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PREFACE.

rilHE present volume consists of two parts; the first of these

deals with the theory of hyperelliptic functions of two

variables, the second with the reduction of the theory of general

multiply-periodic functions to the theory of algebraic functions ;

taken together they furnish what is intended to be an elementary
and self-contained introduction to many of the leading ideas of

the theory of multiply-periodic functions, with the incidental aim

of aiding the comprehension of the importance of this theory in

analytical geometry.

The first part is centred round some remarkable differential

equations satisfied by the functions, which appear to be equally

illuminative both of the analytical and geometrical aspects of the

theory ;
it was in fact to explain this that the book was originally

entered upon. The account has no pretensions to completeness:

being anxious to explain the properties of the functions from

the beginning, I have been debarred from following Humbert's

brilliant monograph, which assumes from the first Poincare's

theorem as to the number of zeros common to two theta functions
;

this theorem is reached in this volume, certainly in a generalised

form, only in the last chapter of Part n. : being anxious to render

the geometrical portions of the volume quite elementary, I have

not been able to utilise the theory of quadratic complexes, which
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has proved so powerful in this connexion in the hands of Kummer
and Klein

; and, for both these reasons, the account given here,

and that given in the remarkable book from the pen of II. W. H. T.

Hudson, will, I believe, only be regarded by readers as comple-

mentary. The theory of Rummer's surface, and of the theta

functions, has been much studied since the year (1847 or before) in

which Gopel first obtained the biquadratic relation connecting

four theta functions
;
and Wirtinger has shewn, in his Unter-

suchungen iiber Thetafunctionen, which has helped me in several

ways in the second part of this volume, that the theory is capable

of generalisation, in many of its results, to space of 2p l

dimensions
;
but even in the case of two variables there is a

certain inducement, not to come to too close quarters with

the details, in the fact of the existence of sixteen theta functions

connected together by many relations, at least in the minds

of beginners. I hope therefore that the treatment here followed,

which reduces the theory, in a very practical way, to that of

one theta function and three periodic functions connected by
an algebraic equation, may recommend itself to others, and,

in a humble way, serve the purpose of the earlier books on

elliptic functions, of encouraging a wider use of the functions

in other branches of mathematics. The slightest examination

will shew that, even for the functions of two variables, many
of the problems entered upon demand further study ; while,

for the hyperelliptic functions of p variables, for which the forms

of the corresponding differential equations are known, there

exist constructs, of p dimensions, in space of p (p + 1
)
dimen-

sions, which await similar investigation.

The problem studied in the second part of the volume was

one of the life problems of Weierstrass, but, so far as I know,

he did not himself publish during his lifetime anything more

than several brief indications of the lines to be followed to effect

a solution. The account given here is based upon a memoir in

the third volume of the Gcsammelte Werke, published in 1903
;

notwithstanding other publications dealing with the matter, as
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for example by Poincare and Picard, and particularly by

Wirtinger, it appears to me that Weierstrass's paper is of

fundamental importance, for its precision and clearness in

regard to the problem in hand, and for the insight it allows

into what is peculiarly Weierstrass's own point of view in the

general Theory of Functions ; at the same time, perhaps for

this reason, some points in the course of the argument, and

particularly the conclusion of it, seem, to me at least, to admit

of further analysis, or to be capable of greater definiteness. In

making this exposition I have therefore ventured to add such

things as the explanation in 53, the limitation to a monogenic

portion of the construct and the argument of 60, an examination

of simple cases of curves possessing defective integrals and

the argument of Chapter ix. These are doubtless capable

of much improvement. But the whole matter is of singular

fascination, both because of the great generality and breadth of

view of the results achieved and because of the promise of

development which it offers
;
I hope that the very obvious need

for further investigation, suggested constantly throughout this

part of the volume, may encourage a wider cultivation of the

subject, and a more thorough study of the original papers

referred to in the text, of which I have in no case attempted
to give a complete reproduction, though I have endeavoured in

all cases to acknowledge my obligations.

I may not conclude without expressing my gratitude, amply
called for in the case of any intricate piece of mathematical

printing, for the carefulness and courtesy of the staff of the

University Press.

H. F. BAKER.

CAMBRIDGE,

19 August 1907.
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PAET I.

THE HYPERELLIPTIC FUNCTIONS OF TWO VARIABLES
AND THE ASSOCIATED GEOMETRY.

CHAPTER I.

INTRODUCTORY.

1. LET x be a complex variable represented upon an infinite plane,

regarded in the ordinary way as closed at infinity, and let

f(x) = X + \x + X;*
2 + . . . + Xatf" + \eaf

be any sextic polynomial. The pairs of values (x, y), (x, y), which satisfy

the equation y'=f(x), may be represented by the points of a two-sheeted

surface lying upon the plane of x, the sheets crossing one another along

three lines joining respectively the first and second roots of f(x)
= 0, the

third and fourth roots, and the fifth and sixth roots, where the order iu

which the roots are taken is indifferent
;
thus a closed line on this two-

sheeted surface, drawn about and near to the point representing one of these

roots, will make two circuits before returning on itself, and each of these

roots is represented by a winding place or branch place of the surface
;

if \, = one of the six branch places is at infinity. We may represent

any place of the surface, corresponding to a single pair (x, y), by a single

symbol (x), or simply by x. If (a) be such a place, for which x is finite, and

not a root of f(x) = 0, and (#) be any sufficiently near place, we can solve

the equation y
2

=f(x) byx=a + t, y = P (t), where P(t) is a series of positive

integral powers of the parameter t, and every place in the immediate

neighbourhood of (a) is given by one value of t. If (a) be a branch place,

for which both x and y are finite, say a finite branch place, we can similarly

solve by x = a+P, y = P(t), an increment of 2?r in the phase of t corre-

sponding in this case to an increment of 47T iu the phase of x a, that is to

a path on the surface which closes itself only after containing points of both

sheets. If ^.j^O we can similarly represent all points of the surface for

which x is sufficiently large by two pairs of formulae of the forms as*1 =
t,

y~
l = t'P(t), and x~ l =

t, y~
l=

t?P(t), corresponding to the two superimposed

but distinct places of the surface
;
while if A 6

= 0, all points in the immediate

neighbourhood of the single place at infinity are represented by a single

B. 1
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pair of formulae af~l = P, y~
l = fP(t). In fact these various power series

converge within a circular range about the place considered which excludes

the nearest branch place ;
but it is sufficient for our purpose to assume the

convergence for sufficiently small values of t. This quantity we call the

parameter of the place.

It is manifest that any rational function of x and y, say H (a, y), is

representable about any place in terms of the parameter of the place in

a form H (x, y)
= t~mP (t), where TO is an integer, positive, negative, or zero,

and P (t) does not vanish for t =
;
the number m, if positive, is then called

the order of infinity of the function at the place; if m is negative, the

number m is the order of the zero of the function at the place. And .any
rx

integral I H (x, y) dx, which is supposed to be integrated along a path on
* a

the surface from the place (a) to the place (), is, in the neighbourhood of

any place, of a form t~mP(t) + C log t, where C is a constant. It will appear
that there are forms of // (x, y) such that the constant C is zero at every

place, finite or infinite, and the integer m everywhere zero or negative ;
the

corresponding integrals are then said to be of the first kind : there are also

forms of H (x, y) such that the constant C is everywhere zero, the integer m
being positive for a finite number of places ;

the corresponding integrals,

with a finite number of algebraic infinities, are said to be of the second kind
;

but, whatever form H(x, y) have, there can only be a finite number of places

where m is positive or G other than zero, and the sum of the values of C
which arise at different places for the same integral is necessarily zero, as

will be proved below
;
thus there can be no integral having only one place

where C is not zero : integrals for which there are two or more places at

which the logarithmic term is present, while m is never positive, are called

integrals of the third kind.

Let us restrict ourselves now, for a little, to the consideration of integrals

of the first or second kind. In the immediate neighbourhood of any place,

even an infinity of the integral, the integral is single-valued ;
but this is not

the case for any path ;
for instance a closed path passing entirely on one

sheet of the surface round two 'only of the branch places will give a value

for the integral not generally zero. In order then to deal only with single-

valued functions we restrict the paths along which integration can take place

by supposing the surface cut along certain curves. First let any closed curve

be drawn on the surface of such a kind as could not be continuously deformed

to a point without passing over branch places, and let the surface be cut

along this curve
;

if a definite direction be assigned to the closed curve,

either of the two possibilities being taken, we can appropriately speak of the

left side, and of the right side, of the cut
;
we call this cut the first cut,

or (.4,), and speak of the edges of the cut as period-loops ; taking now an
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arbitrary point on the left side of the cut (4,), it will be found that a con-

tinuous curve can be drawn on the surface, not passing through any branch

place, to the opposite point on the right side of the cut (Aj); let the surface

be now cut along this curve, the edge of the cut which is on the left when
the curve is described being called the left edge ;

the new cut will be called

(A 3).
The surface now has a continuous boundary, consisting of the left side

of(^i), followed by the left side of (A 3), then the right side of (AJ, described

however in the direction opposite to that of the curve from which (A^ was

constructed, and then the right side of (A 3 ), also in the negative direction of

the curve from which (A 3) was constructed; this boundary may then be

denoted by (AiA 3A{~\Afl

). Upon the surface with this boundary it is

possible to make another couplet of cuts, (-4 3) and (A t ),
related to one

another as are (J,) and (A3 ), in such a way that neither (A 2) nor (A t)

intersects (A t ) or (-4 3 ), while the surface does not break up into separate

pieces. And upon the surface as now cut, with two continuous non-inter-

secting boundary lines (A^A^A,-1

), (A^A^A^Ar1

), every integral

H(x, y)dx,

of the first or second kind, can be shewn to be single-valued. The value of

this integral at any point on the left side of (Aj) will exceed its value at the

opposite point on the right side of (A^ by a quantity fl, which is the same

all along (.4,); similarly its value at any point of the left side of (A 3) exceeds

its value at the opposite point on the right side of (A 3) by a constant fV;
and there are similar constants fi2 , O,' for (A,) and (A 4).

These four

constants are called the periods of the integral, and the general value of

which the integral is capable on the original surface, before this is cut, can be

shewn to be of the form

I

*

H(x, y) dx
J a

where h lt h?, A,', h,' are integers.

The statement for an integral with logarithmic infinities is analogous to

the foregoing, but there is the modification that a closed path about a place

where the expansion of the integral involves the logarithmic term Clogt
leads to an increment ZiriC in the value of the integral ;

in the simplest

case that arises, to which in fact all others can be reduced, where there are

two logarithmic places with equal and opposite values of C, the integral is

rendered single-valued if, in addition to the cuts already made, a cut, not

intersecting these, be made between the two logarithmic places.

2. That, as remarked above, the sum of the logarithmic coefficients C,

for a given integral, at all the places where they exist, is zero, may be seen in

either of the two following ways.

12
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First, if in the neighbourhood of a place x = a, y = b, of logarithmic

infinity for the particular integral under consideration, both x and y be

expressed in terms of the parameter t belonging to the place, the logarithmic

coefficient C is clearly the coefficient of tr1 in the expansion, in terms

of t, of

there may, or may not, be a term in t~l in the expansion of the same ex-

pression for the neighbourhood of the conjugate place (a, b); in any case

where a is finite, the sum of the logarithmic coefficients for these two places,

or the unique logarithmic coefficient if they are the same (branch) place, is

at once seen to be the coefficient of (x a)~' in the function

H(x, y) + H(x, -y\
which is rational in x only ; similarly if (a, b) be at infinity, the sum of the

coefficients C for the two places a = oo
,
or the one coefficient when this is

a branch place, is the negative of the coefficient of x~l in the same rational

function of x
; by expressing this rational function of x in partial fractions it

is at once evident thence that the sum of all existing coefficients G, for places

where H(x, y)dx/dt has a term in t~l

,
is zero.

This result follows also from the fact that the closed curves

GM^r'^r1

). (A^A^Ar1

)

form a complete boundary of the surface
;
this shews that the sum of the

values of the integral I H (x, y) dx, taken once positively round these

curves, is equal to the sum of the values of this integral taken, along small

closed curves, once round every place of logarithmic infinity, the value of the

integral round any other point being zero. The contribution from such

a logarithmic infinity is Ziri times the logarithmic coefficient
;
on the other

hand, the value of the integral | H(x, y) dx round the perimeteter

is zero, the contribution, for instance, from (.4,) and (-4r') being flJdx, taken

once positively along (J,), namely zero, since x has the same value at the two

sides of (A,).

3. The most general form of an integral of the first kind can be shewn
to be

(A+Bx)dx- a + Buf- a
, say,

y

where A and B are arbitrary constants. If we put
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where (x, y), (a^, gt) are two arbitrary finite places, of which one or both may
be branch places, it can be verified that

is an integral of the third kind with logarithmic coefficients + 1 and - 1

respectively at the two arbitrary finite places (#,, ?/,), (xz , y2), having no
infinities but these. The case where one or both of (#,, y,), (#2 , y2) is at

infinity can be derived from this by a transformation of the form x = (x'c)~
l

,

with the appropriate corresponding change for y. The function

wherein C, and C 2 are constants, has the same infinities as P*'
"

; denoting
the periods of P^ at (A,), (A 3), (A,), (A,) respectively by ft,', fi/, H2 ,

fl2',

and the periods of uf-
a

, uf> ", similarly, by

(A,) (A,) (A t) (A t}

,

*"
0),2 0)n

the periods of this new integral of the third kind, at (A^, (AJ), will be

H! + C
l ton + CjWj, ,

f!2 + OjWia + CjOJa ;

it will presently be shewn that the determinant (auia^ < 2ia>12 is not zero
;

thus the constants (7U (72 can be chosen so that these two periods are zero;
when this is done the integral of the third kind will be denoted by

II''
"

x
and called the normal elementary integral of the third kind, the

former epithet referring to the fact that it has vanishing periods at (A t ) and

(A,), the latter to the fact that it has only two logarithmic infinities (#,),(a;2),

of respective coefficients 1 and 1.

4 To obtain the theorem just quoted in regard to the determinant

a>u &>2j
-

&>..,,&>,,, and at the same time some other results necessary for our

purpose, let U = fH(x,y)dx, V = fK(x, y)dx, be any two algebraic integrals,

the functions H (x, y), K (x, y) being rational in x and y, and consider

the contour integral JUdV, taken in succession along the closed curves

(A^AiA^Ar 1

), (AjAtA^Ar1

'); denoting the periods of U for (A,), (A,),

(A,), (A^ respectively by ft,, fl 2 ,
fls ,

O4 ,
and by F,, F2 ,

F3 ,
Vt the corre-

sponding periods of V, the contribution to the integral from (-4,) and (A^1

)

is f(l
r+ fi

t U)dV, extended once along (A t) only, from the right side to

the left side of (^4 3), namely is flj F3 ;
so the contribution from (A s) and

(A 3~*) is fl3/dV, extended once along (A 3) only, from the left side to the right
side of (.4,), namely is fls F, ;

the sum of the two contour integrals is thus
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the formation of this quantity from the scheme of periods

V
V

fi,

F, V, Fs F4

is evident, and the remark assists the memory in writing it down.

Let now in particular, U be an integral of the first kind, and V be an

elementary integral of the third kind with logarithmic infinities of coefficients

respectively 1 and 1 at (z,) and (z3 ) ;
then the previously described contour

integral is equal to the counterclockwise integral along a closed curve con-

taining the cut previously explained which goes from (z,) to (zt) ;
near (z,),

however, UdV is of the form U , where t is the parameter for the neigh-

bourhood of (z^, and a counterclockwise integration round (z^) gives

where Uz> is the value of U at (.?,) ;
so the integration round (z,,) gives

2mUs'
;
the two sides of the cut, between (,) and (z%), taken together, give

no contribution. We thus have, in this case,

n,F3
- n, F, + a vt

- n4 F, = 2 ( u*>
-

u**).

In a precisely similar way, if U be also an elementary integral of the

third kind with logarithmic coefficients 1 and 1 respectively at (xt ) and (x,),

we infer, since UdV-d(UV) VdU, that the right side must be increased

by -27n'(F
a:'-

F*"); while if [/"and Fbe both integrals of the first kind, the

right side is to be replaced by zero.

We may apply a similar procedure when U and F are the real and

imaginary parts of an algebraic integral U + iV, of periods ft, + iVlt etc.
;
in

case the integral U+iV is of the first kind, say equal to ,,* + n2M/'",

the contour integral I UdV, or I U -j- dt, or I f U ^d^ + U -x dt)
j

, where

t f + it), is equal to a sum of area integrals of the form

each one of these is necessarily positive, and has a lower limiting value

greater than zero, since U and F and their differential coefficients are con-

tinuous functions of f and rj, and U and F are not constant over any two-

dimensional portion of the surface
;
there are as many of these integrals as is

necessary to cover the whole surface (and it can be shewn that this number
is finite). In this case we infer therefore that

is positive, and not indefinitely near to zero.

From these general considerations various results follow:

(1) The determinant tanta.^
-

&>, 2 21 is not zero. For then a>21 uf>
a

a>n uf>
a

would be an integral of the first kind having zero periods at (A,) and (A t) ;
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calling this U + iV, as in the last of the general considerations just given, we
should have fij = F, = 0, fi2

= F2
= 0, contrary to the necessarily positive

character of the expression n,F3
- f^F, + fi2F4

- ft4
F

2 . And by the same

proof it follows that no function, other than a constant, exists, which is single-

valued on the surface save that its values on the two sides of each of two

non-intersecting curves differ by a quantity constant along the curve, which

is expressible about every point of the surface by a series of positive integral

powers of the parameter.

(2) Hence we can form two integrals of the first kind

Vf>
a =

-^(vvUf'O
- a>12 ,), /-=-(- WaV'" + </-),

where A = can (a.a (U 12 <u 21 ,

which have a period scheme

(A,) (A,) (A 3) (A 4)

v x,a 1 T.I

1 T21

then the theorem that the integral fv,dv., round (A^^A^A,-1

) and

(A tA 4A~ lAfl

) gives zero, leads to

1 . T3l
- TU . + . T22

- T12 . 1 = 0,

or r12
= T21 . These integrals are called the normal integrals of the first kind,

being unique, save for additive constants, when the period-loops are once

drawn, as follows from the concluding remark of (1).

(3) If nlt n^ be real quantities, and n^)f<
a + n^vf'* = U+ iV, the con-

sideration of the contour integral $UdV gives, if rri
= pr> + iarn ,

the result

so that the real part of the quadratic form

* (Tll 7i l

2 + 2TiS Jl| Mo + TjoWj*)

is necessarily negative and not indefinitely near to zero.

(4) The consideration of the contour integral

for which, respectively,

vV, V, V* VJ \<J V
3
Vt/

gives F3
= Ziri (vl

x" a
#,*") = ZTriv**'*1

,

so that the periods of the elementary normal integral Ilx | TI
at (A a) and

(A t) are respectively 27rz ,*'* and
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(5) The consideration of the contour integral

for which H, = Oa
= F, = F2

= 0, gives

= .

(6) We have already remarked that there is no other integral of the

first kind than vf-
a
having periods 1, at (.4,), (A^) ;

it follows similarly

that there is no other normal elementary integral of the third kind than

n*^. Two integrals of the third kind, having the same two infinities and

the same multipliers at these, have a difference which is expressible about

every point by a series of positive integral powers of the parameter for the

point ;
this difference will have periods at (A,), (A,), (A 3 ), (A 4) ; denoting

the integrals of the third kind by P and P1

,
and the periods of the difference

F - P at (4,) and (A t) by C, and Ct ,
the function

has periods only at (A 3) and (A t). Hence, by the remark made at the con-

clusion of (1), this function is a constant.

5. From an elementary integral of the third kind we can form an

algebraic integral whose expansion in terms of the parameter, in the neigh-

bourhood of any place of the surface, contains only positive integral powers,

there being exception at only one place, for which the expansion contains the

single term t~l

; and the integral can be taken so that this pole is at an

arbitrary place. Such an integral is called an elementary integral of the

second kind. Consider for instance

r

=
J a

let (z) be an arbitrary finite place, and t the parameter for the neighbourhood
of (z) ;

let (x^ be in the neighbourhood of (z) ;
let (x, #,) be expressed in

terms of t, and let (x, #,)t denote the coefficient of t in the expression ;
this

will be a function of (x), and of (z) ;
the integral

(x, #,)( dx
i

is then a function of (x), infinite only when (x) approaches z, and then like

t~ l
. This statement can easily be verified from the form

(x, #,) = y+y
1y (-#,)
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For, when (z) is not a branch place, we find, putting x, = z +t and

y,
= s + s't + $s"P+ ...

,

, y + s + s' (x z)

and putting herein x = z + tx , y=s + s'tx + ...
,
we find

(x, x,\ = . + A + Ajt,. + ...
;

<>x

while, when (z) is a branch place, putting xl
= z + P and yl

= s't + % s'"t? + ...

we have

and putting herein x = z + tx*, y = s'tx + %s'"tx
i + ..., we obtain

^. = 1 R s

wtj tj

There exists, therefore, a function of the form

(, x
t\dx + C^w,*' + (72 M./'

a
,

where C,, (73 are suitable constants, which is infinite at the arbitrary finite

place (z), like t~ l

,
and not elsewhere, which has vanishing periods at the

period-loops (,4i), (A,). This function is called the normal elementary

integral of the second kind, and will be denoted here by F*'". There exists

such a function also when (z) is at infinity, whose form can be obtained by
making, in the integral of the third kind used above, a previous transforma-

tion of the form x = (x' z)~
l

. The integral can be obtained by differentia-

tion from the integral 11*^. For when (x) and (xj are both in the

neighbourhood of (z), if x
J
= z+tXl ,

x = z + tx or x1
= z + tx -, x = z + tx", the

latter when (z) is a branch place, we can put

n*,',"*,
= lg (tx

-
tx,) + A + A l (tx t

Xl)+ ...
;

now let this expression be differentiated in regard to tX) , and, afterwards, put

<z,

=
;

let this operation be denoted by Dz H^ Xj ;
we have then

and this is the integral denoted by F*'"; the formula 0^'^= BJ** shews

that it does not depend upon (#2 ).
The periods of Fz

'

at the loops (.4i),

(Aj, (A 3),(A t ) are 0, 0, 2Tri(v,
x" j;

'), 2m (V'^)t, where (v^-^t denotes the

coefficient of t in the expansion of vf"** in terms of the parameter at (z),

when (x,) approaches to this place.
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6. Consider now the two integrals

r-^+ 2XX+3X^+ 4X^

It is clear that neither integral is infinite for finite positions of (x);

considering the neighbourhood of x = oo
,
the work depends upon whether

XB is zero or not. When X, is not zero, there are two places at infinity;

the neighbourhood of either of these is represented by a pair of equations
such as

where Vx6 has one of two signs ; by substitution we find

the terms not written involving positive integral powers of t. Thus each

integral is algebraically, but not logarithmically, infinite at infinity, in each

sheet, the first integral to the second order, and the second integral to the

first order, and it is not possible to find a linear aggregate pl
Ll

x
>
a

-t- p2L3
x' a

which does not become infinite. When X,,
= 0, and Xs

= 4, we find, by substi-

tuting

x = t-
a

-, jr'
=

$t* [I + JX4 <
2 4 ... 4-

that

so that the integrals are again algebraically, but not logarithmically, infinite,

to different orders, at the single place at infinity.

It can now be verified, by differentiation in regard to x and z, that

where

+*<*. f=f(x), *-/(*),

*.-P- ,,*>-[*i
*

. .-
2y } a y

'

J a y
and

F(x, z)
= 2X + \, (a; + z) + xz [2X, + X3 (a; + z)] + x>z* [2X4 + X, (x + z)] + 2X a?z*.

We shall put
,.. [* F- F(x,z)+2ys dx dz

^*.c }.}, 4(-) y <
'

then the form of the left side in the identity shews that -R*'*, as a function

of (a;), is an elementary integral of the third kind with logarithmic infinities
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I

of coefficients 1 and 1 respectively at (z) and (c) ;
and its own form shews

that

x, a '

we have seen however ( 4), that two elementary integrals of the third kind,

having the same logarithmic infinities and multipliers, differ by a linear

aggregate of integrals of the first kind
;

there must therefore exist an

equation

ss, c

wherein the constant coefficients a,], 12 , ai , 0.22 are subject to the relation

i2
= a ; this leads to

,a + 2 ^ar, g u,'-
e ur

x
-
a = II*'" -

\" [(z, x)
-

(z, a)] dz.
Jo

Now let (z) be in the neighbourhood of a particular place (z ),
and express

z and s in terms of the parameter of this place, and equate coefficients of the

first power of this parameter; from uf>
e we obtain an expression which is

the limit of - -=- when t = 0; this we denote by p, (za); from u' c we obtain
8 UA/

*'" '"
the limit of - ^ which we denote by fj^(z ); from IT*'" we obtain F^'"; from

I [(z, x) (z, a)] dz we obtain the limit for = of [(z, x) (z, a)] -jj,
which

. < dt

is a certain rational function of (x) ; replacing now again (z ) by (z), we may
write the resulting equation

H, (z) ,*. +^ (z) Lf>* + 2S2,, 8 Ms (z) u*~" = T/. -
((z, x)

-
(z, a)]

~
.

7. Before passing on it seems necessary to make a few introductory
remarks relative to a notation which will be found of great use in the

sequel.

A rectangular arrangement of mn elements, in m rows and n columns,

may be added to, or subtracted from, another such array or matrix, of the

same number of rows and columns, the meaning being that the (r, s)th

element of the resulting array, namely the element in the r-th row and s-th

column, is the sum, or difference, in the respective cases, of the corresponding
elements a

T<t ,
a'r,, of the two original arrays; and, the whole matrix being

denoted by a, and N being any number, the notation Na may be used for the

matrix of m rows and n columns whose general element is Nar>s
. Or the

matrix of type (m, n), that is, of m rows and n columns, with general element

a
r<i , may be multiplied into another matrix of type (n, p), of general
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element b
t>t ,

the meaning being that the result is a matrix of type (m, p)

whose general element c
r>(

is given by

Cr,t= 2 a
ri ,b,tt ,

=i

namely given by combining the r-th row of the first matrix, a, with the t-th

column of the second matrix, b. The result may be written c = ab; this is

by no means the same as c = ba. In a somewhat similar way, if x denote the

set of n quantities xlt ...,xn ,
we may denote by ax the set of m quantities

such as

ar,i,+ ... + ar>n xn , (r = ~i, ...,m);

then, if y denote a set of m quantities ylt ...,ym ,
we may denote by axy the

single quantity

r=l

which is the same as
m n

2 2 ar s xe yr .

r=l t=l

It is usual to call the matrix of type (n, m), obtained by changing the rows,

of the matrix a, into columns, the transposed matrix of a
;
we shall denote it

by a
;

it is manifest that axy = ayx. If z, z' each denote a set of m quantities,

zlt ...,zm and zt ', . . . zm', we often denote by zz, or z'z, the single quantity

z^i + ... + z,,,zm';
in particular if a, a be two matrices, both of type (m, n),

we may have z = ax, z = ax', where x, x each denote a set of n quantities ;

then zz' = ax . z = az'x = aa'x'x; and z'z = a'x'z = a'zx' = a'axx; in the

form ax . a'x' = aa'x'x = a'axx, this result occurs very often in the sequel ;

it is in accordance with the easily verified fact that the transposed of the

matrix ab is ba, obtained by reversing the order of the matrices and

transposing both; the notation aa'x'x, meaning (aa'x')x, is not found by

experience liable to confusion with (aa')(x'x), which, if used, would mean the

matrix obtained by multiplying every element of the matrix oa' by the single

quantity x'x. Very often the matrices used are square, of type (n, ) ;
for

such, the determinant of the
product ab, usually written \ab\, is equal to the

product of the individual determinants a
, |6|; of such square matrices, the

simplest is that having every element zero save those in the diagonal, all

these being unities; this, so-called unit matrix, when multiplied into, or by,

any other matrix of the same number of rows and columns, say a, gives a as

result
;
the unit matrix is, thus, often denoted simply by 1

;
and the matrix

of which every element is zero save those in the diagonal, all of which are

equal to a number N, is denoted simply by N. A square matrix a, of

non-vanishing determinant, has an inverse, denoted by a~', with the

properties aa~1 = a~1 a = E, where E is the unit matrix of the proper order;

in fact, if ar_,
be the (?, s)th element of a, and A r

,
t the minor determinant
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of the (r, s)th element of the determinant, |a , of a, it is easy to prove that

the (r, s)th element of a~l
is A

StT +\a , namely is the minor of the (s, r)th

element of |a , divided by |a .

8. Returning now to our theory, denote the periods of u r
x

< a
,
Lr

x
<
a at

,), (A,), (A 3), (A,), as follows:

(A,) (A,) (A 3) (A t)

the normal elementary integrals of the first kind v?'
a

, vf>
a are necessarily

linear functions of Wi
z>0

,
u> a

;
let the expressions be given by

-ritt x.a _ /, ,,, x,a i /> *, x.a TT'H\ x.a _ /, ., x,a i /. ... x.a-
"Jrivl

'

ii<*i
' T "12"2 > TtiVz

' n.a Ui
'

-f- n f,u.,
<

,

then, comparing periods at (.Aj), (A,) we have the four equations given by

f-rri \ = /

\Qiri) \

which is the same as

rri /I ON = 2 fhn h13\ /can

\0 l) {ft* hj Usi

and is expressed by
tri = *2heo.

The product of the determinants |A|, |o>|
is thus, numerically, (Tr/2)

2
,
and

neither of these determinants is zero.

Similarly, comparing periods at (A,), (A t), and denoting by T the

symmetrical matrix of the periods of vf>
a

, v?>* at (j4 3), (A 4 ),
we have four

equations all expressed by
TTIT = 2/iO)';

and as the determinant of to is not zero we may write

h = Tria)~l

,
r = &)~' a>''.

The periods of Fz
z ' a at (AJ, (A 2) are both zero; at (A 3), (A 4), they are, as

has been remarked, 2-7M times the values, at (z), of the integrands of v^'" and

vf'
a

,
that is, in a notation explained above ( 6), respectively

2 [*/*,(*) + */*,(*)], 2 [A^Ai, (*) + */*,(*)];

hence the equation, which we previously had,

gives, by taking the periods at (A t) and (A 1+i),

-
2^t, (z) 77,,-

- 2^, (^)% + 422ar,/4, (^r) WH =
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from these, since there exists no equation A l^(z) + A^ii^(z) = 0, in which

Aj, A 2 are quantities independent of (z), we derive

7;ri
= 2 (o,<ii + a^co*),

= 2 (a4I 6>ii + a &>).

since art
= a.

;
and the four equations contained in this are capable of the

form

I ^?12\
= 2 /Ctij (fi2\ /ft)jl ft)l-\ ,

j U a / Vft) o> I

which we write

17
= 2aa>

;

from the same identities we also, similarly, derive four equations of the form

jj'gi
= 2 (a,,a>'u- + ,') -

I',;

which we write

77'
= 2a&>' h,

where h is the matrix obtained from h by transposition of rows and columns.

The equations

m = 2hco, mr =
2/(&>', 77

= 2ao>, 77'
= 2a&>' h

are sixteen relations connecting the quantities ;
on elimination of the 3 + 3 + 4

quantities in the matrices r, a and h, they lead to six relations connecting the

periods to, &>', 77, T/', as we proceed to shew. The equations give

&)' = ^Trih~
lr = cor,

and hence

ft) ft) = ft)T&) = 0)T&) = ft)ft)
,

which is equivalent to one equation ;
also they give

and thus

17'ft) 770")'
= 2a (ft)'a> coco') hco = coh = ^m,

which is equivalent to four equations ;
and they give, thence,

torj' co'rj
=

IfTri,

and so

7777'
= 2o>; = 2a (co'rj ^ffi)

=
(?/ + h) rj ma =

rj'ij,

because

^77
= Zhcaa = ma = ma,

and this equation
7777 77 77

= 0,

is equivalent to one relation.

These relations can be written together, as follows : let

A = /< a)'

denote the matrix of four rows and columns, of which the elements are those of

the four matrices to, &>', 77, 77' ;
if a, b, c, d, a, b', c, d' momentarily denote any
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matrices each of two rows and columns, it is at once evident on consideration

that the product

fa
b\ /a' b'\

,

(c d) \c' d'J

of two matrices each of type (4, 4), may be written as

/oaf + be, ab' + bd'\
,

\ca' + dc', cb' + dd'J

where aa denotes the product of two matrices, and is a matrix of type (2, 2),

of which the elements are to be separately added each to the corresponding
element of be, to give the matrix act' + be' of type (2, 2) ;

this form is the

same as if a, b, c, d were single quantities. Now let

a
be the matrix of type (4, 4), of which every element is zero, save the elements

(1, 3) and (2, 4), each of which is 1, and the elements (3, 1), (4, 2), each of

which is 1, so that, as is easily seen,

consider the product

AetA = fo> u>'\ /O - 1\ oj fj\
= /<o' u>\ / r/\

U if) (l (V 1.5' f,') U' - J U' r}')

= /(o'io toco' co' rj <aJj'\ ',

\ fj Ct) t)Q) 75 ft fJIJ /

by the relations established above we thus have

and this includes all the relations connecting the periods. It shews too that

the determinant of the matrix A is a square root of (Tr/2)
4

,
and not zero.

Taking then the inverse of both sides we have

and hence Ae^ = |irie4 ,

or

/eu ^A/O IN /ft) &>'\
,
= / T; tij \ fta a>'\ = / rjw ear) rjca <orf \ ,

so that the relations among the periods may also be written

rj(o
=

tar), rio) on)' \7ri, r)'u>'
=

<o'r)'',

these are of different form from those originally obtained, but may also be

deduced directly from the equations

h<a
, ij

= 2a(a, rj
= 2aco' li.
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Let pjypi, qi, <?a
be any four variables; write

(Pi, P,, ft, ft) = (< V \ (Pi, ft, ft, ft),

(a
1

97
namely

+ <B2J ft + ?iift + 17,, ft,

Qi = w'uft + w'sift + Vuft + Vaft,

ft = 0>']2^i + W'fflpa + 1/Mft + Vsift,

so that PL PU, ft, ft are the periods of the integral

Kftu,* +^w2
*. -

},,*.
-

qJLf> ),

respectively at (-4,), (A), (-^s), (^4) ;
then if P,', P2', Q/, Q/ be the same

linear functions of pt ', pz ', q t ', q?',
the equation

AetA =
\irie4

gives

j4e4Z(p,,p2) ?!, <72)(p,',p2', 2i', ?J')
= -i 7"'e4(/'j. P^> ?i. ft) (Pi' K> ?/ ft'),

or

e^Cp,,^, g,, q3).A(p1',p^ > q^, q.,')= -^irie^p,, p,, q,, ft)(/>i'> />*' 9i'. ft'),

that is

e< (A, P2> ft, Q.) (P,', P.', ft', Q,')
= - ie4(p., ft, ft, ft) (ft', ft', ft', ft'),

or

(- Q,,
-

ft , PI, P.) (P/, P.', Qi, ft') = -
1 7"' (- ft ,

~
ft, P, , ft) (ft', ft', ft', ft'),

or Aft' - p/ft + P2Q2

' - P2'& = -
i ( jol9;

- Xft + ftft'
-

ft'ft) ;

and conversely the relations among the periods are those which are necessary

in order that the linear substitutions

(Pi, P,, ft, Q.) = - (ft, ft. ?i, ft), (P/, P', ft', &'> = -^ (ft', ft', ft', ft')

should multiply the form ^ift'
-

ft'ft + ftft'
-

ft'ft by
-

Jirt', for all values

of the variables pl , ..., q$.

Finally, in view of subsequent work, it is desirable to notice in more

detail the relations affecting o> and u>' only. The relation <o'ea = wo)' is

equivalent with

(a, w') 64 /w \ = (a), o>') /O
- 1\ /w \ = (ft)',

-
to) /w \ = o)'o) - ft)ft)' = 0./w \ = (a), o>') /O

- 1\ /w

Uv u oJw
Let now ft>

,
&>' denote the matrices whose elements are the conjugate

complexes of those of o> and &>', and let z = (^, 2) be a set of two arbitrary

quantities, and z the set of their conjugate complexes ; put then

=(!, S.))
= 5> =

(&>!]<! + ft>21<2> <B12^1 + 4hA|X

so that the quantities s are the periods at (AJ, (A*) of the integral
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and let s be the two conjugate complexes of st and s2 ; further, let r = p + icr,

so that p, a are two symmetrical matrices, each of type (2, 2), of entirely

real elements; then if s,=p 1 +iql , s^^p^ + iq^, or say s=p + iq, where

PI, Pi, 1\, ^2 are real, we have, since <O'=O>T,

(to, a>) 64 /e \ tnt
=

(a)', w) /&J \
t,,t
=

(a>'w &)o> ') W =
(<BTOJO &>TOW,,) t^t

W/ \W/
= w (T

- TO) o) ^ = 2io-a> < . otf = 2icrs s = 2r'tr ( p iq) (p + iq)

= 1i (<rp
-

ia-q) ( p + iq)

= 2i (op- ia-qp + iapq + <r(f)
= 2i (<rp- ia-pq + iapq + aq")

= 2ia- (p- + q-) ;

we know that ap* > 0, aq
2 > for all real sets plt p% and

<?,, q2 ,
whose elements

are not zero; hence we have

- i (o>, w') 64 /&) N t,,t > 0,

Uv
where t denotes a set of two arbitrary quantities not both zero

;
and we have

proved also that

(<o, u>') et /ia \ = 0.

9. We consider now certain properties of integral functions of two

variables.

(a) If for the continuum of values of two complex variables ,, , which

is expressed by the conditions

where r,, Rlt r2 ,
JS2 are real positive quantities, there exists a function

F(%i> fa); developable about every point ,
= Oj, f2

= of this continuum as

a power series in , a,, ,
a2 , of presumably limited range of convergence,

the function being single-valued in the continuum, then there exists a series

of positive and negative powers

2 ;!
,

converging for, and representing the value of the function in the whole

continuum. This can be proved, in the manner of Laurent's Theorem, by

considering the repeated integral

taken, for T,, clockwise round the circle JT, |

= r, and counterclockwise round

the circle
| T,

= Rlt and, for r2 ,
clockwise round

j

r2 =?,, and counterclock-

wise round
|
T,

j

= R,. As in that case we have

P$>"
B. 2
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where, now, the integration for TJ is counterclockwise round a single circle

concentric with and lying anywhere between
(
T,

j

= i\ and T, |=Un

similarly for r2 .

(6) If an integral function of v,, va , say Q(vlt v3), satisfy the conditions

that is, have the period unity for each argument independently of the other,

then the function can be expressed by a series

2 1 ^.a.e^'Vi
+
'VJ,

-OO-QO

converging uniformly and absolutely for all finite values of
,
and 2 . For if

we put

the function

Q (,, v,)
=

<2 log fc,
-

log ft ,
= JXft, ft), say,

-

is a single-valued function of ft, ft, developable about every point for which

ft is not zero or infinite, and ft not zero or infinite
;
we can thus apply the

preceding result (a), and obtain

where, putting v1
= x1 +iyl ,

V1 = xt + iy3t the integration in regard to v, is,

for an arbitrary constant value of ylt in regard to xl from #, = to xl
= 1

;

and similarly for 2 ;
thus we may write

and if, for arbitrarily chosen constant values of yl and y2 ,
the function

Q(i>it ^a) remains in absolute value less than a real positive quantity M, we

have

(c) There can exist no equality of the form

2 A, ^(n^ + n,^) =
"1 '2 1 2

,= -oo, n.= -oo n, = -oo, n,= -<*>

in which the series converge for all finite values of the variables t>,, v2 ;
or

there would exist an equation

2 2 e2ri(ii + !!f2) =
-00-00 ">'"S

in which the series converges uniformly for all finite values of #,, v3 . But

multiplying this equation by
- a**(1W+lW), an(j integrating in regard to vl

from to 1, and in regard to w, from to 1, we could then infer (7
Mi> Bj

= 0.
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Hence for an integral function Q(v,, with the properties

Q (, + !, w,)
= Q("i> vi)

= Q(vl , tfc+1)

there can exist no pair of constants o>1( o>2 such that

Q(VI + O>I, tt> + 2)
=

6(*>i, *>2),

or even a pair such that

where (7 is a constant
; for, taking the latter, which includes the former, this

would give

- 22.4 e
2*' (">" + "*WJ e

2rl ("i"1 +"^ = 224 e
2ir '

(
"

lll > +V2>

(7
Bi "2 "i > "a

and hence e
2"' ("i"!-1-"^) =

(7,

for all values of w, ,
7i2 .

There can however exist a pair of constants o>i, a>2 leading to an equation
of the form

Q (, + oh, , + )
= Ce^*"*, Q (Vl , ,),

where (7, /*,, /i2 are constants, and, indeed, simultaneously, another pair &>,', 6>2
'

leading to an equation

Q (v, + /, t 2+O = C'ft ff
i + "'* Q (, , ,),

where (/', /,', /^' are also constants. This will appear abundantly in the

sequel : in order to be as brief as is consistent with our immediate object we
shall proceed at once to the following proposition, leaving till subsequently
the verification that this is the most general theorem that need be con-

sidered for integral functions.

(d) Let d,, ds , be two positive integers, of which d2 is a multiple of rf, ;

let a be a symmetrical matrix of two rows and columns such that the real

part of the quadratic form iav? is necessarily negative, and not zero, for all

real values of the elements nlt nlt of n, other than both zero; let r be

a positive integer divisible by rf2 ,
and therefore by d,; let $(w), or <f>(wlt w2),

be an integral function of the variables w,, w2 ,
with the properties (wherein

<*n> ""12
= OBI ffz2 are the elements of the matrix cr)

^
\

l +
cT

' Wi
}
=
4> (Wl> w*)

~ $
(
W: ' w* + J) '

+ (w, + a, w2 + ff22)
= - 2"v^ + i ff >

</, (w, ,
wt) ;

it can then be proved by induction that if TO,, m.it m,', m,2
'

be any, positive or

negative, integers,

v 1 + T + mi
'

a'"

22
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where
H

while conversely this last equation includes the previous four. By employing
the notation of matrices we can put this definition-equation into a form in

which it is much more easily grasped ; denoting by d the diagonal matrix

\(\ ft '
m or

/d,"
1 \ m + / <r,.\ m'

( drl
) U, rj

are d^'mi + OnWi,' + o-12?/ and d^m^ + OnWii' +

thus the function on the left side of the definition-equation may be denoted

by (w + d~lm + am') ;
also

H = m'w + ^am'* = m'w + \im! . am' = m'(w + $am') ;

the definition-equation is thus

<f> (w + d-*m + am') = e
~ ^'""'(^ + *<"') ^ (w).

Since now <f>(w) has the periods d{~\ d^~
l for the arguments w,, w

separately, it follows, from (6) above, that we may write

t=-00

where ^i stands for Atlttt and Mw stands for kl (dw\ + k^dw).^ that is for

kldlwl + ^2d2w2 ,
and the summation is in regard to the integers i,, &j, each

from oo to +00 independently of the other. When we put for w the

values w + d~'m + am', the expression kdiv becomes kdw + km + kdam, so

that, since km = A^m, + &2m2 is an integer, the defining equation gives

-- 27T <rm') y ^ g
2irikdw _ ^ ^ ^

k k

now denote dw by #, so that x, = d1wi and o;2 =rf2m2 ; further let

h = k - rd~'m,

so that /i is a set of two integers, rd~l

being a diagonal matrix of two integers

rdr1
, t'd-T

1

;
then the whole exponent of the general term on the left is

Triram'3 + Sinkx ^jrird~l

m'x, = - jriram'2 + Smlix,

and the equation is

2

S Ake
2rihx = 2

h k

1

'

' d '

where, on the left, the k in the suffix of A t stands for h + rd~lm'. To

every integer pair k corresponds, by h = k rd~l

m', a definite integer pair h,

and conversely ;
we may thus on the right replace k by h throughout ;

then

comparing coefficients of e^
rl>>x on the two sides, we have

A A -irinrm'5 + 2iri7i . flam' .A
]i + r,!-ini'

= A he
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as h . dam = dcrm'h adlnn = am . dh,

this is the same as

=

where H = Trira- (m + - dh }
---

V r I r

and this holds for arbitrary integer pairs h and m. Now any pair of integers

(HI, MS) can be uniquely written in the form (A: + rd,"
1
??*/, h2 + rd^m*') by

choosing the integers m/, m/ suitably, with the condition Q^ft1 <rd1

~ 1

,

CO

5 Aj< rdi~
l

;
the terms of the doubly infinite series S An &

i*t"dw can then
71= -at)

be arranged in a finite number of sets according to the appropriate values of

A! and h,,; namely, we have

cc

2 A Jl-rindw _ v v ,1 -Sir/^ + rd"''). die .

-a.,,6 Z 2, J\. n e
,

-oo A m'

and

(h + rd-'m) .dw=d(lt+ rdrl

m') w = r (m + - dh\ w = rw (in + - dh}
;

thus, from (i), above,

1 A ne^indw = ZA he-^ a(dh? 2 e
2"

on h m'= oo

we introduce now the notation

T;

where v,
=

(vt , v,), denotes two independent variables, T is a symmetrical
matrix of type (2, 2), q is a row of any two constants, as is also q, and X
stands for two integers, each of which independently of the other takes all

integer values from oo to + oo
;

it will be proved that if, when xl ,
x2 are any

two real quantities, the quadratic ira? has its real part essentially negative
and not zero, this expression represents an integral function of vlt v.2 ,

and is

uniformly and absolutely converging; in terms of such functions, the integral

function <f>(w) is now shewn to be expressible in the form

*(,) = 2Wn0, r ;*"'*),

where /*,, h., are limited only by Q^hl <rd{~
1

, 05/i2 <rd2

~ 1

,
so that the

number of terms on the right is r'd^d^'
1

,
the unknown constant Bh replacing

(e) As our defining equation was hypothetical it is necessary to shew

that the expression H(D, T;
J represents a function. Consider first the
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case when q and q' consist of zeros, namely the expression

,= 00 i= 00

wherein v,, t>2 are the variables, and TH.TJJ, T& are any constants subject to

the condition that if TV, ,
= pr

,
, + i<rr, s the quadratic form

is necessarily positive and greater than zero for all real values of n,, n.^ other

than the single pair n,=0, n,2
= (). Writing KftS for ir<rr<s and ar +ibr for

2?nv, the modulus of the general term of the series is e~a, where

now let /t be any real fixed positive quantity greater than unity; we have

p

the series of moduli of the terms of % (v, T) will therefore converge if the

series whose general term is (1 + H/p)'* converges; but when one or both of
/ T7\

71,, Tivj is large, H has the sign of
i/c,

and is positive, and the ratio ( 1 +
)

: ^

approaches to the constant limit fi~
l

;
the series of moduli will therefore

converge if the series whose general term is ^r"'*, or

converges, which is known to be the case when /i > 1. The series for (v, r)

thus converges absolutely for any finite values of vt and t>2 , and, i/r being

independent of v
l
and v2 , it converges uniformly over any finite range of

values of these variables. It is thus capable of being replaced by a power
series in these, converging for all finite values, and represents an integral

function.

This function has certain properties which are fundamental, following at

once from the form of it. Denoting it by (v), or 0( 1( vt), we have

(a) (t>, + 1, O = H (v,, v, + 1) = H (,, ,),

as is evident because the addition of STTIJIJ or 2m 2 to the exponent of any
term does not alter the value of that term.

</9) H (t, + r,,, v, + r21 )
= ,-**< (.+*'.,) e (i, tO ;

for if ^(*) denote e
2
""", the left side is

2# (wn + rn2

n

while the single term here written is

E[v, (, + 1) + ,., + ^T.^M, + I)
2 + T12 (, + 1) i, 4-

of which the second factor is independent of n.,, ns ,
and the first is the general
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term of (v), with the unessential change of i^ into n, + 1. The result is

then obvious. We similarly have

(7) From (a) arid ($) we at once deduce by induction that if m,, wi2 ,

m/, mj be any integers

(t>i

where \ = - 27n [t^m/ + a ra.j' + |Tu wii'
3 + T13 ?/t/t./

This result we write in the form

8 (v + m + Tin) = e~ 2"''"' <" +4')
().

(S) More generally, if

?,
=

(?! , ?), ?',
=

(?i', &'). p,
=

(pi, p-i), p',
=

be any four couples of constants, and qq denote g,g,' + 9.,^', etc., we have

(V + q + rq')
= e

~ 2jr'5' ( + 4 T9'>
~ 2 99'

^ ;

?

and fv + q + rq' ; ^ = e
- 2lri

'

( + *T')-arij8'-ariM '

@ (
. P' + 3}

PJ \
'

p +q/'
of which the former is included in the latter.

To verify this, compare the general exponent on the left with the general

exponent on the right ;
we require, dividing by the factor 2-rri,

-rq') (n + p) + $r (n +p'

and this is at once seen to be an identity.

(e) Since the alteration of the summation numbers nlt n2 respectively

into ! + (/, n^+m^', where m^ and w./ are definite integers, does not affect

the sum, we clearly have, if m,, m^ be also integers,

,

P
"'}p + m / n

= E (TO/) IE [v (k + p') + $T (k + /) +p (k + p')],

= e2m/ /
t,

;
P'\

and the second formula of (S) gives

6
(v
+ m + rm ;

P>

]
= e

~ 2*im/ <" + *""'> + 2jri^ ~ "'

(v ;

P>

)
.



'24 Fundamental equations [CHAP, i

In particular

(v,
+ 1, * ; P]

=W
(v

;

)
,

(,,
* + 1

;

)
= e

2*'*'

(.
;

,+ Ttt, . + r* ;

* = e- 2" K + i'J-A
(, ;

\ j}/ V p

() In case the couplets 1q,
=

(2g-,, 2g2), 2<?',
=

(2<7,', 2^3') consist of

integers, we have

e (--,; )
= 2#[- ( + ?') + ^r (n + gO + ?( + ?')].

\ <l I n

and, by writing, as a new summation letter, m = n 2q', or //t,
= n^ 2</i',

7raa
= n2 2^2', this becomes

(- v
;

q
}
= SE [v (m + q') + $r (m + qj + q (m + q')] E [- 2q (m + q')],

s y i n

thus the function (v;
*

), when q, q each consists of half integers, is either

even or odd, being even when 4>qq' is an even integer, and odd when 4qq' is

an odd integer. Putting Zq = x, 2q'
= x, and noting that the addition of

integers to the numbers q, q only multiplies the function by a constant, as in

the first formula of (e), we see that the number of even functions obtainable

by taking q, q' to be half integers is effectively the number of solutions of

x1 x1

'

+ x.,x.,' an even integer in which each of xlt x^, a;,', #,' is zero or unity,

and is thus easily found to be 10
; similarly the number of odd functions is

found by solving x
l x^ + x^x^ = odd integer, and is effectively 6. It can be

shewn without difficulty that 0ft;;
)
can only be an odd or even function

when 2g and 2q' consist of integers.

(i) For many purposes it is convenient to modify the notation as follows.

Let a be any symmetrical matrix of type (2, 2) ;
let h be any matrix of type

(2, 2), of not vanishing determinant
;
let T, as heretofore, be a symmetrical

matrix of type (2, 2) such that the quadratic form irn" has its real part

essentially negative when n,, n, are not both zero; let q, q' be any two

couples of constants; and let (6,, M., be the variables. The series

where H = au? + 2/m (n+ q') + i-jr-r (n + q'f + 2viq (n + q),
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becomes, by putting

iri !
= /(

, , !j + /( 12 u., , TTW.:

or, say, mv = hu,

simply
q / \ q

and so differs essentially from B (v; *J only in the multiplication by an

exponential of a quadratic function of vt and va . Now let <u, <', 17, 7;' be

matrices such that, as before (p. 14),

Tri = 2ha>, 7rir=2ho)', i}
= 2ao), 77'

= 2a<a' A.
;

and, when
/>,
=

(PI, p?), p',
=

(p\, />/)> are any two couples of constants, write

flp
=

2<op + 2<o'p', Hp
=

2r,p + 27/y,

so that np , Hp each consists of two quantities, and we have

Hp =
4aa>/) 4- 4w j/ 2hp 2afip 2hp', hflp =Tri(p + rp),

and also

a(u + flp)
2 - ait

2 =
Zatiflp 4- anp

- = 2aflpu + aflp
* = 2aflp (u + %

= (Hp + 2hp) (u + i np)
= Hp ( + $tlp) + 2hp'u + hp'flp

= Hp (u + inp) + 2hup + hflpp
= Hp (u + $lp) + 2mvp' + iri (p + rp') p'

= Hp (u + $np) + -n-ipp' + 2-Trip' (v + $ rp') ;

put \p(u) to denote the expression

\p (u) = Hp (it + 1np)
-

Trip// ;

then by (8) above we have

where

H =
\,, (n) + 2Triqq + 2iriq' (v + {rq)

-
2Triq' (v + %rq)

-
2-Triq' (p + q)

when m, m' consist of integers we have, as before,

^(u;P'
+ m

'}=e^
m
^(u;\ p +mj \

from this ^
(u
+ flm ;

p
} = e

x <"> + 2riW ~ "l
'

p)

*(*;*\,

in particular when p, p' both consist of zeros,
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and, if m, m consist of integers,

*( + m)

thus we have, for r 1, 2,

u, ., r

where !Tr = 7;,, r (, + i, r) + 2%, r (ut + o>
2| r) +

Kr
=

1l)\ ,
r (Wi + w'l

, r) + Va, r (a+ 'j, r)
-

2?ripr .

7n subsequent applications of theta functions to the Riemann surface we

shall suppose the matrices a and h (and r) to be those arising in connexion with

the algebraic integrals (p. 13).

10. We return now to the Riemann surface, and consider upon it the

function of (x) expressed by
8 (," '"-e,, n/'

m -e.l),

where el , e, are arbitrary constants, and tv"'"
1
, v/-

m are the normal integrals

of the first kind, integrated from an arbitrary place (m) to the variable place

(x). If we dissect the surface by the cuts (.4]), (A.^), (A 3), (A t),
so rendering

the integrals single-valued, the function is a single-valued function of the

position of (*), which never becomes infinite
;

it has the same value at any

point on one side of the cut (.4,) as at the opposite point of the cut, for we

have (#1 + 1, i>2)
=

(DI, wa) ;
and the same is true of the cut (4 2) ;

but the

value of the function at any point on the left side of the cut (A 3) is obtained

from its value at the opposite point on the right side by multiplication

with the factor

e-2(V m
-ei + 4rn)

)

where vf-
m denotes the value of the integral at that point on the right side,

so that v?'
m e1 + TU is the mean of the values, v^ m - e, and vf-

m et + rn ,

taken by vf>
m el at the right and left' sides of (A 3) ;

a similar statement

holds for (A t). The function (w
r ' m

e) is an integral function of t'/
1

,

v/< '", and therefore analytical on the Riemann surface, capable, that is, of

representation about any place of the surface by a series of integral powers of

the parameter for that place, there being no negative powers ; hence, the

number of places (x) where the function vanishes to the first order, if any, or

the sum of the orders with which it vanishes, is given by taking the integral

J_ fd

2-rriJ

round the closed curves (AjA^A^A^1

), (A 3A tAi~lA t

~1

)- Of the former

contour the two sides of (A t ) give no contribution
;
the two sides of (A,) give
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taken once along the positive or left side of (A,), from the left to the

right side of (Aj) ;
this is equal to + 1. Similarly the contribution from

(A^AtA^A^ 1

) is also + 1. There are thus two places (x) where (v
x > m

e)

vanishes to the first order, or one place where it vanishes to the second

order.

An analytic function of two independent variables has manifestly, as

values of the variables for which it vanishes, not a set of' discrete values, but

vanishes for an arbitrary value of one of its variables when the other is suit-

ably chosen to correspond ;
this at least is true, for a function which vanishes

at all, for a suitable range of variation of the one variable which is taken

arbitrarily. Thus, when the two variables are both replaced by functions of

a single third variable, whose elimination establishes a relation between the

two original variables, it may happen that the function vanishes identically

for all values of the single third variable. The previous investigation might
therefore fail for particular values of e^, e2 ;

but it does not fail for all values

of these, in particular not for d = 0, e2 = ;
for then the function reduces to

% (v*> "), which even when (x) = (m) and T,,
=

i, T12
= 0, TW = i, does not vanish,

being equal to

Let then (mj, (m.^) denote the positions of (x) for which (* '") is zero ;

we proceed to shew that, if (x^, (x2) denote the zeros of (* w
e), we have

e, = v2
x""' + 1>

where Mt , Mt , MI, M2

'

are certain integers; and, as, by the addition of

periods to the arguments of the function H, the function is reproduced

multiplied by a non-vanishing factor, it is sufficient to write these equations
as congruences

6j
=

VI
T| m + fl,*'

m
, ft,

=
W,*i'

"i + W/- ".

To prove this result we use two properties of rational functions. Firstly,

a function which is single-valued on the undissected Riemann surface, and is

capable of expression about every point as a series of integral powers of the

parameter for the neighbourhood of this point, there being only a finite

number of negative powers of the parameter, if any so that, as can be shewn

to be a consequence of this, there is only a finite number of points for which

negative powers enter at all is necessarily capable of representation as a

rational function of x and y. For if jR,, R^ be the two values of the function

for the conjugate places (x, y), (x, y), the functions R^ + _R2 and y (/^ R,)
are at once seen to be rational functions of x only. Secondly, it is not

possible to construct a rational function R with poles of the first order at two

arbitrary places (a:,, y,), (ara , y2), unless these be conjugate places having
xl
= x.t and yl

= yt ,
in which case (x a;,)"

1
is such a function. For
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otherwise R +A^^ + A.,r^.' ,
wherein /I, and A.t are suitably chosen

constants, could be taken to be a function without infinities, single-valued

and analytical on the surface, save for the periods (cf. p. 9)

2wt [A, (,),, + A, (vfW ,
tori [A, (vf>\ + A, ( ,),J

at the period-loops (A,), (A t) ; this function would then be a constant (p. 7, ( 1 )),

and both these periods zero, so that yrl

ly*~
l ^lyfY^W1

. or xi <r - Take

then (#,), (#2) different from one another and consider the function of (x)

this function is analytical and single-valued on the dissected surface, its

values at the two sides of the loop (A^ being the same, as they are also

at the two sides of (A 2); its value at the left side of (A 3) is obtained by

multiplying its value at the right side by #'a>, where

which is zero
; similarly at the loop (A t ). The function is thus single-valued

on the undissected surface. Next, at (ra,) the function (* ) vanishes to the

1 1

''

first order, and tr***i i also vanishes to the first order
;
the -function in

nx' c

the numerator has no infinities; the function e~Ll
*i,m, becomes infinite to

the first order at (#,) On the whole then the function is a single-valued

analytic function on the undissected surface, with at most two poles, at (<c,)

and fa), and with zeros where (*
m v*" m > if* n>3

) vanishes. For general

positions of (,) and (a;2) no such function exists, as we have proved. Thus

the function is in fact a constant, and the function (v
x'
m y*"

m
> v*"*)

vanishes to the first order at (a.
1

,) and ( 2). Therefore, if elt e, be two

constants, such that the function (if<
m

e) does not vanish identically, and

(,), (z3) be the zeros of this function, the ratio

-e)

is a single-valued analytic function on the dissected Riemann surface, with

neither zeros nor poles ;
it has ihe same value at opposite points of the loop

(A t),
and of the loop (.A 2) ;

its values at the left sides of the loops (A a), (A t)

are obtained from those at the right sides by multiplication by the respective

constants e***-
8
', e31

"-8
*, where

fi, = v,*"
" + ,*

* -
c, , 2

= v^-
m

- + w,**
'"" - e2 ;

the function log <f>
is thus single-valued on the dissected surface

;
let its

values at the left sides of the loops (.4,), (4 a), (A,), (A 4) exceed its values

at the right sides respectively by
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where MI, Mt', Mlt M.2 are integers ;
then the function

log
- 2?n (Jf,V'm + M2'v.2

x>m
)

will also be single-valued on the dissected surface, and analytic, and finite,

and its values on the two sides of the loops (-4,), (A s) will be the same. We
have seen that such a function is a constant (p. 7, (1)). Thus the increments
of this function for the loops (^3) and (A t) are zero

; these are

27n' (, - M, -Mt'Tn - Jf,'TB ), 2iri (Bt-M,- Jf.V,, - Jf.Va),

and that these vanish is the proposition we set out to prove.

It thus appears also that, arbitrary values of elt e2 being given, places

(*i), (*)> and integers Mlt Mt , M,', M.J are determinable uniquely, so that,

on the dissected surface

v/>-
m

> + vf m ' = e* + M.2 + Af/Tj, +

there being exception only for a connected sequence of values of el and e

of one dimension, those namely for which (tf
c

'
m

e) vanishes for all positions
of (x) ; these values will be expressed below in terms of one arbitrary

parameter. For such exceptional values the equations are still soluble in

fact, but by an infinite number of sets of positions of (zj) and (z2).

Incidentally we see that if we consider the pairs of values of the two

expressions

M, = Vi
r" '"> + ]* '", M2

= V2
X m

> + V,f '"'
,

for all independent pairs of positions of (a;,) and (a^) on the dissected surface,

not only does the pair (M,, M.,) not occur twice, but two pairs do not arise

satisfying equations

< -
M, = Mi + Jf,'Tn + Ms'Ta , MS'

- Mj = MI + MiT-a + Mt'Ta ,

wherein Mlt Mit JI/,', M.2

'

are integers. This can also be proved independently

by noticing that if these equations were possible, and (*/), (#2') the positions
of (#,), (a?2) corresponding to the values M,', ./, the function

exp [n*;,^ + n*;,%f

- 2' (j/.v + ^V- c
)]

would be an analytic function on the surface, single-valued on the surface

dissected by the cuts (A 3), (A t) where it would have the respective factors

exp [2 (,*'. + Vl
'* - Jlf/Tn

- M,
f

T)],

exp [2m (vp'>
*< + v/*'-**

-M^ -
that is

exp \2iri (ut

' -
w,
- Af,'TU - 3/2'T12)] , exp [2iri (w2

'

a M,V21
-

J/J'TJ,)] ,

which are both unity ;
the function would thus be a rational function with

two poles of the first order, at (a?,), (a72 ), which we have proved to be impossible

unless (a;,), (.) are conjugate places on the surface, a hypothesis at once seen
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to lead to w, = constant, wa
= constant. The result may be interpreted by

putting

!>,*'
" + I*,*"

* =
<, + t',,

* '"' + V/ '"' =
, + t 4

and speaking of <,, 2 , ,, <4 as the coordinates of a point in a real space of four

dimensions. Whatever <,, t?, t3 , tt may be we can determine real quantities

/*i fr, */. so

t, + it.2
=

for we have proved that if rri
= prs + i<rrs the determinant a is not zero, and

the equating of the real and imaginary parts in these equations determines

Mi> M*. Mi'> M/ uniquely; speaking of two sets MI, p.,, /*/, ^' and (M,),

(MI')> (/*') as congruent when each of the differences (MI) MI>

(/*/) ft/, (/^') fa is an integer, we have proved that if we put

and allow (a;,), (a;2), independently of one another, to take all positions on the

dissected Riemann surface, every set /u.,, /i2 , //, /u.2

'

or else a set congruent

thereto, but never both, arises, just once. In order not too far to interrupt

the prosecution of our immediate purpose we defer the proof of the theorem

which is suggested, that in fact the sets arising form a continuum of non-

congruent values of four dimensions.

We may similarly consider the aggregate of values for /*ii fa> M/. fa'

obtained by putting

v< =
/a, + /T,,

and allowing () to describe the whole dissected Riemann surface. As before,

equations
v *,; *> = M

I + JI//TJ,

in which Mlt M.,, MI, MJ are integers, are impossible, leading as they would

to the existence of a rational function

exp [n*;,^
- 27ri (Hf.V + Mivf*)]

of only one pole and one zero
;
but it is not now the Case that all values of

/*i A*!. /^' /*a' arise-

Returning to the vanishing of the theta function, we have shewn that

if (m^), (m2) be the zeros of &(v
x ' m

), the function

vanishes at (#,) and (#2) ;
thus if (m) be any other position, and (n*/), (?/)

the zeros of (if'
m

'), the function expressed by the quotient

(-,
(tfc,

m _ yx,, m, _ ^a ,

m,^ (^,
m' _ ^,, 711,' _

^rj.m,')

is analytical and single-valued on the dissected Riemann surface, but with no

zeros or poles, having factors at the loops (A 3), (A 4 ) respectively

exp [2-Trt (?y"''
"" + ?',"''

"' -
,'"' *)] , exp [2-jri (('./"'

'" + vj**'-
'" -

'.,'"' '")] ;
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it follows therefore, as in the argument above, that the quotient is a constant

multiple of a function of the form

exp [2-rri (Mfa
x

>
e + M^vf'")],

where Mt ', 3/2

'

are integers, and that we have equations

- - ,'- =M2 + Jf/m + Af,VB>

wherein Jlf,, 3ft are also integers; and therefore, that a rational function

exists capable of the form eT where

T=n x -

m, , HI
i

*'

HI
-2 )

J m, m'

having poles at (m,), (m,) and (m'), and zeros at (?<), (?H/) and (m). Now a

rational function can easily be seen to be determined save for a multiplying
constant when its Q poles and all but two of its zeros are given being
capable of the form

(x, !)Q + y (x, !)Q_,

(x-xl)...(x-x (iY
wherein (x, 1)Q , (x, !)Q_S denote polynomials of orders respectively Q and Q 3

in x, the Q+l + Q 2 = 2Q 1 homogeneously entering coefficients of the

numerator having their ratios determined by the vanishing of the numerator

at the Q places (xr , yr) conjugate to the prescribed poles (xr , yr), as well as

at the Q 2 assigned zeros
;
thus if (m), (m^, (w2) be determined, for an

arbitrary position of (&), and (m') be arbitrarily assigned, then (m/), (ma') can

be determined as the remaining zeros of the easily constructed rational

function which has (m,), (m?), (m') as poles and (m) as one zero.

We now shew that one possibility for the set (m), (m^), (m,,) consists of

three branch places, which may in fact be any three, provided the dissecting
cuts be taken appropriately. For this, let the branch places in any order

be named c,, a,, c2 ,
a2 , c, a, these symbols being also used occasionally for the

values of x for which the fundamental sextic vanishes, with the proviso that

if one of the branch places be at infinity it be named a
; suppose there are

cross lines of the sheets between c, and ,, between c2 and 2 ,
and between

c and
;

let the loops along which the surface is cut in order to give the cuts



32 Integration between branch places. [CHAP, i

(A,), (A t) be such that when projected upon the plane of x they enclose

respectively the pair of points clt ] and the pair of points c.,, a,, these cuts

being in the upper sheet; in a similar sense let (A) enclose a2 and c, and

(A,) enclose a,, a?, a, and c, and also the loops (A?) and (A t) ;
we can then

prove that

)
= 0, (fl*

a
)
= 0.

For this we prove that, if 6, <j>
denote any two of the branch places,

and the integral be taken on the dissected surface,

wherein Mlt M, Mt', Jf2'are integers determinable at sight from the diagram,

by the following rule : If this diagram, and a path on the surface from
</>

to 6,

be projected on to the plane of x below, and if this path cut the projection of

any period-loop, p, times from the right side to the left side, where p is

positive, or p times from the left side to the right side, where ft
is negative,

then we are to take, as the corresponding contribution to the sums on the

right sides of these equations, ft times the half period associated with that

loop. For instance, to explain first the rule, suppose we consider ?>/""' : m
going from ctj to Ci we cross from the right to the left side of (.4,) ;

we are

thus to reckon towards \Ml for v^""' and zero towards |J/ for vt
Ct - at

. To

prove the rule, notice that we can go from < to 6 on the dissected surface

entirely in the lower sheet
;
consider the path lying above this in the upper

sheet
;

it will be broken at various points by the necessity of a detour to

reach the other side of a cut
; suppose these detours give on the whole

respectively, Ml times the period associated with (.4,), M2 times that associated

with (At), MI times that associated with (A 3) and Mf

'

times that associated

with (A t); then since y has opposite signs, and therefore dv,.
x

'
e
opposite signs

in the two sheets, we hiive

where the integrals on the right are evaluated on the lower sheet, and those

on the left on the upper sheet of the surface
;
these are the equations stated.

It is convenient to denote these equations, for the present, by putting

* = $/#,' M2'\;

Ufi JfJ
then in particular we find

(A. !)' """*CY)
< "**"

*'?)'
l""1=

(-1 -I/ U ft)' "(-1 OJ
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giving pp, = frpi + p.2p.2',
= odd

; qq,
= q^' + (////,

= odd
;

now we have previously shewn (pp. 23, 24) that

H (v + i 11,)
= e

~
riq

'

{v +W ~ ***''

and that, if qq'
=

q>qi' + q-fls
be odd, the function B on the right of this

equation is an odd function, and therefore vanishes for v =
;
thus when qq is

odd, we have B(^fl?)
= 0. This shews that B

(i/"'-*
1

)
= 0, and @(v

a a
)
= Q,

and therefore that the zeros of the function (tf'
a
) are (x)

= al , (x) = a2 .

Hence, by what has preceded, the function

vanishes for (x) = (a;,) and (x) = (*2 ).

It follows thence, by putting (#,) for (*). and then (x) for (x3), that the

function

vanishes for all positions of (x). As the function

or say B (u + fl,,,), where m,, . m^, ma

'

are integers, has the same zeros as

6 (v), and we have proved that

or say va >' a = va-"' + fJm ,
and as va' a>vx-"' is the same as va - x+va'-"', it follows

that (tf
r ' + fl

a" <M
) vanishes identically in regard to (x). In other words

B (M) vanishes when 11^, u^ are replaced by functions of the same independent
variable of the form

for all positions of (ar).

We prove conversely that every pair of values of u1( u.2 for which (u)

vanishes can be put into this form, save for the addition of integral multiples
of the periods. Suppose Q(w) = 0; suppose also, if possible, that @(i^'

z+ w)

vanishes for every position of (x) and (z). Consider <ft (v
x-* + vx z > + u); for

(x) = (z) this reduces to (v
x" z

> + u), which vanishes by hypothesis; for

(x) = (z,) it reduces to &>(v*"
z + u) which also vanishes; and as tft *i = vS"t>

t

where (,), (,) are the places respectively conjugate to
(a;,), (^) for the

change in the sign of y involves a change in the sign of dvl and dv the

function ft(v*-
z +0*"*- +M) reduces for (#) = (,) to (&*+), which again

vanishes, by hypothesis. The function (v*-
z + vx"*> + u), regarded as

depending on (x), has thus three zeros, and therefore, by what was shewn

(p. 26), vanishes identically. Next consider (v
x' z + vx *> + vx*' ia + u), as a

B. 3
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function of (#) ;
it has, with others, the three zeros (z), (z,), (z.2), and therefore

also vanishes identically. So more generally the function

(V*-* + **> + ...+*"*" + u),

for m = l, 2, 3,..., vanishes identically; from this, by supposing (xm) taken

in the infinitely near neighbourhood of (zm), we infer that the first partial

derivatives, 9Q(w)/dt 1 , 9B(w)/3w2 .
vanish identically for

a similar inference is possible as to the second partial derivatives, for the

values

fl*,Z + fl*i. Z| 4. ... 4. 0*-,S- -|- U

of the arguments, by supposing, in the first partial derivatives, #,_, to

approach to ,_, ;
and so on. On the whole then, from the hypotheses made,

that (u)
= and that <) (v

x ' z + u) = for all positions of (#) and (z), would

follow that (tt) and all its partial derivatives of every order, were zero.

Hence we deduce that if (w)
= there are positions of (z) for which

(v
x>z + u), regarded as a function of (x), has only two zeros

;
of these zeros,

one is manifestly (z), and if (t) be the other, we can write, save for multiples

of the periods,

and therefore u = &> a
if-%

(t) being, as we see, perfectly definite. This is the result enunciated above
;

if (*) be the position conjugate to (t) we have, save for periods,

With the dissection of p. 31, we have

l
ii' = Tn +^T, 2 ,

if then we write

/xv-/vv\,-i/-i IV
\\) U, xj v o i/

I X"\
the result is that (u ; )

vanishes if, and only if, u be of the form v*> .

V X/

11. Recall now that we have (p. 25)

and hence

_"~ ''

where ^ = a (?
-

1')
2 - a (M

-
u")

2 - a (?t
(0) -

w')
2 + a (u"

-
?/")-

= - 2rt (,'
-

u") (u
-

M<t)

= -2 I 1 ar
,
8 (;- e")(r-r (

'");
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fr
also (p. 11),

<:,, + <,;,
- n:i - n :; = - *

r

i
f

iw;&** + /->

if, in particular,

M = u*- a
,

U = ?
x" a

- + Uf "*, It" = U^- a
> + it"2'"2

,
M (0) = W*1

'

,

then we have

#=-22 a
ri ,Mr

*'* (/>*' + />"*).
r,

Recall also the equation (p. 10)

<;, ='C = cr + u *^^ +^ L^
which gives

K'l + **;!
= px

*.
+ pr̂ +(^x" 1" + M '

X" M
') A*-" + (,*" + ,**) v-".

These notations being made clear, consider the function

wherein a, aj , o3 are branch places, as before, but (a^), (a;2), (ytj). (/ttj), (/i), are

arbitrary places. This function is analytical and single-valued ou the dissected

surface
;

it has, on account of the theta quotient, zeros of the first order at

(#,), (jT2), and poles of the first order at (^4,), (fa) ; but, on account of the

exponential it has poles of the first order at (xt ), (#,,) and zeros of the first

order at (//.,), (fa)', at the two sides of each of the period-loops (.4i), (A 2) its

values agree, but at (A,), (A t) it has factors e~
2*lH

*, e~
2rlH

", where

is zero, as also, similarly, is H3 . The function is thus equal to the constant

value taken by it for (#) = (/A). Thus, putting

/ = Vr
x" a ' + tV*"'i Vr

"
\

1 X U. X U.

we have U x
'

+ II x
=

log

From this, by the lemmas just preceding, we obtain

K *. *, (-
'."' T ^-^

~ 'g -

We have proved (p. 29) that we may regard the arguments (MJ
(

,
M2'),

and

the arguments (/', 2"), as the independent variables, the places (x^, (#a) and

being functions of these
; hence, from the equation

32
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which is another form of that last obtained, we obtain, by differentiating

in regard to M/> for r = 1, 2,

therein we employ the notations expressed by

so that, from (p. 26) ^ (u + fim)
= cxp [#m (M -f ^Qm)

-
irimm'} ^ (w), we

have

r (tt + nm)
-

C, () = (Tw)r
= 2*1* TO, + 2lJ TO3 + 2lj'n / + 2/' <,

and $> { + fi) = >n (M).

