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Preface.

The present volume gives a systematic treatment of potential
functions. It takes its origin in two courses, one elementary and one
advanced, which the author has given at intervals during the last
ten years, and has a two-fold purpose: first, to serve as an introduction
for students whose attainments in the Calculus include some knowledge
of partial derivatives and multiple and line integrals; and secondly,
to provide the reader with the fundamentals of the subject, so that
he may proceed immediately to the applications, or to the periodical
literature of the day.

It is inherent in the nature of the subject that physical intuition
and illustration be appealed to freely, and this has been done. However,
in order that the book may present sound ideals to the student, and
also serve the mathematician, both for purposes of reference and as
a basis for further developments, the proofs have been given by rigorous
methods. This has led, at a number of points, to results either not
found elsewhere, or not readily accessible. Thus, Chapter IV contains
a proof for the general regular region of the divergence theorem (Gauss’,
or Green’s theorem) on the reduction of volume to surface integrals.
The treatment of the fundamental existence theorems in Chapter XI
by means of integral equations meets squarely the difficulties incident
to the discontinuity of the kernel, and the same chapter gives an
account of the most recent developments with respect to the Dirichlet
problem.

Exercises are introduced in the conviction that no mastery of a
mathematical subject is possible without working with it. They are
designed primarily to illustrate or extend the theory, although the
desirability of requiring an occasional concrete numerical result has
not been lost sight of.

Grateful acknowledgements are due to numerous friends on both
sides of the Atlantic for their kind interest in the work. It is to my
colleague Professor COOLIDGE that I owe the first suggestion to under-
take it. To Professor OsGooD I am indebted for constant encouragement
and wise counsel at many points. For a careful reading of the manuscript
and for helpful comment, I am grateful to Dr. ALEXANDER WEINSTEIN,
of Breslau; and for substantial help with the proof, I wish to thank
my pupil Mr. F.E. ULRICH. It is also a pleasure to acknowledge the
generous attitude, the unfailing courtesy, and the ready coperation
of the publisher.

Cambridge, Mass. 0. D. Kellogg.
August, 1929.
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Chapter 1.
The Force of Gravity.

1. The Subject Matter of Potential Theory.

While the theory of Newtonian potentials has various aspects, it
is best introduced as a body of results on the properties of forces
which are characterized by Newtons Law of Universal Gravitation!:

Every particle of matter in the universe attracts every other particle, with
a force whose divection is that of the line joining the two, and whose magnitude
is divectly as the product of their masses, and inversely as the square of
their distance from each other.

If, however, potential theory were restricted in its applications to
problems in gravitation alone, it could not hold the important place
which it does, not only in mathematical physics, but in pure mathema-
tics as well. In the physical world, we meet with forces of the same char-
acter acting between electric charges, and between the poles of magnets.

But as we proceed, it will become evident that potential theory may
also be regarded as the theory of a certain differential equation, known
as LapLACE’s. This differential equation characterizes the steady flow
of heat in homogeneous media, it characterizes the steady flow of ideal
fluids, of steady electric currents, and it occurs fundamentally in the
study of the equilibrium of elastic solids.

The same differential equation in two dimensions is satisfied by
the real and imaginary parts of analytic functions of a complex variable,
and R1EMANN founded his theory of these functions on potential theory.
Differential geometry, conformal mapping, with its applications to geo-
graphical maps, as well as other branches of mathematics, find impor-
tant uses for Laplace’s equation. Finally, the methods devised for the
solution of problems of potential theory have been found to be of far
wider applicability, and have exerted a profound influence on the
theory of the differential equations of mathematical physics, both
ordinary and partial, and on other branches of analysis2.

1 Philosophiae Naturalis Principia Mathematica, Book II1, Propositions [—VII.
Formulated as above in TrHomsoN and Tarr, Natural Philosophy, Pt.II, p.o.
2 Indications on the literature will be found at the end of the book.

Kellogg, Potential Theory. 1



2 The Force of Gravity.

2. Newton’s Law.

It is our experience that in order to set bodies in motion, or to stop
or otherwise change their motion, we must exert forces. Accordingly,
when we see changes in the motion of a body, we seek a cause of the cha-
racter of a force. As bodies about us, when free to do so, fall toward
the earth, we are accustomed to attribute to the earth an attracting
power which we call the force of gravity. It is not at all obvious that the
smaller bodies on the earth attract each other; if they do, the forces
must be exceedingly minute. But we do see the effects of forces on the
moon and planets, since they do not move in the straight lines we are
accustomed to associate with undisturbed motion. To NewTON it
occurred that this deviation from straight line motion might be re-
garded as a continual falling, toward the earth in the case of the moon,
and toward the sun in the case of the planets; this continual falling could
then be explained as due to an attraction by the earth or sun, exactly
like the attraction of the earth for bodies near it. His examination of
the highly precise description of planetary motion which KEPLER had
embodied in three empirical laws led, not only to the Verification of this
conjecture, but to the generalization stated at the beginning of the
first section. The statement that all bodies attract each other according
to this law has been abundantly verified, not only for heavenly bodies,
but also for masses which are unequally distributed over the earth, like
the equatorial bulge due to the ellipticity of the earth, and mountains,
and finally for bodies small enough to be investigated in the laboratory.

The magnitude of the force between two particles, one of mass m,,
situated at a point P, and one of mass m,, situated at Q, is given by
Newton’s law as

F=yhl,
where 7 is the distance between P and Q. The constant of proportio-
nality 9 depends solely on the units used. These being given, its deter-
mination is purely a matter of measuring the force between two bodies
of known mass at a known distance apart. Careful experiments have
been made for this purpose, an account of which may be found in the
Encyclopedia Britannica under the heading Gravitation. If the unit of
mass is the gramme, of length, the centimetre, of time, the second, and

1 See also ZENNECK : Encyklopadie der Mathematischen Wissenschaften, Vol. V,
pp. 25—67. Recently, measurements of a high degree of refinement have been
made by Dr. P. R.HEvL, of the U.S.Bureau of Standards. See 4 Redetermination
of the Constant of Gravitation, Proceedings of the National Academy of Sciences,
Vol. 13 (1927), pp. 601—605.

The value of y there given has been adopted here, although it should be
noted that further experiments by Dr. HEvL are still in progress.



Interpretation of Newton’s Law for Continuously Distributed Bodies. 3

of force, the dyne, it is found that y = 6-664 X 10-8. If we borrow the
result (p. 7) that a homogeneous sphere attracts as if concentrated at
its center, we see that this means that two spheres of mass one gramme
each, with centers one centimetre apart, will attract eachother with a
force of -00000006664 dynes.

In order to avoid this inconvenient value of y, it is customary in
potential theory to choose the unit of force so that y = 1. This unit of
force is called the attraction unit.

Exercises.

1. If the unit of mass is the pound, of length, the foot, of time, the second,
and of force, the poundal, show that 9 has the value 1070 X 10~°. One foot
contains 3046 cm., and one pound, 453°6 gm.

2. Two homogeneous lead spheres, of diameter 1 {t. are placed in contact
with each other. Compute the force with which they attract each other. A cubic
foot of lead weights 710 pounds. Answer, about 0000046 1b. This is approxi-
mately the weight of a square of medium weight bond paper, of side 1/, in.

3. Compute the mass of the earth, knowing the force with which it attracts a
given mass on its surface, taking its radius to be 3955 miles. Hence show that
the earth’s mean density is about 5'5 times that of water. Newton inferred that
the mean density lies between 5 and 6 times that of water.

4. Find the mass of the sun, it being given that the sun’s attraction on the
earth is approximately in equilibrium with the centrifugal force due to the earth’s
motion around the sun in a circle of 4'90 X 10! feet. Answer, about 330,000 times
the mass of the earth.

8. Interpretation of Newton’s Law for Continuously
Distributed Bodies.

Newton’s law was stated in terms of particles. We usually have to
deal, not with particles, but with continuously distributed matter. We
then naturally think of dividing the body into small parts by the me-
thod of the integral calculus, adding the vector forces corresponding
to the parts, and passing to the limit as the maximum chord of the parts
approaches 0. This, in fact, is exactly what we shall do. But it should
be pointed out that such a process involves an additional assumption.
For no matter how fine the division, the parts are still not particles,
Newton’s law as stated is not applicable to them, and we have no means
of determining the forces due to the parts.

The physical law which we shall adopt, and which may well be re-
garded simply as an amplified statement of Newton’s law, is the follow-
ing: Given two bodies, let them be divided into elements after the manner
of the integral calculus, and let the mass of each element be regarded as con-
centrated at some point of the element. Then the attraction which one body
exerts on the other is the limit of the attraction which the corvesponding
system of particles exeris on the second system of particles, as the maximum
chord of the elements approaches 0. We shall revert to this assumption,
and consider its legitimacy, on p. 22.

1*



4 The Force of Gravity.

4. Forces Due to Special Bodies.

Because of their use in other problems of potential theory, because
of the generalizations which they illustrate, and because of the practice
which they give in dealing with Newtonian forces, the attractions due
to special bodies are well worth study.

‘While each of two bodies attracts the other, the forces exerted are
not equal vectors. Their magnitudes are equal, but they are oppositely
directed. In order to avoid ambiguity it will be convenient to speak
of one body as the attracting, and the other as the attracted body. This
merely means that we are specifying the body the force on which we
are determining. We shall also confine ourselves for the present to the
case in which the attracted body is a unit particle. It will appear in § 11
(page 27) that the results are of wider significance than is at first evident.
This section will be devoted to some illustrative examples.

Straight homogeneous segment. Let us consider a straight line segment,
which we regard as having mass, so distributed that the mass on any
interval is proportional to the length of the interval. The constant factor
of proportionality 4 is called the linear density. We have here an ideali-
zation of a straight wire, which is a better approximation the smaller
the diameter of the wire relatively to its length and the distance away
of the attracted particle.

Let axes be chosen so that the ends of the wire are the points (0, 0, 0)
and (/, 0, 0). As a first case, let the attracted particle be in line with the
wire, at (x, 0, 0), x > [. Let the wire be divided into intervals by the
points §,=0, &, &, ... §, =1 (fig. 1). Then the interval (&, &,.1) carries
a mass 2 4 &, which, by our physical law, is to be regarded as concen-
trated at some point & of the interval. The force due to the particle
thus constructed will lie along the x-axis, and will be given, in attraction

, units, by
., . A Ax _ A&
g EI( g/(ﬁ A z kT |x_§k/;2:
Fig. 1. AY, =0, A4Z,=0.

The force due to the whole segment will be the limit of the sum of the
forces due to the system of particles, or

4
X=_f vzd‘éﬁz, Y=0, Z=0,
0

(x =&
or
XZ——ZZ——} Y=‘0, Z:O.
x(x — 1)

The result may be given a more suggestive form by introducing the
total mass M = 1!, and considering at what point of the segment a
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particle of that mass should be placed in order to yield the same attrac-
tion on a unit particle at P (x, 0, 0). If ¢ is the co6rdinate of this point,

Al M ——
X=— oy =—"a and c= V(@ — 2.
Thus the wire attracts a unit particle at P as if the mass of the wive were
concentrated at a point of the wive whose distance from P is the geometyic

mean of the distances from P of the ends of the wire.

As P approaches the nearer end of the wire, the force becomes in-
finite, but only like the inverse first power of the distance of P from
this end, although a particle would produce a force which became in-
finite like the inverse square of the distance. The difference is that in
the case of the particle, P draws near to the whole mass, whereas in the
case of the wire the mass is distributed over a segment to only one of
whose points does P draw arbitrarily near.

As P recedes farther and farther away, the equivalent particle (as
we shall call the particle with the same mass as the wire, and with the
same attraction on a unit particle at P) moves toward the mid-point
of the wire, and the attraction of the wire becomes more and more
nearly that of a fixed particle at its mid-point. An examination of such
characteristics of the attraction frequently gives a satisfactory check
on the comiputation of the force.

Let us now consider a second position of the attracted particle,

. l . . .
namely a point P (—2—, ¥, O) on the perpendicular bisector of the material
segment (fig. 2). The distance 7 of the attracted particle from a point
(4,0, 0) of the interval (&, &.,) is given by

4 I\?
72 = (E/;_§> +y2:

and the magnitude of the force at P, due to a particle at this point,
whose mass is that on the interval (£, &) is )

AdE
AF, = —" 07— - . ,(_é)}
(8- 5) +9° PNz
| \A%x
This force has the direction cosines N
gl . N
2 -7 0 g Ex Ewer L
v v ’ Fig. 2.
and therefore the components
l
PR k| LN VLS PR

el weafe]



6 The Force of Gravity.

The limits of the sums of these components give the components of the
attraction of the segment
d
Ve —ya|—%  z-y.

(= 3)s

-] Jle-ayeo]

The first integral vanishes, since the integrand has equal and opposite

X=12

. ‘1 Y . . .
values at points equidistant from & = 5 - The second integral is easily

evaluated, and gives

I
Ve MM

7 2“_; c2’
JUORE

if ¢ is the geometric mean of the distances from P of the nearest and
farthest points of the wire. The equivalent particle, is thus seen to lie
beyond the wire as viewed from P. This fact is significant, as it shows
that there does not always exist ## a body a point at which its mass can
be concentrated without altering its attraction for a second body.
Our physical law does not assert that such a point exists, but only that
if one be assumed in each of the parts into which a body is divided,
the errors thereby introduced vanish as the maximum chord of the parts
approaches 0.

Spherical shell. Let us take as a second illustration the surface
of a sphere with center at O and radius a, regarding it as spread with
mass such that the mass on any part of the surface
is proportional to the area of that part. The con-
stant factor of proportionality ¢ is called the
surface density. We have here the situation
usually assumed for a charge of electricity in equi-
librium on the surface of a spherical conductor?.
Let the attracted particle be at P(0,0,z2), 2 9=a
(fig. 3). Let A4S, denote a typical element

Fig. 3. of the surface, containing a point @, with
spherical coérdinates (@, ¢;, ;). Then the magnitude of the element
of the force at P due to the mass o 4 S;, of the element of surface 4 5,,
regarded as concentrated at Q. is
cdS, cdS;

72 a? + 22— 2azcos P *

AF, =

By symmetry, the force due to the spherical shell will have no com-
ponent perpendicular to the z-axis, so that we may confine ourselves

1 See Chapter VII (page 176).
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to the components of the elements of force in the direction of the z-axis.
The cosine of the angle between the element of force and this axis is

acosP —z
7 2

so that
olacost, — 2) A4S,

4z, =

[a® + 22 — 2az cos 19,,’]%

and the total force is given by the double integral over the surface of

the sphere
Z—O'ff (acos® — 2)dS
[a® + 22 — 2 a zcos 19]'%
S

This is equivalent to the iterated integral

7wt 27

Z—o‘asz (acos? — z)dpsind dd
0 0

[u2+22—2uzcosz9]"§_

T

—'2750'612f (acosd — z)sind dd

(a2 + 22 — 2azcosz9]g’

0

In evaluating this last integral (which may be done by introducing »
as the variable of integration), it must be kept in mind that

7 =7Va*+ 22 — 2azcos?d
is a distance, and so essentially positive. Thus, its value for 4 = 0 is

|a — z|, thatisa — zor z — a according as @ > zor z > a. The result is

4maleo
Z = — 3
z

Z=0 for 0<z<a.

My
=——3 for z>a,

That is, a homogeneous spherical shell aitracts a particle at an exterior
point as if the mass of the shell weve concentrated at its center, and exercises
no force on a particle in its interior.

Homogeneous solid sphere. If a homogeneous solid sphere be thought
of as made up of concentric spherical shells, it is a plausible inference
that the whole attracts a particle as if the sphere were concentrated at
its center. That this is so, we verify by setting up the integral for the
attraction. Let % denote the constant ratio of the mass of any part of
the sphere to the volume of the part, that is, the density. The mass
x4V in the element AV, regarded as concentrated at the point
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Q (0, ¢, ¥) will exert on a unit particle at P (z, 0, 0), a force whose
magnitude is
xAV

AF = 0%+ 22 — 2pzcosd

and whose component in the direction of the z-axis is therefore
x(pcosd — z2) AV
[o% + 22 — 29zcos«9]g

AZ =

Hence, for the. total force,

a ;w27
fof (o cosP — 2 dg;s1nz9d19@2dg
[o2+ 22— 2 gzcosﬁP
The two inner integrals have been evaluated in the previous example.

We have only to replace a by g and evaluate the integral with respect to g.
The result is

a

4nx - 4axad
7= Fle=—"37 =%

0
as was anticipated.
Further examples will be left as exercises to the reader in the
following sections. We take them up in the order of multiplicity of the
integrals expressing the components of the force.

5. Material Curves, or Wires.

We take up first the case in which the attracting body is a material
curve. Consider a wire, of circular cross-section, the centers of the circles
lying on a smooth curve C. If we think of the mass between any pair
of planes perpendicular to C as concentrated on C between these planes,
we have the concept of a material curve. By the linear density ) of the
material curve, or where misunderstanding is precluded, by the density,
at a point (0, we mean the limit of the ratio of the mass of a segment
containing @ to the length of the segment, as this length approaches 0.

Our problem is now to formulate the integrals giving the force
exerted by a material curve C on a particle at P. Let the density of C
be given as a function 4 of the length of arc s of C measured from one
end. We assume that 1 is continuous. Let C be divided in the usual way
into pieces by the points s, =0, s;, sy, ..., 5, =/, and let us consider
the attraction of a typical piece 4's;. The mass of this piece will lie be-
tween the products of the least and greatest value of 4 on the piece by
the length of the piece, and therefore it will be equal to A, 4's;, where
A, is a properly chosen mean value of A. A particle with this mass,
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situated at a point Q, of the piece, will exert on a unit particle at
P (x, y, z) a force whose magnitude is
AF = K45

2
7k

, 7.=2PQ,.

If &, ., Ci are the codrdinates of @y, the direction cosines of this force
are
Ep — x Ne — ¥V lx— 2

cos o = =% , cosf= ~, cosy =
7 7y I

3

so that the components of the force due to the typical piece are

AXk=)“I:(Ek—x)ASk AYkZ ]'Ig(nk_sy)Ask AZk=&£(Ck_Z)AS—k

3 ) ’ 3
75 7y (6

The components in each of the three directions of the axes correspond-
ing to all the pieces of the wire are now to be added, and the limits
taken as the lengths of the pieces approach 0. The results will be the
the components of the force on the unit particle at P due to the curve:

X — f—}’(i_i)ds,

3
C
" v = 2029 g
(o
Z— f M=) g
7
c

We shall sometimes speak of a material curve as a wire. We shall
also speak of the attraction on a unit particle at P simply as the attrac-
tion at P. An illustration of the attraction of a wire was given in the
last section. Further examples are found in the following exercises,
which should be worked and accompanied by figures.

Euxercises.

1. Find the attraction of a wire of constant density having the form of an
arc of a circle, at the center of the circle. Show that the equivalent particle is

distant ]/ % from the center, where a is the radius of the arc and 2« is the
sin o

angle it subtends at the center. The equivalent particle is thus not in the body.
But there is a point on the wire such that if the total mass were concentrated there,
the component of its attraction along the line of symmetry of the arc would be the
actual attraction. Find this point.

2. Find the attraction of a straight homogeneous piece of wire, at any point
P of space, not on the wire. Show that the equivalent particle lies on the bisector
of the angle 4 PB, 4 and B being the ends of the wire, and that its distance ¢
from P is the geometric mean of the two quantities: the length of the bisector

between P and the wire, and the arithmetic mean of the distances JTA and PB.
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3. Show, by comparing the attraction of corresponding elements, that a straight
homogeneous, wire exercises the same force at P as a tangent circular wire with
center at P, terminated by the same rays from P, and having the same linear
density as the straight wire.

4. Find the attraction of a homogeneous circular wire at a point P on the
axis of the wire. Show that the distance ¢ of the equivalent particle is given by

c=d 7?—, where d is the distance of P from the wire, and d’ its distance from

the plane of the wire.

5. In Exercise 2, show that if the wire be indefinitely lengthened in both
directions, the force approaches a limit in direction and magnitude (by definition,
the force due to the infinite wire), that this limiting force is perpendicular to the

27
wire, toward it, and of magnitude -~ where A is the linear density of the wire,

and 7 the distance of P from it.

6. Material Surfaces, or Laminas.

Consider a thin metallic plate, or shell, whose faces may be thought
of as the loci formed by measuring off equal constant distances to
either side of a smooth surface S on the normals to S. We arrive
at the notion of a material surface or lamina by imagining the mass
of the shell concentrated on S in the following way: given any
simple closed curve on S, we draw the normals to S through this curve;
the mass included within the surface generated by these normals we
regard as belonging to the portion of S within the curve, and this for
every such curve. The surface density, or if misunderstanding is pre-
cluded, the density, of the lamina at Q is defined as the limit of the ratio
of the mass of a piece of S containing Q to the area of the piece, as the
maximum chord of the piece approaches 0. In addition to the terms
material surface and lamina, the expressions surface distribution, and
surface spread, are used. '

As we have noted in studying the attraction of a material spherical
surface, the notion of surface distribution is particularly useful in
electrostatics, for a charge in equilibrium on a conductor distributes
itself over the surface.

Now, according to Couloumb’s law, two point charges of electricity
in the same homogeneous medium, exert forces on each other which
are given by Newton’s law with the word mass replaced by charge,
except that if the charges have like signs, they repel each other, and if
opposite signs, they attract each other. A constant of proportionality
will be determined by the units used and by the medium in which the
charges are situated. Because of the mathematical identity, except for
sign, between the laws governing gravitational and electric forces, any
problem in attraction may be interpreted either in terms of gravitation
or in terms of electrostatics. Thus, in the case of an electrostatic charge
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on a conductor, the force at any point will be that due to a surface
distribution.

As an illustration of the determination of the attraction due to a
material surface, let us take a homogeneous circular disk, and a particle
at a point P of its axis. Let the (v, x)-plane coincide with that of the
disk, the origin being at the center. Then Y and Z vanish, by symmetry.
Instead of the codrdinates # and £, let us use polar codrdinates, p and ¢.
If ¢ denotes the constant density, the element 4 S, of the disk, con-
taining the point Qy (gx, @x) Will have a mass 04 S, ; if this mass be re-
garded as concentrated at Q, it will exert on a unit particleat P (x, 0, 0)
a force whose magnitude is

AF, = ”_:;" (= POu=Voi +#),

and which makes with the %x-axis an angle whose cosine is

—x
n
Hence
X =lim 34X, —lim Y =A% _ _Gx”%%
P2 P k s
27 a
oo [ [asese
s [92 + xz:]?z
The integral is easily evaluated, and yields
1 1
X =—2mon[rr— =)

The absolute value sign is important, for 1/;2 is not necessarily x.

As x becomes infinite, the ratio of the force to — xi” approaches 1,
as the reader may verify. At any two points on the axis and equidistant
from the disk, the forces are equal and opposite. As P approaches the
disk, the force does not become infinite, as it does in the cases of particle
and wire. We can account for this, at least qualitatively, by noticing
that a given amount of mass is no longer concentrated at a point, or
on a segment of a curve, but over an area. The force does, however,
have a sudden reversal of direction on passing through the disk; the
component of the force in the direction of the x-axis has a sudden
decrease of 47wo as P passes through the disk in the direction of in-
creasing x.

Exercises.

1. Write as a simple integral the expression for the force, at a point of its
axis, due to a disk whose density is any continuous function ¢ = f(g) of the dis-
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tance from the center. Examine the behavior of the force, as is done in the illus-
tration in the text, if f(g) = a + bg?.

2. The solid angle subtended at P by a piece of surface, which is always cut
at an angle greater than 0 by a variable ray from P, may be defined as the area
of that part of the surface of the sphere with unit radius and center at P which
is pierced by the rays from P to the given surface. Show that the component
of the attraction at P, of a plane homogeneous lamina, in the direction of the
normal to the lamina, is equal to the density times the solid angle which the lamina
subtends at P. Verify the result of the example of the text by this theorem. .

3. Find the attraction of a homogeneous plane rectangular lamina at a point
on the normal to the plane of the lamina through one corner. The answer can be
obtained by specialization of the results of the next exercise.

4. Find the attraction of a homogeneous plane rectangular lamina at any
point not on the rectangle, by decomposing the rectangle into sums or differences
of the rectangles obtained by drawing parallels to the sides of the given rectangle
through the foot of the normal from P. The answer may be given as follows. Take
¥- and z-axes parallel to the sides of the rectangle, with origin at the foot of the
perpendicular from P. Let the corners of the rectangle referred to these axes be
(b,¢), (', ¢c), (b",¢') and (b, ¢’), in order, and let the distances from P (#,0, 0) of these
four points be dy, d,, d;, and d,, respectively. Then

r ’ g ’
X=—o0 Ltan—lﬁ—tan—lb ¢ +tan"1b ¢ —tan—lbc s

xdy xdy xdg xd,
Y:alog[d2+c.fi.i_l__6’—| Zzalog[d‘l_!_b.d?_l—b/]
di+c¢ dy+c ) d+b dy+0']"

It should be kept in mind that the numbers b, ¢, b’, ¢/ may have either sign, or
vanish.

5. Show that if the dimensions of the lamina of the last exercise become
infinite, the force will not, in general, approach a limit. Show, on the other hand,
that if the ratios of the distances of the sides of the rectangle from the origin
approach 1 as these distances become infinite, the force does approach a limit,
and investigate the character of this limiting force.

6. If, in working Exercise 1, polar codrdinates are used and the integration
with respect to the angle is carried out first, the integrand of the remaining integral
may be interpreted as the force due to a circular wire (see Exercise 4, p. 10). What
is the significance of this fact? Does it illustrate any principle which can be of
use in other problems ?

7. Curved Laminas.

So far, the surface distributions considered have been on flat sur-
faces. There is no difficulty in setting up the integrals for the force on
a unit particle due to distributions on any smooth surfaces. We shall
keep to the notation P (x, y, z) for the position of the attracted particle,
and to Q (£, n, {) for the point of the distribution whose codérdinates
are the variables of integration. The distance between these two points
will be denoted by 7. If ¢ is the density, we have
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S
ag(n—1y)
@) v—[[r=D s,
S

Z,—;ﬂ'wd&
v
S

for the components of the attraction. The derivation of these formulas
follows lines already marked out, and is commended as an exercise to
the reader.

A particular type of surface distribution may receive special mention.
It is that in which the surface is one of revolution, and the density is
independent of the angle which fixes the meridian planes. Let us sup-
pose that the surface is given by the meridian curve in the (¥, v)-plane, in
parametric form, §=¢§(s), =u(s), s being the length of arc (fig.4).
Then the position of a point Q on the surface S is determined by a
value of s and by the angle ¢ which the meridian plane through Q makes
with a fixed meridian plane. We need to know the area of an element
AS of S, bounded by two
meridian- planes correspond-
ing to an increment 4 ¢ of ¢,
and by two parallel circlescor-
responding to an increment
As of s. A complete strip
of S, bounded by parallel
circles, has an area given by
the formula from the calculus

|
|
|
i
|
|
|
|
|
|
'y

s+4ds

A=2x [ nds=2ny s

s

where #” is a properly chosen mean value. The portion of the strip be-

g . .4 .
tween the two meridian planes is the fraction Eg of this amount. Hence

AS =1y ApAds. Recalling the sum of which the integral is the limit,
we see, then, that the first of the formulas (2) becomes

Sy 27

o(§—=)

X = dgds.

If the attracted particle is on the axis, at P (x, 0, 0), we need only this

component of the force, for the perpendicular components vanish.
Moreover, in this case, the integrand is independent of ¢, so that the
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formula becomes
Sa
3) X =2x f—"i"&:"’—”sds.
o -2+ ]?

As an illustration of the attraction of spreads on curved surfaces, let
us consider that due to a homogeneous hemispherical lamina at its center.
In order to give an example of different methods, we shall employ
first the general formulas (2). If we take the z-axis along the axis of the
hemisphere, X = Y = 0. Let us change the field of integration from
the surface S itself, to its projection S’ on the (#, y)-plane. Then for
two corresponding elements of these fields, we have A4S = sec 9’45,
where 9’ is a suitable mean value of the angle between the normal to
S and the z-axis. If a is the radius of the sphere, the third formula (2)

becomes ¢
Z = ff Fsecy as’.
&
Since cos y = %, this reduces to

Z = a%fde’ = ; s wa? = 7o,
&

The formula (3) also is applicable to this problem, if we take the
x-axis along the axis of the hemisphere. We take the origin at the
center, and write s = a@, £ = a cos @, 1 = a sin ¢. Then the formula
becomes

X=2n0o

C— iy

cospsingpdep =mo.
as before.

Exercises.

1. Find the attraction of a lune of a homogeneous sphere, bounded by two
great circles whose planes make an angle 2« with each other, at the center. Check
7
for oo = 5
2. Show that the z-component of the attraction at the center due to any por-

oA
tion of the upper half of a homogeneous spherical surface, is Z = 5 where a

is the radius of the sphere, ¢ the density, and 4 the area of the projection of the
portion in question on the (#, y)-plane. Check the result of the example of the
text by this result.

3. Determine the attraction at the center due to the portion of the upper
half of the homogeneous spherical surface #? - 3% + 22 = a? which is cut out
by the cone

PYNE
2 B
oo’ f?

Answer, X =¥ =0, Z =10 (1§
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4. Find the attraction due to a homogeneous right circular cylindrical surface,
at a point P of its axis. Check the result a) by taking P at the center, b) by taking
P at a great distance, and c) by allowing the radius of the cylinder to approach 0,
P being on the axis extended. Compare with the attraction of a straight wire,
studied in §4 (page 4).

5. Study the attraction due to a homogeneous spherical shell by means of the
formula (3). Determine the break in the radial component of the force at the sur-
face.

6. Obtain the formula (3) on the assumption that the attraction is correctly
given by regarding the surface as the limiting form of a large number of circular
wires.

7. Find the attraction of a homogeneous spherical cap, at a point of its axis.
Check your result by allowing the cap to spread over the whole sphere. Draw a
curve representing in magnitude and sign the component of the force in the direc-
tion of the axis as a function of the position of P when the cap comprises nearly
the whole sphere. Compare it with the curve for the complete sphere.

8. Change the variable of integration in (3) to the abscissa £&. Find the attrac-
tion at the focus of that portion of the homogeneous surface which is the para-
boloid of revolution whose meridian curve is 7%= 2m &, cut off by the plane
& = B, the density being constant. Check by allowing % to approach zero, the total
mass remaining constant. Find the value of A for which the force vanishes.

Answers,

8 ) Ym . —

X =gac 1_(ﬂf_§_)_1g_m ) h:%(3+2y3),
(m 4+ 2h)%

9. Find the attraction, at the cusp, of that portion of the homogeneous lamina

whose meridian curve is g = a (L — cos @), 0 < a< @< f. Show that this force

remains finite as « approaches 0, and find, in particular, the force due to the whole
closed surface.

8. Ordinary Bodies, or Volume Distributions.

Suppose we have a body occupying a portion V of space. By the
density » (or the volume density), of the body, at Q, we mean the limit
of the ratio of the mass of a portion of the body containing Q to the
volume of that portion, as its maximum chord approaches 0. It is
customary to regard this limit as not existing unless the ratio approaches
a limit independent of the shape of the portion for which it is calculated,
and it is similar also with surface and linear densities. We shall assume,
as usual, that the density exists and is continuous. The only physically
important cases in which the densities are discontinuous may be treated
by regarding the body as composed of several partial bodies in each
of which the density is continuous.

The setting up of the integrals for the force due to volume distribu-
tions is so like the corresponding process for the distributions already
treated that we may confine ourselves to setting down the results:

) X =ﬂf_—" ED gy, v= f H_—w’ UM ay, z= Uf_—#” €D ay.
v 1% v
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An illustration of the determination of the attraction of a volume
distribution has been given in §4 (p. 7). Asasecond example, let us con-
sider the attraction of a homogeneous right circular cylinder, at a point of
its axis, extended. Let us take the z-axis along that of the cylinder, with
the origin at the point P the attraction at which is to be found. Cylindri-
cal codrdinates are most appropriate, that is, the coérdinate £ of Q, and
the polar coérdinates p and ¢ of the projection of Q on the (x, y)-plane.
The element of volume is then given by AV = o’ dgdep AL, where
¢’ is a suitable mean value. Then, if a is the radius of the cylinder, and
¢ = b and { = ¢ the equations of the bounding planes (0 < b << ¢), the
third equation (4) becomes

c2xa

Z==xffj1~££~§dgd¢d§
JJ) et

The integral is easily evaluated. The result can be given the form
2M
Z:'m[h'_!_dl—d2]’

where M is the total mass, 4 the altitude and 4, and d, the distances
frem P of the nearest and farthest points of the curved surface of the
cylinder, respectively. It can be checked as was Exercise 4 of the last
section. It will be observed that the force remains finite as P approaches
the cylinder.

Exercises.

1. Find the attraction due to a homogeneous hollow sphere, bounded by con-
centric spheres, at points outside the outer and within the inner sphere.

2. Show that if the above hollow sphere, instead of being homogeneous, has
a density which is any continuous function of the distance from the center, the
attraction at any exterior point will be the same as that due to a particle of the
same mass at the center, and that the attraction at any interior point will vanish.

3. Derive the following formula for the attraction of a body of revolution
whose density is independent of the meridian angle ¢, at a point of its axis:

3

X=27tJ

& 0

(&)

f xE=Ne 4o ge
J I — 2+ et

o

where g is the distance of the point Q from the axis, & its distance from the (y, )-
plane, and g = f(§) the equation of a meridian curve of the bounding surface.

4. Show that if % depends only on &, the formula of the last exercise becomes
&s

E—x E—x
X = 27 ¢ | - - — —
7Jy[5—xz ve—xv+ﬁﬁjd§
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5. A certain text book contains the following problem. ‘“Show that the attrac-
tion at the focus of a segment of a paraboloid of revolution bounded by a plane
perpendicular to the axis at a distance b from the vertex is of the form

a -+ b
4 1 .
7axlog —

Show that this result must be wrong because it does not give a proper limiting
form as b approaches 0, the total mass remaining constant. Determine the correct
answer. The latus rectum of the meridian curve is supposed to be 4a.

6. Show that there exists in any body whose density is nowhere negative,
corresponding to a given direction and a given exterior point P, a point Q, such
that the component in the given direction of the force at P is unchanged if the body
is concentrated at Q. Why does not this show that there is always an equivalent
particle located ¢» the body?

9. The Force at Points of the Attracting Masses.

So far, we have been considering the force at points outside the
attracting body. But the parts of a body must attract each other. At
first sight, it would seem that since the force varies inversely with the
square of the distance, it must become infinite as the attracted particle
approaches or enters the region occupied by masses, and so it is, with
particles or material curves. We have seen, however, that surface and
volume distributions are possible, for which this does not occur. This
is less surprising if we think of the situation as follows. If P lies on the
boundary of, or within, the attracting body, the matter whose distance
from P lies between » and 27, say, has a mass not greater than some con-
stant times #2, and since its distance from P is not less than », the magni-
tude of its attraction at P cannot exceed a constant times #. Thus the
nearer masses exercise not more, but less attraction than the remoter.

Let us turn to the question of the calculation of the force at an
interior or boundary point. The integrals (4) are then meaningless, in the
ordinary sense, since the integrands become infinite. If, however, the
integrals are extended, not over the whole of 7/, but over what is left
after the removal of a small volume v containing P in its interior, they
yield definite values. If these values approach limits as the maximum
chord of v approaches 0 these limits ave vegarded as the components of the
force at P due to the whole body. This amounts to a new assumption, or
to an extension of Newton’s law. It is found to be entirely satisfactory
from the standpoint of physics. We may state it more briefly as follows:
the formulas (4} still give the force at P, even though P is interior to, or
on the boundary of V, provided the integrals, which are now improper
integrals, converge.

We shall now show that in all cases in which the volume density is
continuous—or even if it is merelyintegrable and bounded—the integrals
always converge. Let us consider the z-component. The others admit of

Kellogg, Potential Theory. 2
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the same treatment. We may also confine ourselves to the case in
which P is interior to the body, for we may regard the body as part of a
larger one in which the density is 0 outside the given body. Let v be a
small region, containing P in its interior. We have to show that

o

approaches a limit as v shrinks down on P, v having any shapel.

But how can we show that Z’ approaches a limit unless we know
what the limit is? If a variable approaches a limit, its various values
draw indefinitely near each other. It is the converse of this fact that we
need, and which may be stated as follows?2: a necessary and sufficient
condition that Z’ approach a limit is that to any positive test number &
there corresponds a number § > 0 such that if v and ¢’ are any two
regions containing P and contained in the sphere of radius § about P,

¢ —: # (£ —
L(F_)dv_ﬂfigs 2 qv 1 <e.
-2 V-

Let us examine this inequality. If we take away from both regions of
integration that part of ¥ which lies outside the sphere ¢ of radius §
about P, the difference of the two integrals is unaltered. Our aim
will then be attained if we can show that each of the resulting integrals

can be made less in absolute value than 2 by proper choice of . The
following treatment will hold for either.

(o | [t o [ 55t

¢|. We can easily obtain a bound for the
last integral by replacing it by an iterated integral in spherical coordi-
nates, with P as pole, and z-axis as axis. It then ceases to be improper,
even when extended over the whole of ¢, and as the integrand is nowhere

1 The limit is not regarded as existing if it is necessary to restrict the shape
of v in order to obtain a limit. The only restrictions on v are that it shall have a
boundary of a certain degree of smoothness (be a regular region in the sense of Chap-
ter IV, § 8, p. 100), that it shall contain P in its interior, and that its maximum
chord shall approach 0.

2 This test for the existence of a limit was used by CAucHY, and is sometimes
referred to as the Cauchy test. A proof of its sufficiency for the case of a func-
tion of asingle variableistobe found in OscooD: Funktionentheorvie, 4th ed., Leipzig,
1923, Chap. I, § 7, pp. 33—35; 5th ed. (1928), pp. 30—32. See also FINE, College
Algebra, Boston, 1901, pp. 60—63. A modification of the proof to suit the present
case involves only formal changes.
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negative, this extension of the field cannot decrease its value. Hence

7z 27 8 T 27 8

I< Bj‘ffL;:ﬂgngqysinﬁdﬁ <ij‘fdgd(pdﬁ —2Ba%s.
000

Hence I can be made less than & by taking ¢ << —=—5. The condition

4B 4Ba®"
that Z’ approach a limit is thus fulfilled, and the integrals (4) are
convergent, as was to be proved.

When we come to the computation of the attraction at interior points
of special bodies, we see the advantage of being unrestricted as to the
shapes of the volumes v removed. For we may use any convenient
system of coodrdinates, and remove volumes con\/emently described in
terms of these coordinates.

As an illustration, let us find the attraction of a homogeneous sphere
S at the interior point P. We cut out P by means of two spheres S’
and S”, concentric with S. The hollow sphere bounded by S” and S
then exercises no force at P, while the sphere bounded by S’ attracts at
P as if concentrated at the center. As the region cut out, between the
two spheres S’ and S”/, shrinks down, the attraction at P approaches
as limit the attraction of a particle at the center whose mass is that of
the concentric sphere through P. In symbols,

Z = — %ﬂ ®z.
The attraction of a homogeneous sphere at an interior point is thus
toward the center, and varies as the distance from the center.

It will be observed that the region v cut out in these considerations,
did not shrink to 0 in its maximum chord. However, its volume did
shrink to 0, and if an integral is convergent, the limit thus obtained
is the same as if the maximum chord shrinks to 0. Indications as to the
proof of this statement will be given in connection with Exercise 18,
below.

Exercises.

1. Find the attraction, at an interior point on the axis, due to a homogeneous

right circular cylinder. Answer,

F =2nax(hy—hy + dy—d,),
where %, h, are distances of P from the centers, and d;, d,, from the circumferences
of the bases.

2. Show that in Exercise 5, § 8, the quoted result must be wrong because it
is incompatible with the fact that for b < a the force must be to the left, while for
b > 2a it must be to the right, and so vanish at some intermediate point. This
involves the justifiable assumption that the force varies continuously with b.

3. Show that the formula of Exercise 4 (page 16) holds when P is an interior
point on thé axis of the body. Are there any precautions to be observed in apply-
ing it?

2%
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4. Lack of homogeneity in the earth’s crust produces variations in gravity.
This fact has been used with some success in prospecting for hidden ore and oil
deposits. An instrument used is the Estvos! gravity variometer or torsion balance.
A body of matter heavier than the surrounding material will change the field of
force by the attraction of a body of the same size, shape, and position whose den-
sityis the difference between that of the actual body and the surrounding material.
Investigate the order of magnitude of the change in the force produced by a sphere
of density /,, of radius 200 feet, imbedded in material of density 1/; and tangent
to the earth’s surface, the average density of the earth being taken as unity.

Answer, at the highest point of the sphere, gravity is increased by about
1'6 % 10-% percent, and it falls off per foot of horizontal distance by about 4 X 10~°
percent.

5. Show that within a spherical cavity in a homogeneous sphere, not concentric
with it, the force is constant in magnitude and direction. This should be done
without further integrations, simply making use of the result of the example of
the text.

6. Determine the attraction at interior points due to a sphere whose density
is a function of the distance from the center.

7. Find the attraction of the homogeneous paraboloid of revolution whose
meridian curve is 2 = 4a &, cut off by the plane & = &, at any point of the axis.
Answers,

h—x+2a+4d : .

= —_— — 1 - <
X an[h x —d -4 2alog Sar —a) ], if ¥<0,
Xzzm[\x_hi_d+2alog’ii"‘:72’fr—d}, if x>0,

where d is the distance of the attracted point P (#, 0, 0) from the edge of the solid.

8. Verify that the force changes continuously as the attracted particle moves
into and through the masses in Exercises 1, 5 and 6.

9. Verify that the derivative of the axial component of the force in the direction
of the axis experiences a break of 47 % as P enters or leaves the masses, in Exer-
cises 1, 5 and 6.

10. Determine the attraction of a homogeneous spheroid, at a pole. Answers,
for an oblate spheroid of equatorial radius b, the magnitude of the force is

3M

F = Ee (¢ — J1— 2 sin-le),

and for a prolate spheroid of polar radius a,

F:?,M[log 1+e”€]

a?ed 1—e

¢ being the eccentricity of the meridian curve.

11. A body is bounded by a) a conical surface which cuts from the surface of
the unit sphere about the vertex P of the conical surface, a region £, and by b)
a surface whose equation in spherical coérdinates with P as pole is g = f (@, 9).

1 For an account of this sensitive instrument, see F. R. HeLMERT, in the
Encyklopiadie der mathematischen Wissenschaften, Vol. VI, I, 7, p. 166;
L. OerTtLING, LtD., The E0tvds Torsion Balance, TLondon 1925; or STEPHEN
RyBAR, in Economic Geology, Vol. 18 (1923), pp. 639—662.
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Show that the component of the attraction at P in the direction of the polar
axis is e, 9)
Z=ff f xdg}cosﬁd[},
Q 0
or, if the density is constant,

Z=xff/(¢,z9)cosq9d9.
2

12. Show that the attractions, at the center of similitude, of two similar and
similarly placed bodies, have the same line of action, and are in magnitude as the
linear dimensions of the bodies.

13. Find the attraction at the vertex due to a right circular cone of constant
density. Answer, 273 h (1 — cos o).

14. The same for a spherical sector, bounded by a right circular conical surface
and a sphere with center at the vertex of the cone. Answer, max sin? «.

15. By subtracting the results of the last two exercises, find the attraction
at the center due to a spherical cap.

16. Find the attraction due to a homogeneous hemisphere at a point of the
edge. Answer,

3 nax, 3 ax, 0.

17. A mountain has approximately the form of a hemisphere of radius a,

and its density is »’. If higher powers of % are neglected, show that the difference

in latitude at the northern and southern edges of the mountain, as observed by
the direction of gravity, is

w2+ %)

R %)’

where R and x are the radius and mean density of the earth.

18. (a) Show that if f(Q) is an integrable function of the coérdinates &, %, {
of Q, and bounded in any portion of V which does not contain P, and if

ff/fff(Q)dV
fvfff(Q)dV

approaches 0 with the maximum chord of v, where v is any portion of V with P
in its interior.

(b) On the same hypothesis, show that
[[]t@av =tim [[[1@av
14 V—u

as the volume of u approaches 0, whether the maximum chord of % does, or does
not, approach 0. Suggestion. It is required to show that

[[[t@av—o

with the volume of #. Consider the portions u, and #, of u, inside and outside a
sphere of radius 6. Show first how the integral over #, can be made less than

is convergent, then

g in absolute value by properly choosing 8, and then how, with J fixed, the integral

€,
over %, can be made less than - in absolute value.

2
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- Ellipsoidal Homoeoid. We have seen that a homogeneous body
bounded by concentric spheres exercises no attraction in the cavity.
NewtoN showed that the same is true for an ellipsoidal homoeoid, or
body bounded by two similar ellipsoids having their axes in the same
lines. To prove it, we first establish a lemma: let P be any point within
the cavity; drawanyline through P,and let 4,A4’, B’, B beitsintersections
with the ellipsoids, in order; then 44’ = B’B (fig. 5). The problem is
reduced to the similar problem for two similar coaxial ellipses if we pass
the plane through the center O of the ellipsoids and the line AB. In
this plane, we take axes through O, with x-axis parallel to AB. The
equations of the ellipses may then be written

Ax* + 2Hxy + By: —a = 0,

Ax? 4+ 2Hxy + By2 —b =0,
20T o' \s i Y

/’ /‘ P ) / and the equation of AB will be y=c¢. The

abscissas of 4 and B are then the roots
( / of the equation obtained by eliminating y

between ¥ = ¢ and the equation of the first

ellipse:
Fig. 5. . Ax* 4 2Hcx + (B2 —a) = 0,
so that the midpoint of the chord 4 B has the abscissa —;[c . But this

value is independent of a, and therefore the midpoints of the chords
AB and A’B’ coincide. Hence 4 A’ = B’B, as we wished to prove.

Now by Exercise 11, the z-component of the attraction at P may
be written

z— x£f[F<¢, 9) — f(p, 9)] cos 942,

where ¢ = F (¢, 9) and ¢ = f(p, &) are the equations of the ellipsoids
in spherical coérdinates with P as pole, and where 2 denotes the entire
surface of the unit sphere about P. By the lemma, F (p, &) — f (p, 9)
remains unchanged when the direction of a ray is reversed, <. e., when ¢
isreplaced by ¢ + 7 and & by w —¢&. On the other hand, cos ¥ is replaced
by its negative by this substitution. Thus the integral consists of pairs
of equal and opposite elements, and so vanishes. As the z-axis may
have any direction, it follows that the force in the cavity vanishes, as
was to be proved.

10. Legitimacy of the Amplified Statement of Newton'’s Law;
Attraction between Bodies.

We revert now to the amplified statement of Newton’s law given in
§ 3 (page 3), and to a study of the attraction between bodies neither of
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whichis a particle. The justification of the amplified statement must rest
on the consistency of its consequences with observation and experiment.
At the same time, it is hardly fair to call our physical assumption an
amplified statement of Newton’s law, unless it is consistent with this
law. Our test of consistency will be this. As the dimensions of two
bodies approach O in comparison with their distance apart, does their
attraction, determined on the basis of the amplified statement, ap-
proach that given by Newton’s law for particles? We shall see that this
is indeed the case. Incidentally, we shall gain a deeper insight into the
nature of the force between two bodies, and our inquiry will clothe
the notion of particle with a broader significance.

The first point to be noticed is that a body does not, in general
exert a single force on another, but exerts forces on the parts of that
body. In the case of a deformable body, these forces cannot, as a rule,
be combined to form a system of even a finite number of forces. We shall
therefore confine ourselves to rigid bodies, for present purposes. It
is shown in works on statics?® that the forces on a rigid body are equi-
valent to a single force at an arbitrarily selected point O of the body
and a couple. The single force is the resultant of all the forces acting on
the body, thought of as concurrent. The couple depends on the position
of 0, and its moment is the vector sum of the moments with respect
to O of the forces acting on the body. If the forces acting are (X;, Y;, Z;),

applied at (x;, v;, 2;), ¢ =1, 2,...#n, we have for the single resultant
force,
(5) X=X, Y=Y, Z=23Z,

and if the point O at which this force is assumed to act is the origin of
codrdinates, we have for the moment of the couple
L=3 WiZi—2Y), M=3EX—xZ)
(6) 7 B 2
. N=2xY,—y X))
12
If the forces, instead of being finite in number, are continuously distri-
buted, the summation signs are to be replaced by integrals. For the sake
of simplicity, we continue for the present, with a finite number.

We are particularly interested in the case in which the couple is
absent, so that the system reduces to a single force. Since the couple
depends on the position of the point of application of the resultant force,
it may be possible to choose O so that the moment of the couple vanishes.
If we shift the point of application to the point (%, %, I), then in (6)
%;, Vi, %, must be replaced by x, — &, v, — k&, z; — I. This amounts

" 1 See, for instance, APPELL: Tvailé de mécanique rationelle, Paris 1902, Vol. I,
Chap. IV.
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to adding to the couple (6) the couple
— (kZ —1Y), — (X —hZ), — (Y —EkX).

The question is, can %, k2, [ be so chosen that the couple thus altered
vanishes ? That is, so that the following equations are satisfied ?

RZ —1Y =1L,
(1) — 1z +IX =M,
WY —kX — N.

It will be seen that if we eliminate two of the quantities %, £ and I,
the third disappears also, and we arrive at the following necessary con-
dition

(8) LX +MY +NZ=0,

that is, the resultant (X, Y, Z) and the moment with respect to the
origin (L, M, N) must be at right angles, or else one of them must
vanish. In Newtonian fields, the force vanishes only at exceptional
points, and if we assume now that the force is not 0, it will be found
that two of the equations (7) can be solved for %, %, I (giving, in fact,
a whole line of points), and that the solution will also satisfy the third
equation if the condition (8) is fulfilled. The equation (8) is therefore a
necessary and sufficient condition that the forces acting on the body reduce to
a single force, when the point of application is properly chosen. One such
point having been found, it will be seen that any other point on the line
of action of the force will also serve.

With these preliminaries, we may proceed to the consideration of
the attraction on a body B; due to a body B,, the bodies occupying
regions V; and ¥, of space. The first step is to divide the bodies into
elements, concentrate each element at one of its points, and consider
the attraction of the system of particles thus arising. Let AV; denote
a typical element of V;, containing the point P (x, y, z), and 4V, a
typical element of V, containing Q@ (¢, , {). Let %, and #x, be suitably
chosen mean values of the densities in these elements. Then the particle
in AV, exerts on the particle in 4V; a force whose x-component is

AX = sy, AV, AV, £,

and whose point of application is P. The x-component of the moment
with respect to the origin of this force is

73 73 73

AL = xle[y-C-—:f—zn — y}AVlAVZ = 5, %, yZ"ZnAVlAVQ.

