3750	104	10
18 o	.10 002	.32 402	3.0777	05 106	72 0	23 o	.30 073	.42 447	2.3550	.02 050	67 o
5	.31 040	653	.0625	061	55	5	207	619	.3464	.91 994	55
10	178	814	.0475	95 015	50	10	341	791	.3369	936	50
15	310	-32 975	.0320	94 970	45	15	474	.42 903	.3270	879	45
25	593	298	3.0032	878	35	25	741	308	.3090	764	35
30	.31 730	33 460	2 9887	.94 832	30	30	.39 875	.43 481	2.2998	.91 706	30
35	.31 868	621	.9743	786	25	35	.40 008	654	.2907	648	25
40	.32 006	783	.9000	740	20	40	141	.43 828	.2817	590	20
45	282	·33 945 .34 108	.9459	646	10	45	2/3 408	.44 001	.2637	531 472	10
55	419	270	.9180	599	5	55	541	349	.2549	414	5
<b>19</b> o	.32 557	·34 433	2.9042	·94 552	71 o	24 o	.40 674	·44 523	2.2460	.91 355	66 o
5	694	596	.8905	504	55	5	806	697	.2373	295	55
10	32 060	758	.8770	457	50 ⊿r	10	.40 939	.44 872	,2280	230	50
20	.33 106	.35 085	.8502	361	40	20	204	222	.2113	116	40
25	244	248	.8370	313	35	25	337	397	.2028	91 056	35
30	·33 381	35 412	2.8239	.94 264	30	30	.41 469	•45 573	2.1943	.90 996	30
35	518	576	.8109	215	25	35	602	748	.1859	936	25
40	792	.35 904	.7852	107	15	40	866	.45 924 .46 IOI	1602	814	15
50	.33 929	.36 068	.7725	o68	10	50	.41 998	277	.1609	753	IO
55	.34 065	232	.7600	.94 019	5	55	.42 130	454	.1527	692	5
<b>90</b> o	.34 202	.36 397	2.7475	.93 <b>9</b> 69	<b>70</b> o	<b>25</b> o	.42 262	.46 631	2.1445	.90 631	65 o
	N. Cos.	N. Cot.	N. Tan.	N. Sin.	01		N. Cos.	N. Cot.	N. Tan.	N. Sin.	• /

• /	N. Sin.	N. Tan.	N. Cot.	N. Cos.		• /	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
25 o	.42 262	.46 631	2.1445	.90 631	65 o	80 o	50 000	.57 735	1.7321	.86 603	60 o
5	394	808	.1364	569	55	5	126	.57 929	.7262	530	55
10	525 657	.40 985	.1263	507 446	50 45	10	252	318	.7205	457	45
20	788	341	.1123	383	40	20	503	513	.7090	310	40
25	.42 920	519	.1044	321	35	25	628	709	.7033	237	35
30	.43 051	.47 698	2.0965	.90 259	30	30	754	.58 905	1.6977	.86 163	30
40	313	.48 055	.0800	133	20	40	.51 004	297	.6864	.86 015	20
45	445	234	.0732	070	15	45	129	494	.6808	.85 941	15
50 55	575	414	.0055	.90 007	10	50	254 370	50 888	.6608	800 702	10
26 o	43 837	.48 273	2.0503	80 870	84 o	31 o	.51 504	.60 086	1.6643	.85 717	59 o
5	.43 968	.48 953	.0428	816	55	5	628	284	.6588	642	55
10	.44 098	.49 134	.0353	752	50	10	753	483	.6534	567	50
20	350	405	.0276	623	45 40	20	.51 077	.60 881	.6479	491	45
25	490	677	.0130	558	35	25	126	.61 080	.6372	340	35
30	.44 620	49 858	2.0057	.89 493	30	30	.52 230	.61 280	1.6319	.85 264	30
35	750	.50 040	1.9984	428	25	35	374	480	.6205	188	25
45	.45 010	404	.9912	298	15	45	621	.61 882	.6160	.85 035	15
50	140	587	.9768	232	10	50	745	.62 083	.6107	.84 959	10
55	269	769	.9697	167	5	55	869	285	.6055	882	5
2010	45 399	.50 953	1.9020	.89 IOI 80 025	55	320	.52 992	.02 487	1.0003	.84 805	00 0
10	658	319	.9486	.88 968	50	10	238	.62 892	.5900	650	50
15	787	503	.9416	902	45	15	361	.63 095	.5849	573	45
20	.45 917	088 ET 872	·9347	835	40 25	20	484	299	.5798	495	40
30	46 173	.52 057	1 0210	.88 701	30	30	.53 730	.63 707	1.5607	.84 330	30
35	304	242	.9142	634	25	35	853	.63 912	.5647	261	25
40	433	427	.9074	566	20	40	·53 975	.64 117	-5597	182	20
45	600	708	.9007	499	15	45	.54 097	528	-5547	.84 025	15
55	819	.52 985	.8873	363	5	55	342	734	.5448	.83 946	5
28 o	.46 947	.53 171	1.8807	.88 295	62 o	<b>33</b> o	.54 464	.64 941	1.5399	.83 867	57 o
5	.47 076	358	.8741	226	55	5	586	.65 148	,5350	788	55
15	332	732	.8611	089	45	15	829	563	.5253	629	45
20	460	.53 920	.8546	.88 020	40	20	.54 95í	771	.5204	549	40
25	588	.54 107	.8482	.87 951	35	25	.55 072	.65 980	.5156	469	35
30	47 710	.54 290	1.8418	.87 882 812	30	30	.55 194	.66 189	1.5108	.83 389	30
'40	.47 971	673	.8291	743	20 20	40	436	608	.5013	228	20
45	48 099	.54 862	.8228	673	15	45	557	.66 818	.4966	147	15
50	220	.55 051	.8105	503 522	10	50	678	.07 028	.4919	82 085	10
29 o	181 81	.55 431	1.8040	87 462	61 0	34 o	799	67 451	T.4826	.82 004	58 0
5	608	621	.7979	391	55	5	.56 040	663	.4779	822	55
10	735	.55 812	.7917	321	50	10	160	.67 875	.4733	741	50
15 20	.48 080	.50 003	.7850	250 178	45 ⊿0	15 20	280 401	108 088	.4087	577	45
25	.49 116	385	.7735	107	35	25	521	514	.4596	495	35
30	.49 242	.56 577	1.7675	.87 036	30	30	641	.68 728	1.4550	.82 413	30
35	369	769	.7615	.86 964	25	35	760	.68 942	.4505	330	25
40	495 622	.50 902 .57 IST	.7550	892 820	20 15	40	.50 880	.09 157	.4400 .4417	248 16ਵ	20
50	748	348	.7437	748	10	50	119	588	.4370	.82 082	10
55	.49 874	541	.7379	675	5	55	238	.69 804	.4326	.81 999	5
<b>80</b> o	.50 000	•57 735	1.7321	.86 <b>60</b> 3	60 o	35 o	<b>.5</b> 7 358	.70 021	1.4281	.81 915	55 o
	N. Cos.	N. Cot.	N. Tan.	<b>N. Sin.</b>	01		N. Cos.	N. Cot.	N. Tan.	N. Sin.	01

