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PREFACE

This book is intended as a basic textbook in theoretical meteorology

for students who are preparing for a professional career in meteorology.
It may be helpful to students of such applied sciences as geophysics,

aerodynamics, and hydrology, and to students of various branches of
pure physics.
“The aim of the book is to provide the theoretical background for the
understanding of the physical behavior of the atmosphere and its mo-
tions. Only material which is considered indispensable for the practical
meteorologist and weather forecaster has been includ The book is
self-contained and presupposes only some general knowledge of physics
and calculus. Starting from the fundamental congepts of physics, it
develops the thermodynamical and hydrodynamical principles by which
atmospheric phenomena and the cvolution of the wecather may be
explained.

The theory of atmospheric motion is most naturally and conveniently
developed in vector notation. The methods of vector algebra and some
simple operations of vector calculus are thercfore consistently used. No
previous knowledge of vector methods is assumed; the vector operations
are introduced and explained gradually as the need arises as part of the
gencral development of the subject.

Since the book is-intended as a basic introduction to the subject, few
references to original papers are given. RN

The book originated from my lectures on dynamic meteorology given
at the Massachusetts Institute of Technology from 1936 to 1940 and at
the University of California at Los Angeles after 1940. In the selection
and organization of the material I have been greatly aided by studies
pursued under Professor V. Bjerknes at Oslo University in 1926-30, and
under Professor C.-G. Rossby during my years at the Massachusetts
Institute of Technology. In connection with the extensive training
programs for weather officers for the armed forces my two co-authors,
Messrs. Forsythe and Gustin, joined the department as instructors in
dynamic meteorology. During the subsequent joint instruction of the
course by the three authors the earlier mimeographed lecture material
was revised and reorganized several times, and much new material was
added, before the final version of the book was written.

I am much indebted to Professor J. Bjerknes for his permission to

i



PREFACE iv

include in chapter 10 a large part of our joint paper, * On the Theory of
Cyclones,” Journal of Meteorology, Vol. 1, Nos. 1 and 2, 1944. I am
also greatly obliged to Professor H. G. Houghton of the Massachusetts
Institute of Technology, whose unpublished lecture material on meteoro-
logical thermodynamics was a great help when the first outline of
chapters 2 and 3 was written.

On behalf of the three authors I wish to extend sincere thanks to all
those friends who have given us help and encouragement in our work.
We are very grateful to Professor J. Kaplan, former chairman of the
metcorological department at the University of California at Los
Angeles, for his unfailing support during the preparation of the manu-
script and illustrations. We also are much indebted to Professor H. U.
Sverdrup and Professor M. Neiburger, who have read parts of the manu-
script and made many helpful suggestions.

JOorGEN HOLMBOE

UN1vErsiTY OF CALIFORNIA
AT Los ANGELEs
January 1946
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CHAPTER ONE
DIMENSIONS AND UNITS

1-01. The goal of dynamic meteorology. It is customary to divide
meteorology into several fields, of which dynamic meteorology is one.
Dynamic meteorology starts from pure physical theory and attempts to
give a systematic and quantitative description of the composition and
physical behavior of the atmosphere. The goal is the complete explana-
tion in physical terms of the atmospheric phenomena constituting the
weather. Synoptic meteorology (another of the fields) starts from
weather observations and attempts to describe the current state of the
weather in such terms that its future development may be predicted.
The goal is to forecast the weather without error.

Itis clear that the ultimate goals of dynamic and synoptic meteorology
can only be attained simultaneously : the first perfect forecaster would be
the first man who could explain completely the physical behavior of the
atmosphere, and vice versa.

In the present stage of meteorological development certain steps have
been taken in the direction of these goals. It must be understood that
these steps are only a beginning; for the most part the goals still remain
unattained. Nevertheless it is already clear that an understanding of
the atmosphere in physical terms is absolutely essential for the synoptic
meteorologist.

1.02. The tools of dynamic meteorology. Knowing the goal of
dynamic meteorology, we first select the branches of physics which fur-
nish suitable tools. These seem at present to be thermodynamics and
hydrodynamics. Accordingly, chapters 2 and 3 are devoted to thermo-
dynamics, and chapters 4 and 6 to hydrodynamics. The other chapters
are.devoted to more properly meteorological topics.

The presentations will presuppose a certain knowledge of general
physics and of the calculus. We will start from elementary physical
principles and build up all the thermodynamics, vector analysis, and
hydrodynamics used in this book. From the beginning the notation
and subject matter will be adapted exclusively to the needs of meteorol-
ogy. This physical material constitutes a background indispensable for
the understanding of even the most elementary atmospheric phenomena.

In chapter 1 are introduced some important mechanical variables of
general physics, together with their dimensions and units.

1
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1.03. The fundamental variables and their dimensions. A mechani-
cal system is measured by various quantities, such as force and energy.
All these quantities are reducible to three fundamental quantities,
namely, mass, length, and time. All other mechanical quantities can
be expressed in terms of these three fundamental quantities and are
called derived quantities. (It should be understood that the selection of
fundamental quantities is by no means unique, but our choice has the
advantage of simplicity.)

The method by which the derived quantities are built up from the
fundamental quantities is best expressed in terms of algebraic expres-
sions called dimensions. There is assigned to each of the fundamental
quantities a dimensional letter in brackets, as follows:

1) [mass] = [M];
(2) [length] = [L];
3) [time] = [T].

For completeness, we include a fourth fundamental quantity which we
will need in thermodynamics, namely, temperature:

4) [temperature] = [O].

A pure number, for example, an angle expressed in radians or a molecular
weight, is assigned the dimension unity:

(5) [pure number] = [1] = [L°M°T?].

Since M, L, and T not enclosed in brackets will have other meanings in
this book, ¢ is essential that dimensional formulas always be enclosed in
brackets.

The derived quantities are assigned dimensions which are algebraic
monomials in M, L, T, and 6. The exponents represent the powers of
fundamental quantities contained in the derived quantity. It is
assumed that the reader is familiar with the derived quantities of ele-
mentary mechanics, but for convenience we give brief definitions and the
dimensions of those of especial use in dynamic meteorology. Many
of these will also be discussed later; those involving temperature will be
introduced in chapters 2 and 3.

Area is ultimately reduced to the area of a rectangle, which is the
product of the lengths of its sides:

(6) [area] = [length] X [length] = [L2].

Volume is ultimately reduced to the volume of a rectangular prism,
which is the product of the base area and an altitude:

(7 [volume] = [area] X [length] = [L3].
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Density is defined as the mass of an object per unit volume occupied
by the object:

(8) [density] = [mass] + [volume] = [ML™3].

Specific volume is defined as the volume occupied by an object per unit
mass of the object (* specific ”’ always stands for *‘ per unit mass”):
9) [specific volume] = [volume] + [mass] = [ML3].

Velocity is the distance traversed per unit of time:

(10) [velocity] = [length] =+ [time] = [LT™1].
Acceleration is the change of velocity per unit of time:
(11) [acceleration] = [velocity] + [time] = [LT2].
Force is sometimes taken as a fundamental quantity, but is always

found to be proportional to the mass of an object multiplied by the
acceleration of the object produced by the force:

(12) [force] = [mass] X [acceleration] = [MLT2].

Pressure is defined to be the force exerted on a surface per unit area of
surface:
13) [pressure] = [force] + [area] = [ML™1T2],

The work done by a force is the product of the force and the length
through which the force moves something:
(14) [work] = [force] X [length] = [ML2T™2],

Energy is the measure of the work which can be gotten out of a system
by some procedure. It then has the same dimensions as work:

(15) [energy] = [ML2T2).
Specific work is the work done per unit mass:
(16) [specific work] = [L2T2].

Specific energy is thé energy per unit mass:
17) [specific energy] = [L2T2].

Angular velocity is the angular distance traveled per unit of time.
Since [angle] = [1], we have:

(18) [angular velocity] = [angle] + [time] = [T™].
Momentum is the mass of something times its velocity:

(19) [momentum] = [mass] X [velocity] = [MLT™].
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Other quantities will be introduced later as the need for them arises.
It should be remarked that a quantity expressed as a vector will be
assigned the same dimensions as the same quantity expressed as a scalar.

Any physical equation can be interpreted as a relation between dimen-
sional quantities. The dimensions of the variables in an equation must
satisfy the algebraic relation expressed by the equation. For example,
the relation force = change of momentum per unit time can be expressed
dimensionally by

[MLT?] = [MLT™Y] + [T).

The habit of checking the dimensions of every equation should be
developed. If the dimensions do not balance, the formula is definitely
wrong. If the dimensions do balance, the formula is probably correct
up to a numerical constant or other quantity of dimension unity. In
certain fields, dimensional analysis is used even to derive physical rela-
tions and is a tool of great power.

1.04. Mts units. The definitions of the physical quantities of 1-03
are independent of the particular choice of units used to measure them.
Their dimensions are also independent of the system of units; that is the
peculiar advantage of dimensional analysis.

But as soon as we desire to measure and assign numerical values to
those quantities of 1-03, we must have a system of units. The usual
procedure is first to define the fundamental units — the units of length,
mass, and time. Each derived unit is then defined by compounding its
component fundamental units according to the dimensional definition of
the derived unit.

The standard centimeter-gram-second or cgs system of units is uni-
versal and convenient in experimental physics, where the systems gener-
ally considered are of the same order of magnitude as the units. In
meteorology the system under consideration is the atmosphere, whose
magnitude is enormous compared with the cgs units. Hence it is logical
to introduce units which are of atmospheric magnitude, and which at the
same time are easily translatable into the comparable cgs units. The
system adopted by the International Meteorological Conference in 1911
is the meter-ton-second or mts system, and we shall use it exclusively in
this book. The units are defined as follows:

a. The unit of length is one meter, abbreviated 1 m. This was
intended to be one ten-millionth of the length of the meridian from the
pole to the equator at sea level. Since the meridian is divided into
90 degrees of latitude, each degree of latitude was to be a length unit
equalto § X 10°m, or 1113 km. Although the original computation had
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a small error, the relation

1) 1 degree of latitude = 111.1 km

is correct and often used in synoptic work. The meter is now fixed by a
standard in Paris, but may always be reproduced in terms of the wave
length of a certain line in the spectrum of cadmium.

b. The unit of mass is one (metric) ton, abbreviated 1t. Itis the mass
of one cubic meter of pure water at its maximum density (near 4°C).

¢. The unit of time is one (solar) second, defined as 1/(24 - 60 - 60) of
the mean time interval between consecutive upper transits of the sun
across the same meridian.

The derived units are obtained as follows: The units of area and
volume are one square meter (1 m?) and one cubic meter (1 m®) respec-
tively. The units of density and specific volume are one ton per cubic
meter (1 tm™2) and one cubic meter per ton (1 m®t™!), respectively.
The units of velocity and acceleration are one meter per second (1 m s™1)
and one meter-per-second-per-second (1 m s™2), respectively.

The unit of force is the force which gives a mass of one ton an accelera-
tion of 1 ms™2.  Unfortunately it has no more specific name than one
ton-meter-per-second-per-second (1 t m s™?) or one mts unit of force.
The unit of pressure is the pressure developed by an mts unit of force
acting on each square meter and is called one centibar (1 cb). The unit
of work is the work done by one mts unit of force acting through a dis-
tance of one meter, and is called one kilojoule (1 kj). The kilojoule
serves also as the unit of energy. The unit of specific work and specific
energy is one kilojoule per ton (1 kjt™'). The origin of the names
centibar and kilojoule will be explained in 1-05.

Angles will be expressed in radians (rad), where 2= radians equals
360°. The unit of angular velocity is one radian per second (1 rad s™1).

1.05. Comparison with cgs units. It is presumed that the reader is
familiar with the cgs units, whose definitions are completely analogous
to the mts units. They start from the fundamental units:

1) 1 centimeter (1 cm) = 10~2 meter;
(2) 1 gram (1 gm) = 107° ton;
3) 1 second (1s) =1 second.

The cgs unit of force, in contrast to the corresponding mts unit, has a
name — the dyne. The cgs unit of pressure is the barye. The cgs unit
of work or energy is the erg. Because of the small size of the barye and
erg, the following alternate measures are often introduced, but they are
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not strictly speaking units in the cgs system:
pressure: 1 bar = 108 baryes;
work or energy: 1 joule = 107 ergs.

It is from these names that the mts units get their names. It will be
shown presently that in accordance with their names:

4) 1 centibar = 1072 bar;
(5) 1 kilojoule = 10 joules.

Despite their prefixes, it must be understood that the centibar and kilo-
joule are actually the units of pressure and work in the mts system.

In order to make a convenient reference page, we will tabulate (table
1-05) the quantities so far considered. For each quantity, we give:
(i) its name, (ii) its dimensions, (iii) its mts unit, (iv) its cgs unit, (v) the
number N of cgs units contained in one mts unit of that quantity. For
all the derived quantities used in this book the mts unit is equal to or
larger in magnitude than the corresponding cgs unit; so that in table 1-05,
Nz1.

TABLE 1.05
(Mts unit = cgs unit X N)

QUANTITY DIMENSIONS Mrts Unit Cgs Unit N
Length L] 1m 1cm 102
Mass [M] 1t 1gm 108
Time [T] 1s 1s 1
Area L% 1 m? 1 cm? 104
Volume [L3] 1 md 1 cm?® 108
Density [ML™3) 1tm™3 1 gmcm™8 1
Specific volume [M~IL3) 1mét! 1 cm®gm™! 1
Velocity [LT™Y 1ms™! 1cms™! 102
Acceleration [LT? 1 ms—? 1cms™2 102
Force [MLT? 1tms? 1gm cms™2 = 1dyne 108
Pressure [ML7!T™? 1tm!'s2?2=1cb1gmcecm's? =1 barye 10*
Work ‘92 2.2 _ {13 2 2 _ 10
Energy } [ML*T—] 1tm*s 1kj 1gmcem®s lerg 10
Specific work 99 - 1 "
Specific energy } [L2T—9) 1kjt 1 erg gm _ 10
Angular velocity  [T™1] 1 rad s™! 1rads™! 1
Momentum [MLT™Y] 1tms™! 1 gmcms™! 108

To obtain N readily, we start from the relations (1), (2), and (3).
Thus for length [L], N = 10%; for mass [M], N = 10%; and for time [T],
N = 1. Toobtain N for any derived quantity, we multiply together the
component N’s according to the dimensional formula. For example,
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pressure = [ML™T™2]. Hence, for pressure, N = 10% - (10%)71. (1)2 =
10*. This means that 1 cb = 10* baryes (= 1072 bar), which proves
(4). For work, N = 10%- (10%)% - (1)™2 = 10'%. Thus 1 kj = 10'° ergs
(= 10 joules), which proves (5).

It should be noted that density and specific volume have the same
numerical values in both cgs and mts units, and that water has unit
density and unit specific volume.

1.06. Comparison with English units. Even in countries where the
metric system is not in general use, the weather services use metric units
to a very large degree. Hence the reader should become familiar with
the units of table 1-:05 to the point where he can use them in everyday
life. To help in this, we give a few comparisons with English units:

Length: 1 m= 39.37 in.;
10,000 ft = 3048 m;
1 km = 0.6214 mile ~ § mile;

Mass: 1 t = 2205 (Ib mass);

Density: 1 tm™ = 62.43 (Ib mass) ft™3;

Velocity: 1 m s~ = 2.237 miles hr™! ~ 2} miles hr™!;
Pressure: 1 cb = 0.1450 (Ib force) in.”2 ~ % (Ib force) in.”?;
Work: 1kj= 737.6 ft-(Ib force).

1.07. Pressure measurement and units. Besides the centibar the
meteorologist must know several other pressure units. In the weather
services pressure is represented in millibars (mb):

1) 1 cb = 10 mb.

For this reason it is necessary to caution students repeatedly fo convert
pressure to centibars when computing with mts units.

The standard pressure-measuring instrument of meteorology is the
mercury barometer. This instrument is so designed that the pressure
of the air is balanced against a column of mercury (Hg) whose length can
be measured very accurately. The pressure is expressed as the length
of the mercury column, in either millimeters or inches. The pressure
of the mercury column is determined by its weight per unit cross sec-
tion, which for a column of constant height varies with both the density
and the acceleration of gravity. To compare pressure readings made
with mercury barometers at different temperatures and at points where
gravity is different, all readings are reduced to a standard tempera-
ture and a standard value of gravity. For millimeter barometers, the
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standard temperature is 0°C, at which the density pp of mercury is
13.5955 t m™. The standard value of the acceleration of gravity is
gn = 9.80665 ms 2, which is approximately the sea-level value of
gravity at 45° latitude.

The pressure of one normal atmosphere (1 atm) is that balanced by a
column of mercury 760 mm = 0.760 m long, under the above standard
conditions. It is the reference pressure of physical chemistry. To
evaluate it, we find that

1atm = (0.76 m) x (13.5955 t m™3) x (9.80665 m s~2) = 101.33 cb.

Thus the normal atmosphere is expressed in mechanical units. We have
(1) 1atm= 760 mm Hg = 29.92 in. Hg = 101.33 cb = 1013.3 mb.

Another reference pressure frequently used in meteorology is standard
pressure, which is defined to be exactly 100 cb. Thus
(2) 750.04 mm Hg = 29.53 in. Hg = 100.00 cb = 1000.0 mb.

From either (1) or (2), tables are computed to convert pressure from

inches of mercury or millimeters of mercury to millibars. The conver-
sion factor

(3) 1 mb = £ mm Hg

is easy to remember and yields all the accuracy usually required for con-
verting millibars into millimeters of mercury.