These components, due to a pair of particles, are now to be summed
over all pairs, one in each volume, and the limits are to be taken as the
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maximum chord of the elements of volume approaches 0. We arrive at
the result:

In accordance with the amplified statement of Newton’s law, the attrac-
tion exerted by the body B, on the body By, consists of a force

e
v, v,
o ([ ma,
v, Vv,
e
v, v,

applied at the origin of codrdinates, and of a couple whose moment is

é‘_
r=[[[[[f==ei=s2avam,
v, 7,
¢y %3 (286 — x0)
o) w=[[[[[f==ei=2 an.am,
Vl V2
240 — y&
v=[[[[[[ =m0 anar,
v, Vv,

or, of course, any equivalent system. The above constitutes the analyti-
cal formulation of Newton’s law in its amplified form. It is satisfactory
from the standpoint of precision, and is, in fact, the actual, if usually
the tacit, basis of all treatments of gravitation.

We are now in a position to consider the consistency of this state-
ment with Newton’s law for particles. Let the maximum chord of
the bodies shrink toward 0, B, always containing the origin of coérdi-
nates, and B, always containing a fixed point @, (&, %, {o). Taking
first the moment, and fixing our attention on the component L as.typi-
cal, we may apply the law of the mean, on the hypothesis that the
densities are never negative, and write

L= gy%z—n—fffffjxlxdelde = &;}Z "y m,
A A

where P’ (', ¥/, 2’) isa point in V; and Q’ (&, ', {’) in V,. As the dimen-
sions of the bodies—or even if the dimensions of B, alone —approach
0, ', 9, 2 approach 0, and L, and similarly, M and N, approach 0.
Hence the forces exerted by a body on a particle veduce to a single re-
sultant force, applied at the particle.
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Treating the components of the force in a similar way, we find that
when the bodies shrink down toward points, the origin and Q,, the
force approaches

£ 7 g
X = %mﬂ’”a» Y =;39 uly My, Z = Tgmlmz,
and this constitutes the statement of Newton’s law for particles. Thus
the consistency of the law in its broader form with the law for particles

is established.

11. Presence of the Couple; Centrobaric Bodies;
Specific Force.

We have seen that the gravitational effect of a body B, on a body
B, is a force and a couple. In certain cases, if the force is applied at the
right point, the couple disappears. This happens always when B, is a
particle, also when it is a sphere, and the very name center of gravity
implies that it happens in the case of any body B; when the attracting
body is the earth, regarded as exerting a force constant in direction and
proportional to the mass acted on. There are, indeed, many bodies such
that the attraction of other bodies on them reduces in each case to a
single force passing through a fixed point in the body. They are called
centrobaric bodies’ and have interesting properties. But centrobaric
bodies are to be regarded as exceptional, for in general the attraction
cannot be reduced to a single force. An illustration of this is provided
in Exercise 3, below.

It would be disconcerting if, in the application of Newton’s law as
stated in the equations (9) and (10), we had to face sextuple integrals at
every turn. Fortunately this is not the case. Moreover, it is only infre-
quently that we need consider the couple. The reason is that we usually
confine ourselves to the study of the influence of a body B,, abstracting
from the shape and density of the body B, acted on. This is made possible
by the notion of specific force, or force per unit of mass at a point.

Let us consider a small part of the body B, contained in a volume
AV, and containing a fixed point Py (%, v, %) . We compute the force
on this part due to B,. The component 4 X of this force is given by the
first of the equations (9), where the region of integration V; is replaced
by AV,. We are assuming continuous densities and simple regions of
integration, so that the multiple integral can be replaced by an iterated
integral. Accordingly,

AX :ﬂfxl uﬂ”—(—-‘i;ﬁdn} av,.

AV,

1 See TuomsoN and Tairr: Natuval Philosophy. Vol. I, Part II, §§ 534—535.
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The inner integral is a function of %, v, z only, and if %, does not change
signs, this integral may be removed from under the outer signs of inte-
gration by the law of the mean:

AX:fﬂ’ﬂ%"—')dvgfﬂxldvlzfﬂ”ﬁ-@;;—”"dvgum
v, iV, Ve

where P’ (%, y’, 2') is some point in AV, v’ its distance from the variable
point Q (&, n, {) in V,, and Am the mass in AV,. If now, we divide this
force component by Am and allow the maximum chord of AV} to
approach 0 in such a way that P, remains within AV,, we arrive at

the limit
X _“Lm—"‘ fff"2 ~x0 de: 70:?(:@‘.

‘This, with two other components, defines the specific force at P, due
to the body B,. But the components thus obtained are exactly those
given by equations (4), § 8 for the attraction of a body B on a particle at
P, except for the notation. We see thus that the expressions force on a
unit particle, specific force, and force at a point are entirely synonymous.

The importance of the specific force lies in the fact that when it has
been determined, we may find the force on a body B, by simply multi-
plying the components of the specific force at P by the density of B,
at P and integrating the products over the volume occupied by B;.
For we then arrive at the integrals (9). In a similar manner we can con-
struct the components (10) of the moment of the couple. It is for this
reason that the knowledge of the force on a particle is so significant.

Should we care to define in a similar manner the specific force per
unit of attracting mass, Newton’s law could be stated: the specific force
at a point P of a body, per unit of mass at a point Q of a second body, s
divected from P toward Q, and is equal in attraction units to the inverse
square of the distance between P and Q. This statement is very nearly
of the form given in § 1, yet it implies, without further physical assump-
tions, the amplified statement of Newton’s law given in § 3.

Exercises.

1. Determine the attraction due to a homogeneous straight wire, of unit linear
density, terminating in the points (0, 0), (0, 12) of the (¥, y)-plane, on a similar
wire terminating in the points (5, 0), (9, 0). Show that the couple vanishes when
the point of application of the force is properly taken, and find such a point, on
the wire. Draw the wires and the force vector. Answer,

3 27 2
X_.log<g), —log<20> =<, ¥=0.

2. Show that if two plane laminas lie in the same plane, the attraction on either
due to the other may always be given by a single force.
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3. Let the ““body”’ B, consist of a unit particle at (0, 0, 1) and a unit particle
at (0,0, — 1); let the “body’”’ B, consist of unit particles at (0, a, 0) and (1, a, 1).

a) Determine, for a = 1, the resultant force, regarded as acting at the origin,
and the moment of the couple, which constitute the attraction of B, on B;.
Answer,

1+3)13 14913 2
616 ° 6)6 ~ 6}6’
—313+1 3)3—1 0
616 616

b) Show, for a = 1, that the attraction is not equivalent to a single force.
c) Show that when a becomes great, the moment of the attraction, relative

6 6
to. the origin, is approximately <— A 0) , so that the moment falls off with

the fourth power of the ratio of the dimensions of the bodies to their distance apart,
while the force falls off only with the second power of this ratio.

Chapter II.
Fields of Force.
1. Fields of Force and Other Vector Fields.

The next step in gaining an insight into the character of Newtonian
attraction will be to think of the forces at all points of space as a whole,
rather than to fix attention on the forces at isolated points. When a
force is defined at every point of space, or at every point of a portion
of space, we have what is known as a field of force. Thus, an attracting
body determines a field of force. Analytically, a force field amounts to
three functions {the components of the force) of three variables (the
codrdinates of the point).

But in the analytical formulation, the particular idea of force has
ceased to be essential. We have rather something which can stand for
any vector field. The result is that any knowledge gained about fields
of force is knowledge about any vector field, such as the velocity fields
of moving matter, of heat flow, or the flow of electric currents in con-
ductors. All these are simply interpretations of vector fields, or vector
functions of a point in space.

2. Lines of Force.

We may picture a field of force by imagining needles placed at
various points of space, each needle pointing in the direction of the
force at the eye of the needle, and having a length proportional to the
magnitude of the force. Thus, for a single particle, the needles would
all point toward the particle, and their lengths would increase as they
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got nearer the particle. Indeed, the nearer needles would have to run
way through the particle. The picture can be improved in many respects
by the introduction of the idea of /nes of force, a concept so fertile in
suggestion that it led FARADAY to many of his important discoveries
in electricity and magnetism.

A line of force is a curve which has at each of its points the direction
of the field at that point. Thus the lines of force of a single particle are
the straight lines through the particle. Another example is provided in
Exercise 2, page 9, where it was found that the force at P due to a
homogeneous straight wire bisects the angle subtended by the wire at P.
Now we know that the tangent to a hyperbola bisects the angle between
the focal radii. Hence in this case, the lines of force are hyperbolas with
the ends of the wire as foci.

We are all familiar with the lines of force exhibited by the curves
into which iron filings group themselves under the influence of a magnet.
If the field, instead of being a field of force, is a velocity field, the lines
are called lines of flow. A general term applicable in any vector field
is field lines.

The determination of the lines of force, although in a few simple
cases a matter of easy geometric reasoning, amounts essentially to the
integration of a pair of ordinary differential equations. A tangent vector
toacurveis (dx,dy, dz). If the curve is to be a line of force, this vector
must have the direction of the force. Hence the differential equations
of the lines of force are

dx dy
(1) Pl

NS

Instead of the components of the force, we may, of course, use any
quantities proportional to them. Thus, for a single particle at the origin
of coérdinates, we may take x,y,z as direction ratios of the force.
The differential equations are

dx dy dz

x y z
which yield at once the integrals

logy =logx + loge,, logz=1logx + logc,,
or
y=10C%, 2Z=Cy%x.

We thus find as the lines of force, the straight lines through the origin.
The lines in the (v, 2) - plane are not given by the integrals written down.
If it is desired, all the lines of force can be given by the parametric
equations obtained by integrating the equations above with the equal

. dt
ratios set equal, say, to —-.
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The lines of force become more complicated, and more interesting,
when more than one particle acts. Let us consider the case of two, with
masses #m, and #,, located at the points (— «, 0, 0) and (2, 0, 0). The
differential equations (1) become

dx dy dz
-a»x_!_ a—x y y z
m m —my = —m —m — My —
1 73 2: x 1y 272 1 rd 2 73

The equation involving dy and 4z reduces at once to

ay dz

EanirR
the integral of which tells us that y and z are in a constant ratio. In other
words, the lines of force lie in planes through the two particles, as we
should expect from the symmetry of the field. Also, because of the
symmetry of the field about the line through the particles, the lines of
force lie on surfaces of revolution with this line as axis. This too is re-
flectedinthe differential equations. For, if the numerators and denomina-
tors in the second and third ratios are multiplied by vy and z, respec-
tively, the two numerators added, and the two denominators added, the
equality of the resulting ratio with the first ratio in the differential
equations constitutes a differential equation in x and y2 4 22, ¥
and z entering only in this combination. The solution is therefore a re-
lation between x, y% + 2%, and a constant, and thus represents a family
of surfaces of revolution.

We may therefore confine ourselves to a meridian plane, say the

(%, y)-plane. The differential equation involving dx and 4y may then

. . .1 1
be integrated by collecting the terms in 3 and -5:
1

ydx — (¢ + a)dy
r3

ydx — (x —a)dy
ml + m2 (723 ) = O .
Since z = 0,
rp =@+ a)?+y? and 7}= (x—a)?+ 42,

and the differential equation may be written

¥ + a\ X —a

d d
) )

1+ (5]

x+a+m2x:u=c.

71 2
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3

=
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The integral is

my

This equation can be expressed in still simpler form by introducing
the angles 4; and 9, which the vectors from the particles to the point
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(%, v) make with the positive x-axis. It then becomes
' My cos Py + my cosdy = C.

The curves may be conveniently plotted by first drawing a set of rays,
# = cos ¢, corresponding to # = —1, —9,... —1,0,°1,...,°9,1,
drawing a similar set of rays for v = cos ¢,, and numbering these rays
with the corresponding values of # and v. It is then a simple matter to
plot the linear equation m,u -+ m, v = C, for various values of C, on
the codrdinate paper thus prepared. It may be found necessary to inter-
polate intermediate values of # and v and draw the corresponding lines
in parts of the paper where those already drawn are sparse. Such cosrdi-
nate paper being once prepared, curves corresponding to different values
of my, m, and C can be drawn on thin paper laid over and attached to
it by clips. The labor of repeating the ruling can thus be avoided.

Exercises.

1. Find the equations of, and describe, the lines of force of the field given by
X=2x2—92 YV=—2xy, Z=0.

2. Find the equations of the lines of force for the field (4, By, Cz). This
is the character of the field in the interior of a homogeneous ellipsoid.

3. Draw the lines of force of the field due to two particles of equal mass. Does
any point of equilibrium appear? What can be said as to the stability of the equi-
librium ?

4. The same, when the masses of the particles are as 1 to 4.

5. The same, when the masses are equal and opposite.. This case illustrates
approximately the situation when iron filings are placed on a sheet of paper over
the poles of a magnet.

6. Find the equations of the lines of force due to % particles in line.

3. Velocity Fields.

It has doubtless not escaped the reader that the lines of force do not
give back a complete picture of the field, for they give only the direction,
not the magnitude, of the force. However, in the case of certain fields,
including the fields of Newtonian forces, this defect is only apparent,
for it turns out that the spacing of the lines of force enables us to gauge
the magnitude of the forces, or the intensity of the field. We shall be
led to understand this best by interpreting the vector field as a velocity
field. An incidental advantage will be an insight into the nature of the
motion of a continuous medium, and into the relation of potential theory
to such motions.

The motion of a single particle may be described by giving its co6rdi-
nates as functions of the time:

.x=x(t), y=y({), z2=z().
If, however, we have a portion of a gas, liquid, or elastic solid in motion,
we must have such a set of equations, or the equivalent, for every particle
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of the medium. To be more specific, let us talk of a fluid. The particles
of the fluid may be characterized by their coérdinates at any given
instant, say ¢ = {,. Then the equations of all the paths of the particles
may be united in a single set of three, dependent on three constants:

(2) x'__-x(xOfyO’zOlt)’ y:y(xO: yo:zmt)’ z=z(x0,y0,z0,t),
for these will tell us at any instant ¢ the exact position of the particle of
the fluid which at £, was at (xy, ¥, %). The functions occuring in these
equations are supposed to satisfy certain requirements as to continuity,
and the equations are supposed to be solvable for %, ¥,, ,. In particular,
% must reduce to %, ¥ to y,, and 2 to z, when ¢ = ¢,

3) %o = % (%, Yo» %0, Lo) » Yo =¥ (%0, Yo, 20, L), Zg = 2 (%o, Yo, %0, to) -

The velocities of the particles are the vectors whose components
are the derivatives of the codrdinates with respect to the time:

dx ay dz
(4‘) 'ﬁz’/(xo»ﬁ’o»zo:t)» W:y’(xOryO’zOJt): W=z’(x0:y0:z0rt)'

These equations give the velocity at any instant of a particle of the fluid
in terms of its position at ¢ = #,. It is often more desirable to know the
velocity at any instant with which the fluid is moving past a given point
of space. To answer such a question, it would be necessary to know
where the particle was at ¢ = #, which at the given instant ¢ is passing
the given point (x, y, 2). In other words, we should have to solve the
equations (2) for xy, ¥, 2. The equations (4) would then give us the
desired information. Let us suppose the steps carried out once for all,
that is, the equations (2) solved for x,, ¥,, %, in terms of ¥, ¥, z and ¢,
and the results substituted in (4). We obtain a set of equations of the
form
dx dy

d
(5) d—t:X(x,y,Z,t), W:Y(x,y,z,t), %:Z(x}y,z’t)‘

The right hand members of these equations define the velocity field.
It differs from the fields of force we have considered so far, in that it
varies, in general, with the time. This is not essential, however, for a
field of force may also so vary, as for instance, the field of attraction
due to a moving body. But what is the effect of the dependence of the
field on the time, on the field lines ? By definition, theyhave the direction
of the field. As the field is changing, there will be one set of field lines
at one instant and another at another. We mean by the field lines, a
family of curves depending on the time, which at any instant have the
direction of the field at every point at that instant. In other words, they
are the integrals of the differential equations

dx dy dz

X(x,9,2,80) Y(x,9,2,8  Z(x 9 51
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on the assumption that ¢ is constant. On the other hand, the paths of the
particles are the integrals of (5), in which ¢ is a variable wherever it
occurs. Thus, in general, the lines of flow (field lines) are distinct from
the paths of the particles. Evidently they do coincide, however, if the
ratios of X, Y and Z are independent of the time, that is, if the direc-
tion of the field does not change. This includes the important case of a
stationary field, or one in which the field is independent of the time.
Thus, in a stationary velocity field, the lines of flow and the paths of the
particles coincide.

To illustrate the above considerations, let us examine the flow
given by

x =xpe’, y=1yge”t, z=2,.

Here %, v, z reduce to x,, ¥,, 2, for t =t,=0. It will suffice to consider
the motion of particles in the (x, v)-plane, since any particle has the
same motion as its projection on that plane. The equations of the paths
may be obtained by eliminating #. The paths are the hyperbolas

Xy = %Yo -

The velocities of given particles are furnished by

¥ dy -
T =Rl gr =Tl
and the differential equations of the flow are obtained from these by
eliminating #, and y,:
4 ay _

VTR rT,

The field is stationary, since the velocities at given points are indepen-
dent of the time. The lines of flow are given by

dx _ dy

v =y
the integral of which is xy = C. The lines of flow thus coincide with the
paths, as they should in a stationary field.

To take a simple case of a non-stationary flow, consider

x=2xy+1t, Yy=9+B z2=2.
Here

adx ay
- =1 ——=2%.

As %, and y, do not appear, these are already the differential equations
of the motion in the (xy)-plane. The field depends on the time, and so
is not stationary. The lines of flow are the integrals of

dx dy

1 P
Kellogg, Potential Theory. 3
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that is, the parallel straight lines y = 2¢x 4 C, which become con-
tinually steeper as time goes on. From the equations of the paths, we
see that the fluid is moving like a rigid body, keeping its orientation,
and its points describing congruent parabolas.

Exercises.
1. Study the motions

a) x=x0;—y0€f+x0;y03_t, y=x0;y08t—-x0_2yoe_t, z=2,
b) % = x,+ sint, Yy = ¥+ (1 — cost), z=2z,

dx ay dz
c) = ﬁ=y, HZZ'

determining the nature of the paths, the velocity fields, and the lines of flow.

2. Show by a simple example that, in general, the path of a particle, moving
under a stationary field of force, will not be a line of force.

4, Expansion, or Divergence of a Field.

An important concept in connection with a fluid in motion is its
rate of expansion or contraction. A portion of the fluid occupying a
region T at time #y, will, at a later time ¢, occupy a new region T. For
instance, in the steady flow of the last section, a cylinder bounded at
t = 0 by the planes z,= 0, z, = 1, and by the surface %] 4 y5 = a?,
becomes at the time £ the cylinder bounded by the same planes and the
surface

X2 y2
Taenr T Gaep =1
as we see by eliminating %, v,, 2, between the equations of the initial
boundary and the equations of the paths (fig. 6). Here the volume of
the region has not changed, for the area of the elliptical base of the
cylinder is ma?, and so, independent of the time.

On the other hand, in the flow
% =%+, y = yoet,
- x,y) i .

H&WW) the same cylinder at time ¢ =0,
has at the time # the elliptical
boundary

(x — 1) 1
Fig. 6. Bz (aetyr — 77

so that the volume has increased to wa?¢’. The time rate of expansion
of this volume is the derivative of this value, alsoma2é. If we divide the
rate of expansion of the volume by the volume, and find such a quotient
for a succession of smaller and smaller volumes containing a given point,
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the limit gives us the time rate of expansion per unit of volume at that
point. In the present instance, the quotient is 1, und by decreasing a.,
we may make the original volume as small as we please. Hence the time
rate of expansion per unit of volume at the point originally at the origin
is always 1. It is not hard to see that this characterizes the rate of expan-
sion of the fluid at all points, for the chords of any portion of the fluid
parallel to the x- and z-axes are constant, while those parallel to the
y-axis are increasing at the relative rate 1. Thus every cubic centimetre
of the fluid is expanding at the rate of a cubic centimetre per second.

Let us now consider the rate of expansion in a general flow. The
volume at time ¢ is

V(t):fzjfdxdydz.

We must relate this expression to the volume at #,. By the equations (2),
every point (x, v, 2) of T corresponds to a point (x,, ¥,, %) of T,. We
may therefore, by means of this transformation, in which ¢ is regarded
as constant, change the variables of integration to x,, ¥,, %. According
to the rules of the Integral Calculus?, this gives

V() =f!fdxdydz:&ff](xo,yo,zo, t) dxgdy,dzy

where J denotes the Jacobian, or functional determinant

| 9 9y = 9z
| 0%y’ 0xy’ 0,

| Ox dy 0z
J (%0, Yo, 20, 1) = 3.’ v, 9%, |
ox dy dz |

of the transformation. 070" 0z’ 9z
We are interested in the time rate of expansion of the volume. This

is given, if the Jacobian has a continuous derivative with respect to the
time, by
av aJ
W == J‘J‘f—d_t— dxo dy() dZO .
TU

We can compute the derivative of the Jacobian for ¢ = 4, without diffi-
culty, and as #, can be taken as any instant, the results will be general.

First, Px Py 9%
0tdx,’ 0tdx,’ 0tdx,

g _g o oy o

at T 9y’ 0y’ 9%,

t dx ay 0z

9z’ 9n’ 9%

1 See Oscoop: Advanced Calculus, New York, 1925, Chap. XII, §§4—S8, or
CouRrANT: Differential- und Integralvechnung, Berlin, 1927—29, Vol. II, pp. 261, 264.

3%
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where the symbol S means that we are to add two more determinants
in which the second and third rows of J, instead of the first, have been
differentiated with respect to # Let us assume that all derivatives
appearing are continuous. Then, since %, y, z reduce to %, ¥, %, for
t = t,, at this instant

ox __ Oy _ 0z =1 O9x _0x _ 0y 9y 09z 0z _
dxy  0vo 0z ' 0y 074 %y 0z, 0% 0%
C0Ex 0 8x> X 0%y aY 0%z 07
0t 0 %, _—8x0< dxy’ 010y, v’ 0tdzy 0z

I

Accordingly

ﬂ} _0x | oy aZ}
t=to 0% ' 0¥y ' Ozple=gy

di Dz,
We may now drop the subscripts, since %, y, z coincide with %5, ¥, Zo»
at ¢ =t,, and {, may be any time. We then have, for the time rate of ex-
pansion of the fluid occupying a region T at time Z, '

av 0xX oY 0z
® =l G S
T

From this equation we may derive the relative rate of expansion, or
the rate of expansion per unit of volume at a point. We remove the inte-
grand from under the sign of integration, by the law of the mean, and
divide by the volume:

av
@ _oxav oz
vV T~ dx oy 9z °

If, now, the region 7 is made to shrink down on the point P (%, ¥, 2),
the limit of the above expression gives us the relative time rate of expan-
sion of the fluid at P:

. X oY 0z
(7) d“’7=7+37+$’
or the divergence of the vector field ¥ (X, Y, Z), as it is called. The ex-
pression (6) is called the total divergence of the field for the region 7.

We see at once that if the rate of change of volume (6) is everywhere
0, the divergence (7) is everywhere 0, and conversely. Thus a fluid whose
divergence vanishes everywhere is incompressible®.

We are now in a position to see how the field lines can give us a pic-
ture of the intensity of the field. Consider all the field lines passing
through a small closed curve. They generate a tubular surface called a
field tube, or, in a field of force, a tube of force. If the flow is stationary,

1 See, however, § 9 (p. 45).
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the fluid flows in this tube, never crossing its walls. If, in addition, the
fluid is incompressible, it must speed up wherever the tube is pinched
down, and slow down when the tube broadens out. Interpreting the field
as a field of force, we see that in a stationary field of force whose diver-
gence vanishes everywhere, the force af the points of a line of force is greater
or less according as the neighboring lines of force approach or vecede from
1t. This qualitative interpretation of the spacing of the lines of force
will be made more exact in § 6.

Exercises.

1. Verify that the field of Exercise 1, page 31, has a divergence which vanishes
everywhere. Draw the lines of force 342y — 33 =C for C=— 2, —1, 0, 1, 2,
and verify the relationship between intensity and spacing of the field lines.

2. Verify the fact that the total divergerice vanishes for the field of force due
to a single particle, for regions not containing the particle, bounded by conical
surfaces with the particle as vertex, and by concentric spheres. Show that for
spheres with the particle at the centers, the total divergence is — 4 7w m, where m
is the mass of the particle.

3. A central field of force is one in which the direction of the force is always
through a fixed point, and in which the magnitude and sense of the force depends
only on the distance from the point. The fixed point is called the center of the
field. Show that the only field of force with Q as center, continuous except at Q,
whose divergence vanishes everywhere except at Q, is the Newtonian field of a
particle at Q. Thus Newton’s law acquires a certain geometrical significance.

4. An axial field of force is one in which the direction of the force is always
through a fixed line, and in which the magnitude and sense of the force depends
only on the distance from this line. The line is called the axis of the field. If such
a field is continuous, and has a vanishing divergence everywhere except on the
axis, find the law of force. Find also the law of force in a field with vanishing
divergence in which the force is always perpendicular to a fixed plane and
has a magnitude and sense depending only on the distance from this plane.

5. Show that the divergence of the sum of two fields (the field obtained by vector
addition of the vectors of the two fields) is the sum of the divergences of the two
fields. Generalize to any finite sums, and to certain limits of sums, including
integrals. Thus show that the divergence of Newtonian fields due to the usual
distributions vanishes at all points of free space.

6. The definition of the divergence as

av
lim —‘Et—
7oV
involves no codrdinate system. Accordingly, the expression (7) should be inde-
pendent of the position of the coérdinate axes. Verify that it is invariant under
a rigid motion of the axes.

5. The Divergence Theorem.

The rate of expansion of a fluid can be computed in a second way,
and the identity obtained by equating the new and old expressions will
be of great usefulness. Let us think of the fluid occupying the region
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T at a certain instant as stained red. We wish to examine the rate of
spread of the red spot. Suppose, for the moment, that 7 has a plane
face, and that the velocity of the fluid is perpendicular to this face,
outward, and of constant magnitude V. Then the boundary of the red
spot is moving outward at the rate of V' centimetres per second, and
VAS cubic centimetres per second are being added to the red spot
corresponding to an element A4S of the plane boundary of 7. If the
velocity is still constant in magnitude and direction, but no longer
perpendicular to the plane face, the red fluid added per second, corres-
ponding to 4 S will fill a slant cylinder, with base 4 S and slant height
having the direction and magnitude of the velocity. Its volume will
therefore be V,, A4S, where V,, is the component of the velocity in the
direction of the outward normal to the face of T.

Giving up, now, any special assumptions as to T or the velocity, we
may inscribe in T a polyhedron, and assume for each face a constant
velocity which, at some point of the face coincides with the actual ve-
locity of the field, and thus compute an approximate time rate of expan-
sion of the red spot:

(%) =z v.4s.

If the velocity field is continuous, and if the faces of the polyhedron are
diminished so that their maximum chord approaches 0, while the faces
approach more and more nearly tangency to the surface bounding 7,
the error in this approximation should approach 0. We are thus led to
the second desired expression for the time rate of expansion, or total
divergence

®) e ﬂv,,ds :ﬂ(Xl - Ym+ Zn)ds,

where I, m, # are the direction cosines of the normal to S, directed out-
ward, S being the surface bounding T.

The identity of this expression with that given in equation (6) gives
what is known as the Divergence Theorem, or as Gauss’ Theorem, or
Green's Theorem?, and may be stated

1 A similar reduction of triple integrals to double integrals was employed by
LAGRANGE: Nouvelles recherches sur la nature et la propagation du son, Miscellanea
Taurinensis, t. II, 1760—61, 45; Oeuvres, t. I, p. 263. The double integrals are
given in more definite form by Gauss, Theoria attractionis corporum sphaeroidicorum
ellipticorum homogeneovum wmethodo movo tractata, Commentationes societatis
regiae scientiarum Gottingensis recentiores, Vol. II, 1813, 2—5; Werke, Bd. V,
pp. 5—7. A systematic use of integral identities equivalent to the divergence theo-
rem was made by GEORGE GREEN in his Essay on the Application of Mathematical
Analysis to the Theory of Electricity and Magnetism, Nottingham, 1828.
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mdivm ~[[r.as.
Ve e = vz,

or in words, the integral of the divergence of a vector field over a vegion
of space is equal to the integral over the surface of that region of the compo-
nent of the field in the divection of the outward divected novmal to the sur-
face.

The reasoning by which we have been led to this theorem is heuristic,
and the result is so important that we shall devote special attention to
it in Chapter IV. For the present we shall borrow the results there
rigorously established, for we do not wish to interrupt our study of
vector fields.

Exercises.

1. Verify the divergence theorem for the field X = x, =1, Z=0, and
the regions (a) any cuboid a < v < a/, bZSy <V, c<L 2 g ¢/, (b) the sphere
224 y® 22 < gl

2. The same for the field X = #%, Y = 92, Z = 22. For the sphere this may
be done without the evaluation of any integrals.

3. Show by applying the divergence theorem to the field (#, ¥, 2) that the
volume of -any region for which the theorem is valid is given by

Vzéj;fycos (r,n)dS

where S is the boundary of the region, # the distance from a fixed point, and (7, #)
the angle between the vector from this point and the outward directed normal
to S. Apply the result to find the volume bounded by any conical surface and a
plane. Find other surface integrals giving the volumes of solids.

4. Show that the projection on a fixed plane of a closed surface is 0, provided
the surface bounds a region for which the divergence theorem holds.

5. By means of the divergence theorem, show that the divergence may be de-

fined as
ff V,dS

lim >
im 7

as the maximum chord of T approaches 0, V being the volume of T'. With this
definition alone, show that if the divergence exists, it must have the value (7).
Suggestion. If the above limit exists, it may be evaluated by the use of regions
of any convenient shape. Let T be a cube with edges of length a, parallel to the
axes.

6. Show in a similar way that in spherical codrdinates, the divergence is
given by
1 0 1 09 1

4
- 2 =
0% dp e R+Qsin19 op - osind a9 sin$ 6,

divl =

where R, @, O, are the components of the field ¥ in the directions of increasing
0. @, ¥, respectively.
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6. Flux of Force; Solenoidal Fields.

When a vector field is interpreted as a field of force, the integral
f f V,dS, taken over any surface, open or closed, is called the flux of
force across the surface. If the flux of force across every* closed surface
vanishes, the field is called solenoidal. A necessary and sufficient con-
dition for this is that the divergence vanishes everywhere, provided the
derivatives of the components of the field are continuous. For, by the
divergence theorem, if the divergence vanishes everywhere, the flux
of force across any closed surface vanishes. On the other hand, if the
flux across every closed surface vanishes (or even if only the flux across
every sphere vanishes), the divergence vanishes. For suppose the diver-
gence were different from 0 at P, say positive. Then there would be a
sphere about P within which the divergence was positive at every point,
since it is continuous. By the divergence theorem, the flux across the
surface of this sphere would be positive, contrary to the assumption.

Newtonianfieldsaresolenoidal at the pointsof free space. Thishas been
indicated in Exercise 5, page 37. Let us examine the situation for volume
distributions. Others may be treated in the same way. If P is a point
where no masses are situated, the integrands in the integrals giving the
components of the force have continuous derivatives, and we may there-
fore differentiate under the signs of integration. We find

= ([ lbory 2n—y, 2 E—s
leV——fffoﬁx PE) +ﬁy 8 +6z »® :ldV

¥ PRY 2
_ﬂf SRS S S S

= 0.

Thus Newtonian fields are among those for which the spacing of the
lines of force gives an idea of the intensity of the field. We can now
state the facts with more precision, as was intimated at the close of § 4.
Consider a region T of the field, bounded by a tube of force of small
cross section, and by two surfaces S; and S, nearly normal? to the

1 The word every here means without restriction as to size, position, or general
shape. Naturally the surface must have a definite normal nearly everywhere, or
the integral would fail to have a meaning. The kind of surfaces to be admitted
are the regular surfaces of Chapter IV.

2 It may not always be possible (although we shall see that it is in the case
of Newtonian fields) to find surfaces everywhere normal to the direction of a field.
Picture, for instance, a bundle of fine wires, all parallel, piercing a membrane
perpendicular to them all. If the bundle be given a twist, so that the wires become
helical, the membrane will be torn, and it seems possible that the membrane
could not slip into a position where it is perpendicular to all the wires. In fact,
the field (— v, #, 1) has no normal surfaces.
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field (fig. 7). The field being solenoidal, the flux of force across the sur-
face bounding this region will be 0. The flux across the walls of the tube
vanishes, since the component of the force normal to these walls is 0.
Hence the flux across the two surfaces S; and S, is 0, or what amounts
to the same thing, if the normals to these surfaces have their senses
chosen so that on S; they point into T and on S, out from T,

(10) fsf V,dS :fsf vV, dsS.

If A, and 4, denote the areas of S; and
S,, and F; and F, the magnitudes of the
forces at a point of each—say points
where the forces are actually normal to
the surfaces—we derive from the above an approximate equation,

A, F, = A,F,,

in which the relative error approaches 0 with the cross section of the
tube. That is, the intensity of the force in a solenoidal field at the points
of a tube of force of infinitesimal cross section, varies inversely as the
area of the cross section. The equation (10), of course, embodies the exact
situation.

It is quite customary, in considering electrostatic fields, to speak of
the number of lines of force cutting a piece of surface. This number means
simply the flux across the surface, and need not be an integer. If a de-
finite sense is attached to the normal to the surface, we speak of lines
leaving the surface when the flux is positive, and of lines entering the
surface when the flux is negative. The equation (10) tells us that in
a solenoidal field, the number of lines in a tube of force is constant
throughout the tube.

Since Newtonian fields are solenoidal in free space, ceasing to be so
only at points where masses are situated, it is customary to say that
lines of force originate and terminate only at points of the acting masses.
But this should be understood in terms of tubes of force. For an individ-
ual line may fail to keep its continuity of direction, and even its iden-
tity throughout free space. As X, Y and Z are continuous, this may
happen only when they vanish simultaneously, that is, at a point of
equilibrium. But such points occur, as we have seen in Exercise 3, page 31.
The straight line of force starting from one of the two equal particles
toward the other (or, more properly, if we think of the lines of force
having the sense as well as the direction of the field, arriving at one
particle from the direction of the other), encounters the plane which
bisects perpendicularly the segment joining the particles, any ray in
which from the point of equilibrium may just as well be considered a
continuating of the line of force as any other. Clearly any assertion that
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the lines of force continue and keep their identity beyond such a point of
equilibrium must be a matter purely of convention. It is, however, al-
ways possible to find tubes of force which do continue on, for points of
equilibrium can never fill volumes, or even surfaces, in free space,
however restricted®.

Ezxercise.

Determine which of the following fields are solenoidal, spemfymg the excep-
tional points, if such exist.

a) the field (#, v, 2),

b) the field (», 0, 0),

¢) the field (—zf—? Lot 2, T_l:>

y2 4z z 27 Ya? + v/

d) the attraction field due to a homogeneous sphere,

e) the field of the instantaneous velocities of a rigid body (a + gz — 7y,
b+ rx—pz, c+py—gx),

f) the field (——QZ = 0>, o=} + .

27 37
4
In the cases in which the field is not solenoidal, alter, if possible, the intensity,
but not the direction of the field, so that it becomes solenoidal.

7. Gauss’ Integral.

In the field of force due to a particle of mass m, the flux of force across
the surface of any sphere ¢ with center at the particle, is —4mm, the
normal being directed outward. For the normal component of the field

is the constant:—';, and the area of the surface is 4m#2 But the flux

is the same for any other closed surface S containing the particle,
to which the divergence theorem can be applied. For if we take the
radius of ¢ so small that it lies within the region bounded by S, then
in the region between o and S, the field is solenoidal, and hence the flux
across its entire boundary is 0 :

[fv,as+ [[v,as=o,
4 S

the normal pointing outward from the region. Reversing the sense of
the normal on the sphere, so that in both cases it points outward from
the surfaces, makes the two integrals equal. Thus the flux of this field
across any closed surface containing the particle is — 47z m.

If we have a field containing a number of particles, the flux across
any closed surface S containing them all is the sum of the fluxes of the
fields due to each singly, and is therefore —4 M, where M is the total
mass within the surface. This remains true if there are also masses
outside S, for since the field due to them is solenoidal within S, they
contribute nothing to the flux across S.

1 See Chapter X, § 9.
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The result may be extended to fields due to continuous distributions
which nowhere meet S. The fields due to masses outside S are still
solenoidal inside of S, as we saw in § 6 (p.40). Let us consider, as
typical, the contribution to the flux of a volume distribution within
S. It has the form

ﬂVds ﬂﬂ 5-xl+n—ygy)mﬂ&—z)ndms,

and as S passes through no masses, 7 is never 0 and the integrand is
continuous. So the order of integrations can be reversed, and

fdeS fﬂ f E=Aito=Nmt €954y,

Here the inner integral is simply the flux of force across S due to a unit
particle at Q (&, %, {), and so is equal to —4 7. The iterated integral
is therefore equal to —4 M, where M is the total mass of the volume
distribution. In all cases then, in which S meets no masses,

1) fsf V,dS = —4m M.

The integral giving the flux is know as Gauss’ integral, and the
statement (11) is known as Gauss’ theorem, or Gauss’ integral
theorem: the flux outward across the surface bounding a region is equal
to — 47 times the total mass in the region, provided the bounding surface
meets no masses.

Gauss’ theorem may even be extended, under certain conditions,
to the case in which S passes through masses. Let us assume, for in-
stance, that the mass within any closed surface sufficiently near S is
arbitrarily close in total amount to that within S, as would be the case
if the masses belonged to volume distributions with bounded volume
density. Let us also assume that the flux of the field due to the masses
within S, across any surface S’/ enclosing S, varies continuously with
the position of S”, and similarly, that the flux of forces due to the
masses without S, across any surface S’ enclosed by S, varies con-
tinuously with S’. Then

[[viaS =0, and [[V,dS=—4nM,
s s

where 7’/ and V’ are the normal components on S’ and S”’ of the fields
due to the masses outside of and within S respectively and M is the
total mass within S. These equations are valid because the surfaces S’
and S”” do not meet the masses producing the fields whose fluxes over the
surfaces are computed. Now suppose that S’ and S approach S. The
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right hand members of the above equations do not change, while, by
hypothesis, the left hand members become the fluxes over S due to the
fields of the exterior and interior masses, respectively. The sum of the
limiting equations thus gives Gauss’ theorem for S.

Implicit in the above reasoning is the assumption that S can bound
a region for which the divergence theorem is valid (for the first equa-
tion of this section is derived from that theorem), and that it is possible
to approximate S by surfaces S’ and S”, arbitrarily closely, S’ and S”
having the same character. This is evidently possible for spheres, and
for many other simple surfaces. But a general assumption of the vali-
dity of Gauss’ theorem for surfaces cutting masses is dangerous, and
the application of the theorem in such cases, made in many text books,
is unwarranted.

Exercise.

Determine the outward flux across the unit sphere about the origin in the fields
(a), (b), (d), of the exercise of § 6 (p.42). In (d), the origin is supposed to be the
center of the sphere. For the field (d), verify Gauss’ theorem for concentric
spheres, with radii both less than, and greater than, that of the given sphere.

8. Sources and Sinks.

It is advantageous to keep before ourselves the various interpreta-
tions of vector fields, and the question arises, what is the significance
of Gauss’ theorem for velocity fields? Let us consider first the field of a
single particle at @, the components of the force now being thought
of as components of velocity. The point @ is a point of discontinuity of
the field. What is happening there ? Everywhere else, the field is sole-
noidal, that is, incompressible in the sense that any portion keeps its vo-
lume unaltered. Yet into any region containing Q, by Gauss’ theorem,
4 7tm cubic centimetres of fluid are pouring every second. As they are
compressed nowhere, what becomes of them ? It is customary to regard
the fluid as absorbed at Q, and to call Q a sink, of strength 4m. If m
is negative, so that the senses of the velocities are reversed, Q is called
a source, of strength 47| m|.

The exact physical realization of sinks and sources is quite as im-
possible as the realization of a particle. For a fluid, we may imagine a
small tube introduced into the field, with mouth at (, through which
fluid is pumped out from or into the field. In the case of electric currents,
a source corresponds to a positive electrode at a point of a conducting
body, and a sink to a negative electrode.

Suppose now that we have the Newtonian field due to a volume
distribution with continuous density. We have already seen in examples,
for instance, the homogeneous sphere, that the field due to such a distri-
bution may be continuous everywhere. If the density is always positive,
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Gauss’ theorem tells us that the fluid with the corresponding velocity
field pours into the region occupied by the distribution at the rate 47z M
cubic centimetres per second, and, further, that it passes into any portion
of this region at the rate 47 m cubic centimetres per second, where m
is the mass in this portion in the corresponding field of force. If the por-
tion is small, m will be small, so that the fluid may be thought of as ab-
sorbed continuously throughout the whole region. We then speak of a
continuous distribution of sinks. Similarly, we may have a continuous
distribution of sources, and we may also have sources and sinks distri-
buted on surfaces. These concepts are useful. Thus, for instance, the
heat generated by an electric current in a conductor because of the re-
sistance, may be thought of as due to a continuous distribution of
sources in the conductor. In problems in the conduction of heat and in
hydrodynamics, flows satisfying preassigned conditions may often be
produced by suitable distributions of sources and sinks, usually on
bounding surfaces.

Ezxercises.

1. Show that the field («, ¥, 2) has continuously distributed sources by form-
ing and evaluating Gauss’ integral for cuboids. Show that the source dewsity
is 3, that is, that the flux out from any region is 3 times the volume of that region.

2. Show that for a field with continuously distributed sources, the source
density, or rate of yield of fluid per unit volume at any point is equal to the diver-
gence of the field at that point.

9. General Flows of Fluids; Equation of Continuity.

Thus far, we have been considering the kinematics of fluids, that is,
purely the motion, the concept of mass of the fluid not having entered.
To say that a fluid is incompressible has meant that any portion of the
fluid, identified by the particles it contains, occupies a region of constant
volume. But if sources are possible, this criterion of incompressibility is
inadequate. For if fluid is poured into a region, particularly through
continuously distributed sources, it is impossible to identify at a later
instant the exact fluid which at a given instant occupies a given volume.

What then should be the definition of incompressibility ? If a given
body of fluid is introduced into a cylinder, and the volume decreased by
means of a piston, the ratio of mass to volume increases. The same
thing happens if new material is forced into the cylinder, the volume
remaining unchanged. In either case, we should say that a compression
has taken place. The density has increased. Thus a broader formulation
of the notion of incompressibility may be founded on the density. It
will not do, however, to say that incompressibility and constant density
are synonymous. We might, for instance, have a flow of a layer of oil on
a layer of water, both fluids being incompressible. The density would
not be constant throughout the fluid. What would be constant is the
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density of the fluid at a particular particle, no matter where it moves, as
long, at least, as the motion is continuous. So we must formulate ana-
lytically the meaning of this kind of constancy.

To say that a function, the density g in the present instance, is con-
stant at a point of space, means that

?
270 @y 2 8)=0,

%, y and z being held constant. To say that the density remains constant
at a given particle is another matter. We must identify the particle, say
by the equations (2). If p were given as a function of %,, ¥,, %, and ¢,
we should again equate to 0 the partial derivative with respect to the
time, %, ¥y, %, remaining fixed. But if g is given as a function of x, ¥y, z
and ¢, this derivative must be computed by the rule for a function of
several functions:

do dodx | Opdy | 0pdz | do

dt ox 0f ' 9y ot ' 9z ot ot °
If we introduce the components of the velocity, this becomes

a P d0 o0

(12) =X gt Y 254 52

The rate of change of density is thus in part due to the change at the
point (x, ¥, 2), and in part to the rate at which the fluid at this point is
flowing to other parts of the field where the density is different. The
process of forming this kind of derivative with respect to the time is
known as particle differentiation. The symbol for the total derivative is
employed to distinguish this time derivative from the time rate of change

. . . . Do
at a point fixed in space. The notation ?f is also used.

The definition of incompressibility is now

de
=0

throughout the region considered.

We shall see that in case no sources or sinks are present, this concept
of incompressibility coincides with that of § 4 (p. 36). This will be a conse-
quence of the equation of continuity, which we now derive. This equa-
tion amounts simply to an accounting for all the mass in the field. We
shall assume that the components of the velocity and the density have
continuous derivatives, and allow for continuously distributed sources,
the density of the distribution of sources being denoted by 6 =0 (%, ¥, 2, £).
Thus at any point P, ¢ cubic centimetres of fluid per second per unit of
volume at P are accounted for by the sources, as measured by the limit
of the rate of efflux from a region containing P to the volume of the
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region, as the region shrinks to a point. More concretely, it means that
oo units of mass per second per unit of volume are added by the sources
to the fluid. Thus, in the region T,

‘u‘fgadV

units of mass per second are added by the sources.

The same region may gain in mass through the streaming in of fluid
through its bounding surface S. Just asin § 5 (p. 37) we found

fsfvnds

for the rate at which a given portion of the fluid was expanding, so we
may now show the number of units of mass entering T through S per
second is

— [[oV,ds.
S
Thus the total time rate of increase of massin 7T is

flffgo‘dV—j;fg V,aS.

But the mass in T at any instant is the integral of the density over T,
so that the time rate of increase of mass in T is the derivative of this inte-
gral, the region T being fixed

aillJear=Jf

differentiation under the integral sign being permitted on the hypothesis
that the density has continuous derivatives. Equating the two expres-
sions for the rate of gain in mass, we have

ﬂf@GdV——l:[QVn is =£ﬂ%§fﬂ’-

In order to draw conclusions as to the relation between density, source
density and velocity, at a point, we must transform the surface integral
to a volume integral. This service will be rendered by the divergence
theorem. We replace, in that theorem as stated in the equations (9),
X,Y,Zby oX,pY, oZ. It becomes

a a d
fff[WQX —J—WQY-}——(?—Z—QZJLZV:fngndS.
T s

Accordingly, the preceding equation takes the form

do @ 9 3
fﬂ[g;-i-E;QX+5;QY+-5:;QZ—QU]dV=0°
T

99
3 av,
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This must hold for any region T. Accordingly, the integrand, being con-
tinuous, must vanish everywhere, in accordance with the reasoning
at the beginning of § 6 (p. 40). Carrying out the indicated differen-
tiations, we have

Je 1 x9% yle

S e[S+ S+~ po=o,

or, employing the formula (12) for the particle derivative, and dividing
by o, we may reduce this to

; 4o + divV—o6=0.

This is the desired equation of continuity of hydrodynamics.

We see from the equation of continuity that in the absence of sources
(0 = 0), the vanishing of the divergence is a necessary and sufficient con-
dition that the fluid be incompressible. Furthermore, we see that in the
case of an incompressible fluid, the divergence is equal to the source density.

Chapter III.
The Potential.

1. Work and Potential Energy.

The properties of fields of force developed in the last chapter grouped
themselves naturally about the divergence, and were concerned espe-
cially with solenoidal fields, among which are the fields due to matter
acting in accordance with Newton’s law. We are now to develop a second
property of Newtonian fields and study its implications.

A particle of mass m, subject only to the force of a specific field
X, Y, Z) will move in accordance with Newton’s second law of motion
d?x a2z

ay
Mg =AimX, m—z=3imY, md—tz——lmZ

where A is a constant depending on the units used. If these equations be
ay
dt

. 4 d . .
multiplied by %, and d—j, respectively, and added, the result is

1 d dx\2
Emd—t[(ﬁ)

The lefthand member of this equation is the time derivative of the kinetic

(G () man(e v+ 25).

energy of the particle, T = —12—m v®. If we integrate both sides of the

equation with respect to ¢ from £, to ¢, we have
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¢
a d a
T— T0=/1mf(X-d~lx—+me-+Zd—f>dt
to

P
=im [ (Xdx+ Ydy + Zdz)
P, ’

= AmW (P, Py; C),

C being the path of the particle. The expressions on the right, —the
last a notation—, are known as the work done on the particle by the
field during the motion, and the equation states that the change in kinetic
energy during a time interval is equal to the work done by the forces of the
field during the motion in that interval.

Let us examine whether the result is of value in determining the char-
acter of the motion. In order to determine the work done, we must
evaluate the integral on the right. At first sight, it would seem that we
must know the velocity of the particle at every instant of the motion.
But the second expression shows that this is not necessary. It does,
however, demand a knowledge of the path travelled by the particle, and
this, as a rule, is not known in advance. We can, however, dispense with
a knowledge of the path in the important special case in which the field
is such that the integral is independent of the path, i. e. has the same
values when taken over any two paths! connecting P, with P which
can be continuously deformed one into the other, and this for any pair
of points P,, P. The work is then merely a function of the positions
of P,and P, and we may drop the argument C in the notation. Under
these circumstances, the field is called conservative, or lamellar. Py being
thought of as a fixed point, the function of P (x, y, 2), —Am W (P, P,),
is called the potential energy of the particle at P, and the above equation
states that the total energy is constant during the motion. The energy
equation, or the principle of the conservation of energy, is most useful
in problems of mechanics, and the fact lends a special interest to con-
servative fields.

Let us now consider conservative fields. Furthermore, let us confine
ourselves to a region in which the force is continuous, and which is
simply connmected, i. e. such that any two paths with the same end-points
may be continuously deformed one into the other without leaving the
region2. We take units for which 2= 1. The function

P

1) W (P, Pp) = [ (Xdx +Ydy + Zdz)

o

1 Any two regular curves, in the sense of Chapter IV.
2 See § 9, page 74.
Kellogg, Potential Theory.
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is determined by the field only, and we may speak of it as the work per
unit of mass, or the work of the specific field. We shall not even have to
bother with its dependence on P,. A change in the position of thig point
will merely mean adding a constant to the function, namely, the work
between the two positions of P,, taken with the proper sign.

We shall now show that the work function completely determines the
field, assuming that it arises from a continuous field of force. But two
preliminary remarks should be made.

The first is concerned with the notion of directional derivative. Let
W (P) be a function of the coérdinates (x,y, z) of P, defined in a
neighborhood of P;, and let « denote a ray, or a directed straight line
segment, issuing from P;. We define the derivative of W in the direction
@ by W _ . W(P) =W (P)

Ja PP,
as P approaches P, along the ray, provided this limit exists. The direc-
tional derivative is thus a ome-sided derivative, since P is confined to
the ray, which extends from P, in only one sense. The reader may show
that if « has the direction cosines I, m, #, the derivative of W in the direc-

tion o has the value
ow oW aw

ow
| FER PR A P
provided the derivatives which appear are continuous. He may also
show that on the same hypothesis, the directional derivatives at P, in
two opposite directions are numerically equal and opposite in sign.

