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Preface. 
The present volume gives a systematic treatment of potential 

functions. It takes its origin in two courses, one elementary and one 
advanced, which the author has given at intervals during the last 
ten years, and has a two-fold purpose: first, to serve as an introduction 
for students whose attainments in the Calculus include some knowledge 
of partial derivatives and multiple and line integrals; and secondly, 
to provide the reader with the fundamentals of the subject, so that 
he may proceed immediately to the applications, or to the periodical 
literature of the day. 

It is inherent in the nature of the subject that physical intuition 
and illustration be appealed to freely, and this has been done. However, 
in order that the book may present sound ideals to the student, and 
also serve the mathematician, both for purposes of reference and as 
a basis for further developments, the proofs have been given by rigorous 
methods. This has led, at a number of points, to results either not 
found elsewhere, or not readily accessible. Thus, Chapter IV contains 
a proof for the general regular region of the divergence theorem (Gauss', 
or Green's theorem) on the reduction of volume to surface integrals. 
The treatment of the fundamental existence theorems in Chapter XI 
by means of integral equations meets squarely the difficulties incident 
to the discontinuity of the kernel, and the same chapter gives an 
account of the most recent developments with respect to the Dirichlet 
problem. 

Exercises are introduced in the conviction that no mastery of a 
mathematical subject is possible without working with it. They are 
designed primarily to illustrate or extend the theory, although the 
desirability of requiring an occasional concrete numerical result has 
not been lost sight of. 

Grateful acknowledgements are due to numerous friends on both 
sides of the Atlantic for their kind interest in the work. It is to my 
colleague Professor COOLIDGE that lowe the first suggestion to under­
take it. To Professor OSGOOD I am indebted for constant encouragement 
and wise counsel at many points. For a careful reading of the manuscript 
and for helpful comment, I am grateful to Dr. ALEXANDER WEINSTEIN, 
of Breslau; and for substantial help with the proof, I wish to thank 
my pupil Mr. F. E. ULRICH. It is also a pleasure to acknowledge the 
generous attitude, the unfailing courtesy, and the ready cooperation 
of the publisher. 

Cambridge, Mass. 
August, 1929. 

O. D. Kellogg. 



Contents. 

Chapter I. 
The Force of Gravity. 

1. The Subject Matter of Potential Theory . . . . . . . . . . . " I 
2. Newton's Law • . . . . . . . . . . . . . . . . . . . . . . .. 2 
3. Interpretation of Newton's Law for Continuously Distributed Bodies 3 
4. Forces Due to Special Bodies • 4 
5. Material Curves, or Wires 8 
6. Material Surfaces or Laminas . 10 
7. Curved Laminas . . . . . . . 12 
8. Ordinary Bodies, or Volume Distributions 15 
9. The Force at Points of the Attracting Masses 17 

10. Legitimacy of the Amplified Statement of Newton's Law; Attraction 
between Bodies . • . . . . • . . . • . . . . . . 22 

II. Presence of the Couple; Centrobaric Bodies; Specific Force. . . . . . 26 

Chapter II. 
Fields of Force. 

I. Fields of Force and Other Vector Fields. 
2. Lines of Force. . . . . . . . . . . 
3. Velocity Fields ......... . 
4. Expansion, or Divergence of a Field . 
5. The Divergence Theorem .•.. 
6. Flux of Force; Solenoidal Fields 
7. Gauss' Integral 
8. Sources and Sinks . . . 
9. General Flows of Fluids; Equation of Continuity. 

Chapter III. 
The Potential. 

1. Work and Potential Energy 
2. Equipotential Surfaces . . . . . . . . . . 
3. Potentials of Special Distributions. . . . . 
4. The Potential of a Homogeneous Circumference 
5. Two Dimensional Problems; The Logarithmic Potential 
6. Magnetic Particles . . . . . . . . . . . 
7. Magnetic Shells, or Double Distributions. 
8. Irrotational Flow 
9. Stokes' Theorem ..... . 

10. Flow of Heat . . . . . • . 
II. The Energy of Distributions 
12. Reciprocity; Gauss' Theorem of the Arithmetic Mean. 

28 
28 
31 
34 
37 
40 
42 
44 
45 

48 
54 
55 
58 
62 
65 
66 
69 
72 
76 
79 
82 



Contents. VII 

Chapter IV. 
The Divergence Theorem. 

1. Purpose of the Chapter .......... 84 
2. The Divergence Theorem for Normal Regions. 85 
3. First Extension Principle 88 
4. Stokes' Theorem • . . . . 89 
5. Sets of Points . . . . . . 91 
6. The Heine-Borel Theorem 94 
7. Functions of One Variable; Regular Curves 97 
8. Functions of Two Variables; Regular Surfaces 100 
9. Functions of Three Variables . • . . . • . . 113 

10. Second Extension Principle; The Divergence Theorem for Regular Re-
gions . • . . • . . . . • . • . . . . . . . • • • • • . 113 

11. Lightening of the Requirements with Respect to the Field. 119 
12. Stokes' Theorem for Regular Surfaces • . . . . . . . . . 121 

Chapter V. 
Properties of Newtonian Potentials at Points of Free Space. 

1. Derivatives; Laplace's Equation .• 
2. Development of Potentials in Series . . . . 
3. Legendre Polynomials .•••.•.... 
4. Analytic Character of Newtonian Potentials. 
5. Spherical Harmonics . . . • . . • . . . . 
6. Development in Series of Spherical Harmonics 
7. Development Valid at Great Distances .... 
8. Behavior of Newtonian Potentials at Great Distances 

Chapter VI. 
Properties of Newtonian Potentials at Points Occupied by Masses. 

1. Character of the Problem . • . • . • . 
2. Lemmas on Improper Integrals .... 
3. The Potentials of Volume Distributions 
4. Lemmas on Surfaces • • • • • • • . . 
5. The Potentials of Surface Distributions. 
6. The Potentials of Double Distributions 
7. The Discontinuities of Logarithmic Potentials 

Chapter VII. 
Potentials as Solutions of Laplace's Equation; Electrostatics. 

121 
124 
125 
135 
139 
141 
143 
144 

146 
146 
150 
157 
160 
166 
172 

1. Electrostatics in Homogeneous Media . . . . . . . 175 
2. The Electrostatic Problem for a Spherical Conductor 176 
3. General Coordinates • . • • . . . • • . 178 
4. Ellipsoidal Coordinates . . . . . . . . . . . . . 184 
5. The Conductor Problem for the Ellipsoid. . . . . 188 
6. The Potential of the Solid Homogeneous Ellipsoid 192 
7. Remarks on the Analytic Continuation of Potentials 196 
8. Further Examples Leading to Solutions of Laplace's Equation. 198 
9. Electrostatics; Non-homogeneous Media ••••.•.•.• 206 

Chapter VIII. 
Harmonic Functions. 

1. Theorems of Uniqueness • • . . . • . . . . • . • . . . . . 211 
2. Relations on the Boundary between Pairs of Harmonic Functions 215 



vrn Contents. 

3. Infinite Regions • • . . . . . . . . . . . . . . 
4. Any Harmonic Function is a Newtonian Potential 
5. Uniqueness of Distributions Producing a Potential 
6. Further Consequences of Green's Third Identity 
7. The Converse of Gauss' Theorem . • . . 

Chapter IX. 
Electric Images j Green's Function. 

1. Electric Images . . . . . . . . . 
2. Inversion; Kelvin Transformations ........ . 
3. Green's Function ............... . 
4. Poisson's Integral; Existence Theorem for the Sphere 
5. Other Existence Theorems . . ; . . . . . . . . . 

Chapter X. 
Sequences of Harmonic Functions. 

1. Harnack's First Theorem on Convergence. 
2. Expansions in Spherical Harmonics . . . 
3. Series. of Zonal Harmonics . . . . . . . 
4. Convergence on the Surface of the Sphere 
5. The Continuation of Harmonic Functions. 
6. Harnack's Inequality and Second Convergence Theorem 
7. Further Convergence Theorems ...... . 
8. Isolated Singularities of Harmonic Functions . 
9. Equipotential Surfaces . . . . . . . . . 

Chapter XI. 
Fundamental Existence Theorems. 

216 
218 
220 
223 
224 

228 
231 
236 
240 
244 

248 
251 
254 
256 
259 
262 
264 
268 
273 

1. Historical Introduction . . . . . . . . . . . . . . . . . . • • . • 277 
2. Formulation of the Dirichlet and Neumann Problems in Terms of Inte-

gral Equations . . . . . . . . . . . . . . . . . . . . . . " 286 
3. Solution of Integral Equations for Small Values of the Parameter. • 287 
4. The Resolvent . . . . . . . . . . . . . . . . . . . . . . .. 289 
5. The Quotient Form for the Resolvent . . . . . . . . . . . .. 290 
6. Linear Dependence; Orthogonal and Biorthogonal Sets of Functions 292 
7. The Homogeneous Integral Equations . . . . . . . . . . . . ., 294 
8. The Non-homogeneous Integral Equation; Summary of Results for Con-

tinuous Kernels . . . . . . . . . . . . . . . . • . 297 
9. Preliminary Study of the Kernel of Potential Theory 299 

10. The Integral Equation with Discontinuous Kernel. 307 
11. The Characteristic Numbers of the Special Kernel. . 309 
12. Solution of the Boundary Value Problems . . . . . 3ll 
13. Further Consideration of the Dirichlet Problem; Superharmonic and 

Subharmonic Functions .........•.........••• 315 
14. Approximation to a Given Domain by the Domains of a Nested Sequence 317 
15. The Construction of a Sequence Defining the Solution of the Dirichlet 

Problem. • . . . . . . . . . . 322 
16. Extensions; Further Properties of U . 323 
17. Barriers. . . . . . . . . . 326 
18. The Construction of Barriers 328 
19. Capacity 330 
20. Exceptional Points . • • • • • 334 



Contents. 

Chapter XII. 
The Logarithmic Potential. 

1. The Relation of Logarithmic to Newtonian Potentials • 
2. Analytic Functions of a Complex Variable •••••• 
3. The Cauchy-Riemann Differential Equations • . • • • 
4. Geometric Significance of the Existence of the Derivative. 
5. Cauchy's Integral Theorem • . . ..• . 
6. Cauchy's Integral. ....•..... 
7. The Continuation of Analytic Functions 
8. Developments in Fourier Series • • 
9. The Convergence of Fourier Series 

10. Conformal Mapping. . . . . . . . 
II. Green's Function for Regions of the Plane. 
12. Green's. Function and Conformal Mapping 
13. The Mapping of Polygons 

Bibliographical Notes. 

Index 

IX. 

338 
340 
341 
343 
344 
348 
351 
353 
355 
359 
363 
365 
370 

377 

379 



Chapter I. 

The Force of Gravity. 

1. The Subject Matter of Potential Theory. 

While the theory of Newtonian potentials has various aspects, it 
is best introduced as a body of results on the properties of forces 
which are characterized by Newtons Law of Universal Gravitation1 : 

Every particle of matter in the universe attracts every other particle, with 
a force whose direction is that of the line joining the two, and whose magnitude 
is directly as the product of their masses, and inversely as the square of 
their distance from each other. 

If, however, potential theory were restricted in its applications to 
problems in gravitation alone, it could not hold the important place 
which it does, not only in mathematical physics, but in pure mathema­
tics as well. In the physical world, we meet with forces of the same char­
acter acting between electric charges, and between the poles of magnets. 

But as we proceed, it will become evident that potential theory may 
also be regarded as the theory of a certain differential equation, known 
as LAPLACE'S. This differential equation characterizes the steady flow 
of heat in homogeneous media, it characterizes the steady flow of ideal 
fluids, of steady electric currents, and it occurs fundamentally in the 
study of the equilibrium of elastic solids. 

The same differential equation in two dimensions is satisfied by 
the real and imaginary parts of analytic functions of a complex variable, 
and RIEMANN founded his theory of these functions on potential theory. 
Differential geometry, conformal mapping, with its applications to geo­
graphical maps, as well as other branches of mathematics, find impor­
tant uses for Laplace's equation. Finally, the methods devised for the 
solution of problems of potential theory have been found to be of far 
wider applicability, and have exerted a profound influence on the 
theory of the differential equations of mathematical physics, both 
ordinary and partial, and on other branches of anaJysis2. 

1 Philosophiae Naturalis Principia M athemaNca, Book III, Propositions I-VII. 
Formulated as above in THol>ISON and TAIT, Natural Philosophy, Pt. II, p. 9. 

2 Indications on the literature will be found at the end of the book. 

Kellogg, Potential Theory. 



2 The Force of Gravity. 

2. Newton's Law. 

It is our experience that in order to set bodies in motion, or to stop 
or otherwise change their motion, we must exert forces. Accordingly, 
when we see changes in the motion of a body, we seek a cause of the cha­
racter of a force. As bodies about us, when free to do so, fall toward 
the earth, we are accustomed to attribute to the earth an attracting 
power which we call the force.of gravity. It is not at all obvious that the 
smaller bodies on the earth attract each other; if they do, the forces 
must be exceedingly minute. But we do see the effects of forces on the 
moon and planets, since they do not move in the straight lines we are 
accustomed to associate with undisturbed motion. To NEWTON it 
occurred that this deviation from straight line motion might be re­
garded as a continual falling, toward the earth in the case of the moon, 
and toward the sun in the case of the planets; this continual falling could 
then be explained as due to an attraction by the earth or sun, exactly 
like the attraction of the earth for bodies near it. His examination of 
the highly precise description of planetary motion which KEPLER had 
embodied in three empirical laws led, not only to the verification of this 
conjecture, but to the generalization stated at the beginning of the 
first section. The statement that all bodies attract each other according 
to this law has been abundantly verified, not only for heavenly bodies, 
but also for masses which are unequally distributed over the earth, like 
the equatorial bulge due to the ellipticity of the earth, and mountains, 
and finally for bodies small enough to be investigated in the laboratory. 

The magnitude of the force between two particles, one of mass m1 , 

situated at a point P, and one of mass m2 , situated at Q, is given by 
Newton's law as 

where r is the distance between P and Q. The constant of proportio­
nality y depends solely on the units used. These being given, its deter­
mination is purely a matter of measuring the force between two bodies 
of known mass at a known distance apart. Careful experiments have 
been made for this purpose, an account of which may be found in the 
Encyclopedia Britannica under the heading Gravitation l . If the unit of 
mass is the gramme, of length, the centimetre, of time, the second, and 

1 See also ZENNECK: Encyklopadie derMathematischen Wissenscha£ten, Vol. V, 
pp. 25-67. Recently, measurements of a high degree of refinement have been 
made by Dr. P. R.HEYL, of the U. S. Bureau of Standards. See A Redetermination 
of the Constant of Gravitation, Proceedings of the National Academy of Sciences, 
Vol. 13 (1927), pp. 601-605. 

The value of y there given has been adopted here, although it should be 
noted that further experiments by Dr. HEYL are still in progress. 



Interpretation of Newton's Law for Continuously Distributed Bodies. 3 

of force, the dyne, it is found that y = 6'664 X 10-8• If we borrow the 
result (p. 7) that a homogeneous sphere attracts as if concentrated at 
its center, we see that this means that two spheres of mass one gramme 
each, with centers one centimetre apart, will attract eachother with a 
force of '00000006664 dynes. 

In order to avoid this inconvenient value of y, it is customary in 
potential theory to choose the unit of force so that y = 1. This unit of 
force is called the attraction unit. 

Eree-l'cises. 
1. If the unit of mass is the pound, of length, the foot, of time, the second, 

and of force, the poundal, show that y has the value 1'070 X 10-9 • One foot 
contains 30'46 cm., and oile pound, 453'6 gm. 

2. Two homogeneous lead spheres, of diameter 1 ft. are placed in contact 
with each other. Compute the force with which they attract each other. A cubic 
foot of lead weights 710 pounds. Answer, about '0000046 lb. This is approxi­
mately the weight of a square of medium weight bond paper, of side 1/4 in. 

3. Compute the mass of the earth, knowing the force with which it attracts a 
given mass on its surface, taking its radius to be 3955 miles. Hence show that 
the earth's mean density is about 5'5 times that of water. Newton inferred that 
the mean density lies between 5 and 6 times that of water. 

4. Find the mass of the sun, it being given that the sun's attraction on the 
earth is approximately in equilibrium with the centrifugal force due to the earth's 
motion around the sun in a circle of 4'90 X 1011 feet. Answer, about 330,000 times 
the mass of the earth. 

3. Interpretation of Newton's Law for Continuously 
Distributed Bodies. 

Newton's law was stated in terms of particles. We usually have to 
deal, not with particles, but with continuously distributed matter. We 
then naturally think of dividing the body into small parts by the me­
thod of the integral calculus, adding the vector forces corresponding 
to the parts, and passing to the limit as the maximum chord of the parts 
approaches O. This, in fact, is exactly what we shall do. But it should 
be pointed out that such a process involves an additional assumption. 
For no matter how fine the division, the parts are still not particles, 
Newton's law as stated is not applicable to them, and we have no means 
of determining the forces due to the parts. 

The physical law which we shall adopt, and which may well be re­
garded simply as an amplified statement of Newton's law, is the follow­
ing: Given two bodies, let them be divided into elements ajter the manner 
oj the integral calculus, and let the mass oj each element be regarded as con­
centrated at some point oj the element. Then the attraction which one body 
exerts on the other is the limit oj the attraction which the corresponding 
system oj particles exerts on the second system oj particles, as the maximum 
chord oj the elements approaches O. We shall revert to this assumption, 
and consider its legitimacy, on p. 22. 

1* 



4 The Force of Gravity. 

4. Forces Due to Special Bodies. 

Because of their use in other problems of potential theory, because 
of the generalizations which they illustrate, and because of the practice 
which they give in dealing with Newtonian forces, the attractions due 
to special bodies are well worth study. 

While each of two bodies attracts the other, the forces exerted are 
not equal vectors. Their magnitudes are equal, but they are oppositely 
directed. In order to avoid ambiguity it will be convenient to speak 
of one body as the attracting, and the other as the attracted body. This 
merely means that we are specifying the body the force on which we 
are determining. We shall also confine ourselves for the present to the 
case in which the attracted body is a unit particle. It will appear in § 11 
(page 27) that the results are of wider significance than is at first evident. 
This section will be devoted to some illustrative examples. 

Straight homogenemts segment. Let us consider a straight line segment, 
which we regard as having mass, so distributed that the mass on any 
interval is proportional to the length of the interval. The constant factor 
of proportionality A is called the linear density. We have here an ideali­
zation of a straight wire, which is a better approximation the smaller 
the diameter of the wire relatively to its length and the distance away 
of the attracted particle. 

Let axes be chosen so that the ends of the wire are the points (0,0,0) 
and (l, 0, 0) . As a first case, let the attracted particle be in line with the 
wire, at (x, 0, 0), x> l. Let the wire be divided into intervals by the 
points ~o = 0, ~1' ~2' ..• ~n = l (fig. 1). Then the interval (~k' ~k+l) carries 
a mass A LI ~k' which, by our physical law, is to be regarded as concen­
trated at some point ~:c of the interval. The force due to the particle 
thus constructed will lie along the x-axis, and will be given, in attraction 

~K P 
units, by 

If-----+-I -+-1 +-1 ---±-I ---+--
o SI( 51(+1 l oX 

LlX },Mk 
Ie = - IX-=: ~£ ,2 , 

Fig. I. LlYk=O, LlZk=O. 

The force due to the whole segment will be the limit of the sum of the 
forces due to the system of particles, or 

or 

1 

X = - J (XA~ ~)2 ' 
o 

x= __ ),_l_ 
x (x - I) , 

Y=O, Z=O, 

Y=O, Z=O. 

The result may be given a more suggestive form by introducing the 
total mass ]'vI = },l, and considering at what point of the segment a 



Forces Due to Special Bodies. 

particle of that mass should be placed in order to yield the same attrac­
tion on a unit particle at P (x, 0, 0). If c is the coordinate of this point, 

X = - ( Al 1) = -"'! and c = V'-x--;-:-(l---x-'-) • 
:Ie :Ie - C 

Thus the wire attracts a unit particle at P as it the mass at the wire were 
concentrated at a point at the wire whose distance tram P is the geometric 
mean at the distances tram P at the ends at the wire. 

As P approaches the nearer end of the wire, the force becomes in­
finite, but only like the inverse first power of the distance of P from 
this end, although a particle would produce a force which became in­
finite like the inverse square of the distance. The difference is that in 
the case of the particle, P draws near to the whole mass, whereas in the 
case of the wire the mass is distributed over a segment to only one of 
whose points does P draw arbitrarily near. 

As P recedes farther and farther away, the equivalent particle (as 
we shall call the particle with the same mass as the wire, and with the 
same attraction on a unit particle at' P) moves toward the mid-point 
of the wire, and the attraction of the wire becomes more and more 
nearly that of a fixed particle at its mid-point. An examination of such 
characteristics of the attraction frequently gives a satisfactory check 
on the corriputation of the force. 

Let us now consider a second position of the attracted particle, 

namely a point P (~, y, 0) on the perpendicular bisector of the material 

segment (fig. 2). The distance r of the attracted particle from a point 
(~~, 0,0) of the interval (~k' ~k+1) is given by 

r2 = (~k - ~y + y2, 

and the magnitude of the force at P, due to a particle at this point, 
whose mass is that on the interval (~k' ~k+l) is . 

LlF - J..1~k 
k - (~£ _ ~ r + y2 • 

This force has the direction cosines 

~,-~ 
k 2 

r 

-y 
-r-' 0, 

and therefore the components 

A(U-~)LI~k 

-( l)2 J! ' l U- 2 + y2 

o 

- A y LI ~k 

pKl,Y) 
i \L1-7f I , 
I \ 
I 1'\ 
I , 
! I \ I I 

Fig. 2. 

J!. ' 

[(~£ - ~Y+ y2T 



6 The Force of Gravity. 

The limits of the sums of these components give the components of the 
attraction of the segment 

Z=o. 

The first integral vanishes, since the integrand has equal and opposite 

values at points equidistant from E = ~. The second integral is easily 

evaluated, and gives 

if c is the geometric mean of the distances from P of the nearest and 
farthest points of the wire. The equivalent particle, is thus seen to lie 
beyond the wire as viewed from P. This fact is significant, as it shows 
that there does not always exist in a body a point at which its mass can 
be concentrated without altering its attraction for a second body. 
Our physical law does not assert that such a point exists, but only that 
if one he assumed in each of the parts into which a body is divided, 
the errors thereby introduced vanish as the maximum chord of the parts 
approaches O. 

Spherical shell. Let us take as a second illustration the surface 
of a sphere with center at 0 and radius a, regarding it as spread with 

mass such that the mass on any part of the surface 
is proportional ~o the area of that part. The con­
stant factor of proportionality (J is called the 
sur/ace density. We have here the situation 
usually assumed for a charge of electricity in equi­
librium on the surface of a spherical conductor!. 
Let the attracted particle be at P (0,0, z), z =1= a 
(fig. 3). Let LI Sk denote a typical element 

Fig. 3. of the surface, containing a point Qk with 
spherical coordinates (a, cp~, &~). Then the magnitude of the element 
of the force at P due to the mass (J LI Sk of the element of surface LI S'" 
regarded as concentrated at Qk is 

LlF _ !1L1Sk + uLlSk 

k- r: a2+z2-2azcosD£' 

By symmetry, the force due to the spherical shell will have no com­
ponent perpendicular to the z-axis, so that we may confine ourselves 

1 See Chapter VII (page 176). 



Forces Due to Special Bodies. 7 

to the components of the elements of force in the direction of the z-axis. 
The cosine of the angle between the element of force and this axis is 

so that 

a eosiN - z 
r 

LtZk = a(acos&~ - z) LlSk 3' 

[a2 + Z2 - 2 a z cos &£1' 

and the total force is given by the double integral over the surface of 
the sphere 

Z = aIJ (a cos & - z) dS 

[a2 + z2 - 2 a z cos &ri 
s 

This is equivalent to the iterated integral 

:It 2n 

Z = 2JJ (acos&-z)dcpsin&d& a a , , 
[a2 + Z2 - 2azcos&]2 

o 0 

:t 

. 2 2 J (a cos & ~ z) sin & d{}. = 7laa 3. 

[a2 + z2 - 2azcos&p­
o 

In evaluating this last integral (which may be done by introducing r 
as the variable of integration), it must be kept in mind that 

r = -Va2 + Z2 - 2 a z cos 1} 

is a distance, and so essentially positive. T,hus, its value for 1} = 0 is 
I a - z I ' that is a - z or z - a according as a > z or z > a. The result is 

Z = _ 4na2 a = _It!. f 
z2 Z2 or z> a, 

Z = 0 for 0 < z < a . 

That is, a homogeneous spherical shell attracts a particle at an exterior 
point as if the mass of the shell were concentrated at its center, and exercises 
no force on a particle in its interior. 

Homogeneous solid sphere. If a homogeneous solid sphere be thought 
of as made up of concentric spherical shells, it is a plausible inference 
that the whole attracts a particle as if the sphere were concentrated at 
its center. That this is so, we verify by setting up the integral for the 
attraction. Let ~ denote the constant ratio of the mass of any part of 
the sphere to the volume of the part, that is, the density. The mass 
xLtV in the element LtV, regarded as concentrated at the point 



8 The Force of Gravity. 

Q (e, cp, {}) will exert on a unit particle at P (z, 0, 0), a force whose 
magnitude is 

LlF = xLIV 
e 2 + Z2 - 2 e z cos {} 

and whose component in the direction of the z-axis is therefore 

LI Z = _x----=.:( e=--co_s_{}_---'z):-.-Ll_V--c-.. 
[e2 + Z2 - 2 e z cos {} F 

Hence, for the total force, 

a n 2:t 

Z = xIII (e cos{} - z) drp sin{} d{}e.2 de • 

[e 2 + Z2 - 2 ezcos{}]'.r 
o 0 0 

The two inner integrals have been evaluated in the previous example. 
We have only to replace a bye and evaluate the integral with respect to e. 
The result is 

a 

Z = _ 4:n;xJ 2d = _ 4:n;xa3 = 
Z2 e e 3 Z2 

o 
as was anticipated. 

Further examples will be left as exercises to the reader in the 
following sections. We take them up in the order of multiplicity of the 
integrals expressing the components of the force. 

5. Material Curves, or Wires. 

We take up first the case in which the attracting body is a material 
curve. Consider a wire, of circular cross-section, the centers of the circles 
lying on a smooth curve C. If we think of the mass between any pair 
of planes perpendicular to C as concentrated on C between these planes, 
we have the concept of a material curve. By the linear density A of the 
material curve, or where misunderstanding is precluded, by the density, 
at a point Q, we mean the limit of the ratio of the mass of a segment 
containing Q to th€ length of the segment, as this length approaches O. 

Our problem is now to formulate the integrals giving the force 
exerted by a material curve C on a particle at P. Let the density of C 
be given as a function A of the length of arc s of C measured from one 
end. We assume that A is continuous. Let C be divided in the usual way 
into pieces by the points So = 0, Sv S2' ••• , Sn = l, and let us consider 
the attraction of a typical piece LI Sk' The mass of this piece will lie be­
tween the products of the least and greatest value of A on the piece by 
the length of the piece, and therefore it will be equal to A~ LI Sk, where 
;.~ is a properly chosen mean value of A. A particle with this mass, 
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situated at a pointQk of the piece, will exert on a unit particle at 
p (x, y, z) a force whose magnitude is 

LlF = ,,:LlSk 

rl ' 

If ~k' 17k, ~k are the coordinates of Qk, the direction cosines of this force 
are 

~k - X 
cos at = -1'----;;- , cosfJ = 11k - Y 

r k ' 

cosy = Ck - Z, 

1'" _ 
so that the components of the force due to the typical piece are 

LlZ = X£ (Ck - z) LI Sk 

k rf 

The components in each of the three directions of the axes correspond­
ing to all the pieces of the wire are now to be. added, and the limits 
taken as the lengths' of the pieces approach O. The results will be the 
the components of the force on the unit particle at P due to the curve: 

(1) 

X = f "(~r---; x) ds, 
o 

y = f "(1] - y) ds 
1'8 ' 

o 

Z = f }. (Cr -; z) ds. 

o 

We shall sometimes speak of a material curve as a wire. We shall 
also speak of the attraction on a unit particle at P simply as the attrac­
tion at P. An illustration of the attraction of a wire was given in the 
last section. Further examples are found in the following exercises, 
which should be worked and accompanied by figures. 

Exercises. 

1. Find the attraction of a wire of constant density having the form of an 
arc of a circle, at the center of the circle. Show that the equivalent particle is 

distant 1 / .IX from the center, where a is the radius of the arc and 21X is the V SIn IX 

angle it subtends at the center. The equivalent particle is thus not in the body. 
But there is a point on the wire such that if the total mass were concentrated there, 
the component of its attraction along the line of symmetry of the arc would be the 
actual attraction. Find this point. 

2. Find the attraction of a straight homogeneous piece of wire, at any point 
P of space, not on the wire. Show that the equivalent particle lies on the bisector 
of the angle APB, A and B being the ends of the wire, and that its distance c 
from P is the geometric mean of the two quantities: the length of the bisector 

between P and the wire, and the arithmetic mean of the distances PA and PB. 
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3. Show, by comparing the attraction of corresponding elements, that a straight 
homogeneous: wire exercises the same force at P as a tangent circular wire with 
center at P, terminated by the same rays from P, and having the same linear 
density as the straight wire. 

4. Find the attraction of a homogeneous circular wire at a point P on the 
axis of the wire. Show that the distance c of the equivalent particle is given by 

c = d ~, where d is the distance of P from the wire, and d' its distance from 

the plane of the wire. 

5. In Exercise 2, show that if the wire be indefinitely lengthened in both 
directions, the force approaches a limit in direction and magnitude (by definition, 
the force due to the infinite wire), that this limiting force is perpendicular to the 

.' . d. 2)" 1 
wrre, towar It, and of magnitude r' where I'. is the linear density of the wire, 

and r the distance of P from it. 

6. Material Surfaces, or Laminas. 

Consider a thin metallic plate, or shell, whose faces may be thought 
of as the loci formed by measuring off equal constant distances to 
either side of a smooth surface S on the normals to S. We arrive 
at the notion of a material surface or lamina by imagining the mass 
of the shell concentrated on S in the following way: given any 
simple closed curve on S, we draw the normals to S through this curve; 
the "mass included within the surface generated by these normals we 
regard as belonging to the portion of S within the curve, and this for 
every such curve. The surface density, or if misunderstanding is pre­
cluded, the density, of the lamina at Q is defined as the limit of the ratio 
of the mass of a piece of S containing Q to the area of the piece, as the 
maximum chord of the piece approaches O. In addition to the terms 
material surface and lamina, the expressions surface distribution, and 
surface spread, are used. 

As we have noted in studying the attraction of a material spherical 
surface, the notion of surface distribution is particularly useful in 
electrostatics, for a charge in equilibrium on a conductor distributes 
itself over the surface. 

Now, according to Couloumb's law, two point charges of electricity 
in the same homogeneous medium, exert forces on each other which 
are given by Newton's law with the word mass replaced by charge, 
except thatif the charges have like signs, they repel each other, and if 
opposite signs, they attract each other. A constant of proportionality 
will be determined by the units used and by the medium in which the 
charges are situated. Because of the mathematical identity, except for 
sign, between the laws governing gravitational and electric forces, any 
problem in attraction may be interpreted either in terms of gravitation 
or in terms of electrostatics. Thus, in the case of an electrostatic charge 
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on a conductor, the force at any point will be that due to a surface 
distribution. 

As an illustration of the determination of the attraction due to a 
material surface, let us take a homogeneous circular disk, and a particle 
at a point P of its axis. Let the (y, x)-plane coincide with that of the 
disk, the origin being at the center. Then Y and Z vanish, by symmetry. 
Instead of the coordinates 'YJ and 1;, let us use polar coordinates, e and 'P' 
If (J denotes the constant density, the element Ll Sk of the disk, con­
taining the point Qk (ek> 'Pk) will have a mass (J Ll Sk ; if this mass be re­
garded as concentrated at Qb it will exert on a unit particle at P (x, 0,0) 
a force whose magnitude is 

LlFk = aLl Sk (rk= PQk = rei + x2), Y£ 
and which makes with the x-axis an angle whose cosine is 

Hence 

X 1· "\lAX l' "\l-axLlSk ffdS = 1m":::"';L1 k= 1m..:::...; 3 =-(Jx :I 
Yk r 

k k S 

2n a ff ed(!drp 
= - (J X 0 0 [e2 + x2J! . 

The integral is easily evaluated, and yields 

X=-2n(Jx[-[I[- I -J. 
x ya2 + x2 

The absolute value sign is important, for V x 2 is not necessarily x. 

As x becomes infinite, the ratio of the force to --x~ approaches 1, 

as the reader may verify. At any two points on the axis and equidistant 
fro111 the disk, the forces are equal and opposite. As P approaches the 
disk, the force does not become infinite, as it does in the cases of particle 
and wire. We can account for this, at least qualitatively, by noticing 
that a given amount of mass is no longer concentrated at a point, or 
on a segment of a curve, but over an area. The force does, however, 
ha ve a sudden reversal of direction on passing through the disk; the 
component of the force in the direction of the x-axis has a sudden 
decrease of 4n(J as P passes through the disk in the direction of in­
creasing x. 

Exercises. 
1. Write as a simple integral the expression for the force, at a point of its 

axis, due to a disk whose density is any continuous function a = f(e) of the dis-
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tance from the center. Examine the behavior of the force, as is done in the illus­
tration in the text, ifj(e} = a + be2 • 

2. The solid angle subtended at P by a piece of surface, which is always cut 
at an angle greater than 0 by a variable ray from P, may be defined as the area 
of that part of the surface of the sphere with unit radius and center at P which 
is pierced by the rays from P to the given surface. Show that the component 
of the attraction at P, of a plane homogeneous lamina, in the direction of the 
normal to the lamina, is equal to the density times the solid angle which the lamina 
subtends at P. Verify the result of the example of the text by this theorem. 

3. Find the attraction of a homogeneous plane rectangular lamina at a point 
on the normal to the plane of the lamina through one corner. The answer can be 
obtained by specialization of the results of the next exercise. 

4. Find the attraction of a homogeneous plane rectangular lamina at any 
point not on the rectangle, by decomposing the rectangle into sums or differences 
of the rectangles obtained by drawing parallels to the sides of the given rectangle 
through the foot of the normal from P. The answer may be given as follows. Take 
y- and z-axes parallel to the sides of the rectangle, with origin at the foot of the 
perpendicular from P. Let the corners of the rectangle referred to these axes be 
(b, c), (b', c), (b', c') and (b, c'). in order, and let the distances from P (x, 0, O) ofthese 
four points be d1, d2 , da, and d., respectively. Then 

! be b' c b' c' be' ] 
X - - a Ltan-1 - - tan-1 - + tan-1 - - tan-1 -

- xd1 xd2 xda xd. ' 

Y = a 10 [d2 + c • d. + c'l 
g d1 + c da + c' J ' 

Z I [d4 + b d2 + b'J 
= a og d1 + b • da + b' • 

It should be kept in mind that the numbers b, c, b', c' may have either sign, or 
vanish. 

5. Show that if the dimensions of the lamina of the last exercise become 
infinite, the force will not, in general, approach a limit. Show, on the other hand, 
that if the ratios of the distances of the sides of the rectangle from the origin 
approach 1 as these distances become infinite, the force does approach a limit, 
and investigate the character of this limiting force. 

6. If, in working Exercise 1, polar coordinates are used and the integration 
with respect to the angle is carried out first, the integrand of the remaining integral 
may be interpreted as the force due to a circular wire (see Exercise 4, p. 1O). What 
is the significance of this fact? Does it illustrate any principle which can be of 
use in other problems? 

7. Curved Laminas. 

So far, the surface distributions considered have been on flat sur­
faces. There is no difficulty in setting up the integrals for the force on 
a unit particle due to distributions on any smooth sl).rfaces. We shall 
keep to the notation P (x, y, z) for the position of the attracted particle, 
and to Q (~, 17, () for the point of the distribution whose coordinates 
are the variables of integration. The distance between these two points 
will be denoted by r. If (J is the density, we have 
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x = II q (~; x) d S, 
s 

(2) y = II q('Y}; Y) dS, 
s 

z;= If q (CyS- z) dS, 
s 

for the components of the attraction. The derivation of ' these formulas 
follows lines already marked out, and is commended as an exercise to 
the reader. 

A particular type of surface distribution may receive special mention. 
It -is that in which the surface is one of revolution, and the density is 
independent of the angle which fixes the meridian planes. Let us sup­
pose that the surface is given by the meridian curve in the (x, y)-plane, in 
parametric form, ~=~(s), 1]=1] (s), s being the length of arc (fig. 4). 
Then the position of a point Q on the surface S is determined by a 
value of s and by the angle rp which the meridian plane through Q makes 
with a fixed meridian. plane. We need to know the area of an element 
Ll S of S, bounded by two 
meridian, planes correspond­
ing to an increment Ll rp of rp, 
and by two parallel circles cor­
responding to an increment 
Ll s of s. A complete strip 
of S, bounded by parallel 
circles, has an area'given by 
the formula from the calculus 

s+Ll s 

A=2nf 1]ds=2n1]'Lls 
s 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

----------\. 

Fig, 4. 

"""-

where 1]' is a properly chosen mean value. The portion of the strip be­

tween the two meridian planes is the fraction ~: of th~s amount. Hence 

Ll S = 1]' LllJlLl s. Recalling the sum of which the integral is the limit, 
we see, then, that the first of the formulas (2) becomes 

S2, 2 jt 

X = I I q(~~ X)'Y} dlJlds. 
S1 0 

If the attracted particle is on the axis, at P (x, 0,0), we need only this 
component of the force, for the perpendicular components vanish. 
Moreover, in this case, the integrand is independent of lJI, so that the 



14 The Force of Gravity. 

formula becomes 
s, 

(3) X = 2 f IJ" (~ - xl 1') d n 3 s. 
[(~ - X)2 + 1}2] , 

S, 

As an illustration of the attraction of spreads on curved surfaces, let 
us consider that due to a homogeneous hemispherical lamina at its center. 
In order to give an example of different methods, we shall employ 
first the general formulas (2). If we take the z-axis along the axis of the 
hemisphere, X = Y = O. Let us change the field of integration from 
the surface 5 itself, to its projection 5' on the (x, y)-plane. Then for 
two corresponding elements of these fields, we have Ll 5 = sec y'Ll 5', 
where y' is a suitable mean value of the angle between the normal to 
5 and the z-axis. If a is the radius of the sphere, the third formula (2) 
becomes 

Z = af f :. secy d5'. 
5' 

Since cos y = r, this reduces to 
a 

z = ~ffd5' =.!!...-. na2 = na. a2 a 2 

5' 

The formula (3) also is applicable to this problem, if we take the 
x-axis along the axis of the hemisphere. We take the origin at the 
center, and write s = acp, ; = a coscp, 1] = a sincp. Then the formula 
becomes 

as before. 

Exercises. 

2 

X = 2n a J cos cp sin cp d cp = n a . 
o 

1. Find the attraction of a lune of a homogeneous sphere, bounded by two 
great circles whose planes make an angle 20( with each other, at the center. Check 

n 
for 0( = 2""' 

2. Show that the z-component of the attraction at the center due to any por-
<1A 

tion of the upper half of a homogeneous spherical surface, is Z = ~2-' where a 

is the radius of the sphere, <1 the density, and A the area of the projection of the 
portion in question on the (x, y)-plane. Check the result of the example of the 
text by this result. 

3. Determine the attraction at the center due to the portion of the upper 
half of the homogeneous spherical surface x 2 + y2 + Z2 = a2 which is cut out 
by the cone 

,,2 _ x2 I y2 
£ - 0(2 T f32 • 

Answer, X = Y = 0, 
n<10(2f32 

Z = (T+ 0(2) (I + (32) 
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4. Find the attraction due to a homogeneous right circular cylindrical surface, 
at a pointP of its axis. Check the result a) by taking P at the center, b) by taking 
P at a great distance, and c), by allowing the radius of the cylinder to approach 0, 
P being on the axis extended. Compare with the attraction of a straight wire, 
studied in § 4 (page 4). 

5. Study the attraction due to a homogeneous spherical shell by means of the 
formula (3). Determine the break in the radial component of the force at the sur­
face. 

6. Obtain the formula (3) on the assumption that the attraction is correctly 
given by regarding the surface as the limiting form of a large number of circular 
wires. 

7. Find the attraction of a homogeneous spherical cap, at a point of its axis. 
Check your result by allowing the cap to spread over the whole sphere. Draw a 
curve representing in magnitude and sign the component of the force in the direc­
tion of the axis as a function of the position of P when the cap comprises nearly 
the whole sphere. Compare it with the curve for the complete sphere. 

S. Change the variable of integration in (3) to the abscissa~. Find the attrac­
tion at the focus of that portion of the homogeneous surface which is the para­
boloid of revolution whose meridian curve is 1]2 = 2 m~, cut off by the plane 
~ = h, the density being constant. Check by allowing h to approach zero, the total 
mass remaining constant. Find the value of h for which the force vanishes. 
Answers, 

9. Find the attraction, at the cusp, of that portion of the homogeneous lamina 
whose meridian curve is e = a (1- cos q», ° < IX;;;;; q>;;;;;p. Show that this force 
remains finite as IX approaches 0, and find, in particular, the force due to the whole 
closed surface. 

8. Ordinary Bodies, or Volume Distributions. 

Suppose we have a body occupying a portion V of space. By the 
density x (or the volume density), of the body, at Q, we mean the limit 
of the ratio of the mass of a portion of the body containing Q to the 
volume of that portion, as its maximum chord approaches O. It is 
customary to regard this limit as not existing unless the ratio approaches 
a limit independent of the shape of the portion for which it is calculated. 
and it is similar also with surface and linear densities. We shall assume, 
as usual, that the density exists and is continuous. The only physically 
important cases in which the densities are discontinuous may be treated 
by regarding the body as composed of several partial bodies in each 
of which the density is continuous. 

The setting up of the integrals for the force due to volume distribu­
tions is so like the corresponding process for the distributions already 
treated that we may confine ourselves to setting down the results: 

(4) X = SSS K (~r-; x) dV, Y = SSS K (1Jr-:: y) dV, Z = SSS K (Cr-:: z) dV. 
v v v 
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An illustration of the determination of the attraction of a volume 
distribution has been given in § 4 (p. 7). As a second example, let us con­
sider the attraction of a homogeneous right circular cylinder, at a point of 
its axis, extended. Let us take the z-axis along that of the cylinder, with 
the origin at the point P the attraction at which is to be found. Cylindri­
cal coordinates are most appropriate, that is, the coordinate C of Q, and 
the polar coordinates e and q; of the projection of Q on the (x, y)-plane. 
The element of volume is then given by LI V = e'LI eLI q; LI C, where 
e' is a suitable mean value. Then, if a is the radius of the cylinder, and 
C = band C = c the equations of the bounding planes (0 < b < c), the 
third equation (4) becomes 

The integral is easily evaluated. The result can be given the form 

2M 
Z = a2 h [h + d1 - d2], 

where M is the total mass, h the altitude and d1 and d2 the distances 
frem P of the nearest and farthest points of the curved surface of the 
cylinder, respectively. It can be checked as was Exercise 4 of the last 
section. It will be observed that the force remains finite as P approaches 
the cylinder. 

Emercises. 
1. Find the attraction due to a homogeneous hollow sphere, bounded by con­

centric spheres, at points outside the outer and within the inner sphere. 

2. Show that if the above hollow sphere, instead of being homogeneous, has 
a density which is any continuous function of the distance from the center, the 
attraction at any exterior point will be the same as that due to a particle of the 
same mass at the center, and that the attraction at any interior point will vanish. 

3. Derive the following formula for the attraction of a body of revolution 
whose density is independent of the meridian angle cp, at a point of its axis: 

.2 t(~) 
X = 2nf J ,,(g - xl e " de d~, 

• [(g - x)2 + e2J2" 
~l 0 

where e is the distance of the point Q from the axis, ~ its distance from the (y, z)­
plane, and e = f (~) the equation of a meridian curve of the bounding surface. 

4. Show that if "depends only on g, the formula of the last exercise becomes 

~2 

X = 2n f " [I: =: ; i - y(~ -gx;: t2(g)] dg. 
~, 
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5. A certain text book contains the following problem. "Show that the attrac­
tion at the focus of a segment of a paraboloid of revolution bounded by a plane 
perpendicular to the axis at a distance b from the vertex is of the form 

a + b" 4:n;a:odog -a- . 

Show that this result must be wrong because it does not give a proper limiting 
form as b approaches 0, the total mass remaining constant. Determine the correct 
answer. The latus rectum of the meridian curve is supposed to be 4a. 

6. Show that there exists in any body whose density is nowhere negative, 
corresponding to a given direction and a given exterior point P, a point g, such 
that the component in the given direction of the force at P is unchanged if the body 
is concentrated at g. Why does not this show that there is always an equivalent 
particle located in the body? 

9. The Force at Points of the Attracting Masses. 

So far, we have been considering the force at points outside the 
attracting body. But the parts of a body must attract each other. At 
first sight, it would seem that since the force varies inversely with the 
square of the distance, it must become infinite as the attracted particle 
approaches or enters the region occupied by masses, and so it is, with 
particles or material curves. We have seen, however, that surface and 
volume d\stributions are possible, for which this does not occur. This 
is less surprising if we think of the situation as follows. If P lies on the 
boundary of, or within, the attracting body, the matter whose distance 
from P lies between rand 2r, say, has"a mass not greater than some con­
stant times r3, and since its distance from P is not less than r, the magni­
tude of its attraction at P cannot exceed a constant times r. Thus the 
J?earer masses exercise not more, but less attraction than the remoter. 

Let us turn to the question of the calculation of the force at an 
interior or boundary point. The integrals (4) are then meaningless, in the 
ordinary sense, since the integrands become infinite. If, however, the 
integrals are extended, not over the whole of V, but over what is left 
after the removal of a small volume v containing P in its interior, they 
yield definite values. If these values approach limits as the maximum 
chord of v approaches 0 these limits are regarded as the components of the 
force at P due to the whole body. This amounts to a new assumption, or 
to an extension of Newton's law. It is found to be entirely satisfactory 
from the standpoint of physics. We may state it more briefly as follows: 
the formulas (4) still give the force at P, even though P is interior to, or 
on the boundary of V, provided the integrals, which are now improper 
integrals, converge. 

We shall now show that in all cases in which the volume density is 
continuous-or even if it is merely integrable and bounded-the integrals 
always converge. Let us consider the z-component. The others admit of 

Kellogg, Potential Theory. 2 
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the same treatment. We may also confine ourselves to the case in 
which P is interior to the body, for we may regard the body as part of a 
larger one in which the density is 0 outside the given body. Let v be a 
small region, containing Pip. its interior. We have to show that 

approaches a limit as v shrinks down on P, v having any shape1. 

But how can we show that Z' approaches a limit unless we know 
what the limit is? If a variable approaches a limit, its various values 
draw indefinitely near each other. It is the converse of this fact that we 
need, and which may be stated as follows 2 : a necessary and sufficient 
condition that Z' approach a limit is that to any positive test number e 
there corresponds a number () > 0 such that if v and v' are any two 
regions containing P and contained in the sphere of radius () about P, 

Let us examine this inequality. If we take away from both regions of 
integration that part of V which lies outside the sphere 11 of radius () 
about P, the difference of the two integrals is unaltered. Our aim 
will then be attained if we can show that each of the resulting integrals 

can be made less in absolute value than i by proper choice of (). The 

following treatment will hold for either. 

where B is an upper bound for I" I. We can easily obtain a bound for the 
last integral by replacing it by an iterated integral in spherical coordi­
nates, with P as pole, and z-axis as axis. It then ceases to be improper, 
even when extended over the whole of 11, and as the integrand is nowhere 

1 The limit is not regarded as existing if it is necessary to restrict the shape 
of v in order to obtain a limit. The only restrictions on v are that it shall have a 
boundary of a certain degree of smoothness (be a regular region in the sense of Chap­
ter IV, § 8, p. 100), that it shall contain P in its interior, and that its maximum 
chord shall approach O. 

2 This test for the existence of a limit was used by CAUCHY, and is sometimes 
referred to as the Cauchy test. A proof of its sufficiency for the case of a func­
tionofasinglevariableisto be found in OSGOOD: Funktionentheorie, 4th ed., Leipzig, 
1923, Chap. I, § 7, pp. 33-35; 5th ed. (1928), pp. 30-32. See also FINE, College 
Algebl'a, Boston, 1901, pp.60-63. A modification of the proof to suit the present 
case involves only formal changes. 
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negative, this extension of the field cannot decrease its value. Hence 

n 2n a :n: 2:n:" 

1< B f f fiec;:DI rldedq;sinDdD < B f f fdedq;dD = 2Bn2~. 
000 000 

Hence I can be made less than i by taking ~ < 4; n2 ' The condition 

that Z' approach a limit is thus fulfilled, and the integrals (4) are 
convergent, as ":,,as to be proved. 

When we come to the computation of the attraction at interior points 
of special bodies, we see the advantage of being unrestricted as to the 
shapes of the volumes v removed. For we may use any convenient 
system of coordinates, and remove volumes conveniently described in 
terms of these coordinates. 

As an illustration, let us find the attraction of a homogeneous sphere 
5 at the interior point P. We cut out P by means of two spheres 5' 
and 5", concentric with s. The hollow sphere bounded by 5" and 5 
then exercises no force at P, while the sphere bounded by 5' attracts at 
P as if concentrated at the center. As the region cut out, between the 
two' spheres 5' and 5", shrinks down, the attraction at P approaches 
as limit the attraction of a particle at the center whose mass is that of 
the concentric sphere through P. In symbols, 

4 
Z=-gn"z. 

The attraction of a homogeneous sphere at an interior point is thus 
toward the center, and varies as the distance from the center. 

It will be observed that the region v cut out in these considerations, 
did not shrink to 0 in its maximum chord. However, its volume did 
shrink to 0, and if an integral is convergent, the limit thus obtained 
is the same as if the maximum chord shrinks to O. Indications as to the 
proof of this statement will be given in connection with Exercise 18, 
below. 

Exercises. 
1. Find the attraction, at an interior point on the axis, due to a homogeneous 

right circular cylinder. Answer, 

F = 2nu(h2-hl + d2-dl ), 

where hl' h2 are distances of P from the centers, and dl , d2, from the circumferences 
of the bases. 

2. Show that in Exercise 5, § 8, the quoted result must be wrong because it 
is incompatible with the fact that for b < a the force must be to the left, while for 
b > 2a it must be to the right, and so vanish at some intermediate point. This 
involves the justifiable assumption that the force varies continuously with b. 

3. Show that the formula of Exercise 4 (page 16) holds when P is an interior 
point on the axis of the body. Are there any precautions to be observed in apply­
ing it? 

2* 
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4. Lack of homogeneity in the earth's crust produces variations in gravity. 
This fact has been used with some success in prospecting for hidden ore and oil 
deposits. An instrument used is the Eotvos1 gravity variometer or torsion balance. 
A body of matter heavier than the surrounding material will change the field of 
force by the attraction of a body of the same size, shape, and position whose den­
sityis the difference between that of the actual body and the surrounding material. 
Investigate the order of magnitude of the change in the force produced by a sphere 
of density l/Z' of radius 200 feet, imbedded in material of density 1/3 and tangent 
to the earth's surface, the average density of the earth being taken as unity. 

Answer, at the highest point of the sphere, gravity is increased by about 
1'6 X 10-4 percent, and it falls off per foot of horizontal distance by about 4 X 10-9 

percent. 

5. Show that within a spherical cavity in a homogeneous sphere, not concentric 
with it, the force is constant in magnitude and direction. This should be done 
without further integrations, simply making use of the result of the example of 
the text. 

6. Determine the attraction at interior points due to a sphere whose density 
is a function of the distance from the center. 

7. Find the attraction of the homogeneous paraboloid of revolution whose 
meridian curve is 1]2 = 4 a 1;, cut off by the plane I; = It, at any point of the axis. 
Answers, 

[ h-x+2a+dJ X = 211" h - x - d + 2 a log 2 ' 
a (x - a) 

if x;5 0, 

[ h - x + 2a + dl 
X = 211" I x - h I - d + 2 a log , 

2a J 
if x ~ 0, 

where d is the distance of the attracted point P (x, 0, 0) from the edge of the solid. 

8. Verify that the force changes continuously as the attracted particle moves 
into and through the masses in Exercises 1, 5 and 6. 

9. Verify that the derivative of the axial component of the force in the direction 
of the axis experiences a break of 411" as P enters or leaves the masses, in Exer­
cises 1, 5 and 6. 

10. Determine the attraction of a homogeneous spheroid, at a pole. Answers, 
for an oblate spheroid of equatorial radius b, the magnitude of the force is 

3M --
F = -- (e - '/1 - eZ sin-1 e) 

bZ 03 r ' 

and for a prolate spheroid of polar radius a, 

F = 31\~ [lOg J' / 1 + e - eJ ' 
a Z e3 / 1 - e 

e being the eccentricity of the meridian curve. 

11. A body is bounded by a) a conical surface which cuts from the surface of 
the unit sphere about the vertex P of the conical surface, a region D, and by b) 
a surface whose equation in spherical coordinates with P as pole is e = f (T, {}). 

1 For an account of this sensitive instrument, see F. R. HELMERT, in the 
Encyklopadie der mathematischen Wissenschaften, Vol. VI, I, 7, p. 166; 
L. OERTLING, LTD., The Eotvos Torsion Balance, London 1925; or STEPHEN 
RYBAR, in Economic Geology, Vol. 18 (1923), pp. 639-662. 
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Show that the component of the attraction at P in the direction of the polar 
axis is 

z = ~I ['7 u> "d II] cos -0 d.Q , 

or, if the density is constant, 

z =" I I f(q;, -0) cos-O d.Q. 
D 

12. Show that the attractions, at the center of similitude, of two similar and 
similarly placed bodies, have the same line of action, and are in magnitude as the 
linear dimensions of the bodies. 

13. Find the attraction at the vertex due to a right circular cone of constant 
density. A)lswer, 2 n" h (1 - cos ex). 

14. The same for a spherical sector, bounded by a right circular conical surface 
and a sphere with center at the vertex of the cone. Answer, na" sin2 ex. 

15. By subtracting the results of the last two exercises, find the attraction 
at the center due to a spherical cap. 

16. Find the attraction due to a homogeneous hemisphere at a point of the 
edge. Answer, 2 4 

'3 na", '3 a", o. 

17. A mountain has approximately the form of a hemisphere of radius a, 
a 

and its density is ,,'. If higher powers of R are neglected, show that the difference 

in latitude at the northern and southern edges of the mountain, as observed by 
the direction of gravity, is 

a ( "') - 2+-
R ,,' 

where Rand" are the radius and mean density of the earth. 

18. (a) Show that if I(Q) is an integrable function of the coordinates ;, 1], (;' 

of Q, and bounded in any portion of V which does not contain P, and if 

I II I(Q) dV 
V 

is convergent, then 

III I(Q) dV 
v 

approaches 0 with the maximum chord of v, where v is any portion of V with P 
in its interior. 

(b) On the same hypothesis, show that 

I III (Q) dV = lim I I II (Q) dV 
v V-u 

as the volume of u approaches 0, whether the maximum chord of u does, or does 
not, approach O. Suggestion. It is required to show that 

I I I I(Q) dV~O 
u 

with the volume of u. Consider the portions u 1 and u a of u, inside and outside a 
sphere of radius t5. Show first how the integral over u 1 can be made less than 

!: in absolute value by properly choosing t5, and then how, with t5 fixed, the integral 
2 e 
over u2 can be made less than '2 in absolute value. 
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Ellipsoidal Homoeoid. We have seen that a homogeneous body 
bounded by concentric spheres exercises no attraction in the cavity. 
NEWTON showed that the same is true for an ellipsoidal homoeoid, or 
body bounded by two similar ellipsoids having their axes in the same 
lines. To prove it, we first establish a lemma: let P be any point within 
the cavity; draw any line through P, and let A,A', B', B be its intersections 
with the ellipsoids, in order; then AA' = B' B (fig. 5). The problem is 
reduced to the similar problem for two similar coaxial ellipses if we pass 
the plane through the center ° of the ellipsoids and the line AB. In 
this plane, we take axes through 0, with x-axis parallel to AB. The 
equations of the ellipses may then be written 

Fig. 5. 

Ax2 + 2Hxy + By2 - a = 0, 

Ax2 + 2H xy + By2 - b = 0, 

and the equation of AB will be y = c. The 
abscissas of A and B are then the roots 
of the equation obtained by eliminating y 
between y = c and the equation of the first 
ellipse: 

Ax2 + 2Hcx + (Bc2 - a) = 0, 

so that the midpoint of the chord A B has the abscissa -:: C • But thi~ 
value is independent of a, and therefore the midpoints of the chords 
AB and A'B' coincide. Hence AA' = B'B, as we wished to prove. 

Now by Exercise 11, the z-component of the attraction at P may 
be written 

z = xf f[F(tp, iJ) - ((tp, if)] cos iJdQ, 
Q 

where (! = F (tp, ff) and (! = I (tp, iJ) are the equations of the ellipsoids 
in spherical coordinates with P as pole, and where Q denotes the entire 
surface of the unit sphere about P. By the lemma, F (tp, (f) - t (tp, iJ) 
remains unchanged when the direction of a ray is reversed, i. e., when tp 
is replaced bytp + nand .f} by n -if. On the other hand, cos if is replaced 
by its negative by this substitution. Thus the integral consists of pairs 
of equal and opposite elements, and so vanishes. As the z-axis may 
have any direction, it follows that the force in the cavity vanishes, as 
was to be proved. 

10. Legitimacy of the Amplified Statement of Newton's Law; 
Attraction between Bodies. 

We revert now to the amplified statement of Newton's law given in 
§ 3 (page 3), and to a study of the attraction between bodies neither of 
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which is a particle. The justification of. the amplified statement must rest 
on the consistency of its consequences with observation and experiment. 
At the same time, it is hardly fair to call our physical assumption an 
amplified statement of Newton's law, unless it is consistent with this 
law. Our test of consistency will be this. As the dimensions of two 
bodies approach 0 in comparison with their distance apart, does their 
attraction, determined on the basis of the amplified statement, ap­
proach that given by Newton's law for particles? We shall see that this 
is indeed the case. Incidentally, we shall gain a deeper insight into the 
nature of the force between two bodies, and our inquiry will clothe 
the notion of particle with a broader significance. 

The first point to be noticed is that a body does not, in general, 
exert a single force on another, but exerts forces on the parts of that 
body. In the case of a deformable body, these forces cannot, as a rule, 
be combined to form a system of even a finite number of forces. We shall 
therefore confine ourselves to rigid bodies, for present purposes. It 
is shown in works on statics l that the forces on a rigid body are equi­
valent to a single force at an arbitrarily selected point 0 of the body 
and a couple. The single force is the resultant of all the forces acting on 
the body, thought of as concurrent. The couple depends on the position 
of 0, and its moment is the vector sum of the moments with respect 
to 0 of the forces acting on the body. If the forces acting are (Xi' Y i , Zi), 
applied at (Xi' Yi' Zi), i = 1, 2, ... n, we have for the single resultant 
force, 

(5) x =2} Xi' Y = L7Yi , Z = L7Zi, 
iii 

and if the point 0 at which this force is assumed to act is the origin of 
coordinates, we have for the moment of the couple 

(6) 
L = L7 (YiZi - Zi Yi), M = L7 (ZiXi - XiZi), 

i i 

N = L7 (XiYi - Yi Xi)· 
i 

If the forces, instead of being finite in number, are continuously distri­
buted, the summation signs are to be replaced by integrals. For the sake 
of simplicity, we continue for the present, with a finite number. 

Weare particularly interested in the case in which the couple is 
absent, so that the system reduces to a single force. Since the couple 
depends on the position of the point of application of the resultant force, 
it may be possible to choose 0 so that the moment of the couple vanishes. 
If we shift the point of application to the point (h, k, t), then in (6) 
Xi' Yi' Zi' must be replaced by Xi - h, Yi - k, Zi - t. This amounts 

. 1 See, for instance, ApPELL: Traite de mecanique rationelle, Paris 1902, Vol. I, 
Chap. IV. 
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to adding to the couple (6) the couple 

- (kZ -IY), - (IX - hZ), - (hY - kX). 

The question is, can h, k, I be so chosen that the couple thus altered 
vanishes? That is, so that the following equations are satisfied? 

(7) 

kZ-IY=L, 

+IX=M, -hZ 

hY-kX =N. 

It will be seen that if we eliminate two of the quantities h, k and I, 
the third disappears also, and we arrive at the following necessary con­
dition 

(8) LX+MY+NZ=O, 

that is, the resultant (X, Y, Z) and the moment with respect to the 
origin (L, M, N) must be at right angles, or else one of them must 
vanish. In Newtonian fields, the force vanishes only at exceptional 
points, and if we assume now that the force is not 0, it will be found 
that two of the equations (7) can be solved for h, k, I (giving, in fact, 
a whole line of points), and that the solution will also satisfy the third 
equation if the condition (8) is fulfilled. The equation (8) is therefore a 
necessary and sufficient condition that the forces acting on the body reduce to 
a single force, when the point ot application is properly chosen. One such 
point having been found, it will be seen that any other point on the line 
of action of the force will also serve. 

With these preliminaries, we may proceed to the consideration of 
the attraction on a body BI due to a body B2 , the bodies occupying 
regions VI and V2 of space. The first step is to divide the bodies into 
elements, concentrate each element at one of its points, and consider 
the attraction of the system of particles thus arising. Let LI VI denote 
a typical element of VI> containing the point P (x, y, z), and LlV2, a 
typical element of V2 containing Q (.;, 'fJ, C). Let "1 and "2 be suitably 
chosen mean values of the densities in these elements. Then the particle 
in LI V2 exerts on the particle in LI v;. a force whose x-component is 

~-x 
LI X = "1 "2 LI VI LI V2 -3-' r 

and whose point of application is P. The x-component of the moment 
with respect to the origin of this force is 

[ C-z 1)- Yl YC-Z1)LI LI L = "1 "2 Y -3- - z -3- LI VI LI V2 = "1 "2 --3 - VI LI V2• r r J r 

These components, due to a pair of particles, are now to be summed 
over all pairs, one in each volume, and the limits are to be taken as the 
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maximum chord of the elements of volume approaches 0. We arrive at 
the result: 

In accordance with the amplified statement of Newton's law, the attrac­
tion exerted by the body B2 on the body Bl , consists of a force 

(9) 

applied at the origin of coordinates, and of a couple whose moment is 

(10) 

or, of course, any equivalent system. The above constitutes the analyti­
cal formulation of Newton's law in its amplified form. It is satisfactory 
from the standpoint of precision, and is, in fact, the actual, if usually 
the tacit, basis of all treatments of gravitation. 

We are now in a position to consider the consistency of this state­
ment with Newton's law for particles. Let the maximum chord of 
the bodies shrink toward 0, Bl always containing the origin of coordi­
nates, and B2 always containing a fixed point Qo (~o, 'f}o, Co). Taking 
first the moment, and fixing our attention on the component L as,typi­
cal, we may apply the law of the mean, on the hypothesis that the 
densities are never negative, and .:write 

where P' (x', y', z') is a point in Vl and Q' (e, 'f)', n in V2 • As the dimen­
sions of the bodies-or even if the dimensions of Bl alone-approach 
0, x', y', z' approach 0, and L, and similarly, M and N, approach 0. 
Hence the forces exerted by a body on a particle reduce to a single re­
sultant force, applied at the particle. 
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Treating the components of the force in a similar way, we find that 
when the bodies shrink down toward points, the origin and Qo' the 
force approaches 

and this constitutes the statement of Newton's law for particles. Thus 
the consistency of the law in its broader form with the law for particles 
is established. 

11. Presence of the Couple; Centrobaric Bodies; 
Specific Force. 

We have seen that the gravitational effect of a body B2 on a body 
Bl is a force and a couple. In certain cases, if the force is applied at the 
right point, the couple disappears. This happens always when Bl is a 
particle, also when it is a sphere, and the very name center of gravity 
implies that it happens in the case of any body BI when the attracting 
body is the earth, regarded as exerting a force constant in direction and 
proportional to the mass acted on. There are, indeed, many bodies such 
that the attraction of other bodies on them reduces in each case to a 
single force passing through a fixed point in the body. They are called 
centrobaric bodies I and have interesting properties. But centrobaric 
bodies are to be regarded as exceptional, for in general the attraction 
cannot be reduced to a single force. An illustration of this is provided 
in Exercise 3, below. 

It would be disconcerting if, in the application of Newton's law as 
stated in the equations (9) and (10), we had to face sextuple integrals at 
every turn. Fortunately this is not the case. Moreover, it is only infre­
quently that we need consider the couple. The reason is that we usually 
confine ourselves to the study of the influence of a body Bz, abstracting 
from the shape and density of the body BI acted on. This is made possible 
by the notion of specific force, or force per unit of mass at a point. 

Let us consider a small part of the body BI contained in a volume 
LlVI , and containing a fixed point Po (xo, Yo, zo). We compute the force 
on this part due to B 2 • The component Ll X of this force is given by the 
first of the equations (9), where the region of integration VI is replaced 
by Ll VI' We are assuming continuous densities and simple regions of 
integration, so that the multiple integral can be replaced by an iterated 
integral. Accordingly, 

1 See THOMSON and TAIT: Natural Philosophy. Vol. I, Part II, §§ 534-535. 
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The inner integral is a function of x, y, z only, and if "1 does not change 
:signs, this integral may be removed from under the outer signs of inte­
.gnition by the law of the mean: 

LI X = iIT "2 (; - x') d v. iIT" d v, = iIT "2 (; - x') d V. • LI m r'3 2 1 1 r'3 2 

~ d~ ~ 

where P' (x', y', z') is some point in LlVv r' its distance from the variable 
-point Q (;, 'YJ, C) in V2 , and LI m the mass in LI VI' If now, we divide this 
force component by LI m and allow the maximum chord of L1 VI to 
approach 0 in such a way that Po remains within LI VI' we arrive at 
the limit 

X -1" LlX -iIJ"2(;-XO)d17. 0- Im Llm - r~ 2, 

V. 

This, with two other components, defines the specific force at Po due 
to the body B2 • But the components thus obtained are exactly those 
.given by equations (4), § 8 for the attraction of a body B on a particle at 
P, except for the notation. We see thus that the expressions force on a 
-unit particle, specific force, and force at a point are entirely synonymous. 

The importance of the specific force lies in the fact that when it has 
been determined, we may find the force on a body BI by simply multi­
plying the components of the specific force at P by the density of Bl 
.at P and integrating the products over the volume occupied by B1 • 

For we then arrive at the integrals (9). In a similar manner we can con­
struct the cOplponents (10) of the moment of the couple. It is for this 
reason that the knowledge of the force on a particle is so significant. 

Should we care to define in a similar manner the specific force per 
-unit of attracting mass, Newton's law could be stated: the specific force 
at a point P of a body, per zmit of mass at a point Q of a second body, is 
directed from P toward Q, and is eq·ual in attraction units to the inverse 
square of the distance between P and Q. This statement is very nearly 
of the form given in § 1, yet it implies, without further physical assump­
tions, the amplified statement of Newton's law given in § 3. 

Exercises. 
1. Determine the attraction due to a homogeneous straight wire, of unit linear 

density, terminating in the points (0,0), (0,12) of the (x, y)-plane, on a similar 
wire terminating in the points (5,0), (9,0). Show that the couple vanishes when 
the point of application of the force is properly taken, and find such a point, on 
the wire. Draw the wires and the force vector. Answer, 

2 
X= y' y =0. 

2. Show that if two plane laminas lie in the same plane, the attraction on either 
due to the other may always be given by a single force. 
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3. Let the "body" Bl consist of a unit particle at (0, 0, 1) and a unit particle 
at (0,0, -1); let the "body" B2 consist of unit particles at (0, a, 0) and (1, a, 1). 

a) Determine, for a = 1, the resultant force, regarded as acting at the origin, 
and the moment of the couple, which constitute the attraction of B2 on B 1 • 

Answer, 

1+3")13 

616 

-3Y3+1 

61'6 

1+9-.'3 2 

~' 6V6 ' 
3 Va--1 o. 

616 

b) Show, for a = 1, that the attraction is not equivalent to a single force. 

c) Show that when a becomes great, the moment of the attraction, relative 

to. the origin, is approximately (- .;, ;, 0), so that the moment falls off with 
a a 

the fourth power of the ratio of the dimensions of the bodies to their distance apart, 
while the force falls off only with the second power of this ratio. 

Chapter II. 

Fields of Force. 
1. Fields of Force and Other Vector Fields. 

The next step in gaining an insight into the character of Newtonian 
attraction will be to think of the forces at all points of space as a whole, 
rather than to fix attention on the forces at isolated points. When a 
force is defined at every point of space, or at every point of a portion 
of space, we have what is known as a field of force. Thus, an attracting 
body determines a field of force. Analytically, a force field amounts to 
three functions (the components of the force) of three variables (the 
coordinates of the point). 

But in the analytical formulation, the particular idea of force has 
ceased to be essential. We have rather something which can stand for 
any vector field. The result is that any knowledge gained about fields 
of force is knowledge about any vector field, such as the velocity fields 
of moving matter, of heat flow, or the flow of electric currents in con­
ductors. All these are simply interpretations of vector fields, or vector 
functions of a point in space. 

2. Lines of Force. 
We may picture a field of force by imagining needles placed at 

various points of space, each needle pointing in the direction of the 
force at the eye of the needle, and having a length proportional to the 
magnitude of the force. Thus, for a single particle, the needles would 
all point toward the particle, and their lengths would increase as they 
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got nearer the particle. Indeed, the nearer needles would have to run 
way through the particle. The picture can be improved in many respects 
by the introduction of the idea of lines of force, a concept so fertile in 
suggestion that it led FARADAY to many of his important discoveries 
in electricity and magnetism. 

A line of force is a curve which has at each of its points the direction 
of the field at that point. Thus the lines of force of a single particle are 
the straight lines through the particle. Another example is provided in 
Exercise 2, page 9, where it was found that the force at P due to a 
homogeneous straight wire bisects the angle subtended by the wire at P. 
Now we know that the tangent to a hyperbola bisects the angle between 
the fQ(;al radii. Hence in this case, the lines of force are hyperbolas with 
the ends of the wire as foci. 

We are all familiar with the lines of force exhibited by the curves 
into which iron filings group themselves under the influence of a magnet. 
If the field, instead of being a field of force, is a velocity field, the lines 
are called lines of flow. A general term applicable in any vector field 
is field lines. 

The determination of the lines of force, although in a few simple 
cases a matter of easy geometric reasoning, amounts essentially to the 
integration of a pair of ordinary differential equations. A tangent vector 
to a curve-is (d x, d Y , dz). If the curve is to be a line of force, this vector 
must have the direction of the force. Hence the differential equations 
of the lines of force are 

(1) 
dx dy dz 
x=y=z' 

Instead of the components of the force, we may, of course, use any 
quantities proportional to them. Thus, for a single particle at the origin 
of coordinates, we may take x, y, z as direction ratios of the force. 
The differential equations are 

dx 

which yield at once the integrals 

log y = log x + log c1 , 

or 

dz 

logz = log x + logc2 , 

We thus find as the lines of force, the straight lines through the origin. 
The lines in the (y, z) - plane are not given by the integrals written down. 
If it is desired, all the lines of force can be given by the parametric 
equations obtained by integrating the equations above with the equal 

. I dt rahos set equa , say, to -r . 
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The lines of force become more complicated, and more interesting. 
when more than one particle acts. Let us consider the case of two, with 
masses m1 and m2 , located at the points (- a, 0, 0) and (a, 0, 0). The 
differential equations (1) become 

dx dz dy 
------~-----------------

The equation involving dy and di reduces at once to 

dy dz 
y=Z-' 

the integral of which tells us that y and z are in a constant ratio. In other 
words, the lines of force lie in planes through the two particles, as we 
should expect from the symmetry cif the field. Also, because of the 
symmetry of the field about the line through the particles, the lines of 
force lie on surfaces of revolution with this line as axis. This too is re­
flectedin the differential equations. For, if the numerators and denomina­
tors in the second and third ratios are multiplied by y and z, respec­
tively, the two numerators added, and the two denominators added, the 
equality of the resulting ratio with the first ratio in the differential 
equations constitutes a differential equation in x and y2 + Z2, Y 
and z entering only in this combination. The solution is therefore a re­
lation between x, y2 + Z2, and a constant, and thus represents a family 
of surfaces of revolution. 

We may therefore confine ourselves to a meridian plane, say the 
(x, y)-plane. The differential equation involving dx and dy may then 

be integrated by collecting the terms in \ and ~: 
Y1 Y2 

ydx-(x+a)dy + ydx-(x-a)dy 
m1 3 m2 3 = o. 

Yl Y2 

Since z = 0, 

ri=(x+a)2+y2, and r'J2=(x-a)2+ y2, 

and the differential equation may be written 

The integral is 

This equation can be expressed in still simpler form by introducing 
the angles f}1 and f}2 which the vectors from the particles to the point 
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(x, y) make with the positive x-axis. It then becomes 

m1 cos 01 + m2 cos O2 = C. 

The curves may be conveniently plotted by first drawing a set of rays, 
u = cos 01 corresponding to u = - 1, -'9, ... -'1, 0, '1, ., ., '9, 1, 
drawing a similar set of rays for v = cos O2 , and numbering these rays 
with the corresponding values of u and v. It is then a simple matter to 
plot the linear equation m1u + m2 v = C, for various values of C, on 
the coordinate paper thus prepared. It may be found necessary to inter­
polate intermediate values of u and v and draw the corresponding lines 
in parts of the paper where those already drawn are sparse. Such coordi­
nate paper being once prepared, curves corresponding to different values 
of m1 , m2 and C can be drawn on thin paper laid over and attached to 
it by clips. The labor of repeating the rulirig can thus be avoided. 

Exercises. 
1. Find the equations of, and describe, the lines of force of the field given by 

X = x 2 - y2, Y = - 2xy, Z = O. 
2. Find the equations of the lines of force for the field (Ax, By, Cz). This 

is the character of the field in the interior of a homogeneous ellipsoid. 
3. Draw the lines of force of the field due to two particles of equal mass. Does 

any point of equilibrium appear? What can be said as to the stability of the equi­
librium? 

4. The same, when the masses of the particles are as I to 4. 
5. The same, when the masses are equal and opposite .. This case illustrates 

approximately the situation when iron filings are placed on a sheet of paper over 
the poles of a magnet. 

6. Find the equations of the lines of force due to n particles in line. 

8. Velocity Fields. 

It has doubtless not escaped the reader that the lines of force do not 
give back a complete picture of the field, for they give only the direction, 
not the magnitude, of the force. However, in the case of certain fields, 
including the fields of Newtonian forces, this defect is only apparent, 
for it turns out that the spacing of the lines of force enables us to gauge 
the magnitude of the forces, or the intensity of the field. We shall be 
led to understand this best by interpreting the vector field as a velocity 
field. An incidental advantage will be an insight into the nature of the 
motion of a continuous medium, and into the relation of potential theory 
to such motions. 

The motion of a single particle may be described by giving its coordi­
nates as functions of the time: 

x = x (t), y = Y (t), Z = Z (t). 

If, however, we have a portion of a gas, liquid, or elastic solid in motion, 
we must have such a set of equations, or the equivalent, for every particle 



32 Fields of Force. 

of the medium. To be more specific, let us talk of a fluid. The particles 
of the fluid may be characterized by their coordinates at any given 
instant, say t = to' Then the equations of all the paths of the particles 
may be united in a single set of three, dependent on three constants: 

(2) x = x (xo, Yo, zo, t), Y = Y (xo, Yo, zo, t), Z = Z (xo, Yo, zo, t), 

for these will tell us at any instant t the exact position of the particle of 
the fluid which at to was at (xo, Yo, zo). The functions occuring in these 
equations are supposed to satisfy certain requirements as to continuity, 
and the equations are supposed to be solvable for xo, Yo, zoo In particular, 
x must reduce to xO' Y to Yo' and Z to Zo when t = to: 

(3) Xo = x (xo, Yo, zo, to), Yo = Y (xo, Yo, zo, to), Zo = Z (xo, Yo, zo, to)· 

The velocities of the particles are the vectors whose components 
are the derivatives of the coordinates with respect to the time: 

() dx '( ) dy '( ) dz '( ) 4 de = x xo, Yo, zo, t , de = Y Xo, Yo, zo, t , lit = Z xo, Yo, zo, t . 

These equations give the velocity at any instant of a particle of the fluid 
in terms of its position at t = to' It is often more desirable to know the 
velocity at any instant with which the fluid is moving past a given point 
of space. To answer such a question, it would be necessary to know 
where the particle was at t = to which at the given instant t is passing 
the given point (x, y, z). In other words, we should have to solve the 
equations (2) for xo, Yo' Z00 The equations (4) would then give us the 
desired information. Let us suppose the steps carried out once for all, 
that is, the equations (2) solved for Xo, Yo, zO' in terms of x, y, Z and t, 
and the results substituted in (4). We obtain a set of equations of the 
form 

dx dy ( dz 
(5) de = X (x, y, Z, t), de = Y x, y, z, t), lit = Z (x, y, Z, t) . 

The right hand members of these equations define the velocity field. 
It differs from the fields of force we have considered so far, in that it 
varies, in general, with the time. This is not essential, however, for a 
field of force may also so vary, as for instance, the field of attraction 
due to a moving body. But what is the effect of the dependence of the 
field on the time, on the field lines? By definition, they have the direction 
of the field. As the field is changing, there will be one set of field lines 
at one instant and another at another. We mean by the field lines, a 
family of curves depending on the time, which at any instant have the 
direction of the field at every point at that instant. In other words, they 
are the integrals of the differential equations 

dx dy dz 

x (x, y, z, t) y (x, y, z, t) z (x, y, z, t) 
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on the assumption that t is constant. On the other hand, the paths of the 
particles are the integrals of (5), in which t is a variable wherever it 
occurs. Thus, in general, the lines of flow (field lines) are distinct from 
the paths of the particles. Evidently they do coincide, however, if the 
ratios of X, Y and Z are independent of the time, that is, if the direc­
tion of the field does not change. This includes the important case of a 
stationary field, or one in which the field is independent of the time. 
Thus, in a stationary velocity field, the lines of flow and the paths of the 
particles coincide. 

To illustrate the above considerations, let us examine the flow 
given by 

z = Zoo 

Here x, y, z reduce to xu' Yo, Zo for t = to ~ O. It will suffice to consider 
the motion of particles in the (x, y)-plane, since any particle has the 
same motion as its projection on that plane. The equations of the paths 
may be obtained by eliminating t. The paths are the hyperbolas 

xy=xoYo· 

1:he velocities of given particles are furnished by 

dx _ t 
Tt - xoe , 

and the differential equations of the flow are obtained from these by 
eliminating Xo and Yo: 

dx 
Tt=x, 

The field is stationary, since the velocities at given points are indepen­
dent of the time. The lines of flow are given by 

dx dy 

x - y' 

the integral of which is x Y = C. The lines of flow thus coincide with the 
paths, as they should in a stationary field. 

To take a simple case of a non-stationary flow, consider 

x = Xo + t, y = Yo + t2, z = zoo 
Here 

As Xo and Yo do not appear, these are already the differential equations 
of the motion in the (x y)-plane. The field depends on the time, and so 
is not stationary. The lines of flow are the integrals of 

dx dy 
-1- = 2t' 

Kellogg, Potential Theory. 3 



34 Fields of Force. 

that is, the parallel straight lines y = 2tx + C, which become con­
tinually steeper as time goes on. From the equations of the paths, we 
see that the fluid is moving like a rigid body, keeping its orientation, 
and its points describing congruent parabolas. 

Exercises. 
1. Study the motrons 

a) Xo + Yo t + Xo - Yo -t x=--2- e --2- e , z = zO' 

b) x = Xo + sint, y = Yo + (1- cost), Z = zOJ 

c) 
dx dy 
Tt=x, Tt=Y, 

determining the nature of the paths, the velocity fields, and the lines of flow. 

2: Show by a simple example that, in general, the path of a particle, moving 
under a stationary field of force, will not be a line of force. 

4. Expansion, or Divergence of a Field. 

An important concept in connection with a fluid in motion is its 
rate of expansion or contraction. A portion of the fluid occupying a 
region To at time to, will, at a later time t, occupy a new region T. For 
instance, in the steady flow of the last section, a cylinder bounded at 
t = 0 by the planes Zo = 0, Zo = 1, and by the surface x~ + y~ = a2, 

becomes at the time t the cylinder bounded by the same planes and the 
surface 

x2 y2 
'(aet)2 + ~-t)2' = 1, 

as we see by eliminating xO' Yo' Zo between the equations of the initial 
boundary and the equations of the paths (fig. 6). Here the volume of 
the region has not changed, for the area of the elliptical base of the 
cylinder is na2, and so, independent of the time. 

Fig. 6. 

On the other hand, in the flow 

x=xo+t, y=yoe t , 

the same cylinder at time t = 0, 
has at the time t the elliptical 
bonndary 

(x _ t)2 y2 
-a-,2- + (ae t )2 = 1, 

so that the volume has increased to na2 et. The time rate of expansion 
of this volume is the derivative of this value, also na2 e. If we divide the 
rate of expansion of the volume by the volume, and find such a quotient 
for a succession of smaller and smaller volumes containing a given point, 
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the limit gives us the tinie rate of expansion per unit of volume at that 
point. In the present instance, the quotient is 1, und by decreasing a> 

we may make the original volume as small as we please. Hence the time. 
rate of expansion per unit of volume at the point originally at the origin 
is always 1. It is not hard to see that this characterizes the rate of expan­
sion of the fluid at all points, for the chords of any portion of the fluid 
parallel to the x- and z-axes are constant, while those parallel to the 
y-axis are increasing at the relative rate 1. Thus every cubic centimetre 
of the fluid is expanding at the rate of a cubic centimetre per second. 

Let us now consider the rate of expansion in a general ·flow. The 
volume at time t is 

V(t) = I I I dxdydz. 
T 

We must relate this expression to the volume at to' By the equations (2), 
every point (x, y, z) of T corresponds to a point (xo, Yo, zo) of To. We 
may therefore, by means of this transformation, in which t is regarded 
as constant, change the variables of integration to xu' Yo, ZOo According 
to the rules of the Integral Calculus!, this gives 

V(t) = III dxdydz = fff J(xo,yo, Zo, t)dxodYodzo , 
T To 

where J denotes the Jacobian, or functional determinant 

ox oy oz 
oxo' oxo' oXo 

J (xo, Yo, Zo, t) = 
ox oy oz 

oYo' °Yo' oYo 
ox oy oz 

of the transformation. oZo' oZo' OZo 

We are interested in the time rate of expansion of the volume. This 
is given, if the Jacobian has a continuous derivative with respect to the 

time, by dV iII dJ 
Cit = eU- dxodyo dzo' 

To 

We can compute the derivative of the Jacobian for t = to without diffi­
culty, and as to can be taken as any instant, the results will be general. 
First, 

ot oXo 
, 

ot 0 Xo ' 

dJ =s ox oy 
dt oYo 

, 
oYo 

, 

ox oy 

oZo 
, 

i! Zo ' 

1 See OSGOOD: Advanced Calculus, New York, 1925, Chap. XII, §§ 4-8, or 
COURANT: Differential- und Integralrechnung, Berlin, 1927-29, Vol. II, pp. 261, 264. 

3* 
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where the symbolS means that we are to add two more determinants 
in which the second and third rows of ], instead of the first, have been 
differentiated with respect to t. Let us assume that all derivatives 
appearing are continuous. Then, since x, y, z reduce to xo, Yo, zo, for 
t = to, at this instant 

Accordingly 

ox _ ox _ oy _ oy _ OZ _ OZ _ 0 
oYo - OZo - oXo - OZo - iJxo - oYo - • 

iJSz oZ 
otozo = iJEo • 

df ] __ ax + oY + OZ] 
dt t=to - oXo oYo oZo t=t; 

We may now drop the subscripts, since x, y, z coincide with X(I, Yo, ZO' 

at t =to, and to maybe anytime. We then have, for the time rate of ex­
pansion of the fluid occupying a region T at time t, 

(6) 

From this equation we may derive the relative rate of expansion, or 
the rate of expansion per unit of volume at a point. We remove the inte­
grand from under the sign of integration, by the law of the mean, and 
divide by the volume: 

dV 

dt _ oX + oY + oZ 
V - a; oy oz' 

If, now, the region T is made to shrink down on the point P (x, y, z) , 
the limit of the above expression gives us the relative time rate of expan­
sion of the fluid at P: 

(7) div V = oX + oY + oZ 
ox oy oz ' 

or the divergence of the vector field V (X, Y, Z), as it is called. The ex­
pression (6) is called the total divergence of the field for the region T. 

We see at once that if the rate of change of volume (6) is everywhere 
0, the divergence (7) is everywhere 0, and conversely. Thus a fluid whose 
divergence vanishes everywhere is incompressiblel • 

We are now in a position to see how the field lines can give us a pic­
ture of the intensity of the field. Consider all the field lines passing 
through a small closed curve. They generate a tubular surface called a 
field tube, or, in a field of force, a tube of force. If the flow is stationary, 

1 See, however, § 9 (p. 45). 
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the fluid flows in this tube, never crossing its walls. If, in addition, the 
fluid is incompressible, it must speed up wherever the tube is pinched 
down, and slow down when the tube broadens out. Interpreting the field 
as a field of force, we see that in a stationary field of force whose diver­
gence vanishes everywhere, the force at the points of a line of force is greater 
or less according as the neighboring lines of force approach or recede from 
it. This qualitative interpretation of the spacing of the lines of force 
will be made more exact in § 6. 

Exercises. 
1. Verify that the field of Exercise 1, page 31, has a divergence which vanishes 

everywhere. Draw the lines of force 3x2y- y3 = C for C = - 2, -1, 0, 1, 2, 
and verify the relationship between intensity and spacing of the field lines. 

2. Verify the fact that the total divergerice vanishes fo;r the field of force due 
to a single particle, for regions not containing the particle, bounded by conical 
surfaces with the particle as vertex, and by concentric spheres. Show that for 
spheres with the particle at the centers, the total divergence is - 4:IT- m, where m 
is the mass of the particle. 

3. A central field of force is one in which the direction of the force is always 
through a fixed point, and in which the magnitude and sense of the force depends 
only on the distance from the point. The fixed point is called the center of the 
field. Show that the only field of force with Q as center, continuous except at Q, 
whose divergence vanishes everywhere except at Q, is the Newtonian field of a 
particle at Q. Thus Newton's law acquires a certain geometrical significance. 

4. An axial field of force is one in which the direction of the force is always 
through a fixed line, and in which the magnitude and sense of the force depends 
only on the distance from this line. The line is called the axis of the field. If such 
a field is continuous, and has a vanishing divergence everywhere except on the 
axis, find the law of force. Find also the law of force in a field with vanishing 
divergence in which the force is always perpendicular to a fixed plane and 
has a magnitude and sense depending only on the distance from this plane. 

5. Show that the divergence of the sum of two fields (the field obtained by vector 
addition of the vectors of the two fields) is the sum of the divergences of the two 
fields. Generalize to any finite sums, and to certain limits of sums, including 
integrals. Thus show that the divergence of Newtonian fields due to the usual 
distributions vanishes at all points of free space. 

6. The definition of the divergence as 

dV 

lim~ 
v-+o V 

involves no .coordinate system. Accordingly, the expression (7) should be inde­
pendent of the position of the coordinate axes. Verify that it is invariant under 
a rigid motion of the axes. 

5. The Divergence Theorem. 

The rate of expansion of a fluid can be computed in a second way, 
and the identity obtained by equating the new and old expressions will 
be of great usefulness. Let us think of the fluid occupying the region 
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T at a certain instant as stained red. We wish to examine the rate of 
spread of the red spot. Suppose, for the moment, that T has a plane 
face, and that the velocity of the fluid is perpendicular to this face, 
outward, and of constant magnitude V. Then the boundary of the red 
spot is moving outward at the rate of V centimetres per second, and 
V L1 S cubic centimetres per second are being added to the red spot 
corresponding to an element L1 S of the plane boundary of T. If the 
velocity is still constant in magnitude and direction, but no longer 
perpendicular to the plane face, the red fluid added per second, corres­
ponding to L1 S will fill a slant cylinder, with base L1 S and slant height 
having the direction and magnitude of the velocity. Its volume will 
therefore be V n L1 S, where V n is the component of the velocity in the 
direction of the outward normal to the face of T. 

Giving up, now, any special assumptions as to T or the velocity, we 
may inscribe in T a polyhedron, and assume for each face a constant 
velocity which, at some point of the face coincides with the actual ve­
locity of the field, and thus compute an approximate time rate of expan­
sion of the red spot: 

If the velocity field is continuous, and if the faces of the polyhedron are 
diminished so that their maximum chord approaches 0, while the faces 
approach more and more nearly tangency to the surface bounding T, 
the error in this approximation should approach O. We are thus led to 
the second desired expression for the time rate of expansion, or total 
divergence 

(8) ~~ = II VnaS = II (Xl + Ym + Zn) as, 
s s 

where l, m, n are the direction cosines of the normal to S, directed out­
ward, S being the surface bounding T. 

The identity of this expression with that given in equation (6) gives 
what is known as the Divergence Theorem, or as Gauss' Theorem, or 
Green's Theoremt, and may be stated 

1 A similar reduction of triple integrals to double integrals was employed by 
LAGRANGE: Nouvelles recherches sur la nature et la propagation du son, Miscellanea 
Taurinensis, t. II, 1760-61, 45; Oeuvres, t. I, p. 263. The double integrals are 
given in more definite form by GAUSS, Theoria attractionis corporum sphaeroidicorum 
ellipticorum homogeneorum methodo novo tractata, Commentationes societatis 
regiae scientiarum Gottingensis recentiores, Vol. II, 1813, 2-5; Werke, Bd. V, 
pp. 5--7. A systematic use of integral identities equivalent to the divergence theo­
rem was made by GEORGE GREEN in his Essay on the Application 0/ Mathematical 
Analysis to the Theory of Electricity and Magnetism, Nottingham, 1828. 
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fff divVdV =ff V"dS, 
T 5 

fff(:~ +~~ +~~)dV= ff(Xl+ Ym+Zn)dS, 
(9) 

T 5 

or in words, the integral of the divergence of a vector field over a region 
of space is equal to the integral over the surface of that region of the compo-. 
nent of the field in the direction of the outward directed normal to the sur­
face. 

The reasoning by which we have been led to this theorem is heuristic, 
and the result is so important that we shall devote special attention to 
it in Chapter IV. For the present we shall borrow the results there 
rigorously established, for we do not wish to interrupt our study of 
vector fields. 

Exercises. 
1. Verify the divergence theorem for the field X = x, Y = 1, Z = 0, and 

the regions (a) any cuboid a;::;; x :s: a', b':;;: Y .:;;: b', c:;';; z ::;; c', (b) the sphere 
x2 + y2 + Z2 ;::;; aB. 

2. The same for the field X = X2, Y = y2, Z = Z2. For the sphere this may 
be done without the evaluation of any integrals. 

3. Show by applying the divergence theorem to the field (x, y, z) that the 
volume of·any region for which the theorem is valid is given by 

V = ~ f f I' cos (I', n) dS 
5 

where S is the boundary of the region, I' the distance from a fixed point, and (I', n) 
the angle between the vector from this point and the outward directed normal 
to S. Apply the result to find the volume bounded by any conical surface and a 
plane. Find other surface integrals giving the volumes of solids. 

4. Show that the projection on a fixed plane of a closed surface is 0, provided 
the surface bounds a region for which the divergence theorem holds. 

5. By means of the divergence theorem, show that the divergence may be de­
fined as 

JJ V"dS 
lim --,,5_-= __ 

V 

as the maximum chord of T approaches 0, V being the volume of T. With this 
d~finition alone, show that if the divergence exists, it must have the value (7). 
Suggestion. If the above limit exists, it may be evaluated by the use of regions 
of any convenient shape. Let T be a cube with edges of length a, parallel to the 
axes. 

6. Show in a similar way that in spherical coordinates, the divergence is 
given by 

d· V 1 a 2 1 alP 1 iJ. f} a lV =--e R+----+----sln ~ e2 ae (! sinD atp (! sinf) iJf} , 

where R, IP, e, are the components of the field V in the directions of increasing 
e, tp, D, respectively. 
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6. Flux of Force; Solenoidal Fields. 

When a vector field is interpreted as a field of force, the integral 
J J V n d S, taken over any surface, open or closed, is called the flux at 
force across the surface. If the flux of force across everyl closed surface 
vanishes, the field is called solenoidal. A necessary and sufficient con­
dition for this is that the divergence vanishes everywhere, provided the 
derivatives of the components of the field are continuous. For, by the 
divergence theorem, if the divergence vanishes everywhere, the flux 
of force across any closed surface vanishes. On the other hand, if the 
flux across every closed surface vanishes (or even if only the flux across 
every sphere vanishes), the divergence vanishes. For suppose the diver­
gence were different from 0 at P, say positive. Then there would be a 
sphere about P within which the divergence was positive at every point, 
since it is continuous. By the divergence theorem, the flux across the 
surface of this sphere would be positive, contrary to the assumption. 

Newtonian fields are solenoidal at the points offree space. This has been 
indicated in Exercise 5, page 37. Let us examine the situation for volume 
distributions. Others may be treated in the same way. If P is a point 
where no masses are situated, the integrands in the integrals giving the 
components of the force have continuous derivatives, and we may there­
fore differentiate under the signs of integration. We find 

divV= (IJ,J~~-x +~rJ-Y +~C-zJdV J La x t 3 0 Y y3 OZ y3 
V 

= III U[~3~+3(~-X)2+(rJ~y)2+(C __ Z)2JdV 

V 

=0. 

Thus Newtonian fields are among those for which the spacing of the 
lines of force gives an idea of the intensity of the field. We can now 
state the facts with more precision, as was intimated at the close of § 4. 
Consider a region T of the field, bounded by a tube of force of small 
cross section, and by two surfaces S1 and S2 nearly norma1 2 to the 

1 The word every here means without restriction as to size, position, or general 
shape. Naturally the surface must have a definite normal nearly everywhere, or 
the integral would fail to have a meaning. The kind of surfaces to be admitted 
are the regular surfaces of Chapter IV. 

2 It may not always be possible (although we shall see that it is in the case 
of Newtonian fields) to find surfaces everywhere normal to the direction of a field. 
Picture, for instance, a bundle of fine wires, all parallel, piercing a membrane 
perpendicular to them all. If the bundle be given a twist, so that the wires become 
helical, the membrane will be torn, and it seems possible that the membrane 
could not slip into a position where it is perpendicular to all the wires. In fact, 
the field (- y, x, 1) has no normal surfaces. 
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field (fig. 7). The field being solenoidal, the flux of force across the sur­
face bounding this region will be O. The flux across the walls of the tube 
vanishes, since the component of the force normal to these walls is O. 
Hence the flux across the two surfaces 51 and 52 is 0, or what amounts 
to the same thing, if the normals to these surfaces have their senses 
chosen so that on 51 they point into T and on 52 out from T, 

(10) 

If Al and A2 denote the areas of 51 and 
52' and Fl and F2 the magnitudes of the 
forces at a point of each-say points 
where the forces are actually normal to 
the surfaces-we derive from the above an 

AIFI = A 2 F 2 , 

Fig. 7. 

approximate equation, 

in which the relative error approaches 0 with the cross section of the 
tube. That is, the intensity of the force in a solenoidal field at the points 
of a tube of force of infinitesimal cross section, varies inversely as the 
area of the cross section. The equation (10), of course, embodies the exact 
situation. 

It is quite customary, in considering electrostatic fields, to speak of 
the number of lines of force cutting a piece of surface. This number means 
simply the flux across the surface, and need not be an integer. If a de­
finite sense is attached to the normal to the surface, we speak of lines 
leaving the surface when the flux is positive, and of lines entering the 
surface when the flux is negative. The equation (10) tells us that in 
a solenoidal field, the number of lines In a tube of force is constant 
throughout the tube. 

Since Newtonian fields are solenoidal in free space, ceasing to be so 
only at points where masses are situated, it is customary to say that 
lines of force originate and terminate only at points of the acting masses. 
But this should be understood in terms of tubes of force. For an individ­
ualline may fail to keep its continuity of direction, and even its iden­
tity throughout free space. As X, Y and Z are continuous, this may 
happen only when they vanish simultaneously, that is, at a point of 
equilibrium. But such points occur, as we have seen in Exercise 3, page 3I. 
The straight line of force starting from one of the two equal particles 
toward the other (or, more properly, if we think of the lines of force 
having the sense as well as the direction of the field, arriving at one 
particle from the direction of the other), encounters the plane which 
bisects perpendicularly the segment joining the particles, any ray in 
which from the point of equilibrium may just as well be considered a 
continuating of the line of force as any other. Clearly any assertion that 
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the lines of force continue and keep their identity beyond such a point of 
equilibrium must be a matter purely of convention. It is, however, al­
ways possible to find tubes of force which do continue on, for points of 
equilibrium can never fill volumes, or even surfaces, in free space, 
however restricted 1. 

Exercise. 
Determine which of the following fields are solenoidal, specifying the excep­

tional points, if such exist. 

a) the field (x, y, z), 

b) the field (x, 0, 0), 

( X..!:. cot-1 ~ 1) 
c) the field y2 + z2' Z z' -y x 2 + y2, • 

d) the attraction field due to a homogeneous sphere, 
e) the field of the instantaneous velocities of a rigid body (a + qz - ry, 

b+rx-pz, c+py-qx), 

f) the field (-~, ;, 0). (} = Y x2 + y2. 

In the cases in which the field is not solenoidal, alter, if possible, the intensity, 
but not the direction of the field, so that it becomes solenoidal. 

7. Gauss' Integral. 
In the field of force due to a particle of mass m, the flux of force across 

the surface of any sphere (] with center at the particle, is - 4 n m, the 
normal being directed outward. For the normal component of the field 

is the constant ~, and the area of the surface is 4 n r2. But the flux 
r 

is the same for any other closed surface S containing the particle, 
to which the' divergence theorem can be applied. For if we take the 
radius of (] so small that it lies within the region bounded by S, then 
in the region between (] and S, the field is solenoidal, and hence the flux 
across its entire boundary is 0 : 

the normal pOinting outward from the region. Reversing the sense of 
the normal on the sphere, so that in both cases it points outward from 
the surfaces, makes the two integrals equal. Thus the flux of this field 
across any closed surface containing the particle is - 4 n m. 

If we have a field containing a number of particles, the flux across 
any closed surface S containing them all is the sum of the fluxes of the 
fields due to each singly, and is therefore - 4 nM, where M is the total 
mass within the surface. This remains true if there are also masses 
outside S, for since the field due to them is solenoidal within S, they 
contribute nothing to the flux across S. 

1 See Chapter X, § 9. 
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The result may be extended to fields due to continuous distributions 
which nowhere meet S. The fields due to masses outside S are still 
solenoidal inside of S, as we saw in § 6 (p.40). Let us consider, as 
typical, the contribution to the flux of a volume distribution within 
S. It has the form 

ff Vn dS = ff fff " (~ -x) 1+ (1) -,,;) m + (C - z) n dV dS, 
S S v 

and as S passes through no masses, r is never 0 and the integrand is 
continuous. So the order of integrations can be reversed, and 

ff Vn dS = Iff" ff (~ -x) I + (1) -,:) m + (C - z) n dS dV. 
S v S 

Here the inner integral is simply the flux of force across S due to a unit 
particle at Q (~, rJ, C), and so is equal to -4n. The iterated integral 
is therefore equal to -4nM, where M is the total mass of the volume 
distribution. In all cases then, in which S meets no masses, 

(ll) 

The integral glYmg the flux is know as Gauss' integral, and the 
statement (ll) is known as Gauss' theorem, or Gauss' integral 
theorem: the flUX outward across the surface bounding a region is equal 
to - 4n times the total mass in the region, provided the bounding surface 
meets no masses. 

Gauss' theoreII). may even be extended, under certain conditions, 
to the case in which S passes through masses. Let us assume, for in­
stance, that the mass within any closed surface sufficiently near S is 
arbitrarily close in total amount to that within S, as would be the case 
if the masses belonged to volume distributions with bounded volume 
density. Let us also assume that the flux of the field due to the masses 
within S, across any surface S" enclosing S, varies continuously with 
the position of S", and similarly, that the flux of forces due to the 
masses without S, across any surface S' enclosed by S, varies con­
tinuously with S'. Then 

f f V~ dS = 0, and 
S' 

ffv~dS = -4nM, 
S" 

where V" and V' are the normal components on S' and S" of the fields 
due to the masses outside of and within S respectively and M is the 
total mass within S. These equations are valid because the surfaces S' 
and S" do not meet the masses producing the fields whose fluxes over the 
surfaces are computed. Now suppose that S' and S" approach S. The 
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right hand members of the above equations do not change, while, by 
hypothesis, the left hand members become the fluxes over 5 due to the 
fields of the exterior and interior masses, respectively. The sum of the 
limiting equations thus gives Gauss' theorem for 5. 

Implicit in the above reasoning is the assumption that 5 can bound 
a region for which the divergence theorem is valid (for the first equa­
tion of this section is derived from that theorem), and that it is possible 
to approximate 5 by surfaces 5' and 51!, arbitrarily closely, 5' and 5" 
having the same character. This is evidently possible for spheres, and 
for many other simple surfaces. But a general assumption of the vali­
dity of Gauss' theorem for surfaces cutting masses is dangerous, and 
the application of the theorem in such cases, made in many text books, 
is unwarranted. 

Exercise. 
Determine the outward flux across the unit sphere about the origin in the fields 

(a), (b), (d), of the exercise of § 6 (p.42). In (d), the origin is supposed to be the 
center of the sphere. For the field (d), verify Gauss' theorem for concentric 
spheres, with radii both less than, and greater than, that of the given sphere. 

8. Sources and Sinks. 

It is advantageous to keep before ourselves the various interpreta­
tions of vector fields, and the question arises, what is the significance 
of Gauss' theorem for velocity fields? Let us consider first the field of a 
single particle at Q, the components of the force now being thought 
of as components of velocity. The point Q is a point of discontinuity of 
the field. What is happening there? Everywhere else, the field is sole­
noidal, that is, incompressible in the sense that any portion keeps its vo­
lume unaltered. Yet into any region containing Q, by Gauss' theorem, 
4nm cubic centimetres of fluid are pouring every second. As they are 
compressed nowhere, what becomes of them? It is customary to regard 
the fluid as absorbed at Q, and to call Q a sink, of strength 4nm. If m 
is negative, so that the senses of the velocities are reversed, Q is called 
a source, of strength 4 n 1m I. 

The exact physical realization of sinks and sources is quite as im­
possible as the realization of a particle. For a fluid, we may imagine a 
small tube introduced into the field, with mouth at Q, through which 
fluid is pumped out from or into the field. In the case of electric currents, 
a source corresponds to a positive electrode at a point of a conducting 
body, and a sink to a negative electrode. 