CHAPTER TWO
THERMODYNAMICS OF A PERFECT GAS

2.01. Thermodynamical systems. Thermodynamics deals with
systems which, in addition to certain mechanical parameters to be
mentioned later, require for their description a thermal parameter, the
temperature. The very definition of temperature requires that a system
be in equilibrium. Thus of necessity thermodynamics is the study of
systems ¢ equilibrium and of processes which can take place in states
differing only slightly from the state of equilibrium. The fact is that
the actual atmosphere is not in equilibrium. Dynamic meteorology is
compelled to make the pretense that equilibrium exists, in order to make
an analysis. We should therefore expect the results to have some slight
disagreements with conditions in the real atmosphere.

The systems considered mostly in dynamic meteorology are infinitesi-
mal parcels of: (i) dry air, which can for practical purposes be con-
sidered as one substance; (ii) pure water substance in any one, two, or
three of the phases solid (ice), liquid (water), or gas (water vapor);
(iii) a mixture of dry air with some water vapor, called moist air; (iv) a
mixture of moist air with some water droplets or ice crystals.

2.02. The physical variables. The infinitesimal systems considered
will be described thermodynamically by the four parameters mass (6M/),
volume (8V), pressure (p), and temperature (T'). One system will be
defined so as always to consist of the same particles. Hence its mass
dM and composition will remain constant, and the other parameters,
volume, pressure, and temperature, will be called the physical variables.
The values of the physical variables will completely describe the state
of the system.

2.03. Volume. The actual volume 8V is conveniently replaced by
the specific volume a= oV/éM. See 1-03(9). Since the mass oM
remains constant, « is directly proportional to the actual volume 8V.
An alternative mass-volume variable is the density p = dM/6V. See
1-03(8). The two variables are related by the equation

(1) ap = 1.

By means of (1), one of the variables may be replaced by the other in any
physical equation. Either of them may with equal right be taken as the
mass variable in dynamics, but we shall usually prefer a.

9
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2:04. Pressure. To define the pressure p of a thermodynamic sys-
tem, we must first consider any fixed point P in the system, and any
fixed direction / at P. We assume it possible to place a testing surface
of small plane area 64 at the point P, and orient the testing surface nor-
mal to the direction /. The molecules of that part of the system on one
side of the testing surface will bombard the area 84, giving rise to a force
8Fin the direction I. (The molecules on the other side of 64 must be dis-
regarded in computing §F.)

Experiment shows that 8 F is proportional to 4 for a range of areas 64
which are neither so large as to exceed the size of the system, nor so small
as to be of molecular dimensions. The proportionality factor is called
the pressure p(P,l) at the point P in the direction l. Thus

oF
P(P,l) = ;SZ'

Pressure is hence a force per unit area, as in 1-03(13).

Now the important points follow: First, experiment and theory show
that p(P,l) has the same value in each direction /. Thus p depends on
P alone. Second, since our systems are infinitesimal in size, and since
they are in equilibrium, the variation of p with P is negligible through-
out one system.

We are thus able to define the pressure p of a system as the common value
of p(P,1) for all points P and directions | in the system. The pressure (in
mts units) gives rise to a net force of p mts force units normal to the
boundary surface, per square meter of boundary surface.

Although the infinitesimal variation of p throughout a system is negli-
gible in so far as the value of p is concerned, the pressure gradient or rate
of change of p with respect to distance across the system is of vital importance
indynamics. The pressure gradient may assume a large value, being the
quotient of two infinitesimals. This will be discussed in chapter 4.

2.05. Temperature. The rigorous definition of temperature is one
of the major results of thermodynamics, rather than being a simple
presupposition of this branch of physics. Thus a logical treatise on
thermodynamics will omit temperature until well into the book, and
then introduce it by a theorem. (See 2:28.) Such a treatment is
bewildering to the ordinary student, and we prefer to follow a less rigor-
ous but more convincing procedure.

We start from the evidence of our senses that we may distinguish
between warm and cold bodies. Experiments reveal that when a warm
and a cold body are put in contact, the former gets colder and the latter
gets warmer. This continues until a state of thermal equilibrium is
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reached, by which we mean that there is no further flow of heat. In
thermodynamics we shall discuss only systems which are in thermal
equilibrium.

Any substance which may be brought into thermal equilibrium with a
mixture of ice and pure water at a pressure of 1 atm (see 1-07) is said to
have the temperature 0° centigrade (0°C). Any substance which may
be:brought into thermal equilibrium with steam immediately over water
boiling at a pressure of 1 atm is said to have the temperature 100°C.
No other temperatures are yet defined.

Now consider any gas which will not liquefy in the following experi-
ment. Let its pressure be kept constant at any fixed value po. Let its
specific volume at 0°C be ap. Let o be its specific volume at 100°C.
It will be found that a0 > ao.

When the specific volume has any other value a;, we will define the
centigrade temperature t (0°C) by the linear interpolation formula
(1) t = 100 i N

a100 — @0

Of course, this makes temperature dependent on the gas used. All
that can be said in this treatment is that, for the ‘‘ permanent gases "
like helium and hydrogen, the temperatures so defined are consistent to
within a very small error. This gives us a very reliable ‘‘ gas thermome-
ter "’ from which a mercury or spirit thermometer may be calibrated.

It is desirable to introduce an absolute scale of temperature, whereby
the temperature of a gas is proportional to its specific volume. To do
this we let
@) Ty = 100aq .

@100 — @9
We find empirically that T = 273.18 for all the permanent gases, mean-
ing that they all have about the same coefficient of expansion 1/T.
We then define the absolute temperature T (°K) of a system in terms of ¢
by the relation
3) T=7Ty+t.

(The K stands for Kelvin.) Let ar be the specific volume at the abso-
lute temperature T of the gas in the experiment above (i.e., ap = a;).
Then from (3), (2), and (1) we get

a
T=To==%) or
o7

C))
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Equation (4), representing the proportionality of « and T at the fixed
pressure po, is called Charles’s law.

2:06. Meteorological temperature scales. The exact value of the
T, of 2:05 requires careful experiment, and as a result physicists have
changed the accepted value from time to time. To standardize the
usage in meteorology, which does not require greater accuracy, it is
customary to use the relation

(1) 0°C = 273°K.

This practice will be followed throughout this book. The symbol T
will often be used for 273 (°K).

It is presumed that the reader is familiar with the Fahrenheit scale
and knows how to convert it to centigrade by the relation

t; (°F) = 8 (°C) + 32.

Every meteorologist using Fahrenheit on synoptic maps should know
the following corresponding values, or a similar table:

t (°C) —40 —-10 0 10 20 30 37 100
ty (°F) —40 14 32 50 68 86 98.6 212

In dimensional formulas we shall use
2) [temperature] = [0].

2.07. Equation of state. In 2-05 we observed that absolute tempera-
ture 1" is measured by the volume change of a suitable substance. The
reason why this is possible lies in a fundamental property of any of the
thermodynamical systems of 2:01.

This property is that between the physical variables p, a, and T
defining the state of a system there emsts a functional relation. The
relation may be written

(1) f([)rarT) =0

and is called the equation of state of the system. It may be determined
empirically for real systems to any obtainable degree of accuracy, or it
may be prescribed for an idealized system like a ‘ perfect gas.”

Except at certain transition states the equation of state can be used to
determine the value of any one of the physical variables from the values
of the other two physical variables.

2.08. The perfect gas. The so-called permanent gases follow to a
close approximation a number of well-known laws. One of these is
Charles’s law, given by 2:05(4). Another is Boyle's law, which says that
at a constant temperature the pressure p and specific volume a are
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related by the formula
1) pa = const,

where the value of the constant depends on the temperature. Two
other laws, known as Avogadro’s law and Dalton’s la'w will be stated in
2:10 and 2-12.

We define a (thermally) perfect gas as a gas which obeys Charles’s and
Boyle's laws exactly. No such gas exists, but the purely gaseous sys-
tems considered in meteorology (see 2:01) are so nearly perfect that it is
most convenient to treat them as perfect gases.

2-09. Equation of state of a perfect gas. We shall show that a per-
fect gas has an equation of state of form

1) pa = RT,

where R is the specific gas constant, which depends on the particular
perfect gas considered. To balance dimensions we must have

[R] = [L2T2071].

Thus from table 1-05 it is seen that R is measured in kj t™! deg™ in the
mts system.

To prove (1), let a = a(T,p) be the specific volume at temperature T°
and pressure p. Let T be a fixed temperature, and let o be the fixed
pressure of the gas asin 2:05. By Charles’s law, 2:05(4),

a(T,PO) _ a_(TO,PU) .
T T,

(2)

By Boyle’s law, 2-08(1),
(3) pa(T,p) = poa(T,po)-
Eliminating a(T,p,) between (2) and (3), we get
f’oa(TmPG)

T

Writing a(T,p) as simply «, and letting R stand for poa(To,p0)/To, we
get (1), as desired.

From (4) we also see that, to determine the numerical value of R, we
need only measure a at say Ty = 273°K and pg = 101.33 cb. Then

poa(To,po)
To

(4) pa(T,p) =

R= kj t! deg™?

For example, dry air is considered a perfect gas in meteorology. At
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po = 101.33 cb and T = 273°K, measurements on dry air give for its
specific volume ag:

(5) ap= 773 m3 t™! (1 atm, 273°K).
Then the specific gas constant Ry for dry air is:

boao  (101.33)(773)
©) Ra= To 273

= 287 kj t1 deg!.

2:10. Molecular weights. The numerical value of the specific gas
constant for each perfect gas can be obtained directly from considera-
tions of molecular weight, without actually measuring a(7,p0) for
the individual gas.

Each pure gas has assigned to it in chemistry a pure number called the
molecular weight, denoted by m. For our purposes the molecular weight
may be thought of as simply a relative density at uniform pressure and
temperature, based on 32.000 for oxygen. The molecular weights used
in meteorology are given in tables 2-10 and 2-13.

TABLE 2:10

MoLecULAR WEIGHTS

Helium 4.003
Hydrogen 2.016
Water vapor 18.016

If m denotes the molecular weight of a given gas, then m tons of the gas
constitute a ton mole, with dimension [M]. The volume occupied by a
ton mole is called the molar volume, and is denoted by v, with dimen-
sions [M™1L3].

An empirical law called Avogadro’s law states that at a fixed tempera-
ture and pressure the molar volume, within a close approximation, is
the same for all permanent gases. At po= 1 atm and Ty = 0°C, the
molar volume is denoted by 7g:

(1) o = 22,414 cubic meters (ton mole)™.
The value (1) is assumed exact for perfect gases.

2:11. Universal gas constant. Consider a mass of M tons of any
perfect gas, at any pressure and temperature, occupying the volume V.
Its specific volume a is V/M. From the equation of state 2-09(1), we
get

(1) pV = MRT.
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In particular, if the mass is one ton mole, i.e., m tons, then the volume
isvand (1) takes the form

2) pv=mRT.
Letting po = 1 atm and T = 0°C, we have
povo = mRTyg or mR = PL'”Q,
0

where v, is given by 2:10(1). Hence mR = pgvg/ T has the same value
for all gases. It is called the universal gas constant and is denoted by R*.
R* has the dimensions [L2T~2067!], and in mts units has the value

~ (101.33)(22,414)
B 273.18

(3) R* = 8313.6 kj (ton mole) ! deg™.
Since R* = mR, we get the formula for the specific gas constant for any
perfect gas in terms of the molecular weight m of the gas:

4) R= n% R*kj t ™' deg™™.

This is the formula used to get the numerical value of R for the equation
of state 2:09(1) of any pure gas.

2:12. Mixtures of perfect gases. Dry and moist air are both mix-
tures of several gases, each of which is treated as perfect. Therefore
we must learn how to get the specific gas constant for mixtures.

Let a mixture of volume V cubic meters contain M; tons of gas 1,
My tonsof gas 2, « - -, M, tons of gass. Let the total mass be M = Y M.
Let the respective molecular weights be m,, mg, - - -, ms. Let the respec-
tive specific gas constants be Ry, Ry, - - -, R,, where each R, = R*/my,
according to 2-11(4). Assume each constituent is perfect.

According to a fourth empirical law, Dalton’s law, each individual
constituent gas will obey its equation of state as though the other con-
stituents were not present. Let p, pq, * * +; ps be the partial pressures
of the constituents. Then by Dalton’s law and 2-11(1),

(1) ka= MiRiT, (k=1,2:--5).

The total pressure p of the mixture is given by p = 3 pp. Summing
equation (1) from k=1 to s, we get

(2) pV = (z M,,R,,) T.
k=1
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Now, if we pick R such that
3) MR = kZl MRy,

then by (2),
4) pV = MRT.

But (4) is simply 2-11(1) over again. Thus we have the rule that if we
define R according to (3) above, then a mixture of perfect gases will also
have the equation of state of a perfect gas. The formula (3) says in words
that R is simply a weighted average of the R;’s, each R;, being weighted
according to the mass of gas k present in the mixture. Thus we say
that the specific gas constant is mass-additive in mixtures.

2:13. Molecular weight of dry air. The composition of dry air
varies only slightly. Table 2:13 presents the computation of the
specific gas constant R = Ry of dry air by the method of 2:12. In the
first column are the principal constituents of dry air. In the second
column are their molecular weights (m;). In the third column are their
individual specific gas constants (Rg) as computed from 2:11(4). In
the fourth column are the masses (M}) of the constituents in one ton of
dry air (so that M = 1). In the fifth column are the values of MRy,
the total of which is equal to Ry, according to 2:12(3). The computa-
tion shows that, to four figures, Ry = 287.0 kj t~! deg™, in accordance
with 2:09(6).

TABLE 2-13
Gas MoL. Wr. Gas CONST. PART BY Mass

(mx) (Rx) (My) MRy
Nitrogen 28.016 296.74 0.7552 224.10
Oxygen 32.000 259.80 0.2315 60.14
Argon 39.944 208.13 0.0128 2.66
Carbon dioxide 44.010 188.90 0.0005 0.09
Dry air 1.0000 = M 286.99 = Ry

It was shown in 2-12 that a mixture of perfect gases is a perfect gas.
The molecular weights of the constituents have been used here only as
relative densities, and not as relating to the structure of the gas mole-
cules. It is thus permissible to define a ‘‘ molecular weight '’ for a
mixture, if we choose. The defining relation is 2:11(4), in order that the
molecular weight may still be a relative density.
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Thus meteorologists define the molecular weight m4 of dry air by

R* 8313.
(1) Mg =— = 8313.6 = 28.97 (pure number).

With this definition, we have from 2-09(1) for dry air that
1
(2) pa = — R*T,
mq
just as for any other gas of molecular weight m,
1
3) pa=— R*T.
m

With this definition we may treat dry air as though it were one ‘‘ sub-
stance "’ with the molecular weight m4. In particular, we may treat
dry air as a ‘‘ pure gas ”’ by the method of 2:12, whenever it is in turn
mixed with water vapor or other pure substances.

The reader may prove for himself that in the notation of 2:12 the
molecular weight m of a mixture is given by the formula:

@ M- S ().

m k=1 mi
Thus the reciprocals of molecular weights are mass-additive tn mixtures.

2-14. Work in thermodynamics. The definition of work in 1-03(14)
is more precisely formulated in mechanics as follows. When a material
particle under the action of a force F moves through the distance ds in
the direction of the force, the work dW
done by the force is Fds. When the
direction of movement makes an angle
6 with the force, only the component
F cos 0 of F in the direction of the
motion contributes to the work, and
the work is given by the expression

(1) dW = Fds cos 8. F1G. 2-14.

pSA

When the system considered is an infinitesimal element of fluid, the
only force with which this element can do work upon its environment is
that arising from the pressure p on its surface. On each area element 64
of the surface there is a force 84 pushing normal to the surface, by 2:04.
Suppose that under the action of the force, the surface element 84
moves a distance ds in a direction making the angle  with the normal
direction, thus arriving at a new position 84’ (see fig. 2:14). Then by
(1) the work done by the force acting on 84 is equal to pdAds cos 6.
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It is seen that 6A4ds cos @ is equal to the volume swept out by the
motion of the area element 64 to its new position §4’. Consider now
the work dW done by the pressure force in the expansion of a system of
volume V, surface area 4, and mass M. Let dV be the total change in
volume of the system, being the sum over the complete area 4 of the
cylinders swept out by the area elements 64 mentioned above. We

see that
(2) dW = pdV.

We shall usually use capital letters to denote quantities referring to
the total mass of a system, and the corresponding small letters to denote
the value of the same quantities referred to unit mass (specific quantities).
Dividing (2) by the mass M, we obtain the expression for the specific
work dw done by the system:

3) dw = pda.

Our sign convention is such that if an element expands under its pres-
sure forces, i.e., does work on the environment, then dw is positive. If
the element is compressed by the external pressure force, i.e., has work
done on it by the environment, dw is negative. A system unchanged in
volume can do no work of the type considered here.

2:15. (a,—p)-diagram. A convenient diagram for many purposes in
thermodynamics is the (a,—p)-diagram, which is a graph of pressure
against specific volume, both variables having linear scales. On account
of its frequent application to atmospheric problems, where pressure
variations are mainly due to vertical displacements of an air element, the
diagram is drawn with pressure increasing downward. Consider any
one perfect gas. Its state (see 2:02) is defined by any two of the vari-
ables p, a, T — the third being obtained from the equation of state
2.09(1). Each point on the (a, p)-diagram represents by its coordi-
nates a unique pait of values of « and p. It consequently represents a
unique state; conversely, each state is uniquely represented by a point
on the diagram.

Any change of state from (a,p) to (a+ da,p + dp) is called an ele-
mentary physical process and is, of course, represented by an infinitesimal
line on the (a,—p)-diagram. A finite process is composed of a succession
of elementary ones, and is thus represented by a continuous curve on the
diagram — the path of the process.

