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PREFACE

THE present volume is a résumé of my research work on the hyper-
bolic case in linear partial differential equations. I have had the
happiness of speaking of some parts of it to an American audicnce at
Columbia University (1911) and also had the honour of treating some
points at the Universities of Rome (1916) and Zurich (1917)*. I am
much indebted to Yale for having given me the opportunity to develop
the whole of it, with the recent improvements which I have been able
to make.

The origin of the following investigations is to be found in Riemann,
Kirchhoff and still more Volterra’s fundamental Memoirs on spherical
and cylindrical waves. My endeavour has been to pursue the work of the
Italian geometer, and so to improve and extend it that it may become
applicable to all {normal) hyperbolic equations, instead of only to one
of them. On the other hand, the present work may be considered as
a continuation of my Legons sur la Propagation des Etudes et les Equa-
tions de I’ Hydrodynamique, and, even, as replacing several pages of the
last chapter. The latter, indeed, was a first attempt, in which I only
succeeded in showing the difficulties of the problem the solution of
which I am now able to present.

Further extensions could also be given to such researches, including
equations of higher orders, systems of equations, and even some ap-
plications to non-linear equations (the study of which has been under-
taken in recent times, thanks to the theory of integral equations):
which subjects, however, I have deliberately left aside, as the primary
one constitutes a whole by itself. I shall be happy if some geometers
succeed in extending the following methods to these new cases.

After Volterra’s fundamental Memoirs of the Acta Mathematica,
vol. xvi1i1, and his further contributions, we should have to mention,
as developing and completing Volterra’s point of view, the works of
Tedone, Coulon and d’Adhemart. The latter’s volume Les equations
aux dérivées partielles o caractéristiques réelles (Scientia Collection,

* 1 also mention a brief note read at the International Congress of Mathe-
maticians at Strasbourg (September 1920).

t Picard’s researches—which we shall quote in their place—are also essential
in several parts of the present work. Such is also the case for Le Rouxz.
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Paris, Gauthier-Villars) includes a careful bibliographical review, and
another one has been given by Volterra himselfin his Lecturesdelivered
at Stockholm (published at Hermann’s, Paris). We did not think it
necessary to give a third one, even to add the mention of later works,
and content ourselves with eventual quotations in footnotes, apologising
in advance to the authors whom we may have forgotten*.

Reasons must also be given for the change of two terms which had
been previously introduced and adopted in Science. One is “funda-
mental solution” replaced by “elementary solution”; the other consists
in replacing the word “conormal,” created by the finder (d’Adhemar)
himself, by “transversal.” The first has been done in order to avoid
confusion with the “fundamental solutions” introduced by Poincare
and his successors (as solutions of homogeneous integral equations);
the second for reasons of “economy of thought,” as the notion in ques-
tion already occurs in the Calculus of Variations, where it is denoted
by the word “transversal.”

I wish to express my heartiest thanks to two young American
geometers, Mr Walsh and Mr Murray, whom I have been so pleased
to see at Paris during the Academic year 1920—1921. They very
kindly undertook to revise the English of the greater part of my
manuscript. I fear many faults of language may have escaped detec-
tion, but that such errors are not more numerous is due to their useful
and friendly help.

* Our own Memoirs on the subject have been inserted in the Annales Scient.
Ee. Norm. Sup. (1904—1905) and the Acta Mathematica (vol. xxx1, 1908). We
want to point out that the latter contains several errors in numerical coefficients,
viz. in formula (30’), p. 349, where a denominator 2 must be cancelled (a factor 2
having similarly to be added in the preceding line), and in all formule relating to
m even (corresponding to our Book IV), which must be corrected as in the

present volume.
J. H.

July 1921.

I am also greatly indebted to Prof. A. L. Underhill, of Minnesota,
for his kind advices in correcting faults of language during the
revision of proofs, and express to him my best thanks.

May 1923.
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BOOK 1
GENERAL PROPERTIES OF CAUCHY’S PROBLEM






CHAPTER 1

CAUCHY’S FUNDAMENTAL THEOREM. CHARACTERISTICS

WE shall have to deal with linear partial differential equations of the
hyperbolic type,and especially with Cauchy’s problem concerning them.

Wﬁﬁ?a—ffnﬁp_arfal'&ﬁ‘éfé’ﬁﬁ”ﬂ‘éd uation 1s, is well Known:” What
the hyperbolic type is, will be explained further on. Let us recall what
Cauchy’s problem is. g

1. Boundary problems in general. A differential equation—
whether ordinary or partial—admits of an infinite number of solutions.
The older and classic point of view, concerning its integration, con-
sisted 1n finding the so-called “general integral,” i.e. a solution of the
equation contalning as many arbitrary elements (arbitrary parameters
or arbitrary functions) as are necessary to represent any solution,
save some exceptional ones. '

But, in more recent research, especially as concerns partial differ-
ential equations, this point of view had to be given up, not only because
of the difficulty or impossibility of obtaining this “general integral,”
but, above all, because the question does not by any means consist
merely in its determination. The question, as set by moss §pplications,
does not consist in finding any solution u of the differential equation,
but in choosing, amongst all those possible solutions, a particular one
defined by properly given accessory conditions*. The partial differential
equation (“indefinite equation” of some authors) has to be satisfied
throughout the m-dimensional domain R (if we denote by m the
number of independent variables) in which u shall exist; in other
words, to be an identity, inasmuch as u is defined, and simultaneously
the accessory conditions (“definite equations”) have to be satisfied in
points of the boundary of R. Examples of this will occur throughout
these lectures.

If we have the general integral, there remains the question of

* This even gives, as we conceive nowadays, the true manner of obtaining the
general integral, as, by varying the accessory data in every possible way, we can,
as a rule, get to any solution of our equation.

1—2
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choosing the arbitrary elements in its expression so as to satisfy
accessory conditions. In the case of ordinary differential equations,
the arbitrary elements being numerical parameters, we have to de-
termine them by an equal number of numerical equations, so that, at
least theoretically, the question may be considered as solved, being
reduced to ordinary algebra; but for partial differential equations,
the arbitrary elements consist of functions, and the problem of their
determination may be the chief difficulty in the question. For in-
stance, we know the general integral of Laplace’s equation V2u=0;
but, nevertheless, this does not enable us to solve, without further
and rather complicated calculations, the main problems depending on
that equation, such as that of electric distribution.

The true questions which actually lie before us are, therefore, the
“boundary problems,” each of which consists in determining an un-
known function u so as to satisfy:

(1) an “indefinite” partial differential equation;

(2) some “definite” boundary conditions.

Such a problem will be “correctly set” if those accessory conditions
are such as to determine one and only one solution of the indefinite
equation.

The simplest of boundary problems is Cauchy’s problem.

2. Statement of Cauchy’s problem. It represents, for partial
differential equations, the exact analogue of the well-known funda-
mental problem in ordinary differential equations.

The theory of the latter was founded by Cauchy on the following
theorem: Given an ordinary differential equation, say of the second
order,

dy d‘ly)_
(1) ¢ <w: Z/, a_'i: dx,_, —O
: : d*
or, solving with respect to c_ZTJ;Z )
, dy dy\ _ ,
(1) a_./l,“_f<x’ Y Za‘:) —f(.’l), Y ¥

a solution of this equation is (under proper hypotheses) determined

if, for =0, we know the numerical values ¥,, 3’ of y and ;—i (or, if
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. . d
the equation were of order %, the numerical values of y, a—Z , e
@.‘5‘““@:%1)
da*1)"

Now let us start from a partial differential equation of the second
order, such as (for two independent variables)

(2) ¢’ (lL, Z, Y, p.q,.71 S, t) =0
or, if the number of independent variables is m,
(II) ¢ (u: Ziy Pis Tis Silc) = O;

where u is the unknown function; #,, @, ..., #, the independent

variables and p; (¢ =1, 2, ..., m) stands for the first derivative qu’

Ba:i

. .. 0u .. o*u
r; for the second derivative — , sz for the second derivative .
36%'2 ax,-axk

We especially deal with the linear case: that is, the left-hand side
is linear with respect to u, p;, 7;, sz, the coefficients being any

given functions of #,, a,, ..., #,. Now if we are asked to find a
solution of that equation such that, for a,, =0, v and the first de-
rivative ou be given functions of 2, @, ..., &y, Viz.

0%,

U (xl) Loy «vos Tm—1y O) = Uy (501, Loy o0y w’)n—l):

ou

'a'."x— (wl’ Zoy coey Lp—-1, O) = U ('xl) Lay eeey xm—l);
m

this will be called Cauchy’s problem with respect to #,,=0; %, and u,
will be Cauchy’s data and #,, =0 the hypersurface*—here a hyper-
plane—which *‘bears” the data.

3. Of course, there is no reason to consider exclusively plane
hypersurfaces. Let us imagine that the m-dimensional space be sub-

* In the m-dimensional space (z;, %3, ..., Z,,), we shall, for brevity’s sake, call
a hypersurface (or even a surface) the (m — 1)-fold variety defined by one equation
between the 2’s; we call an edge the (m — 2)-fold variety defined by two equations.
A line will, as usual, mean the locus of a point depending on one parameter; it
will be a straight line if the 2’s are linear functions of the parameter.
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mitted to a point transformation

( x, = Gl (Xl: ceey Xm),
- J o= G (X, ..., X,

...........................

(w not being altered by the transformation). The hyperplane a,, =0
will become, in that new X-space, a certain arbitrary surface S

(S) Gm (X, ..., X;)=0.
Our differential equation being replaced by an analogous one
(IIG,) q)(u, XI, X2: ~--:Xm: -Piy Ri: Sll.)=0:

Cauchy’s problem for that equation, with respect to the surface S,
will consist in finding a solution of (ILa), satisfying, at every point of
this surface, two conditions such as

du

C‘[N— Ulo

N is a direction given arbitrarily at each point of S, but not tangent
to it; w,and U, (a quantity suitably deduced from u, and the primitive
u,) are given numerical values at each point of S, these again being
called Cauchy’s data for the present case.

U= U,

4. Physical examples. We immediately remind the reader that
Cauchy’s problem occurs in several physical applications. Forinstance,
let us consider a cylindrical pipe, indefinite in both senses, full of a
homogeneous gas which may be subjected to small disturbances. Let
us admit Bernoulli’s hypothesis of parallelism of sections, so that we
have to deal with the motions of a one-dimensional medium; the
displacement % of any molecule being always longitudinal and a
function of the initial abscissa # and the time ¢, v must satisfy the
equation (where w is a constant)

2 2

(e1) %{? = o® gﬁl .

The motion will be determined entirely if, at the instant ¢=0, we
know the initial positions (i.e.the initial disturbances from the positions
of equilibrium) and the initial velocities of all the molecules; this
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knowledge will be analytically expressed by the conditions

(Cy) w (z, 0) = u, (), %—Z (z, 0) = u, ().

Similarly for the motion of electricity in a homogeneous conducting
cable, indefinite in both senses, the distribution of intensities and
potentials all over the cable at the initial instant being given: the
only difference will be that the problem is not governed by equation
(e,) but by the so-called “telegraphist’s equation.”

If we now come to a three-dimensional medium, that is, to ordinary
space, let us consider a homogeneous gas filling that space indefinitely
in every direction, and without any gap.

Small motions of such a gas will be governed by the equation of
sound or of spherical waves

2w Pu  o’u 1 Pu
(&) Wt s

u being a properly chosen unknown function (the so-called “velocity
potential ) of z, v, 2, ¢, and w again a constant (the velocity of sound
1n the gas). Knowing initial disturbances and initial speeds at the
instant ¢ =0 will be equivalent to knowing the conditions (Cauchy’s
conditions)

0
€ (w92 0=y 2 = (@y20)=u@y:2)
u, and », being given functions of z, ¥, 2.

4 a. We have been speaking of one-dimensional and three-dimen-
sional mediums; of course we may also conceive two-dimensional
ones. Let us, for instance, imagine that the state of an aerial mass
happens at every instant to be the same all along each vertical line,
so that pressures, densities, velocities (the latter being horizontal)
are all independent of the vertical coordinate z. Such a motion will
be governed by the equation of cylindrical waves

tu o*u 1 o%u
(ez) 55;? + ayz ©? 0

which is deduced from (e;) by supposing that u is independent of 2.
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This case being evidently a sub-case of the preceding one, we again
can complete the determination of « by Cauchy’s conditions

©) 1@y 0=u@y) @y 0=uy)

Of course, we can also conceive the same problem as corresponding
to the preceding one for beings living in a space with only two
dimensions. But 1t will be very important for us to remember that
this two-dimensional problem may be considered as a mere special
case of the three-dimensional one.

We note that, in each case, the number of independent variables
1s greater by one than the number of dimensions of the medium, the
time ¢ constituting a supplementary variable or, as we may say, playing
the part of a new coordinate*. It is known that physicists in recent
times have fully adopted this point of view, the combination of a
point in space and value of ¢ being called by them an “event” or
“universe point,” the ensemble of all points of space combined with
all values of ¢, a “universe.”

5. Geometric configurations. Graphically, taking again a one-
dimensional medium, we shall represent the combination of a value
of  and a value of ¢ (that is,a given point of the medium considered
at a given instant) by a point in an «¢ plane.

Similarly, we may study the motion of a two-dimensional medium
by introducing coordinates z, ¥, and ¢ in a space analogous to our
ordinary one, the medium at the instant ¢ =0 being represented by a
certaln plane in that space, while other instants (especially later
ones) would be represented by displacing that plane normally to
itself. Everything takes place as if, at the same time in which our
two-dimensional motion occurs, the horizontal plane in which it takes
place possessed a vertical velocity equal to 1.

6. The case of motion in ordinary space will present a little more
difficulty as, adding ¢, we have, to introduce four-dimensional space.
We do it, as it seems to me, as clearly as possible by imitating exactly
the method of ordinary descriptive geometry. We simultaneously
draw two systems of axes z, y, z and #, y, t (fig. 1): each four-dimen-

* This conception was beautifully illustrated a good many years ago by the
novelist Wells in his “Time Machine.”
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sional point, or “universe point,” (z, ¥y, 2, t) shall be represented by

xyz

|

|

| ¢
Fig. 1.

two simultaneous points (z, y, z) and
(z, y, t). The plane of 2y shall play the
part of the “ground plane,” the only
difference from ordinary descriptive geo-
metry being that, for clearness’ sake, this
ground plane will often be drawn twice,
as 1n fig. 1a*.

7. Cauchy-Kowalewsky’s theorem.
Now, concerning Cauchy’s problem, the
following three questions evidently arise:

1. Has Cauchy’s problem a solution ?

2. Has 1t only one solution ? (in other words, 1s that problem cor-

rectly set ?); and lastly

4

XYz

o e—— @ —

laxyt

Fig. la.

3. How is that solution to be calcu-
lated ?

Though the first two questions will
be considered here as merely intro-
ductory+, we shall begin by seeing how
we must answer them.

It is well known that Cauchy himself,
then Sophie Kowalewsky and, at the
same time, Darboux* considered the case
in which (2) or (II) can be solved with
respect to » (or ry,), Viz.

(2) r=f(u, 29 p ¢5s1)
or (IT') rm=Jf (4, o, ...),
which is the case in (2) or (IT) if

@ ZLroor 2?40

* We shall also quite frequently limit ourselves to drawing one “projection,”
viz. the (z, y, ¢) diagram, or even more simply (whatever m may be) the section of
the m-dimensional diagram by a two-dimensional space.

t For some further details, we refer to our Columbia Lectures (1911), New York,
Columbia University Press (1915), Lecture 1.

i Cauchy, C. R. Acad. Sec. vol. x1v, p. 1020; vol. xv, pp. 44, 85, 131 (1842);
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upon that hypothesis, they proved (or are most frequently said to
have proved) that Cauchy s problem, with respect to £ =0 (or ,,=0),
always admits of one and only one solution.

8. Analytic functions. The proof of this theorem has been
simplified by Goursat* in such a way that we can give it in a few
lines: before which, however, we have to recall what the conception
of an analytic function is.

The function f () of the (real) variable « is said to be analytic or,
more exactlyt, analytic and regular or also holomorphic in the interval
(a, b) if, z, being any number in that interval, f can be represented,
for « sufficiently near to ,, by a Taylor series in powers of (z —x,),
the convergence radius of which is therefore not zero.

If so, f can be defined, and will admit of derivatives of every
order, not only for the just mentioned real values of z, but also for
imaginary ones, provided their representative points are near enough
to the segment (a, ) of the real axis. “

But Cauchy’s theory of functions shows us that this second
property—viz. existence in the imaginary domain with continuity
and differentiability—conversely implies Taylor’s expansion, thus
giving a second definition, fully equivalent to the first one, for an
analytic function.

The interval of convergence of the Taylor series for f may
be limited by singularities of f in (a, b); but is usually without
any apparent relation to them and much smaller than would be

Sophie Kowalewsky, Thesis, Gottingen (1874) ; Journal fiir Math. t. LxxX (1875),
pp. 1—32; Darboux, C. R. Acad. Sc. vol. LxxX (1875), pp. 101—104 and p. 317. S.
Kowalewsky seems not to have known the work of Cauchy (which was also un-
known to Darboux and was pointed out by Genocchi in the same vol. LxxX). She
even attributes to Weierstrass, Journal fiir Math. t. L1 (1856), p. 43, the first formu-
lation of the theorem concerning ordinary differential equations, which seems to
be puzzling, as she quotes Briot and Bouquet (Journ. Ec. Polytechnique, vol. XXI),
and these begin by referring to Cauchy (though without giving a precise quotation).
The theorem was again proved in other later works, such as Meray and Riquier’s.

* Bulletin de la Societé Mathématique de France, vol. xxv1 (1898), p. 129 ; Cours
d’Analyse mathématique, vol. 11, p. 360; see Hedrick and Dunkel’s translation
(Ginn and Co.), vol. 11, part 11, pp. 53 ff.

t Analysts frequently do not cease to call a function an analytic one even if its
domain of existence contains points of discontinuity (poles, essential points, etc....).
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obtained by their consideration (being connected with imaginary
singularities).

All this may be extended at once to the case of several variables,
an analytic function of z, y, z being characterized by one of the two
(equivalent) definitions:

(A) f(=, y, 2) is analytic in the volume % if, (z, ¥,, 2,) being any
point in @, f can be represented by a convergent Taylor series in
powers of (x— 2,), (¥ — yo), (2 — 2z,) for every position of (z, ¥, z) within
a certain sphere with centre (z, ¥, 2));

(B) f(z,y, 2) is analytic in the volume @ if it can be defined, so
as to be continuous and differentiable, not only for the (real) points
of @, but for any point =z + 2",y =y'+y”?,2=2 + 2”7 such that
(@, y', 2') lies in ? and |2” |, |y”|, | 2” | are sufficiently small.

Analytic functions are the ones usually given by our mathematical
procedure; but they are really very special ones amongst functions
in general*. This is readily seen by the simple (and important) fact
that the continuation of an analytic function vs determined. If f(z) is
analytic in (a, b), the knowledge of its values in any—however small
—sub-interval (@', b') of (a, b) enables us to calculate it all over (a, b).

For non-analytic functions, continuation has, generally, no mean-
ing. Such a function being only given in (0, ), its values in (3, 1)
can be chosen in oc ways, no reason existing, as a rule, to prefer any
one of these continuations to any other one.

9. Regular functions. We shall have, in the future, to deal with
several kinds of functions which will not be assumed to be analytic;
they will frequently be restricted by some hypothesis of regularity.

A function of one or several variables will be called regular if it
is continuous and admits of continuous derivatives up to a certain
order p. This order will vary according to the nature of the question.
Strictly speaking, it should be precisely indicated in each case: I
must own, however, that I shall most often omit to do this, such
precision not seeming to me to be worth the somewhat tedious pre-
cautions which it would require. It will besufficient for us to realize that
such an order exists, which fact is generally obvious in each question.

* For further details, we refer to our work La série de Taylor et son prolonge-
ment analytique, Paris, Gauthier-Villars.
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A regular function admits of Taylor’s expansion, limited to terms
of a certain order, and, as its derivatives also admit of corresponding
expansions, all operations based on such an expansion, and in general
all operations of Differential Calculus which are valid for analytic
functions, hold good also for “regular” ones, provided no higher
derivatives are concerned than those of order p. For instance, such
a punctual transformation as (T) (§ 3) will not alter regularity if the
functions G are themselves regular (with the condition, of course,
that the Jacobian does not vanish).

As to calling a function “analytic and regular,” this is synonymous
with saying that 1t is holomorphic.

10. The proof of Cauchy-Kowalewsky’s theorem. For the
fundamental theorem concerning ordinary differential equations, we
remind the reader that two kinds of proof have been given by Cauchy
and his successors. .

I. One of them is what Cauchy calls “ Calcul des Limites*,” and
modern writers “ method of dominant functions.” Taking the given
differential equation in the form (1) (§ 2), it essentially assumes
that its right-hand side is holomorphic in «, y, y in the neighbour-
hood of (x=0, y=1v,, ¥y =%,). Using the fact that any convergent
Maclaurin expansion in powers of z, y, z admits of a “dominant”
expansion of any of the forms

K K K

T ) e
P p/\ P P P 1

K, p, p, being, in each case, properly chosen positive constants, the
proof establishes (upon the aforesaid hypothesis) that there exists a
(unique) convergent Maclaurin expansion in powers of z satisfying
the given equation and initial conditions.

II. In the second kind of methods (successive approximations),
the differential equation is no longer assumed to be an analytic one.
Only very simple properties (continuity and “ Lipschitz’s condition )
are assumed concerning its right-hand side. Nevertheless, the same
result—viz. existence and uniqueness of the solution—is obtained as

* See Goursat’s Cours d’ Analyse, translated by Hedrick and Dunkel, vol. 11,
part 11, chap. 11, pp. 45 ff.
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in the former method, except that, of course, the solution itself is no
longer analytic.

The proof of the theorem concerning partial differential equations
corresponds to the first of the above-mentioned classes of methods.
We shall present it under Goursat’s form *.

Reducing the number of independent variables to two, in order to
simplify the notation, we start from the equation

(2) r=f(u, Y p, 50
and the corresponding Cauchy problem, consisting in the determina-
tion of u by that equation and the definite conditions

(5) w0 =), 220,9)=u)

Let us try to satisfy all these conditions by choosing for u a power
series In &

(4) U=ty +u,z+ .. +hhx"+

h
Each u; = (gzg) » will be a function of y, which we must find.

U and u] are given. To find w,, us, ..., we notice that each deriva-

tive whaf’ for 2= 0, will be a derivative of uy, whatever & may be.

Therefore, making, in (2'), #=0, the right-hand side will contain,
besides vy itself, only the functions w,, , and their derivatives p = u,,
qg=1u,, s=u’, t=1w,", so that the left-hand side (7),_,=wu, can be
considered as known.

Furthermore, differentiating (2’) once with respect to «# and then
making =0, we obtain (%—;) = uy In terms of u,, u,, u, and their

=0

derivatives; and, in the same way, successive differentiations with
respect to « will give us the values of w,, u;, ..., each u, being a
polynomial in w,, %, %s, ..., up—; and their derivatives, and also in f
and 1ts derivatives.

We can also consider each u, as expanded in powers of (y—v,)
(where y, is some fixed value of y) so as to replace (4) by

Upj;
(4a) u=S=23 A ]c'.'za"(y —Yo)t:
* See Goursat-Hedrick, loc. cit. pp. 61 ff.
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then each numerical coefficient u; will, on account of the preceding
operations, be expressed in terms of the preceding ones (that is, us
with smaller 4 and not greater k) and of the coefficients in the Taylor
expansion* of f, by a polynomial P.

We see that conditions (2”) and (5) determine every coefficient of
(4) or (4a). Therefore, we can already assert that our Cauchy problem
cannot admit of more than one solution represented by a convergent
series; that s, of one solutvon holomorphic in .

We have now to show that a solution actually exists, Assuming
f to be holomorphic in the variables which it contains and making
the same hypothesis for the functions u, and u, in the neighbourhood
of some fixed value y =1y,, we shall show that the serves (4) ¢s conver-
gent for |z | sufficiently small+, and that such vs the case even for the
double series (4.a), provided | z| and |y — y,| lie below properly chosen
positive limits.

The first step will consist, as for ordinary dlﬁ'erentlal equations,
in noting that each successive operation for the determination of our
uy, only implies differentiations, multiplications and additions (without
any use of the sign —): in other words, that the polynomial denoted
above by P has only positive terms. Therefore, we shall have a
dominant of the series (4 a) if we replace each of the expansions of
f> 4o, u; by a dominant one. The whole question is reduced to finding
such dominant expansions that the corresponding problem is certain
to have a solution.

For that purpose, we may at first assume that the given functions
Uy, W, are zero, and even that zero 1s also the value of u, deduced
from the equation ; for, in the general case (u,, 4, u; # 0), we could,
instead of u, introduce a new unknown %’ by the transformation

U = U= Uy — Uy T — U2,

the new problem in %’ satisfying the above requirement. Under such

* We mean an expansion in powers of z, (¥ ~%,), [#—% (%)), [ 2 — %1 ()],
[9—20 @o)]s [8—u' (90)], [£~—%0" (%0)]-

t That the series (4a), when convergent, certainly defines a solution of the
problem, can be shown as in the case of ordinary differential equations (and as we

shall show in Book 11 for similar purposes).
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conditions (and y, being taken = 0) a dominant of f will be

K
<1 _Ttry+tu+p+ q) <1 _ ‘?.i.f")
P P
(as the initial values of z, ¥y, u, p, q, s, ¢ are all zero, and the corre-
sponding value of f is also zero), and we can replace u,, u, by any
Maclaurin expansions with positive coefficients, as any such expansions
are obviously dominant of zero. Our proof will therefore be given if
we show that the equation
e 0w _ K
ox? (1 _m+y+u+p+q) (l _ﬁ-_t)
. P P
admits of a solution represented by a Maclaurin expansion with all
coefficients positive or zero, or if we do so for any other equation where
the quantity in the right-hand side would be replaced by a dominant

-K

- K

one. Now, Goursat introduces such a dominant by writing - instead

of z, denoting by @ a positive number smaller than 1, the choice of
which we shall examine presently.
For this new equation

2
Tu_ S - K,

ox? x
< d+y+u+p+q) .
<1 - --)
P P1

we seek to find a solution only depending on the variable

o=z +ay.
The function u of o will have to satisfy the ordinary differential

equation
2

IS

&

K

VT T, - K
- tut+(1+au (o + o) "
1- (1 ~ e
P P1
or
. K o | B ata® jdPu? K
{L—E(a+a)] it o <d02> = - K.

C rutd+a) P
1-¢ do
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If we now take a such that 1 —g(a+ o) > 0. not only will this

differential equation admit (on account of Cauchy’s first theorem) of
a holomorphic solution vanishing with o, but the expansion of the
solution will have all its coefficients positive*. Q.E.D.

Nothing essential need be changed in the above when several
independent variables z, y, z, ... exist, the double series S merely
becoming a multiple one, the quantity o being #+a(y + z+...) and
some numerical coefficients appearing in our dominant functions.

11. The expansion (4 @) thus obtained depends on the choice of
Y, and is only valid if we assume not only that | z| < R, but also that
it is confined within a proper interval 7 around gy, On the contrary,

. the expansion (4) is independent of y,. More precisely, if we give to
Yy, two different values such that the two corresponding intervals 1
overlap each other, every function w; will be the same for both cases
in the common part, this being a consequence of the fact that the
holomorphic solution of our Cauchy problem is unique.

Therefore, if our hypotheses concerning f, u,, u, are satisfied
throughout any segment, however large, of the y-axis, our preceding
calculations will give the expansion (4) in the vicinity of that whole
segment. The numbers K, p and p, having, as we know, the first a
maximum and the two others minima all over the aforesaid segment,
the corresponding limit of convergence R for |z | can also, if necessary,
be considered as constant.

As has already been stated, the above determination of R (even
if we take it as different for different values of y,) generally leads,
for the domain of convergence of the series (4) and, a fortiori, for the
domain of existence of the solution u, to limits which are so small

as to be useless in practice.

12. Characteristics. The conclusions are quite different in the
exceptional case, where the sign # in (3) (p. 9) is replaced by =. In

* A quantity Y defined by a¥ —=bY?=1X, with ¢ >0, 6 >0, has, in powers of
4, a Maclaurin expansion with all coefficients positive, as appears, e.g. by direct
resolution of the quadratic equation.
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this case, the solution of Cauchy’s problem does not generally exist and,
of it exists, 18 not unique.

In this instance, some new features appear when the number of
variables is greater than two. Let us take it as 3, and also change our
notation (as we shall do from now on), by representing our equation,
which we now assume to be linear, in the form *

o%u
(E) 3 dugne + 3 Bige
Ay, B;, C and f being given functions of the #'s. For the exceptional
case, we must assumet A, (= 4;) =0, so that our equation is

reduced to

+ Cu ={,

ou 2u 02w
(6) 245 0, 0z, 2A238 2,0 3_* A“aml
0%u Bﬁu ou
+2A128 3 2+A228 - \ Ba +Cu={,

with Cauchy’s conditions u = u,(z;, ), g— =u, (z,, ) for z;=0.
3

Here we see that the left-hand side contains no double differen-
tiation with respect to a3, so that (for ;,=0) the equation does not
involve the coefficient u, of ;% but only u, and u,; thus, it no longer
determines any unknown, but gives us a condition of possibility for
our Cauchy problem, viz.

) 24, g“ 424, L B+ H=0,
o,
. o, 0%y 0%, 0%u, Oty o,
\V].th II—4‘1115’EEZ§+2A126 la 2+A2282+Ba +.Bza 2+0‘0 f

If 4, and %, are not chosen so as to satisfy this equation, the problem

has no solution.
If, for instance, u, 1s given in the first place, we ought to take for
u, a solution of (7). We notice that this gives for v, a linear partial

* The notation is the usual one for quadratic forms, with 4;= 4;;, so that
each term of the second order with different suffixes is reckoned twice.

t 4,.,»=0 may be an identity in #,, 23, ..., £, or, more generally, an identity
in @y, ..., £ for 2,=0. For simplicity’s sake, we only deal with the first case,
the conclusions being the same, as may be readily seen, in the second one.

H. 2
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differential equation of the first order, the integration of which would
lead, as we know, to the drawing, on our plane z;=0, of the system
of lines (!) defined by the differential equation*

dz, d,

@ 4,4
Let us now suppose that condition (7) is fulfilled : we have as yet
no condition to determine wu,. But such a condition arises from the
following equation (which, in the general case, previously dealt with,

was used to find u;) obtained by differentiating once with respect to
x; and then making x;=0: this obviously gives

(7,) 2A13g_:l;—¥+& 2A23§L";:+B3’162+H1 = O,
1
_ 04130y 0A., 0u, 0B, oH
where H, =2 5%, 7, 2 5%, 7, + 5—;;11,1 + . does not depend on u,.

We see therefore that u, is not entirely arbitrary, but that it can,
nevertheless, be chosen in an infinity of ways: we can take for it any
solution of the linear partial differential equation (7°). This equation
has the sume characteristics as (7), viz. the lines (0).

The fact that, u, and u, being given, u, may be chosen in more
than one way can be expressed by saying that two solutions of our
equation (corresponding to the same %, and w,, but to different u,’s)
may be tangent to each othert in every point of z;=0 (or, generally,
Zm=0).

Further differentiations with respect to «; would, in the same way,
give us for us, uy, ... successive linear partial differential equations of
the first order, the characteristics of which would still be the same
lines (0).

We shall have to return later to these lines, the geometric meaning
of which will then appear. For the present, the preceding calculation

* The corresponding lines () for m > 3 would be defined by (m - 2) differential
equations between zy, 23, ..., Zm—1-

t Two functions u, v (of one or several variables) are said to be tangent at a
determinate point (i.e. for a certain system of values of the variables) if they and
all their first derivatives assume numerical values which are equal each to each
at the point in question. The contact is of order p if similar equalities hold not
only between first derivatives, but between all derivatives up to the order p.
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gives us a first presumption that if our Cauchy problem is not im-
possible (that is, if condition (7) is fulfilled) ¢¢ becomes indeterminate,
as each of the successive u;’s can be chosen with a certain measure of
arbitrariness. This, however, is only a presumption, as we do not
know, as yet, whether the choice of these ;s can be directed so as to
make the series (4) convergent: the proof of which fact we shall have
a further opportunity to give, and this will show, at the same time,
the degree of indetermination of w.

If we take this proof for granted, we see that, briefly speaking,
Cauchy’s problem behaves like the resolution of a system of n ordinary
equations of the first degree in » unknowns, the determinant of which
1S zero.

We have dealt with a linear equation, the only interesting case
for what follows; the non-linear case leads to essentially similar results
with some differences at the beginning of the operation, and is even
readily reduced to the first case by differentiating the given
equation.

13. The above exceptional case is a most important one for our
further work and for any study of partial differential equations. How
is it to be defined if we set Cauchy’s problem not with respect to
Z, =0, but to any other surface such as S (§ 8)? To see this, we
only have to transform condition (3) by application of the punctual
transformation (T): an elementary operation. We thus recognize*
that (with the notation of § 3) the exceptional case vs defined by the
condition .

s 0P /0G\? S 0P 0Gn 0G
G OR\0X;) 08y 0X; 0Xp

Let us again suppose that we are in the linear case, our partial

differential equation having the form

*u
Bwi axk

0.

®  Sdag +IB+Cu=f

(Aix, B;, ¢ and f being given functions of z,, Zy, ..., ). The con-

* The condition can be found directly, and even the calculation in the pre-
ceding § 12 performed without the use of punctual transformations: see our
Legons sur la propagation des ondes (Paris, Hermann, 1903), ch. vi1, §§ 278 to 288.

2—2
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dition for the variety G' (,, ..., 2,)=0 to correspond to the exceptional
case will be .
“ T

(A) 2 A St By
in other words, it is to be obtained by the following

RuULE. We consider exclusively the terms of the second order in the
given equation, and, tn these terms, we replace each second derivative
of u by the corresponding square or product of first derivatives of G.

If condition (A) is fulfilled (that is, if the above quantity is zero
at every point* of the surface S), S is said to be a characteristict of
the equation (E). The quadratic form

0:

A (71, 2y coes Ym) = E Ayive

1s called the characteristic form.

The fundamental property of characteristics is, on acconnt of the
preceding considerations, expressed by the fact that they are the only
surfaces along which two solutions of the equation can touch each
other: this contact can be of any order (as, in the operations in the
preceding section, we can assume %, %, ..., Up—; to be the same for
two different solutions, the values of u; changing).

This property 1is entirely similar to the definition of characteristics
for a partial differential equation of the first order, and this is the
reason why the same denomination is given to both, although the
former are surfaces and the latter lines (whatever be the number of
variables).

Equation (A) is a partial differential equation of the first order,
which § must satisfy. Geometrically, as is well known, it can be
interpreted by saying that, at each of its points, S must have its

* The case in which condition (A) would be satisfied in some points of .S and
not in the others, though occurring in some problems already treated, would
present new difficulties which have not as yet been attacked, as they have not
proved interesting in applications.

t+ The theory of characteristics, for two independent variables, has been known
since Monge and Ampere (see Darboux’s T%éorie des surfaces, vol. 11 and Goursat’s
Legons sur Uintégration des équations aux deérvvees partielles du second ordre). Its
extension to m > 2 was first given by Bicklund (M ath. Annalen, vol. X111, 1878),
but was not generally known before being found by Beudon (Bull. Soc. Math. Fr.
vol. xxv, 1897).
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tangent plane tangent to a certain corresponding quadratic cone,
whose tangential equation i1s A (v, 7z, -.-, ¥m)=0. This cone is called
the characteristic cone.

(If the Ay’s are not constants, each system of values of z,, za, ..., T
will give a different characteristic cone. We shall generally consider
a characteristic cone as having the corresponding point of the m-
dimensional space as its vertex.)

Characteristics have an important physical meaning; they are, in
fact, what the physicist means by waves. That the above definition of
them (and, more precisely, the part they play as surfaces of contact
between two solutions) is strictly equivalent to Hugoniot’s conception
of waves, may be easily perceived (for proof, however, we shall refer
to our Legons sur la propagation des ondes). In fact, the identity of
both conceptions not only will appear in each case that we shall have
to deal with, but will be an a posteriori consequence of our final
formulee.

14. The result of Cauchy and Sophie Kowalewsky’s analysis would
therefore be that Cauchy’s problem has one (and only one) solution
every time the surface which bears the data vs not characteristic, nor
tangent anywhere to a characteristic *.

* We shall leave the case of systems of partial differential equations aside and
only say a word about it here for completeness’ sake. The fundamental theorem
allows a well-known generalization to such systems when the number of equations
is equal to the number p of unknowns and they can be solved for the derivatives
of the highest order with respect to one variable #: for instance, as concerns
the three equations of the second order F(r, 7,7’ ...)=0, Fy(r,7,7",...)=0,

Fy(ry17,r",...)=0 with the three unknowns u, v/, »” (where we have emphasized

2 20! 2,
the three second derivatives T=%—£§, r’=%;;, 7 ’=%§2—) if they can be solved for

’ "

r,r',r". The exceptional case will occur when such a resolution (at least a regular
one) is impossible, i.e. when the Jacobian W%F(%"-?%Q vanishes. Then =0 will
) ]

be said to be a characteristic. We easily deduce from this, by punctual transform-
ation (§ 3) or by a direct calculation, the condition that a surface G=0 be a
characteristic: which will give (see our Legons sur la propagation des ondes,
ch. vii, § 321),in the case of the above system, a partial differential equation
of the first order and sixth degree (2pth degree, if there were p equations of the
second order in p unknowns).

It has sometimes been believed that the exceptional case could always be
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avoided by a proper punctual transformation. This, however, is an error: in other

terms, ¢t may happen that the above defined equation of characteristics is an

vdentity. Various examples of this have been formed ; but one is offered by a most

classic and nsual problem, viz. the problem of applicable surfaces: three partial

differential equations of the first order in z, y, z as functions of «, » which cannot
tx Cy ¢z

be solved with respect to 7w ow’ whatever be the choice of the independent

variables u, ».

How Cauchy’s statement (still remaining in the analytic hypothesis) must
be modified in the most general case—without changing the variables—has, as is
known, been made clear by the works of Meray and Riquier, even when the
number of equations is not equal to the number of nnknowns.

But the effect of a punctual transformation can itself be determined, and,
therefore, a new equation for characteristics established, even when the ordinary
condition for these fails by being an identity, as was pointed out, in one case, by
the author (Bull. Soc. Math. Fr. vol. XxX1v, 1906) and generally performed, thanks
to the works of Le Roux (Bull. Soc. Math. Fr. vol. xxxvi, p. 129, 1908), Gunther
and Maurice Janet (C. R. Ac. Sec. 1913).



CHAPTER II

DISCUSSION OF CAUCHY’S RESULT

15. The reader will probably wonder at our systematically em-
ploying a conditional form and seeming to consider as doubtful one of
the most classic and well-known demonstrations of analysis. The fact is
that things are not so simple as would be suggested by the above argu-
ments. Indeed, the circumstances which we shall meet with will appear
as quite paradoxical from the purely mathematical point of view and
could only be foreseen by physical hints. No question offers a more
striking 1illustration of the ideas which Poincare developed at the
first International Mathematical Congress at Zurich, 1897 (see also
La Valeur de la Science, pp. 137—155), viz. that it is physical appli-
cations which show us the important problems we have to set, and
that again Physics foreshadows the solutions.

The reasonings of Cauchy, S. Kowalewsky and Darboux, the equi-
valent of which has been given above, are perfectly rigorous; never-
theless, their conclusion must not be considered as an entirely general
one. The reason for this lies in the hypothesis, made above, that
Cauchy’s data, as well as the coefficients of the equations, are expressed
by analytic functions; and the theorem is very often likely to be false
when this hypothesis is not satisfied.

We say “often” and not “always,” for it may also happen that the
statement of Cauchy-Kowalewsky given above should prove to be
accurate for a quite general choice of data; and indeed, one of the
most curious facts in this theory is that apparently very slightly
different equations behave in quite opposite ways in this matter.

If, in the first place, we take such a Cauchy problem as was
spoken of in § 4 [Cauchy’s problem with respect to ¢ =0, for equations
(e1), (e2), (es)], our above conclusions are valid, as we shall see as these
lectures proceed, without any need of the hypothesis of analyticity.

But the conclusions will be altogether different if, for instance, we
deal with Laplace’s classic equation of potenticils
*u  0*uw  O’u

+2%4%% 0.

V2y =
Yo T o 02
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This will be immediately realized by comparison with another
classic boundary problem; I mean Dirichlet’s problem. This consists,
as we know, in determining a solution of Laplace’s equation within a
given volume %, the value of u being given at every point of the
boundary surface S of that volume. It i1s a known fact that this
problem is correctly set: i.e. 1t has one (and only one) solution.

This fact immediately appears as contradictory to Cauchy-Kowa-
lewsky’s theorem : for, if the knowledge of numerical values of u at
the points of S (together with the partial differential equation) is by
itself sufficient to determine the unknown function within %, we
evidently have no right to impose upon u any additzonal condition,
and we cannot therefore, besides values of u, choose arbitrarily those

of Z—Z Indeed there is, between those two sets of values, an infinity

of relations which must be satisfied in order that a corresponding
harmonic function should exist. Any point a ezterior to % provides
such a relation, since, denoting by r the distance from a to an arbitrary
point Jf of S, we must have the well-known identity:

dy _1du

® [ @-a)=o

How 1is 1t that, on the contrary, Cauchy-Kowalewsky’s conclusions
would lead to the arbitrary choice at every point of S, not only of «,
but also of one of its first derivatives, such as the normal derivative
du,
dn’

A double explanation can be given for this apparent contradiction.
First, the conditions are not alike in both cases. We have previously
proved the possibility of Cauchy’s problem with respect to a plane,
then with respect to any surface which can be deduced from a plane
by punctual transformation. This is the case for any (regular) portion
of a surface, provided it is sufficiently small, but not for whole closed
surfaces. The whole surface of a sphere, for instance, cannot, with
perfect continuity, be transformed into the surface of a plane: it has
a different shape in the sense of Analysis situs.

This, however, 1s no decisive objection, as we can see from the
remark of § 11: if we solve our Cauchy problem in the neighbourhood
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of each portion of S, these different elements of a solution will continue
each other and one solution will be constituted, which will be valid
all over S and its neighbourhood.

But, in the second place, our theorem only proves the existence
of the solution of Cauchy’s problem in the netghbourhood of the
initial surface S. In Dirichlet’s problem, the solution has to exist in
the whole extent of ). This is the first required explanation: for this
reason, and only for this, the relations (8) are necessary. If they are

not satisfied by an analytic set of values of u and dg’ these values

will correspond to a certain harmonic function % in the neighbourhood
of S; but w will necessarily admit of some singularities, or even cease
to be defined at some place within 2.

Even this first answer to our question is not complete and does
not give the only reason why Cauchy’s problem is not always possible.
Taking now the geometric terms of the problem exactly in the sanie
way as Cauchy, we can see that, if we drop the hypothesis of analytic
data, no solution will exist even in the immediate neighbourhood of
S, or of a portion &, however small, of S.

This may be considered as a consequence of a well-known property
of harmonic functions (i.e. solutions of V2u =0), viz. that they are
analytic in every region inside the domain where they exist and are
continuous together with their first derivatives, and they can only lose
that character of analyticity on the boundary of this domain: a form
of this property being* that if two harmonic functions, each defined
on one side of a surface, have, at each point of the latter, the same
value and the same normal derivative, they are the analytic exten-
sion of each other, both together constituting a single harmonic (and
therefore analytic) function throughout the region lying on both sides
of the surface.

This shows, indeed, that (o being, for instance, assumed to be
analytic) 1t is, at least, impossible that Cauchy’s problem with non-
analytic data should have a solution on both sides of o; for such two
solutions %’ and %" would, on account of the above theorem, constitute
together a single analytic function in a whole domain to which o would

* This was pointed out by Duhem (see Hydrodynamique, Elasticité, Acoustique,
Paris, Hermann (1891), vol. 1, p. 169).
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be interior: which is obviously contradictory to the assumption that
, (common value of »’ and ") or », (common normal derlvatlve) 1S
non-analytic over o.

Of course, it 1s almost evideny that, tn general, neither «’ nor w” will
exist: for there is no reason why one should exist rather than the
other, if the data are taken at random.

15a¢. That no solution can exist even on one side of o can be
shown rigorously when o 1s a portion of the plane =0, by making
the further assumption that w, (or w,) is zero: for, if e.g. «’ should exist
for £ >0, we could define u” for 2 <0 by

(9) u(—2a, 9y, 2)=—u(z, y, 2),
v’ and «” then having, on =0, the same values (viz. 0) and the saimne
normal derivative. The case is now the same as above: therefore, the
solution can never exist if «, (y, 2) 1s not analytic.

(Similarly, if u, be zero, with any value of u,, an eventual solution
w' for >0 could be extended to <0 by u (—«,y, 2)=u(«,y, 2), and
this would lead to the same impossibility as above if %, should not be
analytic.)

If u,(y,2z) had been taken different from zero, it would obviously,
by itself, have determined* « but for an analytic function of z, v, z,
and therefore u, (y, z) but for an analytic function of y, 2

16. The equation of heat

o*u  Ou

da? " 0y
though we shall not have to deal with it in what follows, is interesting
to cousider from the same point of view, as has been done by Holm-
grenf. Let us again take Cauchy’s problem with respect to =0, the

* One of these possible choices for » is 2—1; multiplied by the potential of a

double layer of density », on our plane, the corresponding %, being the normal
derivative of this potential. The combination of this with the statement in the
text gives the most general form acceptable for %, corresponding to a given form
of u,.

t Arkiw for Matematik, Astronomi ock Fysik (1904), p. 324, note ; see also tbid.
vol. i1 (1905—1906).
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first function u,(y) being again taken as 0. Just as above, assuming
our solution to be defined only on one side of =0, say for x>0, we

extend 1t to # <0 by formula (9): by means of whlch u and g—a: remain

continuous for. # — 0.

Now, a solution of the equation of heat, which is continuous and
has continuous derivatives of the first order, 1s not necessarily analytic
in both variables, as was the case with the equation of potentials; but
1t can be proved* that it is analytic with respect to . As, on the
other hand (compare preceding § 15a), it is an odd function on account
of u, =0, it can be expanded in a convergent series of the form

= __tap1 epp ..
(10) = u1x+3!.z3+ +( 1)':0“ +..
The first coefficient 1, is equal to our derivative — ou , for z=0. But

Oz

the differential equation gives

= (0) B0 _de
2p+1 = ox:p+1 x=0—ayp \a-’L' ~l‘=0_ dyp_ .

We therefore see, first, that «, admits of derivatives of every order;
then that we have a limitation of their order of magnitude: for, on
account of the convergence of the series (10), we have (M, p being
two fixed positive numbers)

' dPu, M(2p +1)!
(11) —dyp = I Uzp+1 ,l < mpzpwrl B
The analyticity of u would require inequalities such as
dPu, | Mp!
(12) dye |~ pr

so that the system of conditions (11) s less restrictive than the con-
ditions for analyticity.

17. We see that our present considerations on the subject of partial
differential equations lead to results worth noting, in the theory of
functions of a real variable. Such functions have been classified in a
well-known way, according to their degree of regularity: the efforts

* Serge Bernstein (7hesis, Paris, 1904) proved this for the most general
analytic parabolic equation. Very simple proofs were then given by Gevrey
(C. R. Ac. Sc. vol. cu1t and Thesis, Paris).
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of contemporary geometers have succeeded in pointing out many
interesting and important intermediates between the conception of an
arbitrary function and that of a continuous function; more restrictive
than the latter is the notion of functions with a limited variation, and
again of functions differentiable once, twice, ..., p times. Then would
come functions differentiable to any order.

Now, functions satisfying the inequalities (11) show us the use-
fulness of a distinction which had not been made hitherto: they are
intermediate between functions differentiable to any order and analytic
functions. Goursat and Gevrey (loc. cit.)* have called them functions of
class 2. Similarly, functions of class a—that is, functions ¢ (y) differ-
entiable to any order and such that

d?e
dy?

M (ap)!

(11 o7

<

—would appeart if we should consider from the same point of view
the equations
0™y 0™
o ey (M)

treated by Henrik Block}: « would then be equal to —.

i
That there actually exist functions which satisfy the system of
conditions (11°) without being analytic—or more generally, which
satisfy that system for a certain value of a, but not for smaller values
—can be easily shown by the example of the trigonometrical series-

(13) E Cyn, COS NY,

n=0

where the ¢,’s will be, let us say, real and positive numbers. Such a

* See note, p. 27.

+ It is worth noting that the class defined amongst analytic functions by the
incqualities (11’) with e smaller than 1 is already considered in Analysis: it is in
fact the class of entire functions of a finite genus.

This word “class” has already been used by Baire in his works on discon-
tinuous functions, with a quite different meaning, but, as Gevrey observes, for
this very reason no confusion is possible.

1 Henrik Block, Arkiv for Matematik, Astronomz och Fysik, vol. viI (1911).
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series will admit of derivatives of any order, if the series

(14) cn nP
i
i1s convergent for every value of p. Let us especially take ¢, =e™
a being a fixed positive number: this satisfies the aforesaid condition;

but the series (14), viz.
(14,') - A nPe—*
. n=0
which for p even represents the value of the pth derivative for y =0
(also being the maximum value of this derivative) is, as we know, of

the same order of magnitude as the integral
1

(14”) fwnpe‘"; dn=al'[(p+1) a],
0

which shows that the corresponding series (13) belongs to class a, and
not—at least in any interval containing y=0—to any lower class.
If, in (13), we had only given to n the values n =2, where b is
a fixed integer and v=1, 2, ..., o, this would not have essentially
changed the order of (14'), the integral (14”) being replaced by

» v—b{ — a
-[0 bre dy = |25 T (pa),

but, for this new series

1 4

S " cos (bry),

v=1
we could assert that it can be of no class lower than a, not only around
y =0, but even in any interval whatever: for such a series only changes

in its first terms by changing v into y + 2;—: (whatever be the integers

2l

k and !) and the numbers x

can approximate as closely as 1s desired

to any given real quantity.

Gevrey (loc. cit.)* has shown that functions of class a> 1 remain
so through the same general operations as analytic ones, such as
multiplication, substitution of one or several functions in another one,
integration of differential equations,etc. Butsuch functions differ from
analytic ones and also from the well-known generalizations given to

* See also his Memoir in vol. XXXV, série 3, of the Ann. Scient. Ec. Norm. Supre.
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them by Borel* in lacking one of their classic properties: the exten-
sion of a function of class a from one part of its domain to a neighbouring
one ts not determined. Such a function, being given in (0, 1), may be
extended to (1, 2), for instance, in an infinite number of ways, without
losing its property of belonging to class a.

This is easy to see, at least for a = 2, by introduction of the function
1

e =. This function, holomorphic in every interval (a, b) with a >0, >0,
is no longer so in (0, b), but belongs (at most) to class 2, as can be
seen by the following direct calculationt. To calculate ¢®(a) (with

- p! [ $(2)
a >0) we take the integral %m | (7= ayp dz

along a circumference with centre a in the m
1

complex plane. For ¢(z)=e¢ * we can take - —
this circumference tangent to the imaginary
axis (fig. 2), and the absolute value of ¢(«) on
1
it will then be constant and =e 2@ so that -
1

1 - 1'de s -1 1 -1
— (D) e x . 2a
pt ¢ (a)| plidw”(e )x:algaﬁe ’

Fig. 2.

The maximum of this last quantity corresponds to a = —2%) , and

| pP(a) | < P (2p)? p!=(sensibly) %2 %)(2}))! .

As every derivative of ¢ () is zero (on the positive side) for z=0,

this shows that a function which is zero for every negative « can be
1

extended to > 0 by ¢ = and be of class 2.
From this example, a more general one can be deduced by taking

the integral
1

¥ (z) = .[je_m x(2)dz  (#>0),

where x is an arbitrary—say continuous—function. Any derivative
of 4r 1s to be taken by differentiating under [ (no term corresponding

* See Comptes rendus Ac. Se. vol. CLIV; Acta Math. t. XX1IV.
1

t+ The very slightly different function \—};e_i, which is suggested by the
z

theory of heat, can also be introduced for the same object.
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to the variability of the upper limit, as the integrand is there zero)
so that {r also belongs to a class at most equal to 2; and it is obvious
that 1t may be extended in o ways beyond any value z=a of the
variable, as this extension depends on the arbitrary function y.

In a recent Memoir*, Serge Bernstein extends this conclusion to
functions of any class a> 1, such a condition being still compatible
with oo analytic prolongations of the same given function.

The question+ arises whether functions F(p) may exist, increasing
more rapidly than B=?p!, and, nevertheless, such that the limitation
i P (z)| < F(p) for the values of the successive derivatives of a function
¢ implies the fact that ¢ cannot be extended in more than one way.
S. Bernstein 1s led to a negative answer by such an example as the
functions of a class higher than 1; but shows that such a negative
answern would no longer hold if the inequality F(p) > R—Pp! were
satisfied #rregularly—that is, if there were oo values of p giving
that inequality and oo giving the opposite one.

18. Returning to Cauchy’s problem in general, we see that we
must avoid confusion between arbitrary functions and analytic ones,
and that our preceding conclusions must be examined with regard to
this. This applies not only to the data, but also to the unknown
function; and, therefore, even our first result, viz. that the solution of
our problem, if 1t exists, 1s unique (the case of a characteristic excepted),
must be looked into again: the proof having only been given that
the problem admits of not more than one Lolomorphic solution.

On this point, however, our previous result subsists: Holmgren}
has proved, at least for linear equations with analytic coefficients, that

* Math. Ann. vol. LXXV, pp. 440 ff.

t This was written in April, 1921. Since then, this question has been solved
by the beautiful researches of Denjoy and Carleman (see C.R. Ac. Se. Paris, t. 173,
174, 1921—1922) : the extension is always unique when #' (p) is such that the

. 1
series 2 —
P

is divergent. (Added while correcting the proofs.)

i sz;arsz'gt af Kongl. Vetenskaps Akad. Fork. (9 Jan. 1901), pp. 91—105. See
also our Lecons sur la propagation des ondes, note I. The proof rests on
Weierstrass’ well-known theorem on approximation of continuous functions by
polynomials. It would be interesting to extend it to equations with non-analytic
coefficients, and (as an immediate consequence of the former) to the non-linear
case: which extension would perhaps be made possible by Dunham Jackson, Serge
Bernstein and de la Vallee Poussin’s recent improvements on Weierstrass’ theorem.
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(still excluding the exceptional case) the solution of our problem,
whether analytic or not, is unique*.

As we have just seen, things are much more complicated with
regard to the second part of the result, viz. the existence of a
solution; at a first glance, no general analytic rule seems to be
assignable. Analogy with ordinary differential equations, which evi-
dently inspired Cauchy, finally proves to have misled+ us; and also
the examples of the equation of sound and the equation of potentials
show how little the closest and apparently most obvious analytical
analogies between partial ditferential equations can be trusted.

But it is remarkable, on the other hand, that a sure guide is found
in physical interpretation: an analytical problem always being correctly
set, iIn our use of the phrase, when it is the translation of some me-
chanical or physical question; and we have seen this to be the case
for Cauchy’s problem in the instances quoted in the first place.

On the contrary, none of the physical problems connected with

* \When stating such results, it is important, as Bocher most rightly pointed
out while lecturing at the University of Paris in 1913—1914, to state accu-
rately what is meant by a solution. In such questions as these, « is required to
admit of first and second derivatives satisfying the partial differential equation
in the vicinity of z= O but not necessarlly on z=0 itself. On the contrary, the

conditions that » and —;— - should assume given values at points of =0, imply that

these quantities exist and are continuous around and at these points. More
exactly, the continuity of » and its different first partial derivatives will be
required : this is necessary for the validity of Holmgren’s proof, which (replacing
the equation by a system of equations of the first order) introduces all these first
derivatives as auxiliary unknowns, as classically explained in Sophie Kowalewsky’s
original proof of the fundamental theorem (see e.g. Goursat-Hedrick’s Differential
Equations, pp. 285—6), and applies (as we also shall do in the following Books) the
usual integral transformation of Ostrogradsky or Green, for which continuity of
the functions introduced is wanted.

t This analogy would have been legitimate if the second kind of methods
mentioned in § 10 (successive approximations) could have been extended to the
case of partial differential equations. This would contradict our above state-
ments, and is consequently impossible, at least in the general case (attempts have
been made in that direction by some authors, but, of course, have proved un-
successful). On the contrary, methods of that kind have been applied to proper
cases, account being taken of the nature of the equation and other features of the
problem (especially characteristics), by Picard and his successors.
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V2u =0 is formulated analytically in Cauchy’s way*. All of themn lead
to statements such as Dirichlet’s, 1.e. with only one numerical datum
at every point of the boundary. Such is also the case with the equation
of heat. Allthisagrees with the fact that Cauchy’s data, if not analytic,
do not determine any solution of any one of these two equations.

This remarkable agreement between the two points of view
appears to me as an evidence that the attitude which we adopted
above—that is, making a rule not to assume analyticity of data—
agrees better with the true and inner nature of things than Cauchy’s
and his successors’ previous conception.

I have often maintained, against different geometers, the import-
ance of this distinction. Some of them indeed argued that you may
always consider any functions as analytic, as, In the contrary case, they
could be approximated with any required precision by analytic ones.
But, in my opinion, this objection would not apply, the question not
being whether such an approximation would alter the data very little,
but whether it would alter the solution very little. It is easy to see
that, in the case we are dealing with, the two are not at all equivalent.
Let us take the classic equation of two-dimensional potentials

du  Ou
2t g

0,

with the following data of Cauchy’st
© (0, y)=0,

15 0 i
( ) 57: (03 y) = ful(y) = A,n Sin (ny),

n being a very large number, but 4, a function of » assumed to be

very small as n grows very large (for instance 4, = 1%1—,) These data

* One might be tempted to assimilate the above results concerning V2« =0 to
those which we previously found in the case when the variety which bears the data
is a characteristic. This however would be unjustified, as in the latter case the
problem, when not impossible, becomes indeterminate, which can never happen
for v22=0, on account of Holmgren’s theorem. Cauchy’s problem for V2 =0, in
the general case, is to be compared with an algebraic problem implying more con-
ditions than unknowns.

t+ I gave thisexample for the first time at a meeting of the Swiss Mathematical

Society at Zurich (1917).
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differ from zero as little as can be wished. Nevertheless, such a
Cauchy problem has for its solution

U= 1;1%"’ sin (ny) Sh (nz),

which, if 4, —11 % e~ is very large for any determinate value of
z different from zero on account of the mode of growth of e** and
consequently Sh(nz).

In this case, the presence of the factor sin ny produces a “fluting”
of the surface, and we see that this fluting, however imperceptible in
the immediate neighbourhood of the y-axis, becomes enormous at any
given distance of it however small, provided the fluting be taken
sufficiently thin by taking » sufficiently great.

19. Continuity with respect to given functions. Let us com-
pare this case with the solution of Cauchy’s problem for equation (e,)
(the equation of vibrating strings).

The general integral of the latter being

(16) u(z, t) =¢ (r + wt) + Y (z — i),
Cauchy’s data

u(z, 0) =u,(2), %%(x, 0)=u,(x)
easily. give us, as we know,

18) $@=5 wl®+ [u@dk,
(O3 | w3 [u@ |,

the constant of integration being here immaterial provided it be the
same 1n both formula: which, substituted in (16), affords the solution
of the problem. Now, let us assume that, along a certain interval of
amplitude A, the functions u,, v, be modified, but everywhere very
slightly: that is, be replaced by u, + duo, u, + du,, the quantities
| 8u, |, | Sy, | being, for every value of z, less than a small constant e.
Then, by (16”), the corresponding alteration for ¢, y» will everywhere

2

small with e

be less than = (1 + A) and, for u, less than e (1 +—:%) , Le. arbitrarily
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We shall say that the values of u depend continuously on those of
o, %: a phrase suggested by an obvious analogy with ordinary con-
tinuity.

On the contrary, the example of the preceding section shows us that
the solution of Cauchy’s problem for the equation of potentials does not
depend continuously on the data.

20. Various orders of neighbourhood and continuity. The above
definition requires, however, to be made more precise by considerations
now classic in the Calculus of Variations* and its recent generalization,
the Functional Calculus.

The inequalities |du,|<e, |Ou,|<e are, for certain problems,
sufficient in order that w,+ du,, u, + 8u, be considered as very near
neighbours to u,, %,; but, for other applications, such is not the case.

For instance, y = g (#) = - sin (nz), for large n represents a curve

every point of which is very near to a corresponding point of the
z-axis. Nevertheless, it cannot be approximately replaced by y=0
if, e.g., length is concerned: its length, between # =0 and & =, does
nott approach 7 for n =

This is due to the fact that, 1n this instance, g («) tends (uniformly

with respect to x) towards zero with %, but ¢’ () = cos nz does not.

Such a function is said to have with zero a nexghbourhood of order zero.

9()

The function —sin nz has, with zero, a neighbourhood of

order 1 for very large n, l.e. 3—;(-;—2

174 (ﬂ
n

Generally speaking, g (z) and k (z) are said to have, in the interval

(a, b), a nelghbourhood of order p if the p +1 differences | g (2) — h (z) |
, dpg deh’
19" (@) =¥ ()], .

e~ dw? are very small, say smaller than the
number ¢, all over (a, b), the neighbourhood being the closer the smaller
€ 1s.

and lg—é‘f—) are very small, but

= — sin nz would not be so.

* It was given by Zermelo (Untersuchungen zur Variationsrechnung : Dass,
Berlin, Mayer and Miiller, 1894).
+ It remains constant if % assumes integral values.
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If the functions considered and their derivatives up to the order p
are continuous—which will always be the case for the applications—
1t can also be said that two functions g, 2 have with each other a
neighbourhood of order p if a correspondence between 2 and z” can be
established such that |2” —2 |< e and the same be true for each of
the differences

N e ol — i (o drg(@) _ drh(a")
- - | S -
@ 9@ =h@)] |g@)-K @), ... | T ),
This condition is equivalent to the preceding one (e being simply
replaced by another quantity which becomes infinitesimal with the
first one) on account of the fact that |#” — 2’| < e implies
dth(z") dih(z")

[ (@)= h (@) | <n, |—=—

dt ~ dur | ST

(for every g between 1 and p),7 being infinitesimal at the same time as e.

Geometrically speaking, two plane curves shall be said to have
with each other a vicinity of order p if a punctual correspondence can
be found between them such that the distance between corresponding
points be very small as well as the differences (8) (this implying—e.g.,
for ¢ — 1—that the angle of corresponding tangents must be very
small). When this occurs, it follows from the above remarks that the
choice of the correspondence is widely arbitrary and immaterial:
especially, if there is no tangent parallel to =0, we can take as
corresponding points those with the same abscissa and, at any rate,
points such that the uniting segment cuts both curves at a finite angle.

All this is obviously similar to the classic theory of contact; and,
indeed, the latter is a sub-case of our present considerations: it may be
expressed by saying that two curves have a contact of order p at a
common point 4 if their arcs around A have a vicinity of order p,
arbitrarily close when the arcs are sufficiently small. The same, of
course, applies to functions having a contact of order p for a determinate
value of the variable.

The extension of all this to functions of several variables is obvious
and we need not even formulate 1t. For instance, when two surfaces
have a contact of order p at a point A, their portions around 4 have
a neighbourhood of order p, which can be taken as close as required if
the portions are taken sufficiently small.
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If G (x,, @, ..., #s) =0 1is the equation of one surface, it being
assumed that G has continuous derivatives up to the order p and that
the first derivatives nowhere vanish simultaneously, the equation of a
second surface which has with it a neighbourhood of order p will be
G + 8@ = 0, 8G being very small as well as its derivatives of the first
p orders.

20a. The conception of various orders of neighbourhood provides
the definition of various orders of continuity. A quantity w being
assumed to depend on the values of g (z) in (a, b), this dependence
will be continuous of order p if w is very slightly altered each time
g (z) 1s replaced by another function % () having with it (in (a, b)) a
(sufficiently close) neighbourhood of order p. Thus, the solution of
Cauchy’s problem for the equation of vibrating strings, as presented
above, 1s continuous of order zero in u,, u,. The length of an arc of
curve (=/V1 + y*dz) is not continuous of order zero, but it is con-
tinuous of order 1.

It is to be noted that neighbourhood of order » means more than
neighbourhood of order zero, and therefore continuity of order p means
less than continuity of order zero.

2. 2 .

The solution of Cauchy’s problem for %a?_l:-*- g—y—Q-: =0 (§ 18) is not

continuous in uy, u, of any order whatever. For A, sinny has with

zero, if 4, = l ,a neighbourhood of order p — 1, 1.e. arbitrarily great ;
o & De1g b y8

and even, for 4, =e—v", the neighbourhood is of infinite order: that
: . : 1
1s, every derivative of that quantity approaches zero when - does;

notwithstanding which, the corresponding value of u does not approach
zero.