Suppose now that we have the Newtonian field due to a volume 
distribution with continuous density. We have already seen in examples, 
for instance, the homogeneous sphere, that the field due to such a distri­
bution may be continuous everywhere. If the density is always positive, 



General Flows of Fluids; Equation of Continuity. 45 

Gauss' theorem tells us that the fluid with the corresponding velocity 
field pours into the region occupied by the distribution at the rate 4;71; M 
-cubic centimetres per second, and, further, that it passes into any portion 
of this region at the rate 4;71; m cubic centimetres per second, where m 
is the mass in this portion in the corresponding field of force. If the por­
tion is small, m will be small, so that the fluid may be thought of as ab­
sorbed continuously throughout the whole region. We then speak of a 
continuous distribution 01 sinks. Similarly, we may have a continuous 
distribution of sources, and we may also have sources and sinks distri­
buted on surfaces. These concepts are useful. Thus, for instance, the 
heat generated by an electric current in a conductor because of the re­
sistance, may be thought of as due to a continuous distribution of 
sources in the conductor. In problems in the conduction of heat and in 
hydrodynamics, flows satisfying preassigned conditions may often be 
produced by suitable distributions of sources and sinks, usually on 
bounding surfaces. 

Eooe'l'cises. 
1. Show that the field (x, y, z) has continuously distributed sources by form­

ing and evaluating Gauss' integral for cuboids. Show that the source density 
is 3, that is, that the flux out from any region is 3 times the volume of that region. 

2. Show that for a field with continuously distributed sources, the source 
density, or rate of yield of fluid per unit volume at any point is equal to the diver­
gence of the field at that point. 

9. General Flows of Fluids; Equation of Continuity. 
Thus far, we have been considering the kinematics of fluids, that is, 

purely the motion, the concept of mass of the fluid not having ente.red. 
To say that a fluid is incompressible has meant that any portion of the 
fluid, identified by the particles it contains, occupies a region of constant 
volume. But if sources are possible, this criterion of incompressibility is 
inadequate. For if fluid is poured into a region, particularly through 
continuously distributed sources, it is impossible to identify at a later 
instant the exact fluid which at a given instant occupies a given volume. 

What then should be the definition of incompressibility? If a given 
body of fluid is introduced into a cylinder, and the volume decreased by 
means of a piston, the ratio of mass to volume increases. The same 
thing happens if new material is forced into the cylinder, the volume 
remaining unchanged. In either case, we should say that a compression 
has taken place. The density has increased. Thus a broader formulation 
of the notion of incompressibility may be founded on the density. It 
will not do, however, to say that incompressibility and constant density 
are synonymous. We might, for instance, have a flow of a layer of oil on 
a layer of water, both fluids being incompressible. The density would 
not be constant throughout the fluid. What would be constant is the 
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density of the fluid at a particular particle, no matter where it moves, as 
long, at least, as the motion is continuous. So we must formulate ana­
lytically the meaning of this kind of constancy. 

To say that a function, the density 12 in the present instance, is con­
stant at a point of space, means that 

iJ 
Tt 12 (x, y, z, t) = 0 , 

x, y and z being held constant. To say that the density remains constant 
at a given particle is another matter. We must identify the particle, say 
by the equations (2). If 12 were given as a function of xo' Yo' Zo and t, 
we should again equate to 0 the partial derivative with respect to the 
time, xo' Yo, Zo remaining fixed. But if 12 is given as a function of x, y, z 
and t, this derivative must be computed by the rule for a function of 
several functions: 

dQ = ae ax + Or! ay + ae oz +!!..g 
dt dx at ay at az at at· 

If we introduce the components of the velocity, this becomes 

(12) 

The rate of change of density is thus in part due to the change at the 
point (x, y, z), and in part to the rate at which the fluid at this point is 
flowing to other parts of the field where the density is different. The 
process of forming this kind of derivative with respect to the time is 
known as particle differentiation. The symbol for the total derivative is 
employed to distinguish this time derivative from the time rate of change 

at a point fixed in space. The notation ~; is also used. 

The definition of incompressibility is now 

~=O 
dt 

throughout the region considered. 

We shall see that in case no sources or sinks are present, this concept 
of incompressibility coincides with that of § 4 (p. 36). This will be a conse­
quence of the equation of continuity, which we now derive. This equa­
tion amounts simply to an accounting for all the mass in the field. We 
shall assume that the components of the velocity and the density have 
continuous derivatives, and allow for continuously distributed sources, 
the density of the distribution of sources being denoted by a = a (x, y, z, t). 
Thus at any point P, a cubic centimetres of fluid per second per unit of 
volume at P are accounted for by the sources, as measured by the limit 
of the rate of efflux from a region containing P to the volume of the 
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region, as the region shrinks to a point. More concretely, it means that 
eG units of mass per second per unit of volume are added by the sources 
to the fluid. Thus, in the region T, 

III eGdV 
units of mass per second are added by the sources. 

The same region may gain in mass through the streaming in of fluid 
through its bounding surface S. Just as in § 5 (p. 37) we found 

II VndS 
5 

for the rate at which a given portion of the fluid was expanding, so we 
may now show the number of units of mass entering T through S per 
second is 

- I I e VndS. 
5 

Thus the total time rate of increase of mass in Tis 

But the mass in T at any instant is the integral of the density over T, 
so that the time rate of increase of mass in T is the derivative of this inte­
gral, the region T being fixed 

;t fffe dV = fff ~; dV, 
T T 

differentiation under the integral sign being permitted on the hypothesis 
that the density has continuous derivativ:es. Equating the two expres­
sions for the rate of gain in mass, we have 

fff eGdV - ff e Vn dS = fff ~i dV. 
T 5 T 

In order to draw conclusions as to the relation between density, source 
density and velocity, at a point, we must transform the surface integral 
to a volume integral. This service will be rendered by the divergence 
theorem. We replace, in that theorem as stated in the equations (9), 
X, Y, Z by eX, e Y, eZ. It becomes 

fff [OOx eX + ;y e Y + ;z e z] d V = ff e Vn dS . 
T 5 

Accordingly, the preceding equation takes the form 

fff[~; + oOx eX + ;yeY + ;zeZ-eG]dV=O. 
T 
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This must hold for any region T. Accordingly, the integrand, being con­
tinuous, must vanish everywhere, in accordance with the reasoning 
at the beginning of § 6 (p. 40). Carrying out the indicated differen­
tiations, we have 

~+X~+Y~+Zae + [ax+ ay+ aZJ_ a=O at ax ay az e ax Jy az e ' 
or, employing the formula (12) for the particle derivative, and dividing 
bye, we may reduce this to 

1 de d· V --d + IV -a=O. e t 

This is the desired equation of continuity of hydrodynamics. 

We see from the equation of continuity that in the absence of sources 
(a = 0), the vanishing of the divergence is a necessary and SUfficient con­
dition that the fluid be incompressible. Furthermore, we see that in the 
case of an incompressible fluid, the divergence is equal to the source density. 

Chapter III. 

The Potential. 

1. Work and Potential Energy. 

The properties of fields of force developed in the last chapter grouped 
themselves naturally about the divergence, and were concerned espe­
cially with solenoidal fields, among which are the fields due to matter 
acting in accordance with Newton's law. We are now to develop a second 
property of Newtonian fields and study its implications. 

A particle of mass m, subject only to the force of a specific field 
X, Y, Z) will move in accordance with Newton's second law of motion 

d2 y 
m-d .9 = AmY, 

t" 

d2 z 
m-d 2 = AmZ, 

I 

where A is a constant depending on the units used. If these equations be 

mUltiplied by ~;, ~f and ~;, respectively, and added, the result is 

The left hand member of this equation is the time derivative of the kinetic 

energy of the particle, T = ~ m v2 • If we integrate both sides of the 

equation with respect to t from to to t, we have 
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P 

=Amf(Xdx+Ydy+Zdz) 
Po 

= Am W(P, Po; C), 

C being the path of the particle. The expressions on the right,-the 
last a notation-, are known as the work done on the particle by the 
field during the motion, and the equation states that the change in kinetic 
energy during a time interval is equal to the work done by the forces of the 
field during the motion in that interval. 

Let us examine whether the result is of value in determining the char­
acter of the motion. In order to determine the work done, we must 
evaluate the integral on the right. At first sight, it would seem that we 
must know the velocity of the particle at every instant of the motion. 
But the second expression shows that this is not necessary. It does, 
however, demand a knowledge of the path travelled by the particle, and 
this, as a rule, is not known in advance. We can, however, dispense with 
a knowledge of the path in the important special case in which the field 
is such that the integral is independent of the path, i. e. has the same 
values when taken over any two pathsl connecting Po with P which 
can be continuously deformed one into the other, and this for any pair 
of points Po, P. The work is then merely a function of the positions 
of Po and P, and we may drop the argument C in the notation. Under 
these circumstances, the field is called conservative, or lamellar. Po being 
thought of as a fixed point, the function of P (x, y, z), - A m W (P, Po), 
is called the,potential energy of the particle at P, and the above equation 
states that the total energy is constant during the motion. The energy 
equation, or the principle of the conservation of energy, is most useful 
in problems of mechanics, and the fact lends a special interest to con­
servative fields. 

Let us now consider conservative fields. Furthermore, let us confine 
ourselves to a region in which the force is continuous, and which is 
simply connected, i. e. such that any two paths with the same end-points 
may be continuously deformed one into the other without leaving the 
region2 • We take units for which A = 1. The function 

(1) 
P 

W (P, Po) = f (X dx + Y dy + Z dz) 
Po 

1 Any two regular curves, in th'e sense of Chapter IV. 
2 See § 9, page 74. 

Kellogg, Potential Theory. 4 
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is determined by the field only, and we may speak of it as the work per 
unit of mass, or the work of the specific field. We shall not even have to 
bother with its dependence on Po. A change in the position of thi~ point 
will merely mean adding a constant to the function, namely, the work 
between the two positions of Po, taken with the proper sign. 

We shall now show that the work function completely determines the 
field, assuming that it arises from a continuous field of force. But two 
preliminary remarks should be made. 

The first is concerned with the notion of directional derivative. Let 
W (P) be a function of the coordinates (x, y, z) of P, defined in a 
neighborhood of PI' and let IX. denote a ray, or a directed straight line 
segment, issuing from Pl. We define the derivative of W in the direction 

IX. by oW = lim W(P) - W(PI ) 

orx P PI 

as P approaches PI along the ray, provided this limit exists. The direc­
tional derivative is thus a one-sided derivative, since P is confined to 
the ray, which extends from PI in only one sense. The reader may show 
tha t if IX. has the direction cosines I, m, n, the derivative of W in the direc­
tion IX. has the value 

oW = oW I + ~~ m + iJW n 
Urx 0 x 0 y 0 Z ' 

provided the derivatives which appear are continuous. He may also 
show that on the same hypothesis, the directional derivatives at PI in 
two opposite directions are numerically equal and opposite in sign. 

The second remark is to the effect that the work integral (1) is inde­
pendent of the coordinate system involved in its definition. Since it is 
the limit of a sum of terms of the form 

X"Llx" + Y"Lly,c + Z" Llz,c' 
it is only necessary to show that this expression can be given a form 
independent of the coordinate system. It is, in fact, a combination of 
two vectors, (Xb Y", Z,,) and (Llxb Lly", LIz,,), known as their scalar 
product I, and whose value is the product of their magnitudes times the 
cosine of the angle between them. For if F" is the magnitude, and 
I, m, n, are the direction cosines of the first vector, and if LI s'c and 
and I', m', n' are the corresponding quantities for the second, the above 
expression is equal to 

F" LIs" (ll' + mm' + nn') = FleLl SIc cos (F", LIsle)' 

as stated. Incidentally, we see that the expression for the work may 
be written p 

W (P, Po) = J F cos{}ds, 
Po 

1 See the footnote, page 123. 
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where {} is the angle between the force and the forward direction of the 
tangent to the path. 

Let us suppose now that the work function is known, and that it 
belongs to a continuous field (X, Y, Z) . We compute its derivative in the 
direction of the x-axis at Pl. We take the path from Po to PI (x, y, z) 
along any convenient curve, and the path from Po to P (x + LI x, y, z) 
along the same curve to PI' and then along the straight line to P. 
Then, by (I), 

'" +Ax 
W(P) - W(P1) I f 
-'--'-=,..--'---=- = -=r:: X (x, y, z) dx = X (x + {} LI x, y, z) , 

Pl\ .> 

Llx>O, 

by the law of the mean. This gives in the limit, as P PI = LI x approaches 0, 

X =aw 
ax· 

Since the work is independent of the axis system, it follows that the 
above result holds for any direction, that is, that the component of the 
field in any direction is equal to the derivative of the work in that direction. 
In particular, 

X=aw 
ax' 

Z= aw az . 

Thus a great advantage of a conservative field is that it can be specified 
by a single function W, whereas the general field requires three func­
tions, X, Y, and Z, or their equivalents, to determine it. Because it 
determines the field in this way, the work is sometimes called the 
force function. 

Any field which has a force function with continuous derivatives is 
obviously conservative. For if the field (X, Y, Z) has the force function 
<P with continuous derivatives, 

X= a~ ax ' 
and 

and the integral is independent of the path because the last expression 
depends only on the end points. 

Thus the notions of work and force function are equivalent, and both 
are essentially,-i. e. except for a positive constant factor, depending on 
the mass of the particle acted on and the units employed,-the nega­
tive of the potential energy. Hereafter, we shall consider the mass of 
the particle acted on as unity, and assume that the units have been so 

4* 
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chosen that the potential energy is equal to the negative of the force 
function. 

It is now easy to verify that Newtonian fields have force functionsl • 

Taking first a unit particle at Q (~, 'Yj, C), we see that the force due to it 
at P (x, y, z) is given by 

X=~-x =~.!.. Y= 1]-Y =~.!.. z= C-z =~.!.. 
r3 ax r ' r3 ay r ' r3 az r' 

so that.!.. is a force function. It follows also that the field of a system of r 
a finite number of particles has a force function, namely the sum of the 
force functions of the fields due to the separate particles. Also, the fields 
of all the distributions we have studied have force functions, namely the 

integrals of the products of the density by ~ , provided it is permitted to 

differentiate under the signs of integration, and we know that this is 
the case at all points outside the masses. As a matter of fact, we shall 
see that in the case of the usual volume distributions, the force function 
continues to be available at interior points of the distribution (p. 152). 

If a field had two force functions, the derivatives of their difference 
with respect to x, y and z would vanish, so that this difference would be 
constant. Hence the force function of any field which has one, is deter­
mined to within an additive constant. 

We now introduce the idea of potential2 of a field, which in some 
cases coincides with the force function, and in others with the negative 
of the force function. In the case of general fields of force not specifi­
cally due to elements attracting or repelling according to Newton's law, 
there is a lack of agreement of writers, some defining it as the work 
done by the field, and thus making it the same as the force function 
and so the negative of potential energy, while others define it as the 
work done against the field, and so identifying it with potential energy 
and the negative of the force function. In vector analysis, whenever 
abstract fields are considered, the first definition is usual. The field 
(X, Y, Z) is then called the gradient of the potential U, 

(au au au) 
(X, Y, Z) = grad U = ax' 7JY' Tz . 

We shall adopt this definition in the case of abstract fields, general force 
fields, and velocity fields. 

On the other hand, in the theory of Newtonian potentials, authori-

1 This fact was first noticed by LAGRANGE, Memoires de I' Academie Royale 
des Sciences de Paris, Savants etrangers, Vol. VII (1773); Oeuvres, Vol. VI, p. 348. 

2 Called potential function by GREEN, 1. c. footnote, page 38, potential by 
GAUSS, Allgemeine Lehrsdtze in Beziehung auf die im verkehrten Verhdltnis des 
Quadrates der Entfernung wirkenden Anziehungs- und AbstofJungskrdfte, Werke, 
Bd. V, p. 200ft 
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ties are in substantial agreement, defining the potential of a positive unit 

particle, point charge, or magnetic pole, as ~, and the potentials of 

various distributions as the corresponding integrals of the densities times 

! (see Exercise 4, below). This convention has as consequence the 
r 
great convenience of a uniformity of sign in the formulas for the 
potentials of all the various types of distributions. It does result, how­
ever, in a difference in the relation of the potential to the field, accord­
ing as the force between elements of like sign is attractive or repulsive. 
Because of the puzzling confusion which is likely to meet the reader, we 
summarize the conventions as follows. 

In abstract fields, (X, Y, Z) = grad U; the potential corresponds 
to the force function and the negative of potential energy. 

In Newtonian fields, the potential at P due to a unit element at 

Q is ~, and 
r 

a) if elements of like sign attract, as in gravitation, (X, Y, Z) 
= grad U; the potential is the force function, and the negative of 
potential energy, 

b) if elements of like sign repel, as in electricity and magnetism, 
(X, Y, Z) = - grad U; the potential is the negative of the force func­
tion, and is identical with potential energy. 

Furthermore, in the theory of Newtonian potentials, it is customary 
to fix the additive constant which enters, by some convenient convention. 
In case the distribution is such that the potential approaches a limit as 
P recedes indefinitely far, no matter in what direction, the constant 
is fixed so that this limit shall be 0; in other words, so that the zero 
of potential shall be at infinity. This is always possible where the masses 
are confined to a bounded portion of space. Cases arise, especially in 
connection with the logarithmic potential (see page 63) where this is 
not the situation, and the convention must be modified. 

Eooercises. 
1. Show that a constant force field (0, 0, -g) is conservative, a) by exhibiting 

a force function, and b) by showing that the work is independent of the path. 
2. The same for any central force field (see Exercise 3, page 37). 
3. The same for any axial force field (see Exercise 4, page 37). 
4. Show that the work done by the field in bringing a unit particle from Po 

to P, in the field of a unit particle at Q, is ~ + C. Show that as the distance of 
r 

Po from Q becomes infinite, C tends toward O. 
5. Show that if the components of a field have continuous partial derivatives, 

a necessary condition that it be conservative is 
az ay ax az ay ax 
Ty=-az' Tz=Tx' Tx Ty' 
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6. Show that the condition that a field be conservative in a region in which 
it is continuous is equivalent to this, that the work integral (1), taken over any 
closed path in the region, which can be continuously shrunk to a point without 
leaving the region, shall vanish. 

-y x 
7. Apply the result of Exercise 5 to the field X = -2-' Y = -;;, Z = 0, 

e e" 
where e = Y %2 + y2. Then show that the work done by the field in carrying a unit 
particle over the circle x 2 + y2 = a2, z = 0, in the counter clockwise sense, is 2 n. 
Does any contradiction arise? Show that the work over any closed path which 
does not make a loop around the z-axis, is O. 

8. Find the work done by the field (y, 0, 0) in moving a unit particle from 
(0, 0, 0) to (1, 1, 0) over the following paths in the (x, y)-plane: a) the broken 
line with vertices (0,0), (0,1), (1, 1), b) the broken line with vertices (0,0), (1,0), 
(1,1), c) the parabolic arc y = x 2• Show how a path can be assigned which will 
give as large a value to the work as we please. 

9. Show that the gradient of a function is the vector which points in the direc­
tion of the maximum rate of increase of the function, and whose magnitude is the 
rate of increase, or the directional derivative of the function, in this direction. 

2. Equipotential Surfaces. 

We are now in a position to form a second kind of picture of a force 
field in case it is conservative. If U denote the potential of the field, the 
surfaces U = const. are called equipotential surfaces or equipotentials. 
At every point of the field (assumed continuous), its direction is normal 
to the equipotential surface through the point. For the equipotential 
surface has, as direction ratios of its normal, the partial derivatives of 
U with respect to x, y, Z, and these are the components of the force. 
An exception arises only at the points where the three partial derivatives 
all vanish. Here the field cannot be said to have a direction. Such points 
are points of equilibrium. 

But more than thiso the equipotential surfaces give an idea of the 
intensity of the force. Let us imagine a system of equipotential surfaces, 
U = k, U = k + c, U = k + 2c, . .. corresponding to constant 
differences of the potential. Let P be a point on one of these surfaces, 
and let N denote the magnitude of the force at P. Then, since the force 
is normal to the equipotential surface, N is also the component of the 
force normal to the surface, and as such 

the normal being taken in the sense of increasing potential, If LI n is the 
distance along the normal from P to the next equipotential surface of 
the set constructed, the corresponding LI U is c, and we have 

NLln=c+~ 

wheretheratioof~tocapproachesO, when c is given values approaching O. 
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We see, then, from the approximate equation N = ;~, that the smaller 

c, the more accurate is the statement: the intensity of the field is inversely 
proportional to the distance between equipotential surfaces. Crowded equi­
potentials mean great force, and sparse equipotentials, slight force. The re­
liability of such a picture in a given region is the greater the more the equi­
potentials approximate, in the region, a system of equally spaced planes. 

In certain cases, simple graphical representations of the equipotential 
surfaces are possible. If the direction of the field is always parallel to a 
fixed plane, the equipotential surfaces will be cylindrical, and the curves 
in which they cut the fixed plane will completely characterize them. 
Again, if the field has an axis of symmetry, such that the force .at any 
point lies in the plane through that point and the axis, and such that 
a rotation through any angle about the axis carries the field into itself, 
the equipotential surfaces will be surfaces of revolution, with the axis 
of symmetry of the field as axis. A meridian section of an equipotential 
surface will then characterize iF. 

Exercises. 
1. Draw equipotentials and lines of force for the pairs of particles in Exercises 

3, 4 and,5 (page 31). Describe the character of the equipotential surfaces in the 
neighborhood of points of equilibrium, particularly of those which pass through 
such points. Show that in Exercise 4, one of the equipotential surfaces is a sphere. 

2. In the above exercise, any closed equipotential surface containing the two 
particles, may be regarded as the surface of a charged conductor, and the field 
outside the surface will be the field of the charge. Inside the conductor there is 
no force (see Chapter VII, § 1, page 176), so that the lines of the diagram would 
have to be erased. Describe, at least qualitatively, the shapes of certain con­
ductors the electrostatic field of charges on which are thus pictured. 

3. Draw equipotentiaJs and lines of force for the field obtained by superimposing 
the field of a particle on a constant field. 

3. Potentials of Special Distributions. 
We saw, in the last section, that the potentials of line, surface and 

volume distributions are 

(2) U = f~dS, 
c 

(3) u= ff~dS, 
s 

(4) U=fff~dV, 
v 

1 For a method of construction of equipotentials in certain cases of this sort, 
see MAXWELL, A Treatise on Electricity and Magnetism, 3d Ed., Oxford 1892, 
Vol. I, § 123. Interesting plates are to be found at the end of the volume. 



56 The Potential. 

valid at points of free space. The same integrals are regarded as defining 
the potential at points of the distributions, provided they converge. 
This is generally the case for surface and volume distributions, but not 
for line distributions. But the formulation and proof of theorems of 
this sort, and of theorems assuring us that the force components are 
still the derivatives of the potential at interior points, is a task which 
had better be postponed for a systematic study in a later chapter. 
We shall content ourselves for the present with the verification of cer­
tain facts of this sort in connection with the study of the potentials of 
special bodies in the following exercises. 

EX~'f'cises. 

1. Find the potential of a homogeneous straight wire segment. Answer, the 
value of the potential in the (x, z)-plane is 

U = A log yx2 + (~~ - Z)2 + c2 - z, 
~X2 + (c l - Z)2 + cl - z 

where (0, 0, cl ) and (0, 0, c2) are the ends of the wire. Show also that this result 
may be given the form 

u = 2111 COtJl- l r l + r2 

t t' 
where l is the length of the wire, and r l and r 2 are the distances from P to its ends. 
Thus show that the equipotential surfaces are ellipsoids of revolution with their 
foci at the ends of the wire. 

2. Show that at a point of its axis, a homogeneous circular wire has the poten­
M 

tial U = d' where d is the distance of P from a point of the wire. Check the 

result of Exercise 4 (p. 10), by differentiating U in the direction of the axis. 

3. Reverting to the potential of the straight wire of Exercise 1, verify the 
following facts: a) as P approaches a point of the wire, U becomes infinite; 
b) P, the density, and the line of the wire remaining fixed, U becomes infinite 
as the length of the wire becomes infinite in both directions. Note that in this 
case, the demand that the potential vanish at infinity is not a possible one. Show, 
however, that c) if the potential of the wire segment is first altered by the subtrac­
tion of a suitable constant (i. e. a number independent of the position of P), say 
the value of the potential at some fixed point at a unit distance from the line of 
the wire, the potential thus altered will approach a finite limit as the wire is pro­
longed infinitely in both directions, independently of the order in which c2 and 
- cl become infinite. Show that this limit is 

2 J.log (~), 
where r is the distance of P from the wire. Finally, show d) that this is the value 
obtained for the work done by the force field of the infinite wire (see Exercise 5, 
page 10) in moving a unit particle from Po, at a unit distance from the wire, to P. 

4. Find the potential at a point of its axis of a homogeneous circular disk. 
Verify the following facts: a) the integral for the potential at the center of the 
disk is convergent; b) the potential is everywhere continuous on the axis; c) the 
derivative of the potential in the direction of the axis, with a fixed sense, experi­
ences an abrupt change of - 4 n a as P passes through the disk in the direction of 
differentiation (compare willi § 6, page II). 
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5. Find the potential of a homogeneous plane rectangular lamina at a point 
of the normal to the lamina through one corner. If 0 denotes this corner, Band 
C adjacent corners distant band c from it, and D the diagonally opposite corner, 
the answer may be written 

U = a clog ___ 3 + b log ___ 3 - X tan-I -- , [ b+d e+d be] 
d2 dl xd3 

wherex=PO, dl=PB, d2 =PC, and d3 =PD. 

Note. In obtaining this result, the following formula of integration will prove 
useful: 

J log (b + -YX2+b2 + C2 ) dC = Clog (b + Vx2 + b2 + C2) + 

+ b log (C + VX2 + b2 + C2) _ C + x tan-Ii.. _ x tan-I b x 
x x-yx2+b2+C2 

It may be verified by differentiation, or derived by integration by parts. 

6. By the addition or subtraction of rectangles, the preceding exercise gives, 
without further integrations, the potential at any point due to a homogeneous 
rectangular lamina. Let us suppose, however, that we have a rectangular lamina 
whose density is a different constant in each of four rectangles into which it is 
divided by parallels to its sides. Show that the potential is continuous on the nor­
mal through the common corner of the four rectangles of constant density, and that 
the derivative in the direction of the normal with a fixed sense changes abruptly 
by - 4n times the average of the densities, as P passes through the lamina in the 
direction of differentiation. 

7. Study the potential of an infinite homogeneous plane lamina, following 
the lines of Exercise 3. Take as a basis a plane rectangular lamina, and check the 
results by a circular lamina. The potential should turn out to be 2na (1-\xl), 
if the lamina lies in the (y, z)-plane. 

8. Show that the potential of a homogeneous spherical lamina is, at exterior 
points, the same as if the shell were concentrated at its center, and at interior 
points, constant, and equal to the limiting value of the potential at exterior points. 
Determine the behavior with respect to continuity of the derivatives of the poten­
tial, in the directions of a radius and of a tangent, at a point of the lamina. 

9. Find the potential of a homogeneous solid sphere at interior and exterior 
points. Show that the potential and all of its partial derivatives of the first order 
are continuous throughout space, and are always equal to the corresponding 
components of the force. Show, on the other hand, that the derivative, in the direc­
tion of the radius, of the radial component of the force, experiences a break at the 
surface of the sphere. Show, finally, that 

a2 U a2 U a2 U 
div (X, Y, Z) = ax2 + ay2 + 7JZ2 

is 0 at exterior points, and - 4 n" at interior points. 

10. Given a homogeneous hollow sphere, draw graphs of the potential, its 
derivative in the direction of a radius, and of its second derivative in this direction, 
as functions of the distance from the center on this radius. Describe the character 
of these curves from the standpoint of the continuity of ordinates, slopes and cur­
vatures. 

11. The density of a certain sphere is a continuous function, "(5) of the distance 
5 from the center. Show that its potential is 
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I a 1\/[ 
=4nsfu(ele2de=s' a;5s. 

o 
Show that at any interior point. 

82 U iJ2 U iJ2 U 
02+-0 2 +-02 =-4nu. 
uX y z 

12. Show that in any Newtonian field of force in which the partial derivatives 
of the components of the force are continuous, the last equation of the preceding 
exercise holds. Use Gauss' theorem. 

13. In a gravitational field, potential and potential energy are proportional, 
with a negative constant of proportionality, and the equation of energy of § I 
(p. 49) becomes T - k U = C, where k > O. or 

I 
"2mv2 = kU + c. 

The constant k can be determined, if the force at any point is known, by differen­
tiating this equation, and equating mass times acceleration to the proper multiple 
of the force, according to the units employed. Thus if the unit of mass is the pound, 
of length, the foot, of time, the second, and of force, the pound aI, then the mass 
times the vector acceleration is equal to the vector force, by Newton's second law 
of motion. 

This being given, determine the velocity with which a meteor would strike 
the.earth in falling from a very great distance (i. e. with a velocity corresponding 
to a limiting value 0 as the distance from the earth becomes infinite). Show that 
if the meteor fell from a distance equal to that of the moon, it would reach the 
earth with a velocity about 1/60 less. The radius of the earth may be taken as 
3955 miles, and the distance of the moon as 238000 miles. The answer to the first 
part of the problem is about 36700 feet per second. Most meteors, as a matter 
of fact, are dissipated before reaching the earth's surface because of the heat 
generated by friction with the earth's atmosphere. 

14. Joule demonstrated the equivalence of heat with mechanical energy. The 
heat which will raise the temperature of a pound of water one degree Farenheit 
is equivalent to 778 foot pounds of energy. A mass of m pounds, moving with a 

~mv2 
velocity of v feet per second, has t m v 2 foot poundals, or ---- (g = 32' 2) foot 

g 
pounds of kinetic energy. 

Show that if all the energy of the meteor in the last exercise were converted 
into heat, and this heat retained in the meteor, it would raise its temperature by 
about 178000 0 Fahrenheit. Take as the specific heat of the meteor (iron), 0'15. 

4. The Potential of a Homogeneous Circumference. 
The attraction and potential of a homogeneous circular wire have been 

found, so far, only at points of the axis of the wire. While the potential 
at a general point may be expressed simply in terms of elliptic integrals, 
we pause for a moment to give a treatment of the problem due to GAUSS, 

partly because of the inherent elegance of his method, and partly be­
cause of incidental points of interest which emerge. 
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Let the (x, y)-plane be taken as the plane of the wire, with origin at 
the center, and with the (x, z)-plane through the attracted particle P 
(fig. 8). Let a denote the radius of the wire, and {} the usual polar coordi­
nate of the variable point Q. The coordinates of P and Q are (x, 0, z) 
and (a cos {}, a sin {}, 0), so that the distance r = PQ is given by 

r2 = x 2 + a 2 + Z2 - 2ax cos {}. 

Accordingly, 

n ~ f d1} 
(5) U = 2aA _ . y x2 + a2 + Z2 - 2 a x cos 1} 

~lI' 7'trP 

o ~& 

We now express r in terms of its greatest value P for any position of Q, 
and its least value q. As 

we find, on forming half the sum and half the difference of these quan­
tities, that 

p2 + 2 p2 q2 1} 1} 
r2 = --q- _ --=-- cos {} = p2 sin2 - + q2 cos2 -

2 2 2 2 . 

If this expression is substituted for the radicand in (5), and a new 
variable of integration introduced by the substitution{} = Jt - 2 cp, the 
result is 

(6) 

2 

U = 4aA f dq; 
Y p2 cos2 q; + q2 sin2 q; 

o 

"2 
= 4aAf . dq; 

P V 2 o cos2 q; + ~ sin2 q; 

The last integral depends only on the ratio f. Hence, if we can find 

the potential at any point where this ratio has a given value, we can 
find it at all points where it has this value. Now the locus of points of 

the (x, z)-plane for which f is constant is a circle with respect to which 

the two points in which the wire cuts the (x, z)-plane are inverse l • Let 
PI be the point of this circle in the (x, y)-plane and interior to the 
circle of the wire. Then if PI denotes the maximum distance of PI 

1 vVe shall have use again for the fact that the locus of points in a plane, the 
ratio of whose distances from two points A and B of the plane is constant, is a 
circle with respect to which A und B are inverse points, i. e. points on the same ray 
from the center, the product of whose distances from the center is the square of 
the radius of the circle. The reader should make himself familiar with this theorem 
if he is not so already. 
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from the wire, we see from (6) that P U (P) = PI U (PI)' so that 

(7) 

Thus the problem is reduced to finding the potential ;:I.t the points of a 

or, 

radius of the wire. 
To do this, we return to the expression (5), 

where z is now 0 , and 0 < % < a. We introduce as 
?JL."-bL..4-X new variable of integration the angle "P= 1::: X PI Q 

(fig. 9). By the sine law of trigonometry, 

a sin ("P - I}) = % sin "P. 
Fig.9 •. Differentiating this, we find 

a cos ("P - I}) (d"P - d I}) = % cos "P d "P, 

[a cos ("P -I}) - % cos "P] d"P = a cos ("P -I}) dl}. 

The coefficient of d"P is the projection of PIOQ on PIQ, and is there­
fore equal to PI Q , or r. Thus 

and 
d{)O dtp 

r = a ~os (tp - {)o) 

rd"P=acos("P-I})dl}, 

l' a2 - as sinS (tp - {)o) 

dtp 

The limits of integration for "P are again 0 and 1t, but the substitution 

"P' = 1t - "P shows that the integral from i to 1t is equal to that from 
n . o to 2' so we may WrIte 

U(P1) = 4aA. 

2 

f dtp 

yas cos2 tp + (as - ,1;2) sin2 tp 
o 

If we introduce the maximum and minimum distances, PI and qi of PI 
from the wire, since PI = a + % and qi = a - %, we see that 

a = Pl ~ ql = P2' and ya2 - %2 = Y PI qi = q2 

are the arithmetic and geometric means of PI and qI' and 
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Comparing this value with that given by (6), which is valid for P = PI' 
P = Pv q = ql' we see that the integral is unchanged by the substitution 
for PI of the arithmetic mean P2 of PI and ql' and for qi of the geometric 
mean q2 of PI and qi' The substitution may now be repeated, with the 
result that U (PI) remains unchanged if we substitute 

P P .. +q .. f P d "/-p f n+l = 2 or n' an qn+1 = r nqn or qn, 

for n :.0: 1, 2, 3 .. ',' The significance of this remark lies in the fact that 
the sequences IPn] and [q .. ] tend to a common limit ex as n becomes in­
finite, so that 

2 

(8) U(Pl) = 4aA f d'IJI 4aA:It M 
V0l:2 cos2 'IJI + 01:2 sin2 'IJI = -;X-. "2 = -;:. 

o 

To demonstrate the stated convergence, we observe first that P2 
lies midway between PI and ql' and secondly that q2 lies between ql 
and P2' for 

~ _ l/PI > 1 and P __ q _ (PI + ql - 2 y~) = (lP;:- - 1%)2 > 0 
ql - r ql' 2 2 - 2 • 2 . 

Thus Q21ies in the interval (ql' P2)' whose length is half that of (ql' PI)' 
and so 0 < P2 - q2 <: (Pl ; ql) . As the same inequalities hold when the 

indices 1 and 2 are replaced by nand n + 1, we conclude that 

O P PI- ql < .. +1-qn+1 <~. 

The sequences [qn] and IP .. ] are always increasing and always decreasing, 
respectively. The first is bounded above by PI and the second is bounded 
below by qi' Hence they converge. The last inequality shows that their 
limits coincide. This limit ex. is called the arithmetico-ge6metric mean of 
the two positive quantities ql' Pl. We have supposed qi and PI unequal. 
If they are equal, PI is at the center of the wire, and the potential at 
h .. M 

t at pomt 1S-a. 

To determine the potential at P, then, we first determine the ex­
treme values P and q of r. We then determine the numbers PI and qi 

by the equations PI + qi = 2 a, PI = t, 
ql q 

2ap 
PI = P + q' 

We then determine the arithmetico-geometric mean of PI and ql> to a 
suitable degree of accuracy, and this gives us the potential at PI to a 
corresponding degree of accuracy, by (8). Then (7) gives the potential 
at P. . 
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Tbus tbe problem is solved. Tbe potential of a bomogeneous circular 
",ire will be found in anotber way in Cbapter X, § 3. 

Exercises. 
1. Interpret the process of substituting means, as the reduction of the poten­

tial of the wire to that of a wire of the same mass and smaller radius, at a point 
relatively nearer the center, yielding in the limit, the potential at the center of a 
wire of radius IX. 

2. The last inequality given shows that the sequences of means converge at 
least as rapidly as a geometric sequence with common ratio t. Show, in fact, 
that the convergence is considerably more rapid by deriving the equation 

1 _ ljqn 
P Pn - q" V P .. 

.. +1 - q n+1 = --2-' ---'-V-:':::=-, 
1 + qn 

P .. 
and noticing that ~: is approaching 1. . 

3. Calculate the potential of a circular wire of unit radius and unit mass, 
at a point 2 units from the center in the plane of the wire. Answer, 0'5366. 

4. From the equation (6), show that 

_,2M q2 
l.! (P) = P K (k), k2 = 1 - p2 ' 

where P is the great{st, and q the least, distance of P from the wire, and where 
K(k) is the complete elliptic integral of the iirst kind with modulus k 1. Check 
in this way, by means of tables, the result of Exercise 3. Show also that the 
potential becomes infinite as P approaches a point of the wire. 

5. Two Dimensional Problems; The Logarithmic Potential. 

A problem involving tbe position of a point in space may be regarded 
as two dimensional wbenever it may be made to depend on two real 
coordinates. Two cases of tbis sort bave been mentioned in § 2, page 55. 
However, it is usual, in speaking of potential tbeory in two dimensions 
to understand tbe tbeory of potentials of fields of force wbich depend 
on only two of tbe cartesian coordinates of a point, and in wbich tbe 
directions of tbe field are always parallel to the plane of tbe correspond­
ing coordinate axes. Then if these coordinates are taken as x and y, 
the components of the force will be independent of z, Z will be 0, and the 
whole field is characterized by the field in the (x, y)-plane. 

The simplest distribution which produces such a field is the infinite 
straight wire, of constant density. We have seen (p.lO, Exercise 5) that 
the attraction of such a wire is perpendicular to it, and that its magnitUde 

in attraction units is~, where r is the distance of the attracted unit par-
r 

tide from the wire. Confining ourselves to a normal plane, we may think 

1 See B. O. PEIRCE, A skort Table of Integrals, Boston, 1929, p. 66 and 121. 
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of the point where the wire cuts the plane as the seat of a new sort of 
particle, of mass equal to that of two units of length of the wire, and 
attracting according to the law of the inverse first power of the distance. 
The potential of such a particle we have seen (p. 56, Exercise 3) to be 

2A.log (~). The constant, which may always be added to the potential, 

was here determined so that the potential vanishes at a unit distance from 
the particle. Continuous distributions of matter, attracting in accordance 
with this law of the inverse first power, are at once interpretable as 
distributions of matter attracting according to Newton's law on infinite 
cylinders, or throughout the volumes bounded by infinite cylinders, 
the densities being the same at all points of the generators of the cylin­
ders, or of lines parallel to them. 

The potentials of such distributions, if their total mass! does not 
vanish, will become infinite as the attracted particle recedes infinitely 
far. This deprives us of the possibility of making the convention that 
the potential shall vanish at infinity. The customary procedure is to 
allow the zero of the potential to be defined in the case of a particle, by 
making it at a unit distance from the particle, and in continuous distri­
butions, by integrating the potential of a unit particle, thus fixed, multi­
plied by the density, over the curve or area occupied by matter. In other 
words, the potential is defined by the integrals 

(9) U=JA.log~ds, U=JJalog~dS, 
c r .A r 

for distributions on curves and over areas, respectively. To distinguish 
these potentials, regarded as due to plane material curves, or plane 
laminas, whose elements attract according to the law of the inverse first 
power, from the potentials of curves and laminas whose elements 
attract according to Newton's law, it is customary to call them logarith­
rnic potentials. We shall also speak of logarithmic particles, when the law 
of attraction is that of the inverse first power. 

Exercises. 
1. "Write the components of the force at P (x, y) due to a logarithmic particle 

of mass m at Q (~, 1]). Show that they are the derivatives of the potential in the 
corresponding directions. 

2. Find the equations of the lines of force due to a logarithmic particle of mass 
ml at QI (- a, 0) and one of mass m 2 at Q2 (a, 0). Answer, ml {}I + m 2{}2 = const., 
where {}I = <[.XQIP and {}2=<[.XQ2P, Plot these lines, and also the equipoten­
tial lines for m 2 = m l , and for m 2 = - mI' Show that in the first case the lines 
of force are equilateral hyperbolas through Ql and Q2 and in the second case, 

I The total mass means the integral of the density of the distribution in the 
plane, on a curve, or over an area, or, what is the same thing, the mass of the dis­
tributionon the surface or within a cylindrical surface, between two planes, perpen­
dicular to their generators, and two units apart. 
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-circles. The equipotentials are Cassinian ovals in the first case. What are they 
in the second? 

3. Determine the rate of expansion, or the total divergence, for a region of the 
plane, in a plane velocity field. Interpret the result in terms of a field in three 
dimensions whose directions are always parallel to a fixed plane and whose com­
ponents are independent of the distance from this plane. 

4. State the divergence theorem for plane fields, and deduce it from equation 
{9) of Chapter II, (page 39). 

5. By means of the divergence theorem for the plane, find two expressions 
for the area bounded by a plane curve, in terms of integrals around the curve. 

6. Show that the fields of force due to logarithmic distributions are solenoidal 
.at points distinct from those occupied by the distribution. 

7. Determine the flux of force through a closed curve enclosing a logarithmic 
p:;trticle, and write the form which Gauss' theorem (p. 43) takes. Consider the 
possibility of deriving Gauss' theorem in the plane from Gauss' theorem in space. 

8. Find the logarithmic potential of a straight homogeneous line segment. 
Answer, 

[ 1 1 (Ya - YI) X] u = It Yalog - - yllog - + Ya - Yl - X tan-l 2--- , 
da d l .x +YlY2 

where (0, :Vl) and (0. Ya) are the end-points of the segment, and d l and d 2 are the 
distances of P (x, 0) from them. 

Show that the improper integral for the potential at a point of the segment 
is convergent, and that the potential is continous throughout the plane. Show 
1:hat its normal derivative drops by 2nlt as P passes through the segment in the 
direction of differentiation. Does this result harmonize with that of Exercise 4, 
.(p. 12), when the densities ofthe four rectangles there considered are the same? 

. 9. Find the logarithmic potential of a homogeneous circumference, at interior 
.and exterior points. Note the formula of integration 

2". l+ll-e2 J log (I - 8 cos D) dD = 2 n log --2---' 0;;;;;; e < I, (Chap. XII, § 5). 
o 
The desired potential is 

U = Mlog (~), 

= Mlog (Th-), 
10. Define the components of force due to logarithmic distributions on curves 

.and over areas, as integrals. Find in this way the force due to the circumference 
in the above exercise. From the force. determine the potential to within an additive 
.constant, on the assumption that the potential is everywhere continuous. The 
above formula of integration may be evaluated in this way, the additive constant 
in the potential being determined by its value at the center, for which point the 
integral for the potential can easily be evaluated. 

11. Find the logarithmic potential of a homogeneous circular lamina at interior 
.and exterior points. Show that this potential and its derivatives of the first order 
.are everywhere continuous, but that 

oau 02U 
ox2 + 0;2 

is 0 at exterior points, and - 2 ml' at interior points. 
12. Generalize the results of the above problem to the case in which the density 

is a continuous function of the distance from the center. 
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6. Magnetic Particles. 
We are familiar with the attractions and repulsions which the poles 

of magnets exert on each other. The ordinary compass is a magnet, one 
pole, the positive, or north-seeking, being attracted toward the north 
magnetic pole of the earth, and the negative, or south-seeking pole being 
attracted toward the south magnetic pole of the earth. COULOUMB esta­
blished the fact that two unlike poles attract, and two like poles repel, 
according to Newton's law for particles, the masses of the particles being 
replaced by the strengths of the poles. The sense of the forces must be 
reversed, in the statement of this law, if, as is customary, the strengths 
of positive poles are regarded as positive quantities, and the strengths 
of negative poles as negative quantities. 

It is found that the strengths of the poles of a single magnet are 
equal anef opposite. If a long thin magnet is broken at any point, it is 
found that the two pieces are magnets, each with positive and negative 
poles, of strengths sensibly equal to the strengths of the original magnet. 
It is therefore natural to think of a magnet as made up of minute parts, 
themselves magnets, arranged so that their axes, or lines from negative 
to positive poles, are all approximately in the same direction. Then, at 
moderate distances from the magnet, the effects of the positive and 
negative poles in the interior of the magnet will very nearly counter­
balance eachother. But at the ends, there will be unbalanced poles, and 
these will give to the magnet as a whole its ability to attract and repel. 
This view is further strengthened by a consideration of the process of 
magnetizing a piece of iron. Before magnetization, the particles may be 
thought of as having random orientations, and therefore no appreciable 
effect. Magnetization consists in giving them an orderly orientation. 

The question which now confronts us, is to find a simple analytical 
equivalent for the field of this magnetic particle. Just as we idealize the 
element of mass in the notion of particle, we shall try to formulate a 
corresponding idealization of the minute magnet, or magnetic particle, 
as we shall call it. Actual magnets can then be built up of these magnetic 
particles by the process of integration. The natural thing to do is, per­
haps, to take the field of two particles of equal and opposite mass, and 
interpret this as the field of a magnetic particle. But here, the distance 
between the particles seems to be an extraneous element. If we allow 
the distance to approach 0, the field approaches zero. We can, however, 
prevent this if at the same time we allow the masses to become infinite, 
in such a way that the product of mass by distance, or moment, ap­
proaches a limit, or more simply, remains constant. Let us try this. We 
are to have a mass-m at Q, and a mass m at Q' on a ray from Q with a 
given direction IX. The potential at P of the pair of masses is 

U'=~-~ 
y' r ' 

Kellogg, Potential Theory. 5 



66 The Potential. 

or, in terms of the moment p = mQQ', 

1 1 ,--
U'= r _r. 

P QQ' 

But the limit of this, as Q' approaches Q is nothing other than the direc­

tional derivative of the function : of~, 17, , in the direction C/.. Hence 

we find for the potential of the magnetic particle 

a 1 [a 1 a 1 a IJ U=Pa;:r=P layr+ m a1)y+ n 7)fr' 

1, m, n being the direction cosines of the direction 01:. The direction is 
called the axis of the magnetic particle, and P is called its moment. 
The components of the field of the magnetic particle are obtained at 
once by forming the derivatives of the potential with respect to x, y 
and z. 

The field of a magnetic particle also plays a role when interpreted 
as a flow field in hydrodynamics or in the conduction of heat. It is then 
referred to as the field of a doublet. 

Exercises. 
1. Write the components of the force due to a magnetic molecule of moment 1 

·situated at the origin and having as axis the direction of the x-axis. Find the lines 
of force. Show that they consist of plane sets of similar and similarly placed curves, 
those in the (x, y)-plane having the equation r = c sin 2 cp. Compare these lines 
of force at a considerable distance from the origin with those due to two particles 
of equal and opposite mass, drawn in connection with Exercise 5 (p. 31). 

2. On a straight line segment of length a is a continuous distribution of magnetic 
particles of constant moment density ft per unit of length, and with axes along 
the line segment, all in the same sense. Show that the distribution has the same 
field as a single magnet, with poles at the ends of the segment, of strength - ft 
and ft. 

3. Find the potential of a quadruplet, formed by placing poles of strength 
m at (a, a, 0), -m at (-a, a, 0), m at (-a, -a, 0) and -m at (a, -a, 0), and 
taking the limit of their combined potential as a approaches 0, while their strengths 
increase in such a way that ft=4ma 2 remains constant. Indicate an interpre-

1 
tation of any partial derivative of r with respect to the coordinates ~, 1), (;. 

4. Define a logarithmic doublet in the potential theory of two dimensions, 
and determine its equipotentials and lines of flow, supplying a figure. 

7. Magnetic Shells, or Double Distributions. 

By means of magnetic particles or doublets, we may build up magnets 
or distributions of doublets of quite varied character. We confine 
ourselves here to one of particular usefulness. It may be regarded as the 
limiting form of a set magnetic particles distributed over a surface, with 
their axes always normal to the surface and pointing to one and the 
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samel side, as the particles become more and more densely distributed 
and their moments decrease. We proceed as follows. Let a surface S be 
given, with a continuously turning tangent plane, and a continuous 
function I' of the position on the surface of a variable point Q. Let S 
be divided into' elements LI S. At some point of each such element, let 
a magnetic particle be placed, whose moment is the product of the 
value of the function I' at that point by the area of the element LI Sand 
whose axis has the direction of the positive normal'll. Let the potential 
of the field of these particles be denoted by U' ; 

U'= ~1'~~.LlS. 
,L..; By r 

The limit of such a distribution, as the maximum chord of the elements 
LI S approaches 0, is a magnetic shell or double distribut.ion. Its potential is 

(10) U = II I' :11 ~dS. 
s 

Here I' is called the density of magnetization of the magnetic shell, or the 
moment of the double distribution. 

The potential can be given 
another form in the case of simple 
surfaces, w)lich better reveals some 
of its properties. We shall think of 
P as fixed, for the moment, and 
suppose that in addition to having 
a continuously turning tangent p Fig. 10. 

plane, the surface S is cut by no 
ray from P more than once, and is tangent to no such ray (fig. 10). Let 

1 The reader is doubtless aware that there exist surfaces for which it is not 
possible to speak of two distinct sides. One such is the Mobius strip. If a long, 
narrow rectangle of paper with corners A, B, C, D, in order, have its ends pasted 
together, so that B coincides with C and A with D, we have, approximately, a 
cylindrical surface, which is two sided. But if the ends are joined after turning 
one end through 1800 in a plane roughly perpendicular to the initial plane of the 
paper, so that B falls on D and A on C, we have the Mobius strip, which is one sided. 
If we fix on a positive sense for the normal at some point P of the paper, and if 
we then pass once around the strip, keeping the sense of the normal so that its direc­
tion changes continuously, when we arrive at P again, we find the positive sense 
of the normal reversed. Any convention as to a positive side of the strip is thus 
impossible - at least as long as such circuits are allowed. 

It is of interest to notice that the strip also has but one edge. It is also amusing 
to ask someone unacquainted with the situation to predict what will happen if 
the strip is cut along the line which in the origiual rectangle lay half way between 
the long sides until the cut closes. And similarly, if the cut be along a line which 
in the rectangle was one third the way from one long side to the other. 

We shall understand, throughout, that one-sided surfaces are excluded, unless 
the contrary is distinctly stated. 

5* 
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LI 5 be an element of S. We apply the divergence theorem to the region 
T bounded by LI 5, the conical surface joining the boundary of LI 5 to P, 
and a small sphere a about P to which 5 is exterior. We take 

o 1 
X=&f-;'-' 

the variables being ~, 'YJ, C, and x, y, z being held constant. We have, 
then 

rIf(~! +~! + ~-!) dV=f.J~!dS J. 0;2 r 01J' r oe2 r OV r ' 
T 5' 

5' being the boundary of T. As r does not vanish in T, the integrand 
in the volume integral vanishes, as may be seen by carrying out the 
differentiations. Moreover, the surface integral vanishes on the conical 

portion of the boundary because ~ is constant in the direction of 

differentiation. Hence 

rJ~!dS + rJ~!dS = 0 J. ov r J. ov r ' 
dS d(J 

LI a being the projection of LI 5 on the sphere a. The sense of the normal 
is outward from T. On the sphere, 

o 1 0 1 1 
avr = -avr =;2' 

so that 

where LI Q is the solid angle subtended at P by LI 5, to be regarded as 
positive when the positive normals to 5 make acute angles with the 
rays from P, and negative when these angles are obtuse. 

We thus have a geometric interpretation of the double distribution 
in the case of a unit moment, namely the solid angle subtended at P by 
the surface on which the distribution is placed. To generalize the result, 
we apply the law of the mean to the above integral, and find 

[~!J LIS = - LlQ ov r Q' ' 

where Q' lies on LI S. If now we multiply the two sides of this equation 
by the value of the moment fl at Q', sum over 5, and pass to the limit 
as the maximum chord of the elements LI 5 approaches 0, we obtain 

o 1 u= ff fl--dS = - fffl dQ , s ov r [J 

where Q is the solid angle subtended at P by S. 
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This equation holds even if the rays from P are tangent to S at points 
ofthe curve bounding S, provided they are not tangent at interior points, 
as may be seen by applying it to an interior portion of S and allowing 
this portion to expand to the whole of S. Then by addition of portions, 
it can be extended to the case where P has any position off the surface 
S, provided there is a limit to the number of times any straight line 
cuts S. For such surfaces, then, U may be written 

(ll) U= -ff pdQ. 
£J 

Exercises. 
1. Find the potential at interior and exterior points of a closed magnetic 

shell of constant moment density for which the representation (11) is valid. Show 
that this potential has a sudden increase of 4:71: fI as P moves out through the sur­
face. 

2. Show that the representation is valid for ellipsoids, right circular cones 
and cylinders, and polyhedra. 

3. Compare the potential of a homogeneous double distribution on a plane 
area with the component, normal to the plane, of the force due to a homogeneous 
plane lamina occupying the same area (see Exercise 2, page 12). 

4. Show that the potential of a double distribution of constant moment on an 
open surface may be regarded as everywhere continous, except on the edges of the 
surface, provided we admit multiply valued potentials, and that, in this case, 
the surface may be replaced, without changing the potential, by any other surface 
with the same boundary, into which it can be continuously warped. It is under­
stood that we are restricting ourselves to surfaces for which the representation (ll) 
is valid. 

5. Define double distributions in the theory of logarithmic potentials, and de­
velop their properties analogous to those of the double distributions considered 
in the text and exercises of this section. 

6. Show that the double distribution may be interpreted in the following 
way. We draw the normals to the continuously curved surface 5. On the nor­
mals we measure off the same distance a, to the same side of 5, and call the locus 
of the points so constructed, 5'. On 5' we construct a simple distribution of den­
sity u. On 5 we construct a simple distribution whose density at any point is the 
negative -u of the density of the distribution on 5' at the point on the same 
normal. Let U' be the combined potential of these two spreads. Forming the 
function It = au, we now allow a to approach 0, u increasing in such a way that 
It keeps its value at each point. The limit U of U' is the potential of the double 
distribution on 5 of moment fl. This interpreta.tion indicates the significance 
of the name double distribution. 

8. Irrotational Flow. 

We have considered the fields of flow which correspond to solenoidal 
fields of force. What are the characteristics of flpws corresponding to 
conservative, or lamellar fields of force? The line integral f (X d x + Y d y 
+ Z dz) whose vanishing when taken over all closed paths defines a 
lamellar field, and which in a field of force means work, does not, in 
a field of flow, correspond to any concept familiar in elementary mechan-
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ics. It does, however, indicate the degree to which the general motion 
of the fluid is along the curve, and if its value when the curve is closed 
is different, from 0, it indicates that there is a rotatory element in the 
motion, or a character of vortex motion. In a field of flow, the integral 
is called the circulation along the curve. If the integral vanishes when 
extended to all closed curves in a region, which can be shrunk to a point 
without leaving that region, the motion is said to be irrotational, or free 
from vortices, in the region. 

Irrotational flows are characterized by the fact that they have a 
potential, that is, that the components of the velocity are the correspond­
ing derivatives of one and the same function, called the velocit~ poten­
tial. 

We have seen that a necessary condition for the existence of a 
potential is that 

az ay ax az ay ax 

but is has not yet appeared that this condition is sufficient. It was the 
divergence theorem which showed us that the vanishing of the diver­
gence of a field was necessary and sufficient that it be solenoidal. There is 
a corresponding integral identity which will answer in a similar way the 
,question which now confronts us. The divergence theorem may be 
thought of as stating that the total divergence for a region is equal to 
the integral of the divergence at a point, over the region. Can we, in 
order to follow the analogy, define such a thing as the circulation at 
a point? 

Let us consider first the case of a very simple flow, namely one in 
which the velocities are those of a rigid body rotating with unit angular 
velocity about the z-axis. The circulation around a circle about the 
origin in the (x, y)-plane, of radius a, is readily found to be 2na2• Na­
turally, as a approaches 0, the circulation approaches 0, as it would in 
any continuous field. But if we first divide by the area of the circle, the 
limit is 2, and we should find this same limit if we followed the same 
process with any simple closed curve surrounding the origin in the 
(x, y)-plane. Suppose, however, that we take a closed curve in a vertical 
plane. The velocity is everywhere perpendicular to such a curve, and 
the circulation is 0. Thus we should get different values for the circu­
lation at 0 according to the orientation of the plane in which the curves 
were drawn. Now when a concept seems to be bound up with a direction, 
it is natural to ask whether it has not the character of a vector. It turns 
out that this is the key to the present situation. The circulation at the 
origin in our case is a vector, whose component perpendicular to the 
(x, y)-plane is 2, and whose component in any direction in this plane is 
O-it is the vector (0, 0,2). 
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We now formulate the definition of the circulation at a point, or as 
it is called, the curl of a field at a point. Let P denote a point, and n 
a direction (fig. 11). Through P we take a smooth surface S, whose 
normal at P has the drrection n. On S we draw a simple closed curve C 
enclosing P, and compute the circulation around C, the sense of inte- . 
gration being counter-Clockwise1 as seen from the side of S toward 
which n points. We divide the value of the circulation by the area of the 
portion of S bounded by C, and allow the maxi­
mum chord of C to approach· O. The limit defines 
the component of the c-url in the direction n: 

J(Xdx+Ydy+Zdz) 

(12) curln (X, Y, Z) = lim _c ---A;----- Fig. 11. 

This definition contains a double proviso. The limit of the ratio of 
circulation to area must exist-and it is understood that it shall be 
independent of the particular form of S and of C-and the components 
defined by the limits for various directions of n must actually be the 
components of a single vector (see the exercise, below). If these con­
ditions are not fulfilled, the curl simply does not exist at P. But we shall 
see that they are fulfilled whenever the components of the field have con­
tinuous derivatives. 

Let us now find an expression for the curl, on 
the hypothesis that it exists. This means, among 
other things, that we may specialize the curves C so 
that they have any convenient shape. We take the 
point P as origin of coordinates, and compute the 
x-component of the curl. We find first the circu­
lation around the square in the (y, z)-plane which is 
bounded by the lines y = ±a, Z= ±a (fig. 12). It is 

a -a -a 

z 
Y(o,y,aJ 

Zfo,-a,z, ~(~ 
ip 

C' 

YfQ.g,-a) 

Fig. 12. 

f Z (0, a, z) dz + f Y (0, y, a) dy + f Z (0, - a, z) dz 
_ a a 

a 

+fy(O,y, -a)dy. 
-a 

a,z} 
Y 

We assemble the two integrals with respect to z and the two with 
respect to y, and apply the law of the mean: 

a a 

f [Z(O, a, z) - Z (0, - a, ;)]dz - f [Y(O, y, a) - Y (0, y, - a)]dy 
-a -a 

= [Z (0, a, z') - Z (0, - a, z')] 2a - [Y (0, y', a) - Y (0, y', - a)] 2a. 

1 This convention is the one adopted when the system of coordinate axes is a 
right-hand system, i. e. such that a counter-clockwise rotation about the z-axis, 
as seen from the side of positive z, through an angle 900 carries the positive x-axis 
into the positive y-axis. For a left-hand system of axes, the convention as to the 
sense of integration around C is usually the opposite of that given above. 
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Applying the law of the mean for differences, we find for the circula­
tion around the square C 

[~~ Ip, - ~~ /p"] 4a2 , 

where P' and P" are points of the surface of the square. If we divide 
by the area 4a2 of the square, and pass to the limit as a approaches 0, 
we find az ay 

curl", (X, Y, Z) = ay - Tz' 

By cyclic interchanges we find the two other components. The result is 
that if the components of the field have continuous derivatives, and if the 
curl exists, it must be given correctly by 

(az ay ax az ay ax) 
(13) curl (X, Y, Z) = ay - Tz' Tz - ax' ax - oy . 

In the case of an irrotational field, the curl of course exists, and 
vanishes. We thus find again the necessary condition for an irrota­
tional field given at the beginning of the section. 

Exercise. 
Show that a necessary and sufficient condition that a set of vectors, finite or 

infinite in number, drawn from a point 0, shall be the components of one and the 
same vector, is that they shall all be chords of the same sphere. 

9. Stokes' Theorem. 

We next ask, whether, knowing the curl at every point, we can re­
construct the circulation around a smooth curve C. We suppose C such 
that it can be spanned by a smooth simple surface S. Let a positive sense 
for the normals to S be decided upon, and let S be divided into elements 
by a net-work of simple curves. Then if the boundary of each element 
L1 Sic be given a sense, such that it is counter-clockwise when seen from 
the side of the positive normal to S, the sum of the circulations around 
the boundaries of the elements will be the circulation around C. For the 
parts of this sum that correspond to the common boundary to two ad­
jacent elements will destroy each other, because this common boundary is 
described twice in opposite senses, and what remains after these common 
boundaries have been accounted for, is simply the curve C, described in 
a counter-clockwise sense as seen from the positive side of S. But, if 
the curl exists, the circulation around the boundary of an element 
L1 Sic is approximately equal to the normal component of the curl at one 
of the points of the element, multiplied by tha area of the element. For 
the equation (12) may be written 

J(Xdx+Ydy+Zdz) 

curln(X,Y,Z)=ck LlS
k 

+l;,Ic, 
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eli; being the boundary of LI Sk and 'k a quantity which approaches 0 
with the maximum chord of 1I Sk. If this equation be multiplied by 
LI Sk' and the result summed over the whole of S, we have 

J (X dx + Y dy + Z dz) =..2 curln (X, Y, Z) LlSk -1.,' 'k LiS li;. 
C 

This gives, in the limit, as the maximum chord of the elements ap­
proaches 0, the equation 

J (X dx + Y dy + Z dz) = J J curln (X, Y, Z) dS. 
c 5 

We are thus led, granting any assumptions necessary to justify the 
reasoning, to the identity known as Stokes' theorem!, which may 
be stated in various ways 

J J curl n V:dS = J Vsds, 
5 C 

(14) fJ[( OZ _OY)l+(OX_OZlm+(·OY -OX)nJdS 
oy OZ \oz ax/ ox oy 

5 

=J(Xdx+Ydy+Zdz), 
C 

or, in words, the circulation around a simple closed curve is equal to the 
integral over any simple surface spanning the curve, 0/ the normal com­
ponent of the curl, the positive sense on the curve being the counter-clock­
wise sense as seen from the side of the surface toward which the positive 
normal points. This is on the assumption that X, Y, Z are the com­
ponents of the field referred to a right-hand set of axes. If a left hand 
set of axes is used, the sense of integration around the curve must be 
reversed, or else a minus sign introduced on one side of the equation. 

A rigorous establishment of Stokes' theorem will be given in the 
next chapter. Assuming that it has been established, let us make some 
applications. First, as to the existence of the curl. Taking the defini­
tion (12), we express the curvelinear integral as a surface integral over 
the portion of S within e, by means of Stokes' theorem. We then apply 
the law of the mean to the surface integral, divide by the area of the 
portion of S within e, and pass to the limit as the maximum chord of e 
approaches o. Because of the continuity of the derivatives of the com­
ponents of the field, and of the direction cosines l, m, n of the normal, 
this limit exists, and is the value of 

( OZ _ ay) 1 + (OX _ az') m + (oY _ OX) n 
oy OZ oz ax \ox oy 

at P. That is, the component of the curl in any direction is the com­
ponent in that same direction of the vector given by the right hand 

1 STOKES, G., A Smith's Prize Paper. Cambridge University Calendar, 1854. 
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member of (13). Thus the components of the curl as given by (12) do 
exist, they are the components in various directions of one and the 
same vector, and the equation (13) is valid. 

Secondly, we may show that the vanishing of the curl at every point 
of a region is a sufficient condition-as we have seen it to be a necessary 
condition-that the field be irrotational, at least on the hypothesis of a 
field with continuously differentiable components. For if C is any 
smooth curve that can be continuously shrunk to a point without leav­
ing the region, it can be spanned by a simple smooth surface S, and 
applying Stokes' theorem we see that the vanishing of the curl at every 
point has as consequence the vanishing of the circulation around C. 

Multiply connected regions. Both in the present section, and in § 1, 
we have mentioned curves which can be shrunk to a point without leav­
ing a given region. A region such that any simple closed curve in it can 
be shrunk to a point without leaving the region is called simply connect­
ed. Such, for example, are the regions bounded by a sphere, a cube, a 
right circular cylinder, and the region between two concentric spheres. 
On the other hand, a torus, or anchor ring, is not simply connected. For 
the circle C, which is the locus of the midpoints of the meridian sections 
of the ,torus cannot be continuously shrunk to a point without leaving 
the region. What peculiarities are presented by conservative, or irrota­
tional fields in such multiply connected regions? Let us take the region 
T, occupied by a torus, as an example. Suppose we cut it, from the axis 
outward, by a meridian curve, and regard the portion of this plane 
within the torus as a barrier, or diaphragm, and denote the new region 
with this diaphragm as part of its boundary, which must not be crossed, 
by T'. In T', the circulation around any closed curve is 0, for the field 
is irrotational, and any closed curve in T' may be continuously shrunk 

Fig. 13. 

to a point without leaving T'. We shall later 
see in exercises that the circulation in T around 
the circle C need not vanish. What we can say, 
however, is that the circulation in T around 
all curves which can be continuously warped 
into C without leaving T, is the same, it 
being understood, of course, that the senses 
on these curves go over continuously into 
the sense on C. We may see this as follows. 
Let the point where C cuts the diaphragm 
have two designations, A, regarded as the 

point where C leaves the diaphragm, and A', the point where it arrives 
at the diaphragm (fig. 13). Let C' be a curve which can be continuouslv 
deformed into C, and let Band B' be notations for the point at which 
it leaves and arrives at the diaphragm. Consider the following circuit: 
the curve C from A to A' in the positive sense, the straight line segment 
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in the diaphragm from A' to B', the curve C' in the negative sense from 
B' to B, the straight line segment from B to A. The circulation around 
this circuit vanishes. For, although it is true that it does not lie in T', 
the slightest separation of the segment A' B' = A B into two segments, 
one on either side of the diaphragm, will reduce the circuit to one in T', 
and since the circulation around such circuits vanishes, it vanishes also 
in the limiting case of the circuit AA' B' BA. But since the circulations 
along A' B' and A B destroy each other, it follows that the circulation 
around C and that around C' in the negative sense have the sum 0, that 
is, that the circulations around the two curves in the same sense are 
equal. This is what we wished to prove. 

In T', the field has a potential U. It is determined save for an addi­
tive constant, as the work over any path in T' connecting Po with P. 
What we have just seen amounts to this, that in the case of fields 
with vanishing curl, the differences of the values which the potential 
approaches, as P approaches a point on the 'diaphragm from opposite 
sides, is one and the same constant k, over the whole diaphragm, namely, 
the circulation around C. But the diaphragm is after all an artificial thing, 
and might have had other shapes and positions. So the potential U may 
be continued across it in either direction. Only, the function so deter­
mined is not uniquely determined at each point, but its values will 
differ by k, the value of the circulation around C. If the potential be 
continued along a circuit cutting the diaphragm a number of times, 
always in the same sense, its values will increase by an integral multiple 
of k. It is thus infinitely many valued, its branches at any point differing 
by integral multiples of k. This number k is called the modulus of the 
diaphragm (or of any equivalent diaphragm). Of course k may be 0 for 
the given field, in which case the potential is one-valued. 

The torus is typical of regions which can be rendered simply connect­
ed by the introduction of a single diaphragm. Such regions are called 
doubly connected. If a bar runs across the hole in the ring, so as to form 
a sort of link like those used in some heavy anchor chains, two diaphragms 
will be necessary in order to reduce the region to a simply connected 
one. An irrotational field in such a region will have a potential which, 
in general, is multiple value with two moduli. It is clear how the situation 
is generalized to regions of higher connectivity. In a multiply connected 
region, fields whose potentials have moduli different from 0 are called 
cyclic, whereas those whose moduli all vanish are called acyclic. 

Exercises. 
1. Show, by means of (13), that for a Velocity field given by the velocities 

of the points of a rigid body, rotating with constant angular velocity about a 
fixed axis, the curl is twice the vector angular velocity. 

2. The curl can be different from 0 in a field of constant direction, and can 
vanish in a field in which the particles all move in the same sense along circles 
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with a common axis. Show that these situations occur in the fields a) (y, 0, 0) 

( - y X) . 
and b) 7'~' 0 ,respectively. 

3. The field (b) of Exe:rcise 2 is not everywhere continuous. If the discon­
tinuities are excluded by an appropriate enveloping surface, show that the rest 
of space is not a simply connected region. Introduce a diaphragm to produce a 
simply connected region, and find the corresponding modulus and the potential. 

4. Show that in two dimensions, the divergence theorem and Stokes' theorem 
are identical in content, i. e. that they differ only in notation. 

5. Show that in a field whose components have continuous partial derivatives of 
the first order, the integral of the normal component of the curl over a closed region 
vanishes. Again, assuming sufficient differentiability, show that div curl Y = 0 
and curl grad U = o. 

6. Granting always sufficient differentiability, show that any solenoidal field 
is the curl of some field. Suggestion. Let (F, G, H) denote the given solenoidal 
field. The desired end will be attained if we can find a field (X, Y, Z) whose curl 
is (F, G, H). Write down the differential equations for X, Y and Z, and attempt 
to integrate them on the hypothesis Z = O. It will be found to be possible. What 
is the most general solution? 

7. Show that any field, sufficiently differentiable, is the sum of a gradient 
and a curl. 

8. Show that an open magnetic shell, of constant moment-density, not 0, 
produces an irrotational cyclic field, and determine the modulus. Construct in 
a similiar fashion an irrotational cyclic field with several moduli. 

9. In Exercise 6 (p.37), it was shown that the divergence of a field with 
continuous dedvatives was invariant under a rigid motion of the axes. Show in 
the same way that grad U and curl Yare invariant under a rigid motion of the axes. 

10. Discuss the relation of the problem of integrating the differential equation 
X d x + Y d Y + Z dz = 0 to the theory of irrotational fields. In particular, give 
the geometric significance of the usual condition for integrability 

X(az _ ay)+y(ax_ az)+z(ay _ax)=O. ay az az ax ax ay 
11. In footnote 2, page 40, the question was raised as to when a field ad­

mitted surfaces orthogonal to it. Show that any Newtonian field does, and find 
a condition that is at once necessary and sufficient. 

10. Flow of Heat. 
Suppose we have a solid all of whose points are not at the same tem­

perature. The cooler parts become warmer, and the warmer parts be­
come cooler, and it is possible to picture what goes on as a flow of heat 
from the warmer to the cooler parts. The rate of flow may be represent­
ed as a vector (u, v, w), whose direction at any point is that in which 
heat is flowing, and whose magnitude is obtained by taking an element 
LI S of the plane through the point P in question, normal to the direction 
of flow, determining the number of calories per second flowing through 
this element, dividing this number by the area of LI S, and taking the 
limit of this quotient as the maximum chord of LIS approaches o. It 
is natural to assume that the velocity of flow is proportional to the rate 
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of fall of temperature, U, at P. The constant of proportionality would 
depend on the character of the material of the solid, and would measure 
its conductivity. In certain bodies, like crystals, the conductivity may 
differ in different directions at one and the same point. We shall avoid 
such materials, and confine ourselves to bodies that are thermally iso­
tropic. Then we should expect the flow vector to have the same direction 
as the gradient of the temperature, and, of course, the opposite sense: 

(15) u=_kau v=_k au w=_k au . ax ' ay , az 
These equations constitute our first physical assumption, for which 
there is ample experimental justification .. Though k may vary from 
point to point, and even vary with the temperature, it is determinate at 
any point when the temperature is known, and may usually be regarded 
as constant for homogeneous bodies and moderate ranges of tempera­
ture. The flow field is obviously always normal to the isothermal sur­
faces U = const.and, if k is constant, lamellar. 

We are led to a second physical assumption by considering a region 
T in the body, and ba.lancing the rate of flow of heat into it against the 
rise in temperature. The rate of flow into T in calories per second, is 
the negative of the flux of the field (u, v, w) out from the bounding sur­
face, or - f f VndS = - f f (ul + v m + wn) dS. 

s s 

A calorie of heat will raise a up.it mass of the body c degrees, if c is the 
specific heat of the material. Thus the number of calories per second re­
ceived per unit of mass is measured by 

au 
Cat' 

and the number of calories per second received by the whole mass in 

Tis rlr au J. C(!Tt dV. 
T 

We now equate these two expressions for the rate of flow of heat into 
T, transforming the first to a volume integral by the divergence theorem; 

iIJ[c au +~+~+!.~JdV=O. 
(! at ax ay az 

T 

Assuming that the integrand is continuous, we conclude by reasoning 
now familiar, that the integrand must vanish, since the integral vanishes 
for every region T. Hence we have our second physical assumption, 

(16) ~~ = - elf! (:: + ~; + ~:). 
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The flow of heat in a body may be stationary, i. e. such that the 
temperature at each point is independent of the time. Such, for instance, 
might be the situation in a bar, wrapped with insulating material, one 
end of which was kept in boiling water, and the other end in ice-water. 
Though heat would be constantly flowing, the temperatures might 
not vary sensibly with the time. If the flow is stationary, the equation 
(16) shows that it is solenoidal. Thus the fields of stationary flows of 
heat in isotropic bodies of constant conductivity have two important 
properties of Newtonian fields. We shall see later that these two 
properties characterize Newtonian fields, so that the theory, of stationary 
flows of heat in isotropic bodies of constant conductivity and the theory 
of Newtonian fields is identical. 

We may eliminate the components of the field between the equa­
tions (15) and (16), and obtain the differential equation which the tem­
perature must satisfy: 

(17) ~=~l~[~k~ ~k~ ~k~J. at ce ax ax + ay ay + az az 

If k, c and 12 are constant, this reduces to 

(18) a u [ a2 U a2 U a2 U ] 
at = a2 a x 2 + a y2 + iJZ2 ' 

and if the flow is stationary, 

(19) 
a2 U 82 U a2 U 
8"X2 + a y2 + a Z2 = 0 . 

The situation is similar in the stationary flow of electric current in a 
conductor. In such a flow, we have 

i = - AgradU, 

div i = 0, 

where i is the current vector, A the electrical conductivity, and U the 
potential. In particular, if the conductivity is constant the potential 
satisfies Laplace's equation (19). 

Exercises. 
1. Show that in a stationary flow of heat in an isotropic solid with constant 

conductivity, the only distribution of temperatures depending on a single car­
tesian coordinate is one in which U is a linear function of that coordinate. 

2. If the stationary temperatures in a spherical solid of the same material 
depend only on the distance from the center, show that they must be constant. 
Determine the possibilities in a hollow sphere for temperatures depending only on 
the distance from the center. 

3, Describe the flow of heat in an isotropic solid of constant conductivity when 
1 

the temperatures are given by U = r' Determine the strength of such a source 
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of heat in calories per second. Interpret as fields of flow of heat the fields of the 
exercises of § 2 (p. 31). 

4. Determine the relation which takes the place of (16) when continuously 
distributed sources are present, and find also the corresponding differential equa­
tion for the temper.atures. 

11. The ·Energy of Distributions. 

If a distribution of matter, of electricity, or of magnetism, i? altered, 
work will, in general, be done, and there will result a change in the 
energy of the system. Such changes can readily be computed if we know 
the energy of a distribution compared with some standard distribution. 
The standard distribution which is most convenient is one of infinite 
dispersion of all its elements. The energy change in assembling the dis­
tribution from such a state of infinite distribution is known as the 
energy of the distribution. We proceed to show how it may be found. 

Let us first take the case of n distinct particles. There being no field 
of force to start with, no work is done in bringing the first particle, of 

mass m1 to Pl' There is now a field of force whose potential is 71 and 

this potential is the work done by the field of force in bringing a unit 
particle from an infinite distance to P. The work done in bringing a 
particle of mass m2 to P 2 will thet:efore be 

where r12 is the-distance Pl P2 • The two particles now produce a field 
whose potential is 

and the work done in bringing the third particle of mass ma from infinity 
to Pa is ma times the value of this potential at Pa. Thus, the total amount 
of work done in assembling the three particles is 

Proceeding in this way, we find for the work done in assembling the n 
particles 

where the first index. runs through all integral values from I to nand 
the second runs through all greater values to n. It is convenient to remove 
the restriction on the indices. If we do so, and let i and i run through 
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all pairs of different values, we simply count each term twice, and we 
have 

where i and j run through all pairs of differentintegers from 1 to n. 

Since the fields are conservative, the work done in changing the con­
figuration of the particles is simply W 2 - Wv where W1 and W2 are the 
values of the above sum in the first and second positions of the particles. 
The expression W is called the self-potential of the system of particles. 
If the field is interpreted as a gravitational field, so that the particles 
attract, the work is done by the field, and is the negative of the potential 
energy. If the field is an electrostatic or magnetic field, W is the work 
done against the field, and is equal to the potential energy. Of course, a 
positive factor of proportionality, depending on the units used, may 
enter. For instance, in order to express W in foot pounds, we should have 
to multiply the above sum, the masses being measured in pounds and the 

distances in feet, by ~ where y is the constant of gravitation (see Exer-
g 

cise 1, page 3), and g the acceleration due to gravity at the earth's 
surface, measured in the foot pound second system. 

When it comes to determining the work done in assembling a con­
tinuous distribution, something of the nature of an additional hypothe­
sis is inevitable. For no matter how small the masses of the elements 
brought up to their final positions from infinity, they are brought up 
as wholes, and the work of assembling each of them is ignored. We do 
not even know in advance that this work is a finite quantity, to say 
nothing of being able to neglect, as an error which vanishes in the limit, 
the sum of all such elements of work. We shall therefore set down as the 
hypothesis itself that the work is the expression, analogous to that found 
for particles, 

(20) W= !ffffff%(P~%(Q) d(VV). 
(TT) 

The test of the hypothesis, like all others of a physical nature, rests on 
the consistency of its consequences with measurements. By this test, 
the hypothesis is satisfactory. 

The integral (20) is improper. Because it is sextuple, the verification 
that it converges involves either a geometric intuition concerning re­
gions of six dimensions, or else dealing with systems of inequalities 
which would vex rather than enlighten the reader at this point, unless he 
happened to have an interest for this very sort of problem, in which 
case he would be able to supply the reasoning. We therefore ask him 
to accept the facts, first that the integral is convergent when the den­
sity is continuous, or bounded, and continuous in a finite number of re-
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gions into which T can be divided; and secondly, that it is equal to the 
iterated integral, obtained first by integrating over the region T with 
respect to the coordinates ~ , rJ, C of Q, and then over T with respect to 
the coordinates x, y, z of P. It may then be expressed in the form 

(21) W = ~ fff" UdV, 
T 

where U is the potential of the distribution. 

Exercises. 
1. Show that the energy of a charge e in equilibrium (i. e. distributed with 

1 e2 
constant density) on a conducting sphere of radius a is ~. 

a 
2. Show that the work done by the field in assembling from a state of infinite 

3 m2 
dispersion a homogeneous sphere of mass m and radius a is "--. Note that this 

a 
is also the work done when the sphere contracts from one of infinite radius to one 
of radius a, always remaining homogeneous. 

3. Show that the energy expended in drawing together into a sphere of radius 
one foot, of the density of lead, its material, from a very finely divided and diffused 
state, is about 0'000177 foot pounds. Lead weighs about 710 pounds per cubic 
foot. 

4. If the sun were homogeneous, the shrinkage of its radius by one foot would 
release about 7'24 X 1031 foot pounds of energy. Verify this statement, using the 
following data: the radius of the sun is about 432200 miles, its mean density is 
about 1'4 times that of water, one cubic foot of water weighs 62'4 pounds. 

5. The heat annually radiated from the sun has been estimated, on the basis 
of the heat received by the earth, as 6 X 1030 times the amount which will raise 
one pound of water one degree centigrade 1. 

Show that the sun's age cannot have exceeded 20000 000 years, on the assumption 
that it is homogeneous. The energy whose equivalent in heat will raise the tem­
perature of a pound of water one degree centigrade is at least 1400 foot pounds. 
Geological evidence is to the effect that the age of the earth is at least 60 times 
the above figure for the sun, and for this, among other reasons, the theory which 
accounts for the energy radiated by the sun on the basis of its contraction is no 
longer regarded as satisfactory 2. 

6. If two bodies are brought, without change of form, from an infinite distance 
apart to a given position, show that the work done, or their mutual potential, is 
the integral over either body of the product of its density by the potential of the 
other. Show that the self-potential of the system of the two bodies is the sum of 
the self potentials of the bodies separately and their mutual potential. 

7. Two straight homogeneous wires of length 1 and masses m 1 and m 2 form two 
parallel sides of a rectangle of width Xl Show that the work necessary to increase 
the width of the rectangle to x 2 is 

2m1m2 [.tX2+ /2 - X fx2 + 12 + IJX~X' -- - log ---- . 
1 I x X ~X, 

1 See THOMSON and TAIT, Natural PhilosoPhy, Vol. I, Part. II, Appendix E. 
More recent estimates somewhat exceed this figure. 

2 See EDDINGTON, Stars and Atoms, New Haven, 1927, pp. 96-98. 

Kellogg, Potential Theory. 6 
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12. Reciprocity; Gauss' Theorem of the Arithmetic Mean. 
The property that two bodies attract each other with equal and 

opposite forces is reflected in the potential. The potential is symmetric 
in the coordinates of the two points involved, so that the potential at 
Q of a unit particle at P is the same as the potential at P of a unit par­
ticle at Q. From this fact a number of theorems follow, which are of 
great use in the theory and applications of the potentiaL We shall 
now derive two of them, and suggest further consequences in exer­
cises. 

The potential 

U(P) = -1-fIdS 
4na2 r 

s 

of a homogeneous spherical shell of radius a and total mass 1, is, as we 
have seen, equal at exterior points to the potential of the unit particle 

at the center, that is, to ~, while at interior points it is constant and . e 
equal to ! . But we see from the formula that this potential can also be 

interpreted as the average, or arithmetic meanl, over the surface of the 
sphere, of the potential at Q of a unit particle at P. Thus, remembering 
the values of U (P) at exterior and interior points, the above equation 
has the interpretations 

a) the average over the surface of a sphere of the potential of a unit 
particle outside the sphere, is equal to the value of that potential at the 

center of the sphere (namely !), and 

I The arithmetic mean of a set of numbers is their sum divided by the number 
of them, or 

m = a l + a 2 + as + ... + an • 

1+1+1+···+1 
If, instead of a finite set of numbers, we have a function I defined on a surface 
(and the process would be the same for other regions of definition), we may divide 
the surface into n equal portions, take a value of the function at some point of each 
portion, and form the arithmetic mean of these values, which we may write 

m' = IILl S + faLl S + f3Ll S + ... + f"Ll S 
LlS+LlS+LlS+.··+LlS • 

We may eliminate the arbitrariness in the choice of the points in the regions at 
which the values of t are taken, by passing to the limit as the maximum chord of 
the elements LlS approaches 0: 

JJf dS 
s 

m=--S-' 

This constitutes the usual definition of the arithmetic mean of a function f on a 
surface S. 
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b) the average over the surface of a sphere of the potential of a unit 
particle within the sphere, is independent of the position of the particle 
within the sphere, and is equal to the value at any point of the surface 

of the potential of the particle when located at the center (namely !). 
Suppose now that we have a number of particles, or even one of the 

usual contmuous distributions of matter either entirely exterior or 
entirely interior to the sphere. We have merely to sum the equations 
stated above in words, or in case of continuous distributions, sum and 
pass to the limit, in order to have the two following generalizations: 

a) Gauss' theorem of the Arithmetic Mean: the average over the 
surface of a sphere of the potential of masses lying entirely outside of the 
sphere is equal to the value of that potential at the center of the sphere, and 

b) A Second Average Value Theorem: the average over the surface 
of a sphere of the potential of masses lying entirely inside of the sphere 
is independent of their distribution within the sphere, and is equal to their 
total mass divided by the radi%s of the sphere!. 

The second theorem gives a means of determining the total mass 
of a bounded distribution when its potential is known. It therefore plays 
a role similar to that of Gauss' integral (p. 43). As a rule, however, it 
is less convenient than Gauss' integral, since the surface of integration 
must be a' sphere. 

Exercises. 

1. Show that the value of a Newtonian potential (not a constant) at a point P 
of free space is strictly intermediate between the extreme values which it has 
on the surface of any sphere about P which has no masses within it or on its surface. 

2. Show that a Newtonian potential can have neither maximum or minimum 
in free space, and deduce a theorem due to EARNSHAW with respect to the possi­
bility of points of stable equilibrium in a Newtonian field of force. 

3. According to the second average value theorem, 

Jf U(P) dS = 4nnza, 
5 

where U(P) is the potential of a distribution of total mass 11'1 within the sphere 
S of radius a. 'Write a similar equation for the concentric sphere of radius a + Lla, 
and from the two deduce Gauss' integral (p. 43) for spheres. 

4. Charges in equilibrium on conductors are always so distributed that the poten­
tial throughout each conductor is a constant (p. 176). Suppose that we have a 
set of conductors, B 1, B 2 , ••• B n , and that charges e1 , e2, ••• en are imparted to 
them. Let the potential of these charges when in equilibrium have the values 
VI' V 2, ••• Vn on the conductors. Show that if a different system of charges, 

1 The first of these theorems is given in GAUSS' Allgemeine Lehrsatze, Collected 
Works, Vol. V, p. 222; reprinted in OSTW ALDS Klassiker der Exaclen W issenschajten, 
No.2. vVe shall meet with it again (Chap. VIII, § 6). The second theorem is less 
current, although also in GAUSS' work (1. c.). 

6* 
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e~, e~, e~ produce a potential with values V~, V~, . .. V~ on the conduc-
tors, then 

5. State a theorem on the average value on a sphere of the potential due to 
masses both within and without (but not on) the sphere. Apply it to prove that if a 
spherical conductor is brought into the presence of various charges, the value on 
its surface of the resulting potential is the sum of the potential due to the initial 
charge of the conductor, and the value at its center of the potential of the field 
into which it was introduced. 

6. Assuming the applicability of Gauss' theorem (p. 43), - as is often done 
in text books, without justification - derive the following results, already verified 
in certain special cases: 

a) 

where" is the density of the distribution whose potential is U, 

b) 
au au 
-----=-4:n:a on+ on_ 

where these derivatives represent the limits of the derivatives of the potential of a 
surface distribution with density a, in the direction of the positive normal at Po: 
as the point P approaches Po along the normal, from the positive and from the 
negative side, respectively. 

c) the corresponding results in the theory of logarithmic potentials. 

7. Write an exposition of the theory of potentials in one dimension, starting 
with the force due to an infinite plane. Derive a standard form for the potential, 
consider continuous distributions on a line segment, consider solenoidal and 
lamellar fields, derive an analogue of Gauss' integral, consider the analogue of the 
divergence theorem, and consider mean value theorems. 

8. Write an exposition of the theory of potentials in n dimensions, determining 
the law of force in a way analogous to the method of Exercise 3 (p. 37). 

Chapter IV. 

The Divergence Theorem. 
1. Purpose of the Chapter. 

We have already seen something of the role of the divergence theorem 
and of Stokes' theorem in the study of fields of force and other vector 
fields; we shall also find them indispensable tools in later work. Our first 
task will be to prove them under rather restrictive assumptions, so that 
the proofs will not have their essential features buried in the minutiae 
which are un escapable if general results are to be attained. 

The theorems will thus be established under circumstances making 
them available for fairly large classes of problems, although not without 
the possibility of difficulty in verifying the fulfillment of the hypotheses. 
Both because of this situation, and because of the desirability of being 
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able to enunciate in simple terms general results based on these theo­
rems, it is important that they be demonstrated under broad conditions 
the applicability of which is immediately evident. The later sections of 
this chapter will therefore be concerned with the exact formulation of 
certain essential geometric concepts, and then with the desired general 
proofs. 

In the preceding chapters, we have used certain geometric con­
cepts, like curve and surface, as if they were familiar and sharply de­
fined ideas. But this is not the case, and at times we have had to specify 
that they should have certain properties, like continuously turning 
tangent lines or planes. This was not done with meticulousness, because 
such a procedure would have obscured the main results in view at the 
time. The results however, subsist. We shall have only to understand 
by curve, regular curve, by surface, regular surface, and by region, re­
gular region, as these concepts are defined in the present chapter. 

The reader approaching the subject for the first time will do well to 
study carefully only the first four sections of the chapter. The rest 
should be read rapidly, without attention to details of proof, but with 
the object merely of obtaining adequate ideas of the definitions and the 
content of the theorems. When he comes to a realization of the need of 
a more critical foundation of the theorems, and hardly before then, the 
reader should study the whole chapter for a mastery of its contents. 

2. The Divergence Theorem for Normal Regions. 

The divergence theorem involves two things, a certain region, or 
portion of space, and a vector field, or set of three functions X, Y, Z 
of x, y, z, defined in this region. 

The regions which we shall consider are 
those which we shall call normal regions. A 
region N is normal if it is a convex polyhedron, 
or if it is bounded by a surface 5 consisting of 
a finite number of parts of planes and one 
curved surface F, and is such that for some 
orientation of the coordinate axes, the follow­
ing conditions are fulfilled (fig. 14): 

a) the projectionF ofF on the (x, y)-plane 
is bounded by a simple closed curve consisting 
of a finite number of arcs, each with conti­
nuously turning tangent; the projection of all 

Fig. 14. 

the edges of S on the (x, y)-plane divide that plane into a finite 
number of regions, each bounded by a simple closed curve; 

b) any parallel to the z-axis containing an interior point of N has in 
common with N a single segment and no other point, and F is given by 
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an equation of the form z = f (x, y), where f (x, y) is one-valued and con­

tinuous, together with its partial derivatives of the first order, in F; 

c) these same conditions are fulfilled when the x, y and z-axes are 
interchanged in any way. 

A sphere is not a normal region, because it does not satisfy con­
dition (b). But it is made up of a finite number of normal regions. For the 
region bounded by a spherical triangle and the planes through its sides 
and the center of the sphere will be normal if the angular measures of 
the sides are sufficiently small. The situation is similar for the usual sur­
faces met with, and we shall see that the divergence theorem is appli­
cable to regions made up of normal pieces. 

As to the field (X, Y, Z) we shall assume that its components and 
their partial derivatives of the first order are continuous within and on 
the boundary of N. 

For a normal region N and a field satisfying the above requirements in 
N, the divergence theorem holds: 

(1) fff (~~ + ~~ + ~;) dV = ff (Xl + Ym + Zn) dS. 
N S 

Let a denote one of the regions into which the projection of 'the edges 
of S divides the (x, y)-plane, and let v denote the portion of N whose pro­
j ection is a; v will be bounded by a surface a consisting of a vertical 
cylindrical surface through the boundary of a, and by two surfaces 
Z = rp (x, y) andz = f (x, y), rp (x, y) < f (x, y), one ofthem being plane, 
and thus both satisfying condition (b). We start by establishing the 
divergence theorem for the region v and the field (0, 0, Z) : 

(2) fff ~; dV = ff Znda. 
a 

By the theorem on the equivalence of multiple and iterated integrals! 
,we have 

!(:r,y) 

(3) fff~~dV=ff[f~;dzJdu 
-0 <p(_<,y) 

= J J Z [x, y, f (x, y)] du - J J Z [x, y, rp (x, y)] du. 
a 6 

We now change the field of integration in the surface integrals from the 
projection a to the surface a bounding v. If Ll a is an element of the upper 
portion z = f (x, y) of a, and Lla the corresponding portion of U, i. e. 

1 See, for instance, OSGOOD, Advanced Calculus, p. 90. -COURANT, Differen­
tial- und Integralrechnung, Ed. II, pp, 175-183. 
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its projection, we have, by the familiar formula for areas, 

LlO' = II secy du = sec y' LI U, Llu ~ cosy' LlO'. 
LlCi 

y' being a mean value of the acute angle between the normal to the sur­
face and the z-axis. The application of the law of the mean is justified 
because of the condition (b) on t (x, y). Thus the first integral on the 
right of (3) may be written 

lim 17 Z [Xk' Yk' t (Xk' Yk)] LI Uk = lim2 Z [Xk' Yk' t (Xk' Yk)] COSYk LlO'k 
k k 

= II Z cos Y dO', 
a" 

where 0''' is the portion of 0' in the surface z = t (x, y). The second inte­
gral on the right in (3) may be transformed in the same way. On 0''', 
cos Y is exactly the direction cosine n, since here the outward normal 
makes an acute angle with the z-axis. On the portion 0" of 0' in the sur­
face z = (P (x, Y), however, the outward normal makes an obtuse angle 
with the z-axis, namely the supplement of Y, and hence cos Y = - n. 
We therefore obtain 

fff~ dV = If ZndO' + If ZndO'. 
v (i" a' 

The parts of 0' not comprised in 0" and 0''' are vertical cylindrical 
walls. On them n = 0, so the last equation is equivalent to (2). 

We may now establish the corresponding equation for the region N. 
For, if we add equations (2) corresponding to the finite number (by con­
dition (a)) of regions of type v into which N is divided, the sum of the 
left hand members is exactly 

ffI~~ dV, 
N 

while the surface integrals have as sum the integral over the surface S 
of N, the surface integrals over the vertical walls being O. Thus 

ffI~~ dV =fI ZndS. 
N S 

Now, because of condition (c), we can derive in the same way, the 
equations 

ffI ~~ dV = II XldS, 
N S 

IIf ~: dV = II YmdS, 
N S 

and the sum of the last three equations gives the divergence theorem (1) 
for N and for the particular orientation of the axes involved in the hypo-
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thesis on N. However, from the first form of the divergence theorem 
in equation (9), page 39, we know that both sides are invariant under a 
rigid motion of the axes, so that it holds for N with any position of the 
axes (see also Exercise 6, page 37). 

3. First Extension Principle. 
Any region which can be cut into normal regions by a finite number 

of planes, is also one for which the divergence theorem holds, the hypo­
theses on the field being maintained. For if the equations expressing the 
divergence theorem for the parts are added, the left hand members add 
up to the integral, over the whole region, of the divergence. The surface 
integrals add up to the integral of the normal component of the field 
over the surface of the whole region, plus integrals over surfaces each 
of which is part of the boundary of two adjacent partial regions. As the 
normal is outward from each, it is in opposite senses on such a surface, 
according as the surface is regarded as bounding one or the other of the 
partial regions. The surface integrals over such common boundaries 
therefore destroy each other, leaving only the outer surface of the whole 
region. 

Thus the divergence theorem holds lor any region which, in this sense, 
is the sum 0/ normal regions. The principle of adding regions in this way 
We call the first extension principle. 

Exercise. 
1. Show that a right circular cylinder, an ellipsoid, a torus, a truncated right 

circular cone, are all sums of normal regions. Show, on the other hand, that any 
portion of a right circular cone containing the vertex is not the sum of normal 
regions. 

By means of the first extension principle, we may assert the va­
lidity of the divergence theorem for a broad class of regions. It is 
easy to show that it holds also for right circular cones. It is the vertex 
which causes the difficulty. But the vertex can be cut out by means 
of a plane near to it, and normal to the axis, and the divergence 
theorem holds for what is left. Then, as the plane is made to ap­
proach the vertex, the divergence theorem for the truncated cone has 
as limiting form, the same theorem for the full cone. This is a 
special case of the second extension principle which we shall meet later. 

Exercises. 
2. Show that the divergence theorem in two dimensions 

JJ(~: + ~~)dS=J(PI+Qm)ds= J(PdY-QdX) 
sec 

holds, provided P and Q are continuous, together with their partial derivatives of 
the first order, in 5 and on its boundaryC, and if 5 is the sum of a finite number 



Stokes' Theorem. 89 

of polygons and regions bounded by simple closed curves, each of which consists 
of a finite number of straight sides and one curved side with continuously turning 
tangent, the tangent never turning through as much as a right angle. 

3. Show that the hypothesis on the field (X, Y, Z) in the divergence theorem 
may be lightened as follows. X, Y and Z shall be continuous in the region R, 
and on its boundary, and R can be broken up into a finite number of regions for 
which the divergence theorem holds, aud in each of which X, Y and Z have deriv­
atives which are continuous, the boundary included. This means that as P ap­
proaches the boundary from the interior of one of the partial regions, each derivative 
approaches a limit, and that these limits together with the values in the interior 
form a continuous function. The limits, however, need not be the same as P ap­
proaches a common boundary of two partial regions from the two sides. 

4. Stokes' Theorem. 

Stokes' theorem deals with an open, two sided surface S (see the 
footnote, p. 67), bounded by a simple closed curve C, and with a field 
X, Y, Z). A positive sense is assigned to the normal to S, and the di­
rection cosines of the normal with this sense are assumed to vary con­
tinuously with the position of the foot of the normal on S. A positive 
sense is assigned to the curve C in accordance with the conventions of 
§ 9, page 72. The condition on the continuity of the direction of the nor­
mal will be lightened. 

We first prove Stokes' theorem for a simple class of surfaces S, 
corresponding to the normal regions for the divergence theorem. We 
assume, namely, that S satisfies the conditions imposed on the curved 
face F of a normal region,in (a), (b), and (c) of § 2, page 85, and that its 
projection on each of the coordinate planes is a region for which the 
divergence theorem in two dimensions holds. 

As to the field, we assume that in a region of space with S in its 
interior, X, Y, Z and their partial derivatives of the first order are con­
tinuous. 

For surfaces S and fields (X, Y, Z) satisfying these requirements, 
Stokes theorem holds: 

(4) ff[( az - ay)z+ (ax _ az) m + (~_ aX)nJdS ay az az iJx ax ay . 
5 

= f(XdX+ Ydy+Zdz). 
c 

Considering first the terms involving X, we shall show that 

(5) 

Here X is given as a function of x, y and z, but as its values on the sur-
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face S, z = f (x, y), are all that are involved, we may substitute for it 
the function 

Then 

since 

Hence 

x [x, y, f (x, y)] = (/J (x, y). 

at 
- ax 
-1-

I 

-m--n dS=- ---.- ndS=- -ndS ff( ax ax) ff(ax ax m) ff acp . az ay ay az n ay 
s s s 

=- -dS ff acp -
ay , 

5 

where S is the projection of S on the (x, y)-plane. The last integral we 
now transform into a line integral over the curve y which is the pro­
jection of C on the (x, y)-plane, by means of the divergence theorem 
in two dimensionsl . Writing P = 0, Q = (/J, we see that the last inte­
gral is equal to 

f (/J (x, y) dx, 
r 

and since the values of (/J on yare identical with those of X at the cor­
responding points of C, this integral is equal to 

so that the identity (5) is established. Since the conditions on S hold 
also when the axes are interchanged, we have two similar identities, 
found from (5) by cyclic permutation of the letters, the sum of which 
yields Stokes' theorem (4), for the particular orientation of the axes used. 
But by the first formula (14), page 73, we see that the two members of the 
equation expressing Stokes' theorem are independent of an axis system, 
and hence (4) holds for any orientation of the axes. 

The theorem may now be extended. Let us call surfaces satisfying 
the conditions imposed on S no"rmal surface elements. Then if a surface 
can be resolved, by means of a system of curves, into a finite number of 
normal surface elements, and if senses are assigned to the normals and 
bounding curves of these elements in according to the convention we 

1 See Exercise 2 ofthe last section. The formula is derived in OSGOOD'S 4dvanced 
Calculus, pp. 222-223. 
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have established, the convention for two adjacent elements being 
such that their common boundaries are described in opposite senses, the 
sum of the identities (4) for the separate normal surface elements will 
yield the identity (4) for the whole surface. It is not necessary that S 
should have continuously changing normal directions throughout. This 
direction may break on the common boundary of two of the normal 
surface elements. The connection between the sense of the normal and 
the bounding curve permits us to decide op. how the convention as to 
the positive side of S is to be continued from one element to the next. 
Only, the surface must be two sided, or a contradiction may be ar­
rived at. 

The result is that we may tlOW assert the validity of Stokes' theorem 
under the following conditions: the surface S is two sided, and can be re­
solved into a finiten1~mber of normal surface elements. The functions X, Y, Z 
are continuous at all points of S, and their partial derivatives are con­
tinuous at all points of the normal s~trface elements into which S is divided 
(see Exercise 3 of the last section, page 89). 

5. Sets of Points. 

We turn now to the discussion of the geometric concepts which 
underlie any theory of integration, and which are especially important 
in the cases of line, surface, and volume integrals. Curves, volumes and 
portions of space are certain specified collections of points. By a set of 
points, we mean the aggregate of all points which are given by a definite 
law or condition, and only those points. Some examples of sets of points 
are given in Exercise 1, below. 

If the points of a set E lie in a plane, E is called a plane set of points, 
and if the points of E lie on a straight line, E is called a linear set of 
points. Of course plane and linear sets of points lie in space, and it is 
sometimes important to know whether such sets are to be regarded as 
parts of space, or as parts of the planes or lines in which they lie. We 
shall point out the cases in which such distinctions arise. 

A set of points is said to be finite or infinite according as it contains 
a finite or an infinite number of distinct points. 

A set of points is said to be bounded if all of its points lie in some 
sphere. 

A point P is said to be a limit point of the set E provided there are 
points of E, other than P, in every sphere with P as center. A limit 
point may belong to the set, or it may not. Thus if E consists of all the 
points within a given sphere, but not on its surface, all the points of the 
sphere, including its surface, are limit points of E. Thus some of its 
limit points belong to E and some do not. 

Finite sets do not have limit points. On the other hand, an impor-
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tant theorem known as the Bolzano-Weierstrass Theorem assures us 
that every bounded infinite set of points has at least one limit point l . 

The set of points consisting of all the limit points of E is called the 
derivative of E, and is denoted by E'. Thus if E is the set within a sphere, 
E' consists of the points of the sphere, the boundary included. The deri­
vative of a finite set is empty, that is, it contains no points. 

A point P of E is said to be an interior point of E, provided there is a 
sphere about P all the points in which belong to E. 

A point P of a plane set of points E is said to be an interior point of 
E with respect to the plane (or, if we are dealing only with a single plane, 
and misunderstanding is precluded, simply an interior point of E), pro­
vided there is a circle in the plane with center at P all the points in 
which belong to E. 

Thus, if E consists of the points of the (x, y)-plane for which 
- a < x < a, - a < y < a, any of its points is interior with respect 
to the plane. But none of its points are interior when it is considered a 
set of points in space. 

A point P of a linear set of points E is said to be an interior point of 
E with respect to the line (or, if misunderstanding is precluded, simply 
an interior point of E) provided it is the mid-point of a segment of the 
line, all the points of the segment belonging to E. 

A point P is said to be exterior to a set E provided it is the center of 
a sphere none of whose points belong to E. 