Let a gas perform an arbitrary process represented in the (a,~p)-
diagram by the curve DD'E (fig. 2:15a). The specific work dw per-
formed during the elementary process of expansion DD’ is pda, which is
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measured by the area of the dotted strip. For the finite expansion
process D to E, the total specific work w is equal to the integral of
2-14(3):

E
1) w= /pda.
D

This is measured by the whole shaded area under the curve DE.

Of particular importance is the cycléc process where the system returns
to its initial state (fig. 2-15b). While expanding (DIE) the element
does positive work. During the subsequent compression (EGD) work

g ]
| |
' |
! |
P P | |
| } E G |
;
)
/
D 1
X — o —
F1G6. 2-15a. FiG. 2-15b.

is done on the element and is negative. It must hence be subtracted.
The net work done by the element in the complete cycle is therefore
equal to the area A enclosed by the path representing the cycle in the
(a, —p)-diagram. Denoting the cyclic path by ¢ we have

(2) W=/pda=A.

The unit of area on the diagram must of course be that of a rectangle
whose base is the length of a unit (m® t™) of « and whose height is the
length of a unit (cb) of p. Multiplying the dimensions of pressure by
those of specific volume, we see that area on the (a,—p)-diagram has the
dimensions [L2T 2] of specific work. From (2) we have the rule:

The work performed by unit mass in a cyclic process equals the area
enclosed by the path in the (a,—p)-diagram; the work is positive when
the cycle is taken counterclockwise, and negative when the sense is clockwise.

2.16. Isotherms of a perfect gas. As an example of a process repre-
sented on the (a,—p)-diagram by a curve, we consider the isothermal
process of a perfect gas. For a particular gas at any constant value T3
of T, the product RT} is a definite, known constant.
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Then the equation of state 2-09(1) becomes
(1) pa = RT; = const,

whose graph is a rectangular hyperbola in the (e,—p)-diagram (fig.
2-16). The hyperbola is called the 7sotherm T = T;. It passes through
just those points (a,—p) which represent states with temperature T7.

——————————————————— In fig. 2:16 there is also drawn the
T=T— isotherm T = Ty + dT.
+dT—  Now suppose a system is in the

state represented by the point 4 in
the figure. Suppose it is desired
to heat the system from temper-
atureTy to T +dT. Thismay be
done by any of an infinite number
of processes, each of which can be
represented by a line segment start-
ing from A and ending on the iso-
therm T 4 dT.

We have here pictured just two of these processes. AB is a process
taking place at constant pressure. This is called an Zsobaric process.
AC is a process taking place at constant volume. This is called an
isosteric process. Note that in the process 4 C no work is done. In the
process A B, work is done by the system. This will be of significance in
the evaluation of the specific heats in 2-21.

x —~
Fi1G. 2:16.

2:17. Heat. It was mentioned in 2:05 that when two systems at
different temperatures are brought in contact, the warmer gets colder,
and the colder gets warmer. A calorimeter is a standard system with
which different bodies are brought in contact in order to compare their
various temperature changes with those of the calorimeter. Let the
calorimeter have the initial temperature 7, and let a body to be tested
have the initial temperature T5 > T;. Let the final temperature of the
combined systems be.7’. Then T; < T’ < T,. Experiments with the
same body under varying temperatures show that the final temperature
T’ is determined invariably by the same equation:

¢)) C(T' = T3) + Cu(T' ~ T1) = 0,

where C and C,, are constants.

Comparing different masses of the same substance in the same calorim-
eter, it is found that C,, remains unchanged, and that the constant C
is proportional to the mass M of the body: C = c¢M, where ¢ is a constant
for the substance. The equation (1) has the form of an equation of
conservation, in that the term relating to the body is equal but opposite
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in sign to the term relating to the calorimeter. The equation suggests
that there is something which does not change in the process, and which
flows from the hotter to the colder body. This something is called heat
and will be denoted by AH. Both terms of (1) have the form

2) AH = C(T' - T),

where T/ is the final temperature. The constant C is called the heat
capacity of the system.

Modern measurements have verified the fact that there is conserva-
tion of heat in all processes of thermal conduction. However, it turns
out that the heat capacity is not strictly constant, but rather depends
upon the temperature interval. It is therefore defined by an infinitesi-
mal process. When dH is the amount of heat required to raise the
temperature of a substance from T to T + dT, we define the keat capacity
C at the temperature T as the ratio

dH
T dT

3) c

It was mentioned that C = ¢M. The quantity c is the heat capacity per
unit mass, or specific heat of the substance. Let dh = dII/M stand for
the heat imparted per unit mass. Then from (3):

dh
T 4T

(4) c

The accepted unit of heat in physics is the 15° gram calorie = 1 cal,
defined as the heat required to raise the temperature of one gram of pure
water from 14.5°C to 15.5°C. We shall, however, always express heat
in mts mechanical units of energy (see 2:18).

2:18. The first law of thermodynamics. The concept of mechanical
energy and its conservation was established by Leibnitz (1693). He
showed that in an isolated system the sum of the potential and kinetic
energies is constant. If a system is not isolated, any loss (or gain) of
energy is compensated for by the accomplishment of an exactly equiva-
lent amount of work by (or on) the system. The conservation’of heat in
all processes of thermal conduction, as formulated in 2:17, was estab-
lished about seventy years later.

The role of the first law of thermodynamics is to bring these two sepa-
rate kinds of conservation into one statement by asserting that mechani-
cal energy and heat are equivalent to each other and interconvertible. This
law was first suggested by Count Rumford (1798). However, the credit
for having set the principle of the conservation of energy upon a firm
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experimental foundation is due to Joule. In a classical experiment in
1849, Joule produced heat by churning water and other liquids with
paddle wheels and thus determined directly the mechanical equivalent of
heat. He found that

(¢))] 1 cal = 4.185 x 1073 kj,

and the joule was named in his honor. Séguin (1839), Mayer (1842),
and particularly Helmholtz (1848) are regarded with Joule as also being
founders of the first law, because of their important contributions to the
understanding of its fundamental physical significance.

Since, according to the first law, heat is equivalent to mechanical
energy, we shall always express heat in kilojoules, with dimensions
[ML2T2%]. The conversion to calorie units can always be accomplished
with (1), if desired.

We shall apply the first law to the thermodynamical systems of 2-01.
We shall determine the fate of an infinitesimal amount of heat dII intro-
duced into the system from its environment. Since we are dealing with
systems which are in equilibrium, there is no conversion of dII into ki-
netic or potential energy. The heat dH will in part cause the system
to expand, and thereby do the work dW against external pressure forces.
In part the heat will be used to raise the temperature of the system, and
perhaps also to overcome the resistance of inner forces of attraction
between the molecules. This second portion will be denoted by dU
and is called the change of internal energy of the system. The first law

says in symbols that
(2) dll = dU + dW.

Equation (2) is called the energy eguation and is the complete mathe-
matical description of an elementary process performed by a system in
equilibrium.

The internal energy U is a measure of the random molecular excita-
tion of the system. Its value is found to depend only on the state of
the system; that is, U is a function only of the mass and of the physical
variables p, a, and T

If we divide each term of (2) by the mass of the system, we obtain the
energy equation in the form

3) dh = du + dw = du + pda.
Here u is the internal energy per unit mass; dw is replaced by pda from
2-14(3). Each term in (3) has the dimensions [L2T~?] of specific energy.

2-19. Specific heats of gases. The specific heat of a substance was
defined in 2:17 as the ratiodh/dT. This definition is adequate for a solid
or liquid. For a gas, however, we must proceed carefully. Let a gase-
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ous system at temperature T be in the state represented by the point 4
in fig. 2:16. As remarked in section 2:16, there are an infinite number of
processes whereby the system can be warmed to the temperature
Ty + dT. Each one requires the absorption of a different amount of
heat dh. Thus each process defines a different specific heat dk/dT.

From this multitude we select two specific heats of particular practical
interest: (i) the specific heat at constant volume (c,), defined by the iso-
steric process (da = 0) AC of fig. 2:16; (ii) the specific heat at constant
pressure (cp), defined by the isobaric process (dp = 0) AB of fig. 2-16.
Thus we have

() (dh) ((lh)
v = gy ’ Cp=\|"= .
¢ AT/ gu=0 P NG ap=0

The dimensions of specific heat are [L2T207].

The two processes selected here must each satisfy the energy equation
2:18(3). This will lead in the next sections to several relations among
the specific heats and the internal energy. '

2:20. Internal energy of a perfect gas. The (specific) internal
energy % is a function only of p, @, and T. By means of the equation of
state 2-09(1), we may eliminate any one of these three variables, for
example p. Then u becomes a function of two independent variables T°
and a, and may be treated by the calculus as such. The change of in-
ternal energy du from any given state may always be expressed in terms
of the changes da and dT from that state. In the notation of the calcu-

lus:
ou ou

(1) du:b_l—‘dT-}-b—ada'
The symbol 0u/dT is here interpreted to be the rate of change of % with
respect to T, in a process for which « is constant. Introducing the
expression (1) into the energy equation 2-18(3), we get
ou ou

=—d — .
(2) dh 5T T+ ba+P)da
This equation is valid for any process. Specializing to the case of the
isosteric process (da = 0), we obtain immediately from (2) and 2-:19(1):

_ dh ou
3) o= (dT mo OT

Comparing (1) and (3), we see that

4) du = c,dT + ou da.
Oa
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To evaluate du/de, i.e., to see how internal energy varies with a change
in volume, we must have recourse to experiments. A suitable experi-
ment is the so-called ‘‘ expansion into the void.” Two vessels, one of
which contains the gas under high pressure, the other evacuated, are
placed in communication by means of a pipe with a stopcock. The gas
will then rush into the empty vessel without doing work dw, since it is
pushing against no external forces. If the whole system is insulated, no
heat dk is imparted to the system. Applied to this process, the energy
equation dh = du + dw gives du = 0 for each step of the process. Denot-
ing the finite changes during the complete expansion with a A, we can
write by means of (4):

(5) Au=c,,AT+g—ZAa=0 or gg= ——c,,~AA—Z—:-

Joule performed this experiment and found AT = 0 for all gases used.
That is, there was no temperature increase during the expansion Aa.
He thus concluded from (5) that d%/da = 0 for all gases.

Later experiments permitting more accurate measurements showed an
observable temperature change (Joule-Thomson effect). From such
experiments, Ou/Qa is found to be small. The more nearly a given gasis
*“ perfect "’ in the sense of 2-08, the nearer Ou/da is to 0. 1t is therefore
logical to include in the definition of a perfect gas the stipulation that its
internal energy be entirely independent of volume, or

ou
(6) 5o
Combining (6) with (4), we obtain
7) du = c,dT.

Now by (3) and (6)

%_E’_(%)_b(b_“) 0
da 0a\OT/) 2T \Oa/ ™

which shows that ¢, is a function of temperature alone. Experiments
show that the variation of ¢, with temperature is the smaller, the nearer
the gas approaches a perfect gas. A third and last requirement of a per-
Ject gas, therefore, is that c, be constant.

The integral, # = ¢,T + const, of (7) exhibits explicitly the functional
dependence of # on the state (p, T, a), but (7) itself is sufficient for our
purposes.

2.21. Specific heats of a perfect gas. From 2:18(3) and 2:20(7), we
may write the energy equation of a perfect gas in the form

(1) dh = c,dT + pda,
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a very useful equation expressing the heat added in terms of the varia-
tion of the independent variables 7" and a. In order to compare the
specific heats ¢, and ¢,, we need an expression for dk in terms of the
variation of the independent variables T"and p. To get this, we differ-
entiate the equation of state pa = RT, whence

(2) pda = RAT — adp.
Substituting for pda in (1) we obtain
3) dh = (co+ R)AT — adp.
But then we have for isobaric processes (dp = 0):
dh
- = ¢y + R.
(dT dp=0

Comparing this with the definition 2-:19(1) of ¢,, we see that
@) Cp=C+ R or c¢p—cy=R

These equations (4) say with 2-20 that for a perfect gas, ¢, and c, are both
constants, whose difference is equal to the specific gas constant R. It
will be noted from 2-09 and 2:19 that equations (4) balance dimension-
ally.

That ¢, is larger than ¢, was already clear in 2:19, because in heating
at constant pressure the gas must expand, thereby doing external work.
The heat then is only partly used to raise the temperature. Thus more
heat is required to raise it one degree isobarically than isosterically
(where no work is done). See fig. 2-16.

For dry air, which is regarded as a perfect gas, we shall denote the
specific heats by c,q and ¢pq. From experiments their values are deter-
mined to be as follows:

(5) Coa = T17 kj t™' deg™!; cpa = 1004 kj t71 deg™!.
g

Then by (5), cpa — coa = 287 kj t > deg™ = Ry, in accord with 2-:09(6).
These values should be remembered.

Actually ¢,g and c¢pq are found experimentally to vary slightly with
temperature, but the variation may be disregarded in the atmospheric
range of temperature.

2.22. Energy equations in logarithmic form. The energy equation
is the starting point for most of the meteorological applications of
thermodynamics. It is therefore desirable to express it in various use-
ful ways. The basic expression is

2:18(3) dh = du + dw.
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To express dh in terms of the independent variables T and «, we have
2:21(1) dh = cdT + pda.

To express dk in terms of the independent variables T and p, we can
combine 2:21(3) and 2-21(4):

(1) dh = deT — adp.

The last form will be used most often, since the variables T and p are

those directly observed in the atmosphere.
The energy equation assumes a convenient form when both sides are

divided by the temperature T, and the equation of state pa = RT is used.
Equation 2-21(1) becomes

dh aT do
(2) 7: = Cy 3’: + R : *
Similarly, (1) becomes

dh aT dp

Now by differentiating the logarithm of the equation of state, called
logarithmic differentiation, we get

dp da dT
4) ; + w7
By means of (4) we can eliminate dT from either (2) or (3). Then since
by 2:21(4) ¢p = ¢v + R, we get

(5) %=Cp‘"ig+cvd_e'
a P

T

The three forms (2), (3), and (5) of the energy equation may be written
together in an order which makes them all easy to remember:

dh do aTr ar dp dp da
(6) —1-:=R';—+Cv‘i‘_“=cp*1::—R;=Cv;-}-cp:'
Note that the variables in (6) are written in a certain cyclic order, start-
ing with «, T. The constants are written twice in order of magnitude,
separated by a minus sign:

R,Cp,Cp, - vavycp-
The symmetry of (6) is a superficial aspect of a far-reaching physical

simplification which results from dividing the energy equation by T.
This will be discussed in 2:28. For the present it suffices to note that
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the expressions in (6) are differentials of functions of state. Thus we
have:

) d—;’ = dlln o®T] = d[ln T*$ %] = d[In p~a°?].

By In x we shall always mean the natural logarithm of , i.e., the loga-
rithm with base e= 2.71828 - - ..

2:23. Atmospheric processes. The most fundamental process which
adds or subtracts heat energy to or from a parcel of air in the atmosphere
is radiation. Other important agencies for the exchange of heat are
conduction, turbulent mixing, and internal friction. All these proc-
esses are continually influencing every element of the atmosphere in a
complicated fashion, usually inaccessible to a detailed thermodynamic
analysis. However, they all proceed quite slowly, compared with
another important class of processes, which it will be our primary
objective to analyze.

These other processes are those caused by the motion of the air and
primarily by the vertical motion. They proceed with relative rapidity,
so that they can profitably be investigated by neglecting the influences
of the slow processes involving heat exchange between the system and its
environment. We shall therefore concentrate our attention on proc-
esses for which there is assumed to be no heat exchange between the
system and its environment. Such a process is called adiabatic.

Later, in chapter 3, we shall discuss processes which are not strictly
adiabatic, but there the heat exchange will be small.

2.24. Adiabatic processes of a perfect gas. The condition which
must be satisfied for an adiabatic process is by definition dh = 0. In
2:22 there are many expressions involving dh and other variables.
Each of them becomes a differential equation of the adiabatic process of
a perfect gas, when dh is replaced by 0. For reference, they are repeated
here:

(1) du + dw = 0;
(2) cdT + pda = 0;
3) ¢,dT — adp = 0;
d aT aT dp dp doa
4) Rf+c,,?=cp?-—R?’-=c.,?+cp:=0;

(5) dlIn afT*] = dlln T*7p™*] = d[In p**a"7] = 0.
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From the integration of (5), we get three equivalent relations between
the variables of state in an adiabatic process:
(6) T = const; T°?p~ % = const; p°®a’? = const.
Defining two pure numbers « and 4 by the relations

R c
) k=— and n=-2)
Cp Cy

we can rewrite the more important two of the equations (6) in the form:
(8) + T = const - p*;
9) pa’ = const.
These are the equations derived by Poisson (1823), and generally bear
his name. For this book, (8) is the more important, and « will be used
often. Formula (9) will be discussed presently for illustration; the use
of 5 is not standard in meteorology. Both « and » have dimension [1].