The second remark is to the effect that the work integral (1) is inde-
pendent of the codrdinate system involved in its definition. Since it is
the limit of a sum of terms of the form

X A%, + Y, Ay, + Z, Az,
it is only necessary to show that this expression can be given a form
independent of the coérdinate system. It is, in fact, a combination of
two vectors, (X3, Yy, Z) and (4 x,, Ay, Az,), known as their scalar
product?, and whose value is the product of their magnitudes times the
cosine of the angle between them. For if F; is the magnitude, and
1, m, n, are the direction cosines of the first vector, and if As; and

and I, m’, w’ are the corresponding quantities for the second, the above
expression is equal to

FoAs, (U 4+ mm' + nn') = F,As, cos(Fy, 4s,;),

as stated. Incidentally, we see that the expression for the work may
be written

P
W (P, Py) = chosﬁds,
PO

1 See the footnote, page 123.
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where & is the angle between the force and the forward direction of the
tangent to the path.

Let us suppose now that the work function is known, and that it
belongs to a continuous field (X, Y, Z). We compute its derivative in the
direction of the x-axis at P;. We take the path from P, to P; (x, v, 2)
along any convenient curve, and the path from Pyto P(x + Ax, y, 2)
along thé same curve to P, and then along the straight line to P.
Then, by (1),

W(P) —W(P) 1
~ ®p, —Z;fX(x,y,z)dx:X(x+19Ax,y,z),

z+dzx

X

o<#<l, dx>0,
by thelaw of the mean. This gives in the limit, as P P, = A x approaches 0,

ow
X=—.
Since the work is independent of the axis system, it follows that the
above result holds for any direction, that is, that the component of the
field in any direction is equal to the derivative of the work in that divection.
In particular,
ow ow ow
X=>—,. Y:W’ Z:W'
Thus a great advantage of a conservative field is that it can be specified
by a single function W, whereas the general field requires three func-
tions, X, Y, and Z, or their equivalents, to determine it. Because it
determines the field in this way, the work is sometimes called the
force function.
Any field which has a force function with continuous derivatives is
obviously conservative. For if the field (X, Y, Z) has the force function
@ with continuous derivatives,

oD oD oP
X=5, Y=5,, Z=7,
and
P

P

W (P, P,) =f<g—fdx + 90 dy + 52 d) =fazq) —&(P)— @ (Py),
[ PO

and the integral is independent of the path because the last expression

depends only on the end points.

Thus the notions of work and force function are equivalent, and both
are essentially, —i. e. except for a positive constant factor, depending on
the mass of the particle acted on and the units employed, —the nega-
tive of the potential energy. Hereafter, we shall consider the mass of
the particle acted on as unity, and assume that the units have been so

4%
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chosen that the potential energy is equal to the negative of the force
function.

It is now easy to verify that Newtonian fields have force functions'.
Taking first a unit particle at Q (£, 7, {), we see that the force due to it
at P (x, v, z) is given by
E—x~il’ y— 1= d 1 {—=¢

B dx v

X:

B

91 91
® T 9y v’ - R VI

1. . .
so that - is a force function. It follows also that the field of a system of

a finite number of particles has a force function, namely the sum of the
force functions of the fields due to the separate particles. Also, the fields
of all the distributions we have studied have force functions, namely the

integrals of the products of the density by 71, provided it is permitted to

differentiate under the signs of integration, and we know that this is
the case at all points outside the masses. As a matter of fact, we shall
see that in the case of the usual volume distributions, the force function
continues to be available at interior points of the distribution (p. 152).

If a field had two force functions, the derivatives of their difference
with respect to #, y and z would vanish, so that this difference would be
constant. Hence the force function of any field which has one, is deter-
mined to within an additive constant.

We now introduce the idea of potential? of a field, which in some
cases coincides with the force function, and in others with the negative
of the force function. In the case of general fields of force not specifi-
cally due to elements attracting or repelling according to Newton’s law,
there is a lack of agreement of writers, some defining it as the work
done by the field, and thus making it the same as the force function
and so the negative of potential energy, while others define it as the
work done against the field, and so identifying it with potential energy
and the negative of the force function. In vector analysis, whenever
abstract fields are considered, the first definition is usual. The field
(X, Y, Z) is then called the gradient of the potential U,

U U 00U

9x’ y’ T??)

We shall adopt this definition in the case of abstract fields, general force
fields, and velocity fields.

On the other hand, in the theory of Newtonian potentials, authori-

(X,Y,Z):gradU=<

1 This fact was first noticed by LaGraANGE, Mémoires de 1’Académie Royale
des Sciences de Paris, Savants étrangeérs, Vol. VII (1773) ; Oeuvres, Vol. VI, p. 348.

2 Called potential function by GREEN, l. c. footnote, page 38, potential by
Gauss, Allgemeine Lehysdtze in Beziehung auf die im verkehvien Verhdlinis des
Quadrates dev Entfernung wivkenden Amnziehungs- und Abstofungskvifte, Werke,
Bd. V, p. 2001f.
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ties are in substantial agreement, defining the potential of a positive unit

particle, point charge, or magnetic pole, as %, and the potentials of

various distributions as the corresponding integrals of the densities times

1 . . .
5 (see Exercise 4, below). This convention has as consequence the

great convenience of a uniformity of sign in the formulas for the
potentials of all the various types of distributions. It does result, how-
ever, in a difference in the relation of the potential to the field, accord-
ing as the force between elements of like sign is attractive or repulsive.
Because of the puzzling confusion which is likely to meet the reader, we
summarize the conventions as follows.

In abstract fields, (X, Y, Z) = grad U ; the potential corresponds
to the force function and the negative of potential energy.

In Newtonian fields, the potential at P due to a unit element at

.1
Qis = and

a) if elements of like sign attract, as in gravitation, (X, Y, 2)
= grad U; the potential is the force function, and the negative of
potential energy, :

b) if elements of like sign repel, as in electricity and magnetism,

(X,Y,Z) = — grad U ; the potential is the negative of the force func-
tion, and is identical with potential energy.

Furthermore, in the theory of Newtonian potentials, it is customary
to fix the additive constant which enters, by some convenient convention.
In case the distribution is such that the potential approaches a limit as
P recedes indefinitely far, no matter in what direction, the constant
is fixed so that this limit shall be 0: in other words, so that the zero
of potential shall be at infinity. This is always possible where the masses
are confined to a bounded portion of space. Cases arise, especially in
connection with the logarithmic potential (see page 63) where this is
not the situation, and the convention must be modified.

Exercises.

1. Show that a constant force field (0, 0, —g) is conservative, a) by exhibiting
a force function, and b) by showing that the work is independent of the path.

2. The same for any central force field (see Exercise 3, page 37).

3. The same for any axial force field (see Exercise 4, page 37).

4. Show that the work done by the field in bringing a unit particle from P,

to P, in the field of a unit particle at Q, is % -+ C. Show that as the distance of

P, from Q becomes infinite, C tends toward 0.
5. Show that if the components of a field have continuous partial derivatives,
a necessary condition that it be conservative is

9z 9y 89X _ 9z  9Y _ 04X

0y~ 9z’ 9z  9x’  dx  ay "
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6. Show that the condition that a field be conservative in a region in which
it is continuous is equivalent to this, that the work integral (1), taken over any
closed path in the region, which can be continuously shrunk to a point without
leaving the region, shall vanish.

v x

7. Apply the result of Exercise 5 to the field X = — Y=—, Z=0,
4

e*’
where ¢ = }Jx2 + y2. Then show that the work done by the field in carrying a unit
particle over the circle #2 4 y2 = 42, z = 0, in the counter clockwise sense, is 2 7.
Does any contradiction arise? Show that the work over any closed path which
does not make a loop around the z-axis, is 0.

8. Find the work done by the field (y, 0, 0) in moving a unit particle from
(0, 0, 0) to (1, 1, 0) over the following paths in the (#, y)-plane: a) the broken
line with vertices (0,0), (0, 1), (1,1), b) the broken line with vertices (0,0), (1,0),
(1, 1), c) the parabolic arc y = #2. Show how a path can be assigned which will
give as large a value to the work as we please.

9. Show that the gradient of a function is the vector which points in the direc-
tion of the maximum rate of increase of the function, and whose magnitude is the
rate of increase, or the directional derivative of the function, in this direction.

2. Equipotential Surfaces.

We are now in a position to form a second kind of picture of a force
field in case it is conservative. If U denote the potential of the field, the
surfaces U = const. are called equipotential surfaces or equipotentials.
At every point of the field (assumed continuous), its direction is normal
to the equipotential surface through the point. For the equipotential
surface has, as direction ratios of its normal, the partial derivatives of
U with respect to x, v, z, and these are the components of the force.
An exception arises only at the points where the three partial derivatives
all vanish. Here the field cannot be said to have a direction. Such points
are points of equilibrium.

But more than this, the equipotential surfaces give an idea of the
intensity of the force. Let us imagine a system of equipotential surfaces,
U=k, U=k+c¢c, U=k +2c,... corresponding to constant
differences of the potential. Let P be a point on one of these surfaces,
and let N denote the magnitude of the force at P. Then, since the force
is normal to the equipotential surface, N is also the component of the
force normal to the surface, and as such

ou
on T

the normal being taken in the sense of increasing potential, If A# is the
distance along the normal from P to the next equipotential surface of
the set constructed, the corresponding A4 U is ¢, and we have

NAn=c+¢

where theratioof{ tocapproaches0, when ¢ is given values approaching 0.
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We see, then, from the approximate equation N = A—c;, that the smaller

¢, the more accurate is the statement: the intensity of the field is inversely
proportional to the distance between equipotential surfaces. Crowded equi-
potentials mean great force, and sparse equipotentials, slight force. The re-
liability of such a picture in a given region is the greater the more the equi-
potentials approximate, in the region, a system of equally spaced planes.

In certain cases, simple graphical representations of the equipotential
surfaces are possible. If the direction of the field is always parallel to a
fixed plane, the equipotential surfaces will be cylindrical, and the curves
in which they cut the fixed plane will completely characterize them.
Again, if the field has an axis of symmetry, such that the force at any
point lies in the plane through that point and the axis, and such that
a rotation through any angle about the axis carries the field into itself,
the equipotential surfaces will be surfaces of revolution, with the axis
of symmetry of the field as axis. A meridian section of an equipotential
surface will then characterize it

Exercises.

1. Draw equipotentials and lines of force for the pairs of particles in Exercises
3, 4 and 5 (page 31). Describe the character of the equipotential surfaces in the
neighborhood of points of equilibrium, particularly of those which pass through
such points. Show that in Exercise 4, one of the equipotential surfaces is a sphere.

2. In the above exercise, any closed equipotential surface containing the two
particles, may be regarded as the surface of a charged conductor, and the field
outside the surface will be the field of the charge. Inside the conductor there is
no force (see Chapter VII, § 1, page 176), so that the lines of the diagram would
have to be erased. Describe, at least qualitatively, the shapes of certain con-
ductors the electrostatic field of charges on which are thus pictured.

3. Draw equipotentials and lines of force for the field obtained by superimposing
the field of a particle on a constant field.

3. Potentials of Special Distributions.

We saw, in the last section, that the potentials of line, surface and
volume distributions are

) U= f%ds,

3) U = g%ds,

(4) U= ﬂff av,
12

1 For a method of construction of equipotentials in certain cases of this sort,
see MAXWELL, 4 Treatise on Electricity and Magnetism, 3¢ Ed., Oxford 1892,
Vol. I, § 123. Interesting plates are to be found at the end of the volume.
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valid at points of free space. The same integrals are regarded as defining
the potential at points of the distributions, provided they converge.
This is generally the case for surface and volume distributions, but not
for line distributions. But the formulation and proof of theorems of
this sort, and of theorems assuring us that the force components are
still the derivatives of the potential at interior points, is a task which
had better be postponed for a systematic study in a later chapter.
We shall content ourselves for the present with the verification of cer-
tain facts of this sort in connection with the study of the potentials of
special bodies in the following exercises.

Exercises.

1. Find the potential of a homogeneous straight wire segment. Answer, the
value of the potential in the (%, z)-plane is

U:},logl/%2 fi—z)z_l_azmz
V224 (cy — 22+ ¢y — 2
where (0, 0, ¢;) and (0, 0, ¢,) are the ends of the wire. Show also that this result
may be given the form

U= coth—1
N
where / is the length of the wire, and 7, and 7, are the distances from P to its ends.
Thus show that the equipotential surfaces are ellipsoids of revolution with their
foci at the ends of the wire.

2M r + 7y
l 2

2. Show that at a point of its axis, a homogeneous circular wire has the poten-
tial U:%, where d is the distance of P from a point of the wire. Check the
result of Exercise 4 (p. 10), by differentiating U in the direction of the axis.

3. Reverting to the potential of the straight wire of Exercise 1, verify the
following facts: a) as P approaches a point of the wire, U becomes infinite;
b) P, the density, and the line of the wire remaining fixed, U becomes infinite
as the length of the wire becomes infinite in both directions. Note that in this
case, the demand that the potential vanish at infinity is not a possible one. Show,
however, that c) if the potential of the wire segment is first altered by the subtrac-
tion of a suitable constant (i. e. 2 number independent of the position of P), say
the value of the potential at some fixed point at a unit distance from the line of
the wire, the potential thus altered will approach a finite limit as the wire is pro-
longed infinitely in both directions, independently of the order in which ¢, and
— ¢4 become infinite. Show that this limit is

2 1 log (-}) ,

where 7 is the distance of P from the wire. Finally, show d) that this is the value
obtained for the work done by the force field of the infinite wire (see Exercise 5,
page 10) in moving a unit particle from P, at a unit distance from the wire, to P.

4. Find the potential at a point of its axis of a homogeneous circular disk.
Verify the following facts: a) the integral for the potential at the center of the
disk is convergent; b) the potential is everywhere continuous on the axis; c) the
derivative of the potential in the direction of the axis, with a fixed sense, experi-
ences an abrupt change of — 4 7z ¢ as P passes through the d1sk in the direction of
differentiation (compare with § 6, page 11).
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5. Find the potential of a homogeneous plane rectangular lamina at a point
of the normal to the lamina through one corner. If O denotes this corner, B and
C adjacent corners distant b and ¢ from it, and D the diagonally opposite corner,
the answer may be written
b+ dg ¢+ dy be ]

2

—+blog—= — s tan=1 —
dy

U=o‘[olog A ,

where » = PO, dlzﬁ, dy=PC, and dy= PD.

Note. In obtaining this result, the following formula of integration will prove
useful:

[ 108 (b + Va® + 02+ 1) df =L log (b + Va2 + 0* + ) +

- ¢ _ bx
Folog (o Pt ¥R 1) — Lo wtanni S —sten ™ e,

It may be verified by differentiation, or derived by integration by parts.

6. By the addition or subtraction of rectangles, the preceding exercise gives,
without further integrations, the potential at any point due to a homogeneous
rectangular lamina. Let us suppose, however, that we have a rectangular lamina
whose density is a different constant in each of four rectangles into which it is
divided by parallels to its sides. Show that the potential is continuous on the nor-
mal through the common corner of the four rectangles of constant density, and that
the derivative in the direction of the normal with a fixed sense changes abruptly
by — 47 times the average of the densities, as P passes through the lamina in the
direction of differentiation.

7. Study the potential of an infinite homogeneous plane lamina, following
the lines of Exercise 3. Take as a basis a plane rectangular lamina, and check the
results by a circular lamina. The potential should turn out to be 2z o (1— | #|),
if the lamina lies in the (y, z)-plane.

8. Show that the potential of a homogeneous spherical lamina is, at exterior
points, the same as if the shell were concentrated at its center, and at interior
points, constant, and equal to the limiting value of the potential at exterior points.
Determine the behavior with respect to continuity of the derivatives of the poten-
tial, in the directions of a radius and of a tangent, at a point of the lamina.

9. Find the potential of a homogeneous solid sphere at interior and exterior
points. Show that the potential and all of its partial derivatives of the first order
are continuous throughout space, and are always equal to the corresponding
components of the force. Show, on the other hand, that the derivative, in the direc-
tion of the radius, of the radial component of the force, experiences a break at the
surface of the sphere. Show, finally, that

02U | 9*U 92U

v (X, YV, 2) = Ga+ 5+ 5w

is 0 at exterior points, and — 4 7z % at interior points.

10. Given a homogeneous hollow sphere, draw graphs of the potential, its
derivative in the direction of a radius, and of its second derivative in this direction,
as functions of the distance from the center on this radius. Describe the character
of these curves from the standpoint of the continuity of ordinates, slopes and cur-
vatures.

11. The density of a certain sphere is a continuous function, # (s) of the distance
s from the center. Show that its potential is
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Show that at any interior point,
02U 92U 9*U
0x2 oy? + 022
12. Show that in any Newtonian field of force in which the partial derivatives
of the components of the force are continuous, the last equation of the preceding
exercise holds. Use Gauss’ theorem.
13. In a gravitational field, potential and potential energy are proportional,

with a negative constant of proportionality, and the equation of energy of §1
(p. 49) becomes T — 2U = C, where & > 0, or

=—4nx.

%mvzku—{—C.

The constant % can be determined, if the force at any point is known, by differen-
tiating this equation, and equating mass times acceleration to the proper multiple
of the force, according to the units employed. Thus if the unit of mass is the pound,
of length, the foot, of time, the second, and of force, the poundal, then the mass
times the vector acceleration is equal to the vector force, by Newton’s second law
of motion.

This being given, determine the velocity with which a meteor would strike
the .earth in falling from a very great distance (i. e. with a velocity corresponding
to a limiting value O as the distance from the earth becomes infinite). Show that
if the meteor fell from a distance equal to that of the moon, it would reach the
earth with a velocity about /s, less. The radius of the earth may be taken as
3955 miles, and the distance of the moon as 238000 miles. The answer to the first
part of the problem is about 36700 feet per second. Most meteors, as a matter
of fact, are dissipated before reaching the earth’s surface because of the heat
generated by friction with the earth’s atmosphere.

14. Joule demonstrated the equivalence of heat with miechanical energy. The
heat which will raise the temperature of a pound of water one degree Farenheit

is equivalent to 778 foot pounds of energy. A mass of » pounds, moving with a
Imo?
velocity of v feet per second, has § mv? foot poundals, or z gL (g = 32-2) foot

pounds of kinetic energy.

Show that if all the energy of the meteor in the last exercise were converted
into heat, and this heat retained in the meteor, it would raise its temperature by
about 1780000 Fahrenheit. Take as the specific heat of the meteor (iron), 0-15.

4, The Potential of a Homogeneous Circumference.

The attraction and potential of a homogeneous circular wire have been
found, so far, only at points of the axis of the wire. While the potential
at a general point may be expressed simply in terms of elliptic integrals,
we pause for a moment to give a treatment of the problem due to GAUSS,
partly because of the inherent elegance of his method, and partly be-
cause of incidental points of interest which emerge.
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Let the (¥, ¥)-plane be taken as the plane of the wire, with origin at
the center, and with the (%, z)-plane through the attracted particle P
(fig. 8). Let a denote the radius of the wire, and ¢ the usual polar codrdi-
nate of the variable point Q. The coérdinates of P and Q are (x, 0, 2)
and (@ cos®, asin®d, 0), so that the distance » = PQ is given by

72 = %2 -+ a? + 22 — 2ax cos 9. n ?

Accordingly, r
/ a
i &3
6) U= 2a,1f a9 . v
V#2 + a% 4 22 — 2ax cos &

0 Fig. 8.

‘We now express 7 in terms of its greatest value p for any position of Q,
and its least value ¢q. As

P=apts ¢=@—at+2

we find, on forming half the sum and half the difference of these quan-
tities, that
P2 L g P2 — g2 . oD 9
2 — —_ A2 27 2 2 7
r=ta— cosﬁ—ps1n2+qc052.
If this expression is substituted for the radicand in (5), and a new
variable of integration introduced by the substitution ¢ =z — 2¢, the

result is

T

2
) U=4a1f dp 4ol
s Y2 cos? ¢ -+ g2 sm?zp P

de

.
l/cos2 @+ %2 sin? @

° S0l §

The last integral depends only on the ratio % Hence, if we can find

the potenﬁal at any point where this ratio has a given value, we can
find it at all points where it has this value. Now the locus of points of

the (x, 2)-plane for whichg is constant is a circle with respect to which

the two points in which the wire cuts the (x, z)-plane are inversel. Let
P, be the point of this circle in the (%, y)-plane and interior to the
circle of the wire. Then if p, denotes the maximum distance of P,

1 We shall have use again for the fact that the locus of points in a plane, the
ratio of whose distances from two points 4 and B of the plane is constant, is a
circle with respect to which 4 und B are inverse points, . e. points on the same ray
from the center, the product of whose distances from the center is the square of
the radius of the circle. The reader should make himself familiar with this theorem
if he is not so already.



60 The Potential.
from the wire, we see from (6) that p U (P) = p, U (P,), so that
() U(P) =EU (P

Thus the problem is reduced to finding the potential at the points of a
radius of the wire.

a To do this, we return to the expression (5),
JA where zisnow 0, and 0 < ¥ <a. We introduce as
x mnewvariable of integrationtheangle =< X P, Q

(fig. 9). By the sine law of trigonometry,

asin (y — 9) = xsin p.
Fig. 9. . Differentiating this, we find
acos(py—9) ([dy —dI) =xcosydy,

or,

[acos (y — &) — xcos pldy = acos (y — F) d 9.

The coefficient of dy is the projection of P;OQ on P;Q, and is there-
fore equal to P,Q, or v. Thus

rdyp = acos (p — 9) 9,
and
@ dy . dy’ . dy
v

acos (y — 9) Va2 — a®sin2 (y — 9) Va2 — #2sin2yp

ay
a2 cos? p -+ (a® — #2?) sin? ’
14 Yy

The limits of integration for o are again 0 and &, but the substitution
" =7 — 1 shows that the integral from % to m is equal to that from

0 to %, SO We may write

JT

2
U(P,) =4a/1f s .
§ J a2 cos? p 1 (a® — #2) sin p

If we introduce the maximum and minimum distances, p, and ¢, of P,
from the wire, since $, = a -+ x and ¢; = a — %, we see that

N S
azﬁ.éilzﬁz, and  Va? —x2 = Vp,q, =g,

are the arithmetic and geometric means of $, and ¢,, and

3
U(P, =4a/1f : v .
¢ Vpicostytgisinty
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Comparing this value with that given by (6), which is valid for P = Py,
p=1p;, ¢=qy, we see that the integral is unchanged by the substitution
for Py of the arithmetic mean p, of p, and q,, and for g, of the geometric
mean g, of p, and g,. The substitution may now be repeated, with the
result that U (P;) remains unchanged if we substitute

Pn + qn Y
?n-&—l = ‘:Z_ for ?n’ and Ipr1 = V?n 9n for 9>
for n==1, 2, 3...,. The significance of this remark lies in the fact that
the sequences [p,] and [g,] tend to a common limit « as # becomes in-
finite, so that

F14

E
(8) U(pl)zzmzf, dy ek m
P Vo2 cos? 2

M
v+ ofsin®y o o’
To demonstrate the stated convergence, we observe first that p,

lies midway between p; and ¢;, and secondly that g, lies between ¢,
and $,, for

4 __ V& >1, and p,— ¢, = (hrt+ 01— 2VP:141) _ (Vb1 — Va?® ~ 0.
91 51 2 2

Thus g, lies in the interval (g;, p,), whose length is half that of (g1, $1),

andso 0 < p,— ¢, < ﬁ_ih_;ﬂl_ As the same inequalities hold when the

indices 1 and 2 are replaced by #» and # 4 1, we conclude that
P1—4
0< pn+1 1 < 121- k.
The sequences [én] and [p,] are always increasing and always decreasing,
respectively. The first is bounded above by p, and the second is bounded
below by g,. Hence they converge. The last inequality shows that their
limits coincide. This limit « is called the arithmetico-geometric mean of
the two positive quantities g;, $,. We have supposed ¢; and p, unequal.
If they are equal, P is at the center of the wire, and the potential at

. . M

that point is —.
To determine the potential at P, then, we first determine the ex-
treme values p and g of ». We then determine the numbers p, and ¢;

by the equations p; + ¢, = 24, %Z%’
1
. 2a¢z o 2aq
pl—P_*_q; 91—ﬁ+q.

We then determine the arithmetico-geometric mean of p; and ¢, to a
suitable degree of accuracy, and this gives us the potential at P; to a
corresponding degree of accuracy, by (8). Then (7) gives the potential
at P. ‘



62 The Potential.

Thus the problem is solved. The potential of a homogeneous circular
wire will be found in another way in Chapter X, § 3.

Exercises.

1. Interpret the process of substituting means, as the reduction of the poten-
tial of the wire to that of a wire of the same mass and smaller radius, at a point
relatively nearer the center, yielding in the limit, the potential at the center of a
wire of radius «.

2. The last inequality given shows that the sequences of means converge at
least as rapidly as a geometric sequence with common ratio 4. Show, in fact,
that the convergence is considerably more rapid by deriving the equation

In
1—l/1n
pn — qn pn
Pas1 — Inpy = . ™ ,
14+ /=
j)ﬂ

and noticing that Zq]—”— is approaching 1.
n .
3. Calculate the potential of a circular wire of unit radius and unit mass,
at a point 2 units from the center in the plane of the wire. Answer, 0°5366.
4. From the equation (6), show that

2 =M rw, w=1-7,

14 p?

where p is the greatest, and ¢ the least, distance of P from the wire, and where
K(k) is the complete elliptic integral of the tirst kind with modulus 2. Check
in this way, by means of tables, the result of Exercise 3. Show also that the
potential becomes infinite as P approaches a point of the wire.

5. Two Dimensional Problems; The Logarithmic Potential.

A problem involving the position of a point in space may be regarded
as two dimensional whenever it may be made to depend on two real
codrdinates. Two cases of this sort have been mentioned in § 2, page 55.
However, it is usual, in speaking of potential theory in two dimensions
to understand the theory of potentials of fields of force which depend
on only two of the carfesian codrdinates of a point, and in which the
directions of the field are always parallel to the plane of the correspond-
ing codrdinate axes. Then if these coérdinates are taken as » and 7y,
the components of the force will be independent of z, Z will be 0, and the
whole field is characterized by the field in the (%, v)-plane.

The simplest distribution which produces such a field is the infinite
straight wire, of constant density. We have seen (p.10, Exercise 5) that
the attraction of such a wire is perpendicular to it, and that its magnitude

. . Y . . .
in attraction units is ——, where 7 is the distance of the attracted unit par-

ticle from the wire. Confining ourselves to a normal plane, we may think

1 See B. O. PEirCE, 4 short Table of Integrals, Boston, 1929, p. 66 and 121.
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of the point where the wire cuts the plane as the seat of a new sort of
particle, of mass equal to that of two units of length of the wire, and
attracting according to the law of the inverse first power of the distance.
The potential of such a particle we have seen (p. 56, Exercise 3) to be

24log <%> The constant, which may always be added to the potential,

was here determined so that the potential vanishes at a unit distance from
the particle. Continuous distributions of matter, attracting in accordance
with this law of the inverse first power, are at once interpretable as
distributions of matter attracting according to Newton’s law on infinite
cylinders, or throughout the volumes bounded by infinite cylinders,
the densities being the same at all points of the generators of the cylin-
ders, or of lines parallel to them.

The potentials of such distributions, if their total mass! does not
vanish, will become infinite as the attracted particle recedes infinitely
far. This deprives us of the possibility of making the convention that
the potential shall vanish at infinity. The customary procedure is to
allow the zero of the potential to be defined in the case of a particle, by
making it at a unit distance from the particle, and in continuous distri-
butions, by integrating the potential of a unit particle, thus fixed, multi-
plied by the density, over the curve or area occupied by matter. In other
words, the potential is defined by the integrals

9) U=[iloglds, U= [[ologlas,
& v A v

for distributions on curves and over areas, respectively. To distinguish
these potentials, regarded as due to plane material curves, or plane
laminas, whose elements attract according to the law of the inverse first
power, from the potentials of curves and laminas whose elements
attract according to Newton’s law, it is customary to call them logarith-
mic potentials. We shall also speak of logarithmic particles, when the law
of attraction is that of the inverse first power.

Exercises.

1. Write the components of the force at P (#, y) due to a logarithmic particle
of mass m at Q (&, 7). Show that they are the derivatives of the potential in the
corresponding directions.

2. Find the equations of the lines of force due to a logarithmic particle of mass
my at Q; (—a, 0) and one of mass m, at Q, (a, 0). Answer, m, &, + m,&, = const.,
where ¢; =<CXQ; P and #,=<CX Q, P. Plot these lines, and also the equipoten-
tial lines for m, = m,, and for m, = — m,;. Show that in the first case the lines
of force are equilateral hyperbolas through Q, and Q, and in the second case,

! The total mass means the integral of the density of the distribution in the
Plane, on a curve, or over an area, or, what is the same thing, the mass of the dis-
tribution on the surface or within a cylindrical surface, between two planes, perpen-
dicular to their generators, and two units apart.
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circles. The equipotentials are Cassinian ovals in the first case. What are they
in the second?

3. Determine the rate of expansion, or the total divergence, for a region of the
plane, in a plane velocity field. Interpret the result in terms of a field in three
dimensions whose directions are always parallel to a fixed plane and whose com-
ponents are independent of the distance from this plane.

4. State the divergence theorem for plane fields, and deduce it from equation
{9) of Chapter II, (page 39). )

5. By means of the divergence theorem for the plane, find two expressions
for the area bounded by a plane curve, in terms of integrals around. the curve.

6. Show that the fields of force due to logarithmic distributions are solenoidal
at points distinct from those occupied by the distribution.

7. Determine the flux of force through a closed curve enclosing a logarithmic
particle, and write the form which Gauss’ theorem (p. 43) takes. Consider the
possibility of deriving Gauss’ theorem in the plane from Gauss’ theorem in space.

8. Find the logarithmic potential of a straight homogeneous line segment.
Answer,

1 1 Y=y ¥
U= l[yzlogdﬂz— yllogz + ¥e — ¥y — x tan ;2?;—172}
where (0, ¥,) and (0, y,) are the end-points of the segment, and 4, and d, are the
distances of P (#,0) from them.

Show that the improper integral for the potential at a point of the segment
is convergent, and that the potential is continous throughout the plane. Show
that its normal derivative drops by 2s4 as P passes through the segment in the
direction of differentiation. Does this result harmonize with that of Exercise 4,
(p. 12), when the densities of the four rectangles there considered are the same?

" 9. Find the logarithmic potential of a homogeneous circumference, at interior
and exterior points. Note the formula of integration

2

1 — 2
[ 10g (1 — ¢ cos 9) d# = 2 log IJLJQL—E 0<e<1, (Chap.XIL §5).
0
The desired potential is
U = Mlog (%), 22 < a2,
M1 —1 \ 2 2
=1 0g<;x|-)’ % > a?,

10. Define the components of force due to logarithmic distributions on curves
and over areas, as integrals. Find in this way the force due to the circumference
in the above exercise. From the force, determine the potential to within an additive
constant, on the assumption that the potential is everywhere continuous. The
above formula of integration may be evaluated in this way, the additive constant
in the potential being determined by its value at the center, for which point the
integral for the potential can easily be evaluated.

11. Find the logarithmic potential of a homogeneous circular lamina at interior
and exterior points. Show that this potential and its derivatives of the first order
are everywhere continuous, but that

02U *U
Era a9yt
is 0 at exterior points, and — 2o at interior points.

12. Generalize the results of the above problem to the case in which the density

is a continuous function of the distance from the center.
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6. Magnetic Particles.

We are familiar with the attractions and repulsions which the poles
of magnets exert on each other. The ordinary compass is a magnet, one
pole, the positive, or north-seeking, being attracted toward the north
magnetic pole of the earth, and the negative, or south-seeking pole being
attracted toward the south magnetic pole of the earth. COULOUMB esta-
blished the fact that two unlike poles attract, and two like poles repel,
according to Newton'’s law for particles, the masses of the particles being
replaced by the strengths of the poles. The sense of the forces must be
reversed, in the statement of this law, if, as is customary, the strengths
of positive poles are regarded as positive quantities, and the strengths
of negative poles as negative quantities.

It is found that the strengths of the poles of a single magnet are
equal and opposite. If a long thin magnet is broken at any point, it is
found that the two pieces are magnets, each with positive and negative
poles, of strengths sensibly equal to the strengths of the original magnet.
It is therefore natural to think of a magnet as made up of minute parts,
themselves magnets, arranged so that their axes, or lines from negative
to positive poles, are all approximately in the same direction. Then, at
moderate distances from the magnet, the effects of the positive and
negative poles in the interior of the magnet will very nearly counter-
balance eachother. But at the ends, there will be unbalanced poles, and
these will give to the magnet as a whole its ability to attract and repel.
This view is further strengthened by a consideration of the process of
magnetizing a piece of iron. Before magnetization, the particles may be
thought of as having random orientations, and therefore no appreciable
effect. Magnetization consists in giving them an orderly orientation.

The question which now confronts us, is to find a simple analytical
equivalent for the field of this magnetic particle. Just as we idealize the
element of mass in the notion of particle, we shall try to formulate a
corresponding idealization of the minute magnet, or magnetic particle,
as we shall call it. Actual magnets can then be built up of these magnetic
particles by the process of integration. The natural thing to do is, per-
haps, to take the field of two particles of equal and opposite mass, and
interpret this as the field of a magnetic particle. But here, the distance
between the particles seems to be an extraneous element. If we allow
the distance to approach. 0, the field approaches zero. We can, however,
prevent this if at the same time we allow the masses to become infinite,
in such a way that the product of mass by distance, or moment, ap-
proaches a limit, or more simply, remains constant. Let us try this. We
are to have a mass—m at Q, and a mass 7 at @’ on a ray from Q with a
given direction «. The potential at P of the pair of masses is

g

¥ 7
Kellogg, Potential Theory. 5



66 The Potential.

or, in terms of the moment g = mQQ’,
1

1
-
, 4 v

U=u

[oTeg
But the limit of this, as Q” approaches @ is nothing other than the direc-
tional derivative of the function -':i of &, in the direction o.. Hence
we find for the potential of the magnetic particle ‘
01 01 J 1 01
U=ngyy=nllgey +mars +157)

I, m, n being the direction cosines of the direction «. The direction is
called the axis of the magnetic particle, and g is called its moment.
The components of the field of the magnetic particle are obtained at
once by forming the derivatives of the potential with respect to %, y
and z.

The field of a magnetic particle also plays a role when interpreted
as a flow field in hydrodynamics or in the conduction of heat. It is then
referred to as the field of a doublet.

Exercises.

) 1. Write the components of the force due to a magnetic molecule of moment 1
situated at the origin and having as axis the direction of the x-axis. Find the lines
of force. Show that they consist of plane sets of similar and similarly placed curves,
those in the (¥, ¥)-plane having the equation # = ¢sin?¢. Compare these lines
of force at a considerable distance from the origin with those due to two particles
of equal and opposite mass, drawn in connection with Exercise 5 (p. 31).

2. On a straight line segment of length a is a continuous distribution of magnetic
particles of constant moment density g per unit of length, and with axes along
the line segment, all in the same sense. Show that the distribution has the same
field as a single magnet, with poles at the ends of the segment, of strength —pu
and u.

3. Find the potential of a quadruplet, formed by placing poles of strength
m at (a, a, 0), —m at (—a, a, 0), m at (—a, —a, 0) and —m at (a, —a, 0), and
taking the limit of their combined potential as a approaches 0, while their strengths
increase in such a way that y =4ma? remains constant. Indicate an interpre-

1
tation of any partial derivative of " with respect to the codrdinates &, 5, .

4. Define a logarithmic doublet in the potential theory of two dimensions,
and determine its equipotentials and lines of flow, supplying a figure.

7. Magnetic Shells, or Double Distributions.

By means of magnetic particles or doublets, we may build up magnets
or distributions of doublets of quite varied character. We confine
ourselves here to one of particular usefulness. It may be regarded as the
limiting form of a set magnetic particles distributed over a surface, with
their axes always normal to the surface and pointing to one and the
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same? side, as the particles become more and more densely distributed
and their moments decrease. We proceed as follows. Let a surface S be
given, with a continuously turning tangent plane, and a continuous
function p of the position on the surface of a variable point Q. Let S
be divided into elements A4 S. At some point of each such element, let
a magnetic particle be placed, whose moment is the product of the
value of the function p at that point by the area of the element 4 S and
whose axis has the direction of the positive normal ». Let the potential
of the field of these particles be denoted by U’:

, a1
The limit of such a distribution, as the maximum chord of the elements
A S approaches 0, is a magnetic shell or double distribution. Its potential is

a1
(10) szf‘u—a-;7d5.
S

Here p is called the density of magnetization of the magnetic shell, or the

moment of the double distribution.
The potential can be given

another form in the case of simple

surfaces, which better reveals some

of its properties. We shall think of

P as fixed, for the moment, and

suppose that in addition to having

a continuously turning tangent p

plane, the surface S is cut by no

ray from P more than once, and is tangent to no such ray (fig. 10). Let

A2

Fig. 10.

1 The reader is doubtless aware that there exist surfaces for which it is not
possible to speak of two distinct sides. One such is the Mébius strip. If a long,
narrow rectangle of paper with corners 4, B, C, D, in order, have its ends pasted
together, so that B coincides with C and 4 with D, we have, approximately, a
cylindrical surface, which is two sided. But if the ends are joined after turning
one end through 180° in a plane roughly perpendicular to the initial plane of the
paper, so that B falls on D and 4 on C, we have the Mébius strip, which is one sided.
If we fix on a positive sense for the normal at some point P of the paper, and if
we then pass once around the strip, keeping the sense of the normal so that its direc-
tion changes continuously, when we arrive at P again, we find the positive sense
of the normal reversed. Any convention as to a positive side of the strip is thus
impossible — at least as long as such circuits are allowed.

It is of interest to notice that the strip also has but one edge. It is also amusing
to ask someone unacquainted with the situation to predict what will happen if
the strip is cut along the line which in the original rectangle lay half way between
the long sides until the cut closes. And similarly, if the cut be along a line which
in the rectangle was one third the way from one long side to the other.

‘We shall understand, throughout, that one-sided surfaces are excluded, unless
the contrary is distinctly stated.

5*
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A S be an element of S. We apply the divergence theorem to the region
T bounded by 4 S, the conical surface joining the boundary of A S to P,
and a small sphere ¢ about P to which S is exterior. We take

J 1 J 1 01
X=%v Y=357 Z=av

the variables being &, , {, and #, v, 2 being held constant. We have,

then
02 1 92 1 02 1 J 1
fﬂ (ga7 + n27+5f57>dV=fjW7ds
)

S’ being the boundary of T. As r does not vanish in T, the integrand
in the volume integral vanishes, as may be seen by carrying out the
differentiations. Moreover, the surface integral vanishes on the conical

. 1. . . .
portion of the boundary because —- is constant in the direction of

differentiation. Hence

f[aw S+ﬂ—~d5—0

Ao being the projection of A4S on the sphere . The sense of the normal
is outward from 7. On the sphere,

a1
vy

ﬂaw :—U

where 4 2 is the solid angle subtended at P by 4 S, to be regarded as
positive when the positive normals to S make acute angles with the
rays from P, and negative when these angles are obtuse.

We thus have a geometric interpretation of the double distribution
in the case of a unit moment, namely the solid angle subtended at P by
the surface on which the distribution is placed. To generalize the result,
we apply the law of the mean to the above integral, and find

["’ 1] AS = —AQ,

1 1
R

9
T
so that

ov r

where Q’ lies on A4 S. If now we multiply the two sides of this equation
by the value of the moment g at Q’, sum over S, and pass to the limit
as the maximum chord of the elements 4 S approaches 0, we obtain

U=[lngras=—[fude,

where £2 is the solid angle subtended at P by S.
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This equation holds even if the rays from P are tangent to S at points
of the curve bounding S, provided they are not tangent at interior points,
as may be seen by applying it to an interior portion of S and allowing
this portion to expand to the whole of S. Then by addition of portions,
it can be extended to the case where P has any position off the surface
S, provided there is a limit to the number of times any straight line
cuts S. For such surfaces, then, U may be written

11) U=—-£f,ud9.

Exercises.

1. Find -the potential at interior and exterior points of a closed magnetic
shell of constant moment density for which the representation (11) is valid. Show
that this potential has a sudden increase of 47 4 as P moves out through the sur-
face.

2. Show that the representation is valid for ellipsoids, right circular cones
and cylinders, and polyhedra.

3. Compare the potential of a homogeneous double distribution on a plane
area with the component, normal to the plane, of the force due to a homogeneous
plane lamina occupying the same area (see Exercise 2, page 12).

4. Show that the potential of a double distribution of constant moment on an
open surface may be regarded as everywhere continous, except on the edges of the
surface, provided we admit multiply valued potentials, and that, in this case,
the surface may be replaced, without changing the potential, by any other surface
with the same boundary, into which it can be continuously warped. It is under-
stood that we are restricting ourselves to surfaces for which the representation (11)
is valid.

5. Define double distributions in the theory of logarithmic potentials, and de-
velop their properties analogous to those of the double distributions considered
in the text and exercises of this section.

6. Show that the double distribution may be interpreted in the following
way. We draw the normals to the continuously curved surface S. On the nor-
mals we measure off the same distance a, to the same side of S, and call the locus
of the points so constructed, S’. On S’ we construct a simple distribution of den-
sity 0. On S we construct a simple distribution whose density at any point is the
negative —o of the demnsity of the distribution on S” at the point on the same
normal. Let U’ be the combined potential of these two spreads. Forming the
function y = ac, we now allow a to approach 0, ¢ increasing in such a way that
1t keeps its value at each point. The limit U of U’ is the potential of the double
distribution on S of moment u. This interpretation indicates the significance
of the name double distribution.

8. Irrotational Flow.

~ We have considered the fields of flow which correspond to solenoidal
fields of force. What are the characteristics of flows corresponding to
conservative, or lamellar fields of force ? The line integral f (Xdx +Ydy
+ Zdz) whose vanishing when taken over all closed paths defines a
lamellar field, and which in a field of force means work, does not, in
a field of flow, correspond to any concept familiar in elementary mechan-



70 The Potential,

ics. It does, however, indicate the degree to which the general motion
of the fluid is along the curve, and if its value when the curve is closed
is different from 0, it indicates that there is a rotatory element in the
motion, or a character of vortex motion. In a field of flow, the integral
is called the circulation along the curve. If the integral vanishes when
extended to all closed curves in a region, which can be shrunk to a point
without leaving that region, the motion is said to be srrotational, or free
from vortices, in the region.

Irrotational flows are characterized by the fact that they have a
potential, that is, that the components of the velocity are the correspond-
ing derivatives of one and the same function, called the velocity poten-
tial.

We have seen that a necessary condition for the existence of a
potential is that

9z _dY X _ 9z Y _ 09X

By 08z’ 9z 0x’ 9x  dy’

but is has not yet appeared that this condition is sufficient. It was the
divergence theorem which showed us that the vanishing of the diver-
gence of a field was necessary and sufficient that it be solenoidal. There is
a corresponding integral identity which will answer in a similar way the
question which now confronts us. The divergence theorem may be.
thought of as stating that the total divergence for a region is equal to
the integral of the divergence at a point, over the region. Can we, in
order to follow the analogy, define such a thing as the circulation at
a point?

Let us consider first the case of a very simple flow, namely one in
which the velocities are those of a rigid body rotating with unit angular
veloeity about the z-axis. The circulation around a circle about the
origin in the (%, y)-plane, of radius 4, is readily found to be 2ma® Na-
turally, as a approaches 0, the circulation approaches 0, as it would in
any continuous field. But if we first divide by the area of the circle, the
limit is 2, and we should find this same limit if we followed the same
process with any simple closed curve surrounding the origin in the
(%, ¥)-plane. Suppose, however, that we take a closed curve in a vertical
plane. The velocity is everywhere perpendicular to such a curve, and
the circulation is 0. Thus we should get different values for the circu-
lation at O according to the orientation of the plane in which the curves
were drawn. Now when a concept seems to be bound up with a direction,
it is natural to ask whether it has not the character of a vector. It turns
out that this is the key to the present situation. The circulation at the
origin in our case is a vector, whose component perpendicular to the
(%, ¥)-plane is 2, and whose component in any direction in this plane is
0—it is the vector (0, 0, 2).
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We now formulate the definition of the circulation at a point, or as
it is called, the curl of a field at a point. Let P denote a point, and #»
a direction (fig. 11). Through P we take a smooth surface S, whose
normal at P has the direction #. On S we draw a simple closed curve C
enclosing P, and compute the circulation around C, the sense of inte-
gration being counter-clockwise! as seen from the side of S toward
which # points. We divide the value of the circulation by the area of the
portion of S bounded by C, and allow the maxi-
mum chord of C to approach 0. The limit defines
the component of the curl in the divection n:

J(Xdx+Ydy +Zdz
(12) curl, (X, Y, Z)=1lim<

Y . Fig. 11.

This definition contains a double proviso. The limit of the ratio of
circulation to area must exist—and it is understood that it shall be
independent of the particular form of S and of C—and the components
defined by the limits for various directions of # must actually be the
components of a single vector (see the exercise, below). If these con-
ditions are not fulfilled, the curl simply does not exist at P. But we shall
see that they are fulfilled whenever the components of the field have con-
tinuous derivatives.

Let us now find an expression for the curl, on Z), (0,0,)
the hypothesis that it exists. This means, among 2
other things, that we may specialize the curves C so 25-0,9) 2000,2)

that they have any convenient shape. We take the y
point P as origin of coérdinates, and compute the
x-component of the curl. We find first the circu-
lation around the square in the (y, z)-plane which is Y(0,4-a)
bounded by the lines y =4-a, 2= -4 (fig.12). Itis

Fig. 12.

[Zz0,a,2dz+ IY(O,y, a)dy + ]Z(o, —a,2)dz

—*—fY(O,y,—-—ﬂ)dy

We assemble the two integrals with respect to z and the two with
respect to y, and apply the law of the mean:

J120,a,2) =20, —a,2)]dz— [[Y(©0,y,a) =Y (0, y, —a)]dy
=[Z(0,a,7)—Z2(0, —a,#)]2a —[Y(0,9,a) —Y(0,y, —a)]2a.

1 This convention is the one adopted when the system of codrdinate axes is a
right-hand system, <. e. such that a counter-clockwise rotation about the z-axis,
as seen from the side of positive z, through an angle 90° carries the positive x-axis
into the positive y-axis. For a left-hand system of axes, the convention as to the
sense of integration around C is usually the opposite of that given above.
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Applying the law of the mean for differences, we find for the circula-
tion around the square C

(55 o 5 [ 4%

where P’ and P are points of the surface of the square. If we divide
by the area 442 of the square, and pass to the limit as 4 approaches 0,

we find
curl, (X, Y, Z2) = a oy

9z

y 9z
By cyclic interchanges we find the two other components. The result is

that ¢f the components of the field have continwous derivatives, and if the
curl exists, it must be given correctly by

0z Y 90X 0Z 0Y 0X
(13) curl(X,Y,Z)=<a7_5? FS__W,_“,__)

In the case of an irrotational field, the curl of course exists, and
vanishes. We thus find again the necessary condition for an irrota-
tional field given at the beginning of the section.

Exercise.

Show that a necessary and sufficient condition that a set of vectors, finite or
infinite in number, drawn from a point O, shall be the components of one and the
same vector, is that they shall all be chords of the same sphere.

9. Stokes’ Theorem.

We next ask, whether, knowing the curl at every point, we can re-
construct the circulation around a smooth curve C. We suppose C such
that it can be spanned by a smooth simple surface S. Let a positive sense
for the normals to S be decided upon, and let S be divided into elements
by a net-work of simple curves. Then if the boundary of each element
A S;, be given a sense, such that it is counter-clockwise when seen from
the side of the positive normal to S, the sum of the circulations around
the boundaries of the elements will be the circulation around C. For the
parts of this sum that correspond to the common boundary to two ad-
jacent elements will destroy each other, because this common boundary is
described twice in opposite senses, and what remains after these common
boundaries have been accounted for, is simply the curve C, described in
a counter-clockwise sense as seen from the positive side of S. But, if
the curl exists, the circulation around the boundary of an element
4 S, is approximately equal to the normal component of the curl at one
of the points of the element, multiplied by tha area of the element. For
the equation (12) may be written

J(Xaxr+Ydy+2zaz
curl, (X, Y, Z) = *—— + Ce»
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C, being the boundary of 4S; and {; a quantity which approaches 0
with the maximum chord of AS,. If this equation be multiplied by
A S,, and the result summed over the whole of S, we have

b[(de +Ydy+Zdz) =3 cul, (X,Y,Z)AS, — 3 £, 4S,.

This gives, in the limit, as the maximum chord of the elements ap-
proaches 0, the equation

f(de—;—Ydy—{—Zdz ffcurl (X, Y,2)dS.

We are thus led, granting any assumptions necessary to justify the
reasoning, to the identity known as Stokes’ theorem?!, which may
be stated in various ways

ffcurln VdS :stds,

6Z oY 0x oYy  0X\ 1
H _”5“ l+( \ +<6x W)”st
_f de—}—Ydy+Zdz)

or, in words, the circulation around a simple closed curve is equal to the
integral over any simple surface spanning the curve, of the normal com-
pomnent of the curl, the positive sense on the curve being the counter-clock-
wise sense as seen frowm the side of the surface toward which the positive
normal points. This is on the assumption that X, Y, Z are the com-
ponents of the field referred to a right-hand set of axes. If a left hand
set of axes is used, the sense of integration around the curve must be
reversed, or else a minus sign introduced on one side of the equation.

A rigorous establishment of Stokes’ theorem will be given in the
next chapter. Assuming that it has been established, let us make some
applications. First, as to the existence of the curl. Taking the defini-
tion (12), we express the curvelinear integral as a surface integral over
the portion of S within C, by means of Stokes’ theorem. We then apply
the law of the mean to the surface integral, divide by the area of the
portion of S within C, and pass to the limit as the maximum chord of C
approaches 0. Because of the continuity of the derivatives of the com-
ponents of the field, and of the direction cosines I, m, # of the normal,
this limit exists, and is the value of

0z oY 0X 0z 10Y aX\
G-+ (@ -t (o —5)
at P. That is, the component of the curl in any direction is the com-
ponent in that same direction of the vector given by the right hand

1 StoxkEes, G., A Smith’s Prize Paper. Cambridge University Calendar, 1854.
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member of (13). Thus the components of the curl as given by (12) do
exist, they are the components in various directions of one and the
same vector, and the equation (13) is valid.