The boundary of a set of points E is the set of all limit points of E 
which are not interior to E. As this definition involves the notion of 
interior points, we must know in the case of plane and linear sets whether 
they are being considered as parts of space, or of the planes or lines 
in which they lie. Thus the set of points in a plane consisting of the 
surface of a circle, if regarded as a set in the plane, would have as boun­
dary the circumference of the circle. If it is regarded as a set in space, 
all its points are boundary points, since it has no interior points. Unless 
explicit statement is made to the contrary, we shall understand that 
the word interior, when used in connection with a plane set, means 
interior with respect to the plane, and similarly with respect to linear 
sets. 

The frontier of a set E is the set of points which are not exterior to E 
but are limit points of exterior points. Thus if E consists of the points 
interior to a circle and not on a given radius, the circumference of the 
circle belongs both to the boundary and to the frontier. The points of the 
radius, other than the extremity, belong to the boundary, but not the 
frontier. 

1 For a proof, see OSGOOD, Funktionentheorie, Leipzig, 1923 4th ed., p. 38, 
51h ed. 1928, p. 35. 
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A closed set of points is one which contains all its limit points. 
An open set of points is one all of whose points are interior points. The 

set x 2 + y2 + Z2 < a2 is closed. If we suppress the sign of equality, the 
set becomes open. The set of all points whose coordinates are positive 
proper rational fractions is neither open nor closed. 

A function of one or more variables is defined for certain values of 
the variable or variables, and these values constitute the coordinates 
of the points of a set. Such sets, in the case of functions occurring in 
mathematical physics, are of somewhat special character, and the names 
region and domain are employed for them. The usage is not uniformly 
established; we shall employ the words as follows. 

A domain, or open continuum is an open set, any two of whose points 
can be joined by a polygonal line, of a finite number of sides, all of whose 
points belong to the set. 

A region is either a domain, or a domain together with some or all 
of its boundary points. It is thus a broader term than domain. Usually 
it will be a domain with all its boundary points, in which case it will be 
called, as a rule, a closed region. 

A neighborhood of a point is a domain containing that point. 
Any bounded set 5 of numbers has a least upper bound. This is a 

number with the properties, that it is exceeded by no number of the set, 
while in· any neighborhood of it, there is at least one number of the 
set. The existence of the least upper bound may be proved as follows. 
Let ao denote a number less than some number of 5, and bo a number 
which exceeds all the numbers of S. We form the arithmetic mean of ao 
and bo' and define a l and bi as follows: 

ao + bo b b a l = ~'~2- , I = 0' or 

according as this mean is exceeded by some number of 5 or not. Simi­
lary, we define a2 , b2 , a3 , b3 , • • ., • In general 

a n _ 1 + bn _ 1 b b 
an = --2--' n === n-l' or 

accordI'ng as an_ 1 1 bn _ 1 l'S exceeded b b f 5 t Vi' y some num er 0 or no. e 

thus construct two sequences 

(a) 

(b) 

The first is never decreasing and bounded by bo, and the second is never 
increasing and bounded below by ao' Both therefore converge, and since 
b" - an approaches 0, to the same limit t. It is easily verified that I 
is the least upper bound of S. 
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Exercises. 
1. Examine the following sets of points as to whether they are' finite, bounded, 

open, closed, domains, regions. Specify also their limit points, derivatives, their 
interior points, their exterior points, and their boundaries and frontiers. The 
answers can be given conveniently in tabular form. 

a) the points whose coordinates are integers less in absolute value than 10, 
b) the points whose coordinates are integers, 
c) the points whose coordinates are rational numbers less in absolute value 

than 10, 
d) the points of the x-axis given by 0 < x ;:;;: 1, 
e) the same, with the point x = ~ removed, 

f) the points of the x-axis given by x = .!., where n assumes all integral 
n 

values, 
g) the points of the plane given by (12 ::;;; a2 cos 2 qJ, 

h) the points whose coordinates satisfy either of the inequalities (x-2)2 
+ y2 < 1, (x +2)2 + y2 < 1. 

i) the points x 2 + y2 + z2 ;:;;: 1 and the points x = 0, y = 0, 1 :;;;; z :;;;; 2. 

2. Prove that the boundary of any set of points is closed. 
3. Show that if any two points A and B of an open set E can be connected by 

a continuous curve (see page 98, Exercise 5) lying in E, they can also be con­
nected by a polygonal line with a finite number of sides, also lying in E. Thus 
in the definition of domain, we may replace the polygonal line by any continuous 
curve in E. 

Suggestion. About the point A there is a sphere, entirely in E. Consider the 
last point of the curve which belongs to this sphere. About it there is a second 
sphere in E. Thus a chain of spheres can be constructed, finite in number, in the 
last of which the point B lies. Having proved this, construct the polygon. The 
reasoning can be abbreviated by use of the Heine-Borel theorem of the next 
section. 

4. If R is a closed region, and E is a set of points in R, containing at least one, 
but not all, of the interior points of R, show that there must be a frontier point of 
E in the interior of R. 

Suggestion. Let P1 and P 2 be interior points of R, P 1 belonging to E, and P 2 

not. Consider a polygonal line connecting P 1 and P 2, and let 1 denote the least 
upper bound of the values of the length s of arc, measured from P l' corresponding 
to points in E. Show that s = 1 gives a frontier point of E. 

6. The Heine-Borel Theorem. 

The idea of uniformity is fundamental in analysis, and the reader 
who has not a clear appreciation of this concept should lose no time in 
obtaining one l • Generally speaking, a function is said to possess a cer­
tain property uniformly, or uniformly with respect to a certain variable, 
when the inequalities definipg that property can be so chosen as to hold 
independently of that variable. Thus the series 

u l (x) + u2 (x) + ua (x) + ... 
1 See the first eight sections of Chapter III of OSGOOD'S Funktionentheorie, or 

COURANT'S Differential- und lntegralrechnung, under the heading Gleichmapige 
Annaherung etc., in the index. 
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defines, by means of the sum of its first n terms, a function Sn (x). To 
say merely that the series converges, in the interval a < x < b, to 
l (x), means that to any x in the interval, and to any e> 0, there 
corresponds an N such that for this value of x, 

I Sn (x) - l (x) I < e, 
provided n > N. 

To say that the series converges unilormly in the interval to l (x) 
means that to any number e > 0, there corresponds a number N inde­
pendent 01 x, such that 

I sn (x) - l (x) I < e, 

for aU x in the interval, provided n > N. 

To say that a function 1 (P) of the coordinates of P, defined in a 
region R, is continuous in the region, means that to any point P of 
R and any e > 0, there corresponds a 15 > 0, such that 

II (Q) - 1 (P) I < e, 

provided Q is in R and the distance Q P is less than 15. 
To. say that the above function is unilormly continuous in R means 

that to anye > 0 there corresponds a 15 > 0, independent 01 P, such that 

II (Q) - 1 (P) I < e, 

where P and Q are any points of R, provided the distance PQ is less 
than 15. 

The reasoning establishing many theorems on uniformity has a 
common part which can be formulated as a theorem on sets of points 
and proved once for all. This theorem is known as 

The Heine-Borel Theorem 1 : Let E be any closed bounded set 01 
points, and 5 a set 01 domains, sttch that each point p 01 E is in one 01 
the domains Tp of the set. Then there is a subset 5', consisting 01 a finite 
number of the domains If" such that every point 01 E lies in one 01 the 
domains 01 5'. 

To prove this, we show first that there is a number IX > 0, such that 
each point of E lies in one of the domains of 5 whose boundary points 
all have a distance from that point greater than IX. Suppose this were 
not the case. Then for each positive integer n, there would be a point 
Pn such that all the domains of the set 5 containing P .. had boundary 

points within a distance of ~ from P... An infinite sequence of such n 
points, since E is bounded, would have at least one limit point PO' by 

1 BOREL, Annales de l'Ecole Normale Superieure, 3d Ser. Vol. 12 (1895) p.51. 
HEINE, Die Elemente dey Funktionentheorie, Journal fur Mathematik und Physik, 
Vol. 74 (1872), p. 188. 
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the Bolzano-Weierstrass theorem. And as E is closed, Po would be a 
point of E. It would therefore lie in one of the domains To of 5. We 
have here a contradiction. For if b were the radius of a sphere about Po, 
lying entirely in To, there would be points in the sequence PI> P2' Pa, ... 
lying within a distance i of Po, with index n such that ~ < i. For such 

a point there was no domain of 5 which did not have boundary points 

within a distance'!' of Pn. But To would be a domain whose boundary n 
points all lay at a greater distance from Pn, and this is the contradiction. 
Hence the number oc exists. 

Suppose now that e is a set of a finite number of the points of E, 
with the property that each point of E has a distance less than ex. from 
some point of e. Then for each point p of e there is a domain of the set 
S whose boundary points are all at a distance greater than ex. from p. 
The set of domains consisting of one such for each point of e is a set 5' 
of a finite number of domains, such that each point of E is in one of them, 
and it has therefore the character demanded by the theorem. 

Should there be any doubts about the existence of the set e, they 
may be set at rest by the following considerations. Let space be divided 

into cubes with diagonals of length ~, by three systems of parallel planes. 

The points of E can lie in but a finite number of these cubes, since E 
is bounded. Any set e consisting of one point of E in each cube which 
contains points of E, within it or on its boundary, has the required 
properties. 

This proof of the Heine-Borel theorem has been given for sets in 
space. The changes to be made for plane or linear sets of points are only 
of a formal nature. 

As an application, we prove the theorem il I (P) is continuous in the 
closed region R, then it is unilormly continuQ1,ts in R. Let e> 0 be given. 
By hypothesis, there is a sphere (J (P) about each point P of R, such that 
for any point Q of R in the sphere, 

II (Q) - I (P) 1< i· 
Consider the domains attached to the points of R, defined thus: the 
domain. corresponding to P is the interior of the sphere about P whose 
radius is half that of (J (P). By the Heine-Borel theorem, every point 
of R is interior to one of a finite number of these domains. If b denotes 
the least of their radii, then 

I I (Q) - I (P) ! < e 

if P and Q are any two points of R whose distance apart is less than b. 
For P lies in one of the finite set of domains, say that about Po. Hence 
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both P and Q lie in the sphere (j (Po), of radius at least 2 tJ. Thus both 

f (P) and f (Q) differ from f ( Po) by less than i, and so differ from each 

other by less than e. The above inequality therefore holds independent­
ly of the positions of P and Q, and the continuity is uniform. 

7. Functions of one Variable; Regular Curves. 

We shall be concerned with one-valued functions, defined for values 
of variables which are the coordinates of points of domains or regions. 
In the case of functions of one variable, the domains or regions are inter­
vals, without, or with. their end-points. 

Let I denote a closed interval a < x :::::;; b of the x-axis. We say that 
f (x) is continous in I if it is continuous at every point of I. 

We say that f (x) has a continuous der.ivative, or is continuously 
differentiable in I provided it is continuous in I and its derivative exists 
at all interior points of I, and coincides at all such points with a func­
tion which is continuous in I. 

Some such definition is necessary, if we are to speak of the derivative 
in a closed interval, for the ordinary definition of the derivative is not 
applicable at the endpoints of an interval in which a function is defined 
(see ExerCise 2, below). 

We say that f (x) is piecewise contin'uous in I provided there is a 
finite set of points of division, a = ao < ~.< a2 ••• < an = b, of the inter­
val I, such that in the interior of each of the intervals (ai' ai+l), f (x) 
coincides with a function which is continuous in the closed sub-interval. 

We say that f (x) is piecewise differentiable in I provided there is 
a set of sub-intervals of I of the above sort in each of which it has a 
continuous derivative (the sub-intervals being regarded as closed). 

E~erciBeB. 

L Characterize, with respect to the above definitions, the following functions: 

a) I(x) =fa2 -x2 , on (- a, a), on (:- i" i); b) I(x) = [x], where [x] means the ., 
greatest integer not exceeding x, on various intervals; c) I (x) = f [x] dx, on 
various intervals. 0 

2. Show that the above definition of continuously differentiable functions is 
equivalent to the following: a) I (x) shall have a derivative at every interior point 
of I, and one-sided derivatives at the end-points, and the function thus defined 
shall be continuous in the closed interval I; b) the derivative is continuous in the 
open interval, and approaches limits at the end-points. 

A regular arc is a set of points which, for some orientation of the 
axes, admits a representation 

y = f (x), Z = qJ (x), 
Kellogg, Potential Theory. 7 
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where j (x) and q; (x) are continuous and have continuous derivatives in I. 
We call such a representation a standard representation of the arc. 

We shall need several facts about regular arcs, some of which will 
be left to the reader as exercises, and some of which we shall prove as 
theorems. 

Eooercises. 
3. A regular arc admits a parametric representation in terms of the length 

of arc s, % = %(s), Y = y(s), z = z(s), 0:;;;; s :;;;; I, where %(s), y(s), z(s) are con­
tinuous and continuously differentiable in 0 ::;;; s ::;;; 1. 

4. A curve % = %(s), Y = y(s), z = z(s), 0 ~ s ;;;;; 1, where %(s), yes), z(s) are 
continuous and continuously differentiable in the interval 0;;;;; s ;;;;; I, admits a 
standard representation provided there is an orientation of the axes for which 
no tangent to the curve is perpendicular to the x-axis. The, curve is then a regular 
arc. 

5. A continuous curve is a set of points given by % = %(t), Y = y(t), z = z(t), 
a::;;; t::;;; b, where %(t), yet), z(t) are continuous functions of t in the closed interval 
(a, b). Show that such a curve is a closed bounded set of points. Show hence that 
a function which is continuous in a closed interval actually takes on, at points 
in the interval, its least upper bound, its greatest lower bound, and any intermediate 
value. Notice that the bounds are not necessarily taken on if the interval is open. 

Theorem I. Given a regular arc C, and a number oc > 0, there exists 
a number <5 > 0, such that no two tangents to C at points on any portion 
oj length less than <5, make with·each other an angle greater than oc. 

By Exercise 3 the direction cosines x' (s), y' (s), z' (s) of the tangent 
to C at the point s are continuous in the closed interval (0, l) , and hence 
are uniformly continuous. There is therefore a number <5 > 0 such that 
if sand t are any two points for which I s - t I < <5, 

[x' (s) - x' (t)]2 + [y' (s) - y' (t)]2 + [z' (s) - z' (t)]2 < 4 sin2 ] .• 

If the parentheses are expanded, we find for the cosine of the acute 
angle (s, t) between the tangents at sand t 

(6) . cos (s, t) = x' (s) x' (t) + y' (s) y' (t) + z' (s) z' (t) > cos oc, 

and this angle is therefore less than oc on any portion of C of length less 
than <5. 

For plane regular arcs, we could infer that the tangents at such a 
portion of C make angles less than oc with the chord joining the end­
points of the portion, for one of these tangents is parallel to the chord. 
But for arcs which are not plane, there need not be a tangent parallel 
to a chord, as may be seen by considering several turns of a helix. The 
fact subsists however as we now prove. 

Theorem II. Given a regular arc C, and a number oc> 0, there is 
a number <5 > 0, such that the tangent to C at any point oj a portion oj 
length less than <5, makes with the chord joining the end-points oj that portion 
an angle less than oc. 
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The same ~ as that determined in the proof of the previous theorem 
will serve. In fact, if we integrate both sides of the inequality (6) with 
respect to s from SI to S2' 0 < S2 - SI < ~, we find 

~-~~OO+~-~iOO+~-~~OO>~-~~L 

If we divide by c, the length of the chord joining SI and S2' we have on 
the left the cosine of the acute angle (c, t) between the chord and the 
tangent at t, and on the right something not less than cos ct. Hence 
if SI < t < S2' the angle (c, t) is less than ct, as was to be proved. 

Theorem III. The projection of a reg1l1ar arc on a plane to which it 
is nowhere perpendicular consists of a finite number of regular arcs. 

We take for the regular arc C the parametric representation ofExer­
cise 3, the plane of projection being the (x, )I)-plane. This is possible, 
since the properties there given for x (s), y (s), z (s) subsist if the axes 
are subjected to a rigid displacement. Since the arc is nowhere perpen­
dicular to the (x, y)-plane, I z' (s) I < 1, and hence, by Exercise 51, the 
maximum,u of I z' (s) I is less than 1. Then, if 0' is the length of arc of the 
projection C1 of C, 

0"2 (s) = X'2 (s) + y'2 (s) = 1- Z'2 (s) > 1 - ,u2. 

Hence, with the proper sense chosen for the positive direction on C1 , 

0' is an always increasing function of s for 0 < s < 1, with continuous, 
nowhere vanishing derivative. The inverse function s (0') therefore 
exists, and if 0 and J" are the values of 0' corresponding to 0 and 1 of s, 

s (0') is continuous and has a continuous derivative (namely a' ~S)) in 

the closed interval (0, J,,). Hence C1 is given by x = x [s (0')], y = y [s (0')], 
Z = 0, the coordinates being continuous and continuously differenti­
able functions of 0' on the closed interval (0, J,,). 

It remains to show that Cl can be divided into a finite number of 
pieces on each of which the tangent turns by less than a right angle, 
for corresponding to each such piece there will be an orientation of the 
axes such that no tangent to the piece is perpendicular to the x-axis. 
The pieces will then be regular arcs, by Exercise 4. But the coordi­
nates of C1 expressed as functions of 0' fulfill the conditions used in 
the proof of Theorem I, hence that theorem is applicable to Cl , and 

Cl has the required property for ct = i. 
A regular curve is a set of points consisting of a finite number of re­

gular arcs arranged in order, and such that the terminal point of each 
arc (other than the last) is the initial point of the next following arc. The 
arcs have no other points in common, except that the terminal point 

lOr, see OSGOOD, Funktionentheorie, Chap. I, § 4, Theorem 2. 

7* 
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of the last arc may be the initial point of the first. In this case, the reg­
ular curve is a closed curve. Otherwise it is an open curve. Regular curves 
have no double points. This means that if x = x (s), y = y (s), z = z (s), 
o < s < I, is a parametric representation of the curve in terms of its 
length of arc, the equations 

x(s)=x(t), y(s)=y(t), z(s)=z(t) 

have no solutions other than s = t for sand t in the closed interval (0, l) 
if the curve is open, and only the two additional solutions s = 0, t = 1, 
and s = l, t = 0, if the curve is closed. A curve without double points 
is called a simple curve. 

Exercise. 
6. Show that the following is an equivalent definition of regular curve: a regular 

curve is a set of points which admits a representation % = % (t), Y = Y (t), z = z (t), 
a;;;; t;;;; b, where %(t), y(t), z(t) are continuous and have piecewise continuous deriv­
atives in the closed interval (a, b), these derivatives never vanishing simultaneously, 
and where the equations %(s) = %(t), y(s) = y(t), z(s) = z(t) have no common solu­
tions for a;;;; s < t ;;;; b, except possibly the solution s = a, t = b. 

8. Functions of Two Variables; Regular Surfaces. 

Functions of two variables will usually be defined at the points of 
plane regions. Of primary importance will be regular regions. 

A regular region of the plane is a bounded closed region whose 
boundary is a closed regular curve. 

Exercise. 
1. Which of the following are regular regions? a) the surface and circumference 

of a circle; b) the points exterior to and on the boundary of a circle; c) the points 
between two concentric circles, with the circumferences; d) the points eff ;5 e ;5 

I 
eff+:r, f} 2:, 0; e) the region %2 + y2;5 4, y 2:, %sin x for % =F 0, y 2:, 0 for % = o. 

A regular region R is the sum of the regular regions R 1 , R 2 , ••• R n , 

provided every point of R is in one of the regions R;, every point of 
each R; is in R, and no two of the regions R; have common points other 
than as follows: a regular arc of the boundary of one of these regions 
and a regular arc of the boundary of another may either coincide, or 
have one or both end points in common. 

Let R denote a regular region of the (x, y)-plane. We say that 
f (x, y) is c01ztimtous in R provided it is continuous at every point of R. 

We say that f (x, y) is continuously diffenntiable in R, or has con­
tinuous partial derivatives of the first order in R, provided it is continuous 
in R alld provided its partial derivatives of the first order with respect 
to x and y exist at all interior points of R and there coincide each with 
a function which is continuous in R. 
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We say that f (x, y) is piecewise continuo·us in R, provided R is the 
sum of a finite number of regular regions in the interior of each of which 
1 (x, y) coincides with a function which is continuous in that sub-region. 
It may be noted that on the common boundary of two sub-regions, 
1 (x, y) need not be defined. A function which is 1 for x 2 + y2 < a2, 
y > 0, and - 1 for x 2 + y2 < a2, y < 0, is piecewise continuous in the 
circle. 

We say that 1 (x, y) is piecewise differentiable, or has piecewise con­
tinuous partial derit1atives 01 the first order in R, provided R is the sum 
of a finite number of regular regions in each of which 1 (.,\:, y) is con­
tinuously differentiable. 

The above definitions concerning functions depend on a system of 
axes in the (x, y)-planes, although they deal with functions defined on 
sets of points whose coordinates may well be measured from other axes. 
It is important for us to know that a function satisfying any of these 
definitions continues to do so when the axes undergo a rigid displace­
ment. This is the case. For if we make such a change of axes 

x = a + ~ cos oc - 1] sin oc, 

y=b + ~sinoc + 1] cos oc, 

1 (x, y) will become a function tP (~, 1]). If 1 (x, y) is continuous in any 
region, tP (~, TJ) will be continuous in that region. If f (x, y) has con­
tinuous partial derivatives of the first order in the interior of any re­
gion, tP (~, 1]) will have the derivatives 

0<1> 0/ of . 
o~ = ox cos oc + Oysmoc, 

0<1> Of. 0/ 
-=--smoc+ -cosoc 
01] ox oy' 

in the interior of that region, and they will also be continuous there. If 
in one case the derivatives coincide with functions which are continuous 
in the closed region, they will also in the other case. 

The Triangulation of Regular Regions. A regular region may be com­
plicated in character, and it will be useful to have a means of dividing 
it into simple parts. We proceed to a consideration of this question. 

Theorem IV. Given a regztlar region R, and a number ~ > 0, it is 
possible to resolve R into a SZim 01 regular sub-regions C1 with the properties 

a) each sub-region is bounded by three regular arcs, 
b) no sub-region has a reentrant vertex, 
c) the maximum chord of the sub-regions is less than ~. 

A regular region has a reentrant vertex at P if, as its boundary is 
traversed with the region to the left, the forward pointing tangent vector 
has at P an abrupt change in direction toward the right. The process 
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of resolving R into the sub-regions of the theorem will be referred to as 
the triangu,lation of R. 

The triangulation is accomplished by first cutting off triangular re­
gions at the vertices of R, and then cutting out triangular regions along 
the edges, so that what is left of R is bounded by straight lines. The 
polygonal region is then easily triangulated. 

We first interpolate vertices on the boundary C of R, finite in num­
ber, and such that between two adjacent vertices, C turns by less than 
150 (fig. 15a). This is possible, by Theorem 1. We then determine a 
number 1) > 0, which does not exceed the minimum distance between 
any two non-adjacent arcs of C, the arcs being regarded as terminated 
by the original and the interpolated vertices. With a radius r, less than 

either 0 or 1f, we describe about each vertex a circle. These circles ,\'ill 

have no points in common, and each will be cut by no arcs of C other 
than the two terminating at its center. 

Fig. 15a. Fig. 15 b. Fig. 15c. 

Suppose the arcs entering one of these circles meet at an angle not 
greater than 60° (fig. 15b). Then the tangents to these arcs at points 
within the circle will make with the bisector of the angle at the vertex, 
angles which never exceed 45°. A perpendicular to the bisector, at a 

distance i from the vertex, will cut off from R a region (j with the re­

quired properties. The rest of R will have a straight line segment as a 
portion of its boundary, met by the adjacent arcs at angles differing 
from a right angle by not more than 45°. 

If the arcs entering a circle meet at an angle greater than 60°, we 
draw from the vertex into R two radii, each making an angle 30 0 with 
one of the arcs at the center (fig. 15c). We then cut off from R two 
triangles (j in the way just indicated, each bounded by an arc and two 
straight lines. The rest of R in the neighborhood of the vertex has a 
polygonal boundary. 

After all such triangular regions have been removed from R at its 
vertices, the boundary C' of the portion R' of R which remains has the 
property that such of its arcs as remain never turn by more than 15 0, 

and are flanked by straight lines which meet them at angles which are 
not reentrant and differ from right angles by not more than 45°. No 
two curved arcs of C' have C0111mon points. No curved arc has points 
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other than its end-points in common with a straight line segment of 
C' because all such segments are interior to the circles, and the construc­
tion within the circles has avoided this. Hence there is a number rj' > 0, 
such that any curved arc of C' has a distance greater than r/ from any 
non-adjacent arc of C', curved or straight. 

We now interpolate on the curved arcs of C' a finite number of ver­
tices so that these arcs are divided into parts whose chords never exceed 

the smaller of the numbers r or (). With the chords of the sub-arcs as 

diagonals, we construct rhombuses 
whose sides make with the chords 
angles of 30° (fig. 15d). As the arcs do 
not differ in direction from their chords 
by more than 15°, the rhombuses do 
not contain.points of the straight line 

Fig.l5d. 

segments of C' in their interiors. As each rhombus lies within a 

distance ~' of its arc, none has points in common with another belonging 

to a different arc of C'. Finally, the rhombuses belonging to a single 
arc of C' have no interior points in common, since that arc, on which 
their longer diagonals lie, turns by less than 15°. 

The regions common to R' and the rhombuses are regular regions (J. 

After their removal, the rest of R' is bounded by a finite number of 
straight line segments. If the lines of these segments are prolonged 
through R' , they cut the polygonal region into a finite number of con­
vex polygons. Each of these may then be triangulated by joining its 
vertices to an interior point. If the resulting triangles are too large, they 
may be quartered by joining the mid-points of their sides, and this pro­
cess repeated, if necessary, until their maximum chord 'is less than (). 
The triangulation of R.is thus accomplished. 

The triangular regions (J have further properties, one of which we 
shall need. It is as follows. 

Theorem V. II A and B are any two points 01 an arbitrary one 01 
the regions (J, they can be connected by a regular curve y, all 01 whose 
points, with the possible exception 0/ A and B, are interior to this region (J, 

and whose length does not exceed 2 c, where c is the length 01 the chord A B. 

The regions (J are of three types, the construction of y varying 
according to the type. First, there are the regions cut out, from the 
region R which was triangulated, at the vertices (fig. 16a). These can 
be characterized as follows, the x-axis being taken along the bisector 
of the angle at the vertex: 

a) I (x) < Y < <p (x), 0 <x< a, 

where I (0) = <p (0) = 0, t (x) < <p (x) for 0 < x < a, 
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and where t (x) and cp (x) are continuously differentiable in the closed 
interval (0, a). Moreover, the curves y = t (x) and y = cp (x) turn by 
less than 15°. 

Secondly, we have the parts of rhombuses (fig. 16b). Choosing the 
chord of the curved side as x-axis, we may characterize (j as follows: 

b) t (x) < Y < l13 x, 0 < x < i, 
t (x) < Y < l13 (a - x), i < x < a, 

where 

t (0) = t (a) = 0, 
1 t (x) < -=x, y3 

1 t (x) < -= (a - x) 
l3 

for 0 < x < a, 

-..L(a-x) 
}'3 

O~==="",,"-oc:;;;::::::::==;;::?';;:::'(a., oj 
y=f(x) 

Fig. 16a. Fig. 16b. 

and where t (x) is continuously differentiable in the closed interval 
(U, a). Moreover, the curve y = t (x) turns by less than 15°. 

Finally, we have the type 

c) (j is bounded by three straight lines. 

We first reduce the problem of constructing (j to the case in which 
A and B are interior to (j, if they are not so at the outset. Suppose A is 
a boundary point. Unless it is a vertex at which the sides are tangent, 
we can draw a straight line segment into (j, an~ take on it an interior 
point A I distant from A less than 0·1 c. If A is a vertex where the sides 
are tangent, (j must be of type (a), and A must be the origin in the re­
presentation given. We may then draw into (j the regular curve 

f (x) + rp (x) 
y= 2 ' 

and take upon it a point A' whose distance from A along the curve is 
less than 0 ·1 c. If B is also a boundary point, we construct in the same 
wayan interior point B'. The chord c' = A' B' cannot then exceed 
1· 2c. The theorem will be proved when it has been shown possible to 
connect A I and B' by a curve y' whose length does not exceed 1· 8 c , 
and this will be the case if its length does not exceed 1· 5c' . Let us there­
fore drop the primes, and show that any two interior points A and B 
of (j can be connected by a regular curve y entirely interior to (j and of 
length not more than 1· 5c, c being the distance A B. 
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If (J is of type (c), the chord A B will serve for y. If (J.is of type (b), 
the chord A B cannot have points in common with the upper, or straight 
line parts of the boundary, and hence will again serve as y unless it 
meets the curve y = f (x). This cannot occur if A B is vertical, sothat 
A B has a representation y = ax + b, Xl < X <x2• Now the distance 
a X + b - f (x) of a point of A B above the lower boundary of (J, meas­
ured vertically, is positive at Xt and x2 • Let 'YJ > 0 be less than the 
smaller of the values of this function at Xl and x2' and also less· than the 
minimum of the differences 

1 
---=x - f (x) 
1'3 

and 

Then the curve y = f (x) + 'YJ is interior to (J for Xl < X < x2 ' and lies 
belo~ A and B, but above A B at some intermediate points. Let A' 
and B' be its intersections with A B with least and greatest x, respec­
tively. We take as y the straight piece AA', the arc of y = f (x) + 'YJ 
between A' and B', and the straight piece B' B. Then y is regular, is 
entirely interior to (J, and its direction never deviates from that of the 
x-axis by more than 15°, bec4use A B is a secant of the curve y = f (x), 
and so is parallel to a tangent, and the same is true of the x-axis. Hence 
the length of y does not exceed c sec 150 < 1· 5 c, as required. 

If (J is'of type (a), the chord will again serve unless it meets one or 
both of the arcs y = f (x), Y = ffJ (x). If it meets the first, say, a portion 
of the chord A B may be r.eplaced by a curve y = f (x) + YJ, between 
the points A' and B' of A B. If the chords A A I or B' B or both, are met 
by the curve Y = ffJ (x), portions of such a chord may be replaced by a 
curve y = cp (x) - 'YJ. We shall then have a regular curve y, entirely 
within (J, connecting A and B, whose direction never deviates from that 
of the x-axis by more than 45°, and whose length therefore does not 
exceed 12 c < 1· 5 c. The theorem is thus established. 

Regular Surface Elements. We now turn to the definition and the 
consideration of the more important properties of regular surface ele­
ments, from which regular surfaces are built as were regular curves 
from regular arcs. 

A regular surface element is a set of points which, for some orien­
tation of the axes, admits a representation 

(7) z = f (x, y), (x, y) in R, 

where R is a regular region of the (x, y}-plane, and where f (x, y) is 
continuousty differentiable in R. 

We call such a representation a standard representatio·n. The boun­
dary of the regular surface element is the set of those of its points (x, y, z) 
for which (x, y) is on the boundary of R. 
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Exercises. 
1. Let y be a plane regular arc all of whose points are interior to R. Show 

that y is the projection of a regular arc on the regular surface element. 
2. Show that the direction cosines of the upward pointing normal to the regular 

surface element are continuous functions of (x, y) in R. 

Theorem VI. The boundary 0/ a regular sur/ace element Eis a re­
gular curve C. 

Consider one of the regular arcs of the boundary of R. As / (x, y) 
remains continuously differentiable when the axes of x and yare rotated, 
we may assume that this arc y has the standard representation 

y = ep (x), 0 <x:S a, 

where ep (x) has a continuous derivative in the closed interval (0, a). 
The corresponding portion· of C is giVEn by 

Y = ep (x), Z = lex, ep (x)], 0::;; x <a, 

and / [x, ep (x)] is clearly continuous. It must be shown to have a con­
tinuous derivative in the closed interval (0, a). 

7 
f~ __ y_rp(X) 

Fig. 17. 

Let (xo, Yo) be a point of y, for 
the present not an end point, and let 
us suppose the axes chosen so that 
R lies above y in the neighborhood 
of (xo, Yo) (fig. 17). Then, since the 
boundary of R is free from double 
points, the curve y' 

lies, for sufficiently small Ix - xol, within R except for x = xo' Now 
let (Xl' YI) be a second point of y, near (xo, Yo), and let (Xl' Y2) be the 
point of y' with the same abscissa. Let Zo = / (xo, Yo), Zl = / (Xl' YI), 
and Z2 = / (Xl' Y2)' Then 

y, 

Zl - Zz = f af~~, y) dy = /Y (Xl' Y') (YI - Y2) = - /Y (Xl> y') (Xl _XO)2, 

where we have used the law of the mean and the values YI = ep (Xl) and 
Y2 = ep (Xl) + (Xl - XO)2. Also, integrating along y', we find 

Xl Xl 

Zz-Zo= f~:dx= fg:+~:[ep'(X)+2(X-X())]}dX 
= / '" (X", Y") (Xl - Xo) + /y (X", Y") [ep' (X") + 2 (x" - %0)] (xl-XO)· 

Adding the last two equations and dividing by Xl - xo, we find 

~1 - Zo = / '" (x", y") + / 11 (x", Y") [ep' (x") + 2 (x" -xo)] -/11 (xl> y') (Xl-XO). 
Xl - Xo 
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As Xl approaches Xo the points at which mean values are taken approach 
(xo, Yo), and since t (x, y) is continuously differentiable, its partial deriva­
tives approach values which we may regard as defining these derivatives 
on the boundary of R. The result is 

dz=at+at '(x). 
dx ax ayCP 

Thus at points of yother than end-points, z has a derivative with respect 
to x which is given by the ordinary rules for composite functions. From 
the form of the result, it is clear that this derivative coincides in the 
interior of (0, a) with a function which is continuous in the closed inter­
val. Hence z has a continuous derivative with respect to x in the closed 
interval and the part of C corresponding to y is a regular arc. As C is 
made up of a finite number of regular arcs, suitably ordered, with only 
end points in common, it is a regular curve, as was to be proved. 

We have seen that a regular arc admits a standard representation 
with any orientation of the axes such that the curve is nowhere perpen­
dicular to the x-axis (Exercises 3 and 4, p.98). A similar situation is not 
present in the case of regular surface elements. Consider, for example, 
the helicoidal surface 

z = tan-I!., -'JT, < z < 'JT" (x, y) in R, 
x 

where R is given in polar coordinates by 

- 'JT, + (t < cP ~ 'JT, - (t, 1 < !! < 2, (0 < (t). 

If ex. is very small, it is possible to tilt the axes very slightly in such a 
way that the new z-axis cuts the surface element twice, so that a stand­
ard representation is not possible with the new orientation of the axes. 
It is true, however, that any regular surface element can be divided into 
a finite number of regular surface elements, such that each admits a 
standard representation, with much latitude of choice in the orientation 
of the axes. We proceed to a study of this question, deriving first a 
lemma which will be of repeated use to us. 

Schwarz' Inequality. Let t (x) and cP (x) be two real junctions, 
piecewise continuous on (a, b). Then 

b 2 b b 

(8) [J j (x) cP (x) dxJ < f j2 (x) d~ f cp2 (x) dx . 
a a a 

A similar relation holds for functions of several variables, and func­
tions less restricted than the above. But for present needs the formula­
tion given is sufficient. To derive the inequality, we introduce two real 
parameters,.II. and f1, and observe that the integral 

b 

f [.II. t (x) + f1 cP (X)]2 dx 
a 
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is never negative, the integrand being the square of a real function. 
Accordingly, the quadratic function of A and p, obtained by expanding 
the integrand, 

b b b 

},2 f f2 (x) dx + 2Ap, f f (x) rp (x) dx + p,2 Jrp2 (x) dx 
a a a 

cannot have real distinct factors, for otherwise A and p, could be chosen 
so that these factors would have opposite signs. Hence the square of the 
coefficient of Ap, is less than or equal to the product of the coefficients. 
of A 2 and p,2, and this gives the desired relation. 

Theorem VII. Any regular surface element E can be divided into" 
a finite number 0/ regular sur/ace elements e, each with the property that 
i/ any system 0/ coordinate axes be taken, in which the z-axis does not make 
an angle 0/ more than 70 0 with any normal to e, e admits a standard re­
presentation with this system 0/ axes. 

Starting with the standard representation (7) for E, we determine a 
number 6> 0, such that if (Xl' YI) and (X2' Y2) are any two points of 
R whose distance apart does not exceed 6, 

(9) (f - /x,j2 + (fy, - /y.)2 < 116 cos2 75°. 

Thi.:; is possible since the partial derivatives of / (x, y) are uniformly 
continuous in R. We then triangulate R in accordance with Theorem IV, 
so that the maximum chord of the sub-regions a of R is less than 6. 
Then the surface element e 

z = / (x, y), (x, y) in a 

is regular, a being anyone of the sub-regions of R given by the triangu­
lation. We shall show that e has the properties required by the theorem. 

We first seek limits to the angle which any chord A B of e makes with 
the normal to e at A. Let A have the coordinates (Xl' YI' Zl) and B, 
(X2' Y2' Z2)' and let c denote the length of the chord. The direction co­
sines of the chord, and of the normal to e at A are 

Xo - Xl Y2 - YI Z2 - Zl 
C 

and 
-Ix, -Iy, 1 

-,----., 
fl + Ii, + I;, 

s::J that the acute angle (c, n) between chord and normal is given by 

cos (c; n) = I (Z2 - zl) - lx, (X2 - Xl) - Iy, (Y2 - YI) I. 
CYI + Ii, + I;, 

The points (Xl' YI) and (X2' Y2) can be connected, by Theorem V, by a 
regular curve y, interior, except possibly for its end-points, to a, and of 
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length not more than twice the distance of these points, and so certainly 
not more than 2c. Let x = x (s), Y = Y (s) be the parametric equations 
of y, the length of arc s being measured from (Xl' YI)' Then x (s), Y (s) 
and z = I [x (s), Y (s)] are continuously differentiable in the closed inter­
val (0, l) , l being the length of y. Hence 

I I 

Z2 - Zl = f ~; ds = f [/",x' (s) + Iyi (s)] ds. 

° ° 
The remaining terms in the numerator of the expression for cos (c, n) 
can also be expressed as an integral over y. For lx, and lv, are con­
stants, and 

so that 

and 

I 

X2 - Xl = J x' (s) ds, 
o 

I 

Y2 - YI = J Y' (s) ds, 

° 
I 

Ix. (X2 - Xl) + Iy, (Y2 - YI) = J [Ix, X' (s) + Iy, Y' (s)] ds, 
o 

\ f [(ix - /x.) x' (5) + (fy - /y,) y' (5)] d5 I 
cos(c,n)= . 

c li1 + /2 + t2 
Xl Yl 

Applying Schwarz' inequality to the integral of the first term in the 
numerator, we find 

I J2 I I 1 [J (Ix - I",) x' (s) ds < J (I. - fx.)2 ds J X'2 (s) ds < 16 cos2 750 l·l, 
° 0 ° 

because of the inequality (9) and the fact that I x' (s) I ::; 1. Hence 

1/ (Ix - Ix.) x' (s) ds I < ~ cos 75°, 

A similar inequality holds for the integral of the second term, and 
hence 

1 
cos (c, n) < 2C cos 75° < cos 75°, 

since l:::;; 2c. Thus the angle between any chord 01 e and the normal to 
e at one end of the chord dillers Irom a right angle by less than 15 0• 

Suppose now that the axes of the system of coordinates (~, 1), ') 

are selected in any way subject to the restriction that the '-axis does 
not make an angle of more than 70° with any normal to e (fig. 18). Then 
no chord of e can make with the ,-axis an angle of less than 50, and 
hence no parallel to the ,-axis can meet e twice. 
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This means that if 7: is the set of points which is the projection of e 
on the (;, 17)-plane, and (;, 1], ') are the coordinates of a variable point 
on e, , = rp (;,1]) is a one valued function of; and 1] in 7:. 

Fig.lS. 

Our object is now to show 
that 

, = rp (;, 1]), (;, 1]) tin 7: 

is a standard representation of e. 
The correspondence between 

the points P (x, y) of G and the 
points P' (;,1]) of 7: which are 
the projections of the same point 
p of e, is one-to-one, since par­
allels to the z-axis and the '-axis 
each meet e but once. It is also 
continuous. First, ; and 1] are 
continuous functions of x and 

y, because z = f (x, y) is continuous, and; and 1] are continuous func­
tions of x, y and z. Conversely, x and yare continuous functions of ~ 
and 1]. This will follow in a similar way if it is shown· that ,= rp (;,17) 
is 'continuous in 7:. Suppose this were not the case. This would mean 
that there was a point Po (;0,1]0)' and a number IX> 0, such that in 
every neighborhood of Po there would be points at which rp (;,1]) differed 
from '0 = rp (~o' 1]0) by more than (:I.. Let PI' P 2 , P 3 , ••• be an in­
finite sequence of such points with Po as limit point. The correspond­
ing points of e would have at least one limit point, by the Bolzano­
Weierstrass theorem. This limit point would lie on e, since e is closed, 
and its ordinate " would differ from '0 by at least IX. Thus e would 
have a chord parallel to the ,-axis, namely that joining (;0' 1]0' '0) to 
(;0' 1]0' n· This we know does not happen. Hence rp (~, 17) is contin­
uous in 7:, and the correspondence is continuous in both senses. 

In such a correspondence between the closed bounded sets G and 7:, 

interior points correspond to interior points. Thus, let Po be an inte­
rior point of (1, and let I' be a circle about Po' lying, with its interior, in G. 

As the correspondence is continous and one-to-one, I' corresponds to a 
simple closed curve 1" in 7:. By the Jordan theoreml, such a curve sep­
arates the plane into two domains, a bounded interior one, and an in­
finite one. The points within I' all correspond to points in one of these 
domains only, for otherwise the continuity of the correspondence would 
be violated. This domain cannot be the infinite one, because 7: being 
bounded, the set of points corresponding to the interior of y would have 

1 See OSGOOD, Funktionentheorie, Chap. V, §§ 4-6. For the sake of simpli­
city of proof, the theorem there given is restricted to regular curves. References 
to the more general theorem are given. 
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to have boundary points other than those of y', and this would violate 
the one-to-one character of the correspondence. For the same reason, 
the points corresponding to the interior of y must fill the whole interior 
of y'. As the point Pri corresponding to Po must lie in the interior of 
y', it is interior to T. Similarly, interior points of (J correspond to in­
terior points of T. It follows that the boundary points of (J and T alw 
correspond. 

Because of the correspondence of interior points, the interior of T is 
a domain, and hence T is a closed region. From Theorem III, it follows 
that the boundary of T is made up of regular arcs, finite in number. 
These are ordered, corresponding to the boundary of e, in such a way 
that each has an end-point in common with the next following, and 
none has any other point in common with any other, since e has no 
chords parallel to the '-axis. Hence T is a regular region. 

We have seen that' = q; (~, 'Yj) is one-valued and continuous in T. 

It remains to show that it is continuously differentiable. The equations 
determining the coordinates ~,'Yj, 'of p are those giving the transforma­
tion from one orthogonal set of axes to another, and may be written 

(10) 

~ = a + 11 X + 11tr Y + n1 f (x, y), 

'Yj = b + 12 X + m2 Y + n2 f (x, y) , 

, = c + 13 X + m3 Y + n3 f (x, y). 

The first two, according to the theorem on implicit functionsl, deter­
mine x and y as continuous functions of ~ and 'Yj. The third then deter­
mines the function, = q; (~, 'Yj). We have seen that the first two equa­
tions have a solution corresponding to any interior point (~, 'Yj) of T. It 
remains to verify that the Jacobian does not vanish. 

But this has the value 

J=lll+nlf"" ml+nlfyl 
12 + n2 f x , m2 + n2 f Y , 

and if it be recalled that in the determinant of an orthogonal substitu­
tion (both systems being right-hand, or both left-hand) each minor is 
equal to its co-factor, it will be found that 

J = - 13 f x - m3 f Y + n3 , 

But this reduces to 

J = -Vi + f~ + n cos (n, '), 

and so is never less in absolute value than sin 5°. 

The theorem on implicit functions now assures us that the deriva­
tives exist at interior points of T, and are given by the ordinary rules 

1 See OSGOOD, Lehrbuch der Funktionentheorie, Chap. II, § 5. 
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for differentiating implicit functions. Thus, from (10) we find, by dif­
ferentiating with respect to ~ , 

ox oy 
1 = (II + ni/ro) o~ + (mi + ndy) 8[ 

ox oy 
0= (12 + n2/x) a[ + (m2 + ndy) c~ 

M; ax oy 
a~ = (la + nair,,) a[ + (ma + na Iy) a[' 

from which we find, on eliminating the derivatives of x and y, 
ac -ll/x - mIl. + n i 

a~ - 13 Ix - m';j I. + ng , 

with a corresponding expression for the derivative with respect to 1'J. 
Since the denominator, which is the Jacobian considered above, does 
not vanish in the closed region T, the continuously differentiable charac­
ter of Z; = rp (~, 17) in T follows from that of z = I (x, y) in a. The proof 
of Theorem VII is thus completed. 

Regular Surlaces and Regular Regions 01 SPace. 
A regular surlace is a set of points consisting of a finite number of 

regular surface elements, related as follows: 
a) two of the regular surface elements may have in common either 

a single point, which is a vertex for both, or a single regular arc, which 
is an edge for both, but no other points; 

b) three or more of the regular surface elements may have, at most, 
vertices in common; 

c) any two of the regular surface elements are the first and last of 
a chain, such that each has an edge in common with the next, and 

d) all the regular surface elements having a vertex in common form 
a chain such that each has an edge, terminating in that vertex, in common 
with the next; the last may, or may not, have an edge in common with 
the first. 

Here edge of a regular surface element means one of the finite number 
of regular arcs of which its boundary is composed. A vertex is a point 
at which two edges meet. The boundary of a regular surface element 
need not experience a break in direction at a vertex, but the number 
of vertices must be finite. One of the regular surface elements is called 
a lace of the regular surface. 

If all the edges of the regular surface elements of a regular surface 
belong, each to two of the elements, the surface is said to be closed. 
Otherwise it is open. 

Exercise. 
2. Show that the following are regular surfaces: a) any polyhedron, b) a sphere, 

c) the finite portion of an elliptic paraboloid cut off by a plane, d) a torus, e) the 
boundary of the solid interior to two right circular cylindrical surfaces of equal 
radii, whose axes meet at right angles. 
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9. Functions of Three Variables. 

A regular region of space is a bounded closed region whose boundary 
is a closed regular surface. 

A regular region R of space is the sum of the regular regions R 1 , 

R 2 , ••• R n , provided each point of R is in one of the R i , and each 
point of any R; is in R, and provided no two of the Ri have points 
in common other than a single point which is a vertex of each, or a 
single regular arc which is an edge of each, or a single regular surface, 
which is a face of each. 

If R is a regular region of space, and f (x, y, z) is a one-valued func­
tion defined at the points of R, then f (x, y, z) is continuous in R, is 
continuously differentiable or has continuous partial derivatives of the 
first order in R, is piecewise continuous in R, or has piecewise continuous 
partial derivatives of the first order or is continuously differentiable in R, 
according to the definitions of § 8. We have merely to substitute x, y 
and z for x and y. 

10. Second Extension Principle; The Divergence Theorem 
for Regular Regions. 

The object of this section is to establish the divergence theorem 
for any regular region R and for functions (X, Y, Z) with continuous 
derivatives in R. The foundation of the argument is the theorem for 
normal regions, established in § 2. In the light of the intervening study 
of functions and regions, we may characterize more sharply the notions 
there employed. All that need be added to the definition of normal re­
gions is that they are regular regions of space, and that the projections 
referred to are regular regions of the plane. All that need be said of the 
functions X, Y, Z is that they are continuously differentiable in the 
region N, and of f (x, y), that it is continuously differentiable in F, 

A first extension principle was established in § 3, which may now 
be stated thus: the divergence theorem holds for any regular region which 
is the sum of a finite number of normal regions, the functions X, .Y, Z 
being continuously differentiable in each of the normal regions. If it were 
possible to show that the general regular region was such a sum, the 
desired end would be attained. But this programme presents serious 
difficulties, and it is easier to proceed through a second extension prin­
ciple. 

Second Extension Principle: the divergence theorem holds for the 
regular region R, provided to any 8 > 0, there corresponds a regular 
region R', or set R' of a finite number of regular regions without com­
mon points other than vertices or edges, related to R as follows: 

Kellogg, Potential Theory. 8 
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a) every point of R' is in R; 
b) the points of R not in R' can be enclosed in regions of total volume 

less than e; 
c) the points of the boundary 5 of R which are not points of the 

boundary 5' of R' are parts of surfaces of total area less than e, and the 
points of 5' not in 5 are parts of surfaces of total area less than e ; 

d) the divergence theorem holds for R'. 

Here, the functions X, Y, Z, are assumed to have continuous 
partial derivatives of the first order in R. 

To establish the principle, we start from the identity 

(ll) fff (~~ + :~ + ~)dV= ff(Xl + Ym +Zn)dS, 
K S 

which holds, by hypothesis. As x, Y, Z are continuously differentiable 
in R, there is a number M such that these functions and their partial 
derivatives of the first order are all less in absolute value than M in R. 
Then 

(12) [~f (~~ + :~ + ~~)dV- ~f (~~ + :~ + ~~)dV[ 

= [if] (~~ + :~ + ~~)dV [<iff 3MdV<3Me. 

Also 

(13) ! ~f (X l + Y m + Z n) dS - f J (X 1+ Y m + Z n) dS I 

= I ~f (Xl + Ym+Zn)d5 -~! (Xl + Ym + Zn)dSI 

;;;; ff3MdS + ff3Md5 < 6M e, 
(f (J' 

where (J is the part of 5 not in 5' and (J' the part of 5' not in S. From 
the equation (11) and the inequalities (12) and (13), it follows that 

[~f(~)~ + :~ + ~~)dV- If(Xl+Ym+zn)dS[<9Me. 

But the left hand member is independent of e, and e may be taken as 
small as we please. This member is therefore 0, and the divergence 
theorem holds for R, as was to be shown. 

A pproximate Resolution of the General Regular Region into N onnal Re­
gions. We now attack the problem of showing that any regular region can 
be approximated to, in the sense of the second extension principle. We 
first divide the regular surface elements of which the surface 5 of R is 
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composed into regular surface elements such that for each no two nor­
mals make an angle of more than 15°, and such that each admits a 
standard representation with any orientation of the axes such that the 
z-axis makes with no normal to the surface element an acute angle 
exceeding 70°. These requirements can be met, the first because of the 
uniform continuity of the direction cosines 'of the normal in the coordi­
nates x, y of the standard representation, and the second by Theorem 
VII. These smaller elements we call the faces of S, the regular arcs 
bounding them, the edges of S, and the end-points of these arcs, the 
vertices of S. Let N denote the sum of the number of faces, edges, and 
vertices. 

We next introduce a system .E7J of spheres, not for the purpose of 
sub-dividing R, but as an aid in establishing the inequalities of the sec­
ond extension principle. On each edge of S, we mark off points, terminat­
ing chords of length 17, beginning with one end, until we arrive at a 
point at a distance less than or equal to 17 from the second end. About 
each of these points, and about the second end point of the edge, we 
describe a sphere of radius 1]. This is done for every edge, and the resulting 
system of spheres is .E7J' The essential property of .E7J is that it encloses 
all the edges of S. This will be assured, if as a first requirement on 1], 

we demand that it be chosen so that no edge, between successive centers 
of spheres, deviates in direction from its chord by more than 15°, this 
being possible by Theorem II. For no arc can deviate in distance from 
its chord by more than it would if it constantly made with it the maxi­
mum angle permitted, and hence all the points of the arc are distant 
from the chord not more than 1] tan 15°. But any two successive spheres 
contain in their interiors all points whose distances from the chord of 
centers are less than 1] tan 60°. Any point of an edge is thus interior to 
some sphere of .E7J' 

We need an upper bound for the total volume of all the spheres of 
.E7J ' and also one for the total area of a system of great circles of the 
spheres, namely as many for each sphere as there are faces of S with 
points interior to that sphere. 

The number of spheres corresponding to a given edge, that is, the 
number of vertices of the polygon connecting successive centers, is not 
more than two more than the length of the polygon divided by 1], for at 
most one side of the polygon is less than 1] in length. If 1 is the length 
of the longest edge, the number of spheres with centers on any edge 

does not, therefore, exceed (~) + 2. Thus the total number of spheres 

does not exceed N [(~) + 2]. Accordingly, since it is legitimate to 

assume 1] < l, the number does not exceed 3 N (~), and if we set 

Nl = 4% Nl, the total volume of the spheres of.E7J does not exceed N l 1]2, 

8* 
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The sum of the areas of a system of great circles, one for each sphere, is 

! times the volume just considered, and so does not exceed 3 N 1 1]. As 
'l) 

the number of faces with points interior to any sphere is less than N, 
if we write N2 = 3 NN1 , the area 01 a system 01 great circles 01 1:11 , as 
many lor each sphere as there. are laces 5 with points in that sphere, does 
not exceed N 21]. 

We now subdivide R. We notice that since the edges are interior to 
1:'1' the distance between the portions outside of 1:'1 of any two different 
faces of 5 has a positive minimum k, for otherwise two faces would have 
a common point other than a point of an edge. Let a be a positive 

number, such that 13 a < ~, and 13 a < 1]. Starting with one of the 

faces 11 of 5, and with some normal to this face as diagonal, we 
construct a cubic lattice of side a, by means of three sets of parallel 
planes a distance a apart, the lattice covering the whole of space. Let 
c1 denote the cubes of this lattice having points of 11 within them or 
on their boundaries. All other cubes of the lattice are discarded. 
Similarly, we construct a lattice for each of the other faces, and retain 
those cubes and only those having points in common with the corres­
ponding faces. We thus obtain a set c1 , c2 ' ••• , Cn of sets of cubes, 
which together contain all the points of 5, no cube being free 
from points of S. The portion K of R, not interior to any of these 
cubes, consists of one or more regions bounded by plane faces. 

The cubes of the sets c1 , c2 ' ••• , Cn may now be reclassified: 
the set c' of cubes none of which has any point on or within any 

of the spheres of 1:'1' and 
the set c" of cubes each of which has a point on or within some 

sphere of 1:'1' 
No two cubes of c' have interior points in common. For if two cubes 

belong to the same face of 5, they belong to the same lattice, and are 
separated by a plane of the lattice. If two cubes belong to different 
faces, each contains one of a pair of points a distance k or more apart, 
and this is more than three times their diagonal. No cube of c' has an 
interior point in K. The region, or regions K, together with the portions 
of R in the cubes c' constitute the approximating region, or set of 
regions R'. It remains to show that R' is made up of normal regions, 
and that 1] can be so chosen as to make the approximation arbitrarily 
close. 

It is simple to show that K is made up of normal regions, for if its 
bounding planes are indefinitely extended, they divide it into a finite 
number of convex polyhedra, which are normal regions. 

Now let r denote the portion of R in one of the cubes c of the set 
c~. If we take coordinate axes along three properly chosen edges of c, 
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the face f of 5 which meets e has at some point a normal with direction 

cosines ( ~, 1/~' ~). As f turns by at most 15°, none of its normals f3 ,31'3 
make with any cooqiinate axis an angle exceeding cos-1 (1'~) + 15°< 70°. 

Hence f admits a standard representation with the orientation of the 
axes chosen, no matter which is taken as z-axis. It follows that each 
face of e cut by f is severed into two plane regions, separated by a single 
regular arc. Moreover, as the normal to f makes an angle never greater 
than 70° with any coordinate axis, the normal to the arc in the plane 
never makes an angle greater than 70° with an edge of e in that plane. 
Thus the arc in which f cuts a face of c is never parallel to an edge of that 
face, and cannot cut an edge twice. 

If f contains no interior points of e, either there are no points of R 
interior to c, and the cube may be discarded, or the whole cube belongs 
to R, and is a normal region. Suppose f cuts the face z = a of e, but not 
the face z = O. Then the projection on the (x, y)-plane of the portion 
of f in e is a regular region 1", and so is the rest 1"' of the face of c in this 
plane (it is understood, of course, that the boundary between 1" and 1"' 

is counted as belonging to both). As the portion of f in e is a regular 
surface element, the conditions (a) and (b) for a normal region are met. 

If f cuts the lower but not the upper face of c, the situation is the 
same, as is seen by reversing the senses of the axes. If f cuts neither 
face, its projection on the (x, y)-plane is a square, and conditions (a) 
and (b) are again met. If f cuts both the upper and lower faces, the 
projection of the part of fine is bounded by two regular arcs and not 
more than four straight line segments, forming a regular curve, for 
the only damaging possibility would be that the curved arcs had common 
points other than end points. But as this would mean a vertical chord 
for f, it is not a possibility. The rest of the face of e in the (x, y)-plane 
consists also of regular regions. Hence in this case also r fulfills condi­
tions (a) and (b) for normal regions. And as we have considered the 
only possibilities with respect to the direction of the z-axis, which may 
have any of the three perpendicular directions of the edges of c, the 
condition (c) for normal regions is also met. 

Hence R' is made up entirely of normal regions, and hence the diver­
gence theorem holds for their sum, R'. The first part of our task is ac­
complished. 

We now study the closeness of the approximation to R of R'. Let 
E2TJ denote the system of spheres obtained from ETJ by doubling their 
radii, while keeping their centers. Then all points of R not in R'lie within 
spheres of the system E 2TJ , for they are in cubes of the set e" which 
contain points of the spheres of ETJ , and since the diagonals of these 
cubes are less than 'YJ, the cubes all lie within E 2TJ • But the total volume 
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of the spheres of 1:2'f/ is 8 times that of the spheres 1:'1/' and hence is not 
greater than 8 Nl 'Y)2. Thus the volume of the part of R not in R' is less 

than 8 if 'Y) < V 8~1· 
As to the portion a of the boundary 5 of R which is not a part of the 

boundary 5' of R', that also lies in 1:2'1/' since Rand R' coincide outside 
these spheres. A bound for the area of the portion of a single face of 5 
within one of these spheres, may be found by considering the fact that 
its projection on its tangent plane at the center of the sphere has an 
area not greater than that of a great circle, and as its normals differ in 
direction by not more than 15°, the area of the portion of the face within 
the sphere is not more than the area of a great circle times sec l5 0 • 

Thus, since the area of a system of great circles, each of radius 2 'Y), as 
many for each sphere as there are faces of 5 with points in that sphere, 
does not exceed '4N2 'Y), the total area of a will not exceed 4N2 'Y) sec 15°. 

Thus if 'Y) < e C:~:50, the area of a will be less than 8. 
Finally, the area of the portion a' of 5' not in 5 may be treated 

similarly. For a' is a part of the faces of the cubes of the set e", all of 
which lie in 1:2'1/' Considering first those belonging to a single face of 5, 
it is clear that there is at most one of these cubes on a single diagonal 
of the corresponding lattice, if cubes having a single point in common 
with R are discarded, as has been done. These diagonals cut a perpen­
dicular plane in the vertices of a lattice of equilateral triangles. A point 
of one of these triangles can have over it but one cube for each lattice 
diagonal through its vertex, and hence not more than three cubes. 
Thus the projection of the faces of the cubes corresponding to a single 
face of 5, on a plane perpendicular to the diagonal which is somewhere 
normal to f, can cover any portion of this plane at most six times. The 
secant of the angle between the faces of the cubes and this plane is 
-Va. Hence if we multiply by 6 -Va the expression for the area of the 
system of great circles, we shall have a bound for the area of a'. Such 

a bound, then, is 6 V"3·4N2 'Y) = 24 -y3 N2 'Y). If 'Y) < ~ ,the area 
24 va N2 

of a' will be less than 8. 

All the conditions required by the second extension principle can 
thus be met in the case of a regular region, the field being continuously 
differentiable. But the first extension principle permits us then to 
assert that the results hold for fields which are continuous and have 
piecewise continuous partial derivatives of the first order. Thus we 
may state: 

The divergence theorem holds for any regular region R, with functions 
X, Y, Z which are continuous and piecewise continuously differentiable 
in R. 
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This is the degree of generality we set out to attain; It is true that 
conical points, cannot, in general, occur on the boundary of a regular 
region. But by means of the second extension principle it is clear that a 
finite number of conical points may be admitted. More generally, if 
a region becomes regular by cutting out a finite number of portions 
by means of spheres of arbitrarily small radius, the areas of the portions 
of S cut out vap.ishing with the radius, thep. the theorem holds for that 
region. 

11. Lightening of the Requirements with Respect 
to the Field. 

It is sometimes desirable to dispense with the hypothesis that the 
partial derivatives of the first order of X, Y, Z are continuous in the 
closed region R, and assume only that they are continuous in the 
interior of R. The divergence theorem subsists under the following 
hypothesis on the field 

X, Y, Z are continuous in R and have partial derivatives of the first 
order which are continuous in the interiors of a finite number of regular 
regions of which R is the sum, and the integral 

(14) 

is convergent. 

This integral, in fact, may well be improper, for there is no reason 
why the partial derivatives may not become infinite at points of the 
boundary of R. In order to say what we mean by the convergence of 
the integral, let us, for the purposes of this section only, understand 
that when we use the word region, without qualification, we mean a 
regular region, or a set of a finite number of regular regions without 
common interior points, or the difference of two such sets, one con­
taining the other. By the difference, we mean the points of the includ­
ing set which are not in the included set, plus their limit points. Such 
a region lacks the property, in general, that its interior is connected, as 
required by the definition of § 5, but for the present that is unessential. 

The integral (14) is convergent, then, if when R' is any region interior 
to R, and containing all the points of R whose distance from the 
boundary S of R exceeds (), the integral extended over R' approaches 
a lim~t as () approaches o. 

We now. indicate the proof that the divergence theorem subsists for 
a regular region R under the stated conditions on the field. 

In the first place, as a consequence of the definition of convergence, 
it follows that the difference of the integrals over two regions R' and R" , 
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both interior to R and both containing all points of R at a distance 
greater than () from 5, vanishes with (). It follows that the integral over 
any region interior to R and lying within a distance () of 5, vanishes 
with (), and this holds also, by a limit process, if the region contains 
boundary points of R. From this again it follows that the integral 
is convergent if extended over any region contained in R. 

The integral is also additive. That is, if Rl and R2 are any two 
regions in R without common interior points, the sum of the integrals 
over Rl and R2 is the integral over the region consisting of the points 
of both. For if we cut off from Rl and R2 regions close to 5, the integrand 
is continuous in the remaining regions, and here the additive property 
is a consequence of the definition of integral. Hence, in the limit, the 
additive property holds for Rl and R 2• 

With these preliminary remarks, it is a simple matter to verify that 
the divergence theorem holds. We have simply to review the argument 
of the last section. In the first place, the second extension principle 
holds. For although the bound M for the derivatives of X, Y, Z may 
no longer exist, we know that the region R - R' will lie within a dista~ce 
'f) of 5, and hence the integral over this region can be made arbitrarily 
small by sufficiently restricting 'f). No change need be made in the 
treatment of the surface integrals. 

Thus the divergence theorem will hold for R if it holds for R' under 
the present conditions on the field. And, by the first extension principle, 
it will hold for R' if it holds for the normal regions from which such a 
region R' can always be built because of the additive property of the 
volume integral. We may assume that the derivatives of X, Y, Z are 
continuous in the interior of R ; the extension to the case in which they 
are continuous in the interiors of a finite number of regular regions of 
which R is the sum will then follow by the first extension principle. 

Now let r be one of the normal regions of which R' is composed. To 
fix ideas, let it be of the first type considered in the last section: 

r: o<z<f(x,y), (x,y) in., O<z<a, (x,y) in .'. 

With a sufficiently small positive r/., we replace r by the normal region 
r', obtained from r by substituting f (x, y) - r/. for f (x, y). The diver­
gence theorem holds for r', since all its points are interior to R, where 
the field is continuously differentiable. Also, by hypothesis, the volume 
integral over r' converges to that over r as r/. approaches 0; and because 
of the continuity of the field, it is a simple matter to show that the sur­
face integral over the boundary of r' approaches the surface integral 
over the boundary of r. This will show that the divergence theorem 
holds for r. Similar considerations apply to the other types of region r, 
and thus the reasoning is completed. 
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12. Stokes' Theorem. 

In section 4, Stokes' theorem was shown to hold for surfaces made 
up of normal surface elements. Now a normal surface element is a regular 
surface element bounded by plane arcs. But if we have any regular 
surface element, by triangulation of its projection on the (x, y)-plane of 
its standard representation, we may approximate to it arbitrarily closely 
by a normal surface element. As Stokes' theorem holds for this approxi­
mating normal surface element, and as the field is continuously differen­
tiable, it must hold also for the limiting regular surface element. Then 
by the juxtaposition of regular surface elements, we conclude that 

Stokes' theorem holds for any two-sided regular surface, the functions 
X, Y, and Z being continuously differentiable in a region containing the 
surface in its interior. 

Generalizations will suggest themselves, but the above formulation 
will be sufficient for our purposes. 

Chapter v. 

Properties of Newtonian Potentials 
at Points of Free Space. 
1. Derivatives; Laplace's Equation. 

So far, we have studied potentials arising from given distributions 
of matter. But in many problems, the distribution is not known, and 
the potential must be determined by means of other data. Thus in 
higher geodesy, very little is known of the distribution of the masses 
except at the surface. But the forces can be measUred on the surface, 
and from these the potential can be determined, approximately, at least. 
In order to solve problems given in terms of data other than the dis­
tribution of acting matter, we need more information on the properties 
of potentials. We first consider such properties at points exterior to the 
regions occupied by the distributions. Such points are called points of 
tree space. 

We have seen on page 52, that the partial derivatives of the first order 
of the potential exist at the points of free space, and give the correspond­
ing components of the force. We now go farther, and show that at 
such points, the partial derivatives of all orders exist and are continuous. 

It is easy to prove this for a particle by induction. The partial de­
rivatives of the first order are linear polynomials in x, y, z, divided byr3. 

The partial derivatives of order n are polynomials of degree n in x, y, z, 
divided by y2" + 1. For if P n denote such a polynomial of degree n, 
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~~_ P:'x -(2n+1)~x-; ax r2n+ 1 - r2n +1 r2n +2 r 

P;'x [(X_;)2 + (Y_1))2 + (z- C)2] (2n + 1) P n (x - ;) 
r2n + 3 r2n + 3 

Pn + 1 

r2n + 3 ' 

where P n + 1 is a polynomial of degree n + 1. Thus if the statement holds 
for one value of n, it holds for the next greater. It holds for n = 1, and 
so for any positive integral value of n. Now as the quotient of two 
continuous functions is continuous except at the points where the de­
nominator vanishes, we see that the potential of a unit particle 
has continuous partial derivatives of all orders at all points of free 
space. 

We notice that the polynomials in the numerators of the expressions 
for the partial derivatives are also polynomials in ;, 'fj and 1;. Thus the 
derivatives are continuous in all six variables as long as r + o. This 
remark finds its application when we consider the potentials of various 
continuous distributions. For, if we differentiate under the sign of 
integration, in the expression for the potential of such a distribution, 
we find that the resulting integrand is the density times the corres­
ponding derivative of the potential of a unit particle at the point 
Q (;, 'fj, 1;) of integration. Hence, if the density is continuous, the 
integrand is continuous in all six variables, as long as P(x, y, z) is 
Gonfined to a closed region having no points in common with the 
distribution, and the differentiation under the i,ntegral sign is justified. 
As the integrand is continuous, so are the partial derivatives. The same 
holds for the case in which the densities are piecewise continuous, 
for the distributions are then sums of distributions with continuous 
densities. Hence we have 

Theorem 1. The potentials of the distributions of all the types studied 
in the preceding chapters have partial derivatives ot all orders, which are 
continuous at all points ot free space. 

Exercise. 
Can the same be said of the potential of a distribution consisting of an in­

finite number of discrete particles? Consider, for instance the potential 

00 

(2 m: convergent). 
1 

We shall see later that the derivatives are analytic functions of 
x, y and z. But before turning to questions of this sort, we should 
emphasize the important relation existing between the second deriva­
tives of a Newtonian potential. We saw on page 40 that the force field 
of a Newtonian distribution was solenoidal in free space, and on page 52 
that it has a potential, U, whose derivatives give the components of 
the field. 
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It follows that this potential satisfies the differential equation 

a2 U a2 U a2 U 

V2 U = a x2 + a y2 +. a Z2 = 0 , 

known as Laplace's differential equation1• 

1 The differential equation in polar coordinates,· to which the above is equi­
valent was found by LAPLACE as a condition on the potential of a Newtonian distri­
bution in the Histoire de l' Academie des Sciences de Paris (1782/85), p. 135, reprinted 
in the Oeuvres deLaplace, Vol. 10, p.362. Later LAPLACE gave the equation in the 
above form, ibid. (1787/89), p. 252, Oeuvres, Vol. 11, p. 278. In connection with 
a hydrodynamical problem, the equation had already been used by LAGRANGE, 
Miscellanea Taurinesia, Vol. 2, (1760/61), p. 273, Oeuvres, Vol. 1, p. 444. 

As LAPLACE'S equation occurs frequently, an abbreviation for the left hand 
member is convenient. The one used above is due to Sir W. R. HAMILTON, 
and a brief explanation of its significance may not be out of place. If 
u (a1 , b1 , 'I) and v (a2 , b2 , c2) are two vectors, the combination 

u·v = a1 a2 + b1 b2 + c1 c2 

is called the scalar product of the two vectors, and has, according to GIBBS 

(Vector Analysis, edited by E. B. Wilson, New York, 1909), the notation given. 
The scalar product of a vector by itself is called the square of the vector, 
and is denoted by us. The vector 

uxv=(b1 c2 -c1 b2 , c1 a2 -a1 cS ' a1 ba-b1 a2) 

is called 'the vector product of v by u. If k is a scalar, i. e. a single number 
or function, as opposed to a vector or a vector field, then 

uk = (a1 k, ask, ask) 

is called the product of the scalar k by the vector u. We now introduce the 
symbolic vector, or vector operator 

V= Ux' aay ' :z)· 
This has no meaning when standing alone, but if combined with vectors or 
scalars, the operations indicated being carried out as if the three symbols were 
numbers, and these then interpreted as symbols of differentiation of the next 
following quantity, the resulting combinations have definite meanings. Thus 

V U = (aa~' a U au) ~ (ii' dz =gradU, 

V V (ax a y az) . v . x . = ax + ay + az = dlV = dlV ( ,Y, Z), 

V v=(az_ay ax_az 
x ay az' az ax' 

ay _ax) 
ax ay 

= curl V, 
= curl (X, y, Z) , 

(VU)2 = (~~r + (~~r + (~~r. 
a2 U aa U aau 

V2 U = a x2 + a y2 + fii2 . 
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Theorem II. The potentials of all the distributions studied satisfy 
Laplace's differential equation at alJ points of free space. 

The significance of this fact is, that in many cases, the determination 
of a differential equation satisfied by a function which is sought, is the 
first step in finding that function. The main object of this and the next 
chapter may be described as the detennination of auxiliary conditions, 
which, with the differential equation, determine the potential. 

2. Developments of Potentials in Series. 

Valuable information on the properties of Newtonian potentials may 
be inferred from developments in series of certain types. In addition, 
series frequently offer the best bases for computation in applications. 

Fig. 19. 

We seek first to develop a given potential as a 
power series in the distance of the variable point 
P (e, rp, {}) from the origin of coordinates, which we 
take at a point 0 of free space. We take first the 
potential of a unit particle at Q (e', rp', {}'), not the 
origin (fig. 19). Then, in terms of the given spher­
ical coordinates of P and Q, the distance r between 
them is given by 

r2 = (ecos rpsin fj-e' cos rp' sin {}')2+ (e sin rp sin {}-e' sin rp' sin {}'}2. 

(2) + (e cos {} - e' cos fji)2 
= e-2ee' cosy + e'2, 

cosy = cos f}cos {}' + sin {}sin {}' cos (rp- rp'), 

y being the angle between the rays OP and OQ. The potential at P of a 
unit particle at Q is 

1 1 

(3) 
-=, .============~ 

r 12 1/1-2-e-cosy+ 122 
t e' e'2 

where we have set J!, = fl and cos y = u. 
12 

Our task is now to develop ! as a power series in p. By the binomial 

theorem, valid for I z I < 1, 

I 1·3 ... (2n-l) 
(l-z)-z = 0(0 + O(lZ + 0(2Z2 + 0(3Z3 + "', 0( = ----------- 0(0=1. 

n 2.4 ... (2 n) , 

Hence, if I 2 u fl- fl2 I < 1, 

(4) 1 = 0(0 + O(j(2ufl-p2) + 0(2 (2Ufl-fl2)2 + 
ll- 2u lt+f.t 2 

This is not a power series in p, but it may be made into one by expanding 
the binomials in the separate terms and collecting like powers of fl' a 
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process which is justified provided I p, I < -y2 - 11. The coefficients 
of the powers of p, will now be polynomials in u, and we write the result 

1 
(5) = Po(u) + P 1 (u)p, + P2(U)p,2 + 

VI - 2 u fl + Il2 

where 

Exercise. 
Continue the above list of the coefficients as far as P6 (u). Show generally 

that P" (u) may be written 

[n/2] 

P ()= ,\:,1.3 ... (2n-2k-1).(_I)k n-2k 

"u ..:::::.,; 2k .k!(n-2k)! u 
k~O 

= 1·3 ... (212-1) [un _ 12(12-1) un - 2 

n! (212-1)·2 

12 (n - 1) (12 - 2) (12 - 3) - 4 l 
+ (212-1)(212-3).2.4 un - •.. ~. 

3. Legendre Polynomials. 

The coefficients P n (u) are of such frequent use, not only in potential 
theory, but in other branches of analysis, that we shall be warranted 
in devoting a separate section to them. They are called Legendre poly­
nomials 2• 

We observe first that P n (u) is of degree n, and that only alternate 
powers of u occur in it, so that the Legendre polynomials of even degree 
are even functions of u, and those of odd degree are odd functions of u. 

Recursion Formulas. The series obtained by differentiating termwise 
a power series converges at all interior points of the region in which the 
power series converges, and represents the derivative of the function 
represented by the given series3 • Hence, for I p, I < {2 - 1, 

1 The possibility of this rearrangement is most easily established by means 
of a theorem in the theory of analytic functions of :a complex variable (See Chap­
terXII, § 6). The series (4) is a series of polynomials, and therefore offunctions which 
are everY'where analytic, and it is uniformly convergent as to both u and fl if tt 

is real and -1 ;;:;: ~I ;;:;: 1, and 1 fll ;;:;: It 1 < 1'2 - 1. The rearrangement may also 
be justified by elementary methods by first showing it possible for a dominating 
series, obtained from (4) by replacing u and ,u by their absolute values, and the 
minus signs by plus signs. It is then easy to infer the possibility for the series (4). 

2 LEGENDRE, SUI' l' attraction des spMroides, Memoires presentes 11 l' Academie 
par diverses Savans, Vol: X, Paris, 1785, p. 419. See also HEINE, Theorie dey 
Eugeltunktionen, Berlin (1878) Vol. I, p. 2. 

3 Chapter XII, § 6, Exercise. The fact can also be verified by elementary methods, 
using the theorem that a series may be differentiated termwise, provided the 
result is a uniformly convergent series. 
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(6) __ u_---'--p_---=s = P 1(U) + 2P2(u)p. + 3P3(u)p.2 + 
(1- 2up + p3)"2 

Comparing this series with (5), we see that 

u - p = (U-p.) [PO(U) + PI (U)p. + ... J 
1'1 - 2 Up + p2 

= (1-2up. + p.?) [P1 (U) + 2P2 (u)p.+ ... J. 
The comparison of the coefficients of p'n in the two sides of this equation. 
written as power series, yields, after simplification, the recursion for­
mula 

Exercises. 
1. Show that 

P,,(I)=l, P,,(-I) = (-I)", P2 ,.-dO) =0, P2 .. (0) =(-1)"0(". 

2. Show that P" (tt) = 0 has n distinct roots in the open interval (-1, 1). 
and that they are separated by the roots of P 11-1 (u). 

Formulas for the Derivatives of Legendre Polynomials, and the Differen-

tial Equation which they Satisfy. Just as 1 was developed 
. VI - 2 up + .u2 
in a power series in p., we may develop the derivative of this function 
with respect to u: 

(8) f.l t = P~(u) + P~(u)p. + P~(U)p.2 + ... , 
(I - 2up + p2) 

the coefficients being polynomials in u, not as yet shown to be the de­
rivatives of the corresponding Legendre polynomials, the series being 
uniformly convergent for -I < u < I, I p. I < P.l < {2 - 1. But such a 
series may be integrated termwise with respect to u between any two 
points of the closed interval (- I, I), and we find 

co =..s [P n (u) - P n (O)]p.n. 
o 

Comparing the coefficients of p'n in the two power series, we find 

.. 
J P~(u) du = P n (u) - Pn(O) , 
o 

and on differentiating both sides of this equation, we find that P~ (u) is 
indeed the derivative of P n (u). If we now compare the developments 
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(5) and (8), we find 

(u - fl)[P~(u) + P~ (u) fl + ... ] = fl [Pdu) + 2 P 2 (tt) fl + ... J, 

and from this we infer that 

(9) 

As a first consequence of this relation, we may derive a differential 
equation satisfied by the Legendre polynomials. We eliminate between 
the equations (7) and (9), and equations derived from them, the poly­
nomials other then P n (u) and its derivatives. Differentiating (7), we 
find 

(n + 1) P~+l(tt) - (2n + l)Pn(u) - (2n +l)uP~(u) + nP~_du) = O. 

Eliminating P~ _ 1 (u) by means of (9), we have, with n in place of n + 1, 

(10) P~ (u) - UP;.-l (u) = nPn - 1 (u). 

Again eliminating P~-l (u) by means of (9), we have 

(1 - U2)P~(U) + nttPn(u) = nP,,_l(u), 

Differentiating this relation and once more eliminating P~-l (u), we 
have the homogeneous linear differential eqttation of the second order 
satisfied by the Legendre polynomials: 

d 
(11) du[(1-u2)P~(u)]+n(n+ l)Pn (u)=O. 

Exercise. 

3. Determine P n (u), except for a constant factor, on the assumption that it 
is a polynomial of degree n satisfying the above differential equation. 

If from (lO) we eliminate the term uP~ -1 (21) by means of the equa­
tion obtained from (9) by replacing n by n - 1, we obtain the formula 

P~ (u) = (2 n - 1) Pn - 1 (u) + P~-2 (u) . 

If we write the equations obtained from this by replacing n succes­
sively by n - 2, n - 4, ... , and add them all, we arrive at the following 
development of P~(u) in terms of Legendre polynomials: 

(12) P~ (u) = (2 n - 1) Pn-du) + (2 n - 5) P n - 3 (u) 

+ (2n - 9)P"-5 (u) + 
the sum breaking off with the last term in which the index of the poly-
nomial is positive or zero. . 

Expression for the Legendre polynomials as Trigonometric Polynomials. 
Making use of the formula of EULER for the cosine, we write 

elY + e-iY 
U = cosy = --2--' 
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and with this value of u, 

1 

= (oco+ ocleiy,u + oc2e2iY ,u2 + ... ) (oco + ocle-iy,u+ (Xa e- 2iY ,u2 + ... ), 
the series converging for all real y if I p I < 1. These series may be multi­
plied termwise, and the product arranged as a power series in,u. Thus 
we have a second development of the function in (5): 

1 = ocg + (oci OCo eiy + OCo OCI e-iy),u 
l' 1- 2u~ + ~2 

+ (OC2 OCo e2iy + oci + lXo 1X2 e- 2iy) ,u2 + ... 
= IXg + 2 OCo IXI cos Y ,u + (2 lXo 1X2 cos 2 Y + ,4) ,u2 + . . . . 

Comparing the coefficients of ,u" in the two, we have the desired ex­
pression for P" (u) as a trigonometric polynomial: 

(13) P" (u) = 2 OCo IX" cos n y + 21XI IXn_1 cos (n - 2) Y 

+ 2 1X21X,,-2 cos (n - 4) Y + .... 
the last term being 

IX", n even, 
"2 

21X,,-11X,,+1 cosy n odd. 
2 2 ' 

As the coefficients on the right are all positive, and as the separate 
terms attain their maxima for y = 0, it follows that I p .. (u) I attains 
its maximum value for real y, i. e. for real u in the interval (- 1, 1), 
for u = 1. This value has been found in Exercise 1 to be 1. It may also 
be found by setting u = 1 in (5). Thus, the maximum at the absolute 
value at P" (u) tor real u in the interval (- 1, 1) is 1, and this value is 
attained tor u = 1. 

We see thus that the series (5) is convergent and equals the 

given function, not only for l,u I < f2 - 1, but for all l,u I < 1. 

Exercise. 
4. Show by means of (12) that the maximum of i p~ (u) I for real u in (-1, 1) 

n(n+l) 
is attained for u =;= 1, and is 2 • 

The maximum value of I P ,,(u) I for real or imaginary u, I u I <.1, is 
evidently attained for u = i, for' then the terms of the polynomial as 
given in the exercise on page 125 attain their maximum absolute values, 
and except for the common factor in, are all real positive quantities. 

This maximum value is P~ .. (i). It will be useful to have a simple upper 

bound for this maximum. Returning to equation (5), valid for lu I < 1, 
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Lui < 12 -1, we have 

1 =PO (i)+Pl (i),u+P2 (i),u2+ 
V 1 - 2 2 # + #2 

-t -t 
= [1 - i (1 + 12),u] [1 - i (1- 12),u] , 

and the coefficient of ,un in the expansion of this product cannot exceed 
in absolute value the coefficient of ,un in the expansion of 

[1 - (1 + 12) ,u]-t [1- (1 + 12),urt = [1 - (1 + i2) ,url. 
It follows that for I U I < 1, 

(14) IPn(u) I «1 + V2)". 
Exercise. 

5. Show that the maximum m" of IP n(~tll for luI:;;;;; 1 satisfies the recursion 
formula, or difference equation: 

Orthogonality. Just as it is sometimes desirable to express a given 
function as a Fourier series, so it is also sometimes desirable to express 
a given function as a series in Legendre polynomials. It is clear that any 
polynomial can be expressed as a terminating series of Legendre poly­
nomials. For the equation giving P n (x) as a polynomial in x can be 
solved for x n , so that xn is a constant times a Legendre polynomial plus 
a polynomial of lower degree. Since this holds for each n, the lower 
powers of x can be eliminated, and xn expressed as a terminating 
series of Legendre polynomials, with constant coefficients. Hence any 
polynomial can be so expressed by means of the formulas thus obtained. 
The equation (12) gives an example of a polynomial developed in terms 
of Legendre polynomials. 

Functions which are entirely arbitrary, except for certain conditions 
of the nature of continuity, can be expressed, on the interval (-1, 1), 
as convergent infinite series of Legendre polynomials with constant 
coefficients. We shall not attempt here to develop these conditions l , 

but shall confine ourselves to showing how the series may be determined 
when the development is possible. 

The simple method by which the coefficients of a Fourier series are 
determined is based on the fact that the functions 

1, cos x, sin x, cos 2 x, sin 2 x, ... 

have the property that the integral of the product of any two of them, 

1 See, however, the end of § 4 Chapter X. See also STONE, Developments in 
Legendre Polynomials, Annals of Mathematics, 2d Ser., Vol. 27 (1926), pp. 315-329. 

Kellogg, Potential Theory. 9 
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over the interval (O,2n), is 0. A similiar situation is present in the case 
of the Legendre polynomials, for the interval (- 1, 1). In fact, 

(15) 
1 

f Pm (U) P n (U) d Zt = 0, m 9= n. 
-1 

Because of this property two different Legendre polynomials are said 
to be orthogonal on the interval (- 1, 1), and the system of all Legendre 
polynomials is called an orthogonal set of functions on this interval. The 
above set of sines and cosines is an orthogonal set on the interval (O,2n). 

The stated property of the Legendre polynomials can be derived 
from the differential equation (ll). If this be multiplied by Pm (u), 
and integrated from - 1 to 1 with respect to u, the result is 

1 1 

f Pm (U) :u [(1-u2) P~ (U)] du + n (n + 1) f P m (u) P n (u) du = 0. 
-1 -1 

In the first term, we employ integration by parts, and as the integrated 
term vanishes, we have 

1 1 

-J (l-u2)P;"(Zt)P~(u)du + n (n + 1) J Pm(u)Pn(u)du = 0. 
-1 -1 

If we subtract from this equation that obtained from it by interchanging 
m and n, we have 

1 

[n (n + 1) - m (m + 1)] J Pm (u) P n (u) d u = 0. 
-1 

From this the property of orthogonality (15) follows. 

This orthogonality characterizes, among polynomials, those of Le­
gendre. That is, apart from a non-vanishing constant factor in each, 
the only system 0/ polynomials containing one 0/ each degree (the Oth degree 
included), orthogonal on the interval (-1, 1), is the set 0/ Legendre poly­
nomials. It is not difficult to verify this directly, but we shall give a 
proof from which will emerge a new and useful expression for the Legendre 
polynomials. 

Let / (x) denote a polynomial of degree n which is orthogonal to a 
polynomial of each degree from ° to n - 1 inclusive. Then, since / (x) 
is orthogonal to a constant, it is orthogonal to 1, and since it is ortho­
gonal to 1 and to a linear function, it is orthogonal to x, and so, by in­
duction, to X2, x 3, ••• xn - 1 • Hence f(x) is orthogonal to every poly­
nomial of degree less than n. In particular 

1 

J/(x)(l-x)Tdx=O, r=O,1,2, ... ,n-1. 
-1 
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We now integrate by parts, using as the integral of j(x) that from-l 
to x: 

'" 1 1 '" 
[f f (x) dx] (I-x)T 1+ r f f f (x) dx (I-x)r-ldx = O. 
-1 -1 -1~1 

The first term vanishes for r > 0, and we see that the integral of j (x) 
satisfies a set of orthogonality relations 

1 '" 
f [f f (x) dX] (1 - X V-I d x = 0 , r = 1, 2, ... , n - l. 

-1 -1 

If the process of integration by parts be repeated, we see that the 
functions 

'" '" '" '" '" '" 
j (x), ff(x)dx, f f f(x)dxdx, J J ... f f (x) dx dx ... dx, 

-1 -1-1 -1-1 -1 

the last integral being (n - I)-fold, are all orthogonal to 1. In other 
words, the n-fold integral 

'" '" '" 
F (x) = J J ... J f (x) dx dx .•. dx , 

-1-1 -1 

together with its first n - 1 derivatives, vanishes for x = 1. But this 
function and its first n - 1 derivatives obviously vanish for x = - 1. 
Thus F (x), a polynomial of degree 2 n, has an n-fold root at - 1 and an 
n-fold root at 1, and is therefore of the form 

F(x) = c(~2_l)n. 

It is thus uniquely determined save for a constant factor, and therefore, 
so also is its derivative of nth order 

dn 
f (x) = c dxn (X2 -I)n. 

This is what we set out to prove. As P n (x) has the properties postulated 
for f (x), f (x) must be proportional to this Legendre polynomial. 

Let us now determine the constant of proportionality so that f (x) 
shall be P n (x). The coefficient of xn in the above expression is 

(2n) I 
2n(2n-I)(2n-2) ... (n+ I)c=nfc, 

whereas the coefficient of xn in P n (x) is, by the Exercise on page 125, 

1·3·5 ... (2n-l) (2n)! 
n! 2n(n!)2' 

The two will be equal if c = 2-~1' We thus arrive at the formula of 
n n. 

RODRIGUES 

9* 
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Exercises. 

6. Show by means of the formula of Rodrigues that P n (x) has n real distinct 
roots in the open interval (- 1, 1). 

7. Assuming the formula of Rodrigues, derive the equation (15). Derive also 
the recursion formula (7) and the differential equation (ll). 

8. Derive the result 

(16) 

1 

f p ;(U)dU=_2_, 
2n+ 1 

-1 

first from Rodrigues' formula, and secondly, by deriving and then using the formula 

Note that the second method gives also the relations of orthogonality (15). 

We are now in a position to determine the coefficients in the develop­
ment of a given function in a series of Legendre polynomials, on the 
assumption that the series converges uniformly. If we are to have 

multiplication by P r (x) and integration from - 1 to 1 with respect to x 
gives 

1 1 2 
f j(x) P r (x) dx = cr f P; (x) dx = cr 2r + 1 ' 

-1 -1 

so that the coefficients must be given by 

(17) 

1 

2r+ 1 f cr = ~2- j(x)Pr(x)dx 
-1 

if the function is developable in a uniformly convergent series. 

Exercises. 

9. Show that if f(x) = x n, 

2 1 n(n-l) ... (n-r+2) 
c, = ( r + ) ~-:--~-,--;---:'---'cc-------c---'--=-c­

(n + r + 1) (n + r - 1) ••. (n - r + 3) 

if n-r is even, and not negative; otherwise, cr = O. Show, accordingly, that 

nl r 2n+l 
xn = 1.3.5 ... (2n+l)L(2n+l)Pn+(2n-3)-2-Pn-2 

+(2 _7)(2n+l)(2n-l)p + l 
n 2.4 n-4" 'J' 
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1 

10. Show that f P n (x) dx = 0 if n is positive and even, and equal to 
o 

n- 1 
(- 1)~2~(n - 2) (n- 4) ... 1 

n + 1 (n - 1) (n - 3) ... 2 

if n is odd. -Hence show that if the function 
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has a development in series of Legeudre polynomials which can be integrated 
termwise after mUltiplication by any polynomial, that development must be 

Note that the value of the series at the point of discontinuity of f (x) is the arith­
metic mean of the limits of f (x) as x approaches the point from either side. 

II. Show that if the function 

l(x)=O, -1~x~O, j(x) =x, O~x~l, 

has a uniformly convergent development, this development must be 

1 1 501:0 901:1 
I(x} = 4 Po (x) + 2 P 1 (x) + 44 P 2 (x) -86 P 4 (x) + ... 

I 4k + 1 OI:k-1 
T (-I)k-l4k 2k +2 P 2k (X) + .... 

12. Show that the above development is uniformly convergent, by showing 
that it is absolutely convergent for x = I. 

13. Show that if the series 
1 

2r+lf 5(x) = Co Po (x) + C1P 1(X) + C2 P 2(X) + "', cr = ~ l(x)Pr(x) dx, 

-1 

is uniformly convergent, l(x)-5(:.:) is orthogonal to all the Legendre polynomials. 

As it can be shown that a continuous function not identically 0 on the interval 
(-1, 1) cannot be orthogonal on that interval to every polynomial, this exercise 
contains the key to the proof that developments in series of Legendre polynomials 
actually represent the functions developed, under suitable conditions of the char­
acter of continuity. 

14. Show that for real a and b, 

2n 21t 

f d q; f a + i b cos q; 2 n 
a - i b cos q; = a 2 + b2 cos2 q; = 1 a2 + b2 ' 

o 0 

and hence derive Laplace's integral formula for the Legendre polynomials, 
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15. Show by Schwarz' inequality that 
1 

fIP,,(X)ldX:::;: 2 . 
- -Y2n+l 

-1 

Show that if f (x) is continuous with its first derivative, and has a piecewise con­
tinuous second derivative in (-I, I), 

1 

21' + 1 f d [( I I' ( cr =2r(r+I) dx I-x) (x)]Prx)dx, 
-1 

a,nd hence that the development in series of Legendre polynomials of f (x) is uni­
formly convergent. 

16. Show that if f (x) is continuous on (- 1, I), that polynomial p (x) of de­
gree n is the best approximation to f(x) in the sense of least squares, i. e. such that 

which is given by 

1 
f [I(x) - P(x)]2dx = minimum, 

-1 

P(x) = Co Po (x) + c1Pdx) + ... + c"P,,(x), 

where the coefficients are given by (17). 

GAUSS showed how. the Legendre polynomials lend themselves in a 
peculiarly efficient way to the approximate computation of integrals. 
If Xl' X2 ••• Xn are the roots of Pn(x), there exists a set of points on the 
interval (-I, I), dividing it into sub-intervals, AI' A 2, ••• A n, each 
containing the corresponding Xi' ·such that 

is a close approximation to 
1 

f f(x) dx. 
-1 

In fact, there is no polynomialp(x) of degree not greater than 2n-1 
such that 

1 

f P(x) dx 
-1 

gives a better approximation1 . 

1 GAUSS: Methodus nova integralium valores per approximationem inveniendi. 
Comment. soc. reg. Gottingensis rec. Vol. III, 1816; Werke, Vol. III, pp.I63-I96. 
HEINE: Handbuch del' Kugellunktionen, Vol. II, Part. 1. A brief exposition is to be 
found in RIEMANN-WEBER: Differential- und Integralgleichungen del' Mechanik und 
Physik, Braunschweig 1925, Vol. I, pp. 315-318. 

For further study of Legendre polynomials, the reader may consult BYERLY: 
Fourier Series and Spherical Harmonics, Boston, 1902; WHITTAKER and WATSON: 
A Course of Modern Analysis, 4th Ed., Cambridge, 1927; and the books of HEINE 
and RIEMANN-WEBER, mentioned above. 
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4. Analytic Character of Newtonian Potentials. 

The formulas (3) and (5) give us the development of the potential 
of a particle of unit mass as a power series in e : 

lie e2 
(18) - = Po (u) -, + PI (u) Ii + P 2 (u) Id" + ... , 

l' e e . e 

valid for R, < fi - I. But the series continues to converge for 
e 

-I < u < I, :' < I, and to represent the same analytic function 

~ of e for such values of the variable (see page 128). 
l' 

We note first that this series is a series of homogeneous polynomials, 
in x, y, and z of ascending degree. Consider, for instance, 

en ~x+1}Y+Cz 
Hn=Pn(u)e'''+l' u=cosy= e'e .' 

Pn(u) contains only the powers un, u n- 2, u n- 4 , .••• of u, and hence the 
radicaleonly in the powerse-n, e-n+2, e-n+4, •••• Hence Hn contains 
this radical only with exponents 0, 2, 4, ... , none greater than n. This 
function is therefore rational and integral in x, y, z. It is further homo­
geneous of degree n, since u is homogeneous and of degree ° in x,y,z. 

Let lis now show that ..!...-, the potential of a unit particle at Q, is 
l' 

analytic at points other than Q. A functionF(x,y,z) is said to be analytic 
at (a, b, c), provided it can °be developed in a power series 

.l}aiik (x - a)i (y - b)i (z - C)k, i = 0, I, 2, ... , i = 0, 1, 2, ... , 

k = 0,1,2, ... , 

which converges in a neighborhood of the point (a, b; c). No definite 
order of the terms is specified, so that it follows for power series in more 
than one variable that convergence is synonymous with absolute con­
vergence l . 

In considering the potential +, we may take the point (a, b, c) as 

origin. The series (18) is a series of homogeneous polynomials in x, y, z, 
1 r = Ho (x,y,z) + HI (x,y,z) + H2 (x,y,z) + ... , 

and if the parentheses about the groups of terms of the same degree 
be dropped, and the separate terms of the homogeneous polynomials 
be regarded as separate terms of the series, it becomes a power series 
in x, y, z 

(19) 

1 See, for instance, KNOPP: Tkeo1'ie und Anwendung de1' unendlicken Reiken. 
Berlin, 1922, pp. 132-1330 
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If we show that in some neighborhood of the origin this series converges 

and represents -+-, we shall have completed the proof that the potential 

..!...is analytic at the origin, that is, at any point other than Q. 
l' 

We may do this by setting up a dominant series for the series (18). 
A dominant series for a given series is one with positive terms, greater 
than or equal to the absolute values of the corresponding terms of the 
given series. Suppose that in (18) we replace u by 

14 = I,-,-~-,-I ,-I x-,-I--,-+_I'I)'-!-I;,-,I Y,-I-'.+.....cl-=-C -'-C11---,z 1 
e' e ' 

and then replace all minus signs in the Legendre polynomials by plus 
signs. The effect will be to give us a series of homogeneous polynomials 
in lxi, IYI, Izl, which, when the parentheses are dropped, becomes a 
dominant series (we are assuming that x, y, z, ;, Yj, 1; are real) for (19): 

(20) 

Let us consider the convergence of the dominant senes. Before 
the dropping of parentheses, it may be written 

(21) P ( . -) I + I P (.-) e + I P (. -) e2 + o tU ---, ---,-- 1 tU ~ ~ 2 tU ----;a e z e z e 
The powers of i here enter only apparently, for they may be factored 
out, and it is understood that this is done. Now in a series of positive 
terms, parentheses may be introduced or dropped at pleasure, for the 
sum of the first n terms; Sn in the series with parentheses, and Sn in the 
series without, are both increasing functions of n, and any Sn is less 
than some sn' any Sn is less than some Sn; and hence both series con­
verge, or else both diverge. Hence the dominant series (20) will converge 
if (21) does. Now I u I is not greater than I, since I u I is the cosine of the 
angle between the directions (lxi, lyl, Izl) and (IH 1171, 11;1). Hence 
liul < I, and so by equation (14), 

I i~ P n (iu) I < (1 + -Y2")n. 

Thus (21) converges for (I + -Y2)~ < I, that is for e < (12 - I)e'. e . 
The dominating series (20) then converges, as we have seen, in the same 
neighborhood of the origin. 

This, of course, means that (19) converges in the same neighbor­

hood. But more, it converges to ~. For since (21) and (20) converge 

to the same limit, we can chose N so that for any nand n' greater than 
N, the difference between the first n terms of (21) and the first n' terms 
of (20) is less than any assigned positive quantity B. This difference con-
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sists in a certain set of terms of (20), and so dominates the corres­
ponding difference in (18) and (19). Accordingly the last two series 
must converge to the same limit. This completes the proof that the 

potential ~ is analytic. 

Parenthetical Remarks on Power Series in Several Variables. Before 
proceeding to extend the above result to the usual continuous distri­
butions of matter, we state several properties of power series of which 
we shall have need, with brief indications as to the proofs. In the first 
place, 

If F(x, y, z) = 2}aiikxiyizk converges for x = Xo' Y = Yo, z = zo' 
it converges uniformly for JxJ < AJXoJ, JyJ < AJYoJ, JzJ < A JZoJ, where A 
is any fixed positive proper fraction. 

For, since a necessary condition that a series converge is that its 
terms approach 0, there is a number B such that 

I aiikx~y~Z~ J < B, i. e. I aiik I < Ixc lil~ljIZolk' 
Hence the series F (x, y, z) is dominated by 

and this,. in turn, by 2} B Ai+ 1+ k. That the last series is convergent 
is most easily seen by regarding it as the result of multiplying by itself, 

three times, the geometric series for (1 ~ A) , for such a process is per­

mitted in the case of convergent series with positive terms. Thus since 
the given series is dominated by a convergent series with constant 
terms, its convergence must be uniform. 

On the same hypothesis, any given partial derivative of F(x, y, z) is 
obtained by differentiating the series termwise. The resulting series con­
verges uniformly for JxJ < AJXoJ, JyJ< A JYoJ, JzJ < AJZoJ· 

Consider first the derivative of F(x, y, z) with respect to x. The 
result of termwise differentiation of the series is 

This is dominated by the series obtained by expanding 

B[ddA (I-A)-l](I-A)-l(I-A)-\ or B(I-A)-4, 

and as this is convergent, the series obtained by differentiating term­
wise that for F{x, y, z) is uniformly convergent in the region stated. 
It may therefore be integrated termwise, and we find in this way that 
it represents the derivative of F(x, y, z). 

The same is true for the derivatives with respect to y and z. By 
the same argument, the derivatives of these series may be found by 
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termwise differentiation, the resulting series converging uniformly 
for Ixl < A2lxol, Iyl < A2IYol, Izl < A2lzol, and so on, the series for the 
derivatives of order n converging in a region given by the inequalities 
obtained by replacing A2 by An. But as A is any positive number less 
than 1, An may be replaced by A. 

If, on the same hypotheses,F(x,y,z) =0 throughout any neighborhood 
of the origin, the coefficients of the power series all vanish. 

For in this neighborhood, or the portion of it in the cuboid 
Ixl < A Ixol, Iyl < A IYol, Izl < A IZol, any given derived series must 
converge to O. Hence, as 

1 [8.+ i +k ] aiik=~kl 8 i8 18 kF(x,y,z) _ ' L 1.. x Y Z :<-0 

it follows that au k = O. 

:y=o 
8=0 

The Potentials of the Usual Distributions are Analytic at the Points 
of Free SPace. Let us now consider a distribution of continuous density", 
occupying a volume V. Let the origin 0 be taken at a point of free 
space, and let a denote the distance from 0 to the nearest point of V. 

~n the series (19) for +, the coefficients ail" are functions of t 1]", 

but the first n terms of that series are less in absolute value than a 
certain number of terms of the series (21), which, in turn, is dominated 
by 

since e' > a. If e < A (1 - f2) a, 0 < A < 1, this series is dominated 
by the convergent series with constant terms 

so that with the variables thus restricted, (19) is convergent uniformly 
as to all its variables. 

The conditions on the variables are obviously met for Q (~, 1], C) in 
V and P(x,y,z) in the cube c: Ixl<·2a, lyl<'2a, Izl:S;;:·2a. The 
series (19) remains uniformly convergent in all its variables upon multi­
plication by " = " (~, 1], C), and hence 

U = f f f " ~ d V = .2 [f / f "am d V] Xi yi Zk, 

V 

the series being uniformly convergent in c. Thus the potential is analytic 
at the origin, that is, at any point of free space. 
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The same treatment holds for a surface distribution. When it comes 
to double distributions, we note that 

:~+ = x~~ = (x-~) [.2;'aiikXi yiZk]3 

and that in the region c, where the series is dominated by a convergent 
series with terms independent of the variables, the product on the right 
may be expanded and written as a single power series, uniformly con­
vergent for Q in V and P in c. The same situation holds with respect 
to the linear combination of the partial derivatives with respect to 
~, 1], 1;, with continuous coefficients l, m, n: 

al (al) (al) (al) avr= a~r l+\(1)r m+ a~r n 

and the same process as before shows that the potential of a double 
distribution is analytic at the points of free space. Finally we remark 
that the potential of a distribution with piecewise continuous density 
is a sum of those with continuous densities. We thus have established 

Theorem III. The Newtonian potentials of particles and of the usual 
distributions of matter are analytic at the points of free space. 

The same, as a consequence, is true of the derivatives of the poten­
tials, of all orders. 

5. Spherical Harmonics. 
1 

We have seen that the development (18) for r is equivalent to a 

development in terms of homogeneous polynomials 

(22) 
1 
r = Ho (x, y, z) + HI (x, y, z) + H2 (x, y, z) + .... 

These polynomials are solutions of Laplace's equation. For, if the 
parentheses are omitted from the groups of terms of the same degree, 
we obtain a power series which is differentiable termwise in a neigh­
borhood of the origin, and since the introduction of parentheses is 
always permitted, it follows that at least in the same region, the series 
of homogeneous polynomials is differentiable termwise. Hence, since 

1 . f' L l' t' r satIs les ap ace s equa lOn, 

Since a power series cannot converge to 0 in a region containing the 
origin in its interior unless all its coefficients vanish, it follows that 
all the terms of the above series vanish, and thus 

17 2 H n (x,y,Z) = o. 
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A solution of Laplace's equation is called a harmonic function. As the 
polynomials Hn(x, y, z) are peculiarly adapted to the treatment of prob­
lems connected with the sphere, they are called spherical harmonics. 
We shall understand by this term any homogeneous polynomial which 
satisfies Laplace's equation!. 

