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THE SILLIMAN FOUNDATION 

I
N the year 1883 a legacy of eighty thousand dollars was left to the ?resident

and Fellows of Yale College in the city of New Haven, to be held in trust, 
as a gift from her children, in memory of their beloved and honored mother, 
l\frs. Hepsa Ely Silliman. 

On this foundation Yale College was requested and directed to establish an 
annual course of lectures designed to illustrate the presence and providence, 
the wisdom and goodness of God, as manifested in the natural and moral world. 
These were to be designated as the l\frs. Hepsa Ely Silliman l\Iemorial Lectures. 
It was the belief of the testator that any orderly presentation of the facts of 
nature or history contributed to the end of this foundation more effectively than 
any attempt to emphasize the elements of doctrine or of creed ; and he therefore 
provided that lectures on dogmatic or polemical theology should be excluded from 
the scope of this foundation, and that the subjects should be selected rather from 
the domains of natural science and history, giving special prominence to astron­
omy, chemistry, geology and anatomy. 

It was further directed that each annual course should be made the basis 
of a volume to form part of a series constituting a memorial to Mrs. Silliman. 
The memorial fund came into the possession of the Corporation of Yale University 
in the year 1901 : and the present volume constitutes the fifteenth of the series 
of memorial lectures. 





PREFACE 

THE present volume is a resume of my research work on the hyper­
bolic case in linear partial differential equations. I have had the 

happiness of speaking o1 some parts of it to an American audience at 
Columbia University (1911) and also had the honour of treating some
points at the Universities of Rome (1916) and Zurich (1917)*. I am
much indebted to Yale for having given me the opportunity to develop 
the whole of it, with the recent improvements which I have been able 
to make. 

'rhe origin of the following investigations is to be found in Riemann, 
Kirchhoff and still more Volterra's fundamental Memoirs on spherical 
and cylindrical waves. l\Iy endeavour has been to pursue the work of the 
Italian geometer, and so to improve and extend it that it may become 
applicable to all (normal) hyperbolic equations, instead of only to one 
of them. On the other hand, the present work may be considered as 
a continuation of my Ler;ons su1· la Propagation des Etudes et les Equa­
tions de l' H ydrodynamique, and, even, as replacing several pages of the 
last chapter. The latter, indeed, was a first attempt, in which I only 
succeeded in showing the difficulties of the problem the solution of 
which I am now able to present. 

Further extensions could also be given to such researches, including 
equations of higher orders, systems of equations, and even some ap­
plications to non-linear equations (the study of which has been under­
taken in recent times, thanks to the theory of integral equations) : 
which subjects, however, I have deliberately left aside, as the primary 
one constitutes a whole by itself. I shall be happy if some geometers 
succeed in extending the following methods to these new cases. 

After Volterra's fundamental l\Iemoirs of the Acta Jfathematica, 
vol. XVIII, and his further contributions, we should have to mention, 
as developing and completing Volterra's point of view, the works of 
Tedone, Coulon and d' Adhemart. The latter's volume Les equations 
aux derivees partielles a caracteristiques reelles (Scientia Collection, 

* I also mention a brief note read at the International Congress of Mathe­
maticians at Strasbourg (September 1920). 

t Picard's researches-which we shall quote in their place-are also essential 
in several parts of the present work. Such is also the case for Le Roux. 
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Paris, Gauthier-Villars) includes a careful bibliographical review, and 
another one has been given by Volterra himself in his Lectures delivered 
at Stockholm (published at Hermann's, Paris). We did not think it 
necessary to give a third one, even to add the mention of later works, 
and content ourselves with eventual quotations in footnotes, apologising 
in advance to the authors whom we may have forgotten•. 

Reasons must also be given for the change of two terms which had 
been previously introduced and adopted in Science. One is "funda­
mental solution" replaced by "elementary solution"; the other consists 
in replacing the word "conormal," created by the finder (d'Adhemar) 
himself, by "transversal." The first has been done in order to avoid 
confusion with the "fundamental solutions " introduced by Poincare 
and his successors (as solutions of homogeneous integral equations); 
the second for reasons of "economy of thought," as the notion in ques­
tion already occurs in the Calculus of Variations, where it is dP-noted 
by the word "transversal." 

I wish to express my heartiest thanks to two young American 
geometers, Mr Walsh and l\.fr Murray, whom I have been so pleased 
to see at Paris during the Academic year 1920-1921. They very
kindly undertook to revise the English of the greater part of my 
manuscript. I fear many faults of language may have escaped detec­
tion, but that such errors are not more numerous is due to their useful 
and friendly help. 

* Our own Memoirs on the subject have been inserted in the .Annales Sci'ent.
Ee . .Norm. Sup. (1904-1905) and the .Acta .Afatltematica (vol. xxx1, 1908). 'Ve 
want to point out that the latter contains several errors in numerical coefficients, 
viz. in formula (30'), p. 349, where a denominator 2 must be cancelled (a factor 2 
having similarly to be added in the preceding line), and in all formulw relating to 
m even (corresponding to our Book IV), which must be corrected as in the 
present volume. 

J. H. 
July 1921. 

I am also greatly indebted to Prof. A. L. Underhill, of l\:1innesota, 
for his kind advices in correcting faults of language during the 
revision of proofs, and express to him my best thanks. 

May 1923. 
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CHAPTER I 

CAUCHY'S FUNDAMENTAL THEOREM. CHARACTERISTICS 

WE shall have to deal with linear :Qartial differential equations of the 
hyperbolic type, and especially with Cauchy's problem concerning them. 

Wliat a-Ilnear p-arti:ardtfferentialeuuat1on is, is weII K:nown:- What 
the hyperbolic type is, will be explained further on. Let us recall what 
Cauchy's problem is. 

1. Boundary problems in general. A differential equation­
whether ordinary or partial-admits of an infinite number of solutions. 
The older and classic point of view, concerning its integration, con­
sisted in finding the so-caJled "general integral," i.e. a solution of the 
equation containing as many arbitrary elements (arbitrary parameters 
or arbitrary functions) as are necessary to represent any solution, 
save some exceptional ones. 

· 

But, in more recent research, especially as concerns partial differ­
ential equations, this point of view had to be given up, not only because 
of the difficulty or impossibility of obtaining this "general integral," 
but, above all, because the question does not by any means consist 
merely in its determination. The question, as set by most.tpplications, 
does not consist in finding any solution u of the differential equation, 
but in choosing, amongst all those possible solutions, a particular one 
defined by properly given accessory conditions*. The partial differential 
equation ("indefinite equation" of some authors) has to be satisfied 
throughout the m-dimensional domain R (if we denote by m, the 
number of independent variables) in which u shall exist; in other 
words, to be an identity, inasmuch as u is defined, and simultaneously 
the accessory conditions ("definite equations") have to be satisfied in 
points of the boundary of R. Examples of this will occur throughout 
these lectures. 

If we have the general integral, there remains the question of 

* This even gives, as we conceive nowadays, the true manner of obtaining the 

general integral, as, by varying the accessory data in every possible way, we can, 
as a rule, get to any solution of our equation. 

1-2 
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choosing the arbitrary elements in its expression so as to satisfy 
accessory conditions. In the case of ordinary differential equations, 
the arbitrary elements being numerical parameters, we have to de­
termine them by an equal number of numerical equations, so that, at 
least theoretically, the question may be considered as solved, being 
reduced to ordinary algebra ; but for partial differential equations, 
the arbitrary elements consist of functions, and the problem of their 
determination may be the chief difficulty in the question. For in­
stance, we know the general integral of Laplace's equation V'2 it= O;
but, nevertheless, this does not enable us to solve, without further 
and rather complicated calculations, the main problems depending on 
that equation, such as that of electric distribution. 

The true questions which actually lie before us are, therefore, the 
"boundary problems," each of which consists in determining an un­
known function u so as to satisfy :  

( 1 )  an " indefinite" partial differential equation ; 
(2) some "definite " boundary conditions. 

Such a problem will be "correctly set " if those accessory conditions 
are such as to determine one and only one solution of the indefinite 
equation. 

The simplest of boundary problems is Cauchy's problem. 

2. Statement of Cauchy's problem. It represents, for partial
differential equations, the exact analogue of the well-known funda­
mental problem in ordinary differential equations. 

The theory of the latter was founded by Cauchy on the following 
theorem: Given an ordinary differential equation, say of the second 
order, 

(1) 
( dy d2y) cp x, y, dx ' dx2 = O

1 . . h 
d2y or, so vmg wit respect to 
dx2 , 

(l') �y ( �) , dx>J- = f x, y, dx = f (x, y, Y ),
a solution of this equation is (under proper hypotheses) determined 

if, for x = 0, we know the numerical values y0, Yo' of y and �� (or, if
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the equation were of order k, the numerical values of y, �y , ax ... ' 

Now let us start from a partial differential. equation of the second 
order, such as (for two independent variables) 

(2) cf> (u, x, y, p1 q,_ r, s, t) = 0 

or, if the number of independent variables is m, 

(II) 

where u, is the unknown function ; x1, x2, • • •  , Xm. the independent

variables and Pi (i = 1, 2, . . . , m) stands for the first derivative �u 
,

UXi 

£ h d d 
. . a2u £ h d d 

. . a2u 
ri or t e secon envat1ve �2 , Sik or t e secon erivative a a . UXi Xi Xk 
'Ve especially deal with the linear case : that is, the left-hand side 
is linear with respect to u, pi, ri, sik. the coefficients being any
given functions of xH x2, . . .  , Xm. Now if we are asked to find a
solution of that equation such that, for Xm = 0, u and the first de-

. . 
chi

b . f . f . nvat1ve � e given unct10ns o x11 x2, • • •  , Xm, viz. 
UXm 

this will be called Oauchy's problem with respect to Xm = 0 ;  u0 and u1 
will be Oauchy's data and Xm = 0 the hypersurface *-here a hyper­
plane-which ·'bears" the data. 

3. Of course, there is no reason to consider exclusively plane
hypersurfaces. Let us imagine that the m-dimensional space be sub-

* In them-dimensional space (x1, x2, •• • , Xm), we shall, for brevity's sake, call
a hypm·surface ( or even a surface) the (m-1)-fold variety defined by one equation

between the x's; we call an edge the (m- 2)-fold variety defined by two equations.
A line will, as usual, mean the locus of a point depending on one parameter; it
will be a straight line if the x's are linear functions of the parameter.
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mitted to a point transformation 

(T) 

r X1 = G1 (X1, . . .  , Xm,),

� X2 = G2 (X1, •,• · , Xm), 
i • • • • • • • • • • • o • • ., • • • • • • • • • • • * 

lxm = Gm (X1, . . . , Xm)

(BKI 

(u not being altered by the transformation). The hyperplane Xm = 0 
will become, in that new X-space, a certain arbitrary surface S 

(S) 

Our differential equation being replaced by an analogous one 

(Ila) <P (u, X1, X2, . . . , Xm, Pi, Ri, Sik) = 0,

Cauchy's problem for that equation, with respect to the surface S, 
will consist in finding a solution of (Ila), satisfying, at every point of
this surface, tw<;> conditions such as 

du 
1.t = U0, 

dN= U1.

N is a direction given arbitrarily at each point of S, but not tangent 
to it; n0 and U1 (a quantity suitably deduced from u0 and the primitive
Ui) are given numerical values at each point of S, these again being
called Oauchy's data for the present case. 

4. Physical examples. We immediately remind the reader that
Cauchy's problem occurs in several physical applications. For instance, 
let us consider a cylindrical pipe, indefinite in both senses, full of a 
homogeneous gas which may be subjected to small disturbances. Let 
us admit Bernoulli's hypothesis of parallelism of sections, so that we 
have to deal with the motions of a one-dimensional medium; the 
displacement u of any molecule being always longitudinal and a 
function of the initial abscissa x and the time t, u must satisfy the 
equation (where ro is a constant) 

The motion will be determined entirely it� at the instant t = 0, we 
know the initial positions (i.e. the initial disturbances from the positions 
of equilibrium) and the initial velocities of all the molecules ; this 



CH. I] CAUCHY'S FUNDAMENTAL THEOREM

knowledge will be analytically expressed by the conditions

(C1) 1.(, (x, 0) = Uo (x), at (x, 0) = lt1 (x). 

7 

Similarly for the motion of electricity in a homogeneous conducting
cable, indefinite in both senses, the distribution of intensities and
potentials all over the cable at the initial instant being given : the
only difference will be that the problem is not governed by equation
(e1) but by the so-called "telegraphist's equation."

If we now come to a three-dimensional medium, that is, to ordinary
space, let us consider a homogeneous gas filling that space indefinitely
in every direction, and without any gap.

Small motions of such a gas will be governed by the equation of 
sound or of spherical waves

a2u a2u a2u 1 a2u
+� + - -;; ':'.It"= 0, uy� <1Y u � 

u being a properly chosen unknown function (the so-called "velocity
potential") of x, y, z, t, and ro again a constant (the velocity of sound
in the gas). Knowing initial disturbances and initial speeds at the
instant t = 0 will be equivalent to knowing the conditions (Cauchy's
conditions)

(C3) u, (x, y, z, 0) = u0 (x, y, z), 
OU 
ot (x, y, z, 0) = U1 (a:, y, z), 

u0 and i61 being given functions of x, y, z. 

4 a. \Ve have been speaking of one-dimensional and three-dimen­
sional mediums; of course we may also conceive two-dimensional
ones. Let us, for instance, imagine that the state of an aerial mass
happens at every instant to be the same all along each vertical line,
so that pressures, densities, velocities (the latter being horizontal)
are all independent of the vertical coordinate z. Such a motion will
be governed by the equation of cylindrical waves

(Pu o2u 1 o2u 
ox2 + ay2 - {()2 ot2 = 0,

which is deduced from ( e3) by supposing that u is independent of z. 
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This case being evidently a sub-case of the preceding one, we again 
can complete the determination of u by Cauchy's conditions 

OU (C2) u (x, y, 0) = u0 (x, y), - (x, y, 0) = u1 (x, y). dt 
Of course, we can also conceive the same problem as corresponding 

to the preceding one for beings living in a space with only two 
dimensions. But it will be very important for us to remember that 
this two-dimensional problem may be considered as a mere special 
case of the three-dimensional one. 

We note that, in each case, the number of independent variables 
is greater by one than the number of dimensions of the medium, t.he 
time t constituting a supplementary variable or, as we may say, playing 
the part of a new coordinate *. It is known that physicists in recent 
times have fully adopted this point of view, the combination of a 
point in space and value of t being called by them an "event " or 
"universe point," the ensemble of all points of space combined with 
all values of t, a " universe." 

5. Geometric configurations. Graphically, taking again a one­
dimensional medium, we shall represent the combination of a value 
of x and a value of t (that is, a given point of the medium considered 
at a given instant) by a point in an xt plane. 

Similarly, we may study the motion of a two-dimensional medium 
by introducing coordinates x, y, and t in a space analogous to our 
ordinary one, the medium at the instant t = 0 being represented by a 
certain plane in that space, while other instants (especially later 
ones) would be represented by displacing that plane normally to 
itself. Everything takes place as if, at the same time in which our 
two-dimensional motion occurs, the horizontal plane in which it takes 
place possessed a vertical velocity equal to 1. 

6. The case of motion in ordinary space will present a little more
difficulty as, adding t, we have. to introduce four-dimensional space. 
We do it, as it seems to me, as clearly as possible by imitating exactly 
the method of ordinary descriptive geometry. 'Ve simultaneously 
draw two systems of axes x, y, z and x, y, t (fig. 1): each four-dimen-

* This conception was beautifully illustrated a good many years ago by the
novelist 'Vells in his "Time l\fachine." 



CH. I] CAUCHY'S FUNDAMENTAL THEOREM 9 
sional point, or "universe point," (x, y, z, t) shall be represented by 

two simultaneous points (x, y, z) and 
(x, y, t). The plane of xy shall play the 

xyz 

o>-----1----
1 

I I I I I I 

part of the " ground plane," the only 
difference from ordinary descriptive geo­
metry being that, for clearness' sake, this 
ground plane will often be drawn twice, 
as in fig. 1 a*.

7. Cauchy-Kowalewsky's theorem.I I 
It lxyt 

Fig. 1. 
Now, concerning Cauchy's problem, the 
following three quest.ions evidently arise : 

1. Has Cauchy's problem a solution ?
2. Has it only one solution ? (in other words, is that problem cor­

rectly set?) ; and lastly 

y 

z 

0 
I 
I I I 
I I 
I I 
I I 

t I I 

Fig. 1 a. 

xyz 

x 

xyt 

x 

3. How is that solution to be calcu­
lated ? 

Though the first two questions will 
be considered here as merely intro­
ductoryt, we shall begin by seeing how 
we must answer them. 

It is well known that Cauchy himself, 
then Sophie Kowalewsky and, at the 
same time, Darboux+ considered the case 
in which (2) or (II) can be solved with 
respect to r (or rm), viz. 

(2') r = f (u, x, y, p, q, s,, t) 
or (II') rm = f ( u, x1, ... ), 
which is the case in (2) or (II) if 

(3) �cp =fo 0 or �<P =/= 0 · or orm ' 
* "\Ve shall also quite frequently limit ourselves to drawing one "projection,"

viz. the (x, y, t) diagram, or even more simply (whatever m may be) the section of 
the m-dimensional diagram by a two-dimensional space. 

t For some further details, we refer to our Columbia Lectures (191 1 ), New York, 
Columbia University Press (1915), Lecture I. 

t Cauchy, C.R. Acad. Sc. vol. xrv, p. 1020 ; vol. xv, pp. 44, 85, 131 (1842) ; 
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upon that hypothesis, they proved (or are most frequently said to 
have proved) that Gauchys problem, with respect to x=O (or Xm=O), 
always admits of one and only one solution. 

8. Analytic functions. The proof of this theorem has been
simplified by Goursat * in such a way that we can give it in a few 
lines : before which, however, we have to recall what the conception 
of an analytic function is. 

The function f (x) of the (real) variable x is said to be analytic or,
more exactlyt, analytic and regular or also holomorphic in the interval 
(a, b) if, x0 being any number in that interval,/ can be represented, 
for x sufficiently near to x0, by a Taylor series in powers of (x - x0), 
the convergence radius of which is therefore not zero. 

If so, f can be defined, and will admit of derivatives of every
order, not only for the just mentioned real values of x, but also for 
imaginary ones, provided their representative points are near enough 
to the segment (a, b) of the real axis.

" 

But Cauchy's theory of functions shows us that this second 
property-viz. existence in the imaginary domain with continuity 
and differentiability-conversely implies Taylor's expansion, thus 
giving a second definition, fully equivalent to the first one, for an 
analytic function. 

The interval of convergence of the Taylor series for f may 
be limited by singularities of f in (a, b) ; but is usually without 
any apparent relation to them and much smaller than would be 

Sophie Kowalewsky, Thesis, Gottingen (1874) ; Journal filr 11/ath. t. Lxxx ( 1875), 
pp. 1-32; Darboux, C.R. Acad. Sc. vol. LXXX (1875), pp. 101-104 and p. 317. S. 
Kowalewsky seems not to have known the work of Cauchy (which was also un­
known to Darboux and was pointed out by Genocchi in the same vol. Lxxx). She 
even attributes to "\Veierstrass, Journal fur Math. t. LI (18G6), p. 43, the first formu­
lation of the theorem concerning ordinary differential equations, which seems to 
be puzzling, as she quotes Briot and Bouquet (Journ. Ee. Polytechnique, vol. xxr), 
and these begin by referring to Cauchy (though without giving a prech;e quotation). 
The theorem was again proved in other later works, such as l\Ieray and Riquier's. 

* Bulletin de la Sociite .Mathematique de France, vol. xxvr (1 898), p. 129; Cours
d'Analyse mathematique, vol. n, p. 360; see Hedrick and Dunkel's translation 
(Ginn and Co.), vol. u, part n, pp. 53 ff. 

t Analysts frequently do not cease to call a function an analytic one even if its 
domain of existence contains points of discontinuity (poles, essential points, etc . . . .  ). 
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obtained by their consideration (being connected with imaginary 
singularities). 

All this may be extended at once to the case of several variables, 
an analytic function of x, y, z being characterized by one of the two 
(equivalent) definitions: 

(A) f (x, y, z) is analytic in the volume 6IJ if, (x0, y0, z0) being any
point in 61J, f can be represented by a convergent Taylor series in 
powers of (x - x0), (y- y0), (z - z0) for every position of (x, y, z) within
a certain sphere with centre (x0, y0, zo); 

(B) f (x, y, z) is analytic in the volume 6IJ if it can be defined, so
as to be continuous and differentiable, not only for the (real) points 
of 61J, but for any point x = x + x" i, y = y' + y" i, z = z + z" i such that
(a/, y', z') lies in� and Ix" I, I y" j, I z" I are sufficiently small.

Analytic functions are the ones usually given by our mathematical 
procedure; but they are really very special ones amongst functions 
in general *. This is readily seen by the simple (and important) fact 
that the continuation of an analytic function is determined. If f (x) is 
analytic in (a, b), the knowledge of its values in any-however small 
-sub-interval (a', b') of (a, b) enables us to calculate it all over (a, b ).

For non-analytic functions, continuation has, generally, no mean­
ing. Such a function being only given in (0, -!), its values in (!, 1) 

can be chosen in oo ways, no reason existing, as a rule, to prefer any 
one of these continuations to any other one. 

9. Regular functions. We shall have, in the future, to deal with
several kinds of functions which will not be assumed to be analytic; 
they will frequently be restricted by some hypothesis of regularity. 

A function of one or several variables will be called regular if it 
is continuous and admits of continuous deiivatives up to a certain 
order p. This order will vary according to the nature of the question. 
Strictly speaking, it should be precisely indicated in each case : I 
must own, however, that I shall most often omit to do this, such 
precision not seeming to me to be worth the somewhat tedious pre­
cautions which it would require. It will be sufficient for us to realize that 
such an order exists, which fact is generally obvious in each question. 

* For further details, we refer to our work La serie de Taylor et son prolonge­
ment analytique, Paris, Gauthier-Villars. 
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A regular function admits of Taylor's expansion, limited to terms 
of a certain order, and, as its derivatives also admit of corresponding 
expansions, all operations based on such an expansion, and in general 
all operations of Differential Calculus which are valid for analytic 
functions, hold good also for "regular" ones, provided no higher 
derivatives are concerned than those of order p. For instance, such
a punctual transformation as (T) (§ 3) will not alter regularity if the 
functions G are themselves regular (with the condition, of course,
that the Jacobian does not vanish). 

As to calling a function " analytic and regular," this is synonymous 
with saying that it is holomorphic. 

10. The proof of Cauchy-Kowalewsky's theorem. For the
fundamental theorem concerning ordinary differential equations, we 
remind the reader that two kinds of proof have been given by Cauchy 
and his successors. 

I. One of them is what Cauchy calls " Oalcul des Limites*," and
modern writers " method of dominant functions." Taking the given 
differential equation in the form (1') (§ 2), it essentially assumes 
that its right-hand side is holornorphic in x, y, y in the neighbour­
hood of (x = 0, y = y0, y = y0'). Using the fact that any convergent
Maclaurin expansion in powers of x, y, z admits of a " dominant "
expansion of any of the forms 

K K 
1-

x+y+�' 

p ( 1 - �) ( 1 -�) ( 1 - �)' 

K, p, p1 being, in each case, properly chosen positive constants, the
proof establishes (upon the aforesaid hypothesis) that there exists a 
(unique) convergent l\iaclaurin expansion in powers of x satisfying 
the given equation and initial conditions. 

II. In the second kind of methods (successive approximations),
the differential equation is no longer assumed to be an analytic one. 
Only very simple properties (continuity and" Lipschitz's condition") 
are assumed concerning its right-hand side. Nevertheless, the same 
result-viz. existence and uniqueness of the solution-is obtained as 

* See Goursat's Cours d'Analyse, translated by Hedrick and Dunkel, vol. II, 
part II, chap. II, pp. 45 ff. 
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in the former method, except that, of course, the solution itself is no 
longer analytic. 

The proof of the theorem concerning partial differential equations 
corresponds to the first of the above-mentioned classes of methods. 
'Ve shall present it under Goursat's form *. 

Reducing the number of independent variables to two, in order to 
simplify the notation, we start from the equation 

(2') 1· = f (u, x, y, p, q, s, t) 
and the corresponding Cauchy problem, consisting in the determina­
tion of u by that equation and the definite conditions 

OU (5) u (0, y) = u0 (y), ox (0, y) = ui(y).

Let us try to satisfy all these conditions by choosing for u a power 
series in x

'(4) 
uh __ h u = u0 + U1 X + . . .  + h ! a;· + . · · . 

Each uh= (�h.�) will be a function of y, which we must find.uX x=O 
u0 and u'l are given. To find u.i, u3, • • •  , we notice that each deriva-

tive -�-�,-- , for x = 0, will be a derivative of uh, whatever k may be. 

Therefore, making, in (2'), x = 0, the right-hand side will contain, 
besides y itself, only the functions u0, u1 and their derivatives p = u1, 
q = u0', s = u/, t = u0", so that the left-hand side (r)x=o = u2 can be 
considered as known. 

Furthermore, differentiating (2') once with respect to x and then 

making x = 0, we obtain (�r) = u8 in terms of it0, ·u1, u2 and theirUX X=O 
derivatives ; and, in the same way, successive differentiations with 
respect to x will give us the values of u4, u11, .. . , each uh being a 
polynomial in u0, u1, u2, ... , uh-i and their derivatives, and also in f 
and its derivatives. 

'\Ve can also consider each uh as expanded in powers of (y - y0) 
(where Yo is some fixed value of y) so as to replace (4) by

( 4 a) u = S = '!iI h �hz ! xh- (y - Yo)k :

* See Gonrsat-Hedrick, loc. cit. pp. 61  ff.
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then each numerical coefficient 'l.th'fc will, on account of the preceding 
operations, be expressed in terms of the preceding ones (that is, uhk 
with smaller hand not greater k) and of the coefficients in the Taylor 
expansion * off, by a polynomial P.

We see that conditions (2') and (5) determine every coefficient of 
( 4) or ( 4 a). Therefore, we can already assert that our Cauchy problem
cannot admit of more than one solution represented by a convergent 
series; that is, of one solution holomorphic in a:.

We have now to show that a solution actually exist�. Assuming 
f to be holomorphic in the variables which it contains and making 
the same hypothesis for the functions u0 and u1 in the neighbourhood 
of some fixed value y = y0, we shall show that the series (4) is conver­
gent for I a: I sufficiently small t, and that such is the case even for the 
double series (4. a), provided I a: I and I y-y0 I lie below properly chosen
positive limits. 

The first step will consist, as for ordinary differential equations, 
in noting that each successive operation for the determination of our 
uh only implies differentiations, multiplications and additions (without 
any use of the sign -) : in other words, that the polynomial denoted 
above by P has only positive terms. Therefore, we shall have a 
dominant of the series ( 4 a) if we replace each of the expansions of 
f, u0, u1 by a dominant one. The whole question is reduced to finding 
such dominant expansions that the corresponding problem is certain 
to have a solution. 

For that purpose, we may at first assume that the given functions 
u0, u1 are zero, and even that zero is also the value of u2 deduced 
from the equation ; for, in the general case ( u0, Ui, u2 =I= 0), we could,
instead of u, introduce a new unknown u' by the transformation 

the new problem in u' satisfying the above requirement. Under such 

* ·we mean an expansion in powers of x, (y -y 0), [ u - Uo (o/o)], [ p - U1 (.yo)],
[q-uo' (yo)], [s-u1' (yo)], [t-uo" (yo)]. 

t That the series (4a), when convergent, certainly defines a solution of the
problem, can be shown as in the case of ordinary differential equations (and as we 
shall show in Book n for similar purposes). 
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conditions (and y0 being taken= 0) a dominant off will be 
K 

- K( 1 - x + y + ; + p + q) (I - s � t)

15 

(as the initial values of x, y, u, p, q, s, t are all zero, and the corre­
sponding value of f is also zero), and we can replace u0, Ui by any 
:l\Iaclaurin expansions with positive coefficients, as any such expansions 
are obviously dominant of zero. Our proof will therefore be given if 
we show that the equation 

r = (72 u, 
= 

K - J{ �x2 ( l _ x + y +; + p + q) ( l _ s; t) 
admits of a solution represented by a :l\Iaclaurin expansion with all 
coefficients positive or zero, or if we do so for any other equation where 
the quantity in the right-hand side would be replaced by a dominant 

one. Now, Goursat introduces such a dominant by writing � instead

of x, denoting by a a positive number smaller than 1, the choice of
which we shall examine presently. 

For this new equation 
a2u K IJr o-a;-2 = ( a; 

+y+u+p+q) +t 
- i,

1 - a --·· · p ( 1- �-�-) 
we seek to find a solution only depending on the variable 

er= x + ay.
The function it of er will have to satisfy the ordinary differential 

equation 

or 

u'' = �� = ( � + "+(1 +a�') (a+a') u" 
- K 

1 - ··-�· ·-· (1 - · · ··�) 
P Pi 

- - (a + a2)] 'l2� - a + a2 (d2�)2 = 
]{ - K. 

Pi du- p1 du er (l ) du a·+u+ +a ([d-
1- ·----·-
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If we now take a such that 1 - K (a + a2) > 0. not only will this
Pi 

differential equation admit (on account of Cauchy's first theorem) of 
a holomorphic solution vanishing with u, but the expansion of the 
solution will have all its coefficients positive *. Q.E.D. 

Nothing essential need be changed in the �bove when several 
independent variables x, y. z, . . . exist, the double series S merely 
becoming a multiple one, the quantity u being x + a (y + z + . . .  ) and 
some numerical coefficients appearing in our dominant functions. 

11. The expansion ( 4 a) thus obtained depends on the choice of
y0 and is only valid if we assume not only that Ix I < R, but also that
it is confined within a proper interval I around y0• On the contrary, 

. the expansion (4) is independent of Yo· l\1ore precisely, if we give to
y0 two different values such that the two corresponding intervals I 
overlap each other, every function uh will be the same for both cases 
in the common part, this being a consequence of the fact that the 
holomorphic solution of our Cauchy problem is unique. 

· ·  

Therefore, if our hypotheses concerning f, u0, u1 are satisfied 
throughout any segment, however large, of the y-axis, our preceding 
calculations will give the expansion ( 4) in the vicinity of that whole
segment. The numbers ][, p and p1 having, as we know, the first a 
maximum and the two others minima all over the aforesaid segment, 
the corresponding limit of convergence R for ix I can also, if necessary,
be considered as constant. 

As has already been stated, the above determination of R (even 
if we take it as different for different values of y0) generally leads, 
for the domain of convergence of the series ( 4) and, a fortiori, for the 
domain of existence of the solution u, to limits which are so small 
as to be useless in practice. 

12. Characteristics. The conclusions are quite different in the
exceptional case, where the sign fin (3) (p. 9) is replaced by =. In

* A quantity Y defined by aY-bY2=X, with a>O, b >0, has, in powers of
X, a l\faclaurin expansion with all 

.
coefficients positive, as appears, e.g. by direct

resolution of the quadratic equation. 
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this case, the solution of Oauchy's problem does not generally exist and, 
if it exists, is not unique. 

In this instance, some new features appear when the number of 
variables is greater than two. Let us take it as 3, and also change our 
notation (as we shall do from now on), by representing our equation, 
which we now assume to be linear, in the form * 

(E) 
(J1i.u ou 

� Aik 0 0 + � Bi ;::;-- + Ou = f, i,k Xi Xk i UXi 
Aik, Bi, 0 and/ being given functions of the x's. For the exceptional 
case, we must assumet Amm (=Ass) = 0, so that our equation is
reduced to 

(6) 

with Cauchy's conditions u = u0 (x1, x2), �� = 'lt1 (x1 , x2) for Xs = 0.
Here we see that the left-hand side contains no double differen­

tiation with respect to x3, so that 4for x3 = 0) the equation does not
involve the coefficient u2 of x32, but only u0 and u1 ; thus, it no longer
determines any unknown, but gives us a condition of possibility for 
our Cauchy problem, viz. 

(7) 2A1a �:: + 2A 2a �:: + B3u1 +JI= 0,

. h H )j (}2uo A (}2uo A (} 2uo B OUo B OUo a f WI t = .ll.11 � + 2 12 �6 , + 22 � + l -s--:- + 2 ;:s-- + Uo - • uX1 uX1 uX2 uX2 UX1 uX2 
If u0 and u1 are not chosen so as to satisfy this equation, the problem
has no solution. 

If, for instance, u0 is given in the first place, we ought to take for 
u1 a solution of (7). We notice that this gives for u1 a linear partial 

* The notation is the usual one for quadratic forms, with Aik= Aki' so that
each term of the second order with different suffixes is reckoned twice.

t Amm=O may be an identity in x1, x2, • • •  , Xm or, more generally, an identity
in x1, ... , Xm-I for Xm=O. For simplicity's sake, we only deal with the first case,
the conclusions being the same, as may be readily seen, in the second one. 

H. 2 
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differential equation of the first order, the integration of which would 
lead, as we know, to the drawing, on our plane x3 = 0, of the system 
of lines (l) defined by the differential equation* 

(l) 

Let us now suppose that condition (7) is fulfilled: we have as yet 
no condition to determine u2• But such a condition arises from the 
following equation (which, in the general case, previously dealt with, 
was used to find u3) obtained by differentiating once with respect to 
Xa and then making x3 = 0: this obviously gives 

(7') 2A au2 2A au2 B H 0 13 � + 23 � + 3'll2 + 1 = ' uX1 • uX2 

h H 2 0A 13 dU1 2 aA?a dU1 aB3 oH d w ere 1 = --::i - -s-- + --::i- � + � it1 + ::i-·- oes not depend on u2•u� u� u�u� u� u� 
\Ve see therefore that u2 is not entirely arbitrary, but that it can, 

nevertheless, be chosen in an infinity of ways : we can take for it any 
solution of the linear partial differential equation (7'). This equation 
has the sarne characteristics as (7), viz. the lines (l). 

The fact that, u0 and u1 being given, it2 may be chosen in more 
than one way can be expressed by saying that two solutions of our 
equation (corresponding to the same u0 and u1, but to different ii2's) 
may be tangent to each othert in every point of x3 = 0 (or, generally, 
Xm = 0). 

Further differentiations with respect to x3 would, in the same way, 
give us for u3, u4, . . .  successive linear partial differential equations of 
the first order, the characteristics of which would still be the same 
lines (l). 

We shall have to return later to these lines, the geometric meaning 
of which will then appear. For the present, the preceding calculation 

* The corresponding lines (l) form> 3 would be defined by (m - 2) differential
equations between x1, x2, . . . , Xm - I· 

t Two functions �t, v (of one or several variables) are said to be tangent at a
.determinate point (i.e. for a certain system of values of the variables) if they and 
all their first derivatives assume numerical values which are equal each to each 
at the point in question. The contact is of order p if similar equalities hold not 
only between first derivatiyes, but between all derivatives up to the order p. 
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gives us a first presumption that if our Cauchy problem is not im­
possible (that is, if condition (7) is fulfilled) it becomes indeterminate, 
as each of the successive 'lth's can be chosen with a certain measure of 
arbitrariness. This, however, is only a presumption, as we do not 
know, as yet, whether the choice of these uh's can be directed so as to 
make the series (4) convergent : the proof of which fact we shall have 
a further opportunity to give, and this will show, at the same time, 
the degree of indetermination of u. 

If we take this proof for granted, we see that, briefly speaking, 
Cauchy's problem behaves like the resolution of a system of n ordinary 
equations of the first degree in n unknowns, the determinant of which 
is zero. 

'Ve have dealt with a linear equation, the only interesting case 
for what follows ; the non-linear case leads to essentially similar results 
with some differences at the beginning of the operation, and is even 
readily reduced to the first case by differentiating the given 
equation. 

13. The above exceptional case is a most important one for aur
further work and for any study of partial differential equations. How 
is it to be defined if we set Cauchy's problem not with respect to 
Xm = 0, but to any other surface such as S (§ 3)? To see this, we
only have to transform condition (3) by application of the punctual
transformation (T) : an elementary operation. We thus recognize * 
that (with the notation of § 3) the exceptional case is defined by the
condition 

• 
Let us again suppose that we are in the linear case, our partial 

differential equation having the form 

(E) 02u ou � Aik 0 0 + "2. B;, ;:;:;- + Ou = fi, k Xi Xk i UXi 

(Aik 1 Bi, a and f being given functions of X1 , X2, . . .  , Xvi). rrhe con-

* The condition can be found directly, and even the calculation in the pre­
ceding � 12 performed without the use of punctual transformations : see our 
Le9ons sur la propagation des ondes (Paris, Hermann, 1903), eh. vn, §§ 278 to 288.

2-2 
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dition for the variety G (x1 , • • •  , xm) = 0 to correspond to the exceptional 
case will be 

(A) � A · oG oG - 0 ·
- ik '.:'.) - • UXk 

in other words, it is to be obtained by the following 
RULE. We consider exclusively the terms of the second order in the 

given equation, and, in these terms, we replace each second derivative 
of u by the corresponding square or product of first derivatives of G. 

If condition (A) is fulfilled (that is, if  the above quantity is zero 
at every point * of the surface S), S is said to be a characteristic t of 
the equation (E). The quadratic form 

A (ry1 , "f2, • • •  , 'Ym) = :S A ik"/i "/k 
i, k 

is called the characteristic form. 
The fundamental property of characteristics is, on account of the 

preceding considerations, expressed by the fact that they are the only 
surfaces along which two solutions of the equation can touch each 
other : this contact can be of any order (as, in the operations in the 
preceding section, we can assume ii0 , u1 , • • •  , 1.th-i to be the same for
two different solutions, the values of uh changing). 

This property is entirely similar to the definition of characteristics 
for a partial differential equation of the first order, and this is the 
reason why the same denomination is given to both, although the 
former are surfaces and the latter lines (whatever be the number of 
variables). 

Equation (A) is a partial differential equation of the first order, 
which S must satisfy. Geometrically, as is well known, it can be 
interpreted by saying that, at each of its points, S must have its 

* The case in which condition (A) would be satisfied in some points of S and
not in the others, though occurring in some problems already treated, would 
present new difficulties which have not as yet been attacked, as they have not 
proved interesting in applications. 

t The theory of characteristics, for two independent variables, has been known 
since 1\Ionge and Ampere (see Darboux's Theorie des swfaces, vol. II and Goursat's 
Le9ons sur l'integration des equations aux derivees partielles du second ordre). Its 
extension to m >  2 was first given by Backlund (.Math. Annalen, vol. xnr, 1878),
but was not generally known before being found by Beudon (Bull. Soc . .Math. Fr. 
vol. xxv, 1897).
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tangent plane tangent to  a certain corresponding quadratic cone, 
whose tangential equation is A ( ry1 , ry2 , • • •  , 'Ym) = 0. This cone is called
the characteristic cone. 

(If the Aik's are not constants, each system of values of x1 , x2 , • • • , Xm 
will give a different characteristic cone. 'Ve shall generally consider 
a characteristic cone as having the corresponding point of the rn­
dimensional space as its vertex.) 

Characteristics have an important physical meaning ; they are, in 
fact, what the physicist means by waves. That the above definition of 
them (and, more precisely, the part they play as surfaces of contact 
between two solutions) is strictly equivalent to Hugoniot's conception 
of waves, may be easily perceived (for proof, however, we shall refer 
to our Le9ons sur la propagation des ondes). In fact, the identity of 
both conceptions not only will appear in each case that we shall have 
to deal with, but will be an a posteriori consequence of our final 
formulre. 

14. The result of Cauchy and Sophie Kowalewsky's analysis would
therefore be that Cauchy's problem has one (and only one) solution 
every time the surface which bears the data is not characteristic, nor 
tangent anywhere to a characteristic *. 

* We shall leave the case of systerns of partial differential equations aside and
only say a word about it here for completeness' sake. The fundamental theorem 
allows a well-known generalization to such systems when the number of equations 
is equal to the number p of unknowns and they can be solved for the derivatives 
of the highest order with respect to one variable x : for instance, as concerns 
the three equations of the second order F1 (1·, r', r'', . . .  )= 0, P2 (r, r', r'', . . .  ) = 0,

F3 (r, 11, r", . . . ) = 0  with the three unknowns u, u', u" (where we have emphasized 

()2u (]2u' ()2u") 
the three second derivatives r= ox2' r'=ax2 ' r''= -0x2 

if they can be solved for

r, r', r''. The exceptional case will occur when such a resolution (at least a regular

one) is impossible, i .e. when the JD.cobian 12h:_�,�:�iJ.... vanishes. Then x=O will

be said to be a characteristic. ·we easily deduce from this, by punctual transform­
ation (§ 3) or by a direct calculation, the condition that a surface G=O be a 
characteristic : which will give (see our Le9ons sur la p1·opagation des ondes, 
eh. vu, § :321), in the case of the above system, a partial differential equation 
of the first order and sixth degree (2pth degree, if there were p equations of the 
second order in p unknowns). 

It has sometimes been believed that the exceptional case could always be 
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a.voided by a proper punctual transformation. This, however, is an error : in  other 
terms, it may happen that the above d�fined equation of characteristics is an 
identity. Various examples of this have been formed ; but one is offered by a most 
classic and nsual problem, viz. the problem of applicable surfaces : three partial 
differential equations of the first order in x, y, z as functions of u, v which cannot 

be solved with respect to �x , 0·1/ , �z , whatever be the choice of the independent
vlt Ut O U  

variables u, v. 
How Cauchy's statement (still remaining in the analytic hypothesis) must 

be modified in the most general case-without changing the variables-has, as is 
known, been made clear by the works of l\Iemy and Riquier, even when the 
number of equations is not equal to the number of nnknowns. 

But the effect of a punctual transformation can itself be determined, and, 
therefore, a new equation for characteristics established, even when the ordinary 
condition for these fails by being an identity, as was pointed out, in one case, by 
the author (Bull. Soc. Math. F1·. vol. xxxrv, 1906) and generally performed, thanks 
to the works of Le Roux (Bull. Soc. Math. Fr. vol. xxxvr, p. 129, 1908), Gunther 
and :Maurice Janet (C. R. Ac. Sc. 1913).



CHAPTER II 
DISCUSSION OF CA UCHY'S RESULT 

15. The reader will probably wonder at our systematicaJ ly em­
ploying a conditional form and seeming to consider as doubtful one of 
the most classic and well-known demonstrations of analysis. The fact is 
that things are not so simple as would be suggested by the above argu­
ments. Indeed, the circumstances which we shall meet with will appear 
as quite paradoxical from the purely mathematical point of view and 
could only be foreseen by physical hints. No question offers a more 
striking illustration of the ideas which Poincare developed at the 
first International Mathematical Congress at Zurich, 1897 (see a1so 
La Valeur de la Science, pp. 137-155), viz. that it is physical appli­
cations which show us the important problems we have to set, and 
that again Physics foreshadows the solutions. 

The reasonings of Cauchy, S. Kowalewsky and Darboux, the equi­
valent of which has been given above, are perfectly rigorous ;  never­
theless, their conclusion must not be considered as an entirely general 
one. The reason for this lies in the hypothesis, made above, that 
Cauchy's data, as well as the coefficients of the equations, are expressed 
by analytic functions ; and the theorem is very often likely to be false 
when this hypothesis is not satisfied. 

We say "often" and not "always," for it may also happen that the 
statement of Cauchy-Kowalewsky given above should prove to be 
accurate for a quite general choice of data ; and indeed, one of the 
most curious facts in this theory is that apparently very slightly 
different equations behave in quite opposite ways in this matter. 

If, in the first place, we take such a Cauchy problem as was 
spoken of in § 4 [Cauchy's problem with respect to t = 0, for equations 
(e1), (e2), (e3)], our above conclusions are valid, as we shall see as these 
lectures proceed, without any need of the hypothesis of analyticity. 

But the conclusions will be altogether different if, for instance, we 
deal with Laplace's classic equation of potenticils 

32u a2u a2u v2u = � + � + '.:l  2 = 0. 
ux� uy� uz 
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This will be immediately realized by comparison with another 
classic boundary problem ; I mean Dirichlet's problem. This consists, 
as we know, in determining a solution of Laplace's equation within a 
given volume 6/J, the value of u being given at every point of the 
boundary surface S of that volume. It is a known fact that this 
problem is correctly set : i.e. it has one (and only one) solution. 

This fact immediately appears as contradictory to Cauchy-Kowa­
lewsky's theorem : for, if the knowledge of numerical values of u at 
the points of S (together with the partial differential equation) is by 
itself sufficient to determine the unknown function within 6/J, we 
evidently have no right to impose upon 'U any additional condition, 
and we cannot therefore, besides values of u, choose arbitrarily those 

du 
of d- . Indeed there is, between those two sets of values, an infinity 

n 
of relations which must be satisfied in order that a corresponding 
harmonic function should exist. Any point a exterior to 6/) provides 
such a relation, since, denoting by r the distance from a to an arbitrary 
point JJ! of S, we must have the well-known identity : 

l 

(8) I Is (1' �� - � ��) = o. 

How is it that, on the contrary, Cauchy-Kowalewsky's conclusions 
would lead to the arbitrary choice at every point of S, not only of u, 
but also of one of its first derivatives, such as the normal derivative 

�u ? 
dn · 

A double explanation can be given for this apparent contradiction. 
First, the conditions are not alike in both cases. 'Ve have previously 
proved the possibility of Cauchy's problem with respect to a plane, 
then with respect to any surface which can be deduced from a plane 
by punctual transformation. This is the case for any (regular) portion 
of a surface, provided it is sufficiently small, but not for whole closed 
surfaces. The whole surface of a sphere, for instance, cannot, with 
perfect continuity, be transformed into the surface of a plane : it has 
a different shape in the sense of Analysis situs. 

This, however, is no decisive objection, as we can see from the 
remark of § 1 1 : if we solve our Cauchy problem in the neighbourhood 
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of each portion of S, these different elements of a solution will continue 
each other and one solution will be constituted, which will be valid 
all over S and its neighbourhood. 

But, in the second place, our theorem only proves t.he existence 
of the solution of Cauchy's problem in the neighbourhood of the 
initial surface S. In Dirichlet's problem, the solution has to exist in 
the whole extent of UV. This is the first required explanation : for this 
reason, and only for this, the relations (8) are necessary. If they are 

not satisfied by an analytic set of values of u and d<!:.._1:!_ ,  these values ' .n 

will correspond to a certain harmonic function it in the neighbourhood 
of S ;  but it will necessarily admit of some singularities, or even cease 
to be defined at some place within UV. 

Even this first answer to our question is not complete and does 
not give the only reason why Cauchy's problem is not always possible. 
Taking now the geometric terms of the problem exactly in the same 
way as Cauchy, we can see that, if we drop the hypothesis of analytic 
data, no solution will exist even in the immediate neighbourhood of 
S, or of a portion u, however small, of S. 

This may be considered as a consequence of a well-known property 
of harmonic functions (i.e. solutions of \12u = 0), viz. that they are 
analytic in every region insi<le the domain where they exist and are 
continuous together with their first derivatives, and they can only lose 
that character of analyticity on the boundary of this domain : a form 
of this property being* that if two harmonic functions, each defined 
on one side of a surface, have, at each point of the latter, the same 
value and the same normal derivative, they are the analytic exten­
sion of each other, both together constituting a single harmonic (and 
therefore analytic) function throughout the region lying on both sides 
of the surface. 

This shows, indeed, that ( u being, for instance, assumed to be 
analytic) it is, at least, impossible that Cauchy's problem with non­
analytic data should have a solut.ion on both sides of u; for such two 
solutions u' and it" would, on account of the above theorem, constitute 
together a single analytic function in a whole domain to which u would 

* This was pointed out by Duhem (see Hydrodynamique, Elasticite, Acoustique, 
Paris, Hermann (1891), vol. r, p. 169). 
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be interior : which is obviously contradictory to the assumption that 
Uo (common value of u' and u/') or u� (common normal derivative) is 
non-analytic over a-. 

Of course, it is almost evident that, in general, neither u' nor u'' wil1 
exist : for there is no reason why one should exist rather than the 
other, if the data are taken at random. 

15 a. That no solution can exist even on one side of a- can be 
shown rigorously when u is a portion of the plane x = 0, by making 
the further assumption that u0 (or u1) is zero : for, if e.g. u' should exist 
for x � 0, we could define u/' for x � 0 by 

(9) it (- x, y, z) = - u (x, y, .z), 

u' and n" then having, on x = 0, the same values (viz. 0) and the same 
normal derivative. The case is now the same as above : therefore, the 
solution can never exist if u1 (y, .z) is not analytic. 

(Similarly, if u1 be zero, with any value of it0, an eventual solution 
u' for x � 0 could be extended to x � 0 by u (- x, y, z) = u (x, y, .z), and 
this would lead to the same impossibility as above if u0 should not be 
analytic.) 

If u0 (y, z) had been taken different from zero, it would obviously, 
by itself, have determined * u but for an analytic function of x, y, z, 

and therefore u1 (y, .z) but for an analytic function of y, z. 

16. The equation of heat 

o2u - ou _ o  
OX2 oy - ' 

though we shall not have to deal with it in what follows, is interesting 
to consider from the same point of view, as has been done by Holm­
gren t. Let us again take Cauchy's problem with respect to x = 0, the 

* One of these possible choices for u is _!__ multiplied by the potential of a 
2rr 

double layer of density it0 on our plane, the corresponding u1 being the normal 
derivative of this potential. The combination of this with the statement in the 
text gives the most general form acceptable for u1 corresponding to a given form 
of it0 • 

t Arlciv fur Matematilc, Astronomi och Fysik (1904), p. 324, note ; see also ibid. 
vol. II (1905-1906). 
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first function u0 (y) being again taken as 0. Just as above, assuming 
our solution to be defined only on one side of x = 0, say for x � 0, we 

extend it to x � 0 by formula (9) : by means of which u and �; remain 

continuous for. x - 0. 

Now, a solution of the equation of heat, which is continuous and 
has continuous derivatives of the first order, is not necessarily analytic 
in both variables, as was the case with the equation of potentials ; but 
it can be proved* that it is analytic with respect to x. As, on the 
other hand (compare preceding § 15 a), it is an odd function on account 
of zt0 = 0, it can be expanded in a convergent series of the form 

(lo) - + U3 3 + + U2p+1 2p+1 1.t - UiX 3 !
x . . . (2p + l

)
! x 

+ . . . . 

The first coefficient 1.11 is equal to our derivative �; , for x = 0. But 

the differential equation gives 
(02P+1u) ()P (OU) dPuI 

U2p+I = OX2p+I x = O  = 
oyP ,ax x= O = 

dy
P • 

We therefore see, first, that u1 admits of derivatives of every order; 
then that we have a limitation of their order of magnitude : for, on 
account of the convergence of the series (10), we have (M, p being 
two fixed positive numbers) 

I dPu1 • M (2p + 1)  ! 
(1 1 )  I dyP 

= 1 1.�p+I I <  --p:lP't-1 -. 
The analyticity of u would require inequalities such as 

(12) I �;  I <��� ,  
so that the system of conditions (11)  is less restrictive than the con­

ditions for analyticity. 

17. \Ve see that our present considerations on the subject of partial 
differential equations lead to results worth noting, in the theory of 
functions of a real variable. Such functions have been classified in a 
well-known way, according to their degree of regularity : the efforts 

* Serge Bernstein (Thesi's, Paris, 1904) proved this for the most general 
analytic parabolic equation. Very simple proofs were then given by Gevrey 
(C. R. Ac. Sc. vol. CLII and Thesi's, Paris). 
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of contemporary geometers have succeeded in pointing out many 
interesting and important intermediates between the conception of an 
arbitrary function and that of a continuous function ; more restrictive 
than the latter is the notion of functions with a limited variation, and 
again of functions differentiable once, twice, . . .  , p times. 'I1hen would 
come functions differentiable to any order. 

Now, functions satisfying the inequalities (11) show us the use­
fu lness of a distinction which had not been made hitherto : they are 
intermediate between functions differentiaole to any order and analytic 
functions. Goursat and Gevrey (loo. cit. )* have called themfunctions of 
class 2. Similarly, functions of class a-that is, functions <f> (y) differ­
entiable to any order and such that 

(11') I 
dPcp 

I 
lif ( ap) l 

dyP < 

-would appeart if we should consider from the same point of view 
the equations 

amu onu 
axm = oyn (m > n) 

treated by Henrik Blockt :  a would then be equal to :� .  
That there actually exist functions which satisfy the system of 

conditions (11') without being analytic-or more generally, which 
satisfy that system for a certain value of a, but not for smaller values 
-can be easily shown by the example of the trigonometrical series· 

(13) 
00 
I On COS ny, 

n = O  

where the en's will be, let us say, real and positive numbers. Such a 

* See note, p. 27. 
t It is worth noting that the class defined amongst analytic functions by the 

inequalities (1 1') with a smaller than 1 is already considered in Analysis : it is in 
fact the class of entire functions of a finite genus. 

This word "cla::;s" has already been used by Baire in his works on discon­
tinuous functions, with a quite different meaning, but, as GeYrey obse1Tes, for 
this very reason no confusion is possible. 

l Henrik Block, Arkiv for Jf atematik, Astronorni ocli Fysik, vol. VII (1911 ). 
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series will admit of derivatives of any order, if the series 

(14) 

is convergent for every value of p. Let us e�pecially take Cn = e-na, 
a being a fixed positive number : this satisfies the aforesaid condition ; 
but the series (14 ), viz. 

(14' )  

which for JJ even represents the value of the pth derivative for y = 0 
(also being the maximum value of this derivative) is, as we know, of 
the same order of magnitude as the integral 

1 

(14") f�nPe-n;,_ dn = aI' [(p + 1) a], 

which shows that the corresponding series (13) belongs to class a, and 
not-at least in any interval containing y = 0-to any lower class. 

If, in (13), we had only given to n the values n = bv, where b is 
a fixed integer and v = 1, 2, . . .  , oo ,  this would not have essentially 
changed the order of (14'), the integral (14") being replaced by. 

{00 !' a bPve-b°' dv = -- r (pa) 
• o log b · ' 

but, for this new series 
00 .!'.. 
� e-b°' cos (bvy ), 

v = I  

we could assert that it can be of no class lower than a, not only around y = 0, but even in any interval whatever: for such a series only changes 
. . 

. 
fi b h 

. . 2z7r 
( h b h . in its rst terms y c anging y into y + bk  w atever e t e rntegers 

k and l) and the numbers 2;; can approximate as closely as is desired 

to any given real quantity. 
Gevrey (Zoe. cit. )* has shown that functions of class a > 1 remain 

so through the same general operations as analytic ones, such as 
multiplication, substitution of one or several functions in another one, 
integration of differential equations, etc. But such functions differ from 
analytic ones and also from the well-known generalizations given to 

* See also his Memoir in vol. xxxv, serie 3, of the Ann. Scient. Ee. Norm. Supre. 
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them by Borel * in lacking one of their classic properties : the exten­
sion of a function of class a from one part of its domain to a neighbouring 
one is not determined. Such a function, being given in (0, 1 ) , may be 
extended to (1 ,  2), for instance, in an infinite number of ways, without 
losing its property of belonging to class a. 

This is easy to see, at least for a = 2, by introduction of the function 
l 

e -;; . This function, holomorphic in every interval (a, b) with a >  0, b > 0, 
is no longer so in (0, b ), but belongs (at most) to class 2, as can be 
seen by the following direct calculation t. To calculate cp !Pl( a) (with 

a >  0) we take the integral 2
� ! J( cf>(z{v+i dz 
'l7T Z - Ur 

along a circumference with centre a in the 
1 

complex plane. For cf>(x) = e -;;, we can take 
this circumference tangent to the imaginary 
axis (fig. 2), and the absolute value of cp (x) on 

l 
it will then be constant and = e 

- 2a so that · 

1 . 1 I dP ( _ !) I 1 _ !_  ! <P IPl (a) = - , - e x � - e 2a . p : ,  I p ! 1 dxP x= a l aP 

a 

Fig. 2.  

The maximum of this last quantity corresponds to a =  2� , and 

I cp!Pl(a) I <  e-P (2p)Pp ! = (sensibly) __!__ _!_ (2p) ! . .v2 2P 
As every derivative of cp (x) is zero (on the positive side) for x = 0, 
this shows that a function which is zero for every negative x can be 

1 
extended to x > 0 by e -;v and be of class 2. 

From this example, a more general one can be deduced by taking 
the integral 

where x is an arbitrary-say continuous-function. Any derivative 
of ,Y is to be taken by differentiating under J (no term corresponding 

* See Comptes rendus Ac. Sc. vol. CLIV ; Acta .Math. t. xxn-. 

t The very slightly different function �� e -�, which is suggested by the 
1\1 a; 

theory of heat, can also be introduced for the same object. 
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to the variability of  the upper limit, as the integrand is there zero) 
so that y. also belongs to a class at most equal to 2 ; and it is obvious 
that it may be extended in oo ways beyond any value x = a  of the 
variable, as this extension depends on the arbitrary function X· 

In a recent :Memoir *, Serge Bernstein extends this conclusion to 
functions of any class a >  1, such a condition being still compatible 
with oo analytic prolongations of the same given function. 

The question t arises whether functions F(p) may exist, increasing 
more rapidly than R-Pp l, and, nevertheless, such that the limitation 
j cplPl(x) I <  F(p) for the values of the successive derivatives of a function 
cp implies the fact that </> cannot be extended in more than one way. 
S. Bernstein is led to a negative answer by such an example as the 
functions of a class higher than l ;  but shows that such a negative 
answea wou]d no longer hold if the inequality F(p) > R-Pp ! were 
satisfied irregularly-that is, if there were oo values of p giving 
that inequality and oo giving the opposite one. 

18. Returning to Cauchy's problem in general, we see that we 
must avoid confusion between arbitrary functions and analytic ones, 
and that our preceding conclusions must be examined with regard to 
this. This applies not only to the data, but also to the unknown 
function; and, therefore, even our first result, viz. that the solution of 
our problem, if it exists, is unique (the case of a characteristic excepted), 
must be looked into again : the proof having only been given that 
the problem admits of not more than one holornorphic solution. 

On this point, however, our previous result subsists : Holmgrent 
has proved, at least for linear equations with analytic coefficients, that 

* Jf ath. Ann. vol. Lxxv, pp. 440 ff. 
t This was written in April, 1921. Since then, this question has been solved 

by the beautiful researches of Denjoy and Carleman (see C.R. Ac. Sc. Paris, t. 173, 
174, 192 1-1922) : the extension is always unique when F (p) is such that the 

series � . 1 is divergent. (Added while correcting the proofs.) 
. . l:,I F (p) 

t Ofversigt af Kongl. Vetenskaps Akad. Forh. (9 Jan. 1901), pp. 91-105. See 
al8o our Lecons sur la propagation des ondes, note I. The proof rests on 
Weierstrass' well-known theorem on approximation of continuous functions by 
polynomials. It would be interesting to extend it to equations with non-analytic 
coefficients, and (as an immediate consequence of the former) to the non-linear 
case : which extension would perhaps be made possible by Dunham Jackson, Serge 
Bernstein and de la Vallee Poussin's recent improvements on W eierstraRs' theorem. 



32 DISCUSSION OF CAUCHY'S RESULT [BK I 

(still excluding the exceptional case) the solution of our problem, 
whether analytic or not, is  unique *. 

As we have j ust seen, things are much more complicated with 
regard tp the second part of the result, viz. the existence of a 
solution ; at a first glance, no general analytic rule seems to be 
assignable. Analogy with ordinary differential equations, which evi­
dently inspired Cauchy, finally proves to have misledt us ; and also 
the examples of the equation of sound and the equation of potentials 
show how little the closest an<l apparently most obvious analytical 
analogies between partial differential equations can be trusted. 

But it is remarkable, on the other hand, that a sure guide is found 
in physical interpretation : an analytical problem always being correctly 
set, in our use of the phrase, when it is the translation of some me­
chanical or physical question ; and we have seen this to be the case 
for Cauchy's problem in the instances quoted in the first place. 

On the contrary, none of the physical problems connected with 

* When stating such results, it is important, as Bocher most rightly pointed 
out while lecturing at the University of Paris in 1913-1914, to state accu­
rately what is meant by a solution. In such questions as these, u is required to 
admit of first and second derivatives satisfying the partial differential equation 
in the vicinity of x=O, but not necessarily on x=O itself. On the contrary, the 

conditions that ii and 
oit 

should asst�me given values at points of x=O, imply that 
(}J; 

these quantities exist and are continuous around and at these points. More 
exactly, the continuity of u and its different first partial derivatives will be 
required : this is necessary for the validity of Holmgren's proof, which (replacing 
the equation by a system of equations of the first order) introduces all these first 
derivatives as auxiliary unknowns, as classically explained in Sophie Kowalewsky's 
original proof of the fundamental theorem (see e.g. Goursat-Hedrick's Differential 
Equations, pp. 285-6), and applies (as we also shall do in the following Books) the 
usual integral transformation of Ostrogradsky or Green, for which continuity of 
the functions introduced is wanted. 

t This analogy would have been legitimate if the second kind of methods 
mentioned in § 10 (successive approximations) could have been extended to the 
case of partial differential equations. This would contradict our above state­
ments, and is consequently impossible, at least in the general case (attempts have 
been made in that direction by some authors, but, of course, have proved un­
successful). On the contrary, methods of that kind have been applied to proper 
cases, account being taken of the nature of the equation and other features of the 
problem (especially characteristics), by Picard and his successors. 
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V2u = O is formulated analytically in Cauchy's way*. All of them lead 
to statements such as Dirichlet's, i.e. with only one numerical datum 
at every point of the boundary. Such is also the case with the equation 
of heat. All this agrees with the fact that Cauchy's data, if not analytic, 
do not determine any solution of any one of these two equations. 

This remarkable agreement between the two points of view 
appears to me as an evidence that the atti tude which we adopted 
above-that is, making a rule not to assume analyticity of data­
agrees better with the true and inner nature of things than Cauchy's 
and his successors' previous conception. 

I have often maintained, against different geometers, the import­
ance of this distinction. Some of them indeed argued that you may 
always consider any functions as analytic, as, in the contrary case, they 
could be approximated with any required precision by analytic ones. 
But, in my opinion, this objection would not apply, the question not 
being whether such an approximation would alter the data very little, 
but whether it would alter the solution very little. It is easy to see 
that, in the case we are dealing with, the two are not at all equivalent. 
Let us take the classic equation of two-dimensional potentials 

02U o2u 
::\2 + Qr 2 = 0, ux y 

with the following data of Cauchy'st 

(1 5) 
{ u (O, y) = O, 

OU ox (0, y) = u1 (y) = An sin (ny), 

n being a very large num her, but An a function of n assumed to be 

very small as n grows very large (for instance A n = :P) .  These data 

* One might be tempted to assimilate the above results concerning v 2  u = O  to 
those which we previously found in the case when the variety which bears the data 
is a characteristic. This however would be unjustified, as in the latter case the 
problem, when not impossible, becomes indeterminate, which can never happen 
for V' 2 it = O, on account of Holmgren's theorem. Cauchy's problem for V 2  u = O, in 
the general case, is to be compared with an algebraic problem implying more con­
ditions than unknowns. 

t I gave this example for the first time at a meeting of the Swiss Mathematical 
Society at Zurich (1917). 
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differ from zero as little as can be wished. Nevertheless, such a 

Cauchy problem has for its solution 

u = An sin (ny) Sh (nx), 
n 

which, if An = ! ,  � ,  e-,'U, is very large for any determinate value of 
n nP 

x different from zero on account of the mode of growth of enx and 
consequently Sh (nx). 

In this case, the presence of the factor sin ny produces a "fluting" 
of the surface, and we see that this fluting, however imperceptible in 
the immediate neighbourhood of the y-axis, becomes enormous at any 
given distance of it however small, provided the fluting be taken 
sufficiently thin by taking n sufficiently great. 

19. Continuity with respect to given functions. Let us com­
pare this case with the solution of Cauchy's problem for equation ( e1) 
(the equation of vibrating strings). 

The general integral of the latter being 

(16) it (x, t) = cp (x + wt) + 'o/ (x - wt), 
Cauchy's data 

OU U (x, 0) = U0(x), Ot (x, 0) = 'll1 (x) 
easily. give us, as we know, 

1 .- I f 1 (16') cf> (g) = 2 u0(g) + - u1 (g) dE , 
L W j 

'o/ (g) = � [uo(g) - �Ju1 (g) ag] , 

the constant of integration being here immaterial provided it be the 
same in both formulre : which, substituted in (1 6), affords the solution 
of the problem. Now, let us assume that, along a certain interval of 
amplitude A,  the functions u0, u1 be modified, but everywhere very 
slightly : that is, be replaced by Uo + OUo , U1 + oul l the quantities 
I ou0 I, I ou1 I being, for every value of x, less than a small constant c. 

Then, by (1 6'), the corresponding alteration for cp, 'o/ will everywhere 

be less than � ( 1 + �) and, for u, less than c (I + �) , i.e. arbitrarily 

small with e. 
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\Ve shall say that the values of u depend continitaitsly on those of 
it0 , u1 : a phrase suggested by an obvious analogy with ordinary con­
tinuity. 

On the contrary, the example of the preceding section shows us that 
the solution of Cauchy's problem for the equation of potentials does not 
depend continuously on the data. 

20. Various orders of neighbourhood and continuity. The above 
definition requires, however, to be made more precise by considerations 
now classic in the Calculus of Variations * and its recent generalization, 
the Functional Calculus. 

The inequalities I Su0 I < €, I Su.1 I < € are, for certain problems, 
sufficient in order that u0 + Su0 ,  u1 + Sit1 be considered as very near 
neighbours to u0 ,  u1 ; but, for other applications, such is not the case. 

For instance, y = g (x) = - sin (nx), for large n represents a curve 

every point of which is very near to a corresponding point of the 
x-axis. Nevertheless, it cannot be approximately replaced by y = 0 
if, e.g., length is concerned : its length, between x = 0 and x = 7i, does 
nott approach 7i for n = oo .  

This is due to the fact that, in this instance, g (x) tends (uniformly 

with respect to x) towards zero with � ,  but .g' (x) = cos nx does not. 

Such a function is said to have with zero a neighbourhood of order zero. 

The function g (x) = ; sin nx has, with zero, a neighbourhood oE 
n w 'J 

order 1 for very large n, i.e. I g (x) I and I g' (xr are very small, hut 
n n ·���·<��x_) = - sin nx would not be so. 

n 
Generally speaking, g (x) and h (x) are said to have, in the interval 

(ci, b), a neighbourhood of order p if the p + 1 differences I g (x) - h  (x) I 
dP dPh 

I g' (x) - h' (x) I ,  . . .  , � - d- are very small, say smaller than the 
u,a;r a;P 

number €, all over (a, b), the neighbourhood being the closer the smaller 
€ IS. 

* It was given by Zermelo ( Untersuchungen zu1· Variationsreclmung : Diss., 
Berlin, Mayer and Muller, 1894). 

t It remains constant if n assumes integral values. 

3-2 
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If the functions considered and their derivatives up to the order p 

are continuous-which will always be the case for the applications­
it can also be said that two functions g, h have with each other a 
neighbourhood of order p if a correspondence between x and x" can be 
established such that I x" - x I <  e and the same be true for each of 
the differences 

( �) I ( ') - h ( ") I I ' ( ') - h' ( ") I 
I �P g ( x) -

dP h ( x") I o g x x ' g x x ' '  . . .  ' I dx'P dx''P . 

�rhis condition is equivalent to the preceding one (e being simply 
replaced by another quantity which becomes infinitesimal with the 
first one) on account of the fact that I x" - x' I < e implies 

I h ( x') - h ( x' ') I < 17, I dqh (x') _ �<l__�ix") < 17 
dx'q dx"q 

(for every q between 1 and p ), 17 being infinitesimal at the same time as e. 
Geometrically speaking, two plane curves shall be said to have 

·with each other a vicinity of order p if a punctual correspondence can 
be found between them such that the distance between corresponding 
points be very small as well as the differences (o) (this implying-e.g., 
for q - 1-that the angle of corresponding tangents must be very 
small). "\Vhen this occurs, it follows from the above remarks that the 
choice of the correspondence is widely arbitrary and immaterial : 
especially, if there is no tangent parallel to x = 0, we can take as 
corresponding points those with the same abscissa and, at any rate, 
points such that the uniting segment cuts both curves at a finite angle. 

All this is obviously similar to the classic theory of contact ; and, 
indeed, the latter is a sub-case of our present considerations : it may be 
expressed by saying that two curves have a contact of order p at a 
common point A if their arcs around A have a vicinity of order p, 
arbitrarily close when the arcs are sufficiently small. The same, of 
course, applies to functions having a contact of order p for a determinate 
value of the variable. 

The extension of all this to functions of several variables is obvious 
and we need not even formulate it. For instance, when two surfaces 
have a contact of order p at a point A, their portions around A have 
a neighbourhood of order p, which can be taken as close as required if 
the portions are taken sufficiently small. 
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If G (x1 , x2 , • • •  , .-vm) = 0 is the equation of one surface, it being 
assumed that G has continuous derivatives up to the order p and that 
the first derivatives nowhere vanish simultaneously, the equation of a 
second surface which has with it a neighbourhood of order p will be 
G + oG = 0, oG being very small as well as its derivatives of the first 
p orders. 

20a. The conception of various orders of neighbourhood provides 
the definition of various orders of continuity. A quantity u being 
assumed to depend on the values of g (x) in (a, b), this dependence 
will be continuous of order p if it is very slightly altered each time 
g (x) is replaced by another function h (x) having with it (in (a, b)) a 
(sufficiently close) neighbourhood of order p. Thus, the solution of 
Cauchy's problem for the equation of vibrating strings, as presented 
above, is continuous of order zero in u0 , u1 • The length of an arc of 
curve ( = f vl + y'2dx) is not continuous of order zero, but it is con­
tinuous of order 1 .  

It is  to be noted that neighbourhood of order p means more than 
neighbourhood of order zero, and therefore continuity of order p means 
less than continuity of order zero. 

a2u a2u . 
The solution of Oauchy's problem for 

ox2 + 'iJy2 = 0 (§ 18) is not 

continuous in u0, u1 of any order whatever. For An sin ny has with 

zero, if An = _!_ , a  neighbourhood of order p - 1, i.e. arbitrarily great ; 
nP . 

and even, for An = e-•lii, the neighbourhood is of infinite order : that 

is, every derivative of that quantity approaches zero when ! does ; 
n 

notwithstanding which, the corresponding value of u does not approach 
zero. 

The solution of the problem cannot be expressed by formulre 
analogous to (16), (16'), as we have just seen that such expressions 
imply continuity of order zero. 

We shall, in the following Chapters, meet with other formulre 
more or less similar to (16'), except that their right-hand sides may 
contain (under J or not) derivatives of u0 , u1 up to a certain order. 
No formula of this kind, either, can by any means represent the 
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solution of Cauchy's problem for the equation of potentials, as this 
would imply continuity of order p. 