Secondly, we may show that the vanishing of the curl at every point
of a region is a sufficient condition—as we have seen it to be a necessary
condition—that the field be irrotational, at least on the hypothesis of a
field with continuously differentiable components. For if C is any
smooth curve that can be continuously shrunk to a point without leav-
ing the region, it can be spanned by a simple smooth surface S, and
applying Stokes’ theorem we see that the vanishing of the curl at every
point has as consequence the vanishing of the circulation around C.

Multiply connected regions. Both in the present section, and in § 1,
we have mentioned curves which can be shrunk to a point without leav-
ing a given region. A region such that any simple closed curve in it can
be shrunk to a point without leaving the region is called simply connect-
ed. Such, for example, are the regions bounded by a sphere, a cube, a
right circular cylinder, and the region between two concentric spheres.
On the other hand, a torus, or anchor ring, is not simply connected. For
the circle C, which is the locus of the midpoints of the meridian sections
of the torus cannot be continuously shrunk to a point without leaving
the region. What peculiarities are presented by conservative, or irrota-
tional fields in such multzply connected regions? Let us take the region
T, occupied by a torus, as an example. Suppose we cut it, from the axis
outward, by a meridian curve, and regard the portion of this plane
within the torus as a barrier, or diaphragm, and denote the new region
with this diaphragm as part of its boundary, which must not be crossed,
by T”. In T, the circulation around any closed curve is 0, for the field
is irrotational, and any closed curve in 7" may be continuously shrunk
to a point without leaving 7°. We shall later
see in exercises that the circulation in T around
the circle C need not vanish. What we can say,
however, is that the circulation in T around
all curves which can be continuously warped
into C without leaving T, is the same, it
being understood, of course, that the senses
on these curves go over continuously into
the sense on C. We may see this as follows.
Let the point where C cuts the diaphragm
have two designations, 4, regarded as the
point where C leaves the diaphragm, and 4’, the point where it arrives
at the diaphragm (fig. 13). Let C’ be a curve which can be continuously
deformed into C, and let B and B’ be notations for the point at which
it leaves and arrives at the diaphragm. Consider the following circuit:
the curve C from 4 to A’ in the positive sense, the straight line segment

Fig. 13.
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in the diaphragm from 4’ to B’, the curve C’ in the negative sense from
B’ to B, the straight line segment from B to 4. The circulation around
this circuit vanishes. For, although it is true that it does not lie in 77,
the slightest separation of the segment A’ B’ = 4 B into two segments,
one on either side of the diaphragm, will reduce the circuit to one in 77,
and since the circulation around such circuits vanishes, it vanishes also
in the limiting case of the circuit A4’ B’ BA. But since the circulations
along A’ B’ and 4 B destroy each other, it follows that the circulation
around C and that around C’ in the negative sense have the sum 0, that
is, that the circulations around the two curves in the same sense are
equal. This is what we wished to prove.

In 77, the field has a potential U. It is determined save for an addi-
tive constant, as the work over any path in 7" connecting P, with P.
‘What we have just seen amounts to this, that in the case of fields
with vanishing curl, the differences of the values which the potential
approaches, as P approaches a point on the ‘diaphragm from opposite
sides, isone and the same constant %, over the whole diaphragm, namely,
the circulation around C. But the diaphragm is after all an artificial thing,
and might have had other shapes and positions. So the potential U may
be continued across it in either direction. Only, the function so deter-
mined is not uniquely determined at each point, but its values will
differ by &, the value of the circulation around C. If the potential be
continued along a circuit cutting the diaphragm a number of times,
always in the same sense, its values will increase by an integral multiple
of %. It is thus infinitely many valued, its branches at any point differing
by integral multiples of 2. This number % is called the modulus of the
diaphragm (or of any equivalent diaphragm). Of course 2 may be 0 for
the given field, in which case the potential is one-valued.

The torus is typical of regions which can be rendered simply connect-
ed by the introduction of a single diaphragm. Such regions are called
doubly connected. If a bar runs across the hole in the ring, so as to form
a sort of link like those used in some heavy anchor chains, two diaphragms
will be necessary in order to reduce the region to a simply connected
one. An irrotational field in such a region will have a potential which,
in general, is multiple value with two moduli. It is clear how the situation
is generalized to regions of higher connectivity. In a multiply connected
region, fields whose potentials have moduli different from O are called
cyclic, whereas those whose moduli all vanish are called acyclic.

Exercises.

1. Show, by means of (13), that for a velocity field given by the velocities
of the points of a rigid body, rotating with constant angular velocity about a
fixed axis, the curl is twice the vector angular velocity.

2. The curl can be different from 0 in a field of constant direction, and can
vanish in a field in which the particles all move in the same sense along circles
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with a common axis. Show that these situations occur in the fields a) (y, 0, 0)
and b) <g—zy’ —:?, 0) , respectively.

3. The field (b) of Exercise 2 is not everywhere continuous. If the discon-
tinuities are excluded by an appropriate enveloping surface, show that the rest
of space is not a simply connected region. Introduce a diaphragm to produce a
simply connected region, and find the corresponding modulus and the potential.

4. Show that in two dimensions, the divergence theorem and Stokes’ theorem
are identical in content, 7. e. that they differ only in notation.

5. Show that in a field whose components have continuous partial derivatives of
the first order, the integral of the normal component of the curl over a closed region
vanishes. Again, assuming sufficient differentiability, show that div curl ¥ = 0
and curl grad U = 0.

6. Granting always sufficient differentiability, show that any solenoidal field
is the curl of some field. Suggestion. Let (F, G, H) denote the given solenoidal
field. The desired end will be attained if we can find a field (X, Y, Z) whose curl
is (F, G, H). Write down the differential equations for X, Y and Z, and attempt
to integrate them on the hypothesis Z = 0. It will be found to be possible. What
is the most general solution?

7. Show that any field, sufficiently differentiable, is the sum of a gradient
and a curl.

8. Show that an open magnetic shell, of constant moment-density, not O,
produces an irrotational cyclic field, and determine the modulus. Construct in
a similiar fashion an irrotational cyclic field with several moduli.

9. In Exercise 6 (p.37), it was shown that the divergence of a field with
continuous derivatives was invariant under a rigid motion of the axes. Show in
the same way that grad U and curl V are invariant under a rigid motion of the axes.

10. Discuss the relation of the problem of integrating the differential equation
Xdx + Ydy + Zdz = 0 to the theory of irrotational fields. In particular, give
the geometric significance of the usual condition for integrability

S(E ) er (B (5 o
ady 0z 0z ox dx dy

11. In footnote 2, page 40, the question was raised as to when a field ad-
mitted surfaces orthogonal to it. Show that any Newtonian field does, and find
a condition that is at once necessary and sufficient.

10. Flow of Heat.

Suppose we have a solid all of whose points are not at the same tem-
perature. The cooler parts become warmer, and the warmer parts be-
come cooler, and it is possible to picture what goes on as a flow of heat
from the warmer to the cooler parts. The rate of flow may be represent-
ed as a vector (#, v, w), whose direction at any point is that in which
heat is flowing, and whose magnitude is obtained by taking an element
A S of the plane through the point P in question, normal to the direction
of flow, determining the number of calories per second flowing through
this element, dividing this number by the area of A4S, and taking the
limit of this quotient as the maximum chord of 4'S approaches 0. It
is natural to assume that the velocity of flow is proportional to the rate
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of fall of temperature, U, at P. The constant of proportionality would
depend on the character of the material of the solid, and would measure
its conductivity. In certain bodies, like crystals, the conductivity may
differ in different directions at one and the same point. We shall avoid
such materials, and confine ourselves to bodies that are thermally iso-
tropic. Then we should expect the flow vector to have the same direction
as the gradient of the temperature, and, of course, the opposite sense:

oU oU oU
(15) M—————-kax U——“k?}—, w_'_kaz.

These equations constitute our first physical assumption, for which
there is ample experimental justification. - Though % may vary from
point to point, and even vary with the temperature, it is determinate at
any point when the temperature is known, and may usually be regarded
as constant for homogeneous bodies and moderate ranges of tempera-
ture. The flow field is obviously always normal to the ¢sothermal sur-
faces U = const. and, if & is constant, lamellar.

We are led to a second physical assumption by considering a region
T in the body, and balancing the rate of flow of heat into it against the
rise in temperature. The rate of flow into T in calories per second, is
the negative of the flux of the field (%, v, @) out from the bounding sur-

face, or __fandS=——ff(%l'i-vm‘l‘w”)ds'
S S

A calorie of heat will raise a unit mass of the body ¢ degrees, if ¢ is the
specific heat of the material. Thus the number of calories per second re-
ceived per unit of mass is measured by

ouU
C"W‘,

and the number of calories per second received by the whole mass in

[eetton

We now equate these two expressions for the rate of flow of heat into
T, transforming the first to a volume integral by the divergence theorem ;

8u dw
ﬂ:f 09 8t ax+ay+79?}dV=0’

Assuming that the integrand is continuous, we conclude by reasoning
now familiar, that the integrand must vanish, since the integral vanishes
for every region T'. Hence we have our second physical assumption,

oU 1 dv 8w>

du
(26 == elox oy T
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The flow of heat in a body may be stationary, . e. such that the
temperature at each point is independent of the time. Such, for instance,
might be the situation in a bar, wrapped with insulating material, one
end of which was kept in boiling water, and the other end in ice-water.
Though heat would be constantly flowing, the temperatures might
not vary sensibly with the time. If the flow is stationary, the equation
(16) shows that it is solenoidal. Thus the fields of stationary flows of
heat in isotropic bodies of constant conductivity have two important
properties of Newtonian fields. We shall see later that these two
properties characterize Newtonian fields, so that the theory.of stationary
flows of heat in isotropic bodies of constant conductivity and the theory
of Newtonian fields is identical.

We may eliminate the components of the field between the equa-
tions (15) and (16), and obtain the differential equation which the tem-
perature must satisfy:

aU_l[a au | 9

oU a U
(17) Gt =vglav ko Tyt ay tark -

0z

If %, ¢ and p are constant, this reduces to

(18) U 2[620' »2u 62U]’

ot ox? ay? 022
and if the flow is stationary, '

»2U | BU | PU

(19) dx2 ay2 az2 0.

The situation is similar in the stationary flow of electric current in a
conductor. In such a flow, we have

4= — AgradU,
dive =0,

where 4 is the current vector, A the electrical conductivity, and U the
potential. In particular, if the conductivity is constant the potential
satisfies Laplace’s equation (19).

Exercises.

1. Show that in a stationary flow of heat in an isotropic solid with constant
conductivity, the only distribution of temperatures depending on a single car-
tesian codrdinate is one in which U is a linear function of that codrdinate.

2. If the stationary temperatures in a spherical solid of the same material
depend only on the distance from the center, show that they must be constant.
Determine the possibilities in a hollow sphere for temperatures depending only on
the distance from the center.

3. Describe the flow of heat in an isotropic solid of constant conductivity when

1
the temperatures are given by U = 5 Determine the strength of such a source
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of heat in calories per second. Interpret as fields of flow of heat the fields of the
exercises of §2 (p. 31).

4. Determine the relation which takes the place of (16) when continuously
distributed sources are present, and find also the corresponding differential equa-
tion for the temperatures.

11. The Energy of Distributions.

If a distribution of matter, of electricity, or of magnetism, is altered,
work will, in general, be done, and there will result a change in the
energy of the system. Such changes can readily be computed if we know
the energy of a distribution compared with some standard distribution.
The standard distribution which is most convenient is one of infinite
dispersion of all its elements. The energy change in assembling the dis-
tribution from such a state of infinite distribution is known as the
energy of the distribution. We proceed to show how it may be found.

Let us first take the case of # distinct particles. There being no field
of force to start with, no work is done in bringing the first particle, of

mass m,; to P;. There is now a field of force whose potential is% and

this potential is the work done by the field of force in bringing a unit
particle from an infinite distance to P. The work done in bringing a
particle of mass m, to P, will therefore be

"y My
712

where 7y, is the-distance P, P,. The two particles now produce a field
whose potential is

my "y,

v v r=PP, v,=P,P.

and the work done in bringing the third particle of mass m, from infinity

to Pjis mg times-the value of this potential at P,. Thus, the total amount

of work done in assembling the three particles is

m m2+ m;m:, + My Mg .
2 3

1

1
"1 Vo3

Proceeding in this way, we find for the work done in assembling the #

particles o
___ e
w=2

¥ij

where the first index runs through all integral values from 1 to # and
the second runs through all greater values to #. It is convenient to remove
the restriction on the indices. If we do so, and let ¢ and § run through
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all pairs of different values, we simply count each term twice, and we

have m

1 My

W= ?2 L7
where ¢ and § run through all pairs of different integers from 1 to #.

Since the fields are conservative, the work done in changing the con-
figuration of the particles is simply W, — W, where W, and W, are the
values of the above sum in the first and second positions of the particles.
The expression W is called the self-potential of the system of particles.
If the field is interpreted as a gravitational field, so that the particles
attract, the work is done &y the field, and is the negative of the potential
energy. If the field is an electrostatic or magnetic field, W is the work
done against the field, and is equal to the potential energy. Of course, a
positive factor of proportionality, depending on the units used, may
enter. For instance, in order to express W in foot pounds, we should have
to multiply the above sum, the masses being measured in pounds and the

distances in feet, by %:- where y is the constant of gravitation (see Exer-

cise 1, page 3), and g the acceleration due to gravity at the earth’s
surface, measured in the foot pound second system.

When it comes to determining the work done in assembling a con-
tinuous distribution, something of the nature of an additional hypothe-
sis is inevitable. For no matter how small the masses of the elements
brought up to their final positions from infinity, they are brought up
as wholes, and the work of assembling each of them is ignored. We do
not even know in advance that this work is a finite quantity, to say
nothing of being able to neglect, as an error which vanishes in the limit,
the sum of all such elements of work. We shall therefore set down as the
hypothesis itself that the work is the expression, analogous to that found
for particles,

(20) W= %fﬂﬂf’ipl“—‘g) AV,
(TT)

The test of the hypothesis, like all others of a physical nature, rests on
the consistency of its consequences with measurements. By this test,
the hypothesis is satisfactory.

The integral (20) is improper. Because it is sextuple, the verification
that it converges involves either a geometric intuition concerning re-
gions of six dimensions, or else dealing with systems of inequalities
which would vex rather than enlighten the reader at this point, unless he
happened to have an interest for this very sort of problem, in which
case he would be able to supply the reasoning. We therefore ask him
to accept the facts, first that the integral is convergent when the den-
sity is continuous, or bounded, and continuous in a finite number of re-
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gions into which T can be divided; and secondly, that it is equal to the
iterated integral, obtained first by integrating over the region T with
respect to the codrdinates &, 7, { of @, and then over T with respect to
the codrdinates x, y, z of P. It may then be expressed in the form

(21) W= %fﬂx Udv,
T

where U is the potential of the distribution.

Exercises.

1. Show that the energy of a charge ¢ in equilibrium (¢. e. distributed with
102
constant density) on a conducting sphere of radius a is —%— .

2. Show that the work done by the field in assembling from a state of infinite

3w
dispersion a homogeneous sphere of mass » and radius a is ® . Note that this

is also the work done when the sphere contracts from one of infinite radius to one
of radius a, always remaining homogeneous.

3. Show that the energy expended in drawing together into a sphere of radius
one foot, of the density of lead, its material, from a very finely divided and diffused
state, is about 0:000177 foot pounds. Lead weighs about 710 pounds per cubic
foot.

4. If the sun were homogeneous, the shrinkage of its radius by one foot would
release about 7:24 X 103! foot pounds of energy. Verify this statement, using the
following data: the radius of the sun is about 432200 miles, its mean density is
about 1'4 times that of water, one cubic foot of water weighs 62'4 pounds.

5. The heat annually radiated from the sun has been estimated, on the basis
of the heat received by the earth, as 6 X 103 times the amount which will raise
one pound of water one degree centigradel.

Show that the sun’s age cannot have exceeded 20000000 years, on the assumption
that it is homogeneous. The energy whose equivalent in heat will raise the tem-
perature of a pound of water one degree centigrade is at least 1400 foot pounds.
Geological evidence is to the effect that the age of the earth is at least 60 times
the above figure for the sun, and for this, among other reasons, the theory which
accounts for the energy radiated by the sun on the basis of its contraction is no
longer regarded as satisfactory?.

6. If two bodies are brought, without change of form, from an infinite distance
apart to a given position, show that the work done, or their mutual potential, is
the integral over either body of the product of its density by the potential of the
other. Show that the self-potential of the system of the two bodies is the sum of
the self potentials of the bodies separately and their mutual potential.

7. Two straight homogeneous wires of length ! and masses m; and m, form two
parallel sides of a rectangle of width x; Show that the work necessary to increase
the width of the rectangle to x, is

2m;m2 {Vﬁz—l—;z —-% log | “‘f + l:|x=x2

r=x

1 See THOMSON and Tarr, Natural Philosophy, Vol.1, Part. II, Appendix E.
More recent estimates somewhat exceed this figure.
2 See EDDINGTON, Stars and Atoms, New Haven, 1927, pp. 96—98.

Kellogg, Potential Theory. 6
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12. Reciprocity; Gauss’ Theorem of the Arithmetic Mean.

The property that two bodies attract each other with equal and
opposite forces is reflected in the potential. The potential is symmetric
in the codrdinates of the two points involved, so that the potential at
Q of a unit particle at P is the same as the potential at P of a unit par-
ticle at Q. From this fact a number of theorems follow, which are of
great use in the theory and applications of the potential. We shall
now derive two of them, and suggest further consequences in exer-

cises.
1 ds
0B = oia [ %
S

The potential
of a homogeneous spherical shell of radius « and total mass 1, is, as we
have seen, equal at exterior points to the potential of the unit particle
at the center, that is, to L while at interior points it is constant and
1 . .
equal to —. But we see from the formula that this potential can also be

interpreted as the average, or arithmetic mean?, over the surface of the
sphere, of the potential at Q of a unit particle at P. Thus, remembering
the values of U (P) at exterior and interior points, the above equation
has the interpretations

a) the average over the surface of a sphere of the potential of a unit
particle outside the sphere, is equal to the value of that potential at the

center of the sphere (namely %), and

1 The arithmetic mean of a set of numbers is their sum divided by the number
of them, or

m=a1+“2+a3+ I

1+-14+14---41 °
If, instead of a finite set of numbers, we have a function f defined on a surface
(and the process would be the same for other regions of definition), we may divide

the surface into # equal portions, take a value of the function at some point of each
portion, and form the arithmetic mean of these values, which we may write

o _BAS+ [ AS+ [ AS -4 1,48
AS 4+ A4S 4+ A4S+ -+ A4S )
‘We may eliminate the arbitrariness in the choice of the points in the regions at

which the values of f are taken, by passing to the limit as the maximum chord of
the elements A4S approaches 0:

[Stas

S

m = 5 .

This constitutes the usual definition of the arithmetic mean of a function f on a
surface S.
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b) the average over the surface of a sphere of the potential of a unit
particle within the sphere, is independent of the position of the particle
within the sphere, and is equal to the value at any point of the surface

of the potential of the particle when located at the center (namely %) .

Suppose now that we have a number of particles, or even one of the
usual continuous distributions of matter either entirely exterior or
entirely interior to the sphere. We have merely to sum the equations
stated above in words, or in case of continuous distributions, sum and
pass to the limit, in order to have the two following generalizations:

a) Gauss’ theorem of the Arithmetic Mean; the average over the
surface of a sphere of the potential of masses lying entively outside of the
spherve is equal to the value of that potential at the center of the sphere, and

b) A Second Average Value Theorem; the average over the surface
of a sphere of the potential of masses lying entively inside of the sphere
18 independent of their distribution within the sphere, and is equal to their
total mass divided by the radius of the spherel.

The second theorem gives a means of determining the total mass
of a bounded distribution when its potential is known. It therefore plays
a role similar to that of Gauss’ integral (p.43). As a rule, however, it
is less convenient than Gauss’ integral, since the surface of integration
must be a sphere.

Exercises,

1. Show that the value of a Newtonian potential (not a constant) at a point P
of free space is strictly intermediate between the extreme values which it has
on the surface of any sphere about P which has no masses within it or on its surface.

2. Show that a Newtonian potential can have neither maximum or minimum
in free space, and deduce a theorem due to EARNSHAW with respect to the possi-
bility of points of stable equilibrium in a Newtonian field of force.

3. According to the second average value theorem,

ff U(P)dS =4nma,
S

where U(P) is the potential of a distribution of total mass m within the sphere
S of radius . Write a similar equation for the concentric sphere of radius a + 4a,
and from the two deduce Gauss’ integral (p. 43) for spheres.

4. Charges in equilibrium on conductors are always so distributed that the poten-
tial throughout each conductor is a constant (p.176). Suppose that we have a
set of conductors, B,, By, ... B,, and that charges ¢,, ¢,, . . . ¢, are imparted to
them. Let the potential of these charges when in equilibrium have the values
Vi, Vg ... V, on the conductors. Show that if a different system of charges,

1 The first of these theorems is given in Gauss’ Allgemeine Lehvsdtze, Collected
Works, Vol. V, p. 222; reprinted in OsTwaLps Klassiker der Exacten Wissenschaften,
No.2. We shall meet with it again (Chap. VIII, § 6). The second theorem is less
current, although also in Gauss’ work (1. c.).

6*
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’ ’
e, ey, ...
tors, then

e, produce a potential with values V, V}, ... ¥/ on the conduc-
SeiVi=2elv;.
i 5

5. State a theorem on the average value on a sphere of the potential due to
masses both within and without (but not on) the sphere. Apply it to prove thatif a
spherical conductor is brought into the presence of various charges; the value on
its surface of the resulting potential is the sum of the potential due to the initial
charge of the conductor, and the value at its center of the potential of the field
into which it was introduced.

6. Assuming the applicability of Gauss’ theorem (p. 43), — as is often done
in text books, without justification — derive the following results, already verified
in certain special cases:

U | U | U 4
3 ot gE tgm =T

where % is the density of the distribution whose potential is U,

ouU oU

R P P

=—4no

where these derivatives represent the limits of the derivatives of the potential of a_
surface distribution with density o, in the direction of the positive normal at P,
as the point P approaches P, along the normal, from the positive and from the
negative side, respectively.

c) the corresponding results in the theory of logarithmic potentials.

7. Write an exposition of the theory of potentials in one dimension, starting
with the force due to an infinite plane. Derive a standard form for the potential,
consider continuous distributions on a line segment, consider solenoidal and
lamellar fields, derive an analogue of Gauss’ integral, consider the analogue of the
divergence theorem, and consider mean value theorems.

8. Write an exposition of the theory of potentials in # dimensions, determining
the law of force in a way analogous to the method of Exercise 3 (p. 37).

Chapter 1V.
The Divergence Theorem.

1. Purpose of the Chapter.

We have already seen something of the role of the divergence theorem
and of Stokes’ theorem in the study of fields of force and other vector
fields; we shall also find them indispensable tools in later work. Our first
task will be to prove them under rather restrictive assumptions, so that
the proofs will not have their essential features buried in the minutiae
which are unescapable if general results are to be attained.

The theorems will thus be established under circumstances making
them available for fairly large classes of problems, although not without
the possibility of difficulty in verifying the fulfillment of the hypotheses.
Both because of this situation, and because of the desirability of being
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able to enunciate in simple terms general results based on these theo-
rems, it is important that they be demonstrated under broad conditions
the applicability of which is immediately evident. The later sections of
this chapter will therefore be concerned with the exact formulation of
certain essential geometric concepts, and then with the desired general
proofs.

In the preceding chapters, we have used certain geometric con-
cepts, like curve and surface, as if they were familiar and sharply de-
fined ideas. But this is not the case, and at times we have had to specify
that they should have certain properties, like continuously turning
tangent lines or planes. This was not done with meticulousness, because
such a procedure would have obscured the main results in view at the
time. The results however, subsist. We shall have only to understand
by curve, regular curve, by surface, regular surface, and by region, re-
gular region, as these concepts are defined in the present chapter.

The reader approaching the subject for the first time will do well to
study carefully only the first four sections of the chapter. The rest
should be read rapidly, without attention to details of proof, but with
the object merely of obtaining adequate ideas of the definitions and the
content of the theorems. When he comes to a realization of the need of
a more critical foundation of the theorems, and hardly before then, the
reader should study the whole chapter for a mastery of its contents.

2. The Divergence Theorem for Normal Regions.

The divergence theorem involves two things, a certain region, or
portion of space, and a vector field, or set of three functions X, Y, Z
of x, v, z, defined in this region.

The regions which we shall consider are
those which we shall call normal regions. A
region N is normal if it is a convex polyhedron,
or if it is bounded by a surface S consisting of
a finite number of parts of planes and one
curved surface F, and is such that for some
orientation of the codrdinate axes, the follow-

ing conditions are fulfilled (fig. 14):

a) the projection F of F on the (x, y)-plane
is bounded by a simple closed curve consisting
of a finite number of arcs, each with conti-
nuously turning tangent; the projection of all
the edges of S on the (x, y)-plane divide that plane into a finite
number of regions, each bounded by a simple closed curve;

b) any parallel to the z-axis containing an interior point of N has in
common with N a single segment and no other point, and F is given by

/////

Fig. 14.
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an equation of the form z=f (x, ¥), where f (x, y) is one-valued and con-
tinuous, together with its partial derivatives of the first order, in F;

c) these same conditions are fulfilled when the %, y and z-axes are
interchanged in any way.

A sphere is not a normal region, because it does not satisfy con-
dition (b). But it is made up of a finite number of normal regions. For the
region bounded by a spherical triangle and the planes through its sides
and the center of the sphere will be normal if the angular measures of
the sides are sufficiently small. The situation is similar for the usual sur-
faces met with, and we shall see that the divergence theorem is appli-
cable to regions made up of normal pieces.

As to the field (X, Y, Z) we shall assume that its components and
their partial derivatives of the first order are continuous within and on
the boundary of N.

For a normal vegion N and a field satisfying the above requivements in
N, the divergence theorem holds:

(1) fffﬁx+6y i)dV:ff(Xl—l—Ym—{-Zn)dS
S

Let & denote one of the regions into which the projection of the edges
of S divides the (¥, v)-plane, and let v denote the portion of N whose pro-
jection is ¢; v will be bounded by a surface ¢ consisting of a vertical
cylindrical surface through the boundary of o, and by two surfaces
z=g(x,y)andz = f (¥,9), p (¥, %) = [ (%, y), one of them being plane,
and thus both satisfying condition (b). We start by establishing the
divergence theorem for the region v and the field (0, 0, Z):

(@) ﬂf%f—dv =H2nda.

By the theorem on the equivalence of multiple and iterated integrals?
we have

» JfSar= fff
=fafZ[x,y,f(x,y]d6~£f2[x,y,¢(x,y)]da.

We now change the field of integration in the surface integrals from the
projection o to the surface o bounding v. If 4 ¢ is an element of the upper
portion z = f (%, ) of ¢, and Ac the corresponding portion of o, ¢. e.

1 See, for instance, Oscoop, Advanced Calculus, p. 90. —COURANT, Differen-
tial- und Integralvechnung, Bd. 1I, pp. 175—183.
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its projection, we have, by the familiar formula for areas,

Ao‘=ffsecyd&=secy’d6, AG = cosy’'do.
47

y’ being a mean value of the acute angle between the normal to the sur-
face and the z-axis. The application of the law of the mean is justified
because of the condition (b) on f (¥, ). Thus the first integral on the
right of (3) may be written

lim %Z[xk» Vi | (B, y)1 A6 = hm%’Z[xk: Yir | (%5, Vi) 1 cos yy Aoy,
= fchosydo‘,

where ¢’ is the portion of ¢ in the surface z = f (%, ¥). The second inte-
gral on the right in (3) may be transformed in the same way. On ¢”,
cos vy is exactly the direction cosine #, since here the outward normal
makes an acute angle with the z-axis. On the portion ¢’ of ¢ in the sur-
face z = ¢ (%, ), however, the outward normal makes an obtuse angle
with the z-axis, namely the supplement of y, and hence cos y = — #.
We therefore obtain

fﬂ%?z-dv :”ana +ﬂznda.
v g’ o’

The parts of ¢ not comprised in ¢’ and ¢ are vertical cylindrical
walls. On them # = 0, so the last equation is equivalent to (2).

We may now establish the corresponding equation for the region N.
For, if we add equations (2) corresponding to the finite number (by con-
dition (a)) of regions of type v into which N is divided, the sum of the
left hand members is exactly

LH%?Z-W,

while the surface integrals have as sum the integral over the surface S
of N, the surface integrals over the vertical walls being 0. Thus

fﬂ%dv :UZMS.

Now, because of condition (c), we can derive in the same way, the
equations

fif—‘;—fw :ﬂxms, Uf%‘idv :UYMS’

and the sum of the last three equations gives the divergence theorem (1)
for N and for the particular orientation of the axes involved in the hypo-
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thesis on N. However, from the first form of the divergence theorem
in equation (9), page 39, we know that both sides are invariant under a
rigid motion of the axes, so that it holds for N with any position of the
axes (see also Exercise 6, page 37).

3. First Extension Principle.

Any region which can be cut into normal regions by a finite number
of planes, is also one for which the divergence theorem holds, the hypo-
theses on the field being maintained. For if the equations expressing the
divergence theorem for the parts are added, the left hand members add
up to the integral, over the whole region, of the divergence. The surface
integrals add up to the integral of the normal component of the field
over the surface of the whole region, plus integrals over surfaces each
of which is part of the boundary of two adjacent partial regions. As the
normal is outward from each, it is in opposite senses on such a surface,
according as the surface is regarded as bounding one or the other of the
partial regions. The surface integrals over such common boundaries
therefore destroy each other, leaving only the outer surface of the whole
region.

Thus the divergence theorem holds for any region which, in this sense,
1s the sum of normal regions. The principle of adding regions in this way
we call the first extension principle.

Exercise.

1. Show that a right circular cylinder, an ellipsoid, a torus, a truncated right
circular cone, are all sums of normal regions. Show, on the other hand, that any
portion of a right circular cone containing the vertex is not the sum of normal
regions.

By means of the first extension principle, we may assert the va-
lidity of the divergence theorem for a broad class of regions. It is
easy to show that it holds also for right circular cones. It is the vertex
which causes the difficulty. But the vertex can be cut out by means
of a plane near to it, and normal to the axis, and the divergence
theorem holds for what is left. Then, as the plane is made to ap-
proach the vertex, the divergence theorem for the truncated cone has
as limiting form, the same theorem for the full cone. This is a
special case of the second extension principle which we shall meet later.

Exercises.
2. Show that the divergence theorem in two dimensions

ff + == By dS: f(Pl—}—Qm)ds:f(de—de)
¢ ¢

holds, provided P and Q are continuous, together with their partial derivatives of
the first order, in S and on its boundary C, and if S is the sum of a finite number
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of polygons and regions bounded by simple closed curves, each of which consists
of a finite number of straight sides and one curved side with continuously turning
tangent, the tangent never turning through as much as a right angle.

3. Show that the hypothesis on the field (X, Y, Z) in the divergence theorem
may be lightened as follows. X, Y and Z shall be continuous in the region R,
and on its boundary, and R can be broken up into a finite number of regions for
which the divergence theorem holds, and in each of which X, Y and Z have deriv-
atives which are continuous, the boundary included. This means that as P ap-
proaches the boundary from the interior of one of the partial regions, each derivative
approaches a limit, and that these limits together with the values in the interior
form a continuous function. The limits, however, need not be the same as P ap-
proaches a common boundary of two partial regions from the two sides.

4. Stokes’ Theorem.

Stokes’ theorem deals with an open, two sided surface S (see the
footnote, p. 67), bounded by a simple closed curve C, and with a field
X, Y, Z). A positive sense is assigned to the normal to S, and the di-
rection cosines of the normal with this sense are assumed to vary con-
tinuously with the position of the foot of the normal on S. A positive
sense is assigned to the curve C in accordance with the conventions of
§ 9, page 72. The condition on the continuity of the direction of the nor-
mal will be lightened.

We first prove Stokes’ theorem for a simple class of surfaces S,
corresponding to the normal regions for the divergence theorem. We
assume, namely, that S satisfies the conditions imposed on the curved
face F of a normal region, in (a), (b), and (c) of § 2, page 85, and that its
projection on each of the codrdinate planes is a region for which the
divergence theorem in two dimensions holds.

As to the field, we assume that in a region of space with S in its
interior, X, Y, Z and their partial derivatives of the first order are con-
tinuous.

For surfaces S and fields (X, Y, Z) satisfying these requirements,
Stokes theorem holds:

0z oY 0X 0z Y 0X\ -
g fﬁ(w =5+ (G —ae) m+ (G — )] es
=f(de + Ydy + Zdz).
¢
Considering first the terms involving X , we shall show that
0X 0X
s

Here X is given as a function of #, y and z, but as its values on the sur-
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face S, z = f (», y), are all that are involved, we may substitute for it
the function

X[x,y,f(x,9]=D(x,9).

Then
oP 0X Of 0X 0X m
By 6y+az Py 9y 9z =u’
since
of daf
T 9x oy 1
T T wm o w
Hence

[ m— 85y as = = [[(5 = 52 nas = = [ a5

where S is the projection of S on the (x, y)-plane. The last integral we
now transform into a line integral over the curve y which is the pro-
jection of C on the (¥, ¥)-plane, by means of the divergence theorem
in two dimensions!. Writing P = 0, Q = @, we see that the last inte-
gral is equal to

f@(x,y) dx
7

and since the values of @ on y are identical with those of X at the cor-
responding points of C, this integral is equal to

fde,
¢

so that the identity (5) is established. Since the conditions on S hold
also when the axes are interchanged, we have two similar identities,
found from (5) by cyclic permutation of the letters, the sum of which
yields Stokes’ theorem (4), for the particular orientation of the axes used.
But by the first formula (14), page 73, we see that the two members of the
equation expressing Stokes’ theorem are independent of an axis system,
and hence (4) holds for any orientation of the axes.

The theorem may now be extended. Let us call surfaces satisfying
the conditions imposed on S normal surface elements. Then if a surface
can be resolved, by means of a system of curves, into a finite number of
normal surface elements, and if senses are assigned to the normals and
bounding curves of these elements in according to the convention we

1 See Exercise2 of the last section. The formula is derived in Oscoop’s Advanced
‘Calculus, pp. 222—223.
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have established, the convention for two adjacent elements being
such that their common boundaries are described in opposite senses, the
sum of the identities (4) for the separate normal surface elements will
yield the identity (4) for the whole surface. It is not necessary that S
should have continuously changing normal directions throughout. This
direction may break on the common boundary of two of the normal
surface elements. The connection between the sense of the normal and
the bounding curve permits us to decide on how the convention as to
the positive side of S is to be continued from one element to the next.
Only, the surface must be two sided, or a contradiction may be ar-
rived at.

The result is that we may now assert the validity of Stokes’ theorem
under the following conditions: the surface S is two sided, and can be re-
solved into a finite number of normal surface elements. The functions X, Y, Z
are continuous at all points of S, and their partial derivatives are con-
tinuwous at all points of the normal surface elements into which S is divided
(see Exercise 3 of the last section, page 89).

5. Sets of Points.

We turn now to the discussion of the geometric concepts which
underlie any theory of integration, and which are especially important
in the cases of line, surface, and volume integrals. Curves, volumes and
portions of space are certain specified collections of points. By a set of
points, we mean the aggregate of all points which are given by a definite
law or condition, and only those points. Some examples of sets of points
are given in Exercise 1, below.

If the points of a set E lie in a plane, E is called a plane set of points,
and if the points of E lie on a straight line, E is called a linear set of
points. Of course plane and linear sets of points lie in space, and it is
sometimes important to know whether such sets are to be regarded as
parts of space, or as parts of the planes or lines in which they lie. We
shall point out the cases in which such distinctions arise.

A set of points is said to be finite or infinite according as it contains
a finite or an infinite number of distinct points.

A set of points is said to be bounded if all of its points lie in some
sphere.

A point P is said to be a limit point of the set E provided there are
points of E, other than P, in every sphere with P as center. A limit
point may belong to the set, or it may not. Thus if E consists of all the
points within a given sphere, but not on its surface, all the points of the
sphere, including its surface, are limit points of E. Thus some of its
limit points belong to E and some do not.

Finite sets do not have limit points. On the other hand, an impor-
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tant theorem known as the Bolzano-Weierstrass Theorem assures us
that every bounded infinite set of points has at least one limit poingt.

The set of points consisting of all the limit points of E is called the
derivative of E, and is denoted by E’. Thus if E is the set within a sphere,
E’ consists of the points of the sphere, the boundary included. The deri-
vative of a finite set is empiy, that is, it contains no points.

A point P of E is said to be an snferior point of E, provided there is a
sphere about P all the points in which belong to E.

A point P of a plane set of points E is said to be an interior point of
E with respect to the plane (or, if we are dealing only with a single plane,
and misunderstanding is precluded, simply an interior point of E), pro-
vided there is a circle in the plane with center at P all the points in
which belong to E. ,

Thus, if E consists of the points of the (x,y)-plane for which
—a <x<a, —a<y<a, any of its points is interior with respect
to the plane. But none of its points are interior when it is considered a
set of points in space.

A point P of a linear set of points E is said to be an inferior point of
E with respect to the line (or, if misunderstanding is precluded, simply
an interior point of E) provided it is the mid-point of a segment of the
line, all the points of the segment belonging to E.

A point P is said to be exterior to a set E provided it is the center of
a sphere none of whose points belong to E.

The boundary of a set of points E is the set of all limit points of E
which are not interior to E. As this definition involves the notion of
interior points, we must know in the case of plane and linear sets whether
they are being considered as parts of space, or of the planes or lines
in which they lie. Thus the set of points in a plane consisting of the
surface of a circle, if regarded as a set in the plane, would have as boun-
dary the circumference of the circle. If it is regarded as a set in space,
all its points are boundary points, since it has no interior points. Unless
explicit statement is made to the contrary, we shall understand that
the word interior, when used in connection with a plane set, means
interior with respect to the plane, and similarly with respect to linear
sets.

The frontier of a set E is the set of points which are not exterior to E
but are limit points of exterior points. Thus if E consists of the points
interior to a circle and not on a given radius, the circumference of the
circle belongs both to the boundary and to the frontier. The points of the
radius, other than the extremity, belong to the boundary, but not the
frontier.

1 For a proof, see Oscoop, Funktionentheorie, Leipzig, 1923 4th ed., p. 38,
5th ed. 1928, p. 35.
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A closed set of points is one which contains all its limit points.

An open set of points is one all of whose points are interior points. The
set 2 4 y% + 22 =< a2 is closed. If we suppress the sign of equality, the
set becomes open. The set of all points whose coérdinates are positive
proper rational fractions is neither open nor closed. ,

A function of one or more variables is defined for certain values of
the variable or variables, and these values constitute the coérdinates
of the points of a set. Such sets, in the case of functions occurring in
mathematical physics, are of somewhat special character, and the names
region and domain are employed for them. The usage is not uniformly
established ; we shall employ the words as follows.

A domain, or open continuum is an open set, any two of whose points
can be joined by a polygonal line, of a finite number of sides, all of whose
points belong to the set.

A region is either a domain, or a domain together with some or all
of its boundary points. It is thus a broader term than domain. Usually
it will be a domain with 4/l its boundary points, in which case it will be
called, as a rule, a closed region.

A meighborhood of a point is a domain containing that point.

Any bounded set S of nuinbers has a least wpper bound. This is a
number with the properties, that it is exceeded by no number of the set,
while in any neighborhood of it, there is at least one number of the
set. The existence of the least upper bound may be proved as follows.
Let 4, denote a number less than some number of S, and b, a number
which exceeds all the numbers of S. We form the arithmetic mean of 4,
and b,, and define 4, and b, as follows:

__ayt b,

a,=———, by=1"8,, or a =a,,

_ % t+b
) b1~ 9 4

according as this mean is exceeded by some number of S or not. Simi-
lary, we define a,, b,, a5, b, . . ., . In general

— Anoy + by b —b

e e
n 9 ’ n - 2

or a,=a "

n—1s n n—1> )

. n— bp-1 .
according as a—l—;‘_——wl is exceeded by some number of S or not. We
thus construct two sequences
(@) Ay, Gy, g, A3, o
®) bo, by, by, by, ...

The first is never decreasing and bounded by b,, and the second is never
increasing and bounded below by @,. Both therefore converge, and since
b, — a, approaches 0, to the same limit 7. It is easily verified that /
is the least upper bound of S.
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Exercises.

1. Examine the following sets of points as to whether they are finite, bounded,
open, closed, domains, regions. Specify also their limit points, derivatives, their
interior points, their exterior points, and their boundaries and frontiers. The
answers can be given conveniently in tabular form.

a) the points whose codrdinates are integers less in absolute value than 10,

b) the points whose codrdinates are integers,

c) the points whose coordinates are rational numbers less in absolute value
than 10,

d) the points of the w-axis given by 0 < x < 1,

e) the same, with the point x = } removed,

1
f) the points of the x-axis given by x =5 where # assumes all integral

values,

g) the points of the plane given by g2 < a? cos 2¢,

h) the points whose cobrdinates satisfy either of the inequalities (v—2)2
+y2 <] (#4+2)2+ 2 <1

i) the points #2 4 92 4 22 < 1 and the points ¥ =0, y =0, 1 < 2z < 2.

2. Prove that the boundary of any set of points is closed. )

3. Show that if any two points 4 and B of an open set E can be connected by
a continuous curve (see page 98, Exercise §) lying in E, they can also be con-
nected by a polygonal line with a finite number of sides, also lying in E. Thus
in the definition of domain, we may replace the polygonal line by any continuous
curve in E. .

Suggestion. About the point 4 there is a sphere, entirely in E. Consider the
last point of the curve which belongs to this sphere. About it there is a second
sphere in E. Thus a chain of spheres can be constructed, finite in number, in the
last of which the point B lies. Having proved this, construct the polygon. The
reasoning can be abbreviated by use of the Heine-Borel theorem of the next
section. :

4. If Ris a closed region, and E is a set of points in R, containing at least one,
but not all, of the interior points of R, show that there must be a frontier point of
E in the interior of R.

Suggestion. Let P, and P, be interior points of R, P, belonging to E, and P,
not. Comnsider a polygonal line connecting P; and P,, and let / denote the least
upper bound of the values of the length s of arc, measured from P,, corresponding
to points in E. Show that s = I gives a frontier point of E.

6. The Heine-Borel Theorem.

The idea of uniformity is fundamental in analysis, and the reader
who has not a clear appreciation of this concept should lose no time in
obtaining one!. Generally speaking, a function is said to possess a cer-
tain property uniformly, or uniformly with respect to a certain variable,
when the inequalities defining that property can be so chosen as to hold
independently of that variable. Thus the series

wy (%) - vy (%) + 2y (%) + - -

1 See the first eight sections of Chapter III of Oscoon’s Funktionentheorie, or
CouranTt’s Differential- und Integralrechnung, under the heading Gleichmdfige
Anndherung etc., in the index.
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defines, by means of the sum of its first # terms, a function s, (x). To
say merely that the series converges, in the interval a < x < b, to
I (x), means that to any #x in the interval, and to any ¢ > 0, there
corresponds an N such that for this value of x,

[s, (x) —I(x)| <e,
provided #» > N.
To say that the series converges uniformly in the interval to I (x)
means that to any number ¢ > 0, there corresponds a number N inde-
pendent of x, such that

[sn () —1(x)| <e,
for all x in the interval, provided » > N.
To say that a function f (P) of the cotérdinates of P, defined in a

region R, is continuous in the region, means that to any point P of
R and any & > 0, there corresponds a § > 0, such that

/(@) — (P <e,
provided Q is in R and the distance Q P is less than 6.

To say that the above function is uniformly continuous in R means
that to any & > 0 there corresponds a > 0, independent of P, such that

1@ —f(P)|<e,

where P and Q are any pomts of R, provided the distance PQ is less
than 6.

The reasoning establishing many theorems on uniformity has a
common part which can be formulated as a theorem on sets of points
and proved once for all. This theorem is known as

The Heine-Borel Theorem!: Let E be any closed bounded set of
points, and S a set of domains, such that each point p of E is in one of
the domains T, of the set. Then there is a subset S’, consisting of a finite
number of the domains T, such that every point of E lies in one of the
domains of S’.

To prove this, we show first that there is a number o > 0, such that
each point of E lies in one of the domains of S whose boundary points
all have a distance from that point greater than «. Suppose this were
not the case. Then for each positive integer #, there would be a point
$n such that all the domains of the set S containing $, had boundary

points within a distance of _- from p,. An infinite sequence of such
points, since E is bounded, would have at least one limit point p,, by
1 BoreL, Annales de I’Ecole Normale Supérieure, 34 Ser. Vol. 12 (1895) p. 51.

HEINE, Die Elemente dev Funktionentheorie, ]ourna.l fiir Mathematik und Physik,
Vol. 74 (1872), p. 188.
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the Bolzano-Weierstrass theorem. And as E is closed, $, would be a
point of E. It would therefore lie in one of the domains T, of S. We
have here a contradiction. For if § were the radius of a sphere about p,,
lying entirely in T, there would be points in the sequence p;, $,, 3, . . .

iq e . - sy .1 6
lying within a distance g of p,, with index # such that - < . For such
a point there was no domain of S which did not have boundary points
within a distance ;Ll— of p,. But T, would be a domain whose boundary

points all lay at a greater distance from $,,, and this is the contradiction.
Hence the number o exists.

Suppose now that e is a set of a finite number of the points of E,
with the property that each point of E has a distance less than o« from
some point of e. Then for each point p of e there is a domain of the set
S whose boundary points are all at a distance greater than « from .
The set of domains consisting of one such for each point of ¢ is a set S’
of a finite number of domains, such that each point of E is in one of them,
and it has therefore the character demanded by the theorem.

Should there be any doubts about the existence of the set e, they
may be set at rest by the following considerations. Let space be divided

into cubes with diagonals of length — , by three systems of parallel planes.
g gth 3, by Y p p

The points of E can lie in but a finite number of these cubes, since E
is bounded. Any set e consisting of one point of E in each cube which
contains points of E, within it or on its boundary, has the required
properties.

This proof of the Heine-Borel theorem has been given for sets in
space. The changes to be made for plane or linear sets of points are only
of a formal nature.

As an application, we prove the theorem ¢f f(P) is continuous in the
closed region R, then it is uniformly continuous in R. Let ¢ > 0 be given.
By hypothesis, there is a sphere o (P) about each point P of R, such that
for any point Q of R in the sphere,

11 —1(P) <%

Consider the domains attached to the points of R, defined thus: the
domain corresponding to P is the interior of the sphere about P whose
radius is half that of ¢ (P). By the Heine-Borel theorem, every point
of R is interior to one of a finite number of these domains. If § denotes
the least of their radii, then

1@ —f(P)i<e

if P and Q are any two points of R whose distance apart is less than 4.
For P lies in one of the finite set of domains, say that about P,. Hence
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both P and Q lie in the sphere o (P,), of radius at least 2 §. Thus both
f (P) and f (Q) differ from f (P,) by less than%, and so differ from each

other by less than ¢. The above inequality therefore holds independent-
ly of the positions of P and Q, and the continuity is uniform.

7. Functions of one Variable; Regular Curves.

We shall be concerned with one-valued functions, defined for values
of variables which are the codrdinates of points of domains or regions.
In the case of functions of one variable, the domains or regions are inter-
vals, without, or with, their end-points.

Let I denote a closed interval ¢ =< x = b of the x-axis. We say that
/(%) is continous in I if it is continuous at every point of 7.

We say that f(x) has a continuous derivative, or is continuously
differentiable in I provided it is continuous in I and its derivative exists
at all interior points of 7, and coincides at all such points with a func-
tion which is continuous in I.

Some such definition is necessary, if we are to speak of the derivative
in a closed interval, for the ordinary definition of the derivative is not
applicable at the endpoints of an interval in which a function is defined
(see Exercise 2, below).

We say that f(x) is precewsse continuous in I provided there is a
finite set of points of division, a == a,<<a, <4, :+* <a,="0, of the inter-
val I, such that in the interior of each of the intervals (a;, @;.4), /(%)
coincides with a function which is continuous in the closed sub-interval.

We say that f (x) is piecewise differentiable in I provided there is
a set of sub-intervals of I of the above sort in each of which it has a
continuous derivative (the sub-intervals being regarded as closed).

Ezxercises.
1. Characterize, with respect to the above definitions, the following functions:
a) f(x») -——]/a?—xz, on (—a, a), on <_— g , %), b) f(») =[], where [¥] means the
x

greatest integer not exceeding », on various intervals; c) f(x) = f [¥]dx, on
various intervals. 0

2. Show that the above definition of continuously differentiable functions is
equivalent to the following: a) f(#) shall have a derivative at every interior point
of I, and one-sided derivatives at the end-points, and the function thus defined
shall be continuous in the closed interval I; b) the derivative is continuous in the
open interval, and approaches limits at the end-points.

A regulayr arc is a set of points which, for some orientation of the
axes, admits a representation

Kellogg, Potential Theory. 7
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where /(%) and @ (x) are continuous and have continuous derivativesin I.
We call such a representation a standard representation of the arc.

We shall need several facts about regular arcs, some of which will
be left to the reader as exercises, and some of which we shall prove as
theorems.

Exercises.

3. A regular arc admits a parametric representation in terms of the length
of arc s, ¥ = x(s), ¥y = ¥(s), 2= 2(s), 0 < s < I, where #(s), ¥(s), 2(s) are con-
tinuous and continuously differentiable in 0 < s < 1.

4. A curve x = x(s), ¥y = 9(s), 2= 2(s), 0 < s < I, where x(s), ¥(s), z(s) are
continuous and continuously differentiable in the interval 0 < s </, admits a
standard representation provided there is an orientation of the axes for which
no tangent to the curve is perpendicular to the x-axis. The curve is then a regular
arc.

5. A continuous curve is a set of points given by » = x(¢), y = y(t), 2= 2(¢),
a <t < b, where x(¢), ¥(¢), #(¢) are continuous functions of # in the closed interval
(@, b). Show that such a curve is a closed bounded set of points. Show hence that
a function which is continuous in a closed interval actunally takes on, at points
in the interval, its least upper bound, its greatest lower bound, and any intermediate
value. Notice that the bounds are not necessarily taken on if the interval is open.