Let us examine the spherical harmonics given by (22). The first 
few terms are 

I I I I 
-r- =e' +?3 [.; x + 17Y + 'z] + 2 e'5 [';2 (2X2_y2_Z2) +172(2 y 2_-z2_X2) 

+ ,2 (2z2-X2_ y 2) + 617' yz + 6''; zx 

+ 6';17 XY] + .... 
The spherical harmonics thus depend on the parameters .;, 17, ,. They 
remain spherical harmonics if the powers of (/ are dropped, and as the 
resulting polynomials satisfy Laplace's equation for all values of the 
parameters, it follows that the coefficients of the separate powers and 
products of these letters are also spherical harmonics. We thus can 
make a list of spherical harmonics of the first few orders: 

oth order, 1, 
1st order, x, y, Z, 

2d order, 2X2- y2 -Z2, 2y2-z2 _X2, 2Z2 _X2 _y2, 

yz ZX xy 

Those of the second order are not independent, for anyone of those 
in the first line is the negative of the sum of the other two. The number 
of independent spherical harmonics of order n is 2 n + I, that is, there 
exists a set of 2 n + I spherical harmonics of order n, such that any 
other spherical harmonic of the same order is a linear homogeneous 
combination of them, with constant coefficients. We leave the proof 
to the reader in exercises. 

Exercises. 
1. Write a list of spherical harmonics of the third order obtained by finding 

the coefficients of the polynomial e'7H3 (x, y, z) in ~, 'Yj, C. Show that seven of 
them can be picked out in terms of which all the others can be expressed. 

2. Writing 

H n (x, y, z) = an + an _ 1 Z + an_ 2 Z2 + an_ 3 Z3 + ... + aO zn, 

where ar is a homogeneous polynomial of degree r in x and y, show that a neces­
sary and sufficient condition that this be a spherical harmonic is that it have 
the form 

H) 17 2 an 2 172an-lz3 172 (17 2 an) 
n (x, y, z = an + an-l Z - 2! Z - -----:IT- + --4-!-z4 

I 172 (17 2an_l) -
T 5! Z:J - "', 

1 The term spherical harmonic is often applied to a broader class of functions, 
namely, to any homogeneous solution of Laplace's equation. 
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where a"-l and a", are arbitrary. Thus prove the statement of the text that there 
are 2 1% + 1 independent spherical harmonics of order n, in terms of which all 
spherical harmonics of that order can be linearly expressed. 

3. Show how an independent set of 2 n + 1 spherical harmonics of order 
n can be determined, and apply it to the case n = 3. 

4. Using Euler's relation for a homogeneous function of degree n 

8 8 8 
x 8xH"+YayH,,+zTzH,,=nH,,, 

H 
show that if H" is a spherical harmonic of order n, then e2n: 1 is a solution of 

Laplace's equation for e =l= O. 

5. A spherical harmonic of order n can be expressed in the form 

H" (x, y, z) = e" S" (cp, 0). 

S" (cp, 0) is called a surface spherical harmonic of order n. Taking from Chap­
ter VII, page 183, the expression for Laplace's equation in spherical coordinates, 
show that this surface spherical harmonic must satisfy the differential equation 

.Jl 8 (._Q8S,,) 82 S" ( 1)·2JlS-0 sm 'If 80 sm 'U' 87i + 8 cp2 + n n + sm 'U' ,,- • 

Note that the Legendre polynomial P ,,( u) is a surface spherical harmonic of order n, 
and that if in (2) we put 0' = 0, u = cos 0, and P ,,(u) is independent of cp. Thus, 
assuming that S" (cp, 0) is independent of cp, and making the substitution cos 0;= u, 
find again the diffe,rential equation (U) satisfied by the Legendre polynomials. 

6. Developments in Series of Spherical Harmonics. 

In (18), we have the development of the potential of a particle in a 
series of spherical harmonics. Let us now consider the potential of a 
distribution of continuous density x occupying a volume V, and let the 
origin 0 be taken at any point of free space. Let a denote the distance 
from 0 of the nearest boundary point of V. Then, with Q (;, 1], C) in V 
and P(x, y, z) in the sphere e < A a, 0 < A < 1, the series (18) is domi­
nated by the geometric series for (I-A)-I, and thus is uniformly con­
vergent in all its variables. Hence we may multiply by x and integrate. 
We find 

U = fff x~dV = Ho(x, y,z) + HI (x, y, z) + H2 (x,y, z) •.. , 
v 

where Hn(x, y, z) is the spherical harmonic of degree n 

Hn(x,y,z) = fffXPn(u) e';:l dV = enfff x ;:~~ sin fJ' de' dq/ dfJ'. 
v v 

where u = cos y has the value given in equation (2). 

Thus this potential is developable in a series of spherical harmonics, 
convergent at any interior point of the sphere about the origin through 
the nearest point of the distribution, and uniformly convergent in any 
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smaller concentric sphere. The same is clearly true of surface dis­
tributions, and in the cases in which the densities are piecewise con­
tinuous. 

When it comes to double distributions, we need to con~ider for a 
moment the potential of a doublet, or magnetic particle. We have 

0> 

~~ __ ~~_ ,, _ _ 1_o[P,,(u)e"J 
a~ r - ax r - .£.; e'" + 1 ax ' 

1 

the termwise differentiation being permitted, at least in a sufficiently 
small neighborhood of the origin. For the derivative, we have 

: P n (u) en = P~ (u) ~u en + P n (u) n en- 2 x, 
ux ux 

or, making use of the expression for u in terms of cartesian coordinates, 
and the relation (9), 

:x P n (u) en = [p~ (u) ee~ - P~_du) x J en- 2• 

Hence 
0> 

a 1 "[' , (! ~J e,,-2 a~ r =.£.; Pn-du)x -Pn(u)7 e'n+l' 
1 

~t will be noticed that the general term of this series is a homogeneous 
polynomial in x, y, z, and it may be proved to be harmonic just as were 

the separate terms in the development of +. The series is dominated, 

as may be seen by referring to Exercise 4 (p. 128) by 
0> 

~ ~ [n (n - I) + n (n + I)J (!,,-l 
o e'2 2 2 (!'n-l' 

since I ~ I < e' and I x I <e. If Q is in V, and P in the sphere e:::;; A.a, 
this series is in turn dominated by the series 

0> 

"~n2A.n-l 
.£.; e'2 ' 

o 

which the ratio test shows to be convergent. Thus the" potential of the 
doublet can be expanded in a series of spherical harmonics convergent 
in the sphere about the origin of radius A.a, uniformly as to the coordi­
nates of both P and Q. The rest of the treatment follows that for the 
volume distribution. 

Theorem IV. The potential of any of the usual distributions is 
developable in a series of spherical harmonics, convergent at any interior 
point of the sphere about the origin (which may be taken at any point 
of free space), through the nearest point of the distribution, and uniformly 
convergent in any concentric smaller sphere. 



Developments Valid at Great Distances. 143 

7. Developments Valid at Great Distances. 

We may also develop the potential of a particle as a series in 
negative powers of e. All we need do is interchange P and Q, or, 
since u is symmetric, e and e' in (18). We have 

lIe' e'2 
-=Po(u)-+PdU)-2'+P2 (U)3+··· . 
r e e e 

If a is the distance from the origin of the most distant point of a given 
distribution, say in a volume V, so that when Q is in V, e' < a, then this 
series is uniformly convergent in all six variables when P is outside the 
sphere e = A.a, A. > 1. It may be multiplied by a continuous, or piece­
wise continuous density and integrated termwise over V, and thus 
gives an expansion of the potential U of the volume distribution, 
valid at all points outside any sphere containing the whole distribution, 
and uniformly convergent if that sphere contains the distribution in 
. . ; Th .. f P n (u) e'n . b Its mtenor. e term ansmg rom -~ IS seen to ecome a e 
homogeneous polynomial of degree n in x, y, z on multiplication by 
e2n+l • The other types of distribution may be treated in a similar way, 
and we arrive at the result 

Theorem V. The potential of any of the usual distributions is develop­
able in a series of which the general term is a spherical harmonic of 
order n divided by e2n+l • This series is convergent mttside any sphere 
about the origin and containing the distribution, and uniformly convergent 
outside such a sphere if it contains the distribution in its interior. The 
same is true of the partial derivatives of first order of these potentials. 

The last statement of the theorem can be verified by the process 
used in considering the development of the potential of a double dis­
tribution. In the case of the derivative of the potential of a double dis­
tribution, another differentiation will be necessary, but the treatment 
of this case presents no new difficulties. Later we shall see that the 
theorem is true for derivatives of the potential of any orderl. 

Exercises. 
1. A homogeneous cube of side 2a and center at the origin, has its sides parallel 

to the coordinate axes. Show that its potential has the development: 

T 111 7111a 
U = - + -- [3 e4 - 5 (X4 + y4 + z4)] + .... e 60e9 

Show that at distances from the center exceeding the length of the diagonal of the 
cube, the second term is less than 0'2 per cent of the first. Show that the potential 
is less than that of a sphere of equal mass and the same center, at distant points 
on the axes, and more on the diagonals. Does this seem reasonable? 

1 This follows from Chapter VIn (p. 211), the -£act that the derivative of 
a harmonic function is harmonic, and from Chapter X, § 2. See also Exercise 4, 
at the end of Chapter VIII, page 228. 
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2. Given a distribution whose density is nowhere negative, show that if the 
origin of coordinates is taken at the center of mass, the development in falling 
powers of the distance lacks the terms of order -1 in x, y, Z, and if, in addition, 
the axes are taken along the principle axes of inertia of the distribution, the initial 
terms of the development are 

u = M + (B + C - 2 A) x 2 + (C + A - 2 B) y2 + (A + B-2 C) Z2 + ... 
e 2e 5 ' 

where A, B, C are the moments of inertia about the axes. 

3. Show that if the development of the potential of a distribution be broken off, 

the remainder Rn is subject to the iuequality 

where a is the radius of a sphere about the origin containing all the masses, and 
b is the radius of a larger concentric sphere, to the exterior of which P (x, y, z) 
is confined. 

4. Show that at distances from the center of mass of a body, greater than ten 
times the radius of a sphere about the center of mass and containing the body, 
the equipotential surfaces vary in distance from the center of mass by less than 
1.2 per cent. Show that the equipotentials of bounded distributions of l?ositive 
mass approach spheres as they recede from the distribution. 

8. Behavior of Newtonian Potentials at Great Distances. 

We have seen that at great distances, developments hold for the 
potential of bounded distributions, 

the termwise differentation being permitted because the resulting 
series is uniformly convergent. Similar expressions exist for the 
Dther partial derivatives of the first order. From these we derive the 
important properties of the usual potentials at great distances: 

Theorem V. If U is the potential of any bounded distribution of one 
of the ~tsual types, then at a great distance e from any fixed point, the 
quantities 

eU, 

are all bounded. As P (x, y, z) recedes to infinity in any direction, e U 
approaches the total mass of the distribution. 
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The limits of the quantities 

2au 2au 2au 
(!Tx'(!Ty,(!Tz 

as (! becomes inifinite do not exist, in general. If, however, the direction 
in which P recedes to infinity is restricted, say so as to approach a limit­
ing direction with direction cosines 1, m, n, then these quantities 
approach limits 

-MI, -Mm, -l11n, 

respectively. In other words, the force becomes more and more nearly 
that due to a particle, situated at a fixed point, and having as mass 
that of the distribution. We have used this as a check in the exercises 
of Chapter I, assuming it at that point as reasonable. 

In the development of the potential of a double distribution, valid 

for great distances, it turns out that the term in ~ is lacking. To say 
(! 

that the total mass of a double distribution is 0 is entirely reasonable, 
in view of its possible interpretation as the limit of two equal and 
opposite distributions on parallel surfaces, as these surfaces approach 
coincidence. This holds whether the total moment vanishes or not. It is 
to be noted that this circumstance of a vanishing total mass does not 
impair Theorem V; it enables us to make supplementary statements. 
In this case the four quantities there given approach the limit O. 

Exercises on the Logarithmic Potential. 
1. Show that the partial derivatives of order n of the logarithmic potential of 

a particle 
I 

U = logy 

are homogeneous polynomials in x, y, ~, and 'Y}, of degree n, divided by (i2n. Show 
also that the potentials of the usnal distributions satisfy Laplace's equation in two 
dimensions 

iJ2 U a2 U 
17 2 U= ax2 + ay2' 

2. Show that 

log ~ = log J -L cos (rp - rpr) ~ + ~ cos 2 (rp - rpt) ~ 
r (i' I (i' . 2 (i'2 

1 (i3 + "3 cos 3 (rp - rpr) ?3 + .. " 
and that the terms of this series are homogeneous polynomials in x and y which 
satisfy Laplace's equation. 

3. Derive developments in terms of homogeneous polynomials satisfying 
Laplace's equation, and in terms of such polynomials divided by appropriate powers 
of (i, for the potentials of the usual logarithmic distributions. 

4. Show that there are only two independent homogeneous polynomials of each 
order (n > 1) which satisfy Laplace's equation, and that these may be taken as the 

Kellogg, Potential Theory. 10 
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real and imaginary parts of (x + i y)n. Show also that they are the numerators in 
certain derivatives of the logarithmic potential of a unit particle at the origin, 
when these are expressed as homogeneous polynomials divided by the proper 
powers of e. Explain why only two of the n + 1 derivatives of order n are in­
dependent. 

5. Show that if U is the logarithmic potential of one of the usual distributions, 
contained in a bounded portion of the plane, and of total mass ]}I, 

1 
U - Mlog-

e 
approaches 0 as e becomes infinite, in fact, that e times this difference is 
bounded for large e. Show also that 

au au 
eax' eay 

are bounded for large e. Make sharper statements for the case where ]}I = O. 

Chapter VI. 

Properties of Newtonian Potentials at Points 
Occupied by Masses. 
1. Character of the Problem. 

We continue our study of the properties of Newtonian potentials, 
now in the neighborhood of points of the distributions of matter. Our 
object is to find relations between the potential and the density, for the 
purpose indicated at the beginning of the last chapter. As it is only 
in the neighborhood of a point of a distribution that the density at 
that point makes itself felt in a preponderating way, we must of 
necessity investigate the behavior of the potentials at such points. 

As the integrands of the integrals become infinite at such points, the 
study presents some difficulties, and it will probably be wise for the 
reader to use the present chapter in a manner similar to Chapter IV. 
He should by all means be acquainted with the results, a number 
of which have been verified in particular cases in the exercises of 
Chapters I, and III. He will do well to review the exercises in question 
in order that he may see the results in the light of illustrations of 
general principles. Some acquaintance with a few typical proofs, say 
the earlier ones, is also desirable. Otherwise, a detailed study of the 
chapter should be left until after the later material has shown the need 
of the present developments. It will then be found more interesting 
and more readily understandable. 

2. Lemmas on Improper Integrals. 
We shall confine ourselves, in this chapter, to regular surfaces and 

regions, and, in general, to densities which are piecewise continuous. 
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We have already met with improper integrals, in Chapter I, §.9 (p. 17) 
and in Chapter IV, § 11 (p. U9). At present it will serve if we restrict 
ourselves to integrands f (Q) which become infinite only at a single 
point P of the region V of integration. In any region in V which does 
not contain the point P, we shall suppose that f (Q) is piecewise con­
tinuous in the coordinates ~, 1], C of Q. It is not an essential restriction 
to assume that P is an interior point of V, for as we have seen, we may 
extend V, defining f (Q) as 0 in the region added. We recall the definition 
of convergence: 

the integral I = I I If (Q) dV 
v 

is said to be convergent, or to exist, provided 

~o£[! f (Q) dV 

exists, where v is a variable regular region subject to the sole restrictions 
that it shall have P in its interior, and that its maximum chord shall not 
exceed ~. The value of the convergent integral is defined to be this limit. 

If the integral I is convergent, the definition of convergence, applied 
to the first and last term, shows the following equation to be valid 

I I If (Q) dV - I I If (Q) dV = I I If (Q) dV, 
v v-v v 

where v is thought of, for the moment, as fixed. The equation once 
established, we may allow the maximum chord of v to approach O. 
The left hand member of the equation then approaches 0, and we have 

. Lemma I. If I is convergent, the integral 

IIIf(Q)dV 
v 

approaches 0 with the maximum chord of v. 

We recall also the Cauchy test for convergence (p. 18). An incon­
venience inherent in the application of that test is the very general 
character of the regions v that must be considered. We shall therefore 
find useful the criterion given by . 

Lemma II. If there is a function g (Q) such that I f (Q) I S g (Q), 
and such that 

I I I g (Q) dV 
v 

is convergent, then I is convergent. 

This test obviates the necessity of considering general regions v, for 
the reason that if 

III g (Q)dV 
v-v 

10* 
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approaches a limit when v is a sphere about P, it will approach the same 
limit for the most general regular region v containing P in its interior, 
as the maximum chord of v approaches O. This we shall show in a 
moment. 

To prove the lemma, let v and v' denote any two regions having P 
as an interior point, with maximum chord less than b. Let a be a 
sphere about P of radius 2 b. Then 

Ilif I (Q) dV - £If I (Q) dV I = I fl! I (Q) dV - £If I (Q) dV I 
< I I I g (Q) dV + I I I g (Q) dV < 2 I I I g (Q) dV. 

a-V a-v a 

The last integral is convergent, by hypothesis, and so approaches 0 
with b, by Lemma 1. The Cauchy test then shows that I is convergent. 

We now justify the remark made with respect to the convergence 
of the integral over g (Q) for special regions. Let 171' 172 , 17 3 , • • • be a 
sequence of spheres about P, with radii approaching O. Let 

Gi=III g(Q)dV. 
V-Oi 

Then, by hypothesis, the monotone increasing sequence G1 , G2 , G3 , ••• 

approaches a limit. But the integral 

G = III g(Q)dV 
v-v 

lies, for small enough maximum chord of v, between a term of this se­
quence, as far advanced as we please, and some following term, a.nd 
hence G approaches the same limit as the sequence, as the maximum 
chord of v approaches O. 

Remarks. All that has been said for triple integrals holds for double 
integrals with the mere substitution of two dimensional for three dimen­
sional regions of integration. Furthermore, we may apply the results to 
integrands f (Q) becoming infinite at two points P and P' by simply 
dividing the region of integration-say by a small sphere about one of 
these points-into two, one containing each point, and understanding 
that the improper integral over the whole region is the sum of the im­
proper integrals over the two parts. This simply amounts to extending 
the definition of improper integral to the case of two infinities of the 
integrand. We shall have need of this remark in considering derivatives 
of potentials. 

Lemma III. (a) The integral 

fff:~, O<fJ<3 
v 
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is convergent, and for all regular regions V of the same volume, it is greatest 
when V is a sphere about P. 

(b) The integral 

ff::, O<P<2, 
s 

where S is a regular region of the plane, is convergent, and for all regions 
S of the same area, it is greatest when S is a circle about P. 

That the integrals are convergent is easily proved by means of 
spherical and polar coordinates, respectively. In the integrals over 
regions with the infinities cut out, the integrands are continuous, and 
the multiple integrals are then equal to the iterated integrals with 
respect to these coordinates. But it is found that the iterated integrals 
are not improper, and the convergence is readily established (see 
Chapter I, page 18). 

Suppose now that V is not a sphere about P. Then there will be 
points of V, outside the sphere r of equal volume about P, and also 
points in r not in V 

The set v of points in V which are not interior to r may not con­
stitute a region at all. For instance, the regular surface bounding V may 
touch, from within, arcs of an infinite number of parallel circles on the 
sphere. However, the integral of a continuous function f over such a set 
is easily defined. Let C denote a cube containing v. We define a function 
F, F = f at the points of v, and F = 0 elsewhere in C. Then, by defi­
nition, 

ffff dV = fffFdV. 
v C 

It is true that F is discontinuous in C, but not at any interior points of v. 
The boundary of v lies entirely in the boundaries of r and V, and it is 
easy to show that a regular surface element can be enclosed in the 
interior of a region of arbitrarily small volume. It follows that the 
above integral exists. If f becomes infinite at a point P of v, the improper 
integral is defined in the usual way. 

With these preliminaries, we see that 

fJf~~ -fff~; = fff~; - fff~;, 
I v u v 

where (j is the set of points of r not interior to V. But 

a being the radius of r, and the inequalities holding at interior points. 
Hence the integral over r exceeds the integral over V if either (j or v 
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contains interior points, since the volumes (that is, the integrals of 
the function f = 1) of (J and v are equal. If neither (J or v have interior 
points, it follows at once that V coincides with E. Part (a) of the lemma 
is thus established, and similar reasoning establishes pact (b). 

Some equations and inequalities are of such frequent occurence in 
what follows that we add them as 

Lemma IV. 

(a) 21 ab 1 < a2 + b2 , a, b real. 

1 1 r02 - r2 
(b) - - - = ---"-:--:----:-

r "0 'Y'Yo (r + ro) , 

The inequality is the familiar consequence of (a - b)2 > 0, and the 
equations are obvious algebraic identities. 

3. The Potentials of Volume Distributions. 

We consider the potential U of a distribution of piecewise continuous 
density", throughout a regular region V; also a typical component of 
the force: 

As 1 " 1 is bounded, and as 1 C - z 1 < r, we see by Lemmas II and III 
that these integrals converge for all P in V. Thus the potential and 
force are defined everywhere. 

We next show that these functions are everywhere continuous. The 
reasoning is typical of that to be used repeatedly in this chapter. We 
confine ourselves to the points of V, for we already know that the inte­
grals are continuous everywhere else. Let Po be a point of V; as re­
marked, we may assume that it is interior. Then U = U1 + U2 , where 

U1 (P) = fff-~dV, 
C1 

where (J is a sphere about Po. Now, given anye > 0, we may take (J so 
small that 

independently of the position of P, because of Lemmas III and I. For 
such (J, 
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Then, with (] fixed, there is a neighborhood of Po such that when P is 
in it, and Q is in V - (], 

1
1 1 I Ii r-ro .<3BV' 

where rand ro are the distances PQ and PoQ, B is a bound for I u I, and 
V is the volume of the region V. Then, with P in this neighborhood, 

IU2 (P)- U2(P~)I< ffflull~- ~ IdV<i-. 
V-a 

Combining the inequalities for U1 (P) and U2 (P), we have 

I U (P) - U (Po) I < 8. 

Thus U is continuous at Po, and hence throughout space. 
Characteristic of the reasoning is the breaking up of the region of 

integration into two, such that the integral over the first vanishes with 
the maximum chord of the region, uniformly as to P, and that in the 
second region, the integrand is a bounded density times a continuous 
function of all the coordinates of P and Q. The same argument holds for 
the function Z of P. Thus we have 

Theorem I. The potential U, and the components X, Y, Z of the force, 
due to a volume distribution of Pi~cewise continuous density in the bounded 
volume V, exist at the points of V, and are continuous throughout space. 

But it is not evident without further study 
that the force components are, at points of the 
distribution, the corresponding derivatives of the 
potential, for the usual criterion for the possibility 
of differentiating under the sign of integration does 
not apply to improper integrals. Nevertheless, the 
relationship subsists (we are considering the gravi­
tational field - in electrical or magnetic fields the 
force is the negative of the gradient of the potential). Fig. 20. 

To show this, let us take the origin of coordinates at Po, and let P 
have the coordinates (0,0, h) (fig. 20). We consider the function 

U(P) ~ U(Po) - Z (Po) = fff u [i (~- :J - ;gJ dV 
V 

-iIT [2C-h CJdV - u rro (r + ro) - rg , (h=l=O). 
V 

Here we have employed Lemma IV (b) and thevaluesrg = ~2 + 'YJ2 + C2, 
r2 = ~2 + 'YJ2 + (C - h)2. 
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This integral is convergent, by Lemmas II and III, since 1'1 < ro' 
and I 2 , - h I < I 'I + I , - h I ::;; ro + r. It converges, and vanishes, 
for h = O. If it is a continuous function of h, the difference quotient on 
the left approaches the limit Z (Po) as h approaches 0, that is, the de­
rivative of the potential exists and equals Z. The problem is reduced, 
then, to showing the integral continuous. 

If P is confined to the interior of a small sphere (J about Po, the 
integrand is a bounded density times a function which is continuous in 
all the variables, when the integral is extended over the portion of V 
outside the sphere. The integral over this portion is therefore continuous 
in P, thus restricted. It remains to show that the integral over the 
sphere can be made arbitrarily small by restricting the radius of the 
sphere, uniformly as to P. But the integral is dominated by (i. e. is less 
in absolute value than) 

by Lemmas IV (a) and III. As the last integral is convergent, it ap­
proaches 0 with the radius of a, by Lemma I. This completes the proof. 
We have, therefore 

Theorem II. The potential U of the volume distribution of Theorem I 
. is everywhere differentiable, and the equations 

au y=au au 
x = ax' ay' Z = az ' 

hold throughout space. 

This amounts to saying that the derivatives of the first order of U 
may be obtained by differentiating under the sign of integration. It is 
otherwise with the derivatives of the second order. In fact, the mere 
continuity of the density does not suffice to insure the existence of these 
derivativesl . We therefore impose on the density a condition introduced 
by HOLDER2• A function f (Q) bf the coordinates of Q is said to satisfy 
a Holder condition at P if there are three positive constants, c, A and 0(, 

such that 

If (Q) - f (P) I < A r a , r = PQ , 

for all points Q for which r < c. If there is a region R in which f (Q) 
satisfies a Holder condition at every point, with the same c, A and 0(, 

f (Q) is said to satisfy a uniform Holder condition, or to satisfy a Holder 
condition uniformly, in R. 

1 Here is an illustration of the necessity of the investigations of this chapter, 
for this situation would not have emerged in a study of the examples of Chapters 
I and III, where the densities are all analytic. 

2 Beitrage zur Potentialtheorie, Dissertation, Stuttgart, 1882. 
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Exercises. 
1. Show that the function defined by 

1 
1 (~) = log (1/1 ~ Il ' 1(0) = 0, 

is continuous at the origin, but does not satisfy a HOlder condition at that point. 
Devise a function which satisfies a Holder condition at a point, but is not differen­
tiable at that point. Thus a Holder condition is stronger than continuity, but weaker 
than differentiability if IX < 1 . 

2. We know that.a function of x, continuous in a closed interval, is uniformly 
continuous in that interval. Show that a similar theorem does n~t hold with 
respect to a Holder condition, by an examination of the function defined in the 
closed interval (0,1) as follows: 

1t-l 1 

I(X)=~+[,t(nI~I)Jn (x-~r, ~<X<_I_ 
n= =n-I' n = 2, 3, 4, ... , 

1(0) =0. 

We may now study the partial derivatives of U of the second order, 
at interior points of V. Let Po be such a point, and let E be a sphere 
about Po' lying in V. Then U = U1 + U2 , where U1 is the potential 
of the masses within E, and U2 the potential of the remaining masses. 
As Po is an exterior point for U2, this potential has continuous deriva­
tives of .all orders at Po and is harmonic there. Thus the problem is 
reduced to one in which V is a sphere. 

If the density of the sphere is constant, we have the following value 
of Z from Chapter I, § 9 (p. 19): 

4 
Z = - 3'nxz, 

valid at interior points. As Z is the derivative of U with respect to z, 
by theorem II, we see that at interior points all six of the partial deriva­
tives of U of second order exist and are continuous, and that in parti­
cular, 

and rn U = - 4'n x. 

If we now write x (Q) = [x (Q) - i( (Po)] + i( (Po), we see that the 
potential of a sphere whose density is continuous at Po is the sum of the 
potentials of a sphere whose density vanishes at Po and of a sphere with 
constant density, equal to that at Po, of the given sphere. We are thus 
reduced to a consideration of the case in which the density vanishes at 
Po. We now suppose that x satisfies a Holder condition at Po. Assum­
ing that the radius of the sphere E is less than c, this means that 

Under these circumstances, differentiation under the sign of integration 



154 Properties of Newtonian Potentials at Points Occupied by Masses. 

is still possible. In fact; 

where we have taken the origin at Po, is a convergent integral, by 
Lemma III, since I C I < ro, and I u I < A roo If P is the point (0,0, h), 
then 

Z(P) -Z(Po) _ J = 1 
h ' 

for h =+= 0, where 

1= u - ----;- --+- dV. Iff [ 1 (C - h C ) 3 C2 1 ] 
2: h r3 rg r8 rg· 

The integral 1 is convergent as can be seen by the reasoning applied to J. 
We wish to show that 1 tends to 0 with h. But to do this, we must elim­
inate h from the denominator. Now 

and so, using Lemma III (c) and (b), and the values rg = ~2 + 1]2 + C2, 

r2 = ~2 + 1]2 + (C - h) 2, we see that 

This integral has a meaning for h = 0, in fact it is 0, for the integrand 
then reduces to O. If we can show that 1 is continuous in P at Po' we 
shall know that it approaches 0 as h approaches 0, and it will follow that 
the derivative of Z with respect to z exists at Po and equals J. 

To show that 1 is continuous at Po we follow the usual reasoning. 
The integrand is continuous in E - (J, apart from the piecewise con­
tinuous density, where (J is a small sphere about Po' provided P is interior 
to (J. Hence 1 will be continuous if the integral over (J can be made 
arbitrarily small by sufficiently restricting the radius of (J, independently 
of the position of P. This we now show to be possible. Let us call la 
the integral over (J. 

Now there are two infinities of the integrand of 1 (J' one due to the 
denominators containing ro and the other due to the denominators con­
taining r as a factor. The first are rendered innocuous by the fact that 

I u I < A r~. It is the term in ~ which is troublesome. We must under­

take further transformations. We have 
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1_ ~ ,(2,- h) ~I_ 1
1

2,2- 'It- rll-rro: 
I r3 + rYo (r + ro) r2 - r3ro (r + ro) [ 

I
, (C - h) - ~2 - 1]2 1 1 2 

= 1 yaro (r + Yo) - r2 (r + Yo) 1 ::;;: y2ro ' 
since 

I , I < r 0' I' - h I < r, g2 + 'i}2 < r2, r + r 0 > r 0 • 

For the remaining terms in the bracket in the integrand, we have 

·1 ,(2,- It) (_1 ~) _ 3,2 -L ~I < _~ _1 ~_ 
rr (r + r) rr + r2 t" I r3 = r2r + rr" + r3 • o 0 \ 0 0 0 01 0 0 0 

Hence the integrand of I a is dominated by 

A Br~ [:a + Y~2 + r2: ] < 4A B [r3~a + r2!ay + r1!a r2J • 
o 0 0 0 0 0 

We have a right to assume C'J. < 1, for a Holder condition with one 
exponent always implies one with a smaller positive exponent. Then in 
the part of (J in which ro ::;;: r, the last written function is only increased 

by replacing r by ro. That is, it is less than 1~~: . In the rest of (J 
o 

it is less than 1:3"~aB. Then I I a I is certainly less than the sum of the 

integrals of these two functions taken over the whole of (J, and since, 
by Lemm.a III, the first of these integrals is the greater, we have 

11,,1 <24AB fffY~~. 
a 

As this integral is convergent, and independent of P, it follows by 
Lemma I that I a vanishes with the radius of (J, uniformly as to P. 
Thus I is continuous, and the existence of the derivative is proved. 
Further i)Z i)2U 

-=---=j i) Z dz2 • 

In the same way the existence of the other partial derivatives of U 
of the second order at Po can be proved. In particular, we have for the 
Laplacian, /72 U, of U, the value obtained by interchanging x, y, z in 
j, and adding the results, 

j72U = Iff", [.~_.w + 1)2 + '2) - ~J dV = O. 
.. Yo rg 

:£ 

This is for the potential with a density satisfying a Holder condition 
and vanishing at Po. If we add to the distribution one of constant density 
throughout the sphere, we have the result holding for a distribution 
with continuous density in a sphere, and satisfying a Holder condi­
tion at Po: the derivatives exist, and 
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Finally, if we add the potentials of distributions outside the sphere, 
nothing is contributed to the Laplacian, and the same equation holds. 
This differential equation, which contains Laplace's as a special case, is 
known as Poisson's equation!. We sum up the results on the derivatives 
of second order in 

Theorem III. Let U be the potential of a distribution with piecewise 
continuous density x in a regular region V. Then at any interior point 
Po of V, at which x satisfies a Holder condition, the derivatives of second 
order of U exist and satisfy Poissons' equation 

J72U = - 4nx. 

The theorem leaves unmentioned the situation at boundary points 
of V. But here, in general, the derivatives of second order will not exist. 
It is clear that they cannot all be continuous, for as we pass from an 
exterior to an interior point through the boundary where x is not 0, 
J72 U experiences a break of - 4 n x. 

Poisson's equation enables us to find the density when we know 
the potential. 

Exercises. 
3. Show that a continuous function of x, which has derivatives in an interval 

including the origin except at the origin, cannot have a derivative at the origin 
~nless the limits of the derivatives to either side are the same at the origin. Hence 
show that there are cases in which the second derivatives of the potential of a volume 
distribution do not exist at boundary points. 

4. Show that a condition lighter than a Holder condition is sufficient for the 
existence of the second derivative with respect to z of the potential of a volume dis­
tribution, namely the following. Denote by u the average of the values of" on the 
circle through Q whose axis is the parallel to the z-axis through Po' i. e. with the 
axes employed above, 

2,,; 

- 1 f ( . {}' " = 2n "ro Sill cos cp, ro sin {}' sin cp, ro cos {}') d cp, Q = (ro, {fl, cp'). 

o 
Then it is sufficient that u satisfy a Holder condition at Po. Verify also that the 
lighter condition is sufficient: there exists a continuous function 0 (r), defined on 

some interval 0 < r ;£; a, such that I x I ;;;;; 0 (r 0)' that 0 ;r) never increases with 

r, and that 

is convergent. 

1 POISSON, Remarques sur une equation qui se presente dans la tMorie de l' attrac­
tion des spMrofdes. Nouveau Bulletin de la Societe philomathique de Paris, Vol. III 
(1813), pp. 388-392. See also BACB:ARACB:, Geschicltte der Potentialtheorie, G6t­
tingen, 1883, pp. 6-13. 
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4. Lemmas on Surfaces. 

We shall limit ourselves to distributions on regular surface elements 
5, which are subject to the further restriction that the function 
Z = f (x, y), (x, y) in R, giving the standard representation (see p. 105), 
shall have continuous partial derivatives of the second order in R. These 
are bounded in absolute value by some constant M. 

The results attained will hold for regular closed surfaces which are 
sufficiently smooth, because the lines breaking such surfaces up into 
regular elements may be drawn in a variety of ways, so as to avoid any 
given point of the surface under investigation. Since potentials are 
analytic in free space, it makes no difference what the character of the 
surface is except in the neighborhood of the point under investigation. 
Thus we may conclude that our results subsist for any regular surface, 
provided we keep away from the edges. Certain results subsist here also, 
like the continuity of the potentials of surface distributions. But in the 
enunciation of the results we shall suppose that we are dealing with an 
interior point of the surface. 

It will be convenient to have a notation for the point of the surface 5 
in whose neighborhood we are investigating the potential; let it be p. 
We shall find it convenient to use a system of axes in which the (~, 1])­
plane is tangent to 5 at p, this point being taken as origin. If we wish 
then to study how the potential changes as p moves on 5, it will be neces­
sary to think of the axes as changing with p. Certain inequalities derived 
will then hold uniformly as to p, when they can be expressed in terms 
of constants which are independent of the position of p, at least in a 
certain portion of 5. 

One such inequality we derive at once, and it will illustrate the idea. 
We have seen in Chapter IV, Theorems IV and VII (pages 101, 108) that 5 
can be broken up into a finite number of regions of triangular form, 
for each of which a standard representation is possible with any orien­
tation of the axes in which the C-axis makes an angle greater than 70° 
with no normal to the portion of 5.in question. Moreover, these pieces 
can be so taken that the normals vary in direction on each by'less 
than 15°. Ifp is a point of such an element, and the axes are taken in the 
tangent and normal position at p , the normals over the element in which 
p lies as well as over the adjacent elements, will deviate in direction from 
the C-axis by less than 300, so that we shall have a standard representa­
tion with this position of the axes which certainly holds in a neighbor­
hood of p. In fact, if c denotes the minimum distance between any two 
non-adjacent triangular elements of 5, such a neighborhood of p in which 
the standard representation holds, will include all of 5 within a distance 
c of p. And c will be independent of the position of p. Thus the standard 
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representation with the tangent-normal system of axes exists, uniformly 
as to p. 

More than this, the function!; = rp (,;, Tj) giving the standard re­
presentation of the portion 51 of 5 within a sphere of radius c about p 
will have partial derivatives of the second order which are bounded in 
absolute value by a constant M, independent of the position of p. This 
is most easily seen by using the system of direction cosines relating the 
(x, y, z)-axes, in terms of which the defining standard representation of 
5 is given, with the (,;, Tj, !;)-axes in the tangent normal position at p. 
We may assume that both systems are right hand ones, and that they 
have the same origin, p. Then 

,; = II X + ml y + nd (x, y), 
Tj = l2 x + m2y + n2 f(x, y), 
!; = la x + maY + nat (x, y) . 

We know that when (,;, Tj) is in the projection of 5 on the (,;, Tj)-plane, 
these equations have a unique single-valued continuously differentiable 
solution!; = rp (,;, Tj), by Chapter IV, Theorem VII, (p. 108). And it is 
shown in the works on the Calculus 1 that the derivatives of rp are com­
puted by the ordinary rules for implicit functions. Keeping in mind that 
in the determinant of the direction cosines, any element is equal to its co­
-factor, we find 

a2 Z; (1112 + n2/.)2 Ix. - 2 (1112 + n2 Iy) (72 + nz/x) Ix. + (l2 + n21x)2 I.v 
O~2 --(lalx + 1113/. - na)a ---

As f x' f yare continuous in the closed region R, they are bounded in 
absolute value, say by N, and the derivatives of f of the second order 
are bounded by MI. As to the denominator, it is the cube of the cosine 
of the angle between the normal to 51 and the ,-axis, multiplied by 
VI + f; + f~ and as this angle never exceeds 30°, the denominator is 

. (f3) 3 
never less in absolute value than 2 . Hence 

i ~~~ I S;; 4 (1 + N) Ml (l~Y, 
a quantity independent of p, which we call M. Exactly the same con­
siderations apply to the other two derivatives of , of second order, the 
same constant M being available. 

We may now enunciate 

Lemma V. If 51 be the portion of 5 in a sphere of radius c about p, 
and if!; = rp (,;, Tj) is the equation of 51 referred to axes tangent and normal 
to 5 at p, then 

I , I < M (';2 + Tj2) , 

for all points of 51' where M is independent of p. 

1 See, for instance, OSGOOD, Advanced Calculus, Chapter V, especially § 9. 
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We have merely to expand the function, = ffJ (;, 1]) in a Taylor 
series about the origin, with remainder, remembering that the linear 
terms vanish because of the position of the axes: 

,= HffJ;;;2 + 2ffJ~'1;1] + ffJ'1'11]2]. 

Hence, using the bound M for the derivatives, and Lemma IV (a), we 
have 

and the required inequality is established. 

The density, a = a (q), of a surface distribution on S at a point q 
may be regarded as a function of ; and 1], namely the coordinates of 
the projection of q on the (;, I7)-plane. Let y denote the angle between 
the normal at q and the ,-axis, i. e. the normal at p. We then have 

Lemma VI. If a satisfies a Holder condition at p, the function a sec y 
also satisfies a Holder condition at p. If a satisfies a uniform Holder con­
dition on a portion of S, then a sec y satisfies a Holder condition, uni­
formly as to p. 

As seey, that is, VI + ffJ~ + ffJ~, has bounded derivatives at points 
of S in the sphere of radius c about p, it satisfies a Holder condition at 
p with exponent IX. = 1. Let c be less than one, and less than the smaller 
of the two values, one of which assures the standard representation of 
the portion S1 of S within a sphere of radius c about p, and the other of 
which assures the inequality of the Holder condition. Then, since y = 0 
atp, 

I a (q) secy - a(p) secO i = I [a(q) - a (p)]secy + a (P) [secy - sec 0] [ 

< sec 30° Ara + max I a [A'r, r = pq. 

If f3 is the smaller of the two numbers IX. and 1, then since r < 1, rfi > r', 
rfi > r, and 

[ a (q) sec y - a (P) sec 0 I < A" rfi for r < c. 

Thus the Holder condition obtains. Moreover, in any region in which 
the Holder condition on a is uniform, .all the constants involved are 
independent of the position of p. Thus the lemma is established. 

Remark. In the inequality for the Holder condition, we may re­
place r by its projection r' on the (;, 1])-plane if we wish. As 

r2 = ;2 + 1]2 + ,2 = r'2 + ,2 < r'2 (1 + M2 r'2) < r'2 (1 + M 2 c2), 

we should only have to replace A" by the constant 

A" (1 + M2 C2/f, • 
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5. The Potentials of Surface Distributions. 

Let 5 denote a surface subject to the restrictions of the last section, 
and let the density be piecewise continuous on 5; that is, let it be a 
piecewise continuous function of the coordinates x and y of the projec­
tion of q on the (x, y)-plane of the standard representation of 5, in the 
region R. We consider the potential 

u= ff~d5= ffasecY:3dS', 
5 5' 

where 5' is the projection of 5 on the (x, y)-plane of the standard re­
presentation of 5 as a whole. As the distance r between P (x ,y, z) and the 
variable point q (~, rJ, ') of 5 is never less than its projection r' on the 
(x, y)-plane, we see at once that the integral for U is convergent, by the 
Lemmas II and III (b). And by reasoning similar to that applied to the 
volume distributions, we see that U is continuous. This holds for bound­
ary points of R as well as for interior points, for we may extend the 
region 5', defining a as 0 at the points annexed. Thus we have 

Theorem IV. The potential U of the given surface distribution exists 
at the points of 5, and is continuous throughout space. 

Tangential derivatives. In investigating the derivatives of U, we shall 
make use of the tangent-normal system of axes. Restricting ourselves 
to a portion of 5 contained in a sphere of radius c about one of its points 
p, we have for any tangent-normal position of the axes, a single re­
presentation for the whole of this piece. As the potential of the rest of 5 
is analytic in a neighborhood of p, we may neglect it, and assume once 
and for all that the whole of 5 is given by a function, = cp (~, rJ) having 
the properties derived in the last section, for axes tangent and normal 

z 

p 

to 5 at any of its points. 
We first investigate the derivatives of U 

taken in any fixed direction parallel to the 
tangent plane at p, an interior point of 5. We 
choose the x-axis in this direction, and the y-axis 

~=-~:-+<::--~~y"'" in a perpendicular tangent direction (fig. 21). 
Let P be a point of the z-axis. Then, for z =F o. 

~!!.. =ffa.ld5 =ffasec y1- d5' ax y3 y3 ' 

5 5' 

r2 = ~2 + rJ2 + (' - Z)2 = r'2 + (' - Z)2 , 

r' being the projection of r on the (x, y)-plane. We are interested in the 
existence of a limit for this derivative as z approaches O. 

In the first place, the mere continuity of a is insufficient to insure the 
existence of such a limit (see the Exercise, below). We shall therefore 
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impose upon a a Holder condition. We shall show that the limit then 
exists, following the method used in § 3 to prove the continuity of certain 
integrals. Let a' be a small circle in the (x, y)-plane about p. If we write 

J = I I a sec y;' dS' , 
5'-a' 

then for any fixed a', J is continuous, and if 6> 0 be given, there will be 

a !5 such that for 0 < I ZI I < !5, 0 < I z21 < !5, I J (Z2) - J (ZI) 1 < ; . 

Consequently, if we can show that a' can be taken so small that I II < i ' 
independently of z, it will follow that for 0 < 1 ZI I < 15, 0 < I z21 <!5, 

I (iJ U) (iJU) I I ax " - ax., < 6. 

This is the Cauchy condition for the existence of a limit. 

To prove the desired property of I, we write I = II + 12 , where 

II = a (P) II r~ dS', 12 = II [a(q) secy - a(p)] !a dS'. 
a' a' 

The first we compare with 

a (P) II (!~ d S' , rl = ~2 + 'f)2 + Z2 = r'2 + Z2. 
a' 

This is 0, since the integrand has equal and opposite values at (~, 17) 
and (-~, 'f)). Hence 

I = a (P) fr~ (~-~) dS' = a (P)fJ~C(2Z- C) [~+ ~ + ~JdS'. 
1 r3 03 r(!(r+(!) r2 r(! (!2 

~ ~ 

And so, since I~I <r', 11;1 < Mr'2, by Lemma V, 12z-1;1 <r +e, 
r > r', e > r', 

This integral is convergent, and so vanishes with a', by Lemmas III (b) 
and 1. 

As to 12 , Lemma VI enables us to write at once 

and this also approaches 0 with the radius of a'. The existence of the 
limit of the tangential derivative of U is thus assured. Moreover, a 

Kellogg, Potential Theory. 11 
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review of the steps will show that if a uniform Holder condition obtains 
for the density on a certain portion of 5, closed, and containing no 
boundary points of 5, the inequalities obtained can be made independ­
ent of the position of p. We thus arrive at 

Theorem V. If the density a of the surface distribution on 5 satisfies a 
Holder condition at p, the derivative of U at P, in the direction of any tan­
gent to 5 at p, approaches a limit as P, approaches p along the normal. 
If the Holder condition holds uniformly over a closed portion of 5 which 
contains no boundary points of 5, the limits of such derivatives are ap­
proached uniformly as to p on such a portion. 

Exercise. 
Let S denote the surface of a plane circular lamina, in the (x, y)-plane, the origin 

being at the center. At P(O, 0, z), 

a u _ If 1. d 5' - If r' cos rp 'd' d ax - 0' r3 - 0' r3 r·Y rp. 
5 5 

For 0', let us take a product 0' = f(r'} cos rp, where f{r'} is never negative. Then, 
as r2 = r'2 + z2 is independent of rp, we can carry out the integration with respect 
to rp, and we find a 

a 'In 2n-i 

au> ff(r')r'2 d Y' _ ff(r')r'2dr' 
a _n '/ - n '\l , ' 

x - (r'2 + Z2) 2 L.; (r'2 + z2J'/2 
a n.=! a 

if a is the radius of the lamina. Show that if f(r') is continuous and approaches 

1 (a a) ° at the origin, but exceeds -;- in the interval 2"+1' 2" , the above sum can be 

made arbitrarily great by taking m large enough and I z I small enough. Thus, con­
tinuity of the density is not enough to insure the existence of a limit for the tangen­
tial derivative. 

Normal Derivatives. The study of the normal derivatives is simpler. 
At first, in addition to the piecewise continuity of a, we shall assume 
simply that a is continuous at p. With the same position of the axes 
(fig. 21), and P on the normal through p, we have, for z =l= 0, 

a u If C - Z d Jf C - z d5' az = a ---;s 5 = a sec y ---;s . 
5 5' 

Consider, as a basis of comparison, the potential U' of the plane lamina, 
occupying the area 5' of the projection of 5, with density a sec y: 

au' If Tz=- asecy;'d5'=I1 +I2, (i=~2+'fj2+z2, 
5' 

where 
II = - ff asecy ;3 d5', 12 = - ff asecy ;3 d5', 

a' 5'-0' 
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a' being a small circle about the origin. For fixed a', 12 is continuous in z> 
uniformly as to p, and vanishes for z = O. 11 can be written, using a 
mean value of a sec y, 

11 = - II asecydQ = - asecyQ, 
Q 

Q being the solid angle subtended at P (0, 0, z) by the surface of the 
circle a', counted as positive if z > 0, and negative if z < O. The limit 
of Q, as z approaches 0 from above is 2n, and as z approaches 0 from 
below, is - 2 n. If 10 > 0 is given, we restrict a' so that for q in a', 

1 a (q) sec y - a (p) 1 < 6c
:n;' 

and then, with a' fixed, we select IJ > 0 so that for 0 < z < IJ, 

IQ - 2nl < C • 
3max to' (q) secy t 

Then 
111 + 2na (P) I = 1 a seq! Q - 2na (P) 1 

2 
= a(q) secy (Q - 2n) + 2n[a(q)secy - a (P)] < 310. 

If we further restrict I z I, if necessary, so that 12 differs from its limit, 
C 

0, by less than 3' we see that 

I a U' I az + 2na (P) < e. 

Thus the derivative of V' with respect to z approaches the limit - 2na(p) 
as P approaches p along the positive z-axis. Similarly, it approaches 
+ 2 na (P) as P approaches p along the negative z-axis. It is readily veri­
fied that the approach is uniform with respect to p in any closed portion 
of S, including none of the boundary points, in which a is continuous. 

We now return to the potential V of the curved lamina, and con­
sider the difference 

au au' If [t;-z Z] I 
-c- - -cc-- = a secy -- + - dS 

iJz iJz r3 (13 
5' 

=lfa secy [.f - z (~ - ~)] dS'. r3 r3 (13 

5' 

According to the usual reasoning, this integral is continuous at z = 0, 
if the integral extended over a small circle a' about p vanishes with 
a', uniformly as to P. But this can be shown just as was the similar fact 
with respect to an integral arising in connection with the tangential 
derivatives. 

11* 
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Thus the difference of the derivatives of U and U' coincides with 
an integral which is continuous in z. The value of this integral for 
z = 0 is 

SS (f secr ~ dS' = SS (f ~ dS = SS (f (:z ~) ~ dS, 
s s s 

which integral is obviously convergent, since I ~ I ~ .z:;. Hence we have 

for the limits of °a~' as z approaches 0 from above and below respec­

tively, 

(~~t + 2n(f (P) = (Oa~t - 2n(f (p) = SS (f (:z ~)" dS. 
s 

The limits are approached uniformly as to p for any closed interior 
portion of S on which (f is continuous. We now express the results in 
terms free from any system of axes. Let n denote the direction of the 
normal to S, in the sense agreed upon as positive. By the derivative of 

! with respect to n, we mean the derivative at a point of S, in the di­
r 
rection of the positive normal, the coordinates x, y, z of P being the 
variables. 

Theorem VI. If the density (f of the distribution on S is continuous at p, 
the normal derivative of the potential U approaches limits as P approaches 
p along the normal to S at p from either side. These limits are 

ou iT a 1 on+ = - 2n(f(p) + (fan-r dS , 
s 

!~_ = + 2n(f (P) + SS (f aOn ~dS. 
s 

These limits are approached uniformly as to p on any closed portion of S, 
containing no boundary points of S, on which the density is continuous. 

Subtracting the second limit from the first, we have 

au au 
- -- =-4n(f. an+ on_ 

The significance of this equation is that it enables us to determine the 
density when we know the potential, or even if we know only the 
normal derivatives of the potential, or the normal components of the 
force. 

Derivatives in any Direction. Since the derivative of U in any fixed 
direction is a homogeneous linear function of the derivatives in the 
direction of two tangents and a normal, it follows that any such deriva­
tive approaches a limit along the normal at a point p where the density 
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satisfies a Holder condition. And more, that if 51 is a closed part of 5 
not containing boundary points of 5, on which the density satisfies a 
uniform Holder condition, the derivative on U in a fixed direction 
approaches its limits uniformly along normals at all points of 51' We 
shall now prove 

TheoremVII. Let G satisfy a Holder condition uniformly on 5. Let V 
be a closed region of space partly bounded by 5, b1tt containing no boundary 
points of 5, and such that a point P can approach 5 from only one side 
while remaining in V. Then the potential U of the distribution of density 
G on 5 is continuously differentiable in V. 

We recall that this means (see p. 113) that if anyone of the partial 
derivatives of U, say 

F(P)=~~, 
is defined on 5 in terms of its limiting values, then F (P) is continuous 
in the closed region V. Now we have seen in the previous chapter that 
F (P) is continuous at all points of free space, and such are all points 
of V except those on 5. So it only remains to verify 1 that F (P) is con­
tinuous at each point p of 5. 

We observe first that there is a sphere G1 about p, such that the 
points of V within G1 are simply covered by the normals to 5 at points 
near p. This fact is a consequence of the theorem on implicit functions 2. 

Let X, Y, Z, be the coordinates of a point P of V, referred to axes 
tangent and normal to 5 at p. The equations of the normal at the point 
($, 1], ') of 5 are 

x-~ 

- 'P; - 'PrJ 

where' = cp ($,1]) is the equation of 5 referred to those axes. The normal 
will pass through (X, Y, Z) provided 

(1) 
X = $ - Cp; (Z cp), 

Y = 1] - CPrJ (Z - cp). 

We wish to know that these equations have exactly one solution ($,1]) 
for each set of values of X, Y, Z, at least in some neighborhood of the 
origin. Now they have the solution (0,0) when X = Y = Z = 0, and 

1 Such verification is needed. The mere fact that a function, continuous 
in an open region bounded by a surface S, approaches continuous limiting values 
along normals, does not guarantee that the function is continuous at points 
of S. A simple example illustrating this situation in two dimensions is given by 

F (P) = (x; ~ Yy2)' The important element in the present case is that the ap­

proach along the normals is uniform. 

2 See OSGOOD, Lehrbuch der Funktionentheorie, Chap. II, § 5. 
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because qJ (~, '1]) has continuous partial derivatives of the second 
order, the functional determinant 

ax ay 
a~' "iff 
ax ay 
aTj'ai/ 

I - qJ~~ (Z - qJ) + qJ~, - qJ~f] (Z - qJ) + qJ~ qJ'I 

is continuous in the neighborhood of p, and reduces to 1 when all the 
variables vanish. Thus the hypotheses of the theorem on implicit 
functions are satisfied, and there is a neighborhood N1 and a neighbor­
hood N2 of the origin such that when (X, Y, Z) is in N 1 , there is one 
and only one solution (~, '1]) of the equations (1) in the neighborhood N 2• 

Any sphere 0"1 about p and lying in N1 will serve our purpose. 
Now let 0"1 be diminished, if necessary, so that the difference between 

the value of F (P) at any point P of V in 0"1 differs from its limit at the 

foot of the normal through P by less than i. This is possible because 

of the uniformity of the approach of F (P) to its limiting values along 
normals to 5. About a point of the normal at p we construct a sphere 
0"2' interior to V and to 0"1' such that within it, F (P) varies by less than 

i. It follows that within the region covered by the normals to 5, corres­

ponding to the neighborhood N 2 , and meeting 0"2' F (P) differs from 
F (P) by less than e. As the reasoning holds for anye > 0, F (P) is con­
tinuous at p, as was to be proved. 

6. The Potentials of Double Distributions. 
We consider surfaces 5 subject to the conditions imposed in § 4, 

and moments f£ which are piecewise continuous. We study the potential 
of the double distribution 

u = II f£ ;11 +d5 = II f£secy ;11 +d5', 
5 5' 

5' being the projection of 5 on the (~, 'I])-plane. Here, if cos 1'1., cos f3, 
cos yare the direction cosines of the normal to 5 at q (~, '1], C), the normal 
derivative- means 

and as 

a 1 (a I)' (a 1) (a 1) - - = -- CoSI'l. + -- cosf3 + -- cosy al1 r a; r aT} r at; r ' 

cos ex cos fJ 
lP'I 

cosy 

-=T' 
this may be written 

(2) a 1 (z - t;) - (x - ;) lP~ ~ (y - T}) lP'I av--; = r3 cosy. 
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We notice first that U has a meaning when P is a point of S. For, 
taking, x = y = Z = 0, 

U=-ff,u C-!p~~-!p1]1'J dS'. 
S' 

If we apply the law of the mean for functions of two variables to the 
numerator of the integrand, remembering that ffJ~ and ffJ1] vanish at the 
origin, and that ffJH' ffJ~1]' ffJ1]1] are bounded in absolute value by M, 
we find that the numerator is bounded in absolute value by M (~2 + 'fJ2) 
= M r'2. The integral is therefore convergent, by Lemmas II and III (b). 
The potential U is defined on S by the integral which represents it 
elsewhere, this integral, although improper, being convergent. 

However, U, thus defined, is discontinuous at the points of S, ex­
periencing a finite break there - unless the density happens to vanish 
at the point of S considered. The problem can at once be reduced to the 

problem of simple distributions. For, thed~rivatives of.!.. with respect 
r 

to ~, 'fJ, 1; being the negatives of those with respect to x, y, Z, U may be 
written 

(3) 

so that U is the negative of the sum of two tangential derivatives of 
surface distributions and one normal derivative of a surface distribu­
tion, with densities 

,u cos IX , ,u cos fJ, ,u cos y . 

Since ffJ (~, 'fJ) has continuous derivatives of the second order, the cosines 
satisfy Holder conditions with exponent 1. The first two reduce to 0 
at p, and so, ,u being bounded, their products by,u also satisfy Holder 
conditions at p. If,u is continuous at p, ,u cos Y is continuous at p, 
and this is sufficient in the case of the normal derivative for a limiting 
value. Hence we see that U approaches a limit as P approaches p along 
the normal to S at p if the moment is continuous there, from either side. 
The first two integrals are continuous. The limiting values of the third, 
on the other hand, are its value at pless 2 n,u (P) cos y, and plus 
2n,u (P) cos y, according as the approach is from the positive or 
negative side of S, by Theorem VI. But as cos y = 1 at p, this gives 
us the following result: 

Theorem VIII. As P approaches a point p of S along the normal to 
S at p, from either side, the moment ,u being continuous at p, the potential 
U of the double distribution on S approaches limits, given by 

U+=2n,u(p)+Uo, U_=-2n,u(p)+Uo· 
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On any closed portion of S containing no boundary points of S, on 
which fl, is continuous, these limits are approached uniformly. 

The last follows from the fact that the inequalities controlling the 
approach can be chosen independently of the position of p on the 
portion of S in question. It is a matter of mere detail to pick these up, 
and verify the fact. 

If we subtract the limiting values of U, we have 

U+- U_=4'Jlfl,. 

Thus, knowing the limiting values of the potential, we are enabled to 
determine the moment. 

We may apply the same reasoning as that used in the proof of 
Theorem VII to establish 

Theorem IX. Let fl, be continuous on S. Let V be a closed region of 
space partly bounded by S, but containing no boundary points of S, and 
such that a point P can approach S from only one side, while remaining 
in V. Then the potential U of the double distribution of moment fl, on S 
is continuMts in the closed region V, when defined on S by means of its 
limiting values. 

Normal Derivatives. For the existence of limits for the derivatives 
.of the potential of a double distribution, more than continuity of the 
moment is required. We shall here confine ourselves to a study of the 
normal derivatives, which are the most important in potential theory, 
and derive two results concerning them. 

The first requires only the continuity of 
p the moment, and although it does not assert 

the existence of a limit for a normal derivative, 
it asserts the existence of a limit for the dif­
ference of the normal derivatives on opposite 

!J sides of S. Taking the axes in the usual tangent­
normal position at p, we form the difference 
of the derivative of U with respect to z at the 
point P (0,0, z) and at the point T (0, 0, -z) 
(fig. 22). The distance q P we den9te as usual 

by r, and the distance q T we shall denote by t, so that 

r2 = ~2 + 1)2 + (' _ Z)2 = r'2 + (' _ Z)2, t2 = r'2 + (' + Z)2. 

The difference of the derivatives is then 

rJ [0 (0 1 )lZ , D = J. fl, Tz OJ) -; Lz secy dS , 
5' 

or, using the value (2) for the normal derivative, and carrying out the 
steps indicated, 
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- 3 es + :s) (2C - ~cp; - Yjcp,) z] d5'. 

Let us now reduce the moment at p to 0 by the subtraction of the 
potential of the double distribution on 5 with constant moment, namely 
the value of fh at p. This potential is a constant times the solid angle sub­
tended at P by 5, and as we saw in Exercise 4, § 7, Chapter III (p. 69), 
may be regarded as analytic at interior points of 5 if we permit it to be 
many valued. In this case, the branches will differ by constants, and so 
the derivatives will be continuous. Hence the subtraction of such a 
potential will not affect the limit, as z approaches 0, of the difference D. 

We notice also that if the integral giving D were extended over 
5' - a', where a' is a small circle about p, it would vanish in the limit 
as z approachedO. Thus without affecting the limit of D we may assume 
that fh vanishes at p, and that the field of integration is an arbitrarily 
small circle about p. It follows that if the integral D', with the same 
integrand as D, but extended over a circle a' of radius a, tends to 0 
with a, uniformly as to z, the limit of D, as z approaches 0, will be O. 
We now prove that this is the case. We write 

12 = II fh A 2 d5', 
a' 

Al = t! - :3' A2 = Cs - :5) Z2, A3 = Us - :s) C (C - ~ CP; - rJ cp,). 

A4 = e5 + :s) (2 C - ~ cP~ - Yj cp,) z. 

The end will be attained if we show that the integrals Ii approach 0 
with a, uniformly as to z. 

This may be done by the introduction of the distance e from P to 
the projection (~, rJ) of q, 

e2 = r'2 + Z2. 

Then 
I r I ,,12 

I e - 11 :::; ,,'2 -tZ2 M 12 z - C I, 
and if - b < z < b, b and a can be chosen so small that uniformly 
as to z in this interval, the quantity on the right is less, say, than t. 
Then r > f and similarly t > f· 
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We now attack Iv using Lemma IV (c) and (b), and the law of the 
mean. 

Hence, since 1[;1 < Mr'2, r>f, t>f, 
a 

I IJ rl2z 1'1 f r'3 z I 1111 < ;U192M -5 d5' = ;U384Mn ~---_ dr' . e (r'2 + Z2)i\ 
a' 0 

The integral is not greater in absolute value than ~-, for any z, as 
may be seen by using the substitution r' = z tan A.. Hence, since p ap­
proaches 0 with a, it follows that II does also, uniformly as to z. 

The remaining three integrals can be treated similarly. All are 
bounded quantities times p. Thus, lim D = O. We formulate the re­
sult in 

Theorem X. If U is the potential of a double distribution on 5 with 
piecewise continuous moment fl, and if the moment is continuous at the 
point p of 5, then the difference between the derivatives of U in the direction 
of the positive normal to 5 at p, at two points of this normal equally distant 
from p, approaches 0, as the points approach p. In particular, if the 
derivative approaches 0 from one side, it does also from the other. 

Our second result on normal derivatives assures us that their limits 
exist on 5, but under the more stringent hypothesis that the moment 
has continuous second derivatives with respect to ~ and rJ in a neighbor­
hood of p, where ~ and rJ are the coordinates of a variable point q of 
5 with respect to a tangent-normal system of axes at p. We shall 
establish this by a method illustrating a different means of attack on the 
properties of potentials in the neighborhood of masses. 

We construct a right circular cylinder with the normal to 5 at p 
as axis, and with radius small enough so that the portion of 5 near p 
within the cylinder is included in the region on which fl has continuous 
derivatives of second order. Let V be the portion of space within this 
cylinder, on the positive side of 5, and otherwise bounded by a plane 
normal to the elements of the cylinder. If the radius of the cylinder is 
small enough, and the bounding plane is suitably chosen, V will be a 
regular region, and we may apply the divergence theorem to it. We 
change the variables in the divergence theorem to ~, 1), [;, and apply it 
to the functions 

a I 
Y=fl~a -, 

'YJ r 

the letters x, y, z entering r being regarded as fixed. The function /-l 
is regarded as defined in V by means of its values on 5, and the con-
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vention that it shall be independent of r;. It then has continuous partial 
derivatives of the second order in the closed region V. If P (x, y, z) 

is in V, .!. becomes infinite in V, and it is necessary to cut it out from 
r 

the field of integration. We surround P by a small sphere (J, with center 

at P. The divergence theorem then gives, since.!. satisfies Laplace's 
r 

,equation in V - v, 

fJ[aft a 1 aft a I aft a 1J dV J. D[ 7f[ r + a:ry a:ry r + 7if iff r 
v-v 

iJ a1 iJa1 = fl-, -dS+ fl--dS 
dv r av r ' 

S (j 

where v denotes the region within (J, and 5 is the surface bounding V. 
Let us investigate the integral over (J. As the normal is understood to be 
directed outward from the region of integration, it is here into the 
sphere (J, i. e. toward the point P from which r is measured. Hence the 
normal derivative is the negative of the derivative with respect to r, 

and so is -;.. Accordingly r 

II fl :v ~dS = Ji II dQ = 4nJi. 
(j Q 

Suppose we now let (J shrink to the point P. The volume integral is 

convergent, for since the derivatives of ~ with respect to ~, 'Yj, r;, are 

the negatives of the derivatives with respect to x, y, z, the volume 
integral is the sum of three components of force due to volume distri­
butions with. continuous densities. Hence, as Ii approaches fl (P), we 
have 

If we follow the same procedure with 

x= aft . .!. 
a~ r' 

z= aft . .!. 
a?;, r' 

the integral over (J vanishes in the limit, and we have 

= [faft .!.dS. 
aI' Y 
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Subtracting this identity from the preceding, we have 

(4) - fff (l72fl) ~dV= ff fl :11 ~dS - ff :~ ~dS + 4nfl (P). 
v S S 

The volume integral is the potential of a volume distribution with con­
tinuous density. It therefore has continuous derivatives throughout 
space. The second integral on the right is the potential of a surface dis­
tribution with differentiable density, and so, by Theorem VII, has con­
tinuous derivatives in V, except possibly where S cuts the cylinder, and 
certainly at all points of V near p. The last term on the right is con­
tinuously differentiable throughout V. The first term on the right is 
the potential U of the double distribution we are studying, plus the 
potential ofa double distribution on the rest of the surface bounding 
V, which is analytic near p, minus that due to the rest of S, also 
analytic near p. 

Hence U coincides with a sum of functions all of which are continuous­
ly differentiable in a portion of V near p. As p may be any interior point 
of S, we may enunciate the following theorem, which includes the result 
we desired to establish. 

Theorem XI. If the moment fl of the double distribution on S has con­
tinuous partial derivatives of second order on S, then in any region V, 
partially bounded by S, but containing no boundary points of S, and such 
that a point P of V can approach S only from one side while remaining 
in V, the partial derivatives of the potential U of the distribution, when 
defined on the boundary of V by their limiting values, are continuous in 
the closed region V. 

Exercise. 
Show that if P is exterior to V, the term - 4:n:p (P) in formula (4) must be re­

placed by 0, and if P is an interior point of the portion of S bounding V, it must be 
replaced by - 2:n:p (P). Hence find again, on the hypothesis that p has continuous 
derivatives of second order, the results stated in Theorem VIII. 

7. The Discontinuities of Logarithmic Potentials. 

The treatment of logarithmic potentials can be carried out along 
lines parallel to the treatment employed for Newtonian potentials, and 
is in many respects simpler. However, their behavior can also be in­
ferred directly from the behavior of Newtonian potentials. We proceed 
to substantiate this remark. 

We first show for the usual continuous logarithmic distributions 
what we have already seen to be the case for the logarithmic particle, 
namely that they are limiting cases of Newtonian potentials of dis­
tributions, on or within finite sections of cylindrical surfaces, as these 
sections become infinitely long in both directions. 
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Let us examine the case of a volume distribution of density 
x = " (~, 1]), in a cylinder with elements parallel to the z-axis, whose 
trace on the (x, y)-plane is a regular plane region A. Let the cylinder 
be cut off by the planes z = - PI> Z = P2' We are interested in the 
existence and character of the limiting potential 

where C is independent of the coordinates of the attracted particle at 
P (x, y, 0), though it will have to depend on P1 and {J2 if the limit is to 
exist. We carry out first the integration with respect to C. There is 
no difficulty in showing that the triple integral may be thus evaluated 
as an iterated integral, even when P is interior to A . If r' represents the 
projection of r on the (x, y)-plane, that is, the distance from (~, 1]) 
to (x, y), 

/3. /3. 

f !!..dC="f. dC =,,10 fJ2+tPf+72. 
r ¥r'2+C2 g-Pl+tPi+ r'2 

-/3, -/3, 

We must determine C so that the limit in the expression for U exists. Let 
c denote the value of the last integral when r' = 1. This is in harmony 
with the convention made for logarithmic potentials (p. 63). Then 

c = x log P2 + f ~ 
- i\ + f Pt + 1 ' 

j~.!!.. dC = "log [P2 + lPf+72. - P1 + f~] + c 
-fi, r P2 + f P~ + 1 - P1 + fPi + y'2 ' 

and if C is taken as - c times the area of A , 

U = lim (f" log [P2 + fPf+72 . - P1 + y~ ] d S 
/3,-+ooJ: P2 + YfJ~ + 1 - P1 + tfJi + y'2 
/3.-+ 00 ""-

If [1 + III + (~\}2 1 + III + (~)2 1 = lim x log . P2. . P1. ~ dS 
/3 -+ <Xl I ( l)2 / (1 2 r'2 , /3~-+ <Xl A 1 + 1 1 + fJ2 1 + VI + 7JJ 

where we have multiplied and divided the second factor in the logarithm 
by its conjugate. Now if P is confined to a bounded region, all the 
radicals in this expression approach 1 uniformly, and it follows that the 

logarithm approaches log ~2 uniformly, and that the limit of the 

integral is the integral of the limit: 

U = f f 2" log ~ d S. 
A 
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Thus the logarithmic potential oj a distribution over an area is indeed a 
limiting case oj a Newtonian potential, and a similar discussion will es­
tablish the corresponding facts for simple and double logarithmic dis­
tributions on curves. 

We remark that if the above potential is thought of as that of a 
logarithmic spread of surface density a, then a = 2 ", and a similar 
situation exists with respect to distributions on curves, The amount oj 
matter attracting according to the law oj the inverse jirst power, in any 
area oj the (x, y)-plane, is always to be understood as the amount oj matter 
in a cylinder oj height 2 whose trace is the given area, when the logarithmic 
potential is interpreted as a Newtonian potential, or as a limiting case 
oj a Newtonian potential. 

The second question we have to consider, is whether-to keep to 
the case of the volume potential-the potential of the portion of the 
infinite distribution outside the planes z = - a and z = a, is continuous, 
together with its derivatives, in the (x, y)-plane. It is readily computed 
to be 

U'=JJ2"log 1 dS. 
A a + ya2 + y'2 

The integrand is clearly continuous in ;, 1], x, y, in any region which 
keeps these variables bounded and in which" is continuous. Therefore 
U' is continuous in x and y in any bounded region. As for the deriva­
tives with respect to x and y of the integrand, they will be found to be 
expressible as rational functions of x, y, ~, and 1], and -va2 + r'2, whose 
denominators are products of powers of 1a2 + r'2 and of (a + -V a2 + r'2), 
Hence the derivatives of the integrand also are uniformly continuous 
when the variables are bounded, and it is the same with the derivatives 
ofU'. 

Thus the logarithmic potentials are equal to the Newtonian potentials 
due to bounded sections oj the corresponding injinite cylindrical distribu­
tions, increased by continuous junctions with continuous derivatives oj 
all orders. 

As an example, the potential of the volume distribution we have 
considered, bounded by two parallel planes, satisfies at interior points, 
Poisson's equation 

17 2 U = - 4n", 

If U be regarded as the logarithmic potential 

U = J J a log ~dS 
A y 

of a surface distribution on the plane region A , then 

172U=-2na. 
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Exercises. 
1. Make a table of the properties, near the masses, of the logarithmic potentials 

U=ffalog~dS, U=fAlog~dS, U=f,u~log~ds, 
Arc r c i:Jv r 

corresponding to those derived for Newtonian potentials in the present chapter. 

2. Derive a few of these properties by the methods used in the chapter. 

For further information on the discontinuities of Newtonian poten­
tials at points of the masses, the reader should consult above all the 
article of E. SCHMIDT, in Mathematische Abhandlungen H. A. SCHWARZ 
gewidmet, Berlin, 1914. The treatment given in POINCARE'S Potentiel 
Newtonien, Paris, 1899, may also be studied with profit. Further works 
on the subject may be found through the bibliographical indications at 
the end of the present volume. 

Chapter VII. 

Potentials as Solutions of Laplace's Equation; 
Electrostatics. 

1. Electrostatics in Homogeneous Media. 

The fundamental law of electrostatics was discovered by COULOUMBl, 
and states that the jorce between two small charged bodies is proportional 
in magnitude to the product oj the charges and inversely proportional to the 
square oj their distance apart, 

F = C e1 e2 
1'2 , 

the jorce being one oj repulsion or attraction according as the charges are 
oj the same or opposite kinds. 

The constant of proportionality depends on the units employed. 
The unit of charge is usually so chosen in electrostatics that c = 1. 
In determining this unit, however, it is found that the medium present 
has an effect. Thus if the unit were determined in air at atmospheric 
pressure, the value of c would be found to rise by a fraction of one percent 
as the pressure was reduced toward O. It is understood then, that the 
unit charge is such that two of them, a unit distance apart, repel with 
a unit force in vacuo. We shall consider in § 9 the effect of the medium 
or dielectric in which the charges are located. For the present we shall 
regard the space in which the charged bodies are placed as devoid of 
other matter. This will serve as a good approximation to actuality when 

1 Histoire et memoires de l' Academie royale de sciences, Paris, 1785, pp. 569-577. 
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the charges are situated in air, with all different dielectric media at a 
.considerable distance from the charges compared with their distances 
from each other. 

Couloumb's law then agrees with Newton's law, except for a reversal 
of the sense of the force. We shall have electrostatic potentials of the 
same form as the gravitational potentials. The reversal of sense in the 
force will be accounted for by agreeing that the force shall be the nega­
tive of the gradient of the potential (see Chapter III, p. 53). 

Conductors. Materials differ in the resistance they offer to the motion 
-of charges placed on them. A charge on a non-conductor, such as a piece 
-of glass, will not change in distribution perceptibly, even when sub-
jected to electric forces. On the other hand, charges on conductors, 
among which are metals, move under any changes in the field of force in 
which the conductors are placed. A conductor may be defined as a body, 
a charge on which cannot be in equilibrium, if there is any electric 
force at any point of the body. The charge will be so distributed as to 
produce a field exact~y neutralizing that in which the conductor is 
placed. 

If the conductor was initially uncharged, it nevertheless appears to 
possess charges when introduced into a field of force. This is accounted 
for by the assumption that the conductor originally had equal and 
opposite charges, distributed with equal and opposite densities, so that 
they produced no effect. The production of a field of force in the con­
ductor, by changing its position to one where there are forces, or by 
bringing charges into the neighborhood of the conductor, separates these 
.charges, and produces the distribution which annihilates the field in the 
conductor in the manner indicated. The charges which appear because 
of the field are called induced charges, and their total amount is O. If the 
.conductor was originally charged, the induced charges are superposed, 
and the total charge remains unchanged by the addition of the induced 
.charges. Since there is no force in a conductor when equilibrium is es­
tablished, Gauss' theorem (p. 43) indicates that there are no charges 
in the interior. This is born out experimentally. We recapitulate: 

In an electrostatic field, the potential is constant throughout each con­
ductor, and there are no charges in the interiors of the conductors. There will, 
in general, be induced charges on the surfaces of the conductors. The total 
charge on each conductor is independent of the inducing field. 

2. The Electrostatic Problem for a Spherical Conductor. 

So far, potential theory has appeared in the light of the theory of 
certain distributions of matter acting in accordance with Newton's law, 
the distributions being given. The last two chapters were concerned with 
a derivation of properties needed for a change of point of view, and 
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from now on, the potential theory will take on more thE' aspect of the 
theory of Laplace's equation. 

In order to determine the electrostatic distribution of a given charge 
on a spherical conductor, new methods are not needed. At the same time, 
we approach the question from the new point of view, since in other 
problems, we cannot, as a rule, know the distribution from simple con­
siderations of symmetry, or on the basis of knowledge already gained 
of distributions which satisfy all the requirements. The spheric'al con­
ductor will thus illustrate a general problem of electrostatics. 

We formulate the problem as follows. We have a sphere of radius a, 
whose center we take as origin of coordinates. We first determine the 
potential and then the density of a charge E in equilibrium on the 
sphere, from the following data: 

a) U=const, O<e~a, V2 U=0, a<e; 
b) U is everywhere continuous; 
c) the derivatives of the first order of U are everywhere continuous, 

except for e = a; here they satisfy the equation 

au au 
---=-4n(f an+ on_ ' 

(f being the surface density of the distribution; 

d) e U -+ E as e becomes infinite. 

We shall seek a solution of this problem on the assumption that 
U is a function of e only. It will appear later (p. 218, Ex. 1) that the 
solution is unique. Either by substituting U = U (e) in Laplace's equa­
tion, or by borrowing the form of that equation in spherical coordinates 
from § 3, we find that it takes the form 

/72 U - _~ ~ 2 d U - 0 - e2 de e de - . 
We find, accordingly, from (a), that 

2 d U U = _ 'i + C for e -de = cj , e 2' e > a. 

The condition (d) then shows that Cz = 0 and c1 = - E. Accordingly, 
from (b) and (a), E 

U = 'e' a <e, 

U=l!. 
a' (! <a. 

This gives the potential. The density is determined by (c). This gives 

E E 
- a2 -0 = -4n(f, or (f = 4na2 ' 

The density is thus constant. As a check, we notice that its integral 
over the surface of the sphere gives the total charge. 

Kellogg, Potential Theory. 12 
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Ereercises. 
1. Determine, as a solution of Laplace's equation with suitable auxiliary con­

ditions, the potential of a double distribution on the surface of a sphere. Assume 
that the potential is a function of the distance from the center only, and that the 
total moment is a given quantity M. 

2. Determine, by the method of this section, the potential of a hollow sphere 
of radii a and b, of constant density le. Compare the results with Exercise 11, § 3, 
Chapter III (p. 57). 

3. General Coordinates. 

For the treatment of special problems, suitable coordinate systems 
are well nigh indispensable. The fact that the surface of the sphere, in 
the last section, is given by setting e equal to a constant, was a great 
help. We shall be justified if we devote some attention to coordinate 
systems in general, with the main object of finding a means of express­
ing J72U in terms of any given coordinates in a simple manner. 

Unless the reader is already somewhat familiar with the subject, he 
may find it helpful to illustrate for himself the following developments 
in the case of spherical coordinates, of which the simplest analytic 
description is given by the equations 

(1) x = e sin IP cos D , Y = esinIPsinD, z = ecosD. 

In an analogous way we define a system of coordinates in general by 
the equations . 

(2) 

We shall suppose that the functions t, g, h are continuously differentiable 
for any values of the variables considered, and that they are solvable 
for ql' q2' qa: 

ql = ql (x, y, z), q2 = q2 (x, y, z), qa = q3 (x, y, z). 

Then to a point (x, y, z) of space, or of a region of space where the nec­
essary conditions are fulfilled, there corresponds a set of values of 
ql' q2' q3' and to a set of values of ql' q2' qa, there corresponds a point 
(x, y, z) of space. 

A geometric picture of the system of coordinates ql' q2' qa is possible 
(fig. 23). Suppose we regard qa as constant, and allow ql and q2 to vary. 
Then the equations (2) are the parametric equations of a surface, which 
we shall call a qa-surface. To different values of q3 correspond different 
surfaces. We thus have a family of qa-surfaces, to each of which is at­
tached a value of q3' Similarly, we have a family of ql-surfaces, and a 
family of q2-surfaces. When values are assigned to ql' q2' and qa, these 
values pick out surfaces, one from each family, and their intersection 
gives the point whose coordinates are (ql' q2' q3)' On the other hand, if 
a point is given, the three surfaces on which it lies, one from each family, 
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determine the values of the three coordinates. Of course this is based on 
the assumption that the surfaces are well behaved, and intersect pro­
perly. Thus, if at a point, the surfaces, one from each family through 
that point, intersected in a curve through that point, the point would not 
be determined by the coordinates. Such inconveniences cannot arise 
if the curves in which the pairs of surfaces intersect meet at angles 
which are the faces of a trihedral angle which is not flat, i. e. if the 
functional determinant 

ax 
aq/ 

(3) 
a (x, y, z) ax 

a (ql> q2' q3) a q2' 

ay 
a ql' 
ay 
a Q2' 

az 
aql 
az 

aq2 ' 
az 

aqa' aq3' aq3 Fig. 23. q:, 
ax ay 

is not 0, for its rows are direction ratios of these three curves. We assume 
that it is not 0 ; this amounts to the condition already mentioned, that 
the equations (2) be solvable for qI' q2' qa. 

The curves given by (2) when q2 and qa are held constant, that is, 
the intersections of q2-surfaces and qa-surfaces, are curves along which 
qI alone varies. We call them qI-curves. Similarly, we have q2-curves 
and q3-curves. If qI' q2' qa are functions of a single variable t, the equa­
tions (2) give us the parametric equations of a curve. We shall find use­
ful, expressions for the differentials of x, y, z and of the length of arc s 
of such a curve. The first follow at once from (2): 

ax ax ax 
dx = a-dqI + -a dq2 + -a dqa, ql q2 q3 

ay ay ay 
(4) dy = a- dqI + a- dq2 +-a dqa, ql q2 q3 

az az az 
dz = -a dqI + -a dq2 +-a dqa, 

ql q2 q3 

The square of the differential of arc is the sum of the squares of these: 

(5) ds2 = QI dqi + Q2 dq; + Qa dq~ 
+ 2Q23 dq2 dqa + 2Q31 dqa d ql + 2Q12 dqI dq2' 

where 

( aX)2 (aY)2 (aZ)2 ax ax ay ay az az 
Qi = aQi + aqi + aQi ' Qij = aqi aq; + aqi aq; + aqi aq;' 

None of the quantities Ql' Q2' Qa vanish, for then one of the rows of the 
functional determiriant (3) would consist of vanishing elements, and 
the determinant would vanish. 

From (5) we obtain the differentials of arc of the coordinate curves, 
measured in the sense of increasing values of the coordinates, byallow­
ing one alone to vary at a time: 

(6) dsI=VQIdqI' ds2=VQ2dq2' dsa=VQadqa. 
12* 
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From (4) we find the direction cosines of these curves: 

ox or oz ox or oz ox or oz 

(7) oql Oql oql' Oq2 Oq2 Oq2 • oqa oqa oqs -=-, -=-, -=-, --==-, --===-, -=-' -===-' -==-, --===-, 
l'Ql lQl lQl fQ2 fQ2 VQ2 fQa fQa lQa 

and from these, we find the cosines of the angles W23' Wa1' Wu, between 
the pairs of coordinates lines: 

Q23 Qal Ql2 
cos W 23 = lQ2 Qa ' cos W31 = fQa Ql' cos W 12 = I Ql Q2 • 

In spherical and cylindrical coordinates, these quantities vanish - that 
is, the coordinate curves, and hence also the coordinate surfaces, meet 
at right angles (except at points where the functional determinant 
vanishes). Such systems of coordinates are called orthogonal systems, 
and from now on, we shall confine ourselves to orthogonal systems. 
Accordingly, we shall have Q23 = Q31 = Q12 = O. 

Exercises. 
1. Determine the points at which the functional determinant (3) is 0, in the 

case of spherical coordinates, and note that (a) at such points the coorditlate sur­
faces cannot be said to meet at right angles, and (b) that such points do not 
uniquely determine the coordinates, even under the restriction of the usual in­
~qualities 0 ;:;;;; {} :;;; 7&, 0 :;;; q; < 2 7&. 

2. Show that the condition for orthogonality can also be expressed in the form 

Oqi Oql +Oq; Oql +oq; Oql =0 i..l..' 
ox ox iJr or oz oz ' .. 1· 

There are two quantities which we now wish to know in terms of Q1> Q2' 
and Q3' The first of these is the absolute value of the functional de­
terminant (3). If we square that determinant according to Laplace's 
rule 1 we find 

and hence, since our system is orthogonal, 

(8) o (x, r, z) I 'Q"Q Q 
o (ql' q2' qa) I = f 1 2 a' 

The second quantity for which an expression in terms of Q1' Q2' and 
Qa is desired is 

1 See, for instance BeCHER'S Introduction to Higher Algebra, Chap. II, § 9. 
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This we transform by the readily verified algebraic identity 

I b, c 12 + I c, a 12 + I a, b [2 = (a 2 + b2 + c2) (0(.2 + fJ2 + y2) 
{J,YI iY,1X 1X,{J1 

- (aO(. + bfJ + cy)2, 

with the result 

(9) 

Expressions lor Gradient, Divergence, Curl and Laplacian in General 
Coordinates. In general systems of coordinates it is usually convenient 
to express a vector at a point in terms of its components in the directions 
of the coordinate lines at that point. We have seen that the gradient 
of a scalar function is a vector which is independent of any system of 
axes. If we allow the (x, y, z)-axes to have the directions of the coordi­
nate curves at P, for the moment, we have for the gradient of U at P, 

(~~, ~~, aa~) = (~:~- :s~, ~~), 
or, using the expressions (6), 

(10) rad U =VU = (_1_ au _1_~ _1_ au) 
g VQl aq,' YQ2 Oq2' fQ 3 oq3 ' 

the components being along the coordinate lines. 

The quantities Ql' Q2' Q3 are given, in the expressions following (5), 
in terms of ql' Q2' Q3' It is often convenient to have them in terms of 
x, y and z. This can now be accomplished by means of the above ex­
pression for the gradient. In fact, if we set U = ql in (10), we have 

I 
Thus -= appears as the magnitude I V Ql I of the gradient of qI' y Q1 

whose value is 

Thus, if we know the coordinates qi in terms of x, y, z, the desired 
expressions are 

I 
(11) QI = (l7 ql)2 , 

We next seek the expression for the divergence of a given vector 
field. Let W (WI' W2 , W3) denote a vector field, specified in terms of 
its components in the direction of the coordinate curves. We may find 
an expression for the divergence of this field by the method of Exer­
cise 5, § 5, Chapter II (p. 39). That is, we start from the definition 

.fJ wn dS 
divW = lim _5_ ----­

V 
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where V is the volume of a regular region R containing the fixed 
point P, the divergence at which is defined; S is its bounding surface, 
and the limit is to be taken as the maximum chord of R approaches O. 
By the use of the divergence theorem it can be shown that in case the 
field is continuously differentiable in a neighborhood of P the limit 
exists, and actually gives the divergence (see p. 39, especially Exer­
cise 5). Under these circumstances we may take for the regions em­
ployed, any convenient shape. We shall suppose that R is bounded 
by a pair of coordinate surfaces from each of the three families: ql = al , 

ql = ~ + LI al , q2 = az, q2 = a2 + LI az, q3 = a3, q3 = a3 + LI a3. We 
now evaluate the above limit. First we have to compute the surface 
integral. To do this, we shall need to know the area LI S of an element 
of the q3-surface, bounded by qrcurves and q2-curves. For this we have 
the forplula from the Calculus l 

q!l;+Lf q2 qJ+J ql 

LIS = f f D 12 dql dq2' 
q2 ql 

where DlZ is the expression for which we found the value (9). The re­
sult of employing the law of the mean in this integral is the expression 

LI 5 = -Y?jJJ2 LI ql LI q2' 

which will form the basis for the surface integrals in the computation 
of the divergence. Similarly, the expression for the volume of R is 

Consider now the integral of the normal component of the field 
over the face q3 = a3 of the region R. Since Wn = - W3, this is the 
negative of 

f f W3 dS = lim 2J W3 LIS = lim 2J W3 -YOl Q2 Llql Llq2 
a j +fl aJ a2 +Lia2 

= f f W3 VQIQ2 dql dq2' 

If we form the same integral for q3 = a3 + Ll a3, and subtract the above 
from it, we shall have the integral of the normal component of the field 
over two opposite faces of the region: 

az+J az aJ+,d a 1 

f f {[W3{Q~Q2Jq,=a,+Lla,-[W3VQIQ2Jq,=aJdqldq2 
a2 a1 

1 OSGOOD, Advanced Calculus, p. 66, (7) and p. 269, Ex. 3. 
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where we have employed the law of the mean for integrals. Using 
also the law of the mean for differences, we reduce this to 

o [ ,r=--=-l 
~ W3 rQl Q2J Lla1 LI a2 LI a3, 
uqa 

in which the variables q1' q2' q3 have mean values corresponding to some 
point in R. 

If we now add the corresponding expressions for the other pairs of 
faces in the Q2-surfaces and the Q3-surfaces, divide by the expression 

LI V = i 01 (22 03 LI a1 LI a2 LI a3 obtained above, for the volume of R, and 
pass to the limit as LI aI' LI a2 , LI a3 approach 0, we find 

(12) divW = 17· W 
1 [0 0 ~ 0 -] 

= JfQ~Q2~ oql iQ2Q3 WI + aq2 yQ3Ql W2 + oqa MQ2 W3 . 

It is true that for this expression all that is required of W is the 
existence of its derivatives of first order. We have supposed that they 
are continuous. But the existence of the derivatives of Ql' Q2' Q3 is 
also implied, and this means a requirement not explicitly made. We shall 
assume that the derivatives involved exist and are continuous. Usually 
the coordinate systems employed are those in which the functions 
Ql' Q2' Q3 are analytic in their arguments. 

We are now able to find easily the expression for the Laplacian of 
U in terms of general coordinates. As it is the divergence of the gradient 
of U, we have at once, from (10) and (12), 

(13) 172 U - -!_ [u (yQ2 Qa 0 U) 0 (yQa Ql 0 U) 
- fQIQ2Qa uql -Q~'- oql + oq~ .~g;- oQ2 

+ ~ (y~b2.~ 0 U)] . 
oQ3 Qa oQ3 

As an application, let us find the Laplacian of U in spherical co­
ordinates. We identify Ql with (}, Q2 with fj), Q3 with fJ. The square of the 
differential of arc can be found by geometric considerations, or from 
the equations (4) and (5), and is 

ds2 = d(}2 + e2sin2fJdfj)2 + e2dfJ2 , 

so that 

We have, accordingly, by (13), 

J72U I [0 (2' "<lOU)+ 0 ( 1 OU)+ 0 (. "<lOU)] (14) = e2sin11 7Fi e smv --ae" ocp sin!1- aq; 011 ,smu'7J.F 

1 0 ( 2 0 U ) I 02 U 1 0 (. 0 U ) 
= (f ali e "iii + (iii sinZO 0 cp2 + e2 sin 11 0 fi. sm fJ 7J.F . 
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Ereercises. 
3. Express the Laplacian of U in terms of cylindrical coordinates, 12, rp, z; 

x=l2cosrp, Y=l2sinrp, z=z. 

4. Check, by the formula (12), the expression for the divergence in spherical 
coordinates obtained in Exercise 6, § 5, Chapter II (p. 39): 

5. Ring Coordinates. The equations 

x = rcosrp, y = rsinrp, 
sin I' 

z = cosh A + cosp. , 
sinhA 

where r = ---;--;;-;---­
cosh A. + cosp. > 

define x, y, z as functions of A, 1', rp. Show that the rp-surfaces are meridian planes 
through the z-axis, that the A.-surfaces are the toruses whose meridian sections 
are the circles 

x2 + Z2 - 2 x coth A. + 1 = 0 , 

and that the p.-surfaces are the spheres whose meridian sections are the circles 

x 2 + Z2 + 2 z tan I' - 1 = o. 
Show that the system is orthogonal, except at points where the functional de­
terminant (3) vanishes, and find these points. Finally, show that 

d 2 _ 2 [dJ..2 + dp.2 d 2J 
S - r sinh2 A. + rp _ ' 

and, accordingly, that 

172 U = sinh2 J.. [~ (r au) + ~ (r~) + __ r_ -~~-!!-J 
r3 aA. iJJ.. ap. ap. sinh2 A. aq;2 . 

4. Ellipsoidal Coordinates. 

As an illustration of coordinate systems, we choose ellipsoidal 
coordinates. We shall then make use of them in the discussion of the 
conductor problem for an ellipsoid. We start with a basic ellipsoid, 

(15) 
x2 y2 Z2 
~ + 1)2- + C2 = 1 , 

and form the functions 
x2 y2 22 

f (5) = {l2 + s + b2 + S + c2 + s - 1 > 

({J (5) = (a2 + s) (b2 + 5) (c2 + 5) . 

The equation f (5) = 0, when 5 has any fixed value not a root of 
({J (5), represents a central quadric surface, and for various values of 5, 
a family of such surfaces. The sections of these surfaces by each of the 
coordinate planes are conic sections with the same foci, and the family 
of surfaces is called a confocal family. When 5 is very large and positive, 
the surface is a large ellipsoid of nearly spherical form. As 5 decreases, 
the ellipsoid shrinks, the difference in its axes becoming more pro­
nounced. For 5 = 0, the ellipsoid reduces to the basic ellipsoid (15). The 
surface continues to be an ellipsoid as long as 5 > - c2• As 5 approaches 
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- c2 , the semi-axes of the ellipsoid approach -va2 - c2 , -V b2 - c2 , 0, 
that is, the ellipsoid approaches the flat elliptical surface 

(16) z= 0, 

having swept out all the rest of space. 

When s becomes slightly less than - c2, the quadric surface be­
comes a hyperboloid of one sheet, at first very close to the portion of the 
(x, y)-plane outside the elliptic surface (16). As s goes from - c2 to 
- b2, this hyperboloid expands, sweeping out all the rest of space 
except for the points of its limiting form, which is a portion of the 
(x, z)-plane bounded by a hyperbola, namely 

(17) y =0, 

As s decreases from - b2 to - a 2, the surface passes from the com­
plementary portion of the (x, z)-plane, as a hyperboloid of two sheets, 
to a limiting form which is the entire (y, z)-plane, having swept through 
the whole of space except for the points of its limiting positions. 

Thus for any point (x, y, z) not in a coordinate plane, and, in lim­
iting forms, for points in these planes, there is an ellipsoid of the family, 
a hyperboloid of one sheet of the family, and a hyperboloid of two 
sheets of the family, which pass through the point. It looks as if we 
might have here three sys­
tems of surfaces which 
could function as coordinate 
surfaces, one of which is 
the basic ellipsoid. This is 
indeed the case. The values 
of s giving the members 
of the confocal system are 
the roots of the cubic 

f (s) rp (s) = o. 
We have just had geometric 
evidence that this equation 
has three real roots, A, fh' 
and v, distributed as follows 

(18) 

Fig. 24. 

The fact admits an immediate verification by considering the variation 
of the function f (s) as s ranges from - 00 to + 00 (fig. 24). The equa­
tion f (s) rp (s) = 0 has the same roots as f (s) = 0, except that the in­
finities of f (s) may be additional roots of the first equation. These occur 
at the end-points of the intervals (18), and as the roots of f (s) rp (s) = 0 
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vary continuously with x, y, z, we see thus that this equation has, in 
fact, the roots distributed as stated. 

We thus find that the system of confocal quadrics may be regarded 
as a system of A-surfaces, which are ellipsoids, a system of ,a-surfaces, 
which are hyperboloids of one sheet, and a system of v-surfaces, which 
are hyperboloids of two sheets, and we may take A, ,a, 'I' as a system of 
coordinates. A point in space, except possibly for certain points in the 
coordinate planes, determines uniquely a set of values oU, 11, '1'. Let us 
see if, conversely, a set of values of A,,a, '1', in the intervals (18), de­
termines a point in space. Expressing the determining cubic in fac­
tored form, we have, since the coefficient of S3 is - 1, 

(19) f (s) cp (s) = x2 (b2 + s) (c2 + s) + y2 (c 2 + s) (a2 + s) 

+ Z2 (a 2 + s) (b 2 + s) - cp (s) == - (s - A) (s - ,a) (s - '1') • 

From this, we find by putting s = - a 2, - b2, - c2 , successively, 

x 2 = (a2 + A) (a 2 + /1) (,,2 + v) 2 _ (b2 + A) (b2 + /1) (b 2 + v) 
y - - (a2 _ b2) (b2 _ (2) , 

(20) 
(a2 _ b2) (a 2 _ c2) , 

Z2 = (c2 + A) (c 2 + /1) (c 2 + v) 
(a 2 _ c2 ) (b 2 _ c2 ) 

Each set of values oU,,a, 'I' determines thus, not one, but eight points, 
symmetrically situated with respect to the (x, y, z)-planes. This diffi­
culty can be avoided by an introduction of new coordinates, like those 
given by the equations q~ = a2 + A, q; = b2 +,a, q; = C2 + '1', with 
the understanding that ql shall have the same sign as x, etc., or also 
by the introduction of elliptic functions. However, we shall not do this 
at this point, for our application will deal only with functions which 
are symmetric in the (x, y, z) planes, and it will not be necessary to 
distinguish between symmetric points. 

The coordinatesA,,a, 'I' are known as ellipsoidal coordinates. We shall 
now show that the system is orthogonal. The components of the gradient 
oU are its partial derivatives with respect to x, y and z. We find these by 
differentiating the equation defining A, f (A) = 0: 

/' (A) (JJ:.. + ~~ = 0 ax a2 + A ' 
where 

Accordingly, 

(21) VA = ( - (a2 +2)~ f (}.)' 
2y 2z ) 

- (c 2 + A) /' (A) , (b 2 + A) t' (A) , 

J7 ,a and V'I' being found by substituting ,a and 'I' for A. The condition for 
the orthogonality of the A-surfaces and the ,a-surfaces, is, in accordance 
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with Exercise 2, § 3 (p. 180), 

~ ~ ~ 

(a2 + A) (a2 + ft) + (b 2 + A) (b 2 + p) + ((2 + A) ((2 + It) = 0, 

from which we have dropped the factor f (A)~' (p)' This factor is certainly 

different from 0 at all points off the coordinate planes. We omit a con­
sideration of the orthogonality at points of these planes, though it does 
not break down at all of them. We see that the above condition is 
fulfilled at other points by subtracting the equations f (A) = 0, f (p) = 0, 
defining A and p : 

[ X2 y2 z2 ] 
(A - p) (a2 + A) (a2 + p) + (b2 + },) (b2 + p) + ((2 + A) ((2 + p) = O. 

Thus, if}, and p are distinct, the condition for orthogonality is fulfilled, 
and A = p is only possible on a coordinate plane, in fact, on the boundar­
ies of the limiting areas (16) and (17). One shows similarly that the 
other sets of surfaces are orthogonal. 

Our object is now to find Laplace's equation in ellipsoidal coordi­
nates. It is all a question of the quadratic form (5) for ds 2• We use the 
expressions (11). By (21), 

4 [%2 y2 Z2 ] 4 
(VA)2 = f2(A) (a 2 + },}2 + (b2 + X)2 + ([2 + ,1)2 = - nij' 

(J7 p) 2 and (J7 v) 2 being found by the substitution of p and v for A. But we 
should like to have these coefficients expressed in terms oiA, p, valone. 
This can be done by differentiating the identity (19) with respect to s 
and substituting}" p, v, for s, successively. We find 

f'ts) ({J (s) + f (s) ({J' (s) 

=-~-~~-~-~-~~-0-~-~~-0, 

f'(A) = _ (A - p) (). - v} t'(p) = + (A - Il) (p - v) 
rp (A) cp ({t) 

f'() = _ (A-v) (p-v) 
v rp (v) • 

With these values the quadratic form becomes 

(22) ds2 = (A - p) (A - v) ( dA _)2+ (A _ p) (p _ v) ( . d,t )2 
2 fer (),) 2) - rp (fl) 

+ (A - v) (p _ v) ( dv ... )2. 
2 Y rp (v) 

A simplification suggests itself, namely the introduction of new coordi­
nates defined by the differential equations 

(23) d l: d), 
S' = ---;::-==== , 

± 2 t rp (},) 
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The differential of arc is then given by 

(24) ds2 = (A - p,) (A - v) d~2 + (A - p,) (p, - v) drl + (A - v) (p, - v) dC2• 

Such a change of coordinates does not affect the system of coordi­
nate surfaces, since each of the coordinates is a function of but one of 
the old. We shall employ the following solutions of the differential equa­
tions (23): 

I' " 
(25) 'Yj- . 1 f ds 

-"2 V- tp(s) , C=.!.J~ 2 V tp (s) • 
-b' -c' 

By (8), the absolute value of the functional determinant (3) is 

(A - p,) (A - v) (p, - v) , 

and this vanishes only on the ellipse (16) or the hyperbola (17), where 
the equality sign is used in those relations. 

The Laplacian of U is given by 

1 [ a2 U a2 U 
(26) J72 U = (A. _ J.l) (A. _ v) (p, _ v) (p, - v) 8[2- + (A - v) aTJ2 

a2UJ + (A - p,) a~2 . 
Exercise. 
Develop the notion of general coordinates in the plane. Develop elliptic co­

ordinates. 

5. The Conductor Problem for the Ellipsoid. 

For the solution of the problem of finding the distribution of a 
charge in equilibrium on an ellipsoidal conductor!, we have the condi­
tions, analogous to those for the spherical conductor, 

a) U = const, 

J72U = 0, 

b) U is everywhere continuous; 

A <0, 

0< A; 

c) the derivatives of the first order of U are continuous everywhere 
except for A = 0, where they satisfy the equation 

au au 
-----=-4na; 
a1'!+ an_ 

d) e U -+ E as e becomes infinite, e2 = x2 + y2 + Z2. 

1 For historical indications with respect to the potentials of ellipsoidal surface 
distributions and of solid ellipsoids, see the Encyklopadie der Mathematischen 
Wissenschaften, II A 7b, BURKHARDT-MEYER, § 15. 
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Let us see if there is a solution of Laplace's equation depending only 
onA. If there is, it will reduce to a constant on the surface of the ellipsoid, 
as it should. If U depends only on A, or, what amounts to the same 
thing, only on ~, the expression (26) shows that it must satisfy the 
equation 

d 2 U 
d~2 = 0, whence U = A~ + B. 

The constants are now determined by (d). Comparing the coefficients 
of s in the identity (19), we find 

A + ft + Y = e2 - (a2 + b2 + c2). 

As ft and yare bounded, A becomes infinite with e, and lim 4- = 1. e 
Moreover, 

(c2 + S)3 < cp (s) < (a2 + S)3, 

and hence 
co co 

if-d~ < ~ < if ds ~a' 
(a 2 + s)' (c 2 + s)' 

i. e. 
1 1 

---==== < ~ < -== . l a2 + A f c2 + }, 
l A 

It follows that lim VI~ = 1, and hence that lim e~ = l. Hence 

lim e U = lim ~ U = lim ( A + ;). 
If this limit is to exist and equal E, we must have A = E and B =0. 
Thus 

U=E~=~fl~-~;Y' o <A, 

(27) 
). 

U = ~ rl~-~~)-' 
o 

the second formula resulting from condition (b) and the fact (a) that 
U = const. in the interior of the ellipsoid. 

We have thus found a function which satisfies all the stated con­
ditions in the interior of each octant. But U is obviously continuous and 
continuously differentiable in A, and}, is a continuous and continuously 
differentiable function of x, y, Z, for a root of an algebraic equation, 
whose leading coefficient is constant, is a continuous function of the 
coefficients, and is continuously differentiable in any region in which 
it does not coincide with another root. But the points at which roots 
of the equation f (s) cp (s) = 0 coincide are on the bounding curves of (16) 
and (17). Thus U is continuous, with its derivatives offirst order, also on 
the coordinate planes, except on these curves. We shall see (Theorem VI, 
Chapter X) that solutions of Laplace's equation on two sides of a 
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smooth surface, on which the solutions and their normal derivatives 
agree, form a single function satisfying Laplace's equation both near and 
on the surface. The doubtful curves are then cared for by Theorem XIII, 
Chapter X. Thus the values of U in the various octants form a single 
function, which really meets the conditions of the problem. 