It must be understood that the constants of integration in (8) and (9)
are fixed for one adiabatic process, but they will have different values for
other adiabatic processes. They are each determined separately from
the values of the physical variables at a given initial state, exactly as the
constant in the equation of a straight line of slope 6,

y = 6x + const,

is determined by knowing one point on the line.
We may also rewrite (8) and (9) in terms of the values p1, a;, T of
the variables at an initial state:

T P)x (p)n
10 — == T=T,(=);
(10) T, (p o "\&1

(11) pa’ = prai.
These equations are analogous to the point-slope equation of the straight
line referred to above:
¥y—3=6(x—x1).
For dry air, the Poisson constants x and 7 have the following values:
(12) Ky = Ra_ 0.286,  71q= 2% = 1.400.
Cpd Cvd
These values should be remembered.
2.25. Adiabats on diagrams. Each adiabatic process, like any other

process, is represented by a definite curve on the (a,—p)-diagram. The
curve is called an adiabat, and its equation is 2:24(11). The whole
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family of adiabats is given by 2:24(9)
pa’ = const,
as the constant varies. The family of isotherms was found in 2:16 to be
given by the equation 2-16(1)
pa = const,
as the constant varies. The adiabats and the isotherms are distinct

curves, since 7 > 1. The actual shape of the adiabats depends on the
value of 4. For dry air, when = 74, they are called dry adiabats.
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F1G. 2:25a. (a,—p)-diagram,

In fig. 2-25a we have an (a,—p)-diagram for the range of values of «
and p observed in the lower atmosphere. The isotherms 7" = 200, 300,
400, and 500 are drawn in solid lines; the dry adiabats 6 = 200, 300, 400,
and 500 are drawn in dashed lines. 6 is defined in 2:26. The adiabats
have the same asymptotes as the isotherms, but their slope
(—dp/da = np/a) is steeper than the slope (—dp/da= p/a) of the
isotherms.

The (a,—p)-diagram is very suitable for a theoretical analysis of
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atmospheric processes, since work is measured by an area on the dia-
gram, as in 2-:15(1). However, it is very inconvenient in actual practice
for several reasons. First, neither the adiabatic nor the isothermal
processes are represented by straight lines. Second, the variation of the
variables requires that the adiabats and isotherms meet at too small an
angle for easy discrimination. See fig. 2-25¢. Third, the areas of most
importance in meteorology are spread out inconveniently on the page,
making it difficult to design this diagram as a well-shapeq, large-scale
chart for detailed use.
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F1G. 2.25b. Stiive diagram.

Much better diagrams for practical purposes are those involving p
and T as coordinate variables. These are more logical anyway, being
those directly measured. The simplest of these diagrams is the Stiive
diagram, which is the basic diagram on which the so-called pseudo-
adiabatic chart is drawn. The Stiive diagram is designed to make the
adiabats straight lines, while keeping p and T as the coordinate variables.
This is accomplished by the device of using a linear temperature scale,
but making the pressure coordinate represent pressures in terms of their
kgth powers. Thus the isobar p cb will be $*¢ units from the axis p = 0.
The scale is for convenience still labeled in centibars. (See fig. 2-25b.)
But now from 2:24(8) it will be seen that each dry adiabat will be a
separate straight line through the origin (p =0, T =0). These are
drawn in the figure, and finally the portion of the diagram of greatest
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meteorological interest is drawn in heavy lines and enclosed in a frame.
The rest is usually omitted from the meteorological charts.

The fact that in older books the value kg = 0.288 was used explains
why this value occurs on many pseudo-adiabatic charts.

2:26. Potential temperature. The various dry adiabats on the Stiive
diagram (or any other diagram) need to be labeled. The standard
method is to label each adiabat by the temperature 0 at which it crosses the
isobar p = 100 cb. Any parcel of dry airisin some state (p, T, a), which
is uniquely defined by p and T". If we plot this state on the diagram, it
will lie on somedry adiabat. The corresponding value of 6 is the tempera-
ture read off the same dry adiabat at 100 cb. This temperature @ is
defined to be the potential temperature of the parcel of air in the state
(p, T, ). In physical language the potential temperature is the tem-
perature which the air parcel assumes when compressed (or expanded)
adiabatically to a pressure of 100 cb. 8 is always expressed in degrees
absolute and has the dimension [0] of temperature.

By 2:24(10) we see that the potential temperature 6 of dry air can be
computed from the formula

The student should be able to use formula (1) readily, with the aid of
logarithm tables, even though in practice 6 is usually estimated from a
diagram. When 6 is given a constant value, (1) gives the variation of T
and p in the dry-adiabatic process. It is equivalent in this respect to
2:24(8).

The potential temperature is an invaluable aid to the thermodynami-
cal study of the atmosphere. The main reason for this is that, as
mentioned in 2-23, short-term atmospheric processes are adiabatic.
Unless the air is saturated, they are approximately dry adiabatic. But
in a dry-adiabatic process, 6 remains unchanged, even though T and p
may change a great deal. Such a quantity, which remains invariant
under dry-adiabatic processes, is called a conservative property of atmos-
pheric air. Thus potential temperature is conservative, and as such
may be used to identify air masses through a short interval of time (say
24 hours).

For dry air still another form of the energy equation can be obtained
by logarithmic differentiation of (1). We get
d9 dT dp dT Rydp ,

d—— =" —

@) 8- T “p " T cuap
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where «; has been removed by 2:24(12). Multiplying (2) by cpa, v
obtain

do ar dp
3) deb—'—'cpd"f'_Rd;’
Comparing (3) with 2:22(6), we see that
dh do
4) T = Cri g = d(cpa In 6).

T

By (4) we see that when dk = 0, then df = 0 (which we already knew
We can also compute the magnitude of the change df of potenti
temperature, due to the introduction of dk kj t™* of heat.

It must be emphasized that so far 0 is defined only for dry air.

2:27. Differentials and functions of state. A physical variable
called a function of state if it can be expressed as a single-valued math:
matical function of two of the variables «, p, T defining the state: fc

________________ example, as a function of a and ;
F In physical language, a variable
a function of state whenever in tt
T=Ts (a,—p)-diagram it is possible t

draw lines along which the var
Ta able assumes one constant valu
4 Such lines are called 7sopleths of th
variable. Some of the functior
of state so far considered are no
listed, together with the speci:
a — names (if any) of their isopleth:
p(isobars), T(isotherms), 6(adi:
bats),a(isosteres), p (isopycnics), 1

The differentials so far considered may be placed in two groups. 1
the first group are dp, dT, df, de, dp, and du, all of which are differentia.
of the functions of state just mentioned. The differential of any func
tion of state is called an exact differential.

In the second group are dw and dk, which are not differentials of func
tions of state, and are therefore called inexact differentials. That is, n
Sunctions of state w and h exist whose differentials are dw and dh. This wi
be proved below.

We first quote a theorem from the calculus:

(1)  Theintegral of an exact differential around a closed path is zero.

The rigorous proof of (1) may be found in any textbook of advance
calculus. The general idea may be illustrated by considering /.d1
where ¢ is the closed path 13421 in the (a,—p)-diagram of fig. 2-2!

-3
Y
\

Fic. 2:27.
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Starting the integration at 1, it turns out that the integral fdT along ¢
from 1 to 3 is equal to the net change of T between 1 and 3. This can be
measured by subtracting the T-value T of the isotherm through 1 from
the T-value T3 of the isotherm through 3, giving T3 — T,. Let the inte-
gration be continued through points 4 and 2 back to the starting point 1
again. The value of fdT will be the net change of T over the complete
path. This will be obtained by subtracting the T-value T from itself,
giving zero.

Now let us integrate the energy equation 2-18(3) around a cyclic path ¢
enclosing the positive area 4. By (1), f.du = 0. Using 2:15(2), we
then have

(2) fdh=/du+/dw-/dw=fl>0.

From (2), we see that neither fdh nor f.dw iszero. It then follows from
(1) that dk and dw cannot be exact differentials, as asserted previously.

Exact differentials are very handy to deal with mathematically.
The integral from 1 to 2 of any exact differential dp may be evaluated as
the difference g2 — ¢; in the values of the ¢-isopleths between states 1
and 2. For an inexact differential like dw, on the other hand, there are
no isopleths to draw, and f}dw depends entirely on the path of integra-
tion from 1 to 2. See 2-15.

2.28. Entropy. Equation 2:26(4) states that fordry airdh/T isequal
to the differential of the function of state ¢4 In 8. From 2:22(7) it is
seen that for any perfect gas dh/T is the differential of a function of
state, namely, any of the functions in bracketsin 2:22(7), which differ only
by a constant. According to the definitions of 227, in these instances
dh/T is an exact differential.

The foregoing are but instances of a very general thermodynamical
theorem, whose proof is given in any standard textbook on thermo-
dynamics. This asserts for an arbitrary system, whether or not the
equation of state and the internal energy function are known, that the
expression dh/T is always an exact differential. As such it is the differen-
tial of a function of state which is called the (specific) entropy of the
system, denoted by s. The dimensions of specific entropy are those of
specific heat, namely, [L?T~207']. The total entropy S is equal to s
times the mass of the system.

We have always

1) ds-T or s-/‘-lTﬁ+oonst.
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Being defined differentially, s is known only up to an arbitrary constant.
For dry air, because of 2-26(4),

(2) = Sq4= Cpd In 8 + const.

For any perfect gas, because of 2:22(7),

(3) s=In [a®T°]+ const = In [T?p™ %] + const = In [p®a?] + const.
In general, for any system

4) s = some function of a, p, and T.

Since by (1) an adiabatic process (dh = 0) is a process for which
entropy is constant (ds = 0), adiabatic processes are often called isen-
tropic.

The factor 1/T is called an integrating factor for the inexact differential
dh, since dh/T is exact. It is this which yields the logical definition of
temperature mentioned in 2:05: logically temperature is simply the
reciprocal of the integrating factor for dh.

The fact that ds is exact makes entropy very important as a heat
variable in thermodynamics. Because of its abstract definition, how-
ever, entropy is rather bewildering to the student, and we shall use it as
little as possible. For dry air, the concrete meteorological variable 8
can completely replace entropy.

2:29. Thermodynamic diagrams. It has already been shown that
thermodynamic processes can be represented and studied on a diagram
whose coordinates are the independent variables of the system. Any
such diagram is called a thermodynamic diagram, and the first éxample
was the (a,—p)-diagram of 2:15 and 2:25. Another was the Stiive
diagram of 2-25. We shall conclude this chapter with a discussion of the
emagram and tephigram.

A great deal of dispute is heard among meteorologists as to which are
the best diagrams. The majority of problems can be worked theoreti-
cally with equal facility on all the basic diagrams, since they are all maps
of each other. What really makes one diagram easy to use is the
accuracy, clarity, and convenient scale with which its plate has been
drawn. For certain special problems, special scales are required, and
these can (usually ) be put on any diagram, but in practice they are found
only on special prints made for the purpose.

As for the basic diagrams in frequent use in the United States — the
Stiive diagram, the emagram, and the tephigram — it is most important
that the student first realize their similarities, not their differences.
The fact is that all are “ maps " of each other. Like all maps, all can
show the same lines, if desired. Finally, like all maps, each bears the
individuality of the particular projection.
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2.30. Important criteria of the diagram. There are three criteria
which we shall use to examine each diagram after it has been defined.

(i) How large an angle is there between the isotherms and the adia-
bats? A large angle is desirable, since soundings drawn on the diagrams
will be analyzed on the basis of their slopes. The larger the angle, the
easier it is to distinguish important changes of slope.

(ii) How many of the important isopleths (isobars, isotherms, adia-
bats, etc.) are straight lines? The more straight lines and the less
curved lines, the easier the diagram is to use.

(iii) Is the work done in a cyclic process proportional to the area
enclosed by the curve representing the process? This is an essential
feature in theory, and it is important in practice for certain operations.
On the whole, however, this feature has probably received too much
emphasis in meteorology.

2.31. Stiive diagram. Asit wasdiscussed in 2-25, the Stiive diagram
need not be defined again. The student should get a pseudo-adiabatic
chart and make sure he can determine the pressure, temperature, and
potential temperature of any point on it. The other lines will be intro-
duced in chapter 3. As for the criteria of 2-30:

(i) Theoretically, by stretching the T" axis sufficiently, the angle
between adiabats and isotherms in the atmospheric range could be made
arbitrarily close to 90°. In practice, to keep the diagram more or less
square and legible, the angle is near 45°. See fig. 2-25b.

(ii) Isobars, isotherms, and adiabats are all straight lines.

(iii) The work done is not proportional to the area enclosed but
depends also on which pressures the area covers. The variation is rather
gradual. For example, one square centimeter represents about 259,
more energy at 40 cb than the same area at 100 cb.

2:32. Emagram. The emagram is a graph of —Inp against T.
It was specifically designed to be a pressure-temperature graph having
the work-areca property (iii) of 2-30. From this property Refsdal gave
the diagram its name, as an abbreviation for * energy-per-unit-mass
diagram.” It is sometimes also named after Hertz, Neuhoff, and
Viisili, who discussed the diagram and added features to it.

The emagram has a linear temperature scale on the horizontal axis,
and a logarithmic pressure scale, increasing downward, as a vertical
coordinate. Since as p—0, lim(-In p) = «, the diagram must in
practice be cut at some low pressure, usually 4 cb.

After the axis scales have been drawn (see fig. 2-32a) the adiabats are
drawn in by formula 2-26(1), or else they are plotted from a Stiive dia-
gram. The equation of any adiabat can be obtained by taking the
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logarithm of 2:26(1) for 6 = const:

(1) ~lnp= - —l—ln T + const.
Kd

Formula (1) shows two things. First, each adiabat is a logarithmic
curve on the emagram, becoming steeper with decreasing T. Second,

TN %
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Fic. 2-32a. Emagram.

any two adiabats may be brought into coincidence by a displacement
parallel to the In p axis, so that all adiabats are congruent. As for the
criteria of 2:30:

(i) As in the Stiive diagram, the angle between adiabats and iso-
therms in the atmospheric range can be adjusted to any value short of
90°. But again the convenience of scale and economy of paper dictate
that the angle be about 45°.

(ii) The isobars and isotherms are straight lines, but the adiabats are
logarithmic curves.

(iii) The work w done in a cyclic process c¢ is proportional to the
area A’ enclosed by ¢ on the emagram. To see this, we recall from
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2:21(2) that
dw = pda = RdT — adp.

Hence the work w is given by

() /dw= /RddT- /adp= -—/adp,

where one integral is 0 by 2:27(1). Now a = R3T/p by the equation of
state. Hence from (2)
R,T
3 w= — ~§—dp=Rd/Td(—ln p)=RsA’.
c c
The last equality follows for the emagram, whose coordinates are 7" and
—In p, just as 2:15(2) is true for an (a,—p)-diagram.
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F1G. 2-32b. Emagram.

One other feature of the emagram as drawn in practice must be men-
tioned. Note in fig. 2-32a that the isobars for p = 4, 8, 12, 16, and 20 cb
appear to have exactly the same relative position and spacing as the
isobars whose pressures are respectively five times as large, namely,
p = 20, 40, 60, 80, and 100 cb. Thus the portion of the coordinate grid
on the emagram between 4 cb and 20 cb appears to be congruent to that
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portion between 20 cb and 100 cb. If the graph were cut in two at 20 cb
and the two halves superimposed as in fig. 2:325, then each isobar would
represent two pressures: (i) a ‘‘ high "' pressure above 20 cb; (ii) a
“low " pressure under 20 cb, which is one-fifth of the corresponding high
pressure.

The reason for the congruence of the high- and low-pressure scales is
the logarithmic pressure scale. To draw a logarithmic scale, a base line
is fixed, corresponding to the isobar p = 1 (In p = 0). A unit of length
is fixed. The isobar for p cb is drawn In p units away from p = 1. Now
In 56 =1In541In p. Hence theisobar for 5p cbisjust In 5+ In p units
away from p = 1. Hence the isobar for 5p cb is found just In 5 units
below the isobar for p cb. This results in the congruence mentioned.

Not only the isobars do double duty in fig. 2-32b, but the adiabats also
can serve with either the high pressures or the low pressures by simply
changing the value of their label 8. This follows from the fact that all
adiabats are congruent to each other.

Fig. 2-32b is drawn with the low pressures in parentheses. The values
of 08 to be used with the low-pressure scale are also in parentheses. The
high pressures and corresponding values of 6 are without parentheses.
The diagram has also been cut to the atmospheric temperature range.
The student should get an emagram and become familiar with the scales
introduced here.

Exercise. Prove that if an adiabat has the value 8 = 6, on the high-pressure
scale, then it has the value @ = 5" - §; on the low-pressurce scale. Check fig. 2-32b

by this formula.

2:33. Tephigram. The tephigram is a graph of In#6 against T.
This diagram has a linear temperature scale and a logarithmic 6 scale
which is a linear entropy scale, by 2:28(2). The diagram was adopted
for meteorological use by Shaw (who used the symbol ¢ for entropy),
and was called by him a T-¢-gram or tephigram. The coordinates are
shown in fig. 2-33a.

The equation for the isobars in terms of T and 8 as independent vari-
ables is given by 2:26(1). For each isobar, p is constant, whence
0 = const - . Thus,

1) , In §=In T + const (isobar).

From (1) we see that each isobar is a logarithmic curve on the tephi-
gram. Furthermore, all isobars are congruent, and any two isobars may
be brought into coincidence by a displacement parallel to the In 0 axis.
See fig. 2-33e. Equations 2-32(1) and 2-33(1) may be compared.

In fig. 2-33a the approximate range of variables commonly used is out-
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lined with a rectangle. This rectangle is then rotated, so that the iso-
bars are roughly horizontal. A sketch of the resulting diagram is shown
in fig. 2-33b. As for the criteria of 2:30:

(i) The angle between the adiabats and isotherms is exactly 90°,
since these lines are the coordinates of the tephigram. This 90° angle is
probably the greatest advantage of this diagram.

-500°K’
- V2
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— 40
— 60
— 80
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0°K 100 200
F1G. 2-33a. Tephigram. F1G. 2-33b. Tephigram.

(ii) The isotherms and adiabats are straight lines, whereas the iso-
bars have a curvature which is slight in the atmospheric range.

(iii) The work w done in a cyclic process ¢ is proportional to the area
A"’ enclosed by ¢ on the tephigram. To see this, note from 2-26(4)
that

(2) dh = ¢cpaTd(In 6).
Now by (2) and 2-27(2),

3) . w=-£dw=/;dh=c,,d/; Td(In 0).