21. Another paradoxical consequence furthermore appears if we 
consider things from the concrete point of view. 

Strictly, mathematically speaking, we have seen (this is Holmgren's 
theorem) that one set of Cauchy's data u0 , u1 corresponds (at most) to 

1 · f 32u 32u 0 h 'f  h 
· · 

one so ut10n u, o � ,2 + �2 = , so t at, I t ese quant1t1es u0 , u1 were 

"known," u would be determined without any possible ambiguity. 
But, in any concrete application, "known,'' of course, signifies 

" known with a certain approximation," all kinds of errors being 
possible, provided their magnitude remains smaller than a certain 
quantity ; and, on the other hand, we have seen that the mere re­
placing of the value zero for u1 by the (however small) value {15)  
changes the solution not by very small but by very great quantities. 
Everything takes place, physically speaking, as if the knowledge of 
Cauchy's data would not determine the unknown function. 

This shows how very differently things behave in this case and 
in those which correspond to physical questions. If a physical 
phenomenon were to be dependent on such an analytical problem as 
Cauchy's for V'21i = o, it would appear to us as being governed by 
pure chance (which, since Poincare, has been known to consist pre­
cisely in such a discontinuity in determinism) and not obeying any 
law whatever. 

After having been led by physical interpretation to the need of 
the above distinctions, we must now try to formulate them analytically. 
This is subordinate to the classification of linear partial differential 
equations of the second order into different types. 

22. The three types of linear partial differential equations. 

These types are distinguished by the algebraic nature of the charac­
teristic form A ( "/1 , "f2, . . .  , 'Ym)· · 

If this form contains ni distinct squareR, all of the same sign (in 
other words, if it is a definite form), the equation is said to belong to 
the elliptic type : the characteristics are imaginary. 

If it contains less than m distinct squares (semi-definite form, if 
the squares are of the same sign, as is the case in all known applica­
tions), the equation belongs to the p arabolic type. 
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If the characteristic form contains m distinct squares, not of the 
same sign (indefinite form), so that there are real characteristics, we 
have the hyperbolic type. 

l\:loreover, there is a distinction to be made, in this last type, 
when the number rn is greater than 3, as the signs could be variously 
distributed among the rn squares. The only case which occurs in 
physical applications is the one in which all squares but one have the 
same sign : we call it the normal hyperbolic type. Every one of the above 
quoted equations (e1), (e2), (e3) belongs to the normal hyperbolic type. 

Geometrically speaking, as was remarked by Coulon *, the normal 
hyperbolic type is distinguished among all others by the following 
characters. Let the characteristic form (by a proper linear trans­
formation) be resolved into squares, so that 

A ('Yi , 'Y2 ' • . . , 'Ym) = Am 'Ym 2 - A 1 'Y12 - A 2'Y22 - • • • - Am-1 'Ym-12• 
A = 0 being the tangential equation of the characteristic cone, the 
corresponding punctual equation will be of a quite similar form 

x 2 x 2 x 2 
(17) H (X1 ,  X2, . . .  ' 

Xm) = A
m - A

l_ - . . .  - A 
m-l = 0. 

m l in-1 
Such a cone consists of two sheets, and divides the m-dimensional 
space into three regions', the inside of the cone (i.e. H > 0) consisting 
of two separate parts (Xm > 0 and Xm < 0) between which no real 
passage is possible otherwise than by the outside of the cone or 
through the vertex itself, as Xm = 0 is incompatible with H > 0. 

On the contrary, such a cone as 
V 2  x 2 X 2 V 2 

(17') � + _2 + _ .. m-1 _ _ ""'l.m = O A1 A2 
. . . Am-1 A m, 

(the left-hand side containing at least two positive and two negative 
squares) consists of one sheet and divides the m-dimensional space 
into two regions only. For m = 4, this can be interpreted in ordinary 
space by considering the X's as homogeneous coordinates, and 
Xm = X4 = 0 as the plane of infinity : such an equation as (17) will 
then represent a hyperboloid of two · sheets, and equation (1 7') a 
hyperboloid of one sheet. 

The normal hyperbolic type is the only one known in which Cauchy's 
problem can be correctly set. Moreover, non-normal hyperbolic types 

* Thesis, Paris (1902), p. 30. 
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(which are connected with 1 1 0  physical application) do not lead to any 
problem of any kind which is known to comply with that condition*. 

As to elliptic equations, they never lead to correctly set Cauchy 
problems. For (see Book III) the solutions of such an equation (if its 
coefficients are assumed to be analytic) possess, like those of '\!2u = 0, 
the properties of analyticity mentioned and used in § 15, within their 
domain of existence ; and, therefore, the arguments in that section 
can be applied. 

The data (borne by an analytic surface S) not being analytic, if 
Cauchy's problem has a solution, this can only exist on one side of 
the initial surface S (beyond which the function thus defined cannot 
be extended). 

23. But even for normal hyperbolic equations, physical applica­
tions do not always lead to Cauchy problems. The latter only occur 
when dealing with motions in completely indefinite media. Things 
would change if any limitation of these were considered, as would be 
the case in the classic problem of vibrating strings : this is analytically 
expressed by the integration of equation ( e1) with the conditions 

and 

OU 
(18) 'll (x, 0) = 'U o  (x), ot (x, 0) = ll 1  (x) 

(18') u (0, t) = 0, u (l, t) = 0, 
l being the ]ength of the string, and x = 0 one 
of its extremities. The motion has to be calcu­
lated for t � O, O � x � l :  i.e., graphically speak­
ing, in the part R of the xt plane which is 
shaded on the diagram of fig. 3. Conditions (18) 
are to be fulfilled for 0 � x � l ;  conditions (18') 
for t ;;?.!:  0. 

t 

0 x 
Fig. 3. 

Now, it is apparent that the former are of Cauchy's type, but not 

* Hamel (.Diss., Gottingen, 1901), who was led to the non-normal equation 

0��.Y = ;;� by geometric considerations in the Calculus of Variations, has deter­

mined an unknown u by that equation and boundary conditions, but has to assume 
the latter to be analytic (not in all the variables, however) ; Coulon ( Thesis), dealing 
with Cauchy's problem, also considers the case of non-normal equations ; but it 
then appears from his very calculations that an infinity of conditions of possibility 
is necessary. 
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so the latter, so that we have here to deal not with Cauchy's problem , 
but with what I have called a rnixed problem. 

Indeed the two sets of conditions obviously play quite different 
parts, from the mechanical point of view, and are often and rightly 
called by different names. 'Ve hitherto, according to the geometric 
formulation of the question, have used the term "boundary con­
ditions " indiscriminately ; but if we now think of the mechanical 
meaning of the questions, we shall be led to give to conditions (18) 
the name "initial conditions," the name "boundary conditions " being 
kept only for conditions (18') which correspond to the extremities of 
our string. 

Now, initial conditions are always found to be expressed in Cauchy's 
form, but the opposite takes place for boundary conditions properly 
so called ; these indeed rather resemble those 've met with in the 
case of Dirichlet's problem, so that mixed problems appear every 
time boundaries are concerned. 

24. Let us take another example by considering again a homo­
geneous conducting cable, but assuming it now to be indefinite only in 
one direction-say in the positive x direction. In the other direction, it 
will have to be considered as ending at a point where it will communi­
cate, through a metallic contact, with a source maintained at every 
moment at a given (constant or variable) potential. Again we give the 
initial state of the cable (potential and intensities for t - 0) : then u, 
the potential, will have to satisfy the telegraphist's equation, together 
with the conditions (if we assume that the position of the contact is 
taken as the origin of the x's) 

.(1 9) 

(19') 

u (x, 0) = U0 (x), 

U (0, t) = Uo (t), 

OU , ot (x, 0) = 'll1 �x), 

which again corresponds to what we call a mixed problem. 
The two kinds of data are borne respectively by the x-axis (which, 

on our diagram (fig. 3), represents the cable for t - 0) and the t-axis 
(representing the origin of coordinates successively considered at every 
positive value of time). 

It is understood, of course, that ( 19) and (19') must not be con­
tradictory for x = t = 0, so that 

(20) U0 (0) = U0 (0), 'lt1 (0) = uo' (0). 
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24 a. In this second case, the diagram could be varied in an 
infinite number of ways. We can, indeed, imagine that our metallic 
contact, instead of being fixed at x = 0, be a sliding one (fig. 3a) 
and move along the cable according 
to a certain given law of motion �'--------. 
x = g (t), so that now two functions SJz 
of t � 0 are given, one g (t) express- 0 x =  f (t) 
ing, at every positive instant, the 
position of the sliding contact on the 

Fig. 3 a . 

cable, the other one u (t) giving at the same moment the value 
of the potential at this contact. The problem of determining the 
electric state for t > 0, when it is given for t - 0, will consist in 
finding a solution it (x, t) of the telegraphist's equation satisfying the 
conditions 

and 

lt (x, 0) = u0 (.x)) 
au I (for x � g (t)) 
ot 

(x, 0) = U1 (x) J 
u [g (t), t] = u (t). 

The line bearing the data would then be represented in the xt plane, 
as shown on fig. 3 b. Such a problem is a possible and determinate 
one (as is physically evident and is also seen by 
analytical means *). Consequently, it would not 
be allowable to give arbitrarily Cauchy's data for 
such a line. 

25. \Ve have an instance of analogous cir­
cumstances for problems with three independent 
variables, in the study of the transverse vibrations t= o 
of a plane membrane, fastened at all points of its Fig. 3 b . 
outline a-. The " indefinite " partial differential 
equation will be the equation (e2) of cylindrical waves (§ 4a). The 
initial conditions will be 

(21) 1 t  (x, y, 0) = u0 (x, y), OU 
'iJt 

(x, y, 0) = u1 (x, y), 

* See Picard, in Darboux's Lecons sur la theorie des surfaces, vol. IV (note 1), 
and our )femoir in Bull. Soc . .iJlath. Fr. vol. .xxx1 (1903). 
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u0 (initial normal displacement) and Ui. (initial normal velocity) being 
given functions of x, y in the area S covered by the membrane. The 
boundary conditions are 

(21') u = 0 

at every point of a- and for every value of t, which we shall however 
exclusively consider as positive, the motion having only to be deter­
mined after the initial instant t = 0. In our graphic representation 
(§ 5), u has to be calculated within a half cylinder having the S 
portion of the xy plane for its base, the lateral surface S1 corresponding 
to the various positive values of t. We again have to deal with a 
mixed problem, (21') being of Dirichlet's type. 

The motion of any limited two-dimensional or three-dimensional 
medium will give occasion for similar remarks. 

26. We must point out that the same still applies, whatever be 
the nature of the limitations. If, for instance, we take, with Duhem *, 
the case of a pulsating solid sphere immersed in air, the latter filling 
the whole space outside the sphere, the small motions of the gas will 
depend, not on Cauchy's problem, but on a mixed one, non-Cauchy­
like data t corresponding to every point of the surface of the sol id 
sphere. 

27. In all the above examples, the geometric shape of the varieties 
which bear the data evidently presents a notable difference from the 
cases which depended on Cauchy's problem. 

It is obvious that the simultaneous intervention of the two kinds 
of data is here connected with the angles or edges of our varieties 
bearing the data. But, for m > 2, we can say more. In the equation 
of cylindrical waves (or of vibrating membranes) the characteristic 
cone (referred to axes passing through its vertex) has the equation 

x2 + y2 - ro2t'J. = 0. 

* Hydrodynarnique, Ela.�ticiti, .Acoustique, vol. 1, chap. xu, pp. 235-237. 
t They are not exactly of Dirichlet's kind, but of the so-called " Neumann's " 

or " hydrodynamical " kind, but they are similar to Dirichlet's data inasmuch as 

one quantity, and not two-the value of ddtt alone-is given at every point of the n 
spherical s"urface. 
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The plane which bears Cauchy's data is t = const. : such a plane 
cuts only one sheet of tlte characteristic cone, and cuts it along an ellipsoid 
(in this case, a sphere). 

We shall say that a plane is duly inclined with respect to our 
equation (the latter being assumed to be a normal hyperbolic one) if 
it cuts only one sheet of the characteristic cone, the edge* of inter­
section being closed ; or, which comes to the same, if a parallel plane 
drawn through the vertex of the cone has no other common point 
with it than the vertex itself. 

The lateral cylindrical surface S1 , in our configuration for the 
problem of the vibrating membrane, is nowhere duly inclined : each 
of its tangent planes cuts a characteristic cone along a hyperbola. 
This is quite a general fact : as Volterra has remarked t, on a surface 
S which consists of several parts (whether separated from each other 
by edges or not), some of which are duly inclined and some are not, 
the correct data on the latter are Dirichlet-like ones. 

'Ve never meet with a correctly set Cauchy problem with respect 
to varieties (even presenting no edges) which are not duly inclined. 
For instance, we could not take arbitrary Cauchy's data for equation 
(e2) or (e3) with respect to x = Ot. To see this, let us choose the data 
in question independent of t :  then u itself also ought I I to be inde­
pendent of t and therefore to satisfy V'2 u = 0, which we have seen to 

be generally impossible if u and �u , for x = 0, are arbitrarily chosen. 
dx 

What conditions ought to be imposed on u0 and u1 = ��, in order that 

the problem should have a solution, is again a subject which might 
prove interesting from the point of view of the theory of functions : 
we shall speak of it briefly again in Book IY. 

* See note, p. 5. 
t Intern. Congress, Rome (1908), vol. II, p. 90. 
! For the present, no system of data is known borne by x=O and suited to 

determine correctly a solution of (e2) or (e3) . 

II See below, § 29. 
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CHAPTER I 
CLASSIC OASES AND RESULTS 

28. Let us now come to our proper subject, that is, the solution 
of Cauchy's problem, which we shall, as a rule, assume to be correctly 
set. 

This solution is very simple and was found long ago for some par­
ticular cases, the simplest of which is the case of equation (e1) with 
data relative to t = 0 (small motions of an indefinite aerial pipe or 
vibrations of a string considered as of indefinite length in both 
directions) referred to in § 19. 

\Vell known is also Poisson's solution of Cauchy's problem relating 
to the equation of sound *. This can be expressed in the following 
synthetic way : / 

Let (x0 , yo , z0 , t0) be any / given universe-point, at which we want 
to calculate the value of our function u defined by conditions (C3) (§ 4). 
Let us denote, in a general way, by Mr(</J) the average value of any 
function <P (x, y, z) on the surface of the sphere of radius r described 
in ordinary space with (x0 , y0 , z0) for its centre. "\Ve shall have 

(1) ii (xo , Yo , Zo , to) = �o [to.1Jfwt0 (uo)] + t0Mwt0(u1)· 

28ci. The proof of that formula consists in verifying directly that 
the right-hand side fulfils every required condition ; on account of 
Holmgren's theorem, it is the only one which will fulfil them all. 

Such a verification is given in the just quoted works and other 
classic books. We shall simply refer to those for what concerns the 
initial condition (C3). As to the verification of the partial differential 
equation itself, it is generally done by means of a transformation of 
surface integrals into triple ones, introducing the values of u0 or 'U1 and 

* Poisson, J!emoire sur l'integration de quelques eqiiations aux differences par­
tielles et particitlierement de l'equation generate du rnouvement des fluides elastiques 
(read at the Ac. Sc. in  Paris, the 19th of July, 1919). See also Rayleigh's Tlieory 
of Sound, vol. n, p. 88 ; Poincare's Le9ons sur la Tlieorie JI atliematique de la 
Liuniere, chap. III (pp. 76-98) ; etc. 
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their derivatives not only on the surface of the aforesaid sphere but in 
its whole volume. Eventually, it will be convenient for us to avoid 
the consideration of that volume, which can be done, for instance, in 
the following way. 

\Ve have to show that, u being any differentiable function of x, y, z, 
equation ( e3) is satisfied by 
'lt (xo , Yo , Zo , to) =  to Mwt/ U1) 

= 4- /Ju.1 (x0+ wt0 sin B cos cf>, y0+wt0 sin B sin cf>, z0+wt0 cos B) sin BdBdcp 
7i .;  

= t0J 
(wherefrom the same conclusion will follow at once for the derivative 
of the right-hand side with respect to t0 , therefore also for the first term 
of (1 )). 

In the first place, derivatives with respect to x0 , y0 , z0 are im­
mediately obtained by differentiation under ff in I, so that 

w2\72u = �; J Jv2u1 sin BdBdcf>. 

Th d d · · · h · 021 2 °1 ·u l e secon envat1ve wit respect to t0 , viz. t0 "3
t02 

+ oto
, WI a so 

be determined by differentiation under ff, viz. 

1 fj�( 2 2 clu1) • B dB d'o/ ·- = - ·  w t - + · w � srn 
'iJt02 471" 0 dn2 dn ' 

du1 d d'l.u1 b 
. 

( . 
) l fi d d d . . B -d- an -,-,, emg exter10r norma rst an secon envat1ves. ut n an/· 

we have the identity* 
d2Ui 2 du1 \72 dri2 wt0 dn = 'Ui -- A2u1 , 

A2 being " Beltrami's differential parameter " on the sphere 
I [ i a . 8 ou1 I 02 'll1l 

w2to2 sin e ae srn ae + si112 e 'a'�2-' . 
Also, on account of the classical integral identity+ for A2 and the 
assumed regularity of u1 , the integral of the last term in the right­
hand side over the surface of our sphere is zero : which reduces the 

a2u 
value of �2 to the above value of w2\72u0 • Q. E. D. 

ut0 
* See our Lecons sw· la propagation des ondes, chap. 1, § 34, p. 50. 
t See Darboux:s Lecons sur la theorie des surfaces, vol. III, § 674, form. (18), 

and our Lerons sm· la propagation des ondes, § 35. 
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29. The method of descent. We shall see that many curious 
difficulties already arise when, instead of the equation of spherical 
waves, we attack equation (e2) (equation of cylindrical waves). But 
nevertheless, for the present, we can immediately deduce the solu­
tion of the problem corresponding to ( e2) from the similar solution 
for (ea)· 

Indeed we have previously seen that the former is only a special 
case of the latter. In order to solve it, we only need, in formula (1), 
to suppose that the functions u0 and u1 are independent of z. 

We thus have a first example of what I shall call a " method of 
descent." Creating a phrase for an idea which is merely childish and 
has been used since the very first steps of the theory* is, I must con­
foss, rather ambitious ; but we shall come across it rather frequently, 
so that it will be convenient to have a word to denote it. It consists 
in noticing that he who can do more can do less : if we can integrate 
equations with m variables, we can do the same for equations with 
(m - 1 ) variables. Here, in order to solve equation (e2) we have only 
to note that every solution of it is a solution of (ea) independent of z, 
and conversely. 

Thus, our Cauchy problem for the equation of cylindrical waves 

(A) 

is equivalent to the same problem for the equation of spherical waves 

(B) 

* Parseval, in Lacroix's Traite des differences et des series, lst edition, p. 515 ;  
Poisson's above quoted Memoir, art. 8. See Duhem's Hydrodynamique, Elasticite, 
..4coustique, vol. n, chap. VIII. 

H. 4 
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which is the one which we have already considered (equations (e3), 
(C3)), except that the right-hand sides of the initial conditions do not 
contain z. The perfect equivalence of the two problems can be 
analytically proved with complete rigour. That any solution of (A) 
satisfies (B) is evident by i tself Conversely, a solution of (B) must 
be independent of z :  for if it were not-say u = cp (x, y, z, t)-then 
u = <f> (x, y, z + h, t), meaning by h any arbitra�y constant, would be a 
second solution of the same problem-which would contradict Holm­
gren's theorem. Our solution of (B) must therefore be a solution 
of (A). 

30. This being understood, we only have to suppose in formula 
( 1 )  that the functions u0 and u1 depend on x and y exclusively. In 
order to see what becomes of them in this case, we have simply to 
remember that an average value on a sphere-or what comes to the 
same, here, on a hemisphere, the limiting plane of which is parallel to 
x, y-is expressed by a double integral 

1lfr( </>) = 2�r2 J J cpd�, 

the integral being extended over the surface of the hemisphere. Taking 
x and y for independent variables, we see that, cp being independent 
of z, the symbol l.1 is to be expressed by 

(2) Mr [cp (x, y)] = 2:,.. µr (cp), µr (</>) =ff� ,  ( </>�:Y (_ )" " / V 1 - X - X0 - y - Yo w 
( the integral being extended over the circle (x - x0)2 + (y - y0)2 � r2) 
and our formula ( 1 )  becomes 

(1') < t ) - i r a < > + < >1 'U Xo , Yo1 o - 27l"W L dt µwt Uo µwt 'U1 
J 

31. The intervention of waves. Let us note that these formuhe 
( 1 )  and (1') agree with what we know about the propagation of 
sound or light waves *. In any one of them, we recognize that, in 
order to calculate the value of u in (x0 , y0 , z0) at the instant t0 , it is 

* A priori reasons for that, resulting from Hugoniot's conceptions, will be seen 
i n  Duhem's Ilydrodynamique, Elasticite, A coustique, vol. 1, or our Lecons sur la 
propagation des ondes, especially chap. IV, § 1 65 and chap. vn, � 290. 
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not necessary to know the values of our functions u0 and u1 (Cauchy's 
data for t = 0) in the whole of space, but only in the inside and on the 
surface of a sphere having 0 (x0 , y0 , z0) for its centre an'd rot0 for its 
radius. The disturbances produced at the origin of t at points 
distant from 0 by more than rot0 are unable to act on 0 before that 
instant t0 • 

In order to see the identity of this notion of waves with that of 
characteristics, we use our graphic representation. For convenience's 
sake, let us consider the equation ( e2), so that we may have directly 

ll 

t a complete diagram in three 
dimensions. Construct our 
t = 0 plane and our uni­
verse-point (x0 , y0 ,  t0). Any 
disturbance produced at a 

1 point (x, y) and a certain � t=t, 
instant t could act on that 

I :x 1 universe-point only if 
I 
I (x- x0)2+ (y -y0)2�ro2 (t- t0)2• I 
: If we take the equality 
1 sign, this represents the sur-o>-��,,__�--����� 

.J� face of a right circular cone 

Fig. 4. 

with (x0 , y0 , t0) for its apex 
and a parallel to the t-axis 
for its axis ; or, more exactly 
(since t must at present be 
essentially assumed to be 
less than t0), the lower sheet 
of this cone. As to the in­

equality, it means that the point (x, y, t) has to be inside the conic 
sheet thus represented. The circle over which integral (1') is to be 
extended is the trace of such a cone on the xy initial plane. 

The surface of such a cone satisfies the condition 

(3) (�.<!)2 + (3�)2 _ _!_ (aG)2 
= O, 

ox oy ro2 at 

which defines the characteristics of our equation of cylindrical waves, 
according to the rule given in § 13. 

4-2 



52 CLASSIC CASES AND RESULTS [BK II 

Nothing essential need be changed as yet (except the introduction 
of four-dimensional space) if we are to deal with the equation of 
spherical waves. Our cone would have to be replaced by the " hyper­
cone " 

(x - Xo)2 + (y - Yo)2 + (z - Zo)2 = or � oo2 (t - to)2, 
the trace of which on the hyperplane t = t1 < t0 is the sphere with centre 
(x0 , y0 , z0) and radius oo (t0 - t1). That hypercone * satisfies the partial 
differential equation of the first order 

(4) (�G_)2 + (oG)2 + (0�)2 _ 1. 
ax oy w2 

defining the characteristics of equation ( e3). 
l\Iore generally, if we express analytically the known physical rule 

that the normal velocity of propagation of the waves is equal to oo, we 
find (G (x, y, z, t) = O being the wave front) condition (4). 

This connection between the solutions of our problem and the waves 
is a general one, as will appear more evidently in the following Books. 

32. Retrograde waves. We note that here, as we most frequently 
shall have to do in what follows, we consider waves in a manner slightly 
different from the usual one, viz. in the retrograde way, ascending the 
course of time. Instead of starting from a universe-point (x , y', z', t') 
or (x', y', t') and considering what successive points are reached at 
instants after t' by waves issuing at t' from O' (a/, y', z') or (x , y ), we 
give ourselves the later universe-point (x0 , y0 , z0 , t0) or (x0 , y0 , t0) and 
inquire how the earlier one must be chosen in order that they be "j ust 
within wave," that is, that the wave issuing from this earlier universe­
point reaches precisely 0 (x0 , y0 , z0) or (x0, y0) at the instant t0 : the locus 
of such earlier universe-points being an anti-wave quite analogous 
to an ordinary wave but for the fact that its propagation takes place 
with the decreasing values of t, i.e. by reversing the course of time. 

The necessary and sufficient condition for the (ordinary) wave from 
(x', y', z', t') just to pass through (x0 , y0 , z0, t0) is that the anti-wave 
from the latter should just pass through the former:  a fact which we 
shall recognize analytically to be quite a general one. 

Such circumstances, in evident analogy with the principle of 
* In our " descriptiYe geometry " configuration, it would have to be repre­

sented as in the accompanying diagram (an ordinary cone in the (x, y, t) space 
and, in  (x, y, z), a sphere which is the base of the hypercone). 
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" inverse return of luminous rays," will be met with throughout the 
course of these lectures. We can even go a little further by considering 
the case in which our two universe-points (x

'
, y', t' ) and (x0 , y0, t0) in 

the three-dimensional universe, for instance, are " well within wave " 

I 
I I 

Fig. 5. 

with respect to each other; that is, in 
which the wa.ve from O' starting at 
the instant t' reaches 0 before the 
instant t0 • This means, geometrically, 
that (x0 , y0, t0) lies inside the "direct 
sheet" of the characteristic cone 
with vertex (x ,  y', t'), that is, inside 
the sheet turned towards positive t. 
It is interesting to note that, as is 
now obvious, a necessary and suffi­
cient condition for this is that, con­
versely, (x', y', t') lies inside the 
'' retrograde "  or " inverse '' sheet of 

the characteristic cone having (x0 , y0 , t0) for its vertex. This fact 
will again appear a most general one : we shall recognize that the 
aforesaid fact is expressed by an inequality the left-hand side of which 
is symmetrical with respect to both points contained in it. 

33. The question of Huygens' Principle. But, however simple be 
the preceding formulre and statements, they have, nevertheless, opened 
somewhat important and lengthy scientific discussions, of which we 
have now to speak and which refer to what is called Huygens Principle. 

As a matter of fact, it happened, as is often the case, that the 
question under discussion was badly set. Huygens' principle can be taken 
in several different senses, and these were not sufficiently distinguished. 

It is known that, in his famous fundamental Memoir on light, the 
great Dutch scholar had to study the action of a luminous disturbance, 
produced initially (t = 0) at a given point 0, on another point a. 

Instead of following strictly his presentation, we shall, for our dis­
cussion's sake, put it in the form of a syllogism. 

(A) (maj or premise). " The action of phenomena produced at the 
instant t = 0 on the state of matter at the later time t = t0 takes 
place by the mediation of every intermediate instant t=t', i.e. (assuming 
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0 < t' < t0), in order to find out what takes place for t = t0 , we can 
deduce from the state at t = 0 the state at t ::::; t' and, from the latter, 
the required state at t = t0 ." 

(B) (minor premise). "If, at the instant t = 0-or more exactly 
throughout a short interval - e � t � 0-we produce a luminous dis­
turbance localized in the immediate neighbourhood of 0, the effect of 
it will be, for t = t', localized in the immediate neighbourhood of the 
surface of the sphere with centre 0 and radius (J)t' : that is, will be 
localized in a very thin spherical shell with centre 0 including the 
aforesaid sphere." 

(0) (conclusion). "In order to calculate the effect of our initial 
luminous phenomenon produced at 0 at t = 0, we may replace it by a 
proper system of disturbances taking place at t = t' and distributed 
over the surface of the sphere with centre 0 and radius (J)t'." 

Now it happens that, by "Huygens' Principle," different authors 
have meant indiscriminately any one of the above three propositions : 
whereas we shall, in what follows, see that our opinion concerning 
each of them must be quite a different one. 

Proposition (A) is what philosophers (if I do not misuse their 
language) call one of the " laws of thought" :  that is, an unavoidable 
law of our reason, which we could by no means conceive as not existing 
and without which we could not think. If to-day we discover Assyrian 
inscriptions, we cannot dream of supposing that, at any instant between 
the time when they were made and the time of their discovery, those 
inscriptions could have ceased to exist and all trace of them have 
disappeared. (A) must therefore be considered as a truism, which 
does not mean that it cannot interest us; for the geometer does not 
dislike truisms. The above proposition, in particular, corresponds to the 
fact that the integration of partial differential equations defines certain 
groups of functional operations ; and this, for instance, leads to quite 
remarkable identities concerning hypergeometricandBessel's functions. 

Proposition (0), of which we shall first speak, though not so im­
mediately evident, will prove to be a general property of the equations 
we now come to. 

But such is not at all the case for proposition (B). \Ve shall per­
ceive further on that it is quite a special property of certain special 
equations : indeed we do not know as yet whether our equation of 
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spherical waves and others practically equivalent to it are not the only 
ones to possess it. 

We shall eventually speak of (A) and (B) as "Huygens' major 
premise " and "Huygens' minor premise," thus distinguishing them 
immediately from proposi tion (0). 

34. The aforesaid proposition (0) has been the object and result 
of the fundamental works of two authors : Kirchhoff dealt with it for 
spherical waves in his classic :l\lemoir Zur Theorie des Lichtstrahlen *, 
and in his Lectures on Optics ; then Volterra proved it for cylindrical 
ones, especially in the .A.cta J.Vl athematica, vol. xv1n, and has more 
recently returned to the subject in his Stockholm Lecturest. 

The manner in which these two authors set the question is the 
following, which, for the convenience of graphic representation, we shall 
explain for the case of equation ( e2) . Let us suppose that, initially, our 
xy plane is completely at rest and that, later, some impulses are com­
municated to it inside a certain closed curve <T. These will afterwards 
be propagated to the outside of <T and, before that, will influence the 
points of <T itsel£ We note the values of u and one of its derivatives,-

for instance the normal derivative -d ,-thus produced at the various 
n 

points of <T at all successive instants, remembering that, in our mode 
of representation, those successive states of <T will be represented by the 
successive cross-sections of a right cylinder S having <T for its base, so 
that we shall consider this cylinder as bearing the aforesaid values of 

u, and dd
u

. Conditions remain entirely similar for the spherical waves, 
n 

except for the introduction of four-dimensional space, the curve <T 
being replaced by a surface (and, therefore, the cylinder by a hyper­
cylinder). 

Now Kirchhoff, for the latter problem, and V olterra, for the former, 
obtain the expression of u at any positive instant, and at any point 

outside <T, in terms of the aforesaid values of u and dn along our cylinder 

* Sitzungsber. der K. Ak. der Wus. (1882), pp. 641 ff. ; see also Beltrami, Rendic. 
lstituto Lombardo, 2nd series, vol. xvn ; Duhem's Hydrodynamique, Elasticite, 
Acoustique, vol. I, pp. 145-161, etc. 

t Lecons snr l'integration des eqitations diff erentielles aux derivees partielles, 
Upsal, 1906, and Hermann, 1912, Paris. 
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or hypercylinder (in common language, along the curve or surface u 
considered at successive instants) : and these expressions are given by 
definite integrals taken over S, which can be physically interpreted, 
in  any one of the aforesaid cases, by saying that the motion of 
the medium outside u may be considered as resulting from properly 
chosen impulses issuing at various instants from different points of u, 
i.e. proposition (C)*. 

Analytically speaking, this problem of Kirchhoff and Volterra 
is no other than Cauchy's problem for the portion of universe (that 
is of xyzt, or xyt-space) lying outside S and above t = 0 (that is, 
the points of which must Sfl.tisfy t � 0), the variety which bears the 
data being constituted by the upper portion of S (that is, the portion 
of S which corTesponds to t � 0), and a portion of plane or hyperplane 
t = 0 (the portion outside u) on which latter the data are zero. 

In itself, this Cauchy problem does not belong to the class which 
properly interests us, for it is not what we call "correctly set" :  its 
possibility, as appears from the works of the aforesaid authors them­
sel ves, is subject to an infinite number of necessary conditions. 
Indeed, for a boundary with such a shape, the conectly set problem 

Id b h 11 d 
. 

d"  . . . . . 
d (Ju, wou e w at we ea e a " m1xe one, cons1st1ng m g1v1ng u an � 

ut (for instance u = �� = 0) for t = 0 and u alone (or dn alone) on the 

aforesaid part of the variety S. 
But besides their physical interest in proving form (C) of Huygens' 

principle, and though, strictly speaking, Volterra's formulre could be 
deduced from Kirchhoff's by " descent," the methods of Kirchhoff and 
Volterra are directly applicable to the general case of Cauchy's problem 
for the corresponding two equations, and by themselves give the 
complete solution of it for any form of the variety bearing the data. 
:Moreover the solution is obtained by a regular analytic method 
(instead of the synthetic way which we pointed out as leading to 
Poisson's formula), so that we may attempt to generalize such methods 
for other types of equations. 

* From the point of view of this physical interpretation, Kirchhoff's integrals 
needed some transformation, which was made by B. Brunhcs, Tm1:au.1: et Jfemoires 
des Facultes de Litle, vol. Iv, I6th l\Iemoir (1895). 
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35. Riemann's method. Kirchhoff's and Volterra's results were 

not, as a matter of fact, the first of that kind thus obtained. Long before 
the publication of Kirchhoff's :L\Iemoir and the time of Volterra's 
researches, a first general solution of Cauchy's problem for an extensive 
class of hyperbolic equations had been given : it is Riemann's cele­
brated method, contained in �hat great geometer's paper On the 
Propagation of A erial Waves of finite Amplitude*. Though first given 
by Riemann for quite special equations, the method covers, in reality, 
any hyperbolic linear partial differential equation in two variables. 

But Riemann's work remained for a while unnoticed ; it was only 
after the publication of Kirchhoff's paper that attention was called 
to it by du Bois Reymond t, and it was finally brought to the 
knowledge of every mathematician, in its most general form, by the 
classic Ler;ons su1· la the01·ie des surfaces t of Darboux. 

Since that time, Riemann's method may be considered as univer­
sally known, and we should not need to expou nd it ; but its principles 
are so closely connected with our subject that we shall necessarily 
come across the main steps of it in the following Chapters. 

* Gott. AMandl. vol. nn (1860). 8th Memoir of the 2nd German edition by 
Weber and Dedekind. 

t Leipzig, 1864, and Tubingen, 1883. See Darboux's Lerons, vol. n, no 358. 
(Of. next footnote. ) 

t Vol. n, book IV, nos. 357-359, pp. 71-81 of the 2nd edition. See also 
Dini, Rendic. Accad. Lined, vol. v (1896) and vol. VI (1897). 



CHAPTER II 
THE FUNDAMENTAL FORMULA 

36. To generalize Kirchhoff's, Riemann's and especially Volterra's 
method to any (normal) hyperbolic linear equation with any number 
m of independent variables, is the object of the present lectures. 

Let us see how the three quoted authors proceed. 
They may all be considered as starting from the same formula. 

Indeed we can say that there is only one formula (which we shall call 
the " fundamental formula ") in the whole theory of linear partial 
differential equations, no matter to which type they belong. We shall 
begin by writing it down. 

This formula is well known in the potential theory : it is the 
classic formula 

ff f (v\72u - u\72v) dxdydz = - J J (v �� - u ��) dS. 

It is well known that this has its origin in the identity 

OU OV P = v - - u -
ox ox ' 

ou ov oit (Jv Q = v - - it - R = v -- - 1.t -- . 
oy oy • oz oz 

The starting-point of Riemann's method, for instance, is a quite 
similar one, viz. the identity oP v$ ( u) - u $ (v) = + oa: 
which gives, by integration, 

(Fi) ff [v$ (it) - u $ (v)] dxdy = J (Pdy - Qdx), 

the simple integral in the right-hand side being taken in the direct 
sense on the boundary of the area of integration on the left-hand side, 
and the functions it and v being arbitrary but for the condition of 
being regular. 
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In these two formulre, ..¥ (u) means, symbolically, any given lin�ar 

polynomial in it and its derivatives with respect to x, y, and xy, 
02u on o ii . 

,.9'.' (u) = � + A  � + B -.;J + Ou ; uxuy .ux uy 
P and Q are, for instance*, 

1 ( ou ov) 1 ( o it ov) 
p = 2 v oy - u oy + A UV, Q = 2 v ax - it OX + Buv, 

while $ ( v) denotes the following determinate polynomial *, the " ad­
joint polynomial " of g, 

02 V a a 

(v) = oxoy - ox(A v) - 0y (
Bv) + Ov. 

The relation between two adjoint polynomials is a reciprocal one : 
that is, if we should operate on $ (v) as we just did on ng: (u), in order 
to obtain its adjoint polynomial, we should find this equal to g (u). 
This, of course, is verified immediately, but is also a consequence of the 
fact that the adjoint may be considered as defined by identity (F1)t, 
which does not change when we exchange g with $ if we at the 
same time change the signs of P and Q. 

37. Now, we can write such an identity for any linear differen tial 
polynomial with any number m of independent variables, 

fY < ... A ()2 u � B au a 
rV u) = � ik -;--a - + ... i �  + lt. i, k UXi Xk i UXi 

If we multiply this by v, easy integrations by parts will show us 
that we can again (with the help of Aik = Aki) write the identity 

(5) fY ( ) e ( ) Clco/'1 0#2 oerl/m 
v rV u - u Cl v = -- + -- + . . .  + -- ' OX1 OX2 OXm 

where we may choose, for #2, . . .  , Y'm, 
� au � av ( aAik ) 

( 5') #i = � v Aik - - .z.. uAik - - uv � - - - Bi , 
k dXk i OXk \ k OXk 

* See following footnote. 
t It is easy to see that changes could be made in P and Q without altering 

the right-hand side of (F1) but, g being given, there is only one polynomial r:J 
which can give our identity (F1), as results from the fundamental Lemma of the 
Calculus of Variations : see Darboux, Lecons snr la theorie des surfaces, vol. u, 
book iv, chap. v, p. 114 of the 2nd edition ; Goursat, Coitrs d' Analyse, vol. u, 
§ 404, 2nd edition. 
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and c1 (v) stands for the following polynomial t 
a2 a $ (v) = ! (Aikv) - � + 

i, k i 

which is called the " adjoint " of $. 

[BK II 

The relation between $ and c1 is a reciprocal one, as it was in the 
former case (and for the same reasons). 

38. From (5), we must go on to an integral form ula similar to 
(F1). This requires some geometrical notations and definitions con­
cerning m-dimensional space. If, in such a space, we have any 
hypersurface S defined by giving x1 , x2 , . . . , Xm as functions of rn - 1 
parameters (curvilinear coordinates) i\1 ,  • • • , i\m_1 ,  the cosines of the 
normal to S at any point will be, by definition, proportional to the 
quantities 

D _ n .. (x1 , • • • Xi-1 1  Xi+ 1 1  • • • X.m) . - + . ---------� 

i - D (i\1 ,  . . . . . . . . . . . . . . . . . .  A.1n-1) ' 
o e • • • '"' • G • • • • • • • • • • • • • • • • • • • • • • • • • • e e e o s !l> f! & O 'l' >il'  

in which the right-hand sides are functional determinants and their 
signs are chosen in such a way that they are proportional to the corre­
sponding minors of the determinant 

OX1 OX2 OXm 
3i\1 oi\1 oi\1 
OX1 OX2 OXm 
oi\2 oi\2 ai\2 

- 1  
* * * 

with respect to the elements of the last row (which convention still 
leaves one sign arbitrary). In order to have the exact analogue of the 

t See preceding footnote (p. 59). 
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direction cosines in ordinary space, we should have to choose these 
" cosines " such that the sum of t.heir squares be I, i.e. 

( ) ± D1 7T1 = COS n, X1 = . / . 
· -

'V D12 + Dl + . . . + Dm2 '  

7T2 = cos ( n, X2) = v ...... .. . ... ± D2 . .. . - , 
D12 + D22 + . . .  + Dm2 

* " * " * 'll <l' <l' " '" " "' '° " * · · · · · · · · · · · · · · · · · · · · ·  .. · · • • • • fl • • • •  

( ) ± Dm 7Tm = cos n, Xm = vl>12 + D22 + . �. + Dm2
. 

The " element of surface " dB around the same point of S will be 
by definition 

dS = v D12 + D22 + . . .  + Dm2 d'A1 d'A2 . . .  d'Am-1 , 
so that 

(6) '11'1dS = D1d'A1d� . . .  d'Am -1 , 7T2dS = D2d'A1 . . .  d'Am- 1 , 
. .  • , '11'rndS = Dmd'A1 . .  · d'Am-1 ; 

in which formulre one sign ought to remain arbitrary, this correspond­
ing to the two possible directions on the normal. But nevertheless 
we have cancelled the + as we shall be able to produce any wanted 
inversion of sign by inverting the order of the curvilinear coordinates. 

39. We have defined our cosines and our element of surface in 
order to keep the analogy with the corresponding notions of ordinary 
geometry. The fact is that we shall have to reckon with the left­
hand sides of formulre (6) as a whole, so that multiplying all the 
cosines by any common factor will be immaterial if, at the same time, 
we divide dS by the same factor. Especially, another form of the 
quantities (6) will frequently be of use to us : it corresponds to the 
case in which S is given by its equation G (x1 , a:2, . . .  , xm) = 0. Then 

. 
f h 1 · . I h 

.

' 

· oG 
the cosmes o t e norma are proport10na to t e quantities -. , the 

dXi 
dG 

proportionality factor being the normal derivative 
dn . We shall 

denote by dSa the quantity (dG) · dSa = dS :  
dn , 

and our quantities (6) will be equal (except for sign) to 
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This superficial element dS0 is such that dSa . dG represents the 
(cylindrical) element of volume between the element dS of the surface 
G = 0 and a corresponding element of the neighbouring surface G = dG 
(where dG is  an infinitesimal constant) : so  that we can speak of  that 

1 ds h " . ,, dx1 dx2 • • • dxm f h e ement a as t e quotient 
dG . o t e space element 

over dG. 

40. By means of these definitions and phrases, the well-known 
identity (" Green's formula ") between multiple integrals will be 
written, for m-dimensional space, 

(g) SSS (��1 + . . . + �::) dT 

= - SS (7r1fl1 + Tr2fl2 + . . . + 'lrmflm) dS 
(dT standing for the space element dx1dx2 • • •  dxm). 

· Sacrificing accuracy to clearness, in this formula and future ones, 
I represent by the triple summation SSS what I ought to denote 
by m integral signs, viz. an m-fold integral extended over a certain 
portion of our space ; by a double SS, an ( m - I )-fold integral extended 
over a hypersurface in that space ; by S, if necessary, an (m - 2)- fold 
integral relative to an edge : in other words, the notation will be the 
same as if we had rn = 3. An integral relative to an edge will be 
distinguished from an integral along a line by the fact that the 
latter will be written with an ordinary f sign. 

In formula (g), the SSS is extended over a certain (limited) 
portion T of m-dimensional space, the integral on the right-hand side 
over the limiting surface S of T. n denotes the inner sense of the 
normal to S (the signs in formulre (6) being chosen accordingly). As has 
been seen above, we can replace cos (n, x1), cos (n, x2), • • • , cos (n, xm) by 
�G ,  �G , . . .  , �� respectively, if we replace dS by dS0 (with the hypo-
ux1 uX2 uXm 
thesis that G is increasing towards the inside of T). 

Let us apply this to the identity (5) : with the expressions (5') of 
the f}'s, the factor of dS under SS on the right-hand side of (g) will  

-� I ov oA L it 2 9 0- ':I- + iw, 
""' Xk U'Trk 
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A being the characteristic form defined above, and the 7r's denoting 
indifferently the cosines of the (inner) normal to S or the proportional 

quantities ;::- , . . .  , ;s- , if, in the second case, dS be replaced by dSa . UXm, 
Here we shall introduce, as was done by d'Adhemar *, a particular 

direction depending on the tangent plane of S at any considered 
point jf : we shall set down 

dx1 dx2 dxrn d i aA 
= i oA = · · · = i aA = v, 

2 07rm 

and the denominators (which cannot be zero simultaneously, as the 
discriminant of A is supposed to be different from zero) will be 
proportional to the direction cosines of a certain direction which we 
shall call the transversal * to S in M. This definition was given a 
very simple geometrical interpretation by Coulon t, connecting it 
with the characteristic cone (§ 13) in jf, i.e. the cone which has M 
for its vertex and A (71 , 72, . . .  , 7m) = 0 for its tangential equation. 
'The transversal, then, is the conj ugate diameter of the tangent plane 
of S with respect to this characteristic cone, two directions being 
generally said to be transversal to each other if conjugate with respect 
to the cone. 

For the equation of potentials v2 u = 0, the characteristic cone is 
the isotropic cone, so that " transversal ' ' is synonymous with normal. 

We immediately note that the transversal direction lies in the 
tangent plane when and only when the latter is characteristic. (It is 
on the same side of the tangent plane as the corresponding normal 
when and only when A (7r1 , 7r2 , . . .  , 7rm) > 0.) 

By means of this new definition, we get to the final form of the 
fundamental forrnula ( du dv \ 

(F) SSS [v 9 (ii) - u c:Y (v)] dT = - SS v dv
- u d11

+ Luv ) dS, 

* 0. R. Ac. Sc. February 1 1, 1901. We use the phrase in the text (instead of 
the word "conormal," which we previously used in accordance with d'Adhemar) as 
it occurs, with the same meaning and construction, in questions of Calculus of 
Variations closely connected with the present ones. 

t Thesis, Paris (1902), p. 34. It would be of interest to complete Conlon's 
interpretation by defining geometrically, not only the direction, bat also the 
magnitude of the small segment dv. 
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L denoting 

(7) L = S 'Tri (B;, - � 
i k 

In the case of two variables (§ 36), ( du dv \ v - - 'lt - + Luv ds dv dv ) 
will similarly be the value of the integrand in (F1), § 36, that is, of 

I Pdy - Qdx = J! (v ou - it ov) dy 2 oy oy 
1 ( ov\ 

- 2 v 0x - it 0x) dx + uv (Ady - Bdx), 

b . h h dx dx dy dy h d" 
. · 11 b v e1ng sue t at dv = -

ds , dv = ds ; sue a irect10n v w1 e 

symmetrical with the tangent to the line of integration with respect to 
parallels to the axes (which is in agreement with our general con­
struction of the transversal, as the characteristic conoid reduces to 
the straight lines x = canst. ; y = canst.). 

41. This formula is, as we said, the basis of any research con­
cerning linear partial differential equations of the second order and 
especially of the above quoted investigations*. u habitually denotes 
the unknown function of the problem ; v is an auxiliary arbitrary 
function, precisely in the choice of which the whole skill of the 
operator lies. It will be most generally chosen so as to satisfy 
the " ad joint equation t "  

(@) $ (v) = 0. 
In the ordinary theory of potential, v is simply the elementary 

potential 
1 1 

- -.==============��=�==· ···· ··=··· r + (y - Yo>2 + (z - Zo)2 

if m - 3,-or log ! if m = 2 ,-or also one of the quantities (Green s 
r 

functions) deduced from the elementary potential by addition of 

* Kirchhoff does not form directly the quadruple integral corresponding to 
the left-hand side of (5) in the spherical wave problem ; but the succession of a 
triple and a simple integration which he performs is equivalent to it. 

t The adjoint equation will always be-except when contrary indication is 
specified-taken as homogeneous, even if, in the primitive equation, the right­
hand side is given =1=0. 
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certain terms which remain regular for r = 0. This elementary poten­
tial,-whose introduction commends itself by the most evident 
analytical and even physical reasons,-owes the part it plays in the 
theory (as is immediately seen by inspection of the formulre) essentially 
to the nature of its singularity for r = 0, for which it becomes infinite. 
Let us remark immediate]y that this singularity occurs not only at a 
single real point (x = x0, y = y0 , z = z0), but also along a whole imaginary 
surface, viz., the isotropic cone having this point ( x0 , y0 , z0) for its 
vertex, which (in accordance with a general theorem which we shall 
soon restate) coincides with the corresponding characteristic cone 
as defined above. 

42. Riemann's Method. If we now come to Riemann's method 
for the integration of the hyperbolic equation in two variables 

d2 U1 A (hi B OU a f, 
= + - + - + u. = 

ox oy ' 

it seems, at first, that the quantity introduced by Riemann in the 
fundamental formula is of a quite different character from the ele­
mentary potential. Though the method is explained in Darboux's 
Le9ons• and several other treatisest, we su m it up briefly. 

The question is to determine the value of u at a given point 
a (x0 , y0). Cauchy's data being borne by an arc of a plane curve S, 
which we shall assume to intersect any characteristic (i.e. parallel to 
the x- or to the y-axis) at one point only, Riemann applies the funda­
mental formula 

(Fi) ff [v � (it) - it S (v)] dxdy = f Pdy - Qdx 

within a triangular domain T (fig. 6 or 6a) enclosed between an arc 
af3 of S and the segments aa, a/3 of the two characteristics drawn 
through a (which cut S at a and fJ), aa. being parallel to the x-axis. 
u means the unknown function of the problem. 

Now, for v, we take, with Riemann, a quantity!,-which is a 
function of x, y, but depends also on the position of a, so that it  has 

* Vol. II, book IV, chap. IV, pp. 71-81 of the 2nd edition. 
t See the author's Lecons sur la p't'opagation des ondes, chap. IY, pp. 163-166, 

and Goursat's Cours d'.Analyse, vol. III, chap. xxvI, pp. 146-152 of the 2nd edition. 
+ As to the existence of that quantity, see Darboux, loc. cit. §§ 364, 365, 

pp. 96-106 and our Book v. 
H. 5 
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to be written 6V (x, y ;  x0 , y0)-satisfying (in x, y for x0 , Yo constant) 
the adjoint equation* c9 (v) = 0 and defined, moreover, by the supple­
mentary conditions that 

f x 
Ady 

UV = e Xo for x = Xo ·' ' fy Bdx Uj) = e Yo 
' ·for y = Yo , 

(which especially give o/J = I for x = x0 , y = y0). It is immediately seen 
that the two integrals J P dy - Q dx along the two rectilinear segments 
ao:, a/j, viz. (if, on S, y is a decreasing function t of x) 

rx· f X1 [I ( OU ciV )  
- J xo Q (x, Yo) dx = - xo 2 61) °'ox - u ox + dx, 
f Yo f Yo [l ( OU ()61) ) 

J P (x0 , y) dy =  2 6V ;:;- - u a + A uVV dy, Y2 lla oy Y 
(where x1 , y0 are the coordinates of o: and x0 , y2 the coordinates of /j) 
respectively reduce to i (u6V)a - i'ua and ! (u6V)13 - � ua , so that, c9 (6V) 
vanishing and 9 ('u) being equal to f, we find 

·· 

'lla = ! (u�t + t (uUV)13 + f
1113 

(Pdy - Qdx) -ff fdxdy. 

/3 

a 

Fig. 6. Fig. 6 a. 

This, as required, gives the value of u in terms of quantities which 
are assumed to be kno\vn, viz. Cauchy's data on S :  especially v is the 
transversal direction, located as said at the end of § 40. 

* See footnote to � 41. 
t When y is, on S, a decreasing function of x (fig. 6), the two segments aa, a{3 aro 

both in the positive directions (fig. 6) or both in the negative directions of the axes 
and a{:3 is the direct sense on the outline of T, as necessary in writing (F 1) ; if, on the 
contrary, x and y increase simultaneously on S, the sense is the retrograde one 
and signs in ( I<\) have to be reversed. A unique formula covering all cases could 
be given by the use of :Meray's notation for multiple integrals. 



CH. II] THE FUNDAMENTAL FO:Rl\IULA 67 

If the line is an ascending one (i;e. y an increasing function of x) 
the sign of the double integral is to be reversed *. 

The function v of Riemann is, as we see, like the elementar� 
potential, a function of the coordinates of two points. The property 
of symmetry is also generalized to the present subject by the following 
interchange propertyt :  the quantity UV does not change by the simitl­
taneous interchange of x, y with x0 , Yo and of the polynomial $ with 
its adjoint c:Y (this giving a symmetry in (x, y) and (x0 , y0) if $ is 
identical with its adjoint, as is the case for V2u). 

But it immediately appears that the quantity UV thus introduced 
into the operations has a priori no singularity at a :  in fact, it is a 
perfectly regular, holomorphic function of the variables on which it 
depends, when the coefficients of the equation themselves are such. For 

instance, for the equation :;�y + "Au = 0 ("A constant) (see below, 

§ 69 and Book IV) UV is equal to J0 [v"A (x - x0) (y - y0)]. in which J0 
is Bessel's well -known integral transcendental function!. 

Nevertheless, we shall soon see that Riemann's function is derived 
most directly from the quantity which corresponds to the elementary 
potential. 

43. The case is again different with the expressions introduced 
by Kirchhoff and Volterra. The former uses 

1 (8) r F (r - rut), 

where again r = v(a� - Xo)2 + (y - yo)2 + (z - Zo)2 and F is an arbitrary 
function of one variable. Such a quantity is singular for r = 0, i.e., 
x = x0 , y = y0 , z = z0 : that is, in the common language of ordinary 
space, at one point, but in our present conception of the " universe," 
along a whole line, as t is liable to take any arbitrary value. 

Similarly the quantity used by Volterra (at least for the problem 
with which we are occupied at present) is 

(8') l (t - t0) + v(_t ___ to,.._)2---r2 
v = og --------­

r 
* See preceding footnote (p. 66). 
t Darboux, Zoe. ci"t. no. 359, p. 81 ; Goursat, Zoe. eit. 
:j: The discontinuity arises nevertheless from the fact that integration is 

extended over the domain limited by the two characteristics issuing from (x0 , y0) : 
which comes to the same as making v equal to 0 outside that domain and, there­
fore, discontinuous along its limiting lines. 

5-2 
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which has two kinds of singularities in the real domain : (1) the 
surface (t - t0)2 - r2 = 0, that is, the characteristic cone with vertex 
(x0 , y0 , t0), this being entirely analogous to the case of the elementary 
potential ; (2) the line r = 0 (that is, x = x0 , y = y0 , t arbitrary). 

In consequence of the presence of this linear singularity, both 
Kirchhoff's and Volterra's methods do not give directly the value of 
the unknown u at the point chosen, but only the integral of u along 
a certain segment of the line * r = 0 :  from which the value of u 
itself is then easily deduced (by differentiation, for instance, as in 
Volterra's Memoir). 

The same applies to the extension given by Tedonet to the 
equation 

a2u a2u o2u a2u 
� + .:l2 + . . .  + 0 2 - �-2- = 0, uX1 uX2 X m-l uX rn 

which behaves quite similarly to the preceding ones (e1) and (ea) or 
to ( e2) according as m is even or odd. Ted one again does not get 
directly to the value of u itself, but to an integral such as !to 

(t0 - t)m-au (t)dt, t1 
which he has to differentiate (m - 2) times with respect to t0 • 

44. This indirect character of the method would be only a se­
condary disadvantage, but it implies a much more serious one, which 
is that the origin-at least the analytical one-of the expressions (8) 
and (8') does not appear. Kirchhoff's function is suggested by physi­
cal considerations ; but V ol terra' s has to be formed a priori ; and this 
was precisely one of the greatest difficulties overcome by the great 
Italian geometer. 

This difficulty will occur in a much higher degree if we try to 
generalize the aforesaid methods in order to apply them when other 
equations than ( e2) or (ea) are concerned. Here we shall have no 

* Of course, in our three-dimensional space (for (e2)) or four-dimensional space 
(for (e3)), the point r = O  describes a straight line, on account of the variability of t. 
'Vhen applying the fundamental formula,, this whole line, and not merely one 
point of it, has to be abstracted from the field of integration by a cylinder (or 
hypercylinder) having it for its axis. The simple integral mentioned in the text 
arises from the SS extended over the surface of that cylinder, by letting its radius 
a pp roach zero. 

t Annali di Jfatematica, 3rd series, vol. I (1898), p. 1 .  
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guide, at least no sure one, in the construction of expressions corre­
sponding to (8) and (8'). 

This was precisely the case with the two geometers, Coulon 
and d' Adhemar, who undertook the extension of the method to such 
equations as ()2u o2u ()2,u, I a2u 

_, + , __ + - -- - + Ku = 0 (Ja;2 ay2 (Jz2 (()2 CJt2 ' 

02 u o2u I 02u 
+ --- - - -- + Ku = O  

ay2 w2 at2 , 

(equations of damped spherical or cylindrical waves) or to equations 
with variable coefficients. The formulre obtained by them were not at 
all the equivalent of Kirchhoff's or Volterra's ;  in order to obtain the 
required value of u, they had to be followed, not by simple differ­
entiations, but by the resolution of more or less complicated integral 
equations, requiring quite a new calculus of successive approxima­
tions. The reason of this is evidently that the auxiliary quantities 
introduced by them were not the ones truly analogous to (8) and 
(8'). (How it is that these analogues exist, but are not to be discovered 
without the proper clue, will appear from our further considerations.) 

45. The reason why these methods of Kirchhoff and Volterra 
do not prove suitable for generalization will appear even better if we 
inquire in what measure the aforesaid singular line r = 0 is connected 
with the equation itself. That this connection is a rather loose one, 
would evidently have been seen by these two authors if, at the time 
their works were composed, science had possessed our present ideas 
on Relativity. We now know that speaking of a fixed point of space 
considered at successive instants has no definite meaning (or, if pre­
ferred, has an infinity of meanings), that there exist (as was known 
even before) an infinity of linear transformations on x,y,z, t (or x, y, t)­
forming "Lorenz's group"-which leave our partial differential equa­
tion invariant, and that such transformations leave the characteristic 
cone unchanged, but may change the straight line r =  0 into any other 
straight line drawn through the vertex of the characteristic cone and 
inside it. We then know that this line r = 0 has no essential and par­
ticular part to play in our operations. 

In what follows, we shall find that every result of the theory can 
be and has to be deduced from the consideration of the elementary 
solution only. 



CHAPTER III 
THE ELEl\IENTARY SOLUTION 

1. GENERAL REMARKS 
46. Of course, we have now to define what the elementary solu­

tion is, and to construct it. The first extension of the elementary 
potential to other equations than Laplace,s is due to Picard *. He 
considers the equation with two independent variables 

02U· (J2u 
oaP + ify2 + Gu = O, 

0 being a given function of x and y, and proves that (x0, y0) being any 
given point, which we can call the pole, and r = v ( x ·:__ x )2 + (i/= y )2, 

this admits of a solution of the form 

(9) 1 itt log - +  w, 
r 

62t and w being properly chosen functions of x, y (and also x0 , y0) 
which are regular in  the neighbourhood of x = x0 , y = y0 • Of course, 
w is, to a certain extent, arbitrary, as any regular solution of the 
given equation can be added to it. 

This result was extended a little later by Hilbert and Hedrick t, 
and by the author!, independently, to the more general equation 

o2u 02U OU au (1 O) � 2 + � + A ;:;- + B ;:;- + 0:: = 0. 
uX uy uX uy 

The method used in this case, however, implies that the coef­
ficients A, B, 0, functions of x, y, be analytic, which was not necessary 
in Picard

,
s proof. 

* Comptes Rendus Ac. Sc. April 6, 1891, and June 5, 1900. An equivalent result 
has been obtained by Sommerfeld, Encycl. der Math. lViss. II A, 7 c, 1900. 

t Hilbert, Lectures at Gottingen, 1901 (unpublished) ; Hedrick, Uber den 
Analytischen Character der Losungen ·von lJifferentialgleichungen (Diss., Gottingen, 
1 901 ). 

t Second International Congress of Mathematicians, Paris, 1900 ; Notice 
scientifiqite, Paris, Hermann, 1901. 
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But this method enableE us to answer a question which pre­
viously arose, viz. the relation between Riemann's function and the 
elementary solution. 

It is clear, in fact, that, if we remain in the analytic case, there 
is no essential distinction between (10) and Laplace's hyperbolic 
equation 

o2u ou ou !f (u) = � --s- + A  -0 + B :s- + Cu = 0, uxuy x uy 
(A, B, 0 again being functions of x and y), which form obviously 
arises from the former one by the changing of x + iy, x - iy into x, y. 
As this changes r2 = (x - x0)2 + (y - y0)2 into (x - x0) (y - y0), we have 
to find for (e) a solution of the form 

uzt log [(x - Xo)(y - Yo)] + w. 

It is sufficient that by substituting the first term 1n (e), the 
result will be made a regular function, say 

!f [q?t log (x - x0) (y - y0)] = Ji, 
for, if so, we shall only have to take, for w, any regular solution of 
the equation of 

!f (w) = -
Now, we have 

!f {Clt log [(x - x0) (y - y0)] } = !f (62t) log [(x - Xo) (Y - Yo)] 

+ i� (a �t + A 'tt) + . I 
-· ( a1t 

+ B62t) . 
x --:- Xo ay y - Yo \ OX 

rrhis will be a regular function Of X, Y near each Of the lines X = X0 , 
y = y0 if * : 

(1) The logarithmic term vanishes, so that 62t itself is a solu­
tion of ( e) ; 

(2) The numerators of the two fractions vanish at the saine 
time as the denominators, so that 

a �tt 
+ A  ctt = 0 (for x = Xo), oy 

o�t 
+ BYlt = 0 (for y = Yo)· OX 

* It is evident that these conditions are not only sufficient, but necessary : see 
our Lerons sur la propagation des ondes, eh. vn, § 344. 
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But these conditions (together with UU= l, for x = x0, y = yo) are 
precisely those which determine the function of Riemann (except 
that we have written 9 instead* of its adjoint polynomial $). 

Thus we see that Riemann s function coincides with the coefficient 
qf the logarithmic term in the elementary solution of the equation so 
that, though regular, it is in a direct connection with the logarithmic 
quantity (9), a particular case of general relations which our further 
analysis will give us. 

47. Extensions of the elementary solution to m > 2 were success­
ively given in a fundamental memoir of Fredholm's t for equations 
of any order analogous to (e2) and by Holmgrent. But even in the 
latter's works, the extension is not complete, as the coefficients of the 
terms of the second order are assumed to be constants, which can 
be obtained by a point transformation if m = 2, but generally cannot ll 
if m > 2. 

We shall construct the elementary solution for the most general 
(analytic and non-parabolic) linear equation of the second order. 

48. The characteristic conoid. In the case of the elementary 
potential, it already appears that our elementary solution must be 
singular not only at one point-the pole-but along a certain surface 
(real or imaginary). 

What that surface must be, appears from an important theorem 
of Le Roux and Delassus�, viz. any singular surface of a solution of 
a linear differential equation** (the coefficients being regular) 1nust 

* Such a permutation is equivalent to that of x, y with x0 , y0, on account 
of the i nterchange property (see above, § 44). 

t .Acta Jfathernatica, vol. xxm. See also Le Roux, C. R . .Ac. Sc., vol. cx xxvrr, 
p. 1230. Zeilon, Nov . .Act. Soc. Sc. Upsaliensis, series 4, vol. Y. 

t .Arlciv fur Jf atemati:k, Astronomi och Fysik, vol. r. 
II The possibility of such a reduction depends, as we shall see, on the possi­

bility of the conformal representation of a certain linear element on the enclidian 
ds2, so that the conditions for it are given by Cotton's researches ( Thesis, Paris, 
1899, eh. II, nos. 15-17). 

� Le Roux, Thesis, Paris, 1895, Part II ; Delassus, .Ann. Scient. Ee. Norm. 
Supre, 3rd series, vol. xrrr (1896), p. 35. 

** An assumption is made on the nature of the singularity, viz. that the 
principal part of the solution u is UF ( G), U being regular and F such that 
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be characteristic. Such a singular surface must therefore satisfy the 
differential equation of the first order 

(A) A (�G , oG ,  . . .  , !G ; , . . .  xin) = o, dX1 uXm, 

of § 13. Among the solutions of this equation, one which was especially 
considered by Darboux * will play the chief part in our present con­
siderations :  it is the one which has a given point 

a (a1, a2, . . .  am) 
as a conic point (its tangent cone being the characteristic cone above 
c!efined), which we shall call the characteristic conoid. It coincides 
with the characteristic cone itself when the coefficients of the equation 
(or at least the coefficients of the terms of the second order) are con­
stants ; in the genera] case. it is a kind of cone with curved genera­
trices, the construction of which, well known since Darboux's l\femoir, 
will be given below, and even in a somewhat more precise form, 
as we shall write down its equation. 

2. SOLUTIONS WITH AN ALGEBROID SINGULARITY 

49. In the first place, let us examine the case of a surface without 
a singular point (the result of which examination can also be applied 
to the characteristic conoid outside the neighbourhood of the vertex). 
We shall prove not only Le Roux and De lass us' theorem under the 
conditions which concern us, but also its converse, which is important 
for us, by constructing, for our equation, a solution of the form 

(11) u = UGP + rw, 
where G = 0 is the equation of such a given regular surface, p a 
given constant index, U and w regular functions. Of course, as in 
§ 46, we have only to contrive that the result of the substitution 
of the first term in the left-hand side of our equation be regular. 

F" (G) d F' (G) · fi · /! G O  d. . h" h . " fi d i!  11 ·--·� an � �- -,. are m mte 1or = a con It10n w IC IS satls1 e 1or a 
F' (G) .F(G) 

' 
practical cases, especially for F ( G) = Gv and F ( G) = log G (the only ones which 
we shall use). Le Roux (Journ. de Al atlt. series 5, vol. IV, 1898, p. 402) gives 
another proof, not wanting the above asimmption. 

* Memoire sur les sofotions singulieres des equations aux de1ivees partielles du 
premier ordre, § 2, p. 34 (JNmoires des Savants etrange1-s, vol. xxvn, 1880). 
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We start from 'the equation (E), which we take as homogeneous 
(i.e. f = 0), viz. 

a2u au (E) 5 (u) = � Aik a a 
+ ! Bi ::;- + Ou = O. 

i, k Xi Xk i UXi 

Let us replace u, by U . F  (G). \Vriting 'Tri for � - , we have 
UXi 

(ht = U7riF' (G) + au F (G), 

':I 
a2� = lT'ITi �ik F"(G) + (7T'i �u + 7T'k �� + u � 

a2
? ) F' (G) 

�� � � �� 
+ U F 

We have to multiply the first line (for every i) by Bi , the second 
(for every i, k) by A ik , and add * to O UF. In this combination we 

. see that : 
( 1 )  the coefficient of F" (G) is A (7r1 , • • •  7rm) ; 

(2) in the coefficient of F' ( G), the term
0
s in � U aret 

au � . � 2Aik7Tk , 

that is 

Therefore, we have 

UXi k 

a u aA 
axi 07Ti . 

UF'' (G) A (7T1 , 7T'2, . • .  'TT'm) + F' (G) ( � � U �A + illU) i OXi 07Ti 

where 11 stands for 
(12)  J.lf = 5 (G) - OG. 

Especially, for F ( G) = GP, we get 

+ F (G) 5 ( U) = 0, 

( 
a u  aA ) (13) p (p - 1) GP-2 U. A (7T1 , . . .  7Tm) + pGP-I � ;;- ;;::;- + .M U 

i OXi U7Ti 
+ .GP$ ( U). 

* In such an addition, the suffixes i and k may be permuted, as Aik=Aki. 
t See preceding footnote. 
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If the cases of p = 0 and p = 1 are excluded, this cannot vanish 
identically or even be a regular function (the first term evidently 
being of a greater order of magnitude than the following ones), if the 
coefficient A ( 71"1 , • • •  7rin) is not zero : that is, .if G = 0 is not a charac-

The equation A (�! , . . .  ::J = 0 must be either an identity 

or a consequence of G = 0, so that we have in every case 

( 13a) 

A1 being regular even for G = 0. Thus Delassus' theorem is proved. 
\Ve now assume that this condition is satisfied, so that GP-2 disappears 
from (13). Let us express the condition that the terms in QP-1 also 
vanish : we have to write that, on the surface G = 0, 

(14) 

This is a linear partial differential equation of the first order in U, 
the integration of which would lead to the introduction of the lines 
defined by the ordinary differential equations 

In the denominator, we find the direction cosines of the transversal 
to G = 0 ;  but this is, in the present instance, tangent to that surface 
(as the latter is a characteristic ; the transversal is the direction of 
the generatrix of contact between the plane (7r1 , • • • 7rin) and the 
characteristic cone), so that a line satisfying (L1) and issuing from a 
point of G = 0 is entirely si'tuated on that surface. These lines are in 
fact the characteristics of equation (A), as defined in the general theory 
of partial differential equations of the first order. \Ve shall call them 
the bicharacteristics *. If A1 = 0, that is, if the function G identi­
cally satisfies A =  0, the aforesaid theory of the partial differential 

* For their physical meaning as sound or light rays, see our Le9ons sur la 
propagation des ondes, eh. vu, §§ 309, 319 and 351 .  
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equations of the first order* shows that besides (L1), these lines also 
satisfy 

d d7r1 d7r2 d7T'm s = I oA = I oA = . . . = 
I oA 

- 2 OX1 - 2 OX2 - 2 OXm 
so that they can be determined a priori (that is, without knowing the 
equation G = 0) by the integration of the system of ordinary differential 
equations (L1) and (L2). 

Bicharacteristics have already appeared in our former operations. 
They are indeed the lines which, in § 12,  Book I, we consider as defined 
on x1 = 0 by the differential equation (l) in order to determine our 
successive u1 , u2 , . . .  : x3 = 0 being tangent to the characteristic cone at 
each of its points, the generatrix of contact has its direction cosines 
proportional to A31 , A32• 

50. The same lines and the fact that they are preserved in any 
punctual transformation (which is obvious from their analytical or 
geometric signification) will in the first place be used by us to simplify 
our equation. Our given characteristic surface being assumed to be a 
regular one, we can change the variables so as to give its equation the 
form Xm = 0, and this, moreover, in such a way that every Xm = const. is 
a characteristic : this will be expressed by Amm being identically zero. 

We shall assume, further on, that the edge t of intersection of 
Xm = 0 and Xm-1 = 0 is nowhere tangent to a bicharacteristic direction ; 
by virtue of which we can take our new variables so that the bi­
chara.cteristics situated on Xm = const. shall be x1 = const. , x2 = const., . . . , 
Xm-2 = const. This will be expressed by 

Aim = 0. ( i -::/= m - I)  
\Ve shall divide by! Am, m-1 , and we can also make Bm vanish by 

changing u into uef Bmdxm-1 . Replacing the letters Xm and Xm-1 by x 
and y respectively, we see that we can write our equation 

a2u (15)  
oxoy - 91 (u) = 0, 

* See Goursat-Hedrick, loo. cit. § 87. t See note *, p. 5. 
t Am,m-I must be different from zero, or else y1 =y2 =  . . . = ym - I  =0 would make 

all the derivatives of A (y1 , . . .  ')'m) vanish, which is excluded, as we are not in the 
parabolic case. 
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where the new differential polynomial 91 ( u) contains no differentiation 
with respect to x. 

51. p = 0. Beudon' s result. The cases of p = 0 and p = 1 were 
excluded above. They correspond to no singularity of u, and bring 
us back to the considerations of our first Book*. But as we are taking 
the case of a characteristic surface, they will, for that very reason, 
interest us as leading to the answer of the question which was set in 
§ 12 ; i.e. the nature of the indetermination of Cauchy's problem in 
that case. 