Now, by means of

, , dxl dx3 , , xldxl xjlx,,.
au, = --

1

--
, dMj =--1 ,

the partial derivatives dxi/dur', 9 2/9w/ can be expressed ;
when this has

been done, let (#,), (#2) be replaced by their conjugate places, by changing

(#1, 2/i)
into (!, y,) and (a;2 , y2) into ( 2 , ya) ; thereby v r

' = ur
x "> + ur

x'-"'' is

changed to

UT + 2a)n m^ + 2a>r2 ma + 2w'n TO/ + 26/,-j nij',

where mlt TOJ, TOI', TOJ' are certain integers ;
as V(M + ^m) SV(w) depends on

these integers and not on u, the left side of the equation at the top of this

page becomes
'

thence the equation is found to have the form

Lr
*- + Lr*-* + L r

* + & (U*'
a + U) - i/r (X, Xt, 0$

= /;/" + V''1 + ?r (W>0 + ')
-
i/r (/*, :, 2),

where the two functions /r (*, i ,
a;s) are those given by

_ y(x-iKl -a;1) y^fa-x- a:.) y^x^-x-t^)**
~(x-x,)(x-lctr(x,-x)(x,-x^

+
(xt -x)(xl -xlY

/, (, *,, >
=

(a
. _

Xi} {x
_

Xt)
+

(Xi
_ X)

l

(ati
_

Xi)
+

(^-
the left side of the equation is thus symmetrical in (x), (#,), (xj), and the

right side is obtained from the left by putting (ju,)
for (x). It follows tliat

the left side is independent of (#), (#,), (x2), and we have therefore

lr
* a

> + Lr
* a> + fr (u*-

a + u* a
> + u*""') =Cr + yr (x, xlt as,)

- L*>,

where Cr is independent of (x), (#,), (x,). In this equation allow (x) to

approach indefinitely near to the branch place a, which we now suppose to be
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^.

at infinity ;
the limit of the left side is perfectly definite

;
so therefore is that

of the right side ;
the right side may be regarded as the sum of two parts ;

for r = 1 these parts are

A -r i i yfe-^-"*) j xv. R i y^-x-x^
,

i y*(xs-x-xi)
**1 'IT a / \"7

"

\
~" *Ji > "\ = $ 7 \~7

-
\ T 5 /
-

TT
-

\>1
(X -Xt)(X- <%) (#1

-
*) (#1

~ #2) (#2
~

) (*2
-

#l)

and for r= 2 they are

A TJ.!._y.__
'*

the limits of B, and B when (x) approaches the branch place at infinity are

respectively

x,

as to the limits of A l and A 2 ,
we know them to be finite, and it can be

shewn that they are independent of (,) and (*2): the fundamental equa-
tion being taken in the form y

2 = \ + \1a;+... +X4 ar
4 + 4#5

, we put x = t~-,

y=^t~
i

(l + iX4<*+ ...)i, and expand in powers of <; the negative powers
in \y (x xl x^)/(a; ,) (x x?) and \yl(x xt) (x x2) will, of course, as may
also be verified by computation, cancel the negative powers respectively in

Z,
3"'" and ij*-**; the positive powers of t will vanish with t; the terms

independent of t are the limits required; but both

\y (x-xl
-

x,)/(x
- xj (x

-
x^) and %y/(x

-
X,) (x

-
x,)

are changed in sign when the sign of y is changed the expansions of these

thus contain only odd powers of t and no terms independent of t
;

if \,, X2 be

the terms independent of t in LIX>I* and Lf-*, the limits of A, and A^ are

thus C\ X, and Cs A-,, and these are independent of (,) and (#2): in fact

they are both zero ; for, being the values of

., 01

and being independent of (#,) and (#2), they may be obtained from these

expressions by writing herein (#,)
= (a^ and (#2)

=
(a2) ;

as S- (u) is an even

function of u, the functions ?,(?), &() are both odd functions, and vanish

for u = 0.

If then we put
ur = urx""< + ur

x
*-"*, (r 1, 2)

we have proved that

*- a '-\*~-, -& (M)
= ,*... + ,*..

iTj #2

We now differentiate these expressions in regard to M, and 2 ;
the

fundamental equation having the form
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as we suppose, we have

a;, xl xt

putting

and, as before,

we thus find

r-2
1=2 ;

r=0

(11)
= -

a;,

F(x,, x.,)

From these, if

we obtain

and

where

i/r (a;,, a.y)
= 4\

Thus we have

and these, together with the fact that a;,, x^ are the roots of the equation

, (3fl5,

give the solution of the inversion problem expressed by the equations

U X>, 1,
-). U]

*t, O, ^ Ui> ^Jr,.
O, + y^, O, _ J^

It can be shewn, from the values of fa (u), fa (u), fa (u) in terms of the

two places (x^), (a;2), by elimination of these, that there exists the equation

= 0;

2

further, from the values of
fpw (u), pK1 (u), >., (M), fm (u), that these functions

are in the ratios of the minors of the elements of any row of this vanishing
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determinant, and that their squares and products, such as
$?.,,, p-mpwi, are all

rational integral polynomials of the third degree in jfe, pa , p,, ; in particular

>-,-
- X, - \3 ,2

is at once found to be
(a:,

-
x^-"-[F(xl ,

ara)
-

2y,y2], or 4pu ;
thus it is easy

to see that j^ is one-quarter the minor of the element X in the first row
and column of the determinant above

;
thus we have, for arbitrary values of

X AX, 2(2),, -
20,,, i

2 ^

-2pls 2^ 2 0^
?

We shall however obtain these results from a somewhat different and
more interesting point of view, as follows in the next chapter.

Note. It may add to simplicity to anticipate later discussions by the

following remarks. If we write x =
fpa (u), y = j a (), z =

j u (w), and denote

the above symmetrical determinant of four rows and columns by A, the

equation A = represents a quartic surface having a node at x = 0, y = 0,

z = oc
;
the equation is in fact a quadratic in z. For any value of d the plane

ft- Qx y = is a tangent plane of the nodal cone, whose equation is

at once found to be a^ + 4y = 0, and two such planes ^Qx y O,

<f>-
-

<f>x
-
y = cut in the line x = 6 + <f>, y=-0<f>. The equation A =

can be found easily to reduce, when x = 6 + <f>,y
=

d<f>, to

[4 (6 -$fz- F(6, $)]*

where f(x) X,, + Xja; + . . . + \tx* + 4^. We have thus the parametric repre-
sentation of the surface in terms of two arbitrary parameters 6, <. The

equation A = may be supposed to arise geometrically as follows. If
, t),

?, T be homogeneous coordinates, and

Pt
= -

the equation Q= xQl + yQ2 + zQ3 + P4
= 0,

for varying parameters x, y, z, represents a system of quadric surfaces having
six common points, namely those where the cubic space curve

/l ,/*-{/* T/*

is intersected by the quadric P4
=

;
these are (0, 0, 0, 1) and the five points Q

of the cubic curve in which 6 is one of the roots of f(6) = 0. The quadric Q
will be a cone of vertex (f, rj, T) if the four equations dQ/dj;

= 0, SQ/drj
=

0,
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=0, dQ/br = be satisfied; eliminating , 77, f, T from these equations

we have the relation A = 0. If we eliminate x, y, z we obtain also a homo-

geneous quartic relation for f, 77, f, T, say w = 0, given at length below
;
this

is capable of being put into the form

(dP<
SF _ dP dF_

\ _ 8P< dF_ 8P, SF

( 9 8r 9r 8f )

~
fy 8? 9? 87?

'

where ^ = Qfrfr
- 4" - 4-rrV + V?2 - 2T2

,

and represents a quartic surface having nodes at the common points of the

quadrics Q,
= 0, Q2

= 0, Q3
=

0, P4
= 0. Any point of the chord (6, <j>)

of the

space cubic is represented by

=l+m, 77=-(0 + m), Z=0>+m<f>\ T = -
(6

s + m<j>*) ;

by substitution of these in the equation = we find that this chord cuts

the surface in

and another point obtained from this by changing the sign of <!>, where

<>2

=/(0), <*>'=/(</>);

as a chord of the space cubic can be drawn through an arbitrary point of

space, these formulae give a parametric representation of the surface tu =

in terms of two arbitrary parameters 6, <f>.

Further, it is not difficult to verify that the equation

& (f) & ( )
-
Q,(r> Q.(f)

-^ (f) Q(f) + Q. (f)^ (f)
= o,

when (f, iy', f, T') is any point on o> = 0, represents a cone whose vertex is

the remaining intersection with <a = of the line joining the node (0, 0, 0, 1)

of to = to the point (f', if, , T') ; putting, as above,

f = -<!>, 7?'
= - + *(9, etc.,

we find

where
, 4
= J [^ (^, <t>)

~ 2*] (^
-

<j>)~* ",

the cone has therefore the form

and this, compared with xQt + yQ3 + zQ3 + Pt
= 0, gives the preceding para-

metric expression for A = 0,

It will be found that the surface = is also represented parametrically by
means of



CHAPTER II.

THE DIFFERENTIAL EQUATIONS FOR THE SIGMA FUNCTIONS.

12. SUPPOSE now that x, y, z, which we may regard as the coordinates

of a point in three dimensions, satisfy the equation

A= -X,, = 0,

2* |\3 + 2y -(X4 + 4a;) 2

2y 2 2

that is, lie upon a quartic surface, the properties of which will more

particularly concern us later
;
let Ay

- denote the minor, in this determinant,

of the^'th element of the t'th row. We find on expansion

-
tyz,

- 4X X3X4)

-
X<,X4) z

iA,a
= -

iA 14
= -

z -

4
= 4V -

while A itself is given by

J

, +

+ -V -
i + (iX,X4

-
Xo) xy

+ X,a"y
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Now let f, i), , T be four quantities determined by

f = \An = Xj + X^ + \to? + 4xy + 47-" + 4*.

ind -L..JL..JL...1
A,, AM A,, Au

'

wherein, it is understood that x, y, z are supposed subject to the relation

A =
; then, as A is symmetrical,

and so on.

If now

D . 9 9 o 9 n 3
j.
9

.
9

-r = 5- + 77^- + 5-, Q = ?5- + SV + T5- ,b
9 9 9^ 9a;

s
9 9z

it can be easily verified that

^ = Q, Pr=-, PT=Q?.

For, of these, the first equation, multiplying by >;, is the same as

or

A,, (4y
2
) + A 12 (2X<y + 8a^ - 4) + A,, (- 4>y)

= AM (X,

+ A23 (4a;)+A24 (4);

from the determinant we have

= Zy [- 2yAu + 2eAB + 2A 13],

= - 2 [2^A 21 + (2y + Jx.,) AK - (4* + \4) Aa + 2AW]

- (X4 + ftc) [- 2,vA21 + 2a;A !B + 2AJ ;

adding these respectively to the two sides of the equation to be proved, it

reduces to the identity

A 12 (2X17/ + I2xy
-

4.0)
= An (2^ + 12xy

-
4*).

The second equation, multiplying by ijf, is the same as

or

A.,, (2X,,a;
-

X,

A,, (2X4y + Sxy
-

4*)
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the determinant gives

= Zx [- X A 21 + i\, A-B + 2^A23
- 2yA24]

+ 2y [JX, A,,
-

(4z + X.2) A,2 + (2y + iX,) A,, + 2arAJ ;

= 2y [2sA31 + (2y + i\3 ) A, - (4x + X.) AM + 2AM]

2AJ ;

adding these respectively to the two sides of the equation to be proved it

reduces to the identity

*#).

Similarly with the equation PT = Qf.

The relation connecting x, y, z, and the equations defining f, 17, f, T,

enable us to express z rationally in x, y, f, namely

and so to replace A = by a rational integral equation W (x, y, f)
=

0, while

T], f, T are rationally expressible by x, y, f. The equation "^f (x, y, )
= may

be interpreted as that of a surface of the eighth order, two points of which

correspond to any one point of A = 0, but one point of A = to any one point
of thi.s. We consider now two integrals of the form

w.2 = i(Adx + Bdy), wl
=

f(Cdx
+ Ddy),

where A, B, C, D are certain rational functions of x, y, f ; namely we put

Edx ridy ridx + Pdydw2
=

f,._ ,

-
, dwl

=
_ j

-
;

the conditions that these should be perfect differentials,

d (-!-} -a d
(

* Vi
d

(
* \-Q

' U| - tf}

~
dx \& - rf)

+
dy \& - f)

wherein =- _
dx dx \dx / dz/dz' dy dy \dy / dzjdz'

are at once verified
; for, from the unexpanded determinant A we have

8A
2A42

= 4 (A,,
- A*) = 16 (r,r

-
f),

dy
= - 2A 14 + 2AM + 2A,, - 2A 41

= 4 (AM - A 14)
=

2A = 2A 13
- 4AB + 2A 31

= 4 (A 13
-

A,,) = 16 (ff
-

T?
2

),
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and hence

tl, !_*!, a g(qT-n + 9(iyg-fr)3
?
do;

"*" '
<fy

~ ? 3*
"*" '

Sy # -
r,* tin

1 + > i 1 .i>1 _
dr ^

<fy

~ ' a
"^ *

dy

giving (
- ,) = ?P _ ,Q> (5f

_ ^) . = fQ _
r,
P

the conditions are

or

^f -
ijQf+^ - iPl = P (ff

-
V-), {Pr>

-
rjQr, + Q - iPC = Q ( Cf

and in virtue of Pi) = Qt;, P=Qr), these are the identities

Putting ^ A =
(as, y, f), we have ?f

~
'V
8 = iV 9^

=
| "ge

'
and

39&
wherein Ai3 ,

A 12 ,
An , dW/dl; may be expressed as rational functions of f, , y.

It may be verified directly that for all values of x, y, f, even infinite values,

satisfying the equation "V (x, y, f)
= 0, these integrals are finite. For the

sake of brevity however we shall follow the easier plan of shewing that they

are reducible to familiar forms.

For this, define two quantities t,, ^ by means of the equations

<, + j
=

ar, t,t,
= -y,

and thence two quantities ,, s, by means of the equations
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wherein 77 is the rational function of x, y, % given by v=^Ai2/A 11 . Then
from the explicit equations

it is at once verified that

Sl
> = X + X,, + X,V + Vi3 + X4V + 4^, =/(*,), say,

and *./ =/(<2),

and also that

ia = ~ y?
2 + *f7 + T = H- #AH + #A12 4- A ffl ),

which, from the equation A = 0, is the same as

thus dw, =

and since, from A = 0, -yf+ a7 + f =0, or ^=-(ti
this gives

, tidtt t^dt,
aw., = ---1

---
;

while

Now we have developed the theory of these integrals in the preceding

chapter ;
and we know thence that wlt w3 are always finite, and that x, y are

single-valued functions of ;,, w2 ;
from their values x=tt + t^, y= t^,

coupled with =
(s,
-

2) / (t,
-

<), f
2 = {An, it can be calculated that

* = [F(t, , y -
2*, j / 4 (,

- g2
,

and lience ^ is also a single-valued function, where as before

,, ,)
= S (,,) [2X + X^,^, (, + ,)].

It is therefore possible to prove these facts as to x, y, z directly from

the expressions

>
=

g
J
(&ndx - bndy)

I ^, w, - 1 J
(-

and, as will appear, it is of considerable theoretical interest to do this.

These integral expressions shew then that the functions x, y of wlt wt are

such that

t ^x ty _ ty _ ..

fa.~ fl
dw,

~
''

Jto,'*
1 '

8^
~

?>

and so -=^,
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while, in virtue of the easily verifiable identity

fc 9A^ 9A 3A
5 + i)~- + fv- =0,* dz dy

*
dz

i.dz dz
we have ?= ? 5- +'75-.

da; oy

dy dz
so that ^- = =--

;

9w, 9wj

thus we may introduce two functions of w2 , w, by means of

Z2
= I (#dw2 + ydw1 ), Z^ = I

. , 9^0 dZ,
then -

2 = -
T/
=^ ,

Sw, 9w2

and we may introduce a function 2(10!, wa) by means of

log 2 = I (Zvdwz + ^irfwi),

1 32 1 92
and so have Z

,
= = ^ ,

Z = s ^ ,2 9wj 2 9w2

9 2̂ 9s
. 92 93

. _
* = ^ = 5

-

log z, ?/
= .r ^ log 2. 2 = ~ :. log i ;

9w2 9w.2
2 9w39w, 9w,

2

and if these last be respectively called, for a little, PK ,
Pn ,

Pn ,
we have

9* fix dy dy dz

while from the easily verifiable identity

9A .9A^ 9A
9-5-+Car +T-5: =0 >

9a; dy dz

dz fc 9 9.2
T = 7?

9^
+^ =

9 1̂

' =P" 1 ' Say -

The integrals Z2 , Z^ agree in form with integrals previously considered ;

in fact

while

,7 , , /,,
,
t,dL\

,- -*(
and we can verify that

J V, + 2X4 t,
8 + 12(,

3
t
d /, - 2\

4s, *^U-V'
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this being, after changing s2 into 2 and multiplying throughout by
-

, the
S2

same as the identity remarked, Chapter I., p. 10, namely

^

4sjs., (*!
-

trf

~~

s,

'

s1 s.2

'

4j eft, \2s.2 (t,
-

tj
'

thus in the notation previously used (p. 10)

- dZt
= dLJ< + dL , -dZ,= dLf< + dL^ - d

On the whole then the integrals wlt wl differ only by additive constants

from the integrals previously used

while Z,, Zi differ only by arbitrary additive constants from the functions

previously denoted (pp. 36, 37) by ?j(wi, ^v.2), i(wlt Wj) and the general

form of function S is

where A lt A t , B, Glt Gt are arbitrary constants. This is a single-valued

function, and an integral function
;
and the integrals thus make *, y, z

quadruply-periodic functions of w,, w2 .

But another consequence follows from these integral forms. From

-Pzs = %
- =

{ An = \, + \3x + X

we have ^
or 2^.^ = f (\3 + 2X4 a; +

which, since the form of A gives

.
^^ .

^
(f | + , | + f^ An>

leads to ^P^ =%(\,+ 2X4*' -f 4y + 12^) -I-

so that P^ - GP-B
2 = i Xa + \PK + 4P21 ,

where Pzm=^P.fl ,
Pa = -^ log S, etc.

Putting, as before,

it may be shewn that

P = 6*5
-I- i\, + X4 -I- 4y, Pr) = Q% =

<oxy + X4y
- 2*.

/, PT = Q? = 6y^
- X -^
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and hence, from the equations

P9m = iAu ,
/ =

!A,, PVn-iA., P^iAu,
if we now replace P^, Pw , P-aa by $>.a , pm , p,^, etc., that

y, p,in
- 6gV = - iX X, + X,X 3

- SX,* + X,y + X,*,

f>sul
- 6^,, = - X - |X,#+ X,y,

These equations are satisfied by ^ (wt ,
w2), and, as their form alone shews,

by e
A^ + A^+B ^(wl +Cl ,

w3 + C,), where A,, A,,... are five arbitrary

constants. Their deduction given here, from the forms for iv%, wl as integrals

of total differentials, shews that they are self-consistent
;

that their most

general integral is of the form e
A

*v'i + A*w-*
+B

'$s(wi + 0,, w3 + (7,) will be

obvious when it is shewn conversely that they lead backwards to the

forms for w2 and w, as integrals of total differentials. It is sufficient to

indicate how this may be done
;
and it may be remarked in passing that

it was in carrying out this process that the forms p
2
2B = iA11 were at first

discovered ;
the preceding deduction of these forms, though artificial, has

been adopted as requiring less numerical computation. If these five

differential equations be all satisfied by a single function <r of wlt w3 , with

* H?
1**' ft--?*

then there are four identities such as83 38
M^ "

3 2̂

Pan '

Sw,
V "

3 2̂
^ ;

substituting herein the values of (p.^, $*&,... given by the differential

equations we have four equations which are linear and homogeneous in the

four functions p^, $.m , |p211) pm , and linear also in
j a , fa, ^>n- Eliminating

the former functions we find that x =
$>w , y = &-n, z =

j>n are connected by the

determinantal equation A = 0, while ^ = ^222, n = ^w, ?=if)aii, T =
JJIU have

their ratios determined by
jt = JL = _L = ^L
An A12 Au AM

'

where Ay is the minor in A of the jih element of the ith row. Since A is

symmetrical, and therefore AyAit = AijA;
-

t , this is the same as

ii=^.= =u =
Au AB A12 A'

and it is required only to find these ratios. Putting >a2S
=

/tiA11> j>sji
=

/*A,,,

etc., we have
8AU 3A,
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from which, substituting for y^ and
p.aa from the differential equations,

and eliminating dfj./du_, we find p? as a rational function of x, y, z, and in fact,

as is seen on carrying out the work, V?=-r-r-- Then the equations x=<oyi ,

y = |>2i. give at once dx=^dwtl + T}dwl , dy = 77dw2 + fdw, ,
from which the

forms for wa , t^, as integrals of total differentials are obtained at once.

By differentiating p.H2
= /iA 11 , ^ = /iA 12 in regard to ult and eliminating

dfji/dul ,
we also obtain a form for /t

2 as a rational function of x, y, z; and

similarly a form for p? is obtained in two ways by taking such a pair as

f>22i
= /iA ]2 , g?211

=
juAj 3 ,

and so on
;
that these various ways lead to the same

form for p? is clear by the deduction we have made of the differential equations
from the forms of w2 , wl as integrals of total differentials

;
but conversely we

could start from the differential equations and verify this fact from them.

13. The differential equations are capable of a much more general form.

This may be regarded as a consequence of the fact that if in the integrals

fdt/s, ftdt/s, where s3 = X + . . . + A/*, we replace t by a form (At + B)/(Ct + D),

they are changed into linear functions of themselves. It will however be

more interesting to establish the transformation directly from the differential

equations ; and we begin with the general form of these and reduce it to

the form obtained above. Let then ,, w2 be independent variables, <r, or

IT (it), a dependent function, and
v

aa
. a* a* .

-&W 10g<r> y= -du^
l S<T '

-fc?
10**

these being also respectively denoted by pa (u), ^i(u), $>u (u), and

by 0>2ZB> etc.; let a,, Oj, ..., a 8 be any constants and, for brevity,

Q--(pk-6^, Q = p, -
BjMfc

r. /^ f> \tmu m i'mi *fmrn *
Qmi = fun

-
6pu

2
, Qall = t>21u

-
6jJb, j>u ,

consider the five equations

-
3 Qra = o-jO,

- 4a3ae + 3a4
a + atx - 2asy + ae z,

-
iQran = i (: - 3a2a5 + 2asa4) + a,x - 2aty + as z,

I

~
OfljCZj ~T ^ttgttg) ~T" Cv\"s

~~*
^^zJ/ ~* ^X'tL*')

""*
TTH^llll

~~ ^0^4 Tjf/itta "T" *jC^2
*"

Gt()
^~

iCtju ~r ''.,--.

It is at once verified that if

39 93
we may write

B. 4
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where, after the differentiations have been performed, we are to replace

M,', MJ' by MI and ,. Using the ordinary symbolical notation put further,

in any expression in which a,, alt ...,a, enter linearly,

a = ,, a, = d'Bj, Oj = dX*. ,
a6
=

02',

confusion being prevented, in case squares and products of the second order

enter, by the use of another set of symbolical quantities /3,, /8a, such that also

a = /91
'
... a, = /3/, and similarly for expressions of higher dimension in a ...o,;

then, with (a/3)
= a,/32

- a.2 /3i, it is at once verified that

a 4
- 40,0, + So,* i tf/S,' (a/3)

4
, 0,0,

- 40,0, + 3a* = $,'& (a/By,

i (0,0,
- 3a2a6 + 2a,a4)

= a,& (aj/8, + a 2&) (a/8)
4

,

} (a a - 3a,a4 + 2 2a3)
=

{ ,& (i& + .&) (/3)
4

,

(a a,
- 9a,a4 + So,

5
)
= ^ (at'/82

' + 4a1
a2 /81 /32 + , A1

) (*)< ;

hence if the differential equations written down, taken in the order of those

involving Qaza. Qn> Qu, 4m. Qiin. be multiplied respectively by hj, 4^'Aj,

Sh^hf, Jihji!*, h^, where A 2 , Aj are arbitrary quantities, and then added, it is at

once seen that they give

where A* = AjA, + A2A2 , a^aA + aA, (oA) = iAa
- a2A,,

and, as before, after differentiation u,', wa

'

are to be replaced by M,, j^.

Now let XD /ij, \2, /ij be arbitrary constants whose determinant

is supposed not to vanish, and will presently be taken equal to unity ; put

further let J. It ^lj, Blt Bt be symbolical quantities defined by

A 1
= a.Xj

so that, for instance,

J/ = o \, + SojVXa + . . . + a.6Xj
6

;

we denote A lt A t ,
Blt 2 respectively by a^, aM , y3x, /S,,; we have then

d , 8 a a 9"
1 "**^ 1

and V, = -, = ^A! + XaAS)
= Ax , say,

a

= AM> say>

and hence AA = A, A, + /i 2A2
= &,V, + ^3V3

= Vt ,

with (AB) = (\p)(a0), (4V) = (X/*)(aV).
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Thus the differential equations are the same as

iVt 22' = (XM)-' (AB)> AfBk
*

. 22' - (x/t)-44 (AV?2S,',

where 'S.(v1 ,v2) = cr(ul ,u2); herein klt k^, being independent linear functions

of the arbitrary quantities hi, Aj, are themselves arbitrary, and the equation,
save for the powers of (X/x) which enter, is of precisely the same form as that

from which it is derived; supposing (X/x)
=

\!/i2 A^ = 1, we may then

equate coefficients of like powers of &,, k.,, and shall so obtain five differential

equations of precisely the original form, save that a
, a,, ..., a6 are respectively

replaced by A = ax
6 = a \,

6 + . . . + a,V, A\ = *% =
oV/*i + ....... , -4, = *" 5

these are the coefficients of the powers and products of &,, &2 when we write

a,V + 60,V^s + + aA" = -4A" + GA&k* +...+ A tk.

The functions

are then given by

and there are similar equations for the differential coefficients of the third

and higher orders.

We can now choose the four constants X^'X,, /*,, /*, to satisfy three

conditions in addition to the one already imposed, X,^- X,^ = 1. For

instance we can take

J = 0, ^ = 0, 6A, + 154, + 20^1 3 +15A 4 + 64 5
= 0,

so that, for arbitrary x,

A, + 6A,x + . . . + Aa? = &A,x (1
-
x) (1

- ptx) (1
- p2x) (1 -p3x) ;

or we can take -4 = 0, 6^ 5
= 4, in addition to another condition, which may

be for instance A 4
= 0.

We shall limit ourselves to taking A 6
= 0, 6A 6

= 4
;
for this it is necessary

that /tj
=

/Ai$, where 6 is a root of the equation

taking Xj = 0, we have then X,/^= 1, and

or

then

20-
j>a + ^-2

f)n] ,
Pa =

4-2
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Now put

4 = X , G^l^X,,
and

so that

where 2l

02V
and put Pass, = jpj ,

etc.

Then it can be verified that the differential equations take the forms

previously obtained
;

for instance

34

which is the value of
-^ log 2 (v), becomes equal to

or

or

as in the differential equation of p. 48.

We recall now (pp. 13, 25) that the dependent variable of the previous

differential equations was a function

where If is a matrix of non-vanishing determinant, such that if the periods

for the integrals

be given by \y~
ldx -fi),i 2a>,2 ~'ii . '.

"_r/>,,, 2&>22 _O> , ]

then 2/T&) = 771', 2.ffa>' = TTI'T
;
while C was such that

A.(~ -\J ~^~ z, c
j aJ c *\ */ y*

To obtain the dependent variable of the generalised form of the differential

equations we are thus, as appears from the preceding work, to multiply by

eP, where H = ^y
X4V - ^X^a, ^\^, and afterwards to replace ,, i>2 by

i, M., determined from the equations
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where f/iT
4 =

, Q~* + . . . + 5 .

Now let

022=1/22 577X4, C& = ^21 injXj, Cn = On

add, to the equation above which defines 0, the quantity

2 {^X4F2*.F/-< + 3*5X3 (
F2*.Fi*.< -i- Vf'V^"

or
y

it is at once found, with the values A =\) , 6-4i = X1 , etc., as given above,

that the expression

2 (A + 3A t
x + 3A ta? + A 3x>) + 6 (A, + 3-4 2a; + 3

+ 6 (A 2 + 3A 3x +3^X + Asa?) z3 + 2 (A 3

is equal to

F (x, z) + 8(x-zy {^\txz + gijjX, (x + z)

the expression F(x, z) being as before S (xzf [2Xj,- + Xj<+i(a; + z)] ;
and it will

be seen that the former of these expressions can be written symbolically

as 2(A l + A,x)
3

(A 1 + A izy
>

; finally notice that if we put

-(*,+ *<)/(&,+**),
we have

we can then formulate the result of our transformation as follows :

The differential equations of p. 49

- ifW) = a& - *a&> + 3a4
"
4- a^. - 2a5fp21 + ajp

-

etc., etc.

are satisfied by
<T (u) = 2Sec

where, if 2<u, 2w' be determined for the sextic f(x) = ac + Ga^ + ... +aAaf, and

a certain dissection of the surface representing y
2

=/(#), as the periods of

the integrals I y~*dx, I xy~
l

dx, then A is a matrix of non-vanishing
Ja Jo

determinant, T a symmetrical matrix of non-vanishing determinant deter-

mined respectively by 2/tto = iri, 2ha>' = trir
;
and c is a symmetrical matrix,

determined, if f(x) be symbolically written a/ = (i + &)", and s2

=f(z), by
the fact that

n*
2ax>a*+ 2ys dx dz (* fz ,dxdz- + 2 [C.^KZ + c, 2 (x +z) + cn]

-

, 4,(x-z)- y s JaJc y s

is the normal elementary integral of the third kind II*'
"
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The differential equations being thus shewn to have an invariantive

character, various properties of the quartic surface which is represented by
the relation connecting $>.a , j>21 , j>u are at once deducible. This is explained

below, in the chapter dealing with the geometry of this surface.

But the form obtained for the differential equations,

iAW =
(o/3)

4aA
2
/3,,

3
. oV -

A
< (aA)W,

is of importance also as shewing almost at a glance how the differential

equations may be used to obtain the expansion of the integral function <r(w).

This is explained below, in the chapter on the expansions. And these

expansions in their turn enable us to prove succinctly various relations

involving the functions
j a(), p2i(w), pu (u); the properties developed in the

next chapter in regard to the geometry of the surface are for the most part

restricted to those which interpret these analytical relations.



CHAPTER III.

ANALYTICAL RESULTS RELATING TO THE ASSOCIATED

QUARTIC SURFACES.

14. INTIMATELY related with the theory of the functions under con-

sideration are two quartic surfaces. We give now certain elementary

properties of these, deduced, for clearness, independently of preceding

results.

To illustrate one step in the argument we presently employ, consider first

a simple example. Let a quadratic form, of non-vanishing determinant,

which we denote by af
2
, become, by a transformation written =/*(?', that

is by

fr
=

Mrif,' + M&' + M&', (r-=l,2,3),

changed to a'f* or

so that a''2=a

and therefore a' = Jiafj., namely

if A, A', M denote respectively the determinants of a, a' and p, this gives

A' = M 2A. Now the relation a' = pap is the same as a'~ l = p~
la~l

ji~
l
,

obtained by taking the inverse of both sides
;

if plt p.t , p3 be three variables,

and (pi, p.?, p,')
= p(pi, Pi, p3),

or p = p~
l

p', we have therefore

or, since

a~'= /A-'^l,,, A-M,,,
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we have

On Oia

On' Ore'

Osi a^'

Pi P,'

O]8

da,'

p3

'

a,2 a,3 p,

a-a aw p,

32 33 P3

Pa s

the determinant on the right being the quadratic form a~'p
2

multiplied by
- A. The transformation p'

=
JLp gives p'f, or p,'f,' +/),'&' + p3',', equal to

P-pg= p%'p = %p=p% ; conversely p''=pf defines the transformation of p
from that of .

Consider now the expression

where

partially expanded this is

+2 -
(a,

3
^,

3

(a^,
8 + Sa^a^

+ So^^sV + Sa.Oa^^jV + "^V} ;

suppose that, in the fully-expanded form, /S,
2

, /S,/92 , ^2
2

,
which enter linearly,

are replaced respectively by x, y and z; that 0,
3

, #i
2#2 , &&, ^/, which also

enter linearly, are replaced respectively by f, 17, ? and T; that
<f>?, <^>i

2

^>2 ,

</>i</>2

2
. <^>2

3 are also replaced respectively by f,

-
;, ,

T
;
and that a,

6
, o,

6
^,

a,
4
aj

2
, .... as

6 are replaced respectively by a,, o,, a,, ..., a6 . The expression

then becomes the quadratic form in , 77, T,

4* (r,r
- D + 4y (,f

-
fT) -I-

- T -
+ 3a4r)

5?+ OT),

whose coefficients form the matrix

a
, 3a, ,

3a, , -902-4.2,

o3

0s - 2y ,

- 3a4 3a5

3a5

a6

so that, using f to stand for the row (f, 77, ?, T), the quadratic form may be

written

Now subject f, 77, f, T to a linear transformation, as in the illustration just

considered, but not to the most general transformation in four variables, but

to that, depending only on three parameters, which is defined thus : let
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Xj, Xj, Hi, /j^ be four parameters subject to X^ X^ = 1
; put, in the

symbolical expression we have used to define the quadratic form K% 2
,

=
\(j)i + MI&', A =

X,/9,'p. 2,
= A ,

since these give

they leave the form quite unaltered
; they give as the transformation for

f. ?, >
T

> if) f course, we take f =
^j'

3
, etc.,

-X,2
X2, 2X,X2/t1 +

-v ,

or its equivalent

- 2\1/i,/fi ,

3X.X

', 2M2X^i + ,

V , 3X/X, ,
3X2V , V

at the same time x = 6f, y = Q\6^, z = 6 are connected with #' = #/-,

y'
= 616%, z = 6t* by the linear transformation

(a;, y, z,\)= / Xj
2

,
-

2X,/^ , ^- , ^ (x, y', z', 1),

-
A-iA*;, \ifA.^ ~r ^2/^1) /^i/^2 ^

X2
, -2X^, , ^,

2
,

, , 0,1
which is afterwards denoted by (x, y, z, 1) = m (of, y, z', 1), or its equiva-

lent

(a/, y
1

, z
1

, 1)
= i pj , 2/ij/i, , ^ , \ (x, y, z, 1);

X2
2

, 2X.X, , V ,

, , 0,0
while

a
' = aA

6 = a,,X,' + GajX,
5^ + ... + a6\2

6
, a,' = a/a^, . . .

, '=/.
With these changes we have

that is

(- o.'f
2 + . . .

-
8V2

).
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Thus if we write the transformation for f, 17, f, T in the form f =
we have

and, since, as is easily verified, the determinant of
p.

is (X,/^ Xj/i,)
6

,
or unity,

we have, as in the illustrative example previously considered, the conse-

quence that the determinant

3oi ,

- Sa? + 2z, 03
- 2i

9a2 4z, 93 + 2y ,
3a4 + !

r
,

9a4 4#, 3as

3a6 , a6

*jC\ . OCg i

"~~
Cj

3a,

- 3a2 + 2

a3 -2y
Co

Co

-3c,

3c,

-c,

is unaltered by the transformation, provided the transformed quantities

cc', ci, C2', cs
'

be defined by the identity

- CST - CT'
;

this identity gives, if we write, symbolically, c =
y,

3
,

cl
=

y^y.1 , c2 = 7,y2
J
,

c3
= 72

3
,
and similarly c

' = yi
3
, c/ = y/Va'. ,

the equation

thus the equations of transformation for c
, c,, c2 , c, are

Co^yx^CoX^+Sc.X^ + Sc^V+CaX/, c^yry,,,

In explicit form the ten equations expressed by K' = JLKfi. are

these giving every element of the matrix if' as a linear function of the

elements of the matrix K.

Further, it will be remarked that the equations above which express

x
'

, y, z in terms of x, y, z are the same as those occurring in the previous

chapter (p. 51) to express P^, P21) Pn in terms of j^, psl , (p,,;
and if we

there form the corresponding equations to express P^, P^,... in terms of

J?ZB Pan. > namely, by means of the equations there occurring

a a. a .'. 9

a^-^^ + ^av 80,

~'**
du,

+ **
aMl

'

it is at once seen that these are the same as those whereby here f , r/', f ,
T'

are expressed in terms of
, T;, f, T.

Taking in particular X,, /*, , X^, /x, so that

' = o/ = 0, 6aB

' = 6aAaM
5 = 4,

putting then

'=Xo, 6a,' = Xi, 15as'=X.j, 20 3'=X9 , 15a/ = X4



ART. 14] of the quartic surface. 59

and

the matrix K' takes the form

-Ac, |X,

-2F, 2Z

of which the determinant has occurred already (pp. 38, 41), under the name A.

Thus it appears that the functions p^, p.a , j)u which satisfy the generalised

differential equations of p. 49 are connected by the determinantal equation

\K\=0, obtained by equating to zero the determinant of the matrix K, and

that the corresponding functions j)^, p.m ,
... are given by

3! ,
9a2 4z, 9a3+2y ,

3a4

3a5 , -a, ,13

'o , 'i> '21 '3 )

We denote the determinant of K by V; by differentiating the unexpanded

equation V = 0, we have, if V^- denote the minor of the jtTa element of the ith

row, and f, ??, f, T denote the general functions
^222, etc.,

av

g = 2VM - 4V3, + 2V42
= 16 (r,r

- r
2
),

av

g -- 2V J4 + 2V3 + 2V3, + 2V 41
= 16 (,f

-
fT),

SV

g = 2V I3
- 4V

ffi + 2V, = 16 (# - ^),

while, if the variable t (= 1) be introduced to render V homogeneous in

, y, z, t,

= - o. V,, + e^V^ - 6^,3 - 90^ + 2osV 14 + ISajV^ - 6a4V24

- 9a4

= 4 (-a^ + 6a.fi;
- 6a2

-
9O.7;

2 + 2a3?T + I8a3r,- 6atr,T

If we write

the quadratic form in
, 77, f, T whose coefficient-system gives the matrix

K has the form
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wherein, however, x, y, z do not necessarily satisfy the equation V =
;

if we

denote them therefore by xit ylt z
t , and denote by x, y, z a point satisfying

V = 0, the quadratic form may be written

av av 3V av

and its vanishing represents the tangent plane to V =0at (x, y, z).

It may be remarked in passing that the determinant of five rows and columns

occurring above, consisting of the determinant V with the elements CQ, 3clt 3c2 ,
e3 ,

written to make a fifth row and a fifth column, if we change the sign of the first and third

columns, then of the second, fourth and fifth rows, then divide the second and third columns,

as also the second and third rows by 3, and write .r= 62) ^y = bt, z = 6
, becomes

Ctfj ) CEj , Ot^
^

"^0> ^3 y^l j CQ

os+6] ,
o4 362 , C]

CQ , C, ,
C2 ,

C3 ,

and it follows by what has been proved that this is unaltered in value by replacing

ar by a
6' r

a
r

,
br by B*~

rBr
,
where Bi

2=b
,
-B1J52=6i, #2

2= 62 ,
and cr by y

3 ' r
y
r

,
wherein

A ft A ft. A /*

Xj/i-2
-

\2fii
= 1

; namely, for linear transformations of determinant unity it is an absolute

invariant of the three binary forms, sextic, cubic and quadratic, denoted by a^, yx
3

, B^.

So the determinant of four rows and columns obtained by omitting the last row and

column of this, is an invariant of the sextic and quadratic. And herein 6,,, 6], 62 may be

replaced by any the same constant multiples of themselves.

15. From the invariant character of the matrix K we can now obtain

certain geometric properties of the surface V =
|

K = 0.

Firstly, as we have seen (pp. 57, 59), by means of equations of the form

Z =V* -r 2X2Xiy + V* -
f A

4

<V>

where \, fa, Xj, /^ are such that Xj/ij Xj^, = 1, tl

6 = 0, aAOM
6 =

,
it is

reduced to the form A = 0, in X, Y, Z, of which the expanded form has been

given before (p. 41); supplying a multiplier T (= 1), to render the equation

homogeneous, we have V = 16F, where F is of the form

+ \4 Y*Z - 4 YZ*] + (XZ - F2

)
2

;

thus T=0 gives F=(XZ F2
)
2

,
so that the surface touches the plane at

infinity along the conic XZ Fa =
; also, in form,

= TL + 2Z (XZ - f

= TM- 4F (XZ - F2

),
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the surfaces dF/dX = 0, SF/dY= 0, dF/dZ=Q, dF/dT*=0 thus meet T=Q
respectively on the conic XZ F2 = and the line Z = 0, the conic

XZ- F" = and the line F=0, the conic XZ - Fa = and the line Z = 0,

and on the cubic X -3T
3

... 4YZ*=
;
the six intersections at infinity of

the conic and this cubic are given by Y OX, Z= ffi>X where, as we see at

once on substituting in the cubic, 9 is a root of the equation

\o +M + X-,0
2 + X3

3 + X4
4 + 40" = 0,

together with X = Q, F=0, Z=l, corresponding to #=oo. Also when

X, F, Z are infinite we have

XZ - F' = (pjx

= xz- f.

Thus we infer that the surface V = touches the plane at infinity along

the conic xz y^ 0, and has nodes on this conic at the six points

x _ y _ _

1~ ^0~ffl~

where 6 is any one of the roots of the equation

^ + 60,0+15(1^ + ... +a6
6 =0.

Further, by taking the coefficients of transformation \lt /*,, X3) ^ to

satisfy the equations

the transformed form of V becomes of the shape

, iX, ,
1Z

,
-2F
2Z

-2F, 2Z , ^X5 ,

differing from A in having X = and X5 not necessarily equal to 4
;
when

expanded this is

j.Y (4,X + X4) + \5Z(4Z+ X,)

2F + iX,)] + 4 F" [(2 F + ^X,)'
- (4Z + X4) (4Z + X,)] ;

thus the plane F= touches the surface along a conic lying on ^X^ 4iXZ.

Now the transformation to these coordinates is given by X,/^ X,,/^
= 1,

=
\!<f>, where 0, <#>

are any two different roots of the equation

and

(X,Y,Z) = f tf, ZM , tf

^5X2, /i,\, +/ijX2 , /ijX,

x/, 2XA , x;
j
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in particular

,ll -
7^ y

Dividing this by /i,X,, and denoting ! + at3# by a, we infer that the plane
or

touches the surface V = along a conic lying on the quadric

We have had the relation K' = jLK/M for the transformation of the matrix

K (p. 58), equivalent to K^' = SS KnUri.)*-^, and here 2Y occurs as the fourth
r s

element Klt

'

in the first row of K'
;
the elements pn , p,M in the matrix fj- of

the transformation f = /if are (p. 57)

(V, - VX,, XiV, - V) and (-tf.tffr, -ftft,', p);

thus, dividing by ^3
Xi

3
,
the plane -P^ can also be written

K(i, -e, p, -00(i, -4>, <?, -< 3

)
= o,

and this can be at once verified to be equivalent with the form above. There

are thus fifteen such planes touching the surface V = along a conic, beside

the plane at infinity.

If now 6l ,
#2 , ...

, 6 denote the roots of the equation

a, + 60i# -f loo-ifl
2 + . . . + a6 0" = 0,

we can prove that the point of concurrence of the three planes P^.g,, P,, ,,

P
9jl) e,

is on V = 0, and is a node, and coincides with the point of concurrence

of P
4 , ,,

P
t ,

,
P

6 , 6 ;
the surface has therefore ten nodes of this form,

beside the six nodes proved to exist at infinity. To prove this, we first

transform the ten equations P9i ^ into the forms which they take when the

equation V = is transformed to A =
;
these special forms will be of interest

later in considering the expansion of the sigrna functions in series.

It has been remarked that the plane Pti $ is given by

l, -6, P,

further it is part of our definition of the transformation (p. 57), that the

ratios of the quantities (1, 6, &*, 6s
) are transformed by the same law

as the quantities (f, t), , r), previously denoted by f = /tf
'

;
the equation

of P
>
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is therefore invariantive, and we may suppose, herein, x, y, z to be the

variables denoted by x', y
1

,
z' on p. 57, and 9, <f>

to be the roots of the trans-

formed sextic. In particular let

az
6 = X + X, a; + Xja? + X^o

3 + \ta^ + 4af, =/ (#), say,

and put, as before, p. 59, for x, y, z respectively,

X+Js\4 , F+&X,, Z+^^;
the equation is thus, on utilising the identity given, p. 53, which connects

3 wih <> = (>< 2\. \.0 <> found t bwith F(0, </>)
= 2

(<?(/>)<[
2\.2i + \.x+l (0 + <#>)],

found to be
=

where now 0, <j>
are any two roots of f(x) = 0, or consist of one of these roots

together with the root ao , which has not been expressed in our non-

homogeneous method of writing the transformation
;
when

</>
is ao

,
the

transformed equation is

6X + F = {^-'(fl- ^)-
a

[2X + \1 (^+ <) + ... + 26>
2

</>

2X4 + 40^(0 + <)]),

where we are to take the limit of the right side for
<f>
= ao

,
which is 0*.

There are thus ten singular planes, P9j ^, of the form

e$x + (6 + 4) Y + z -
\(e - <t>)-*F (e, 0) = o,

where 0, $ are any two roots of/(a;)= 0, and five, P, of the form

0X+Y-ffi=0,

where is any root of/(a;)
= 0, beside the plane at infinity.

Denoting \(0 <f>)~*F(0, <f>) by e
8i $, it is at once evident that the planes

Pt , P+, P
9i 4 intersect in the point X=0+<f>, Y= - 0<f>,

Z = ee, $ ;
let

ff, <', i/r'
denote the roots off(x) = other than 0, <f>;

the plane P^' passes

through the same point if

by writing e
tt + in the form ^ (0- <t>)~

2

[F(0, <f>)- f(0) -/(<}> )] it is at once

found to reduce to 6$ (0' + <') + ^' (0<f> + 0'4>'),
which establishes this

identity; thus also the planes P#,v and P#,# pass through the same point.

If in addition to the conditions a/=0, a^aA1

8

=|, X^-Xj/u^ 1, imposed on

the four quantities X,, /*,, X.,, fj.,, in order to obtain the equation A = 0, we

make also OA
' = 0, the transformed sextic has also X, = and the ten points

(0+<f>,
-

0<j>, e, *) break up into a set of six of this form, where 0, <f>
are any

two roots of the equation Xj +X,0 + X3^ + X4
3 + 404 = 0, together with four

of coordinates of the form (0, 0, }X, 0~
l

) ;
that this last point is a node appears

at once from the transformed form of A, already given, p. 61,

(X,
- XZf + 41' [4.\,Z' + X,X4* + 1X3 (X, + 4,XZ) + *K,Z + 162*]

+ 4P [(2 Y + J X,)
2 - (4Z + X4) (4Z + X,) + 2 (X, + 4>XZ)] = 0,
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wherein the coefficient of 4>
T

is reduced to zero by X=6, Z=
provided

X,0-
3
[40

4 + X4
3 + XS

2 + X.,0 + X,]
=

;

thus it follows that (6 + <f>, 0tf>, e^ $) is a node of A = and an intersection

of six singular tangent planes. It is at once evident that the node of A = 0,

corresponding to the infinite root of the transformed sextic, namely the point

X = 0, Y = 0, Z=x, lies on each of the five planes 0X + Y- 0* = 0, as well

as on the plane at infinity ;
that the node X/l = Y/0 = Z/0

2 = oo
,
lies on

the six singular tangent planes constituted by, the plane at infinity, the

plane 0X + Y-ffl = 0, and the four planes 0<f>X + (0 + <f>)
Y+Z- et^ = 0,

where
<f>

is one, other than 6, of the roots of the equation

X + X
1 0+...+4<?8 =0;

and that conversely the plane 0X + Y 6* = contains, beside the node

X = 0, F= 0, Z= oo
,
and the node X/l = - Y/8 = Z/0

2 = x
,
the four nodes

(6 + <f>, <?</>, 60, 0), where
<f>

is any one of the roots, other than 6, of the same

quintic ;
while lastly the plane 0<f)X + (6 + <f>) F+ Z e

ti $
= contains,

beside the two nodes X/l = -
Y/0 = Z/fr = oo

, X/l = -
Y/<j>

=
Zj<^ = <*>

,

the node (# + </>, 0<f>, e^^), and the three nodes (0' + <f>', ff<f>, ?,#),

where &
', <f>'

are any two roots of the same quintic other than and <.

The sixteen nodes of V = thus lie in sixes upon sixteen planes each

touching the surface along a conic, while through each node there pass six of

these planes ;
in particular, as was stated above, if 0, </>, t/r, 0', <f>', tfr',

be the

roots of the fundamental sextic, one node is the intersection of the six planes

P
tt t, PB , *, P+ t *, Pff

, #, Pff
, #, P# t *>.

If 0, <f>, ^ be the roots of the cubic

p + Spt
x + 3pj,a? + p3a? = 0, and ff, <(>', i/r'

of q + '3q,x + Sq^x? + q,^
3 = 0, the

fundamental sextic a + Qa tx + . . . + asaf being written as a product of the

cubics, or say, symbolically
H 6 rfi 8ft 3
a Px<lx>

the node in question has coordinates x, y, z obtainable by equating powers of

the arbitrary quantity X in the equation

or, what is the same thing, of the arbitrary quantities X, fj.
in the equation

x\
t
i + y(\+p) + z=-$s (pq)

1(p^ +p,<qi).

To prove this result we may either proceed as before, first shewing this

equation to be of invariantive character and then considering a particular

system of coordinates for which the coordinates of the point (x, y, z) are

known
;

or we may proceed directly as follows, with the notation of

symbolical algebra. Writing ax = alxl +o^xt , and differentiating the equa-

tion ZxPxlx three times with the operator z^fdx^ + z^/Sx^, we find

20 *Jaf=p,?tf + Pftf + 9 (Pxpz q,qt
'

+p*p;
2

?) ;



ART. 15] The Wedflle surface. 65

but

(xzf (pqf (pxqt +pzqx)
= (pjq,* +pz-qx

- -
2pxpz<Mz) (Pxqz+Pzqx)

=px
3
qz +Pz

3
qx

3 -
(PX-PZ qxqz*+pxpz qx-qz) ;

write now #, = 1, x2
= 0, 2,

= 1, z3
=

<f>,
with pf = 0, p^ = Q; thus

20 = - 9

and the result to be proved becomes, in the particular case when the arbitrary

quantities \, p, are replaced by 6, <j>,

which is of the form of one of the six planes passing through the point

whose coordinates are stated to be given by the formula. The result is

then obvious.

One further remark must be made
;
the transformations of the surface

V so far employed have changed the nodes which are at infinity among
themselves, and the finite nodes among themselves

;
there is, however,

geometrically no such essential separation of the sixteen nodes into these two

sets, any two of the sixteen being equipollent (gleichberechtigt). We do not

stop now to prove this, as it is unnecessary for our purpose ;
it will appear

incidentally below.

16. Associated with the surface V = 0, which in future we may call

Kummer's surface, is another surface, also of the fourth order, having a point

to point correspondence with Kummer's surface, but in some respects

simpler; to this surface, called Weddle's surface, we must, for the sake

of the periodic functions by which it is expressed, devote some remarks.

If as before K denote the matrix whose determinant is V, each of the

four expressions denoted by K(%, ?/, , r), of which for instance the first is

(p. 56)
-

o,,f + 3o, r, + (- 3a.; + 2z) C+ (03
-

2y) T,

is linear in x, y, z. We can then write

where W is the matrix

W= , 0, -2-r, 2?,

2r, 2f, -4^,
-

4f, 2;, 2f, 3a2f +9a3 ;
9a4 f + 3a5r

27?, -2f, 0,

and the Weddle surface is that expressed in homogeneous coordinates , t), f, T

by the vanishing of the determinant of this.

We have denoted by f = /*

'

the general transformation of f, T;, f, T, con-

B. 5
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sidered here (p. 58) ; denote similarly the general transformation of x, y, z,

by (x, y, z, 1) = in (x', y', z'
, 1). We have seen that with

and

Qt = -

the expression a,-Q] + /Q2 + zQ:1 + Qt is unaltered by this transformation
;
thus

if Q/i Q'l, Qs, Qt he the transformed values of Q,, Q.it Q3 , Qt , we have

(Q>, &', Q,', Qt')
= m(Q,, Q,,, Q3 , Q4 ). Also if W denote the transformed form

of W, namely the matrix whose first row consists of the elements 0, 2r',

2f', a. 'f
'+ 80/77' Sctsi'f

' + a3Y, we have, as we have seen that K' = p.Kfj.,

W

and hence W' =
JL Wm,

whereby every element of W is expressed as a linear function of the elements

of W; and the determinants \W'\, \W\ are equal.

Considering the cubic curve in space expressed by

and in particular the six points lt lt ...,0g upon this, where #1( 6, ...,() are

the roots of the equation

a + 6aj^ + looj^ + . . . + a.0" = 0,

the cones ^ = 0, Q2
= 0, Q3

= contain the cubic curve, and the cone Q4
=

passes through the six points, as is obvious at once on substitution. The

quartic surface expressed by j

W
\

= 0, or, as we shall write, fl = 0, may be

regarded as arising by the elimination of x, y, z, 1 from the four equations

where Q = 0, denoting
x

is the most general quadric, through the six points ; it is thus the locus

of the vertices of quadric cones containing these six points. The cone formed

by joining any point of the cubic curve to all other points of the curve

is a quadric cone
;
the surface fl thus contains the cubic curve. A degenerate

quadric cone containing the six points is formed by any pair of planes

of which one contains three of the six points, and the other the other three
;

thus n = contains the ten lines of intersection of these pairs. And if any

point be taken on the straight line joining two of the six points, a quadric

cone can be constructed with this point as vertex to contain the six points ;

the surface ft thus contains also the fifteen joining lines of the six points.

Also each of the six points is a node on the surface, as may be seen directly
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by taking such a transformation as makes one of the roots 6 of the fundamental

sextic become infinite, and verifying that if a6
= the equation 1 = contains

no term in T3 .

These properties are derived by regarding j

W
\

= as arising from the

assumption of the consistence of the four equations expressed by W(x,y,z,l) = 0.

We may however regard \W\ = as arising from assuming the consistence of

the four equations expressed by W(f, 77', ", T') = ;
these are the equations

fdQr/d + riclQr/dr, + 'dQr/d + r'dQr/dr
= 0, for r = l, 2, 3, 4; they express

that the polar planes of (, 77, f, T) in regard to the four quadrics Q,
= 0, Q.2 0,

Q3
= 0, Qt

= are concurrent, or that the points (, 77, f, T), (f ', 77', ", T') are

conjugate to one another in regard to all the quadrics passing through the

six base points, and as they are symmetrical in regard to- these two points

(f) and (f
'

),
the surface fl also contains (', 77', ", T'). If we put

so that F=0 is the developable surface generated by the tangent lines of the

cubic curve f/I = 77/0
=

/#'-
= r/Q

3
,
it is at once seen, by evaluating the

minor determinants of the elements of the last column of the matrix W, that

f ', 77', f ', T' are expressible in terms of , 77, f, T by means of

t*r / iff t

% n T""
^-TdF-~~df"

dr 38? 3877 8?

so that the equation fl = can also be expressed by

8f 8r 3 877 8? 3 8? 87 8r 8f

wherein Q is the general quadric through the six base points ;
and as this

relation is merely an identity when for Q are written either QL or Q2 or Q3

it is sufficient, to represent fl, to write Qt in place of Q. We may interpret

this form geometrically by introducing the line coordinates, I = be' b'c,

m = ca' c'a, n = ab'a'b, l' = da' d'a, m' = db' d'b, n' = dc'd'c, of the

line of intersection of two planes

a + 617 + cf+ dr = 0, a'f -t- ^'77 + c' 4- d'-r =
;

then the equation expresses that the polar plane of (, 77, f, T) in regard to

the developable F=0, is intersected by the polar planes of (f, 77, , T) in

regard to all the quadrics Q = 0, in lines belonging to the linear complex
I + 3^ =

;
and (f', 77', f', T') is the pole in this complex of the polar plane of

(f> 7
7. . T) in regard to F= 0. Putting

r.

52
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Q. (f. v. r. T') _ ft(r. i?'. r.
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& <r, v, r. T >_
Q, (?, 9, fc T)

' '

Q, (, i,, fc T)~

=

& (, 17, fc T)

=

hence it follows that the joining line of (f, i\, ?, T) and (', 17', f", T') has for

its intersections with Q, = the same two points as with Q.2
= 0, and with

Q3
= 0, namely is a chord of the cubic curve f/1

=
tj/6

=
%/ff

1 =
T/#* ;

it is

divided harmonically at (f, 77, r) and (', 97', ", T')*.

If Q, = 0, Q.,
= 0, Q:,

=
0, Qi = be any four quadric surfaces whatever, the

conditions that the quadric Q = xQi + yQ., + zQ3 + Q, = should be a cone with

vertex at (f , 97, f, T) are expressed by the four equations such as

0Qi/3 +yW? + *<>Q*M +W? = o,

which we may denote by W( (as, y, z, 1)
= 0, or W((x) = 0, where W( denotes

a certain matrix
;

if fl = W( ,
the equation ft = represents a quartic surface,

the Jacobian of Qlt Q2 , Q3 , Qt . When this is satisfied the four equations

expressed by Wj ((')
=

(), obtained by multiplying the rows of O respectively

by f, 17', ?', T, can all be satisfied, and the points (, r), f, T), (f', 77', f ', T') are

conjugate in regard to all the quadrics Q, = 0, Q2
= 0, Q3

= 0, Qt
= 0. We can

write Wt (x) in the form Kx (), where Kx is a symmetrical matrix, and when

Q = is a cone, the parameters (x, y, z, 1) are the coordinates of a point on

the quartic surface \KX =0. It can be shewn that, under this condition, the

polar plane of (f ', rj, ", T'), in regard to this cone, is the tangent plane of

fl = at (, 77, T)
= 0. For putting down the relation F (f ')

= for

consecutive corresponding points ( + dl; ), (f
' + df ),

we have to the first

approximation

leading, by W((x) = 0, if (x) denote (x, y, z, 1), to

Wd( (') (*)=-Wt (df) () = - Tf
{ (a) (df) = ;

thus the arbitrary increments (d) satisfy a linear equation

4df+ Edit + Cd + Ddr = 0,

in which A, B, C, D are definite functions of (f, rj, , T) ;
the tangent plane

of n = at (f, 77, f, T), if (X, Y,, Z, T), or (X), be current coordinates, is thus

which is the polar plane of (') in regard to the cone xQ t + yQ-- + zQ3 + Qt
= Of.

*
It is easy to see that the tangents of the cubic curve belong to the complex 2 + 32'= 0, and

that any point of this curve and its osculating plane are pole and polar plane in this complex.

For this complex of. Eeye, Gfotnftrie de Position (Chemin), Deuxmc Partie (1882), p. 114.

t The quartic surfaces = 0, |A'z j=0 are considered by Cayley, Collected Papers, vol. vii,

p. 100. The above construction for the tangent plane of the Jacobian is proved geometrically

for the case of four quadrics with six points common by H. Bateman, Proc. Land. Math. Soc.,

New Series, vol. iii (1905), p. 232.
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Pass back now tor a moment to the functional relations
;

the general
differential equations of p. 49, if we differentiate that one involving g^ in

regard to M,, and that one involving g^ , in regard to u.,, and then subtract,

lead to an equation linear in
p^,, p21 , pu ,

and also linear in
(p,,,,,, ^i. jj211) j)m ;

and there are four equations similarly obtainable; replacing (p^, ... by x, ...

and p^, ... by f..... these are the four equations expressible either by

K(& V, T) = 0, or W(x, y,e,l) = 0; thus the surface V = \K\ = is satisfied

by writing a; =
$>.a (u), y = $n (u), z = pn (u), and the surface fl = |Wj = is

satisfied by writing f =f>22>(), i)
=

p&i(u), f= (p.,,, (it), T =
j>ln (). Either of

these tsvo sets of functions can be expressed algebraically in terms of two

parameters; see above p. 40, and below p. 77.

17. With a view to having ready to hand concrete geometrical inter-

pretations of certain functional relations which will be subsequently obtained,

we desire to give now the proof of a group of birational transformations of

which the surfaces V = 0, fi = are each susceptible. The relations expressed

by W(x, y, z, 1) = K (f, 17, f, r)
= establish a point to point correspondence

between these surfaces
;
we shall prove the transformations for the surface

Q = 0, and thence deduce the corresponding formulae for V = 0.

Put, as before

so that P4
=

is, equally with Q4
= 0, a quadric passing through the six base

points, which becomes, for

reduced to Pt
=

X,,
2 + \^rj X/f?

2 + X^f - X4f
2 + 4r

;

while, correspondingly,

W / 1 f a,4 v = / -2r 2f - af + 3a,7;

1 i, \ / 2r 2f -47? 3a,f
- 15a2r; +

1 ,,
J I -4f 27/ 2^

0001/\2T/-2|:

of which the left side will be denoted by WP, where P denotes the second

matrix. When a, = 0, the surface fi = has a node at (0, 0, 0, 1), correspond-

ing to the infinite root of the fundamental sextic
;
let ae

= 0, 6 5
= 4, 15a4

= X4 ,

etc., and let (f, rj, f, T), (,, T/J , {",, T,) be two points of fl = collinear with this

node
;
we first verify* directly that

*
Geometrically, the equation

represents a cone with vertex at the remaining intersection of the Weddle surface with the line

joining the node (0, 0, 0, 1) to ({,, 17,, f,, T,).
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- 2r, 2, - X.& + X,7?, \ (- ft, ft, P4>

-
ft) = 0,

2r, 2?, -4*?,

4& 2,?, 2,

27?, -2f,

where P4 lias the form given above. We have denoted the general matrix

from which this is derived by W, and its determinant by fl
;
we shall denote

this matrix, with f, T?, f, T for variables, by w, and its determinant by o>,

indicating the substitution of (&,*h, &, *i) for (f, T?, f, T) by writing w,

instead of w; similarly Q,
(1)

, ft
(1)

, etc. will denote the result of substituting

, ,
... for f..... We may suppose f,

=
f, 77,

=
T?, i

= We are to prove

w, (- Q,, ft, P<, ~ ft) = 0, = w (- ft">, ft), P4<, - Q,oi) :

it is at once found, with f,
=

^, i?,
=

T?, f,
=

f, that

ft'
11 = Q, + 47? (r,

-
T), &< = Qs

- 4f (r,
-

T), ft'" = ft, P4
= P4 + 4(T(Tl

-
T),

or say

(- ft'", ft"
1

, P,'",
-

ft
01

)
= (- ft, ft, P4 ,

-
Q,) + 4 (r,

-
T) (fc T?, ^ 0)

and that w (f, T?, f, 0) = -
} (ft , Q2> Q,, 0) ;

hence

w (- &<", Q,
111

, P* 01
,
-

ft
(1)

)
= w (- Q,, Q lf P4 ,

-
ft)

- 2 (r,
-

T) (ft, Q,, Q,, 0) ;

now, since fQ, + 7?Q, + Q3
= 0, we may put

w (- ft, Q, ,
P4 ,

-
ft) = (2AT, 2JV2 , 2^, 0),

where Nlt Ns ,
N3 are certain cubic polynomials in f, T/, f, T; then since

w(f,i7,r,T)-(ft,ft,ft,p^
we have

2 (^,f + ^2 7? +N& = w(- ft, ft, P4 ,

-
ft) (, T?, ?, T)

"W(fc 9,fcT)(-ft.ft,P4,Wft)
= (Q,,Q,, ft,P4)(-Q,,Q,,P4,-ft)
= -$,Q2 + Q2Q1 + ftP4-P4ft
= o,

as well as

thus identically

f i? ?

and we find in fact on computation that these fractions are all equal to 4<a,

where o> is the determinant of w. Thus, when
, 77, f, T satisfy the equation

to = 0, we have

NI_N*_ x,

ft "ft Q,'
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But when both (f , tj, , T), and (f, tj, , rj satisfy the equation ta = 0, or

- rv + pp - v) + v, (f,T
- m* + if

r - 27,'T + i,?
1

) + 4 (Rr2 - ijpr
- i?V 4- Z?)

= 0,

we find, by an easy calculation,

On the whole then we have

w (- &">, Q,
w

, P^'
1
',
- &'

1

')
= (2^, 2 2̂) ZNt , 0)

- 2 (Tl
-

r) (QIt Q2> Qlt 0)

=
0,

as we desired to prove.

This result relates to the case when the fundamental sextic has the form

X + Xja; + ... 4- \4#* + 4>af, and the points (, rj, T), (f,, ij,, 5i, T,) are collinear

with the node (0, 0, 0, 1) of w = 0. By transformation we can obtain the

corresponding result when the fundamental sextic has its general form and

the two points considered are collinear with any node of ft = 0, and thence

again the result for <a = when the two points considered are collinear with

any node of this.

Attach dashes to the variables which have been used in the preceding

verification, and so write the result obtained,

w/w.aVa'.JY)-^
where j= , Q \ o o

1000
0001
00-10

Now take (f, rj, T), (,, 17,, , T,) collinear with any node

Jr3 >p i|r

of ft = 0, where
>/r

is any root of the sextic

4 + 2003-i/r
3 4 loc^i/r

2 + 6a5 i/r + ac
= 0,

and take four coefficients of transformation X,, X2 , /Xj, ft? defined by (p. 51)

put also (pp. 57, 69)

V -2X,/*, us \ / 1 iA-/ \ ,

\ /

V -2X,M2 ^ II 1

l'\000 1
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and (, i. ?, T) = / (', V, f, T'), ( ih, ft, T,)
=

/* (ft', ,,', ,', T,'),

the matrix /* being given explicitly in terms of X,, /*,, X?, /*, on p. 57
;
then

JLWm is of the same form as the matrix W but has coefficients a,' = ax
6~r

a/
in place of ar ,

and variables (', 77', f , T') in place of f, T;, f, T (p. 66), and

jiWmP' or /iTFtr is of the form w (p. 69) in variables ((', ?;', ", T') and

coefficients

X,,
=

a,,'
= aA

e
, X, = a,', . . . , X4

=
a./, X6

=
4, X^ = ;

thus we have

further Q,, ft, Q,, Q4 being as on p. 66, m(Qlt Q,, Q3 , Q) is (ft', Q,', ft', Q/),

in the variables (', 1/1 ", T'), as we have seen, so that P'fii (Q,, Q.,, Qs , Qt) is

(Q,', Qi, Qt, Pi) as on p. 69
;
thus

(Qi, Q,', Q/, P/) = 5(Q,, Q,, Q,, Q4).

Hence, the equation

is the same as

iwj5F (ft, ft, 0^,00-0.

In passing from the variables x, y, z to x, y', z, and thence to

(X, Y, Z) (p. 60) we have put successively (x, y, z, 1)
= m(x, y, z, 1) and

(of, y', z',\) = P' (X, Y, Z, 1), so that (x, y, z, 1)
=

(.Y, F, Z,I); put

7 = #=/ -i x ,

ooo
o o

,

o

-i

so that, as we see easily, 7"= 1, and define a matrix Te by means of

r -1 =
as'fS

= 5i
i

7~
1

CT, or 7 = 5T8w,

so that Te

~l is a skew symmetrical matrix whose elements are functions of the

quantity 0, where 6 = ^r~', and

a + 6(t,0 + 15a,^ + . . . + a,6 0" = 0,

and, if

(*i, y\, Zi, 1) = *> (X\, YI, Zlt 1), (ara) y,, ^2 , 1) = w (Z2 , F,, 1),

= reCT (Z,, F,, Z,, 1) . ^(Z2 ,
Ft> 2̂ , 1)

= 5r.w (Z1 , F,, Z,, 1)(Z,, F,, Z,, 1)

thus finally the relation above becomes, if we omit the factor
~ji,

whose deter-

minant is not zero, and multiply throughout by i,
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and here, as we easily calculate,

so that #P' + 55' + 77-' = 1
;

and this is the covariantive form corresponding to the case when (, 77, f, T),

(?n *7i > ?i> TI) are collinear with any node =
?/#

= f/0
2 =

r/0
3 of H = 0, the

fundamental sextic being (ff
=

i/f"
1

)

V =
F(TJr)

= <i
i/r

8 + 6a,^
5 + . . . + as

= 0.

The forms of p', q',
r' are given by the statement, easily verified, that if a-

be an arbitrary quantity

2p (pa* - q'a + r')
= (a^a.

3 -
a/)/(tr

-
i/r)

= a^a,V(-
- f),

where
0.^
= 0.^ + a2 , ,,

= aiO- + a2 ,
a1
= nu , a," 03 = ^, etc.,

so that

a3) + S

and the whole matrix Te is determined by the statement that, for arbitrary <r,

a
,

-
<r, 1, 0),

= 2p / 0, -r, q, p' \ (<r
2
,

-
or, 1, 0),

r, 0, -p, q'

-q, p, o, r'

To modify the equation W1TI
~ 1

(Q1 , Q2 , Q3 , Q4)
= to the form suitable

for the case when the Weddle surface is to = 0, we take any /bwr constants

\,,\2,/t,, /i.,
such that Xi/i-j X./x,

= 1, and put

X,' 2\2 \, \,
s -
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and

= (a* VT' + )' . (X,
- X^) = F, ($') . (X,

- X^y,
where

i/r'
= (^ -

/i,)/(X,
-

X,,i/r) ;

then we find

' '

7;
1

, say, (^ = ^'-'),

where, with

Xn = ox6, X, = 6a^ M) X2 =15a/ M
2
,..., X =

, p t
= [-

we have

/>1p = ^'
2
. p.?

= -t', /.

'-1 + x,^'
3 +

so that f*p' + qq +rr'= 1,

and the equation /ZlT, T^1

(Q,, Qa , QS) Q4)
= 0,

written in the form

/Hf.tr.w-Tr's-'.scQi, Q., Q3 , QO-o,

becomes (p. 72), if we further suppose (p. 51)

where ^- is a particular root of F(^fr)
= 0, the equation

Wi7<"
a
(Oi.^^.-P)"'0J

where 6' is any root of the sextic,

\ + \0'+ \*Q'- + + X4 0'
4 + 4^'5 =

0,

and P1=-X p + X
1^-X2^ + X3 T??-X4 r

2 + 4?T)

the form of w being given on p. 70. This form includes the case when ^/ =

or 6' = oo
;
then

p,
2 = -i(6X()^'

5 + ...+4) = -l, p,
= -, say,

^ = 0, 5 = 0, r = t, / = 0, ?'
= 0, r' = i,

and 7g-~
l reduces to y1

.

When ty' is not zero we have p,r'
=

1, and p^p', p^q' may be taken in

the forms
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Also, if a be an arbitrary quantity, T= -, 0' = , ,
and ee<r be given as

before by

r=0

we have p, (p'a- -q'ar + r')
=

(ff
-
-f)

And, if /(<?')
= *o + M' + ?

we have p* = - F{ (^')
=^V' (*')

=
iVr'<(X, + 2M' + ... + 4X4 0'

3 + 200'4
),

or Kl = pl 0'- =</$/' (8'),

so that

*,p=l, Klq = -0', Kl r = 0"-, Klp = -

If (a;,, y,, z,) be a point determined from (f, >?, ^, T) by

where 6' is a number, so taken that the fourth quantity on the right, as on

the left, is unity, the fundamental equation (p. 72)

y,r^<ft,ft,ft,$)o

gives W1 (x,,yl ,z) , 1)=0,

so that (a;,, y,, z,) is on the surface V = 0, and is the point previously (p. 65)

associated with the point (,, 17,, ",, T,) of fl = 0. In the same way the point

(x, y, z) determined by

(x, y, z, 1)
= CM

1-'
(&<, &">, &"', &'")

is on V = 0, and is the point associated with (f, rj, T). The tangent plane
of V = at (x, y, z) is (p. 59), if X, Y, Z be current coordinates,

and contains the point (xlt ylt 2,) if only

CT-XQi. Q2 , Q,, ^(Q,, Q2 , Q3 , Q4)
= 0,

which is satisfied identically in virtue of the skew character of F"1
. Thus

each of the points (x, y, z), (#,, ylt z^) is on the tangent plane of the other,

and their joining line is a bitangent of the surface V = 0. We shall call

(a;,, ylt z,) the satellite point of (a;, y, z) associated with the root
-v/r

of the

fundamental sextic which occurs in F, there being six such satellite points,

one for each root
; they are the points of contact of the tangent lines to the

plane quartic curve in which V = is intersected by the tangent plane of V
at

(a-, y, z), drawn from the double point, (x, y, z), of this curve
; denoting the

equation of V = in homogeneous coordinates x, y, z, t, when -
, ^ ,

- have
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been written for x, y, z, by F(x, y, z, i)
= PV, the satellite point is determined

(see p. 59) by
SF W 'dF\

In particular when the fundamental sextic equation has an infinite root,

and f denotes what F becomes when we put o5
=

, a, = 0, and at the same

time put x, y, z, t for x fo 4 <, y-$as t, z-^aj, t, the satellite point of

(a:, y, z) corresponding to the infinite root is (see p. 70)

(*, y,, **,) = 4 /
- 1 \ (Q,, Q,, Q,, P)1000
0001
0-10

y
, , ,

and the tangent plane* to f= 0, or say A = 0, at (a; y, z) is

Xyi
- Yxt-Z + z^Q,

in terms of the satellite point (#,, ylt z} ) ;
it can, as we have found the matrix

yS
'

(p. 74), be similarly expressed in terms of the other satellite points. This

equation arises below from the functional relations obtained
; geometrically it

expresses that the tangent plane at (x, y, z) of A = is the focal plane of

(xi, y\, Zi) in the linear complex expressed, in line coordinates (I, m, n, I', TO', n'),

by
n + n' = 0.