But the last integral is c,34 '/, whence w is proportional to 4”’.

The student should get a tephigram, and become completely familiar
with the coordinates so far introduced. Above all, he should see that the
Stiive diagram, emagram, and tephigram are all minor distortions of
each other.



CHAPTER THREE

THERMAL PROPERTIES OF WATER SUBSTANCE AND
MOIST AIR

3.01. Isotherms of water substance. The preceding chapter has
treated the thermal properties of dry air in equilibrium as a special case
of a perfect gas. Any real gas actually behaves nearly like a perfect
gas in a temperature range where it can neither liquefy nor solidify.
The isotherms of a real gas are thercfore ncarly rectangular hyperbolas
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in the (a,p)-diagram. (See fig. 3-01a and compare fig. 2:16. Here we
follow the practice of physicists in having pressure increase upward.
This is convenient, since the system considered at present is not the
atmosphere. Cf. 2:15.)

Water substance, however, does liquefy and frecze in the atmosphere.
Its isotherms are therefore complicated. Consider a sample of pure
water vapor in a cylinder. We shall denote the vapor pressure by e,
reserving p for pressure in the atmosphere. Let the vapor be com-
pressed by a piston while the system remains at a constant temperature
of say 300°K. We shall follow the true isotherm 300°K on an (a.e)-
diagram, as drawn from empirical evidence. See the schematic diagram
in fig. 3-01d.

The specific volume a will roughly follow the perfect gas behavior from
A until the vapor becomes * saturated " at a definite pressure, depend-
ing on the temperature. This pressure is called the saturation vapor

40
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pressure, and in the present instance equals 3.6 cb (see point B). Fur-
ther compression by the piston does not change the pressure e. Instead,
the vapor gradually condenses, and the isotherm proceeds from B
(a~ 39,000 m®t™) to C (a=1m?t™"), where we have only liquid
water. After this, further compression can reduce a but very little,
since water is nearly incompressible. Thus the isotherm continues from
C nearly parallel to the e axis to D and beyond.

1f we follow the isotherm 250°K in the same manner (see dotted line in
fig. 3-01), we get a similar pattern, except that no liquid stage occurs.
The vapor starts to solidify directly to ice at e = 0.077 cb, & ~ 1.5 x 10°
m® t™! (point B’). All the vapor is solidified into ice at the point C’
(e~ 1.09 m3 t71). Further compression of the ice at ordinary high
pressures results in no significant volume change.

3.02. (a,e)-diagram and the triple state. The above considera-
tions show that we must examine in some detail the behavior of water
substance under equilibrium conditions. To a certain extent it is possi-
ble to describe the liquid and vapor phases of all fluids by one equation,

Vapor

RV

Water

T >T,

T=T,
Triple state < \Tt <TKLT,
-

A
/ Ice & vapor B T=T,
/ X-T<T,
a—’
FiG. 3.02.

the van der Waals equation of state. Since the van der Waals formula is
not very successful with water and water vapor, and since it does not
even pretend to describe the solid phase, we will omit any such discus-
sion. We prefer to give the (a,¢)-diagram obtained from experiments on
water substance.

Fig. 3-02 shows a number of isotherms in the (a,e)-diagram. For
temperatures above the critical temperature T, (647°K for water sub-
stance), the vapor never condenses, and the isotherms are roughly like
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those for a perfect gas. For temperatures between the triple state
temperature T, (2713°K for water) and T, the isotherms look like the solid
line in fig. 3-016. The significance of T'; and T, is explained in this and
the following sections. For T < T, the vapor condenses directly to ice
on compression, as shown. On further compression the specific volume
of the ice remains near 1.09 m® t™!, until at high enough pressures the
ice melts to water, or else changes to a second crystalline form of ice.
Neither of the last processes is represented in fig. 3-:02, as it would unduly
complicate the left side of the diagram. The ice «» water transition will
be discussed in detail in section 3-13.

The empirical evidence thus shows that the (a,e)-diagram is divided
into several regions, each region representing one type of phase equilib-
rium for water substance. Some of these regions are outlined with
heavy lines in fig. 3-02 and are labeled vapor, water, water & vapor, ice
& vapor. The regions ice and ice & water have been omitted.

The line 4B represents all states where the three phases ice, water,
and vapor can exist simultaneously in equilibrium in any relative pro-
portions. This is the triple state. It is found to occur for water sub-
stance at

(1) e=0.611cb; T, To= 0.0075°C.

The corresponding specific volumes of ice, water, and vapor are respec-
tively (in m® t™1)
(2) a; = 1.091; ay, = 1.000; a, =~ 206,000.

One phenomenon has been entirely omitted in this discussion, the
supercooling of water. The discussion of this topic is reserved 1 1
section 3-15.

3.03. The critical state. The point C in fig. 3-02 is the point where
the critical isotherm touches the water & vapor region. The correspond-
ing state is called the critical state. For water substance, the critical
state occurs at approximately*

(1) e. = 22,100 cb ~ 218 atm; T, = 647°K; a=3.1mdt

The critical temperature T, is the highest temperature at which water and
vapor can co-exist in equilibrium. The critical pressure e, is similarly
the highest pressure at which water and vapor can co-exist in equilib-
rium. The critical specific volume «, is the value of @ observed at the
critical temperature and pressure.

* N. Ernest Dorsey (comp.), Properties of Ordinary Water-Substance, Reinhold
Publishing Corp., New York, 1940; p. 558.
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It is seen from fig. 3-02 that it is possible to take a sample of vapor into
the state labeled water without passing through any transition zone, for
example, by keeping the pressure greater than e.; i.e., there is no bound-
ary curve in fig. 3:02 separating water from vapor. This corresponds to
the experimental fact that vapor goes into water at these pressures with-
out any abrupt transition.

It is arbitrary whether we call the fluid a vapor or a liquid in this
region. For a < ag, the critical isotherm is customarily taken as the
boundary between vapor and liquid. We then have the following rule
pertaining to all fluids: It is impossible to liquefy a substance at tempera-
tures higher than the critical. This law explains why the permanent
gases of the air are never liquefied at atmospheric temperatures: their
critical temperatures are too low.

Table 3-03 gives the critical data* for some permanent gases and
carbon dioxide.

TABLE 3-03
Gas T: (°K)  pe (cb) a; (m*t™)
He 5.2 230 14.4
He 33.2 1300 32.2
N2 126.0 3390 3.2
(o)} 154.3 5040 2.3
CO; 304.1 7400 2.2

3.04. Thermal properties of ice. Beginning with ice, we shall dis-
cuss separately the thermal properties of the three phases of water sub-
stance and the various changes of phase.

Ice, the solid phase of water substance, is known to evist in several
different crystalline states, each of which is properly a phase itself.
Since only one of these phases occurs in the atmosphere, we shall ignore
the others

At 0°C the specific volume ¢; of ice is given by
(1) a; = 1.091 m3 t71,

On cooling below 0°C ice contracts so slowly that we may regard a; as
constant for our purposes.

The specific heat c; of ice (cf. 2-17) varies with temperature, but the
0°C valuet
(2) ci= 2060 kj t™! deg™?
is sufficiently accurate for atmospheric problems.

* Charles D. Hodgman (edit.), Handbook of Chemistry and Physics, 25th edition,
Chemical Rubber Publishing Co., Cleveland, 1941; pp. 1703-170S.

t+ Edward W. Washburn (editor-in-chief), International Critical Tables of Numeri-
cal Data, McGraw-Hill Book Company, New York, 1926 ff., 7 vol. and index; vol. 5,
p. 95.
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3.05. Thermal properties of water. The specific volume a, of
(liquid) water assumes its least value a,, = 1.00 m® t™ near 4°C.  (This
value will be recalled from section 1:04 as the definition of unit specific
volume.) a, increases somewhat at higher and lower temperatures,
getting as high as 1.043 m® t™ at 100°C. In the atmosphere we shall
use

(1) ap=1.00m3t™!

in computations, regarding a,, as constant for practical purposes.

The specific heat of water is denoted by ¢, and it varies slightly with
temperature. The gram calorie was defined in 2:17 as the heat required
to heat one gram of water one degree at 15°C.  Referring to the mechani-
cal equivalent of heat, 2-18(1), we have at 15°C

(2) Cw = 4185 kj t7! deg™.
In our subsequent work we shall treat ¢,, as a constant with this value.

3.06. Equation of state of water vapor. As in section 3-01, the pres-
sure exerted by water vapor will be denoted by e. The other physical
variables relating to water vapor will be denoted by the subscript v,
for example, a,. With the assumption that water vapor behaves closely
enough like a perfect gas, its equation of state 2:09(1) has the form

1) eay = R,T.

The gas constant R, is computed from the relation 2-11(4), R* = m,R,,
where m, (= 18.016) is the molecular weight of water vapor. This gives

R* 8313.6
= = —— = 461.5kj t 7 1 deg™!.
@) Rv= " 18016 prodes
For later work it is convenient to express R, in terms of Ry, using the
relation R* = m,R, = mgR4, where by 2:13(1) mgy (= 28.97) is the
molecular weight of dry air. Thus

m 1
3) R,=—"Ry=-Ry,
My €
where
My
@) €= = 0.622.

By introducing in (1) the expression (3) for R,, the equation of state for
water vapor takes the form in which we will generally write it:

5) ety = fm.
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It will be useful later to know the magnitude of a, under certain special
conditions. The following values are computed from (5). At the
normal boiling point

(6) (av)l atm, 373° = 1699 I’l’l3 t—l.
Saturated vapor at the triple state (nearly 0°C) has
(7) (@)0611 b, 273> = 206,200 m® t71.

Saturated atmospheric air seldom is warmer than 35°C. The corre-
sponding saturation vapor pressure (5.62 cb) is therefore the highest,
and the corresponding value of «, is the lowest, value which normally
occurs in the atmosphere. This value is

(8) (@)5.62 b, 308° = 25,290 m? 71,

As a check on the accuracy of (5), we give the values of a, in the three
cases above, as taken from experimental data in the Ilandbook of Chemis-
try and Physics:*

(@)1 atm, 3730 = 1671 m® 71
()o.611 cb, 273 = 206,300 m® =1 (- (empirical).
(a)5.62 cb, 308° = 25,250 m?3 !

Thus it will be seen that at atmospheric temperatures (5) gives all
accuracy possible from the data. At the boiling point a 29, error is
found. For temperatures and pressures approaching the critical, it is
found necessary to use a more refined equation of state.

3.07. Specific heats of water vapor. For ice and liquid water the
specific heats ¢; and ¢, are practically independent of the type of process
used to heat the substance. For water vapor, however, as in section
2-19, we must distinguish various specific heats. The specific heat of
water vapor at constant pressure will be denoted by ¢,,. The specific
heat of water vapor at constant volume will be denoted by c,,.

The variation of ¢, and ¢,, with temperature is quite considerable.
Furthermore, there are few data available as to their values at atmos-
pheric temperatures. Simply to fix the magnitudes of these quantities
for our calculations, we shall regard ¢y, and ¢,, as constants in the atmos-
phere, with the following values:}

( Cpo= 1911 kj t ™1 deg™?; ¢ = 1450 kj t™* deg™.
»

* 0p. cit., pp. 1772-1771.

t ¢py is converted to mechanical units from an estimated value given in Dorsey,
op. cit., p. 599, line 4. The value of ¢,y, chosen so that our equation 3-07 (2) is satis-
fied, is near the mean of two determinations reported by Dorsey, 0p. cit., p. 105.
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These values may be as much as 29, in error. With the chosen values,
we have

(2) Cpv — Cw = 461 = R,

which agrees with 2-21(4). Since water vapor is in some ways far from
being a perfect gas, ¢py — ¢y may actually differ from R,, but the order
of magnitude is correct.

3.08. Changes of phase. In sections 3-01 and 3-02 it was stated that
at certain pressures and temperatures an equilibrium may exist between
any two phases, for example, between liquid water and water vapor. To
make the following discussion apply to all three phase-equilibria, we
shall denote the phases by 1 and 2. The pressure at which the two
phases are in equilibrium will be denoted by e,. This notation will be
used throughout the chapter.

Consider now a process where a unit of mass transforms at equilibrium
from phase 1 to phase 2. The equation of energy 2-18(3) can be written
in the following form, since dk = Tds by 2-28(1):

(1) dh = Tds = du + e,da.

Here s is the specific entropy of the system. The complete change of
phase will be represented by integrating (1) from phase 1 to phase 2:
2 2

2 2
(2) /dh=/ Tds=1/du+i/ esdor.

1 1

The first integral represents the total amount of heat absorbed by the
unit mass in phase 1 in order to cause it to transform completely into
phase 2. It is known as the latent heat of the transformation 1 to 2, and
will be denoted by L,,. Latent heat has the dimensions [L2T~%] of
specific energy. The pressure and temperature remain constant during
the transformation (see fig. 3-015), so that (2) may be integrated:

3) Lig=T(sg— s1) = (ug — u1) + €s(ag — ).

The equation (3) will be used in later work.

For the present it suffices to realize that, at each pressure ¢, and corre-
sponding temperature 7" where two phases can co-exist, there is a definite
latent heat L;,. L;p varies with temperature, and it is different for
each of the three phase transformations. Also, Ly, is equal to the
amount of heat released by a unit mass in phase 2 when it transforms to
phase 1. (That is tosay, Lig= —Ly;.)

The three possible phase transformations of water substance are:
water«>vapor (wv), ice~>vapor (i), and ice>water (sw). The corre-
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sponding latent heats are called respectively: latent heat of evaporation
(Lww always written L), latent heat of sublimation (L;,), and latent heat
of melting (L;y,). All these transformations will be discussed in detail
later.

For reference we give the values of the latent heats at 0°C for water
substance.*

4) L = 2.500 x 10% kj t71;
(5) Ly = 2.834 x 10°% kj t71;
(6) L, = 0.334 x 108 kj t™2.

These values will be used for most purposes as constants in the atmo-
spheric range of temperatures.

3.09. Variation of the latent heats with temperature. The variations
of the latent heats with temperature are relatively small but can be ob-
tained from theory. We shall give the argument for L. For the case
of the latent heat of evaporation 3-08(3) takes the form

(1) L = ey(ay — ay) + (Uy — ty).

At atmospheric temperatures we may neglect a,,(= 1) against a,, which
was seen in 3:06(8) to exceed 25,000. By replacing e,a, by R,T from
3-06(1), (1) becomes:

L=R,T+ ty— Uy,
or in differential form
2) dL = RAT + du, — du,,.

Since the vapor behaves nearly like a perfect gas, we note from 2-20(7)
that du, = ¢,,dT. Since a,, is practically constant, the energy equation
2-18(3) for the liquid reduces to di = du,,. And from the definition of
Cw, We see that dk = c,dT. Thus du, = c,dT, which when introduced
in (2) yields

dL = (Ry+ Cyw— €)8T = (cpy — €4)dT.

The last step is according to 3-07(2). Finally, dividing by dT we get
daL
aTr
which contains the following simple rule: The rate of change of the latent
heat L with temperature is equal to the change of the specific heat at constant

pressure from the liquid to the vapor phase. Note that (3) checks dimen-
sionally.

3

= Cpv — Cu)

* Dorsey, op. cit., pp. 616-617. We assume Ly = L + Liy.
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Integrating (3) and using the values of the specific heats in 3-05 and
3:07, we have in the atmospheric range —40°C to 40°C the good approxi-
mation:

L=Lo+ (T = To)(cpo— ¢w) = Lo — 2274(T — 273),

where L, is the value of L at 0°C in 3-08(4). Introducing this value, we
get the final formula

(4) L= (2.500-0.002274°C) x 108 kj t™! (in the atmosphere).

Inspection of (4) justifies the ordinary approximation that L is constant
in the atmosphere.
The reader may show similarly that

(5) L= (2.834 — 0.000149:°C) x 10° kj t™*  (near 0°C).

Thus L, has a variation with temperature only 79, as large as that of L.
Hence L, is still more appropriately taken to be constant.

For L;,, an essential modification of the above argument is required.
Since, however, the melting temperature of ice is almost constant in the
atmosphere (see 3:13), the dependence of L;,, on temperature is unim-
portant to meteorology. On the other hand, (4) and (5) are sometimes
used in meteorological investigations requiring accuracy.

3:10. Clapeyron’s equation. Consider water substance in two
phases, called 1 and 2 as in 3-08. For each temperature T less than T,
there is one saturation pressure e, at which the phases 1 and 2 are in
equilibrium. Conversely, for each pressure e less than e,, there is one
transformation temperature at which the equilibrium exists. Let the
two phases be numbered so that in equilibrium s; > sy, i.e., so that heat
must be added to phase 1 to convert it to phase 2.

It is now our purpose to obtain a differential relationship between the
saturation pressure ¢, and the transformation temperature T just defined.
From the latter equality of 3-08(3), we have at the state (Te,):

(1) Uy + esay — T'sy = ug + 00 — T'sy,

where the subscripts refer to the two phases. Both sides of (1) have the
same form, showing that the function

(2) o=u+ea—Ts

remains constant during the isothermal-isobaric change of phase. The
function ¢ is known as the thermodynamic potential, and it is a function
of state alone. It has the dimensions [L2T 2] of specific energy.