This question is solved by the following result : 
In the present case of x = 0 characteristict, we can determine a solu­

tion of our differential equation by knowing its value u (x, . . .  , x, 0, y) 

U (x1 , . . .  Xm-2 , 0, y) = Uo (x1 , . . .  Xm-2 1 y) ;  
u (x1 , . . . Xm_2 , x, 0) = u (x1 , . . .  Xm_2 , x) 

on each of the surfaces x = 0, y = O! ,  which values can be chosen 
cirbitrarily, but for the condition that they imply no contradiction along 
the edge of intersection, i .e. 

(16) zt0 (Xi ,  • • •  Xm-2 , 0) = U (x1 , . . .  Xm-2 1 0), say = Uo (x1 , . . . Xm-2). 

This theorem contains, as a particular case, the proof of existence 
of Riemann's function (§ 42). It was first given, for that purpose, 
by Darboux II for m - 2, so that x = 0, y = 0 were two lines, the data 
being analytic, and both lines being assumed as characteristics. It 
was extended by Goursat i l to non-linear equations, assuming only 
that the initial tangents at their points of intersection have charac­
teristic directions. 

* The case of p integral and > 1 may be considered as included in our present 
as well as in our former considerations b :  p= 2, for instance (with U1 = 0), so that 
u =  Ux2 would correspond to a Cauchy problem with u0 = it1 = 0, for which we 
already know that no solution different from zero can be obtained if x = O  is not 
a characteristic. 

t It is even sufficient to assume that Xm = O  is tangent to a characteristic at 
every point in common with Xm - i = 0. 

t The hypothesis that the edge of intersection is nowhere tangent to a bi­
characteristic is again implied. 

II Darboux, Lerons sur la theorie des swrfaces, vol. II, pp. 91--94. Goursat, Ler;ons 
sur l'integration des equations aux derivees partielles du second ordre (see below, 
2nd footnote, p. 78). 
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Beudon (loc. cit.) * generalized Darboux-Goursat's result to m >  2, 
and, after Goursat, used it to prove the indetermination of Cauchy's 
problem for a characteristic. 

But, as Picardt (admitting even non-analytic data) and then 
Goursatt (for the non-linear case) have shown for the case of m = 2, 
the hypothesis that y = 0 is characteristic is not necessary. We shall 
now prove Beudon's theorem with the same improvement. 

We assume, at least for the present, all the data to be analytic, so 
that the coefficients in 91 shall be holomorphic functions of the in­
dependent variables !, and we again substitute for u an expansion in 
powers of x 

(17) u = u0 + u1x + . . . + uhxh + . . . .  
By equating the coefficients of similar powers of x, we obtain the 
successive conditions 

(18) 

r � 
= 9

, (
u

,
)
, I 2 �u2 = 91 ( U1) + . . .  ' � uy 

I 

I . . . . . . . . . . . . . . . . . . . . . . .  . ouh h ay = 91 (uh-1) + . . .  , 

\ . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

the system of which is conversely equivalent to (15). 

The first of them will give us oui (the right-hand side containing oy 
no other term of (17) than u0) ; the second, ��2 etc., the right-hand 

side of the equation for 00� depending only on u0ll , Ui, . . . uh-1 ' and 

the coefficients of 91• Hence we see : 
* See note t, p. 20. 
t Picard, in Darboux, loc. cit. vol. IV, pp. 355-359 (Note I). Goursat, Equations 

aux derivees partielles du second ordre, vol. 11, pp. 303-308. 
+ x generally appears explicitly among the coefficients of 91 : the terms due to 

this circumstance are those which we have replaced by dots, on the right-hand 
sides of equations (18) (in the first term, on the other hand, we must make x=O). 

I I That the u.h,'s with suffixes h' less than Ii - l also appear in v__"'h, results from c9 
the foregoing footnote. 
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(1) that u0 remains arbitrary ; 
(2) that we can also choose arbitrarily the values of each of the 

following u's for y = 0 ;  after which, we shall have (uh being what uh 
becomes for y = 0) 

(19) 

The latter fact is equivalent to saying that we can take arbitrarily 
the value of expansion (15) for y = 0, i.e. the function 

(20) u (x1 , X2 , • • • Xm-2 1 x) = � uha:h 
h 

Bxcept its first term Uo (x1 , X2 , • • •  Xm-2), which must be equal to the 
value of u0 for y = 0. This is nothing but another form of condition 

(16). The condition for -;;;- is no other than the condition of possibility 
u,!f 

for Cauchy's problem written in § 12, Book I. We see that, when it 
is fulfilled, the expansion (17) remains indeterminate, the arbitrary 
elements in it being the successive coefficients uh in the expansion (20). 

52. We shall have the right to speak of a solution u presenting 
the same degree of indetermination when we shall have proved the 
convergence of (17). We shall do this* under the hypothesis that all 
our data are holomorphic around a given point on our edge x = y = 0 
(which we shall choose for the origin of the coordinates) : granting 
which, we shall give the required proof for the multiple Maclaurin 
series which expands u in powers of x, y, x1 , x2 , • • •  Xm-2 • 

In the first place, we see that each of the calculations (19) implies 
only differentiations, integrations (from the lower limit 0), multi­
plications and additions, so that every coefficient in (17)  will be 
expressed in terms of previously calculated ones (that is, with a 
smaller h and a not greater total degree in all the variables) and 

* This will mean the construction of a solution satisfying our conditions for 
sufficiently small x's and a srnall domain D of values of x1 , • • •  , Xm_2 , y.  For the 
contrary case in which D is sufficiently extensive, we simply point out, as it 
concerns non-linear equations which we are leaving aside, a remarkable result of 
Goursat's (Ann. Fae. Sc. Touloitse, 2nd series, vol. VIII, 1906), viz. that it may 
happen that even the (seemingly indeterminate) problem of Cauchy relating to 
x=O admits of no solution which is valid throughout D and regular ; but this can 
not occur in our linear case. 
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coefficients in the expansions of the Aik ,  Bik i 0 which enter in $1, by 
a polynomial with only positive terms. Therefore, we only have to 
show the existence of our solution by replacing the expansions 9-u 
u0 , u by properly chosen dominant ones. 

We may also again assume the functions u0 , u to be identically 
zero, as, in the contrary case, we should only have to introduce, 
instead of u, the new unknown 

'lt - U0 - U  + U0 

and we may suppose this to have been done beforehand. 
Such zero values of u0 and it1 will be, as in Book I, § 10, dominated 

by any expansions with positive coefficients. 
A dominant expansion for $1 will be 

(21) ]{ 
1 

u + �'Pi + "'2' r1k 
X + Y ±_�I + · · · �I- .'.Vm-2 

p 

(K > 0, p > 0, constants) 

au 02 'll (where Pi stands for � , rik for · a and the �, relates to all values 
UXi OXi Xk 

of i, or i and k, from 1 to m - 1), so that we have again only to show 
. a2u, that the equation obtained by equatmg oxay to this quantity or to 

any dominant one admits of a solution represented by a J\ilaclaurin 
expansion with positive coefficients. 

Again using Goursat's device *, we write a dominant of (21) by 

changing, in the denominator, x into � with a <  1, so that we start a 
from equation 

32 u 'U + �'p1 + "'£'rik 
-- =  K----------2xoy · x - + Y + .'V1 + · • • + Xm-2 a 1 - . 

p 
for which we have to find a solution in the form of a J\laclaurin 

* This was not necessary in Beudon's original note, because Beudon assumed 
/J=O to be also a characteristic, i.e. Am-l , m-l  to be also zero : so that the exten­
sion of the theorem to the CA.Se where x · 0 aloue is a characteristic is connected 
with Goursat's introduction of the parameter a. 
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expansion, with coefficients positive or zero. Let us take for 'U a 

function of the variables 

(22) .. X = X + a.y, Y = X1 + . . . + Xm-2• 
For such a form of ii, our equation becomes (writing 0 for the 

numerical coefficient - 1 )2(!'i=�) 
ou ou 02ii 02u o2u 

� c X  - 2) 3¥ +  a2 [X2 + a. (m - 2) ax ay+ 0 aJT2 

1 - � (� + Y) 
"'" 

1 . 
. 

h 
o� u 

or, so vmg w1 t respect to (:Lf2 , 

(23) 

where L = 1 - Ka.. 
Let us take a. such that L > 0. Then we see that, expanding the 

fraction on the right-hand side of (23) in powers of X and Y, every 
coefficient in it will be positive. 

Now, on account of Cauchy-Kowalewsky's theorem, equation (23) 
will admit of a solution vanishing, together with �� ,  for X = 0, the 

expansion of which, as appears in § 10, has only positive coefficients. 
Substituting for X and Y the values (22), the required dominant 

expansion is obtained, which gives the proof of our theorem. 

53. p arbitrary. \Ve shall now establish a corresponding con­
clusion for any value of the constant p, except a negative integer *. 

Taking 'll = UxP, we have for U the equation 

(1 5 ) 
Replacing U by 

(24) 

'iP U  a u  x oxoy + p oy = x.!f1 (u). 

* Another method has been proposed by Le Roux (Thesis,. No. 32). 
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and equating the coefficients of similar powers of x, we have (dots on 
the right-hand side having the same meaning as in § 51) 

(18') 

( 'd Uo = O 
oy , 

(p + 1)  �U1 = 91 ( Uo) + . . .  , i . . . . . . . . . . .  � . . . . . . . . . . . . . . . . . . .  . 
( 

o Uh U I p + h) ay = 91 < h-1) . . . , 
\. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .. 

Conversely, the system of (24) (when convergent) and (18') is equi­
valent to (1 5'). 

If p is a negative integer, this system generally admits of no solu­
tion* : the impossibility of satisfying it appears in that one of the 
equations (18'), e.g. for p = - 1, the second of these equations, no 
Jonger contains U1 and becomes 

which ought to admit of a solution independent of y. 
The hypothesis of p a negative integer being laid aside, equa­

tions (18') make known to us the successive Uh's. In each one of 
these functions, however, an additive constant remains indeterminate. 
Their values can therefore be chosen arbitrarily for one determinate 
value of y, e.g. y = 0. 

To prove the convergence of the expansion (24) thus obtained, it 
is sufficient to observe (as is done in the classic theory of the differential 

equation x dy = ax + by +  . . .  ) that the ratio p h
+ h , which is never zero ax 

under the hypothesi� which we have adopted and whose limit is 1 
when h increases without limit, is always greater in numerical value 
than a fixed positive number q. We therefore shall obtain dominants 
for the successive U if we dominate � and replace at the same time, 

in the equation that gives �Uh , the coefficient (p + h) by qh. - oy 

* See Le9ons sur la propagation des ondes, p. 339, § 356. 
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Now, this is equivalent* to making p = O  in equatipn (15'), after 

multiplying the right-hand side by ! . It is then possible to divide 
q 

right through by x, and we are brought back to Beudon's problem, 
which we treated above. Since, in this latter problem, we can choose 
arbitrarily the values of the unknown for y = 0, that is, on any surface 
which intersects the first without being tangent to one of its bicharacter­
istics, the same is true in the problem now set. 

The conclusion aimed at is thus established only upon the hypo­
thesis that we are in the analytic case : a restriction, however, which 
is no immaterial one, as we have already seen. 

3. THE CASE OF THE CHARACTERISTIC CONOID. 
THE ELEMENTARY SOLUTION. 

54. The characteristic conoid with any point a (a1 , a2 , . . .  am) as 
its vertex has that point for a singular point, so that the preceding 
calculation ceases to be valid : and in fact we shall see that p cannot, 
as above, be taken arbitrarily. 

, 

To treat this new case, we must first form the equation of the 
aforesaid characteristic conoid. This is, as we know, the locus of all 
bicharacteristics issuing from a. Analytically speaking, we have to 
take any set of quantities p1 , . . .  Pm fulfilling the condition (A) and, 
with the initial conditions Pi = poi, xi = ai for s = 0, integrate the above 
written differential equations 

(4) 

As the quantities p01 , . . . Pom (or more exactly their mutual ratios) 
under condition (A) depend on m - 2 parameters, the locus of the 
line thus generated is a surface. We must give a precise form for the 
equation of this surface : which form was suggested by Coulont. 

* Strictly speaking, the first equation (18'�, viz. 08�0 =0, would disappear for 

p = O, as its left-hand side was originally multiplied by p. Of course, we have 
to preserve it in the present argument. Knowing the values of U for y=O, it 
d�termines them for x=O, thus giving all the data required by Beudon's theorem. 

t Thesis, p. 22. 

6-2 
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55. Introduction of geodesics. For that purpose, we shall con­
struct every line issuing from (a1 , a2 , . . .  am) and satisfy the differential 
system (L) whether the initial values p01 , . . . Pom of the variables Pi 
satisfy (A) or not. Such lines are in fact the geodesics of a properly 
chosen linear element. 

Results in the general theory of geodesics*. Let 

H 

be any quadratic form (except that its discriminant will be supposed 
=I= 0) in dx1 , . . .  dxm , the coefficients Hik being given functions of 
x1 , . . .  Xm .  If dx1 ,  . . .  dxm be considered as differentials of x1 , . . .  Xm , 
H can be taken as a linear element in an m-dimensional variety. The 
integral 

L = fvH (dx1 , . . .  dxm) = f vH. (x�� . . . :c:�') dt 

(where, in the last member, x/ stands for �i) will thus represent the 

length of an arc of. curve in that variety, and the corresponding 
geodesics are the lines which make the variation of L vanish. Their 
differential equations are 

(25) �- (avH) -
avH _ 0 

dt dX/ dXi -
. (i = 1, 2, . . .  m) 

Classic dynamical principles also lead to writing these differential 
equations in a different form, viz. 

(25') !!:_ (aH) _ aH _ 0 
ds oa:/ OXi - ' 

this governing the motion of a system the vis viva of which would be 
H (x', x), and on which no forces would act. 

These two forms (corresponding to two forms of the principle of 
least action) are not exactly equivalent, but are so conditionally. The 
first one determines the required lines but not t, the latter remaining 

* See Darboux's Le9ons, vol. II. 
Many of the following principles, such as geodesics for an indefinite linear 

element, geodesics of zero length, differential parameters, etc., will be familiar to 
many readers, as they are now of constant use in the recent theory of Relativity. 
We, however, shall not assume this theory to be known. 
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an arbitrary parameter the choice of which is immaterial. Equations 
(25) remain unchanged by the change of the independent variable t 
to cp (t), . cp  being any function. 

The second form (25') defines not only a line, but a motion on 
that line, and this motion is no longer an arbitrary one in time : it 
must satisfy the integral of vis viva 

(26) H = const., 
so that the representative point (:.�'Ji, . . . xm) must move on the 
curve with constant kinetic energy. But if we take account of this 
latter equation, the two systems (25) and (25') are (in general) 
equivalent*. 

We shall start from system (25') and reduce it to Hamilton's form 
by introducing the quantities 

(27) 

. By eliminating the x/'s, H becomes a quadratic form A in the 
p's,-viz. the adjoint form of H divided by the discriminant D of 
H-and, as we know, the m equations (25') of the 2nd order are re­
placed by the 2m Hami lton equations of the lst order 

L ) dxi 1 oA ( 1 ds = 2 opi ' 
(equivalent to (27)) and 

(L2) 
dpi 1 oA 
ds = - 2  oxi · 

These equations again admit of the integral A =  const. equivalent 
to (26 ). 

* If, in (25), we suppose the arbitrary parameter t to be chosen so that 

J-- aJ:H i cH 
H =const., then the denominator 2 H in -�-, = J- · · can come out from oxi 2 H ox/ 
under the sign !' and we find (25'). 

Conversely, if we intend to write (25') so that �he independent variable 
t may become arbitrary, we have only to note that, as a function of such a 

quantity t, s can be easily calculated by (26), viz. ds = JHdt. Replacing ds by 
X·' 

this value and accordingly x/ by J�' we find (25 ). (See Darboux's Le�ons, vol. II, 

§ 571 of the second edition. )  
All this fails for the special geodesics (bicharacteristics) such that A ( = H) = 0 ;  

then the system (25) ceases to have any meaning, (25') remaining valid. 
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56. \\7 e shall use the preceding calculations in such a way that 

the quadratic form A be the one which we above denoted by that 
letter, viz. the characteristic form of our equation. How we must 
choose H for this purpose, is well known : the relation between A 
and H is a reciprocal one, so that we have to take H equal to the 
adjoint form of A divided by the discriminant A of A. The two dis­
criminants D and A of A and H are reciprocal of each other. The 
variables Pi in A are connected with the variables x{ in H by any one 
of the two (equivalent) systems (27), (L1), the variables xi being, of 
course, the same in both forms. 

It is useful to note that the use we make of this conception of 
geodesics is slightly different from the usual one in the sense that 
A (or H) may be-and will be actually, in the hyperbolic case, the 
one which will concern us especially-an indefinite form. This, of 
course, will not matter for most of the analytical properties of geo­
desics ; L may become imaginary, but not its square, which 1s pre­
cisely the quantity which we shall have to introduce*. 

57. The above defined geodesics will now be treated by a method 
essentially equivalent to the well-known one due to Lipschitzt. 

As we have noticed, equations (25') do not admit of an arbitrary 
change in the independent variable ; but they still admit of any linear 
one, in which s is replaced by as + f3, a and /3 being any constants : 
indeed, such a change leaves equation (26) unaltered but for a change 
of constant on the right-hand side. 

The corresponding property of equations (L) is that they are not 

altered whenwe change s into as andpi into - (a being constant), with­

out altering the x's ; and this even leaves every integral curve of (L) 
unchanged (only changing its parametric representation). 

Let us now exclusively consider the geodesics issuing from a special 
given point a (ai , a2, • • •  am) of the m-dimensional space, s being zero 

* The only important difference introduced into operations by the possibility 
of A being indefinite is that we cannot, as is frequently done, choose on each 
geodesic the variable s so that the constant A becomes equal to 1 ,  as the case 
of A=O happens particularly to concern us. 

t Bull. des Sc. Matlt. lst series, vol. 1v, pp. 99-110. See Darboux's Lecons, 
·vol. II, Book v, § 518. 
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at this point. One of them will be determined if we give the initial 
values (values for s = 0) p01 , • • •  Pom of p1 , • • •  Pm. Moreover, the same 
one will be obtained, as we have just seen, if we replace s by as and 

b Pi Prn h ' h · f b 1 h d · 

, 

p1 , . . . Pm y - , . . .  -,  t e Po'i s av1ng o course to e a  so c ange mto 
a a 

. This can be expressed by saying that the 2m + 1 quantities 

P1 , · · · Pm' Po1 , · • • Pom, S 
only occur in the 2m combinations 

(28) Pi = spi, qi = SPoi· (i = 1, 2, . . . m) 

Thus, the integrating formulre of (L) must be of the form 

{ Xi = </Ji (q1 , . . . qm � a1 , . . . am), 

Pi = Yi (q1 , · · ·  qm, a1 ,  . . . am), 
and we may immediately notice that those formulre do not change 
by permutation of the xi with the corresponding ai and, at the same 
time, of Pi with - qi (as the differential equations (L1), (�) show by 
changing s into - s). 

Let us now consider the first series of equations (29) as denning a 
punctual transformation between the x's and the q's , tlie point corre-

d
. O (dxi) 1 o A h h spon ing to q1 = . . . = qm = ; as -d = -2 

".:I- , we see t at t e expan-
s o VPoi 

sion of Xi - ai has -
2
1 �A for its term of the first degree. The Jacobian 

oqi 

(30) 

has therefore, at a, the value .6., and is =I= 0, so that the q's can certainly 
be expressed as functions of the x's in the neighbourhood of a. 

The variables q are very simply connected with the normal vari­
ables of Lipschitz * : those being, by definition, the quantities : 

(dx·) 
gi = s d3i 0 '  

so that we have, between them and the q 's . the 1inear substitution 
with constant coefficients 

* Loe. cit. See footnote t, preceding page. 
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or, in another equivalent form, 
. i oAo 
t;i = 2 oqi ' 

A0, H0 being the forms A, H considered at a, viz. 
Ao (q1 , . . .  qm) = A (q1 , . . .  qm ; ai , . . .  am), 

Ho (�1 1 · · · �m) = H (g1 , . . .  �rn ; a1 , . . .  am)· 

[BK II 

If we use the special coordinates qi (or gi) the geodesic lines 
issuing from a will be represented by straight lines, the coordinates 
being proportional to s. 

57 a. Nothing of the above requires the assumption that the co­
efficients .Aik be analytic : they only need to be regular, inasmuch as 
this is necessary for the application of general theorems concerning the 
existence of the integrals of differential equations and their differenti­
ability with respect to initial conditions. (See Additional Note at the 
end of the present Book.) 

If the .Aik's are holomorphic functions of the x s, then the x s will 
be, in the vicinity of a, holomorphic functions of the q's, and, con­
versely, the q s will be holornorphic functions of the x s. 

All our present considerations-and, consequently, those of the 
following § 58-will continue to be valid as long as the solution of 
the first series of equations (29) with respect to the q's is possible : 
in other words, so long as the problem of joining the point x (x1 , • • •  xm) 
to a by a geodesic line may be considered as a determinate one. The 
region fll in which such a validity persists may be defined by consider­
ing, for instance, a one-parameter family of surfaces, containing a inside 
them and enveloping each other as the parameter increases (such as 
spheres with centre a) : the inside of such a surface will belong* to fll 

* See our Lecons sw· le Calcul des Vari"ations, final note A. A region fll is most 
frequently obtained if, on every geodesic line going out from our point a, we 
determine the arc issuing from a and around which the required property (i.e. the 
fact that any point is to be joined to the initial one by a uniquely determined and 
continuous geodesic line) does not cease to exist : which arc is limited by the point 
defined by J (formula (30)) =0, the so-called conjugate focus of £t (see Leqons sur 
le Calcul des Variations, Book 11, eh. nr) at which the geodesic may be touched 
by the envelope of a properly chosen one-parameter family of other geodesics 
issuing from a ; but in some cases such a definition of fll may prove to be 
erroneous. 
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so long as each of them will cut an arc of geodesic issuing from a at 
one point P only, and, moreover, the Jacobian (30) does not vanish on 
the arc aP. 

Instead of considering the Jacobian (30), we could take any geo­
desic from a as a function of rn - I parameters i\1 , . . .  Am-i defining 
its initial direction, each point on one of these geodesics being thus 
defined by a system of values of i\1 ,  • • •  'Am_1, s. The Jacobian 

(30 a) J = D (x1 , . Xm!_ 
D (i\1 , . . .  i\m-1 , s) 

would play the same part as the Jacobian (30). 
58. Equation of the characteristic conoid. Having thus de­

fined the auxiliary quantities P and q, we form the expression 
I' = A (P1, . . .  Pm ;  X1 , . . .  Xm) = A (q1 , q2, . . .  qm ; a1 , a2, . . .  am)· 
This is a quadratic form in the a's, with constant coefficients, and 

a holomorphic function of the x's ; its expansion in powers of the 
(xi - ai)'s begins with terms of the second degree, viz. 

(31) r = Ho (a�i - al , . . .  Xm - am) + . . . . 
I' is in fact the square of the geodesic distance from point(X1 , X2 , . . .  Xm) 

to point (a1, a2, . . . am), this distance being calculated by means of the 
linear element H as defined in § 56. 

This enables us to evaluate the partial derivatives of I' :  for those 
of .Vr are given by the classic equation in Calculus of Variations * 

. 1- "' o vH I S ( 'V I') = � -� DXi = -:-;===-- (pi DX1 + • · · + Pm DXni). i ox/ v H (x') 
We thus see, on account of r = A  (P) = s2A (p) = s2H (x'), that the 

partial derivative of r with respect to Xi is no other than t 2spi = 2Pi 
and that the function r is a solution of the partial differential equation 
of the first order 

(32) 

* See Bolza, Lectures on the Oalcitlus of Variations (Decennial publications of 
the University of Chicago), formula 15 b (p. 123) and two last formulre of p. 154 ; 
or our Lecons sur le Oalcul des Variations, book n, eh. III, p. 142. 

t Therefore the tangent plane to any surface r =const. is transversal (§ 40) 
to the corresponding geodesic : a general fact, besides, in the Calculus of Variations 
(see our Lecons sur le Oalcul des Variations, § 137). 
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The expression r is symmetrical with respect to the two points 
(x1 , x2, . . .  xm) and (a1 ,  a2 , . . .  am) on which it depends. 

r = 0 is the equation of the characteristic co11oid. 
If the normal variables E are taken as Cartesian coordinates, the 

characteristic conoid is an ordinary quadratic cone (or rather hyper­
cone) which is real for a hyperbolic equation. As stated in Book I, when, 
moreover, the equation is normal, it consists of two sheets and divides 
space into three regions, two of which are interior and one exterior. 

These qualitative.properties also hold in the primitive space where 
the coordinates are a)i ,  x2 , • • •  Xm, as the punctual transformation be­
tween the x's and the E's is a regular one. We can speak, therefore, 
of the two sheets of the characteristic conoid, or, as we shall often say 
more briefly, of the two half conoids with any given vertex a. 

We generally write the equation in such a way that r > 0 corre­
sponds to the interior regions, i.e. that the characteristic form consists 
of one positive and m - I negative squares. 

59. Lame-Beltrami's differential parameters for r. The above 
equation can be written in Lame's notation of differential parameters*, 
VIZ. 

�l r = 4r, 
the left-hand side being the differential parameter of the first order, 
with respect to the linear clement H; a result which, besides, may 
also be considered as a mere consequence of the well-known equation t 

(32') A1 ( "/r) = 1 ,  
satisfied by the geodesic distance. We can get a second useful formula 
by using the m relations 

(33) 
together with the differential equations (L1) (§ 55). If we multiply 

these by the corresponding derivatives � U of an arbitrary function U OXi 
and add the m products thus obtained, we find 

du= ! ! a u aA
, ds i 2 OXi opi 

* See Darboux, Le901UJ sw· la theorie des surf aces, vol. III, book VII, eh. I. 
t Darboux's Le9ons, vol. 11, book v, eh. v. 
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which, in Lame's notation, (33) gives 
dU (34) 61 (r, U) = 2s di . 

91 

Finally, this last result enables us to find the value of the para­
meter of the second order 62 r. We know indeed that the latter can 
be defined, after Beltrami * by the existence of the integral identity 

(35) SSS61 (r, U) dx1dx2 . . . dxm 
+ SSS UA2rdx1dx2 . . .  dxm = SS . . . , 

where the m-uple integrals on the left-hand side are extended over a 
portion of the m-dimensional space ; the (m - 1)-uple one on the right­
hand side over its boundary, the quantity replaced by dots under SS 
beingt the product of  Ubya linear combination of first derivatives of  r. 

We shall use this by transforming the first SSS by tne intro­
duction of the previously defined coordinates s, A-1 , A-2 , • • •  Xm_1 • De­
noting again by J the Jacobian of x1 ' x2 , • • •  Xm with respect to these 
parameters, this first integral becomes • 

SSS 2s 00� I J i dX1dX2 . . .  dXm-1 ds, 
which can be directly transformed into 

(36) ± SS 2 U I  J I  sdX1d� . . .  dXm-1 

• 

o ( J J ' s) - SSS 2 U 08 dX1d� . . .  dXm_1ds 
= ± SS 2 U j J I  sdX1d� . . .  d'A-m-1 

1 d (Js) - SSS 2 U .  J ds dx1dx2 . . .  dxm . 
The coefficient of U in the m-uple integral of this final expression 

is necessarily the required value of 62J 
(37) 62r = 2 ( 1 + s d l:J) . 

* See Darboux, loc. cit. vol. rn, § 67 4. Strictly speaking, we ought to define 
the symbol �2 a little differently, by taking as a factor, in the element of each 
of the SSS in (35), not dx1dx2 • • •  dxm , but an element of volume, equal to 

. 1- l dx1 dx2 • • .  dxm multiplied by v I ]) J =VI 6 1 .  In our case, this would have been an 

unnecessary complication. It would lead to writing log J_ instead of log J in (37). V 6 t This quantity can be easily seen, by (36), to be ± 2J s U ; but this is a 
useless verification, as, on account of the fundamental lemma of the Calculus 
of Variations, no two transformations of the form (35) for the same quantity 
can exist (and be valid with U arbitrary) without coinciding term by term. 
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60. It may be useful to note that equation (32) characterizes our present form 
of the equation of the characteristic conoid ; that is, any function holomorphic* 
around a vanishing on the conoid and satisfying (32) is no other than r itself. 

For such a quantity ought to be of the form 
rII 

(II again holomorphic). Substituting in (32), we have 
4IIr = II2 A1 r + 2II r A1 (II, r) + r2 A1 II, 

or (on account of (34) and noticing that the equation is satisfied for II= 1) dII r d r II+s d.� + 4II A1 II - l = ds [s (II - 1)] + 4II A1 II=O. 

This shows us that II= 1 all over the conoid : whence II = 1 + ri R, l being a 
positive index and the new holomorphic function R not vanishing on all the 
surface of the conoid. But this would imply a contradiction, as, substituting 
II - 1  = ri R in the above equation, we should find that, on our conoid, dR s ds + (2l + 1 )  R=O, 
which admits of no other regular solution than zero. Q. E. D. 

' 
61. Construction of the elementary solution . This being under-

stood, let us come to the problem which we have in view, and seek to 
find, for the given equation, a solution of the form 

(38) a =  UrP, 
r being the function which we have j ust formed, in which the pole a, 
with coordinates a1 , a2 ,  • • •  am , will be considered as given, and the 
point x (x1 , x2 , • • •  Xm) as variable. We shall for the present take only 
the analytic case, so that the coefficients are assumed to be holomorphic 
in the x,s. 

We again join x to a by a geodesic line, on which we have 

( L dx1 dx2 dx1n d i) 1a:A = IM= . . .  = 1 aA - s. 
2 op; 2 op2 2 opm 

Let us write down, under these conditions, equation (13) : A1 , 
as defined by (1 3 a), is identically equal to 4, from equation (32). As 
for the quantity 

* On the other hand, non-holomorphic solutions exist in infinite number, viz. 
the square of the geodesic distance (still calculated with respect to H) from 
(x1 ,  • • •  xm) to any surface inscribed in the conoid. 
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formula (31) gives us its value at the origin ; we have 

r 
�-".l- = 2Hik + . . .  , UXiUXk 

· ( h d · · ar b · · · · 11 ) and, in consequence t e erivatives � e1ng imtia y zero , OXi 
M = 2 ! Ai k Hi k + . . .  = 2rn + . . . . 

i, k I I 

The 7r/S in (13), i.e., the derivatives of r, have to be replaced by 
2Pi = 2spi. 

Therefore (dividing (13) by pI'P-1 after having replaced G by I'), 
we have 

(39) 2 �  au �� + (11I+ 4p - 4) U+ �.!f:'( U) 
axi oPi . P 
= 2 ! �u. �PA + (2m + 4p - 4 + . . .  ) U + r  $ (U) = 0, 

u� u i P 
and, in consequence, for r = 0, regard being had for (34), 

dU (M \ dU (39') 2s 
ds + 2 + 2p - 2) U = 2s ds + (rn + 2p - 2 +  . . .  ) U= O. 

Since U must be a regular function of s, this equation is possible 
only if we have 

(40) 
m - 2 p = - 2 - pl , 

p1 being a positive integer or zero; U is then, for s in t.he neighbour­
hood of zero, of the order of s P1• For p1 = 0, and therefore 

m - 2  p = - 2-:-· , (40') 

U will have, at the point a, a value other than zero. We shall 

take this as equal to -.1 , ' the reciprocal of the square root of 
v Aa {' 

. the discriminant of A at the point a. 
The corresponding solution u is the only one that we shall need 

to consider, because the others, deduced from p1 > 0, may easily be 
reduced to the first. For it, when once obtained, will be a function, 
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not only of the x's, but also of the a's, and it is an analytic function 
of those quantities *. The quantities 

OU OU OU 
aa� '  -oa2 ' . . .  oam 

are solutions of the given equation, and it is immediately evident that 
they possess, at the point a, the singularity corresponding to Pi= 1. We 
should obtain in the same wayt the solution corresponding to values 
of Pi folfowing this, by differentiating again with respect to the a's. 

But, from what we have seen before, there is a set of values of 
111 for which none of the above solutions exist (generally, at least), and 
for which, consequently, the problem is generally impossible : these are 
the even values, the number p then becoming a negative integer. 'Ve 
shall, of course, meet this impossibility again in the course of the 
process that will determine the solution. 

62. To carry this out, we should note that equation (39') gives 
us the values of U on our conoid. We have (since U is equal to 

1 � _ at the vertex) + v! Aal 
1 - f 8 _!_ (·M -'-9p - 2) ds. 

( 41) U = -= e o 2s 2 
VI Aa 

Let us determine a function U0 that shall be equal throughout our 
space (or the portion of space where r is defined) to the above ex� 
pression ; in other words, that fulfils, through the whole of this space, 
equation (39'). U0 will be a holomorphic function of the x's, as is 
immediately evident if the a's are taken as variables (compare 
equation ( 45a) below). We shall obviously get 

U = Uo + r Ui ,  
Ui being a regular function. 

* This property of u may be considered as almost evident under our present 
hypothesis that Aik, Bi , 0 are holomorphic ; it will follow quite strictly, at least 
for m odd, from the fact that each term of the series ( 43) (see below) satisfies this 
requirement, and that, on the other hand, this series is uniformly convergent. The 
same will hold for m even, if proper precision is given to the definition of u. 

t Picard's solutions with simultaneously polar and logarithmic singularity for 
m=2 (Comptes rendus Ac. Sc. vol. cxxxvr, p. 1293, June, 1903) also result from the 
elementary solution, such as found in § 46, by the operation in the text. 
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Replacing U by that value in equation (39), we shall see that U1 
ought to satisfy the equation 

0 U1 0A ( 42) 2 (p + 1) !, axi oP, + (p + 1) (1Jf + 4p) U1 + r.9-' ( U1) + 9-'( U0) 

= (p + 1) [ 4s dd�1 + (l�r + 4p) 171] + 9 ( Uo) + r 9-' ( U1) = 0. 

We shall determine a function U1 by the equation 

(42') 48 dd
U1 

+ (jl + 4p) U1 + _!_1 9-' ( Uo) . 0, s p + 
assumed to be satisfied throughout space. This equation (though a 
differential one) admits of one regular solution and one only ; for jt is 
written (with due regard for the fact that U0 is a solution of (39')), 

d s U1 I 
ds � Uo = 

- 4 (p + 1) U0 9-' ( Uo), 
and, if U1 must remain finite for s = 0, this necessarily gives 

U1 = - Uo rs 1 9-' (!!o) ds· 
s � o 4 (p + 1 ) U0 ' 

U1 is like U0 , a holomorphic function of the q's and therefore of the x's. 
The rest of the working is now obvious. We shall set down 

( 43) U = U0 + r U1 + . . .  + r1i U1i + . . .  , 
and the expansion thus written will give a solution of the problem if 
the U1i's are given by the successive equations [where each left-hand 
member is the coefficient of (p + h) I'P+h-1 in 9-' ( urh)] *  

d U1i h 1 fY TT ( 44) 4s ds + [ M + 4 (p + - 1)] U 1i + p + h .v ( u h -i) = 0, 

whence 

* 'Ve see that our method would allow us to construct the (unique) solution 
of the form u- UI'P' ... 1 for any given partial differential equation such as 
ff (it)= WrP' (with TV holomorphic) provided p' be equal to none of the numbers 

2 m - 2 ni - 2 , - 1 , - - 2, . . . - -2 - - P1 i · · · ·  O n  the contrary, when p assumes 

one of the last-mentioned values, the equation admits of no solution of the form 
UrP' + I, as appears from the text (nor, as can also be seen, of any algebroid 
solution whatever). 
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If rn is odd, and, consequently, p not an integer, all the (p + h)'s 
will be equal to integers increased by ! : therefore, all the expressions 
( 44') will exist. They will be holomorphic functions : if we assume that 
the a's (or Lipschitz's normal variables, which comes to the same thing) 
have been taken as independent variables and that the quantity 
1 

. 

Uo 9 ( Uh-i) has the expansion 

1 ( 45) Uo 9 ( Uh-1) = Qo + Qi + Q2 + . . .  + Qk + . . . , 

where Q0,  Q1 ,  •
• •  

are homogeneous polynomials with respect to the 
variables thus chosen (their degrees being denoted by their suffixes), 
we shall have 

(45a) 
Uh 1 1 
U0 = - 4 (p + h )h Qo - 4 (p + h) (h + 1)  Q1 - • 

• 
• 

1 
4 (p + h) (h + k) Qk - • . .  , 

a similar expression,-in which h has to be replaced by zero and the 

right-hand side of ( 45) by ( 1: - m )-applying also to log U0, on 

account of (41) (and with the addition of the constant term-
1/2 . log I �a !). 

If the coefficients be merely regular (§ 9), we shall nevertheless 
be able to say that the Uh's exist, with the above definition and 
properties, up to a certain value of h. 

63. Assuming the coefficients to be holomorphic, we have now to 
prove the convergence of the power series ( 43). 

For this object, this time, we shall find directly (and no longer by 
comparison) dominant functions for the coefficients. 

Let us still suppose that, for the x s, we have taken normal variables 
(the q's or Lipschitz's normal variables) relating to our given pole a. 
Moreover, we shall bring in a new simplification in our calculation by 
a change of unknown. Having <let.ermined U0 as said above, we shall 
instead of (E) introduce the new equation 

1 (E1) 91 ( u) = Uo $ ( Uo'l!>) = 0. 
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It is clt that any solution of (E1) is deduced from a corresponding 
solution of (E) 1-iy division by U0 , and also that the elementary solu­
t.ions of the two equations are connected in the same way ; and it is 
easily verified (we do the calculation in detail further on, in Book IV) 
that this applies to every term in the expansions of the two numera­
tors. Therefore, for (E1), the new value of U0 will be the constant 

UT - -� 1 
o -

�tl I 
Let <r be the sum of the absolute values of these variables. Every 

coefficient of the given equation (E1) will admit (if the positive con­
stants a, r be properly chosen) of the dominant 

a 

<T ' 
1 - -

r 
so that, if we have ((( being, as usual, a sign for dominated functions) 

(46) 

we shall also have 

(47) 

K 

,g: (v) 
(( 

a(n �)�+�) .  
1 - -

r 

[( m rri2)] 
a' = a l + r + r2 

Under these conditions, let us show that we can write 

(48) U (( 
Kh h ( l -
�yh ' 

where the K's are positive numbers which we shall calculate presently. 
Let us assume that ( 48) is satisfied for a certain value of h, and 

try to prove it by changing h into h + 1 .  We have (remembering that 
U0 is a constant) 

,g: ( U ) (( a']{ h • 2h ( 2h l )  
h ( u):.in+:.i 

1 - ­
'r 
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The factor 

!an be written (as u is proportional to s on every geodesic) 

1nd, as may easily be seen*, is dominated, as 2h + 3 > h + 2, by 

1 1 
+ 1 ( (]')�+2 . 1 - -

r 
Therefore 

This is of the required form 

wiuh 

U (( Kh+i h+l ( (]')2 (h+I) ' 
1 - -, r 

' 2h (2h + l) 
J{h+i = Kh. a. 

4 (h + l )  (p +-h + I) ' 
The ratio �:1 approaching, for h = oo ,  the finite limit a.', the 

series ( 43) will converge for I r I < �' ( 1 - �y . 
The existence of u is therefore completely proved. 
We may add that, if we let the point a vary within any region 

(strictly interior to /!Jl,), the numbers r, a. will have, the first a minimum 
the other a maximum, so that the convergence of ( 43) will be a uniform 
one. 

* For - - = 1 - - + - - )) --- (if l � li + 2) 
1 [ uk+l ]' uh [ u l - l u] uh 

h+ l ( u)z- 1 ( u) l 1· h + l ?' ( u)l 
1 - - 1 - - 1 - -

r 1· r 
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64. We may immediately notice that the above analysis applies 

without any modification to the determination of the holomorphic 
solution of (E) assuming given values on the characteristic conoid, 
provided we already know any holomorphic function 6210 which assumes 
these same values for r = 0. Writing 

( 49) Vlt = 6210 + 6211r + . . .  + 621krk + . . .  , 
the equations for the successive 621k will be those above in which we 
take p = 0, viz. 

4 d't/1 UlfJ/ lY(fiJI ) Q s ds + J.u �tt-1 + J" "U!o = , 
. " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

. d� ' I 4s d 
k + (llf+ 4k - 4) 621k + - 9 (621k-1) = 0, S IC 

or, again integrating with the help of U0 , 
U fs s-P ( 49') Cl/t1 = 

- 481� 0 Uo $ (Cl/lo) ds, 
• • -i • • • • • • • • 4 * • • · · - · · · · · · · · • • @ • • · · · · · · · · · · · · · ·  

U. 
J
S sk-p-1 

ll(k = - 4k-:S�-p o Uo- $ ( 621k-1) ds. 

Such a problem admits, therefore, of one (and only one) holomorphic 
solution. 

65. Let us now assume m to be even : for instance, m = 4, whence 
p = - 1 . U0 still assuming the value (41), equation (42) becomes an 
impossibility if we have not 

$ ( Uo) = O  
along the whole characteristic conoid. 

It is clear that this condition will not be satisfied in general. If, 
for instance, all the coefficients of the equation were given with the 
exception of 0, it would make known to us the values of 0 on the 
whole conoid having a for its vertex (as the expression of U0 is inde­
pendent of 0 and different from zero*). 

* The conditions for this to take place (and consequently for an elementary 

solution of the form (38) to exist) for every situation of a, would require a much 
more difficult investigation : an investigation, however, which would be especially 
interesting, as we shall see further on. "\Ve may add that an important part would 
be played in this by the value (37) obtained above (§ 59) of .:l2 r. 

7-2 
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A similar conclusion will evidently follow for any other even m, 
the impossibility arising from the equation (44) which corresponds to 

m - 2 . h = -p = 2 
, VIZ., 

(50) fl ( U-p-1) = 0. 

Picard's previous results (see § 46) then lead us to complete ex­
pression (37) by the addition of a logarithmic term, setting down 

(51) u = UI'P - ctt log r. 
If we substitute this new value of u, we find [ , ac:zt oA . . J I 

!l( UrP) - 2� 'iff?i + (M - 4) 1!2t r - log r . !l (czt) = O, 

where the first term has already been expanded in powers of r. 
Again, the logarithmic terms only disappear if flt itself is a solu­

tion * of (E). 
Further, taking account of the expansion previously written for 

fl ( u), we see that the equations ( 44) corresponding to h < -p are not 

modified. But, for h = � p, that is, to make the coefficient of � vanish, 
1 

we have to write, instead of (44), 

(52) 4s dd� + (.Llf - 4) czt - fl ( U-p-i) = 0, 

an equation which we shall immediately notice to be of the same form 
as the formulre ( 44'), only differing from these by the omission of the 
denominator (which ought to have been zero) and a change of sign. 

Let (i/t0 be the function defined, throughout our region fll,, by the 
differential equation ( .52). (i/t must be the solution of(E) which assumes 
on the conoid the same value as 1Zt0 • 

we have just seen how this function czt is to be determined. 
The coefficients of its expansion ( 49) in powers of r depend on the 
equations ( 49'). We again see that these are exactly t.he same for 
the Uh's, with h = p + k. 

* This proves that we do not have to look for a solution of the form 

UrP + 62tr<L log r 
with q not zero, as the solution U/trq capnot exist. Algebroid and logarithmic 
infinitudes do not multiply each other in the present problem. 
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In other words, we are led to processes exactly identical with the 
previous ones (except for a numerical coefficient, the change of which 
is introduced by the calculation of lflt0), U-p+k for k =  0, 1, 2, . . .  , being 
now denoted by ifltk. 

Now, conversely, if we calculate the Uh's for h = 0, 1 ,  2, . . . , (- p - 1)  
and °tt as explained above, and if we substitute in the given equation 
the expression 

(53) 
-p-1 

- 6lt log r + rp � uhrh, 
h = O  

it  follows from what we have said that the terms in rp-i, . . . ' �  and 

log r will disappear. The result of substitution, denoted by J/1, will 
therefore be a holomorphic function, and all that remains to be done 
is to add to expression (53) any holomorphic solution w of the 
equation 

5 (w) = - Jft 

(the existence of which follows from Cauchy's fundamental theorem) 
to obtain a solution 

u = - iflt log r + urP, ( u = w r-p.+ -��1 uhrh) 

of the proposed equation*. 
In this case, contrary to what happened for rn odd, there is a great 

degree of indetermination in our result, as w can be modified by the 
addition of any regular solution of (E). 

* "Ne could just as well find w by writing it 

w = w_p +  TV-p + 1 r +  . . .  + w-p + krk+ . . . , 
substituting the total value of it in the equation and equating to 0 the coefficients 
of the powers of r superior to - p - 1, which have not been considered as yet : this 
gives the successive W -p + k by 

-is 
dWd:+ k + (.JI + 4k - 4) W -p + k+� I 5 ( TV -p+ k-i) - 4s 

d:::k - (.Jf + 8k - 4) illtk]=o 

from W-p + l  on,  while TV -P remains arbitrary, affording the indetermination 
ref erred to in the text. 

The result will depend analytically on the coordinates of the pole if we are 
careful to choose this arbitrary element ( for each situation of a) according to a 
determinate analytic law : for instance, if we agree to take U - P  = 0. 
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We have thus succeeded in calculating our elementary solution 
(for any non-parabolic equation) upon the hypothesis that the coeffi­
cients are analytic. How the same results can be attained without the 
help of this hypothesis, will be seen further on. 

66. Application to the elliptic case. Still keeping to the analytic 
hypothesis, all the above applies to the elliptic and hyperbolic 
cases. In the future, we shall deal exclusively with the latter ; but 
let us note that the existence of the elementary solution is the basis 
on which we can establish the theory of elliptic equations with 
analytic coefficients, extending to it the main properties met with for 
V2u = 0. We can enunciate at once, for our general case, the properties 
obtained for two variables by Sommerfeld *, such as : 

An elliptic equation with analytic coefficients has none but analytic 
solutions (inside their domain of existence, boundary exduded) ; 

If two solutions of such an equation are tangent to each othert along 
a surface, they are the analytic extension of each other, 

l 1 for the proof of which we only have to replace log - or -- by the 
r 

elementary solution, in the classic argument+ ;  further, by the con-
sideration of functions analogous to Green's ! !, 

For an area such that the problem of determining therein a solution 
of the adjoint equation by its boimdary values is always possible, this 
problem is determinate for the given equation; 
etc . . . .  

67. The parabolic case remains outside the above analysis. The 
part of the elementary solutions is played in that case by a quantity 
whose value 

(54) 
x2 1 4y 1 

vy 
e or vt e 

* Enc,yclopadie der Math. TVissensch. I I A, 7 c. t See note t, p. 18. 
t These follow from the fact that the elementary solution is an analytic 

function not only of the x's but also of the a's. 
II Here, we may notice that in the elliptic case, quantities deduced from the 

elementary solution by the addition of regular solutions of (E), such as Green's 
functions, may be considered as indeterminate (as long as boundary conditions are 
not used) as well for m odd as for m even : which will not be the case in our 
further operations concerning hyperbolic equations 
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. 
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Its extension to the more general equation containing the same terms 
of the second order with terms of the first has been obtained by 
Gevrey* and ourselves. As the parabolic equation has also been 
treated in a masterly way by Volterra in his Stockholm Lectures, 
we shall not go into further details about it. We simply refer to 
the works just quoted, and also note that it would be possible to 
obtain the elementary solution for the parabolic equation-even 
for the most general one-by a l imiting process which would deduce 
it from an elliptic or hyperbolic one in which coefficients would vary 
so that one square in the characteristic form should approach zero. 
For instance, we easily obtain thus the first expression (54) as a 
limiting value of Riemann's function. 

Let us take the simplest case of the equation of heat 

(55) 
a2u - OU = 0. 
OX2 oy 

We consider it as a limiting case (for k = 0) of 

(55') �2u + k a2u 
- �u = 0 

ax2 axoy ay ' 

(k being a constant) which we can refer to its characteristic by intro-
ducing the new variables · 

y = Y, x - % = X. 

It thus takes the form (practically equivalent to what is called 
" telegraphist's equation ") 

o2u I ot1, au 
k axa :v + k ax - a Y = o, 

for which Riemann's function-x0 , y0 being, for simplicity's sake, taken 
equal to 0-ist 

* See Comptes Rendits Ac. Sc. vol. cur, 191 1 ,  and Gevrey's Thesis, Paris, 1913, 
chap. v. 

t See below, § 69. 
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J0 being Bessel's integral transcendental function 

r �4 .. Ti 
g-i1i 

' Jo (�) = l - 2< 1 +  :V . (2- !)2 - • • •  + (- l ) 2:!h (/d)2 + · · · · 

'This gives in the former variables 

(56) 
'.£_2y ( 2 

) 
e k  k2 Jo k2 vy (kx - y) . 

[BK II 

Now, when k approaches zero, the argument in J0 becomes infinite, 
a case for which Bessel's function admits of a well-known asymptotic 
evaluation, viz. 

e'YI 
Jo (i71) � 

V 
. 27r1] 

If, on the other hand, we expand v y (kx - y) up to terms in k2 

[viz. � (2y - kx - k�;) + . . . ] ,  we see that (56) practically reduces to 
. k 1 - x2 

v47r vy e 4y 

and this is precisely the fundamental quantity used in the theory of 

equation (55) but for the presence of the factor _k (which is removed 
.Y47r 

by a corresponding denominator when substituted in our formula of 
§ 42). 

68. General conclusions. Summing up what we found for the 
non-parabolic case, we see that : 

A non-parabolic (analytic) linear partial differential equation of 
the second order, with m independent variables, adniits of an elementary 
solution, with an arbitrary point of the m dintensional space as its pole. 

r = 0 being the equation of the characteristic conoid with vertex a, 

this elementary solution is of the forrn E_2 (denoting by U a holo­
r � 

rnorphic function which assumes, at the pole a itself, the value 1 ) 
� 

for rn odd; it is of the form · ;:_ 2 - 62t log r (denoting by 62t anothm· 
r-:r-

holomorphic function which nwy be zero) /01· m even . 
In the first case, its exp1·ession is a quite determinate one. 
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69. Some familiar examples. The elementary solution of 
V'2 u = 0, for rn > 2 variables, is 

1 1 
-- = _" _____ _ 

This (the distinction between real and imaginary not as yet arising) 
gives us at once the corresponding result for ( e2), ( e3'), . . .  and in 
general for any equation (equations l),.P, qu = 0 of Coulon) of the form 

. 1 
VIZ. u = 

(v± [� (x1t - a,,yi - � (y� - bk)2])1n-2 
h k 

for 6.P1 q = 0 and, e.g., for ( e2) 

l 
1,(, = "-:; . 

V w2 (t - t0)2 - (x - Xo)2 - (y - yo? 
For the slightly more general equation of darnped waves*, 

( �7 )  02U + + 02U 1 02U TT 0 u � • • • ':\,,.2 - 2 ':lt2 + .Ll.. u = ' uX1 uw-m-1 w u 

the corresponding result can be easily reached bya simple generalization 
of this calculation. Setting down first wt v- 1 = Xm , wt0 V- 1 = a11D 
so that the equation becomes 

and 

o2u 02'U 02U 
�2 + . . .  + '.:l .2 + '.:l , . 2 + ]{ u = 0 
uX1 uX m-l uXm 

m 
p2 = � (x1i - a1i)2, 

1 

* We remind the reader that any (non-parabolic) linear equation of the second 
order with constant coefficients can be brought to the form in the text, because 
(a) a linear transformation on the variables brings it to the form 

c2u oit � +�ai + �u =O, 
i 

and (b) the coefficients ai: are reduced to zero by a change of the unknown, viz., 
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we take for u a function of p, for which we have the ordinary differential 
equation of Bessel 

(58) d� + m - 1 �'!_ + Ku = 0. 
dp� p dp 

This equation possesses the property that, knowing a solution u of it 
for a special value rn = m0 of m, we have a solution u1 of the equation 
corresponding to m = ni0 + 2, by 

(59) 1 du 
U1 = - -,-

p ap 

so that we have only to integrate it for m = I, 2. 
For m =  l ,  we have it = . (vKp) which gives the solution for 

rn = 3, 5, . . .  , viz. for m =  3, u = � . sin} (v Kp) in which-as well as for p cos 
the following odd values of m-the symbol cos must be taken in order 
to obtain the required elementary solution. If, according to what 
we did in § 58 and most frequently shall have to do in the following 
Books, we write down our results as if every sign were changed in 
(57) so as to introduce [w2 (t - t0)2 - (x - x0)2 - (y - y0)2] in the place 
of r, we thus find, for the equation of damped cylindrical waves 

_!_ a2·u - (02U + 02u) -(E2). ".:\ -:i -w2 ut2 dX2 uy2 
the elementary sol11tion 

(60) l(, = w Ch vk [ ro2 (t - to)2 - (x - Xo)2 - (y - yJ2] 
V ± [w2 (t - t0)2 - (x - x0)2 - (y - y0)2] 

(where a hyperbolic cosine appears on account of the aforesaid change 
of sign in r). 

For 'trt = 
2, (58) has a holomorphic solution and a logarithmic one, 

the latter giving our elementary solution. Both are expressed by 
Bessel's function g2 

�4 

f2h Jo ( g) = 1 - 22 + 2" . (2 !)2 - . • . + (- I )h � + . . .  

and, in particular, the logarithmic solution of (58) is 

(61) .fo (p v=J{) log p + W [p2 = W2 (t - to)2 - (x - x0)2] 



CH. III] THE ELEMENTARY SO_LUTION 107 

( w holomorphic), so that (with the same remark as to sign) the elemen­
tary solution of 

IS Jo ( v-K (ro2 (t - t0)2 - (x - x0)2]) log [ro2 (t - t0)2 - (x - Xo)2] + W. 

Therefore, for m = 4, a solution of (58) will be derived from the pre-
ceding one, viz. (61), by the operator (59), which gives 

· 

,--1 _ 1- v -K . 1 -�2 Jo (p v -K) + _p ___ J01 (p v -K) log p + holomorphic function 

where 

= :2 j ( 11) + � �' { 11�) log p + holomorphic function, 

p2 = ro2 (t - to)2 � (x - Xo)2 - (y - Yo)2 - (z - Zo)2 = r 
and the integral function j is 

__ . A. A.2 An 
Jo ( 2 

v - A.) = J (A.) = I + l2 + ( 
2 1)2 + . . .  + � n ; r + . . . ' 

with j' (X) = ;{. 
This gives us the elementary solution of the equation of damped 

spherical waves 
1 02u 02u 02u 02 u (Ea) ro2 at2 - ox2 - oy2 - oz2 - Kii = 0, 

viz., as the factor of � must be initially Vjlt. 
I 

= ro, 

. r) 
( 61 a) ; . + (.():: j' ( � r) log r + holomorphic function, 

which quantity admits of the required singularity for 
<.02 (t - t0)2 - (x - x0)2 - (y - y0)2 - (z - z0)2 = 0. 

The numerator in the first term may be simply replaced by the con­
stant ro, as the corresponding alteration in the fraction consists of a 
holomorphic function. But this would no longer be allowed if we 
considered the formation of the elementary solution of (57) for rn = 6, 
8, . . .  , by successive applications of the operator (59) to the above 
express10n. 
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70. The effect of descent. It will be of interest to see what 
becomes of those calculations if we apply a " method of descent " such 
as has been spoken of previously (§ 29). 

In other words, simultaneously with equation .!J. (u) = 0 containing 
ni independent variables, we consider the new equation 

where z is a supplementary independent va:r1.able which is not con­
tained in any of the coefficients. For this new equation, we shall 
have to consider again the characteristic conoid r = 0 with vertex 
(a1 , a2 • • •  am , c), if we denote by c a determinate value of the (m + l)th 
coordinate z. The new characteristic form being 

A' (P1 , . . . Pm,  R) = A (P1 , . . .  Pm) - R2, 
the equations (L) have to be completed by the addition of 

ds = �z dr 
- 4r 0 

(r, R being supplementary variables respectively analogous to p1 1 . . .  
Pm ;  P1 , • • •  Pm), which give r = const., z - c = sr = R. Therefore 

r' = s2 [A (pi , . . .  Pm) - r2] = A (P1 , . . .  P m) -R2 = r - (z - c)2• 
M', the new value of M (formula (12)), is obviously equal to M + 2. 

Then, if ( c being taken = 0) we want to form the function 
U' = Uo' + Ui' r' + . . .  = U0' + Ui' (r - z2) + . . .  + Uh' (1' - z2)h + . . . 

analogous to U, this will compel us to write down the successive 
equations 

m 0 I oA a u. '  2 � -- - 4R 0 [ M' + 4 
i = l  

(M + 4p) 

2 + [lli' + 4(p 

� [M+4 

( 

( ') = 

-1)] ( 
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The first of these only differs from equation (39'), which is satisfied 

by U0, by the term in d Uo' : therefore, it also is satisfied by U0 ; and, oz 
as we know that th�s equation, with the condition that U0 assumes the 

value :;{a I at a, entirely determines it, we see that U,' is not distinct* 

from Uo. • 

In the same way, the second equation, defining Ui' (in which 

91 ( U0') = 91 ( U0) = 9 ( U0) ), is satisfied by U1' = p � � U1 ; and, as its 

regular solution around a is unique, Ui' must have precisely that value *. 
Each successive equation will behave similarly, and we see that 

all the U"s are independent of z, and only differ from the corresponding 
U's by numerical factors : we have 

(62) 

m m 
- - + 2  - -· - 2 

U ' = l!.±� u = 2 
U = 

2 
U i p + ! i m 3 i m 3 i ; 

- 2 + 2 2 - 2 

U:' _ (p + I) (p + 2) . . .  (p + h) 
U h - (p + t) (p + ! ) . . .  (p + h - t) h 

(� - 2) Gr - a) . . .  (�i - h - 1) 
= 

3 5 1 Uh , . . .  (� - 2) ·C�i - 2) · · · (� - h - 2) 
these relations holding until the denominator or numerator (according 
to the parity of m) becomes zero on account of p+h=O or p+h- i = O ;  
after that they will hold, only the value of the numerical factor being 
changed, viz. t 

(62a) 
utt'P-l+h = Uh' = (m1 - �) (m1 - �) . . . (i) _ ! . J .  % . . . (h - m1 + �2 rrh, (m - 2) (m - 3) . . . 1 l . 2  . . .  (h - m1 + l) 

* The same conclusion easily follows if we consider the successive Uh as 
determined by ( 45 a). 

t The change merely consists, as seen above, in replacing the factor 0 by - l 
when it occurs in the numerator or denominator in (62), every other factor 
remaining unchanged. 
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from h = !- - p = m1 - 1 on, for m odd = 2m1 - 1 ; and 

( 6"' b) rr , -= ( m1 - 2) ( nii - 3) . . .  1 __!__ 1 . 2 . . .  ( h - m1 + 1 )  [! h (mi - j) (m1 - �) . . . (�) . (�) ' (!-) ' t . . .  (h - m1 + i) h 
( �vi th Uh = 62tp;-h), 

from h = - p - m1 - 1 on, for m even = 2m1 • 
We shall, in the following Books, find this again under a simpler 

and more instructive form, showing the relations which exist not only 
between the coefficients Uh , Uh in the expansions of the elementary 
solutions, but between these elementary solutions themselves. 



ADDITIONAL NOTE 
ON THE EQUATIONS OF GEODESICS 

We have considered above the geodesics, which satisfy Hamilton's 
equations 

(L) 
dxi 1 oA 
ds - 2 opi ' 

and especially thosewhich issue from a determinate pointa(a1 ,a2 • • •  am), 
each of them being individuated by the values of m - I parameters 
Ai , . . . A.m-i , so that the coordinates Xi , x2 , . . .  Xm are functions of these 
parameters and s. 

We had also to consider the derivatives of these functions not only 
with respect to s, but with respect to any of the A.'s. General 
theorems, now classic *, show that such partial derivatives 

Xi , X2 , . . .  Xm, P1 , p2, . . .  Pm 
existt and, on any determinate geodesic-in other words, for any 
determinate system of values of the A.'s-satisfy the linear differential 
system, " variational equations " in Poincare's terminology (Darboux's 
" auxiliary system ") 

(L) dxi I a.A 
ds = 2 op/ 

A being a quadratic form in 
the Taylor expansion of 

dpi I oA 
ds = - 2  oxi (i = l,  2, . . . m), 

the x's, p 's (viz., the quadratic part of 

A ( Xi + Xi , X2 + X2 , • • • Xm + Xm '  Pi + Pi • P2 + P2 ' . .  • Pm + Pm) 
in powers of Xi , x2, • • •  Xm , pi , p2, . . .  Pm). They are indeed the solutions 
of that system which are such that the xi's are initially 0, as we limit 
ourselves to geodesics with the common origin a. 

The same can be said of higher partial derivatives with respect to 
the A.'s. If xi , Pi denote no longer derivatives of the first order, but 

derivatives of order h,-say Xi = OAih1 a�:h2 
. . ' 

Pi = OA1h1 'jj��2 . . .  
,-such 

* See, e.g. Goursat's Oours d'.Analyse, 2nd edition, vol. III ( 1913), chap. xxnr, 
especially § 462 ; or the author's Lecons sur le Oalcul des Variations, §§ 20-22. 

+ The choice of the X's is assumed to be such that the POi's depend regularly 
on them. 
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quantities satisfy a linear system (only differing from (L) in that 
they are non-homogeneous) 

(L') 

where the X's, P's depend on previously known derivatives of the x's, 
p's, that is on derivatives of order less than h, and containing also the 
coefficients Aik and their partial derivatives up to the (h + l)th order. 
The x/s are again 0 for s = 0 and, therefore, at least of the first order 
in s. 

This not only shows that we can speak of the derivatives in 
question, but also enables us-which will be eventually of use-to 
obtain upper limits for their absolute values, if we know : (1)  their 
initial values (or at least, corresponding upper limits) ; (2) upper limits 
for the absolute values of the Aik and their derivatives up to the 
order (h + I). As to the first variational system (L), this is a con­
sequence of the known methods used for proving the fundamental 
theorem in the theory of differential equations* ;  as to the following 
systems (L), it can be proved in the same way or, more simply, results 
from the known integration of a non-homogeneous linear system after 
the corresponding homogeneous one is integrated. 

We also deduce from the above remarks that the pitnctttal trans­
formation (§ 57), which introduces the normal variables instead of the 
x's, is regular (up to the same order but one as the Aik's) throughout 
the whole region fit, where it is defined (§ 57 a). 

We may examine the expressions of our solutions x, p from another 
point of view : for they depend not only on the corresponding init;ial 
values, but also on the functions A ik (x1 , x2 , • • •  , xm) which represent 
the coefficients of our partial differential equation (coefficients of the 
terms of the second order). We may want to know their order of 
continuity (Book I, § 20 a) with respect to these Aik's. 

* Picard's proof for the fundamental theorem gives the following result : 
"If, in the linear homogeneous system, 

dyi 
ds 

= ai1.Y1 +ai2�f2 + • • •  + ai.<.v.Y...v, (i= l, 2, . . . N) 
the aik's have absolute values everywhere less than K, and the initial values 
(values for s=O) of the y's are all less than M, we have, for every s, lyd< MeNKs." 
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It follows from the above that this order is 1 for the x, p themselves, 
2 for their first derivatives with respect to the A.'s , . . .  , (h + 1) for the 
derivatives of order h. If we h�we constructed a determinate geodesic 
from a for a given equation /)· (u) = 0, the coefficients of which (for 
the second order) are Ai/c, the equations of that line being valid 
throughout the interval 0 � I s  I �  s0 , and if, given any positive number 
s0' less than s0 and any positive number 'YJ, however small, we consider 
the most general altered values Ailc + Aik such that the increments 
Aik and their first partial derivatives have absolute values everywhere 
less than e, the quantity e can be chosen small enough so that, for every 
such alteration* of the Aik's : (1) a geodesic of the new kind issues 
from a, with the same Poi as the former one, the equations of which 
are valid for 0 � I s  I �  s0' ; (2) the values of the x's, p's for that new 
geodesic differ from the corresponding ones for the original geodesic 
only by increments smaller than 'Y/· This follows immediately from 
the general proof of the fundamental theorem ; and the corresponding 
conclusion similarly holds for the above considered derivatives of the 

' d ' x s  an p s. 

* It must be understood, of course, that Lipschitz's condition (as assumed for 
the fundamental theorem) is satisfied by the first derivatives (if the x's and p's 
themselves are concemed) of the new as well as of the original Aik's. 
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CHAPTER I 
INTRODUCTION OF A NEW KIND OF IMPROPER INTEGRAL . 

1 .  DISCUSSION OF PRECEDING RESULTS 

71. We shall now see what use can be made of the elementary 
solution and what relation it has to the functions previously employed. 

For the equation of cylindrical waves (e2) with w = 1 (which may 
be assumed with a proper choice of units), the elementary solution is 

one 

(1)  1 1 
V(to - t)2 :_-(X :._ Xo)2 - (y

� 
- yo)2 - V (to - t)2 - r2 • 

As we said, Volterra did not use this quantity, but the following 

(2) 

These two expressions are simply related to each other ; (2) can be 
deduced from (1)  by a mere integration with respect to t0 , viz. 

J dt0 
v = �(t;:_ t)2 - r2 

: 

geometrically speaking, by letting the vertex of the characteristic cone 
vary on the line x = x0 , y = Yo and integrating between proper limits* 
with respect to that variation. No wonder at all that the introduc­
tion of such a quantity in our fundamental formula gives an expres­
sion of the integral Ju ( t0) dt0 along this same line. 

As Volterra remarkst, such a proceeding exactly corresponds to 
what one would find, for V'2 u = 0, by integrating and immediately re­
differentiating, with respect to z0, the classic formula 

u (x, ,  y, , z,) = 4� Jfs (,. :! - � �) dS -:b JJJ { dxdydz 

(r = V (x - x0)2 + (y - y0)2 + (z - Zo)2), 

* See below, § 73. 
t Stockholm Lectures, French edition (Paris, Hermann, 1912), p. 45. 
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this giving 

it (xo ,  Yo, Zo) =a:� [ 4� I� ( u �: - cp �:) ds-4� J f J cpf dxdy 

where eh = log [v z - zo __ + Ji + _ __ (z - zo)2 J . (x - Xo)2 + 
(y - Yo)2 (x - Xo)2 + 

(y - y0)2 . 

We have, in other terms, integrated at first and made the inverse dif­
ferentiation at the end, and the same remark would apply to Tedone's 
extension (§ 43). 

Of course Volterra had an imperative reason for operating thus. 

If he had directly introduced the elementary solution v = _ ,� 1 
'V ( t0 - t )2 - r2 

in his fundamental formula, he would have found meaningless inte­
grals, the quantities under the signs of integration becoming infinite 
in an unpermissible manner on the surface of the characteristic cone. 
This immediately appears on performing such a calculation. We also 
shall recognize it if we perform the (equivalent) operation which 
consists in actually doing the differentiation in the above formula 
(for ro = I), 

(I') 

The usual method for that would consist in differentiating with 
respect to t0 under the sign ff, which would affect only the denomi­
nator ; and on the other hand, taking account of the fact that the 
boundary is variable with t0 , which ought to give place to a supple­
mentary boundary term, a simple circumference integral. But it ap­
pears i mmediately that both double and simple integrals are meaning­
less : the former on account of the presence of an infinity of order 3/2 
along the boundary, the latter because every element of it is infinite. 
Of course, simple devices would allow us to perform the differentiation 
so as to avoid such difficulties * :  but they would not be of interest 

* We could, for instance, refer the inside of the circle to polar coordinates r, </> 
with (x0, '!/o) as their pole and, in tho place of the first of them, introduce an 
auxiliary variable A. defined by r- 'At0 • The integration with respect to 'A and </> 
now taking place within fixed limits O � X � l, O � cp � 2rr, differentiation with 

respect to t0 would offer no special difficulty. 
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to  us, as-paradoxical as i t  seems-our proposed method will consist 
in not avoiding them. 

72. · Let us first note that we could strictly imitate both Volterra's 
and Tedone's procedure. For m = 3, for instance, let us consider our 
equation 

3 s 02u 3 ou !l ( u) = � � Aik 0 + � Bi � + Ou = f, i=l k==l OXi Xk i=l UXi 
the adjoint equation 

and its elementary solution 
v 

V =  yf1 . 
Let us suppose that the point (a1 , a2 , a3) describes an arbitrary 

given segment of line st (straight or curved), only such that it lies 
entirely inside the characteristic conoid having any of its points for 
vertex. We shall consider 

(3) v (x) =f.<£ v(x I a) x (t ) dt, 

t being the parameter which defines the position of a point (a1 , a2 , a3) 
on st and X (t) an arbitrarily chosen function. This will lead to (2) 
when we start from (1), the line !l? being a parallel to the t-axis and 
X (t) being simply taken equal to 1. For other purposes (such as the 
solution of Cauchy's problem for systems), Volterra has introduced 
other similar expressions which can be deduced from (3) by the choice 
of other forms* of the function X (t). 

We shall recognize that such an expression has a logarithmic singu­
larity like that of (2). The calculation being sometimes of use, we now 
say something about it. In the equation of the characteristic conoid 

r (x1 , . . .  Xm; a1 , . . .  am) = 0, 
let us suppose that one of the two points (x1 , • • •  Xm) and (a1 , • • •  am) 
lies near the line 

!l? [a1 = a1 (t) , . . .  am =  ain (t)], 

while the other one describes that very line. 

* The solution cI>1 , which Volterra forms in his Memoir of the Acta .Jfathe­
matica, vol. XVIII, p. 169, and uses for the extension of the theory to systems (such 
as occur in Elasticity), corresponds to x (t)= t0 - t. 
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If we suppose all our functions to be developable by Taylor's 
formula (at least up to terms of a certain degree) around one point 

a0 [a1° = a1 (t0), . . .  am0 = am (to)] , 

which corresponds to a certain value t0 of the parameter, and if we 
recollect the form (31) (§ 58), of the first terms of the expansion of 
r when the two points x and a are very near each other, we see that, 
in the neighbourhood of a0 , the expansion of v [x ; a (t)] according to 
powers of (xi - ai0), (t - t0) begins with terms of the second degree, 
the coefficient of ( t - t0)2, viz. 

N0 = H [a/ (to), a2' (to), . . .  am' (t0)] , 

being different from 0 as .Q7 is not tangent to the characteristic cone * . 
Then, by a proper application of W eierstrass's and Poincare's (or rather 
Cauchy's)t  " Theorem of factorization " for functions of several vari­
ables, we can write 

I' [x ; a (t)] = N (x, t) [(t - ,8)2 - ry] ,  N = N0 +  . . .  