In general terms, the bitangents of V = are rays of six linear complexes

expressed by
F(Z, F.Z.TX^.y., *..*) = 0,

or, in line coordinates, by

pi' + qm' + rn' +p'l + q'm + r'n = 0,

where p, q, r, p', q',
r' have the values given previously (p. 73).

Two further remarks should be added. Taking the case when in the

fundamental sextic A = 0, \s = 4, let x = jf^ (M), y = pa (M), z =
jjn (u),

=
Pznfy), i)

= py,
l (u), etc., so that A(f, ij, f, r)=0; let the satellite point

of (x, y, z) be denoted by (x, y, z) and (', 17', f', r') be determined to corre-

spond, so that A' (f ', ,', ?', T) = 0, and f'/f = v'h = ?l With Q, = 4 (^T- ?),

Qs
= 4 (i)%- ?T), Q, = 4 (? - /

2
),
and P4 as before, we have

^-.JL _?: i
ft -Q,~-P4 Qs'

*
Any surface of which the tangent plane is z = ax + l>y+f (a. It)

satisfies a differential equation

z-px-qy-f (p, q). Comparing

Xp + Yq-Z + z-px-qy = with A'S*,, ()
-

l'j ffl () - Z + ft, (} = 0,

we have for the Hummer surface p= &.a ()=/, ?= - f^ (u)
= -

x', z-px -qy = &n (u), and
hence A (

-
q, p, z -px- qy)=0, where A is the symmetrical determinant of the text.
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so that y'f + xv\ + = 0,
-

y'rj + x'%+ T = 0,

while we also have, from the form of A,

and hence

#-#' 2/-y' *-*' xy'-x'y y (y
- y) - x

'

(z
- z'Y

If then

we have

*! -
"

*> *i

, , , -

h <"i

and
Sl
'~ s

{
c

= yVf - (aC + y') ,' = X''?'
-
yV = (*'?-

u ' a' V v't' n't'"* v 'i '2 o '/ /3 '/'*. Oi ~~
o.> 01 to "~~ oo

fcj
Oi (/a oo

l<i 01 I/O 02 v\
j that t~^

=
p Z '

which are to be compared with the formulae (p. 38)

2) 'l) &>YP (tl,

f -1 f -T

In other words (cf. p. 40) the chord of the cubic curve

f/1
= -

1J/0
=

f/0
2 = -

T/^
(

,

which passes through the point (f, 77, f, T) of the Weddle surface, cuts the

cubic in the points
=

<,',
= </, where (<,', t,') are the hyperelliptic parameters

associated, not with (^, 77, f, T), but with its satellite point ((', 17', f, T') ;
so

that, if M' be the hyperelliptic arguments associated with this latter point, we

have

From the relations

we have

c tj dy'
= (afd% y'di) + dr), gdy' rjdx = x'dt) y'dg + d%.

Also

and
,

2
2
2 = 16 (a,

-
$,) (a,

- <2) (a-j
-

,) (a.j
-

fcj)
. . . (c

- <x ) (c
-

k),
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where a,, a?, c,, c2 ,
c are the finite roots of the fundamental sextic, so that, if

Pa t

= y + !* - i

2
. etc., P

,' y' + chx -
a,

3
, etc.,

we have a,
2
*,

3 = -

ind 1 = 1=? = .^.

further the cone containing the space cubic f/1 = 17/0
= etc., whose vertex

is at the point 6 of the curve, is G\,
= 0, where

Ce
= Q,

-

so that -P^P^...^Q

and thus I =
r

Hence (cf. p. 43)

3dr

i(Q3Ca ...^
and

These are forms given by Schottky, Crelle, cv., 1889, p. 249.

Taking the expressions on p. 41 for f
'2

, etc., it is found, for 10 = 0, that

!!_<2/
P 16<r'

where <r = & [X,^ - X^2 + X,i|C- X4 (IJT +

while 4w =

+ Q3

+ Q [- 2X.fi; + X, (ff + T) - X,

hence
-
18(0,0,,. ..) 16 <r

or (Q.^.-.O^rQ,,
so that Schottky 's forms for the integrals of the first kind are expressed so

as to contain only a square root.
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18. Consider now two matrices F1; To corresponding to the roots
^Jr,, i/r2

of the sextic equation of p. 73 : with the values for pt .../)/ ... and p., ... ps

'

...

there given, we have, identically,

which is zero because
i/r,, ^r2 are both roots of the sextic

;
hence

F.Fr 1 = /
-

r, g, Pi' \ /
- r/ q,' p,

-p, ?,'
|[

r,' -p,' ?1

o n' 1 1
-

<h K o

/
V-jj,

_
?a

_
r:!

-
ftps

-
rir.,

-

from this it follows that we have the equations

r,rs
-' + rsrr' = o, r.-'n + rrT^o, (r.r,-

1

)

1 - - 1 = (rr'r,)
2

,

of which the others are the same as the first, either being equivalent with

what in geometrical phraseology is expressed by saying that the linear

complexes associated with F, and F2 are in involution, or are apolar.

Take then the correspondence (pp. 75, 76) of the surface V expressed by

dF SF dF\

tlie sign
=

being used in place of =, to indicate that we disregard a common

factor of &i, y-i,
zt , tj', the geometrical interpretation of this correspondence

which has been given shews that, in virtue of

this is equivalent with

r i/3^ W W ^
1

l^,' 3yi' 8*1' &/'
if then we take

. _ r _, ftF_
dF SF dF\

ddx,' fa" 3V dt,j'

that is (*, y]a ,
212 , ,,)

= Tr'r, (, y, ^, t)................... (A

the equation F^'F, + Fr'F, = gives

(M, 2/12. B, <w) = (n , yn , 2a . *ai). (a'. .!/-
z

,
= TrT, (,2 , ya ,

Za , ta),
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and the equation (A K) determines an involutory linear transformation of the

surface V = into itself.

If we further put
. _dF dF dF dF

and notice that any linear transformation

(a;, y, z, t)
=

h(a>vi , yn , zn , *,.,),

or x = /< #,., + Auis +

dF , dF dF dF dF
a-*"s- +

*-ay+* s+*B,
fSF_ d_F_W12

'

ay,,'

we shall have, as the transposed of the matrix Fr'T,, is l^F,-
1

,

,
N_ r _ir r -i ftF SF dF dF \

(*>m,ym,*m,*m)3l Ifli
~

, -- , .........

It can be shewn that the matrix r3

~i r.
!ri~

1
is a symmetrical matrix,

independent, save for sign, of the order of the suffixes, and that the trans-

formation ^52, is also involutory. To prove it a symmetrical matrix, notice

that its transposed matrix is

T^rt T^=(- r,-
1

) (- r,)<- r,-
1

)
= - rr'iyv1 = rr'r.r,-1

,

because Tjy-1 = - IVY-', and this = - rr'^r.r1 = rrTaFr1

,
which is the

original matrix
;
to prove it independent of the order of the suffixes 1, 2, 3,

notice that

r IP T1 1 _ _ P IP P I _ P IP P 1 _ P IP P 1

3 l alj 1 3 1 1* |
* 1 2 is-1 ! *3 I1 I

_ P IP P 1 P IP P 11 1 1 2 1 3 * 1
1 3 1 2 )

each of these equalities arising from the equations rr~T, = r,~'rr ;
to

prove the transformation involutory, denote it by

<v / z n = r-irr-'x,y,z,t I, 1,1, , , ,
--

so that

because FjIV 1
is the transposed of lY"

1^; then

i*\ jji o E' ^ E* d E* \ / ^ Jt* ^ Jf* ^ 15
1

TI / Qf 0* OJf Gf \ f^ 1-1 "n / */-*^ \Jf \Jf C

which, rearranging the suffixes, expresses x, y, z, t by the same functions of

x, y, z', t' as does A,.a express x ', y', z', t' in terms of #, y, z, t.
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If for an instant we write

!= /a h g u v~' /dF dF dF
d_F_\

h b f v \ \dx' dy' dz
'

dt )
'

*

g f c w
u v w d

the pole of the tangent plane

dx dy dz dt

in regard to the quadric

II = aX 2 + bY"- + cZ* + d + 2fYZ + 2gZX + 2hXY+ 2uX + 2vY + 2wZ = 0,

is given by the three equations

and thus coincides with (a;123, 1/123, 2i23> ^m)-

As we have obtained a point (#m , ...) from (x, ...), so we can obtain points

(#124, ...) etc., there being twenty in all. It can however be shewn that

(#ia. ...) is the same as (x^, ...), namely that

r3-T2rr1 = r4

-ir6r.-
1

,

or r1ra

-ir3r4

-ir6rr 1 = i.

Of this result a geometrical proof can be given, founded on the interpretation

of the transformation F^'F.,^"
1 as a reciprocation in regard to a quadric

surface, which lias just been noticed
;
we shall give an analytical proof,

having, it would seem, an interest of its own
;
not to interrupt too far our

present work, it is placed as a note below (Appendix to Part I., Note I.).

Assuming this result we have now shewn that, from any point (x, y, z, t)

of the surface V = 0, can be found 31 other points of the surface, whose

coordinates are rational functions of
(a;, y, z, t) ;

these are, first, the six

dF dF dF

whose geometrical determination from (x, y, z, t) has been described
;
then

there are the fifteen points

(*v, yij. *ij, tij)
= ri-

i

rj(x, y, z, t),

obtained from (x, y, z, t) by a linear transformation
; and, last, there arc the

ten points

, , -,,,_ F SF dF dF\
(**, yijt ,

z
;jk ,

t
ijt)

= r

which, as we have seen, are the poles of the tangent plane of V = at

(x, y, z, t), taken in regard to ten particular quadric surfaces. Each of these

6
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correspondences is involutory, in the sense that they are respectively equiva-

lent with

(x, y, z, t) = rr'ijtej, yy, *,

If the writing of SF/dx, dF/dy, ... be denoted by T, the symbols of the

32 points are

1 F'-'T
1

F--'F- F-- 1FT'i.-1 7T

*> i i *! L i l
j>

l i l
}
L k J j

or, if Ti

-1T= Si, are, in virtue of T3 = 1 and S?=l,

I, Sit SiSj, S{SjSic,

which, because 8{Sj
=

SjSi and SiS^SaStSiS^ = 1, represent a group of

32 transformations, every one equal to its inverse, and every two commutable

with one another. By application of all the operations of the group to any
one of the 32 points, all the other points are obtainable. The sixteen

operations 1, IV"
1

!^ form a group by themselves; the sixteen points arising

from (x, y, z, t) by the operations of this subgroup, lie by sixes on sixteen

planes, of which six pass through every one of the sixteen points ; for

consider the plane represented, when X, Y, Z, T are current coordinates, by

Ti (x,y,z,t)(X > Y,Z,T) = Q;

it contains x, y, z, t since F; is a skew symmetrical matrix
;

it contains

(xijt ytj, ztj,
t
tj ) provided

ri (x,y, Z,t)rrrj (x,y,z,t)
= Q,

which, since the transposed of the matrix Fj is - Fj, is the same as

TiY^T} (x,y,z,t}(x,y,z,t) = Q,

and is satisfied because Tj is a skew symmetrical matrix. The plane in

question thus contains the six points (x, y, z, t), (x^, ...) for j^i; next

consider the plane

r.r.-T.te y, z, t)(X, Y,Z,T) = U;

since the transposed of the matrix r^T., is F^"1
,
and

r.iy-T.iy-'r, (x, y, z, t) (x, y, z, t)
= o,

it follows that the plane contains the point Fi~T2 (x, y, z, t) ;
and thence, as

rira
-irs

= r2ra

-ir
i
=F3rrir3) and F1F3

-ir3=r4r(i

-ir6 the same plane contains

the points

r2-'r3 (x, y, z, t), r.-T, (x, y, z, t), r4

-ir5 (*, y , z, t), re-T6 (, y , z, t),

rt->rt (x,y,z,t);

there are six planes whose coefficients are the four quantities Fj (x, y, z, t),

and ten planes such as that whose coefficients are the four quantities

r,ril

~
i

r,(a;, y, z, t); the six planes Fi(a;, y, z, t) pass through (x, y, z, t), and

the six planes r^a'Tf (x, y, z, t) pass through the point F^T, (x, y, z, t).



CHAPTER IV.

THE EXPANSION OF THE SIGMA FUNCTIONS.

19. THE differential equations denoted (p. 50) by

iAAW =
(a/3)

4aA
2
/3A

2
. aa' - a

ft

4 (A)2
<r<r'

have been seen (p. 48) to be satisfied by an integral function

where S(MI( u.>) is a power series in ult u.t converging for all finite values of

these, and c^, a.2 , cit c2) b are arbitrary constants. By choosing these constants

suitably we can introduce various simplifications into the form of the solution,

and then, as we know, by the formula here put down, the general integral, we

can obtain this by reintroducing the constants into the particular integral.

We have seen in particular (p. 24) that the equations are satisfied both by
odd and by even functions. Consider first an even function

;
we have for

any values of ult M2 ,
if or, a-lt <r12 denote cr(u), dff/dult dV/Sui&Mii etc.,

+ 20j
3

)/o
J

, etc.,

so that, if o-(0)=l, o-j(0)
=

0, <rs (0)
= 0,

^(0) = -ffa (0), |>,1 (0)
= -<r21 (0), | u (0) = - <ru (0),

Vm(ty = |^(0) = fUO) =
f,,.(0)

=
;

the last equations shew that the values w t
= 0, w2

= make vanish all the

minors of the determinant V (cf. p. 59), so that the point is a node of the

surface V = 0; it is however not at infinity since
g>u (0), etc., are finite

;
and

denoting these last quantities, the coordinates of a finite node of the surface

V = 0, by #, 2/0,
z

,
the development has the form

<r (u) = 1 -
(# M,

3 + ST/jMait, + Znuf) + terms of fourth and higher order
;

it will presently be seen that the terms of the fourth and higher order are

determined, from those of the second, directly by the differential equations ;

the series then represents one of the ten even functions before met with

(p. 24).

62
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Consider next the case of an odd function
;
as then a (0)

= 0, we have

also
$>z>(0)

= oo
, p21 (0)

= oo, f>n(0)
= oo, and the point u, = 0, 3

= is at

infinity on the surface V =
; as we approach this point, however, the ratios

$w(u) : f>2i(w) : J?H(M), being those of va^ <r.? : era,, oyr, : eralt o-,
2
, become

the same as <r2
a

: oyr, : <r,
J

;
now the terms of the fourth and third order in V

are easily seen to be

(xz
-

y*y> -a xs + GtMfy
-

So, (a?z + 4xif) + io, (Zxyz + 2if)
- 3a, (xz* + %2

z)

and, for x = (0-0-32 <rJ)/<T
i

, etc., we find

xz-f = [a- (o-jjOu
-

<r,2
2

)
-

(o^o-!
2 + o-noy - 2o-21 o-.2<r1))/

J
.
= ?<*'* say>

so that V = is equivalent with

P" + a (0-0-2,
-

a-./)
3 + . . . + a. (ovr,,

-
oy)

3 + <r*H = 0,

where H is an integral function of ult w2 ;
for a=0, cr.a = Q, o-2i

= 0, o-n =

this reduces to

- a oV + 6a,o-2
5
<r,
- I5a^a-J<ri> + 20a3o-2

3
erj

3 - 15a4o-2
2
a-,

4 + Gajoyr,
5 - a6o-,

8 = 0,

and the ratio cr2 (0)/cri(0) is the negative of a root ^ of the equation

F (^r)
=

a,,^
8 + Goji/r

6 + 1 5a2i/r< + . . . + 6as>/r + a, = ;

thus the terms of first order in the expansion of an odd function are, save

for a constant multiplier, of the form w, u^r, and the values w,
= 0, M., =

are associated with one of the infinite nodes of the surface, there being, as

we have also previously seen (p. 24), six odd functions. It will be seen below

that the terms of third and higher orders are directly determined from those

of the first by the differential equations.

We apply these results now, first to obtain some terms of any even

function
;
we use for this the general form of the differential equations, as

affording the most convenient way of explaining the general method of using
the differential equations for the expansion of the functions: and then to

obtain some terms of the expansion of a particular odd function, which, for

several reasons, appears fit to be regarded as the fundamental sigma
function.

20. An even function is of the form

1+-5+E-+S+
21 41 6!

where Ur denotes a homogeneous polynomial of dimension r in tt, and ,; we
have expressed Ut above in terms of the coordinates of a node of the surface

V = 0, and we have previously found these coordinates (p. 64). It appears
thus that
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where pu
3

q^, or (p,M, +p2u^ (qt v^ + q^u^)
3
, is one of the ten ways of writing

(V*!
6 + QoiUfUt + 15ajM,

4
tts

! + . . . + 6a5M,M2
5 + a6 Mj.

6

as a product of two cubic factors. If, now, in the differential equation

4AfcW = i ()< fltffli' . ao-' - 1 a,,
4

(A)' oV,

we equate the terms of aggregate dimension 2n in M,, M/, w.2l M/ on the two

sides, we obtain, if we put

/ /

the equation following, which we shall refer to as the determining equation,

1 /* Aft$> i Of2?'2\ I ^2n+4 "t+"l ,
^27>t/4 ,-m + 3S8 2

) ^^y-,
+ ^T! + 2T 4 !

+ ' ' '

2 ! (2n + 2) ! (2n -f- 4)

*

.

2 ! (2n - 2) !

- aA
4
(a,

2
(ds

2 -
d,d,')

- 2a, a, (<2,d,
-

d,d,') + a,
1
(d,

2 -
d, d/)

!"" 2 ! 2n l"" (2n + 2

but, if f/r be a homogeneous polynomial in MJ, MJ of dimension r, which we

may write symbolically (piUj+p^u^Y or pu
r

,
we have

_
r\ ~(r-s)\'

and if in this we put M, for h t and ^ for h^, it becomes pu
r
/(r-s)l or

Ur/(r-s)\; as in our differential equations the Aj, A2 are arbitrary and we

are to put M,, a for ,', MS' after differentiation, the substitution h1
= u1 ,fi^=u.l

after differentiation is allowable ; thereby, from

if both m and i be greater than 4, we shall obtain

Um Ut . ft P" ./ P,_ _^_ fr* ^
(m-4>! Ar (k-4,)\ ml \(m-3)l(k-l)\ (k-3)\(m-l)l

or say 2Cin:tUmUt ,
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where 14 6

m\(k-4,)\
~
(m- l)\(k- 3)! (T- 2) I (*

-
2) !

4

(m-3)! (Jb-l)r (m-4)! kl'

the same formula applies to cases where m, or k, is less than 4, provided it be

understood that terms which would involve in their denominators factorials

of negative numbers are to be omitted. In particular, if m 2?i + 4, k = 0, or

if m = *2n + 2, k = 2, we have

i 4 6

(2n-2)!2! (2n-l)!
T

(2n)!'

thus the left side of the determining equation has the form

1 Z7n 1 "+1

q /0\
|

""" }
** U2n-M-2i,2i l-'2n+4 ffltt-

/ 2t>

where under the sign of summation no polynomial UT occurs for which the

suffix r is greater than In + 2
;
from the form of the determining equation it

is thus clear that the differential equations determine Um+t in terms of

polynomials Ur of less suffix; taking then, in turn, n = 0, n = l, etc., all the

terms of the expansion of the sigma function are seen to be determined when

those of zero and of two dimensions are given. It may be worth while how-

ever to enter into more detail as to the form of the right side of the determining

equation; if Um =pu
m

, E/t = <?*, we have

w*

-
Iftr . ilfl ~~

)

this being a polynomial in u^, it, of dimension m + 2, whose coefficients are

linear functions both of the coefficients in Um and of those of the sextic or,,
6

or /; denote this by _
;

(/, Um\ ;
further

11 nln ,
% -I- v\ ,*n fi ^

< [u&d; - 2ai a2d2d,' + a^rf,'] fiLJsL^ ^im ! K \

. ^__^^^_^^^_^^_^^__^_^^^ ft 4 f yy 2/A-j 7W 1 /^ * 1 T) /> t /ji Wl*~l /* fc 1 n\ ft \ ^^~
(m I ) ! (k - 1) !

' ^ ^ Ptfs + Pu' 9 JfcW ;>

becomes, on putting u^, ut for t</, w 2',

2

(m-l)l(fe-l)!
a"

4
(a '

2

P^- ~

where (ap) denotes a,^)2 2 pi !
we may denote this by

2
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9u
then

aS [af (df
-

d,d,')
- 2*l02 (M. - d,d t ') + of (<*,'

- d&)}
UmUk

'
'

+
^1* ,

/// ! A* !

when
,', w,/ are replaced by w,, 11%, is equal to

tW, Um)* 2 (/; %.. tfrU frm (/ ff*)2

&!(m-2)! (fc-1)! (m-1)! m!(/fc-2)!'

it being supposed that neither k nor m is less than 2. The value assumed by
the other terms of the right side of the determining equation when w/, 2

'

are replaced by MJ, M2 ,
needs no explanation.

The terms of second degree in the expansion of the sigma function have

been seen to be an integral covariant of the two cubics into which the funda-

mental sextic is split in order to define the particular even function under

consideration
; it is manifest from the previous work that the terms of any

other degree are also an integral covariant of these cubics.

21. If we attempt to apply the preceding method to determine an odd

function

the differential equations will similarly determine

(g4
_ 4S3g' + 3S*S") (t/^tT,' + U'm+3 U,)/(2n + 3) !

in terms of t/,, U,, ...
, t/^n+i ;

on putting, after differentiation, M,, w2 for M/, w,'

and w,, w.2 for A,, /t2 ,
this gives

n JT

thus the terms Um+3 are determined in terms of preceding terms, except
when n = 2

; namely {/, and Us ,
in succession, are determined from Z7,, which

we have found to be of the form c (u^ ifnu), and U^ ,
Un , ..., without exception,

are determined from preceding terms
;
but U7 is not so determined. It is

necessary then, presumably, in order to use the differential equations to

determine U7 ,
to keep them distinct, that is, to abstain from replacing the

arbitrary quantities h lt h 3 by ult u2 ;
it is to be remarked however that the five

separate equations are in general more than is necessary : after four differen-

tiations of a term U-JJ'm+z -\-UiVm+3 there results, when M,', wa

'

are replaced

by u,, u,, a binary polynomial of 2n dimensions in w,, w2 ;
thus each differential

equation gives 2 + 1 linear equations for the determination of the coefficients

of Um+3 ,
and the aggregate of the differential equations gives 5 (2n + 1) linear

equations for the 2n + 4 coefficients in Um+i \
these are known, by the theory

preceding, to be consistent, and that they are sufficient, except when

2n + 3 = 7, is shewn above
;
but in general they are more than sufficient,

and it will be shewn below that when U3 and Us are found we can determine
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the terms U7 and 7, simultaneously, by equating terms of dimension six in

the differential equations, and this without utilising all the linear equations

given by the differential equations.

In order to justify this statement in detail, it is sufficient to take the

differential equations in the forms to which they are reduced by such a linear

transformation of the arguments M,, w2 as corresponds to a transformation of

the associated sextic to the form

X, tt,
4M2

this linear transformation of the arguments being accompanied by a

multiplication of the sigma function by an exponential eAu^+Stt <
a'+Cu*

t

equivalent with the addition of certain constants to the second logarithmic

derivatives p&, p21 , pn ;
this has been explained in detail in a previous section

(pp. 49 52). The forms obtained, which we shall utilise, were, writing x, y, z

for pa, pa , p,,,

i
-
2pfflpn - 4p21

2 =

Pirn
- 6pn

a = -
1X^X4 + $\\3 - S\tX + X,y + X,* ;

multiplying these by hj, 4^/A,, ..., A,
4

i
and adding, we obtain

(S<-4S
3
S' + %&&)**'

=
\Pv<r' + [A (d,

2 -
dsd.,') + 5(d2 d,

where P = - XA4 + SXAV + (XX4
-

1 + 8X3W +'4X2AaV + X,/;,
4
,

With the general form of the fundamental sextic the linear terras in an

odd function have been shewn (p. 84) to be a constant multiple of M, ^rus

where
i|r

is a root of the equation a^(- + Ga^5 + . . . + a, = ;
with the trans-

formed form now under consideration one of these roots is zero
;
we shall

therefore consider tliat particular function for which the linear terms, in the

notation now being employed, reduce to w, ; any other is conversely derivable

from this by transformation. Putting

where Um-i is a homogeneous polynomial in M,, u, of dimension (2? 1),
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with Ul
= u l ,

and equating terms of dimension zero in the differential

equation, we have

i (S
1 - 483 S' + 3S2

S'
2

) ( Z7, 0,' +W)
= [4 (d2

2 - d2da') + B (d2 d,
- d2 d,') + C(d,

2 -
did,')] ,,',

and hence -
f&Ut . VUt

' = - Cd,d,' ,,',

which, putting M,, ,, for w,', W after differentiation, and A, = M,, h^ = i^, gives

4f/3w]
= SW/M, + X-jV,

or /3
= \2 tt,

3 - 2w2
3

.

Equating terms of aggregate dimension 2, in M,, M 2 , ,', M-.', we have

and this gives, when we replace ,', ^' and A,, /*2 by M,, w2 ,

,!/. .U3
* U*

M, fj t
^ 21

= IP M,
S + A, (- 2M 2M,) + 5 (+ M,

2
) +

leading to

- U, = 2X4^5 + fXsMjX + oXj^M,2 + 5\, M/W,
3

For the determination of U7 ,
as has been explained, a more laborious

process may be followed. Picking out the terms of aggregate dimension 6 in

,, M-!, it,', M/ in the composite differential equation

era = o-o- + . . . ,

we have, for the determination of the 8 + 10=18 coefficients in U, and U,,

the 35 equations obtained by equating the coefficients of h^rh1
r
u,

t

e~8u1', for

r= ... 4, s = ... 6; putting

Z7,
= fl.u/ +

^-|
fi", ,, +

2^ ,

^2 2
5
Mr + . . . ,

9 !

U, = ->." + 9.K, +
g j 7 j

^^'"i2 + >

it is found that the 14 equations obtained, by taking the coefficients of

hfuf-'uj, hjhju.f-'uf, for s = ... 6, that is, the first two of the five separate

differential equations, determine

// , Ht , ..., He ,
K ,...,Ki,

beside furnishing a single relation connecting H7 and K^; the remaining

coefficient H7 ,
of U7 , together with Ke , may then be found by taking the
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coefficients of /i 2
2A 1

2w3M,
5 in the composite differential equation ; and finally

the remaining three coefficients of Ut , namely K,, Ks ,
Ks , may be determined

by taking the terms in hfhfuf, A^UjUj", hfuf respectively; and having

thereby determined U7 we may verify the form simultaneously obtained for

U, by putting, in the composite differential equation, after differentiation,

h1
= u lt AJ= WJ. Except as, perhaps, the best practical method, and to secure

accuracy, not all the work indicated is really necessary, since the covariantive

character of the expansions enables us to determine all the coefficients in U^

from one of them, and similarly for the terms of any other dimension, as will

be exemplified in detail. Nor is it necessary to give here the actual

computation ;
the results, found by the method, are

H7
=

for U7 ;
and for U9 are

Ka
= 16Xs - 6X3X4 - 2X4

3
,

KI = - {X3
2 - 8X, - 4X3X

K, = - $\s\ - 4X,X4
- iX3X4

2 - 20X,,

# = - 6X0X4 - iX2X3X4
- IXA.

2 -
kV -

Hi>*.

"4 ~ ~~
"-0^3 "! "-2 ^0^4" 4^-1X3X4 yX2"\4,

+ iVX4 ,

?
= - 10X 2 + 1X0^X4 - %1-X X2X3 + ^VX, - A*iV,

s
=- ^-\a\^ + ^XoXjX,

- 4X =X4 + 3X,
2X2 ,

= dhrV + iV

22. The simplicity of the forms of the differential equations which have

just been used arose partly from the addition of certain constants to the

functions
jt^, p21 , pn (see p. 52); we introduce now the more general

function
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and write

Mj (XoM,
5 + XiW/Mj + XjttiX* + XaW^Wa

3 + X4M]I< 2
4 + 4w2

5

)

*
5 + 5A24

i + lOAttaX2 + 104 3W2
2
W]

3 + SAWaMj4 + AMI") W,,

so that

"0=1) -"1 = ^7X4, -4 2
=

40^3> -"3 =

putting OK = F, + F3 + F5 + ...,=^
(
U

t + ^ +^ +...),

where each V denotes a homogeneous polynomial of the dimension indicated

by its suffix, we have

and so on. The forms F,, V3 ,
FB ,

... are then unaltered by any transformation

M2
= u2

' + AM/, MI = M/,

provided the correspondingly changed values A a', AI, A s', ... are also intro-

duced, those namely given by

A,

or

where

Now if

V(A t', A,',... , ,', M/, ...)
= 7 (A, A, .-., ,, -).

then, as uj = u% hu^ ,

thus, if Fm = P M2 + mP,^-1

!/, + ^m (TO
-

1) P.uF^u? + ...,

we have SP = 0, 8P, = P0> SP2
= 2P, ..... SPm = 7Pm_1 ,

and so 7m =
\

/u
l

& '. i

which we may denote by
v ._ A"'"2*? M' m e -im'h

When we carry out the changes of notation we find in fact

~
, 2 ... M,, 0),
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where

<rK (u, 0)
= -

|4,U + J (54 24 4
- 34 3

- 24,4 5)

+ y^ (674, + 604 2
<14 5 + 754,4 4

2 - 664,4 34 5
- 1354 24 34 4

- 4 44 5) u1

+ ffay {2504 4
3 + 29104 24 3

24 4 + 2764 14,24 5 + 1084 24 B
S + 9004,4*4,45

- 11714/- 3484 34 44 5
- 9004,4 34 4

2 - 11254 2
24 4

2 - 1804,S4 6
2

-
7204,14,4.} u"

+ etc.

The full values for

are

F! = ,, F, = - ^(M2
8 + 34 lMa

s
zt, + 3

FB
=

JM, {3 (4,
2 -

4.) w,
4 + 6 (4^, - 4,) ,X + (34 2

a + 24,4, - 54 4) w,X2

+ 2 (4 24 3
-

4.) ,,' + (- 34, + 54 24 4
- 24,4 8)

F7
= -^(4^ - 4 2) M/ + ^(54,4^2

3
- 104,4, - 4, - 34,24 S

-
94,4,') u,X'

104 24 4
- 34 2

3 - 44,4 6
- 64,4 24 3) u2

3
M,

4

4 + 24,
24 5 + 34,4 3

2 - 44 24 5
- 54,4 24 4

- 4 2
24 S) w,V

^ + 64,4 24 5 + 94 24 3
2 - 104 S4 5

- 154 s
24 4)tt2V

, + 604 2
24 5 + 754,4 4

a - 664,4 S4 6
- 1354 24 34 4

- 444 5) u,
7

;

while

, + 164,4 3
- 344,24 2

- 4 2
2 - 24 4)

2
2 + 214,

S4 2 + 114 24 3 + 34,24 3 + 4,4 4
- 4 5)

(- 394 2
3 + 274,=4 2

2 - 104,4,4s + 64,
34 S + 134 24 4 + 54,J4 4

+ 44 3
2 -64,4 B)

(34,4 2
S - 144 2

24 3 + 34,'424 3 + 104,4 24 4 + 4 34 4
- 34,24 5)

124,4 2
24 8 + 304,

2424 4 + 44 345 + 204 2
24 4 + 404,434 4

- 54 4
2 - 624,4^ - 124,4 a4 5

- 124 1
34 5

- 184,
24 3

2

)

- 54,4 4
2 + 304-4,4, + 204,4 34 5

- 184
1

24 24 6 + 454,4 2
24 4

- 274,4,4,' + 34 2
34 3

- 24 44 6
- 3143

3 - 154 2'4 8)

24 4
2 + 1324,

24 S4 5 + 2704,4 24 34 4 + 1054 2
34 4 + 124,4 44 5

- 754,244
- 634 2

24 3
2 - 164 24 34. - 1624,4 2

24 5
- 1344,4,'

- 44 5
2 -1504,M 4

2
)
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4 A, A A - *7 F A A A 2 Pfi yj 3 J \
3.5 ^fjLi\jCi I cJ^ljXl2-il4 Uv/XL2 fl-s)

**i /osn J 3
_ - _ (ZOU^li^O f* \ *

-720J.M.4,).

23. From the expansion which precedes we can obtain that of any odd

function in terms of variables /, u/ associated with the general form,
'

+ . . .

of the fundamental sextic; for this we have only to write

where m (/) + n-v/r)
= 1, and change the notation for the constants by means

of the identity

4m (/ - i/ru,') [.4 5m6
(w/

-
^u/)

5 + . . . 4 -4o(nMi' +pu^Y] = aoW6 + + (W-
Instead of doing this we shall obtain, as far as the terms of the third

degree, the expansion of any other odd function than that considered above,

for the reduced case when the differential equations have the form given by

(84
_ 4g,g' + 3g2

g'2) oa
' = ^paff

> + [4(i _ jjj) + B(^ _ d^')

+ C (d? - d.d,')] ffff
;

putting o- = M!
-^ + 3

+ ..., =U1 + +...,

and equating terms of zero dimension in ult MJ, u^', u^ on the two sides of the

equation, there results

(8*
- 45'S' + 3S2

S')
uiu>'+ u'u*' =

[A (ft
_ d&) + ...]U, Ul,

o \

leading, when ,', ./ and /t,, A2 are replaced by ult u^, to

where J
, 5,,, C

1

,,
are the values of A, B, C when hlt h^ are replaced by M,, M2 ;

the right side is found to be of the form

(M,
-
VT^)H - 3U.U,

3

(\ot/r
5 + Xji/r* + X,^

3 + XsV'
2 + X4^ + 4) J

as
i/r

makes this last quintic function vanish, we therefore find

- 4 U3
= M2

3

(X/f
-

4) + S

24. As a last example we find the terms of the fourth order in an even

function with the same reduced form of the sextic and differential equations.
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As in the general case (p. 83), if the constant term be taken to be unity, the

terms of the second order will be ^(xltu^+ 2y M2M, -f^w,
2
), where

z<>
= MO) = - 93

log * (0)/aws
J

, etc.,

are the coordinates of one of the finite nodes of the surface A =
; equating

terms of zero dimension in the differential equations, we have, if

leading to

= u,
4
(3#

2 + i\s + X4* + 4>yn) +. 4^, (3# y + \$tt

- 2zt)

(3y 2 - X -
4Xi<F

It will be noticed that in the coefficients of the powers of u,, w, here, the

linear and constant terms are the same as in the fundamental differential

equations of p. 88. The reason for this will appear below.

25. In the preceding expansions the arguments have throughout been

denoted by M,, w2 ; they are not the same in the various cases; in order to

give clearness some remarks may be made. For the function

^ (M)
= Seau

' + 2/m" + 1'"T '1

',

the coefficients #, 2/> z<> in the expansion

1 - ^u* + 2y, s 1 + Zou?) + ...

are the values of
ffn (0), |>2i(0), Pn(0), where fa (u) = - & log ^ (w)/9ztj

2
, etc.

We have proved (p. 38) that if, with &a = \a + \1t+ ... + 4f, =/(),

/' dt ['" dt f
l

> tdt r tdt
MI = I

-+ I
-

, HIs I
- + I

-
,

Ja, Jo2
* Jo, S ] ai

S

where the sign
= means that additive integral multiples of periods are dis-

regarded, then

<i + 1,
=

fr, (u), t,t,
= - fr (), F&, L)

-
2a.ii,

= 4 (,
-

2)
3

PII () ;

hence putting <j, <2 at a. and a.,,

^0 = 01 + 02, y = -
Oifla, ^o = $F(ai, Oa)/(a,

-
a,)',

the branch-place values a,, a3 being those used (p. 31) in describing the dis-

section of the Riemann surface whereby the matrix T, and the matrices A

and a, are determined.

For any other even function we have a similar expansion ;
without
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entering into unnecessary detail, such a function has been shewn to be of

the form

<D (u)
= W' +P^+b * (, - A t , u,

-
A,) ;

expressing ult M2 in terms of tlt t2 as above, and putting (p. 29)

/ dt
, (* dt r id r* tdt

A!= I -+ I
-

, A a =\ -+l -,
Ja, S J a,

S J 0l
S Jo, S

the coefficients #, y , occurring in the expansion of 4> (w)/4> (0) are the

values, for M, = 0, M, = 0, of the expressions

namely, preserving the notation prg(w)
= 92

log^(?()/9Mr9Mg ,
are the values of

^ri(A l , Ay) ;
thus ar = +

<j), y 0<f>.
As to za the general form is simplified

here in virtue of the fact that 6, <f>
are roots of the equation f(t)

=
;

to

make this perfectly evident we recall two facts : first, every one of the ten

even functions <1> is obtained (p. 24) by taking A l ,
A 2 so that

24, = 2<oum, + 2o>i3ra2 + 2ft>n'm,' + 2a>12'?na
'

>

24 2
= 2ranm 1 + 2(0^171., + 2&)o

I'm,' + 2&)2.,'m2',

where m^, m3 , m^', m2

'

are such integers that mjnf + m^m^' is even, with

proper corresponding values of the constants plt p.2 in the outstanding ex-

ponential ; every one of the six odd functions is also so obtainable provided

,' be odd : second, if by the rule of p. 32 we calculate the values

we find that they correspond to even functions when 6, <j>
are any two different

roots of the quintic f(t) = 0, and correspond to odd functions when
<}>

is the

infinite place a, and is either one of the roots of f(t)
= or is also the

infinite place. It follows then that in the function above jJuC/i,, A?) reduces

from 1(6
-

<)-" [F(0, <f>)
-

0'<f>'],
where 0'2 =/(<?), f2

=f(<f>), to

and we have

26. For an odd function

we may consider two cases : first that when

tdt fa tdt_ f dt f
a dt _ f

e

1
=

/ 7 +
"7'

d *l
J a, S J a , .' a,
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where 6 is one of the roots of /(<)
=

;
then the quantities

-a2

or
j>r,(A lt A 2), are infinite, but have finite ratios obtainable by proceeding to

a limit from the general formulae when ,, <2 are finite,

' Ol

namely, ^(A) : $n(A) :
$)11(A)=1 : : (fi; these however are, as previously

remarked (p. 84) the ratios <./ : ^V^ : <&,
2

,
where <I>r = 3<&(.4)/dw,.. Thus the

linear terms in the development of the function 4>(u), with the values of

A lf AS here taken, are, save for a constant multiplier, w, 6~l
u^. Lastly, for

the odd function <I>(w) in which

^. /*+/?. M" +]*?.J a,
s J a, J a,

s J Of

the argument is similar to, but not a particular case of, that just given ;
both

are particular cases of the argument for the case when the fundamental

equation is a sextic, not a quintic. Either for that reason, or because we

have exhausted all the other cases, there can be no doubt of the result : the

odd function <5(w) in this case is that given, save for a constant factor, by
the expansion (p. 89)

<r(u)
=

,

It is interesting to verify that this is in accord with a result previously

found (p. 34) as to the necessary and sufficient form of the expression of the

arguments of the function ^(w) in terms of one arbitrary variable in order

that the function may vanish identically. In accordance therewith, <r(u)

vanishes when
ur
- ur

a
> ' - ur

a
- "' = ur

x
-
a + ur

a a
\ r = 1, 2

where ur
x

>
z

-L
r-*dt

as (p. 32) -ur
a

-
n> = ur

a
-
a

>,

this is the same as ur = ur
x - a

,

which, by replacing (x) by its conjugate position, may equally be written

M= tt a, x
r "r i

herein (x) is any position on the Riemann surface s2

=/(<) Considering now

the case when (x) is near to the infinite place a, putting x = ~ 2 in the forms

tdt

*-/*-. .-r
Jx S Jx
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we have, when is small,

UoV -
,V

and the substitution of these series in the expansion for cr (u) given above

reduces it to zero identically.

27. /ft what follows we shall regard the function cr(u) of pp. 89, 90, which

is of the form,
a (u)

= eP'"'+P

as fundamental ; and shall put

From the equations such as (p. 38) 32

log ^ (ut
' + u'" a

i)/du,j>
=

tj + tz , we
shall then have such equations as

d* log <r (u
a > *' + ua > 'a

)/9 2
2 =

ti -M2 ,

where, in both integrals of the argument on the left, one of the limits is the

infinite branch-place a ; in other words, if we put

'tdt

we shall have

rdt rdt rtdt r
MI= -+ -i i I

- +
Jh s ) t s J tl

s Jt,

Then the arguments w, = 0, M2
= are those associated with the node of

the surface A = at the infinite end of the axis of z, and the arguments

_ ^ dt _ C
x

tdt
1
~

it s
'

Jt s
'

are those associated with the points of A = lying on the singular conic at

infinity. An even function then has an expansion

where xa
= ^(H 7)

=
j>^(u

a ' e + "*) = 6 + <f>,
etc.



CHAPTER V.

CERTAIN FUNCTIONAL RELATIONS AND THEIR GEOMETRICAL
INTERPRETATION.

28. IT follows by a preceding investigation (pp. 20, 21), that if T be a

symmetrical matrix of two rows and columns, such that the real part of the

quadratic form im?, which is the same as i (Tunj
a + 2Ti2?i 1

j< 2 + r&n*?), is

necessarily negative, an analytical integral function of two variables ,, v

which satisfies the conditions

T,2 ,
v3 + Ta)

= eB'<f>(Vi, v3),

where HI = 4nri
(t>, + TU ),

Ht
= - 4?ri (, + ^T-H),

is expressible as a sum of four theta functions, in the form

when A denotes in turn the pairs (0, 0), (0, 1), (1, 0), (1, 1). It follows thence

that in terms of any four such functions <, which are themselves linearly

independent, any other such function
<f>

can be linearly expressed.

The conditions for
^>

are included, as was shewn, in the single equation

t(v+m + TTO')
= e

~ Mm> {v + *'>
<#> () ;

if a be an arbitrary symmetrical matrix of two rows and columns, and

h, ca, &>', i), t)' such matrices of two rows and columns that

in = 2ka>, TTIT = '2kta', ij
= 'law, t)'

= 2ao>' h,

it was shewn (p. 25) that, for arbitrary p, p, each of which is a row of two

elements,

a (u + flpY aw3
27rip' (v + ^rp) 2-n-ipp'

=Hp (u + flp) tripp,

=
\p(u), say,

where flp
= 2a>p + Zw'p', Hp

=
Zrjp + 2rj'p', hu = iriv

;

it follows therefore that an integral analytical function, i/r (w), of two variables

u,, a ,
which for arbitrary integer pairs m, m', satisfies the equation

2<o'm') = e
2x

> (M)

+(u),
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is expressible linearly in terms of any four such functions
T|T

which are

themselves linearly independent.

29. Now we proved the equation, when m, m' are pairs of integers,

^ (u + nm , q)
= e* <"> + 2?r' <"''

- m')
&(M, q) ;

therefore, as \m(u + w) + \m(u -w) = 2\m(u),

it follows that when q consists of half integers, the product

^ (M + w, q) X - w
> l)

is such a function ty(u).

Thus also <r
2

() and, because the functions
fp.a (u), etc., are periodic, each

of the following functions, which are known to be integral functions,

is such a function ^(), and there is therefore a linear equation with constant

coefficients connecting these five functions
;
this is one of the five differential

equations previously discussed.

Or again, the five functions

o*(u) [p^ (u)
-
2pM,() jpxp (M)

-
2|>,A (M) pw (tt)

-
fy*(u) J>^()],

which occur on the left sides of these differential equations, are themselves

connected by a linear homogeneous equation, obtainable by eliminating the

functions
f>K(w), |MM ). fu(M).

and the constant term, from the differential

equations.

30. Another illustration is furnished by the five integral functions of u

a(u + v)ff(u-v), ff-

thus the function tr(u+ v) <r(u
-

v)/a*(u) o-
2

(w) is expressible as a linear

function of ^(u), ^i(w), ^n(), with coefficients independent of
;

its form

shews that it is equally a linear function of
f-a(v), (Pa(w). fr-'n(

v)j and it is

changed in sign when u, v are interchanged. Thus

g(

"J(I)^lr
) = ^

[^ (w)
~^(o)] + B [^ (a}

~
v* (v}

t-V

irherc A, B, (!, F, G, H are constants. Taking now the expansion (p. 89)

ff(u)= M! + ^X.,M,
3 -

fa* +...,

x\d denoting by Ht , H, power series in ,, u3 beginning respectively with

7-2
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terms of the fourth and sixth dimension, we have, if a, <TK ,
... denote

0-j
3 =

2Witt., +Ht ,

tr-(u) $ii(u)
= o-o-21 4- cr-p-i

= u^ +Ht ,

Y
! = 1 +Ht ,

and hence

He ,

<7
2
(y) [0>u()

-
,,(1;)]

=
D,

2 -
w,

(u)]
= ws

3 - w2
3 +Ht ,

On the other hand, up to terms of the fourth order,

a (u -I- v) a (u
-

v) = [w, + vl + ^X-jC^ + vj
3 -

1( 3 + vj1

] [,
-

w, +

wi
4 -

1),
4

)
-

(witt,
s -

t),w/)
- 2(,^a

2- V^H,/);

in this last the only quadratic terms are those in ufvf; comparing with the

quadratic terms in

<r-(u) a\v) [A (|fc(tt)
- ftW} + . . . + J5T (jf() Jf>()

-
!>,,() fB())],

we infer, therefore, that C = 1, F=0, G = Q; and comparing the quartic

terms we infer A = 0, B = 0, H = 1
;
on the whole therefore we have

<r (u + v) <r (u v)

We return to this formula later; it will be seen that the geometrical inter-

pretation furnishes another proof of it
;
references to another analytical proof

are given in the Bibliographical Notes, at the end of the Volume.

31. Next take any even theta function, so that

a (u, q)
= 1 - $(xau.2

- + 22/oWjWi + ^"i
2

) + H4 \

the square of this function is then expressible in the form

u) + C-jJu(tt) + D],
so that

B (- u.? + II.) + (7(1 +Ht)

and hence A = ya ,
B=x

, (7=1, D= z
;



ART. 30] Addition of half-periods. 101

a result obtainable, as we can easily see, from the formula for

a- (u + v) a(u - v)
-=- ff

2

(M) "
s
(v\

by making v equal to the appropriate even half-period.

32. Similarly if a (u, q),
= Mt 6~ luz + terms of third and higher dimension,

be an odd theta function, multiplied by a proper constant, its square is

expressible in the form

a' (u) [Af* (u) + Bfa (u) + Cfr (u) + D],

so that

(th
- 0-l

u,y = A (^u,) + B (- u*) + G(l) + D (u*),

and hence
"^(u)

= ~ ^V*W ~ ~*
VnW + L

33. These formulae should be associated with others : writing

f (, q) = - d2

log er (u, q)/durdu,,

we have equations

cr
2

(, q) prg (u, q)
= <r

2 () [jlffe () 4- 5p21 () + Cfc, () + D],

where 4, ^?, 0, JD are different for different pairs r, s, and for different

characteristics q. Writing

<r (u, q)
= 1 - ^ (a; M,

a + 2y M-!Mi + ,*)

+^ (Pw2
4 + 4Qw2X + BB^M,2 + ISuzU* + Tuf) + ...,

the terms up to those of dimension 2, in

o3 (u, q) jr (u, q)
= -<r (u, q) an (u, q) + <rr (u, q) at (u, q),

for the respective cases r = 2, s = 2; r = 2, s = 1
;
r = 1, s = 1, are

- Q) w2
2 + (av*o

-
-R) MSMI + i (yo^o

-
/Sf) w,

2
,

comparing these with the terms up to those of dimension 2 in the expression

by means of the functions er
2

(u) $>& (u), etc., that is, with

A (2 2tt,) + B-u^
we find easily, in the respective cases, the values of A, B, C, D; now cr(u, q)

is of the form eHcr (u + O^), where H is linear in M, and w2 , and ft
?

is a half

period ;
if o denote the half period by which we pass from ^ (u) to a (u), and

A that by which we pass from ^(M) to o- (u, q), we have (pp. 95 97)

[dt fd* ['tdt^CHdt
(fl^M.-^SJ -+ -, (0^|3j "-+ ,

Jo* Ja* J a s J a

and pr, (u, q) is pr8 (M + fl
g) ; taking account of the formula previously
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found ( 31) for a*(u, g), we can thus express each of pr, (u + fl
g)

as the

quotient of two linear functions of fa (u), fa (u), fa (w) ; using a factor

of proportionality p, in fact equal to ff
i

(u,q)/tr*(u), the result may be written,

if u' = u+ fi,,

[pfa(u'), pfa(u), pfa(u'), /]

where 3/, a matrix of four rows and columns, is found on computation to be

such that, if

:0
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comparing these with the terms up to those of dimension 2 in

a* () [Ap.a () + Bpn (u) + Cfc, () + J5],

we obtain the expressions for

<** (M> 9)-

we have previously ( 32) found the expression for er
2

(, 9)/<r
a

(M) ;
hence as

before if fi, be the half period given, with = ^~
1
, by

the functions ^(w + fi
?), etc., are expressible as fractional linear functions

in jf>z>()> etc., by formulae given, if p be a factor of proportionality, in fact

equal to a2

(u, q)/<r*(u), by

where u' = w + fl
q , and N is a matrix of four rows and columns given by

Nj= /

VT -1

where the matrix on the right is skew symmetrical, and j is the matrix

previously employed. We have previously found the values of p, q, r, s

(p. 93). It can be verified that the expressions given by N(l, Q, 6-, 0),

where 6 = ^~
l

,
are all zero.

If we substitute the values of p, q, r, s we find

Nj=/ -r' q'

r' -p -

-q' p' 1

tjr

2
i|r

1

where

compare this form now with that obtained on p. 74
; putting, with a slight

simplification of the notation there adopted, which will not lead to confusion

because we do not further use the sextic there denoted by F ($),

and />

we have Nj = pfle~
l

> j ~ *7
= ~ *7~

l

>

and N
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So that
ff

-^ [>, (u + n,)]
=

t/vyr'7 [f ()],

where [pr (M)] denotes [^(w), ?(), >(), !]

Thus the equations expressing the functions pM (?t + fl
9)

in terms of

g>r(u) are the same as those given by the transformation A lr of p. 79,

r having five values according to the root
-^r,

other than zero, of the

We have at once

N' =
and hence

7~'7e = Pi,

fa I ft VI -o~ ft

Similarly for the symmetric matrix
JJ/^'

of 33, we can verify by actual

computation, on the hypothesis that neither nor < is infinite, that

the work is rather long, but is facilitated by using where convenient the

alternative forms given p. 74 for p' and
q',

and the fact that the coordinates

a; = 6 + <f>, ya
=

0<f>,
za
= ee ^ make all the minors of the determinant A

vanish
;

these minors are given at length on p. 41
; making use of the

identities yi^Vt - 7*~
1

7. 7~1

7 = 7~'7> etc. (p. 79), and putting

and P<,

we thus have M = r 7~1

7<t,

and therefore, when o-
(?t, </)

is an even function,

It thus appears that the fifteen transformations An of p. 79 are all obtained

by adding half periods to the argument u.

When a (u, q) is an odd function fi, is, save for multiples of periods, of

the form ua -
e

;
when cr (u, q) is an even function, l

q
is the sum of two

expressions of this form
;

thus the last result can be obtained by two

successive applications of the formula just previously obtained for an odd

function.
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35. Consider now the formula ( 30)

a (u + v) ff (u v) _ .

r

we know, if flq denote a half period, that

where A lt A 2 , B are independent of u, but depend on q; hence adding

DO to u in the formula, we have

thus when <r (, q) is an orfd function, putting in the value found for the

matrix N, we have, with O
4
= ua - e

,

,q}ff(u v, q)' '

which, when 6 is infinite, px = i (p. 74), gives, for the right side,

-
iy [f> ()] [f>n ()] =j [f ()] [p ()],

and when 6 is not infinite, replacing 'yy~
1

by yey~
l

, gives, for the right side,

and when O-(M, 7) is an even function, U,
= "' +

o- (M + , q) <r (u v.q) .=

From these formulae we have, respectively,

for the case of an odd function,

ff(u + v, q) a (u v, q) cr-(u) a-(v)

^M^^qT =
Tffi * S i

=JN . N-> [fv, (

= ^-j fa. ( +

and, when cr (t, g) is an even function,

<r (M + ?;, r/) <r (u v,q) .6=

Now since yc , yct , yc ,lt y, ya> , ya^ are in involution, where c, c1; C2 ,
alt a^

denote the roots off(d) = 0, we know (Appendix to Part I., Note I.) that the

matrix
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is orthogonal. Let us suppose the signs of the square roots denoted by

fie , fjLCl ,
... chosen so that (Appendix, loc. cit.)

then this matrix can also be written in the form

> 70,70*"'7^' -7ai7cs

" 1

7 a:a;'.

-vyxx , -iyai
xx' , -ir^^xx' , -VY^

but we have seen, if

(a;, y, 2, =
[JJ-B (a), ^ (w), (pn (), 1],

(', y', z, t')
=

[pz, (v), jJ21 (v), f>,, (w), 1],

o- (M + a) a (u v)
that

o- (M + v, 0) a- (u
-

v, 0)

(T (. + B, -. < _ , ^7

where
/JLB
=

6-pe ;
hence if

a (u + v) a- (u v)
=

[a],

o- (a + v, 0) a- (u
-

v, 0) = [6],

er (a + v, 6$) a- (u v, 6<$>)
=

\0, <],

by multiplying every element of the matrix by a3 (u) cr- (v), we infer that the

matrix

21 ^1
^

^2 r i ^2 ^ r n ^1
~~ ^ r i -^ r T= /-

-
[<b,ed, t [0-2, c], i- -[a,,c], [c] \

^~ C r- -I . Gwj
^~ Cl r- T . Cl'l

"~~ Cl p -I A .- i
I f\ fi\ _

n * ~
\ ft f \ 9 - T 1/7 (* \ I f* I

(_C2 , CJ, % [Oj, CjJ, I
L
(ll> CU' - LlJ

C ^~
Cj pi tZg ^2 - -i MI Co r -i

r-i Ol Oar T

[a,, a2J

/

is orthogonal. As will be seen (Appendix, loc. cit.), there can be formed

15 such orthogonal matrices
; presumably they are obtainable from S by

addition of half periods to the argument u.

A particular case of this result is obtained by dividing each element by
<r (u), and then putting v =

;
since we have ( 31, 32)

1 = - 0-*Pe ,
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Pa ,
Pt^ being as on p. 03, we infer that

107

n = . 0,, C . a,
- c

~ C

-
C,

CCi >
%

C^ I

a2 -c2

p _ t
-

^? 3 p i -1 I.1 p p
" " " "

'

aiCl>
fat

j C2

J ]_ p l_ p _ ai
~ ^2 p

Ma, M2 MaiM<2

is also orthogonal. For instance, taking the first and last columns, we have

(C,
- Cj Pc Pc,c, + (C,

-
C) Pe.P^c + (C

~
C,) P,,PCC,

=
(o,

-
O.)^~ P^a,,

while, since /i9
2 = \f (6), we have

/"MeMeiMetV

V Mo.Moj /

(O1-a,)
2

(ai-c)(ai-c1)(a1-c2)(a2 -c)(a2-c1)(a2-cil)

=
(c,
- c2)

2
(c2
-

c)= (c
-

erf/fa
- a2)

2
,

so that

(c,
-

c,)PCPC, C1
+ (c,

-
c) PC,PC2C + (c

-
c,) PC2

P
CC1

=
(C,
- C2) (C8

-
C) (C

-
d) P ,a2 ,

an equation easy to verify directly, with the upper sign on the right side.

Again, if in the matrix 2, we put v = u and then replace 2u by u, we infer

that the matrix

2,=
c , .a, c .

(u, a2 c), * - - o- (u, a,c),

C. C . Oj C,

O-(M, C2 c) , t -
Ma2 Mc,

.O C2- -

. fflj G! , .

,
i - -a (u, 0,<y,
MoiMc,

C Ci

\

o-(w,ccj), -i 2

o-(M,a.,c2) )

. fflj

M,Mcj

! r(,

is orthogonal ;
thus for instance

(, c2 c) /, Cd),
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and

=
(Cj C2) (a2 c) a (u, c,c2) <r (v, a^c) + (c2 c) (a^ c,) a (u, c^c) a (u, a2 Ci)

+ (c
-

c,) (a,
- c2) a (u, ccj <r (u, a,c.2),

of which the first is equivalent to

_(cl -ctf ./5LIYP ,raido I * ci<:.>
~

I I
-1 c2 c i

and the second to

(C,
-

Cj) (j - C) JPc^P^c + (C2
-

C) (as
-

C,

-
c,) (rt-j

-
Cj) P

CCl
Pa^ = 0.

36. As an alternative method of obtaining results just obtained by
consideration of the orthogonal matrix, and as an example of the application

of a principle which appears at first sight slightly more general than that

so far employed in this chapter, we give now a formula which, in virtue

of those already proved, furnishes an irrational form for the relation A =

connecting the functions (jf>~>()> j>21 (w). j?u(w)-

As in preceding investigations it follows that an analytical integral

function of MI, u^ which for any integers in, m, and a positive integer r,

satisfies the equation

$(tn-n) -*-<*$(),
the notation being as before, is expressed linearly by r3 functions of _the

same kind. An analytical integral function may however be such that it

satisfies an equation

where cm + c'm' = Cim, + c^m? + c/m,' + Cj'wi/,

and d, c2 , c/, c/ are any constants; it can then be shewn, just as before, that

it is expressible also by at most r2 such functions
;
we do not give the proof

because it will appear that this is really included in the preceding case

(Part II., below). But now, if i/r() be an odd or an even function and it

can be proved that this cannot be so unless each of c,, c2 , c,', ca
'

is an integral

multiple of TTI it can be further shewn that there do not exist always as

many as r- linearly independent functions
->fr (u). In fact when r is even, if

T|T ( u) = ei/r (M), so that e is + 1 or 1, the number of linearly independent-

functions ifr(u) is at most r2 +2e when each of c,, c2 , c/, c2
'

is zero or an

even multiple of -rri, and is otherwise |r
2

independently of e; so that for

r = 2 there is no odd function for which c,, c.2l c/, c2
'

are even multiples of

m, and there are four even functions, while when c,, c?, c,', c/ are not even

multiples of m there are two such odd functions linearly independent and

the same number of even functions; it is this result which we proceed to

illustrate. When r is odd the number which are linearly independent is

at most ^ (r
3 + ee'"'^'), where (c, c')

=m (p, /*').
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We have discussed, beside the function a-(u), five odd functions, each

associated with one root of the quintic equation

X,, + X,0 + X 2
2 + X3

3 + X4
4 + 40s = 0,

these being those denoted above by a (u, q) ;
one of them may be denoted

by ff (u, 0,). We have also discussed even functions, each associated with two

roots of this quintic; one of these may be denoted by O-(M, 0A)- Consider

the three products

o- (it, 0,) a- (u, 0A\ <r (u, 6,) a (u, 0&), a (u, 3) a- (u, 6A)

the function cr(u, 0,) is, save for a constant multiplier, the same as ^(u,q)
of p. 25, where the characteristic q is that associated with the half periods

a
a ra /*0,\ fit / ra fa r6,\ tflt

+ + f , (n?)2
=

/
+ +/ <f ,

I, J a2 J a I * Wa, Ja2 > a '

while similarly the function tr(u, 0A) is associated with the half periods

trt\([
a

[" [
0>

[
e
*\dt /r

t \_(f
a

(
a

[*' [
e
'\tdt

wai J 0^ Ja Ja/^ \J a
t

J a% J a Ja ' &

as explained before (pp. 94 96). Thus each of the three products above is

of the character assigned to the function
-fy

in the explanation above, being

an odd function for which the quantities c^ c2 , c/, c2
'

are not zero or even

multiples of m. Thus there exists an equation

A<r (u, 00 a (u, 6A) + B<r (u, 0,) a (u, 30,) + Ca (u, 3) a (u, 6A) = 0,

wherein A, B, C are constants.

And the preceding expansions enable us to determine the coefficients; for

the terms of first order in the expansion of the left side are

A (MJ
- 0r lu2) + B (M,

-
0.,-' <0 + C (u,

- 0-r
1 M2),

shewing that A=0, (0,
-

3),
B = 0, (03

-
0,), C=03 (0t

-
2 ).

We have previously ( 31, 32) expressed each of the quotients

as a linear function of >:(), |>a(), ^n( (0; ^ these forms be substituted in

the equation above, an irrational form of the equation A = is obtained
;

if

a;,
= 0, + 3 , y,

= -
0.,6>3 , ^ = ee,,e,, etc.

and x, y, z denote p.a (u), j>.a (u), > (u), this is

2 (0,
-

0,) (ay,
-

yx, + z,
-

)* (y + 0,x
- 0$ = 0.

If a,, a, be the roots of the fundamental quintic other than lt 0,,, 3 ;
and

l = (0,- a,) (0!
-

2), m =
(02

-
Oj) (0,

-
Oj), ft = (03

-
Oj) (03

-
a,),

we find (0t
-

3)Pe,,,,
=

(0,
-

3) Pa ,, a,
+ mPe,

- nPe,;
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thus, if = y + 0,*-0i
s

. T]
= y + e.a-e.;-, S

T = xa^ + y (a, + a.,) + z - e
ai>fll ,

and \ = 0, 3 , ft
= 0^ 0!, v = l

we have
= 0.

37. We can give an interpretation of the formula for the function

a (u + v) a (u
-

v)

0-
2

()<7
a
(l>)

'

which places the form obtained for the right side in connexion with the

results obtained above in considering the geometry (p. 76). Though

entailing repetition it appears well to make the present account self-con-

tained.

Regard v as fixed, and $>&(u), $>.a (u), |>n(") fis the coordinates of a

variable point; the equation

j?22 (M) j?>a () - Pa (tt) PB (v) + f>u ()
-
Pn () = 0,

which we may denote by
xyl -yxl + zl -z = 0,

is that of a plane passing through (#,,?/, ,2,) (being in fact that of the polar

plane of (a;,, ylt z^) in the linear complex denoted in the usual notation by
n + n' = 0). The function a (u) has been seen previously (p. 96) to vanish

for u = ua -

*, that is for

r dt r tdt
MI = -

, 2
=

I ,

Jt s Jt s

where ss = \ + \1i + ... +X/1 + 4^, and, save for integral multiples of periods,

only for values so expressible (the zero values u"'* for example being
obtainable by taking ua '

v
, where (') is the place conjugate to ()); hence

the product a(u + v)<r(u v) vanishes for

u = v + ua -

*, u = v + u"-*
1

,

where the sign
= indicates the possible omission of multiples of the periods;

of these, if (f) be conjugate to (<), the second is u = (v -J- M- *), and, as

J?IB ( M) = H>22 (M)I etc., gives the same point of the surface A = as does the

first. The curve of intersection of A = with the plane ay, -yx1 + z1 z = Q

has therefore points each representable once by

where (t) is variable. This curve will have a double point, and the plane
touch A = 0, if we can satisfy, by properly choosing (t) and (<j), the three

equations
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Now first, the three equations >,() = prs (u) require, as the differential

equations of Chap. II. shew, that

fPtm () = Vrstm ('). while
<prit (u)

=
g>rst ('),

the negative sign for the functions of three suffixes being capable of deriva-

tion from the positive sign by changing the sign of u'; similarly by the

equations derivable by differentiation from the differential equations all

derivatives of $>() are equal to the corresponding derivatives of
$>rs (u'),

or of
f>rs (')> so that, for arbitrarily small arguments w,

prs (u + w) = pri ( u + w), |>rs, (u + w) = prst (u + w),

or p (u + w) = ) (-u' + w), <prst (u + w) = (prs( (- u' + w) ;

we can however express + w in terms of these functions in the form

i + v>i = IA dx + Bdy, u? + w2
= \Bdoc + Cdy,

where A, B, C are rational in x= $K (u + w), y = pa (u + w), %=%>.ta (u + w);
thus we have

u + w = u +w 4- period, or u + w = u' + w + period,

and so u = u + period.

The only double point of the curve now under consideration is therefore

to be obtained by considering the equations

V + Ua - ( = V + U"'*',

or the equations v + "* =
(v + u"-*').

As to the former, equivalent to ,** = 0, w2
* ! ' = 0, they are satisfied only

by the obvious solution (,) = (<) (p. 30); the latter, equivalent to

ua,t + ua,t, = _ 2V>

are, for general values of v, satisfied by one and only one pair of positions

(0, (,) (P- 29), given (p. 97), by

where tf = \, + \1t+ ... + 4!t
i

; thus, with xl
=

%>?, (v), etc., and general values

of v, the equation

xyl x$ + z1 z =

represents a tangent plane touching the surface A = at the point

w = v + ua' t
,

where V - tpa (2v)
-^ (2v)

= 0.

When cr(u
x ' a +2v) vanishes identically for all positions of

(,'c),
the equations

ua - f + u"- 1
' = 2v have an infinite number of solutions; this is only when

2v is a period, and then we may take (t) arbitrarily and (^) the position

conjugate to (t); in that case the plane touches the surface A = all along
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its intersection; namely the sixteen singular tangent planes previously found

are given by the equations

<r( + n,) = 0,

when flq is any half period; we have already seen that a (u) = corresponds

to the plane at infinity; the equation of the singular tangent plane is given by

*lfc () -
yfb (ft,) + f>u (n,)

- * = o,

which compared with ( 31, 32),

0x + y -&* = (),
or 6$x + (6 4 $) y + z - e,* = 0,

gives either ft, (H,)/l
= -

|!B (fl,)/0
= pn (n,)/P = oo

,

or ^(1,) = <? +
</>, $> (fl,)

= -
0</>, j u (n,)

=
e,,*,

shewing that the half periods are the values of u at the nodes.

Considering the case of an ordinary tangent plane, depending on a

parameter v, with point of contact given by

w = v + ua- t
,

where w> * + ua - f < =
2t>,

if we take two positions (&), (&,) given by

ua,k + ua,k, = _2w,

we shall have ua - * + ua- *> = 2v - 2ua < * = ua - f > - ua -

*,

or M^^ + u'-'^^O,

where (t') is the position congruent to (t), and hence (p. 29) the positions

(k), (&j) are, taken in proper order, the same as (') and (<j), and

so that the point ^ (v), |>21 (D), pn (w) of the surface A = is derived from

j?ai(
M
')> ^21 (w)> S

)n(M') ju^ ^ this is derived from the former. Thus, if

xi ^22 (w)> etc., the plane

xyi
~
yti + Zi

- z = 0,

touches the surface at the point v. The former plane passing through v,

since every point of its section of the surface is given by M = D + ."', and

the latter through w, it follows that the straight line joining the points v

and w is a bitangent of the surface A = 0, and v is one of the six points

of contact of tangents to the quartic piano section drawn from its double

point w. Expressed in terms of the parameter w of the point of contact, the

tangent plane is thus

a-jp,,! (w
" -

ytfy, (w
- w J +

(Pit (w
- ua - t

) z = 0,

where (t) is a particular position given, in association with another position

(ti), by ua - t + ua- t
' = -2(w-ua ' t

), that is
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Thus tlt t are the roots of the equation

t2 - tyv (2w)
-
pa (2w) = 0,

and the points of the tangent section are given indifferently by

u = w ua- * + ua >
e

,
u= w ua - (

> + ua - e
,

where (6) varies, being (t) or (^) at the point of contact according as this

is approached along one or other of the inflexional branches; thus for these

branches respectively we have at the point of contact w,

duv
-j

= t or <j,

dw,

and the differential equation of the asymptotic curves of the surface is

If (t) be a fixed position, this differential equation is obviously satisfied

by the curve given for variable (0) by

thus the asymptotic lines are given by

where t is constant along any particular one.

Every point of the section of the tangent plane with the surface A =

has a parameter of the form w ua ' t + ua-'(
-; take in particular (A) at a

branch- place, so that w0>x is a half period fl
9 ; the tangent plane at this point

is then

xpa (w ua - * + flq
- ua -

*)
- etc. = 0,

where (h) is a particular position given, in association with another position

Or

so that (h) is the conjugate position on the Riemann surface either of (<,)

or (<); in the former case the argument w ua > f + H9 ua - h would be

w + flq + ua - *' ua - * or (w n,), save for multiples of the periods; in the

latter case it would be w + Ii
? ;

in either case the tangent plane is

and passes through w if a- (2w + fi?) a- (H? )
= 0, and therefore if a (flq)

= 0, or

^(flp + f!
7)
= 0, where p denotes the characteristic H

(
i

)
(c ?- P- ^^)> that is

if flp + fl
?

be an odd half period. We thus have the result that the

bitangents to A = drawn from the point w touch the surface in v = w ua -

*,

where ua > tl u"- 1 - 2w, and in the five points v + fl,, where O, denotes in

B. 8
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turn the half periods
"* in which 6 is a root of X + A,# + ... + 40" =0

;
!<>r

it is easily seen that with these values flp + Sl
q

is an odd half period (sec

p. 32). More symmetrically, with a slight change of notation, the points of

contact of the bitangents from w are given by = ; + *'', where (0)

denotes in turn the six branch-places of the Riemann surface on which M*-'

is computed, and (t) denotes either of the two places given by

t
t

-tjpa (Zw)-p.il (Zw) = 0, and s =
t<p!ea (Zw) + ym (Zw).

This result is also obtainable by considering the vanishing of the function

o-g (u + v) <re (u v).

38. The two points w, v, capable of representation in the forms

- 2w = ua - *' - ua -

*, Zv = ua - h + ua - l
,

which are the points of contact of a bitangent associated with the first linear

complex, may be called twin points, or each may be called the satellite of the

other
;
since t, tt are the roots of either of the quadratics

t* - tfr (Zw)
-
p* (Zw) = 0, P - tfr (Zv)

-
gfe (Zv)

= 0,

these points are such that

Two arguments u, u' capable of representation in the forms

u = ua> *l + ua - t
, u = ua> li ua -

*,

may be called conjugate arguments, and the associated points + u, u may
be called conjugate points; since fm{)mfim ('), jp21 (u)

= p2, (u), it follows

that conjugate points are the intersections of the Kummer surface with an

arbitrary straight line through the node which lies at the infinite end of the

axis of 2, what we may call the primary node of the surface
; putting

it follows from the equation of the surface that

the i^nrtiier

j j

point w. Expi>
. rdM,+ 2rfwa

tangent plane is \ -_ =
,

,

rj*/fl ( n

tdt 1
f C),,fdt,dt\^,.^

where (t) is a part.ci:
~ =

t̂ j~
Kt

(-
+
-)

+ (, +

(ti), by M- + .. = -
''tiff.,
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so that we have, as is easy to verify, with x = (?&(?)> U (P'-n (")>

2AT 1
,

a f

9",
L( + 4y)iJ

9i
L(o?

g
[

2.V 1 9 f * "Up
9w* L

(a;
2 + 4y)iJ

9 i l(* + 4y)il

and, also, the incidental consequence that with any point of the Kummer
surface may be associated, not only the everywhere finite integrals u

s , u.,, but

also the other everywhere finite integrals

, _ f ccdu, + Zdu^ , F tgdtti
iii I T i "2 = I

*
(a? + 4y)*

J
(a?+

where x = fpu(u), y = ^(u)\ the former pair, MJ, <2 ,
can each be expressed in

the form fAdx + Bdy, where A, B are rational in x, y and f, =^fa (u)\ the

latter pair cannot be so expressed.

The line joining the two conjugate points u, u, is the intersection of

the tangent planes

of the cone *2 + 4y = 0; this is the tangent cone of the Kummer surface at

the primary node, and its generators each cut the surface in one finite point,

conjugate to the node u' = 0, lying upon the unicursal octavic curve ex-

pressed by

pu' t) ZT'T
where*, as the explicit equation A = 0, p. 41, or the value -

, by* (t 1)~

making t' = t, shews

(1, t\ = T
'

5V - i\A -
iX.X, t - (i\\3 + X.X,) f - (iX,V, + 6X.) i

3

while

*
It can be shewn that

(1, Oa= - -

In general, if |=|>2Z!(U )' 1= i?!si(")> f=f2ii(u)>
r= Pin(") ^e tne coordinates of a point

of the Weddle surface, and u = ua ' f + ua> ^, the points 8, <p of the cubic curve

f/i=-,/e=f/
2=-T/93

,

may be geometrically obtained by projecting ({, q, f, T), from the node (0, 0, 0, 1), to the satellite

point (', ?;', f ', T ), and drawing the chord of the cubic curve through (', t\ ', f, T'). The

coordinates of ({', 17', f', T') are then in the ratios

i _ 1 _ (0 4. *\ ? _ f - _ (*_* +
e *

'

Ve */
'

e *
' w

82
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Each of the tangent planes <* - te y = 0, t? t^x y = cuts the Rummer
surface in a plane quartic curve, with a cusp at infinity whose tangent is the

generator along which the plane touches the cone. Consider one of the

points + u where these quartics intersect
;
let x, y, z be its coordinates

;
for a

consecutive point u + du of the quartic on t* to y = 0, and the conjugate

point u' + du', we have

diii =
l = dut, dut

' = = duy ,

s
i si

so that, for variable pairs of conjugate points on this quartic, u u is

constant, equal therefore to the corresponding difference 2?*"-' for the pair

of points u = 2ua - t
, u' = 0, lying on the generator of contact of the plane

f tx y = 0, and cone a? + 4y = 0. Also, on the cuspidal quartic,

(a? + 4y)* (a? + 4y)

both leading to fcY- x^ - y = 0,
\duj dut

which is thus the differential equation of the pairs of cuspidal quartic curves

on the Kummer surface obtained by drawing tangent planes to the cone

where Q-=f(S), &=/($), the fourth intersection of this chord of the cubic with the Weddle

surface having coordinates obtainable from these by changing the sign of *. For the case when

g= </>=t, the point =f^(9 a>
*), etc., is such that there is a tangent of the cubic curve passing

through ({', rf, f, r'), namely the tangent at the point t of the cubic; this cuts the Weddle

(1

t t
2 3 \

T ' ~T ' T '
~
T) ' wnere r2=/(')' namely meets the surface in three points

at t, so that the cubic is an asymptotic curve on the Weddle surface ; the point (', rf, f, T') has

for coordinates the ratios of the limits, when =
<t>
=

t, of

!_! i _ ^T _ *! ?? _
3

e
~

e
~

e
~

J9

~

& ~
<f> <f> if) <ft

which are (T-i), j{
(-tT->), ^

or
'

: ,' : f : T'=/' : 2/- (/'
f

and this is the tangential, on the Weddle surface, of the point t of the cubic curve. The locus

f (' V, f'i T/
)
on tne Weddle surface is thus a unicursal curve of order 7. The quartic

developable surface F=0, of p. C7, is the locus of the tangents of the cubic curve; its complete

intersection with the Weddle surface thus consists of the cubic curve counted three times,

together with this unicursal septic curve, which meets the cubic at the six fundamental nodes.