									-		281
• /	<b>N. S</b> in.	N. Tan.	N. Cot.	N. Cos.		• /	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
35 o	.57 358	.70 021	1.4281	.81 915	55 o	<b>40</b> o	.64 279	.83 910	1.1918	.76 604	50 o
5	477	238	.4237	832	55	5	390	.84 158	.1882	511	55
10	590 717	455	4193	748	50		501	407	.1847	417	50
20	833	.70 891	.4106	580	40	20	723	.84 906	.1778	220	43
25	.57 952	.71 110	.4063	496	35	25	834	.85 157	1743	135	35
30	.58 070	.71 329	1.4019	.81 412	30	30	.64 945	.85 408	1.1708	.76 041	30
35	189	549	.3976	327	25	35	.65 055	660	.1674	.75 946	25
40	425	71 000	.3934	242 157	15	40	276	.86 166	.1640	756	15
50	543	.72 211	.3848	.81 072	10	50	386	419	.1571	661	10
55	661	432	.3806	.80 987	5	55	496	674	.1538	566	5
<b>36</b> o	.58 779	.72 654	1.3764	.80 902	<b>54</b> o	<b>41</b> o	.65 606	.86 929	1.1504	.75 471	<b>49</b> o
5	.58 890	72 077	2680	720	55	5	710 825	.87 184	.1470	375	55
15	131	323	.3638	644	45	15	.65 935	698	.1403	184	45
20	248	547	.3597	558	40	20	.66 044	.87 955	.1369	.75 088	40
25	365	771	3555	472	35	25	153	.88 214	.1336	.74 992	35
30	.59 482	.73 996	1 3514	.80 386	30	30	.00 202	.88 473	1.1303	.74 896	30
35	599	4 221	.3473	299	20 20	35	480	.88 002	.1270	799	20
45	832	67+	.3392	125	15	45	588	.89 253	.1204	606	15
50	.59 949	.74 900	.3351	.80 038	10	50	697	515	.1171	509	10
55	.60 065	.75 128	.3311	-79 951	5	55	805	.89 777	.1139	412	5
810	00 182	.75 355	1.3270	.79 804	030	420	67 001	.90 040	1.1100	.74 314	400
10	414	.75 812	.3190	688	50	10	129	569	.1041	120	50
15	529	76 042	.3151	600	45	15	237	.90 834	.1009	.74 022	45
20	645	272	.3111	512	40	20	344	.91 099	.0977	.73 924	40
		502	1 2020	424	35	25	452	300	1.0945	72 708	35
30	.60 001	.76 061	.2003	·79 335 247	25	30	666	.91 033	.0881	./3 /20	25
40	.61 107	.77 196	.2954	158	20	40	773	.92 170	.0850	531	20
45	222	428	.2915	.79 069	15	45	880	439	.0818	432	15
50	337	77 805	.2870	.78 980 801	10	50	68 002	709	.0780	333	10
38 o	61 566	.78 120	1.2700	78 801	52 0	43 0	.68 200	.03 252	1.0724	-34	47 0
5	681	363	.2761	711	55	5	306	524	.0692	.73 036	55
10	795	598	.2723	622	50	10	412	.93 797	.0661	.72 937	50
15	.61 909	.78 834	.2085	532	45	15	518	.94 071	.0030	837	45
25	138	306	.2600	44# 351	35	25	730	620	.0569	637	35
30	.62 251	.79 544	1.2572	.78 261	30	- 30	.68 835	.94 896	1.0538	.72 537	30
35	365	.79 781	·2534	170	25	35	.68 941	.95 173	.0507	437	25
40	479	.80 020	.2497	.78 079	20	40	.69 046	451	.0477	337	20
45	706	∞50 408	.2400	807	15 I0	45	256	06 008	.0440	130	15
55	819	738	.2386	806	5	55	361	288	.0385	.72 035	5
89 o	.62 932	.80 978	1.2349	.77 715	<b>51</b> o	44 o	.69 466	.96 569	1.0355	.71 934	<b>46</b> o
5	.63 045	.81 220	.2312	623	55	5	570	.96 850	.0325	833	55
	158	401	.2270	531	50 4 E	10	075	1.97 133	.0295	732	50
20	383	.81 946	.2203	439	40	20	883	700	.0235	529	40
25	496	.82 190	.2167	255	35	25	.69 987	.97 984	.0206	427	35
30	.63 608	.82 434	1.2131	.77 162	30	30	.70 091	.98 270	1.0176	.71 325	30
35	720	678	.2095	.77 070	25	35	195	556	.0147	223	25
40 45	.63 044	.82 923	.2059	884	20	40 4	298 401	.90 043	.0088	.71 010	20
50	.64 056	415	.1988	791	10	50	505	420	.0058	.70 916	10
55	167	662	.1953	698	5	55	608	.99 710	.0029	813	5
<b>40</b> o	.64 279	.83 910	1.1918	.76 604	50 o	45 o	.70 711	1.00 000	1.0000	.70 711	45 o
	N. Cos.	N. Cot	N. Tan.	N. Sin.	01		N. Cos.	N. Cot.	N. Tan.	N. Sin.	01

Age x	Number Living <i>l</i> x	Num- ber of Deaths d _x	Yearly Probabil- ity of Dying <i>qx</i>	Yearly Probabil- ity of Living <i>Px</i>	Age x	Number Living <i>l</i> x	Num- ber of Deaths $d_x$	Yearly Probabil- ity of Dying qx	Yearly Probabil- ity of Living <i>Px</i>
10	100,000	749	0.007 490	0.992 510	53	66,797	1091	0.016 333	0.983 667
11	99,251	746	0.007 516	0.992 484	54	65,706	1143	0.017 396	0.982 604
12	98,505	743	0.007 543	0.992 457	55	64,563	1199	0.018 571	0.981 429
13	97,762	740	0.007 569	0.992 431	56	63,364	1260	0.019 885	0.980 115
14	97,022	737	0.007 596	0.992 404	57	62,104	1325	0.021 335	0.978 665
15	96,285	735	0.007 634	0.992 366	58	60,779	1394	0.022 936	0.977 064
16	95,550	732	0.007 661	0.992 339	59	59,385	1468	0.024 720	0.975 280
17	94,818	729	0.007 688	0.992 312	60	57,917	1546	0.026 693	0.973 307
18	94,089	727	0.007 727	0.992 273	61	56,371	1628	0.028 880	0.971 120
19	93,362	725	0.007 765	0.992 235	62	54,743	1713	0.031 292	0.968 708
20	92,637	723	0.007 805	0.992 195	63	53,030	1800	0.033 943	0.966 057
21	91,914	722	0.007 855	0.992 145	64	51,230	1889	0.036 873	0.963 127
22	91,192	721	0.007 906	0.992 094	65	49,341	1980	0.040 129	0.959 871
23	90,471	720	0.007 958	0.992 042	66	47,361	2070	0.043 707	0.956 293
24	89,751	719	0.008 01 1	0.991 989	67	45,291	2158	0.047 647	0.952 353
25 26 27 28 29	89,032 88,314 87,596 86,878 86,160	718 718 718 718 718 719	0.008 065 0.008 130 0.008 197 0.008 264 0.008 345	0.991 935 0.991 870 0.991 803 0.991 736 0.991 655	68 69 70 71 72	43,133 40,890 38,569 36,178 33,730	2243 2321 2391 2448 2487	0.052 002 0.056 762 0.061 993 0.067 665 0.073 733	0.947 998 0.943 238 0.938 007 0.932 335 0.926 267
30	85,441	720	0.008 427	0.991 573	73	31,243	2505	0.080 178	0.919 822
31	84,721	721	0.008 510	0.991 490	74	28,738	2501	0.087 028	0.912 972
32	84,000	723	0.008 607	0.991 393	75	26,237	2476	0.094 371	0.905 629
33	83,277	726	0.008 718	0.991 282	76	23,761	2431	0.102 311	0.897 689
34	82,551	729	0.008 831	0.991 169	77	21,330	2369	0.111 064	0.888 936
35	81,822	732	0.008 946	0.991 054	78	18,961	2291	0.120 827	0.879 173
36	81,090	737	0.009 089	0.990 911	79	16,670	2196	0.131 734	0.868 266
37	80,353	742	0.009 234	0.990 766	80	14,474	2091	0.144 466	0.855 534
38	79,611	749	0.009 408	0.990 592	81	12,383	1964	0.158 605	0.841 395
39	78,862	756	0.009 586	0.990 414	82	10,419	1816	0.174 297	0.825 703
40	78,106	765	0.009 794	0.990 206	83	8,603	1648	0.191 561	0.808 439
41	77,341	774	0.010 008	0.989 992	84	6,955	1470	0.211 359	0.788 641
42	76,567	785	0.010 252	0.989 748	85	5,485	1292	0.235 552	0.764 448
43	75,782	797	0.010 517	0.989 483	86	4,193	1114	0.265 681	0.734 319
44	74,985	812	0.010 829	0.989 171	87	3,079	933	0.303 020	0.696 980
45	74,173	829	0.011 163	0.988 837	88	2,146	744	0.346 692	0.653 308
46	73,345	848	0.011 562	0.988 438	89	1,402	555	0.395 863	0.604 137
47	72,497	870	0.012 000	0.988 000	90	847	335	0.454 545	0.545 455
48	71,627	896	0.012 509	0.987 491	91	462	246	0.532 466	0.467 534
49	70,731	927	0.013 106	0.986 894	92	216	137	0.634 259	0.365 741
50	69,804	962	0.013 781	0.986 219	93	79	58	0.734 177	0.265 823
51	68,842	1011	0.014 541	0.995 459	94	21	13	0.857 143	0.142 857
52	67,841	1044	0.015 389	0.984 611	95	3	3	1.000 000	0.000 000

.