* The tangent to .Q7being interior to the characteristic cone, N0 will be positive 
if we write our equation (as said previously) so that H > 0 corresponds to the 
inside of the characteristic cone. 

t Bull. de Ferussac, 1831 .  Exerci"ces d' Analyse, vol. II, and various other places. 
See Lindelof's Lefons sur la Theori"e des residus, note of p. 27, and Osgood, .Madison 
colloqui"itm, Lecture Iv, § 1, where, however, a distinction is made between two forms 
of the theorem which we consider as equivalent in the above text. The use of that 
theorem of factorization can be avoided or, at least, restricted to its quite 
elementary case concerning the first degree, i .e. to the fact that 

C1 T + �� +  . . . - T= O, 

with c1 =i= O, can be " inverted," giving 

T- (l+ c2 T2 + . . .) =o, 
with the obvious consequence that the quotient of the two left-hand sides is a 
power series in T, T, with a constant term c1 • To see this, we first solve the 

equation ! r [x ;  a (t)] = O  with respect to t, which c:m be done regularly (as the 

coefficient of (t - t0) is 2N0) and gives t = 9, where .9 is a power series in the 
(xi - a,0)'s. Setting down t - 9 = T, we find 

r [x ;  a (t)] = - K+ N0 � +  . . .  ; 
J( (which is the minimum of r when x remains fixed and a describes .Q7) is again 
a power series in the (.x, - a,O)'s, beginning with quadratic terms, and the dots 
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/3 and ry being again expansions in x (aJi-a1°), (x2- a2°), . . .  (xm- am0), the 
former generally beginning with linear terms, the latter with quadratic 

terms. Now, in integral (3), where, as yet, we take m=3, whence v =:;, , 

we can suppose _l_x; �(t},lx tt) to be expanded in powers of (t - /3), v N(x, t) 
so that 

- /3) + . . .  ' 
lr P0 + P1 (t - $) +  . . . 

.vr = 
· v(t - /3)2 - ry  

the P's being regular functions of the x's. 
Every odd term in (t - /3) gives, by integration, a positive power of 

v ( t - /3)2 - ry. Then, in the even terms, we can introduce the variable 
(t - /3)2 - ry  instead of (t - $)2• The expansion in integral powers of 
that new variable being 

Qo + Q1 [(t - /3)2 - ry] + Q2 [(t - /3)2 - ry]2 + . . .  , 

it appears that every term after the first one gives quantities which 
are finite and even infinitesimal in the neighbourhood of st; the first 
term, on the other hand, has the indefinite integral 

(4) Q j dt ... _ 

= Q 
10 [ t - /3  + v(t--::..$)2= "'] 

0 v ( t - /3)2 - ry 
0 g v "I ' 

�n expression entirely similar to (2) from our point of view, Vry cor­
responding to the quantity V (x - x0)2 + (y - y0)2 of V olterra * .  

represent terms in Ta, T4 , etc. The square root of the sum of terms other than - K 
can be extracted, giving 

r [ x ; a ( t)] = - K + N0 ( T + . . . )2 = [ - J /( + . ./ .N0 ( T + . . . ) ] [ + JI{+ JN 0 ( T + . . . ) ]. 
If we now apply to each factor the aforesaid inversion principle, the first one, 

for instance, will be found to be proportional to such a series as 

T - 01 '\/1l- �� (�) i - . . .  = T - JL J [( - v 

(µ, v, power series in /{) ;  and the product 
(T - µ. J  K- v) (T +µ •./K - = (T - v)2 - µ.2/{ 

will h:we the required form, with S + v = �, µ.2K=y. 
The result in the text and the way in which we use it are due to Poincare, in 

his Memoir Sur les proprietes du potentiel et sm· les fonctions abeliennes in Acta 
.Mathematica, vol. xxn, 1899, pp. 1 14 ff. 

* y is, but for a factor different from zero, the minimum of r when a describes 
st, the point x remaining fixed. 
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73. \Ve have only considered the indefinite integral of 

v (x; a) x (t) dt. 

[BK III 

But an essential remark for our object concerns the choice of the 
limits of integration . 

If we take them constant, whatever the values of these constants 
be, so that the segment of integration on st is completely independent 
of the location of the point x, the integral (3) thus obtained will cer­
tainly satisfy the given equation, for the same reason as that classically 
known to apply to the theory of potential (viz., that every differentia­
tion with respect to the x s can be carried out under the integral sign, 
treating t as a constant). 

Darboux * was, so far as I know, the first to discover a general 
reason for a noteworthy fact, special cases of which had already occurred 
in some anterior formulre ; viz. that the same property of v holds 
good when integrating between properly chosen variable limits. This 
remark of Darboux may be considered as implicitly containing our 
main further consideration. His argument is a remarkably simple 
one and can be, in our terminology, expressed as follows. 

Integrating, at first, along a fixed arc of st, it may obviously hap­
pen that r is liable to change sign along that arc : that, indeed, will 
be the case if at least one sheet of the characteristic conoid from x in­
tersects �inside the arc in question. \Ve suppose, for instance (fig. 7), 
that only one sheet, the "direct" one, does so, the segment of inte­
gration-which will correspond, e.g. , to t1 � t � t0-being thus divided 
by the point of intersection w into two parts, one lying outside the 

* See Le�ons sur la theorie des surfaces, vol. n, p. 67. Darboux deals with 

Jct> (u) (1t - x)"' (J; - 1t)"'' du, 
which, if taken between constant limits, is most easily found to satisfy (as a 
function of x and v) " Euler-Poisson's "  partial differential equation, and assumes 
the constant limits to be taken so as to include both .v and y :  which would corre­
spond, in our terminology, to the case in 'vhich both sheets of the characteristic 
conoid having the point x for its vertex would intersect st inside the p�mitive 
(fixed) segment of integration, the useful part of the integral relating to the 
portion of � which is exterior to that conoid. As to the com;tant indexes µ, p. ,  
Darboux observes that the argument in the text applies whenever their values are 

. 2p . 1 fractional numbers of the form �-- (where p and q are integers). 
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conoid, the other inside : let us suppose that the latter corresponds 
to greater values of t, i.e. contains the upper limit t0 • Now, if 0 

'\ / v 
X· 

/ 

I 
/ 

/ a 

0 

denotes the value of t for the dividing 
point ro, our integral (in which V and X 
are, of course, real quantities) will consist 
of two parts, one imaginary v1 and one 
real v2 , and it is clear, therefore, that each 
of them must be separately a soliition of 
our given equation. 

This is Darboux's general conclusion. 

Fig. 7. We see that, instead of integrating from 
0 to to , we can take one limit equal to e, 

which quantity, in the notation of the preceding section, has the value 

f3 + v�. 
These, for instance (0 being equal to t + r), are the limits between 

which we have to integrate (1) in order to obtain the quantity (2) of 
Volterra ; t being, on the other hand, replaced by t0 , the indefinite 
integral calculated in the preceding section will be also the definite 
one and give the value of (3) if the latter is defined in the above way. 
Of course, this expression of a solution of our differential equation is 
only valid when 8 is assumed to be smaller than t0, i.e. when the 
point x lies inside the inverse half conoid having t = t0 for its vertex. 

This solution, as we have just proved, admits of st as a logarithmic 
singularity. It is to be foreseen that, when substituted in the funda­
mental formula, it will behave exactly like (2) in Volterra's method, 
the small cylinder of Volterra * having to be replaced by a tubular 
surface around St, and give a value of the integral 

J X (t) ii [a (t)] dt. 
se 

74. It may be convenient, however, to introduce, in such cases, a special 
system of curvilinear coordinates for our point x. One of them will be the above 
quantity 0. For every given value of it, the locus of the point x will be a 
characteristic half conoid (having the point (I) corresponding, on se, to t = e for its 
vertex), on which conoid the position of that point will be completely determined 
if we give : 

* Acta .Math. vol. xvnr, p. 174. 
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( 1 )  a parameter* A. defining the initial direction of one of the bicharacteristics 
which generate the conoid ; 

(2) a value of s, defining one point on that bicharacteristic. 
The value of s would contain (see Book II) an arbitrary factor of proportion­

ality (a, in the nl)tation of § 57) : we can choose this factor in a determinate way 
for each value of A., and assume this to have been done in such a way that : 

(a) s be positive on our useful (that is inverse) half conoid from w ;  
(b) the initial values (values at the vertex) of :1,  :2, �3 on each bicharac­

teristic (A.) be regular functions of () and A. ;  
( c) these three quantities do not vanish simultaneously, and, for instance, the 

sum of their squares be always greater than a fixed positive number, whatever () 
and A. may be. 

Under such assumptions, we can take (), A. and s as curvilinear coordinates ; 
xl i  x2 , x3 will be regular (or even bolomorphic) functions of (), A., s, and the reverse 
will be true whenever we are not in the neighbourhood of !£. 

75. a being a point of !£ corresponding to a value of t greater than (), the 
quantity r (x ;  a) will be of the form 

(5) r = (t - O) w (O, A., s, t), 
w > 0 being regular and not zero when the point x approaches a point of the 
conoid other than the vertex a (the sign of the first factor having to be reversed if 
the useful half-conoid from w be the one which contains the direction of increasing 
t's on !£). 

I n  the neighbourhood of the vertex, this expression holds no longer, but the 
following remains still valid : denoting by -r the difference 

-r = t - (), 
we can write 

r = 2.Ms-r + .N-r2, 
M and N being two regular functions, assuming, when .?: coincides with a, the 
values 

where the a, �'s stand for 
(i= l, 2, 

Jl0 , N0 are not only different from zero, but positive (.N0,  as said above, on 
account of our assumption concerning the sign of H ; )[0, because of our assump­
tion (a) concerning the sign of s on our half conoid) t. 

* ·we treat the case m = 3. But analogous calculations would hold for every 
odd m. 

t For x must be inside the conoid from a-therefore r positive-when s and 
-r are both positive (the latter sufficiently small). 
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We immediately obtain the above formula if we observe that the second term 
may represent r ( w ; a) and the first the difference r (x ; a) - r ( w ; a). "\Ve even 
see that we can assume N to be independent of s and X. Such is not the case, 
of course, with M; but we can assume its initial value M0 to be independent 
of X (being a function of 8 only), by a proper choice of the factor of proportion­
ality in s (without contradicting our previous assumptions (a), (b), (c)). As, for 

small values of s, we have sensibly xi = ai + s  �:i = ai + s�i, this means geometri­

cally that, for such values of s, the directions of the tangents to the two coordinate 
lines which respectively correspond to 8 as well as s being taken as constants and 
X as well as s being taken as constants are transversal to each other, i .e. conju­
gate with respect to the characteristic conoid, so that if that small value of s is 
kept constant as well as 8, X varying alone, the corresponding point will sensibly 
describe a small ellipse the plane of which is transversal to Sf. 

"\Vith such an evaluation of r, we have 

v =
f to-8 x (8 +�) V@� X, .�, O + r) dr ; 

0 "2.Msr + Nr2 

V is a holomorphic function, equal to �- for s = r = O. As for x (t), let us suppose, 
" tl.  

not only that i t  is regular, but that i t  does not change sign-say x (t) > 0-in the 
neighbourhood of a determinate point A ( t = 80) of Sf, which we are going to 
consider. 

We try, x being taken near such a point A, to find asymptotic values for v and 

h d 
. . dv t e er1vative --- . 

(/,8 
Beginning with the latter, we have 

dv ro-8 x V ( M+ s <!if) rdr Jto- 8 x ;rdr 

== -}o (2Msr +Nr2)f + o J 'iJfsr + N;2· 

Let us begin with the latter quantity, the first term of which obviously gives 
the principal part. Around A as centre, we can describe a small sphere such that 
if the points x and a are taken in its inside, the quantities M, N, x, V c:tn be 

replaced, with an arbitrarily small error, by the values M0, N0, x, (00), 11  , 
" tl. .A 

which they have at A itself. If we denote by r1 the positive value of r corre-

sponding to an intersection of that spherical surface with se, the integral from 
r1 to t0 - 0 remains finite and continuous when s approaches zero. The integral 
from zero to r1 , in which every element is positive, can be, with a very small 
relative error, represented by 

��A (O) 1:1 (2M0s:�T
N0r2)"�

= 
- J�s J21110s����r1

�

. 
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As r1 is chosen once for all, this gives, when s approaches zero, 

ov x 
(6a) os ,.., -

s J Notl. ' 

[BK III 

the sign ,.., signifying asymptotic equality. 

An analogous method would give the approximate value of V itself ; but we find 

it immediately by integrating the above asymptotic equality, viz. : 

- x  
(6 b) v - -=-= log s, 

JNotl. 
which we could easily see agrees with the result of § 72 ; and we should obviously 
have a similar evaluation for the second term of (6). 

"\Ve also could get in the same way asymptotic exp�essions of the other 
derivatives. 

As to the other singularity of v, which is the half conoid with vertex t=t0,  it 
is easy to find which is the form of v when the point x approaches any determi­
nate point of it (other than the vertex) : for, as we have 

r = (t - 0) w 
where w is holomorphic (and not zero) even when 0 and t are nearly equal, this 

gives 

V= x (t) i1 (.-c ; a) dt =  --=...; , 
[to f to TV dt 

-' 9 9 ,Jt - 0  
lV = Y'x,it2 being again holomorphic, and such an expression is sensibly equal to 

iJw 
2 Wo vt0 - o, 

lV0 being the value of lV at the limiting point of x. Derivatives of v with 
respect to A. or s would evidently be of a quite similar form. 

76. The analogy of v with Volterra's quantity (2) is thus evident ; let us see 
the consequences in our problem of integration. S being, in our three-dimensional space, a surface at every point of whicb 
Cauchy's data are given, and which is, moreover, everywhere duly inclined (§ 27' 
with respect to characteristic conoids, let a be a determinate point at which WE 
want to find the value of the solution u of the given equation 

!f. (u) =/, 
which corresponds to the above-mentioned data on S. From a as vertex, we 
construct a half conoid r, which we assume to enclose with S a limited volume '1 
(fig. 8). From the same point to a point a of S, inside r, we also draw an arbitrar) 
lino s.e (only subject, as previously, to be interior to any conoid having one of it� 
points for its vertex), the given point a corresponding to the value t0 of the para 
meter. By means of v and an arbitrary regular function x (t), we construct the 
function V (x), a solution of $ (v) = 0 ;  and we sub8titute v with the unknow1 
function u in the fundamental formula 

· 

(F) fff [v!f. (u) - it$ (v)] dx1 dx2dx3=Jj(u dv_ _ v du - Luv l dS. dv dv J 
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This can not be done at once in the whole domain T: we have to exclude the 

singularities of v, which are St and, strictly speaking, the conoid r. But it is 

Fig. 8. 

easy to see, in the first place, that the latter 
has no influence. Let us indeed replace it by 
a neighbouring conoid r' the vertex of which 
shall be the point t = t0' on S&. On r' we know 
that r is of the order of (t0 - t0') ; and so will 

dr 
be as well dv , because we know that the trans-

versal direction to r' is the bicharacteristic 

one, so that ;fv is a derivative with respect to 

s :  therefore, letting t0' approach t0 ,  not only 
can we limit our domain of integration by r, 
but, just as in Volterra's method (which we are 
strictly imitating), no corresponding surface 

term need be considered. 

77. Let us now consider the singularity St, which, at first, we have to 
exclude from T. \Ve do this by a small surface G (corresponding to Volterra's 
cylinder), which we obtain by equating the curvilinear coordinate s to a ''ery 
small positive constant : on which surface we have to take the double integral on 
the right-hand side of (F). 

Terms containing v only as a factor can be neglected : for that quantity only 
becomes infinite like log s, while the surface element is of the order of s. Let us 

now express �!.  The ?T's, on C, are given by 

7T1dS= 
except for sign (or, what comes to the same, for a suitable permutation between 
the x's). \Ve shall obtain the correct sign in these formulre by remarking that 
the direction of increasing s on each bicharacteristic is directed towards the in­
side of our domain of integration, so that we have to write the above quantities 

OX1 dX2 OX3 
in such a way that 7T1 -�. + 7T2 -::s- + 7T3 -;o-.. , i.e. the determinant ( Jacobian of vs vs 015 
x1 , x2, x3 with respect to s, A, 8) 

dX1 dX1 dX1 
as dA ()(} 

D = OX2 dX2 dX2 
as ax -08 
dX3 OX3 dX3 
as ax ()(} 

be positive (geometrically speaking, that the trihedral of the positive directions 
s, A, (} and the trihedral of coordinates be disposed in the same way). Let us 
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assume (by meanH of a permutation between the x's or a change of the sign of A., 
if necessary) that this is so : then, denoting by cp1 , cp2, cp3 the partial derivatives 
of any function cp, the transversal derivative of cp along C will be (§§ 38-40) 
given by 

1 oA 
2 ocp1 
I oA 
2 o</J2 
I oA 
2 ocp3 

<x, 
oA. 
OXg 

'A dA.d() 

=(sensibly) s I 

l oA 
2 o</J1 
I oA 
2 'acp2 
l oA 
2 ocp3 

(with U = ��i) , on account of xi =ai+sgi · For the determinant thus obtained as 

the factor of dA. clO, we can use the abbreviative notation 

(7) 

'Ve already see that the coefficients of �! are holomorphic functions of 0, A., s, 

which contain s as a factor. A simple way of finding the value of (7) is to multiply 
it by the discriminant 

l 
�= I  Hil Hi2 Hi3 I 

of H, which (remembering that the relationsfi -��!are equivalent to <Pi =���) 
gives 

then by the above written Jacobian D, which gives 

0 

J.lfo * 

The elements replaced by * are sensibly equal to sJ/0', i.e., at any rate, of the 
order of s, but become of the order of s2 under our assumption t that M0 is inde-

t 'Vhen this holds, the direction A. is sensibly transversal to the plane con­
structed through the directions () and s. 
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pendent of A.. The above determinant thus contains s as a factor and (7) is sensibly 
equal, when s is small, to 

.i H ( t , . � , e:. ') ( .u c<f> u 0<1>) �. . s- 2 S-3 . .H 0 - ... - .ill 0 -;;;_··· • D 1 '  ' as 08 
As to lJ (which is positive under our assumptions), it is sensibly equal to 

so that 
JJ (',,.) s I �i E/ ai ! , 

a1 a2 a3 
(dots standing for terms of higher order in s). 

';\() (and similarly ��) can be eliminated when integrating the corresponding 

term (say f j P �'§ dA.df)) with respect to 8, a.n integration by parts giving a 

simple integral (f PvdA. for B=ti , t0) and a double integral in v, viz. { { v �� dA.d8, 
which are infinitesimal with s, as before. Finally taking account of (6 a), we have 
only to integrate, with respect to 8, the product of the integral 

(8) f H_(E1'�i' E3') d"A =f 
H (dE1 , d�2 , dE3) 

D a1 az a3 

by the quantity 

(9) 

E1 E2 E3 
dE1 d�2 dE3 

- ux J NoA. 
Such an integral as (8) taken along the conic 

H (EI > E2 , E3) = o, 
described by the point the homogeneous coordinates of which are E1 , E2 , E3, is, of 
course, finite when the point (ai , a2 , a3) lies inside that conic (as is the case here). 
Its value is found by observing that the integrand does not change when we 
multiply EI > E2, E3 by any common factor (whether a constant or a function of A.) 
and that, moreover, it is multiplied by !f:l) when the variables E (and therefore 

also a) are subjected to a linear substitution with determinant @. As, by the 
latter operation, we can reduce our form H to 62 - g12 - �22 (denoting by g1 , E2, E3 
the new variables) and, therefore, simply take Ei = E3 cos A., E2= �3 sin A. (the de-

terminant r@ being then equal to .JA), the aborn integral is 

± � f :7r a3 - a·;co:� - a2 sill x = ± � Ja3� ---:;2 - a2� 

= ± 2rr J6H d:i, a��)= ± 2rr J A�V� . 
H. 9 
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The sign depends on the direction in which the conic is described. In the present 
case, as we have seen, this direction must be such that the determinant in the 
denominator be positive. As the point (6', g2', g3') belongs to the region outside 
the conoid (i.e. such that H (g1', g,/, g3') < O), the right sign is - • The factor 
� N0 t:i. in the expression (9) being removed by (8'), the integration w·ith respect 
to () finally gives 

lim f fc
u
:� 

dS= 2rr I x (t) u [a (t)] dt, 

so that our fundamental formula becomes (as :J (u) =f and cY (v) = O) 
(10) 

2rr f sex (t) u [a (t)] dt = f J J T 
vf dx1dx2dx3 + J f,,Io ( v �� - u �� + Luv) dS. 

This is the result which exactly corresponds to Volterra's, being, of course, 
subject to the same foregoing observations. 

78. Greater number of variables. 'Ve have said that the theory 
of ( e2) and (ea) has been extended by Ted one to the analogous equations 
in m independent variables. As for ( e2) and (ea), the formulre given 
by Tedone (Annali di Mat., 3rd series, vol. I, 1898) for the solution 
of the equation 

(em-1) 
1 02zt (o2it 02u ) 
2 ".:lt2 - ;::;-2 + . . . + �2 = 0 U> u uX1 uX m - 1  

do not express immediately the value of Ua , but an integral of the 
form 

(10') 

from which 'lta has to be deduced by (m - 2)-fold differentiation. 
It may be foreseen, therefore, that the expressions, analogous to 

V olterra's quantity (2), introduced by Tedone in his operations for m 

odd, are to be deduced from the elementary solution by integrating 
several times along a line such as .Q? (which is, in fact, parallel to the 
t-axis ). We shall see that such is indeed the case ; but the fact is that 
this will require the use of generalized integrals, such as we are going 
presently to define. 

But even before this, we must note a most peculiar feature of these 
solutions of Tedone. If we consider Poisson's formula for spherical 
waves (formula (1) of Book II), we immediately see that the given 
values of the function ii0 are to be differentiated, at least for a radial 
displacement of the point (x, y, z), so that this function is required 
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to admit of first derivatives for such a displacement, i.e. in any direction, 
as the point (x0 , y0 , z0) is arbitrary, and we shall very soon see that 
the existence of such derivatives is also implicit1y presupposed in 
formula (l'), Book II, concerning cylindrical waves. Of course, we 
may consider this hypothesis as a natural one, as the non-existence of 
first or even second derivatives could be said to make the differential 
equation itself meaningless (though problems implying such an ap­
parent discrepancy are usually studied by analysts *). 

But if we now turn to Tedone's solutions for higher values of rn, 
we see that they imply higher derivatives of the data, the order of 

derivation being �i - 1  for m even and "!!' - � for rn odd : that is, of any 

order, however great, if the number of independent variables is 
sufficiently great. 

What would happen if the functions u0 and u1 did not admit of 
derivatives up to such an order ? We have to expect then that no 
solution of Oauchy's problem can exist. 

To prove this with perfect rigour, we shall not, at first, start from 
the final formulre (above alluded to) which give the solution u itself, 
but from the preparatory formulre which (as explained above) give 
the value of the quantity (10'). 

That this quantity admits of at least (m - 2) derivatives, the 
(rn - 2)th one being, but for a numerical factor, equal to u (t0), is 
well known, it being sufficient for the validity of this that u be finite 
and continuous : so that we are certain that all the differentiations 
which Tedone performs on the right-hand sides of the formulre in 
question (formulre (11), (12) of his l\lemoir) in order to obtain the 
following ones (formulre (13) to (24)) must be possible. 

* Such is the case with Dirichlet's problem, which refers to a difforential 
equation of the· second order and which analysts nevertheless try to solve with­
out supposing the existence of even a first derivative for the data at the boundary. 
Of course, the differential equation becomes meaningless on that boundary itself, 
but is assumed to be satisfied at any neighbourhood of it, however close. 

It must be observed that in the above we have already assumed first de­
rivatives to exist and be continuous, as such derivatives are involved in the 
quantities (5') (p. 59), the continuity of which is implied by the use of Green's 
formula. Discontinuities must even be considered when using Poisson's and 
Kirchhoff's formulre (see Love's paper, Proceedings of thP. London Math. Societ11, 
series 2, vol. I, §§ 822, 823). 

9-2 
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Let us simply take for S the hyperplane * t = 0 (so that t1 = 0 in 
(10)), and only take account of the first given function u0 , the second 
one u1 being assumed to vanish. Let us also choose the case rn even t 
(so as to avoid the difficulties which we are to meet presently). 
Then, if we denote by r the distance r = v(x1 - lti)2 + . . .  + (xm-1 - am- 1 )2 

between a point (x1 , • • •  Xm-1) of our t = 0 variety and the point 
(a1 , . . .  am_1), the quantity which we have to differentiate consists 
(for w = 1), in our notationt,  of the product of a numerical factor by 
the integral 

Jtn �-2 
( 1 1 )  0 (t 2 - r2) 2 rJ.lfr dr, 

where Jlfr stands for the average value of u0 along the hyperspherical 
edge of radius r in the hyperplane S. The first 1:; - 2 of the aforesaid 
differentiations can be carried out under J at any rate ; 
thus obtained being of the form 

(11 ') Jto 0 rX (t0 , r) Mr dr, 

but, the result 

where X (t0 , r) is a homogeneous polynomial I I  of degree �i -2 in t0 and r 

such that E ( t) = tX ( t, t) does not vanish (except for t =  0), the following 
�2- derivatives of (11)  can not exist if the first 2 - 1  derivatives Jlfr do 
not�. 

* Tedone himself treats any form of S. 
t The corresponding conclusion for m odd results therefrom, by descent (see 

Book IV). 
t See Tedone's formula (22), p. 1 3. Tedone calls m what we call m - 1, and </> 

what we call ii0 ; his number p is equal, in our notation, to ,�, - 1  (for m even). 

II X (t, 1) differs from Legendre's polynomial of order ?�i - 2 by a numerical 

factor only. 
-,r The first deriYative of (11 ') is immediately found to be equal to 

Mt0 � {t0) + Mr . 1' � dr. Jto ax 
o vto 

The second term of thi8 quantity can surely be again differentiated, so that this 
ca.n not be the case for the total expression unless the same is true of M,0 •  

As8nming then Mr' to exist, the second derivative of (11  ') will include the term 
� (to) Mio', a term in Jft-0 and an integral term. If we now try to differentiate a third 
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2. THE FINITE PART OF AN INFINITE SIMPLE INTEGRAL 
79. The above considerations, at least for m = 3, fully extend 

Volterra's solution to the most general (normal) hyperbolic equation. 
Only we recognise the indirect character of the solution which lies in 
the introduction of the arbitrary line S8, which is of course finally to 
be fully eliminated. 

If, for instance, we should wish to integrate the equation of damped 
cylindrical waves 

we should have to take (as results from the expression of the elemen­
tary solution, found in Book II) 

v = J
·Ch A/J{[(t t0)2 - r2] dto .  

V ( t - t0)2 - r2 
This is the expression which Coulon, in the above quoted Thesis, 

ought to have introduced, in order to imitate strictly Volterra's 
procedure. Its complexity explains to us perfectly why he was 
not able to discover it, not possessing the general way of attain­
ing it. At the same time, we see that this complexity is en­
tirely due to a quadrature, the effect of which must finally dis­
appear. 

Is it possible to obtain the required result without having recourse 
to this finally useless mediation ? 

I thought it worth while to attain this, though we cannot do so 
without introducing a rather paradoxical notion which I shall now 
speak of. 

time, this is already proved to be possible for every term except �(t0) Meo', so that 
the existence of Mto" is necessary ; and so on for all following derivatives, so that 
the conclusion in the text is proved. 

As, under J, the degree of the coefficient of Jfi. decreases by one unit from each 

operation to the following one, the (1: - 1  )th derivative contains no such integral 

term and is therefore represented by an S extended over the spherical edge r=to, 
as happens for the case of (e3). ·we shall come back to that fundamental difference 
between even and odd values of m. 
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80. We again take the differentiation we had to deal with, or, 
even more simply, we take the corresponding questions for simple 
integrals. Let us start from the integral 

(13) {b A (x) dx . . a vb - x  
If we tried to differentiate it with respect to b, we have already 

remarked that we should have to use, in the common conception, 
a suitable device (easily to be found), a direct differentiation appearing 
as impossible : indeed the latter would consist in writing the absurd 
expression 

(13') 
a sum of two terms, the first of which has no meaning as containing an 
infinity of order ! under J and the second being evidently meaningless. 

There is nevertheless an immediate means of performing directly 
( i.e., without any transformation) this differentia-

a b tion : it would consist in replacing the real in- : ) tegral (13) by the half of the complex integral ------

taken along a circuit constituted by two lines Fig. 9• 

along ab, connected by a small circle around b (fig. 9) : for such a 
circuit, differentiation presents no difficulty*. 

BOa. Of course we must have somehow a means of doing this 
without introducing complex quantities. Indeed we have only to note 
that (replacing b by x in the upper limit), not the integral 

(14) J
x A (x) " dx a (b - x}'li ' 

but the algebraic sum 

Jx A (x) :i dx - 2  A (xl_
, a (b - x)t vb - x  

approaches a perfectly definite limit when x approaches b. 
the same takes place for 

(15) rx A (x) d . B (x) 
. a (b - x)i x +·vb - x  

:Moreover, 

* \Ve here suppose .A to be analytic : a hypothesis which is easy to get rid of 
if only A is supposed to liave a derivative. 

· 
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if B be any function of x, provided it is differentiable (or at least 
satisfies Lipschitz's condition I B (x2) - B (x1) I <  K I x2 - x1 I ), and such 
that B (b) = - 2A (b). 

Furthermore, the result obtained is independent of the choice of 
this fu.nction B, under the above conditions : this being due to the 
fact that the denominator is of a fractional order, while a change of 
the function B (under our hypothesis) would alter it by terms con­
taining at least (b - x) in the first power as factor, so that the corre­
sponding terms in the fraction would necessarily vanish for x = b. 
Therefore, in order to calculate the limit of (15), we do not even need 
to indicate what special function B we choose. We denote that limit 
by "the finite part" of the integral in (13'), and write it 

(16) rb A (xl:i dx, 
• a (b - x)':f 

the sign r - being read "finite part of". 
To conform with what precedes, this expression shall be taken to 

mean the limit of the sum of integral (14) and an additive fractional 

term in (b - x) of the form . � (xl ,  taking for B any function such that : v b - x  
it can be differentiated at least once (or at least satisfies Lipschitz's 

condition); 
the sum in question does have a limit (the value of this limit 

being independent of the choice of the additional term, provided B 
fulfils the aforesaid conditions). · 

But the above definition supposes A itself to satisfy Lipschitz's 
condition. 

If A is analytic, the expression (16) can just as well be defined as 
half of the corresponding integral taken along the aforesaid circuit. 

81. No difficulty arises in defining the same symbol for higher 
orders of infinity, provided they always are fractional. The integral 

1: (b 
A��:+! dx 

is meaningless (p being any integer), but we can define the quantity 

(16') �I j'·u A (x) dx 
a 

,
(b - x)P + !  

(the "finite part " of the integral i n  question) :  
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(1 ) If A is analytic, as half of the corresponding integral taken 
along the above-mentioned circuit; 

(2) A being supposed only to admit of p derivatives in the vicinity 
of b, as the limit for x = b, of the sum 

(15') Ja: !4- (x) - dx + --�\�l � , 
a (b - x)P + !  (b - x)P - ! 

B (x) being again any function bound by the conditions : 
(a) that the limit in question must exist ; 
(b) that B must admit of p derivatives, at least in the vicinity of 

x = b. 
That both definitions agree is immediately verified by performing 

the calculation (see below). 
Again, the arbitrary choice of B has no influence on the value of 

the limit obtained ; for condition (a) determines the values of the 
(p - 1 )  first derivatives of B in b, so that what remains arbitrary in 
the numerator of our additive term is at least an infinitesimal of the 
order of (b - x)P. 

We may say briefly-the sense of which we hope to have made 
clear by the above explanations-that we give a meaning to our 
integral by removing fractional infinities at b. 

We must not forget, however, that A itself is supposed to admit 
of the corresponding derivatives at b. 

82. Of course, we could also introduce the above conception for 
the integral Jb A (x) dx 

a (b - x)P+µ. ' 
µ being no longer necessarily equal to !, but still being necessarily 
contained between 0 and 1, limits excluded : which quantity can be 
defined upon the same hypotheses as (16) or (1 6'). 

It can also, as in the above cases, be expressed by means of a com­
plex integral taken along the circuit of fig. 9, an integral which ought, 
this time, to be divided by 1 - e2irrµ.. It can also, therefore, be con­
sidered as obtained by differentiation of 

(12') Jb � _(�) dx
. 

a (b - x)"' 
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A (x) dx 
[ (.'V - a) ( b - x )]P + ! ' 
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where the integrand is infinite at both limits, is the half of the cor­
responding complex integral along the circuit of fig. 9a. For the 
analogous one r0 A (x) dx 

• a [(x - a) (b - x)]P+µ ' 
we ought to give the circuit such a form as is represented in fig. 9 b, 
in order that the integrand should come back with a final value equal 
to its initial one. 

b a b 
= 

Fig. 9 a. Fig. 9 b. 

It is also clear that other functions than powers of (b - x) could 
be introduced and treated in ·the same way ; for instance, 

1 
log (b - x). 

83. Such considerations would even hold good to a certain extent for 

(. , ) Jb A (x) 
a (b - x)P dx, 

with p integral. 
This could be reduced to a finite value by adding the terms 

B (x) . 
(17  a) (b =· x)P-I + B1 (x) log (b - x). 

But, for p > 1 ,  we could, by adding to B (x) terms in (b - x)P-1 , 
modify the result in an arbitrary manner. This result, then, is not 
determined when we merely know the integral ( 17  ), but requires that 
the additive terms (17 a) be given as well. 

The same does not apply to p = 1. But, on the other hand, the 
result obtained is not invariant when the variable is changed, as is 
seen below in the case of µ fractional. Some operations of this 
kind, but of course with an explicit specification of the additive terms 
(17 a), have nevertheless been used in Calculus : such is the case for 
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Cauchy's "principal v�lue," and also for some forms of the second 
derivatives of a Newtonian space potential (such as wi 11 be used 
further on, § 1 1 5 a). 

84. Actual calculation. A simple way of obtaining the quan­
tity (16) consists in finding first 

(18) ·1 1
b dx 2 

. a (b - x)i = - (b - a)! '  
then replacing A ( x) by [A ( x) - A (b)] +A (b ), so that our · expression 
is resolved into t A (x) - As(b) dx, 

. a (b - x)'I 
an ordinary improper integral (as A is assumed to satisfy Lipschitz's 
condition) and 

2A (b) 
(b -=-- a)� · 

Similarly, to calculate I J
h A (a:) dx we shall subtract from A (x) 
a (b - x)P+4  

its expansion in  powers of  (b - x) by Taylor's formula up to the term 
in (b - x)P-1, by which our expression becomes an ordinary integral ; 
then we must integrate (according to our meaning) such terms as 

f 
dx � , the value of which is 

1 1 
, so that 

a (b - x)q + . (q - !) (b -

(l6 a) ' Jb A (x) dx = - A (b) + . . .  
1 a (b - a:)P + � (p - !) (b - a)P - !  

_ (-l)P-1 A IP-1l (b) + Jb .A 1��L�� 
(p - 1 )  ! ! (b - a)� a (b - x )P + � ' 

A1 (x)=A (x) - [A (b) - A'(b) (b-x) + . . .  + ( - l )P-1 A <P-1l (b) (b - x)P-1]. 
This is equivalent to using our former definition and taking, for 

B (x), 
B (x) = _ A (b) . A'(b) + . . .  + �� .. � A <p-1l (�2 . (p-t) (b -x)P - ! (p - U (b-x)P - i (p - 1) ! ! (b - x)� 



CH. I) OF IMPROPER INTEGRAL 139 

If we take as understood that B (x) is chosen in that way, we see 
that what we may call the " remainder " of our improper integral,-i.e. 
the difference between (15') and its limit-is {b

-� !._(-:11 dx. We, 
., x (b - x)P + 2 

therefore, shall have an upper limit of it-viz. M I  b - x I-if we have 
one for the absolute value of (t:_ <:�P or, which comes to the same, an 
upper limit M for the pth derivative of A (divided by p !) in the 
neighbourhood of x = b. 

If A is a function not only of x, but of several parameters a, {3, . . .  
(on which b may also depend), but M is independent of a, {3, . . . , the 
remainder can be evaluated in terms of I b-xl  independently of a, {3, . . .  : 
we may say that (16') converges uniformly. 

85. Principal properties. The rules of calculation concerning such 
a symbol as (1 6') are generally identical to rules relating to ordinary 
integrals as concerns equalities, such as (

b 
= (

c + (
b
and so on. Especially 

J a  J a J c 
a changing of the variable is allowed, provided it be regular in b ;  that 
is, one variable has with respect to the other a derivative, finite and 
different from zero, so that the order of infinitesimals around b is not 
changed. 

But any property implying inequality requires once more due 
precautions. First, we cannot conclude anything as to the sign of the 
express10n 11 .A (x) dx from the knowledge of the sign of the function 

(b - x)P +!  
A in  our interval of  integration, as the example of (18) immediately 
shows. 

Limitation of the values of our improper integrals.-This applies 
in particular to the finding of upper limits for the values of such 
expressions as (16'). For thi s obj ect, it is not sufficient, as it would 
be for ordinary integrals, to have upper limits of the integrand and 
of the interval of integration. 

Calculating 

(16') 
I Jb A (x) dx 

I = l a (b - x)P +! 
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as explained in § 84, we immediately (on account of the well-known 
expression of the remainder of Taylor's series) find that 

(19) I � -· A (b) I _ + I A' (b) [ - + . . .  
(J> - t) ( b - a) P - i (p - U ( b - a) P - i 

. . .  + I A (p-I) (b) I + 2 <4p) 
(p - 1) ! . ! . (b - a)i p ! 

where (Ap) is an upper limit for the modulus of the pth derivative 
of A in (a, b). 

Therefore, we can limit the absolute value of I if we have : 
1°, An upper and a lower limit of the interval of integration ; 
2°. Upper limits of the absolute values of the function A and its 

first p derivatives* (of A itself and the first (p - 1) derivatives at 
b itself, of the pth throughout the interval ) ;  or, at least [as our interval 
can be resolved into (a, b - e) and (b - e, b)] of the absolute value of A 
throughout (a, b) (as usual), of the (p - 1 )  first derivatives for x = b 
and of the pth in a certain partial interval (b - e, b) adjacent to b, the 
reciprocal of the amplitude of which also enters into the limitations, so 
that, if a approached b, our improper integral would not approach 
zero, but, generally, infinity. 

86. Continuity. Replacing the function A by another one A ,  
whereby I is changed into I, and applying the above limitation to the 
difference (I -/), we see that the value of our syrnbol (1 6') is continuous 
of order p, but not, of course, of order zero, with respect to the function A .  

* It is easy to give instances of expressions such as (16') that assume values 
as great as can be desired although A remain finite. "\Ve only need to take the 
following 

l= Ja f(!Y_x) dx 
o .xP + i  ' 

N being a very large positive nu.mqer and / a finite function for any value, how­
ever great, of x. Dy effecting the change of variable N x= z, it appear::; immediately 
that we shall get the asymptotic equality 

I=NP - i  11 ' 
11 = f ""f (z) dz . 

o zP + i  
If, then, 11 differs from zero, l will increase indefinitely with N. 
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87. Differentiation. From the first conception by which we ob­
tained our new symbol, we immediately see that it admits directly of 
differentiation with respect to b, which is to be performed by differen­
tiating under J and not writing any term corresponding to the upper 
limit, the latter terms being included in the fractional infinite 
terms which are meant to be added in order to make the integral 
have a limit. 

It follows from this that any (linear) differential equation which 
would be satisfied by our integral (considered as a function of b) if 
taken between constant limits a, c, is so as well when one limit is b itself. 

This is, as we said in § 73, Darboux's fundamental remark. 

3. THE CASE OF MULTIP.LE INTEGRALS 
88. The above notion will be extended to multiple integrals by 

the usual reduction to simple ones. Let us take (in ordinary space, 
for instance) such an integral as 

(20) 
ff.f 

A (x y z) ·�-· ' -' -- dxdydz 
2· [G (x, y, z)]P + ! · ' 

one part of the boundary of the domain of integration T being con­
stituted by the surface G = 0, with .the essential hypothesis that this 
part of the boundary contains no singular point, i.e. that at no point 
of it the first partial derivatives of G simultaneously disappear. Then, 
for any neighbouring point, the distance to the boundary (or rather 
to the aforesaid part of it) is exactly of the same infinitesimal order 
as the value of G. 

Let us assume, in the first place, that �G especially is everywhere 

+ 0, and even that any parallel to the z-axis cuts the surface in question 
in not more than one point z = z1 and at a finite angle, so that we can 
write G = (z - z1) G1 • Let us assume, moreover, for the present, that 
every part of the boundary adjacent to G = 0 consists of a cylindrical 
surface parallel to the z-axis (fig. 10). Then we shall write, by defi­
nition, 

(21) .A j rz A + l  dxdydz = j dxdy . 
N GP +! 

dz 
N j  
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(if, for instance, the segment (z1 , Z) intercepted by T on any parallel 
to the z-axis has z1 for its lower limit and if the upper one Z corre­
sponds to no singularity of the integrand). 

If t be a function of x, y and a small 
parameter e, infinitesimal together with e 
and developable in powers of e at least to the 
pth order, the term in e itself being always 
different from zero, this means that we take 
the limit of 

(22) J J dxdy 1: H G:H dz 

after we have subtracted suitable terms, 
infinite of fractional order in e (viz. of the form 

- -

Fig. 10. 

f!J(x, y, e) 
= 

/!1!0 (x, y) + eflfi + . . .  + eP-1 tilp-1 ) eP - �  eP - !  
under the assumption that the convergence of A d . · r  �----- - z is un11orm GP+ ! 
(§ 84) when x and y vary, in order that exchange of our limiting 
process and integration with respect to x, y be allowed, which 

" 1 1 b h " f  
()P (G1:+ �) b . d b fi . l "  . 11 w1 e t e case I 0 - e conta1ne etween n1te im1ts a z1P 

over G = 0 and in its neighbourhood. On the other hand, G is 
supposed to admit of derivatives up to the pth order with respect to 
x, y, z, so that such is also the case, on the surface considered, for z 
as a function of x and y. 

This definition, in it.s turn, is obviously equivalent to the following 
one : 

Let the neighbourhood of G = 0 be separated from our domain T 
by a surface ( T) such as G = ry (x, y, z, e) 
in which ry denotes a quantity having with zero a neighbourhood of 
the pth order (§ 20),-that is, very small together with its partial 
derivatives up to the pth order, when e approaches zero. For instance, let 
ry be equal to De, denoting by D a differentiable expression independent 
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of €. Then, if it is first extended to the domain T1 deduced from T by 
cutting out the neighbourhood T2 of our surface, our integral will 
not approach a limit when € approaches zero ; but it will do so if we 
subtract a properly chosen expression of the form 

B (€) B0 + B1 € + . . . + Bp_1 €P-1 
(23) p - � = p ::: !- - . -

€ € 

(which, of course, completely determines the coefficients B). This 
limit is equal to (21 )-for (T) can obviously be written in the form 
Z = Z1 (x, y) + s;-and, therefore, is utterly independent of the choice 
of the function D or even ry, under the above specified conditions. 

89. But this new form of the definition is also independent of our 
previous restrictions concerning the location of our domain T with 
respect to the axes of coordinates. The calculation itself can be made 
independent of them (under conditions of regularity which we shall 
presently specify) by the use of a punctual transformation. 

Assuming now any number m of dimensions, let us refer the neigh­
bourhood of G = 0 to a system of curvilinear coordinates, one of which 
shall be G, the others being denoted by A.1 , �' • • •  , A.m_1 , such that they 
admit of derivatives up to the pth order with respect to the Cartesian 
coordinates and that the Jacobian K never vanishes, the element of 
volume being 

dT = dx1dx2 • • •  dxm = KdA.1 dA.2 • • •  dA.m-l dG 
(in which K dA.1 dA.2 • • •  dA.m_1 is precisely what we previously called 

dTa or the quotient ��). If so, the lines 

A.1 = const., A-2 = const., . . .  Am-1 = const., 
which we shall denote by l and which shall now replace the parallels 
to the z-axis, must cut G = 0 at finite angles. 

Let us assume, in the first place, that every part of our bounda1-y 
adjacent to G = 0 is a locus of coordinate lines l. We must immediately 
note that this hypothesis, together with those which we have already 
made, implies : 

(1)  that the surface G = 0 is regular (§ 9) : more precisely that 
one of its Cartesian coordinates, considered as a function of the others, 
has continuous partial derivatives up to the pth order ; 
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(2) that the same property belongs to every part of the boundary 
adjacent to G = 0 ;  

(3) that such boundaries cut G = 0 at an angle which never 
vanishes (nor becomes equal to 7T' ). 

These conditions are necessary for the validity of the definition 
we are about to give. Conversely, if they are satisfied, we can, in oo 
ways, find such a system of curvilinear coordinates as is assumed above. 
'rhen, we may take ·�---

SSS'r 
G
:+ dx1dX2 . . . dxu,, = 

A 
SSST ! Kd "A1d'A2 . . .  d'Am-1dG 

GP + 

= S S d'A1dA.2 . . .  d'Am-1 J GP � dG, 

this third form of the definition being again obviously equivalent to 
the second one (and therefore independent of the particular punctual 
transformation used, under the above assumption) *. 

\Ve obtain the finite part of the simple integral l by taking it, not 
from G = 0, but from G = ry, then adding a certain complementary term 

where fJJ is a regular function of 'A1 , �' . . . 'Am_1 , ry (and, therefore, also 
of the x's). Integrating with respect to the 'A's, we shall obviously 
have an (m - l)tuple integral along (T), viz. 

(24) S S  v - �  d"A1d'A2 . . .  dXm-1 ,  
ry 

and the value of (21') will be obtained by adding SSS T, and (24), 
then letting € (and therefore ry) approach zero. 

For p = I, the complementary term (24) can be written so that its 
independence of the choice of our punctual transformation is thrown 
into evidence, viz. (on account of our previous remark concerning 
K dA.1 d'A2 . . .  d'Am-1) 

A - 2SS ,,;; d
Ta . 

* It may often happen that the use of our curvilinear coordinates will only 
be possible in the neighbourhood of the singular surface G. It will then be 
expedient to di,•ide T into two parts, a central one T' where the integral is to be 
calculated in the ordinary fashion, and another T" including the whole neighbour­
hood of G, where we have to use the form in the text. 
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90. It will be useful for what follows to notice that one of onr 
preceding geometric restrictions can be dropped. If, for instance, in 
(20), we intend to begin by integrating with respect to z, we can do 
so even if some parts H of the boundary of T, adjacent to G, are 
inclined with respect to the z-axis. 

To see this*, 've again cut T (the two parts thus separated being 
again called T1 and T2) by (T), which surface cuts H along a certain 
edge (in ordinary space, a line) A. If, through every point of A, we 
draw a parallel to the z-axis, tiil it meets G, we thus generate a 
cylinder � ,  the region inside which will be the region filled by the 
parallels to the z-axis which meet ( T) inside T. Let 'z;' be the part 
common to that interior region and to T ;  J the integral 

J = (JJ_:!__· dxdydz 
• GP + Ji  

extended to 'z;', while 11 will be the (ordinary) integral extended to T1 • 

s' 
Fig. 1 1 .  

On account of the cyl indrical 
boundary of 'z;', the integral J is to 
be expressed as explained above, viz. 

z1 still being the ordinate of G and 
the double integration being ex­
tended to the base s' of the cylinder 
C1J on the xy plane. If z1 + s again 

denotes the corresponding ordinate of (T), and sdepends On € as above 
specified, we have, by the definition of our symbol, 

* We suppose, for convenience in treatment, that we are in the case (which 
is the one that interests us) where the useful parts of H-and even the whole 
domain T-project on to the xy plane inside the area s of integration for L The 
diagrammatic figure 1 1  represents a section of T, ?; (the latter shaded on the 
diagram), etc., by a plane parallel to the z-axis. 

H. 10 
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fJJ (x, y, e) being a function which admits of Maclaurin's expansion 
in powers of e at least up to the pth order and 'TJ = 17 (x, y, e) an in­
finitesimal. This gives, by integrating over s', 

JJ8, j (x, y) dxdy =J= l1 + JJ'T} dxdy +  
eP
�ljj/%'(x, y, e) dxdy. 

But the double integral in 17 is again infinitesimal when e is * ;  and, 
in  the last term, because of the assumed regularity of (T) and H, the 
second factor (in which account must be taken of the simultaneous 
variation of the integrand and the area of integration) admits of suc­
cessive derivativest in e and is therefore itself a :Maclaurin expansion 
(at least up to the (p - l)th order), so that 

(25) 
B (e) J - 11 = €1 + --- ' eP - �  

where e1 means the infinitesimal quantity ff'TJ dxdy and B (e) is again 
regular in e. 

If we now denote by 1 the integral (21 ) which we intend to cal­
culate, the difference I - J will, in general, be infinite (this being the 
case for the simple integrals along segments of generatrices of the 
cylinder <(ff when their length approaches zero) ; but this infinity 
will be a fractional one of the form (23) as both J - 11 (as has just 
been proved) and I - J1 (by definition) are of that form. This is 
equivalent to saying that 

(26) I=  f J8j (x, y) dxdy = . f fs dxdy 
I 

-- - dz ! ' 
so that the calculation of the finite part of our triple integral is reduced 
to two "finite parts," one of a simple, the other of a double integral. 

All this obviously holds for integrals with any number of dimen-

* ·we admit that 1/ tends towards zero uniformly with respect to x, y, which is 

legitimate (§ 84) when the pth derivative -::.'().v ( �--;) is finite in the whole 
vz1P \G?'"t· ;! 

neighbourhood of G. 
t However, we must note that this assumes the existence of derivatives of B 

up to the order (p - I )  with respect to :c, y, z, so that, as. B contains (p - I )  
derivatives of A and G1 (with respect to z), derivatives of the integrand up to the 
order 2p - 2 are postulated. 
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sions, and also when parallels to the z-axis are replaced by lines l 
such as considered above. 

Such lines are not, therefore, bound to be drawn on the non-singular 
part H of the boundary. 

As to the condition that the angle between one of them and the 
singular part G nowhere becomes infinitesimal, it remains essential, 
as we shall see by examples, when using the present mode of evaluation. 

91. The same applies to our first hypothesis concerning the 
regularity of our surface. 

If the boundary surface G = 0 possess a singular point a (which 
will precisely be the case in the application we shall meet with), we 
must proceed just as for ordinary improper integrals, that is, first cut 
out the neighbourhood of this singular point by a small portion of 
surface �; then pass to the limit. Only I must have with the singular 
point a neighbourhood of the pth order, i.e., by a natural extension of 
§ 20, not only must the radius vector* from the singular point to 
any point of � be very small, but also its derivatives up to the pth 
order with respect to the direction cosines of its direction, which con­
dition, however, is quite generally fulfilled (for instance if I is derived 
from a regular fixed surface by homothecy with respect to the singular 
point, or by translation, etc.). Whether the limit exists (though 
general sufficient conditions for this could probably be formed without 
great difficulty) shall be investigated in each case. 

92. The above considerations, nevertheless, still apply when G is 
the product of two factors G = G'G", in such a way that G = 0 is com­
posed of two parts G' = 0, G" = 0, which intersect : this is what would 
happen, for instance, if T were a rectangle, G denoting the product of 
the four sides. 

* Such radii vectores may be meant to be rectilinear ones, but as well (which 
is equivalent, on account of the classic rules of Differential Calculus) may be taken 
along any regular set of curves, i.e. any set of curves through a, depending on 
m - 1  parameters (for instance, m - 1 direction cosines of their tangents at a) and 
such that continuous derivatives of the coordinates up to the pth order with 
respect to these parameters and the arc s exist, the Jacobian never vanishing. 
We shall have to operate in this way, using the geodesics (§§ 55  ff.) from a, on 
which occasion we shall come back to the subject (see § 106). 

10-2 
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Let us suppose, for instance, that G = xy, the domain of integration 
lying in the region x � 0, y � 0. Then, to define the integral 

ff A (x, y) dxdy 
T xP + �  yP + !  ' 

we shall begin by limiting the integration to x � e', y � e"-denoting 
by e', e'' two small positive numbers-under which conditions [as 
appears if we expand A (x, y) in powers of x, y and calculate 

ff dx d.11 
1 ,  (q, r = 0, I ,  2, . . .  , p)] a· q + -!  yr + -z  

the integral can be made finite by subtracting complementary terms in 

(27) 
B B B 

B denoting quantities regular in e', e''. The general case of G = G'G'' 
being reduced to the former by punctual transformation (in which 
G' and G" are to be taken as new variables x and y *), the same result 
will be then obtained by complementary terms of the above form (if 
T1 is separated from T2 by the surfaces G' = e', G" = e" ), with the 
same meaning for B. As the third class of terms possesses, like the 
two first, the property of never remaining finite for all infinitesimal 
values of e', e" without vanishing, the preceding theory is again 
applicable :  i.e., there will be an infinity of ways of choosing the terms 
(27)  so as to obtain a finite limit, but the latter will have the same 
value in every case. 

Nothing similar will occur in general for other kinds of singulari­
ties of G = 0. We shall have to take the precautions alluded to in the 
foregoing section, and shall find that they actually change the result. 

93. We can repeat for multiple integrals all what we have said con­
cerning equalities and inequalities. Especially, changing the variables 
is allowed if mutual derivatives up to the pth order exist and if the 
Jacobian vanishes at no point on the surface of singularity G = 0. 

* "\Ve simplify the argument in the text by assuming that we are given not 
only the two surfaces G' = O, G" = O, but the left-hand sides G ', G" of their equa­
tions (which assumption was not wanted in the above) ;  this condition will be 
satisfied in the application w,hich we shall have to make of the present section, so 
that we need not take the separating surfaces (T) under the more general form of 
§ 88. 
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Differentiation, when the parameter influences the shape of the 
singular part of the boundary G = 0, is to be performed without 
writing any term corresponding to this effect (since such is the case 
for the simple integral along each line l). 

An upper limit is obtained by integrating along the l's * and 
applying to each simple integral formula (19) (§ 85). For this 
!_)Urpose, of course, we must again know upper limits for the integrand 
and its derivatives up to the pth order, and conversely this will be 
sufficient if we know upper and lower limits for the lengths of the 
arcs of lines l included in T. 

94. Briefly speaking, our new symbol consists in giving our integral 
a value by subtraction of fractional infinities. In the calculation, 
therefore, it happens that we have to cancel such fractional infinities : 
if two different integrals of the above kind extended to the same 
domain T are such that, when extended to T', they differ by a quantity 
which we know to be necessarily of the form (23), their finite parts 
must be equal and, therefore, no account is to be taken of the differ­
ence in question. 

For instance, in Green's formula (g), let us assume that the inte-

grand on the left-hand side is of the form --
A

� and the P/s of the form GP + 2  
, , where the B's are again regular functions of the x's. If the GP 2 

boundary of the domain of integration T is entirely constituted by a 
surface G = 0 (on which we still make the same general assumptions), 
the finite part of the corresponding mitltiple integral will be zero. For, 
if it is first taken within the surface 

this integral will (on account of the identity (g) in question ) be reduced 
to a fractional infinity in e :  which is equivalent to the above con­
clusion. 

If some parts S' only of the- boundary belong to G = 0, only the 

* If we operated as in § 90, we ought to know upper limits for the de­
rivatives up to the order 2p - 2 ;  on the other hand it would no longer be 
necessary to know lower limits for the lengths of the arcs of lines l included in  T 
(but only of the angles -between these lines and G = O). 
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SS relating to its remaining portions S"-or rather the finite parts 
of these SS-will have to be written down : formula (g) is to be 
written 

I SSST = - f SSs.,· 

The same becomes obvious on using complex variables as in §§ 80, 81.  
In order to simplify the geometric interpretation, let us limit ourselves 

to a double integral 
i (A (x, y+) �xdy 

extended over a rectangle having J J xP 2 

one side along x = 0. Leaving y real, we shall replace x by x + ix' and 
consider x' as a third coordinate in a three-dimensional space. Then 
I is equal to half the integral over a double sheet which should be 
folded around x = 0 and cover our rectangle twice (or if preferred, over 
an infinitely flattened elliptic half cylinder having a focal line along 
x = 0 and the opposite side for its axis). 

If we should deal with r rA (x, y) r/,xd� , 
the rectangle of integra­. .  [x (a - x)]P + 

tion having x = 0 and x = a for its opposite sides, we should consider 
a segment of a whole elliptic cylinder having these for focal lines. 

In all these cases, our relation with a curvilinear integral would 
appear immediately with the help of the above transformation. 

4. SOME IMPORTANT EXAMPLES 

. 95. We shall have to consider, from the above point of view, �he 
integral 

Let us take it first between + Va and the fixed number z1 > Va. 
For n = 0, we have 

where 

f Z1 dz Z1 + V Z12 - a 
F -c = log - . r  = - t log a + P (a), 

.J-;,. \ z2 - a v a 

P (a) = log (z1 + v z12= a) = log Z1 + log ( 1 + J1 - z�2) 
is a series in integral and positive powers of a. 
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We deduce from this, by differentiation, 

(28) dz = (- l)n _!_ 
+ 

r (!l_ d,n 
P (a), - a)n +� t.n Un an r \n �) dan 

On denoting the numerical coefficient*  

(29) On = l · i . . . ( n - ! ) = - � ('fl,�+ !l_ 
1 2 . . .  n r (!) r (n + l) 

- 1 B ( 1 1 ) - . ... . I - n + 2, 2 _ _ B. -( 1 ) '  'TT' n n, 2 
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Fo:r z1 = oo ,  the last term on the right-hand side of ( 28) disappears 

(as P (a) is in powers of � , and therefore every term but the first 

contains z1 in its denominator) : whencet 

(30) 
f 00 dz _ (- l)n 

- (n an integer > 0). . .  J� (z2 - ar+ � 2� on . an 

We must equally note the value of the integral for n < 0, i .e .  

(28' ) 
< 1r' - 1  dz (z2 - ar' - � = -

2 
- On1an' log a + P1 (a) 

(n' an integer � 0), 

On denoting the same numerical coefficient as before. This is again 
deduced from the case n' = 0 by integration with respect to a,-the 
value of the integral being evident for a = 0,-or more simply, by 

expanding the integrandt in powers of � . z 
* Especially, 00 = 1, C1 = !· 
t The value of (30) could also be found from another point of view, giving a 

good example of our first definition in § 80. If we replace the real segment 

( v a, 00 )  by a circuit around it, the corresponding integral-which is twice (30)­
can be transformed, by Cauchy's theorem, into an integral along the imaginary f..l..oo d 
axis, equal to e-niTT ' z1 + k ; the latter quantity is immediately and 

-oo (a +z12) n 
classically reduced to an Eulerian integral B. 

! The term in an is the only one which contains z to the powers - l and, 
therefore, leads to a logarithmic result. 
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96. But the formuhe relating to the cases where the limits are 
- Va, + Va are especially important for what follows. 

The integral 
· 

(31) 

is zero. 
The integral 

J
·+J-;;. dz 
--./d. (a - z2)n+ 

J+
J
; 

-··� 
(z2 - a)n'-1 ,,/a - z2 dz 

-J-;,. 

(n an integer > 0) 

(n' an integer � 0) 

is equal to 27r A,  A denoting the coefficient of log a in exp1'ession (28'), i.e. 
. 1-(31 ') J ' a (z2 - a)n'-1 V� - z2 dz = (- l)n'-1 7rCn·an', 
-J� . 

so that 

(31 a) 
I 

' 1-;_ I (a - z2r - ! dz = ?r0n' an'. 
-
J
;_ 

This form of the result, implying a relation between (28') and (31') 
(which relation may also be considered as holding between (28) and 
(31)), will be of special interest for us later on. It can be established 
by considering (31') as a period of (28'). If we let a, starting from 
a determinate positive value, come back to it by a direct circuit 
around the origin in the complex plane, the point Va performs, as we 
know, a half circuit, going from + Va to - 'Va. As, simultaneously, 
z1 remaining fixed (at a finite or infinite distance according to the 
case), (28') increases by 2i?r A,  our relation is proved. 

Of course, the same formulre (31 '), or rather (31 a), can be obtained 
directly, and precisely in terms of Eulerian integrals of the first kind : 
for, by the change of variable z = Vat, integral (31 a), which is also im­
mediately (setting z = Ja cos cp) reducible to V\7 allis' integral, becomes 

r 1 

J
+I a f 1_ f r I f _ dz (a - z2)1i - � = an (1 - t)n - � t - !  dt = an B (n' + !, !). 
-../a · 0 

If we differentiate this with respect to a, which, as we have seen, 
may be accomplished by mere differentiation under J and without 
writing any terms for limits, this gives, by a sufficient number of 
differentiations, the value 0 for (31 ). 
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Similarly, q being any positive integer, we have, for n' � 0 (the 

left-hand side being again reducible to Eulerian integrals as well as 
to \Vallis'), 

r+./;;, ' 
(32) zq - l (c:x - z2yi - � dz 

. - J-;. 
' q - l 1 q - 2 ' ' q - l .. ) = c:xn + -2- fo t -2- ( l - t)n - �  dt = c:xn + -2- B ( n' + t, � . 

Again starting from n' = 0, we shall obtain finite parts of integrals 
containing (1 - t)n + �  or (c:x - z2yi + �  in the denominator by differen­
tiating with respect to c:x (or by a classic integration by parts, with 
respect to t, applied to the second form of the integral). We thus see : 

(1) that 
- - ·---r+J� zq - l --- dz or - ,J-;. (c:x - z2yi + �  

--------q - 2  JI _t�-2-=-dt 
o (1 - t)n + i 

is zero, wheri q is odd and n > q 
2 

1 ; 
(2) that otherwise 

J+�a zq l . - [=! - n (q - !) (q - U . . .  (q ; l - n) 
q dz = c:x 2 B (i --) - J;;. (a - z2r + � ( - l) ( - i> . . .  ( - n + ! ) 'I' 2 

r (q + i) 
_ 

q_ ;!. - n 
-

2
-

r (l :- 1�2 B (i 2.) - a  
r (q 2 1 - n ) " r w 2 •  2 . 

It is almost evident-and is immediately verified-that, expressing 
the symbol B in terms of r-functions, the numerical factor will be 
found to be the same as in (32), except for the change of n' into - n, 
i .e. equal to B ( l - n, �) . 

\ ' 
Especially 

(33) 
1£ - 1 zq - l rl t 2 ( q) dz = - -- - dt = B ! - n, - , 

1 (l - z2yi + � . o (1 - tyi+ � 2 

so that, in this case, we get formulre exactly similar to (32) except 
for the introduction of our symbol r- -. 
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97. The volume of 1n-dimensional hyperboloids.-Let us con­
sider the m-dimensional quadric 

analogous to the hyperboloid of one sheet, and the (m-dimensional) 
volume between this quadric and the "asymptotic cone " 

(0) 
To calculate this, we can evaluate x1 , x2, . . .  , Xm_1 in terms of 

r = Vx12- + x�z + . . .  + a;2�-1 , 
and of angular parameters <f>1 , • • •  <Pm-2 , defining a direction from the 
origin in the (m - 1)-dimensional space (x1 , Xz, . . . Xm-1) : by which 

dx1dx2 . . .  dxm-1 = rm-2 drdllm_2 , 
where dilm-2 (corresponding to variations of the cp's) is an element of 
surface of the sphere of radius 1 in the (m - 1)-dimensional space. 
Summing, in the first place, for all possible directions in the latter, 
we express our volume by the double integral 

(34) nm-2ff rm-2 drdxm. 
ilm-2 denotes the surface of the hypersphere with radius 1 Ill 

2 [r (-�-)Jm-1 . 
the (m - I)-dimensional space. It is equal to - 1 , I.e. to 

m - 1  

2 2'  2 - (the 
r (

m 
2 -!) 

r (� 2 ) 

vol�me of the same sphere is m 
1 

1 ilm_2, and we 

may observe that this allows us to speak even of n.0 , the value of 

which is J::dx = 2) . 

We ought to extend (34) between one branch of the hyperbola 
r2 - xm- = 1 and its asymptotes. Now, if we set down 

Xm = rz, 
z = constant will represent, in the r, Xm plane, the radius vector from 
the origin and, in our original m-dimensional space, a hypercone. 
The volume enclosed between two such consecutive hypercones 
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(z, z + dz) and our quadric (easily calculated by expressing the 

variables Xm and r in (34) in terms of Z and p = Vr2 - x;;,,� and letting 
p vary from zero to 1)  will be 

nm-2 dz 
m vl - z2m · 

If we should integrate between - z and + z, with 0 < z < 1, this 
would give us the volume between the two corresponding cones and 
our quadric. 

If m is odd, there will be a finite part for such an integral, when 
z approaches 1. It will be said, by definition, to be " the finite part of 
the volume between the quadric and its asymptotic cone." 

From the conclusions of the preceding section, we see that this 
finite part is zero. 

Let us take, on the other hand, the quadric 

which, for m =  3, is the hyperboloid of two sheets. Let us again con­
sider the volume between the sheet corresponding to X11i > 0 and the 
asymptotic cone (C). 

This volume will be represented by the integral 

nm-2J dz 
--;;;:;:- -V z2 - lm ' 

which we must take between 1 and + oo .  If m is odd and equal to 
2m1 + 1, the expression thus obtained has a finite part, which will be 
called the "finite part" of the aforesaid volume z. The value of this 

finite part will be 

(35) 
n2'm1-1 . (- 1 )m• 

(2m1 + 1) 2m1 Om1 
• 

For instance, as concerns the ordinary hyperboloid of two sheets, 
we have 

�7T lfoo a;- = - 2
3
7T • 

3 I 0 (z2 - l)� 
If our hyperquadric be giv�n under the more general form 

H ( X1 , X2 , • • •  Xm) = 1 
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(H being any quadratic form with one positive and m, - 1 = 2m1 
negative squares), our result is obviously to be divided by + v'i D i , 
D being the discriminant of H. 

The sign of the finite part obtained is, as seen from (35), variable 
according to what was said in § 85 : it depends on the parity of 

m - 1  
mi = -2 

98. A similar treatment would apply to the hyperquadric 

(H') x 2 + xl· + . . . + Xp2 - y 2 - Y22 - • • •  - yq2 = 1, 

which occurs in connection with the equations A?• qu = 0 of Coulon 
(see § 69). Introducing the auxiliary variables 

r = ,./x12+ X22 + 
-
. . .  + x/, r' = Vy12 + y22 + . . . + yq2� 

the calculation of our volume would, as above, be brought back to 
the double integral 

flp-1 !lq-1 ff rP-1 r'q-1drdr', 

which, by r' = rz, would lead to a simple integral 

(36 )  Pp-1 !lq-1 J- zq-1 dz 
p + q v1 -

If we extend this integral between z = - 1 and z = + 1 ,  the finite 
part of it will have a meaning for p + q odd. For q odd it will be zero 
(see § 96). 

Only in the case of q even, p odd, will the finite part of the volume 
p q 

between the quadric (H') and its asymptotic cone � i:2 - � y2 = 0 
1 1 

exist and differ from zero : its value will be B (_e ! q - 1,  �) flP-1 flq-i . 
' ... ... p + q 

99. The numbers !1 have very simple relations with the coefficients 
On introduced above : we have 

?n 
!lm-1 = !lm-2 . �·· -1 7r Gm = !lm-2 7r Gm 

1n - - - 1  . 2  2 

(and, more generally, relations between flp_1 , flq_1 and flp+q-1). 
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This is immediately verified, but is hardly distinct from the argu­
ment in the preceding section : the classic determination of nm-1 (as 
a subcase of Dirichlet's integral) is entirely similar to the above calcu­
lation ; the latter applied to the volume of the m-dimensional sphere 

with radius I (equal to � !lm-1) reduces it to ilm-2 ff rm-2 drdx, the 

latter double integral being therefore extended to r2 + x2 � I and 
immediately reducible to (31') as above. 

100. If we divide the volume of one of our hyperboloids of 
1n = 2m1 + I  dimensions by a central plane (which is assumed to cut 
the surface) the latter can always be considered as a diametral plane 
and therefore the two partial volumes thus separated must be equiva­
lent to each other : so that the finite part of the volume of the half 
hyperboloid of one sheet is zero, and the finite part of the volume of 
the half hyperboloid of two sheets is equal to half the value obtained 
in § 97. 

A consequence is that any such two planes, the intersection of 
which lies outside the asymptotic cone (if the hyperboloid of two 
sheets is concerned), include between them in the portion of space 
enclosed between the surface and its asymptotic cone an infinite 
volume the finite part of which is again zero. 

101. Our notion of improper integral, as developed in the above, allows us 
to find the relation between Tedone's expressions and the elementary solution. 
It is to be foreseen (by the first example of ni = 3) that the latter, in order to admit 
of ordinary Calculus, must be first integrated several times-at least m1 times­
wi th respect to t0• 

Now, such successive (or rather superimposed) integrations of 11 function F (t) 
from a common lower limit T to the upper one t' can again be replaced by a single 
one with the help of a factor (t' - t)"-1, so that, for the study of the generalized 
equation of cylindrical waves (em _ 1 ) for m = 2m1 + I, starting from the elementary 
solution I 

[ (to - t):;, :_ i·2y111 - ' 

we have to deduce from it the definite integral ft' (t' - to)n- 1 dto 
T [{to - t):&"_r2]m1-! ' 

in which, as we did in § 73, we shall take t' independent of t, but the lower 
limit T equal to t+r. 
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Tedone's expressions correspond * to a number of integrations much greater 
than strictly necessary, viz. n = m - 2 = 2m1 - l (the advantage being to obtain 
rather simple expressions which only depend on the ratio (t' - t) : r). His function t 
is, but for a numerical factor, equal to a definite (improper) integral t 

Vi = ·'---·-0-·-- dt0 • lt: 
-

t+1· [(to - t)2 - r2]mi-t 

That applying the fundamental formula to such a quantity together with the 
unknown function u, leads to the value of (10') (§ 78), whence u follows by 
differentiations, is now evident a priori. We see that the (m1 - 1 )th derivative 

of u could have been used for the same purpose. 

* In Tedone's notation, our number m is denoted by m +  1 and (for odd 1n's) 
our number m1 is called p. 

t <P2 , in his notation. 
t v1 , considered as a function of t and thex's, satisfies (em_ 1), as results from our 

principles ; this and the fact of being a mere function of t' - t 
(Tedone's variable 0) 

r 
together with its logarithmic singularity (which is easily shown by the principles 
of the theory of functions) prove its identity with Tedone's expression. A direct 
calculation, giving v1 under Tedone's form, is obtained by setting down 

and, similarly, 

which gives 

t0 - t - r  - = r, t0 - t + r  

t' - t - r I - r 
t' - t + r - ' 

I 
l'T' 1 (r' - r)l:lm1 - l:l 

V1 = } 0 (1 - r;)2m1-2 ;mi-! (1 - r) 
dr 

=
J

T'_ d.!__ + 1 /- rT'_l_ (r'_- r)2mi - 2 _ rm1 - l  (r' - 1)2m1 - 2  
o (l - r) Jr (I - r').2mi -2  l o rm1 - i  1 - r -- dr. 

The first term is the logarithmic one ; and, as 

( '  )2m1- 2 m. - 1 ( ' l )2m1 -2 T - T - T T -

1 - T 
= [r (r' _ I ) + r' (r' -r)] � (r' - r)2 (m1 - h- 1) /i-1  (I - r')2/i -21 

the remaining (improper) integral can be expanded in powers of 

with the common factor 

4r' (t' - t)2 - r2 
(1 :. r')2 - -- r2-- ' 

2r' t' - t  l + ···- - �-
1 - r' - r2 ' 

the coefficients being Eulerian functions B (see § 96). 