It remains to determine the density. As U is constant in the interior 
of the conductor, condition (c) becomes 

au 1 au E 1 aA 
an+ = - 4:n:a, or a = - 4n an+ = 8n Y;U0 ant' 

as is seen by the rule for differentiating an integral with respect to a 
limit of integration. The outward normal points in the direction of the 
A-curve, so that by (22) 

d 2 = (A - !l) (), - v) dA2 
n 4 <p (},) , 

aA II <p (A) 
and hence a;; = 2 Y (A- !l) (A-V) , 

If we put this value, for A = 0, in the expression for a just obtained, we 
find the result 

E 
(28) a = ---=. 

4nt,uv 

The problem is completely solved, if we are content with a formula t 
But here curiosity should be encouraged rather than the reverse, and 
discontent is in order. How does the charge distribute itself? The pro­
duct f.l v is the value, for A = 0, of one of the symmetric functions of 
the roots of the equation determining the ellipsoidal coordinates. Let us 
find its value in terms of the coefficients. We compare the coefficients 
of s in the identy (19): 

- (f.lV+ VA + Af.l) 
=~~+~+~~+~+~~+~-~~+~~+~~ 

= a2 b2 c2 [;: (:2 + ~) + f:- (~ + a~ ) + ~ (:2 + :2) - (:2 + :2 + ~) ] 
= a" b" c - +- + - - + - + - - 1 - - + - + - . 99 2[(1 1 1)(x2 y2 22) (X2 y2 2 2 )J 

a 2 02 c 2 a2 b2 c2 a4 b4 {4 

Hence, on the surface of the ellipsoid A = 0, 

( 
X2 y2 22) 

fl V = a2 b2 c2 ~ + b4 + (4 . 

The equation of the plane tangent to the ellipsoid at (x, y, z), is 

(X - x) ; + (Y - y) ~ + (Z - z) ; = 0, 

and the distance of this plane from the center is 
X2 y2 22 

az + /)2- + C2 

P=,/.t 2 ~_ 22 
I ,,4 + b4 t- (4 
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Collecting the results, we reduce (28) to 

(29) 
E 

(J = 4nabc P, 

or, the density of the charge at any point of the ellipsoid is proportional 
to the distance from the center of the tangent plane at that point. 

Since the tangent planes to two similar and similarly placed ellip­
soids have, at the points where they are pierced by any ray from their 
center, distances from the center which are in the constant ratio of the 
dimensions of the ellipsoids, we may also picture the distribution of the 
charge as follows. Imagine a slightly larger similar and similarly placed 
ellipsoid, and think of the space between the two ellipsoids filled with 
homogeneous material of total mass E. The thickness of this layer of 
material gives an approximate idea of the density, for the distance 
between tangent planes at corresponding points differs from the distance 
between the ellipsoids, measured perpendicUlarly to one of them at the 
point in question, by an infinitesimal of higher order. If now the outer 
ellipsoid shrinks down on the inner one, always remaining similar to it, 
and the material between them remaining homogeneously distributed, 
we shall have in the limit a distribution of the material which has the 
density of the charge in equilibrium on the conductor. 

It will. be observed that the density is greatest at the ends of the 
longest diameter, and least at the ends of the shortest diameter. This 
illustrates the tendency of a static charge to heap up at the points of 
greatest curvature l • 

Exercises. 
1. Check the result (29) by integrating the density over the surface of the ellip­

soid. 

2. On the assumption that the density varies continuously with the form of 
the ellipsoid, show that the density of a static charge on a circular lamina of 
radius a at a distance e from the center is given by 

E 1 
= 4 n a . la2 _ e2 • 

3. Find the potential of t):le above lamina at points of its axis (a) by specializ­
ing the result (27), and (b) by finding the integral of the density times the recip­
rocal of the distance. Reconcile the two results. Beware an error which intro­
duces a factor i! 

4. Show that if the ellipsoid is a prolate spheroid, and we pass to the limit 
as the equatorial radius approaches 0, the limiting distribution is that of a material 
straight line segment of constant linear density. Thus find again the result on 
the equipotential surfaces of Exercise 1, page 56. 

1 In fact, the density of charge on the ellipsoid is proportional to the fourth root 
of the total curvature of the surface. 
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6. The Potential of the Solid Homogeneous Ellipsoid. 

Let us now consider a solid homogeneous ellipsoid (15), of density x. 
By Exercise. 3 (p. 39) the volume cut out from this ellipsoid by a conical 
surface with vertex at the center and cutting out an element LI 5 from 
the surface is 

LI V = iff rcos (n,r) d5 =iJJ pd5, 
JS LlS 

where p is the perpendicular from the center to the plane tangent to 
the ellipsoid at the variable point of integration. The volume cut out 
by the same cone from a similar and similarly placed ellipsoid, whose 
dimensions are ~ times those of the basic ellipsoid, is u~ times the 
above quantity, or 

where we have introduced a subscript in order to emphasize the fact 
that the integration is over the surface of the basic ellipsoid. The 
volume cut out by the same cone from the region between two ho­
mothetic ellipsoids u = Zt1 , U = U2 is 

LI V = ug ~ u~ ffPod50 = u2:fio Llu Ll50 , 

LlSo 

where we have used the laws of the mean for differences and for inte­
grals. We should like, however, to have this element of volume ex­
pressed in terms of the values of the functions involved at a point 
within the element of volume. We notice that for points on the same ray 
from the center, the values of p, for two ellipsoids, are proportional to 
the dimensions of the ellipsoids, so that on the ellipsoid u = u, p = uPo. 
Also, for the element of surface of this ellipsoid, we have, LI 5 = u2 L1 50. 
Hence 

LI V =.; p Ll5L1u. 
u 

Armed with this implement, we may now find the potential of a 
solid ellipsoid, or, more generally, of the body bounded by two homo­
thetic ellipsoids, u = ~, u = u2 • We have, for the latter 

U -1· 2)"LlV - 1· 2) pLlSLlu - fU'lffPdSd - 1m ---x 1m --_---x - -- u. 
r ur u r 

(30) 
u, S 

We notice first that the inner integral is the potential of a charge in 
equilibrium on the surface of the ellipsoid u = u, since the density of 
such a charge is proportional to p. Hence the inner integral is constant 
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within the inner limiting ellipsoid; that is, it is independent of x, y 
and z, and is a function of u alone. Hence U is itself constant inside the 
inner ellipsoid u = Ut, and we find again Newton's theorem (Chapter 1, 
p. 22), to the effect that an ellipsoidal homoeoid exercises no attraction at 
points in its interior. In fact, we might have found the law of distribu­
tion of a static charge on an ellipsoidal conductor by means of Newton's 
theorem, but we should still have had left the problem of determining 
the potential. 

Let us now revert to the solid ellipsoid, writing accordingly, in (30), 
U 1 = 0, u2 = 1. The inner integral is the potential of a spread of density 
p on the ellipsoid u = u of semi-axes ua, ub, uc. It is therefore, by (29), 
the potential of a spread of total charge 4nabcu3. This potential, as 
given by (27) is 

(31) 

where 

00 

Uu=2nabcu3f ds , 
t<p (u, s) 

J.(u) 

rp (u, s) = (a 2 u2 + s) (b 2 1£2 + s) (c 2 u2 + s), 
and whereA (u) is the greatest root of the equation 

%2 y2 Z2 

t (u, },) = a2 u2 + A + b2 u2 + A + c2 u 2 + }, - 1 = O. 

Thus the potential U of the solid ellipsoid, at an exterior point, given 
by (30), becomes 

1 00 

Ue =2nabcufu2 f dS .. _du. 
V<p(u, s) o J.lU) 

This expression can be reduced to a simple integral. We introduce 
first a new variable of integration in the inner integral, by the substitu­
tion s = 1£2t: 

1 00 

Ue =2nabcufuf dt du, 
t<p (I) o v 

We next employ integration by parts in the outer integral: 
1 00 00 1 

f f dt [U2f dt]l 1 f 1 dv 1£ -===du = --_. -- + - 112_- -du 
)''1'(1) 2 1''1'(1) 2 1'1' (v) du • 

o v v 0 0 

As v is the greatest root of the equation 

(32) 

it always decreases as u increases, and hence may be used as a variable 
of integration in place of u. For u = 1, v = A, the greatest root of the 

Kellogg, Potential Theory. ] 3 
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equation f (A) = 0, while as U approaches 0, v becomes infinite. Hence 

{ f
<Xl dt f<Xl[ %2 y2 Z2] dv } U =nabcu --- -- -- ----

• YIP(t) a2 +v + b2 +v + c2 +v lIP (v) . 
A A 

or, finally 
<Xl 

(33) u.=nabcuf[I- 2~ -b2~ - 2
Z
:] ds. 

A ass C s llP(s) 

To find the potential at an interior point, let u = Uo characterize the 
ellipsoid of the family of similar ellipsoids which passes through the 
point P (x, y, z). We shall now have to break the integral (30),-always 
with Ut = 0, U2 = I-into two, since for the ellipsoids u < uo, P is an 
exterior point. For the first'; we still use for the inner integral in (30) 
the value (31). For the second, we have merely, by (27), to replace the 
lower limit by O. Accordingly we have 

"0 co 100 

Ui = 2n abc u [f u f dt du + f u f dt dU]. 
o v YIP (t) "0 0 VIP (t) 

In the first integral, we carry out an integration by parts. In the second, 
the inner integral is a constant. We note that when v = 0, u = uo, by 
(32), since P (x, y, z) lies on the ellipsoid u = uo. We have, then, 

[
<Xl 1"0 "0 <Xl . u2 dt 1 1 dv 1 - ug dt 

U·= 2nabcu -f--= +-fU2 -=-dU+ -f-=] 
, 2 VIP(t) 2 VIP(v)du 2 1'1P(t) 

o 0 0 0 

that is, 

(34) 

{ f
<Xl dt f<Xl[ %2 y2 Z2] dv nabcu u2 --- -- -- ----

o YIP(t) a2 + v + b2 + V + c2 + V VIP(t) 
o 0 

<Xl 

+ (I - u~) f dt _}, 
o YIP (t) 

<Xl x2 y2 Z2 ds 
Ui=nabc"f[I-~+ --b2 + -~+ ]--===. o ass C s lIP (s) 

Thus in the interior of the ellipsoid, the potential is a quadratic func­
tion of x, y and z: 

(35) Ui = -Ax2 - By2- CZ2 + D, 

where <Xl 

f ds f ds A=nabc" ,D=nabc" -=, 
o (a2 +sll'lP(s) 0 VIP(s) 

<Xl 

Band C being obtained from A by interchanging b with a, and c with a, 
respectively. 



The Potential of the Solid Homogeneous Ellipsoid. 195 

EaJercises. 
1. Show that the constants A, B, C are the same for all similar ellipsoids of 

the same density. Hence infer Newton's theorem on the ellipsoidal homoeoid. 
Find the value of the potential at interior points in terms of a single integral. 

2. Specialize the results obtained for the potential at exterior and interior 
points of a homogeneous ellipsoid to the case of the sphere. 

3. Obtain from the potential the components of force at interior and exterior 
points of a homogeneous ellipsoid. Verify directly that the formulas (33) and (35) 
define a potential for which )72 U e = 0, )72 U i = - 2 (A + B + C) = - 4n". 
Verify that the potential and force are everywhere continuous, and that eUe ap­
proaches the total mass as e become infinite. 

4. Show that in the interior of a homogeneous ellipsoid, the equipotentials 
are similar and similarly placed ellipsoids of more nearly spherical form than 
the given ellipsoid. Show by means of the developments of the preceding chapter 
that these equipotentials join on continuously, with continuously turning tangent 
planes, to the equipotentials outside the ellipsoid, but, as a rule, with breaks in 
the curvatures. 

5. In finding the solution of the conductor problem, we saw that a family of 
confocal ellipsoids, A = const. would be equipotentials. Show that a necessary 
and sufficient condition that a family of surfaces F (x, y, z) = C, where F (x, y, z) 
has continuous partial derivatives of the second order, may be equipotential 

surfaces of a Newtonian potential (solution of Laplace's equation) is that (~~2 
is a function f(J (F) of F only. Show that if this condition is fulfilled, the 
potential is 

F t 

U = elf e-J<p(t)dt dt + c2. 

6. Specialize the formulas for the potential of a homogeneous ellipsoid to 
the cases of prolate and oblate spheroids, evaluating the integrals which occur. 
Answers, for the prolate spheroid, 

for the oblate spheroid, 

~ 6£ [4Z2 - 2r2 + j2 . _ / 52 (.2 - 2Z2) - /2 r2l 
U =- -------SlU 1_+ J 

e /2 2 f s 5211 52 --.-: j2 ' 

where / is the distance between the foci of a meridian section, s the sum of the focal 
radii to P, x, or z, the distance of P from the equatorial plane, and r the distance 
from P to the axis. In both cases Ui is obtaiued from U. by replacing 5 by 2a, 
the maximum diameter of the ellipsoid. 

Numerical Computation. The computation of the potential and of the 
forces due to the distributions considered above, involves, in general, the 
solution of cubics and the evaluation of certain elliptic integrals. The 
approximate solution of the cubics in numerical cases will give no dif­
ficulty, but the usual approximation methods for the integrals do not 
work well on account of the slow convergence of the integrals. They are 

13* 
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probably best handled by reducing them to normal forms and having 
recourse to tables 1• 

Exercises. 
7. Writing the formula (33) in the form 

U, = n.abc u CD (A) - AVe) ,112 - B (}.) y2 - C Ve) Z2], 

and writing 

show that 

.--- l'a2 - c2 
ya2 + S =-_ -.--, 

sm 'P 

h = J/a: - b:, 
a - c 

h' = 1'1 _ h2 = l/b2 
- c2 

, 
a2 ~C2 

2 
A ().) = [F (h, f}) - E (h,f})], 

(a2 _ c2) if h2 

2 
B (J.) = - " 

(a 2 _ c2 )" h2 h'2 

IE (h, f}) - h'2 F (h, f}) _ h2 . sin f} cos f} -j, 
L .p _ k 2 sin2 f}. 

C Ve) = --2---3- [Sin f} VI -=- k2 sin2
{} _ E (h; f}) l , 

(a2 _ c2f' h'2 co, f) J 

2 
D(A)= IF(h,f}). 

(a2 _ (2) 2" 

In the derivation of the above values for B (A) and C (A), reduction formulas 
are needed. These may be obtained by differentiating 

sin 'P cos 'P 
----- and sin 'P f 1 - k2 sin2 'P 

cos 'P 

8. An ellipsoidal cond~ctor of semi-axes 7, 5 and 1 carries a unit charge in equi­
librium. Determine the potential on the ellipsoid, and at points on the axes distant 
20 units from the center. Compare these values with those of the potential at the 
last three points due to a unit charge on a small spherical conductor with the same 
center. Give the results to at least three significant figures. 

9. The same ellipsoid, instead of being charged, is filled with homogeneously 
distributed attracting matter, of total mass 1. Find the potential at the same three 
exterior points, and determine the coefficients of the quadratic expression giving 
the potential at interior points. Plot the section, by the plane containing the 
grea test and least diameters, of the material ellipsoid, and of several interior 
equipotential surfaces. 

7. Remarks on the Analytic Continuation of Potentials. 

Newtonian potentials are analytic at the points of free space. On the 
other hand, the potentials, or some of their derivatives, are discontinuous 

1 The definitions of the Legendre normal forms, and brief tables of their 
values may be found in B. O. PIERCE, A Short Table of Integrals, Boston. 
A discussion of elliptic integrals may be found in the ninth chapter of OSGOOD'S 

Advanced Calculus. 
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on surfaces bearing masses, or bounding regions containing masses. 
But if the surfaces and the densities are analytic, the potentials to either 
side of the surfaces, as we have seen in special cases, may be analytic, 
and may be continued analytically across the surfaces. This is not in 
contradiction with the results of the last chapter,it simply means that 
the functions representing the potentials, when so continued, cease to 
represent the potentials on the farther sides of the surfaces. 

Take, for instance, the potential of a charge E on the surface of a 
spherical conductor of radius a. Inside the sphere, the potential has the 

constant value~. Outside, it is ~. The first is analytic throughout 
a e 

space. The second is analytic except at the origin. For e < a, ~ no e 
longer represents the potential of the charge on the given sphere. It 
does, however, represent the potential of the same charge on any 
smaller concentric sphere of radius b, as long as e > b. This is an 
example of the fact that one and the same function may be the poten­
tial of different distributions in a region exterior to both. We shall see 
later (p. 222) that when, and only when, the potential is given throughout 
all of space, the distribution of masses producing that potential is 
uniquely determined. 

The potential, at exterior points, of a charge in equilibrium on an 
ellipsoidal conductor can also be continued into the interior, when it 
will also be the potential of an equal charge in equilibrium on a smaller 
confocal ellipsoid at exterior points. In fact, this holds for A > - c2, 

and even in the limit, so that the same function can represent the poten­
tial of an elliptic lamina. Here the function ceases to be analytic on the 
edge of the lamina-but only on the edge. It can therefore be continued 
across the lamina. Here it ceases to be the potential of the lamina, 
because that potential must have a break in its normal derivative on 
the lamina. The function cannot therefore 'be single valued (see the 
exercise, to follow). 

A potential, then, can be due to various distributions. We shall see 
that it can always be regarded as due to masses nearer to the attracted 
particle than those which first determine it. Whether the masses may be 
made more distant or not is usually a question to be decided in special 
cases l . 

1 The formulas of the last chapter show that if a potential of a volume dis­
tribution can be continued analytically across an analytic bounding surface from 
either side, the density, if it satisfies a Holder condition, must be analytic, and 
similar results hold for other distributions. Conversely, it can be shown that ana­
lytic densities on analytic surfaces always yield potentials which are analytically 
continuable across the surfaces, and similarly for volume distributions with ana­
lytic densities. For references, see the Enzyklopadie der Mathematischen vVissen­
schaften, II C 3, LICHTENSTEIN, p. 209. 
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Exercise. 
Specialize the result (27) to the case of a charge on an oblate spheroid, and 

evaluate the integral. Show that 

, _ (rl + "2)2 _ a2 
A - 2 ' 

where r 1 and r 2 are the extreme distances from P to the circumference of the limit­
ing circular lamina. Thus obtain the result in the form 

E . 1 2a 
U.=-sln- ---

a 1"1+r2 ' 

the branch of the inverse sine being so determined that Ue vanishes at infinity. 
Thus show that U, is continuable across the limiting lamina, and forms then a 
two-valued function of the position of P. Note that U, is constant on a system 

E 
of confocal spheroids, and that on the axis, it is equal to ;: times the angle sub-

tended at P by a radius of the limiting lamina. 

8. Further Examples Leading to Solutions of Laplace's 
Equation. 

Steady Flow of H eu.t in an Infinite Strip. Suppose we have a very long 
strip of homogeneous metal, so long that we may idealize it as infinitely 
long. Let its two edges be kept at the temperature 0, and let one end 
be kept at temperatures which are a given function of position along 
that end. Let the faces be insulated. What will be the distribution of 
temperatures in the strip when a steady state is realized? 

Let the strip lie in the region of the (x, y)-plane 

R: O<x<:n;,y2:0. 

We have, then, for the temperature U, the conditions 

82 U a2 U . 
ox2 + oy2 = 0 III R, 

U = 0 for x = 0 and x = :n; , 

U = f (x) for 0 < x ~:n; and y = 0, 

U continuous and bounded. 

We follow a method used by DANIEL BERNOUILLI1 in a discussion 
of the vibrating string, and called by EULER BernMtilli's principle. It 
consists in finding particular solutions of the differential equation, and 
building up the desired solution as a linear combination of the particular 
solutions with constant coefficients, a process here rendered feasible 
by the linear homogeneous character of Laplace's equation. For, be­
cause of this character, a constant times a solution is a solution, and a 
sum of solutions is a solution. 

1 Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, Vol. 19, 
(1775), p.239. 
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The method of finding particular solutions consists in seeking to 
satisfy the differential equation by a product of functions, of which 
each depends on one variable only. The solution of the partial differen­
tial equation is then reduced to the solution of ordinary differential 
equations. Thus if X is a function of x only, and Yof yonly, U = XY 
will satisfy Laplace's equation provided 

X"Y + XY" = 0, 
or 

x" yll 
x=-Y· 

As the left hand member does not'depend on y, and the right hand 
member does not depend on x, neither can depend on either. Hence 
both are equal to a constant, which we shall write _e2• Then 

X" + c2 X = 0, Y"-e2 Y=0, 

and we find, accordingly, four types of particular solutions: 

U = XY = eCllcosex, e-ClIcosex, eClI sincx, e-ClI sin ex. 

The first and third are not bounded in R, and we therefore reject 
them. The first does not vanish for x = O. But the fourth does. The 
fourth will also vanish for x = n, for all values of y, provided sinn c = O. 
This equation is satisfied for c = 1, 2, 3, .... Thus we have an infinity 
of solutions of Laplace's equation, all satisfying all but the third of the 
conditions to be met. 

The question is now, can we build up the desired solution, fulfilling 
the third condition, in the form 

U = Zbn e-nll sinnx? 
1 

If so, and if the series converges for y = 0, the third condition demands 
that 

We are thus led to a problem in Fourier series, and if t (x) can be ex­
panded in a series of this type which converges at every point of the 
interval, it is not difficult to show that the above series for U satisfies 
the conditions of the problem. We shall not consider questions of con­
vergence at present. For Fourier series, a discussion of this topic will be 
found in Chapter XII, § 9. For reasonably smooth functions, the con­
vergence is assured. 

Exercises. 
1. Show that if in the above problem f(x} = 1, we are led to the solution 

U 4 [, 1 3 '3 1 5' ] 2 1 sinx 
= - e-' sm x + -3 e- • sm x + - e- • sm 5x... = - tan- -'-h-' 

n 5 n sm" 
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the inverse tangent lying in the interval ( 0, ;). Show that U satisfies the con­

ditions of the problem, except at the corners, where they are contradictory. Draw 
the isothermals for small x and y. 

2. Solve the problem of the text with the alteration that the edges x = 0 
and x = n are insulated instead of kept at the temperature O. 

3. Five of the faces of a homogeneous cube are kept at the temperature 0, 
while the sixth is kept at temperatures which are a given function of position on 
this face. Show how to determine the temperatures in the interior, assumed 
stationary. 

If, instead of having finite breadth, the plate occupies the whole 
upper half of the (x, y)-plane, the method of series is not available. 
Instead of replacing c in a particular solution by a variable n taking on 
positive integral values, multiplying by a function of n and summing, 
we may, however, replace it by a variable a, taking on continuous 
values, multiply by a function of a, and integrate. In fact, we assume 

U (x, y) = !e- ay [A (a) cos ax + B (a) sin ax] da. 
o 

Waiving the justification of the steps, we now set y = O. If U is to take 
on the assigned values t (x) on the edge y = 0 of the plate, we should 
have 

f (x) = f[A (a) cos ax + B (a) sin ax] da. 
o 

The question then arises, can A (a) and B (a) be so chosen that an 
arbitrary function t (x) is represented by this formula? The answer is 
contained in the following identity, known as Fourier's integral theorem! 

+OJ 

t(x) = ~ff(~)fcosa(x- ~)dad~, 
o 

which is valid, and in which the order of integration can be inverted, 
provided t (x) satisfies certain conditions of smoothness and of behavior 
at infinity. In fact, if these conditions are met, the choice 

meets the requirements of the problem, and the solution is 
OJ 

U(x, y) = ~ff(~)fe-"Ycosa(x - ~)dad~. 
-OJ 0 

1 See, for instance, RIEMANN-WEBER, Die Differential- und Integralgleichungen 
der Mechanik und Physik, Vol. r, Chapter IV,§ 3. Braunschweig 1925; CARSLAW, 
Introduction to the Theory o/,Fourier's Series and Integrals, Chapter X, London 1921. 
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Exercise. 
Determine the stationary temperatures in a homogeneous isotropic plate oc­

cupying a half-plane, when a strip of length 2 of the edge is kept at the temperature 1, 
{} 

while the rest of the edge is kept at the temperature O. Answer, U (x, y) = ~> 

where {} is the angle subtended at the point (x, y) by the segment kept at the tem­
perature 1. 

Flow of Heat in a Circular Cylinder. To solve Laplace's equation in a 
way to get solutions adaptable to problems dealing with circular cylin­
ders, we start with that equation in cylindrical coordinates 

J12 U = ~ ~ 0 U + ~ 82 U + 82 U = 0 e 0 e e 0 e e2 0 '[2 oz2 , 

and seek solutions of the form R ([J Z. For such a solution 

1 d d R d2 ([J d2 Z 

e (Fe e d(i 1 dq;2 dz2 

R + (;2-<1) + -2- = o. 

The last term depends on z only, and the first two are independent of z. 
Hence we must have . 

(36) 

The second equation leads, by similar reasoning, to 

(37) 

(38) 

If U is to be a one-valued function in the cylinder-which we assume 
to have the axis of the cylindrical coordinates as axis-, ([J must be a 
function of rp with period 2n. It follows that in (37), c2 must have the 
form c2 = - n 2, where n is an integer. Hence 

([J = cos n rp or sin n rp . 

The character of c1 will depend on the given boundary" conditions. 
We leave it undetermined for the present. It can be made to disappear 
from the equation (38) by introducing a new independent variable, 
x = ic~e. The equation then becomes 

(39) 
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This is known as Bessel's eqttation, and its solutions, as Bessel 
fttnctions 1 • 

By the power series method, a solution of this differential equation 
may be found: 

(40) 
( x)n+2k 

; (_I)k "2 
R=ln(x)=2: k!(n+k)! 

o 

xn [X2 X4 ] 
=2n .n! 1- 2 (2n+2)+2.4(2n+2)(2n+4)-···· 

The series is always convergent, and represents Bessel's fztnction of the 
first kind of order n. No solution of the differential equation other than 
a constant times In (x) remains finite at the origin. 

When we know a particular solution of an ordinary homogeneous 
linear differential equation of the second order, we may reduce the 
problem of finding the general solution to a quadrature. Thus if we 
substitute in the differential equation 

and integrate the resulting differential equation for u, we find 

R = cIn(x) f X~~X) + c' In (X) . 

The second term of this solution is the Bessel function of the first kind. 
The first term, with the constant of integration properly fixed, is 
Bessel's fttnction of the second kind of order n. 

If the problem is to find the stationary distribution of temperatures 
in an infinite homogeneous cylinder 

e:s:;,a, z>O, 

the temperature being kept at ° on the curved surface 12 = a, and kept 
at values given by a function f (e) on the plane face z = 0 (where, for 
simplicity we have assumed these temperatures to depend only on e), 
we should expect the internal temperatures to be independent of f{!. 

Accordingly, we should take n = 0. Then we should have, as particular 
solutions 

1 BESSEL, Untersuchungen des Theils der planetarischen Slorungen, welcher aus 
der Bewegung der Sonne entstehl, Abhandlungen der Koniglichen Akademie der 
Wissenschaften zu Berlin, mathematische Klasse, 1824, pp. I-52. Special cases 
of Bessel functions had been considered by D. BERNOUILLI and by EULER. See 
,V ATSON, Treatise on the Theory of Bessel Functions, Cambridge, 1922, Chapter I. 
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If the temperatures are to be bounded, the first of these must be rejected. 
Solutions involving Bessel functions of the second kind are also to be 
rejected, since they become infinite for e = o. Accordingly, we take 
the solution 

and since the temperature is to be 0 on the wall e = a, for all z, we 
must have 

Now Jo (x) has only real positive roots, and of these it has an infinite 
num:her1). Let them be denotea, in order of increasing magnitude by 

(Xl' ~,CXa, ••.• The condition on the wall will then be satisfied if y CI = at", a 
n = 1, 2, 3, .... The problem is thus reduced to the examination of 
the question as to whether the desired solution can be built up of the 
particular solutions, that is, in the form 

( fl) -~z + AsJo OC3 a e a + .... 
If we are to satisfy the condition on the plane face of the cylinder, we 
must be able to develop the function 

!(e) =! (at) = F(t) 

in a series of the form 

o<t<l. 

This is always possible for sufficiently smooth functions. Moreover, it 
can be shown that the functions 

Jo (OCit) ft and Jo (OCkt) ft. i =l= k, 

are orthogonal on the interval (0, 1) and that 

I 

J J~ (OCit) tdt = ~ Ii (exi) , 
o 

so that if the series is uniformly convergent the coefficients are given by 

I 

Ai = n~ati) f F (t) Jo (OCit) tdt. 
o 

1 See RIEMANN-WEBER, 1. c., Vol. I, p. 337. 



204 Potentials as Solutions of Laplace's Equation; Electrostatics. 

SPecial Spherical Harmonics. The differential equation for surface 
spherical harmonics of order n, obtained by the method of sUbstituting 
a product U = en S in Laplace's equation, is 

f)2S + . _" f) . _" oS ( 1)' 2 -"S 
OffJ2 sm'u' of} sm 'U o{t + n n + sm u = 0, 

or, with the independent variable u = cos {}, 

02 S + (1 _ u2) [~ (1 _ u2) 0 S + n (n + 1) SJ = O. 
OffJ2 OU OU 

If we seek spherical harmonics which are products of functions each of 
one variable, S = if> P, we see at once that if> must be of the form sin cfP, 
cos c fP, or an exponential function. The' only cases in which S will be a 
one-valued function of position on the whole sphere are those in which 
if> is cos mfP or sin mfP, where m is an integer. Accordingly, we take 

S = cos mfP P(u), or S = sin mfP P(u) , 

and the differential equation for P (u) is 

(41) d dP [ m 2 ] -(1-11,2)_+ n(n+l)---o P=O. 
du d!t 1 - U" 

This is found to have the solution 

m dm 
P = (1 - u2)T --- P (u) = pm (U) dum n n' 

where P n (u) is the Legendre polynomial of degree n, and P: (u) is the 
usual notation for this solution of the equation (41). It is obviously 
identically 0 for m > n, but not for m < n. Expressed in terms of {}, 
it is a polynomial of degree n - m in cos {}, multiplied by sin m{}. Giving 
to m the values 0, 1, 2, ... n, we find the surface spherical harmonics 
of order n: 

P n (u), 

P~(u) cos fP, 

P~ (u) cos 2fP, 

P~(u) sin fP, 

p~ (tt) sin 2fP, 

These functions are clearly independent, and there are 2 n + 1 of them. 
They therefore comprise a complete list of surface spherical harmonics 
of degree n, in terms of which any other can be expressed as a linear 
homogeneous combination. They are orthogonal on the surface of the 
unit sphere-in fact the integral with respect to fP of the product of 
any two of them, from 0 to 2 n is O. Moreover, it can be shown that 

1 

f[ pn (u)J2 du = _2_ ~1Z+ m)! 
n 211 + 1 (II - m)! . 

-1 
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The above special surface spherical harmonics vanish on equally spaced 
meridians, and on par3lIel circles, dividing the surface of the sphere into 
curvelinear rectangles. They are sometimes called Tesseral Harmonics. 
These, and related functions in which n and m are not both integers are 
adapted for use in problems connected with regions bounded by spheri­
cal surfaces, meridian planes, and cones through parallel circles. 

Lame Functions. Laplace's equation in ellipsoidal coordinates may 
be written 

Assuming the product form U = LM N for the solution, we find 

(fl- 'V) L* + (A - 'V)M* + (A - fl)N* = 0, 

where L*, M*, N* are functions of A, fl, 'V, alone, respectively. If we 
solve this equation for L*, we see that L* is linear inA, with coefficients 
apparently depending on fl and 'V. But as L* is independent of these 
variables, we must have L * = aA + b, where a and b are constants. 
It is similar with M* and N*. It turns out that L, M, and N are all 
solutions, in different intervals, of the same differential equation 

,r:::t::\ a ,/- dL r 9? (s) as r 9? (s) ds + (as + b) L = 0, 

belonging to the same values of the parameters a and b. The solutions 
of this differential equation are known as Lame functions. They are 
suited to the treatment of problems connected with regions bounded by 
ellipsoids, or by parts of any surfaces belonging to a system of confocal 
quadrics. 

It thus appears that each region gives rise to functions more or less 
characteristic of the region, and also to a problem of developing an 
arbitrary function as an infinite series in the characteristic functions 
with constant coefficients. The treatment of such questions cannot be 
taken up here, as it would take us too far from the study of the funda­
mental properties of Newtonian potentials. The above indications have 
merely the purpose of suggesting the methods that are available for the 
actual solution of problems connected with Laplace's equation, and for 
the attaining of numerical results; and at the same time they may give 
some idea of the extent to which analysis is enriched by a great variety 
of interesting functions, which are useful in treating the most diverse 
problems. The reader who wishes to pursue the subject farther will find 
ample material. From the standpoint of actual application to problems, 
without much concern as to questions of convergence, he will find stimu-
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lating and rich in material BYERLY'S Fourier Series and Spherical Har­
monics, Boston, 1902. He will also find interesting the chapters devoted 
to the subject in the book of RIEMANN-WEBER (1. c. footnote p. 200), and 
COURANT-HILBERT, Methoden der Mathematischen Physik, Berlin, 1924. 
A more extensive study of the properties of the various functions may 
be made with the help of WHITTAKER and WATSON, A Course in Modern 
A nalysis, Cambridge, 1927; BacHER, Die Reihenentwickelungen dey 
Potentialtheorie, Leipzig, 1894. See also CARSLAW (1. c. footnote p. 200). 
References to further material may be found in the Encyklopiidie der 
mathematischen Wissenschaften, Vol. II, especially II, A. 10, Kugel­
funktionen etc., A. WANGERIN; II, C, II, Allgemeine Reihenentwickelungen, 
E. HILB U. O. SZASZ. 

9. Electrostatics; Non-homogeneous Media. 
We have considered briefly some problems in electrostatics in which 

it was assumed that there was but one medium present. Before taking 
up the coexistence of different dielectrics, let us consider the effect 
on the force due to a single unit point charge at 0, of a homogeneous 
dielectric not a vacuum. The charges on the molecules of this di­
electric, having a certain degree of mobility, will move under the in­
fluence of the force. We shall reason in a heuristic manner, our object 
being to make plausible the physical laws which we shall formulate. 
Their actual justification must rest on experiment. 

Thinking of the molecules as like small conductors, we should expect 
the charges to move so as to reduce the potential within each to a con­
stant. Throughout the small region occupied by this conductor, we may 

regard the potential U' = ~, of the unit charge at 0, as linear. If the e 
gradient of this linear function were increased, the potential within 
the conductor could be brought to a constant value again by multiplying 
the induced charges by the same constant, so that the degree of electri­
fication of the molecule is proportional to the inducing force. The charge 
on the molecule being negative on the side toward 0, positive on 
the side away from 0, and of total amount 0, its effect at moderate 
distances away will be sensibly that of a doublet, with axis in the 
direction of the radius from 0, and of moment proportional to the in­
verse square of the distance from O. The factor of proportionality k will 
depend on the character of the molecule. 

Let us now consider the potential of a uniform distribution of these 
doublets throughout space. We shall ignore the effects of. the molecules 
in inducing charges on each other, a reasonable procedure, in view of 
their distances apart in comparison with their dimensions. Also, we 
shall ignore their tendency to move under the force of the charge at O. 
The sum of their combined effects will be satisfactorily given by an in-
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tegral. If there is an average of N molecules per unit of volume, the in­
tegral will be that giving the potential of a distribution of doublets of 

moment density N,~, where e' is the distance of the point Q at which 
(! 

the doublet is situated, from 0 (fig. 19, p. 124). If r denote, as usual, the 
distance from Q to the point P (a distance e from 0) at which the poten­
tial is to be reckoned, the potential of the doublet will be (p. 66) 

Nk a 1 
((2 a(!' r' 

so that we have, for the potential of the induced charges, 

U" = Iff N k ~ ~ d V 
(2'2 a r/ r ' 

the integral being extended over the whole of space. We shall, however, 
for a later application, first evaluate it when extended over the region 
between two spheres about 0 of radii a and b, a < b: 

77: 2:1: b 

U" = N kf f f~- ~ ~ 0'2 dn' sin {} dm d{) 
(/2 a (!' r ~ '" , 

o 0 a 

JT 2;rr [ Iff 1 JO'~b = 4nNk -4 '2 -e'2sin{)dcpd{} - . 
:rr(! r I/~a 

o 0 

The quantity in brackets is the potential at P of a unit charge dis­
tributed uniformly on the sphere of radius e' about 0, and so is equal 

lId· P . ·d ··d h hAd to -, or to -;-, accor mg as IS outSI e or mSI e t e sp ere. ccor-
(! (! 

ingly we have the three cases, 

U" = 4n Nk [~ - ~ ] for e < a < b, 

(42) U" = 4nNk [~ - ~J for a < e < b, 
b Q 

U" = 0 for a < b < e. 
In particular, if we extend the integration over the whole of space 

by allowing a to approach 0 and b to become infinite in the second ex­
pression, we find 

(43) U"=-4nNk~. 
(! 

The constant N k is always such that this paten tial is less in magnitude 

than the inducing potential U' = ~, so that the effect of the surrounding 
(! 
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dielectric is to diminish the total potential in a constant ratio. We write 

(44) U= U' + U/I=~ 
sr' 

where 
1 

8= 1-4nNk 

is known as the dielectric constant, or the inductive capacity of the me­
dium. The formula would indicate that its value is never less than 1, 
and no substance has been found which is not in harmony with this 
result. 

We remark that if the dielectric had been different outside a neigh­
borhood at P, the effect on the potential would simply have been to 
.3odd to it the potential of distant distributions of charges. We are thus 
led to the first of the physical assumptions with respect to the effects 
Df dielectrics: 

(I) The charges present in space produce an electric field of force 
F (X, Y, Z), which is conservative, and therefore has a potential U, 

F=-gradU. 

The potential of an isolated point charge e at Q differs from 

e 
8Y 

by a function which has, at Q, the character of the potential of distant 
.charges. 

If the above potential of an isolated unit point charge be multiplied 
by a density and integrated over a volume or surface, we should have 
a. gravitational potential with the same density divided by 8, except 
for the potential of distant charges, and so should be led to 

(II) The potential of a distribution of volume density Yv satisfies, 
.3ot P, the differential equation 

/7 2 U = - 4n ~J!2 
8 ' 

.3ond the potential of a surface distribution of density Cf is continuous, 
at points of the surface, together with its tangential derivatives, 
while its normal derivatives satisfy the equation 

au au (J" 
-- ---=-4n·-on+ un_ [; . 

A surface separating a medium of dielectric constant 81 from one of 
dielectric constant 82 requires consideration, even if no inducing charges 
are on it. Here the induced doublets on one side of the surface have 
different moments from those on the other side, and there is accordingly 
.3on unbalanced induced charge on the surface. In order to obtain a 
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suggestion as to the situation, let us consider the case of the field of a 
unit charge, at the center of a sphere of radius R separating two di­
electrics. Employing the formulas (42), with N k replaced by its 
value in terms of 81 inside the sphere, and in terms of 82 outside, and 
adding in the potential U' of the inducing charge, we find for the 
potential within and without the sphere, the values 

U t = elle + (:2 - :J~, 
I 

U.=-. 
132 e 

We are thus led to the assumption: 
(III) On a surface separating a medium with one dielectric constant 

from one with another dielectric constant, no inducing charges being 
on it, the potential is continuous, together with its tangential deriva­
tives. The normal derivatives, however, are in general discontinuous, and 

au au 
82a-- 81 a- = O • . n+ n_ 

It has been customary to call the charges placed in the field, as 
opposed to those induced in the dielectric, the "true" charges, while the 
induced charges, as they become evident when there are breaks, or 
variations, in the inductive capacity 8, have been called the "free" 
charges. The densities x' and a' of the "free" charges are given, if in­
ducing charges are at a distance, by 

172 U 4 I d _8 U _ 8 U = _ 4 ~ a' . = - nx an - ,. 
an+ an_ 

In accordance with the modern electronic theory of the atom, however, 
these old terms are inappropriate, for the "free" charge is just as actual 
as the "true" charge. The above equations, as a matter of fact, give 
exactly the total charge present. It would be better to call this total 
charge the true charge, and to call the charges introduced by the experi­
menter, rather than those induced in the dielectric, the free charges, for 
they are free to move on the conductors on which they are placed, while 
the charges induced in the dielectric are bound, each to its molecule. 

(IV) e U remains bounded as e becomes infinite, e being the distance 
from some fixed point. 

We now consider briefly two cases in which two dielectric media are 
present. We have just found the potential of the field of a point charge 
at the center of a sphere separating two homogeneous dielectrics. We 
note that in the first dielectric, the effect of the second makes itself felt 
merely by the addition of a constant to the potential, while in the sec­
ond dielectric, the situation is as if it alone filled space. The lines of 
force are exactly as they would be in empty space; only the magnitude 
of the force experiences a break on the surface separating the media. 

Kellogg, Potential Theory. 14 
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The situation is different, however, if the dividing surface is other 
than a sphere about the inducing charge. Let us consider the field of a 
point charge at the origin, the dividing surface being the plane x = a. 
We seek the potential on the assumption that it is symmetric about the 
x-axis, so that we may confine ourselves to a meridian plane, say the 
(x, y)-plane. If we write, in this plane, 

u= 1 -l-V 
8 1 l x2 + y2' , 

V will satisfy Laplace's equation everywhere except on the plane x = a, 
by (II), will be continuous everywhere by (I) and (III), and, also by (III), 
will satisfy the equation 

_ a + Cl a v I = _ ~ a + C2 av I . 
(a2 + y2)"1 ax 11 8 1 (a2 + y2)"i ax /2 

We can satisfy the conditions on V by assuming that in the second 
medium it is the potential of a point charge at 0, and in the first, of a 
point charge at the symmetric point (2a, 0, 0): 

A A 
V = , x < a, V = , a ~ x, 

l(2a-x)2+ y2 fx 2 +y2 -

the coefficient A being the same in both cases so that the potential will 
be continuous. If we substitute these expressions for V in the previous 

o~-----------+-----------

equation, we find 

Hence the required potential is 

1 u=--===-

u=_2 __ 1_ 
101 + e2 .X2 + y2' 

1 

x<a, 

a<x. 

Comparing the situation with that 
in which the bounding surface was 
a sphere, we see that in the first 
medium the effect of the presence 
of the second amounts to more than 

Fig. 25. the addition of a constant, whereas 
in the second medium the first makes itself felt as if the dielectric 
constant of the second were replaced by the arithmetic mean of the two. 
The lines of force in the first medium are now the curved .lines due to 
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two Newtonian particles as discussed in the exercises of page 3l. 
They experience a refraction on the boundary, becoming straight in the 
second medium (fig. 25). 

This problem also gives a basis for illustrating the effect of a second 
medium at some distance away. We see that if either the dielectric con­
stants are nearly equal, or the bounding surface is at a great distance, 
a large, the effect of the second medium is slight. This makes plausible 
the assumption made in the earlier sections of this chapter. 

For further study of electrostatics, the reader may consult the 
appropriate chapters in ABRAHAM, Theorie der Elektrizitiit, Leipzig, 1918; 
JEANS, Electricity and Magnetism, Cambridge, 1925; MAXWELL, A 
Treatise on Electricity and Magnetism, Oxford, 1904; RIEMANN-WEBER, 
Die Differential- ~tnd Integralgleichungen der Mechanik ~tnd Physik, 
Braunschweig, 1925. 

Chapter VIII. 

Harmonic Functions. 
1. Theorems of Uniqueness. 

We have seen that Newtonian potentials are solutions of Laplace's 
equation at'points free from masses. We shall soon learn that solutions 
of Laplace's equation are always Newtonian potentials, so that in study­
ing the properties of such solutions, we are also studying the properties 
of Newtonian fields. We shall find that a surprising number of general 
properties follow from the mere fact that a function satisfies Laplace's 
equation, or is harmonic, as we shall say. 

More definitely, a function U (x, y, z) is said to be harmonic at a 
point P (x, y, z) if its second derivatives exist and are continuous and 
satisfy Laplace's equation throughout some neighborhood of that 
point!. U is said to be harmonic in a domain, or open continuum, if it is 
harmonic at all the points of that domain. It is said to be harmonic in 
a closed region, that is, the set ot points consisting of a domain with its 
boundary, if it is continuous in the region, and harmonic at all interior 
points of the region. If the domain or region is an'infinite one, a supple­
mentary condition will be imposed which will be given in § 3, p. 217. 
For the present, we confine ourselves to bounded regions. Functions 
will be assumed always to be one-valued unless the contrary is explicitly 
stated. 

Since f72 U = 0 is a homogeneous linear differential equation, it 
follows that if U1 and U2 are both harmonic in any of the above senses, 

1 The reader will do well to revert, in order to refresh his memory, to Chapter IV, 
where the notions of domain, region, neighborhood, etc. are defined. 

14* 
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61 U1 + C2 U2 also is harmonic in the same sense, c1 and C2 being con­
stants. It is the same for any finite sum. We shall consider infinite 
sums in Chapter X. 

A potent instrument for the derivation of properties of harmonic 
functions is a set of identities following from the divergence theorem, 
and known as Green's theorems!. Let R denote a closed regular region 
of space, and let U and V be two functions defined in R, and continuous 
in R together with their partial derivatives of the first order. Moreover, 
let U have continuous derivatives of the second order in R. Then the 
divergence theorem holds for R with the field 

DU DU 
X=Va;, Y=V Dy' 

and it takes the form 

(I) SSS V[72UdV +SSSW U '[7V)dV= SS v~~ dS, 
R R· 5 

where n means the outwardly directed normal to the surface S bounding 
R, and [7 U . [7 V means the scalar product of the gradients of U and V, 
that is, 

[7U.[7V = DU DV + ~U DV + aU DV. 
Dx Dx dy Dy dz iJz 

The equation (I) will be referred to as Green's first identity. 
If U is harmonic and continuously differentiable 2 in R, (I) is appli­

cable, and the first term vanishes. If we write V = 1, the identity 
becomes 

(1) 

and we have 

Theorem 1. The integral of the normal derivative of a function vanishes 
when extended over the boundary of any closed regular region in which the 
function is harmonic and contt:nuously differentiable. 

Later (§ 7, Theorem XIII, p. 227) we shall see that a converse of this 
theorem is true, namely that if the integral when extended over the 
boundary of any closed regular region in a domain vanishes, the function 
is harmonic in that domain. We thus have a means of characterizing 
harmonic functions without supposing anything about its derivatives 
of second order. 

1 GEORGE GREEN, L c. footnote page 38. 
2 It will be noticed that the hypothesis that U is harmonic in R does not 

involve the supposition that its second derivatives are continuous in R, but only 
in the interior of R. However, the divergence theorem is applicable without 
further hypothesis, as is seen by § 11 of Chapter IV (p. 119). 
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We next identify V with U, still supposing U harmonic. Green's 
identity then becomes 

(2) 

If U is the velocity potential of a flow of fluid of density 1, the left hand 
member of this equation represents twice the kinetic energy of that part 
of the fluid in R, and hence so does the right hand member. If the right 
hand member vanishes, the kinetic energy in R vanishes, and there 
should be no motion. The equation thus yields several theorems, which 
we proceed to formulate. 

First, suppose U = 0 on s. Then, since by hypothesis (17 U) 2 is con­
tinuous in R, and never negative, it must vanish at all points of R. 
Hence 

au=~=au=o 
ax dy dz ' 

and U· is constant in R. But U = 0 on 5, and as it is continuous in the 
closed region, U = 0 throughout R. Thus follows 

Theorem II. If U is harmonic and continuously differentiable in a 
closed regular region R, and vanishes at all points of the boundary of R, it 
vanishes at all points of R. 

We deduce at once an important consequence. Let us suppose that 
U1 and U2 are both harmonic in R, and take on the same boundary 
values. Then their difference is harmonic in R and reduces to 0 on the 
boundary. Hence it vanishes throughout R. We may state the result 
as follows. 

Theorem III. A function, harmonic and continuously differentiable 
in a closed regttlar region R, is uniquely determined by its values on the 
boundary of R. . 

The surface integral in (2) will also vanish if the normal derivative 
vanishes everywhere on s. Again we see that as a consequence, U will 
be constant in R, although we can no longer infer that it will vanish. 
Indeed the equation (2) is satisfied by any constant. 

Theorem IV. If U is one-valued, continuously dlfferentiable and har­
monic in the closed regular region R, and if its normal derivative vanishes 
at every point of the boundary of R, then U is constant in R. Also, a func­
tion, single valued and harmonic in R, is determined, save for an additive 
constant, by the values of its normal derivative on the boundary. 

Consider a fluid, flowing in a region consisting of a torus, with the 

potential U = tan -11'. , where we take as z-axis the axis of the torus. The 
x 

flow lines are easily seen to be circles with the z-axis as axis, and thus 
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there is no flow across the surface of the torus. That is, the normal deri­
vative of U vanishes over the whole surface of R, and yet U is not 
constant in R. Why is this not a contradiction of the last theorem? 
The answer is that the potential is not one-valued, and it is for this 
reason, in spite of a general statement at the outset that we should 
consider only one-valued functions, unless the contrary was stated, that 
the hypothesis that U shall be one-valued has been expressly introduced 
in the theorem. 

If U denotes the temperature of an isotropic homogeneous body 
filling the region R, Theorem II shows that if the boundary of R is 
kept at the constant temperature 0, there is no thermal equilibrium 
possible unless the temperatures are everywhere 0 in the body. Theorem 
IV shows that if the surface of R is thermally insulated, the only sta­
tionary temperatures possible occur when they are everywhere equal. 

Suppose now that the body is neither thermally insulated nor has 
its boundary kept at zero temperature, but that instead, it is immersed 
in a medium of constant temperature Uo. Then heat will escape through 
the surface at a rate proportional to the difference in temperature of the 
body at the surface, and the surrounding medium, according to the law 

(3) 
au 

- an = h (U - Uo), 

where h is an essentially positive quantity, usually constant, called the 
surface conductivity. This is a physical law which. is applicable when 
there is no radiation of heat from the body. Under these circumstances 
a steady state of temperatures in the body is only possible when U = Uo 
throughout the body. For, under these circumstances the equation (2), 
applied to the difference U - Uo becomes 

The two terms on the left cannot either of them be negative, and hence 
both must vanish. The integrals can only vanish, since the integrands 
are continuous and never negative, when the integrands vanish. We 
are thus led to 

Theorem V. Let U be harmonic and continuously differentiable in the 
closed regular region R, and satisfy the condition on the boundary 

au 
7fn+ hU =g, 

where hand g are continuous functions of position on S, and h is never 
negative. Then there is no different function satisfying the same con­
ditions. 
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Exercises. 
1. Prove Theorem I by means of the fact that if the divergence of a field 

vanishes at every point of a regular region, the total divergence of the field for 
that region vanishes. 

2. Show that in aclosed vessel bounding a regular simply connected region, 
a steady irrotational flow of a fluid of density 1, other than rest, is impossible. 

3. Prove that if " is continuous in the closed, regular region R, and g is con­
tinuous on the boundary S of R, then there is not more than one function U, 
(a) continuous together with its partial derivatives of first order in R, (b) having 
continuous derivatives of the second order in the interior of R which satisfy Pois­
son's equation 

j:72U = -4:n;", 

and (c) taking on the boundary values g. Give at least one more uniqueness 
theorem on Poisson's equation. 

Remarks on Uniq%eness Theorems. We have suggested, in the pre­
ceding theorems, rather than made an exhaustive study of, the possible 
theorems of uniqueness on harmonic functions. Suppose, for instance, 
that U vanishes on a part of 5, while its normal derivative vanishes on 
the rest. Then U will be 0, and any harmonic function will be uniquely 
determined if the conditions imposed on it and any second function 
have as consequence that their difference is subjected to the boundary 
conditions on U. Generally speaking, we have a uniqueness theorem 
corresponding to any boundary conditions which make the surface 
integral in (2) vanish. 

Every uniqueness theorem suggests an existence theorem. For 
instance, if continuous boundary values are given on 5, there is not 
more than one harmonic function which takes them on. But is there 
one? As a matter of fact, corresponding to each of the uniqueness theo­
rems given, there is a true existence theorem, and these existence 
theorems are among the most fascinating in the history of mathematics, 
and have been studied for a whole century. We shall revert to them in 
Chapter XI. 

2. Relations on the Boundary between Pairs of Harmonic 
Functions. 

Let us now suppose that both U and V are continuously differentiable 
in R and have continuous partial derivatives of the second order in 
R. We then have the identity (I), and in addition, the identity obtained 
by interchanging U and V. If the resulting equation is subtracted from 
(I), the result is Green's second identity, 

(II) fff(UV 2 V - VV 2 U) dV = ff(u ~: - V~~) dS. 
R 5 

From this, we deduce at once 
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Theorem VI. If U and V are harmonic and continuously differentiable 
in the closed reg~tlar region R, then 

rJ (u a v _ V a U) d 5 = 0 J. an an ' 
s 

5 being the boundary of R. 

We shall make much use, from time to time, of the identity (II) 
and the Theorem VI. In the present section, however, we shall confine 
ourselves to some simple applications of the theorem which are well 
adapted to use as exercises. 

Exercises. 
1. Show that Theorem VI remains valid if instead of assuming U and V har­

monic, we assume that they are solutions of one and the same equation 172 U = k U, 
subject to suitable conditions of continuity. 

2. Show that any two spherical harmonics of different orders are orthogonal 
on the surface of any sphere about the origin. Suggestion. Write U = (t Sn {tp, {f), 
V = (rSm (tp,{)), and employ Theorem VI. 

In particular, prove again the orthogonality of two Legendre polynomials 
of different degrees. 

3. Show that the functions 

U = (A cos 11X + B sin 11X) e ny , V = (Ccosmx + D sinmx) emy 

are harmonic in the region 0 ;;;; x ;;;; 2 n, 0 ;;:;; y ;;:;; 1, 0 ;;;; z ;;;;; 1. Infer that if m 
and 11 are integers m2 =l= n2, 

2n 2~ 2n 

J cos mx cos 11X dx = J cos mx sin nx dx = J sin mx sin nx dx = O. 
o 0 0 

4. If U = u 1 (A) u 2 (p,v) and V = v1 (A) v2 (p, v) are harmonic in the ellipsoid 

A, p" and v being ellipsoidal coordinates based on this ellipsoid, then 

U 
and 

0/ (A - f!) (J, - v) 

V 

0/ (). - p) (). - v) 

are orthogonal on any ellipsoid A = .1.1 < 0, confocal with the above, provided 

u1 (.1. 1) =l= 0, V 1 (}'1) =l= 0, $11 (}'1) vi (}'1) - ui ().1) v1 (All =l= O. 

3. Infinite Regions. 
The divergence theorem, on which the results of the first two 

sections are based, is not valid for infinite regions without further 
hypotheses on the functions involved. It is, however, highly desirable 
to have similar theorems for functions which are harmonic outside 
a given bounded surface-for instance, in connection with problerr:s 
on conductors. 
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Although we defined a regular region in Chapter IV, § 9 (p. 113) as 
a bounded region, let us now understand that at least when qualified 
by the word infinite, it may comprise unbounded regions. An infinite 
regular region would then be a region bounded by a regular surface 
(and hence a bounded surface), and containing all sufficiently distant 
points. 

Let R be an infinite regular region, and £ a sphere, containing the 
boundary of R in its interior. Then the divergence theorem holds! for 
the region R', consisting of the points of R within and on £: 

fff(~~ + ~: + ~~) dV = ff(Xl + Ym + Zn) dS 
R' S 

+ ff(Xl + Ym+Zn)dS, 
2' 

provided X, Y, Z satisfy the requirements of Chapter IV (p. 119). In 
order to extend the theorem to the whole of R, we let the radius e of 
£, whose center we think of as fixed, become infinite. If then 
(4) e2 X, ri Y, e2 Z approach 0, 

uniformly as to directions, as e becomes infinite, the integral over £ 
tends to 0, and we have the divergence theorem for R, the volume 
integral over R being defined as the limit for spherical regions with 
fixed center. 

We shall now impose on the functions U and V of the opening sec­
tions, the additional conditions for infinite regions, that 

U 2 au 2 au 2 au . V 2 av 2 av 2 av e ,e ax' e ay' e iJz' e , e ox' e dy' e oz' 

shall be bounded in absolute value for all sufficiently large e, where e 
is the distance from any fixed point. Of functions satisfying this con­
dition, we shall say that they are regular at infinity. This, it will be 
recalled, is the character of Newtonian potentials of bounded dis­
tributions. If M is a bound for the absolute value of the quantities 
listed above, then for the functions X, Y, Z of § 1 (p. 212), we have 

I 02 X I = I V ~: < llr~![ I 2 Y I < M2 I 2 Z I :::;; M2 ... e e ox 1- e ' e - e' e 1-· e ' 
and the condition (4) is fulfilled. Under these circumstances, the identi­
ties (I) and (II) hold for infinite regular regions. 

We shall from now on understand that when a function is said to be 
harmonic in an infinite domain or region, this includes the demand that 
it shall be regular at infinity. 

1 This will probably be seen most easily by use of the second extension 
principYe (p. 113). R' may be approximated to by a regular region formed by 
cutting out from R' a small tube connecting a face of the boundary of R with 
~. The resulting region is bounded by a single regular surface. 
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Let us now see whether the theorems derived for finite regions hold 
for infinite regions. In the first place, V = 1 is not regular at infinity, 
so that Theorem I cannot be derived as it was for bounded regions. 
Indeed, it is not always true, as can be seen from the example U = Ijr. 
But if we apply Theorem I to the portion R' of R included within and 
un a regular surface 1: enclosing all of the boundary S of R, we obtain. 

Theorem I'. If R is a regular infinite region, and U is harmonic and 
continuously differentiable in R, the integral 

II ~~ dS 
z 

has one and the same value when extended over the boundary of any finite 
regular region containing all the boundary of R in its interior. 

In all the later theorems of § 1 and § 2, U and V are assumEd to b:o 
harmonic, and so are regular at infinity if R is infinite. Hence these 
theorems hold also for infinite regions. 

Exercises. 
1. Apply Theorem II to prove the uniqueness of the potentials in the problems 

on static charges on conductors in the last chapter. 
2. Show that if U is harmonic throughout all of space, it is identically O. Sug­

gestion: consider the limiting form of equation (2). 
3. Show that if U and V are harmonic in the infinite region R, the volume 

integrals in (I) and (II) are convergent in the strict sense. . 

4. Any Harmonic Function is a Newtonian Potential. 
We may now substantiate the statement made at the beginning of the 

chapter, to the effect that any harmonic continuously differentiable 
function is a Newtonian potential. This is done by means of Green's 
third identity. Let R be any regular region, bounded or infinite, and let 
p (x, y, z) be any interior point. We take for V, in the identity (II) the 
function 

V=~ 
r ' 

where r is the distance from P to Q (c;, 1), '), ;, 1}, " being now taken 
as the variables of integration in that identity, in place of x, y, z. Since 
P is interior to R, the identity cannot be applied to the whole region R, 
so we surround P with a small sphere a with P as center, and remove 
from R the interior of the sphere. For the resulting region R', we have, 

since ~ is harmonic in R', 

{5) 
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Here 'II denotes the normal to the boundary of R; pointing outward from 
R, so that on (J, it has the direction opposite to the radius r. Hence the 
~ast integral may be written 

(6) ff (u r12 + ~ ~~)r2dQ = U·4n + ffr ~~ dQ, 
n n 

where U is a value of U at some point of (J, and the integration is with 
respect to the solid angle subtended at P by the element of (J. The limit 
-of the integral over (J in (5), as the radius of (J approaches 0, is thus 
4 n U (P), and the volume integral on the left converges to the integral 
-over R. We thus arrive at the third identity 

(III) U(P) = - ~iIJV2u dV + ~iJau !.dS - ~iJu ~!.dS. 
4n r 4n av r 4n av r 

R S S 

The hypotheses underlying this identity are that U and its partial 
-derivatives of the first order are continuous in R, and that its partial 
-derivatives of the second order are continuous in the interior of R, and 
that the volume integral is convergent if R is infinite. In this case we 
:assume also that U is regular at infinity. 

The first term on the right is the potential of a volume distribution 

-of density - 174
2 u, the second is the potential of a ,distribution on the 
n au 

boundary S of R, of density :: ' while the third is the potential of a 

-double distribution on S of moment - 4~. Thus not only do harmonic 

junctions appear as Newtonian potentials, but so also do any functions 
with sUfficient differentiability. In particular, the identity (III) gives 
:at once 

Theorem VII. A function, harmonic and continuously differentiable 
in a closed-regular region R may be represented as the sum of the potentials 
()f a simple and of a double distribution on the boundary of R. 

If U is harmonic in any region, it is also harmonic and continuously 
-differentiable in any region included in the first, and hence can be rep­
resented as the potential of spreads on the surface of the included region. 
Thus we have a more general aspect of the facts illustrated on page 197, 
that different distributions mayo, in restricted portions of space, have 
(me and the same potentiaL If, however, two distributions are required 
to have the same potential throughout space, it can be proved that the 
two distributions must be essentially the same. 

Before taking this up, however, we should notice a further conse­
quence of Theorem VII. Let T be any domain, regular or not, and let U 
be harmonic in T. Then U is harmonic in any sphere lying entirely in 
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T, and is thus, in that sphere, the potential of Newtonian spreads on the 
surface. But we have seen in Chapter V, § 4 (p. 139), that such spreads 
are analytic at the points of free space, and hence in the interior of the 
sphere. As such a sphere can be described about any point of T, we have 

Theorem VIII. If U is harmonic in a domain, it is analytic at all 
the points of that domain. 

The extraordinary fact thus emerges that if a function has con­
tinuous derivatives of the second order in a domain, the circumstance 
that the sum of a certain three of these derivatives vanishes throughout 
the domain, has as consequence, not only the existence and continuity of 
the derivatives of all orders; but also that the function is analytic 
throughout the domain. This striking property of Laplace's equation, 
that it has only analytic solutions, is shared by a class of partial 
differential equations, namely those of elliptic type1 . 

5. Uniqueness of the Distribution Producing a Potential. 

Let U be continuous together with its derivatives of the first and 
second orders except on a finite number of regular surfaces S (open or 
closed) without common points. We suppose further that U and its 
derivatives of first and second orders at P, approach limits as P ap­
proaches any point Po of S, not on an edge, from either side of S. More­
over, we assume that U, together with its limiting values from one side 
near Po, constitute a function which is continuous at all points of a 
neighborhood of Po, on S and on the given side of S. This shall be true 
for either side, and also for the derivatives mentioned. We suppose that 
the second derivatives satisfy a Holder condition at all points not on 
S, and finally that U is harmonic at all points outside a sufficiently 
large sphere 1:. 

Formula III shows that in any regular region R containing none 
of the points of S, U is the potential of certain distributions. We now 
show that U can be represented, at all points of space not on S, as the po­
tential of one and the same distrib1dion. 

In the first place, the integral 

U = - ~- rIJf7 2 U dV 
1 4n J. y 

2,' 

is everywhere continuous, together with its derivatives of the first order, 
and has the same Laplacian as U. Hence U - U1 is everywhere harmonic, 

1 See Encyklopadie der Mathematischen Wissenschaften, II C 12, LICHTEN­

STEIN, Neuere Entwickelung der Theorie partieller Differentialgleich~tngen zweiter 
Ordmmg vom elliptischen Typus, pp. 1320-1324. 
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except on S, and has, with its derivatives of the first order, the same 
discontinuities as U .. 

If a positive sense be assigned to the normal to the regular surface 
elements of S, then 

U2 =_-.!..-f.J(OU -~~)~dS 
4n ov+ OV_ r 

S 

and 

1 f.J 0 1 U = - (U - U_)--dS a 4n + OV r 
S 

are harmonic except on S. Because of the hypotheses on U, it is not 
difficult to verify that the density and moment of these distributions 
admit derivatives of the first and second orders respectively, so that the 
results of Chapter V (Theorems IV, VI, VIII, XI) are applicable. Hence 

at all interior points of S. Accordingly, 

U - U1 - U2 - U3 

is harmonic except on S, and, together with its normal derivatives, has 
the same limiting values from either side at all interior points of S. If 
defined in terms of these limiting values, U - U1 - U2 - Ua becomes 
harmonic at all interior points of S (Theorem VI, p. 261). On the edges 
of S, this function is bounded, and hence can be so defined there as 
to be harmonic everywhere (Theorem XIII, p. 271). It then vanishes 
identically, by Exercise 2, page 218 and U has the value 

(7) U=--.!..-f.IJI72 U dV--.!..-f.J(~U -~)~dS 471 r 471 ov+ OV_ r 
I S 

+ 41nff(U+- U_) ;V ~dS 
S 

at all points of space not on S. It is thus at every point not on S the 
potential of a single set of Newtonian distributions, as stated. 

However, we are by no means assured that no other distributions 
produce the same potential. In fact, if we changed the volume densities 
at the points of a fil).ite number of regular surface elements, or the sur­
face densities on a finite number of regular curves, the integrals would 
be unaffected, and a different distribution would produce the same 
potential. But to exhibit this possibility, we have had to admit dis­
continuous densities. 
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We shall now establish 

Theorem IX. No potential due to spreads in regular regions and on. 
regular surfaces, finite in number, with continuous densities and moments, 
can be due to any other spreads of the same character. 

At the outset, it is clear that if two representations were possible, the 
spreads would have to be in the same regions and on the same surfaces. 
For if P were an interior point of one volume distribution, not on any 
spread of the second representation, the potential of the second spread 
would be harmonic at P, while that of the first would not. After sub­
tracting the potential of the volume distribution, a similar argument 
applies to the surfaces. 

Let x, a, and f1 denote the differences of the volume and surface 
densities respectively, of the two supposed representations, and of the 
moments of the double distributions. These functions are continuous, 
and they are densities and moments of a distribution producing a poten­
tial which vanishes everywhere, save possibly on the surfaces bearing 
spreads: 

(8) 0= fff~dV+ ff~dS+ fff1:v~dS. 
v 5 5 

Transposing the first two terms, we see that the double distribution is. 
the sum of a surface and of a volume distribution with continuous den­
sities. It is hence continuous, according to the results of Chapter VI, 
and so its moment is O. 

The last term is therefore absent from equation (8), and we see that 
the surface integral is the potential of volume distribution with con­
tinuous density. It therefore has derivatives of the first order which are 
everywhere continuous, and thus Gauss' theorem is applicable to the 
potential of the surface distribution. We apply it to the surface of a 
small sphere about any point of the distribution, and infer that the 
total mass within the sphere is O. If the density were anywhere positive, 
we could find a sphere, cutting out from the surface bearing the dis­
tribution, a piece on which the density was positive, since the density 
is continuous, and the total mass within the sphere would not then 
vanish. Hence the surface density is O. Then, applying Gauss' theorem 
to the potential of the volume distribution, we infer in the same way 
that its density is also everywhere 0, and the theorem is proved. 

Exercises. 
1. Show, by (III), that if U is harmonic throughout all of space, and regular at 

infinity it is identically O. 
2. In the last chapter, Exercise 2 (p.191), we saw that astatic charge on a circular 

lamina became infinite at the edge of the lamina. Theorem IX does not therefore­
show that but one distribution will produce the potential of the lamina. Prove 

that there is no other distribution, continuous at all interior points of the lamina, 
and producing the same potential. 
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6. Further Consequences of Green's Third Identity. 

The identity (III) gives us at once a new and more general proof of 
Gauss' theorem on the arithmetic mean. Let U be harmonic and 
continuously differentiable in R. Then 

(9) U(P) = ~ fJ!.!2!dS - ~ fJU~!dS. 
4;71; J. oV r 4;71; J. ov r 

S S 

If R is bounded by a sphere S, and P is at the center of the sphere, the 
first integral vanishes, by Theorem I, since r is constant on S. We have 
therefore ' 

U (P) = 4~r2 II U dS. 
'S 

This result is based on the assumption that U and its derivatives of the 
first order are continuous in the closed sphere. However, the derivatives 
do not appear here, and it is clear that we need make no assumptions 
as to their behavior on the boundary. In fact, the relation holds for any 
interior concentric sphere, and therefore, if U is continuous, it holds 
also in the limit, for the given sphere. Indeed, U may have certain discon­
tinuities if the limit of the integral is the integral of the limit of U, 
properly understood. We content ourselves, however, with the following 
enunciation. 

Gauss' Theorem of the Arithmetic Mean. If U is harmonic in a 
sphere, the value of 'u at the center of the sphere is the arithmetic mean of 
its values on the surface. 

As a corollary, we deduce 

Theorem X. Let R denote a closed bounded region (regular or not) of 
space, and let U be harmonic, but not constant, in R. Then U attains its 
maximum and minimum values only on the boundary of R. 

That U actually takes on its extreme values is a consequence of its 
continuity in the closed region R (see Exercise 5, page 98). Let E denote 
the set of points at which U = M, the maximum of U. It cannot contain 
all interior points of R, for if it did U would be constant. Accordingly, if E 
contained any interior point of R, it would have a frontier point Po in the 
interior of R (see Exercise 4, page 94). There would then be a sphere 
about Po, entirely in R, and passing through points not in E. That is, 
the values of U on the sphere would never exceed M, and at some 
points, be less than M. As U (Po) = M, we should have a contradiction 
with Gauss' theorem. Hence E can contain no interior points of R, as 
was to be proved. The same argument applies to the minimum l . 

1 This form of the proof of the theorem is due to Professor J. L. WALSH. 
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E;vercises., 
1. show that if U is harmonic and not constant, in an infinite region with 

finite boundary, it either attains its extremes on the boundary, or attains one of 
them on the boundary and approaches the other at infinity. 

2. Extend Theorem III as follows. Let R be any closed region, regular or not, 
with finite boundary, and let U be harmonic in R. Show that there is no different 
function, harmonic in R, with the same boundary values as U. 

3. Given a single conductor in an infinite homogeneous medium, and a charge 
in equilibrium on the conductor, there being no other charges present, show that 
the density is everywhere of the same sign. 

7. The Converse of Gauss' Theorem. 

The property of harmonic functions given by Gauss' theorem is so 
simple and striking, that it is of interest to inquire what properties 
functions have which are, as we' shall express it, their o~n arithmetic 
means on the surfaces of spheres. Let R be a closed region, and V a 
function which is continuous in R, and whose value at any interior point 
of the region is the arithmetic mean of its values on the surface of any 
sphere with that point as center, which lies entirely in R : 

:rr: 2", 

(10) V(P) = 4~r2 I I V(Q)r2 sinDdcpdD, 
o 0 

where Q has the spherical coordinates (r, cp, D) with P as origin, and a is 

Fig. 26. 

the distance from P to the nearest boundary point 
of R. 

We first remark that V is also its own arith­
metic mean over the volumes of spheres. For if 
we multiply both sides of equation (10) by r2 and 
integrate with respect to r from 0 to r, we have, 
since V(P) is independent of r, 

, '" 2", 

V(P)~=41nI I I V(Q)r2 sinDdcpdDdr, r<a, 
000 

or, 

(11) V(P) = 4:r3 III V(Q) dV, 
2,' 

where 1: is the sphere of radius r about P: 
We now show that V (P) has continuous derivatives at the interior 

points of R. Let P be any interior point of R, and let a denote a fixed 
number less than the distance from P to the nearest boundary point 
of R. Let us take P as origin, and the z-axis in the direction of the de­
rivative to be studied (fig. 26). Let P' be the point (0,0, h), h being small 
enough so that P' also has a minimum distance greater than a from 
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the boundary of R. Then 

V(P/)-;V(P) = 4n3aS h [~J V(Q)dV- ~ff V(Q)dVl 

where E denotes the sphere of radius a about P, and E' the equal sphere 
about P'. For small enough h, these spheres intersect, so that the inte­
grals over the common part de&troy each other. J;..et C denote the cylinder 
through the intersection of the spheres, with axis parallel to the z-axis. 
The parts of the spheres outside C have a volume which is an infinitesi­
mal in h of higher order (of the order of h3), so that since V is bounded 
in R, because of its continuity, the integrals over these parts of the 
spheres are also infinitesimals of higher order. We may then write 

(12) V (P') ;: V(P) = 4n:S h [fff V (Q) dV - §f V (Q) dV] + 1fJdh) , 

where "P1 (h) vanishes with h, and A is the part of E in C but not in E', 
and B is the part of E' in C but not in E. We now express the volume 
integrals as iterated integrals with respect to z and the surface of the 
projection a of A and B on the (x, y)-plane. Let Z1 (x, y) and Z2 (x, y) 
denote the values of z on the lower surfaces of A, and B, respectively. 
Then Z1 (x., y) + hand Z2 (x, y) +h are the values of z on the upper 
surfaces of A and B. The bracket in (12) can then be written 

~J [ThVdZ -7hVdZ] da 

= h J J[V(x, y, Z2 + O2 h) - V(x, y, Zl + 01h)]da, 
(f 

(0 < 01 < 1, 0 < O2 < 1), 

= h J J [V(x, y, Z2 (x, y)) + V(x, y, Zl (x, y))]da + 1fJ2 (h) h 
(f 

where we have first used the law of the mean, and secondly the fact 
that the values of V at points a distance h or less apart is a uniform 
infinitesimal in h, so that "P2 (h) vanishes with h. Thus 

V(P')-V(P) 3 fJ 
h =4naSJ. [V{X,y,z2)-V{X,y,z1)]da+1fJ3(h). 

(f 

If we now replace the field of integration a by the surface of E, as in the 
derivation of the divergence theorem (page 87), we have 

v (P') - V(P) 3 fJ 
h = baS J. Vcos (n, z) dS + "Ps (h). 

2:1 

E1 being the portion of E within C. We may now pass to the limit as 
Kellogg, Potential Theory. 15 
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h approaches O. As the integrand is continuous, we see that the limit 
exists, and that 

(13) av 3 rJ 7fZ = 4na3 J. Vcos (n, z) dS. 
2: 

The tedious reckoning is now done, and the rest is simple. Because 
of the continuity of V, this derivative is continuous, and because a 
can be any sufficiently small positive number, the result holds for any 
interior point of R. 

If we now apply to (13) the divergence theorem, we find 

(14) av 3 rfJav 
-oz = 4n~ J. oz dV, 

2,' 

the integral being over the region bounded by E. Hence the derivatives 
of V of first order are also their own arithmetic means over the vol~tmes of 
spheres in any region in the interior of R. 

The process can now be repeated as often as we like. Since any region 
interior to R is one of a nest of regions, each interior to the next, and 
the last interior to R (see page 317), we see that the partial derivatives, of 
any given order, of V exist and are continuous in any region interior to R. 

In particular, 

a2 v 3 rJ av 
OZ2 = 4naa J. 8z cos (n, z) dS, 

and 
x 

at all points a distance more than a from the boundary. It is easy to 
show that the last integral vanishes. In fact, if in (10) we cancel the 
constant factor r2 inside and outside the integral, and differentiate the 
resulting equation with respect to r, this being possible because of the 
continuity of the derivatives of V, we have 

:-r: 2n II av o = --a;- sin f} drp d{}, 

which may also be written 

o 0 

rJ aV_dS = o. J. an 
;E 

Thus, at any interior point of R, V is harmonic, and we have the con­
verse1 of Gauss' theorem, 

1 Due to KOEBE, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 
Jahrgang V (1906), pp. 39-42. 
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Theorem XI. If V is continuous in the closed region R, and at every 
interior point of R has as value the arithmetic mean of its values on any 
sphere with center at that point and lying in R, then V is harmonic in R. 

This theorem will be of repeated use to us. As already suggested, it 
may serve as a basis for the definition of harmonic functions. 

We shall now consider two consequences of the above developments. 
The first is with regard to the derivatives of a harmonic function. If 
we apply the equatio.n (13) to the function 

U=V_M+m 
2 ' 

where M and m are the extremes of V in R, then I U I < (M;- m) and 

I :~ I = I ~~ I < 4!a3 III Ucos (n, z) IdS 
L: 

'" 2", 

<4!a3 M;m I I IcosOla2sinOdlPdO= 43a (M- m)'. 
o 0 

Accordingly, we have derived 

Theorem XII. If a function is harmonic in a closed region R, the 
absolute values of its derivatives of first order at any interior point are 
not greater than three fourths the oscillation of the function on the boundary 
of R divided by the distance of the point from the boundary. 

A second consequence is a converse of Theorem I. We state it as 

Theorem XIIIl. If U is continuous in a region R, and has continuous 
derivatives of the first order in the interior of R, and if the integral 

II ~~ dS 
s 

vanishes 'when extended over the boundary of all regular regions interior 
to R, or even if only over all spheres, then U is harmonic in the interior 
of R. 

This may be proved as follows. Let P be an interior point of R, and 
E a sphere, of radius r, about P, and lying in the interior of R. Then, 
by hypothesis, ,. 2,. 

0= II ~~ dS = I I ~~ r2 sinOdlP dO , 
L: 0 0 

1 This theorem, in space, and in the plane, respectively, was discovered inde­
pendently by KOEBE (footnote, p. 226) and by BecHER, Proceedings of the 
American Academy of Arts and Sciences, Vol. 41 (1906). Koebe's treatment is 
also valid in the plane. 

15* 
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and so, as r is constant on .E, 

:rr 2n ff au 
Trsin1}drpd1} = o. 

o 0 

If we integrate this equation from 0 to r with respect to r, we have 

n 2n 

J J U (Q) sin 1} drp d1} - 4n U (P) = 0, 
o 0 

the integral being taken over the sphere of radius r about P. But this 
equation is equivalent to 

U(P) = 4~r2 ff U(Q) dS. 
::!: 

This holds at first for spheres interior to R, but by continuity it holds 
fO!: spheres in R. Thus the function U is its own arithmetic mean on 
the surfaces of spheres in R and so, by Theorem XI, is harmonic in R. 
The theorem is thus proved. 

Exercises. 
1. Show that if V is continuous in a region R, and is its own arithmetic mean 

throughout the volumes of spheres in R, it is also its own arithmetic mean on the 
surfaces of spheres in R. Hence show that if a function is bounded and integrable 
in R, and is its own arithmetic mean throughout the volumes of spheres in R, it is 
harmonic in the interior of R. 

2. Prove Koebe's converse of Gauss' theorem as follows. Let V be continuous 
and its own arithmetic mean in R. Let 2: be any sphere in R, and U the function, 
harmonic in 2:, with the same boundary values on 2: as V. This function exists, 
by Chapter IX, § 4 (page 242). Consider V - U in 2:. 

3. Investigate the analogues of the developments of this section in one di­
mension. 

4. Show, by means of Theorem XII, that a series of spherical harmonics, 
convergent in a sphere about the origin, may be differentiated termwise at any 
interior point of the sphere. 

Chapter IX. 

Electric Images; Green's Function. 
1. Electric Images. 

In the closing section of Chapter VII, we saw an example of a case 
in which a potential with certain requirements as to its normal deriva­
tives on a plane could be represented on one side of the plane by the 
potential of a point charge on the opposite side of the plane. This is an 
example of the use of electric images. 



Electric Images. 229 

In the present seCtion, we shall confine ourselves to the case in which 
one homogeneous medium is supposed to fill space, the dieleCtric con­
stant being 1. Let us suppose that we have a plane conducting lamina, 
so great in its dimensions that it may be considered infinite, and let us 
suppose that it is grounded, or connected to earth, which means that it 
may acquire whatever charges are necessary to enable it to remain 
at the potential o. If then a point charge is brought into the neighborhood 
of the plane, it will induce charges on it, namely such as make the po­
tential of point charge and charge on the plane together equal to 0 on 
the plane. How can we find the induced charge? 

We shall presen t1 y have the necessary materials to show that on the far 
side of the plane, the potential, if bounded, must be everywhere O. If that 
region had a finite boundary, this would follow from Theorem II, of the 
last chapter. But it has not, and we shall borrow the faCt. Let us take 
the plane of the infinite lamina as the (y, z)-plane, with the x-axis through 
the point charge. Let this be of amount e, and situated at P (a, 0, 0). 
If now we place a point charge - e at the image of P in the lamina, 
thought of as a mirror, that is at the point pI (- a, 0, 0), the potential 
of the two charges will be 0 on the lamina, and the problem is solved. 
For (supposing a> 0), the potential is 

e 
U = ::-=;=,------,-,-c;:====;;==. l (x - a)2 + y2 + Z2 

U=O. 

e 

t (~ + a)2 + y2 + Z2 ' 

The density of the charge on the lamina is 

x>O, 

xSO. 

as is readily verified. The total induced charge is found, by integrating 
the density over the infinite lamina, to be - e, that is, the total induced 
charge is equal and opposite to the inducing charge. We notice moreover, 
that the density of the charge varies inversely with the cube of the 
distance from the inducing charge. 

Exercises. 
1. Verify the correctness of the values given for the density and total amount 

of the induced charge given above. 
2. Consider the conducting surface consisting of the half plane z = 0, y 2;; 0, 

and the half plane y = 0, Z 2;; 0. Find the potential due to a charge eat (0, b, c) 
b > 0, c > 0, and the induced charge on the conductor. Determine the density 
of electrification of the half planes, showing that they bear charges proportional to 
the angles between them and the coaxial plane through the point charge, and that 
the sum of the charges on the two planes is the negative of the inducing charge. 
Show that the density approaches ° at the edge of the conductor. 

3. Given a point source of fluid in the presence of an infinite plane barrier, 
determine the potential of the flow, assumed to be irrotational and solenoidal. 
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4. At what angle other than a right angle can two half:planes meet to form a 
conductor the charge induced on which by a point charge can be determined by 
the method of images? . 

5.A grounded conductor, occupying a bounded region, is in the presence of 
a point charge. Show that the density of the induced charge will never change 
sign. 

6. The total charge on the above conductor will be less in magnitude than the 
inducing charge. But if the conductor is a closed hollow surface, and the inducing 
charge is in its interior, the induced charge will be equal in magnitude to the in­
ducing charge. Prove these statements .. 

Infinite Series of Images. Suppose now that we have two parallel 
grounded conducting planes, and a point charge between them. Let 
axes be chosen so that the planes are x = 0 and x = a, while the 
charge is at (c, 0,0). 0 < c < a. A charge - eat (2a - c, 0, 0) . will 
reduce the potential to 0 at x = a. To reduce it to 0 on x = 0, we 
shall have to introduce corresponding charges of opposite sign at the 
points symmetric in the plane x = 0, i. e. a charge ~ eat (-c,O, 0) 
and a charge e at (- 2a + c, 0,0). But the potential on x = a is then 
not 0, so we introduce a pair of new charges symmetric to the last in 
the plane x = a, and so on. Since the charges are getting farther and 
farther from the planes, their influence gets less and less, and it seems 
that the process should converge. If we write the potential in the form 

co co 
e u-2} e -2} 

- -co Y (x - 2 n a - e)2 + y2 + Z2 -00 ::-l=(x=--====2=n=a=+=e=)2:C=+=y2===+ Z2 ' 

the series do not converge, for they have terms comparable with those 
of the harmonic series. But if we group the terms properly, say as in 

u = .!;, e (l (x _ 2 n a_I e)2 + y2 + Z2 - -:;Y=(X=_====2=n=a=+=I=e=)2:C=+=y='2 =+=Z==2) , 

the resulting series has terms whose ratios to the corresponding terms 
of the series 

are bounded for sufficiently large n2 • It follows that when (x, y, z) is 
confined to any bounded region in which none of the charges are locat­
ed, the second series for U is absolutely and uniformly convergent. 
It is not difficult to verify that this potential is 0 on the planes x = 0 
and x = a. That the sum of the series is harmonic is easily shown by 
means of Theorem XI ofthe last chapter, forin any closed region in which 
the series is uniformly convergent, it may be integrated termwise. 

The method of images is also available in the case of spherical con­
ducting surfaces. We revert to this application later. 
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Exercises. 
7. Show that the density of the induced distribution on the plane x = 0 is 

given by 
00 

= ~ ~ f 2 12 a - c _ 212 a + c } e2 = ",2 + ;-2. 
(J 4n ~ ) " • ' ., ~ 

-co l [(212 a - c)2 + e2Jit [(2 na + c)2 + e2r' 
The density on the second plane may be obtained from this by replacing c by a- c. 

It is interesting and instructive to find the total charges on the two planes. They 
turn out to be proportional to the distances of the point charge from the planes, 
and in total amount -e. Referring to Exercise 6, we see that the situations here, 
and in the case of a single infinite plane, are as if the charge were enclosed in a 
hollow conducting surface, of finite extent. 

S. Find the distribution of the charge induced on the walls of a cuboid by a 
point charge in its interior 1. 

2. Inversion; Kelvin Transformations. 

From the solution of certain problems in electrostatics, and indeed, 
in potential theory in general, we may infer the solution of others by 
means of a transformation of space known as inversion in a sphere. Two 
points are said to be inverse in a sphere, or with respect to a sphere, if 
they are on the same ray from the center, and if the. radius of the sphere 
is a mean proportional between their distances from the center. If 
every point of space be thought of as transported to its inverse in the 
sphere, we have the transformation in question. 

Let us now examine some of the properties of an inversion. Let us 
take the center of the sphere as origin of coordinates, and let a denote 
the radius of the sphere. If P (x, y, z) and P' (x', y', z') be any two 
points which are inverse in the sphere, at distances rand r', respectively, 
from the origin, we have for the equations of the transformation 

(1) 

The transformation is obviously its own inverse. The equation 
A (X2 + y2 + Z2) + Ex + Cy +Dz +E = ObecomesE (X'2+ y'2+ Z'2) 
+ Ea2x' + C a2y' + Da2 z' + A a4 = 0, so that the inversion carries 
all spheres or planes into spheres or planes. A necessary and sufficient 
condition that a sphere be transformed into itself is that it be ortho­
gonal to the sphere of inversion, as may be seen by means of the theorem 
that the length of the tangent from a point P to a sphere is a mean pro­
portional between the distances from P to the two points where any 
secant through P cuts the sphere. Any circle orthogonal to the sphere 
of inversion is the intersection of spheres which are orthogonal to the 
sphere of inversion, and so is transformed into itself. If ~ is a line through 
P, there is a single circle C1 through P, tangent to ~ and orthogonal to 

1 See ApPELL, Traite de l"VItJcanique Ratio12elle, T. III, Exercise 12, Chap. XXIX. 
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the sphere of inversion. If l2 is a second line through P, there is a single 
circle C2 with the corresponding properties. These circles are trans­
formed into themselves by the inversion, and at their two intersections 
(for they must intersect again at the point inverse to P) they make the 
same angles. It follows that any angle is carried by the inversion into 
an equal angle, and the transformation is conformall. 

Kelvin Transformations. Let us now consider the effect of an in­
version on a harmonic function. We start by expressing the Laplacian 
of U in terms of x', y', z'. The differential of arc is given by 

(2) 
4 4 

ds2 = ~ds'2 = ~ (dx'2 + dy'2 + dz'2) 
~4 ~4 , 

and accordingly, 

This may be given a different form. As 

o a2 '0 U _ 2 [1 0 2 U ') 1 (0 1) 0 U ] 
ox' 72 ox' - a ?2 OX'2 + -7 7fX'7 7fX' 

a2 - 02 (1) 62 1 ] 
= -;,l-072 7 U - U ox'2-7 ' 

and as ~ is a harmonic function of x', y', z' (except at the origin), we 

have 

(3) 172U= :'55[0::2(;' u) + 0~~2 (;, U) + o~:i-(;' U)J. 
It follows that if U (x, y, z) is a harmonic function of x, y and z in a 
domain T, then 

V x z = - U --- - -- ---, " a ( a2 X' a2 y' a2 Z') 
( ,y,) 1,1 r'~' 1"2' r'2 

is harmonic in x', y', and z' in the domain T' into which T is carried by 
the inversion. 

This transformation of one harmonic function into another is known 
as a Kelvin transformation 2 • 

The Point Infinity. An inversion in a sphere is one-to-one except 
.that the center of the sphere of inversion has no corresponding point. 
The neighborhood of the origin goes over into a set of points at a great 

1 It should be remarked that the transformation by inversion, though con­
formal, does not carry a trihedral angle into a congruent trihedral angle, but into 
the symmetric one. Thus a set of rays forming the positive axes of a right-hand 
system would go over into circular arcs whose tangents form the positive axes of 
a left-hand system. 

2 W. THOMSON, Lord KELVIN, Journal de mathematiques pures et appliquees, 
Vo!' 12 (1847), p. 256. 
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distance-into an infinite domain. If U is harmonic at the center of 
the sphere of inversion, or the center of inversion, as it is sometimes 
called, V will be regular at infinity, as is easily verified. On the other 
hand, if U is harmonic in an infinite domain, and therefore also regular 
at infinity, it may be expressed in terms of potentials of distributions on 
the surface of a sufficiently large sphere, by (III), page 219, and will 
thus be expressible in the form 

U= Ho(x,y,z) + H,(x,y,z) + ... 
r y3 , 

where Ho, HI' ... are homogeneous polynomials of the degrees given 
by the indices, as we saw in Chapter V (p. 143). Accordingly 

V = Ho (x', y', z') + H, (x', y', z') + ... 
a ~ , 

is convergent inside the sphere about the origin inverse to any sphere 
outside of which the series for U is convergent. Of course the trans­
formation does not define V at the origin, but we see that if it is defined 
there by this series which defines it at pomts nearby, it will be harmonic 
at the origin. Thus a function which is harmonic in an infinite domain 
goes over, by a Kelvin transformation, into a function which is har­
monic in a neighborhood of the origin, if properly defined at that single 
point. 

In order to be able to regard an inversion as one-to-one, we intro­
duce an ideal point infinity, and say that the inversion carries the center 
of inversion into the point infinity, and the point infinity into the 
center of inversion. We should naturally say that the point infinity be­
longs to any infinite domain with finite boundary, and this demands 
an extension of the notion of interior point. We say that the point 
infinity is interior to a set of points provided there is a sphere such that 
every point outside the sphere belongs to the set. An unbounded set is a 
domain provided all its points are interior points, and provided any two 
of its points can be joined by a polygonal line of a finite number of sides, 
at most one of which is infinite in length, and all of whose points belong 
to the domain. The point infinity is a limit point of a set provided 
there are points of the set outside of every sphere. In short, we ascribe 
to the point infinity with respect to any set of points, exactly the pro­
perties which the center of inversion has with respect to the set into 
which the given set is transformed by an inversion. 

Exercises. 
Hn (x, y, z) 

1. If Hn (x, y, z) is a spherical harmonic of order 12, show that r 2n+1- IS 

harmonic throughout space except at the origin. 
2. Show that an inversion in a sphere with center 0 and a Kelvin transformation 

carry the potential of a point charge e at a point Q (IX, fl, y), not the point 0, 
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into the potential of a charge at the point Q' (0:'. (J'. 1") inverse to Q. Show that 
the amount of the charge is changed in the ratio 0 Q'; a, where a is the radius 

of the sphere of inversion (e l = e :' . ~'2 = 0:'2 + (J'2 + 1"2) . 

3. Show that if v is a small volume about Q (0:. (J. 1'). and v' the volume into 
which v is transformed by an inversion in a sphere about O. of radius a. then. 

~16 

to within an infinitesimal of higher order in the maximum chord of v, v' = 7 v , 

where ~' is the distance from t.he origin 0 to some point of v'. Hence show that 
densities u and u', at corresponding points Q and Q', of volume distributions pro­
ducing potentials U and V related by the corresponding Kelvin transformation. 

are related by the equation u' = (;,) 5 u. Determine a similar relation for surface 

distributions. Check by Poisson's equation and the equation (3). and by the 
equation relating surface densities with the break in the normal derivatives of 
the potential. 

4. Show that two points symmetric in a plane are transformed by an inversion 
into two points inverse in the sphere corresponding by the inversion to the plane. 

Induced Charge on a Sphere. Let us now see what we get by an in­
version and a Kelvin transformation from the problem of the charge in­
duced on a plane II by a point charge e at PI not on II. The potential 
U of the charge e and of the charge induced on II, is, as we have seen, 
equal, on the side of II on which PI lies, to the combined potential of 

o -e 

o 

Fig. 27. 

e 

the charge e at PI and of a charge 
- e at the point P 2 symmetric in 
II; beyond II, U = O. 

Let us now subject space to an 
inversion in a sphere with centerO at 
a point of the ray from PI through 
P 2 , beyond P2 , and let us subject 
U to the corresponding Kelvin trans­
formation. The plane II goes over 
into a sphere I through 0, and PI 
and P2 go over into two points P{ 
and P; which are inverse with re­
spect to I, by Exercise 4 (fig. 27). If 
a is the radius of I, and c the dis­
tance of P~ from the center of I, the 

2 

distance of P~ from the center will be -7. The distances of P~ and Pf 
f h f . . 0 '11 h b d a2 (a + c) a rom t e center 0 ll1VerSlOn WI t en e a + c an a + C = --c--' 

respectively. Thus, by Exercise 2, the Kelvin transformation carries U 
into a potential V, which, in the interior of I is the potential of charges 
at P~ and Pf, of opposite signs, and whose magnitudes are proportional 
to the distances of these points from the center of inversion, i. e. in the 
ratio c: a. We have thus the desired result: a charge e at a point a distance 
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c from the center of a sphere, and a charge - ~ at the point inverse to the 
a 

first in the sphere, produce together a potential which is 0 on the surface of 
the sphere. This enables us to find the induced charge on a sphere caused 
by a point charge either within or without the sphere. We could find the 
density by means of Exercise 3, but we shall find it directly at a later 
point. 

The problem of Exercise 2, § 1 enables us to find, by inverting in a 
sphere with center on one of the planes, the charge induced by a point 
charge on the surface, consisting of a hemisphere and the part of 
its diametral plane outside the sphere of which the hemisphere is part. 

Exercise. 
What will be the shape of the conductor if the center of inversion is not on one 

of the two planes? Enumerate a number of other cases in which induced charges 
on surfaces may be found by the method of images and inversions. 

The Possibility of Further Transformations. It is natural to ask 
whether there are not further transformations of space, similar to inver­
sions, and of functions, similar to Kelvin transformations, which enable 
us to pass froIl). a function, harmonic in one set of variables, to a function 
harmonic in a second set. We have seen that Laplace's equation is in­
variant under a rigid motion of space, and hence harmonic functions 
remain harmonic functions under such a transformation of coordinates. 
The same is clearly true of a reflection in a plane, say the (y, z)-plane: 
x' = - x, y' = y, z' = z. The Laplacian of a function goes over into 
a constant multiple of itself under a homothetic transformation: 
x' = ax, y' = ay, z' = az, and such transformations leave harmonic 
functions harmonic. But these transformations, together with inversions 
and combinations of them, are all there are of the kind in question. 

The transformations of space mentioned are the only conformal ones, 
as is proved in works on differential geometry 1. But if we are to have 
any analytic transformation 

x = f (x', y', z') , y = g (x', y', z') , z = h (x', y', z') 

in which 

v (x', y', z') = rp (x', y', z') U [f (x', y', z') , g (x', y', z')' h (x', y', z')] 

is harmonic in x' y' z' whenever U is harmonic in x, y, z, it can be 
shown that the transformation must be conformal. 

The situation is different if we do not require the transformation to 
carryover every harmonic function into a harmonic function. Thus if 
we only require that it shall carryall harmonic functions independent of 
z into harmonic functions, there are transformations in which z is un-

1 See, for instance, BLASCHKE, Vorlesungen uber Differentialgeometrie, Berlin 
1924, Bd. I, § 40. 
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changed, which carry such harmonic functions into harmonic functions, 
namely all those in which 1 and g are the real and imaginary parts of an 
analytic function of x' + i y' (see Exercise 10, p. 363). 

We may say, therefore, that in space, there are no new transforma­
tions of the character of Kelvin transformations, although in the plane, 
there is a great variety of them. 

3. Green's Function. 

At the close of § 1 in the last chapter, the question of the existence 
of certain harmonic functions was raised, among them, one which 
we shall now formulate as that of the existence of a function, har­
monic in a closed region R, and taking on preassigned continuous 
boundary values. The problem of showing that such a function exists, 
or of finding it when it exists, is known as the Dirichlet problem, or the 
lirst boundary problem 01 potential theory. It is historically the oldest 
problem of existence of potential theory. We are about to outline an 
attack on this problem, and in the next section, carry it through in the 
very simple but important case in which R is a sphere. We shall see 
that there is a relation between this problem and the problem of the 
charge induced on the surface of R by a point charge within R. The 
guiding thought is simple. We first seek to express a harmonic function 
in terms of its boundary values. We then see if the expression found con­
tinues to represent a harmonic function when the boundary values are 
any given continuous function. 

The natural point of departure is the formula (9) of the last chapter, 

U(P) = - ~fJ(u~! - ~!)dS 4n 8v r 8v r ' 
5 

valid if U. is harmonic in the closed regular region R bounded by S. 
This formula expresses U at any interior point of R in terms of its boun­
dary values and those of its normal derivative. But we know that the 
boundary values alone determine U, and it is natural to try to eliminate 
the normal derivative. For this purpose we may take the relation of 
Theorem VI of the last chapter: 

0= - ~fJ(u 8V - ~V)dS 
4n 8v 8v ' 

5 

where V is any function harmonic in R. If, now, a harmonic function V 
can be found, such that 

!+V r 

vanishes at all points of 5, the normal derivative of U will be eliminated 
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by adding these two equations. Such a function V, however, is nothing 
other than the potential of the charge induced on a grounded sheet con­
ductor with the form of the surface S, by a unit charge at P, and the 
function 

G (Q, P) = ~ + V (Q, P) 

is the value at Q of the potential of the inducing charge at P and the 
induced charge together. This function is known as Green's function for 
the region R and the pole P. In terms of Green's function we have 

(4) U (P) = - 41n ff U (Q) :v G (Q, P) dS, 
s 

where the differentiation and integration are with respect to the coordi­
nates ~, 1], Z;, of Q. Thus if Green's function exists, and has continuous 
partial derivatives of the first order in any closed portion of R which 
does not contain P, any function U (P), harmonicinR, admits the above 
representation 1. 

Now suppose that instead of having under the integral sign the 
function U (Q), representing the boundary values of a function known 
to be harmonic in R, we have an arbitrary continuous function of the 
position 6f Q on S. What then does the integral 

(5) F (P) = - 41n If I (Q) :v G (Q, P) dS 
s 

represent? Granted (a) that Green's function exists, we have to show, 
if we wish to solve the Dirichlet problem in this way, (b) that F (P) 
is harmonic in P, and (c) that it takes on the boundary values f(P). 
Let us consider this programme for a moment. 

First, to establish the existence of Green's function, we have to solve 
a special case of the Dirichlet problem, namely find a harmonic function 

taking on the same boundary values as -~. Moreover, we have to solve r 
the problem for all positions of P in the interior of R. GREEN himself 
argued that such a function existed from the physical evidence. Of 
course the static charge on S exists! We have here an excellent example 
of the value and danger of intuitional reasoning. On the credit side is 
the fact that it led GREEN to a series of important discoveries, since well 

1 It is true that the derivation of the formula (4) is based on the assumption 
that U is continuously differentiable in R. But if harmonic in R, U will be con­
tinuously differentiable in any closed region interior to R, and by applying (4) 
to a suitably chosen interior region, we can, by a limit process, infer its validity 
for R without further hypothesis on the derivatives of U. 
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established. On the debit side is its unreliability, for there are, in fact, 
regions for which Green's function does not exist!. 

If Green's function has been shown to exist for R, we must then 
make' sure that F (P) is harmonic in R. We know that G (Q, P) is har­
monic in Q for fixed P, and we shall see presently that it is symmetric, 
and it will follow that it ~s harmonic in P. After that, it must be shown 
that the integral is harmonic in P. This done, we must show thatF (P) 
takes on the given boundary values. 

Under proper limitations on R, the programme is a feasible one, and 
has been carried out in an elegant manner by LIAPOUNOFF2• We shall 
find it relatively easy in the case of the sphere, but for more general 
regions, simpler and farther reaching methods are now available. 

The Symmetry of Green's Function 3. The usual proofs of the symmetry 
of Green's function are based on Green's identity II, which demands 
some hypothesis on the derivatives of the function on the boundary. 
These, in general, do not exist. We may, however, proceed as follows. 

Let R denote a closed bounded region, and let G (Q, P) denote Green's 
function for R with pole P, supposed to exist. This supposition includes 
the demand that it be harmonic in R, except at P, and that it approach 
o at every boundary point, but includes no demand on the derivatives 
on the boundary. We note that the continuity is uniform in any region 
in R which omits a sphere about P, and hence that for any e > 0, there 
is a ~ > 0, such that G (Q, P) < e at all points of R whose distance from 
the boundary is less than ~. Furthermore, in any slosed region interior 
to R, the minimum of G (Q, P) is positive, for otherwise we should have 
a contradiction of Gauss' theorem of the arithmetic mean. 

Now let fl- be any positive constant. The equipotential G (Q, P) = fl­
lies in the interior of R; it also lies in the closed subregion of R 

~ < G (Q ,P) < 2 fl-. In this region the hypotheses of Theorem XIV, 

Chapter X (p. 276) are in force, and hence in any neighborhood of 
any equipotential surface, there are non-singular equipotential surfaces. 

We next show that a non-singular equipotential surface G (Q, P) = fl-' 
bounds a finite regular region. The interior points of such a region, 
namely those for which G (Q, P) > fl-', evidently constitute an open set, 
since G (Q, P) is continuous, except at P, which is clearly interior to the 
set. Secondly, any two interior points can be connected by a regular 

1 GREEN'S introduction of the function which bears his name is in his Essay, 
1. c. footnote § 5, Chapter II, p. 38. An example of a region for which Green's 
function does not exist is given by LEBESGUE, Sur des cas d'impossibilite du pro­
bleme de Dirichlet, Comptes Rendus de la Societe Mathematique de France, 1913, 
p. 17. See Exercise 10, p. 334. 

2 Sur quelques questions qui se ratachent au probteme de Dirichlet, Journal de 
mathematiques pures et appliquees, 5 Ser. Vol. IV, (1898). 

3 This topic may well be omitted on a first reading of the book. 
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curve lying in the interior. This will be proved if it can be shown that 
,any interior point Qo can be so connected with P, for any two can then 
be connected by way of P. 

Let To denote the set of points of R' which can be connected with 
Qo by regular curves entirely in the interior of R'. If a boundary point Ql 
of To were not a boundary point of R', there would be a sphere about 
it interior to R', and within this sphere there would be points of To. 
Thus Ql and all points near it could be joined by straight line segments 
to a point of To, and this, by a regular curve, to Qo' Ql would then be 
an interior point of To, and not a boundary point. Thus G (Q, P) = p/ 
at every boundary point of To, so that if To did not contain P, and 
G (Q, P) were thus harmonic in To, it would be constant. As this is not 
the case, P lies in To, and so can be joined to Qo in the required way. 

Finally, as the bounding surface S' of R' has no singular points, it 
may be represented in the neighborhood of any of its points by an equa­
tion z = fP (x, y), ifthe axes are properly orientated, fP (x, y) being ana­
lytic. It follows that the surface can be divided by regular curves into 
regular surface elements. These will be properly joined, and so R', being 
bounded by a regular surface, is a regular region. 