The locus of the point f=fni(2u
o>

*), etc., can be found, by using the values

x = 2t, y=-t*, z = (l, )//()

in the expressions of p. 41, to be a nnicurRal curve of order 16. The cone joining the node

(0, 0, 0, 1) to the unicursal septic curve, which contains this uuicursal curve of order 16, is to

be found by eliminating t from the two equations t
z '

+ 2h/' +f = 0, 2/' =/'(<
' + V), and is of

order 7 ;
its intersection, of order 28, contains, beside the two curves of orders 7 and 16, the five

lines joining the node (0, 0, 0, 1) to the other nodes.



ART. 38] equation and its integral. 117

sf + 4>y
= from a variable point x = pa (M), etc. of the surface. We have

x = ti + t, y= tl t; thus along the cuspidal quartic t* t^x y = we have

dxi dt, dyl
= t1 dt, and therefore, dv^, du.2 denoting as before increments

along the quartic
i tx y=Q, we have

dyl _ duz

dxl du!
'

the differential equation for the pairs of cuspidal quartics may thus be

equally written

(dy\

2
dy

dx) dx y

an ordinary Clairaut equation with X2 Xa; y = as its integral. To reduce

this form directly to the former, it is necessary, after substituting

to utilise the identities

-y x 1

which follow at once on substituting ^=^y /

nx- Furthermore the identity

dutdyt + duydxt = 0,

is equivalent, either with

duv [p*, (M) duj" +^ (u) dM,o)] + rfit, [^ (M) otw.^
1 ' + f>211 (u) du^] = 0,

that is i-duiduzM + r, (du3du^ -f du.du^) + fdMjdu,"' = 0,

where dt<j
(1)

, dit,
(1) are increments along the quartic <i

2
<,# y = 0, or with

gdydyi i) (dxdyl + dydx^) + {dadx! = 0,

which, dividing by dxdxlt is the same as the identity

Comparing this work with that previously given we see that the

arguments v, w of two twin points are connected by

T F (^w) dWi + 2dwz _ r20>2i (2w) dw1 +^ (2w) dw3

J
[pj (2f) + 4p21 (2w)]*

'

J
[pa* (2w) + 4|)21 (2w)]*

equivalent to pM (2w)
=

p22(2w), p21 (2w) = pj, (2w) ;
we have shewn that these

are satisfied by rational expressions for pa (v), |>2i(v), pn (t>) in terms of

pa (w), faiCw), |>ii(w); it will be seen that ^22(2^), j>21 (2M) are rational

invariants, in x, y, z, of a group of birational transformations. Further, we see,

if w be a variable point on an asymptotic curve of the Kummer surface, that

the point 2w is a point of a cuspidal quartie t
2

tp.a (u) g)21 (u)
=

;
that the

satellite point v of w also lies on the asymptotic curve, and v w is constant



118 Relations connecting four [CHAP, v

along the asymptotic curve, being equal to 2wn><
;
also that all the 32 points

w/ + ^ft, v + $l, where fl is any period, also lie on the asymptotic curve

and are common to the two asymptotic curves through w ;
and so on. And

if (x, y, z) be the coordinates of w, and (x, y' t z') those of v, we have, as

follows from the equation xy' yx' + z z = at w, or from the differential

equation of the asymptotic curves*,

. _

dx dy

so that the tangent lines of the asymptotic curve, at the twin points v, w,

project upon the plane z = into parallel lines. All the cuspidal quartics

touch the unicursal octavic intersection of a? + 4y = given by u = 2ua - t
;

thus the asymptotic curves all touch the singular conies of the Kummer
surface, which constitute the parabolic curvef.

39. A bitangent is a chord of the Kummer surface whose intersections

coincide in two pairs. Consider now any chord. For this let the tangent

plane jf)21 (a)
- y^w (a) + |pu (a) z = 0, be called the tangent plane a

;
let

(^i). (^)> (j). (4) be four arbitrary positions on the Riemann surface, and let

a = (
' + ua - ** + ua - <

-f '), ft - % (- ua - ' - ua - ' + M- ' + u-
'<) ;

the four arguments

re = a ua - f>
,

b = a u"-^, c = a Ma><s
,

d = + "'',

are then such that a (a a), a (b a), a(c a), a (d + a) are all zero, and are

therefore upon the plane a
; they are respectively equal to

a = /8 + ', b = /9 + "', c = -/S + M-', d = p-u- t
>,

and are therefore, similarly, upon the plane y8 ;
thus they belong to four

collinear points. Conversely let a, b, be any two points of the Kummer
surface

;
take (,), (t3), (t3), ( 4) so that

ua,t, _ ua.t, b a,
"' + w0>< = b + a,

or

a = ( tt"'*' + MO> '" + w -'11 + MO>
') = a - "',

J = ( M",'i .< + M<M + M".'")
= a MO -'I

;

then, as before, the line joining these points cuts the surface again in c, d

where

c = a "', d = a + "'.

* The differential equation of the asymptotic lines, for a surface whose tangent plane is

Ix + my + nz = 0, is dxdl + tlydm + dzdn = Q.

t See Klein u. Lie, Berlin. Mmiiitxbr'i: 1870; Keichardt, Nova Ada Leopoldina, L. 1887,

p. 479; Hudson, Kiimmer's quaitic surface, p. 195.
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Put u = ua - f < + u"' *a
,

u' = ua - t < ua - f
,

v = it
a > t* + ua - tt

, v w ' ** u"' *
;

then we have a + b = v, c + d= v'; a b = u', c d = u,

as well as o + c= M- ' + "', a c = -ua - t ' + ua' t
*,

b + d = - 11"'*' + u"-**, b-d= ua - t' + ua - t
\

and b + c = ua - '' + ua -

', 6 - c = " '* + .<*
f

,

a + d -ua - t > + ua-^, a-d= u^^ + u"-^.

Introduce now the following phraseology ;
if + u, v be any two points

of the Kummer surface, let the two points (u + v), (u v) be called their

forward derivatives
; they are uniquely determined when + u, v, are given.

If Jfl denote any half period, n, v are the forward derivatives of the two

points %(u+v)+n, |(M-fl)+fl, so that %(u+v)+ $n, ^(u-v)+^fl

may be called the backward derivatives of + u, v
;
these consist of sixteen

pairs of points. Then the results just obtained may be stated by saying that

if four collinear points of the Kummer surface be divided into two pairs,

either of the forward derivatives of one pair is conjugate to a forward

derivative of the other pair ;
thus each mode of taking the two pairs gives

rise to two straight lines through the primary node, and the four collinear

points give rise to six straight lines through the primary node; in other

words, including the whole result, if a, b, c, d be four collinear points in any

order, we have

pa (b + c)
= pffl (a + erf), p2, (b

-
c)
=

g>31 (a
-

erf),

where the signs of a, 6, c, rf are arbitrary, but e,
= + 1, must be suitably

taken. Further the sixteen pairs of backward derivatives + (a + b) + $l,

(c + rf) + ^ fl, consist of sixteen pairs of twin points, the points of contact

of sixteen bitangents, and there are six such sets, each of sixteen bitangents,

associated with the four collinear points, two such sets belonging to each

mode of dividing the four collinear points into two sets of two. .

It is easy to see the modification arising when the four collinear points

consist of two couples of collinear points (v, v, w, w), lying on a bitangent.

The forward derivatives consist then of (0, 0), the primary node, of (v + w, v 4- w),

occurring twice, being the coincident intersections of the conic at infinity

with a line through the primary node, of (y w, v w), occurring twice, being
also the coincident intersections of the conic at infinity with a line through
the primary node, and of (2v, 2w), which are then conjugate points, as we

have already found ( 38). In fact the set of tangent planes a, /3, ..., in

general four in number, which can be drawn to the Kummer surface through

the four collinear points, contains in this case coincident planes.

40. The differential equation given above for the asymptotic lines

of the Kurnmer surface
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enables us at once to find rational expressions for fa(2u), (p2i(2w) in terms

of ^22 (M), (j?a (u), pn (u). For the asymptotic lines of a surface in homogeneous
coordinates x, y, z, t being*

x,

y.

t,

1, Z*,

= 0,

where x, y, z, t are supposed expressed in terms of two parameters u, v, and

dx d*x
xt
= 5- ,

d?x = 5-1
du 9u"

,
dudv +

d'x

we have for % = $>& (u), y = p21 (u), z
jf>n (), t = 1, as the differential equation,

= 0,

where ^ = ,
etc. Comparing this with the form

we infer, if as usual Q, = 4 (T?T
-

(?), Q2
= 4 (T?^- IT), Q, =

<"2 ^= - 2 & P** (M> + Q' P" (M) + Q" Pa"

0. f () + Q, ^2^ () + Q3 fr*

Q, fan () + Qi jfan (M) + Q3 (Pim

-
7y

2
), that

. ,9 -,_

(P^ () + & fW () + Q, f>ni ()

and, for the equations of the asymptotic curves,

Q, [fftat (M) + 2fffe, (M) + fbn, ()]

(M) + ft,,, (M)]
= 0.

It is found (see pp. 41 and 48) that the quintic terms in this are

16 (xz
- y

2
)
2

[Vx + 2ty + z] ;

as we can eliminate (xz y*y by means of the equation A =
(p. 41), the

asymptotic curves lie on surfaces of order 4.

Another way of finding the expressions for p2a (2M), p21 (2M), is by the

equations of p. 117, expressing the integrals at the satellite point in terms

of those at the original point; these give, if M =
[|>22

2
(2w) + 4p31 (2w)],

9wj _^ (2w) _ 8^1

9w2

~" M 9w,
'

*
Darboux, TMorie des Surfaces, Partie I. p. 138.
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We have however found (p. 78)

e (7Ci

where ft = 4 (T?T
-

), etc., = f^ (2w), etc., Ce
= Q,- 0Q, + ffiQ3 ;

thus

^_ = _ Qlg>2222 (W) + Q2 g>2221 (>) + Q. flail (Q
^ iWWv?

together with expressions for (Pz>(2w) and pa (2w) identical with those above.

The denominator which occurs here has been seen (p. 78) to be the square
root of trQ3 ,

where a is a certain quartic expression in f, 17, f, r; if

-4 = QiP^ () + -, jB = Qij2Bi () + > 0=^!^,()+, we thus find

41. Another way, depending on the use of Abel's theorem, or rather its

converse, in which the functions ^ ffi (2tt), ... may be obtained, is of geometrical
interest.

To the points u, 2u, of the Weddle surface, associate pairs of places

(6), ($), and (a), (ft), of the Riemann surface, by means of the equations

without alteration of the points of the Weddle surface both (6) and (0) may
be together replaced by their conjugate places on the Riemann surface,

as may the places (a), (ft). We have then

M ,a -f if, a + 2u?- a + 2w*' a =
0,

shewing (Appendix to Part I., Note II.) that there exists a rational function

on the Riemann surface, of the sixth order, with all its poles at infinity,

vanishing twice in each of (ff), (<f>)
and once in each of (a), (ft) ;

this function

must be of the form

f - v? + nt
- X. + ps,

where 8* =f(t), and the coefficients X, /*, v, p are to be determined by means of

= 0, </>

3 -
v<p + n$ - X + /><!>

= 0,

where
,

<1> are the values of s at (0) and
(tf>).

The function being so

determined, the places (a), (ft) are found as the remaining zeros, and thence

J>M (2w)
= o + ft, fa (2u) = aft. The conditions are those found by expressing

the identity

(t
3 vf + fit X)

1
p"f(t) = (t 0)

y
(t </>)" (t a) (t ft),

by expressing that (P
- te - y)

z
(t> -tX-Y) + p*f(t)

is the square of a cubic function of t; when as and y only are given this last
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form gives the two sets of corresponding values for X and Y. The four

conditional equations give

shewing that the plane \ 4- fii} + v + r = passes through the point
_

cj),
_ (< _

$#), <S)<s - (# - (< _
<|>0s) which (pp. 40, 116) is the

satellite point of u on the Weddle surface, obtained from + u by projection

from the node (0, 0, 0, 1), and lies upon the chord of the cubic curve

joining the points (1,
-

0, 0";
-

&'), (1,
-

<f>, $-, <f>

3
); the conditional equa-

tions give, however, also

d (\-pd + vffi-03\_ _d
/\ - /*< + v<y

-
<f>

3
\ _

9<U /
'

3<A 3> I

shewing that the plane \ + p,tj + v% + T = contains every consecutive point

of the Weddle surface ;
it is thus the tangent plane of the surface at the

satellite point of + u.

a /IN d f-e\ a te*\ a (-e>\The point ^y : ^ (^ J
: ^ (^J

: ^^j
,

which clearly lies on the tangent plane, is the remaining intersection of the

Weddle surface with the tangent line of the cubic curve at (1, 0,d*,
- O3),

and is on the uuicursal septic (p. 116) which is the tangential on the Weddle

surface of the cubic space curve. The poinb having the same derivation

from
<f>

is also on the tangent plane. Further the equations

a3 - vd1 + /za
- X + pA =0, /8

3 -
vfi> + pfi

- X + pB = 0,

where A- =/(a), etc., shew that the point satellite to + 2 is also on the

tangent plane.

The tangent plane of the Weddle surface at the point P', satellite to + u,

has been seen (p. 68) to be the polar plane, of the point reciprocal to P' on

the Weddle surface, in regard to a cone #'Q, + y'Q* + z'Q3 + P4
= with vertex

at P'; if then the tangent planes of this cone which contain the chord (9, <f>)

of the cubic curve be momentarily written

there is an identity of the form

-
ff (x'Q, + y'Q, + z'Q3 + Pt}

=
- (A + ... + AT

take the particular case of this when : 17
: : T = 1, t, <

2
,
- t

3
;
then the

left side reduces to p*f(t), and the first term of the right side to

as each of the planes A^ + ...+ AT =
0, A^ + . . . + AT = passes through

6 and $, the second term of the right side contains the factor (t tlf(t </>)*;
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the remaining factor is (t
-

a) (t ft), where (1,
-

a, a", a3

), (1,
-

ft, ft*,
-

ft
3
)

are the remaining intersections with the cubic curve respectively of the

plane A^ + ... + AT = and A + ... + D2T = and the identity becomes
that previously obtained. In other words, if the point + u be joined to the

node (0, 0, 0, 1), the join giving the satellite point P'; if the cone with P' as

vertex to contain the six common points of the quadrics Qlt Q2 , Q3 ,
P4 ,

be

constructed
;
then the tangent planes of this cone which contain the chord

of the cubic curve through P, cut the cubic curve again in points a, ft, which

are upon the chord of the cubic through the satellite point of the point + 2u.

The condition determining ^(Zu)... may thus also be expressed by

saying, if Q,, Q,, Q3 ,
Pt , denote the values of Qlt ... for the point u

(cf. p. 76 for the equations x'/Q2 =...), that the quadric following, for a

proper value of
/j. (= p

2

/Q3),

+ [04> + a (0 + 0)] 77 + (6 + (j)
+ a) f + T

J

x }%3f + [0$ + ft (0 4 <)] r, + (6 + $ + ft) f+ TJ

must be the square of a plane, namely of the tangent plane at u'; the

conditions for this are, that in the discriminantal matrix of this quadric,

every minor of two rows and columns be zero.

If u' be the arguments associated with P', the satellite point of + u,

we know that ^(Zu') = ^(Zu), f>ai (2u')
=

jp21 (2u) ;
hence if the cone be

drawn to contain the six common points of the quadrics Q,, Q2 , Q3 ,
P4 ,

with

its vertex at u, the tangent planes of the cone, passing through the chord

of the cubic curve through f u, will also cut the cubic curve in the points

a, /3, and the satellite point of the point + 2u' will lie on the chord a, ft of
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the cubic, and on the tangent plane of the Weddle surface at + u. If &, $'

be the two points of the cubic curve, on the chord of this drawn through + u,

we may draw the diagram annexed, where D denotes the node (0, 0, 0, 1),

which may help to keep the relations in mind.

In order that 1^ + 1^ + ^+1^ = should touch the cone

(a, 6, c, d, f, g, h, u, v, w) ( 17, f, r)
2 =

it is sufficient, beside the condition that the plane passes through the vertex

of the cone, that

b / v I,
= 0;

f c w 12

v w d 13

I, I* 13

applying this to the cone x'Q l + y'Q? + z'Q3 + P4
= 0, when la

=
ad(j>,

h = a. (0 + <f>) + 0$, /2
= a + 6 + <j>, I,

=
1, we find the quadratic equation for at, /8

in terms of 6, <f> ; putting x=@ +
<f>, y = 0<f>,

and using xy x'y + z' z = 0,

we thus find

2 (x
-
x'y pv (2it)

2 (x
-xj fr (2) = XA - 4V + 2X, ( + *') + X, (xx

r

-y-y')
+ \t (z + z'-ay'- x'y) + 8 (xz + x'z)

- 2 (xx
1 + y + y')*;

f= being the equation of the Kummer surface we have (p. 76)

/ W 1 3/ >\
9/ Vx - o / o '

anc' therefore (x
- x) ~- = x f-

-
^- .

dy / dz
'

dz dz dy

The cone x'Qt + y'Q + z'Q3 + P4
= 0, with vertex at + u', intersects the

Weddle surface near + u' in a locus whose projection from the node D gives,

near + u, the locus represented by x'^ ( U) + y'j)21 ( IT) + z' -
f>,, ( U) = 0, for

which then, as our previous investigation of the asymptotic lines of the

Kummer surface shews,

putting here (see p. 117),

where X = pK (2u) = ^(2"'), Y= $>2i(2)
=

f>21 (2M'). ifc is at once found to

reduce to
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And in fact if
( j )

and
(
-=-?

] give two directions through the point + u
\au1 / l \ttWi/2

which are harmonic in regard to the directions given by

v Y2
-; -A -=-- J = V,
dv^J aw,

while (-r4) , rA) are the directions at + u obtained from these respectively
Vfch/i VMh/i '

by projection from the node (0, 0, 0, 1), we have

j\ _ (du,\ (duj\ _"

42. Consider now the asymptotic lines of the Weddle surface ; their

directions at + u are given by a determinantal equation

= 0,

but the algebraic work is simpler if we proceed as follows: expressing that

the tangent plane \ + p,rj + v% + T = contains the point whose coordinates

are

and similar expressions, we obtain, beside the three equations already found,

\- fj.0 + v0* - ff> _ \ -
(*<(>

+ v<p
-

ft
8

the further equation

dtf
2 JLf

a /x-

for the asymptotic lines
; putting T3

=f(t), differentiating twice the identity

in t,

/\ - tit + vP - P\* _ (P
- tx - y) (t*

- tX-T)
\ ~T~~

and then putting tff,v/e find

X itJd + vfr & 32 /X

7(0

= (6-W
(
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so that the asymptotic linos are given by

-
,

a result obtained in this way by Mr H. Bateman, Proc. Land. Math. Soc.

New Series, Vol. in. (1905), p. 235. Putting herein

d6 dd> OdO

and reducing, it becomes, replacing # +
</>, 6$, + yS, a/3 respectively by

x,-y,X,-Y,

this is the relation for -~ when we move along an asymptotic line at the
ClHl

point + u; putting (p. 117)

du^ f du.; Y\ If du.; x \

~i -^ ~i / i - * / I
^

7 / ^* 1 1

rfi \ rf/ // V duS )

we can verify algebraically, though the fact is obvious from the geometrical

interpretation above given for this transformation, that the differential

du'
equation for -j, is precisely the same, so that the asymptotic directions

project from the node (0, 0, 0, 1) into asymptotic directions: putting then

X = X', Y= Y', ic = Qj/Qi', y = -
Qi/Q3', we have the form for the differential

equation of the asymptotic lines at u'; finally dropping the dashes, the

asymptotic lines at + u are given by

in YD \ I 2
1 O/D A. vn \ " -LrtVj-DV n

((J -<i Vs) -j I 4(Vi i -* Vs,) j ' Vi-"- T Vs' = w>

VMI/ ctMj

that is by

k _F dM, =0;

Q3 1 du?

and are therefore harmonic in regard to the directions given by each of the

two equations

It follows conversely that each of these two equations gives a pair of

conjugate directions
;
that the latter (ii) does so can easily be seen geo-

metrically ;
a geometrical proof that the former (i) also does so would enable

us to write down the differential equation of the asymptotic lines at once
;
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the fact is equivalent with the statement that the Weddle and the Rummer
surfaces are such that the asymptotic directions on either correspond to

conjugate directions on the other, a relation projectively generalising that

considered by Lie between two surfaces of which the asymptotic lines of one

correspond to the lines of curvature of the other (Geom. der Beruhrungs-

transformationen* (1896), pp. 473, 636); it was by relating the Kummer
surface in this particular way that the asymptotic lines of Rummer's surface

were first determined, by Lie, Compt. Rend. LXXI. (1871), p. 579. In regard to

these conjugate directions, (i), we have proved (p. 117) that they are given by

P-tX-Y=0,
that they are the tangents of the intersection of the cone

with the Weddle surface at the vertex of the cone, that any element at + u

of a particular curve t is projected from the node (0, 0, 0, 1) into an element

of the same curve at + u', the arguments u't u being such that u' u = u a - i

,

and that the curve t is given by 2u = ua- ( + "", for variable j3. With regard
to the directions (ii), consider first the cone joining the point 6 of the cubic

curve to all other points of the cubic curve, whose equation is given by

frft-.*& Or- 0;
11 rh

it passes through the point + u', or P", for which f = -=- ^ , r{ = -?
-|

Cp (M) <P H
etc., and, as we have seen, the tangent plane of the Weddle surface at this

point passes through the point

80 V /
'

80 V

or ?', vvhich (p. 116) is the tangential on the Weddle surface of the point 6 of

the cubic curve
;
in other words the quintic curve of intersection with the

Weddle surface, other than the cubic curve, of the cone 0-Q3 0Q2 + Ql
= 0,

is the curve of contact of the tangent cone to the Weddle surface from the

point T; let P,' be the point of this curve of contact lying on the chord

joining to
<f> + d<j> ;

the tangent planes of the Weddle surface at P' and P,'

are tangent planes of the cone of contact, touching this along the generators

TP' and TPt'; thus they ultimately intersect in P'T, which is thus the

conjugate direction on the Weddle surface to P'P/. Consider now the

similar cone
<f>

2Q3 </>Q2 + Qi = 0, containing the cubic curve, with vertex

at
(f> ;

its tangent line at P' joins the points

IT J. Z3
1 u) t/

Cj) (H)
*

(J) (*)
'

1 /!__ 1\ 3 (^W \4> 9)' W \ 4

*
Also, Lie, 3/at/i. 4>mai. v. (1871); Darboux, Theorie, NOB. 157, 164.



128 Geometrical interpretation. [CIIAP. v

namely is the line P'T; thus the two cones

or the curves of contact of the tangent cones to the Weddle surface from the

points

give conjugate directions on the surface at P'. We can find the differential

equations for these curves : for consistence of notation consider the corre-

sponding curve 9'*Q3 0'Q^ + Q, = 0, passing through + u, where &', <j>'
are the

extremities of the chord of the cubic curve through + u. This projects into

a locus near u represented by ff- d'x y = 0, which gives, as we have seen

(p. 117)

\dui
herein put

diii
//.!

where p = ,--
;
we thence have, for the differential equation of the curve

the form

p
s (X2 - 2Xx' - 4/) +p (4XY- 4Yx + X*x + 4Zy') + 4 F2 + 2 YXx' - X-y'= 0,

which can be shewn to be the same as

(Z
3 + 4F)(p

2 -
x'p

-
y') -1(Xx' + 27+ 2y')(p*-pX-Y) = 0,

so that the curves fQ3 tQ^ + Qi = through + u, the curves P tX 7 =

through + u, and the curves given by the differential equation p
2

px y = 0,

or

through + M, belong to the same involution
;
this is in accordance with what

we have found, the asymptotic directions being the double rays for the

involution, and the equations

(i) V-tX-Y=Q,
(iii) ?Q3-Q2 + Qi = 0,

defining three pairs of conjugate directions
;

the directions (ii) are the

harmonic conjugates of the directions (iii) in regard to the directions (i).

For the space cubic

= (

-, 22it'., X =
2t, Y=-t-, Q 1

= 0, Q, = 0, Q3
=

0,
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and the equation of the asymptotic lines is satisfied by the vanishing of its

coefficients. For u = 2w (
- a

, 0=$ =
t, and the equation

is satisfied; thus the unicursal septic and its projection, a unicursal 16-thic

(p. 116, note), are both asymptotic lines.

43. Another method of determining the functions pw (2M), etc., is as

follows ; if in the equation

(7 (v + u) cr(v u)
2i (tt)

-
> (V) fa (U) + ft, (u)

-
jf>uo-

2

(v) <r
2
(u)

we put Vi
= ul + tl , 02

= ^ + ^, where ,, ^ are small, and equate the

coefficients of ^ and 2 ,
we shall have, from the coefficient of t*, the identity

where a; = p^ (M),
=^ (), etc., and from the coefficient of tl ,_ -_, =,

taking second logarithmic differential coefficients of this we infer

IzM"--

Now (pp. 39, 41)

- 2y

-
4#) 2 a;

-2y 2x 2 01
-y a; 10

is an integral polynomial of degree 4, in fact equal to

rV (X!
2X4 + X V - 4X X^X4) + (^X,

2 - 2XoX2) x + X X.,y + ($\\, - X X4) z

^a? 4 (X X4 + JXjXj) xy 4 (4\

and it is found on computation that this is the same, identically, as

where -j^A is the vanishing expression, given p. 41, wherein the highest

B. 9
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terras are (xz y^. Further, differentiating the identity yl- xij f=0
in regard to t^ we find

-
y<?i

and hence

^jin + ^2311
- #pam - jpmn ,

so that each of M2 ,
Mt is a rational polynomial in x, y, z, and each of J/M ,

MX ,
Mn is a linear function of

, T/, f, T with coefficients rational in x, y, z
;

as the squares and products of f, 17, f, T are rational in x, y, z, we can express

each of pa (2w), ^ (2w), > (2w) rationally in x, y, z. We do not develop the

expressions.

44. We have seen (p. 114) that if + w be any point of the Rummer

surface, and (t) be either of the places of the Riemann surface determined by

I
, or, say, by 2w = u( - + M*

S = ^222 (2W) + ^22

then the other points of contact of the bitangents through + w have argu-

ments (w + ue>t
),
where & is in turn one of the roots of the fundamental

sextic (including infinity or =
a). We have also seen that

as u?'* = u"' t + ue
' a = u"- t + half period, the functions

(f
)zi (2w), p.a(2w) have

the same value at w as at each of the six derived points. If v be one of

these six points we have

where (t') is the conjugate place of the Riemann surface to (t). Thus the

place of the Riemann surface associated with v as is (t) with w is the place

(t'), and when we derive from v as we derived from w, we obtain places

v + M*> *' = w + ue - * w*' ' = w + u*- *,

that is places (including w itself) whose arguments differ from that of w by
half periods. The transformation from w to v is in fact that given by the

transformation A r (p. 79), and the next step gives places of the Kummer
surface derived by the transformations A r

~lA f . We thus get on the whole

32 places, as on p. 81. For each of these 32 places the functions ^(2u),

ft;a(2u) have the same value, and they are invariants of the group of

32 birational transformations.

For the Weddle surface the transformations are equivalent only to

projections from the six nodes in turn. Putting

(</> + *) n + C.

+ (e + $ + vo >] + z, etc.,
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where the six nodes are

(0,0,0,1), (\,-e,0>,-6>), (1, -*,...), (1, -*,...), (1,-m,...), (1,-n,...),

and putting

_ (0
- m) IT*,, v_ (<f>

- m) Uj,e _ (->/r
- m) U^

' ' '

.,. m , d) m -Jf m
with a= ,

6 = ^-- , c=V- ,

9 n
<f>

n y M

the Weddle surface has nodes at (0, 0, 0), at the infinite ends of the axes of

X, Y, Z, at (1, 1, 1) and at (a, b, c), its equation takes a simple form, and the

coordinates of the transformed points can be explicitly expressed without

much difficulty. Regarding X , Y, Z as rectangular Cartesian coordinates,

the 32 points are the corners of four rectangular parallelepipeds ;
one of

these is obtained from the original point (X, Y, Z) by projections from the

three infinite nodes 6, <, i|r,
the others are obtained respectively from

(X,,, F , ZQ), (Xlt Y1; Zt), (Xa , Ya ,
Za), also by projections from these infinite

nodes, where (X ,
Y , Z9) is the point obtained from (X, Y, Z) by projection

from the node (0, 0, 0), and similarly (X lt Ylt Z^) and (Xa ,
Ya ,

Za) are obtained

from (X, Y, Z) by projection from the nodes (1, 1, 1), (a, b, c). It is found

that there are two rational functions H, K of the coordinates X, Y, Z which

have the same value at all the corners of the first rectangular parallelepiped,

have also the same values, respectively -^.
, -^ ,

at the corners of the second

rectangular parallelepiped, have also the same values, respectively K, H, at

the third set of eight corners, and finally have the same values, respectively

jf.
, TT , at the last set of eight corners. Thus any symmetric function of the

four quantities H, j,, K, -^
has the same value at each of the 32 points,

and it would be an interesting problem to express j>& (2w), j>21 (2w) each in

this way; if this is possible. The function H, in terms of our original

coordinates, is

(6
- m) (4>

- m) (+ - m) UmnU^U^U^

which then has the same value for all the eight arguments

w, w + u'' f
,
w + u*-*, w + u*-*,

w + ue-

*, w + *
*, w + u"' *, w + v?- * + * *.

We have, as remarked in an Example given below,

where Pe
= y + 0x -

0"; P^ = 6$x + (6 + <j>)y + z - e^,

so that H can be expressed (irrationally) in terms of x, y, z.

92
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We do not pursue this matter. See Proc. Lond. Math. Soc. (1903-4),

Ser. 2, Vol. I. p. 247, wbere the formulae are given at length.

45. The formula

cr (u + v) or (u v)

^ (u

can be used to obtain the expressions for the functions

in terms of functions of u and v.

Let pa (u) = x, etc., ^ (ti)
= x1 , etc., p^ (u)

=
, etc., ^ (v)

=
, , etc.,

and May1
a;ly + z1 z;

differentiating logarithmically in regard to w2 and t>2 ,
and adding the results,

we have

differentiating this in regard to M2 and v2 , and subtracting and adding the

results, we get

raw _ _~
l}>

and 4JI/2

\jfa (u + v) +^ (u) +^ ()}
= P + Q,

/ajify /ajfv M-/a
2^f a2^where p - +

)

~M fe +
a^ )

+ 6M '

<

. a^Jif \

a -^55- !

2 0^2 oii^ovj

we have - =yl %-xrf- ^= ( 1

so that P is expressible rationally in x, y, z, xl ,y1 ,
zlt and both P and Q can

be expressed, of course, rationally in x, y, and xlt ylt &. Similar formulae

can be found for ^ (w 4- v) and
j?u (w + v).

Or we may adopt another method. Let

and u+v + w = 0;

there exists then on the Riemann surface a rational function of order six
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having its poles at infinity, and vanishing in (0,), (02 ), (0,), (04), (05), (08)

(see Appendix to Part I., Note II.) ; say this is

t
3 - vt- + fit

- X + ps,

where s2 =/(); the coefficients v, p, \, p are then found from four equations

such as

<
3 -K0i

2 + /A0i -\ + p; = 0, i=l, 2, 3, 4,

where B,- is the value of s at the place (0,-) of the Riemann surface
;
and when

the function is found, the places (05), (06) are determined without ambiguity ;

there exists then the identity in t

(P
- v? + ^t- \Y - p*f(t)

=
</> (0,

where
<f> (t) is the product of the six factors t 0i, and, since

fa('u)
=

l + e3 , * (v)
=

3 + 4 , jMw)
=

fl> + 0>

we have ^ (u + v) + %>& (u) + jp> (v)
= 1v + 4p

2
,

where in v, p, determined as above, we are to substitute

0, + 02 = p22 (M), 0,0, = -?(), 3 + 04 = >*("), 3 04 =-Mw
)>

i
=

0if2B (M) + jfza (M), 2
= 00^

The functions
ipa (u + v), jf>u (u + v) can also be calculated, their values

-050, ^
s , e

or i['p'(^. 0)-2.,B6]/(0.,-06 )
:1

, being determined by the

knowledge of the remaining zeros of the rational function above.

The relations are capable of important geometrical interpretation.

Consider the six points (1,
-

it 6?, 0?) upon the cubic space curve, each

being associated with its proper quantity (D;, definite in sign, as above.

Denoting by 6,, 62 , ...,i5 the roots of f(t), the identity above gives

the right side we may denote by <,; it is definite when X, /z, v are

determined. The plane

passes then through the fifteen points of the Weddle surface such as

-^

which we may call the point (0,, ;-),
and also through fifteen points

1 Z^ + ^L ^1_V '^l4.^\ /'L Z*{ W ~ b

<>
"r>

.
+> - ' '

"
'

and is thus symmetrical in regard to the two sets of six points (0,,...,08),

(6,, ..., 65 ,
oo

), lying on the cubic curve. In particular it cuts the edges of the

tetrahedron (0,, 2) 3 , 4) in six points lying on four straight lines, since the
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points (0i, 2), (0,, S), (0,, 00 are manifestly collinear. It can now be proved

that, to every quadric surface through one of the sets of six points, corre-

sponds a quadric through the other set of six points, touching the former

quadric along a conic lying on the plane \^ + fj.ij + v%+ T= 0*.

To see this in the simplest way, put

l- = X+Y+Z+T,

f= B?X + 8f7+ 0J

giving

and so on, so that X = 0, F = 0, Z = 0, T = are the faces of the tetrahedron

0i, #2, 0a, 0^ ; substituting in

Q =

it is at once found that this reduces to

3yPeit ei
...... (I),

where P,. ,
= 0,0. * + (0, + 0,) y + * - -' j ;

now, for the point (0it 0j),
if the difference f 0j be denoted by (ij),

we have

and so on ; thus for the point (0,, t) we have

7 = 0, Z = 0,

so that this point, and similarly the other points (#2 , 0*), (03, 0*)> and generally,

all the points (0t , }),
lie upon the plane ,Z + 2F+ SZ + t T=0, which

is therefore the same as Xf + /J.TJ
+ v+r = 0. Thus, considering the par-

ticular case of the identity (I) in which the current point is upon the cubic

curve, namely putting , 77, f, T = 1, t, P,
- t

3
,
we have the identity

/() = -4 (P
- rf* + fit

-
X)

2 + fi (t
-

0.) (
-

6,) (t
-

3) (t
-

0<) (t
-

5') (t
-

e'),

* The condition for a quadric surface to reduce to the square of a plane is the vanishing of

all minors of two rows and columns in the discriminantal matrix of the quadric ; and the

conditions for a symmetrical matrix of n rows that all minors of n - r rows and columns vanish

are J(r+l)(r + 2) in number [Sylvester, Coll. Papers, Vol. i. p. 147]. Thus through four arbitrary

points a determinate number, in fact 8, quadrics can be drawn to have plane contact with an

arbitrary qnadric.
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where A, B are certain constants, and 6', e

'

are the remaining intersections,

other than 0,, 2 , 3 , 4 ,
of the quadric

with the cubic curve
;
as this identity is of the same form as that originally

deduced from Abel's theorem, we infer that 5', 6

'

are the same as 5 , 6 ,
and

have so proved the theorem. And this, to resume, is equivalent to the state-

ment : Let 11, + v be two arbitrary points of the Weddle surface, P', Q' their

projections from the node (0, 0, 0, 1); let 0,, 2 be the extremities of the chord

of the cubic through P', and 3 , 4 tite extremities of the chord through Q"; the

arguments u, v determine definite signs for the associated radicals 0,, 2 ,

3, 4, and so determine a definite plane -or through the three points

(e.,-,, -0,03 + 0,8,,...), (04-03 ,
-03 4 +04 3 ,...),

(e3 -@,, -0,03 +03 ,,...) ;

taking then any quadric Q through the nodes of the Weddle surface, there is a

definite quadric R through the four points (0,, 2 , 3 , 4) having contact with Q
along a conic lying on this plane -nr

;
all these quadrics R, as Q varies, intersect

the cubic curve again in the same two points 5 , 6 ;
with proper signs for 5 , u,

the point (u + v) is the projection, from the node (0, 0, 0, 1), of the point

(06 5 , 5 6 + 0,j0,s, ...). The complete geometrical figure, allowing all

possibilities for the signs of 0,, 2 , 3 , 4 ,
will involve 8 planes; each

quadric Q will have plane contact with 8 quadrics R through the four points

0i. 02. 03. 04. and there will be 8 resulting pairs of points 5) 6 ;
the 8 planes

give two tetrahedra which with the tetrahedron 0,, #2 , 0,, 4 are in fourfold

perspective ;
but we refrain from further consideration of the general figure.

The points #5 , #, by substituting

(21) (31) (41) X = (0t
-

t) (03
-

(04
-

1), etc.,

in the quadric -R, are found from the quadratic equation

2 (02
-

3) (0i
-

0,) [E,,. ,(t- 0.) (t
-

0<) + Etu e< (t
-

2) (t
-

3)]
=

0,

where E
it 4

=
J [F (6,$)- 20*]/( 6

-
0)

2
.

The quadric R is of the form

where

R, = 42 (0,
-

3)
2

2 3 YZ, R, = 42 (6,
-

3)
2

(02 + 3) YZ, R3
= 42 (0,

-
3)

2 YZ
are the same as Qlt Q2) Q3 ,

and pass through the cubic curve, while

S=- 42 (02 -03)' #,,<,,
KZ

= -2[^(02 , 3)
- 20S 3] FZ,

contains the six points 0,, ...,06 . The quadric R, written momentarily in the

form

fYZ + aZX + hXY + uXT + vYT + wZT = 0,
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will be a cone if

h g u
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The equation of a Weddle surface referred to four of its nodes as tetrahedron

of reference is well known, and the new surface will be of the form

A ew, A w, , A W. , A wt -
J3.\jf

----h -n-z if + 'a
'->TT

+ * 77
Ujj>t UifA u

*i**4 vow,

Denoting the quadric 8, in terms of
, r), , r, by

S = -
x'Q,

-
y'Q,

-
z'Q3

- n- + p&l - V*f + /*rt?
-

/*(? + PT ~ W*.

the identity

Pl=-\M+M + vS+T'r + S

shews that the polar planes of any point in regard to the quadrics P4 and S
meet on the plane Xf + pi) + v + T = ;

if in

we put

f=l,^ = -^,C=^,T = -^, and f'
= l,ij'

= -^, r'=^,T'=-^,

we obtain

>=o

whereby the tangent plane of the original Kummer surface,

at once takes the form

0, 2 (a,
-

of) + (0, + 8,) (y-y'} + z-z'- .,

=
0,

proper for a singular tangent plane of the new Kummer surface
;
with this

notation also, the equation of the new Weddle surface will differ only from

that of the old in the substitution of /*, /&,, ... for \
,
\lt ...

; denoting them

by fi, SI' we have then, since fl is linear in X
, X^ Xj, ... (see pp. 78 and 67),

_ = _ _~

^ dr 3 Srj 2$ 3 3f 87? dr 8^
'

where // = -\ (Xf +M + ^ + r)
2 -

x'Q,
-

y'Q.
- z'Q3 ,

2--

thus the two Weddle surfaces cut (i) in the cubic curve, which is an asymptotic
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line upon each, so that the surfaces touch along this curve, (ii) in a plane

quartic curve lying upon Xf + /J.T) + v% + T = 0, (iii) upon the first polar, in

regard to the developable quartic surface ^=0, of the pole of the plane
^ + A"? + vii + =0 in the linear complex I + 3J' = 0, previously noticed (p. 67);

beside the cubic, which is an asymptotic line on this first polar, this gives a

sextic curve.

It would be interesting to follow out the relations between these Weddle

surfaces corresponding to the relations between the associated Kummer
surfaces

;
we refrain from this. But when 0,

=
3
= 6 and 0, = 4

=
<j>,

the

arguments u, v become equal, the plane B,^Y + ... = 0, passing through the

points

ri_i n*+4> i ri(r\ if=^i i

[0 <!>' @^4>" \d0\S)' d0\)'

becomes the tangent plane of the Weddle surface at the first point,

and the figure becomes that previously considered in determining the

functions K (2u), ... (p. 123). For that case, with the notation previously

used, the new Kummer and Weddle surfaces are to be determined from

the quadric

R = (x
-

x') Q, + (y
-

y') Q, + (z - z') Q3

where the last term represents the product of the tangent planes of the

cone x'Ql + y'Q? + z'Q3 + Pt
= which pass through the chord 6, <f>

of the

cubic.

It is possible to determine a new Weddle surface with six arbitrary points

of the cubic 6lt ...,0a as nodes; this intersects the original in a curve of the

tenth degree, beside touching it along the cubic. See Darboux, Bull, des

Sc. Math. i. (1870), p. 357
; Bateman, Proc. Land. Math. Soc. Hi. (1905),

p. 237.

It is possible in another way to determine a new Kummer surface with

nodes upon the old one, and tropes touching the old one, the two surfaces

touching along an octavic curve (Kleiu, Math. Annal. xxvii. (1886), p. 136 ;

Rohn, Math. Annal. xv. (1879), pp. 3oO 352
; Reye, Crelle, xcvu. (1884),

p. 248; Hudson, Rummer's Quartic Surface, p. 159); taking each of e,, e2 ,

e3 , e4 to be + 1, and 0,, ..., 0, arbitrarily, the nodes are the sixteen points

and the tropes are the tangent planes of the original Kummer surface

touching at the points satellite to
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After Reichardt, Nova Acta Leopoldina, L. 1887, p. 476, the octavic curves

of contact of the oo 6 Kummer surfaces so obtainable are given, in our

notation, by

m + m, [p21 (2) + btfa (2u)
- brf + ...+mi [f>21 (2w) + bsp* (2) - b$ = 0,

where m, m^ , . . .
,
ms are arbitrary, and b

l ..... 65 are the roots of the quintic

/(<) = <>.

46. The equation expressing the functions ^ (u), etc. in terms of the

functions ^(u), etc., of pp. 39, 59, is in connexion with the theory of certain

cubic surfaces with four nodes, which touch the Kummer surface along sextic

curves represented by l$m (u) + . . .
=

;
these correspond to plane sections of

the Weddle surface. As the following brief account shews, the theory of

these surfaces and their reciprocal, the Steiner quartic surface, is of con-

siderable geometrical interest.

Consider the quadric

*Qi + yQ2 + zQs + ^4 = 0,

where Q, =

and

Take also an arbitrary plane

The conditions that the quadric should touch the plane in the point

> ^i. i> Ti) are *ne equations

_ _

817, ^9^ 9*;, Si;,

leading, for (x, y, z), to the sole condition

G= -V

=
0,

22 , -2y, 4

2), X3 + 2y, 2
, 4

2.0 , J Xj + 2y , (X4 + 4), 2
, 4

-2y, 2a;
, 2,0,4

4 , 4 4,4,0
and, for (f1,1/1, fi, TI), to no other condition than 4^i + 4'/i

=
0,
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If O
r>> denote the minor of the sth element of the rth row of 0, we have, to

express (ft, 17,, ft, T,) in terms of (x, y, z),

OH 0,., 0,3 0,4
'

where the denominators are quadric functions, and, to express (x, y, z) in

terms of (ft, T?,, ft, T,),

x _ y _ z 1

where A. A, A. A are the determinants, with proper signs, obtained by

omitting the columns in order in the matrix

/ ,
-2Tl , 2ft , -\,,ftH

2r, , 2ft , -417,, i^ft-X,'?!

V 2ij, , -2ft, , 2ft

and are cubic functions. This gives a representation of the cubic surface

0=0 upon the plane l
<> ^ + ll r) + l^+ I3r = 0.

By immediate differentiation of the determinant we have, when (x, y, z)

is upon = 0,

and

where t (= 1) is introduced, only for differentiation, to render G homogeneous
in x, y, z,t; since (7,, Cri

= ClrCu when (7=0, and

^0 ^15 H" ', '^25 4" '2 ('SS + ^3 (^45
== 0,

we have, if we multiply by Gn and replace the ratios (7U : (712 : (713 : (7,4 by

ft : *?i : fi : T,,

30.80.30 .5G_
to

'

8y
'

dz St
~ Vl ^ ^

and the surface reciprocal to <C = is therefore represented upon the

plane by

-014),
= 4 (013

-

where Q] = 4(j7,T, f,
2

), etc., and is thus a quartic surface: denote it by S.

In terms of the coordinates (x, ?/, z) of the corresponding point of the surface G,

the tangent plane at any point of S is

where X, Y, Z are current coordinates
;

it thus cuts S in a locus whose

representative upon the plane la^ + 1^ + L^+ls r = is given by

Qi + yQi + *Q> + ^4 = 0,
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that is by two straight lines, since, in virtue of (7 = 0, this quadric touches the

plane. The curve upon S which corresponds to a straight line in the plane

Jof + 1^ + 1.^+1^ = is cut by any plane AX + BY+CZ+D = in as

many points as is the straight line by the conic AQl + BQ.Z + CQ3 + Pt
= 0,

and is thus a conic. The surface S has thus the property of being cut by

any of its tangent planes in two conies, and the reciprocal surface C has the

property that its tangent cone, drawn from any point of itself, breaks up
into two quadric cones. These two conies upon S will coincide, and the

surface be touched by a plane at all points of a conic, if the two straight lines

*Q. + yQ, + zQ, + P* = 0, ^ + 1^ + 1^+1^ =

coincide
;
we investigate now the condition for this : the quadric xQl + . . . =

must be a cone touched by l^+ ... = 0. Now a quadric

U= (a, b, c, d,f, g, h, u, v, w$f -n, r)
2

will be a cone, with vertex at (,, T?O) ,
TO),

if the four equations

o + f>"i) + gZ,, + UTO
= 0, ..., ..., ....

are satisfied; it will touch / + ... =0 at (', i\ ', ', T') if we have the five

equations

let the minors in

be denoted by the corresponding capital letters; thus the determinant F

is zero and

_V__T;_". t '.

A~ H~ G U~.' H V
but from the five equations

a^ + hi) + g^> + ura
= 0, ...

, ..., ... ,
/ + 1^ + ... = 0,

we have Z = 0, as well as Lt
= 0, L^ = 0, L3

= 0; we infer thus that the

conditions that the surface U = should be a cone touched by l^ + ... =0
are that all the first minors of F should vanish*. This requires, according

to Sylvester, three algebraically independent relations among the elements

of F (Sylvester, Phil. Mag. 1850, Vol. xxxvn pp. 363370, or Collected

* In another phraseology the two first invariant factors of the matrix r for the root zero must

be both of exponent unity, a result following from the two equation sets T (', if, f, T', w) = Q,

1' (fo> %' fo> To- 0)=0. Cf. the theorem quoted in Appendix to Part I., Note I.



142 Deduction of properties from [CHAP, v

Papers, Vol. i. p. 147). Returning then to the case now being considered,

the two straight lines

will coincide if x, y, z be such as to satisfy the three conditions necessary that

all the first minors of the determinant C should vanish. This agrees with

the consequence that then each of dC/dx, dC/dy, dC/dz, dC/dt, which as before

remarked are linear functions of these first minors, would vanish
;

for a

singular plane of S must correspond to a double point of the reciprocal

surface* C. We can further use the representation upon the plane to

determine these nodes of C. Let

(1,
_

0, 2>
_

8)) (1>
_ ^ 0,

_ p)t (1 f

_^^ _^
be the intersections of the plane 4- ... =0 with the common cubic curve

of the quadrics Q,, Q.2 , Q3 , so that I, : lt : lz : 13 8$-fy : 20< : 20 : 1
;
denote

these points by A, B, C; it is found at once on computation that the Weddle

surface cuts the side AB in two points P, P' of coordinates

and (0-*, -

where 3 = X, +

and 4>2 = X +

We thus have four straight lines P'QR, Q'RP, R'PQ, P'Q'R', and the

*
Incidentally we see that any symmetrical determioautal equation, whose elements are

rational in three coordinates x, y, 2, whatever be the order of the determinant, represents a

surface whose nodes make all the first minors vanish.
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diagram given. Or the points P, Q, P', Q', R, R', and hence the points

A, B, C, may be defined thus: the quadrics Qly Q,,, Q3 ,
P4 cut the plane

o+ = in four conies; the condition that a self-polar triangle of a conic

(oj, &i, Cj,/], ffi, V&2/1, ya , y3Y =

should be possible circumscribed about a conic whose tangential equation is

(A, B, G, F, G, H'&l.m, rc)
2
-=0,

is known to be

Aa, + Bb, + CCl + 2Ff, + 2G
ffl + IHh, = 0,

namely linear in A, B, C, F, G, H ;
thus the general tangential conic so

harmonically inscribed to each of four given conies involves linearly two

arbitrary parameters and is one of a set of conies touching four straight

lines
; among these conies there are three point-pairs, say P, P'', Q, Q'\ R, R',

and these will be conjugate pairs of points in regard to the four given conies,

and therefore conjugate pairs in regard to the four quadrics Q,, Q2 , Q3 ,
Pt .

It is a known property of conies that if three collinear points L, M, N be

taken respectively on PP', QQ', RR' and then three other points L', M', N'

respectively on PP', QQ', RR', and so that each of LL'PP', MM'QQ',
NN'RR' is a harmonic range, then L', M', N' are collinear. Consider the

general quadric xQ t +yQ., + zQ3 + Pt
= 0, where x, y, z is any point on the

cubic surface (7 = 0; the two lines in which it intersects the plane Z
(? + ... =0

can be shewn to be two such lines as LMN, L'M'N'. For substituting

in this quadric the coordinates

m (8<
2 -

),
- (< 3 + > 3

)
- m

putting

= 2X, + X, (6 + <j>) + 0<f> [2\2 + X3 (6 + 4>)] + ffip [2X4 + 4 (6

,- , _
'

we find

which gives two points harmonic in regard to R and R', coinciding with R
or R' according as m = or oo . The two lines LAIN, L'M'N' correspond, as

we have seen, to two conies lying on a tangent plane of the surface S
;

if they

coincide with one another they must coincide with one of the four lines P'QR,

Q'RP, R'PQ, P'Q'R' ;
for these cases respectively we have clearly

(i) x^ + y(<f>+->fr) + z-E^ = 0, x0^)

xO^r + y(0 + i|r) + z - E

(iv) x^ + y(<j> + ,},) + z -
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corresponding then, for example, to the equations (iv), we have the singular

plane
X, Y

, Z, T =0

of the surface S and the node (x, y, z) of the surface (7 = 0. The planes

are tangent planes* of the Kummer surface

A = 20 =0,

= oo .

-2y, 2x
, 2,0

both passing through the line at infinity joining the points

x/l = -y/<f>
=

z/<f>
!>=x>, /l

= -
y/i/r

= ;

Further when xQ^ + yQ2 + zQ3 + P4
=

represents a cone, the point (x, y, z) is

on the Kummer surface A = 0. It appears then that the surface (7 = has

four nodes, these being, if 1 =
8<f>ijr, ^ = 0<f>, L = 20, ls

= 1, four of the eight

intersections, in threes, of the three pairs of tangent planes to the Kummer
surface A = which can be drawn through the lines at infinity joining the

three points x/1 = - yjO = z/d
1 = co

,
etc. of A =

;
and these four nodes lie on

A = 0. Since every point of A = is capable of representation in the form

x = ti + z = E,, lt t,

there appears incidentally the algebraic resultf, that if 0, </>, ^ be arbitrary,

* In fact, if = u '* + u ' 1

'', the former has the form x^sl (v) -yfjf-(v)+ffn (
v

) -z=0, and

touches A = at the first satellite point of v
; the second depends similarly on the conjugate point

v = ua - t-u"'*. Seep. 112.

t If (8), (0), (f), be any three places of the Riemann surface, and we determine two places

(t,), (,), so that

we have *' + " * -
(u"<

" + ua -

*) = u"- *,

shewing that the point (u
0> 9 + "'*) lies on the tangent plane of the Rummer surface touching

the surface at the satellite point of (u
0> *' + u"' *>), and that therefore

t,t. (e +</>)- e<t> (t,
+ 1,)

=E
tit tj

- K
ti p

The places (*,), ( 2)
are thus the zeros, other than (6,

-
6), (<f>, -*), (^, -*), of the rational

function

", t, 1, ->

e-, e, i, e

<?, t, 1, *

V, t, 1, *
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two other quantities ti, 2 can be found so that

t& (6

and one of the four singular tangent planes of the surface S is corre-

spondingly

the others being derived from this by substituting for tlt t2 the couples

similarly derived from 0, (f>, ->|r
after change in the sign respectively of

,
of <>

and of ty. Let the cone

,Q, + Pt
= o,

which touches the plane +... = along the line P'Q'R', be denoted by
F4

= 0, and the plane / +...=0 by 11 = 0; draw any plane <r, through

P'Q'R', and let the tangent plane of Vt along the other generator lying on

o-4 be called wf ;
we have then an identity of the form

pr _ 3 .

now the points of the surface S are given by equations X =
Q,', F = Qa',

Z=Q3', T=P4', where Qt ', Q%,... are the homogeneous quadrics in f, i), f
obtained by writing T = (#<Vr? + 20^. 7; + 20. f) respectively in Q1( Q2 ,...;

take for cr4 the plane joining (0, 0, 0, 1) to P'Q'R', namely

f. 9 , f,

i, -e, e\

i, -*, </>

s
, *

1, -r, , ^

= o,

so that we may write

or say <r4
= ^ + y2 + y3 ;

we have then, if T, denote a constant multiple of the linear function

and similarly Xlt F,, 2", denote the linear functions associated with the lines

P'QR, Q'RP, R'PQ, as a representation of the coordinates of the points of the

surface $, the formulae

which lead to

B. 10
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and the surface S is given by
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the reciprocal surface C being given similarly by

47. Now let the determinant

-X,, iX, ,

2

n ,

-''
> IK "'l

it
, frj )

//' -

, 4, m3

3 , 0,

Po , Pi , 2>2 Pi , 0,

obtained by bordering the determinant A, be denoted by ( 1
;
of such form

we have then cubic surfaces ( .

J
= 0,

( )

=
0, when A is bordered by only

one row and column, the same or different
;
we have quadric surfaces

( )
= 0,

\vmj

(
j
= 0, when A is bordered by two rows and columns, the same or partially

different, and we have a plane ( , 1=0, when A is bordered by the same
\lrnn)

three rows and columns. If (, 17, f, T) satisfy the three equations

fcf+^+ tt+4'" i
TOof 4- i1v4-sS'+m3T = 0,

"of 4- nrf 4- ny+ n3r = 0,

(lmn\ . . ,

the plane , = is the same as
\lmnj

+ (- X.p 4- X, fi,
- \2T + Xs^r - X4 ?= + 4?r) = ;

and the cubic ( .

j
,
which has above been denoted by C, has been shewn to be

a cubic surface with four nodes. Considering the determinant L
J

,
and the

minors of the elements (5, 5), (6, 6) and (5, 6), we have an identity

lm

and this shews that the cubic surface I ,
)
touches the Kummer surface A at

\/
all its intersections with it, and therefore along a sextic curve, as also does
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the cubic surface
( J

, and these two sextics are the complete intersection of

A with the cubic surface f

j
. Returning for a moment to the expression

of A = by the hyperelliptic functions, the identity of p. 39 shews that the

sextic curve on ( .

J
is given by

'oPzB () + kffm. () + kfm () + l&m () = 0.

and it is to place this identity in a clear light that we have entered so

far upon the theory of the cubic surface
(.). Considering similarly in the

determinant
( , )

the minors of the elements (6, 6), (7, 7) and (6, 7), we
\lmnj

have an identity of the form

ilm\ fln\ ,'lm\ 1

_ fl\
/lmn\

(im) (in)

~
(in)

~
\lj\lmn)'

Thus wherever the plane ( . ) meets the quadric I , I it touches it, and
\lmnj \lrnJ

the line of contact is on the quadric (
,

);
thus (,

). (7 )
are quadric

cones with a common tangent plane ( .
],

the generators of contact being

generators of the quadric surface
(

,
j

,
which therefore is also touched by

flmri\ (lm\ . (lm\
the plane .

,
and the quadric , has with each of the cones , ,

\lrnnj \ln) \lrnj

,

j
, besides a common generator, an intersection which is a cubic space

curve
;

further the whole intersection of the cone ( .
)
and the quadric

\lm/

f .

J
lies upon the aggregate of the cubic surface Lj and the plane L j,

of which the latter can only contain points of
( ) lying upon its generator
\6?7i/

c L- (lm\ . (lm\ ..

oi contact, so that the cubic space curve common to , and , lies upon
\lm/ \ln/

the cubic surface
( ,) ; as, by the same identity, the only points common to

the cubic surface I

,j
and the cone ( .

j,
are points of contact of these, lying

upon the quadric ( .

j
,
it follows that the cone

(
.

j
touches the cubic surface

102
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(
.) along a cubic space curve, as likewise does the cone

[
.

J,
and these two

cubic curves are the complete intersection with
(,)

of the quadric surface
%'

(
,

)
. Further as the cone (.

J
has a generator upon the quadric ( ,

J
,

its vertex is upon this quadric; if this vertex be taken for origin of

Cartesian coordinates the lowest terms on the left side, in the identity

under discussion, are of the second or higher order; thus from the form of

the right side the lowest terms in ,
)
are of the first or higher order, and

\/

the vertex of the cone ( .

j
is thus upon the cubic surface

( .] ;
what is in

general the quartic cone of contact to
( ,)

drawn from a point of itself hereW
contains

(
.

J
as part of itself, and so breaks up into two quadric cones.

Further, taking the origin at the point of intersection of the generators of

contact of the cones ( .

J
,

I ,
J
with the plane ( .

j
,
this being as we

have seen also the tangent plane at this point of the quadric ( .

j
,
the

lowest terms on the left side of the identity under discussion consist pre-

sumably of the square of the plane (
.

)
,
which therefore, as we see from

\ti7ft1
f

l/

the right side, is the tangent plane, at this point, of the surface (.). Wew
have already seen that, regarding mc , m,, ... and n , n,, ... as arbitrary, the

plane [ , ] is the general tangent plane of the surface ( . ); it is not diffi-

\lmnj \IJ

cult to see that the cone L
J may, by taking wc , ?,,... suitably, be made

a cone of contact with vertex at any point of
(,):

for the vertex of the

cone ( . 1 makes- vanish all the first derivatives of the expression ( .

J
;

these first derivatives are seen, by differentiating the determinant L
J,

to be

linear functions of the first minors of this determinant; as previously remarked

we can make all these first minors vanish by satisfying three algebraically

independent conditions
;
the vertex of the cone ( .

J
is thus to be found by

equating to zero three suitably chosen first minors, and the first minors, of

which two rows and columns are chosen from the last two rows and columns
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of (jj , are linear in x, y, z. Geometrically, the condition that all the first

minors of ( , 1 vanish is that the quadric

should cut the plane / + ... =0 in two lines of which one lies upon the

plane m(,f+... =0; this may be seen either directly* or by remarking that if

. . .
=

0, m^ + . . . = 0, n + . . .
= intersect in (f, ij, f, T), we have

while (, )
is a linear function of ten of the first minors of

(
,

)
with

\lmnj \lm/

coefficients which are squares and products of n
, n,, n%, n^; thus when all the

first minors of
(

.

j
vanish, the quadric Q vanishes for every point upon the

line /of+--.=0, !(+... =0; that it touches the plane +... = is ex-

pressed by the vanishing of the minor (6, 6) of ( , I. We have thus reached

the results, that if (x, y, z) be any point of the cubic surface C, or
(

. I
,
and the

\/

quadric

Q = 4x(r,T
-H + ... + (- \ 2 +...+ 4pr) =

cut the plane + ... = in the two lines m^ +... = 0, J 'f + ... = 0, the

cone of contact to C from (x, y, z) breaks up into the quadric cones L
J

,

;
and further that the cones of contact ( , ) , ( , 1 from two different

\lm I \lrnl \lnt

points of C have a common tangent plane touching C at a point where their

cubic curves of contact cross one another. These quadric cones of contact

correspond to conies lying on two different tangent planes of the surface S

reciprocal to C, and we remarked before that each of these conies corresponds
to a straight line in the plane i f+ ... =0; the point of intersection of these

lines corresponds to a common point of the two conies and to a common

tangent plane of the two cones
(

. ).(;); and this plane is one of the four

tangent planes to C which can be drawn through the line joining the

* Or in virtue of the theorem quoted, p. 164. If (V fV), ({"ij"f"T") be any two points on

n(^ + ...=0, the tangent planes f
~ + ..., ( ~, + ... are both of the form w (l + ...) + (m< +),

BO that the matrix of six rows and columns

A - /A I m\

(l\m O/

satisfies A dVfVwr) = and A ('V'f'V'a'V) = 0.
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vertices of the cones
(

,
J

,
( )

Further results in regard to the geometry

are given in the following examples ;
the matter is by no means novel, as

may be seen by consulting the following authorities, in which are placed

first those mainly used for the account given here, (i) Reye, Geometrie der

Lage, a beautiful geometrical account
; (ii) Clebsch, Crelle, LXVII. (1867), an

interesting analytical theory; (iii) Humbert, Liouville, 4th Series, ix. (1893),

p. 99 (Hudson, Rummer's Quartic Surface, in particular, pp. 157, 198);

(iv) Kummer, Weierstrass and Schroter, Berlin. Akad. 1863, reproduced in

Crelle, LXIV. (1865) ; (v) Cremona, Crelle, LXIII. (1864), a geometrical account
;

(vi) Cayley, Proc. Land. Math. Soc. ill. (1872), or Collected Papers, Vol. VII.
;

(vii) Laguerre, Nouv. Annal. XI. (1872); (viii) Loria, Tear. Geom. 1896, p. 110,

where a very full bibliography is given. The surface S was discovered by

Steiner in 1844, and is called Steiner's quartic.

48. Examples. 1. In the representation of the Steiner quartic surface

S upon the plane /,(+..., two points upon the line EG, of our diagram

(p. 142), which are harmonic in regard to the points P, F, give rise to the

same point of S; and such points of S are upon a double line lying on the

surface ;
there are three such double lines meeting in a triple point of S.

The representation being X : Y : Z : T= Q, : Q, : Q, : P4 , as before,

the triple point is X = 0, F=0, 2=0, and one of the double lines is

X : Y : Z=0<f> : <?+</> : 1.

The reciprocal cubic surface C meets the plane at infinity in the three chords

joining the points x/l = -y/6 = z\&^
= 00, xjl

= -
yjfy

=
z/fi

= oo
,
etc.

Ex. 2. The sextic curve along which the cubic surface C touches the

Kummer surface A corresponds to a plane section of the Weddle surface, and

the set of surfaces C for different values' of I ,llt /,2 ,
13 correspond to all the plane

sections of the Weddle surfaces. Thus any two surfaces
(,), ( )

touch in
\fr/ \W1/

four points, and the quadric cone 1,1 is an enveloping cone of both. The

joining line of any two nodes of f

,J
lies entirely upon the surface, and touches

the Kummer surface.

Ex. 3. The two lines, say OL, OL', in which the quadric

arecuts the plane IJ- + . . .
= 0, when (x, y, z) is upon the cubic surface

Lj.

the double rays of the pencil in involution formed by tangents from to the

conies touching the four lines PQ', PQ, P'Q', P'Q; they are therefore the
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tangents at of the two conies which can be drawn to touch this quadri-
lateral and pass through 0. The lines OL, OL' correspond on the surface S
to the two conies in which a tangent plane of S cuts the surface. Thus the

asymptotic lines of S, each defined as being tangent at any point K of S to

one of the two conies in which the surface is cut by the tangent plane at K,

correspond to the system of conies in the plane 1 %+ ... = which touch the

quadrilateral PQ'P'Q; they are thus unicursal quartic curves in space, all

touching the parabolic curve, which here breaks up into the four singular

conies.

Ex. 4. The tangent lines of the space cubic along which the cubic surface

C, or (.), is touched by the cone I,
)
intersect the surface G again in the

\v/ if)l/

points of an asymptotic line passing through the vertex of
(, ).

This result is given by Laguerre, Nouv. Annul. XI. (1872), p. 342, who
defines the surface 6' as obtained by equating to zero the cubinvariaut

2

of the quartic a P 4- 4ai<
3 + 6a2 <

2 + 4a3 < + a4 ,
wherein

, a,, a2 , a,, at ,
are any

linear functions of the coordinates. He shews that one asymptotic line is

given by the vanishing of the quadrin variant a a4 4a,a3 + So,
8
.

The equations of the asymptotic lines of the surface xm + y
m

-f zm = I, and

of its reciprocal, are obtained by integration by Darboux, La TMorie des

Surfaces, Partie I. p. 143. This includes the case here, by putting m =
\.

The method consists in writing

xm = A (u
-

a) (v
-

a), y
m = B(u-b)(v - b), zm = C(u - c)(v- c).

For the theory of the Steiner quartic surface and its reciprocal, and their

asymptotic lines, and for the asymptotic lines of the Kummer surface from

the point of view of line-geometry, see the following, and the references

there given. Lie, Geometric der Beruhrungstransformationen (Leipzig, 1806),

pp. 352, 341, 475; Darboux, La Theorie des Surfaces, Note viii. Partie iv.

p. 46G; Jessop, Line Complex (1903), p. 225; Segre, Crelle, xcvni. (1885),

p. 302; Klein u. Lie, Berlin. Monatsl). 1870, p. 891; Reichardt, Nova Ada
Leopoldina, L. 1887, p. 353; Hudson, Rummer's Quartic Surface, pp. 60, 111.

Ex. 5. We have defined the surfaces S, C by means of quadric functions

^i. Q?< Qsi P* having six points in common. It is not difficult to see that

the intersections of these quadrics with an arbitrary plane +... =0, which

does not pass through any of the six intersections of the quadrics, may
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be taken to be the intersections with this plane of any four quadric surfaces

Ui, Uz , U3 ,
74 ;

and the surface S is equally capable of being represented by

X : Y : Z : T= Ut : Ut : Ut : Ut .

The condition that xUl + yUt + zU,+ U4
= should be a cone gives for

x, y, z a locus, represented by the vanishing of a symmetric determinant,

which is a quartic surface with, in general, 10 nodes.

Ex. 6. When in the preceding theory the plane + . . .
=

passes through
one of the six common points of the quadrics Q,, Q2 , Q8 , P^ the cubic surface

C becomes a ruled surface.

If -4 2 = ^AU , AB = JA12 , etc., where Am ... are the minors (p. 41) of the

determinant A, we find that

[0<frA + (6 + <f>)
B + <7]

2 = 4P9P<1
P

ftj>
+ (6

-
$)-* (OP, -

where 6, <f>
are any quantities,

4>y [F(0, </>)
-

Thus when the plane / + ... =0 contains the common point (0, 0, 0, 1) of

the quadrics Qlt Q.2 , Qs ,
Pt the surface C is generated by the pairs of straight

lines given, for different values of m, by

P* = m, 4mP,P^ + (0
-
<)-

2 (@Pa
-

*P<,)
2 = 0.

Ex. 7. When the plane contains three of these intersections, the cubic

surface C becomes a product of three planes. Namely if 2 or f(B) = 0,

= we have

-X
,

-2y,

-(A,

200 ,

2
,

S0

0,1
1

,

+ z -

2

20

x + (0

Ex. 8. The Kummer and Weddle surfaces being given by A = 0, w = 0,

where A, w are certain determinants defined, pp. 41, 70, 78, prove that

where Qi = 4(i?T-O. etc., as before (Schottky, Crelle, cv. (1889), p. 241).

Ex. 9. Let /(0 = A,, + V+...+4?> = 4P(<)Q(<),

where P (t)
=

(t
-

6) (t
-

$), Q(t) = t
3 + At* + Bt + C.
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Prove that the result of eliminating tlt t2 between the equations

[- (4>-ff)Q (</>)]
T= p - $ ft + 1,) + *,,,

is o2X2 + 62F2 4 c2^2 - 26cF - 2ca-ZZ - 2a6XY
- 2 [6cX(F

2 -
Z*) + caY(Z* - Z 2

) + ahZ(X* - F2

) 4 eXTZ]
+

where

If -<4< -i,| _

where s,
2
=f(tl ), s2

2
=f(t1), and, as before,

we have
= - P., [- (0

-
fl) Q (0)] F = -

and the equation above is that of Rummer's surface referred to a so-called

Rosenhain tetrahedron. The value of e is capable of the form

e = _ _

Ex. 10. A Gopel tetrad of nodes is a set of four nodes of the Kummer
surface of which the joining planes are not tropes. If the roots of f(t) be

denoted by a,, a2 , c, cu c2> such a set of nodes is

A (oo ,
- oo c, co c2), D (0,0, oo),

-B(c, + Cj, -c,c.j, e^), 0(0,40,2, -0,02, e
0laa );

putting o,-c = a1> o2
= 02, c,

=
7,, c2 c = 72 ,

where 0, ^ are any two roots of/(<), we find, utilising the identity

OjOj (c, 4 c2) c,Cj (o, 4 02)
= e

aiaj
- e

ri(
,
2 ,

that the planes DOA, DAB, BCD, BAC are respectively

Pe 4o,a, = 0, Pc 47i72=. Pa,a ,

- Pr l(
-

a
=

0, y>y*Pai0l
- a^P^ =

;

using then (a^) to denote a,
-

7.^
= o, c2 , etc., and a- as a factor of pro-

portionality, and putting
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we find CPa.a,
= o- (,.,- T), CP,,^ = a (7,7., f

-
T),

CP
atCl

= a- (fv/jf
-

7i?; + a,?
-

T),

CPa^= <r (as/2% -Vrt + ?-?),

where = a^ 7,7, ;

we have however the identity

(Pa^Pc^ ~ (Pa^Pa^ + (a,7,) (tf.) (~P$ = 0.

Rationalising this we find

(a,7.)
2(s72)WT2 + T?2

] +(7.-7,)
2

[ 1

2a2Tr+TT'] + (a,
- a2)

2

[7

- 28 (r,r + ce.o.gf)(fr + 7,7^) - 2 (a, + o.Xa.T.Xa^y,) (?T + yly^)(^+ Xfr)

+ 2|fi,fr + 2 (7l + 7,)(o17I)(ayy1)(XfT + i/OCa^gf + TJT)
=

0,

where

'

fj.
=

(ai7,)(a272)(ai72)(27i) + i2(7i + 1*f + 7i7s(i + a2>
2 ~

2(ia,, + 7,72)*.

The object of forming this equation was to make the remark that it allows

the birational transformation

,._ L _, ? i2 i?
? f ' v r T'

It would be interesting to know* what transformation of the hyperelliptic

arguments MI, u^ this corresponds to.

It is to be remarked that the tetrahedron of reference here taken is

nugatory for the particular surface called the tetrahedroid, considered below.

Ex. 11. The surface (cf. Ex. 9, above)

X*Y*Z* (a?X- + 62F + c2^2 - IbcYZ - ZcaZX - ZabXY)
- 2X YZ [bcX (F2 -

Z>) + caY(Z--X*) + abZ(X
a--

F") + eX YZ]
+ (aYZ+ bZX + cX F)2 = 0,

is a hyperelliptic surface, only one value of the parameters M,, M2 belonging
to any point ; prove that its hyperelliptic expression, when a, b, c, e have the

values of Example 9 above, is

Y-

7-

* A transformation of similar algebraic form for a Wcddle surface is obtained by repeated

projection from two nodes of the surface, and belongs, we have seen, to a finite group of 32

self-inverse transformations. Proc. Land. Math. Hoc. Ser. 2, Vol. I. (1903), p. 257.



ART. 48] The plane sections of a hyperelliptic surface. 155

Shew also that the section of the surface by a plane Ax + By + Cz = 1 is a

curve of deficiency !)
;
and that for the curve, in homogeneous coordinates

X. Y, Z,

X*YW [o
2Z 2 + ...]- 2XYZ[bcX(Y* -Z'-) + ...] (AX + BY + CZ?

+ (aYZ+bZX+cXY)*(AX + BY+CZ? = 0,

the adjoint quintic is

= XYZ [uX* + vF2 + wZ* + 2w'YZ + Zv'ZX + 2w'X Y]

+ [\YZ(Y-Z) + fjiZX(Z-X-) + pXY(X- F)] (AX + BY + CZ?

+ (PYZ+ QZX + RXY)(AX + BY+ CZ)3
,

where u, v, w, u', v, w , P, Q, R are arbitrary, but

t)C2 + wB- - Zu'BC
X

(B + G) (Be + Cb)
'

while
ft, v have similar linear expressions in terms of u, v, w, u', v', w'. Of.

Humbert, Liouville, IX. (1893), p. 439.

These results have been worked out in view of an application in the

second part of this volume.

Another hyperelliptic surface (x, y, )
= we have met with in the

text (p. 43) ;
it would be interesting to have the form of the integrals of

the first kind for any plane section of this surface also.

Ex. 12. It has been remarked that the cubic surface (,) of p. 146,w
becomes a ruled surface when the plane l<fe + l-w + l + I3r = passes through
one common point of the quadrics Q,, Q2 , Q3 ,

Pt , and breaks into three

planes when the plane + . . . =0 contains three of these common points ;

when the plane contains two of these common points the intersection of

the surface with the Kummer surface also degenerates ;
in fact, from the

formula (p. 102)

-b h

-f 9

,
v u

where = # + <, v=
6<$>,

w = e^, d=l, comparing the result of twice

differentiating logarithmically the last of the four equations represented by

it, with the other equations it represents, we shall obtain each of the following

expressions (wherein P^ 6<^^(u) + (# + <) fs , (u) + fcn (u)
-

i

,()+(*+*)!
2 (w) + (8 + <f>) fm (u) + gT.ni (

u)] [^^jpai (u ) + (8 + <t>) fan ()

,<)+(*+ *>!<
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expressed as an integral polynomial in ^(M), a (), n(), their respective

values being

() + (8 + <) PzsiM + Pa,, ()

+ 2
[
- %, () + op.,, (w) + w#, (M)

-
.7]

- 2^ (M) . P^ ,

) + (<? + </>) fan (M) + Pan (M)

+ 2 [
-

bpa (u) + h'fa (M) + jpu (M) -/] - 2^ (M) . P^,

) + (6 + <J>) ft (M) + f,,,, ()

+ 2 [ -ff (u) + gp* (u) + wfu (M)
-

c]
-
2^u (u) . P^.