The solution of the problem cannot be expressed by formula
analogous to (16), (16"), as we have just seen that such expressions
imply continuity of order zero.

We shall, in the following Chapters, meet with other formule
more or less similar to (16”), except that their right-hand sides may
contain (under [ or not) derivatives of u,, u, up to a certain order.
No formula of this kind, either, can by any means represent the
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solution of Cauchy’s problem for the equation of potentials, as this
would imply continuity of order p.

21. Another paradoxical consequence furthermore appears if we
consider things from the concrete point of view.
Strictly, mathematically speaking,we have seen (this is Holmgren’s

theorem) that one set of Cauchy’s data u,, «, corresponds (at most) to
one solution u of 22—? + 2—2%& = 0, so that, if these quantities u,, u, were
“known,” » would be determined without any possible ambiguity.

But, in any concrete application, “known,” of course, signifies
“known with a certain approximation,” all kinds of errors being
possible, provided their magnitude remains smaller than a certain
quantity ; and, on the other hand, we have seen that the mere re-
placing of the value zero for w, by the (however small) value (15)
changes the solution not by very small but by very great quantities.
Everything takes place, physically speaking, as if the knowledge of
Cauchy’s data would not determine the unknown function.

This shows how very differently things behave in this case and
in those which correspond to physical questions. If a physical
phenomenon were to be dependent on such an analytical problem as
Cauchy’s for V2u =0, it would appear to us as being governed by
pure chance (which, since Poincare, has been known to consist pre-
cisely in such a discontinuity in determinism) and not obeying any
law whatever.

After having been led by physical interpretation to the need of
the above distinctions, we must now try to formulate them analytically.
This is subordinate to the classification of linear partial differential
equations of the second order into different types.

22. The three types of linear partial differential equations.
These types are distinguished by the algebraic nature of the charac-
teristic form A (1, vz, «.o\ Ym)-

If this form contains e distinct squares, all of the same sign (in
other words, if 1t 1s a definite form), the equation is said to belong to
the elliptic type: the characteristics are imaginary.

If it contains less than m distinct squares (semi-definite form, if
the squares are of the same sign, as is the case in all known applica-
tions), the equation belongs to the parabolic type.
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If the characteristic form contains m distinet squares, not of the
same sign (tndefinite form), so that there are real characteristics, we
have the hyperbolic type.

Moreover, there is a distinction to be made, in this last type,
when the number m is greater than 3, as the signs could be variously
distributed among the m squares. The only case which occurs in
physical applications is the one in which all squares but one have the
same sign: we call it the normal hyperbolic type. Every one of the above
quoted equations (e,), (e,), (e;) belongs to the normal hyperbolic type.

Geometrically speaking, as was remarked by Coulon*, the normal
hyperbolic type is distinguished among all others by the following
characters. Let the characteristic form (by a proper linear trans-
formation) be resolved into squares, so that

A (71, Yor oo Ym) = Amym? — Ay = Aoy — ... — Ay Yim®
A =0 being the tangential equation of the characteristic cone, the
corresponding punctual equation will be of a quite similar form

SO S C
A, 4, 7 A
Such a cone consists of two sheets, and divides the m-dimensional
space into three regions, the inside of the cone (i.e. H > 0) consisting
of two separate parts (X,, >0 and X,,<0) between which no real
passage is possible otherwise than by the outside of the cone or
through the vertex itself, as X ,,=0 is incompatible with H > 0.

On the contrary, such a cone as
’ »X12 X o’ X m—1’ iYmg

(17) I+T2+...—AW;—;—=A—M—=O
(the left-hand side containing at least two positive and two negative
squares) consists of one sheet and divides the m-dimensional space
into two regions only. For m =4, this can be interpreted in ordinary
space by considering the X’s as homogeneous coordinates, and
X,=X,=0 as the plane of infinity: such an equation as (17) will
then represent a hyperboloid of two sheets, and equation (17') a
hyperboloid of one sheet.

The normal hyperbolic type is the only one known in which Cauchy’s

problem can be correctly set. Moreover, non-normal hyperbolic types
* Thesis, Paris (1902), p. 30.

17) H(X, Xoy ..., X) = — 0.
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(which are connected with no physical application) do not lead to any
problem of any kind which is known to comply with that condition¥.

As to elliptic equations, they never lead to correctly set Cauchy
problems. For (see Book 111) the solutions of such an equation (if its
coefficients are assumed to be analytic) possess, like those of V2u =0,
the properties of analyticity mentioned and used in § 15, within their
domain of existence; and, therefore, the arguments in that section
can be applied.

The data (borne by an analytic surface S) not being analytic, if
Cauchy’s problem has a solution, this can only exist on one side of
the initial surface S (beyond which the function thus defined cannot
be extended).

23. But even for normal hyperbolic equations, physical applica-
tions do not always lead to Cauchy problems. The latter only occur
when dealing with motions in completely indefinite media. Things
would change if any limitation of these were considered, as would be
the case in the classic problem of vibrating strings: this is analytically
expressed by the integration of equation (e,) with the conditions

(18) u (2, 0) = u, (), %i: (z, 0) =u, (z)

and

18)  w(0,£)=0, u(l,)=0, ’ \\\
! being the length of the string, and =0 one »
of its extremities. The motion has to be calcu- ‘\
lated for ¢>0, O0gx<!: ie, graphically speak- \
ing, in the part B of the a¢t plane which is
shaded on the diagram of fig. 3. Conditions (18) !
are to be fulfilled for 0 <« <!; conditions (18')
for t > 0.

Now, it is apparent that the former are of Cauchy’s type, but not

0
Fig. 3.

* Hamel (Drss.,, Gottingen, 1901), who was led to the non-normal equation
?u _ Pu
Ty~ oot
mined an unknown % by that equation and boundary conditions, but has to assume
the latter to be analytic (not in all the variables, however) ; Coulon (7%esis), dealing
with Cauchy’s problem, also considers the case of non-normal equations; but it
then appears from his very calculations that an infinity of conditions of possibility
is necessary.

by geometric considerations in the Calculus of Variations, has deter-
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so the latter,so that we have here to deal not with Cauchy’s problem,
but with what I have called a mixed problem.

Indeed the two sets of conditions obviously play quite different
parts, from the mechanical point of view, and are often and rightly
called by different names. Ve hitherto, according to the geometric
formulation of the question, have used the term “boundary con-
ditions” indiscriminately; but if we now think of the mechanical
meaning of the questions, we shall be led to give to conditions (18)
the name “initial conditions,” the name “boundary conditions” being
kept only for conditions (18’) which correspond to the extremities of
our string.

Now, tnitral conditions are always found to be expressed in Cauchy’s
form, but the opposite takes place for boundary conditions properly
so called; these indeed rather resemble those we met with in the
case of Dirichlet’s problem, so that mixed problems appear every
time boundaries are concerned.

24. Let us take another example by considering again a homo-
geneous conducting cable, but assuming it now to be indefinite only in
one direction—say in the positive z direction. In the other direction, it
will have to be considered as ending at a point where 1t will communi-
cate, through a metallic contact, with a source maintained at every
moment at a given (constant or variable) potential. Again we give the
initial state of the cable (potential and intensities for ¢ —0): then v,
the potential, will have to satisfy the telegraphist’s equation, together
with the conditions (if we assume that the position of the contact is
taken as the origin of the z’s)

.(19) u (z, 0) = u, (), % (=, 0) = u, (=),

(19) u (0, t) =u, (2),
which again corresponds to what we call a mixed problem.

The two kinds of data are borne respectively by the z-axis (which,
on our diagram (fig. 3), represents the cable for ¢ — 0) and the ¢-axis
(representing the origin of coordinates successively considered at every
positive value of time).

It is understood, of course, that (19) and (19°) must not be con-
tradictory for =¢ =0, so that

(20) u,(0) =1u,(0), =, (0)=1u, (0).
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24«. In this second case, the diagram could be varied in an
infinite number of ways. We can, indeed, imagine that our metallic
contact, instead of being fixed at =0, be a sliding one (fig. 3a)
and move along the cable according
to a certain given law of motion T~

x = E(t), so that now two functions &
of £>0 are given, one £ () express- 0 T=£() @
ing, at every positive instant, the Fig. 3a.

position of the sliding contact on the

cable, the other one wu(¢) giving at the same moment the value
of the potential at this contact. The problem of determining the
electric state for ¢> 0, when it is given for ¢ — 0, will consist in
finding a solution u (z,t) of the telegraphist’s equation satlsfymg the
conditions

w(z, 0) = u, (:1,)) f
>E(
aazg (@, 0) = (w)J (for #> £ (2))

and u€ (@), t] = (2).

The line bearing the data would then be represented in the ¢ plane,
as shown on fig. 3b. Such a problem is a possible and determinate
one (as 1s physically evident and is also seen by
analytical means*). Consequently, it would not o=t AN
be allowable to give arbitrarily Cauchy’s data for
such a line.

25. We have an instance of analogous cir-
cumstances for problems with three independent
variables, in the study of the transverse vibrations (=0
of a plane membrane, fastened at all points of its Fig. 3b.
outline . The “indefinite” partial differential
equation will be the equation (e,) of cylindrical waves (§ 4a). The
initial conditions will be

0
@) w5y 0=t%@y) oy 0)=u@y)

* See Picard, in Darboux’s Lecons sur la théorie des surfaces, vol. 1v (note 1),
and our Memoir in Bull. Soc. Math. Fr. vol. xxx1 (1903).
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u, (initial normal displacement) and u, (initial normal velocity) being
given functions of «, ¥ in the area S covered by the membrane. The
boundary conditions are

(21') u=0

at every point of o and for every value of ¢, which we shall however
exclusively consider as positive, the motion having only to be deter-
mined after the initial instant ¢ = 0. In our graphic representation
(§ 5), « has to be calculated within a half cylinder having the S
portion of the ay plane for its base, the lateral surface S, corresponding
to the various positive values of &. We again have to deal with a
mixed problem, (21’) being of Dirichlet’s type.

The motion of any limited two-dimensional or three-dimensional
medium will give occasion for similar remarks.

26. We must point out that the same still applies, whatever be
the nature of the limitations. If, for instance, we take, with Duhem *,
the case of a pulsating solid sphere immersed in air, the latter filling
the whole space outside the sphere, the small motions of the gas will
depend, not on Cauchy’s problem, but on a mixed one, non-Cauchy-
like datat corresponding to every point of the surface of the solid
sphere.

27. Inall the above examples, the geometric shape of the varieties
which bear the data evidently presents a notable difference from the
cases which depended on Cauchy’s problem.

It is obvious that the simultaneous intervention of the two kinds
of data is here connected with the angles or edges of our varieties
bearing the data. But, for m > 2, we can say more. In the equation
of cylindrical waves (or of vibrating membranes) the characteristic
cone (referred to axes passing through its vertex) has the equation

o + 12 — it = 0.

* Hydrodynamique, Elasticité, Acoustique, vol. 1, chap. X11, pp. 235—237.

t They are not exactly of Dirichlet’s kind, but of the so-called “Neumann’s”
or “hydrodynamical” kind, but they are similar to Dirichlet’s data inasmuch as
one quantity, and not two—the value of g—z alone—is given at every point of the

spherical surface.
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The plane which bears Cauchy’s data is ¢ =const.: such a plane
cuts only one sheet of the characteristic cone, and cuts 1t along an ellipsord
(in this case, a sphere).

We shall say that a plane is duly inclined with respect to our
equation (the latter being assumed to be a normal hyperbolic one) if
it cuts only one sheet of the characteristic cone, the edge* of inter-
section being closed ; or, which comes to the same, if a parallel plane
drawn through the vertex of the cone has no other common point
with 1t than the vertex itself.

The lateral cylindrical surface .S;, in our configuration for the
problem of the vibrating membrane, is nowhere duly inclined: each
of its tangent planes cuts a characteristic cone along a hyperbola.
This is quite a general fact: as Volterra has remarkedt, on a surface
S which consists of several parts (whether separated from each other
by edges or not), some of which are duly inclined and some are not,
the correct data on the latter are Dirichlet-like ones.

We never meet with a correctly set Cauchy problem with respect
to varieties (even presenting no edges) which are not duly inclined.
For instance, we could not take arbitrary Cauchy’s data for equation
(es) or (e;) with respect to = 0f. To see this, let us choose the data
in question independent of ¢: then u itself also ought| to be inde-
pendent of ¢ and therefore to satisfy V2u =0, which we have seen to
ou

oz’
What conditions ought to be imposed on u, and u, = g—z, in order that

be generally impossible if » and for £ =0, are arbitrarily chosen.

the problem should have a solution, is again a subject which might
prove interesting from the point of view of the theory of functions:
we shall speak of it briefly again in Book 1v.

* See note, p. 5.

t Intern. Congress, Rome (1908), vol. 11, p. 90.

1 For the present, no system of data is known borne by 2=0 and suited to
determine correctly a solution of (eg) or (ej3).

| See below, § 29.
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CHAPTER I
CLASSIC CASES AND RESULTS

28. Let us now come to our proper subject, that is, the solution
of Cauchy’s problem, which we shall, as a rule, assume to be correctly
set.

This solution is very simple and was found long ago for some par-
ticular cases, the simplest of which is the case of equation (e;) with
data relative to ¢=0 (small motions of an indefinite aerial pipe or
vibrations of a string considered as of indefinite length in both
directions) referred to in §19.

Well known is also Poisson’s solution of Cauchy’s problem relating
to the equation of sound* This can be expressed in the following
synthetic way: /

Let (20, ¥o, 20, t,) be any /given universe-point, at which we want
to calculate the value of our function « defined by conditions (C;) (§ 4).
Let us denote, in a general way, by M,(¢) the average value of any
function ¢ (2, ¥, z) on the surface of the sphere of radius » described
in ordinary space with (z,, ¥, 2,) for its centre. We shall have

d .
(1) u (o, Yo, 20, to) = dt [toﬂ[wto(uo)] + toluwto(ul)-
0

28a. The proof of that formula consists in verifying directly that
the right-hand side fulfils every required condition; on account of
Holmgren’s theorem, it is the only one which will fulfil them all.

Such a verification is given in the just quoted works and other
classic books. We shall simply refer to those for what concerns the
initial condition (C;). As to the verification of the partial differential
equation itself, it is generally done by means of a transformation of
surface integrals into triple ones, introducing the values of v, or «, and

* Poisson, Mémoire sur Uintégration de quelques équations eux différences par-
tielles et particulierement de Uégquation générale du mouvement des fluides élastiques
(read at the Ac. Sc. in Paris, the 19th of July, 1919). See also Rayleigh’s T%eory
of Sound, vol. 11, p. 88; Poincaré’s Lecons sur la Théorie Mathématique de la
Lumiere, chap. 11 (pp. 76—98) ; etc.
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their derivatives not only on the surface of the aforesaid sphere but in
its whole volume. Eventually, it will be convenient for us to avoid
the consideration of that volume, which can be done, for instance, in
the following way.

We have to show that, u being any differentiable function of z, v, z,
equation (e;) is satisfied by
w (%o, Yo, 20, to) = to M, (1)

= 4% I [ w1 (o + wt, Sin 6 cos ¢, Y+ wt,sinfd sin ¢, z,+wt, cos ) sin §d0dd

=t/
(wherefrom the same conclusion will follow at once for the derivative
of the right-hand side with respect to ¢,, therefore also for the first term
of (1)).
In the first place, derivatives with respect to z,, v,, 2, are im-
mediately obtained by differentiation under [f in I, so that

w*V2y = Ziﬂﬂwm sin 6d6ddg.
ool oI

The second derivative with respect to ¢,, viz. ¢, oy +2 5 will also
0 0

be determined by differentiation under [f, viz.

o= [t G+ 20 52 sim 00y,

e~ am )\ g 20 g,
du, d*u, , . . ..
i and I being (exterior) normal first and second derivatives. But
we have the identity*
d* 2 du
@+ oty dn = v A
0

A, being “ Beltrami’s differential parameter” on the sphere

1 1 0 . eaul 1 o

it {é’i‘ﬁ?a”ésm 20 im0 390

Also, on account of the classical integral identityt for A, and the
assumed regularity of u,, the integral of the last term in the right-

hand side over the surface of our sphere is zero: which reduces the
2

value of %t% to the above value of w?V?u,. Q.E.D.
0

* See our Lecons sur la propagation des ondes, chap. 1, § 34, p. 50.
t See Darboux’s Lecons sur la theorie des surfaces, vol. 111, § 674, form. (18),
and our Lecons sur la propagation des ondes, § 35.

+
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29. The method of descent. We shall see that many curious
difficulties already arise when, instead of the equation of spherical
waves, we attack equation (e,) (equation of cylindrical waves). But
nevertheless, for the present, we can immediately deduce the solu-
tion of the problem corresponding to (e;) from the similar solution
for (ey).

Indeed we have previously seen that the former is only a special
case of the latter. In order to solve it, we only need, in formula (1),
to suppose that the functions w, and u, are independent of z.

We thus have a first example of what I shall call a “method of
descent.” Creating a phrase for an idea which is merely childish and
has been used since the very first steps of the theory* is, I must con-
fess, rather ambitious; but we shall come across it rather frequently,
so that 1t will be convenient to have a word to denote it. It consists
in noticing that he who can do more can do less: if we can integrate
equations with m variables, we can do the same for equations with
(m —1) variables. Here, in order to solve equation (e,) we have only
to note that every solution of it is a solution of (e;) independent of z,
and conversely.

Thus, our Cauchy problem for the equation of cylindrical waves

Fu w1 Pu

(A4) u=u,(z,y)
w fort=20
5 = (=, y)

1s equivalent to the same problem for the equation of spherical waves

0t 0w w1 d*u

R TR T
(B) { w=u(z )

0 ) s

Uy, 9)

* Parseval, in Lacroix’s Trazté des différences et des séries, 1st edition, p. 515;
Poisson’s above quoted Memoir, art. 8. See Duhem’s Hydrodynamique, Elasticite,
Acoustique, vol. 11, chap. VIIL

. 4
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which is the one which we have already considered (equations (e;),
(Cs)), except that the right-hand sides of the initial conditions do not
contain 2. The perfect equivalence of the two problems can be
analytically proved with complete rigour. That any solution of (A)
satisfies (B) 1s evident by itself. Conversely, a solution of (B) must
be independent of z: for if it were not—say u = ¢ (z, y, 2, {)—then
u=¢ (z, y, z+ b, t), meaning by A any arbitrary constant, would be a
second solution of the same problem—1which would contradict Holm-
gren’s theorem. Our solution of (B) must therefore be a solution
of (A).

30. This being understood, we only have to suppose in formula
(1) that the functions u, and u, depend on # and y exclusively. In
order to see what becomes of them in this case, we have simply to
remember that an average value on a sphere—or what comes to the
same, here, on a hemisphere, the limiting plane of which is parallel to
z, y—Is expressed by a double integral

M, ($) =5 [[$az,

27r?

the integral being extended over the surtace of the hemisphere. Taking
z and y for independent variables, we see that, ¢ being independent
of z, the symbol A is to be expressed by

¢ dzxdy

(2) M.[é(z, y)]= Q},—rﬂr(‘f’)’ wr (6) =U\_/7-2-(x— 5o —(y — Yol

(the integral being extended over the circle (z —,)® + (y — yo): <7?)
and our formula (1) becomes

1 [d i
o Ld—t#wt (%) + Put (?41)“i .

(1,) u (wo: yo, to) = 2
31. The intervention of waves. Let us note that these formule
(1) and (1’) agree with what we know about the propagation of
sound or light waves*. In any one of them, we recognize that, in
order to calculate the value of w in (@, ¥, 2,) at the instant £, it is

* A priori rcasons for that, resulting from Hugoniot’s conceptions, will be seen
in Duhem’s Hydrodynamique, Elasticite, Acoustique, vol. 1, or our Leecons sur la
propagation des ondes, cspecially chap. 1v, § 165 and chap. vir, § 290.
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not necessary to know the values of our functions u,and » (Cauchy’s
data for ¢ = 0) in the whole of space, but only in the inside and on the
surface of a sphere having O (,, ¥,, 2,) for its centre and wt, for its
radius. The disturbances produced at the origin of ¢ at points
distant from O by more than wt, are unable to act on O before that
instant ¢,. :

In order to see the identity of this notion of waves with that of
characteristics, we use our graphic representation. For convenience’s
sake, let us consider the equation (e,), so that we may have directly
P a complete diagram in three
dimensions. Construct our
t=0 plane and our uni-
verse-point (z,, ¥,, t,). Any
disturbance produced at a
point (2, y) and a certain
instant ¢ could act on that
universe-point only if

(@ —20)*+ (Y —Yo)’<@* (E— )"

If we take the equality

sign, this represents the sur-

*  face of a right circular cone

with (z,, ¥, t,) for its apex

and a parallel to the t-axis

v for its axis; or, more exactly

(since ¢ must at present be

i ’ essentially assumed to be

Fig. 4. less than ¢,), the lower sheet

of this cone. As to the in-

equality, it means that the point (2, ¥, ¢) has to be inside the conic

sheet thus represented. The circle over which integral (1') is to be
extended is the trace of such a cone on the zy initial plane.

The surface of such a cone satisfies the condition

oG\ | (0G\* 1 (0G?
©) (ae) + (5) ~ (%) =°
which defines the characteristics of our equation of cylindrical waves,
according to the rule given in §13.

s e s o . e e S S o e e
e o e o e g o v s e s e e

4—2
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Nothing essential need be changed as yet (except the introduction
of four-dimensional space) if we are to deal with the equation of
spherical waves. Our cone would have to be replaced by the “hyper-
cone”

(2 —2o) + (Y — Yo)* + (2 — 20 = or S (¢ — &)},
the trace of which on the hyperplane ¢t =¢, < ¢, is the sphere with centre
(%o, Yo, 2o) and radius w (¢, — ¢,). That hypercone * satisfies the partial
differential equation of the first order

(4) G+ Gy + G -2 ) =0 |

defining the characteristics of equation (es).

More generally, if we express analytically the known physical rule
that the normal velocity of propagation of the waves is equal to w, we
find (G (z, y, 2, t) = 0 being the wave front) condition (4).

This connection between the solutions of our problem and the waves
1s a general one, as will appear more evidently in the following Books.

32. Retrograde waves. We note that here,aswe most frequently
shall have to do in what follows, we consider waves in a manner slightly
different from the usual one, viz. in the retrograde way, ascending the
course of time. Instead of starting from a universe-point (z, ¥/, 2/, t')
or (z', y', t') and considering what successive points are reached at
instants after ¢ by waves issuing at ¢’ from O (2, ¥, 2’) or (z,y ), we
give ourselves the later universe-point (z,, %o, 2o, %) or (%o, Yo, t,) and
inquire how the earlier one must be chosen in order that they be “just
within wave,” that is, that the wave issuing from this earlier universe-
point reaches precisely O (z,, ¥, 2,) or (z,,y,) at the instant ¢,: the locus
of such earlier universe-points being an anti-wave quite analogous
to an ordinary wave but for the fact that its propagation takes place
with the decreasing values of ¢, 1.e. by reversing the course of time.

The necessary and sufficient condition for the (ordinary) wave from
(z', y', 2, t') just to pass through (z,, ¥, 2o, ¢,) is that the anti-wave
from the latter should just pass through the former: a fact which we
shall recognize analytically to be quite a general one.

Such circumstances, in evident analogy with the principle of

* In our “descriptive geometry ¥ configuration, it would have to be repre-

sented as in the accompanying diagram (an ordinary cone in the (z, ¥, ¢) space
and, in (2, ¥, 2), a sphere which is the base of the hypercone).
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“Inverse return of luminous rays,” will be met with throughout the
course of these lectures. We can even go a little further by considering
the case in which our two universe-points (', ¥’, t') and (,, ¥,, t,) In
the three-dimensional universe, for instance, are “well within wave”
with respect to each other; that is,in
which the wave from O’ starting at
the instant ¢’ reaches O before the
instant ¢,. This means,geometrically,
that (z,, ¥, t,) lies inside the “direct
sheet” of the characteristic cone
with vertex (z, 3/, t), that is, inside

7 AN the sheet turned towards positive t.
/ {,{;——""““:"g’"‘\\\\ It is interesting to note that, as is
/ oy o .
/ T o \ now obvious, a necessary and suffi-
|
£

f cient condition for this is that, con-
’ versely, (2, ¥/, t’) lies inside the
“retrograde” or “inverse” sheet of
the characteristic cone having (z,, ¥,, t,) for its vertex. This fact
will again appear a most general one: we shall recognize that the
aforesald fact is expressed by an inequality the left-hand side of which
1s symmetrical with respect to both points contained in it.

33. The question of Huygens’ Principle. But, however simple be
the preceding formula and statements, they have, nevertheless, opened
somewhat important and lengthy scientific discussions, of which we
have now to speak and which refer to what is called Huygens Principle.

As a matter of fact, it happened, as is often the case, that the
question underdiscussion wasbadlyset. Huygens’ principle can be taken
in several different senses, and these were not sufficiently distinguished.

It is known that, in his famous fundamental Memoir on light, the
great Dutch scholar had to study the action of a luminous disturbance,
produced initially (¢ =0) at a given point O, on another point a.
Instead of following strictly his presentation, we shall, for our dis-
cussion’s sake, put it in the form of a syllogism.

(A) (major premise). “The action of phenomena produced at the
instant ¢ =0 on the state of matter at the later time ¢=¢, takes
place by the mediation of every intermediate instant ¢=t’,1.e. (assuming
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0<t <t),in order to find out what takes place for ¢=¢,, we can
deduce from the state at t=0 the state at t=¢ and, from the latter,
the required state at ¢t =¢,.”

(B) (minor premise). “If, at the instant ¢ = 0—or more exactly
throughout a short interval — e <t <0—we produce a luminous dis-
turbance localized in the immediate neighbourhood of O, the effect of
it will be, for ¢=1¢', localized in the immediate neighbourhood of the
surface of the sphere with centre O and radius wt’: that is, will be
localized in a very thin spherical shell with centre O including the
aforesaid sphere.”

(C) (conclusion). “In order to calculate the effect of our initial
luminous phenomenon produced at O at ¢ =0, we may replace it by a
proper system of disturbances taking place at ¢t=¢"and distributed
over the surface of the sphere with centre O and radius wt'.”

Now it happens that, by “Huygens’ Principle,” different authors
have meant indiscriminately any one of the above three propositions:
whereas we shall, in what follows, see that our opinion concerning
each of them must be quite a different one.

" Proposition (A) is what philosophers (if I do not misuse their
language) call one of the “laws of thought”: that is, an unavoidable
law of our reason, which we could by no means conceive as not existing
and without which we could not think. If to-day we discover Assyrian
inscriptions, we cannot dream of supposing that, at any instant between
the time when they were made and the time of their discovery, those
inscriptions could have ceased to exist and all trace of them have
disappeared. (A) must therefore be considered as a truism, which
does not mean that it cannot interest us; for the geometer does not
dislike truisms. The above proposition, in particular, corresponds to the
fact that the integration of partial differential equations defines certain
groups of functional operations; and this, for instance, leads to quite
remarkable identitiesconcerning hypergeometricand Bessel’s functions.

Proposition (C), of which we shall first speak, though not so im-
mediately evident, will prove to be a general property of the equations
we now come to.

But such is not at all the case for proposition (B). We shall per-
ceive further on that it is quite a special property of certain special
equations: indeed we do not know as yet whether our equation of
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spherical waves and others practically equivalent to it are not the only
ones to possess it.

We shall eventually speak of (A) and (B) as “Huygens’ major
premise” and “Huygens’ minor premise,” thus distinguishing them
immediately from proposition (C).

34. The aforesaid proposition (C) has been the object and result
of the fundamental works of two authors: Kirchhoff dealt with it for
spherical waves in his classic Memoir Zur Theorie des Lichtstrahlen*,
and in his Lectures on Optics; then Volterra proved it for cylindrical
ones, especially in the Acta Mathematica, vol. XxviiI, and has more
recently returned to the subject in his Stockholm Lectures+.

The manner in which these two authors set the question is the
following, which, for the convenience of graphic representation, we shall
explain for the case of equation (e;). Let us suppose that, initially, our
xzy plane is completely at rest and that, later, some impulses are com-
municated to it wnside a certain closed curve o. These will afterwards
be propagated to the outside of o and, before that, will influence the
points of o itself. We note the values of « and one of its derivatives,—

for instance the normal derivative - d—thus produced at the various

points of o at all successive instants, remembering that, in our mode
of representation, those successive states of o will be represented by the
successive cross-sections of a right cylinder S having o for its base, so
that we shall consider this cylinder as bearing the aforesaid values of

du s : . . .
v and —. Conditions remain entirely similar for the spherical waves,

o

except for the introduction of four-dimensional space, the curve o
being replaced by a surface (and, therefore, the cylinder by a hyper-
cylinder).

Now Kirchhoff, for the latter problem, and Volterra, for the former,
obtain the expression of u at any positive instant, and at any point

outside o, in terms of the aforesaid values of « and T along our cylinder
* Sitzungsber. der K. Ak. der Wiss. (1882), pp. 641 ff.; see also Beltrami, Rendvc.
Istituto Lombardo, 2nd series, vol. xvir; Duhem’s Hydrodynamique, Elasticité,
Acoustique, vol. 1, pp. 145—161, etc.
t Lecons sur Uintégration des equations différentielles aux dérivées partielles,
Upsal, 1906, and Hermann, 1912, Paris.
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or hypercylinder (in common language, along the curve or surface o
considered at successive instants): and these expressions are given by
definite integrals taken over S, which can be physically interpreted,
in any one of the aforesaid cases, by saying that the motion of
the medium outside o may be considered as resulting from properly
chosen impulses issuing at various instants from different points of o,
1.e. proposition (C)*.

Analytically speaking, this problem of Kirchhoff and Volterra
1s no other than Cauchy’s problem for the portion of universe (that
1s of wyzt, or xyt-space) lying outside S and above ¢=0 (that is,
the points of which must satisfy ¢ > 0), the variety which bears the
data being constituted by the upper portion of S (that is, the portion
of S which corresponds to ¢ > 0), and a portion of plane or hyperplane
¢t =0 (the portion outside o) on which latter the data are zero.

In itself, this Cauchy problem does not belong to the class which
properly interests us, for it i1s not what we call “correctly set”: its
possibility, as appears from the works of the aforesaid authors them-
selves, is subject to an infinite number of necessary conditions.
Indeed, for a boundary with such a shape, the correctly set problem

would be what we called a “mixed” one, consisting in giving » and %1—:
(for instance u = é% = O) for t=0 and u alone (01' %If alone) on the
244

aforesaid part of the variety S.

But besides their physical interest in proving form (C) of Huygens’
principle, and though, strictly speaking, Volterra’s formule could be
deduced from Kirchhoff’s by “descent,” the methods of Kirchhoff and
Volterra are directly applicable to the general case of Cauchy’s problem
for the corresponding two equations, and by themselves give the
complete solution of it for any form of the variety bearing the data.
Moreover the solution is obtained by a regular analytic method
(instead of the synthetic way which we pointed out as leading to
Poisson’s formula), so that we may attempt to generalize such methods
for other types of equations.

* From the point of view of this physical interpretation, Kirchhoff’s integrals
needed some transformation, which was made by B. Brunhes, 7ravawr et Memoires
des Facultés de Lille, vol. v, 16th Memoir (1895).
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35. Riemann’s method. Kirchhoff’s and Volterra’s results werc
not, as a matter of fact, the first of that kind thus obtained. Long before
the publication of Kirchhoff’s Memoir and the time of Volterra’s
researches, a first general solution of Cauchy’s problem for an extensive
class of hyperbolic equations had been given: it is Riemann’s cele-
brated method, contained in that great geometer’s paper On the
Propagation of Aerial Waves of finite Amplitude*. Though first given
by Riemann for quite special equations, the method covers, in reality,
any hyperbolic linear partial differential equation in two variables.

But Riemann’s work remained for a while unnoticed; it was only
after the publication of Kirchhoff’s paper that attention was called
to it by du Bois Reymondt, and it was finally brought to the
knowledge of every mathematician, in its most general form, by the
classic Lecons sur la theorie des surfaces} of Darboux.

Since that time, Riemann’s method may be considered as univer-
sally known,and we should not need to expound it; but its principles
are so closely connected with our subject that we shall necessarily
come across the main steps of it in the following Chapters.

* Gott. Abkandl. vol. vim (1860). 8th Memoir of the 2nd German edition by
Weber and Dedekind.

t Leipzig, 1864, and Tubingen, 1883. See Darboux’s Legons, vol. II, no 358.
(Cf. next footnote.)

1 Vol. 11, book 1v, nos. 357—359, pp. 71—81 of the 2nd edition. See also
Dini, Rendic. Accad. Lincei, vol. v (1896) and vol. vi (1897).



CHAPTER II
THE FUNDAMENTAL FORMULA

36. To generalize Kirchhoff’s, Riemann’s and especially Volterra’s
method to any (normal) hyperbolic linear equation with any number
m of independent variables, is the object of the present lectures.

Let us see how the three quoted authors proceed.

They may all be considered as starting from the same formula.
Indeed we can say that there is only one formula (which we shall call
the “fundamental formula”) in the whole theory of linear partial
differential equations, no matter to which type they belong. We shall
begin by writing 1t down.

This formula is well known in the potential theory: it is the
classic formula -

jfj (vV2u — uV2) dedydz = — /f (v g% Zi) ds.

It is well known that this has its origin in the identity

. ., 0P 0Q
vV2y — uVip = 5x+8y+az
_ ou ov _,o0u_ov _ 0w v
P—v%—u%, Q—v@ ’ltay, _R— az'—'llza‘.

The starting-point of Riemann’s method, for instance, is a quite
similar one, viz. the 1dentity

vF W) —ud (v)=

which gives, by integration,

F)  [v&F @) -ud ()] dedy =] (Pdy — Qda),

the simple integral in the right-hand side being taken in the direct
sense on the boundary of the area of integration on the left-hand side,
and the functions « and v being arbitrary but for the condition of
being regular.

P BQ
B.j
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In these two formule, & (1) means, symbolically, any given linear
polynomial in « and its derivatives with respect to z, y, and ay,

o ou
3(u)-—y+Aax B8J+O

P and @) are, for instance*,
P=%<vg—z g;)+A , Q= 2( @ﬁ_%_"{)_*_Buv’
while 4 (v) denotes the following determinate polynomial*, the “ad-
joint polynomial ” of %,
g (v) = 571,5}'/' ax(A V) — — (Bv) + Cw.

The relation between two adjoint polynomlals 1s a reciprocal one:
that is, if we should operate on  (v) as we just did on .¥ (u), in order
to obtain its adjoint polynomial, we should find this equal to & (w).
This, of course, is verified immediately, but is also a consequence of the
fact that the adjoint may be considered as defined by identity (F,)?,
which does not change when we exchange & with & if we at the
same time change the signs of P and Q.

37. Now, we can write such an identity for any linear differential
polynomial with any number m of independent variables,

3(1(,)___. Fu “B,,? + Cu.

zka @a ]c % Ux
If we multiply this by v, easy integrations by parts will show us
that we can again (with the help of 4;, = Ay;) write the identity

0P, 0% 0P
(5) vF(u)—ud (v)_—-+a~+ +8_.fc;

where we may choose, for &%, ..., c@m,

’ < ) ou ov S\aAgk >
(5)  #i=Sodug-3 Amaxk—u /k )

* See following footnote.

t It is easy to see that changes could be made in P and ¢ without altering
the right-hand side of (F;) but, & being given, there is only one polynomial
which can give our identity (F,), as results from the fundamental Lemma of the
Calculus of Variations: see Darboux, Lecons sur la theorie des surfaces, vol. 11,
book 1v, chap. v, p. 114 of the 2nd edition; Goursat, Cours &’ Analyse, vol. 11,
§ 404, 2nd edition.
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and ¢ (v) stands for the following polynomial

~9

cn=S_ 79
~ ( ) 'i,ka"’f'iawk

which is called the “adjoint” of &.
The relation between & and & is a reciprocal one, as it was in the

former case (and for the same reasons).

(Auv)—3 ai (Buw) + Cv,

38. From (5), we must go on to an integral formula similar to
(F)). This requires some geometrical notations and definitions con-
cerning m-dimensional space. If, in such a space, we have any
hypersurface S defined by giving «,, a, ..., @, as functions of m — 1
parameters (curvilinear coordinates) A, ..., Apn—1, the cosines of the
normal to S at any point will be, by definition, proportional to the
quantities

Dy=+4 7" ,

*TEDO, s A1)
D. = D(xl) coe Limyy Tgpqy oo w.m)
rT A 3
D(Xl, ------------------ kqn_l)

ooooooooooooooooooooooooooooooooooooooooooooo

in which the right-hand sides are functional determinants and their
signs are chosen in such a way that they are proportional to the corre-
sponding minors of the determinant

| Oz 0, 0%y
Lo 7)) VA W
% oz, 0z, 0%,
o 0,

o\, OA, ) WS

ooooooooooooooooooooooooooooooooo

o, 0%a 0y
ax'fﬁ -1 axli'lf— i o axﬂt !
L % * oo *

with respect to the elements of the last row (which convention still
leaves one sign arbitrary). In order to have the exact analogue of the

t See preceding footnote (p. 59).
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direction cosines in ordinary space, we should have to choose these
“cosines ” such that the sum of their squares be 1, 1.e.
4D,
WD+ D+ ...+ Dy’

+ D,
+ D2+ ...+ Dy’

t Dy,
+D2+ ...+ Dy

The “element of surface ” d:S around the same point of S will be
by definition

dS=ND2+ D2+ ...+ D2 d\idN\s ... d\jp—1,

7 = cos (n, )=

T, = €08 (N, &) = 75
. 1

T = €0S (N, L) = Nix
1

so that
(6) mdS=DidN\dN, ... Ay, TdS = Dyd), ... AN,
veey TmdS = Dyd\, ... ANy
in which formule one sign ought to remain arbitrary, this correspond-
ing to the two possible directions on the normal. But nevertheless
we have cancelled the + as we shall be able to produce any wanted
inversion of sign by inverting the order of the curvilinear coordinates.

39. We have defined our cosines and our element of surface in
order to keep the analogy with the corresponding notions of ordinary
geometry. The fact is that we shall have to reckon with the left-
hand sides of formule (6) as a whole, so that multiplying all the
cosines by any common factor will be immaterial if,at the same time,
we divide dS by the same tfactor. Especially, another form of the
quantities (6) will frequently be of use to us: it corresponds to the
case in which S is given by its equation G («,, @, ..., ,,) = 0. Then

the cosines of the normal are proportional to the quantities _a—G, the
i

proportionality factor being the normal derivative CE ‘We shall

dn

denote by dSq the quantity
* aSe=ds : (%

G = . Zl_ﬁ> ’

and our quantities (6) will be equal (except for sign) to
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This superficial element dSgq is such that dSg.dG represents the
(cylindrical) element of volume between the element dS of the surface
G =0 and a corresponding element of the neighbouring surface G =d@
(where d@ 1s an infinitesimal constant) : so that we can speak of that
» dzydz, ... dz,,

dG -

element dSq; as the “ quotient
over d@.

40. By means of these definitions and phrases, the well-known
identity (“Green’s formula”) between multiple integrals will be
written, for m-dimensional space,

ae@] agm
®) 88 (5 + -+~ dT
=—8S(M&P i+ mPo+ ... + T Pn) dS

(dT standing for the space element dz,dz, ... dz,,).

- Sacrificing accuracy to clearness, in this formula and future ones,
I represent by the triple summation S§§ what I ought to denote
by m integral signs, viz. an m-fold integral extended over a certain
portion of our space; by a double §§, an (m —1)-fold integral extended
over a hypersurface in that space; by S, if necessary, an (m — 2)-fold
integral relative to an edge : in other words, the notation will be the
same as if we had m=3. An integral relative to an edge will be
distinguished from an integral along a line by the fact that the
latter will be written with an ordinary [ sign.

In formula (g), the SSS is extended over a certain (limited)
portion 7' of m-dimensional space, the integral on the right-hand side
over the limiting surface S of T'. n denotes the wnner sense of the
normal to S (the signs in formula (6) being chosen accordingly). As has
been seen above, we can replace cos(n, 2,), cos (%, 2.), ..., cos (n, &,,) by
a—g, aﬁ . G — respectively, if we replace dS by dSg (with the hypo-
oxy’ ox,’ O,
thesis that G is increasing towards the inside of T').

Let us apply this to the identity (5): with the expressions (5") of
the &’s, the factor of dS under 8§ on the right-hand side of (g) will

become

of the space element

v 2 Agr; ou_ u Agmi— ou + Luv
ik oy, oxy,

ik
1 ou oA 1 ov 0A
=03 — = uS

2 axk a'n'k O axk 87rk + Lm;
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A being the characteristic form defined above, and the 7’s denoting
indifferently the cosines of the (inner) normal to § or the proportional

quantities SG cees aa oG , 1f, in the second case, dS be replaced by dSg.

Here we shall 1ntroduce, as was done by d’Adhémar*, a particular
direction depending on the tangent plane of S at any considered
point M : we shall set down

dz,  dr, _ _ dwnm d
T5A " 10A~ " "1o& =™
20m 20m, 2 0

and the denominators (which cannot be zero simultaneously, as the
discriminant of A is supposed to be different from zero) will be
proportional to the direction cosines of a certain direction which we
shall call the ¢transversal* to S in M. This definition was given a
very simple geometrical interpretation by Coulont, connecting it
with the characteristic cone (§13) in A, i.e. the cone which has M
for its vertex and A (v, 7, ..., Ym) =0 for its tangential equation.
The transversal, then, is the conjugate diameter of the tangent plane
of S with respect to this characteristic cone, two directions being
generally said to be transversal to each other if conjugate with respect
to the cone.

For the equation of potentials V2u = 0, the characteristic cone is
the isotropic cone, so that “ transversal ” is synonymous with normal.

We immediately note that the transversal direction lies in the
tangent plane when and only when the latter is characteristic. (It is
on the same side of the tangent plane as the corresponding normal
when and only when A (m,, 7, ..., m,) >0.)

By means of this new definition, we get to the final form of the
Sfundamental formula

(F) $SS[0F W) -u ] dT =88 (15—

D+ Luv) dS,
“dv

* (. R. Ac. Sc. February 11, 1901. We use the phrase in the text (instead of
the word ‘“conormal,” which we previously used in accordance with d’Adhémar) as
it occurs, with the same meaning and construction, in questions of Calculus of
Variations closely connected with the present ones.

t Thesis, Paris (1902), p. 34. It would be of interest to complete Coulon’s
interpretation by defining geometrically, not only the direction, but also the
magnitude of the small segment dv.
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L denoting
(7 L=Sm (B 5 9wy
i r oo/
In the case of two variables (§ 36),
du dv S\
(vgym-— u%-f-l}zw/ ds
will similarly be the value of the integrand in (F)), § 36, that is, of
ou ov
deJ Qda = /2<vé?/—u-—>dy
_1 (v ou 8'@)
ow " ow
dz_ dz dy dy.
dv- ds’dv ds
symmetrical with the tangent to the line of integration with respect to
parallels to the axes (which is in agreement with our general con-

struction of the transversal, as the characteristic conoid reduces to
the straight lines # = const.; y = const.).

) dz + uwv (ddy — Bdx),

v being such that ; such a direction » will be

41. This formula is, as we said, the basis of any research con-
cerning linear partial differential equations of the second order and
especially of the above quoted investigations*. wu habitually denotes
the unknown function of the problem; » is an auxiliary arbitrary
function, precisely in the choice of which the whole skill of the
operator lies. It will be most generally chosen so as to satisfy
the “adjoint equationt”

(&) S (v)=0

In the ordinary theory of potential, v is simply the elementary

potential
1 1

T N(w -+ (y — Yot + (2 —2,)°

if m —3,—or log; if m =2,—or also one of the quantities (Green s

Jfunctions) deduced from the elementary potential by addition of

* Kirchhoff does not form directly the quadruple integral corresponding to
the left-hand side of (5) in the spherical wave problem ; but the succession of a
triple and a simple integration which he performs is equivalent to it.

t The adjoint equation will always be—except when contrary indication is
specified—taken as homogeneous, even if, in the primitive equation, the right-
hand side is given 0.
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certain terms which remain regular for »= 0. This elementary poten-
tial,—whose introduction commends itself by the most evident
analytical and even physical reasons,—owes the part it plays in the
theory (as is immediately seen by inspection of the formulz) essentially
to the nature of its singularity for » = 0, for which it becomes infinite.
Let us remark immediately that this singularity occurs not only at a
single real point (z =x,, ¥ =1¥,, z = z,), but also along a whole imaginary
surface, viz., the isotropic cone having this point (z,, ¥, 2,) for its
vertex, which (in accordance with a general theorem which we shall
soon restate) coincides with the corresponding characteristic cone
as defined above.

42. Riemann’s Method. If we now come to Riemann’s method
for the integration of the hyperbolic equation in two variables

(© F(u)= aa ;‘J +A g“ Bay +Ou=f

it seems, at first, that the quantity introduced by Riemann in the
fundamental formula is of a quite different character from the ele-
mentary potential. Though the method is explained in Darboux’s
Legons* and several other treatises}, we sum it up briefly.

The question is to determine the value of u at a given point
a (%o, y,). Cauchy’s data being borne by an arc of a plane curve §,
which we shall assume to intersect any characteristic (i.e. parallel to
the z- or to the y-axis) at one point only, Riemann applies the funda-
mental formula ’

FY) v F W) —ud (v)]dedy = [ Pdy — Qdzx
within a triangular domain 7' (fig. 6 or 6a) enclosed between an arc
aB of S and the segments aa, aB of the two characteristics drawn
through a (which cut S at a and B), aa being parallel to the z-axis.
u means the unknown function of the problem.

Now, for v, we take, with Riemann, a quantity},—which is a
function of z, y, but depends also on the position of a, so that it has

* Vol. 11, book 1v, chap. 1v, pp. 71—81 of the 2nd edition.

t See the author’s Lecons sur la propagation des ondes, chap. 1v, pp. 163—166,
and Goursat’s Cours d’Analyse, vol.111, chap. XXVI, pp. 146—152 of the 2nd edition.

1 As to the existence of that quantity, see Darboux, loc. cit. §§ 364, 365,
pp. 96—106 and our Book v.

H. 5
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to be written ¥ (z, y; %, y,)—satisfying (in z, y for =,, y, constant)
the adjoint equation* & (v)= 0 and defined, moreover, by the supple-
mentary conditions that

/ ddy
VU=e , for z = a,

/ Bdx

Y=el¥  fory=y,

(which especially give # =1 for =, y=1v,). It is immediately seen
that the two integrals [ Pdy — @ dz along the two rectilinear segments
aa, afB, viz. (if, on S, y is a decreasing function of x)

'J[:Q(w, pyde=— [ [%(Q’?Z Ga@)+ B"@E

Yo Yo ou o
Penpar= [ [L(%_.22)
., (2o, ¥) dy . [2 02}03/ u 5 +Au@] dy,
(where z,, v, are the coordinates of a and ,, ¥, the coordinates of 3)

respectively reduce to 3 (u%?)s — 34, and 3 (u@), —4 uq, S0 that, & (?)
vanishing and & (v) being equal to f, we ﬁnd

o=} V), + 3 W)+ faﬂ (Pdy — Qda) - [[ fway.

-

—_ B
B

Fig. 6. Fig. 6a.
This, as required, gives the value of  in terms of quantities which
are assumed to be known, viz. Cauchy’s dataon S: especially » is the
transversal direction, located as said at the end of § 40.

* See footnote to § 41.

t+ When y is, on S a decreasing function of z (fig. 6), the two segments aa, a8 are
both in the positive directions (fig. 6) or both in the negative directions of the axes
and af is the direct sense on the outline of 7', as necessary in writing (F,) ; if, on the
contrary, x and y increase simultaneously on S, the sense is the retrograde one
and signs in (F;) have to be reversed. A unique formula covering all cases could
be given by the use of Méray’s notation for multiple integrals.
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If the line is an ascending one (i.e. ¥ an increasing function of z)
the sign of the double integral is to be reversed *,

The function v of Riemann is, as we see, like the elementars
potential, a function of the coordinates of two points. The property
of symmetry is also generalized to the present subject by the following
interchange propertyt: the quantity U does not change by the simul-
taneous wnterchange of x, y with x,, y, and of the polynomial &F with
its adjoint & (this giving a symmetry in (z, y) and (z,, y,) if & is
identical with its adjoint, as is the case for V2u).

But it immediately appears that the quantity % thus introduced
into the operations has a priori no singularity at a: in fact, it is a
perfectly regular, holomorphic function of the variables on which it
depends, when the coefficients of the equation themselves are such. For

instance, for the equation + Au=0 (A constant) (see below,

*u
0z oy
§ 69 and Book IV) @ is equal to J, [VA(z —2,) (y — )], in which J,
1s Bessel’s well-known integral transcendental function}.
Nevertheless, we shall soon see that Riemann’s function is derived
most directly from the quantity which corresponds to the elementary
potential.
43. The case is again different with the expressmns introduced

by Kirchhoff and Volterra. The former uses
(8) . F (r — wt),

where again r=V(x —z,)* + (y —4,)* + (2 — 2,)* and F' is an arbitrary
function of one variable. Such a quantity is singular for »=0, i.e.,
x=2xy, Y=1Y, 2=2,: that is, in the common language of ordinary
space, at one point, but in our present conception of the “universe,”
along a whole line, as ¢ is liable to take any arbitrary value.

Similarly the quantity used by Volterra (at least for the problem
with which we are occupied at present) is

®) v = log ot £Vt =

r
* See preceding footnote (p. 66).
t Darboug, loc. ¢it. no. 359, p. 81 ; Goursat, loc. cit.
1 The discontinuity arises nevertheless from the fact that integration is
extended over the domain limited by the two characteristics issuing from (z,, 7,) :
which comes to the same as making » equal to O outside that domain and, there-
fore, discontinuous along its limiting lines.

5—2



68 THE FUNDAMENTAL FORMULA [BK 11

which has two kinds of singularities in the real domain: (1) the
surface (t — t,)? — 2= 0, that is, the characteristic cone with vertex
(@0, Yo, to), this being entirely analogous to the case of the elementary
potential ; (2) the line »= 0 (that is, z=x,, y = y,, t arbitrary).

In consequence of the presence of this linear singularity, both
Kirchhoff’s and Volterra’s methods do not give directly the value of
the unknown » at the point chosen, but only the integral of » along
a certain segment of the line* »=0: from which the value of u
itself 1s then easily deduced (by differentiation, for instance, as in
Volterra’s Memoir).

The same applies to the extension given by Tedone{ to the
equation

ocu | O%u o%u 0%u

'az"l,‘,'*'é—x-;z-i- +a»’62m_1 —8w‘~“’m

=0,

which behaves quite similarly to the preceding ones (e;) and (e;) or
to (e,) according as m is even or odd. Tedone again does not get
directly to the value of u itself, but to an integral such as

rto
j (t, — t)"5u (£)dt,
t
which he has to differentiate (m — 2) times with respect to ¢,.

44. This indirect character of the method would be only a se-
condary disadvantage, but it implies a much more serious one, which
1s that the origin—at least the analytical one—of the expressions (8)
and (3’) does not appear. Kirchhoff's function is suggested by physi-
cal considerations; but Volterra’s has to be formed a priori; and this
was precisely one of the greatest difficulties overcome by the great
Italian geometer.

This difficulty will occur in a much higher degree if we try to
generalize the aforesaid methods in order to apply them when other
equations than (e,) or (e;) are concerned. Here we shall have no

* Of course, in our three-dimensional space (for (e,)) or four-dimensional space
(for (e3)), the point »=0 describes a straight line, on account of the variability of ¢.
When applying the fundamental formula, this whole line, and not merely one
point of it, has to be abstracted from the field of integration by a cylinder (or
hypercylinder) having it for its axis. The simple integral mentioned in the text
arises from the SS extended over the surface of that cylinder, by letting its radius
approach zero.

t+ Annalt dv Matematica, 3rd series, vol. 1 (1898), p. 1.
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guide, at least no sure one, in the construction of expressions corre-
sponding to (8) and (8).

This was precisely the case with the two geometers, Coulon
and d’Adhemar, who undertook the extension of the method to such
equations as 0w N 0*u + w10

oz 0y 0z w* 0t
o’u ou 1 0%
0 T oy T at oF

+ Ku=0,

+ Ku=0,

(equations of damped spherical or cylindrical waves) or to equations
with variable coefficients. The formule obtained by them were not at
all the equivalent of Kirchhoff’s or Volterra’s; in order to obtain the
required value of u, they had to be followed, not by simple differ-
entiations, but by the resolution of more or less complicated integral
equations, requiring quite a new calculus of successive approxima-
tions. The reason of this is evidently that the auxiliary quantities
introduced by them were not the ones truly analogous to (8) and
(8). (How it is that these analogues exist, but are not to be discovered
without the proper clue, will appear from our further considerations.)

45. The reason why these methods of Kirchhoff and Volterra
do not prove suitable for generalization will appear even better if we
inquire in what measure the aforesaid singular line r = 0 is connected
with the equation itself. That this connection is a rather loose one,
would evidently have been seen by these two authors if, at the time
their works were composed, science had possessed our present ideas
on Relativity. We now know that speaking of a fixed point of space
considered at successive instants has no definite meaning (or, if pre-
ferred, has an infinity of meanings), that there exist (as was known
even before) an infinity of linear transformations on «,y, 2, ¢ (or , y, t)—
forming “Lorenz’s group”—which leave our partial differential equa-
tion 1nvariant, and that such transformations leave the characteristic
cone unchanged, but may change the straight line =0 into any other
straight line drawn through the vertex of the characteristic cone and
inside it. We then know that this line » =0 has no essential and par-
ticular part to play in our operations.

In what follows, we shall find that every result of the theory can
be and has to be deduced from the consideration of the elementary
solutron only.



CHAPTER III

THE ELEMENTARY SOLUTION
1. GENERAL REMARKS

46. Of course, we have now to define what the clementary solu-
tion 1s, and to construct it. The first extension of the elementary
potential to other equations than Laplace’s is due to Picard*. He
considers the equation with two independent variables

o*u  uw

Ox? + a 12
C being a given function of « and y, and proves that (z,, y,) being any
given point, which we can call the pole, and r=V(z—2)*+(y — y)3,
this admits of a solution of the form

+ Cu=0,

9) 9 log % + w,

9¢ and w being properly chosen functions of z, ¥ (and also x,, ¥,)
which are regular in the neighbourhood of =, y =,. Of course,
w 1s, to a certain extent, arbitrary, as any regular solution of the
given equation can be added to it.

This result was extended a little later by Hilbert and Hedrick t,
and by the author}, independently, to the more general equation

o*u 82u ou ou
n —_ ~r —
(] ) Py a - Aa +B8J + O =0.

The method used in this case, however, implies that the coef-
ficients A, B, C, functions of z, y, be analytic, which was not necessary
in Picard’s proof.

* Comptes Rendus Ac. Sc. April 6, 1891, and June 5, 1900. Anequivalent result
has been obtained by Sommerfeld, Encycl. der Math. Wiss. 11 A, 7 ¢, 1900.

t+ Hilbert, Lectures at Gottingen, 1901 (unpublished); Hedrick, Uber den
Analytischen Clzaracter der Lisungen von Differentialgleichungen (Diss., Gottingen,
1901).

1 Second International Congress of Mathematicians, Paris, 1900; Notice
sczentaﬁgue, Paris, Hermann, 1901.
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But this method enables us to answer a question which pre-
viously arose, viz. the relation between Riemann’s function and the
elementary solution.

It is clear, in fact, that, if we remain in the analytic case, there
1s no essential distinction between (10) and Laplace’s hyperbolic
equation

82u ou ou

(¢) F(u)= 53y Aa +B8y

(4, B, C again being functlons of # and ), which form obviously

arises from the former one by the changing of « + 1y, 2 — 2y into z, y.

As this changes 2= (z — &,)* + (¥ — ¥,)? into (z —a,) (¥ — %), we have
to find for (€) a solution of the form

U log [(= — %e)(y — Yo)] + w.
It is sufficient that by substituting the first term in (e), the
result will be made a regular function, say
F [ log (x — @) (y —yo)] = A,

for, if so, we shall only have to take, for w, any regular solution of
the equation of

+Cu=0,

F(w)=— L

Now, we have
F U og [(x — ) (y — yo)]} = F (%) log [(x — @) (¥ — )]
1 (0¥ 1 /o
' (ay +4 M) 1o \ 0z
This will be a regular functlon of x, y near each of the lines z =z,
:’y = yo if*:

(1) The logarithmic term vanishes, so that % itself is a solu-
tion of (e);

(2) The numerators of the two fractions vanish at the same
time as the denominators, so that

o

+B%>,

.’D—.’l)

FJ—+ AU= 0 (for z=ux,),
aa% U= (for y =1,).

* It is evident that these conditions are not only sufficient, but necessary see
our Legons sur la propagation des ondes, ch. viI, § 344.



72 THE ELEMENTARY SOLUTION [BK 1T

But these conditions (together with %=1, for =ux,, y=1y,) are
precisely those which determine the function of Riemann (except
that we have written % instead * of its adjoint polynomial &).

Thus we see that Riemanns function cotncides with the coefficient
of the logarithmic term wn the elementary solution of the equation so
that, though regular, it is in a direct connection with the logarithmic
quantity (9), a particular case of general relations which our further
analysis will give us.

47. Extensions of the elementary solution to m > 2 were success-
ively given in a fundamental memoir of Fredholm’st for equations
of any order analogous to (e;) and by Holmgren}. But even in the
latter’s works, the extension is not complete, as the coefficients of the
terms of the second order are assumed to be constants, which can
be obtained by a point transformation if m =2, but generally cannot|
if m >2.

We shall construct the elementary solution for the most general
(analytic and non-parabolic) linear equation of the second order.

48. The characteristic conoid. In the case of the elementary
potential, it already appears that our elementary solution must be
singular not only at one point—the pole—but along a certain surface
(real or imaginary).

What that surface must be, appears from an important theorem
of Le Roux and Delassus¥, viz. any singular surface of a solution of
a linear differential equation** (the coefficients being regular) must

* Such a permutation is equivalent to that of 2,y with xy, 7, on account
of the interchange property (see above, § 44).

t Acta Mathematica, vol. xx111. See also Le Roux, C.R. 4c¢. Sc., vol. CXxxvII,
p- 1230. Zeilon, Now. Act. Soc. Sc. Upsaliensis, series 4, vol. v.

¥ Arkiv for Matematik, Astronom? och Fysik, vol. 1.

| The possibility of such a reduction depends, as we shall see, on the possi-
bility of the conformal representation of a certain linear element on the euclidian
ds?, so that the conditions for it are given by Cotton’s researches (7%ests, Paris,
1899, ch. 11, nos. 15—1%).

M Le Roux, Tesis, Paris, 1895, Part 11; Delassus, dnn. Scient. Ec. Norm.
Supre, 3rd series, vol. X111 (1896), p. 35.

** An assumption is made on the nature of the singularity, viz. that the
principal part of the solution w is UF (@), U being regular and /' such that
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be characterestic. Such a singular surface must therefore satisfy the
differential equation of the first order

A(aG oG 9G.

ATy Ry eees B Wy Loy eee w,m>=()
0.(/171’ a{/@:}’ ’ aéi}'m’ 1s 29 b

(A)

of §13. Among the solutions of this equation, one which was especially
considered by Darboux * will play the chief part in our present con-
siderations: it is the one which has a given point

a (ay, Ag, .. Q)

as a conic point (its tangent cone being the characteristic cone above
defined), which we shall call the clharacteristic conord. It coincides
with the characteristic cone itself when the coefficients of the equation
(or at least the coefficients of the termns of the second order) are con-
stants; in the general case. it is a kind of cone with curved genera-
trices, the construction of which, well known since Darboux’s Memorr,
will be given below, and even In a somewhat more precise form,
as we shall write down its equation.

2. SOLUTIONS WITH AN ALGEBROID SINGULARITY

49. In the first place,let us examine the case of a surface without
a singular point (the result of which examination can also be applied
to the characteristic conoid outside the neighbourhood of the vertex).
We shall prove not only Le Roux and Delassus’ theorem under the
conditions which concern us, but also its converse, which 1s important
for us, by constructing, for our equation, a solution of the form

(11) u=UG? + w,
where G =0 is the equation of such a given regular surface, p a
given constant index, U and w regular functions. Of course, as in
§ 46, we have only to contrive that the result of the substitution
of the first term in the left-hand side of our equation be regular.

F (@) F (@)
76 ™ Fe
practical cases, especially for #(G)=G? and F'(G')=1log G (the only ones which
we shall use). Le Roux (Journ. de Math. series 5, vol. 1v, 1898, p. 402) gives
another proof, not wanting the above assumption.

* Memoire sur les solutions singulieres des equations aux dérivées partielles du
premzer ordre, § 2, p. 34 (Mémotres des Savants étrangers, vol. Xxvi1, 1880).

are infinite for G=0, a condition which is satisfied for all
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We start from the equation (E), which we take as homogeneous

(ie. f=0), viz.

(E) FU)=3 Ag 28 +EB, 4+ O0u=0
e Om;omy ox;
L oG
Let us replace w by U.F (G). Wrnting =; for s Ve have
¥ U F’(G)+————F(G)
o*u ” 8U oU 0*G '
o= Umem (0 + (m 3+ m g + U o) F(6)
U
+ élﬁt 8.7*;5 F (G)

We have to multiply the first line (for every 2) by B;, the second

(for every 1, k) by Ay, and add* to CUF. In this combination we
-see that:

(1) the coefficient of £ (G) is A (1, ... Tm);
(2) 1n the coefficient of F” (&), the terms in %g aret
oU

aw E 2A!k7rk)
. oU oA
that 1s s o’
Therefore, we have
oU oA
I S‘
UF"(G)A (my, o ... 7) + F (G)(7 =2t )

+F(G) F(U)=0,

where M stands for «
(12) M=5(G)- CG.
Especially, for F(G)= G?, we get

(13) p(p-1)G*U.A(m,... 7rm>+paw(za—"§$ ny)
+.G?F (U).

* In such an addition, the suffixes ¢ and & may be permuted, as A4 ;.= A4;;.
t See preceding footnote.
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If the cases of p=0 and p=1 are excluded, this cannot vanish
identically or even be a regular function (the first term evidently
being of a greater order of magnitude than the following ones), if the
coefficient A (7, ... ) 18 not zero: that is, if G =0 is not a charac-

oG oG

teristic. The equation A( ) 0 must be either an identity

@’ """ 0y,
or a consequence of G =0, so that we have in every case
oG oG
(13a) (Bxl d.cm) AG,

A, being regular even for G =0. Thus Delassus’ theorem is proved.
We now assume that this condition is satisfied, so that G?—2 disappears
from (13). Let us express the condition that the terms in (7~ also
vanish : we have to write that, on the surface G =0,

oU oA

(14) Ea S

+[M+(p-1)A)U=0.

This is a linear partial differential equation of the first order in U,
the integration of which would lead to the introduction of the lines
defined by the ordinary differential equations

dx, da, Az,

(L) 1@1_‘=léé="'=_1__3A=dS'
20m, 20m, 2 0,

In the denominator, we find the direction cosines of the transversal
to G =0; but this 1s, in the present instance, tangent to that surface
(as the latter is a characteristic; the transversal is the direction of
the generatrix of contact between the plane (m;, ... m,) and the
characteristic cone), so that a line satisfying (L,) and issuing from a
point of G =0 us entirely situated on that surface. These lines are in
fact the characteristics of equation (A), as defined in the general theory
of partial differential equations of the first order. We shall call them
the bicharacteristics*. If A, =0, that 1s, 1f the function G identi-
cally satisfies A =0, the aforesaid theory of the partial differential

* For their physical meaning as sound or light rays, see our Legons sur la
propagation des ondes, ch. viI, §§ 309, 319 and 351.
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equations of the first order* shows that besides (L), these lines also
satisfy

_ dﬂ'l _ d77'2 _ _ d'rrm
& B TERT AT T T
2 Bxl 2 8w2 - 2 aw'm

so that they can be determined a priori (that is, without knowing the
equation G = 0) by the integration of the system of ordinary differential
equations (L,) and (L,).

Bicharacteristics have already appeared in our former operations.
They are indeed the lines which, in § 12, Book I, we consider as defined
on z,=0 by the differential equation (!) in order to determine our
successive u,, U,, ...: ;= 0 being tangent to the characteristic cone at
each of its points, the generatrix of contact has its direction cosines
proportional to 4;,, 4.

50. The same lines and the fact that they are preserved in any
punctual transformation (which i1s obvious from their analytical or
geometric signification) will in the first place be used by us to simplify
our equation. Our given characteristic surface being assumed to be a
regular one, we can change the variables so as to give its equation the
form z,, =0, and this, moreover, in such a way that every «,, = const. is
a characteristic: thiswill be expressed by 4,,,, being identically zero.