CHAPTER II 

THE INTEGRATION FOR AN ODD NUMBER 
OF INDEPENDENT VARIABLES 

102. With these principles in mind, we can come to Cauchy's 
problem for the equation 

02u du (E) 5 ( u) = � Ailc 0 0 
+ ! Bi -. + Ou =f i, k Xi Xk i OXi 

From our previous considerations, it is to be foreseen that we 
shall have to distinguish between the cases of m even and m odd. 
We shall begin with the latter. The elementary solution is then 
unique. It contains no logarithmic term, but has an irrational de­
nominator. 

We shall have to assume that solution to have been constructed 
not for the given equation, but for the adjoint one* 

(@') c:Y (v) = O, 
the elementary solution of which will be of the same form, viz. 

v 
v = v (x; a) = .�-� , rm1 - �  

for m = 2m1 + 1 ; in which r is still the square of the geodesic distance . 
between the two points x (x1 , x2 , • • •  Xm) and a (a1 , a2 , • • •  am), while V 
is a holomorphic function of the 2m coordinates of these two points, 

taking on, when they coincide, the value :vtil j .  
For the present, we shall suppose that our equation belongs to 

the hyperbolic type, and even to the normal one, so that the charac­
teristic form 

A = !Aik'Yi'Yk 
consists of squares all of which but one have the same sign. Then, 
the characteristic conoid consists of two different sheets and divides 
the space into three regions, two of which are interior, viz. one inside 

* The adjoint equation will always be taken homogeneous (i.e. 8' (v) =O) even 
if the proposed equation is non-homogeneous (% (u) -f=f:.O). 
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each sheet. We assume the equation to be written in such a way that 
r is positive in these interior regions (physically speaking, positive 
when the two points x and a are well within wave with respect to 
each other in the meaning of § 32). This is the case when the form A 
has one positive and m - 1 negative squares *. 

102 a. Cauchy's problem consists in finding a solution u of (E) 
when we know the values of u and one of its first derivatives at every 
point of a certain surface S. As  the knowledge of any first derivative 
( u being assumeq to be known all over S) is equivalent to the 
knowledge of any other one (provided the corresponding direction 
is not tangent to S), we shall assume that the qeri vati ve in question 
is the transversal onet (§ 41). 

We intend to calculate the values of u, in a certain region fJl, of the 
m-dimensional space ; and it will be assumed that if, from any point 
a of fJ2, as vertex, we draw the characteristic conoid, one of its sheets 
will cut out a certain portion S0 (finite in every direction) of S and, 
together with S0 , be the boundary of a portion T of our space. This 
geometric condition is expressed by saying that we have to deal with 
the interior problem (we thus see that no interior problem exists for 
non-normal hyperbolic equations). 

We also know that it is essential to say what we precisely mean 
by a solution ; and, here, we shall begin by understanding this in a 
rather restrictive manner, viz., by admitting that it has to admit of 
partial derivatives up to the order m1 ,-or, at least, to the order 
(rn1 - 1) satisfying Lipschitz's condition-a restriction which would 
seem a very artificial one if it were not for the remarks of § 78, but 
which will now appear as justified. 

This being admitted, we shall see that the above data allow us to 
calculate u and, further on, that, conversely, upon one geometric 
hypothesis more (viz., that S is everywhere duly inclined (§ 27)) and 
some hypotheses of regularity concerning the data (which correspond 
to the preceding ones on u itself), the function u thus determined 

* This would lead us to change the sign in equation (e2), instead of writing it 
as in § 4 a. 

t If S is not characteristic, the transversal direction will not be tangent to S. 
For the contrary case, see below, § 1 13. 
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satisfies all required conditions. (On th'e contrary, no exterior Cauchy 
problem admits of a solution for axb!trary regular data.) 

103. Accordingly , a (a1 ' a2 , • • •  am) being any point of i!Jl, at which 
we intend to calculate the value of u, we draw one half characteristic 
conoid r with vertex a, the one which cuts S along a closed edge and 
which we shall call (§ 32) the inverse or retrograde sheet. Let T be 
the portion of f!Jl, thus limited, i.e., which is both interior to r and on 
the same side of S as a (fig. 12). 

"\Ve shall apply the fundamental formula * in the domain T to the 
unknown u and to the elementary solution v (x ; a) of the adjoint 
equation which is singular in a. 

The quantity vf = 1!.� � is  infinite on one part of the boundary, 

viz. the conoid r :  it is an infinite quantity of the fractional order 
rn1 - ! ·  The m-tuple integral bearing on this quantity is subject, then, 
to the consideration explained above (these becoming unnecessary 
only for m1 = 1 ,  i.e. rn = 3). 

But there is an exception for the neighbourhood of the point a, 
where r is infinitely small of the order 2, not 
of the order 1. We shall therefore have to 
proceed as is done in the case of ordinary 
multiple integrals, and abstract from the do­
main of integration all the neighbourhood of 
the point a, by means of a small surface I 
(fig. 1 2) surrounding this point, it being 
understood that the infinitely close vicinity 
between � and the point a is of the m1 th 

Fig. 12. order (§ 91 ), such being the case, for instance, 
if we take a small sphere with centre a. 

Let T' stand for what remains of T after all the part which lies 
inside I has been removed. 

The fundamental formula 

(F) , SSSovf dx�odx2 • • •  dxm + 
1
SS ( V �� - U �� + Luv) dS = 0 

* Fig. 12 is supposed to be, as previously, a diagrammatic one, obtained by 
cutting the one which we have to consider (and which has m dimensions) by a two­
dimensional plane drawn through the point a. 

H. 1 1  
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will be applied in the domain T', with the C•)nvention that we take 
the finite part of the left-hand side, by omitting the infinite quantities 
fractional on r. we must therefore 

(1 )  Take the finite part of the first integral ju (F) (m-tuple inte­
gral with respect to T') ;  

( 2) Take likewise the finite part of the (m - 1)-tuple integral with 
respect to the given multiplicity S ;  

(3) Cancel the integral relating to the boundm·y r, this integral 
being an infinite quantity of a fractional order. This same integral 
vanishes in Kirchhoff's method, because it integrates exactly, and in 
Volterra's because it is identically zero. The same thing happens 
here, as we see, by a different mechanism, which we have explained 
in § 94. The integral in question being of a fractional order, and the 
complementary boundary terms implicitly understood in (1 ), (2), and 
( 4) (see below) also being such *, the very fact that the sum of the 
integrals (F) vanishes implies that the sum of these four fractional 
infinite quantities also cancels out separately ; 

104. (4) If the shape of T were such that a is exterior to it, 
as happens in fig. 12 a or 12 b, we should have to apply merely the 
fundamental formula, thus interpreted ; and this would give 

(F') !SSS VJ dx, dx, . . .  dx., + iss (u �: - v �� - Luv ) dS = o, 

which corresponds to the classic formula in the theory of potential 
(formula (8) in Book I, 
§ 15) for the case when the 
origin of the radii vectores 
lies outside the surface of 
integration. 

But in the present case, 
we must take account of the 
integral relating to �' of 
which we must take (as on 
S) the finite part. "\Ve have 

a a 

Fig. 12 a, 12 b. 

to see what this quantity becomes when � approaches the point a. 

* In (1), this complementary term would be extended to r or rather to a 
surface coinciding finally with r ;  in (2) and ( 4), the limiting positions for the 

domains of integration corresponding to the complementary terms would be the 

edges of intersection of r with S and �. 
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Through this point, let us draw geodesics (defined by the differ­
ential equations (L)), inside T, and depending on 1n - 1 parameters 
A.1 , A.2, . . .  , "A.m-1 , while, on each one of them, any point will be defined 
by the variable s of § 55. s will have, at each point of �' a deter­
minate value (a function of A.l l A.2 , . . .  , A.m_1), which will be very small, 
together with its derivatives * up to the order ni1 • The integral 

(37) 
I du I ( vdu 

+ Liiv ) 
1 ss (v dv + Luv ) dS - ,SS r';'-2- dS 

will approach zero. For the quantities 

·dS = 
D (x1 , X2 , • • •  , Xi_1 , Xi+1 � Xm) d"\ d"\ d"\ 7T'i ± D ("\ "\ , ' "'1 ' "'2 ' • · · '  "'m-1 , "'1 ' "·2 ,  • · • , "'m-1) 

which appear in the numerator under SS, are of the order sm-1, 
whereas the denominator 

m - 2  m - 2  
r-2 m-2 H-2- ( / 1 

') = s X1 , X2 , • • •  , Xm '  

h ' 
dxi · f: 1 Th ffi · f w ere xi = - , contains as a actor on y sm-2. e coe cient o 
ds 

1 

H ( I I ') X1 ' X2 ' • • . '  Xm 
is therefore of the order of s, and the same is true of its derivatives 
of the various orders with respect to A.1 ,  �' . . .  , A.m_1 • Under these 
conditions, the evaluations of §§ 85 and 93 show that the integral (37) 
is also of the order of s. 

This applies again, in the term 

to the part 

dv SS u dv dS, 

dV u dv SS -;;::'2 dS, 
r� 

in which r is not differentiated. 

* This results from the principles in the Additional Note to Book II. See 
below, § 106. 

l l-2 



164 THE INTEGRATION FOR AN 

105. Lastly, let us take the remaining part 

(BK III 

ar 1 ar aA 
ni "'- 2 1 u V -d _ 2 �u V . I �. �-. .  dS 

(37') + -· . SS v dS = -I- � 'SS 
UXi U'Tri 

2 j r� , 
2 I r� 

We have (still with the notations of §§ 55-58) 
ar � = 2spi UXi 

and consequently 

I ar �A = 2s ! pi �� = 2s :£ Tri ()A = 4s ! 7l"i dxi . 
i 07l"i i 07l"i i opi ds 

But, if we refer back to the expression of ?ridS written as above, 
we shall see that the coefficient of 4s (multiplied by dS) is in fact a 
development of the determinant 

dx1 
ds ' 
OX1 
oA.1 ' 

dx2 
ds ' 
OX2 oA.1 ' 

dxin 
· . . , -ds 

dXm 
. . .  ' ()A,� 

OX1 dX2 OXm 
O"Am-1 ' dAm-1 ' . . .  ' a�m-1 I 

the A.'s being taken in such an order as to make the determinant 
positive, since the direction of s increasing is away from a and enter­
ing into the domain T'. 

All the rows of the above determinant, except the first, contain s 
as a factor*, so that the integrand (for determinate values of the A.'s) 
remains finite when s approaches zero. 

On the other hand, we have, practically, on !, 
I I u V  = . r- u (a1 , a2, • • •  , am) =

J
- ita , v Aa Aa 

the word " practically " being used, of course, with a slightly different 
meaning from that which it usually has in such a case, and signifying 

* It is true that each element contains, besides a part proportional to s, a 
1)art containing the derivatives of that quantity with respect to the X's : but upon 
the assumption in the text concerning �, this will not change the order of magni­
tude of our determinant. 
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that the neglected quantities, together with their derivatives with 
respect to the A.'s (up to the order m1), are very small. 

Still from the same point of view, we can replace the dxi 's by the 
ds 

values x/ which they have at the origin, and the derivatives ��i by 

ax! . s 0� : thus we get the express10n 

(38) xi' 
0.1::/ 
oA.1 

(m - 2) ua 
vD. SS 

X2' 
{JJ I m 

OX2' OXm I 

oA.1 ax1 
dA.1 dA.2 · · • d"Am-1 

0Xm1 
. . . . . . . . . . . .  OAni-1 

m 
H2 ( I I ') X1 '  X2 ' • • • 

' Xm 

The integral which is multiplied by (m - 2) Ua is easy to reduce 
to the result of § 97. Generally speaking, if through the origin we 
draw a variable straight line 

whose direction depends on m - 1 parameters A.1 ,  A.2 , • • •  , Am-1 , and 
choose on it one point 

P (x1 = a1s, x2 = a2s, . . . , Xm = �s) 

(denoting by s another function of the A.'s), the integral 

a1 ,  a2, . . . ' am 
oa1 aa2 oam 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
"! ss oA.1 ' aA.1 ' . . .  ' oA.1 

smdA.1 dA.2 • • • dA.m-1 
m 

will represent* the volume between the surface S described by P and 

* For, if dS be an element of the surface S and rr1,  rr2 , . . . , rrm the direction· 
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the cone with the outline of S for its base and the origin for its 
vertex. 

The SS of formula (38) is therefore equal to rn = 2m1 + I  times 
the finite part of the volume of the hyperboloid of two sheets, as is 
calculated in § 97, and found equal to 

1 ( - 1 )tni !l2m1 -1 1 
2ni1 + I 2m1 01111 • v D ' 

D being the discriminant of H. The integral along � has therefore 
(on account of the equality DD.. = I) the limiting value . 

(- 1 -,,.---
= (§ 99) (- I )mi 7T n2mi-2 . Ua 

and the required value of Ua is given by the formula 

(39) (- J)in17T!l2m1-2 • Ua = (- J)m1 �zm1-1 . 1la m1-1 
( dv du ) � 

+ SSs. u - - v - - Liw d/::3 0 dv dv 

cosines of its outer normal, we have, account being taken of our values of 

l SS 
OX1 OXz OXm 

OAm-1 OAm - 1 • • •  OAm-1 

d)q <l'A2 . . . d'Am- 1 • 

. t a ·  
If we now replace .vi by als, and, therefore, by s _,._!+a, , the second 

0"'Ai 
terms in this latter expression for i = I , 2 ,  . . . , m can be cancelled as being pro­
portional to the .'C's which constitute the first row of the determinant, and this 
gives the result in the text. 
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For rn = 3 (m,1 = 1), the coefficient of Ua is 

1 - fl1 201 = - 277" (= - 7Tilo)• 

106. A consequence of the above is that the first SSS in (39) 
exists when extended to T, at least if we still let � approach a in 
such a way that the vicinity be of the m1th order. \Ve can also see 
this directly. Calculating it with the system of curvilinear coordinates 
A.1 , A.2 , • • • , A.m_1 , s, we shall get 

N . 1 d . l) (x1 ' X2 , . . .  ' Xm) . 
.r ow, the funct10na etermmant D-(-- , -)- contams sm-1 A1 , A2 , • • •  , 8 

as a factor, and therefore the quantity under SSS thus only contains 
the fractional infinity 

I 
m - 2  ) 

• 

H (X1 --�1 X2 - Cl2 �m - Um 
8 ' s ' . . .  , s 

Under this form or the preceding one we see that the error com­
mitted by substituting T' for T, the difference between the values 
of SSS extended over T' and over T, is limited in terms of : 

The partial derivatives of f up to the order m1 - I and of the 
coefficients of the equation up to the order m1 ; 

The corresponding derivatives of V; 
The partial derivatives, up to the order mu with respect to the X's, 

of the coordinates of the point where each geodesic issuing from a 
intersects � or, which is equivalent, of the corresponding value of s :  
these derivatives being themselves limited* by the corresponding 
derivatives of the x's with respect to s on the geodesic, the correspond-

* The choice of the parameters X and the proportionality factor for s (see 
� 57) on each geodesic are assumed to be such as to satisfy usual conditions of 
regularity (regularity of the initial values of the x's with respect to the X's). 



168 THE INTEGRATION FOR AN [BK III 

ing partial derivatives of the left-hand side � (x1 , . . . , Xm) of the 

equation of � and by the reciprocal of �l; [as is seen by expressing the 

x's and thereby ! in terms of (A.1 , • • •  , A.111_1 , s)-say 

-and differentiating the implicit equation 

et> (A.1 , . · · ,  A.,n-1 , s) = OJ. 

This proves to us, what will be useful in several circumstances, that 
the SSS in (39) converges un�formly* : that is, in a region where the 
coefficients of the equation are holomorphic (therefore, V holomorphic 
in the 2m variables which it contains),/ regular (derivatives continuous 
up to the order m1 - 1), we do not need to know the position of a in 
order to indicate a (very small) upper limit for the above-mentioned 
error if we only know (very small) upper limits for the distance be­
tween � and the point a,-say €-and for the partial derivatives (up 
to the order m1) of the x's with respect to the A.'s. The latter limit 

will exist and be very small with € (a lower limit of 
d
d
� 

inside the s 
conoid being known), if the derivatives of any order 1.� � rn1 of � with 
respect to the x's remain finite, or even if their products by Ek-1 re­
main, in absolute value, below a fixed limit t as would take place, for 
instance, if � were a sphere of radius € around a. 

* It must be emphasized that the meaning of this word is distinct from what 
it was in § 84. 

t This is equivalent to saying that the absolute values of the corresponding 
derivatives on };1 all lie below a fixed upper limit, };1 being deduced from }; by a 

homothecy whose pole is a and ratio ! . 
f 

Such a homothecy would alter the derivatives of the x's with respect to 
A1 , • • • , Am _ 1 ,  s, but not the order of magnitude of their quotients by s (which, as 
to derivatives with respect to s, would even be diminished, as is easy to see). 

Such an alteration would be avoided if, before submitting the diagram to 
homothecy, we conld transform it by introducing " normal " coordinates (Book II, 
§ 57) : a punctual transformation which, as we know, would not change the 
order of magnitude of our derivatives if the derivatives of the Aik are finite up to 
the same order of differentiation, augmented by one (:see Additional Note to 
Book II). 
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107. The above formula has a meaning only if  the surface S is 

regular and the quantities u0, u1 - �� differentiable (with respect to 

regular coordinates of S, or, e.g. to (m - 1) of the Cartesian coordinates). 
As a corresponding assumption for u has been made from the begin­
ning (§ 102), the above argument would not be sufficient to prove 
that these conditions are necessary for the existence of u, and that our 
method did not omit some solution, if the latter were not differentiable 
a sufficient number of times. 

But an answer to this is given by the example of § 78, concerning 
the case of ( em_1), and where the non-existence (in general) of the 
solution appears by a direct calculation. 

The same method (imitating Tedone's) could be used for the 
general equation (E) : in other vrnrds, we could, by repeated integra­
tion along a line St, deduce from v another solution v of the adjoint 
equation admitting of a logarithmic singularity along St, but becom­
ing zero (and not infinite) along r ;  then obtain, by its help, the value 
of such an integral as (10') and, finally, find u itself by (m - 2)-fold 
differentiation. If this differentiation be possible, the result is unique, 
so that : 

The solution will not generally exist when our formula (39) is 
meaningless ; 

In the contrary case, no other solution will exist than the one 
which is given by that formula. 

108. 'Vhen ni = 3, it is clear that the above results must be equimlent to 
those which can be deduced from the operations in §§ 72-77, by differentiation 
of formula (10) with respect to t0 • It can be shown, indeed, that such is the case, 

and we can even carry out the differentiation by elementary methods and obtain 
the required value of ua as the limit of a sum of a double integral and a curvi­
linear one, getting an explicit expression of the latter complementary term. 
The points of S0 being referred to the curvilinear coordinates {) and A. (in terms 
of which s will, therefore, be considered as expressed), let us divide S0 into two 

parts S1 and S2 , the latter containing the neighbourhood of the line y of inter­

section of S and r :  the boundary ( T') between S1 and S2 will thus correspond to 

8 = t0 - T', denoting by T1 a small quantity, constant or variable with A. (but, in 
the latter case, such tbat its derivative with respect to X be also small, and of the 
same order as T itself) ; finally, we shall let T and, therefore, S2 approach zero, 
so that we can neglect any term which becomes infinitesimal with T1• 

The integral over S1 can be differentiated by differentiation under the integral 
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sign without any difficulty* ; this being the same as replacing v by its derivative 
with respect to t0 , i .e. by x (t0) • v, we evidently obtain the corresponding term to 
our quantity (38), with the only difference that integration is limited to S1 , instead 
of being carried out over the whole of S0 • 

This precaution is even unnecessary as regards the terms which only contain 

v as a factor, for, the latter quantity being proportional to vf t0 - 8, its derivative 

will contain no other infinity than _7�1 , the integration of which is allowed all 
v t0 - 8  

over S0 : or, which comes to the same, the corresponding terms extended over S2 
would (if we operate in the same way as we shall presently) give deriva.tives 
which would vanish with r'. 

Therefore, there remains only to deal with the term in ��. We have seen that 

V =  2 (�� + . . .  ) 1i.f t� - if. ,  

The terms which we have replaced by dots contain higher powers + of (t0 - 8). 
Therefore, v denoting the transversal to S, we have 

which can be written (still replacing by dots terms of higher order in t0 - 8) 

(40) 
dv ( x V  ) 1 dr 
dv = ; Vw + . . . \ft0 - 8  dv 

as r = w ( t0 - 8) . . . , where the first factor is not zero. 
dr dr 

We have to express dv or, more exactly, dv dS. In doing this, we must observe 

that two kinds of derivatives of the x's with respect to 8 and :A may occur : viz. 
we may consider every x as a function of three independent variables 8, A., s, or 
only of the first two of them, s being a function of 8 and :A defined by the equation 
of S. The symbol o shall be kept for derivatives of the first kind, and those which 
correspond to the second hypothesis shall be denoted by ordinary d's : they are 
connected with the former by the .relations 

(41 )  dxi oxi ds oxi 
dB = aa + de as ' 

* The same holds for the·space integral, which we shall assume to be zero, as 
(for m = 3) its treatment requires no special precaution. 

t Our language relates to the hypothesis of analytic data : the working would 
be easily, by proper devices such as integrations by parts, extended to the case in 
which these data would be simply assumed to be regular. 
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and similarly for 'f;; . This being understood, we have (a suitable order being 

chosen between the :ds in connection with the direction of the normal) 

(40') 

dx1 dx2 dx3 I 
dO dB dO 

dr dS I dS 
oAJ ' d.1Ji cJ:x2 dx3 

dv = � L 1ri 
• oPi = ± dA. dA. dA. 

oA aA aA 
, af\ ar2 aP"a 

dO d:A. 

Th · · aA 
k · l l 

a.xi 
Th" h e quantities oPi are, as we now, respective y equa to 2s (:8- • is s ows 

us that derivatives d in the above formula can be indifferently replaced by deri­
vatives a, as follows from (41). 

Another expression of �� dS would be obtained by starting from the equation 

G (x1 , x2 , x3)= 0  of S and writing rridS= �;. dSG , which, on account of the above 
i oA . aa 

values of ':IF , gives 2s --- dSn. 'Ve shall not introduce this expression in our 
v i 08 

further operations ; but it supplies an easy answer to the question of sign* in 
the above formula ( 40') : for we know that G must be written so as to be positive 

in our domain of integration, i.e. on the side of S where a lies ; then s (�� will be 

evidently negative, and we see that we have to take the sign - before the right­
hand side of ( 40'), the determinant being taken in absolute value. 

Taking account of that formula ( 40'), we find an element of integration u �� dS 

which is of the form 

<J d() dA., 
Vto - 0  

Q being expanded in powers of (t0 - 0), viz. Q = Q0 + . . . .  Leaving the factor dA 
aside till the end of operations, the result of integration with respect to () from 
0 = t0 - -r' to () = t0 will be 

a 

Fig. 13. 

* Geometrically, we could observe that the trans­
versal v is directed towards the same side of S as the 
corresponding normal (since A (7ri , 7r2,  7r3)>0). As this 
transversal direction is, on the other hand, interior 
to the characteristic cone, it is clear (see the accom­
panying diagram) that it is directed towards the outside 
of r. 



172 THE INTEGRATION FOR AN (BK III 

(the coefficient of 2 v? being now expanded in power:-3 of r', with the constant 
term Q0). 

This is what we have to differentiate with respect to t0 • Such a differentiation is 

to be carried out as well on 1-/? as on the coefficients of the expansion Q ;  but the 
only useful term-that is, the only one which does not become infinitesimal with 

r'-is obviously J;, or, after division by x and taking account of the value of Q0 

as defined by ( 40) and ( 40'), 

I dxi dxi oA 
d8- d51.- 'a-Pi 

= - 'UV . 
1 
w 

' dx1 dx2 dx3 
d8 d8 d8 
dx1 dx2 dx3 
dA. <lx ax 
oA 2A 2A 
aP1 

·
aP2 aP� 

= - itvlt, 

the determinant being still taken in absolute value and every factor other than i­
receiving the value which it assumes on r itself. 

The initial value of w is the same as that of I ��  1 ,  and this allows us to write 
I 

the factor of - uv in another form. For, on account of the relations 

p dx1 p dx2 p dx3 0 
i 

· 
+ 2 dx + 3 = , 

and (as r is a characteristic) 

the quantities 

) 2A oA aA 2A (Pi i  P2 ,  P3) = l 1 oP1 + P2 0P2 + P3 0P3 = 0, 

dx2 oA d.x3 2A 
dx aP; - a-x aP2 ' 

d:i:3 oA dx1 oA dx1 oA dx2 cA 
dX oP1 - -a� oP3 ' dA. oP2 - d5. oP1 

are proportional to 2P1 , 2P2 , 2P3 , and, as 

er ( ax1 ox2 ox3) 
28 = 2 Pi 08 + P2 08 +P3 08 ' 

the proportionality factor is precisely the value of K. Introducing (as is of use 
in the theory of Abelian functions and was also done by Fredholm in his Memoir of 
.Acta �Math. vol. xxrn) three arbitrary (and really immaterial) quantities kl > k2 , lc3 , 
we see that after integration with respect to A., the result ·will be* (/ being 

* dA. dA. is the same thing as dxi ,  on y', if r' is a constant ; if r' is variable, 

this is no longer true, but the corresponding relative error is infinitesimal (on account of our assumption concerning ��) and will not alter the final limit 

in the text. 
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still assumed to he 0) 

(42) { -
2rrna i { { ( v du - u, d_v + L 1u;) dS + I 

•'=O , , s, ' dv 

it,') 

k1 k2 K3 I 
d.J.�1 d:i.:2 dx3 I 

i oP1 oP2 'dP3 
2 (k1P1 +lc2P2+lcaPa) I 

) ' 
Wi) � , 

where no influence of the function x or the choice of the line se remains any 
longer. 

109. A consequence of the presence of our symbol I · is that, 
though expressed by a definite integral containing the values of u0 , 
u1 , f under SS or SSS, the value of u is not continuous of order zero 
with respect to these quantities. The continuity is of order m1 (§ 20 a) 
in u0, m1 - 1 in u and f 

u is also continuous of order 1n1 with respect to the shape of S. 
This follows from the fact that, S being cut in a point JJJ (at a finite 
angle) by any geodesic issuing from an arbitrarily given point a­
which geodesic depends on m - I parameters A.1 ,  A.2 , . . . , Xm-1-the 
derivatives, to any order p, of the coordinates of the point of inter­
section with respect to the X's are functions of the coordinates them­
selves, of the derivatives (up to the same order) along the geodesic 
and of the derivatives along S. Now, a new surface S very near to S 
will be cut by the same geodesic in a point lrf very near * to M;  and, 

* This fact is hardly different from the classic theorem on continuity of 
implicit functions, and is proved by the same argument. If, through a point JI 

of S, we draw a geodesic such that ( ds ) ;::f::O-where G = O  is the equation of S ;  

s, the (ordinary) length of an arc of geodesic reckoned from JI, and the derivative 
is taken at .M itself (s = O)-there will be, on each side of JI, an arc of it along which 
dG 

will keep its sign. Let us denote by s' the length of such an arc if smaller 

than E, and take s' = E in the contrary case : then, for s = ± s', the function G will 
assume two values G' and - G" respectively positive and negative. If now, through 
every point of JI of S (or of a limited portion of it) we draw all the geodesics for 

which ( ds }tJ is gre1tter than a fixed number a >  O, as these depend continuously 

on the 2ni parameters included in the general equation of geodesics, it follows 
therefrom that the quantities G ', G" corresponding to them will have a 
minimum G1 • 

\Ve shall be certain that a second surface S must cut each of the above 
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if the neighbourhood is of the order p, the above-mentioned derivatives 
will be but slightly altered by the changing of S into S :  this provides 
the same conclusion as to our improper integral. 

Similarly, any first derivative of Ua will be continuous of order 
m1 + 1  with respect to u0 , of order m with respect to u1 and /, and of 
order m1 + 1 with respect to the shape of S. 

1 10. Consequences concerning waves and their diffusion. 

Classic results immediately follow, on the other hand, from the shape 
of the area of integration S0 in our formula (38). It is, indeed, obvious 
that it illustrates the intervention of characteristics, with the physical 
signification of waves, j ust as the formulre in the beginning of Book 
II already did for the most usual special equations. We see that not 
all the data on S enter in the value of ua, , but only those which 
relate to points of S0, that is, points lying inside the retrograde half 
conoid from a. Conversely ( cf. Book II, § 32), the values of u0 and 
u1 at a determinate point x' (fig. 14) taken on S have no influence on 
the values of u at points which lie outside the direct half conoid from 
x'. Physically speaking, this means, as previously (Book II), that no 
initial impulse at x' can react on a distant point before the time 
when the corresponding wave reaches that point. 

If the initial impulse starts not only from one point but from a 
certain region [/ of S, the portion of space (or rather universe) on 
which the effect of such an impulse may be sensible is constituted by 
the insides of all the half crmoids the vertices of which are within ff: 
such a region is limited by the envelope of the half conoid in question 
when its vertex x describes the boundary A of [f. This envelope 
(according to known principles concerning partial differential equa­
tions of the first order) again satisfies (A) : it is again a characteristic 
or, in other words, a wave *. 

geodesics at a distance from S less than £ if it lies in a sufficiently close neighbour­
hood (even of order 0) of s, i.e. if its equation be of the form G = a with I a I < G1. 

The corresponding conclusion concerning the derivatives will follow from this 
and the principles in the Additional Note to Book II. 

* The envelope in question consists of two sheets, an exterior one (corre­
sponding to a propagation of the waves towards the outside of a )  and an interior 
one (waves propagatiug inside if) :  the former generally (see below) limits the 
region mentioned in the text. 
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Such circumstances also show, as was already observed for spheri­
cal or cylindrical waves*, that the solutions of our hyperbolic equation 
need not be analytict : for (if the data u0 and u1 are not themselves 
analytic) there is obviously no relation between the values of u in 
the respective neighbourhoods of two points a and a' when the traces 
of the characteristic conoids from them on S are exterior to each 
other and, consequently, no analytic continuation from one of these 
sets of values to the other. It may be added, besides, that a discon­
tinuity of the Nth derivatives of u0 or u1 would produce a correspond­
ing discontinuity at any point a situated on the same conoid ; and if 
two different sets of values of 110 and u1 have with each other a con­
tact of an arbitrary order N along an edge, the respectively corre­
sponding functions u will have a contact of the same order all along 
the above-mentioned wave issuing from that edge. 

111. The diffusion of waves. We have already said that distinctions 
must be made concerning such propagations by waves and especially 
Huygens' principle in its special meaning, what we called proposition 
(B), or Huygens' minor premise. 

A mere inspection of formulre (1) and (1') (Book II) shows that 
spherical waves and cylindrical waves behave quite differently from 
that point of view. Formula (1)  gives the value of the solution by 
means of a double integral-which we ought to denote, in our system 
of notation, by a single S-over the surface of a sphere-in our lan­
guage, over the edge of intersection of the characteristic cone with 
the initial plane. A point x of the latter can act on the universe­
point which is represented by the vertex of the cone, when, and only 
when, it is just in wave (Book II, § 32) with it. If u0 and u1 are 
zero everywhere except within a small region around a determinate 
point x' (initial impulse localized in the immediate neighbourhood of 
a/), the value of u representing the ulterior effect of that impulse 
will be zero everywhere except in the immediate neighbourhood of the 
direct half conoid from x : whicJi, at any given point (x0 , y0 , z0) of 

* See Duhem's Hydrodynamique, Elasticite, Acoustique, Vol. rr, Book u, 
p. 168. 

t The contrary conclusion would be incompatible with the Yery existence 
(which we shall prove a little further on) of the solution of Cauchy's problem, as 
results from the arguments in Book I, � 15. 
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ordinary three-dimensional space, corresponds to a small interval of 
time, after which everything will come back to rest. This is precisely 
proposition (B). 

Such is by no , means the case for cylindrical waves. Volterra's 
formnlre, or, confining ourselves to the simplest case of the problem 
relating to t = 0, formula (1'), express the solution of ( e2) in terms of 
u0 and u1 by double integrals, corresponding to the sign SS in our 
notation, being extended (in the plane t = 0) all over the inside of the 
trace of the characteristic conoid. They show, therefore, that, for such 
a kind of wave, a point of the initial plane t = 0 is likely to act on 
the universe-point (x0, y0, t0), that is on the point (x0 , y0) at the 
instant t0 , not only if just within wave, but also if well within wave 
with each other. In other words, the action of an initial impulse over 
our two-dimensional medium will propagate with the constant velocity 
w and will begin to be perceptible at (x0 , y0) when the wave thus 
generated just reaches that point ; but it also continues so after that 
instant. There will exist what we shall call a residual integral, cor­
responding to this effect of a distant impulse continuing after the time 
when the wave is past. If we initially (t = 0) suppose that the impulse 
is localized within a certain region [/ of our plane, the functions u0 and 
·u1 being identically zero outside that region, the quantity u (x0, y0 , t0) 
will be zero if the circle to which SS in (39) is extended is entirely 
outside [/ (this means physically that no wave issuing from the initial 
impulse will have had time enough to reach that point). It will of 
course be different from zero if the circumference of this circle cuts ff' 
(cases at which some waves issuing from the initial impulse precisely 
reach our point at the time t0). It will remain different from zero-and 
will be what we call a residual integral-if the aforesaid circle includes 
[/ entirely inside it *. This means that Huygens' minor premise-the 
proposition which we previously denoted by (B)-will not be true in 

* Tb,e domain of influence of an initial impulse 
localized in the region of t = O  is bounded, as explained 
above (see footnote * p. 1 74), by the exterior wave issu­
ing from the edge which limits a .  For waves without 
diffusion, such as spherical waves, this domain would 
consist of the annular space between the two (viz. 
exterior and interior) sheets of the characteristic issu­
ing from that edge (see accompanying diagram). Fig. 14. 
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this case. After any given time t, the effect of a wave issuing from a 
given point 0 is, for our present problem, localized not only on the 
circumference of a circle with centre 0 and radius at, but also in the 
whole inside of that circle. 

This is also often expressed by saying that cylindrical waves­
unlike to (ordinary, not damped) spherical ones-diffuse. 

If we now take any other equation with an odd number of inde­
pendent variables, it is clear from our formula (39) that we shall 
always reach the same conclusion. 

Huygens' minor premise (B) holds for no phenomenon governed by 
a linear partial differential equation of the second order with an odd 
number of independent variables*. 

Any such equation with an odd number of independent variables 
admits of residual integrals. 

112. Moreover, a rather curious fact may be noticed concerning 
the signs of such residual integrals. Let us suppose, for simplicity's 
sake, that (E) is homogeneous, i.e. f = 0, so that we shall only have to 
deal with the surface integrals SS. It is clear that, at least for a 
sufficiently near to S, the most important part of any element of 
such an integral will be given by the highest power of I' in the 

dv denominator, therefore by the term u dv , or, more exactly, the 

part 

u V dI' �?T · dxi 
ni - 2 dv i ds 

2 . ni = - (m - 2) u Vs m 

r2 r2 

This sign is that of u, for, the 7T/S denoting the direction para-

* Duhem (Hyd1'odynamique, Elasticitef, Acoustique, Vol. n, p. 139) inquires 
whether ( e2) could admit of solutions such as o/ (r) F (r - wt) containing the 
arbitrary function F (where, on the other hand, t is supposed to be a deter­
minate expression in r). The negative conclusion which he reached may be con­
sidered as evident a posteriori by the result in the text : for (e3) admits of such 
solutions, and their existence is sufficient (see, e.g. , ibid. Vol. r, Book vu, § 2) 
to prove Huygens' principle in the sense (B). The same hypothesis for (e2) would 
therefore carry the same conclusion, which we now know to be false. 

H. 1 2  
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meters of the normal to S inside T, i.e. of the one which is directed 

d h "d h . h � dxi . . 
towar s t e SI e w ere a IS, t e sum �'Tri ds, IS negative. 

If then we had to deal with an ordinary integral, it would have 
the sign of ii on S (assuming this sign to be constant). But here the 
SS is modified by a complementary (m - 2)-tuple integral, which 
necessarily has the opposite sign. 

Now, the left-hand side must have the same sign as the values of 
u on S, if we continue to assume that the point u is in the neighbour­
hood of S. 

Therefore, for even values of m1 , i.e. for m = 5, 9, 13, . . .  , it is the 
(m - l)-tuple integral that gives its sign ; but for m1 odd, i.e. f01· rn = 3, 
7, . . . , it is, on the contra1·y, the complementm·y term that pre­
ponderates. 

But if we take the above-mentioned case of the residual integral, 
the complementary tm·rn vanishes. Therefore, if u, is positive, the re­
sidual integral is positive for equations with 4p + I  variables, but 
negative for equations with 4p + 3 variables. 

Such is, in particular, the equation of cylindrical waves. 
This is true, at least, so long as the point considered is near 

dv enough to S and the given values of 
dv 

are not too large in com-

parison with those of u. 

113. The case of characteristic boundaries. Some noteworthy 
circumstances appear when S is constituted by portions of charac­
teristics, as already occurs in the application of Riemann's method * 
for m =  2. 

Our preceding formulre remain valid in that case, as d'Adhemar 
and Coulon t pointed out, provided S still possesses the geometric 
property of cutting any characteristic conoid r having a point of a 
certain region f/l, for its vertex so as to be, together with r, the limit 
of a portion T of space. 

The transversal derivative which we systematically introduced, no 
longer satisfies, however, in this case, the condition of relating to a 

* See Darboux's Ler;ons, Vol. II (2nd edition), § 359, p. 79. 
t d'Adhemar, C.R. Ac. Sc. Febr. 1 1, 1901. Coulon ( Thesis, pp. 53 ff.). 
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direction exterior to S :  so that this derivative �� may be considered 

as taken along lines (the bicharacteristics) drawn on S itself. The 
knowledge of it is no longer distinct from the knowledge of 'U itself at 
every point of S. 

As, on account of our formulm, u and �� are the only quantities 

which we need to know on S in order to determine our unknown 
function, we see that a solution of (E) is determined by knowing its 
values on a boundary constituted by portions of characteristics (under 
the above-mentioned geometrical condition). 

Though only one numerical value is thus given at each point of S, 
such a problem has all the properties of Canchy's problem*. 

114. The interchange property. Let us take, for S, a sheet of 
a characteristic conoid r', with vertex a', and located in such a manner 
as to limit with r a domain T ;  for u, the solution of the given homo­
geneous equation 

rif (u) = O 

analogous to v, i.e. the one which is singular in a', and which is, around 
that point, of the order of 

1 
-m-2 · 
r' _2_ 

This quantity is no longer finite in T, but infinite along r' ; it is 
again, however, of a fractional order, so that if we integrate in T, the 
terms relating to the boundaries r, r' will again disappear. No 
alteration of this conclusion will be caused by the presence of the 
intersection of r and r', owing to what has been established in § 92. 
All we shall have to do, then, as before, is to isolate the points a and 
a', applying to them what we said in §§ 104, 105 ; we shall obviously 
get 

Ua = Va' • 

* This is the way in which characteristic surfaces constitute the transition 
from duly inclined ones, for which we have to take Cauchy's problem, to 
non-duly inclined ones, along which only one numerical value can be chosen 
arbitrarily. 

12-2 
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The elementary solntion does not change its va.Jue if we simultan­
eously exchange the two points on which it depends and the given 
equation with its (1djoint. 

This is the interchange relation, entirely similar to that which 
exists for Riemann's function in the hyperbolic equation with two 
variables, or the symmetry of Green's function in the theory of 
potential. It holds good, as we see, thanks to the precaution which 
we took to divide by v'i �a ! the solution singular in a. 

From the above relation, we see that the function v, considered 
as ci function of the point a (assuming x1 , x2 , • • •  , Xm to be . fixed), is a 
solution of the given (homogeneous) equation, $ = 0. 

As the two sides of the above written relation are analytic func­
tions, it may be noticed that the interchange property remains valid 
for the elliptic case*. 

* A direct proof for this would be more difficult than in the hyperbolic case, 
but, at the same time, would not present the same interest, the reason being 
that the theory of the elliptic equation does not rest on the elementary solution 
itself, but on Green's functions, which, although deduced from that solution by 
addition of regular terms, must be separately formed for each kind of boundary 
conditions. 



CHAPTER III 
SYNTHESIS OF THE SOLUTION OBTAINED 

115. We have now to prove that the function u defined by our 
above formula (39) actually satisfies all the requirements of the prob­
lem * : by which (and by which only) we shall have proved that our 
problem of Cauchy admits of a solution. This proof, of course, con­
sists of two parts : first, we shall show that the indefinite partial 
differential equation is satisfied ; then, but under a geometric assump­
tion,-viz. that S is everywhere duly inclined-we shall show the 
same for the definite conditions. 

The verification of the partial differential equation itself, which 
otherwise is not devoid of difficulty, becomes quite simple when using 
our special symbol of integration. It is immediate for the homogeneous 
equation, i.e. when expression (39) of (- l)'»i1 7rflzm1_2ua is reduced to 
its second term. For we know (§§ 87, 95) that, to differentiate this 
with respect to the a's, all that is necessary is to differentiate it under 
the symbol S S. Now, the quantity to be integrated only contains 
the a's through the factor v, which is (by the preceding section) a 
solution of the given equation. 

115 a. Now let f be =/= 0. All we shall have to concern ourselves 
with will be the ni-tuple integral 

( 43) - .-1 S_S_S_T_v j-.-dx-,1-dX_2_· -. .  -. . -d-x-m . 
We shall apply to it methods entirely similar to those of the 

classic theory of potential. 
To effect the first differentiation of this integral with respect to 

one of the coordinates a, all that is necessary is to differentiate under 
S S. For the integral thus obtained 

ov (43') SSS �Jdx1 dX2 . . . . . dxm 
uai 

has a meaning : i.e., by isolating the point a by a neighbouring surface 

* This was undertaken, for the first time, by d'Adhemar (Bull. Soc. Jfath. 
Fr. Vol. xx1x (1901), pp. 190 ff., and Thesis, Paris, 1904) at least for the homo­
geneous equation. See also his work Les equations au:.v derivees partielles a 
caractlristiques reelles, Paris, Gauthier-Villars, 1907. 
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(compare the diagrammatic fig. 12) one obtains an integral that 
approaches a determinate limit when ! approaches a. This is seen 
by following the same procedure as in §§ 104, 105. But moreover, the 
above integral is uniformly convergent, so that the error committed 
by substituting the domain of integration T' (fig. 12) for T has an 
upper limit which can be assigned without the point a being given, 
as long as it is known to be near enough to �. 

Therefore, according to a well-known argument, the integral ( 43') 
is the derivative of ( 43), even when taken in the domain T. 

To differentiate a second time, we shall again consider the surface 
�' which resolves the domain of integration into two parts, one T', 
between S and !, the other T", between � and a. 

In T', we shall differentiate directly under SS ; in T", we shall write 

-::i = - (t� + ;;) + ;�.  

The quantity (!v + !v.) gives an integral that can be differen-u.....,i uXi 
tiated under SS, the proof of this being hardly different from the argu­
ment in § 106, if we first observe that the terms of lowest degree 
in r only contain the combinations (x1 - a1), (x2 - az), . . .  ' (xm - am) : 

for, on account of this, (�r + �r) , if  expanded in powers of  these \dXi uai 
differences, again begins with quadratic terms and 

_E_ ( ov + _ ov) 
= 

� [_J_- (a v + a v) oak oai OXi oak m - 2 oai OXi 
r 2 

_ 
m
; 

2 
: (�f + �f.)] = �+31 , r2 i 

i 

r2 
the numerator Q3 beginning with cubic terms. In the coordinates s, A. 
of §§ 104-106, the integrand will therefore contain no power of s 

m 

in its denominator, but only H2+1 , as was to be proved : so that 

o ( ov ov ) (44) ':l SSS � + � dx1 uak uai uXi 
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As for the integral 
'""''"'�"=·· _,_,_,-",�"���-�· 

OV 
SSST"/ oxi 

dx1 dx2 . . . . . dxm , 

it will be transformed by Green's* formula into lsssT'' v :� dx, . . . . . rlx., + SS vj .,,-,dS, 

'Tri being, as before, a direction-cosine of the normal to � directed 
towards the inside of T' (and therefore, towards the outside of T"). 

Differentiation under SS no longer presents any difficulty, and 
we have 

= - SSST' oat oak . - - - . dxm + SS-: j7T i !v dS + R - uak 
(R being the m-tuple integral (44) taken in T") ; 
approach the point a 

or, again letting � 

. { l a2v av } 
::::::: hm - , $SST' ;:;--;;- fdx1 . . . . . dxm + $$� f7Ti ".'.lak

dS . uaidak u 
The result of the substitution of expression (43) in the differen­

tial polynomial fl is then 
-�--

lim SS�/ � Aik7Ti !v dS, 
i, k vak 

a limit which is entirely similart to that of quantity (37) in § 105, 
to which it is easily reduced. 

116. Let us come to the boundary conditions. 
Here we have to make a proper geometric assumption as to the 

shape of S. We assume that its tangent plane is everywhere duly 
inclined. We already know from Book I that if such were not the 

* We again operate as has been said in § 94. 

t The two expressions only differ by the change of into ::;-- , and by the 
oak 

fact that the Aik's are taken, in one case, at the point (.:el l x2 , . . .  Xm) and, in the 
other, at the point (a1 , a2 , . . .  a111). 
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case, our problem would not generally be possible. We even, for the 
present, shall admit that this condition is strictly satisfied : i.e., that no 
tangent plane of S shall have a characteristic direction. Such tangent 
planes, therefore , will make a finite angle with every direction of line 
which is either bicharacteristic or interior to the characteristic cone. 

If so, when a approaches indefinitely any determinate point P 
of S, the corresponding characteristic conoid will cut out of S an 
infinitely small area S0 in the immediate neighbourhood of P, the 
segments s of geodesics from a between that point and S0 also being 
all infinitely small. 

If, moreover, the surface S is a regular one, so that one of the 
coordinates admits, with respect to the others, of finite partial deriva­
tives up to a certain order p, the derivatives of s with respect to 
A.I > • • •  , "-rn-i up to that same order will also be infinitesimal. 

We have to show : 
(1) that u approaches the given value (u0)r ; 
(2) that the derivative �� in the direction of the transversal at P 

approaches the given value (u1)p . 
The first proof is immediate . The partial SS's 1n (39) do not 

differ essentially from those which we consider in (4) (§§ 104, 105) 
in order to find their limiting values : only here the surface of inte­
gration S remains fixed instead of moving towards a, the latter point 
being assumed, on the other hand, to come infinitely near S. But as 
nothing in our previous argument assumed a to be fixed, we again can 
assert that one of the SS s (39) approaches (- 1 )m1 7T' !121111_2up and 
the rest approach zero. For similar reasons, we can also say (by 
§ 96) that the SSS is also infinitely small. Our first conclusion is 
thus proved. 

117. The direct proof of our second conclusion, concerning -- , 
av 

dv 
would be more delicate. As, on account of the presence of dv , one term 

of the SS in the value of 'U is comparable to a potential of double layer, 
the classic difficulties which occur in the study of the normal derivative 
of such a potential would also appear in our proof, the intervention 
of our symbol I introducing a new complication. 
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An indirect argument will lead us rather simply to the result : it 
consists in using the fact that the conclusion wanted would certainly 

be true if S were analytic as well as the other data u, �� and f, as, in 

that case, we know by Cauchy's fundamental theorem that the prob­
lem admits of a solution, the latter being necessarily given by our 
above formula. 

But, on the other hand, we can consider an analytic surface B 
which would have with S, at P, a contact of a certain order q (this 
requiring only that S be regular up to that order). Similarly, we can 
consider two analytic functions u0 and u1 of the coordinates of an 
arbitrary point M of S having, with u0 and ii1 (values of these quanti­
ties for the point M corresponding to M), a contact of order q at P, 
and an analytic function f having with f a  contact of the same order. 
If we should replace S by S, f, u0 , u1 by f, u0 ,  u1 , thus changing 'U to 

u, the convergence of �� towards (u1)p would be certain. But on the 

other hand, when a approaches P, we know that our domains of inte­
gration become also confined to the immediate neighbourhood of P 
and that, in such regions, the surface S and the functions f, u0 , u1 
have with S, f, u0, u1 respectively infinitely close neighbourhoods of 
order q. Therefore (by § 109) if q is great enough, the difference 

dv - �� approaches zero and �: also has the limit u1 (P). 

118. An analogy with ordinary potentials.-The limiting value 

a' 

u0 (P) is obtained by the applica­
tion of our formula to the small 
conoidal domain T constructed by 
means of a, on whatever side we 
let a approach S (fig. 15), and 
this limiting value is thus the 
same on both sides. But it must 

Fig. 15. be noticed that, when passing from 
one side to the other, the sense on the normal must be changed on 
account of the rules of Book II, § 38, and so must be as well the 
sense of the transversal v. If we kept the same sense on v in both 
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cases, the value of the SS would at once change sign when crossing S: 
a discontinuity which is obviously similar to that of ordinary surface 
potentials. This analogy, which with others of the same kind (see 
further on) was pointed out by Volterra (Congress of Rome, 1908, 
vol. II, p. 90), is completed by the fact that on S itself, the SS takes 
the value zero, which is the arithmetical mean between the two 
aforesaid opposite values. 

1 19. The case of a characteristic boundary . It is obvious that 
the success of the above verifications essentially depends on our geo­
metrical hypothesis concerning S, it being necessary for them that 
the intersection of the characteristic conoid with S be reduced to an 
infinitely small area around P, when a indefinitely approaches the 
latter point. 

We must expect to meet with quite different circumstances when 
that geometrical condition is no longer satisfied, which will occur as 
soon as S ceases to be duly inclined. 

It is remarkable-though to be foreseen by what we already know 
concerning the case of analytic data *-that our verification yet suc­
ceeds in a case where the area S0 no longer becomes infinitesimal in 
every sense : we mean the case (intermediate between duly inclined 
and not duly inclined surfaces) of S being a characteristic. 

As we have seen in § 1 13, the data are then reduced to the value 
of u alone at each point, so that (nothing being changed of course, as 
to the indefinite partial differential equation itself) there is only one 
kind of boundary conditions to verify. 

This verification, however, presents some peculiar difficulties, 
owing to two circumstances. 

One of them is that which we just mentioned, and was noticed 
by d'Adhemar (see Rendic. Gire. Mat. di Palermo, vol. xx. p. 143 
(1 909)); it was to be foreseen by remarking that our present case 
is intermediate between the considerations of §§ 1 1 6, 1 1 7  and those 
which we shall meet with further on. Let us suppose that we 
have to deal with the equation of cylindrical waves (with ro = 1 ), 
so that r is a circular cone having a right vertex angle, and also that 

* We have obtained in § 64, Book II, the construction of the solution when 
1t is given along a characteristic conoid. 
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S is a plane of characteristic direction, that is making with the t-axis 
an angle of 45°. Then, the latter will no longer cut r along an ellipse, 
but along a parabola (fig. 16), which, when a approaches S, no longer 
reduces to a point but to a whole line, viz. one-half of a generatrix of 
r, the volume included between s and r being (for any position of 
a not on S) indefinitely extended in one direction. Secondly, as is 
seen by the above example, a regular characteristic S is not sufficient, 
by itself, to constitute, with r, the complete boundary of our domain 
r. In order to enclose a volume, it would be necessary either (as in 
our abo.ve instance) to introduce a second surface S', such as a second 
characteristic plane cutting the first (see fig. 16) ;  or, to assume' that 
S has a singular point (being itself, as in Book II, § 64, a charac­
teristic cone, or a kind of polyhedral angle with characteristic faces, 
etc.). A general proof ought to take account of all those possible 
singularities *. 

. . .. . 
. . . · . .. .. . . . . . . . . • • Q • • • • • l 

Fig. 16. 

Limiting ourselves, for simplicity's sake, to m = 3, we shall, in the 
first place, suppose that our boundary consists of two intersecting 
regular characteristics S and S' ; and, letting a approach any given 
point P of S, we have to prove that the quantity u given by (39) 
will approach the given value (u0)p. It is useful to observe that this 
is equivalent to proving that the problem has a solution t (as this 
solution cannot be other than (39)). 

* The proof of d'AdMmar (Rendic. Gire. Mat. di Palermo, loc. cit. ) concerns 
the case where 8 is a characteristic cone. 

t The importance of this lies in the fact that we have (see below) to change 
variables, after which only our verification will be done. That the same verifica­
tion would succeed when using the original variables, would not be evident 
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By means of a suitable punctual transformation, we can assume S 
and S' to be two coordinate planes x = 0 and y = 0, all the planes 
x = const. hecoming characteristics, and even in such a way that the 
corresponding bicharacteristics are parallels to the y-axis and the x­
axis, the y-axis itself going through P. We also admit that the use­
ful portions of the planes S and S'-i.e., the portions which bear the 
data-are the positive ones. 

It is easy to ascertain that the general disposition of the diagram 
will be the same as in the above special example. Let us denote by 
x, y, z the coordinates of any point ; by x0;y0 , 0 the coordinates * of a, 
through which we draw a parallel to the y-axis which will be a bi­
characteristic. In the neighbourhood of any point (x0, y0 , 0) of this 
line, we can expand r in powers of x - x0 , z, the coefficients being 
functions of y. By remembering : 

(a) That r = 0 touches the plane x = Xo along the line z = 0 ; 
(b) That it is situated, with respect to this plane, on the side 

of decreasing x's ; 
(c) That r > 0 corresponds to �he inside of the conoid and, 

therefore, r < 0 at points such that x = .'Vo , z i= 0, 

we see that the expansion must be of the form 

( 45) r = n (x0 - x) - Nz2 - 2N1 (x0 - x) z - N2 (x0 - x)2 + . . .  
(where the dots stand for terms of higher order), both coefficients n 

and N being positive. The first of them, but not the second, vanishes 
at a itself and is, in general, practically proportional to (y0 - y). 

Equa.ting ( 45) to 0 and making x = 0, we evidently obtain a kind 
of parabola having P for its vertex and z = 0 for its axis, which flattens 
along the latter line when x0 becomes 0. Any line y = const. cuts that 

curve in two points z = a ±  v /3, denoting by a and f3 two expansions 

without showing that expression (39) remains invariant (or invariant but for a. 
proper factor) for such transformations. Such a proof is avoided by the remark 
in the text (the existence of a solution evidently being an invariant property), 

and even the invariance of (39) could, if necessary, be deduced from our argu­
ments . 

• The assumption z0 = 0  does not restrict the generality, as we can take P 
variable with the position of a, replacing it by another point P' situated on the 
same para.lie! to the x-axis as a, and letting P' finally approach P like a. This 
would require a \'ariable translation of the axes, but this is immaterial. 
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in powers of x0 without constant terms. The theorem of factorization 
(see p. 112  and corresponding footnote, which again applies to our 
present case) shows us that we can write 

(46) r = [,8 - (z - a)2] G (x, y, z, Xo ,  Yo), 

where G is another expansion in (x0 - x), z having N for its constant 
term. 

This being understood, we come to the determination of the limit­
ing value of ua , viz. (the S's being here replaced by ordinary f's) 

(39') "• = _ _l_ [ - JJ J fvd.xdydz + ff( u � > v  � >  Luv ) dS J . 
By exclusively considering the case m = 3, we get the advantage 

of not meeting with any difficulty concerning the valuation of our 
symbol j. This is clear, in the first place, for the space-integral in 
the first term, which, v being only infinite of the order !, has a mean­
ing in the classic sense, and becomes infinitely small at the same 
time as the volume of integration. 

In the double integral, an infinity of order % occurs only in �v , av 
and can be eliminated with the help of an integration by parts. For, 
on S, the direction v being parallel to the y-axis, we can take dv = dy 
by setting down dS=Kdydz, 
K being a proper function of y, z ;  and similarly on S', we can take 
dv = dx with dS = K'dxdz . 

Therefore, the double integral 

(except for the factor 2�) 
. . d }ju d� dS relating to S will be 

, Ku�� dydz = fdz jKu�; dy = fdz [<Kuv) - f  v o (�u) dy] . 

The limits of integration, for any given value of z, will be given 
first by the edge of our dihedron (i.e., a segment Q1 Q2 of the z-axis) 
and by the characteristic conoid. But the term corresponding to the 
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latter limit has a fractional infinity and has, therefore, to be cancelled : 
so that the value of the integral on S in (39'), multiplied by - 271", is 

J· Q2 ff( (K ) ( 47) - J{ uvdz + - J( oi. - --tJy - - KLu vdydz ,  

the simple integral being taken along the z-axis. In this way, every 
infinity of order higher than ! has disappeared. 

Moreover, the value of v is 

V Vo JT · 'I, 'lJ = vr = vr + l 'V + . . . .  
In the first term-obviously the only one which can give anything 
else than zero in ( 47)-we shall replace r by the value ( 46), the first 
factor of which can also be written 

- (z - z1) (z - z2), 

z = z1 and z = z2 denoting the intersections of any parallel to the 
y-axis with the characteristic conoid with vertex a, so that z1 and z2 
are functions of y ( x being zero) and the coordinates of a. 

In this way, the simple integral along Q1 Q2 becomes 

Jz� Ku Vdz -
Z1 v(z :.. Z1) (z2 - z) v G 

and, when a approaches P and therefore Q1 Q2 becomes infinitesimal, 
such an integral is practically equal to 

j{O UO vo f Zj dz 
(4S) - - ,,/ N° z, �(z --- z1)�2 :_ z) 

(Ko, u0, V0, 1V0 denoting the values of the quantities K, i1,, 1� 1V, at 
the origin of coordinates), the limit of which may be written im­
mediately, the last factor being, as well known, always equal to 71". 

The same treatment obviously applies to the double integral ; by 
writing it 

and operating on every simple integral relative to z, ( 47) is thus found 
to approach the limit 
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We operate quite similarly on the integral relative to S', only 
with the simplification that there is no simple integral like that in 
(47) (the corresponding segment approaching zero) : the correspond­
ing limit will be ]('0 1,1,0 vo 

7T' --_ _ _ ,- - • ,,/Ji.Tu (48 b) 

The question is whether the sum of (48), (48 a) and (48 b )  is equal 
to 27rUp . The method for answering it is well known from the Cal-

culus of Variations : we remove �u under J by means of an integra-uy 
tion by parts, which being done, the value of our sum will be the 
expected one if : (a)  after that transformation, the terms in u vanish 
at the same time under J, so that no integral whatever is left * ; (b) the 
terms in u0 also cancel each other ; ( c) the coefficient of up is equal to 27T. 

These conditions are sufficient ; but-on account of the fundamental 
Lemma of the Calculus of Variations-it is well known that they are 
also necessary. The consequence is that, in the present case, we can 
assert a priori that they are satisfied, and need no calculation for that. 
For we have seen in Book II, § 64, that our problem has a solution 
(and, therefore, the present verification must succeed) whenever the 
data are analytic. Thus, the sum of the quantities ( 48) to ( 48 b) 
reduces to 2?Tup for every analytic ii, and this cannot be t otherwise 
than by our three conditions above being satisfied. 

120. The direct investigation of (48), (48 a) and (48 b) is however 
interesting in some respects and deserves to be undertaken. It, at 
first, seems to meet with an insuperable difficulty on account of the 

* In other terms, we must have identically (for x=z=O) (��(+KL) :�=2ty (��) · 
t The fundamental Lemma continues, as is well known, to apply when the ar­

bitrary function mentioned in its hypothesis is required to be analytic. The argu­
ment seemed, at first, to assume S (or S') itself to be analytic ; but, in the contrary 
case, we could substitute instead of S, another analytic characteristic having a 
contact of an arbitrary order with it in one point of our y-axis (and consequently, 
on account of known properties of partial differential equations of the first order, 
all along that bicharacteristic), which substitution (as in § 1 17) would not change 
the results. The hypothesis of analyticity of S is therefore immaterial. 
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fact that the values of V along the bicharacteristic are deduced (by 
means of lll ) from those of the second derivatives of I', and the latter 
depend on the general integration of the differential equations of 
geodesics, or at least, of the corresponding " variational equations *." 
In the present case, nevertheless, the values of V,-which, on the 
bicharacteristic, reduces to V0 ,-can be found by a quadrature. The 
reason for this is that, though not knowing all the geodesics in 
general, we implicitly assume (by our very choice of coordinates indi­
cated above) that we know the geodesics of -zero length (i .e. bicharac­
teristics)t. 

To obtain such an expression of V0, we shall complete the simpli­
fications in the preceding section by means of Book II, § 50. 'Ve 
have seen there that, coordinates being chosen as above, the homo­
geneous partial differential equation can be (changing the unknown 
if necessary) taken in the form 

02'lt (E) 2 � - 3-'i (it) = 0, utcuy 
9'1 including no differentiation with respect to x (and the adjoint 
equation will be of a similar form). 

This being assumed, and taking also account of our above assump­
tions as to the axes of x and z, the characteristic form A will be, 
denoting by a, /3, ry the variables, of the form 

A = 2af3 - "Ary2 

(where the coefficient "A must be positive, in order that we have only 
one positive square), which gives for the discriminant A the value "A. 

'Ve now proceed to the determination of the coefficients n and N 
* See Additional N otc to Book II. More precisely, as we shall see there, Y0 is  

(on account of equation (37), § 59) connected with the Jacobian J. 
t 'Without insisting on this point-which I perhaps shall do at another time­

r simply point out that we ultimately have an application of the well-known 
theorem that the integral of a linear differential non-homogeneous system can be 
found by quadrature when the general integral of the corresponding homogeneous 
system is known. The linear system here considered is constituted by our varia­
tional equations, one of them being replaced by the (variational) relation deduced 
from the theorem of vis-viva, the right-hand side of which has to be taken as 
zero when bicharacteristics alone are concerned, and to an arbitrary constant for 
the study of geodesics in general. 
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in ( 45) (in terms of y ). 'Ve, for this, only need to su bsti tu te ( 45) in 
the partial differential equation of the first order for r, 

A (or �� , or)
= 

4r. 
ox ' oy oz 

Denoting by. accents any differentiations with respect to y, we get 

2 [ - n + 2N1 z + 2N2 ( X0 - x) + . . .  ] 
x [ + n' {x0 - x) - N' Z2 - 2Ni' (x0 - x) z - N2' (x0 - x)2 + . . .  ] 

- 4A. [Nz + N1 (x0 - x) + . . . ]2 
= 4n (x0 - x) - 41Vz2 - 8N1 (x0 - x) z - 4N2 {x0 - x)2 + . . . , 

dots still denoting terms of higher order. We shall obtain the required 
result by equating the coefficients of (x0 - x) and also the coefficient 
of z2, this giving 

- 2nn' = 4n, 

2nN' - 4A.N2 = - 4N. 

The first relation gives ( n necessarily vanishing at a) 
(49) n = 2 (y0 - y). 

We have then for N 

(49' ) - N' (y - Yo) + .1V - A.N2 = 0, 

an equation of the Bernoulli type, one solution of which only is finite 
at a, viz. 

(50) Yo - y  
1V = ---'Y • 

I "Ady 
• Yo 

This first result being attained, we now can obtain the quantity 
Jl[ (§ 49) : its expression is reduced to 

02r 02r , = 2 -- - "A - = - 2n + 2"AN oxoy OZ2 
or for x = x0 , z = 0 (every other term vanishing as both r and 
oz 

are 

zero along that line). But taking account of (49), (49'), this gives 

21V1 .Llf = 4 + 2"AN = 6 + N (y0 - y ). 

H. 13  
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Therefore, by its definition, Book II, § 62 (in which s = Yo - y), 

V0 = const. v ]{ = V N, 
the constant factor being 1,  as both V0 and V N are equal to V"A at a. 

121. Let us now come to our above formulm ( 48) to ( 48 b ). If  
we take account of the above value of A and the equalities (relative 
to S) 

71"1 dS = dydz, 

the definition of v shows that ]{ = 1 .  As to L, it is equal to 0, as 
defined by formula (7)  in Book II, § 40. Thus, as we had to show, 
no integral remains in ( 48 a), which reduces to 

(51) - 271" (Up - n°), 

while ( 48) gives - 7rU0• 
The only term yet remaining to find is ( 48 b ). But, just as above, 

we see that K'0 is, like K0, equal to 1, so that ( 48) and ( 48 b )  are 
found to cancel the second term of (51)  and the verification is 
performed. 

*122. Our required conclusion being thus established, this implies, of course, 
the original form (§ 1 19) of the result : it can be said, with the notations of 
§ 119, that the limiting value of the double integral over the :first characteristic 
(containing P) is [ (K V J - rr  2itp -

v�v )0 , 
K being such that*, for any q,, 

<!</>. dS = K �</> dy dz dv C!J ' 

and .N being the coefficient of z2 in the expansion of r. The conclusion, under 
this form, holds if S is no longer assumed to be a coordinate plane (the plane 
:r =0 being, however ,still assumed to be tangent to S along the y-axis) : the ratio of 

K to y N is, of course, independent+  of the choice of the second Yariable z (which 
will then be a. curvilinear coordinate) on S. 

--···----------------
'()2u • K (and so would be also K' in (48 b)) is equal to the coefficient of 2 m 

the equation (as is seen in the same way in § 120) .  
t This can be verified in a direct way : for if a new variable Z be introduced 

in the place of z, the variable y remaining the same at least on z = O, this Z will 
reduce practically to yz +fjy + a  (a, (3, y, constants) in the neighbourhood of any 
determinate point of our y-axis and both K and N will be divided by 'Y· 



CH. III] SYNTHESIS OF THE SOLUTION OBTAINED 195 

*123. If we now come to the case in which S, instead of consisting of a 
dihedron, would admit of a singular point 0-which will be taken as the origin of 
coordinates-we shall be able to overcome the difficulties which are special to it 
by bringing it back to the preceding case, under suitable geometric assumptions. 

'Ve begin by observing that we can no longer admit S to be a coordinate 
plane (as it is singular at 0), so that we are compelled to operate as said in the 
preceding section. But we shall admit that the characteristic which will be 
taken as a coordinate plane leaves the whole of S on its positive side. We further 
admit that S can be generated by regular lines (A.) issuing from the point 0, each of 
which will be, in the neighbourhood of this point, directed in the sense of x 
increasing, so that, if the coordinates x, y, z be expressed as functions (of course 

regular) of the arc s, we have 1Ji � 0. Moreover, as some of these lines (A.) make 

infinitesimal angles with x=O, we shall again consider the planes y = const., 
which will still be assumed to be characteristics, and we admit that, () being a 
certain positive angle, the tangents to any of the lines (A.) (in the neighbourhood 
of 0) make an angle greater than () with at least one of the planes x - 0, y = O. 
Therefore, if we cut S by a characteristic plane '!J=E, E being a small quantity, 
the portion S2 of S adjacent to 0 bounded by that plane and the half conoid 
from a will intercept on each line (A.) an arc less than a length u which we can 
take as small as we wish by taking E sufficiently small (and a sufficiently near P). 

A part of S2 will consist of a portion S2 of our nrst characteristic (at least 
an angular portion to which the bicharacteristic OP will be interior) ; the remain­
ing part will be denoted by St. 

x, y, z will be continuous in both parameters A. and s :  we shall admit that 
they are regular in s : 

(52) 

Of course, all the coefficients �h ' T/h, (h will be continuous in A. ;  but their 

derivatives or �� ,  �f ,  
oA. 

may have a finite number of discontinuities of the first 

kind (values of ��h ,  • • •  existing on both sides of the discontinuity, but being 

different from each other). The sum ( 1; l 2 + (: l 2 + ( �� l 2 will be different 

from zero so that the angle between two consecutive lines (A.) will be of the same 
order as the difference of the corresponding values of A.. 

* If the lines (A.) are bicharacteristics, the second term alone will exist. This 
will occur in d'Adhemar's case where S is a characteristic conoid ; our operating 
mode in the text is necessary in order to treat other forms of S2 , such as a poly­
hedral angle, the part S2' of which is a regular characteristic. 

13-2 
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On account of the above, the quantities Tri dS will be, on S2 , the products of 

cl>..ds by functional determinants such as ·� t�'. :� , . . .  which all contain s as a 

factor. The superficial element will be of the form Hscl>..ds, where H is finite, 
but also everywhere different from zero and consequently greater than a fixed 
positive number. 

124. This being understood, let us take the double integral in (39') : (a) over 
the part 81 of S which corresponds to y > £ ;  (b) over S2 • The limiting value of the 
first integral will be (as found above) 

(53) 
(Kiw) - 2 Trnp + Tr  --- . 

ViV x = O, z = O, y = e  

On S2, we begin by observing that the transversal direction v is tangent and 
therefore, for any </>, 

where a and (3 are regular functions of X and s, the second of which again contains 
s as a factor*. 

As to the given values of u on S2, let us assume that they have finite first 

derivatives, the derivatives �� vanishing with s ;  and also, to begin, that u itself is 

zero at 0 (therefore, that I u I admits of an upper limit proportional to s). Then, 
in our integral, which is to be written 

ff [ ( ov) ( au. au) J u a oX +{3 os - v  a oX +{3 os 
- Luv dXds, 

CV 
we transform the terms in os and oX 

by Green's formula. 

The simple integral along the intersection of S2 with r is to be cancelled as 
above. The term along the intersection with y = £  cancels the corresponding 

* To express these coefficients, we can remark that on account of the 
assumption that s is the (ordinary) arc of (X), the quantity 

ox o2x 0.1J o2y oz ()2z 
�os ox os + os a>:as + os ox cs 

is zero. We then obtain the required values if we multiply the equations 

dx 1 oA ox ox dy _ 
J; = 2 � = a ·ox + f3 cs ' a.; - · · ·  

(in which w e  have taken dS = cl>.. ds and the Tr's accordingly) by --� , 'iJl,  � or by I) I\ t1A VJ\ 
ox 'Oy o: 

Th 
. � ,  i' , ,  (1 5 • e two results bemg of the orders of s2 and s respectively, we get 

the order of magnitude in the text. 
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term of (53) (as the coordinates A. and s could be as well used in the part of S1 
adjacent to S2') * s=O should be considered, in the present case, as being a part of the boundary, 
but the corresponding term vanishes as u is assumed to be zero with s. 

There remains, therefore, to evaluate simple integrals of the form 

(54) f !Hds hitvds= (."J) yr 
(where (s) is a value s contained in the interval of integration and H a finite 

quantity) along lines A. =  const. (corresponding to discontinuities of af ,  . . . such 

as edges of the polyhedral angle, and situated on S2") and double integrals 
such as 

JJHudA.ds ff
H

� 
dA.ds 

J
JH/3 �dXds 

yf ' yr ' y� 
where B is again finite and the factor s again appears in the numerator under the 

integral sign on account of the presence of one of the factors u, ax , {3. 
We now remember the expansion of r, as written above, viz. 