Thus, with X arbitrary, the cubic surface

[\0<j)j>m (M) + (\0 + X0 -t- ^) p-a, (M) + (\+0 + <j)) ym (u) + jpm (u)]
2 = 0,

contains the singular conic upon P^ = 0.

Notice also, from this formula, if x $& (u), y = pa (), z=
|?u (M),

' = !,(.; ^</>), y' =)a(w; ^), e' = jp>ii(; &<j>), that

vaj' + wy' + dz' w][

=Ma [M (xyzl)^ + Mv [M (x

= (M MU + MuMn +

= (M%x + (M*\,y + (

Now M- = ,4
*

;
thus the product is equal to the constant

( .T*^*) .

(0 <p) \o q>J

This formula is analogous to the formula of the theory of elliptic functions

fe. 13. The tetrahedroid. When the roots of the fundamental sextic are

in involution, so that x
, c; alt aa ; Cj, ca are conjugate pairs, and therefore

(c
-

c,) (c
- c2) = (c

-
a,) (c

-
a,),

or say a,^ = -y^, where a
t
= a, c,

= a.2
-

c, 71
=

c, c, y2
= c c, write

b=~7- ' 7= ~/- '

j + Vy.,/ VVa, -t- Va.,
7

(

T _ jj\2

-] , we find that
T+p/

UI-(P + C) UI>
=

I

J2[T(r- ai)(r- 2)(r-
is equal to

1 /(ll^aT(
4v P
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/r + V 1

and, with = --*H =-,
\T-p/ x'

[ (T +p) d-r
u2 + (p-c)ul ,

= ,,h [T (T
-

ai)(T- aj)(T- 7,)(T-72)]*

= _1 7(a-'-l)(b-'-l)r dyW p J V(y -!)(</- a-') (y-b--)'

There are, thus, two everywhere finite integrals (of ambiguous sign) each of

which is elliptic and possesses only two linearly independent periods.

If we put H =
! + or2

- y1 7.,
and

fc
y a, i-a, p - 17 v _ p

, V = ^0,0, !*!", b
= * a

0-2 HI

where, 0, <$> being roots of the fundamental quintic,

it is easy to verify that each of the planes
=

0,77 = 0, f=0, r=0 contains

four of the sixteen nodes, the three summits of the quadrangle formed by the

four nodes in any plane being the angular points in that plane of the tetra-

hedron IfT/fr; namely

f = contains the nodes ( oo
), (c), (at ,

aa), (ct , c.,),

i7
= (aO, (a,), (c, di), (c, Oj),

?=0 (cj), fe), (c, d), (c, cs),

r = (c,, a]), (c,, a,), (c,, a,), (Cj, a,),

where ( oo
) denotes the node (0, 0, oo ), (0) denotes the node

and (0, <) denotes the node (6 + <j>, 0<f>,
eM) ; through each corner of the

tetrahedron T;T pass four tropes. We have previously (Ex. 9, p. 153)

given the relation connecting the quantities Pai , P,^, Paia^,
under the form

of the equation referred to a Rosenhain tetrahedron. From this the equation
referred to the tetrahedron T;(;T can be calculated. But in fact this equation

can be solved in terms of two arbitrary parameters x, y in the form

where M = 1 6a,aj/(o, a,)
1

(yl
- 72)

2
;

thus the curves x = constant, y = constant lie on quadrics; in particular

each of the planes f = 0, 17
= 0, =0, r = cuts the surface in two conies,

intersecting in four nodes of the surface. This expression in terms of two

parameters should be capable of derivation from the expression of the
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Kummer surface in general, by use of the elliptic forms* of the integrals of

the first kind. At full length the equation is

DB*H*? + B*? + N'T* + D^ + 2 (AH -
B>) (f? + H3

?r>)

+ 2H(A- H) (i;
sT 2

4- B*%"-t?)
- ZHA (?

2r 5 + DgV) = 0,

where A^^ + a*, fi = a1
-a2 ,

H = a1 + a.
i y1

- y2 ,
D= H' + B 1 -2AH;

and the surface is a form of the wave surface. We may put

kl|
= sn' (v, h),

~ = - cn (v, h),
~ = - dn' (v, h\ A =\^ ,

j^ = sn* (w, k), p^' = - en' (w, A), ^^ = - dn' (w, A), A = *~^~ |
,

and so have

|
=

(otj
-

03) en w en w, |
=

(7,
-

72) dn v dn w, ^
=

(a,
-

a,) sn t; sn w.

The asymptotic lines, which are capable of derivation as a particular

case of those previously obtained for the general Kummer surface, and the

lines of curvature, are considered by Hudson, Rummers Quartic Surface,

Chapter x. and by Darboux, Thior. Gen. des Surf. Note viii. Partie IV. p. 466.

Ex. 14. Consider the degenerescence of the Kummer surface when two of

the six roots of the fundamental sextic become equal ;
as has been explained,

we may, making a linear transformation, suppose, without loss of generality,

that they both become infinite. For this, taking the equation for
,',.
A on

p. 41, we may render it isobarically of weight 12, when x, y, z are reckoned

of weights 4, 3, 2 and X,- of weight i, by supplying in each term a proper

power of \\s ;
the equation will then correspond to the form

of the fundamental sextic
; putting then X 5

= the equation reduces to

a surface having x= 0, y = as a double line, which, putting

- = -u, X + \! wx

is satisfied by
4i2 <2

~

*
By drawing variable planes through 2 nodes, any Kummer surface is expressible by elliptic

functions of tvjrt'nWe modulus. This modulus, I believe, is not constant so long as the six roots

are distinct.
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Now if in the equation

we make a = oo , X, = 0, we have \5a = \4 ; hence, with

F(0i, 0j)
= 2\ + X, (0t + 6-) + 2XA0, + \30i0j (0i + 0j)+2\t0f0f + \J

-
(0i

- e# [x, + x,& + 0J + \t(0; + 0# + \5 (0i + 0j) (0f

we have the following correspondences :

KUMMER SURFACE.

Nodes:

Six nodes :

Four nodes :

Four tropes :

y+ #t-c=jA5#i
2
,
beside

and plane at infinity.

Four tropes :

Six tropes :

NEW SURFACE (<z=o>).

Nodes : (0, 0, oo
) twice ;

four given by

Nodes : three on axis of z, each of the

form

the third coordinate being- JA 4 (#;<?, + #*$;);

at each of these the two tangent planes of

the surface coincide.

Four nodes :

Four tropes: y+ ^ar= 0, beside x= -JA 4

and plane at infinity.

Along y+ 6iX= Q section of surface is

two coincident straight lines, constituting a

so-called torsal line.

Four tropes :

Thus as 8 nodes of original surface

coincide in pairs in 4 new points, so

8 tropes coincide in pairs in 4 new planes.

Six tropes :

These intersect in pairs on planes

which is the single tangent plane at the

singular point

0, 0, -i

Thus the double line x 0, y = 0, contains four singular points ; through
the double line pass four singular planes y + 6iX = 0, each touching the

surface along a torsal line
;
and each of these torsal lines contains two

singular points, one being at infinity, the four finite ones lying on the

plane x
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Substitutiug in terms of the parameters u, v we find

X = xOA + y (0, + 3) + z + i [X, + X, (6t + 0,) + X4 (0, + <?,)"]

(-0t) (-*,)/()

putting similarly F= x0t0i + etc., Z = x0t y + etc.,

so that X = 0, F=0, =0 is the singular point

we thus find

(0,
-

3) >JX(y + 6,x) + (03
-

0.) JY(y + 6^) + (0S
-

6,)

which is the same as _____
-

8)X (V + mZ-nY),

where I, m, n, I', m', n' are respectively 1, 1, 1, {\ (6t #1) (#, 3),

i\4 (04
-

2) (03
-

0i), i\4 (^4
- 63) (Oi

-
0,), and are the coordinates of a line

(the axis x = 0, y = 0) ;
thus the surface is Pliicker's complex surface. See

Hudson, Rummers Quartic Surface, Chapter VI. The irrational equation is

the degenerescence of such forms as those on pp. 108, 110 here.

Now it can be shewn by actual substitution that the doubly-periodic

function

$(u) = p [? (u -,)-?(- a2)],

satisfies the equation

provided the invariants of the elliptic functions be

ffi
=\\ -

i^i\) + iVV, 9s
= i^X-iXj + ^XiXjXs

-
iV^oV -

and p
2\4

= 1
, fr> (a,

-
a,)

= (3V - 8X2X4)/48X4 ;

and that these give

r ("i
-

.)
=

ip^., fr>' (. &.) - (4^^^ -
X,V -

and also

Further the differential equations ^^ 6^" = etc., of p. 48, when we

render them isobaric (reckoning p^, j>2 , , pn , X, as of weight 4, 3, 2, i) by

supplying proper powers of JXB ,
and then put X6 =0, can be integrated

(as in Camb. Phil. Proc. xn. (1903), p. 230), and give for the corresponding

cr-fiinction, essentially,

^,
[e">"> <r (! - a.,) + e~mu> a (, - aO] e 24 ,
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where m = JV\4
=

^p, say ; putting

<r(M 1 -a2)
= a-a , O-(MI -I) = O-I , (t,

-
2)
= &, etc.,

and A = emu2<r3 +e~mU3 o-1 , this leads to

~
s A*

'

_ A,

12
"

A

and hence, with the relations above,

* + *X<
=

while

so that we have the same relation connecting x, y, z as before.

The functions x, y, z are rationally expressible by the three*

which are a set of three functions with three pairs of periods

,
2&>

,
2<u'

TTt _ T) (a,
-

a,) _ t) (i - ata)

m '

/ m
but the reverse expression is not rational.

Other particular cases when the roots of the fundamental sextic become

equal can be similarly dealt with.

Ex. 15. The relations

M
' = I

<B " Mi>
V* < " ) d ><* + ~^> ( " > dui ' = f

(B "

~Jo V/( ( / + 4x,() ^o

have been shewn (p. 117) to give |Jt,(')fa (tt); |)a (M')
= psl (M). It is

found that for small values of un w.,, the function ff*()[f-
i() + 4ftB (*)J

on expansion, has for its lowest terms

f(u,, It,)
= 4^5W1 + X4M2

4M
1

2 + X^Wj'^
3 +

so that, to the first approximation, the relations are, if v= t^/u,,

[ tdt (ft'' ttl

* These functions occur in a paper of Painleve"s, Xcto A/n(ft. xxvn. (1903), p. 40, aa a case of

the degenerescence of Abelian functions of two variables.

B. 11
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Ex. 16. The most general linear homogeneous transformation which

gives xz y*
= x^ yc

a
is that used in the text,

fa y, *)

Xj
3

, 2X3X5 , X,-

where X,, fj,lt \.it ^ are arbitrary quantities for which X,/*, X2 ^i,
= 1.

Ex. 17. If in the equation

a (u + v)<r(u-v) = a- (u) a* (y) [fa (M) |>al (e)
-

(pa (v) psl () + ft, (w)
-

j n (tt)],

we expand both sides in powers of vl and wa ,
and put

s-
3 3 c, 3 9

8
-*gS-+ *3S;'

r
T%fijr+*fif.

we infer that the coefficients of the various powers of vlt t>2 in the expression

(~f)PrGO*Oft
where, after differentiation, ,', wa

'

are to be replaced by MI, M2 ,
are all linear

functions of the four quantities

a* ()&>(). "* ()!(), ffi ()F"(w).
ff5 ()-

^a;. 18. If 5P'P be a chord of the Weddle surface through the node B,

and RP'S the chord of the space cubic through P', the plane RBS touches

the quadric cone whose vertex is P which contains the six nodes.

Ex. 19. If b be a root of the fundamental quintic f(x), the so-called

principal asymptotic curve of the Kummer surface expressed by

62 -^(2M)-|)ai (2M )
=

is such ( 37, p. 114) that the satellite points, for all the roots, of any point

(w) of it, are obtained by the addition of half-periods *, one of these being
zero. Thus the corresponding curve of the Weddle surface is the curve of

contact of the enveloping cone from the node (b); and (cf. Ex. 12, p. 156)

the curve on the Kummer surface A = lies upon

(cf. Ex. 18, and p. 123), and is an octavic curve. Applied to any point of

this, the usual birational group of 32 transformations reduces to 16, all linear.

Ex. 20. Prove (see 32, 35, 43) that the square root of

62

-6p!S (2M)-|).fl (2tt)

is expressible in a form

'

ry) + il (</' +rx- pz) + {(r +ptj
-

qx)\,

where M=yrjx^-r; and hence as the quotient of two polynomials
rational in x, y, z, where x=p2l (u), ^=^(u), etc.



APPENDIX TO PAET I.

NOTE I.

SOME ALGEBRAICAL RESULTS IN CONNEXION WITH THE THEORY
OF LINEAR COMPLEXES.

1. IF (x, y, z, t), (x
1

, y', z, t') be the coordinates of two points upon
a straight line, the quantities

l = tx' t'x, m =
ty

l

t'y, n = tz t'z,

I' = yz
1

y'z, m' = zx' z'x, ri = xy' x'y,

which satisfy the identity

II' + mm + nri = 0,

have ratios independent of the position upon the line of the two points, these

being, if

aX + bY+cZ + dT=0, a'X + b'Y+ c'Z+d'T=

be any two planes through the line, the same as the ratios of the quantities

be' b'c, ca' c'a, ub' a'b, da' d'a, db' d'b, dc d'c.

The condition that any point (XYZT} should be upon the line consists of any
two of the four equations

(i) l'T+mZ-nY=0, m'T+nX-lZ=Q, riT+lY-mX = 0,

and the condition that any plane

AX + BY+CZ + DT=0
should pass through the line consists of any two of the four equations

(ii) lD + m'C-n'B = Q, mD + n'A-l'C = 0, nD + I'B - m'A = 0,

If I, m, n, I', m', ri be any quantities satisfying the identity

U' + mm + nri = 0,

then two points (x, y, z, t), (x , y, z, t')
can be found such that the quantities

tx -t'x,... , yz -y'z,... ,

have the ratios of I, m, n, I', m', ri
; namely these are any two points on the

line whose equations are given by (i).

112
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2. Denote by o>,, Vj respectively the two matrices07 ' A ' ' /

, 1h > f>li , fj .
, Vi

= , U , Wj , Wlj , tj

Wj , ,

- llt nil \ I n,' , , -li , nh

-mlt I, , , i,' 1 I -m,', li, , n,

. - li , -m^, -/, / >Ji -ii, -i,

where llt m,, n,, Z,', Trej', ,' are any quantities satisfying the identity

then the determinant of o>lt and of every first minor of o)j, is zero, and

the matrix satisfies the equation

w, (oh
a + 1" + m2 + ri> + I'* + m'2 + n' 2

)
= 0,

and a similar statement holds for vt ;
while also

Denote similar matrices by w2 ,
v3 , supposing likewise that A2

= 0; assume

also that

we have at once by multiplication

, %!,' /iJ,'h'TO, !,'

j' TW-jM,' ,
mlm.1'l1 l,'n,'ii2 ,

and hence, in virtue of A 12
= 0,

ajjttj + w-jV]
=

;

similarly t^o>s + ^2<i = 0,

and thus

3. It is difficult to avoid references to the following algebraical theorem*,

part of which we utilise below; : let a be any square matrix, say of n. rows and

columns
;

let be any root of the determinantal equation ap =
0, of

multiplicity I
;

let the highest common factor in regard to p, of the first

minors of the determinant \a p .divide by (p 0)
l

>, the highest common

factor of the minors of (n 2) rows and columns divide by (p df1
,
and so

on, the minors of (n r) rows and columns not vanishing for p = 8, so that

lr
= 0; put e

1
= l lll e3

=
li h, ...

,
er = ir_,, so that

(p
-
0)<=(p

-
6)" (p

-
0)" ... (p

-
0)" ;

the factors (p 0)'> , (p 0)'', . . . are called the first, second, . . . invariant factors

of the matrix ap, or of the matrix a, for the root 0; the exponents

*
See, for one proof, Jordan, Coun d'Analyse, in. (1896), p. 173; another is given Proc.

Cnmb. Phil. Soc. xii. (1903), p. 65.
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6] , e.,, . . .
, er are known to satisfy the inequalities e, g e2 5 e3 g er > 0- Let

e/, e/, . . . , e,", 2", ... be these series for the other roots
/

,
&' , . . . of

j

a p \

= 0,

then the matrix a satisfies an equation

(a
-

0)'~ (a
- 0>' (a

-
&'}'" . . . = 0,

and no other equation of the same or lower order. Further, denoting a set of

n numbers by a single letter, such as #,, or x^, ... or ylt ... or zlt or 2 , ...
,

I sets, linearly independent of one another, can be found to satisfy the

equations

(a-0)xl
= 0, (a-0)xz = x

t (a
-

0) x,
i

= x,
i

_l ,

(a-0)z1
= 0, (n-6)zi

= zl , ..., (a-0) z,r
= z,r_I ,

where (a 0)#, denotes n equations for the n elements of xlt and similarly

(a 6) x3
= x

l denotes n equations for the n elements of #2 ,
and so on

;
and

then the most general solution of the n linear equations for the n elements of

x which are represented by (a 6) x = is a linear function of the sets

xit ylt ..., Zi, the most general solution of the equations (a #)
2 a;=0 is

a linear function of the sets xlt ylt ...
, z,, x%, y.it ..., z?, and so on. Further, if

I' be the multiplicity of the root
1

,
similar I' sets of n quantities can be

chosen to satisfy the corresponding sets of linear equations for the root &
'

,

and similar sets for the remaining roots 0",..., and the whole number

n =1 + I' + 1" + ... such sets can be chosen to be linearly independent of one

another. Conversely, when we have independent knowledge of the equations

(a-0)xl
= Q, ... (a 0) x,

t

=
#,,_,,

(a
-

0) z,
= 0, . . . (a

-
0) z,r

=
._, ,

for all the roots, the sets x
t ,
xs , ... being linearly independent, we can infer

the values of the exponents of the various invariant factors.

4. Thus the equation (&) 1 v2)
2 =0 of 2 shews that the equation

talV ., p |

= has no root but p
= 0, occurring therefore with multiplicity 4,

and with multiplicity 2 in the minors of
|
&>jW, p \

of three rows and columns,

the exponent of the first invariant factor being 2
;

it can be verified, in virtue

of A! = 0, A2
=

0, A12
= 0, that every minor of w,^ of two rows and columns

also vanishes, so that the second and third invariant factors of w^, p are

both linear, and there exist linearly independent sets

( w,,jp,), (MO, t)2 ,
w2 , p,), (.,, v3 ,

W3,p3), (ut ,
vt ,

wit pt),

such that

toiV* (M,, ,, ;, pt )
= 0, a),v2 (ut ,

vit w4 , })4)
= (ult vlt w,, p^,

&)^2 (M2 ,
v3 ,
w2 , p,,)

= 0, a>,w2 (M3 ,
v3 ,

w3 , p3 )
= 0;

now we have oj
1 i;.,ci)a

= 0, <a
l v.,a>l

= o)2w1 &) 1
=

;
the equations &>,D2 <u2 =
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express that the elements of any row of a>,i>, are proportional to the homo-

geneous coordinates of a point lying on the line (ij, m^, ns , /, m,', n,'), or &>;

similarly ii)2 a>, =0 express that the line cu, contains the point whose

coordinates are the elements of any row of 6>,t>2 ;
in virtue of A,2

= the lines.

o>i, a>2 have one point in common; this is then given by the elements of

every row of a>,v2 ,
the ratios of these elements being the same whatever the

row; since o>1 t)2
= v2 w, = D2 &)i = Vi&)2 , it follows similarly from the equations

?)
1
to2 D1

= 0, V)(i>tv2 = Q, that the coefficients in the plane containing o>,, a>2 are

proportional to the elements of any column of o>it>2 ;
the equations

w,t)2 (M, v, w, p) = express that the plane (u, v, w, p) contains the point

whose coordinates are proportional to the elements of any row of iV2 ;
thus

(ML ,, wt , p,)> (it?, v3 ,
w3 , p3 ), (uit v,, w3 , ps) above are any three independent

planes drawn through the point (o>,, w2) ; and, denoting the plane and point

(oi, o>2) respectively by (a, b, c, d) and (x, y, z, t), we may write

ay, az, at

by,

W
dy,

where if t be assigned, d must have an appropriate value
; putting

a = , a ^ , H= , 1 1

1

1

1

this is the same as &>i?>2
= a.H% .

5. If now we have three matrices &>,, a>2 , &>3 such that A! = O, A2
= 0,

A, = 0, and A^ = 0, A31
= 0, A 12

= 0, the associated lines have either a common

point or a common plane, but, in the absence of further conditions, not both.

When they have a common point we may write

7/fc rt fj t\ n fft

and thence, if we denote by M, momentarily, the matrix

M = Oj<i + a^Wa + 3 &>3 ,

we have Mv^ = a, (0) + a2 (
a3H^) + 3 (a2/Tf),

or, since the diagonal matrices otj,
a. are commutable, Mvl ; similarly

3/Wj = and Mv3
= Q; thus the elements of any row of M are the coefficients

of a plane containing all the lines <a, ,
o>2 ,

o>3 ;
as they have no plane in

common we infer that

&i 6>i -1~ do (Wo -f- Gt
:1
W3
^ 0,

which is equivalent to w,^ + WaOj + w3as
= 0.
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J

.

Similarly when a,, <o2 ,
tos have a plane, but not a point, in common,

Also, when &>,, a>2 ,
a>3 meet in a point,

and this is the same as

and when &>,, &>.,, a>3 lie in a plane, we have similarly

v, W.J i>3
= 0,

wherein again the suffixes may be taken in any order.

6. Now consider

r, = / o
,

-
r-i , qi, P>

r, , ,

-
Pl , qi

'

-ft, Pi, 0, r,'

-X, -?.'. -n',

where ^
l plpi 4 </,<?,' 4 p,?*/ = 1, so that the determinant

|
F, =1 and

0, -r,', ft',

r,', , -X, ft

-ft', P/, , r,

PI, -ft, ,, o

Take two such matrices F,, F2 ,
and suppose that

AU = PI Pa' 4 ft <// + r,7'2
' + /J/PS 4 ft'ft 4 fjVa = ;

it is then at once verified, as in the case of the matrices o>, ,
&>2 ,

that

r, r,-
1 4 r2Frl =

o, Fr1 r2 4 ry-
1

r, = o,

and hence that (F1 F2
-

1

)
S = -

1, (Fr1 F
li)

2 = - 1.

Consider the determinantal equation Fj F.T
1 -

p =
;
it follows ( 3) from

(F1F2

~1

)
2 = 1 that its roots are i and i, and that each occurs in the first

minors of F^"1

p with a multiplicity one less than in F^.,"
1

p; hence

each is a double root of
|
F^"1

-p =0, and the exponents of the invariant

factors are 1, 1 for each root; we can therefore find four linearly independent
sets (ar,, ylt z,, <,), (a;,, yit z2 , 2), etc., such that

(F, F,-
1 -

1) (tf, , y, ,
zt , <,)

= 0, ( F, F2
-' 4 i) (x,,ya ,z3 , Q = 0,

Further Fj iVy \ F, F,"
1 i

\ \

F3 =0, and so on
;
thus the matrices

__ TI *
w~i i _ ~i~i

i^ n*T^ 11 T"* ~~' VT l it
'

T"'
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have each a vanishing determinant; the pair <,, *>, are related to one another

as are the two previously ( 4) discussed with the same notation, and belong
to a straight Hue

;
the pair &>/, ,' belong to another straight line

; but, as

,, + >, = 2 + i (IMV1 - r.rr') + 2 + ixr.r,-
1 - r.r,-

1

)
= 4,

these two straight lines do not intersect.

7. Suppose now we have six matrices, of the form considered here,

r r r r r r1 li L 21 * 3> * 4) l 5> * 6>

for which Ar =-l, A rs
= 0, r, s = 1, 2, ... , 6.

Take any three of the six, Tlt FS) r5 ;
take the remaining three in any order,

say F2 ,
F4 , F6 ;

we have then six straight lines

o>i
= r, - tT2 ,

o>2
= r3

- tT4> w3
= r5

-
ir,,

w,' = FI + iF, ,
&>' = F3 + irt , 0)3

= F6 + tFe ;

now, if e = i or i,

<r, + IT,) (r,-
1 + err1

) + (r, + eF4) (Fr
1 + tTr1

)

= r.r,-
1 + r.rr'H- (r.rr^ r.r,-

1

) + e (r.rr^ r4 rr')+ * (F2r4-'+ r.r,-
1

)

= 0;

thus, while the straight lines a>
l , o>/ do not themselves intersect, each of

them intersects the other four; similarly for the other couples co.2 , o>/ and

Take the point of intersection of a>, and <u2 ;
call it Z); the line &>3

intersects both o>, and &)2 and so lies in their plane or passes through their

intersection
;
the same is true of w3', which however does not intersect a>3 ;

thus either a>3 passes through D, while <u3
'

does not, or the converse
;

if we

suppose the sign of every element in F6 changed, if necessary which still

leaves all preceding conventions and results unaltered we can then suppose
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a>3 to pass through D, and &>/ to intersect to, and to2 , say in A and B
;
then

a),' intersects &>2 and a>3 ,
but not oij, and so passes through B, and it inter-

sects to3 , say iu G
;
while to, intersects a>lt o>3

'

and to3 and so passes through G
and .A, so that we have the figure annexed.

Let the points A, B, C, D be (,, ^ z,, tj, (x.2> y^, z^, <2), ... , each, for

clearness sake, being associated with four definite numbers, not with three

ratios; let the opposite planes be 11,0; + b,y + ct
z + d,t = 0, etc., with the

conventions a,^, + i,?/, + cl
z1 + dl tl

= \, etc.
;

if o^ denote the diagonal matrix

whose elements are ar ,
br ,

cr , dr ,
and %r the diagonal matrix whose elements

are xr , yr ,
zr ,

tr , the sign of F6 being settled by (see 5)

(IV tT,) (IV
1- T4-') (r.- tT.)

= o, (rr'+ a1

,-') (r3+ tT4) (r.-i + t'lV
1

)
=

o,

the tetrahedron is determined without ambiguity by the equations following,

in which a constant factor is omitted in the right side of each,

to, v.,
= o3H^4 ,

to3 v3
= a, Hgi ,

co
:i
vt
=

2 H!-4 ;

02#, , <B./ v3

' =
4Hl- t , 0)3 vl

= o3H^ ;

<B3 ,
=

, 3 ,
=

t , ,

There are manifestly 15 such tetrahedra, according to the pairs (1, 2),

(3, 4), (5, 6) into which the original matrices F,, F2 , T3 , ... ,
F6 are divided.

Corresponding to the triplets of intersecting lines

(to,, a>3 , a>3), (toi, o>i, to,), (w/, to3 , w,), (to3 , to^, to.,),

we have now

<a,v.,(B3
= 0, to,'v2'to3

=
0, <i v3'o>3

'

0, w/WjWs^O,

and hence (a),v2 + w,''y,2')<3=0, (w^j' + ,X) 3

' = I)
;

but

,, + /< = (r,
-

tT,) (r3
-' - tT4-') + (r, + iro (r,-

1 + T4-')

= 2(r1r3--r2 r4

-1

)>

,wb' + /, = (r,
-

tT,) (r,-> + tTr1

) + (r, + tro (r,-
1 - Tr')

= 2(r1r,-+rar4

-1

),

so that = J (o>,i)8 + eo/V) <"j + i (wi"a' + w/v,) u3

'

= r.r,-
1 (, + ,')

- ra r4
-

(o>3
-

/)

or r.rrT^-iT.rr'r,,,

giving r2

- ir1 r,-
i rerti

- i r4 =-t; or, as r,->r I
= -rri

r,,etc.,

r-l P P 1 P P 1 P a
1 * * I 1 4 1 5 1 6 '

Similarly by considering the triplets of coplanar lines, changing the sign

of i throughout and replacing F,. by Fr~', we have

rp i p p i p p i _ ,'
I 1 2 ^314 1 sl(! *
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8. Assign now definite directions, DA, DB, DC, BC, CA, AB to the

edges of the tetrahedron, and let the coordinates of a line directed from

0*i, 2/i, *i, <i) to
(a:.,, ya , z.it ti) be denned by

m =
, 2

- n =

there will then be six such sets (/,,..., r,), (/3
'

..... rs') for the edges of the tetra-

hedron, the coordinates occurring in them being those of the corners
; put

further

n,= / 0, -tii, nil, PI

i , ,

-
*i

-
IHi, li, , ?',

-Pi, -?., -ri,

and so on
;
we shall have then

where e, e', y, /', 17, </'
are certain constants

;
and as v, = I^

obtained by the same rearrangement of the elements in P,

to:
= I\ iF2 of the elements in F,, F2 ,

we shall also have

"1 ir2
~'

is

1 as is

and the equations

F, = J (en, + e'

give, in virtue of 1, F, = 0,

i = j e

which, as before, is the same as

), F,- = , + e' F,'),

a-4 2/4 ZL t

ff 11 y rf

1 /I 1

2 /'*
""'

#3 2/3 ^3 '

= iee'(4123), say;

so we find 1 = \ ^"'(4231),

or, if (1234) = A,

Take now

P= / ,, 2 , 3 , J?4 \ , Q= / 1, 6l, C,,

2/i, 2/*. 2/3, 2/4
I [

"2- 6
-

c^'

so that QP = 1
;
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if n be a matrix formed, as are here ft,, ...
,
in association with a straight

line, which we suppose drawn from (f, r), ", T) to (', rj', f , T'), the sth element

of the rth row of the matrix PHP is given by

' i >,i

= fin (xrts - xt tr) + . . . + fly, (yr za
-

y,zr) + ...

r) T

?' V
'

T'

*r yr *r tr

we therefore find (Pn,P)r,
= 0, unless r = 2, s = 3 or r = 3, s = 2, while

(Pf^P),, = (PfljP)^, and so for the others, and then

i
= -A, (Pn,'PX4 = (2314) = A, (Pfl2P)31 =(4231) = -A,

(PaP), 2 =-A,

Now take

m= / X

ft.

v

p

where X, p., v, p are to be determined
;
thus

wl> = |mP (w, + a),')Pm=^m (ePfl tP + e'Pfi,'P) m

00 e' v m
-e

e 00
-e 00

^
-i-j
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similarly
' A '

, , \vf,

, , ,//>/'
-

\vf, 0,0,
O', -ppf, 0,

-r, fA / ,Wl
>-Tf o,
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for each of which the invariant (pp + qq' + rr') is 1
;
and if we take

* (X, Y, Z, T) = (x, y, z, t),
m (X', Y', Z', T') = (of, y, z

1

, if),

namely
1 1X = -
(a^x + biy + <^z + d^t), Y= -

(a^x + b^y + c.2z + d^t), etc.,
X

fjf

and put L = TX' - T'X, P = YZ' - Y'Z, etc.,

we shall have, if r,(#, y, z, t) (x, y', z, t') and y,(X, Y, Z, T) (X', Y', Z', T')

be respectively denoted by V^xx' and ^XX',
C = -L+P, r3 xx' = 73XX' = -M+Q,

' = i(L + P), Ytxx' =

Ytxx =nXX' = i(N + R).

9. These forms have various properties. Firstly by putting in L + P,

X if, Y =i* n ,
Z ='* T =T,

TX'-T'X changes to -i(Tf'-T'f), F^'-F'^T changes to i^'-rf^),
and so, if i', P' denote the same functions of f, rj, T, f ', >/> ? T/ that

A P are of Z, F, Z, T, X', Y', Z', T', we have

-L + P = i(
in other words

-i \ y, / - i \ =7,.0^0
j

/ i*

00 i$ I loo i*

000 1 / \0001
Similarly by X =

ij, Y=%, Z = %, T=r, we find a:

y1 <7
= y, where

0-= / 1

0010
1000
0001

it appears thus that all the six forms y,, ya ,
... , y6 are capable of being

written
fi^/i/J.,

where ^ is suitably chosen in each case. Nextly we find

7s 7i
= ~

while _, y.,,n
=
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Further we have

2 {[I
-

P]' + [i (Z + P)]
2

}
= - 42ZP = 0,

and hence

^xxJ + (T,xxJ + (T.xxJ + (T,xxJ + (r.xx'y = 0.

And lastly, to come to a set of relations of particular importance to us, we

have, as follows from the identity,

X 4 iY, Z 4 iT \ IX'- iY',
- Z - iT'

-Z +iT, X-iY ) \ Z' -iT', X' + iY'

where E denotes XX' + YY' + ZZ' + TT', the equation
> + (- L + Py + (- M+ Qy 4 (- N+ Ry

now 7i73~'75
=

so that

7.73-7* (*, Y,Z, T)(X', Y',Z', T'), or y^-^XX', = E,
thus

let, momentarily, a denote the matrix

a = . (yiX)t , (ylX).i ,

(73-^)2 . (73^)3 ,

(7.^)2 . (7^)> . (75-^)4

where (7,^^ denotes the rth of the four quantities yt (X, Y, Z,T); then if

(r,V,r,T') = a(Z', Y'.Z'.T')

we have
'

=yt XX', rj'
= y3XX', etc., and so

'' + i?'
2 + ?'

2 + T'" = (Z
2
-r F" + Z3 + T>) (X'* + F'2

4- Z'2 + Z"2
),

of which the left side is aX' . aX' or oaJT'2
;
we thus have

aa = aa = Z2 4 F2 4 Z* + T',

and the matrix a is orthogonal, in the sense that the sum of the four products

of corresponding elements in any two rows, or in any two columns, is zero,

while the sum of the squares of the elements in any row, or in any column,

is the same for each, being equal to Z 2 + F2 4 Z* + T3
. Again we have

7>7r'7 = 78747 = *7" = '.
and . before,

#" 4 ( + P)
2 4 (A/ 4 Q)

2 4 (N+ R?
= (X* + F" 4- Z* + T') (X'

1 + F'2 4 Z'* 4 T'2

),
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so that, if 6 denote the matrix,

L /2 1 \Y^-"- /2 ^ VVs /2 -*

r/\ / V f\ ' / V f\ *7f
L ), l(jtX )3 l(leX )3 Z
r/ v / IT" f\ / ~\r /\ ffJ/
- k *(vtX )4 1(76-^)4 T

we have as before

Now, with x = vrX, that is (a;, y, z, t)
= TS (X, Y, Z, T), as in 8, we have

while

where a;' = tsX ', and similarly iytX' = cr~i r6

~ir3 a;' and i76 Z' = iiT~
i r2

~ i r4 a;';

thus we have

&=

while

now
4

2 (5r,:c),.(iB--
i r4

~ i r
(x),. = ^r

t
x . af~ i Yt

~i Ttx
r=l

and, since ( 7), F, F3
- F5

= - iF2 F4
-

F, = - tT4Fr1 F2 ,

4

2(sp r -T ^ Crr-T^r -r" r r -T F i ~r TT' ir* w'\Ta 1 j I 3 1 $X)r \13 1 4 1 KX )r Igl 4 Iil 3 i ^XX - 11 ZXX ,

r-l

thus the matrix

r"p ] |~1
/ -p p _! p ' p p _i p / p f

H 1. 4 1 %XX ,
X 2 1 6 1 3XX ,

1 4 1 > 1 3XX ,
1 jjid//

r'
, -rTjFr'F^a;'
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where (x, y, z, t), (x, y', z', t') are arbitrary quantities, is shewn to be such

that cc cc = a number, which in fact is

x [(->*V + (--'A' + (w^V + ("-aO.
1
!

namely, the matrix c is an orthogonal matrix.

Herein, as will be recalled ( 7), F,, F3 , F5 are any three of the original

six matrices, and F2 , F4 ,
F6 are the remaining three in any order, but of these

there is one, F6 ,
of which it may be necessary to change the sign of every

element. It is at once seen, however, the matrix being written as here, that

in expressing that the sum of the products of corresponding elements in any
two rows, or any two columns, is zero, or in expressing that the sum of the

squares of the elements in any row or column is the same for each, both

signs for F6 lead to the same result, and indeed any one of the six matrices

F,, Fj, ..., F6 in the orthogonal matrix may be changed in sign without

affecting the result. This caution is therefore unnecessary, and the result

that the matrix above is orthogonal holds for any decomposition of the

six matrices into two sets of three, independently of the order of those in

a set, and independently of a factor 1 attached, or not attached, to any one

or more matrix F,, ..., F6 throughout the matrix c.

NOTE II.

INTRODUCTORY PROOF OF ABEL'S THEOREM, AND ITS CONVERSE.

If

A A B
H(x) = integral polynomial in x-\---}-... + .- r, + ~

J x a (x )*+' x b

be any rational function of x,ii is obvious that the coefficient of or1 in the

expansion of H(x) in descending powers of a;, which is A +fi + ..., is equal to

the sum of the coefficients, of (x a)"
1 in the expansion of H(x) in ascending

powers of x a, of (x b)~
l in the expansion of H(x) in ascending powers

of x b,..., all the values a, b,... which are roots of the denominator of

H(x) being taken.

If A (x)y
n + A, (x) y"-'+ ... + A H (x) =

be an irreducible equation in y, the coefficients A (x), A l (x), ... ,
A n (x) being

integral polynomials in
,
and a be a finite value of x which is not a root of

A (x) = 0, we assume that the values of y which satisfy this equation for
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values of x near to a, break up into a certain number of cycles, the

constituents of a cycle which consists of m roots being expressible by power-
series such as

wherein t is to be replaced in turn by the m roots of t
m = x a

;
thus when

the phase of x a increases by 2-rr, the phase of t increases by lirjm, and

one of the roots of the cycle changes into another
;
for x = a all the roots of

the cycle give y
=

b, and the point x = a, y b, regarded as the centre of the

m expansions is said to constitute one place ;
if there be k cycles, consisting

respectively of m,, ..., mk roots, we have rt^ + ... + mk = n
;
the ordinary case

is when k=n and m, = wi2
= ... =mt = l, and it is only for a finite number of

values of that any other case arises
;
but we may have k = 1 and mt

= n.

The case of a finite value of a for which A (#)
= may be dealt with by

putting yA (x) = ij ;
for any one of the places which arise the appropriate

expression for y is thus of the form <~x j>(<), where X is a positive integer and

> (t) a power-series in t
;
the case of an infinite value of x may be dealt with

by putting x = %-~
l

;
the appropriate expressions for any one of the places are

then of the form x = t~m , y = i~A
fjp (t), where m is a positive integer, X is an

integer and y (t) a power-series.
'

This general statement has been sufficiently

illustrated for the hyperelliptic case in the first chapter of this volume; the

quantity t, which always vanishes at the place under consideration, and is

to be chosen so that no point in the immediate neighbourhood of the place arises

twice over for different values of t, is called the parameter for the place. A
formal proof of the assumption as to the existence of such cycles is given

below, in the first chapter of Part II. (p. 190).

The value of any rational function of a; and y in the neighbourhood of any

particular place can clearly then be expressed in a form <"
tf (t), where j>()

is a power-series in t not vanishing for t = 0, and
ft.

is an integer. If
/j,

is

positive, the function is said to vanish n times at the place, or to the /u.th

order; if /* is negative, the function is said to be infinite ( p) times, or to

have a pole of the ( /t)th order at the place ;
and it can be proved that

any function of x and y which has about every place a definite expression
t/
1

>(<) in which
fi.

is a finite integer, is a rational function of x and y. The

sum of the orders of zero of any rational function, for all the places where the

function vanishes, is clearly finite, these places being obtainable by algebraic

combination of the fundamental equation and of the condition obtained by

equating the function to zero
;
we proceed to prove a theorem which, as will

be seen, has as one corollary the theorem that the sum of the orders of the

existing poles of the rational function is equal to the sura of the orders of its

zeros ; if for any place the (finite) value of the rational function R (x, y) be A,

and, in the neighbourhood of the place, R (x, y) A be of the form t
m
p (t)

where
j> (t) is a power-series not vanishing for t 0, we say that the function

B. 12
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is m times equal to A at the place the general statement is that the total

sum of the number of times that the function is equal to A at the

various places is independent of A, and this number is called the order

of the rational function.

The theorem in question, for a rational function R (x, y), is expressed by

the meaning being that in the neighbourhood of every one of the (necessarily

finite number of) places where either R (x, y) or x is infinite, each of R (x, y)

and dxjdt is to be expressed by the parameter t, the coefficient of t~ l in the

product -R (x, y) dx/dt is to be taken, and the sum of all such coefficients is

zero. The result is obvious if the elements of the theory of a Riemann

surface be assumed, since the vanishing contour integral fR (x, y) dx round

the period-loops is equal to the sum of the values of the integral round the

logarithmic infinities of the integral ;
cf. p. 4 above ; we can, however, give

an elementary proof, which has also been previously given for the hyperelliptic

case (p. 4). Consider a finite place x=a, which is the centre of a cycle of

m roots ylt ...,ym ,
and having substituted, in R(x, y), the value x = a + t

m

and the appropriate series for each of ylt ...,ym in terms oft, form the sum

#(, 2/0 + ...+R(x, ym);

each constituent of this sum is a series of integral powers of t with only a

finite number of negative powers, and if to = e-*ilm, the series are the same in

the quantities t,(ot,(0H,...\ thus the sum is a series of integral powers of

t
m or x a

;
and the coefficient of (x a)*

1

,
or i*, in this series in x a is

equal to the coefficient of t~l in

dx
R(x,y)mt

m
-\ or

R(x,y)^.

Consider next a place arising for an infinite value of x ; putting x = t~k and

the appropriate series for y,, ...,yk in terms of (, and forming the sum

R(a,y1) + ... + Il(*t ydl

we similarly obtain a series of integral powers of x~l

,
in which the coefficient

of or1

,
or t

k
,
is equal to the coefficient of <

-1 in

fJr

R(x,y}kt-*-\ or
-R(x,y)^.

Now consider, for any value of x, the sum

H(x) = R(x, y,} + ...+R(x,yn),

where yl ,...,yn are all the roots of the fundamental equation; this is a

rational function of x only ;
for a finite value x= a, the coefficient of (x a)~'

in H (x) is, as we have seen, equal to the sum of the coefficients of t~ l in

R (x, y) dx/dt at the various places arising for x = a
;
while for infinite x, the
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negative coefficient of a;"1 in H (x) is equal to the sum of the coefficients of t~l

in R (x, y) dxjdt at the various places arising for x = oo . It follows, therefore,

by the remark at starting that, in the sense previously explained,

and this is the theorem.

Remark. If K(x, y) be any rational function, such that, near any place,

K (x, y) A is of the form t
m
p (<). we see at once that, near this place,

has, for coefficient of t~l

,
the integer m. The number of times that K (x, y)

takes any value A is thus equal to the total number of its poles, as was

remarked.

To apply this result to prove Abel's Theorem, let Z denote any rational

function of x, y, these being connected by the fundamental algebraic

equation f(x, y)
= 0; the rational function Z /*, where fi is a constant, will

then have a definite number, Q, of zeros, this number being independent
of

fj. ;
and as p, varies these zeros will vary ;

for simplicity of statement we

shall regard each of the zeros as of the first order, for all the values of
/j,

which we consider, though, as will be seen, the result we obtain is unaffected

by supposing two or more of them to coalesce into a multiple zero. Also let

R (x, y) be any rational function of (x, y) and / = fR (x, y) dx. Now apply

the equation

r_i di d*] _
\_Z-ndx- dt]t-i~

written in the form

where on the left only those places are considered where Z =
/j,
and dl/dt is

finite, and on the right those where dl/dt is infinite (and possibly also Z=
fjJ).

Let (#,-, yi) be one of the places for which Z = p., and t the parameter for

the neighbourhood of this place, so that, for a near position (%i + dxi, y + dyi),

the value /* + dft, of Z is given by fj, + tA + ...
;
the corresponding contribution

to the sum on the left is then given by

1 dl dxi _ dl dxi

A dxi dt
'

dxi
'

dfj,

'

and the equation leads to

122
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thus if (#,) (xQ) be the places where Z vanishes, and (a,), . . . , (aQ) the places

where Z is infinite, we have

2
=i

if we assume that no one of the places where Z is infinite coincides with a

place at which the integral / is infinite, we can write, for large values of p,

and hence, in virtue of = 0,
LfJ-i

infer the result

which we may regard as a statement of Abel's Theorem.

Some particular cases may be referred to.

(i) When I =JR (x, y) dx is an integral of the first kind, the right side

vanishes, and we have the result that if ux >
a be any integral of the first kind,

and (a;,), . . .
, (XQ) be the zeros, and (oj), . . . , (a^) the poles of any rational

function of (x, y), then
M*,,o, + ... + ux '

as = 0,

it being understood that, in the absence of a convention as to the paths of

integration on the left, there must be added on the right a sum of integral

multiples of the periods of the integral **.

(ii) When / is an elementary integral of the third kind, that is, is

infinite at one place (a) like log <, where ta is the parameter for this place,

and infinite at another place (/3) like - log t
ft ,

but not elsewhere, we have,

whatever Z may be
f (*<) D , , , , Z(a)

-

A f (

2
=W

where Z(a.), Z(/3) denote the values of Z at these places.

(iii) If the fundamental algebraic equation be

and R (x, y)
=

x/y, while Z is taken to be (y mx c)/(y m^x cc), we have

Q = 3, and dl/dt is infinite only for x = oo
; putting, for the single place there

occurring,
= -, 2/

= -2rs

(l-isr2
4
-..-),

wehave ^ = -(1 -
l^r.t

4

-...),

u mx c 1 + \mt -f \ ct
3 - ...

\OSt-2 - = log r ;
- = i(m-?n )+...,& y- m^x - c

8
1 3 -
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and (-jrjlog^ =i(w-m );

\_\atj J-i

if then (a;,, yt ), (x3 , y2) and (x3 , y3) be the three intersections of the straight

line y = mx 4- c with the cubic curve y
2 = 4^ g^x g,, and (cj), (c2), (c3) be

arbitrary places, we have

xdx <*>> xdx

y

where G is a quantity unaltered by replacing the straight line y = mx + c by

any other ; putting, as usual

this is equivalent with

(u) 4- f(v)
- ?(M + w) + i

V U ~V V = constant,
pw jw

for arbitrary values of and
; by expansion in powers of u for small values

of u we at once find the constant to be zero.

CONVERSE OF ABEL'S THEOREM.

If p denote the number of existing linearly independent integrals of the

first kind, and two sets, each of Q places, (a-,), ..., (XQ) and (a,), ...,(aQ), be

such that

,-*> 4- ... 4- ,-*
= 2J/

1 i
,
1 4- ... 23/> ;

, p 4- 2Jf1Vl
-

fl 4- ... 2Mp'<o'iip ,

there being one such equation for each of the integrals, .M,, ...,MP
'

being 2jp

integers independent of i, and 20),-, ,,..., 2a>',-jp being the periods belonging to

the integral uf<
a

, then there exists a rational function of (#, y) having

(a:,), ...,(#Q) for zeros and (a,), ...,(a Q) for poles, of the first order. The paths
of integration on the left are supposed to be the same in all the p equations,

but are arbitrary ;
a modification of these paths will generally entail a

modification in the integers Mlt ,.., Mp'.

The proof of this result is similar for all cases, and may be explained in

the hyperelliptic case, p 2, for which we have given the necessary pre-

liminary theorems in the text. The equations then lead, for paths on the
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dissected Riemann surface upon which the normal integrals vf< ", vf> are

single-valued, to the equations

a =

consider then the function eu where

H = n *' "
+ ... + n*'

" - 27T (M.'v?'
a + M,'v,

x
' a

),xlt a, xa.au

the function II
'

being the normal elementary integral of the third kind
;
in

virtue of the period properties for the integrals the function ea is at once

seen to be unaltered across any period-loop, and it is expressible near any

place by a series of integral powers of the parameter for that place,

having zeros of the first order at (#,), ...,(0;^)
and poles of the first order

at (oj), ..., (a,).
It is thus such a rational function as is required.

(Cf. pp. 7, 29.)



PAET II.

THE REDUCTION OF THE THEORY OF MULTIPLY-PERIODIC
FUNCTIONS TO THE THEORY OF ALGEBRAIC FUNCTIONS.

CHAPTER VI.

GENERAL INTRODUCTORY THEOREMS.

49. IF a power-series, in the independent variables, x, y,

<a v, M ... mn ...,

converge for # = #, 2/
=

3/o,
then it converges uniformly and absolutely for

I* <W> |y|<|y.|-

For, convergence for #, ya requires that any batch of terms taken

sufficiently far from the beginning of the series, and in particular any single

term, shall be of arbitrary smallness ;
we can thus suppose a,nn a;

m
y
n less in

absolute value than an assigned finite real positive quantity M, for every

value of m and n
;
then if = x/x , r)

= y/ya we have amnx
m
y
n = *ij^afey*i

and thus, for
| f |

< 1,
|
rj \

< 1, the absolute values of the terms of the series

are less than those of the series

which is convergent, having M (1 -)"'(! - 7?)"
1 f r sum - This enables us at

once to prove the proposition as stated.

The given series thus represents a continuous function in the open region

|

a; < |# j, \y \

< \y, ;
it can easily be shewn that this is true also of the series

formed by differentiating the given series in regard to x or y, so that the

given series is differentiate in the same region.

If r <
[

# and
|

xl
\

=
r, the series can be rewritten as a power-series in

x xl and y converging certainly for y < y ,
\

x a;,
j

<
|

#
|

r. If for

every x such that \xl
\
=r, the rewritten series converge for \x x^< ac +D r,

then the original series really converges* in the open region |a;j<|a; + D,

// < yu \.
It may be, however, that there is a point (x, y'} upon the

boundary of the region of convergence of the original series, such that if

* A formal proof is given Proc. Land. Math. Soc. Vol. xxxiv. (1902), p. 296.
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(#/ y\) be taken anywhere in its neighbourhood, the rewritten series in

x x\> y y\ converges only for x xj <\x' ar,'|, | y y/ <\y y\ ',
such

a point is called a singular point of the function represented by the original

series. With this definition it is clear, in view of the proposition just stated,

that the region of convergence of the original series can be taken to be

given by |

x
\

< R, y \

< S, with a singular point (x', y) where \x'\
= R,

\y'\^S or \af ^ R, \y'\
= S.

Thus the value adopted for one of the two quantities R, S modifies the

values possible for the other
;

in particular it may happen that R can be

increased without limit if S be suitably diminished. As this is a point of

difference between the cases of series of one variable and series of more than

one variable, it may be desirable to give an example. Consider the power-

series

1+x + af-xy + x3 -
1afy + ^xy^ + ..................(A)

obtained by writing the series

+ ...........................(B)

as a power-series in x and y. If the series (A) converge for x = x
, y = y , it

will as we have seen converge absolutely, and therefore written in any order,

for of|<|o; |, I y \

<
1 2A> 1

>
it wiH therefore converge when written as the

series (B) ;
if however x = re'

9
, y = se

1* = + ir, the series (B) converges only

for x
\

< ey
|

or f>logr. Thus, near the origin, the series (A) converges

only if r < 1, and taking a particular r < 1, a region of convergence about

the origin, circular for both x and y, can only be of the form |a;|<r0>

| y \

< log . Conversely s < log
-

,
or re" < 1, ensures the convergence of

? r

+ 2s + + ... + .........(R)

and so the absolute convergence of the series (B) written in the form

which can then be rearranged as the series (A). On the whole then a

region of convergence about the origin for the series (A) is given by

|

a; < r, \ y \

< s, r < e~*
;
thus r is less than unity but can be made as near

thereto as we wish by taking s small enough ;
but on the other hand s may

be made indefinitely great by taking r small enough.

50. Suppose that the original series converges uniformly in regard to

the phases of x and y upon the two circumferences \x\=r, \y\
= s; and that,

for these values of x and y, the sum of the series is, in absolute value, less

than the real positive quantity M. It can then be shewn that, for these
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values of x and y, every term of the series is also less than M, in absolute

value ;
so that

M

Denote the sum of the series by f(x, y) ; put e = e h
,

ta = e k
, where

/(, k are positive integers; we have then, for x = re", y = su>",

(re")-" (so>")-"/(re'' > soa')
= a

, (re")-* (sto")"" + +
, n +

+ am; n
'

(re*)
m'-m

(sa>")"'- + . . . + H,

where H represents the remainder of the series beginning with terms of

dimension p m-n + 1 in a; and y, after division by xmy
n

. Taking a-

arbitrarily small we suppose p so large that H < <r. In this equation

give to ft in turn the values 0,1 ..... /*' 1, and to v the values 0, 1, ..., v 1,

add the results, and divide by the number of these, namely p!v ;
we thus

have
M
2 *2 (re^-

m
(s(a")-

n
f(re^,sca

>

')

fJ.V ^=0 F=0

equal to

1
r
-
mg-n

1 -(*-/ !-(-")"'a
-
r _- ^-"

1 1 _ pfm'-m)/.' 1 _('-) >' 1

m'-m,,n'-n
x

_ i

L

+
/I?

a'' nr ITTeST-^"- l_ w '-
"'"^

it being understood that h, k are taken so great that no one of the

denominators

is zero, as can be supposed by choosing h, k after <r and p are fixed. If J/,

be taken less than M to exceed the greatest modulus of f(x, y) for
(

x
\

=
r,

| y |

=
s, the left side of this equation is in absolute value less than r~ms~nM^ ;

on the right side the term r-, 2H is in absolute value less than er, and the
ftv

other terms, except am<n , diminish indefinitely when the arbitrary positive

integers /*',
v are indefinitely increased

;
thus we have

\

am,

where f is arbitrarily small, and hence, as desired,

Corollary. We have

K M
\

am,n\ < HT'
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and, if \x\=p, \y\
=

<r,

2 am>nx
m
y
n

m=l,=l

so that

\f(x> y) I

>
I "0,0 1

which does not vanish so long as

<M

Herein r, s are arbitrary values such that the series converges for

I

x
I

= r
>

I y I

= s
<
afid -^ is any real positive quantity greater, absolutely, than

f(x, y), when \x\
= r,\y = s

;
so long as

j

o
0>0

> 0, we can always take p,
a so

small that the inequality is satisfied. Thus if the origin is not a zero of the

series it is an interior point of an assignable finite region within which no

zeros are found.

51. Consider now the case when the origin is a vanishing point of the

series. Arranged in powers of y let the series be

where A , A lt A, ... are power-series in x; of these A,, vanishes for x = 0;

we assume in the first instance that not all of A lt A?, ... vanish for # = 0;

let A n be the first that does not, so that the series is of the form

f(x, y)
= x (B + Bty + . . . + _, y*~

l

) + (C + xBn) y
n + A n+ly

n+l + ...,

where B0> Blt ..., #_,, Bn, A n+1 , ... are power-series in x, and C is a non-

vanishing constant.

We shew now that a real positive quantity r can be assigned such that

for any value of x less than r in absolute value, there are n values of y

satisfying the equation

f(a; y) = 0,

all diminishing to zero with x, and that these are the roots of an equation

where plt p2 pn are power-series in x, vanishing for x = Q, and converging

for
|

x
|

< r.

Let / =/(0, y) = Cy" + Zy+' + ...,

and /, =/ -f(x, y),

so that /! vanishes when x vanishes, identically in regard to y. Choosing IT

so that fa does not vanish for <
| y I 5 a; and so that f(x, y) converges for

| y |

< <7 and sufficiently small x, and choosing cr, so that < cr, < cr, we may
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choose p so that
|_/j [

< |/ for
|

x < p and trl <\y < <r. Then for a definite

x, such that \x\< p, since /=/ (l ~f}> we have

ia/_ia/o_i i/^Y-i^.i i r

where G^ (x) is a power-series in x vanishing for x = 0,

-irl * ^wr+^w-Ei^y y M=- "
c=o

where (y) is a power-series in y ;
let the number of values of y, less than <r

in absolute value, which satisfy f(x, y)
= 0, for the definite value of x, be in,

and denote these by ylt ...,ym , multiplicity being allowed for by repetition of

these
;
then the difference

___
fty y-yi y-ym

is expressible, for I y \

< a-, as a power-series in y, say K(y) t
and so, for y less

than <r but greater in absolute value than the greatest of y, ,
. . .

, ym and greater

than a
-i,
we have

as this must agree with the preceding expression we can infer

=
, y{+...+y' = vQ- r (x);

putting then

(y
- yO (y

- y) = y
n
+piy"~

l + .

we have

ft + GL, (a?)
= 0, 2p2 +pl GL, (x) + 2GU (x) = 0,

-i (x) + 2PI _ (x) + 3GL3 (#)
= 0,

and so on, whereby it follows that pi,p-2 ,
... are power-series in x, vanishing

for x =
;
also

>T"
~

o~
- ~

-^ -
^r

fdy vdy vrdy dy M=0

so that / = CT [/",

where 17 is of the form

(
V
G(y)dy- 2

^e ;i

and X
, X,, X.j, ... are power-series in x, of which X reduces to unity for x = 0,

while A, independent of y, is obtainable by comparing coefficients of y
n in
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and is given by
A = A (\o + \pt + ...+ \npu)-\

so that it is a power-series in x reducing for x = to the constant term in

the power-series A n . For the values of x and y for which the series G(y\
CO

G
li(x)'if- converge, the factor U does not vanish, as its exponential form

)i=0

shews ; these series converge however for all sufficiently small values of x

and y ;
thus all the roots of the equation f(x, y)

= 0, for any sufficiently

small x, which vanish with x, are those of the equation -or = 0.

If, still supposing /(O, y) not to be identically zero, the terms of lowest

order in f(x, y) are of the nth order, so that A,, vanishes to the nth order,

A! to the (n l)th order, ..., A n_, to the first order, when x = 0, then the

lowest terms in y, are of aggregate order n in x and y, as are the lowest

terms in fa ;
thus the lowest terms in Q

fi (x)y
li are of order zero at least and

G-v (x) is a power-series whose lowest terms are of order i/; the same is then

the case for p,, which vanishes to the vih order when # = 0. We can if we

wish, by a substitution, x + p.y for x, in f(x, y), where /*
is indeterminate,

always suppose the case to be as here.

The case when /(O, y) is identically zero has been excluded from the

preceding ; putting then x = \f + /j.i), y = X'f + /*'>;, the value off(x, y) when

f = is
f((J,r), p-'rf),

which is not identically zero in regard to t) if p and /*' be

chosen with sufficient generality. Thus f(x, y) can be written in the form

f(x, y) = (, + ?1V-' + . .. + qm) U,

where qlt ...,qm are power-series in vanishing for
(
= 0, and U is a power-

series in
, 77

not vanishing for = 0, 77
= 0. Supposing \p! \'p not zero,

tins decomposition replaces that of the preceding case.

A theorem, and demonstration, exactly analogous to the foregoing applies

to the case of an equation f(x\, x.2 , ..., xm , y) = 0, in which the number of

independent variables is m.

Corollary. If fa, ...,</>,,
ai n convergent power-series in the n + m

variables &! xn+m ,
all vanishing when these n + m variables vanish, the

linear terms in the series ^u ..., <, say

being such that the determinant formed by the coefficients of #,, ..., xn ,

namely
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is not zero, then the equations

& = ..... < n = 0,

regarded as equations for x^, ..., xn , are satisfied by convergent power-series in

a:n+1 , ..., xn+m ,
these being the only solutions of these equations for xlt ..., xn ,

within a certain neighbourhood of the origin.

For put

1
=

Ch,i3?i T . + Gh,&n, > ?n = ^n, 1^1 ~t~ + ^n, yi'Ett)

so that the equations <, = 0, . . .
, </>

= 0, are

fl "I" "l,+i a;7H-l + + 1i,i+m^Wtn ~t~ MI, 3 "I" "1,3 4" = ",

where
,,,

is a polynomial of dimension s in the + m variables

S 1 >
'

> S ^n-f-i > M *^n+i

If in the first equation we put fj
= 0, ..., ,,

=
(), xn+1 = 0, ..., #n+m = it

reduces to a power-series in whose first term is f,. It follows then, by
the foregoing, that the only sets of values of f,, ..., , n+i, ..., n+mi in the

immediate neighbourhood of the origin, which satisfy the equation ^ = 0,

are given by , + P =
0, where P is a convergent power-series in

S3 ..... ?n> Z-n+i) ^n+m)

vanishing when these n + m l variables are all zero. If the resulting value

of f, be substituted in the remaining equations < 2
= 0, ..., <f>n

= 0, they reduce

to convergent power-series in 2 , ..., fn ,
xn+1 , .... xn+m of the form

+ ar,n+in+i + + ar>n+mxn+m + vr,, + v
r<3 + . . . = 0, (r = 2, . . .

, n),

where v
r< , is a polynomial of dimension s in the n + m 1 variables. Solving

the first of these equations similarly for 2 ,
and substituting, and proceeding

in this manner, we eventually obtain as a power-series in xn+l , ...,xn+m ,

only, from which, by retracing the steps, we obtain in turn _!, .... f,, and

so eventually x
t , ...,xn ,

all as power-series in xn+l , ...,a;n+m .

52. Consider now what is represented, for sufficiently small values of

x and y, by the equation

w (*, y) = y
n
+p,y

n~ l + ... + pn = o,

where pi,p-2 , ... are converging power-series in a; vanishing with x.

If the left side be capable of being written as a product of factors of the

form

|T
r

-fjfcV
r-1

+....+jv'i

wherein
/>,', ...,;>' are analytical functions single-valued about the origin,

then pr
'

is of the form arh
'fjr ,

where qr is a converging power-series in x, and

then, as all the roots of any factor are roots of or (x, y) and therefore vanish
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at the origin, we must have h r
= and qr must vanish for = 0; every factor

must thus be of the same form as nr(x, y). As we could then deal similarly

with each factor in turn, there is no loss of generality in assuming that

vr (x, y) is incapable of such decomposition.

This being assumed it can be shewn that the n roots of ar(x,y) are

expressible in the form

where the right side represents a converging power-series in which t is to be
i

replaced in turn by the n values of x n
;
thus the n roots constitute one cycle,

and belong to a single monogenic function, each root changing into another

when x makes a circuit about the origin, and so on throughout the cycle, till

after n circuits the original root reappears.

We have

vy (x, y),
= fa (x, y)/Sy,

= ny*~
l + (n- l)pty

n-- +...+ pn-, ;

form the Sylvester y-resultant of m(x,y) and vry'(x,y), which, being a

rational integral polynomial in plt ..., pn ,
is a power-series; this power-

series cannot vanish identically, or is (x, y), ssy (x, y) would have a common
factor

obtainable by the rational method of greatest common divisor; thus

PI, ...,pn
'' would be rational in plt ..., pn ,

and therefore each of the form

x~h"qr ;
we have excluded this by hypothesis. The Sylvester y-resultant

vanishes for x = 0, since both CT (x, y) and or/ (x, y) vanish for x = 0, y = ;

but a region can be put about x = within which no other zeros of this

resultant are found; this region, taken circular, we call, momentarily, the

domain of the origin. Let x be a point of this domain other than the origin,

and y any one of the corresponding roots of in(x , y)
=

0, so that
-sty '(x,, y )

is not zero
; put x = x,, + , y = y + 17 in OT (x, y), so obtaining

8or Qo, 3/0) .. ,,

C I -i */ ~t* - \J .

Sya

by a particular case of the theorem in the Corollary of the preceding article

this leads to a series

y = y + A, (x
-

x,) + A 3 (x-

expressing, about x
,
the only root of tn (x, y) = which reduces to y when

x = xa . A precisely similar form, as power-series in x x
,
is possible for the

other roots of i&(x, y) = in the neighbourhood of #. Let r be the least of

the n radii of convergence of these n series belonging to #. Putting a small

circle about the origin, and another circle just within the outer circumference

of the domain of the origin, and considering the closed annulus so deter-

mined, and the value of r for each point x of this annulus, we desire to shew
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that a number greater than zero exists such that r is everywhere greater

than this
;
in other words that the lower limit of r for the points # of the

annulus is greater than zero.

To prove this we may proceed as follows: let
'

be a point within the

circle centre # of radius r; to this point belong n expansions of y in powers

of x x
', directly derivable from TO- (x, y)

= 0, as before
;

let r be the least

of the radii of convergence of these
;

on the other hand, any one of the

expansions in x xn may be rewritten as a power-series in x xa', converging

at least as far as the circle centre arc of radius r, and in this form must agree

with one of the series directly derived from nr(x,y) = Q for the neighbour-

hood of #'
;
we see thus, that r ^ t #' xa

j
;
but we similarly prove,

beginning with the expansions about x ', and supposing j

x x '

j

< r', that

r > r'
|

xt

'

x, ,
and so have, for sufficiently small

j
as,, x

'

|
,

r r' ^ r + x

which shews that r varies continuously as a-u varies
;
a continuous quantity

over a finite region is known however to reach its lower limit, while r is

never zero over the annulus considered
;
thus its lower limit is not zero.

Denote this lower limit by p ;
let

,
be a point within the closed annulus

and within the circumference of convergence of the series

y = ya + At (x
- xt) + A,(x- x,,)

1 + ...,

but at less than p from this circumference
;
let yl be the value represented

by this series at #, ;
there exists then, when x is near to xl ,

one root of

&(x, y)
= Q, reducing to yl when # = #,, expressible by a power-series in

x Xi converging for x x^ < p, and therefore forming a continuation of the

series above, beyond its circle of convergence.

It is thus clear that any root (?/) of or (x, y)
= can be continued

completely round the closed annulus back to the neighbourhood of xa ;
it

may not however, after one circuit, resume its value
;

it may change into

another root. Let it resume its value after p, circuits; put then x = t*, so

that the phase of t increases by 2?r when the phase of x increases by 2irfi ;

now, as we have considered the equation ts (x, y) = 0, consider the equation
m (<*, y), and the root of this reducing to y for t = <, where tf = xa ; by the

reasoning given, this root is a single-valued function of t within the annulus,

and developable, as a power-series in t - 1
,
about any point ta ; thus, by

00

Laurent's theorem, it is capable of a representation 2 um t
m

,
valid for the

m
whole of the annulus; if however M be greater than the modulus of this

scries for t\
= R, we have

|

a_m
j

< MR"1

;
as all the roots of or (x, y)

vanish for x 0, it follows that the negative powers of (, and the zero power,
are absent from the series. Consider now the /t roots of CT (x, y) = 0, given
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00

by the series ~i.am t
m for t = t exp (2-rris/fj,), where s = 0, 1, ..., ft,

1
;
denote

i

them by yly y,, ..., y^ ;
if h be a positive integer the sum yt

h + y.f 4- ... + y^
arises as a convergent power-series in t which is in fact a single-valued

function of a; and is thus a power-series in x, manifestly vanishing for x =
;

we infer then that ylt ..., y^ are the roots of an equation

y + 'M"~
1 + + ?,= 0,

wherein qlt q2 , ... are power-series in a; vanishing for x = Q; the factor of

er(x,y) given by the left side must then, by our initial hypothesis, be

identical with w (x, y) and
fj,
= n. And the proposition above stated is so

proved, namely all the roots of is (x, y) are given by a power-series in t, and

constitute a single monogenic function.

53. Consider now what is represented in the immediate neighbourhood
of the origin by a simultaneous set of equations

GI(I, #2, -, #n) = 0, ..., Gm (x1 ,x.2 , ...,#) = 0,

wherein each of Glt G3 ,
... denotes a power-series in the n variables vanishing

for #! = (), #2
= 0, ...,# =

(), the number of equations being less than, equal

to, or greater than n. We suppose #, ,
. . .

,
xn replaced by independent linear

functions of new variables, ylt ..., yn ,
with unspecified coefficients, which

coefficients we regard as implicit constants
;
then we may suppose that in

the new equations in ylt ..., yn there is no specialty of form which gives a

distinction to any variable above the rest. We now introduce explicit

constants, replacing ya ,
. .., yn by ?;2 ..... 77,, by means of the equations

the power-series then take forms

^1(^1, /2, > ?n)
= 0, ..., Km (ylt I)?, .... ?n)

=
0,

wherein the constants A 21> X31 , X),, ... occur explicitly. We require the

solutions (y, ..... yn) independent of these constants.

It is possible, as is shewn by an argument precisely like that previously

given for the case of two variables, to deduce from Kr (y lt ij.,, ..., jj,,)
= an

equation
lsrsyp+kriiyir*+...+kriltr -0, (r

= l, 2, ...,m),

wherein k
fil , ..., kr<l/lr

are power-series in j;S) ..., ijn vanishing for /s
= 0, ...,

rin
= 0, this equation giving all the solutions of the y,-equation Kr

= which

vanish for t)?
= 0, ..., rjn = ;

as we are considering the equations (?,
= 0, ...,

Gm = for the neighbourhood of the origin it is thus sufficient for our purpose
to consider only the equations A-'i

= 0, ..., &, = (). Any one of the m poly-

nomials in yi denoted by &,, ..., km may be capable of being written as a

product of factors of the form
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where A,, ..., h^ are convergent power series vanishing for 772
= 0, ..., t}n = 0,

and any such factor may occur in any polynomial to higher than the first

power; suppose the decompositions of this form carried out as far as possible,

and let kr
'

denote the product of the different factors of this form which enter

into the polynomial kr ; every set of values of y,, i;2 , ..., rjn which satisfy the

simultaneous equations k, = 0, . . . ,
km = will satisfy the set of equations

ki =0, . . .
, km = 0, and conversely ;

we therefore consider the system &/ = 0,

..., km
' = 0, instead of the system ,

= 0, ..., km = 0. 'If &,', ..., km
'

have a

common factor, a product of irreducible factors of the form which has been

referred to, denote it by p (n>
, the exponent denoting the number of variables

which (presumably, or possibly) enter into it, and let k", ..., km
"
be the results

of dividing &,', ..., km
'

respectively by p (n>
. Then any point ylt T/2 ..... i)n ,

in a certain near neighbourhood of the origin, which satisfies the original

system of equations (r,=0, ..., Gm = 0, satisfies either p<")=0, or all the

equations ifc,"
= 0, . . .

,
km

" =
;
and any point of this neighbourhood satisfying

either p (n} = 0, or all the equations A," = 0, ..., km
" = Q, satisfies the original

system of equations.

Consider first of all the single equation p'"' =0, and, of this, any factor of

the same form

wherein rn ..., r\ are converging power series vanishing for % = 0, ..., rjn = 0,

the factor being chosen so as to be incapable of further decomposition into

factors of the same form; the points yit y2 , ..., yn ,
in the neighbourhood of

the origin, satisfying the equation q
[nl =0, are first to be divided into two

categories : those which do not, and those which do, also satisfy the derived

equation dq
(n}
jdyt

=
;
the points of the latter category satisfy an equation

R = Q, where R is the Sylvester resultant in regard to yl of q
(n} and 3g

(B|
/3y1 ,

which, being a rational integral polynomial in the coefficients rlt ..., r^ in

q
w

,
is a power series in

i).t , ..., t)n , manifestly vanishing at the origin; thus

the points satisfying </""
= are divided into the two categories

=

consider the solutions of R = in the immediate neighbourhood of the

origin ;
these are given by the vanishing of a certain number of irreducible

factors of the form

where slt ..., s^ are power series in rj3 , ..., 77,, vanishing at the origin ; these

in turn can be divided into two sets : those for which dq
(n~1}

/drj.;
does not also

vanish, and those for which it does
;
consider a point of the former set ; the

B. 13
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arbitrary coefficient X,,, which, it will be remembered, was introduced in the

substitution

enters explicitly in the series s,, ..., s^; it enters also implicitly in 17,;

differentiating the identity in Xa ,

(\y, + y*Y + i (xyi + yjr-
1 + + ^ = o,

in regard to X^, we tljus have

thereby the solutions of q
(n] = are divided into three kinds

g<n) = I fll-i> =

=+oL?%?e?_o
3y,

n

;

"
3i, 8%

where it must be understood that there are as many sets of equations of the

second and third kinds as there are irreducible factors of R. We may now

proceed similarly with the points of the third kind. By combining the two

equations q
(n
~

>} = 0, 9g
(n~1)

/9% = 0, we derive a power series in rj3 , ..., 17,,,

vanishing at the origin, and hence a certain number of irreducible factors

such as

where ,, ..., t, are power series in r)t , ..., 17,,, vanishing at the origin ;
in

</

("~

there enter explicitly the arbitrary coefficients introduced by writing

considering first the points satisfying q('
l~^ = for which 8g'"~

2)

/dr)3 is not

zero, we obtain, differentiating in regard to A,, and XQ,

dq"> dq^ _
,

Bj'-^ ,

" y2
" '~ '

while the points for which
8<?

("~s)

/9f?3
= lead similarly to equations not

containing 973. The points, in the neighbourhood of the origin, satisfying

pi">
= are thus finally distributed into kinds, those of any kind being given

by a certain (finite) number of sets of equations of the form

3/,(n-r) r)o<"-rl 9(7 ("" r

}*->=(), yA - + fl,-0, .... *^ +Hr
= Q,

c
- -+0

dJ7r+1 07r+l 0?r+1

wherein
<jr

("-r> is of the form

9
(n-r'K+1

+<<1CI

+ - + "->

MJ, ..., M, denoting power series in
r)r+i , ..., i)n vanishing at the origin, and is
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incapable of being written as a product of other factors of the same form,

while Hlt ..., Hr are each of the form

!, ...,v, denoting power series in
rjr+2 ..... 17,,. The points represented by

such a set of equations do not form a closed aggregate ;
the aggregate is

closed by the points satisfying q
(n~T) = 0, dq

ln~r}

/St)r+l
= 0.

We saw that the points satisfying Gl
= 0, . . .

, Gm = were given either by

p<")
= or by the simultaneous equations

KI = ", . . . , Km U .

consider now the points satisfying these simultaneous equations. As the

^-polynomials &,", ..., km
"
have no common factor of the same form, they

cannot all be satisfied for arbitrary values of %, ...,rjn ;
our first problem is

to find all the relations connecting 77.,, ..., t\n which follow from the hypothesis
that k" = 0, . . .