Turning now to the symmetry of Green's function, we cut out from 
R' two small spheres a and a', about P and any second interior point 
P' of R', the spheres lying in the interior of R'. In the resulting region 
both G (Q ,P) and G (Q ,P') are continuously differentiable and har­
monic. Hence II is applicable (see the footnote, p. 217), and we have 

ff[ G (Q, P) 8G~; PI) - G (Q, PI) 8G W;!1J dS 
5' 

+ ff[G (Q,P) 8G (~; PI) - G (Q, PI) 8G W;~ JdS = O. 
a'+a 

We now allow the radii of a and a' to approach O. Near pI, G (Q, P) 
and its derivatives are continuous, whereas G (Q, P') differs from 

~ by a harmonic function V (Q, P), r' being the distance pI Q. On a' 

the normal 'jI points along the radius toward the center P'. Accordingly, 
the integral.over a' may be written ' 

ff G (Q, P) dQ + r'2 ff G (Q, P) 8V~; PI) dQ 
,,' 

- r' ff 8G W; P) dQ - r'2 ff V(Q, PI) 8G W;~dQ, 

the integrations being with respect to the solid angle subtended at P'. 
As r' approaches 0 , all but the first term approach 0, and this approaches 
4:n G (PI, P). Similarly, the integral over a approaches ,- 4:n G (P, P'). 
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The integral over 5' is unaffected by this limit process. The resulting 
equation holds for all non-singular equipotential surfaces G (Q, P) = p,'. 
But there are values of It' as close to 0 as we please for which this surface 
is non-singular. Accordingly we may allow fl' to approach ° through 
such values. The first term in the integral over 5' has the value 

'fTaG (Q, P') d5 - - 4 ' fl av - nfl, 
5' 

for G (Q, P') is the sum of a function harmonic in R' and the potential of 
a unit particle in R'. As to the second term, G (Q, P') is not constant on 
5', but as the other factor of the integrand is never positive, we may 
employ the law of the mean, and write this second term 

4nG (Q, P'), 
-

where Q is some point on 5'. As p' approaches 0, the first term ap-

proaches ° , and as Q must become arbitrarily near to the boundary of R, 
where G (Q, P') approaches 0 uniformly, the second term also approaches 
O. In the limit then, there are but two terms left in the identity, and 
this, after a transposition and division by 4 n, becomes 

G (PI, P) = G (P, P'). 

Here P and P' may be any two interior points of R, and thus the sym­
metry of Green's function is established. 

Exe'rcise. 
1. Show that if a (P, Q) is the density at Q of the charge induced on 5 by a 

unit charge at P, the formula (4) may be written 

U (P) = - JJ U(Q)a (Q, P) dS, 
5 

Referring to Exercise 6, p. 230, show that U (P) is a weighted mean of its values 
on 5, and hence lies between its extreme values on S. The above is the form in 
which GREEN wrote the formula (4). 

4. Poisson's Integral. 

We proceed now to set up Green's function for the sphere. Let a be 
the radius of the sphere, and let P be a point a distance e from the center 
O. Then a unit charge at P will induce on the surface of the sphere, 
thought of as a grounded conducting surface, a distribution whose poten-

tial in the interior of the sphere is the same as that of a charge =-~ 
Q 

at the point P' inverse to P in the sphere, as we saw in § 2. Accordingly, 
if rand r' are the distances of P and P' from Q, Green's function for the 

sphere is 1 all 0 P' 1 
G (Q, P) = r - e' 7' = r - -a-7" 
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Evidently Green's function is continuously differentiable in the coordi­
nates of Q in any closed portion of the sphere omitting the point P, so 
that it may be used in the formula (4). This then becomes 

(6) U(P) = - ~ifu (Q)~ [.!. - ~~Jd5. 4n a'll reI" 
5 

Let us express the integrand in terms of the coordinates (e, q;, {}) of" 
P and (e', q;', {}') of Q. Since 

r2 = (!2 + e'2 - 2ee'cosy, 

where 

a4 a2 
and r'2 = 2"" + 12'2 - 2-(2' cosy, 

12 12 

cos y = cos {} cos {}' + sin {} sin {}' cos (q; - q;/) , 
we have 

a 1 a 1 I 12 cosy - 12' I = 12 cosy - a 
Tv r = fJi'r ,e'=a = r3 e'=a 1'3 

a2 

a 1 --ecos y - a 122 acosy- 12 
Tv7 = - ---;;-3 - = aa r3 

where in the last step we have used the fact that G (Q, P) vanishes 
when Q is on the surface of the sphere. With these values, the formula 
(6) becomes 

(7) U (0· {}) = as - 122 if U (q!. D/l d S 
~,q;, 4na 1'3' r2 = e2 + a2 - 2 a e cos y . 

5 

As this formula involves no derivatives of U, it holds if U is harmonic 
in the interior of R and continuous in R, as may be seen by applying it 
to a smaller concentric sphere and passing to the limit as the radius of 
this sphere approaches a. It is known as Poisson's integraF. 

Let us now ask whether the boundary values can .be any continuous 
function. Does 

(8) V( {}) = a2 - 122 if f (q!, D/l dS 
12, q;, 4na r3 

s 

solve the Dirichlet problem for the sphere? We shall prove that it does. 

First of all, we have the identity, for Q on 5, 

(9) 

which shows that V is the sum of the potentials of a simple and of a 
double distribution on 5 with continuous density and moment. Hence 

·1 Journal de l'Ecole Polytechnique, Vol.ll (1820), p. 422. See also the Ency­
klopli.die der Mathematischen Wissenschaften, II, A 7 b, Potentialtheorie, BURK­

HARDT u. MEYER, p. 489. 
Kellogg, Potential Theory. 16 
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V is harmonic in all of space except on S, and in particular, within the 
sphere. 

Secondly, as P (e, cP,1J) approaches the point Qo (a, CPo, 1Jo) of the 
surface of the sphere in any manner, V (e, cp,1J) approaches I (CPo, 1Jo). 
To show this, we start with the remark that the formula (7) holds for 
the harmonic function 1, so that 

(1O) 

Multiplying both sides of this equation by the constant I (CPo, 1Jo) and 
subtracting the resulting equation from (8), we have 

V( m 1J) - I (m 1J) = a2 - e2 iJ [f (rp', 1}') - t (rpo' 1}o)] dS. e, .,-, .,-0, 0 4:na y3 

S 

Now let (J denote a small cap of the sphere S with Qo as center, sub­
tending at the center of the sphere a cone whose elements make an 
angle 2 ex. with its axis. If 8 > 0 is given, ex. can be chosen so small that 

on (J, I I (cp', 1J/) - I (CPo, 1Jo) I < i. Then, making use of (lO), we see that 

I a2 - e2 iJ t (rp', 1}') - t (rpo' 1}o) dS \ < ~ a 2 - e2 lJdS, = ~. 
4:na r3 2 4:na r3 2 

a S 

But if we confine P to the interior of the cone coaxial with the one sub­
tended by (J, and with the same vertex, but with half the angular 
opening, then when Q is on the portion S - (J of S, 

cos y < cos ex. , and r2 > e2 + a2 - 2 e a cos ex. • 

Let us call ro the minimum value of r thus limited. Then if M is a bound 
for I I (cp, 1J) I on S, 

\ 
a2._ e2 iJ f (rp', 1}') - t (rpo' 1}o) dS I < a2 - e2 2M 4na2 

4:na r3 4:na ~ , 
S-a 

a quantity which can be made less than i by sufficiently restricting 
a - e. Thus 

I V(e, cp, 1J) - I (CPo, 1Jo) 1< 8 

in a region which contains all the points within and on the sphere which 
are within a certain distance of Qo. So V is not only continuous on the 
boundary, but assumes the given boundary values. Accordingly, the 
Dirichlet problem is solved lor the sphere. There is no real difference be­
tween the formulas (7) and (8) when I (cp, 1J) is a continuous function. 

Moreover, Poisson's integral also solves the Dirichlet problem for 
the infinite region exterior to the sphere. For, as we have seen, the inte-
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gral is the sum of simple and double distributions on S. The first is 
continuous. For the second, we have the moment 

f (rp', {}') 
P=--2n-' 

as a glance at the formulas (8) and (9) shows. Accordingly the limits 
V _ and V + of V from within and from without S are connected by the 
relation 

V+ - V_ = 4np = - 21 (rp', 1J'). 

Hence, as we have shown that V _ = 1 (rp', 1J/), we know that 
V + = -I (rp/, 1J'). If we change a sign in (8), and write it 

(ll) V 1J e2 - a2 rJ f ('1/, {}') d 5 
(e, rp, ) = ~ J. r3 , 

5 

the function thus represented is harmonic outside the sphere (this 
implying also regularity at infinity), and assumes the boundary values 
l(rp,1J)· 

Remark. As a matter of fact, Poisson's integral represents a function 
harmonic everywhere except on S when 1 (rp, 1J) is any integrable func­
tion. We shall have the materials for a proof of this fact in the next 
chapter. But in case 1 (rp, 1J), while remaining integrable, has discontinui­
ties, V cart no longer approach this function at every boundary point. 
What we can say-for the above reasoning still applies to 'integrable 
bounded functions-is that V approaches t (rp, 1J) at every boundary 
point where this function is continuous, and lies between the least upper 
and greatest lower bound of this function. 

Exercises. 
1. Show by elementary geometry that the function G (Q, P), p.240, vanishes 

when Q is on the surface of the sphere. 
2. Verify that Green's function is symmetric, when R is a sphere. 
3. Sho,y that the density of the charge induced on the surface of a sphere 

by a point charge is inversely proportional to the cube of the distance from the 
point charge. 

4. Set up Green's function for the region R consisting of all of space to one 
side of an infinite plane. Set up the equation corresponding to Poisson's integral 
for this region, and show that it can be given the form 

v(P) = 2ln II f (Q) dD, 

5 

the integration being with respect to the solid angle subtended at P by an element 
of the plane S. Show that this formula solves the Dirichlet problem for the region R, 
on the understanding that instead of requiring that V shall be regular at infinity 
(which may not be consistent with its assuming the boundary values f (P)), we 
require that it shall be bounded in absolute value. Here f (P) should be assumed 
to be continuous and bounded. Discuss the possibility of inferring the solution 
of the Dirichlet problem for the sphere from this by means of an inversion. 

16* 
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5. Show that if f (Q) is piecewise continuous on the surface of a sphere S, there 
exists a function, harmonic in the interior of the sphere, and approaching f (P) at 
every boundary point at which this function is continuous. Show that if Qo is 
an interior point of one of the regular arcs on which f (Q) is discontinuous, the har­
monic function will approach the arithmetic mean of the two limiting values of 
f (Q) at Qo' and determine the limiting value of the harmonic function if Qo is a 
point at which several arcs on which f (Q) is discontinuous meet. 

6. A homogeneous thermally isotropic sphere has its surface maintained at 
temperatures given by U = cos f), f) being the co-latitude. Determine the tempera­
tures in the interior of the sphere for a steady state. 

7. Derive Gauss' theorem of the arithmetic mean from Poisson's integral. 
8. Show that if U is harmonic at every proper point of space (not the point 

infinity) and is bounded, it is a constant. 
9. Let R be a closed region bounded by a surface S with a definite normal 

at each point,and such that each point of S is on a sphere entirely in R. Let U 
be harmonic in R, no hypothesis being made on its first derivatives on the boun­
dary, other than that the normal derivatives exist as one-sided limits and are O. 
Show that U is constant in R, thus generalizing in one direction Theorem IV, 
Chapter VIII, p. 213. Suggestion. Apply Poisson's integral to U in the sphere 
through the boundary point at which U attains its maximum, on the assumption 
that the statement is not true. 

A great deal has been written about Poisson's integral, and something 
on it will be found in nearly every book on Potential Theory (see the 
bibliographical notes, p.377). In recent literature on the subject,. the 
reader may be interested in the geometric treatment given by PERKINS, 
An Intrinsic Treatment of Poisson's Integral, American Journal of 
MathematIcs, Vol. 50 (1928), pp.389-414. 

Poisson's integral in two dimensions has similar properties. An 
excellent treatment of it is to be found in B&CHER'S Introduction to the 
Theory of Fourier's Series, Annals of Mathematics, 2d SeT. Vol. VII 
(1906) pp.91-99. Very general theorems on the subject are found in 
EVANS, The Logarithmic Potential, New York, 1927. 

5. Other Existence Theorems. 

We have spoken several times of existence theorems, and we have 
proved one, namely, that given a sphere and a function defined and con­
tinuous on the surface of the sphere, there exists a function continuous 
in the sphere and harmonic in its interior, which assumes the given 
boundary values. An existence theorem in mathematics has nothing to 
do with any metaphysical sense of the word "exist"; it is merely a state­
ment that the conditions imposed on a function, number, or other 
mathematical concept, are not contradictory. The proof of an existence 
theorem usually consists in showing how the function, or other thing 
whose existence is asserted, can be actually produced or constructed. 
Indeed it has been maintained that a proof of existence must be of this 
nature. The solution of the Dirichlet problem for the sphere has estab­
lished the existence of a harmonic function with gh:-en boundary values 
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on a sphere by producing a formula which gives the harmonic function. 
The existence theorem corresponding to this for a general region is 
known as the first fundamental existence theorem of potential theory. 

The Cauchy-Kowalevsky Existence Theorem. There are other existence 
theorems concerning harmonic functions. Applicable to all differential 
equations with analytic coefficients is the Cauchy-Kowalevsky theorem 1. 

For Laplace's equation, its content may be formulated as follows. 
Let P (xo, Yo, zo) be a point of space, and let S denote an arbitrary sur­
face passing through P, analytic at P. By this we shall understand that 
for a proper orientation of the axes S has a representation z = f (x, y), 
where f (x, y) is developable in a power series in x - Xo' y- Yo, conver­
gent in some neighborhood of the point (xo, Yo). Let CPo (x, y) and 
CP1 (x, y) denote two functions, analytic at (xo, Yo). Then there exists a 
three dimensional neighborhood N of P and a function U (x, y, z) which 
is harmonic in N and which assumes on the portion of S in N the same 
values as the fztnction CPo (x, y), and whose normal derivative assumes on 
the same portion of S the values CP1 (x, y). There is only one such function. 
Here a positive sense is supposed to have been assigned to the normal 
to S, in such a way that it varies continuously over S. 

This theorem tells us that we may assign arbitrarily the value of a 
harmonic function and of its normal derivative on a surface element, 
provided all data are analytic. Thus it appears that essentially two 
arbitrary functions of position on a surface fix a harmonic function, 
whereas the first fundamental existence theorem indicates that one 
arbitrary function is sufficient. But in the latter case, this function is 
given over the whole of a closed surface, whereas in the former, the two 
functions are given only on an open piece of surface. The Cauchy-Kowa­
levsky theorem asserts the existence of a function harmonic on both sides 
of the surface on which values are assigned, as well as on the surface, 
but only in a neighborhood of a point. The first fundamental.existence 
theorem asserts that even though the assigned boundary values be merely 
continuous, a function exists which is harmonic throughout the entire 
interior of the region on whose surface values are assigned, but not 
that it can be continued through the surface. The Cauchy-Kowalevsky 
theorem asserts the existence of a function in some neighborhood of a 
point (or im Kleinen, as it is expressed in German), the first fundamental 
existence theorem, throughout a given extended region (im GraBen). 

The Second Fundamental Existence Theorem. We have seen that if 
continuous boundary values are assigned, on the surface of a regular 
region, to the normal derivatives, not more than one function, apart 

1 See, for instance, GOURSAT, A Course in Mathematical Analysis, translated 
by HEDRICK, Boston, 1917, Vol. II, Part. II, sections 25 and 94; BIEBERBACH, 
Differentialgleichungen, Berlin, 1923, pp.265-270. 
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from an additive constant, harmonic in the region, can have normal 
derivatives with these values. Can the boundary values be any continuous 
function? Evidently not, in the case offinite regions atleast, for Theorem I 
of the last chapter places a restriction on them. Suppose that this con­
dition is fulfilled, that is, in the case of finite regions, that the integral 
over the surface of the assigned boundary values vanishes. The problem 
of finding a function, harmonic in the region, and having normal deriva­
tives equal to the function given on the boundary is known as Neumann's 
problem, or the second boundary vahte problem of potential theory, and 
the theorem asserting the existence of a solution of this problem is 
known as the second fundamental existence theorem of potential theory. 

In considering the Neumann problem, it is natural to ask whether 
there is not a function similar to Green's function which may here 
play the role which Green's did for the Dirichlet problem. We consider 
the case of a bounded region, and follow the analogy of the work of § 3. 
We wish to eliminate U from under the integral sign in 

U (P) = ~ff [iJ u ~ - U ~!..14 5 
4n iJv r iJv r ~ 

S 

by means of 

o =~ff[iJU V - U~VJdS 
4n iJv iJv ' 

s 

in order that U may be expressed in terms of the boundary values of 
its normal derivative alone. This could be accomplished if we could find 
a function V, harmonic in R, and having a normal derivative which 

was the negative of that of ~. But this is impossible, since, by Gauss' r 
theorem on the integral of the normal derivative, the integral of the 

normal derivative of ~ over 5, the surface of R, is - 4 'Jt, while if V is 
r 

harmonic in R, the integral of its normal derivative over 5 is O. We 
therefore demand that the normal derivative of V shall differ from that of 

- ~ by a constant, and this will serve our purpose. Then the combined 

potential 
I 

G(Q, P) =7 + V(Q, P), 

if it exists, is known as Green's function of the second kind for R. In terms 
of this function, we obtain the following expression for U (P) by adding 
the last two equations: 

(12) U(P) = 4Inff~~ G(Q, P)dS + 4cnff U(Q)dS. 
S 5 

This gives U in terms of its normal derivatives except for an additive 
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constant, which is all that could be expected, since U is determined 
by its normal derivatives only to within an additive constant. Further 
consideration of this formula is left for the following exercises, where it 
is assumed once and for all that G (Q, P) exists and possesses the requi­
site continuity and differentiability. 

Exercises. 
1. Determine the value of the constant in the formula (12), and thus show that 

the last term is the mean of the values of U (P) on S. 
2. Show that G (P, Q) = G (Q, P) for Green's function of the second kind. 
3. Given a generalized functio~ of Green 

I 
G(Q, P) = -;y+ V(Q, P), 

where V(P, Q) is harmonic in R and subject to any boundary conditions which 
have as consequence that 

II [G (Q, Pi) :'1' G(Q,P2 ) - G (Q, P 2 ) :'1' G (Q, Pi)] dS = 0, 

s 
show that G (P, Q) = G (Q, P). 

4. With the notation of § 4, show that 

I a I 2 a2 
G (Q, P) = - - + - + -log - ~~---~-----c:-----; 

r e r' a a2 - e e' cosy + e r' 

is Green's function of the second kind for the sphere, i. e. (a) that the second and 
third terms constitute a function tP (e', '1/, f}') harmonic in the sphere, and (b) 
that the normal derivative is constant on the surface of the sphere. Suggestion as to 
part (a). The direct reckoning showing that the third term is harmonic may be 
tedious. Remembering that P is fixed, it is easily verified that the third term is 
a linear function of the logarithm of the sum of the distance of Q from a fixed 
point (the inverse of P) and the projection of this distance on a fixed line. It is then 
simply a matter of verifying the fact that the logarithm of such a sum, referred 
in the simplest possible way to a suitable coordinate system, is harmonic, and of the 
examination of possible exceptional points. 

5. Verify that the above function is symmetric in P and Q. 

6. With the above function, show that (12) becomes 

U(P)=~Jf~U[~+2.-10g 2a ]dS+U(O), 
4 n u'l' l' a a - e cos y + r 

S 

o being the center of the sphere. 
7. Show that the formula 

V (e, cp, f}) = -41 fII (cp', f}') L' ~ + 2.- log 2 a I ] dS, 
n r a a - e cos y T r 

S 

f (cp, f}) being any continuous function such that J J I (cp', f}') d S = 0, solves the 
Neumann problem for the sphere. S 

8. Show how to solve the Neumann problem for the outside region bounded 
by a sphere. Show how the condition that the integral of f (cp, f}) shall vanish can 

be removed by the addition of a suitable multiple of ~ to a formula analogous to 
e 

that of Exercise 6. 
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Exercises on the LogaTith'lnic Potential. 
9. Define harmonic functions in bounded domains of the plane, establish 

Green's identities for bounded regular plane regions, and develop the properties 
of functions harmonic in bounded domains. 

10. Set up Laplace's equation in general coordinates in the plane, and discuss 
inversion in the plane. If, by an inversion, a bounded domain T goes over into a 
bounded domain T', and if U (x, y) is harmonic in T, show that 

( a2 x' 
V (x', y') = U ~, a2 Y') 

r /2 

is harmonic in T'. Thus, in the plane, we have in place of a Kelvin transformation, 
a mere transformation by inversion, and this le~tves a harmonic function harmonic. 

In space, regularity at infinity has been so defined that a function, harmonic 
at infinity (and, by definition, this means also regular at infinity) goes over by a 
Kelvin transformation into a function harmonic at the center of inversion. We 
follow the same procedure in the plane and say that U is regular at infinity pro­
vided 

a} U approaches a limit as e becomes infinite in any way, e being the distance 
from any fixed point, and 

I, au i I au I b} e2 a;; I and e2 ay remain bounded as e becomes infinite. 

II. Develop properties of functions harmonic in infinite domains of the plane. 
In particular show that 

sau ds=O an 
when extended over any closed regular curve including the boundary of the in­
finite domain in which U is harmonic (see Theorem I', p. 2I8), and that if U is 
harmonic and not constant in the infinite region R, it attains its extremes on and 
only on the boundary of R (see Exercise 1, p. 224). 

12. Define and discuss the properties of Green's function in two dimensions, 
and derive Poisson's integral in two dimensions. 

13. Discuss Neumann's problem for the circle. 
14. Study harmonic functions in one dimension, considering, in particular, 

Green's function. 

Chapter X. 

Sequences of Harmonic Functions. 
1. Harnack's First Theorem on Convergence. 

We have already found need of the fact that certain infinite series of 
harmonic functions converge to limiting functions which are harmonic. 
We are now in a position to study questions of this sort more system­
atically. Among the most useful is the following theorem due to HAR­

NAC!{l. 

Theorem 1. Let R be any closed region of space, and let U1 , U2 , U3 , •.. be 
an infinite sequence of functions harmonic in R. If the sequence converges 

1 Grundlagen der Theorie des logarithmischen Potentials, Leipzig, 1887, p. 66. 
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uniformly on the boundary 5 of R, it converges uniformly througho~tt R, 
and its limit U is harmonic in R; Furthermore, in any closed region R', 
entirely interior to R, the sequence of derivatives 

[ a'+J+k ] 
ax' ayJ az' Un , n = 1,2,3, ... , 

i, f, k being fixed, converges uniformly to the corresponding derivative 
of U. 

First, the sequence converges uniformly in R. For the difference 
(Un+p - Un) is harmonic in R, and so by Theorem X, Chapter VIII 
(p.223), is either constant, or attains its extremes on S. Hence its 
absolute value is never greater in the interior of R than on 5, and 
since the sequence converges uniformly on 5, it must converge uniformly 
in R. Also, a uniformly convergent sequence of continuous functions has 
a continuous function as limit! and hence the limit U of the sequence 
is continuous in R. 

Secondly, U is harmonic in the interior 'of R, by the converse of 
Gauss' theorem on the arithmetic mean (Theorem XI, Chapter VIII, 
p. 227). For each term of the sequence is its own arithmetic mean 
on spheres in R, and since a uniformly convergent sequence of con­
tinuous functions may be integrated termwise, that is, since the limit of 
the integral of Un is the integral of the limit U, it follows that U also 
is its own arithmetic mean on spheres in R. Hence, by the theorem cited, 
U is harmonic in the interior of R, and as it is continuous in R, it is 
harmonic in R. 

Finally, the sequence of derivatives converges uniformly to the 
corresponding derivative of U. Consider first the partial derivatives of 
the first order with respect to x. By Theorem XII, Chapter VIII (p. 227), 
if a is the minimum distance of any point of R' from the boundary 
of R, 

I a I 4 I 
!iix(Un - U)l < 3a2maxl Un - U , 

the quantity on the left being taken at any point of R', and that on the 
right being the maximum in R. Since the right hand member approaches 
o as n becomes infinite, the left hand member approaches 0 uniformly, 

and the convergence of the sequence of the derivatives to ~~ is 

established. To extend the result to a partial derivative of any order, 
we need only to apply the same reasoning to the successive derivatives, 
in a nest of regions, each interior to the preceding and all in R. This can 
always be done so that R' will be the innermost region (see Chapter XI, 
§ 14, p. 317). 

1 See, for instance, OSGOOD, Funktionentheorie, I, Chap. III, § 3. 
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Remarks. The theorem has been enunciated for sequences rather than 
for series, but there is no essential difference. For the convergence of an 
infinite series means nothing other than the convergence of the sequence 
whose terms are the sums of the first n terms of the series. And the con­
vergence of a sequence 51' 52' 53' ... can always be expressed as the 
convergence of the series 

51 + (52 - 51) + (53 - 52) + .... 
But there are cases in which we have neither a sequence nor a series 

before us where the same principle as that expressed in the theorem 
is useful. Suppose, for instance, that it has been established that 

a 
a-;,G(Q,P) 

is harmonic in the coordinates of P in a region R', interior to the region 
R for which G (Q, P) is Green's function. Can we infer that the function 
given by Green's integral (equation (5), page 237) is harmonic in R'? 
Recalling the definition of· integral, we note that any of the sums of 
which the integral is the limit, being a finite sum of functions which 
are harmonic in R', is also harmonic in R'. If these sums approach the 
integral uniformly in R', the reasoning used in the theorem shows that 
the limit is harmonic in R'. This can easily be shown to be the case in 
the present instance. 

In order to express the extension of the theorem in a suitable way, 
let us remark that if ° is supposed given, the sum 

.2J f (Q1c) iJ 5 k' 
k 

in which the maximum chord of the divisions iJ 51c of 5 is restricted 
to be not greater than (j, is a function of 0. It is infinitely many valued, 
to be sure, but its values are still determined by the value of 0, and 
its bounds are uniquely determined. If f (Qk) depends also on parameters, 
like the coordinates of a point P, the sum will also depend on these para­
meters. What are we to understand by the statement that a many­
valued function is harmonic in R? We shall say that a function U (P, 0) 
is harmonic in R if to any of its values at any point Po of R there 
corresponds a one-valued function having the same value at Po, whose 
value at any other point P of R is among those of U (P, 0) at P, and that 
this one-valued function is harmonic in R. Such a one-valued function 
we call a branch of U (P, 0). To say that U (P, 0) converges uniformly 
to a limit as (j approaches 0, shall mean that there is a one-valued func­
tion U such that s > 0 being given, (j can be so restricted that 

! U(P,o) - U! < s 

for all points P in the set of points for which the convergence is uniform, 
and for all branches of the many valued function U (P, 0). 
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With these preliminaries, we may state the theorem as follows: let R 
be any closed region in space, and let U (P, 0) be continuous in R and har­
monic in the interior of R. Then if U (P, 0) converges uniformly to a limit 
on the boundary of R, it converges uniformly throughout R to a one-valued 
function U, which is harmonic in R. Any given derivative of U (P, 0) con­
verges uniformly in any closed region R' interior to R to the corresponding 
derivative of U. Bya derivative of U (P, 0), if U (P, 0) is many valued, 
we mean the many valued function whose values at any point are those 
of the corresponding derivative of the branches of U (P, 0) at that point. 

It follows that if f (Q, P) is continuous in the coordinates of P and Q, 
when Q is on the boundary S of the regular region R, and P is in a re­
gion R' interior to R, and if f (Q, P) is harmonic in P for P in R', for every 
fixed Q on S, then 

F (P) = f f f (Q, P) dS 
s 

is harmonic in R'. 

2. Expansions in Spherical Harmonics. 

We have seen that Newtonian potentials can be expanded in series 
of spherical harmonics, and that harmonic functions are Newtonian 
potentials. It follows that harmonic functions can be so expanded. We 
are now concerned with the determination of the expansion when the 
harmonic function is not given in terms of Newtonian distributions. 

We take as point of departure, Poisson's integral 

a2 - e2 ffu (a cp' {}') (1) U(e,rp,{}) =~ 'y3' dS, r2=e2+a2-2aecosy 
S 

where S is the surface of the sphere of radius a about the origin, and 
where U is harmonic in the closed region bounded by S. We have seen 
equation (9), (p. 241) that 

(2) 
a2 - e2 I 0 I 
---= --- 2a--

y3 r ov r ' 

and that (equation (18), page 135) 

(3) 
I I e e2 

- = Po (u) ---; + P l (u) --,-" + P 2 (u) --;-;) + "', 
y e e e u=cosy, 

valid for e < (1'. If we differentiate this series termwise with respect 
to (1', and set (1' = a, we have 

( 4) o I I e e2 - - = - Po (u) - - 2 P (2t) - - 3 P (u) - .... ov r a2 1 a3 2 a4 

Setting e' = a in (3) and using this and (4), we find for the function (2) 
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the expression 

a2 
- e2 = ~ [p (u) + 3 P (u) e 
r3 a 0 1 a 

e2 Ok ] + 5 P2 (u) a2 + ... + (2 k + 1) P k (u) -~ + ... , 
the series being uniformly convergent for 12 S A a, ° < A < 1. This func­
tion may therefore be used in (1), and the integration carried out term­
wise, so that we have 

(5) U(e,fIJ,{}) = 1; (2k + 1) [4:a ifff U(a,fIJ',{}')Pk(u) dS] ~:. 
05· 

Since 12k Pk (u) is a spherical harmonic of order k, we have here a 
development of U in spherical harmonics, determined by the boundary 
values of U, the series being convergent for 12 < a, and uniformly con­
vergent in any region R' interior to the sphere. Vve shall discuss later 
the question of convergence on the sphere itself. 

Let us apply this development to the spherical harmonic 

Hn (12, fIJ, {}) = enSn (fIJ, fJ) 
We find 

en Sn (fIJ, {}) = 1; (2 k + 1) [4: a21f an Sn (fIJ', {}') P k (u) dS] ~:. 

The coefficients of the powers of 12 on both sides of this equation must 
be identical, and we conclude that 

(6) 

J 
J J Sn (fIJ', i)i) P k (u) dS = 0, 

Sn
5
(fIJ, {}) = (2:,/;/1 f f Sn (fIJ', {}') P n (u) dS, 

1 "2,, 5 

or f f Sn (fIJ', {}') Pn (cos y) sin {}' dfIJ' d{}' = 21:: 1 Sn (fIJ, {}). 

k=l=n, 

00 

The spherical harmonics 12k Pk (u) are often called zonal harmonics, as 
the surfaces on which they vanish divide the surface of the sphere into 
zones. If the factor 12k be suppressed, we have what is known as a sur­
face zonal harmonic. This is therefore another name for Legendre poly­
nomials, although the term is often used in the wider sense of any so­
lution of the differential equation (11) (page 127), for Legendre polyno­
mials, whether n is integral or not. The ray (fIJ, {}) from which the angle y 
is measured is called the axis of the zonal harmonic. The first equation (6) 
states for an apparently particular case, that two spherical harmonics 
of different orders are orthogonal on the surface of the unit sphere, a result 
found in Exercise 2, § 2, Chapter VIII, (p. 216). The last equation (6) 
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states that the integral over the unit sphere of the product of any spherical 
harmonic of order n by the surface zonal harmonic of the same order is 
the value of the spherical harmonic on the axis of the zonal harmonic, 
multiplied by 411: and divided by 2n + 1. 

Thus, if U is harmonic in a neighborhood of the origin and hence has 
a uniformly convergent development in terms of spherical harmonics 

U = 50 + 5 1 12 + 5 2 122 + .. " 
the terms of this series may be obtained by multiplying both sides of 
the equation by Pic (u) and integrating over the surface of a sphere lying 
in the region in which the development is uniformly convergent. The 
result is nothing other than the development (5), where a is the radius 
of this sphere. Of course in deriving the development (5) we did not need 
to know that the series converges for P on the sphere itself. 

The development of a harmonic function in a series of spherical har­
monics is a special case of developments of harmonic functions in given 
regions in series of polynomials characteristic of those regions 1. 

Exercises. 
1. Check the equations (6) for simple cases, for instance 50 = 1, 51 = cos 1J, 

52 = cos 2 'P sin 1J, with Po (u), P1 (u), P 2 (u). 
2. Derive Gauss' theorem on the arithmetiC mean from (5). 
3. Derive the expansion in terms of spherical harmonics divided by powers 

of I}, valid outside a sphere. 
4. If U is harmonic in the region between two concentric spheres, show that 

it can be expanded in a series. 
00 

U = 2 12k 5 k ('P, 1J), 
-00 

where 5_k ('P, 1J) (k > 0) is a surface spherical harmoniC of order k -1, the series 
being uniformly convergent in any region lying between the two spheres, and having 
no points in common with their surfaces. Show how the spheriCal harmonics of 
the development are to be determined. 

5. Show that any function, harmonic in the region bounded by two concentric 
spheres is the sum of a function which is harmonic in the interior of the outer 
sphere, and a function which is harmonic outside the inner sphere. 

6. Show that there are no two different developments in spherical harmoniCs 
of a harmonic function, the developments having the same origin. 

7. Show that 

~k f f U (a, 'P', 1J') P k (u) sin 1J' d'P' diJ' 

5 

is independent of a for all a ;;::;: ~, where a1 is the radius of a sphere about the 
origin in which U is harmonic. 

S. Show by means of the equation (62) that any surface spherical harmonic of 
degree n is a linear combination with constant coefficients of functions obtained 
by giving to the axis of the surface zonal harmonic P n (u) at most 2 n + 1 distinct 
directions. 

1 See J. L. WALSH, Proceedings of the National Academy of Sciences, Washing­
ton, Vol. XIII (1927), pp. 175-1S0. 
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9. Show that 
2" 

1= 21:n;f P k (cos {} cos {}' + sin {} sin {}' cos cp') dq/ 

o 
= Pdcos {}) P k (cos {}'). 

Suggestion. The integral is a polynomial of order k in cos {}, since the integral 
of any odd power of cos cp' is O. Hence we may write 

k 

I=.2J c, ({}') Pr (cos {}), 
o 

and the problem is reduced to the determination of the coefficients c, ({}'). 

3. Series of Zonal Harmonics. 
Suppose that U is harmonic in the neighborhood of a point, which 

we take as origin, and that it is symmetric about some line through that 
point; in other words, if we take the axis of spherical coordinates along 
that line, U is independent of the longitude cpo Then the development 
(5) takes the form 

U (e, 0.) = 1; (2k + 1) [4:a2 ff U (a, 0.') P k (cos 0. cos 0.' 
o s 

+ sin 0. sin 0.' cos (cp - cp')) dSJ ~: . 
As' U is independent of cp, we may set cp = 0 in the integrals, and carry 
out the integration with respect to cp', with the result (see Exercise 9, 
above) : 

U (e, 0.) = 1; 2 k ;- I [J U (a , 0.') P k (cos {j') sin 0.' d 0.' ] P k (cos 0.) ~: . 
o 0 

Hence the function U (e, 0.), harmonic within the sphere of radius a 
about the origin, and continuous within and on the surface, is develop­
able in a series of zonal harmonics, 

(7) U (e, 0.) = J; ckP/c (cos 0.) e7c , 
o 

1 

_ 2k + If -1 
CIc - 2"a'k U(a,cos u)Plc(u)du, 

-1 

uniformly convergent in any region interior to the sphere1 . 

1 Attention should be called to the distinction between this type of develop· 
ment and that considered in Chapter V, § 3, (page 129), and in Theorem III, Corol­
lary, of the next section. Here it is a question of developing a harmonic function 
in a region of space; there it is a question of developing an arbitrary function 
of one variable - yet the developments leading to Theorem III really connect 
the two. 
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For {} = 0, this series reduces to 

U(e,O) =Zckek , 
o 

and the coefficients are seen to be simply those of the power series in 
e for the values of U on the axis. We see thus that a junction, harmonic 
in a neighborhood oj a point, and symmetric about an axis thro~6gh that 
point, is uniquely determined by its values on the axis. For the function 
U (e, 0) has a unique development as a power series, so that the co­
efficients are uniquely determined, and these in turn, uniquely de­
termine U. With this theorem goes the corresponding existence theorem: 

Theorem II. Let j (e) be developable in a series oj powers oj e, con­
vergent jar e < a. Then there is one and only one junction U (e ' {}) , sym­
metric about the axis oj {}, harmonic in the interior oj the sphere about the 
origin oj radius a, and reducing jar {} = 0 to j (e), and for {} = n to j (- e). 

We have just seen that there is not more than one such function. 
Let the development of j (e) be 

As this series is convergent for e = Aa, 0 < A < 1, it follows that its 
terms are bounded in absolute value for e =Aa, say by the constant 
B, and accordingly that 

I Ck I < (A~)k . 

Since the Legendre polynomials never exceed 1 in absolute value for 
-1 < 26 < 1, the series 

is dominated by the series 

~ ek 

,.::::.;BV,a)k' 
o 

and therefore converges uniformly for e ::;:,Ie 2a. Hence by Theorem I, 
it represents a function harmonic in the interior of the sphere of radius 
,Ie 2 a , and since A is any positive number less than 1, this function is har­
monic in the interior of the sphere of radius a. As the sum U has the 
requisite symmetry and reduces to j (e) for {} = 0, and to j (- e) for 
{} = n, the theorem is proved. 

As an example of a development in zonal harmonics, let us take 
the potential of the circular wire, studied in § 4, Chapter III, (p.58). 
The determination of the value of the potential at points of the axis is 
very simple, and was found in Exercise 2, page 56: 

111 111 [ 1 e2 1 3 e4 1 3 5 e6 l 
U (e ,0) = yc2 + e2 = -c- 1 - 2 ~ + 24 C4 - 246 C6 + ... J ' 
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where M is the total mass and c the radius of the wire. Hence for 
{)<e<c 

M [ 1 112 1 3 e4 -J' U(e,O) = c Po (cosO) - 2 P2 (cos O)-cs + 24P4(cosO)C4"- .... 

Similarly, it may be shown that for e > c, 

M [ 1 c2 1 3 c4 ] U(e, {f) = e Po (cosO) - 2P2(COSO)~ + 24P,(cosO)?"- .. ,.' . 

Eooercises. 
1. Check the result of Exercise 3, page 62, by means of one of the above 

series. 
2. Obtain and establish the development of a function harmonic outside a 

given sphere in terms of zonal harmonics divided by proper powers of Il' the function 
being symmetric about an axis. 

3. The surface of the northern hemisphere of a homogeneous isotropic sphere of 
radius 1 is kept at the constant temperature 1, while the surface <Jf the southern 
hemisphere is kept at the constant temperature O. Determine a series of zonal 
harmonics for the temperature at interior points, a steady state being postulated. 
Estimate the temperature at a distance 0.5 from the center on a radius making 
the angle 60 0 with the axis. Check the estimate by computation. 

4. Find the potential of a hemispherical surface of constant density in the 
form of series in zonal harmonics, one valid for points outside the sphere and one 
valid inside. Partial answer, 

M[' 1 Il 11 113 ] u=- Po(cosit)+-Pdcosit)----P3(cosit)·-+··· , 
c 2 c 24 c3 

where M is the mass and c the radius of the hemisphere, the origin being at the 
center and the axis of it pointing toward the pole of the hemisphere. 

4. Convergence on the Surface of the Sphere. 

Suppose that in the development (5) we write, under the integral 
sign, f (cp', 0') in place of the function U (a, 0', cp'), and call the resulting 
series V (e, cp, 0): 

(8) V(e, cp, 0) = 1: (2k + 1) [4:a'2 II t (cp', 0') Pk (u) dSJ ~: . 
o s 

If t (cp, 0) is continuous, as we shall assume, the integrals are bounded 
in absolute value, so the series is uniformly convergent for e < Aa, 
o < A < 1. As the terms are spherical harmonics, the series converges 
here to a harmonic function. Moreover, for e < a, the series converges 
to the function given by (8), § 4, Chapter IX, that is, by Poisson's inte­
gral. So we know that the series converges at all interior points of the 
sphere to the harmonic function whose boundary values are t (cp, 0). 
However, it is often of importance to know that the series converges 
on the bounding surface S. We shall show that this is the case if t (cp, 0) 
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is continuously differentiable on the unit sphere, or, what amounts to 
the same thing, that it has continuous partial derivatives of the first 
order with respect to cp and D for two distinct positions of the axis from 
which D is measured. The series converges under lighter conditions on 
t (cp, D), but the hypothesis chosen yields a simpler prQof. 

The derivative of t (cp, D) with respect to the arc s of any continuously 
turning curve, making an angle T with the direction of increasing cp, 
the sense of increasing T being initially toward the north pole, from 
which D is measured, is given by the formula 

dt at COST at. as = aq; sinD - aD sm T. 

From this we draw two inferences. Since such a representation holds 
for two distinct positions of the axis, we may, for any point of the 
sphere, choose that coordinate system for which D and 7& -D are not less 
than half the angular distance between the two positions of the axes, so 

that [:~ [ is uniformly bounded, say by B. For I :~ I and I :; [, being 

uniformly continuous on the sphere, are bounded. Secondly, the variable s 
may be identified with the length of arc along any meridian curve or 
parallel of latitude, so that t (cp, D) has continuous derivatives of the 
first order with respect to the angles, with any orientation of the axes 
of coordinates. 

Turning now to the proof of the convergence of the series (8), we 
denote by Sn (cp, D) the sum of the terms of the series as far as the term 
in en. Then by equation (12), page 127, we have, for e = a, 

3'C 271': n 

Sn (cp, D) = 41n f f 2.,;"1 (2k + 1) t (cp', D') Pk (u) sin D' dcp' dD' 
00 0 

1 2", 

= 4~f ft(CP',U')[P;+l(U) +P~(u)]dcp'du. 
-10 

As all the terms of this equation can be interpreted as values of func­
tions at points of the unit sphere, it is really independent of a coordinate 
system, and we are free to take what orientation of the axes we wish. 
Let us therefore take the polar axis through the point at which we wish 
to study the convergence. Then u = cos y becomes cos D', and we may 
carry out the integration with respect to cp' by introducing the mean on 
parallel circles of t (cp, U) : 

2", 

F(u) = 2~ft(cp',D')dcp" u = cosD'. 
o 

Kellogg, Potential Theory. 17 
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The result is 
1 

(9) S" (q;, 0) = ! f F (UHP':+! (U) + P~(U)] dUo 
-1 

Since the derivatives of f (q;', {}') with respect to q;' and {}' are bounded in 
absolute value by B, 

2", 

'I dF(u) I 1 If 8 f ( , {}') d ' I < B d1?' \ = 2" 8f}' q;, q; = , 
o 

and 
dF(u) I 

I F' (u) I = I dF(u) I = df}' < B _. 
I d u d u 1- 11 - u2 

df}' 

(10) 

Let us now carry out an integration by parts in (9), remembering 
that P"+1 (-1) and P" (-1) are equal and opposite, and that 
P"+l (1) = P" (1) = 1, F (1) = f (q;, 0): 

1 1 

s,,(q;, 0) =f(q;,O) - ~fF'(U)p,,+dU)dU- ~fFI(U)p,,(U)du. 
-1 -1 

It is now not difficult to show that these integrals approach 0 as n be­
comes infinite. Take, for instance the second. Let 0 < Ot < 1. Then 

We apply Schwarz' inequality to the first term (see page 134, Exercise 15), 
and evaluate the last two integrals, with the result 

1 

If F' (u) P" (u) du I < 2B + 2B COS-lOt. 
yl- oc2 Y2n + 1 

-1 

If 8> ° is given, we choose Ot < 1, so that the second term is less than ; , 

and then choose n so that the first term is less than ;. Thus, as stated, 

the integrals in the expression for s" (q;, 0) approach 0 as n becomes in­
finite, and it follows that s" (q;, 0) approaches the limit f (q;, 0). Thus the 
series (8) does converge' for e = a, and to the value f (q;, {}). Moreover, 
the inequalities being independent of the position of the point where 
the convergence was studied, the convergence is uniform. 

Incidentally, we may draw conclusions as to the expansion of func­
tions in series of Legendre polynomials. Let f (q;, {}) be independent of q;. 
Writing f (q;, {}) = f (u), we assume that this function is continuously 
differentiable in (- 1, 1). The conditions of the theorem just established 



The Continuation of Harmonic Functions. 259 

are then met, and the series (8) becomes a series of zonal harmonics, uni­
formly convergent for (! = a, and we have 

00 1 

f (u) = 2) [2k;- I If (u') Pk (u') dU'] Pk (u). 
o -1 

We formulate the results as follows. 

Theorem III. Let f (rp, {}) be continuously differentiable on the unit 
sphere. It is then developable in a uniformly convergent series of surface 
spherical harmonics. 

CoroIIary. Any function f (u), continuously differentiable in the closed 
interval (-1, 1), is developable in that interval in a uniformly convergent 
series of Legendre polynomials in u. 

Exercise. 
By means of Exercises II and 12 of § 3, Chapter V (p. 133) extended to the 

function f (x) = 0, - I·;;;;; x;;;;; a, f (x) = x - a, a ;;;;; x:S;; 1, generalize the above 
corollary to the case in which f (u) is merely piecewise differentiable in (-1, I). 
Suggestion. Using integration by parts, and the formula following (II), page 127, 
we find 

I [" Pr+2 (a) (I I) P r- s (a) ] 
cr ="2L2r+3 - 2r+3 + 2r-I P,(a) + 2r-I . 

Thus the series for I(x) will converge uniformly if the series .2! I P n (a) I con­

verges. We obtain a bound for I P n (aJ I, as < I, from Laplace's formula, page 133. 
Replacing the integrand by its absolute value, and y I - a2 by k, we have 

2 

< !ISinn +1qJ d 'P('P= ;k COS {}). 

o 

5. The Continuation of Harmonic Functions. 
In Chapter VII, § 5 (p. 189), we had need of a theorem enabling us to 

identify as a single harmonic function, functions defined in different 
parts of space. We shall now consider this problem, and the general 
question of extending the region of definition of a harmonic function. 

Theorem IV. If U is harmonic in a domain T, and if U vanishes at 
all the points of a domain T in T, then U vanishes at all the points of T. 

Let Til denote the set of all points of T in a neighborhood of each 
of which U = O. Then Til is an open set, containing T. The theorem 
amounts to the statement that Til coincides with T. Suppose this were 
not the case. Then T" would have a frontier point Po in T (d. Chapter IV, 

17* 
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§ 5, Exercise 4, p. 94). In any neighborhood of Po there would be points 
of Til, and thus about one of them, PI> there would be a sphere a con­
taining Po and lying in T. Taking PI as origin, U would be developable 
in a series of spherical harmonics, convergent in this sphere. The spheri­
cal harmonics of this development could be determined by integration 
over a sphere of radius so small that· U vanished identically on its sur­
face, since PI was to be interior to Til. Thus the development (5) would 
show that U vanished throughout a, and therefore throughout a neighbor­
hood of Po. Thus Po would be an interior point of Til, and not a frontier 
point, as assumed. It follows that Til contains all the points of T, and 
the theorem is proved. 

It follows that if a function is harmonic in a domain T, it is deter­
mined throughout T by its values in any domain T' whatever, in T. 
For if U1 and U2 are two functions, harmonic in T, and coinciding in 
T', their difference is 0 throughout T, by the theorem. 

Theorem V. If TI and T2 are two domains with common points, and 
if U1 is harmonic in TI and U2 in T2, these functions coinciding at the 
common points of TI and T2, then they define a single function, harmonic 
in the domain T consisting of all points of TI and T2. 

For since TI and T2 have common points, and any such point Po 
is interior to both, there is a sphere about Po lying in both TI and T2 • 

Let its interior be denoted by T'. Then if U be defined as equal to U~ 
in TI and to U2 in T 2 , it is uniquely determined in TI by its values in 
T', by Theorem IV, and similarly, it is uniquely determined in T2 • It is 
therefore harmonic throughout T, as was to be shown. 

So far, we have been restricting ourselves to one-valued functions. 
But when it comes to continuations, this is not always possible. For we 
may have a chain of overlapping domains, the last of which overlaps 
the first, and a function harmonic in the first, and continuable in ac­
cordance with the above theorem throughout the chain, may fail to have 
the same values in the overlapping part of the last and first domains, 
when thought of as single-valued functions in each of these domains. For 
instance, let the interior of a torus, with z-axis as axis, be divided by 
meridian planes into a number of overlapping domains of the sort con-

sidered. Starting in one of them with the function tan -1 (~), we 

arrive, after a circuit of the domains, at sets of values differing by 2:n;. 
These values constitute branches of the many-valued function, and each 
branch can be continued in the same way. We arrive, in this case, at 
an infinitely many-valued function, any of whose branches is harmonic 
in any simply connected region in the torus. Since any of these branches 
isa harmonic continuation of any other, it is customary to speak of them 
all as constituting a single many-valued harmonic function. However, 
we shall continue to understand that we are speaking of one-valued 
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functions unless the contrary is stated, although this does not mean that 
the one-valued function may not be a specified branch of a many-valued 
one, in a region in which a continuation to another branch is iinpossible. 

We now establish the theorem on harmonic continuation which was 
needed in connection with the problem of a static charge on an ellip­
soidal conductor: 

Theorem VI. Let TI and T2 be two domains without common points, 
but whose boundaries contain a common isolated regular surface element E. 
Let U1 be harmonic in TI and U2 in T2. If U1 and U2 and their partial de­
rivatives of the first order have continuous limits on E, and if the limits of 
U1 and U2 and of their normal derivatives in the same sense coincide on E, 
then each is the harmonic continuation of the other, that is, the two to­
gether form a single harmonic function in the domain T consisting of 
the points of T1 , T2 and the interior points of E. 

By saying that the boundaries contain a common isolated regular 
surface element E, we mean that about each interior point of E, there is 
a sphere within which the only boundary points of either TI or T2 are 
points of E. 

To prove the theorem, let Po be any interior point of E, and let (f 
denote a sphere about Po, all of whose points are in T1 , T 2 , or E. Let 
rl and r2 be the regions consisting of the .points in (f and TI" and in (f 

and T2 , respectively, together with their boundary points. If now U is 
defined as equal to U1 in rl , and to U2 in r2 , and if P is any interior 
point of rl , the identity III of Chapter VIII, § 4, p. 219, becomes 

1 fJau 1 1 fJ a 1 U(P)=- --dS-- U--dS 
4n av r 4n av r ' 

51 Sl 

Sl being the surface bounding rl' 

Again, the identity II (page 215) is applicable to the region r2 , w~th the 

abov~ U and with V = J:..., since r does not vanish in r2 : 
r 

S2 being the surface bounding r2' If these two equations are added, the 
integrals over the portion of E in (f dis~roy each other, since the normal 
derivatives are taken in opposite senses, and so, by the hypothesis on 
U1 and U2 , are equal and opposite. The resulting equation is 

U(P) = _1 fJau J:...dS __ 1 rJu ~J:...dS. 
4n av r 4nJ~ av r 

a a 

Exactly the same formula determines U in r2' But it gives U as harmonic 
throughout (f. Thus, by Theorem V, U, defined as U1 in T1 , as U2 in T 2 , 

and as their common limit on E, is harmonic throughout T1 , T2 , and a 
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neighborhood of Po. But as Po is any interior point of E, this function 
is harmonic throughout T, as was to be proved. 

As a corollary, we may state the following: If U is harmonic in a 
closed region R, and if the boundary of R contains a regular surface element 
on which U and its normal derivative vanish, then U is identically 0 in R. 
For, by the theorem, 0 is a harmonic continuation of U, and thus, by 
Theorem IV, U is 0 throughout the interior of R, and, being continuous 
in R, it is also 0 on the boundary of R. 

Exercises. 
1. Why is the above corollary not a consequence of the Cauchy-Kowalevsky 

existence theorem? 

2. Let U be harmonic in a regular region R whose boundary contains a plane 
regular surface element, and let U = 0 at all points of this element. Show that U 
admits a harmonic continuation in the region symmetric to R in the plane. The 
same when U has any constant value on the plane surface element. 

3. Show that if .u is harmonic in a sphere, and vanishes at all those points of 
the surface of the sphere which are in a neighborhood of a point of the surface, it 
admits a harmonic extension throughout all of space exterior to the sphere. 

4. Derive results similar to those of Exercises 2 and 3, where instead of it 
being assumed that U vanishes on a portion of the boundary, it is assumed that 
the normal derivative of U vanishes on that portion. 

6. Harnack's Inequality and Second Convergence Theorem. 
HARNACK has derived an inequality 1, of frequent usefulness, for har­

monic functions which do not change signs. If U is harmonic in the 
sphere 5, and is either never negative or never positive in 5, we may 

take a mean value of ~ from under the integral sign in Poisson's integral 

[Chapter IX, (7), p. 241], and write 

U (P) = :~-: i: II U (Q) d5 = a (a2
r-; (

2
) U (0), 

s 
where 0 is the center of the sphere, the last step being an application 

of Gauss' theorem. The extreme values of r, if 0 P = e is held fixed, 
are a - e and a + e. Accordingly we have the inequality of Harnack 
for the case in which U > 0: 

(II) a(a-e)U(O) <U(P) <a(a+e)U(O). 
(a + e)2 - - (a _ e)2 

If U < 0, the inequality signs are reversed. 
From this we derive a more general inequality. We keep to the case 

U :2 0, as that in which U < 0 may be treated by a simple change 
of sign of U. We state the result in 

1 Grundlagen der Theorie des logarithmischen Potentials, Leipzig, 1887, p.62. 
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Theorem VII. Let U be harmonic and never negative in the domain 
T, and let R be a closed region in T. Let 0 be a point of R. Then there exist 
two positive constants, c and C, depending only on Rand T, such that 
in R 

c U (0) < U (P) < CU (0). 

To prove this, let 4a be the minimum distance from the points of R to 
the boundary of T. This quantity is positive, for otherwise R would 
have a point on the boundary of T, which is impossible since R is in T 
and all the points of T are interior points. Consider the set of domains 
consisting of the spheres of radius a with centers at the points of R. 
By the Heine-Borel theorem all the points of R are interior to a finite 
number of these spheres. We add one, if necessary, namely that with 
center 0, and call the resulting system of a finite number of spheres 
1:. Now U is harmonic and not negative in a sphere about 0 of radius 
4a, and hence, writing in Harnack's inequality 4a in place of a, and 2a 
in place of (j, we find that on, and therefore in, a sphere of radius 2a 
about 0, 

~ U(O) < U(P) < 6U(0). 

As every point of R is interior to a sphere of 1:, of radius a, it follows 
that there is a center of a sphere of 1:, other than 0, in the sphere of 
radius 2a about O. Call this center Pl' U is harmonic and not negative 
in a sphere of radius 4a about PI' and hence Harnack's inequality can 
be applied in this sphere. Since the value at the center is restricted by 
the last inequalities, we have, in a sphere of radius 2a about PI' 

If n is the number of spheres in 1:, we can, in at most n steps, pass from 
the sphere about 0 to a sphere containing any point of R. It follows, 
by repeating the reasoning, that for any point in R, 

(~rU(O) <U(P) <6nU(0), 

so that the theorem is proved, with c = (~ rand C = 6n . 

As a corollary we have at once Harnack's second convergence 
theorem, 

Theorem VIII. Let UI (P), U2 (P), U3 (P), ... be an infinite sequence 
of functions, harmonic in a domain T, such that for every Pin T, Un (P) 
sUn+! (P), n = 1, 2, 3, .... Then if the sequence is bounded at a single 
point 0 of T, it converges uniformly in any closed region R in T to a function 
which is harmonic in T. 
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A bounded monotone sequence is always convergent, so that the 
sequence lUi (0)] is convergent. Moreover, by Theorem VII, if P is in R 
(which may always be extended, if necessary, so as to contain 0), 

c[Unu(O) - Un (0)] < UnH>(P) - Un(P) < C[Un+2l(O) - Un (0)] , 

so that the convergence of the sequence at 0 carries with it the uniform 
convergence of the sequence throughout R. It follows from Theorem I 
that the limiting function is harmonic in R. But as R is any region in T, 
the limiting function is harmonic in T, The theorem is thus proved. 

It is clear that the theorem may be applied to series of harmonic func­
tions whose terms are not negative, and that a corresponding theorem 
holds for a harmonic function depending on a parameter, as the para­
meter approaches a limit, provided that at every point P of the domain 
in which the function is harmonic, the function is a never decreasing 
function of the parameter. 

Exercise. 
Let R be a closed region with the property that there is a number a, such that 

any point Q of the boundary of R lies on the surface of a sphere in R, Of radius a. 
If U is harmonic, and never negative in the interior of R, show that there is a 
constant K, such that at any point P of R, 

K 
U;;;:;d2' 

where (j is the distance from P to the nearest boundary point of R. 

7. Further Convergence Theorems. 

Suppose we have an infinite set of functions 11' 12' 13' ... , all con­
tinuous in a region R. Since R is closed, each function is uniformly con­
tinuous in R; that is, corresponding to any n and any e > 0, there is a 
(J> 0, such that for any two points of R whose distance apart does not 
exceed (J, 

Here, the number (j may have to be chosen smaller and smaller, for 
any given e, as n increases. But if for any e > 0 a (J can be chosen which 
is independent of n, so that one and the same inequality of the above 
type holds for all P and Q whose distance does not exceed (J, and for 
all n, then the functions are said to be equicontinuous, or equally con­
tinuous in R. This means that their continuity is uniform, not only with 
respect to the positions of P and Q in R, but also with respect to n. To 
illustrate in the simple case of a linear region, the functions 

2nx 
In(x)=1+n2 x 2 ' n=1,2,3, ... , 

are not equicontinuous in an interval including x = o. For In (x) IS 
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I o at x = 0, and 1 at x = n' Thus, no matter how small tJ> 0, there 

are functions of the set whose values at points in an interval of length tJ 
differ by 1. On the other hand, the functions f (x) = ax + b, 0 < b ::;::: 1, 
o < a +.b < 1, are equicontinuous. For since I a I :S 1, no function of 
the set varies by more than s in an interval of length s. The choice 
() = s will serve for the whole set. 

We now prove the 

Theorem of AscolF. Any infinite sequence of functions which are 
equicontinttous and uniformly bounded in absolute value in a closed bounded 
region R, contains a sub-sequence which converges uniformly in R to a 
continuo~ts limit. 

To prove this, we form first an infinite sequence of points in R, PI' 
P2 , Pa, ... , the points of the sequence being everywhere dense in R. 
This means that in every sphere about any point of R, there are points 
of the sequence. Such a sequence may be formed in a variety of ways, 
for instance as follows. Assuming some cartesian coordinate system, we 
take first the points in R whose coordinates are all integers. These we 
arrange in "dictionary order", i. e. two points whose x-coordinates are 
different are placed in order of magnitude of these coordinates. Two 
points whose x-coordinates are the same, are placed in the order of 
magnitude of their y-coordinates, if these are different, otherwise in 
order of their z-coordinates. These points are then taken as PI' P2 ,··· Pn , 

n being the number of them, in the order in which we have arranged 
them. Next we add all new points of R whose coordinates are integral 

multiples of ~, also arranged in dictionary order. After these, we add 

all new points whose coordinates are integral multiples of ~, and so on. 

To find a point of this set in a sphere of radius a about any point of R, 

we merely need to determine what power of i is less than a, and we are 

sure to find a point in the sphere among those of the set whose coordi­

nates are integral mUltiples of that power of i. 
Since the functions of the set are bounded in absolute value, their 

values at PI have at least one limit point, by the Balzano-Weierstrass 
theorem. Then there is an infinite sequence culled from the sequence 
f1' f2' fa, ... which converge, at PI' to such a limiting value. Let us 
call this sequence 

fn' 112' f13' .. , . 

In the same way, we can cull from this sequence, a second sub-se­
quence, which converges to a limit at P2• Let it be denoted by 

f21' f22' 12a, .... 

1 Atti della R. Accademia dei Lincei, 18 memorie mat. (1883), pp. 521-586. 
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From this, we can cull again a sub-sequence converging to a limit at 
P a. Let it be denoted by 

la1' 132' 133' ...• 

And so on. vVe may thus obtain an infinite sequence of sequences, with 
the property that the nth sequence converges at P1 , P2 , P a, ... Pn. 

From these, we can now cull a sequence which converges at all the 
points of the set Pl , P2 , P3 , •••• We have only to use the diagonal pro­
cess, and form the sequence 

(12) 

Since this sequence, at least from the nth term on, is contained in the 
sequence 

it converges at Pn , and all the points of the set with smaller index. As 
n can be any integer, the sequence (12) converges at all points Pi' 

This sequence converges uniformly in R. For if anye > 0 be given, 
there is a/» 0 such that 

(13) 

for any two points P and Q of R whose distance apart does not exceed 
/), for all n. This because the given sequence is equicontinuous. Now let 

m be such that 21
m < /), and let n l be such that the finite set of points 

P1 , P2 , P a, ... P"l contains all the points of R, whose coordinates are 

integral multiples of 21m. Then there are points of this finite set 5 within 

a distance /) of every point of R. Finally, let N be such that for n > N, 
P>O, 
(14) /In+'P,n+'P(Pi)-lnn(Pi)/<; 
for all the points Pi of the set S. 

Then for any point P of R, there is a point Q = Pi of the set 5 for 
which the inequality (13) is in force for In +'P' n+'P (P) and for Inn (P) . 
Writing the corresponding inequalities, and combining them with (14), 
we find 

/ In +'P' n +'P (P) - Inn (P) / < e, 

an inequality which holds for all P in R. But this is the Cauchy condition 
for convergence, and as it is uniform throughout R, the sequence (12) 
converges uniformly in R. Since a uniformly convergent sequence of 
continuous functions has a continuous limit function, the theorem is 
proved. 

Applying Ascoli's theorem to harmonic functions, we have the follow­
ing result: 
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Theorem IX. If U1 , U2, U3 , •.. is an infinite sequence of functions 
all harmonic in a bounded domain T, and u/niformly bounded in T, then 
given any closed region R in T, there is an infinite sub-sequence taken 
from the given sequence which converges uniformly in R to a limit f~tnction 
harmonic in R. 

Let a be the minimum distance of the points of R from the boundary 
of T, and let B be a bound for the absolute values of the functions U i 

in T. Then, by Theorem XII of Chapter VIII (p.227), the directional 
derivatives of the functions Ui are bounded in absolute value, in R, by 

3 
~2B, 

and the sequence of these functions is therefore equicontinuous in R. 
Hence, by the theorem of Ascoli, the sequence contains a sub-sequence 
which converges uniformly in R, and by Theorem I, the limiting 
function is harmonic in R. By taking further subsequences, we can show 
that the limiting function is harmonic in T. The condition that T be 
bounded may be removed by an inversion, if T has an exterior point. 

Convergence in the Mean. A final theorem, which is sometimes useful, 
deals with convergence in the mean. A sequence of functions f1> f2' fa, ... , 
defined and integrable in a regular region R is said to converge in the mean 
to a function f provided the sequence 

Sn =JJJUn - fJ 2 dV 
R 

converges to O. That is, the error, in the sense of least squares, in sub­
stituting fn for f, approaches 0 as n becomes infinite. 

Exercises. 
1. Show that there exist sequences which converge at every point of an inter­

val, but do not converge in the mean in that interval, by an examination of the 
sequence 

12=1,2,3, ... 
on the interval (0,1). 

2. Construct an example showing that there exist sequences of functions which 
converge in the mean in a region, but converge at no point of the region. Sug­
gestion. Take the interval (0,1), and construct a sequence of functions 0 everywhere 
on this interval, except that the nth function is 1 on a sub-interval whose length 
decreases as n increases. Do this in such a way as to bring out the required situation, 
and prove that your results are correct. The functions so constructed will be 
discontinuous, but the example can easily be modified so as to make the functions 
continuous. 

If a sequence Iv 12' 13' ... converges in the mean to a function t, 
then, given e > 0, there exists an N such that for any n > N, m> N, 

f f f Un - /]2 d V < : ' f f f [f m - tJ2 d V < : ' 
R R 
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so that by means of the easily verified inequality 

1 a - b 12 < 2 [I a - c 12 + 1 b - C 12], 

we see that 

It is therefore a necessary condition for convergence in the mean to a 
function, that, given any e > 0, there is an N such that for n > N, m > N, 
sm, n < e. When this condition is fulfilled, the sequence is said to con­
verge in the mean - quite apart from any question as to the existence 
of a limit functiou to which the sequence converges in the mean. As a 
matter of fact, it can be proved, under suitable assumptions, that such 
a limiting function exists, but we shall not concern ourselves with a 
general proof here 1. In the case of harmonic functions, however, the 
existence of a limiting function is easily established. 

Theorem X. Let Ul , U2 , Ua, ... be an infinite sequence of functions, 
harmonic in the closed region R, and convergent in the mean in R. Then 
the sequence converges uniformly, in any closed region R' interior to R, to 
a harmonic limiting function. 

Let P be any point of R', and a the minimum distance from the points 
of R' to the boundary of R. Let (J denote the sphere of radius a about 
P. Then as harmonic functions are their own arithmetic means through­
out spheres in the regions in which they are harmonic (see page 224), 

Um(P) - Un(P) = 4:aafff[Um(Q) - Un (Q)]dV. 
a 

Accordingly, applying Schwarz' inequality, we find 

[Um(P) - Un (P)]2 < (4:aarfff[Um(Q) - Un (Q)]2dV fff dV 
u u 

< 4:aafff[Um(Q) - Un (Q)]2dV. 
R 

The right hand member is independent of P, and by hypothesis, becomes 
arbitrarily small with n > N, m > N, for large N. Hence the sequence 
Ul , U2 , Ua, ... is uniformly convergent in R'. The rest of the argument 
is now familiar. 

8. Isolated Singularities of Harmonic Functions. 

A singular point of a harmonic function U is a point at which U is 
not harmonic, but in every neighborhood of which there are points at 

1 See E. FISCHER, Comptes Rendus de I'Academie des Sciences de Paris, 
T. 144 (1907), pp. 1022-24; 1148-51. 
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which U is harmonic. Thus the surfaces bearing Newtonian distributions 
consist of singular points of the potentials of the distributions. We have 
devoted a chapter to the study of the behavior of harmonic functions 
in the neighborhood of such singular points. But we have done little 
with isolated singular points, such a point being one at which a function 
U is not harmonic although it is harmonic in the rest of a neighbor­
hood of that point. The point at which a particle is situated is an iso­
lated singular point for the potential of the particle, but this is not the 
only type of isolated singular point. 

Let U have an isolated singular point, and let us take this point as 
origin of coordinates. If 51 and 52 are two spheres, both within the 
neighborhood in which U is harmonic except at the origin 0, and with 
centers at 0, the formula (9), page 223, applied to the region between 
51 and 52' the latter having the larger radius, becomes 

1 ffl-au 1 a 1] 1 ff[au 1 a 1 ] U(P)=-- ---U--d5+- ---U--:-d5. 4n a'll r a'll r 4n a'll r a'll r 
5. 5,-

The first of the surface integrals is harmonic within 52. The second, no 
matter how small 51' is harmonic outside 51' and can be expanded in a 
series of spherical harmonics divided by powers of e, the series being con­
vergent for any e > 0, and uniformly so outside any sphere about o. 
Thus we may write the equation, valid except at 0 within the sphere 52' 

(15) 

where V (P) is harmonic within 52. 

Suppose first, that for some It >0, I ePU (P) I is bounded in 52. 
We change, in (15), f{' and {} to f{" and {}', multiply by el' Pn (u), where 
u = cos y, and integrate over the surface of the sphere of radius e about 
0, within 52: 

n2,n 2nsr 

I I e'U U (Q) Pn (u) sin {}' df{" dO' = el' I Iv (Q) Pn (u) sin {}' df{" df}' 
o 0 0,0 

4n + 2n+ 1 5 n (f{',{})e,u-n-1, 

by (6). The integral on the left is bounded, and so is 'the first term on 
the right. Then the last term must also be bounded. This means that if 
It - n - 1 < 0, 5n (f{', {}) must vanish identically. For otherwise, there 
would be a ray (f{'o, {}o) on which it had a constant value not 0, and 
for points on this ray, e could be taken so small as to make the last terms 
arbitrarily large. We therefore have the theorem: 

Theorem Xl. Let the function U be harmonic in ,a neighborhood of 
o except at 0 itself. If there is a constant It >0, such that in some 
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included neighborhood of 0 I (/' U (P) I is bounded, then in that neighbor­
hood, except at 0, U is given by a finite number of terms of the series (15), 
there being no terms for which n > fl - 1. 

As a special case, we have the important 

Corollary. An isolated singularity of a bounded harmonic function is 
removable l . 

If fl = 0, there are no terms at all of the series after the function 
V (P). Thus U coincides, except at 0, with a function which is harmonic 
at 0, and by a change in definition at this point, namely the definition 
which gives it the value V (0), it becomes harmonic at O. A harmonic 
function is said to have a removable singularity at an isolated singular 
point if it can be made harmonic at the point by a change in its defini­
tion at that point alone. 

I t is evident that the corollary continues to hold if instead of requiring 
that U be bounded, we ask merely that I e'u U I be bounded, for some 
fl < 1. But one does not often meet the need of it in the broader form. 

Exercise. 
1. If G1 (P, Q) and G2 (P, Q) are Green's functions for two regions, one in the 

other, show that G2 (P, Q) - G1 (P, Q) may be so defined at the pole Q as to be 
harmonic in P in the smaller region. 

Let us now assume that in some neighborhood of 0, say a sphere 
of radius a, about 0, U is harmonic except at 0, and never negative. 
As 1 + Pn (u) is also never negative, we have, by (15) for all 0 < e < a .. 

;-r-2;z: 

J J U (Q)[l + P n (u)] sin fJ' dcp' dfY = 
u u 

flv (e, cp', fJ')[l + Pn (u)] sin fJ' dcp' dfJ' + 4n ~ + (2~n1i) :Ll] > O. 

We conclude from this that for n > 1, Sn (cp, fJ) = O. For since Sn (cp, fJ), 
for n> 1, is orthogonal on the unit sphere to any constant, it must, 
unless identically 0, change signs. For the points of a rayon which 
Sn (cp, fJ) < 0, we could take e so small that the term in Sn (cp, fJ) in the 
last inequality, predominated over the preceding ones, and thus, be­
cause of its negative sign, we should have a contradiction of the in­
equality. By applying the same reasoning to U (P) + C and to C - U (P), 
we arrive at 

Theorem XII. If in the neighborhood of an isolated singular point, the 
function U is either bounded above, or bounded below, then in the neighbor­
hood of that point, it is the sum of a function harmonic at that point and a 

function !...., where c is a constant, positive, negative or O. e 
1 Due to H. A. SCHWARZ, Journal fiir reine und angewandte Mathematik, 

Vol. 74 (1872), p. 252. 
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Exercises. 
2. From the equation 

;n;2;n; 

ff [U(Q) - V(Q)] P (u) sinD' dq/ dl}, = ~ S .. (tp,D) 
.. 2n+I 1.>"+1 ' 

00 

the integral being over the sphere of radius I.> about 0, derive for the spherical 
harmonic S" (tp, D) in (15) the inequality 

VI "2,,, ;n;2;n; 

IS .. (tp, D) I ;;;q/2.~! 11.>,,+1 II U2 sin D' d tp' dD' + JI V2 sin D' d tp' dD'. 

00 00 

From this' draw the conclusions 

a) if 
;n;2;n; 

J f U2 sin D' d tp' dl}, 
00 

is bounded, the singularity of U at 0 is removable, 

;n;2", 

b) if 1.>'" f f U2 sin D' dtp' dD' 
00 

is bounded, the series (15) contains no spherical harmonics of order greater than 

'(p. -; 2). In particular the singularity is removable if the above function is 

bounded for some p. < 2. (EVANS). 

3. To say that U becomes positively infinite at 0 means that given N, however 
large, there is a neighborhood of 0 at all points of which, except 0, U > N. Show 
that if 0 is an isolated singtllarity of U at which U becomes positively infinite, then 
U must be of the form 

U(P) = Yep) +..:.... 
I.> 

4. Show that if 0 is an isolated singularity of U, and if U is neither bounded 
nor becomes positively infinite, nor negatively infinite, then in every neighborhood 
of 0, U takes on any preassigned real value. 

Isolated Singular Curves. We say that a curve is an isolated singular 
curve of a harmonic function U, provided U is harmonic at none of the 
points of the curve, but is harmonic in some neighborhood of every point 
of the curve, the curve excepted. We shall confine ourselves to a single 
theorem on isolated singular curves, needed in Chapter VIII, § 5 
(p. 190). 

Theorem XIII. Let C denote a regular curve. If C is an isolated sin­
gular curve for the harmonic function U, and if U is bounded in some do­
main containing the curve, then the singularity of U on the curve is remov­
able. 

Let V denote the potential of a distribution of unit linear density 
on C. We need as a lemma that V becomes positively infinite at every 
point of C. This is easily shown by means of the observation that the po-
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tential at P of a distribution of positive density is only decreased by a 
change of position of the masses to more distant points. Thus the value 
of Vat P is greater than or equal to that of a straight wire lying in a 
ray from P, of the same length as C, whose nearest point to P is as the 
same distance as the nearest point of C. We find for the potential of 
the straight wire 

where l is the length of the wire, and e the distance from P to its nearest 
point. Hence V is uniformly greater than or equal to this function, when 
e is the distance from P to the nearest point of C. 

By the Heine-Borel theorem, there is a finite number of spheres with 
centers on C containing all the points of C in their interiors, which lie 
in the domain in which U is harmonic, except at the points of C, and in 
which U is bounded. If their radii are all de"creased, so slightly that they 
still contain all points of C in their interiors, the points in all of them 
constitute a regular region R, on the surface 5 of which U is continuous. 
We now borrow from the next chapter the fact that the Dirichlet problem 
is solvable for R. Let u* denote the function, harmonic in R, and 
assuming the same boundary values as U. Then U - U* is 0 on 5, 
harmonic in the interior of R except on C, and bounded in absolute 
value, say by B. Now IX V becomes infinite on C for any fixed IX, 

0< IX < 1. Hence the region R' consisting of the points of R for which 
IX V is less than any given fixed constant K, however great, excludes all 
the points of C. Given any point Pin R but not on C, let K be chosen, 
greater than B, and so that P is in R'. Then in R', the function 

IXV - (U:'-'- U*) 

is continuous, and has only positive boundary values. It is harmonic in 
the interior of R', and hence is positive throughout R'. Hence at P, 

(U - U*) < IX V < IX log (1 + ~). 
Here e is fixed, but IX can be any number between 0 and 1. Hence 
U - U* is less at P than any positive number. By applying the same 
considerations to U* - U, we see that this difference also is less than 
any positive number. Hence U = U* at any point of R not on C. If, 
therefore, we define U as equal to U* on C, U becomes harmonic 
throughout R. This is what is meant by saying that the singularity of U 
on C is removable. 

It is clear that the reasoning applies to any set of points which can 
be so spread with masses as to have a potential which becomes positive­
ly infinite at every point of the set. But the theorem as stated suffices 
for our purposes! . 

. 1 A completely general result of this type will be found in Chapter XI, § 20. 
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Ereercise. 
Study the behavior of a harmonic function at infinity when this is an isolated 

singular point, by an inversion, or otherwise. 

9. Equipotential Surfaces. 

A question, for the discussion of which developments in spherical 
harmonics constitute the most suitable tool, is that of the character of 
equipotential surfaces, particularly in the neighborhood of a point 
of equilibrium of the field. At other points, the equipotential surfaces 
have exceedingly simple character, but at points of equilibrium the 
study of the character of these surfaces presents serious difficulties. 
The problem is rather one of geometric beauty than of physical impor­
tance, and perhaps for this reason, it has not been carried far. Yet from 
an analytic standpoint, it is one of the first applications of the theory 
of functions defined implicitly. We must content ourselves with some 
indications. 

Let U be one-valued, harmonic, and not constant in a neighborhood 
of a point 0, which we take as origin of coordinates. Suppose first that 
the gradient of U does not vanish at O. Then in the development in 
spherical harmonics, 

(16) U - Uo = Hdx,y,z) + H2 (x,y,z) + ... , 
HI (x, y, z) is not identically o. If we choose the orientation of the axes 
so that the plane HI (x, y, z) = 0 becomes the (x, y)-plane, 

au =\= 0 az 
at the origin. The equation U = Uo has the solution (0, 0, 0) , and hence 
by the theorem on implicit functions, there is an analytic surface 
z = f (x, y) which in a neighborhood of 0 is identical with the locus 
U = Uo in that neighborhood. That is, the equipotential surface U = Uo 
in the neighborhood of a point at which V U =\= 0, consists of a single 
analytic regular surface element. Furthermore, this surface element 
divides the points in a neighborhood of 0 into two domains, in one of 

which' U> Uo, and in the other U < Uo, since ~~ =\= 0 nearO. 

The next question which arises is as to how frequently the exceptional 
points at which V U = 0 occur. They may be isolated, as is the case 
with U = x 2 + y2_ 2Z2. They may fill a line, as is the case with 
U = xy. They cannot fill any regular surface element E. For if C be 
any regular curve on E, whose length of arc, measured from a con­
venient point is s, we find from the vanishing of the gradient the fact 

fu~ au 
a;-=O, 

Kellogg, Potential Theory. 18 
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and so, that U would be constant on E. Thus U - Uo and its normal 
derivative would vanish on E, and hence, by the corollary to Theorem VI, 
this difference would vanish in any region in which it was harmonic. 
Thus U would be constant, contrary to our assumption. 

Let us now suppose that V U = 0 at O. Then in the development (16), 
HI (x, y, z) will be lacking. Let Hn (x, y, z} be the first term not iden­
tically o. Then the locus defined by H .. (x, y, z) = 0 consists of a conical 
surface with vertex at O. The function H .. (x, y, z) may have rational 
factors, in which case the locus will consist of several algebraic cones 
with vertex at O. Among these, there may, in case some factors are linear, 
be planes. But no factor will occur twice, for if it did, H .. (x, y, z) and 
its gradient would vanish at the points where this factor vanished, and 
as the set of these points certainly contains a regular surface element, 
H .. (x, y, z) would be identically G. Thus V H .. (x, y, z) vanishes at most 
on a finite number of the elements of the conical locus H .. (x, y, z) = o. 
Let us call this locus C. 

The points of the locus U = Uo, other than 0, are given by 

(17) 0 = S .. (rp, D) + Sn+! (rp, D) e + Sn+2 (rp, D) e2 + ... = F (e, rp, D), 

where Sn (rp, D) = e-n Hn (x, y, z), is not identically o. Let Po be a point 
of the cone C, at which V Hn (x, y, z) is not 0, and let us take for the 
(x, y)-plane the tangent plane to C at Po, with the x-axis through Po. 

The spherical coordinates of Po will be (eo, 0, ;). A t Po, 

_8_ S '( D)! -~~H 1 ___ l_8Hnl 
8f} n rp, :0 - en af} n :0 - en- 1 az 10' 

and this is not 0, as we have seen in considering equipotentials at points 
where the gradient does not vanish. It follows that the equipotential (17) 
has a point near the generator of the cone C, Sn (rp, D) = 0, through Po. 

For S .. (0, D) has opposite signs for D = G) + '11 and D = (;) - '11, for 

sufficiently small '11, and on the rays (0, ; - '11) and (0, ; + '11), e can 

be taken so small that the first term in (17) predominates over the rest, 
which form a uniformly convergent series even after division bye. Thus 

for such a e, F (e, 0, ; - '11) and F (e, 0, ; + '11) have opposite 

signs, and hence F (e, 0, D) must vanish for an intermediate value of 
D. This holds for all sufficiently small e; and for small enoughe, the 
derivative with respect to D of S .. (0, D) predominates over the derivative 
of the sum of the remaining terms, so that for small enough e, there 
is a point PI of the equipotential, for which rp = 0, and at which 

a 
a f} F (e, 0 , D) 9= O. 
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Thus the conditions for the theorem on implicit functions are fulfilled, 
and the equipotential in the neighborhood of PI consists of the points. 
of a surface element S, given by 

-8 = I (e, cp). 

This surface can be continued, by the same theorem, for values of (J 

near 0, toward the origin to within any given distance of that point. 
The derivative of -8 with respect to e is given by the usual rule for the 

differentiation of implicit functions, and is seen, because ~-; =l= 0 

at (0, ;), ~o be uniformly bounded in absolute value, say by c, for 

all sufficiently small e and cpo As -8 lies, for small enough e, between 

~ - 1] and ; + 1] for any positive 1], it follows that the limit of -8 

as e approaches 0, is ~-, and hence that 

!-8- ~ /<ce. 
Hence on S, 

I z I = I e cos -8 I = / e sin G - D) ! :s;; I e sin c e I , 
so that the distance from S to C for small cp is an infinitesimal of second 
order in e. In this sense, the equipotential surface element S is tangent 
to the cone C. It is obvious that F (e, cp, -8) does not vanish on any ray 
through 0 for which Sn (cp, -8) 9= 0, for small enough (1, so that the 
equipotential U = Un' except within circular cones 01 arbitrarily small 
angular opening about the linite number 01 singular generators of the cone 
C, will, in the neighborhood 010, consist of a linite number of smooth sur­
lace elements tangent to the cone C. 

One consequence of this fact is that the equipotential surface, near 
one of its points where the gradient of U vanishes, cannot consist of a 
single regular surface element. For such an element can be tangent, in 
the above sense, only to a cone which is flat, that is, to a plane, and the 
cone C can be a plane only when HI (x, y, z) is not identically O. 

In general, the character of the equipotential surface near a point 
where the gradient vanishes, is thus closely related to the cone C. The 
general properties of algebraic cones given by the vanishing of a spherical 
harmonic do not appear to have been extensively studied. For n = 2,. 
the cone is characterized by the fact that it has three generators each. 
at right angles to the others. 

Another case in which we can make a definite statement is that in 
which Hn (x, y, z) is the product of linear factors, the planes correspond­
ing to which all intersect in a single line. If this line be taken as z-axis, 
Hn (x, y, z) will be independent of z, and if we substitute Hn =; (1nSn (cp} 

18* 
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in Laplace's equation in cylindrical coordinates, we find 

dSS" + 2S 0 
dtps n n = 1 

so that Sn = A sin (cp - CPo). The cone C then degenerates into a set 
of equally spaced planes through a common line. If in addition U itself 
is independent of z, we know that the equipotential surface through ° 
consists of n cylindrical surface elements in the neighborhood of the axis, 
each tangent to one of the planes of C. 

But it would be a mistake to suppose that in general, U, the first not 
identically vanishing term in whose development in spherical harmo­
nics about 0, is of the character just considered, had an 'equipotential 
surface through 0 consisting of n separate sheets each tangent to one of 
the planes of C. An inspection of the equipotential 

U = Z2 - x2 - y3 + 3x2 y = 0 

is sufficient to show that this is not always the easel. 

Exercise on the Logarithmic Potential. 
Study the character of the isolated singularities of harmonic functions in two 

dimensions. 

There is a further result on equipotential surfaces which has already 
been of use to us (p. 238). It may be formulated as follows: 

Theorem XIV. Let R denote a closed bounded region, and let U be 
harmonic in a domain including R. Then the points of R at which the 
gradient 17 U vanishes lie on a finite number of equipotential surfaces 
U = const. 

It is known 2 ~hat about any point Po of R at which 

~=O au =0 au =0 
ax ' ay , az ' 

there is a neighborhood, including all points with real or imaginary co­
ordinates sufficiently near to Po, such that all points of the neighborhood, 
at which these derivatives vanish simultaneously, consist either of the 
point Po alone, or of a finite number of manifolds. For our purposes, 

1 This example shows the inaccuracy of certain statements in MAXWELL'S Treatise 
on Electricity and Magnestism, 3 rd ed. Oxford (1904), p. 172. "If the point P is 
not on a line of equilibrium, the nodal line does not intersect itself." This and 
the assertion which follows are wrong. Rankine's theorem as there stated is also 
in need of change: "If n sheets of the same equipotential intersect each other, 

they make angles ~." Consider, for instance, the example U = z (xli - 3 xy2). 
n 

S See OSGOOD, Funktionentheorie, Vol. II, Chap. II, § 17, p. 104; KELLOGG, 
Singular Manifolds among those of an Analytic Family, Bulletin of the American 
Mathematical Society, Vol. XXXV (1929). 
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the essential property of these manifolds is that any two points, 

PI (x{ + ix{', y{ + iy{', z{ + iz{') 

and 

of anyone of them, can be connected by a continuous curve, 

x = x' (t) + i x" (t) , y = y' (t) + i y" (t) , z = z' (t) + i z" (t), 

whose coordinates have continuous derivatives with respect to t except 
possibly at a finite number of points, and which lies entirely in the mani­
fold. On such a curve, 

dU au dx au dy au dz 
dt = ----a%Tt + By fit + 7fZdi = 0, 

and hence U has the same value at any two points of the manifold. As 
the number of manifolds is finite, we conclude that there is a complex 
neighborhood of Po in which all the points at which 17 U = 0 lie on a 
finite number of equipotentials U = CI> U = c2 ' ••• , U = Cn' The real 
points at which the gradient vanishes; being in the neighborhood in 
question, must also lie on these surfaces, and, since we are supposing U 
real, on those for which the constants Ci are real. 

If E is the set of points of R at which 17 U = 0, E is obviously a 
closed set, and each of its points lie in a neighborhood of the above char­
acter. Hence, by the Heine-Borel theorem, E lies in a finite number of 
such neighborhoods, and the number of the equipotential surfaces which 
contain all points in R at which 17 U = 0 is thus finite, as we wished to 
prove. 

Chapter XI. 

Fundamental Existence Theorems. 
1. Historical Introduction. 

As we saw in § 3 of Chapter IX (p. 237), Green, in 1828, inferred the 
existence of the function which bears his name from the assumption 
that a static charge could always be induced on a closed grounded con­
ducting surface by a point charge within the conductor, and that the 
combined potential of the two charges would vanish on the surface. 
From this, he inferred the possibility of solving the Dirichlet probiem. 
Such considerations could not, however, be accepted as an existence 
proof. In 1840, GAUSS I gave the following argument. Let 5 denote the 
boundary of the region for which the Dirichlet problem is to' be solved. 

1 Allgemeine Lehrsatze, 1. c., footnote, page 83. 
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Let a distribution of density a and total mass M be placed on S, in such 
a way that any portion of S has a total positive mass on it. Let U denote 
the potential of this distribution, and 1 a continuous function of position 
on S. Then, GAUSS argued, there must be a distribution subject to the 
given restrictions, for which the integral 

II (U - 2/) adS 
5 

is a mlnImum. It is then shown that for the minimizing distribution, 
U - 1 must be constant on S. If in particular 1 = 0, U will be a positive 
constant on S, so that by adding to the potential U for any given 1 the 
proper multiple of the potential for 1 = 0, we obtain a potential whose 
boundary values are I. The serious difficulty with this proof is that it 
is not clear that there is a distribution, subject to the given conditions, 
which makes the integral a minimum. Indeed, it is not true without 
further restrictions. In fact, the Dirichlet problem is not always solv­
able, and no "proof" can be valid unless it places some restriction on 
the region. 

Similarly, in 1847, Sir WILLIAM THOMSON, Lord KELVIN1 , attempt­
ed to found a proof on the least value of an integral. The same con­
siderations were used by DIRICHLET 2 in lectures during the following dec­
ade. For reasons to be indicated presently, the method used is still of 
high importance. 

One might be led to it as follows. We imagine the region R, for which 
the problem is to be solved, and the rest of space, filled with charges, 
and in addition, a spread on the bounding surface S. We suppose that 
the total potential is regular at infinity. The potential energy of these 
distributions is, according to § 11, Chapter III (p. 81), 

E = ~fff U"dv+~ff UadS, 
5 

where U is the potential, " the volume density, and a the surface den­
sity. On the assumption that U is a sufficiently smooth function, 
we have 

I [OU OU] 
a = - 4:n on+ - on_ . 

If we put these values in the expression for the energy, and transform 
the integrals by means of Green's second identity, we find for E the 

1 Journql de mathematiques pures et appliquees, Vol. 12, p. 496; Reprint 01 
Papers on Electrostatics and Magnetism, London, 1884. 

2 P. G. DIRICHLET, Die im umgekehrten Verhaltnis des Quadrates der Entlernung 
wirkenden Krillte, edited by F. GRUBE, Leipzig, 1876. 
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expression 

the integral being extended over the whole of space. 

Now it is a principle of physics that equilibrium is characterized by 
the least potential energy consistent with the constraints, or conditions 
imposed on the system. Suppose that the condition imposed on U is 
that it shall have given values f on the boundary S of R. The charges 
can move under this condition, for we have seen that different spreads 
can have the same potential in restricted portions of space, say on S. 
But we know that equilibrium will not be attained as long as the region 
in which they can move contains charges. Thus equilibrium is char­
acterized by the fact that U is harmonic in the interior of R, as well as 
outside S. 

We are thus led to the following mathematical formulation of the 
problem. Consider the class of all functions U which have continuous 
derivatives of the second order in the interior and exterior domains T 
and T' bounded by 5, which are continuous everywhere, and which 
assume on 5 the continuous values f. We seek that one of these func­
tions which renders the Dirichlet integral 

a minimum. We have here extended the integral only over R, but it is 
clear that the integral over the whole of space cannot be a minimum un­
less that extended over Risaminimum. Since for real U, 1 cannot be neg­
ative, there must be a function U, subject to the given restrictions, for 
which the integral is least - so ran the argument, and this argument 
received the name of the Dirichlet principle. We shall criticize it presently. 

But for the moment, let us suppose that a minimum does exist­
and it does in many cases. What are the properties of the function u for 
which the integral is least? Let ~t' be any other function with the re­
quired properties. Then h = u' - u has the required properties, except 
that it vanishes on 5, and so u + 17h, for any 17, has all the required 
properties. Now 

1 (u + 1] h) = 1 (u) + 21] I I I (l7u'l7h) dV + 1)21 (h). 
R 

Since u gives to 1 its least value, it is impossible for u + 1]h to give it a 
less value. It follows that 

l(u, h) = III (l7u·l7h)dV= 0, 
R 

for if this were not so, 1] could be chosen so small a positive or negative 
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number that the second term would predominate over the third, and 
so it would be possible to make the sum of these two terms negative. 
This is impossible since I (u +'Y)h) would then be less than I (u). If 
now the equation I (u, h) = 0 be transformed by Green's second iden­
tity, we have, since h = 0 on S, 

-JJJh(r72~t)dV=0. 
R 

It follows that V 2 u = 0 throughout R. For if V 2u were positive at an 
interior point, since it is continuous, we could find a sphere within which 
it remained positive, and then choose for It a fUnction 0 outside this 
sphere, positive inside, and having continuous derivatives of the second 
order, and thus such that the function u + It had the required properties. 
For such a function h, the last integral could not vanish. Hence V2~t = 0, 
and u is harmonic. Thus the Dirichlet problem is solved in every case 
in which the Dirichlet integral has a minimum under the given condi­
tions. 

Now why does the Dirichlet integral not always have a minimum? 
The values which it has for all admissible functions U are infinite in 
number, and none of them is negative. It is true that they have a lower 
limit, that is, a number below which no values of I go, but to which they 
approximate arbitrarily closely. But this is not saying that there is 
a function u for which I takes on this lower limit. As an example of 
the fact that an integral may have a lower limit without a minimum, 
consider 

1 

J y2 dx, 
o 

where the functions yare subjected to the requirement that they are 
continuous on (0, 1), and assume the values 0 and 1 at x = 0 and x = 1, 
respectively. Clearly the lower limit of the integral 'is 0, as may be seen by 
using the power curves, y = xn. The integral then approaches 0 with 

~. Now if any continuous function y made the integral 0, it could not 
n 
be different from 0 at any point of the interval, by a type of reasoning 
we have employed a number of times. Hence y could not take on the 
value 1 for x = l. 

This difficulty with the Dirichlet principle was felt by mathematicians 
at an early date. WEIERSTRASS was among the first to emphasize its un­
reliability, and in 1870 gave a conclusive example showing the principle 
in its current form to be false!. It therefore remained in disrepute for 
a number of years, until in 1899, HILBERT2 showed how, under proper 

1 See the references in the Encyklopadie der mathematischcn Wissenschaften, 
II A 7b, p. 494. 

2 Jahresbericht der Deutschcn Mathematiker-Vereinigung, Bd. 8 (1900), p.184. 
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conditions on the region, boundary values, and the junctions U admitted, it 
could be proved to be reliable. 

But in the mean time, the problem had not remained dormant. 
SCHWARZ l had made notable progress with the problem in two dimen­
sions, where it is particularly important for its connection with the theory 
of functions of a complex variable. The next step of importance in three 
dimensions was due to NEUMANN 2, who used a method known as the 
method oj the arithmetic mean. 

By way of introduction, let us consider for the instant, a double 
distribution 

W = 21n II ft :v ~dS, 
5 

the moment now being denoted by ;~. This notation brings simplifica­

tions with it. Thus, if we denote by W-, W ° and W+ the limit of W 
from within the surface 5 as P approaches a point p of 5, the value at 
p, and the limit as P approaches p from without 5, we have 

W-= - ft + WO, W+= ft + Woo 

Suppose that the surface is convex. Then, when W ° is written in the 
form 

the integration being with respect to the solid angle subtended at p 
by the element of surface, we see that - W ° is the arithmetic mean of 
the values of fl, transferred along radii, to the hemisphere of the unit 
sphere about p which lies to the side of the tangent plane at p on which 
5 lies. Thus the extremes of - WO lie strictly between the extremes of 
ft, if this function is continuous, as we shall assume. In other words, the 
values oj the double distribution, on the surjace, vary less, in this sense, 
than do those oj ft. We are here supposing that ft is not constant. 

Now suppose we take a second double distribution, with It replaced 
by - Woo The negative of its value on 5 will vary still less. If the pro­
cess is repeated, we have a succession of potentials whose moments are 
becoming more and more nearly constant. Perhaps from such potentials 
we may build up a function giving the solution of the Dirichlet problem. 
This is the underlying idea of the method. We form the sequence of 

1 See his collected works. 
2 Berichte liber die Verhandlungen der Koniglich Sachsischcn Gesellschaft der 

Wissenschaften zu Leipzig, 1870, pp. 49-56, 264-321. Cf. also PICARD, Traitt! 
d'A nalyse, 3rd ed. Paris 1922, Vol. I, pp. 226-233; Vol. II, pp. 41-45. 
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potentials, leaving p for the moment undetermined, 

(1) 

Wn = - 21;n 55 W::-l ;11 ~dS, .... 
5 

For these, we have the limiting relations 

W1-=p +w~, W/=-p +w~, 

W2=~ +w~, W9+=-W~ +W~, 
(2) Ws=wg +W~, W3+ = - wg +W~, 

W,;- = W~_l + W,?, Wn+ = - W'?_l + W,?, 

NEUMANN proved that if S is convex and is not composed of two 
conical surfaces, there exists a constant k, 0 < k < 1, such that 

max W,? -'- min W,? < k (max W'?-l - min W'?-l) , all n, 

and it is clear that 

min W'?_l < min W,? < max W,? < max W'?-l . 

From these inequalities, it follows that W~ approaches a constant c, 
uniformly, as n becomes infinite. 

We may now build up a solution of the Dirichlet problem. From 
the first column of (2) we form the sum 

(W;- - Wa-) + (Ws - Wi) + ... + (W2";.-l - W,-;,) = p - W,on· 

We see from this that the series 

converges uniformly to the limit p - c. 

Now the function WI' p being continuous, approaches continuous 
limits on S from within, and when defined in terms of these limits, con­
stitutes a continuous function in the interior region bounded by S. It 
is similar with the outer region. Hence W~ = l (W~ + Wi) is con­
tinuous on S. Hence W 2 enjoys the same properties, and so on. All the 
functions Wi, when defined on S in terms of their limits from within, 
are harmonic in R. As the series 
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whose terms are harmonic within R, and continuous in the closed region 
R, is uniformly convergent on the boundary, as we have just. seen, it 
converges uniformly in R to a function harmonic in R, by Theorem I of 
the last chapter. This limiting function U takes on the boundary values 
f1, - c. Thus had we started with f1, = f, and determined the cor­
responding c, we should have in 

co 
U i = C + 1; (W2n- 1 - W2n) , 

1 

the solution of the Dirichlet problem for R. 
Similarly, we find, taking f1, = - f, and determining the correspond­

ing c, that with the terms defined on S by their limits from without, 
00 

Ue = - c +.2Wn 
1 

gives us the solution of the Dirichlet problem for the external region 
R'; with the objection, however that it is not regular at infinity if c =l= O. 
This difficulty comes from the fact that the solution is built up of double 
distributions, and not from any impossibility of the problem. We may 
obviate it as follows. Let Po be any point interior to R, and let r be the 
distance of P from Po. If we solve, to within an additive constant, the 

Dirichlet problem for R' with the same boundary values as .!:.., we find 
r 

a function - C + V, where C is certainly not 0, and V is regular at 
infinity. Thus 

1 
-;-+C-V 

is harmonic in R', and, apart from the term C, regular at infinity, and 
vanishes on S. Hence 

Ue = - c + fWn + ~ [~+ C - V] 
is regular at infinity, and so harmonic in the entire region R', and assumes 
the boundary values f on S. 

Thus the method of NEUMANN, when the details have been attended 
to, delivers a real existence theorem. The restriction to convex surfaces, 
however, was felt to be an artifical one, inherent rather in the method 
than in the problem itself, and attempts were made, with success, to 
extend it. Much more far reaching results were attained by POINCAR~l 
by the methode de balayage, or method of sweeping out. 

Instead of building up the solution from functions which are har­
monic in R and do not take on the right boundary values, POINCAR~ 

1 Comptes Rendus de l' Academie des Sciences de Paris, T. 104 (1887), p.44; 
American Journal of Mathematics, Vol. 12 (1890); p.211; TkBorie du Potential 
N ewtonien, Paris, 1899, p. 260. 
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builds a succession of functions which are not harmonic in R, but do 
take on. the right boundary values, the functions becoming more and 
more nearly harmonic. Briefly, the process is as follows. He shows first 
that if the problem can be solved when the boundary values are those 
of any polynomial in x, y, Z, it can be solved for the boundary values 
of any function continuous in R. 

The problem is then to solve the Dirichlet problem for the boundary 
values of a polynomial f. This polynomial is, in R, the potential of a 
distribution of density 

in R, plus certain surface potentials. An infinite succession of spheres 
is then formed, so that every interior point of R is interior to some 
sphere of the set. In the first sphere, f is replaced by the harmonic 
function with the same boundary values on the sphere, a thing which 
is possible because the solution of the Dirichlet problem for spheres is 
known. Call the function, thus defined in the first sphere, but equal to 
f elsewhere in R, WI' WI is then replaced in the second sphere by the 
harmonic function with the same boundary values as WI on the sphere, 
and the new function, elsewhere equal to WI' is called W 2 • The process 
is called sweeping out, because in each sphere after such a process, the 
Laplacian becomes 0, so that there are no masses in the sphere. But 
the s\veeping out may sweep masses into an intersecting sphere already 
clean. Accordingly, after the second sphere is swept out, the first is 
swept again, and so on, in the order 1, 2, 1,2,3, 1,2,3,4, 1, 2, 3~ 4, 5, ... , 
so that each sphere is swept infinitely often. It is shown that the process 
gradually sweeps the masses toward the boundary, and that the se-
quence 

always keeping the right boundary values, converges to a function which 
is harmonic within R. This is the idea of the method. We need not give 
further detail, for we shall revert to it again (p. 322). 

The success of POINCARF: was soon followed by other treatments 
of the problem, establishing even more general results. POINCARE showed 
that the Dirichlet problem was solvable for any region, such that for 
every point p of the boundary, there was a sphere through p containing 
no interior points of the region. In 1898 HILBERT reestablished the 
method of reasoning used by THOMSON and DIRICHLET, and the resulting 
type of argument has since been most useful, as it is applicable to a 
great variety of problemsl. 

1 This method of the calculus of variations was successfully employed by 
LEBESGUE in two dimensions to establish the possibility of solving the Dirichlet 
probJem under very general conditions, Sur Ie problhne de Dirichlet, Rendiconti 
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So far, it was generally believed that the Dirichlet problem was 
solvable for any region, and that limitations of generality were inherent 
in methods, rather than in the problem itself. It was ZAREMBA l who 
first pointed out that there were regions for which the problem was not 
possible. Suppose, for instance, that R consists of the domain interior 
to the unit sphere about 0, with the poirit 0 alone excepted, plus the 
boundary of this domain, i. e. the surface of the sphere and the point O. 
If we assign to the surface of the sphere the boundary values 0, and to 
the point 0 the value 1, the Dirichlet problem is not solvable. For if there 
were a solution, it would have at 0 an isolated singularity in whose 
neighborhood it was bounded. That is, the singularity would be remov­
able. After its removal the resulting function would be harmonic 
throughout the interior of the sphere, assuming continuously the bound­
ary values O. Such a function we know to be identically O. Thus a 
function which fulfills the conditions imposed cannot exist. 

In 1913, LEBESGUE gave an example of a still more striking case of 
the impossibility of the Dirichlet problem (see Exercise 10, p. 334). Sup­
pose we take a sphere with a deformable surface, and at one of its 
points push in a very sharp spine. The region R, consisting of the points 
of the sphere thus deformed is one for which the Dirichlet problem is not 
always solvable, if the spine is sharp enough. We can see this in an 
intuitive way by thinking of the region as a heat conducting body. Let 
the portion of the surface near and including the spine be kept cold, 
at the temperature 0°, and let the rest of the surface be kept warm, say 
at 100°. Thermal equilibrium may be possible, but the temperatures 
from within will not approach 0 continuously at the point of the spine. 
There simply is insufficient surface in the neighborhood of the point to 
absorb heat fast enough to keep the temperatures near 0 ° at this point. 
These considerations can be made rigorous, and we have an exceptional 
point, by no means isolated, at which there is trouble for the Dirichlet 
problem. Recent investigations have been connected with the nature 
and possible distribution of these exceptional points. 

The method of which we shall now give an account in detail is due 
to FREDHOLM 2, and is the method of integral equations. It is less general 

del Circolo Matematico di Palermo. T. 24, 1907, pp.371-402. See also ZAREMBA, 
Atti del 4 Congresso Internazionale dei Mathematici (1909), Vol. II, pp. 194-199; 
Bulletin de l' Academie des Sciences de Cracovie (1909), pp. 197 -264; Acta Mathe­
matica, Vol. XXXIV (1911), pp.293-316; COURANT, Uber die Existenztheoreme 
der Potential- und FunktiorlBntheorie, Journal fiir reine und angewandte Mathe­
matik, Bd.144(1914), pp.190-211; COURANT'has in a number of articles shown 
the great power of the method. See COURANT und HILBERT, Die Methoden der 
mathematischen Physik, Berlin, 1924. 

1 L. c. Acta Mathematica. p. 310. 
2 Ofversigt af Kong!. Svenska Vetenskaps-Akademiens F6rhandlingar, Vol. 57 

(1900), pp.39-46. 
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than a number of other methods, but it has the great advantage of being 
able to deliver a number of existence theorems at the same time. Later 
we consider a more general method for the Dirichlet problem. 