-						_
4.70						
x	$D_x$	N _x	$C_x$	M _x	$1 + a_x$	$A_x$
10	9,10807	1876 535.	\$13.02	17612.0	22.2245	0.24845
11	67081.5	1501 643.	497.69	17009.9	22.1331	0.25154
12	65189.0	1436 662.	475.08	16606.2	22.0384	0.25474
13	62509.4	1.371 473.	457.16	16131.1	21.9403	0.25806
14	59938.4	1303 963.	439.91	15674.0	21.8385	0.26151
15	57471.6	1249 025.	423.88	15234.1	21.7329	0.26508
16	55104.2	1191 553.	407.87	14810.2	21.6236	0.26877
17	52832.9	1136 449.	392.47	14402.3	21.5102	0.27261
18	50653.9	1033 010.	378.15	14009.8	21.3920	0.27059
19	48502.8	1032 902.	364.30	13031.7	21.2707	0.28071
20	46556.2	984 400.	351.07	13267.3	21.1443	0.28497
21	44030.0	937 043.	338.73	12910.3	21.0134	0.28940
22	42782.0	893 213.	320.82	12577.5	20.8779	0.29399
23	41009.2	850 430.	315-33	12250.7	20.73/5	0.290/3
24	39307.1	809 421.	304.24	11935.4	20.5922	0.30305
25	3767.3.6	770 113.	293.55	11631.1	20.4417	0.30873
26	36106.1	732 440.	283.62	11337.6	20.2858	0.31401
27	34601.5	696 334.	274.03	11054.0	20.1244	0.31947
28	33157.4	661 732.	264.70	10779.9	19.9573	0.32512
29	31771.3	628 575.	256.16	10515.2	19.7843	0.33097
30	30440.8	596 804.	247.85	10259.0	19.6054	0.33702
31	29163.5	566 363.	239.797	10011.2	19.4202	0.34328
32	27937.5	537 199.	232.331	9771.38	19.2286	0.34976
33	26760.5	509 262.	225.406	9539.04	19.0304	0.35646
34	25630.1	482 501.	218.683	9313.64	18.8256	0.36339
35	24544.7	456 871.	212.157	9094.96	18.6138	0.37055
36	23502.5	432 326.	206.383	8882.80	18.3949	0.37795
37	22501.4	408 824.	200.757	8676.42	18.1688	0.38560
38	21 5 39.7	386 323.	195.798	8475.66	17.9354	0.39349
39	20615.5	364 783.	190.945	8279.80	17.6940	0.40163
40	19727.4	344 167.	186.684	8088.92	17.4461	0.41003
41	18873.6	324 440.	182.493	7902.23	17.1901	0.41869
42	18052.9	305 566.	178.828	7719.74	16.9262	0.42762
43	17263.6	287 513.	175.421	7540.91	16.6543	0.43681
44	16504.4	270 250.	172.680	7365.49	16.3744	0.44628
45	15773.6	253 745.	170.127	7192.81	16.0867	0.45600
46	15070.0	237 972.	168.345	7022.68	15.7911	0.46600
47	14392.1	222 902.	166.872	6854.34	15.4878	0.47626
48	13738.5	208 510.	166.047	6687.47	15.1770	0.48677
49	13107.9	194 771.	165.983	6521.42	14.8591	0.49752
50	12498.6	181 663.	166.424	6355.44	14.5346	0.50849
51	11909.6	169 165.	167.316	6189.01	14.2041	0.51967
52	11339.5	157 252.	168.601	6021.70	13.8679	0.53104
	, I	1			1	ĺ
. 1	, ,	4 · · · · · · · · · · · · · · · · · · ·	4	· /	, ,	4 1

# TABLE V.—COMMUTATION COLUMNS, SINGLE PREMIUMS, AND ANNUITIES 283 Due, American Experience Table, 3¹/₂ Per Cent

Age						
x	$D_x$	$N_x$	$C_x$	$M_x$	$1 + a_x$	$A_x$
53	10787.4	145016.	170.234	\$853.10	13.5264	0.54258
33	10262 4	125128	172.217	1682.86	12.1801	0.55430
34	10232.4	139120.	1/2.31/	3002.00	13	0.33430
			6.6		- 9 8 2 0 6	2 166.11
55	9733.40	1248/0.	174.040	5510.54	12.0290	0.50015
50	9229.60	115142.	177.325	5335.90	12.4753	0.57813
57	8740.17	105912.8	180.168	5158.57	12.1179	0.59022
58	8264.44	97172.6	183.139	4978.40	11.7579	0.60239
59	7801.82	88908.2	186.340	4795.27	11.3958	0.61463
	·					
60	7351.65	81106.4	189.601	4608.93	11.0324	0.62692
ÅT	6012 44	79754.7	101 000	4410 32	10 6682	0 63024
6	6,96	44841 2	19-19-19-19	44.9.5~	10.0003	265155
02	0400.75	00041.3	190.117	4220.41	10.3043	0.05155
03	6071.27	60354.5	199.109	4030.30	9.9410	0.00383
64	5666.85	54283.3	201.887	3831.19	9.579I	0.67607
65	\$273.33	48616.4	204.457	3629.30	9.2193	0.68824
66	4890.55	A3343.I	206.522	3424.84	8.8626	0.70030
67	4518.65	28452.5	208.022	2218.32	8.5007	0.71223
63	4310.03	304320	208.002	2010.20	8 161 6	0.72401
60	415/.02	33933.9	200.903	3010.30	- 0.00	0.7240.
09	3808.32	29770.1	208.850	2001.40	7.0107	0.73500
••••••			0.0			
70	3470.67	25967.7	207.881	2592.54	7.4820	0.74698
71	3145.43	22497.1	205.639	2384.66	7.1523	0.75813
72	2833.42	19351.6	201.851	2179.02	6.8298	0.76904
72	2525.75	16518.2	106.136	1077.17	6.5141	0.77972
73	*333·/3	12082 5	190.401	1780 72	62046	0.70018
/4	4433.37	1 390 2.3	109.491	1/00.75	0.4040	0./9010
		*****	-0- 070		f 2001	a 900.18
75	1907.07	11728.9	101.255	1591.24	5.9002	0.80040
70	1739.39	9741.02	171.940	1409.99	5.6002	0.81002
77	1 508.63	8001.63	161.889	1238.05	5.3039	0.82064
78	1295.73	6493.00	151.2646	1076.158	5.0111	0.83054
79	1100.647	\$197.27	140.0891	024.894	4.7220	0.84032
- <u>``</u>		5-71 1				
80	022.228	1006 62	128 8801	784 805	4 4 2 6 8	0 84007
00	923.330	4090.02	120.0001	104.005	4.4,000	0.04997
01	703.234	3173.29	110.9500	055.924	4.15//	0.03940
82	620.405	2410.05	104.4881	5,38.900	3.8843	0.80805
83	494-995	1789.59	91.6152	434-478	3.6154	0.87774
84	386.641	1294.59	78.9565	342.862	3.3483	0.88677
85	204.610	007.05	67.0490	262.906	2.0819	0.89578
Ř6	217 608	612.24	11.8166	106.857	2.8187	0.00468
0.	21/.390	2013-34	55.0500	190.037	2,624	0.90400
8/	154.303	395./4	43.1992	141.000	2.50.54	0.91332
88	103.903	241.30	34.82420	95.0011	2.3210	0.92149
89	65.6231	137.398	25.09929	60.9768	2.0937	0.92920
90	38.3047	71.775	16.82244	35.8775	1.8738	0.93664
01	20.18692	33.4700	10.785393	19.05509	1.6580	0.94393
62	0.11888	12.2821	5.588150	8.66070	1.4567	0.05074
92	9.11000	13.203.	0.086484	2 08155	1 2012	0.9307
93	3.22230	4.10420	2.203404	3.00155	1.2923	0.95030
94	0.827611	0.94184	0.085393	0.79570	1.1380	0.90152
95	0.114232	0.114232	0.110369	0.110369	I.0000	0.96618
						-