, km' = have a common solution. Let ult ..., um and vl ,...,vm
be arbitrary unassigned quantities ;

from the two equations

U = ,&," + ... 4 umkm
" = 0, V = vM' + ... + vmkm"'= 0,

we can eliminate ylt so obtaining an integral polynomial in ult ..., M,n ,

*>i> > v,n with coefficients which are integral polynomials in the coefficients

of the various powers of yl in &,", . . .
, ,", say

every one of the coefficients A must then be zero, and we so obtain a system
of equations

Hi(lji, , 17) = 0, ......
, //,(%, ..-, I7n)

=

wherein each function if is a power series in i;2 , ...,iyn ;
these are all satisfied

by the common solutions of the equations fc,"
=

0, . . . , km
" = 0, and in particular

by the origin i72
= 0, ..., ijn = 0. Conversely, to any set of values of

r\z , ..., rjn

satisfying all the equations ^ = 0, ..., H, = 0, corresponds at least one value

of
1/1 satisfying both U=0 and V=0, and this whatever values are given to

MI. ,um ,Vi ..... ,; such value, or values, of yl will therefore be independent
of ,, ..., ,, vlt ..., vm ,

as appears also from the equations given below for

determining them. Now let the equations Hl
=

Q, ..., H, = be replaced, for

the neighbourhood of the origin, as before, by a set of equations

h, = ri+PrtJ-1 + ... + P/ = 0, (a = 1, 2, ..., ),

wherein P1; . . .
, P/ are power series in %,. ..,?, vanishing at the origin ;

further

let h, be written as a product of irreducible factors of the same form, and let

/<' be the product of the different factors; the equations V = 0, ..., h,'
=

then give all the points in the neighbourhood of the origin which satisfy the

equations h
lt ..., ft,

= 0; of the ^-polynomials hi, ..., h,' let p'"-
1 ' be the

common factor of the same form, and the results of dividing these polynomials

132
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by this factor be respectively h", ...
, h," ;

then all the solutions of

#i = 0, ..., He
= in the neighbourhood of the origin satisfy either the

equation p<
B-=0 or else they satisfy the system of equations A," = 0, ...,

h,"=Q; and conversely. Consider now first the equation p (n~"=0, in the

variables
/3 , r}3 , ..., i}n ;

let q
(n~1} be an irreducible factor of the same form

;
it

contains the arbitrary parameter X^ explicitly, and, since % = Xj,y, 4-ys ,
it

contains it also implicitly ; separating the solutions of q
(n^>) = into those

for which dq^^^/Sr), does not vanish, and their limiting points for which

dq
(n~l]

/dr}2
=

0, we have, in the case of the solutions of the former kind, by

differentiating the identity in \.a expressed by q
(n
~v = when r/,

= \.a y, +ya ,

the equations

This is precisely the mode in which we previously dealt with the equation

q(n)
_ . we can now proceed in the same way as before with the equations

9
<n-i, _

0) g^n-iya^ = o. Considering then the equations A," = ..... h." = 0,

we can proceed as before, beginning by the elimination of %. And this

mode of procedure can be continued until all the possibilities are exhausted :

if at any stage we are considering an irreducible factor

as = rj/ + WjT;/-
1 + . . . + TO-p,

wherein r,, ...
,
CTP are power series in 17^+,, ...,?, vanishing at the origin, we

first consider the solutions for which dvf/dr)^ is not zero; we have then an

identity in arbitrary coefficients \M>1 , ..., \^_^ obtained by replacing ^
in or by

*>*
=V i y> +V a y^ + + \,M-I y*-i + yi"

the coefficients X,,^, ..., X,.jM_i entering explicitly in isr1( ..., nsf ;
thus by

differentiating this identity w = we have solutions given by r = 0,

disr/di)n =f 0, y, =--h ^r
= 0, ..., WM_I 5

--h ^r
- = 0, from which, if desired,

ci),,. dX^, OT)I <m*-j
>).,, ..., t]fl

_l can be expressed in terms of ij^, T;M+I , ..., IJH by means of

The outcome of the whole investigation is thus as follows : If

GI(XI, ...,#), ..., Gm (xlt ...,Xn) be any m power series in xlt ...,, vanishing

at the origin, a neighbourhood of the origin, defined by such equations as

|
#!

|

< Si, ..., xn < $n ,
can be found such that all the solutions of the equations

Ol
= 0, ..., ^=0 lying in this neighbourhood are given by a finite number

of sets of equations of the form

Vf = 1)J
L + Ml'//"

1 + ...+ =
I

1
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where 171, ..., i)n are independent linear functions of a;,, ...,#, the number sis

one of the numbers 1, 2, ..., (n 1), the coefficients M, ..... MM are power series

in t)s+1 , 7,+2) ...,rjn vanishing when these are all zero, the function in is incapable

of being written as a product of other factors of the same form, the denomi-

nator -or' denotes 9isr/&?;,, the numerators /,, ..., !/_, are each of the form

where v
, .... #,_, are power series in 17,+,, i),+2 , ..., 77,, vanishing when these

are all zero, and only such values of TJ,+I ..... rjn are to be considered that &'

does not vanish simultaneously with or
; subject to this condition every

solution of any one of these sets of equations within the prescribed neigh-

bourhood of the origin gives rise to a solution of the original system. Herein

each of the functions Ul , ..., /,_, is such that each of %, .... ?;,_, vanishes

when 77,+, ..... ijn all vanish, and every one of the functions 77,, ..., r)8^t satisfies

an equation of the same form as that, tsr = 0, satisfied by i?,, with coefficients

depending upon 17,+,, ..., t)n .

The points satisfying such a set of s equations may be said to constitute

an irreducible construct of rank n s or of 2(n s) dimensions, or an

irreducible 2 (n s)-fold ;
it is an open aggregate whose limiting points are

those for which both r = and dur/Sij,
=

;
about any point (77,+! > V) of

it, other than the origin, each of 17,, i7,_n ...,17! is representable as a power
series in 17,+, 17*1+1 > Vn ifn, as may be proved by an argument already

applied for the case n s = 1
;

that all such power series are capable

of analytical derivation from one of them is a proposition presumably true

and presumably capable of a proof analogous to that which has been given
for the case when n s = 1

;
when this is proved the construct may be

described as monogenic, it being remembered that we consider its points

only for the immediate neighbourhood of the origin.

Two such irreducible constructs, of the same or different dimensions, may
have points, even in infinite number, in common with one another: but in

every neighbourhood of such common point there are points not common to

the two constructs.

Let or = 2r + (ai, , ^n),^1 4 ...+(x1 , ...,), =
(),

be such an equation as has been considered, the coefficients (xlt ..., *),, ...,

(#1, ..., xn)m being power series vanishing at the origin, and the left side

being incapable of being written as a product of factors of the same form
;

the points in the neighbourhood of the origin which satisfy ra- = are upon a

certain 2n-fold
;

of these the points which also satisfy din/dy
= are upon

a certain (2n 2)-fold passing through the origin; in fact by elimination

of y between or = and 9ra-/3?/
= we obtain a certain necessary relation

connecting x,, ..., xn . For the neighbourhood of any point (a,, ..., ), near

the origin, which does not satisfy this relation connecting #,, .... xn , every
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root y of or = can be expressed as a power series in a:, a,, ..., xn an ;
this

is obvious as in the case n= 1. Now let

v = y>
L + [x1 , ...,xn]iy

- 1 + ...+[>, arB]M
=

be another irreducible 2n-fold
;
consider the quotient -er/v. We may eliminate

?/ between the equations tr = 0, t> = 0, and so obtain a relation connecting
x

lt ..., xn defining, for the neighbourhood of the origin, a (2n 2)-fold,

passing through the origin, upon which both is and v vanish
;
the hypothesis

that this relation vanishes identically is impossible since we have assumed

that in and v are irreducible. For any values a,, ..., not satisfying this

relation, and not satisfying the relation obtained by eliminating y between

TS = and dvr/dy
= 0, we can determine m power series in xl a,, ..., xn an

making w = but not making v =
;
there are thus points in every neigh-

bourhood of the origin at which the quotient TSJV vanishes ;
there are similarly

points at which this quotient is infinite.

Suppose xl
= a1( ..., xn = an , y=b to be values for which both w = and

v 0, in a near neighbourhood of the origin; let H (.T,, ...,xn)
= Q be the

condition that cr = 0, v = should have a common root, and ai an be

taken within the region of convergence of H(xlt ..., xn) ; putting xl
= al + %,,

..., xn = an + ^n , y b + rj, and expanding CT = 0, v = in powers of

fn n ) '7> it is conceivable that the resulting power series may divide by a

power series in f,, ..., fn , rj vanishing when these variables all vanish
;
in such

case, for arbitrary values of xlt ..., xn in the immediate neighbourhood of

a,, ..., an ,
the equations w = 0, v = will be satisfied by the same value of y ;

the equation H (,,..., xn) = will therefore be satisfied for all arbitrary

values of x^, ...,xn in the immediate neighbourhood of a,, ...,an ;
this however

would involve that in H (#,, ..., #) all the coefficients were zero, and therefore

that w = 0, v = had a common root for all arbitrarily small values of

x
l

xn , contrary to hypothesis.

There exists then about the origin a region within which there is no

point (!, ...
,
an , b) such that the series ts = 0, v = are divisible by the same

power series in ar, a, , . . . ,
xn an , y b vanishing for xl

= al , ..., xn = an,y = b.

See Weierstrass, Ges. Werke, n. (1895), p. 154.

Note. In the case of a simultaneous set of rational equations in several

variables a similar theorem, but with a simpler proof, can be given. This is

postponed to Chapter IX. below, where various propositions for rational

functions are considered. In both cases it is necessary to bear in mind that

we are considering only the solutions in the original variables (here denoted

by ylt ...,yn) which are independent of the parameters (Xm.Xsi, ...) intro-

duced ; the indeterminateness of these is essential to the process as we have

described it.



CHAPTER VII.

ON THE REDUCTION OF THE THEORY OF A MULTIPLY-PERIODIC

FUNCTION TO THE THEORY OF ALGEBRAIC FUNCTIONS.

54. SUPPOSE that a function, <j> (u), of n independent variables, Ui,...,un ,

is known to exist, its value about any finite point (a,, ...,an) being unique
and expressible by a quotient U/V, wherein U and V are power series in

u
t a,, ..., un an converging in a certain neighbourhood, expressed say

by |
w, at < 8, ...,

|

un an
\

< 8, where 8 is not zero. It is understood that

two expressions U/V and U'/V for the function which belong to the

neighbourhoods of two points (o,,...,on) and (a,', . . .
,
an') agree with one

another at all points common to their respective regions of validity; and

it can be shewn that the existence of a definite number 8 for every point

(HI ..... a^) involves that the lower limit of 8 for every finite region is

other than zero. If V do not vanish at (a,, ...,an),
then l/V is expressible,

and so therefore is the function, by a power series in , ,,..., a,,,

converging for a certain neighbourhood of (a^, ..., an) ;
then (a^, ..., an) may be

called an ordinary point of the function. If V vanish at (oi,...,an), but

U do not vanish, then in whatever way we approach the point (ctj, ...,on) the

value of the function increases indefinitely; such a point may be called

a pole of the function it is an ordinary point, and a vanishing point, for the

inverse of the function. If U and V both vanish at (a,, ...,an), let each be

written, as previously explained, as a product wyer, ... <1>, where, y, #,, ...,#_!

being independent linear functions of M, aj, ..., an,each factor er
1 ,
w2 ,

...

is of the form

in which (#,,a:2 , ...)i, etc., denote power series vanishing for #, = 0, x2
= 0, ...,

and is incapable of being resolved into other factors of the same form, while

<I> is a power series in w, a, ..... un an not vanishing at (a,, ..., an) or for a

certain neighbourhood of this point ; then, either, every one of the factors TO-

occurring in V occurs also in U, and may be removed, in which case (a,, ...,an)

is again an ordinary point of the function, or this may not be the case
;
when

this is not the case there are points of arbitrary nearness to (a1( ...,an)

at which V vanishes but U does not vanish, these lying on (2n 2)-folds
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given by the vanishing of one of the factors TO- of V these are poles of

the function
<f> (w) and there are points of arbitrary nearness to (a,, ...,an)at

which both U and V vanish, these lying on (2n 4)-folds given by the

simultaneous vanishing of one of the factors -as of V and one of the factors vr

of U for such points the function assumes the form 0/0, the point (a,, ..., an)

being the only such point in the neighbourhood considered when n = 2 :

it can be shewn that in this case the function
<f> () has no definite value at

(a, ,...,); for let A be an arbitrary quantity; as U and F both vanish

at (a,, ..., a,,) it can be shewn that there are points in every neighbourhood of

(a, ,
. . .

,
an) at which U A V vanishes, while V does not vanish

; by approach-

ing (a,, . . .
,
an) by a suitable succession of points the function < (u) can thus be

made to take the value A at (oj , . . .
,
an) ;

we thus call (a, a,,) in this case a

point of indeterminate value, or sometimes, an unessential singularity of the

second kind, the name unessential singularity of the first kind being applied

to poles. When n = 2 the points of indetermination are discrete, that is

about every one can be put a region containing no other such point ;
when

n = 1 they are absent
;
and this difference constitutes one of the special

difficulties of the theory of functions of more than one independent variable.

55. At the risk of interrupting the general description now being given,

it may be worth while to examine the preceding in more detail. Assuming
that in the expression of the function <f>(u) about the point (a,, ..., an)

any power series in w, a,, ..., un an vanishing at (alt ...,) which divides

both U and V has been divided out, there is a region about (Oj , . . . ,
an), which

we may take to be given by an inequality of the form

! u1 -a1 |'+... + |w,l-a' s <r!l

1

such that if U, Fbe rearranged as power series in M, w,', . . ., un un
'

about any

point (M/ un') of this region, there is (p. 198), no common factor, a power
series in w, M,', ..., un wn', vanishing at M/, . .., wn'; let this region be momen-

tarily called the proper region of (a, ,
. . . , an) ; further, let any region be momen-

tarily called a suitable region when it is wholly contained in the proper region

of some point within or upon the boundary of itself. Putting ur
=

fzr-i + i%w,

where f, , . . .
, fm are real, we ma> speak of (M, , . . . , ) as represented by a point

of real space of 2 dimensions
; taking then any portion of this space,

bounded suppose, for definiteness, by 4 planar (2n l)-folds expressed

by equations %r = br , fr
= cr ,

this may be already a suitable region according
to the definition given above

;
if not, let it be divided by planar (2n 1)-

folds expressed by equations of the form fr
= dr into a certain number, say m,

of cells equal in all respects ; among these cells fix upon any one, if any
exist, which is not suitable in the sense explained, and let it be again
divided into m cells, equal in all respects; and so on indefinitely; we say that

by a finite number of steps the original region can be divided into sub-

regions every one of which is suitable according to the definition. For
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an indefinitely continued sequence of cells, each continued in the preceding

one of the sequence, and a definite fraction thereof in linear dimen-

sions, must have a limiting point contained within or upon the boundary
of the cells of the sequence ;

to this limiting point however belongs

a proper region of assignable radius r, as above, and this proper region

will contain all the cells of the sequence after a certain stage of the sub-

division, and all these contained cells are thus suitable regions according to

the definition. It follows thus that any finite portion of space can be

divided into a finite number of suitable regions. Denote such a set of

suitable regions say by Klt K,,..., and let (wi
(r)

, ..., un (r}

) be a point whose

proper region contains Kr ; suppose Kr ,
Kt to be two suitable regions with

a common (2n l)-fold interface
;

the expressions for the function
<j> (u),

say
- and

-,f,
which are valid over the proper regions of (V', ...,

(r>)&nd
'r '

(MI'", ...,Mn
w

),
will both be valid on this interface, and if (w/ un') be

any point of this interface, and we suppose each of Ur ,
Vr ,

Us , V, rearranged

as power series in u t ,', . . . ,
un un', and in this form denoted by Ur', Vr',

Ug',V,', we shall have for the immediate neighbourhood of /,...,' the

equality

u; u;
vr'~r;

wherein Ur', Vr
'

are not both divisible by any power series in M] w/, . . . , Unun
'

vanishing at M/, ...,', nor U,', V,' similarly divisible. If now V,' vanish at

(,', ...,un'), which may or may not be the case, then any point in the im-

mediate neighbourhood of (M/, . . .
,
un')

at which V,' vanishes but U,' does not

vanish, must be a vanishing point for Vr',
since otherwise Ur'= Vr

'

U,'/V,'

would not be finite, and any point in the immediate neighbourhood of

(M/, ...,') at which V,' vanishes and U,' also vanishes, being a point of

indetermination for the quotient U,'/V,', must be a point of indetermination

also for Ur'/Vr', so that V/ must also vanish (as also Ur'\ We see then how
the points within KT at which $ (M) is infinite (or indeterminate), if any
exist, are continued into K, ;

there is what we may call an infinity (2n 2)-

fold for the function
<f> (w), expressed in any region Kr which contains points

of it by the equation Vr
=

0, and then in a contiguous region Kt containing

points of it by the equation V, = ;
and there is similarly a zero (2n 2)-

fold expressed in any region which contains points of it by the vanishing
of the associated numerator U ; over the zero (2n 2)-fold the function

$ (M) vanishes, over the infinity (2n 2)-fold it has poles, except for points
common to both these (2n

-
2)-folds ; these constitute a (2n - 4)-fold over

which the function is indeterminate.

56. Functions with the character which has been explained for
<f> (u) are

the nearest analogue, among functions of more than one independent
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variable, of the single-valued functions of one variable having for finite values

of the variable no singularities other than poles, and, as those functions, they

may be described as behaving like rational functions for all finite values

of the arguments, or as being meromorphic. Such a function of one variable

which has no essential singularity at infinity is in fact a rational function;

and similarly, for the case of n variables, if such a function is expressible, for

all sufficiently large values of ,,..., , as the quotient of power series

in ur1
, ,n~1

,
and for all values of which ,.+:, ,*< are sufficiently large

while MI 61, .... ur br are sufficiently small, as a quotient of power series in

M, &,, ..., ur br , M~V+i) >
un~

l

,
and this for all positions of ft,, ..., br ,

and

for all values r= 1, 2, ..., (n 1), then the function is actually a rational

function (Hurwitz, Crelle, xcv. (1883), p. 201). In the case of functions of one

variable, a single-valued function of meromorphic character can be expressed

as the quotient of two integral functions
;

the same is true of functions

of any number of variables, and the integral functions can be taken so

that they vanish respectively only for the zero construct, and the infinity

construct of the function, and the quotient assumes the form 0/0 only for the

points common to these where the function is indeterminate. But the proof

of this result is more difficult than in the case of functions of one variable.

(See the Bibliographical Notes, at the end of the Volume.)

57. Leaving these general considerations we introduce now a further

limitation for the function $(u), by assuming it to be periodic, in the sense

that there exist sets of n constants P,, ..., Pn which added simultaneously

and respectively to u^, ...,un , leave the value of the function unaltered,

so that we have the equation, holding for every set of values of w, , ..., for

which < (M) is definite,

<Hi + P, wn + Pn) = #(, wn);

if there be more than 2/i such sets, or columns, say (Pi*, ..., P,,*) for

k = 1, ..., (2n), (2n + 1), ..., it is manifest that among every 2n + 1 such

columns there exists a linear relation expressed by n equations

c, PA
'" + c2 P,<

2< + . . . + c2n+1 P4
+ =0, (h = 1, ...,),

in which c,, ..., cm+l are real quantities (independent of h); there must then

be a positive integer r lying between 1 and (2n + 1), such that every existing

column of periods can be expressed, in terms of r appropriately chosen

columns, in the form

QA = XiPft
(1) + - + XrPA (r)

(h = 1, ..., n),

wherein X,, ...,.\r are real constants, independent of h. We assume now that

<f> (u) is not capable of being regarded as a function of less than n linear

functions of 1} ..., which, clearly enough, would be a special case;

it can then be proved that the constants X1( ..., \., are necessarily rational

numerical fractions, and that r columns of periods can be chosen, in place of
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P (1)
, ...,P (r}

, in terms of which every other column of periods Q can be

linearly expressed as above but with rational integers for the coefficients

X], ..., \r ;
further we assume that r has its greatest possible value, namely

2n. Thus we assume that there exist 2n columns each of n quantities,

&>,"", ...', con
w

,
for s = 1, 2, ..., (2n), such that, for every set of values of

M!, ..., w for which
</> (u) is definite, we have

while every column of constants Q,, ..., Qn which, for all such values of

M,, ..., un , give the equation

0(Wi + Qi ..... n+ Qn) = <Ki, , MB),

is expressible in terms of the 2n columns <B H)
, .... <u (lm)

linearly with integral

coefficients in the form

Qh = WfcWjf, + ... + o.*'
2"^,, (A = 1, ..., ),

wherein 3f,, .... Mm are integers independent of h. The assumption then

that
(f> (u) is not a function of less than n linear functions of ,, ...,, can be

shewn* to involve that there exists no column of wholly infinitesimal periods;

* For the results assumed the reader may consult Weierstrass, Ges. Werke, n. (1895), p. 55

(reproduced in abstract in the writer's Abel's Theorem, p. 572) ; Kiemann, Werke (1876), p. 276;

Kronecker, Werke, m. i. (1899), p. 31. The argument of Weierstrass is for analytic functions ;

the following argument, suggested by Krouecker's paper, affords an easy aud suggestive view of

the connexion between the existence of infinitesimal periods and the reduction to less than n

linear functions of the variables. Put = Ian + ''& and regard (u) as a function of the 2n

real variables ,, ... , 1^,; in the space of these take a finite region throughout which
<f> (u) is

continuous
;
then if e be of foreagreed smallness, a number r other than zero can be assigned

such that if (|) be any point within this region, we have
| <t> ({')

-
({) [

< e for every neighbouring

point ({') for which S (|'t
-
ft)

2 < r2 . Suppose now if possible that < (u) has infinitesimal periods ;

then a set of real constants y1 , ... , y2n ,
each in absolute value less than r/(2n)', can be found such

that 0(^ + 7,, .... fa.+ 72) = *(li. . la.): taking points f, , ... , f^, such that

= x
Ti 72 Ta

where (,<(, ... , l^i'
01

)
'8 an arbitrary point within the region considered, and allowing X to increase

from zero, so long as X is less than unity we have 2
( t

-
ft

<0)
)
2< r2 and therefore

] $ ( )
-

(f> (>) |

< e,

while, when X is unity, <t>(t)
= <t>(f)\ putting ft(0| + 7t= lt

(l)
,
as X varies from unity to 2, we

have 2({t -ft
l
1

')

s <*3
. """i therefore \j (l)-^(l') |<, that is |0 (|)-*({l') |<, while when

X=2 we again have 0(!) = #(). It appears then that for all points fc=ft(0' + Vyt, we have

I <t> (f)
-

<t> (1) I

<
; now is an arbitrary quantity ; this can only mean then that for all these

points, lying within the region considered, we have 0(!) = 0("). But, if >.,_, + iy.^ iim these

points satisfy uk= 11^1' + \Qk , (k=l, ..., n); not every one of Qit ... , On can be zero, sayfij is not

zero : put then

n, o, on
"a=

n,
1
~"2 '

r
3=^"i

-"' r
=(^

ui-".

so that when M4 =u/'t + XOA we have ra= FpU]
|0)-u.

i
( i=

i)otfi, etc., and <f>(u) has in general the form
"i

< j?"i~*i> ""ff

what we have proved is that, so long as r2 , . . . ,
rn are unchanged, ^ (u, , 2 ..... n)

'8 unchanged,



204 The period cell. [CHAP, vn

namely, it is not possible to assign a set of n real quantities e,, ... , e,, each of

arbitrary smallness and then to find a column of periods Q,, ..., Qn for which

all the inequalities |Qi|<ej, ..., QB |<eB hold; thus the lower limit, for

all possible integer values of M
t , ..., Mm ,

of the sum

2
|

A"'MI + ... + V"^,!,
=1

is greater than zero. From this it follows, if A
* = aA)t + ian+A,t, for

h= 1, ..., n and k = 1, ..., (2n), where a
A| t and otn+^t are real, that the

determinant of 2w rows and columns
| a,,, ,

for r, s = 1, ..., (2n), is other than

zero; for the vanishing of this determinant would imply the existence of

2n equations
2

xr ar
, 8
= 0, (

= !,. ...2),
r=l

in which X,, ...
, X^ are real, and hence, if, with integer values ofMlt ,.., Mmt

we put

would imply the existence of the single equation

2n

2XrJ r = 0;
r=\

in this suppose Xj,, is a coefficient which is not zero; we know* that it

is possible to choose the integers Mlt ...,Mm so that .4, ..... A^-i shall

be respectively less in absolute value than any arbitrarily small quantities

6,, ....ean-! previously assigned; this single equation would then make it

possible at the same time to take Am arbitrarily small
; we have however

proved that the function has not infinitesimal periods.

With such a system of periods a>A
(t)

, we can then, if i/,,..., ?/ be any

complex values, find real quantities Elt ..., Em such that

A = E, o>A
<" + ...+E* <>, (h

=
1, ...,),

or, putting Ek =Mk + et , where Mk is an integer and 5 et < 1,

uh - M, A
w - ... - # = e1&)A

<" + ... + em o)A
<"

(A = 1, ..., n);

the points given by the right side with the limitation < e* < 1 are said to

be interior to a period cell whose initial point is the origin ;
we speak of it as

even when
, changes. For the region under consideration, it is thus possible to write (H) BO as

to be a function only of the (n- 1) linear functions v2 , ... , vn of u,, u2 , ... , un . It appears then

that no single-valued function of n variables which is continuous over a limited continuum, and

not a function of fewer than n variables, can have infinitesimal periods.
* For this proposition see Jacobi, Oct. Werke, t. n. p. 27, or CrelU, sin. (1835), p. 55;

Hermite, Crelle, XL. (1850), p. 310, Crellf, LXXXVIII. (1880), p. 10; Clebsch u. Gordan, Abehche

Functionen (1866), p. 130, and particularly Kronecker, Werke, in. i. (1899), pp. 49-109. Also

Kiemann, Werke (1876), p. 276; Appell, Liouville, vn. (1891), p. 207.
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constructed in the real space of 2n dimensions wherein the co-ordinates are

?!! f> given by * = &A-I + '* ;
it is bounded by 2n pairs of opposite

(2n l)-folds given by ek = 0,0*=!. The whole of the 2-fold space may
be supposed divided into such cells, and any point of this space is congruent
to one point of the primary cell, the congruence being expressed by the

equation above.

It should be remarked at once, however, that not any set of 2 2

quantities

to/,*, satisfying the conditions so far imposed, can constitute the 2n period
columns of a function of n variables

;
one main result of the enquiry upon

which we are now entering is that it is further necessary that, between the

2 periods associated with any one of the arguments Ui,...,un and those

associated with any other of these arguments, there should exist an identical

relation linear in the periods associated with each of these arguments ;
and

that also, between the real parts of the periods associated with any one of the

arguments ult ...,un and the imaginary parts of these same periods, there

should exist a relation expressed by saying that a certain expression linear in

these real parts and also linear in these imaginary parts must be positive.

58. Take now n sets of constants (o,
(r)

, ..., an (r)

), for r=l, ...,n, such

that Mi = o,
(r)

, ..., = an 'r) is a regular point for the function (u), namely, a

point about which 0(w) can be expressed by an ordinary power series

in HI ai
(r}

, ...,un an (r|
, and define n functions r (tt) by means of the

equations

- a,

so that

while the Jacobian

0r(0) = 0,

80, 30,

80n 80M

8V "'

reduces for MI = 0, . . ., un = to

8<ft(q"') 80 (o<")

0(i\ VCtji

80 (o'') 80 (Q"")

8a,
(B) da*

this determinant is not zero for all positions of the n points (a
(1)

), ..., (a
(>t)

)

since otherwise there would exist an equation

,^^ =



206 Introduction of (n -1) condition* [CHAP, vn

holding for all positions of (
(1)

),
wherein A lt ..., A n are independent of (a

1

"),

and hence
<f> () would be expressible, over a 2n-fold, by less than n linear

functions of ,,...,.

We can thus suppose (a
w

), ..., (a
(n|

) chosen so that the origin is an

ordinary point for each of the functions (f>i(u), ...,<f>n (u), and a zero point for

each, but not a zero point for their Jacobian
;
there is thus about the origin a

finite region not containing any pole or singular point of fa (u), . . . ,
< (w ),

or of

their Jacobian, or any point whereat this Jacobian vanishes, and the functions

are expressible, for the neighbourhood of the origin, by power series

#A = a*,i i + ... Jrahin un + ... (h=l,...,r),

such that the determinant \dh, , for h, s = 1, 2, . . ., n, is not zero.

Instead now of considering all possible values of u^, ..., un , we apply ( 1)

restrictive conditions, and so obtain a construct of two (real) dimensions

as follows. Suppose fa (u), ...,fa, (u) to be expressed in terms of the n

independent functions

Vh = ah
,

l ul + ... + ahin un ;

let ch^x + ch^x
a + .... (h=l,...,n),

be n convergent power series in a single complex variable x, all vanishing for

x =
; .consider the values of vlt ...,vn obtained by equating the functions

fai---,fai to these power series, each to each. These conditions are

expressed by
Vr=*Cr,iX + Crt3X*+ ... + <X>r , (r=l, ...,),

where <&r represents the terms of second and higher orders in fa, with their

sign changed, and these equations enable us, as we have shewn (p. 189), to

express each of v,, ...,vn as a convergent power series in x, for sufficiently

small values of x, these being the only values of Vi,...,vn satisfying these

equations when x is sufficiently small. Let these series be represented by

vr = k
ril

x + k
ri

.
1 a?+ ...; (r= 1,2, ...,n);

we desire to shew first, that even if the original power series to which the

functions fa, ..., fat are equated reduce to polynomials of order n, so that for

s>n, and every value of r, (= 1, ..., n) we have c,.
|
,
= 0, we may still, by proper

choice of the remaining n- coefficients cr,, (r, s = 1, ...,n), suppose that neither

of the determinants of order n denoted by c
r> , |, \krt ,\ vanishes. Denoting

the terms of order m in vlt ..., vn in the series <l>r by {...,vs , ...}r<m , we have in

fact the identities,
00

a? + ... =CriX + cr .,a?+ ... 4 2 ..., (&,, x + Bi2
or + ...), ...],.,,,

for r = 1, ..., n, and hence, for r = 1, ...,n and t = 2, 3, ...,,

"V, 1
=

Cr, 1 >

.i n ...,
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where it will be noticed that on the right the second suffixes of the coefficients

k\ ff that enter are less than t
;
the elements of the first column of the

determinant cr, |

are thus equal to the corresponding elements of the

determinant
|

fcr,|> and the elements of any other column of the determinant

CT, j

are each equal to the corresponding element of the determinant k
r< ,

augmented by a polynomial in the quantities k
r>i occurring in preceding

columns of
|Jfcr,|

the lowest terms in this polynomial being of the second

order; suppose then that arbitrary values for which the determinant
|

kriS
is

not zero are given to the ?i
2

quantities kr>i for r, s= 1,2, ...,n, and the n2

quantities cTiS are determined accordingly; it seems certain that the values

of kr<t can be taken so that also the determinant
|

c
r> , \

is not zero
;
this being

so, let all the quantities c
r> ,

for r = I, ..., n but s > n, be taken zero
;
and then

the quantities k
r<t

for s>n be determined by the equation written above.

Thus the equations

#,. (M) = c
rtl
x + ... + cr

,
n ", (r = 1, . .., n),

are such that they do not imply any linear equation

wherein A t , ...,A n are independent of x, and they lead to converging series

00

Vf ^ -w Kr g QU
,

= 1

not satisfying any equation

B1v1 +... + Bnvn =0,

in which Blt ...,Bn are independent of a;, and hence to converging series

00

ur
= 2 A

r> ,
of

=i

wherein also M,, ...,UH are connected by no linear homogeneous equation with

coefficients independent of x.

For every sufficiently small value of x these equations define a set of

values for u lt ...,un , which, putting, as before, wr = _! + i^-, we may
represent as a real point in space of 2n dimensions

;
the series are presumably

capable of analytic continuation beyond the neighbourhood of the origin ;
the

whole aggregate of points so obtainable forms a (2ra 2)-fold, and it is this

which we now proceed to study in more detail.

Since the determinant cr,,| does not vanish, the equations

<}>r=Cr,iX + C
ri,X

2 + ... + Cr, n X
n

may be replaced by equations

/i
= ,/2

= *8
,. ..,/

=
",

where //,, ...,/ are certain independent linear functions of
</>1; ..., </> ;

putting then
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they may be replaced by

and it is at once seen that the Jacobians

3 (M^MJ, ...,)' d(w,,u,, ...,)

are equal; as the functions /...,/ are independent linear functions of

(fit, ..., <f>n with constant coefficients, the latter Jacobian is a constant multiple
of the Jacobian of

<f>lt ..., <f>n ,
and does not vanish at or in the immediate

neighbourhood of the origin ttj
= 0, . . .,

=
;
nor therefore does the former

;

and thus the determinant

Cn

a 2

9w,
'

9 2

' ''

dun

does not vanish for MJ= 0, ...,
= for all values of the constants c,, ..., cn .

59. Consider now the aggregate, 0, of points (,, ..., ) determined

as follows
;

first exclude all points at which any one of the functions

</>! (M), ..., (f>n(u), or, what is the same thing, any one of the functions

/ Fa , ..., Fn ,
has a pole or a point of indetermination

;
from those remaining

exclude further all points where the Jacobian 3($,, , $n)/9(i, -, n)

vanishes
;
of non-excluded points take then only those for which the (n 1)

equations F3
= 0, ...,Fn =Q are satisfied. To this aggregate adjoin now all

its limiting points, namely all points infinitely near to which are found points

of
;
denote the resulting closed aggregate by G. That there are points

belonging to the aggregate has been shewn in what precedes ;
the origin is

an ordinary point for the functions
<f>lt ..., </>, and their Jacobian has at the

origin a value not zero
;
there is thus about the origin a finite region every

point of which is an ordinary point for the functions
^>1; ...,<f>n and a non-

vanishing point for their Jacobian
; by supposing a; sufficiently small, we

can suppose that the values of MI, ..., which satisfy the equations

tj>r
= c

ril x+ ... +c,iH
xn are within this region and these values satisfy the

equations Fa
= Q,...,Fn = Q.

Consider a point (a,, ..., on) of the aggregate ;
in its neighbourhood the

functions Flt ...,Fn are expressible by power series in w, a,, . . ., M On, and,

since the Jacobian of/,, Ft ,..., Fn does not vanish at (a,, . . ., an), we can choose

constants c,, ...,cn so that the Jacobian of F^, ...,Fn and the linear function

c,(, a,) + ... + <>( aB) does not vanish at (!,...,). Taking then a
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parameter t, and restricting ourselves to sufficiently small values of this, we

can (p. 189), from the n equations

obtain converging power series in t for the n quantities MJ Oj, ...,un an ,

expressing all the points of the aggregate which lie in a suitably limited

neighbourhood of (oj, ..., an ), and only points of this aggregate.

Consider next a point (a,, ...,) which is a limiting point of the aggregate

0. For points in its immediate neighbourhood each of the functions

Ft ,...,Fn is expressible in a form Fr = Nr/Dr where Nr , Dr are converging

power series in ul alt ..., u n a
tt ,

not both divisible by a power series in

it, !..... un <* vanishing at (a,, ...,); of these we may without loss of

generality suppose that Dr vanishes at a
lt ...,<*, or else is equal to unity.

Suppose first that Dr vanishes at (alt ...,); there are then also points

infinitely near to (otj, . .., a.n ) at which Dr vanishes, these constituting a certain

(2-n 2)-fold continuum. These points do not belong to the aggregate :

for, taking such a point, (a/..... <*'), let DT ,
Nr be written as power series in

Wj
- a/..... un a.n', becoming Dr, Nr

'

; then, when (a/, . . ., ') is sufficiently

near to (alt ...,an), the series Dr', Nr

'

are not both divisible by a power series

in Ui a/, ...,un a', vanishing at (a/, ...,'), (p. 198), and therefore the

fraction Nr'/Dr
'

is either infinite at (a,', ...,an') or assumes a form 0/0; in

either case (a,', ..., an') does not belong to the aggregate 0. Thus the points

of this aggregate, which, by hypothesis, exist, in infinite number, in the

immediate neighbourhood of the limiting point (HI, ...,an ), and satisfy the

equation Fr
= (as well as the other equations F2

= 0, ...,Fn = 0), do not

satisfy Dr
= 0, and must satisfy Nr = ;

the power series Nr must therefore

vanish at (oj, ...,an). This is proved when Dr vanishes at (a,, ...,an); when

Dr
= 1, the equation Fr

= involves Nr
=

0, and this, holding for points in the

immediate neighbourhood of (a^ ..., a,,), must also be true at (a^ ...,an ).
The

points of the aggregate in the immediate neighbourhood of (at , ..., a,,) are

thus to be found among the solutions of the equations

Nt-0,...,Nm-0,

in each of which the left side is a power series in z/,
a

lt ..., rt o vanishing
at (a,, ...,0n) ; though conversely not all common solutions of these equations

can be assumed to be points of the aggregate 0.

All solutions of such a set of equations in which MJ a,, ..., un an are

sufficiently small are, however, as has been shewn (p. 196), points of a finite

number of irreducible constructs each represented by a set of equations
of the form

w (wn)
= wn" + (w,, . . .

,
wm\ wn*-

1 + ...+ (w,, ..., wm\ = 0,

B. 14



210 Egression by a parameter [CHAP, vii

wherein wt , .... wn are independent homogeneous linear functions of

u,
-

a,, . . ., un On, the coefficients (w,, ..., wm),, . .
., (w,, . . ., wm)M are convergent

power series vanishing when w,, w,, ..., wm all vanish, the symbol vr'(wn)

represents di-T(wn)/dwn ,
the numerators arm+1 (wn\ ..., _,(;) are poly-

nomials in wn of dimension /t 1 whose coefficients are converging power
series in w,, ...,wm ,

and only those values of w,, ...,wm are to be considered

for which w (WB) and OT'(M;,,) do not simultaneously vanish
; conversely all

solutions of any such set of equations in which w,, ..., wn are sufficiently small

are solutions of the original equations N3
= 0, ..., Nn = 0.

Such a set of equations, n m in number, represents a construct of 2m
dimensions, there being m independent variables w,, ...,wm . If (

be a point of this construct, in the immediate neighbourhood of

,
wn

)

)

and we substitute w,
10' +X,, ..., wn (0) +Xa in place of wlt ...

,
wn ,

we obtain

(n m) equations Hr (X,, ..., X,,)
= 0, wherein Hr (X,, ..., Xn) are power series

in X], ..., Xn vanishing when these are zero. If m > 1, so that n in + 1 < n,

we can therefore always find small values of X,, ..., X, not all zero, to satisfy

these equations and at the same time an equation ^X, + ... -f ynXB = 0,

wherein 7,, ..., 7n are arbitrary, and this without satisfying oj-'(wn
|0) +X) = 0,

since 5r'(M'"
1) )4:0 !

tnus if (Mi
10
'. > "n |0)

) and (MI
(O) + /,, ..., M,,

(O +ln) be the

values of MJ, ...,un corresponding to (w^, .... wn
(0))and (w,

(0) +Xj, ..., wn (0) +X),
since the points of the construct satisfy N3

= 0, . . . ,
Nn = 0, we can simul-

taneously satisfy the n equations

!n = 0, c^+...+c,A = 0,

where ,

h
denotes a series reducing to

Ldu,]
when lj

= 0, . .., ln = 0, and

GI, ..., cn are arbitrary; from this it follows that, for all values of c,, ..., cn ,

the determinant

'l ,

r-.v, dN,

8V fa*

vanishes at (u^, ..., ""); thus, when m>l, the point (]"", ..

not belong to the construct
; for, for points of we have

DA =|= 0, and thus

du, Dh du, Z>A
2

du, Dh du.

M,,"") does

^ =
0, but
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so that the determinant N is equal to

dui' duS '"'
<hin

which by hypothesis is not zero for points of 0. The points of the construct

0, which by definition do actually exist in any arbitrarily near neighbourhood
of (a,, ..., ),

are therefore among those solutions of the equations

N, = 0,...,Nn =

which satisfy one or more sets of equations of the form

v (wn) = wrf + (w&wj- 1 + - + (;,)
= 0, iff,

=
' ' " w -> = T '

in which m = 1. Consider one such set of equations : we have proved

(p. 190) that, when iff,. wn are sufficiently small, all solutions of the equation

ar(wn) = are obtainable by a finite number of pairs of equations of the form

w, = t*
L

, wn = %,(), where t is an arbitrary parameter, of sufficient smallness,

and >

(t) a power series in t, vanishing for t = 0, its differential coefficient

not vanishing for t =
;

from the symmetrical choice of the variables

w;,, ..., wn ,
the substitution of these values for ?] and wn in the expressions

for w2 , . . ., Wn-t will lead to associated power series w2
=

JJ2 (t), ..., wn_! = j>n_, (t)

also vanishing for t = 0. Thus all the points of the construct 0, in a

sufficiently near neighbourhood of the point (a,, ..., an ), are among the values

represented by a finite number of sets of equations of the form

Mi = a, + Q1 (t), ..., Mn = on + Qn (<),

wherein Q, (t), ..., Qn (t) are power series, vanishing for t = 0, of such character

as give, for sufficiently small values of the differences w, a,, ..., ,
a

unique value for t. Consider one of these sets of series which gives points of

the construct arbitrarily near to (a,, ..., a,,) ;
then when these expressions

for u,, ..., un are substituted in the power series J92 , ..., Dn ,
no one of the

resulting power series in t can vanish identically, for we have seen that

points, in the immediate neighbourhood of (,, ..., OB), for which one of

D2 , ..., Dn vanishes, do not belong to 0; the power series in t obtained from

Nt , ..., Nn by the same substitution for M,, ..., itn ,
vanish for t = 0, but,

elsewhere, in a sufficiently near neighbourhood of t = 0, they do not vanish,

unleHS they vanish identically which must then be the case, since points of

lie arbitrarily near to (alt ..., an ). Consider now the Jacobian

9 ($!, .... n)/3(w1 , ..., un);

in the neighbourhood of (OL ..., a^) it is expressible as the quotient of

142
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two power series in MI a1( . . ., un an ; substituting Q, (t), ...,Qn (t) for these

differences the resulting denominator power series in t cannot vanish identi-

cally or the set of series uk = ah + Qh (0 would not furnish any points of the

construct in the immediate neighbourhood of (a,, ..., a,,); the resulting

numerator power series in t may vanish for t = but there exists a region

about t = wherein no other zeros are found. It appears thus that if the

series u^ = at + Qi(t), ..., un = On + Qn (t) furnish points of the construct in

every arbitrarily near neighbourhood of (a,, ..., a,,), they represent points of

this construct for all values of t of sufficient smallness. Taking this result,

and the simpler result previously found for the neighbourhood of an ordinary

point (a,, ..., a,,) of the construct 0, we have the theorem :

Let (clt ..., cn) be any point of the construct C defined as above from the

equations F2
= 0, ..., Fn = 0, that is either an ordinary point of the construct 0,

or a limiting point of this : there exists then a finite number of sets of series

i
= Ci + Q,(0, >

un = cn + Qn (t),

each of which, for all values of t in absolute value less than an assignable

number, represents points of the construct C in the neighbourhood of(cjt ..., cn),

andfor t = represents the point (clt ...,cn); in particular lulien (c,, ..., cn) is

an ordinary point of C, that is a point of the construct 0, there is only one such

set of series ; the series being such that all points of the construct which lie in

the neighbourhood of clt ..., cn, given, say, by \v^ ct <B, ...,
\

un cn
\

< 8,

are obtained, if only 8 be supposed sufficiently small ; while, under the same

limitation, no point is obtained for two different values of t.

The construct C thus appears to be, in its smallest parts, similar to a

construct defined by algebraic equations; this similarity is carried further by
the three following properties :

(a) The limiting points of are isolated about any such point can be

put a finite neighbourhood containing no other limiting point. For let

(Cj, ..., cn) be any point of C, and let r be a real quantity as great as possible

but such that, for t <r,\t'\<r, ..., all points of which lie in a sufficiently

near neighbourhood of (c,, ..., t!n) are given by one of the sets of series

while every point represented by one of these sets of series is a point of 0.

Take (&,, ..., bn) any point in this near neighbourhood of (c,, ..., cn), and

form the sum of the squares of the moduli of the differences

there being as many such sums as there are sets of series involved. Putting
t = + irj, and considering one of these sums for all values of f, r/ such that

f + *? < r\ we have a continuous function of the real variables
, 77, and

there is a particular value of t for which the function is equal to the lower

limit of its values for the limited range ;
if this lower limit is zero the point
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(&,, ..., bn) belongs to the construct 0; if it is greater than zero there is a

region about (blt ..., bn) which contains no point of 0, and in that case

(tj, . . .
,
bn) is not a limiting point of 0. In other words, a region can be put

about (d, ..., d) such that every point of this other than (d, ..., cn) is either

a point of 0, or is not a limiting point of
;
and this proves the result

stated.

It follows from this that there cannot be more than a finite number of

limiting points of in any finite range of values of ult ..., un ;
for otherwise

there would be a point (the limiting point or point of condensation of these

limiting points) having in its immediate neighbourhood an infinite number of

limiting points of 0, and itself also a limiting point of 0.

(b) For all not-zero values of t, up to a certain range, a set of series

% =
<4 + Q] (t), ..., un = cn + Qn (t) represents points of

;
the series may

converge for larger values of t
; they then represent points of C for these

larger values, which are not however necessarily points of 0. For suppose

the series converge for t = tc ; consider the points represented by

Wi = (a + #, (cr< ),
. . .

,
Un - Cn + Qn (<rf )

in which cr is real and less than unity : for sufficiently small values of a-

greater than zero, say for < cr < ^ these series represent points of
',

for

cr = 0-] they will then represent a limiting point of and not a point of 0,

since otherwise they would also represent points of for values greater than

<T], as follows at once by reconsidering the preceding conditions
;

if <r1 < 1 put

a = <?! + p and consider the series

supposed rewritten as power series in p : then for all sufficiently small

negative values of p these rewritten series represent points of
; they repre-

sent therefore points of for all positive and negative values of p less than a

certain value; the original series thus represent points of for < a < <r1 ,

<TJ < cr< o-j + cr2 , say, while for <T=CTI ,
cr = a^ + cr2 they represent limiting

points of
;

if cr, + cr2 < 1 we can proceed similarly, and so on. Now there

cannot be more than a finite number of limiting points of in any finite

range of values for M,, ...,, and therefore the process must after a finite

number of steps lead to a = a- l + crs + ... = 1
;
the series

1*1
=

0! + Qt (at,), ..., un = cn +Qn (<rt )

thus represent points of C for all values of a up to and including a- = 1
;
and

thus the series w, = c, + <& (t), ..., un = cn + Qn (t) represent points of G for all

values of t for which they converge.

(c) Hence, having obtained one set of series ur cr + Qr (t) representing

points of C, we can unreservedly use the ordinary method of analytical

continuation to obtain other points. In order somewhat to emphasize this
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fact, which is of importance for our purpose, we examine it in further detail.

Consider a region containing points of 0, but no limiting points of 0. About

an included point (</,"", ..., t(n
(0)

) of we have expressions for the points of

of the form ur
= ur (ot + Pr (t) in terms of a parameter

t = X, (Ul
-

, )+...+ Xn (nn
- wn <>

),

where Xj ,
. . .

, X,, are to be chosen so that the determinant

L X] , . . .
,

Xn

dun

does not vanish at (tV1

. !
M (0)

) ;
about a neighbouring point (w,

01
, ..., n

(11
)

we have similar expressions ;
if X,..... X,, be chosen so that the determinant

L is other than zero also at (u^, ...,un
w

), the parameter about (,'", ...,"')

may be taken to be s = Xj (MJ M,
(I)

) + ... + \n(un ">)
= t ,, where

tl ,
= X, (!<"

- u^) + ... + \n (un
(1> - un (a}

), is the value of t at (,<" ..... <") ;

this point being supposed within the region of convergence of the series

ur = ur
(0} + Pr (t), it follows that the series about it may be obtained by

rewriting ur = ur
w + Pr (^ + s) in the form ur

= ur
w + Q, (s). If

/*, , . . .
, fj,n ,

be any quantities, such that the determinant formed from L by replacing

X,, ..., X by /*!, ..., fj,n does not vanish at (ut
w

, ..., t/n <"), the quantity
tr = Hi (% M!

(I)

) + . . . + /* (un unw ) may be taken as parameter of a set of

series about (u^, ..., unw ); we have then a = H (s) and s = K (<r), where

H (s), K(ff) are converging power series each wanting the constant term but

having the term with the first power of the variable, and t= ^ + K(a) is the

general form of the substitution for the parameter, by which we pass from

the series in t about (iV
01

, -. n (0)

)>
to the series in a about (V", -, "') ',

in virtue of the form ofK (cr) this substitution is equivalent to an expression

0-= H (t t,),
wherein H (t ,)

is a power series vanishing but having a non-

vanishing differential coefficieni for t = ti. So long as we confine ourselves

to a region containing no limiting points of the construct we can con-

tinually pass from point to point in this way ; suppose, however, now that

(it,
1

", ..., Mn 01
) is an ordinary point of the construct which is not within the

region of convergence of the series about (MI
(O)

, ..., t n
(0)

) represented by
ur = wr

<0> + Pr (t), but that, nevertheless, the series about (MI"', >
w (11

), given

by the general theorem, which we may write in the form ur = wr (1) +Rr (a-),

converge in a region partly overlapping the region of convergence of the

series ur = /" + Pr (t), so that by a substitution of the form

t - t' = kt (a
-

a') + kt (<r- e'f+k3 (a
-

a')
3 + ...,

in which &, is not zero, the two sets of series give the same values of
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!, ..., un for all values of t sufficiently near to t'
;
the series in cr are then

also an analytical continuation of the series in t. This derived view of the

process of continuation may be employed when we consider an extended

portion of the construct G containing in addition to ordinary points of also

a limiting point (a,, ..., ), or several such points : we cannot then assume

that the parameter of any one of the existing sets of series giving points of

in the immediate neighbourhood of the limiting point (,, ..., an),
is capable

of expression in a form \j (z^ a,) + . . . +\n (un a) ;
and if we take a

sequence of ordinary points of 0, say (ft,'
01

,
. ., Mn (0)

). (i (11
, ..., un (l}

), ...,

converging to (a,, ..., <*), it may happen that the radii of convergence of the

sequence of sets of series, about these points in turn, tend to zero : consider

the matter however in a converse order : we have proved that the limiting

points of the construct are isolated points: let u r
= ar + Pr (t) be a set of

series representing points of in the immediate neighbourhood of the

limiting point (! an) ;
if X,, ..., X,, be constants, the quantity

v = XjW, + . . . 4- XnwB

is then expressible in the form a + P(t), and dv/dt,
= P'(t), is zero, in the

immediate neighbourhood of (on ..., an), other than at this point itself, only
for particular values oft; if Xj \n be so chosen that for the value t = ta

this differential coefficient is not zero, and we put t = t +p, and rearrange
the series v = a. + P(t + p) in the form v = vw + Q(p), the series Q(p) will

contain the first power of p so that, if we put

T = y - VW = x, (, - <>) + . . . + X,, ( H
-

<'),

we have p equal to a power series in T, beginning with the first power, and

we have n equations ur
= ur

(a} + Qr (p), equivalent to equations of the form

ur = w/01 + Rr (T). In this way then the set of series about the ordinary

point (MI"", ..., unm ) of the construct is an analytical continuation of one

of the sets of series about the limiting point (o1( ..., <*), and conversely.

The points obtainable, starting from a particular set of series, by the

process of analytical continuation above explained, are said, after Weierstrass,

to constitute a monogenic construct
;
we see that the construct G breaks up

into a certain number of monogenic portions, each having the property that

it is possible to pass from the neighbourhood of any point of it to the neigh-
bourhood of any other point by a succession of analytical continuations in

which the parameter is changed by a formula t' = & + k,t + k^ + ..., in

which A:, does not vanish, while it is impossible to pass from one monogenic

portion to any other by such continuation. As to the number of such

monogenic portions constituting the whole construct G no statement can be

made at the present stage, though as we shall shew immediately, the number

of such having points in any assigned finite portion of space is necessarily

finite
;
but in regard to any one portion it can be proved that, if we consider

a finite region of space, and the part of the monogeuic portion under
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consideration which is included in this finite region, a number r can be

assigned such that if (a,, ..., an) be any point of this portion other than a

limiting point, the series ur = ar + Pr (t), giving points about (a,, ..., an)>

converges certainly for
|

t < r. As regards the former statement, that there

cannot be an infinite number of monogenic portions of the construct G having

points in any assigned finite portion of space, we reason as follows : associate

with every such portion a point of itself; if the number of monogenic

portions within the region be infinite, these points can be chosen so as to be

infinite in number; they will therefore have a point of condensation or

limiting point, within or upon the boundary of the region, in the infinitely

near neighbourhood of which will be found points lying upon an infinite

number of monogenic portions of C
;
this however is contrary to the result

arrived at above that all the points of C, in the immediate neighbourhood of

any point, lie upon a finite number of constructs expressed by equations
of the form

The second statement may be founded upon the fact that the radius of

convergence of the series ur
= ur

'

+ Qr (t), which express the points of the

construct about any ordinary point (w/, ...
, '), is a continuous function of

the position of (,', ..., w,,') upon 0; and this follows from the possibility of

continuation sketched above.

60. In what follows we shall be primarily concerned with the con-

sideration of a particular one, arbitrarily chosen, of the monogenic portions of

the construct C; to save constant repetition of words we shall call this the

Construct T, Recalling the assumed periodic character of the function
<j>,

and

the consequent periodicity of the functions F%, ..., Fn , imagine the whole of

finite space divided, as explained before (p. 204), into congruent period cells.

Save for exceptional constructs, the construct C consists of the whole locus

represented by the equations Fs
= 0, . . .

, Fn = 0, and must therefore be

periodic ;
it does not follow however that any one of the monogenic portions

of C is periodic with the same periods. Fix attention upon one of the period

cells, calling it the primary celf
;

to the part of the monogenic construct F
which lies in any cell other than the primary cell, there will be a congruent

part of C lying in the primary cell ; this may or may not itself be part of F
;

since however, as we have shewn, only a finite number of different monogenic

portions of C can have points in the primary cell, it follows that the parts of

r lying in the various period cells must be congruent to only a finite number
of parts; thus F consists of the repetition, by addition of periods, of only a

finite number of parts ;
it is therefore also periodic, but its periods are,

possibly, certain sums of integral multiples of the fundamental periods.

Consider now the values which the function/, (p. 207) takes upon F; it is

to be shewn that/, takes every assignable complex value; and, points which
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are congruent to one another in regard to the original periods being counted

as equivalent, that it takes each value the same finite number of times. For

convenience we shall for a time denote /, simply by/!

The first point is to prove that f actually assumes every value. In the

neighbourhood of an ordinary point (OD ..., an) of F, the function f is

expressible as a power series in MJ Oj, ..., un an ]
it is hence expressible

by a power series in t and this does not vanish identically, since otherwise

the Jacobian 9(/i,/2 , , /n)/d (i, , n) would vanish for all points of F in

a certain neighbourhood of (a^ , ..., an), contrary to the fact that this Jacobian

vanishes only at the limiting points. In the neighbourhood of a singular

point (d, ..., a,,), the function /is expressible as a quotient of power series in

11^ at, ,
. . .

, ,
and hence as a quotient of power series in t

;
we have seen

(p. 209) that at near points of the construct F the denominator power series in

does not vanish, and hence the denominator power series in t does not vanish

identically ;
thus also the numerator power series in t does not vanish identi-

cally, since otherwise the point would be a limiting point of points at which

the Jacobian 3 (/1(/2 , ...,/B)/9(Mi, >
un) was zero; thus about a limiting point

of F the function/is expressible in the form t~ K
(A<, + AJ, + ...), wherein \ is

an integer which may be zero or negative. The poles of the function f upon
F are thus among the limiting points of F. If a small region of F be put
about such a pole, the values off at all points of this region are large, and

the region can be chosen so small that at all interior points the value of/ is

in absolute value greater than an assigned real positive quantity M ;
there

cannot be an infinite number of such poles in any finite portion of space

(u lt ...,un); we can thus suppose every pole enclosed in such a circumpolar

region, corresponding to the assigned number M ;
then for points of F within

a finite portion of space (M,, ..., un ), not included in any circumpolar region,

the function /is everywhere finite, and therefore has an upper limit which is

finite and assignable. For, to say that there were points of F at which /had
a value greater than any assignable number would be to say that there was

an infinite number of points of F at which / had a value greater than an

assigned number
;

these would have a limiting point ;
this limiting point

would be either an ordinary or limiting point of F, and thus a point of F
; by

hypothesis it would not be a pole of /, and hence about it / would be

expressible by a power series in t involving no negative powers, and would

thus be incapable of values beyond every limit. As now we have previously

seen that F is a repetition of a finite number of portions, the repetition being
effected by addition of periods, and / is periodic, all the values of which / is

capable occur for points in the finite part of the space (ult ..., un). We can

thus assume, taking the circumpolar regions suitably, that M is the upper
limit of the absolute value of / outside the polar regions, while for all points
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in circumpolar regions | / 1

> M
;

we do not thereby mean to assume the

existence of any poles. Consider the points of F outside the circumpolar

regions; let (w
|01

) be such a point and /(0) the corresponding value of/; for

surrounding points we have/ /(01 = c,t + c2(
2 + .... and points can be found

in the neighbourhood of u [
"

} for which / / (0) has any arbitrary value which

is sufficiently small
;
mark the value /0|

upon a plane and the contiguous

values of/ obtainable for the neighbourhood of M (U)
, taking no account of the

possibility that the same value of// 101 may arise for two or more points

near to w (0)
;
these points near/'

' will lie within a circle upon the /-plane,

with centre at/
(0) ,and every point within this circle will be mentally associable

with one or more points (M, un) near to (V 1

, .
un (<

"). Let (,' w')

be a point of F near to (u^, ..., un) associated with the value /' of/ repre-

sented by a point within this circle
;
for all values of/ sufficiently near to /'

points near to (M/, ..., un') can be found; we can thus, on the /-plane, put

about /' another circle giving values of / actually arising on F. Let this

process be carried out for all points (M/, ..., v^.') near to (M
(O)

), and then

repeated ;
and let r be the largest radius about /|0) so obtainable such that

all values /=/> + pe'
e

,
for any value of p < r , and any value of 6, actually

arise; it is understood that, if necessary, r is limited by the condition that

l/i + pe*
6

|

< M. This value of r will be called the variability of/ about (u
w

).

Similarly every other point (a'
1

') will have a variability, say rw . It is now

to be proved that this variability has, for all positions of () upon F outside

the circumpolar regions, a lower limit greater than zero. When (it
1

") is

sufficiently near to (M
(O)

), the variability circle of (u
w

) upon the plane of/ has

its centre fm within the variability circle of (w
(

"'), and extends at least as far

as the circumference of this, so that rw g rm |/
(1 > / (0)

|
; also, in the same

case, the centre of the circle for/
|0) is within that for / (1) and

r< 5 - (" -
|/

u) -/" |
J

thus ?<"> - I/"
1

-/">' |
5 r"> 5 r" + |/' -/> | ;

by taking (') sufficiently near to (w
(0)

) we can however make |/<" /(0)

|

as

small as we may desire
;

it follows then that the variability is a continuous

function of (,, ..., un) for points lying on F outside the circumpolar regions;

as it is never zero it follows that its lower limit is not zero for points

( 1( ..., Mn) on F lying in any finite part of space, and therefore, in virtue of

the periodicity of F, that its lower limit is not zero for points (M,, ...,un)

anywhere on F, outside the circumpolar regions. Let this lower limit be r.

If then /"" be the value of/ at any point (w
(0)

) of F, there exist points,

outside the circumpolar regions, at which / takes any of the values /(0) + pe
ie

,

where p < r and Q is arbitrary. This however does not at once preclude
the possibility that as / is made to pass through any range of values from

/(0) to/ (0) +pe
a

,
the corresponding point (w) may pass to infinity on F.

This possibility may be illustrated by attempting to prove in a similar way,
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on the plane of a variable u, that the function f=eu takes the value zero;

over any finite part of the plane the variability of the function /=e" has

a lower limit other than zero
; starting from the value / (l)) for w (0)

,
the

point M (I) for any other value / (1) is given by M (I) M (O) =
log (/ (1)

//
(0)

) ;
if

/> = / we have then it' 11 = u (0] -
log 2

;
if next /<

21 = /"> we have again

u (2) = uw log 2 = M (O) 2 log 2
;
and as we thus approach to the value for

f, while at every stage there is a definite position for u, yet these positions

pass to infinity. Suppose then, returning to the case now under discussion,

that the positions of (u) corresponding to values of f of the form/"" + p'e,

where p denotes a series of values having p as their limit, are a series

passing off to infinity ;
choose a set of portions such that F is made up of

repetitions of these, by additions of periods ;
these portions lie entirely in a

finite number of period cells
;
denote the aggregate of these cells as the

fundamental volume
;
a series of points (u) upon F passing off to infinity may

then be represented, so far as the values of/are concerned, by an indefinitely

continued sequence of points in the fundamental volume
; and, in the case

supposed, there will then be an infinite number of such points, in the funda-

mental volume, and upon F, at which / takes values / (0) + p'e'
e for which p' is

arbitrarily near to p. There is then a point, which will be upon F, in any

arbitrarily near neighbourhood of which are found points for which / has

values /(0) + p'e in which p' is arbitrarily near to p ;
in virtue of the con-

tinuity of/ it follows that at this point / takes actually the value / (01 + pe^.

It appears thus that the neighbourhood of a point (w
(0)

) at which / takes a

value / (0)
-I- pe^, with p < r, may always be supposed to lie entirely in the

finite region of space. Take now any point (w
<0)

) of F and let f
w be the value

of / there ; take any other value f for which \f-\<M. The finite series of

intermediate points f
(I

>,
(2
>, ..., for which the differences

< _
^() j

) _
^U) )

are all of the same phase and all of absolute value < r, determines a finite

series of points (M
(I)

), (w
(2
')> ... upon F at which / has in turn the values

f
ai

, f*, ...; and these lead then in a finite number of steps to a definite

finite point at which /= .

It appears thus, as M is arbitrarily great, that / takes every assignable

value, and becomes infinite at a pole, somewhere upon F.

61. Having proved that the function / assumes upon F every complex
value, we can prove that it takes any definite value only at a finite number
of points, points for which the arguments (M,, ..., un) differ by a column of

periods being counted as equivalent, and that it takes every complex value

the same number of times.

For consider an irreducible set of portions of F, lying in a finite number
of period cells, so chosen that any other point of F is reducible to a point
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included in this set, by additions of periods. The aggregate of these portions

may be spoken of as the fundamental region of F. If / were capable of

the same value for an infinite number of incongruent points, it would be

capable of the same value for an infinite number of points of the fundamental

region ;
and there would then, as this region is entirely contained in a finite

portion of space, be a limiting point, itself therefore a point of F, in any

neighbourhood of which, however small, f would take this value an infinite

number of times. All the values of / in the neighbourhood of any point of

F are however given by a finite number of expressions of the form

t~* (A +AJ +...),

and an equation of the form f = t~*(A + Aj + ...) is not satisfied by an

infinite number of small values of t
;
thus f cannot have the value f at an

infinite number of points arbitrarily near to any point of F.

Next, an equation f=t~
K
(A +A 1t+ ...), where X is positive and greater

than zero, means that the point about which it holds is a pole, and we may
say that f there becomes infinite \ times : similarly an equation

/-/. = 04+ A* + ).

wherein \ is positive and greater than zero, may be expressed by saying that

at the point about which it holds /takes X. times the value/I, ;
consider such

a point as this last, the pole being included by the convention that for a pole

ffa shall be replaced by I//! For values of / near tofa , the equation

gives \ small values of t, and hence \ places on F near to the point, at which

/ has any assigned value near to / ;
in other words the number of places

where / has this near value is equal to the number of those where y=/ ;

this identity in the number of places where/ has its various values continues

therefore for large variations of value. Considering then all the points of the

fundamental region of F at which / takes any particular value, and supposing

/ to change continuously, each of these points is the beginning of a path upon

F, and every one of these paths may be supposed to persist even through a

point where one or more of them intersect ;
if one of these paths pass over

the boundary of the fundamental region, then, since / has the periods which

are fundamental for F, there enters at the same instant, at another point of

the boundary, a path which may be taken as continuing, upon the funda-

mental region, the path which has passed out. The total number of times f
takes any value within the fundamental region is thus the same whatever

the value*. This number is the sum of the numbers for a certain finite

* We have already spoken of the (2n
-

2)-fold, in the real space of 2n dimensions, upon which

the fnnction / vanishes, and of the infinity (2n-2)-fold upon which I// vanishes. There exists

similarly a (2n
-

2)-fold upon which / is equal to any assigned complex quantity . What we have

proved is that the number of its intersections with the 2-fold T, incongruent to one another in
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number of period cells, chosen so that the portions of F which they contain

are incongruent, and is thus the total number of incongruent positions

for which / has the value.

62. Now denote by x the value of / upon the construct F, and, taking

unassigned constants X,, ..., \n , put

M = \IMI + ... + XnMn ,

and consider the function du/dx, regarded as depending upon x. We have

shewn that upon the fundamental region of F every value of x arises the

same finite number of times
;
with every complex value of x, not excluding the

infinite value, may thus be associated a definite number of values of du/dx,

the same for each value of x; it is easy to shew also that about every

value a? of x the associated values of du/dx are expressible by series of

integral powers of a root of x #, the number of negative powers, if any,

being finite, there being only a finite number of values for which negative

powers enter
;

it being understood that for xa infinite the quantity x #

means x~\ When this is shewn it will follow that du/dx satisfies an algebraic

equation whose coefficients are rational in x, the order of the equation being

the number of values of du/dx associated with any value of x. To shew this,

we remark that, first, about any ordinary point (w
(0)

) of F, for which x = x
,

we have u u ("} and x xa each expressible by a single power series in a

parameter t, and hence du/dx expressible by power series in a certain root of

x
, while, second, about a limiting point (u'

m
) of F, for which * = *

(including xa infinite), we have u u ("]

expressible by a finite number of

power series in a parameter, and, corresponding to each of these, x x

expressible by a single power series in the same parameter. If

(du/dx)!, (du/dx\, ...

be the values of dujdx corresponding to any value of x, the algebraic equation
is F (y, x,\lt ..., \n) = where, with unassigned a; the function

F(IT, x, Xj, ..., Xn)
is the product

fdu\ i r (du\ "I

L"S)JL
r-"WJ

and is a rational polynomial in X,, ..., Xn .

If now F(y, x,^, ...
, X) is capable of being written as a product of factors

each rational in x and y, \elf(y,x,\i, ..., Xn) be such a factor, itself

irreducible in this sense. The equation f(y,x,\lt ..., X) = thus defines a

regard to the periods, is finite and independent of . It appears that a closed one-fold (or curve)

can be put about the (2;t-2)-fold /=, and that the increment of log(/-{) along this closed

one-fold is independent of
;
but this requires explanations into which we cannot now enter.
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monogenic algebraic construct ;
to each value of x this construct associates

values of ,, ..., un , expressed, since differentiation in regard to \, gives

dx dy 9X,

by the equations

these are therefore integrals of the first kind tipon the algebraic construct
;

each is expressible for the neighbourhood of any value of a; by a power series

in a parameter t, and this parameter may be taken to be that employed

upon the construct F
;

all the power series expressing u, upon the algebraic

construct may be regarded as analytic continuations of one of them, this being
a known property for a monogenic algebraic construct. The construct F is

however monogenic, all the power series for ut upon F being similarly

analytic continuations of one of them
;

it follows therefore that the values

of us arising for the algebraic construct are the same as those arising for F,

and hence that the algebraic function F(y, x, X,, . ..,X,,), if not irreducible-,

is a power of the irreducible function f(y,x,\,...,\n ).
In the latter case,

if F(y, x, Xj, ..., An) be the fcth power of f(y,x,\1 ,...,\n ),
there would

correspond to every point of the fundamental region of F one point of the

algebraic construct, but to every point of the algebraic construct would

correspond k places of the fundamental region of F, the values of y or dufdx

being the same at these k places.

This however, holding for an arbitrary value of x and undetermined

values of \1 ,...,\n ,
would involve the existence of k sets of n constants,

a
i,ft, , <*, h> for h = 1, 2, ...

, k, not necessarily different sets, such that if

(it-i, ...,un) be a point of the fundamental region of F, so also is

while as x is the same at the k places, also

the original n functions
<f>lt ...,$ (p. 205) would therefore have the periods

J,A>--- >n,A, and therefore so would the original function
<f> (M, ,

. . .
,
wn ).

We
have however assumed at the outset that in speaking of the periods we were

speaking of primitive periods of this function (p. 203). Thus a
lih ,

...
, a,,iA

would be sums of integral multiples of the original periods ;
this however is

contrary to the definition of the fundamental region of F, which is so con-

structed that no portion of it is a repetition, obtained by addition of the

periods, of any other portion. It follows then that the function

,\t ..... X,,)
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is irreducible, and there is a definite one to one correspondence of the points
of the algebraic construct with the points of the fundamental region of F.

63. To investigate this correspondence in more detail, we proceed as

follows. Let the class of the algebraic construct f(y,x,\ l ,...,\n)=Q be p;
we have seen (p. 207) that upon F the integrals ?/,, ...,?< are not connected

by any equation c^ + ... + cnun = 0, in which c 1 ,...,c,,are constants; they
are therefore linearly independent upon the algebraic construct, and p^n.
Denoting normal integrals of the first kind upon the algebraic construct

f(y,x, \i, ..., \n) = by Vlt ..., Vp ,
we thus have equations

Mr = cr,iF1 +...+cr,pFp , (r = l, ...,w);

now without alteration of x and y we can assign to Vlt ...,VP values obtained

by adding to them the respective elements of any one of 2p systems of

constants, namely the periods ;
for Va these constants belonging to the

2p systems are

where (!)
= unless a = /3, while (!) = 1; let fir,a, fi'r.a be the corre-

sponding system of increments for ur ,
so that

n
r> .
= cr,, ft'r

,

= cr,, T,, a + ... + cr,pTpta , (r=l ..... ; =!,...,;>),

and we have

wr
= n

ril F, + ... + sir>pvp ,
n'

r>a
= n

r>1
Tlia + .

these equations we shall denote by

where SI, SI' denote matrices of type (n, p), and T the symmetrical matrix, of

type (p,p), belonging to the periods of the normal integrals F,, . .., Vp on the

algebraic construct f(y,x, X,, ... ,\n). (Cf. p. 12 preceding.) If then f!
,
TO ,

fi
'

denote the matrices whose elements are the conjugate complexes of those

of SI, T, SI', and, as before, SI denotes the matrix obtained from SI by transposing
rows and columns, etc., we have

iy= Tn, sis}
1 = sirsi = si'si, n'n

thus fifl' is a symmetrical matrix, or

o = fi'n - nil' = (n, fi') /o,
-

,
o si'

where O denotes the matrix of type (, 2p) represented by (fi, fi'), and

65p is a matrix of type (2p, 2p) whose elements are all zero except the

elements of position (a, a + p), for a = 1,2, ...,p, each of which is -1, and

the elements (a+p, a), each of which is +1. Also, if *, or (x
w

,
. . . , x (n]

),

be a row of n arbitrary quantities, and # the row of n conjugate complex
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quantities, and z = fix, so that, as n is of type (p, ri), the row z is of p
quantities, such as

z, = n,
:
,xl + n,,,xt + ... + fln,a:n , (= 1, ...,p),

and za is a period for x^ + . . . + anun ,
and if we put T = p + iff, r^ p iff, then

= - i (T
- T ) zaz = -i (2icr) z z =

we know however (p. 7) that if n,, ..., np be any real quantities the real

part of irri*, namely <rn2,
is necessarily negative and greater than zero.

Hence, for an arbitrary row x of n quantities, not all zero, we have, beside

the identity ne2p ll
= 0, obtained above, the inequality

Since the acquisition by ult ...,un respectively of the increments

il] ,
...

,
lln,OL

corresponds to a circuit by (x, y) on the algebraic construct, it will corre-

spond to a path on F of a kind that leads again to the same values of x and y
as at the starting point, and this for values of x which are arbitrary. We
have shewn above that the end point of such a path is obtained from the

initial point by addition of a set of periods to the arguments M,, ...,un . If

then the original periods associated with ur (p. 204) be denoted by -5JviS)
for

r=l,...,?i and s= 1, ..., (2ri), we have equations of the form

nr,a
= Aa ,

<,wril +...+^n,a^r>2n, r=\,...,n; a=l,...,(2p)

wherein h
s>a

is an integer, the general element of a matrix of type (2n, 2p)

which we shall denote by A; the equation may then be written in the form

We then have

=

where M, = he^h, is a skew symmetrical matrix of integers of type (2>i, 2/t);

and

< -
iHe^pTIx^a;

= ivsli^h^x^x = itsMw^x^x.

If each of the In quantities 5 be written in the form T), + if,, where t]s ,

are real, so that we may write wx = rj + if, the last inequality is

o < - iM (7,
- i

where, since M is skew symmetrical, Mtjt)
= = 3/ff, and

thus we have

and it is impossible to choose the n arbitrary quantities x so that the 2

tjuantities Mrj are all zero, except of course by taking x = 0; if TS = a + ifi, so
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that a is the matrix whose elements are the real parts of the elements of

the matrix CT, and /3 the matrix constituted by the imaginary parts, while

x = y + iz, so that y is the set formed by the n real parts of the elements x,

and z that formed by the imaginary parts, we have

77 + if= vx = (a + t) (y 4- iz), rj
= ay

- #? = (a, y

it is thus impossible to choose the 2n quantities y, z so that

hence the matrices 3f and (a, /3) have each a determinant which does not

vanish. The latter determinant is that of the matrix
( ~) and, therefore,

that of the determinant I

_);
thus in or not every determinant of n rows

and columns can be zero (cf. p. 204 above); the matrix M is hev h, where h is

of type (2n, 2p), and n^p; the determinant of M is thus expressible as

a sum of products of determinants of type (2n, 2n) formed from h; we thus

infer that in h not every determinant of type (2n, 2n) can be zero.