Theorem 1. Given a regular arc C, and a number o > 0, there exists
a number 6 > 0, such that no two tangents to C at points on any portion
of length less than &, make with-each other an angle greater than o.
" By Exercise 3 the direction cosines x’ (s), ¥’ (s), 2’ (s) of the tangent
to C at the point s are continuous in the closed interval (0, /), and hence
are uniformly continuous. There is therefore a number § > 0 such that
if s and ¢ are any two points for which | s — | < 8,

[ (5) =& OF 4+ (5) — v OF + [/ (5) — 2 ()FF < 4sin? 5.

If the parentheses are expanded, we find for the cosine of the acute
angle (s, #) between the tangents at s and ¢

8) “cos(s,t) =" ()" (t) + 9 )y () + 2 (s) 2 (f) > cosa,
and this angle is therefore less than « on any portion of C of length less
than 4.

For plane regular arcs, we could infer that the tangents at such a
portion of C make angles less than a with the chord joining the end-
points of the portion, for one of these tangents is parallel to the chord.
But for arcs which are not plane, there need not be a tangent parallel

to a chord, as may be seen by considering several turns of a helix. The
fact subsists however as we now prove.

Theorem II. Given a regular arc C, and a number o> 0, there is
a number 6 > 0, such that the tangent to C at any point of a portion of
lengthless than 8, makes with the chord joining the end-points of that portion
an angle less than o.
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The same § as that determined in the proof of the previous theorem
will serve. In fact, if we integrate both sides of the inequality (6) with
respect to s from s, to s, 0 <'s, — s; < ¢, we find

(v — x1) & (&) + (Yo — y1) ¥ (€) + (25 — 21) 2 (£) > (s — $¢) cos ax.

If we divide by ¢, the length of the chord joining s, and s,, we have on
the left the cosine of the acute angle (c, #) between the chord and the
tangent at #, and on the right something not less than cos «. Hence
if s, £t < s,, the angle (c, #) is less than «, as was to be proved.

Theorem 1II. The projection of a regular arc on a plane to which it
1s nowhere perpendicular consists of a finite number of regulay arcs.

We take for the regular arc C the parametric representation of Exer-
cise 3, the plane of projection being the (%, ¥)-plane. This is possible,
since the properties there given for x (s), ¥ (s), z (s) subsist if the axes
are subjected to a rigid displacement. Since the arc is nowhere perpen-
dicular to the (x, y)-plane, |2’ (s)| <1, and hence, by Exercise 57, the
maximum g of |2 (s)| is less than 1. Then, if ¢ is the length of arc of the
projection C, of C,

() = a2 () + ¥ ) =1 — () =1 — it

Hence, with the proper sense chosen for the positive direction on C,,
o is an always increasing function of s for 0 < s < /, with continuous,
nowhere vanishing derivative. The inverse function s (o) therefore
exists, and if 0 and A are the values of ¢ corresponding to 0 and / of s,
. . . o . 1 .
s (o) is continuous and has a continuous derivative <namely U—,(?)> in
the closed interval (0, 2). Hence C, is given by x = % [s (6)], y = ¥ [s (0)],
z=0, the codrdinates being continuous and continuously differenti-
able functions of ¢ on the closed interval (0, 4).

It remains to show that C; can be divided into a finite number of
pieces on each of which the tangent turns by less than a right angle,
for corresponding to each such piece there will be an orientation of the
axes such that no tangent to the piece is perpendicular to the x-axis.
The pieces will then be regular arcs, by Exercise 4. But the coérdi-
nates of C; expressed as functions of ¢ fulfill the conditions used in
the proof of Theorem I, hence that theorem is applicable to C;, and

C; has the required property for o = %

A regular curve is a set of points consisting of a finite number of re-
gular arcs arranged in order, and such that the terminal point of each
arc (other than the last) is the initial point of the next following arc. The
arcs have no other points in common, except that the terminal point

1 Or, see OsGoob, Funktionentheorie, Chap. I, § 4, Theorem 2.
; .
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of the last arc may be the initial point of the first. In this case, the reg-
ular curve is a closed curve. Otherwise it is an open curve. Regular curves
have no double points. This means thatif x = x (s), ¥y = y (s), z = 2 (s),
0 < s =</, is a parametric representation of the curve in terms of its
length of arc, the equations

x()=x20), yE) =y, 2(6)==20)

have no solutions other than s = ¢ for s and ¢ in the closed interval (0, /)
if the curve is open, and only the two additional solutions s=0, t=1,
and s =1/, { = 0, if the curve is closed. A curve without double points
is called a simple curve.

Exercise.

6. Show that the following is an equivalent definition of regular curve: a regular
curve is a set of points which admits a representation ¥ =x (), ¥y = v (¢), 2 =2(?),
a < t< b, where x(?), ¥(t), z(t) are continuous and have piecewise continuous deriv-
atives in the closed interval (a, b), these derivatives never vanishing simultaneously,
and where the equations x(s) = #(#), ¥(s) = ¥(¢), 2(s) = z(f) have no common solu-
tions for a <s < ¢ < b, except possibly the solution s = a, ¢t = b.

8. Functions of Two Variables; Regular Surfaces.

~ Functions of two variables will usually be defined at the points of
plane regions. Of primary importance will be regular regions.

A regular vegion of the plane is a bounded closed region whose
boundary is a closed regular curve.

Exercise.

1. Which of the following are regular regions? a) the surface and circumference
of a circle; b) the points exterior to and on the boundary of a circle; c) the points
between two concentric circles, with the circumférences; d) the points ¢? < p <

1
e?+7, § > 0; e) the region 22 L y2< 4, y = xsin—x— for ¥+ 0, y =0 for ¥ = 0.

A regular region R is the sum of the regular regions Ry, R,, ... R,
provided every point of R is in one of the regions R;, every point of
each R;isin R, and no two of the regions R; have common points other
than as follows: a regular arc of the boundary of one of these regions
and a regular arc of the boundary of another may either coincide, or
have one or both end points in common.

Let R denote a regular region of the (x,y)-plane. We say that
f (%, y) is continuous in R provided it is continuous at every point of R.

We say that f (x, y) is continuously diffeventiable in R, or has con-
tinuous partial derivatives of the first order in R, provided it is continuous
in R and provided its partial derivatives of the first order with respect
to x and y exist at all interior points of R and there coincide each with
a function which is continuous in R.
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We say that f (x, ) is piecewise continuous in R, provided R is the
sum of a finite number of regular regions in the interior of each of which
/ (%, ) coincides with a function which is continuous in that sub-region.
It may be noted that on the common boundary of two sub-regions,
f (x, ) need not be defined. A function which is 1 for x2 + y2 < a2,
y>0,and — 1 for % 4 y2 < a2, y < 0, is piecewise continuous in the
circle.

We say that f (x, y) is piecewise differentiable, or has piecewise con-
tinwous partial devivatives of the first order in R, provided R is the sum
of a finite number of regular regions in each of which f (x, y) is con-
tinuously differentiable.

The above definitions concerning functions depend on a system of
axes in the (%, y)-planes, although they deal with functions defined on
sets of points whose codrdinates may well be measured from other axes.
It is important for us to know that a function satisfying any of these
definitions continues to do so when the axes undergo a rigid displace-
ment. This is the case. For if we make such a change of axes

x=a -+ £cosa — nsin e,

y=>5b4 &sina + % cosa,
f (%, ) will become a function @ (&, ). If f (x, y) is continuous in any
region, @ (£, %) will be continuous in that region. If f (¥, y) has con-

tinuous partial derivatives of the first order in the interior of any re-
gion, @ (&, ) will have the derivatives

oD of of .
a—é—g;cosoz—{—a—ysma,
o of . of
‘5—77———3—;VSIHO£+ECOSOL,

in the interior of that region, and they will also be continuous there. If
in one case the derivatives coincide with functions which are continuous
in the closed region, they will also in the other case.

The Triangulation of Regular Regions. A regular region may be com-
plicated in character, and it will be useful to have a means of dividing
it into simple parts. We proceed to a consideration of this question.

Theorem IV. Given a regular region R, and a number 6 > 0, it is
possible to vesolve R into a sum of vegulay sub-regions o with the properties

a) each sub-region is bounded by three regular arcs,

b) no sub-region has a reénityvant vertex,

c) the maximum chord of the sub-regions is less than 6.

A regular region has a reéntrant vertex at P if, as its boundary is
traversed with the region to the left, the forward pointing tangent vector
has at P an abrupt change in direction toward the right. The process
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of resolving R into the sub-regions of the theorem will be referred to as
the triangulation of R.

The triangulation is accomplished by first cutting off triangular re-
gions at the vertices of R, and then cutting out triangular regions along
the edges, so that what is left of R is bounded by straight lines. The
polygonal region is then easily triangulated.

We first interpolate vertices on the boundary C of R, finite in num-
ber, and such that between two adjacent vertices, C turns by less than
15° (fig. 15a). This is possible, by Theorem I. We then determine a
number 7 > 0, which does not exceed the minimum distance between
any two non-adjacent arcs of C, the arcs being regarded as terminated
by the or1g1na1 and the interpolated vertices. With a radius 7, less than

either § or =, we describe about each vertex a circle. These circles will

3 ’
have no points in common, and each will be cut by no arcs of C other
than the two terminating at its center.

Fig. 15a. Fig. 15 b.

Suppose the arcs entering one of these circles meet at an angle not
greater than 600 (fig. 15b). Then the tangents to these arcs at points
within the circle will make with the bisector of the angle at the vertex,
angles which never exceed 45° A perpendicular to the bisector, at a

distance %from the vertex, will cut off from R a region ¢ with the re-

quired properties. The rest of R will have a straight line segment as a
portion of its boundary, met by the adjacent arcs at angles differing
from a right angle by not more than 45°.

If the arcs entering a circle meet at an angle greater than 600, we
draw from the vertex into R two radii, each making an angle 300 with
one of the arcs at the center (fig. 15¢). We then cut off from R two
triangles ¢ in the way just indicated, each bounded by an arc and two
straight lines. The rest of R in the neighborhood of the vertex has a
polygonal boundary.

After all such triangular regions have been removed from R at its
vertices, the boundary C’ of the portion R’ of R which remains has the
property that such of its arcs as remain never turn by more than 159,
and are flanked by straight lines which meet them at angles which are
not reéntrant and differ from right angles by not more than 45°% No
two curved arcs of C’ have common points. No curved arc has points
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other than its end-points in common with a straight line segment of
C’ because all such segments are interior to the circles, and the construc-
tion within the circles has avoided this. Hence there is a number %" > 0,
such that any curved arc of C” has a distance greater than #’ from any
non-adjacent arc of C’, curved or straight.

We now interpolate on the curved arcs of C” a finite number of ver-
tices so that these arcs are divided into parts whose chords never exceed

’

the smaller of the numbers - or 8. With the chords of the sub-arcs as
3

diagonals, we construct rhombuses
whose sides make with the chords
angles of 309 (fig. 15d). As the arcs do
not differ in direction from their chords
by more than 159 the rhoinbuses do
not contain,points of the straight line
segments of C’ in their interiors. As each rhombus lies within a

distance -773— of its arc, none has points in common with another belonging

Fig. 15d.

to a different arc of C’. Finally, the rhombuses belonging to a single
arc of C’ have no interior points in common, since that arc, on which
their longer diagonals lie, turns by less than 15°.

The regions common to R’ and the rhoimbuses are regular regions o.
After their removal, the rest of R’ is bounded by a finite number of
straight line segments. If the lines of these segments are prolonged
through R’, they cut the polygonal region into a finite number of con-
vex polygons. Each of these may then be triangulated by joining its
vertices to an interior point. If the resulting triangles are too large, they
may be quartered by joining the mid-points of their sides, and this pro-
cess repeated, if necessary, until their maximum chord is less than 4.
The triangulation of R js thus accomplished.

The triangular regions ¢ have further properties, one of which we
shall need. It is as follows.

Theorem V. If 4 and B are any two points of an arbitrary one of
the vegions o, they can be connected by a rvegular curve y, all of whose
points, with the possible exception of A and B, arve interior to this vegion o,
and whose length does not exceed 2 ¢, where c is the length of the chord A B.

The regions o are of three types, the construction of y varying
according to the type. First, there are the regions cut out, from the
region R which was triangulated, at the vertices (fig. 162). These can
be characterized as follows, the x-axis being taken along the bisector
of the angle at the vertex:

a) f<y<gl), 0=z<aq
where  f(0)=¢(0)=0, () <g@) for 0<z<a,
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and where f (#) and ¢ (¥) are continuously differentiable in the closed
interval (0, a). Moreover, the curves y = f (%) and y = ¢ (») turn by
less than 150.

Secondly, we have the parts of rthombuses (fig. 16b). Choosing the
chord of the curved side as x-axis, we may characterize ¢ as follows:

b) fe)Sys—=x 0253,

<z

IA

a

2

a
2

f(0>=f<a)=o,'f<x><i§x, f(x)<yi§(a—x) for 0<zx<a,

¥

I=pIZ y=f1x)
Fig. 16a. Fig. 16 b.

and where f (x) is continuously differentiable in the closed interval
(0, a). Moreover, the curve ¥ = f (%) turns by less than 159,

Finally, we have the type

c) o is bounded by three straight lines.

We first reduce the problem of constructing ¢ to the case in which
4 and B are interior to ¢, if they are not so at the outset. Suppose 4 is
a boundary point. Unless it is a vertex at which the sides are tangent,
we can draw a straight line segment into ¢, and take on it an interior
point A’ distant from A less than 0-1c¢. If 4 is a vertex where the sides
are tangent, ¢ must be of type (a), and A must be the origin in the re-
presentation given. We may then draw into o the regular curve

y= 10w

2

and take upon it a point 4’ whose distance from 4 along the curve is
less than 0-1c. If B is also a boundary point, we construct in the same
way an interior point B’. The chord ¢’ = A’ B’ cannot then exceed
1-2c¢. The theorem will be proved when it has been shown possible to
connect A’ and B’ by a curve 9’ whose length does not exceed 1-8c¢,
and this will be the case if its length does not exceed 1-5¢’. Let us there-
fore drop the primes, and show that any two interior points 4 and B
of o can be connected by a regular curve y entirely interior to ¢ and of
length not more than 1-5¢, ¢ being the distance 4 B.
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If o is of type (c), the chord 4 B will serve for 9. If ¢ is of type (b),
the chord 4 B cannot have points in common with the upper, or straight
line parts of the boundary, and hence will again serve as y unless it
meets the curve ¥ = f (x). This cannot occur if 4 B is vertical, so that
A B has a representation y =ax +b, 5, = ¥ < x,. Now the distance
ax + b — f (%) of a point of 4 B above the lower boundary of ¢, meas-
ured vertically, is positive at %, and x,. Let 7 > 0 be less than the
smaller of the values of this function at %, and x,, and also less-than the
minimum of the differences

i_x——]‘(x) and %}.—(u——x)——f(x) for % <x=Z=x,.

Then the curve y = f (%) 4 # is interior to ¢ for x; < ¥ < #,, and lies
below A and B, but above A B at some intermediate points. Let A’
and B’ be its intersections with 4 B with least and greatest x, respec-
tively. We take as y the straight piece A A’, the arc of y =f(x) + 75
between A’ and B’, and the straight piece B’ B. Then v is regular, is
entirely interior to ¢, and its direction never deviates from that of the
x-axis by more than 159, because 4 B is a secant of the curve y = f (%),
and so is parallel to a tangent, and the same is true of the x-axis. Hence
the length of p does not exceed ¢ sec 15° << 1+5 ¢, as required.

If o is-of type (a), the chord will again serve unless it meets one or
both of the arcs y = f (%), y = ¢ (#). If it meets the first, say, a portion
of the chord 4 B may be replaced by a curve y = f (x) + 7, between
the points A’ and B’ of 4 B. If the chords A A’ or B’ B or both, are met
by the curve y = ¢ (%), portions of such a chord may be replaced by a
curve y = ¢ (¥) — 7. We shall then have a regular curve y, entirely
within ¢, connecting 4 and B, whose direction never deviates from that
of the x-axis by more than 459 and whose length therefore does not
exceed ﬁc < 1-5¢. The theorem is thus established.

Regular Surface Elements. We now turn to the definition and the
consideration of the more important properties of regular surface ele-
ments, from which regular surfaces are built as were regular curves
from regular arcs.

A yegular surface element is a set of points which, for some orien-
tation of the axes, admits a representation

(7) R = f (x, y)’ (x: y) in R,

where R is a regular region of the (x, y)-plane, and where f (%, y) is
continuously differentiable in R.

We call such a representation a standard representation. The boun-
dary of the regular surface element is the set of those of its points (%, v, 2)
for which (#, ¥) is on the boundary of R.
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Exercises.

1. Let y be a plane regular arc all of whose points are interior to R. Show
that y is the projection of a regular arc on the regular surface element.

2. Show that the direction cosines of the upward pointing normal to the regular
surface element are continuous functions of (#, y) in R.

Theorem VI. The boundary of a regular surface element E is a ye-
gular curve C.

Consider one of the regular arcs of the boundary of R. As f(x, )
remains continuously differentiable when the axes of ¥ and v are rotated,
we may assuine that this arc ¢ has the standard representation

y=¢(@), 0=x=a,

where @ {x) has a continuous derivative in the closed interval (0, a).
The corresponding portion of C is given by

yz(p(x), z:f[x,tp(x)], 0=x=a,

and f[x, ¢ (x)] is clearly continuous. It must be shown to have a con-
tinuous derivative in the closed interval (0, ).

Let (x5, vo) be a point of y, for
the present not an end point, and let
us suppose the axes chosen so that
R lies above y in the neighborhood
of (%y, ¥p) (fig. 17). Then, since the

y-p(x)+Hx —x,)a

7 -y =) boundary of R is free from double
(x9,40) points, the curve 3’
Flg. 17. y=9 @& + & — %)%

lies, for sufficiently small |x — ,|, within R except for ¥ = %,. Now
let (x,, ;) be a second point of y, near (x,, ¥,), and let (x;, v,) be the
point of 9’ with the same abscissa. Let 2z, = f (%5, ¥o), 21 = f (%1, 1),
and z, = f (%, ¥,) - Then

IW% =1y (40, 5) (1 — ) = — fy (81, 5) (02— %0)%,

where we have used the law of the mean and the values y; = ¢ (%) and
Yo = @ (%) + (%, — %)% Also, integrating along y’, we find

— %y = f f 5f+2§}[¢ (x)+2(x-xo)]}dx
= f:c (", ") (x1 "—xo) + 1y (") [ (87) + 2 (¢ — x0)] (% —2%)-
Adding the last two equations and dividing by »; — %,, we find
=fo (", y") 1y ", Y") [¢' (&) + 2 (" —2) 1y (42, V') (%1 —%0).

21— 2
X — X
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As x, approaches #x, the points at which mean values are taken approach
(%, ¥o)» and since f (%, ¥) is continuously differentiable, its partial deriva-
tives approach values which we may regard as defining these derivatives
on the boundary of R. The result is

dz _of | 8f
i =3z T3,9 0.

Thus at points of y other than end-points, 2z has a derivative with respect
to x which is given by the ordinary rules for composite functions. From
the form of the result, it is clear that this derivative coincides in the
interior of (0, a) with a function which is continuous in the closed inter-
val. Hence z has a continuous derivative with respect to # in the closed
interval and the part of C corresponding to y is a regular arc. As C is
made up of a finite number of regular arcs, suitably ordered, with only
end points in common, it is a regular curve, as was to be proved.

We have seen that a regular arc admits a standard representation
with any orientation of the axes such that the curve is nowhere perpen-
dicular to the x-axis (Exercises 3 and 4, p. 98). A similar situation is not
present in the case of regular surface elements. Consider, for example,
the helicoidal surface

z:tan—lé, —n<zZm, (%9 in R,

where R is given in polar coérdinates by
—ataeLp=Za—a 1=Z0=2, (0<a).

If « is very small, it is possible to tilt the axes very slightly in such a
way that the new z-axis cuts the surface element twice, so that a stand-
ard representation is not possible with the new orientation of the axes.
It is true, however, that any regular surface element can be divided into
a finite number of regular surface elements, such that each admits a
standard representation, with much latitude of choice in the orientation
of the axes. We proceed to a study of this question, deriving first a
lemma which will be of repeated use to us.

Schwarz’ Inequality. Let f(x) and ¢ (x) be two veal functions,
piecewrise continuous on (a, b). Then

b 9 b L b
® Jiwywan] = [ @[ e .

“a
A similar relation holds for functions of several variables, and func-
tions less restricted than the above. But for present needs the formula-
tion given is sufficient. To derive the inequality, we introduce two real
parameters, A and x, and observe that the integral

J21(0) + po (0] dz
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is never negative, the integrand being the square of a real function.
Accordingly, the quadratic function of 4 and p obtained by expanding
the integrand,

b b

b
2[R dx 424 [ @) @) dx+ p2 [ g (x) dx
cannot have real distinct factors, for otherwise A and  could be chosen
so that these factors would have opposite signs. Hence the square of the
coefficient of Ay is less than or equal to the product of the coefficients.
of A2and p?, and this gives the desired relation.

Theorem VII. Any regular surface element E can be divided into
a finite number of regular surface elements e, each with the property that
if any system of codvdinate axes be taken, in which the z-axis does not make
an angle of more than 70° with any normal to e, e admits a standard re-
presentation with this system of axes.

Starting with the standard representation (7) for E, we determine a
number § > 0, such that if (x,, v,) and (x,, y,) are any two points of
R whose distance apart does not exceed &,

(9) (1 — 1)+ (fr— 1) < 15 cos?T50,

This is possible since the partial derivatives of f(x,y) are uniformly
continuous in R. We then triangulate R in accordance with Theorem IV,
so that the maximum chord of the sub-regions ¢ of R is less than 4.
Then the surface element e

z2=[(®y), (%y ino
is regular, ¢ being any one of the sub-regions of R given by the triangu-
lation. We shall show that e has the properties required by the theorem.
We first seek limits to the angle which any chord 4 B of ¢ makes with
the normal to ¢ at 4. Let 4 have the coérdinates (%, ¥, #;) and B,
(%2, ¥, %), and let ¢ denote the length of the chord. The direction co-
sines of the chord, and of the normal to e at 4 are

i =% Ve — V1 H— 54
c ’ c ’ c ?

and
— fx — I 1
MR+ MT+R+6" N+

so that the acute angle (¢, #) between chord and normal is given by

>

(g — 21) — fr, (g — %) — fy, (¥2 — 91)
cY1+ 1+ 1)
The points (%, ,) and (#,, ¥,) can be connected, by Theorem V, by a
regular curve yp, interior, except possibly for its end-points, to ¢, and of

cos (¢; n) =
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length not more than twice the distance of these points, and so certainly
not more than 2¢. Let x = x (s), ¥ = ¥ (s) be the parametric equations
of y, the length of arc s being measured from (%, ;). Then % (s), y (s)
and z=f[x (s), ¥ (s)] are continuously differentiable in the closed inter-
val (0, 1), ! being the length of . Hence

2’2—21=fj—§d r[fw s) + fuy' (s)1ds.
0

The remaining terms in the numerator of the expression for cos (¢, %)
can also be expressed as an integral over y. For f, and f, are con-
stants, and

KXo — Xy = fx Yo — V1 = fy

so that

for By — 20) + Fr, (9 f[fx, s) + 1,9 (9)1ds,

and
!

chfx—fx,, () + (fy — Fo) ¥ ()] ds
YT+ 12

cos (¢, n)

Applying Schwarz’ inequality to the integral of the first term in the
numerator, we find

i

[JU fx) % } f fo—fe)2ds fx'z ds < —60032 7501.1,

0

because of the inequality (9) and the fact that | 2" (s)| = 1. Hence

l
S (te— 1) # (s)ds ‘l < ;i—cos 759,

0

A similar inequality holds for the integral of the second term, and
hence

l
cos (¢, n) < 54 C0s 75° < cos 759,

since ! < 2¢. Thus the angle between any chord of e and the normal to
e at one end of the chord differs from a right angle by less than 15°.

Suppose now that the axes of the system of coérdinates (&, %, {)
are selected in any way subject to the restriction that the {-axis does
not make an angle of more than 70° with any normal to e (fig. 18). Then
no chord of ¢ can make with -the {-axis an angle of less than 59, and
hence no parallel to the (-axis can meet e twice.
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This means that if 7 is the set of points which is the projection of e
on the (£, n)-plane, and (&, 5, {) are the coérdinates of a variable point
one,{ = ¢ (&, n)is a one valued function of £ and 5 in 7.

Our object is now to show
that

{=9pE&mn), (Emnencz
is a standard representation of e.

The correspondence between
the points P (%, y) of ¢ and the
points P’ (&, %) of T which are

y the projections of the same point
p of e, is one-to-one, since par-
allels to the z-axis and the {-axis
each meet ¢ but once. It isalso
continuous. First, & and 7 are
continuous functions of x and

y, because z = f (%, y) is continuous, and & and 7 are continuous func-

tions of #, y and z. Conversely, x and y are continuous functions of &
and 7. This will follow in a similar way if it is shown. that { = ¢ (&, %)
is ‘continuous in 7. Suppose this were not the case. This would mean
that there was a point P, (&, 7,), and a number « > 0, such that in
every neighborhood of P, there would be points at which ¢ (£, %) differed
from £y = ¢ (&, 7o) by more than o. Let Py, P,, P;,... be an in-
finite sequence of such points with P, as limit point. The correspond-
ing points of ¢ would have at least one limit point, by the Bolzano-

Weierstrass theorem. This limit point would lie on e, since e is closed,

and its ordinate ¢’ would differ from £, by at least oo. Thus e would
have a chord parallel to the {-axis, namely that joining (&, 7, &) to

(&, 7o, &) This we know does not happen. Hence ¢ (&, %) is contin-

uous in 7, and the correspondence is continuous in both senses.

In such a correspondence between the closed bounded sets ¢ and 7,
interior points correspond to interior points. Thus, let Py be an inte-
rior point of o, and let y be a circle about Py, lying, with its interior, in 0.
As the correspondence is continous and one-to-one, y corresponds to a
simple closed curve 9" in 7. By the Jordan theorem?, such a curve sep-
arates the plane into two domains, a bounded interior one, and an in-
finite one. The points within ¥ all correspond to points in one of these
domains only, for otherwise the continuity of the correspondence would
be violated. This domain cannot be the infinite one, because T being
bounded, the set of points corresponding to the interior of y would have

Fig. 18.

1 See OsgooD, Funktionentheovie, Chap. V, §§4—6. For the sake of simpli-
city of proof, the theorem there given is restricted to regular curves. References
to the more general theorem are given.
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to have boundary points other than those of 9’, and this would violate
the one-to-one character of the correspondence. For the same reason,
the points corresponding to the interior of y must fill the whole interior
of ¥’.  As the point P} corresponding to Py must lie in the interior of
9, it is interior to 7. Similarly, interior points of ¢ correspond to in-
terior points of 7. It follows that the boundary points of ¢ and 7 also
cortespond.

Because of the correspondence of interior points, the interior of 7 is
a domain; and hence 7 is a closed region. From Theorem III, it follows
that the boundary of v is made up of regular arcs, finite in number.
These are ordered, corresponding to the boundary of e, in such a way
that each has an end-point in common with the next following, and
none has any other point in common with any other, since e has no
chords parallel to the {-axis. Hence 7 is a regular region.

We have seen that { = ¢ (£, %) is one-valued and continuous in 7.
It remains to show that it is continuously differentiable. The equations
determining the codrdinates &, 7, { of p are those giving the transforma-
tion from one orthogonal set of axes to another, and may be written

f=a+lLx+my+nfxy),
(10) N=">0-+Lx+ my—+n,f(x9),
{=cH+lLix+myy+ nyf (% ).
The first two, according to the theorem on implicit functions?, deter-
mine x and v as continuous functions of £ and #. The third then deter-
mines the function { = ¢ (&, 7). We have seen that the first two equa-
tions have a solution corresponding to any interior point (&, %) of 7. It
remains to verify that the Jacobian does not vanish.
But this has the value
]_ l1+n1fm’ m1+n1f/y
- l2+%2fw’ 777’2"1"%2](1/ ’
and if it be recalled that in the determinant of an orthogonal substitu-
tion (both systems being right-hand, or both left-hand) each minor is
equal to its co-factor, it will be found that
J= _l3fm_m3fy+”3,
But this reduces to

J=7V1+72 472 cos (n,2),
and so is never less in absolute value than sin 5°.

The theorem on implicit functions now assures us that the deriva-
tives exist at interior points of 7, and are given by the ordinary rules

1 See OsGoop, Lehvbuch der Fumnktionentheorie, Chap. 1I, §5.
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for differentiating implicit functions. Thus, from (10) we find, by dif-
ferentiating with respect to &,

L= (4 + 1) o+ On + 1 1) 5
(24

0=(,+ ”2]‘:0)? + (my + 1y 1) oE

Ti= ot mafa) Gt o+ e f) B

from which we find, on eliminating the derivatives of x and y,
g —bhfs—mfy+m

08—l msly g’

with a corresponding expression for the derivative with respect to 7.
Since the denominator, which is the Jacobian considered above, does
not vanish in the closed region 7, the continuously differentiable charac-
ter of { = ¢ (&, %) in 7 follows from that of z = f(x, y) in 6. The proof
of Theorem VII is thus completed.

Regular Swurfaces and Regular Regions of Space.

A regular surface is a set of points consisting of a finite number of
regular surface elements, related as follows:

a) two of the regular surface elements may have in common either
a single point, which is a vertex for both, or a single regular arc, which
is an edge for both, but no other points;

b) three or more of the regular surface elements may have, at most,
vertices in common;

c) any two of the regular surface elements are the first and last of
a chain, such that each has an edge in common with the next, and

d) all the regular surface elements having a vertex in common form
a chain such that each has an edge, terminating in that vertex, in common
with the next; the last may, or may not, have an edge in common with
the first.

Here edge of a regular surface element means one of the finite number
of regular arcs of which its boundary is composed. A verfex is a point
at which two edges meet. The boundary of a regular surface element
need not experience a break in direction at a vertex, but the number
of vertices must be finite. One of the regular surface elements is called
a face of the regular surface.

If all the edges of the regular surface elements of a regular surface
belong, each to two of the elements, the surface is said to be closed.
Otherwise it is open.

Exercise.

2. Show that the following are regular surfaces: a) any polyhedron, b) a sphere,
c) the finite portion of an elliptic paraboloid cut off by a plane, d) a torus, e) the

boundary of the solid interior to two right circular cylindrical surfaces of equal
radii, whose axes meet at right angles.



Second Extension Principle; The Divergence Theorem for Regular Regions. 113

9. Functions of Three Variables.

A regular vegion of space is a bounded closed region whose boundary
is a closed regular surface.

A regular region R of space is the sum of the regular regions Ry,
R,,... R,, provided each point of R is in one of the R;, and each
point of any R; is in R, and provided no two of the R, have points
in common other than a single point which is a vertex of each, or a
single regular arc which is an edge of each, or a single regular surface,
which is a face of each.

If R is a regular region of space, and f(x, ¥, 2) is a one-valued func-
tion defined at the points of R, then f(x, v, z2) is continuous in R, is
continuwously differentiable or has continuous partial derivatives of the
first ovder in R, is piecewise continuous in R, or has piecewise continuous
partial derivatives of the first order or is continuously differentiable in R,
according to the definitions of § 8. We have merely to substitute %, y
and z for x and y.

10. Second Extension Principle; The Divergence Theorem
for Regular Regions.

The object of this section is to establish the divergence theorem
for any regular region R and for functions (X, Y, Z) with continuous
derivatives in R. The foundation of the argument is the theorem for
normal regions, established in § 2. In the light of the intervening study
of functions and regions, we may characterize more sharply the notions
there employed. All that need be added to the definition of normal re-
gions is that they are regular regions of space, and that the projections
referred to are regular regions of the plane. All that need be said of the
functions X, Y, Z is that they are continuously differentiable in the
region N, and of f(x, y), that it is continuously differentiable in F,

A first extension principle was established in § 3, which may now
be stated thus: the divergence theorem holds for any regular vegion which
is the sum of a finite number of normal vegions, the functions X, Y, Z
being continuously differentiable 1n each of the normal regions. If it were
possible to show that the general regular region was such a sum, the
desired end would be attained. But this programme presents serious
difficulties, and it is easier to proceed through a second extension prin-
ciple.

Second Extension Principle: the divergence theorem holds for the
regular region R, provided to any & > 0, there corresponds a regular
region R’, or set R’ of a finite number of regular regions without com-
mon points other than vertices or edges, related to R as follows:

Kellogg, Potential Theory. 8
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a) every point of R’ isin R;

b) the points of R not in R’ can be enclosed in regions of total volume
less than ¢;

c) the points of the boundary S of R which are not points of the
boundary S’ of R’ are parts of surfaces of total area less than ¢, and the
points of S’ not in S are parts of surfaces of total area less than ¢;

d) the divergence theorem holds for R’.

Here, the functions X, Y, Z, are assumed to have continuous
partial derivatives of the first order in R.

To establish the principle, we start from the identity

ﬂf 9x+0y ZZVV=ﬂ(Xl+Ym+Zn)d5

which holds, by hypothesis. As X, Y, Z are continuously differentiable
in R, there is a number M such that these functions and their partial
derivatives of the first order are all less in absolute value than M in R.
Then

(12) ]fff(%% o) av— ﬂf (2% 4 2 f)dV}
Uﬂ l9x+dy z>dV|§RIL3MdV<3Me.

(13) 1j;f(Xl+Ym+Zn)dS—fsf(Xl—]—Ym—}—Zn)dS'

JXI+Ym+2ZndS — [[(X1+Ym+Zn)dsS|
<[[3Mmas+ [[3mas < e6Me,

where ¢ is the part of S not in S’ and ¢’ the part of S’ not in S. From
the equation (11) and the inequalities (12) and (13), it follows that

a 0 a
Uﬂ(a_f +a_j+_a§>dv_ﬂ(xz+ym +Zn)dS|<9Me.
R S

But the left hand member is independent of ¢, and &€ may be taken as
small as we please. This member is therefore 0, and the divergence
theorem holds for R, as was to be shown.

Approximate Resolution of the General Regular Region into Normal Re-
gions. We now attack the problem of showing that any regular region can
be approximated to, in the sense of the second extension principle. We
first divide the regular surface elements of which the surface S of R is
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composed into regular surface elements such that for each no two nor-.
mals make an angle of more than 15° and such that each admits a
standard representation with any orientation of the axes such that the
z-axis makes with no normal to the surface element an acute angle
exceeding 70°. These requirements can be met, the first because of the
uniform continuity of the direction cosines of the normal in the codrdi-
nates x, y of the standard representation, and the second by Theorem
VII. These smaller elements we call the faces of S, the regular arcs
bounding them, the edges of S, and the end-points of these arcs, the
vertices of S. Let N denote the sum of the number of faces, edges, and
vertices.

We next introduce a system X, of spheres, not for the purpose of
sub-dividing R, but as an aid in establishing the inequalities of the sec-
ond extension principle. On each edge of S, we mark off points, terminat-
ing chords of length 7, beginning with one end, until we arrive at a
point at a distance less than or equal to # from the second end. About
each of these points, and about the second end point of the edge, we
describe a sphere of radius %. This is done for every edge, and theresulting
system of spheres is X,. The essential property of 2, is that it encloses
all the edges of S. This will be assured, if as a first requirement on 7,
we demand that it be chosen so that no edge, between successive centers
of spherés, deviates in direction from its chord by more than 15°, this
being possible by Theorem II. For no arc can deviate in distance from
its chord by more than it would if it constantly made with it the maxi-
mum angle permitted, and hence all the points of the arc are distant
from the chord not more than # tan 15% But any two successive spheres
contain in their interiors all points whose distances from the chord of
centers are less than 7 tan 60°. Any point of an edge is thus interior to
some sphere of 2.

We need an upper bound for the total volume of all the spheres of
2, and also one for the total area of a system of great circles of the
spheres, namely as many for each sphere as there are faces of S with
points interior to that sphere.

The number of spheres corresponding to a given edge, that is, the
number of vertices of the polygon connecting successive centers, is not
more than two more than the length of the polygon divided by #, for at
most one side of the polygon is less than % in length. If / is the length
of the longest edge, the number of spheres with centers on any edge

does not, therefore, exceed ( > -+ 2. Thus the total number of spheres
does not exceed N [(77-) + 2]. Accordingly, since it is legitimate to

assume 7 < I, the number does not exceed 3N (;;), and if we set

N, = 47 N1, the total volume of the spheres of X, does not exceed Nymn?,
8*
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The sum of the areas of a system of great circles, one for each sphere, is
737— times the volume just considered, and so does not.exceed 3 Ny 5. As

the number of faces with points interior to any sphere is less than N,
if we write N, = 8 NN, the area of a system of great circles of X, , as
many for each sphere as there.are faces S with points in that spheve, does
not exceed N,1).

We now subdivide R. We notice that since the edges are interior to
Z’,], the distance between the portions outside of 2,7 of any two different
faces of S has a positive minimum £, for otherwise two faces would have
a common point other than a point of an edge. Let a be a positive

number, such that ]/ga < %, and 1/5 a < 7. Starting with one of the
faces f; of S, and with some normal to this face as diagonal, we
construct a cubic lattice of side @, by means of three sets of parallel
planes a distance « apart, the lattice covering the whole of space. Let
¢, denote the cubes of this lattice having points of f; within them or
on their boundaries. All other cubes of the lattice are discarded.
Similarly, we construct a lattice for each of the other faces, and retain
those cubes and only those having points in common with the corres-
ponding faces. We thus obtain a set ¢y, ¢,, ..., ¢, of sets of cubes,
which together contain all the points of S, no cube being free
from points of S. The portion K of R, not interior to any of these
cubes, consists of one or more regions bounded by plane faces.

The cubes of the sets ¢;, ¢,, . . ., ¢, may now be reclassified:

the set ¢’ of cubes none of which has any point on or within any
of the spheres of X, , and

the set ¢’ of cubes each of which has a point on or within some
sphere of X,.

No two cubes of ¢/ have interior points in common. For if two cubes
belong to the same face of S, they belong to the same lattice, and are
separated by a plane of the lattice. If two cubes belong to different
faces, each contains one of a pair of points a distance & or more apart,
and this is more than three times their diagonal. No cube of ¢’ has an
interior point in K. The region, or regions K, together with the portions
of R in the cubes ¢’ constitute the approximating region, or set of
regions R’. It remains to show that R’ is made up of normal regions,
and that 7 can be so chosen as to make the approximation arbitrarily
close.

It is simple to show that K is made up of normal regions, for if its
bounding planes are indefinitely extended, they divide it into a finite
number of convex polyhedra, which are normal regions.

Now let # denote the portion of R in one of the cubes ¢ of the set
¢/, If we take coodrdinate axes along three properly chosen edges of c,
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the face f of S which meets ¢ has at some point a normal with direction

. 1 1 1 i
cosines (—— ~:> . As f turns by at most 159, none of its normals

[EMEARE

make with any coérdinate axis an angle exceeding cos™ (—% +15°< 700,
Hence f admits a standard representation with the orientation of the
axes chosen, no matter which is taken as z-axis. It follows that each
face of ¢ cut by f is severed into two plane regions, separated by a single
regular arc. Moreover, as the normal to f makes an angle never greater
than 70° with any coérdinate axis, the normal to the arc in the plane
never makes an angle greater than 700 with an edge of ¢ in that plane.
Thus the arc in which f cuts a face of ¢ is never parallel to an edge of that
face, and cannot cut an edge twice.

If f contains no interior points of ¢, either there are no points of R
interior to ¢, and the cube may be discarded, or the whole cube belongs
to R, and is a normal region. Suppose f cuts the face = = « of ¢, but not
the face z = 0. Then the projection on the (x, y)-plane of the portion
of fin ¢ is a regular region 7, and so is the rest ¢’ of the face of ¢ in this
plane (it is understood, of course, that the boundary between 7 and 7’
is counted as belonging to both). As the portion of f in ¢ is a regular
surface element, the conditions (a) and (b) for a normal region are met.

If f cuts the lower but not the upper face of ¢, the situation is the
same, as is seen by reversing the senses of the axes. If f cuts neither
face, its projection on the (x, y)-plane is a square, and conditions (a)
and (b) are again met. If f cuts both the upper and lower faces, the
projection of the part of f in ¢ is bounded by two regular arcs and not
more than four straight line segments, forming a regular curve, for
the only damaging possibility would be that the curved arcs had common
points other than end points. But as this would mean a vertical chord
for f, it is not a possibility. The rest of the face of ¢ in the (x, v)-plane
consists also of regular regions. Hence in this case also » fulfills condi-
tions (a) and (b) for normal regions. And as we have considered the
only possibilities with respect to the direction of the z-axis, which may
have any of the three perpendicular directions of the edges of ¢, the
condition (c) for normal regions is also met.

Hence R’ is made up entirely of normal regions, and hence the diver-
gence theorem holds for their sum, R’. The first part of our task is ac-
complished.

We now study the closeness of the approximation to R of R’. Let
2, denote the system of spheres obtained from X, by doubling their
radii, while keeping their centers. Then all points of R not in R’ lie within
spheres of the system 2,,, for they are in cubes of the set ¢’ which
contain points of the spheres of 2,, and since the diagonals of these
cubes are less than #, the cubes all lie within 2,, . But the total volume
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of the spheres of X, is 8 times that of the spheres 2, , and hence is not
greater than 8 Ny 72 Thus the volume of the part of R not in R’ is less
than ¢ if 9 < V—S—%;

As to the portion ¢ of the boundary S of R which is not a part of the
boundary S’ of R’, that also lies in 2, , since R and R’ coincide outside
these spheres. A bound for the area of the portion of a single face of S
within one of these spheres, may be found by considering the fact that
its projection on its tangent plane at the center of the sphere has an
area not greater than that of a great circle, and as its normals differ in
direction by not more than 15°, the area of the portion of the face within
the sphere is not more than the area of a great circle times sec 15°.
Thus, since the area of a system of great circles, each of radius 27, as
many for each sphere as there are faces of S with points in that sphere,
does not exceed 4N, 7, the total area of o will not exceed 4 N, % sec 15°.

0
Thus if 7 < 25315

, the area of ¢ will be less than e.

Finally, the area of the portion ¢’ of S’ not in S may be treated
similarly. For ¢’ is a part of the faces of the cubes of the set ¢, all of
which lie in X;,. Considering first those belonging to a single face of S,
it is clear that there is at most one of these cubes on a single diagonal
of the corresponding lattice, if cubes having a single point in common
with R are discarded, as has been done. These diagonals cut a perpen-
dicular plane in the vertices of a lattice of equilateral triangles. A point
of one of these triangles can have over it but one cube for each lattice
diagonal through its vertex, and hence not more than three cubes.
Thus the projection of the faces of the cubes corresponding to a single
face of S, on a plane perpendicular to the diagonal which is somewhere
normal to f, can cover any portion of this plane at most six times. The
secant of the angle between the faces of the cubes and this plane is
yf 3. Hence if we multiply by 6 ]f3 the expression for the area of the
system of great circles, we shall have a bound for the area of ¢’. Such

a bound, then, 156V§-4N2n=24ﬁN2n. If n< £

—— the area
24 Y3 N,

of ¢’ will be less than &.

All the conditions required by the second extension principle can
thus be met in the case of a regular region, the field being continuously
differentiable. But the first extension principle permits us then to
assert that the results hold for fields which are continuous and have
piecewise continuous partial derivatives of the first order. Thus we
may state:

The divergence theovem holds for any vegular vegion R, with functions

X, Y, Z which are continuous and piecewise continuously differentiable
in R.
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This is the degree of generality we set out to attain. It is true that
conical points, cannot, in general, occur on the boundary of a regular
region. But by means of the second extension principle it is clear that a
finite number of conical points may be admitted. More generally, if
a region becomes regular by cutting out a finite number of portions
by means of spheres of arbitrarily small radius, the areas of the portions
of S cut out vanishing with the radius, then the theorem holds for that
region.

11. Lightening of the Requirements with Respect
to the Field.

It is sometimes desirable to dispense with the hypothesis that the
partial derivatives of the first order of X, Y, Z are continuous in the
closed region R, and assume only that they are continuous in the
interior of R. The divergence theorem subsists under the following
hypothesis on the field

X, Y, Z are continuous in R and have partial derivatives of the first
order which are continuous in the interiors of a finite number of regular
regions of which R is the sum, and the iniegral

(14) fﬂ (G + 55 +50)7

s convergent.

This integral, in fact, may well be improper, for there is no reason
why the partial derivatives may not become infinite at points of the
boundary of R. In order to say what we mean by the convergence of
the integral, let us, for the purposes of this section only, understand
that when we use the word region, without qualification, we mean a
regular region, or a set of a finite number of regular regions without
common interior points, or the difference of two such sets, one con-
taining the other. By the difference, we mean the points of the includ-
ing set which are not in the included set, plus their limit points. Such
a region lacks the property, in general, that its interior is connected, as
required by the definition of § 5, but for the present that is unessential.

The integral (14) is convergent, then, if when R’ is any region interior
to R, and containing all the points of R whose distance from the
boundary S of R exceeds §, the integral extended over R’ approaches
a limit as 6 approaches 0.

We now indicate the proof that the divergence theorem subsists for
a regular region R under the stated conditions on the field.

In the first place, as a consequence of the definition of convergence,
it follows that the difference of the integrals over two regions R’ and R”,
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both interior to R and both containing all points of R at a distance
greater than d from S, vanishes with . It follows that the integral over
any region interior to R and lying within a distance § of S, vanishes
with 6, and this holds also, by a limit process, if the region contains
boundary points of R. From this again it follows that the integral
is convergent if extended over any region contained in R.

The integral is also additive. That is, if R, and R, are any two
regions in R without common interior points, the sum of the integrals
over R; and R, is the integral over the region consisting of the points
of both. For if we cut off from R, and R, regions close to S, the integrand
is continuous in the remaining regions, and here the additive property
is a consequence of the definition of integral. Hence, in the limit, the
additive property holds for R; and R,.

With these preliminary remarks, it is a simple matter to verify that
the divergence theorem holds. We have simply to review the argument
of the last section. In the first place, the second extension principle
holds. For although the bound M for the derivatives of X, Y, Z may
no longer exist, we know that the region R — R’ will lie within a distance
7 of S, and hence the integral over this region can be made arbitrarily
small by sufficiently restricting #. No change need be made in the
treatment of the surface integrals.

Thus the divergence theorem will hold for R if it holds for R’ under
the present conditions on the field. And, by the first extension principle,
it will hold for R’ if it holds for the normal regions from which such a
region R’ can always be built because of the additive property of the
volume integral. We may assume that the derivatives of X, Y, Z are
continuous in the interior of R ; the extension to the case in which they
are continuous in the interiors of a finite number of regular regions of
which R is the sum will then follow by the first extension principle.

Now let » be one of the normal regions of which R’ is composed. To
fix ideas, let it be of the first type considered in the last section:

v 0=Zz2=Zf(x,9), (x9¥ nv, 0=Zz=a, (x,9) in 7"
With a sufficiently small positive «, we replace » by the normal region
7', obtained from » by substituting f (x, y) — « for f (%, ¥). The diver-
gence theorem holds for #°, since all its points are interior to R, where
the field is continuously differentiable. Also, by hypothesis, the volume
integral over #* converges to that over » as e approaches 0 ; and because
of the continuity of the field, it isa simple matter to show that the sur-
face integral over the boundary of #” approaches the surface integral
over the boundary of . This will show that the divergence theorem
holds for . Similar considerations apply to the other types of region 7,
and thus the reasoning is completed.



Stokes’ Theorem. Derivatives; Laplace’s Equation. 121

12. Stokes’ Theorem.

In section 4, Stokes’ theorem was shown to hold for surfaces made
up of normal surface elements. Now a normal surface element is a regular
surface element bounded by plane arcs. But if we have any regular
surface element, by triangulation of its projection on the (x, y)-plane of
its standard representation, we may approximate to it arbitrarily closely
by a normal surface element. As Stokes’ theorem holds for this approxi-
mating normal surface element, and as the field is continuously differen-
tiable, it must hold also for the limiting regular surface element. Then
by the juxtaposition of regular surface elements, we conclude that

Stokes’ theorem holds for any two-sided vegular surface, the functions
X, Y, and Z being continuously differentiable tn a region containing the
surface in its interior.

Generalizations will suggest themselves, but the above formulation
will be sufficient for our purposes.

Chapter V.

Properties of Newtonian Potentials
at Points of Free Space.

1. Derivatives; Laplace’s Equation.

So far, we have studied potentials arising from given distributions
of matter. But in many problems, the distribution is not known, and
the potential must be determined by means of other data. Thus in
higher geodesy, very little is known of the distribution of the masses
except at the surface. But the forces can be measured on the surface,
and from these the potential can be determined, approximately, at least.
In order to solve problems given in terms of data other than the dis-
tribution of acting matter, we need more information on the properties
of potentials. We first consider such properties at points exterior to the
regions occupied by the distributions. Such points are called points of
free space.

‘We have seen on page 52, that the partial derivatives of the first order
of the potential exist at the points of free space, and give the correspond-
ing components of the force. We now go farther, and show that at
such points, the partial derivatives of all orders exist and are continuous.

It is easy to prove this for a particle by induction. The partial de-
rivatives of the first order are linear polynomials in x, ¥, z, divided by #3.
The partial derivatives of order » are polynomials of degree # in %, ¥, z,
divided by #2"* 1, For if P, denote such a polynomial of degree #,
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a P, P, P, x—§&

ox Antl 72n+1~—(2n+1)72n+2 p
_ P =8+ P+ (20 @2r+ 1) P, (x—& Py
- y2n + 3 y2n+ 3 T 42nt+ 380

where P, , , is a polynomial of degree # -+ 1. Thus if the statement holds
for one value of #, it holds for the next greater. It holds for » = 1, and
so for any positive integral value of #. Now as the quotient of two
continuous functions is continuous except at the points where the de-
nominator vanishes, we see that the potential of a unit particle
has continuous partial derivatives of all orders at all points of free
space.

We notice that the polynomials in the numerators of the expressions
for the partial derivatives are also polynomials in &, # and {. Thus the
derivatives are continuous in all six variables as long as » < 0. This
remark finds its application when we consider the potentials of various
continuous distributions. For, if we differentiate under the sign of
integration, in the expression for the potential of such a distribution,
we find that the resulting integrand is the density times the corres-
ponding derivative of the potential of a unit particle at the point
Q(& n, C) of integration. Hence, if the density is continuous, the
integrand is continuous in all six variables, as long as P(x, y, 2) is
confined to a closed region having no points in common with the
distribution, and the differentiation under the integral sign is justified.
As the integrand is continuous, so are the partial derivatives. The same
holds for the case in which the densities are piecewise continuous,
for the distributions are then sums of distributions with continuous
densities. Hence we have

Theorem I. The potentials of the distributions of all the types studied
in the preceding chapters have partial derivatives of all ovders, which are
continuous at all points of free space.