## 284 TABLE V.-COMMUTATION COLUMNS, SINGLE PREMIUMS, AND ANNUITIES DUE, AMERICAN EXPERIENCE TABLE, 3¹/₂ PER CENT

TABLE VI.-AMOUNT OF I

 $s = (\mathbf{I} + i)^n$ 

n	1%	11%	2%	3%	72
1	1.0100 0000	1.0150 0000	1.0200 0000	1.0300 0000	1
2	1.0201 0000	1.0302 2500	1.0404 0000	1.0609 0000	2
3	1.0303 0100	1.0456 7838	1.0612 0800	1.0927 2700	3
4	1.0406 0401	1.0613 6355	1.0824 3216	1.1255 0881	4
5	1.0510 1005	1.0772 8400	1.1040 8080	1.1592 7407	5
6	1.0615 2015	1.0934 4326	1.1261 6242	1.1940 5230	6
7	1.0721 3535	1.1098 4491	1.1486 8567	1.2298 7387	7
8	1.0828 5671	1.1264 9259	1.1716 5938	1.2667 7008	8
9	1.0936 8527	1.1433 8998	1.1950 9257	1.3047 7318	9
10	1.1046 2213	1.1605 4083	1.2189 9442	1.3439 1638	10
11	1.1156 6835	1.1779 4894	1.2433 7431	1.3842 3387	11
12	1.1268 2503	1.1956 1817	1.2682 4179	1.4257 6089	12
13	1.1380 9328	1.2135 5244	1.2936 0663	1.4685 3371	13
14	1.1494 7421	1.2317 5573	1.3194 7876	1.5125 8972	14
15	1.1609 6896	1.2502 3207	1.3458 6834	1.5579 6742	15
16	1.1725 7864	1.2689 8555	1.3727 8571	1.6047 0644	16
17	1.1843 0443	1.2880 2033	1.4002 4142	1.6528 4763	17
18	1.1961 4748	1.3073 4064	1.4282 4625	1.7024 3306	18
19	1.2081 0895	1.3269 5075	1.4568 1117	1.7535 0605	19
20	1.2201 9004	1.3468 5501	1.4859 4740	1.8061 1123	20
21	1.2323 9194	1.3670 5783	1.5156 6634	1.8602 9457	21
22	1.2447 1586	1.3875 6370	1.5459 7967	1.9161 0341	22
23	1.2571 6302	1.4083 7715	1.5768 9926	1.9735 8651	23
24	1.2697 3465	1.4295 0281	1.6084 3725	2.0327 9411	24
25	1.2824 3200	1.4509 4535	1.6406 0599	2.0937 7793	25
26	1.2952 5631	I.4727 0953	1.6734 1811	2.1565 9127	26
27	1.3082 0888	I.4948 0018	1.7068 8648	2.2212 8901	27
28	1.3212 9097	I.5172 2218	1.7410 2421	2.2879 2768	28
29	1.3345 0388	I.5399 8051	1.7758 4469	2.3565 6551	29
30	1.3478 4892	I.5630 8022	1.8113 6158	2.4272 6247	30
31	1.3613 2740	1.5865 2642	1.8475 8882	2.5000 8035	31
32	1.3749 4068	1.6103 2432	1.8845 4059	2.5750 8276	32
33	1.3886 9009	1.6344 7918	1.9222 3140	2.6523 3524	33
34	1.4025 7699	1.6589 9637	1.9606 7603	2.7319 0530	34
35	1.4166 0276	1.6838 8132	1.9998 8955	2.8138 6245	35
36	I.4307 6878	1.7091 3954	2.0398 8734	2.8982 7833	36
37	I.4450 7647	1.7347 7663	2.0806 8509	2.9852 2668	37
38	I.4595 2724	1.7607 9828	2.1222 9879	3.0747 8348	38
39	I.474I 2251	1.7872 1025	2.1647 4477	3.1670 2698	39
40	I.4888 6373	1.8140 1841	2.2080 3966	3.2620 3779	40
41	1.5037 5237	1.8412 2868	2.2522 0046	3.3598 9893	41
42	1.5187 8989	1.8688 4712	2.2972 4447	3.4606 9589	42
43	1.5339 7779	1.8968 7982	2.3431 8936	3.5645 1677	43
44	1.5493 1757	1.9253 3302	2.3900 5314	3.6714 5227	44
45	1.5648 1075	1.9542 1301	2.4378 5421	3.7815 9584	45
46	1.5804 5885	1.9835 2621	2.4866 1129	3.8950 4372	46
47	1.5962 6344	2.0132 7910	2.5363 4351	4.0118 9503	47
48	1.6122 2608	2.0434 7829	2.5870 7039	4.1322 5188	48
49	1.6283 4834	2.0741 3046	2.6388 1179	4.2562 1944	49
50	1.6446 3182	2.1052 4242	2.6915 8803	4.3839 0602	50

# • TABLE VI.-AMOUNT OF I

n	31%	4%	5%	6%	n
1	1.0350 0000	1.0400 0000	1.0500 0000	1.0600 0000	1
2	1.0712 2500	1.0816 0000	1.1025 0000	1.1236 0000	2
3	1.1087 1788	1.1248 6400	1.1576 2500	1.1910 1600	3
4	1.1475 2300	1.1698 5856	1.2155 0625	1.2624 7696	4
5	1.1876 8631	1.2166 5290	1.2762 8156	1.3382 2558	5
6	1.2292 5533	1.2653 1902	1.3400 9564	I.4185 I9II	6
7	1.2722 7926	1.3159 3178	1.4071 0042	I.5036 3026	7
8	1.3168 0904	1.3685 6905	1.4774 5544	I.5938 4807	8
9	1.3628 9735	1.4233 1181	1.5513 2822	I.6894 7896	9
10	1.4105 9876	1.4802 4428	1.6288 9463	I.7908 4770	10
11	1.4599 6972	1.5394 5406	1.7103 3936	1.8982 9856	11
12	1.5110 6866	1.6010 3222	1.7958 5633	2.0121 9647	12
13	1.5639 5606	1.6650 7351	1.8856 4914	2.1329 2826	13
14	1.6186 9452	1.7316 7645	1.9799 3160	2.2609 0396	14
15	1.6753 4883	1.8009 4351	2.0789 2818	2.3965 5819	15
16	1,7339 8604	1.8729 8125	2.1828 7459	2.5403 5168	16
17	1,7946 7555	1.9479 0050	2.2920 1832	2.6927 7279	17
18	1,8574 8920	2.0258 1652	2.4066 1923	2.8543 3915	18
19	1,9225 0132	2.1068 4918	2.5269 5020	3.0255 9950	19
20	1,9897 8886	2.1911 2314	2.6532 9771	3.2071 3547	20
21	2.0594 3147	2.2787 6807	2.7859 6259	3.3995 6360	21
22	2.1315 1158	2.3699 1879	2.9252 6072	3.6035 3742	22
23	2.2061 1448	2.4647 1554	3.0715 2376	3.8197 4966	23
24	2.2833 2849	2.5633 0416	3.2250 9994	4.0489 3464	24
25	2.3632 4498	2.6658 3633	3.3863 5494	4.2918 7072	25
26	2.4459 5856	2.7724 6978	3.5556 7269	4.5493 8296	26
27	2.5315 6711	2.8833 6858	3.7334 5632	4.8223 4594	27
28	2.6201 7196	2.9987 0332	3.9201 2914	5.1116 8670	28
29	2.7118 7798	3.1186 5145	4.1161 3560	5.4183 8790	29
30	2.8067 9370	3.2433 9751	4.3219 4238	5.7434 9117	30
31	2.9050 3148	3.3731 3341	4.5380 3949	6.0881 0064	31
32	3.0067 0759	3.5080 5875	4.7649 4147	6.4533 8668	32
33	3.1119 4235	3.6483 8110	5.0031 8854	6.8405 8988	33
34	3.2208 6033	3.7943 1634	5.2533 4797	7.2510 2528	34
35	3.3335 9045	3.9460 8899	5.5160 1537	7.6860 8679	35
36	3.4502 6611	4.1039 3255	5.7918 1614	8.1472 5200	36
37	3.5710 2543	4.2680 8986	6.0814 0694	8.6360 8712	37
38	3.6960 1132	4.4388 1345	6.3854 7729	9.1542 5235	38
39	3.8253 7171	4.6163 6599	6.7047 5115	9.7035 0749	39
40	3.9592 5972	4.8010 2063	7.0399 8871	10.2857 1794	40
41	4.0978 3381	4.9930 6145	7.3919 8815	10.9028 6101	41
42	4.2412 5799	5.1927 8391	7.7615 8756	11.5570 3267	42
43	4.3897 0202	5.4004 9527	8.1496 6693	12.2504 5463	43
44	4.5433 4160	5.6165 1508	8.5571 5028	12.9854 8191	44
45	4.7023 5855	5.8411 7568	8.9850 0779	13.7646 1083	45
46	4.8669 4110	6.0748 2271	9.4342 5818	14.5904 8748	46
47	5.0372 8404	6.3178 1562	9.9059 7109	15.4659 1673	47
48	5.2135 8898	6.5705 2824	10.4012 6965	16.3938 7173	48
49	5.3960 6459	6.8333 4937	10.9213 3313	17.3775 0403	49
50	5.5849 2686	7.1066 8335	11.4673 9979	18.4201 5427	50