We shall assume, further on, that the edget of intersection of
2w =0 and @,,_, =0 isnowhere tangent to a bicharacteristic direction;
by virtue of which we can take our new variables so that the bi-
characteristics situated on «,, =const. shall be z, = const., 2,=const,, ...,
Zpm—p = const. This will be expressed by

Aim=0. (r#Fm—1)
We shall divide by} Am, m—, and we can also make B,, vanish by

changing u into ue/Pm3®m-1, Replacing the letters «,, and @,,_, by @
and y respectively, we see that we can write our equation

(15) PU _ & (uy=0,
oxdy
* See Goursat-Hedrick, loc. cit. § 87. t See note ¥, p. 5.
I A,.,m—) must bedifferent from zero, or else y; =y.= ... =,, - ;=0 would make

all the derivatives of A (y,,...y,,) vanish, which is excluded, as we are not in the
parabolic case.
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where the new differential polynomial %, (u) contains no differentiation
with respect to .

51. p=0. Beudon’s result. The cases of p=0 and p=1 were
excluded above. They correspond to no singularity of %, and bring
us back to the considerations of our first Book*. But as we are taking
the case of a characteristic surface, they will, for that very reason,
interest us as leading to the answer of the question which was set in
§12; i.e. the nature of the indetermination of Cauchy’s problem in
that case.

This question is solved by the following result:

In the present case of « = 0 characteristict, we can determine a solu-
tion of our differential equation by knowing its value u (=, ..., z, 0, y)

U (21, oo T2, 0, :'/) = uy (21, -+ Tz, 3/)5
ULy, oo Tipsy &, 0) =0 (21, oo Ty, @)

on euch of the surfaces =0, y=0}, which values can be chosen
arbitrarily, but for the condition that they vmply no contradiction along
the edge of intersection, 1.e.

(16)  wo (21, ... Zip—g, 0) =0 (21, ... Zines, 0), sSAY =Wy (24, ... Tpys).

This theorem contains, as a particular case, the proof of existence
of Riemann’s function (§42). It was first given, for that purpose,
by Darboux| for m — 2, so that =0, y=0 were two lines, the data
being analytic, and both lines being assumed as characteristics. It
was extended by Goursat| to non-linear equations, assuming only
that the initial tangents at their points of intersection have charac-
teristic directions.

* The case of p integral and >1 may be considered as included in our present
as well as in our former considerations b: p= 2, for instance (with U;=0), so that
u= Ux? would correspond to a Cauchy problem with u,=w,=0, for which we
already know that no solution different from zero can be obtained if #=0 is not
a characteristic.

+ It is even sufficient to assume that 2,,=0 is tangent to a characteristic at
every point in common with #,, _,=0.

1 The hypothesis that the edge of intersection is nowhere tangent to a bi-
characteristic is again implied.

| Darboux, Legons sur la theorie des surfaces, vol. 11, pp. 91-—94. Goursat, Legons
sur Uintegration des équations aux dérivées partielles du second ordre (see below,
2nd footnote, p. 78).
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Beudon (loc. cit.)* generalized Darboux-Goursat’s result to m > 2,
and, after Goursat, used it to prove the indetermination of Cauchy’s
problem for a characteristic.

But, as Picard} (admitting even non-analytic data) and then
Goursat (for the non-linear case) have shown for the case of m =2,
the hypothesis that ¥ =0 1s characteristic is not necessary. We shall
now prove Beudon’s theorem with the same improvement.

We assume, at least for the present, all the data to be analytic, so
that the coefficients in &, shall be holomorphic functions of the in-
dependent variables}, and we again substitute for » an expansion in
powers of z

(17) U=u+ U+ ... + w2t + ...,

By equating the coefficients of similar powers of z, we obtain the

successive conditions
( Ou,

5:; = 31 (uo):

%—’; = F W)+,
(18) e

a’a—zg = 31 (uh—l) + s

the system of which is conversely equivalent to (15).

The first of them will give us % (the right-hand side containing

no other term of (17) than w,); the second, %—T; etc, the right-hand
side of the equation for % depending only on %, ,, ... us—,, and

oy
the coefficients of %,. Hence we see:

* See note t, p. 20.

t Picard, in Darboux, loc. cit. vol. 1v, pp. 355—359 (Note I). Goursat, Equations
aux dérivées partielles du second ordre, vol. 11, pp. 303—308.

1 x generally appears explicitly among the coefficients of <%, : the terms due to
this circumstance are those which we have replaced by dots, on the right-hand
sides of equations (18) (in the first term, on the other hand, we must make »=0).

|| That the u’s with suffixes 2’ less than 2—1 also appear in %?, results from

the foregoing footnote.



CH. III] THE ELEMENTARY SOLUTION 79

(1) that u, remains arbitrary;

(2) that we can also choose arbitrarily the values of each of the
following w’s for y =0; after which, we shall have (u, being what u,
becomes for y =0)

(19) =y + Jf ' & (un) dy.
0

The latter fact is equivalent to saying that we can take arbitrarily
the value of expansion (15) for y =0, 1e. the function

(20) u (2, s, - Tins, &) = ZUpah
h
except its first term u, (2, @, ... #;,—,), Which must be equal to the
value of u, for y=0. This is nothing but another form of condition
(16). The condition for ?u} 1s no other than the condition of possibility
vy

for Cauchy’s problem written in § 12, Book I. We see that, when it
1s fulfilled, the expansion (17) remains indeterminate, the arbitrary
elements in 1t being the successive coefficients u, in the expansion (20).

52. We shall have the right to speak of a solution u presenting
the same degree of indetermination when we shall have proved the
convergence of (17). We shall do this* under the hypothesis that all
our data are holomorphic around a given point on our edge 2=y =10
(which we shall choose for the origin of the coordinates): granting
which, we shall give the required proof for the multiple Maclaurin
series which expands u in powers of z, ¥, @, @, ... Ty_s.

In the first place, we see that each of the calculations (19) implies
only differentiations, integrations (from the lower limit 0), multi-
plications and additions, so that every coefficient in (17) will be
expressed in terms of previously calculated ones (that is, with a
smaller A and a not greater total degree in all the variables) and

* This will mean the construction of a solution satisfying our conditions for
sufficiently small #’s and a small domain D of values of xy, ..., Zp—o,y. For the
contrary case in which D is sufficiently extensive, we simply point out, as it
concerns non-linear equations which we are leaving aside, a remarkable result of
Goursat’s (Ann. Fac. Sc. Toulouse, 2nd series, vol. viir, 1906), viz. that it may
happen that even the (seemingly indeterminate) problem of Cauchy relating to
x2=0 admits of no solution which is valid throughout D and regular; but this can
not occur in our linear case.
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coefficients in the expansions of the A, By, C which enter in %, by
a polynomial with only positive terms. Therefore, we only have to
show the existence of our solution by replacing the expansions #,,
%y, 4 by properly chosen dominant ones.

We may also again assume the functions w,, © to be identically
zero, as, In the contrary case, we should only have to introduce,
instead of «, the new unknown

U— Uy —0 4+ 1,

and we may suppose this to have been done beforehand.

Such zero values of u, and %, will be, as in Book I, § 10, dominated
by any expansions with positive coefficients.

A dominant expansion for %, will be

u+2'p;+ vy

| EHYEEE B
p

(21) K (K >0, p>0, constants)

2.0
(where p; stands for Q?—b , s for - Fu and the 3’ relates to all values

aa&'i ox; asz

of 7, or v and £, from 1 to m — 1), so that we have again only to show
2
that the equation obtained by equating E%g:-y to this quantity or to

any dominant one admits of a solution represented by a Maclaurin
expansion with positive coefficients.
Again using Goursat’s device*, we write a dominant of (21) by

changing, in the denominator, # into a with a< 1, so that we start

from equation
*u w+3'pi+ S ry,

0wy @ ’
J C-l--i-y+:vl+...+acm_e

1— -
P

for which we have to find a solution in the form of a Maclaurin

* This was not necessary in Beudon’s original note, because Beudon assumed
y=0 to be also a characteristic, i.e. 4;~),m-) to be also zero: so that the exten-
sion of the theorem to the case where =0 alone is a characteristic is connected
with Goursat’s introduction of the parameter a.
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expansion, with coefficients positive or zero. Let us take for v a
function of the variables

(22) X=z+ay, Y=a+.. 4+

For such a form of u, our equation becomes (writing C for the

~1)(m - 2))

numerical coefﬁment 5
S ou ou 0% Pu_ u
P A )——+adX2+a(m 2)8“)(81/4-08-}7’5

e
=

I S 1—~<‘—X_+ Y)
p\a

H

*u
or, solving with respect to ek

ou 0*u

23 2 gtegytm- 2)8Y+ @ (m - 2)8X8Y+08Y2’

o a L-= (—— + Y)
p\a
where L =1- Ka.

Let us take a such that L >0. Then we see that, expanding the
fraction on the right-hand side of (23) in powers of X and Y, every
coefficient 1n it will be positive.

Now, on account of Cauchy-Kowalewsky’s theorem, equation (23)

will admit of a solution vanishing, together with ? 2% for X =0, the

expansion of which, as appears in § 10, has only positive coefficients.
Substituting for X and Y the values (22), the required dominant
expansion 1s obtained, which gives the proof of our theorem.

53. p arbitrary. We shall now establish a corresponding con-
clusion for any value of the constant p, except a negative integer*.
Taking u = UzP, we have for U the equation

orU oU

(15) % 555y +p=- 5y = & (u).
Replacing U by
(24) U=U,+ Uz + ...+ Upa +

* Another method has been proposed by Le Roux (ZT/esis,. No. 32).
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and equating the coefficients of similar powers of z, we have (dots on
the right-hand side having the same meaning as in § 51)

( oU,

(18"

aUh = 31 (Uh-l)+

Conversely, the system of (24) (when convergent) and (18’) is equi-
valent to (15).

If pis a negative integer, this system generally admits of no solu-
tion*: the impossibility of satisfying it appears in that one of the
equations (18’), e.g. for p =—1, the second of these equations, no
longer contains U, and becomes

F(Uy) =0,

which ought to admit of a solution independent of .

The hypothesis of p a negative integer being laid aside, equa-
tions (18) make known to us the successive Up’s. In each one of
these functions, however, an additive constant remains indeterminate.
Their values can therefore be chosen arbitrarily for one determinate
value of y, e.g. y=0.

To prove the convergence of the expansion (24) thus obtained, it
is sufficient to observe (as is done in the classic theory of the differential
equation w%= az + by + ...) that the ratio p Zh
under the hypothesis which we have adopted and whose limit is 1
when & increases without limit, is always greater in numerical value
than a fixed positive number g. We therefore shall obtain dominants
for the successive U if we dominate . and replace at the same time,

, Which 1s never zero

in the equatlon that gives ad[j the coefficient (p + &) by gh.

* See Legons sur la propagation des ondes, p. 339, § 356.
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Now, this is equivalent* to making p =0 in equation (15), after
multiplying the right-hand side by % It is then possible to divide

right through by «, and we are brought back to Beudon’s problem,
which we treated above. Since, in this latter problem, we can choose
arbitrarily the values of the unknown for y =0, that is, on any surface
which tntersects the first without bexng tangent to one of 1ts bicharacter-
wstics, the same is true in the problem now set. '

The conclusion aimed at is thus established only upon the hypo-
thesis that we are in the analytic case: a restriction, however, which
1s no immaterial one, as we have already seen.

3. THE CASE OF THE CHARACTERISTIC CONOID.
THE ELEMENTARY SOLUTION.

54. The characteristic conoid with any point a (a,, @, ... @) as
its vertex has that point for a singular point, so that the preceding
calculation ceases to be valid: and in fact we shall see that p cannot,
as above, be taken arbitrarily. ‘

To treat this new case, we must first form the equation of the
aforesaid characteristic conoid. This is, as we know, the locus of all
bicharacteristics issuing from a. Analytically speaking, we have to
take any set of quantities p,, ... py, fulfilling the condition (A) and,
with the initial conditions p; = py;, ;= a; for s = 0, integrate the above
written differential equations

4) dz; 10A  dp;_ 10A
ds ~ 20p;° ds 20w

As the quantities py, ... Pom (or more exactly their mutual ratios)
under condition (A) depend on m — 2 parameters, the locus of the
line thus generated is a surface. We must give a precise form for the
equation of this surface: which form was suggested by Coulont.

U,

* Strictly speaking, the first equation (18'), viz. %;—:O, would disappear for

p=0, as its left-hand side was originally multiplied by p. Of course, we have

to preserve it in the present argument. Knowing the values of U for y=0, it

determines them for #=0, thus giving all the data required by Beudon’s theorem.
t+ Thesis, p. 22.

6—2
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55. Introduction of geodesies. For that purpose, we shall con-
struct every line issuing from (a,, a,, ... a,) and satisfy the differential
system (L) whether the initral values py, ... Pom of the variables p;
satisfy (A) or not. Such lines are in fact the geodesics of a properly
chosen linear element.

Results in the general theory of geodesics*. Let

o4
H (dx,, dz,, ... dow; @y, @y ... 2,,) = 2 Hydzday,

be any quadratic form (except that its discriminant will be supposed
#0) in dz,, ... dzy, the coefficients Hy being given functions of
), .. Zpy. If dz,, ... dz, be considered as differentials of z,, ... T,
H can be taken as a linear element in an m-dimensional variety. The
integral

L=(VH(dz, ... dey)=[VH(z,, ... z,;)d¢

(where, in the last member, «;’ stands for d—w’) will thus represent the

dt
length of an arc of. curve in that variety, and the corresponding
geodesics are the lines which make the variation of L vanish. Their
differential equations are

(25) ¢ (8\/ﬁ>_8«/ﬁ=0‘ (=12 ... m)

dt \ ox; 0x;
Classic dynamical principles also lead to writing these differential
equations in a different form, viz.

o d ((H\ O0H .
(25) Zz.‘s(é?{)“é; =0, (i=1,2, ...m)

this governing the motion of a system the vis viva of which would be
H («/, ), and on which no forces would act.

These two forms (corresponding to two forms of the principle of
least action) are not exactly equivalent, but are so conditionally. The
first one determines the required lines but not ¢, the latter remaining

* See Darboux’s Legons, vol. 1I.
Many of the following principles, such as geodesics for an indefinite linear
element, geodesics of zero length, differential parameters, etc., will be familiar to

many readers, as they are now of constant use in the recent theory of Relativity.
We, however, shall not assume this theory to be known.
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an arbitrary parameter the choice of which is immaterial. Equations
(25) remain unchanged by the change of the independent variable ¢
to ¢ (t),.¢ being any function.

The second form (25") defines not only a line, but a motion on
that line, and this motion is no longer an arbitrary one in time: it
must satisfy the integral of vis viva

(26) H = const,.,
so that the representative point (2, ... ) must move on the
curve with constant kinetic energy. But if we take account of this
latter equation, the two systems (25) and (25") are (in general)
equivalent*.

We shall start from system (25’) and reduce it to Hamilton’s form
by introducing the quantities

10H

(27) pi= ) 871’, .

By eliminating the z;”s, H becomes a quadratic form A in the
p’s,—viz. the adjoint form of H divided by the discriminant D of
H—and, as we know, the m equations (25’) of the 2nd order are re-
placed by the 2m Hamilton equations of the 1st order

dx,- _ 1 0A
(equivalent to (27)) and
dpi _ 1 0A
(L2) ‘Zi—'—s_ = 9 é?U: .

These equations again admit of the integral A = const. equivalent
to (26).
* If, in (25), we suppose the arbitrary parameter ¢ to be chosen so that

H =const., then the denominator 2VH in a._,__:/lll = ____1_ °H
0y ovH oz,

can come out from

under the sign o%’ and we find (25').

Conversely, if we intend to write (25') so that the independent variable
¢ may become arbitrary, we have only to note that, as a function of such a
quantity ¢, s can be easily calculated by (26), viz. ds=~Hdz. Replacing ds by

z
this value and accordingly 2" by Jﬁ“, we find (25). (See Darboux’s Lecons, vol. 11,

§ 571 of the second edition.)
All this fails for the special geodesics (bicharacteristics) such that A(=H)=0;
then the system (25) ceases to have any meaning, (25’) remaining valid.
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56. We shall use the preceding calculations in such a way that
the quadratic form A be the one which we above denoted by that
letter, viz. the characteristic form of our equation. How we must
choose H for this purpose, is well known: the relation between A
and H is a reciprocal one, so that we have to take H equal to the
adjoint form of A divided by the discriminant A of A. The two dis-
criminants D and A of A and H are reciprocal of each other. The
variables p; in A are connected with the variables z;" in H by any one
of the two (equivalent) systems (27), (L,), the variables z; being, of
course, the same 1n both forms. :

It is useful to note that the use we make of this conception of
geodesics is slightly different from the usual one in the sense that
A (or H) may be—and will be actually, in the hyperbolic case, the
one which will concern us especially—an indefinite form. This, of
course, will not matter for most of the analytical properties of geo-
desics; L may become imaginary, but not its square, which is pre-
cisely the quantity which we shall have to introduce*.

57. The above defined geodesics will now be treated by a method
essentially equivalent to the well-known one due to Lipschitz}.

As we have noticed, equations (25") do not admit of an arbitrary
change in the independent variable; but they still admit of any linear
one, in which s is replaced by as+ 8, a« and B being any constants:
indeed, such a change leaves equation (26) unaltered but for a change
of constant on the right-hand side.

The corresponding property of equations (L) is that they are not

altered whenwe change sinto as and p; into — (a being constant), with-

out altering the 2’s; and this even leaves every integral curve of (L)
unchanged (only changing its parametric representation).

Let us now exclusively consider the geodesics issuing from a special
given point a(a,, a,, ... a,,) of the m-dimensional space, s being zero

* The only important difference introduced into operations by the possibility
of A being indefinite is that we cannot, as is frequently done, choose on each
geodesic the variable s so that the constant A becomes equal to 1, as the case
of A =0 happens particularly to concern us.

t Bull. des Sc. Math. 1st series, vol. 1v, pp. 99—110. See Darboux’s Lecons,
vol. 11, Book v, § 518.
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at this point. One of them will be determined if we give the initial
values (values for s = 0) Py, ... Pom Of py, ... ... Moreover, the same
one will be obtained, as we have just seen, if we replace s by as and

Pyy - P DY % , }ﬂ, the p,;'s having of course to be also changed into

a
%— This can be expressed by saying that the 2m + 1 quantities

Pis o Pms  Pors s Poms S

only occur in the 2m combinations
(28) P;=sp;, qi=5poi. t=12,...m)
Thus, the integrating formule of (L) must be of the form

{xi= bi (Q1s +e- Qmy A1y o-e Amy),

Pi=vi(qu, -oe Qm; s - Q)
and we may immediately notice that those formule do not change
by permutation of the z; with the corresponding a, and, at the same
time, of P; with — ¢; (as the differential equations (L), (L.) show by
changing s into — s).

Let us now consider the first series of equations (29) as denning a
punctual transformation between the 2’s and the ¢’s, the point corre-

(29)

sponding to ¢,=...=¢q,, =0; as (@’) _1 E—é , we see that the expan-
A ds 0 2 O
sion of z; — a; has% 55—_ for its term of the first degree. The Jacobian
D (%, ... 2,)
30 J = 2
(30) D(qi, ... qm)

has therefore, at a,the value A, and is # 0, so that the ¢’s can certainly
be expressed as functions of the «’s in the neighbourhood of a.

The variables ¢ are very simply connected with the normal var:-
ables of Lipschitz*: those being, by definition, the quantities:

Ei=s (%fﬁo ;

so that we have, between them and the ¢’s. the linear substitution

with constant coefficients
10H,

Qi="2‘ 5"5;_—,

* Loc. cit. See footnote t, preceding page.
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or, in another equivalent form,
. 104,
5= 3 5 g’
A,, H, being the forms A, H considered at a, viz.

A, (91: 9m)=A(91; ces Qs Ay oe am);
HO (fl? cee Em): H (El) Efm; Ayy eee am)-

If we use the special coordinates ¢; (or &) the geodesic lines
issuing from a will be represented by straight lines, the coordinates
being proportional to s.

57 a. Nothing of the above requires the assumption that the co-
efficients A be analytic: they only need to be regular, inasmuch as
this is necessary for the application of general theorems concerning the
existence of the integrals of differential equations and their differenti-
ability with respect to initial conditions. (See Additional Note at the
end of the present Book.)

If the Ay’s are holomorphic functions of the s, then the zs will
be, in the vicinity of a, holomorphic functions of the g¢’s, and, con-
versely, the ¢ s will be holomorphic functions of the zs.

All our present considerations—and, consequently, those of the
following § 58—will continue to be valid as long as the solution of
the first series of equations (29) with respect to the ¢’s is possible:
in other words, so long as the problem of joining the point z (z,,...2y)
to a by a geodesic line may be considered as a determinate one. The
region & in which such a validity persists may be defined by consider-
ing, for instance, a one-parameter family of surfaces, containing a inside
them and enveloping each other as the parameter increases (such as
spheres with centre a): the inside of such a surface will belong* to 42

* See our Lecons sur le Calcul des Variations, final note A. A region 42 is most
frequently obtained if, on every geodesic line going out from our point a, we
determine the arc issuing from a and around which the required property (i.e. the
fact that any point is to be joined to the initial one by a uniquely determined and
continuous geodesic line) does not cease to exist : which arc is limited by the point
defined by J (formula (30)) =0, the so-called conjugate focus of « (see Lecons sur
le Calcul des Variations, Book 11, ch. 111) at which the geodesic may be touched
by the envelope of a properly chosen one-parameter family of other geodesics
issuing from a; but in some cases such a definition of % may prove to be
erroneous,



CH. III] THE ELEMENTARY SOLUTION 89

so long as each of them will cut an arc of geodesic issuing from a at
one point P only, and, moreover, the Jacobian (30) does not vanish on
the arc aP. '

Instead of considering the Jacobian (30), we could take any geo-
desic from a as a function of m — 1 parameters A,, ... A,;_, defining
its initial direction, each point on one of these geodesics being thus
defined by a system of values of A, ... Ay, 8. The Jacobian

D@, . zm)
DAy, - Apas S)
would play the same part as the J acoblan (30).

(30 a) J=

58. Equation of the characteristic conoid. Having thus de-
fined the auxiliary quantities P and ¢, we form the expression

I‘=A(-P1, Pm’ Zyy oo wm) =A(Q1; Q25+ Qms @y, Ag, .. a'm)°
This is a quadratic form in the a’s, with constant coefficients, and

a holomorphic function of the 2’s; its expansion in powers of the
(z; — a;)’s begins with terms of the second degree, viz.

(31) F=H0(.’l7,;—a], ...wm—am)+....
I'is in fact the square of the geodesic distance from povnt(@,, Ts, ... Zm)
to point (a,, as, ... an), this distance being calculated by means of the

linear element H as defined in § 56.
This enables us to evaluate the partial derivatives of I': for those

of VT are given by the classic equation in Calculus of Variations*

< OVH 1
8 '\/I‘ =A. —*—8 i —— 18 l+o.- m8 m )

We thus see, on account of I' = A (P) =s?A (p) =s*H (2), that the
partial derivative of I" with respect to «; is no other thant 2sp;=2P;

and that the function I' ¢s a solution of the partial differential equation
of the first order

oI’
(32) A (axi ) 4T,

* See Bolza, Lectures on the Calculus of Variations (Decennial publications of
the University of Chicago), formula 155 (p. 123) and two last formule of p. 154 ;
or our Lecons sur le Calcul des Variations, book 11, ch. 111, p. 142.

t Therefore the tangent plane to any surface I' =const. is transversal (§ 40)
to the corresponding geodesic: a general fact, besides, in the Calculus of Variations
(see our Lecons sur le Calcul des Variations, § 137).
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The expression I' is symmetrical with respect to the two points
(21, %3, ... 2p) and (@, @, ... @n) on which 1t depends.

I' =0 15 the equation of the characteristic conord.

If the normal variables £ are taken as Cartesian coordinates, the
characteristic conoid is an ordinary quadratic cone (or rather hyper-
cone) which is real for a hyperbolic equation. Asstated in Book I, when,
moreover, the equation 1s normal, it consists of two sheets and divides
space into three regions, two of which are interior and one exterior.

These qualitative.properties also hold in the primitive space where
the coordinates are 2,, &, ... Z,, as the punctual transformation be-
tween the «’s and the £’s is a regular one. We can speak, therefore,
of the two sheets of the characteristic conoid, or, as we shall often say
more briefly, of the two half conoids with any given vertex a.

We generally write the equation in such a way that I' > 0 corre-
sponds to the interior regions, l.e. that the characteristic form consists
of one positive and m — 1 negative squares.

59. Lamé-Beltrami’s differential parameters for I. The above

equation can be written in Lame’s notation of differential parameters*,
viz.

AT = 4T,

the left-hand side being the differential parameter of the first order,
with respect to the linear element H; a result which, besides, may
also be considered as a mere consequence of the well-known equationt

(32") A, (WD)=1,

satisfied by the geodesic distance. We can get a second useful formula
by using the m relations
(33) L _ 2,

Bwi

together with the differential equations (L) (§ 55). If we multiply

these by the corresponding derivatives z—g of an arbitrary function U
i

and add the m products thus obtained, we find
dU_ 100 0A
ds 5 20x;0p;’

* See Darboux, Legons sur la théorie des surfaces, vol. 111, book viI, ch. L.
+ Darboux’s Lecons, vol. 11, book v, ch. v.
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which, in Lamé’s notation, (33) gives

(34) A (T, U)=2.s'(il-—ls].

Finally, this last result enables us to find the value of the para-
meter of the second order A,I.  We know indeed that the latter can
be defined, after Beltrami* by the existence of the integral identity

+SSS UA, I'dx,dz, ...dz,=SS ...,
where the m-uple integrals on the left-hand side are extended over a
portion of the m-dimensional space; the (m — 1)-uple one on the right-
hand side over its boundary, the quantity replaced by dots under §§
beingt the product of U bya linear combination of first derivatives of I'.

We shall use this by transforming the first §§S by tne intro-
duction of the previously defined coordinates s, A;, As, ... Agpy. De-
noting again by J the Jacobian of x,, x,, ... z» With respect to these

parameters, this first integral becomes ’
U, ;.
§882s % | [ dhdhs... dhss s,

which can be directly transformed into

(36) +SS2U|J|sdMdn, ... dhp,
- 8SS 2U~a—(—!58f—'s—)d>»ld7\,z o dhpds

=1 8S2U|J|sd\dn, ... ANy
. _ 1d(Js)
SSS 2U 7 T da;ldxz cee dxm.
The coefficient of U in the m-uple integral of this final expression
1s necessarily the required value of A;J
dlog J
(37) A2P=2(1+s——ds—).
* See Darboux, loc. cit. vol. 111, § 674. Strictly speaking, we ought to define

the symbol A, a little differently, by taking as a factor, in the element of each
of the SSS in (35), not dxdx,... dz,, but an element of volume, equal to

e 1
dzydz ... dx, multiplied by v, IDI:W_Z_—S' In our case, this would have been an

unnecessary complication. It would lead to writing Iog——Z instead of logJ in (37).
N

t+ This quantity can be easily seen, by (36), to be +2JsU ; but this is a
useless verification, as, on account of the fundamental lemma of the Calculus
of Variations, no two transformations of the form (35) for the same quantity
can exist (and be valid with U arbitrary) without coinciding term by term.
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60. It may be useful to note that equation (32) characterizes our present form
of the equation of the characteristic conoid ; that is, any function holomorphic*
around @ vanishing on the conoid and satisfying (32) is no other than T itself.

For such a quantity ought to be of the form

T'1I
(II again holomorphic). Substituting in (32), we have
4T =I12A T + 2IITA, (11, T) + T2 A, 10,
or (on account of (34) and noticing that the equation is satisfied for I1=1)

dir T r

d
I+8— + — AIH—I—%[s(H—l)]+4H A II=0.

de Al

This shows us that IT=1 all over the conoid: whence II=1+4I'R, [ being a
positive index and the new holomorphic function R not vanishing on all the
surface of the conoid. But this would imply a contradiction, as, substituting
IT—-1=T!R in the above equation, we should find that, on our conoid,

dR

which admits of no other regular solution than zero. Q.E.D.
¢

61. Construction of the elementary solution. This being under-
stood, let us come to the problem which we have in view, and seek to
find, for the given equation, a solution of the form

(38) a=UI"?,

I" being the function which we have just formed, in which the pole @,
with coordinates a,, as, ... an, Will be considered as given, and the
point & (%, %, ... Zn) as variable. We shall for the present take only
the analytic case, so that the coefficientsare assumed to be holomorphic
in the #’s. |

We again join z to a@ by a geodesic line, on which we have

dz, _ dwy dz,,
(L) l%_l@é_"'_l—aﬁ_d&
2 0p, 2 0p. 2 0pm,

Let us write down, under these conditions, equation (13): A,
as defined by (13 a), is identically equal to 4, from equation (32). As
for the quantity

oI
* On the other hand, non-holomorphic solutions exist in infinite number, viz.

the square of the geodesic distance (still calculated with respect to H) from
(1, ...7y) to any surface inscribed in the conoid.

M=3A4 +2Big£

Ly
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formula (31) gives us its value at the origin; we have
T

=2Hz+...,

and, in consequence (the derivatives % being 1initially zero),
i

M=273 Ai,chi,k+ e=2m+....
ik
The =;’s in (13), 1.e, the derivatives of I', have to be replaced by
21)5 = QSpi.
Therefore (dividing (13) by pI'»~* after having replaced G by I'),
we have

Gm>2z?€? ¢M+@—®U+F3QD
oU 0A
_.,Ea P, +@Cm+4p—4+ .. )U+ y(U) 0,
and, in consequence, for I' =0, regard being had for (34),
(39) 2s %7+<]';+2p 2\ U= 2s‘fiU+(m+2p 2+...) U=0.

Since U must be a regular function of s, this equation vs possible
only 1f we have

m—2

(40) p=——5"—"Py

P, being a positive integer or zero; U is then, for s in the neighbour-
hood of zero, of the order of s». For p, =0, and therefore
m—2

(4‘0’) = - —-—2—:-~ ,

U will have, at the point a, a value other than zero. We shall

take this as equal to —.1 ~, the reciprocal of the square root of
+ V§ Ay

.the discriminant of A at the point a.

The corresponding solution u is the only one that we shall need

to consider, because the others, deduced from p,> 0, may easily be

reduced to the first. For «, when once obtained, will be a function,

i
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not only of the #’s, but also of the a’s, and it is an analytic function
of those quantities*. The quantities

du Ou ou

%0," B, """ Bam
are solutions of the given equation, and it is immediately evident that
they possess, at the point @, the singularity corresponding to p,=1. We
should obtain in the same wayt the solution corresponding to values
of p, foldlowing this, by differentiating again with respect to the a’s.

But, from what we have seen before, there 1s a set of values of

m for which none of the above solutions exist (generally, at least), and
for which, consequently, the problem is generally impossible: these are
the even values, the number p then becoming a negative integer. We
shall, of course, meet this impossibility again in the course of the
process that will determine the solution.

62. To carry this out, we should note that equation (39") gives
us the values of U on our conoid. We have (since U is equal to

1«-»_ at the vertex)

+VIA|

_ 1 fi(Eee-g)e
(41) U—’\/}Aaze 0 ( )

Let us determine a function U, that shall be equal throughout our
space (or the portion of space where I' is defined) to the above ex-
pression; in other words, that fulfils, through the whole of this space,
equation (39°). U, will be a holomorphic function of the «’s, as is
immediately evident if the a’s are taken as variables (compare
equation (45a) below). We shall obviously get

U= U0+PU1,

U, being a regular function.

* This property of « may be considered as almost evident under our present
hypothesis that 4, B;, C are holomorphic; it will follow quite strictly, at least
for m odd, from the fact that each term of the series (43) (see below) satisfies this
requirement, and that, on the other hand, this seriesis uniformly convergent. The
same will hold for m even, if proper precision is given to the definition of .

t Picard’s solutions with simultaneously polar and logarithmic singularity for
m=2 (Comptes rendus Ac. Sc. vol. CXXXVI, p. 1293, June, 1903) also result from the
elementary solution, such as found in § 46, by the operation in the text.
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Replacing U by that value in equation (39), we shall see that U,
ought to satisfy the equation

oU, 0A

(42) 2(p+1)2,a 3P, +(p+1)(M+4p) U, +TF (U) + F(U,)

=(p+1) [4s%+(ﬁ[+ 4p) Ul] + & (U)) + T.F (U,)=0.

We shall determine a function U, by the equa.tion

42y 4é dU’

+(M+4p)U+—3(U) -0,

assumed to be satlsﬁed throughout space. This equation (though a
differential one) admits of one regular solution and one only; for it is
written (with due regard for the fact that U, is a solution of (39")),

d sU, _ 1
ds Uy, 4(p+1) g, (Vo
and, if U, must remain finite for s =0, this necessarily gives
vire 1 FWU), .
| { 4(p+1) U as;
U, is like Uy, a holomorphlc function of the ¢’s and therefore of the «’s.
The rest of the working is now obvious. We shall set down

(43) U=U,+TU,+...+T*"Us +...,

and the expansion thus written will give a solution of the problelm if
the Uy’s are given by the successive equations [where each left-hand
member is the coefficient of (p + k) I'P*%1 in F (UTH)]*

(44) 43"—@‘+[M+4(p+h 1)]Uh+p—5(Uh_l) 0,

whence

(44" Up=—

Uy=-—

U,
d(p+h)stlo

* We see that our method would allow us to construct the (unique) solution
of the form wu— UT?' *! for any given partial differential equation such as
F (u)=Wr? (with TV holomorphic) provided p’ be equal to none of the numbers

-2 m—2 m—2
e s
one of the last-mentioned values, the equation admits of no solution of the form
Urr +1 as appears from the text (nor, as can also be seen, of any algebroid

solutlon whatever).

U lg(Uh_l) dS

~P1y.... On the contrary, when p" assumes
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If m is odd, and, consequently, p not an integer, all the (p +A)’s
will be equal to integers increased by 3: therefore, all the expressions
(44") will exist. They will be holomorphic functions: if we assume that
the o’s (or Lipschitz’s normal variables, which comes to the same thing)
have been taken as independent variables and that the quantity

%~3 (U, h_;) has the expansion
0

(45) %3(Uh_l)=Qo+Ql+Q2+...+Qk+...,

where @, @,, ... are homogeneous polynomials with respect to the
variables thus chosen (their degrees being denoted by their suffixes),
we shall have

U, 1 1
#5) T = aGpmE* T aginGIn ST
1
"‘4@;+h)(h+lc)Q""”’

a similar expression,—in which % has to be replaced by zero and the
right-hand side of (45) by (%[— m)—applying also to log U,, on

account of (41) (and with the addition of the constant term—
1/2.log|Ag|).

If the coefficients be merely regular (§ 9), we shall nevertheless
be able to say that the U’s exist, with the above definition and
properties, up to a certain value of h.

63. Assuming the coefficients to be holomorphic, we have now to
prove the convergence of the power series (43).

For this object, this time, we shall find directly (and no longer by
comparison) dominant functions for the coefficients.

Let us still suppose that, for the # s, we have taken normal variables
(the ¢’s or Lipschitz’s normal variables) relating to our given pole a.
Moreover, we shall bring in a new simplification in our calculation by
a change of unknown. Having determined U, as said above, we shall
instead of (E) introduce the new equation

(E,) F(w) = —é— F (Uu)=0.



CH. 101 THE ELEMENTARY SOLUTION 97

Itiscle that any solution of (E,) is deduced from a corresponding
solution of (E) by division by U,, and also that the elementary solu-
tions of the two equations are connected in the same way; and it is
easily verified (we do the calculation in detail further on, in Book IV)
that this applies to every term in the expansions of the two numera-
tors. Therefore, for (E,), the new value of U, will be the constant
1
R

Let o be the sum of the absolute values of these variables. Every
coefficient of the given equation (E,) will admit (if the positive con-
stants a, » be properly chosen) of the dominant

a

U,

o_ﬂ
1-2
r

so that, if we have ({( being, as usual, a sign for dominated functions)

(46) o ((—E—

o\ 4
(1 -7)
we shall also have
) "Kn(n+1) , m m?
4 : a . = — -
(&7) F W) g o (142 +%)]
r

Under these conditions, let us show that we can write

K
(48) Un ——Z_—m,
(-3)
r

where the K’s are positive numbers which we shall calculate presently.

Let us assume that (48) is satisfied for a certain value of A, and
try to prove it by changing A into 2+ 1. We have (remembering that
U, is a constant)

o« K. 2h(2h+1)

2h+3 ’
-5
whence, for Uy,
Ui (( oK. 20 (2h+1) 1 (s  stds
B+l 4(p+h+1) " ghtl 0(1_-2.)21”3‘
r

F(Un) (
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The factor
1 /¢ shds

sh—}-lj -Tm;
)

zan be written (as o is proportional to s on every geodesic)

1 [" ohdo

&hﬂ-i'-i‘ o\ 2hts
19
0 T

and, as may easily be seen*, is dominated, as 2k +3 >h + 2, by

1 1
S vt
(-7)
Therefore
Ui o' Ky 2h (2h +1) 1
wa {( 4h+1D(p+h+1) (l _g)2h+2‘
r
This is of the required form
K
Uh-{»-l << ah_+l2 (t1) ?
(1=7)
r
: ' B . 2h(2h+1)
with Brn=End g, D (p b+ 1)°

The ratio K approaching, for h =0, the finite limit o, the
h

K
. . A 1 a\?
series (43) will converge for | T'| < 7 (1 - ;) :

The existence of  is therefore completely proved.

We may add that, if we let the point a vary within any region
(strictly interior to &), the numbers 7, a will have, the first a minimum
the other a maximum, so that the convergence of (43) will be a uniform
one.

1 agh+l ! ah o l-1¢ ah .
*Fork+l[(l_g)t—1:|=< q>¢[1-;+m; >>-<—1-T>l(xfzzk+2>

r a
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64. We may immediately notice that the above analysis applies
without any modification to the determination of the holomorphic
solution of (E) assuming given values on the characteristic conoid,
provided we already know any holomorphic function %, which assumes
these same values for I'=0. Writing

(49) U= U+ UL+ ...+ UT*+
the equatlons for the successive % will be those above n Whlch we

take p=0, viz.

d d/;a + MU, + F (W) =0,

15 (M 44— )+ 2 5 (W) =0,

------------------------------------------------------

' U,
(49') =t [ T F @ ds
U, [ssFPp
==, 0,7 U)ds

Such a problem admits, therefore, of one (and only one) holomorphic
solution.

65. Let us now assume m to be even: for instance, m = 4, whence
p=—1. U, still assuming the value (41), equation (42) becomes an
1mpossibility if we have not

F ( Uo) =0
along the whole characteristic conoid.

It 1s clear that this condition will not be satisfied in general. If,
for instance, all the coefficients of the equation were given with the
exception of C, it would make known to us the values of C on the
whole conoid having a for its vertex (as the expression of U, is inde-
pendent of C and different from zero*).

* The conditions for this to take place (and consequently for an elementary
solution of the form (38) to exist) for every situation of @, would require a much
more difficult investigation : an investigation, however, which would be especially

interesting, as we shall see further on. We may add that an important part would
be played in this by the value (37) obtained above (§ 59) of A;T.

7—2
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A similar conclusion will evidently follow for any other even m,
the impossibility arising from the equation (44) which corresponds to
m—2

2
(50) F( U—P—l) =0.

Picard’s previous results (see § 46) then lead us to complete ex-
pression (37) by the addition of a logarithmic term, setting down

, viz.,

h=—p=

(51) | u=UI'?-%logT.
If we substitute this new value of %, we find
LO0U0A . 1 Con
3(UI‘P)—-[2}. s 8.Pi+ (M —-4) %] T~ log I'.# (%) =0,

where the first term has already been expanded in powers of I
Again, the logarithmic terms only disappear if 7/ itself is a solu-
tion* of (E).
Further, taking account of the expansion previously written for
F (u), we see that the equations (44) corresponding to & < — p are not

modified. But, for k= —p, that is, to make the coefficient of i: vanish,

we have to write, instead of (44),

(52) 1%L O - ) U= & (U_p) =0,
an equation which we shall immediately notice to be of the same form
as the formule (44°), only differing from these by the omission of the
denominator (which ought to have been zero) and a change of sign.

Let @, be the function defined, throughout our region %, by the
differential equation (52). %/ must be the solution of (E) which assumes
on the conoid the same value as %,.

We have just seen how this function %/ is to be determined.
The coefficients of its expansion (49) in powers of I' depend on the

equations (49'). We again see that these are exactly the same for
the Uy’s, with h=p +£.

* This proves that we do not have to look for a solution of the form
Urr+%relogT

with ¢ not zero, as the solution %/T9 cannot exist. Algebroid and logarithmic
infinitudes do not multiply each other in the present problem.
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In other words, we are led to processes exactly identical with the
previous ones (except for a numerical coefficient, the change of which
is introduced by the calculation of %), U_pwx for k=0, 1, 2, ..., being
now denoted by %;.

Now, conversely, if we calculate the Uy’s fork=0,1,2,...,(—p—-1)
and % as explained above, and if we substitute in the given equation

the expression
-p-1

(53) — Ulog'+T? 5 U,I',
h=0
it follows from what we have said that the terms in '’ ... ! and

T
log T" will disappear. The result of substitution, denoted by .Z, will
therefore be a holomorphic function, and all that remains to be done
1s to add to expression (53) any holomorphic solution w of the
equation
F(w)y=—AM

(the existence of which follows from Cauchy’s fundamental theorem)
to obtain a solution

—p-1
u=-#logT+UTs, (U=wl-r+ % U,I*)
) h=1

of the proposed equation*.

In this case, contrary to what happened for m odd, there is a great
degree of indetermination in our result, as w can be modified by the
addition of any regular solution of (E).

* We could just as well find w by writing it

substituting the total value of % in the equatlon and equatmg to O the coefficients
of the powers of T superior to —p — 1, which have not been considered as yet : this
gives the successive W_,,; by

g @ W opu d%
ds

PO ah =)Wyt L[ F W) S20 (88— 0) 0 |

from W_,,; on, while TV_, remains arbitrary, aﬁordmg the indetermination
referred to in the text.

The result will depend analytically on the coordinates of the pole if we are
careful to choose this arbitrary element (for each situation of @) according to a
determinate analytic law: for instance, if we agree to take U _,=0.
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We have thus succeeded in calculating our elementary solution
(for any non-parabolic equation) upon the hypothesis that the coeffi-
cients are analytic. How the same results can be attained without the
help of this hypothesis, will be seen further on.

66. Application to the elliptic case. Still keeping to the analytic
hypothesis, all the above applies to the elliptic and hyperbolic
cases. In the future, we shall deal exclusively with the latter; but
let us note that the existence of the elementary solution is the basis
on which we can establish the theory of elliptic equations with
analytic coefficients, extending to 1t the main properties met with for
V2u = 0. We can enunciate at once, for our general case, the properties
obtained for two variables by Sommerfeld *, such as:

An ellvptic equation with analytic coefficients has none but analytic
solutions (inside thevr domain of exuvstence, boundary excluded);

If two solutions of such an equation are tangent to each othert along
a surface, they are the analytic extension of each other,

1 by the

7.7!1‘“‘2

for the proof of which we only have to replace log% or

elementary solution, in the classic argument}; further, by the con-
sideration of functions analogous to Green’s||,

For an area such that the problem of determaining therein a solution
of the adjoint equation by its boundary values is always possible, this
problem s determinate for the given equation;
etc....

67. The parabolic case remains outside the above analysis. The
part of the elementary solutions is played in that case by a quantity
whose value

1 _al _ 2yt 2t
54 ——e W or —e 4
(54) N Vi
* Encyclopiidie der Math. Wissensch. 11A, 7c. t See note *, p. 18.

{ These follow from the fact that the elementary solution is an analytic
function not only of the #’s but also of the a’s.

|| Here, we may notice that in the elliptic case, quantities deduced from the
elementary solution by the addition of regular solutions of (E), such as Green’s
functions, may be considered as indeterminate (as long as boundary conditions are
not used) as well for m odd as for m even: which will not be the case in our
further operations concerning hyperbolic equations
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o' du ou
67‘ = 9.—1/ or V = —az .
Its extension to the more general equation containing the same terms
of the second order with terms of the first has been obtained by
Gevrey* and ourselves. As the parabolic equation has also been
treated in a masterly way by Volterra in his Stockholm Lectures,
we shall not go into further details about it. We simply refer to
the works just quoted, and also note that it would be possible to
obtain the elementary solution for the parabolic equation—even
for the most general one—by a limiting process which would deduce
1t from an elliptic or hyperbolic one in which coefficients would vary
so that one square in the characteristic form should approach zero.
For instance, we easily obtain thus the first expression (54) as a
limiting value of Riemann’s function.
Let us take the simplest case of the equation of heat

is well known for the classic equation of heat

u  ou
(55) 5~ oy = "
We consider it as a limiting case (for & = 0) of
0*u 0w ou

(55

a2t kaxay oy =0,
(k being a constant) which we can refer to its characterlstlc by intro-
ducing the new variables

y=17Y, w—%=X.

It thus takes the form (practically equivalent to what is called
“telegraphist’s equation”)
?u 10w Ou

’”'aan 5ax a7 ="

for which Riemann’s function—a,, y, being, for simplicity’s sake, taken
equal to 0—is+

X Y Vi
FEr (AT,

* See Comptes Rendus Ac. Sc. vol. cLir, 1911, and Gevrey’s Thesis, Paris, 1913,
chap. v.
+ See below, § 69.
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J, being Bessel’s integral transcendental function

i 2l
Jo(g)=1 —25‘2?_1“4_-‘2;‘%2'!)2_ +(—1)" 27.'7&%!)2'*'

This gives in the former variables
x 2y

L A, N —

(56) ek ¥ J, (l—cax/y(kx—y)\).
Now, when % approaches zero, the argument in J, becomes infinite,
a case for which Bessel’s function admits of a well-known asymptotic

evaluation, viz.
el

N2y
If, on the other hand, we expand ¥y (kz—y) up to terms in &?

Jo (“7) ~

2 2
’

[viz. 3'2—(23/ —kx—- 4; ) + ], we see that (56) practically reduces to
k1 =

PR

Var Vy
and this i1s precisely the fundamental quantity used in the theory of

equation (55) but for the presence of the factor ;/4‘— (which isremoved
™

by a corresponding denominator when substituted in our formula of
§ 42).

68. General conclusions. Summing up what we found for the
non-parabolic case, we see that:

A non-parabolic (analytic) linear partial differential equation of
the second order, with m independent variables, admats of an elementary

solution, with an arbitrary potnt of the m dimensional space as its pole.
I' = 0 beng the equation of the characteristic conovd with vertex a,

(denoting by U a holo-

this elementary solution is of the form

m -2

Tz

. . . . 1
morphic function whick assumes, at the pole a tself, the value ﬁf’A)
Y o U : |
Sor m odd; it vs of the form ———9/log ' (denoting by 9/ another
INER
holomorphic function which may be zero) for m even.
In the first case, its expression is a quite deternunate one.
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69. Some familiar examples. The elementary solution of
V2u =0, for m > 2 variables, is

1 1

=2 - m-2°

" e
[ 2 (.SU,; —_ (I/i){l
i=1

This (the distinction between real and imaginary not as yet arising)
gives us at once the corresponding result for (e,), (e;), ... and in
general for any equation (equations A?%% =0 of Coulon) of the form

2
Ap’qu=(§ 9 %——)u O
h=10%3% =1 0Yi’

1
S (Wt [?@h — ) — -Z: (i — b))y

Viz.

for A?2=0 and, e.g., for (e,)
_ 1
Vol (=t = (@ —af = (y — 90"
For the slightly more general equation of damped waves*,

. 82 0*u 1 %%u
(07) + .+ 5372—m—_1 2 at2 +Ku O

the corresponding result can be easily reached bya simple generalization

of this calculation. Setting down first wt N — 1 =&, wt,N—1=a,,,
so that the equation becomes
o*u 0% o*u

éaé-f- +3.’L"’m_l+aw s+ Ku=0

and p:= 2 (zn — an),
1

* We remind the reader that any (non-parabolic) linear equation of the second
order with constant coefficients can be brought to the form in the text, because
() a linear transformation on the variables brings it to the form

> n$3+za,§“+6u =0,

and (b) the coefficients a; are reduced to zero by a change of the unknown, viz,
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we take for u a function of p, for which we have the ordinary differential
equation of Bessel
d2u  m—1du
58 —+ - -—+ Ku=0.
(58) dp* " p dp
This equation possesses the property that, knowing a solution u of it
for a special value m = m, of m,we have a solution , of the equation

corresponding to m =m, + 2, by

1 du
&% " dp
so that we have only to integrate it for m =1, 2.

For m=1, we have u= 2?5} (VKp) which gives the solution for

1 sin

m=3,5,...,viz.form=3, u= ; . cos} (v ?p) in which—as well as for

the following odd values of m—the symbol cos must be taken in order
to obtain the required elementary solution. If, according to what
we did in § 58 and most frequently shall have to do in the following
Books, we write down our results as if every sign were changed in
(57) so as to introduce [w?(t— t,)*— (z — x,)*— (y —¥,)*] In the place
of I', we thus find, for the equation of damped cylindrical waves

1 0% (3‘-’u *u

(E2) 38~ (ot + )~ Ku=0,

the elementary solution

,, ChVE [ (¢ =t — (2 — 2P = (y — 3o)']

Vi [w* (t =t — (z — @) — (¥ — %)*]
(where a hyperbolic cosine appears on account of the aforesaid change
of sign in T).

For m =2, (58) has a holomorphic solution and a logarithmic one,

the latter giving our elementary solution. Both are expressed by
Bessel’s function

B, F -
Jo(f)—l—é‘é-l- '2“;“(5“,")”2— vee +(— 1)"2—27;6;!)—24.

and, in particular, the logarithmic solution of (58) is

(61)  J(pV-K)logp+w  [p=w*(t—{)—(¢— @]

(60) u=
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(w holomorphic), so that (with the same remark as to sign) the elemen-
tary solution of
*u 1 0w
00®  w? 0t
18 Jo(W=K [0®(t—t,)?— (. — 2,)?]) log [@? (t — t,)* — (@ — ,)*] + w.

Therefore, for m = 4, a solution of (58) will be derived from the pre-
cedlng one, viz. (61), by the operator (59), which gives

VK

+Ku=0

J (pV=K) + Jy (p V—K)log p + holomorphic function

1 (K[f) = J (H_> log p + holomorphic function,

where pr=o’(t—t)f— (@ —2)— (Y — Y — (2 —2)f =
and the integral function j is

Xn
(2 ‘)2 Ty

with 7o) =Ezi ,

Jo(2V=A)=jA) = 1+

+...,

This gives us the elementary solution of the equation of damped
spherical waves

(Es) w;—m—mﬁ—ﬁ—]{za=0,

. 1 . 1
viz., as the factor of P must be initially VT?A——[ = w,

wj (K r)
(61la) "\ 4 %‘K 7 (% I‘) log T' + holomorphic function,

1
which quantity admits of the required singularity for
W* (8 =10 = (2 = @) = (¥ = Yo" = (2= 20f* =0.
The numerator in the first term may be simply replaced by the con-
stant w, as the corresponding alteration in the fraction consists of a
holomorphic function. But this would no longer be allowed if we
considered the formation of the elementary solution of (57) for m = 6,

8, ..., by successive applications of the operator (59) to the above
expression.
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70. The effect of descent. It will be of interest to see what
becomes of those calculations if we apply a “method of descent” such
as has been spoken of previously (§ 29).

In other words, simultaneously with equation .# (1) = 0 containing
m Independent variables, we consider the new equation

Fo ()= F (u) — {wﬁ =0,
where z 1s a supplementary 1ndependent variable which is not con-
tained in any of the coefficients. For this new equation, we shall
have to consider again the characteristic conoid I'=0 with vertex
(1, Qg ... am, ¢), if we denote by ¢ a determinate value of the (m + 1)th
coordinate z. The new characteristic form being
A (Py,...P,,R)y=A(P,,... P,)— R,

the equations (L) have to be completed by the addition of

dz dr
—4r 0

(r, B being supplementary variables respectively analogous to p, ...
Pm; Pa, ... Py), which give r =const., z— ¢ =sr = R. Therefore
'=s[APy,... pm)— 1] =A (P, ... Pp)—R2=T —(z—c)

M’, the new value of M (formula (12)), is obviously equal to M + 2.

Then, if (¢ being taken = 0) we want to form the function

U=U/+U/'T"+..=U0/+U0'T=-2)+...+ U/ (' =22 +
analogous to U, this will compel us to write down the successive
equations

23 OO RO s ap-p-a Uy

ds =

i=1 Ox; 0F;
B aU0 oA aU’ :
=25t o AR+ (M dp— 4) U =0,
= oU, 0A aU’ ,
2z o 9P, — 4RSS+ M+ dp - 21U, + +%&(U}

50U/ e
< =23, S oL, 41R +(M+4p)ll? +- gn%(U) 0,

n BU "0A BU ' ,
2§ Tk AR A [M A+ U+ SV
@U;i 1

*3U B‘A, B
=22 = a : ap -4k +[M+4(})+/l 1)](7;; +P+*’ %Q?i(é ps)=0

g ¥ v
\ ....................................................................................
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The first of these only differs from equation (39°), which is satisfied

’

by U,, by the term in BZO : therefore, it also is satisfied by U,; and,

as we know that this equation, with the condition that U, assumes the

value ;/1_A: at a, entirely determines it, we see that U’ is not distinct*

from U,. .
In the same way, the second equation, defining U," (in which

S.(U) =& (Uy) = & (Uy), is satisfied by Uy =LT10,; and, as its

regular solution around a is unique, U," must have precisely that value *.
Each successive equation will behave similarly, and we see that

all the U"’s are independent of z, and only differ from the corresponding
U’s by numerical factors: we have

_@.'_2 ?73_2

, p+1 2 2 )

U/ = U,,, U/= ‘HZU ——_ﬁ_{_ilfl—m-m—-_:;Ul,
272 2 2

— _(p+D(p+2)...(p+h)
“52){”" G+ +D - (pHh—D "

m m m

(3-5)(3-)-.(3-4-

~Tm 3\/m b /m 1 Uns ...
\ (3-3)(5~3) - (5-*-3)
these relations holding until the denominator or numerator (according
to the parity of m) becomes zero on account of p+h=0 or p+h—4=0;
after that they will hold, only the value of the numerical factor being
changed, viz.}

(62a)

’ _ /_(ml_ﬁ)(ml_'l)'"(%) 5 8. (h— 'm1+)
Woyrn=Ux"= (m—§2)(m—7§:})...1 %fg (h— ml+f) T

* The same conclusion easily follows if we consider the successive U} as
determined by (45 a).
1 The change merely consists, as seen above, in replacing the factor 0 by —1

when it occurs in the numerator or denominator in (62), every other factor
remaining unchanged.
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from h=4 -p=m,—1 on, for m odd =2m, —1; and

_ (my—2)(m—=3)...1 1 1.2...(/1.—m,+1)U
(i~ (m—%5)...@'®" +...(h—m+4) "
(with Un = i),

(6°b)

from h=—p—m, —1 on, for m even = 2m,.

We shall, in the following Books, find this again under a simpler
and more instructive form, showing the relations which exist not only
between the coefficients U, U in the expansions of the elementary
solutions, but between these elementary solutions themselves.



ADDITIONAL NOTE

ON THE EQUATIONS OF GEODESICS

We have considered above the geodesics, which satisfy Hamilton’s

equations

(L) de; _10A dp; _ . 10A

ds 2 0p;’ ds 2 Ox;

and especially those which issue from a determinate pointa(a,,a,... ay),
each of them being individuated by the values of m — 1 parameters
AL, -+« Am—1, SO that the coordinates @, @,, ... #,, are functions of these
parameters and s.

We had also to consider the derivatives of these functions not only
with respect to s, but with respect to any of the A’s. General

theorems, now classic*, show that such partial derivatives

By, Tgs ooo Ty Pry Pos +or P

existt and, on any determinate geodesic—in other words, for any
determinate system of values of the N’s—satisfy the linear differential
system, “variational equations” in Poincare’s terminology (Darboux’s
“auxiliary system ”)

= dr; 1 0A dn; 10A .

(L) 75:25_@, E%:——Qa—g_ci (r=1, 2, ... m),
A being a quadratic form in the @’s, p’s (viz., the quadratic part of
the Taylor expansion of

A(Z+ 2y, B+ Ty, oo Xy + Ty, Pr+ D1 Pe+ P2y oo P+ Pim)

in powers of Zy,%s, ... &m, Pr, P2 --- Pm). They are indeed the solutions
of that system which are such that the #,’s are initially 0, as we limit
ourselves to geodesics with the common origin a.

The same can be said of higher partial derivatives with respect to
the A’s. If x;, p; denote no longer derivatives of the first order, but

_r L
L NT W St NN N

* See, e.g. Goursat’s Cours d’Analyse, 2nd edition, vol. 111 (1913), chap. xx11y,
especially § 462 ; or the author’s Lecons sur le Calcul des Variations, §§ 20—22.

+ The choice of the \’s is assumed to be such that the py;’s depend regularly
on them.

derivatives of order h,—say a; = ,—such
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quantities satisfy a linear system (only differing from (L) in that
they are non-homogeneous)

di; _ 104 dpi_ _10A
ds ~ 20p; ' ds 23z T
where the X’s, P’s depend on previously known derivatives of the «’s,
p’s, that is on derivatives of order less than &, and containing also the

coefficients A;; and their partial derivatives up to the (A +1)th order.
The ;s are again O for s =0 and, therefore, at least of the first order

(—L_I) Xi; P’i;

1n §.

This not only shows that we can speak of the derivatives in
question, but also enables us—which will be eventually of use—to
obtain upper limits for their absolute values, if we know: (1) their
initial values (or at least, corresponding upper limits); (2) upper limits
for the absolute values of the A; and their derivatives up to the
order (h+1). As to the first variational system (L), this is a con-
sequence of the known methods used for proving the fundamental
theorem in the theory of differential equations*; as to the following
systems (L), it can be proved in the same way or, more simply, results
from the known integration of a non-homogeneous linear system after
the corresponding homogeneous one is integrated.

We also deduce from the above remarks that the punctual trans-
JSormation (§57), which introduces the normal variables instead of the
Z’s, 1s reqular (up to the same order but one as the Ay’s) throughout
the whole region & where it is defined (§ 57 a).

We may examine the expressions of our solutions «, p from another
point of view: for they depend not only on the corresponding initial
values, but also on the functions 4 (z, 2., ..., £m) Which represent
the coefficients of our partial differential equation (coefficients of the
terms of the second order). We may want to know their order of
contrnuaty (Book I, § 20 a) with respect to these Ay’s.

¥ Picard’s proof for the fundamental theorem gives the following result:
“If, in the linear homogeneous system,

dy; .
%’:aﬂyl+aigyg+...+auv3/N, (2=1) 27 oo lV)

the ay’s have absolute values everywhere less than K, and the initial values
(values for s=0) of the #’s are all less than A/, we have, for every s, |y;|< MeNKs.”



CH. III] ON THE EQUATIONS OF GEODESICS - 113

It follows from the above that this order is 1 for the z, p themselves,
2 for their first derivatives with respect to the A\’s, ..., (h + 1) for the
derivatives of order h. If we have constructed a determinate geodesic
from a for a given equation .¥ (u) =0, the coefficients of which (for
the second order) are Ay, the equations of that line being valid
throughout the interval 0 <|s|<s,, and if] given any positive number
s, less than s, and any positive number 7, however small, we consider
the most general altered values Ay + Ay, such that the increments
Ay, and their first partial derivatives have absolute values everywhere
less than ¢, the quantity e can be chosen small enough so that, for every
such alteration* of the Ay’s: (1) a geodesic of the new kind issues
from @, with the same p,; as the former one, the equations of which
are valid for 0 <|s|<s); (2) the values of the «’s, p’s for that new
geodesic differ from the corresponding ones for the original geodesic
only by increments smaller than ». This follows immediately from
the general proof of the fundamental theorem ; and the corresponding
conclusion similarly holds for the above considered derivatives of the
z’s and p’s.

* It must be understood, of course, that Lipschitz’s condition (as assumed for

the fundamental theorem) is satisfied by the first derivatives (if the z’s and p’s
themselves are concerned) of the new as well as of the original A;’s.






BOOK III

THE EQUATIONS WITH AN ODD NUMBER
OF INDEPENDENT VARIABLES






CHAPTER 1

INTRODUCTION OF A NEW KIND OF IMPROPER INTEGRAL"

1. DISCUSSION OF PRECEDING RESULTS

71. We shall now see what use can be made of the elementary
solution and what relation it has to the functions previously employed.
For the equation of cylindrical waves (e,) with w =1 (which may
be assumed with a proper choice of units), the elementary solution is

1) 1 _ 1
Vo=t = (@ —m)f— (Y =y VE—tr—1t
As we said, Volterra did not use this quantity, but the following
one

to—t + N (t—t)F — 1
.

(2) v =log

These two expressions are simply related to each other; (2) can be
deduced from (1) by a mere integration with respect to ¢, viz.

dt,

\/(to— t)2—'r2 ‘

geometrically speaking, by letting the vertex of the characteristic cone
vary on the line = x,, ¥ = ¥, and integrating between proper limits*
with respect to that variation. No wonder at all that the introduc-
tion of such a quantity in our fundamental formula gives an expres-
sion of the integral fu (¢,) dt, along this same line.

As Volterra remarks+, such a proceeding exactly corresponds to
what one would find, for V2u = 0, by integrating and immediately re-
differentiating, with respect to z,, the classic formula

1
d=
1 1d
w (%o, Yo zo)=4;_-//s<udr rd:) S——//ffdxdydz

(r=V(z—z )+ Y=Y+ (z—2)),

* See below, § 73.
t Stockholm Lectures, French edition (Paris, Hermann, 1912), p. 45.
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this giving
J[1 d d 1 : i

where é:log[ ) . +\/1+ _dmgf-z'))?‘ m:l
V(e =) + (y — Yo (&= z) + (¥ — o)

We have, in other terms, integrated at first and made the inverse dif-

ferentiation at the end, and the same remark would apply to Tedone’s

extension (§ 43).

Of course Volterra had an imperative reason for operating thus.
1

V(t,—t) =7
i his fundamental formula, he would have found meaningless inte-
grals, the quantities under the signs of integration becoming infinite
1n an unpermissible manner on the surface of the characteristic cone.
This immediately appears on performing such a calculation. We also
shall recognize it if we perform the (equivalent) operation which
consists in actually doing the differentiation in the above formula
(for 0 =1),

@) U (&0, Yo, bo) = l-#to(ul) + #'to (u0)1

f (=, y) cla:dg/ -
M, (f) fj '\/to __ ((E w0)2 _ (y Jo)”

The usual method for that would consist in differentiating with
respect to ¢, under the sign [f, which would affect only the denomi-
nator; and on the other hand, taking account of the fact that the
boundary is variable with ¢,, which ought to give place to a supple-
mentary boundary term, a simple circumference integral. But it ap-
pears immediately that both double and simple integrals are meaning-
less: the former on account of the presence of an infinity of order 3/2
along the boundary, the latter because every element of it is infinite.
Of course, simple devices would allow us to perform the differentiation
so as to avoid such difficulties*: but they would not be of interest

* We could, for instance, refer the inside of the circle to polar coordinates r, ¢
with (29, 7o) as their pole and, in the place of the first of them, introduce an

auxiliary variable A defined by r—AZ,. The integration with respect to A and ¢
now taking place within fixed limits 0SAS1, 0<¢p<2x, difterentiation with

respect to ¢, would offer no special difficulty.

If he had directly introduced the elementary solution v =
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to us, as—paradoxical as 1t seems—our proposed method will consist
in not avoiding them.

72.- Let us first note that we could strictly imitate both Volterra’s
and Tedone’s procedure. For m =3, for instance, let us consider our
equation

F(u)= % s A; __8_2_u_+ g B-@—+ Cu = {,
- i=1 k:1 i 0Z; awk i=1 ¢ ox; ’
the adjoint equation

F()=3 =" a (Agv) ~ 2—-(3 v) + Cy =0,

and its elementary solutlon
7

V=
Let us suppose that the point (a,, @, a;) describes an arbitrary
given segment of line & (straight or curved), only such that it lies
entirely inside the characteristic conoid having any of its points for

vertex. We shall consider

3) v(z) = fgv(ﬂ a)x (&) dt,

t being the parameter which defines the position of a point (a,, a,, ;)
on & and y (t) an arbitrarily chosen function. This will lead to (2)
when we start from (1), the line & being a parallel to the ¢-axis and
x (t) being simply taken equal to 1. For other purposes (such as the
solution of Cauchy’s problem for systems), Volterra has introduced -
other similar expressions which can be deduced from (3) by the choice
of other forms* of the function y ().