We now consider the isothermal change of phase at the temperature
T + dT and the corresponding pressure ¢, + de;. As above, the thermo-
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dynamic potential will be constant throughout the change of phase at
T+ dT. Letits value be ¢ + dp. By differentiating (2), we get

do = du + eda — Tds + adey — sdT.
But the first three terms on the right are zero, according to the energy
equation 3:08(1). Thus
(3) dp = ade, — sdT.
Since ¢ remains constant in the change of phase at (7T'e,), and since
¢ + dp is constant in the change of phase at (T + dT e, + de,), it follows

that dy remains constant during the transformation from the phase 1 to
the phase 2. We have therefore from (3):

alde, - Sld]‘ = azdeg - Ssz,
or by rearrangement:

de, Sy — 51

(4) .

dT  ay— o

But s; — 57 = L1o/T, from 3:08(3). Hence we get the desired final
differential relationship between e, and T':

de, L1z

dT  T(ag— a;)

Equation (5) is Clapeyron’s equation, found by Clapeyron in 1832 and
later derived from the modern point of view by Clausius.

Since Clapeyron’s equation holds for any two phases, we may write
down the three forms it takes:

deg L

(€))

(6) = m (water—vapor);
de, Li,, N

©) T (o — o) (ice<~vapor);
des Liw .

(8) T T (o — o) (ice—water).

For equilibrium between each pair of phases the pressure ¢, and tempera-
ture T satisfy the corresponding Clapeyron equation. FEach of the
equations may be integrated to give a curve in the (7',e)-diagram, which
we shall call respectively the evaporation curve, the sublimation curve, and
the melting curve. Along the evaporation curve there exists equilibrium
between water and vapor. Along the sublimation curve there exists
equilibrium between ice and vapor. At the point where these two curves
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intersect there is equilibrium among all three phases. It follows there-
fore that the melting curve, representing equilibrium between ice and
water, must pass through the intersection of the other two curves. This
common point on all three curves is the triple point, and the correspond-

Critical point

Melting curve

T

T—
Fic. 3-10.

ing state is the triple state mentioned in 3-02. A schematic (T ,e)-dia-
gram is given in fig. 3-10.

In the next sections we shall give a more detailed discussion of each
of the three changes of phase of water substance.

3.11. Saturation vapor pressure over water. In the case of the
water<«>vapor transformation, the pressure e, is called the saturation
vapor pressure (over water). The corresponding temperature T at which
the transformation takes place is called the evaporation temperature (or,
sometimes, boiling temperature). The curve showing the variation of e,
with T on a (T e)-diagram is the evaporation curve, and 3-10(6) is the
differential equation of this curve. The evaporation curve is known to
pass through these three points:

(1) e, = 0.611 cb, T = 273°K (triple point);
(2) e, = 101.33 cb, T = 373°K (normal boiling point);
3) e, = 22,100 cb, T = 647°K (critical point).
The critical point is of course one end of the evaporation curve.
Now a, =1 and a, > 25,000 in the atmosphere (see 3:06). Using

the equation of state 3-06(5), we can therefore replace a,— o, by
a, = RyT/ (ee,), with sufficient accuracy. Then 3-10(6) takes the form

1 de, el

4) e, dT RyT?

(water «>vapor),
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an important form of Clapeyron’s equation. Equation (4) can also be
written

(5) d(In e) = _I%d@).

In 3-09 it was shown that in a limited range of temperatures (such as
the atmospheric range) L may be regarded as constant. With this
assumption (5) represents a straight line on a (—1/T, In ¢)-diagram.
By using the value L = 2.500 x"10° kj t™*, (5) becomes

1

(6) d(lne)= —54184d <~7:> (water<+»vapor, —40°C to 40°C).

Or in base 10 logarithms:
1
(7) d(log e;) = —2353d (;,) (water«»vapor, —40°C to 40°C).

Integrating (7), with the initial condition (1), gives

2353
(8) log e, = 8.4051 — T (water<»vapor, —40°C to 40°C).
Equation (8) provides a convenient graphical method of determining e,
in the atmospheric range. Fig. 3-11a shows a graph of log e against
—1/T, for temperatures up to the critical. In the atmospheric range,
the slope of the evaporation curve is 2353, which is represented by the

10° Critical point ~ 120p
10% c 100} Normal boiling point
? 103} 80t
RN | Normal 4
2100 boiling poifit ¢ ©
10} 40}
1} . - 20}
0.1 cb A Triple pom‘t . 0¢b Triple point
UT250°K 350 450 650 250" K300 350 400
- % T—
Fi1G. 3-11a. Fi1G. 3-11b.

line AB in the figure. The variation of L at high temperatures causes
the true evaporation curve to bend slightly (curve AC), so as to go to
the critical point. The evaporation curve may then be transferred to a
linear (T,e)-diagram, where the curve shows extreme curvature (see
fig. 3-11b). All physical and meteorological handbooks contain tables
giving e, as a function of T, as determined from experiments.
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If the formula 3-09(4) for L is introduced into 3-11(4), an integration
can be carried out to yield the Magnus formula for e,:

29374

(9) logey= — — 4.9283 log T + 22.5518

(water<»vapor, —40°C to 40°C).

Table 3-11 shows in parallel rows the values of ¢, from the simple formula
(8), from (9), and from empirical data. (The observed values at tem-
peratures below —20°C are unreliable, since the water tends to freeze.)
As might be expected, the values derived from (9) show closer agreement

TABLE 3-11
T —To ~30°C —20°C —10°C 0°C 10°C 20°C 30°C

s from (8),cb 0.0527 0.1273 0.2873 0.611 1.232 2.37 4.36
e, from (9) 0.0509 0.1254 0.2862 0.611 1.228  2.339 4.247
es observed  ...... ... 0.2865 0.611 1.228 2.338 4.243

with the observed values than those derived from (8), but the difference
is less than one millibar throughout the atmospheric range, and for the
most common temperatures the simple formula (8) gives all the accuracy

needed.

3.12. Saturation vapor pressure over ice. The ice«»vapor trans-
formation can be treated in complete analogy to 3-11. Since the re-
semblance is so close, and since the transformation is less important,
we shall go over it rapidly.

In the case of the ice«»vapor transformation, the pressure e, is called
the saturation vapor pressure over ice. The transformation temperature
T is called the sublimation temperature at the pressure ¢,. The curve
giving e, as a function of T is the sublimation curve. As stated in 3-10,
the sublimation curve is known to pass through the triple point of
311(1).

Clapeyron's equation 3-10(7) is the differential equation of the subli-
mation curve. Repeating the argument which led to 3-11(4), we may
obtain the differential equation in the form
(1) ot

e, dT’ RuT
In the atmospheric range L;, may be regarded as constant. Taking its
value from 3-08(5), we g%t the analog of 3-11(8):
2667

(2) log €, = 9.5553 — Wl (ice>vapor).

(ice > vapor).
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The sublimation curve plotted on a graph of log e against —1/T is a
straight line (fig. 3-12a). For comparison the evaporation curve is
drawn as a broken line. The sublimation curve is steeper than the
evaporation curve and lies at slightly lower pressures. It should be

lebr i 0.8cby '
. " 1
05k Triple point l,‘
[
0.6} Triple point
{ e
<_§° 0.1r 04
0.05f
0.2;
005k 20 270 O mrR o o 3%
F16. 3-12a. F1c. 3-12b.

noted that the sublimation curve does not extend above the triple point,
since ice cannot be heated above this temperature. However, water
can be cooled below its freezing point, and such supercooled water is
usually found in the atmosphere. (See 3:15.) Consequently the
evaporation curve must be drawn to about —30°C.

In fig. 3:12b the same curves are drawn on a linear (T',e)-diagram.

3:13. Pressure and temperature of melting. The treatment of the
icewater transformation is similar to that of 3-11 and 3-12, but it
differs in that the equation of state for water vapor does not enter into it.
In the case of the ice»water transformation, the pressure ¢, is called the
melting pressure of ice, and the corresponding temperature T is called
the melting temperature of ice. Whenever ice and water are in equilib-
rium with each other at a surface of mutual contact, the hydrostatic
pressure of the water on the surface is the melting pressure and the
temperature is the corresponding melting temperature.

The curve giving e, as a function of T is the melting curve. It passes
through the triple point

(1) e, = 0.611 cb, T — Ty = 0.0075°C,

and also through the normal melting point
(2) e, = 101.33 cb, T - Ty=0°C.
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The differential equation of the melting curve is Clapeyron’s equation
in the form 3-10(8):

des Liw ('ce+—> te )
—_—= i .
a7~ T(aw — o) warer
Introducing the practically constant values: Lg, = 0.334 X 10°® from
3-08(6), a; = 1.091 from 3-04(1), and a,, = 1.00 from 3-05(1), we get at
T = 273°K.:

de,

3 T —13,440 cb deg™! (ice<>water).

We note from (3) that the melting curve is the only one of the three
phase-transformation curves which has a negative slope in the (Te)-
diagram; i.e., the melting temperature decreases with increasing pressure.
We note also that the curve is very steep, being nearly isothermal (see
fig. 3-10).

As a verification of (3), we may compute the theoretical pressure differ-
ence between the normal melting point (1) and the triple point (2).
Introducing d7" = 0.0075° in (3), we get de, = 100.8. The empirical
value is 100.7 cb, from (1) and (2).

The drop in melting point with increasing pressure has the following
effect. When ice at a temperature slightly below 0°C is subjected to
high pressure, it is brought into a state above its melting point. It is
therefore converted into water but freezes again as soon as the pressure
isreleased. This phenomenon is called regelation, and it accounts for the
plasticity of ice which permits the flow of glaciers.

3.14. Complete (T,e)-diagram. In fig. 3-10 are combined into one
schematic diagram the three transformation curves just discussed. For-
getting about the dotted extension of the evaporation curve below the
triple point, we see that the (7',e)-diagram is divided into three regions.
These represent the ice, water, and vapor phases; they are labeled
accordingly. The phase of water substance is uniquely determined by
its temperature T and pressure e, except along the curves where two
phases can exist in equilibrium.

Any equilibrium process must have a continuous path on the (T'e)-
diagram. Thus a change of phase must occur on one of the transforma-
tion curves and ordinarily will occur only on these curves. An excep-
tion is found when we pass from the vapor region to the water region
through pressures higher than the critical. This corresponds to a con-
tinuous physical process with none of the usual properties of a change of
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phase. There is probably likewise a critical point on the melting curve
with similar properties. There is, however, no critical point on the
sublimation curve, which must extend to absolute zero.

3:15. Supercooled water. The dotted extension below 0°C of the
evaporation curve has a physical significance. Suppose that we have
vapor and water in equilibrium, and cool them carefully. At the triple
point the water ordinarily freezes but, if the water is pure, the ice phase
may fail toappear. The vapor-water combination continues to cool and
follows the evaporation curve. This supercooled state is thermodynami-
cally unstable, and the slightest disturbance will make the system jump
into the stable state on the sublimation curve.

The droplets in clouds and fogs which are formed by condensation
above 0°C will usually assume the supercooled liquid state on cooling
below 0°C. According to experience most cloud elements are still
liquid at —10°C, and water droplets may be found down to —30°C.
When ice particles are brought into a cloud of supercooled drops at a
fixed temperature, the system is no longer in equilibrium. The vapor is
saturated with respect to the water drops, but is supersaturated with
respect to the ice particles; i.e., e is larger than the saturation vapor pres-
sure over zce (see fig. 3-12b). The result is condensation of vapor on the
ice particles. But the loss of vapor means that e becomes less than the
saturation vapor pressure over water. Thus water evaporates. The net
result of the two processes is a growth of the ice crystals at the expense
of the water droplets. This goes on until all the water drops have
evaporated. This process goes on most rapidly near —12°C, where
the saturation vapor pressure over water most greatly exceeds that over
ice.

Two important meteorological applications of the above phenomena
may be mentioned: (i) When a supercooled fog moves over a snow-
covered surface, it tends to dissolve; (ii) when a relatively small number
of ice crystals are present in a cloud of supercooled water droplets, the
ice crystals grow enormously. They can therefore no longer remain
suspended in the air, and they start falling. Bergeron assumes that
tiny ice crystals are always present above a certain level as the end
product of dissipated cirrus clouds. When a cloud grows in thickness
precipitation may be expected from it when its top has reached the ice
crystal level. Although the indications are that other factors also con-
tribute to the formation of precipitation, the effect mentioned here is
undoubtedly an important one.

3:16. Thermodynamic surface of water substance. The fact that
there are three variables of state, namely, e, T, and «, suggests a three-
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dimensional representation of the state of water substance. Let three
coordinate axes measure ¢, T, and a, respectively. Each state (e,T,a) of
water substance is then represented by a unique point in space.

As shown in 2-07, water substance cannot assume an arbitrary state
(e,T,x), but only those states (e,T,a) which satisfy an equation of state
of type

(1) feT,a) = 0.

It is not possible to express relation (1) exactly in terms of one elemen-
tary function. The equation of state can, however, be expressed approxi-
mately in a restricted range of states. See 3-06(5), for example.

The nature of the equation of state is such that all the points (¢,T,c)
satisfying (1) lie on a continuous surface. This is called the thermo-
dynamic surface for water substance and is a representation of all possi-
ble states of water substance. This surface is shown in fig. 3-16. Each

Ice and water
(hidden)

F1G. 3:16. Thermodynamic surface of water substance.

phase is represented by an area on the surface. Each region of equilib-
rium between two phases is represented on the surface by an area where
the isotherms are parallel to the a axis. The thermodynamic surface
reduces to fig. 3-02 when projected on the (a,¢)-plane, i.e., when
viewed parallel to the T axis. It reduces to fig. 3-10 when projected
on the (7.e)-plane, i.e., when viewed parallel to the « axis.

The construction and study of a model of the thermodynamic surface
will greatly enhance the understanding of the thermodynamic properties
of water substance.
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3:17. Moist air. Thus far in chapter 3 we have treated the thermo-
dynamics of pure water substance. The real atmospheric air with its
variable admixture of water vapor will be called moist air. Its thermal
properties are obtained by combining the thermal properties of the dry
air and the water vapor. The question arises whether the presence of
the dry air constituents in any way influences the thermal behavior of
the water vapor. As long as the vapor is unsaturated it behaves very
closely as a perfect gas and, according to Dalton’s law (see section 2-12),
its state is unaffected by the presence of the dry air. When moist air is
brought in contact with a water surface, equilibrium is reached when
there is equilibrium between the water vapor in the air and the liquid
water. This situation is of course not identical with the one discussed
in section 3-11 where no forcign substance was present. We have no
right to assume a priori that the saturation vapor pressure will be the
same in the two cases. However, it has been found that for practical
purposes the atmosphere does not influence the saturation vapor pressure;
i.e., the partial pressure of water vapor in saturated air is equal to the
saturation pressure of pure water vapor.

3:18. Moisture variables. Dry air is treated as an invariable per-
fect gas, according to section 2-13. Since, however, the proportion of
water vapor in the atmosphere varies greatly, we must introduce vari-
ables measuring the moisture content of a parcel of air.

The first of these is the (partial) vapor pressure e of water vapor in the
parcel. Here e has the same meaning as heretofore in chapter 3. It
has the dimensions [ML™T?] of pressure.

Two other moisture variables arc the dimensionless ratios w and q
now to be defined. Let the parcel of moist air with total mass M con-
sist of My tons of dry air mixed with M, tons of water vapor. Thus
Ms+M,=M. Then the mixing ratio w is defined by:

(1) W= E (pure number).
Thus w is the mass of water vapor per ton of dry air.
A closely related variable is the specific humidity q defined by:

(2) = % (pure number).

Thus q is the mass of water vapor per ton of moist asr.
Now we see that

» 1
1_M M+ Mg Mg, 1
q Mv My Mv w
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whence by solving for ¢ and w:

and 'w=—q——-

=1+w 1-g¢

3) q

For absolutely dry air, w=¢= 0. For pure water vapor, w = o and
g=1. g¢is always less than w. It will be shown in 3-20 that in the
atmosphere usually w < 0.04. Then from (3) we see that ¢/w > (1.04)™!
~0.96. Thus ¢ and w differ by at most 49, and usually much less.
For most practical purposes, we can usew = gq. For this reason the names
of w and ¢ have been confused in meteorological literature. Logically
one of the two variables could well be omitted, but current usage makes
it necessary to know both.

The numerical values of w and ¢ are found between 0 and 0.04. We
shall usually express these numbers as parts per thousand. For exam-
ple, the value 0.0154 will be written 15.4 X 1073, Some authors omit
the factor 1073, and speak of ““ 15.4 per mille ” (15.4 °/(y) or “ 15.4
grams per kilogram.” In applying these numbers to thermodynamical
formulas, the factor 10~ must be added.

3:19. Relative humidity. The maximum vapor pressure obtainable
at a given temperature is the saturation vapor pressure over water (not
over ice). This will be denoted by e, throughout this discussion. In
3-11 it was shown that e, depends only on the temperature, and in 3-17
we mentioned that the presence of dry air leaves this property of e,
unchanged. Any attempt to raise e above e, will usually cause conden-
sation to liquid water.

The values of w and ¢ for saturated air are called the saturation mixing
ratio (w,) and the saturation specific humidity (¢,) respectively. Thus
we have

(1) e e; W=Ws; ¢= g

Many meteorological and physiological phenomena involving the
‘“ wetness "’ of the air depend not on the quantity (w) of vapor present
but rather on the degree of saturation. This is true of the hair hygrome-
ter used in meteorographs to measure vapor content. It is also true of
the comfort of a person living in the air. The degree of saturation could
be measured by any of the quantities w/ws, ¢/gs, or e/e,. It is the uni-
versal practice to use the third, called the relutive humidity (r). We have

2 °.

(2) i
Thus r lies between 0 and 1.00. In practice it is expressed as a per cent.
If » = 229, then r is to be given the value 0.22 in our formulas. In



59 Section 3-20

words, 7 indicates what per cent the actual vapor pressure is of the.
saturation vapor pressure over water at the same temperalure.