2. Formulation of the Dirichlet and Neumann Problems 
in Terms of Integral Equations. 

Let R denote a finite region bounded by a surface S, subject to the 
condition that for any of its points p, there is a neighborhood, the portion 
of S within which, when referred to coordinate axes in which the (x, y)­
plane is tangent to S at p, has a representation z = t (x, y), this func­
tion having partial derivatives of the first two orders which are continuous. 
It is easily verified that the results of Chapter VI on the discontinuities 
of distributions on S hold at all points of S, when the appropriate con­
ditions on density or moment are fulfilled. 

We consider first the potential of a double distribution on S, which 
we write in the form 

1 fJ 0] 
W (P) = 2n J. flTv r dS. 

s 

This function is harmonic in the interior of R. If it is to solve the Di­
richlet problem for the continuous boundary valuesF(p) -we shall find 
it convenient to characterize points of the boundary of a region by small 
letters - we must have 

1 fJ & 1 W_ (P) = F (P) = - fl (P) + 2n J. fl (q) Tv r dS. 
s 

The double distribution is also harmonic in the infinite region RI bounded 
by S, and so regular at infinity. If it is to give the solution of the 
Dirichlet problem for RI , we must have 

W+ (P) = F (P) = + fl (P) + 21n If fl (q) :v ~dS. 
s 

The two equations can be written as one, if we introduce a parameter: 

(3) ! (P) = rp (P) - A J J rp (q) K (P, q) dS , 
s 

where 

rp (P) = fl (P) , K(P )-~~~ ,q - 2n OV r . 

For}, = 1, t (P) = - F (P), this equation reduces to the condition 
that W is the solution of the Dirichlet problem for the interior region 
R. For A = - 1, t (P) = F (P), it reduces to the condition that W is 
the solution of the Dirichlet problem for the infinite region RI. 
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In the equation (1), the functions t (P) and K(p, q) are known. The 
function to be determined, rp (P), occurs under the sign of a definite inte­
gral. It may seem, therefore, as if the individuality of rp (p) were distroy­
ed by the integration process, and as if the equation therefore could 
not be solved for rp(p). However, FREDHOLM noticed that the equation 
was the limiting form of a set of n linear algebraic equations in n un­
knowns, and this observation enabled him to solve it completely. 

The equation (3) is called, following HILBERT, an integral equation. 
The function K (p, q) is called the kernel of the integral equation. 

To solve the Neumann problem for Rand R', we use a simple distri-

bution 1 (J 1 
V (P) = 2 n; J. a r d 5 . 

5 

We have seen that on the hypothesis that a satisfies a uniform Holder 
condition, V has continuous derivatives in the closed regions Rand R', 
and that the limits of the normal derivatives are given by 

iJV -a(p) +~ (Ja( )L~dS iJV - -a(p) +~ (Ja( )~~dS 
012_ - 2n;J. q an r ' iJn+ - 2n;J. q an r . 

5 5 

We have here integral equations of the same type as (3). For the double 

distribution, the kernel is 21n; times the reciprocal of the distance PQ =r, 
first differentiated in the direction of the normal at the boundary point 
q, and then with P replaced by p. For the simple distribution, the kernel 

is -21 times the derivative of ~ in the direction of the normal at p, with 
n; r 

Q replaced by q. It is therefore simply the kernel K (p, q) with argu­
ments interchanged, that is it is K (q, Pl. Hence, if we write 

(4) t (P) = 1p (P) - A f f 1p (q) K (q, P) dS , 
5 

a solution of this equation would give, for A = - 1, and t (P) equal to 
the assigned values of the normal derivative, the solution of the Neu­
mann problem for R. For A = 1, and t (P) equal to the negative of the 
assigned values for the normal derivative, it would give the solution 
of the Neumann problem for R'. 

Thus two fundamental existence theorems are reduced to the so­
lution of the two associated integral equations (3) and (4), this being 
the term applied to pairs of integral equations when the kernel of one 
is obtained from that of the other by the interchange of the arguments. 

3. Solution of the Integral Equations for Small Values 
of the Parameter. 

We shall first consider integral equations of the forms (3) and (4) 
in which t (P) and K (P, q) are continuous functions of the coordinates 
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of p and q for all positions of these points on S. It will be seen that all 
that is said will hold for other regions of definition of these functions, for 
instance a linear interval, a region of the plane, or of space. Only,.q is 
always to have the same region as p. In order to emphasize the indepen­
dence of the theory of dimensions, and also in the interests of simplicity, 
we shall write a single integral sign, and replace d S by dq, q being the 
point whose coordinates are the variables of integration. Thus the equa­
tions to be studied become 

(3) 

(4) 

t (P) = rp (P) - A f rp (q) K (P, q) dq, 

t (P) = 1jJ (P) - A f 1jJ (q) K (q, P) dq, 

We begin with the equation (3) and seek a solution by a method of 
successive approximations. We take any continuqus function rpo (q), 
substitute it for rp (q) under the integral sign, and solve for rp (P), calling 
the resulting first approximation rpl (P): 

rpl (P) = t (P) + A f rpo (q) K (P, q) dq. 
l 

From rpl (P) we determine similarly a second approximation 

rp2(P) = f (P) + A! rpl (q) K (p, q) dq, 

and so on. If we wish to express rp2 (P) and later approximations in terms 
of rpo (P), we must, in order to avoid confusion, introduce a new variable 
point of integration, r, say, and write 

rpl (q) = t (q) + A f rpo (r) K (q, r) dr. 

Substituting this in the expression for the second approximation, we 
find 

rp2 (P) = t (P) + Aft (q) K (P, q) dq 

+ A2 f f rpo (r) K (q, r) K (P, q) dr dq. 

Before going further, we remark that this sort of change in the notation 
for variables of integration will be met with repeatedly, and is inevitable. 
The reader should accustom himself to it promptly. We shall also find 
it convenient to introduce at once the iterated kernels: 

(5) Kn (P, q) = f K n- 1 (P, r) K (r, q) dr, Ko (P, q) = K (P, q). 

In terms of these, one finds at once for the nth approximation, 

rpn (P) = t (P) + Aft (q) K (P, q) dq + A2 f t (q) Kl (p, q) dq + ... 
+ An-1 f t (q) K n_2 (P, q) dq + An f rpo (q) K n_1 (P, q) dq . 

It is now easy to show that this approximation converges, for small 
I AI, to a solution of (3), as n becomes infinite. In fact, if K denotes the 
product of the maximum of 1 K (p, q) I by the content (length, area, or 
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volume) of S, and if L denotes the maximum of [ I (P) I, the series 

(6) cp(p) = I(P) +A J l(q)K(P, q)dq + ... 

+ An J I (q) K n_ 1 (P, q) dq + ... 
is dominated by 

L + L (AK) + ... + L (AK)n + "', 

and so is absolutely and uniformly convergent as to P and A for I A , ;;;; }'I' 

where AIK < 1. That it satisfies the equation (3) may be verified by 
direct substitution. 

Exercises. 
1. Show that 

Kn (P, q) = J K (P, r) K n_1 (r, q) dr. 

2. Solve the integral equation 

where 

Answers, 

1 
t (5) = q; (s) - A J q; (I) K (s, i) d i, 

o 

a) K(5,t)=1. b) K(s,i)=st, c) K(5,1)=s-t. 

1 

3 f b) q;(s)=t(s)+3"=-;'s j(t)idt, 

o 
1 

c) q; (s) = j (5) + 121:\f f f (i) {(S - i) -). [Si -} (s + t) + i J}dl. 
o 

4. The Resolvent. 

The solution (6) can evidently be put into the form 

cp (P) = I (P) +}, J I (q) R (P, q; A) dq, 

where the function 

(7) R (P, q; A) = K (P, q) + AKI (P, q) + A2K2 (P, q) + ... 

is the resolvent for the kernel K (p, q). If the equation (7) is solved for 
K (p, q), we have at once two fundamental equations for the resolvent: 

(8) K (P, q) = R (P, q; A) - A J R (P, r; A) K (r, q) dr, 

(9) K (P; q) = R (P, q; A) - A J R (r, q; A) K (P, r) dr. 

These equations contain implicitly the key to the whole theory of the 
integral equations (3) and (4). We illustrate this statement by showing 
that for IA 1 <AI' the equation (3) has but one continuous solution. 
Suppose, in fact, that cp (P) is a continuous solution of (3). We replace, 

Kellogg, Potentia 1 Theory. 19 
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in this equation, p by r, multiply by R (p, r; A), and integrate with 
respect to r. We have, then, by (8), 

f t (r) R (P, r; A) dr = f cp (r) R (P, r; A) dr 

+ f cp (q) K (P, q) dq - f cp (q) R (P, q; A) dq. 

The first and last terms on the right cancel, and if we employ the re­
sulting equation to eliminate from (3) the integral containing cp (q), we 
have 

(10) cp (P) = t (P) + Aft (q) R (P, q; A) dq 

as a necessary consequence of (3). The solution must therefore have 
this form, and so is uniquely determined. We have seen that this is a 
solution, but it may also be verified by substitution and use of the 
identity (9). 

In the same way, we show that the equation (4) has one and but one 
continuous solution, namely 

(II) tp (P) = t (P) + Aft (q) R (q, P; A) dq . 

5. The Quotient Form for the Resolvent. 
If we should now attempt to solve the Dirichlet problem by the 

above methods, we should find the same difficulty which limited the 
success of NEUMANN'S attack, namely in the proof that the various series 
converge for A = 1 or -1. FREDHOLM'S great contribution consisted 
in large measure in the representation of the resolvent as the quotient 
of two always convergent power series in A. This, it will be observed, is 
the case in Exercise 2 (p. 289), where the resolvent is the quotient of 
two polynomials. 

FREDHOLM was led to this result by a consideration of a system of 
linear algebraic equations of which (3) is a limiting form. Although val­
uable as giving an insight into the nature of integral equations, we shall 
not take the space to develop this phase of the problem, but refer 
for it to works on integral equations l . The results are as follows. With the 
abridged notation 

K (PI' ql)' K (PI' q2)' ... , K (Pl' qn) 

(12) K (::: ::: :::: ~:) = ~ ~P~, .ql! '. ~ ~P~, ?2~'.':': ~.(~2'. q~) , 
K(Pn, ql), K(Pn' q2)' ... , K(Pn' qn) 

1 See, for instance, BecHER, An Introduction to tke Study of Integral Equations, 
Cambridge Tracts, 1909, § 7; RIEMANN-WEBER, Die Differential- und Integral­
gleickungen der matkematiscken Physik, Braunschweig, 1925, Vol. I, Chapter XII. 
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we form the two series 

(13) 

N (P, q; A) = K (p. q) - Nl (P, q) A + N2 (P, q) A2 - "', 

(14) 

That these series are convergent for all values of A follows from a theorem 
of HADAMARDl to the effect that the absolute value of a determinant 
of order n whose elements do not exceed K in absolute value is not 
greater than Knnn/2. 

It is not difficult, though perhaps a little tedious, to verify that 

(15) R (P, q; A) = N (;;1/ A) 

is the desired expression for the resolvent as the quotient of two always 
convergent power series. One substitutes this value of R (p, q; A) in the 
equation (7), multiplies by <5 (A), and compares the coefficients of the 
powers of A. 

Exercises. 
1. Give the details of the proof of the convergence of the series (13) and (14). 

and verify the equation (15). 
2. Show that if K (P, q) is the sum of 12 products, each a function of palone 

times a function of q alone, the series (13) and (14) become finite sums. Note that 
this is the case in Exercise 2, page 289. 

In terms of the new functions, the identities (8) and (9) become 

(16) <5 (A) K (P,q) = N (P,q; A) - AJ N (P, r; A)K (r ,q) dr, 

(17) <5 (A) K (P, q) = N (P, q; A) - AJN (r, q; A)K (p,r)dr. 

At first, we know that these equations are valid for all I A I ;;::;Al . But 
they are equations between always convergent power series, and the 
fact they hold for all sufficiently small I A I guarantees that they hold 
for all A. 

If A is not a root of the equation <5 (),) = 0, the equations (16) and 
(17) may be divided by <5 (A), and then reduce to (8) and (9). These 
equations may then be used to solve the integral equations (3) and (4) 
just as before. We have therefore the result: the eq%ations (3) and (4), 
if A is not a root of <5 (A) = 0, have one and only one contin%o%s sol%tion 
each. These are given by the eq%ations (10) and (11), respectively. 

1 Bulletin des scienCES mathematiques et astronomiqu€s, 2 nd ser., Vol. XVII 
(1923), p.240. BaCHER, I. c. § 8. 

19* 
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6. Linear Dependence; Orthogonal and Biorthogonal 
Sets of Functions. 

The case in which A is a root of t5 (A) = ° is of prime importance for 
our applications. We devote this section to a preparation for the study 
of this case. 

Given a set of n functions, CPl (P), CP2 (P), ... , CPn (P), with a common 
region 5 of definition, we say that these functions are linearly dependent 
in 5 if there exist n constants, c1 , c2 ' ••• ,Cn , not all 0, such that 

C1 CPl (P) + c2 CP2 (P) + ... + cn CPn (P) = ° 
at all points of S. They are linearly independent if this is not the case. They 
are orthogonal on 5 if 

Exel'cises. 
1. Show that 

!cpdP)cpj(P)dP=O, i+j, i,j=I,2, ... ,n. 

a) if one of the functions of a set is identically 0, the functions are linearly 
dependent, 

b) if to a set of functions which are linearly dependent a new function is added, 
the functions of the augmented set are linearly dependent, 

c) at least one function of a linearly dependent set can be expressed as a linear 
homogeneous combination of the others, with constant coefficients. 

2. Show that a necessary and sufficient condition for the linear dependence 
of a set of continuous functions is the vanishing of the determinant of GRAM: 

I CPu ! = 1 f cpdP) CPi (P) dP I· 
The function cP (P) is said to be normalized on 5 if 

! cp2 (P) d P = l. 
Any continuous function except ° can be normalized by dividing it by 
a proper constant, not 0. 

Exercise. 
3. Show that the functions of any normalized orthogonal set are independent. 

Two sets of functions are said to be linearly equivalent if any function 
of either set is a linear homogeneous combination of the functions of the 
other set, with constant coefficients. In using the terms defined above, 
we may omit the word linearly if danger of misunderstanding is preclud­
ed, as it will be in the' following. 

A set consisting of two rows of n functions each, 

cpdP)' CP2 (P), ... , CPn (P), 

'ljJ1 (P), 'ljJ2 (P), ... , 'ljJn(P) , 

is called a biorthogonal set, if 

!cpdP)'ljJj(P)dP=O, i+j, i,j=1,2, ... ,n. 
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If, in addition, this integral is I when i = j, for all j, the set is called a 
normalized biorthogonal set. 

Exercise. 
4. Show that in a normalized biorthogonal set, the functions of either row are 

independent. 

Given two sets of n functions each; 

[!Pi]: !PI,!P2'···'!Pn' 
["Pi]: "PI' "P2, ... , "Pn , 

such that no homogeneous linear combination of the !Pi, with constant coeffi­
cients not all 0, is orthogonal to all the "Pi' it is possible to find a set [Wi] 
equivalent to [!Pi], qnd a set W'i] equivalent to ["Pi], such that 

[Wi]: WI' W2,···, Wn , 

[Pi]: P I ,P2,···,Pn , 

is a normalized biorthogonal set. 
We remark first that if a function is orthogonal to all the functions 

of a set, it is orthogonal to all the functions of any equivalent set~ 

By hypothesis, !PI is not orthogonal to all the "Pi. Let these functions 
be permuted, if necessary, and the notations interchanged, so that !PI 
is not orthogonal to "Pl. We then choose WI = !PI, and PI = "Pl. 

We next writeW2 = !P2 - cWI , a~d choose c so that this function is 
orthogonal to Pl. This is possible, because the equation determining 
C IS J !P2 lJ11 dP - c J WI PI dP = 0, 

and the coefficient of c is not o. Then W2, a linear combination of the !Pi, 
is orthogonal to "PI' and therefore, by hypothesis, not to all the remain­
ing "Pi. Let the ordering and notation be chosen so that W2 is not ortho­
gonal to "P2. We then write lJI2 = "P2 - C'PI> choosing c' so that P 2 is 
orthogonal to WI. Then the set WI' W2, is equivalent to the set !PI> !P2' 
for WI = !PI, W2 = !P2 - C!PI' and !PI = WI> !P2 = W2 + cWI . Similarly, 
the set PI' P 2, is equivalent to "PI> "P2. Moreover, 

J WI PidP =\= 0, J W2 P 2dP = f W2 "P2 dP =\= O. 

Continuing in this way, we form a biorthogonal set of n pairs of 
functions, in which no Wi is orthogonal to its companion Pi. If then each 
Pi be divided by the non-vanishing number 

J Wi (p) Pi (P) dP, 

the set becomes a normalized biorthogonal set. 
H will be remarked that in a normalized biorthogonal set, the order 

of the pairs is unessential. The pairing, however, is essential. 
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Exercises. 
5. Complete the above proof by an argument from k to k + 1-
6. Show as a.corollary to the theorem that any set of n independent functions 

is equivalent to a normalized orthogonal set. 

7. The Homogeneous Integral Equations. 

If Au is a root of CJ (A) = 0, the associated homogeneous integral equa­
tions, obtained from (3) and (4) by setting f (P) = 0, 

(18) 

(19) 

qJ (P) = Ao! qJ (q) K (P, q) dq, 

1jJ (P) = Ao! 1jJ (q) K (q, P) dq , 

have solutions. In fact, the equation (17) shows that for any fixed q, 
N.(p, q; Ao) is a solution of (18), and (16) shows that for any fixed q, 
N (q, p; Ao) is a solution of (19). 

However, 0 is a solution of any homogeneous equation, and for most 
purposes, a valueless solution. By a solution uf a homogeneous equa­
tion is usually meant one which does not vanish identically. We do not 
know that the above solutions are different from O. But it is still true 
that these equations have non-trivial solutions. To see this, we note 
that from the equations (13) and (14), it follows that 

fN(r,r; A)dr = - :).CJ(A). 

Hence, if Au is a root of order n of CJ (A), so that the nth derivative of 
CJ (A) is not 0 for A =Ao, N (p, q; A) cannot contain (A -Ao)n as a factor 
for all p and q. Accordmgly, every zero of CJ (A) is a pole of the resolvent 
R (p, q; A). The poles of R (p, q; A) are called the characteristics, or 
characteristic numbers of the kernel. 

In a neighborhood of such a pole Au, R (p, q; A) has a development 

(20) R(P q' A) = Am(P,q) + A m_ 1 (P,q) + ... 
" . (A - Ao)m (}. - )'0)>>1 1 

+ A/ :!.'A:) + B (P, q; ),), 

where m < n, the coefficients Ai (P, q) being continuous, Am (P, q) not 
identically 0, and B (P, q; A) being a power series in A-Ao, uniformly 
convergent in a neighborhood of Ao, with coefficients which are con­
tinuous in p and q. It is readily verified that Am (p, q) and Am (q, P) 
are, for any fixed q for which these functions are not identically 0 in p, 
non-trivial solutions of the equations (18) and (19), respectively. 

Since the solutions we have found for the homogeneous equations 
depend upon a parameter point q, which may be chosen in infinitely 
many ways, it might appear that these equations have infinitely many 
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solutions. There are, however, only a finite number of linearly indepen­
dent real continuous solutions for any real characteristic number. The 
kernel is assumed to be real, here, and throughout the chapter. 

To show this, let ({il' ({i2"'" ({in denote a set of real, continuous, 
independent solutions of the equation (18). Clearly, any equivalent set 
of functions are solutions, and so by Exercise 6 of the last section, we 
may assume the given set to be a normalized orthogonal one. Now 

J[AoK (P, r) - ({il(P) ({il(r) - ({i2(P) ({i2(r) - ... - ({in(P) ({in (r)]2 dr > O. 

Expanding the square, carrying out the integration, and keeping in mind 
the hypothesis on the solutions, we have 

A6 J K2 (P, r) dr - 2 i ({ii (P) Ao J ({ii (r) K (P, r) dr + i; ({i; (P) 
1 1 

n 

= A6 J K2 (P, r) d r - .2 ({iZ (P) > O. 
1 

Integrating the last inequality with respect to p, we obtain 

n < A6 J J K2 (p,r)drdp. 

Hence the number of linearly independent real continuous solutions 
of (18) is limited, as asserted. It is the same with the solutions of (19). 

If a characteristic is real, the real and imaginary parts of a complex 
solution are solutions of the homogeneous equation, and it follows at 
once that the number of independent complex solutions is bounded. 

If }'o is not a pole of the resolvent, the homogeneous equations (18) and 
(19) have no non-trivial solutions. This is seen by putting f (P) = 0 in 
the unique solutions (10) and (ll). 

Relationships between the Solutions of the Associated Homogeneous 
Equations. We show first that any solution of one of the homogeneous equa­
tions for a characteristic }'i' is orthogonal to any solution of the associated 
homogeneous equation for a different characteristic Aj. Suppose 

({i (P) = Ai J ({i (q) K (P, q) dq, 

"p (P) = Aj J "p (q) K (q, P) dq . 

If these equations be multiplied by "p (P) and ({i (P), respectively, and 
integrated with respect to p, the resulting integrals on the right will be 
equal. Accordingly 

division by the characteristics being justified since 0 is never a charac­
teristic (0 (0) = 1). As Ai + Aj, ({i (P) and "p (P) are orthogonal, as stated. 
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The Case of a Simple Pole. Here the relation (20) takes the form 

(21) . A (P,q) B .1 R (P, q, A) = J. _ At, + {P, q, A), A (P,q)$O. 

If this expression for the resolvent be substituted in the equations (8) 
and (9), we find by comparing the coefficients of (A -Ao)-1 and the terms 
free from A - ..40 , the equations 

(22) A (P,q) =A01 A (p,r)K(r,q)dr, 

(23) A (P, q) = Ao 1 A (r, q) K (P, r) dr, 

(24) K (P,q) = B (P, q;Ao) - 1 A (p,r) K (r, q) dr 

-A01 B(p,r;Ao)K(r,q)dr, 

(25) K(P,q) = B (P,q;Ao) - 1 A (r,q)K(p,r)dr 

- Ao 1 B (r, q; Ao) K (P , r) dr . 

As already remarked, and as now shown by equation (23), A (p, q) 
is, for any fixed q, a solution of (18). But that equation has only a finite 
number of real independent solutions, so that if CfJl (P), CfJ2 (P), ••• , CfJn (P) 
denotes a set of independent solutions in terms of which any solution 
can be expressed, A (p, q) must be a linear homogeneous combination 
of these functions with coefficients independent of p, and so, functions 
of q: 

(26) A (P, q) = CfJl (P)"PI (q) + CfJ2 (P) 1jJ2 (q) + ... + CfJn (P) 1jJn (q). 

That the functions 1jJi (q) are continuous can be seen by assigning to 
p n suitable values and solving the resulting equations for the 1jJi (q). 
The selection of the values PI, P2' .. " Pn can be made so that the deter­
minant involved is not 0, otherwise the CfJi (P) could be shown to be 
dependent. The functions 1jJi (q) then appear as linear homogeneous 
functions of the continuous functions A (P1' q),. A (P2' q), ... , A (Pn, q), 
and so are continuous. 

Now let CfJ (P) be any continuous solution of (18). Inserting in 
this equation the expression (24) for K (p, q), and simplifying the result 
by (18) and (22), we find 

n 

(27) CfJ (P ) = - 1 CfJ (q) A (P, q) dq = .2 ci CfJi (P) , 
1 

Ci = - 1 CfJ (q) 1jJi (q) dq . 

Thus we verify what we already know, that any solution of (18) can be 
expressed in terms of the functions CfJi (P). But a similar process involv­
ing the equations (19), (25) and (23) shows that any solution of (19) 
is a homogeneous linear combination with constant coefficients of the 
functions 1jJi (q) occurring in the expression (26) for A (p, q). 
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Let us now identify cP (P) in the equation (27) with cPj (P). Since 
the CPi(P) are independent, this means that Cj = 1, and Ci = 0 for i + f. 
We have, accordingly 

{o i+j, 
f cPj (q) [ - 1jJi (q)] dq = 1 " 

t = 1, 

so that the junctions CPi (P) and the junctions - 1jJi (q) occurring in the 
expression (26) jor the residue A (P, q) at the pole Ao jorm a normalized 
biorthogonal set. It follows from Exercise 4, page 293, that the func­
tions 1jJi (q) as well as the CPi (P) form independent sets. Thus, in the case 
oj a simple pole, the two associated homogeneous equations (18) and (19) 
have the same number oj linearly independent solutions. These can be so 
chosen as to jorm a normalized biorthogonal set. 

Poles oj Higher Order. These do not occur in the applications which 
we shall make. In order to establish the fact, however, we shall have 
need of one result. If the expression (20) for R (P, q; A) is substituted 
in the equation (8), and coefficients of powers of A - Ao compared, as 
before, we find 

Am (P,q) = Aof Am (p,r) K(r,q) dr, 

A m- 1 (P, q) = f Am(p,r)K (r, q) dr + Ao f A m _ 1 (p,r)K(r, q) dr. 

From these equations, we see that ij Jlo is a pole oj R (P, q; J,), oj order 
higher than one, the simultaneous integral equations 

(28) { 
1jJl (q) = Ao f 1jJl (1') K (1', q) dr , 

1jJ2 (q) = f 1jJl (r) K (r, q) dr + Ao f 1jJ2 (r) K (r, q) dr 

have a continuous sol~ttion 1jJl (q), 1jJ2 (q), in which 1jJl (q) (and therejore also 
1jJ2 (q)) does not vanish identically. 

8. The Non-homogeneous Equation; Summary of Results 
for Continuous Kernels. 

It remains to consider the non-homogeneous equations (3) and (4) 
when A is a characteristic Ao of the kernel. We shall suppose that it is a 
simple pole of the resolvent. We may confine ourselves to the equation 
(3), since the treatment of (4) is similar. Let us suppose first that it has 
a solution cP (P). Then 

(29) j(P) = cp(P) - J'of cp(q)K(P,q)dq. 

The function (10) then has a pole at Ao, unless t(P) is orthogonal to 
A (p, q). This suggests the following steps. We change p to r in (29), 
multiply by A (p, r), and integrate with respect to r. In the resulting 
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equation, the right hand member vanishes, by (22). Accordingly 

If (r) A (P, r) dr = i Ti (P) If (r) 'lfi (r) dr = O. 
1 

This equation can hold only if all the integrals vanish, because of the 
independence of the Ti (P). Hence a necessary condition that the non­
homogeneous equation (3) have a sohttion when A is a characteristic, is 
that f (P) shall be orthogonal to all the solutions of the associated homo­
geneous equation for the same value of A. 

If the equation (29), withp replaced by r, is multiplied by B (P, r;Ao) 
and integrated with respect to r, it is found, with the help of equations 
(24), (22) and (29) that when the necessary condition is fulfilled, the 
solution must have the form 

T (P) = f (P) + ,10 If (q) B (P, q; ,10) dq + i Ci Ti (P)· 
1 

Clearly the constants ci may have any values, for they multiply solu­
tions of the homogeneous equation, and so contribute nothing to the 
right hand member of (29). Conversely, it may be proved by substitu­
tion that this is a solution. The necessary conddion is therefore also 
sufficient. 

Summary. Hypotheses: the kernel K (P, q) and the function f (P) 
are real and continuous. The characteristics are real, and simple poles 
of the resolvent R (p, q; A). 

(a) A is not a characteristic. 

The associated integral equations 

(I) 

(1') 

f (P) = T (P) - A I T (q) K (P, q) dq , 

f (P) = 1p (P) - A I1p (q) K (q, P) dq , 

have each one and only one continuous solution, namely 

respectively. 

T (P) = f (P) + A I f (q) R (P, q; A) dq, 

'If (P) = f (P) + A If (q) R (q, P; A) dq, 

The corresponding associated homogeneous integral equations 

(II) 

(II') 

T(P) = AI T(q)K(P,q)dq, 

'If(P) = AJ 'If(q)K(q,P)dq, 

have no non-trivial solutions. 

(b) A is a characteristic. 

The equations (II) and (II') have the same number of linearly in­
dependent solutions. These may be so selected as to form a normalized 
biorthogonal set. 
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A necessary and sufficient condition that (I) or (I') have solutions 
is that t (P) be orthogonal to all the solutions of the associated homo­
geneous equation (II') or (II). The solution is then determined, except 
for an additive solution of the corresponding homogeneous equation, 
(II) or (II'). 

If, the other hypotheses being maintained, A = Au is a pole of higher 
order of the resolvent, the simultaneous equations (28) have a non­
trivial solution. 

9. Preliminary Study of the Kernel of Potential Theory. 
For the first and second fundamental existence theorems in two 

dimensions, the above discussion suffices, provided the region under 
consideration has a boundary with continuous curvature. But in three 
dimensions, the kernel becomes infinite when p and q tend toward co­
incidence. We first examine the nature and some consequences of this 
discontinuity, and then show how the results for continuous kernels may 
be extended to hold for the kernel which interests us. 

Recalling the conditions imposed on the surface S in § 2, the results 
of Chapter VI are available. We find there, developing z in the numera­
tor of the expression (2), page 169, in a Taylor series with remainder 
about the point (.;, 1]), that 

I a I! M r'2 --<­Ell' r 1= r3 

where r' is the projection of r on the tangent plane to Sat p. As this 
is less than r, we infer that 

(30) 

This result was obtained only for q in a neighborhood of p, but all the 
materials were given for the proof that such an inequality held uni­
formly over S, that is, that there is one constant a, and one constant 
M, such that (30) holds whenever r :::; a. Also, the last restriction may 
be dropped. For, for r> a, I K (P, q) I is bounded, say by B, and if 
we increase M, if necessary, so that 

M>B 
R = ' 

where R is the greatest chord of S, the inequality (30) will hold without 
restriction. 

A further studyofthefunction (2) of Chapter VI shows thatK (P, q) has 
continuous derivatives of the first order with respect to the coordinates 
of the projection of p or q on any fixed plane tangent to S at a point 
near the variable point, for r =l= O. It follows that the derivative 
of K (p, q) with respect to the distance s measured along any regular 
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arc on 5 to p, or q, is continuous for r not o. Moreover, such a derivative 
is subject to an inequality 

(31) I aK(p,q) I <M 
as 1= r2' r=l=O, 

first uniformly for r less than some constant a, and then, by increasing 
M, if necessary, for the whole of 5. It is unnecessary to distinguish 
between the constants M in (30) and (31). The larger will serve for both. 

We now prove· 
Lemma I. If g; (P) and 1fJ (P) are continuous on 5, the integrals 

W (P) = f g; (q) K (P, q) dq and P (P) :;=: f 1fJ (q) K (q, P) dq 

satisfy a uniform Holder condition on 5. Moreover, if F is a bound for 
I g; (P) I and 11fJ (P) I, there is a constant C, independent of these functions, 
such that 

IW (P) I < C F , IP(P) I <CF. 

We need consider only W (P). The same considerations will apply to 
P (q). Let a be a number such that the portion of 5 in the sphere of 
radius a about any point p of 5 admits the representation z = f (x, y) 
when referred to a tangent-normal system of axes at p, in which there 
is a bound for the absolute values of the derivatives of first and second 
orders, independent of the position of p. 

Let p and Po be two points of 5 a distance 1] apart, not greater than 
a. We refer the portion of 5 within a sphere of radius a about Po to axes 
tangent and normal to 5 at Po, taking the (x, z)-plane through p. Then, 
by (31), 

x 

I K (P, q) - K (Po, q) 1= iI aK ~~' q) . :;dx I <max -V 1 + f~~lx I 
u 

where we have differentiated along the curve y in which the (x, z)-plane 
cuts 5 near Po, where M' is a constant which is the same for all positions 
of Po, and where r is the distance of q from the nearest point of the 
curve y between Po and p. 

Let c be less than a, and less than !/_, and let 1] be restricted to 
2,2 

be not greater than c. We divide 5 into the part (1 inside the sphere 
about Po of radius 1]1-, and the rest, 5 - (1. Then when q is on 5 - (1, 

r > 1]} - 1], and hence, if 5 be used to denote the whole area of 5, 

II g; (q)[K (P, q) - K (P,q)]dq I <F 5 M' -l-'YJ- < 4F 5 M' 1]t, 
~a ~-~ 
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since 1] < c < ! i2. Also 

Ifcp (q)[K(P,q) - K (Po, q)]dq I <F f f (~ + ~) dS, ro =Poq, 
U U 

where we have used the inequality (30). If we change the region of 
integration to the projection on the (x, y)-plane, and use the Lemma 
III (b) of § 2, Chapter VI (p. 149), we find that this integral is less than 

1 

2:< '1lf 

2M' F f f dr' df} = 4nM' F1]~. 
o 0 

Thus the integral giving 1 tP (P) - tP (Po) 1 is composed of two parts, 
each less in absolute value than a uniform constant times 1]t. If A is 
the sum of these constants, we have, writing r in place of 1], 

I tP (P) - tP (Po) I ~ A r1 , for P Po = r < c . 

Thus the existence of the uniform Holder condition is established. 
For the second part of the lemma, we have 

where G denotes the portion of S in a sphere of radius a about p. The 

first integral on the right is not more than :' and the second is not 

greater than a uniform constant times a, as is seen by integrating over 
the projection on the tangent plane at p. If C be the sum of these two 
bounds for the integrals, multiplied by M, we have 

ItP(P)I<CF, 

where C is independent of p and of the function cp (P). 
Lemma II. The iterated kernel K2 (P, q) is continuous. 

We first consider K1 (p, q), showing that it is continuous for p 9= q. 
To do this, we write it as the sum of two integrals 

11 = f K (P, r) K (r ,q) dr, 12 = f K (p, r) K (r, q) dr, 
S-Up-Ug Up+ag 

where G:p and Gq are the portions of S within small spheres of radius 0( 

about the points Po and qo at which the continuity is to be investigated. 
The method of proof follows the lines of Chapter VI. The continuity 
at (Po, qo) is established by showing that 1121 can be made arbitrarily 
small, independently of p and q, by taking 0( sufficiently small, and by 
showing that 11 is continuous at (Po qo) for any fixed 0(. If, for instance 
- Ot' - Ot • 
PPo < 2' and qqo < 2' the mtegrands in 11 are continuous in all 

variables, and so, therefore, is 11 , 
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As to 12 , if we subject IZ to the first restriction that it shall be less 
than one third the distance rJ = Po qo, then for r in ai>' 

IK(p,r) 1 < ;, and IK(r )1 <~_< 3M ,q = 1) - 20( = 1) , 

by (30), (2 being the distance pro Similar inequalities hold when r is in 
aq • Accordingly, integrating over the projections of ai> and aq on the 
tangent planes at p and q respectively, we have, if (2' is the projection 
of (2, 2na 

1 1 Sf 3M NI , 6M2 
12 <2 -1)-'7secY(2 d r/d1J<-1)-2nmaxsecy'lZ, 

00 

which shows that 112 I has the stated property. Thus Kl (p, q) is con­
tinuous at (Po, %), these points being distinct. 

We next seek a bound for Kl (p, q) when p and q are close together. 
We think of q as fixed, and describe a sphere about q of radius a. Let a 

be the portion it cuts from S. With p q = 17 < ~, the integral 

II = J K (P, r) K (r, q) dr 
S-(J 

has an integrand less in absolute value than 4~2, and the integral is 

uniformly bounded. And 

1121 = If K(p,r)K(r,q)drl <M2ffe~,secyds', 

Fig. 28. 

(J ~ 

where (2 and (2' are the projections on the 
tangent plane at q of the distances rq and 
pr, respectively, and the integration is over 
the projection a' of a. Thus 

I I 1 <M'fJdS' 
2 - eQ~' 

c 

where M' = M2 max sec Y is a constant, inde­
pendent of the positions of p, q, or r, and C is 
a circle of radius a about q (fig.28). Let rJ' be 

the projection of pq .We suppose it less than ; . We now divide the 

field C of integration into two parts, namely, a circle c of radius 2 rJ' 
about q, and the remaining annular region C - c. 

As to lJdS' 
e e" 

c 

it is obviously unchanged by a transformation which changes all dis-
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tances in a fixed ratio, and hence, being convergent, it is equal to a fixed 
constant A'. 

As to LIdS' 

ee" 
C-c 

since for r in C - c, e ~ 21J', e' > e - 'YJ', and hence e' > ~ , this integral 

is not greater than 
2na fJ dedf} a 

2 -e- = 4n log 2r( • 
02'1}' 

Hence. assembling the inequalities, we see that for 'YJ' < ;, 

I Kl (p, q) I < A + B log 2 ~, , 

where A and B are two constants, uniform over all of S. Since'YJ = pq 
is less than ;, 1J' will be also. And as 1J' > 1J cos y, y being the 

greatest angle between the normals to (1 at q and at any other point, 

log (2 ~,) ::;; log ( a ;e~ r). Therefore, adopting now the usual notation r 
- a 

for the distance 1J = Pq, we have, for r <2' 

IK1 (P,q) I <A + Blog (a~~r). 

The constants may be selected so as to be independent of the positions of 

P and q, as long as r < ;. Then, since IKI (p, q) I is continuous, and there-

fore bounded for r > ;, we may select M, and increase B, if necessary, 

so that the inequality 

(32) 

holds uniformly on S. 

M I Kl (P, q) I < B log-;-

This, with the continuity for P and q distinct, is the information we 
need about Kl (p, q). 

Coming now to K2 (p, q), the reasoning, used to show Kl (p, q) con­
tinuous when P and q are distinct, holds for K2 (p, q) , since the inequality 
(32) is stronger than (30). Hence it remains only to establish the con­
tinuity when p and q coincide, say at Po. Let (1 denote the portion of 

S within a sphere of radius ex < !!.. about Po, and let p and q be restricted z 
to the interior of a concentric sphere of half the radius. Then 

11 = jK1 (p,r)K(r,q)dr 
S-(J 



304 Fundamental Existence Theorems. 

is continuous in P and q. As to the integral over (J, we have 

2,. a 

1121 = II KI (p,r)K(r ,q) dr I <2 I I Blog~. ~ secyede d# 

for first, 

000 

= 4:n; B M sec r (1 + log ~) rl, 

MMMMMM 
-log-< -log- + -log-
(!' (! - (! (! (!' (!" 

e and e' being the projections of pr and rq, respectively, on the tangent 
plane at Po, the left-hand member being dominated by the first term 
on the right, where e < e', and by the second where e' < e. Secondly, 
the integral of one of these terms over a circle of fixed radius is 
greatest when the distance involved is measured from the center of 
that circle (see the proof of Lemma III, on page 148). 

Thus , 12 , vanishes with rl, uniformly as to p and q, and the con­
tinuity of K2 (p, q) at all points is established. 

It will be of service later to notice that the same considerations 
would have applied had the kernel been replaced by its absolute value, 
with the understanding that Kl (p, q) and K2 (p, q) would then have 
meant the iterated kernels for the kernel' K (p, q) ,. 

Lemma III. The order of integrations in iterated integrals over inte­
grands containing K (p, q) as a factor may be inverted in the cases which 
arise in the theory of integral equations of this chapter. 

Let us consider, for instance, the iterated integral 

K2 (P, q) = f [f K (P, r) K (r, s) drJ K (s, q) ds, 

taking first p and q distinct. It is not a question of decomposing the 
integral with respect to r, or the integral with respec.t to s, each in re-­
ality a double integral over the surface 5; the problem is to show that 
the above integral, which is expressed as a double integral with respect 
to s of a double integral with respect to r, can be evaluated in the re­
verse order. 

Now the coordinates ~l' 1)1' CI, of s, and the coordinates ~2' 1)2' C2 , 

of r, may together be regarded as the coordinates of a point P in space 
of six dimensions, and if sand r be confined to 5, the corresponding 
point P will be confined to a certain four dimensional locus, which we 
shall denote by V. The product K (p, r) K (r, s) K (s, q) becomes in­
finite at certain points of V, but if these points be cut out by the sub­
traction of a suitable region v, the product will be continuous in V-v. 
The integral over this region of the product may be defined as the limit 
of a sum, that is; as a multiple (quadruple) integral, which we shall denote 
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by 5 (V - v). We shall show first that this multiple integral has a 
limit, as the content of v approaches 0, that is, that the improper multiple 
integralS (V) is convergent. We shall then show that the above iterated 
integral for K2 (P, q), which we denote by I (V), is equal to 5 (V). As the 
same reasoning will apply to the iterated integral in the reverse order, 
it will follow that the iterated integrals in the two orders are equal. 

We cut out the singularities of the integrand by the following ine­
qualities: 

(33) sp>ct., sq>ct., rp>ct.', rs > ct.', 

where sp, etc. denote the ordinary distances in space of three dimensions 
between the points s andp, etc. on 5, and where 0 < ct. < a, 0 < ct.' <a. 
Here a is such that the part of 5 in the sphere of radius a about any 
point of 5 is a regular surface element. Let V - v denote the portion 
of V in which these inequalities are all satisfied. Then v denotes the 
portion in which at least one is not satisfied. 

If (Jp and (Jq denote the portions of 5 in spheres of radius ct. about p 
and q, respectively, and (J; and (J: the portions in spheres of radius rx' 
aoout p and s, respectively, the iterated integral 

I(V-v)= J [JK(p,r)K(r,s)dr]K(s,q)ds 
S-ap-aq S-a~-a~ 

is equal to the multiple integral 

5(V-v) =JJK(p,r)K(r,s)K(s,q)dV, 
v-v 

for the regions of integration covered are the same, by (33), and the 
integrand is continuous l . 

Furthermore, if we distinguish by bars the corresponding integrals 
obtained from the above by replacing the integrand by its absolute 
v;alue, we have likewise 

I (V - v) = 5 (V - v) . 
-

Now I (V) exists, as follows from a remark made in connection with 
- -

the proof of Lemma II. Moreover, I (V - v) < I (V), since the inte-

grand is never negative. Hence 5 (V - v) is bounded, and as it never 
decreases as ct. and ct.' decrease, it is a simple matter to show that it has 
a limit as ct. and ct.' approach O. It follows (see Lemma II, Chapter VI, 
page 147) that 5 (V) is convergent. Thus the first step is complete. 

1 See, for instance, OSGOOD, Advanced Calculus, New York, 1925, p. 50. 

Kellogg, Potential Theory. 20 
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From the convergence of 5 (V) and the equality of 5 (V - v) with 
I (V -'v), it follows that r/. and r/.' may be given such initial restrictions 
that 

(34) I I (V - v) - 5 (V) I < ; , 

e being any fixed positive quantity. Then we may further restrict r/., 

if necessary, so that 

(35) I I (V) - f KdP, s) K (s, q) ds I < ; , 
S-Op-aq 

for the first term on the left is the limit of the second as r/. approaches O. 
Next, with r/. fixed so that these inequalities are in force, we further 
restrict r/.', if necessary, so that 

I Kl (p, s) -f K(P, r) K(r, s) dr I < 3S;; 5' 

S-a' -a' p s 

where M is the constant of the inequality (30), and 5 the area of the 
surface s. If the functions on the left are multiplied by K (s, q), which 

in 5 - Gp - Gq is not greater in absolute value than M, and integrated 
01: 

with respect to s over this region, the result is 

(36) IfKl(p,S)K(S,Q)dS-I(V-V)I<;. 
5- ap-aq 

We conclude from (34), (35) and (36) that 

I I (V) - 5 (V) I < e. 

But the difference on the left is independent of e, and as e is any positive 
constant, the difference must be o. This completes the second step in 
the reasoning. 

Thus the iterated integrals in the two orders are equal when p and q 
are distinct. But we have seen in connection with the previous lemma 
that one of them is continuous in p and q for all positions of these points, 
and the same reasoning applies also to the other. It follows that they 
are equal when p and q coincide. 

It is now clear that the other iterated integrals which occur in the 
theory of integral equations as presented are independent of order, 
for they are over products containing K (P, q) or iterated kernels, or 
continuous functions, and these only, In any case, the factors will be 
dominated by the inequality for I K (P, q) I, so that the proof still will 
be valid. From this, in particular, follows the extension of Lemma I: 
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Lemma I holds also if in the integrals there considered, any iterated 
kernel Ki (P, q) be substituted for K (P, q). This is seen by carrying out 
the integration with respect to the variable entering cp (P) or 1p (P) 
under the integral sign first, applying Lemma I, and repeating the 
process until all integrations have been carried out. 

10. The Integral Equation with Discontinuous Kernel. 

We shall now show that the results obtained with respect to the 
solutions of the integral equations (I), (I'), (II) and (II'), § 8 (p.298), 
continue to hold for the kernel just studied. It is true that the Fredholm 
series for t5 (A) and N (P, q; A) no longer exist in the same form, since 
they involve the now meaningless symbol K (p, Pl. However, the resolv­
ent function still exists. Let us consider the series (7) for the resolvent, 
first as to the character of the terms. We see that after the second they 
are all continuous functions of p and q. How about convergence? We 
saw that K2 (P, q) was continuous. Let KS denote the maximum of 
I K2 (P, q) 1 and S the area of the surface S. Then 

IKs (P,q) 1= I! K2 (p,r) K2 (r, q) dr I ~ SK6, I Ks (P, q) I <S2K9, ... 

Thus the series consisting of every third term of (7), is dominated by the 
series 

1;.IIS [I},ISKSS+ IAI6K6S2+ IAI9K9SS+ ... J, 

which converges for IA I < 3-~ • By Lemma I, the series consisting of the , 1SK 

4 th , 7th, loth, ••• terms of (7) is dominated by the series whose terms 
are I A I C times those of the above, and the series consisting of the 
remaining terms of (7) is dominated by the series whose terms are 
I A 12 C2 times those of the above. Thus the series for the resolvent con-

verges absolutely and uniformly for I A I <AI' if Al < -3 _1_. The resolvent - y.sK 
is equal to K (P, q) + A KI (P, q) Plus a power series ·in A with continuous 
coefficients, uniformly convergent for I A I <AI' It satisfies the characteris­
tic equations (8) and (9) for I A I <AI' 

Furthermore, the resolvent can be expressed as the quotient of two 
always convergent series in},. Consider the resolvent for the continuous 
kernel K2 (P, q) : 

R2 (P,q; A) = K 2 (p,q) + AK5 (P, q) + A2KS (P, q) + .. , . 

We see that the function A2R2 (P, q; AS) gives exactly the series of the 
3 d, 6 th, 9 th, ••. terms of (7). The series of the next following terms 
of (7) is therefore given by 

AS !R2(P,r; ;.,s)K(r,q)dr, 
20* 
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and the series of the next following terms, by 

A4 jR2(p,r; A3)Kl(r,q)dr. 

Hence we have the identity, valid for I A I < AI' 

R (P, q; A) = K(P, q) + AKI (P, q) + ).2R2 (P, q; A3) 

+ A3 j R2 (p,r; A3) [K (r, q) + AKI (r, q)] dr. 

Now the resolvent R2 (P, q;A) corresponding to the continuous 
kernel K2 (P, q) is the quotient of two always convergent power series, 
N 2 (P,q;A) h ff" fN( ')b' . H O2 (A) ,t e coe lClents 0 2 p, q; /" emg contmuous. ence 

R (P . A) = [K (P, q) + ).K1 (P, q)] 1) (A) +M (P, q; ).) 
,q, 1) (A) , 

where 

M (P, q; A) = A2N2 (P, q; A3) + A3 j N2 (P, r; A3) [K (r, q) + AKI (r, q)] dr, 

17 (A) = CJ2 (A3) • 

Thus the resolvent for K (P, q) is a quotient of two always convergent 
power series, as stated. Moreover, if R (P, q; A) is expressed in the form 

R(P,q; A) = K(P,q) + AK1 (P,q) + l\1(~(}~; )1, 

we see that the residues A (P, q) at the poles are continuous functions, and 
that the functions B (P, q; Ao) are linear combinations of K (P, q) and 
Kl (P, q) Plus continuous functions of pand q. 

We are not able to conclude that all the roots of 1] (A) are poles of 
R (P, q; A), bilt this is not important for our purposes. The important 
thing for us is whether a given value oU is a pole of R (P, q; A). It is for 
this reason that we defined the characteristics of a kernel as the poles 
of its resolvent. This definition is independent of the particular quotient 
form given to R (P, q; A). 

The above resolvent satisfies the equations (8) and (9) and when these 
equations are multipled by 17 (},), they become identities known to be 
valid for small I A I, but since they are identities between always con­
vergent series, they are valid for all A. 

If A = Ao is not a characteristic of K (P, q), whether 17 (A) is 0 or not, the 
numerator and denominator are developable in always convergent 
series in A - Ao' and if a power of A - Ao is a factor of the denominator, 
it is always a factor of the numerator, since Ao is not a pole of the resol­
vent. If this factor is removed, and the resolvent defined at Ao by the 
value of the resulting quotient, it will be continuous in all its variables 
for A near Ao, (except for the two terms in K (P, q) and Kl (P, q)), and 
since it satisfies the equations (8) and (9) can be used, just as in the 
case of continuous kern'els, to solve the non-homogeneous equations (I) 



The Characteristic Numbers of the Special Kernel. 309 

and (I'). If f (P) is continuous, we see by the form of the solutions in 
§ 8, by means of Lemma I of the last section, that these solq.tions are 
continuous. In the present case, the homogeneous equations (II) and 
(II') have no non-trivial solutions. 

If A = Au is a pole of the resolvent, we have a continuous residue, and 
all the theory for this case goes through, just as in § 7. Thus the state­
ments of the summary in § 8 hold unaltered if we substitute for the hypothesis 
that K (P, q) be continuous, the hypothesis that it be the kernel of the potential 
theory problem. Furthermore, the solutions of the homogeneous equations 
all satisfy uniform Holder conditions on s. This follows from Lemma 1. 

11. The Characteristic Numbers of the Special Kerne1. 

Reverting to § 2, we found there that the potentials 

If fJ 1 If 1 W(P)=2n cp(q)a;-r dq , V(P)=2n 1jJ(q)-r dq 

satisfies the following boundary conditions 

(37) 

(38) 

(39) 

(40) 

- W _ = cp (p) - f cp (q) K (P, q) dq, 

+ W + = cp (P) + f cp (q) K (P, q) dq, 

+ :: =1jJ(P)+f1jJ(q)K(q,P)dq, 

fJV f - an = 1jJ(P) - 1jJ(q)K(q,P)dq. 
+ 

If we multiply (37) by (1 ; A) and (38) by (1 -; ).) and add, we have 

I-A 1+1. f (41) -2-W+ - -2- W_ = cp(P) - A cp(q) K(p,q) dq, 

and treating (39) and (40) similarly, we have 

(42) 1 - A fJV 1 + A fJV f -----= 1jJ(P)-A 1jJ(q)K(q,P)dq. 
2 fJn_ 2 fJn+ 

The characteristics of K (P, q) are real. For if A. = IX + if3 is a char­
acteristic (IX and f3 real), there will be a function 1jJI (P) + i1jJ2 (P) for 
which the right hand member of (42) vanishes identically. This function 
is not identically 0, and satisfies a uniform Holder condition, by Lemma I, 
§ 9, so that the corresponding potential VI (P) + i V2 (P) has continuous 
derivatives of the first order in the region R, and also in the regionR'. 
Thus, separating real and imaginary parts in the left hand member of 
(42), we have 

(43) 

(44) 
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If we multiply these equations respectively by V2 and VI' subtract, and 
integrate ,over 5, the terms in IX drop out, by Theorem VI (page 216). 
There remains 

(45) 

where I denotes a Dirichlet integral (see page 279), formed for VI or V2 , 

and extended over the region R or R'. If we multiply the equations (43) 
and (44) by VI and V2 respectively, add and integrate, we find 

(46) (1 - IX) (Jl + 12) + (1 + IX) (]~ -+- 1~) = o. 
We have, in (45) and (46), what may be regarded as two equations for 
the two sums of Dirichlet integrals in the parentheses. The determinant 
of the coefficients is 2 fJ. Therefore either fJ = 0 or all four of the Dirichlet 
integrals vanish, for none of them is susceptible of negative values. 
The latter condition would mean that VI and V2 were constant in R 
and constant in R'. But since these functions are regular at infinity, 
and continuous at the points of 5, they would have to vanish identically. 
Then 1jJl (P) = 1jJz (P) = O. But this is contrary to the hypothesis that 
the solution is non-trivial. There is nothing left but that fJ shall be 0, 
and this means that the characteristic is real, as was to be proved. 

We may draw another conclusion from the equation (46). Suppose 
now that fJ is 0, that IX is a real characteristic, and that 1jJl (P) is a real 
non-trivial solution of the equation (42) with left hand member set equal 
to O. We have then only to set V2 and therefore 12 and 12' equal to 0 
in (46) in order to obtain the valid equation 

(1 - IX) II + (1 + IX) 1~ = O. 

Solving this equation for IX, we find 

II +Ji 
IX = II _]{' 

from which it appears that the characteristics are never less than 1 in 
absolute value. 

The Characteristics are Poles 0/ the Resolvent 0/ Order Never Greater 
than 1. For, if .1.0 were a pole of order greater than 1, the equations (28) 
would have a solution in which neither 1jJl (P) nor 1jJz (P) vanished identi­
cally. The corresponding potentials would satisfy the boundary conditions 

(1 - A) (!VI - (1 + A ) aVI = 0 
o an_ 0 an+ ' 

(1 - A ) aV2 _ (1 + A ) aV2 = aVI + aVI 

o a n_ 0 a n+ a n_ a n+ ' 

the latter being derived by means of (42), (39) and (40). If these equa­
tions be multiplied by - V2 and VI' respectively, added, and integrated 



Solution of the Boundary Value Problems. 311 

over 5, the result is 
11-1~=0, 

whereas if the first be multiplied by VI and integrated over 5, the 
result is 

These equations are compatible only if II = n = O. From this would 
follow VI = 0 and hence 'lfJl (P) = o. But this contradicts the assump­
tion that the pole was of higher order. Hence the poles are simple, as 
we wished to show. 

12. Solution of the Boundary Value Problems. 

We shall now somewhat extend the scope of the problems to be dis­
cussed. In order to include the problem of the existence of static charges 
on a number of different conductors in the field at once, we suppose 
that R is not necessarily a single region, but k closed regions without 
common points, bounded by k smooth surfaces of the kind we have 
been considering, and that R' is the region exterior to these k surfaces, 
together with the surfaces themselves. This assumption impairs none 
of the results derived in the foregoing sections. 

Suppose now that A. = 1 were a characteristic of K (P, q). There 
would then be a function'IfJ (P), continuous, and not identically 0, for 
which the right hand member of (40) vanished identically. This so­
lution of the homogeneous equation satisfies a uniform Holder con­
dition on 5, by Lemma 1, p. 300. The corresponding potential V would' 
then be continuously differentiable in Rand R', by Theorem VII, 
Chapter VI (p. 165). But by (40), its normal derivatives on 5, regarded 
as the boundary of R', would vanish everywhere. Hence V would 
vanish throughout R'. But the potential of a simple distribution is 
continuous everywhere. Hence V would vanish on the boundary of R, 
and therefore throughout R. This could only be if the function 'IfJ (P) 
were identically O. This is contrary to the assumption, and so A. = 1 is 
not a characteristic. 

It follows that the equations (37) and (40) have continuous solutions 
for any continuous values of the left-hand members, and we therefore 

,have the results 

1. The Dirichlet problem is solvable for the finite regions R for any 
continuous boundary values. 

II. The Neumann problem is solvable for the infinite region R' for 
any continuo~ts values of the normal derivative on the boundary. 

The solutions are given as the potentials of double and simple distri­
butions on the boundary, respectively. 
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We now show that A = -1 is a characteristic ofthe kernel. Suppose, 
in fact, that W denotes the double distribution whose moment on the 
surface Si is 1, and on the remaining surfaces, is 0. Then in R', W == 0, 
for the potential of a double distribution with constant moment on a 
closed regular surface is always ° in the infinite region bounded by that 
surface. Thus the homogeneous equation, (38) with left-hand member 
set equal to 0, has a non-trivial solution. So A = - 1 must be a charac­
teristic. 

We can easily set up a complete set of independent solutions of this 
homogeneous equation. Let Ti (P) = 1 on Si and vanish on the other 
surfaces. Then any solution of the homogeneous equation is a linear 
homogeneous combination of Tl (P), T2 (P), ... Tic (P) with constant 
coefficients. In fact, let T (P) be any solution. Since the corresponding 
potential W is ° on the boundary of R', it is ° throughout R', and so has 
vanishing normal derivatives in R'. Hence, by Theorem X, page 170, 
the normal derivatives of W approach ° along the normals. This implies 
that the normal derivatives on Si exist, as one sided limits, and are 0, 
as may be seen by the law of the mean. Keeping in mind the character 
of the surfaces Si (page 286), we see that the hypotheses of Exercise 9, 
page 244, are in force, and that W must be constant in each region R i . 

Hence its moment must be constant on each surface Si' and consequent­
ly can be represented as a linear homogeneous combination of the 
Ti (P) with constant coefficients, as asserted. 

It follows that the associated homogeneous integral equation, (39) 
with left-hand member set equal to 0, has also exactly k linearly inde­
pendent solutions '/fJi (P), i = 1, 2, ... k. Since the potentials Vi to 
which these functions give rise have normal derivatives which vanish 
on the boundary of R, they must be constant in each region Ri of which 
R is composed. These potentials are linearly indep€ndent, for a rela­
tion 

would give rise, by means of the relationship between densities and 
normal derivatives of simple distributions, to the same relation with 
the potentials replaced by the '/fJi (P), and such a relation does not exist 
unless all the constants are 0, the '/fJi .(P) being independent. 

Since the potentials Vi are linearly independent, any set of linear 
homogeneous combinations of them which are independent, will be 
an equivalent set. Since the Vi are constant on each surface Si' and 
linearly independent, it is possible to form the equivalent set V;', such 
that V/ is 1 on Si' and ° on all the remaining surfaces bounding R; this 
for i = 1, 2, ... k. These potentials are a solution of the problem: 
given k conductors in a homogeneous medium, to find the potential when 
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all but one of the conductors are grounded, and that one is at the constant 
potential l. 

Suppose now that the conductors are not grounded, and that charges 
e1 , e2 , ••• ek are imparted to them. Let us see whether we can find the 
potential of these charges, when in equilibrium on the conductors, in 
the form V = 2)C j Vi' The density of the distribution producing V 

i 
will be given by '!jJ (P) = 2) cj '!jJj (P)· The problem is to determine 

i 
whether the Cj can be selected so that the charge on Si is the given 
ei , for all i. Since C(Ji (P) = 1 on 5 i' and is 0 on the remaining 
surfaces, we may obtain the charge on Si by multiplying the equation 
'!jJ (P) = 2)C;'I/,; (P) by C(Ji (P) and integrating over all the surfaces. The 

i 
equations to be fulfilled are 

i=1,2, ... k. 

These equations are compatible. For otherwise the equations obtained 
by replacing the right hand members by 0 would have a solution 
Cl , C2 , ••• Ck in which all the Ci were not 0, and this would mean that 
there was a linear combination of the '!jJi (P), namely ICj'!jJj (P), which 
was orthogonal to all the functions C(Ji (P). But this is impossible, since 
the C(Ji (P) and the '!jJi (P) are equivalent to sets which together form a 
normalized biorthogonal set (see the end of p. 298). Hence we have the 
proof of the possibility of the electrostatic problems: 

III. Given either the constant values of the potential on the conductors 
R l , R2 , ••• R k , or, given the total charge on each of them, it is possible to 
determine the densities of charges in equilibrium on the conductors, pro­
ducing, in the first case, a potential with the given constant vahtes on the 
condttctors, or having, in the second case, the given total charges on the 
conductors. 

We may now consider the non-homogeneous equations (38) and (39). 
A necessary and sufficient condition that (38) be solvable is that the 
values assigned to W + constitute a function which shall be orthogonal 
to '!jJi (P), '!jJ2 (P), ... '!jJk (P)· We shall now suppose that these functions 
are chosen so as to form with the C(Ji (P) a normalized biorthogonal set. 
Then the function 

is certainly orthogonal to all the '!jJi (P). With W + replaced by this value, 
the equation (38) is solvable, and there exists a double distribution on 
5 whose potential in R' assumes the boundary values W+ (P) - 2)c; C(J; (P). 

i 
But the function 2)cj C(Jj(P) , being constant on each surface Si' can 
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be represented as the boundary values of a conductor potential .. We 
therefore have the result 

IV. The Dirichlet problem is solvable for the infinite region R' for any 
continuous boundary values. The solution may be expressible as the 
potential of a double distribution, or it may not. If not, it is expressible 
as the sum of the potential of a double distribution and a conductor 
potential. 

Passing to the equation (39), we see at once that a necessary and 
sufficient condition that it be solvable for given continuous boundary 
values of the normal derivative of V is that these values be orthogonal 
to a set of independent functions constant on each surface S;, that is 
that 

i=1,2, ... k. 

These are not conditions on the mode of representation of a solution, 
but are essential restrictions on any function harmonic in the regions 
R;. As the regions R; are not connected, there is no difference in content 
in the statement that the Neumann problem is solvable for a single 
one of them, or for all together. We therefore state the result 

V. The Neumann problem is solvable for a single one of the bounded 
regions R; under the essential condition that the integral over the bounding 
surface of the values assigned to the normal derivative vanishes. 

Finally, let us consider the problem of heat conduction, or the 
third boundary value problem of potential theory. It is required to find 
a function V, harmonic in R, such that on S 

oV on_ + h(P) V_ = f{P), 

where h (P) and f (P) satisfy a uniform Hi:ilder condition on S (now 
assumed to be a single surface), and where It (P) > 0, the inequality 
sign holding at some point of S. If we seek to represent V as the po­
tential of a simple distribution on 5, - that is as the stationary tempera­
tures due to a distribution of heat sources on S -, we are led to the 
integral equation 

f(P)=1p(p)+f1p(q)[K(q,P)+h~) !]dq, r=pq. 

This equation is always solvable unless the homogeneous equation ob­
tained by replacing f (P) by 0 has a solution not identically O. But 
§ 1 of Chapter VIII (p. 214) in the proof of Theorem V, shows that the 
potential of the corresponding distribution would vanish in R and conse­
quently in the infinite region R' bounded by S. This cannot b" unless 
the density is everywhere O. So the homogeneous equation has no non­
trivial solutions. 
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The non-homogeneous equation therefore has a continuous solution 
"P (P)· Referring to that equation, we note that the integral 

J"P (q) K (p, q) dq 

satisfies a uniform Holder condition on S, and so does the term 

h~)f"P(p)! dq, 

since first, ! satisfies all the requirements imposed on K (P, q) in the 

proof of Lemma I, § 9, and secondly, the product of two functions 
satisfying a uniform HOlder condition also satisfies one. Finally, by 
hypothesis, /(p) satisfies one, and therefore "P (P) must. Hence the 
potential V has continuous derivatives in R, and satisfies the boundary 
conditions. Thus is proved the possibility of the problem 

VI. Given the functions f (P), h (P), satisfying the above conditions, 
there exists a function V, harmonic in R, and satisfying on the boundary 
of R the condition 

:~ + h (P) V _ = f (P) . 

13. Further Consideration of the Dirichlet Problem; 
Superharmonic and Subharmonic Functions. 

The possibility of the Dirichlet problem has now been established 
for any region, finite or infinite, with a finite boundary S with the re­
quired smoothness. This is sufficient for many purposes, but the 
theory of functions of a complex variable demands a broader existence 
theorem in two dimensions, and recent developments are sufficiently 
interesting to warrant some attention to them. We shall see that there 
are limitations on the problem in the nature of some domains, and we 
shall ~ind methods for constructing the solution whenever it exists. 

The notion of superharmonic and subharmonic functions will be 
useful. We shall confine ourselves to continuous functions of these 
types, although they may be more broadly defined. The function W, 
continuous in a region R is said to be superharmonic in R, if, for any 
closed region R' in R, and any function U harmonic in R', 

W>U 

throughout R' whenever this inequality obtains at all boundary points 
of R'. A subharmonic function is similarly defined, with the inequality 
reversed. Harmonic functions belong to both classes; they are the only 
functions w:hich do. We now develop those properties of superharmonic 
functions which we shall need. 
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1. II W is superharmonic in R, it is, at the center 01 any sphere in R, 
greater than or equal to its arithmetic mean on the surlace 01 the sphere. 
It is understood here, and in what follows, that the sphere together 
with its whole interior, lies in R. 

Given a point P of R, and a sphere in R with P as center, let us de­
note by A W (P) the arithmetic mean of. the values of W on the surface 
of the sphere, as formulated in Chapter VIII (p. 224). We have to show 
that always W (P) > A W (P) . 

Let U be that function, harmonic in the sphere, which, on the sur­
face of the sphere, coincides with W. Then, by the definition of super­
harmonic functions, by Gauss' theorem, and by the construction of U, 
we have the successive inequalities 

W(P) > U(P), U(P) = AU(P), AU(P) = AW(P) , 

from which follows the desired inequality, holding for any P and sphere 
about P in R. 

The second pr?perty is a converse of the first. 

2. II W is continuous in R, and il to every point P within R there 
corresponds a number ex. > 0, such that W (P) > A W (P) for all spheres 
about P 01 radius less than ex., then W is superharmonic in R. 

Let R' be any closed region in R, and let U be any function, harmonic 
in R', and such that W > U on the boundary of R'. Since U (P) = A U(P) 
in R', for spheres in R', it follows that 

W(P) - U(P) > A [W(P) - U(P)] 

for spheres in R' of radius less than the value of ex. corresponding to P. 
This difference is continuous in R', and the reasoning of the proof of Theo­
rem X, p. 223, is applicable to show that it can have no minimum in 
the interior of R'. As it is not negative on the boundary, it cannot be 
negative in the interior. Hence,by the definition, W is superharmonic. 

3. II W is superharmonic in'R and il its derivatives 01 the second order 
exist and are continuous in the interior 01 R, then V 2 W < ° in the interior 
01 R. Thus such a function W is the potential of a volume distribution 
in R with non-negative density, plus possible harmonic functions. Con­
versely, il W has continuous derivatives 01 the second order in the interior 
olR, is continuous in R, and il V2W < 0, W is superharmonic in R. 

Exercise. 
1. Prove these statements, first deriving from Green's first identity the relation 

a 

f4~(l2fff J72WdVd(l=AW(P)-W(P), 
o If 

as a basis for the proof, Ie being the sphere about P of radius (I, and a the radius 
of the sphere used for averaging. 
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4. Let W be continuous and superharmonic in a region R. Let R' 
be a. closed region in R, and U a function, harmonic in R', and coinciding 
with.W on the boundary of R'. Then the function WI' defined as equal 
to U in R' and equal to W in the rest of R, is superharmonic in R. 

We show this by means of the property 2. If P is interior to R', 
WI (P) = A WI (P) for all spheres about P of radius less than the 
distance from P to the nearest boundary point of R'. If P is in R but 
not in R', WI (P) > AWl (P) for small enough spheres about P. If 
P is on the boundary of R', WI (P) = W(P) > AW(P) > AWl (P). 
since W > WI wherever the two differ. Thus the sufficient condition 
of property 2 is fulfilled. 

Exercise. 
2. Establish the property: 5. If WI' W 2 , W 3 , •.• Wn are continuous and super­

harmonic in R, the fl{nction W, defined at each point P of R as the least of the values 
assumed at that point by the Wi, is superharmonic in R. 

14. Approximation to a Given Domain by the Domains 
of a Nested Sequence. 

A sequence TI , T 2 , Tg , ••• will be said to be nested. if for each 12, 

Tn and its boundary is in T n+l . The domains will be said to approximate 
to T if they are in T, and if any given point of T lies in Tn for large 
enough n. 

We proceed to show how such a sequence can be constructed for 
any given bounded domain T. We begin by forming approximating 
closed regions, RI , R2 , R3 , . . • • When these are stripped of their bounda­
ries, they will yield the required domains. 

Let Po be a point of T. Let C be a cube with Po as center, in T. We 
construct a lattice of cubes, of side a, equal to one third the side of C, 
so placed that the faces of C lie in the planes of the lattice. We assign 
to RI the cube of this lattice in which Po lies, and also every other cube 
of the lattice with the properties 

(a) c and all the 26 adjacent cubes of the lattice are in T, 
(b) c is one of a succession of cubes, each having a face in common 

with the next, and the cube containing Po being one of the succession. 

Then RI will be a closed region, in the sense of the definition, p. 93. 
To form R2 , we form a second lattice by adding the parallel planes bi­
secting the edges of the cubes of the first. R2 shall consist of the cubes 
of the second lattice with the properties (a) and (b) with respect to that 
lattice. It should be observed that RI is entirely interior to R 2• For 
if c is a cube of RI , it is entirely surrounded by cubes of the first lattice 
in T. It is therefore entirely surrounded by cubes of the second lattice 
which, in tum are also surrounded by cubes of the second lattice in T, 
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so that they possess the qualification (a) for membership in R2 • Evi­
dently they possess the qualification (b). Thus c is interior to R2 • By 
continued subdivision of the lattice we construct similarly R3 , R4 , ••• , Rn 

being made of the cubes of side 2:-1 of the nth lattice with properties 

(a) and (b) for that lattice. Each region is interior to the next. 
We now show that they approximate T. Obviously, they are in T. 

Let P be any point of T. Then P can be joined to Po by a polygonal line 
yin T. Let 3d denote the least distance of a point of y from the bound­
ary of T. If then n is chosen so that the diagonal of the nth lattice 
is less than d, P will lie in Rn. To see this, we substitute two sides for 
one, where necessary, changing y to a new polygonal line y', joining P 
to Po, which nowhere meets an edge of the lattice, except possibly at P. 
This can be done so that y' remains within a distance d of y, and hence 
so that y' remains at a distance greater than 2 d from the boundary of 
T. It follows that all the cubes contaii::ting points of y' have property (a). 
But since y' passes from one cube to the next through a face, these 
cubes have also property (b), and so belong to Rn. As P is in one of them, 
it is in Rn , as stated. 

As P is interior to R n +1' it follows that the set of nested domains, 
T 1 , T2 , T3 , ••• consisting of the interiors of the regions Rl , R 2 , R3 , ••• , 

also approximate to T. We note also that if R is any closed region in T, 
R also lies in some Tn- For every point of R is in one of the domains 
T i , and hence, by the Heine-Borel theorem, R lies in a finite number 
of these domains. Obviously then, it lies in that one of them with the 
greatest index. 

We now make several applications of the above construction. In 
the first place, we had need, in Chapter VIII, to know that if R' was 
interior to R, we could interpolate any desired number of regions be­
tween the two, each interior to the next. To do this, we need only con­
struct a nested sequence approximating to the interior of R. One of 
them will contain R', and between this and R there will be as many 
regions as we care to select from the sequence. 

As a second application, let us consider the possibility of construct­
ing the set of spheres needed in Poincare's methode de balayage. About 
the centers of the cubes of Rl , we construct spheres with diameters 
one per cent greater than the diameters of the cubes. These spheres 
are well within T, and each point of Rl is interior to at least one of them. 
Call them 51' 52' ... 5n, . About the cubes of R2 which are not in Rl' 
we construct in the same way the spheres 5 n,+1' 5n, +2 , ••• 5n" and 
so on. We obtain an infinite sequence of spheres, all in T, and such that 
every point of T is interior to at least one of the sequence. 

We next remark that it is possible to construct a sequence of nested 
domains AI' A 2 , A 3 , ••• , whose boundaries are analytic surfaces without 
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singular points, and which approximate to T. We form An from Rn as 
follows. We form an integral analogous to the potential of a spread of 
density I on the polyhedral boundary Sn of Rn: 

F(P) = ff~;, 
Sn 

where r is the distance from P to the point of integration. - The use of 
the minus second power of r has as consequence that F (P) becomes 
positively infinite as P approaches any point of Sn. It is easy to show 
by the methods used for Newtonian potentials, that F (P) is analytic 
everywhere except on Sn. Since Rn_1 is interior to Rn, F (P) has a 
maximum Min Rn - 1 , and so for any constant K > M, the set of points 
for which F (P) < K contains Rn - 1 • This is an open set, and so it is 
made up of two (since it also contains points outside of Sn) or more 
domains. Let A denote the one containing Rn- 1 • 

Now A is bounded by the analytic surface F (P) = K, and the rea­
soning used to prove Theorem XIV, p. 276 is applicable here. It shows 
us that in any neighborhood of K, there is a number K' such that the 
surface F (P) = K' is free from singularities. If we choose K' > K, the 
domain A becomes the required member An of the sequence. It lies 
strictly between Rn _ 1 and Rn , and has a non-singular analytic boundary. 

As the Fredholm method establishes the possibility of the Dirichlet 
problem for what we shall call the analytic domains A 1 , A 2 , A a, • , • , we 
see that any bounded domain whatever can be approximated to by a se­
quence of nested domains for which the Dirichlet problem is possible. 

A fourth application is to the theorem of LEBESGUE on the extension 
of the definition of a continuous function: If t is a closed bounded set, 
and if f (P) is defined and continuous on t, there exists a function F (P), 
defined and continuous throughout space, and coinciding on t with f (P). 
We begin by showing that if t is the boundary of a bounded domain T, 
the extension of the definition of f (P) to the domain T is possible. 

We form a system of cubes, consisting of the cubes of the first lattice 
in R1 , the cubes of the second lattice in R2 which are not in R1 , the cubes 
of the third lattice in Rs but not in R2 , and so on. We define F (P) first 
at the vertices of these cubes. Let P be such a vertex, and (j the smallest 
sphere about P containing points of t. The points of t on the surface of 
(j form a closed set, and so the values of f (P) on this set have a minimum. 
This minimum is,the value assigned to F (P). Thus F (P) is defined at 
all the vertices of the cubes, and, in the case of cubes adjacent only to 
cubes of the same or larger size, only at the vertices. No cube will 
be adjacent to a cube of side less than half its own, but there will be 
cubes adjacent to cubes of side half their own. For such cubes F (P) 
will have been defined at at least one mid-point of an edge or face .. 
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We now define F (P) at the remaining points of the cubes by linear 
interpolation. Let C denote a cube for which F (P) has been defined 
only at the vertices. Then there is one and only one function, linear 
in x, y and z separately (the axes being parallel to the sides of C) 

F (P) = axyz + byz + czx + dxy + ex + fy + gz + h 

which assumes the values already assigned to F (P) at the vertices of 
C. We let F (P) have this definition in the closed cube. We note that 
it assigns to the mid-point of any edge, the arithmetic mean of the 
values at the ends of the edge; and to the mid-point of any face, the 
arithmetic mean of the values at the four corners of the face. Suppose 
now that C is one of the cubes for which F (P) has been defined, in 
assigning values at the vertices, at a mid-point of an edge or face, as 
well, in virtue of being adjacent to a cube of side half its own. We then 
define F (P) at the following points, provided it has not already been defin­
ed at the point in question, namely, at the mid-point of a side, as the 
arithmetic mean of the values at the ends of that side; at the mid­
point of a face, as the arithmetic mean of its values at the four corners 
of the face; at the center, as the arithmetic mean of its values at the 
eight vertices. In each of the eight equal cubes of which C is composed, 
F (P) is then defined by linear interpolation, as above. 

This manner of definition is consistent, for on a face which a cube 
has in common with a ~ube of the same size, or in common with 
a quarter of the face of a cube of larger size, the interpolating func­
tions agree at four vertices, and therefore over the whole face. F (P), thus 
defined, is accordingly continuous throughout T. It remains to show 
that if F (P) is defined on t as equal to f (P), it is continuous there also. 
Let q be a point of t, and a a sphere about q within which f (P) differs 
from f (q) by less than e. Then there is a second sphere a' about q, such 
that all cubes with points in a' lie completely in a concentric sphere of 
radius less than half that of a. The vertices of these cubes will then be 
nearer to points of t in a than outside of a, so that the values of F (P) 
at the vertices will differ from f (q) by less than e. As the values assigned 
by linear interpolation are intermediate between the values at the 
vertices, it follows that throughout a', F (P) differs from f (q) by less 
than 13, and the continuity of F (P) is established. 

Suppose now that t is any bounded closed set. The set E of points 
not in t is an open set. Let T denote anyone of the domains of which 
E is made up. If T is bounded, f (P) is defined and continuous on its 
boundary, which is in t, and by the method just indicated, F (P) may 
be defined in T. If T is infinite, we consider the portion T' of T in a 
sphere, containing t in its interior. We assign to F (P), on and outside 
this sphere the arithmetic mean of the extremes of f (P), and then extend 
the definition to T' by the usual method. The continuity of F (P), thus 
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defined for all of space, is then established in the same manner as in the 
special case of a single domain with its boundary. We note that it lies 
between the extremes of f (P), and is uniformly continuous in the whole 
of space. 

We close with a proof of a theorem we shall need, namely the theorem 
of WEIERSTRASS on approximation by polynomials: II F (P) is continuous 
in a closed bounded region R, and Ii any positive number, there exists a 
polynomial G (P), such that thrMtghout R, 

[ G (P) - F (P) I < Ii. 

We give the proof in two dimensions. The method holds in any 
number of dimensions, but the integrals employed are slightly simpler 
to handle in two. Let f (x, y) be continuous in R. We regard its defini­
tion as extended to the whole of the plane so as to be uniformly con­
tinuous. Let M denote a bound for its absolute value. 

Consider the integral extended to a circle of radius a about the 
origin 2n a 

c[J (a) == ! II e-e2 dS = ! I I e-e2 e de dcp = (1 - e- a2
). 

Ca 0 0 

By means of a change of variable, we verify that 

:2 II e- h2 e' dS = c[J (ha). 
Ca 

We now form the function 

F (x, y) = ~ II/(s; ,1]) e- h2r2 dS, r2 = (x - ~)2 + (y - 1])2, 

the integral being extended over the whole plane. This function re­
duces to 1 when f (x, y) is 1, so that we may write 

F (x, y) - I (x, y) = ~ II[f(~,1]) - I (x,y)] e- h2r2 dS 

= rf(t n) - I (x, y)] c[J (ha) + -& 2M [1 - c[J (ha)], - 1 < -& -s 1, 

as we see by breaking the integral into the sum of an integral over the 
surface of the circle of radius a about (x, y) and one over the rest of 
the plane, and employing the law of the mean. As f (x, y) is uniformly 
continuous, we can, given any Ii> 0, so restrict a that the first term 

ontherightisuniformlylessinabsolutevaluethan i, since 0 < c[J (ha) < 1. 

With a thus fixed, h can be taken so large that the second term is less in 
e 

absolute value than 6". Thus F (x, y) differs from f (x, y) throughout 

the plane by less than i. Hereafter h is kept fixed. 

Kellogg, Potential Theory. 21 
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We next take a circle C with R in its interior, and denote by b the 
distance to the circumference from the nearest point of R. If C' denotes 
the region outside this circle, then, when (x, y) is in R, 

!: fft(~'1J)e-h2'2dSI ::;;M[l- (J)(hb)], 
c' 

and this can be made less than i by taking C , and with it b, large enough. 

Hence if 

Fdx,y) = :2 fft(~'1J)e-h2'2dS, 
c 

Fl (x,y) differs from F(x,y) in R by less than i, and so from t(x,y) 
2e 

by less than 3""' 
Finally, e-h2 ,. is equal, by Taylor's theorem with remainder, to a 

polynomial in r2, plus a function which can be made uniformly less than 

3h:;M for (x,y) in R and (~'1J) in C, where A is the area of C. Thus 

the integral Fl (x, y) becomes a polynomial G (x, y) plus a function uni­

formly less than i in R. Therefore in R 

I G (x, y) - t (x, y) I < s, 

and the theorem is proved. 

15. Construction of a Sequence Defining the Solution 
of the Dirichlet Problem. 

Let T be any bounded domain, and G (P) a superharmonic polyno­
mial. We proceed to form a sequence whose limit is the solution of the 
corresponding Dirichlet problem, if the problem is possible for T. We 
shall investigate the possibility later. 

Let R1 , R2 , Ra, •.• be a sequence of closed regions in the closed 
region R consisting of T and its boundary t, with the two properties 

(a) the Dirichlet problem is possible for each, 
(b) any point of T is the center of a sphere which is in infinitely 

many of the regions Ri • 

They need not all be distinct. For instance, R might consist of two 
ellipsoids with some common interior points. Then Rl might be one 
ellipsoid and R z the second, Ra the first, R4 the second, and so on. Or 
the sequence might be a nested set of analytic regions approximating 
to R. Or, it might be the system of spheres of Poincare's method. 
In the first case the method we shall develop reduces, in large degree, 
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to the "alternierendes Verfahren" , of SCHWARZ1; in the second to a 
method devised by the author 2 ; in the third, to the methode de balayage. 

We now form the sequence Wo, WI' W2 , Wa, ••. : 
Wo, identical in R with G (P); 
WI' identical in R - RI with Wo, 

identical in RI with the function harmonic in RI with the same 
values on the boundary of RI as Wo; 

Wn , identical in R - Rn with Wn- l , 

identical in Rn with the function harmonic in Rn with the same 
values on the boundary of Rn as Wn- l ; 

These functions are continuous superharmonic functions, by pro­
perty 4, p. 317. Furthermore, the sequence is a monotone decreasing one, 
by the definition of superharmonic functions. Finally, its terms are 
never less than the minimum of G (P) in R. Hence the sequence con­
verges at every point of R. 

Let P be any point of T. Then by hypothesis, there is a sphere a 
about P which lies in infinitely many of the regions R i • If n l , n2 , na, ... 
are the indices of these regions, W nl' W n,' W n., ... are harmonic in a. 
Hence, by Harnack's second convergence theorem (Theorem VIII, p. 263), 
they converge uniformly, say in a concentric sphere of half the radius 
of a, to a harmonic limit. But as the whole sequence is monotone, it 
also converges uniformly in the same sphere to the same limit. 

If R' is' any closed region in T, every point of R' is interior to a 
sphere within which the convergence is uniform. Hence, by the Heine­
Borel theorem, R' lies in a finite number of spheres in each of which the 
convergence is uniform. The limit is harmonic in each. Thus we have 
established 

Theorem 1. The sequence Wo, WI' W2 , ••• converges at every point 
of R to a function U which is harmonic in the interior or R, the convergence 
being uniform in any closed region interior to R. 

16. Extensions; Further Properties of U. 

We first remove the restriction that the polynomial G (P) be super­
harmonic. The Laplacian 17 2 G (P) is a polynomial, and so is bounded 

1 Gesammelte Mathematische Abhandlungen, Vol. II, pp.133-143. It should 
be added, however that the method in this case is more general than the alter­
nierendes Verfahren, in that not only two, but any number-even an infinite 
number-of regions may be employed. 

2 Proceedings of the American Academy, Vol. LVIII (1923), pp.528-529. 
The method was suggested by a construction of Green's function, by HARNACK. 

21* 
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in absolute value in R, say by M. The Laplacian of the polynomial 
e2 = x 2 + y2 + Z2 is 6; so that if .we write G(P) = G' (P) - G" (P), 
where 

G'(P) = [G (P) - M/2] , G" (P) = [_ MIl, 
6 -' 

V 2 G'(P) < o and V2G"(P) < 0, and G(P) is thus exhibited as the 
difference of two superharmonic· polynomials. The sequences defined 
by writing first Wo = G' (P) and then Wo = G" (P) are subject to 
Theorem I, and therefore so also is the sequence defined by taking 
Wo = G(P). 

We next remove all restrictions onR, whose interior we denote by T. 
The case in which the boundary t extends to infinity may be reduced 
to the case of a bounded boundary by an inversion in a point of T. 
Then if T has an exterior point, it may be reduced by an inversion to 
a bounded domain. But it need not have. Thus, the conductor problem 
for a circular lamina leads to a Dirichlet problem for a domain without 
exterior points. In such a case we cannot take for Wo a polynomial. 
We can, however, take a function whose boundary values are those 
of any given polynomial, and which is the difference of two super­
harmonic functions; this is all that is essential to the method of 
sequences. 

Suppose then that T is an infinite domain, whose boundary is in­
terior to a sphere 0'1 of radius R about 0, and that G (P) is any poly­
nomial. We define H(P) as equal to G(P) in 0'1' as equal to 0 outside 
the sphere 0'2 of radius 2R about 0, while between the two we take 

H (P) = G (P) ( 4 - 9 ~ + 6 ~:) (2 - ~ r. 
e being the distance OP. Then H (P) coincides with G (P) on t, has con­
tinuous derivatives of the second order satisfying a Holder condition 
everywhere, and is 0 outside 0'2' The function 

h(P) = - 41:l.JffIV2H(P) I ~ dV 

has as Laplacian the absolute value of that of H (P), so that in 

H (P) = [H (P) - h (P)] - [- h (P)] 

we have a representation of H (P) as the difference of two superharmonic 
functions. We remark that if F (P) is any function, continuous through­
out space, the function formed from F (P) just as was H (P) from 
G (P), can be approximated to by functions of the type H (P) just as 
closely as desired, uniformly throughout space. 

We now generalize the boundary values to any continuous function 
f (P)· We form a continuous extension f (P) of f (P) to all of space (po3sible, 
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by the theorem of Lebesgue), and having described concentric spheres 
0'1 and 0'2 containing the boundary t of T, modify t (P) as G (P) was 
modified to form H (P). Let us call the resultingfunctionF (P). Then, 
given any E > 0, we form a polynomial G (P) which differs from F (P) 

in 0'2 by less than ; (possible by the theorem of Weierstrass). Final­

ly, we form from G (P) the function H (P), everywhere the difference 
of two superharmonic functions, using the same spheres and multiplying 
function as in the formation of F (P) from t (P). We then have, through­
out space 

H (P) - { < F (P) < H (P) + ; . 
We now compare the sequences Wo = F (P), WI' W2 , • •• and 
Wo' = H(P), WI', W2', •••• By considering differences, we see that 

W~ - i- < W" < W~ + ;, for all n. 

Since, by Theorem I, Wo', WI', W2', ••• converges uniformly throughout 
any closed region R', in T, there will be an N such that for n > N, 
m>N, 

I w,:, - W;, I < ; , 

and hence, by the preceding inequalities, 

IWm - Wnl< E. 

As there is such an N for any positive E, this shows that the sequence 
Wo', W/, W 2', ••• converges uniformly in R'. As the terms of the se­
quence are all equal on the boundary of R, we see that Theorem I holds 
for any region with bounded boundary and any contimtous boundary 
values, extended as indicated above. Even the restriction that the boundary 
be bounded will be removed. Before taking up this question, however, we 
establish 

Theorem II. The harmonic function U arrived at by the sequence meth­
od is independent, both of the particular choice of the regions R 1 , R 2 , R3 , .•• 

employed, and of the particular choice of the continuous extension of the 
bo~tndary values f (P)· 

First, let one set of regions lead to the sequence Wo, WI' W2 , •.• , 

and a second set to Wo, WI', W2', ••• , with limits U and U', re­
spectively, the initial function being in both cases the same super­
harmonic function. As the sequences are monotone decreasing, 

Since the terms of both sequences are superharmonic, with the same 
boundary values, it follows from these inequalities that 

U<W~, 
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and hence, in the limit, we must have U' = U. The extension to the 
case in which Wo is any continuous function follows immediately. 

Secondly, let Wo and Wo' denote any two continuous extensions of 
the same boundary values, leading to the limits U and U'. Then the 
function Wo' - Wo will lead to the limit U' - U. As we have already 
seen that the limits are independent of the regions R i , we may choose 
for these a nested set approaching R. As Wo' -- Wo has the boundary 
values 0, it will be less in absolute value than a given s > 0 at all points 
outside some region R' in T. Then as soon as n is great enough so that 
Rn contains R', the values on the boundary of Rn of 

W~-Wn 

will be less in absolute value than s, and as this function is harmonic 
in R n , it is less in absolute value than s throughout Rn- This is there­
fore true of U' - U, and as s is arbitrary, U' = U in T. As U' = U = Wo 
on the boundary, the equality holds in R. The theorem is thus proved. 
Moreover, the proof brings to light the fact that in the case of an infinite 
domain it is not necessary that the continuous extension of f (Pl have 
the character of the function H (Pl, vanishing outside some sphere. 

If, finally, we have to deal with an unbounded boundary t, we 
may transform the domain T by an inversion to one T' in which the 
boundary t' is bounded, transform the boundary values f (Pl to values 
f' (Pl by the corresponding Kelvin transformation, and employ the se­
quence method to form a function U' for T'. Then transforming back 
again, we have the sequence, and the limiting function U corresponding 
to the domain T. In all this, we understand by continuity at infinity 
a property which is invariant under a Kelvin transformation. In parti­
cular, all functions harmonic at infinity vanish there. 

Thus Theorems I und II hold for any domains whatever. It remains 
to consider whether U takes on the required boundary values. It does, 
if the Dirichlet problem, as set, is possible. And in any case, the method 
attaches to any domain and any continuous boundary values, a single 
harmonic function U.1 We turn now to the question of the boundary 
values of U. 

Exercise. 
Show that if the solution V of the Dirichlet problem exists, it must coincide 

with the above function U. 

17. Barriers. 
An effective instrument for studying the behavior of U on the 

boundary is the barrier. Barriers were used by POINCARE, and their 

1 It can be shown that the method of the calculus of variations, and the method 
of mediation (see LEBESGUE: Sur Fe probTeme de Dirichlet, Comptes Rendus de 
l'Academie de Paris, Vol. 154 (1912), p. 335) lead in every case to this same function. 
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importance was recognized by LEBESGUE l , who gave the name to the 
concept, and extended it. We adopt the following definition. Given 
a domain T, and a boundary point q, the function V (P, q) is said to 
be a barrier for T at the boundary point q if it is continuous and super­
harmonic in T, if it approaches 0 at q, and if outside of any sphere 
about q, it has in T a positive lower bound. We now prove 

Theorem III. A necessary and sufficient condition that the Dirichlet 
problem for T, and arbitrarily assigned continuous boundary values, is 
possible, is that a barrier for T exist at every boundary point of T. 

The condition is necessary. For if the Dirichlet problem is possible 
for all continuous boundary functions, it is possible for the boundary 

values of the continuous function F (P) = r = q P. By calculating its 
Laplacian, it is seen that this function is subharmonic in T, so that the 
harmonic function V (P, q) with the same boundary values is never 
less than r. As V (P, q) approaches the boundary value 0 at q, it is a 
barrier at q. 

Now suppose that a barrier exists for every boundary point of T. 
We shall prove that at any such point q, the function U, which is the 
limit of the sequence determined by the continuous extension F (P) 
of the assigned boundary values, approaches the limit F(q). If T is in­
finite, we assume that F (P) = 0 outside some sphere containing t in 
its interior. Theorem II shows that such an assumption does not 
restrict the generality. 

Given 8 > 0, there is a sphere a about q within which 

I F(P) - F(q) I < i· 
For P outside a, the difference quotient 

F(P)-F(q) 
r=Pq, ------

r 

is bounded, say by M, so that F (P) "'5c F (q) + Mr. On the other hand, 
in T and outside a, the barrier V (P, q) has a positive lower bound, and 

so therefore has ~(£'~, if T is bounded. Otherwise, it has such a 
r 

bound in the portion T' of T, outside of which F (P) = O. Let b 
denote a bound. Then, outside a and in T, if bounded, otherwise in T', 

M 
Mr <-I) V(P, q). 

Hence, keeping in mind the inequalities on F (P) and the fact that 

1 Sur le probleme de Dirichlet, Comptes Rendus de l' Academie des sciences de 
Paris, Vol. 154 (1912, I), p. 335; Conditions de regularite, conditions d'irregularite, 
conditions d'impossibilite dans le probleme de Dirichlet, ibid. Vol. 178 (1924, I), 
pp. 352-354. 
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v (P, q) > 0, we see that at all points of Tor T' 

M e 
(47) F(P) <F(q) + b V(P, q) + 2' 

But if T is infinite, this inequality holds on the boundary of the domain 
T" = T - T', and as V (P, q) is superharmonic and the other terms 
are constant, it holds also throughout T", and so in any case through­
out T. It holds therefore throughout R, that is, T and its boundary. 

Now the right hand member of the inequality (47) is superharmonic, 
and hence if the function on the left be replaced, in any closed region 
in R, by the harmonic function which coincides with it on the boundary 
of the region, the inequality still subsists. Thus it subsists for all the 
terms of the sequence Wo = F (P), WI' W2 , ••• , and so also for the 

limit U. If then a' is a sphere about q, in a, and in which V (P, q) < ;~, 
then in a'! U <F(q) + e. 

Similarly, in a sphere a" about q, 

U>F(q)-e. 

These two ineqUalities, holding in the smaller of the two spheres, show 
that U has the limit F (q) at q, and the proof of the theorem is com­
plete. 

'But the proof shows more than this. The points of t at which a 
barrier exists, are called regular points of the boundary, and all other 
boundary points, exceptional. The above proof establishes 

Theorem IV. The harmonic function U, established by the method 
of sequences, approaches the given boundary values at every regular point. 

18. The Construction of Barriers. 

The progress made through the introduction of the idea of barrier lies 
in this: the Dirichlet problem has been reduced to a study of the bound­
ary in an arbitrarily small neighborhood of each of its points, that is 
to a problem im Kleinen. For it is obvious that a barrier for Tat q is 
also a barrier for any domain in T which has q as a boundary point. On 
the other hand, if T" includes T, but coincides with T within any 
sphere a about q, however small, from the barrier V (P, q) for T can at 
once be constructed one for T" . We do this as follows. Let b denote 
the greatest lower bound of V (P, q) in T outside a. We then define 
V" tp, q) in T" as the less of the two functions V (P, q) and b, in a, 
and outside a as b. V" (P, q) is then superharmonic, by Exercise 2 
(p. 317), and it is clear that it has the other requisite properties I. Thus 

1 The exercise shows that V (P, q) is superharmonic in T. Then, as it 
has property 2 (p. 316) in Til, it is superharmonic in this domain also. 
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the regularity of q depends only on the boundary in its immediate 
neighborhood. 

Vye now construct some examples of barriers. The first is a barrier 
for T at any boundary point q which lies on a sphere none of whose 
points are in T. Let (J denote such "a sphere for q and let a f be a smaller 
sphere internally tangent to a at q. Then if r denotes the distance from 
the center of a f to P, and a the radius of a f

, 

1 1 
V(P q) = - --, r a 

is readily seen to be a barrier. We thus have Poincare's criterion: the 
Dirichlet problem is possible tor the domain T it each at its boundary points 
lies on a sphere with no points in T. 

From the potential of a charge in equilibrium on an ellipsoidal con­
ductor, we c'an, by allowing the least axis of the ellipsoid to approach 0, 
construct the potential of a charge in equilibrium on an elliptic plate. 
If the charge is chosen so that the potential V is 1 on the plate, then 
1 - V is harmonic in any bounded domain including no points of the 
plate, and is positive except on the plate. Hence any boundary point 
q at T is regular provided it lies on an ellipse with no other points in com­
mon with T or its boundary. The word ellipse here includes, of course, the 
curve together with all points of its plane within the curve. The re­
sulting criterion for the possibility of the Dirichlet problem is also due 
to Poincare. 

The spherical harmonics en P n (cos {}) are positive between {} = 0 
and the first root of the function, for e > O. For large n, this region 
is only that in a rather sharp cone. But if n is made fractional, a solu­
tion of Legendre's equation exists of the form enPn (cos {}), which is 
positive and harmonic outside a cone of one nappe, as sharp as we 
please. Thus, in virtue of the remark at the beginning of this section, 
we may state that q is a regular point of the boundary of T if it is the 
vertex of any right circular cone, which has no points in the portion 
of T in any sphere about q, however small. The resulting criterion 
for the Dirichlet problem is due to ZAREMBA. It follows from this 
that the cubical regions Rl , R2 , R3 , ••• of page 317 are regions for 
which the Dirichlet problem is possible for all continuous boundary 
values. 

We have spoken of the Dirichlet problem for a given domain and 
for all continuous boundary values, because for any domain whatever 
the Dirichlet problem is possible for some continuous boundary values. 
We have, for instance, in the case of a bounded domain, only to 
assign as boundary values those of a terminating series of spherical 
harmonics. 
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19. Capacity. 

Still more general types of barriers are possible l . Before continuing 
in this direction, however, let us consider briefly another notion which 
has been most fruitful. 

In electrostatics, the capacity of an isolated conductor is defined 
as the ratio of the charge in equilibrium on it to the value of the poten­
tial at its surface. This definition may be restated as follows. Assuming 
the domain outside the conductor to have only regular boundary points, 
we form the conductor potential V, namely the solution of the Dirichlet 
problem for that domain, with boundary values 1. The charge pro­
ducing this potential is given by Gauss' integral 

c=-- -dS 1 ffav 
4:n: an ' 

extended over any smooth surface enclosing the conductor. Then c 
is the capacity of the conductor. 

The notion of capacity may be extended to any bounded set of points2 

B. We adjoin to B all its limit points to form the set B'. Then the set 
of points not in B' contains an infinite domain T, all of whose boundary 
points are in B'. We form, by the method of sequences, the function V,~ 
harmonic in T, for the boundary values 1, and call this the conductor 
potential of T, or of B, irrespective of whether it approaches the bound­
ary values 1 or not. The capacity of B is then defined by Gauss' in­
tegral, above. 

WIENER 3 has given the following general criterion as to the regu­
larity of a boundary point q of T. Let A be a fixed number, 0 < A < 1. 
Let r .. denote the capacity of the set of points not in T and in the 
closed region between the spheres (J .. and (J"+1 about q, of radii A" and 
An+!. Then q is a regular or an exceptional boundary point ot T according 
as the series 

(48) 

diverges or converges. 

To prove this theorem, we have need of a number of lemmas on ca­
pacity, which are well adapted to serve as exercises. 

1 See, for instance, LEBESGUE, Comptes Rendus, Vol. 178 (1924), p.352; 
BOULIGAND, Bulletin !les sciences mathematiques, Ser.2, Vol. 48 (1924), p. 205. 

2 WIENER, N., Journal of Mathemat:cs and Physics of the Massachusetts Insti­
tute of Technology, Vol. III (1924), p.49, p. 127. The concept is there defined for 
n dimensions n ~ 2. It is somewhat more complicated in the plane than in space. 

3 L. c., p. 130. 
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Exercises. 
1. Let c (E) denote the capacity of E (which we shall always assume to be 

bounded), and let E' + E" denote, as is customary, the set of all points in either 
E' or E". Show that 

c (E') ;S c (E' + E") ;S c (E') + c (E") . 

Suggestion. Recall the uniform convergence of the sequences defining the con­
ductor potentials, and use Harnack's theorem (page 248) to establish the con­
vergence of Green's integral. 

2. Given a bounded set E and a number 6 > 0, the set E can be enclosed within 
a set of equal spheres whose capacity differs from that of E by less than 6. 

Suggestion. Apply Exercise 1 to the boundary of Tn' after showing, by the 
Heine-Borel theorem, that the spheres may be taken outside Tn. 

3. Show that the normal derivatives of the conductor potential of the set of 
spheres of Exercise 1 exist and are continuous on the spheres, except possibly at 
their intersections (see Exercises 3 and 4, page 262), and that they are bounded 
in absolute value by those of the conductor potential of a single one of the spheres. 
Thus show that there is an actual distribution of mass on the spheres producing the 
conductor potential. 

4. Show that the conductor potential V of E at any point P not on E satisfies 
the inequalities 

c (E) < V < c (E) 
1,fI = = r' , 

where r' and r" are the greatest lower and least upper bounds of the distances from 
P to the points of E . 

5. Show that the capacity of a sphere is equal to its radius, and that the 
2 

capacity of a circular disk is n times its radius. Show that the capacity of a finite 

number of regular analytic arcs is O. Suggestion. Show that the conductor potential 
of each arc is dominated by the potential of a distribution of constant density k on 
the arc, no matter how small k. 

6. The capacity of the sum of a finite number of sets of 0 capacity is O. This 
is not always true for infinite sums 1. Prove these statements. 

7. If E and E' are similar, i. e. are such that there is a one-to-one correspon­
dence between their points, such that the distance between any two points of E' 
is k times the distance between the corresponding points of E, then c (E') = k c (E). 

8. If to every point of E corresponds a point of E' (the correspondence not being 
necessarily one-to-one) such that the distance between any two points of E is not 
less than the distance between the corresponding points of E', then C (E) ;:;; C (E') . 

We now take up the proof of Wiener's theorem, observing first, 
that if it holds for any value of }" 0 <}, < 1, it then holds for values 
as near the extremities of this interval as we please. This is easily veri­
fied by comparing the series with that formed for fk = 1.2, and showing 
that the two converge or diverge together, by means of Exercise L 

Let E denote the set of points not in T. We prove the lemma: a 
necessary and sufficient condition that the boundary point q of T be regular, 

1 The statement is true, however, for an infinite sum of closed sets, provided 
the limiting set is closed. This is proved by VASILESCO, Journal de mathematiques 
pures et appliquees, in a paper soon to appear. 
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is that the conductor potential Va, at the portion Ea at E in any sphere 
about q, approaches 1 as P approaches q. The condition is necessary, 
since if q is regular for T, it is also regular for the domain bounded by 
Ea (page 328) and the conductor potential Va approaches 1 at every 
regular boundary point. The condition is also sufficient. Let the radius Cl 

of the sphere cutting off Ea take on values Cln approaching O. Let Vn 

be the conductor potential of Ean . We form the function 

I I I 
V=2Vl+"4V2+SV3+'" . 

This function never exceeds 1, and is definitely less than 1 outside the 
sphere of radius Cln , for any n. For the sum of the first n + 1 terms 

cannot exceed 1 - 2}+ l' while the remaining terms define a function 

never greater than 2nl+ 1 on the boundary of the domain in which it is 

harmonic. As this boundary is inside the sphere of radius Cln , the 

function is definitely less than 2n\1 on and outside the sphere of radius 

Cln . On the other hand, since V is a uniformly convergent series of 
functions approaching 1 at q, V does also. It follows that 1 - V is a 
barrier for T at q, and so q is regular. 

Suppose now that the series (48) diverges. We show that V", ap­
proaches 1 at q for any Cl > O. Then by the lemma, q will be regular. 

Given e, 0 < e < ~, we choose A = 1 - i, and consider the series 

00 00 

,'y", '" Yki+l 
~ J.ki' ~ Aki+1' ••• , 

o 0 

where k is chosen so that Ak - 1 < ; . 

00 

)'Yk(i+ ll -=-! 
..:....: },k(i+ll-l' 

o 

,At least one of them must be divergent. We may assume that it is 
the first, since the other cases may be reduced to this by means of 
Exercise 7. We then choose m so that Akm < Cl. Let ei denote the points 
of E in the closed region between the spheres (Ii and (Ii+! of radii Ai and 
Ai+l about q, and let Vi denote the conductor potential of ei' We con­
struct the function 

m' 

V m,m' = .L)vki' 
i=m 

where m' will be determined presently. 

This function is harmonic except at the points of 

m' 

em,m' = 2 eki , 
i=m 

and so is never greater than any bound which it has at the points of this 
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set. On ekn' Vkn < 1, while for i 9= n, we find, by using Exercise 4, that 

< 1 Ykt 
V ki = A (1- Ak - 1) Aki ' 

Hence always 

V m,m' < 1 + }. (1 ~ Ak 

and hence the function 

is always less than 1. 