We shall recognize that such an expression has a logarithmic singu-
larity like that of (2). The calculation being sometimes of use, we now
say something about it. In the equation of the characteristic conoid

'@y ..o s @y -ve @) =0,
let us suppose that one of the two points (z,, ... z,,) and (@, ... @)
lies near the line

Eg[al =a, (t), coe Qg = Qg (t)];

while the other one describes that very line.

* The solution &®;, which Volterra forms in his Memoir of the Acta Mathe-
matica, vol. XVIIIL, p. 169, and uses for the extension of the theory to systems (such
as occur in Elasticity), corresponds to x (£)=¢—¢.
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If we suppose all our functions to be developable by Taylor’s

formula (at least up to terms of a certain degree) around one point
a[al=a,(ty), .. B = (8],

which corresponds to a certain value ¢, of the parameter, and if we
recollect the form (31) (§ 58), of the first terms of the expansion of
I" when the two points # and a are very near each other, we see that,
in the neighbourhood of «,, the expansion of v[z; a(¢)] according to
powers of (z; —a;), (¢ —t,) begins with terms of the second degree,
the coefficient of (¢ —¢,)?, viz.

No=H [a) (), a2 (L), --- @ ()],
being different from 0 as & is not tangent to the characteristic cone *.
Then, by a proper application of Weierstrass’s and Poincare’s (or rather
Cauchy’s)T “Theorem of factorization” for functions of several vari-
ables, we can write

Llz; a@]=N(z )[(t-By—v], N=No+...

* The tangent to & being interior to the characteristic cone, N, will be positive
if we write our equation (as said previously) so that H > 0 corresponds to the
wnside of the characteristic cone.

1t Bull. de Férussac, 1831. Exercices d’ Analyse, vol. 11, and various other places.
See Lindelof’s Legons sur la Theorie des residus, note of p. 27, and Osgood, Madisorn
colloquium, Lecture 1v, § 1, where, however, a distinction ismade between two forms
of the theorem which we consider as equivalent in the above text. The use of that
theorem of factorization can be avoided or, at least, restricted to its quite
elementary case concerning the first degree, i.c. to the fact that

ar+eri+...—T=0,

with ¢;#0, can be ‘“inverted,” giving
r— <CZ+ C; T2+...>=0,
1

with the obvious consequence that the quotient of the two left-hand sides is a
power series in 7, 7, with a constant term ¢,. To see this, we first solve the
equation 3— I'[#; a(f)]=0 with respect to ¢, which can be done regularly (as the

coefficient of (¢-¢y) is 2/,) and gives ¢=39, where 9 is a power series in the
(z; — af)s. Setting down ¢—3=r, we find

P[z;a(@t)]=-K+ Ny +...;
K (which is the minimum of T' when # remains fixed and a describes &) is again
a power series in the (z;—a%’s, beginning with quadratic terms, and the dots
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B and « being again expansions in  (z;,—a,°), (a— "), ... (Tm—an?), the
former generally beginning with linear terms, the latter with quadratic

v
NT'
to be expanded in powers of (t—p0),

terms. Now,in integral(3),where, as yet,we take m=3,whence v =

Viz; a®)]x*)

we can suppose - N/N( _t)
Z,
so that
V Vo P+P(t-8)+...
=P, + P, (t— —= T T
VN FHE=F VI Nt —BE—«

the P’s being regular functions of the «’s.
Every odd term in (¢ — B) gives, by integration, a positive power of
V(t—B)*—v. Then, in the even terms, we can introduce the variable

(t— B)*— instead of (¢ —RB)% The expansion in integral powers of
that new variable being

Qo+ Q[(E— B =]+ Q[ —-By—9F+
1t appears that every term after the first one gives quantities which
are finite and even infinitesimal in the neighbourhood of &; the first
term, on the other hand, has the indefinite integral

dt t—B+V(t—ByF—y
@[ g |

anr expression entirely similar to (2) from our point of view, ¥y cor-
responding to the quantity ¥(z — @,)? + (y — ¥,)? of Volterra*.

represent terms in 73, ¢, etc. The square root of the sum of terms other than — A
can be extracted, giving
Tlz;a@)]=~K+N, (r+.. 2=[-VE+V Ny (v 4. )] [+ VE+ VN (r+...)):
If we now apply to each factor the aforesaid inversion principle, the first one,
for instance, will be found to be proportional to such a series as

Ny
(m, v, power series in A); and the product
(r=pVE =v) (r+pNE - p)=(r—v)2— u2 K
will hawe the required form, with 34+v=8, p2A =4.
The result in the text and the way in which we use it are due to Poincare, in
his Memoir Sur les proprietes du potentiel et sur les fonctions abeliennes in Acta
Mathematica, vol. xx11, 1899, pp. 114 ff.

* y is, but for a factor different from zero, the minimum of T' when a describes
&, the point  remaining fixed.

T—C'l,\,/i 021 0'3<A) —=r—pNE =y
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73. We have only considered the indefinite integral of
v(z; a)y (t)dt.

But an essential remark for our object concerns the choice of the
limits of integration.

If we take them constant, whatever the values of these constants
be, so that the segment of integration on & is completely independent
of the location of the point z, the integral (3) thus obtained will cer-
tainly satisfy the given equation, for the same reason as that classically
known to apply to the theory of potential (viz., that every differentia-
tion with respect to the x's can be carried out under the integral sign,
treating ¢ as a constant).

Darboux * was, so far as I know, the first to discover a general
reason for a noteworthy fact, special cases of which had already occurred
in some anterior formule; viz. that the same property of v holds
good when integrating between properly chosen variable limits. This
remark of Darboux may be considered as implicitly containing our
main further consideration. His argument is a remarkably simple
one and can be, in our terminology, expressed as follows.

Integrating, at first, along a fixed arc of %, it may obviously hap-
pen that I' is liable to change sign along that arc: that, indeed, will
be the case if at least one sheet of the characteristic conoid from z in-
tersects & inside the arcin question. We suppose, for instance (fig. 7),
that only one sheet, the “direct” one, does so, the segment of inte-
gration—which will correspond, e.g., to ¢, <t <{—Dbeing thus divided
by the point of intersection @ into two parts, one lying outside the

* See Lecons sur la théorie des surfaces, vol. 11, p. 67. Darboux deals with
[® () (= z)* (y — ) du,
which, if taken between constant limits, is most easily found to satisfy (as a
function of 2 and y) “ Euler-Poisson’s” partial differential equation, and assumes:
the constant limits to be taken so as to include both # and 7 : which would corre-
spond, in our terminology, to the case in which botk sheets of the characteristic
conoid having the point & for its vertex would intersect & inside the pr?mitive
(fixed) segment of integration, the useful part of the integral relating to the

portion of & which is exterior to that conoid. As to the constant indexes p, p,
Darboux observes that the argument in the text applies whenever their values are

. 2p 1 .
fractional numbers of the form "L (where p and g are integers).
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conoid, the other inside: let us suppose that the latter corresponds
to greater values of ¢, i.e. contains the upper limit ¢. Now, if
denotes the value of ¢ for the dividing
point e, our integral (in which ¥ and
are, of course, real quantities) will consist
of two parts, one imaginary v, and one
real v,, and 1t is clear, therefore, that each
of them must be separately a solution of
our given equation.

This is Darboux’s general conclusion.
We see that, instead of integrating from
0 to ¢,, we can take one limit equal to 6,
which quantity, in the notation of the preceding section, has the value

B + V.

These, for instance (6 being equal to ¢+ r), are the limits between
which we have to integrate (1) in order to obtain the quantity (2) of
Volterra; ¢ being, on the other hand, replaced by ¢,, the indefinite
integral calculated in the preceding section will be also the definite
one and give the value of (3) if the latter is defined in the above way.
Of course, this expression of a solution of our differential equation is
only valid when 6 is assumed to be smaller than ¢, ie. when the
point « lies inside the inverse half conoid having ¢=¢, for its vertex.

This solution, as we have just proved, admits of &£ as a logarithmic
singularity. It is to be foreseen that, when substituted in the funda-
mental formula, it will behave exactly like (2) in Volterra’s method,
the small cylinder of Volterra* having to be replaced by a tubular
surface around & and give a value of the integral

f x O ula @] dt.
1%

Fig. 7.

74. It may be convenient, however, to introduce, in such cases, a special
system of curvilinear coordinates for our point . One of them will be the above
quantity 6. For every given value of it, the locus of the point z will be a
characteristic half conoid (having the point  corresponding, on &, to t=4 for its
vertex), on which conoid the position of that point will be completely determined
if we give:

* Acta Math. vol. xviii, p. 174.
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(1) a parameter* A defining the initial direction of one of the bicharacteristics
which generate the conoid ;

(2) a value of s, defining one point on that bicharacteristic.

The value of s would contain (see Book II) an arbitrary factor of proportion-
ality (a, in the notation of § 57): we can choose this factor in a determinate way
for each value of A, and assume this to have been done in such a way that:

(@) s be positive on our useful (that is inverse) half conoid from w;

@1 d.ﬁb‘g d.Tq

T s on each bicharac-

(0) the initial values (values at the vertex) of

teristic (A) be regular functions of 4 and A;

(c) these three quantities do not vanish simultaneously, and, for instance, the
sum of their squares be always greater than a fixed positive number, whatever 6
and A may be.

Under such assumptions, we can take 4, A and s as curvilinear coordinates;
Zy, T3, x5 will be regular (or even holomorphic) functions of 4, A, s, and the reverse
will be true whenever we are not in the neighbourhood of .

75. @ being a point of & corresponding to a value of ¢ greater than 6, the
quantity I (z; a) will be of the form

(5) r=(=0)w (6, A, s, ¢),

w >0 being regular and not zero when the point » approaches a point of the
conoid other than the vertex a (the sign of the first factor having to be reversed if
the useful half-conoid from w be the one which contains the direction of increasing
s on £).

In the neighbourhood of the vertex, this expression holds no longer, but the
following remains still valid: denoting by = the difference

T=¢-6,
we can write
r=2Msr+ Nt?,

M and N being two regular functions, assuming, when « coincides with a, the
values

0
Mo=3bts5, No=H (a, 00, a9

where the a, £'s stand for
da; g . .
0=, £ (.ésf)szg, (i=1, 2, 3)

r

My, Ny are not only different from zero, but positive (&, as said above, on
account of our assumption concerning the sign of H ; 3/, because of our assump-
tion (@) concerning the sign of s on our half conoid)*.

* We treat the case m=3. But analogous calculations would hold for every
odd m.

t+ For x must be inside the conoid from a—therefore I' positive—when s and
T are both positive (the latter sufficiently small).
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We immediately obtain the above formula if we observe that the second term
may represent I' (w; @) and the first the difference T'(x; a@)-T (0; a). We even
see that we can assume & to be independent of s and A. Such is not the case,
of course, with A/; but we can assume its initial value M, to be independent
of A\ (being a function of 6 only), by a proper choice of the factor of proportion-
ality in s (without contradicting our previous assumptions (a), (b), (¢)). As, for

small values of s, we have sensibly x,-=ai+sd£" = q; + s&;, this means geometri-

ds
cally that, for such values of s, the directions of the tangents to the two coordinate
lines which respectively correspond to 4 as well as s being taken as constants and
A as well as s being taken as constants are transversal to each other, i.e. conju-
gate with respect to the characteristic conoid, so that if that small value of s is
kept constant as well as 8, A varying alone, the corresponding point will sensibly
describe a small ellipse the plane of which is transversal to .
With such an evaluation of I'; we have

to—0
"'"‘f Ox O+ VO A 8 6+T)
0 V2Msr+ N2

V is a holomorphic function, equal to \% for s=7=0. Asfor y (¢), let us suppose,

not only that it is regular, but that it does not change sign—say y (¢£) >0—in the
neighbourhood of a determinate point A (1=6,) of &, which we are going to
consider.

We try, # being taken near such a point 4, to find asymptotic values for v and
the derivative %‘—f.

Beginning with the latter, we have

- -
to— @ XV<M+3¢—‘1‘[>75Z7 0 X?lfdr
(6) av _ s .\ -

' 0 (2Msr+ Nr2)} o ~aMsri Nt

s

Let us begin with the latter quantity, the first term of which obviously gives
the principal part. Around 4 as centre, we can describe a small sphere such that
if the points x and a are taken in its inside, the quantities M, N, x, V can be

1

VA
which they have at A4 itself. If we denote by 7, the positive value of = corre-
sponding to an intersection of that spherical surface with &, the integral from
71 to ¢{,— 6 remains finite and continuous when s approaches zero. The integral
from zero to 7, in which every element is positive, can be, with a very small
relative error, represented by

replaced, with an arbitrarily small error, by the values M,, Ny, x, (6o),

MO 1 rdr X ) .r' T
a® T e
va 0 @Most+Nyr2)s  Vas N 2Mys+ Nory
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As 7, is chosen once for all, this gives, when s approaches zero,
ov X
(62) 3~ ‘stVoA’
the sign ~ signifying asymptotic equahty
An analogous method would give the approximate value of v itself ; but we find
it immediately by integrating the above asymptotlc equality, viz.:
(6b) v~ J/. Va X_logs,
which we could casily see agrees with the result of § 72; and we should obviously
have a similar evaluation for the second term of (6).
We also could get in the same way asymptotic expressions of the other
derivatives.
As to the other singularity of v, which is the half conoid with vertex ¢=¢,, it
is easy to find which is the form of v when the point # approaches any determi-
nate point of it (other than the vertex): for, as we have
Ir=(t-0)w
where w is holomorphic (and not zero) even when 4 and ¢ are nearly equal, this

gives . o Wd
v= ’[ ’ x (v (x;a) dt=f ° —_i,

L o Alt—40

W= ngit)« being again holomorphic, and such an expression is sensibly equal to
w

2 VVO \/to - 67
W, being the value of 1 at the limiting point of 2. Derivatives of v with
respect to A or s would evidently be of a quite similar form.

76. The analogy of v with Volterra’s quantity (2) is thus evident; let us see
the consequences in our problem of integration.

S being, in our three-dimensional space, a surface at every point of which
Cauchy’s data are given, and which is, moreover, everywhere duly inclined (§ 27
with respect to characteristic conoids, let @ be a determinate point at which we
want to find the value of the solution % of the given equation

(E) F (=1,
which corresponds to the above-mentioned data on S. From a as vertex, we
construct a half conoid I', which we assume to enclose with ,§ a limited volume 7
(fig. 8). From the same point to a point @ of S, inside T, we also draw an arbitrary
line < (only subject, as previously, to be interior to any conoid having one of it:
points for its vertex), the given point @ corresponding to the value ¢, of the para.
meter. By means of » and an arbitrary regular function x (¢), we construct the
function v (), a solution of & (v)=0; and we substitute v with the unknow:
function # in the fundamental formula

(F) [ [VF (u) = (V)] dz, day dirs= f [ (u v _ vg - Luv\ ds.
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This can not be done at once in the whole domain 7': we have to exclude the
singularities of v, which are & and, strictly speaking, the conoid T. But it is
easy to see, in the first place, that the latter
has no influence. Let us indeed replace it by
a neighbouring conoid I the vertex of which
shall be the point z=¢,' on <. On I" we know
that I is of the order of (¢,—¢;); and so will

ar

be as well 3 , because we know that the trans-

versal direction to IV is the bicharacteristic

one, so that dii is a derivative with respect to

s: therefore, letting ¢,’ approach ¢, not only
can we limit our domain of integration by T,
Fig. 8. but, just as in Volterra’s method (which we are
strictly imitating), no corresponding surface

term need be considered.

77. Let us now consider the singularity &, which, at first, we have to
exclude from 7'. We do this by a small surface G (corresponding to Volterra’s
cylinder), which we obtain by equating the curvilinear coordinate s to a very
small positive constant: on which surface we have to take the double integral on
the right-hand side of (F).

Terms containing v only as a factor can be neglected : for that quantity only
becomes infinite like log s, while the surface element is of the order of s. Let us

d .
NOW express - V. The n’s, on C, are given by

dv
_ ((Cxe 0wy _ Ty Oy —
mdS= (22 2% B & 9) ANd6,  mydS=...,
except for sign (or, what comes to the same, for a suitable permutation between
the 2’s). We shall obtain the correct sign in these formule by remarking that
the direction of increasing s on each bicharacteristic is directed towards the in-

side of our domain of integration, so that we have to write the above quantities

in such a way that m a—+1r2 aéz' 24 38, , 1.e. the determinant (Jacobian of

Zy, Ze, x3 With respect to s, A, 6)

Oz Om 0m
0s O\ W¥
_| Om Cmp Omp
D= 08 oA -@%
dug Oz Oy |
B o @

be positive (geometrically speaking, that the trihedral of the positive directions
8, A,  and the trihedral of coordinates be disposed in the same way). Let us
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assume (by means of a permutation between the 2’s or a change of the sign of A,

if necessary) that this is so: then, denoting by ¢,, ¢,, ¢ the partial derivatives

of any function ¢, the transversal derivative of ¢ along C will be (§§ 38-40)
given by

G B s =l S0 o o

C10A ox, Omy

2 a(pZ (A 50

10A ox3 Ox3

2 a(l)g TA ]

dv

d\d6

1A,
20¢, ¥ U
‘ 10A
= i | 2= ¢
(sensibly) s ! 3 ocby &  ay [dAdO
10A £
9 a¢3 3 as
(with 5,-’:%—%\), on account of z;=a;+38£;. For the determinant thus obtained as
the factor of dA d6, we can use the abbreviative notation
"10A ,
(7) $ ! é a¢z gi a;

A
op;
which contain s as a factor. A simple way of finding the value of (7) is to multiply
it by the discriminant

We already see that the coefficients of are holomorphic functions of 6, A, s,

1
Z=lHil H; Hi3|

of H, which (l'emembering that the relationsyr;— 1 % are equivalent to ¢; = 1;?)
&Py w Oy
; sl & 1 cH 1 aH )
gives i 3o/ 2 oy |
then by the above written Jacobian D, which gives
ogp (0 % |
0s oA 20 |
s 0 sHI(&,6,&) =
i . v,

The elements replaced by * are sensibly equal to s/, i.e., at any rate, of the
order of s, but become of the order of s?2 under our assumption t+that A, is inde-

t When this holds, the direction A is sensibly transversal to the plane con-
structed through the directions 6 and s.
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pendent of A. The above determinant thus contains s as a factor and (7) is sensibly
equal, when s is small, to

SH( 80, 8) (» b _ ! fg)

As to D (which is posmve under our assumptions), it is sensibly equal to
Pos|é & oaf,

so that

j’f ds_// sA;l'I(ﬁé; $2af~z [(No‘r' -(Mo+...)g—;-’+(...)%¥ d\dg
& " & &
fé‘11 az asy

(dots standing for terms of higher order in s).

% <and similarly gl) can be eliminated when integrating the corresponding

term say / / P d)\dG) with respect to 8, an integration by parts glvmg a
simple integral (JPvdX\ for 8=¢,, ¢;) and a double integral in v, viz. [ [ Vo d)\d0

which are infinitesimal with s, as before. Finally taking account of (6a), we have
only to integrate, with respect to 8, the product of the integral
@ fH(gﬁgg e /H (dty, dty, dts)

Q) Qg Qg
i & &
dfy df; dfs

by the quantity

(9) —ux VN, A.

Such an integral as (8) taken along the conic

H(gh g‘l) 53)=0)

described by the point the homogeneous coordinates of which are &, &,, &, is, of
course, finite when the point (a;, ay, a3) lies inside that conic (as is the case here).
Its value is found by observing that the integrand does not change when we
multiply &;, &, £ by any common factor (whether a constant or a function of A)
and that, moreover, it is multiplied by %  when the variables £ (and therefore
also a) are subjected to a linear substitution with determinant &J. As, by the
latter operation, we can reduce our form H to &% — £ — &2 (denoting by &;, £a &3
the new variables) and, therefore, simply take £, =§&; cos A, £&,=&;sin A (the de-
terminant & being then equal to v/4), the above integral is

) + ) ) 11
' G|y ag—acos \—azsinh G Vgt — a2 — a2
1 1
T 21!' = i 271‘ —_—
V8 H (a3, az, a3) ANy
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The sign depends on the direction in which the conic is described. In the present
case, as we have seen, this direction must be such that the determinant in the
denominator be positive. As the point (£, &', £3) belongs to the region outside
the conoid (ie. such that H (£/, &, £&') < 0), the right sign is —, The factor
A/ Nya in the expression (9) being removed by (8, the integration with respect

to 6 finally gives
llm// u—dS 211'/ [ x (O ulea()]dt,

so that our fundamental formula becomes (as % (u)=f and < (v)=0)
(10)

2% / o} OuleO]de= f f / Vfdadayday+ / fs‘<vz%—u2—:+Luv> ds.

This is the result which exactly corresponds to Volterra’s, being, of course,
subject to the same foregoing observations.

78. Greater number of variables. We have said that the theory
of (e;) and (e;) has been extended by Tedone to the analogous equations
in m independent variables. As for (e,) and (e;), the formule given
by Tedone (Annalt dv Mat., 3rd series, vol. 1, 1898) for the solution
of the equation

(em_s) 1_?2:“,_@_23‘.*. +_.,?2,"’ >=0

m=t w? o \ox? T Oa?,_,

do not express immediately the value of u,, but an integral of the
form

(10 f :u () (b — )" dt,

from which w, has to be deduced by (m — 2)-fold differentiation.

It may be foreseen, therefore, that the expressions, analogous to
Volterra’s quantity (2), introduced by Tedone in his operations for m
odd, are to be deduced from the elementary solution by integrating
several times along a line such as & (which is, in fact, parallel to the
t-axis). We shall see that such is indeed the case; but the fact is that
this will require the use of generalized integrals, such as we are going
presently to define.

But even before this, we must note a most peculiar feature of these
solutions of Tedone. If we consider Poisson’s formula for spherical
waves (formula (1) of Book II), we immediately see that the given
values of the function u, are to be differentiated, at least for a radial
displacement of the point (z, 7, 2), so that this function is required
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to admit of first derivatives for such a displacement, 1.e.1n any direction,
as the point (z,, ¥, 2,) 1s arbitrary, and we shall very soon see that
the existence of such derivatives is also implicitly presupposed in
formula (1"), Book II, concerning cylindrical waves. Of course, we
may consider this hypothesis as a natural one, as the non-existence of
first or even second derivatives could be said to make the differential
equation itself meaningless (though problems implying such an ap-
parent discrepancy are usually studied by analysts*).

But if we now turn to Tedone’s solutions for higher values of m,
we see that they imply higher derivatives of the data, the order of

e

derivation being 7—3- — 1 for m even and = — 2 for m odd: that is, of any

order, however great, if the number of independent variables 1s
sufficiently great.

What would happen if the functions %, and u, did not admit of
derivatives up to such an order? We have to expect then that no
solution of Cauchy’s problem can exust.

To prove this with perfect rigour, we shall not, at first, start from
the final formule (above alluded to) which give the solution u itself,
but from the preparatory formule which (as explained above) give
the value of the quantity (10°).

That this quantity admits of at least (m — 2) derivatives, the
(m — 2)th one being, but for a numerical factor, equal to « (), is
well known, it being sufficient for the validity of this that u be finite
and continuous: so that we are certain that all the differentiations
which Tedone performs on the right-hand sides of the formule in
question (formulae (11), (12) of his Memoir) in order to obtain the
following ones (formulae (13) to (24)) must be possible.

* Such is the case with Dirichlet’s problem, which refers to a differential
equation of the second order and which analysts nevertheless try to solve with-
out supposing the existence of even a first derivative for the data at the boundary.
Of course, the differential equation becomes meaningless on that boundary itself,
but is assumed to be satisfied at any neighbourhood of it, however close.

It must be observed that in the above we have already assumed first de-
rivatives to exist and be continuous, as such derivatives are involved in the
quantities (5') (p. 59), the continuity of which is implied by the use of Green’s
formula. Discontinuities must even be considered when using Poisson’s and
Kirchhoff’s formule (see Love’s paper, Proceedings of the London Math. Society,
series 2, vol. 1, §§ 822, 823).

9—2
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Let us simply take for S the hyperplane* ¢ =10 (so that ¢{,=0 in
(10)), and only take account of the first given function w,, the second
one u, being assumed to vanish. Let us also choose the case m event
(so as to avoid the difficulties which we are to meet presently).
Then, if we denote by r the distance » = V(@ — @)? + ... + (Zn—y — Gy )*
between a point (2, ... #p—) of our ¢=0 variety and the point
(@, ... @yu_y), the quantity which we have to differentiate consists
(for w=1), in our notation}, of the product of a numerical factor by
the integral

ta m_
(11) f(tz—rzyz * M, dr,
0

where A, stands for the average value of u, along the hyperspherical
edge of radius 7 in the hyperplane S. The first % — 2 of the aforesaid

differentiations can be carried out under [ at any rate; but, the result
thus obtained being of the form

(11 [Fox o,y i,
0

where X (¢,, ) is a homogeneous polynomial|| of degree g’—2 int,and r

- such that £(¢) =tX (¢, t) does not vanish (except for ¢ = 0), the following
v

.
notT.

* Tedone himself treats any form of S.
+ The eorresponding eonelusion for m odd results therefrom, by deseent (see
Book 1IV).

1 See Tedone’s formula (22), p. 13. Tedone calls m what we call m—1, and ¢

derivatives of (11) can not exist if the first 3~ 1 derivatives 3, do

. . . . i
what we call %,; his number p is equal, in our notation, to Ol 1 (for mn even).

I -Y'(¢ 1) differs from Legendre’s polynomial of order 1%1 -2 by a numerieal
faetor only.
9 The first derivative of (11') is immediately found to be equal to

Mt () + / M, G
0 0
The second term of this quantity can surely be again differentiated, so that this
can not be the case for the total expression unless the same is true of A/,,. .
Assuming then Af, to exist, the second derivative of (11’) will inelude the term
£ (o) Ay, a term in M, and an integral term. If we now try to differentiate a third
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2. THE FINITE PART OF AN INFINITE SIMPLE INTEGRAL

79. The above considerations, at least for m =3, fully extend
Volterra’s solution to the most general (normal) hyperbolic equation.
Only we recognise the indirect character of the solution which lies in
the introduction of the arbitrary line & which is of course finally to
be fully eliminated.

If, for instance, we should wish to integrate the equation of damped
cylindrical waves

cu 0w 0%

o e eap D00
we should have to take (as results from the expression of the elemen-
tary solution, found in Book II)

"Ch VK [(t—toy— 1]

im0 dt,.
)\/(t - t0)2 - 7‘2

(12) v= J

This is the expression which Coulon, in the above quoted Thess,
ought to have introduced, in order to imitate strictly Volterra’s
procedure. Its complexity explains to us perfectly why he was
not able to discover it, not possessing the general way of attain-
ing 1t. At the same time, we see that this complexity i1s en-
tirely due to a quadrature, the effect of which must finally dis-
appear. P

Is it possible to obtain the required result without having recourse
to this finally useless mediation?

I thought it worth while to attain this, though we cannot do so
without introducing a rather paradoxical notion which I shall now
speak of.

time, this is already proved to be possible for every term except £(z,) A/, so that

the existence of M, is necessary ; and so on for all following derivatives, so that
the conclusion in the text is proved.
As, under [, the degree of the coetficient of A/, decreases by one unit from each

operation to the following one, the ( %L - 1) th derivative contains no such integral

term and is therefore represented by an S extended over the spherical edge r=¢,,
as happens for the case of (e;). We shall come back to that fundamental difference
betwecen even and odd values of m.
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80. We again take the differentiation we had to deal with, or,
even more simply, we take the corresponding questions for simple
integrals. Let us start from the integral

(13) j: j‘z(w)w da.

If we tried to differentiate it with respect to b, we have already
remarked that we should have to use, in the common conception,
a suitable device (easily to be found), a direct differentiation appearing
as 1mposmble indeed the latter would consist in wrltlng the absurd

expression s A(e) o 4()
z x
(13) L (b—- w)% * I:\/b—w]amb’
a sum of two terms, the first of which has no meaning as containing an
infinity of order § under [and the second being evidently meaningless.
There is nevertheless an immediate means of performing directly
(1.e.,without any transformation) this differentia-
tion: it would consist in replacing the real in- - b)
tegral (13) by the half of the complex integral °
taken along a circuit constituted by two lines
along ab, connected by a small circle around b (fig. 9): for such a
circuit, differentiation presents no difficulty *.

Fig. 9.

80a. Of course we must have somehow a means of doing this
without introducing complex quantities. Indeed we have only to note
that (replacing b by « in the upper limit), not the integral

z A (x)
(14) f e

but the algebraic sum
F‘ A () de A A (=)
(b—2)? \/ b—a’
approaches a perfectly definite limit when « approaches . Moreover,
the same takes place for
. r A (x) ., B(x)
(13) [ = x)%d“«_/i"-“x’ -

* We here suppose 4 to be analytic: a hypothesxs which is easy to get rid of
if only 4 is supposed to have a derivative.
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if B be any function of z, provided it is differentiable (or at least
satisfies Lipschitz’s condition | B (z,) — B (z,) | < K | #, — , |), and such
that B (b)=— 24 (b).

Furthermore, the result obtained is independent of the choice of
thvs function B, under the above conditions: this being due to the
fact that the denominator is of a fractional order, while a change of
the function B (under our hypothesis) would alter it by terms con-
taining at least (b — ) in the first power as factor, so that the corre-
sponding terms in the fraction would necessarily vanish for z=2b.
Therefore, in order to calculate the limit of (15), we do not even need
to indicate what special function B we choose. We denote that limit
by “the finite part” of the integral in (13’), and write it

[ A@ g
(b—a)!
the sign | ~ being read “finite part of”.

To conform with what precedes, this expression shall be taken to
mean the limit of the sum of integral (14) and an additive fractional
B(x)
Vb —z

it can be differentiated at least once (or at least satisfies Lipschitz’s
condition);

the sum in question does have a limit (the value of this limit
being independent of the choice of the additional term, provided B
fulfils the aforesaid conditions). -

But the above definition supposes 4 1tself to satisfy Lipschitz’s
condition.

If A 1s analytic, the expression (16) can just as well be defined as
half of the corresponding integral taken along the aforesaid circuit.

(16)

term in (b — ) of the form

, taking for B any function such that:

81. No difficulty arises in defining the same symbol for higher
orders of infinity, provided they always are fractional. The integral

f g CON
a (b — .’E)p+%
is meaningless (p being any integer), but we can define the quantity
, A
1 |
(16") j - P+ x

(the “finite part” of the integral in question):
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(1) If A is analytic, as half of the corresponding integral taken
along the above-mentioned circuit;

(2) A being supposed only to admit of p derivatives in the vicinity
of b, as the limit for 2 =0, of the sum

(15 I o laperitt G g

B (x) being again any function bound by the conditions:

(a) that the limit in question must exist;

(b) that B must admit of p derivatives, at least in the vicinity of
z=D0. ,

That both definitions agree is immediately verified by performing
the calculation (see below).

Again, the arbitrary choice of B has no influence on the value of
the limit obtained; for condition (a) determines the values of the
(p — 1) first derivatives of B in b, so that what remains arbitrary in
the numerator of our additive term is at least an infinitesimal of the
order of (b — z)?.

We may say briefly—the sense of which we hope to have made
clear by the above explanations—that we give a meaning to our
integral by removing fractional infinities at b.

We must not forget, however, that A itself is supposed to admit
of the corresponding derivatives at b.

82. Of course, we could also introduce the above conception for
the integral

b A (x)dx
o (b - w)P'HL ’

p being no longer necessarily equal to %, but still being necessarily
contained between O and 1, limits excluded: which quantity can be
defined upon the same hypotheses as (16) or (16°).

It can also, as in the above cases, be expressed by means of a com-
plex integral taken along the circuit of fig. 9, an integral which ought,
this time, to be divided by 1 —e*™, It can also, therefore, be con-
sidered as obtained by differentiation of

b4 (z)de
J b=

(12))
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The integral

‘” b A () dz
Lele—a)@-a)p
where the integrand 1s infinite at both limits, is the half of the cor-

responding complex integral along the circuit of fig. 9a. For the
analogous one

[ b A (z)da
a[(®—a) (0 —a)p++’
we ought to give the circuit such a form as is represented in fig. 99,

in order that the integrand should come back with a final value equal
to its initial one.

-a b a
C ) X l'))

Fig. 9a. Fig. 90.

It is also clear that other functions than powers of (b — «) could
be introduced and treated in the same way; for instance,

1
(b - w);T? log (b — @).
83. Such considerations would even hold good to acertain extent for
. b A (z)
) f (b—z)? da,

with p integral.
This could be reduced to a finite value by adding the terms
B (z)
(b —a)rt

But, for p >1, we could, by adding to B () terms in (b —z)?7,
modify the result in an arbitrary manner. This result, then, is not
determined when we merely know the integral (17), but requires that
the additive terms (17 a) be given as well.

The same does not apply to p=1. But, on the other hand, the
result obtained is not invariant when the variable is changed, as is
seen below in the case of p fractional. Some operations of this
kind, but of course with an explicit specification of the additive terms
(17 @), have nevertheless been used in Calculus: such is the case for

(17a) -+ B, (z) log (b — 2).
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Cauchy’s “principal value,” and also for some forms of the second
derivatives of a Newtonian space potential (such as will be used
further on, §115a).

84. Actual calculation. A simple way of obtaining the quan-
tity (16) consists in finding first

2
Ua(b 2 (b—a)t’

then replacmg A(z) by [A(z)— A (b)] +A(b) so that our expression
1s resolved into

(18)

[bA(x) A®) 4,
Ja (b .’E)’f

an ordinary improper integral (as A is assumed to satisfy Lipschitz’s

condition) and
24 (b)

(b—a)’g-’o

Similarly, to calculate | f b (e de - we shall subtract from 4 (z)
o ®—a)pts

1ts expansion in powers of (b — z) by Taylor’s formula up to the term

in (b — z)?~1, by which our expression becomes an ordinary integral ;

then we must integrate (according to our meaning) such terms as

7 | 1
f ~————— the value of which is , 80 that
a(b—z)1+3 (=3 (b—a)?%
16q) [ Awde _____AE)

a(-a)pti (p-1)(b-a)P?
_(=Drr AR j ? dy(z)de
(p-D!EG-a)} Ja@-az)Ptt’

A, (@)= A (2) ~[4 (1) = 4'}) (b=2) +... + (=171 A= () (b — 2)77].

This is equivalent to using our former definition and taking, for

B (.CU),

B A®) . 4G (D A

P-1)G-2Pt (p-p-a)P~t T (p-1)13G-a)}
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If we take as understood that B («x) is chosen in that way, we see

that what we may call the “ remainder” of our improper integral,—i.e.
the difference between (15') and its limit—is [ L@ g W,
v x(b—w)p"‘—é

therefore, shall have an upper limit of it—viz. M| b — & |—if we have
A, ()
(b—=)
upper limit M for the pth derivative of A (divided by p!) in the
neighbourhood of # = b.

If A is a function not only of #, but of several parameters a, 3, ...
(on which b may also depend), but M is independent of a, 3, ..., the
remainder can be evaluated in terms of |b—«| independently of a, 3, ...:
we may say that (16") converges untformly.

one for the absolute value of or, which comes to the same, an

85. Principal properties. The rules of calculation concerning such
a symbol as (16") are generally identical to rules relating to ordinary

b c b
integrals as concerns equalities, such as [ =/ +J[ and so on. Especially
a a c

a changing of the variable is allowed, provided it be regular in b; that
1s, one variable has with respect to the other a derivative, finite and
different from zero, so that the order of infinitesimals around b is not
changed.

But any property implying wnequality requires once more due
precautions. First, we cannot conclude anything as to the sign of the

expression [ A(@)de o the knowledge of the sign of the function
(b= z)p+h

4 in our interval of integration, as the example of (18) immediately

shows.

Limitation of the values of our improper integrals.—This applies
in particular to the finding of upper limits for the values of such
expressions as (16”). For this object, 1t is not sufficient, as 1t would
be for ordinary integrals, to have upper limits of the integrand and
of the interval of integration.

Calculating

rjb A(z)dx

(16" I= ) Gapth

|
i
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as explained in § 84, we immediately (on account of the well-known
expression of the remainder of Taylor’s series) find that

| RV, ()
T-HO-a)?t (p-HO-a)??
| A®-1 ()] +%4£)N,b;@’

(P-Di.3.0-a)f  p!
where (Ap) 1s an upper limit for the modulus of the pth derivative
of 4 in (a, b).

Therefore, we can limit the absolute value of I if we have:

1°. An upper and a lower limit of the interval of integration;

2°. Upper limits of the absolute values of the function 4 and its
first p derivatives* (of A itself and the first (p — 1) derivatives at
b itself, of the pth throughout the interval); or, at least [as our interval
can be resolved into (@, b — €) and (b —¢, b)] of the absolute value of 4
throughout (a, ) (as usual), of the (p —1) first derivatives for z =0
and of the pth in a certain partial interval (b — ¢, b) adjacent to b, the
reciprocal of the amplitude of which also enters into the limitations, so
that, if a approached b, our improper integral would not approach
zero, but, generally, infinity.

(19)

86. Continuity. Replacing the function 4 by another one 4,
whereby I is changed into 7, and applying the above limitation to the
difference (I —1), we see that the value of our symbol (16’) vs continuous
of order p, but not, of course, of order zero, weth respect to the function 4.

* It is easy to give instances of expressions such as (16") that assume values
as great as can be desired although A4 remain finite. We only need to take the
following

< V) do
o 2Pt}
N being a very large positive number and f a finite function for any value, how-
ever great, of 2. Dy effecting the change of variable Va:=z, it appears immediately
that we shall get the asymptotic equality

[=1Vp—éll, !

_‘ “f(o)de
L= ,/0 zp'*'% )

If, then, 7; differs from zero, 7 will increase indefinitely with .

I=

b
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87. Differentiation. From the first conception by which we ob-
tained our new symbol, we immediately see that it admits directly of
differentiation with respect to b, which 1s to be performed by differen-
tiating under [ and not writing any term corresponding to the upper
limit, the latter terms being included in the fractional infinite
terms which are meant to be added in order to make the integral
have a limit.

It follows from this that any (linear) differential equation which
would be satisfied by our integral (considered as a function of b) ¢f
taken between constant limats a, c, 15 so as well when one limit is b wtself.

This is, as we said in § 73, Darboux’s fundamental remark.

3. THE CASE OF MULTIBLE INTEGRALS

88. The above notion will be extended to multiple integrals by
the usual reduction to simple ones. Let us take (in ordinary space,
for instance) such an integral as

(20) f f L (w ¥.2) — dedydz,

one part of the boundary of the domain of integration T' being con-
stituted by the surface G = 0, with the essential hypothesis that this
part of the boundary contains no singular point, 1.e. that at no point
of it the first partial derivatives of G simultaneously disappear. Then,
for any neighbouring point, the distance to the boundary (or rather
to the aforesaid part of it) is exactly of the same infinitesimal order
as the value of G.

: oG s
Let us assume, in the first place, that ;‘—I especially 1s everywhere

# 0, and even that any parallel to the z-axis cuts the surface in question
1n not more than one point z = 2z, and at a fintte angle, so that we can
write G =(z — 2;) G;. Let us assume, moreover, for the present, that
every part of the boundary adjacent to G =0 consists of a cylindrical
surface parallel to the z-axis (fig. 10). Then we shall write, by defi-
nition,

(1) m ,%&dxdydz fdxdy| GPHdZ

= iz U 4dz
) vy ZIGJP"'%(Z—z])p'*'%




142 INTRODUCTION OF A NEW KIND [BK II1

(if, for instance, the segment (z,, Z) intercepted by 7' on any parallel
to the z-axis has z, for its lower limit and if the upper one Z corre-
sponds to no singularity of the integrand).

If & be a funciion of z, ¥y and a small
parameter e, infinitesimal together with e
and developable in powers of e at least to the ]
pth order, the term in e itself being always
different from zero, this means that we take
the limit of

(22) ffdd T4 g -
wyf 2
%+§GP+%

after we have subtracted suitable terms,
infinite of fractional order in € (viz. of the form

\

L

\
\

\
A W,
£\
\

)
) -
S

Fig. 10.

B@,ye) _ P (@ y) +eBit ... + e Bp
eP-3 P-3

~- dz 1s uniform
5, GP+1

(§84) when z and y vary, in order that exchange of our limiting
process and integration with respect to x, y be allowed, which

o (G;}* %)

T be contained between finite limits all
1

over G=0 and in its neighbourhood. On the other hand, G is
supposed to admit of derivatives up to the pth order with respect to
z, Y, z, so that such is also the case, on the surface considered, for z
as a function of # and y.

This definition, in ifs turn, is obviously equivalent to the following
one:

Let the neighbourhood of G =0 be separated from our domain 7’
by a surface (7) such as

(7) G='Y(x: Y, 2, €)

in which  denotes a quantity having with zero a neighbourhood of
the pth order (§20),—that is, very small together with its partial
derivatives up to the pth order, when e approaches zero. For instance,let
v be equal to De,denoting by D a differentiable expression independent

under the assumption that the convergence of

will be the case if
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of e. Then,if it is first extended to the domain T} deduced from 7' by
cutting out the neighbourhood T, of our surface, our integral will
not approach a limit when e approaches zero; but it will do so if we
subtract a properly chosen expression of the form

B(e) _ Byt Biet ... + Bpye™

(23) Pt P13

(which, of course, completely determines the coefficients B). This
limit is equal to (21)—for (7) can obviously be written in the form
z =z (z,y) + &;—and, therefore, is utterly independent of the choice
of the function D or even «, under the above specified conditions.

89. But this new form of the definition is also independent of our
previous restrictions concerning the location of our domain T with
respect to the axes of coordinates. The calculation itself can be made
independent of them (under conditions of regularity which we shall
presently specify) by the use of a punctual transformation.

Assuming now any number m of dimensions, let us refer the neigh-
bourheod of =0 to a system of curvilinear coordinates, one of which
shall be @, the others being denoted by A,, A, ..., Asu_y, such that they
admit of derivatives up to the pth order with respect to the Cartesian
coordinates and that the Jacobian K never vanishes, the element of
volume being

dT =dz,dz, ... dz, = Kd\d\, ... ANy dG
(in which KdX\, d\, ... d\,_, 1s precisely what we previously called
dTg or the quotient gg )- If so, the lines

A, = const., A, = const., ... A;y—; = const.,

which we shall denote by ! and which shall now replace the parallels
to the z-axis, must cut G = 0 at finite angles.

Let us assume, in the first place, that every part of our boundary
adjacent to G =0 is a locus of coordinate lines . We must immediately
note that this hypothesis, together with those which we have already
made, implies:

(1) that the surface G =0 is regular (§9): more precisely that
one of its Cartesian coordinates, considered as a function of the others,
has continuous partial derivatives up to the pth order;
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(2) that the same property belongs to every part of the boundary
adjacent to G =0;

(3) that such boundaries cut G =0 at an angle which never
vanishes (nor becomes equal to 7).

These conditions are necessary for the validity of the definition
we are about to give. Conversely, if they are satisfied, we can, in «
ways, find such a system of curvilinear coordinates as 1s assumed above.
Then we may take

SSST GP‘*“I dz,dz,...dr,,= | SSSr p+%KdK1d7\'2 AN dG
B —

- [AK
= SSdNdhs. Dy | [ 06

this third form of the definition being again obviously equivalent to
the second one (and therefore independent of the particular punctual
transformation used, under the above assumption)*.

We obtain the finite part of the simple integral / by taking it, not
from G =0, but from G =+, then adding a certain complementary term
B
ye- b1’
where % 1s a regular function of A, A, ... Ap—;, v (and, therefore, also
of the 2’s). Integrating with respect to the A\’s, we shall obviously

have an (m — 1)tuple integral along (7), viz.

(24) SS % ndhs .. Xy,
and the value of (21’) will be obtained by adding SSS+, and (24),
then letting e (and therefore ) approach zero.

For p=1, the complementary term (24) can be written so that its
independence of the choice of our punctual transformation is thrown
into evidence, viz. (on account of our previous remark concerning
Kd N dr,...dN,y)

- QSS /\/— dTG
* It may often happen that the use of our curvilinear coordinates will only
be possible in the neighbourhood of the singular surface G. It will then be
expedient to divide 7" into two parts, a central one 7" where the integral is to be
calculated in the ordinary fashion, and another 7" including the whole neighbour-
hood of G, where we have to use the form in the text.
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90. It will be useful for what follows to notice that one of our
preceding geometric restrictions can be dropped. If, for instance, in
(20), we intend to begin by integrating with respect to z, we can do
so even if some parts H of the boundary of T, adjacent to G, are
inclined with respect to the z-axis.

To see this*, we again cut 7' (the two parts thus separated being
again called 7, and T}) by (7), which surface cuts H along a certain
edge (in ordinary space, a line) A. If, through every point of A, we
draw a parallel to the z-axis, till it meets G, we thus generate a
cylinder %, the region inside which will be the region filled by the
parallels to the z-axis which meet (7) inside 7. Let ‘G be the part
common to that interior region and to I'; J the integral

ﬂ £, dadyds

extended to G, while 7, will be the (ordinary) integral extended to T}.

On account of the cylindrical
boundary of ‘G, the integral J is to
be expressed as explained above, viz.

J= ﬁ ddy

1

|

|

I

} z, still being the ordinate of G and
J the double integration being ex-
tended to the base s’ of the cylinder
% on the zy plane. If z, + ¢ again
denotes the corresponding ordinate of (7), and ¢ depends on € as above
specified, we have, by the definition of our symbol,

Z
§5+§d

. [z (% B (x,y, €)
J(w,y)=j J Mgt

= Dt (2, ),
z,+¢ Gp_% 77( y)

* We suppose, for convenience in treatment, that we are in the case (which
is the one that interests us) where the useful parts of Z/—and even the whole
domain 7'—project on to the zy plane inside the area s of integration for Z. The
diagrammatic figure 11 represents a section of 7, ‘G (the latter shaded on the
diagram), etc., by a plane parallel to the z-axis.

H. 10
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P (x, y, €) being a function which admits of Maclaurin’s expansion
in powers of € at least up to the pth order and n=7(z, ¥, €) an in-
finitesimal. This gives, by integrating over s,

[f,j(x,?/)dxdy==,=Il+f["ldv’b‘dy+—1;1j§ff B (z, y, €) dzdy.
§ € &

But the double integral in 7 is again infinitesimal when e is*; and,
in the last term, because of the assumed regularity of (v) and H, the
second factor (in which account must be taken of the simultaneous
variation of the integrand and the area of integration) admits of suc-
cessive derivativest in € and is therefore itself a Maclaurin expansion
(at least up to the (p— 1)th order), so that

B (e)

it

where ¢ means the infinitesimal quantity [fn dzdy and B (e) is again
regular in e.

If we now denote by I the integral (21) which we intend to cal-
culate, the difference I — J will, in general, be infinite (this being the
case for the simple integrals along segments of generatrices of the
cylinder ¥ when their length approaches zero); but this infinity
will be a fractional one of the form (23) as both J — I, (as has just
been proved) and I— I, (by definition) are of that form. This is
equivalent to saying that

(25) J—I,=¢+

(26) —l/f](w y) dedy = f[ dzdy [ — dz,

so that the calculation of the finite part of our triple integral is reduced
to two “finite parts,” one of a simple, the other of a double integral.
All this obviously holds for integrals with any number of dimen-

* We admit that » tends towards zero uniformly with respect to z, , which is

legitimate (§ 84) when the pth derivative ——( A—.) is finite in the whole

0P \ 7, ¥ 1}
neighbourhood of G.
t However, we must note that this assumes the existence of derivatives of B
up to the order (p—1) with respect to x, y, 2, so that, as, B contains (p-1)
derivatives of 4 and &, (with respect to z), derivatives of the integrand up to the
order 2p —2 are postulated.
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sions, and also when parallels to the z-axis are replaced by lines [
such as considered above.

Such lines are not, therefore, bound to be drawn on the non-singular
part H of the boundary.

As to the condition that the angle between one of them and the
singular part G nowhere becomes infinitesimal, it remains essential,
as we shall see by examples, when using the present mode of evaluation.

91. The same applies to our first hypothesis concerning the
regularity of our surface.

If the boundary surface G =0 possess a singular point a (which
will precisely be the case in the application we shall meet with), we
must proceed just as for ordinary improper integrals, that is, first cut
out the neighbourhood of this singular point by a small portion of
surface 2; then passto the limit. Only = must have with the singular
point a neighbourhood of the pth order, i.e., by a natural extension of
§ 20, not only must the radius vector* from the singular point to
any point of X be very small, but also its derivatives up to the pth
order with respect to the direction cosines of its direction, which con-
dition, however, is quite generally fulfilled (for instance if 2 is derived
from a regular fixed surface by homothecy with respect to the singular
point, or by translation, etc.). Whether the limit exists (though
general sufficient conditions for this could probably be formed without
great difficulty) shall be investigated in each case.

92. The above considerations, nevertheless, still apply when @ is
the product of two factors G = G'G”, in such a way that G =0 is com-
posed of two parts G'=0, G” =0, which intersect: this is what would
happen, for instance, if T' were a rectangle, G denoting the product of
the four sides.

* Such radii vectores may be meant to be rectilinear ones, but as well (which
is equivalent, on account of the classic rules of Differential Calculus) may be taken
along any regular set of curves, i.e. any set of curves through e, depending on
m —1 parameters (for instance, m — 1 direction cosines of their tangents at ) and
such that continuous derivatives of the coordinates up to the pth order with
respect to these parameters and the arc s exist, the Jacobian never vanishing.
We shall have to operate in this way, using the geodesics (§§ 55 ff) from a, on
which occasion we shall come back to the subject (see § 106).

10—2
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Let us suppose, for instance, that G =zy, the domain of integration
lying in the region >0, y > 0. Then, to define the integral
A (z, y) dzdy
/ mep+§§;’+5M’
we shall begin by limiting the integration to > ¢, ¥ > ¢”’—denoting
by €, €’ two small positive numbers—under which conditions [as
appears if we expand 4 (z, v) in powers of z, y and calculate

dzx dy
ff;mg‘n;’ (¢ 7=012 )]

the integral can be made finite by subtracting complementary terms in
B B B

27) TR S S WS
B denoting quantities regular in ¢, €’. The general case of G = GG’
being reduced to the former by punctual transformation (in which
G’ and G” are to be taken as new variables « and y*), the same result
will be then obtained by complementary terms of the above form (if
T, is separated from 7, by the surfaces ' =¢, G =¢€"), with the
same meaning for B. As the third class of terms possesses, like the
two first, the property of never remaining finite for all infinitesimal
values of €, ¢’ without vanishing, the preceding theory is again
applicable: 1e., there will be an infinity of ways of choosing the terms
(27) so as to obtain a finite limit, but the latter will have the same
value in every case.

Nothing similar will occur in general for other kinds of singulari-
ties of G =0. We shall have to take the precautions alluded to in the
foregoing section, and shall find that they actually change the result.

93. We can repeat for multiple integrals all what we have said con-
cerning equalities and inequalities. Especially, changing the variables
1s allowed if mutual derivatives up to the pth order exist and if the
Jacobian vanishes at no point on the surface of singularity G =0.

* We simplify the argument in the text by assuming that we are given not
only the two surfaces G’ =0, G” =0, but the left-hand sides G', G of their equa-
tions (which assumption was not wanted in the above); this condition will be
satisfied in the application which we shall have to make of the present section, so

that we need not take the separating surfaces (7) under the more general form of
§ 88,
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Dufferentiation, when the parameter influences the shape of the
singular part of the boundary G=0, is to be performed without
writing any term corresponding to this effect (since such is the case
for the simple integral along each line [).

An upper limit is obtained by integrating along the I's* and
applying to each simple integral formula (19) (§ 85). For this
nurpose, of course, we must again know upper limits for the integrand
and its derivatives up to the pth order, and conversely this will be
sufficient if we know upper and lower limits for the lengths of the
arcs of lines [ included in 7.

94. Briefly speaking, our new symbol consists in giving our integral
a value by subtraction of fractional infinities. In the calculation,
therefore, it happens that we have to cancel such fractional infinities:
if two different integrals of the above kind extended to the same
domain 7' are such that, when extended to 7", they differ by a quantity
which we know to be necessarily of the form (23), their finite parts
must be equal and, therefore, no account is to be taken of the differ-
ence in question.

For instance, in Green’s formula (g), let us assume that the inte-

grand on the left-hand side is of the form éwﬁ;}- and the P;’s of the form

G;’}i ., where the B’s are again regular functions of the «’s. If the
2

boundary of the domain of integration 7' is entirely constituted by a
surface G =0 (on which we still make the same general assumptions),
the finite part of the corresponding multiple integral will be zero. For,

if 1t 1s first taken within the surface

(1) G=ry (2, @2, ..., Zn, €),
this integral will (on account of the identity (g) in question) be reduced
to a fractional infinity in e: which is equivalent to the above con-
clusion.

If some parts S’ only of the boundary belong to G'=0, only the

* If we operated as in § 90, we ought to know upper limits for the de-
rivatives up to the order 2p—2; on the other hand it would no longer be
necessary to know lower limits for the lengths of the arcs of lines / included in 77
(but only of the angles-between these lines and G'=0).
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SS relating to its remaining portions S”—or rather the finite parts
of these §§—will have to be written down: formula (g) is to be
written

|SSS,=—]|SS,.-

The same becomes obvious on using complex variables as in §§ 80, 81.
In order to simplify the geometric interpretation, let us limit ourselves
(A (2, y)dzdy
JJ oPt3 ‘
one side along #=0. Leaving y real, we shall replace « by « + 72" and
consider «’ as a third coordinate in a three-dimensional space. Then
I is equal to half the integral over a double sheet which should be
folded around « = 0 and cover our rectangle twice (or if preferred, over
an infinitely flattened elliptic half cylinder having a focal line along
=0 and the opposite side for its axis).

If we should deal with [ [ A (v, y) dwdy ,

N z(a—2z)]P*?

tion having #=0 and « = a for its opposite sides, we should consider
a segment of a whole elliptic cylinder having these for focal lines.

In all these cases, our relation with a curvilinear integral would
appear immediately with the help of the above transformation.

to a double integral extended over a rectangle having

the rectangle of integra-

4. SOME IMPORTANT EXAMPLES

95. We shall have to consider, from the above point of view, the

integral
8 f dz
( Zl a)’n N+ é

Let us take it first between + Va and the fixed number z, > Va.
For n=0, we have

“ & _ | atVai-a
T L =log 2T T2 =—1loga+ P(a),
fJa V22— q 8 Va 2708 (@)
where
P (a)=log (2, + V22— a) =log 2z, + log (1 + \/1 — %)

2

1s a serles In integral and positive powers of a.
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We deduce from this, by differentiation,

| [z‘ dz _(= D1 + BN ﬁ P (a),

Jua (2 w;)"H«’ 2nC, a* L' (n+3) da®

(28)

C, denoting the numerical coefficient *

09y ¢ %% (=4 P(n+1)
— 1 B(n_l.%., %)___(1’_.1?).

For z,= w0, the last term on the right-hand side of (28) disappears

(as P (a) i1s in powers of z%, and therefore every term but the first
1

contains z, in its denominator): whencet

(30)

[oo dz  _ (=1)p (n an integer > 0).

Vi (@—a)"tY (. am

We must equally note the value of the integral for n < 0, 1.e.

— 1y -1
( 1; —Cpa*loga+ P, (a)

2
28' [ dz (22— a)* "2 =
@) [ a@-o _

(»” an integer > 0),
C, denoting the same numerical coefficient as before. This is again
deduced from the case n’=0 by integration with respect to a,—the

value of the integral being evident for a = 0,—or more simply, by

expanding the integrand} in powers of %.

* Especially, C,=1, C;=1%.

t+ The value of (30) could also be found from another point of view, giving a
good example of our first definition in § 80. If we replace the real segment
(/a, ©) by a circuit around it, the corresponding integral—which is twice (30)—
can be transformed, by Cauchy’s theorem, into an integral along the imaginary
+ dz, .
—o (a+z2)" Y’
classically reduced to an Eulerian integral B.

1 The term in o* is the only onc which contains z to the powers —1 and,
therefore, leads to a logarithmic result.

axis, equal to e—mim / the latter quantity is immediately and
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96. But the formule relating to the cases where the limits are
— Va, +Va are especially important for what follows.

The integral
+a/a dz .
(31) J_ - ZZW:Z;)’L+% (n an integer > 0)
18 zero.
The integral

+na —_—
f (2 —a)*Wa—2ztdz  (n an integer > 0)
—a

s equal to 2wA, A denoting the coefficient of log a in expressz:on (28),1.e.

PR g

(3]_ l) f ’ "_* (22 _ a)n’—l ;\/&::;2' dZ —_ (_ 1)71,’—1 an,a7z',
so that e

(31a) f “(a= 2" "} dz = nCya.

- a

o/

This form of the result, implying a relation between (28") and (31’)
(which relation may also be considered as holding between (28) and
(31)), will be of special interest for us later on. It can be established
by considering (31’) as a period of (28"). If we let a, starting from
a determinate positive value, come back to it by a direct circuit
around the origin in the complex plane, the point ¥« performs, as we
know, a half circuit, going from ++a to —~a. As, simultaneously,
z, remaining fixed (at a finite or infinite distance according to the
case), (28) increases by 2¢vw A, our relation is proved.

Of course, the same formula (31’), or rather (31a), can be obtained
directly, and precisely in terms of Eulerian integrals of the first kind:

for, by the change of variable z = Vat, integral (31a), which is also im-
mediately (setting z = +/a cos ¢) reducible to Wallis’ integral, becomes

+' ,; ’ ’ 1 ’ ’
| Cde@=a b= [ -y de-tdi=a B+ B
e Jo

If we differentiate this with respect to a, which, as we have seen,
may be accomplished by mere differentiation under [ and without
writing any terms for limits, this gives, by a sufficient number of
differentiations, the value O for (31).
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Similarly, ¢ being any positive integer, we have, for n' >0 (the
left-hand side being again reducible to Eulerian integrals as well as

to Wallis’),
+\/;. ,
(32) " Ein La=—22)"~tde
! a

y,9-1 q-2 ’ Q_-_{ .
=a”~+”?‘2’"f t 2 (1-t) Pdt=d"" 2 B(n’-+%,%>-
0

Again starting from n’ =0, we shall obtain finite parts of integrals
containing (1 —¢)"+% or (a —22)**? in the denominator by differen-
tiating with respect to a (or by a classic integration by parts, with
respect to ¢, applied to the second form of the integral). We thus see:

(1) that

q.—
+a/a 9-1 1 2
A e e [
- i (a—z2)ntd 0o (1—¢)"+t
ts zero, when q 1s odd and n >gm:_~£ 1';
(2) that otherwise
_ R +1
(e -1 ¢-1_, (q—%)(q—%)-~~(g—2‘—’l)
R 514
~a (a— 2" HED - Cntd) 2

¢-1 F(%__l) rag- n)B( w>-
2

r ((—I-—:-} — n) ')
2

It is almost evident—and is immediately verified—that, expressing

the symbol B in terms of I'-functions, the numerical factor will be

found to be the same as in (32), except for the change of n’ into —n,

l.e. equal to B (e} —n, %\ .

; 9

| 1 g-1 1 3~ 1

33 f T de= [ L =B(J:—n, 9)
-1 (1 =22t 0o(l— )"J’é 2

so that, in this case, we get formule exactly similar to (32) except
for the introduction of our symbol |

Especially
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97. The volume of m-dimensional hyperboloids.—Let us con-
sider the m-dimensional quadric

(H]) x12+.%‘22+...+.%‘2 _1—-.%,,,,2:1,

analogous to the hyperboloid of one sheet, and the (m-dimensional)
volume between this quadric and the “asymptotic cone ”

(©) T2+ T+ v F By — T2 = 0.

To calculate this, we can evaluate «,, x,, ..., Zm_,; 1n terms of

r= \/;1"2-}—.7:2‘2 + ...+ 2%,
and of angular parameters ¢,, ... ¢,,_,, defining a direction from the
origin in the (m — 1)-dimensional space (2,, @, ... £m—): by which
dw] dxz o d(l?m_l = ’I‘m—2 drde_g,

where d(,,—, (corresponding to variations of the ¢’s) is an element of
surface of the sphere of radius 1 in the (m — 1)-dimensional space.
Summing, in the first place, for all possible directions in the latter,
we express our volume by the double integral

(34) Qe [[r™ 2 drday,.

Q- denotes the surface of the hypersphere with radius 1 in

2[C QI

.e. to
m—1\"
m-1

e

- (the volume of the same sphere is 1 Qs and we

(m - 1) , m—1

(===
2

may observe that this allows us to speak even of Q,, the value of

+1
which isf dax = 2) .
-1

the (m — 1)-dimensional space. It is equal to

We ought to extend (34) between one branch of the hyperbola
r?—x,,-=1 and its asymptotes. Now, if we set down
L, = T2,

z = constant will represent, in the », z,, plane, the radius vector from
the origin and, in our original m-dimensional space, a hypercone.
The volume enclosed between two such consecutive hypercones
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(2, z + d2) and our quadric (easily calculated by expressing the

variables @, and 7 in (34) in terms of z and p = /72— 2,2, and letting
p vary from zero to 1) will be

_Qm-—z dz

m W1—z2™

If we should integrate between — z and + 2z, with 0 < z < 1, this
would give us the volume between the two corresponding cones and
our quadric.

If m is odd, there will be a finite part for such an integral, when
z approaches 1. It will be said, by definition, to be “the finite part of
the volume between the quadric and its asymptotic cone.”

From the conclusions of the preceding section, we see that this

Sfinite part ts zero.
Let us take, on the other hand, the quadric

(H2) P+ X+ e+ B — T =~ 1,

which, for m =3, is the hyperboloid of two sheets. Let us again con-
sider the volume between the sheet corresponding to z,, > 0 and the

asymptotic cone (C).
This volume will be represented by the integral

Qups f“ o dz
m Jg— 1"
which we must take between 1 and +o00. If m s odd and equal to

2m, + 1, the expression thus obtained has a finite part, which will be
called the “finite part” of the aforesaid volume z. The value of thus

finate part will be
(35)

oy (= 1)
(2m, +1) 2m,Cy,°

For instance, as concerns the ordinary hyperboloid of two sheets,
we have

g'n'ww dz 271'.
I

If our hyperquadric be given under the more general form

H(z), %3y 0o ) =1
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(H being any quadratic form with one positive and m —1 =2m,
negative squares), our result is obviously to be divided by + /| D],
D being the discriminant of H.

The sign of the finite part obtained is, as seen from (35), variable
according to what was said in § 85: it depends on the parity of

m—1
m1=—-‘;2 :

98. A similar treatment would apply to the hyperquadric
(H") ZPtaltt .t xt—-yt -yt — . —ylt=1, |
which occurs in connection with the equations AP 24 =0 of Coulon
(see § 69). Introducing the auxiliary variables
r=Nalt a2+ .. tat r=VyE Ryt 4Ly

the calculation of our volume would, as above, be brought back to
the double integral

Qps Qo [ a2 dr dy
which, by " =rz, would lead to a simple integral

Qs Qe [ 21702

(36) p+q w1

If we extend this integral between z= —1 and z =+ 1, the finite
part of it will have a meaning for p + q odd. For q odd 1t will be zero
(see § 96).

Only in the case of ¢ even, p odd, will the finite part of the volume

P q
between the quadric (H') and its asymptotic cone 22°—2y*=0
1 1

exist and differ from zero: its value will be B <}2 j)_ 7_1 Q—) %"—’_'%@i

- -

99. The numbers Q have very simple relations with the coefficients
C, introduced above: we have

Qm—l = 'Qm—2 ™ C Qm—" ™ Cm

1 2~

(and, more generally, relations between Qp_1, Qg1 and Qypq).
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This 1s immediately verified, but is hardly distinct from the argu-
ment in the preceding section: the classic determination of Q,,_; (as
a subcase of Dirichlet’s integral) is entirely similar to the above calcu-
lation; the latter applied to the volume of the m-dimensional sphere

with radius 1 (equal to q% Qm_l> reduces it to Q,,—, [[r™ 2 drdz, the

latter double integral being therefore extended to »*+a2<1 and
immediately reducible to (31) as above.

100. If we divide the volume of one of our hyperboloids of
m=2m, + 1 dimensions by a central plane (which is assumed to cut
the surface) the latter can always be considered as a diametral plane
and therefore the two partial volumes thus separated must be equiva-
lent to each other: so that the finite part of the volume of the half
hyperboloid of one sheet is zero, and the finite part of the volume of
the half hyperboloid of two sheets is equal to half the value obtained
in § 97.

A consequence 1s that any such two planes, the intersection of
which lies outside the asymptotic cone (if the hyperboloid of two
sheets is concerned), include between them in the portion of space
enclosed between the surface and its asymptotic cone an infinite
volume the finite part of which is again zero.