TABLE VII.—PRESENT VALUE OF 1,

v ⁿ	202	(1	+	$i)^{-n}$	۰,
----------------	-----	----	---	-----------	----

n	1%	11%	2%	3%	n
I 2	0.9900 9901 0.9802 9605	0.9852 2167 0.9706 6175	0.9803 9216 0.9611 6878	0.9708 7379 0.9425 9591	1 2
3	0.9705 9015	0.9563 1699	0.9423 2233	0.9151 4166	3
4	0.9609 8034	0.9421 8423	0.9238 4543	0.8884 8705	4
5	0.9514 0509	0.9282 0033	0.9057 3081	0.8020 0878	
6	0.9420 4524	0.9145 4219	0.8879 7138	0.8374 8426	6
8	0.932/1803	0.9010 2079	0.8/03 0018	0.7804 0022	8
ő	0.9143 3982	0.8745 0224	0.8367 5527	0.7664 1673	ġ
ió	0.9052 8695	0.8616 6723	0.8203 4830	0.7440 9391	10
11	0.8963 2372	0.8489 3323	0.8042 6304	0.7224 2128	11
12	0.8874 4923	0.8363 8742	0.7884 9318	0.7013 7988	12
13	0.8786 6260	0.8240 2702	0.7730 3253	0.6809 5134	13
14	0.8699 6297	0.8118 4928	0.7578 7502	0.6611 1781	14
15	0.8013 4947	0.7998 5150	0.7430 1473	0.0418 0195	15
16	0.8528 2126	0.7880 3104	0.7284 4581	0.6231 6694	16
17	0.8443 7749	0.7763 8526	0.7141 6256	0.6050 1645	17
18	0.8360 1731	0.7649 1159	0.7001 5937	0.5873 9461	18
19	0.8277 3992	0.7530 0747	0.0804 3070	0.5702 8003	19
	0.0195 444/	0./424 /042	0.0/29 /133	0.5530 /5/5	
21	0.8114 3017	0.7314 9795	0.6597 7582	0.5375 4928	21
22	0.8033 9621	0.7206 8763	0.6468 3904	0.5218 9250	22
23	0.7954 4179	0.7100 3708	0.6341 5592	0.5066 9175	23
24	0.7875 0013	0.0005 4392	0.0217 2149	0.4919 3374	24
-25		0.0892 0383			-25
26	0.7720 4796	0.6790 2052	0.5975 7928	0.4636 9473	26
27	0.76.14 0392	0.6689 8574	0.5858 6204	0.4501 8906	27
28	0.7508 3557	0.6590 9925	0.5743 7455	0.4370 7075	28
29	0.7493 4215	0.0493 5887	0.5631 1231	0.4243 4030	29
		0.039/ 0243			30
31	0.7345 7715	0.6303 0781	0.5412 4597	0.3999 8715	31
32	0.7273 0411	0.6209 9292	0.5306 3330	0.3883 3703	32
33	0.7201 0307	0.6118 1568	0.5202 2873	0.3770 2025	33
34	0.7129 7334	0.002/ /40/	0.5100 2017	0.3000 4490	34
35	0.7039 1420				35
36	0.6989 2495	0.5850 8974	0.4902 2351	0.3450 3243	36
37	0.6920 0490	0.5764 4309	0.4806 1093	0.3349 8294	37
38	0.0851 5337	0.5079 2423	0.4711 8719	0.3252 2015	38
39	0.0783 0907	0.5595 3120	0.4019 4822	0.3157 5355	39
40	0.0/10 3314	0.5512 0232			40
4I	0.6650 0311	0.5431 1559	0.4440 1021	c.2976 2800	41
42	0.0584 1892	0.5350 8925	0.4353 0413	0.2889 5922	42
43	0.0510 9992	0.52/10153	0.420/00/5	0.2003 4294	43
44	0.6390 5402	0.5117 1494	0.4101 0680	C.2641 3862	44
					<u> </u>
46	0.6327 2764	0.5041 5265	0.4021 5373	0.2567 3653	46
47	0.0204 0301	0.4907 0212	0.3942 0830	0.2492 5876	47
40	0.0202 0041	0.4893 0170	0.3005 3/01	0.2419 9880	40
49	0.6080 3882	0.4750 0468	0.2715 2788	0.2287 0708	49

## TABLE VII.—PRESENT VALUE OF 1

n	31%	4%	5%	6%	n
I	0.9661 8357	0.9615 3846	0.9523 8095	0.9433 9623	I
2	0.9335 1070	0.9245 5621	0.9070 2948	0.8899 9644	2
3	0.9019 4271	0.8889 9636	0.8638 3760	0.8396 1928	3
4	0.8714 4223	0.8548 0419	0.8227 0247	0.7920 <u>9</u> 366	4
5	0.8419 7317	0.8219 2711	0.7835 2617	0.7472 5817	5
6	0.8135 0064	0.7903 1453	0.7462 1540	0.7049 6054	6
7	0.7859 9096	0.7599 1781	0.7106 8133	0.6650 5711	7
8	0.7594 1156	0.7306 9021	0.6768 3936	0.6274 1237	8
9	0.7337 3097	0.7025 8674	0.6446 0892	0.5918 9846	9
10	0.7089 1881	0.6755 6417	0.6139 1325	0.5583 9478	10
11	0.6849 4571	0.6495 8093	0.5846 7929	0.5267 8753	11
12	0.6617 8330	0.6245 9705	0.5568 3742	0.4969 6936	12
13	0.6394 0415	0.6005 7409	0.5303 2135	0.4688 3902	13
14	0.6177 8179	0.5774 7508	0.5050 6795	0.4423 0096	14
15	0.5968 9062	0.5552 6450	0.4810 1710	0.4172 6506	15
16	0.5767 0591	0.5339 0818	0.4581 1152	0.3936 4628	16
17	0.5572 0378	0.5133 7325	0.4362 9669	0.3713 6442	17
18	0.5383 6114	0.4936 2812	0.4155 2065	0.3703 4379	18
19	0.5201 5569	0.4746 4242	0.3957 3396	0.3305 1301	19
20	0.5025 6588	0.4563 8695	0.3768 8948	0.3118 0473	20
21	0.4855 7090	0.4388 3360	0.3589 4236	0.2941 5540	21
22	0.4691 5063	0.4219 5539	0.3418 4987	0.2775 0510	22
23	0.4532 8563	0.4057 2633	0.3255 7131	0.2617 9726	23
24	0.4379 5713	0.3901 2147	0.3100 6791	0.2469 7855	24
25	0.4231 4699	0.3751 1680	0.2953 0277	0.2329 9863	25
26	0.4088 3767	0.3606 8923	0.2812 4073	0.2198 1003	26
27	0.3950 1224	0.3468 1657	0.2678 4832	0.2073 6795	27
28	0.3816 5434	0.3334 7747	0.2550 9364	0.1956 3014	28
29	0.3687 4815	0.3206 5141	0.2429 4632	0.1845 5674	29
30	0.3562 7841	0.3083 1867	0.2313 7745	0.1741 1013	30
31	0.3442 3035	0.2964 6026	0.2203 5947	0.1642 5484	31
32	0.3325 8971	0.2850 5794	0.2098 6617	0.1549 5740	32
33	0.3213 4271	0.2740 9417	0.1998 7254	0.1461 8622	33
34	0.3104 7605	0.2635 5209	0.1903 5480	0.1379 1153	34
35	0.2999 7686	0.2534 1547	0.1812 9029	0.1301 0522	35
36	0.2898 3272	0.2436 6872	0.1726 5741	0.1227 4077	36
37	0.2800 3161	0.2342 9685	0.1644 3563	0.1157 9318	37
38	0.2705 6194	0.2252 8543	0.1566 0536	0.1092 3885	38
39	0.2614 1250	0.2166 2061	0.1491 4797	0.1030 5552	39
40	0.2525 7247	0.2082 8904	0.1420 4568	0.0972 2219	40
41	0.2440 3137	0.2002 7793	0.1352 8160	0.0917 1905	41
42	0.2357 7910	0.1925 7493	0.1288 3962	0.0865 2740	42
43	0.2278 0590	0.1851 6820	0.1227 0440	0.0816 2962	43
44	0.2201 0231	0.1780 4635	0.1168 6133	0.0770 0908	44
45	0.2126 5924	0.1711 9841	0.1112 9651	0.0726 5007	45
46	0.2054 6787	0.1646 1386	0.1059 9668	0.0685 3781	46
47	0.1985 1968	0.1582 8256	0.1009 4921	0.0646 5831	47
48	0.1918 0645	0.1521 9476	0.0961 4211	0.0609 9840	48
49	0.1853 2024	0.1463 4112	0.0915 6391	0.0575 4566	49
50	0.1700 5337	0.1407 1262	0.0872 0373	0.0542 8836	50