Exercise.

Can the same be said of the potential of a distribution consisting of an in-
finite number of discrete particles? Consider, for instance the potential

o] [eo]
w, ",
U= 2’: Yot ( 12 " convergent> .
"=

— )4yt

We shall see later that the derivatives are analytic functions of
%,y and z. But before turning to questions of this sort, we should
emphasize the important relation existing between the second deriva-
tives of a Newtonian potential. We saw on page 40 that the force field
of a Newtonian distribution was solenoidal in free space, and on page 52

that it has a potential, U, whose derivatives give the components of
the field.
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It follows that this potential satisfies the differential equation

02U 02U 02U
277 — —
VU = 8x2+8y2+ 072 =0,

known as Laplace’s differential equationl.

! The differential equation in polar coérdinates, to which the above is equi-
valent was found by LAPLACE as a condition on the potential of a Newtonian distri-
bution in the Histoire de I’Académie des Sciences de Paris (1782/85), p. 135, reprinted
in the Oeuvres de Laplace, Vol. 10, p. 362. Later LAPLACE gave the equation in the
above form, ibid. (1787/89), p. 252, Oeuvres, Vol. 11, p. 278. In connection with
a hydrodynamical problem, the equation had already been used by LAGRANGE,
Miscellanea Taurinesia, Vol. 2, (1760/61), p. 273, Ocuvres, Vol. 1, p. 444.

As LaPLACE’s equation occurs frequently, an abbreviation for the left hand
member is convenient. The one used above is due to Sir W. R. HAMILTON,
and a brief explanation of its significance may not be out of place. If
u (a;, by, ¢;) and  (a,, b,, ¢,) are two vectors, the combination

UV = ay 8y + b1 by + 0164
is called the scalar product of the two vectors, and has, according to GIBBS
(Vector Analysis, edited by E. B. Wilson, New York, 1909), the notation given.

The scalar product of a vector by itself is called the square of the vector,
and is denoted by u?. The vector

UKV = (bycy — 61Dy, Cya3—ay6y, a1by—byay)

is called the vector product of ® by . If % is a scalar, 7. e. a single number
or function, as opposed to a vector or a vector field, then

Uk = (a,k, ak, agk)

is called the product of the scalar & by the vector ¥. We now introduce the
symbolic vector, or vector operator

0 0 3}

V = <,—: ) ’—> .

0x’ 0y’ 0z
This has no meaning when standing alone, but if combined with vectors or
scalars, the operations indicated being carried out as if the three symbols were
numbers, and these then interpreted as symbols of differentiation of the next
following quantity, the resulting combinations have definite meanings. Thus
oU  oU oU
= 22, ) =gnaU,
dx’ dy dz) grad
0X 0Y  0Z

V= (Gt Gy T

VU:<

):divV:div(X, Y, Z2),

pxvo(lZ 0¥ oX_oz ov_ox)
_<8y 9z’ 0z 0z’ dx 0y
=curl V,
=curl (X,Y, 2),
0U\2 oU\? dUN2
2 (9% 9= =
wor=(3) +(5) + ()

0*U  0:U  0°U

2y =2 2 97 9
U= 9«2 oy2 022"



124 Properties of Newtonian Potentials at Points of Free Space.

Theorem I1. The potentials of all the distributions studied satisfy
Laplace’s differential equation at all points of free space.

The significance of this fact is, that in many cases, the determination
of a differential equation satisfied by a function which is sought, is the
first step in finding that function. The main object of this and the next
chapter may be described as the determination of auxiliary conditions,
which, with the differential equation, determine the potential.

2. Developments of Potentials in Series.

Valuable information on the properties of Newtonian potentials may
be inferred from developments in series of certain types. In addition,
series frequently offer the best bases for computation in applications.

We seek first to develop a given potential as a
@ power series in the distance of the variable point

P(o, ¢, ¥) from the origin of coérdinates, which we
take at a point O of free space. We take first the
potential of a unit particle at Q (o', ¢’, ¥), not the
origin (fig. 19). Then, in terms of the given spher-
ical codrdinates of P and @, the distance » between
them is given by

Fig. 19.

r2=(pcos fpéin ¥— ' cos ¢’ sin )2+ (g sin @ sin §—¢’ sin ¢sin §')?
@) + (0cos P — g’ cos §)?
= 0*—2gg'cosy + ¢,
cosy = cos #cos? + sinPsin ¥’ cos(p—¢’),

» being the angle between the rays O P and OQ. The potential at P of a
unit particle at Q is
1 1 1 1

R 2 V] — 3’
3) ¢ Vl——2»g7cosy—[—§,—2 o' —2uptp

where we have set % = p and cos y = u.

Our task is now to develop % as a power seriesin g. By the binomial

theorem, valid for |z| < 1,
L 1-3...2n—1
(1—2)F =g+ ayz + a2+ op3 + -+, 0, = HT) %p=1-
Hence, if |2upu—pu?| <1,
1

Y —2up+ p?
This is not a power series in u, but it may be made into one by expanding
the binomials in the separate terms and collecting like powers of u, a

=og o Rup—p?) + ooy (2up—p?? 4 -
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process which is justified provided |pu | < Y2 —1% The coefficients
of the powers of u will now be polynomials in #, and we write the result

6 g = Dol T P+ Palpt

where
-3 1
Pyu)y =1, Py(u)=wu, Pylu)= —§<u2 — -), Ce

Exercise.
Continue the above list of the coefficients as far as Pg (u). Show generally
that P, () may be written
/2]
71.3...2n— 2k —1)
L 2k kl(n —2k)!

P,(u) = (= 1)k un—2k

k=0

_13...2n-1)7T . nn—1)

= nl [“—(214—1)2“ ?
nn—1)(mn—2)(n-3)

T en=1)@en—3.2.4" 4_"']'

3. Legendre Polynomials.

The coefficients P, (u) are of such frequent use, not only in potential
theory, but in other branches of analysis, that we shall be warranted
in devoting a separate section to them. They are called Legendre poly-
nomials®.

We observe first that P, () is of degree #, and that only alternate
powers of u occur in it, so that the Legendre polynomials of even degree
are even functions of u, and those of odd degree are odd functions of u.

Recursion Formulas. The series obtained by differentiating termwise
a power series converges at all interior points of the region in which the
power series converges, and represents the derivative of the function
represented by the given series®. Hence, for |u| < 1/5 -1,

1 The possibility of this rearrangement is most easily established by means
of a theorem in the theory of analytic functions of a complex variable (See Chap-
ter XII, § 6). The series (4) is a series of polynomials, and therefore of functions which
are everywhere analytic, and it is uniformly convergent as to both # and p if
isteal and —1 < # < 1, and | | =< p; < }2 — 1. The rearrangement may also
be justified by elementary methods by first showing it possible for a dominating
series, obtained from (4) by replacing » and g by their absolute values, and the
minus signs by plus signs. It is then easy to infer the possibility for the series (4).

2 LEGENDRE, Sur l'attraction des sphéroides, Mémoires présentés a I’Académie
par diverses Savans, Vol. X, Paris, 1785, p. 419. See also HEINE, Theorie der
Kugelfunktionen, Berlin (1878) Vol. I, p. 2.

8 Chapter X1, § 6, Exercise. The fact can also be verified by elementary methods,
using the theorem that a series may be differentiated termwise, provided the
result is a uniformly convergent series.
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(6) ———F—y =Py() + 2Py () s+ 3Py () g2 + + - -
(1 — 2up+ pu2)?

Comparing this series with (5), we see that

N—2up+np
=1 —2up+ p?)[Py(u) + 2P (W)p+ - -1

The comparison of the coefficients of ™ in the two sides of this equation,
written as power series, yields, after simplification, the recursion for-
mula

(7 (m+ 1) P,y () —@2n+ 1) uP,(u) +nP,_,(u) =0.

Exercises.
1. Show that
P,(1)=1, P, (—1)=(=1)", Pep—1(0)=0, Py,(0)=(—1)"0,.

2. Show that P, (#) = 0 has » distinct roots in the open interval (—1, 1),
and that they are separated by the roots of P,_; (u).

Formulas for the Derivatives of Legendre Polynomials, and the Differen-

tial Equation which they Satisfy. Just as 1 was developed
' M-2uutw
in a power series in u, we may develop the derivative of this function

with respect to #:

® o =P{) + Pl + Pyt - -,

(I —2up+ p?)?
the coefficients being polynomials in #, not as yet shown to be the de-
rivatives of the corresponding Legendre polynomials, the series being
uniformly convergent for —1 L <1, |u| £ gy < Y 2—1. Butsucha
series may be integrated termwise with respect to # between any two
points of the closed interval (— 1, 1), and we find

“ %

pdu = ! _ 1 :S’ P'(u)du] n
f(1—2uu+,u2);i VI—2up+p?  Jl+tu 0[0f " #

o

= %’ [P, (u) — P, (0)] p".

Comparing the coefficients of u® in the two power series, we find
[ P, () du= P, () — P, (0),
b

and on differentiating both sides of this equation, we find that P, () is
indeed the derivative of P, (x). If we now compare the developments
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(5) and (8), we find

(u—p)[Po(u) + Pi(u)p+ - - -1=pu[Py(u) + 2Py (w)p + - - -1,
and from this we infer that
(9) u P (u) — Py (u) =nP,(u).

As a first consequence of this relation, we may derive a differential
equation satisfied by the Legendre polynomials. We eliminate between
the equations (7) and (9), and equations derived from them, the poly-
nomials other then P, (x) and its derivatives. Differentiating (7), we
find
(04 1) P}y 1(w) — 27 + 1) P, () — (20 + 1) u Py(u) + 1 Py, () = 0.
Eliminating P, _ , () by means of (9), we have, with # in place of  + 1,
(10) Pl (u) — u Py (u) =nPy_;(u).

Again eliminating P, _, () by means of (9), we have

(1 —u®)Pp(u) +nuP,(u)=nP,_,(u).
Differentiating this relation and once more eliminating P/, _, (#), we
have the homogeneous linear differential equation of the second ovder
satisfied by the Legendre polynomials:

a
(11) Fu =) P ()] +n(mn+1)P,(u)=0.

Exercise.

3. Determine P, (%), except for a constant factor, on the assumption that it
is a polynomial of degree » satisfying the above differential equation.

If from (10) we eliminate the term » P!, _, (#) by means of the equa-

tion obtained from (9) by replacing # by # — 1, we obtain the formula
Po(u)=@2n—1)Py_(u) + P,_5(u).

If we write the equations obtained from this by replacing # succes-

sively by # — 2, —4, . . ., and add them all, we arrive at the following
development of Pj(u) in terms of Legendre polynomials:
(12) Po(u)=2n—1)Py_y(u) + (2n —5) P,_4(u)

+Cn—9P_s(u) + -,

the sum breaking off with the last term in which the index of the poly-
nomial is positive or zero.

Expression for the Legendre polynomials as Trigonometric Polynomials.
Making use of the formula of EULER for the cosine, we write
- e’V - emtY

% = CoSy = 3 ,
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and with this value of #,

1 — 1
V1—2up+pu? VA —e"p)1—e7p)
= (ot et ot T )t b oy b e g ),
the series converging for all real ¢ if | | << 1. These series may be multi-

plied termwise, and the product arranged as a power series in u. Thus
we have a second development of the function in (5):

1
V1—2up+ p?

3

= (1 —erp) H— i)

=of + (e e’ + ogoy e ) p
+ (o 0?7 + af + apap e ) p2 4 - - -
=+ 2050,co8yp + (2aga,cos2y + o) u 4 - - .

Comparing the coefficients of y" in the two, we have the desired ex-
pression for P, (#) as a trigonometric polynomial:

(13) P,(u) =2ay0,cosny + 20 a,_;c08 (n —2)y
+ 2050, _scos(n—4)y + -
the last term being
on , ®even,
2

20p—10n+1
e

2

cosy, mnodd.

As the coefficients on the right are all positive, and as the separate
terms attain their maxima for y = 0, it follows that | P, («) | attains
its maximum value for real ¢, 7. e. for real # in the interval (—1, 1),
for # = 1. This value has been found in Exercise 1 to be 1. It may also
be found by setting » = 1 in (5). Thus, the maximum of the absolute
value of P, (u) for real u in the interval (— 1,1) is 1, and this value is

attained for u = 1.
We see thus that the series (5) is convergent and equals the
given function, not only for |u| < ¥ 2 — 1, but for all |u| < 1.

Exercise.

4. Show by means of (12) that the maximum of ; P} (u)| for real  in (—1, 1)
. . nnt1)
is attained for # = 1, and is -

The maximum value of | P, (x) | for real or imaginary , |u | < 1, is
evidently attained for # = ¢, for’ then the terms of the polynomial as
given in the exercise on page 125 attain their maximum absolute values,

and except for the common factor ¢, are all real positive quantities.
P (9)
I

bound for this maximum. Returning to equation (5), valid for [u| < 1,

This maximum value is . It will be useful to have a simple upper
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|n] < 72—1, we have

?fﬁ%fﬁ=ﬂm+ﬂmu+&mm+“.

B R P9 R  BTO B P

and the coefficient of u" in the expansion of this product cannot exceed
in absolute value the coefficient of y" in the expansion of

=0+ 72)ul =+ 12l == 72l

It follows that for |u| <1,
(14) 1P, ()| = (1 +72)"

Exercise.
5. Show that the maximum #, of |P,(u)| for |u| = 1 satisfies the recursion
formula, or difference equation:

2n 41 n
w1 m"+n+1

Orthogonality. Just as it is sometimes desirable to express a given
function as a Fourier series, so it is also sometimes desirable to express
a given function as a series in Legendre polynomials. It is clear that any
polynomial can be expressed as a terminating series of Legendre poly-
nomials. For the equation giving P,(x) as a polynomial in x can be
solved for %7, so that #” is a constant times a Legendre polynomial plus
a polynomial of lower degree. Since this holds for each #, the lower
powers of x can be eliminated, and %" expressed as a terminating
series of Legendre polynomials, with constant coefficients. Hence any
polynomial can be so expressed by means of the formulas thus obtained.
The equation (12) gives an example of a polynomial developed in terms
of Legendre polynomials.

Functions which are entirely arbitrary, except for certain conditions
of the nature of continuity, can be expressed, on the interval (—1, 1),
as convergent infinite series of Legendre polynomials with constant
coefficients. We shall not attempt here to develop these conditions?,
but shall confine ourselves to showing how the series may be determined
when the development is possible.

The simple method by which the coefficients of a Fourier series are
determined is based on the fact that the functions

My—1; Mg=my =1,

Mp 41 =

1, cosx, sinx, cos2x, sin2x%, ...
have the property that the integral of the product of any two of them,

1 See, however, the end of § 4 Chapter X. See also STONE, Developments mn
Legendre Polynomials, Annals of Mathematics, 2¢ Ser., Vol. 27 (1926), pp. 315—329.

Kellogg, Potential Theory. 9
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over the interval (0,27), is 0. A similiar situation is present in the case
of the Legendre polynomials, for the interval (— 1, 1). In fact,

1 .
(15) P, ()P, (wdu=0, m=+mn.
-1

Because of this property two different Legendre polynomials are said
to be orthogonal on the interval (— 1, 1), and the system of all Legendre
polynomials is called an orthogonal set of functions on this interval. The
above set of sines and cosines is an orthogonal set on the interval (0,27).

The stated property of the Legendre polynomials can be derived
from the differential equation (11). If this be multiplied by P, (u),
and integrated from — 1 to 1 with respect to #, the result is

1 1
[Po &L= Prilau+nn 41 [P Py du=0.
] -1

In the first term, we employ integration by parts, and as the integrated
term vanishes, we have

1 1

— [ —w2) P, (u) P (w)du+n(n+1) [P (u) P, (w)du=0.
-1 -1

If we subtract from this equation that obtained from it by interchanging
m and #, we have

1
[nn+1)—m(@m-+1)] [ P, ()P, (w)du=0.
-1

From this the property of orthogonality (15) follows.

This orthogonality characterizes, among polynomials, those of Le-
gendre. That is, apart from a non-vanishing constant factor in each,
the only system of polynomials containing one of each degree (the 0th degree
included), orthogonal on the interval (—1, 1), is the set of Legendre poly-
nomials. It is not difficult to verify this directly, but we shall give a
proof from which will emerge a new and useful expression for the Legendre
polynomials.

Let f(x) denote a polynomial of degree » which is orthogonal to a
polynomial of each degree from 0 to # — 1 inclusive. Then, since f(x)
is orthogonal to a constant, it is orthogonal to 1, and since it is ortho-
gonal to 1 and to a linear function, it is orthogonal to #, and so, by in-
duction, to %2, x3, ... x"~1, Hence f(x) is orthogonal to every poly-
nomial of degree less than #. In particular

1
[1@ya—xrdx=0, 7r=0,1,2,...,n—1.
-1
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We now integrate by parts, using as the integral of f(x) that from —1
to x:

T 1 1 z
[_flf(x)dx] (1———x)¢l1—i— r_{_flf(x)dx(1~x)r—1dx =0.

The first term vanishes for » > 0, and we see that the integral of f(x)
satisfies a set of orthogonality relations

x

1
[[[iw)dx]Q—x)y-tdx=0, r=1,2,...,n—1.
—1—1

If the process of integration by parts be repeated, we see that the
functions

j4

fexy, [iwadx,

-1

z j4

ff dxdx, fxf ff(x)dxdx .dx,
-1 -1-1 -1

n — 1)-fold, are all orthogonal to 1. In other
al

r—n%s

the last integral being
words, the #-fold inte

G

x x

:f_j f]‘ Ydxdx ...dx,
-1

z -1

together with its first » — 1 derivatives, vanishes for x = 1. But this
function and its first # — 1 derivatives obviously vanish for x = —1.
Thus F (x), a polynomial of degree 2#, has an #-fold root at — 1 and an
n-fold root at 1, and is therefore of the form

F(x) =c@x*—1"
It is thus uniquely determined save for a constant factor, and therefore,
so also is its derivative of #™ order
anr
fay=c (a2 —1)m

This is what we set out to prove. As P, (x) has the properties postulated
for f(x), /(#) must be proportional to this Legendre polynomial.

Let us now determine the constant of proportionality so that f(x)
shall be P, (x). The coefficient of x» in the above expression is
2%)'

n!

2n(2n—1) (2n—2) ... (n+ 1)c

3

whereas the coefficient of x» in P, (x) is, by the Exercise on page 125,

1.3:5...2n—1) _ (2n)!
n! T2n (nl)2”

The two will be equal if ¢ = 1 . We thus arrive at the formula of
RODRIGUES

1 d»
Pn (x) = il dan (xg____ l)n_

9*
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Exercises.
6. Show by means of the formula of Rodrigues that P, (x) has » real distinct
roots in the open interval (— 1, 1).

7. Assuming the formula of Rodrigues, derive the equation (15). Derive also
the recursion formula (7) and the differential equation (11).

8. Derive the result
1

2
P2 Y =
(16) J',Au)du ra
—1

first from Rodrigues’ formula, and secondly, by deriving and then using the formula

dx 1 1+Viu
= —=log

1
fy1—2x11+1211—2xy+y2 Vig S1—Vip'
-1

Note that the second method gives also the relations of orthogonality (15).

We are now in a position to determine the coefficients in the develop-
ment of a given function in a series of Legendre polynomials, on the
assumption that the séries converges uniformly. If we are to have

F(%) = ¢y Po(%) + ¢ Py(x) + ca Py(x) + . . .,

multiplication by P, (x) and integration from — 1 to 1 with respect to »
gives

1 1
2
_flf(x) P, (x)dx = c,*flpz (M dx = g0y

so that the coefficients must be given by

27v+1

1
1 1Py

—1

(17) Cp =

if the function is developable in a uniformly convergent series.

Exercises.
9. Show that if f(») = »7,

nn—1)...(n — v+ 2)
mt+r+1)ntr—1)...(n —7 4+ 3)

o =(2r41)

if »—7 is even, and not negative; otherwise, ¢, = 0. Show, accordingly, that

n!
d =1-3-5...(2n+1)((2”+1)P"+(2"—3)

2n-4-1
2

P._,
@n+1)@2n—1)

+(@n — T

Pacit oo,



Legendre Polynomials. 188
1

10. Show that an (#)dx = 0 if = is positive and even, and equal to
]

(—)* T -2 (—1).
n+1 (n—l)(n——3).

if # is odd. -Hence show that if the function
f#)=0, —1Zx=0, fx)=1, 0<x<1,

has a development in series of Legendre polynomials which can be integrated
termwise after multiplication by any polynomial, that development must be

Hx)= Po(”)‘f‘ aOPI(x) T °‘1P (x)—}—12a2 Py(x) — -

4k +3

+(——1)’°4k+4

ox Pog41(5) + -

Note that the value of the series at the point of discontinuity of f(#) is the arith-
metic mean of the limits of f (¥) as » approaches the point from either side.

11. Show that if the function
fx) =0, —1Z2<0, fx) =2 0=vrZ1,

has a uniformly convergent development, this development must be

F#) = - Po(3) + 5 Py() + Zﬁam—%%am+
' 4k+1 oz —1
4 (— 1) a5 2k+2P2k(x)+

12. Show that the above development is uniformly convergent, by showing
that it is absolutely convergent for » = 1.

13. Show that if the series

1
2
S(#) = 6y Po(%) + 63 Py (%) 4 6 Py(x) + -+, = yg_lff(_x)P,(x)dx

is uniformly convergent, f(¥)—S(#) is orthogonal to all the Legendre polynomials.
As it can be shown that a continuous function not identically 0 on the interval
(—1, 1) cannot be orthogonal on that interval to every polynomial, this exercise
contains the key to the proof that developments in series of Legendre polynomials
actually represent the functions developed, under suitable conditions of the char-
acter of continuity.
14, Show that for real ¢ and b,

27 27

f fu—i—ibcosq; 2=
a——zbcostp a® - b2cos® ¢ Va2 b2

0 0 -Vll +

and hence derive Laplace’s integral formula for the Legendre polynomials,

P,(u) = %j‘[u—]—im — u?cospltdg.
0
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15. Show by Schwarz’ inequality that

¥ x<
f{P()[d T

Show that if f(#) is continuous with its first derivative, and has a piecewise con-
tinuous second derivative in (—1, 1),
1
27 +1 d

=gy 051) 7510 = A WP (),
-1

and hence that the development in series of Legendre polynomials of f(#) is uni-
formly convergent.

16. Show that if f (#) is continuous on (— 1, 1), that polynomial p (x) of de-
gree » is the best approximation to f(#) in the sense of least squares, 7. e. such that

1
T — #(x)]?dx = minimum,
-1
which is given by
P (%) = 6o Py(x) + 6, Py (%) + -+ - + ¢, Pp(x),
where the coefficients are given by (17).

GAuss showed how the Legendre polynomials lend themselves in a
peculiarly efficient way to the approximate computation of integrals.
If %y, %,... x, are the roots of P,(x), there exists a set of points on the
interval (—1, 1), dividing it into sub-intervals, 4,, 4,,...4,, each
containing the corresponding x,, such that

;"f(xi)Ai

is a close approximation to
1
fl f(x)dx.

In fact, there is no polynomial (x) of degree not greater than 2#u#—1
such that

1
jl. p(x)dx
gives a better approximation!.

1 Gauss: Methodus nova integralium valoves per approximationem inveniends.
Comment. soc. reg. Gottingensis rec. Vol. III, 1816; Werke, Vol.III, pp. 163-196.
HEeINE: Handbuch dev Kugelfunktionen, Vol. I1, Part. I. A brief exposition is to be
found in RIEMANN-WEBER: Differential- und Integvalgleichungen dev Mechanik und
Physik, Braunschweig 1925, Vol. I, pp. 315—318.

For further study of Legendre polynomials, the reader may consult BYERLY:
Fourier Series and Spherical Haymonics, Boston, 1902; WHITTAKER and WATSON:
A Course of Modeyn Analysis, 4t® Ed., Cambridge, 1927; and the books of HEINE
and RIEMANN-WEBER, mentioned above.
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4, Analytic Character of Newtonian Potentials.
The formulas (3) and (5) give us the development of the potential
of a particle of unit mass as a power series in g :

18 =Py o+ P ) S+ Py (W)

2

4
e

valid for % < 1/5—- 1. But the series continues to converge for

—1ZL4<1, g, <1, and to represent the same analytic function
}; of g for such values of the variable (see page 128).

We note first that this series is a series of homogeneous polynomials,
in %, v, and z of ascending degree. Consider, for instance,

H,L=Pn(u)#—“ " = cosy=§—x—_{;g%:‘-—g_.
P, (u) contains only the powers u*, #»~2, #"»=% ... of #, and hence the
radical p only in the powers =%, p—"+2, p="+4,.... Hence H, contains
this radical only with exponents 0, 2, 4, ..., none greater than #. This
function is therefore rational and integral in %, y, z. It is further homo-
geneous of degree #, since % is homogeneous and of degree0 in x,y,z.

1 . . . .
Let us now show that - the potential of a unit particle at Q, is
analytic at points other than Q. A functionF (x,y,z) is said to be analytic
at (a, b, ¢), provided it can be developed in a power series
Dagiplx—ay¥{y—0bi(z—cok 1=0,1,2,..., 7=0,1,2,...,
k=0,1,2,...,
which converges in a neighborhood of the point (@, b, ¢). No definite
order of the terms is specified, so that it follows for power series in more
than one variable that convergence is synonymous with absolute con-
vergencel.
ey s S | .
In considering the potential —-, we may take the point (g, b, c) as

origin. The series (18) is a series of homogeneous polynomials in x, y, z,

1
— =Ho(%,y,2) + Hy (%,9,2) + Hy (%,9,2) + . . .,
and if the parentheses about the groups of terms of the same degree
be dropped, and the separate terms of the homogeneous polynomials
be regarded as separate terms of the series, it becomes a power series
in %, y, 2

(19) D%ty 2k,

1 See, for instance, KNopp: Theorie und Anwendung der unendlichen Reihen.
Berlin, 1922, pp. 132—133.
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If we show that in some neighborhood of the origin this series converges

and represents Lr, we shall have completed the proof that the potential

%is analytic at the origin, that is, at any point other than Q.

We may do this by setting up a dominant series for the series (18).
A dominant series for a given series is one with positive terms, greater
than or equal to the absolute values of the corresponding terms of the

given series. Suppose that in (18) we replace # by
g Szl lyi+E]]z]

ee

and then replace all minus signs in the Legendre polynomials by plus
signs. The effect will be to give us a series of homogeneous polynomials
in |x|, |¥], ]z|, which, when the parentheses are dropped, becomes a
dominant series (we are assuming that x, v, 2, &, %, { are real) for (19):

(20) DA |xFyl 2]

Let us consider the convergence of the dominant series. Before
the dropping of parentheses, it may be written

>

2

1 1 . L1 L
+7P1 (1,14) —Q% + -iEPz(i%) 5/3 + « ..

o

(21) P, (i1)

The powers of ¢ here enter only apparently, for they may be factored
out, and it is understood that this is done. Now in a series of positive
terms, parentheses may be introduced or dropped at pleasure, for the
sum of the first # terms, S,, in the series with parentheses, and s, in the
series without, are both increasing functions of #, and any S, is less
than some s,, any s, is less than some S, and hence both series con-
verge, or else both diverge. Hence the dominant series (20) will converge
if (21) does. Now |#] is not greater than 1, since |#%| is the cosine of the
angle between the directions (|%|, |y|, |2]) and (|&], |n], |{|). Hence
|7u| = 1, and so by equation (14),

| —

EIATIECERTL
Thus (21) converges for (1 4 1/2)% <1, that is for g < (Y2 —1)¢".
The dominating series (20) then converges, as we have seen, in the same
neighborhood of the origin.

This, of course, means that (19) converges in the same neighbor-
hood. But more, it converges to % For since (21) and (20) converge

to the same limit, we can chose N so that for any # and #” greater than
N, the difference between the first # terms of (21) and the first #” terms
of (20) is less than any assigned positive quantity e. This difference con-
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sists in a certain set of terms of (20), and so dominates the corres-
ponding difference in (18) and (19). Accordingly the last two series
must converge to the same limit. This completes the proof that the
potential —17— is analytic.

Parenthetical Remarks on Power Series in Several Variables. Before
proceeding to extend the above result to the usual continuous distri-
butions of matter, we state several properties of power series of which
we shall have need, with brief indications as to the proofs. In the first
place,

If F(x, y, 2) = Xa;;p 59728 converges for x = x5, y. = ¥y, 2 = 2,,
it converges umiformly for |x| < A|x,|, |v] £ 2|2l 12| £ 4 |2,|, where A
is any fixed positive proper fraction.

For, since a necessary condition that a series converge is that its
terms approach 0, there is a number B such that
| @i Y526 = B, doe. |a| = W%QW

Hence the series F (x, ¥, z) is dominated by

B~

| %o

k

H

iy iz

a3
and this, in turn, by 3 B2**+7+k* That the last series is convergent
is most easily seen by regarding it as the result of multiplying by itself,

%

. . . 1 .
three times, the geometric series for =7 for such a process is per-

mitted in the case of convergent series with positive terms. Thus since
the given series is dominated by a convergent series with constant
terms, its convergence must be uniform.

On the same hypothesis, any given partial derivative of F(x, y, z) s
obtained by differentiating the sevies termwise. The vesulting series con-
verges uniformly for |x] = A|%,|, |¥]'= 2|56l 2] = ]2

Consider first the derivative of F(x, y, 2) with respect to x. The
result of termwise differentiation of the series is

Sltag s xyd 2k,

This is dominated by the series obtained by expanding

-
|

B[% (1 _A)NIJ Q—AD"*Q—A"Y or B{1—2)"%

and as this is convergent, the series obtained by differentiating term-
wise that for F(x, vy, z) is uniformly convergent in the region stated.
It may therefore be integrated termwise, and we find in this way that
it represents the derivative of F(x, ¥, 2).

The same is true for the derivatives with respect to y and z. By
the same argument, the derivatives of these series may be found by
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termwise differentiation, the resulting series converging uniformly
for |x| = 22| %], |¥| = 22|5,], |2]| = 22]2,|, and so on, the series for the
derivatives of order # converging in a region given by the inequalities
obtained by replacing A2 by A?. But as A is any positive number less
than 1, A» may be replaced by A. '

If, on the same hypotheses, F(x, y, 2) = 0 throughout any neighborhood
of the origin, the coefficients of the power series all vanish.

For in this neighborhood, or the portion of it in the cuboid
|2 = A%, |9 = 43|, |2] £ 4|2,|, any given derived series must
converge to 0. Hence, as

1 Fititk
’ [

in = T oo @A), .

™R
[t
coo

it follows that a;;, = 0.

The Potentials of the Usual Distributions are Analytic at the Points
of Free Space. Let us now consider a distribution of continuous density #,
occupying a volume V. Let the origin O be taken at a point of free
space, and let @ denote the distance from O to the nearest point of V.

. 1 .. .
In the series (19) for —, the coefficients a,;; are functions of &, #, C,
but the first # terms of that series are less in absolute value than a
certain number of terms of the series (21), which, in turn, is dominated
by
S0+ 725,

since o’ =a. If p< A(1 — y2)a, 0 <A <1, this series is dominated
by the convergent series with constant terms

1
2 ; ln)
so that with the variables thus restricted, (19) is convergent uniformly

as to all its variables.

The conditions on the variables are obviously met for Q (£, #, {) in
V and P (x,v,2) in the cube ¢: || <24, |y|<-2a, |z| <-24. The
series (19) remains uniformly convergent in all its variables upon multi-
plication by » = % (§, 7, ), and hence :

U:fV‘U‘%ldez Z[Ifoaijde]xiyfzk,

the series being uniformly convergent in ¢. Thus the potential is analytic
at the origin, that is, at any point of free space.
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The same treatment holds for a surface distribution. When it comes

to double distributions, we note that

01 x—& A

FET A (x— &) [ D20 y7 2%
and that in the region ¢, where the series is dominated by a convergent
series with terms independent of the variables, the product on the right
may be expanded and written as a single power series, uniformly con-
vergent for Q in ¥ and P in c. The same situation holds with respect
to the linear combination of the partial derivatives with respect to
&, n, ¢, with continuous coefficients L, m, n:

21 (91 (a1 9 1
rr=(zer) @) m+ ()
and the same process as before shows that the potential of a double
distribution is analytic at the points of free space. Finally we remark
that the potential of a distribution with piecewise continuous density
is a sum of those with continuous densities. We thus have established

Theorem III. The Newtonian potentials of particles and of the usual

distributions of matter ave analytic at the points of free space.

The same, as a consequence, is true of the derivatives of the poten-
tials, of all orders.

5. Spherical Harmonics.

We have seen that the development (18) for % is equivalent to a

development in terms of homogeneous polynomials
1
(22) —=Hy(%y,2) + Hy (%,5,2) + Hy(%,y,2) + -+

These polynomials are solutions of Laplace’s equation. For, if the
parentheses are omitted from the groups of terms of the same degree,
we obtain a power series which is differentiable termwise in a neigh-
borhood of the origin, and since the introduction of parentheses is
always permitted, it follows that at least in the same region, the series
of homogeneous polynomials is differentiable termwise. Hence, since

; satisfies Laplace’s equation,
0="V2Hy(x,y,2) + V2H, (%,9,2) + V2H, (%,9,2) + -

Since a power series cannot converge to 0 in a region containing the
origin in its interior unless all its coefficients vanish, it follows that
all the terms of the above series vanish, and thus

V2H, (%,v,2) = 0.
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A solution of Laplace’s equation is called a harmonic function. As the
polynomials H,(x, y, z) are peculiarly adapted to the treatment of prob-
lems connected with the sphere, they are called spherical harmonics.
We shall understand by this term any homogeneous polynomial which
satisfies Laplace’s equation?. '

Let us examine the spherical harmonics given by (22). The first
few terms are

=g T By U o [y 2y
+02(222—x2—y?%) +-6nlyz+ 6L&z2x
+6&nxy]+ .-

The spherical harmonics thus depend on the parameters &, 5, {. They
remain spherical harmonics if the powers of ¢’ are dropped, and as the
resulting polynomials satisfy Laplace’s equation for all values of the
parameters, it follows that the coefficients of the separate powers and
products of these letters are also spherical harmonics. We thus can
make a list of spherical harmonics of the first few orders:

Ott order, 1,

1st order, x, y, z,

24 order, 242 — 32 —22, 292 — 22— 42 2,2 x2__ 42
yz , 2% , xy

Those of the second order are not independent, for any one of those
in the first line is the negative of the sum of the other two. The number
of independent spherical harmonics of order # is 2 # 4 1, that is, there
exists a set of 2# + 1 spherical harmonics of order #, such that any
other spherical harmonic of the same order is a linear homogeneous
combination of them, with constant coefficients. We leave the proof
to the reader in exercises.

Exercises.

1. Write a list of spherical harmonics of the third order obtained by finding
the coefficients of the polynomial p’7H, (x, ¥, 2) in &, %, {. Show that seven of
them can be picked out in terms of which all the others can be expressed.

2. Writing

H,(x,9,2) =ap+ an 12+ ap 022+ a, 322+ - - + ag 2",
where a, is a homogeneous polynomial of degree # in # and y, show that a neces-
sary and sufficient condition that this be a spherical harmonic is that it have

the form
V2a, 9 Vzan—lzg_l_ [72([72“71)24

H,(x,y,2)=a,+ 15— 51 % 31 41
V2 (p® an—1)
+ e —

1 The term spherical harmonic is often applied to a broader class of functions,
namely, to any homogeneous solution of Laplace’s equation.
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where a,—; and a,, are arbitrary. Thus prove the statement of the text that there
are 2 # 4 1 independent spherical harmonics of order %, in terms of which all
spherical harmonics of that order can be linearly expressed.

3. Show how an independent set of 2% - 1 spherical harmonics of order
n can be determined, and apply it to the case n = 3.

4. Using Euler’s relation for a homogeneous function of degree

aJ . 7] 7}
xWH.n—l— yWH”—{—z—a;Hn:nHﬂ,

H
show that if H, is a spherical harmonic of order », then QTnle is a solution of

Laplace’s equation for g=F0.

5. A spherical harmonic of order » can be expressed in the form
Hy(#:y,2) =" Su (9, 9).

Sa(p,®) is called a surface spherical havmonic of order . Taking from Chap-
ter VII, page 183, the expression for Laplace’s equation in spherical coérdinates,
show that this surface spherical harmonic must satisfy the differential equation

S
sin 9§ ;3% <sin ) %ﬁ—"
Note that the Legendre polynomial P,(#) is a surface spherical harmonic of order #,
and that if in (2) we put &' = 0, % = cos &, and P,(«) is independent of ¢. Thus,
assuming that S, (¢, &) is independent of g, and making the substitution cos & = #,
find again the differential equation (11) satisfied by the Legendre polynomials.

95, P
>+W+n(n L 1)sin?9S,—0.

6. Developments in Series of Spherical Harmonics.

In (18), we have the development of the potential of a particle in a
series of spherical harmonics. Let us now consider the potential of a
distribution of continuous density » occupying a volume ¥V, and let the
origin O be taken at any point of free space. Let a denote the distance
from O of the nearest boundary point of V. Then, with Q (§, , {) in V'
and P(x, ¥, z) in the sphere ¢ =< 44, 0 < 1 < 1, the series (18) is domi-
nated by the geometric series for (1—2)—1, and thus is uniformly con-
vergent in all its variables. Hence we may multiply by » and integrate.
We find

1
U:—'J;jj”?dVZHo(x,y’z) + Hy(x,9,2) + Hy (%,9,2) .. .,

where H,(x, y, 2) is the spherical harmonic of degree #

H, (5,5, = [[[«P, (u)?ﬁ—';—ldvz onﬂjx ;’,;;(_”)1 sin &' do’ dg’ do'.
14 14

where # = cos ¢ has the value given in equation (2).

Thus this potential is developable in a series of spherical harmonics,
convergent at any interior point of the sphere about the origin through
the nearest point of the distribution, and uniformly convergent in any
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smaller concentric sphere. The same is clearly true of surface dis-
tributions, and in the cases in which the densities are piecewise con-
tinuous.

When it comes to double distributions, we need to consider for a
moment the potential of a doublet, or magnetic particle. We have

feel
1 a1 1 [P, («)o"]
57——_5_4’7*?—9’"*'1T_’

the termwise differentiation being permitted, at least in a sufficiently
small neighborhood of the origin. For the derivative, we have

= Pp(u)o" =P, (w)% "+ Pp(u)no"2x,

or, making use of the expression for # in terms of cartesian coérdinates,
and the relation (9),

] , 4
SePater =[Piw)®,

— Py (x| "

Hence

a1 g[n_l 01— P, 8] 4

It will be noticed that the general term of this series is a homogeneous
polynomial in x, ¥, 2, and it may be proved to be harmonic just as were

. 1 .. .
the separate terms in the development of —. The series is dominated,

as may be seen by referring to Exercise 4 (p. 128) by

< 1 e(n—1) n(n41)] pr—1
%'F[ R el P

since [£] <" and |#|=<p. If Q is inV, and P in the sphere ¢ < A4,
this series is in turn dominated by the series

(o]

2

0

which the ratio test shows to be convergent. Thus the potential of the
doublet can be expanded in a series of spherical harmonics convergent
in the sphere about the origin of radius A4, uniformly as to the coérdi-
nates of both P and Q. The rest of the treatment follows that for the
volume distribution.

Theorem IV. The potential of any of the wusual distributions is
developable in a series of sphevical harmonics, convergent at any interior
point of the sphere about the origin (which may be taken at any point
of free space), through the nearest point of the distribution, and uniformly
convergent in any concentric smaller sphere.
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7. Developments Valid at Great Distances.

We may also develop the potential of a particle as a series in
negative powers of g. All we need do is interchange P and Q, or, .
since # is symmetric, ¢ and " in (18). We have

1_p (u)l—l—P (M).Qi_i_p (u)ﬁ_;_ e

v ol 1) 4z 2\%) 5
If a is the distance from the origin of the most distant point of a given
distribution, say in a volume V, so that when Q isin V, ¢’ < a, then this
series is uniformly convergent in all six variables when P is outside the
sphere ¢ = Aa, A>1. It may be multiplied by a continuous, or piece-
wise continuous density and integrated termwise over V, and thus
gives an expansion of the potential U of the volume distribution,
valid at all points outside any sphere containing the whole distribution,
and uniformly convergent if that sphere contains the distribution in

. . H .. P,, u) g’ "
its interior. The term arising from —%lf

homogeneous polynomial of degree # in #, y, z on multiplication by
p2n+1, The other types of distribution may be treated in a similar way,
and we arrive at the result

is seen to become a

Theorem V. The potential of any of the usual distributions is develop-
able in a series of which the gemeral term is a spherical harmonic of
order n divided by 2"+l This series is convergent outside any sphere
about the origin and containing the distribution, and uniformly convergent
outside such a sphere if it contains the distribution in its interior. The
same is true of the partial dertvatives of first order of these potentials.

The last statement of the theorem can be verified by the process
used in considering the development of the potential of a double dis-
tribution. In the case of the derivative of the potential of a double dis-
tribution, another differentiation will be necessary, but the treatment
of this case presents no new difficulties. Later we shall see that the
theorem is true for derivatives of the potential of any order?.

Exercises.

1. A homogeneous cube of side 2a and center at the origin, has its sides parallel

to the coordinate axes. Show that its potential has the development:

M TMa

U="—+——7[3p*—5( 4 1 2

o T GogrBet — Bl A+
Show that at distances from the center exceeding the length of the diagonal of the
cube, the second term is less than 0°2 per cent of the first. Show that the potential
is less than that of a sphere of equal mass and the same center, at distant points
on the axes, and more on the diagonals. Does this seem reasonable?

1 This follows from Chapter VIII (p. 211), the fact that the derivative of
a harmonic function is harmonic, and from Chapter X, § 2. See also Exercise 4,
at the end of Chapter VIII, page 228.
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2. Given a distribution whose density is nowhere negative, show that if the
origin of coérdinates is taken at the center of mass, the development in falling
powers of the distance lacks the terms of order —1 in ¥, y, z, and if, in addition,
the axes are taken along the principle axes of inertia of the distribution, the initial
terms of the development are

M+(B+C—2A)x2+(C+A—2B)y2+(A+B-—2C)22+

U= 295 e,

where 4, B, C are the moments of inertia about the axes.

3. Show that if the development of the potential of a distribution be broken off,

M  H, (%79, ¢ H, (29,2
:?_{__L(esy_)_;_..._{_ an31)+R"'

the remainder R, is subject to the inequality

Ill<a>n+1

B\

]R,‘IS a 2
-3

U

where a is the radius of a sphere about the origin containing all the masses, and
b is the radius of a larger concentric sphere, to the exterior of which P (¥, ¥, 2)
is confined.

4. Show that at distances from the center of mass of a body, greater than ten
times the radius of a sphere about the center of mass and containing the body,
the equipotential surfaces vary in distance from the center of mass by less than
1.2 per cent. Show that the equipotentials of bounded distributions of positive
mass approach spheres as they recede from the distribution.

8. Behavior of Newtonian Potentials at Great Distances.

We have seen that at great distances, developments hold for the
potential of bounded distributions,

_ M | Hi(ay.2) oU = Mx | Hy(xy.2) |
U~?+T+ N Pl Q3+ o T ,

the termwise differentation being permitted because the resulting
series is uniformly convergent. Similar expressions exist for the
other partial derivatives of the first order. From these we derive the
important properties of the usual potentials at great distances:

Theorem V. If U is the potential of any bounded distribution of one
of the usual types, then at a great distance o from any fixed point, the
quantities

ouU aU ouU
eU, @* 5, o5y, 0%,
are all bounded. As P(x, vy, z) rvecedes to infinity in any divection, oU
approaches the total mass of the distribution.
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The limits of the quantities
aU oU aU
299 20U 20Y
LAy ¢ ady’ e 0z
as g becomes inifinite do not exist, in general. If, however, the direction
in which P recedes to infinity is restricted, say so as to approach a limit-

ing direction with direction cosines /, m, #», then these quantities

approach limits
—MIl, —Mm, —Mn,

respectively. In other words, the force becomes more and more nearly
that due to a particle, situated at a fixed point, and having as mass
that of the distribution. We have used this as a check in the exercises
of Chapter I, assuming it at that point as reasonable.

In the development of the potential of a double distribution, valid
. . R .
for great distances, it turns out that the term in e lacking. To say

that the total mass of a double distribution is 0 is entirely reasonable,
in view of its possible interpretation as the limit of two equal and
opposite distributions on parallel surfaces, as these surfaces approach
coincidence. This holds whether the total moment vanishes or not. It is
to be noted that this circumstance of a vanishing total mass does not
impair Theorem V; it enables us to make supplementary statements.
In this case the four quantities there given approach the limit 0.

Exercises on the Logarithmic Potential.
1. Show that the partial derivatives of order # of the logarithmic potential of
a particle

U:log%

are homogeneous polynomials in #, ¥, &, and 7, of degree #, divided by g2”. Show
also that the potentials of the usual distributions satisfy Lapiace’s equation in two
dimensions

02U 02U
V2U=6x2+6y2'
2. Show that
lo l:lo i—|—cos( — ’)£+lcos2( — ') 0
8- gQ, ' ‘PQ/:Q ' ‘Pg/z

QS
913 +"':

and that the terms of this series are homogeneous polynomials in » and ¥ which
satisfy Laplace’s equation.

1
—|—§cos3(¢p-— @)

3. Derive developments in terms of homogeneous polynomials satisfying
Laplace’s equation, and in terms of such polynomials divided by appropriate powers
of g, for the potentials of the usual logarithmic distributions.

4. Show that there are only two independent homogeneous polynomials of each
order (n >> 1) which satisfy Laplace’s equation, and that these may be taken as the

Kellogg, Potential Theory. 10
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real and imaginary parts of (¥ 4 7¥)”. Show also that they are the numerators in
certain derivatives of the logarithmic potential of a unit particle at the origin,
when these are expressed as homogeneous polynomials divided by the proper
powers of . Explain why only two of the » + 1 derivatives of order # are in-
dependent.

5. Show that if U is the logarithmic potential of one of the usual distributions,
contained in a bounded portion of the plane, and of total mass M,

1
U— Mlog .
approaches 0 as g becomes infinite, in fact, that g times this difference is
bounded for large g. Show also that
oU oU
0G5 @ oy

are bounded for large p. Make sharper statements for the case where M = 0.

Chapter VI.

Properties of Newtonian Potentials at Points
Occupied by Masses.

1. Character of the Problem.

We continue our study of the properties of Newtonian potentials,
now in the neighborhood of points of the distributions of matter. Our
object is to find relations between the potential and the density, for the
purpose indicated at the beginning of the last chapter. As it is only
in the neighborhood of a point of a distribution that the density at
that point makes itself felt in a preponderating way, we must of
necessity investigate the behavior of the potentials at such points.

As the integrands of the integrals become infinite at such points, the
study presents some difficulties, and it will probably be wise for the
reader to use the present chapter in a manner similar to Chapter IV.
He should by all means be acquainted with the results, a number
of which have been verified in particular cases in the exercises of
Chapters I, and III. He will do well to review the exercises in question
in order that he may see the results in the light of illustrations of
general principles. Some acquaintance with a few typical proofs, say
the earlier ones, is also desirable. Otherwise, a detailed study of the
chapter should be left until after the later material has shown the need
of the present developments. It will then be found more interesting
and more readily understandable.

2. Lemmas on Improper Integrals.

We shall confine ourselves, in this chapter, to regular surfaces and
regions, and, in general, to densities which are piecewise continuous.
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We have already met with improper integrals, in Chapter I, § 9 (p. 17)
and in Chapter IV, §11 (p. 119). At present it will serve if we restrict
ourselves to integrands f (Q) which become infinite only at a single
point P of the region V of integration. In any region in ¥ which does
not contain the point P, we shall suppose that f (Q) is piecewise con-
tinuous in the codrdinates &, %, £ of Q. It is not an essential restriction
to assume that P is an interior point of V, for as we have seen, we may
extend V, defining f (Q) as 0 in the region added. We recall the definition
of convergence:

the integral I = ffff(Q) av
14
1s said to be convergent, or to exist, provided
lim [[[1(@dV
d>0V—v

exists, where v is a variable vegular vegion subject to the sole vestrictions
that it shall have P in its interior, and that its maximum chovd shall not
exceed 8. The value of the convergent integral is defined to be this limait.

If the integral I is convergent, the definition of convergence, applied
to the first and last term, shows the following equation to be valid

[ff1@av—[Ifr@av=[]f1@av,

where v is thought of, for the moment, as fixed. The equation once
established, we may allow the maximum chord of v to approach 0.
The left hand member of the equation then approaches 0, and we have

"Lemma 1. If I is convergent, the integral
JIf1@av

approaches O with the maximum chord of v.

We recall also the Cauchy test for convergence (p. 18). An incon-
venience inherent in the application of that test is the very general
character of the regions v that must be considered. We shall therefore
find useful the criterion given by '

Lemma II. If there is a function g (Q) such that | [ (Q)| = g (Q),

and such that
JJfe@av

is convergent, then I is convergent.

This test obviates the necessity of considering general regions v, for
the reason that if

[Jfe@ar

10*
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approaches a limit when v is a sphere about P, it will approach the same
limit for the most general regular region v containing P in its interior,
as the maximum chord of v approaches 0. This we shall show in a
moment.

To prove the lemma, let v and v” denote any two regions having P
as an interior point, with maximum. chord less than 4. Let o be a
sphere about P of radius 24. Then

|[IJt@av— [[Tr@av| = [IJi@av—[[[1@av|
= [[Je@av+ [[fe@av=2[[[e@av.

The last integral is convergent, by hypothesis, and so approaches 0
with &, by Lemma I. The Cauchy test then shows that I is convergent.

We now justify the remark made with respect to the convergence
of the integral over g (Q) for special regions. Let oy, 05, 05,... be a
sequence of spheres about P, with radii approaching 0. Let

Gi=[[g@av.
Then, by hypothesis, the monotone increasing sequence Gy, G, Gy, . . .
approaches a limit. But the integral

¢=[[Je@av

lies, for small enough maximum chord of v, between a term of this se-
quence, as far advanced as we please, and some following term, and
hence G approaches the same limit as the sequence, as the maximum
chord of » approaches 0.