101. Our notion of improper integral, as developed in the above, allows us
to find the relation between Tedone’s expressions and the elementary solution.
It is to be foreseen (by the first example of m =3) that thelatter, in order to admit
of ordinary Calculus, must be first integrated several times—at least m; times—
with respect to ¢,

Now, such successive (or rather superimposed) integrations of a function #'(z)
from a common lower limit 7" to the upper one ¢ can again be replaced by a single
one with the help of a factor (¢ —¢)*»~}, so that, for the study of the generalized
equation of cylindrical waves (e,, ) for m =2m, + 1, starting from the elementary

solution
1

(o
we have to deduce from it the definite integral
£ (=) 1ty
f T [(tg—t)t—r2pm=4’
in which, as we did in § 73, we shall take ¢ independent of ¢, but the lower
limit 7" equal to ¢4 7.
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Tedone’s expressions correspond* to a number of integrations much greater
than strictly necessary, viz. n=m —2=2m;—1 (the advantage being to obtain
rather simple expressions which only depend on the ratio (¢'—¢) : ). His functiont
is, but for a numerical factor, equal to a definite (improper) integral {

i y Qmy -2
v [1 L=,
Jesr [(tom g =rTat
That applying the fundamental formula to such a quantity together with the
unknown function u, leads to the value of (10") (§ 78), whence u follows by
differentiations, is now evident a priors. We see that the (m; — 1)th derivative
of % could have been used for the same purpose.

* In Tedone’s notation, our number m is denoted by m +1 and (for odd m’s)
our number m; is called p.

t ¢, in his notation.

1 wy,considered as a function of ¢ and the #’s, satisfies (e,, _1), as resultsfrom our

principles ; thisand the fact of being a mere function of f—;—f (Tedone’s variable 8)
together with its logarithmic singularity (which is easily shown by the principles
of the theory of functions) prove its identity with Tedone’s expression. A direct
calculation, giving v, under Tedone’s form, is obtained by setting down
fo=t—r_

to—t+r

NPT !—t—r

and, similarly, Tirr T

which gives

| ' 1 ! 2m1-2
S Ul

V=

1 (r'—'r)2m‘_2—'rm‘_l (' — 1)2m,—2

m -4 1-—-7

dr.

_ T'_‘ dr + 1
= O(I—T)\/T (1_1_,)‘2m,°2

The first term is the logarithmic one ; and, as

07

(T’— T)2’lnl—2_r m,—1 (T’— 1)2m|—2

1-7
=[T (T' _ 1) +‘l" (T, -T)] s (T’ _ 1_)2 (my - h~1) 1_’1—] (1 _ 71)211—2’
the remaining (improper) integral can be expanded in powers of
4+’ (' —t)2~72
A-72" T2 ’
with the common factor
or Ut

4 o=

the coefficients being Eulerian functions B (see § 96).



CHAPTER 11

THE INTEGRATION FOR AN ODD NUMBER
OF INDEPENDENT VARIABLES

102. With these principles in mind, we can come to Cauchy’s
problem for the equation

(E) FwW=34 L 3B Cu=f

® w0z | o low

From our previous considerations, 1t 1s to be foreseen that we
shall have to distinguish between the cases of m even and m odd.
We shall begin with the latter. The elementary solution is then
unique. It contains no logarithmic term, but has an irrational de-
nominator.

We shall have to assume that solution to have been constructed
not for the given equation, but for the adjoint one*

() g (v) =0,
the elementary solution of which will be of the same form, viz.
V
v=v(z; a)= I_—:;;L;E,

for m =2m, + 1; 1n which I" 1s still the square of the geodesic distance.
between the two points @ (z,, ,, ... zy) and a (a,, @y, ... an), while V'
1s a holomorphic function of the 2m coordinates of these two points,

taking on, when they coincide, the value '\7%3—"‘

For the present, we shall suppose that our equation belongs to
the hyperbolic type, and even to the normal one, so that the charac-
teristic form

A =ZAgyiv
consists of squares all of which but one have the same sign. Then,
the characteristic conoid consists of two different sheets and divides
the space into three regions, two of which are interior, viz. one inside

* The adjoint equation will always be taken homogeneous (i.e. & (¥)=0) even
if the proposed equation is non-homogeneous (& () =F5£0).
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each sheet. We assume the equation to be written in such a way that
" is positive in these interior regions (physically speaking, positive
when the two points # and a are well within wave with respect to
each other in the meaning of § 32). This is the case when the form A
has one positive and m — 1 negative squares*.

102 a. Cauchy’s problem consists in finding a solution u of (E)
when we know the values of u and one of its first derivatives at every
point of a certain surface S. As the knowledge of any first derivative
(v being assumed to be known all over S) is equivalent to the
knowledge of any other one (provided the corresponding direction
1s not tangent to S), we shall assume that the derivative in question
is the transversal onet (§ 41).

We intend to calculate the values of u in a certain region & of the
m-dimensional space; and it will be assumed that if, from any point
a of A& as vertex, we draw the characteristic conoid, one of its sheets
will cut out a certain portion &, (finite in every direction) of S and,
together with S;, be the boundary of a portion 7' of our space. This
geometric condition 1s expressed by saying that we have to deal with
the ¢nterior problem (we thus see that no interior problem exists for
non-normal hyperbolic equations).

We also know that it i1s essential to say what we precisely mean
by a solution; and, here, we shall begin by understanding this in a
rather restrictive manner, viz., by admitting that « has to admit of
partial derivatives up to the order m,,—or, at least, to the order
(m, — 1) satisfying Lipschitz’s condition—a restriction which would
seem a very artificial one if it were not for the remarks of § 78, but
which will now appear as justified.

This being admitted, we shall see that the above data allow us to
calculate u and, further on, that, conversely, upon one geometric
hypothesis more (viz, that S is everywhere duly inclined (§ 27)) and
some hypotheses of regularity concerning the data (which correspond
to the preceding ones on u itself), the function u thus determined

* This would lead us to change the sign in equation (ep), instead of writing it

asin § 4 a.
t+ If S is not characteristic, the transversal direction will not be tangent to S.

For the contrary case, see below, § 113,
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satisfies all required conditions. (On the contrary, no exterior Cauchy
problem admits of a solution for arbitrary regular data.)

103. Accordingly, @ (ay, @y, ... @) being any polnt of Z at which
we Intend to calculate the value of u, we draw one half characteristic
conold I' with vertex «, the one which cuts S along a closed edge and
which we shall call (§ 32) the inverse or retrograde sheet. Let T’ be
the portion of &% thus limited, 1.e., which is both interior to I" and on

the same side of S as a (fig. 12).
We shall apply the fundamental formula* in the domain 7' to the

unknown u and to the elementary solution » (z; @) of the adjoint
equation which is singular in a.

The quantity vf = lflli& I

viz. the conoid I': it is an infinite quantity of the fractional order
m, — }. The m-tuple integral bearing on this quantity is subject, then,
to the consideration explained above (these becoming unnecessary
only for m, =1, i.e. m =3).

But there 1s an exception for the neighbourhood of the point a,
where I is infinitely small of the order 2, not
of the order 1. We shall therefore have to
proceed as is done in the case of ordinary
multiple integrals, and abstract from the do-
main of integration all the neighbourhood of
the point a, by means of a small surface X
(fig. 12) surrounding this point, it being
understood that the infinitely close vicinity
between 3 and the point a is of the m,th

Fig. 12. order (§91), such being the case, for instance,
if we take a small sphere with centre a.

Let 7" stand for what remains of T after all the part which lies
inside = has been removed. |

The fundamental formula

(F) '§SSvfdz; da ... dzy, + 'ss( du uf‘Tz +Luv)d3=o

* Fig. 12 is supposed to be, as previously, a diagrammatic one, obtained by
cutting the one which we have to consider (and which has m dimensions) by a two-
dimensional plane drawn through the point a.

H. 11
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will be applied in the domain 7", with the convention that we take
the finite part of the left-hand side, by omittiny: the infinite quantities
fractional on I We must therefore

(1) Take the finite part of the first integral in (F) (m-tuple inte-
gral with respect to 1");

(2) Take likewise the finite part of the (m — 1)-tuple integral with
respect to the given multiplicity S;

(3) Cancel the integral relating to the boundary I, this integral
being an infinite quantity of a fractional order. This same integral
vanishes in Kirchhoff’s method, because it integrates exactly, and in
Volterra’s because it is identically zero. The same thing happens
here, as we see, by a different mechanism, which we have explained
in § 94. The integral in question being of a fractional order, and the
complementary boundary terms implicitly understood in (1), (2), and
(4) (see below) also being such*, the very fact that the sum of the
integrals (F) vanishes implies that the sum of these four fractional
infimte quantities also cancels out separately;

104. (4) If the shape of T' were such that a is exterior to it,
as happens in fig. 12 @ or 12 ), we should have to apply merely the
fundamental formula, thus interpreted ; and this would give

(F) l§§§~fﬂ)}cdw1 dzy ... den + |SS (u 3—3 - z?: - Luv) dS =0,

which corresponds to the classic formula in the theory of potential
(formula (8) 1in Book I,
§15) for the case when the
origin of the radii vectores
lies outside the surface of
integration.

But in the present case,
we must take account of the
integral relating to 2, of
which we must take (as on
S) the finite part. We have
to see what this quantity becomes when X approaches the point a.

Fig. 12 a, 120.

* In (1), this complementary term would be extended to I' or rather to a
surface coinciding finally with I'; in (2) and (4), the limiting positions for the
domains of integration corresponding to the complementary terms would be the
edges of intersection of I' with .S and S.
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Through this point, let us draw geodesics (defined by the differ-
ential equations (L)), inside T, and depending on m — 1 parameters
A1y Ay ooey Ap—y, While, on each one of them, any point will be defined
by the variable s of § 55. s will have, at each point of X, a deter-

minate value (a function of A;, A, ..., A;,—,;), which will be very small,
together with its derivatives* up to the order m,. The integral
| I , (Vdu + Luv)
@7 8S(v+ Luv) ds — Iss 148
s ' .
r

will approach zero. For the quantities

D (z,, @y, ..., @imy, Tita, Tm)
. S=+ 1, W9, )y L—1) z+1:_ m . }\‘ -
mid - D (7\'1; Aoy ooy Apy) D, ds, , d e

which appear in the numerator under §S, are of the order s™7,
whereas the denominator

m=2 m—2
€ / / ’
I'2 =gm2H 2 (xl,xz;---,wm),

dx; . .
where z; = d—; , contains as a factor only s™2 The coefficient of
1

m=2
H*® (z/,2), ..., zp)
1s therefore of the order of s, and the same is true of its derivatives
of the various orders with respect to A;, Ay, ..., Am—y. Under these
conditions, the evaluations of §§ 85 and 93 show that the integral (37)
1s also of the order of s.
This applies again, in the term

to the part §S ——— dS,

in which T' is not differentiated.

* This results from the principles in the Additional Note to Book II. See
below, § 106.

11-2
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105. Lastly, let us take the remaining part

g WTE gl V3T as
(B7) +=5 8§ —7—dS=+-—5""88 —
r? | r
We have (still with the notations of §§ 55-58)
or
é;,b = 2sz
and consequently
< oI' 0A 0A dx;
Ma‘;;; 2 2 za_'_22'7r’bap _4"82 @i

But, if we refer back to the expression of 7;dS written as above,
we shall see that the coefficient of 4s (multiplied by dS) is in fact a
development of the determinant

! El_{_c_l Cl':liz d‘l’:n
ds’ ds’ 7 ds

P W N A VO W

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

i oz, 02, 0%
|

P’ P’ " O
the A’s being taken in such an order as to make the determinant
positive, since the direction of s increasing is away from a and enter-
ing into the domain 7". |

All the rows of the above determinant, except the first, contain s
as a factor*, so that the integrand (for determinate values of the A’s)
remains finite when s approaches zero.

On the other hand, we have, practically, on 2,

uV =

— )=
,\/&u Qyy Gzy oens Qip vy Uq,
the word “ practically ” being used, of course, with a slightly different
meaning from that which it usually has in such a case, and signifying

* It is true that each element contains, besides a part proportional to s, a
part containing the derivatives of that quantity with respect tothe A’s: but upon
the assumption in the text concerning =, this will not change the order of magni-
tude of our determinant.
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that the neglected quantities, together with thewr derivatives wuth
respect to the \’s (up to the order m,), are very small.
: . Z; »
Still from the same point of view, we can replace the EEIE s by the
dw,;

values #; which they have at the origin, and the derivatives N by

8 oz : thus we get the expression

on

(38) @ cee Ty
oz, Oz, 0y,

o on o

! ! Clda dhe oes A

oz, 0%

(,m _ 2) U, a}\m_ ............ o

va |SS 1 m 1

H2 (2, ), ..., Zw)

The integral which is multiplied by (m —2)w, is easy to reduce
to the result of § 97. Generally speaking, if through the origin we

draw a variable straight line

o S S L

o Ay

whose direction depends on m — 1 parameters A;, Ao, ..., Ajp—y, and
choose on 1t one point

P (z,=a,8 2, =08, ..., Ty =y3)

(denoting by s another function of the \’s), the integral

o, o, ooy A
oo 892 %‘
1 ) VAR ) VY
;;i SS ! . ' ! .S‘md}\‘l dkg cer ANy
aal .aag . aam
A1’ O’ Op

will represent* the volume between the surface S described by P and

* For, if dS be an element of the surface S and =, m, ..., 7, the direction-
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the cone with the outline of S for its base and the origin for its
vertex.

The S8 of formula (38) is therefore equal to m=2m,+1 times
the finite part of the volume of the hyperboloid of two sheets, as is
calculated in § 97, and found equal to

1 ("' 1)’”1 'Q2m1—1 Wl_w
2m,+1  2m,C,, VD’

D being the discriminant of H. The integral along X has therefore
(on account of the equality DA =1) the limiting value

( 1) Q’zml»l 27711
Omx T 2y

Qomgen
— ua = (= 1ym 221t gy,
)ﬂ]"*}

=899 (-1)ym7wQ, _,.u,
and the required value of u, is given by the formula

(39) (— 1)’”177'02,711_2 U= (—- l)ml %2—?"1——1 .U,

my—1

=— 'éssm;vf dmy, d, .., A

dv du o
+ ‘SSSO (u Al s Luv) dsS

= - 'SSST vfda,.....do, + iSSS0 (uo d——v—- Uy V —Luov) ds.
| dv

cosines of its outer normal, we have, account being taken of our values of
my dS, wodsS, .

V=s8s ;ﬁz (MZy4 oo F+ 70 2,)dS

z L2 e Xy |
0y Oy Ony
=flé sS CRI C)\; (’}\1 é d)‘l dkg dxm_ )
or, 0z Ozy,
M1 Amoy Am1
If we now replace z; by a;’s, and, therefore, 8 b) L;‘+a, i\ , the second

terms in this latter expression for:=1, 2,...,m can be cancelled as being pro-
portional to the #’s which constitute the first row of the determinant, and this
gives the result in the text.
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For m =3 (m,=1), the coefficient of U, 1S

1

~ Oy 5p = = 2w (== 7).

106. A consequence of the above is that the first §§S in (39)
exists when extended to 7, at least if we still let = approach a in
such a way that the vicinity be of the m,th order. We can also see
this directly. Calculating it with the system of curvilinear coordinates
Ay A2y eovs Aoy, S, We shall get

ISSSrufde, da, ... dwy,

3 VY D(zy, ..., zp)
= SSS E—1 1)-—(3\;1’ L 7\”}_}, S) (lk] d7\2 ces dhm,_l dS.
sm—2H 2
. . D (2, 2, ..., Zp) . —
Now, the functional determinant Do, x, ,_s)— contains §

as a factor, and therefore the quantity under §S§S thus only contains
the fractional infinity

1

-2 °
H (“’” G %G En am)

’ y e

S S S

Under this form or the preceding one we see that the error com-
mitted by substituting 7 for T, the difference between the values
of SSS extended over T and over 7, is limited in terms of:

The partial derivatives of f up to the order m, —1 and of the
coefficients of the equation up to the order m, ;

The corresponding derivatives of V;

The partial derivatives, up to the order m,, with respect to the A’s,
of the coordinates of the point where each geodesic issuing from a
intersects 2 or, which is equivalent, of the corresponding value of s:
these derivatives being themselves limited* by the corresponding
derivatives of the 2’s with respect to s on the geodesic, the correspond-

* The choice of the parameters A and the proportionality factor for s (see
§ 57) on each geodesic are assumed to be such as to satisfy usual conditions of
regularity (regularity of the initial values of the 2’s with respect to the X’s).
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ing partial derivatives of the left-hand side X (w, ..., @m) of the
s

equation of % and by the reciprocal of CZTZ [as is seen by expressing the

z’s and thereby 3 in terms of (A, ..., Aoy, S)—say

p (wh vees mm)“'—— (I)O\‘l: N VR 3,)

—and differentiating the implicit equation

DAy, -ey My, 5)=0]

This proves to us, what, will be useful in several circumstances, that
the 888 1n (39) converges uniformly*: that is,in a region where the
coefficients of the equation are holomorphic (therefore, IV holomorphic
in the 2m variables which it contains), f regular (derivatives continuous
up to the order m, — 1), we do not need to know the position of @ in
order to indicate a (very small) upper limit for the above-mentioned
error if we only know (very small) upper limits for the distance be-
tween X and the point a,—say e—and for the partial derivatives (up
to the order m,) of the #’s with respect to the A’s. The latter limit

will exist and be very small with € (a lower limit of (fl—f inside the

conoid being known), if the derivatives of any order & < m, of X with
respect to the #’s remain finite, or even if their products by ¥ re-
main, in absolute value, below a fixed limit+ as would take place, for
instance, if 2 were a sphere of radius € around a.

* It must be emphasized that the mecaning of this word is distinct from what
it was in § 84.

t This is equivalent to saying that the absolute values of the corresponding
derivatives on 3, all lie below a fixed upper limit, S; being deduced from = by a

. .1
homothecy whose pole is @ and ratio .

Such a homothecy would alter the derivatives of the 2’s with respect to
ALy ooy Apot, S, but not the order of magnitude of their quotients by s (which, as
to derivatives with respect to s, would even be diminished, as is easy to see).

Such an alteration would be avoided if, before submitting the diagram to
homothecy, we could transform it by introducing “normal ” coordinates (Book II,
§ 57): a punctual transformation which, as we know, would not change the
order of magnitude of our derivatives if the derivatives of the A are finite up to
the same order of differentiation, augmented by one (see Additional Note to
Book II).
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107. The above formula has a meaning only if the surface S is
du
dv
regular coordinates of S, or, e.g. to (m — 1) of the Cartesian coordinates).
As a corresponding assumption for « has been made from the begin-
ning (§ 102), the above argument would not be sufficient to prove
that these conditions are necessary for the existence of «, and that our
method did not omit some solution, if the latter were not differentiable
a sufficient number of times.

But an answer to this is given by the example of § 78, concerning
the case of (e,—;), and where the non-existence (in general) of the
solution appears by a direct calculation.

The same method (imitating Tedone’s) could be used for the
general equation (E): in other words, we could, by repeated integra-
tion along a line & deduce from v another solution v of the adjoint
equation admitting of a logarithmic singularity along <, but becom-
ing zero (and not infinite) along I'; then obtain, by its help, the value
of such an integral as (10°) and, finally, find » itself by (m — 2)-fold
differentiation. If this differentiation be possible, the result is unique,
so that:

The solution will not generally exist when our formula (39) is
meaningless;

In the contrary case, no other solution will exist than the one
which is given by that formula.

regular and the quantities u,, v, — 5— differentiable (with respect to

108. When m=3, it is clear that the above results must be equivalent to
those which can be deduced from the operations in §§ 72—77, by differentiation
of formula (10) with respect to #,. It can be shown, indeed, that such is the case,
and we can even carry out the differentiation by elementary methods and obtain
the required value of u, as the limit of a sum of a double integral and a curvi-
linear one, getting an explicit expression of the latter complementary term.
The points of Sy being referred to the curvilinear coordinates 6 and A (in terms
of which s will, therefore, be considered as expressed), let us divide Sy into two
parts S; and Sz, the latter containing the neighbourhood of the line y of inter-
section of .S and I': the boundary (') between .§; and \S; will thus correspond to
0=t,—7, denoting by +' a small quantity, constant or variable with A (but, in
the latter case, such that its derivative with respect to A be also small, and of the
same order as 7 itself); finally, we shall let  and, therefore, S; approach zero,
so that we can neglect any term which becomes infinitesimal with 7.

The integral over S, can be differentiated by differentiation under the integral
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sign without any difficulty*; this being the same as replacing v by its derivative
with respect to ¢, i.e. by x (¢,) . », we evidently obtain the corresponding term to
our quantity (38), with the only difference that integration is limited to .S}, instead
of being carried out over the whole of S,.

This precaution is even unnecessary as regards the terms which only contain
Vv as a factor, for, the latter quantity being proportional to /¢,— 4, its derivative

will contain no other infinity than \7; 5 the integration of which is allowed all
0—

over Sy: or, which comes to the same, the corresponding terms extended over Sy

would (if we operate in the same way as we shall presently) give derivatives
which would vanish with 7'.

Therefore, there remains only to deal with the term in d_\_r We have seen that

dv
/t,— 0.
V= 2<«/w .>l\t0 6

The terms which we have replaced by dots contain higher powerst of (z,—6).
Therefore, v denoting the transversal to S, we have

av_ (x V ) 1 dé

+ B T
dv Nw Vit,—6 v

which can be written (still replacing by dots terms of higher order in ¢, - 6)
dv < xV > 1 dr
40 , ar
o '\/ 'w :\/ t— g dv

as T=w ({,— ) ..., where the first factor is not zero.

We have to express Z—F or, more exactly, Z—F dS. In doing this, we must observe

1 4 v

that two kinds of derivatives of the z’s with respect to 8 and A may occur: viz.
we may consider every x as a function of three independent variables 6, A, s, or
only of the first two of them, s being a function of 6 and A defined by the equation
of S. The symbol 0 shall be kept for derivatives of the first kind, and those which
correspond to the second hypothesis shall be denoted by ordinary d’s: they are
connected with the former by the relations

dz; Ox; ds ox;
) =%t s
* The same holds for the-space integral, which we shall assume to be zero, as
(for m=3) its treatment requires no special precaution.
t Our language relates to the hypothesis of analytic data: the working would
be easily, by proper devices such as integrations by parts, extended to the case in
which these data would be simply assumed to be regular.
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and similarly for Ef%‘ . This being understood, we have (a suitable order being

chosen between the #’s in connection with the direction of the normal)

doy dzy dz; |
ad dod dé i
ar i— ?:_NA__- _ d.’l;'l d& dxg .

(40") gy 35=3 mads.

Fy 2 * AN dA X |
9A 0A oA
P, oP, 3P, |

" . o; .
The quantities g-% are, as we know, respectively equal to 2s —E?‘ . This shows
3 D

us that derivatives d in the above formula can be indifferently replaced by deri-
vatives 0, as follows from (41).

Another expression of gdé‘ would be obtained by starting from the equation
4

G (21, 29, £3)=0 of S and writing m;dS= 'g"g dSq, which, on account of the above
i

84

values of —g‘%, gives 2saa—gdSr:. We shall not introduce this expression in our
i

further operations ; but it supplies an easy answer to the question of sign* in
the above formula (40): for we know that G must be written so as to be positive

in our domain of integration, i.e. on the side of S where a lies; then s G will be

03
evidently negative, and we see that we have to take the sign — before the right-
hand side of (40), the determinant being taken in absolute value.

Taking account of that formula (40’), we find an element of integration » %’ as

which is of the form
N
to—
@ being expanded in powers of (¢,—9), viz. @=(Qy+.... Leaving the factor dx
aside till the end of operations, the result of integration with respect to € from
0=ty—1 to =t¢, will be
2(G+...) N7

* Geometrically, we could observe that the trans-
versal » is directed towards the same side of S as the
corresponding normal (since A (my, mg, 73)>0). Asthis
transversal direction is, on the other hand, interior
to the characteristic cone, it is clear (see the accom-
panying diagram) that it is directed towards the outside
of T.
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(the coefficient of 2 /7 being now expanded in powers of ', with the constant
term Q).

Thisis what we have to differentiate with respect to ¢y. Such a differentiation is
to be carried out as well on 4/7’ as on the coefficients of the expansion @ ; but the
only useful term—that is, the only one which does not become infinitesimal with

r'—Iis obviously '\—%_)_— or, after division by x and taking account of the value of @,
as defined by (40) and (40"),
day day day |
dé dé db
. ul ~ | d.l‘! 6_1_-2_7,: ?'él ____ 1 d.Z‘l d{g d.Z‘3
wwr d6 dX 0P “w| dhn dn dA |
oA 2A 2 |
‘ 0P, 0P, 0P;
the determinant being still taken in absolute value and every factor other than «
receiving the value which it assumes on I itself.

= - uvh

, and this allows us to write

The initial value of w is the same as that of ’ 8

the factor of —uw in another form. For, on account of the relations

d, dz, dz
P‘dx P’EZR" Pﬂ{:\?

and (as T is a characteristic)

=0,

A _ 0A , 0A
2A (Py, Py, P) =Py 55+ Py g+ Py =0,

the quantities
dry 0A dzx; CA  duy 0A dx 0A dz 0A dx cA

d\N OP; dN 0P, dh ©P, dx 0P;’ d\ 0P, d\ dP;
are proportional to 2P, 2P,, 2P;, and, as

ar_ oz, 0xq 04

o6 (Plae ARER TR ae>’
the proportionality factor is precisely the value of A. Introducing (as is of use
in the theory of Abelian functions and was also done by Fredholm in his Memoir of
Acta Math. vol. xx111) three arbitrary (and really immaterial) quantities £y, £, £3,
we see that after integration with respect to A, the result will be* (f being

dz; o . . . . . . .
* 02)\1 dX is the same thing as dz;, on v/, if 7" is a constant; if 7' is variable,

this is no longer true, but the corresponding relative error is infinitesimal

<0n account of our assumption concerning %) and will not alter the final limit

in the text.
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still assumed to be 0)

(42) ( - by ky kg ; o
/ dx; dzy dzg! i ;

21m(.wliim [ /?J Y, +L4w>d5+ | ?m’éf' ?
#=0 ., s1\ / 10P, 3P, 0P, %
(T) 2(L1P1+k21)2+k31)3); }

where no influence of the function y or the choice of the line & remains any
longer-.

109. A consequence of the presence of our symbol | - is that,
though expressed by a definite integral containing the values of u,,
u,, f under §§ or §SS, the value of u is not continuous of order zero
with respect to these quantities. The continuity is of order m, (§ 20 @)
in u,, my—1 in w and f.

u 1s also continuous of order m:, with respect to the shape of S.
This follows from the fact that, S being cut in a point A (at a finite
angle) by any geodesic issuing from an arbitrarily given point a—
which geodesic depends on m —1 parameters A, Ay, ..., Apy_—the
derivatives, to any order p, of the coordinates of the point of inter-
section with respect to the A’s are functions of the coordinates them-
selves, of the derivatives (up to the same order) along the geodesic
and of the derivatives along S. Now, a new surface S very near to S
will be cut by the same geodesic in a point M very near* to M ; and,

* This fact is hardly different from the classic theorem on continuity of
implicit functions, and is proved by the same argument. If, through a point A/

of S, we draw a geodesic such that (E;) #+0—where ‘=0 is the equation of S;

3, the (ordinary) length of an arc of geodesic reckoned from A/, and the derivative
is taken at M itself (s=0)—there will be, on each side of A, an arc of it along which
dG
s
than ¢, and take s'=e¢ in the contrary case: then, for s= +¢', the function ¢ will
assume two values @ and — G respectively positive and negative. If now, through
every point of A of S (or of a limited portion of it) we draw all the geodesics for

which (?is—) is greater than a fixed number a > 0, as these depend continuously
D]

on the 2m parameters included in the gencral equation of geodesics, it follows
therefrom that the quantities G’, G corresponding to them will have a
minimum G.

We shall be certain that a second surface 5 must cut each of the above
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if the neighbourhood is of the order p, the above-mentioned derivatives
will be but slightly altered by the changing of S into S: this provides
the same conclusion as to our improper integral.

Similarly, any first derivative of w, will be continuous of order
m, +1 with respect to u,, of order m with respect to «, and f, and of
order m, + 1 with respect to the shape of S.

110. Consequences concerning waves and their diffusion.
Classic results immediately follow, on the other hand, from the shape
of the area of integration S, in our formula (38). It is,indeed, obvious
that it illustrates the intervention of characteristics, with the physical
signification of waves, just as the formule in the beginning of Book
IT already did for the most usual special equations. We see that not
all the data on S enter in the value of u,, but only those which
relate to points of S, that is, points lying inside the retrograde half
conoid from a. Conversely (cf. Book II, § 32), the values of u, and
u, at a determinate point &’ (fig. 14) taken on S have no influence on
the values of » at points which lie outside the direct half conoid from
«'. Physically speaking, this means, as previously (Book II), that no
initial impulse at 2’ can react on a distant point before the time
when the corresponding wave reaches that point.

If the initial impulse starts not only from one point but from a
certain region & of S, the portion of space (or rather universe) on
which the effect of such an impulse may be sensible is constituted by
the insides of all the half cenoids the vertices of which are within &:
such a region 1s limited by the envelope of the half conoid in question
when its vertex x describes the boundary A of & This envelope
(according to known principles concerning partial differential equa-
tions of the first order) again satisfies (A): it is again a characteristic
or, In other words, a wave *,

geodesics at a distance from S less than e if it lies in a sufficiently close neighbour-
hood (even of order 0) of S, i.e. if its equation be of the form G'=¢ with | § | < G

The corresponding conclusion concerning the derivatives will follow from this
and the principles in the Additional Note to Book 11.

* The envelope in question consists of two sheets, an exterior one (corre-
sponding to a propagation of the waves towards the outside of v ) and an interior
one (waves propagating inside f): the former generally (see below) limits the
region mentioned in the text.
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Such circumstances also show, as was already observed for spheri-
cal or cylindrical waves*, that the solutions of our hyperbolic equation
need not be analytict: for (if the data », and u, are not themselves
analytic) there is obviously no relation between the values of  in
the respective neighbourhoods of two points @ and @’ when the traces
of the characteristic conoids from them on S are exterior to each
other and, consequently, no analytic continuation from one of these
sets of values to the other. It may be added, besides, that a discon-
tinuity of the Nth derivatives of w, or %, would produce a correspond-
ing discontinuity at any point a situated on the same conoid ; and if
two different sets of values of u, and u, have with each other a con-
tact of an arbitrary order N along an edge, the respectively corre-
sponding functions » will have a contact of the same order all along
the above-mentioned wave issuing from that edge.

111. The diffusion of waves. We have already said that distinctions
must be made concerning such propagations by waves and especially
Huygens’ principle in its special meaning, what we called proposition
(B), or Huygens’ minor premise.

A mere inspection of formule (1) and (1’) (Book II) shows that
spherical waves and cylindrical waves behave quite differently from
that point of view. Formula (1) gives the value of the solution by
means of a double integral—which we ought to denote, in our system
of notation, by a single S—over the surface of a sphere—in our lan-
guage, over the edge of intersection of the characteristic cone with
the initial plane. A point « of the latter can act on the universe-
point which is represented by the vertex of the cone, when, and only
when, it is just in wave (Book II, § 32) with it. If u, and u, are
zero everywhere except within a small region around a determinate
point 2’ (initial impulse localized in the immediate neighbourhood of
'), the value of u representing the ulterior effect of that impulse
will be zero everywhere except in the immediate neighbourhood of the
direct half conoid from « : which, at any given point (%, ¥y, 2,) of

* See Duhem’s Hydrodynamique, Elasticité, Acoustique, Vol. 11, Book II,
p. 168.

+ The contrary conclusion would be incompatible with the very existence
(which we shall prove a little further on) of the solution of Cauchy’s problem, as
results from the arguments in Book I, § 15.
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ordinary three-dimensional space, corresponds to a small interval of
time, after which everything will come back to rest. This is precisely
proposition (B).

Such is by no, means the case for cylindrical waves. Volterra’s
formulz, or, confining ourselves to the simplest case of the problem
relating to ¢ =0, formula (1’), express the solution of (e,;) in terms of
u, and u, by double integrals, corresponding to the sign §§ in our
notation, being extended (in the plane ¢ =0)all over the vnside of the
trace of the characteristic conoid. They show, therefore, that, for such
a kind of wave, a point of the initial plane ¢=0 is likely to act on
the universe-point (z,, ¥,, %,), that is on the point (z,, ¥,) at the
instant ¢,, not only if just within wave, but also if well within wave
with each other. In other words, the action of an initial impulse over
our two-dimensional medium will propagate with the constant velocity
o and will begin to be perceptible at (z,, ¥,) when the wave thus
generated just reaches that point; but it also continues so after that
instant. There will exist what we shall call a resitdual tntegral, cor-
responding to this effect of a distant impulse continuing after the time
when the wave 1s past. If we initially (¢ = 0) suppose that the impulse
1s localized within a certain region & of our plane, the functions %, and
u, being identically zero outside that region, the quantity u (z,, v, t,)
will be zero if the circle to which §S in (39) is extended is entirely
outside & (this means physically that no wave issuing from the initial
impulse will have had time enough to reach that point). It will of
course be different from zero if the circumference of this circle cuts &
(cases at which some waves issuing from the initial impulse precisely
reach our point at the time #,). It will remain different from zero—and
will be what we call a residual integral—if the aforesaid circle includes
& entirely inside it*. This means that Huygens’ minor premise—the
proposition which we previously denoted by (B)—will not be true in

* The domain of influence of an initial impulse
localized in the region of ¢=0 is bounded, as explained
above (see footnote * p. 174), by the exterior wave issu-
ing from the edge which limits . For waves without
diffusion, such as spherical waves, this domain would
consist of the annular space between the two (viz.
exterior and interior) sheets of the characteristic issu-
ing from that edge (see accompanying diagram).
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this case. After any given time ¢, the effect of a wave issuing from a
given point O is, for our present problem, localized not only on the
circumference of a circle with centre O and radius at, but also in the
whole inside of that circle.

This is also often expressed by saying that cylindrical waves—
unlike to (ordinary, not damped) spherical ones—dzffuse.

If we now take any other equation with an odd number of inde-
pendent variables, it is clear from our formula (39) that we shall
always reach the same conclusion.

Huygens minor premise (B) holds for no phenomenon governed by
a linear partial differential equation of the second order with an odd
number of tndependent variables*.

Any such equation with an odd number of independent variables
admits of residual integrals.

112. Moreover, a rather curious fact may be noticed concerning
the signs of such residual integrals. Let us suppose, for simplicity’s
sake, that (E) is homogeneous, i.e. =0, so that we shall only have to
deal with the surface integrals §S. It is clear that, at least for a
sufficiently near to S, the most important part of any element of
such an integral will be given by the highest power of I' in the

denominator, therefore by the term wu Z—Z , or, more exactly, the
part
m— 2 uV ?i_rl =i %?
- ,mv=—(m—2)uVs —_—
Iz rz

This sign is that of w, for, the =;s denoting the direction para-

* Duhem (Hydrodynamique, Elasticité, Acoustique, Vol. 11, p. 139) inquires
whether (e,;) could admit of solutions such as () #(r— wt) containing the
arbitrary function /' (where, on the other hand, y is supposed to be a deter-
minate expression in ). The negative conclusion which he reached may be con-
sidered as evident a posteriori by the result in the text: for (e;) admits of such
solutions, and their existence is sufficient (see, e.g., tbid. Vol. 1, Book vi1, § 2)
to prove Huygens’ principle in the sense (B). The same hypothesis for (e;) would
therefore carry the same conclusion, which we now know to be false.

H. 12
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meters of the normal to S wnside T, 1.e. of the one which is directed
towards the side where a 1s, the sum Zm% is negative.

If then we had to deal with an ordinary integral, it would have
the sign of % on S (assuming this sign to be constant). But here the
SS is modified by a complementary (m — 2)-tuple integral, which
necessarily has the opposite sign.

Now, the left-hand side must have the same sign as the values of
u on S, if we continue to assume that the point w is in the neighbour-
hood of S. ,

Therefore, for even values of m,, 1.e. for m=5,9, 13, ..., ot vs the
(m = 1)-tuple vntegral that gives its sign; but for m, odd, i.e. for m =3,
7, ..., 1t 18, on the contrary, the complementary term that pre-
ponderates.

But if we take the above-mentioned case of the residual integral,
the complementary term vanishes. Therefore, of w is positive, the re-
stdual integral is positive for equations with 4p + 1 variables, but
negative for equations with 4p + 3 variables.

Such s, in particular, the equation of cylindrical waves.

This i1s true, at least, so long as the point considered is near
dv

dv

enough to S and the given values of = are not too large in com-

parison with those of w.

113. The case of characteristic boundaries. Some noteworthy
circumstances appear when S is constituted by portions of charac-
teristics, as already occurs in the application of Riemann’s method *
for m = 2.

Our preceding formule remain valid in that case, as d’Adhémar
and Coulont pointed out, provided S still possesses the geometric
property of cutting any characteristic conoid I' having a point of a
certain region & for its vertex so as to be, together with I', the limit
of a portion T of space.

The transversal derivative which we systematically introduced, no
longer satisfies, however, in this case, the condition of relating to a

* See Darboux’s Legons, Vol. 11 (2nd edition), § 359, p. 79.
t d’Adhemar, C.R. Ac. Sc. Febr. 11, 1901. Coulon (Zesis, pp. 53 ff.).
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direction exterior to S: so that this derivative g—s may be considered

as taken along lines (the bicharacteristics) drawn on S itself. The
knowledge of it is no longer distinct from the knowledge of w itself at
every point of S.

As, on account of our formule, » and % are the only quantities
which we need to know on S in order to determine our unknown
function, we see that a solution of (E) us determined by knowing its
values on a boundary constituted by portions of characteristics (under
the above-mentioned geometrical condition).

Though only one numerical value is thus given at each point of S,
such a problem has all the properties of Cauchy’s problem *.

114. The interchange property. Let us take, for S, a sheet of
a characteristic conoid I'', with vertex o/, and located in such a manner
as to limit with I" a domain T'; for u, the solution of the given homo-
geneous equation

F(w)y=0

analogous to v, 1.e. the one which is singular in @', and which is, around

that point, of the order of
1

m-—=2a
| A

This quantity is no longer finite in 7, but infinite along I"; it is
again, however, of a fractional order, so that if we integrate in T, the
terms relating to the boundaries T, IV will again disappear. No
alteration of this conclusion will be caused by the presence of the
intersection of I" and IV, owing to what has been established in § 92.
All we shall have to do, then, as before, is to isolate the points a and
a’, applying to them what we said in §§ 104, 105 ; we shall obviously
get

ud = va’.

* This is the way in which characteristic surfaces constitute the transition
from duly inclined ones, for which we have to take Cauchy’s problem, to
non-duly inclined omnes, along which only one numerical value can be chosen
arbitrarily.

12—2
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The elementary solution does not change its value if we simultan-
eously exchange the two points on which it depends and the given
equation with its adjoint.

This is the wnterchange relation, entirely similar to that which
exists for Riemann’s function in the hyperbolic equation with two
variables, or the symmetry of Green’s function in the theory of
potential. It holds good, as we see, thanks to the precaution which

we took to divide by ¥| A, | the solution singular in a.

From the above relation, we see that the function v, considered
as a function of the point a (assuming , @, ..., &, to be fixed), 1s a
solution of the given (homogeneous) equation, & =0.

As the two sides of the above written relation are analytic func-
tions, 1t may be noticed that the interchange property remains valid
Jor the elliptic case*.

* A direct proof for this would be more difficult than in the hyperbolic case,
but, at the same time, would not present the same interest, the reason being
that the theory of the elliptic equation does not rest on the elementary solution
itself, but on Green’s functions, which, although deduced from that solution by
addition of regular terms, must be separately formed for each kind of boundary
conditions.



CHAPTER III

SYNTHESIS OF THE SOLUTION OBTAINED

115. We have now to prove that the function u defined by our
above formula (39) actually satisfies all the requirements of the prob-
lem *: by which (and by which only) we shall have proved that our
problem of Cauchy admits of a solution. This proof, of course, con-
sists of two parts: first, we shall show that the indefinite partial
differential equation is satisfied ; then, but under a geometric assump-
tion,—viz. that S is everywhere duly inclined—we shall show the
same for the definite conditions.

The verification of the partial differential equation itself, which
otherwise 1s not devoid of difficulty, becomes quite simple when using
our special symbol of integration. It isimmediate for the homogeneous
equation, i.e. when expression (39) of (— 1)™ Qg _,u, 1s reduced to
its second term. For we know (§§ 87, 95) that, to differentiate this
with respect to the a’s,all that is necessary is to differentiate 1t under
the symbol §8. Now, the quantity to be integrated only contains
the o’s through the factor v, which is (by the preceding section) a
solution of the given equation.

115 a. Now let f be #0. All we shall have to concern ourselves
with will be the me-tuple integral

(43) - |SSSvada:1 AZs . oo . ATy

We shall apply to it methods entirely similar to those of the
classic theory of potential.

To effect the first differentiation of this integral with respect to
one of the coordinates a, all that is necessary is to differentiate under
SS. For the integral thus obtained

(43) §SS 2 fdu, da. ... do,

da
has a meaning : i.e., by isolating the point a by a neighbouring surface
* This was undertaken, for the first time, by d’Adhemar (Bull. Soc. Math.
Fr. Vol. xx1x (1901), pp. 190 ff., and Tkesis, Paris, 1904) at least for the homo-

geneous equation. See also his work Les éguations aux dérivées partielles a
caractéristiques réelles, Paris, Gauthier-Villars, 1907.
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(compare the diagrammatic fig. 12) one obtains an integral that
approaches a determinate limit when 3 approaches a. This is seen
by following the same procedure as in §§ 104, 105. But moreover, the
above integral is uniformly convergent, so that the error committed
by substituting the domain of integration 7" (fig. 12) for T has an
upper limit which can be assigned without the point a being given,
as long as 1t 1s known to be near enough to =
Therefore, according to a well-known argument, the integral (43’)
1s the derivative of (43), even when taken in the domain 7.
To differentiate a second time, we shall again consider the surface
3., which resolves the domain of integration into two parts, one 7,
between S and X, the other 7", between = and a.
In 7", we shall differentiate directly under §S; in 7", we shall write
v (O0v  Ov ov
~ 50— (oo " 00) * 2
B T B
tiated under S, the proof of this being hardly different from the argu-
ment in § 106, if we first observe that the terms of lowest degree
in I' only contain the combinations (z, — a,), (2. — @), ..., (T — ay,):
i

T3

The quantity (ﬁ 3) gives an integral that can be differen-

for, on account of this, +§EP) , 1f expanded in powers of these

differences, again begins with quadratic terms and

o (o0, oy o1 6V omy
0a, \Oa; = 0x;)  Oax P’%‘_‘Z oa;  0x;
m—2 V /oI’ ol Qs

T2 5 (Ba@ + 8.90)} Ty

the numerator @ beginning with cubic terms. In the coordinates s, A

of §§ 104—106, the integrand will therefore contain no power of s

in its denominator, but only H® "' as was to be proved : so that

a9 [ sss( 4 g;) de,  de,,

aa,t
ov  ov
= §SS 1 (st 5o ) dinde, .
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As for the integral

SSST"fé%% d.’,cl dwg e hee e dwm;

it will be transformed by Green’s* formula into

] e
- 8887y g da,. ... day + |SS of midb,

a; being, as before, a direction-cosine of the normal to = directed
towards the inside of 7" (and therefore, towards the outside of 7).

Differentiation under §S no longer presents any difficulty, and
we have

~ aa; ISSSrufda . ....dwy,

&
——ESSST o ;’w ;dh  den+t Ss<f7r@ dS+R

(R being the m-tuple integral (44) taken in 7'”); or, again letting 3,
approach the point a

lv‘

aa, o lSSST?J}‘dxl cev o Ay,

: | v e e OV
= |im {— ’SSST'é—&L—adkfdwl cose e dxm'*' Sszf’ﬂ'@a—'ade} .

The result of the substitution of expression (43) in the differen-
tial polynomial % is then

a limit which is entirely similart to that of quantity (37) in § 105,
to which 1t 1is easily reduced.

116. Let us come to the boundary conditions.

Here we have to make a proper geometric assumption as to the
shape of S. We assume that its tangent plane is everywhere duly
inclined. We already know from Book I that if such were not the

* We again operate as has been said in § 94.
"\

t The two expressions only differ by the change of gﬁ into "a , and by the
Ly k

fact that the 4;’s are taken, in one case, at the point (2, 23, ... ;) and, in the
other, at the point (¢, ag, ... @;).
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case, our problem would not generally be possible. We even, for the
present, shall admit that this condition is strictly satisfied : 1.e., that no
tangent plane of S shall have a characteristic direction. Such tangent
planes, therefore, will make a finite angle with every direction of line
which is either bicharacteristic or interior to the characteristic cone.

If so, when a approaches indefinitely any determinate point P
of S, the corresponding characteristic conoid will cut out of S an
infinitely small area S, in the immediate neighbourhood of P, the
segments s of geodesics from a between that point and S, also being
all infinitely small.

If, moreover, the surface S i1s a regular one, so that one of the
coordinates admits, with respect to the others, of finite partial deriva-
tives up to a certain order p, the derivatives of s with respect to
A1, oevs Ay up to that same order will also be infinitesimal.

We have to show:

(1) that u approaches the given value (u,)p;

(2) that the derivative %} in the direction of the transversal at P

approaches the given value (u,)p.

The first proof is immediate. The partial §§’s mn (39) do not
differ essentially from those which we consider in (4) (§§ 104, 105)
in order to find their limiting values: only here the surface of inte-
gration S remains fixed instead of moving towards a, the latter point
being assumed, on the other hand, to come infinitely near S. But as
nothing in our previous argument assumed a to be fixed, we again can
assert that one of the §§ s (39) approaches (— 1)™ 7 £, oup and
the rest approach zero. For similar reasons, we can also say (by
§ 96) that the §SS 1is also infinitely small. Our first conclusion is
thus proved.

117. The direct proof of our second conclusion, concerning Zi'—u,
1 4

dv
would be more delicate. As,on account of the presence of 7, one term

of the §S in the value of u is comparable to a potential of double layer,
the classic difficulties which occur in the study of the normal derivative
of such a potential would also appear in our proof, the intervention

of our symbol |  introducing a new complication.
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An indirect argument will lead us rather simply to the result: it
consists 1n using the fact that the conclusion wanted would certainly

be true if S were analytic as well as the other data w, % and £ as, in
v

that case, we know by Cauchy’s fundamental theorem that the prob-
lem admits of a solution, the latter being necessarily given by our
above formula.

But, on the other hand, we can consider an analytic surface S
which would have with S, at P, a contact of a certain order ¢ (this
requiring only that S be regular up to that order). Similarly, we can
consider two analytic functions u, and u, of the coordinates of an
arbitrary point M of S having, with u, and u, (values of these quanti-
ties for the point M corresponding to M), a contact of order q at P,
and an analytic function f having with f a contact of the same order.
If we should replace S by S, f, u,, u, by f, u,, %,, thus changing » to

U, the convergence of da towards (u,)p would be certain. But on the

dv
other hand, when a approaches P, we know that our domains of inte-
gration become also confined to the immediate neighbourhood of P
and that, in such regions, the surface S and the functions f, u,, u,
have with S, f, u,, 4, respectively infinitely close neighbourhoods of
order gq. Therefore (by § 109) if ¢ is great enough, the difference

@u; du @

NPT, approaches zero and o also has the limit w, (P).

118. An analogy with ordinary potentials—The limiting value
u, () 1s obtained by the applica-
tion of our formula to the small
conoidal domain 7' constructed by
means of a, on whatever side we
let @ approach S (fig. 15), and
this limiting value is thus the
same on both sides. But it must

Fig. 15. be noticed that, when passing from
one side to the other, the sense on the normal must be changed on
account of the rules of Book II, § 38, and so must be as well the
sense of the transversal ». If we kept the same sense on v in both

a’
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cases, the value of the §§ would at once change stgn when crossing S:
a discontinuity which is obviously similar to that of ordinary surface
potentials. This analogy, which with others of the same kind (see
further on) was pointed out by Volterra (Congress of Rome, 1908,
vol. 11, p. 90), is completed by the fact that on S itself, the §§ takes
the value zero, which is the arithmetical mean between the two
aforesaid opposite values.

119. The case of a characteristic boundary. It is obvious that
the success of the above verifications essentially depends on our geo-
metrical hypothesis concerning S, it being necessary for them that
the intersection of the characteristic conoid with S be reduced to an
infinitely small area around P, when a indefinitely approaches the
latter point.

We must expect to meet with quite different circumstances when
that geometrical condition is no longer satisfied, which will occur as
soon as S ceases to be duly inclined.

It is remarkable—though to be foreseen by what we already know
concerning the case of analytic data*—that our verification yet suc-
ceeds in a case where the area S, no longer becomes infinitesimal in
every sense: we mean the case (intermediate between duly inclined
and not duly inclined surfaces) of S being a characteristic.

As we have seen in § 113, the data are then reduced to the value
of u alone at each point, so that (nothing being changed of course, as
to the indefinite partial differential equation itself) there is only one
kind of boundary conditions to verify.

This verification, however, presents some peculiar difficulties,
owing to two circumstances.

One of them is that which we just mentioned, and was noticed
by d’Adhémar (see Rendic. Circ. Mat. di Palermo, vol. xx. p. 143
(1909)); it was to be foreseen by remarking that our present case
1s intermediate between the considerations of § 116, 117 and those
which we shall meet with further on. Let us suppose that we
have to deal with the equation of cylindrical waves (with w=1),
so that I'is a circular cone having a right vertex angle, and also that

* We have obtained in § 64, Book II, the construction of the solution when
% is given along a characteristic conoid.
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S is a plane of characteristic direction, that is making with the ¢-axis
an angle of 45°, Then, the latter will no longer cut I" along an ellipse,
but along a parabola (fig. 16), which, when a approaches S, no longer
reduces to a point but to a whole line, viz. one-half of a generatrix of
I', the volume included between S and I' being (for any position of
a not on S) indefinitely extended in one direction. Secondly, as is
seen by the above example, a regular characteristic S is not sufficient,
by itself, to constitute, with I', the complete boundary of our domain
I". In order to enclose a volume, it would be necessary either (as in
our above instance) to introduce a second surface S’, such as a second
characteristic plane cutting the first (see fig. 16); or, to assume’that
S has a singular point (being itself, as in Book II, § 64, a charac-
teristic cone, or a kind of polyhedral angle with characteristic faces,
etc.). A general proof ought to take account of all those possible
singularities*.

Fig. 16,

Limiting ourselves, for simplicity’s sake, to m = 3, we shall, in the
first place, suppose that our boundary consists of two intersecting
regular characteristics S and S’; and, letting a approach any given
point P of S, we have to prove that the quantity u given by (39)
will approach the given value (u,)p. It is useful to observe that this
1s equivalent to proving that the problem has a solutiont (as this
solution cannot be other than (39)).

* The proof of d’Adhémar (Rendic. Cire. Mat. div Palermo, loc. cit.) concerns
the case where S is a characteristic cone.

1t The importance of this lics in the fact that we have (see below) to change
variables, after which only our verification will be done. That the same verifica-
tion would succeed when using the original variables, would not be evident
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By means of a suitable punctual transformation, we can assume S
and S’ to be two coordinate planes =0 and y =0, all the planes
a = const. hecoming characteristics, and even in such a way that the
corresponding bicharacteristics are parallels to the y-axis and the -
axis, the y-axis itself going through P. We also admit that the use-
ful portions of the planes S and S’—i.e., the portions which bear the
data—are the positive ones.

It is easy to ascertain that the general disposition of the diagram
will be the same as in the above special example. Let us denote by
x, y, z the coordinates of any point ; by ,, %,, 0 the coordinates* of «,
through which we draw a parallel to the y-axis which will be a bi-
characteristic. In the neighbourhood of any point (2,, y,, 0) of this
line, we can expand I' in powers of # —ux,, 2z, the coefficients being
functions of y. By remembering:

() That I' =0 touches the plane z =2, along the line z=0;

(b) That 1t 1s situated, with respect to this plane, on the side
of decreasing «’s ;

(¢) That I' >0 corresponds to the inside of the conoid and,
therefore, I' < 0 at points such that 2 =a,, z2#0,

we see that the expansion must be of the form

(45) I'=n(zy—2a)— N22—2N,(zy—2x)2z— No(2—2)*+ ...
(where the dots stand for terms of higher order), both coefficients n
and IV being positive. The first of them, but not the second, vanishes
at u 1tself and 1s, in general, practically proportional to (y, — y).

Equating (45) to 0 and making 2= 0, we evidently obtain a kind
of parabola having P for its vertex and z =0 for its axis, which flattens
along the latter line when #, becomes 0. Any line y =const. cuts that

curve in two points z=a + ¥/8, denoting by a and B two expansions

without showing that expression (39) remains invariant (or invariant but for a
proper factor) for such transformations. Such a proof is avoided by the remark
in the text (the existence of a solution evidently being an invariant property),
and even the invariance of (39) could, if necessary, be deduced from our argu-
ments.

* The assumption z,=0 does not restrict the generality, as we can take P
variable with the position of a, replacing it by another point 7’ situated on the
same parallel to the z-axis as «, and letting 7 finally approach P like a. This
would require a variable translation of the ases, but this is immaterial.
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in powers of , without constant terms. The theorem of factorization
(see p. 112 and corresponding footnote, which again applies to our
present case) shows us that we can write

(46) P=[B—(z- af] G (2 9, 2, 20, %),

where G is another expansion in (z, — «), z having N for its constant
term. ’
This being understood, we come to the determination of the limit-
ing value of «,, viz. (the §’s being here replaced by ordinary [’s)
1

(39" ua=—2—#{—ffffvdwdydz+ ff(u%—vz—::—hw) dS].

By exclusively considering the case m =3, we get the advantage
of not meeting with any difficulty concerning the valuation of our
symbol [ . This is clear, in the first place, for the space-integral in
the first term, which, v being only infinite of the order %, has a mean-
ing in the classic sense, and becomes infinitely small at the same
time as the volume of integration.

In the double integral, an infinity of order § occurs only in %},
14

and can be eliminated with the help of an integration by parts. For,
on S, the direction v being parallel to the y-axis, we can take dv =dy
by setting down

dS= Kdydz,
K being a proper function of y, z; and similarly on S’, we can take
dv = dz with

dS = K'dzdz.

Therefore, the double integral Uu% dS relating to S will be

v 1
%\except for the factor 5 )

o, r / 0 (Kw)
/KuaTydy—sz L(Kuv) v 3 dy:l .
The limits of integration, for any given value of z, will be given

first by the edge of our dihedron (i.e., a segment @,Q, of the z-axis)
and by the characteristic conoid. But the term corresponding to the

&

YL _
H Kuay dydz —fdz
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latter limit has a fractional infinity and has, therefore, to be cancelled:
so that the value of the integral on §in (39), multiplied by — 27, is
(47) —j & Kuvdz +/f(— K ol ~Sa§— - KLu) vdydz,
the simple integral being taken along the z-axis. In this way, every
infinity of order higher than } has disappeared.
Moreover, the value of v 1s

In the first term—obvmusly the only one which can give anything
else than zero in (47)—we shall replace I' by the value (46), the first

factor of which can also be written
—(2—2) (2 —2),
2=z and z=2z, denoting the intersections of any parallel to the
y-axis with the characteristic conoid with vertex a, so that z, and 2,
are functions of ¥ (« being zero) and the coordinates of a.
In this way, the simple integral along @, @), becomes
_[® KuVds
a V(z—-2) (zz—z)\/é’
and, when a approaches P and therefore @), @), becomes infinitesimal,
such an integral is practically equal to
KV dz
NNe g «/(z—zl)(zg—z)
(K u®, Vo, N° denoting the values of the quantities K, w, V, WV, at
the origin of coordinates), the limit of which may be written im-
mediately, the last factor being, as well known, always equal to .
The same treatment obviously applies to the double integral; by
writing 1t

jndyfx g0 9K _ A p— 14

(48)

d
oy oy V(z = 2)) (2. — 2)V G ’
and operating on every simple integral relative to z, (47) is thus found
to approach the limit
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We operate quite similarly on the integral relative to S’, only
with the simplification that there is no simple integral like that in
(47) (the corresponding segment approaching zero): the correspond-
ing limit will be

(48 D)

K"V
T
The question is whether the sum of (48), (48 a) and (48 b) is equal
to 2rup. The method for answering it is well known from the Cal-

_ ou .
culus of Variations: we remove — under [ by means of an integra-

oy

tion by parts, which being done, the value of our sum will be the
expected one if: (a) after that transformation, the terms in w vanish
at the same time under [, so that no integral whatever is left*; () the
terms 1n «° also cancel each other; (c) the coefficient of up is equal to 2.

These conditions are sufficient; but—on account of the fundamental
Lemma of the Calculus of Variations—it is well known that they are
also necessary. The consequence is that, in the present case, we can
assert a priort that they are satisfied, and need no calculation for that.
For we have seen in Book II, § 64, that our problem has a solution
(and, therefore, the present verification must succeed) whenever the
data are analytic. Thus, the sum of the quantities (48) to (480)
reduces to 27up for every analytic », and this cannot bet otherwise
than by our three conditions above being satisfied.

120. The direct investigation of (48), (48 a) and (48 b) is however
interesting in some respects and deserves to be undertaken. It, at
first, seems to meet with an insuperable difficulty on account of the

* In other terms, we must have identically (for £=2=0)
diK . Vo _od (KT,
<dy +M> J T dy <«/’N>'

t The fundamental Lemma continues, as is well known, to apply when the ar-
bitrary function mentioned in its hypothesis is required to be analytic. The argu-
ment seemed, at first, to assume S (or §’) itself to be analytic ; but, in the contrary
case, we could substitute instead of .S, another analytic characteristic having a
contact of an arbitrary order with it in one point of our y-axis (and consequently,
on account of known properties of partial differential equations of the first order,
all along that bicharacteristic), which substitution (as in § 117) would not change
the results. The hypothesis of analyticity of S is therefore immaterial.
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fact that the values of V along the bicharacteristic are deduced (by
means of M) from those of the second derivatives of I, and the latter
depend on the gencral integration of the differential equations of
geodesics, or at least, of the corresponding “variational equations*.”
In the present case, nevertheless, the values of V,—which, on the
bicharacteristic, reduces to V,,—can be found by a quadrature. The
reason for this is that, though not knowing all the geodesics in
general, we implicitly assume (by our very choice of coordinates indi-
cated above) that we know the geodesics of zero length (i.e. bicharac-
teristics)t.

To obtain such an expression of V,, we shall complete the simpli-
fications in the preceding section by means of Book II, § 50. We
have seen there that, coordinates being chosen as above, the homo-
geneous partial differential equation can be (changing the unknown
if necessary) taken in the form

0*u

(E) 2 0xoy

—F (u) =0,

%, Including no differentiation with respect to « (and the adjoint
equation will be of a similar form).

This being assumed, and taking also account of our above assump-
tions as to the axes of # and z, the characteristic form A will be,
denoting by a, B, v the variables, of the form

A= 2a,8— Nye

(where the coefficient A must be positive, in order that we have only
one positive square), which gives for the discriminant A the value A.
We now proceed to the determination of the coefficients » and NV

* See Additional Note to Book II. More precisely, as we shall see there, Vy is
(on account of equation (37), § 59) connected with the Jacobian J.

t Without insisting on this point—which I perhaps shall do at another time—
I simply point out that we ultimately have an application of the well-known
theorem that the integral of a linear differential non-homogeneous system can be
found by quadrature when the general integral of the corresponding homogeneous
system is known. The linear system here considered is constituted by our varia-
tional equations, one of them being replaced by the (variational) relation deduced
from the theorem of vis-viva, the right-hand side of which has to be taken as
zero when bicharacteristics alone are concerned, and to an arbitrary constant for
the study of geodesics in general.
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in (45) (in terms of y). We, for this, only need to substitute (45) in
the partial differential equation of the first order for T',

r or' or
a0 & %
Denoting by. accents any differentiations with respect to y, we get
2[—n+2N,z24+ 2N, (v,—z) +...]
X [+n' (xg—x)— N'22 — 2N, (o— z) 2 — N, (o —2)? +...]
—4AN[Nz+ N, (zy—2z)+ ... ]
=4n (x,— z) — 4N2*— 8N, (z, —x) 2 — 4N, (2o — 2)* + ...,

>=4R

dots still denoting terms of higher order. We shall obtain the required
result by equating the coefficients of (z, —«) and also the coeficient
of 22, this giving

—2nn’ = 4m,

20N’ —4AN?2= —4N.

The first relation gives (n necessarily vanishing at a)

(49) n=2(Y—y)
We have then for N
(49') — N (y—yo)+ N —AN*=0,

an equation of the Bernoulli type, one solution of which only is finite
at a, viz.
(50) N="ZY,
‘ Ady
< Yo
This first result being attained, we now can obtain the quantity
M (§49): its expression is reduced to

T oI’

for x=x,, z=0 (every other term vanishing as both I' and g—g are
zero along that line). But taking account of (49), (49’), this gives

M=4+2)\N=6+%r—(yo—y).
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Therefore, by its definition, Book II, § 62 (in which s=y,—v),
V,=const. ¥/ N =+N,
the constant factor being 1, as both V¥, and VN are equal to VA at a.

121. Let us now come to our above formule (48) to (48 0). If
we take account of the above value of A and the equalities (relative

to S)

mdS =dydz, e =m;=0,
the definition of » shows that K =1. As to L, it is equal to 0, as
defined by formula (7) in Book II, §40. Thus, as we had to show,
no integral remains in (48 a), which reduces to

(51) — 27 (up — u°),
while (48) gives — wu’.

The only term yet remaining to find 1s (48 b). But, just as above,
we see that K’ is, ike K° equal to 1, so that (48) and (48 ) are

found to cancel the second term of (51) and the verification is
performed.

¥122. Our required conclusion being thus established, this implies, of course,
the original form (§119) of the result: it can be said, with the notations of
§ 119, that the limiting value of the double integral over the first characteristic

(containing P) is
- 7r| 2up — <——’ —V> |
\/ N /o]’

A being such that*, for any ¢,
9 15= & 2 gyd.
oy Cy g5

and &V being the coefficient of 2% in the expansion of I The conclusion, under
this form, holds if S is no longer assumed to be a coordinate plane (the plane
x =0 being, however,still assumed to be tangent to .S along the y-axis): theratio of
K to A/ N is, of course, independent + of the choice of the second variable z (which
will then be a curvilinear coordinate) on S.

2
* X (and so would be also A’ in (48b)) is equal to the coeflicient of 2 ~awg-} in
€

the equation (as is seen in the same way in § 120).

+ This can be verified in a direct way : for if a new variable Z be introduced
in the place of z, the variable y remaining the same at least on z=0, this Z will
reduce practically to yz2+8y+a (a, B, y, constants) in the neighbourhood of any
determinate point of our y-axis and both A" and & will be divided by y.
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*]123. If we now come to the case in which S, instead of consisting of a
dihedron, would admit of a singular point O—which will be taken as the origin of
coordinates—we shall be able to overcome the difficulties which are special to it
by bringing it back to the preceding case, under suitable geometric assumptions.

We begin by observing that we can no longer admit S to be a coordinate
plane (as it is singular at 0), so that we are compelled to operate as said in the
preceding section. But we shall admit that the characteristic which will be
taken as a coordinate plane leaves the whole of S on its positive side. We further
admit that S can be generated by regular lines (\) issuing from the point 0, each of
which will be, in the neighbourhood of this point, directed in the sense of z
increasing, so that, if the coordinates x, v, z be expressed as functions (of course

regular) of the arc s, we have (fl— >0. Moreover, as some of these lines (A\) make

infinitesimal angles with =0, we shall again consider the planes y=const.,
which will still be assumed to be characteristics, and we admit that, § being a
certain positive angle, the tangents to any of the lines (A) (in the neighbourhood
of O) make an angle greater than 8 with at least one of the planes x—0, y=0.
Therefore, if we cut S by a characteristic plane =e, ¢ being a small quantity,
the portion S, of S adjacent to O bounded by that plane and the half conoid
from a will intercept on each line (A) an arc less than a length ¢ which we can
take as small as we wish by taking e sufficiently small (and a sufficiently near P).

A part of S, will consist of a portion S; of our nrst characteristic (at least
an angular portion to which the bicharacteristic 02 will be interior) ; the remain-

ing part will be denoted by S,".
z, ¥, z will be continuous in both parameters X\ and s: we shall admit that

they are regular in s:
z=§s+ &8+,
(52) y=ms+ns+...,
z={;s+(25°+

Of course, all the coefficients &g, ni, ¢x will be continuous in A; but their

derivatives or g’:, S'Z , zi may have a finite number of discontinuities of the first

kind (values of %, . existing on both sides of the discontinuity, but being

2
different from each other). The sum (dgl\ (d'h\ (dgl\ will be different

from zero so that the angle between two consecutive lines (X) will be of the same
order as the difference of the corresponding values of A.