Now take matrices of integers, g of type (In, 2n) and m of type (2p, 2p),

each of determinant unity (see Appendix to Part II. Note I.), such that the

matrix, of type (2n, 2p), ghm, has the form

ghm = / cu , ,
. . \ ,=c, say;

0, c2( 0, .

0, 0, c,, .

this equation enables us to express any determinant of type (In, 2n) from

the matrix A as a sum of products of determinants from g~
l
, c and m~l

;
if any

one of c,, c2 , c3 ,...,cm were zero, every determinant of c of type (2n, 2n)

would be zero and hence every determinant of h of this type, contrary to

what is proved above. Now define the matrix is' of type (n, 2w) by means

of Tsr = Tz'g, so that D, which is equal to -ah, is equal to nr'cmr1

',

as the last

2p2n columns of c consist of zeros, so also do the last 2p 2,n columns of

vr'c, and therefore the last 2p 2n rows of the square matrix m~l do not

come into consideration here
;

let -sr,' denote the first 2n columns of vr'c
;

thus or/ is of type (n, 2n) and consists of the columns of ra' multiplied

respectively by c,, ca , c3 , ...,cm ;
further let the matrix of type (In, 2p) con-

stituted by the first 2n rows of m~l be called k; it is unitary in the sense

that its determinants of type (2w, 2/i) have unity for their highest common

factor; then we have

n = ts'cm-1 =
(or/, 0) fk\ = CT 1'fc.

When h is itself unitary we have ghm = (1, 0) and gh = k, g = 1, k = h.

B. 15
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Also, if/ be any matrix of type (2n, 2n), we have

(w,',0), *i = (la,,0), /&/ =
(/, 0),

where 1 OT denotes a matrix of type (2n, 2) having unities in the diagonal,

the other elements being zero, and 0, in the first equation denotes a matrix

of type (, 2p
-

2n) with zero elements, in the last two equations denotes a

matrix of type (2, 2p 2) with zero elements. Thus fk cannot consist

of integers unless / do so.

Now consider more particularly the correspondence between the construct

F and the algebraic construct defined by the equation f(y, x, X, ,..., \n) = 0.

Any two points (M), (') of F for which

w/-wr = wr>iA
r

1 + ... + or
rj2n

jV2H , (r= 1, ...,n),

wherein JV, ..... N^, are integers independent of r, correspond, in virtue of the

equations x=f(u), y = \ldu1 /da;+ ... +\ndunjdx, to the same point of the

algebraic construct
;
a path on F from (u) to (u') corresponds to a closed

circuit on the Riemann surface representing the algebraic construct
;
thus

Ur
' -Ur

=
!!,.,:<! + ... + lr,ptp + H'r,]<p+i + ... + l'r,pt,p,

where t,, ... ,
tv is a row of integers independent of r

; denoting this by

M
' - u = Ut

we have, in virtue of II = or
1'&, the equation u'u='sr1'kt or say u w = or,'<7,

where cr = Jet is a row of 2n integers; this is the same as

(A) r'-Wr=C1 or'r, 1 <r1+...+C2n or'r>2,,<r27l , (r=l, ...,).

The periods -as
', equal to or^r

1

, where \g\=\, are equivalent with the periods or,

the angular points of the period cells associated with them as on p. 204 being
the same, save for order, as the angular points of the cells associated with the

periods or; the period celts associated with the periods or,' have not the

same angular points, but only some of them, the first column of these periods

being Cj times the first column of the periods or', and so on. If ( r) be a

point of the construct F, and we consider the points of space

(Ur), (ttr + w'r.,), (,. + 2r'
ril), (Ur + ^'r.l).....

the formula (A) above shews that the first of these after (ur) which can lie on

F is (ur + Cjts-V,]), and similarly for the periods cr',.,2,
cj'r

,
3 ..... t^'r,m> conversely,

as is shewn by the formula Ilm = (or,', 0), obtained above, the periods TO-,'

necessarily correspond to circuits on the Riemann surface. In other words

the construct F is not periodic with the periods w or ur', but only with the

periods w,', of which the s-th column is obtained by multiplying the s-th

column of or' by c,; and the algebraic construct given by/(y, x, X,, ...,\n) =

corresponds to a part of the construct F extending within c,c, ... cm of the

period cells associated with the periods or'. The extent of F may thus be

divided into regions, each lying within as many of these cells, each region

having a one to one correspondence with the algebraic construct : if (x) be
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a place of the algebraic construct, there is no place (') of it for which the

equations
u*'-* = N.er'r,, + ... + Nm *r'rim , (r = l,...,n),

are all satisfied, ur
x'' x

denoting the difference of the values of ur at (x) and

(x), and N!, ...,Nm denoting integers independent of r, unless these integers

are respectively integer multiples of the integers c,, C2 , ...,cm .

Now (as in Appendix to Part II. Note II.) let a matrix of integers f, of

type (2, 2n), be taken so that

where, if (!), denote the unit matrix of order m,

_
o /' ~V(i)B> o

k is the matrix of integers previously used, of type (2n, 2p), and r is

a positive integer, taken as small as possible; then, defining two matrices

(ft, ft), each of type (n, n), by the equation w,' = (//,, //)/, we have (p. 224)

= Uev fi = w/fc^Si' = (^
fifk+lfffl

= r (ft, ft') em
(

and similarly, x being a row of n arbitrary quantities,

< illejp n o# a; = - ir (ft'Jio ftfi^)x x = ir (Ji'x .

An incidental consequence of the last inequality is that the determinant of

the matrix ft is not zero, since otherwise we could choose x to make both

fix and /*# vanish*.

We can then put
a =

/j.-
l

ft',

and obtain, if y = fix,
=

rj + if, say, and cr = (7, + i^ ,

= rft(tr- a)fi, giving <r = tr,

so that the matrix a, of type (n, n), is symmetrical, together with

< - ir (ffyy,
- <r y 7/)

= 2rff2 (rf + f
2
),

* More generally if J, of the form fa ft
\~ l

, be any matrix of integers of type (2n, 2n), such

that Jew /= *.;, namely the matrix of a so-called linear transformation of order n, and we put

Ji=J I c \
, where c is any constant, the equation

\0lj
/*f2p*/=rf.2n

involves JJk^lfJ^crt^,
and we can, in the text, use JJ instead of /; putting then wi= (v, ')Jif, or (/, /) = (, c')^i,

where v, r' are each matrices of type (n, n), it follows that |r| is not zero ; this is the same as that

Mo + c/i'o'| is not zero. In particular, by J~ 1 = ftn , the determinant of // is not zero.

152
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which shews that if 7, ..... qn be any n real quantities, the real part of the

quadratic form iarq' is necessarily negative. We can hence define a theta

function
00

(v, a-)= exp. (2-irivn 4- itranf).

Consider the change of the function (/ur'w, d) when the arguments

M, ..... wn are respectively increised by the n quantities expressed by Ut,

where t denotes a row of Zp integers : these are the increments corresponding
to any closed circuit on the Riemann surface associated with the equation

f(y,x, \1) ...,\n) = 0.

Since II =vr1'k (fi,fj,')fk, the arguments if
l u will be increased respectively

by the elements expressed by

/*-' 0*. p!)fkt
=

(1, <r)fkt
=

(1, a) (I, l')
= l + <rl',

where (I, l'),=fkt, is a set of 2 integers; the function Q(A~I

W, er) will

thus be multiplied by

exp. [- 2ml' (jir^u + fal')].

It is thus possible, with this theta function, to form single valued functions

of MI, ... , M,,, of meromorphic character, which are unaltered by any circuit on

the Riemann surface associated with the equation f(y, x, \, ..., \^) = 0, and

are therefore, since ult ..., un are integrals of the first kind on this surface,

expressible as rational functions of x and y. These functions, which we may
denote by 1^ (u, II), have not the periods or'

;
but then, neither has the

construct F: to a point (M,, ...,ur) of F correspond C]C2 ... cm points of

space congruent thereto in regard to the periods TO-', namely those for

which ur is replaced by

where y,
= 0, 1, ...,d

- 1
; y2

= 0, 1, ..., c2
- 1

;
...

; ym =Q, 1, ..., cm -
1, and

of these, as we have shewn, only one, namely (,, ...,), lies on the construct

F; since the complete construct C has the periods IT' these 0,0., . . . &, places

are upon as many monogenic portions of C. The functions ^(u, II) have the

periods properly belonging to the construct F : it is our aim in what follows

clearly to establish that the function <(M), and in general all single valued

functions of meromorphic character with the periods ta, can be rationally

expressed in terms of a finite number of functions -^(u, II).



CHAPTER VIII.

DEFECTIVE INTEGRALS.

64. IN the preceding chapter it has been shewn that the most general

periodic function, of meromorphic character, leads to the consideration of a

Riemann surface upon which, among the existing p linearly independent

integrals of the first kind, are found n integrals, with n less than p or equal

to p, whose 2p periods are expressible linearly in terms of only 2n quantities.

With a view to throwing some light on the general question we consider in

this chapter some general theorems for such a case, and some particular

examples ;
it will be found that the result arrived at in the last chapter

offers some peculiarities.

Suppose then u,, ..., u to be linearly independent integrals of the first

kind upon a Riemann surface, upon which there are in all p such integrals,

and n^p; let the 2p periods, or additive constants of indeterminateness,

for ur , upon the Riemann surface, be denoted by Hr,*> for r=l, ..., n and

a = l ..... (Zp), and the matrix of type (n, 2p) formed by these quantities

be called II
; suppose that we have equations

Hr
,
a = or,.

i ,/(, i
+...+ Vf

rttn
h.

ati a

wherein h,t tt are integers, and
rav, , are other constants

;
so that if vr denote

the matrix of type (n, 2n) formed by the quantities w
r>g

and h denote the

matrix of integers of type (2n, 2p) whose elements are h,
t
a ,
we may write

It can then be proved, just as in the last chapter (p. 224), that wMS = and

iwMwuave > 0, where x is any set of n quantities not all zero, and M, = ke^h,
is a skew symmetrical matrix of integers of type (2/i, 2n). And thence as

before that not every determinant of type (2ft, 2n) in h is zero.

We may then, also as before, find two square matrices of integers g, m, each

of determinant unity, the former of type(2n,2n), the latter of type (2p, 2p), such

that yhm, of type (2n, 2p), consists of zeros save in the places (1, 1) (2, 2), ... ,

(2n, 2) where are found positive integers c,, C2 ,
. . .

,
cm ,

no one of which is zero
;

putting then CT' = &g~\ so that or' is a set of quantities equivalent with m, in
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the sense that either is linearly expressible by the other with integer

coefficients, we have Ilm = er'c = (a, 0), where a is a matrix of type (n, 2u)

replacing what was denoted in the last chapter by tsr,' and denotes a

matrix of type (n, 2p 2n) of which each element is zero
;
thence we have

n = ak,

where A; is a matrix of integers of type (2n, 2p), in which the common
divisor of determinants of type (2, 2n) is unity, this being obtained in fact

from m"1

by omitting the last (2/> 2n) rows. Thus, in terms of the periods a,

not only are the periods II expressible with integer coefficients, but con-

versely, the formulae being n = ak, (a,0) = Urn. We can then find a matrix

of integers k, of type (2n, 2n) such that

where r is a positive integer, which we take as small as possible ;
then

defining the matrix (p, /*') of type (n, 2) by means of (p, fj.')
= a/"

1 we can

form a theta function of n variables (ft.~
l

u, a-), where er = /i~V'> it being
a consequence of preceding formulae that the determinant of

ft,
is not zero

;

and when u,, ...,un are increased by increments expressed by Tit, where t

is a row of 2n integers, the arguments /i~'w of the theta function are increased

by the n quantities I + al', where the integers /, I' are defined by (I, f) =fkt.
We can thus construct single valued meromorphic functions of n variables

wn ,
wn which have the periods a, or, what is the same tiling, the periods IT

;

denote such a function in general by \jr (w, a). Replacing wlt ..., wn by the

integrals ult ..., , regarded as functions of a place (x) on the Riemann

surface, such a function, being single valued on the undissected Riemann sur-

face, is a rational function of (x) ;
but we may more generally substitute

wr
=

m being arbitrary, and the function
i/r (w, a) is then a rational function of

the 1m places (#,), ...,(#,), (*,), ..., (*,).

In the case arrived at in the last chapter the equation f(x, y, \, ,
. . ., Xn) = 0,

associated with the Riemann surface, is satisfied by x =f(w), y = x (w)

where f(w), x(w) are single valued meromorphic functions of n variables

wlt ...,wn ,
these variables being connected by (n 1) relations of the form

J(w)"0i where Fj,(w) are also single valued meromorphic functions. All

these meromorphic functions have 2 sets of simultaneous periods, namely those

denoted above by w', the periods of any one of these sets, say the s-th, being

f

Jth
of the elements of the s-th set of periods a. Such a function may be

denoted by A/T (w, -a') ;
it manifestly has the periods II, or the periods a, and if

Wi ..... wn be replaced by the values at the point (x) of the Riemann surface

of the integrals of the first kind M,, ..., ,
the function becomes a rational
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function on the Riemann surface
;
and we saw that if MJ, ..., be the values

at a point (x) of the integrals of the first kind, the arguments

N N N
Wi = , + (V, w, = ., + <!,,, ..., wn = un + an,,,Cs Cg Cs

wherein N is an integer, for which the function
\fr (w, TS') has the same value

as for Wi HI wn = un ,
do not arise on the Riemann surface unless AT

is an

integral multiple of cs .

In general for a Riemann surface having p integrals of the first kind, of

which n integrals form a defective system, if, with the notation explained

above, ifr(w, a) be a single valued meromorphic function, and w,, ..., be

the defective integrals regarded as functions of the place (a;) of the surface,

the function ^r(u, a) is a rational function, as remarked. Taking two such

rational functions f = fa (u, a), 77
= fat (n, a), it may be possible to choose

these so that at the places where f has some one value, the corresponding
values of 77 are all different : in that case x and y are expressible as rational

functions of % and 77, which are themselves connected by a rational equation;
the values , un , being functions of one place (x), are connected by

(n 1) relations, and, subject to these, the equation associated with the

Riemann surface can be solved by single valued meromorphic functions of n

variables. Or it may be that fa, fa cannot be so chosen: then the values

of 77 corresponding to a given value of are each repeated a certain number

say X times, and the rational algebraic equation giving all the values of r)

corresponding to any value of f reduces to the X-th power of an irreducible

equation ;
then each of x and y satisfies an algebraic equation of order X, the

coefficients of which are rational in f and 77 and are thus single valued

meromorphic functions. This latter case always arises when n = 1, p > 1,

that is when there is a single integral of the first kind whose periods are

expressible by only two quantities ;
for every algebraic equation connecting

single valued meromorphic doubly periodic functions has p = 1 : thus, if for

an algebraic equation f(x, y)
= there be an integral of the first kind whose

periods reduce to two, both x and y are roots of algebraic equations whose

coefficients are rational in two quantities f, 17 connected by an equation of

the form if = 4 3

g. g, ;
the defective integral can then be algebraically

transformed to have the form, fdg/rj, of an elliptic integral. In the general
case of n > 1 and p>n, it is not to be assumed that the defective integrals

M, un are algebraically transformable to the forms appropriate for

integrals of the first kind upon any single Riemann surface of class

(deficiency) n : when x and y are rationally expressible by f = fa (u),

77
= fa (u), the rational relation connecting and 77 has, it is well known,

the same number of linearly independent integrals of the first kind as

the original algebraic relation connecting x and y, and when x and y
are merely algebraic functions of and 77,

it is by no means obvious that
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the algebraic relation connecting f and i) is capable of only n integrals

of the first kind.

65. In the general case of n defective integrals of the first kind upon a

Riemann surface possessing p integrals of the first kind we shall define two

numbers, which arise in stating following general theorems:

(a) The Index r, which has already occurred in the formula

this number being given its smallest positive value. As follows from

Appendix to Part II., Note II., below, r is the first invariant factor of the

skew symmetrical matrix N of type (2n, 2ri) defined by N =
keyjc, namely is

the determinant of N divided by the highest common factor of all deter-

minants of N of type (2n 1, 2n 1). It is easy to prove that if the matrix II

be reduced in any way to the form a'k', where k' is a matrix of integers of

type (2n, 2p) whose determinants of type (2w, 2n) have unity for their

highest common factor, then the corresponding value of the index r', namely
the first invariant factor of the matrix N' = k'e

JJc',
is equal to r. For first,

we have, as on p. 224, not only aNa = Q, but also iaNa^c^c > ;
from the

latter we can infer as before that the determinant
j

N
\

is not zero and that

the determinant of type (2w, 2n) formed by the real and imaginary parts of a

is not zero. Similarly for N' and a'. It is a well known fact (proved in

the Appendix, as above) that k, k' may be regarded as the first 2n rows

of unitary matrices of integers of type (2p, 2p); thence the equation
II = ak = a'k' gives (a, 0)H =

(a', 0) H', where denotes a matrix of zeros

of type (2n, 2p 2n), and H, H' are such unitary matrices. Thus we have

(a, 0) = (a', Q)H'H~*, and thus a = a'G, where is a matrix of integers of

type (2w, 2n); similarly a' = aG'
;
thus a = aG'G

;
hence if A be the matrix

of type (2w, 2n) formed by the real and imaginary parts of a, we have

A (G'G 1)
= 0, and therefore, as A\ is not zero, G'G = 1. This shews that

each of G, G' is a unitary matrix. Then ak = a'k' = aG' k' similarly gives

k=G'k' and therefore N=G'N'G'; the invariant factors of G'N'G' are however

the same as those of N'.

(b) If for every n places (ar,), .... (#) upon the Riemann surface there

be a- 1 other sets each of n places, (#,'), ..., (#')> no* entirely coinciding
with the set (#,), ..., (#), such that the n equations

wr
*>'- *> + /*'

* + ...+ ^lr
x '

*" = 0, (mod. II) (r = 1 , . . . , n)

are all satisfied, we call cr the Multiplicity. It is understood that permutation
of the places of a set among themselves is not counted as altering the set.

66. Consider now the theta function (l> (^"'w, cr), where II = ak, the

matrix k of type (2, 2p) being unitary in the sense that its minor deter-

minants of type (2n, 2) are coprime, fke.^f= rem , we put a = (/*, //)/ and
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tr = /x~'/i', and W{ denotes iii Ci, the integrals u,, ..., un being regarded as

functions of the place (#)of the Riemann surface and elt ...,en being constants.

We proceed to prove that this function has nr zeros upon the Riemann

surface. When the arguments u are increased by fit, where t denotes a set

of ~2p integers, the arguments v = fj.~
lu are increased by I + crl' where

I, I' each denotes a set of n integers given by (I, I')
=

fid, and the function

log is increased by 1-nil' (v + \<rl'). Upon the Riemann surface dissected

along the 2p canonical period loops (a^), (a'p) the function is single

valued and capable of expansion about every point as a power series in

the parameter for this point ;
the number of its zeros is thus given by the

integral

taken once positively round the edges of the period loops. In passing from

the right to the left side of the period loop (aft), the increments Ut of the

functions u are given by taking every element of t zero except tf,
= 1

; similarly

for the pnssage over (a
1

ft)
we have every element of t zero save tp+p = 1

;

we put

r

wherein each of H, K, //', K' is a matrix of integers of type (n, p); then for

the passage across (a$) the increments of the arguments /j,~
lw are / + al'

where

I IT ;' Til I 1 = '
i "i > P\Hi'* ** Wt"*

1/3=1,2,..., J>

and the corresponding values for the period loop (a'p) are

the contribution to the integral above arising from the two sides of the loop

a is thus

- 2 I H'
,-,

i J
\ ndun)

taken once along the positive side of (ap), namely is

which, as ^-'11 = (1, <r)fk
= (H + <rH', K + <rK'), is the same as

or -[
the contribution from the two sides of the loop (a'p) will similarly be

or
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thus, as (B'aK\ f
= (K'ffH\ f

= (K'aH\ . the whole integral is

0=1

which is II (K'i #, - H'f

0=1 i=i

or
t=i

'

we have however iH K\ev lH_ H'\ = rem ,

\H' K') [K K')

or (KH-HK KH' - HK^\ = r /O - 1\ ,

\K'H-H'K K'H'-H'K'I U oj

so that K'H-KH = r.

Hence the number of places (x) on the Riemann surface for which the

function B [^
-1

(u e), a] vanishes, is nr.

In case n = p we have k = 1, f= 1, r = 1 and the number of zeros is p ;

the above is a very obvious generalisation of the method, due to Riemann,

whereby this number p is found in the ordinary case. We proceed to

employ Riemann's method further to find a relation connecting the values of

the integrals w at the rn zeros, which generalises the corresponding ordinary
relation.

Use the same notation as before, Wi = Ui e,-, vt
= (^w),-, let (a^), . . .

, (#,)
be the rn zeros of (v, a-), and let U be any integral of the first kind.

Suppose the function log O rendered single valued by means of a series of

loops round the zeros, these being connected with the period loops. Round

the zero-loops the integral
1 r

>s@.dU

is equal to 2 U*J> ',

i-i

where (c)is the initial point of all these loops which we suppose* to be also

upon all the period loops ;
this value is equal to the value of the integral

taken round all the period loops. For the period loop (a^) the increment of

Mf
- vV - iff/'*,

where Mf is a certain integer and

r-jr<,*
and the contribution to the integral arising from the two sides of (a/s) is

A diagram of such a dissection is given for example in the author's Abel's Theorem, p. 395.
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taken once along the positive side of (ap) ;
this may be regarded as the sum

of three parts

where e = fir^e ;
if flp, fl'p are the periods of U for the period loops

the second part, containing e
t , ..., en explicitly, is equal to

similarly for the loop (a'p) we have a part containing elt ..., en explicitly,

which is equal to

-f^tO*
t=l

If in particular U is the integral u
g ,
then (fl, SI') consists of the g-th row

of II, or ok, = (/j., pf)fk, = (fj.H + p'H', p,K + ft'K') ;
then the part containing

et , ..., en explicitly, from the whole integral round the 2p-period loops, is

2 e< f [H\,
.=1

or Li [(nK +
1=1

or
1 (KH

1 - HK') + fj.' (K'H
1 -

H'K')} ej, ;

we have however

KH' - HK' = - r, K'H' - H'K" = 0,

so that this reduces to

The parts such as fMpdU give altogether

If we take another set of values for en ..., en , the remaining parts of the

whole integral, built up from contributions of the form

will be unaffected. On the whole then we can infer that if (mj), for

j=l, ..., (rn), be the zeros of the function

where (m) is an arbitrary place of the Riemann surface, and
(ocj)

the zeros of
the function

e[/*-
l

(w*.'-e),<r],

m
then 2 u*'< m'=req , (q

= 1
, 2, . . .

, n),
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where the sign
= indicates the omission of a linear aggregate of periods of

the function u
q
r -m with integral coefficients which are the same for all

values of q.

For the case n =p, giving r= 1, this becomes a well known equation;
in that case the congruences

I /'-"*
=

6,

suffice to determine the set (xj) without ambiguity, and we can infer that the

function

H j^r
1

(u
x>m - ux m

> - ... - u' "'), a)

has the places (a;,), ..., (xp) for zeros. But when n<p we may have n

equations of the form

M/" *' + "/" "+ + V'" 1 *" = 0,

as will be seen. Thus, though the rn zeros are, of course, determined by
elt ,..,en ,

the n equations

1,*vsw,
are not, by themselves, sufficient to determine these zeros.

67. The question naturally arises of the relation of the theta function

of n variables just discussed to the theta function, (F, T), of p variables,

associated with the Riemann surface. We proceed to shew that there is a

theta function of p variables, obtained by a transformation of order r, which

contains as a factor the theta function of n variables.

The most general set of periods for a normal integral V*. being of

the form

ax, M + TM <*',,
+TM a'2

, M + ... +n,yOpiM , (jt =1,2, ...,(2p)),

wherein a
Xifl , OL'

V>IL
are integers, consider a matrix of periods for the normal

integrals Vl ..... Vp ,
of type (p, *2p), given by

(a + TO.', /3 + T/8'),

or say (1,T)A,

where A = / a , ft \

U ff)

is a matrix of integers; take, correspondingly, such a set of linear functions

Wi ..... Wf of F,, .... Vp that for IT, ..... Wp , which are also integrals of the

first kind, the period scheme reduces to the form (l,r'); that is, take

W=
(a + ra')-

1

V, (i + n') r =
ft + r/3';

in taking these' it is provisionally assumed that the matrix o -f rat' is of non-

vanishing determinant. The matrix T is symmetrical, so that we have

,T)fc/l\-0;
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in order that T' may be symmetrical we must similarly have

237

now if P = a + TO!, Q = P + r/8', we have (1 , T')
= P~l

(1, T) A ;
thus we require

We assume then that the matrix A satisfies the equation

Ae.jpA =
rey,,

where r is a positive integer; we can then at once prove that the determi-

nant of a + TO' is not zero, that T' is symmetrical and not of zero determinant,

and that the real part of the quadratic form ir'k", where & is a row of p real

quantities not all zero, is necessarily negative. The relation Ae^A = rev is

_ j _
equivalent with A"1

e.^
A"1 = - em and therefore with Ae.jpA

=
re.,p.

For let y be a row of p quantities, not all zero, y, the row of conjugate

complex quantities,

P= a+ ra', Q =
/8 + r/S' and z= tP\ y = (Py, Qy),

\Q)
a set of 2p quantities; we have, since r is positive, (cf. p. 224)

< -
ir(r

- T )y y
= -

tr(l, r)c,p /I \ y y = - i(l, T)Ae,pA / 1\ y y
\rj \rj

= -
i(P, Q)ev /P,\ y y = -

ie^z^z = - i^P^y,, Q y) (Py, Qy)

\QJ

this shews that the set y cannot be chosen, other than all zero, to make

Py = Q, P y ;
thus the determinant of P is not zero; nor, similarly, is the

determinant of Q, and the equation PT = Q determines T', and \r'\ ^0.

Further
,

gives at once, since (1, T')
= P~l

(l, r) A,

so that T' is symmetrical ;
and similarly from

-i(l,r)eyp /l\ylly>0,

since

- i (I, T>V fl\yty = - iP-1

(1 ,, T>V fl\yty 6,pA / 1 \ P^y.y = - ir(\, r) e^,
f 1f 1 \ ,,
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where t = P~l

y, we see that the real part of ir'k* is negative, and not zero,

for all real values of klt ...,kp for which these are not all zero.

Now it is a known property that a matrix of integers A satisfying the

relation ^e
tp

^. = retp can be constructed when the first n columns, and the

(j!)
+ l)th to the (p+n)th columns only are given, provided that, of the

relations expressed by Ae^A = re^,, all which contain only the elements of

the given 2n columns are satisfied. (Frobenius, Crelle, LXXXIX. (1880), p. 40,

or the author's Abel's Theorem, p. 676.)

Consider then a matrix in which the first n columns and the (p + l)th to

the (p + n)th columns are given respectively by

where H, K etc. are the matrices of integers occurring in the previous article

(p. 233), and

n=(n,fl')=(/*,M')Aff, K\,
\H', K')

so that we may write

/a, 0\ =
(

K'..... -K, ...\;U ff) \-H', ..., H, ...)

the equation AejpA = re2p is equivalent with

Sa'-a' = 0, /3'-'/9 = 0, a/8'
- ' = ' - ' =

r,

and of these, the relations containing only the elements of the first n and

the (p+ l)th to (p + )th columns of A are

K'B'-H'X' = 0, KH-HK=Q, K'H - H'K = HK' - KH' = r,

which we know to be satisfied (p. 234) ;
the matrix A can then be constructed

as prescribed.

If FI, ..., Fpbe the normal integrals on the Riemann surface, we have, as

before, (p. 223)

and hence, with <r = /i~
1

/*',

or

now the first n columns of the matrix a+ ra' form the matrix K' rH', and

the first n columns of the matrix /9 + rft form the matrix K+rH
;
thus

if we write

r =
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where R, S are of type (p, p n) and T,' of type (n,n), the comparison of the

first n columns of the matrices on the two sides of the equation
' '

leads to (K'

thus, as (K' rH')(T
= - K + rH, we infer T/ = a-, r2

' = 0, and the matrix r'

has the form T' = /<T ON.

Vo p)

Therefore, if k denote a row of p integers, the quadratic form r'k* is a sum of

two quadratic forms respectively in k1: ..., kn and kn+l , ...,kp , say

r'k2 = af + pt'
2

,

and the theta function associated with the Riemann surface,

6 ( U, T')
= 2 exp. 2-n-i (kU + r'k*),

t=-00

is a product of two theta functions respectively of n variables and p n

variables, namely

I exp. 2iri (til + faf), 2 exp. 2iri (t

1

f/"'
2' + fat'

1

),
= 00 f;'=-~<X>

where UM denotes the set / ..., Un and Z7 the set Un+l , ..., Up .

And if F,, ...
,
Vp be the normal integrals of the first kind, and ult ...,un

the defective integrals, we have

now the p integrals (a + T2')~'F are the same as -($' TO') V; the first

n rows of ff' constitute the matrix H, the first n rows of a' constitute the

matrix H'; thus, as the first n rows of T' are (<r, 0), the first n rows of

/9' r'a' form the matrix H+ a-H'; therefore, putting

a')-
1 F= o8'

- r a') F,

the arguments /j,~
l v are rTT,, rW2 , ...,rTfn . Thus the function of n variables

(p~
l

u, a)

previously considered, is a factor of the function ofp variables

herein W denotes a set of linearly independent integrals of the first kind,

having a period matrix (l,r'); this period matrix does not correspond how-

ever to a canonical dissection of the Riemann surface, but to such a set of

*2p loops as gives for the normal integrals V a period matrix (n+ra, /S+r/S');

it is only when r = l that a new system of canonical loops can be drawn for
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which the period matrix, for the integrals V, is (a + TO.', /3 4- r@'). (See for

example the author's Abel's Theorem, Chaps, xvm. and xx.) The theorem that

B [(' - T'O) V, T']/0[(ff + aIT)V, c]

is an integral function of F,, ..., Vp , is manifestly proved when F,,..., Fp are

p arbitrary arguments.

It follows at once from the preceding equations that beside the system of

n defective integrals of the first kind, there is upon the Riemann surface,

another system of p - n defective integrals.

For introduce names for the remaining columns of the matrix A, writing

/, 0\ =
(

(K', Q'), -(K, Q)\,

(a, ft) \-(H', P'), (H, P))

leading to

r/a, fJ\-
l

-( ft ''- ff}^/(
H

}
'

(
K
}\'

U, P) U ', ) I\P) (Q) \

\(
H

'}' F'
\\P') \Q'J

each of the matrices P, Q, P', Q' being of type (p-n,p). Then the p

integrals rW, given by

/ 0\ \(K'\
-
(H'\ T) = -

(K\
(o JiU'J (p'J } (Q)

are UH\ + la 0\ (H'\\V, =/H + <rH'\V,

\\P) U p)\P')\ (P+pP'J
and consist of the n integrals (H+ aH')V and the (pn) integrals (P + pP') V.

The period scheme of the integrals rW is thus

(H+aH' t (H+<rH')T\;
\P + pP', (P + pP')r)

we have however T (a +a'r) = y8 + /9'T,

H\r,
PJ

that is (7(K'-H'T)=-K + Hr, p(Q'
- P'r) = -Q+ PT,

or (H+ <rH')T = K + a-K', (P + pP')r =Q + pQ',

and the period scheme of the integrals rW is thus

aJJ' K 4- rrK'\

pP'l Q + pQ' )'

shewing that the period scheme of the integrals (P + pP') V is

(P + pP', Q + pQ'),

namely that the periods of these integrals are sums of integral multiples
of the 2(p n) quantities (1, p). The integrals (P + pP')F thus form a

second defective system ;
this we may fairly speak of as complementary to

the former.
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We have further

e,p /(S,P), (S',P')\=re,p ;
H

}' (
K
\

p) (Q)

(H\ (K'\

(P) \Q'i

the left side is found to be

fKH -HK , KP - HQ\ , (KH
1 - HK'

, KP' - HQ'
-PK

, QP - PQ) \QH' -PK' , QP' -PQ'

(K'H-H'K, K'P-H'Q\, (K'H'-H'K', K'P'-H'Q'\
\Q'H-P'K, Q'P-P'QJ \Q'H'-P'K', Q'P-P'Q')

and we can thus infer, beside

(H
K\ ey> (ff

S'\ = rem ,

\H' K'J \K K'J

that also (P Q\fy, (P P'\ = re.

\P' Q'J \Q Q')

and (H K\^ (P P'\=0.
Q

The complementary system of defective integrals is thus, like the original

system, of index r*.

68. We can prove that the function of p variables

regarded as a function of the place (x) of the Riemann surface, has rp zeros.

We have from (a + rot') T'= /3 + r/3' the equation

Oe'-T'a')r = -y8 + T'5,

*
It is shewn in the Appendix to Part II., Note I., that we can write the matrix / P Q \ in

\f Q'
the form / P Q \ =/'*','

where /
'
is of type (2p

- In, 2p -
2n), and k' is of type (2p

- 2n, 2p) and has unity for the greatest

common divisor of its determinants of order 2p
- 2n, and that the moat general forms of/', k' are

/'a, a" 1
*', where a is a unitary matrix of type (2p -2n,2p- 2n). And, in Note II., that a matrix

/" can be found such that

where is the first invariant factor of k'e^k'. It follows from Appendix, Note II., that divides

r, and it appears probable that = r, but this is not proved here. In the case of the matrix

(H
K \ the number r was introduced as the first invariant factor ;

but in the applications that

H'K> )
have been given of the index it was the equation

IllK \ ta) /ff H'\=rf2n

\H' K' ) \K K' )
that was utilised.

B. 16
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and hence when the normal integrals V increase by I + rl' the arguments

(ft' T'O')V increase by

or -+T-
or, say k + r'k',

(

\-

and the function is multiplied by

exp [- 2iri(rWk'+ ^r'k'
2

)].

Thus, considering the integral

where (k,k')=( $ - 0\ (I, I')
= rA-(U')>= (M N \ (I, I'), say,

a' a) \M' N'J

round the sides of the 2p canonical period loops for the integrals F, the con-

tribution from the two sides of the loop (a^) is

-jd(rWk'),

taken once along the positive side of the loop, namely is the value, for lp
=

and
(/, I') otherwise zero, of

y=l

or -.
y=l

or -[M'(N+r'N'y] fif ,

and the contribution from the two sides of the loop (dp) is

-jd(rWk'),

taken once positively along (a/), namely is the value, for l'
ft

=
\, and (I, I')

otherwise zero, of

y=l Y =l

The number of zeros is thus

I (UN' - S'
P=l /3=1

which is rp. Of these rp zeros we have shewn that rn belong to the factor

The preceding result becomes easy to understand from another point of

view. We proceed to prove that the function of p variables @(rF, T') is,
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save for an exponential factor, a polynomial of order r in 2f functions

V,T\q).

Let A denote the matrix

the relation Ae
2p
A =

re^, is the same as

/So
-

aft' \ = r /O -1\,/fi-aj8_ /3a
-

a/Sr \ = r /O -I
U'a-a',9 &*-*&) \\ ()

so that 4 is a symmetrical matrix
;
let 7 denote the p integers forming the

diagonal of the matrix /So, and j' the p integers forming the diagonal of /3'a';

let V denote any p arguments ; put

</> ( F, T)
= -""

[(' _ T'g')F, r'].

We have then, if I, I' be rows ofp arbitrary integers,

<f> (F+ I + rl', T) / 4> (V, T) = exp [- 2wiff] ,

where H=(fi- r'a) VK + J r'A' 2 + $4 [( F+ i + rZ')
2 - F2

] ,

the integers k, k' being, as before, given by

ft
1

,

-

we proceed to shew that save for integers, the addition of which will not

affect the value of e~2wiB
,
we have

for in H the terms containing F are

(P-T'')Vk'

or [Off
- V) (- S7 + 50 + (^ - V)

'

(I + T/')] F,

or (/3'-aY)(o + o'T)Z'F,

or, since (a + ret') T' = yS + r/3', T' (a + O'T) = /3 + /9V,

they are [^(o + O'T)
-

a'(/9 + /3V)] Z'F,

or H'F;

and the terms in #, of dimension 2 in Z, I', are

or ir'(- 57 + a/') (- a7 + a/') + | (/9'
- aV) a'(i + ri')

2
,

or - iaV(- a'i + of) I + iar'(- 7 + f

+ | (' - aV) a'Z2 + r (' - aV) a'M' + *T (/3'
- aV

or i/3'a7
2 + [^OT a + (- /3 + ar') a'r] r

+ [- ^OT'O'
- ar'a' + (- /9 + T') a'] ',

162
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that is i/3'o7
s -

ftall' + [^ar'(S + or) - i/3 (a'r + a) 4 i/8a]
'

or, omitting integers, ^y8'a7
a + (\rr + ^fta) I'

1
,

which, since If
= ^ (mod. 2), is equivalent, save for integers, with

On the whole then, as stated,

^(F+ J + rl', T) = exp [- 2irir(W + ^rZ'
2

)
-

Tn'yZ' + iri 7'q </>(K, T).

If for a moment we put

we have

rl', T) _ .,-, n + Tm _ 2)r,> (FC + J TO - wiy
' + *iy'l

and the function i/r(i7) is a particular case of that discussed p. 20 of Part I.
;

we thus have

, T) = 2

which, in virtue of the formula (p. 23, Part I.)

= ef q + rq,

is the same as

where Ch is independent of V, and the summation extends to rp terms,

the symbol h denoting a row of p integers, each one of the set 0, 1, 2,...,

l 1.

The function
<j> ( V, T) is manifestly an even function of V; this is not the

case for the single term @ rF, rr occurring on the right;

there arises then another term on the right corresponding with this one,

and the expression on the right can be expressed in terms of less than rf

functions (Abel's Theorem, 287). It can thence be shewn (ibid., Chap, xx.)

that
<j> ( V, T) is expressible as a polynomial of the rth degree in 2f theta

functions of the form

/ '\

differing from one another only in their half-integer characteristics J ( )

The function of n variables (/x~X <r), whose arguments are linear

functions of the p variables Flv .., Fp ,
is then a factor of this polynomial in
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the functions F, T i ( ) ji
iQ tne sense that the quotient of these

functions is an integral function of Fj,..., Vp ,
for arbitrary values of these.

When F is regarded as the set of normal integrals of the first kind on
r / '\~\

the Riemann surface, each of these last theta functions, F, T; ^ (

J
,

regarded as depending upon the place (x), is known to have p zeros; it is

then to be expected that the polynomial of r-th degree in these functions, to

which
<f> ( F, T) is equal, should have rp zeros as was previously proved.

69. If m denote the diagonal matrix of type (p, p) having all elements

zero save those in the diagonal, the first n of which are each -
1, the last

p n of which are each +1, it is at once seen that the matrix, of type

(m 0\,
\0 n)

belongs to a linear transformation ;
and that this transformation, applied to

the period matrix

T' = (<T 0\,

(o P)

leaves this unaltered. And hence that, when

A=/ /3\

V &
is the matrix, belonging to a transformation of order r, of p. 238, the matrix

A/m 0\rA-,= / ft\fm OW ft' -ft.
\0 m) U jSVVO m)\-&' a)

is that of a transformation of order r3, which, applied to the original period
matrix T, leaves this unaltered. The Riemann surface is therefore such that

there is a complex multiplication, or principal transformation, of order r2
. If

the compound matrix belonging to this be written

// g\,=bfm \ rA-1

,

\f g
1

) \0 m)
we at once find

f+rf =
r(ct + ret) m (a + ra')-' ;

the general inference, that [(/+T/')F, T] is expressible as an integral

polynomial of order r2 in 2f functions ( F, T q), is easily seen to be contained

in the results already given.

70. The preceding investigations have sufficiently shewn the importance
of the number r, the Index. Consider now* the equations

"
Wirtinger, I'nteTguclinngen iiljt-r Tlietafunctitmeit (Leipzig, Teubner, 1895), p. 61 ; Wirtinger,

"Zur Theorie der 2;i-fach periodischen Fonctionen," lUonatth. f. Mathematik u. Pliysik, vii.

Jahrg. (1896).
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where (c,), ..., (cn) are arbitrary places upon the Riemann surface, Ul ,..., Un
are arbitrary values, and we enquire as to the existence of places (a;,),

. . . , (#)
to satisfy these equations.

With the function (fir
l

U, a) we can form, as has been remarked, single

valued functions of f/i,..., Un ,
with no singularities for finite values of

IT,,..., Un other than poles, having 2n systems of simultaneous periods, whose

matrix is (/*, //). Let -^ ( U) denote such a function. We can then take n

systems of constants (aj-
r)

, ..., a,,
(r>

),
for r =I,...,n, such that the Jacobian

of the n functions ifr, ( U) = i/r (U + a(r
>)

does not vanish for all values of

TJlt ...,Un . The function

^MV" ' + ...+ Wi*"
c
", Unx" c

> + ... + Un
x" e

")

is then a rational function of the places (#,),..., (#) upon the Riemann

surface. For when one place, say (a;,), makes a circuit upon the Riemann

surface, the arguments are increased by quantities Ut, where t is a row of

2p integers, while

n = ak = (p, p!)fk = (/i, //) (H K\=(pH + pfH', ?K + /#'),

\H' K')

where H, H', K, K' are matrices of integers; the function is thus single

valued upon the Riemann surface in regard to each of (a^), . . .
, (#) ;

and for

undetermined positions of (#2),
. . .

, (av.) it is, as a function of
(a;,), capable of

expression about any place as a series of integral powers of the parameter

involving only a finite number of negative powers. Put then

^r (!*""' + ... + ,*""", )
= Hr (xl,...,xn}\

the Jacobian of the n functions ur
x>> e

> + ... + wr
*"' * in regard to aslt ..., xn is

not in general zero; in fact, if dur
x '!

*/dxi
=

')^r (xs), this is only so when a

linear function A^ (a;) + . . . +A n%n (x), chosen so as to vanish at (a;,), . . .
, (a^_,),

also of itself vanishes at (#). The n rational functions #..., Hn are thus in

general independent, and a certain definite limited number of positions of

(xl ),..., (xn), depending upon the form of these rational functions, can be

chosen so that the equations

H1 (x1 ,...,(Kn)=C1 ,
Hn (xl ,...,xn)

= Cn

are satisfied, for arbitrary assigned values of Ci,...,Cn . This number is

independent of (?!,..., (7,,. There are positions of (a;,),..., (xn) for which one or

more of the rational functions //,,..., Hn become indeterminate ;
for positions

of
(a;,), ..., (xn) in the immediate neighbourhood of but not constituting such a

set of positions the functions have definite values. Now when Ult ..., Un have

definite values the functions
i|rr (f/')

have definite values in general. We infer

therefore that the equations

ur
x>- c

< + . . . + Ur*"- ^=Ur (mod. II), (?
= 1 ?i),

have, for assigned arbitrary finite values of Ult ..., Un ,
a definite finite
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number of sets of solutions (a,),..., (#), this number being independent of

17, ..... Un there being exception to this result for values of U^,..., Un
belonging to certain continua of less than n (complex) dimensions, upon
which the functions ^(U),..., -^rn(U) become indeterminate.

The preceding reasoning is given only as provisional, the cases of exception

not being examined completely ;
it may suffice for the present chapter, which

is confessedly incomplete and only illustrative in its purpose.

With the assumption of the definiteness of the number of sets of solutions

of the equations we can now determine this number.

Put

so that each of ^ J(

' is a function of the two real variables >-i, fM for all

values of r
;
we then have 2n equations

V" +V2' + ...... + V' =V
J . 0'

= i. 2. . (2w ;

we now allow each of (#1), ...,(#) to take, independently of the others, all

possible positions on the Riemann surface, and interpreting Vi,.*.,Vm as

coordinates in a real space of 2n dimensions, we evaluate the volume

described in this space by the corresponding point (V1 ,...,Vm ),
this volume

being expressed by

fj...jdV
l
dV1 ...dVm ,

=
atfcU/afc., etc.,

at;,
1"1

or

Since

the Jacobian herein contained is

St;,
(l)

9t;,
(I) dv

% '

8_t^>

~a&
' dt*

a(?4

which, expanded as a sum of products of n binary determinants (see Appendix
to Part II. Note III.) chosen respectively from the first and second, the third

and fourth,..., the (2n l)th and 2n-th columns, is equal to

wherein A:,, A,, with kl <ktt are any two of the numbers 1, 2,..., (2n), and
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k,, kt ,
with ka < kt ,

are also any two of these numbers other than kt , k,, and

so on, and the sign + is upper or lower according to the parity of the order

klt k^,..., km ;
if we write

W to& 3t> at//>
*-' * _ *2-l *fr _ 1-7. I "I

?lf Tit at ^fc L*irHH "^J'
ffsr-i 0?2r 0?2r Ofj,-!

the expansion is

and in any term the only factor involving the two variables _!, %w is

Now when (ocr) describes the whole Riemann surface, the double integral

f f
I [A^-i, k^d^r^d^r is equal to the single integral Iv^ ^ dv^ extended along

the edges of the 2p period loops; if we put nr_ a
= Hir -i, a + iH2r> ,

for

r = l,...,n and o = l, ..., 2p, the period increments of the function v* for

passage of the loops are H^ a ,
and we have

f
p

(5=1

a quantity formed by a familiar rule from the \th and /tth rows

H*.,!> H*., pi ff\,p+i,---,ff>^,tp

-"
It, 1 1 i

"
, p >

-"
/, p + 1 > >

"
/i, tp

of the matrix (^A> ),
which we may call the combinant or the splice of these

rows, and denote by (\, p) . We have then

where, if II = M + iN, both M and N being matrices of type (n, 2p) of real

elements, we have

a matrix of type (2n, 2p), consisting of real quantities. The original integral

thus becomes

i (."-1 > ^)jf (* > "^/# \ktn-i ) "-sm/jj !

here the number of terms is the same as in the expansion of a determinant of

type (2n, 2) by binary determinants, namely

/2w\/2w-2\

U/i 2

two terms, for instance, differing from one another only in the order of the first

two of the n factors of a term, occurring separately ;
in fact however

(ki, k)H (k,, ki)H
= (ks , k4)H (h,_kt)u ,

2\ /4\

J-(2 )=(!)1.3.5...(2
W -1),
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and so on
;
the value of the determinant is thus

(* k,)k3 , k<.

where the order of the n factors ofany term is indifferent, and this is only the

expansion in the form of a Pfaffian (see Appendix to Part II., Note III.),

ofthe value

Precisely the same deduction may be applied to any number of integrals

of the first kind, independently of the existence of defective integrals ;
for

instance, ux' c
being any integral of the first kind, if we put

and denote the periods of ux~ c for passage of the 2p period loops by

H.+iK, ..... Hp + iKp> HS+iKS, ..., Hp
' +iKp',

we have, as (#) traverses the Riemann surface,

the right side denoting the sum of the parallelograms whose perimeters are

described by U=ux- c
, upon a plane of U, as (x) describes the sides of the

period loops upon the Riemann surface.

If now II = vrh, where CT is any matrix of type (n, 2n), and h a matrix

of type (2n, 2p) consisting of integers, and II = M + iff, iz = (j,+ iv, we have

M=p.h, N = vh,

"

so that HeipH= /M he^h^fj,, v),

and hence
jj

...

jdV.dV,...
dF = (n!)

wherein denotes the volume of the period cell defined in the real space of

2n dimensions by the periods or, and the other factor (n!) ( j fie^h] )% is a

positive integer.

This is true when or represents any set of periods in terms of integral

multiples of which the periods II can be expressed ;
if in particular we

take II = ak, where k is the unitary matrix of type (2n, 2p) described earlier

in this chapter (p. 230), and (a, 0)=IIm, then increments of Ult ..., Un

which arise by closed circuits of any one of (x^, ...,(#) on the Riemann

surface, correspond to a change from a point (U) to a point which is congruent
thereto in regard to the period cells associated with the periods a, and con-

versely ; hence, assuming (p. 246) that, as (#,), ..., (xn) traverse the Riemann
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surface, the point (U) takes up every position the same number of times, we

infer the result : The number of different sets of solutions of the congruences

ur
x" c

' + ... + ur
x- e" = Ur (mod. II), (r = l, 2, ..., n),

before called the multiplicity, is*

the factor n ! being removed because a set of solutions is not affected by

permutation of its constituents.

If (r, s) denote the splice of the rth and sth rows of the matrix k, this

number of solutions of the congruences is the Pfaffian

2 (12) (34) (56)...,

formed with 2n numbers. If the period loops be differently drawn on the

Riemann surface, which comes to using periods II' = TIJ, in place of II, where

Jfy,J= e-jp,
the number, becoming ( kJe^Jk \

)i, is unaltered, as should be the

case. If (Appendix to Part II., Note II.) g be a unitary matrix of integers of

type (2n, 2rc) such that

gkey,'kg=/Q -d\,
\d ())

where d denotes a diagonal matrix of positive elements d,, dj, ..., dn , wherein

dj/d], ds/djj,
dn/dn_i are integers, the multiplicity a is also given by

<r = dida ... dn .

We have seen that the index r is equal to the first invariant factor dn ;

the two numbers are thus equal when n = 1. When n = p we have k = 1, and

the multiplicity is unity, as is known.

71. Consider the case when n = 1. We have shewn that we can write

n=a/fc,

where k is a matrix of integers of type (2, 2p), which is unitary, in the sense

that its determinants of order 2' have unity for their greatest common divisor.

We have then
ke

ip
k=/0 -R\,
U O)

p
where R = 2, (kl>ir ka , r+p

- kit kllf+p),
<T= 1

is the splice of the two rows of k; according as R is positive or negative
take now

/= /I 0\
,
or /= /-I ON .

\0 l) \ l)

and obtain fke.ipkf= re^ r /O 1\ ,

U (V

where r is a positive integer (R or R), as in the general case.

*
It follows from preceding work that this is not zero (P- 225).
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Put as before fk= (H, K\,
\H', K'J

so that, if k = /fa ,

[fa',

we have fk = (fa ,fk1 ,
ks \, or /-*!, -As\ ,

\i , Ka / \ A-'i ,
A"2 /

and the determinants of order 2 from this have unity for their greatest

common divisor*.

It can now be shewn that a matrix J of integers can be chosen, of type

(2p, 2p), satisfying

so that
(H, K\J=tr, 0, 0, ... 0; 0,1, 0, ...

UP, K') [o, 0, 0, ... 0; 1, 0, 0, ...

where the elements not written are zeros.

To make this clear consider the character of a matrix J. A linear

transformation, expressed by a matrix of integers J of type (2p, 2p) which

satisfies the equivalent equations

may also be denned by the fact that if, denoting rows of p quantities by x and

x', and also by f, (', y, y", rj, r], we put

p
the splice (1, 2),

= 2 (<fiy{
-
*'yO f t^e two rows

(* *\
(y y')'

is equal to the splice of the two rows

VI

for we have ix, a!\ = /%,

(y, y) U
ami / ft /"I 9\\ /T T'\ /f ?S\t*ii> i / \j

t V ' r \
~~

/ *^j *** \ ^yp I > \

[(1,2), ) [y, y') [y, y')

If /a, a'\

[b, b'J

be a unitary matrix of type (2n, 2p), that is a matrix of integers in which the

determinants of order n have unity for their common divisor, and

/a, a'\J=(A, A'\,ia, a\J=(A,
(b, b') \B, B')

In general the determinants offt of order 2n have d^'jd^ ... dn as their common divisor.
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we have la, a'\ (x, x')
=
(A,

A'\ (f, f) ;

U V) \B, B')

also from fa, a'\
(A,

A'\ J~',

(b, if) (B, y)
since J is unitary and any determinant of fa, a'\ of order 2n is a sum

U, b'J

of products of determinants from IA, A'\ and J~l

,
each of order 2n, it

(B, y)
follows that (A, A'\ is unitary. Also, as

(B, B'J

fa, a'\ey,/a b\ = (A A'^e^/A B_\
\b, b'J (a' b'J \B B'J \A' B'J'

the splice of any two rows of fa, a'\ is equal to the splice of the two corre-

U b')

spending rows of /A, A'\
ID D/ )

VB, K I

Now particular linear transformations are :

I. That in which xr and xr
'

are replaced by linear functions of fr and f/

with numerical coefficients of determinant unity, the other 2ja 2 quantities

x, x' being unaltered
;
for this evidently replaces xryr

'

xr'yr by gr i) r

'

'?/,>

and leaves the other binary determinants xtys

'

xs'yt unaltered. It corresponds
to replacing the rth and (p + r)th columns of fa, a'\

,
which we may denote by

U, v)
cr and cr', by two columns Or , Cr

'

given by

Cr = \Cr + l*0r> Cr Pcr + fOn Xr
/J,p

= 1.

A particular case is CT
= cr ,

Cr
' = cr'.

II. That in which

for which xryr
'

xr'yr + xsye

'

x,y,

= & (y
+ x^o - (/ + xf/)i,r + (f,

- xfr)i,;
-

f; fo.
-

\*, r)

the variables other than xr , x,, xr', x,' being unaltered. It corresponds to

a change of the columns of fa, a'\ expressed by
U, v)

III. That in which

*, = ,, *. = &-xfc., x'=f'+\f: + ufr , x'=f'
'^ includes (II.), for /A

= 0, and is equivalent to an interchange of columns

where r il>v
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Suppose now fa, a'\ is of two rows only, or n = 1. By transformationsfa, a'\

(b, b'J

(I) we can first reduce all the first p elements of the second row to zero
;
then

by transformations (II) we can reduce all the second p elements of the second

row to zero except one of these, which cannot be zero since the determinants

of fa, a'\ are not all zero
;
if this element be denoted by Br', and r 4= 1, we

U b'J

can, first, by transformations (II), add the (p + r)th column to the (p -f l)th,

and then subtract the (p+ l)th from the (p + r)th; we may thus suppose

r=l; and the second row of the transformed matrix now has zero in every

place except the (p + l)th. After this, leaving the first and (p + l)th

columns untouched, we can similarly, by transformations (I) and (II) in turn,

make the 2nd, 3rd, ... pth elements of the first row all zero, and the (p + 3)th,

(p 4- 4)th, ...,(2/j)th elements also all zero. The transformed form of the

matrix fa, a'\ is now

\b, b')

Q 0.. R 8 O..N;
000.. P 000. . J

since this is unitary we have PS = 1
;

if P = 1 we can change the signs of

the first and (p + l)th columns
;
we may thus take P =

1, S = 1
;

if further

the splice of the two rows of fa, a'\ is r, we can then infer Q = r. The

U, b'J

transformed matrix is thus

fr O..R 1 O..V
\0 0.. 1 0.. )

Lastly apply the transformation (III) in the form

= c -

this replaces R by zero in the matrix, but effects no other change.

The transformation indicated is thus effected, and we have

UJ =
(/*, it)fkJ=(n, /) /r .. 1 .. \ .

lo o o.. i o o.J

Now put J /7 S\ and take rlt a matrix of type (p,p), so that

W v)

it can then be proved as in the earlier part of this chapter (p. 237) that,

(i) the matrix (7 + TV') is of non-vanishing determinant, (ii) T, is symmetrical,

(iii), if n,, ...,np be any p real quantities, the real part of i-r^tf is necessarily

negative and not zero
;
take also a system of p integrals F,', ...

,
Vp

'

given in

terms of the original normal integrals F,, ..., Fp by

(7 + T7')-F=F' ) =(S'-Tl7-')F,
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there will be* a new system of canonical period loops on the Riemann

surface, for which V are the normal integrals, having a period matrix

(1, T,). And in particular, u being as before the defective integral under

consideration, the integral
-

(t~
l
u, which from the equation above hasf the

period system following (where a- = /*"'/*')>

r
.

=(i.
0,0,. .,-,-,

is equal to F,', for there is only one integral having at the new period loops

(dp) the periods 1, 0, 0, .... It follows then that in rl the first row reduces

to its first two elements, these being a\r and 1/r. From the symmetrical
form of the matrix T, it is clear that F2', ..., Vp

'

form a defective system of

(p 1) integrals, the second period of F2

'

being r times the (p+ l)th, the

(p + l)th periods of F3 ', ..., Vp
'

being all zero (cf. p. 240).

We have already reached the conclusion that when n= I, the multiplicity

is equal to the index r (p. 250) ;
and from the equations

|/|
=

1, fkJ= fr . . 1 . A,
VO . . 1 . ./

which we have used, we have (\key,k\)^
= r. This involves the consequence

that the equation
ux ' f =U (mod. H)

is satisfied by r positions upon the Riemann surface.

We can give another proof of this, independent of the preceding inves-

tigation of the multiplicity. The periods II are sums of integral multipliers of

the periods HJ for the new period loops, and the congruence is equivalent with

F,' =
l
-
,-'

= F
(mod.

i
,i-'nJ\ ,

~V
(mod.

*
,
?

where F is an arbitrary constant, and F/ is considered as a function of the

position (x) on the Riemann surface. Now the elliptic theta function

I

vanishes, as we know, for

I f 1
" J.IA. T^ UtM. V I f* f

2

* See the author's Abel's Theorem, p. 559.

+ Another proof of the theorem is given in the author's Abel's Theorem, p. 658. It can be

shewn in fact that a matrix J such as is required can be constructed with the first, second and

(p + 1
)

t.l i columns of the form

/ K'rx+ K.. 2. A

{-H'ry-H.. y..)'

where x, y are such columns of p integers that rx + K, ry -Hare 2/j integers with unity as common
factor. (In the proof referred to, p. 659, line 26 and p. 660, line 9 for 'constituents of the first'

read ' constituents of the second.')
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where M, M' are integers ;
the corresponding positions (x) are therefore such

that the values of F,' are congruent for modulus (-, ),
and it is such

positions that we wish above to enumerate. It has however been previously
shewn (p. 234) that the function (fir*u

x - c
, <r) has r vanishing points on the

Riemann surface, and the proof was independent of the investigation of the

multiplicity. The theorem is therefore proved.

To determine the solutions of the equation

ux- c = 7 (mod. n)

when U is given, we may form the two functions

which, since fi~
i n =(H + aH', K + aK'), are rational functions of the

place (x). To each value of f belong the 2r solutions of the two congruences

u*> e = U, ux - c = -U (mod. H),

of which however only the first r correspond to a given value of 17. We infer

therefore that, if (xlt y,), ..., (xr , yr ) be the solutions of the first congruence,

there exists an equation

whose roots are xlt ..., xr ,
wherein the coefficients Hlt ..., Hr are single

valued functions* of U, rational in and 17.

The existence of an equation

implies that x', y are single valued doubly periodic functions of p.-
lux > c

,
with

periods 1, a, and therefore rational in x, y. There is thus a (1, 1) birational

transformation of the Riemann surface into itself corresponding to every

such equation ;
such a transformation is necessarily periodic, and if k be the

index of periodicity, the equation can be birational ly changed to a form

(*, )
= (Hurwitz, Math. Annal xxxil. (1888), p. 291).

72. Pass now to some examples.

For the equation f (Kowalevski, Acta Math. IV. (1884), p. 393)

[x (ax + by)$ + [y (ex + dy)$ + [1 + ex +fy$ =
0,

or F=\

Extensions of the reduction of the matrix ( H K \ here given for n= l are investigated
(
H K V

V H' K' )

by Poincare, American Journal, Vol. vin. (1886), p. 301, who gives various other results not

referred to in the text. t See Note, p. 272.
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the general integral of the first kind,

(xdy
-
ydx) (Px + Qy + R)

where ^ = -
[x (ax + by) + y (ex+ dy)-(l+ex +fy)] [2 4 ex +fy],

reduces for P =
1, Q = 1, R = 2 to a constant multiple of

f xdy ydx _ F rff

J 2 [xy (ax + by) (ex + dy)]*

'
~

J
[4f (a + b%) (c +

if | = yjx ; putting also rf 4 (a + bg) (c + dg) we have

from which it appears that the index r is 2. And we find at once that if we

take the self-inverse transformation

x = - x (1+ ex +fy)~
1

, y'
= - y (1 + ex +fy)~\ and ea; +/y + 2 =

)

2) *

so that the two solutions of the congruence

ux - e = U
are (a;, y) and (x, y').

According to the theory given in the text the remaining integrals are

also defective
;

it would be interesting to verify this directly.

73. Another class of surfaces for which defective integrals arise are

those represented by an equation

f = (a?
-

Cl ) (a?
-

cfi ...(*- cW.)-

The first case of importance, where m =
1, was remarked by Legendre

and Jacobi*
;

there are then two defective integrals each reducing to an

elliptic integral. As sufficiently representing the general case we shall

take m = 2, so that the equation, of deficiency 4, is

f =
(a?

-
Cl

2
) (a?

- ca
3
) (*

- cs') (x*
- c4 ) (a?

-
c,

1
) ;

by a? = f each of the integrals
fxdx [x*dx

JT' J~i~

reduces to a hyperelliptic integral of deficiency 2, and, as will appear, these

two form one system ;
the same is true of

fdx Ca?dx

h' J~y~'
as is seen by putting x= x{~\

*
Legendre, Fonctiom Elliptiques; Jacobi, Crelle, vm. (1832), p. 416.
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Suppose, for definiteness, each of c,, ..., c5 to be real and positive, and

Cj > c2 > c3 > c4 > c5 , and take the period loops in a usual manner, as in the

figure :

The value of y for a real x> Ci, in the lower sheet of the Riemann surface,

being taken to be real and positive, and using A in general for a real positive

quantity, the values of y in the lower sheet in the various segments of the

real axis are indicated by the diagram :

Thus, considering one of the two integrals

(xdx fx'dx

J~y~' JT~
which we may call u, and denoting by flr ,

flr
'

its period increments, for

passage from the right to the left sides, respectively of the period loops

(ar), (ar'), we have, by a well-known rule (p. 32 of this volume),

-c,

-c,

;= 2
J c,

= 21 du = tlt

' = K,
'c,

f-4 fC>
-

fl, = 21 du = - 2 du = fl4
= iM,

J -c, J r,

/- ft

fl,' fi3

' = 2 I du = 2 I du = fi3

'

fl/ = .AT,
J -ct

J c,

- n, = 2 f

c'

d = o,
J -"

where each of H, K, M, N denotes a real positive quantity ;

B, 17
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these equations give

H! = iH, f!2 = iM, fis
= 0, H4

= ii

[CHAP, vin

For the two integrals under consideration let the respective quantities H, K,

M, N be distinguished as Hlt Klt MI, N! and ffa ,
Kt , M2 ,

N3 ; put, as in

general,
n = /nu ...n 14l nu'...i]

we then have

n-/tff,, 1
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form a defective system of integrals, with index 2 and multiplicity 4
;
the

four sets of solutions of

/<*>>
xdx

/(*>)
xdx _ T

,
/<*> a?dx f

M a?dx _ TT-
~T I
- = t/i>

--h I
- = U.

Jo y Jo y Jo y Jo y

are in fact obviously of the form

To construct the theta function @ (n~
l

u, a-) we should put a = (p, p')f',

we find then

7,, -JfA,

/ -W

74. As another example consider the surface associated with the equation

Drawing cross-lines joining #=1 to x i, x= 1 to x = i and x = i to

x = i, the latter passing through a: = oo
,
and agreeing that on passing the

first from right to left the sheets 1234 change respectively to 2341, on

passing the second from right to left the sheets 1234 change respectively
to 2341, while on passing the last from left to right the sheets 1234 change

respectively to 2341, as indicated in the figure, and denoting the paths in

the various sheets by the various kinds of line indicated, we may draw a

system of canonical period loops as in the figure. The surface is of

deficiency 3, and three integrals of the first kind are I
--

,
I

"
and

J Y J Y
. Let the increments of any one of these for the left sides respectively

of the loops (a,), (a,), (a,), (6,), (b,), (&,) be called nlf ft,, fl,, fl,', fl,', ,' 5
the

first is obtained by a negative circuit of (&,), and the fourth by a positive

circuit of (a,), and so on. Calling the branch places #=1, x = l, x=-i

respectively by the numbers 1, 2, 3, and a single positive circuit about either

of these by the same number, the circuits for the six periods are then

respectively

Hi , n, , n, , n,' , iv , iv

31-', 3-l l-'2-J
, 1312, 2-1

!, 23->l-1

2, 13a
2,

where the symbol 31~' means a circuit resolvable into a positive circuit about

3 followed by a negative circuit about 1, etc.

Now let e = i
m

, where m is 1, 1 or 2 according as we are considering the

first, second, or third of the integrals I
^~

,
and let P, 0, R

J Y J f J if

172
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00

12341

Canonical dissection for

First or lowest sheet,- ; second sheet, ...... ; third sheet, ^^^^,; fourth sheet, -----
;

the passages at the cross-lines are given by the rules marked in the diagram 12341, 14321.

denote the values of any one of these integrals taken in the first sheet from a

point in the first sheet respectively to the branch places 1, 2 or 3
;
then the

values obtained by the circuits put down above are respectively, if m = 1 e
l

,

3
= R (1

-
e-') + e-'P (1

- e-1

) 4- e-'Q (1
-
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n3 =P(l- 6) + 6JR(l-e) + 62P(l-6) + 6
3Q(l- 6

),

261

- e)
= -^(P -

Q),

-
e) + eJR(l

- e-) + P(l -
e-') + e-'Q(l -

e),

Put

5= A f
1 dx A

\J
"

so that

ri*._ 4 fi**. r_f-_ Mi /'-/' =(1
_,

Joy Jo IT Jo Jo Jo Jo

.-B. r_r =0
,

r_r= 2S)
Jo Jo Jo Jo

f

l ^~ = -C, r^ = iC, f-(
1

= 2C, r -[-(!-)
J o IT Jo IT Jo Jo Jo Jo

then with

1 tx ydx 1
f
x
xydx 1

the lower limit being a: = 0, y = 1, taken to be in the first sheet, we have

P Q P R~-

foru,̂'

for i< 3 ,

2S
= 2, /^ = 1 + 1,

P-fl
2(7

and the period scheme for ,, wa> M3 is accordingly, from the results above,

t, 1, i; -(!+), t. 0,

-(!-{), -(1+t), -(1+t); 0, 1-t, -2i,

-(1-t), -(!->, 3-t; -2, 1-t, 2.

\ t'dx ie* *xdx
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then the periods can be respectively written,

0i ;
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an elliptic integral of which the periods are ZA and 2Ai; both
-i iri iri in

-'( V-)/(~*/t*). and 7/
= 2^(p-l)* = 2\/2e"T \V(e"

are rational functions of the point (x, y) of the original surface

_n
while conversely, x- and y

2
, equal respectively to e 4

(f + i)
2

/'?
^2 and

Wv

e 4
(g iy/T)^, are rational in (f, 77). A similar transformation to the same

elliptic integral is possible for t>2 and v3 . This integral allows complex multi-

plication, for instance* by =(* l)/2if, and there are thus other trans-

formations of the original integrals to the same elliptic integral.

The equation x* + y
4 = 1 can be solved by single valued functions of a

single parameter in the form

-
T

)
, y =

where, with
<?
= ef,

r,(r)
= q 2 (-l)V'f'.

= -oo

See Weber, Elliptische Functionen (1891), p. 86. See also Dyck, Math.

Annal., xvn. (1880), p. 510.

Example. This case furnishes an interesting example of the distinction to

be made between the algebraic definition of a normal system of periods,

such namely as satisfies the equations expressed by Hefl = 0, and the

geometrical definition by means of a canonical system of period loops forming
a complete boundary of the Riemann surface. As is illustrated by a case

below, it may sometimes be easier to determine algebraically a set of normal

periods than to make a canonical dissection
;
but it is only for a system

of periods determined by such a dissection that the formula obtained above

for the multiplicity is proved to have the interpretation attached to it.

Take the integrals

-
i), i(l

-
i),

it is easily seen that their periods, calculated from the above scheme, are

-(1-t) , 0, 4-t
; -3, 2, 3

, -i, -2
; 1, 0, -(1+t)

Denoting this scheme by fl, we find at once that fle,,n = 0, namely that the

*
Cf. the author's AbrVt Theorem, p. 637. It is necessary to take r = a2 + /3

s and to solve the

congruences ai + /3fc'
= 0, -fik + ak' = (mod. r) ;

the case r=2 is that mentioned in the text.

For this elliptic integral the complex multiplication is considered by Abel, (Euvres, i. (1881),

p. 352, etc.
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splice of any two rows is zero, and the periods obey the algebraic conditions

for a set of normal periods. Putting now

H = 1
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value six times on the Riemann surface, the integral ul takes each value

twice, and the integral u3

'

takes each value seven times. We have

1 i*

M,' = -: I (X + u + 2v) do),
4.d J

i- r,.
MS = -7-J- I (if* + V) d<0,

QiA J

' =
ZA I (x + A1 + 2v - iv) dco

;MS

the two places where u2

'
has the same value are obtainable from the remark

that the integral is unchanged by putting \ = i\', p.
= v, v = /*',

a self-

corresponding point of this transformation being \ = 0, v + ip = 0. It is not

obvious what are the six places where w/ has the same value, or the seven

places where u3

'

has the same value. More generally we can find an infinite

number of integrals of the form Pw, + Qut + Ru3 ,
of which the periods are all

expressible in the form M + Ni, where M and N are integers.

75. For another example we take the equation

tfx + y + a? = 0.

If we put s = x,t= y
z
x, which give x = s,y = s*/(l

-
), we have

s7 = t (1
-

if;

the two equations, so birationally related, are of deficiency 3, the integrals of

the first kind being

f sdt
[_s*dt f

stdt

)t(i-ty jt(i-t)' ]t(i-ty

We do not attempt to dissect the Riemann surface associated with the

equation s7 =t(l-ty, but consider the integrals on the plane of t. The

values of s represented by the equation s7 =t(l ty have cycles at t = 0,

t = l,t = x, at each of which all seven values change into one another;

a closed circuit on the <-plane is equivalent, so far as giving rise to additive

increments for the integrals, to a certain number of positive circuits of

the points t = 0, t = 1
;
a closed circuit equivalent to/ circuits positively round

t = and g circuits positively round t = 1 will lead back to the same value of

2irim

8 if/+ 2g
=

(mod. 7), or g
=

3/. If e = e 7
,
where m = 1, 2 or 4 according

as we are considering the first, second or third of the integrals of the first kind

written above, it is at once seen that the additive increment for the integral,

by any closed path which leads back to the same value for s, is, save for

a constant multiplier appropriate to the integral under consideration, a sum

of integral multiples of the six quantities /*,, fa, ..., pa ,
where ^ = 16*.

For consider a path consisting of fl positive circuits of t = 0, followed by
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$! circuits of t = 1, followed by /, circuits of t = 0, followed by gt circuits

of t=l, and so on; we may denote this by

(ox-ay, (o^ a>".. .(oX'(i)''-

where, for instance, /, or gr , or both, may be zero
;

if the values of the integral

under consideration, from the initial point of integration with a definite one of

the seven determinations for s belonging to this value of t, straight to t = 0, be

called A, and straight to t=\, be called B, the closed circuit indicated above

gives, for the integral, the value

- e*>' B),

wherein, by hypothesis,

/i+... +fr+ 2(sr,+ ... +gr)= (mod. 7);

it gives then

(A - B) [1
- ef>

or

(A - B) [fj.fl
- H

if then the integral under consideration be divided by A B, and the

quantities fj,
reduced by the rule fiK = fih when h' = h (mod. 7), /i

= 1, the

additive indeterminatenesses of the integral will be expressible by sums of

integral multiples, with multipliers the same for all the integrals, of the six

quantities /tj, ..., fis . Thus, if

P = f
l *dt Q _ f

l
is>dt _

' v ~
'

f1 s*dt

] t(i-ty"

so that, FX denoting the gamma function F
(
=

j
,
we have

a scheme of periods for the integrals

_
Ml "

is given by

sdt 1
[*

&dt _ 1

'
"

'
"

M*
where /tj 1 e 7

, these being the values of the integrals for contours

respectively !,, I15 , fls , fi,, fia ,
ft4 , where flh denotes a contour passing

h times positively round t = and 3h times positively round t = l.

We proceed to shew how, by taking suitable linear functions of the

integrals and suitable combinations of the contours, subject to the condition
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that all period contours shall be integrally expressible by those adopted, the

period scheme may be reduced* to

1
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and then that GH = (A + Br)H\

the steps being all very easy, the three matrices involved in the last equation

being symmetrical about the cross-diagonal. The determinant of the matrix

H is easily found to be 7(2r 1), which is not zero.

Having proved that G = (A + Br)H, consider the integrals w = Pu, or

(w,, w2 ,
w3)

= /Pn ,
P 12 ,

P1S\ (w,, w2 ,

P P PJ 21 > -* 22) Z

P P P
^* 31) '321 * Xtl

their scheme of periods is, for W{,

PiiHn + P,2 H-a + PfcHa , ..., PUG13 + Pi? GV, + Pis <

namely consists of the two matrices

PH, PG
;

take P=/-l, 0, 0\#-';

1, 1,

1, 0,

the six lines constituting the scheme of periods for wlf w2 ,
w3 are then formed

by the juxtaposition of the two matrices

'-1, 0, 0\, /-I, 0, 0\H-*G;

1, 1,
Oj

f 1, 1,

1, 0, l) \ 1, 0,

now we have remarked above that OH-1 = A + BT, or

T, l-r, - rN

T, T, 1 T

k l-T, -T, T,

so that, from H = H, = 0,

T,
-

r, 1 - r\

1 T, T, T

-
T, 1 - T, T,

hence the scheme of periods for ;,, w2 ,
w3 ,

is

-
1, 0, 0,

-
T, T,

- 1 + T

1, 1, 0, 1, 0,1- 2r

ws 1, 0, 1, 0, 1 - 2r, 1

Now take other loops; the period columns in the scheme just obtained

correspond respectively to H,, fls , fl3 , fl,, H,, fl4 ,
where nfc denotes a loop

going h times positively round t = and 3/i times positively round t = 1, this
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being a path which brings back s, and the subject of integration in each

integral, to its initial value
;
we take the following loops

in terms of which conversely the original loops are expressible, namely by

then the period scheme for w
1 , w2 ,

w3 becomes

0, 0,
-

T, T
,
-1 + T

1,0, 1, ,
1 - 2r

0, 1, 0, 1 - 2r, 1

which is the same as

1,
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variable the functions du,/dt, du^dt, du3/dt satisfy a linear differential equation

of the third order with coefficients rational in t whose monoclromy group is

then that of the 168 transformations (Hurwitz, Math. Annul, xxvi. (1886),

p. 120). The independent variable being chosen so that the critical points

are at t = 0, t = 1, t = oo , denoting the dependent variable of the differential

equation by y, and putting

the differential equation may be replaced by the three

dx, dx3/d&i dx, dx3\

\dt' ~dt' ~dt)

1, 0\ 1/0, 0, ON 1

o, o
1

*

[ o, o,
- 1

k
#, W, -3

52 72 11
where N=- + 7 ,M = N :

. It is at once seen that the matrices
o bo I

here multiplying
- and - = have both linear invariant factors, and that if
t t A

^i, ^2, ^a an(l 0i, 02, 03 be respectively their roots, we have

where <a
:) =

1, and

Cf. the author's paper, Proc. Lond. Math. Soc., xxxv. (1902), p. 371, and

p. 347.