( 45) I'=n (x0-x) - Nz2- . . .  = 2 (y0 - y) (a,·0-x) -Nz2- • • •  

or (as every term not explicitly written contains either (x0 - x) or z2 as a factor) 

r=2y0 (Xo- x) -Nz2, 
A A 

where y0 and N stand for quantities which differ but infinitesimally from y or N 
respectively. We have, in the first place, to substitute this for r in the 
simple integrals (54), which all relate to lines belonging to S{ and, therefore, 
making a finite angle either with the plane x=O (i.e. 6> �1'> 0) or with the 
plane z=O (i.e. I (1 1 > (1'> 0), �1' and (1' being constants. 

The first case will always occur if the coefficient �2 in the expansion of x in 
N( '2 

powers of s is negative and algebraically smaller than - + :  for, if so, the 

coefficient �1 must be greater than a fixed positive number + and so will be 

ds for a sufficiently small s. 

I'= 0 l' = O  
Fig. 17. 

* The part of the intersection of S and 
y = E contained in S2 lies entirely in S0', for x0 sufficiently small, the relative disposition 
of S2 , r=O, '!J=E being such as shown in the 
accompanying diagram. 

t If lines (A.) exist such that N(1'2 �2< --2-
and �1 approach zero, they would have (by 
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In this first case, denoting by 81 the value of s which corresponds to the inter­
section of (X) with the conoid, the integral will be of the form 

J
·s1 JI d8 

o v'2;0 ( �1
-
+ . . . ) v 8 - 81 

' 

that is, less than 

with H1 finite. 
125. In the ::;econd case, taking account of the inequality �2 > - - (1'2, the 

expansion of r in powers of s will contain a negative term in z2, the coefficient 

being numerically greater than the fixed quantity � (1'2• If we begin by cancelling 

the factor (s), we see, by the theorem of factorization, that the remaining factor 
in the integrand is the quotient of K d8 (with K finite) by the square root of a 
quadratic polynomial in s with - 1 as coefficient of s2, the integral being taken 
from zero to a root of the polynomial. Such an integral (in which the indefinite 
integral is an arc sin) is always smaller than Krr. If we take account of the 
factor (s), (54) will therefore be infinitesimal when f and x0 are very small. 

The evaluation of double integrals such as (54'), when extended over St, is 
immediately deduced from the above by integrating expressions like (54) with 
respect to X. 

· 
On 82 , we shall operate differently and again introduce y and z, in terms of 

which we may admit that we have expressed* x. The element 8dA.ds only differs, 
as we have seen, by a finite factor from the superficial element of 82', and there­
fore, from dydz. On the other hand, the coefficient of z2 in the expansion of x 

Bolzano-,Veierstrass' theorem) a limiting position such that �1 =0 and 
N({.i �2 � -2- ,  

which is contradictory to the assumption �: � 0. Similarly, if, with 

N(1'2 
2 

it could happen, for ::;nitable values of X and 8, that ds could approach zero, 
either s would remain greater than a fixed quantity s1 , and this could be excluded 
by taking f and .i·0 suitably small ; or it might approach zero-but this is 
impossible, as we have just seen that �1 must remain greater than a fixed 
number. 

• If S2' belongs to a regular characteristic, we can take x = O ; if to a charac­
teristic conoid, :c will be a function of y and z, the derivatives of which are dis­
continuous at 0 but remain finite and vanish on the y-axi8. 
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(for any fixed y) is necessarily positive*, so that, expanding in the same way, the 
coefficient of z2 is numerically greater than .N. Therefore, again, the integrand is 
the quotient of a finite quantity ]{ by the square root of a quadratic polynomial 
in z with the coefficient - 1  for z2, so that the integral relative to z is constantly 
less than K'lf'. Integrating with respect to y, the result is again infinitesimal 
With E. 

. 

The integral over S., being thns the sum of infinitesimal quantities and a term 
which disappears with the second term in (53), our conclusion is proved as far as 
u is admitted to be zero in 0. 

But the latter hypothesis does not restrict generality : for we can begin by 
taking a first set 1t' of values of 1i (different from zero at 0), coinciding with the 
values of a given solution of (E), for which, therefore, the verification must 
succeed, as we know beforehand that the problem has a solution, and set down 
u = 1t' + 1t", where u" is zero at 0 and can be treated by the above analysis : so 
that onr proof is complete. 

For m = 5,  7, . . . we must expect to meet similar calculations, with 
some more complications, especially on account of the intervention of 
the symbol I : a subject on which, however, we shall enter into no 
further detail. 

126. A non duly inclined boundary. It is clear from the above, 
that the success of our synthesis in the preceding case depends on 
quite special circumstances : these will no longer occur if S ceases to 
be characteristic, so that its tangent plane at any point cuts the 
conoid from the same point along two distinct generatrices ; and, in 
the first place, the area of integration 80 will not be any longer 
infinitesimal even in one of its dimensions. 

If, for instance, the partial differential equation being ( e2), S 
should, as in § 25, consist of an area in the xy plane, the lateral 
surface 81 of the cylinder having this area for its cross-section, this 
would enable us to calculate, by (39), a value of Ua throughout the 
volume thus enclosed-whatever the given distribution of values of 
u0 and it'l at the various points of S is-and this quantity 'll would 
satisfy the partial differential equation. But, if we let a approach 
any determinate point P of S, there would be no reason why ua should 
approach u0 (P), as is seen by mere inspection of the accompanying 
diagram (fig. 18). 

* If S is a characteristic conoid, it even increases indefinitely with l/y, as does 
the curvature of the surface. 
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We thus find, as we have already said in §§ 23 ff., that Cauchy's 
problem is in general insoluble in this case ; and we indeed can im­
mediately write an infinity of conditions of possibility (quite similar 
to conditions (8), § 15) by now taking a outside our cylinder (fig. 
18 a). If a is so chosen, there is no longer any singular point of the 
conoid inside the domain of integration T and the result of the appli­
cation of the fundamental formula (/ being, in the above example, 
assumed to vanish) is, as we saw in § 104, reduced to 

SS ( , dv - v 
dv + Luv) dS = 0 ; 

so that no solution can exist if this equation is not satisfied for every 
position of a outside the cylinder. 

s 
a 

I I 

Fig. 18. 

rt 
/\ 

r I ', I I 

s 
Fig. 18 a .  

This case, therefore, does not giYe a correctly set problem. But 
it is nevertheless important to notice, as corresponding to Kirchhoff s 
and Volterra's proofs of Huygens' principle in the most general of the 
three senses spoken of in § 33 ; that is, what we call proposition (C). 
Let us imagine, for that purpose, that we investigate our phenomenon 
outside a certain closed curve of the xy plane,-so that the region fJi 
where we want to determine u is situated on the positive side of 
t = 0 and outside the cylinder � which has u for its base,-and that, 
the medium being initially at rest (so that the quantities u0 and 'll1 
are zero all over the xy plane), certain disturbances are produced 
inside u. As the motion thus generated satisfies ( e2), the correspond­
ing value of u has the expression * (39), which, in the present case, is 

• The explicit expression corresponding to that case is giYen below, § 131.  
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reduced to integrals extended over 

Fig. 19. 

grated as in the next Book. 

As the region of in tegration 
on 71 is constituted (compare 
fig. 1 9) by points (just or 
well) within wave with a, this, 
as Volterra notes, comes back 
to representing the motion 
as produced by disturbing 
centers properly distributed 
over � ; and Kirchhoff's 
method is a quite analogous 
one for ( e3), assuming the 
latter equation to be inte-

It is clear that every phenomenon governed by a hyperbolic 
equation with three independent variables would allow such a form 
of Huygens' principle to be presented. 

This fully illustrates the necessity of the distinctions which we 
established above between various formulations of Huygens' principle : 
we indeed see that our formulffi may be considered as proving the 
accurateness of that principle, if we take it under the form (0),-as 
they actually are, for instance, in Volterra's fundamental Memoir of 
the Acta ]Jf athematica, t. xv111,-while we have seen, in § 1 1 1 , that 
they prove that same principle to be false in the formulation (B). 

It may be added, on the other hand, that a difference-though a 
less essential one-also exists between the proposition (0) as proved 
by Kirchhoff or Volterra, and Huygens' own conception : for a 
fundamental character of the new disturbances by which Huygens 
replaces the initial one issuing at t = 0 from the point 0 is their dis­
tribution over a surface of a sphere having 0 for its centre, which 
represents the front at the instant t = t', of the waves emitted by 0 
at t = 0 : while Kirchhoff's or Volterra's fictitious disturbances are 
distributed over any closed surface surrounding the initial centre. 

127. Some indications on the exterior problem. The case of a 
non duly inclined boundary was treated by V olterra from another 
point of view, introducing what the Italian geometer calls the 
" exterior problem." 
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It concerns the case where the domain of integration T1, instead 
of lying inside one sheet of the characteristic conoid from a (with a 
boundary constituted by portions of that sheet and of S), lies outS'ide 
the conoid and is bounded by both its sheets and portions of S (fig. 
20) : it happens then, at least in the most obvious examples, that S is 
nowhere duly inclined (which is not the case for the interior problem). 

Such a problem behaves quite differently from the other one, this 
being a consequence of the conclusions of § 97. Let us operate on 
the domain T1 as we did previously on T, applying the fundamental 
formula to the unknown function u and the elementary solution (with 
pole a), in which solution v we only change the sign of r so as to 
make it positive outside the conoid : everything behaves as in the 

a 

Fig. 20. Fig. 20 a. 

preceding operations, so that we shall have an SSS over T and an 
SS over the portion S0 (which is an annular one) intercepted on S 
between the sheets of the conoid. But if we again construct the small 
surface � which is necessary to cut out the neighbourhood of a, the 
limiting value of the corresponding improper integral will no longer 
contain as a factor the finite part of the volume of the hyperboloid of 
two sheets, but the finite part of the volume of the hyperboloid of 
one sheet, and this is zero, as we have seen in § 97. Therefore, no 
term corresponding to the singularity in a is to be inscribed, and the 
formula reduces to 

(55) SSS v/dx1dx2 · · · dxm + SS (u�: - v �� - L uv) dS= O. 
It no longer determines the value of u.a , but, containing only 

the data of the problem, represents a condition of possibility for it. 
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'\Ve can thus obtain an infinite number of such necessary conditions, 
by taking the point a arbitrarily inside S. But, of course, we can still 
obtain other ones as we did in the preceding section, by taking a 
on tside S (fig. 20 a). 

Other quantities must be substituted for v in order to obtain the 
required singularity in a, leading to the expression of Ua . l\iloreover, 
the question of finding such a v is no longer a determinate one, pre­
cisely because the problem is no longer well set and therefore the 
solutions, if any exist, can be written in an infinite number of ways in 
termsofthedata(bycombination with the conditions ofpossibility(55)). 

Volterra uses the expression 

J0 d0 t - t  log (1 - 02) . -,--·-· . + log r. arc sin --0 
o v l - 02 r 

with 0 = 
t - to , the useful singularity of which is again a whole line, 

parallel to the t-axis. If we operate on it as we did on (2), i .e., differ­
entiating it with respect to t0 , we find 

I 
log (r2 - (t - t0)2\ . 

- (t - t0)2 r ) 
\Ve see that the latter still admits of the singularity r = 0 ;  but 

such a fact is by no means abnormal in the present case, on account 
of the aforesaid necessary indetermination of our expression for the 
solution. 

The determination of analogous quantities for the general hyper­
bolic equation would depend on the general study of such kinds of 
singularities (algebraico-logarithmic on a characteristic conoid and 
logarithmic on another variety)*. 

128. Another kind of generalized surface potentials. Let us 
come back to the interior problem, but still assuming that S is not duly 
inclined. The expressions 

(56) 

(57) 

ggu1vdS, 
dv SS u dv dS, 

* The indications in my :Memoir of Acta .Math. Vol. xxx1 (p. 367) are 
erroneous. 
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again behave like surface potentials of simple or double layers, as 
they did in § 1 1 8, but with somewhat different characters. The 
domain of integration for an ordinary surface potential extends over 
the whole surface, independently of the location of the point a at 
which the potential is calculated. In the case of § 1 1 8, the area of 
integration S0 becomes infinitesimal when a approaches S. In our 
present instance, the behaviour of S0 is an intermediate one : if we 
take, for example, equation ( e2), S containing a plane parallel to the 
t-axis, S0 is the inside of a branch of hyperbola, the intersection of 
the plane with a sheet of cone of revolution (fig. 21) ,  and, when a 
comes on the plane, the hyperbola reduces to its asymptotes and S0 
to the angular space between them. 

Fig. 21. 

As it happens in the ordinary theory of potential, the expressions 
(56), (57) continue to have a meaning when a is on S. This is to be 
seen *, as concerns (56), by operating as in § 104, i.e., referring S to 
lines L from a, each of which is characterized by giving the values of 
m - 2 parameters A.1 , A.2 , • • • Xm-2 , a point being defined on it by t 
an ( m - 1 )th parameter s. The factor sm-2 in the denominator will be 

* In the present section we gh•e the arguments briefly. The reader will 
complete them easily, as being combinations of the above methods with those 
which are known in the classic theory of potential. 

t \Ve can admit that the expressions of the x's on (A.) are tangent to the 
corresponding ones on the geodesic which touches (X) in a, so that points taken 
respectively on both lines with the same value of s lie at a mutual distance of 
the order of s2. 
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cancelled by a similar one in the expression of the superficial element 
of S, so that things behave as in § 104. l\:loreover, the convergence 
is uniform with respect to the location of a on or outside S, so that 
( 56) remains continuous. 

In (57), the denominator contains sm-1 as a factor ; but (as for the 
ordinary potential of a double layer) a supplementary factor s appears 

in the numerator on account of the presence of �� :  for the latter 

quantity would be zero (§ 58) at any point x of S, if the direction 
v were transversal to the geodesic ax, and this is approximately 
the case when x, varying on S, approaches a, as v is transversal to the 
coordinate line p,.) which passes through x and makes with the geo­
desic an infinitesimal angle of the order of s. 

When a is taken near a point P of S, but outside S, the factor �: 
is no longer infinitesimal for points x neighbouring P, so that the con­
vergence of (57) is not a uniform one and that integral is discon­
tinuous. 

Let us examine its mode of discontinuity. 
For this purpose, let us admit, in the first place, that S is a locus 

of geodesics from P (the initial directions of which are of course all 
in the same (m - 2)-dimensional plane, so that S is regular), and 
consider any function tt, coinciding with the given one on S, but 
defined and regular also on tside S :  let f be $ ( u ). Let us associate 
with S, if necessary, another (duly inclined) portion of surface S' so as 
to enclose, together with one of our half-conoids, a portion of space 
T, as in fig. 18 or 18 a. To such a domain, we apply our formula with 
the successive hypotheses that a lies on one side of S, on the other 
side and at P. In the first case, the sum of integrals SSS and SS is 
equal to - 2?Tua , in the second to zero. In the intermediate case of a 
at P, the integral (38) (see § 105) is extended over initial directions 
located between the characteristic cone and the tangent plane to S. 
We are therefore led to the finite part of half the volume of the 
hyperboloid of two sheets (§ 100), equal to - 7TUp .  The discontinuity 
of our algebraic sum of integrals is thus exactly divided into two 
equal parts by the value which it assumes when a is on S, as usual. 

On the other hand, this discontinuity occurs only in the in-



206 SYNTHESIS OF THE SOLUTION OBTAINED [BK III, CH. III 

tegral ( 57) relating to S :  for the integrals over S' are evidently con­
tinuous, and the other ones converge uniformly. 

There remains only to get rid of the hypothesis that S is a locus 
of geodesics. This is done by considering the geodesics tangent to S 
in P, which generate a second surface S. The difference of the 
potentials (57) relating to those two surfaces and the same point 
a is an integral which converges uniformly * with respect to the 
position of a-. Therefore, our conclusion is extended to any regular 
form of S. 

. 

* "re use the remark in the preceding footnote (t, p. 204). The distance 
between coITesponding points on S and S being of the second order and the angle 
between their tangent planes infinitesimal, it is easy to see, as for ordinary poten-

tials, that the difference of the values of 1,· at them is of the order of s2. As to 

the values of u, they can be assumed to be the same at corresponding points. 



CHAPTER IV 
APPLICATIONS TO FAMILIAR EQUATIONS 

129. Let us take some simple instances of the calculation of our 
formulffi. The first one which occurs to us is the equation of cylin­
drical waves (e2) : let us take it non-homogeneous with w =  I. The 
elementary solution is (x0 , y0 , t0 and x, y, t being the coordinates of 
a and x) 

v = v'lr , I' =  (t0 - t)2 - (xo - x)2 - (Yo - y)2 

and, as L = 0 in this case, our general formula for Cauchy's problem is 

(58) 27TUa = 27TU (x0 , Yo , to) 

= fjf I df!Jdydt 

+ ff( 1_ u - u !!: I ) dS. 
T .vr .Yr 1 dv v'r 

The second term under ff alone has to be transformed in order not 
to introduce anything but the ordinary symbols of Calculus. A first 
general way of doing this has been given in § 108. Introducing 

r = v'(x =x-:J2+ (y - Yo)2 • 

and the azimuth angle </J, the coordinates of any point of the half 
conoid from a will be 

x = X0 + r cos cp, y = y0 + r sin cp, t = t0 - err, 
€ denoting + 1 if the useful (inverse) half conoid is directed towards 
the decreasing t's (case of t0 > 0 when S is the plane t = 0) and - 1 in 
the contrary case. Then, 

i ar 
P1 = 2 ax = - (x - xo), P2 = - (y - yo), Pa = t - t0 , 

' 
and the integrand, in the second term of the formula ( 42) of § 108, 
will be 

k1 k2 k3 
dx1 dx2 dx3 
()A ()A ()A 1 uv = uvrrdcp, 
'tJP;_ dP2 ()p3 

1 2 (k1P1 + k2P2 + kaPa) 
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and (58) will become (notation of § 108) 

!ff 
fdxdydt 

( 59) 2?Tu (x0 , y0 , to) =  
T v'r 

[BK III 

+ lim {ffs1 (:� - u :v �fr) dS + J(T') �� d<P} .  
130. This formula is a general one, for any shape of S. But a 

better form for practical calculation is obtained by applying the 
general rules for our symbol I (see especially § 84) : for this, we 
shall simply take the two kinds of surfaces S which have been most 
usually considered. 

If, in the first place, S is the plane t = 0, we shall have 

dS = dxdy = r drdcf>. 
The transversal v will coincide (sense included) with the inner normal, 

so that �: = e ;t and 

d 1 _ I to !  
dv v'r

-
r� 

whatever the sign of t0 be. \Ve shall write the negative second term 
under ff in (58) 

I to I ja<P 
( to 1 

-
urdr :3 • 

. o (to2 - r2)2 
As previously explained, we have 

l f l to l urdr =
f l to l (u -

_¥
) rdr - -� 

.3. .:1 l t l '  . o (t02 _ r2)-:. o (t02 _ r2)2 o 
where u stands for the value of u = u0 at the extremity of the corre­
sponding radius, that is 

finally we have 
it = U0 ( x0 + I t0 I cos cp, y 0 + I t0 I sin </>) ; 

Jff
fdxdydt (60) 2?Tu (xo , yo , t0) = v'r 

JJ I i11  - to ( u - ii) J rd�·dcf> + f :Tr udcf>. 
The intervention of I t0 I ,  giving two different expressions according 
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to the sign of t0 , is in agreement with our remarks of § 118 con­
cerning the discontinuity of the SS's used in our general formulrn *. 

We also verify our conclusions of § 1 12  on the sign of the resi­
dual integral, by admitting that, in (60), u0 is positive for r smaller 
than a certain value r1 < J t0 I and zero for r > r1 (so that u = 0), and 
that/= U1 = 0. 

S" 

131. Secondly, we shall admit that S consists of a (finite or, as 

a 

S' 

Fig. 22. 

S" 

in fig. 1 9, infinite) portion S' of the plane 
t = 0 and of a cylindrical part S" having the 
outline rr of S' for its cross-section. We, more­
over, shall assume t0 to be so great as to make 
the half conoid from a cut only S'' and not S' 

(fig. 22) : these being, as we have said in 
§ 126, the conditions in which Volterra opera- . 
ted in order to prove Huygens' principle (in 
its form ( C)) for ( e2). 

The triple integral and the double integral over S' will be 

(61 ) j j j T fr da:dy dt + j j )� _ l;/u) dxdy, 

no r- being necessary this time. On S", the transversal (because of 
A ( 7T1 , 7T2 , 7T3) < 0) will be opposite to the inner normal n (which is 
parallel to the normal to the outline rr directed towards the inside of 
S') : which gives (du being· the element of arc of rr) 

jf (  u :nJr - Jr��) dudt = ff ( u�� -dr  �:) audt. 

The first term alone wants transformation. We integrate it first 
with respect to t, along the segment l of the corresponding generatrix • 

of the cylinder included inside r, i.e. from t = 0 to t = t0 - Er, replac­
ing u by (u - u) + u, where 

u = 'lt (x, y, t0 - Er) 

* This discontinuity also appears as concerns the term in u1 : as said in 

§ 1 18, we must not forget that u1 = E ,_- and, therefore, changes its sign at once 
oi 

when the point a crosses the plane t = O. 

H. 14 
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is the value of u at the intersection of the generatrix with the conoidal 
sheet. Now (for any sign of t0) 

r r �� = ' J - dt ;l = fl to l dt' 
. z r:. 1 z [(t - t0)2 - r2]:.i . r  (t'� -

so that the value of 2?rua is the sum of (61) and 

JJ r( u - u') r dr l (61') . dn - 1 d� I dudt .:... I to ' r u dr �(}" . S,{ L r:t vr dn.J ' J 0 r dn Vto2 - r2 
The simple integral must be considered as taken along the curve 

of intersection of S" and r, although du and r relate to the base u of 
the cylinder. 

132. A quite similar treatment will apply to the equation of 
damped cylindrical waves 

32 u 32u 32u 
ot2 - oa:2 

- ay2 - Ku = 0, 

investigated by Coulon as said above. The elementary solution is 

1 -v = vr Ch .v K r 

(with the same value of r, Oh being a hyperbolic cosine, which assumes 
the value 1 on the circle r = I t0 I )  and we should have 

2?rUa = I r II' ' r  U1 Oh � J{r + 1 dr (Oh JaKr - J]{-Sh v Kr) u] dS. 
1 • s. L  vr 2 dv I':! r 

The transformation of § 129 will give 

2 1. {!J� [u1 Ch V J{r 
?rUa = Im -·- _ 

T'=o sl .vr 
1 dr tOh v J{f v J(Sh v J{I') J dS f it d } 9 · I ;i· - - - u + -=r cf> .... dv \ r� I' (T') VI' 

(where again S1 and (T') have the meaning of § 108), the comple­
mentary simple integral being exactly the same as in (59) (even 
with the same value of v, as the substitution of 1 for Oh v J(r in the 
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numerator of v i s  immaterial for -r' infinitesimal). The transformation 
of § 130, taking for S the plane t = 0, will give 

27rUa, =
ff 

[Ch v:Kfi U1 - I to I (Ch v K_,r - 1 - v]rsh vKF) u] rdrd<P 

vr . � r 

- l to i JJ
(
u - u);

drd<P +J2rr ud<fJ. 

r2 o 

The simplicity of this result, compared with the difficulties which, 
as we said, Coulon met with, and with the complication of expression 
(12) (§ 79) which he ought to have introduced in order to imitate 
Volterra's operations, seems to me sufficient to illustrate the importance 
of avoiding the roundabout method which consists implicitly in inte­
grating and finally redifferentiating. 

If the equation were non-homogeneous with the right-hand num-

ber f, a corresponding term JJtfCt� Kr 
dxdydt would have to be 

added ; and the case of a cylindrical S could also be easily treated in 
the same way as in § 131 .  

133. Let us again take the (ordinary) wave equation with two 
more variables : 

02U (0214 o2u, o2u o2u ) 
(e4) · � - � + � + - + - = f 

ut2 UX12 UX22 0Xa2 oxl " .  

The elementary solution will be \_ = --�1--------a , r standing, 
r2 [(to - t)2 - r2]2 

of course, for v ( x1 -
-a1 )2 + . . . + ( x4 - a4)2; and, in our notation, the 

solution of Cauchy's problem, with respect to t = 0, will be given by 

47T2Ua = - SSS fa 
dx1 . . . dx4dt + I S,St=O (u0 • € ! . \ - u�) dS 

r2 l ut r� r2 
= -· SSS fa 

dx1 . . .  dx4dt + SS (3 1 tol Uo - u�) dtc1 . . .  dtc4 •  r2 r2 r2 
In the space integral (i.e. 5-fold) and in the surface integral containing 
U1 we have to introduce the values /, u1 off and u1 at the point where 
a perpendicular to the axis of our characteristic cone drawn through 
.any point (x1 , . . .  X4 , t) meets the surface of this characteristic cone. 

14-2 
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If a1 , a2, a3 ,  a4, 0 denote direction-cosines of a direction parallel to 
t = 0, such that 

�] - al - X2 - ci1 - X3 -. aa = 
X4 - U4 > 0 2 2 2 + 2 1 - - ' a1 + a..a + a3 a4 = ' 

a1 a2 a3 a.t 

j will stand for 

f [ a1 + a1 J t0 - t I ,  a2 + a2 1  to - t J ,  aa + aa J to - t I ,  a4 + a4 I to .- t I ,  t]. 

As the integral containing u0 introduces 1.., = ---1-� , we shall p2 ( to2 - r2)2 
have to use not only u, but also u', the value of the radial derivative 

ii' = 2
1
r 
��0,  at any point of the edge r = J t0 I along which our charac­

teristic cone cuts t = 0. If dll denotes an element of solid angle in 
the four-dimensional space (a:1 , x2, a:3 , a:4), the formula will be 

(j-f) 41rua = - SSS . ..,4 . da:1 . . .  da:4dt 
1 '2 

SS r n I . I 'l(, - u + u'
·· .. 
(to2 - r.2) - (u1_= ii1)J d J_ + L - I -u I ;}_ :1 X1 • • •  UW4 r2 p2 

+ 2 [f I to - t I dt S]dll + S ( I  to I 1£1 + 3to2u') dll] + 2Sudil, 
every term now having a meaning in the usual way if f and u1 have 
derivatives up to the first order, it0 up to the second. 

Of course we should have no difficulty in writing the analogous 
formula if there were a " damping " term of the form Kii. 



BOO!{ IV 

THE EQUATIONS WITH AN EVEN NUMBER OF 
INDEPENDENT VARIABLES AND THE METHOD 

OF DESCENT 





CHA.PTE:R I 

INTEGRATION OF THE EQUATION IN 2m1 VARIABLES 

1. GENERAL FOR�IUL,E 

134. The first cases in which the solution of Cauchy's problem 
was known in Analysis do not, as we have seen, belong to the above 
treated class : Riemann's and Kirchhoff's methods correspond re­
spectively to m = 2 and rn = 4. 

We shall presently see that, in such cases, singularities such as 
we met with in the preceding Book no longer occur, every improper 
integral being even eliminated. This explains why the above-men­
tioned solutions were found first. 

In the general case, nevertheless, even values of m must be con­
sidered as bringing in new difficulties. The above methods are no 
longer valid, and this for two reasons : 

First, the elementary solution is no longer well determined (§ 65). 
Next, we can no longer introduce the finite part of the integrals 

which we shall be led to use, as the exponent 

(m - 2  m) 
2 or 2 ' 

with which r will appear in the denominator of the elementary 
solution or its derivatives, will be an integer. 

It will actually follow from the very form of the expressions 
which we shall find, that they could not have been obtained by mere 
imitation of our former method. 

But, as we have already mastered the case of 2m1 + 1 independent 
variables, this will enable us to reach the same result when the 
number of variables is 2rn1 by using our method of descent (§ 29). 
The solution of the equation 

m d2U m dlt (E) 5 (u.) = �:S .Aik d 0 + � B· - + Cu =f(x1 , x2 , • • •  , xm), i, k=l Xi Xk i=l OXi 
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m being equal to 2m1 , will be deduced from the corresponding one 
for the equation in 2m1 + I variables 

a2u 
(E') 9' (u) = f7 (u) - '(}z� =f(a:1 , X2, . · · ,  Xm), 

denoting by z an (m + l)th auxiliary variable. 
If, as we still assume, the characteristic form 

A (P1 , P2 , . . .  , Pm) = "EAik p·ipk 
of (E) contains one positive and (m - I) negative squares, the corre­
sponding form 

relating to (E') will consist of one positive and m negatfre squares. 
\Ve have already seen that the quantity r', analogous to r and 
relating to (E'), is 

r' = r - ( z - c )2, 
denoting by (x1 , x2 , . . .  Xm ,  z) and (a1 , a2 , . . .  am , c) two points of the 
(m + I)-dimensional space. We have also found, in § 70, what re­
lations exist between the elementary solutions of both equations : 
we have seen that the coefficients of the successive powers of r in 
one of them differ by numerical factors from the coefficients of the 
con·esponding powers of r' in the other. 

Considering the adjoint equations 

(@) S (v) = 0, (@') S' (v) = S (v) - �2v = O uz2 
of (E) and (E'), the formulre of § 70 express that, if 

V' V' v' = ---m - l  r'm1 - � 
r 2 

be the elementary solution of (@'), with 
co 

(I ) V' = ::£ Vh' r'h = (- I)h Vh' [(z - c)2 - r]1i , 
0 

then the elementary solution of (@) will be 

v (2) v = rriFi - 6V log r + w 
j 

( w being a regular function) ; and, if we use the coefficients On of 
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§ 95, formulre (62), (62 b) of § 70, applied to the adjoint equation, can 
be written 

(3) 
Cl) 

(3') UV = (m,1 - 1) 0111 1_1 S Oh-mi+i Vh' rh-m1+1 
h=m1 - l  

Cl) 
= (rn1 - 1) Orn1-1 I Ok V' k+m1 - 1rk. k=O 

Now, this can be obtained directly by operating on v', or rather 
on the similar quantity 

I V' (v ) = - � 
m - 1  

(- I'') 2 

which relates to r' < 0, as said in § 73. We form the express10n 
(again a solution of (0')) 

(4) 

( G1 constant) ; 

( 4') 

this (changing a into z + a' under J )  can be written JC1 - Z rr;:·C1 
_ ( v') de' = _ - Wi , 

,tr 1 Jr 
W1 = r1 (v') do' being a regular function ; the first term, which is • C1-Z 
independent of z, is (but for a numerical factor) the singular part* 
of the elementary solution v of (0). For, by substituting (1)  for V', 
the integral of each term will be given by the operations of § 95 
(formulre (28), (28') in that number) and these precisely give, for 
the result, a quantity of the required form. 

Moreover, we again obtain the values of the coefficients in (3), 
* The difference ( 4') is a solution of ( 0') and, the second term being holo­

morphic, we have 

8' ( ! J :;r) =cY' (w1). 
The common value of both sides is a holomorphic function (as we see from its 

second form) and independent of z (as appears from the first form). Therefore, as 
noticed above, there exists a function w of .x1 1  x2, • • • , .xm only, such that 
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which become identical, of course, with those in Book II (§ 70), if we 
multiply ( 4') by the constant factor 

(5) (- l )mi - l  2 (m1 - 1 ) Om1-1 = (- l)1n1 -1k. 

The case of rn = 2 is special. ( 4') does not want the symbol l­
and has the value 

( 6) ! J ( - 1 )h v hi ( c'2 - r)h-� de' = - ! log r . � ah v h1 rh + w. 

Therefore, there exists no V, but only a 6V (equal to � ah Vh'rh), 
which is, as said previously, no other than Riemann's function (multiplied by the constant factor J---) , the number k being equal 

\I Ll 
to* 2. 

l l 

135. This being understood, to obtain a solution of equation (E) 
complying, as to the multiplicity S, with the given conditions, we 
shall consider, in the (m + I)-dimensional space Em+i denned by 
the coordinates (x1 , x2 , • • •  Xm , z), the multiplicity S' (hypercylinder) 
the projection of which is S (fig. 23)t, i.e., the one obtained by taking 
successively for (x1 , x2, • • •  xm) the coordinates of any point of S and 
for z all possible real values. If S is duly inclined with respect to r, 
S' will be duly inclined with respect to r'. 

As we shall have to consider multiple integrals both in the m­
dimensional space Em and in the ( m + 1 )-dimensional space Em+1 , the 
notation which we used in § :38 will be modified in the following way : 
the symbols SS and SSS will oe kept for Em . while a surface inte­
gral (i.e. an integral over an m-fold variety, which will always be a 
hypercylinder) in Em+i will be denoted by SS J, a volume integral 
(i.e. (m + 1 )-tuple integral) in Em+1 by SSS J. 

A solution 'U of equation (E) being defined by the double condition : 
Of assuming at each point (x1 , x2, • • •  Xm , z) of S' the value that 

n must have at the corresponding point (x1 , x2, • • •  Xm) of S ;  
Of having for transversal derivative at the point (x1 , x2, • • •  Xm , z) 

h . l , du, ( t c given va ue of -l at x1 , x2 , • • •  Xm) ; 
t ·V 

* This is not in agreement with (5) : the factor (m1 - I ), which ought to be 
Y.cro, is replaced by 1 ,  as it was :several times i11 Book I I. 

t Fig. 23, relating to m=2, can be used as a diagrammatic figure for the 
general case. 
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we know (§ 29) that the solution will be unique and independent of 
z and will satisfy (E). Therefore such a solution will be a solution of 
the given problem, and conversely. 

Function u will be given by formula (39) (§ 105), viz. (in our new 
notation) ' 

r 
--

( 7) (- l)m1'1Tilm-2 lla = - SSS f v'jdx1 . . .  dxmdz 

+ I  SS J ( u �: - v' �� - Luv') dS', 

where T' denotes the portion of (m + I)-dimensional space between 
S' and r', S0' (fig. 23) the corresponding portion of S'; and m = 2m1 •  

136. Strictly speaking, we can say that, in this way, we have 
solved the problem ; but, remembering a celebrated word of Poincare*, 
we must acknowledge that it is very " insufficiently solved." For 

S' 

the above solution contains 
foreign elements,_._the space 
Em+i • the auxiliary variable 
z and all that is relative to 
them ;-and we evidently 
have to try to transform it in 
order to get rid of these. 

Geometrically, the rela­
tion between the diagrams in 
Em and Em+i is the following. 

T' is projected on to the 
m-dimensional space Em along 
the region T, included be­
tween s and r : that is, if the 
point (x1 ,  x2 , • • •  Xm , z) belongs 
to T', the point (x1 , .'V2 , • • •  Xm) 

Fig. 23. belongs to T and conversely ' J ' 
any point of T is the common proj ection of points of T', i.e. of all those 

* " II n'y a plus des problemes resolus et d'autres qui ne le sont pas ; il y a 
seulement des problemes plus oit moins resolus." Poincare's Lecture at the 
Ivt :\Iathematical Congress, Rome, 1908 ; Atti del I V  Conrp·esso intern. dei Mate­
rnatici, Vol. 1, p. 175. 
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whose z's are between - .Yr and + vr (supposing the (m + l)th co­
ordinate of a to be zero). 

In the same way, S01 is projected on to Em along S0, each point 
of S0 being the projection of an infinite number of points of So', having 
their z's between - vr and + v r. 

137. This being noticed, we now undertake the transformation 
of our formula (7). 

Let us deal, for instance, with the first term in the right-hand 
member, which is an SSS extended to T'. 

Our method will consist in integrating with respect to z first. 
For rn = 2, v being infinite of order ! only, this raises no objection. 

But for greater even values of ni, we have no right to do so all over 
our field of integration, as the ordinates proj ecting points of T' on T 
cut the singular surface r' at an angle which becomes infinitely small 
in the neighbourhood of r. "\Ve shall, therefore, divide our domain T 
into two parts T1 and T2-the second of which will include the 
vicinity of the conoid-by an auxiliary boundary T (which will, finally, 
a pp roach r). 

In the portion Ti' of T' which is projected along T1 (the boundary 
of which is constituted by r' and a cylinder T with base T) integrations 
with respect to z are legitimate, so that the corresponding SSS J will 
be obtained by integrating m times, over T1 , the simple integral 

f +Jr i V1i' (r - z2)1i dz 
f h _=_O������ . _J].' (r - z2)1n1 - t . 

If the factor off is integrated term by term *, say f +•/f dz 
� V '  - h -Jf (r - z2)m1 - h - � ' 

we see that each term depends on the operations in § 96. 
These show us that 

(1) All terms corresponding to h smaller than m1 - 1 vanish ; 

• No difficulty as to co1wergence arises from the presence of our symbol I , 
as the latter only occurs in a finite number of terms of the sum. 
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(2) The following terms (h varying from m1 - 1  to oc ) give a re­
sult which is in fact 27T, multiplied by the coefficient of the logarithm 

in the integral ( 4'), except for the factor (- l)m1- 1, i.e. , by � UV. 
Consequently, in this first term, the quantity, infinite on the 

conoid, which appeared under S S S  in  the formulre relating to the 
case of m odd, is already replaced by the perfectly regular quantity UV. 

For m = 2, our transformation is thus accomplished. 

138. In '1'2 (for m > 2), the same method is no longer valid . and the 
result will actually be found to be utterly different from what that 
method would suggest. Our lines of integration being subjected to 
the condition of meeting r' at a finite angle, we shall now consider a 
system of lines l, each joining a point of r (defined by coordinates 
A.1 ,  �' • • • Am-i) to a point of T and the parallel lines in any plane 
z = const. A point of T2 will therefore be defined by the values of 
A.1 , �' • • •  A.m-1 and of r, this last quantity varying from zero to a 
quantity ry, very small if T is very near r. 

Let 
(8) dx1dx2 . . .  dxm = KdA.1 dA2 . . .  dA.m-1 dr = dT'Ydr 

be the expression of an element of T2• 
If T2' is the part of T' projected along T2 , a point of T21 will be 

defined by the coordinates A.i ,  � '  • • .  Am-I > r, z. 
Let us first integrate along the lines l, that is, allowing 

/ / I l r' - -'--
/ 

I 
I <eJ2 I 

Fig. 24. 

A1 , A2, . . . Am-I > Z 

to remain constant. Then we shall make z vary, 
and lastly 

A1 , A2 , • . . Am-1 • 
As the boundary of T21, aside from r' (i.e., the 

cylinder), is not a locus of lines l, so that the seg­
ments of lines l included in T2 become infinitely 
small in the neighbourhood of r', we have to apply 
the principles of Book III, § 90 : we shall have to 
take the finite part of every simple integral along 
a line l and, integrating this with respect to z, 
again take the finite part of the result. This gives 
the double integral over the section �2 (fig. 24) of 
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T2' by any two-dimensional plane 
A.1 = const., � = const., . . . 'Am-1 = const. : 

an integral which remains finite (as is evident a priori, and as we 
shall verify) when we let the parameters A.1 , • • •  Arn-1 vary, and the in­
tegration of which with respect to these parameters will be made in 
the classic way. 

We can notice, besides, that the terms corresponding to h � m1 - 1 
in the expansion (1)  of V' only give finite integrals in the ordinary 
sense, which become infinitely small when ry approaches zero. 'Ve 
shall therefore neglect them, so that we only have to deal with a finite 
number, viz. rn1 - 1 ,  of terms of that expansion. 

For ni = 2, we have already noticed that no other terms exist. For 
m = 4, i.e. m1 = 2, we have only one of them, viz. V0' ,  which we have 

to divide by (I' - z2)'.t a9d integrate with respect to t�e A.'s, r and 
z after having multiplied it by Kf \Vriting J{jV0' = F0, the integral 
with respect to r is (by means of an integration by parts) 

= ( - 2 Fo .. ) + 2 f" 0F0 dI' 
.Vr - z2 ar .Vf-z2 

The integral which remains on the right-hand side is an ordinary 
one, which approaches zero with ry - z-. Outside of J, we have a term 
P which is a fractional infinity in the neighbourhood of the lower 
limit ry = z2 : this fractional infinity is to be cancelled, and we only 

- 2 "/i': 
keep the term --��

0
- .  This is now easy to integrate with respect to 'I/ ry - z-

z, giving - 27rF0 • 
Similarly, for any m1 and h < m1 - 1 , let us write K/Vh = Fh . From 

the corresponding integral taken over ?12, we shall easily eliminate the 
symbol I : for we have, by a classic formula, as 

.. __ l _ ( - l )m1 -h- 1 i ( I , 
(r - z2)m1 - - � - ! . fr . . . (m1 - h - U Jrm1-h-1 \ �r - z2) , 

f F1idr 
(9) (r - z2) 71!

�
1 _�,�, _-� 

( _ I )m1-1t-1 r ar 
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( _ l)m1 -h-l  Fh dmi-h-2 ( 1 ) 
(10) Rh = i . � . . .  (mi _ h _ �) £i r11•1-h-2 vr _ z2 - · · · 

1 1 dm1 - h-2  Fh 
i . � . . . (ni1 - h - i) vr - z2 drm1-h-2 

- Fh 1 
= m1 - h - ! (r _ z2)m1 - h - � 

1 1 dm1-h-2 Fh 
l · i . . .  (m1 - h - u v r - Z2 ifim;--h-=2 . 
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'ihe first term on the right-hand side of (9) gives an ordinary 
integral, which vanishes with ry and may be neglected. On the other 
hand, the value Rh' of Rh in the vicinity of the boundary r = z2 is a 
fractional infinity and shall be cancelled (being indeed the only in­
finity, at least for an arbitrary z, it precisely represents the fractional 
infinity which we have to remove by the definition of the notation 
J-). This reduces the finite part of the simple integral (9) to 

R II = (R ) - = - - Fh 1 
h h r -y m h 3 ( 2)m1 - h - �-1 - - 2 ry - z  

1 1 am. - h-2Fh 
i . �  . . .  (ni1 - h  - !) Vry ---� dryni;�h - 2  ' 

which we have now to integrate with respect to z, from - tJ-;, to + .Vry� 
taking the finite part of the result. Now the value of the integral 

(1 1 )  r+J-:Y dz 
. _ • .,r:y ( 'Y _ z2)n + 

has been found (Book III, § 96) to be zero for every positive n. There­
fore, the only term we have to consider is the last one, giving 

7T' am. - h-2Fh 
.l ::i ( "n -h _ 3 ) drym1-h-2 · 2 ' 2 " '  I I 2 

\Ve have to take the above derivative for r = ry. But finally we 
must let ry approach zero. We therefore take the derivative in question 
for ry = O  and this gives us the required limit. 

There remains only, taking for h every value from zero to mi - 2, to 
obtain the sum of the results. \Ve shall now see that this is in direct 
connection with the value of the polynomial (3) : for the (m1 - h - 2)th 
derivative of .F for r = 0 can be (on account of Leibniz's classic for-
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mu la for the derivative of a product) considered as being the ( m1 - 2) th 
· · f Fr h 1 · 1 . d b (mi - h - 2) ! 

derivative o mu tip ie y 
2) 1 • (m1 - . 

Thus, again introducing the coefficients 0 and taking account of 
(3) we have* 

lim \ ( {-- v'd rclz 
(12) 

y - o  11 J (r - z2)m1 -
_ 7T' ( dm1 - 2 ) ( m!.i 2 · Fh rh ) 
- - (m1 - 2) ! d"lm,- 2  y=O � (m1 - h - 1) Om,-h -1 f 

27T' 1 (dm1- 2KfV) · = 
- �k (in� - 2) ! drymi-2 y=O·  

139. '\Ve have, in the above, applied the general result of § 90 ; but, in the pre­
sent case, it is easy to verify directly that things actually behave as was proved at 

the aforesaid place. :F'or, referring to the definition of I , as given in §§ 88, 89, 
we should have to limit T2' by r' = £ (dotted line of fig. 24) and take the limit of 
the corresponding SSS after subtraction of fractional infinities in £. Now, we 
immediately see, by (10), that the value of Rh' (for r = z2 + E) is such a fractional 
infinity ; and so is the remainder of any integral (11), when limiting the segment of 

integration to z= - Vy - £  and z= + Vy+E, this proving-as has been done, for 
the general case, in § 90-that our method of procedure in two successive inte­

grations, each time using the symbol I , correctly gives the value of the double 
integral relative to r and z. 

140. Let us integrate, lastly, with respect to A.1 , A..2,  • • •  A.m_1 • On 
the multiplicity r defined by the equation r = "'' where "I is any 
constant, the product KdA.1 dA.2 • • •  d'Am-1 gives an element which, on 

account of (8), we previously denoted by dry (or:�) . 

The integral 

(13) Iy = SS/V dry =  SS KfdA.1dA.i . . .  dt..m-1 
will be a function of "'' \vhich can be differentiated with respect to ry 
by differentiating K f V under SS and integrating with respect to 
the t..'s. 

Therefore, the quantity required will be found to be proportional to 

* When f is assumed to be analytic, the same formula can be obtained by 
using )laclaurin expansions, as we did in the Acta Mathematica, Vol. xxxr. 
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the coefficient of rymi -2 in the expansion of l..1 , or, in other words (by 
(1 2)), it is equal * to 

(l4) 
27T

. 
1 :J:_m1� . I . 

k (m1 - 2) ! drym•-2 (y =O) Y 

It wil l  contain, as we see, the derivatives of f and those of V up 
to the order m1 - 2. This function V is only partly determinate, 
terms containing r m1-1 as a factor being arbitrary; but such terms 
have no influence on (14). 

The part of the value of 'lla corresponding to the term 

- ISSS fv'fdx1 . . . dxmdz 
consists, then, of the m-tuple integral 

27T (14') - k SSS/6Vdx1 . . .  dxm 
extended over the inside of r, and of expression (14), an (m - 1)-tuple 
integral extended over the surface of r. These two quantities do not 
contain, this time, any infinite function, but only the two regular 
functions, UIJ for the one, V for the other. 

141. We must notice, however (for m >  2), that, in order to agree 
with the result of Book III, (13) ought to be calculated first by 
cutting T-and, therefore, -r-with a small surface � so as to exclude 
the neighbourhood of a, then by letting � approach a with the as­
sumptions mentioned in § 106, this being the process obtained in 
§§ 105, 106, of which the present one is a mere translation. That 
this process will converge, and uniformly, as was said in § 106, is 
obvious for the same reason. 

But the fact is that the precaution in question is unnecessary. \Ve 
can obtain the same final value by at once extending the SS over the 
whole of the surface T and applying the m1 - 2 differentiations to the 
result thus obtained. 

To prove this, we have to show that if such an integral were extended over 
the small part of r which lies on the same side of � as the point a, its (m1 - 2)th 
derivative with respect to y, for y=O, would exist and approach zero on letting 
� approach a (the restrictions of § 106 being still understood). We only need to 
give that proof for a suitably chosen law of variation of �, because we know that 
the final result does not depend on this law. 

* 'Ve now take account of the sign - before the first term of (7). 

H. ] 5  
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"\Ve shall do this by introducing normal Yariables g, such as defined in � 57. 
This reduces r to a quadratic form with constant coefficients, which we can even 
(by a linear substitution on the g's) reduce to 

r - t:. 2 - t:.12 - t:.22 -o - £"m £" £" • • •  
which we shall write r0 =t2 - r2 = t2 - R, 
by writing t instead of g111 and R= r2 for �12 + g?2 + . . .  + g2111 _ 1 • Thus the charac­
teristic conoid with vertex a becomes au ordinary hypercone of revolution, and 
r =y will represent a (hyper)quadric, already considered in § 97. 

'Ve can now choose }; : we shall take for it such planes as t = const. = f. 
The function F = Tj under SSS is assumed to- be regular (see below) (and 

will remain so after our change of variables, which is a regular one), which being 
understood, we have to investigate the differentiation of the integral 

(15) ss Fdry , 
where dry is such that its product by dy represents the element of m-dimensional 
volume dg1 • • •  d�111 • The latter will be replaced by 

r111 - 2dn111 _ 2drdt 
(dnm_ 2 having the same meaning as in § 97), which is equivalent to referring 
it to t, ?' and angular parameters <Pt i cp2 , • • •  <Pm- 2 ; and we shall begin by inte­
gration with respect to cpi,  . . .  <Pm-2• This will introduce the i ntegral 

<I> =  s Fdn111 _ 2 ,  
a function of t and r which, moreo,·er, i s  even with respect to the latter*, s o  that 
we can consider it as being regular in terms of t and R = r2• By means of this 
introduction, the Yolume integral SSS F dg1 dg2 , • • •  dl:111 , relating to the m­
dimensional volume enclosed between the conoid r = O, the hyperquadric I' = y 
and the hyperplane t = f, would be expressed by the double integral 

(16) ff <I> .  rm- 2 drdt, 

the area of integration being bounded 
(fig. 25) by the three straight lines r = O, 
t = £, t = r and an are of the hyperbola 

t2 - r2 = y. 
( 15) is the derivative + of {16) with re­

spect to 'Y· As dry is the "quotient'' of 
the m-dimensional space element by dy, 
we have to replace drdt by a correspond­
ing element dlly of our hyperbola, which 

a 
Fig. 25. 

* P being expanded by Taylor's formula in powers of the g's and, therefore, 
t and r, with coefficients trigonometrical in the cp's, any term which is odd in r, 
when multiplied by dnm_ 2dr and integrated with respect to the cp's, corresponds 
to an integral inside the hypersphere of radius r, which is zero, as its element is 
monomial in the g's and odd with respect to at least one of them. 

t Compare below, § 147 .  
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shall be the quotient of dIT =drdt by dy. This quotient (see § 38) is 

. ar dt ar : � = 2 . vr r 
The question, therefore, concerns the simple integral 
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(17) r� , _  rm - 3<Pdt=f� ._ cp (t, R) J{'lli - t dt=f" <P (t, t2 - y) (t2 - y )mi - i dt, J "" .Jy "" 
and is whether its (m1 - 2)th derivative exists for y=O, and is infinitesimal with £. 
Now, by the classic rule, the first derivative is 

!" _ [8<P oR (t2 - y) - (m1 - �) cp] (t2 - y)m1 - !at. Jy oR oy 

The equation giving R is t2 - R=y and therefore �R 
is equal to - 1. On the other oy 

hand, we have written no term corresponding to the variability of the lower limit : 
this term is obviously zero, m1 being assumed to be greater than 1 (and even, for 
the present moment, than 2). Thus, setting down 

(18) <])1 (t, R)= -[ R ��+ (m1 - U  <P]= -[� ��+ (mi -�) <P J ,  
we see that the derivative in question is 

f �Y cp1 (t, t2 - y) (t2 - y)m1 - � dt ; 

that is, analogous to the expression (17) itself, but differing from it by the fact 
that m1 is changed to m1 - 1.  

The (m1 - 2)th derivative of (17), for y=O, is  the same thing as the (mi - 3)th 
derivative of (17'). In other words, if our conclusion is certain for any value of 
m1 , it is certain for the following one. 

But, for m1 = 2, we only have to examine the values of the integral itself, viz. 

f�y <P (t, t2 - y) Ji2�- ydt 

(without having to differentiate it) ; and, for y=O, this integral reduces* to 

f: <P (t, t) tdt, 

2 
a quantity which is smaller than H � , denoting by H a maximum value of I <P I ·  

* For ni= 4  and <P identically equal to 1 ,  the first form of (17) becomes 

r rdt, which is immediately seen to represent half the area of the hyperbolic 
' "  

segment determined by the chord t = E  and, therefore, for y = O, half the area of 
the triangle between that chord and the asymptotes. 

15-2 
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Onr proof is, therefore, complete ; and we see that the (m1 - 2)th derivative 

of (15), for y=O, is, for E infinitesimal, an infinitesimal of the order of £2• 
Instead of using the symbol <I>, we can remark that the left-hand side <1>1 of (18) 

is equal to SF1 dnm_ 2, with 

rn1 - 2 similar operations (the coefficient inside the brackets decreasing each 
time by 1)  will lead to a certain final function Fm _ 2 ; and the consequence of 
our above argument is that the required (m1 - 2)th derivative of 11 is 

(19) 
where, in Fm _2, we have to make r= t :  but this can be written I 

(19') SSFm -2dnm -2dt, 1 
an integral which is extended over r0 • Coming back to our original coordinates, 
this can be considered as an integral extended over r. On this latter conoid, the 
parameters cp may be considered as (ni - 2) of those which we have called A. 
(each system of values of the cp's characterizing a generatrix of r0 , which corre­
sponrls to a bicharacteristic on r), while t, being a normal variable, can be 
considered as the parameter s. 

142. Having thus transformed the first term in (7), an entirely 
similar evaluation obviously applies to the integral 

S J ( , du L ') lS' I ( , ( - S v dv + uv G = 1 SS 
J 

v u1 + Lu0) dS'. 

\Ve shall have, for this quantity, the value 

27r . l dmi-2 . 
J - -k LSSs 6l'(u1 + Luo) dS - --- -· ;; S V (n1 +Lu0) duy (I (m,1 - 2) ! d-y1111- # (y=O) CT • ' 

where <T is the intersection Of S by the Surface r = "Y and du Y > the 
element of u defined by the relation 

(8 a) duy d-y = dS. 

143. Let us proceed, lastly, to the term 

(20) J dv' , j dv' SS u dv dS = SS u dv 
clSdz. 

A quite similar method can again be applied to it. For the pre­
ce<ling operations show us, generally speaking, that, if w' be any 
quantity of the form 
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� w ' I''h 
with the lVh' not depending on z, and we set down ( w') = . 

h � ; 
if, furthermore, 

(21) r: (w') de' = (- l)P-l (r!, - UZO log r + . . .  ) 
(dots standing for terms which are regular for r = 0), then 

(22) 

(- I'')P - . 

ss}w'udS' = + 2r. (sssu620dS - (·· 
1

2· ) i d
dP:: Suu Wda-y) · p . "/ (y=O) 

This will be the case if we take w' = k �: and (as seen by direct 

differentiation) ( w') will be - k rr,�:) , the number p being 1n1 + 1 .  
41 . . Jc1 d ( v') ac' 

The integral (21 ) will then be - k .Jf dv and therefore, as we 

know, equal to 

d JCI ( '
) 

d ' 
( 1 )ml - 1  d ( v fr) l 1 r ) - k dv .jf v c = - - dv pn1 - 1  - v(.I og + . . .  

on account of § 134, so that 

= �� ,  W = - (ni1 - 1) �:r + r;vv - uvrm1-1 �: .  
These are the values which we shall have to substitute in (22), 

the result having to be divided by k. 
\Ve shall immediately observe that the ( p - 2)th, i.e. (m1 - l )th, 

derivative of the last term of W for ry = 0 appears at once, viz. 

(22') 
1 dm1-�

. suuvrm1 - I  dr 
= SuU/J d�

. d m - 1  d d (m1 - lj  ! "f 1 
('jl =O) V V 

144. At first sight, the expressions thus written for the last term 
(20) seem to present a disadvantage not shown by those which corre­
spond to the other terms. They appear to depend on the terms in 
rm1-1 occurring in V, which terms are not determinate. 

It is easy to verify that this dependence is merely an apparent 
one. Let us imagine that, from each point of S', a very small segment 
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is marked off along the transversal v, being such that the correspond­
ing dv is equal to a (very small) constant. Let us denote by S,,' the 
locus of the points thus obtained, and give to u, at each one of them, 
the same value which it has at the corresponding point of S'. 

Term (20) will under these conditions be the derivative, with 

respect to v, of the quantity 

(23) \ _s_s
_fs

-
,
-

u
-
v'

-
dS

-
,·
· 

" 
and will consequently be equal to 

27' d 27' d 1 dm1 -2 
(24) - SSs UlJudS- - - - - ·- 2 S u Vdu.., . 

k dv " k dv (m1 - 2) ! d··li1 - <Ty,, ' 

In the second term, S,, is the base of S,,' in the space Em ; u"" ' the 

intersection of S,, by r = ry, and the differentiations � and :
v 

can be 

inverted (because ry and v are independent variables, entering into the 
expression of the S by means of o-y,,)· We mm:;t observe that in the 
original expression (23), the differentiation only concerns v' ; the 
values of u and dS' are to be considered as independent of v : this 
means that, in order to calculate them for any element at a point X 
of S,,', we have to consider the corresponding element around the 
corresponding point X!0J of S', which is the " transversal projection " 
of X, and by means of which we have to calculate u (as being the 
value of the latter quantity in X!0>) and dS', which is not the value of 
the element on S,,' but the value of its transversal projection on S'. 

Similar observations apply therefore to (24), so that u and du" are 
still to be taken in transversal projection on S ;  but, as one shall 
observe, the conclusion is not that the differentiation shall only con­
cern V :  for the transversal projection, on S, of uy,, is variable with v. 
Let us suppose that between points x of uy and (infinitely near) 
points .X of uy,, we have established a punctual correspondence 
(which can be done in oo ways), whereby another infinitesimal 
punctual transformation is defined, on S, between x and the trans­
versal projection _X !0l of X. 'Ve can imagine that the value of V at 
}{ and the value u !0J of u at x!0> are expressed in terms of the coordin­
ates of x. As to the relation between the two elements duy on uy and 
on o-y,, , 've shall find it by remembering that duy is the quotient of 
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dS by d"f, which latter quantity has the same value for x and for X .  
Remembering also that dS relating to X is to be taken in transversal 
projection on S, we see that the integral in the second term of (24) 
can then be written 

(25) 
d81°l 

5 Vu/0l --- · dcr 
(jy dS Y ' 

where J:_c( is the ratio of corresponding elements in the punctual 

transformation between [JJ and x (o) and we take account also of the 
above agreements as to V and it (0J .  

Differentiation with respect to v can now be carried out under S, 
and gives, for the derivative of (25) with respect to 'Y (m1 - 2 times) 
and v, the value 

dm1-2 d 
(96) ---- 5 u Vda-... d'Ym1 - 2 dv <Ty11 Y 

d1111-2 ( d V du 10l d dS (0') = 5 U0 -·- + V--0 + u0V - �- - da- . dr/" u dv dv dv dS Y 

The treatment of the first term of (24) wants no further observa­
tion and depends on the ordinary rules of Calculus. We have to · dUV 
differentiate first under 55,-i.e., replace UV by dv ;-then we shall 

have a boundary term, as the domain S,, ,-or more exactly its trans­
versal projection on to S,-depends on v. This term is always a neg­

ative one if S is duly inclined, the reason 
for this being that (compare § 108, foot­
note p. 172) the transversal to S at any 
point of the edge of intersection with r is 
directed towards the outside of r and that, 
therefore, the transversal projection of S,, 
lies everywhere inside S (fig. 26). The 
part thus subtracted from S consists of 

26 · elements each of which is a small ((rn - 1)-
dimensional) cylinder having an element of a- for its base and the 
small segment xx(o) defined above (see fig. 26) for its generatrix : the 
volume of such an element is, in our notation, da-y d"f, the second 
factor representing the increment of r when passing from [JJ to x (O) 
or, which is the same, from X to X(0J and being, therefore, numeri-
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cally equal to �:, dv. Dividing by dv, we have the derivative 

d , dUV fr) )  dr ,  
(27) d- SS8 6l uod8' = SS8 u0 -d dS - So- uo·v -d� du'I . 

v " v v 

It is well understood that this formula only concerns the case where 

S is duly inclined and therefore �� < 0. The sign before the last 

. 1 ar 1 dr 
term ought, of course, to be changed if we should replace 1 -dv I by d;; ' 
and the new formula thus obtained would be valid for any inclination 

of S (as �: > 0, resulting from a non duly inclined S, would be com­

pensated for by the fact that the corresponding parts of the transversal 
projection of S., would overlap S instead of lying inside it). 

This second expression of (20), by combination of (26) and (27), 
is equivalent to the first one (as appears at once for the terms in 6V 
by comparison with (22) and (22')) ; but it appears, this time, that 
it does not contain the terms in rm,-l of the expression of v. 

145. The evaluation of the term (18) completes the solution of 
the problem. Taking account of the value (5) of k, we obtain the 
following statement : 

For 11i = 2m1 , let : 
V, 6V be the two regular functions which appear in the fundamental 

solution (2) of the adjoint equation S ( v) = 0 ;  
r, T, 80 , the domains analogous to the ones which have been defined 

for ni odd ; r, the part of the surf ace r = ry ( ry being a very small 
positive constant) enclosed inside T ; uy , the intersection of this same 
smface with 80 , the elements dTy and day of the varieties T and u being 
defined by the equalities (8), (8 a). p.H�) �l., \ / t �8 

The solution of Oauchy's problem will be given by the formula 
(28) (- l )mi (m1 - 1)  Om,-1  Dni-2 'lla 

[ . 

d51J] 
= - SSST UV/ dxl . . .  dX1n - SS so UV (u1 + Luo) - 'llo cl�- dS 

ar + S Uo6V d- duy <T 11 
1 dm,-2 

+ ( - 2) ' d _ _ _ m_2 [SSTJVdry + Su V (u1 + Lu0) duy] 'lrl.1 • 'Y (y =O) 
1 d111 1 - 1  f I'dV Vdr] 

(m i _ I ) ! ({'lm,-i  (y=O) Su L dv - (m1 - 1 ) -d�� - u0duy 
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Or (in the sense explained in the preceding section) 
(28 a) 

= - SSSr �f dx1dx2 . . .  dxm - SS8
0 

UV (u1 + Lu0) dS 

1 dm1 -2 
+ (-- 2)-t d----=-:; [SST .fVdry + Su Y (u1 + Lu0) da-y] 

'm1 - . rym1 "' (y=O) 
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where the last term can be found by (26), the last but one by (27 ). 
The coefficient of ita in the left-hand members of both equations 

can be written (see § 99) 

- 1  2 (- 1 ( n _ ,,.,..m1 - l  - -- .l "-m-1 - -> • " • 7i - ,t;.,J : 

It is well understood that, in the present case, every differentiation 
under SS or SSS is to be done by the classic rules of Calculus ; and 
no difficulty such as has been met with for the case of rn odd arises. 

146. It is clear also that several properties of the solution as 
written in the preceding Book immediately apply to that which 
we have just found, as the latter is not essentially distinct from 
the former. 

This is the case, in the first place, for the remark at the beginning 
of § 104 : if the shape of S is such as to enclose, together with r, a 
volume T to which a is exterior (compare fig. 12 ci, 12 b) we have 
formulre quite identical with (28), (28 a), except that the left-hand side 
is replaced by zero, this being an immediate consequence of formula 
(F'), § 104. 

\Ve can also already see that the same must apply to the " inter­
change property " (§ 114), a subject which will be examined again 
in the next Chapter. 

The same appl ies to the remark which we made (§ 113) on the case 
where S is constituted by characteristics, in which the knowledge of 

uo suffices to write down the solution, as the knowledge of u1 = ;: is 

implied in it. 
Also we have no further care to take in order to verify our solu­

tion (for duly inclined boundaries) : the proof that it actually satisfies 
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every requirement of the problem must be considered as already 
afforded in the preceding Book, Chap. III*. 

14 7. Another form of the formula. The terms in dT" and d<r" 
in (28), (28 a) can be written in another way by remarking that d-:-yd"f, 
for instance, is an element (a small cylinder, see Book II, § 38) 
of the volume enclosed between one surface T and a consecutive one 
in which 'Y is changed into 'Y + dry. It results therefrom that, by such 
a changing of ry, the integral SSS/V d.rc1 • • •  dxm, relative to the do­
main which we have called .T2 , will be increased by dry SSJV dTy , so 
that SS/V dTy is the derivative of that volume integral t with 
respect to ry. 

Similarly, S ( V�� + Lu V) d<ry will be the derivative, with respect 

to ry, of SS ( V 1� + Lu V) dS, extended over the portion 82 of S 

enclosed between r = 0 and r = 'Y ; and the same transformation 
applies to the other term in d<ry . Writing the abbreviated notations 
SSS. and SS2 for SSS.i � and SSs, ' we see tnat formula (28 a) is 
equivalent to 

I (30) 2 ( - 1 )m1 ---- 7rm1 - I Ua (tn1 - �) ! 
= - SSST 6/Jj dx1 . . .  dxm - SS80 6V (u1 + Lu0) clS 

I dm1- 1  
+ (m1 _ 2f! (l'Ym,- 1  [SSS2/V dx1 . . .  dxm + SS2 V (u1 + Lu0) dS] 

I d dm1 - 1 d --- - · ·  �·· SS u VdS + - SS 0 (m1 - 2) ! dv drym,- I 2 0 dv "' v 

a form of the result which we shall have to use ; and (28) can be 
transformed in a quite similar wayt. 

* In the case of a characteristic S, such a verification would, in the same way, 
be a consequence of the corresponding one relating t,o ni odd. The proof given in 
§ 119 for m=3 would apply to m= 2. 

+ The increment of the volume T2 (volume between two consecutive positions 
of T) will contain irregular parts in the vicinity of the edge u ;  bnt they are of the 
8Ccond order in dy. 

+ It will be eventually usefnl to remember that, the operations in this section 
not being essentially distinct from the preceding ones, the remarks made in § 141,  



CH. I] IN 21n1 VARIABLES 235 

148. The expression for the required unknown differs considerably, 
as we see, from the one which answered the case of m odd. In the 
latter, the elementary solution was directly introduced. Here, the 
elementary solution still serves as a basis, but only in so far as it 
provides the two functions V and UV, which alone appear in the 
operations to be performed. 

On the other hand, the value of the unknown, for m even, appears 
in the form of a sum of two integrals, the one extended over the 
inside of the characteristic conoid, and the integrand of which contains 
as a factor the data themselves, multiplied by known functions ; the 
other extended over the characteristic conoid itself, and containing 
under the same conditions the data and their derivatives up to 
the order m1 - 2 (or even m1 - I ). The integrals thus written only 
involve finite quantities, if the data are regular. 

In the case of m odd, we had a single integral , involving the data 
themselves (without explicit differentiation), but possessing the para­
doxical character examined formerly, and on account of it, containing, 
virtually, a boundary integral and certain derivatives of the functions 
introduced. 

Such an expression should, therefore, be considered as intermediate 
between two expressions of the above class (the ordinary integrals 
met with in the case of m even) corresponding to two consecutive 
yalues of ml ' 

It has also, with respect to u1 or f for instance, an order of con­
tinuity which must be considered as intermediate * between such 
consecutive mi's. 

149. Application to Huygens' principle. The above formulm 
enable us to answer the following fundamental question : 

as to the convergence, after differentiation with respect to y, of the term 
SSS/ V dx1 . . .  dxm still hold under the present form. In both cases, besides, the 
convergence is uniform as long as derivatives of JV up to the order (m1 - 2) are 
numerically limited. 

* This is fully verified by application of the methods peculiar to Functional 
Calculus, as developed in our Calculus of Variations (§§ 243-248) and beauti­
fully improved by Frcchet and Riesz. (See our l\Iemoir in Acta .J/atllematica, 
t. XXXI. p. 379.) 
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For which eqitations is Huygens' principle true in its special sense, 

i.e., in its sense (B) ? 
We already know that such equations must not be looked for 

amongst those which we have investigated in Book III. 
But, for the case of rn even, we now see that the residual integral, 

as given by the operations in the domain which \Ve have called Ti' 
and the analogous domain on S', exclusively depenps on the 
quantity UV. 

'l'he necessary and sufficient condition for the vanishing of that 
residual in tegral is that this function UV be 'f,flentically zero, i.e. that 
the elementary solution contain no logarithmic term. 

If such is not the case, the residual integral will be different 
from zero for arbitrary data. The question of its sign, as considered in 
§ 112, is liable to receive any answer according to the values of the 
coefficients of the equation : for, at least for ni = 4, the remark of 
§ 65 evidently shows that we can get any sign for UV by a proper 
choice of the coefficient 0 if the other ones are assumed to be chosen 
beforehand. 

\Ve have said that we give an answer and not the answer, to our 
question : for it is clear that we can wish it to be " plus resolu " 
than it has been in the above. \Ve have enunciated the necessary 
and sufficient condition, but we do not know how equations satisfying 
it can be found, or even whether any exist except (e21111_1) (and, of 
course, those which are deduced from ( e2m1_1) by trivial transform­
ations). This, and many other questions concerning the residual 
integral, would require further researches. 

As to the more general form (0) of the principle, it may be 
considered as being proved by our integrating formulre in the same 
sense as Kirchhoff's or Volterra's results prove it for ( e3) or ( e2). 

2. FAM ILIAR EXAMPLES 

150. It will be useful to show some applications of the above 
general formul::e, and even to verify their agreement with pre,·iously 
known results. 

(a) The case of Riemann. Let us begin with the case m = 2, 
already treated directly in Book II ; which, as we have said, behaves 
somewhat differently from the other ones. 
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The characteristic conoid degenerates into a system of two 
characteristic lines : these will be parallels to the axes, if we take 
the equation in Laplace's form. 'Ve shall write the latter so as to 
have i � I = 1, therefore, by multiplying it by ± 2 :  ( (l2u, OU OU, . ) ± 2 � + A  ::;- + B � + Gii = ± 2f. uxuy ux uy 

\Ve have to choose the sign according to the location of the useful 
angle between the characteristics (i.e. of the angle which intercepts 
an arc of S), the form A ( 7r1 , 7r2) being bound to be positive for lines 
which cut both sides of that useful angle : this sign will, therefore, 
depend (as seen in § 42) on thP- sense of variation of y considered as 
a function of x, it happening, in this case, that we do not define by the 
nature of the equation what we must call a " duly inclined " line, but 
that, on the contrary, the equation is to be written so as to make the 
given line S a duly inclined one. 

\Ve have already noticed that every term in the formula (leaving 

aside,
. 
in the first place, the one which contains �:) can be trans­

formed without distinguishing between T1 and T2, on account of the 
absence of the symbol 1- - and of V. In any of these terms, therefore, 
we only have to write lV instead of v', cancel one S and divide * by - 2. 

But the same treatment can also be applied to the term in �: 
by using the method of § 144. mx, af3 being, as in Book II, § 42, 
the two characteristics issuing from a (r is precisely constituted by 
those two lines) ; S the line which bears the data and which cuts 
the two characteristics at a and /3, we have to draw a neighbouring 
curve S11 such that each point of S11 is deduced from a point of S by 
taking on the transversal v to S a small segment such that dv = const., 
which S11 will cut the characteristics at a', (:3' (fig. 27), Sv' being the 
right cylinder on the base S11 ; we have to take the derivative, with 

respect to v, of the integral SS / uv'dS' (see § 144), it being under­

stood that the dS' of any element of Sv' and the value of u on it 
relate, by definition, to the transversal projection on to S'. 

* The factor 21T, given in § 137, is, of course, cancelled by the coefficient on the 
the left-hand side. 
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But SS J uv'dS' is equal to * 7rSS811uu2Jds, a simple integral which 
we can now write with an ordinary J and 
the derivative of which will consist of the 
product of 7r by : 

(1)  the term { u dy dS representing 
J U V  

the integral of the infinitesimal Yariation 
of uv'dS between corresponding points of , 
S and S., ; 

(2) two terms relating to the arcs 
o:o:!ol , 1313 (0) (fig. 27) of one curYe which 

Fie 27. 

have no corresponding points on the other, so that the limits of 
integration with respect to s are functions of v. The derivatives 
of these two functions are equal to + 1, as, on account of the fact 
that the transversal direction is symmetrical to the tangent with 
respect to parallels to the axes, the two triangles o:o:'o: (0l, /3{3'{3 (01• 

are isosceles. The two terms in question will thus give ! ( uUV)a. 
or ! (uV)13 , evidently corresponding to the second term in (27). 