* If the lines (A) are bicharacteristics, the second term alone will exist. This
will occur in d’Adhemar’s case where S is a characteristic conoid ; our operating
mode in the text is necessary in order to treat other forms of .S;, such as a poly-
hedral angle, the part S;” of which is a regular characteristic.

13—2
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On account of the above, the quantities =;d.S will be, on S;, the products of
D(y, 2)

D 8
factor. The superficial element will be of the form HsdAds, where H is finite,
but also everywhere different from zero and consequently greater than a fixed
positive number.

d\ds by functional determinants such as which all contain 8 as a

124. This being understood, let us take the double integral in (39"): («) over
the part S; of S which correspondsto y >e¢; (b) over S,. Thelimiting value of the
first integral will be (as found above)

Kuv
53 —27up+ <———> .
( ) e ‘\/1\’ =0, z=0, Yy=¢€

On §,, we begin by observing that the transversal direction » is tangent and

therefore, for any ¢,
%‘gdsz( %, ‘f’) drds,

where a and B are regular functions of A and s, the second of which again contains
s as a factor¥*.
As to the given values of » on S,, let us assume that they have finite first

derivatives, the derivatives ?_u vanishing with s; and also, to begin, that u itself us

OA
zero at O (therefore, that |« | admits of an upper limit proportional to s). Then,
in our integral, which is to be written

[[le(eie0%)-o (-Froo)-m]ana

we transform the terms in av and ~ > by Green’s formula,

The simple integral along the intersection of S, with I is to be cancelled as
above. The term along the intersection with y=e cancels the corresponding

* To express these coefficients, we can remark that on account of the
assumption that s is the (ordinary) arc of (A), the quantity

o O By Ty | B O
95 onos T 0s anas T 35 onos
1s zero. We then obtain the required values if we multiply the equations

dr _10A Oz ﬁax Qy
—dv_QB——-a cs’ dv

(in which we have taken dS=dAds and the =’s accordingly) by 2= ?‘i » 5 OF by
or oy oz
;, ;:—{, 5 The two results being of the orders of s? and s respectively, we get

the order of magnitude in the text.
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term of (53) (as the coordinates A and s could be as well used in the part of S,
adjacent to Sy')*

§=0 should be considered, in the present case, as being a part of the boundary,
but the corresponding term vanishes as # is assumed to be zero with s.

There remains, therefore, to evaluate simple integrals of the form

(54) /huvds—(s) /Hds

(where (s) is a value s contained in the interval of integration and A a finite

"~

quantity) along lines A =const. (corresponding to discontinuities of %’; y ... such

as edges of the polyhedral angle, and situated on .S;”) and double integrals
such as

’ ”’Hud)\ds J]H d\ds [fHB = d\ds
(54')

where 4 is again finite and the factor s again appears in the numerator under the

integral sign on account of the presence of one of the factors u ou

’ a—;\ ’ B

We now remember the expansion of T, as written above, viz.

(45) F=n(2g—2)— Ne2—...=2 (yo—~y) (Bop—2)— N2z~
or (as every term not explicitly written contains either (z,— ) or 22 as a factor)

. I =2y, (5~ 2) - V22,
A

where y, and &V stand for quantities which differ but infinitesimally from y or N
respectively. We have, in the first place, to substitute this for I' in the
simple integrals (54), which all relate to lines belonging to S;” and, therefore,
making a finite angle either with the plane =0 (ie. £,> £,/> 0) or with the

plane z=0 (i.e. | {; | > {1'>0), &/ and ¢, being constants.
The first case will always occur if the coefficient &; in the expansion of z in

e
2

powers of s is negative and algebraically smaller than — for, if so, the

coefficient £ must be greater than a fixed positive numbert and so will be

%f for a sufficiently small s.

* The part of the intersection of S and
y=¢ contained in S lies entirely in Sy, for
zo sufficiently small, the relative disposition
of Sz, I'=0, ¥=¢ being such as shown in the
accompanying diagram.

t If lines (A) exist such that

and £, approach zero, they would have (by
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In this first case, denoting by s, the value of s which corresponds to the inter-
section of (A) with the conoid, the integral will be of the form

f ) H ds

- e LT o [}
0Veg, (&1 +...) Va3
that is, less than

"
248 xmax. | -, - <H Vo,
Veg by
with H, finite. ‘
125. In the second case, taking account of the inequality £,> - — (;'% the

expansion of T' in powers of s will contain a negative term in z2 the coefficient
. . A . .
being numerically greater than the fixed quantity E{ 12 If we begin by cancelling

the factor (s), we see, by the theorem of factorization, that the remaining factor
in the integrand is the quotient of Ads (with A finite) by the square root of a
quadratic polynomial in s with —1 as coefficient of s% the integral being taken
from zero to a root of the polynomial. Such an integral (in which the indefinite
integral is an arc sin) is always smaller than Aw. If we take account of the
factor (s), (54) will therefore be infinitesimal when ¢ and z, are very small.

The evaluation of double integrals such as (54"), when extended over S, is
immediately deduced from the above by integrating expressions like (54) with
respect to A. '

On S,, we shall operate differently and again introduce y and z, in terms of
which we may admit that we have expressed* z. The element sdAds only differs,
as we have seen, by a finite factor from the superficial element of S5, and there-
fore, from dydz. On the other hand, the coefficient of 22 in the expansion of x

Bolzano-Weierstrass’ theorem) a limiting position such that £=0 and
i‘y 1,2
2 b

which is contradictory to the assumption %;0. Similarly, if, with

£2<

N2
§2< gl ’
it could happen, for suitable values of A and s, that dx could approach zero,

ds

either s would remain greater than a fixed quantity s,, and this could be excluded
by taking ¢ and a; suitably small; or it might approach zero—but this is
impossible, as we have just seen that ¢, must remain greater than a fixed
number.

* If S, belongs to a regular characteristic, we can take 2=0; if to a charac-
teristic conoid, .z will be a function of y and z, the derivatives of which are dis-
continuous at 0 but remain finite and vanish on the y-axis.
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(for any fixed ¥) is necessarily positive*, so that, expanding in the same way, the
coefficient of z2 is numerically greater than . Therefore, again, the integrand is
the quotient of a finite quantity A by the square root of a quadratic polynomial
in z with the coefficient —1 for 22 so that the integral relative to z is constantly
less than A'w. Integrating with respect to g, the result is again infinitesimal
with e. '

The integral over .S» being thus the sum of infinitesimal quantities and a term
which disappears with the second term in (53), our conclusion is proved as far as
w is admitted to be zero in O.

But the latter hypothesis does not restrict generality : for we can begin by
taking a first set «’ of values of u (different from zero at 0), coinciding with the
values of a given solution of (E), for which, therefore, the verification must
succeed, as we know beforehand that the problem has a solution, and set down
w=1u'+u", where »” is zero at O and can be treated by the above analysis: so
that our proof is complete.

For m=5,17,... we must expect to meet similar calculations, with
some more complications, especially on account of the intervention of

the symbol | :a subject on which, however, we shall enter into no
further detail.

126. A non duly inclined boundary. It is clear from the above,
that the success of our synthesis in the preceding case depends on
quite special circumstances: these will no longer occur if S ceases to
be characteristic, so that its tangent plane at any point cuts the
conoid from the same point along two distinct generatrices; and, in
the first place, the area of integration S, will not be any longer
infinitesimal even in one of its dimensions.

If, for instance, the partial differential equation being (e,), S
should, as in §25, consist of an area in the zy plane, the lateral
surface S, of the cylinder having this area for its cross-section, this
would enable us to calculate, by (39), a value of u, throughout the
volume thus enclosed—whatever the given distribution of values of
u, and #, at the various points of S is—and this quantity « would
satisfy the partial differential equation. But, if we let a approach
any determinate point P of S, there would be no reason why u, should
approach u, (P), as is seen by mere inspection of the accompanying
diagram (fig. 18).

# If .S is a characteristic conoid, it even increases indefinitely with 1/, as does
the curvature of the surface.
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We thus find, as we have already said in §§ 23 ff., that Cauchy’s
problem is in general insoluble in this case; and we indeed can im-
mediately write an infinity of conditions of possibility (quite similar
to conditions (8), §15) by now taking a outside our cylinder (fig.
18 a). If a is so chosen, there is no longer any singular point of the
conoid inside the domain of integration 7' and the result of the appli-
cation of the fundamental formula (f being, in the above example,
assumed to vanish) is, as we saw in § 104, reduced to

SS(ud—v—v@+Luv) dS=2_C;

dv dv

so that no solution can exist if this equation is not satisfied for every
position of a outside the cylinder.

a /\

S, T r
Vi

S, S S S
Fig. 18. Fig. 18 a.

This case, therefore, does not give a correctly set problem. But
1t 1s nevertheless important to notice, as corresponding to Kirchhoff s
and Volterra’s proofs of Huygens’ principle in the most general of the
three senses spoken of in §33; that is, what we call proposition (C).
Let us imagine, for that purpose, that we investigate our phenomenon
outside a certain closed curve of the xy plane,—so that the region &
where we want to determine u is situated on the positive side of
t =0 and outside the cylinder % which has o for its base,—and that,
the medium being initially at rest (so that the quantities u, and «,
are zero all over the xy plane), certain disturbances are produced
inside o. As the motion thus generated satisfies (e.), the correspond-
ing value of u has the expression * (39), which, in the present case, 1s

* The explicit expression corresponding to that case is given below, § 131.
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reduced to integrals extended over %. As the region of integration
on % is constituted (compare
fig. 19) by points (just or
well) within wave with a, this,
as Volterra notes, comes back
to representing the motion
as produced by disturbing
centers properly distributed
over %; and Kirchhoff’s
method is a quite analogous
one for (e;), assuming the
latter equation to be inte-

Fig. 19.

grated as in the next Book.

It is clear that every phenomenon governed by a hyperbolic
equation with three independent variables would allow such a form
of Huygens’ principle to be presented.

This fully illustrates the necessity of the distinctions which we
established above between various formulations of Huygens’ principle:
we indeed see that our formul®e may be considered as proving the
accurateness of that principle, if we take it under the form (C),—as
they actually are, for instance, in Volterra’s fundamental Memoir of
the Acta Mathematica, t. Xvii,—while we have seen, in §111, that
they prove that same principle to be false in the formulation (B).

It may be added, on the other hand, that a difference—though a
less essential one—also exists between the proposition (C) as proved
by Kirchhoff or Volterra, and Huygens’ own conception: for a
fundamental character of the new disturbances by which Huygens
replaces the initial one issuing at ¢ =0 from the point O is their dis-
tribution over a surface of a sphere having O for its centre, which
represents the front at the instant ¢ =¢', of the waves emitted by O
at ¢=0: while Kirchhoff’s or Volterra’s fictitious disturbances are
distributed over any closed surface surrounding the initial centre.

127. Some indications on the exterior problem. The case of a
non duly inclined boundary was treated by Volterra from another
point of view, introducing what the Italian geometer calls the
“exterior problem.”
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It concerns the case where the domain of integration T}, instead
of lying inside one sheet of the characteristic conoid from a (with a
boundary constituted by portions of that sheet and of S), lies outside
the conoid and is bounded by both its sheets and portions of S (fig.
20): 1t happens then, at least in the most obvious examples, that S is
nowhere duly inclined (which is not the case for the interior problem).

Such a problem behaves quite differently from the other one, this
being a consequence of the conclusions of §97. Let us operate on
the domain 7, as we did previously on T, applying the fundamental
formula to the unknown function » and the elementary solution (with
pole @), in which solution v we only change the sign of I' so as to
make it positive outside the conoid: everything behaves as in the

r
) <
r
©
Fig. 20. Fig. 20 a.

preceding operations, so that we shall have an §§§ over T and an
SS over the portion S, (which is an annular one) intercepted on S
between the sheets of the conoid. But if we again construct the small
surface X which is necessary to cut out the neighbourhood of a, the
limiting value of the corresponding improper integral will no longer
contain as a factor the finite part of the volume of the hyperboloid of
two sheets, but the finite part of the volume of the hyperboloid of
one sheet, and this is zero, as we have seen in §97. Therefore, no
term corresponding to the singularity in a is to be inscribed, and the

formula reduces to
(55) SSS vfdxldx'."--dxm'*‘ss (QC%—U%—L uv) dS=O.

It no longer determines the value of wu,4, but, containing only
the data of the problem, represents a condition of possibility for ut.
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We can thus obtain an infinite number of such necessary conditions,
by taking the point a arbitrarily inside S. But, of course, we can still
obtain other ones as we did in the preceding section, by taking a
outside S (fig. 20 a).

Other quantities must be substituted for » in order to obtain the
required singularity in a, leading to the expression of u,. Moreover,
the question of finding such a v is no longer a determinate one, pre-
cisely because the problem is no longer well set and therefore the
solutions, if any exist, can be written in an infinite number of waysin
termsof thedata(bycombination with the conditions of possibility (55)).

Volterra uses the expression

0

®
jo log (1—-6?) v;g@z + log r. arc sin

with @ =" .;:t‘}, the useful singularity of which is again a whole line,

parallel to the ¢t-axis. If we operate on it as we did on (2), 1.e., differ-
entiating it with respect to ¢,, we find

- l, — log (’r2 — (i— to)z) ‘

We see that the latter still admits of the singularity »=0; but
such a fact is by no means abnormal in the present case, on account
of the aforesaid necessary indetermination of our expression for the
solution.

The determination of analogous quantities for the general hyper-
bolic equation would depend on the general study of such kinds of
singularities (algebraico-logarithmic on a characteristic conoid and
logarithmic on another variety)*.

128. Another kind of generalized surface potentials. Let us
come back to the interior problem, but still assuming that S is not duly
inclined. The expressions

(56) SSuvdS,
(57) sSu s,
1 4

* The indications in my Memoir of Acta Math. Vol. xxx1 (p. 367) are
erroneous.
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again behave like surface potentials of simple or double layers, as
they did in § 118, but with somewhat different characters. The
domain of integration for an ordinary surface potential extends over
the whole surface, independently of the location of the point a at
which the potential is calculated. In the case of §118, the area of
integration S, becomes infinitesimal when a approaches S. In our
present instance, the behaviour of S, is an intermediate one: if we
take, for example, equation (e,), S containing a plane parallel to the
t-axis, S, 1s the inside of a branch of hyperbola, the intersection of
the plane with a sheet of cone of revolution (fig. 21), and, when a
comes on the plane, the hyperbola reduces to its asymptotes and S,
to the angular space between them.

.....
. 3
“s,

Fig. 21.

As it happens in the ordinary theory of potential, the expressions
(56), (57) continue to have a meaning when a is on S. This is to be
seen*®, as concerns (56), by operating as in § 104, i.e., referring S to
lines L from a, each of which is characterized by giving the values of
m — 2 parameters A;, A, ... Ap—p, & point being defined on it by
an (m — 1)th parameter s. The factor s™2 in the denominator will be

* In the present section we give the arguments briely. The reader will
complete them easily, as being combinations of the above methods with those
which are known in the classic theory of potential.

t We can admit that the expressions of the #’s on (A) are tangent to the
corresponding ones on the geodesic which touches () in a, so that points taken
respectively on both lines with the same value of s lie at a mutual distance of
the order of s2
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cancelled by a similar one in the expression of the superficial element
of S, so that things behave as in §104. Moreover, the convergence
1s uniform with respect to the location of a on or outside S, so that
(56) remains continuous.

In (57), the denominator contains s™1as a factor; but (as for the
ordinary potential of a double layer) a supplementary factor s appears

: ar
in the numerator on account of the presence of ——: for the latter

dv
quantity would be zero (§ 58) at any point z of S, if the direction
v were transversal to the geodesic ax, and this is approximately
the case when z, varying on S, approaches a, as v is transversal to the
coordinate line (A) which passes through z and makes with the geo-
desic an infinitesimal angle of the order of s.

When a is taken near a point P of S, but outside S, the factor Ccll_E
1s no longer infinitesimal for points « neighbouring P, so that the con-
vergence of (57) is not a uniform one and that integral is discon-
tinuous.

Let us examine its mode of discontinuity.

For this purpose, let us admit, in the first place, that S is a locus
of geodesics from P (the initial directions of which are of course all
in the same (m — 2)-dimensional plane, so that S is regular), and
consider any function u, coinciding with the given one on S, but
defined and regular also outside S: let f be & (). Let us associate
with S, if necessary, another (duly inclined) portion of surface S’ so as
to enclose, together with one of our half-conoids, a portion of space
T, as in fig. 18 or 18 a. To such a domain, we apply our formula with
the successive hypotheses that a lies on one side of S, on the other
side and at P. In the first case, the sum of integrals §8S and §§ is
equal to — 27ru,, in the second to zero. In the intermediate case of a
at P, the integral (38) (see §105) is extended over initial directions
located between the characteristic cone and the tangent plane to S.
We are therefore led to the finite part of half the volume of the
hyperboloid of two sheets (§100), equal to — wup. The discontinuity
of our algebraic sum of integrals is thus exactly divided into two
equal parts by the value which 1t assumes when a 1s on S, as usual.

On the other hand, this discontinuity occurs only in the in-
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tegral (57) relating to S: for the integrals over S’ are evidently con-
tinuous, and the other ones converge uniformly.

There remains only to get rid of the hypothesis that S is a locus
of geodesics. This is done by considering the geodesics tangent to S
in P, which generate a second surface S. The difference of the
potentials (57) relating to those two surfaces and the same point
a 18 an integral which converges uniformly* with respect to the
position of a. Therefore, our conclusion is extended to any regular
form of S. ‘

* We use the remark in the preceding footnote (t, p. 204). The distance
between corresponding points on S and S being of the second order and the angle
between their tangent planes infinitesimal, it is easy to see, as for ordinary poten-

tials, that the difference of the values of % at them is of the order of s%. As to

the values of %, they can be assumed to be the same at corresponding points.



CHAPTER IV
APPLICATIONS TO FAMILIAR EQUATIONS

129. Let us take some simple instances of the calculation of our
formule. The first one which occurs to us is the equation of cylin-
drical waves (e,): let us take it non-homogeneous with w=1. The
elementary solution is (z,, %, t, and @, y, ¢ being the coordinates of

a and z)

1 2 (g — ) — (Yy—y)
ﬁ—,, I'=(t,—t) — (= Y= (%—Y)

and, as L =0 in this case, our general formula for Cauchy’s problem is

(58) 2mu, = 27w (24, Yo, to)
1 d 1
NGew -+ azp) e

f f fdzdydt
= S
7 I

The second term under [[ alone has to be transformed in order not
to introduce anything but the ordinary symbols of Calculus. A first
general way of doing this has been given in §108. Introducing

r=(z—2) +(y = ¥ s

and the azimuth angle ¢, the coordinates of any point of the half
conoid from a will be

T=x,+1C0SP, Y=y,+7rsine, t=t,—er
¢ denoting +1 if the useful (inverse) half conoid is directed towards
the decreasing t’s (case of ¢,> 0 when Sis the plane ¢=0) and — 1 in
the contrary case. Then,

101
P1=§§E=—(w_xo): P2=—(y—yo), Py=t—1t,

and the integrand, in the second term of the formula (42) of §i08,
will be

V=

A k, ke
dz, dz, dz,
A 0A 0A | w=uvrdd,
oP, 0P, 0P,

2k, Py + ky Py + I Ps)
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and (58) will become (notation of §108)
(59) 27mu (o, Yy, L) —/f/ fdwdydt

+ hm Uf&(%‘“zz%vlﬁ) ds+ f(wpd"’}

130. This formula is a general one, for any shape of S. But a
better form for practical calculation is obtained by applying the

general rules for our symbol | (see especially § 84): for this, we
shall simply take the two kinds of surfaces S which have been most

usually considered.
If, in the first place, S is the plane ¢ = 0, we shall have

dS = dxdy = rdrdd.

The transversal v will coincide (sense included) with the inner normal,

so that (;—ly= ea% and |
41 _[t]
dv /T r2

whatever the sign of ¢, be. We shall write the negative second term

under [[ in (58)
4 [dg | [

-0 (—202 - 7‘5’)% .

As previously explained, we have

[W' urdr __['t“'(u—fc)rdr 0

(A _ 7-")‘3 ~Jo | K(t02 ; 7-‘-’)% a ft[fl ’

where # stands for the value of u = u, at the extremity of the corre-
sponding radius, that is

w=1uy(zy+ || cos P, y,+|t|sin ¢);
finally we have

(60) 27w (o, Yo, bo) = f f [ dzdydt dwdydt

+f’ [mLu, ’ °l(u u)_} rdr d¢+/‘ ude.

The intervention of |#,|, giving two different expressions according

tol  yrdr
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to the sign of ¢, is in agreement with our remarks of § 118 con-
cerning the discontinuity of the §§’s used 1n our general formulz*.

We also verify our conclusions of §112 on the sign of the resi-
dual integral, by admitting that, in (60), u, is positive for » smaller
than a certain value », < |¢|and zero for»>r, (so that »=0), and

that f=14,=0

131. Secondly, we shall admit that S consists of a (finite or, as
in fig. 19, infinite) portion S’ of the plane
¢=0 and of a cylindrical part S” having the
outline o of S’ for its cross-section. We, more-
over, shall assume ¢, to be so great as to make
the half conoid from @ cut only 8” and not S’
(fig. 22): these being, as we have said in
§126, the conditions in which Volterra opera- -
ted in order to prove Huygens’ principle (in
its form (C)) for (e,).

The triple 1ntegral and the double integral over S” will be

(61) ///T dwdydmff'(&‘f, 'If" w) dady,

no| being necessary this time. On 8", the transversal (because of
A (my, my, m5) <0) will be opposite to the inner normal n (which 1is
parallel to the normal to the outline o directed towards the inside of
S’): which gives (do being the element of arc of o)

dr
1 du ( ur an 1 du)
/f( d‘ﬁ(/'f“ﬁﬁﬁ} dodt = ”\ ?  WTd dodt,
The first term alone wants transformation. We integrate it first
with respect to ¢, along the segment [ of the corresponding generatrix

of the cylinder included inside T', i.e. from ¢ = 0 to ¢ =¢,— er, replac-
ing u by (u —u) +u, where

a

Si‘l SII

Sl
Fig. 22,

u=u(xz, y, ty—er)
* This discontinuity also appears as concerns the term in u;: as said in
§ 118, we must not forget that u;=e ; and, therefore, changes its sign at once

when the point @ crosses the plane ¢=0.
H. 14



210 APPLICATION TO FAMILIAR EQUATIONS [BK II1

1s the value of u at the intersection of the generatrix with the conoidal
sheet. Now (for any sign of ¢,)

| _
“l ;l‘li J‘z _[(Mt_ ,:;f —_ 72]3 -

so that the value of 27y, is the sum of (61) and

(u—)r o T |
(61") ” [ T a1 g;f‘d 0 {iidr do
8o - I3 VI d Jor dn Ntz —r?’

The simple integral must be considered as taken along the curve
of intersection of S” and I, although do and 7 relate to the base o of
the cylinder.

"Fm dt 1t
r — ) 7 '\f’jt@‘z e ,

132. A quite similar treatment will apply to the equation of
damped cylindrical waves

u  Pu  u
@ e B0,

B

investigated by Coulon as said above. The elementary solution is
1 -
v= Ch VKT

(with the same value of I', Ch being a hyperbolic cosine, which assumes
the value 1 on the circle r = |¢,|) and we should have

2mu, =

”" rmChV]ﬁ_}_ldP(Ch«/[ﬁ’P '\/]{Sh*/KF) ]dS
s T 2 dv r# r )

The transformation of § 129 will give
2 = lim | ] [L‘L.Ch VET
Sy

v'=0 ‘\/F
1dI’ /Ch ’\/ILF VK ShVKT
+‘)dv\ r - r ) t] dS+ [(T)\/_rdc,b}

(where again S, and () have the meaning of § 108), the comple-
mentary simple integral being exactly the same as in (59) (even

with the same value of v, as the substitution of 1 for Ch ¥ KT in the
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numerator of ¥ is immaterial for 7’ infinitesimal). The transformation
of § 130, taking for S the plane ¢ =0, will give

Sty = ff[Ch ~/KF nry (Ch_ x/f%I‘ -1 VK S}ll‘ ~/KI‘> u]r drdd

(u—a)rdrde > _
-] [[H=2 T [ adg

The simplicity of this result, compared with the difficulties which,
as we said, Coulon met with, and with the complication of expression
(12) (§ 79) which he ought to have introduced in order to imitate
Volterra’s operations,seems to me sufficient to illustrate the importance
of avoiding the roundabout method which consists implicitly in inte-
grating and finally redifferentiating.

If the equation were non-homogeneous w1th the right-hand num-

ber f, a corresponding term f f f AY Ch ,\/KP ——dzdydt would have to be

added ; and the case of a cylindrical S could also be easily treated in
the same way as in §131.

133. Let us again take the (ordinary) wave equation with two
more variables:

o%u 2y 0w  Jw O%u
R — e =¥
(e o <3x tap Tomt Bwf) o

The elementary solution will be l = 1 3

1 [(to—t)2 — ]2

of course, for v(z,—a,P+ .. . + (2, — a,)?; and, in our notation, the
solution of Cauchy’s problem, with respect to ¢ =0, will be given by

Q 1 U
ot' i 13

r standing,

Ay, = — ISSS —Jiﬁ dz, ... dz,dt + J S,st=0 (uo.e ) dsS

sssf dz, .. da:4dt+’ss 3|t°|“° F%)dzvl...d.m.

In the space integral (i.e. 5-fold) and in the surface integral containing
u, we have to introduce the values £, u, of f and u, at the point where
a perpendicular to the axis of our characteristic cone drawn through
any point (,, ... #,, t) meets the surface of this characteristic cone.

142
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If ), a,, o5, a5, O denote direction-cosines of a direction parallel to
t=0, such that
L=  Ty—=0y L3— Ay Zy— Oy >0, af4at+ai+oal=1,
0(1 a2 a3 a-l
f will stand for
f[a]+a1|to—t|, a2+a2|t0_t|, a/3+a3|t0—t|, a4+a4|t0'_t|, t]o
1 1
As the integral containing u, introduces — = —
I (t 2— )2
have to use not only #%, but also ', the value of the radial derivative

5 We shall

W= 21 g at any point of the edge r=|¢,| along which our charac-

teristic cone cuts £=0. If dQ denotes an element of solid angle in
the four-dimensional space (2, #,, &3, «,), the formula will be

d7*u, = — SSS (f=) de, ... do,dt

1*=i

w—a+w (G- (= u:)]

+ gk s dz, ... dz,
SS L i o

+2[f|t,—t|dtSFAQ + S (|1, | w + 3tei') Q] + 28udQ,

every term now having a meaning in the usual way if f and %, have
derivatives up to the first order, %, up to the second. :

Of course we should have no difficulty in writing the analogous
formula if there were a “damping” term of the form Ku.
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CHAPTER 1
INTEGRATION OF THE EQUATION IN 2m; VARIABLES

1. GENERAL FORMUL.E

134. The first cases in which the solution of Cauchy’s problem
was known in Analysis do not, as we have seen, belong to the above
treated class: Riemann’s and Kirchhoff’s methods correspond re-
spectively to m =2 and m = 4.

We shall presently see that, in such cases, singularities such as
we met with in the preceding Book no longer occur, every improper
integral being even eliminated. This explains why the above-men-
tioned solutions were found first.

In the general case, nevertheless, even values of m must be con-
sidered as bringing in new difficulties. The above methods are no
longer valid, and this for two reasons:

First, the elementary solution is no longer well determined (§ 65).
Next, we can no longer introduce the finite part of the integrals
which we shall be led to use, as the exponent

m— 2 m
< ) or 2"),

with which I' will appear in the denominator of the elementary
solution or its derivatives, will be an integer.

It will actually follow from the very form of the expressions
which we shall find, that they could not have been obtained by mere
imitation of our former method.

But, as we have already mastered the case of 2m, + 1 independent
variables, this will enable us to reach the same result when the
number of variables is 2m, by using our method of descent (§ 29).
The solution of the equation

ou

o0*u m
a{l}i axk+ iEI B(7_%+ Ou’ =f(w1,w2, coey wm):

(E) &)= 35 4q

2,
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m being equal to 2m,, will be deduced from the corresponding one
for the equation in 2m, + 1 variables

, , o
(E") F (u)='\¥(u) ~ 0z =f(a:1,x2, coes Tm),
denoting by z an (m + 1)th auxiliary variable.
If, as we still assume, the characteristic form
A(Pl, Pg, eoey Pm)= zAik.P‘.Pk
of (E) contains one positive and (m — 1) negative squares, the corre-
sponding form
A (P, ... P, Ry=A - R
relating to (E’) will consist of one positive and m negative squares.
We have already seen that the quantity I”, analogous to I' and
relating to (E’), is |
I"=T-=(z-c),
denoting by (2, s, ... &y, 2) and (a;, @, ... @y, ¢) two points of the
(m + 1)-dimensional space. We have also found, in § 70, what re-
lations exist between the elementary solutions of both equations:
we have seen that the coefficients of the successive powers of I' in
one of them differ by numerical factors from the coefficients of the
corresponding powers of I'" in the other.
Considering the adjoint equations

(&) F=0, (&) f’(v)=£(v)_g;;=o

of (E) and (E’), the formula of §70 express that, if
, V/ V/

v o= = S
m-1 IS

IV 2
be the elementary solution of (&), with

(1) V=S Vy D'h=(=1) Vi [(z— o= T,
0
then the elementary solution of (&) will be
(2) U=qu_—l—6z)log1‘+w

(w being a regular function); and, if we use the coefficients C), of
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§ 95, formule (62), (62b) of §70, applied to the adjoint equation, can

be written
m—2
3) Ve=(m—1)Cno & ! VT

h=0 (7)2.1 b h/ el .l.) Uml_..h_.]

(3/) 02) = (ml -_— 1) Oml—l % . Oh"'ml+l Vh’ Fh_m‘+1

h=m, -

= (/'nl - 1) Oml—l kz Ck V,k'l'mx"lrk'
=0

Now, this can be obtained directly by operating on %', or rather
on the similar quantity
: vV’
(W)=— "1
(-T2
which relates to [' < 0, as said in § 73. We form the expression
(again a solution of (&"))

3

] i -
'L+~”i‘"[(0'—3)2— NI ¢

(¢ constant); this (changing ¢ into z+¢’ under [ ) can be written

C) — R ~C1
f (¥)dc¢' = j —aw,
JT { AT

(2
w, = ( 1 (v') dc” being a regular function; the first term, which is
Dey—z

@ |, o=

z+~/I‘

(4)

independent of z, is (but for a numerical factor) the singular part*
of the elementary solution v of (£). For, by substituting (1) for V7,
the integral of each term will be given by the operations of § 95
(formulee (28), (28’) in that number) and these precisely give, for
the result, a quantity of the required form.

Moreover, we again obtain the values of the coefficients in (3),

* The difference (4') is a solution of (&) and, the second term being holo-

morphic, we have
7 (1[5)= w
| \/I‘

The common value of both sides is a holomorphic function (as we see from its
second form) and independent of z (as appears from the first form). Therefore, as
noticed above, there exists a function w of z,, 2, ..., 2, only, such that
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which become identical, of course, with those in Book II (§ 70), if we
multiply (4”) by the constant factor

(5) (=112 (my —1) Cp oy = (— 1)m -1k,

The case of m =2 is special. (4') does not want the symbol |
and has the value

(6) Sf(=1)Vy(c?-C)Ytdd’=—3%1logT .S Crh Vi’ T +w.

Therefore, there exists no V, but only a %' (equal to 2 C, V,'T?),
which 1is, as sald previously, no other than Riemann’s function

<multiplied by the constant factor —%) , the number k being equal
,\(/
to* 2. |

135. This being understood, to obtain a solution of equation (E)
complying, as to the multiplicity S, with the given conditions, we
shall consider, in the (m + 1)-dimensional space E,,;, denned by
the coordinates (z, @,, ... &, 2), the multiplicity S" (hypercylinder)
the projection of which is S (fig. 23)1, i.e., the one obtained by taking
successively for (z,, 5, ... ;,) the coordinates of any point of S and
for 2z all possible real values. If Sis duly inclined with respect to I,
S’ will be duly inclined with respect to I".

As we shall have to consider multiple integrals both in the m-
dimensional space £, and in the (m + 1)-dimensional space Ep.,,, the
notation which we used in § 38 will be modified in the following way :
the symbols §§ and §SS will ve kept for £,,. while a surface inte-
gral (l.e. an integral over an m-fold variety, which will always be a
hypercylinder) in E,,;, will be denoted by SS [, a volume integral
(le. (m+ 1)-tuple integral) in E,,., by SSS /.

A solution u of equation (E) being defined by the double condition:

Of assuming at each point (z,, @, ... 2, 2) of S’ the value that
© must have at the corresponding point (z,, 5, ... Zu) of S;

Of having for transversal derivative at the point (2,, s, ... Zm, 2)

. .d
the given value of —Zg at (zy, oy ov. Ti);
.

* This is not in agrcement with (5): the factor (m;— 1), which ought to be
zcro, is replaced by 1, as it was several times in Book IL.

t Fig. 23, rclating to m=2, can be used as a diagrammatic figure for the
general case.
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we know (§29) that the solution will be unique and independent of
z and will satisfy (E). Therefore such a solution will be a solution of
the given problem, and conversely

Function u will be given by formula (39) (§ 105), viz. (in our new
notation)

(M) (—1)maQ, _suy=— ] SSS vfda, .. da;mdz

133]( - éz—L—Lm;>0lS',

where 7" denotes the portion of (m + 1)-d1mensmna1 space between
S" and I, Sy’ (fig. 23) the corresponding portion of S’; and m = 2m,.

136. Strictly speaking, we can say that, in this way, we have
solved the problem : but, remembering a celebrated word of Poincare*,
we must acknowledge that it is very “insufficiently solved.” For
the above solution contains
foreign elements,~——the space
FEt1, the auxiliary variable
z and all that is relative to
them ;—and we evidently
have to try to transform it in
order to get rid of these.

Geometrically, the rela-
tion between the diagrams in
E,,and E,,., is the following.

T’ is projected on to the
m-dimensional space £,, along
the region 7', included be-
tween S and I': that is, if the
point (2, &,, ... &, ) belongs
to 1", the point (z,, @,, ... Zm)
belongs to T, and, conversely,
any point of 7' is the common projection of points of 7", i.e. of all those

Fig. 23.

* «J] n’y a plus des problémes résolus et d’autres qui ne le sont pas; il y a
seulement des problemes plus ow moins resolus.” Poincare’s Lecture at the
IV! Mathematical Congress, Rome, 1908 ; Atti del 1V Congresso intern. dei Mate-
matict, Vol. 1, p. 175,
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whose z’s are between —~T and + ~T (supposing the (m + 1)th co-
ordinate of @ to be zero).

In the same way, S, is projected on to %, along S,, each point
of S, being the projection of an infinite number of points of Sy, having

their z's between — AT and + T

137. This being noticed, we now undertake the transformation
of our formula (7). '

Let us deal, for instance, with the first term in the right-hand
member, which is an §§S extended to 7".

Our method will consist in integrating with respect to z first.

For m =2, » being infinite of order % only, this raises no objection.
But for greater even values of m, we have no right to do so all over
our field of integration, as the ordinates projecting points of 7" on T
cut the singular surface I at an angle which becomes infinitely small
in the neighbourhood of I We shall, therefore, divide our domain 7'
into two parts 7 and T,—the second of which will include the
vicinity of the conoid—by an auxiliary boundary = (which will, finally,
approach I).

In the portion 7} of 7" which is projected along T} (the boundary
of which is constituted by I and a cylinder 7 with base 7) integrations
with respect to z are legitimate, so that the corresponding §§S [ will
be obtained by integrating m times, over T, the simple integral

h=0
T (P _ 22)1]1,1 -3

If the factor of f is integrated term by term*, say

WIS (0 = 2)de
S

, [+~/l_‘ dz
m,—h -1’
~yp (D=2 is

2V

we see that each term depends on the operations in § 96.
These show us that

(1) All terms corresponding to A smaller than m, —1 vanish;

* No difficulty as to convergence arises from the presence of our symbol { ,
as the latter only occurs in a finite number of terms of the sum.
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(2) The following terms (h varying from m, —1 to « ) give a re-
sult which is in fact 27, multiplied by the coefficient of the logarithm

in the integral (4'), except for the factor (— 1)™-1, i.e., by 1_%: 9.

Consequently, in this first term, the quantity, infinite on the
conoid, which appeared under §S§S in the formul® relating to the
case of m odd, is already replaced by the perfectly regular quantity 9.

For m = 2, our transformation is thus accomplished.

138. In 7, (for m > 2), the same method is no longer valid. and the
result will actually be found to be utterly different from what that
method would suggest. Our lines of integration being subjected to
the condition of meeting I'" at a finite angle, we shall now consider a
system of lines /, each joining a point of I' (defined by coordinates
A1, Agy ..o M) to a point of T and the parallel lines in any plane
z=const. A point of T, will therefore be defined by the values of
A, Az, ... Am— and of I, this last quantity varying from zero to a
quantity v, very small if 7 is very near I'.

Let

(8) dmdax, ... doyw=KdN\dX, ... dNy_; dI' = dr, dT
be the expression of an element of 7,.

If T, is the part of 7" projected along T3, a point of T3 will be
defined by the coordinates A;, A, ... Ay, T, 2.

Let us first integrate along the lines /, that is, allowing

xl} )"2) s k'm—I) 2
. to remain constant. Then we shall make z vary,
-~T=¢ and lastly

!

D VIR Y
As the boundary of T, aside from I' (i.e., the
cylinder), is not a locus of lines [, so that the seg-
B ments of lines ! included in 7, become infinitely
small in the neighbourhood of I, we have to apply
the principles of Book III, § 90: we shall have to
take the finite part of every simple integral along
~ a line ! and, integrating this with respect to z,
~ again take the finite part of the result. This gives
Fig. 24. the double integral over the section &, (fig. 24) of

T’
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T, by any two-dimensional plane
B A, =const., A, =const., ... A,,—; = const.:

an integral which remains finite (as is evident a prior:, and as we
shall verify) when we let the parameters A, ... A, vary, and the in-
tegration of which with respect to these parameters will be made in
the classic way.

We can notice, besides, that the terms corresponding to £ >m, —1
in the expansion (1) of V’ only give finite integrals in the ordinary
sense, which become infinitely small when  approaches zero. We
shall therefore neglect them, so that we only have to deal with a finite
number, viz. m; — 1, of terms of that expansion.

For m = 2, we have already noticed that no other terms exist. For
m=4, 1.e. m; =2, we have only one of them, viz. V|/, which we have

to divide by (I'—22)? and integrate with respect to the A’s, I" and
z after having multiplied it by Kf. Writing KfV,' =F,, the integral
with respect to I' is (by means of an integration by parts)

Y Fodr;(_c, Fy >+2 Y9F, dT
o (P-—zE)%' VT — 22 2 o' VT — 2

The integral which remains on the right-hand side i1s an ordinary
one, which approaches zero with 4 —z-. Outside of [, we have a term
P which is a fractional infinity in the neighbourhood of the lower
limit y =2°: this fractional infinity is to be cancelled, and we only

_2F,
keep the term e ="-. Thisis now easy to integrate with respect to
v—z
z, giving — 27 F,.
Similarly, for any m, and h < m, — 1, let us wrlte KfV,=F,. From

the correspondmg integral taken over @,, we shall easily eliminate the

symbol | : for we have, by a classic formula, as
IMWW w_ (_ l)ml-—-h—l ”dm;_-?u—l ( 1 N
(I‘ M-kt g (m—h—3) dlm=h-1 \\‘/1‘_—2‘:) ’
_ Fdll

(9) j’([1 )ml—h 3
( l)ml—h—l r’ drl’ dml-h—th

» kS
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_ (_. ].)m‘_h-th ~ d"r—nl-h—2 ( 1 ) _
(10) Ru= La. (m—h=3)dlm 2 \WT 52/ 77

1 1  dm-k-2F,
T LR =k =3 NT — 2 dl k2

—m1 —}L—% (F _ 22)7)11—11—%
1 1 dml—h_th

B —h=3) VT =g dl'm—b-2"

®he first term on the right-hand side of (9) gives an ordinary
integral, which vanishes with  and may be neglected. On the other
hand, the value R}’ of B, in the vicinity of the boundary I'=2%1s a
fractional infinity and shall be cancelled (being indeed the only in-
finity, at least for an arbitrary z, 1t precisely represents the fractional
infinity which we have to remove by the definition of the notation
7). This reduces the finite part of the simple integral (9) to

” Fh 1
Rh =(R")P=7=—ml—h—%(7—22)"'1”"_%—‘"
1 1 dml"h—2Fh

I3 (m,—h=3) \/7‘_*;.2 'd,yfm,«—ah'-z ’

which we have now to integrate with respect to z, from — #/n t0 + 4/,

[

taking the finite part of the result. Now the value of the integral

(11)

‘ +\/‘y e

\/‘Y (")’ )n+?s

has been found (Book III, § 96) to be zero for every positive n. There-
fore, the only term we have to consider is the last one, giving

T dm-h=2f,
T L1E (i —h=3) dymFT

We have to take the above derivative for I'=+. But finally we
must let y approach zero. We therefore take the derivative in question
for y =0 and this gives us the required limit.

There remains only, taking for & every value from zero to m; — 2, to
obtain the sum of the results. We shall now see that this is in direct
connection with the value of the polynomial (3): for the (m, — & — 2)th
derivative of F for I'=0 can be (on account of Leibniz’s classic for-
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mula for the derivative of a product) considered as being the (m;, —2)th
(m, — b —2)!
(my — 2)!
Thus, again introducing the coefﬁments (' and taking account of
(3) we have*

derivative of F'I'* multiplied by

/' vdTdz
J

-2 )ml

_ T (d’ml > (Mg?._ FhI‘h )
T = 2)N\dy Ym0\ G =k =1)Crpmia) @

_27:' 1 dm-2KfV\ -
'k (‘m1—2)’!( dry™—2 )7 0

(12) lim I

y=0

139. We have, in the above, applied the general result of §90; but,in the pre-
sent case, it is easy to verify directly that things actually behave as was proved at

the aforesaid place. For, referring to the definition of | , as given in §§ 88, 89,
we should have to limit 7% by I'"=e¢ (dotted line of fig. 24) and take the limit of
the corresponding SSS after subtraction of fractional infinities in e. Now, we
immediately see, by (10), that the value of R}’ (for I'=22+¢) is such a fractional
infinity ; and so is the remainder of any integral (11), when limiting the segment of

integration to z= —4/y—¢ and 2= +4/y+e, this proving—as has been done, for
the general case, in §90—that our method of procedure in two successive inte-

grations, each time using the symbol | , correctly gives the value of the double
integral relative to I" and z.

140. Let us integrate, lastly, with respect to A;, A, ... Ap—5. On
the multiplicity 7 defined by the equation I'=+, where v is any
constant, the product KdA,dX\,...d\,-, gives an element which, on
account of (8), we previously denoted by dr, (or g) .

The integral
(13) I, =88 fVdr,=8S KfdndX,... dAu

will be a function of v, which can be differentiated with respect to
by differentiating K /' V under 8§ and integrating with respect to
the X\’s.

Therefore, the quantity required will be found to be proportional to

* When f is assumed to be analytic, the same formula can be obtained by
using Maclaurin expansions, as we did in the Acta Mathematica, Vol. XXXI.
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the coefficient of y™~% in the expansion of I, or, in other words (by
(12)), 1t 1s equal * to e
27 1 "=

(14) X =) dy e I,.

It will contain, as we see, the derivatives of f and those of V up
to the order m; — 2. This function V is only partly determinate,
terms containing I'™~! as a factor being arbitrary; but such terms
have no influence on (14).

The part of the value of u, corresponding to the term

— lgss v fdz, ... da,,d2

consists, then, of the m-tuple integral

, 2
(14) —g SSS/Vda, ... dam

extended over the inside of I', and of expression (14),an (m — 1)-tuple
integral extended over the surface of I'. These two quantities do not
contalin, this time, any infinite function, but only the two regular
functions, % for the one, V for the other.

141. We must notice, however (for m > 2), that, in order to agree
with the result of Book III, (13) ought to be calculated first by
cutting 7—and, therefore, ——with a small surface 2 so as to exclude
the neighbourhood of a, then by letting % approach a with the as-
sumptions mentioned in § 106, this being the process obtained in
§ 105, 106, of which the present one is a mere translation. That
this process will converge, and uniformly, as was said in § 106, is
obvious for the same reason.

But the fact is that the precaution in question is unnecessary. We
can obtain the same final value by at once extending the §§ over the

whole of the surface T and applying the m, — 2 differentiations to the
result thus obtained.

To prove this, we have to show that if such an integral were extended over
the small part of + which lies on the same side of = as the point @, its (1 —2)th
derivative with respect to y, for y=0, would exist and approach zero on letting
s approach a (the restrictions of § 106 being still understood). We only need to

give that proof for a suitably chosen law of variation of =, because we know that
the final result does not depend on this law.

* We now take account of the sign - before the first term of (7).
H. . 15
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We shall do this by introducing normal variables £, such as defined in § 57.
This reduces I' to a quadratic form with constant coefficients, which we can even
(by a linear substitution on the £'s) reduce to

F0=§m2 - 612" 522_ see T 52%—15
which we shall write Ty=t2—ri=12— 1,
by writing ¢ instead of £,, and R=72 for &2+£,24... +£%,-1. Thus the charac-
teristic conoid with vertex a becomes an ordinary hypercone of revolution, and
I'=y will represent a (hyper)quadric, already considered in § 97.

We can now choose =: we shall take for it such planes as ¢=const.=e.

The function /= T’/ under SSS is assumed to- be regular (see below) (and
will remain so after our change of variables, which is a regular one), which being
understood, we have to investigate the differentiation of the integral

(15) SS Fdry,

where dry is such that its product by dy represents the element of m-dimensional
volume d¢; ... d¢,,. The latter will be replaced by

rm=2dQ,, o drdt
(dQp -2 having the same meaning as in § 97), which is equivalent to referring

it to ¢, » and angular parameters ¢;, ¢o, ... pm-2; and we shall begin by inte-
gration with respect to ¢y, ... ¢pm-2. This will introduce the integral
b= sﬁ'dﬂm—‘l,

a function of ¢ and » which, moreover, is even with respect to the latter*, so that
we can consider it as being regular in terms of ¢ and £=7% By means of this
introduction, the volume integral SSS Fd§,df,, ... dé,,, relating to the m-
dimensional volume enclosed between the conoid I'=0, the hyperquadric I'=y
and the hyperplane t=¢, would be expressed by the double integral

(16) /fd).rm"?drdt,

the area of integration being bounded
(fig. 25) by the three straight lines »=0,
t=¢ t=7r and an are of the hyperbola
2—ri=qy,
(15) is the derivative t of (16) with re-
spect to y. As dry is the “quotient” of
the m-dimensional space element by dy,

we have to replace drdt by a correspond- Fig. 25.
ing element oIy of our hyperbola, which

* F being expanded by Taylor’s formula in powers of the £’s and, therefore,
¢ and r, with coefficients trigonometrical in the ¢’s, any term which is odd in 7,
when multiplied by dQ,,..dr and integrated with respect to the ¢’s, corresponds
to an integral inside the hypersphere of radius #, which is zero, as its element is
monomial in the £'s and odd with respect to at least one of them.

t Compare below, § 147.
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shall be the quotient of dII=drdt by dy. This quotient (see § 38) is
' gy L _dt
v 'a—;: = 27: f

The question, therefore, concerns the simple integral

17) ['3,_7""’‘3<I>aht=f€._«:[>t,Ii‘,)R7ﬂ1"=3zalt=/€ ® (8, 12— ) (12— )™ ~ 24,
( Nz 5 ( vy ( y) (2 —y)

and is whether its (m; — 2)th derivative exists for y=0, and is infinitesimal with e.
Now, by the classic rule, the first derivative is

The equation giving & is ¢?— R=y and therefore %{yi is equal to — 1. On the other

hand, we have written no term corresponding to the variability of the lower limit :
this term is obviously zero, m; being assumed to be greater than 1 (and even, for
the present moment, than 2). Thus, setting down

0P ~ 0P g
18 o6 B=-[Riprm-De|--[F+m-pe],

we see that the derivative in question is

(17) /E/" @y (4 2 y) (22— y)™ ~Ede;
NY

that is, analogous to the expression (17) itself, but differing from it by the fact
that m, is changed to m; —1.

The (m; —2)th derivative of (17), for y=0, is the same thing as the (n; — 3)th
derivative of (17’). In other words, if our conclusion is certain for any value of
my, it is certain for the following one.

But, for m; =2, we only have to examine the values of the integral itself, viz.

[0 empva=ya
Vi

(without having to differentiate it); and, for y=0, this integral reduces* to
€
]04) @, 1) tdt,

2
a quantity which is smaller than # %, denoting by A a maximum value of | & |.

* For m=4 and ¢ identically equal to 1, the first form of (17) becomes

”

; ) o rdt, which is immediately seen to represent half the area of the hyperbolic
J Ny

segment determined by the chord ¢=e¢ and, therefore, for y=0, half the area of
the triangle between that chord and the asymptotes.
15—2
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Our proof is, therefore, complete; and we see that the (m; —2)th derivative
of (15), for y=0, is, for € infinitesimal, an infinitesimal of the order of €

Instead of using the symbol #, we can remark that the left-hand side &, of (18)
is cqual to S F,dQ,,_,, with

Fy= -——[—Q ~-~—-+(m;-- }1’]

n; — 2 similar operations (the coefficient inside the brackets decreasing each
time by 1) will lead to a certain final function F,, _,; and the consequence of
our above argument is that the required (m, —2)th derivative of I, is

(19) / S Fpy ~gd@p s, °

where, in me_‘_,, we have to make r=¢: but this can be written

(19" SS F —20Qu -2t
an integral which is extended over I',. Coming back to our original coordinates,
this can be considered as an integral extended over I'. On this latter conoid, the
parameters ¢ may be considered as (m—2) of those which we have called A
(each system of values of the ¢’s characterizing a generatrix of Ty, which corre-

sponds to a bicharacteristic on T), while ¢, being a normal variable, can be
considered as the parameter s.

142. Having thus transformed the first term in (7), an entirely
similar evaluation obviously applies to the integral

SSJ (v — + Lu’ ) dS' = i SSJ{U' (4, + Lug) dS'.
We shall have, for this quantity, the value

1 dm1—2
: p V (e, +Luy) doy |,
(,,nl _ 2) ! d'ym,-—.. y=0) Sa (1, + 0) 0'?]

where o is the intersection of S by the surface I'=+ and do,, the
element of ¢ defined by the relation

(8a) do,dy=dS.
143. Let us proceed lastly, to the term

-
- | 885, Ut + L) dS -

(20) SS [u ——dS' SSju —dez.

A quite similar method can again be applied to it. For the pre-

ceding operations show us, generally speaking, that, if «’ be any
quantity of the form

, T WTh
W= -
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% W™

with the W} not depending on z, and we set down (w')= ;
h pending (w) = Ty 1

if, furthermore,
Ty de =(— 17 (. _log T
_(w> c —(— ) <Pp —1 ogl+. )

(dots standing for terms which are regular for I'= 0), then
(22)

(21)

) R
iSS jw udS =+ 2 <sssuﬁz(/ds =y Saqua.,).
This will be the case if we take w’=k% and (as seen by direct
f] 3
differentiation) (w’) will be —k 7%2 the number p being m, + 1.

1 d(v)ac

7 and therefore, as we

The integral (21) will then be —k U

know, equal to

d 2! , ) mey —1 d V
~k 7 [\/I_‘(v)dc —(-1) <P%__l-@)1og1“+,,,>
on account of § 134, so that
YW = Ezjzﬁ W==(m,—1) T/(;(if L;VV Q™! %g

These are the values which we shall have to substitute in (22),
the result having to be divided by k.

We shall immediately observe that the ( p — 2)th, 1.e. (m; — 1)th,
derivative of the last term of W for =0 appears at once, viz.

1 dml-*l SMQ)I-\'m. 1 _d_l-‘_ = S @ dF
(= 1) Ldy™ ey

(22)

144. At first sight, the expressions thus written for the last term
(20) seem to present a disadvantage not shown by those which corre-
spond to the other terms. They appear to depend on the terms in
I™ =1 occurring in V, which terms are not determinate.

It is easy to verify that this dependence is merely an apparent
one. Let us imagine that, from each point of §’, a very small segment
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1s marked oft along the transversal v, being such that the correspond-
ing dv is equal to a (very small) constant. Let us denote by S,” the
locus of the points thus obtained, and give to u, at each one of them,
the same value which it has at the corresponding point of 5.

Term (20) will under these conditions be the derivative, with
respect to », of the quantity

(23) \SSJ w' dS’
8,
and will consequently be equal to
27 d 2rd 1 d™7F

(24) - 885, VudS—T - wVdo,.
v 14

k dv(my —2) ldy™ S‘TY"
In the second term, S, is the base of S," in the space Z,,; o,,, the
intersection of S, by I' =1y, and the differentiations C% and % can be
inverted (because  and » are independent variables, entering into the
expression of the § by means of o,,). We must observe that in the
original expression (23), the differentiation only concerns v’; the
values of u and dS’ are to be considered as independent of »: this
means that, in order to calculate them for any element at a point X
of S,, we have to consider the corresponding element around the
corresponding point X @ of §’, which is the ‘“transversal projection”
of X, and by means of which we have to calculate u (as being the
value of the latter quantity in X®) and dS’, which is not the value of
the element on S,” but the value of its transversal projection on S".
Similar observations apply therefore to (24), so that « and do, are
still to be taken in transversal projection on S; but, as one shall
observe, the conclusion is not that the differentiation shall only con-
cern V: for the transversal projection, on S, of o, is variable with ».
Let us suppose that between points « of o, and (infinitely near)
points X of o, we have established a punctual correspondence
(which can be done in o ways), whereby another infinitesimal
punctual transformation is defined, on S, between 2 and the trans-
versal projection XY@ of X. We can imagine that the value of V at
X and the value ©® of u at 2 are expressed in terms of the coordin-
ates of z. As to the relation between the two elements do, on o, and
on o, we shall find it by remembering that do, is the quotient of
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dS by dry, which latter quantity has the same value for # and for X.
Remembering also that dS relating to X is to be taken in transversal
projection on S, we see that the integral in the second term of (24)
can then be written

dsS®
(25) S Vu® I8 day,
N9
where —;;, is the ratio of corresponding elements in the punctual
{

transformation between z and X and we take account also of the
above agreements as to V and u®.

Differentiation with respect to » can now be carried out under S,
and gives, for the derivative of (25) with respect to y (m;, — 2 times)
and », the value

dm,—2 d
(26) ;i—-ym‘ “d So.wqua'y
_dam? v ,du” o ddSe
d/’ “S"("" o YV g “V"&Z“dS—)

The treatment of the first term of (24) wants no further observa-
tion and depends on the ordinary rules of Calculus. We have to

differentiate first under §§,—i.e., replace % by C—ilﬁz—v);—then we shall

have a boundary term, as the domain S,,—or more exactly its trans-
versal projection on to S,—depends on ». This term is always a neg-
ative one if S is duly inclined, the reason
for this being that (compare § 108, foot-
note p. 172) the transversal to S at any
point of the edge of intersection with [' is
directed towards the outside of I' and that,
therefore, the transversal projection of S,
lies everywhere inside S (fig. 26). The
part thus subtracted from S consists of

Fig. 26. elements each of which is a small ((m —1)-
dimensional) cylinder having an element of o for its base and the
small segment 2X @ defined above (see fig. 26) for its generatrix : the
volume of such an element is, in our notation, do, dv, the second
factor representing the increment of I' when passing from z to X ©
or, which is the same, from X to X© and being, therefore, numeri-
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dr'|

cally equal to dm~ dv. Dividing by dv, we have the derivative
(27) Sss Qu,dS = SSSuo(gp dS — S, u? dI: do,.

It is well understood that this formula only concerns the case where
S 1s duly inclined and therefore @<O. The sign before the last

dv
al’|, dI’
term ought, of course, to be changed if we should replace " lby I

and the new formula thus obtained would be valid for any inclination
of S (as ar - > 0, resulting from a non duly inclined S, would be com-

pensated for by the fact that the corresponding parts of the transversal
projection of S, would overlap S instead of lying inside it).

This second expression of (20), by combination of (26) and (27),
is equivalent to the first one (as appears at once for the terms in %
by comparison with (22) and (22")); but it appears, this time, that
it does not contain the terms in I"™~! of the expression of V.

145. The evaluation of the term (18) completes the solution of
the problem. Taking account of the value (5) of k, we obtain the
following statement :

For m =2m,, let :

V, @ be the two regular functions which appear in the fundamental
solution (2) of the adjoint equation 5 (v)=0;

[, T, S, the domarns analogous to the ones which have been defined
for m odd ; T, the part of the surface I'=1q (y being a very small
positive constant) enclosed inside T ; o, the intersection of this same
surfuce with Sy, the elements dr, and do, of the varieties T and o being
defined by the equalities (8), (8a). pay 2L, 22§

The solution of Cauchy’s problem will be given by the formulu

(28) (=1)ym(m,—1) Cm 1m0 Uq

= - $88,%f da, ... dv, - S [@ (s + Ltg) =14 ‘gﬂ as

(ZF
+ S,uo an do,
1 dm-—2
+ ("nl - 2)! d,_y'm 2(7=0) [SS,deTY + ScV(ul + Luo) do'y]

1 dme rav_ I)VdI“}
(,"zl _ 1)1 d,ym,-l (y=0) o dy m, — _CIWVW
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Or (vn the sense explained vn the preceding section)
(28 a)
= —S8SS, Yfdzdx; ... dz,, — 3830@ (uy + Lu,) dS

1 -2 [ f
+ (m, —2)! dy™ =% ) SS..

Vdry+ S,V (. + L) da,]

1 dm=2 d - d \
~ =2y et dy Sa'ny wydoy + 7 SSSV’M(,[’Z/dS,
where the last term can be found by (26), the last but one by (27).
The coefficient of v, in the left-hand members of both equations
can be written (see § 99)

iy — 1 2(=1)ym

29} — 1y 2 mx—l.
@0) (-1

It 1s well understood that, in the present case, every differentiation
under §S or §SS is to be done by the classic rules of Calculus; and

no difficulty such as has been met with for the case of m odd arises.

146. It is clear also that several properties of the solution as
written in the preceding Book immediately apply to that which
we have just found, as the latter is not essentially distinct from
the former.

This is the case, in the first place, for the remark at the beginning
of § 104 : if the shape of S is such as to enclose, together with I', a
volume T' to which a 1s exterior (compare fig. 12, 12 b) we have
formulee quite 1dentical with (28), (28 @), except that the left-hand side
1s replaced by zero, this being an immediate consequence of formula
(F"), § 104.

We can also already see that the same must apply to the “inter-
change property” (§114), a subject which will be examined again
in the next Chapter.

The same applies to the remark which we made (§113) on the case
where S is constituted by characteristics, in which the knowledge of

u, suffices to write down the solution, as the knowledge of w, = (cj_u 18
v
implied in it.
Also we have no further care to take in order to verify our solu-
tion (for duly inclined boundaries): the proof that it actually satisfies
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every requirement of the problem must be considered as already

afforded in the preceding Book, Chap. III*.

147. Another form of the formula. The terms in dr, and do,
in (28), (28 a) can be written in another way by remarking that d+,d-,
for instance, is an element (a small cylinder, see Book II, § 38)
of the volume enclosed between one surface T and a consecutive one
in which # is changed into oy + dry. It results therefrom that, by such
a changing of «, the integral S§S fV dz, ... dx,,, relative to the do-
main which we have called 7, will be increased by dy §S fVdr,, so
that §§ fVdr, is the derivative of that volume integralt with
respect to «.

Similarly, § (V%z—: + Lu V) dao, will be the derivative, with respect
to y, of SS (V % + LuV) ds, éxtended over the portion S, of S
enclosed between I'=0 and I'=+; and the same transformation
applies to the other term in do,. Writing the abbreviated notations

SSS. and S§S: for S§S,; and §S; , we see tnat formula (28 a) 1s
equivalent to ’

(30) 2 ('— l)m‘ (”—1— 7Tm1_1 Ug

b — %)}
=-88S,Yfdx, ... dz,,— SSS@ Y (uy + Lu,) dS
1 dm,—l
+ ('7;2“1'— 2')‘! (‘ZW [SSSﬁfV d.’L‘l coe dqu + SS‘g V(u] +Lu0) ds]

1 d dm-1 d .
T = 2) dy dy= 8.t VdS + 5 885, u, VdS,

a form of the result which we shall have to use; and (28) can be
transformed in a quite similar way{.

* In the case of a characteristic S, such a verification would, in the same way,
be a conscquence of the corresponding one relating to m odd. The proof given in
§ 119 for m=3 would apply to m=2.

t The increment of the volume 7', (volume between two consecutive positions
of 7) will contain irregular parts in the vicinity of the edge o ; but they are of the
second order in dy.

+ It will be eventually useful to remember that, the operations in this section
not being essentially distinct from the preceding ones, the remarks made in § 141,
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148. The expression for the required unknown differs considerably,
as we see, from the one which answered the case of m odd. In the
latter, the elementary solution was directly introduced. Here, the
elementary solution still serves as a basis, but only in so far as it
provides the two functions V and 9, which alone appear in the
operations to be performed.

On the other hand, the value of the unknown, for m even, appears
in the form of a sum of two integrals, the one extended over the
inside of the characteristic conoid, and the integrand of which contains
as a factor the data themselves, multiplied by known functions; the
other extended over the characteristic conoid itself, and containing
under the same conditions the data and their derivatives up to
the order m, — 2 (or even m;—1). The integrals thus written only
involve finite quantities, if the data are regular.

In the case of m odd, we had a single integral, involving the data
themselves (without explicit differentiation), but possessing the para-
doxical character examined formerly, and on account of it, containing,
virtually, a boundary integral and certain derivatives of the functions
introduced.

Such an expression should, therefore, be considered as intermediate
between two expressions of the above class (the ordinary integrals
met with in the case of m even) corresponding to two consecutive
values of m,.

It has also, with respect to u, or f for instance, an order of con-
tinuity which must be considered as intermediate* between such
consecutive m,’s.

149. Application to Huygens’ principle. The above formulae
enable us to answer the following fundamental question :

as to the convergence, after difterentiation with respect to 5, of the term
SSSfVdz ... dz,, still hold under the present form. In both cases, besides, the
convergence is uniform as long as derivatives of fV up to the order (m;— 2) are
numerically limited.

* This is fully verified by application of the methods peculiar to Functional
Calculus, as developed in our Calculus of Variations (§§ 243-248) and beauti-
fully improved by Frechet and Riesz. (See our Memoir in Acta Mathematica,
t. XXXIL p. 379.)
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For which equations vs Huygens’ principle true tn its special sense,
v.e., tn 1ts sense (B)? |

We already know that such equations must not be looked for
amongst those which we have investigated in Book III.

But, for the case of m even, we now see that the residual integral,
as given by the operations in the domain which we have called 7
and the analogous domain on ', exclusively depends on the
quantity 9.

The necessary and sufficient condition for the vanishing of that
residual integral is that this function 9 be identically zero, ie. that
the elementary solution contarn no logarithmac term.

If such is not the case, the residual integral will be different
from zero for arbitrary data. The question of its sign, as considered in
§ 112, is liable to receive any answer according to the values of the
coefficients of the equation: for, at least for m =4, the remark of
§ 65 evidently shows that we can get any sign for ¢ by a proper
choice of the coefficient C if the other ones are assumed to be chosen
beforehand.

We have said that we give an answer and not the answer, to our
question: for it is clear that we can wish it to be “plus resolu”
than it has been in the above. We have enunciated the necessary
and sufficient condition, but we do not know how equations satisfying
it can be found, or even whether any exist except (esn,—) (and, of
course, those which are deduced from (e,,,—,) by trivial transform-
ations). This, and many other questions concerning the residual
integral, would require further researches.

As to the more general form (C) of the principle, it may be
considered as being proved by our integrating formulee in the same
sense as Kirchhoft’s or Volterra’s results prove it for (e;) or (e.).

2. FAMILIAR EXAMPLES

150. It will be useful to show some applications of the above
general formule, and even to verify their agreement with previously
known results.

(u) The case of Riemann. Let us begin with the case m =2,
already treated directly in Book II; which, as we have said, behaves
somewhat differently from the other ones.
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The characteristic conoid degenerates into a system of two
characteristic lines: these will be parallels to the axes, if we take
the equation in Laplace’s form. We shall write the latter so as to
have | A|=1, therefore, by multiplying it by + 2:

~9
+2 <£—%+A§—Z+B%+Cu) =+ 2f.