TABLE VIII.-AMOUNT OF I PER ANNUM AT COMPOUND INTEREST 289

 $s_{\overline{n}} = \frac{(1+i)^n - 1}{i}$ 

n	1%	11%	2%	3%	n
1	1.0000 0000	1.0000 0000	1.0000 0000	1.0000 0000	1
2	2.0100 0000	2.0150 0000	2.0200 0000	2.0300 0000	2
3	3.0301 0000	3.0452 2500	3.0604 0000	3.0909 0000	3
4	4.0604 0100	4.0909 0338	4.1216 0800	4.1836 2700	4
5	5.1010 0501	5.1522 6693	5.2040 4016	5.3091 3581	5
6	6.1 520 1 506	6.2295 5093	6.3081 2096	6.4684 0988	6
7	7.21 35 3521	7.3229 9419	7.4342 8338	7.6624 6218	7
8	8.28 56 70 56	8.4328 3911	8.5829 6905	8.8923 3605	8
9	9.368 5 2727	9.5593 3169	9.7546 2843	10.1591 0613	9
10	10.4622 1254	10.7027 2167	10.9497 2100	11.4638 7931	10
11	11.5668 3467	11.8632 6249	12.1687 1542	12.8077 9569	11
12	12.6825 0301	13.0412 1143	13.4120 8973	14.1920 2956	12
13	13.8002 2804	14.2368 2060	14.680 2152	15.6177 9645	12
14 15 16 17 18	14.9474 2132 16.0968 9554 17.2578 6449 18.4304 4314 19.6147 4757	15:4503 8205 16:6821 3778 17:9323 6984 19:2013 5539 20:4893 7572	14.803 315 15.9739 3815 17.2934 1692 18.6392 8525 20.0120 7096 21.4123 1238 22.8405 682	17.0863 2416 18.5989 1389 20.1568 8130 21.7615 8774 23.4144 3537	14 15 16 17 18
20	22.0190 0399	23.1236 6710	24.2973 6980	26.8703 7449	20
21	23.2391 9403	24.4705 2211	25.7833 1719	28.6764 8572	21
22	24.4715 8598	25.8375 7994	27.2989 8354	30.5367 8030	22
23	25.7163 0183	27.2251 4364	28.8449 6321	32.4528 8370	23
24	26.9734 6485	28.6335 2080	30.4218 6247	34.4264 7022	24
25	28.2431 9950	30.0630 2361	32.0302 9972	36.4592 6432	25
26	29.5256 3150	31.5139 6896	33.6709 0572	38.5530 4225	26
27	30.8208 8781	32.9866 7850	35.3443 2383	40.7096 3352	27
28	32.1290 9669	34.4814 7867	37.0512 1031	42.9309 2252	28
29	33.4503 8766	35.9987 0085	38.7922 3451	45.2188 5020	29
30	34.7848 9153	37.5386 8137	40.5680 7921	47.5754 1571	30
31 32 33 34 35 36	30.132/4043 37.4940 6785 38.8690 0853 40.2576 9862 41.6602 7560	40.682 8801 42.2986 1233 43.9330 9152 45.5920 8789	42.3794 4079 44.2270 2961 46.1115 7020 48.0338 0160 49.9944 7763	50.0027 5852 52.5027 5852 55.0778 4128 57.7301 7652 60.4620 8181 63.2759 4427	31 32 33 34 35 36
37	44.5076 4714	48.9851 0874	54.0342 5453	66.1742 2259	37
38	45.9527 2361	50.7198 8538	56.1149 3962	69.1594 4927	38
39	47.4122 5085	52.4806 8366	58.2372 3841	72.2342 3275	39
40	48.8863 7336	54.2678 9391	60.4019 8318	75.4012 5973	40
41	50.3752 3709	56.0819 1232	62.6100 2284	78.6632 9753	41
42	51.8789 8946	57.9231 4100	64.8622 2330	82.0231 9645	42
43	53.3977 7936	59.7919 8812	67.1594 6777	85.4838 9234	43
44	54.9317 5715	61.6888 6794	69.5026 5712	89.0484 0911	44
45	56.4810 7472	63.6142 0096	71.8927 1027	92.7198 6139	45
46	58.0458 8547	65.5684 1398	74.3305 6447	96.5014 5723	46
47	59.6263 4432	67.5519 4018	76.8171 7576	100.3965 0095	47
48	61.2226 0777	69.5652 1929	79.3535 1927	104.4083 9598	48
49	62.8348 3385	71.6086 9758	81.9405 8966	108.5406 4785	49
50	64.4631 8218	73.6828 2804	84.5794 0145	112.7968 6729	50

290 TABLE VIII.-AMOUNT OF I PER ANNUM AT COMPOUND INTEREST

## $s_{\overline{n}} = \frac{(1+i)^n - 1}{i}$

n	31%	4%	5%	6%	n
I	0000 0000.1	1.0000 0000	1.0000 0000	1.0000 0000	I
2	2.0350 0000	2.0400 0000	2.0500 0000	2.0600 0000	2
3	3.1062 2500	3.1216 0000	3.1525 0000	3.1836 0000	3
4	4.2149 4288	4.2464 6400	4.3101 2500	4.3746 1000	4
	5.3624 6588	5.4163 2256	5.5256 3125	5.6370 9296	
6	6.5501 5218	6.6329 7546	6.8019 1281	6.9753 1854	6
7	7.7794 0751	7.8992 9448	8.1420 0845	8.3938 3705	7
°	9.0510 8077	9.2142 2020	9.5491 0888	9.8974 0791	ů
10	11.7313 0316	12.0061 0712	12.5778 9254	13.1807 0404	10
	13.1419 9192	13.4803 5141	14.2007 8710	14.9710 4204	
12	14.0019 0104	15.0258 0540	13.91/1 2032	18 8821 2767	12
13	17 6760 8626	18 2010 1110	1/./129 0205	21 01 60 6602	13
15	19.2956 8088	20.0235 8764	21.5785 6359	23.2759 6988	15
10	20.9710 2971	21.8245 3114	23.0574 9177	25.0725 2000	10
17	22./030 15/5	23.09/5 1239	25.6403 0030	20.2120 /9/0	17
10	26 2571 8050	27 6712 2040	20.1323 0407	22 7 600 0170	10
20	28.2796 8181	29.7780 7858	33.0659 5410	36.7855 9120	20
	20 260 1 7069	21 0600 1050	25 71 22 51 97	00 0007 0669	
21	30.2094 /008	31.9092 10/2	28 5052 1440	42 2022 0028	21
22	21 4604 1272	26 6178 8818	41 4204 7612	43.3922 9020	22
23	26 666 5 2821	30.01/0 0030	41.4304 /312	40.9930 2709	24
25	38.9498 5669	41.6459 0829	47.7270 9882	54.8645 1200	25
26	41.3131 0168	44.3117 4462	51.1134 5376	50.1562 8272	26
27	43.7590 6024	47.0842 1440	54.6691 2645	63.7057 6568	27
28	46.2006 2734	49.9675 8298	58.4025 8277	68.5281 1162	28
29	48.9107 9930	52.9662 8630	62.3227 1191	73.6397 9832	29
30	51.6226 7728	56.0849 3775	66.4388 4750	79.0581 8622	30
31	54.4294 7098	59.3283 3526	70.7607 8988	84.8016 7739	31
32	57.3345 0247	62.7014 6867	75.2988 2937	90.8897 7803	32
33	60.3412 1005	66.2095 2742	80.0637 7084	97.3431 6471	33
34.	63.4531 5240	69.8579 0851	85.0669 5938	104.1837 5460	34
35	66.6740 1274	73.6522 2486	90.3203 0735	111.4347 7987	35
36	70.0076 0318	77.5983 1385	95.8363 2272	119.1208 6666	36
37	73.4578 6930	81.7022 4640	101.6281 3886	127.2681 1866	37
38	77.0288 9472	85.9703 3626	107.7095 4580	135.9042 0578	38
39	80.7249 0604	90.4091 4971	114.0950 2309	145.0584 5813	39
40	84.5502 7775	95.0255 1570	120.7997 7424	154.7619 6562	40
4I	88.5095 3747	99.8265 3633	127.8397 6295	165.0476 8356	4I
42	92.6073 7128	104.8195 9778	135.2317 5110	175.9505 4457	42
43	96.8486 2928	110.0123 8169	142.9933 3866	187.5075 7724	43
44	101.2383 3130	115.4128 7696	151.1430 0559	199.7580 3188	44
45	105.7810 7290	121.0293 9204	159.7001 5587	212.7435 1379	45
46	110.4840 3145	126.8705 6772	168.6851 6366	226.5081 2462	46
47	115.3509 7255	132.9453 9043	178.1194 2185	241.0986 1210	47
48	120.3882 5059	139.2032 0004	108.0253 9294	250.5045 2882	4ă
49	125,0018 4557	145.8337 3429	190.4200 0259	2/2.9504 0055	49
30	130.9979 1010	152.00/0 8300	209·34/9 93/2	290.3339 0430	,°