Those two terms are, in that case, the only ones which we haYe 
to add to the right-hand side of formnlre (7 ) after having changed 
in them v into UV, SS and SSS into f and ff (and cancelled, of course, 
the I ). This giYes precisely the results which have been deduced 
by Riemann's method. The fact that Riemann's function UV is the 
coefficient of the logarithm in the elementary solution, as has been 
already found in § 46, appears, this time, as a snbcase of our general 
considerations. 

151. (b) Poisson's and Kirchhoff's formulre. The next case 
is 1n = 4 (giving m1 = 2 ,  k = 1 ), and the simplest equation of that 
type the equation ( e3) of spherical waves. 

\Ve have then, denoting by (x, y, z, t) and (x0 , y0 , z0 , t0) our two 
points, and taking w = 1, 

r = (t - to)2 - (x - Xo)2 - (y - Yo>2 - (z - Zo)2 = (t - to)2 - '1.2. 

• 'Ye change the letter S into s, in agreement with the ordinary notation and 
our § 40, to denote the arc of S. 
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There is no logarithmic term in the elementary solution (see 

§ 69) which is reduced to � ,  so that UV =  0 and V = 1 .  

For this equation (and, in  general, for m = 4, m1 - 2 being zero), 
differentiation with respect to "I and the consideration of the auxiliary 
surface r = "I  will not occur except in the terms considered in § 143 
(last line of formula (28 a)), and can even be avoided in these if we 
treat them as we do in § 144. 

Let us suppose first that S is the hyperplane t = 0, which is the 

case in Poisson's analysis. -. will be E '11. (with E = ± 1 according to 

the same rule as in § 1 29), having the value zero for V and - 2 I t0 I 
for r. The element of S (i.e., element of volume in ordinary space) 
being r2 sin e drd8dcp, the element d<Ty , quotient of dS by 

I dr I = 2r I dr I ,  
will be l 'r  sin 8d8dcp. rrhus the term in U1 wil l be (as r = I  to I for 

r 0 d (!u, t = = an 'U1 = € 
ot ), 

SS Vii1d<Ty = I  to I JI u1 sin 8d8dcp = to JJaa� sin 8d8dcp. 

The term in Uo (in which L = 0) will be (as, for r = 0, we have 
r = t0 - t, the derivative of which, with respect to v, is - 1 ) 

d ,,.- 5 ""-"'.,, a ( rr ) -d (SS Vuod<Ty) = - 57 t0 Uo sin 8d8dcp . 
V Vt'O \ J J 

The sum of both, divided by 27r (which is the value of the coeffi­
cient (29)), coincides of course with the right-hand side of Poisson's 
formula. 

If the partial differential equation is non-homogeneous, so that 
f-:f= O and the new term SS/VdTy appears, the value of 

dT = 
dxdy__dzdt 

y d-y 
is immediately deduced from d<Ty by multiplying by dt, so that the 
supplementary term is found to be (.after division by 27r) 

where j stands for 

4� J i t0 - t I dt J J j�sin 8d8dcp, 

f[xo + (to - t) sin e cos cp, Yo + (to - t) sin e sin cp, Zo + (to - t) cos e, t] . 
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152. Lot us now consider Kirchhoff's hypersurface S, viz. a hyper­
cylinder the base of which will be a clost>d (ordinary) surface w (the 
equation being again supposed to be homogeneous). The domain of 
integration may be, according to the nature of the question, the inside 
or the outside of the cylinder. Let us also take t0 > 0. 

Taking the 7r's respectively equal to the direction cosines of the 
normal n to w (directed inwards with respect to our domain, which 
may be inwards or outwards with respect to w) and (for the fourth 
one) to zero, we have to take dS equal to the element of our hyper­
cylinder dw dt ; and the transversal direction v will be opposite to n, 
the terms in (x - x0)2, • • •  being negative. 

Integration relating to the edge of intersection u0 of S with r, duy 
must be such that 

(or) dw dw 
dwy = dw : at = 2 (t0 ..... t) = 2r ' 

both sides representing the volume dS of any small cylinder (which 
we can suppose to be parallel to the t-axis) inclnded on S between 
an element of surface of the characteristic conoid and a corresponding 
element of the neighbouring surface r = "/· 

This is all we want for the calculation of § 142, as no differentia­
tion with respect to "/ is wanted. For the operations of § 144, we 

define the correspondence between x and x!0l so that the segment 
joining these points is parallel to the t-axis : in other terms, from 
any point x of u0 (which represents a point of w associated with the 
value t0 - r for t), we conduct a small segment Sn = - �v normal to S 

which changes r by �r 
Sn and increases t so as to let r take back its dn 

r dr 
original value, therefore by St = - - - -- Sn. This is the increment t0 - t dn 
which, gi ven to t on the orig'inal smface of the hypercylinder S, leads 
from the point x to the point x !0l . Therefore we have 

im � .  ou r dr vu. � lt = 11, + ot = U + - ov 
t, - t du ' 

dSWl r dr 
dS = I + ( t0 - t)2 dn Sv. 
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Substituting these values in (26) and observing that, on our 

conoid, _r_ = 1, while V is identically equal to I,  we get t0 - t 

u = I JI I� _ 1 dr OU, _ 0 
d � 1 dw, 

a 47T L r r dn ot dn _J 

in which (as in § 131)  dw relates to the base of the cylinder while 
ii0 , u1 are values of u0 , iii at the corresponding points of CT0 , viz. 

iii = ui (x, y, z, t - r). (i = 0, I )  
This agrees with Kirchhoff's formula (if we remember that 

du dit 
Ui = dv 

= - dn). 
153. If t0 is greater than the maximum of r along w, this formula 

gives the whole value of Ua . In the contrary case, and if the boundary 
of our domain (which can not be constituted by our hypercylinder 
only) is supposed to be completed by the corresponding portion of the 
hyperplane t = 0, there is a term relating to the latter surface. 

This term consists, of course, of spherical integrals as in Poisson's 
formula, but an observation is necessary concerning the way of com­
puting the two s's corresponding to (20) in this case, as in every 
other case when S consists of two parts j oining each other at an angle 
different from zero. 

In Poisson's formula itself, the term which contains u1 is 

t0Aft0 (u1) = :� f J 1l1 dil2, 
dil2 = sin 8d8dcp still being an element of solid angle, and the inte­
gration being extended to the whole sphere with centre (x0 , yo, z0) 
and radius t0 • It is clear that, this time, we have to write down the 
same integral, with the only difference t.hat it is limited to the 
portion of sphere which lies within our domain. The same obviously 

holds for the first term M10 (u0) of the derivative di;; [t0Mt0 (u0)] . As 

to the remaining part of this derivative (with abstraction of the 

factor 47r to), it can be written under either of the two forms 

(31 )  
0�0 J J u0dil2 , 

1 6  
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d d 
. 

h d"  l d . . d . t "  or (dr enotmg t e ra rn envat1ve, or enva IYe relating to the 

outer normal of the sphere) 

(32) 

which are equivalent to each other. 

But in our present problem the above two forms are no longer equi­
valen t. If, to take a determinate case, we assume w to be x = 0, onr 

domain lying on the positive side, and if we denote by Jt0 (x p) the 
average value of the function u0 along the circumference of the circle 
w hose centre is (x, y0 , z0) and radius p, i ts plane bemg parallel  to 
x = 0, viz. 

1 ·2;: • 
Jlo = J!o (x, p) = 9 / U0 (.?;, Yo + p cos </>, Z0 + p sm cp) d<f>, 

... T; . 0 

llft0 will be, in onr present problem , replaced by 

} J . . l f>-o 2 Alo (xo - to cos B, to sm B) sm (}d(} = 2 _/!!0 (x0 - A.t0 , t0 Vl - A.2) dA., 

where A. stands for cos 8, the upper limit (instead of + 1 ,  as was the 
case in Poisson's original formula) being 

(32) will  be obtained if we replace, under J, Jt0 by 

(33) d ,  o u  I c"' rt 

-d - = - A.
-- + '\ l - A. \I to o.c or . 

This is no longer equal to the deriYative (31 ) : there is lacking the 
term 

(34) 

corresponding to the tact that 'X0 is  a function of t0 • 
\Vhich of the two expressions ( :H )  or (32) is to be introduced in 

1 1 1 1 1  formula ? The :m�wer wi l l , of course, appear if  we remember 
t hat the term in quest ion is due to the quantity ( 20) in § 143. 
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Now, if we suppose that S (figured by a broken line in fig. 28) 
consists of two parts 8, S, meeting at a 

certain angle, it is clear that the corre­
sponding integral (20) has to be taken on 
each of them independently, by the methods 
of § 143 or § 144 ; and in the latter, no 
displacement of the boundary of S, when v 
varies, has to take place on account of the 
presence of S, so that, everywhere else than 
on r, the boundaries of s and s must cor­
respond to each other by transversal pro-

Fig. 28. jection, the total Sv being constructed as 
diagrammatically figured by dotted lines 

in fig. 28. Thus, no boundary term has to correspond to the common 
edge of 8 and S (as would also appear from the mere application of 
§ 143). 

Therefore, in the particular problem above, the term (34) is not 
to be introduced. The right term in u0 contains (32) and not (31) 
and the complete formula is 

(35) 47rtta = [t, fJ (u, +°;'.) sin OdOd<f> + J Ju, sin OdOd<f> J 
ff (111 1 dr ou0 _ 

d �) + - - - - -- + uo - dw r r dn ot .  dn .___) 

where the integrals within the first brackets are taken for t = 0 over 
a portion of sphere included in the given domain, while the integral 
within the second brackets relates to cr0 • 

154. (c) The equation of damped spherical waves. The equation 

has been treated by Birkeland, Carvallo, Weber, Brillouin *, and later, 

* Birkeland, C. R. Ac. Sc., Vol. cxx (1895), p. 1046 ; Carvallo, ibid. , 14 Janvier, 
1895 ; Weber, in Riemann's Partielle Differentialgleichungen der ..Jf ath. Physilc, 
Vol. n, edition of 1901, p. 310 ; Brillouin, C. R. Ac. Sc., Vol. cxxxv1, 1903, p. 667 · 

16-2 
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in several papers *, by rredone. Comparing this equation with the pre­
ceding one ( e3), we see that r will be the same, and we can also again 
take V = I , as remarked in Book II (§ 69), so that we have to in­
scribe the same terms as in the foregoing operations (§§ 151-153 ), 
but with the addition of the term in UV of formula (28), where (the 
elementary solution being given by formula (Gl a), § 69) we have 

(36) 
61) = _ K ., [< t - t0)2 - r2J *� 

4
J 4 - 'j ' 

j (A.) still being 
A. A,2 A_h 

1 + ( l !)2 + (2 iy + . . . + (h !)2 + . . . .  

If S is the hyperplane t = 0, the formula will be (noticing that 
d a . . 

h ' l a ) d-- = ;:- IS, In t Is case, eq ua to - � 
v � � 

(37) 'lta = � [to1lfr0 (uo)] + t0.Llft0 (u1) + 1!f to r2 Jllr (u1)j' d1' 
oi0 � o 

K o f to " 711f ( ) '' d + -2- � r� J.1 r 'lt0 J r, 
dto o 

where the symbol llf has the same meaning as above, and the argu-

ment in j' is J( -4 r2
• The identity of this result with the conclu­

sions of the papers cited (for example, \Veber's or Brillouin's) is  
verified without any difficuJ ty. 

\Vhen S consists of a portion of t = 0 (i.e., of ordinary space) 
limited by a surface w and of a hypercylinder on w (see Brillouin, loc. 
cit.) the terms (35) have to be completed by the following ones (the 

· ., b · (to - t)2 -argument rn J erng now - 4�--) 

KJJJ '' d d d J{ a (({ ., 9 ll1J x y z + 9 � 1.t0J dxdy dz - ... ut, J J J  

]{ ff dr ]{JJ [dr fto-r oj' fto-r J + 2 llo dv 
dw - 2 dw 

dv 0 
ll0 dr dt -

O 
u1j' dt . 

• J:e·ndic. Acc. Lincei, 5th series, Vol. x:xn (1913, lst semester), p. 757 ; Vol. 
: u m  ( 1 914 ,  l st semester), pp. 63, 120, -:li3. 



CH. I) IN 2m1 VARIABLES 245 

The first two terms only differ from the corresponding integral 
terms in (37) (the factor 477" excepted) by the fact that 

Mr (iii) = 4� ff ui (Xo + r  sin e cos cf>, 
y0 + r sin 8 sin cp, z0 + r cos 8) sin 8d8d<f> 

(i = O, I) = 4� f fiiidll2 
is replaced by an integral extended only over 
sponding sphere as in the foregoing section. 
instance, can be written 

a part of the corre­
The second one, for 

J{ ff K ff to 
oj' ff 2 t02 u0dil2 + 2 .  0 r2 'Oto dr u0dll2 , 

the double integrals relating to such portions of spheres. 
For an arbitrary shape of S, which Tedone has also considered*, 

the formula is = � (ff f 80'lt1jo' dS -:v ff f Sv u0j0' dS ) 
+ flu u1duy -:v !fuvu0duy ; 

the calculation of the last term must be understood as stated in 
§ 1 53, in the case where S has angular edges. 

155. ( d) Higher number of variables. The analogous equations 
in 6, 8, . . . variables would be treated similarly by application of 
formula (28) or (28 a). 

Let us take simply the equation of (ordinary) " hyperspherical 
waves '' a2u = 0 oarm-1 

* Tedone's results are of a quite different appearance, at first sight (a proper 
transformation being even necessary to find ·w eber's formula (37)), and are 
obtained by a very different method, implying the resolution of certain integral 
equations. This, exactly as happens in Coulon's case (see Book III, § 79), is due 
to the impossibility, which we now see to be even more radical than for rn odd, 
of introducing directly the elementary solution, so that more or less indirect 
substitutes for it must be used. Such a necessity, on the other hand, is not devoid 
of advantage, as giving place to suggestive integral identities concerning Bessel's 
functions : a subject connected with certain consequences of what we have called 
proposition (A) in Book II, § 33. 
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and suppose that S is t = 0, with t0 > 0, As V is still equal to 1 and 
�/) to 0, we find the same simplification as above. du1 is given by 

l _ dS _ 1�dfl1n-2dr = ! 2111 1_3dil 
( o-.., -:- d - 2 d 2 r m-2 ' ' "I r r 

dflm_2 denoting an element of hyperspherical surface of radius 1 .  As 
dry = - 2rdr, we sec that the factor (- l)m1 is thus destroyed and* 

(38) 47rm1-1 lta = (9 d -)m1-2 (t02mi-sf [ · ll1 dflm-2) 
-4d4 - r=4 

d ( · d )
m1-2 

(t 2m -:if [ dn ) · o 1 'Uo 11 -"m-2 • dt0 2fo (lto . r = t0 

If .M1 (r)  denotes the average value of u1 on the hyperspherical 
surface of radius r, we can write 

(3b') 47rm1-1 'I.ta = 
( . d [ to2m1-3 .Llf1 (to) J 

n,,._;o 2to 

The solution obtained by Tedone in 1898 (.A.nnali di Mat., loc. cit. ) is apparently 
different, the term in u1 , for instance, being 

(39) 

where the .A's are numerical constants. That 
- 2  - 3J/1 

is of the above form, is obvious by mere inspection : the A's may be considered 
a.-; defined by the relation, identical in A, 

l 
(40) II (A) = ;.-� (}l. + 3) (}l. + 5) . . .  (}l. + 2m1 - 3) 

= A 0 (A + 2) (}1. + 3) . . .  (A +m1 - l) +  . . .  
+ Ah (}l. + 2) (}l. + 3) . . .  (}l. + m1 - h - l ) +  . . .  

+ A m, - 3  (}l. + 2) + A m1 - 2 ,  
a:s i s  seen by setting down J/1 (r) = 1·>. and observing, on the other hand, that such 
an identity in A can be written in one way and in one way only. An easy method 

• For the use of (28 a), it is necessary, this time, that the differentiation d I d )  
d� \ - - dt� 

be carried out last, as it has to apply to the denominator in d 
7, • 
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for the determination of the constants Ah consists in representing the left-hand 
side in (40) by the circuit integral 

(41) 

A + 3  
(m1 - 2) ! r (1 -- z) - �-

II (A) = - - ---- dz �l71' J a zm1 -
1 

(integration along a closed line around the origin, as usual). If we set down 

l - z= (l - Z)2, whence z = 2Z- Z2, 

(41 ) becomes (the new path of integration 0' surrounding the origin in the same 
way as 0) 

II 

( z) - - 1) 
or, finally, expanding 1 -� as well as ( 1 - Z) - (A + 2) in powers of Z and 

only retaining the terms in � in the integrand 

so that, in (40), 

+ . . .  (A. +m1 - h - 1), 
(m1 - 2 + /i) !  Ah = ---

:;::, · .. , - h 
tt • (7n1 - 2 - n) , ' 

which is to be substituted in (39). Of course, the terms in u0 are deduced from ( d )m, - 1 -h ( c{ )m., -2-h 
dr instead of dr ; and this (taking account 

of the coefficient in the left-hand side of (38)) gives Tedone's form of the result 
(loc. cit., formula (24)). 

3. APPLICATION TO A DISCUSSION" OF CAUCHY'S PROBLEM 

156. Let us come back to formula (35), § 1 5 :3. It allows us to 
find a solution u of ( e3), it being assumed that we know Cauchy's data 
both on t = 0 and x = 0. 

But we know that such a problem is not correctly set. The one 
by which we have to replace it, in order to satisfy this condition is, 
as we have already said in Book I, a mixed problem. 

The theory of such mixed problems is now by itself an extensive 
subject which, as a whole, will not be developed here. It is classically 
treated for the most usual case of cylindrical domains such as spoken 
of in Book I, § 25, by the method of " fundamental functions " and was, 
indeed, the very origin of that method, as the notion of " fundamental 
functions " arose from Schwarz's, Picard's and Poincare's papers on 
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the vibrations of a membrane *. Several works of some of our best 
known geometerst were devoted to the extension and improvement 
of the original ideas of the aforesaid authors, until they culminated 
in Fredholm's theory, and also the application of this theory to 
our problem !. On the other hand, a quite different series of methods l l  
more nearly connected with our above considerations have been 
applied to the same problem in more recent times by . Volterra, 
Goursat, Picard, etc. � and by ourselves **. 

\Ve shall content ourselves by treating "the simple case of the 
plane boundarytt, alluded to above, which is done very easily by a 
method belonging to the second class which we have just mentioned, 
and which is deduced from the well-known method of images in the 
potential theory. The device applies as well to ( e2) as to ( e3) : let us 
develop it for the latter equation (whose theory, as we know, implies 
that of (e2)). The problem is to find u defined by 

(< ) o� u o2u. 02U o2u 
+ + - at2 = o 

and the definite conditions 
OU 

'll = 'll0 (x, y, z) ; -;:,- = u1 (x, y, z) (}t 
u = u (y, z, t) 

( for t = 0, x � 0) ; 

(for x = 0, t � 0), 

* Schwarz, Acta Soc. Fennicae, 1885 ; Picard, C. R. Ac. Sc., 16 Oct. 1893 ; 

Poincarc, A merican Journal, Vol. xn, 1890 ; C. R. Ac. Sc., Vol. cxvnI, 1 894, p. 44 7 ;  
J:endic. Gire. Jlat. Palermo, Vol . VIII, 1894. t Le Roy, Stekloff, etc. 

! See, for in�tance, Lauricella, A nn. di Jfat., series 3, Vol. XIV, 1907, pp. 143 ff. 

I I  On the comparison between them , see Volterra's Lecture at the Inter­

national Congress of Mathematicians at Strasbourg, Sept. 1920. 

-,r \Ve i ndicate, amongst others, the works of Heaviside, Picone, those of 
Znremba, some of whose results were found again later on by Rubinowicz ; also 
recent papers of Te<lone, \Vebster, etc. 

ff B1dl. Soc. JI at/1 .  France, Vol. xxxI, 1 903 ; Intern. Cong)•ess of Jfathe­
maticians, Strasbourg, 1920. 

tt Contrl\ry to Cauchy'1; problem, the 1;hape of the boundary in the mixed 
prol 1lem (wo mean that part of the boundary which does not bear Cauchy's data) 
hali n very deep influence on the nature of the problem. Thus, for the case of two 
i mlependent varial ilcs, the proLlem of the electric cable with a sliding contact 

rn 24 a) will require quite d ifforent calculations for different laws of motion of 

the coutn<.:t. 
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it being understood that the given quantities on the right-hand sides 
satisfy 

(42) 

(43) 

u0 (0, y, z) = u (y, z, 0), 
au 

'll1 (0, y, z) = at (y, z, 0). 

If the retrograde half-conoid from a, limited to t = 0, does not 
meet x = 0 (mixed dotted cone in fig. 29), u is given by Poisson's 
formula. 

. du ou 
In the contrary case, if we know the values of -d = - along x = 0, 

n ()X 
we should have formula (35) 

(44) 47rUa = l1 + f2, 
where I1 is the first line on the right-hand side in (3.5), constituted 
by a part of each of Poisson's integrals (viz. the part relating to that 
part a of the sphere u with radius t0 which lies on the positive side 
of x = 0) and 12 is Kirchhoff's integral over x = 0 :  

ff ( u I d1· au d �) = / - 'I' dn -'(}[ + t1 ([; dw, 
. . du chi 

U1 being equal to - ··· = - --· . dn ax 

There remains to eliminate these values of t11 in the latter integral. 
'Ve obtain this by introducing the point a (- x0 , y0 , z0), symmetrical 

. • • •  l""' . . . .. . . . . . . .. . . . . . .. . .. . . .  , • . · ·� .· 
.: ·.� ·:·: . . . .. . . . . . . . . . . ..  . : .·;x . . . . • . . . • f ... ·· ··� . . · · .  . . . . . . : .·· .•· . . . · 

:.;', . • • • • . • ul . • • 
. .. .. . . . . . . . ... . .. .. . ..  ... . . . . .  . . . . . � . . . . . . 

Fig. 29. 
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to a with respect to x = 0. Let r' be the part of the characteristic 
conoi<l (we still mean the retrograde half-conoid with vertex a') which 
lies in our useful region x � 0, t � 0 ;  u ,  the trace of I'' on t = 0 (a 
portion of spherical surface in ordinary space)* : the sum 

, , , Jf (u.1 1 dr' au. _ d �) 11 + 12 = 11 + r' - r dn vt u dn �(J) 
analogous to the right-hand side of ( 44 ), but in which we start from 
point a' instead of a-so that we introduce 

r' = V(x - x0)2 + (y - y0)2 + (z - Z0 )2 
instead of r-and, moreover, Ji' relates to u' and no longer to u, is 
zero, as the corresponding domain of integration does not include the 
vertex a' (see § 146). Such a sum can therefore be subtracted from 
( 44 ), and this corn bination 

·ii = I 1 + 12 - I/ - 121 
is the required one. For, the values of r and r' being equal to each 
other at every point of x = 0, the terms in u1 disappear i n  the differ­
ence J,, - 12 • 

The other terms in J2 - I2' duplicate each other, as the values of 
d ! d 1, 

r r -1 and -1 along x =  0 are opposite : so that t 
e n  < n 

(45) ll ri = � (11 - Ji') + 21 J� , J2 = ff ( - � d
d

r �u 
+71 7r r n ut 

* The accompanying diagram (fig. 29) (which would be a complete diagram 
for (e.,)) represents the projection of the true 4-dimensional diagram on to the 
(.c, !J, t)-::1pace. 

+ Any " non dnly inclined " plane S' can be treated i n  the same way (whether 
normal or oblique to t=O), because we know that (e3) can be transformed into 
itself by a li near transformation on .v, y, z, t such that S' becomes parallel to the 
new t-axis. In the non-transformed svacc, the cone r' would have the same 

intersection with S' as r, the line which joins the two vertices being transver::;al 
to S' and divided by S' into two equal parts. 

We only mention briefly Volterra's i mportant remarks (London Proceedings, 
1 004,  and Stockholm Lectures) on the quite special behaviour of this method of 
i mages in the hyperbolic case. 
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J1 - Ii' is a double integral relating to a system of two spherical 
zones (of one base). It can be expressed more simply by supposing 
fictitiously that the values of u0 and u1 on the negative side of our 
plane t = 0 (i.e. relating to t = 0, x < 0) are respectively opposite to 
the corresponding values on the positive side : viz. 

(46) ·ui (- x, y, z) = - u-i (x, y, z) (i = O, l), 
by means of which J1 - I/ is expressed by double integrals extended 
over the whole surface of the sphere er, and quite similar to the right­
hand side of Poisson's formula. 

We however must observe that the values of u0 and it1 thus intro­
duced in the integrand are discontinuous on x = 0 if they do not 
vanish there. It may be convenient to remove this discontinuity by 
separating the terms which correspond to the values of u0 and u1 for 
x = 0, i.e. setting down 

( 47) u0 (x, y, z) = u (y, z, 0) + U0 (x, y, z), 

U1 (X, y, z) = (0a�)t=O + U1 (X, y, z). 

157. The verification of this solution is, as usual, necessary. 
There is no difficulty as concerns the partial differential equation : 

for it is satisfied * by J1 + J2 and also (as the equation does not change 
by changing x into - x) by Ii' + 12'· 

As to Cauchy's conditions, there is no difference between the 
present problem and Poisson's question, the solution being simply 
given by Poisson's formula in the neighbourhood of t =  0. 

Let us now suppose that the point (x0 ,  y0 ,  z0 , t0) reaches the plane 
x = 0. Poisson-like terms 11 - J1' disappear, as becoming exactly equal 

1! • Th 2ff I dr au 
d 

. 
h ' h 

dr . 
fi 

. except iOr sign. e term r dn ()t. 
w, 111 W IC 

dn 
IS nite, be-

haves like the potential of a simple layer, and therefore is continuous 
and assumes the value zero ; the remaining term 

ff d !  
2 it d: dw 

* The argument in Book Ill, §§ 1 1 5, 1 1 6, remains valid when S is bounded 
hy an outline and, therefore, also when it consists of two different parts, as happens 
in the present instance. • 
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behaves like the potential of a double layer, and therefore (the inte­
grand being identically zero when a assumes its limiting position P) 
becomes, as is well known, equal to 4?r up :  which is also, therefore, 
the l imiting val ue of 4?r1la ·  

The proof is apparently complete. I n  reality i t  is not, for we have 
to ascertain that u and its first derivatives are continuous on the 
plane x - t (which is the characteristic through the edge common to 
both parts of S) : else we should have const1:ucted a solution satisfy­
ing (03) and a solution satisfying (C3), but not one solution satisfying 
both. 

In each of the regions 1 (t < x) and 2 (t > x) into which our domain 
is divided by the characteristic plane x - t, each of the terms of the 
solution is continuous, as well as its derivatives, if such is the case 
for u0, u1 , u themselves. The derivatives of I1 , I2 in 1 are expressed 
as stated in § 28. In 2, let us express ltft ( u0) and Mt ( u1) (notation 
of § 28) by means of the quantities 

( 48) J/,0 (x, p) = _!__ f2,,. 'll0 (x, Yo +  p cos cp, Z0 + p sin <P) dcf>, 471 J 0 • 1 f 271" 
Jt1 (x, p) = 271" 0 'll1 ( ) dcf>, 

which respectively denote the average values of u0 and u1 along the 
circumference which has its plane parallel to x = 0, its centre at 
(x, Yo ,  zo) and its radius equal to p. These integrals give ltft0 ( u0) 
and Aft0 (iii) as 

1 !+1 - 1 r+l 2 _ 1  J!0 (tr0 - A.to , f0 Vl - f..2) dt.., 2 .  _ 1  
Jt'1 ( ) dt.., 

' a:s !J"o 
2 - 1  

h dv<; o · . b § w ere dt-: is given y (33), 1 53. 

In 2, the corresponding quantities, account being taken of our 
fictitious distribution for negative values of x, will be 

( 49) ill,, ( ., ,) = Hf'i .//,( ) dA -f J , (i = 0, 1 )  ( ;\, = �:) 
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Similarly, with the values of u ,  we shall construct the average 
value c/Y'(x, p) of u along the circumference with centre (0, y0 , z0) and 

radius p, and we shall easily get, for 9
1 

J2 , the value 
•• i'Tr 

(50) 
-�J. 

= J1 [c!Y'(t _ x0 ��.v:f"="X2) 
+ 

_ cvJI'] 
dA.. 2 rr 

2 
Ao 

0 A. ' A. A. ot 

:Now, each term of u, and the first derivatives of each of these 
terms, will be continuous in 2 as well as in 1 .  .Moreover, when passing 
from 1 to 2, the continuity of u subsists, because the new terms which 
appear in it (viz., integrals from A.0 to I) begin by being infinitesimal. 

But such is not the case for the derivatives with respect to * 
x0 and t0 • Taking for instance the latter, it is clear that the differ­
entiation of ( 49), with respect to t0 , introduces not only differentia­
tions under the integral sign (the result of which varies continuously 
when t0 - x0 passes through zero) but also limiting terms corresponding 
to the dependence of A.0 on t0 , and which duplicate each other, givingt 

( .jl ) - �; [to U1 (0, Yo , Zo) + Uo] = - � (tou1 +  Uo)· 

The corresponding term for ( 49') is zerot, and we see that 11 + I/ 
has a discontinu.ou.s derivative with respect to t0 (or similarly with 
respect to x0), the discontinuity being given by (51). 

But this discontinuity is exactly compensated by another one 

1 · 
I 'fJ '2 h' h . . d . ( f re atmg to "J,7f - w IC IS 0 In I an assumes m 2 as seen rom (50)) 

the initial value 

[ (a r') J lo t/P"(O, 0) + X0 ;t 0 • 

158. We shall use this solution of the mixed problem for a plane 
boundary in the study of a question which occurred to us in Book I, 
§ 27, concerning Cauchy's problem with respect to (e3) and to x = 0, 

* F and ?-:-- behave like u itself. e·/fi,_ �  - Mt) 

t For p = O, the quantity J(i (x, p) is evidently equal to the corresponding 
value of ui (x, y0, z0) and the function 1li being assumed to be differentiable in Yo 
and zo , the derivative ---ap 1s zero. (Jti is an even function of p, as is seen 

from (48).) 
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that is, the 
taken = 1) 

problem of  finding u (x, y, z, t)  such that ( w being still 

(ea) 

and that 

(52) 

o2u o2u o2u 02U 

ox2 + ay'J + dZ2 - ot2 
= O, 

OU 
u = u0 (y, z, t), 

ox
= U1 (y, z, t), for x = 0, 

or the corresponding problem for ( e2), that is, to find u (x, y, t) such that 
d2U o2u o2it 

( e2) (ix2 + oy2 - ot2 
= 0, 

and that 

(52') OU 
1t = u0 (x, y, t), ox = 'lt1 (y, t), for x = 0. 

'Ve have seen that there exists no solution in general ; and there­
fore, as in §§ 1 5 a, 1 6  for V2u = 0, or for the equation of heat, the 
question arises to find for what values of u0 and u1 the solution will 
exist. 

A very simple sufficient condition has been found by Volterra * :  

viz. the solution will certainly exist if u0 and u1 be analytic in y, z (for 
equation (ea)) or in y (for equation (e2)), no matter in what (regular) 
manner they depend on t. 

To see this, we have only to remark that our differential equations 
do not change by changing x into it and t into ix. 

If, therefore, reasoning on ( e3), we write down the expression 

4� �: [ x ff Uo (y + ix sin () cos cf>, z + ix sin () sin cp, t + x cos B) sin () d() dd>] 

this will again satisfy the differential equation (the verification of 
this fact being still valid in this new case if we take it under the form 
which we gave in Book II, § 28 a). The same is also true, of course, for 

x ff ll1 (y + ix sin () cos cf>,  z + ix sin () sin cf>, t + x cos B)  sin ()d{)dcf>., 
and the sum of these two terms will satisfy the boundary conditions 
if we take for u0 and it1 the data ( 52)  of the problem. 

All this, of course, assumes u 0  and u.1 to be analytic in y, z, because 
imaginary values of the latter are introduced. 

• This is equivalent to the argument in his paper i n  Rivi'sta di Matematica, 
t. iv, 1894, pp. 1-14. 
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A quite similar argument holds for the problem relative to ( e2) 
if we treat formula (l'), Book II, § 30, integrating this equation, as 
we just now treated Poisson's formula. 

159. Can we now find a system of necessary and sufficient con­
ditions ? An answer, though a very imperfect one, is afforded by the 
above solution of the mixed problem, as we showed at Volterra's 
Seminary in Rome in 1916 *. 

As we have done in preceding examples, we take u0 as arbitrarily 
given beforehand, and try to find the most general admissible form of 
u1 by finding the most general form of the solution u. This can be done 
by considering u as being the solution of our mixed problem, i.e. as 
being defined by the conditions of § 156 in which, only, instead of 
the initial plane t = 0, we take a suitably chosen parallel plane t = e 
to bear Cauchy's data, so that (also reversing the notation for the 
data) we write 

u = U0 (x, y, z), 

U = Uo (y, Z, t), 

OU 
ot 

= u1 (x, y, z), for t = 8, x � 0, 

for x = 0' t � e. 
The quantity B is arbitrary : we can therefore admit that it belongs 
to an interval of values of t for which u0 is regular, or even that it lies 
arbitrarily near to the values of t which we especially consider. 

As found above, (45) gives (notation of § 157)  

" = 2� J, + Jf,,_, (u,) + (t, - 0) �.ilfi,-• (�';) + .ilfi,_, (u1) J , 
of which we have to take the derivative with respect to x for x = 0, if 
we want to obtain an expression of u1 • 

Again proceeding as in Book I, §§ 15a, 16, we observe that the 
first term, which is the only one depending on the given function u0 , 
will lead us to one of the possible solutions : we do not take any 
special care of its form and shall submit it to no further trans­
formation. 

Under the above form, however, the remaining terms are not com­
pletely independent of u, as u0 and u1 are subject to conditions ( 42): 

* The principle of the calculation in § 160 was given in 1901 at Princeton 
(see P1inceton University Bulletin, Vol. XIII, 1902). · 
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( .J.3). \Ve avoid this inconvenience by means of the transformation 
( 47) (§ 156), writing 

_ 
_ '1uo 

( ) U ( u0 (x, y, z) - i10 (y, z, O) + U0 (x, y, z), u1 (x, y, z) - dt y, z, O + ! \x,y, z), 
U0 and U1 vanishing with x. The terms obtained when replacing 

u0 and u1 by u0 (y, z, 0) and 0;�0 (y, z, 0) shall be considered as making 

a whole with .} J2 . ... 7T' 
\Ve investigate the remaining part 

_ r - (au. ) - J ( 5:-3) n' = .1.lfto-8 ( Uo) + (to - B) I Aft0-8 dr 0 + Mt0-o ( U1) , 

in which U0 and U1 vanish for x = 0, and which represents the 
most general expression of a solution of (e3) the values of which 
for x = 0 are everywhere zero. On that same hyperplane x = 0, 
we have to write down the value ui' of the differential coefficient 

(�:)x=O· 
It is easily seen (by combining with each other the corresponding 

elements of the two spherical surfaces along which the M's are taken ; 
we mean, elements which have the same projection on x = 0) that­
taking account of the assumed conditions U0 (0, y, z) = U1 (0, y, z) - 0 
-the derivative in question is * 

(53') , (ou'\ ll 1 = - ) dX .i: = O  

= .J/' t0-8 ( Uo') + (to - B) [ "-lf' t0-8 ( �d��) + .JJ' t0-8 ( U/) J ' 

the average values J..11 ' being now taken over the hemisphere u (centre 
(0, y, z), radius t0 - B) which is situated in the region of positive x's, 
and Uo', U1 denoting the derivatives of U0, U1 with respect to x (for 
any positive x). \Ve immediately observe that these are arbitrary 
functions of x, y, z, any choice of U01, for instance, giving 

= J: / dx. 

• I f  we had operated with u0 and u1 and not with U0 and Ui ,  i.e. with 
functions not vanhshing with x, the formula would have contai ned complementary 
tenus in troducing the average values of these functions on the limiting circle of 
the hemisphere. 
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If, conversely, ui' is given, the problem of finding u is reduced to 
the determination of U0', U/, that is to solving equation ( 53'). 

160. This can be done, at least theoretically, by the following 
method. In the first place, it is easy to separate the two terms on the 
right-hand side of (53'). For, setting down t0 - B' - t', one of them is 
evidently even*, and the other odd, in t', so that we can determine 
separately U0' and Ui' by 

(54 ). � [t' M't· ( U0')] = i [ui' (0, y, z, e + t') + ui' (0, y, z, e - t')] ,  
O/J 

which is equivalent to 

( 55) t' M' t' ( U0')= � 1�· [ui' (0, y, z, e + t') + ui' (0, y, z, e - t')] dt' 

and = W (y, z, t'), 
( 55') t' M' t' ( Ui') = i [ ui' (y, z, e + t') - it/ (y, z, e - t')] = WI (y, z, t'). 
Each of them needs only to be considered for positive t' and is a 

special case of an integral equation of the first kind. 
The unknown quantities U0' and Ui' being required only to be 

continuous, we shall mul tiply by t'dt' and integrate from 0 to t'. The 
result (which we, of course, only write for U0', as the two equations 
(54) and (55') are entirely similar) is J:' t' W dt' = 1: t'2 M't, ( U0') dt', 

and the right-hand side represents the integral _!__ (({ U0' dxdydz Zw ) ) ) 
throughout the inside of the hemisphere. 

Now, the principle of our argument will consist in observing that 
the latter integral admits of a derivative with respect to each of the 
variables y and z, without any assumption as to U01 other than con­
tinuity. For, if the centre (0, y0 ,  z0) of our hemisphere be displaced 
parallel to the y-axis by dy, the new 
spherical surface will in the neigh­
bourhood of any point M (see fig. 30, 
which is a plane section of the space 
diagram) be normally displaced by 

y - yo dy cos (n, y) =  ( dy, 

* Compare formula (48), § 157. 

/ / -��. . / d!J \ I . . 
. / \ .' /'  I 

_(/ \ 

Fig 30. 

1 7  
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and the new volume will differ from the original one by (positive or 

negative) cylindrical elements, each of which has y 
t' 

Y!!. dy for its 

height and t'2df2 for its base, (dil = sin OdOdcp), giving a term 

t' (y - y0) Uo' dil 
in the integral. Thus 

(56) 2� 0�0 J f J Uo' dx dydz = 0�0 f :·t' W (y0 , Z0 ,  t') dt' 

= .}:ff (y - yo) Uo' d!l = t'M't' [(y - yo) Uo'] , 

with a similar expression for the derivative with respect to z0 • 

161. Let us now define the two operators 7iy and 7iz by the 
equalities 

7Jy <P = � Jt' t' <P (y, Z, t') dt', 7iz <P = � rt't' <f> (y, z, t') dt' : 
oy 0 oz J o  

we see that 

�10 W= t'll{'t1 [(y - yo) Uo'] , 7iz0 lV = t'M't1 [(z - zo) Uo'] .  
But we can operate on ( 56) as we did on U0' itsel£ Therefore, 

?!2y0 W must exist, as well as 7iy07iz0 W (the latter being equal to 
7iz07ty0 W), and will give the values of 

t' llf 1 t' [ (y - Yo)2 Uo'] ,  t' lJf' t' [ (y - Yo) ( Z - Zo) Uo']. 
To this we can again apply our operators 7iy, 7iz , and we see that 

we can do so any number of times, be the given function ui' indefinitely 
differentiable or not (the latter being, of course, the general case when 
U0' only admits of derivatives to a certain order). We have 

(57) T1tk (yo , Zo , t') = 71\/?� kzo lV = t' JJ[' t' [(y - y0)h (z - z0)k U0'] .  
\Ve can say that this enables us to obtain the value of any 

double integral such as t' 1ll't' [ P (y, z) U0'] , where P is any polynomial, 
as P can be expanded in powers of (y - y0), (z - z0). For instance, 
denoting by y1 , z1 another system of values of y, z, the quantity 

can be written in the form 
�A1tkmn (y - Y1)111 (z - z1ti Uo', 
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so that its average value on a new hemisphere o-1 with its centre at 
(y1 , z1) and its radius equal to ti' can also be found by such an ex­
press10n as 

(58) Th, k (yo, Zo ; Y1 ' Z1 ,  t/) = � �.A.hkmn Tmn (y1 , Z1 ,  t/). 

161 a. There remains to determine U0' by means of (57) (or (58)) : 
a kind of " problem of moments " whose solution, if existent, can be 
obtained by known methods. For instance, we only have to consider 
such an integral as 

!2 { f e -K2 [(Y -Ye) 2 + (z-zo)2] Uo' ( g, y, z) t'2df! 
K2(h+k +1> 

= 2t' � ( - I)h+k 
h l k l  T2h, 2k (yo , Zo , t') 

extended to our original hemisphere a -so that g denotes 

t./t'2 - (y - Yo)2 - (z - Zo)2, -
which, for K = oo ,  approaches the limit U0' (t', y0 , z0),-or* a similar 
expression formed with the T' hk's and approaching 

V t1'2·= (Yo - Y1)2 - (zo - Z1)2 U�' [ V t/2 - (Yo -y�)2 - (.Zo - Z1f, Yo , Zo]. 

We thus have a serias of operations which must give us the so­
lution U0', if any one exists. Of course, we should have to ascertain 
that this is the case, i.e. that the values of U0' found in this way 
actually satisfy the given equation (55) : so that a system of neces­
sary (and sufficient) conditions which ui' must satisfy in order that 
U0' should exist is the following : 

(a) 'The function W (y, z, t' ) deduced from ui' by (55') can be sub­
jected to the operations <fty, <ftz any number of times in any order (these 
operations being even permutable) ; and the same applies to W1 ; 

* \Ve also can consider the quantity 

_A,[., {[0!-Yo)2+ (z - zo)2Jm U. '} 
t t'"' 0 , 

which we again can express under the form �Bhk Thk and whose quotient by 

.Llft·' J�l -.'lfo)2+(z - zo)2}m 
l t'2 

has also the limit U0' when the index m becomes infinite. 

17-2 
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(b) The result Thk (or T' hk) must be such that 
K2(h+k+11 

2x0 I (- l)h+k 
h !� T21t,'2lc (yo , Zo , Xo), 

[BK IV 

(or a suitable analogous combination with T') approaches a limit for 
K= oo ;  

(c) This limit U0' (x0 ,  y0 , z0) must satisfy (55). 

162. A quite similar treatment can be applied to the correspond­
ing problem for ( e2). It is clear that, the data being the values Uo = 0 

and ui' (y, t) of u and �: for x = 0, our above equation (55) would have 

to be replaced (notation of § 30, Book II) by 
lY = t' µt' ( Uo'), 

that is 
1 JJ U/ (x, y) dxdy 

W (yo, t') = 7T' {x�o. x�+ (y - yo)2�t'2l � t'2 � x2 - (y- Yo)2 

= 
_! Jt' f 1T "!!o' (p sin cp!_y0 + p cos cp) p dpdcp

, 
7T' 0 0 v t'2 - p2 

from which again we, in the first place, deduce the value of the average 

mt ( Uo') = !_f 1T U0' (t sin cp, Yo +  t cos cp) dcp. 
7T' 0 

The only new feature characterising this case is that such a deduc­
tion is to be done by solving Abel's integral equation, viz. 

(55 a) '!!: rn ( U ' - _E_Jt W (y, t') t'dt' . 
2 t o ) - tot 0 Vt2 - t'2 

This being done, we should have to proceed as in the preceding 
case and should obtain quite similar conclusions. 

163. The problem, in one case or the other, is thus solved, though 
"very little" in the sense of Poincare, on account of the complicated 
nature of our conditions and of the fact that, for instance, we cannot 
even say whether (c) is distinct from (a) and (b) or a consequence of 
them. 

l\loreover, these conditions introduce the variable t in a role quite 
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different from that which is played by the other variables ; and thii: 
ought not to be : for our problem is evidently invariant for Lorenz's 
group or, more exactly, the sub-group of it which leaves x invariant,­
for ( e2) for instance, the well-known group { y' = y Ch a + t Sh a . 

t' = y Sh a +  t Ch a: (a, arbitrary parameter). 

It is clear that it would be desirable to write our solution in 
a form which would also be invariant for such a group : this would be 
the case if it would introduce the variations of ui' not along paralleli: 
to the axes of the coordinate planes, but along the bicharacteristics. 

Our results in Book I, § 27, show us that our integral equation 
(55) or (55 a) has no solution when ui' is independent of t and not 
analytic in the other variables ; Volterra's result shows us that it 
always has one when ui' is analytic in the variable or variables other 
than t. All this, of cou rse, could be put in other more general forms 
by using the aforesaid sub-group of Lorenz's group. 



CHAPTER II 
OTHER APPLICATIONS OF THE PRINCIPLE OF DESCENT 

1 .  DESCENT FROM m EVEN TO m ODD 
164. \Ve have obtained the solution of our problem with an even 

number of independent variables by deducing it from the correspond­
ing result in the case of m odd, i.e., from our formulre given in 
Book III. Could the reverse be done ? Can our present formu]re 
lead (by means of descent) to solutions for the case of m odd ? We 
shall now see that this is possible, and even that the solution thus ob­
tained is more advantageous, in some respects, than the previous one. 

\Ve apply our method of descent in the same way as before, 
starting from fig. 23, p. 219, and the comparative study of equations 
(E) and (E'), with the only difference that m will now be an odd 
number, which we can still write m = 2m1 + 1, if, in our above formulre, 
we change 1n1 to m1 + 1. Also the relation 

r' = r - (z - c)2 

(in which we shall again assume c to be zero) will subsist. But, 
instead of formula (39) given in Book III, we now start from formula 
(28) or (28 a) of the present Book, which we shall apply to (E') : we, 
therefore, introduce the two functions corresponding to ff/) and V. 
One will be a power series in r' 

00 
(59) UV' = � V'mi+k r 'k = �V'mi+k (r - z2)k, 

k = O  
the other a polynomial, of degree m 1  - 1 (on account of our above 
observation concerning m1) in the same quantity 

(60) 
m1 - l  

VI _ "" v I r fh "" T.r I (r ")h - � h = - r h - z� , 
0 

the coefficients Vh' being, in both cases, functions of the variables cc. 
Let us now consider a solution 'lt of (E), which we again take as 

n. solution of (E') not depending on z. If it is determined by Cauchy's 
data on S'-or, which is the same, on S-it will be given by 
formula (28) or (28 et) of the preceding chapter, in which 

( 1 )  m1 has to be changed into rn1 + 1 ;  
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(2) r has to be replaced by I' '; V and o/J by the above expressions 
V' and UV' ; 

(3) T, S, T, er have to be replaced by the corresponding varieties 
T', S', T1, er' relating to the problem in Em+i ; 

( 4) dx1 dx2 • • •  dxm , dS, dS., have to be multiplied by dz, while dT ./, 
du./ are deduced from them as explained above ; 

(5) a J is to be written * after each SSS or SS, and will repre­
sent the integration with respect to z. 

We only have to illustrate the influence of the latter operation. 
The treatment of the first two terms is obvious. The SSS J, for 
instance, will be written 

and 

(61) SSS/ dx1 dx2 . . .  dxm J o/J'dz 

= SSS/ dx1dX2 . . . dxm J [:£ V'm1+k (I' - z2)k] dz. 

As the integration f has to be performed from - vr to + v'r, 

J+Jr rk+i _ (I' - z2)k dz = rk+i B (k + 1 ,  !) = (k l) G , -Jr + k+1 

this introduces the quantity (no longer containing z) 

(62) 

where the arbitrary numerical coefficient I shall be disposed of 
presently. 

Thus (61) becomes 1 SSS/v2dx1dx2 • • •  dxm, and similarly, in the 
second term of (28), we have to replace UV byt l v2• 

* Another symbol would, strictly speaking, be necessary for the integrals 
which are differentiated with respect to 'Y· In order not to complicate notations, 
we simply denote them by SSS and SS (instead of SS and S) as they will be 
finally expressed (see the following text) by space and surface integrals respec­
tively. 

t No special difficulty arises from the presence of the derivative ;11 , as the 

differentiation is evidently permutable with our integrations. 
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164 a. Let us come to the remaining terms, in which we have 
to differentiate with respect to ry. Before that differentiation, T ,  for 
example, will belong to a kind of hyperboloid of two sheets, so that 
the point (x1 , x2 , • • •  , Xm) has to vary inside the domain T1 enclosed 
between r = ry and S, a kind of hyperbola (the section of the hyper­
boloid in question), each position of it giving on T two values of z 

z = ± .vr-=-ry. 
By its definition, dT./ will be such that its product by dry repre­

sents the volume of the portion of the (m + I)-dimensional space 
enclosed between two consecutive surfaces r' = const. in any ele­
mentary cylinder through the element in question (fig. 31 ). If we 

B m 
Fig. 31.  

take the cylinder parallel to the z-axis, the volume will be equal to 
the cross-section (that is, the projection on to Em, i.e. dx1 dx2 • • •  dxm) 
mul tiplied by the segment dz intercepted on the generatrix. Thus 

d I = J_ d · I  or ' :  - dx1 . .__. dx_rn -
dx1 :_:· dxm Ty tul"1 • • • Xm • oz : - 2 I z I - 2 vr - 'Y 

, 

which allows us to express the first integral subject to differentiation 
relative to ry. V' being given by (60), in which r - z2 has to be 
replaced by ry, this integral becomes (the denominator disappearing 
on account of the presence of two elements dT with the same pro­
jection on to Em) 

(63) SSS JV'dTy' = SSS,.Jj��ct;· mf1 
where T1 is again the portion of T such that r � ry. 
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By a quite similar argument we have to take, in the other integrals 
subject to differentiation, 

d<J"/ = - '�s . 
2 v r - ry  

We can also apply this without essential modification to the 
integrals in the last line of the formula if we take it in the 
form (28 a) (and besides note that the symbols d� and :v are per­
mutable) . Finally, we have 

27Tm (64) (- l )m1+1 ' 'Ua (m1 - 1) : 
= - 1  [SSST/v�dx1 . . .  dxm +. SSs0V2 (u1 + Luo) dS] 

I dm.- 1 [ � Vh'ryh 
+ ( l ) t d-m.- l SSST/dx1 · · ·  dxm . 1  ··� 

1n1 - · "/ (y =O) 'V r - "f � v  I h] 
+ SSs ( u1 + Lui) dS ;r �'Y7 

I dm1- 1  d � Vh'ryh d 
-·�- -- SSs 11o t1S .... ::;;.· · · · · · · ·-·· -r i -- SS uov2dS. 

( m1 - I)  ! drym• - 1  dv " v r - 'Y dv 
This new formula is, as can be seen, quite of the same appearance 

.as the classic formula of Volterra (to which it easily reduces when 
applied to (e2)), and contains no symbol which is not classic in analysis. 
But it combines this advantage with an entire generality, as we know 
that such a formula exists for any (as yet analytic) equation. 

165. How this same formula could again lead to our former solu­
tion is easy to recognize. We simply have to perform the differentiation 
with respect to ry. As the integrand is of a fractional order in the 
neighbourhood of ry = 0, no boundary term is to be introduced ; but, 
on the other hand, the use of our symbol I is necessary : with the 
help of it we can simply differentiate under SSS or SS : m other 
words, replace - �

1
- � Vh'ryh by its (m1 - l)th derivative *, so that 

vr - ry  
we find, e.g. 

I dm. -1 [ f J -(---=-1·-)·i d m, -i s s s . ,= c� Vii' ryh) dx1 . . .  dxni m1 · "/ (y =O) 'V r - ry 
= I !SSS v1/ dx1 . . .  dxrru 

* This, however, is not valid in the vicinity of a, for which a limiting process 
is to be used as said in Book III, § 106. 
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The same treatment applying to every term in (64), we evidently 
find the very formula (:39) in Book III, § _105, with 

(65') 

00 
� 
'*-' 

k - 0  

V is thus deduced from the functions V' and UV '  as we have already 
shown in Book II, § 70, the numerical ratios of corresponding co­
efficients in (59), (60), and in (65') being of course in agreement * 
with the values found at the aforesaid place if, for the numerical 
coefficient I, we take the value 

I = Cm1-1 · 
But as we see the relation between v' and v can also be expressed 

by formulre (62), (65) as, in the former case of m even, it was by 
(3), (3'). 

2. PROPERTIES OF TH E COEFFICI ENTS IN THE ELEMENTARY SOLUTION 

166. The importance of the elementary solu tion in our theory is 
obviously due to its essential connection with the equation itself, 
evidently resulting from the fact that a given linear partial differ­
ential equation of the second order with an odd number of independent 
variables admits of one perfectly determinate elementary solution 
and that, similarly, to a given equation with an even number of 
variables corresponds one function V and one function UV. This pro­
perty immediately shows us, for instance, how the solution in question 
would behave towards some simple transformations, such as changing 
variables. 

• The verification is immediate with the help of the relation (§ 99) between 
!l:i,.., nnd !l:im, _ 1 .  
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To what extent does this character also belong to the operations 
by which this solution u has been constructed in the above, i.e. to the 
single terms of its expansion ? Such a question is of interest as to 
the value of our method for the calculation of u :  the closer the con­
nection these individual terms have with our problem itself, the more 
natural this method will be. 

The connection is, this time, a looser one than it was as to the 
final value of the quantity u, although in the aforesaid expansion 
(taking, for instance, m odd) 

u = -! _ 2 ( Uo + U1 r + . . .  + uh rh + . . .  ), r� 
the coefficients uh themselves are perfectly determinate i n  terms of 
the a::, a when the expressions of the coefficients are known. We can 
easily foresee that the U's will, like u itself, keep their values except 
for a simple factor* when changing independent variables, because in 
such a punctual transformation our geodesics, such as introduced in 
Book II, § 55, and, therefore, r also remain unaltered. But the case 
would be different if we should change unknown by setting down 

or even if we should simply multiply the left-hand side .!l (u) by a 
given quantity (viz. a given function of the a::'s). Either of these two 
operations again brings no other change in the elementary solution 
than multiplication by a simple factor : but the change in each indi­
vidual Uh is much more complicated, as such operations, altering the 
characteristic form A, also profoundly modify the geodesics and con­
sequently the quantity r. 

We can only see what would happen by a suitable combination 
of these two operations, viz. by substituting for 9- (u) the new dif­
ferential polynomial 

I 
.!11 (u) = - .!l (µu), µ 

I * This factor occurs only on account of the presence of the factor _. _. vl Ll I 
in our formulre of § 63. 
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the adjoint of which is (as immediately appears by considering the 

adjoint as defined by identity (5), § 37) 81 (v) = µ$( - ) . This pre-

serves the values of the Aik's (and therefore r ). As to the B's, it will 
be easily found, if we set down 

µ = ev, - <Jv 

that each of them is augmented by the �orresponding value of �A 
(the explicit calculation of 0 not being necessary for our purpose), so 
that the new value of JI becomes 

M ar M � 
lJf 1 = llf + ! :l � - = ��f + 2 ! Vi �(J = 1lf + 48 �d-

U� U� U i 8 
(notation of Book II). Therefore U0 will be multiplied by the quantity 

dv " 
e ds ds = µa 

µx 

(in which we have taken account of the initial fuctor v'i�f) , after 

which the successive equations (42'), (44') show us that such will be 
the case for each uh. 

167. But another test of the intimate connection of the coef­
ficients uh with the question lies in the result obtained in § 114, 
and extended (§ 146) to even rn's. 

We have seen that our elementary solution admits of the inter­
change property, i.e. does not change its numerical value when we 
simultaneously exchange the two points x and a and the two mu­
tually adjoint polynomials 9(u) and cff (v). 

As (for rn odd) 
u 

'll = m-2 ' 
r 

and r is symmetrical with respect to x and a, the same can be said 
as to the numerator U. 

Can we also assert the same conclusion concerning each coefficient 
uh of the expansion 

U = Uo + U1 r + . . .  + Uh rh + . . .  ? 
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We certainly could if the variables x1 , x2 , . . .  , Xm , a1 , a2 , . . .  , am (on 
which the Uh's depend) and r were independent. But this is not 
the case, so that the conclusion in question is by no m eans evident. 

It becomes so, on the contrary, if we again use our device of 
" descent." 

In other words, together with our given differential polynomial 

02it oit 9 (n) = �Aik --- + � Bi - + Cu, OXiOXk dXi, 
-in which, in the first place, we shall assume the number m of inde­
pendent variables to be even-we consider the auxiliary one 

o2u 9' (it) = 9 (u) - oz2 , 
where z is a supplementary (m + 1 )th variable, the two ad joint poly­
nomials respectively being 

8(v), 
(J2u, 

$' ( v) = $ ( v) - llz2 . 
We know that the new value of r relative to 9' or $' will be 

(66) r' = r - ( z - c )2, 
so that the new elementary solution will be 

the coefficients Uh' only differing from the corresponding coefficients 
uh by numerical factors and especial1y only depending on 

with the exclusion of z and c. 
The number (m + 1)  being odd, the quantity (67) and, conse­

quently, its numerator U' admit of the interchange property, so that 

(68) 
the successive coefficients Vh' on the right-hand side being calculated 
as the corresponding ones in U, but for the exchange : (1) of x with a, 
i.e. of x1 with a1 1 x2 with a2 , etc. (so that, in the calculations of § 62, 
x must, in the first place, be considered as fixed and only the a's as 
variable and, e.g. the geodesic paths of integration all issue from the 
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same x and end at various points a) ; (2) of the polynomial !f (in 
which the independent variables are the x's) with $ (in which the 
independent variables are the a's ). 

Now, in (68), the (2m + 1)  variables X1 , • • •  , Xm, al , . . .  , am, r are 
independent, because [by equation (66)] r'  contains a variable (z - c) 
which is distinct from Xu • • . , Xm, a1 , . .  ., am, and does not appear in the 
coefficients. 

Therefore, (68) must be an identity with respect to r ', and this 
gives the required conclusion concerning our equation !f (u) = 0 at 
least for m even. 

But a new "descent" will evidently extend it to odd values of m, 
as any equation !f (u) = 0 with an odd number of variables can be 

considered as deduced from another one !f (u) - �:� = 0 (in which 

the number of independent variables is even) whose elementary solu­
tion has the same coefficients except for numerical factors. Our con­
clusion is thus completely proved. 

168. Could we, in order to obtain it, replace the above indirect 
method by a more direct one, starting from the explicit expression of 
the U's ? 

This may be considered as a question belonging to the theory of 
geodesic lines. Not only, indeed, every equation (E) leads, as we 
have seen, to the consideration of geodesic lines, relative to the linear 
element H ;  but, conversely, every linear element H corresponds 
to oo linear partial differential equations such as (E). It will be 
convenient, after Cotton *, to write the most general homogeneous 
equation (E) corresponding to a given H in the form 

(69) A2it + � B/ �u + O'u = 0, 
i OXi 

where A2 is again the second differential parameter of Lame, the 
expression of which (account being taken of p. 91, first footnote) is 

�2 u = � -
a ' ( � ik - -) = � .A ik - � rau, � ��] . 

i OXi k OXk ik OXiOXk i Lox.;, k oxk 
* Ann. Sc. Ee. Norm. Supre, Vol. xvn, 1900, pp. 211-244. See also LeYi-Civita, 

A tti /st. J'eneto, Vol. LXXII, 1913, pp. 1331-1357. 
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It is clear that the left-hand member of (69) is of the form 

02U OU ff (u) = !Aik 0 0 + !Bi ;;;- + Cu 
Xi Xk UXi 

and that, conversely, every differential polynomial such as $ (u) can 
be written in the form (69), with 

B/ = Bi - �  ��_i� . oxk 

Therefore, any question on an arbitrary equation (E) may be 
considered as a question concerning a linear element H and a system 
of (ni + l) functions Bi',  . . .  , Bm , C' of x1 , • • •  , Xm·  

169. In the present case, the difficulty of  the question obviously 
increases with the order of the term considered. 

As concerns the first term U0 , the required conclusion can be, as 
we shall see, deduced from the formula obtained in § 59 : 

�2 r = 2 ( 1 + s 
d l�� J) 

and from properties, now classic, of geodesic lines. 
Again considering the differential equations 

dxi I oA 
di - 2 opi ' 
dpi 1 (JA 
ds = - 2  OXi ' 

of § 55, we know that their general integral depends on 2m arbi­
trary constants µ1 , µ2 , • • •  , µ:im . 

We also know (see Additional Note to Book II) that, if we start 
from any determinate solution of (L) (which corresponds to a deter­
minate system of numerical ,values of the µ s) and consider the 
quantities 

(70) 
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(j being any subscript from 1 to 2m), these will satisfy the varia­
tional system 

(L) 
dxi 1 oA 
ds = 2 opi ' 
dfii 1 a.A 
- = - - - , ds 2 oxi 

which is linear, as A is quadratic in the x's and p's. 
Each value of j in (70) gives a solution of (L) and, as the Jacobian 

f!j) D ( X1 , · · · ,  Xm, P1 , · · · , Pm) -
D (µ1 ,  . . .  , µ2m) 

is not zero *, the 2m possible values of j give us a fundamental system 
of solutions of (L). 

These properties belong to any variational equations deduced from 
a differential system. But Hamiltonian systems like (L) and their 
variational systems (L) possess another important propertyt, which is 
that the determinant @ is a constant along every determinate line satis­
fying (L) (in other words, f!lJ depends on µ1 , • • •  , µzm only and not on s). 

The geodesics themselves only depend on 2m - 2 parameters ; but 
each solution of (L) contains two parameters more, viz. the two 
quantities a and f3 mentioned in § 56, and which therefore we have 
to consider as being two of the µ s (so that, having written the general 
equation of geodesics with (2m - 2) parameters, we deduce therefrom 
the general integral of (L) by changing s into as +  /3). 

Coming back to our given equation in the form (69). we begin 
by noting that the differential polynomial �2u is identical with its 
adjoint polynomial !, as is verified directly without any difficulty, and 

* The fundamental theorem of differeutial equatiorn; shows that the p.'s can 

be chosen so a8 to give to x1 , • • •  , .-r:m ,  p1 , • • • , Pm any given values for s = 0. The 
determinant @ is what, in our Lerons sur le Calcul des Variations, we have called 
the " general determinant " of the (2m - 2) solutions of (L), while J is what we 
have called the " special determinant." 

t See Poincarc's Les methodes nouvelles de la .Hecanique Celeste, Vol. III, 
§ 254. 

: The integral identity which rn§ 36, 37) characterizes adjoint polynomials 
is no other than the one which would be deduced from that which defines A2 
(see formula (35), § 59) by exchanging the two functions (r and U in § 59) which 
it contairn; and 8Ubtracting. 
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as follows from the definition of the symbol �2 • Therefore, tlie adjoint 
polynomial of 

IS 

= �z U + I  B/ �u + O'u 
i UXi 

(v) = �2v - � B/ a:+ O/v, ( 01' = O' -� ��;') 

i.e., is deduced frorn the former by changing the sign of each B' and 
properly changing O' . 

Coming then to the expression of U0, we have, in the first place, to 
'.:lr 

express the quantity llf: by (37) , § 56 and axi = 2Pi = 2spi, we get 

� B.' o�) = I + sd log J + s 2 B ·'p .  
,,;;., i oxi ds i i i • 

J is given by formula (30a), § 57 a :  

in which only the geodesics issuing from a are considered (and not 
all geodesics, as above) and are expressed in terms of s and m - 1 
parameters 'A. 

Let us introduce m new functions of x1 , • • •  , Xm by writing 

B.' - 'C' A .  {/If - ! oA . 
i - � ik'-7c)k - 2 . 

the last term in the expression of 1� thus becomes ,;.; 

S .1 � A ·kp ·  fil)k - � � UZJ. (JA - s � a. dxi • 2 ..:.., i i <AJ - 2 -- JtJi 0 - ..:.., JtJ i d . 
. k . p · . s � i i i 

If we recall that 

(71) 2p - 2 = - m, 

we see that 

H. 

M M sd log J dxi - + 2p - 2 = -- - m = - ( m - 1)  + - + s � t'.'Wi - , 2 2 ds i ds 
18 
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( J ) denoting the limiting value of 
s

J
m-l when the· point x ap­

S?n-1 0 
proaches a along a determinate geodesic. This limit exists and is 
different from zero * : we easily find 

I 

(73) (s;-1\ = 

ox/ 0 I OX1 I X1 I 
oA.1 o""2 . . . 

0A.11i-1 
X1 

OX21 OX21 OX21 f 
o A.1 oA.2 . . .  OAm-1 

.'.t\1 
, , ,  . .,, . . . . . . . . . . . . . . . . . .  , , . , 

� I � I uXm UXm , �� · · · • · · · · · 5�- Xni 
U 1 UAm-1 0 

the subscript 0 after the determinant denoting that the values of the 
x"s and their derivatives with respect to the A.'s are taken for s = 0. 
We shall write, introducing a condensed notation, 

I I 
ox/ ox/ ox/ 

, ll oA-1 oA.2 • • •  oA.m_1 
x
.i 0 • 

l r  170. The exponential factor in (7 2), viz. e - 2  a ·�l . . . +tiJmdXm, pos-
sesses the above enunciated interchange property. For, as we have 
seen, exchanging the two adjoint polynomials Jl and r1 corresponds to 
a change of signs in the B"s, and, on the other hand, the permutation 
of a and x changes the sense of integration in the curvilinear integral 

J fiJ1 dx1 + · . .  + f!Jmdxm 
taken along the geodesic line. 

To show the same as to the remaining fa�tor 

• This fact is the very condition by which we have chosen the value of the 
number p in § 61 . 



CH. II] APPLICATIONS OF THE PRINCIPLE OF DESCENT 275 

we shall transform it with the help of known principles concerning 
geodesics *. 

If the parameters µ1 , . . .  , µ,2m be replaced by 2m other ones 
v1 , . .  ., v21n (the latter being functions of the former, and conversely), 
the determinant rm is evidently multiplied by the Jacobian 

D (11-i, . .  . ,  11-2m) 
D (v1 , • • •  , Vzm) 

(which is evidently a constant along each solution of (L)). 
We shall now introduce another important determinant* 

D (.r,J (O) ' • •  • ' Xm (O) ' X1 (1)' • • • ' Xm (1) - 1J (µ,1 , · . .  ' µ21n) 
which, as we shall presently see, is closely connected with the above­
mentioned Jacobian J. The quantities x1 1°i , . .  . , xm !o) and x1 !1l , . . . , xm!1l 
are the values assumed by the x's in two points of the same geodesic, 
corresponding to two different values s !0l , s !1l of s (the latter being con­
sidered as constants in the differentiations with respect to P,1 , . . .  , P-z,n). 

We take s0 = 0, s!1l being the value of s which corresponds to x, 
so that 

(7 4) f _ 
D (a1 ,  • • •  , am, .1::1 ,  • •  . , Xm) 

·'."' - D (µ,1 , · . .  , ft2m) . 
J is multiplied by the same factor as � if we replace 

so that the ratio 
J 
gj; 

does not depend on the choice of the arbitrary constant parameters 
in terms of which the general solution of (L) is expressed. 

Let us accordingly suppose that m of the parameters µ, are those 
which we previously denoted by A.1 , • • . , Xm-i and a, so that the values 
of the x's for s = 0 do not depend on them and remain equal to 
a1 , • •  . , am respectively as long as the other m parameters P,1 , . . .  , ftm 

· fi d Th · · oai · )) d Ja;, remam xe . e quantities � (i = l , . .  . , m ;  l = l , . . .  (m - 1  , an -;::;--. uA.i ua 
* See our Le9ons sur le Calcul des Variations, § 283. 

18-2 
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. ( OX<' dX ·) bemg zero, we have as aa = sx/ = s as ' 

aai oai oai 
0µ1 0µ2 • • •  3µm 

0 0 . . . . . .  0 

. axi OXi OXi 
0µ1 0µ2 . . . . . . . . . . . .  oµm 

dXi axi dXi I 
OA1 OA2 • • • OAm-1 

SXi 

which notation must again be interpreted by understanding that each 
row stands for m rows obtained by successively taking 

i = 1 ,  2 ,  . . . , m, 

and that we have, by dotted lines, separated the m first columns from 
the m last ones, and the same for the rows. As m2 elements are zero, 
such a determinant splits into a product of two determinants of order 
m, the second of which is sJ : thus we get 

(7 5) J= Q .  sJ, Q = I I aai aai 
. . . 

aai I I · 0µ1 OfL2 oµm 

By the same choice of parameters, and taking s = 0, the constant 
determinant fflJ becomes (same mode of notation) 

J �a� oai 
' aµl . . .  oµm 

0 . . . . . .  0 
opio opio 
� • • • ':l �  Pio UA1 u l\. m-1 

(as '(J:;.o = 0
°
a [api (;) J s=0=pio) :  which again is a product of twofactors 

_ ' ()pio api-0 , - Q . I oA,1 . . . dAm-1 Pio 

the factor Q being the same as in (7 5). In the second factor, we may 
replace each Pio by the corresponding 

I ()A I 
2 apio 

= Xio ' 

if we, at the same time, divide by the determinant of this linear sub-
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stitution, i.e. by .6a . But this gives precisely the right-hand side of 

(73),  i .e. the value of ( 'Jn .) • Therefore 
\8' -, 0 

= Q · �a (s=-1\' 
and, on account of (75), 

We thus transform the value (72) of U0 into � Ji. !!lJ _ ! r l$'idXi 
- s 2  e 2 a 

o - i 0 l'I 

11his completes the proof of the enunciated property as concerns U0 , 

as !!lJ is a constant which has therefore the same value at a and at x, 

and I /I obviously possesses the symmetry in question (by (74)). 
The same result, as concerns the following coefficients U1 , U2 , . . . , 

seems to be connected with more complicated properties of geodesics. 
It might even, for that reason, prove of interest in the theory of these 
lines, as depending on other principles than those which have been 
used as yet. 

3. TREATMENT OF NON-ANALYTIC EQUATIONS 

171. We now return to our elementary solution as a whole. \Ve 
succeeded in constructing it (at least for two points x and a sufficiently 
near each other) by assuming the coefficients to be analytic. It is 
remarkable that, in the first instance (aside from classic cases) which 
was given of such a construction-viz. Picard's work on V2u + Ou = 0 
(as quoted in our Book II)-this hypothesis was not wanted. We shall 
now see how we may also get rid of it. 

Such a result, for the general equation of the elliptic type, has been 
obtained independently by E. Elia Levi *-one of the best and most 
beautifully gifted of young Italian geometers (he gave his life in the 
Great War),-and under a finally equivalent form by Hilbert t. The 

* Rendic. Ot'rc . .lJfat. Palermo, 1907, Vol. xxrv, pp. 275-317. 
t Grundzuge einer allg. Theorie der linearen Integralgleichungen, 6th paper 

(1910). A first allus�on is made at the end of the 5th paper (1906). See also 
Fubini, Rendic. Ac. Lincei, 5th series, Vol. xvn1 (1909), p. 423, to which the 
remarks in the text also apply. 
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method used by both of them consists in forming a first approxima­
tion (Hilbert's "parametrix '') which does not satisfy the given equation, 
but, when substituted in this equation, merely gives a result which , 
at the singular point, is only of the first order of infinity. Thanks to 
the introduction of this "parametrix," E. Elia Levi succeeds in form­
ing the elementary solution ; Hilbert's result consists in doing without 
the latter, i.e. making the "parametrix " play the part which usually 
belongs to the elementary solution itself. The two questions are really 
one, and E. Elia Levi's analysis is, ultimately, identical with Hilbert's. 
In both cases the problem is reduced to Fredholm's integral equation 
(as is also recognized to be the case for Picard's initial proceeding). 