The meteorograph reports relative humidity as a primary measure-
ment. Thus the state of the upper air is originally described by total
pressure p, temperature T, and relative humidity . The main problem
of the next sections is to obtain the values of , ¢, and e from p, T, and r.
This will be done both numerically and graphically.

3:20. Relations among the humidity variables. The first task is to
express w in terms of e. The total pressure p of a parcel of air is by
Dalton’s law (2:12) the sum of the partial pressure p; of the dry air and
the vapor pressure ¢ of the water vapor. Thus

(1) pa=p—e

Let My tons of dry air and M, tons of vapor separately fill an entire
volume V. We write the equations of state of each component sepa-
rately in the form 2-11(1):

eV = M,R,T (water vapor);
paV = MqR,T (dry air).

We take the ratio of these equations, and introduce M,/M; = w from
3-18(1) and R,/R; = 1/¢ from 3:06(3). We then have

Pa e
Solving for w and using (1), we get
3) w = Pef . (exact).

Thus w is obtained from p and e. This is a very important formula to
know. If the air is saturated, we get as a special case of (3):

€€,
P—6s

We can now estimate the largest value of w, likely to occur in the
atmosphere, say that for saturated air at 36°C and 100 cb. From
3:11(8) we determine that e; ~ 6 cb. Then from (4)

w» (0.622)6
°7100-6

(exact).

4) W

40 x 1073,

In everyday synoptic work, w rarely exceeds 20 X 1073,
Solving (3) and (4) for the vapor pressure, we get the occasionally
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useful relations:

(5) e = wp w&p

H €3 =
e+ w €+ W,

(exact).

The relations (5) can be replaced for most practical purposes by the
important approximate formulas

(6) e~ P w; ey~ P W, (approximate).

€ €
Formulas (6) are obtained by ignoring w and w, in the denominators of
(5), since these are quite small in comparison with e. Formulas (6)
are the more accurate, the smaller w and w, are. The error in (6) rarely

exceeds 3Y).

3.21. Numerical determination of mixing ratio. Now suppose p, T,
and 7 are known, and w is desired. The following calculation is carried
out: (i) The saturation vapor pressurc e¢; is obtained from T alone,
according to formula 3:11(8); (ii) we get e = re,, from 3:19(2); (iii) we
get w from p and e, by 3:20(3). If desired, ¢ can be obtained from
3-18(3), or with a small error ¢ = w. Thus the problem stated above is
solved in principle. This should be carefully understood.

However, this algebraic procedure involves laborious numerical com-
putations for each determination of w. For all the accuracy required in
practice, a graphical procedure is much quicker. This will be described
in section 3:23.

Another important problem is one that will arise in the use of the dia-
gram: given w, and 7, to determine w. The exact solution is independent
of p and could be obtained as follows: (i) Get ¢, from 3:20(5); (ii) then
get‘e from 3-19(2); (iii) then get w from 3.20(3). The result of this
algebra would be

T,

(1) Y1 Q=1 wi/e

The following approximate solution is the one invariably used in prac-
tice: Take the ratio of the two equations 3:20(6), obtaining

(exact).

w e
— = =7
Ws €,
Hence
(2) W= rw, (approximate).

A comparison of (2) and (1) shows that (2) is exact when 7 = 0 and also
when 7 = 1009,. It can be shown that w obtained from (2) is usually
in error hy not more than 0.2 X 1073, which is accurate enough for most
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purposes. The error can be as much as 0.6 x 1073, when w, = 40.0 X
1073 and » = 509,.

3:22. Vapor lines on the diagrams. Since ¢, is a function of T alone
(see 3:11), it follows from 3:20(4) that w, is a function of p and T. Since
all the meteorological diagrams contain the variables p and T, it is
possible to draw curves of constant w, on each diagram. These curves
should properly be called mixing ratio lines for saturated air, but we shall
refer to them simply as vapor lines.

The shape of the vapor lines depends on the diagram. The differen-
tial equation of a vapor line may be obtained as follows: From 3-20(5)
if w, = const, then ¢; = (const) - p. Henced(log p) = d(log ¢;). Intro-
ducing the expression 3-11(7) for d(log e;), we have

1
—) (vapor line).

(1) d(log p) = —2353d (T

By integrating (1) it is seen that on the emagram each vapor line is a
segment of a hyperbola, and that all vapor lines are congruent.

In the atmospheric range, the vapor lines are nearly straight lines on all
diagrams. They always have a slope between that of the dry adiabats
and that of the isotherms. That is, on each vapor line as p decreases,
T decreases but 6 increases. The vapor lines on a tephigram are shown
in fig. 3:36. The student should study the vapor lines on all the dia-
grams at his disposal. See 3:18 for the usual method of labeling them.

3:23. Graphical determination of w, ¢, and e. We now consider the
graphical solution of the problem mentioned at the end of 3:19: given
p, T, and r, to determine w, ¢, and e.

(i) To determine w, first plot the point (7',p) on any thermodynamic
diagram. Interpolating between the vapor lines, find the value of w,;
this should be accurate to 0.1 X 1073, Finally, multiply w, by 7 to
obtain w, according to 3:21(2).

(i) To determine ¢, simply take ¢ = w. More accuracy is neither
necessary nor compatible with the approximation already made in (i).

(iii) To determine e, first obtain the value of ¢,. Since ¢, depends on
temperature alone, it will be the same at the point (7, 62.2 cb) as it is
at the point (7',p). Read the value w] of the saturation mixing ratio at
the point (7, 62.2 cb). Then by 3:20(6),

622 ,

(l) €s =~ (—)zz_z' We

1
= 100w, = I (10%w})  (cb).

Hence e, ~ 103w, millibars. Finally, the valueof e is equal tore,. This
completes the graphical solution of the problem mentioned.
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The rule for getting e, at any temperature can be expressed in words:
The value in millibars of the saturation vapor pressure e, at the temperature
1 is approximately equal to the value in parts per thousand of the satura-
tion mixing ratio at the temperature T and pressure 622 mb. Thus a dia-
gram can replace a table of vapor pressures, with an error rarely exceed-
ing 4%,.

One additional step will correct practically all this inaccuracy in e,.
Having found w} ahove, express it in parts per thousand, and add it to
622, to get a pressure p; in millibars. Then go to the point (T,p,)
and read the value w,’ of the saturation mixing ratio. This will be
almost exactly e, in millibars. The reason follows from the exact for-
mula 3:20(5):

1 ’r pr_ g 622+ 1027”; ’

Co = C oy Wy = Wy, = fw,,———l()",.
* T e+ w!’ e+w 0.622 + w, (10%.°)

The error committed here is negligible, compared with that in (1).

3.24. Thermal properties of moist air. Moist air for which the rela-
tive humidity is 1009}, i.e., e = e;, is called saturated. Otherwise the
moist air is called unsaturated (e < ¢;). We have seen that the water
vapor seldom comprises more than a few per cent of the air. Asa result,
during any process which does not lead to condensation, moist air
behaves like a perfect gas whose thermal properties differ only slightly
from those of dry air.

In 3:25 and 3:26 will be glven the equation of state and the values of
the specific heats for moist air, using the general theory of chapter 2.
There will be given explicitly the small deviations from dry air caused
by the presence of vapor. These deviations will be expressed in terms
of the parameters w and ¢ expressing the variable vapor content of moist
air.

In section 3-27 the adiabatic process for unsaturated air is considered.
This also is nearly the same as that for dry air. However, as soon as
saturation is reached in the adiabatic process, any further cooling leads
to condensation with consequent release of relatively large amounts of
latent heat. As a result there is a sudden transition to new types of
adiabatic processes, to be discussed in sections beginning with 3-30.
Thus it is vitally important to distinguish between the behavior of air
in its so-called unsaturated stage and its behavior in the saturated stage.
The unsaturated stage is called by some authors the dry stage, although
it does not deal with truly dry air.

The notation used here is in so far as possible governed by the follow-
ing principles. For dry air the constants and variables are given the
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subscript d. For water vapor they are given the subscript v. For moist
air and hence for the atmosphere in general they are given no subscript.
However, the adoption of a notation is always limited by the usage well
established by previous writers. There are also difficulties inherent in
the nature of a science. As a result, there will always be certain incon-
sistencies. For example, the vapor pressure might well be denoted by
p., but e is always used. The temperature T is the same for all compo-
nents of a system in equilibrium; hence no symbols Tyor T, are needed.

3.25. Equation of state of moist air; virtual temperature. Let a
parcel of one ton of moist air have the specific humidity ¢. Then the
parcel contains My = 1— ¢ tons of dry air and M, = ¢ tons of water
vapor. According to 2-12(3), the specific gas constant R of the mixture
is given by
) 1-R= My4R;+ M,R,, or

R=(1-¢)Ri+ qR,.
But by 3:06(3) we can write R, = R;/e. Hence

R= (I—Q)Rd+§'Rd=Rd[1+<le— 1)(1]'

Evaluating (1/¢) — 1 and using ¢ ~ w, we get the important formulas
(2) R=(1+0.61g)R; =~ (14 0.61w)R,.

Thus the presence of water vapor will raise the specific gas constant of
atmospheric air from the value Ry = 287 up to a maximum of 294 (cor-
responding to ¢ = 40 X 1073).

Using (2), we can write the equation of state of moist air:

3) pa = RT = Ry(1 + 0.61¢)T.

We see from (3) that moist air of specific humidity ¢ in the state (p,T)
has the same specific volume as dry air would have in the state (p,T*),
where

(4) T*= (1+4+0.61¢)T = (1 + 0.61w)T.

The temperature T* is called the virtual temperature of the moist air and
is by definition the temperature of dry air having the same pressure and
specific volume as the moist air.

The expressions (3) and (4), when combined, give an alternative form
of the equation of state for moist air:

(8) " pa= RyT*.
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Thus to compute « we have our choice of using the real temperature T'
with an altered gas constant R, or of using a fictitious temperature T*
with the dry air gas constant Ry. The former method of equation (3)
is perhaps simpler for computations. The use of virtual temperature and
(5) affords a great simplification of later dynamical theory.

3.26. Specific heats of moist air. Consider the one-ton parcel of
moist air described in 3-25 above. Let there be introduced the quantity
dh of heat into the parcel. Asa result the parcel is heated from tempera-
ture T to T 4+ dT. This temperature rise dT is experienced by both the
dry air and the water vapor. Let dhq be the amount of heat received
by the dry air, per ton of dry air. Let dh, be the amount of heat received
by the water vapor, per ton of water vapor. Then in the notation at the
start of 3-25:

(1) dh = Mydhy + M dh,.

By dividing both sides of (1) by dT and writing M4 and M, in terms of g,
we have

dh dhd dhv
(2) - (-9 a2

Now (2) holds for an arbitrary process in which ¢ (and hence w) are
constant. If the process is at constant pressure p for the whole parcel,
then from 3-20(5) we find that it proceeds at a constant partial pres-
sure e for the water vapor and hence at a constant partial pressure
pa = p — e for the dry air. At constant p, dh/dT becomes by 2-19(1)
the specific heat ¢, of moist air at constant pressure. Since e and pq4 are
constant, the other two quotients in (2) are specific heats at constant
pressure. Hence from (2) we have

Cpv
Cp= (1—Q)de+qcpv=cpd[1+(i_ )q]
de

Evaluating cpu/cpa from 3:07(1) and 2-21(5), we have the important
formulas

3) cp= (14 0.90q)cpqg =~ (14 0.90w)cpq.

Thus the presence of water vapor will raise the specific heat of air from
€pa = 1004 to a maximum of 1040. A similar analysis for the specific
heat ¢, of moist air at constant volume gives the less used formulas

4) co= (14 1.02¢)cya =~ (1 + 1.02w)cyq.

3-27. Adiabatic process of unsaturated air. The adiabatic process of
unsaturated air (the unsaturated stage of 3-24) is a special case of the
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adiabatic process of any perfect gas. A certain parcel of moist air is
under consideration. Since no condensation takes place in the unsatu-
rated stage, the value of ¢ is constant. Then R, ¢,, and ¢, have the
numerical values given by 3-25(2), 3:26(3), and 3-26(4). With these
values, the equations of section 2:24 define the adiabatic process exactly.

There only remains in theory to evaluate the constants k = R/c, and
n = cp/cy of 2:24. We have

(1+0.619)Rs 1+ 0.61q

= = = (1+ 0.61¢)(1 + 0.90q) g,
=¥ 0.900)c,; 1+ 0.90¢ " (1+0.61¢)(1 + 0.909)'xa

where x3 = 0.286 by 2-24(12). Since g is always small, we can expand
(1 + 0.90¢)™! in a power series and then can neglect squares and higher
powers of ¢. We finally obtain with all necessary accuracy the impor-
tant formula

(1) k~ (1= 0.299)ks ~ (1 — 0.29w)xg.

A similar derivation gives a formula important in acoustics, but not
used by us:
n~ (1 - 0.12g)n ~ (1 — 0.12w)na.

We see from (1) that the presence of water vapor will lower Poisson’s
constant « from its dry air value of 0.286 to a minimum of 0.283.

Let a parcel of moist air be in the initial state (7',p), where p < 100 cb.
According to 2:24(10), the temperature T and pressure p, at any other
state in the unsaturated adiabatic process will be given by:

o1 ()

The equation (2) defines a curve which might be plotted on any meteoro-
logical diagram, to be called an unsaturated adiabat. Since k varies with
q, through (T,p) there would be a different unsaturated adiabat for each
value of . Let g be fixed, and consider the corresponding adiabat (2).
This curve will intersect the 100-cb isobar at a temperature 6,, where

Now on the diagram there is a dry adiabat through (T,p) with the poten-
tial temperature 8, where by 2:26(1):

o b (120

This 6 is the temperature which dry air in the state (T',p) would attain
after adiabatic warming to 100 cb. Comparing (3) with (4) and remem-
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bering that « is slightly less than k4, we see that 6, is slightly less than 6.
Thus the adiabatic change of temperature with pressure is slightly less for
moist air than for dry air. This rule holds for adiabatic cooling in the
unsaturated stage, as well as for warming. It is ultimately a conse-
quence of the water vapor’s greater heat capacity.

From (3) and (4), it can be shown that the dry adiabat and the steep-
est unsaturated adiabat through the same point at 40 cb will have a
temperature difference of about one degree at 100 cb. Ilence in practical
problems the dry adiabats can safely be used for moist unsaturated air with-
out commitling a significant error. This is invariably done in practice,
and the unsaturated adiabats are never drawn on a diagram.

The potential temperature 6 has so far been defined only for dry air.
For moist air in the state (7',p) we have the choice between defining 0:
(i) by (4) above; or (ii) as equal to the 8, of (3) above. Definition (i)
permits 6 to be read directly from the dry adiabats of the meteorological
diagram. Definition (ii) would preserve the property that 6 is equal to
the temperature of the parcel after adiabatic compression to 100 cb.
No definition can do both of these things.

In order to keep our theory in the closest harmony with meteorological
practice, definition (i) has been chosen, so that for moist or dry air,
potential temperature 0 is defined by the equation (4) above, i.e., by 2:26(1).
For practical purposes we shall assume that the moist unsaturated adia-
batic process is represented by the dry adiabats 6 = const.

3.28. Virtual potential temperature; characteristic point. Accord-
ing to the formula 3-27(4), every point (T,p) on a meteorological dia-
gram has a definite value of 8 assigned to it, which may be read directly
from a diagram by interpolation between the dry adiabats. It is some-
times convenient to use the so-called virtual potential temperature 6*.
This 6* is the value of 6 for the point (T*,p). According to 3:27(4),

100\
1 0* = T* (——) :
n p

For moist air in the state (T,p), T* is determined from 3:25(4), and 6
from 3:27(4). Introducing these into (1), we get

2) 6* = (1 + 0.619)8 ~ (1 + 0.61w)8.

Thus 6* bears the same relation to 8 that 7* bears to T.

Consider now unsaturated air in the initial state (7',p) and having the
mixing ratio w. The point (T,p) plotted on a diagram is called the
image point of the air. When this air performs an adiabatic process its
image point moves nearly (see 3:27) along the dry adiabat through the
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point (T,p). For an adiabatic compression the air will always remain
unsaturated, and its image point continues along the dry adiabat.
When the process is an adiabatic expansion the image point will move
along the adiabat to the point (7T%,p,) where saturation is reached.
(See fig. 3-38). Rossby has named this the characteristic point, and it is
conveniently determined as the point where the dry adiabat 6 through
the image point intersects the vapor line w, = w. Thus the coordinates
of the characteristic point may be thought of as (§,w), where 8 and w are
the values of these respective variables at the image point. Note that
6 and w remain unchanged throughout the adiabatic process from image
point to characteristic point.

The point (T,p,) marks the end of the unsaturated stage. Further
adiabatic expansion results in condensation of part of the water vapor
with the release of latent heat which is added to the air. This requiresa
separate investigation, to be given in the sections beginning with 3-30.

3:29. Useful approximate formulas. If a meteorologist has frequent
occasion to use the virtual temperature T* or the moist air constants R,
¢p, and «, the following formulas are recommended. The formula (1)
for the virtual temperature is especially useful in working on a diagram.

In using formula 3:25(4) in the lower atmosphere we can use the
average value 273°K for T. Thus we have

T*=~ T+ 0.61Tw=~ T+ (0.61)(273)w ~ T + 4 (10%w).
This gives the formula
1 T* =~ T + }(10%w).
Formula (1) is almost exact at T = 273°K, and is good enough for most
purposes in the atmosphere.

For R, we have by 3:25(2) that R ~ Ry+ 0.61Rzw = 287 4+ 0.175 (10%w).
For many purposes we can use

(2) R = 287 + }(10%w).
For ¢, we have similarly from 3:26(3),
3) ¢p =~ 1004 + {5 (10%w).
For « we get from 3:27(1) a similar, but less accurate, formula
1 3
@) €= 0286 — oo (10°).