 $a_{\overline{n}|} = \frac{(1-v^n)}{i}$ 

n	1%	11%	2%	3%	n
I	0.9900 9901	0.9852 2167	0.9803 9216	0.9708 7379	I
2	1.9703 9506	1.9558 8342	1.9415 6094	1.9134 6970	2
3	2.9409 8521	2.9122 0042	2.8838 8327	2.8286 1135	3
4	3.9019 6555	3.8543 8465	3.8077 2870	3.7170 9840	4
5	4.8534 3124	4.7826 4497	4.7134 5951	4.5797 0719	5
6	5.7954 7647	5.6971 8717	5.6014 3089	5.4171 9144	6
7	6.7281 9453	6.5982 1396	6.4719 9107	6.2302 8296	7
8	7.0510 7775	7.4859 2508	7.3254 8144	7.0196 9219	8
9	8.5000 1758	8.3605 1732	8.1622 3671	7.7861 0892	9
	9.4713 0453	9.2221 8455	8.9825 8501	8.5302 0284	10
11	10.3676 2825	10.0711 1779	9.7868 4805	9.2526 241 1	11
12	11.2550 7747	10.9075 0521	10.5753 4122	9.9540 0399	12
13	12.133/400/	11.7315 3222	11.3483 7375	10.0349 5533	13
14	13.003/0304	12.5433 8150	12.1002 4677	11.2960 7314	14
	13.8030 5252	13.3432 3301	12.8492 0350	11.9379 3509	15
16	14.7178 7378	14.1312 6405	13.5777 0931	12.5611 0203	16
17	15.5622 5127	14.9076 4931	14.2918 7188	13.1661 1847	17
18	16.3982 6858	15.6725 6089	14.9920 3125	13.7535 1308	18
19	17.2260 0850	16.4261 6837	15.6784 6201	14.3237 9911	19
20	18.0455 5297	17.1686 3879	16.3514 3334	14.8774 7486	20
21	18.8569 8313	17.9001 3673	17.0112 0916	15.4150 2414	21
22	19.6603 7934	18.6208 2437	17.6580 4820	15.9369 1664	22
23	20.4558 2113	19.3308 6145	18.2922 0412	16.4436 0839	23
24	21.2433 8726	20.030+0537	18.9139 2560	16.9355 4212	24
25	22.0231 5570	20.7196 1120	19.5234 5647	17.4131 4769	25
26	22.7952 0366	21.3986 3172	20.1210 3576	17.8768 4242	26
27	23.5596 0759	22.0676 1746	20.7068 9780	18.3270 3147	27
28	24.3164 4316	22.7267 1671	21.2812 7236	18.7641 0823	28
129	25.0057 8530	23.3760 7558	21.8443 8466	19.1884 5459	29
	25.8077 0822	24.0158 3801	22.3964 5555	19.6004 4135	30
31	26.5422 8537	24.6461 4582	22.9377 01 52	20.0004 2849	31
32	27.2695 8947	25.2671 3874	23.4683 3482	20.3887 6553	32
33	27.9896 9255	25.8789 5442	23.9885 6355	20.7657 9178	33
34	28.7026 6589	26.4817 2849	24.4985 9172	21.1318 3668	34
35	29.4085 8009	27.0755 9458	24.9986 1933	21.4872 2007	35
36	30.1075 0504	27.6606 8431	25.4888 4248	21.8322 5250	36
37	30.7995 0994	28.2371 2740	25.9694 5341	22.1672 3544	37
38	31.4846 6330	28.8050 5163	26.4406 4060	22.4924 6159	38
39	32.1630 3298	29.3645 8288	26.9025 8883	22.8082 1513	39
40	32.8346 8611	29.9158 4520	27.3554 7924	23.1147 7197	40
4I	33.4996 8922	30.4589 6079	27.7994 8945	23.4123 9997	4I
42	34.1581 0814	30.9940 5004	28.2347 9358	23.7013 5920	42
43	34.8100 0806	31.5212 3157	28.6615 6233	23.9819 0213	43
44	35.4554 5352	32.0406 2223	29.0799 6307	24.2542 7392	44
45	36.0945 0844	32.5523 3718	29.4901 5987	24.5187 1254	45
46	36.7272 3608	33.0564 8983	29.8923 1360	24.7754 4907	46
47	37.3536 9909	33.5531 9195	30.2865 8196	25.0247 0783	47
48	37.9739 5949	34.0425 5365	30.6731 1957	25.2667 0664	48
49	38.5880 7871	34.5246 8339	31.0520 7801	25.5016 5693	49
50	39.1961 1753	34.9996 8807	31.4236 0589	25.7297 6401	50
	1	1	1	1	1

 $a_{\overline{n}|} = \frac{(1 - v^n)}{i}$ 

n	31%	4%	5%	6%	n
I	0.9661 8357	0.9615 3846	0.9523 8095	0.9433 9623	I
2	1.8996 9428	1.8860 9467	1.8594 1043	1.8333 9267	2
3	2.8010 3098	2.7750 9103	2.7232 4803	2.0730 1195	3
4	3.0730 7921	3.0298 9522	3.5459 5050	3.4051 0501	4
	4.5150 5230	4.4510 2233	4.3294 /00/	4.2123 03/9	3
6	5.3285 5302	5.2421 3686	5.0756 9206	4.9173 2433	6
7	68720 555	6 7007 4 87	5.7003 7340	6 2007 0281	
	7 6076 8651	7 4252 2161	7 1078 2168	6 8016 0227	
10	8.3166 0532	8.1108 9578	7.7217 3493	7.3600 8705	10
	0.0015 5104	8.7601.7671	8 2064 1422	7.8868 74 58	11
12	0.6622 2427	0.2850 7276	8.8622 5164	8.2828 4304	12
13	10.3027 3849	9.9856 4785	9.3935 7299	8.8526 8296	13
1.1	10.9205 2028	10.5631 2293	9.8986 4094	9.2949 8393	14
15	11.517+1090	11.1183 8743	10.3796 5804	9.7122 4899	15
16	12.0941 1681	11.6522 9561	10.8377 6956	10.1058 9527	16
17	12.6513 2059	12.1656 6885	11.2740 6625	10.4772 5969	17
18	13.1896 8173	12.6592 9697	11.6895 8690	10.8276 0348	18
19	13.7098 3742	13.1339 3940	12.0853 2086	11.1581 1649	19
20	14.2124 0330	13.5903 2634	12.4622 1034	11.4699 2122	20
21	14.6979 7420	14.0291 5995	12.8211 5271	11.7640 7662	21
22	15.1671 2484	14.4511 1533	13.1630 0258	12.0415 8172	22
23	15.6204 1047	14.8568 4167	13.4885 7388	12.3033 7898	23
24	16.0583 6760	<b>F5.2469 6314</b>	13.7986 4179	12.5503 5753	24
25	16.4815 1459	15.6220 7994	14.0939 4457	12.7833 5010	25
26	16.8903 5226	15.9827 6918	14.3751 8530	13.0031 6619	26
27	17.2853 6451	16.3295 8575	14.6430 3362	13.2105 3414	27
28	17.0070 1885	16.0030 0322	14.8981 2720	13.4001 0428	28
29	18.0357 0700	10.903/1403	15.1410 /350	13.590/2102	29
	10.3920 4341				
31	18.7362 7576	17.5884 9356	15.5928 1050	13.9290 8599	31
32	19.0088 0547	17.8735 5150	15.8020 7007	14.0840 4339	32
33	19.3902 0818	18.14/0450/	16.0025 4921	14.2302 2901	33
34	20,0006 6110	18.6646 1222	16.1929 0401	14.3001 4114	34
- 35					- 35
36	20.2904 9381	18.9082 8195	16.5468 5171	14.6209 8713	36
37	20.5705 2542	19.1425 7880	10.7112 8734	14.7307 8031	37
30	20.8410 8/30	19.30/0 0423	10.00/0 92/1	14.8400 1910	30
<u>39</u> ₄0	21.3550 7234	19.7927 7388	17.1590 8635	15.0462 9687	40
	000 000				
41	21.5991 0371	19.9930 5181	17.2943 0790	15.1360 1592	41
42	21.0340 0201	20.1030 20/4	17.4232.0758	15.2245 4332	44
43	22.2827 0102	20.5488 4120	17.6627 7331	15.3831 8202	43
45	22.4954 5026	20.7200 3970	17.7740 6982	15.4558 3209	45
46	22 7000 1812	20 88 16 5256	17.8800 6640	15 5242 6000	46
47	22.8004 2780	21.0420 3612	17.0810 1571	15,5800 2821	47
18	22.0012 4425	21.1051 3088	18.0771 5782	15.6500 2661	18
49	23.2765 6450	21.3414 7200	18.1687 2172	15.7075 7227	49
50	23.4556 1787	21.4821 8462	18.2559 2546	15.7618 6064	50
- I		· · · ]	··· ,		