Remarks. All that has been said for triple integrals holds for double
integrals with the mere substitution of two dimensional for three dimen-
sional regions of integration. Furthermore, we may apply the results to
integrands f (Q) becoming infinite at two points P and P’ by simply
dividing the region of integration—say by a small sphere about one of
these points—into two, one containing each point, and understanding
that the improper integral over the whole region is the sum of the im-
proper integrals over the two parts. This simply amounts to extending
the definition of improper integral to the case of two infinities of the
integrand. We shall have need of this remark in considering derivatives
of potentials.

Lemma III. (a) The integral

av
[z, o<p<s
vV
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1s convergent, and for all vegulay regions V of the same volume, it is greatest
when V is a sphere about P.

(b) The integral
as
ffﬁ s 0 < [3 < 2,
5

where S is a vegulay region of the plane, is convergent, and for all regions
S of the same area, it is greatest when S is a circle about P.

That the integrals are convergent is easily proved by means of
spherical and polar coérdinates, respectively. In the integrals over
regions with the infinities cut out, the integrands are continuous, and
the multiple integrals are then equal to the iterated integrals with
respect to these coérdinates. But it is found that the iterated integrals
are not improper, and the convergence is readily established (see
Chapter I, page 18).

Suppose now that V7 is not a sphere about P. Then there will be
points of V, outside the sphere X of equal volume about P, and also
points in X' not in V

The set v of points in ¥ which are not interior to 2’ may not con-
stitute a region at all. For instance, the regular surface bounding ¥ may
touch, from within, arcs of an infinite number of parallel circles on the
sphere. However, the integral of a continuous function f over such a set
is easily defined. Let C denote a cube containing v. We define a function
F, F = f at the points of v, and F = 0 elsewhere in C. Then, by defi-

nition,
fvfffdvzfcffmv.

It is true that F is discontinuous in C, but not at any interior points of v.
The boundary of v lies entirely in the boundaries of 2 and V, and it is
easy to show that a regular surface element can be enclosed in the
interior of a region of arbitrarily small volume. It follows that the
above integral exists. If f becomes infinite at a point P of v, the improper
integral is defined in the usual way.

With these preliminaries, we see that

eSS ES eSSk

where o is the set of points of 2 not interior to V. But

1 1 . 1 1 .

Wgﬂ-ﬁ— in o, Wéﬁ in v,
a being the radius of X, and the inequalities holding at interior points.
Hence the integral over X exceeds the integral over V if either ¢ or v
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contains interior points, since the volumes (that is, the integrals of
the function f = 1) of o and v are equal. If neither ¢ or v have interior
points, it follows at once that ¥ coincides with 2. Part (a) of the lemma
is thus established, and similar reasoning establishes part (b).

Some equations and inequalities are of such frequent occurence in
what follows that we add them as

Lemma IV.
@) 2]ab|<a%4 02, a,b real

(b) y— ==

4 T A I
4
11 1 1y/1 , 1 1y 1 1 11 1
(c) ;?—ﬁ=<7—“;0*><;5+770+73),;gm;g—“—(;—z)‘) 21/,7_70

The inequality is the familiar consequence of (¢ — b)2 = 0, and the
equations are obvious algebraic identities.

3. The Potentials of Volume Distributions.

We consider the potential U of a distribution of piecewise continuous
density #, throughout a regular region V'; also a typical component of

the force:
U:Hfﬁdv, Z:fﬂxcwzdv.
. ¥ ¥3
13 14

As | % | is bounded, and as | { — z| < 7, we see by Lemmas II and III
that these integrals converge for all P in V. Thus the potential and
force are defined everywhere.

We next show that these functions are everywhere continuous. The
reasoning is typical of that to be used repeatedly in this chapter. We
confine ourselves to the points of ¥, for we already know that the inte-
grals are continuous everywhere else. Let P, be a point of V; as re-
marked, we may assume that it is interior. Then U = U,; 4 U,, where

U, (P):ﬂ Zav, Uz(P)zyjl Zav,

where o is a sphere about P;. Now, given any ¢ > 0, we may take ¢ so
small that

|U.(P)| < 5.

independently of the position of P, because of Lemmas III and I. For
such o,

UL (P) — U, (B | < 2.



The Potentials of Volume Distribitions. 151

Then, with o fixed, there is a neighborhood of P, such that when P is
in it,and Qisin V — ¢,

&

1 1
o 3BV’

14

where 7 and 7, are the distances PQ and P,Q, B is a bound for | « |, and
V is the volume of the region V. Then, with P in this neighborhood,

| Uy (P) — U, (Py) ‘<fffl

Combining the inequalities for U; (P) and U, (P), we have

11
e

&
dV<§.

|U(P)—U (Py)| <e.
Thus U is continuous at P,, and hence throughout space.

Characteristic of the reasoning is the breaking up of the region of
integration into two, such that the integral over the first vanishes with
the maximum chord of the region, uniformly as to P, and that in the
second region, the integrand is a bounded density times a continuous
function of all the coérdinates of P and Q. The same argument holds for
the function Z of P. Thus we have

Theorem I. The potential U, and thecomponents X, Y, Z of the force,
die to a volume distribution of piecewise continuous density in the bounded
volume V, exist at the points of V, and are continuous throughout space.

But it is not evident without further study
that the force components are, at points of the
distribution, the corresponding derivatives of the
potential, for the usual criterion for the possibility
of differentiating under the sign of integration does
not apply to improper integrals. Nevertheless, the
relationship subsists (we are considering the gravi-
tational field — in electrical or magnetic fields the
force is the negative of the gradient of the potential). Fig. 20.

To show this, let us take the origin of coérdinates at P, and let P
have the coérdinates (0, 0, %) (fig. 20). We consider the function

U(P)— U(P, 1 ~
h fff h 7—Z ‘dt
2C—h Z
-fﬂ AR I E)

Here wehave employed Lemma IV (b) and the valuesr@ = &2 + 2 + {2,
r2=E8 4+ 9% 4 ({ — h)2
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This integral is convergent, by Lemmas II and III, since | { | < 7,,
and |2¢ — 4| =|C| +|C — k| =7 + r. It converges, and vanishes,
for » = 0. If it is a continuous function of %, the difference quotient on
the left approaches the limit Z (P,) as % approaches 0, that is, the de-
rivative of the potential exists and equals Z. The problem is reduced,
then, to showmg the integral continuous.

If P is confined to the interior of a small sphere ¢ about P, the
integrand is a bounded density times a function which is continuous in
all the variables, when the integral is extended over the portion of V
outside the sphere. The integral over this portion is therefore continuous
in P, thus restricted. It remains to show that the integral over the
sphere can be made arbitrarily small by restricting the radius of the
sphere, uniformly as to P. But the integral is dominated by (i.e. is less
in absolute value +han)

G e = [+ o sas [

by Lemmas IV (a) and III. As the last integral is convergent, it ap-
proaches 0 with the radius of ¢, by Lemma I. This completes the proof.
We have, therefore

- Theorem I1. The potential U of the volume distribution of T heorem I
18 everywhere diffeventiable, and the equations

oU U aU
X=5, Y=5, Z=%5;

hold throughout space.

This amounts to saying that the derivatives of the first order of U
may be obtained by differentiating under the sign of integration. It is
otherwise with the derivatives of the second order. In fact, the mere
continuity of the density does not suffice to insure the existence of these
derivativest. We therefore impose on the density a condition introduced
by HOLDER2 A function f (Q) of the codrdinates of Q is said to satisfy
a Holder condition at P if there are three positive constants, ¢, 4 and «,
such that

1@ —F(P)|<dre, r=PQ,

for all points Q for which # < ¢. If there is a region R in which f (Q)
satisfies a Holder condition at every point, with the same ¢, A and «,
f(Q) is said to satisfy a uniform Holder condition, or to satisfy a Holder
condition uniformly, in R.

1 Here is an illustration of the necessity of the investigations of this chapter,
for this situation would not have emerged in a study of the examples of Chapters
I and III, where the densities are all analytic.

2 Beitrdge zur Potentialtheorie, Dissertation, Stuttgart, 1882.
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Exercises.
1. Show that the function defined by
1
T EN 0: 0) = O:
10 =y §+% 1O

is continuous at the origin, but does not satisfy a Hélder condition at that point.
Devise a function which satisfies a Hoélder condition at a point, but is not differen-
tiable at that point. Thus a Hélder condition is stronger than continuity, but weaker
than differentiability if &« < 1.

2. We know that .a function of #, continuous in a closed interval, is uniformly
continuous in that interval. Show that a similar theorem does not hold with
respect to a Holder condition, by an examination of the function defined in the
closed interval (0,1) as follows:

#n—1 1

f(x):;l-i——i—[n—(%:—l—)—]n(x—l)”, lewe 1 u=234,..,

7(0) =0.

We may now study the partial derivatives of U of the second order,
at interior points of V. Let P, be such a point, and let 2’ be a sphere
about P,, lying in V. Then U = U, + U,, where U; is the potential
of the masses within 2, and U, the potential of the remaining masses.
As P, is an exterior point for U, this potential has continuous deriva-
tives of all orders at P, and is harmonic there. Thus the problem is
reduced to one in which V' is a sphere.

If the density of the sphere is constant, we have the following value
of Z from Chapter I, § 9 (p. 19):

7 = — %n% 2,
valid at interior points. As Z is the derivative of U with respect to z,
by theorem II, we see that at interior points all six of the partial deriva-
tives of U of second order exist and are continuous, and that in parti-
cular,
%ﬁ:%:%:-%m, and ViU = —4max.

If we now write % (Q) = [ (Q) — % (Py)] + % (P,), we see that the
potential of a sphere whose density is continuous at Py is the sum of the
potentials of a sphere whose density vanishes at Py and of a sphere with
constant density, equal to that at Py, of the given sphere. We are thus
reduced to a consideration of the case in which the density vanishes at
P,. We now suppose that x satisfies a Holder condition at P,. Assum-
ing that the radius of the sphere X is less than ¢, this means that

| S Ary,  rg=PyQ.

Under these circumstances, differentiation under the sign of integration
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is still possible. In fact,

=Uzﬂx;_(l)dv} ﬂf [352 7—13]411/,

where we have taken the origin at P,, is a convergent integral, by
Lemma III, since | { | < 7, and | » | < A 72 If P is the point (0, 0, %),
then

Z(P) —Z(P) _

HOSEE -y =1,

for # <=0, where

P [[fuh ) 52 4 Lav.

The integral I is convergent as can be seen by the reasoning applied to J.
We wish to show that I tends to 0 with %#. But to do this, we must elim-
inate % from the denominator. Now

L o )

and so, using Lemma III (c) and (b), and the values 7} = &2 4 5% + {2,
72 = £2 4% 4 ({ — h)2, we see that

20— 1) /1 1,1 3¢2
I= fﬂ _7 w(r+m< +r70+73> w3 }

This integral has a meaning for # = 0, in fact it is 0, for the integrand
then reduces to 0. If we can show that I is continuous in P at P,, we
shall know that it approaches 0 as % approaches 0, and it will follow that
the derivative of Z with respect to z exists at Pyand equals J.

To show that I is continuous at P, we follow the usual reasoning.
The integrand is continuous in 2 — ¢, apart from the piecewise con-
tinuous density, where ¢ is a small sphere about Py, provided P is interior
to o. Hence I will be continuous if the integral over ¢ can be made
arbitrarily small by sufficiently restricting the radius of ¢, independently
of the position of P. This we now show to be possible. Let us call I,
the integral over o.

Now there are two infinities of the integrand of I, one due to the
denominators containing 7, and the other due to the denominators con-
taining 7 as a factor. The first are rendered innocuous by the fact that

. .1 L.
|| < Arg. It is the term in —3 which is troublesome. We must under-

take further transformations. We have
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| t@2¢—n 1 1282 — Ch— 13— 17y

BERE e Tl vl
_’C(C"‘h)—fz""f_ 1 ’<
B 737y (v + 7o) Pr+ 1) | = 7Pry’

since
lclérO) l:-*h!é?’, §2+7]2§72; 7'+7’0270

For the remaining terms in the bracket in the integrand, we have
[C(2¢— h) 1)_3_53 1 1 4

77 (¥ -+ 7o) (M'O e 3 L= 727, v +

L1

5
"o

-
"o

Hence the integrand of I, is dominated by
1 1
ABr [73 : W + }<4AB[ +—,,~_o,—+m].

73 %
We have a right to assume « << 1, for a Hélder condition with one
exponent always implies one with a smaller positive exponent. Then in

the part of ¢ in which 7y = 7, the last written function is only increased
A
by replacing » by #, That is, it is less than ——— 12 . In the rest of ¢

1—3;}%. Then | I, | is certainly less than the sum of the

7%y,

it is less than

integrals of these two functions taken over the whole of ¢, and since,
by Lemma III, the first of these integrals is the greater, we have

|1, | <24ABfff;§TVa.

As this integral is convergent, and independent of P, it follows by
Lemma I that I, vanishes with the radius of ¢, uniformly as to P.
Thus I is continuous, and the existence of the derivative is proved.
Further 0z 22U

9= om =/

In the same way the existence of the other partial derivatives of U
of the second order at P, can be proved. In particular, we have for the
Laplacian, V2U, of U, the value obtained by interchanging %, y, z in
J, and adding the results,

72U — fff f2+772+52 —u}dV—O

This is for the potential with a density satisfying a Hoélder condition
and vanishing at P,. If we add to the distribution one of constant density
throughout the sphere, we have the result holding for a distribution
with continuous density in a sphere, and satisfying a Holder condi-
tion at P,: the dertvatives exist, and

VPU = —dmx(Py).
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Finally, if we add the potentials of distributions outside the sphere,
nothing is contributed to the Laplacian, and the same equation holds.
This differential equation, which contains Laplace’s as a special case, is
known as Poisson’s equation®. We sum up the results on the derivatives
of second order in

Theorem III. Let U be the potential of a distribution with piecewise
continuous density x in a vegular vegion V. Then at any interior point
Py of V, at which x satisfies a Holder condition, the derivatives of second
order of U exist and satisfy Poissons’ equation

PU = —4mx.

The theorem leaves unmentioned the situation at boundary points
of V. But here, in general, the derivatives of second order will not exist.
It is clear that they cannot all be continuous, for as we pass from an
exterior to an interior point through the boundary where % is not 0,
V2 U experiences a break of — 4m.

Poisson’s equation enables us to find the density when we know
the potential.

Exercises.

3. Show that a continuous function of », which has derivatives in an interval
including the origin except at the origin, cannot have a derivative at the origin
unless the limits of the derivatives to either side are the same at the origin. Hence
show that there are cases in which the second derivatives of the potential of a volume
distribution do not exist at boundary points.

4. Show that a condition lighter than a Hélder condition is sufficieni for the
existence of the second derivative with respect to z of the potential of a volume dis-
tribution, namely the following. Denote by % the average of the values of % on the
circle through Q whose axis is the parallel to the z-axis through P, i.e. with the
axes employed above,

27

% = "l_nf% (rosin ¥’ cos @, 7,sind'sin @, vycos F)dp, Q= (r,, ¥, ¢').

4

0

Then it is sufficient that % satisfy a Holder condition at P,. Verify also that the
lighter condition is sufficient: there exists a continuous function &(#), defined on

) o (r . .
some interval 0 < » < a, such that ]2 [ g 0 (rp), that -f]—) never increases with

7, and that

a

fﬂad,
v

0
is convergent.

1 Po1ssoN, Remarques sur une équation qui se présente dans la théovie de Uattvac-
tion des sphévoides. Nouveau Bulletin de la Société philomathique de Paris, Vol. IIT
(1813), pp. 388—392. See also BACHARACH, Geschichie dev Potentialtheorie, Got-
tingen, 1883, pp. 6—13.
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4. Lemmas on Surfaces.

We shall limit ourselves to distributions on regular surface elements
S, which are subject to the further restriction that the function
z2=1{f(%,9), (%, y)in R, giving the standard representation (see p. 105),
shall have continuous partial derivatives of the second order in R. These
are bounded in absolute value by some constant M.

The results attained will hold for regular closed surfaces which are
sufficiently smooth, because the lines breaking such surfaces up into
regular elements may be drawn in a variety of ways, so as to avoid any
given point of the surface under investigation. Since potentials are
analytic in free space, it makes no difference what the character of the
surface is except in the neighborhood of the point under investigation.
Thus we may conclude that our results subsist for any regular surface,
provided we keep away from the edges. Certain results subsist here also,
like the continuity of the potentials of surface distributions. But in the
enunciation of the results we shall suppose that we are dealing with an
interior point of the surface.

It will be convenient to have a notation for the point of the surface S
in whose neighborhood we are investigating the potential; let it be p.
We shall find it convenient to use a system of axes in which the (§, #)-
plane is tangent to S at p, this point being taken as origin. If we wish
then to study how the potential changes as » moves on S, it will be neces-
sary to think of the axes as changing with p. Certain inequalities derived
will then hold uniformly as to p, when they can be expressed in terms
of constants which are independent of the position of p, at least in a
certain portion of S.

One such inequality we derive at once, and it will illustrate the idea.
We have seen in Chapter IV, Theorems IV and VII (pages 101, 108) that S
can be broken up into a finite number of regions of triangular form,
for each of which a standard representation is possible with any orien-
tation of the axes in which the {-axis makes an angle greater than 70°
with no normal to the portion of S.in question. Moreover, these pieces
can be so taken that the normals vary in direction on each by less
than 159, If  is a point of such an element, and the axes are taken in the
tangent and normal position at p, the normals over the element in which
p lies as well as over the adjacent elements, will deviate in direction from
the {-axis by less than 309, so that we shall have a standard representa-
tion with this position of the axes which certainly holds in a neighbor-
hood of $. In fact, if ¢ denotes the minimum distance between any two
non-adjacent triangular elements of S, such a neighborhood of  in which
the standard representation holds, will include all of S within a distance
¢ of p. And ¢ will be independent of the position of p. Thus the standard
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representation with the tangent-normal system of axes exists, uniformly
as to p.

More than this, the function { = ¢ (£, #) giving the standard re-
presentation of the portion S; of S within a sphere of radius ¢ about p
will have partial derivatives of the second order which are bounded in
absolute value by a constant M, independent of the position of p. This
is most easily seen by using the system of direction cosines relating the
(%, v, 2)-axes, in terms of which the defining standard representation of
S is given, with the (£, #, {)-axes in the tangent normal position at p.
We may assume that both systems are right hand ones, and that they
have the same origin, . Then

§=Lx+my+mnfx,y),

n=lx+my+ njfx, ),

C=1lsx+ mgy + nyf (x, y).
We know that when (£, ) is in the projection of S on the (£, #)-plane,
these equations have a unique single-valued continuously differentiable
solution { = ¢ (&, ), by Chapter IV, Theorem VII, (p.108). And it is
shown in the works on the Calculus? that the derivatives of ¢ are com-
puted by the ordinary rules for implicit functions. Keeping in mind that
in the determinant of the direction cosines, any element is equal to its co-
factor, we find

azz . (’”2 + %2fu)2 fxz _ 2(m2 + ”2/‘71) (12 + ”2/‘1) fxz/ + (12 + nzfx)g fvu

0_52 (lsfm + m3f.,, - '”3)3
As f,, {, are continuous in the closed region R, they are bounded in
absolute value, say by IV, and the derivatives of f of the second order
are bounded by M;. As to the denominator, it is the cube of the cosine
of the angle between the normal to S; and the {-axis, multiplied by
V1 + /i + f; and as this angle never exceeds 30°, the denominator is

never less in absolute value than O;)s Hence
1 92
ig—é <4(1+ N)M1<%->3,
a quantity independent of p, which we call M. Exactly the same con-
siderations apply to the other two derivatives of { of second order, the
same constant M being available.
We may now enunciate
Lemma V. If S, be the portion of S in a sphere of radius ¢ about p,
and if & = @ (&, n) is the equation of S, referred to axes tangent and normal
to S atp, then

L= M@+ ),
for all points of S, where M is independent of p.

1 See, for instance,. OsGoop, Advanced Calculus, Chapter V, especially §o.
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We have merely to expand the function { = ¢ (£, ) in a Taylor
series about the origin, with remainder, remembering that the linear
terms vanish because of the position of the axes:

{ =3P &+ 20, 0+ @,, 7]

Hence, using the bound M for the derivatives, and Lemma IV (a), we
have

[C]=M (& + 77
and the required inequality is established.

The density, ¢ = ¢ (q), of a surface distribution on S at a point ¢
may be regarded as a function of £ and 7, namely the coérdinates of
the projection of ¢ on the (£, n)-plane. Let y denote the angle between
the normal at g and the {-axis, 4. e. the normal at . We then have

LemmaV1. If o satisfies a Hélder condition at p, the function o secy
also satisfies a Holder condition at p. If o satisfies a uniform Holder con-
dition on a portion of S, then o secy satisfies a Hélder condition, uni-
formly as to p. '

As sec'y, that is, J1 + ¢} + @7, has bounded derivatives at points
of S in the sphere of radius ¢ about p, it satisfies a Hélder condition at
$ with exponent . = 1. Let ¢ be less than one, and less than the smaller
of the two values, one of which assures the standard representation of
the portion S; of S within a sphere of radius ¢ about $, and the other of
which assures the inequality of the Hélder condition. Then, since y = 0

at p,
lo(g)secy — o (p)secO] = |[o(q) — o (p)]secy -+ o (p) [secy — sec 0] |
< sec30°Ar* + max|oc |47, ¥ = pq.

If B is the smaller of the two numbers « and 1, then since » < 1, ## = 7%,
7 =y, and

|o(g)secy — o (p)secO| < A"rF for » < c.

Thus the Hélder condition obtains. Moreover, in any region in which
the Holder condition on ¢ is uniform, all the constants involved are
independent of the position of #. Thus the lemma is established.

Remark. In the inequality for the Holder condition, we may re-
place 7 by its projection #” on the (£, 7)-plane if we wish. As

72 = 52 + 7]2 _]_ C2 - p'2 _]_ CZ g y'2 (1 _]_ MZ;,’Z) é y'2 (1 _]_ M202),
we should only have to replace A” by the constant
A7+ ey,
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5. The Potentials of Surface Distributions.

Let S denote a surface subject to the restrictions of the last section,
and let the density be piecewise continuous on S; that is, let it be a
piecewise continuous function of the coérdinates x and v of the projec-
tion of g on the (%, y)-plane of the standard representation of S, in the
region R. We consider the potential

] 1 ,
U=ff7—3d5 szasecyﬁds ,
S 5

where S’ is the projection of S on the (%, y)-plane of the standard re-
presentation of Sasa whole. As the distance » between P (x,y, z) and the
variable point ¢ (£, #, ) of S is never less than its projection #” on the
(%, y)-plane, we see at once that the integral for U is convergent, by the
Lemmas IT and IIT (b). And by reasoning similar to that applied to the
volume distributions, we see that U is continuous. This holds for bound-
ary points of R as well as for interior points, for we may extend the
region 57, defining ¢ as 0 at the points annexed. Thus we have

Theorem IV. The potential U of the given surface distribution exists
at the points of S, and is continuous throughout space.

Tangential derivatives. In investigating the derivatives of U, we shall
make use of the tangent-normal system of axes. Restricting ourselves
to a portion of S contained in a sphere of radius ¢ about one of its points
#$, we have for any tangent-normal position of the axes, a single re-
presentation for the whole of this piece. As the potential of the rest of S
is analytic in a neighborhood of p, we may neglect it, and assume once
and for all that the whole of S is given by a function { = ¢ (£, ) having
the properties derived in the last section, for axes tangent and normal

to S at any of its points. .

We first investigate the derivatives of U
taken in any fixed direction parallel to the
tangent plane at p, an interior point of S. We
choose the x-axisin this direction, and the y-axis

7 in a perpendicular tangent direction (fig. 21).
Let P be a point of the z-axis. Then, for z==0.

U 5 £ o
a—x———ffo‘?dS:ffasecy—ﬁ as’,
S 4

R e G

7’ being the projection of 7 on the (#, y)-plane. We are interested in the
existence of a limit for this derivative as z approaches 0.

In the first place, the mere continuity of ¢ is insufficient to insure the
existence of such a limit (see the Exercise, below). We shall therefore
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impose upon ¢ a Holder condition. We shall show that the limit then
exists, following the method used in § 3 to prove the continuity of certain
integrals. Let ¢’ be a small circle in the (x, ¥)-plane about p. If we write

eI+, IZHGS%?%W: f=”“e°V%d5"
x ¥ 4
) g2

then for any fixed ¢’, J is continuous, and if ¢ > 0 be given, there will be
a d such that for 0 < |z | <3, 0<|z|<d. |J (%) —J ()] <%

Consequently, if we can show that ¢’ can be taken so small that | I | <§ )
independently of z, it will follow that for 0 << |z | <6,0 <|z| <4,

(5).— (5.

This is the Cauchy condition for the existence of a limit.

<e&

To prove the desired property of I, we write I = I, 4 I,, where
: ' £ Js
Ilzc(j))f{‘—:;ds A :ff[a(q) secy —o(p)]54S".
g .
The first we compare with
U?)(ffgd&”, =88+ nr+2=r24 2.

This is 0, since the integrand has equal and opposite values at (&, #)
and (— &, %). Hence

L=o@ ffs ~Lyas = (p)f fe_orl Ly 1gs

And so, since || <7/, || = M7»'% by LemmaV, |2z — ([ <7 + o,
r=v, o=7,
as’

|I;] < max|o

This integral is convergent, and so vanishes with ¢’, by Lemmas III (b)
and I.

Asto I,, Lemma VI enables us to write at once

s aff 5.

and this also approaches 0 with the radius of ¢’. The existence of the
limit of the tangential derivative of U is thus assured. Moreover, a
Kellogg, Potential Theory. 11



162 Properties of Newtonian Potentials at Points Occupied by Masses.

review of the steps will show that if a uniform Hélder condition obtains
for the density on a certain portion of S, closed, and containing no
boundary points of S, the inequalities obtained can be made independ-
ent of the position of 5. We thus arrive at

Theorem V. I} the density o of the surface distribution on S satisfies a
Hélder condition at P, the derivative of U at P, in the divection of any tan-
gent to S at p, approaches a limit as P, approaches p along the normal.
If the Hilder condition holds uniformly over a closed portion of S which
contains no boundary poinis of S, the limits of such derivatives are ap-
proached uniformly as to p on such a portion.

Exercise.

Let S denote the surface of a plane circular lamina, in the (#, 9)-plane, the origin
being at the center. At P(0, 0, z),

iU § o v'cosg , .,
E_J‘fo'? as _IJ.UTV dv' de.
S S

For o, let us take a product ¢ = f(#’) cos ¢, where f{(#') is never negative. Then,
as 72 = #'2 4 z? is independent of @, we can carry out the integration with respect
to ¢, and we find

Y=

/ 2 / %]
“U >a [‘ ar’ 2 ar’
dx = (2 + 2%) I (,,'2 + 22) o a2y

if @ is the radius of the lamina. Show that if f(#’) is continuous and approaches

a a
Gai’ %> , the above sum can be
made arbitrarily great by taking m large enough and | z| small enough. Thus, con-
tinuity of the density is not enough to insure the existence of a limit for the tangen-
tial derivative.

1
0 at the origin, but exceeds w in the interval <

Normal Derivatives. The study of the normal derivatives is simpler.
At first, in addition to the piecewise continuity of o, we shall assume
simply that o is continuous at p. With the same position of the axes
(fig. 21), and P on the normal through $, we have, for z == 0,

2 [fotstes - [foner'

Consider, as a basis of comparison, the potential U’ of the plane lamina,
occupying the area S’ of the projection of S, with density o sec y:

a_U*/:—fJ‘o'secy dS'—I + 1,, 92=§2+772+22:

where B B
I, = —J‘J'asecyé—adS', IZ:——J-fosec'yEdS',
o S'—o’
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o’ being a small circle about the origin. For fixed ¢’, I, is continuous in z,
uniformly as to p, and vanishes for z = 0. I; can be written, using a
mean value of ¢ sec y,

I, = —éfasecyd!.?: —osecy 2,

£ being the solid angle subtended at P (0, 0, 2) by the surface of the
circle o/, counted as positive if z > 0, and negative if z << 0. The limit
of 2, as z approaches 0 from above is 27, and as z approaches 0 from
below, is — 2x. If ¢ > 0 is given, we restrict ¢’ so that for ¢ in ¢’,

]a(g)secy—a(ﬁ)[<5%,

and then, with ¢’ fixed, we select § > 0 so that for 0 <z < 4,

&

I.Q—27'E]< 3max|o (g)secy |

Then
I, + 270 (p) | = | 75ec 7 2 — 270 (8) |

— F@ysecy (@ — 27) + 2n[a @ secy — 0 (F)] < e

If we further restrict | z|, if necessary, so that I, differs from its limit,

0, by less than ~;~ , we see that

5 + 2m0 (P) | < e.

ou’
%
Thus the derivative of U’ with respect to zapproaches the limit — 2w o(p)
as P approaches p along the positive z-axis. Similarly, it approaches
- 2o (p) as P approaches p along the negative z-axis. It is readily veri-
fied that the approach is uniform with respect to p in any closed portion
of S, including none of the boundary points, in which ¢ is continuous.

We now return to the potential U of the curved lamina, and con-
sider the difference

oU ou’ —z z ,
-a‘z—‘— m‘—J\J‘USCC’y[T“{— ?st

=ﬂg secy[ & — 2 (5 — )| 45"
&

According to the usual reasoning, this integral is continuous at 2 =0,
if the integral extended over a small circle ¢’ about $ vanishes with
o’, uniformly as to P. But this can be shown just as was the similar fact
with respect to an integral arising in connection with the tangential
derivatives.

11#
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Thus the difference of the derivatives of U and U’ coincides with
an integral which is continuous in 2. The value of this integral for

2=0I1s
JIO‘SGC‘}/ ¢ dS = ff =4S = ff az 7 S,

which integralis obviously convergent, since . Hence we have

7

for the limits of —— U as z approaches 0 from above and below respec-

tively,
(%Z>++ 20 (p) = (%])_— 270 (p) :Ha o1
S

The limits are approached uniformly as to p for any closed interior
portion of S on which ¢ is continuous. We now express the results in
terms free from any system of axes. Let # denote the direction of the
normal to S, in the sense agreed upon as positive. By the derivative of
; with respect to #, we mean the derivative at a point of S, in the di-

rection of the positive normal, the coérdinates x, vy, z of P being the
variables.

Theorem VI. If the density o of the distribution on S is continuous at p,
the normal devivative of the potential U approaches limits as P approaches
P along the normal to S at p from either side. These limits are

ouU J 1

6U =4 2a0(p +ﬂ 9 1ys.

on v

These limits are approached uniformly as to p on any closed portion of S,
containing no boundary points of S, on which the density is continuous.

Subtracting the second limit from the first, we have

ou oU

—87+~W_= —4no.

The significance of this equation is that it enables us to determine the
density when we know the potential, or even if we know only the
normal derivatives of the potential, or the normal components of the
force.

Derivatives in any Direction. Since the derivative of U in any fixed
direction is a homogeneous linear function of the derivatives in the
direction of two tangents and a normal, it follows that any such deriva-
tive approaches a limit along the normal at a point  where the density
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satisfies a Holder condition. And more, that if S, is a closed part of S
not containing boundary points of S, on which the density satisfies a
uniform Holder condition, the derivative on U in a fixed direction
approaches its limits uniformly along normals at all points of S;. We
shall now prove

TheoremVII. Let o satisfy a Hélder condition uniformly on S. Let V
be a closed region of space parily bounded by S, but contarning no boundary
points of S, and such that a point P can approach S from only one side
while remaiming in V. Then the potential U of the distribution of demsity
o on S 1s continuously differentiable in V.

We recall that this means (see p. 113) that if any one of the partial
derivatives of U, say

is defined on S in terms of its limiting values, then F (P) is continuous
in the closed region V. Now we have seen in the previous chapter that
F (P) is continuous at all points of free space, and such are all points
of V except those on S. So it only remains to verify?! that F (P) is con-
tinuous at each point p of S.

We observe first that there is a sphere ¢, about p, such that the
points of ¥V within o; are simply covered by the normals to S at points
near p. This fact is a consequence of the theorem on implicit functions?.
Let X, Y, Z, be the cotrdinates of a point P of V, referred to axes
tangent and normal to S at $. The equations of the normal at the point
(¢,7m, L) of S are

=& _yv—m_:t—9En)

7 - Py 1
where { = ¢ (&, ) is the equation of S referred to those axes. The normal
will pass through (X, Y, Z) provided

) X=¢f—9:(Z—9),
Y=n—9¢,(Z—9).

We wish to know that these equations have exactly one solution (£, #)
for each set of values of X, Y, Z, at least in some neighborhood of the
origin. Now they have the solution (0,0) when X =Y = Z =0, and

>

1 Such verification is needed. The mere fact that a function, continuous
in an open region bounded by a surface S, approaches continuous limiting values
along normals, does not guarantee that the function is continuous at points
of S. A simple example illustrating this situation in two dimensions is given by

2xy
F(P) = —pie,
P =
proach along the normals is uniform.
2 See OsGoop, Lehvbuch der Funktionentheorie, Chap. II, §5.

The important element in the present case is that the ap-
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because ¢ (§, n) has continuous partial derivatives of the second
order, the functional determinant

0X 0Y

G E| =92 —9)+ 91, —¢5,Z—9 +o0,
0X 0Y
G0 — ¢, Z—9) + o0, 1=, (Z—9)+ ¢,

is continuous in the neighborhood of $, and reduces to 1 when all the
variables vanish. Thus the hypotheses of the theorem on implicit
functions are satisfied, and there is a neighborhood N, and a neighbor-
hood N, of the origin such that when (X, Y, Z) is in IV,, there is one
and only one solution (&, %) of the equations (1) in the neighborhood NV,.
Any sphere ¢, about p and lying in N; will serve our purpose.

Now let o, be diminished, if necessary, so that the difference between
the value of F (P) at any point P of V in g, differs from its limit at the
foot of the normal through P by less than § This is possible because
of the uniformity of the approach of F (P) to its limiting values along
normals to S. About a point of the normal at $ we construct a sphere
0g,, interior to ¥ and to oy, such that within it, F (P) varies by less than

g. It follows that within the region covered by the normals to S, corres-

ponding to the neighborhood N,, and meeting o,, F (P) differs from
F ($) by less than €. As the reasoning holds for any ¢ > 0, F (P) is con-
tinuous at p, as was to be proved.

6. The Potentials of Double Distributions.

We consider surfaces S subject to the conditions imposed in § 4,
and moments g which are piecewise continuous. We study the potential
of the double distribution

0 1 0 1 ’
S S’

S’ being the projection of S on the (&, n)-plane. Here, if cos «, cos 8,
cos y are tl_le direction cosines of the normal to S at ¢ (£, 7, {), the normal
derivative means

0o 1 a1 01 01
W7=<E7>°°S°‘+<a—n7>‘3°55+<557>‘3°5%
and as
coso.  cosff  cosy
- . ¢E q’ﬂ - 1 '
this may be written
@) Sl _-l-E=de—ome cos y.

oy v 73
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We notice first that U has a meaning when P is a point of S. For,
taking x =y =2 =0,

U= —ﬂﬂ LY
4

If we apply the law of the mean for functions of two variables to the
numerator of the integrand, remembering that ¢; and ¢, vanish at the
origin, and that ¢, Peyy Pyy aT€ bounded in absolute value by M,
we find that the numerator is bounded in absolute value by M (§2 4- %?)
= M 7’2 The integral is therefore convergent, by Lemmas IT and III (b).
The potential U is defined on S by the integral which represents it
elsewhere, this integral, although improper, being convergent.
However, U, thus defined, is discontinuous at the points of S, ex-
periencing a finite break there — unless the density happens to vanish
at the point of S considered. The problem can at once be reduced to the

problem of simple distributions. For, the derivatives of% with respect

to &, n, { being the negatives of those with respect to %, y, 2z, U may be
written

(3) U=—~l£fycoscxd—i;l~d5—‘£fycosﬂ—(%%d5

0 1
—{fﬂcosymﬁds,

so that U is the negative of the sum of two tangential derivatives of
surface distributions and one normal derivative of a surface distribu-
tion, with densities

pcose,  pcosf,  pcosy.

Since ¢ (&, ) has continuous derivatives of the second order, the cosines
satisfy Holder conditions with exponent 1. The first two reduce to 0
at p, and so, u being bounded, their products by u also satisfy Hélder
conditions at p. If u is continuous at p, g cosy is continuous at ¢,
and this is sufficient in the case of the normal derivative for a limiting
value. Hence we see that U approaches a limit as P approaches p along
the normal to S at $ if the moment is continuous there, from either side.
The first two integrals are continuous. The limiting values of the third,
on the other hand, are its value at p less 2mu(p) cosy, and plus
27 p (p) cosy, according as the approach is from the positive or
negative side of S, by Theorem VI. But as cosy =1 at p, this gives
us the following result:

Theorem VIII. As P approaches a point p of S along the normal to
S at p, from either side, the moment u being continuous at b, the potential
U of the double distribution on S approaches limits, given by

U,=2npp)+ U, U_=-—2mp)+U,.
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On any closed portion of S containing no boundary points of S, on
which u is continuous, these limits are approached uniformly.

The last follows from the fact that the inequalities controlling the
approach can be chosen independently of the position of  on the
portion of S in question. It is a matter of mere detail to pick these up,
and verify the fact.

If we subtract the limiting values of U, we have
U,—U_=4np.

Thus, knowing the limiting values of the potential, we are enabled to
determine the moment.

We may apply the same reasoning as that used in the proof of
Theorem VII to establish

Theorem IX. Let u be contimmous on S. Let V be a closed region of
space partly bounded by S, but containing no boundary points of S, and
such that a point P can approach S from only one side, while remaining
in V. Then the potential U of the double distribution of moment y on S
s continuous in the closed region V, when defined on S by means of its
imating values.

Normal Derivatives. For the existence of limits for the derivatives

.of the potential of a double distribution, more than continuity of the

moment is required. We shall here confine ourselves to a study of the

normal derivatives, which are the most important in potential theory,
and derive two results concerning them.

The first requires only the continuity of

the moment, and although it does not assert

r the existence of a limit for a normal derivative,

e it asserts the existence of a limit for the dif-

ference of the normal derivatives on opposite

©

3 3 ¥ sidesof S. Taking the axes in the usual tangent-

o ¢ normal position at p, we form the difference

- of the derivative of U with respect to z at the

* Fig. 22. point P (0, 0, z) and at the point T (0,0, —=z)

(fig. 22). The distance ¢ P we denote as usual
by 7, and the distance ¢ T we shall denote by ¢, so that

P=E k=T (C R, B=r g ()

The difference of the derivatives is then

D= !jﬂ [—gz— <—;7 %)T_z secydS’,

or, using the value (2) for the normal derivative, and carrying out the
steps indicated,
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Let us now reduce the moment at $ to 0 by the subtraction of the
potential of the double distribution on S with constant moment, namely
the value of yat . This potential is a constant times the solid angle sub-
tended at P by S, and as we saw in Exercise 4, § 7, Chapter III (p. 69),
may be regarded as analytic at interior points of S if we permit it to be
many valued. In this case, the branches will differ by constants, and so
the derivatives will be continuous. Hence the subtraction of such a
potential will not affect the limit, as z approaches 0, of the difference D.

We notice also that if the integral giving D were extended over
S’ — ¢’, where ¢’ is a small circle about $, it would vanish in the limit
as z approached 0. Thus without affecting the limit of D we may assume
that p vanishes at p, and that the field of integration is an arbitrarily
small circle about . It follows that if the integral D’, with the same
integrand as D, but extended over a circle ¢’ of radius 4, tends to 0
with a, uniformly as to z, the limit of D, as z approaches 0, will be 0.
We now prove that this is the case. We write

D =1I,—3I,—3I, — 31,,

Il=‘£f‘uA1dS', L= [[u4,dS, I,=[[p4,ds,
I, = ff‘ttA4dS’,

A==, A= (5 —5)7 d=(5—%)LE—ép—no),

A4=<71i+%>(2§—§%—77¢,7)2-

The end will be attained if we show that the integrals I; approach 0
with «, uniformly as to z.

This may be done by the introduction of the distance g from P to
the projection (£, %) of g,
2 =774 22,
Then
] ¥ ’,IZ .
and if —§=<2=<4, 6 and a can be chosen so small that uniformly
as to z in this interval, the quantity on the right is less, say, than §.

_ll'g

Then 7 > % and similarly ¢ > %.
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We now attack I;, using Lemma IV (c) and (b), and the law of the
mean.

I, = ﬂA dS—/Affy;—fji oyt o) 4S

Hence, since || < M2, 7>§, t>%,

a
73z ,

5 (72 + z‘“’)%

;Illglﬁlgszf’;zds'
),

= ‘/7384Mn

The integral is not greater in absolute value than %, for any z, as
may be seen by using the substitution »’ = z tan 2. Hence, since u ap-
proaches 0 with 4, it follows that I, does also, uniformly as to z.

The remaining three integrals can be treated similarly. All are
bounded quantities times g. Thus, lim D = 0. We formulate the re-
sult in

Theorem X. If U s the potential of a double distribution on S with
piecewise continuous moment w, and if the mowment is continuous at the
point p of S, then the difference between the derivatives of U in the divection
of the positive normal to S at P, at two points of this normal equally distant
from p, approaches 0, as the poinits approach p. In particular, if the
derivative approaches 0 from ome side, it does also from the other.

“Our second result on normal derivatives assures us that their limits
exist on S, but under the more stringent hypothesis that the moment
has continuous second derivatives with respect to £ and # in a neighbor-
hood of p, where & and % are the codrdinates of a variable point g of
S with respect to a tangent-normal system of axes at p. We shall
establish this by a method illustrating a different means of attack on the
properties of potentials in the neighborhood of masses.

We construct a right circular cylinder with the normal to S at p
as axis, and with radius small enough so that the portion of S near p
within the cylinder is included in the region on which u has continuous
derivatives of second order. Let V' be the portion of space within this
cylinder, on the positive side of S, and otherwise bounded by a plane
normal to the elements of the cylinder. If the radius of the cylinder is
small enough, and the bounding plane is suitably chosen, ¥V will be a
regular region, and we may apply the divergence theorem to it. We
change the variables in the divergence theorem to &, %, {, and apply it
to the functions

9 1 g 1 0 1

E Y:”a_n? Z=p5E5
the letters x, y, z entering » being regarded as fixed. The function g
is regarded as defined in ¥ by means of its values on S, and the con-
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vention that it shall be independent of {. It then has continuous partial
derivatives of the second order in the closed region V. If P (x, y, 2)

isin V, 71; becomes infinite in V, and it is necessary to cut it out from
the field of integration. We surround P by a small sphere ¢, with center
at P. The divergence theorem then gives, since —; satisfies Laplace’s
equation in V — v,

fouw o9 1 ou 9 1 opu 9 1
[t + Gnanr + Sap v )av

V—o

where v denotes the region within ¢, and S is the surface bounding V.
Let us investigate the integral over ¢. As the normal is understood to be
directed outward from the region of integration, it is here into the
sphere o, 7. e. toward the point P from which 7 is measured. Hence the
normal derivative is the negative of the derivative with respect to 7,

and so is 712— Accordingly

01 — _
ff,uﬁ7d5 = ,uffd!? =4nu.
[4 2

Suppose we now let ¢ shrink to the point P. The volume integral is
. . . |
convergent, for since the derivatives of - with respect to &, #, {, are

the negatives of the derivatives with respect to %, v, z, the volume
integral is the sum of three components of force due to volume distri-
butions with continuous densities. Hence, as u approaches u (P), we
have

op 91 du 01  au 9 17
fﬂ[—a—m: tanany Tt ar )Y ﬂ ;S + 4 (P).
4
If we follow the same procedure with
opu 1 ou 1 _ou 1
X“?’j?y’ bT]?’ Z_‘T'?:

the integral over ¢ vanishes in the limit, and we have

2 ! 1 a,u 01 ou 9 1°
ﬂ“’ ‘”““fﬂa— Ev+ Gianr T ot ary Y
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Subtracting this identity from the preceding, we have

@) —ﬂf(m) %dV:ff,u%%dS —ﬂ%;ds + dmp (P).
14 5 S

The volume integral is the potential of a volume distribution with con-
tinuous density. It therefore has continuous derivatives throughout
space. The second integral on the right is the potential of a surface dis-
tribution with differentiable density, and so, by Theorem VII, has con-
tinuous derivatives in V, except possibly where S cuts the cylinder, and
certainly at all points of 7 near . The last term on the right is con-
tinuously differentiable throughout V. The first term on the right is
the potential U of the double distribution we are studying, plus the
potential of a double distribution on the rest of the surface bounding
V, which is analytic near $, minus that due to the rest of S, also
analytic near .

Hence U coincides with a sum of functions all of which are continuous-
ly differentiable in a portion of ¥ near . As p may be any interior point
of S, we may enunciate the following theorem, which includes the result
we desired to establish.

Theorem XI. If the moment p of the double distribution on S has con-
tinuous partial devivatives of second order on S, then tn any vegion V,
partially bounded by S, but containing no boundary points of S, and such
that a point P of V can approach S only from one side while remaining
n V, the partial devivatives of the potential U of the distribution, when
defined on the boundary of V by their limiting values, ave continuous in
the closed region V.

Exercise.

Show that if P is exterior to V, the term — 4my (P) in formula (4) must be re-
placed by 0, and if P is an interior point of the portion of S bounding V, it must be
replaced by — 27z u (P). Hence find again, on the hypothesis that g has continuous
derivatives of second order, the results stated in Theorem VIII.

7. The Discontinuities of Logarithmic Potentials.

The treatment of logarithmic potentials can be carried out along
lines parallel to the treatment employed for Newtonian potentials, and
is in many respects simpler. However, their behavior can also be in-
ferred directly from the behavior of Newtonian potentials. We proceed
to substantiate this remark.

We first show for the usual continuous logarithmic distributions
what we have already seen to be the case for the logarithmic particle,
namely that they are limiting cases of Newtonian potentials of dis-
tributions, on or within finite sections of cylindrical surfaces, as these
sections become infinitely long in both directions.
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Let us examine the case of a volume distribution of .density
% =x (£, 5), in a cylinder with elements parallel to the z-axis, whose
trace on the (%, y)-plane is a regular plane region 4. Let the cylinder
be cut off by the planes 2 = — f,, 2 = ff,. We are interested in the
existence and character of the limiting potential

ol [fzor+| [ [}

where C is independent of the codrdinates of the attracted particle at
P (x, y,0), though it will have to depend on 8, and , if the limit is to
exist. We carry out first the integration with respect to {. There is
no difficulty in showing that the triple integral may be thus evaluated
as an iterated integral, even when P is interior to 4 . If #’ represents the
projection of # on the (x, y)-plane, that is, the distance from (&, %)

o(x,9),
f it —» f —ulog Lo HIBESE
w2+cz R R

‘We must determme C so that the limit in the expression for U exists. Let
¢ denote the value of the last integral when #* = 1. This is in harmony
with the convention made for logarithmic potentials (p. 63). Then

B+ VBi+1
; — B VBT
Bo+ VB F 7® —ﬁ1+1’ﬂ1+1}
%4t = x1
f ¢= %og[ﬁz+1/32+1 iR T

¢ = xlog

_/71
and if C is taken as — ¢ times the area of 4,
b oy Bo+VBI+1 — B+ B+

ﬂ’-—)w

Az e
— lim ﬂ,{log 1+ /1+<ﬁ ) 1+1/1+<ﬂl> VIR
20 e ()
where we have multiplied and divided the second factor in the logarithm

by its conjugate. Now if P is confined to a bounded region, all the
radicals in this expression approach 1 uniformly, and it follows that the

2

logarithm approaches log;% uniformly, and that the limit of the
integral is the integral of the limit:

U= [[2nlog > ds.
4
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Thus the logarithwmic potential of a distribution over an avea is indeed a
limiting case of a Newtonian potential, and a similar discussion will es-
tablish the corresponding facts for simple and double logarithmic dis-
tributions on curves.

We remark that if the above potential is thought of as that of a
logarithmic spread of surface density o, then ¢ = 2%, and a similar
situation exists with respect to distributions on curves. The amount of
matter attracting according to the law of the inverse first power, in any
area of the (x, y)-plane, is always to be understood as the amount of matter
in a cylinder of height 2 whose trace is the given avea, when the logarithmic
potential is interpreted as a Newtonian potential, or as a Limiting case
of a Newtonian potential.

The second question we have to consider, is whether—to keep to
the case of the volume potential —the potential of the portion of the
infinite distribution outside the planes z = — a and z = a, is continuous,
together with its derivatives, in the (%, y)-plane. It is readily computed
to be

' (o 1

U= {fmlog " des
The integrand is clearly continuous in &, 5, #, ¥, in any region which
keeps these variables bounded and in which #x is continuous. Therefore
U’ is continuous in x and ¥ in any bounded region. As for the deriva-
tives with respect to x and y of the integrand, they will be found to be
expressible as rational functions of %, v, &, and %, and 1/ a® - 7’2, whose
denominators are products of powers of a2 4-7'2 and of (@ + 1/;2_—{_—7’5) .
Hence the derivatives of the integrand also are uniformly continuous
when the variables are bounded, and it is the same with the derivatives
of U”.

Thus the logarithmic potentials are equal to the Newtonian potentials
due to bounded sections of the corvesponding infinite cylindrical distribu-
tions, increased by combinuous functions with comtinuous devivatives of
all orders.

As an example, the potential of the volume distribution we have
considered, bounded by two parallel planes, satisfies at interior points,
Poisson’s equation

ViU =—4nx.

If U be regarded as the logarithmic potential
1
U= £ [ologds

of a surface distribution on the plane region 4, then

V2U =—2mo.
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Exercises.
1. Make a table of the properties, near the masses, of the logarithmic potentials
1
U=£fo'log;7d5, U=fllogyl,ds, U= f‘u log ds
c

corresponding to those derived for Newtonian potentials in the present chapter.
2. Derive a few of these properties by the methods used in the chapter.

For further information on the discontinuities of Newtonian poten-
tials at points of the masses, the reader should consult above all the
article of E. ScuaMmipT, in Mathematische Abhandlungen H. A. SCHWARZ
gewidmet, Berlin, 1914. The treatment given in POINCARE’s Pofentiel
Newtonien, Paris, 1899, may also be studied with profit. Further works
on the subject may be found through the bibliographical indications at
the end of the present volume.

Chapter VII.

Potentials as Solutions of Laplace’s Equation;
Electrostatics.

1. Electrostatics in Homogeneous Media.

The fundamental law of electrostatics was discovered by CouLoums?,
and states that the force between two small chavged bodies is proportional
in magnitude to the product of the charges and inversely proportional to the
square of their distance apart,

ey ey
y2 2

F=c¢

the force being one of repulsion or attraction according as the charges ave
of the same or opposite kinds.