All these formulas can be used mentally.

3:30. The adiabatic processes of saturated air. When saturated air
expands adiabatically it will continue to remain saturated during the
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process, and some of the vapor will condense to water or ice. If the air
were enclosed in an adiabatic container during the expansion, the prod-
ucts of condensation would remain in the system and would evaporate
again if the process were reversed into an adiabatic compression. This
process which is both reversible and adiabatic is called the reversible satura-
tion-adiabatic process.

In the atmosphere the above conditions are not usually satisfied.
Condensation is in most cases followed by precipitation, so that some of
the condensed water or ice is removed from the system. The extreme
case where all the products of condensation fall out of the air is called the
pseudo-adiabatic process. This process is evidently not reversible, and
neisther is it strictly adiabatic, since the condensation products remove
some heat from the system when they fall out. (In fact, the system
itself is constantly changing in mass and composition.) The real atmos-
pheric processes lie somewhere between the two extremes just described.

The reversible saturation-adiabatic process is divided into three stages:
(i) At temperatures above 0°C there is the rain stage, where the vapor
condenses to water, and the water vapor has the saturation vapor pres-
sure over water; (ii) at 0°C there is the hail stage, where the condensed
water freczes to ice; (iii) at temperatures below 0°C there is the snow
stage, where the vapor condenses directly to ice, and the water vapor has
the saturation vapor pressure over ice. The pseudo-adiabatic process
has only a rain stage and a snow stage, since no water is retained to be
frozen in a hail stage.

In the real atmospheric process, the temperature of the transition
between the rain and snow stages is usually below 0°C, owing to the
tendency of the water droplets to remain in the supercooled liquid stage.
The snow stage differs relatively little from the rain stage. The hail and
snow stages would require a separate discussion, but are meteorologically
less important than the rain stage. The effect of an unknown amount of
mixing makes the true atmospheric processes differ somewhat from the
ideal processes described above. For all these reasons we shall confine
our discussion to the rain stage and make the approximation that the
entire adiabatic process is in the rain stage.

The adiabatic expansion of saturated air was first investigated by
Hann, and by Guldberg and Mohn. A more nearly complete discussion
was given by Hertz (1884) and Neuhoff (1901). The distinction
between the reversible saturation-adiabatic and the pseudo-adiabatic
process was made by von Bezold (1888). A thorough discussion of both
processes with, numerical comparisons between them was made by
Fjeldstad (1925).

Both the reversible saturation-adiabatic and the pseudo-adiabatic
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processes can be expressed in the form of differential equations involving
dT,dp,and dw,. By w, we mean the saturation mixing ratio over water
in the state (7',p). Since the air is always saturated, w; is also the actual
mixing ratio of the air. Immediately upon expansion from the charac-
teristic point, the temperature starts to decrease. This causes w, to
decrease. Hence some water vapor condenses to liquid water, releasing
some latent heat. This heat is used to warm the whole system, includ-
ing the moist air. Hence the cooling proceeds at a slower rate than in the
dry-adiabatic process. As a result of this argument, it follows that the
adiabats for saturated air must have a slope between that of the dry adiabats
and the vapor lines. See fig. 3-31.

If the reader is interested only in an approximate equation for these
adiabatic processes, he should go to section 3-34 at once.

3-31. Exact equation of the pseudo-adiabatic process. To derive the
exact equation for the pseudo-adiabats, let the saturated air be in the
state (T,p,w;) represented by A4 in fig. 3-31. After a small pseudo-
adiabatic expansion, the air is in the state (T + dT.,p + dp,w, + dw,)
represented by B in the figure. Note that dT, dp, and dw, are all nega-
tive. Let us consider a mass of
1 4+ w, tons of moist air, made up of
one ton of dry air and w, tons of
water vapor. In the pseudo-adia-
batic process 4 B, the quantity —dw, p+ dp
of water vapor condenses and drops
out as precipitation. The conden-
sation releases the quantity of heat

(1) aIl = —Ldw,, e N

which is used to heat the moist air. Fic. 3-31.

From 2-22(3) the heat dk absorbed

by the moist air per unit mass is related to the temperature change dT°
and pressure change dp as follows:

) dh = c,dT — erf-

Here ¢, and R are the thermal constants for moist air. Since the mass
of moist air is 1 4+ w,, we see that

3) dH = (1 + w,)dh.

Combining (1), (2), and (3) we have

(4) ~Ldw, = (1 +w,) [c,,dT - RT d;f] .
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Equation (4) is an exact form of the differential equation for the pseudo-
adiabatic process.

It is convenient to express (4) in terms of the constants ¢pq and Ry
for dry air. We substitute for R from 3:25(2) and for ¢, from 3-26(3).
Multiplying through by (1 + w,) and ignoring squares of w,, we get

(5) —Ldws = (1 + 1.90w,)cpadT — (1 + 1.61w,)RdT(—l-P£°

Equation (5) can be shown to be equivalent to that derived by Fjeldstad.

3.32. Exact equation of the reversible saturation-adiabatic process.
As stated in 3-30, in the reversible saturation-adiabatic process the con-
densed water is retained in the system in the form of cloud droplets.
Let w be the total mass of water substance in a saturated parcel contain-
ing unit mass of dry air. The system will then consist of 1 + w, tons of
moist air and w — w, tons of liquid water. Let the air be in the state
(T,p,w,) represented by point 4 in fig. 3-31. Let the expansion to the
state (T + dT.,p + dp,w, + dw,) take place. As in 3-31 the quantity
—dw, tons of vapor will condense and release the quantity of heat

(1) daIly = —Ldw,.

A second source of heat is the cooling of the w — w, tons of water through
dT degrees. This provides the quantity of heat

(2) dH; = —cy(w — w,)dT,

where ¢, is the specific heat of water. The total heat dH; + dH,
released by the process is absorbed by the moist air. _ For the 1 + w,
tons of moist air this heat is equal to
d
@3) 1+ w) | a7 - RT -f]
Equating the total heat released in (1) and (2) to the heat absorbed in
(3), we get
dp

—Ldw, — cp(w — w,)dT = (1 + w,) [cpdT - RT -;-] .

Introducing Ry and cpq and transposing the term —c,(w — w,)dT give

—Ldw, = [1 + 1.90w, + f—'ﬂ (w - w.)] cpadT — (1 + 1.61w.)RdTé;-
d

P
Putting in the value ¢,/ca = 4185/1004, we get the final form

(&) —Ldw, = [1+ 1.90w, + 417w — w)lepadT — (1 + 1.6lw,)R¢Tdf-
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Equation (4) is an exact form of the differential equation for the reversi-
ble saturation-adiabatic process. It will be noted from (4) that there is
a different reversible saturation adiabat through (7',p) for each value w
of the total water content. They differ only slightly from each other and
from the pseudo-adiabat.

3.33. Critique of the two equations. Equations 3-31(5) and 3-32(4)
cannot be integrated directly in their present form. The latter can be
written in terms of the variables w,, p4, and T and is directly integrable
in that form, a fact of questionable practical value, since p4 is not a con-
venient variable to use. The former equation seems non-integrable in
terms of elementary functions, a consequence of its representing a non-
adiabatic process.

Either equation may be integrated numerically to any desired degree
of accuracy by a series of small steps. To do this, a second relation
between dw,, dT, and dp is obtained by differentiating 3-20(4), which
expresses the physical condition that the air remains saturated. See
5-10(6). This second relation may be combined with the equation of
either saturation process, and the two can be solved simultaneously
for dT and dp in terms of dw,. The work is very laborious in practice.

This numerical integration shows that the pseudo-adiabatic process
cools slightly faster than the reversible saturation-adiabatic process.
This is due to the loss of the heat content of the precipitated water. The
difference is very slight and, in comparison with the effects of radiation
and turbulent exchange of heat, may be neglected in practical problems.

It is therefore immaterial for practical purposes whether the adia-
batic process of saturated air is calculated from the reversible satura-
tion-adiabatic or from the pseudo-adiabatic equation, provided the
process is an expansion. The practical difference between the two
appears when the process is reversed. When the condensed water
remains in the air, the process is reversible, and the compression returns
along its path of expansion. However, when a pseudo-adiabatic expan-
sion is followed by compression, the compression nearly follows a dry
adiabat.

3:34. Simplified equation of the adiabatic process of saturated air.
Let a parcel of 1 + w, tons of saturated moist air be in the state (p,T,w,)
represented by 4 in fig. 3-31. The parcel thus contains one ton of dry
air and w, tons of water vapor. After a small adiabatic expansion the
air is in the state (T + dT.,p + dp,w, + dw,) represented by B in that
figure. Note that dT, dp, and dw, are all negative.

Now the condensation of —dw, tons of water vapor will release the
quantity of heat —Ldw,. Let us make the slightly incorrect assumption
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that this latent heat is used exclusively to heat the ton of dry air; i.e.,
we ignore the heating of the w, tons of water vapor. Then by 2:22(3)
the heat dh absorbed by the dry air is related to the temperature change
dT and pressure change dp as follows:

dh = cpadT — RdT‘%-

Equating dh to —Ldw,, we arrive at an important approximate equation :

dp

..[)

1) —Ldw, = ¢padT — RyT

It will be observed that the exact equations 3-31(5) and 3-:32(4) both
reduce to (1) when the small correction factors to ¢,q4 and Ry are neg-
lected. The solutions of (1) are found to lie very close to the exact solu-
tions of 3-31(5) and 3-32(4). In view of the element of uncertainty in
atmospheric problems, we are quite justified in using the equation (1)
as an acceptable formula for the adiabatic process of saturated air. This
will be done, and the process described by (1) will in the following be
called the saturation-adiabatic process. The corresponding lines on the
diagram will hereafter be called saturation adiabats. 1t will be shown in
section 3-36 how these lines are constructed on the diagram.

From 2:26(3), we may write (1) in the form

Ldw, dé

@ T Ty
From (2) the change df of potential temperature in fig. 3:31 can be
expressed in terms of dws,.

3:35. Isobaric warming and cooling. For two later sections (3:36
and 3-39) it is necessary to compute the temperature change resulting
from isobaric evaporation from, or condensation into, a parcel of air.
Let a parcel of moist air, saturated or not, be in the state (T,p,w).
Suppose that some vapor is condensed from the parcel, or that some
water is evaporated into the parcel. Let either process take place at
constant pressure, the latent heat being supplied to or taken from the air.
In the case of condensation the resulting change dw of mixing ratio is
negative, and the air absorbs the latent heat by warming. In the case of
evaporation dw is positive, and the air provides the latent heat by cool-
ing. Let (dT), be the resulting isobaric change in the temperature of the
air. The air thus finishes in the state [T + (dT),,p,w + dw].

The expression giving (dT), in terms of dw is easy to obtain. In the
case of condensation, the latent heat made available to the moist air (per
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ton of dry air) is —Ldw. We shall, as in 3-34, assume that this heat is
used exclusively to heat the ton of dry air. Since the process is isobaric,
the heat dh absorbed by the air is from 2:22(3)

dh = de(dT)p.

Equating the heat —Ldw released to the heat dk absorbed by the air, we
get

(1) ~Ldw = ¢pa(dT)p.

It will be seen that (1) is valid for either condensation or evaporation.
It should be noted that formula (1) is mathematically equivalent to the
special case dp = 0 of formula 3-34(1).

For easy computation, we solve (1) for (dT), and substitute for L and
Cpd their values from 3-08(4) and 2-21(5). The result is

(2) @7), = —2.5(10%w).

By grouping 10 with dw we have expressed dw in parts per thousand, as
on a diagram. Equation (2) can thus be expressed in words:

At constant pressure, adiabatic condensation of one part per thousand of
vapor will warm moist air two and one-half degrees. At constant pressure,
adiabatic evaporation of the same amount of water into air will cool the
air two and one-half degrees.

3-36. Graphical construction of the saturation adiabats. The con-
struction of the saturation adiabats can be carried out on a diagram very
quickly by using 3:35(2). The method is equivalent to a numerical inte-
gration of the equation 3-34(1). Suppose saturated air is in the state
(T',p,w,) represented by 4 in fig. 3-31. Let dw, be fixed at some con-
venient small negative value, generally —1 x 1073 or -2 x 1073, It is
desired to find the point B (see fig. 3-31) where the saturation adiabat
through A crosses the vapor line w, 4+ dw,. For this construction we
replace the saturation-adiabatic process 4 B by another adiabatic process
AA’B consisting of two parts: (i) The latent heat released by the conden-
sation of —dw, tons of vapor is used to warm the air at constant pressure
along the path 44’; (ii) the now unsaturated air is brought back to
saturation by a dry-adiabatic expansion 4’B. Both (i) and (ii) are
easily performed graphically.

According to 3-35(2) the warming A4’ will amount to 2.5 degrees for
each part per thousand of vapor condensed. Thus 4 is easily plotted.
The point B is found at the intersection of the dry adiabat through A’
with the vapor line w, + dw,. When B has been obtained, the same pro-
cedure can be repeated from that point, and so on. We thus obtain a
series of points 4, B, C, D, - - - on the saturation adiabat. A smooth
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curve can be put through these points for as long a distance as we choose
to carry out the process.

The approximation 3-:35(2) is consistent for infinitesimal dw, with the
approximate equation 3-34(1) defining the saturation-adiabatic process.
The adiabatic process 44’B described above is therefore equivalent to
the saturation-adiabatic process AB of 3:34, as long as dw, is infinitesi-
mal. For finite values of dw,, however, the method of the present sec-
tion has a small error. The smaller the numerical values chosen for
dw,, the more accurate the method is in practice. In this way it is
limited only by one’s ability to read the diagrams.

.

N \ Y

8

» = 100
FiG. 3:-36.

As an example we will compute the saturation adiabat through
T = 20°C, p = 100.0 cb. This and other saturation adiabats are shown
on the tephigram in fig. 3-36. A calculation yields w, = 14.9 x 1072,
The remaining steps have been done on a large tephigram and are shown
in table 3-36. The student should follow the calculations on some
legible diagram.

There will be discrepancies on another diagram, of course, because of
the human factor and the fact that few meteorological diagrams are
made from strictly accurate plates. The point is that this method is
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convenient and reliable. More will be said in 3-38 about the asymptotic
dry adiabat mentioned in table 3-36. It is labeled 6 = @..

TABLE 3-36

POINT T(°C) p(cb) 103w, 10%dw, (dT), 0(°K)
A 20.0 100.0 14.9 -0.9 2.25 293.0
A’ 22.2 100.0 e 295.2
B 18.4 95.8 14.0 -2.0 5.0 295.2
B’ 23.4 95.8 e 300.4
c 14.4 85.8 12.0 -2.0 5.0 300.4
c’ 19.4 85.8 e 305.7
D 9.8 76.3 10.0 -2.0 5.0 305.7
D’ 14.8 76.3 e e 311.2
E 4.9 67.7 8.0 —2.0 5.0 311.2
E' 9.9 67.7 e e 316.8
F -1.0 59.2 6.0 -2.0 5.0 316.8
F 4.0 59.2 e e 322.8
G —-8.4 50.2 4.0 -2.0 5.0 322.8
(e -3.4 50.2 e e 329.2
H —-19.7 40.3 2.0 -1.0 2.5 329.2
H —~17.2 40.3 A, 332.6
I —29.2 34.0 1.0 -0.5 1.25 332.6
r —28.0 34.0 e 334.6
J —37.8 29.5 0.5 —0.5 1.25 334.6
J -36.5 29.5 e 336.2

(asymptotic dry adiabat: 8 = 336.2)

3.37. Nomenclature. A number of temperatures and potential
temperatures of moist air are used by meteorological writers. There is
fair agreement on the definitions of the variables to be introduced, but
there is very little agreement on the names to be given them. It is
therefore important to learn the variables in terms of definite operations
on a diagram. By means of the operations themselves it is possible to
distinguish what an author means by a certain complicated name.

Concerning our own terminology the word wet bulb or subscript w
always refers to temperatures attained by a parcel after it has been
completely saturated. The word egusvalent or subscript e always refers
to temperatures attained by a parcel after it has been completely dried
out. The word potential (or letter 8) always refers to a temperature
attained after some kind of adiabatic compression to 100 cb.

Any temperature with the prefix ssobaric or subscript 7 is that attained
by a parcel after being saturated or dried out at constant pressure.
These are in contrast to temperatures labeled by a prefix adiabatic or
subscripta. The latter are temperatures attained after a parcel has been
saturated or dried out along dry and saturation adiabats.
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3.38. Definitions of 0,,0,, Tsyy Toey Ta. The method of labeling dry
adiabats can be applied to the saturation adiabats. Every saturation
adiabat intersects the isobar p = 100 cb. The value of the temperature
at this intersection is called the wet bulb potential temperature, and is
denoted by 6,. See fig. 3-38. The value of 6, uniquely labels the
saturation adiabats. On many diagrams the saturation adiabats are
drawn at intervals for 8, of 2°C.

A parcel of moist air is said to have the wet bulb potential temperature 6.,
of the saturation adiabat through the characteristic point (see 3-28) of the
parcel.
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Another way of labeling the saturation adiabats is obtained from the
fact that as w, approaches 0, the saturation adiabat approaches asympto-
tically a certain dry adiabat. (This is not proved here but is plausible
from a diagram.) The potential temperature of this asymptotic dry
adiabat is called the equivalent potential temperature and is denoted by 8.
This value of 6. uniquely labels the saturation adiabat. On some dia-
grams the value of 6, is given at the low-pressure end of each saturation
adiabat. On other diagrams 6, must b