(The Numbers Refer to Pages)

Abscissa. 30. Accumulation schedule, 108, 109. Addition. 1. of fractions. 18. of radicals, 77. Algebraic fraction, 16. addition and subtraction of, 18, multiplication and division of, 19. Algebraic operations, 1-5. American Experience Table, 188. Amortization of principal, 110. Amortization schedule, 110. Amount of an annuity, 97, 100. Annuity, definition of, 97. Area of a triangle. 26, 149. Arithmetical means, 89, 171, 173. Arithmetical progression, 88. common difference of, 88. elements of, 88. nth term of, 88. sum of, 88. Axes. coordinate, 30. Base of a system of numbers, 81. Beneficiary, 200. Benefit, 200. Binomial expansion, 79.

Change in a function, 31. Characteristic of a logarithm, 83. Circle area of, 27. circumference of, 27.

Classification of numbers, 62. Co-functions and complementary angles, 117. Combinations. 191. Complex fractions. 20. Complex numbers. 62. Compound events, 192. Compound interest, 95. Constants. 24. Coordinate axes, 30. Coordinates of a point, 30. Correlation, 179. coefficient of, 181. the rank method of, 181. Cosecant. defined for acute angle. 116. for any angle, 130. Cosine, defined for acute angle, 116. for any angle, 130. Cosine of a difference, 136. Cosine of a sum, 135. Cosines, theorem of, 144. Cotangent, defined. for acute angle, 116. for any angle, 130. Decreasing functions, 163. Dependent events, 192. Depreciation schedule, 109.

Depression, angle of, 128. Derivative, definition, 153. of a constant. 157.

Derivative. definition-Continued. of a product, 158. of a quotient, 159. of a sum, 158. of  $u^n$ , 160. Deviation, 176. mean deviation, 176. quartile deviation, 176. standard deviation, 176. Difference, trigonometric functions of. 136. Discriminant of a quadratic equation. 63. Distance between two points, 50. Division, 4. Division by zero, 4.

Elevation, angle of, 128. Endowment insurance, 206. Equalities, 12. Equation of a line, 50. slope and point form, 53. two point form, 51. Equations, 12. equivalent, 13. extraneous roots of, 22. fractional, 21. linear, 12. quadratic, 58. simultaneous, 39. solution or root of. 12. Exclusive events, 193. Exponents, laws of, 74. Extremes of arithmetical progression, 89. of geometrical progression, 90.

Factorial, 190. Factoring, 6–11. Formulas taken from geometry, 26. Fractions, 16-23.
addition and subtraction oi, 18.
complex, 20.
multiplication and division of, 19.
operations of, 16.
Frequency tables, 170.
Function, 24-38.
definition of, 24.
graph of a, 29.
trigonometric, 115.
Functional notation, 24.
Functional relations, 25.

Geometric mean, 90. Geometrical progression, 90. elements of, 90. nth term of, 90. sum of, 90. Graphical solution of a quadratic equation, 65. of simultaneous linear equations, 41.

Half angle formulas, 137. Highest Common factor, 9.

Identities, 12. Imaginary numbers, 62. Inconsistent equations, 42. Increasing functions, 163. Independent events, 192. Infinity, meaning of, 122. Insurance, definitions, 200. endowment, 206. limited payment life, 202. ordinary life, 201. term, 204. Intercepts on the axes, 41. Interest, 92–96. compound, 95.

Interest. simple, 92. Interpolation, 85. Irrational numbers, 61. Irrational roots of a quadratic equation. 61. Law of cosines, 144. Law of sines, 140. Law of tangents, 147. Life annuity, 195-200. due, 197. meaning of, 195. present value of, 196. temporary, 197. Life insurance definitions, 200. Limited payment life policy, 202. Linear equations, 12. Line representation of trigonometric functions, 121. Logarithms, 81-87. characteristic, 83. common, 83. definition of. 81. mantissa, 83. properties of, 82. Lowest common multiple, 10. Mantissa, 83. Maxima, 67, 165. Mean deviation, 175. Means, 89, 90, 171. arithmetical. 89. geometrical, 90. Measures of central tendency, 171. Median, determination of, from a frequency table, 174. Minima, 67, 165. Mode, 172. Mortality table, 188. Multiplication of fractions, 19. of polynomials, 3.

Natural premium, 205. Negative angles, 131. Net premium. 200. annual, 201. single, 201. Numbers complex, 62. imaginary, 62. irrational. 61. rational, 61. real. 62. Office premium, 200. Ordinary life policy, 201. Ordinate, 30. Origin of coordinates, 30. Parallel lines, 54. Parentheses, 1. Pearson correlation coefficient, 183. Permutations, 189–190. definition of, 189. of n things r at a time, 190. Perpendicular lines, 55. Policy, 200. endowment, 206. limited payment life, 202. ordinary life, 201. term, 204. Policy holder, 200. Premium, 200. annual, 201. gross, 200. natural, 205. net, 200. net annual, 201. net single, 201. office, 200. Present value, 104. of an annuity, 104, 105. of a life annuity, 196.

Principal amortization of, 110. Probability, 186-194. based upon observation or experience, 187. definition of La Place, 186. meaning of, 186. Product moment formula, 183. Product of the roots of a quadratic, 65. Progressions, 88-91. arithmetical. 88. elements of, 88, 90, geometrical, 90. Pure endowment, 195. Quadrants, 130. Quadratic equations, 58-73. solution of. 59. typical form of, 58. Quadratic function, 58. Quartile deviation, 176. Radicals, 77. Radicand, 77. Rank method of correlation, 181. Rational numbers, 61. Real numbers, 62. Reserve, 207-209. Right triangles, solution of, 125-129. Roots, 12. imaginary, 63. nature of, 63. of an equation, 12. of a quadratic equation, 59. product of, 65.

rational. 64.

real, 64. . sum of, 65.

Secant. defined for acute angle, 116. for any angle, 130. Signs of agregation, 1. Simple interest, 92. Sine, defined for acute angle, 116. for any angle, 130. Sine of a sum, 135. Sines, law of, 140. Sinking fund, 108. Slope of a line, 48. Solution of an equation, 12. of an oblique triangle, 141-151. of a quadratic equation, 59. of a right triangle, 125-129. of simultaneous linear equations, 43, 44. Standard deviation, 176. Statistics, definition of, 170. Straight line, equation of, 50. in point slope form, 53. through two points, 51. Subtraction of fractions. 18. of polynomials, 1. Sum and difference formulas, 138. Sum, trigonometric functions of, 135.

Tangent, defined for acute angle, 116. for any angle, 130. Tangents, law of, 147. Tangent of a sum, 135. Tangent to a curve, 153. definition of, 153. equation of, 163. slope of, 154.

Temporary annuity, 197. Term insurance, 204. Terminal reserve, 208. Triangle, area of, 26, 149. Trigonometric functions, 115–123. defined, 115. of complementary angles, 117. of difference, 136. of half an angle, 137. of sum, 135. of supplementary angles, 132. of twice an angle, 136. Twice an angle, functions of, 136. Typical form of linear equation, 13. of quadratic equation, 58.

Variable, definition of, 24. Variations of the trigonometric functions, 122.

Zero, division by, 4.