We have to choose the sign according to the location of the useful
angle between the characteristics (1.e. of the angle which intercepts
an arc of S), the form A (m,, m,) being bound to be positive for lines
which cut both sides of that useful angle: this sign will, therefore,
depend (as seen in § 42) on the sense of variation of y considered as
a function of z, 1t happening, in this case, that we do not define by the
nature of the equation what we must call a “duly inclined” line, but
that, on the contrary, the equation is to be written so as to make the
given line S a duly inclined one.

We have already noticed that every term in the formula (leaving
dv’
dv
formed without distinguishing between 7' and T}, on account of the
absence of the symbol I” ~ and of V. In any of these terms, therefore,

we only have to write ¢/ instead of v', cancel one § and divide* by — 2.

aside, in the first place, the one which contains —-) can be trans-

’

But the same treatment can also be applied to the term in d—v
v

by using the method of § 144. aa, a3 being, as in Book II, § 42,
the two characteristics issuing from a (I' is precisely constituted by
those two lines); S the line which bears the data and which cuts
the two characteristics at a and B, we have to draw a neighbouring
curve S, such that each point of S, is deduced from a point of S by
taking on the transversal » to S a small segment such that dv = const.,
which S, will cut the characteristics at o/, 8’ (fig. 27), S,” being the
right cylinder on the base S,; we have to take the derivative, with

respect to », of the integral §S ' uv'dS’ (see §144), it being under-

stood that the dS’ of any element of S, and the value of u on it
relate, by definition, to the transversal projection on to S’.

* The factor 2, given in § 137, is, of course, cancelled by the coefficient on the
the left-hand side.
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But SS f uv'dS’ is equal to* 78S, u%/ds, a simple integral which

we can now write with an ordinary [ and
the derivative of which will consist of the
product of 7 by :

(1) the term [ uc—z,i dS representing

the integral of the infinitesimal variation
of uv’dS between corresponding points of
S and S, ;

(2) two terms relating to the arcs Fio o7
aa®, BR® (fig. 27) of one curve which U
have no corresponding points on the other, so that the limits of
integration with respect to s are functions of ». The derivatives
of these two functions are equal to + 1, as, on account of the fact
that the transversal direction is symmetrical to the tangent with
respect to parallels to the axes, the two triangles ad'a®, BB'@Rwo
are isosceles. The two terms in question will thus give % (u%).
or % (u?)g, evidently corresponding to the second term in (27).

Those two terms are, in that case, the only ones which we have
to add to the right-hand side of formule (7) after having changed
in them v into 2, 88 and §SS into [ and [f (and cancelled, of course,
the | ). This gives precisely the results which have been deduced
by Riemann’s method. The fact that Riemann’s tunction % is the
coefficient of the logarithm in the elementary solution, as has been
already found in § 46, appears, this time, as a subcase of our general
considerations.

151. (b) Poisson’s and Kirchhoff’s formule. The next case
is m=4 (giving m; =2, k=1), and the simplest equation of that
type the equation (e;) of spherical waves.

We have then, denoting by («, v, 2, t) and (%, ¥, 2, t;) our two
points, and taking w =1,

P=@—-t)y—(z- To)lt = (Y = Yo)* — (2 — 20) = (¢ — to)* — 2

* 1Ve change the letter S into s, in agreement with the ordinary notation and
our § 40, to denote the arc of S.
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There is no logarithmic term in the elementary solution (see

§ 69) which is reduced to %,, so that #/=0 and V =1.

For this equation (and, in general, for m =4, m, — 2 being zero),
differentiation with respect to v and the consideration of the auxiliary
surface I'=r will not occur except in the terms considered in § 143
(last line of formula (28 a)), and can even be avoided in these if we
treat them as we do in § 144.

Let us suppose first that S is the hyperplane ¢=0, which is the
case In Poisson’s analysis. — will be €= (with e= + 1 according to

the same rule as in § 129), having the value zero for Vand —2|¢,|
for I The element of S (i.e., element of volume in ordinary space)
being r?sin 6 drdfd¢, the element do, quotient of dS by

| dT | =27 | dr|,
will be 1rsin Gdﬁdgb Thus the term in u, will be (as r=|¢,| for
t=I'=0 and ul—eat), “ (7

SS Vinde, = || j j w sin 0d0de =1, f f %% sin 0d0d,

The term in %, (in which L =0) will be (as, for I'=0, we have

r =1, — ¢, the derivative of which, with respect to », is —1)
So W
Wgss $Vuedoy) = — 2 (1 [[psin 0dds).

’0\ JJ

The sum of both, divided by 27 (which is the value of the coeffi-
cient (29)), coincides of course with the right-hand side of Poisson’s
Sormula.

If the partial differential equation is non-homogeneous, so that

S #0 and the new term §S fVdr, appears, the value of
dazdydzdt
dr, = “dy
i1s immediately deduced from do, by multiplying by d¢, so that the
supplementary term is found to be (after division by 21r)

%J'to-t:dtf Fsin 0d6ds,

where f stands for

flzo+ (o =t)sinOcos ¢, ¥+ (L, —2t)sinBfsin¢, z,+ (¢, —t)cos 9; £].
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152. Let us now consider Kirchhoff’s hypersurface S, viz. a hyper-
cylinder the base of which will be a closed (ordinary) surface w (the
equation being again supposed to be homogeneous). The domain of
integration may be, according to the nature of the question, the inside
or the outside of the cylinder. Let us also take ¢,> 0.

Taking the 7’s respectively equal to the direction cosines of the
normal n to o (directed inwards with respect to our domain, which
may be inwards or outwards with respect to w) and (for the fourth
one) to zero, we have to take dS equal to the element of our hyper-
cylinder dodt; and the transversal direction » will be opposite to =,
the terms in (2 — 2,)?% ... being negative.

Integration relating to the edge of intersection o, of S with I, do,,
must be such that

oI’ dw dow
dw,=dw : (E>=m:t)=§;"

both sides representing the volume dS of any small cylinder (which
we can suppose to be parallel to the ¢-axis) inclnded on S between
an element of surface of the characteristic conoid and a corresponding
element of the neighbouring surface I' =+.

This is all we want for the calculation of §142, as no differentia-
tion with respect to  is wanted. For the operations of § 144, we
define the correspondence between z and z©® so that the segment
joining these points is parallel to the ¢-axis: in other terms, from
any point z of &, (which represents a point of w associated with the
value ¢, — r for ¢), we conduct a small segment én = — §v normal to S

which changes r by % én and increases ¢ so as to let I' take back its

original value, therefore by &= — t_r ; % on. This is the increment
-
which, given to ¢ on the original surface of the hypercylinder S, leads

from the point x to the point . Therefore we have

ou r dr ou
WO =+ 8. =u+, - | =8
‘ o, t—tdn ot

asSo 1+ dr 5
dS = T (t—trdn
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Substituting these values in (26) and observing that, on our

. r
conoid,

= 1, while V is identically equal to 1, we get

r dl“‘i
l” Lal_ldraao _ ;Idw
U = pr r rdn ot Sdna T

in which (as in §131) dw relates to the base of the cylinder while
,, U, are values of u,, 1, at the corresponding points of o, viz.

0

U= (29 2 t—7r). (:=0,1)
This agrees with Kirchhoff’s formula (if we remember that
Uy = du =— fl»—«u)
dv dn”

153. If¢, is greater than the maximum of » along w, this formula
gives the whole value of u,. In the contrary case,and if the boundary
of our domain (which can not be constituted by our hypercylinder
only) is supposed to be completed by the corresponding portion of the
hyperplane ¢ =0, there is a term relating to the latter surface.

This term consists, of course, of spherical integrals as in Poisson’s
formula, but an observation is necessary concerning the way of com-
puting the two §’s corresponding to (20) in this case, as in every
other case when S consists of two parts joining each other at an angle
different from zero.

In Poisson’s formula itself, the term which contains u, 1s

Lo
M, () = 1 [,

d(), =sin 8dOd¢ still being an element of solid angle, and the inte-
gration being extended to the whole sphere with centre (2, %o, 2)
and radius ¢,. It is clear that, this time, we have to write down the
same integral, with the only difference that it is limited to the
portion of sphere which lies within our domain. The same obviously

holds for the first term Af; (u,) of the derivative i [to Mz, (u)]. As
0
to the remaining part of this derivative (with abstraction of the

. 1 . . .
factor i t,), 1t can be written under either of the two forms

)
(31} a_tofj Ugd s,
” 16
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or (éi denoting the radial derivative, or derivative relating to the
r
outer normal of the sphere)

(32) j J %—f’dﬂa,
which are equivalent to each other.

But in our present problem the above two forms are no longer equi-
valent. If to take a determinate case, we assume o to be =0, our
domain lying on the positive side, and if we denote by ./, (z p) the
average value of the function u, along the circumference of the circle
whose centre 1s (z, ¥, z,) and radius p, its plane being parallel to
z=0, viz.

2
Mlo= My (z, p) = %_ I uo (1, Yo+ p COS P, 2, + p sin ¢) dob,
-t b, 0

MM, will be, in our present problem, replaced by

Ay
! [ My (2~ ty cos 6, t, sin 6) sin 06 = » f My (20— Ny, 1 VT= N2 d,
2 2) <

where A stands for cos 6, the upper limit (instead of + 1, as was the
case in Poisson’s original formula) being

(32) will be obtained if we replace, under [, .4, by

/. 0 1 ¢ e,
33 S - v
(33) g ="M, VI
This is no longer equal to the derivative (31): there is lacking the
term

(34) = 5 paello(0, VE =)

corresponding to the tact that A, 1s a function of ¢,.

Which of the two expressions (31) or (32) is to be introduced in
onr formula? The answer will, of course, appear if we remember
that the term in question is due to the quantity (20) in §143.
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Now, if we suppose that S (figured by a broken line in fig. 28)
consists of two parts S, S, meeting at a
certain angle, it is clear that the corre-
sponding integral (20) has to be taken on
each of them independently, by the methods
of §143 or §144; and in the latter, no
displacement of the boundary of S, when v
varies, has to take place on account of the
presence of S, so that, everywhere else than
on I', the boundaries of S and S must cor-
respond to each other by transversal pro-
Fig. 28. jection, the total S, being constructed as
diagrammatically figured by dotted lines

in fig. 28. Thus, no boundary term has to correspond to the common

edge of S and S (as would also appear from the mere application of
§ 143).

Therefore, in the particular problem above, the term (34) is not
to be introduced. The right term in u, contains (32) and not (31)
and the complete formula is

(35) 4mu,= [to [f(u, ) sin 8df0d¢ +f[u0 sin €d9d¢>]
[
|

dl )
][ ?_}_l.d_ra_ﬁi’.i_ _>d
+z r rdnot ' ‘dn/) % 9

where the integrals within the first brackets are taken for ¢ =0 over
a portion of sphere included in the given domain, while the integral
within the second brackets relates to o,.

154. (c) The equation of damped spherical waves. The equation

2 2 2
(E.) Pu_Gu_Gu_0u_ g, _g

has been treated by Birkeland, Carvallo, Weber, Brillouin*, and later,

* Birkeland, C. R. Ac. Sc., Vol. cxx (1895), p. 1046 ; Carvallo, :bid., 14 Janvier,
1895 ; Weber, in Riemann’s Partielle Differentialgleichungen der Math. Physik,
Vol. 13, edition of 1901, p. 310; Brillouin, C. R. 4e¢. Se., Vol. cxxxvi, 1903, p. 667-

16—2
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in several papers*, by Tedone. Comparing this equation with the pre-
ceding one (e;), we see that I' will be the same, and we can also again
take V=1, as remarked in Book II (§69), so that we have to in-
scribe the same terms as in the foregoing operations (§§ 151—153),
but with the addition of the term in % of formula (28), where (the
elementary solution being given by formula (61 a), § 69) we have

(36) @=— {Zf 7 [Lt: ti —q}'

J (M) still being 1+

A A2 A"
(]_I)"’ + mﬂ, + ...+ (h—’)z +
If S is the hyperplane ¢=0, the formula will be (noticing that

d o. . . 0
=5 1 th y 1 to — vy
& =5 1s, In this case, equal to 5 to)

to .
(87) ug= G% [t My, (26)] + o My, (1) + ]ff r2M, (u,) g dr
0 0

L2
2 ato 0

where the symbol A has the same meaning as above, and the argu-

r2 M, (u,) 7' dr,

9 __ a2
ment in 3’ 1s K tLi—? . The identity of this result with the eonclu-

sions of the papers cited (for example, Weber’s or Brillouin’s) is
verified without any difficulty.

When 8§ consists of a portion of ¢=0 (i.e., of ordinary space)
limited by a surface w and of a hypercylinder on  (see Brillouin, loc.
cit.) the terms (35) have to be completed by the following ones (the
(t — t) - ?

argument in j' being now —

j:Um] dzdydz + 5 3% ) ”[uoj dzdydz

K dr K dr (t-r 9} h=r
+§‘fjllod—vdw—§/fdw [a;fo OB'Ldt [0 'Uq]dt:l

* Rendic. Acc. Lincei, 5th series, Vol. xx11 (1913, 1st semester), p. 7567 ; Vol.
xx111 (1914, 1st semester), pp. 63, 120, 473.
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The first two terms only differ from the corresponding integral
terms in (37) (the factor 47 excepted) by the fact that :

M, (w) =4%;_//ui(wo+rsin 6 cos ¢,
Yo +7sin 0 sin ¢, 2, + 7 cos 0) sin 6dOd¢p

1 .
=i f/u,-dQ2 (=0, 1)

is replaced by an integral extended only over a part of the corre-
sponding sphere as in the foregoing section. The second one, for
instance, can be written

—to //u0d92+ / 7__8] drfjuodﬂm
ot,

the double integrals relating to such portions of spheres.
For an arbitrary shape of S, which Tedone has also considered*,

the formula 1s

Dariey, = [/f ) dS — 7 fj[/ uo_yo’dS
i i

the calculation of the last term must be understood as stated in
§153, in the case where S has angular edges.

155. (d) Higher number of variables. The analogous equations
in 6, 8, ... variables would be treated similarly by application of
formula (28) or (28 a).

Let us take simply the equation of (ordinary) “hyperspherical
waves”

ru_ Ou ru
e ot: O, o ax m—1 B

* Tedone’s results are of a quite different appearance, at first sight (a proper
transformation being even necessary to find Weber’s formula (37)), and are
obtained by a very different method, implying the resolution of certain integral
equations. This, exactly as happens in Coulon’s case (see Book III, §79), is due
to the impossibility, which we now see to be even more radical than for m odd,
of introducing directly the elementary solution, so that more or less indirect
substitutes for it must be used. Such a necessity, on the other hand, is not devoid
of advantage, as giving place to suggestive integral identities concerning Bessel’s
functions : a subject connected with certain conqequences of what we have called
proposition (A) in Book II, § 33.
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and suppose that S is ¢ =0, with ¢{, >0. As V is still equal to 1 and
% to 0, we find the same simplification as above. da, is given by

) dS... _ 7fri—f(l(%7n—£r — :]: 7.271:,~3d()m_2’
dfy 2rdr 2

dQ,,_; denoting an element of hyperspherical surface of radius 1. As
dy = — 2rdr, we sec that the factor (—1)™ is thus destroyed and*

A 1 —1 d e t.2m—3 [ dQ
(38) drm ua=<cmzo 0 ,r=t0u1 m—2

d d "2 ”'
. £ 23 u,dS).,, ) .
+ dat, <2f0(ito> < ’ Jr=g, ’ e

o

do,=

If A, (r) denotes the average value of u on the hyperspherical
surface of radius r, we can write

my—1 =g
@w‘z"*%=( d» [t 3, (8)]

o, dt,/
d d e 203 |
s (G ) e 3 )

The solution obtained by Tedone in 1898 (Annali d¢ Mat., loc. cit.) is apparently
different, the term in %,, for instance, being

-2

myp—2 my ~ 2~
(39) 04, ¢

h
h=0 h adriy - & h [7.7"1_1-";1[! (’r)] (7'=t0)’
h=

where the .’s are numerical constants. That

o iy~ 2
(Eild;’) [Tgml - 3)[] (’I')]

is of the above form, is obvious by mere inspection: the A’s may be considered
as defined by the relation, identical in A,

(40) TI()==1— (A+3)(A+5) ... (\+2m; =3)
Ay +2) A +3) oo Ay = 1) ..
+4,A+2)A+3) ... At —h-1)+...
+ A sA+2)+ 4o, -2,

as is seen by setting down A/, (r) =#A and observing, on the other hand, that such
an identity in A can be written in one wayand in one wayonly. An easy method

* For the use of (28 «), it is necessary, this time, that the differentiation
a/ _d
dl’ \_ ([to

be carried out last, as it has to apply to the denominator in md,



CH. I} IN 2m,; VARIABLES 247

for the determination of the constants A4, consists in representing the left-hand
side in (40) by the circuit integral
. ( _A+3
_m=2) [ (-2 ®
(41) II(\)= s Jo mel dz
(integration along a closed line around the origin, as usual). If we set down
l-z=(1-Z2)% whence z=22-22,
(41) becomes (the new path of integration ¢’ surrounding the origin in the same
way as (')
(1=-2)-a*2dZ

)= —
Zew 27}11—2Zm1-—l l_é ! L
C 2

7y ={m,—1) .
or, finally, expanding <1 —% " Taswell as (1=2)-@+2 in powers of Z and
only retaining the terms in % in the integrand
sty — § !
w3 Gy =2+4) ! (A+2) . Ay~ A1),

a2k fot (g —2—h) |
(my =2+ A)!

2w = (g = 2=y

so that, in (40), A=

which is to be substituted in (39). Of course, the terms in u, are deduced from

. e d \m—I=h o\~ 2—h ) )
‘he above by writing (E) instead of (E) ; and this (taking account

of the coefficient in the left-hand side of (38)) gives Tedone’s form of the result
(loc. cut., formula (24)).

3. APPLICATION TO A DISCUSSION OF CAUCHY’S PROBLEM

156. Let us come back to formula (35), §153. It allows us to
find a solution « of (e;), it being assumed that we know Cauchy’s data
both on ¢ =0 and z =0.

But we know that such a problem is not correctly set. The one
by which we have to replace it, in order to satisfy this condition is,
as we have already said in Book I, a mized problem.

The theory of such mixed problems is now by itself an extensive
subject whith, as a whole, will not be developed here. It is classically
treated for the most usual case of cylindrical domains such as spoken
of in Book I, § 25, by the method of “ fundamental functions” and was,
indeed, the very origin of that method, as the notion of “fundamental
tunctions” arose from Schwarz’s, Picard’s and Poincare’s papers on
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the vibrations of a membrane*. Several works of some of our best
known geometerst were devoted to the extension and improvement
of the original ideas of the aforesaid authors, until they culminated
in Iredholm’s theory, and also the application of this theory to
our problem}. On the other hand, a qnite different series of methods||
more nearly connected with our above considerations have been
applied to the same problem in more recent times by. Volterra,
Goursat, Picard, etc.T and by ourselves**.

We shall content ourselves by treating ‘the simple case of the
plane boundaryt+t, alluded to above, which is done very easily by a
mcthod belonging to the second class which we have just mentioned,
and which is deduced from the well-known method of images in the
potential theory. The device applies as well to (e,) as to (e;): let us
develop 1t for the latter equation (whose theory, as we know, implies
that of (e,)). The problem is to find « defined by

du 0w | Pu Pu

(3 2 Vgt o Toe =0

and the definite conditions
(Cy) =1y (2, vy, 2); %—; =wu,(z,y,2) (fort=0,2>0);
(Cy) wu=u(y, 2 t) (forz=0,t>0),

* Schwarz, Acta Soc. Fennicae, 1885 ; Picard, C. R. Ac. Sc.,, 16 Oet. 1893 ;
Poincaré, American Journal, Vol. x11, 1890 ; C. R. Ac. Sec., Vol. cxvii, 1894, p. 447 ;
Rendie. Cire. Mat. Palerino, Vol. viii, 1894, t Le Roy, Stekloff, etc.

1 See, for instance, Laurieella, Ann. di Mat., series 3, Vol. x1v, 1907, pp. 143ff.

|| On the comparison between them, see Volterra’s Lecture at the Inter-
national Congress of Mathematicians at Strasbourg, Sept. 1920.

9 We indicate, amongst others, the works of Heaviside, Picone, those of
Zuremba, some of whose results were found again later on by Rubinowicz; also
recent papers of Tedone, Webster, etc.

% Bull. Soc. Math. France, Vol. xxxi, 1903 ; Intern. Congress of Mathe-
maticians, Strasbourg, 1920.

tt Contrary to Cauchy’s problem, the shape of the boundary in the mixed
problem (we mean that part of the boundary which does not bear Cauchy’s data)
has a very deep influence on the nature of the problem. Thus, for the caseof two
independent variables, the problem of the electric cable with a sliding contact

(§ 24a) will roquire quite difterent calculations for different laws of motion of
the contact.



CH. I] IN 2m, VARIABLES 249

it being understood that the given quantities on the right-hand sides

satisfy
(42) uO (0) y: Z) =u (y) Z) O))
0
(43) u (0, y, 2) = ai; v, 2, 0).

If the retrograde half-conoid from a, limited to ¢=0, does not
meet £ =0 (mixed dotted cone in fig. 29), u is given by Poisson’s
formula.

: du ou
In the contrary case, if we know the values of —— = o along =0,

dn

we should have formula (35)
(44) dau,=1,+1,,

where I, is the first line on the right-hand side in (35), constituted
by a part of each of Poisson’s integrals (viz. the part relating to that
part o of the sphere & with radius ¢, which lies on the positive side
of # = 0) and I, is Kirchhoff’s integral over  =0:

al
ET r rdn ot an ]

oy du ou
u b — e
1 being equal to dn e
There remains to eliminate these values of @, in the latter integral.
We obtain this by introducing the point a (-, ¥, 2,), Symmetrical

Fig. 29.
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to « with respect to #=0. Let I be the part of the characteristic
conoid (we still mean the retrograde half-conoid with vertex a’) which
lies in our useful region >0, ¢>0; o, the trace of IV on t=0 (a
portion of spherical surface in ordinary space)*: the sum

at
‘ . 4, ldrou '—Zl>
I+ I =1 + <7_'rdn8t+udn deo

analogous to the right-hand side of (44), but in which we start from
point ¢’ instead of e—so that we introduce

¥ =M@=+ (Y —y) + (2 — 2
instead of r—and, moreover, I,' relates to @ and no longer to @, is
zero, as the corresponding domain of integration does not include the
vertex «' (see § 146). Such a sum can therefore be subtracted from
(44), and this combination
w=I,+1,—-1'-1,

18 the required ome. For, the values of r and +’ being equal to each
other at every point of z =0, the terms in u, disappear in the differ-
ence I,—1,.

The other terms in I, — I, duplicate each other, as the values of

it d
- and v along z= 0 are opposite : so that+

1 1 ( 1dr 0a d %)
4 " ——

(45) cc,,=+'7r(]l—ll)-+2—7rJg, J, = —;%ét-}—ufd—n dw.

* The accompanying diagram (fig. 29) (which would be a complete diagram
for (e.)) represents the projection of the true 4-dimensional diagram on to the
(., ¥, t)-space.

t Any “non duly inclined ” plane S’ can be treated in the same way (whether
normal or oblique to ¢=0), because we know that (e3) can be transformed into
itsclf by a linear transformation on.z, y, z, ¢ such that .S’ becomes parallel to the
new ¢-axis. In the non-transformed space, the cone I would have the same
intersection with S’ as I, the line which joins the two vertices being transversal
to 8’ and divided by & into two equal parts.

We only mention bricfly Volterra’s important remarks (London Proceedings,

1904, and Stockholm Lectures) on the quite special behaviour of this method of
images in the hyperbolic case.
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I, -1 is a double integral relating to a system of two spherical
zones (of one base). It can be expressed more simply by supposing
fictitiously that the values of w, and u, on the negative side of our
plane ¢=0 (i.e. relating to ¢t =0, # < 0) are respectively opposite to
the corresponding values on the positive side : viz,

(46) w (—x, y, 2) =—u;(x, ¥, 2) (¢=0,1),
by means of which I,— I, is expressed by double integrals extended
over the whole surface of the sphere o, and quite similar to the right-
hand side of Poisson’s formula.

We however must observe that the values of u, and u, thus intro-
duced in the integrand are discontinuous on z=0 if they do not
vanish there. It may be convenient to remove this discontinuity by
separating the terms which correspond to the values of u, and w, for
x =0, 1.e. setting down

47) uy(z, y, 2)=u(y, 2, 0)+ U, (x, y, 2),
w (x, y, 2) = (;:) + U, (2, v, z).

157. The verification of this solution is, as usual, necessary.

There is no difficulty as concerns the partial differential equation:
for it is satisfied * by 1, + I,and also (as the equation does not change
by changing « into — ) by I,' + I,

As to Cauchy’s conditions, there is no difference between the
present problem and Poisson’s question, the solution being simply
given by Poisson’s formula in the neighbourhood of ¢ = 0.

Let us now suppose that the point (x,, ¥,, 2, f,) reaches the plane
= 0. Poisson-like terms I, — I, disappear, as becoming exactly equal
except for sign. The term 2 f f 1 dr au dw in which %ﬁ 1s finite, be-

haves like the potential of a s1mple layer, and therefore is continuous
and assumes the value zero; the remaining term

I

* The argument in Book I1I, §§ 115, 116, remains valid when § is bounded
by an outline and, therefore, also when it consists of two different parts, as happens
in the present instance. .
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behaves like the potential of a double layer, and therefore (the inte-
grand being identically zero when a assumes its limiting position P)
becomes, as is well known, equal to 4mup: which is also, therefore,
the limiting value of 47ru,.

The proof 1s apparently complete. In reality it 1s not, for we have
to ascertain that v and its first derivatives are continuous on the
plane  — ¢ (which is the characteristic through the edge common to
both parts of S): else we should have constructed a solution satisfy-
ing (C;) and a solution satisfying (C;), but not one solution satisfying
both.

In each of the regions 1 (¢ <) and 2 (¢ > «) into which our domain
1s divided by the characteristic plane « —¢, each of the terms of the
solution 1s continuous, as well as 1ts derivatives, 1f such 1s the case
for w,, u;, u themselves. The derivatives of I,, [, in 1 are expressed
as stated in §28. In 2, let us express M, (u,) and M, (u,) (notation
of § 28) by means of the quantities

48) My (z, p)= iw J{J 1y (z, Yo+ p COS P, 2+ p Sin @) dp,
& [

2r
M (, p)=§1;j0 w( ) ds,

which respectively denote the average values of u, and w, along the
circumference which has its plane parallel to =0, its centre at
(, Yo, 20) and its radius equal to p. These integrals give MM (u,)
and M, (u,) as

1 __
2[_]/!o(wo—?\to,tox/l—?\?)dk, %f AL () dN,

A
and M, (ciu@\’ as 5 f d. a;/;éd
1, 1 o

where %‘— is given by (33), §153.

In 2, the corresponding quantities, account being taken of our
fictitious distribution for negative values of «, will be

(49) Mu,<u.->=§[ [ mCran=[1, =01) (,=5)
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Similarly, with the values of u, we shall construct the average
value /’(z, p) of u along the circumference with centre (0, ¥,, 2,) and

radius p, and we shall easily get, for Jz, the value

1 - (Y[ o, {cﬂrx/l-v 2, 04"
(50) -2~;J2—f'\o[z/t/<to—x, =)+ % at]dx.

Now, each term of u, and the first derivatives of each of these
terms, will be continuous in 2 as well as in 1. Moreover, when passing
from 1 to 2, the continnity of u subsists, because the new terms which
appear 1n it (viz., integrals from A, to 1) begin by being infinitesimal.

But such is not the case for the derivatives with respect to*
z, and t,. Taking for instance the latter, it is clear that the differ-
entiation of (49), with respect to ¢, introduces not only differentia-
tions under the integral sign (the result of which varies continuously
when ¢, — x, passes through zero) but also limiting terms corresponding
to the dependence of A, on ¢,,and which duplicate each other, giving+

n 1
(51) - tﬂ [t U; 0, 9o, 20) + U] = — p (totat 10).
(4]

The corresponding term for (49°) is zerot, and we see that 7,+ [’
has a discontinuous derivative with respect to t, (or similarly with
respect to z,), the discontinuity being given by (51).

But this discontinuity i1s exactly compensated by another one

0,
relating to 1Ak which 1s 01in 1 and assumes in 2 (as seen from (50))

2w 0t
Lo | 4 oV
z [dt o, 0)+xo<at )] .

the initial value

158. We shall use this solution of the mixed problem for a plane
boundary in the study of a question which occurred to us in Book I,
§ 27, concerning Cauchy’s problem with respect to (e;) and to =0,

e

? a,nd beha,\e like u itself.

t For p= O the quantity Z; (z, p) is evidently equal to the corresponding
value of u; (x, ¥y, 2;) and the function #; being assumed to be differentiable in 7 2o

and z, the derivative e is zero. (A; is an even function of p, as is seen
from (48).)
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that is, the problem of finding u(z, y, 2, t) such that (w being still

taken = 1)
0'u 0w  u Ou_

(&) ot oy T o2 " o0 =
and that
(52) w=u,(y, 2, 0), %} =u, (y, 2,t), forx=0,

or the corresponding problem for (e,), that is, to find u (z, y, t) such that

0w  0u O*u _

(e) ot 3y o
and that
(52" u=1,(z, vy, t), g% =u, (y, t), forz=0.

We have seen that there exists no solution in general; and there-
fore, as in §§15a, 16 for V2 =0, or for the equation of heat, the
question arises to find for what values of u, and u, the solution will
exist.

A very simple sufficient condition has been found by Volterra*:
viz. the solution will certainly exist if u, and «, be analytic in y, z (for
equation (eg)) or in y (for equation (e,)), no matter in what (regular)
manner they depend on ¢.

To see this, we have only to remark that our differential equations
do not change by changing « into #¢ and ¢ into <.

If, therefore, reasoning on (e;), we write down the expression

1 @ o C :
I om [@ffu,(y + 1 sin @ cos ¢, z + 2 sin @sin b, ¢ + « cosf) sin dbdd)
this will again satisfy the differential equation (the verification of
this fact being still valid in this new case if we take it under the form

which we gave in Book II, § 28a). The same is also true, of course, for

zffu, (y+1xsin @cos ¢, z+ wxsin sin ¢, ¢+ 2 cos €) sin d0d,
and the sum of these two terms will satisfy the boundary conditions
if we take for u, and u, the data (52) of the problem.

All this, of course, assumes u, and «, to be analytic in y, z, because
imaginary values of the latter are introduced.

* This is equivalent to the argument in his paper in Rivista di Matematica,
t. 1v, 1894, pp. 1—14.
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A quite similar argument holds for the problem relative to (e,)
if we treat formula (1’), Book II, § 30, integrating this equation, as
we just now treated Poisson’s formula.

159. Can we now find a system of necessary and sufficient con-
ditions? An answer, though a very imperfect one, 1s afforded by the
above solution of the mixed problem, as we showed at Volterra’s
Seminary in Rome in 1916 *.

As we have done in preceding examples, we take u, as arbitrarily
given beforehand, and try to find the most general admissible form of
u, by finding the most general form of the solution . This can be done
by considering u as being the solution of our mixed problem, i.e. as
being defined by the conditions of §156 in which, only, instead of
the initial plane ¢ =0, we take a suitably chosen parallel plane ¢ =6
to bear Cauchy’s data, so that (also reversing the notation for the
data) we write
ou
= =
w=1u, (Y, 2, t), for z=0,t>6.

u =1, (z, Yy, 2), u,(z,y,2), fort=0,2>0,

The quantity 0 is arbitrary: we can therefore admit that it belongs
to an interval of values of ¢ for which w,1s regular, or even that it lies
arbitrarily near to the values of ¢ which we especially consider.
As found above, (45) gives (notation of § 157)
du,

1 - , " i i
U=g— Jo+ Mo (W) + (8 — 0) Lﬂ[to-" (d_r) + My (W) ] ’

of which we have to take the derivative with respect to # for =0, if
we want to obtain an expression of w,.

Again proceeding as in Book I, §§15a, 16, we observe that the
first term, which is the only one depending on the given function wu,,
will lead us to ome of the possible solutions: we do not take any
special care of its form and shall submit it to no further trans-
formation.

Under the above form, however, the remaining terms are not com-
pletely independent of u, as w, and u, are subject to conditions (42),

* The principle of the calculation in § 160 was given in 1901 at Princeton
(see Princeton University Bulletin, Vol. x111, 1902). -
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(43). We avoid this inconvenience by means of the transformation

(47) (§156), writing

a
uO (.’13, ,?/, Z) = uo (!/, Z, 0) + Uo ((13, ?/, Z), ul(xy 3/: Z) = al;o (.%Z;O)‘*’ Ul(x’ys Z)>
U, and U, vanishing with z. The terms obtained when replacing

u, and u, by v, (¥, z,0) and ?ai;f’(y, z, 0) shall be considered as making

a whole with 1 Js.
2

We investigate the remaining part

(53) w'= JWto-e (Uo) + (t,— 0) |‘]‘_[t(,—e (a:l_lio) + ﬂ_[to—o ( Ul)] »

in which U, and U, vanish for =0, and which represents the

most general expression of a solution of (e;) the values of which
for =0 are everywhere zero. On that same hyperplane z=0,
we have to write down the value u, of the differential coefficient

(7).

It is easily seen (by combining with each other the corresponding
elements of the two spherical surfaces along which the M’s are taken;
we mean, elements which have the same projection on z = 0) that—
taking account of the assumed conditions U, (0,y, z)= U, (0,y,2)— 0
—the derivative in question is*

(53) = (%z;)m
aU,

= I s (U) + (t— 6) [M’to_e ( : d;-) N Ul’)] ,

the average values A’ being now taken over the hemisphere o (centre
(0, y, 2), radius ¢,— ) which is situated in the region of positive «’s,
and Uy, U, denoting the derivatives of U,, U, with respect to x (for
any positive z). We immediately observe that these are arbitrary
functions of , y, z, any choice of Uy, for instance, giving

U, =fz U dz.
0

* If we had operated with u, and u;, and not with U, and 0, ie. with
functions not vanishing with z, the formula would have contained complementary
terms introducing the average values of these functions on the limiting cirele of
the hemisphere.
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If, conversely, u," is given, the problem of finding w is reduced to
the determination of Uy, U/, that is to solvzing equation (53’).

160. This can be done, at least theoretically, by the following
method. In the first place, it is easy to separate the two terms on the
right-hand side of (53"). For, setting down ¢, — 0’ —t’, one of them is
evidently even*, and the other odd, in ¢, so that we can determine
separately U," and U, by |

(58) L[ (U= 3w 0.7 0+8) +u (03,2, 6£)],
which is equivalent to

]- ¢ 4 4 ’ ’

(55) tM'y (Us)=75 f. [w' (0, 9,2 0+¢)+u’ (0, y,z2 0 —t)]dt
and = W(y,2t),

(35) tMy(U)=3[w' (v,2,0 +t)— ) (y,2,0 = )] = W, (y, 2,t).

Each of them needs only to be considered for positive ¢ and is a
special case of an integral equation of the first kind.

The unknown quantities U,” and U, being required only to be
continuous, we shall multiply by ¢'d¢’ and integrate from O to ¢. The
result (which we, of course, only write for U/, as the two equations
(54) and (55’) are entirely similar) is

¢ ¢
[Cewar=["var.wyar,
0 0
1
2z JJ

and the right-hand side represents the integral J[ Uy dzdydz

throughout the ¢nside of the hemisphere.

Now, the principle of our argument will consist in observing that
the latter integral admits of a derivative with respect to each of the
variables ¥ and z, without any assumption as to U, other than con-
tinuity. For, if the centre (0, ¥,, 2,) of our hemisphere be displaced
parallel to the y-axis by dy, the new
spherical surface will in the neigh-
bourhood of any point M (see fig. 30,
which is a plane section of the space :
diagram) be normally displaced by l/

ya 1
Yos%0 Yordyyzg

—Y
Y=gy, Fig 30.

t '
* Compare formula (48), § 157.

dy cos (n, y) =
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and the new volume will differ from the original one by (positive or
negative) cylindrical elements, each of which has Y ;;i/g dy for its

height and ¢2dQ for its base, (dQ2 =sin 8d0d¢), giving a term

t(y—1y,) U/dQ
in the integral. Thus

1 0 , _ o0 [t N 74
(56) %@Uf U, dwdydz—ayofot W (30, 20, ') dt

t / P YE ’
=%[f(y—yo) UO dQ=tMt'[(y_:’/o) UO]’

with a similar expression for the derivative with respect to z,.

161. Let us now define the two operators &, and ¥, by the
equalities ~
G, = i/t’t'qn( atydt, 6d=2 [t t) dt':
y - dy 0 Y 2, ’ z —dZ o (y,Z, ) :
we see that

CoW=tMy[(y—y) U'], C.,,W=t'My[(z—2) U]
But we can operate on (56) as we did on U, itself. Therefore,

©*, W must exist, as well as &, &, W (the latter being equal to
C2 Gy, W), and will give the values of

UMy [(y =9l U], ¢3¢ [(y —y0) (2= 2) Us')
To this we can again apply our operators ¢, ©,, and we see that
we can do so any number of times, be the given function u,” indefinitely

differentiable or not (the latter being, of course, the general case when
U, only admits of derivatives to a certain order). We have

(57) T (Yo> 20, ') = %)hyo%ak% W=tM;,[(y- .%)h (z — 2 ¥ Uy ).
We can say that this enables us to obtain the value of any
double integral such as ¢’ [P (y, z) U], where P is any polynomial,

as I’ can be expanded in powers of (¥ —y,), (z —2,). For instance,
denoting by y,, 2z, another system of values of y, z, the quantity

W =y) (e — 2t U,/
can be written in the form

SAhl:mn (y - .%)’" (Z - Zl)n Uol;
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so that its average value on a new hemisphere o, with its centre at
(y1, z,) and its radius equal to ¢,’ can also be found by such an ex-
presslon as *

/ 1 ’
(58) T’h,k (yo: Zy; Yy 21,0 ) = 7 EAhkmnTmn (3/1: 2y, 4').

161 @. There remains to determine U, by means of (57) (or (58)):
a kind of “problem of moments” whose solution, if existent, can be
obtained by known methods. For instance, we only have to consider
such an integral as

Ej '.fg—Kz[(ll ~¥0)%+(2-20)%] Uo' (E’ Y, z) t2dQ)
T
K 2(htk+1)

= 2t’2(—1)h+k 7{‘,"70—!" T2h,2k(y0720)tl)
extended to our original hemisphere ¢ —so that & denotes

VR — (y =y — (2 — 2)", —

which, for K = «o, approaches the limit U{ (¢, y,, 2,),—or* a similar
expression formed with the 7";’s and approaching

\/t1,2 - (?/o - .%)2 - (Zo - 21)2 U;)/ [\/tllz; (yo _'}/;)é - 7'(207':“;52, Yo Zo]-

We thus have a series of operations which must give us the so-
lution Uy, if any one exists. Of course, we should have to ascertain
that this is the case, i.e. that the values of U, found in this way
actually satisfy the given equation (55): so that a system of neces-
sary (and sufficient) conditions which u,” must satisfy in order that
U, should exist is the following:

(a) The function W (y,2,t') deduced from w, by (55") can be sub-
Jected to the operations ©,, €, any number of times 1n any order (these
operations being even permutable); and the same applies to W;

* We also can consider the quantity
M, { ¥ 7%)2;2_ (z— ZO)Z:Im Uo'} ’
which we again can express under the form 3 By, T} and whose quotient by
M, G “3/0)2+(Z-Zo)2}m
1 %
has also the limit U," when the index m becomes infinite.
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(b) The result Tne (or T"y) must be such that

htk K2(h+k+l) '
2&20 2 ('— 1) T h‘ 1\7’ TZh,?JG (,_Q/O: 2y, ‘1’0))

(or a suitable analogous combination with 7") approaches a limit for
K=ow; .
(¢c) Ths limit Uy (20, Yo, 20) must satisfy (55).

162. A quite similar treatment can be applied to the correspond-
ing problem for (e,). It is clear that, the data being the values u, =0

and ," (v, t) of » and M forz= 0,our above equation (55) would have

ox
to be replaced (notation of § 30, Book II) by

W=tu (UY),
that 1s

.1 U/ (z,y) dzdy
W (yo t) = 77[/{35;0, 24 (Y - 9o)2 &L ViR —a? — (Y= o)
B lf*[ Uy (p sin ¢, .%+p008¢)Pde¢>
o Vi — g P
from which again we, in the first place, deduce the value of the average

my (U7) = ;‘_r f 0 U/ (tsin ¢, go + ¢ cos B) dep.

The only new feature characterising this case is that such a deduc-
tion is to be done by solving Abel’s integral equation, viz.
t W(y, t)ta ’)t dt
tat ViT— g

This being done, we should have to proceed as in the preceding
case and should obtain quite similar conclusions.

(55a) mt (U,)=

163. The problem, in one case or the other, is thus solved, though
“very little” in the sense of Poincare, on account of the complicated
nature of our conditions and of the fact that, for instance, we cannot
even say whether (¢) is distinet from (a) and (b) or a consequence of
them.

Moreover, these conditions introduce the variable ¢ in a réle quite
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different from that which is played by the other variables; and this
ought not to be: for our problem is evidently invariant for Lorenz’s
group or, more exactly, the sub-group of it which leaves « invariant,—
for (e,) for instance, the well-known group
y'=yCha+tSha,
{t' =ySha+tCha.
It is clear that it would be desirable to write our solution in
a form which would also be invariant for such a group: this would be
the case if it would introduce the variations of «," not along parallels
to the axes of the coordinate planes, but along the bicharacteristics.
Our results in Book I, § 27, show us that our integral equation
(55) or (55a) has no solution when w%," is independent of ¢ and not
analytic in the other variables; Volterra’s result shows us that it
always has one when u,” is analytic in the variable or variables other
than ¢. All this, of course, could be put in other more general forms
by using the aforesaid sub-group of Lorenz’s group.

(a, arbitrary parameter).



CHAPTER 1II

OTHER APPLICATIONS OF THE PRINCIPLE OF DESCENT

1. DESCENT FROM m EVEN TO m ODD

164. We have obtained the solution of our problem with an even
number of independent variables by deducing it from the correspond-
ing result in the case of m odd, i.e., from our formule given in
Book III. Could the reverse be done? Can our present formulee
lead (by means of descent) to solutions for the case of m odd? We
shall now see that this is possible, and even that the solution thus ob-
tained is more advantageous, in some respects, than the previous one.

We apply our method of descent in the same way as before,
starting from fig. 23, p. 219, and the comparative study of equations
(E) and (E’), with the only difference that m will now be an odd
number, which we can still write m = 2m, + 1, if, in our above formule,
we change m, to m; +1. Also the relation

I'=T—(z—c)

(in which we shall again assume ¢ to be zero) will subsist. But,
instead of formula (39) given in Book III, we now start from formula
(28) or (28 @) of the present Book, which we shall apply to (E'): we,
therefore, introduce the two functions corresponding to %/ and V.
One will be a power series in I

(59) Y = EO Vs D = SV 0 (D = 21,

the other a polynomial, of degree m,—1 (on account of our above
observation concerning m,) in the same quantity

m, ~1
(60) V=2 VyT'"=ZVy ([ -2,
0

the cocfficients V3" being, in both cases, functions of the variables «.
Let us now consider a solution « of (E), which we again take as
a solution of (E’) not depending on z. If it is determined by Cauchy’s
data on S’—or, which is the same, on S—it will be given by
formula (28) or (28 a) of the preceding chapter, in which
(1) m, has to be changed into m,+1;
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(2) T has to be replaced by I''; V and %) by the above expressions
V' and %'

(3) T, S, 7, o have to be replaced by the corresponding varieties
T, 8, 7, o’ relating to the problem in E.,;

(4) dz,dz, ... dz,,dS, dS, have to be multiplied by dz, while dr./,
do, are deduced from them as explained above ;

(5) a [1s to be written* after each §§S or §S, and will repre-
sent the integration with respect to z.

We only have to illustrate the influence of the latter operatlon.
The treatment of the first two terms is obvious. The §SS/, for
instance, will be written

(61) SSSSfdzdz,... dxmf@'d—z
= §SS fdnds, ... dx, f [EV i (T — 2] de.

As the integration [ has to be performed from —#T to + T,
and

T — 22 dg = k4 k41 e
—-\’P( Z) z B( + ’2> (k+1)(/'k+1,

this introduces the quantity (no longer containing z)

f +4/T [e+

1
B v k+}
where the arbitrary numerical coefficient 1 shall be disposed of
presently.
Thus (61) becomes 1§SS fv.dz.dz, ... dz,, and similarly, in the
second term of (28), we have to replace % byt 1v,.

* Another symbol would, strictly speaking, be necessary for the integrals
which are differentiated with respect toy. In order not to complicate notations,
we simply denote them by SSS and SS (instead of SS and S) as they will be
finally expressed (see the following text) by space and surface integrals respec-
tively.

t No special difficulty arises from the presence of the derivative %, as the

differentiation is evidently permutable with our integrations.
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164 «. Let us come to the remaining terms, in which we have
to differentiate with respect to . Before that differentiation, 7, for
example, will belong to a kind of hyperboloid of two sheets, so that
the point (), 25, ..., ;) has to vary inside the domain 7) enclosed
between I'=r and S, a kind of hyperbola (the seetion of the hyper-
boloid in question), each position of 1t giving on 7 two values of z

z=+NT —y.

By its definition, dr,” will be such that its produet by dry repre-
sents the volume of the portion of the (m + 1)-dimensional space
enclosed between two consecutive surfaces IV =const. in any ele-
mentary eylinder through the element in question (fig. 31). If we

Fig. 31.

take the eylinder parallel to the z-axis, the volume will be equal to
the cross-section (that is, the projection on to K, ie. dz, dx, ... dz,,)
multiplied by the segment dz intercepted on the generatrix. Thus
ol _dz,...dzm _dm...dz,

oz | 2|z| 2‘/?___7 ’

which allows us to express the first integral subject to differentiation
relative to . V' being given by (60), in which I'—2* has to be
replaced by v, this integral becomes (the denominator disappearing

on account of the presence of two elements dr with the same pro-
jection on to E,,)
o I"r;; Wh;

(63) SSS fV'dr,=88Ss,f J
—q k=0

where T', 1s again the portion of 7' such that T'>+.

dr, =dz, ... dT,:

dz, ... day ™1
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By a quite similar argument we have to take, in the other integrals
subject to differentiation,

ds

2T — "
We can also apply this without essential modification to the
integrals in the last line of the formula if we take it in the

4
do, =

form (28 @) (and besides note that the symbols El% and dii; are per-

mutable). Finally, we have

. - 2™
(64) (—1)y=mH mua
=—-1[SSSr fodz, ... dzy, + SS., ¥ (w1 + L) dS]

1 dm-1 2V
¥ (= 1)} T, g [SSSTf RV e

V "yt
+SSs ('ul + Lu,) dS J

-
1 dm-1 d EV
—1)! doym—? dv S$8s,m h_'y,),
ThlS new formula is, as can be seen, quite of the same appearance

.as the classic formula of Volterra (to which it easily reduces when
applied to (e,)), and contains no symbol which is not classic in analysis.
But it combines this advantage with an entire generality, as we know
that such a formula exists for any (as yet analytic) equation.

v SS uo'vzdS

165. How this same formula could again lead to our former solu-
tion is easy to recognize. We simply have to perform the differentiation
with respect to . As the integrand is of a fractional order in the
neighbourhood of =0, no boundary term is to be introduced; but,
on the other hand, the use of our symbol |  is necessary: with the

help of it we can simply differentiate under §§S or §§: 1n other
words, replace ;/—fi__m SViy* by its (m, —1)th derivative*, so that
-

we find, e.g.

1 m, -1
(m, - 1)' c;%ymn -i(7=0) I:SSS j; (2 Vh/ h) dwl dxm]

=1/8SS v fdz, ... dz,,

* This, however, is not valid in the vicinity of @, for which a limiting process
is to be used as said in Book III, § 1086.
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v, being given by

1 dmty 1
= 3V, wh
69) =gy g 1 (T S )

e m=h=%) Vi ™Gt - W
m, —h — Lyl T ~h 4 '6 R Pma““hu 3

The same treatment applying to every term in (64), we evidently
find the very formula (39) in Book III, § 105, with

m—1 Vh’
(65) lw=1(v,—n)= }EO Com-n—1 f“;n;h 1
s 1 Vlmr;”k]:‘\ k%"%, .

im0 (B4 1) Cips
V is thus deduced from the functions V' and 4’ as we have already
shown in Book II, § 70, the numerical ratios of corresponding co-
efficients in (59), (60), and in (65’) being of course in agreement*
with the values found at the aforesaid place if, for the numerical
coefficient 1, we take the value

1= Cm,-nl .

But as we see the relation between v"and v can also be expressed
by formule (62), (65) as, in the former case of m even, it was by

(3): (3)-

2. PROPERTIES OF THE COEFFICIENTS IN THE ELEMENTARY SOLUTION

166. The importance of the elementary solution in our theory is
obviously due to its essential connection with the equation itself,
evidently resulting from the fact that a given linear partial differ-
ential equation of the second order with an odd number of independent,
variables admits of one perfectly determinate elementary solution
and that, similarly, to a given equation with an even number of
variables corresponds one function V and one function 9. This pro-
perty immediately shows us, for instance, how the solution in question
would behave towards some simple transformations, such as changing
variables.

* The verification is immediate with the help of the relation (§ 99) between
Q'Jnu a'nd Q'J”h -1-
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To what extent does this character also belong to the operations
by which this solution « has been constructed in the above,i.e. to the
single terms of its expansion? Such a question is of interest as to
the value of our method for the calculation of u: the closer the con-
nection these individual terms have with our problem itself, the more
natural this method will be.

The connection is, this time, a looser one than 1t was as to the
final value of the quantity w, although in the aforesaid expansion
(taking, for instance, m odd)

1
u=— ,(Up+ BT+ ...+ U Th 4 ..),
r 2

the coefficients U} themselves are perfectly determinate in terms of
the «, @ when the expressions of the coefficients are known. We can
easily foresee that the U’s will, like u itself, keep their values except
for a simple factor* when changing independent variables, because in
such a punctual transformation our geodesics, such as introduced in
Book IT, § 55, and, therefore, I' also remain unaltered. But the case
would be different if we should change unknown by setting down

U= (L1, Loy oeey Tpy) Uy,

or even if we should simply multiply the left-hand side ¥ (u) by a
given quantity (viz. a given function of the #’s). Either of these two
operations again brings no other change in the elementary solution
than multiplication by a simple factor: but the change in each indi-
vidual U}, is much more complicated, as such operations, altering the
characteristic form A, also profoundly modify the geodesics and con-
sequently the quantity T

We can only see what would happen by a suitable combination
of these two operations, viz. by substituting for .# (z) the new dif-
ferential polynomial

& (u) = ,—IL F (),

* This factor occurs only on account of the presence of the factor ILT
A
in our formule of § 63.
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the adjoint of which is (as immediately appears by considering the
adjoint as defined by identity (5), § 37) &, (v)=pud (-). This pre-

serves the values of the Ay’s (and therefore T'). As to the B’s, it will

be easily found, if we set down
ov

=eV Poo=
/" ’ ] @wi,

: .04
that each of them is augmented by the corresponding value of 'g’;

(the explicit calculation of C not being necessary for our purpose), so
that the new value of M becomes

: oA o' _ 0A _ dv

(notation of Book IT). Therefore U, will be multiplied by the quantity

."s dy .
Moz

L ) after
VAl
which the successive equations (42'), (44") show us that such will be
the case for each Uj.

(in which we have taken account of the initial factor

167. But another test of the intimate connection of the coef-
ficients U, with the question lies in the result obtained in § 114,
and extended (§146) to even mv’s.

We have seen that our elementary solution admits of the inter-
change property, ie. does not change its numerical value when we
simultaneously exchange the two points # and a and the two mu-
tually adjoint polynomials & (u) and & (v).

As (for m odd)

and I' is symmetrical with respect to # and a, the same can be said
as to the numerator U.

Can we also assert the same conclusion concerning each coefficient
Uy of the expansion

U=U,+UT+...4+ UIr4 ... 2
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We certainly could if the variables ,, ., ..., n, @, s, ..., @, (0N
which the U,’s depend) and I' were independent. But this is not
the case, so that the conclusion in question is by no means evident.

It becomes so, on the contrary, if we again use our device of
“descent.”

In other words, together with our given differential polynomial

o ou
oY% L sp
w axiawk + 2 : Bwi
—in which, in the first place, we shall assume the number m of inde-

pendent variables to be even—we consider the auxiliary one
ou

F @ =Fw-55,

where z is a supplementary (m + 1)th variable, the two adjoint poly-
nomials respectively being

F(u)=34 + Cu,

*u
7 Z ()= F(v) —
IO W= -5
We know that the new value of T relative to # or " will be
(66) I"=T-(z-c¢)y,
so that the new elementary solution will be
(67) =y = s SO T - (= o,

[T=(z—cy] * [P—(z—cy] * "
the coefficients U, only differing from the corresponding coefficients
U by numerical factors and especially only depending on
Byy Loy ooy Ty Gy, Qs eney Qs

with the exclusion of z and c.

The number (m+ 1) being odd, the quantity (67) and, conse-
quently, its numerator U’ admit of the interchange property, so that

(68) SUTR=3V,/ T
the successive coefficients V} on the right-hand side being calculated
as the corresponding ones in U, but for the exchange: (1) of # with «,
1.e. of z, with a,, z, with a,, etc. (so that, in the calculations of § 62,
x must, In the first place, be considered as fixed and only the a’s as
variable and, e.g. the geodesic paths of integration all issue from the
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same z and end at various points a); (2) of the polynomial & (in
which the independent variables are the «’s) with & (in which the
independent variables are the a’s).

Now, in (68), the (2m+ 1) variables @, ..., Zm, @, ...,am, I' are
independent, because [by equation (66)] I'’ contains a variable (z —c)
which is distinet from @, ..., Zm, @, ..., @m, and does not appear in the

coefficients.

Therefore, (68) must be an identity with respect to I'', and this
gives the required conclusion concerning our equation % (u)=0 at
least for m even.

But a new “descent” will evidently extend it to odd values of m,
as any equation & (u) =0 with an odd number of variables can be

considered as deduced from another one 3(u)—%-;=0 (in which

the number of independent variables is even) whose elementary solu-
tion has the same coefficients except for numerical factors. Our con-
clusion is thus completely proved.

168. Could we, in order to obtain it, replace the above indirect
method by a more direct one, starting from the explicit expression of
the U’s?

This may be considered as a question belonging to the theory of
geodesic lines. Not only, indeed, every equation (E) leads, as we
have seen, to the consideration of geodesic lines, relative to the linear
element H; but, conversely, every linear element H corresponds
to oo linear partial differential equations such as (E). It will be
convenient, after Cotton*, to write the most general homogeneous
equation (E) corresponding to a given H in the form

(69) Au+3 B 24 ru=0,

da:,-

where A, is again the second differential parameter of Lamé, the
expression of which (account being taken of p. 91, first footnote) is

sa=3 (3 aadt) =3 au, Dl v s 2 s 2a],

(s 4,0 . s % s
i Oz \x " Om) @ | OxiOmy  , | 0wk Ok

* Ann. Se. Ee. Norm. Sup™, Vol. xvi1, 1900, pp. 211—244. See also Levi-Civita,
Atti Ist. Veneto, Vol. LxxII, 1913, pp. 1331—1357.
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It is clear that the left-hand member of (69) is of the form

82
& (u) = EA,;,G%:—;‘%+2B,-§—Z+ Cu

and that, convef‘rsely, every differential polynomial such as & (u) can
be written in the form (69), with

T e

Lk

B/=RB,-3 aAik'

Therefore, any question on an arbitrary equation (E) may be
considered as a question concerning a linear element H and a system
of (m + 1) functions B, ..., By, C' of @, ..., zp.

169. In the present case, the difficulty of the question obviously
increases with the order of the term considered.

As concerns the first term U,, the required conclusion can be, as
we shall see, deduced from the formula obtained in § 59 :

A2F=2<1+sdlogJ>

and from properties, now classic, of geodesic lines.
Again considering the differential equations

gﬁ_l oA
ds  20p;’
(L) P

dp; _ _10A

dS— 26:13,;’

of § 55, we know that their general integral depends on 2m arbi-
trary constants u,;, s, «.., Mom.

We also know (see Additional Note to Book II) that, if we start
from any determinate solution of (L) (which corresponds to a deter-
minate system of numerical values of the ps) and consider the

quantities
7, = 0%
(70) | g/"j

l D;= :Bi .

2.
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(j being any subscript from 1 to 2m), these will satisfy the varie-
tional system

(d7; _ 104
dpi_ _104A
\ds_ 28@,,’

which is linear, as A is quadratic in the @’s and 7's.
Each value of 5 in (70) gives a solution of (L) and, as the Jacobian

D(wl, ...,wm pl:"' pm)
P - R
D (,u'l) AR f"'?m)

1s not zero *, the 2m possible values of j give us a fundamental system
of solutions of (L).

These properties belong to any variational equations deduced from
a differential system. But Hamiltonian systems like (L) and their
variational systems (L) possess another important propertyt, which is
that the determinant & s a constant along every determinate line satis-
JSying (L) (in other words, & depends on p,, ..., wey only and not on s).

The geodesics themselves only depend on 2m — 2 parameters; but
each solution of (L) contains two parameters more, viz. the two
quantities @ and B mentioned in § 56, and which therefore we have
to consider as being two of the u s (so that, having written the general
equation of geodesics with (2m —2) parameters, we deduce therefrom
the general integral of (L) by changing s into as + 83).

Coming back to our given equation in the form (69). we begin
by noting that the differential polynomial A,u is identical with its
adjoint polynomial}, as is verified directly without any difficulty, and

* The fundamental theorem of differential equations shows that the p’s can
be chosen so as to give to &y, ..., Tm, Pi»--+» Pm any given values for s=0. The
determinant & is what, in our Legons sur le Calewl des Variations, we have called
the “gencral determinant” of the (2m — 2) solutions of (L), while J is what we
have called the * special determinant.”

t See Poincarc’s Les methodes nouvelles de la Mécanique Celeste, Vol. 111,
§ 254.

} The integral identity which (§§ 36, 37) characterizes adjoint polynomials
is no other than the one which would be deduced from that which defines A,
(see formula (35), § 59) by exchanging the two functions (I' and U in § 59) which
it contains and subtracting.
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as follows from the definition of the symbol A,. Therefore, the adjoint

polynomial of
ou

F(u)= A224+5‘B'a—~+0'
1S
ov aB !
(’“ — ! = !
(v) = A, EB, 3%, + C/v, (C’ C' - aw,)

1.e., 1S deduced from the former by changing the sign of each B’ and
properly changing C".
Coming then to the expression of U,, we have, in the first place, to

T
express the quantity J: by (37), § 56 and — = 2P;=2sp;, we get

0x;
M1 oI’ sd log J
= Z(AI’ sza) 1+ 208 s S By
J is given by formula (30a), § 57 a:
D (@), 5, ., @)

J=

DAy, M, 8)°

in which only the geodesics issuing from a are considered (and not
all geodesics, as above) and are expressed in terms of s and m—1
parameters A.

Let us introduce m new functions of ,, ..., z, by writing

oS Apg, =L A
B; —EA,;GQ&—2B%.

: . M
the last term in the expression of —- thus becomes

-t

1 BN L 8_A dx,
3.254‘1,,‘39“%’;0 5 .:e%’api 2%’
If we recall that
we see that
M M sd log J
2+2p_2_-é~—-m——(m—1) d 32 zd ’

H. 18
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and, therefore,

@

1
Tt 2
(72) U, VA e

1 (3 J
- V) ()

J D
(-J—) denoting the limiting value of par when the point z ap-
0

8 m—1

/M ds
jo ¥ "m) 3

1 rx
2o Brdnck ok Gndom,

proaches a along a determinate geodesic. This limit exists and 1S
different from zero*: we easily find

oz, oz, oz, "
oN O Oy
ox, 0x, ox,
: J 2 2 =2 )
(73) <,5-m—1> =0\ 0N, A “ s
0
0/ Oam
B, B o |

the subscript 0 after the determinant denoting that the values of the
2’s and their derivatives with respect to the A’s are taken for s =0.
We shall write, introducing a condensed notation,

] aaz,;' 890,;’ 8:0,-' ’ !
1 r(x

170. The exponential factor in (72), viz. e 2 ot pos-
sesses the above enunciated interchange property. For, as we have
seen, exchanging the two adjoint polynomials ¥ and &4 corresponds to
a change of signs in the B”s, and, on the other hand, the permutation
of a and « changes the sense of integration in the curvilinear integral

[Bday + ... + Brdam

taken along the geodesic line.
To show the same as to the remaining factor

1 J J
oy Y G )

* This fact is the very condition by which we have chosen the value of the
number p in § 61.

Amd A B drm
b
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we shall transform it with the help of known principles concerning
geodesics *.

If the parameters w,, ..., #om be replaced by 2m other ones
Y, ..., Ve (the latter being functions of the former, and conversely),
the determinant & is evidently multiplied by the Jacobian

D (- -5 fom)
D (v, ..., vam)

(which i1s evidently a constant along each solution of (L)).
We shall now introduce another important determinant*

e D(x,0,..., 2,0 2,0 .. z,0)
L (/1'1: D) /*‘2m)

which, as we shall presently see, is closely connected with the above-
mentioned Jacobian J. The quantities 2,, ...,2,® and ", ..., 2,
are the values assumed by the 2’s in two points of the same geodesic,
corresponding to two different values s, s® of s (the latter being con-
sidered as constants in the differentiations with respect to py, ..., Hem)-

We take s°=0, s® being the value of s which corresponds to z,
so that

(74) :M/=D(a1,...,am, a:l,...,a:m).

| ‘ D(#n---:#m)

S 1s multiplied by the same factor as & if we replace

,u'l: ---:/"'2m by Viy ooy Vzm:
so that the ratio

S

9]
does not depend on the choice of the arbitrary constant parameters
wn terms of which the general solution of (L) s expressed.

Let us accordingly suppose that m of the parameters u are those
which we previously denoted by A4, ..., Am— and a, so that the values
of the a’s for s=0 do not depend on them and remain equal to
@y, - ..,y respectively as long as the other m parameters u,, ..., um
i

remain fixed. The quantltles (z— 1,...m;l=1,...(m—=1)),and — P

* See our Legons sur le Calcul des Variations, § 283.

18—2
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. ox: , o0x-
being zero, we have <as P Sx{ =S8 §> ,
da; Oa;  Oai i O Oy O |
f 5 " Opim 1 PRl LR T
C) == ! ceassscssssssasacs v eeseses é ......... -a .......... 5
D 0T O &; /
0 0...... 0 5)'—1 'a—x? cos akm_l ST; |

which notation must again be interpreted by understanding that each
row stands for m rows obtained by successively taking

’¢.=1; 2)"')m>

and that we have, by dotted lines, separated the m first columns from
the m last ones, and the same for the rows. As m? elements are zero,
such a determinant splits into a product of two determinants of order
m, the second of which is sJ: thus we get
da; Oa; oa; ||
75 =Q.sJ, T
@) ST O o G|
By the same choice of parameters, and taking s =0, the constant
determinant &% becomes (same mode of notation)
0, B o o,

"a,u'l o a#m g a/-“l al-"m

OPio 0 Pio .
0...... 0 2w v Pio

apfg a 8§ . . .« .
(as 32 = 3a ‘:api <E)]s=0_ p.-[,). which again is a product of twofactors

x ) 3Pw aPio
6 — v .
< | o axm_l"p“’ ’

the factor ¢ being the same as in (75). In the second factor, we may
replace each p; by the corresponding

1oA _
2api0_ w s

if we, at the same time, divide by the determinant of this linear sub-
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stitution, 1.e. by A,. But this gives precisely the right-hand side of
(73),1.e. the value of ( .s’%> . Therefore
0

- 1 J
= Q . Kt; (Sm—.I)o,
_ sd

s ae
- (sm—l)o

We thus transform the value (72) of U, into
m e 1 (=
r_3 1Y) il 3san
Us=s \/F .j’! € .

This completes the proof of the enunciated property as concerns U,>
as @ 1s a constant which has therefore the same value at ¢ and at =,
and | _#| obviously possesses the symmetry in question (by (74)).

The same result, as concerns the following coefficients U,, U, ...,
seems to be connected with more complicated properties of geodesics.
It might even, for that reason, prove of interest in the theory of these

lines, as depending on other principles than those which have been
used as yet.

and, on account of (75),

3. TREATMENT OF NON-ANALYTIC EQUATIONS

171. We now return to our elementary solution as a whole. We
succeeded in constructing it (at least for two points « and a sufficiently
near each other) by assuming the coefficients to be analytic. It is
remarkable that, in the first instance (aside from classic cases) which
was given of such a construction—viz. Picard’s work on V2u + Cu =0
(as quoted in our Book IT)—this hypothesis was not wanted. We shall
now see how we may also get rid of it.