). (1 - Ak - 1 ) V ' V - m,m 
1n,1n' - tn' 

1 + "\IYki 
.L.; A"' 
i=m 

This function, harmonic in a domain including that in which Vex 
is harmonic, is therefore dominated by the functions of the sequence 
defining Va' and so Va > V:n, m" On the other hand, also by Exercise 4, 
if P is at a distance r from q, 

and so 

m' 

> ""' Yki V m,m' =.L.; r + },ki ' 
i=m 

m' 

""' Yki 
.L.; r + Aki 
i=m 

--"",--

6 
Calling the denominator D, m' can be chosen so great that D > -, 

6 

because of the divergence of the corresponding infinite series. Then, 
since the numerator approaches D - 1 as r approaches 0, there is an 
1) > ° such that for r < 1), the numerator exceeds D - 2. We find 
then that for r so restricted 

Va>l-s, 

from which we conclude that Va approaches 1 at q, and q is regular, 
as was to be proved. 

Now suppose that the series (48) converges. We choose m so that 

and show that the conductor potential Vm of the points of E in the 
closed sphere am does not approach 1 at q. In fact, if it did, there would 
be a sphere a about q in which V m> i.We then choose m' > m, such 
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that V m' < i on a, which is possible by Exercise 4. If now V m, m' denote 
the conductor potential of the portion of E in the closed region bounded 
by am and am" we have by the reasoning of Exercise 1, 

V m < V m' + V m,m', 

so that on a, we should have 

3 1 
-:[ < -:[ + V m,m', or 

1 
Vm,m' >2· 

The sequence defining the conductor potential V m, tn' is monotone 
decreasing, so its terms would be greater than t on a, while inside a 
their boundary values are 1. Hence they, and therefore their limiting 
function V tn, m' would be greater than t at all points within a. 

On the other hand we have at q, by Exercises 1 and 4, 

m' tn' co 

Vm,m'< ~Vi<~ ;.;:1 < ~ ~~< ~., 
i=m i=m i=m 

and we arrive at a contradiction. Hence V m cannot approach 1 at q, 
so that by the lemma, q is exceptional. 

Exercises. 
9. Obtain by means of Exercise 7 the criterion of Zaremba. Generalize this 

to the case where the surface of a triangle with vertex at q contains no other points 
of R. 

Suggestion. Use Exercises 1 and 5. 

10. Show that if q is the vertex of a spine of Lebesgue, generated by rotating 
about the x-axis the curve 

y =e 
1 

x 

T lying outside the spine and bounded by it in the neighborhood of q, then q is an 
exceptional point. Suggestion. Obtain from Equation (27), page 189 the capacity 
of a prolate spheroid, and enclose the set ei within such a surface. 

11. Show that if q lies on a surface separating two domains T and T', q may be 
regular for both T and T', but it can never be exceptional for both. (BOULIGAND). 

12. Show that the vertex of an algebraic spine formed by rotating about the 
x-axis the curve 

y=xn , x~O, 

is regular for both domains bounded near the vertex by the spine. (LEBESGUE). 

20. Exceptional Points. 

The question now arises as to how exceptional exceptional points 
really are. We consider first portions of the boundary of 0 capacity. 
We have seen (page 271) that a regular isolated arc is the locus of only 
removable singularities of a bounded harmonic function. If we form 
the sequence for continuous values on the boundary of a domain, the 
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boundary of which contains such an arc, the limit of the sequence will 
be harmonic and bounded in the neighborhood of the arc, and so will 
have only a removable singularity; we may say that the limiting function 
simply ignores the exceptional points of which the arc is composed. 
We shall see presently that the notion of capacity enables us to char­
acterize, completely, removable singularities. 

First we prove 

Theorem V. If M is the least upper bound of the function U in a do­
main T, in which U is harmonic, the set of boundary points at which the 
upper limit of U is greater than or eq~tal to M - 8, for any 8 > 0, has pos­
itive capacity. It is understood that if T is infinite, so that U vanishes 
at infinity, M > o. A similar result is at once inferred for the greatest 
lower bound. 

Suppose that for some 8 > 0 the theorem were false, and that the 
set E of boundary points, for each of which the limit of U for some 
manner of approach was greater than or equal to IVI - 8, had the capa­
city o. Let T 1 , T 2 , T s, ... denote an infinite sequence of nestEd domains 
approximating to the infinite domain in which the conductor poten­
tial of E is harmonic. Let Un be the conductor potential of Tn. For 
the points common to T and Tn' an open set, U has boundary values 
not greater than those of 

M - s + BUn 

for all n. Hence, throughout this set of points, U is dominated by this 
harmonic function. The same relation holds in the limit, as n becomes 
infinite. But if the capacity of E were 0, its conductor potential would be 
o at all points not in E, and so certainly throughout T. That is 

U<M-s. 

But this would show that the least upper bound of U was not M, but 
at most M - 8. Thus the assumption that c (E) = 0 is untenable. 

We see then that sets of capacity 0 are incapable of holding up a har­
monic function to assigned values against the drag of lower boundary 
values elsewhere. We now complement the above theorem by the 
following: 

Theorem VI. Let T be any domain, and let B be any set of points 
taken from the boundary of T, with the properties (a) the set T' = T + B 
is a domain, and (b) the part of B in any closed region in T' has capacity o. 
Then any function U, bounded and harmonic in T, can have at most re­
movable singUlarities at the points of B. 

Conversely, if B is a set with the property (a), and if any function 
which is bounded and harmonic in T can have only removable singulari­
ties at the points of B, then B has the property (b). 
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Let Po be any point of B. It is interior to T', by (a). Let (J denote 
a sphere about Po, entirely in T'. We denote by e the set of points of 
B on the surface of (J. Now the function 1 (P), defined on (J as equal to 
an upper bound M of U at the points of e, and as equal to U on the rest 
of (J, is continuous, except at the points of e, and bounded. It is there­
fore integrable, since its discontinuities can be enClosed by a set of 
cirCles on (J of arbitrarily small capacity, and so of arbitrarily small 
areal. It follows that Poisson's integral, formed for the boundary 
values 1 (P), defines a function V, harmonic within (j, bounded by M, 
and like U, bounded below. 

Now U - V is harmonic in the domain 5, consisting of the points 
within (J not in B, and has the upper limit 0 at all boundary points of 
5 not in B, that is, except at points of a set of capacity O. Hence by the 
preceding theorem, U - V ::;; O. As the same argument applies to V - U, 
U = V in 5. But V is harmonic in the whole interior of (J, so that if 
U is redefined as equal to V at the points of B within (j, it becomes 
harmonic at all these points. Thus the singularities of U in a neighbor­
hood of Po are removable, and as Po was any point of B, at all points 
of B. 

To prove the converse, let R be any closed region in T', and let e 
denote the set of points of B in R. Let V be the conductor potential 
of e. It is harmonic except at points of e, and is bounded. Hence its 
singularities are removable, by hypothesis. When redefined, it becomes 
harmonic throughout all of space, and so (see Exercise 1, page 222) is O. 
It follows that c (e) = 0, as was to be proved. 

Boundary values at points of the set B have no influence on the 
Dirichlet problem. They are one type of exceptional point, namely 
those at which, the boundary E 01 T is 01 capacity 0,2 by which we 
mean that each is the center of some sphere the part of E within which 
has capacity O. If such points are removed from E, the resulting set is 
said to be reduced, and it is essentially the same as E for purposes of the 
Dirichlet problem. A reduced set may have exceptional points, as in 
the case of the spine of Lebesgue, but these cannot, in general, be re­
moved without altering the situation essentially. 

It is natural to ask whether exceptional points can occur in suffi­
cient frequency on the boundary to affect the solution of the Dirichlet 
problem. More precisely, can two different functions, harmonic and 
boundrd in T, approach the same boundary values at all regular bound-

1 To prove the area infinitesimal, we project it onto a plane, using Exer­
cise 8, page 331. If E is a plane set, bounded by a finite number of regular 
arcs, and of area A, we prove by Lemma III (b), page 149, comparing the conduc­
tor potential of E with the potential of a spread of unit density on E, that 
2 f"ii C (E) ;;;;; fA. Since c (E) is infinitesimal, A is. 

2 VASILESCO, 1. c. page 331. 
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ary points? If so, their difference would be harmonic in T, bounded, 
and approach 0 at every regular boundary point. Call this difference W, 
in an order of subtraction which makes W somewhere positive. If M 
is the least upper bound of W, the set e of boundary points of T at which 

the upper limit of W is greater than or equal to ~ must have positive 

capacity, by Theorem V, page 335. Now this set is closed, and con­
sists only of exceptional points of the boundary. We should therefore 
have a contradiction if it were possible to establish the following lemma: 
Every closed bounded set ot positive capacity contains a regular point. 
The corresponding lemma in two dimensions has been established!, 
so that in the plane, there is for any given domain T and any contin­
uous boundary values, one and only one function, bounded and har­
monic in T and approaching the given boundary values at every regu­
lar point. In space of three or more dimensions, the lemma is still 
in doubt. 

In all questions of uniqueness, the hypothesis on the harmonic 
function that it be bounded, is apt to play an essential part. Consider, 
for instance the harmonic function U = x, in the domain in which 
x> O. Its boundary values are everywhere 0, yet it is not unique, 
since U = cx has, for any c, the same boundary values. If, however, 
U is required to be bounded, we must have c = 0, and uniqueness is 
reestablished. By an inversion and a Kelvin transformation, this 
example yields an example for a bounded domain. 

Literature. The literature of the subject matter of this chapter is so 
extensive, that we can only give some indications. On integral equations, 
the original paper of FREDHOLM, six pages in length, is a gem. Dtversigt 
at Kongl. Svenska Vetenscaps Akademiens Forhandingar, Vol. 57 (1900), 
pp. 39 to 46 (in French). Brief treatments of the more developed theory 
are to be found in BacHER, An Introduction to the Study 01 Integral Equa­
tions, Cambridge Tract No. 10, 1909 and 1914, and in KOWALEWSKI, 
Einluhrung in die Determinantentheorie, Leipzig, 1909, Chapter 18. For 
a more extended treatment one may consult LALESCO, Introduction a 
la theorie des equations integrales, Paris, 1912; also HEYWOOD and 
FRECHET, L'equation de Fredholm et ses applications a la physique mathe­
matique, Paris, 1912, and KNESER, Die Integralgleichung und ihre An­
wendung in der mathematischen Physik, Braunschweig, 1911 and 1922. 

As to the fundamental existence theorems, most books on Potential 
Theory give more or less attention to them (see the general list of books 
on page 377). For further literature, see the Encyklopiidie der Mathe­
matischen Wissenschatten, particularly II, C, 3, LICHTENSTEIN, Neuere 
Entwickelungen der Potentialtheorie. References to more recent work 

1 KELLOGG, Comptes Rendus de l'Academie de Palis, Vol. 187 (1928), p. 526, 
on the basis of a theorem of VASILESCO, 1. c. footnote, p.331. 

Kellogg, Potential Theory. 22 
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will be found in a report of the author, Recent Progress with the Dirich­
let Problem, Bulletin of the American Mathematical Society, Vol. 32 
(1926), pp. 601-625, and in BOULIGAND, Fonctions Harmoniques, 
Principes de Picard et de Dirichlet, Fascicule 11 of the Memorial des 
Sciences MatMmatiques, Paris, 1926. The problem of attaching a 
harmonic function to discontinuous boundary values has also received 
much attention. Among recent contributions to this study may be 
mentioned those of PERRON, Mathematische Zeitschrift, Vol. 18 (1923), 
REMAK, ibid. Vol. 20 (1924), RADO and F. RIEsz, ibid. Vol. 22 (1925), 
WIENER, Transactions of the American Mathematical Society, Vol. 25 
(1923), and EVANS, in his book (see p. 377) and EVANS, BRAY and MILES 
in recent numbers of the Transactions and the American Journal of 
Mathematics. 

Exercises on the Logarithmic Potential. 
1. Show that the kernel for the existence theorems in two dimensions is con­

tinuous, if properly defined when p and q coincide, provided the boundary curve C 
when given in parametric form in terms of the length of arc, X= x (s), y = y (s), 
is such that x (s) and y (s) have continuous derivatives of second order correspond­
ing to all points of C. 

2. Solve the Dirichlet problem for the circle by means of integral equations. 
3. Develop existence theorems for plane regions by means of integral equations. 
4. Examine the question as to whether the more general proofs of the possibil­

ity of the Dirichlet problem given in §§ 13-18 need any alterations in order to 
be applicable to the problem in two dimensions. Establish any facts needed to 
make them applicable. 

5. Construct a barrier which is 0 on a straight line segment, everywhere con­
tinuous, and positive and harmonic except on the segment. Thus show that in the 
plane the Dirichlet problem is possible for any region which can be touched at 
any boundary point by one end of a straight line segment, however short, having 
no other point in common with the region. 

Chapter XII. 

The Logarithmic Potential. 
1. The Relation of Logarithmic to Newtonian Potentials. 

We have seen in Chapter VI, § 7 (p. 172), that logarithmic poten­
tials are limiting forms of Newtonian potentials. We have seen also 
that harmonic functions in two dimensions, being special cases of har­
monic functions in space, in that they are independent of one coordi­
nate, partake of the properties of harmonic functions in space. The 
only essential differences arise from a change in the definition of regu­
larity at infinity, and the character of these differences has been amply 
illustrated in the exercises at the close of Chapter IX (p.248). 

An acquaintance with the theory of Newtonian potentials, and 
with the exercises on logarithmic potentials in the preceding chapters, 
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will give a good understanding of the foundations of the theory of loga­
rithmic potentials, except that the connection of this theory with that 
of functions of a complex variable will have been left untouched. Accord­
ingly, this chapter will be devoted a study of this connection. The 
object will not be to develop the theory of functions of a complex var­
iable in any systematic manner, except as it touches potential theory. 
At the same time, no previous knowledge of the theory of functions 
on the part of the reader will be assumed. We shall expect him to be 
acquainted with the preceding chapters of this book, and with complex 
numbers as treated in Chapter XX of OSGOOD'S Advanced Calculus, or 
in any good book on algebra. The following remarks and exercises may 
serve as a review and for practice. 

For the purposes of the rational operations of algebra, we may 
think of the complex number a + i b, where a and b are real numbers, 
as a linear polynomial in i, subject to the usual rules of algebra, with 
the additional provision that expressions may be simplified by means 
of the equation i2 + 1 = O. The number a + ib may be pictured 
as the point in the plane whose coordinates in an ordinary cartesian 
system are (a, b). Or it may be pictured as the vector from (0,0) to 
(a, b). It is understood that a + ib = 0 means a = 0 and b = O. 

Exercises. 
1. A rational function of a finite number of complex numbers is a complex num­

ber, if no denominator is O. Suggestion. Show that if c and c' are complex numbers, 
c , 

c + c', c - c', ce' and -;;; (e =l= 0) are complex numbers (i.e. can be expressed in 

the form a + ib, a and b real), and then generalize. 

2. Show that e = a + ib can be written in the form 

(! (cos cp + i sin cp) • 

Here!! is called the magnitUde, or the absolute value of e (written I e I), and cp is 
called the angle of c (written arc c). Arc c is determined, for c =l= 0, except for an 
additive multiple of 2 n. 

3. Show that a) 1 c + c' 1 :s:: 1 c I + I c' I, b) 1 c c' 1 = 1 ell c' 1 ' c) arc (c c') = 
arc c + arc c', if the proper branch of one of the three many-valued functions is 
selected. 

4. If n is a positive integer, show that there are 12 'and only 12 distinct complex 
numbers whose nth power is a given complex number c =!= O. 

If w = f (z) is a complex number, determined when z = x + i y is given, we 
call w a function of z. We say that w approaches Wo as z approaches Zo = Xo + i Yo 

if the real function I w - Wo 1 of x and y approaches 0 as x approaches Xo and y 
approaches :Vo' This may be expressed 

limw=wo' 
Z=Zo 

The function w = f (z) is said to be continuous at Zo if 

lim t (z) = t (zo) . 
Z=Zo 

22* 
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5. Show that any polynomial P (z) is continuous at all points zo' and that if 
the coefficients are real, P(z) approaches, at any point of the axis of reals, y = 0, 

. . . P(z) 
the real polynonual P (x). Show the same for the general rational function Q (z) , 

exception being made for the points at which Q(z) = O. 

2. Analytic Functions of a Complex Variable. 
The last exercise shows how the definition of a real rational function 

may be extended to the whole plane of z (With possible exception of a 
finite number of points at which Q (z) = 0), namely by substituting 
z for x. Other extensions, however, are possible. Thus to x 2 corresponds 

Z2 = (X2 - y2) + i2xy, 
but 

1 (z) = (X2 + y2) - i2xy 

is also defined for all points of the z-plane and reduces to x 2 for y = O. 
The first is a rational function of z. The second is not. These examples 
illustrate two types of functions of z. Both belong to a broader class 
of functions u(x, y) + iv(x, y), in which u and v are any real func­
tions of x and y. The first belongs to a narrower class, of which the 
rational functions of z = x + i y are examples. What general prop­
erty, applicable to other known functions, has the restricted class, to 
which the rational functions belong, and which distinguishes it from 
the broader class? 

RIEMANNl found the answer to this question in the existence 01 a 
derivative. It will be recalled that the derivative of a real function of 
a real variable is not regarded as existing unless the difference quotient 
approaches a limit, no matter how the increment of the independent 
variable approaches O. The first of the above functions has the difference 
quotient 

Ll Z2 

LIZ = 2 Zo + L1 z , (L1 z + 0), 

and this approaches the limit 2zo as L1 z approaches 0 in any way. Thus 
Z2 has a derivative at every point ZOo On the other hand, the second 
function has the difference quotient 

Ll f(z) (2xo- i2yo + Ll x)Llx + (2yo - i2xo + Lly - i2Llx)Lly 
---:;rz = Ll x + iLly 

If first L1y, and then L1 x, approaches 0, the limit is 2 (xo-iyo), whereas 
ifthe order is reversed, the limit is 2 (Yo-ixo). It is therefore impossible 
that the function 1 (z) have a derivative in the required sense, save pos-

1 Grundlagen fur eine allgemeine Tkeorie del' Funktionen einer komplexen ver­
anderlichen Grope, Inauguraldissertation, Werke, I, p.3. 
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sibly at points of the line y = x, that is at points which fill no domain 
of the plane. 

It is a function Which, in,..some domain of the plane, has a derivative 
at every point, which is usually meant by the expression function of a 
complex variable, or, to exclude ambiguity, analytic function of a com­
plex variable. We formulate the definition as follows. 

The function w = u + i v is said to be an analytic function of the 
complex varible z = x + i y in the domain T of the z-plane, if the real 
functions u and v of x and y have continuous partial derivatives of the 
first order in T, and if w has a derivative with respect to z at every point 
of T. 

To say that a function is analytic at a point meails that it is analytic 
in a neighborhood of the point. We shall understand by the expression 
analytic in a closed region, analytic at every point of that region. 

It may seem striking that analytic functions occupy the position 
they do, as opposed to the broader class of complex functions of which 
they constitute a sub-class. ThE\. reason is two-fold. The theory of the 
broader class amounts merely to a theory of pairs of real functiQns, 
in which a complex variable plays no essential role. On the other hand, 
the class of analytic functions includes all the elementary functions 
of analysis, and it is a class with a wealth of general properties, all of 
which have their source in this quality of differentiability. We shall 
see presently that among these properties is that of developability 
in convergent power series, and that this property is characteristic. 
Thus the term analytic is not being used here in a new sense (see page 135). 

3. The Cauchy-Riemann Differential Equations. 

If we employ the law of the mean for real functions of two variables, 
the difference quotient for the function w = f (z) = u + iv, analytic 
at Zo = Xo + iyo, can be given the form 

(au au) ,(aV av) 
Ll w ax;; LI x + BY;; Ll:y + t ax;; Ll x + ay;; LI :Y 

Ll z = Ll x +" i Ll :Y + 17. 

I I 111 Ll x + 112 LI :Y 
17 =~(Llx)2+(Lly)2' 

where 'YJl and 172 are the differences between values of partial derivatives 
of u and v at (xo' Yo) and at a point between this and (xo+Ltx, Yo + Lty), 
so that they vanish as Ltz approaches o. If first Lty and then Lt x ap­
proaches 0, this quotient approaches 

au + . av 
axo ~ axo' 
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whereas if the order be reversed, the limit is 

_i au +~ 
ayo ayo' 

The derivative cannot exist unless these limits are equal. Hence a ne­
cessary condition that the derivative exist at· Zo = Xu + i Yo is that the 
equations 

(1) 
au av 
ay - - ax 

are satisfied at (xo, Yo). Theyare known as the Cauchy-Riemann equations!. 
We now show that the condition is sufficient. In fact, if these equations 
are satisfied, the difference quotient assumes the form 

Llw _ (au + iav) + __ i(au +iav) + 
Llz- ax axo rJ- ay ayo rJ, 

and since rJ approaches 0 as Ll X and Lly approach 0 in any way whatever, 
it appears that the derivative exists and is given by 

dw a ( .) . a ( +. ) dZ=axu+zv='~ayU zv. 

Theorem 1. 1/ u and v have continuous derivatives 0/ the first order 
in T, a necessary and sUflicient condition that u + i v be an analytic 
function 0/ x + i y in T is that the Cauchy-Riemann differential equations 
are satisfied. 

Eroercises. 
1. Show that if 11 (z) and 12 (2) are analytic in T, then the following are also: 

11 (z) . 
a) cldz), b) Idz) + 12 (2), c) Idz) 12 (z), d) 12 (z) except at the pomts where 

12 (2) = O. Show that the rules of the differential calculus hold for the derivatives 
of these combinations of functions. 

2. Show that an analytic function of an analytic function is analytic. More 
specifically, if (; = I (z) is one-valued and analytic in a domain T, if the values 
of (; corresponding to the points of T form a domain S, and if w = f{! «(;) is analytic 
in S, then w = f{! (f (z» is an analytic function of z in T. 

3. If we write (; = .; + i7J = a + ib + (cos a; + i sin a;) z, this linear function 
is analytic in the whole plane, and the points (; correspond to the points z by a 
Euclidean motion of the plane. Thus show that the Cauchy-Riemann differential 
equations are invariant under a Euclideqn motion of the plane. 

4. If w = I (2) is analytic in T, and if r (2) = 0 at all points of T, show that 
I (z) is constant in T. 

5. Show that the inverse of an analytic function is analytic. More specifically, 
show if that w = f (z) is analytic in a neighborhood of zo' and if r (zo) =1= 0, there 
is a neighborhood of the point Wo = f (zo) in which the inverse function 2 = f{! (w) 
exists and is analytic. 

1 For historical indications, see the Encyklopadie der mathematischen Wissen­
schaften, II, B, L Allgemeine Theorie der analytischen Funktionen einer komplexen 
GrofJe, OSGOOD, p. 13. We refer also for the rest of this chapter for bibliographical 
notes to this article, to OSGOOD'S Funktionentheorie, and to the articles II, C, 4 by 
BIEBERBACH and II, C, 3 by LICHTENSTEIN, in the same Encyklopadie. 
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4. Geometric Significance of the Existence of the Derivative. 
A geometric representation of a function of a complex variable re­

quires four dimensions, as four real variables are involved. It is custom­
ary to meet this situation by using two planes, a z-plane and a w-plane, 
between the points of which the function w = t (z) sets up a correspond­
ence. It is said to map the z-plane (or a portion thereof) on the w-plane 
(or a portion thereof). A good way in which to identify the correspond­
ing points is to draw in the z-plane a set of numbered coordinate lines 
or curves, and to draw and number the corresponding lines or curves 
in the w-plane. Corresponding points then appear as the intersections 
of corresponding curves. 

We now seek the geometric significance of the existence of the 
derivative. Let w = f (z) be analytic in a neighborhood of zo, at which 
the derivative does not vanish. We shall see (page 352) that the deriva­
tive can vanish only at isolated points in a neighborhood of zo, unless 
w is constant. Then from the equation 

dw = f' (zo) dz 
we infer that 

arcdw = arcdz + const., 

so that if two curves CI , C2 of the z-plane pass through Zo and the differen­
tials of z corresponding to their tangents at Zo are dZI and dz2 , while the 
differentials of w corresponding to the tangents to the curves of the 
w-plane on which CI and C2 are mapped are dWI and dw2 , then . 

arcdw2 - arcdwi = arcdz2 - arc dZI , 

so that the angle between two C2trveS is preserved by the mapping. We note 
also that the sense of the angle is preserved. In the above considerations, 
possible additive multiples of 2 n in the angles have .been omitted as 
having no geometric significance. 

A small triangle in one plane is mapped on a small triangle, in 
general curvelinear, in the second plane, with the same angles. Thus 
the shape of figures is the more nearly preserved the smaller the figures. 
The mapping is for this reason called conformal. It can be shown that 
the converse is true, namely that if u and v are real functions of x and y 
with continuous partial derivatives of the first order in T, with Jacobian 
different from 0, and if the transformation u = u (x, y), v = v (x, y) 
maps T on a domain of the plane of u and v, in such a way that angles 
are preserved in magnitude and sense, then u + iv is an analytic func­
tion of x + iy. Thus the conformality of the mapping characterizes 
analytic functions. 

Exercise. 
Study the mapping of the function w = Z2, by drawing the lines x = canst. 

and y = canst. and their maps in the w-plane. Explain the existence of a point 
at which the mapping is not conformal. 
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The Point 00. An analytic function may be regarded as a trans­
formation, carrying points of the plane into points of the same plane. 
Let us consider the transformation brought about by the function 

1 
w=-. z 

If we write .Z = (! (cos lfi + i sin lfi), W = r (cos {} + i sin {}), the trans­
formation may be written 

1 
r=­e ' {}= -lfi· 

It can therefore be brought about by an inversion in the unit circle and 
a reflection of the plane in the axis of real numbers. It can readily be 
seen that this is a transformation of great value in the study of func­
tions at great distances from the origin. As the correspondence it estab­
lishes is one-to-one, except that the origin is left unpaired, we find it 
convenient to adjoin to the plane an ideal element which we call the 
point infinity, or the point 00. We then say that any set of points has 

a property with respect to 00, if the set on which it is mapped by W = ! 
has this property with respect to the point o. For instance, if a set has a 
point other than the point 00 outside every circle about the origin, then 
00 is called a limit point of the set. We say that a function w = f (z) 

is 'analytic at infinity, if the function f (~) can be so defined at z = 0 as 

to be analytic there. The value which it must have at z = 0 is the value 
assigned to w at 00. 

5. Cauchy's Integral Theorem. 

The divergence theorem in the plane may be written in the form 

(2) 

(see Exercise 2, page 88, noting the extension provided by the rest of 
Chapter IV), where R is a regular region of the plane, C its boundary, 
described in the positive sense when R lies to the left, and where P and Q 
are piecewise continuously differentiable in R. By means of this theorem 
and the Cauchy-Riemann equations, we infer that if f(z) = u+ iv is 
analytic in a simply connected domain T, the integral 

J4(z)dz = f(udx - vdy) + i f(vdx + udy) 

vanishes when extended over any closed regular curve in T. The justi­
fication of the breaking of the integral into real and imaginary parts 
is an immediate consequence of its definition as the limit of a sum. 
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The above theorem is known as Cauchy's integral theorem. We shall 
make a number of applications of it. The first will be to prove 

Theorem II. If f(z) is analytic in the simply connected domain T 
which contains the point zo, then 

Z 

F(z) = U + i V = J f(z) dz 
Zo 

is analytic in T. 

In the first place, Cauchy's integral theorem assures us that the 
integral is independent of the path. We find for the derivatives of U 
and V 

au au 
-=u ax ' -=-v ay , 

av 
a;;=v, 

av 
7fY=~t, 

so that these derivatives are continuous in T and satisfy the Cauchy­
Riemann equations. Hence, by Theorem I, F (z) is analytic in T, as 
was to be proved. 

We note, moreover, that U and V have continuous partial deriva­
tives of the second order in T. Hence 

a2 u a2 u =au _av =0 
ax2 + ay2 ax ay , 

so that U is harmonic in T. It therefore has continuous derivatives of 
all orders in T, and as these are also harmonic, we have established the 
first part of 

Theorem III. The real and imaginary parts of a function which is 
analytic inT are harmonic in T. Conversely, if u is harmonic in the 
simply connected domain T, there exists a function v such that u + i v is 
an analytic function of x + i Y in T. 

The function v is exhibited by the formula. 

An application of the divergence theorem (2) shows that this integral 
is independent of the path if u is harmonic, and the derivatives of v 
are seen to be connected with those of u by the Cauchy-Riemann equa­
tions. Thus, by Theorem I, u + i v is analytic, as was to be proved. 

The function v is said to be conjtfgate to u, the conjugate, or the har­
monic conjugate! of u. As if (z) = v - iu is analytic when f (z) is, - u 
is conjugate to v. 

1 This use of the word, applied only to real functions,is to be distinguished from 
that applied to two complex numbers: a + ib and a -.ib are said to be conjugate 
numbers. 
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We are assuming in this chapter, as heretofore, that functions are 
one-valued unless the contrary is stated. In Theorem III it is necessary 
to assume that T is simply connected if we are to be sure that v is one­
valued. We shall meet in the logarithm of z an instance in which v is 
many-valued. 

Theorem III shows us that the theory of anaJytic functions of a 
complex variable may be regarded as a theory of pairs of real harmonic 
functions. However, to assume this point of view exclusively would 
be most unfortunate, for there is great gain in simplicity in uniting these 
pairs of functions into single objects of thought. 

The Definition of the Elementary Functions for Complex Values of 
the Variable. We have already indicated how the rational functions 
may be defined. For the other elementary functions we shall confine our­
selves to indications on the extension of the definition of the logarithm, 
supplemented by some exercises on related functions. Here Cauchy's 
integral theorem is fundamental, for we choose as definition 

z 

f dZ logz= z. 
1 

If the path of integration, for real postitve z, is restricted to the segment 
joining the point 1 to z, this function coincides with the Naperian log­
arithm of z. Now the integrand is analytic everywhere except at O. 
We introduce a cut along the negative axis of reals between 0 and 00, 

and let T denote the set of all points of the plane except those of the 
cut. Then T' is simply connected, and the integral gives us a one­
valued analytic function in T. It thus constitutes an extension of the 
definition of the logarithm to complex values of z. 

To gain a better insight into the character of this function, let us 
specialize the path of integration as follows: first along the axis of reals 
from 1 to the point e, where z = e (cos cp + i sin cp); then from e to z 
along the circle about 0 through these points. We find then 

e '" 
10 z=f~+f(-sini}+.icOSi})d-&=IO +i. 

g x cos i} + z sm 1} g e cp 
1 0 

Thus the real part of log z is the logarithm of the absolute value of z, 
and the imaginary part is i times the angle of z, - n < arc z < n. 
This is in T. 

But the integral defining log z is an analytic function in the domain 
obtained from I by warping the cut in any way. The logarithm may 
therefore be defined also at points of the negative axis of reals. Only, 
the values on this line will differ, according as the path of integration 
approaches it from below or above, by 2 ni. Thus a continuous exten-
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sion of the definition is possible only if we admit multiple values for the 
function. This is customary, and the last equation gives the definition 
for unrestricted values of arc z. 

Eroe'l'ciS6S. 

1. Show from the above definition that log .o1.os = log .01 + log .02 if the angle 
of one of the arguments is suitably chosen. Study the mapping of the function 
w = log .0, drawing, in particular, the rays ffJ = const. and the circles e = const. 
in the .o-plane, and their maps in the w-plane. Show that the whole plane of .0, 

regarded as bounded by the negative axis of reals, is mapped on a certain strip of 
the w-plane, and consider what part of the boundary should be regarded as part 
of the strip if every point .0 other than 0 and 00 are to be represented. 

2. Study the function .0 = ffJ (w) inverse to w = log .0, showing, in particular, 
that it is an extension, analytic in the whole plane of w except at 00, of the real 
function x = eU • Show also that a) eW as thus extended has the imaginary period 

de'" 
2 ni, b) that eW •• eW , = eW • +w', c) that eiv = cos v + i sin v, and d) that dw = eW • 

We note that the equation (c) enables us to express a complex number in polar 
coordinate form more compactly than heretofore, namely by .0 = eei'l'. 

3. From equation (c), infer Euler's expressions 

el • + e- I • 

cosv = 2 
eiv _ e- il1 

sin v = ----;;:2-=i--

and by means of these study the extensions to complex values of the variables of 
the definitions of the trigonometric functions and their inverses. 

4. By means of the identity 

x2 ~ as = 2 ~i (x ~ ia - x ~ ia) 
integrate the left hand member in terms of logarithms, and reconcile the result 
with the usual integral in terms of the inverse tangent. 

The Evaluation of Definite Integrals. Another use to which Cauchy's 
integral theorem may be put is in the evaluation of definite integrals. 
If such an integral can be expressed as the real part of the integral 
of an analytic function, the path of integration can sometimes be so 
deformed as to reduce the integral to one easily evaluated. We shall 
here confine ourselves to a single example, referring to books on analytic 
functions, or on definite integrals, for further illustrations. 

The example we shall select is that of the integral needed in Exer­
cise 9, page 64: 

2", 

I = flog (1 - k cos rp) drp, O<k<l. 
o 

Consider the function 
1 f (z) = log (a - z) - , z 

where a is a real number greater than l. If we cut the z-plane along the 
positive axis of reals from a to 00, any branch of log (a - z) is one­
valued and analytic in the domain consisting of the points of the plane 
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not on the cut. We select the branch which reduces to the realloga­
rithm of a for z = o. Then t (z) is one-valued and analytic in a domain 
containing the annular region between the circles C, I z I = 1, and c, 
! z i = e, where 0 < e < I. The integral of t (z) over the boundary of 
this region vanishes, if the sense of integration is such as to leave the 
region always to the left. For if we integrate around C in the counter­
clockwise sense, then along a radius to c, then around c in the clockwise 
sense, and then back along the radius to C, we shall have integrated 
around a closed path bounding a simply connected domain in which 
t (z) is analytic, and the integrals over the radius will destroy each other. 
Hence the integrals over c and C in the counter-clockwise sense are equal: 

2~ 2~ 

if log (a - cos rp - i sin rp) drp = if log (a - e cos rp - i e sin rp) drp. 
o 0 

The integrand is continuous, and the right hand member approaches 
i 2n log a as e approaches O. Hence the left hand member, which is 
independent of e, has this limit as its value. Dividing by i, and taking 
the real parts of both sides of the resulting equation, we have 

2~ 2~ 

f log I a - cos rp -i sin rp I d rp = flog fi + a2 - 2 a cos rp d rp 
o u . 

= 2nloga. 

This leads at once, on writing k = l:a a2 to the desired result, 
l 

2;r 

f 1 + V 1- k 2 
log (I - k cos rp) drp = 2 n log - ··-2---- . 

o 

6. Cauchy's Integral. 

Our next application of Cauchy's integral theorem is to the deri­
vation of a formula analogous to the third identity of Green. Let t (C) 
be analytic in the bounded domain T of the C-plane, and let R be a 
closed regular region in T. Let z be an interior point of R. Then the 
function of C 

t (t,) 
t,-z 

is analytic in the region R' consisting of the points of R not interior to 
a small circle c, of radius e, about z. We infer, just as in the preceding 
section, that the integral of this function over the boundary C of R is 
equal to the integral over c, both times in the counter-clockwise sense: 
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If on c we write C - z = eei'P, the left hand member becomes 

2,. 

if I(z + eei'P)df(J, 
o 

and because of the continuity of the integrand, the limit of this ex­
pression as 13 approaches 0 is i 2:n: I (z). We thus obtain Cauchy's integral: 

(3) I(z) = ~fl(C) dC. 
2nz C-z 

c 

It gives I (z) at any interior point of R in terms of its values on the 
boundary of R. It is thus analogous to Green's integral. (page 237). If, 
however, the integral be separated into real and imaginary parts, the 
real part of I (z) will be given, not in terms of its boundary values 
alone, but in terms of these and the boundary values of its conjugate. 
In this respect, Cauchy's integral is more nearly analogous to the 
expression for a harmonic function in terms of its boundary values 
and those of its normal derivative, as indicated above. In fact, Green's 
third identity for the plane can be derived from (3). We have only to 
keep in mind that the Cauchy-Riemann equations are invariant under 
a rigid motion, so that we have the relations 

au av au av 

We have, in equation (3), a striking illustration of the advantages of 
considering analytic functions of a complex variable as wholes, rather 
than as pairs of harmonic functions. For the equation representing 
I (z) in terms of its boundary values is possible in a most simple form, 
without the use of Green's function, depending on the special char­
acter of the region. 

Power Series lor Analytic Functions. It is not difficult to verify 
that the theorem stating that the integral of a real function may be 
differentiated with respect to a parameter by differentiating under the 
integral sign, provided the derivative of the integrand is continuous 
in all the variables, holds also for functions of a complex variable. We 
have then, z still being interior to R, 

(4) I' ( ) - -l-f~dr I(n) ( ) - ~f t(C) d r 
z-2ni (C-Z)2 r" ••• , z-2ni (C_z)n+l""···· 

c c 

Let a denote a point of T, and c a circle about a lying with its 
interior in T. Let z be interior to c. Then, from the algebraic identity 

1 1 z- a (z- a)n (z- a)n+1 
C - z = C - a + (C - a)2 + ... + (C- a)n+1 + (C - z)(C - a)n+l' 
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and equation (3), we derive the formula 

(5) 

where 

n 

f(z) = .2 ak (z - a)k + R n , 
o 

1 f f(C) 
a k = 2ni (C _ a)k+1 dl;, 

(z - a)n+lf t (C) dC 
Rn = 2n i (C - z) (C _ a)n+l· 

c c 

'Comparing the coefficients ak with the formulas (4), we see that what 
we have here is a Taylor series for I (z) with remainder. In order to 
obtain an infinite series, let us seek a bound for the remainder. As II; - a I 
is constant, equal to the radius e of c, we see that 

IR I < ;z-a n+l J..fIDC).ldl;. 
n - en 2n C- z 

c 

As n becomes infinite, Rn approaches 0, and we have the first part of 

Theorem IV. II I (z) is analytic in T, it is developable in a power series 
about any point a 01 T, convergent in the interior 01 any circle about a 
which lies in T. Conversely, any convergent power series in z - a rep­
resents a lunction which is analytic in the interior 01 any circle about 
a, in which the series is convergent. 

As an instrument for the proof of the second part of the theorem, 
we derive a theorem analogous to Koebe's converse of Gauss' theorem, 
in that an analytic function is characterized, by means of it, in terms 
of integrals. It is a converse of Cauchy's integral theorem, and is 

Morera's Theorem. Let 1 (z) be continuous in the simply connected 
domain T, and let the integral 

f I (z) dz 

vanish when taken over the boundary 01 any regular region in T. Then 
1 (z) is analytic in T. 

The hypothesis implies that the integral, from the point Zo of T to 
z, is independent of the path. Its derivatives, given on page 345, are 
continuous and satisfy the Cauchy-Riemann equations. Thus the in­
definite integral of 1 (z) is analytic in T, and we readily verify that its 
derivative is I (z). From the formulas (4), we infer that the derivative 
of an analytic function is analytic. Hence 1 (z) is analytic in T. 

Returning to the proof of the second part of Theorem IV, we note 
that if the power series 

00 

.2 ak(Z - a)k 
o 

is convergent for z = zo' I Zo - a 1 = e, its terms are necessarily bound­

ed in abwlute value, so that for· some constant B, I ak I < :k. It follows 
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that for I z - a I <Ae, 0 < A < 1, the series is dominated by the geo­
metric series 

and so converges uniformly and absolutely. The rest of the proof of 
Theorem IV then follows the lines of that of Harnack's theorem (p. 249). 

Thus analytic functions, in the sense in which we have defined them, 
are identical with functions which can be developed in convergent power 
series. It was on the power series that WEIERSTRASS founded his theory 
.of functions of a complex variable. 

Infinite Series of Analytic Functions. In § 2 of Chapter V (p.125), 
we had need of the fact that a certain infinite series of polynomials 
could be represented as a power series. This fact is established in 

Theorem V. Let 

(6) WI (z) + W 2 (z) + Wa (z) + ... 
be an infinite series of functions of z, all analytic in a domain T and let 
the series converge uniformly in T. Then the sum W (z) is analytic in any 
closed region R in T. Furthermore, if a is in R, if 

00 

W k (z) = 2) akn (z - a)n, 
n=o 

is the development in powers of (z - a) of Wk (z), and if 
00 

W (z) = 2) an (z - a)n 

is the development of W (z), then 
00 

an =2)akn , 
k=l 

n=O 

n=1,2,3, .... 

k = 1,2,3, ... 

The fact that W (z) is analytic in R' follows from Morera's theorem, 
since the series (6) may be integrated termwise. For the same reason 
we have, integrating around a circle c about a, and in T, 

a = -l-f w (C) d, = ~-l-f wdC) d, = ~a • 
n 2ni (C- a)n+l L.J 2ni (C - a)n+l L.J kn 

c k=l c k= 1 

Exercise. 
Show that the derivative of a power series, convergent in a circle c, may be 

obtained, in"the interior of c, by termwise differentiation. 

7. The Continuation of Analytic Functions. 

The theorems of § 5, Chapter X, on the continuation of the domain 
of definition of harmonic functions, yield at once theorems on the con­
tinuation of analytic functions .. From Theorem IV, we infer that an 
analytic function is completely determined by its values in a domain, 
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however small (see also Theorem VI, below). From Theorem V, we 
infer that if two analytic fnnctions agree in an overlapping portion of 
their domains of definition, each constitutes a continuation of the other. 
Theorem VI has an analogue for analytic fnnctions which makes no 
hypothesis on the normal derivatives: Let Tl and T2 be two domains 
without common points, but whose boundaries contain a common isolated 
regular arc. If Wl (z) is analytic in Tl and w2 (z) in T 2 , if they agree and 
form a continuous function at the points of the arc, when defined there by 
their limiting values, then they define a function which is analytic in the 
domain Tl + T2 + y, where y denotes the set of interior points of the arc; 
The proof follows that of Theorem VI, Cauchy's integral and integral 
theorem playing the roles of Green's identities. 

We have seen that if a fnnction U, harmonic in a domain T in space, 
vanishes, together with its normal derivatives, on a. regular surface 
element in T, it is identically 0 in T. Corresponding to this we have 
a result for analytic fnnctions of which we shall have need: 

Theorem VI. If w (z) is analytic in a closed region R, and vanishes 
at infinitely many points of R, it vanishes at all points of R. 

In fact, if w (z) has infinitely many zeros in R, these zeros will have 
a limit point a in R, by the Bolzano-Weierstrass theorem. As w (z) is 
analytic at a, it is developable in a power series in z - a, convergent 
in a circle c about a. Because of its continuity, w (z) vanishes at a, so 
that the constant term in the· power series is absent. Let ak denote the 
first coefficient not 0, on the assumption that w (z) is not identically 0 
in c. Then the function 

w (z) 
---k = ak + ak+1 (z - a) + ak+2 (z - a)2 + ... , 
(z- a) 

is analytic within c, and by hypothesis, vanishes at points arbitrarily 
near a. Hence, because of continuity, it vanishes at a, and we have 
ak = O. Thus we are led to a contradiction, and w (z) = 0 throughout 
the interior of c. By the argument used for the proof of Theorem IV, 
page 259, we infer that w (z) = 0 throughout R. 

An analytic function, defined in a domain, may, or may not, be con­
tinuable beyond that domain. The obstacles to continuation lie in the 
function itself. It may become infinite at a point; it cannot then be 
ana1ytic in any domain containing the point. If defined in a domain, 
and if continuable along a path which leaves and returns to this domain 
and which contains a point at which the fnnction is not analytic, the 
function may not return to its initial value, and so of necessity be 
several-valued. When we speak of an ana1ytic fnnction, we usually have 
reference to the function continued in every possible wayl. 

1 For further details on this point, the reader may consult OSGOOD'S Funk­
tionentheorie, particularly § 3, Chapter IX. 
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Exercises. 
1. Show that the function 

f (z) = izn!, 
1 

defined and analytic in the unit circle, cannot be continued beyond this circle. 
Suggestion. Show that f (z) becomes infinite as z approaches the circumference of 

the unit circle along any ray cp = ( : ) n, where p and q are integers. The unit 

circle is a natural boundary for f (z) . 

2. Show that if a function f (x), defined and one-valued on an interval of the 
axis of reals, is susceptible of being defined in a neighborhood of a point of this 
interval so as to be analytic there, this definition is possible in only one way. 

8. Developments in Fourier Series. 

The analogue of a series of surface spherical harmonics is, in two 
dimensions, a Fourier series. 

We shall devote this and the following section to them. Let j (z) 
be analytic in a domain including the unit circle. The infinite series 

00 

j (z) =2}an zn 
o 

will then be uniformly convergent within and on the circle, and so also 
will be the series obtained by taking the real and imaginary parts of 
its terms. The coefficients are given by the formulas (5), with a = O. 
We write 

z = e eiq', 

and find 

j (z) = u, + iv, an = an - ipn' 

(7) 

where 

(8) 

00 

u(e, cp) =2}(lXncosncp + f3n sinncp) en, 
o 
00 

v (e, cp) = 2} (IXn sin ncp - f3n cosncp) en, 
o 

2,., 

IXn = 21n f [u (1, f}) cosnf} + v (1, f}) sinnf}]df}, 
o 
2n 

f3n = 21n f [u (1, f}) sinnf} - v (1, f}) cosnf}] df}. 
o 

Thus, the real and imaginary parts of j(z) can be expanded in uniformly 
convergent Fourier series for e < l. 

We remark that if j (z) is analytic only in the interior of the circle 
and bounded on the circumference, the series (7) still converge uniformly 
in any closed region within the circle. Also, that if we know the series 
for the harmonic function u, that for the conjugate function v may be 
obtained by interchanging the coefficients of cosncp and sinncp and then 

Kellogg, Potential Theory. 23 
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reversing the sign of the coefficient of cos n rp, for every positive n. This 
leaves undetermined the constant term, but we know that this is not 
determined by the fact that v is conjugate to u. 

Suppose now that the real harmonic function u is given, without 
its conjugate. It is desirable to eliminate from the formulas (8), for the 
coefficients, the function v. This may be done by applying Cauchy's 
integral theorem to the function t (z) zn-l (n > 1), analytic in a domain 
including the unit circle. We find, on integrating around this circle, 
the equations 

2.:rr 

J [u (1, fJ) cosnfJ - v (1, fJ) sin nfJ] dfJ = 0, 
o 
2", 

J [u[l, fJ) sinnfJ + v (1, fJ) cosnfJ]dfJ = 0, 
o 

by means of which we are enabled to write the expansion in the form 

(9) u (e, rp) = {lXo + i en (IXn cosnrp + fJn sin nrp) , 
1 

where 
2", 2n 

(10) IXn = ~f u (1, fJ) cosnfJ dfJ, 
n fJn = ~ f U (1, fJ) sin nfJ dfJ. 

o o 

The series is uniformly convergent in the unit circle if u is harmonic 
in an including domain. Suppose, however, that instead of the bound­
ary values of tf, being given, we have an arbitrary function t (fJ), 
with period 2 n, integrable and bounded, and that we form the coeffi­
cients 

2;< 2:t 

(ll) IXn = ~ f f ({)) cosnfJdfJ, fJn = ~ f f (fJ) sinn fJ dfJ. 
o o 

The series (9), with these coefficients, will still converge uniformly in 
any closed region within the unit circle, and so, by Harnack's theorem, 
represent a harmonic function. We have thus a means of assigning to 
any function of the type t (fJ) (and to even more general ones, in fact), 
a function which is harmonic within the circle. The result is a sort 
of generalization of the Dirichlet problem for discontinuous boundary 
values for the circle. The question as to the sense in which the harmonic 
function approaches the given boundary values, and the question as 
to the sense in which they uniquely determine the harmonic function, 
have received much study!. 

1 The reader will find the matter treated in EVANS' The Logarithmic Potential 
(see page 377). 
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Exercises. 
1. Show that if, in deriving the series (9), we had integrated over the circle 

I z I = a < 1, the coefficients would have been given in the form 

2n 2~ 

OI:n = _1_ f u (a, {}) cos 1'lf} d {}, f3n = __ 1_ f u (a, {}) sin nf} d {}. 
n~ n~ 

o 0 

Show that these expressions are independent of a for 0 < a < 1. 

2. Show, on the hypothesis e < 1, that the sum of the series (9), with the coeffi­
cients (11), is given by Poisson's integral 

and thus that if f ({}) is merely continuous and periodic, the series represents a func­
tion which is harmonic in the closed unit circle, and has the boundary values f (",). 

9. The Convergence of Fourier Series. 

Because of their usefulness in studying the behavior of harmonic 
functions and of analytic functions on the boundary of circles in which 
they are harmonic or analytic, as well as for their importance in phys­
ical applications, we shall be justified in a brief consideration of the 
convergence of Fourier-series for (! = 1. We take, then the series 

(12) .!.lXo + i;(lXncosncp + flnsinncp) 
2 1 

obtained from (9) by setting (! = 1, the coefficients being given by (11). 
We shall assume that f (if) has the period 2 n, and that it is integrable 
in the sense of Riemann. Products and sums of such functions have the 
same property. We first show that the sum of the squares of the coeffi­
cients (ll) is convergent. This follows from the identity 

2n 1 In 

J [f (if) - "2lXo -.2 (IXn cosnif + fln sinnif)J2 dif 
o 1 

The form of the left hand member shows that the right hand member 
is never negative and it follows that if f (cp) is periodic and integrable, 
the series 

is convergent. As a corollary, we note that IXn and fln approach 0 as n 
becomes infinite. 

23* 
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Returning to the question of convergence of the series (12), let 
Sm = sm (T) denote the sum of the first n + 1 terms. Introducing the 
values of the coefficients and the notation y = {} - T, we may write 

2n 

Sm = ~ I f ({}) [i + cos y + cos 2 Y + ... + cos n y ] d {} . 
o 

The function in brackets may be written 

i [e-;ny + e-i(n-l)y + .,. + e-iy + 1 + e iy + .. , + e iny] 

1 e -i(n+i-lr _ e i(1t+i-)r 1 sin (12 + ~) y 

2 _iL iL 2. 1 
e 2 - e 2 sm 2 y 

We thus obtain, if we use y as the variable of integration, 

1 In sin (212 + 1).~ 
sm = 2" f (T + y) . y dy, 

-n S1ll 2 

the change in the limits of integration being allowable because of the 
periodicity of the integrand. Finally, writing y = 2t, we have 

2 

Sm = ~ I f (T + 2 t) sin (2s;n;- 1) t dt, 
n 

2 

which may be written 

2 

(13) Sm = ~ I [f (T + 2t) + f (T - 2t)] sin (!::- 1) t dt. 
o 

Applying this identity to the function! (T) = 1, we have, since the 
series (12) then reduces to its first term, 

2 

(14) 1=~Isin(2n+1)t dt. 
n smt 

o 

We multiply this equation by ! (T), which is independent of t, and 
subtract the result from (13): 

(15) sm (T) - f (T) 

2 

= ~ I [f(T + 2t) + !(T - 2t) - 2!(T)] Sin(~::; 1) t dt. 
o 
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We have here a convenient formula for the discussion of the con­
vergence. To establish convergence at a point 'PO' further hypotheses 
on !('P) at 'Po are necessary. Even continuity is not sufficient!. Asimple 
condition which suffices is this: there exist two constants, a and A, 
such that 

(16) I! ('Po + 2 t) + ! ('Po - 2 t) - 2! ('Po) I < At, for 0 <t< a. 

Not every continuous function satisfies this condition. Thus, if near 

'Po, !('P) = ('P - 'Po)!, !('P) does not. On the other hand, a discon­
tinuous function may satisfy it. For instance if !('P) has piecewise 
continuous derivatives, and at any point of discontinuity has as value 
the arithmetic mean of the limits approached from right and left, then 
!('P) satisfies the condition. 

Consider the formula (15), on the hypothesis that !('P) satisfies (16). 
We note first that 

71 

f sin (2n. + 1)~ dt I o [f ('Po + 2 t) + ! ('Po - 2 t) - 2! ('Po)] sm t 

O<1]<a, 

Hence, given [; > 0, if we take 1] ~ :~ , this portion of the integral 

in (15) will be less in absolute value than [;. If 1] is thus fixed, the rest 
of the integral approaches 0 as n becomes infinite. We may see this as 
follows. If we define 

CI (t) = f (Cf!o + 2 t) + f ('Po - 2 t) - 2 f ('Po) 
b slnt ' 

g(t) = 0 elsewhere in the interval (0, 2n), 

then g (t) is integrable in the interval, and 

2 

f [f('Po + 2t) + !('Po - 2t) - 2!('Po)] sin (2s~n; 1) t dt 
tl 

2,,; 

= f g(t)sin(2n+1)tdt=npfn+1 
o 

isn times the Fourier constant P;,,+1 for g(t). It therefore approaches 0 
as n becomes infinite. If n be required to be large enough to make this 

1 Examples exhibiting this fact have been given by L. FEJER, Journal fUr 
reine und angewandte Mathematik, Vol. 137 (1909); Sitzungsberichte der Baye­
rischen Akademie, 1910. 
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integral less in absolute value than s, we shall have 

ISm (rpo) - f (rpo) 1< 2:n;t: < s, 

and the series (12) therefore converges at rpo to the value f (rpo)' It may 
be noted that except for the condition of integrability, the convergence 
of the Fourier series at a point depends only on the character of the 
function in a neighborhood of that point. 

Exercise. 
1. Show that the condition (16) may be replaced by the milder one that 

a f I f (CPo + 2 t) + f (~o - 2 t) - 2 f (CPo) I dt 

o 
is convergent. 

Sometimes the fact that a Fourier series may be thought of as giving 
the boundary values of the real or imaginary part of an analytic function 
enables us to find in a simple way the sum of the series. Let us take as 
an example the series 

) . +1." 1'3 I (17 SIll rp 2' SIll ~ rp + 3' SIll rp T .... 

This is, formally, at least, the value, for e = 1, of v in the analytic 
function 

f (z) = u + i v = z + .!:.. Z2 + .!:.. Z3 + ... = log ~1_ . 
2 3 1- z 

This function, within the unit circle, has as the coefficient of i, 

v = arc _1~_ = tan-1 (! sin ~ 
1 - z 1 - e cos cP , 

where the inverse tangent lies in the interval (-1, ;), for (1 ~ z) 

has a positive real part, and v reduces to 0 for e = O. From this 
expression we see that 

lim v = tan-1 ~~ = !!.. - .J!.... 
('=1 1 - cos cP 2 2 ' 

0<rp<2n. 

The function f (q;), equal to this limiting value in the open interval 
(0, 2n), and equal to 0 at the end points, satisfies the condition (16), 
and so is represented by its Fourier series at every point, by the con­
vergence theorem. If we form its Fourier coefficients, we find that they 
coincide with those of the series (17), and the function f (rp), just defined, 
is therefore the sum of the series. 

Exm·cises. 
2. Determine the Fourier coefficients of the function f (cp) above, and thus 

complete the proof that it represents the sum of the series (17). 
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3. Determine the sum of the series 

1 1 
cos q; - 3" cos 3 q; + "5 cos 5 q; - .... 

4. Given a thermally isotropic homogeneous body in the form of a right" circu­
lar cylinder whose bases are insulated, and whose curved surface is kept, one half 
at the temperature 1 and the other at the temperature - 1, the two halves being 
bounded by diametrically opposite generators, determine the stationary tempera­
tures in the interior. Draw the traces of the isothermal surfaces on a plane perpen­
dicular to the axis. 

5. Show that if t (z) is analytic in a domain including the closed -region R, 
bounded by two circles about the origin, then t (z) is developable in a, Laurent 
series 

uniformly convergent in R, where 

an = 2 ~ i f f ~:~ de, 
c 

c being any circle about the origin between the two given circles. Thus show 
a) that t (z) is the sum of two functions, one analytic within the outer circle, and 
the other analytic outside the inner circle; b) that if a function t (z) is analytic 
and one-valued in a neighborhood of a point, except possibly at that point, and 
bounded in the neighborhood of the point, it has there at most a removable singu­
larity; c) that the only function which is everywhere analytic (including (0), is a 
constant. 

Although the Fourier series of a continuous function need not con­
verge at every point, FEJERI has shown that it is alwaY3 summable. 
This means that whereas the partial sums so' S1' S2' .• , may not 
approach a limit, their arithmetic means 

always do, and the limit is, in fact, 1 (p). We shall not, however, de­
velop the proof. It may be found in the Funktionentheorie 01 HURWITZ 

and COURANT, Berlin, 1925, p. 305. Further material on Fourier series 
may be found in LEBESGUE's Lefons sur les series trigonometriques, 
Paris, 1928, in most works on the theory of functions of real vari­
ables, and in the books referred to on page 206. 

10. Conformal Mapping. 

We have seen that analytic functions map domains of one plane 
conformally on domains of another. We shall see later that if simply 
connected domains, one in the z-plane and one in the C-plane, are given, 

1 Sur les tonctions bornees et integrables, Comptes Rendus de l'Academie de 
Paris, Vol. 131 (1900), pp. 984-987. 
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there is f_;;entially only one function 1; = j(z) which maps the one on 
the otr<o!' conformally. Thus analytic functions are characterized by 
their mapping properties, and the geometric theory of functions, 
based on this fact, is becoming a more and more important aspect of the 
subject. We shall consider, in the present section, so~e special cases 
of mapping. 

A. 1; = z + b. The mapping may be regarded as a translation, any 
figure in the z-plane being mapped on a congruent figure in the 1;-plane, 
translated with respect to the axes by a vector displacement b. 

B (a). 1; = az, I a 1= 1, i. e. a = eia, IX real. The mapping may 
be regarded as a rotation of the plane through the angle IX. 

(b). 1; = az, a real and positive. The mapping may be regarded as a 
uniform dilation or contraction of the plane, the direction of the axes 
remaining fixed. Or, it may be de~cribed as a homothetic transforma­
tion. 

C. 1; = az + b. The mapping may be described as a homothetic 
transformation followed by a Euclidean motion of the plane. This may 
be seen by writing the function in the form 

Zl = I a I z, 1; = Z2 + b, where IX = arca. 

We note that the mapping carries circles and straight lines into circles 
and straight lines. 

D. 1; = ~. We have met this function on page 344. As an inver­

sion in space carries spheres and planes into spheres or planes, 
straight lines and circles in a plane through the center of inversion will 
be carried into straight lines or circles. We see that this is therefore 
a property of the present transformation, a fact otherwise easy of veri­
fication. 

(lZ + b 
E. 1; = -cz-+ d' ad - be =1= 0. This is called the general linear 

junction, or broken linear function. If ad - be were 0, 1; would be con­
stant, and the whole plane of z would be mapped on a single point. We 
assume that this is not the case. The inverse of this function, 

- de + b 
Z=-~~­

ci:;- a 
(-d) (-a) - be = ad - be =1=0, 

is also a linear function; each is analytic save at one point. The 
linear function is a combination of functions of the types C and D. 
If e = 0, this is evident at once. Otherwise, we may write 

( d' 
Zl = Z + c), abc - ad 

1; = - + 2 Z2· c C 

We see thus that the general linear function maps circles and straight 
lines on circles or straight lines. 
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maps the upper half-plane y > 0 on the interior of the unit circle I C I < 1, and the 
axis of-reals on the circumference of this circle. 

2. Show that there is a linear function which maps the interior of any circle 
on the interior of the unit circle; the same for the half-plane to one side of any 
straight line. 

3. Show that there is a linear function which maps any three given distinct 
points of the z-plane on any three given distinct points of the C-plane, and that 
there is only one such linear function. . 

4. Show that the linear function maps the upper half-plane y > 0 on the upper 
half-plane 1'} > 0 if, and only if, the coefficients a, b, e, d all have real ratios, and 
after they have been made real by division by a suitable factor, ad - be > O. 

5. Show that the function of the preceding exercise is uniquely determined by 
the demands that a given point a of the upper half-plane of z shall correspond to 
C = i, and a given point of the axis of reals in the z-plane shall correspond to the 
point <Xl in the C-plane. Infer from this and Exercise 2 that there is one and only 
one linear function which maps the interior of the unlt circle on itself in such a 
way that a given interior point corresponds to the center, and a given point on the 
circumference to the point 1. 

F. C = zn, n real and positive. The mapping is conformal except at 
o and 00. If n is an integer, each point of the z-plane goes over into a 
single point of the C-plane, but n points of the C-plane go over into a 
single point (other than 0 or (0) of the z-plane. Thus the inverse function 
is not one-valued for n > 1. The function maps a domain bounded 
by two rays from 0 on a domain of the same sort. The latter may over­
lap itself. 

G. C = cos z. The mapping is conformal except at the points 
z = nn, where n is any integer. Breaking the function into real and 
imaginary parts, we find 

~ = cosxcoshy, 

1] = - sinxsinhy. 

The lines y = const. go over into the ellipses 

~2 1'}2 
cosh2 Y + sinh2 y = 1, 

which, since cosh 2y - sinh 2y = 1, constitute a confocal family, with 
foci at C = ± 1. The lines x = const. are mapped on the hyperbolas 

~- --.:L= 1 
cos 2 ;r sin 2 ;r 

with the same foci. 
To study the mapping farther, We note' that since cos z has the 

period 2n, we shall get all the points of the C-plane which are given 



362 The Logarithmic Potential. 

at all, if we consider only the points of the z-plane in a strip of breadth 
2 'TC, say the strip - 'TC < X <'TC. Moreover, since cos (- z) = cos z, we 
may confine ourselves to the upper half of this strip, provided we in­
clude the part 0 < x ~ 'TC of the axis of reals. It will appear that we 
cannot confine ourselves to any more restricted region and still.get all 
values for I; which it may assume, so that the partly open region 

R: - 'TC < X < 'TC, Y > 0 ar..d 0 < x < 'TC, Y ,= 0 

is a fundamental region for the function I; = cos z; for this is the usual 
designation of a region in which an analytic function assumes exactly 
once all the values it assumes at all. It is clear that the region obtained 

Fig. 29. 

from R by a translation Zl = Z + b, 
b real, or by the rotation z = -z is 
also a fundamental region, and still 
others may be formed. 

The fundamental region R and its 
map are represented in figure 29. 
The boundary of R is mapped on the 
axis of real I; between - = and 1. 
But the points of the boundary, 
described with the region to the left, 
which come before 0, are not points 
of R. Hence the above portion of 
the axis of real I; must be regarded 
as the map of the boundary of R 
from 0 on. 

We make two applications of the function I; = cos z. We note first 
that inasmuch as the derivative vanishes at no interior point of R, the 
inverse function exists and is analytic in the whole plane of 1;, if the 
points of the cut from 1 to - = along the real axis are removed. The 
imaginary part .Y = .Y (~, 17) of this inverse function is therefore harmonic 
in the same domain. But it is also harmonic at the points of the axis 
of reals to the left of - 1, being an even function of~. It is thus harmonic 
and one-valued in the region bounded by the segment from (- 1,0) 
to (1,0); it approaches continuously the value 0 on this segment, and 
is elsewhere positive, as is at once seen by the mapping. It will there­
fore serve as a barrier of the sort contemplated in Exercise 5, page 338. 

An allied application is to elliptic coordinates. The variables x and 
.Y may be interpreted as generalized coordinates of a point of the (~, 1])­

plane. The coordinate curves are confocal ellipses and hyperbolas, 
as we have just seen. As it is convenient to think of x and'y as cartesian 
coordinates, let us interchange these variables with ~ and 1]. At the same 
time, we drop a minus sign, and write 

x = cos ~ cosh 1] , Y = sin ~ sinh 17 . 



We find 
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ds2 = 1 d(x - i y) 12 = 1 dcos 1; 12 = I sin 1; 121 d1; 12 

= [(sin'; cosh 1])2 + (cos'; sinh 1])2](d';2 + d1]2) 

= (cosh21] - cos2 ';) (d';2 + d1]2). 

Laplace's equation may then be written 

1 [iJaU ij2UJ J72 U = ---o-=-- - +-cosh2 1] - coss ~ a ~2 a 1]2 . 
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6. Show that by means of a function of type F and a linear function, the 
domain bounded by any two rays from a point can be mapped conformally on the 
interior of the unit circle. 

7. Show that the domain common to any two intersecting circles can be 
mapped conformally on the interior of the unit circle. 

S. Determine the potential and the density of a charge in equilibrium on the 
infinite elliptic cylinder 1] = 1, it being given that the total charge between two 
planes perpendicular to the generators, and two units apart, is E. Check the result 
by integrating the density over a suitable region. 

9. If z = ca, show that the lines ~ = const. and 1] = const. give two systems 
of confocal parabolas meeting at right angles. Express the Laplacian of U in terms 
of the generalized coordinates ~ and 1] of a point in the z-plane. 

10. If z = f (C) is analytic and has a non-vanishing derivative in the domain 
T of the C-plane, show that the element of arc du in the C-plane is connected with 
the element of arc ds in the z-plane by the relation 

ds2 = II' (C):2 do 2 , 

and that 

where 

Thus the transformation defined by an analytic function carries harmonic func­
tions in the plane into harmonic functions (see the end of § 2, p. 236). 

11. Show that the Dirichlet integral 

f f[(::r + (:;rJdS 
T 

is invariant under the transformation defined by an analytic function of x + i y. 

11. Green's Function for Regions of the Plane. 

It has been stated that the mapping brought about by an analytic 
function essentially characterizes it. Our aim is now to substantiate 
this assertion. By way of preparation, we first establish a property of 
the equipotential lines of Green's function for simply connected regions, 
and follow this by a study of the relation between Green's function for 
such regions and the mapping of them on the unit circle. 
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Green's function for the region R and the pole Q (interior to R) is 
the function 

1 
g (P, Q) = log -;- + v (P, Q), r=PQ, 

which approaches 0 at every boundary point of R, v (P, Q) being har­
monic in the closed region R. It will be recalled that a function is 
harmonic in a closed region if it is continuous in the closed region, 
and harmonic at all interior points. No hypothesis is made on the be­
havior of the derivatives in the neighborhood of the boundary. If R 
is infinite, the function must behave so at infinity that it is carried by 
an inversion into a function which is harmonic in the region inverse to 
R. We now prove 

Theorem VII. II R is a simply connected region, the equ,ipotential 
lines g = p, p > 0, are simple closed curves which are analytic at every 
point. They have no multiple points. 

From § 9, page 273, we infer that the equipotential g = p is analytic 
at every point except at those where the gradient 17 g of g vanishes. 
Such points can have no limit point in the interior of R. For the analytic 
function I(z) of which g is the real part becomes infinite at the pole Q, 
and it is easily verified that its derivative does not vanish in a neighbor­
hood of that point. Now f' (z) = 0 means the same thing as 17 g = O. 
If the zeros of the derivative had a limit point in the interior of R, the 
derivative would then vanish throughout the interior of R, by Theorem VI. 
We conclude that at most a finite number of points at which 17 g = 0 
lie on the locus g = p. In the neighborhood of such a point, g = p con­
sists of a finite number of regular arcs passing through the point with 

Fig. 30. 

equally spaced tangents (see page 276). The 
analytic pieces, of which g = fl consists, can 
terminate only in the points at which 17 g = 0, 
and are at most finite in number. 

Consider now the set of points T where 
g > p, in which we count also Q (fig. 30). 
Because of the continuity of g at all points 
involved, the boundary points of T all 
belong to the equipotential g = p. Con­
versely, all points of g = p are boundary 
points of T, for g could have only equal or 

smaller values in the neighborhood of a point g = fl which was not a 
boundary point of T. This would be in con tradition with Gauss' 
theorem of the arithmetic mean. 

Suppose that the equipotential g = ,u contained a point Po at which 
17 g = O. As we have seen, the equipotential would have at least two 
branches passing through Po, and these would divide the plane near 
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Po into domains in which alternately g < # and g > #; for otherwise 
there would be a point at which g = #' but in whose neighborhood it 
was never greater, or else never less. Call Tl and T2 two of these do­
mains in which g > #. They would be parts of T, since T contains all 
points at which g > #. If a point of Tl could not be joined to a point 
of T2 by a polygonal line lying in T, T would have to consist of at 
least two domains without common points. In only one of these could Q 
lie. The other would be one in which g was harmonic, with boundary 
values every>yhere equal to p. This is impossible, since it would make g 
constant. So we can join Po to a point in Tl by a short straight line seg­
ment, and join it similarly to a point in T2, and then join the points in Tl 
and T2 by a polygonal line, the whole constituting a regular closed curve y 
lying in T except at the single point Po. Now such a curve, by the Jordan 
theorem!, divides the plane into two distinct domains Dl and D 2 • Near 
Po there would be points at which g < It on both sides of y, that is, in 
both Dl and D2• Then in each there would be regions with interiors de­
fined by g < #. At the boundaries of these regions g could take on only 
the values 0 or #. If, for any such region, 0 were not among these val­
ues, g would be constant in that region, and this is impossible. Hence 
both Dl and D2 would have to contain boundary points of the region R. 
It follows that the closed curve y could not be shrunk to a point while 
remaining always in the interior of R, and R could not be simply con­
nected. Thus the assumption that the equipotential g = # contains 
a point at which V g = 0 has led to a contradiction, and the equipoten­
tial is free from multiple points and is analytic throughout. 

If R is an infinite region, and if # is the value approached by g at 
infinity, the equipotential g = # cannot be bounded. It is, however, a 
curve of the sort described, in the sense that an inversion about any 
point not on it carries it into one. 

Incidentally, it has emerged that at every interior point of a simply 
connected region, the gradient of Green's function for that region is 
different from O. 

12. Green's Function and Conformal Mapping. 

We are now in a position to show the relation between Green's func­
tion for a simply connected domain and the conformal mapping of that 
domain on the circle. It is embodied in the next two theorems. 

Theorem VIII. If C = f (z) maps the simply connected domain T of 
the z-plane on the interior of the unit circle in the C-plane in a one-to-one 
conformal manner, then -log I f (z) I is Green's function for T, the pole 
being the point of the z-plane corresponding to C = o. 

1 See the footnote, page no. 
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Near the pole zo, f (z) has the development 

f (z) = a1 (z - zo) + a2 (z - zo) 2 + .. " 
where a1 =1= 0 because the mapping is conformal. Hence 

log j(z) = log (z - zo) + log [a1 + a2 (z - zo) + .. 'J, 
and 

1 
- log I f (z) I = log r + v, 

where v is harmonic in the neighborhood of Zo' As there is no other point 
within R at which f (z) vanishes, v is harmonic in T. 

As z approaches a boundary point of T, I; can have no interior point 
of the unit" circle as limit point. For suppose, as z approached the bound­
ary point Z1' the corresponding values of I; had a limit point 1;1 interior 
to the unit circle. This means that no matter how small the circle c 
about Z1' there would be points within c corresponding to points arbi­
trarily near 1;1' But as the inverse of I; = f (z) is analytic at 1;1' the points 
of the I;-plane in a sufficiently small closed circle about 1;1 all correspond 
to points in a closed region entirely in T, and therefore one which excludes 
the points of c if c is sufficiently small. We thus have a contradiction. 
Hence as z approaches the boundary of T in any manner, II; I = If (z) , 
approaches 1. Thus -log If (z) I approaches 0, and therefore is Green's 
function, as stated. 

Conversely, if Green's function for T is known, we can determine the 
mapping function: 

Theorem IX. If g is Green's function for the simply connected do­
main T with pole at the point Zo = Xo + i Yo, then the function 

I; = !(z) = e- g - ih , 

where h is conjugate to g, maps T in a one-to-one conformal manner on the 
interior of the unit circle of the I;-plane, the pole being mapped on the center 
of the circle. 

In the representation g = - log l' + v, v is harmonic in the simply 
connected domain T and so has a one-valued conjugate. The conjugate 
of - log r is - rp, the many-valued function defined by 

x-x cosrp = __ 0, 
r 

sin rp = Y - Yo. 
r 

Thus the conjugate h of g is many-valued in T, decreasing by 2n each 
time that z makes a circuit in the counter-clockwise sense about the 
pole zo' As eZ has the peiod 2 ni, the function f (z) of the theorem is one­
valued in T. 

Near zo' g + ih has the form 

- log (z - zo) - 'fjJ (z) , 
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where 'IjJ (z) is analytic at zo. Hence 

I (z) = (z - zo) e'l'(Z) , 

and since 
f' (zo) = e'l'(z,) =\= 0, 

the mapping is conformal in the neighborhood of ZOo It is also confor­
mal throughout the rest of T, for 

f' (z) = ?f(z) = _ e-g-ih (EJg + iEJh) 
ox dx EJx' 

and this quantity can vanish at no points near which g is bounded 
unless 17 g = 0. But we have seen that such points do not occur in 
simply connected domains. The mapping is therefore conformal through­
out T. 

Since g is positive in T, 1'1 = e- U < I, and the function, = I (z) 
maps T on the whole or a part of the interior of the unit circle. On the 
other hand, to any interior point '1 of this circle, there corresponds 
a single point of T. For if we write '1 = e- p - ia , the circle 1'1 = e- I ' 

on which '1 lies, is the map of a single simple closed analytic curve 
g = fl. On this curve, 

and It decreases monotonely, the total decrease for a circuit being 21C. 
Hence there is one and only one point of the curve at which It differs 
from (f. by an integral multiple of 21C. Thus there is one and only one point 
of T corresponding to '1. It follows that, = f (z) maps the whole of T 
on the whole interior of the unit circle in a one-to-one conformal way, as 
was to be proved. It is clear that z = Zo corresponds to , = 0. 

We see, then, that the problem of determining Green's function 
for T and the problem of mapping T by an analytic function in a one-to­
one manner on the interior of the unit circle are equivalent. On the 
basis of this fact, we proceed to establish RIEMANN'S fundamental 
theorem on mapping: 

The interior T of any simply connected region whose boundary con­
tains more than one point, can be mapped in a one-to-one conformal manner 
on the interior of the unit circle. 

The theorem is equivalent to asserting the existence of Green's 
function for T, and this, in turn, to asserting the existence of the solution 
v of a certain Dirichlet problem. But this, again, is equivalent to assert­
ing the existence of a barrier for T at every boundary point. We pro­
ceed to establish the existence of the barriers. 

We remark first, as a lemma, that if the function Zl = f (z) maps the 
domain T in a one-to-one conformal manner on the domain T1 , the 
function being continuous at the boundary point a, then a barrier 
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Vl (Xl, y:J for Tl at the corresponding boundary point a1 is carried by 
the transformation defined by the function into a barrier V (x, y) for 
T at a. Our procedure will be to transform T, by a succession of such 
functions, into a domain of such a character that the existence of a 
barrier at the point corresponding to a will be evident. 

The boundary of T consists of a single connected set of points, in 
the sense that no simple closed regular curve can be drawn in T which 
encloses some but not all the boundary points. For if such a curve could 
be drawn, it would not be possible to shrink it to a point while remain­
ing in T, and T would not be simply connected. 

We provide for the case in which there are no points exterior to T. 
Since there are at least two boundary points, these may be carried by 
a linear function into 0 and CX), respectively. In order not to complicate 
notation, let us retain the designation T for the new domain. Its 
boundary contains the points 0 and 00. We then employ the function 
1; = z'/.. Let Zo be any interior point of T, and 1;0 either of the square 
roots of zo' but a fixed one. Then the branch of the two valued function 
1; = z'1. which reduces to 1;0 for z = Zo is one valued in T, for if we pass 
from any point of T by a continuous curve back to that point again, the 
value of the square root must come back to itself unless the curve 
makes a circuit about the origin. This it cannot do if it remains in T, 
since the boundary of T extends from 0 to 00, for it contains these points 
and is connected. The branch in question is continuous at all points of 
T and its boundary, its derivative vanishes nowhere in T, and it there­
fore fulfills the conditions of the lemma at all boundary points. It is 
obviously the same for linear functions. 

We may thus assume that T has an exterior point; for instance, the 
point -1;0' There is therefore a circle containing no points of T, and 
if the domain exterior to this circle be mapped by a linear function on 
the interior of the unit circle, T will be mapped on a region interior to 
the unit circle. 

Now let a denote a boundary point of the simply connected domain 
T lying in the unit circle, and having more than one boundary point. 
By a translation, a may be brought to the point O. T will then lie in 
the circle I z I < 2. Then any selected branch of the function 1; = log z 
will map T on a domain T' of the 1; -plane, lying to the left of the line 
~ = log 2, the point a going into the point 00. As the reciprocal of this 
branch of log z vanishes as z approaches 0, the function is to be regarded 
as continuous at 0 for the purposes of the lemma. If now by a linear 
function, we map the half of the 1;-plane to the left of the line ~ = log 2 
on the interior of the unit circle, the domain T' will go over into a do­
main Til, in the unit circle, the point CX) going over into a point of the 
circumference. The function can be so chosen that this point is the 
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point 1. For such a domain and boundary point, U = 1 - x" is a 
barrier. The theorem is thus established. 

Incidentally, we may draw a further conclusion as to the Dirichlet 
problem. Since a barrier for a domain, at a point a, is also a barrier for 
any domain which is a part of the first, and has a as a boundary point, 
we infer that the Dirichlet problem is possible for any domain S14Ch that 
any boundary point belongs to a connected set of boundary points con­
taining more than one point. 

We may also state that given any two simply connected domains, 
each with more than one boundary point, there exists a function which 
maps one on the other in a one-to-one conformal manner. For both domains 
can be so mapped on the unit circle, and through it, on each other. 

Uniqueness of the Mapping Function. If the mapping function be 
thought of as determined by Green's fUIlction, we see that two arbi­
trary elements enter it. The first is the position of the pole, and the 
second is the additive constant which enters the conjugate of g. These 
may be determined, the first so that a preassigned point of T is mapped 
on the center of the unit circle, and the second so that a preassigned 
direction through the pole corresponds to the direction of the axis of 
reals at the center of the circle, for changing h by a constant multiplies 
the mapping function by a constant of absolute value 1, and the con­
stant can be chosen so as to produce any desired rotation. Thus, although 
a simply connected domain does not determine quite uniquely a func­
tion which maps it on the unit circle, the following theorem of unique­
ness justifies our assertion at an earlier point, to the effect that an 
analytic function is characterized by its mapping properties: 

Theorem X. Given a simply connected domain T with more than one 
boundary point, and an interior point zo, there exists one and only one 
function ,= f (z) which maps T on the interior of the unit circle of the 
i;,-plane in a one-to-one conformal way, and so that Zo and a given direction 
through Zo correspond to the center of the circle and the direction of the 
positive axis of reals. 

\Ve have seen that there is one such function, Suppose there are 
two fl (z) and f2 (z). By Theorem VIII, the negatives of the absolute 
values of their logarithms are both Green's function for T with the 
same pole, and hence are identical. This means that the real part of 

log G: i:D is 0 (with a removable singularity at zo), so that the imag­

inary part is constant. That is, 

a real. 

Both functions map the same direction at Zo on the direction of the pos­
itive real axis at O. Let the given direction be that of the vector eiP. 

Kellogg, Potential Theory. 24 
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Then, writing dz = eiPde, we must have 

dCI = Ii (zo) eiPde and dC2 = I~ (zo) eiP de 

real and positive. The same must therefore be true of the quotient of 

these differentials, and hence of the quotient ~i ~;:~. Computing this 

quotient from the preceding equation, we find it necessary that ei.« = + l. 
Thus the two mapping functions must be identical. 

Incidentially, we see that the only function mapping ~he interior 
of the unit circle on itself is a linear function. This function can be so 
chosen as to bring an arbitrary interior point to the center, and an 
arbitrary direction to that of the positive axis of reals. It follows that 
the function mapping the interior of a simply connected region, with 
more than one boundary point, on the interior of the unit circle is deter­
mined to within a linear substitution. 

13. The Mapping of Polygons. 
A natural inquiry to make with respect to the characterization of a 

function by its mapping, is to ask for the simplest domains, and study 
the properties of the functions which map them on the interior of the 
unit circle. After the circle itself, polygons would undoubtedly be 
reckoned among the simplest. The problem of the mapping of polygons 
was first investigated by CHRISTOFFEL and SCHWARZ1. 

Let T denote a finite domain of the plane of z, bounded by a poly­
gonalline, whose vertices, in order, the line being described with T to 
the left, are aI' a2 , ••• an' Let the exterior angles, that is the angles 
through which the vector, with the direction and sense of motion along 
the polygon, turns at the vertices, be denoted by 7Cf.kI, 7CP2' •• • 7Cpn' 

Instead of seeking the function mapping T on the unit circle, it will be 
more convenient to attack the equivalent problem of mapping the 
upper half-plane of C on T. Let z = I (C) denote the mapping function, 
which we know exists, by the last section, and let lXI' ~, ••• IXn denote 
the points of the real axis which it maps on the vertices of T. The 
function then maps straight line segments of the boundary on straight 
line segments, and We may prove that it is analytic at all interior points 
of these segments as follows. If C is on the segment (lXi-I' lXi), z is on the 
segment (ai-I> ai), and for suitable choice of a and b, az + b lies on a 
segment of the axis of reals, and is analytic in the upper half-plane in 
the neighborhood 6f points of the segment. If the definition of such a 
function is extended to points in the lower half-plane by a reflection, 
that is, by the convention that at the point ~ - in it has as value the 

1 CHRISTOFFEL, Annali di Matematica, 2 d Ser. VoI. I (1867), Gesammelte Werke, 
VoI.T, p. 245f£.; SCHWARZ, Journal fUr reine und angewandte Mathematik. Vol. LXX 
(1869), p. 105ff., Gesammelte Abhandlungen, VoI. II, p. 65ff .. 
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conjugate of its value at ~+i1J, it will be analytic in the lower half­
plane near the segment of the axis of reals in question, and, by a theorem 
of § 7, it will be analytic at the interior points of the segment as well. 
Furthermore, since for ~ on (lXi_I' lXi)' az + b is real, 

d2 z 

and F (~) = dC 2 = t" (C) 
dz t' (') 
d[ 

are also real. But the second expression is independent of a and b, and 
hence it is real and analytic on the whole axis of real ~, except possibly 
at the points lXi' 

Let us now consider the situation in the neighborhood of the ver­
tices. As z goes from the side (ai-I' ai ) to the side (au ai+1) through 
points of T, arc (z - ai ) decreases by (1 - !ki) n, while arc (~- lXi) de­
creases by n. If we write 

1 

ZI = k (z - a i )I-.u1 

selecting a definite branch of the many-valued function and then choos­
ing the constant k so that Zl becomes real and negative when z ap­
proaches the side (ai-I, ai ) from within T, then arc Zl also decreases 
by n, and Zl' regarded as a. function of ~, maps the upper half­
plane of ~ near lXi on the upper half-plane of Zl near O. If defined in the 
lower half-plane near lXi by a reflection, it is analytic in a neighborhood 
of r/.i' except possibly at lXi' But the function is bounded in this neigh­
borhood, and so any possible singularity at lXi is removable. Hence ZI is 
developable in a convergent power series 

Zl = b1 (~ - lXi ) + b2 (~ - lXi)2 + .. " 
where bl =l= 0, since the mapping is conformal at lXi' Eliminating Zl 

between the last two equations, we find 

I b b ll-p; 
Z = ai + (~ - lXi)I-111 L hi + h2 (~ - IX;) + . .. , 

valid for a choice of the branches of the many-valued functions which 
maps the upper half of the ~-plane near lXi on T near a;. The second 
factor of the second term is an analytic function near ~ = lXi' which 
does not vanish at ~ = lXi' We may therefore write 

Z = a i + (~ - 1X;)I-ili [co + C1 (~ - IX;) + .. 'J, 
Computing F (~) from this expression, we find 

- (t· 
F(~) = C -~i + P(~ - lXi ), 

Co =l= O. 

where P (~ - lXi) is a power series in ~ - .IX;, convergent in a neighbor­
hood of lXi' In verifying this last statement, it is necessary to note that 

24* 
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fli =F 1. This is true, because if fli were 1, T could have no points in a 
neighborhood of ai' and this point would not be a boundary point. 

Carrying out the same reasoning for the other points (Xi' for which 
we may assume that none is the point 00 (because a linear transforma­
tion would remedy the situation if it existed), we conclude that the 
function n 

F(~) +.2~ 
1 t;-rt.; 

is analytic in the neighborhood of all vertices. It is clearly analytic in 
the upper half-plane of ?;, and on the real axis. If defined by a reflection 
at points of the lower half-plane, it is analytic in the whole plane when 
properly defined at the removable singularities (Xi' If we examine its 

character at 00 by the substitution w = ~, we find 

" d2 z n 

F(C) + 2)~ = - dw 2 w2 -2w+ "5; ~-. 
1 t; - rt.; dz 7' 1 - rt.i W 

dw 

For w near 0, Z = f (~) maps a portion of the lower half-plane near 

w = 0 on a portion of T near an interior point of the side (an, ~), and 
so, by a now familiar argument, is analytic in a neighborhood of that 
point, with a non-vanishing derivative. Thus the above expression is 
analytic in the whole plane, including the point 00, and so (Exercise 5, 
page 359) is constant. As it vanishes at 00, (w = 0), it is identically O. 
We remark that since the first term on the right is w 2 times an analytic 
function, the sum of the remaining two terms contains the factor w 2, 

so that we must have .2 fli = 2. That this is true is geometrically evi­
dent. 

We have then in 
d2 z 
- " 
dt;2 + )'~=O 
!:!.. T t; - rt.i 
dt; 

a differential equation for the mapping function. It is readily integrated, 
and yields the result 

/; 

(18) J dt; 
Z = A II (YO ). + B, 

... "!O-r:t.i flt 

'0 
where A and B are constants depending on the position and size of the 
domain T, the brancb,es of the many-valued functions in the integrand, 
and the choice of the lower limit of integration, which may be any 
point in the upper half-plane of ?;. The symbol n means the product 
of the n factors of which a typical one follows. 
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The problem is not completely solved until not only these constants 
A and B have been appropriately determined, but also the real con­
stants ("I.i. We know, however, that the mapping function exists!, and 
that it must have the given form. We leave the determination of the 
constants as a problem to be solved in particular cases. 

As an illustration, let us suppose that T is a rectangle. Then /hI = /h2 
= /h3 = /h4 = i. Because of the symmetry of T, it is reasonable to 
suppose that the four points ("1.1> ("1.2' ("1.3' ("1.4 can be taken symll1etric with 

1 
respect to O. We take them as ± 1, ± T (0 < k < 1). We have, then 

as a tentative mapping function, 

(19) 

that is, an elliptic integral of the first kind. 

Exercise. 
1. Verify, on the understanding that by the radical is meant that branch of 

the square root wliich reduces to + 1 for Z; = 0, that this function maps the upper 
half-plane of Z; on the interior of the rectangle of the z-plane whose vertices are 
± K and ± K + iK', where 

1 

1 k f dt 
K-- V (1- t2) (1 - k2 t2) , 

K'=J . dt 
} (t 2=-~1 );=(~1=_=?;k2;=tC;C:2)" 

o 1 

The function ,= rp (z), inverse to the function (19), maps the 
rectangle on the upper half of the '-plane. It is so far defined only in 
the rectangle. But it is real when z is real and between the vertices 
- k and k. It can therefore be continued analytically across the axis of 
reals into the rectangle symmetric to T by a reflection. By similar re­
flections, rp (z) can be continued across the other sides of T, and then 
across the sides of the new rectangles, until it is defined in the whole 
plane of z. However, the original rectangle T, together with an ad-

1 vVhen the formula for z = f (l;) was first derived, the theorem of RiEmann 
could not be regarded as rigorously established, and the endeavor was made to 
establish it for polygonal regions, by showing that the constants could be deter­
mined so that the given region would be the map of the upper half-plane. The 
method used was called the method of continuity, and has not only historical 
interest, but value in allied problems in which an existence theorem would other­
wise be lacking. For further information on the method, the reader may consult 
E. STUDY, Vorlesungen uber ausgewtihlte Gegensttinde der Geometrie, Heft 2, heraus­
gegeben unter Mitwirkung von W. BLASCHKE, Konforme Abbildung einfach-zu­
sammen/Ztingender Bereiche, Leipzig, 1913. An elementary proof by means of the 
method of continuity is given by A. WEINSTEIN, Der Kontinuittitsbeweis des 
Abbild~tngssatzes fur Polygone, Mathematische Zeitschrift, Vol. XXI (1924), 
pp.72-84. 
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jacent one, suitable portions of the boundary being included, con­
stitutes the map of the whole C-plane, and this is therefore a fundamen­
tal region for the function. It is an elliptic function. Its inverse is many­
valued, corresponding to paths of integration no longer confined to the 
upper half-plane of C. 

Exercises. 
2. Show that IJi (z) is doubly periodic, with the periods 4 K and 2K' i. 
3. Show that as k approaches 0, the rectangle T becomes infinitely high, while 

retaining a bounded breadth, and that as k approaches 1, the rectangle becomes 
infinitely broad, while keeping a bounded height. Show thus that a rectangle of 
any shape can be mapped on the upper half-plane by means of the function (19). 

4. Study the mapping on the upper half-plane of the interior of a triangle. 
Show that if the function ~ = IJi (z), with its definition extended by reflections, 
is to be single valued, the interior angles of the triangle must be each the quotient 
of:rr; by an integer, and that there are but a finite number of such triangles (as far 
as shape is concerned). Determine for one such case a fundamental region, the 
periods of the function IJi (z), and a period parallelogram, that is, a partly closed 
region S, such that the value of z for any point in the plane differs, by a homo­
geneous linear combination of the periods with integral coefficients, from the value 
of z for one and only one point in S. Determine the number of times IJi (z) be­
comes infinite in the period parallelogram, and show that it assumes in this region 
any other given value the same number of times. 

5. Show by means of a linear transformation that if in the mapping of a poly­
gonal domain T on the upper half-plane, one of the vertices of T corresponds to 
the point 00, the formula (18) accomplishes the mapping when modified by the 
suppression of the factor in the denominator which corresponds to this vertex. 

6. Show that the function mapping the interior of the unit circle on the poly­
gon T is also given by the formula (18), if the points (X/ are on the circumference of 
the circle. 

7. Find the function mapping the square whose vertices are ± 1, ± i on the 
unit circle in such a way that the vertices and center keep their positions. 

Infinite Regions Bounded by Closed Polygons. For certain physical 
applications, the case is important in which T is the region outside a 
a closed polygon. In this case, just as before, 

" 

is analytic on the axis of real C, and also in the upper half-plane, except 
at one point. For since z = f (C) must become infinite at the point {J 
of the C-plane corresponding to the infinitely distant point in T, it 
is not analytic at this point. But this is the only exception. When de­
fined by a reflection in the axis of reals, the above function also be-
comes infinite at the point {J conjugate to (J, and one finds that 

" 
F(C) + "_/ti_+~+~ 

~ ~-(Xi ~-{J ~-{J 
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is everywhere analytic. The necessary condition on the angles turns 
out to be E J-ti = - 2, and this checks with the geometry of the situation, 
since the polygon must be described in the counter-clockwise sense if 
T is to be to the left. The mapping function is given by 

t 

Z = A f (C - {J)2 (C - ~f2 II (C - (Xi) Pi + B. 

'0 
(20) 

Ereercises. 
8. Derive from this result the formula 

~ 

Z=Af dC +B 
C2 II (C - Yi)l'i 

~o 

for the function mapping the interior of the unit circle on the infinite domain T 
bounded by a closed polygon, the points Yi being on the circumference of the 
circle. Show that the same formula gives a function mapping the infinite domain 
outside the unit circle on the infinite domain T, and that in this case the condi-
tions 

2ft/= -2, 

must be fulfilled in order that the mapping be conformal at 00. The points Yi will 
usually be different in the two cases. 

9. Determine a) a function mapping the upper half-plane of C on the infinite 
domain T of the plane of z, bounded by the straight line segment from - 1 to + 1 
so that C = i corresponds to the infinite point of the z-plane. b) a function 
mapping the C-plane outside the unit circle on the same domain of the z-plane 
so that the infinite points correspond. Answers, if (Xl = - 1, (X2 = 1, 

a) 
2C 

z=1+C2' 

By means of this last exercise, we can find the distribution of a 
static charge of electricity on an infinite conducting strip. The poten­
tial U of such a distribution must be constant on the strip, and at a 
great distance r from the origin of the z-plane, must become negatively 

infinite like e log -.!., where e is the charge on a piece of the strip two 
r 

units long. On the strip in the second part of the exercise, 1 C 1 = 1, 
while at great distances 1 C 1 becomes infinite like 21 z I, that is, like 
2 r. Hence the function 

U = - e10g I ; I , 

which is harmonic in x and y, since it is the real part of an analytic 
function, satisfies the requirements on the potential. 

To find the density of electrification, we first find 
e 

d . d. ( C) T 2eC 
dz(U+~V)=-dz elog 2 =-dz= l-C2' 

dC 
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The magnitude of this derivative is the magnitude of the gradient 
of U, and this is the magnitude of the normal derivative of U at points 
of the strip, since here the tangential derivative is O. Hence 

1 (au au) e 2 
a= -4n an+ -an_ =2nIC-C 11' 

Corresponding to points of the strip, 1; = eif}, so that z = x = cos {} , 
and 

2 e 
a = ---- = ---=== 

2nisin-&12n-Yl_%2' 

Exercises. 
10. Show, in the notation of Exercise 8, that the density of a static charge on 

the surface of an infinite conducting prism, whose cross-section is the polygon 
bounding T, is 

(J = _e __ llI(C -Yi)l'i I. 
4nA 

Since fl,'is negative at any outward projecting edge of the prism, and positive at 
any inward projecting edge, we see that the density becomes infinite at the former 
and 0 at the latter. 

11, Determine the density of electrification on a prism whose right section is a 
_" n 3n 5n and 7n 

square, inscribed in the unit circle, with vertices atu' = 4' "'4' 4 4 

Answer, 
e 

(J = 8 n A I sec 2 fJ I , where C = if}, 1 
A = -""/40------

2J-ycos2-&dfJ 
o 

12, Study the mapping of domains bounded by open polygons, that is, of infi­
nite domains whose polygonal boundaries pass through the point 00, 

For further information concerning the relation between the loga­
rithmic potential and the theory of functions of a complex variable, the 
reader is referred to OSGOOD'S Funktionentheorie, particularly the 
chapters from XIII on. An excellent idea of the scope of the geometric 
theory of functions may be had from the third part of the HURWITz­
COURANT Vorlesungen ilber allgemeine Funktionentheorie, Berlin, 1925. 
Two small volumes which may be recommended are CURTISS, Analytic 
Functions of a Complex Variable, Chicago, 1926, an introduction to the 
general theory, and BIEBERBACH, Einfilhrung in die konforme Abbildung, 
Berlin, 1927, on conformal mapping. For physical applications, see 
RIEMANN-WEBER, Die Differential- und Integralgleichungen der Mecha­
nik und Physik, Braunschweig, 1925. 
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HEYWOOD, 337 
HIl.B, 206 
HILBERT, 206, 280,284, 285, 287. 377 
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HOLDER, 152 
Holder condition, 152, 159, 161, 165,300 
Homoeoid, ellipsoidal, 22, 193 
HURWITZ, 359, 376, 377 

Incompressible, 36, 45, 48 
Independent, linearly, 292 
Induced charge, 176, 229, 231, 234 
Inductive capacity, 208 
Infinite region, 216 

series of images, 230 
set of points, 91 

Interior point of a set, 92 
Integral equation, 286, 287 

homogeneous, 294 
with discontinuous kernel, 307 

Integrals, improper, 17, 55, II 9, 146, 
300, 304 

evaluation of definite, 347 
Integrability, 76 
Intensity of a field, 31, 41, 55 
Inverse points, 231 
Inversion, 231, 248, 326, 344, 360 
Irrotational flow, 69, 70 
Isolated singularities, see singularities. 
Isothermal surface, 77 
Isotropic, 77 
Iterated kernel, 288, 301 

JEANS, 2ll, 378 
Jordan theorem, llO, 365 

lrELLOGG, 276, 323, 337, 338 
KELVIN, Lord, see THOMSON. 
Kelvin transformation, 231, 232, 326 
KEPLER, 2 
Kernel, discontinuous, 307 

of potential theory, 299 
of an integral equation, 287 

Kinetic energy, 49 
KIRCHHOFF, 378 
KNESER, 337 
KNOPP, 135 
KOEBE, 226, 227, 228 
KORN, 377 
Kow ALEWSKI, 337 

LALESCO, 337 
LAMB, 378 
Lamellar field, 49 
Lamina, 10, 12 
Lame functions, 205 
LAPLACE, 123 
Laplacian, 181, 188, 220, 323 

Laplace's differential equation, 1, 123, 
124, 175, 198, 2ll, 220 

integral formula, 133 
LAGRANGE, 38, 52, 123 
Laurent series, 359 
Least upper bonnd, 93 
LEBESGUE,238, 285, 319, 325, 326, 327, 

330, 334, 359 
Lebesgue's theorem on extension of 

continuous functions, 319 
LEGENDRE, 125 
Legendre polynomials, 125, 252 

developments in, 133, 134, 254, 259 
differential equation, 127, 141 

LIAPOUNOFF, 238 
LICHTENSTEIN, 197, 220, 337, 342, 378 
Limit point of a set, 91 
Linearly dependent, equivalent, inde­

pendent, 292 
functions, 360 
sets of points, 91 

Lines of force, 28, 41, 210 
LIVENS, 378 
Logarithm, 346 
Logarithmic distributions, 63, 173, 175 

doublet, 66 
particle, 63 
potential, 62, see also potential 

LOVE, 378 

Magnetic particle, 65 
shell, 66, see also distribution, 

double 
Magnet, 65 
Magnitude, 339 
Many-valued functions, 75, 197, 214, 

250, 260, 352 
Map, mapping, see conformal. 
Mass of earth and sun, 3 
MASER, 377 
MATHIEU, 377 
MAXWELL, 55, 2ll, 276, 378 
Method of the arithmetic mean, 281 
Methode de balayage, or method of 

sweeping out, 283, 318, 322 
MEYER, 241, 377, 378 
MILES, 338 
MISES, 377 
Mobius strip, 67 
Modulus, 75 
Moment of a double distribution, 67 

of a magnetic particle, 66 
of the attraction of a body, 23 

Morera's theorem, 350 
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Multiply connected region, 74 
Mutual potential, 81 

NEUMANN, C., 246, 247, 281, 290 
NEUMANN, F., 377 
Neumann problem, 246, 286, 311, 314 

for the sphere, 247 
NEWTON, 1, 22 
Newton's law, 1, 3, 25, 27 
Neighborhood, 93 
Nested domains, regions, 317 
Normal region, 85 
Normalized function, 292 

OERTLING, 20 
Open continuum, 93 

regular curve, 100 
surface, 112 

set of points, 93 
Order of integration in discontinuous 

kernels, 304 
Orthogonal sets of functions, 129, 130, 

252, 292 
coordinate systems, 180 

OSGOOD, 18, 35, 86, 90, 92, 94, 99, 110, 
HI, 165, 182, 196,249, 276, 339, 
342, 352, 376, 377 

Particle, 3, 23, 25, 26 
differentiation, 46 
equivalent, 5, 17 
logarithmic, 63 
magnetic, 65 

Path of a particle, 33 
PEIRCE, 63, 100, 377 
PERKINS, 244 
PERRON, 338 
PICARD, 281, 377 
Piecewise continuous, 97, 101, 113 

differentiable, 97, 101, 113 
Plane set of points, 91 
POINCARE, 175,283,284, 326, 329, 377, 

378 
Point of infinity, 232, 344 
Points, sets of, 91 
POISSON, 156 
Poisson's equation, 58, 156, 174, 208 

integral, 240, 251, 355 
Potential, 48, 52, 53 

at points of masses, 146 
derivatives of, 52, 121, 152, 160, 

162, 168 
energy, 49 

Potential, logarithmic, 63, 145, 172, 
248, 276, 338 

of a homogeneous circumference, 58 
of special distributions, 55 
velocity, 70 

Power series, 137, 349 

Quotient form for resolvent, 290, 308 

RAn6, 338 
Reciprocity, 82 
Reentrant vertex, 101 
Region, 93 

regular, 100, 113 
Regular at infinity, 217, 248 

boundary point, 328 
See also arc, curve, surface, sur­
face element. 

REMAK, 338 
Removable singularity, see singularity. 
Resolvent, 289 
RIEMANN, 1, 340 
RIEMANN-WEBER, 134, 200, 203, 206, 

211, 290, 376, 377 
RIEsz, 338 
RODRIGUES, 131 
RYBAR, 20 

ST. VENA NT, 378 
Scalar product, 50, 123, 212 
SCHMIDT, 175 
SCHWARZ, 107, 270, 281, 323 
Schwarz' inequality, 107 
Self-potential, 80 
Sequence method for Dirichlet problem, 

322 
Sequences of harmonic functions, 248 
Series, see developments, and power 

series. 
Sets of points, 91 
Shell, magnetic, 66 
Simple curve, 100 
Simply connected, 49, 74 
Singularities of harmonic functions, 268 

at points, 270 
general removable, 335 
on curves, 271 

Sink, 44 
Solenoidal field, 40 
Solid angle, 12, 68 
Source, 44 
Source density, 45 
Specific heat> 77 
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Spherical conductor, 176 
coordinates, 183 
harmonics, 139, 204, 256 

Spread, surface, 10 
Standard representation, 98, 105, 108, 

157 
STERNBERG, 377 
STOKES, 73 
Stokes' theorem, 72, 89, 121 
STONE, 129 
Strength of a magnetic pole, 65 

of a source, or sink, 44 
STUDY, 373 
Subharmonic function, 315 
Sum of regular regions, 100, 113 
Superharmonic boundary value exten-

sion, 324 
function, 315 

Surface distribution, 10, 12, 160, 311 
element, regular, 105 
normal, 90 
material, 10 
regular, 112 

Surfaces, lemmas on, 157 
Sweeping out, see methode de balayage. 
SZASZ, 206 

TAIT, 26, 81, 377 
TARLETON, 377 
Tesseral harmonics, 205 
THOMSON, 26, 81, 232, 278, 284, 377 
Transformations, 235, see also con-

formal 
Triangulation of 'regular regions, 101 
True charge, 209 

Tube of force, 36 

Uniformity, uniformly, 94 
Uniform continuity, 96 
Uniqueness of distributions, 220 

of mapping function, 369 
theorems, 211, 215, 336, 337 

V ASILESCO, 331, 336, 337 
Vector field, 28 

product, 123 
Velocity field, 31 

potential, 70 
Vertex of a regular surface, 112 
Volume distribution, 15, 17, 150, 219, 

316 

WALSH, 223, 253 
'WANGERIN, 206, 377 
WATSON, 134, 202, 206 
WHITTAKER, 134, 206 
WIEN, 378 
WEINSTEIN, A., 373 
WEINSTEIN, B., 378 
WIENER, 330, 338 
WEIERSTRASS, 280, 321, 351 
Weierstrass' theorem on polynomial 

approximation, 321 
Wire, 9 
Work,49 

ZAREMBA, 285, 329, 334 
ZENNECK,2 
Zonal harmonics, 252, 254 
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