The constant of proportionality depends on the units employed.
The unit of charge is usually so chosen in electrostatics that ¢ = 1.
In determining this unit, however, it is found that the medium present
has an effect. Thus if the unit were determined in air at atmospheric
pressure, the value of ¢ would be found to rise by a fraction of one percent
as the pressure was reduced toward 0. It is understood then, that the
unit charge is such that two of them, a unit distance apart, repel with
a unit force in vacuo. We shall consider in § 9 the effect of the medium
or dielectric in which the charges are located. For the present we shall
regard the space in which the charged bodies are placed as devoid of
other matter. This will serve as a good approximation to actuality when

1 Histoire et mémoires de I’ Académie royale de sciences, Paris, 1785, pp. 569—577.
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the charges are situated in air, with all different dielectric media at a
considerable distance from the charges compared with their distances
from each other.

Couloumb’s law then agrees with Newton’s law, except for a reversal
of the sense of the force. We shall have electrostatic potentials of the
same form as the gravitational potentials. The reversal of sense in the
force will be accounted for by agreeing that the force shall be the nega-
#ive of the gradient of the potential (see Chapter III, p. 53).

Conductors. Materials differ in the resistance they offer to the motion
of charges placed on them. A charge on a non-conductor, such as a piece
of glass, will not change in distribution perceptibly, even when sub-
jected to electric forces. On the other hand, charges on conductors,
among which are metals, move under any changes in the field of force in
which the conductors are placed. A conductor may be defined as a body,
a charge on which cannot be in equilibrium, if there is any electric
force at any point of the body. The charge will be so distributed as to
produce a field exactly neutralizing that in which the conductor is
placed.

If the conductor was initially uncharged, it nevertheless appears to
possess charges when introduced into a field of force. This is accounted
for by the assumption that the conductor originally had equal and
opposite charges, distributed with equal and opposite densities, so that
they produced no effect. The production of a field of force in the con-
ductor, by changing its position to one where there are forces, or by
bringing charges into the neighborhood of the conductor, separates these
charges, and produces the distribution which annihilates the field in the
conductor in the manner indicated. The charges which appear because
of the field are called nduced charges, and their total amount is 0. If the
conductor was originally charged, the induced charges are superposed,
and the total charge remains unchanged by the addition of the induced
charges. Since there is no force in a conductor when equilibrium is es-
tablished, Gauss’ theorem (p.43) indicates that there are no charges
in the interior. This is born out experimentally. We recapitulate:

In an electrostatic field, the potential is constant throughout each con-
ductor, and there are no charges in the interiors of the conductors. There will,
in general, be induced charges on the surfaces of the conductors. The total
charge on each conductor is independent of the inducing field.

2. The Electrostatic Problem for a Spherical Conductor.

So far, potential theory has appeared in the light of the theory of
certain distributions of matter acting in accordance with Newton’s law,
the distributions being given. The last two chapters were concerned with
a derivation of properties needed for a change of point of view, and
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from now on, the potential theory will take on more the aspect of the
theory of Laplace’s equation.

In order to determine the electrostatic distribution of a given charge
on a spherical conductor, new methods are not needed. At the same time,
we approach the question from the new point of view, since in other
problems, we cannot, as a rule, know the distribution from simple con-
siderations of symmetry, or on the basis of knowledge already gained
of distributions which satisfy all the requirements. The spherical con-
ductor will thus illustrate a general problem of electrostatics.

We formulate the problem as follows. We have a sphere of radius «,
whose center we take as origin of codrdinates. We first determine the
potential and then the density of a charge E in equilibrium on the
sphere, from the following data:

a) U=const, 0=p=<a, P2U=0, a<ep;

b) U is everywhere continuous;

¢) the derivatives of the first order of U are everywhere continuous,
except for o = a ; here they satisfy the equation

au oU
Jn,  on_
o being the surface density of the distribution;

=—4no,

d) oU — E as p becomes infinite.

We shall seek a solution of this problem on the assumption that
U is a function of g only. It will appear later (p. 218, Ex. 1) that the
solution is unique. Either by substituting U = U () in Laplace’s equa-
tion, or by borrowing the form of that equation in spherical cosrdinates
from § 3, we find that it takes the form

1 4a au
VZU——Ez—dQQ" d() = 0.
We find, accordingly, from (a), that
gﬂ._cl, U~——~{—cz, for ¢ >a.

do
The condition (d) then shows that ¢, = 0 and ¢; = — E. Accordingly,
(a),

from (b) and (a

u== @<,

U= 0=a

&Imml

This gives the potential. The density is determined by (c). This gives
E E
_a_z‘—O:—“j:?ZG, or G":m,

The density is thus constant. As a check, we notice that its integral
over the surface of the sphere gives the total charge.
Kellogg, Potential Theory. 12
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Exercises.

1. Determine, as a solution of Laplace’s equation with suitable auxiliary con-
ditions, the potential of a double distribution on the surface of a sphere. Assume
that the potential is a function of the distance from the center only, and that the
total moment is a given quantity M.

2. Determine, by the method of this section, the potential of a hollow sphere
of radii @ and b, of constant density ». Compare the results with Exercise 11, § 3,
Chapter III (p. 57).

3. General Coordinates.

For the treatment of special problems, suitable codrdinate systems
are well nigh indispensable. The fact that the surface of the sphere, in
thelast section, is given by setting p equal to a constant, was a great
help. We shall be justified if we devote some attention to coérdinate
systems in general, with the main object of finding a means of express-
ing 72U in terms of any given codérdinates in a simple manner.

Unless the reader is already somewhat familiar with the subject, he
may find it helpful to illustrate for himself the following developments
in the case of spherical cotrdinates, of which the simplest analytic
description is given by the equations

(1) x=psingpcos?#, y=gsingsind, z=pcos?.

In an analogous way we define a system of codrdinates in general by
the equations

(2) %= {(q1, 9 93), y =g (91,92 95) z="h(q,,9,,9)-

We shall suppose that the functions f, g, # are continuously differentiable
for any values of the variables considered, and that they are solvable

fOI‘ ql) q2’ 93:
=06 %92, $=¢%Yy72, §=4g*7y72.

Then to a point (x, y, z) of space, or of a region of space where the nec-
essary conditions are fulfilled, there corresponds a set of values of
91, 95, g3, and to a set of values of ¢;, ¢,, g5, there corresponds a point
(%, 5, 2) of space.

A geometric picture of the system of codrdinates ¢, ¢,, ¢5 is possible
(fig. 23). Suppose we regard ¢, as constant, and allow ¢, and g, to vary.
Then the equations (2) are the parametric equations of a surface, which
we shall call a g;-surface. To different values of g, correspond different
surfaces. We thus have a family of gy-surfaces, to each of which is at-
tached a value of g;. Similarly, we have a family of ¢;-surfaces, and a
family of g,-surfaces. When values are assigned to ¢, ¢,, and g5, these
values pick out surfaces, one from each family, and their intersection
gives the point whose codrdinates are (¢4, ¢,, ¢;). On the other hand, if
a point is given, the three surfaces on which it lies, one from each family,
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determine the values of the three coérdinates. Of course this is based on
the assumption that the surfaces are well behaved, and intersect pro-
perly. Thus, if at a point, the surfaces, one from each family through
that point, intersectedina curve through that point, the point would not
be determined by the codrdinates. Such inconveniences cannot arise
if the curves in which the pairs of surfaces intersect meet at angles
which are the faces of a trihedral angle which is not flat, 4. e. if the
functional determinant

ox dy 0z

0q 01’ gy

gy =const.
gp=const.

¢  Swya | 0x 9y 0z
9 (91, 92 93) dgy’ 04qy° 04y |’
ox dy 0z
o 22 22 . 77
P s () 73 > 9 s Fig. 28. 7

is not 0, for its rows are direction ratios of these three curves. We assume
that it is not 0 ; this amounts to thé condition already mentioned, that
the equations (2) be solvable for ¢, ¢,, ¢-

The curves given by (2) when g, and ¢, are held constant, that is,
the intersections of g,-surfaces and g;-surfaces, are curves along which
g, alone varies. We call them g¢;-curves. Similarly, we have g,-curves
and gy-curves. If ¢;, ¢,, g5 are functions of a single variable ¢, the equa-
tions (2) give us the parametric equations of a curve. We shall find use-
ful, expressions for the differentials of x, y, z and of the length of arc s
of such a curve. The first follow at once from (2):

dx = §—;qu + ;—;d{iz + a%dqa,

[7] [7] d
@ dy = 5o dgy + 50 dgy + 57 dgs,

0z

0z dz
dz= 5 -dq + qudqz + 54, %%

The square of the differential of arc is the sum of the squares of these:

(6) ds*=0Q,dq] + Qydq; + Q,dg;
T 2Q53dG,d95 + 205, dq5d9; + 2Q1,d g, dgy,
where

_[0x\? 0y\2 0z \2 _ 0% 0o« dy dy dz 0z
0= (50) + o) + Ga)» Qu=55 50 + 5y 50 T o7
None of the quantities Q,, Q,, Q, vanish, for then one of the rows of the
functional determinant (3) would consist of vanishing elements, and

the determinant would vanish.

From (5) we obtain the differentials of arc of the cosrdinate curves,
measured in the sense of increasing values of the codrdinates, by allow-
ing one alone to vary at a time:

(6) ds; = V@;d91, dsy = V@d%, dsg = VQ3 aqs.
12*
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From (4) we find the direction cosines of these curves:

ox 9y 0z 0x 9y 9z O0x Oy Oz
) 0491 091 041, 09y 09y 04y, 045 0945 095
¥or 19 V& JQ:  ¥Q: V2 Vs V2 V2
and from these, we find the cosines of the angles wyy, Wy, @y, between
the pairs of codrdinates lines:

COS Wy = D5 , COS@g = 1 , COS;, = Lis

V92 Qs Vs Q1 } 91 Qs
In spherical and cylindrical codrdinates, these quantities vanish — that
is, the codrdinate curves, and hence also the cotrdinate surfaces, meet
at right angles (except at points where the functional determinant
vanishes). Such systems of coodrdinates are called orthogonal systems,
and from now on, we shall confine ourselves to orthogonal systems.
Accordingly, we shall have Qyy = Q3 = 0, = 0.

Exercises.

1. Determine the points at which the functional determinant (3) is 0, in the
case of spherical coérdinates, and note that (a) at such points the coérdinate sur-
faces cannot be said to meet at right angles, and (b) that such points do not
uniquely determine the codrdinates, even under the restriction of the usual in-
equalities 0 <9 <7, 0 < @ <2 7.

2. Show that the condition for orthogonality can also be expressed in the form

dq; 9q; | 0q; 0¢; | 949; Og;

9x 9x Ty 9y T 9z 92 O ET

There are two quantities which we now wish to know in terms of Q;, Q,,
and Q,. The first of these is the absolute value of the functional de-
terminant (3). If we square that determinant according to Laplace’s
rule! we find

| 0( ) s Ql ) ler Q31
‘ ¥ v, 2 2
0 r 0 99 || Gror Qs O s
\ Q317 Q23’ Q3 !
and hence, since our system is orthogonal,
L ox, 9.2 | A A
8 L5 | = 5 Os .
(®) L 01 2 a0y | V1020

The second quantity for which an expression in terms of Q;, Q,, and
0, is desired is

. d(y,s) 12, [0(z %) 72 d (¥, y) 12
Dy, = l/[a (41, [Iz)J v i_a (91, ‘12)11 + [‘9 (91, ‘Iz)J ’

1 See, for instance BOCHER's Introduction to Higher Algebra, Chap. II, § 9.
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This we transform by the readily verified algebraic identity

b, c |2 a,brz_ . . R .
A A YR R

—(ao + b8 + cy)?,

c, a |2

with the result
(9) D12 = VQ1 Qz - Q?g = 1/01 Qz-

Expressions for Gradient, Divergence, Curl and Laplacian in General
Codrdinates. In general systems of coérdinates it is usually convenient
to express a vector at a point in terms of its components in the directions
of the codrdinate lines at that point. We have seen that the gradient
of a scalar function is a vector which is independent of any system of
axes. If we allow the (%, y, z)-axes tohave the directions of the coérdi-
nate curves at P, for the moment, we have for the gradient of U at P,

oU dU aU AU U 90U
(5 3 55) = (5 300 %)

or, using the expressions (6),

1 oU 1 oU 1 90U
].O d(]"—-zl7U= Ty Te=—a L, T— A |
(10 gra (VQI 04 Q. 99° V0 3q3>
the components being along the coérdinate lines.

The quantities @, Q,, Q; are given, in the expressions following (5),
in terms of ¢y, ¢,, 5. It is often convenient to have them in terms of
%, y and z. This can now be accomplished by means of the above ex-
pression for the gradient. In fact, if we set U = ¢, in (10), we have

1
Vg, = <—: 0, 0).
SN

1
Thus Vg, appears as the magnitude |V ¢,| of the gradient of ¢,

[ _ 991 \? 9q,\? _ _% 2

vl =Y (Ga)+ () + (52
Thus, if we know the codrdinates g¢; in terms of %, v, z, the desired
expressions are

1
whose value is

1 1 1

(1) Q=T = war Q=g

We next seek the expression for the divergence of a given vector
field. Let W (W,, W,, W) denote a vector field, specified in terms of
its components in the direction of the coérdinate curves. We may find
an expression for the divergence of this field by the method of Exer-
cise 5, § 5, Chapter II (p. 39). That is, we start from the definition

[Jw,as

divW = lim > o
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where V is the volume of a regular region R containing the fixed
point P, the divergence at which is defined; S is its bounding surface,
and the limit is to be taken as the maximum chord of R approaches 0.
By the use of the divergence theorem it can be shown that in case the
field is continuously differentiable in a neighborhood of P the limit
exists, and actually gives the divergence (see p. 39, especially Exer-
cise 5). Under these circumstances we may take for the regions em-
ployed, any convenient shape. We shall suppose that R is bounded
by a pair of coérdinate surfaces from each of the three families: ¢, = ay,
G=a+Aa, =20y, =0+ A0y, §s=a3, g3 = a3+ Adag. We
now evaluate the above limit. First we have to compute the surface
integral. To do this, we shall need to know the area 4 S of an element
of the gy-surface, bounded by ¢;-curves and g,-curves. For this we have
the formula from the Calculus?
Dtdg 40
AS——:J qf Dy, dg,dgs,

where D, is the expression for which we found the value (9). The re-
sult of employing the law of the mean in this integral is the expression

4S8 = 1/@16241914192’

which will form the basis for the surface integrals in the computation
of the divergence. Similarly, the expression for the volume of R is

AV = V@l@EA%A%A%-

Consider now the integral of the normal component of the field
over the face g = a5 of the region R. Since W, = — W,, this is the
negative of

[[W,dS =1lim I W, 4S = lim X W, V0,0, 4¢, 4g,
a,+Aay a,+Aa,

:f f W, V@az_d%d%-

a; a,

If we form the same integral for ¢; = a, + Aa,, and subtract the above
from it, we shall have the integral of the normal component of the field
over two opposite faces of the region:

a,+Aa, a,+4a,

f f {[Wa V Q1 Qz]q;=u;+d a; — [Wa V@j@]q;:as} dg, dq,

a, a,

— {[W3 V@]Z:Ziﬁ — w70, Qz]g;:g;ﬁ} Aa, Aa,,

gy=as+4a, 9:3=2a3

1 Oscoop, Advanced Calculus, p. 66, (7) and p. 269, Ex. 3.
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where we have employed the law of the mean for integrals. Using
also the law of the mean for differences, we reduce this to

F; ] =
W{Wa VQ1 Qz} Aay Aay Aay,
3

in which the variables ¢,, ¢,, ¢; have mean values corresponding to some
point in R.

If we now add the corresponding expressions for the other pairs of
faces in the g,-surfaces and the gy-surfaces, divide by the expression

AV=10Q, 0,0, Ada, Aa, Aa, obtained above, for the volume of R, and
pass to the limit as Aa,, da,, Aa; approach 0, we find

(12) diviW =V.- W
1 8 oo o 0
= ,/'M[;gz VQ:Qs Wy + N V@0, Wo + PR VQ1 Qq Wa] .

It is true that for this expression all that is required of W is the
existence of its derivatives of first order. We have supposed that they
are continuous. But the existence of the derivatives of Q,, Q,, Qs is
also implied, and this means a requirement not explicitly made. We shall
assume that the derivatives involved exist and are continuous. Usually
the coérdinate systems employed are those in which the functions
Q;, Qs, Q5 are analytic in their arguments.

We are now able to find easily the expression for the Laplacian of
U in terms of general coérdinates. As it is the divergence of the gradient
of U, we have at once, from (10) and (12),

V01Q:Q5 L0y O, 94, 04s Q2 392

9 9;22.(19)}
+ 3q3< Qs 0gy

As an application, let us find the Laplacian of U in spherical co-
ordinates. We identify ¢; with g, ¢, with ¢, ¢; with J. The square of the
differential of arc can be found by geometric considerations, or from
the equations (4) and (5), and is

ds? = do? + p?sin®*J dg?* + ¢*d9?,

so that
Ql':l! 022925m2’0, Q{?‘zgz'
We have, accordingly, by (13),

(14) VZUzﬁ[ 9 (o2 sing 2¥ )+a(p(sirllﬁ §—Z)+£§<smﬂ agﬂ
:_12*_62—( %Z) + g2si1n219 %2¢U g sxnz? 507 Slnﬂﬁ)
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Exercises.
3. Express the Laplacian of U in terms of cylindrical codrdinates, g, ¢, z:
x¥=pcosQ, Yy=g¢gsing, z=2z.
4. Check, by the formula (12), the expression for the divergence in spherical
codrdinates obtained in Exercise 6, § 5, Chapter II (p. 39).

5. Ring Codrdinates. The equations
X = ¥ COS = 7 sin z = sin p where 7 = sinh 2
o # V= ¢ " coshl 4+ cosu ’ " coshAd 4 cosp ’

define #, ¥, # as functions of 4, y, . Show that the @-surfaces are meridian planes
through the z-axis, that the A-surfaces are the toruses whose meridian sections
are the circles

24+ 22 —2xcothd+1=0,

and that the y-surfaces are the spheres whose meridian sections are the circles
42+ 22+ 2ztanpu—1=0.

Show that the system is orthogonal, except at points where the functional de-
terminant (3) vanishes, and find these points. Finally, show that

ar% 4 du?
ds? — 42 do?
s yt: sinh2 ] + (p},
and, accordingly, that

o SEAL0(0U) 000y, r o]
T3 [az JA dp \ Ou sinh? i d¢? |’

4. Ellipsoidal Coodrdinates.

As an illustration of coérdinate systems, we choose ellipsoidal
codrdinates. We shall then make use of them in the discussion of the
conductor problem for an ellipsoid. We start with a basic ellipsoid,

xZ 2 22
(15) St Lt a=1, a<k<a,
and form the functions
12 yZ /:2

f(s):a2+s+b2+s+cz+s
@ (s) = (a® + s) (b* + 5) (> + 9).

The equation f (s) = 0, when s has any fixed value not a root of
@ (s), represents a central quadric surface, and for various values of s,
a family of such surfaces. The sections of these surfaces by each of the
codrdinate planes are conic sections with the same foci, and the family
of surfaces is called a confocal family. When s is very large and positive,
the surface is a large ellipsoid of nearly spherical form. As s decreases,
the ellipsoid shrinks, the difference in its axes becoming more pro-
nounced. For s = 0, the ellipsoid reduces to the basic ellipsoid (15). The
surface continues to be an ellipsoid as long as s > — ¢2. As s approaches

—1,
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— ¢2, the semi-axes of the ellipsoid approach Va2 —c2, J52 —¢2, 0,
that is, the ellipsoid approaches the flat elliptical surface

) x2 y2
(16) az_cz"]" b2 ¢=1 2=0,

— C

having swept out all the rest of space.

When s becomes slightly less than — ¢2, the quadric surface be-
comes a hyperboloid of one sheet, at first very close to the portion of the
(#, y)-plane outside the elliptic surface (16). As s goes from — ¢2 to
— b2, this hyperboloid expands, sweeping out all the rest of space
except for the points of its limiting form, which is a portion of the
(%, z)-plane bounded by a hyperbola, namely

x2 22 <1) y:())

a? — b2 b2 — 2 =

(17)

As s decreases from —b2 to —a?, the surface passes from the com-
plementary portion of the (%, z)-plane, as a hyperboloid of two sheets,
to a limiting form which is the entire (y, z)-plane, having swept through
the whole of space except for the points of its limiting positions.

Thus for any point (x, ¥, 2) not in a coérdinate plane, and, in lim-
iting forms, for points in these planes, there is an ellipsoid of the family,
a hyperboloid of one sheet of the family, and a hyperboloid of two
sheets of the family, which pass through the point. It looks as if we
might have here three sys-
tems of surfaces which
could functionascoérdinate
surfaces, one of which is
the basic ellipsoid. This is
indeed the case. The values

of s giving the members

of the confocal system are Co? I e v 0\& £

the roots of the cubic \ 2\ \
f(s)p(s) =0.

We have just had geometric
evidence that this equation
has three real roots, 4, u,
andy, distributed as follows Fig. 24.

(18) —@2=<y< —P=Zp< —cr<A.

The fact admits an immediate verification by considering the variation
of the function f (s) as s ranges from — o to + oo (fig. 24). The equa-
tion £ (s) ¢ (s) = 0 has the same roots as f (s) = 0, except that the in-
finities of / (s) may be additional roots of the first equation. These occur
at the end-points of the intervals (18), and as the roots of f (s) ¢ (s) = 0
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vary continuously with x, v, z, we see thus that this equation has, in
fact, the roots distributed as stated.

We thus find that the system of confocal quadrics may be regarded
as a system of A-surfaces, which are ellipsoids, a system of y-surfaces,
which are hyperboloids of one sheet, and a system of »-surfaces, which
are hyperboloids of two sheets, and we may take 4, u, » as a system of
codrdinates. A point in space, except possibly for certain points in the
codrdinate planes, determines uniquely a set of values of A, u, ». Let us
see if, conversely, a set of values of 4, 4, v, in the intervals (18), de-
termines a point in space. Expressing the determining cubic in fac-
tored form, we have, since the coefficient of % is — 1,

(19) 1)@ (s) = 2% (6% + 9) (¢ + 5) + ¥ (¢ + ) (@® + 3)
+2@+ ) +s)—eE)=—(—HE—pE—1).

From this, we find by putting s = — a?, — b2, — c¢?, successively,
o __ (@42 (@ + ) (a®+9) o _ P4 A) B2+ p) B+
X" = (u2 — b2) (az _ 02) ’ - (a2 — b2) (b2 —_ 02) 4
(20)

o @D @ 0@ +)

(@ = %) @2 — %)

Each set of values of 4, p, v determines thus, not one, but eight points,
symmetrically situated with respect to the (x, y, z)-planes. This diffi-
culty can be avoided by an introduction of new codrdinates, like those
given by the equations q‘;’ =a2 41, g‘; =024 u, qg = ¢, + v, with
the understanding that ¢, shall have the same sign as x, etc., or also
by the introduction of elliptic functions. However, we shall not do this
at this point, for our application will deal only with functions which
are symmetric in the (», y, 2) planes, and it will not be necessary to
distinguish between symmetric points.

The codrdinates, u, v are known as ellipsoidal cosrdinates. We shall
now show that the system is orthogonal. The components of the gradient
of A are its partial derivatives with respect to x, vy and z. We find these by
differentiating the equation defining 4, f (1) = 0:

’ al 2
FW g+ a7 =0

where
, . %2 2 22
) =— @+ A2 BEFANE (E+ AT
Accordingly,
(- 2= 2y 2z
Q) Vi=(—@inrm ~wEATE T @EATE)

V wand 'y being found by substituting x and » for 1. The condition for
the orthogonality of the A-surfaces and the u-surfaces, is, in accordance
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with Exercise 2, §3 (p. 180),

2 y2 22
GIN@E i TETAC T T @A @
. 4
from which we have dropped the factor THT

different from 0 at all points off the coérdinate planes. We omit a con-
sideration of the orthogonality at points of these planes, though it does
not break down at all of them. We see that the above condition is
fulfilled at other points by subtracting the equations f (1) =0, f (u) =0,
defining 4 and u:

:0’

. This factor is certainly

1 22 y2 22
b-i@rrera tEreTa t e ETal
Thus, if A and u are distinct, the condition for orthogonality is fulfilled,
and A = u is only possible on a coérdinate plane, in fact, on the boundar-
jes of the limiting areas (16) and (17). One shows similarly that the
other sets of surfaces are orthogonal.

Our object is now to find Laplace’s equation in ellipsoidal codrdi-
nates. It is all a question of the quadratic form (5) for ds2. We use the
expressions (11). By (21),

4 22 y2 22 4
02 = Gy [ T T @ = T

(V 4)? and (V »)? being found by the substitution of x and » for 1. But we
should like to have these coefficients expressed in terms of 4, p, v alone.
This can be done by differentiating the identity (19) with respect to s
and substituting A, u, v, for s, successively. We find

Fs)(s) +7(s) ¢ (s)
=—(s—AEs—p—(6—ANE—2)—(s—u(s—1),

iy — A=) A=) oy — o ) (e — )
’ . — 7 — 9
f(V)— (p(v) N

With these values the quadratic form becomes
di 2 du 2
(22) (4 —m YT W=
= =) ()
2V9 0
A simplification suggests itself, namely the introduction of new coérdi-
nates defined by the differential equations

ar au
=, d?’]:—-—-—__,.———, = .
2V @A) +2)— 9w + 2V

(23)
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The differential of arc is then given by
(24) ds*=(A—p) A—2)dE+ A —p) (p—r)d+ (A—») (p—v)al%

Such a change of cotrdinates does not affect the system of coérdi-
nate surfaces, since each of the coérdinates is a function of but one of
the old. We shall employ the following solutions of the differential equa-
tions (23):

) E_loods wlf ds . é__lvds
(26) 2ew T2 ew 2) Vo0

By (8), the absolute value of the functional determinant (3) is
A—pA—2)(p—r),
and this vanishes only on the ellipse (16) or the hyperbola (17), where
the equality sign is used in those relations.
The Laplacian of U is given by
1 02U 02U

7Ry p— ) [‘”””752* (=) 5.2

02U
+ (@4 —p ‘5@‘} .

26) P2U =

Exercise.

» Develop the notion of general coérdinates in the plane. Develop elliptic co-
ordinates.

5. The Conductor Problem for the Ellipsoid.

For the solution of the problem of finding the distribution of a
charge in equilibrium on an ellipsoidal conductor?, we have the condi-
tions, analogous to those for the spherical conductor,

a) U=const, 10,
U =0, 0<4;
b) U is everywhere continuous;

c) the derivatives of the first order of U are continuous everywhere
except for A = 0, where they satisfy the equation

aU oU
@:— on.

= —4no;

d) oU — E as g becomes infinite, p? = % 4 y2 4 22

1 For historical indications with respect to the potentials of ellipsoidal surface
distributions and of solid ellipsoids, see the Encyklopadie der Mathematischen
Wissenschaften, II A 7b, BURKHARDT-MEYER, § 15.
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Let us see if there is a solution of Laplace’s equation depending only
onA. If there is, it will reduce to a constant on the surface of the ellipsoid,
as it should. If U depends only on A, or, what amounts to the same
thing, only on &, the expression (26) shows that it must satisfy the

equation
au
—d'E—z‘ZO, whence U:A§+B.

The constants are now determined by (d). Comparing the coefficients
of s in the identity (19), we find
Adtutv=0—(a®+ 0+ ).

As p and v are bounded, 4 becomes infinite with g, and lim E};— =1.

Moreover,
(@495 <@(s) < (a®+ ),
and hence

L cect [ e L cec L
2 (@ + 9% 2) e+ 9t Y+ Ve + 4~
2 A

It follows that lim ]ﬂ & =1, and hence that lim ¢& = 1. Hence

. .1 . B
me=hmEU_qu+?)

If this limit is to exist and equal E, we must have 4 = E and B=0.
A A,

Thus
i
]

U=FE¢=

vo| oy

(@7) -

U=

rol try

0,

., o=
(9 (5) B
A <
Vo) -
the second formula resulting from condition (b) and the fact (a) that
U = const. in the interior of the ellipsoid.

We have thus found a function which satisfies all the stated con-
ditions in the interior of each octant. But U is obviously continuous and
continuously differentiable in 4, and 1 is a continuous and continuously
differentiable function of %, v, z, for a root of an algebraic equation,
whose leading coefficient is constant, is a continuous function of the
coefficients, and is continuously differentiable in any region in which
it does not coincide with another root. But the points at which roots
of the equation /(s) ¢ (s) =0 coincide are on the bounding curves of (16)
and (17). Thus U is continuous, with its derivatives of first order, also on

the coérdinate planes, except on these curves. We shall see (Theorem VI,
Chapter X) that solutions of Laplace’s equation on two sides of a
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smooth surface, on which the solutions and their normal derivatives
agree, form a single function satisfying Laplace’s equation both near and
on the surface. The doubtful curves are then cared for by Theorem XIIT,
Chapter X. Thus the values of U in the various octants form a single
function, which really meets the conditions of the problem.
It remains to determine the density. As U is constant in the interior

of the conductor, condition (c) becomes

ou = —4mo, Or G=__Lﬁ_£]‘:£é_ai

ony ’ 47 Ony 87!'/(77([)_ 611;,_’

as is seen by the rule for differentiating an integral with respect to a
limit of integration. The outward normal points in the direction of the
A-curve, so that by (22)
(A —p) (h—9) 92 V ¢ (4
2 __ ¥ 22 gr .,
adn? = ) dA?, and hence an——Z Ry p—

If we put this value, for A = 0, in the expression for ¢ just obtained, we
find the result

(28) 0= E

dnYuv
The problem is completely solved, if we are content with a formula!
But here curiosity should be encouraged rather than the reverse, and
discontent is in order. How does the charge distribute itself ? The pro-
duct u» is the value, for A = 0, of one of the symmetric functions of
the roots of the equation determining the ellipsoidal cotrdinates. Let us
find its value in terms of the coefficients. We compare the coefficients
of s in the identy (19):

— (v +v2+42Ap)
—_ xz (bZ _|_ 02) ,+_ y2 (62 + a2) _IL_ 22 (a2 + bZ) — (b2 c2 _|_ c2 g2 __lr_ a2 b2)

_ #2711y, 9R/l 1y 271 1 1,1 1
=eve(L(G+a)+uGra) it —(F+a+s)]
1 1 1 %2 32 22 x2 y2 22
=aref(t ta)(F it a1 - (et
Hence, on the surface of the ellipsoid A = 0,
2 2 22
a4 24 8)
The equation of the plane tangent to the ellipsoid at (x, y, 2), is
X
X—0)+ Y=y Fx+EZ—25=0,
and the distance of this plane from the center is
x2 + yZ + 22
i M O T e
p=—7_2—_—_b——§—:_5_2_, whence Vg—i—g—:—i—é:l.
/* y 2 ¢ 4
o tiwra
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Collecting the results, we reduce (28) to

E

(29) R T TTA

or, the density of the charge at any point of the ellipsoid is proportional
to the distance from the center of the tangent plane at that point.

Since the tangent planes to two similar and similarly placed ellip-
soids have, at the points where they are pierced by any ray from their
center, distances from the center which are in the constant ratio of the
dimensions of the ellipsoids, we may also picture the distribution of the
charge as follows. Imagine a slightly larger similar and similarly placed
ellipsoid, and think of the space between the two ellipsoids filled with
homogeneous material of total mass E. The thickness of this layer of
material gives an approximate idea of the density, for the distance
between tangent planes at corresponding points differs from the distance
between the ellipsoids, measured perpendicularly to one of them at the
point in question, by an infinitesimal of higher order. If now the outer
ellipsoid shrinks down on the inner one, always remaining similar to it,
and the material between them remaining homogeneously distributed,
we shall have in the limit a distribution of the material which has the
density of the charge in equilibrium on the conductor.

It will be observed that the density is greatest at the ends of the
longest diameter, and least at the ends of the shortest diameter. This
illustrates the tendency of a static charge to heap up at the points of
greatest curvaturel.

Exercises.
1. Check the result (29) by integrating the density over the surface of the ellip-
soid.

2. On the assumption that the density varies continuously with the form of
the ellipsoid, show that the density of a static charge on a circular lamina of
radius a at a distance p from the center is given by

E 1
T 4ma Ya2 = g%’

3. Find the potential of the above lamina at points of its axis (a) by specializ-
ing the result (27), and (b) by finding the integral of the density times the recip-
rocal of the distance. Reconcile the two results. Beware an error which intro-
duces a factor 3!

4. Show that if the ellipsoid is a prolate spheroid, and we pass to the limit
as the equatorial radius approaches 0, the limiting distribution is that of a material
straight line segment of constant linear density. Thus find again the result on
the equipotential surfaces of Exercise 1, page 56.

1 In fact, the density of charge on the ellipsoid is proportional to the fourth root
of the total curvature of the surface.
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6. The Potential of the Solid Homogeneous Ellipsoid.

Let us now consider a solid homogeneous ellipsoid (15), of density x.
By Exercise 3 (p. 39) the volume cut out from this ellipsoid by a conical
surface with vertex at the center and cutting out an element 4 S from

the surface is
AV = —;—ffr cos (n, #)dS = %ffﬁ as,
48

a8

wherée p is the perpendicular from the center to the plane tangent to
the ellipsoid at the variable point of integration. The volume cut out
by the same cone from a similar and similarly placed ellipsoid, whose
dimensions are #, times those of the basic ellipsoid, is #} timés the

above quantity, or
A I/r: 1;53 rf?ﬂ dSOy
is,

where we have introduced a subscript in order to emphasize the fact
that the integration is over the surface of the basic ellipsoid. The
volume cut out by the same cone from the region between two ho-
mothetic ellipsoids # = 1, u = u, is

Hpodso —utp, Au AS,,

i,

3
— uj
3

aAv ="

where we have used the laws of the mean for differences and for inte-
grals. We should like, however, to have this element of volume ex-
pressed in terms of the values of the functions involved at a point
within the element of volume. We notice that for points on the same ray
from the center, the values of p, for two ellipsoids, are proportional to
the dimensions of the ellipsoids, so that on the ellipsoid # = %, p = up,.
Also, for the element of surface of this ellipsoid, we have, 4 S = %24 S,,.
Hence

AV =13 454u.
u

Armed with this implement, we may now find the potential of a
solid ellipsoid, or, more generally, of the body bounded by two homo-
thetic ellipsoids, # = u;, u = u,. We have, for the latter

. % AV . 5ASAu L ((pas
(30) U= 11m2~;_ = ”hmZ”g, — xf;ffT_du
%y S

We notice first that the inner integral is the potential of a charge in
equilibrium on the surface of the ellipsoid # = %, since the density of
such a charge is proportional to p. Hence the inner integral is constant
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within the inner limiting ellipsoid; that is, it is independent of %, ¥
and z, and is a function of # alone. Hence U is itself constant inside the
inner ellipsoid # = #,;, and we find again Newton’s theorem (Chapter I,
p. 22), to the effect that an ellipsoidal homoeoid exercises no attraction at
points in its nterior. In fact, we might have found the law of distribu-
tion of a static charge on an ellipsoidal conductor by means of Newton’s
theorem, but we should still have had left the problem of determining
the potential.

Let us now revert to the solid ellipsoid, writing accordingly, in (30),
u#; = 0, uy = 1. The inner integral is the potential of a spread of density
# on the ellipsoid # = u of semi-axes ua, ub, uc. It is therefore, by (29),
the potential of a spread of total charge 4wabcud. This potential, as
given by (27) is

[e0]
(31) U,=2mabcu? f L,
i V7 (9)

where
P, ) = (@2 4 5) (B2 + 5) (202 + 5),
and where () is the greatest root of the equation

y2 22

, %2
7 (u, 2) = a?u® 4+ 4 + b2 u? 4 A + c2u? 4 4 —1=0.

Thus the potential U of the solid ellipsoid, at an exterior point, given
by (30), becomes

1 [ee]

U, = 2nabcxfu2 f ds

¢ awle®s)

au.

This expression can be reduced to a simple integral. We introduce
first a new variable of integration in the inner integral, by the substitu-
tion s = u?%:

} o]
Ue:2nabcxjuf ,dL du, v:@.
g ¢ Ie@ "

We next employ integration by parts in the outer integral:

o]

1 o s
at u? a |t 1 1 do

U | =—du = *f: +—fu2————du.
of JW(’) {2 th(t)] 2J " Yo v

v 0

As v is the greatest root of the equation
%2 :V2
(32) e

it always decreases as u increases, and hence may be used as a variable
of integration in place of #. For # = 1, v =, the greatest root of the
Kellogg, Potential Theory. 13

2
3 = u?,
[ ]
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equation f (1) = 0, while as # approaches 0, v becomes infinite. Hence

0 [e]
B it B s y2 22 dv
Ue_nabCH{Jy&(—t) fl:a2+y+b2+y+52+ﬂ:]1,m}.

i

or, finally

2]
x2 y2 22 ds
(33) Ue:nabc%f[l_az—f—s—bz—}—s_cz-}-szm'
i

To find the potential at an interior point, let # = #, characterize the
ellipsoid of the family of similar ellipsoids which passes through the
point P (%, v, z). We shall now have to break the integral (30), —always
with #; = 0, #, = 1—into two, since for the ellipsoids # << #,, P isan
exterior point. For the first; we still use for the inner integral in (30)
the value (31). For the second, we have merely, by (27), to replace the
lower limit by 0. Accordingly we have

Uy [ee] 1 w0
Ui=2nabcx{fufi—t_du+fuf ﬁ_du}
PR FIU R R ATFI0

In the first integral, we carry out an integration by parts. In the second,
the inner integral is a constant. We note that when v =0, u=1,, by
(32), since P (x, y, z) lies on the ellipsoid # = %,. We have, then,

o0
Uz=2nabcx{ﬁz~f at

Uy

[o0)
1 1 dv 1 — u2 dt
+-j‘u2:“du+ of ___]
2 Vo) du 2 JYe0

3 —
¢ e |, § 0
o) o
— 2 at _f 2 y? 22 av
= nabe{MOJy(p_(t)_ : l:az_{_v"‘bz_i_v‘*‘cz_{_v}yw)*
S
+1— ) fff—t}
that is, o 1ol
@ 22 32 22 ds
(34) Uz':nabc”.of[l_az—l—s_bz—{—s—cz—{—s}1m'

Thus in the interior of the ellipsoid, the potential is a quadratic func-
tion of %, ¥ and z:

(35) U,=—Ax* — By*—Cz2+ D,
where ® 4 ® p
A:nabcxf © D:nabcxj’,s ,
(a® + s)Yp(s) Jo(s)

0 0

B and C being obtained from 4 by interchanging b with «, and ¢ with a,
respectively.
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Exercises.

1. Show that the constants 4, B, C are the same for all similar ellipsoids of
the same density. Hence infer Newton’s theorem on the ellipsoidal homoeoid.
Find the value of the potential at interior points in terms of a single integral.

2. Specialize the results obtained for the potential at exterior and interior
points of a homogeneous ellipsoid to the case of the sphere.

3. Obtain from the potential the components of force at interior and exterior
points of a homogeneous ellipsoid. Verify directly that the formulas (33) and (35)
define a potential for which V2U,=10, V2U;= — 2(4 4 B+ C) = — 47x.
Verify that the potential and force are everywhere continuous, and that U, ap-
proaches the total mass as ¢ become infinite.

4. Show that in the interior of a homogeneous ellipsoid, the equipotentials
are similar and similarly placed ellipsoids of more nearly spherical form than
the given ellipsoid. Show by means of the developments of the preceding chapter
that these equipotentials join on continuously, with continuously turning tangent
planes, to the equipotentials outside the ellipsoid, but, as a rule, with breaks in
the curvatures.

5. In finding the solution of the conductor problem, we saw that a family of
confocal ellipsoids, A = const. would be equipotentials. Show that a necessary
and sufficient condition that a family of surfaces F (#, ¥, 5) = C, where F (%, ¥, 2)
has continuous partial derivatives of the second order, may be equipotential

. . . . . V2 F
surfaces of a Newtonian potential (solution of Laplace’s equation) is that WF—)Z
is a function ¢ (F) of F only. Show that if this condition is fulfilled, the
potential is

F

¢
U=1:1f.e—/(”m‘“ dt + cy.

6. Specialize the formulas for the potential of a homogeneous ellipsoid to
the cases of prolate and oblate spheroids, evaluating the integrals which occur.
Answers, for the prolate spheroid,

6F [4x%2 — 242 — f2 s—f  s%T(24% —92) — 2/2 42
U == /
e e e L

for the oblate spheroid,

U G_E[ﬁﬂru/z sin1 ] 4 sz(ﬂ—zzz)—fm]

TR 2f s 2y _p

where f is the distance between the foci of a meridian section, s the sum of the focal
radii to P, #, or 2, the distance of P from the equatorial plane, and # the distance
from P to the axis. In both cases U, is obtained from U, by replacing s by 2a,
the maximum diameter of the ellipsoid.

Numerical Computation. The computation of the potential and of the
forces due to the distributions considered above, involves, in general, the
solution of cubics and the evaluation of certain elliptic integrals. The
approximate solution of the cubics in numerical cases will give no dif-
ficulty, but the usual approximation methods for the integrals do not
work well on account of the slow convergence of the integrals. They are

13*
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probably best handled by reducing them to normal forms and having
recourse to tables?.

Exercises.
7. Writing the formula (33) in the form

U,=mabex{D ) — A Q) #2— B((A)y? — CH7],
and writing

—  Ya® — Vaz—éz 24
2 ¢ — 2 1 <
Yarts=- sing ' Var+2 sind ’ 0<19=2’
__'/a2~b2 e v /b2—02
k=] k_}l—k_l/m,
show that
2
Al =——Fh 9 —E (b, 9],
(a® — )T &
B(Z)zl——?g———(E(k,ﬁ)—k’zF(k,0)—k2—s_1?:19—i)—iE:V,
(a — B2 2 R2 ¢ Tl — &2 sin? §-
2 sinﬂ}fl—kzsinzﬁ .
cy= [ —E® 9],
W= i . (9]
D(A):——z—lF(k, 9).
(a2 — ¢%)®

In the derivation of the above values for B(4) and C (1), reduction formulas
are needed. These may be obtained by differentiating

singeosg L sing)T— Ksinty
J1 — &%sin? @ cos @

8. An ellipsoidal conductor of semi-axes 7, 5 and 1 carries a unit charge in equi-
librium. Determine the potential on the ellipsoid, and at points on the axes distant
20 units from the center. Compare these values with those of the potential at the
last three points due to a unit charge on a small spherical conductor with the same
center. Give the results to at least three significant figures.

9. The same ellipsoid, instead of being charged, is filled with homogeneously
distributed attracting matter, of total mass 1. Find the potential at the same three
exterior points, and determine the coefficients of the quadratic expression giving
the potential at interior points. Plot the section, by the plane containing the
greatest and least diameters, of the material ellipsoid, and of several interior
equipotential surfaces.

7. Remarks on the Analytic Continuation of Potentials.

Newtonian potentials are analytic at the points of free space. On the
other hand, the potentials, or some of their derivatives, are discontinuous

1 The definitions of the Legendre normal forms, and brief tables of their
‘values may be found in B. O. PIERCE, 4 Short Table of Integrals, Boston.
A discussion of elliptic integrals may be found in the ninth chapter of OsGooD’s
Advanced Calculus.
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on surfaces bearing masses, or bounding regions containing masses.
But if the surfaces and the densities are analytic, the potentials to either
side of the surfaces, as we have seen in special cases, may be analytic,
and may be continued analytically across the surfaces. This is not in
contradiction with the results of the last chapter, it simply means that
the functions representing the potentials, when so continued, cease to
represent the potentials on the farther sides of the surfaces.

Take, for instance, the potential of a charge E on the surface of a
spherical conductor of radius a. Inside the sphere, the potential has the

E ., . E . . . .
constant value —. Outside, it is e The first is analytic throughout
space. The second is analytic except at the origin. For p < a, — no

longer represents the potential of the charge on the given spheré. It
does, however, represent the potential of the same charge on any
smaller concentric sphere of radius b, as long as ¢ > &. This is an
example of the fact that one and the same function may be the poten-
tial of different distributions in a region exterior to both. We shall see
later (p. 222) that when, and only when, the potential is given throughout
all of space, the distribution of masses producing that potential is
uniquely determined.

The potential, at exterior points, of a charge in equilibrium on an
ellipsoidal conductor can also be continued into the interior, when it
will also be the potential of an equal charge in equilibrium on a smaller
confocal ellipsoid at exterior points. In fact, this holds for A > — c2,
and even in the limit, so that the same function can represent the poten-
tial of an elliptic lamina. Here the function ceases to be analytic on the
edge of the lamina—but only on the edge. It can therefore be continued
across the lamina. Here it ceases to be the potential of the lamina,
because that potential must have a break in its normal derivative on
the lamina. The function cannot therefore be single valued (see the
exercise, to follow).

A potential, then, can be due to various distributions. We shall see
that it can always be regarded as due to masses nearer to the attracted
particle than those which first determine it. Whether the masses may be
made more distant or not is usually a question to be decided in special
cases?.

1 The formulas of the last chapter show that if a potential of a volume dis-
tribution can be continued analytically across an analytic bounding surface from
either side, the density, if it satisfies a Hélder condition, must be analytic, and
similar results hold for other distributions. Conversely, it can be shown that ana-
lytic densities on analytic surfaces always yield potentials which are analytically
continuable across the surfaces, and similarly for volume distributions with ana-
lytic densities. For references, see the Enzyklopadie der Mathematischen Wissen-
schaften, II C 3, LICHTENSTEIN, p. 209.
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Exercise.
Specialize the result (27) to the case of a charge on an oblate spheroid, and
evaluate the integral. Show that

1 (ry + 79)°

=1 2 g2

2
where 7; and #, are the extreme distances from P to the circumference of the limit-
ing circular lamina. Thus obtain the result in the form
2a
7t rs’
the branch of the inverse sine being so determined that U, vanishes at infinity.

Thus show that U, is continuable across the limiting lamina, and forms then a
two-valued function of the position of P. Note that U, is constant on a system

E .
U, = —sin™1
a

E
of confocal spheroids, and that on the axis, it is equal to - times the angle sub-

tended at P by a radius of the limiting lamina.

8. Further Examples Leading to Solutions of Laplace’s
Equation.

Steady Flow of Heut tn an Infinite Strip. Suppose we have a very long
strip of homogeneous metal, so long that we may idealize it as infinitely
long. Let its two edges be kept at the temperature 0, and let one end
be kept at temperatures which are a given function of position along
that end. Let the faces be insulated. What will be the distribution of
temperatures in the strip when a steady state is realized ?

Let the strip lie in the region of the (x, y)-plane
R: 0=x=n,y=0.

We have, then, for the temperature U, the conditions
ox2 day?

U:Ofbr ¥ =0 and ¥ ==,
U=f(x) for0=x=<m and y =0,

U continuous and bounded.

=0 in R,

We follow a method used by DaNIEL BERNOUILLI! in a discussion
of the vibrating string, and called by EULER Bernouilli’s principle. 1t
consists in finding particular solutions of the differential equation, and
building up the desired solution as a linear combination of the particular
solutions with constant coefficients, a process here rendered feasible
by the linear homogeneous character of Laplace’s equation. For, be-
cause of this character, a constant times a solution is a solution, and a
sum of solutions is a solution.

1 Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, Vol. 19,
(1775), p. 239.
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The method of finding particular solutions consists in seeking to
satisfy the differential equation by a product of functions, of which
each depends on one variable only. The solution of the partial differen-
tial equation is then reduced to the solution of ordinary differential
equations. Thus if X is a function of x¥ only, and Y of y only, U = XY
will satisfy Laplace’s equation provided

X"y 4 XY — 0,
or
X" y”
—)? = — 7 .
As the left hand member does not-depend on vy, and the right hand
member does not depend on x, neither can depend on either. Hence

both are equal to a constant, which we shall write —c2 Then
X'+ 2 X =0, Y'— Y =0,
and we find, accordingly, four types of particular solutions:
U=XY =e¢%coscx, e¥coscx, e¥sincxy, e°?sincx.

The first and third are not bounded in R, and we therefore reject
them. The first does not vanish for ¥ = 0. But the fourth does. The
fourth will also vanish for ¥ = 7, for all values of y, provided sinme¢c = 0.
This equation is satisfied for c = 1, 2, 3, . ... Thus we have an infinity
of solutions of Laplace’s equation, all satisfying all but the third of the
conditions to be met.

The question is now, can we build up the desired solution, fulfilling
the third condition, in the form

[ee]
U= Yb,en¥sinnx?
1

If so, and if the series converges for y = 0, the third condition demands

that 0 .
fx) = 3b,sinnx 0x<m.
1

We are thus led to a problem in Fourier series, and if f (%) can be ex-
panded in a series of this type which converges at every point of the
interval, it is not difficult to show that the above series for U satisfies
the conditions of the problem. We shall not consider questions of con-
vergence at present. For Fourier series, a discussion of this topic will be
found in Chapter XII, § 9. For reasonably smooth functions, the con-
vergence is assured.

Exercises.

1. Show that if in the above problem f(#) = 1, we are led to the solution
sin x
sinhy ’

U = %—[:e‘y sinx + %6‘31’ sin 3x - %—6‘57 sinfx.. :l = % tan~1
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: 7
the inverse tangent lying in the interval (O, »2-> . Show that U satisfies the con-

ditions of the problem, except at the corners, where they are contradictory. Draw
the isothermals for small » and ¥.

2. Solve the problem of the text with the alteration that the edges » = 0
and x = 7 are insulated instead of kept at the temperature 0.

3. Five of the faces of a homogeneous cube are kept at the temperature 0,
while the sixth is kept at temperatures which are a given function of position on
this face. Show how to determine the temperatures in the interior, assumed
stationary.

If, instead of having finite breadth, the plate occupies the whole
upper half of the (#, y)-plane, the method of series is not available.
Instead of replacing ¢ in a particular solution by a variable # taking on
positive integral values, multiplying by a function of #» and summing,
we may, however, replace it by a variable «, taking on continuous
values, multiply by a function of «, and integrate. In fact, we assume

Ux,y) =joe“"'y [4 («) cosax + B(x)sinex]du.

Waiving the justification of the steps, we now set ¥ = 0. If U is to take
on the assigned values f(x) on the edge ¥ = 0 of the plate, we should
have

oo}

flx) = f[A () cosax + B (o) sinax]do.

0

The question then arises, can A4 () and B(«) be so chosen that an
arbitrary function f(x) is represented by this formula? The answer is
contained in the following identity, known as Fourier<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>