Such a result, for the general equation of the elliptic type, has been
obtained independently by E. Elia Levi*—one of the best and most
beautifully gifted of young Italian geometers (he gave his life in the
Great War),—and under a finally equivalent form by Hilbert{. The

* Rendic. Cire. Mat. Palermo, 1907, Vol. xx1v, pp. 2756—317.

t Grundziige einer allg. Theorie der linearen Integralgleichungen, 6th paper
(1910). A first allusion is made at the end of the 5th paper (1906). See also
Fubini, Rendic. Ac. Lincer, 5th series, Vol. xviir (1909), p. 423, to which the
remarks in the text also apply.

&
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method used by both of them consists in forming a first approxima-
tion (Hilbert’s “parametrix”) which does not satisfy the given equation,
but, when substituted in this equation, merely gives a result which,
at the singular point, is only of the first order of infinity. Thanks to
the introduction of this “parametrix,” E. Elia Levi succeeds in form-
ing the elementary solution; Hilbert’s result consists in doing without
the latter, 1.e. making the “parametrix” play the part which usually
belongs to the elementary solution itself. The two questions are really
one,and E. Elia Levi’s analysis is, ultimately, identical with Hilbert’s.
In both cases the problem is reduced to Fredholm’s integral equation
(as 1s also recognized to be the case for Picard’s initial proceeding).

The method, however, wants improvement in order to be applic-
able to the hyperbolic case. The reason of this is that, in E. E. Levi’s
and Hilbert’s case, there is only one real singular point, and we need
not mind how our parametrix or the complementary term behaves
along the imaginary singularity, which in fact is different when con-
sidered in the first approximation (“parametrix”)and in the final result.
In our case of the problem, on the contrary, we must immediately
take account of our characteristic conoid, which 1s real, and our first
approximation itself may not admit of any other singularity than the
conoid 1n question.

Other difficulties seem, at first, to arise from the nature of our
above solutions: for, if m is even, the elementary solution is not well-
determined, and if m is odd, we have to reckon with the peculiar
singularities met with in our expressions, which would require special
precautions in the application of Fredholm’smethod. The fact is that,
in what follows, we only get to the solution by dealing simultaneously
with both cases, thanks to “descent.”

172. The domain of validity in the analytic case. Even before
coming to non-analytic equations, we have, in that line, to answer a
first—and perhaps the most important—part of the question concern-
ing analytic ones.

We must not forget—and this defect is common to all methods
resting on Maclaurin’s series—that ourabove solutions of the problem,
though seemingly complete, are really, as yet, quite insufficient, the
problem being “not enough” solved.
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It was first solved, but “very little,” in Book I, by Cauchy-
Kowalewsky’s argument. The problem is very little solved, not only
because the expression of u is given in a very indirect and complicated
form, but also because the region of validity of this calculation may be
(and generally is) very small and insufficient for our wants. We know
(see Bouk I, § 8) that this always chances to be the case (on account
of the presence of imaginary singularities) when using expressions
involving power series.

We shall see presently that the solutions obtained in the present
Book will be of better use even from that point of view. Nevertheless
again, the existence of the elementary solution (and consequently the
validity of our formula), as a result of the convergence of the series
(43) (Book I1, § 62), have been proved only for a certain domain around
the vertex of our conoid. To what extent this allows us to assert the
existence of the function U, or of the functions U and %, 1s what we
do not know: the radius of convergence of our power series (43) may
be much greater than the lower limit deduced from our previous con-
siderations, and also the functions U, % may exist far beyond the
range where their developments in powers of I' are convergent.

We shall prove (the coefficients being still assumed to be analytic)
not only the existence of the solution throughout the domain of
regularity of the coefficients themselves, which is relatively easy (see
below, § 177), but also (under the further assumption of the ana-
lyticity of f, u,, u,) its analyticity. The corresponding proof, for the
elliptic case, has been given, for instanuce, by E. E. Levi in his above-
cited work. We shall have, however, to modify the method used
in that case in order to apply it to ours*, for reasons of the same
kind as mentioned above (more precisely, on account of the fact that
the domain of integration of the right-hand sides of our formule
depends on a).

To give this proof, we take the case of m even (which does not
limit the generality, thanks to descent) and we make, at least to
begin, a further geometrical assumption, which; strictly speaking, we

* The method which we shall develop presently is utterly different from
E. E. Levi’s and, indeed, as it rests on successive extensions, could not by any

means be applied to the elliptic case: a method corresponding to E. E. Levi’s
will be indicated further on.
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ought not to make, but which is justified in every practical case.
We assume that there exists a one-parameter set of surfaces which
are everywhere duly inclined (and this strictly, 1.e. it will happen
nowhere that one of them is tangent to a characteristic cone, and,
therefore, the angle between any of them and any direction interior
to the cone from one of its points will have a positive minimum):
these surfaces will be analytic (so that, by means of an analytic
change of variables, the corresponding parameter ¢ can be taken as
one of the coordinates, the mth), and one of them, corresponding to
t =0, will be* the surface S, our region & being on the side ¢ > 0.
Every bicharacteristic or interior geodesic—i.e. every geodesic such
that H >0—will, under such assumptions, have a direct and an in-

. dt .
verse sense, the latter corresponding to 7o < 0 (where & is the arc,

' : ) L dt ! .
according to the ordinary meaning of the word), [C% . having even a

positive minimum. We assume the shape of % to be such that any
inverse geodesic issuing from a point of 42 will remain constantly in-
side it for ¢ > 0: then such a geodesic must necessarily reach S. We
suppose the choice of the variable s to have been made on each of
these lines in a determinate and even analytic way: for instance, we
dt
ds
tween two fixed positive limits throughout %. ., will be, in what
follows, synonymous with ¢, and, similarly, a,, with c.

agree that -—=1 for ¢t =0, so that this derivative will remain be-

We shall also (though the necessity of it be not absolute, as we
shall see) admit, concerning Z, our general hypothesis that any two
points « and a within it can be joined to each other by a geodesic in
a perfectly unique and continuous way: in other words, the first
set of equations (29) of § 57 admits of a perfectly determinate
solution for the ¢’s in terms of the # and as. We even suppose that
their Jacobian never vanishes in %. We can, therefore, define normal
variables relating to a; and moreover, on these normal variables,
make a linear substitution (with coefficients functions of the @ s) which

* The influence of the fact that one of the surfaces ¢=const. is the given §, is
merely superficial, as we shall see below, and we have used it principally in order
to simplify notations (especially when resuming the matter in § 189).
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we can even suppose to be a perfectly determinate one and to vary
analytically* with the as, so that the quadratic form I'=H () is
reduced to its canonical form

Iy = §m2 - {:12 522_ cee T fﬁm—x
and also the surface £, =const. through a is tangent, at this point,

agm

to t = const., with 5 < 0. The linear substitution on the normal

variables £ of Lipschitz will concern only the first (m — 1) of them if
we have chosen the variables «# so that the lines #; = const., z,= const.,
..., Tm— = const. are everywhere transversal to the surfaces ¢ = const.
We can suppose that our choice of the 2’s possesses this property, and
even (by means of a suitable transformation on #,, @, ..., Z;,—, alone)
that, for t = 0,
& ag =2 i, ... day.

so that transversal derivatives are no other than derivatives with
respect to ¢: all these transformations being analytic and regular.

£m will also eventually be denoted by the synonymous letter 6.

The £'s can be expressed in terms of 6 and the ratios

_&  _& Em—

=g M= g e Mmm =g

the latter satisfying, for the inside of the conoid, the relation

(76) 2+ + o+ P < L

To every such system of constant values of the »’s will correspond
a determinate (interior or bicharacteristic) geodesic from a. Along

dt

limits, and so does also, therefore, the ratio pprt

any such geodesic, the ratio remains between two fixed positive

* These coefficients being arbitrary to a certain extent, the statement in the
text is true under the assumption that they are calculated in a determinate way,
e.g. by strictly following Lagrange’s classic rule (see Serret’s Algebre superieure,
4th ed. Vol 1, p. 430; Bocher’s Higher Algebra, Ch. x, § 45, p. 131). For the
application of this, we shall always (under the assumption below in the text as
to the choice of variables) be in the general case where the coefficients of the
square terms are different from zero, as, the term in £,2 being abstracted, there
remains a form in £, ..., &,_, which is (negative) definite.
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« being any determinate point within &, we can refer the points
« which are interior altogether to 42 and to the conoid from a, to the
normal variables £ relating to a, but also to =, ..., 79—y, € or to
M, -+, Mm—, b2 Doth latter systems will be equivalent to each other from
our point of view, in the sense that each of them can be expressed
in terms of the other, the expressions being holomorphic on account

df!

of our remark on — .
dt

173. Things being so, we shall show that, if we have in any way
constructed the elements V' and % of the elementary solution for all
possible positions of z and « inside 42 (more exactly, for all positions
of these points satisfying I' (z; a)>0), knowing, moreover, these
quantities to be holomorphic in the #’s and the as, we can assert that
the solution u of Cauchy’s problem (with holomorphic data) relating
to ¢=0 or to ¢ =1¢,> 0, 1s also holomorphic.

We begin by showing this for the first term (in §§8) of (28 a).
Generally speaking, we show that the m-tuple integral

(77) SSS F (2, X, ... Z) dzy do, ... Ay,

(F being holomorphic), extended over the domain included between
the retrograde half conoid from a and the surface .S, is holomorphic
in the a’s. F may even contain not only the z’s, but also the as
themselves and eventually other parameters: if it be holomorphic in
all these quantities, so will be also (77) in the a’s and the parameters.
The fact may be looked at as practically evident; but its explicit
deduction is very simple after the above assumptions and remarks.

It follows from these that the «’s will be holomorphic functions
(throughout &) of #,, ..., 7m—, t. Let K, be their Jacobian (taken so
as to be positive) so that

dz,dz, ... dz,, = K,dy, ... dna_,dt.
The required function will be
(7"7a) SSS F (2, oy ..., Zp) dz, dz, ... dzy,
=SS dndn, ... dn,_. jo K, Fdt,

the integration being carried out with respect to the 9)’s over the real
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domain (76) and with respect to ¢, from the origin to the value ¢
which corresponds to a. As this can be written (since ¢ = Ac)

1
(77 b) ¢SS dn,... dn,_, f K.Fd,
0

integration with respect to A having to be carried out from 0 to 1,
we only want to notice that the integrand is holomorphic, and even
uniformly so*, when expressed in terms of the %’s, A and the as (and,
a fortiori, in terms of the as for any values of the %’s and A\). Its
Taylor expansion, around any determinate position of a and any
system of values of these quantities, corresponding to a determinate
position of # within &, converging uniformly with respect to the %’s
and A, can therefore be integrated term by term, which gives the
conclusion which we have in view: our integral is defined and holo-
morphic throughout .

If we take F =%f, we see that the first term §SS ¥/ dT of (28)
or (28 a) exists and is holomorphic in the region % ; and the other
terms

SS [@) (uy + Lug) — u, %%)] dS

in (28) relating to S, will evidently be treated in the same way with-
out any difficulty (compare below, § 176).

174. No difficulty would occur, either, in the remalning terms
(relating to the surface of the conoid or its edge of intersection with
S), if 1t were not for the first of them,

1 dm,—2 Vd
- 291 ),y S8V
which difficulty, however, will be easily overcome with the help of
§141. We must, however, resume the considerations of that section in
a somewhat more complete form, as we investigate more precisely the
expansion of the integral I, of § 140 in powers of .

As in § 141, we begin by considering the z’s as being expressed

(i5)

* A function which is holomorphicaround every point of a continuous domain
(boundary included) is uniformly holomorphic, i.e. its Taylor expansion admits
of a fixed dominant throughout it, as is seen by a classic argument resting on
Bolzano-Weierstrass’ Lemma.
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in terms of the a’s and the normal variables £ defined in § 172 with
respect to &. We call

KJaé,...dE,=dx, ... dz,

the space element (/) being a Jacobian).

Instead of the variables £ we can (at least in the neighbourhood
of I'=0, which alone interests us) introduce the same angular vari-
ables ¢, ¢z, ..., Pm_, as in § 141, combined with 6 =§&, and «:
expressing in terms of the latter two, the quantity

p =\/El2+ oo F f%_l = ‘\/02—'7;
we see that (same meaning as in § 141 for dQu—s)

dg] e dgm = dgl e dgm_l d@ = épm—a d()m_z de d'y
m—3
=3(2—v) 2 dQ,,—, d0dy.

This expression of the space element gives us a corresponding

expression of the element dr, on a surface = const., viz.
m—3
dry=%4(0—q) * dQuu—,do.

We see, thus, that the value of I, will be obtained by integrating
with respect to the ¢@’s (after multiplication by d{n—), the simple
integral

m-3

(78 a) 3 j'KfV(ee —0) 7 db.

In this integral, we shall take for the lower limit a small positive
quantity e (constant or variable with the a’s and ¢’s), which we begin
by leaving fixed, exactly as we did in § 141. The upper limit will
be the value 8" of 6 corresponding to the point where our line of
integration (l.e., the section of 7 by ¢, =const, ¢,=const., ...,
¢m— = const.) intersects S. Now, we can replace the #’s by their
expressions in terms of the £'s and consequently in terms of the ¢’s,
p and 6, and these expressions will be uniformly holomorphic around
every point within %.

Let us begin by effecting this substitution in the integrand:
F=Kf Vpm—3 (for any determinate choice of the ¢’s) will be written

9+m-3

F(6, p) =F (8, V& =)= 5¢,(0) (@ =) * .
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We shall have to expand this in powers of v, only considering the
terms whose indices have the values 0 to m, — 2. Now,

4

{4-1) - (5101,

% "9;;;'}"...

2

L.

in which we see that a denominator in € only appears for 2k >¢’.
Therefore (as ¢’ =q + 2m, — 3), our integrand, or, more exactly, the
part of it which is at most of degree m, — 2 in v, is of the form

=3 Fy (0) + y0™—3F,(0) + ...
+ @ =s=h F () + ... + ™2 OF,, _,(0),

where the F)’s (which are finite combinations of the first (m, — 2)
partial derivatives of F with respect to p, for p=6: especially,
F,(0) = F (0, 0)) are again uniformly analytic around any point inside
or on the retrograde half conoid from any vertex « within . This,
in the first place, shows that, in the integrand (78 a), the coefficients
of the powers of o from O to m, — 2 are limited in absolute value and
even infinitesimal of the order of 8 and, consequently, in the integral
(78 a) taken from O to ¢, the totality of the corresponding terms will

be at least of the order of e*: which is equivalent to the result found
in § 141.

175. On account of this result, we see that we obtain the required
value by taking O for our lower limit. If we change the variable by
setting down 6 = s’ we find

g2 rt 'm1:2
(79) "Q‘/ \\ z 6/2(’)713—2—}1,) 82m1—3'-2hFh(89'),yh:| ds

0 Lh=0
for integral (78 a), reduced to its terms of degree at most equal to
(m,—2) in «.

Let us also expand in powers of y the upper limit 8, determined
by an equation of the form S (6, p) =0, or (operating as above)

(80) S (6, '\/82—7)=S0(0)+%Sl @) +... + 7 S,(0)+...=0,

G2h—1
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the S,’s in the left-hand side being uniformly holomorphic in the
variables which they contain*,

When =0, this reduces to

(80 a) S (8)=S(0, 6) =0,
the equation which determines the intersection of S with a bicharac-
teristic. For the value 6, of 6 thus obtained, we know that S, (0) is
different from zero and even numerically greater than a fixed positive
constant <. .

Now, let us expand €' in powers of v and see what denominators
6, it containst. In equation (80) which defines €', let us introduce
a new independent variable g and a new unknown % by

(81) =079, 0'=0,(1+9)
so that the expansion of %
(81') 3=931 +92%2+

has its constant term equal to zero. In these new variables, equation
(80), taking account of equation (80 a) for 6,, becomes (one factor 6,
disappearing)

N (90) + 9 Sy (85) + . 5 S [0 +9)]

4T S [ (L + )] + ... + S [6o(1+9)]+...=0.

g
(1 + S.)zh-—-x

But such an equation gives for & an expansion in powers of g, the
coefficients Y, of which obviously admit of fixed dominants, on account
of | Sy (6,)| > s. Therefore, in the expansion of 6 in powers of «, the
term of degree /& may contain the denominator 6,, but with an index

* If S is ¢=0, the left-hand side of (80) is the expression of ¢ in terms of the
¢’s, of 6 and of 5.

The argument in the text applies to any analytic regular surface S, provided
it meets every interior or bicharacteristic geodesic at a finite angle. Upper limits
for the coefficients of the expansion (81’) depend on upper limits for the deri-
vatives of S with respect to the 2’s and a lower limit for | Sy (6,) |

+ This discussion of small §y’s seems not to be absolutely necessary, as we
know, by Cauchy-Kowalewsky’s theorem, under our general assumption of
analyticity, of the existence of a certain limit 7' for |¢| such that, below this
limit, » is certainly holomorphic, so that we could limit ourselves to |¢|>T.
But the behaviour of the term (78) in the neighbourhood of § will be wanted
finally (see § 196).
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not higher than 2h — 1. In other words, we can say that its degree
of homogeneity, with respect to v and 6,2 is > 1.

If, finally, we carry such an expression of 8" into the integrand in
(79), we see that the term in ™2 does not contain any denominator
0,, but, on the contrary, contains 6,2 as a factor, the other factor being
uniformly holomorphic in all the variables which 1t contains, viz. the
¢’s and s: especially, for any determinate system of values of the ¢’s
and s, this factor 1s holomorphic with respect to the a’s around any
position of @ in &%, and this uniformly whatever that position and the
(real) values of ¢, ..., pn—s (between zero and = or zero and 27) and
s (between 0 and 1) may be.

This, integrating with respect to the ¢’s and s, gives the required
proof of analyticity, with the determination of the order of magnitude
of the term in question when 6, is small (i.e. when c is small).

176. Such a proof will allow us not to insist on the treatment of
the other terms (terms with the element of integration dg,) in (28),
this treatment being obviously similar to the above, but easier, inas-
much as the question corresponding to §141 or §174 does not occur.

The only new question concerns the expression of day. A simple
way of obtalning it is, in the relation

dS=da,dy,
to replace dS by dSg, defined by means of the set of surfaces
S = G = arbitr. const.
which we can do if we simultaneously replace m; by g% As we have

written

doydas, .. dom = K s .. dbnos 00 =5 o7 A0, dOdy,
we have (as 1s seen by considering the cylinder having for its bases
two elements of two surfaces S and its lateral surface constituted by
small arcs of lines ¢ = const., y = const.)

K dg
(82) dSG = ) pm_3 d——G de_2dry
and
, K de
(82 ) dO'-y = § ,Om—3 d—G— de_2,
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’

the derivative (dT% being taken along one of the lines in question. As,

by formule (81), (81’), 8" 1s expressed in terms of  and 6, (when con-
sidering the ¢’s as constants), the coefficients being taken from the
expansion of the function S, such a derivative, expanded in powers of

v, will be obtained by means of fjl_g) (the latter being itself deduced
from S, (6,) = G), viz.

dd’” dé, ¥ _(2h— 1) Doyts
4G~ dG {1 gat g
y oY, v 8%,
+00(1+é“02‘a€;+...+02hae +. )}
(the %?;1‘ being uniformly holomorphic in a, ¢, vy, 8,—as the ¥, them-
0

selves are—and, therefore, in @, ¢ and ), so that the factor of dQ,n—
in (82") will be uniformly holomorphic and even infinitesimal of the
first order for small ;.

176 a. The treatment of the terms containing — 1s immediate 1f

dv

we take the formula under the form (28 @). We have only to imagine
that the calculation is not only made concerning S, but also concern-
ing the auxiliary surface S,: the result will be an analytic function,
not only of the variables hitherto mentioned, but of », the differen-
tiation with respect to which therefore gives no difficulty.

Under the special assumptions made in § 172 on the choice of
our variables, the auxiliary surface S, will be ¢ = const.*

177. We have proved, so far, the existence and analyticity of the
solution u within any part %’ of &% limited in such a way that the
retrograde half conoid from any point a within it is, together with
t =0, the boundary of a volume interior to the region of definition of
9, e.g., interior to the region of validity of the operations in § 62.

* The condition that the parameter » be identical with the parameter ¢
introduced in § 176 is easily seen to be that the surface S=0 satisfies the partial

differential equation
A (( S y S >~ L
U'L’] ax,,,
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This will certainly be the case, on account of the assumptions made

on the variable, if we introduce the limitation |¢| < T', denoting by 7'

a suitably chosen positive constant: the latter can indeed be fixed,—

and this once for all throughout the whole region &, in such a way
that [¢ —c | < T (together with I' >0) implies the inequality

2

(83) TI<y(1-2)

r
of § 63, and, therefore, the convergence of the series for 2.

Now, as we are given the values of u and %1—; for t=0, and these

are analytic, we are able, by the above, to calculate the values of the
same quantities for any ¢ between 0 and T, the values corresponding

to ¢ = T' being again holomorphic in #,, s, ..., £, around any point*
of the plane {= T included in 4. But such analytic values of » and
0

_g_e allow us to set a new Cauchy problem, the data of which are borne

by the plane ¢ =7": the solution will be, by the above, defined and
holomorphic at least until ¢ =27 (we mean the part of it which
lies in #2); and going on in the same way, we shall be able to reach
every plane ¢ = const. containing points of Z.

178. The above result, and the method used to prove it, obviously
remind us of an analogous argument in the theory of ordinary
differential equations and the corresponding conclusion, viz.: the
solutions of an analytic (ordinary) linear differential equation can
admit of no other singularities than those of the coefficients themselves.

One of the proofs for the latter theorem+ precisely consists in
observing that the radius of convergence of the expansion of any one
of the solutions in question around any point (or at least, a lower
limit for this radius) can be obtained without knowing what solution
of the equation is meant. Similarly, here, we use the fact that we can
tell a priori an interval of values of ¢ over which we can extend the
definition of our solution.

Such an analogy might lead us to think that the same result could

* The useful part of the half conoid from such a point is, as we have said,
assumed to lie entirely inside Z2.
t See, for instance, Jordan’s Cours d’Analyse, Vol. 111, 1887, § 92, p. 108.

H. 19
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be reached with the help of the original methods which have been
applied in general to Cauchy’s problem, i.e. the Cauchy-Kowalewsky
classic argument. This, however, would be an error: in other terms,
the radius of convergence of the expansion of the solution of Cauchy’s
problem (relating to ¢ = const.) with respect to ¢, when obtained by
the calculus of limits, must depend, not only on the expansions of
the coefficients, but also on the radii of convergence of the expansions
(with respect to the other variables @, ,,-...) of the data u, and u,.
For if it were not so, the conclusion would be common to
hyperbolic equations and to elliptic ones (the former being even
dominant of the latter in the classic mode of calculation for the proof
of Cauchy’s fundamental theorem). But such is not the case, as is

2 2,
shown, for Laplace’s equation 2—“ + ?yu =0, by the simplest examples,

such as

) 1~ (th 1 part of

L= (1 —$)2 € real part o m) ,
the values of which, for z=0 <viz. i iy2> as well as the values of 1its
derivative ?ﬁ (v1z (_11_ Z/;)z) , are holomorphic for any real ¥ and which,

nevertheless, admits of the singularity =1, y =0.

179. It is evident, on the other hand, that the working in § 173
could have been replaced by the same method which we have applied
in § 174 ff,, using exclusively normal variables instead of replacing
one of them by . We then see that the assumption of S being ¢ =0
is immaterial, as it is by no means implied in the argument of §175.

180. We have thus proved that the solution of a Cauchy problem
with analytic data certainly exists and is holomorphic throughout the
whole of any region Z satisfying our above assumptions. But can we
say as much of the instrument which we have to use in order to find
that solution, I mean our elementary solution ? Does this quantity
exist and is 1t holomorphic as long as: (1) the coefficients of the equa-
tion are themselves holomorphic, the discriminant of A being con-
stantly different from zero; (2) the equations (29) of Book II, § 57,
can be solved in a unique and continuous manner, their Jacobian
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being different from zero, and therefore the two points a and « can
be joined together by a perfectly determinate geodesic, varying con-
tinuously in terms of the coordinates of these points ?

In the first place, we can observe that these assumptions are
sufficient for the construction of each of the successive coefficients U
by the operations of Book II, § 62. Moreover, there is no difficulty
in showing that these functions will be holomorphic throughout the
region 4 (a fact which will appear presently).

U itself is deduced from the U,’s by means of the expansion

U=U,+ UT+ ...+ UyT*+ ....

We are going to see that this expansion converges not only around
a, as we had seen in Book II, but for any point in the region () such
that T" is sufficiently small, i.e. in the neighbourhood of the whole of
the characteristic conoid (or more exactly, of the part of it contained
within 2).

For that purpose, i.e. in order to obtain upper limits for the | Uy |’s,
let us resume our “ Calculus of limits” of § 63, except that we apply
it not only to expansions around a, but to expansions around any
point inside Z.

As in § 63, we take normal variables relating to a (so that
geodesics from that point are represented by straight lines), the sum
of the absolute values being still denoted by ¢; and we change the un-

. .. 1
known so that the first term U, in our series is U, = — .=

V| Qg |
Moreover, in order to simplify notation*, we can admit that we
have taken our variables so as to let one of the axes of coordinates—
say the a,,-axis—pass through the point 2’ around which we intend
to investigate our Taylor expansions: the variable ,, will be replaced
by v, the value of which at # will be denoted by ¥, and we have to

* Tt would be quite easy to repeat the argument in the text without this

particular choice of axes. We should expand our functions around
(@1y 2y oeny 2)
by setting down ri=x{ + X;.
The coefficients in the right-hand sides of (84) and (85) (expanded in powers of
the X’s) would then be functions of 2y, ..., 2/, the latter being replaced by
3z, ..., 82y, in the integrand of (87), and ¢’ would be
| Xil+| Yo+t | X |-
19—2
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consider expansions in powers of @, %, ..., T, and y—y' =Y. For
any coefficient 4 of the equation, this expansion will be
’ km-l
(84) A= 3 A . @)skzkl. gm0 Yim,

.l! 28 °°° 3 .m

Assuming all the quantities 4 to be holomorphic—and therefore,
uniformly holomorphic—throughout Z, we suppose therefore that all
the expansions (84) admit of the common dominant of § 63

4

a

1-2

,
which will be independent of % (i.e,, of the position of 2’ on the y-
axis), except that o is replaced by o =|a; |-+ ... +| %m- |+]| Y| We
deduce therefrom, as in § 63, that if

K

—
(-%)
be a dominant of the expansion of U, around «’ (this dominant being

again assumed to be independent of y ), the expansion of &% (U,),—
say (as the coefficients are again functions of ¥ )

(85) F(Un) =y =340, @) ahafe... ki Vo,
will admit of the dominant
2h (2h+1)d’ K,

7‘

Then, we have to construct integral (44") (with U;=const.). The
path of integration is the straight line joining the origin to the point
(@1, T2, vy Tma, ¥ + Y) so that we can represent the coordinates of
an arbitrary point of 1t by sz,, 8,, ..., s(y’+ Y), where the parameter
s varles from zero to the final value 1; s is precisely the variable of
integration in (44°). For every value of s, the quantity (85) will be
expanded by Taylor’s formula with the initial point (0,0, ...,0,sy),1.e,,
by replacing, in (85), ;, @, ... Tyw_1, Y, ¥, by 71, 8%, ... %, 8Y', SV
Integrating withrespect tos, we find the required expansion of Uj,, viz.

(87)
1
o PP ¥ (h) 4 'y km_ 7":
= . [ gttt thn gV (sy)mbale .. g Y Ends
12 -

—_ kK k0
Unir= 4(p+h+1)

(86)
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and we obtain a dominant for it if we replace every 4" by its value
taken from (86). As the latter is independent of ¥ and may be taken
outside [, we get the same final dominant as in § 63 (except that o is
still replaced by ¢”), and we see that the series for U converges when-
ever we have

(83 a) |1‘|<:7(1_ZT')'“’,

in which o’ can be* replaced by ¥/m D, denoting by D the distance
between z and .

We shall take the point 2’ on the conoid itself and let it assume
successively every position on this conoid: by which a corresponding

point z such that ¥m D < }r can assume every position such that T’
1s smaller than a suitably chosen positive constant r (for all real
points included between the two hyperquadrics '=+ afid I'=—¢ in
the finite region & are at a distance from the conoid less than 1r if
v’ 1s small enough).

Therefore, U will certainly exist and be holomorphic whenever T*

. , 1
1s less than ry, the smaller of the two numbers " and i

181. If, now, we combine the above result with our previous
method, we shall be able to extend the definition of U to the whole
part of the region Z (the latter still satisfying the same above
assumptions) which lies inside the conoid, say the direct sheet of it.
More exactly, we shall reach every point # such that the plane {=const.
through it (¢ having the same meaning as before) includes with I' a
volume entirely interior to Z.

To this end, let us denote by T' a positive number such that the
operations of § 63 define U whenever simultaneously I'(z; a)>0
and the difference |t — ¢ | of the ¢’s relating to 2 and @ is smaller than
T. On the other hand, let us notice that if we draw the retrograde

half conoid from any point z’ interior to I" and such that I' > g, and
cut it by the plane ¢ = ¢ — T, the volume thus enclosed will lie entirely

* Ve limit ourselves hereby to the real domain. As to the advantage of intro-
ducing D instead of ¢’, it lies in the possibility of changing axes, as is necessary
(on account of the rotations in the text) when we let the point 2’ vary.
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inside I'= 0 if the positive number T is sufficiently small*. Let us
take 1t so and also smaller than the numbers denoted by the same
letter in § 177,

For 0<t< T (and T" >0, which will be implicitly understood all
through the following argument), U is defined by § 63, and is holo-
morphic.

For T<t<2T, two cases may occur. Either the retrograde half
ou
ot
are known within the whole portion of S, of the plane ¢=7 thus
obtained and, therefore, the value of u, is known by our general
formule solving Cauchy’s problem, and is holomorphic, as explained
abovet. Or the retrograde bicharacteristics from « may intersect T’
before meeting t=T'; but, by the definition of the quantity 7', this

conoid from «z cuts the plane ¢ =7 wholly inside I': then u and

can only happen if, at «, we have I <% and then, the value of U,

1s defined by the operations of our preceding section and is holomorphic.
Moreover, the two definitions are simultaneously valid throughout a

certain region (%< I'< ry) and both coincide with the analytic exten-

sion of the values already found for u. Therefore, we have a single
analytic function for all the domain corresponding to 0<gt<2T

inside T".
It 1s clear that the same operations can be applied for 27'<t<37T';

and so on. Thus our conclusion is completely proved. U is holo-
morphic in the #’s and (for the same reasons as above) the a’s.

182. Our method, both for » and for U, has consisted in calculating
these quantities for remote points or, as we can say, “events,” by
using intermediate ones sufficiently near to each other. We can say,
therefore, that it is an illustration of what we have called Huygens’
major premise.

A thorough investigation of the consequences of such a principle

* If, as allowed, we suppose I to be t2— 2,2 -2,2—..,, the condition for 7" will
be 7' <y:4max. (t+Nz2+...+2%,_))

t We have written our inequalities so that S is always strictly interior to T
in this first case, on account of which not only U, but  is necessarily holo-
inorphic throughout S,.
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(which would lead however to more extensive researches which I hope
to resume later on) would give us further extensions of our results.
We could indeed, in that way, recognize the remarkable fact that the
seemingly fundamental condition that any two points z and a within
J can be joined to each other by a geodesic in a unique way is not
necessary.

We, for the present, content ourselves with noticing one point.
Though the region 4% be not assumed to satisfy the condition in
question, let us assume, nevertheless (for an even m), that the functions
V and % exist and are analytic throughout it. Then, even if the point
be chosen so distant from S that, inside the domain between I'" and S,
the solution of the first set of equations (29), § 57, would cease to be
possible in an unique way (the Jacobian (30) in the same section vanish-
ing, for instance, within that domain or even on S,), all the integrals
on the right-hand sides of (28) or (28 a), § 145, could still be defined.
The only necessary condition for that is that every geodesic from a
interior to the conoid or belonging to it must still cut S at a deter-
minate point and a finite angle.

It will be sufficient, in order to define the integrals in questior,
to express them all with the help of the normal variables & corre-
sponding to a. It is clear, in the first place, that our new assumptions
do not prevent the integral (79), finally obtained in §175, from having
a meaning, the #’s being still holomorphic functions of the £'s (no
matter if the converse is true or not) and from being a holomorphic
function of the as.

The same can be said of SSS?fdT if we express it as said in
§179, viz.

SSSK@deI - A€ =88 0™ d, ... dny, /:Kﬁpfsm-l ds,

where the 7's are defindl as in § 172 and 6,, an analytic function
of the asand the %’s, corresponds to the intersection of any (interior)
geodesic from a with S.

The same will also be obtained for the integrals relating to S
(element dS or do,) by writing down the values of 7;dS as said in
§176 [formulee (82), (82")].

The total quantity (28 @) thus defined is a holomorphic function
of the a’s. In the partial region &, where the £'s are uniform func-
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tions of the #’s and the a’s, it is proved by our preceding operations
to satisfy (E). But values of the same quantity outside %, (though
inside &) are the analytic extension of values within Z,. Therefore,
they will also sutisfy (E) and represent the solution of our problem.

183. The non-analytic case. Let us now assume our coefficients
to be no longer analytic; they will, however, be assumed to be
regular, 1.e. to admit of derivatives, up to a certain sufficiently high
order, with respect to the xs. Indeed, we know from the properties
of Tedone’s solutions (Book III) that such a hypothesis rests on the
nature of things. As has been said in Book I, the precise determina-
tion of the order of differentiability postulated will not be undertaken:
1t will be sufficient for us to make sure that such an order exists for
every value of m.

We again take m even = 2ml,

(E) F (u) = EA"“a a + EB, + Cu=f
being again the given equation, and
() S w)=0

its adjoint. Simultaneously, as before, we consider the equation in
2m, + 1 variables ‘

(E) F (u)= Jr’(u)-——f,
the adjoint of which is
(£ S (V)= (v) — gz” =0.

Our coefficients will be assumed to admit of partial derivatives at least
up to a certain order, which can be expressed by saying that up to
infinitesimals of that order they resemble analytic functions. The
existence of derivatives of the first few oraers is obviously sufficient
for us to be able to carry out the first part of our operations, that is
the construction of the quantity I'; and the existence of derivatives
up to a certain order for the coefficients will imply the existence of
partial derivatives up to a certain corresponding order for the quan-
tity I' (see Additional Note to Book II).

Let us now come to the construction of the successive quantities
Vo (or V) as explained in our second Book. Though we cannot go on
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with it indefinitely, we are evidently able to calculate a certain
number of these quantities V: the more if the existence of more
derivatives of the coefficients (and consequently of I') is postulated.

We shall assume that this is possible up to the (m, — 1)th power
of I' or IV =T"— (z —c)* (the operations concerning both cases being,
as noticed in our second Book, the same but for numerical coefficients)
so that we have, for equation (&), the expansion

1 mu-1
[v]= 3 VT,

P’ml -+ =0
which is identical with the expansion of v given in Book II, § 62, but
for the fact of being limited. The corresponding terms relating to
(&) will consist of :
(1) The quantity V, with respect to which our previous calcula-
tions of Book II (or this Book, § 135) want no modification, viz.

7:11:2 1
V= O1n1-1 2

h=0 Oml—h-l-l
(2) The first term @ of the expansion of the quantity which we
have previously called ?.
Now, [v ] will not be a solution of the adjoint equation (&), but
the operations in our Book II show us that we have

Vh, Fh ’

7 ([v ) =(=1)m v

(88) (WD = (= 1" Oy O,

Yr being a quantity* which is finite, continuous, and even (if further

derivatives of our coefficients are postulated) differentiable. Moreover,

this quantity 4~ i1s independent of z. The coefficient (— 1)™ Q,,_,,

introduced in order to simplify further operations, is the same which
stands on the left-hand side in (7) (§135), except for the factor .

184. We shall now look at our problem from Hilbert’s point of
view : that is, we shall see whether we can solve our Cauchy problem
if we no longer have at our disposal the true elementary solution, but
only this quantity [¢'], an incomplete elementary solution or “ para-
metrix ” in Hilbert’s sense. Therefore, we shall again take our Cauchy
problem for (E) and the corresponding equivalent problem for (E);

* (=1 Qo =2 (V' —1)-
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but, for the latter, we shall again write down our fundamental formula,
in which, however, v" will be replaced by the above obtained parametrix
[v']

The modification which we have to make in our formula is ob-
vious: it consists in taking account of the values (88) by the addition
of a supplementary space integral

(e ([v'])

SSS] 7T dz, dzs ... dzy, dz

— (_ l)ml Qs SSS /% dz, ... dz,, dz

(the use of our symbol | not being necessary here).

Using now the same process as before to descend again to our
T dz _ [+ de _ _ )
SN R j-\,ii‘” -z
(89) w=H+ SSSuuydz de, ... dz,
where, for brevity’s sake, we have written H for the quantity which
is given by

2m,-dimensional space, we obtain (as f

(90)
%.(.._ 1ymqgm-1 __
(ml - 2) ! e
=—88Sw Yo fdzde,... dom— SSs, Uy (u, + Luy) dS
1 dm—1
+ ("nl _ 2) 1 d'Y”ll—l[Sssszdwl dw2 P dwm + 832 V(u’l + Luo) dS]
1 d dm-1 d

- (= 2) | dp -1 SS.u, VdS + v SSs, 4w dS,
1e., by formula (30) (which, this time, we prefer to (28)), except that
? is replaced by its first term %y, .

In both above formule, the points a, x are assumed to lie on the
same side of S, which we shall call the “ positive side”; and (a), for
instance, as a suffix to the §S§S, stands for the domain which we
previously denoted by 7, viz.,, the domain enclosed, on that positive
side of S, by the retrograde characteristic half conoid from a.

185. We have to determine u by means of the above equation (89).
It obviously belongs to the well-known type of integral equations of the
second kind. The kernel—viz. y—is a finite one, so that the solution
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is given without any difficulty by the classic methods*. Even, in
this case, we have to deal with the Volterra type, on account of the
manner in which the domain of integration depends on (a,, a,, ..., @)
and approaches zero when the latter point approaches S, and we can
solve it without needing to have recourse to Fredholm’'s algorithm :
the required quantity » will be given by the successive approxi-
mations
u® = H,
uW =Hy + SSSw U ‘l’ (xQ a') day dz, ... dxm:
u® = Hy + SSS " ¥ (2; a) dz, dw, ... dzy,

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

............................................................

u being equal to lim u™.

n=a

That these approximations converge in the same way as in Vol-
terra’s case, corresponds to the way in which the shape of the domain
of integration on the right-hand side depends on the position of the
point (a,, a,, ..., a,,). Let us take again the coordinate ¢ by consider-
ing a one-parameter family of surfaces S;, such that S, coincides with
the given S and that every S, is duly inclined with respect to the
characteristic conoids and, therefore, cuts any one of them along closed
edges. On any such surface, let us take for the element dS; the quotient
of the m-dimensional space element by dt, so that

dS,dt = dT = dz, dz, ... dz,,.
Let us, moreover, denote by X' a maximum of the ((m — 1)-fold)
integral §§ |y (z; a) | dS;, extended over the section of a retrograde
half conoid (having for its vertex any point a inside 42) by any surface
S;. Then if the function ¢ (z;, 2;,...)1s given and its absolute value
1s, on each §;, less than ® (¢), the absolute value of the integral
SSS; ¢ (@)Y (z; a)dx, ... dx,,

inside a retrograde half conoid with vertex a (limited to S) will admit
of the limitation

92) |SSSr ¢ @)V (2;a)ds, ... don| < K’f"cp ) dt,
0
¢ denoting the value of ¢ at a.

* See, e.g. Bocher’s Introduction to the study of Integral Equations, Cambridge
University Press, 1909.
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This inequality precisely yields the required convergence just as
in Volterra’s method and in Picard’s method of successive approxima-
tions for ordinary differential equations. It shows us that if

|0 | =| H| < H,

H' being a positive constant, then
g (Ko

(92’) ‘ ru(’n) —_ u(n—l) i < o I

which is the general term of a convergent series.

As follows from the summation of the series wu, + 3 (u™ —u®")
"

and as 1s well known from the theory of integral equations, the solu-
tion » finally obtained is of the form

(93) ua=Ha'—SSS(a)\I’('x; a) szTx:
where d7 is an abbreviation for dz, dx, ... dz,, and
\I’ (&C‘:, a’) = \I'(.Z'], wtz’ crey J/'m, alx @2: ey afm)

1s a determinate function of the #’s and a’s, the so-called “reciprocal
kernel ”* of our integral equation, the value of which depends solely
on the expression of yr itself.

* See Bocher, loc. cit., § 6.

The calculation of ¥ with the help of y is given by the ordinary method in the
theory of integral equations (Bocher, loc. cit.). Having constructed our first two
approximations % © and « (1), we find that the third one (2 is expressed in terms
of »W). In order to obtain it in terms of «(®_ A, we replace »(!) itself by its
expression. Operating as explained below in the text, we see that

u =M, +SSS,[V (x; a)+ ¥ (v; a)] H AT, _;,
where y; =y and y, is represented by an integral over the domain which we call
(e ¥ x) (see the text), viz.

Vo (25 a)= Sss(alx.)‘l’ (x; eV (25 a)dT,.
Going on in the same way, we see that u,=lim u,(® is represented by (93), with
-¥(z;a)=V1+¥2+...+¥pt+

the terms , being the “iterated kernels,” such that =y and

Yo (2; a)=SSS(aIx) Va—1(z; a) Y (a';a)dTy;

this series for (- ¥), corresponding to Bocher’s series (5) (loc. cit., § 6), converges
for reasons similar to those for the series for u (cf. Bocher, loc. cit., §6, Theorem 3,

p- 23).
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186. Let us now see how this solution depends, not on the form
of H, but on the data themselves. Let us begin by the termsin f:
in the expression of H, we have the first term

(94) SSSYy (; a)f (z) dT,

in which %, is a function of both the «’s and the a’s. Substituting
that quantity in (93) and replacing « by a’ as the variable of integration
when necessary, we get

SSSVu f(x)dT: —SSS Y (¢'; @) S§S V) (¢ @) f () dTod Ty.

The second term is a 2m = (4m,)-fold integral which relates to all
systems of positions of our two points ¢ and z such that:

The point a lies between S and the retrogade half conoid with
vertex a ;

The point # again lies between S and the retrograde half conoid
with vertex a’.

We can invert integrations, that is, we shall integrate by letting
first the point « be fixed and a variable: which, f being a factor,
gives, for the other factor, the quantity

(95) Q)(l) (w; a) = SSS(a]{w) v (al; CL) @(0) ('77 > al) dTa’;

the domain of variability of a’, which is denoted by {,—that is, the
domain of integration (fig. 32) in this formula,—being included

Fig. 32.

between the retrograde half conoid with vertex a (which we have
been considering) and the direct half conoid (conoidal sheet not
turned towards S) with vertex . The term in question is thus

(%94 a) SSSwy (z; a) f(x)dT..
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We now take the other term containing fin the expression of H,

viz.
1 dm—1
(my— 2) dy™m—1 S$SS ), Vf dT,

the integration §§§ being extended within the space (a), included
on the positive side of S, between the retrograde half conoid having
a for its vertex and the surface I' (z; @) =y. We have to substitute
this for H in the right-hand side of (93), which gives

d’m1 -1

1
(97) (s = 2)1 [W_ISSS(a);Wdex

(96)

dm,—-l
—8SSw ¥ (a’; a)dTy Ty 1 SSSw), V(z; @) f(=) de] .

This, on account of the ordinary rules of differentiation under the
integration sign*, may be replaced by

1 dm—1
. ('mq - 2)! d—'ym?i [SSS(a)2 VfdT,

—88Sw Y (¢; ) dTw SSS w1, V (#; a') f () dT..).

The double §S§, i.e. 4m,-fold integral, shall be transformed, as
before, into

O7) $8Sw [ (2)dTs. SSS(ay, ¥ (¢'; @) V(2; ) dT,.

In (97), the point a lies anywhere on the positive side of S inside
the half conoid with vertex a, and the point « lies on the positive
side of S, between the retrograde half conoid T'(z; a’)=0 and the
surface I' (z; a ) = (aregion such that 0 < I' (z; a’) <vy; see fig. 32a)t.
Therefore, in (97°), the point z will lie anywhere in a and, for each
given position of z, the field of integration for a will be bounded by

* Rigorously speaking, we ought, in the first place,as remarked above, toexclude,
before difterentiation, the vertices of our conoids by small surfaces =, e.g. by requir-
ing x and o' to be distant from each other at least by e. For such restricted domains,
the operations of differentiation under SSS in the text would be valid. It is easy
to see, by our previous considerations (including footnote to § 147), that they are
also valid by making e immediately O (the convergence of the operations in
§ 141 or § 174 being uniform).

t The (diagrammatic) figs. 32, 32 a are two-dimensional sections of the
diagrams in the 2m,-dimensional space.
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the retrograde half conoid with vertex a, the direct half conoid with
vertex « and the surface I' (z; a’) = v (fig. 32a). This field is what
we call (afz).. "

The (m,—1)-fold differentiation of (97") with respect to  can be
carried out under the first §§§, 1.e.,, on the value of the §§S;14), ;
and thus we see that the result of the substitution of (96) in our

Volterra-like resolving formula (93) is equal to the term (96), dimin-
ished by

(94.0) SSSw f (@ Van (z; @) dT%,
with
(95 a)
@ Caye L oamtt ’ .
(11) (.’L', a) = (ﬂll _ 2)! (;l_r;;ﬂl"i SSS(‘Im)z \I’(a ) a) V(a?, a ) dTa'.
Finally, we have now every term depending on /. If we set down

(98) V=Doy—-Va+Vun,

YDy, Y being defined by (95), (95 a) respectively—the totality of
these terms will be

1 niy~
-S8SSf ()Y (x; a)dT, + R ddpym;—ll SSSf(z) V(x; a)dT,.

187. The above explanations of the treatment of the terms in f
will allow us to deal more briefly with the other terms (containing w,
and w,) as the operations will be exactly similar. The integral with
respect to « will be an §§ (instead of an §§S), the point x describ-
ing S; but the relation between this point and a’, as well as between
a and @/, remaining the same for any given « on S, the fields of inte-
gration relating to a’ have to be constructed as before. Similar
operations can also be performed when the point x is required to
describe the surface which we have called S,, so as to obtain a result
which is to be differentiated with respect to ». This shows, without
any new difficulty, what each term of the aforesaid kind iy H gives
when substituted in (93): we thus find

for the term — §Ss, %) (w1 + Luy) dS:
— SS5, V0 ( + Lug) dS + SSs, Y1y (wy + Luy) dS;



304 APPLICATIONS OF THE PRINCIPLE OF DESCENT [BK Iv

1 dm,

for (m — 2)1 d'yml-l 8S. V (u + Lug) dS:
1 dm -1

(ml —2)! d,yml—l SS.V (w + Luy) dS — SSs, Y an (w + Lu,) dS;

1 d dmr"

2 — 2)’ dv dfy""'l

1 d dm-1
"~ (m,—2)! dv dym—

for

- S§S.u, VdS':

d
1 SS:u, VdS + do SSSOUO@(II) as;

d
for P SSs, 4V 0dS:
d d
T SSs, 4?0 dS — v SSs, vV dS,

the sum of which, added to (94), (94 a) with subtraction of (94b),
ﬁnally gives u itself under the form (30), V" being calculated as sald
in §183 and % being given by (98).

188. We have just constructed the expression of the required
solution, if it exists. But we have to prove, conversely, that what we
have found is a solution, satisfying the conditions of the problem.

To do this, we use the results obtained in the first place for the
analytic case. In this case, we have shown that the solution exists
and 1is analytic throughout, % : of course, this solution can not be
distinct from the one which we have just obtained and which is
therefore itself analytic.

Moreover, we have constructed the elementary solution and es-
pecially the function % (also analytic in terms of the 2’s and as).
Again, such a quantity can not be distinct from the quantity defined
by (98): for, on account of the fundamental Lemma of the Calculus
of Variations, the same quantity « can not admit of two distinct ex-
pressions of the form (30), equal to each other for arbitrary choices of
Uy, Uy, .

Therefore, the quantity %' defined by (98) is, under our present
assumptions, holomorphic in the z’s and the a’s.
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189. Could we prove, in a direct way, that the operations in §§ 184—187,
starting from analytic data, necessarily lead to analytic results*?

This can be done without any great difficulty as to the first part of them, the
construction of . In the first place, formula (90), which gives the value of the
quantity A, is entirely similar to our previous formulae which gave u itself, except
that it contains @(0) instead of ). We therefore can prove the analyticity of A
by the same methods which applied in §§ 173—176a; but, this time, these
methods will be valid throughout %, as # is defined and holomorphic therein,
so that the analyticity of H is proved at once in the whole of this region.

We have now to show the same for the solution of the integral equation (89). To
this end, we shall resume the method (§ 173) which we have applied to the space
integral (77), but with the modifications necessary to extend them to a suitably
defined complex domain.

We start from our real region &, subject to the same restrictions as above
(especially, it is understood that any interior (or bicharacteristic) geodesic
described in the retrograde sense from a point @ in &% remains in Z till it
reaches S).

Let # and a be two points in &2, which, therefore, as assumed, can be joined
D (21, 23y oy Tpm)

D(q15 -5 Gm)
to be always different from zero (for the corresponding values of the a’s and the
a’s), the ¢’s (and therefore the £s) will be analytic functions, and they will be
holomorphic for any system of real or imaginary values z, a of the same variables
such that

by a determinate geodesic; the Jacobian

being also assumed

| Z:—2;| <8, |di—a;|<3, (t=1,2, ..., m)

& being a certain positive quantity, which, as is well known, will have a positive
minimum when # and @ assume all possible positions within 2. If one
of the 2 points is required to describe a surface ¢=const., while the other
remains arbitrary, there will be another minimum, which will be a function of ¢
and which we shall denote by 8,. We thus can deduce from & a certain complex
domain (8;), viz. the domain containing every point with (real or imaginary) coordi-
nates i, ..., &y, connected with, at least, one real point (zi, ..., %) in R by

(99) | &= 2;| <& (r=1,2,...,m)

(¢ still standing for z,,).
From any (in general, imaginary) point in (8;), we can draw geodesics in various
directions. We shall especially consider those which are such that

|p—p| < X3y, (£, positive constant)

* The method given below is the one which corresponds to E. E. Levi’s
(loc. cit.); but the proof of E. E. Levi, for the elliptic case, is more complete,
applying not only to %, but also to the elementary solution and even to the
reciprocal kernel ¥ which generates it.

H. 20
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g being the value of any of the quantltles Cflt ey dxé,; ! 3; and p the corre-
sponding value for a (suitably chosen) interior and retrograde direction at a
neighbouring real point (the neighbourhood being defined by (99)) belonging

to %. Such directions will also be called “retrograde directions in Z.” It is

clear, by the above remarks on %9 , that, for any such direction, the argument of

(— i") will be numerically less than %' (£’ being a certain poéitive constant).

We also see that if £ be taken sufficiently great we shall always obtain a retro-

grade direction (at any point of (8;)) if we take for the differentials of the normal
variables £ real values such that

d'fl +d£22+ +d$2m 1= d‘fma d§m>0

Geodesics having a retrograde direction (whether real or imaginary) will be
called “retrograde geodesics”; then, moreover, we shall agree that the inde-
pendent variable* ¢ shall always vary in such a way that the argument of dz will
itself lie between ~ £  and £': of course, this will also be the case for the argu-
ment of the difference between any two values of ¢ on one such path, and we can
find a (constant) upper limit for the ratio between the length of any arc of such
a path in the plane of the complex variable ¢ and the length of its chord, or of
its projection on the real axis.

Any point which can be reached from a by a retrograde geodesic, with the
above restriction for the variation of ¢, will be said to be subordinate to a.

190. It will be essential for us to modify our previous definition of (8;) (by
suitably diminishing the values of 8;, as allowed) in order that, taking for a
a point 1n (8;), all the points subordinate to a also belong to (8,).

We can reach this by the help of known results connected with Cauchy’s
fundamental theorem on differential equations. We indeed know that, (7,, 73, ...)
and (¥, Y2 ...) being two solutions of one and the same canonical differential
system with the independent variable z and &V unknown functions, if we have an
upper limit €, of the absolute values of the differences y;—y; for t=¢,, we can
deduce a similar upper limit ¢ relating to ¢=¢; by v

El S G.GNA T,
where 7' is the length of the path followed from ¢, to ¢; and 4 a positive constant,

which we can find when we know a finite region where all the unknowns lie and
where the right-hand sides of the differential equations are regular t.

* We take ¢ for the independent variable in (L) by multiplying both sides of
s 0A
29 TPm

t+ 4 is an upper limit of absolute values of the first partial derivatives of the
right-hand sides (compare footnote to the Additional Note to Book II).

every equation by g—':=l : (
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On account of this theorem, we see that the domain (8,) will satisfy the required

condition if & is chosen in terms of ¢ so that 8,62™4* be decreasing (denoting by
a the aforesaid upper limit for the ratio between the length of a path of inte-
gration in the ¢-plane and its chord): for instance, 8, being a first choice of
that function, such as considered hitherto, we denote by §; the minimum of

8 pe~2mAa(t=7) for ¢ varying between zero and ¢.

190a. A last limitation in our domain (8;) will be introduced by only con-
sidering values of ¢, the arguments of which lie between — # and + £’ (the definition
of the domain, as concerns the other coordinates, remaining as above). A “sub-
ordinate point” of a point of the domain, with that new definition, will continue
to lie in this domain if the two values of ¢ lie on the same radius vector through
the origin in the ¢-plane.

191. These geometric considerations are the only difficulty in the argument.
Introducing any function /' of the 2’s, or the 2’s and the a’s, holomorphic through-
out ¥, we can now easily form an analytic function of the a’s, also holomorphic
throughout (8,), which will coincide with the given one for real points (i.e.
within Z).

We see that such an extension will be given by the integral

1
(77b) I=cSSdy, ... dnm_lf K, Fd\
0

constructed in § 173, the #’s still describing the real domain (76) and the
variable A the real segment (0, 1), so that the variable ¢ has to go from ¢ to the
origin by the rectilinear path. By §§ 190 and 190aq, if a lies within (§;), so will
also every point x corresponding to such a system of values of the »’s and N’s.
Thus,—which is essential for us—, /' being defined in the domain (8;), (77b) is
defined in the same domain and is holomorphic therein, for the same reasons as
above.

Moreover, if we denote by ¢ (|¢|) a maximum of the absolute value of £
when ¢ assurues all the values such that |¢|=const., and by A’ the product of
1
m—1

lel
(924) 11<x [ olela
0

Q.. _2 by a maximum of K, we have

i.e. the inequality corresponding to (92), § 185.

192. This being obtained, there is no longer any difficulty in defining « within
the whole of (8;), by equation (89). First, X itself, on account of the calculations
in Book II, is holomorphic in the aforesaid domain (suitably restricted, if
necessary). Therefore, we shall see successively that each of the integrals (91) is
defined and holomorphic throughout (8;) ; further on, by the same argument as in
§ 185 (with the use of inequality (92a)), that such approximations converge.
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Moreover, this convergence is uniform and, therefore, by a known theorem, the
limit is again an analytic function, as we wanted to prove.

In order to afford the equivalent of E. E. Levi’s proof, we ought to show, by
the same method, the analyticity of % itself. We shall not, however, undertake
this, new difficulties (which do not exist for the elliptic case) arising obviously
from the shape of the domain which we have called (a ¥ z), if we should try to
extend it by adjunction of complex points.

193. This being said, we again cease to assume that our coefficients
are analytic (their regularity being, of course, still understood).

On account of the assumed regularity of the coefficients and of a
known fundamental theorem of Weierstrass’, we can approximate each
of them as closely as we wish by a polynomial, and we may even do
this in such a way that the approximation holds on differentiation up
to the order for which the existence of derivatives has been postu-
lated *.

* This, which is obtained under much more general conditions in a Memoir
of Tonelli in the Rendic. Circ. Mat. Palermo (Vol. xx1x, 1910, pp. 1—36), results
from the very methods for the proof of Weierstrass’s theorem. In most of them,
indeed, the approximating polynomial for a continuous function of the variables
Zyy X3y ...y &y 18 expressed by an integral of the form

II,=SSSF'(21, 22y ooy 2m) Pn (51 =21, 25— gy ooy 2y — Z) d21d2; ... Az,
the polynomial P, (n=1, 2, ..., © ) being such that: (a) for any fixed system of
values of Z,, Z,, ..., Z, other than Z1=2Z,=...=0, P,(Z,, Zay ..., Zn) ap-
proaches zero with 1/a, and even uniformly as long as Z2+ Z,% + ... remains greater
than a fixed (arbitrarily small) positive number %; (b) the integral
SSS P, dZ\dZ; ... dZy,

extended over a fixed domain containing the origin in its inside (the shape of

which is immaterial on account of (a)), approaches 1.
P, may be, for instance, La Vallée Poussin’s and Landau’s polynomial extended

by Tonelli to several variables:

1
Pp=5-[1-N2 (z;—2,)],
g, i

where X is the inverse of the greatest dimension of the domain and

1 Q,,_

A
If we now want to take any derivative of order Z—say
D al
,‘lkz"' axl’cg akag R

—of such expressions, we differentiate P, under SSS with respect to the z’s,
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194. We get to the conclusion which we want to prove, viz. that
the solution constructed in §§ 184—187 actually satisfies the given
conditions, by combining the above result with those obtained for
the analytic case (§§ 173—181) and by first investigating the mode
of continurty (Book I, §§ 19ff.) of our expressions with respect to
the functions which represent the coefficients of the equation*: a
question which may be interesting in several cases and for which,
exactly as in § 18, Book I, expressions in power series would give
us no information whatever, while we shall be able to solve it by our
calculations in §§ 184 ff.

We shall see that the quantities constructed in the aforesaid
sections are continuous of a certain finite order with respect to the
coefficients in question. In other words, if we replace the coefficients
in question by other ones having respectively with them a neighbour-
hood of the order in question, and if

*u , 0u

(E) Fiw)=2A4y ——+2ZB

Y i a——-xi+ Cu=f
is the new equation thus obtained, the aforesaid quantities will differ
very slightly, whether deduced from (E) or from (E,). This will be,
for instance, the case if we replace our coefficients by approximating
polynomials constructed according to the preceding section.

The first question of that kind concerns the construction of geo-
desics and consequently of the quantity I. As to this, the answer is
given by what has been said in our Additional Note to Book II. We

thus know that any geodesic issuing from point a and relating to the

or—which is equivalent—to the z’s with multiplication by (=1)* But, if the
corresponding derivative of F exists and is continuous, an integration by parts is
possible and transforms the result into

SSSDk,k, L F. Py (2 -2y, 23—%2, .y 2 —Zm) d21d2s ... dz,y,

with addition of boundary terms.

If we finally assume (as in the case for the above written polynomial of
La Vallee Poussin and Landau) that our above condition (a) is satisfied not only
by P,, but by its derivatives of any order less than #, these boundary terms
approach zero, and the limit of D; , .. II, can be obtained by operating on
Dy , ... F as we did on F'itself: which is the required result.

* Analogous methods have been used for elliptic equations: see Lichtenstein,
Abhandl. Ak. Berlin, 1911 (Anhang).

20—3
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characteristic form A, of (E;) will run very near to the corresponding
geodesic relating to the form A, calling this, for instance, the geo-
desic which has the same tangent in (a,, @,, ... ). Moreover, the
alteration will also be very slight as concerns the partial derivatives
of the coordinates x of any point of this geodesic, with respect to the
parameters previously called A;, A,, ..., Ay, and, consequently, as
concerns the functional determinant J. This functional determinant,
being different from zero and (at least if a certain neighbourhood of a is
excluded) numerically greater than a fixed positive number all over a.
certain region &, when taken with respect to equation (E), will there-
fore remain so if we start from one of the approximate equations (E,),
as soon as the approximation is sufficiently close. This fact is a most
important one for us, because we thus know that our operations can
be considered as having the same domain of validity, whether we start
from (E) or (E,).

That the alteration in I' and J/ is also slight is again obvious now.

The same conclusion extends to the successive quantities V)
(h=1,2, ..., m — 2) on account of their defining formula and simi-
larly to Viy,—1 =%, if, of course, the order of differentiability postu-
lated for our coefficients is sufficiently high (the derivatives thus
postulated being, as we have said, approximated by the corresponding
derivatives of our approximating polynomials).

It applies also to the “kernel ” 4 of our integral equation (89), as
appears immediately from its expression (see footnote to § 183).

Finally, as to the solution of the same equation (89), the same
fact follows from the form of the successive approximations in (91)
(each of which will be but slightly altered by our substitution) and
from the fact that these approximations are uniformly convergent in
the circumstances we have to deal with, that 1s if calculations start
from either of the equations (E) or (E,).

The same can be said for the reciprocal kernel WV, as given by a.
(uniformly convergent) series of “iterated” kernels (see p. 300, foot-
note).

The alteration will also be very slight in the quantity which we
have called H (and in its derivatives up to a certain order, related
to the order of neighbourhood assumed for the coefficients). This
appears from the expressions of the different terms in H, as given in
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§§ 173—181, which are integrals containing the data wu,, u,, f,
functions V and %, and their derivatives up to a certain finite order.

Therefore, formula (93) immediately shows that the same extends
to u and—if the order of neighbourhood assumed is sufficiently high
—to 1ts first and second derivatives.

195. Our conclusion will follow now without any difficulty. Let us
begin by operating on equation (E,), the coefficients 4, B/, C" of
which will be approximating polynomials for A, B;, C. We shall
obtain a quantity «' which will actually be the solution of the
corresponding problem, i.e. satisfying

F1(W)=Z4y

2y +s B,au

0x;0xy gy

+C'u=f

and also Cauchy’s condition (C;). But if we let the altered coefficients
A/, ete. vary in such a way that their neighbourhood (of a suitable
chosen order) with the corresponding coefficients of (E) becomes in-
definitely close, u will approach » and %, (w) approach &% (u): the
latter is therefore necessarily equal to f.

196. The same continuity proof will apply to Cauchy’s conditions,
as these are constantly satisfied for the approximating analytic
problem.

More exactly, the first of these conditions, for instance, means
that, ¢« approaching a determinate point P which belongs to S,
the quantity u,, calculated by our method, must approach (u,)p.
Now, u, constructed with (E) may be, by the above, considered as
resulting, by a limiting process, from u,, the analogous quantity
deduced from (E,). To make sure that the limit of «,, for ¢ approaching
P, 1s the same as the limiting value of up’ when (E,) is infinitely
little different from (E),—in other words, that the two limiting pro-
cesses In question may be inverted—it is sufficient, as is well known,
to ascertain that the first of them (corresponding to the variation of
the coefficients) is uniformly convergent (especially in the neighbour-
hood of S). But this appears from the expressions of the different
terms, as constructed in §§ 174—176 ¢, 1t having been proved, especially,
that the integrands contain integral and positive powers only of the
quantity which we have called 6,.
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Things behave in the same way as to the second condition (Cs).
Our problem, thus, s proved to have a solutton, which is given by

the same formula (28) or (28 a) as in the analytic case, ¥ being
denned by (98).

197. To this quantity 9, the preceding considerations can be at
least partially extended. We can show, as above:

(1) that % is the limit of the corresponding quantity relating to
(E,), at least for any pair of points # and a such that I'(z; a) is
positive and not zero;

(2) that (at least with the same restriction) it satisfies &= 0 (as
a function of the zs) and & =0 (as a function of the as).

There is no doubt that these conclusions are alsovalid forI'(z; a)=0,
% being regular even then and assuming the values %, (as happens
in the analytic case and was required in the above for the elementary
solution); in other words, that % and %y are zero with I. The
rigorous proof of this would however present some difficulties as to
%y, on account of geometric reasons already alluded to: for, I'(z; a)
being very small, we should not be able to indicate a lower limit for
the quantity Sy (6,) (§ 175), as some bicharacteristics from z would
pass very near a and others meet the characteristic conoid from a at
very small angles.

198. Of course, the result obtained for m even implies the corre-
sponding one for m odd, by means of our process of descent: ¥ and
%—now called V' and #’—having been constructed for m = 2m, + 2,

as explained above, the value of v, for m = 2m, + 1, follows by formulz
(62), (65), (§§164, 165).
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tion for systems, 119 n.; on analogy with
potentials, 186

Waves (equation of spherical), 7 (see Sphe-
rical); equation in five variables, 211;
cylindrical, 7 (see Cylindrical); inter-
vention of, 50; retrograde, 52; propa-
gation shown by solving formulae, 174;
diffusion of, 175

Weber, on equation of damped spherical
waves, 243, 245 n.

Weierstrass and the theorem of factoriza-
tion, 120

Wells’ T'ime machine, 8 n.

Zeilon, on elementary solution, 72 n.
Zermelo, on neighbourhood of functions,
35 n.
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