':L1he method, however, wants improvement in order to be applic­
able to the hyperbolic case. The reason of this is that, in E. E. Levi's 
and Hilbert's case, there is only one real singular point, and we need 
not mind how our parametrix or the complementary term behaves 
along the imaginary singularity, which in fact is different when con­
sidered in the first approximation ("parametrix")  and in the final result. 
In our case of the problem, on the contrary, we must immediately 
take account of our characteristic conoid, which is real, and our first 
approximation itself may not admit of any other singularity than the 
conoid in question. 

Other difficulties seem, at first, to arise from the nature of our 
above solutions : for, if m is even, the elementary solution is not well­
determined, and if m is odd, we have to reckon with the peculiar 
singularities met with in our expressions, which would require special 
precautions in the application of Fredholm's method. The fact is that, 
in what follows, we only get to the solution by dealing simultaneously 
with both cases, thanks to "descent." 

172. The domain of validity in the analytic case. Even before 
coming to non-analytic equations, we have, in that line, to answer a 
first-and perhaps the most important-part of the question concern­
ing analytic ones. 

\Ve must not forget-and this defect is common to all methods 
resting on l\Iaclaurin's series-that our above solutions of the problem, 
though seemingly complete, are really, as yet, quite insufficient, the 
problem being "not enough " solved. 
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It was first solved, but " very little," in Book I, by Cauchy­
Kowalewsky's argument. The problem is very little solved, not only 
because the expression of u is given in a very indirect and complicated 
form, but also because the region of validity of this calculation may be 
(and generally is) very small and insufficient for our wants. We know 
(see Book I, § 8) that this always chances to be the case (on account 
of the presence of imaginary singularities) when using expressions 
involving power series. 

\Ve shall see presently that the solutions obtained in the present 
Book will be of better use even from that point of view. Nevertheless 
again, the existence of the elementary solution (and consequently the 
validity of our formula), as a result of the convergence of the series 
(43) (Book II, § 62), have been proved only for a certain domain around 
the vertex of our conoid. To what extent this allows us to assert the 
existence of the function U, or of the functions U and 62t, is what we 
do not know : the radius of convergence of our power series ( 43) may 
be much greater than the lower limit deduced from our previous con­
siderations, and also the functions U, 62t may exist far beyond the 
range where their developments in powers of r are convergent. 

\Ve shall prove (the coefficients being still assumed to be analytic) 
not only the existence of the solution throughout the domain of 
regularity of the coefficients themselves, which is relatively easy (see 
below, § 177), but also (under the further assumption of the ana­
lyticity of f, u0 , u1) its analyticity. The corresponding proof, for the 
elliptic case, has been given, for instance, by E. E. Levi in his above­
cited work. We shall have, however, to modify the method used 
in that case in order to apply it to ours *, for reasons of the same 
kind as mentioned above (more precisely, on account of the fact that 
the domain of integration of the right-hand sides of our formulre 
depends on a). 

To give this proof, we take the case of m even (which does not 
limit the generality, thanks to descent) and we make, at least to 
begin, a further geometrical assumption, which; strictly speaking, we 

* The method which w e  shall develop presently i s  utterly different from 
E. E. Levi's and, indeed, as it rests on successive extensions, could not by any 
means be applied to the elliptic case : a method corresponding to E. E. Levi's 
will be indicated further on. 
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ought not to make, but which is j ustified in every practical case. 
'Ve assume that there exists a one-parameter set of surfaces which 
are everywhere duly inclined (and this strictly, i.e. it will happen 
nowhere that one of them is tangent to a characteristic cone, and, 
therefore, the angle between any of them and any direction interior 
to the cone from one of its points will have a positive minimum) : 
these surfaces will be analytic (so that, by means of an analytic 
change of variables, the corresponding parameter t can be taken as 
one of the coordinates, the mth), and one of them, corresponding to 
t = 0, will be * the surface S, our region flt being on the side t > 0. 
Every bicharacteristic or i nterior geodesic-i.e. every geodesic such 
that H � 0-will, under such assumptions, have a direct and an in-

verse sense, the latter corresponding to ;: < 0 (where u is the arc, 
. 

d . h d . · f h d) Ii dt 1 h 
· accor mg to t e or inary meanmg o t e wor , du avmg even a 

positive minimum. 'Ve assume the shape of flt to be such that any 
inverse geodesic issuing from a point of flt will remain constantly in­
side it for t � 0: then such a geodesic must necessarily reach S. 'Ve 
suppose the choice of the variable s to have been made on each of 
these lines in a determinate and even analytic way : for instance, we 

dt 
agree that ds = 1 for t = 0, so that this derivative will remain be-

tween two fixed positive limits throughout flt. Xm will be, in what 
follows, synonymous with t, and, similarly, am with c. 

'Ve shall also (though the necessity of it be not absolute, as we 
shall see) admit, concerning flt, our general hypothesis that any two 
points x and a within it can be joined to each other by a geodesic in 
a perfectly unique and continuous 'vay : in other words, the first 
set of equations (29) of § 57 admits of a perfectly determinate 
solution for the q's in terms of the x and a s. 'Ve even suppose that 
their Jacobian never vanishes in flt. 'Ve can, therefore, define normal 
variables relating to a; and moreover, on these normal variables, 
make a linear substitution (with coefficients functions of the a s) which 

* The influence of the fact that one of the surfaces t = const. is the given S, is 
merely superficial, as we shall see below, and we ha,·e used it principally in order 
to simplify notations (especially when resuming the matter in § 189). 
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we can even suppose to be a perfectly determinate one and to vary 
analytically* with the a s, so that the quadratic form r = H (�) is 
reduced to its canonical form 

r _ t: 2 _ t: 2 t: 2  t:2 o - �m �1 �2 - • • • - � m-1 

and also the surface �m = const. through a is tangent, at this point, 

to t = const., with <JEin < 0. The linear substitution on the normal dt 
variables � of Lipschitz will concern only the first (m - 1 ) of them if 
we have chosen the variables x so that the lines x1 = const., x2 = const., 
• • •  , Xm_1 = const. are everywhere transversal to the surfaces t = const. 
\Ve can suppose that our choice of the x's possesses this property, and 
even (by means of a suitable transformation on x1 , x2 , • • •  , Xm-1 alone) 
that, for t = 0, 

d a 
dv 

dS = at dx1 . . .  dxm-i 

so that transversal derivatives are no other than derivatives with 
respect to t :  all these transformations being analytic and regular. 

Em will also eventually be denoted by the synonymous letter e. 
The rs can be expressed in terms of 8 and the ratios 

�I �2 �m-1 'T/l = li ' 7]2 = li ' . . . ' 'T/m-I = e ' 
the latter satisfying, for the inside of the conoid, the relation 

(76) 'T/12 + 'T/22 + • • • + 'T/2m-1 � 1 . 
To every such system of constant values of the r/s will correspond 

a determinate (interior or bicharacteristic) geodesic from a. Along 

h d 
. 

h . de . b fi d . . any sue geo es1c, t e rat10 dt remams etween two xe pos1t1ve 

limits, and so does also, therefore, the ratio _J__t . 
c -

* These coefficients being arbitrary to a certain extent, the statement in the 
text is true under the assumption that they are calculated in a determinate way, 
e.g. by strictly following Lagrange's classic rule (see Serret's Algebre superi"eure, 
4th ed .. Vol. 1, p. 430 ; Bocher's Higher Algebra, Ch. x, § 45, p. 131). For the 
application of this, we shall always (under the assumption below in the text as 
to the choice of variables) be in the general case where the coefficients of the 
square terms are different from zero, as, the term in �m2 being abstracted, there 
remains a form in �1 , • • •  , �m-l  which is (negative) definite. 
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a being any determinate point within fJl,, we can refer the points 
x which are interior altogether to fJl, and to the conoid from a, to the 
norma] variables g relating to a, but also to 'Y/1 , . . . ' 1Jm-1 , e or to 
111 , • • • , "f/m-i , t :  both latter systems will be equivalent to each other from 
our point of view, in the sense that each of them can be expressed 
in terms of the other, the expressions being holomorphic on account 

dB 1 of our remark on dt . 

173. Things being so, we shall show that, if we have in any way 
constructed the elements V and UV of the elementary solution for all 
possible positions of x and a inside fJl, (more exactly, for all positions 
of these points satisfying r (x ; a) � 0), knowing, moreover, these 
quantities to be holomorphic in the x's and the a s, we can assert that 
the solution u of Cauchy's problem (with holomorphic data) relating 
to t = 0 or to t = t0 > 0, is also holomorphic. 

We begin by showing this for the first term (in SSS) of (28 a). 
Generally speaking, we show that the m-tuple integral 

(77) SSS F (x1 , X2 , • • •  Xm) d.x1 dx2 . . .  dxm 

(F being holomorphic), extended over the domain included between 
the retrograde half conoid from a and the surface S, is holomorphic 
in the a's. F may even contain not only the x's, but also the a s  
themselves and eventually other parameters : if it be holomorphic in 
all these quantities, so will be also (77) in the a's and the parameters. 
The fact may be looked at as practically evident ; but its explicit 
deduction is very simple after the above assumptions and remarks. 

It follows from these that the x's will be holomorphic functions 
(throughout di) of "f/1 , • • •  , "lm-1 ' t. Let ]{1 be their Jacobian (taken so 
as to be positive) so that 

dx1 dx2 . . .  dxm = ]{1 d111 . . .  d11m.-1 dt. 

The required function will be 

(77 a) SSS F (x1 , X2 , • • •  , Xm) dx1 dx2 . . . dxm 
= SS d111 d112 . . .  d1lm-1 f: f[1JJ'dt, 

the integration being carried out with respect to the 1,'s over the real 
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domain (76) and with respect to t, from the origin to the value c 
which corresponds to a. As this can be written (since t = A.c) 

(77 b) c SS d111 . . .  d11m-1 f0t K1Fdx, 

integration with respect to A. having to be carried out from 0 to I ,  
we only want to notice that the integrand is holomorphic, and even 
uniformly so *, when expressed in terms of the 17's, A. and the a s  (and, 
a fortiori, in terms of the a s  for any values of the 17's and A.). Its 
Taylor expansion, around any determinate position of a and any 
system of values of these quantities, corresponding to a determinate 
position of x within /Yt, converging uniformly with respect to the r/s 
and A., can therefore be integrated term by term, which gives the 
conclusion which we have in view : our integral is defined and holo­
morphic throughout !Yt. 

If we take F = U/Jf, we see that the first term SSS U/Jf dT of (28) 
or (28 a) exists and is holomorphic in the region /Yt ;  and the other 
terms 

SS [ U/J (u1 + Luo) - U0 ��] dS 

in (28) relating to S0 will evidently be treated in the same way with­
out any difficulty (compare below, § 176). 

174. No difficulty would occur, either, in the remammg terms 
(relating to the surface of the conoid or its edge of intersection with 
S), if it were not for the first of them, 

l ( dmi-2 ) ' --- SS fVdr - 2) ! dry'mi-2 ")' == 0  r Y '  

which difficulty, however, will be  easily overcome with the help of 
§ 141.  We must, however, resume the considerations of that section in 
a somewhat more complete form, as we investigate more precisely the 
expansion of the integra] ly of § 140 in powers of ry. 

As in § 141 ,  we begin by considering the x's as being expressed 

* A function which is holomorphic around every point of a continuous domain 
(boundary included) is uniformly holomorphic, i.e. its Taylor expansion admits 
of a fixed dominant throughout it, as is seen by a classic argument resting on 
Bolzano-"'N eierstrass' Lemma. 
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Ln terms of the a's and the normal variables g defined in § 172 with 
rnspect to a.. We call 

K dE1 . . .  dEm = dx1 . . .  dxm 
the space element (J{ being a Jacobian). 

Instead of the variables �, we can (at least in the neighbourhood 
of r = 0, which alone interests us) introduce the same angular vari­
ables </Ji , c/>2, . . .  , 'Pm-2 as in § 141, combined with e = Em and ry :  
expressing in terms of the latter two, the quantity 

p = "/gl2 + . . .  + g2m-1 = v e2 - ry; 
we see that (same meaning as in § 141  for dllm-2) 

dE1 . . .  d�m = dE1 . . . dEm-i dB = !pm-a dilm_2 d8 dry 
m-3 

= ! (82 - ry) -2 dllm-2 dO d'Y. 
This expression of the space element gives us a corresponding 

expression of the element dry on a surface ry = const., viz. 
m- 3 

dry = f (82 - ry) -2 dllm-2 dB. 
\Ve see, thus, that the value of ly will be obtained by integrating 

with respect to the cp's (after multiplication by dllm-2), the simple 
integral 

(78 a) 
· m - 3 

t J K JV ( e2 - ry )-2- de. 

In this integral, we shall take for the lower limit a small positive 
quantity e (constant or variable with the a's and cp's), which we begin 
by leaving fixed, exactly as we did in § 141 .  The upper limit will 
be the value (:)' of e corresponding to the point where our line of 
integration (i.e., the section of T by cp1 = const., <p2 = const., . . . , 
<Pm-1 = const.) intersects S. Now, we can replace the x's by their 
expressions in terms of the g's and consequently in terms of the cp's, 
p and 8, and these expressions will be uniformly holomorphic around 
every point within f/l,. 

Let us begin by effecting this substitution in the integrand : 
F = Kf Vpm-a (for any determinate choice of the cp's) will be written 

q+m - 3 
F(e, p) = F (tJ, v�) = '2:cpq (8) ((:)2 - ry) 2 
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We shall have to expand this in powers of "'' only considering the 
terms whose indices have the values 0 to m1 - 2. Now, 

in which we see that a denominator in e only appears for 2h > q'. 
Therefore (as q' = q + 2m1 - 3), our integrand, or, more exactly, the 
part of it which is at most of degree m1 - 2 in "'' is of the form 

e2m1-a Fo (B) + 'Y02m1- 5  F1 (B) + . . .  

+ 'Yhe2m1-a-21t Fh ( B) + . . .  + rym1- 2 BF m1 - 2 (B), 

where the Fh's (which are finite combinations of the first (m1 - 2) 
partial derivatives of F with respect to p, for p = B :  especially, 
F0 (0) = F (B, 0)) are again uniformly analytic around any point inside 
or on the retrograde half conoid from any vertex a within f/2. This, 
in the first place, shows that, in the integrand (78 a), the coefficients 
of the powers of ry from 0 to m1 - 2 are limited in absolute value and 
even infinitesimal of the order of 0 and, consequently, in the integral 
(78 a) taken from 0 to e, the totality of the corresponding terms will 
be at least of the order of €2 : which is equivalent to the result found 
in § 141. 

175. On account of this result, we see that we obtain the required 
value by taking 0 for our lower limit. If we change the variable by 
setting down B = sB' we find 

(79) 
0'2Jl l·mi-2 J - �  � e12 1m1-2-h) 82m1 -s-2h Fh (sB') ryh ds 2 0 h =O 

for integral (78 a), reduced to its terms of degree at most equal to 
(m1 - 2) in ry. 

Let us also expand in powers of ry the upper limit B', determined 
by an equation of the form S ( B, p) = 0, or (operating as above) 

(80) S (0, vB2 - 'Y) = So (B) + � 81 (B) + . . .  + et-1 Sh (B) + . . .  = 0, 
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the Sh's in the left-hand side being uniformly holomorphic in the 
variables which they contain *. 

When ry = 0, this reduces to 

(80 a) S0 (B) = S (B, B) = 0, 
the equation which determines the intersection of S with a bicharac­
teristic. For the value B0 of B thus obtained, we know that S0' (B) is 
different from zero and even numerically greater than a fixed positive 
constant �. 

Now, let us expand B' in powers of ry and see what denominators B0 it containst. In equation (80) which defines B', le t us introduce 
a new independent variable g and a new unknown � by 

(81) ry = Bo2g, B' = Bo ( 1 + �) 
so that the expansion of � 

(81' ) � = 9�1 + g2�2 + . . . 
has its constant term equal to zero. In these new variables, equation 
(80), taking account of equation (80 a) for B0 , becomes (one factor B0 
disappearing) 

�S0' (B0) +;� Bo So" (Bo) + . . .  + 1 ! � Si [Bo (1 + �)] 

ft • 
+ + �)3 S2 [Bo (l  + <;t)] + . . .  + (1 + �)2h�1 Sh [Bo (I + �)] + . . .  = 0. 

But such an equation gives for <;:)- an expansion in powers of g, the 
coefficients <;)-h of which obviously admit of fixed dominants, on account 
of I S0' ( 80) I > �. Therefore, in the expansion of 8' in powers of "f, the 
term of degree h may contain the denominator B0 , but with an index 

* If S is t=O, the left-hand side of (80) is the expression of t in terms of the 
cp's, of () and of y. 

The argument in the text applies to any analytic regular surface S, provided 
it meets ernry interior or bicharacteristic geodesic at a finite angle. Upper limits 
for the coefficients of the expansion (81') depend on upper limits for the deri­
vatives of S with respect to the x's and a lower limit for I S0' (80) I · 

t This discussion of small 80's seems not to be absolutely necessary, as we 
know, by Cauchy-Kowalewsky's theorem , under our general assumption of 
analyticity, of the existence of a certain limit T for I t  I such that, below this 
limit, u is certainly holomorphic, so that we could limit ourselves to I t  I > T. 
But the behaviour of the term (78) in the neighbourhood of S will be wanted 
finally (see § 196). 
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not higher than 2h - 1. In other words, we can say that its degree 
of  homogeneity, with respect to ry and B02, is � l ·  

If, finally, we carry such an expression of  8 '  into the integrand in 
(79), we see that the term in rym1-2 does not contain any denominator 
B0 , but, on the contrary, contains B02 as a factor, the other factor being 
uniformly holomorphic in all the variables which it contains, viz. the 
<f>'s and s :  especially, for any determinate system of values of the cf>'s 
and s, this factor is holomorphic with respect to the a's around any 
position of a in f/l,, and this uniformly whatever that position and the 
(real) values of </>1 , . . . , c/>m-2 (between zero and 7r or zero and 27r) and 
s (between 0 and 1 )  may be. 

This, integrating with respect to the <f>'s and s, gives the required 
proof of analyticity, with the determination of the order of magnitude 
of the term in question when B0 is small (i.e. when c is small). 

176. Such a proof will allow us not to insist on the treatment of 
the other terms (terms with the element of integration duy) in (28), 
this treatment being obviously similar to the above, but easier, inas­
much as the question corresponding to § 141 or § 17  4 does not occur. 

The 0nly new question concerns the expression of du" . A simple 
way of obtaining it is, in the relation 

dS = duy dry, 
to replace dS by dSG , defined by means of the set of surfaces 

S = G = arbitr. const. . 
which we can do if we simultaneously replace 7T'i by :s . As we have UXi 
written 

K dx1 dx2 . . .  dxm = K d�1 . . .  d�m-1 dB = 2 pm-3 dilm_2 dB dry, 

we have (as is seen by considering the cylinder having for its bases 
two elements of two surfaces S and its lateral surface constituted by 
small arcs of lines c/> = const., ry = const.) 

and 

_ J{ m-a dB' 
(82) dSG - 2 p dG dilm_2dry 

(82') d - K m-a d{)' dn Uy - 2 p dG um-2, 
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d · · dO' b · k l f h l "  
. t" A the erivat1ve dG emg ta en a ong one o t e mes in ques 10n. s, 

by formulre (81), (81'), O' is expressed in terms of 'Y and 00 (when con­
sidering the cf>'s as constants), the coefficients being taken from the 
expansion of the function S, such a derivative, expanded in powers of 

"f, will be obtained by means of �� (the latter being
_ 
itself deduced 

from S0 ( 00) = G), viz. 

�� = :� {1 - l2 �1 + . . .  _ (2_h e
o
2!) �h �h - . . . 

e ( ry a�l 'Yh a�h + 0 l + 002 oO� + . . .  + Oo2h 080 + . . .  
(the 0a�h being uniformly holomorphic in a, cf>, "f, 00-as the

. 
�h them-110 

selves are-and, therefore, in a, </> and 'Y ), so that the factor of df2m_2 
in (82') will be uniformly holomorphic and even infinitesimal of the 
first order for small 00's. 

176 a. The treatment of the terms containing :
v

is immediate if 

we take the formula under the form (28 a). We have only to imagine 
that the calculation is not only made concerning S, but also concern­
ing the auxiliary surface S., : the result will be an analytic function, 
not only of the variables hitherto mentioned, but of v, the differen­
tiation with respect to which therefore gives no difficulty. 

Under the special assumptions made in § 172 on the choice of 
our variables, the auxiliary surface S., will be t = const. * 

177. We have proved, so far, the existence and analyticity of the 
solution u within any part f/l,' of flt limited in such a way that the 
retrograde half conoid from any point a within it is, together with 
t = 0, the boundary of a volume interior to the region of definition of 
UV, e.g., interior to the region of validity of the operations in § 62. 

* The condition that the parameter v be identical with the parameter G 
introduced in § 176 is easily seen to be that the surface S= O satisfies the partial 
differential equation (?S ) A ':I , • • •  , '=>  � = L  v.�l v.Xm 
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This will certainly be the case, on account of the assumptions made 
on the variable, if we introduce the limitation I t I < T, denoting by T 
a suitably chosen positive constant : the latter can indeed be fixed,- · 
and this once for all throughout the whole region f!/l,, in such a way 
that I t  - c I �  T (together with r > 0) implies the inequality 

(83) I ( <F)2 I r I <  a' I - -;: 
of § 63, and, therefore, the convergence of the series for UV. 

Now, as we are given the values of u and �� for t = 0, and these dt 
are analytic, we are able, by the above, to calculate the values of the 
same quantities for any t between 0 and T, the values corresponding 
to t = T being again holomorphic in x1 , x2 , • • •  , Xm-i around any point * 
of the plane t = T included in f!Jl,. But such analytic values of u and 

-0t allow us to set a new Cauchy problem, the data of which are borne 

by the plane t = T :  the solution will be, by the above, defined and 
holomorphic at least until t = 2 T  (we mean the part of it which 
lies in flt) ; and going on in the same way, we shall be able to reach 
every plane t = const. containing points of flt. 

178. The above result, and the method used to prove it, obviously 
remind us of an analogous argument in the theory of ordinary 
differential equations and the corresponding conclusion, viz. : the 
solutions of an analytic (ordinary) linear differential equation can 
admit of no other singularities than those of the coefficients themselves. 

One of the proofs for the latter theorem t precisely consists in 
observing that the radius of convergence of the expansion of any one 
of the solutions in question around any point (or at least, a lower 
limit for this radius) can be obtained without knowing what solution 
of the equation is meant. Similarly, here, we use the fact that we can 
tell a priori an interval of values of t over which we can extend the 
definition of our solution. 

Such an analogy might lead us to think that the same result could 

* The useful part of the half conoid from such a point is, as we have said, 
assumed to lie entirely inside flt. 

t See, for instance, Jordan's Oours d'Analyse, Vol. III, 1887, § 92, p. 108. 

H. 19 
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be reached with the help of the original methods which have been 
applied in general to Cauchy's problem, i.e. the Cauchy-Kowalewsky 
classic argument. This, however, would be an error : in other terms, 
the radius of convergence of the expansion of the solution of Cauchy's 
problem (relating to t = const.) with respect to t, when obtained by 
the calculus of limits, must depend, not only on the expansions of 
the coefficients, but also on the radii of convergence of the expansions 
(with respect to the other variables x1 , x2 , - . . .  ) of the data u0 and u1 • 

For if it were not so, the conclusion would be common to 
hyperbolic equations and to elliptic ones (the former being even 
dominant of the latter in the classic mode of calculation for the proof 
of Cauchy's fundamental theorem). But such is not the case, as is 

(Pu <J2u shown, for Laplace's equation -.; + � = 0, by the simplest examples, ()XM oy 
such as 

1 - x ( 1 \ 
'lt = (-l - )2 

- 2 the real part of 1 . } , - x  + y - x - iy 

the values of which, for x = 0 (viz. l ! y2) as well as the values of its 

derivative �u (viz. (-l� - Y2 ) , are holomorphic for any real y and which, 
dx + y .. y 

nevertheless, admits of the singularity x = 1 ,  y = 0. 

179. It is evident, on the other hand, that the working in § 173 
could have been replaced by the same method which we have applied 
in §§ 17 4 ff., using ex cl usi vel y normal variables instead of replacing 
one of them by t. We then see that the assumption of S being t = 0 
is immaterial, as it is by no means implied in the argument of § 17 5 .  

180. We have thus proved that the solution of a Cauchy problem 
with analytic data certainly exists and is holomorphic throughout the 
whole of any region f% satisfying our above assumptions. But can we 
say as much of the instrument which we have to use in order to find 
that solution, I mean our elementary solution ? Does this quantity 
exist and is it holomorphic as long as : (1) the coefficients of the equa­
tion arc themselves holomorphic, the discriminant of A being con­
stantly different from zero ; (2) the equations (29) of Book II, § 57 ,  
can be solved in a unique and continuous manner, their Jacobian 
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being different from zero, and therefore the two points a and x can 
be joined together by a perfectly determinate geodesic, varying con­
tinuously in terms of the coordinates of these points ? 

In the first place, we can observe that these assumptions are 
suffi�ient for the construction of each of the successive coefficients Uh 
by the operations of Book II, § 62. Moreover, there is no difficulty 
in showing that these functions will be holomorphic throughout the 
region flt (a fact which will appear presently). 

U itself is deduced from the Uh's by means of the expansion 
U = Uo + U1r + . . .  + Uh rh + . . . . 

\Ve are going to see that this expansion converges not only around 
a, as we had seen in Book II, but for any point in the region ('Y) such 
that r is sufficiently small, i.e. in the neighbourhood of the whole of 
the characteristic conoid (or more exactly, of the part of it contained 
within flt). 

For that purpose, i.e. in order to obtain upper limits for the I uh I 's, 
let us resume our " Calculus of limits " of § 63, except that we apply 
it not only to expansions around a, but to expansions around any 
point inside flt. 

As in § 63, we take normal variables relating to a (so that 
geodesics from that point are represented by straight lines), the sum 
of the absolute values being still denoted by o-; and we change the un-

known so that the first term U0 in our series is U0 = -;:-1 - . V J Aa l  
:Moreover, in order to simplify notation *, we can admit that we 

have taken our variables so as to let one of the axes of coordinates­
say the Xm-axis-pass through the point x' around which we intend 
to investigate our Taylor expansions : the variable Xm will be replaced 
by y, the value of which at x will be denoted by y', and we have to 

* It would be quite easy to repeat the argument in the text without this 
particular choice of axes. "\Ve should expand our functions around 

(xt', x2', • • •  , Xm') 
by setting down .ri = a;/ + xi . 
The coefficients in the right-band sides of (84) and (85) (expanded in powers of 
the X's) would then be functions of x{, . . .  , xm', the latter being replaced by 
sx1', • • •  , sa,·m' in the integrand of (87), and u' would be 

I X1 J + J  X2 J + . . . + J  Xm J .  
19-2 
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consider expansions in powers of x1 , x2, • • •  , Xrn-1 and y - y' = Y. For 
any coefficient A of the equation, this expansion will be 

(84) A = � A k1 .. . km (y') x1k1x2k2 . . .  x�m-=-� Ykm , 
ki . . . . , km 

Assuming all the quantities A to be holomorphic-and therefore, 
uniformly holomorphic-throughout /!}(,, we suppose therefore that all 
the expansions (84) admit of the common dominant of § 63 

a A (( " .  <I 1 - -
r 

which will be independent of y' (i.e., of the position of x' on the y­
axis), except that u is replaced by u = J X1 J + . . .  + J Xm-1 I + I Y J .  'Ve 
deduce therefrom, as in § 63, that if 

Kh 

be a dominant of the expansion of uh around x' (this dominant being 
again assumed to be independent of y ), the expansion of 9 ( Uh),­
say (as the coefficients are again fonctions of y )  

(85) ,if ( Uh) =  o/(h) = �'o/(h) (y') . x1k1x2k2 . , . xkm�1 Pm� k1 , k2 , • • •  km m 1 
will admit of the dominant 

(86) 2h (2h + 1) a' ]{h ( u')2h+a 
1 - -

1' 

Then, we have to construct integral ( 44') (with U0 = const.). The 
path of integration is the straight line joining the origin to the point 
(x1 , x2 , . . . , Xm-i . y' + Y) so that we can represent the coordinates of 
an arbitrary point of it by sx1 , sx2 , • • • , s (y' + Y), where the parameter 
s varies from zero to the final value 1 ; s is precisely the variable of 
integration in ( 44'). For every value of s, the quantity (85) will be 
expanded by Taylor's formula with the initial point (0, 0, . . .  , 0 ,  sy'), i.e., 
by replacing, in (85), x1 , x2 , • • •  X1n_1 , y ,  Y, by sx1 , sx2 , . . .  SXm-1 , sy', sY. 
Integratingwith respect tos, we find the required expansion of Uh+1 , viz. 

(87) 

U k, , li+1 = - 4 (p +  h + 1)  
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and we obtain a dominant for it if we replace every ifr(hl by its value 
taken from (86). As the latter is independent of y and may be taken 
outside J, we get the same final dominant as in § 63 (except that <J' is 
still replaced by <J''), and we see that the series for U converges when­
ever we have 

(83 a) 
in which <J'1 can be * replaced by >/mD, denoting by D the distance 
between x and x'. 

We shall take the point x' on the conoid itself and let it assume 
successively every position on this conoid : by which a corresponding 
point x such that >/mD < !r can assume every position such that r 
is smaller than a suitably chosen positive constant ry (for all real 
points included between the two hyperquadrics r = ry and r = - ry  in 
the finite region [!Ji are at a distance from the conoid less than !r if 
r-/ is small enough). 

Therefore, U will certainly exist and be holomorphic whenever r 
is less than ry, the smaller of the two numbers ry' and 4�, . 

181. If, now, we combine the above result with our previous 
method, we shall be able to extend the definition of U to the whole 
part of the region [!Ji (the latter still satisfying the same above 
assumptions) which lies inside the conoid, say the direct sheet of it. 
More exactly, we shall reach every point x such that the plane t=const. 
through it (t having the same meaning as before) includes with r a 
volume entirely interior to f!li. 

To this end, let us denote by T a positive number such that the 
operations of § 63 define u whenever simultaneously r (x ; a) � 0 
and the difference I t  - c I of the t's relating to x and a is smaller than 
T. On the other hand, let us notice that if we draw the retrograde 

half conoid from any point x' interior to r and such that r > � ' and 

cut it by the plane t = t' - T, the volume thus enclosed will lie entirely 

* 'Ve limit ourselves hereby to the real domain. As to the advantage of intro­
ducing D instead of u', it lies in the possibility of changing axes, as is necessary 
(on account of the rotations in the text) when we let the point x' vary. 
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inside r = 0 if the positive number T is sufficiently small*. Let us 
take it so and also smaller than the numbers denoted by the same 
letter in § 177. 

For 0 � t � T (and r � 0, which will be implicitly understood all 
through the following argument), U is defined by § 63, and is holo­
morphic. 

For T � t � 2T, two cases may occur. Either the r_etrograde half 

conoid from x cuts the plane t = T wholly inside r :  then u and �� 
are known within the whole portion of 80 of the plane t = T thus 
obtained and, therefore, the value of ux is known by our general 
formulre solving Cauchy's problem, and is holomorphic, as explained 
abovet. Or the retrograde bicharacteristics from x may intersect r 
before meeting t = T ;  but, by the definition of the quantity T, this 

can only happen if, at x, we have r < � and then, the value of Uz 
is defined by the operations of our preceding section and is holomorphic. 
Moreover, the two definitions are simultaneously valid throughout a 

certain region (J < r < f\/) and both coincide with the analytic exten­

sion of the values already found for u. Therefore, we have a single 
analytic function for all the domain corresponding to 0 � t � 2T 
inside r. 

It is clear that the same operations can be applied for 2T � t � 3T;  
and so on. Thus our conclusion is completely proved. U is holo­
morphic in the x's and (for the same reasons as above) the a's. 

182. Our method, both for u and for U, has consisted in calculating 
these quantities for remote points or, as we can say, " events," by 
using intermediate ones sufficiently near to each other. We can say, 
therefore, that it is an illustration of what we have called Huygens' . . 
maJor premise. 

A thorough investigation of the consequences of such a principle 

* If, as allowed, we suppose r to be t2 - x12 - x22- . • •  , the condition for T will 

be T < y : 4 max. (t + vx12+ . . . +x2m _ 1). 
t 'Ve have written our inequalities so that S0 is always strictly interior to r 

in this first case, on account of which not only U, but u is necessarily holo­
morphic throughout S0 • 
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(which would lead however to more extensive researches which I hope 
to resume later on) would give us further extensions of our results. 
vVe could indeed, in that way, recognize the remarkable fact that the 
seemingly fundamental condition that any two points x and a within 
/% can be joined to each other by a geodesic in a unique way is not 
necessary. 

We, for the present, content ourselves with noticing one point. 
Though the region /% be not assumed to satisfy the condition in 
question, let us assume, nevertheless (for an even ni ), that the functions 
V and 6IJ exist and are analytic throughout it. Then, even if the point a 
be chosen so distant from S that, inside the domain between r and S, 
the solution of the first set of equations (29), § 57, would cease to be 
possible in an unique way (the Jacobian (30) in the same section vanish­
ing, for instance, within that domain or even on 80), all the integrals 
on the right-hand sides of (28) 0 1· (28 a), § 145, could still be defined. 
The only necessary condition for that is that every geodesic from a 
interior to the conoid or belonging to it must still cut S at a deter­
minate point and a finite angle. 

It will be sufficient, in order to define the integrals in question, 
to express them all with the help of the normal variables g corre­
sponding to a. It  is clear, in the first place, that our new assumptions 
do not prevent the integral (7fl), finally obtained in § 175, from having 
a meaning, the x's being still holomorphic functions of the g's (no 
matter if the converse is true or not) and from being a holomorphic 
function of the a s. 

The same can be said of SSS JV/ dT if we express it as said in 
§ 179, viz. 

SSSKUV/ dE1 . . . d�m = SS B1m dni . . .  dnm-1 J: K61Jf sm-i ds, 

where the r/s are defintffi. as in § 172  and el , an analytic function 
of the a s  and the r/s, corresponds to the intersection of any (interior) 
geodesic from a with S. 

The same will also be obtained for the integrals relating to S 
(element dS or duy) by writing down the values of 7TidS as said in 
§ 1 7 6  [formulre (82), (82' )]. 

The total quantity (28 a) thus defined is a holomorphic function 
of the a's. In the partial region i!Jl,0 where the g's are uniform func-
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tions of the a/s and the a's, it is proved by our preceding operations 
to satisfy (E). But values of the same quantity outside fll,0 (though 
inside fll,) are the analytic extension of values within fll,0 •  Therefore, 
they will also satisfy (E) and represent the solution of our problem. 

183. The non-analytic case. Let us now assume our coefficients 
to be no longer analytic ; they will, however, be assumed to be 
regular, i.e. to admit of derivatives, up to a certain sufficiently high 
order, with respect to the x s. Indeed, we know from the properties 
of Tedone's solutions (Book III) that such a hypothesis rests on the 
nature of things. As has been said in Book I, the precise determina­
tion of the order of differentiability postulated will not be undertaken : 
it will be sufficient for us to make sure that such an order exists for 
every val ue of rn. 

\Ve again take m even = 2m1 , 
o2 u OU 

(E) 9' ( u) = � Aik a a + � Bi ;::;-- + Ou = I 
.'lJi Xk UXi 

being again the given equation, and 
((f) J' (v) = 0 

its adjoint. Simultaneously, as before, we consider the equation in 
2m1 + 1 variables 

a2u (E') 9'' (u) = 9' (u) - az2 = f, 
the adjoint of which is 

$' (v) = $ (v) -�:� = 0. 

Our coefficients will be assumed to admit of partial derivatives at least 
np to a certain order, which can be expressed by saying that up to 
infinitesimals of that order they resemble analytic functions. The 
existence of derivatives of the first few oraers is obviously sufficient 
for us to be able to carry out the first part of our operations, that is 
the construction of the quantity r ;  and the existence of derivatives 
up to a certain order for the coefficients will imply the existence of 
partial derivatives up to a certain corresponding order for the quan­
tity r (see Additional Note to Book II). 

Let us now come to the construction of the successive quantities 
V1i (or V1i1) as explained in our second Book. Though we cannot go on 
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with it indefinitely, we are evidently able to calculate a certain 
number of these quantities Vh : the more if the existence of more 
derivatives of the coefficients (and consequently of r) is postulated. 

\Ve shall assume that this is possible up to the (m1 - l)th power 
of r or r' = r - (z - c)2 (the operations concerning both cases being, 
as noticed in our second Book, the same but for numerical coefficients) 
so that we have, for equation (@'), the expansion 

[v'] = 
1 mfl v I r'h 

r1m1 - l.  . h ' 
� ti=O 

which is identical with the expansion of v' given in Book II, § 62, but 
for the fact of being limited. The corresponding terms relating to 
( @) will consist of : 

(1) The quantity V, with respect to which our previous calcula­
tions of Book II (or this Book, § 135) want no modification, viz. 

m1 -2 I V = Om1-1 � C V1/ rh ; h=O m1-h+I 
(2) The first term UV(o) of the expansion of the quantity which we 

have previously called YlJ. 
Now, [v ] will not be a solution of the adjoint equation (@'), but 

the operations in our Book II show us that we have 

(88) $' ( [v'] )  = (- J)m1 il _ "1r m 2 vl'' ' 
"1r being a quantity* which is finite, continuous, and even (if further 
derivatives of our coefficients are postulated) differentiable. l\Ioreover, 
this quantity "1r is independent of z. The coefficient (- l )m1 !1m_2 , 
introduced in order to simplify further operations, is the same which 
stands on the left-hand side in (7) (§ 135), except for the factor 7r. 

184. We shall now look at our problem from Hilbert's point of 
view : that is, we shall see whether we can solve our Cauchy problem 
if we no longer have at our disposal the true elementary solution, but 
only this quantity r v'J , an incomplete elementary solution or " para­
metrix " in Hilbert's sense. Therefore, we shall again take our Cauchy 
problem for (E) and the corresponding equivalent problem for (E') ; 

* ( - J )m1 nm - 2 o/ = 2 cY  ( T''m, -1)· 
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but, for the latter, we shall again write down our fundamental formula, 
in which, however, v' will be replaced by the above obtained parametrix 
[ v']. 

The modification which we have to make in our formula is ob­
vious : it consists in taking account of the values (88) by the addition 
of a supplementary space integral 

Ju ([ v']) 
SSS v'r' dx1 dx2 . . . dxm, dz 

= (- 1)1121 nm-2 SSS f�t dx1 . . .  dxm dz 

(the use of our symbol J-- not being necessary here). 
Using now the same process as before to descend again to our 

'> d" . 1 b 
. ( J +Ji' dz J ... me nnens10na space, we o ta1n as ,.. . / ,, = -.,/r v I -

(89) 'll = H + SSS(a)U'o/ dx1 dx2 . . .  dx1n 

= 7r) 
where, for brevity's sake, we have written H for the quantity which 
is given by 

(90) 
2 (- 1)m1 7rm1 - 1  �� 

(m1 - 2) ! a 

= -- SSS (a) V (o)/ dx1 dx2 . . . dxm - SSs0 "V (o) (u1 + Luo) dS 
1 dm.- 1 

+ ( 2) 1 d --=-1 [SSS2/V dx1 dx2 . . .  dxm + SS2 V (Ui + Lu0) dS] 'ln1 - • 
rym1 

1 d d�-1 d 
('1ni _ l dv SS2uo V dS + dv SSs11 dS, 

i.e., by formula (30) (which, this time, we prefer to (28)), except that 
V is replaced by its first term V(o) . 

In both above formulre, the points a, x are assumed to lie on the 
same side of S, which we shall call the " positive side " ; and (a), for 
instance, as a suffix to the SSS, stands for the domain which we 
previously denoted by T, viz., the domain enclosed, on that positive 
side of S, by the retrograde characteristic half conoid from a. 

185. \Ve have to determine u by means of the above equation (89). 
It obviously belongs to the well-known type of integral equations of the 
second kind. The kernel-viz. '[r-is a finite one, so that t.he solution 
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is given without any difficulty by the classic methods *. Even, in 
this case, we have to deal with the Volterra type, on account of the 
manner in which the domain of integration depends on (a1 , a2 , • • •  , am) 
and approaches zero when the latter point approaches S, and we can 
solve it without needing to have recourse to Fredholm's algorithm : 
the required quantity u will be given by the successive approxi­
mations 

J 
u<01 = H, 

Ua (l) = Ha +  SSS (a) Ux(O) t (x ; a.) dxl dx2 . . .  dxm, 
Ua(2) = Ha +  SSS (a) Ux(l) t (x ; a) dx1 dx2 . . .  dxm, l '  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  

�.�(�'. . . .  �� .: . .  �.�� '.�).�����]'. �. ��� .�!.�.�l. ��: ...... . ���' 
(91) 

u being equal to lim u(nJ . 
That these approximations converge in the same way as in V ol­

terra's case, corresponds to the way in which the shape of the domain 
of integration on the right-hand side depends on the position of the 
point (a1 , a2 , • • •  , a1n)· Let us take again the coordinate t by consider­
ing a one-parameter family of surfaces St , such that S0 coincides with 
the given S and that every St is duly inclined with respect to the 
characteristic conoids and, therefore, cuts any one of them along closed 
edges. On any such surface, let us take for the element dSt the quotient 
of the m-dimensional space element by dt, so that 

dStdt = dT = dx1 dx2 . . .  dxm . 
Let us, moreover, denote by K' a maximum of the ((m - I)-fold) 
integral SS I t (x ; a) I dSt , extended over the section of a retrograde 
half conoid (having for its vertex �ny point a inside fll,) by any surface 
St . Then if the function cf> (x1 ,  x2 , • • •  ) is given and its absolute va]ue 
is, on each St , less than <P (t), the absolute value of the integral 

SSS1 cf> (x) '1r (x ; a) dx1 . . .  dxm 
inside a retrograde half conoid with vertex a (limited to S) will admit 
of the limitation 

(92) I SSSr cf> (x) '1r (x ; a) dx1 . . .  dxm I <  K' J: <P (t) dt, 

c denoting the value of t at a. 

* See, e.g. B6cher's Introducti"on to the study of Integral Equati"ons, Cambridge 
University Press, 1909. 
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This inequality precisely yields the required convergence just as 
in Volterra's method and in Picard's method of successive approxima­
tions for ordinary differential equations. It shows us that if 

I u (o) I = I H I < H', 
H' being a positive constant, then 

(K'c)n (92') I 1-l (n) - u (n-1) i < H '  --
n ! 

which is the general term of a convergent series. 
00 

As follows from the summation of the series u,0 + � ( u (n) - u(n-ll ) 
l' 

and as is well known from the theory of integral equations, the solu-
tion u finally obtained is of the form 

(93) 
where dTx is an abbreviation for dx1 dx2 • • •  dxm and 

is a determinate function of the x's and a's, the so-called " reciprocal 
kernel "*  of our integral equation, the value of which depends solely 
on the expression of '1r itself. 

* See Bocher, loc. cit., � 6. 
The calculation of 'I' with the help of t is given by the ordinary method in the 

theory of integral equations (Bocher, loc. cit. ). Having constructed our first two 
approximations u (O) and u (1l, we find that the third one u(2) is expressed in terms 
of u!1l. In order to obtain it in terms of u (OJ _ H, we replace u!1l itself by its 
expression. Operating as explained below in the text, we see that 

=Ha+ sss(al [t1 + t2 -- 1 
where t1 = t  and t2 is represented by ari integral over the domain which we call 
(a I x) (see the text), viz. 

t2 = SSS(aJx.) t t 
Going on in the same way, we see that Ua = lim ua(n) is represented by (93), with 

- 'l' (x ; a) = t1 +"1'2 + . . . + o/n + · · · ' 
the terms tn being the " iterated kernels," such that ti=t and 

"1-n (x ; a) = SSS (al x) "1-n-1 (.?: ; a') t (a' ; a) dTa' ;  

this series for ( - 'I'), corresponding to Bocher's series (5) (loc. cit. , § 6), converges 
for reasons similar to those for the series for u (cf. Bocher, loc. cit., § 6, Theorem 3, 
p. 23). 
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186. Let us now see how this solution depends, not on the form 
of H, but on the data themselves. Let us begin by the terms in f :  
in the expression of H, we have the first term 

(94) SSS6V10J (x ; a)j (x) dTx 

in which UZi(oJ is a function of both the x's and the a's. Substituting 
that quantity in (93) and replacing x by a' as the variable of integration 
when necessary, we get 

SSS6V1oi/(x) dTx - SSS 'l' (a' ; a) SSSV,o) (x ; a')/(x) dTxdTa' · 
The second term is a 2m = ( 4m1)-fold integral which relates to all 

systems of positions of our two points a and x such that : 
The point a lies between S and the retrogade half conoid with 

vertex a ; 
The point x again lies between S and the retrograde half conoid 

with vertex a'. 
We can invert integrations, that is, we shall integrate by letting 

first the point x be fixed and a variable : which, f being a factor, 
gives, for the other factor, the quantity 

(95) UV,1) (x ; a) = SSS(a�x) 'l' (a' ;  a) UV,oi (x ; a') dTa' , 

the domain of variability of a', which is denoted by 3L-that is, the 
domain of integration (fig. 32) in this formula,-being included 

a a 

Fig. 32. Fig. 32a.  

between the retrograde half conoid with vertex a (which we have 
been considering) and the direct half conoid ( conoidal sheet not 
turned towards S) with vertex x. The term in question is thus 

(94 a) SSS(aJUV(ll (x ; a) f(x) dTx. 
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We now take the other term containing f in the expression of H, 
VIZ. 

(96) 

the integration SSS being extended within the space (a)2 included 
on the positive side of S, between the retrograde half conoid having 
a for its vertex and the surface I' (x ;  a) = ry. We have . to substitute 
this for H in the right-hand side of (93), which gives 

1 [ d'"•i-1  
(9

7 ) (mi _ 2) ! drym1-_ 1S S S 1a1 2.:V/ dTx 

dmi- 1  J - S S S 1al '1' (a' ; a) dTa' d·r
·· 1 S S S 1a·1 2 V (x; a')f (x) dTx . 

This, on account of the ordinary rules of differentiation under the 
integration sign*, may be replaced by 

1 dm1-l  
. (1n1 - 2) ! drym1- i  [S S S 1al 2 VJ dTx 

- SSS1a1 '1' (a'; a) dTa' SSS1a'l 2 V (x; a' )f (x) dTx]· 

The double SSS, i .e. 4m1-fold integral, shall be transformed, as 
before, into 

(97') S S S 1a1 / (x) dTx . SSS(a�;r;)2 '1' (a' ; a) V (x ;  a'.) dTa' • 
In (97), the point a lies anywhere on the positive side of S inside 

the half conoid with vertex a, and the point x lies on the positive 
side of S, between the retrograde half conoid r (x; a') =  0 and the 
surface r (x ; a ) = ry (a region such that 0 � r (x; a') � ry ;  see fig. 32 a)t. 
Therefore, in (97'), the point x will lie anywhere in a and, for each 
given position of x, the field of integration for a will be bounded by 

* Rigorously speaking, we ought, in the first place, as remarked above, toexelnde, 
before differentiation, the vertices of our conoids by small surfaces �, e.g. by requir­
ing x and a' to be distant from each other at least by £. For such restricted domains, 
the operations of differentiation under SSS in the text would be valid. It is easy 
to see, by our previous considerations (including footnote to § 147), that they are 
also valid by making £ immediately 0 (the convergence of the operations in 
§ 141 or § 174 being uniform). 

t The (diagrammatic) figs. 32, 32 a are two-dimensional sections of the 
diagrams in the 2m1-dimensional space. 
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the retrograde half conoid with vertex a, the direct half conoid with 
vertex x and the surface r (x; a') = 'Y (fig. 32 a). This field is what 
we call (a9x)2 · 

The ( m1 - I )-fold differentiation of (97') with respect to 'Y can be
carried out under the first SSS, i.e., on the value of the SSS(aox)2 ;
and thus we see that the result of the substitution of (96) in our 
Volterra-like resolving formula (93) is equal to the term (96), dimin­
ished by 

(94 b) SSS (al f (x) �(II) (x ; a) dTx,
with 

(95 a) 
I dm1 - 1  

UVcn> (x; a) = (mi _ 2) ! d'Ynix SSS(aJx)l! 'I' (a' ;  a) V ; a') dTa' ·

Finally, we have now every term depending on f If we set down 

(98) � = �(0) - �(I) + �(II) , 

6lJ(I) , 6lJ(II) being defined by (95), (95 a) respectively-the totality of 
these terms will be 

I dm1- 1  
- SSS/(x) � (x ;  a)  dTx + (�! d'Ymi- l  SSS/(x) V(.v ; a) dTx .

187. The above explanations of the treatment of the terms in f 
will allow us to deal more briefly with the other terms (containing u0 
and u1) as the operations will be exactly similar. The integral with
respect to x will be an SS (instead of an SSS), the point x describ­
ing S ;  but the relation between this point and a', as well as between 
a and a', remaining the same for any given x on S, the fields of inte­
gration relating to a' have to be constructed as before. Similai; 
operations can also be performed when the point x is required to 
describe the surface which we have called S., , so as to obtain a result 
which is to be differentiated with respect to v .  This shows, without 
any new difficulty, what each term of the aforesaid kind il}. H gives 
when substituted in (93) : we thus find 

for the term - S Ss0 � (oJ ( U1 + Luo) dS :
- SSs0 �(oJ (u1 + Luo) dS + SSs0 UV(I) (u1 + Luo) dS ;
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dfor -l SSs UoUIJ(o) dS :
(; V II 

d d 
dv S Ss,, Uo UV (ol dS - dv 

S Ss,, Uo UIJ(l) dS, 

the sum of which, added to (94), (94 a) with subtraction of (94 b), 
finally gives u itself under the form (30), V being calculated as said 
in § 183 and UIJ being given by (98 ). 

188. \Ve have just constructed the expression of the required 
solution, if it exists. But we have to prove, conversely, that what we 
have found is a solution , satisfying the conditions of the problem. 

To do this, we use the results obtained in the first place for the 
analytic case. In this case, we have shown that the solution exists 
and is analytic throughout /!}{, :  of course, this solution can not be 
distinct from the one which we have just obtained and which is 
therefore itself analytic. 

l\loreover, we have constructed the elementary solution and es­
pecially the function UIJ (also analytic in terms of the a;'s and a s). 
Again, such a quantity can not be distinct from the quantity defined 
by (98) : for, on account of the fundamental Lemma of the Calculus 
of Variations, the same quantity u can not admit of two distinct ex­
pressions of the form (30), equal to each other for arbitrary choices of 
'llo , 'lt1 , f 

Therefore, the quantity UIJ defined by (98) is, under our present 
assumptions, holomorphic in tpe z's and the a's. 
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189. Could we prove, in a direct way, that the operations in §§ 184-187, 
starting from analytic data, necessarily lead to analytic results* ?  

This can be done without any great difficulty as to the first part of them, the 
construction of u. In the first place, formula (90), which gives the value of the
quantity H, is entirely similar to our previous formuloo which gave u itself, except 
that it contains 6V(o) instead of 6V. We therefore can prove the analyticity of H
by the same methods which applied in §§ l 73-l 76 a ;  but, this time, these 
methods will be valid throughout /!It,, as V(o) is defined and holomorphic therein,
so that the analyticity of H is proved at once in the whole of this region. 

We have now to show the same for the solution of the integral equation (89). To 
this end, we shall resume the method (§ 173) which we have applied to the space
integral (77), but with the modifications necessary to extend them to a suitably 
defined complex domain. 

We start from our real region /!It,, subject to the same restrictions as above 
(especially, it is understood that any interior (or bicharacteristic) geodesic 
described in the retrograde sense from a point a in /!It, remains in /!It, till it 
reaches S). 

Let x and a be two points in o�, which, therefore, as assumed, can be joined

by a determinate geodesic ; the Jacobian D �7' x2 ' . . . ' �m) being also assumed q1 , . . .  , qm 
to be always different from zero (for the corresponding values of the a's and the 
a's), the a's (and therefore the �'s) will be analytic functions, and they will be 
holomorphic for any system of real or imaginary values x, a of the same variables
such that 

I Xi - Xj, I < a, I iii - ai I < a, (i= l, 2, . . .  , m) 

13 being a certain positive quantity, which, as is well known, will have a positive 
minimum when x and a assume all possible positions within /!It,. If one
of the /!It, points is required to describe a surface t= const., while the other 
remains arbitrary, there will be another minimum, which will be a function of t 
and which we shall denote by at .  We thus can deduce from /!It, a certain complex
domain (at), viz. the domain containing every point with (real or imaginary) coordi­
nates Xi , . . . , Xm , connected with, at least, one real point (xi , ...  , Xm) in flt, by

(99) l xi - xi l  < at (i= l, 2, . . . , 1n) 

(t still standing for Xm) ·
From any (in general, imaginary) point in (at), we can draw geodesics in various

directions. We shall especially consider those which are such that 

(le, positive constant) 

* The method given below is the one which corresponds to E. E. Levi's
(loc. cit.) ; but the proof of E. E. Levi, for the elliptic case, is more complete,
applying not only to u, but also to the elementary solution and even to the 
reciprocal kernel 'IJr which generates it. 

H. 20 
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b . h 1 f f h t' . dx1 dxm-I ds 
d h µ emg t e va ue o any o t e quan 1ties dt , . . .  , � ,  dt

an µ. t e corre-

sponding value for a (suitably chosen) interior and retrograde direction at a 
neighbouring real point (the neighbourhood being defined by (99)) belonging 

to �. Such directions will also be called " retrograde directions in �. '' It is 

clear, by the above remarks on d_B , that, for any such direction, the argument of
at ( -dj;) will be numerically less than k' (k' being a certain po�itive constant).

We also see that if k be taken sufficiently great ·we shall always obtain a retro­
grade direction (at any point of (at)) if we take for the differentials of the normal
variables � real values such that 

d�12 + d�22+ . . . + d�2m-1  � d�m2, d�m > 0. 
Geodesics having a retrograde direction (whether real or imaginary) will be 

called " retrograde geodesics " ;  then, moreover, we shall agree that the inde­
pendent variable * t shall always vary in such a way that the argument of dt will 
itself lie between - k' and k' : of course, this will also be the case for the argu­
ment of the difference between any two values of t on one such path, and we can 
find a (constant) upper limit for the ratio between the length of any arc of such 
a path in the plane of the complex variable t and the length of its chord, or of 
its projection on the real axis. 

Any point which can be reached from a by a retrograde geodesic, with the 
above restriction for the variation of t, will be said to be subordinate to a. 

190. It will be essential for us to modify our previous definition of (at) (by
suitably diminishing the values of ati as allowed) in order that, taking for a
a point in (at), all the points subordinate to a also belong to (at)· 

We can reach this by the help of known results connected with Cauchy's 
fundamental theorem on differential equations. We indeed know that, (y1 , y2 , . . . )
and (y1 , 'j/2, . . . ) being two solutions of one and the same canonical differential 
system with the independent variable t and .N unknown functions, if we have an
upper limit £0 of the absolute values of the differences Yi - Yi for t = t0 ,  we can
deduce a similar upper limit Et relating to t = t1 by 

.. 

£1 � £oeNA T, 
where T is the length of the path followed from t0 to t1 and A a positive constant, 
which we can find when we know a finite region where all the unknowns lie and 
where the right-hand sides of the differential equations are regular +. 

* "\Ve take t for the independent variable in (L) by multiplying both sides of
. ds (s oA)

every equation by d- = 1 : - � . 
t 2 VPm 

t A is an upper limit of absolute values of the first partial derfratives of the
right-hand sides (compare footnote to the Additional Note to Book II). 
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On account of this theorem, we see that the domain (at) will satisfy the required 

condition if at is chosen in terms of t so that ate2mAa.t be decreasing (denoting by 
a the aforesaid upper limit for the ratio between the length of a path of inte­
gration in the t-plane and its chord) : for instance, a/ being a first choice of 
that function, such as considered hitherto, we denote by at the minimum of 

a't, e- 2mAa.(t- t') for t' varying between zero and t. 

190 a . .A. last limitation in our domain (at) will be introduced by only con­
sidering values of t, the arguments of which lie between - le' and +le' (the definition 
of the domain, as concerns the other coordinates, remaining as above) . .A. " sub­
ordinate point " of a point of the domain, with that new definition, will continue 
to lie in this domain if the two values of t lie on the same radius vector through 
the origin in the t-plane. 

191. These geometric considerations are the only difficulty in the argument. 
Introducing any function F of the x's, or the x's and the a's, holomorphic through­
out f/l,, we can now easily form an analytic function of the a's, also holomorphic 
throughout (ae), which will coincide with the given one for real points (i.e. 
within f/l,), 

We see that such an extension will be given by the integral 

(77 b) l=cSSd111 . . .  d11m- 1 f01K1FdA. 
constructed in § 173, the 11's still describing the real domain (76) and the 
variable A. the real segment (0, 1 ), so that the variable t has to go from c to the 
origin by the rectilinear path. By §§ 190 and 190a, if a lies within (at), so will 
&lso every point x corresponding to such a system of values of the 11's and A.'s. 
Thus,-which is essential for us-, F being defined in the domain (at), (77 b) is 
<lefined in the same domain and is holomorphic therein, for the same reasons as 
shove. 

l\Ioreover, if we denote by <P ( I  t I )  a maximum of the absolute value of F 
when t assumes all the values such that I t I = Const., and by /(' the product of 

1 llm_2 by a maximum of K1 1 we have 
m -

(92 a) J l c l  I I I < K' 0 <P I t I dt, 
i.e. the inequality corresponding to (92), § 185. 

192. This being obtained, there is no longer any difficulty in defining u within 
the whole of (at), by equation (89). First, H itself, on account of the calculations 
in Book II, is holomorphic in the aforesaid domain (suitably restricted, if  
necessary). Therefore, we shall see successively that each of the integrals (91 )  is 
defined and holomorphic throughout (at) ; further on, by the same argument as in 
§ 185 (with the use of inequality (92 a)), that such approximations converge. 
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Moreover, this convergence is uniform and, therefore, by a known theorem, the 
limit is again an analytic function, as we wanted to prove. 

In order to afford the equivalent of E. E. Levi's proof, we ought to show, by 
the same method, the analyticity of ulJ itself. '\Ve shall not, however, undertake 
this, new difficulties (which do not exist for the elliptic case) arising obviously 
from the shape of the domain which we have called (a l x), if we should try t<> 
extend it by adjunction of complex points. 

193. This being said, we again cease to assume that our coefficients 
are analytic (their regularity being, of course, still understood). 

On account of the assumed regularity of the coefficients and of a. 
known fundamental theorem of W eierstrass', we can approximate each 
of them as closely as we wish by a polynomial, and we may even do 
this in such a way that the approximation holds on differentiation up 
to the order for which the existence of derivatives has been postu­
lated *. 

* This, which is obtained under much more general conditions in a l\femoir
of Tonelli in the Rendic. Cfrc. Mat. Palermo \Vol. xx1x, 1910, pp. 1-36), results. 
from the very methods for the proof of W eierstrass's theorem. In most of them, 
indeed, the approximating polynomial for a continuous function of the variables. 
x1 , x2 , • . •  , Xm is expressed by an integral of the form 

IIn= SSSF(z1 1 z2 , . . .  , Zm) Pn (Z1 - X1 ,  Z2 - X2 ,  . . .  , Zm - Xm) dz1dz2 · · · dzml 
the polynomial Pn (n= 1, 2, . . . , oo ) being such that : (a) for any fixed system oi
values of Z1 , Z2 , . . . , Zm other than Z1 =Z2= . . .  =0, Pn (Z1 1 Z2 , . . . , Zm) ap­
proaches zero with l /n, and even uniformly as long as Z12 + Z22 + . . . remains greater
than a fixed (arbitrarily small) positive number It ; (b) the integral 

SSSPndZ1dZ2 . . .  dZm, 
extended over a fixed domain containing the origin in its inside (the shape oi 
which i8 immaterial on account of' (a)), approaches i:

P n may be, for instance, La Vallee Poussin's and Landau's polynomial extended 
by Tonelli to several variables : 

1 Pn = r.· [l - 1\2� -.i·i:)2J'\.n. n i 

where I\ is the inverse of the greatest dimension of the domain and

Kn= 
n�� 1 1: (l - p2)npm- 1dp= n��1 B ( n + l, ;) .

If we no\v want to take any derivative of order k-say 
"le 

n = __ o __ k 1 k2 • • •  ':l,,. k, ':l ,.. k'l UwJ Uw2 • • • 
-of such expressions, we differentiate Pn under SSS with respect to the x's, 
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194. 'Ne get to the conclusion which we want to prove, viz. that 
the solution constructed in §§ 184-187 actually satisfies the given 
conditions, by combining the above result with those obtained for
the analytic case (§§ 173-181)  and by first investigating the mode 
of continuity (Book I, §§ 19  ff.) of our expressions with respect to 
the functions which represent the coefficients of the equation * :  a 
question which may be interesting in several cases and for which, 
-exactly as in § 18, Book I, expressions in power series would give 
us no information whatever, while we shall be able to solve it by our 
calculations in §§ 184 ff. 

We shall see that the quantities constructed in the aforesaid 
sections are continuous of a certain finite order with respect to the 
{;oefficients in question. In other words, if we replace the coefficients 
in question by other ones having respectively with them a neighbour­
hood of the order in question, and if 

(E1) !11 (u) = � A ik1 -::i 32:- + � B/ �zi + O'u = f UXiU/JJk U/JJi 
is the new equation thus obtained, the aforesaid quantities will differ 
very slightly, whether deduced from (E) or from (E1 ). This will be , 
for instance, the case if we replace our coefficients by approximating 
polynomials constructed according to the preceding section. 

The first question of that kind concerns the construction of geo­
desics and consequently of the quantity r. As to this, the answer is 
given by what has been said in our Additional Note to Book II. We 
thus know that any geodesic issuing from point a and relating to the 

or-which is equivalent-to the z's with multiplication by ( - l )k. But, if the
corresponding derivative of F exists and is continuous, an integration by parts is 
possible and transforms the result into 

sssDk1 k� .. . F. Pn (z1 - Xi ,  Z2 - X2 , • . •  , Zm - Xm) dz1dz2 . . .  dzm, 

with addition of boundary terms. 
If we finally assume (as in the case for the above written polynomial of 

La Vallee Poussin and Landau) that our above condition (a) is satisfied not only 
by Pn, but by its derivatives of any order less than le, these boundary terms 
approach zero, and the limit of Dk. k • . . .  IIn can be obtained by operating on

Dk1 k2 • • • F as we did on F itself : which is the required result.

* Analogous methods have been used for elliptic equations : see Lichtenstein,
Abhandl. Ale. Berlin, 1911  (A.nhang). 

20-3 
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characteristic form A1 of(E1) will run very near to the corresponding 
geodesic relating to the form A, calling this, for instance, the geo­
desic which has the same tangent in ( aH a2 , • • • am)· Moreover, the
alteration will also be very slight as concerns the partial derivatives 
of the coordinates x of any point of this geodesic, with respect to the 
parameters previously called A.1 , A.2 , • • •  , A.ni.-1 and, consequent.ly, as. 
concerns the functional determinant J. This functional determinant, 
being different from zero and (at least if a certain neighbourhood of a is 
excluded) numerically greater than a fixed positive number all over a. 

certain region f/l,, when taken with respect to equation (E), will there­
fore remain so if we start from one of the approximate equations (E1), 
as soon as the approximation is sufficiently close. This fact is a most 
important one for us, because we thus know that our operations can 
be considered as having the same domain of validity, whether we start 
from (E) or (E1). 

That the alteration in r and M is also slight is again obvious now. 
The same conclusion extends to the successive quantities Vh 

(h = 1,  2, . . .  , m1 - 2) on account of their d�fining formulre and simi­
larly to V m1_1 = UV (ol ,  if, of course, the order of differentiability postu­
lated for our coefficients is sufficiently high (the derivatives thus 
postulated being, as we have said, approximated by the corresponding 
derivatives of our approximating polynomials). 

It applies also to the " kernel " 'fr of our integral equation (89), as 
appears immediately from its expression (see footnote to § 183). 

Finally, as to the solution of the same equation (89), the same 
fact follows from the form of the successive approximations in (91) 
(each of which will be but slightly altered by our substitution) and 
from the fact that these approximations are uniformly convergent in 
the circumstances we have to deal with, that is if calculations start 
from either of the equations (E) or (E1). 

The same can be said for the reciprocal kernel '1', as given by a. 
(uniformly convergent) series of " iterated " kernels (see p. 300, foot­
note). 

The alteration will also be very slight in the quantity which we 
have called H (and in its derivatives up to a certain order, related 
to the order of neighbourhood assumed for the coefficients). This 
appears from the expressions of the different terms in H, as given in 
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§§ 173-181 , which are integrals containing the data Uo , U1 ,  f, 
functions V and UV10l and their derivatives up to a certain finite order. 

Therefore, formula (93) immediately shows that the same extends 
to u and-if the order of neighbourhood assumed is snfficiently high 
-to its first and second derivatives. 

195. Our conclusion will follow now without any difficulty. Let us 
begin by operating on equation (E1), the coefficients Au/, B/, O' of 
which will be approximating polynomials for Aik.  Bi, 0. \Ve shall 
obtain a quantity u' which will actually be the solution of the 
corresponding problem, i.e. satisfying 

�2 I CJ I 
,Y:1 (u') = 2Aik' 0 � + 2 B/ -:i u. + O' u = f 

Xi Xk UXi 
and also Cauchy's condition (C3). But if we let the altered coefficients 
Aik'· etc. vary in such a way that their neighbourhood (of a suitable 
chosen order) with the corresponding coefficients of (E) becomes in­
definitely close, u will approach u and 3-1 ( u )  approach $ ( u) : the 
latter is therefore necessarily equal to f 

196. The same continuity proof will apply to Cauchy's conditions, 
as these are constantly satisfied for the approximating analytic 
problem. 

l\fore exactly, the first of these conditions, for instance, means 
that, a approaching a determinate point P which belongs to S, 
the quantity ua , calculated by our method, must approach (u0)p . 
Now, ua constructed with (E) may be, by the above, considered as 
resulting, by a limiting process, from ua', the analogous quantity
deduced from (E1). To make sure that the limit of Ua,  for a approaching 
P, is the same as the l imiting value of up' when (E1) is infinitely 
little different from (E) ,-in other words, that the two limiting pro­
cesses in question may be inverted-it is sufficient, as is well known, 
to ascertain that the first of them (corresponding to the variation of 
the coefficients) is uniformly convergent (especially in the neighbour­
hood of S). But this appears from the expressions of the different 
terms, as constructed in §§ 1 74-17 6 a, it having been proved, especially, 
that the integrands contain integral and positive powers only of the 
quantity which we have called 80 • 
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Things behave in the same way as to the second condition (03). 
Our problem, thus, is proved to have a solution, which is given by 

the same formula (28) or (28 a) as in the analytic case, UV being 
denned by (98). 

197. To this quantity UV, the preceding considerations can be at 
least partially extended. We can show, as above : 

(1) that UV is the limit of the corresponding quantity relating to 
(E1), at least for any pair of points x and a such that r (x ; a) is 
positive and not zero ; 

(2) that (at least with the same restriction) it satisfies $ = 0 (as 
a function of the x s) and !l = 0 (as a function of the a s ). 

There is no doubt that these conclusions are also valid for r(x; a)=O, 
UV being regular even then and assuming the values UV!oJ (as happens 
in the analytic case and was required in the above for the elementary 
solution);  in other words, that uv(I) and uv(II) are zero with r. The 
rigorous proof of this would however present some difficulties as to 
UV(II)> on account of geometric reasons already alluded to : for, r (x; a) 
being very small, we should not be able to indicate a lower limit for 
the quantity So' (00) (§ 17 5), as some bicharacteristics from x would 
pass very near a and others meet the characteristic conoid from a at 
very small angles. 

198. Of course, the result obtained for m even implies the corre­
sponding one for rn odd, by means of our process of descent : V and 
UV-now called V' and UV'-having been constructed for m = 2m1 + 2, 
as explained above, the value of v, for m = 2m1 + 1, fo1 lows by formulre 
(62), (65), (§§ 164, 165). 
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Spherical waves (equation of), 7 ;  Poisson's 

and Kirchhoff's methods for its integra­
tion, see Kirchhoff, Poisson ; for higher 
number of variables, 245 ; corresponding 
Cauchy problem for a non duly inclined 
boundary, 253 

Subordinate (point - to another), 306 
Synthesis of the solution, Book III, 

Chap. III ; for 2m1 variables, 233 ; for 
mixed problem with plane boundary, 251 

Systems of equations, 21 n. 

Tedone generalizes Volterra's method to 
(em) , 68, 130 ; -'s expressions and their 
relation with the elementary solution , 
157 ; -'s formulae for damped waves, 
244, 246 

Telegraphist's equation, 41, 103 
Tonelli (L.) , on approximation by poly­

nomials, 308 n.  
Transversal, 63, 160 ; Coulon's construc­

tion of, 63 

Uniform convergence of improper inte­
grals, 139 

Universe, universe point, 8, 52 
Upper limits of 1- ror simple integrals, 139 ;. 

for multiple integrals, 149 

Variational equations for geodesics, 111 
Vibrating membranes (problem of), 42, 

43, 44 
Vibrating strings, 40 
Volterra, on data borne by non duly in­

clined surfaces, 44, 150 n . ,  254, 260 
Volterra's integral equation and corre­

sponding method, 299 (see Integral equa­
tion) . 

Volterra's method for cylindrical waves, 
55, 67 ; the corresponding function , 118 ; 
generalization, 119 ff. ; extension by 
Tedone, see Tedone ; -

'
s auxiliary solu­

tion for systems, 1 19 n.;  on analogy with 
potentials, 186 

Waves (equation of spherical), 7 (see Sphe­
rical) ; equation in five variables, 211 ; 
cylindrical, 7 (see Cylindrical) ; inter­
vention of, 50 ; retrograde, 52 ; propa­
gation shown by solving formulae, 17 4 ;  
diffusion of, 175 

Weber, on equation of damped spherical 
waves, 243, 245 n. 

Weierstrass and the theorem of factoriza­
tion , 120 

Wells' Time machine, 8 n.  

Zeilon, on elementary solution, 72 n.  
Zermelo, on neighbourhood of functions,. 

35 n. 
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