Note I. It may be enquired how far the preceding is capable of

generalisation to the case of an equation

SP == < (1
-

t)
b

,

where p is a prime number, and a, 6 are positive integers less than p. The

integral

V- (1
-

1)'

will be of the first kind if p be an integer just greater than \a/p, which, if

\<p, is necessarily fractional, say if p**(\a/p)+l, where E{x) denotes

the greatest integer contained in x; similarly v = E(\b/p) + 1
;

and also

fi + v (a + b)
- 1 > 0, or
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using Riemann's formula ^w n + 1 for the deficiency, we have, for

SP = t
a
(1
-

t)
b

,
1 + (3p

- 3 - 2p) = \ (p
-

1), which then, for any positive

prime p and a <p, b<p, is the number of integers A. less than p satisfying

the last written inequality; in fact, if \' + \=p, since \a/p is not an

integer, we have
/Xa\ f\'a\E[] + B[- =a-l,
\p} \ p I

and
X6\ X'(a+6) E (X"\ . E (*'*} =

p \p \p/ p \ P I \P
If we put Xa = [Xa] + Mp, X& = [X6] + JVp,

where [Xa], [X6] are the least positive residues, mod. p, the condition is the

same as

Denoting by g a proper (primitive) root of p, and putting a = g^
1

,
b = g*

(mod. p), if the inequality is to be satisfied by \ = g^, whatever /t may be, so

that the \ (p 1) values of X are to be the quadratic residues of p as in the

case s7 = t (1 ty, the condition will be

and will be satisfied only by those primes p of which every two quadratic

residues have a sum less than p. It can be shewn that if p is of the form

4n + 3, the only possibility is p 7. And no prime of the form 4n + 3 exists

such that every two quadratic non-residues have a sum less than p.

Note II. We may consider more generally the case

y"
= (#- c, )*'... (tf-cm)*-,

where n, A,,..., hm are positive integers, and each of AI, ht ..... hm and

A! + . . . + hm is prime to n. The deficiency is then given by

or p = ^(m l)(n 1).

A positive circuit r times round ^ and s times round c2 will lead back to the

same value of y if A,r + A2s= (mod. n); as A, is prime to n, this gives a

value for s corresponding to an arbitrary value of r
;
we thus obtain, taking

circuits round the (m 1) pairs, (cn Cj), (c,, Cj), ..., (clt cm), with, in each case,

r equal in turn to 1, 2, ..., (n 1), in all

2p = (m-l)(n-l)
periods, of the form

where /**
= 1 e n and P^ is the value of the integral taken from the initial
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point to the point x = ck . There remain the problems of determining whether

every period is an aggregate of these, and of determining 2p canonical loops

on the corresponding Riemann surface
;
and of extending the results to

the case where n, ht , ..., hm are any integers. The forms of the integrals

of the first kind are determined by Weierstrass, Werke, IV. (1902),

pp. 135145.

76. Another example of the occurrence of defective integrals of the first

kind is furnished by the curve of order 8 given in Example 11, at the top of

p. 155 of this volume. This curve has the properties : (i) it is of deficiency 9,

the forms of the integrals of the first kind being given in that Example ;

(ii) the coordinates of points of the curve are expressible as single valued

quadruply-periodic functions of two variables, the variables being connected

by a fixed relation (the equation of the plane determining the curve as a

section of the hyperelliptic surface) ; (iii) there are two integrals of the first

kind for the curve which reduce to hyperelliptic integrals of four columns of

periods, these being the arguments of the quadruply-periodic functions. This

case therefore furnishes a very exact example of the general theory considered

in the previous chapter of this volume, in virtue of the property (ii).

Note. It may be remarked that if the equation of 72 be rendered

homogeneous by writing z 1 + \ (ex +fy), it takes the form

(*"
-

fa)*
= kcy(ax + by) (ex + dy),

where $2 is homogeneous of the second degree in x, y, representing a quartic

curve of which four bitangents are concurrent
;
that this geometrical property

is a necessary and sufficient condition, in the case of a plane quartic, for a

defective elliptic integral of rank 2, is proved directly by Kowalevski from

the transcendental result here obtained in 71
;
the curve is a projection of

the space curve intersection of the quadric surface

22 (2 = xt,

and the cubic cone xf = 4y (ax + by) (ex + dy) ;

the elliptic integral of a plane section of the latter is the defective integral of

the text. The equation zi = xi + yt of 74 is, geometrically, a particular case.

See further, Appendix to Part II., Note IV.



CHAPTER IX.

PROPOSITIONS FOR RATIONAL FUNCTIONS.

EXPRESSION OF A GENERAL PERIODIC FUNCTION BY THETA FUNCTIONS.

77. IN what follows we have in mind the theorem, formulated by
Kronecker (Werke, n. (1897), p. 275 ff.) that the points (zlt za,...,zn)

satisfying any set of polynomial relations

(?,($..., zn) = 0, ...,Gm (zl ,...,zn)
=

(),

are those belonging to a certain number of irreducible algebraical constructs,

each of these constructs being represented by a set of equations of the form

fdi a- a- ^ - a- - ^"~*+1 r _ # .

J\gi x\> >
xn-k) u> *n-Jfc+i ^7

xn ~*7 j

herein xit xt xn are independent general linear functions of zlt ..., zn , to

be used to replace these in the original equations and so eliminate any
accidental want of parity in the way in which zlt ...,zn enter into the

original equations, the function f is a rational polynomial in y with

coefficients rational in a?i ,...,_* which is irreducible in this form, and

/'denotes df/dy, while
<f>,i-t+i, , $n are polynomials in y with coefficients

rational in xl ,...,x,^k . Points (x1 xn) for which simultaneously /=0
and /' = do not arise for all values of a:,, ..., #_*, but only when these are

connected by relations, and thus are given, in the arrangement here taken, by

equations of the form above with k changed into k + 1
;
in other words the

algebraical construct above, until conventions as to its limiting points are

introduced, is an open aggregate. To place the result in a clearer light we

reproduce the proof in outline.

Having introduced the variables xl , ..., xn in place of zlt ..., zn ,
take

y = u,xt + ...+unxn ,

where w, un are constants, to be retained as explicit indeterminates* in

* For Kronecker's insistence on the significance of Gauss's introduction of such quantities,

see Werke, 11., p. 355. The discussion of the distinction to be made between them and numerical

quantities is a matter of interest. One striking illustration of their use is in the problem of the

theory of Groups, of finding a function unaltered by a specified sub-group but altered by any
transformation of the fundamental group which does not belong to this sub-group ; it may some-

times be easy to find such a function involving explicit indeterminates while difficult to specify

precise numerical values which may replace these and leave the property of the function unim-

paired. In the paper referred to, Kronecker gives other illustrations
;
and in the theory of

irreducibility a theorem of Hilbert'n, Crelle, ex. (ltt'J'2), p. 121, may be cited.

. 18
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the succeeding work. Thereby, after multiplication by a proper power of ,

replace the original equations by polynomials in y, xl ..... xn^l and n^, ..., ;

each of these may be supposed decomposed by rational processes into a

product of irreducible polynomials in y, whose coefficients are rational in

xlt ..., #_] , MI ,
. . .

,
Mn ; and, of any one of these irreducible factors, entering into

any one of the polynomial equations, all powers higher than the first may be

removed. The original equations are then replaced by a set of equations

Hi(y, !,..., _,)
= 0, ..., Hm (y, xl ..... x,^) = 0,

in each of which the left side is a product of first powers of irreducible

polynomials; all points (zlt ...,zn} satisfying the original equations satisfy

these, and conversely.

If now these polynomials Hlt ..., H,n have a common rational irreducible

factor, let it be Fl (y, xlt ..., av-j), and let HrjFl be Kr ;
the points satisfying

the original equations thus satisfy, either,

Fl (y,x1 ,...,x,^1)
=

0,

or, all the equations

K^y, aj1; ...,#_,) = 0, ...,Km (y, ,, ..., ;_,) = 0,

and conversely. Consider now the latter equations; form from these

the two

^K, + ... + \mKm = 0, fj-.K, + . . . + fj.mKm = 0,

wherein \lt ...,\,n , Mi, ,/* are undetermined multipliers; from these two

the variable xn^ can be rationally eliminated, and the result arranged as a

polynomial in the 2m quantities \1( ...,\n , /tij, ...,//,,, whose coefficients, say

LI, LV, ..., are rational integral polynomials in y, xlt ...,a;n_.2 . Any set of

values of y, x^ ..... xn^ which satisfies all the equations KI = 0, . . .
,
Km =

gives then a set of values of y, xlt ...,,,_2 which makes every one of these

coefficients Lit Lt ,... vanish; conversely every solution of the system

L^y, #,, . . .
, Xn-J) = 0, L2 (y, xlt . . .

,
#n_2)

= 0, ...,

taken with an appropriate value of #_! > independent of\
l ,...,\,n ,(j,1 ,..., /*,,

gives a set of solutions of the equations K^ = ..... Km = 0.

We can then proceed with the equations Zj = 0, Z2
= 0, . . . precisely as we

did with the equations #i = 0, ...,Hm = ; obtaining first a single equation

Fi(y,Xi ..... #-2)
= 0,

and then a set of polynomial equations in y, xlt ..., arn_3 ;
and so on.

Eventually the original system of equations is replaced by a set

Fk (y,Xi,..., Xn-fi = 0, (k = 1,2..... )>

wherein any one or more of the n equations Fk =0 may be absent; any
solution of the original equations gives rise to a solution of one of these

equations, and conversely, any solution" of the equation Fk = 0, coupled with



ART. 77] system of rational equations. 275

appropriate values of the k variables xn_k+1 , ...,xn , gives a solution of the

original equations. These appropriate values are determinate at once. For

let f(y, #,, ...,*_*) be a factor of Fk which is rational in y, xlt ...,xn^k and

irreducible in this form; the equation /=0, wherein the indeterminates

MI, ..., un enter, may be written more at length in the form

we seek the solutions a;,, ..., xn independent of i, ..., un ;
we may then

differentiate in regard to un-k+r ,
and so obtain

or say ***+ r
= s

p*,
. (r=l, 2, ..., k).

The original set of equations is thus replaced by a scries of sets of- equations

each set of the form

J \U< i> > &nk) = "> ^nk+i = ~fi i > n = ^7

If there are points, independent of the indeterminates ult ..., un , satisfying

the equations

f(y, xlt ...,Xn-k) = 0, -(y, xlt . . .
, x^} = 0,

these will also satisfy an equation, obtainable by elimination of xn-k from

these, of the form
r/ \ _ Q

from which as before the appropriate associated values of xn_k , ...,xn are

deducible.

By the foregoing any set of equations connecting xlt ...,xn is replaceable

by the single equation obtained by setting equal to zero the product of

a set of factors of the form f(y,x1 ,...,xn-k). For example the three

equations

which represent a cubic curve in the space (x, y, z), arc replaceable by the

single equation

f(t,x)
=

(t
- xuf - 3vwx (t- xu)

- x (v>x + vf) = 0,

where t = ux + vy + wz,

from which the appropriate values of y and z are obtainable. It is found

here that the two equations

are only satisfied when

tft v? (wit, if),

182
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which gives no point independent of u, v, w. Or again the two equations

are replaceable by the single equation

f(t, x)
=

{(
-
ux) (b

- V - Zgb'x) + (bo,

1 -
b'o)

+ o?v* (b-V- 2gb'x) (a
- a' - 2ga'x) = 0,

and here, by eliminating x between the equations

/(,) = <>, |(*,) -ft

we arrive at

t [*g*a't -2g(a-a')u + w(a- aj] =
0,

of which the former factor gives the double point x = 0, y = 0, z = of the

curve, and the latter factor the point

a - a' (a a'f--' y =Q> 9m ~-
But this replacement, of a set of equations connecting x1 ,

. . . ,
xn , by a single

equation such as/(y, xlt ...,xn-tc)
= 0, or II/(y, #,, . . .

, #_*) = 0, is dependent

on the retention of the indeterminate quantities MI, ... un . A single irreducible

algebraic construct of dimension n k, in space of n dimensions xlt ..., xn , is

not necessarily representable by k equations connecting xlt ...,#, without

indeterminates
;
that is, any k such equations may be such that they neces-

sarily represent other constructs beside that which they are constructed to

define. For example*, consider in three dimensions a quintic curve having a

chord which cuts it in four points. It is known that no quadric surface

contains this curve
;
if we seek to define it by the intersection of two surfaces

these must at lowest be cubics, and will have a further intersection; if we seek

to define it by three surfaces of orders /* + 3, v + 3, p + 3 passing through it,

these will have other points common, in fact of number

fjivp + 3 (vp + pp + pv) + 4 (n + v + p),

which number vanishes only when all the surfaces are cubics; but three

cubics do not define the curve since, being met by the four-point-secant in

four points, they all contain this secant. It is thus impossible to assign three

surfaces containing the curve which have no other common point; and four

surfaces are necessary. And in general the theorem is stated by Kroneckcr

that to define a construct, or system of constructs, of whatever dimension, in

space of n dimensions, n + 1 polynomial equations are sufficient, and may be

necessary f.

78. Let f(y, x) be an irreducible rational equation of order k in y.

Consider the aggregate of all rational symmetric functions of n arbitrary

unconnected pairs (xlt y^), ...,(#, yn),
each function being rational in the

*
Vahlen, Crelle, cvin. (1891), p. 346.

t For a proof, see Molk, Ada Math., vi. (1885), p. 159.
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2n quantities xlt ...,xn , ylt ...,yn ,
and symmetric both in regard to xlt ...,xn

and in regard to yi,...,yn - Particular cases of such functions are the

coefficients of the powers of 6 in the product (Q + x^ (0 + x.2) ... (0 + xn),

namely

51
= #i + ~^~ Xn , 52

= #1 #2 + + #n \Xn> > s
= X^X% ... Xn .

It is known, if x c be an arbitrarily taken particular value of x, that

rational functions ffi(x, y), ..., gic-\(x, y) can be chosen, unconnected by any

equation
w +u^ (x,y) + ...+ *_! #*_, (x, y)

=

in which MO , ,, . ..,Wjt_, are rational functions of x, becoming infinite for no

(finite or infinite) value of x other than x = c, in terms of which all other

rational functions of x and y, which become infinite only for the points at

which x = c, can be expressed, in the standard form

P + Pl5 r, (x,y)+...+ Pk-M-i (x, y),

where Pa denotes an integral polynomial in (x c)"
1

; every function of

the form

[A + A^ (x, y) + . . . + Ak_l gk^ (x, y)]/(x
-

,),

wherein A, A lt ...,A k_, are constants and x^ is not equal to c, must then

become infinite for some one of the (k or less) places at which x = xlt since

otherwise, being then only infinite for x = c, it would be capable of expression

in the previous standard form (see the author's Abel's Theorem, Chapter iv.).

Let plt .... ^t_, be any such integers that

(x
-

c^'ff! (x, y),...,(x- c)P*-'ft_, (x, y)

all vanish for every place x = c. Take undetermined constants \, ..., \fc_i,

and put

H (x, y)
= \(x- cY^i (x,y)+...+ Xt_, (x

-
c)f*~

lgk-l (x, y) ;

then n = H(xl ,y1)+...+H(xn,yn)

is also a rational symmetric function of the n places (,, y^, ...
, (xn , yn).

It is clear that any rational function of f,, ..., , 77 is a rational symmetric
function of (xlt y,)..... (xn,yn )', we proceed to shew conversely that any
rational symmetric function of (xlt yj, ..., (xn , yn) is rationally expressible

by (...,,?.

To any value of x belong k values of y, which, save for a finite number of

values of x, are different
;
thus when

f;,,..., are assigned, and thereby the

set ,, ...,xn , there correspond kn values of t), say t)
w

,r)
(

->, ...
;
the product of

the &" factors

is then rational in ,, ..., , and there exists an equation
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of order kn in 17, rational in f,,..., , rj. We proceed to shew that it is not

the case that there exist equalities between the values of
rj
which are the

roots of this equation for all values of ,, ..., and X,, ...,\jt_,.

For any two of the kn values of tj are of the form

# (*., y. "'0 + ... + ff (*n, y w
'>); &(* y, <")+ + #(*, #<"),

where, of the n couples, (i, I), ..., (j, J), not every one can consist of two

equal integers ; suppose i J= I ;
the difference of these values of t)

is

Xite - C)
PI fa (. yi

(i)

) -91 (i. yi
(/)

)] +

+ V., (, - c)J*-' [0k_, (a;,, y,) - #*_, (,, y,"')]

+ .....................

+ X, (
-

c)' [0, OB, yn '>')
-

#! (#,

+ X*-i (a*
-

c)**-> [>*_! (, y'
J
'')
-

0fc_, (xn ,

if these were equal for all values of ,,..., they would be so for

a>3
=

c, #3
=

c, . . . ,
xn = c, and therefore

X, (, - c)*' [gr, (,, yl f>) -g, (,, y.^)] + ...

would vanish for all values of wl and all values of X, ..... Xjt_i ;
for all values of

x, we should then have

suppose this were so, taking a value of #, for which the corresponding values

of y, are all different; denote gr (a!1 , 3/1
|l

') by ar ;
we can choose ^.! ..... -d*_i

so that the k - 2 expressions

A [0! (#1, yi
1

")
-

ch] + . . . + 4 t_! [grt_, (a;, , y,<")
- at_j],

for s equal in turn to the values from 1, 2, ..., k other than i and /, are all

zero : then the function

= A^ fjr, (x, y)
-

a,] + . . . + 4t_i [grt_j (a:, y)
- at_J

would vanish for all the k places at which x = xlt and the function (?/(# ./-,)

would not be infinite for x xy We have seen that this is impossible.

We can therefore give particular numerical values to Xu ....X^ such that

the integral polynomial in fi,..., ( obtained by elimination of T? between

.F=0 and dF/dt) = is not identically zero. And if f be any rational

symmetric function of the n places (xly y^),...,(xn , yn), and p. be an

undetermined constant, the function of
77 + /*" satisfies a rational equation

for which ^(^ f,, ..., 0) = Jf(7? , f,, .... fB);

thus wo have

df\ ^df\_ (dF*? + = ~
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whereby f is expressible rationally in terms of f1( ..., %n ,r), for all values of

these other than those for which F= 0, dF/drj
= are both satisfied. It may

be remarked also that the function F(t), , ..., n), regarded as an integral

polynomial in
77 with coefficients rational in

, ..., n , is irreducible
;
for y, is

known* to be a monogenic function of #, ;
thus r)

is a monogenic function of

#! ,
and therefore also of #, , . . .

,
xn ,

and therefore also of
,

. . . , fn ;
thus if there

be two or more rational factors of F(r), ,, ..., fn) they must be identical and

F must be a perfect power ;
we have however seen that the values of 77 are in

general different.

Consider now the correspondence between the set of places (xl ,yl),..., (xn , yn)
on the Riemann surface, and the .place (, ...,, v) f F(ij, %lt ...,fn)=0.
When (#1, y,), ..., (xn,yn) are given, the place (f1; ..., fn , 77) is determined

without ambiguity by means of %t
= xt + ...+xn , ..., ^n = xlx^...xn and

77
= H(xl , y,) + ... 4 -5"(#, y). When , ..., fn are given, the set ,,,,, ...,

is determined
; and, if r be any positive integer, the function

which is rational and symmetrical in (#,, ?/,), ...,(xn , yn), is, by what we have

proved, rational in ,..., fn , 17, so that we may write

from these n equations y, is determined rationally in terms of xlt %l , ..., fn , tj.

The place (?,, ..., fn , 77) thus determines uniquely a set of places (xlt yt ), ...,

79. Let fu ..., fn be independent variables, and rj an algebraic function

of these, determined by an irreducible polynomial equation ^(77, f,, . . .
, )

= 0.

Consider a certain infinite aggregate of rational functions of fj, ..., fn , 17, not

including necessarily all rational functions, but such that any rational function

of two or more of the elements of the aggregate, with constant coefficients

(belonging to the assumed rationality-domain), also belongs to the aggregate.

It is then evident that any n + 1 functions of the aggregate are connected

by a rational relation, but it may be that a rational relation always connects

a certain less number of the functions. Let /a be the greatest integer

such that there are /* of the functions unconnected by a rational relation

(fj.^n), and <,, ...,< M be
fj.

functions of the aggregate not so connected;
then every jj, + 1 functions of the aggregate are connected by one or more

rational relations
;
thus if ty be any function of the aggregate other than

(>!, ...,< we have an equation (\^, fa ,
. . .

, ^) = 0, and, if, in this, for

i/r, </>,, ..., fa are substituted their rational values in terms of 1; ..., , 17,

tho equation is either sati.stied identically for all values of f,, ..., (, 77, or, if

not, the result contains 77 and, when arranged as a polynomial in 77, divides

Cf. 52 above, and Proc. Land. Math. Soc. tv. (1906), p. 116.
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by F (77, fj, . . .
, ).

We can suppose the equation (i/r, fa ,
. . .

, fa) = arranged

as a polynomial in
i/r ;

if it be not irreducible let it be arranged as a product
of irreducible polynomials in

i|r
with coefficients rational in fa, ..., fa', two

such polynomials which are not identical cannot both vanish identically in

virtue of F(rj, f,, ..., fn) = 0, or there would exist a rational relation con-

necting fa, ..., fa only; contrary to hypothesis. Similarly there cannot be

any other relation
(i/r, fa, ..., fa]

= independent of (ty, fa, ..., fa)
= 0.

There is thus one irreducible relation [$, fa, ..., fa]=0, of which every

other rational equation connecting i/r, fa, ..., fa is an identical rational

consequence.

Consider now the equations

fa=alt ..., fa = a
lt , F(t), ,, ..., fn) = 0,

for independent undetermined values of Oj, ..., cv These equations may be

satisfied by points or constructs which do not vary when alt ..., aM vary, or

for which one or more of the functions fa, ..., fa, F is indeterminate; such

solutions we do not consider : we desire to make it clear that the solutions of

these equations, variable with a,, ..., a,,, and holding independently of any
relation connecting the values of these, which give definite values to each

of the functions fa,...,fa,F, consist of constructs of (n fj.) (complex)
dimensions. The first equation fa^a^, coupled with F = 0, has for solution,

variable with a,, one or more constructs of (n 1) complex dimensions; the

points of such a construct which give to fa a determinate value will not,

unless further conditioned, render fa equal to a2 for any value of a?', thus the

points to be considered which satisfy both fa
= al! and fa

=
a^, are upon one

or more constructs of (n 2) complex dimensions. And so on*. Let then

N be the number of irreducible algebraic constructs of (n /j,)
dimensions

satisfying the equations, variable with !,..., aM . Any function
->jr,

rational

in fi, ..., %n , t)> is capable of taking every complex value upon such a

construct unless it is constant upon the construct : by hypothesis we are now

only considering functions
i/r

such that there exists a unique irreducible

rational equation [ty, fa, ..., <p^] =0; the values of
ijr,

for points (f,,..., fn , ij)

giving definite values a,, ..., aM to fa, ..., fa and variable with these values,

are therefore finite in number: we infer therefore that the function
i/r

is

constant upon each of the N constructs given by <^ 1
= a] , ..^fa a,,,,

F=0.
There is thus an upper limit N, independent of ifr,

for the order in i^ of the

equation [i/r, fa, ..., fa]
= 0, though this limit may not be reached.

* Or thus : if F be of order k in jj, and ^W denote ft (Vr)
, {, , ... , ), the product (<r

-
ftl'l) ...

(a- ft (*)) is manifestly rational in ,, ... , fn , and thus ft satisfies an equation/(ft, ,, ..., |n)=0.
If not irreducible this is a power of an irreducible polynomial ; for an equation

/i [0i (>, fi,..-,U fi fJ = 0,

satisfied by one root 17 of F(ri, f,, ... , )
=

(),
is satisfied by all roots. Thus the equations above

lead to irreducible equations Hj(rt,, (lt ... , n)
= 0, ..., H li(ali., f,, ... , )

=
(), which, excluding

rational functional relations connecting n,, ... , OM , are independent.
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We may then take for
-fy-

a function, among the aggregate of rational

functions of t , ..., , r\ under consideration, for which the order in ty of the

relation [$, <f>lt
... , <f>^

= reaches the highest value, say M, which is attained

for any of these functions : the values of fy upon the N constructs, if

M <N, are then repetitions of N different 1

values, which we may denote by

&,, b2 , ..., bM ;
we call a set of one or more of these constructs upon which ty

has the same value a -^r-range. Now let % be any other rational function

of the aggregate under consideration
;
as before it is constant upon each of

the N algebraic constructs
;
we can prove that its value is the same upon all

the constructs constituting any i/r-range. For let the different values which

it takes upon the N constructs be denoted by c,, c2 , ..., and let X be a

constant not equal to any one of the finite number of quantities (bf bj)/(cp cq);

consider the function
i|r X^. In virtue of the restriction upon the value

of X, this function, A/T \%, cannot have the same value for two constructs

not belonging to the same grange, for upon these constructs the values of

^ are different
;

it has then at least M different values upon the N funda-

mental constructs, and it will have more than M values unless it have the

same value for all the constructs of every i/r-range; but, by hypothesis, there

is no function of the aggregate considered with more than M different values

upon the fundamental N constructs. The function
i|r \%, and therefore

also ^, has thus the same value over every i/r-range. If then et , e2 , .., eM
be the values of

i|r X^ for the various -^-ranges, there being, possibly,

equalities among these values, the function
i|r X^ satisfies an equation

fft
=

j^r
-
X^, <,,...,$, X}

= 0, whose roots, when fa
= a,, ..., <^ = M , are

elt ...,eM , and we have

{f, <,, ..., <, 0}
= O, </>!, ..., </>],=//, say.

Hence we have

*JL+*JL- -PJL\ ^JH" X
8^

+ 9X" x UxA-o'9^'
Thus every rational function of ,, ..., fn , ij, belonging to the aggregate

considered, is rationally expressible by 0,, ..., ^ and
v^.

This is the result

we desired to establish.

80. We are now in a position to establish clearly the theorem, which was

one of the main objects of the Second Part of this volume, that the most

general single-valued multiply-periodic meromorphic function is expressible by

theta functions.

Let $(Ui, ..., Un) be such a function, with period system CT. As shewn

in Chapter vil. (p. 199), we can obtain a Riemann surface, of deficiency/), upon
which there is a defective system of integrals of the first kind, of number

n^p, whose period system at the period loops, II, is expressible in the form
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II = vrh, where h is a matrix of integers of type (71, 2p) ;
these integrals

being denoted by H,*-"..... *", the congruences

!*"> + ... + Uf*-
a* = Ut ,

.............................. (Mod. H),
*"<"' + ...+ n

:C- = Un ,

wherein (a,), . . . , (an) are arbitrary places upon the Riemann surface, are

satisfied by a finite number of sets of places (#1), . . .
, (#), whose number

we have found (p. 250). The function (j>(Ult ..., Un\ considered under the

form

$(u?
a

> + ... +,* ....... ,
*"' + ... -t- **"-),

is a rational function of each of the places (#,), ...,(#), as we have already

remarked, and is symmetrical in regard to these. It may then, as proved

in this chapter (p. 279), be regarded as a rational function of n + 1 variables

fi, . n '?
which are connected by a rational equation F(tj, , ..., n)

= 0.

Any single-valued meromorphic function of Ult ...,Un with the periods -ET,

is similarly rationally expressible by , ..... ^n, ">)',
and any rational function

of two such meromorphic functions with these periods is equally a single-

valued meromorphic function with these periods. The aggregate of single-

valued meromorphic functions of [/,, ..., Un with the periods is is thus such a

corpus of rational functions of a , ... , , t) as that considered in 79 (p. 280) ;

and from among them a certain number, ^i + l, of periodic functions, them-

selves connected by an irreducible rational equation [i/r, fa ..... </>M]
= 0, can be.

selected, in terms of which all others are rationally expressible, the number

ft being ^ n. And in particular, a single-valued meromorphic function of

Ui, ..., Un which is periodic with a system & in terms of which the system

is is expressible in the form tn = m^H, where H is & matrix of integers, even

though OTO may not be similarly expressible by OT, is expressible rationally by

fj, + I functions with period-system r
;
for it too has w as a period-system.

This result is in itself of great interest. To apply it to the case in

hand, it will be clearest to use the notations previously employed (p. 225) ;

we had

=(
rd

o' J)
0,

where g is a unitary matrix of type (2n, 2i), cr,' is a matrix of type (n, 2n)

and (,', 0) of type (n, 2p) of which the last (2p 2n) columns consist of

zeros, / is a matrix of integers and Q a unitary matrix of integers of type

(2n, 2n); we thus have

Therefore a function <f>(U, ts), of IT,,..., Un ,
with periods w, is a function

with periods CT' and conversely ;
it therefore has periods -,', and, by what
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has been proved above, is expressible rationally in terms of functions

^fr(U, tii), with periods OT/, though the converse is probably not the case
;

putting

a function i|r ( U, w/) becomes a function of F,, . . .
,
Vn with periods (d~\ a~/r) Q,

and therefore with periods (d~
l
, ajr), since G is unitary ;

a function ty ( U, OT)

is thus expressible rationally by functions of V
t , ..., Vn with periods

(d~
l

, a-/r), and therefore by functions %(F; 1, <r/r), with periods (1, cr/r),

though the converse does not hold. We have previously shewn (p. 227)

that we can form theta functions B(F; ajr), with qtiasi-periods (1, <r/r), and

from these we can form periodic functions with periods (1, o-/r).
It appears

thus that the functions <(/7, w) are expressible rationally in terms of

functions

which can be formed from theta functions 0[ ; 1, ). And this is

\ ?' rj

the result*.

81. The theorem established in this chapter that any single-valued

meromorphic function of n variables with 2n sets of periods (obeying the

necessary relations, see p. 224), can be expressed by means of theta functions,

may be obtained in other ways. We give some account of two.

For the firstf it is necessary to prove the following theorems :

(A) If fa ,
. .

.,</>
be n such functions,whose Jacobian d(fa,. . .,<,i)/9(?t, ,

. . .,un)

is not identically zero, there exist sets of n constants alt ...,an , such that the

solutions of the equations </>,
= a,, ...,( = a,, which vary with a,,...,an and

give definite values to all the functions fa ..... </>, consist only of isolated

points, at each of which the Jacobian 3 (fa, ...,^>n)/8(M,, ...,) has a definite

finite non-vanishing value. Let the number of these points in any period

cell be N.

(B) If then $n+1 be another such function, having the periods of the

functions fa, ..., </>
as primitive periods, we can form from

<f>n+i a single-valued

meromorphic function with these periods, whose values, at the N solutions

of fa
=

a,, ...,</>
= an lying in any period cell, are all different.

(C) The functions fa, ...,$, <f>n+1 are connected by a rational relation;

in terms of them any single-valued meromorphic function with the periods

in question can be rationally expressed.

* The steps indicated by Weierstrass (Werke, in. (1903), p. 113) are different from those

used here.

t Wirtinger, Monatihefte fii r Math. u. Pliysik, 1895 (Jahrgang v:., p. G9).
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(D) Such a set of ( + 1) functions is furnished by a function i^, having
the periods as primitive periods, and its first partial derivatives.

(E) A linear aggregate with undetermined coefficients of the second

partial logarithmic derivatives prs (u) of a theta function *b(u, T), has the

period (1, T) as primitive periods.

(F) Such a linear aggregate is expressible rationally in terms of theta

functions.

The proof of (A) may be carried through on lines similar to those we

have previously adopted for the equations/, = x, F% = 0, . . ., Fn = (pp. 199 ff.).

Or may be made to depend on the fact that each of fa, ..., <j>n and the

Jacobian A may be regarded as a rational symmetric function of n places

upon a Riemann surface
;

there is thus a rational irreducible equation

(A, fa <f>n)
=

giving the values of A when fa alt ...,<f>n
= an . But the

theorem would seem to be true of any single-valued meromorphic functions,

whether periodic or not. For (B), if um
,
u (- } be two incongruent solutions

of fa
= aly ..., (f>n

= an ,
while we may have

<f>n+l(u
M

)
=

<f>n+1(u), not every
differential coefficient of $+, can have the same value at w (1) and u, since

the difference uw w (2) is not a period of the function
<j>n+\- Let <f>'n+i be a

differential coefficient for which <'n+,(tt'") is not equal to <'n+,(w
(2)

). Taking
another pair of points satisfying fa

= a,, ...,< = an we can similarly find a

differential coefficient <"+, not having the same value at these points ; and

so on. A linear aggregate of such differential coefficients is such a function

as is desired. Denoting it by <f>,
we have then an irreducible rational

equation (fa fa, . . ., <f>n)
= of order N in

<j>,
and if ^ be another function with

the periods considered, we similarly have
{<f> + /*%, fa> >$> H-]

= with

{fa fa, ..., <, 0]
=

(c, fa, ..., $). Differentiating {< + /t^, fa,..., fat ,fi]
=

in regard to fi we obtain the expression of x in terms of <, fa, ...,$,

postulated in (C). The theorem (D) depends on the facts that the Jacobian

of the first n partial derivatives of
i/r

is not identically zero, while the values

of
i/r

for the solutions of difr/du^
= a^, ...,9i|r/9wn

= an are different, if a,, ...,an

be suitably taken. Theorem'(E) is very easy to prove, and theorem (F) is

obtained by taking second logarithmic derivatives of such a formula as

expresses ^ (u + v) S- (u v) in terms of theta functions of u and v (for

example, Abel's Theorem, pp. 457, 516).

A second method of proof is of an entirely different character. It can be

proved directly that a single-valued meromorphic function of n variables with

2n systems of periods is expressible as the quotient of two integral functions,

having no common zeros save where the given function is indeterminate;

and that these integral functions have the property that their second

logarithmic partial derivatives are periodic functions with the original

2n sets of periods. An integral function with this property can be directly
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proved (as in the next chapter) to be expressible by theta functions. The

writer may be allowed, for the proof of the first of these statements, to refer

to his own papers, Proceedings London Mathematical Society, Ser. 2, Vol. I.

(1903), p. 14 and Cambridge Philosophical Transactions, Vol. xvm. (1899),

p. 431
;
these are based upon the papers of Poincar^, Acta Math. n. (1883),

Acta Math. xxii. (1898), Acta Math. xxvi. (1902), and of Kronecker, Werke,

I., p. 198 (of date 1869) Kronecker's paper deals with the problem of

extending theorems of Cauchy to functions of more than one variable, with

the use of integrals, and is in close connexion, not only with the theory of

multiple potential but also with his theory of Characteristics for systems of

rational equations, dimly foreshadowed by Sylvester* (Collected Papers, "Vol. i.,

p. 528).

* For the theorem that a meromorphic function is expressible as a quotient of two integral

functions, the reader should also consult Appell, Liouvillc, ser. 4, vn. (1891), p. 157 ; and an

important paper by Consin, Acta Math. xix. (1895). In connexion with the closely connected

theorem of the necessary relation among the periods of a single-valued meromorphic multiply

periodic function see also Wirtinger, Acta Math. xxvi. (1902), p. 133, and Poincar6, ibid., p. 43.



CHAPTER X.

THE ZEROS OF JACOBIAN FUNCTIONS.

82. CONSIDER a single valued integral function f(u) of n variables

itj, ...,ttn ,
such that its second partial logarithmic derivatives have 2 systems

of primitive periods, of matrix TX
;
no one of these derivatives being expressible

by less than n linear functions of the variables, or having therefore (p. 203)

any column of infinitesimal periods. The periods must, as follows from

preceding investigations (p. 224), be subject to certain bilinear relations, with

integral coefficients, and obey certain corresponding inequalities, say of the

form

arHvr = 0, ivrHSifXnX > 0,

where H is a skew symmetrical matrix of integers and x denotes a set of

n arbitrary quantities, the suffix zero denoting the conjugate complex

quantity; it is of importance for what follows that we assume the periods

to allow only one such bilinear relation and corresponding inequality.

From the periodic derivatives we can as previously (Chap, vn.) deduce a

Riemann surface, say of deficiency^, upon which M,,...,M,, may be regarded

as integrals of the first kind, forming a defective system if n< p ;
we use the

same notation as before, putting

II = &h, yhm = c, w =
TS'<J,

m'c = (w,
1

, 0) = Urn, II = or,'&,

so t.hat in k, which is of type (2, 2p), the determinants of order 2/t are

coprime, and we denote the matrix w/ by a. Then from

IL-spll
= 0,

-
iUe^pUoXoX > 0,

we have ake^ka,
= 0, iake^ka^x > 0,

which are the bilinear relations and inequalities in question.

The periods w,', or a, are sums of integral multiples of the periods is, and

the second partial logarithmic derivatives of the function f(u) have the

quantities a as periods; if then a 01 denote one of the 2w columns of the

matrix a, we have equations of the form

/(u + uU>)/A) = exp. 27ri [6*(u + <>>) + c*l (j - 1, .. ., (2/0),
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where &<" denotes a column of n constants, and c (J) a definite constant
;
from

these equations we infer

J (u + am + a)/f(u) = exp.

and therefore, since the right side must be unaltered by interchange of the

exponents 1 and 2, the quantity 6 (lla (2) ba (l} must be an integer; thus

if b denote the matrix of type (n, 2n) whose j-th column is &'", the skew

symmetrical matrix ba db, of type (2n, 2), must consist of integers. We
shall put

A =
(a\ ,

so that A = ba - ab = (b,
-

a) /a\ = (a, b) /O,
- 1\ /a\ = Ae*nA.

(b) (b) (l, O)(b)

From the fact that ba ab consists of integers it can be shewn at once * by
induction that the separate formulae lead, if m denote any row of 2?t integers,

to

f(u + am) = e*
ia
f(u),

where U = bm (u + |am) + cm - % S Ajj?n {m,-, (i, j=l,..., (2)).
i<]

It can further be shewn, without recurring to the Riemann surface, if z

denote any 2?i quantities not all zero, satisfying az = 0, and z their conjugate

complexes, that

;

if z = % + i%, since A is skew symmetrical and Af2 = 0, this is the same as

or, as A = ba lib, and az = 0, it is the same as

i (az . bz,, aza . bz)
= iaza .bz>0,

the quantity on the left being in each case real.

As will be seen, if we assume the determinant of A, or A, not to vanish,

this inequality is deducible by use of the Riemann surface. But as, conversely,

an independent proof enables us to infer
j

A 4 0, a fact important to us,

we reproduce the following remarkable proof due to Frobenius, Crelle, xcvil.

(1884). We cannot simultaneously have az = 0, aza
= 0, since the latter is

the same as a^z = 0, and we should have the determinant
,

of typea

(2, 2), zero, contrary to the hypothesis of the non-existence of infinitesimal

periods. If v be any set of n arguments, t a single complex quantity, w = c + bv,

and = tzn + t
(tz, we have at once, identically, in virtue of az = 0,

v + frg = e

For instance, Abel's Theorem, p. 582.
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where L = f -{ (r+iof) -s*fct
/(t) + a ) ;

consider now L as a function of the 2n real quantities f for variable values

of these, denoting it by L (f) ;
we find at once, in virtue of the property of

/(), if ?/i denote any 2n integers, that

where H= m (Agin + S

so that Z (f + m)/.L (f) is of modulus unity; when every element of f is

positive (or zero) and less than unity, the function Z() is, by its definition

above, manifestly finite
;
thus a real positive quantity G is assignable such

that, whatever finite values z and t may have,

recurring to the equation (A) however, and regarding v and z as fixed, the

function of t on the left side,

,-,] z,

is an integral function ; it must then be capable of becoming infinite when

t is infinite, and so therefore, if p denote the real quantity ITT^ZZ,, must

the quantity eptt>; but if p were zero or negative this would be impossible.

Thus we have as desired

i&zz,, > 0.

This assumes that x(^) ^s no ' independent of t', we have, however, if

wherein, since az cannot be zero, the left side is a function of v, the quantities

t and z being regarded as constant
;
on the right however the quantity

(w w ) A which is equal to (bv b v ) za or bz .v b z<, .v ,
if a function of v,

is a linear function differentiation of this equation would then shew that

taz is a system of periods for the second partial logarithmic derivatives of

f(y), and as t can be taken arbitrarily small this is impossible, these functions

having no column of infinitesimal periods.

Having then i&zz > or iaz . bz > when az = 0, it follows that we

cannot simultaneously satisfy the 2n equations az 0, bz =
;

thus the

determinant of A or f ,
j

,
and therefore also of A or AemA, is other than zero.

This being so we infer from A = Ae.mA, first A"1 = A~*e.mA~l

,
and then

-
*,

= AA" 1A =
fa\

A- 1

(a, 1)
= /aA^N (a, b) =

\b) UA-V
and therefore aA~'a = 0, aA-15 = 1, 6A~'6 = 0,

while, if * denote a set of n arbitrary quantities, and we take 2n quantities
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z subject to az = 0, bz = a;, or say z = A~1

(0, x), and write e for em ,
we

have, in virtue of

4-' = A-'4e, 4 -1A = e4 ,

- i&zz = - iX-'A-A- 1

(0, a;) (0, xa)
= - ieA^-1

(0, x) (0, )

= - ieA tA-'Je (0, a) (0, a-)

= i4 A-'I (- a;. 0) (- , 0) = - iA&r 1

!, (- xa , 0) (- x, 0)

= -i /oA-'Oo, oA-'S,^ (- #, 0) (- #, 0) = - ta^rlan .r9x,

UA-'O,, 6A-V
and the condition i&zz > is thus equivalent with

ia^r^a^x^x > 0,

where x denotes a set of n arbitrary quantities not all zero.

Let R be the positive integer which is the first invariant factor of the

matrix A, namely the determinant of A divided by the highest common
factor of the first minors of A, so that RA~l

is a matrix of integers whose

elements have no common factor other than unity; comparing then the

equations

ake^plcfi
= 0, a-RA"1^ = 0,

and recalling that the periods are subject only to one set of bilinear relations

with integral coefficients, we can infer that, if m be the highest common

positive divisor of the elements of the matrix kt^k, we have ke9k = +

comparing further the inequalities

iake^ka^XaX > 0, iaA~'a ;r ;r > 0,

we can infer that the sign is positive, or

while, by the way, we see that, save perhaps for a sign, the relation

ii\zz<, > could in fact have been inferred from ia^."l
~dax,a; > 0.

83. In what has preceded we have regarded the Jacobian function as

given, and the Riemann surface as derived by means of it. But we may take

another point of view. Suppose we have any Riemann surface of deficiency

p upon which are n integrals of the first kind forming a defective system, the

period matrix II of these integrals being expressible by a matrix of 2 columns

a, iti the form II = ak, where, in k, which is of type (2n, 2p), the determinants

of order 2 are co-prime ;
then we may consider integral functions of n

variables whose second partial logarithmic derivatives have the periods a.

That such functions always exist is clear from p. 227
; they can be formed by

the help of theta functions. The matrix ke^k, and the number 771, which is

the highest common factor of the elements of the matrix ke^k, will then be

determined by the Riemann surface; but the matrix A = 6a ub, though

containing, in the case of all the functions considered, the same matrix a, may
B. 19
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vary from function to function, and therewith also the number R, the first

invariant factor of A, while R&~\ = -
ke^lc, will be the same for all.m

Taking this point of view, consider n Jacobian functions /, (M), ...,/(?/);

we proceed to prove that the equations

have a number of sets of simultaneous solutions given by

and that, if (WI
IA)

, it?
w

, ..., M W
) be one of these sets,

1 K
1

"
v <M

* v b>) -L n (a ^ i>\\T * "'a -* "a *~*aj \ a '
i

'' hN *=1 M =1

where Ca is independent of e (1)
..... e (n}

,
and vanishes, save for Nth parts of

periods, when each of the functions /!,...,/ is either even or odd.

Consider, first, one of the Jacobian functions, which we shall denote by

/(M). If we put ,() = 91og/(w)/3wa , and regard ,,..., as integrals of

the first kind upon the Riemann surface, the number of zeros of f(u e) upon
the surface is the value of the integral

?., (M
-

e) dun],9^- j

taken round the edges of the period loops. When however the arguments
are respectively increased by the elements of one of the columns of the

matrix II, = ak, the functions I(M e)..... ?n(M ~^) are increased by the

elements of the corresponding column of the matrix 27nM-

; thus, if we put

U=bk, the value of the integral above is

v

or Z(UIl-nU)jj+p ,

that is S [k(ba - ab) k]jj+p ,

or 2 (kM-)jJ+p .

i

Now, if k be any matrix of type (2?, 2/>), and A any skew symmetrical
matrix of type (2w, 2n), we have

!!

for (/-A^ ilF
= 2 ^p,.^o,<'^ >

,= S A
(,,

<r^,M^,^= ^
P,<r p, <r p, <r
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P _ K" P
so that 2 (k&k)j j+p

= 2 \ a 2 (kpjkaj+p k,jkfj+p)

p<<r pr
= -2 &p,,,(key>k)p,<,= 2

p, U P, IT

= 2 A. i(1 (Ar6J)ft .
= i 2

p, <T <T=1

the identity, for p < <r,

being at once obvious (cf. Appendix to Part II, Note ill).

In our case we have

and the number of zeros is

2 (A
=i

If these zeros be at
(a;,), (x2), ..., the sum

W.
z" a 4- ?** f .

is (cf. p. 234) the value of

taken round the period loops, save for a sum of integral multiples of the

elements of the arth row of the matrix II, that is, save for a sum of integral

multiples of the ath row of the matrix a. When the arguments u are

increased by the elements II '" of the jth column of II, the function log/(w e)

is increased, save possibly for integers, by

2-7riU<J> (u-e + ^U^) + ZiricW - iriK,

where /'>' is a certain integer ;
the portion of the integral under considera-

tion which contains e,, ..., en is thus

2 2 e? (UPti n.,j+p
- U

ftij+P II., j),

or 2 ef (akevkb\ t ft,

f>=\

= Rm

* For if II = (II,, n2), U=(Ult t/J, where II,, etc. are of type (n, p), we have

(n,, iy/0 -iwr/.N^n.,, -ii.t/f/.^n.t/.-n.f/,,
\i o/U'J V^J

and the (a, p)th element of this is

]= II., >+p Uft >
-

II.,> f/ft^'+p.

192
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and, as we have seen that aA~'6 = 1, this is

Thus if (a,), (a?), ... be the zeros of f(u) and (a-,), (j-s ), ... the zeros of

f(u e) we have
mRn
2 w.

a*.A = m.Rea , (a = 1,. ..,)
A = l

It follows in the same way that iff be any function of position on the

Riemann surface, which is capable of expression about every point of the

surface by a converging series of positive and negative, but integral, powers
of the parameter for the point of the surface

;
but has only poles and no

essential singularities, so that the number of negative powers of the

parameter is finite in every such series; and the function be single valued

on the dissected surface
;
and its value f ( > } on the left side of the jth period

loop (j
=

J., . ..
, (2/>)) be equal to f&*& ,

where f is its value on the right side

and H ($ is of the form

where Q is a single number independent of j, q a set of n numbers inde-

pendent of
j,
RW is a quantity independent of a; and q, and bk (* } denotes the

elements of the j\h column of the matrix bk, or U, previously occurring,

then the difference between the number of zeros or/, ',... and of poles

#1", V.--- of the function is

QmRn,

and we have S)/*'* 2?<X'V = QmRq + A,
A /i

where A is independent of q. We use this result in what follows.

Considering s places (a;,)..... OP_I), (x), we shall denote the value of

the integral of the first kind at these places, with definite lower limits, by

,, ?/2, ..., _!, it respectively. When we have a set of .9 equations

in the s variables (#1), . . .
, (x,^), (x), wherein /, , ..../, are, as has been

explained, Jacobian functions, with the same quasi-periods of matrix a, of

which it will be noticed the first r equations do not contain (x), we shall say
that we have the case (s, r). The case (s, 0) is then that in which the s

variables enter into each of the s functions
;
the case (s, s) would be that in

which the variable x does not enter at all, and does not arise
;
thus we may

have r = 0, 1, . . .
, (s 1). For simplicity we write et, instead of e* }

,
to denote

a row of n constants.

This set of equations determines sets of solutions for
(a;,),

. . .
, (a-,_i), (x),
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and hence determines positions for (x). We proceed to shew that the total

number of positions for (x) is

N,, r = m'R, ...Rs
~

(a
-

r) (n
- 8 + r+l),

\n 6 ~r 1/1

and that the sum of the values of the integral u at these positions is

save for periods and quantities independent of el ,...,es ,
the last equation

standing of course for n equations.

In particular for the case (a, 0), where all the a variables enter into all

the functions, and enter symmetrically, the number of positions for (x) will

be s times the number of sets of positions of (x^), (*',),..., (a;8_i), (x) which

satisfy the equations. The number of such sets will thus be

nlm'
Rl -- R

'(^'it)['

and, if
(a.-,'), ..., (x's_i), (x) denote such a set,

2 (,' + + *,-! + u*) = m>R R (" ~ l } !

(e, + e + + e.)(-)P
save for quantities independent of et , ...,e,.

We prove these results by induction, shewing that the formulae for the

case (s, r) are deducible from those for the cases (s, r + 1) and (a 1, 0), and

in particular the formulae for the case (s, s 1) are deducible from those for

the case (s 1, 0). As they have been proved for the case (1, 0), they there-

fore hold in general.

Consider the s 1 equations

/,(, + ... + ,_,
-

e,)
= 0, ... ,fr (,+ ...+ *,_,

- er)
= 0,

fr+i (M, + . . . + M8_, + u - er+l )
= <),..., /,_! (M, + . . . -h _, + u- e,_,)

= 0,

obtained from the original equations by omitting the last of these
; regard

them as equations for (#,), ..., (#,_]) only, in terms of (x); this is then a

case (s 1, 0); there will be a number of sets of solutions given by

and, if such a set be denoted by V*', ,* (AI
-i, we shall have

S (,'*> + ... + <*'_,)
= m-'fl, ... ._, r^ 1)

; [2e -(*- r - 1)J + A,
A (n s + 1)!

where \ hits a number of values equal to the number of sets, 2e denotes

e, + ... + e,-!, and A is independent of (), and of elt ..., e_,, and of es .
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Consider now the function of (a;) given by the product

P = n/( [,<*> + . . . + u'V, + u-e,]:
\

in passing from a position of (a?) on the right of the period loop (a,), where

j = 1, ..., (2p), to the corresponding position on the left of this loop, the

integrals u are increased by the elements of the _;'th
column of II, say, it is

increased by II"' 1

,
or ak (

i>, where &'" denotes the ;'th
column of k, and the set

a;,'*
1

, ...,#
(X|

,_, is changed to another set of solutions, say x^ }

, ...,
w

,_i, and

at the same time the sum

M.W + .-.+W'V!, =WM
, say,

is changed to Ww + Ht^, where t^ denotes a set of integers, depending on j

as well as X: from the equation above (p. 293) giving SWW , wherein A does

not depend upon (x), we then infer that

2 Ut, = - m-iA . . . R -m^L- (
- r - 1 )

II <*
;

\ \n * T A )

this equation is of the form

a (kt + HW) = 0,

where t (b = 2^, and H is real
;
an equation a = 0, wherein denotes a set

\

of (2w) real quantities, involves also a
(?
= 0, where a, is the matrix whose

elements are the conjugate complexes of those of a, and hence f = 0, since

the determinant does not vanish
;
we therefore have here

+ HW = 0,

and hence S6,teM = - m^R, . . . R8^ ,-^ ^Vi (*-''- 1) W*.
x ^n s + i ; !

wherein we shall, as previously, denote b,k
(^ by U,. Now we have

/ (,*" + . . . + *"_, + + m,. + n<* - .)//. (w,
*" + . . . + ttW_, + u -

equal to eiiriBn, where

and
>,

is independent of (a;) and elt ...,es ,
but may depend on j; thus

the function of (x) denoted by P has at the period loop (a,) the factor

#,iH where

c - j?
n -

which, if we put
(-!)!
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is the same as

-NtUS
<J>

(
- r- 1) (

-
.) + U,<J> [N. [2e

-
(
- r - 1 )] + ^1

J +N.nU,<* (
-

e,),

or ^V, i/.W {[n
- 2 (

- r - 1 )] u + ^e- [n
-

(s
- r- 1 )] e,} + (7,'Ji A .

Consider next the function of (x) denoted by the product

A

by precisely the same reasoning its factor for the passage of the period loop

(at) is #**", where

and G is independent of (*) and elt .... es .

If then finally we consider the function of (x) denoted by P/Q, its factor

for the period loop (a,), save for a multiplier independent of (x) and elt ...,es ,

will be

exp. 27rijV8 f7,
( -' 1

}[ra
- 2 (*

- r - 1)] it + Se -
[n
-

(s
- r - 1)] e,J ;

and hence, recalling the remark of p. 292, the difference between the numbers

of zeros of the functions of (x) denoted by P and Q will be

N. [n
- 2 (s

- r - 1)] mR,n,

and, if the zeros of P be */, zj, ..., and of Q be z", z.," , ..., we shall have

2i/ - Sit2"? = JV. {[n -(s -r-l )] es
-

2e)
<r p

save for quantities independent of elt ...,e,.

The product-function of (x)

P = n/, (!<*> + . . . + <*',_, + it
-

e.)

has for zeros the places () which, with appropriate associated positions of

*,, ..., #,_,, satisfy the equations

/r+l(l+ + U,_, + M - Cr+i)
= 0, ...,/, (', + ... + U,-i + U - 6,)

=
;

consider the zeros of the product

these are manifestly the places (x) which, with appropriate positions for

(#,), ...,(a;,_i), satisfy the equation /,(, + ...+ M_J) = and the (s 1)

equations which determined the sets *,
(A)

, ...,a;
w

,_i from (x); we are then

to consider the s equations

/,(,+ ... + ,_,-,) = (>, ...,/r (,+ ... + tt,_,
-

e,.)
= 0, /;.(,+ ... +zt,_,) =0,

/r-H (MI + + .-i + M - cr+1 )
= 0, . . . ,/,_, (MI + . . . + M,_, + u - e,_,)

=
;
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these are a case (s, r+ 1); the number of positions for (x) is therefore

m'R,
...R,^_

n

J+i^(
s -r- 1) (

- * + r 4 2),

or N,mRsn (s
- r - 1 ) (w

- s + r + 2),

while, if z", z.", ... denote these positions, the sum SW*"P is given by
e

p

where E is independent of e, ,
. . ., es .

And it is important for the induction to notice, and easier to notice at

this stage, that this argument in regard to Q holds equally when r is s 1
;

the equations from which we start out are then

/,(, + ... + ,_,
-

e,)
= 0, ...,/_,(, + ... + M,_,

-
e_,) = 0,

/,(, + ... + ._! + w - eg) = ;

the sets ^*J,...,0WM are determined in terms- of (x) from the first s-1
of these equations, that is they are all independent of (x), and the function

Q does not depend upon (x) ;
and the formulae for Q both become evanescent.

Adding now the number of zeros for Q to the number obtained for the

difference of the numbers of zeros of P and Q, we have, for the number of

zeros of P,

NemR8n {n
- 2 (s

- r - 1) + (s
- r - 1) (n

- s + r + 2))

= NsmRsn (s r) (n s + r + 1 )

= m'Rt ...R,, (s-r)(n-s + r + 1),
^/fr

o ~t~ J.^
!

as originally stated
; and, adding the value just found for the sum 2*tz"P to

P

the value previously found for the sum Sitz " SMZ
'P, we have

+ (n
- s + r + 2) (er+1 + ... + e_, )'|

N,mll, {- (s
-

?)(, + ... + er) -f (
- s + r + l)(er+1 + ... + e,)j

+ (n -s+r+I) <>,.+, + . . . + e,)},

also as originally stated.

The result is then established, and therewith the formulae for a case

(s, 0), as originally remarked and therefore finally, for a case (72, 0), the

n equations

/,(, + ...+ _! + un - e,)
= 0, . . ., / (, + . . . + un-j + " - en)

=
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are proved to have a number of sets of solutions given by

m"^... (!),

and, if (o^*) ..... a;,/*') denote one of these sets, we have

Zu*iw + ... +Wx) = m^R, ...Rn [(n
-

1) !] (e, + . . . + en),

\

save for quantities independent of elt ...,en -

We have however previously shewn that (p. 250) if U=-(Ult ..., Un ) be n

arbitrary variables, the n equations represented by

M!+ ... +un
= U (mod. II)

are satisfied by H =
(\ke.ipk\)* sets of positions of (x,), . . .

, (ten) upon the

Riemann surface. Consider then the n equations

to any set of values for U satisfying these, correspond H sets of positions for

(#,), .. .,(#) ;
the number of sets of values for U is thus

mRt ... UH(O;

but we have ke.^k
= mRA~ l

, and
j ke^k = mm

,

R&~*
\

;
this number can

therefore also be written

T =

where -RjAr 1 = /22A2
-' = And, if J/W denote one of the sets of positions,

or

where A is independent of elt ...,en .

In the case where every one of the functions /j, ...,/ is even or odd, we

have A = Q. For considering then the case where e,
= 0, ...,en = 0, we have

if /([/") = () also f*( 17)
= 0; thus the sets of solutions are in pairs of

opposite sign, and the sum is zero, and therefore also A. It is therefore zero

for all values of e,,...,en ,
save of course for a sum of integral multiples of

the periods fl, or a these forms of the statement being identical in virtue

of the equations U = ak, (a, 0) = flm of pp. 226, 230.

The foregoing investigation is, in its essential idea, derived from a paper by
W. Wirtinger, Mmatsh. f. Mathematik u. Physik, vil. Jahrg. (1896), pp. 1 25.

The present writer cannot sufficiently express his admiration for it. The

idea of obtaining the number of simultaneous solutions of a set of theta

functions of arbitrary orders, and of expressing the sum of the values of the

solutions, was however first entertained by Poincare
;
his method of investiga-

tion is essentially different from the above : see Poincare, Bull. d. Sc. Math.
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1

. x

d. France, XI. (1883), p. 132; American Journal, vin. (1886), p. 334; Compt.

Rend. 4 Fev. 1895; Liouville, 5me Ser. t. I. (1895), p. 222; Acta Math. xxvi.

(1902), p. 95 : see also Kronecker, Werke, I. (1895), p. 200 (Berlin. Monats.

1869).

84. The function f(u) is easily reduced to the theta functions belonging
to the Riemann surface. We can iu fact find a unitary matrix of integers of

type (2, 2n) such that

7_RA-
1

7 = /O - e\ ,
so that 7-^7-' = R / e~l

\ = K say, or A = yKy,
(e O/ V-e-' )

where e denotes a diagonal matrix whose diagonal consists of positive integers

e, , e,2 ,
. . ., en such that ea+1/ea is an integer ;

as then every element of the matrix

RA~l
is a linear function, with integral coefficients, of the integers e,, ..., en ,

ami the elements of R&~* are co-prime, it follows that e = 1. Further each

of Rjea is an integer. Putting then (cf. p. 286)

= (, o/)7, & = (#, ')%

(, a,')
= fl, (ft, /?')

= //,

if m denote any row of 2n integers, and
jj,
=

77/1, we have

bin (u + $am) = Hp (u

while A = 2 Kk
,
i jk

,
, ytj ,

,,,
*, i

= 2 Jfk,i(yk,iyij + yi,iykj)miiHj, (mod. 2)
k<l

and

2 A f Wii,= 2 Kkt ( 2

= 2 K
kt i( 2 7JM7u wltj+ 2 Vi,jyk,imimj), (mod. 2)

k<l i<j i>j
so that

2 AijmiW;+ 2 Kt,i^yk,iyi,ini^= ^ #MM*M*>
<> *< i

' k<l

or, as ?Hi
2 =

ii (mod. 2), if we put

2 7t,i7j,i-^t,j
=

^'i,
t<i

we have 2 Atjm;Wj= 2 K
ti im,fti Fm. (mod. 2)

t<j *<t

Thus

- i 2 ^ijmimj^Hfi^i + ^fl/j^ + Cfj,-^ 2
i<j k<l

(mod. 1)

where C/A = cm + \Fm,

namely C = 7-' (c + F).
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4ow we havi

e~ l
\

,-<r' J

Now we have

R ; e-'\ = ?-' (la
- ab)^ = Bfl - ilH = 0\ (co, a,')

-

<o - to/3 <o' - &>' \
,

<o' - &>' \
,

'' -<W
so that /3o>

=
ta/3, fiat'

=
to'/3', /8&>' 10$' =

also

< - iaR^r^x^ = - iflyR^-^yn^^a; = -i (to, <u') /O -,0 - e\ /fd \X,,X

(e oJUv
-
J
(.*.)

Qo)
, (.-, -t0 >*-< * * - *>' **>

where = oxc
;
thus to is of non-vanishing determinant, or we could choose

x so that =0; if then p = R (a>e)~
l

u>', e = t = ea>x, we have

< i (caeptax to ep te
(,)
= i (ptta p<,ta t)

= i(p pa) tt
,

and = aRkr la = to'eto tuew' = . <ae (p p)eo> ;

thus p is a symmetrical matrix, and for arbitrary t, if p=p + iq, t= u + iv,

0<-i(p- pa) tt, <-i (2iq) (u? + v>)<2q (w
2 + w2),

so that for real u1 ,...,un ,
the form ipu* has its real part negative*, while

*
If we put, K and X being any constants,

S= /\e OW/e- 0\7,

\0 l) \ l)

where J a,J=ea,, so that J is a matrix of integers belonging to a linear transformation, we find

Thence, taking (u, u')
=

(v, u') 87' ', a= (r, t)') J, we find as before that the determinant formed by

the first n columns of (w, u') fS'
1

, namely, if J= /o /3 \-', of
'

/S' )

;^oV
I/\0 l x

is not zero
;
that is the determinant of wea + ma'a!, aud therefore of

a + cpo',

is not zero, c, replacing T , being any constant ;
in particular |

a'
j

* 0. The preceding work is

Ji

identical in form with that given p. 227. We have in fact

(Be-
1 0\yRA.-'y/lie-

1 Q\=lt /O -l\i

\ l) \ l) \1 OJ

and a = (w, u')f=(t, /) (Re
'

0^-y,
if i/= s e,

'= u', so that p
= r~ l

i>'.
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Take now P = A/Sta"
1

,
which by the above is a symmetrical matrix,

of type (n, n), and multiply /() by e*
nipu*

;
then

P [(? + am)' - w2

]
= P [(

u + fl^,)
2 - 2

]
= 2PfV . u + toPCl^-,

and, if /, (u)
= e'

MPtt'

/(), we have /, (u + am)//, (M) = eMT where

Herein, since

(J 7J iQ 1 j <3 -- /
,Q' ^^ ] Q f\ I?*) 1

we have, if /*
= (M, M'),

2Pfl/t .u + Hft.u

= Re~ l u>~ l
u, . M' = RvM',

while flPn/i'
2 + ^ ///i . Slfji

= ^Ra>~
l e~lM' . (a>M + a>'M')

= ^Re~
lw~l

(<oM + tu'J/') M'

since p = .R (we) 'w' = -Re '&>
*

also, since K= R I e~ l
\

,

l-e- J

we have ^ S h

thus on the whole

T= - RM' (v + I Jf' )
- Re~lMM'

\ ^ zt /

now let C = (q, q'), and take Q =
ca^q, so that

Q (u + am) -Qu = -
la^q .

flyu,
= - or 1

(o>M + ru'M') 9
= - (M + ta^w'M') q ;

then, as G/JL
= (qM + q'M'), we have

Q (u + am) -Qu + 0fi = q'M' ^ epM'q = q'M'
- ~ peqM' ;

and thus, if /2 (a)
= ,

-2Tie- ,

we have, since e =1,

which, if

1
/

'

, 1 \ / 1 1 Aw=v- E \q --peq),
=

(ioe)
l

{u
+ ^ toeq

-
^ a>eq

J
,

is the same as

/, ( + am) = e-**
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we have

(we)-
1

(w + am) = v + (tr\ ^ (M, M') = v + e~*M + M'
;

putting then f2 (u)
= F(w), we have

we have however previously shewn (Part I. p. 21) that an integral function

satisfying this equation is expressible in the form

>/ Rw, p

Ty

where A denotes the n integers Aj, ..., h n in which 5 /(<, so that this is a

sum ofRn
/e1e1 ...en functions, namely.as &=Ryf e~l

\ 7, of V
j

A
|

functions.

(-IT 1

)

And we notice, if v = -5 toe, that
ti

Compare this work with that given on p. 227. We have denoted by
R the first invariant factor of the matrix A, namely the determinant of A
divided by the highest common factor of the first minors of A

;
denote

similarly by r the first invariant factor of the matrix let^k; we have denoted

by m the last invariant factor of keyjc, namely the highest common factor

of the elements of ke^k, taken positive ;
denote similarly by M the highest

common factor of the elements of A. The equation

7 = /() - e\
,

(e 0)

gives A = 7 / Re~*\ 7,

and therefore, as 7 is unitary,

but from ke^k = wt/

wo have yke^pky
= m /() - e\

,
/,) -eY
\e OJ

arid hence r = men ;

thus Mr = mR.
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If then we put, as on p. 227 (cf. Appendix to Part II, Note ll)

Gke
lpkG=(0 -d\,

(d O)

where G is unitary, we may take y = G, d = me, and

a = (&>, w') 7 = (^ ft) (rdr1 0\ G
\ l)

gives &> = fird~
l

,
to' = ft,

P ,= ft) = /*

while e"1 = md
i

and (we)"
1 u = m

A Jacobian function in arguments (toe)"
1
?* with quasi-periods (e~l

, ^1 is

thus a Jacobian function in arguments wz . with quasi-periods m (d~ l

,
).

The function upon which the expression of the periodic functions was shewn to

depend was (p. 283) a function in arguments
"

with quasi-periods (d~l
, -).

85. Remark. Considering as before a Jacobian function f(u) on the Rie-

mann surface, let ^.(M) denote 9 \ogf(u)/dua ;
if M be regarded as an integral

of the first kind on the Riemann surface, depending on the place (.r), the func-

tion ,(') is an integral of the second kind with poles at the inRn zeros of

/(M), having for the passage of the period loop (a,) the increment 2-rriU.j.

We may consider such a function as

.,,..
-

. ..,

at thejth period loop this function has the increment

which is (Ufl-nU)ij, or

assuming provisionally that the matrix Z'AA' is not of vanishing determinant,

the 2p functions

F-(&*)-
are such that all the Zp periods of Yj are zero except that at the loop (HJ),

which is unity. If then v
l ,...,vf be the normal integrals of the first kind,

the function

Rk = -vk + Yk + Tt,,FP+ , + ... + TtlfYv , (k = 1 p\

has all its periods zero, namely is a rational function on the Riemann surface.



APPENDIX TO PAKT II.

NOTE I.

THE REDUCTION OF A MATRIX TO ONE HAVING ONLY
PRINCIPAL DIAGONAL ELEMENTS.

LET a be a matrix of integers of m rows and n columns
;
consider the

bilinear form

a=l = 1

if we put x = gx', y = hy', where g is a matrix of integers, of type (m, m),

whose determinant is positive or negative unity, and h a matrix of integers,

of type (, n), whose determinant is positive or negative unity, we obtain

aliy' . gx'
= gahy'x, = a'y'x, say,

where a' = gah ;
it is to be shewn that the matrices g, h can be chosen so that

a'y'x'
=

c,,'y,' + c,ar2'.y2
' + . . . + cj /// ,

where c,, ...
, cj are positive integers, and each of cr+1/cr is an integer.

If in uyx we put xa = x'^, av = a/a , for a particular pair of suffixes a, a',

every other x being equal to the corresponding x', the form a'y'x' obtained

will have fl',0
=

',/> '',0
= a

,0> namely we shall interchange the rows a

and a of the matrix. Similarly we can interchange any two columns by a

similarly simple unitary substitution upon the variables yl ,...,yn . If we

put x, = #', for a particular value of a, we shall change the sign of one

row, and we can equally change the sign of any one column by a transforma-

tion for y,, ...
, yn . If we put for a particular pair a, a'

all other x's being unaltered, we shall have

namely a'
j()
=

a> , ',& = a.'.p + mafi p,

so that we thereby add to the row a', the row a, multiplied by TO. Similarly,

by a unitary substitution, we can add any multiple of any column to any
other column.
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Taking now the matrix a, first divide all its elements aaj by their

greatest common (positive) divisor
; then, by interchange of rows and

columns, put the (absolutely) smallest element which is not zero, or one of

these, in the first place of the first row, and by change in the sign of the first

row, if necessary, take this smallest element positive ; then, by adding suit-

able multiples of the first row to all other rows, and suitable multiples of the

first column to all other columns, make all elements of the first row and

column less in absolute value than the first element. By repeating these

steps we shall be able to arrive at a matrix in which the first element of the

first row is positive unity and all other elements in the first row and column

are zeros.

After this, deal with the matrix obtained by ignoring the first row and

column in a similar way, making substitutions only for the variables other

than the first x and the first y ;
and so on. The bilinear form will thus take

a shape

c, {*,'#' + k,[ayt

' + k (*'&' + - )]}

or say c^'y,' + ...+ Cix{yl',

where i2
= c2/c,, &3

= cs/c2 , ... are positive integers, and the matrix has a form

, , , 0, 0,

c, , , , 0, 0,

,
c3 , 0, 0, 0,

0, 0, 0, c4 , 0, 0,

there being n I columns of zeros on the right, and in I rows of zeros below.

Here the greatest common divisor of determinants of order ? is c,c2 ... cr ,
and

the invariant factors, or elementary divisors, are ... , c3 , c2) Ci ;
the form is

thus unique. The number I, characterised by the fact that all minors of the

matrix a of more than I rows and columns have a vanishing determinant, is

the rank of the matrix. Denoting the inverses of the square unitary matrices

g, h by G, H we may write the result

a = / c \H= G^H, ,

( o o ;

where (?, ,
of type (m, I),

is constituted by the first I columns of G, and is

unitary in the sense that the determinants of it of I rows and columns have

unity as their greatest common divisor, and H1 ,
of type (I, n), is constituted

by the first I rows of H, and is similarly unitary.

For a simple instance take the matrix

=/ 1, 2, 3, 4 \,

V 5, 6, 7, 8 )
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which can be changed in turn into the following forms :

1,

5.

, o, o, o \, / i, o, o, o \, /i, o, o, o \,

i, -4, -8, -127 \ 0, -4, -8, -12 ) \0, -4, 0, o)

the bilinear form

ayx= x1yl + 2a?,y2 + $x
ly3 + 4ixlyt 4- ox^y^ + 6a>y2

being a-, (y, + 2y2 + 3ya + 4y4) + a;2 (5y, + 6y5 + 7y3 + 8y4),

or ar, y/ + ar2 (- 4y2

'

+ 5y,'),

that is x\y\ + ^tf/y/,

where (a?/,

and

= / 1, 5\(^,
I 0,

- 1 )

0, 1,

o, o,

o, o,

giving

(y/. y*) = (
]

>
2

.
3 . M (yi, y*. ys, y)-

I 0, 1, 2, 3 /

We give three applications of the result.

(a) If a be a matrix of integers of m rows and n columns, with m < n,

the determinants of order t from this not being all zero, we can determine

n m other rows of integers which, put with a, give a matrix of n rows

and columns, with determinant equal to the greatest common divisor of

the determinants of order m in a: in particular if a be unitary the additional

n m rows can be found so that the resulting determinant is unitary.

For taking the notation as before, we have I = m, and

a=G(c, 0)H,

where G is of type (m, m) ;
consider the matrix product

I G, Owe, \H,

\ 0, 1 A 0, 1 )

where each factor is of type (n, n), the unity denoting in each case a diagonal

matrix whose w - t elements in the diagonal are all unities and other

elements zero, the zero denoting a matrix whose elements are zero, of type

(m, n m), or (n m, m), according to its position. This is the same as

fOc, 0\H.=f GcH, \
,
= / a \

,

( 0, 1.) ( H., ) \HJ
B. 20
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where Hlt as before, is constituted by the first m rows of H, and H, by the

remaining n m rows. The determinant of this matrix is

I ri I rr __
CrC ii

,
*~

Cj Co ... Cm ,

and this matrix is therefore such a matrix as desired.

(/3) In the same case, m < n, the rank of the matrix a being m, we

have as before

a= GcHlt =fk, say,

where/ = Gc, is of type (m, m), and k, =H1 ,
is of type (m, n) and is unitary,

in the sense that its determinants of order m have unity for highest common

factor. The question arises whether the matrix a is capable of the form

a =/,&,,

in which /, is of type (m, in), and
,
is of type (m, 11) and is imitary, in other

ways. We prove that this is only possible by the obvious change

wherein 7, of type (in, m), is unitary.

For, form the matrix of type (n, n), of determinant unity, whose first

m rows are constituted by the matrix k, as we have just shewn possible

(under (a)) ;
let m denote the inverse of this matrix, so that

km = (l, 0),

where 1 denotes a diagonal matrix of type (m, m), having unities in the

diagonal but its other elements zero, and denotes a zero matrix of type

(m, n m); the equation

then gives /(I, ())=/&, wi,

and if we put A,m = (7, \),

where 7 is of type (m, in) and X of type (m, n m), this is the same as

/=/7, with 0=/X;
the former gives /i7^=/i&i>

which, since by hypothesis the determinant of/ is not zero, leads to

as stated above.

If instead of the numbers m, n we have respectively the even numbers

2n, 2p, as is the case in the applications made in the text of this volume, and

if, as there, e^ denote a matrix of type (2p, 2p) whose elements are zero save

the elements (r, p + r), each of which is 1, and the elements (p + r, ?),

each of which is 1, we have the result that a matrix of integers a, of type

(2n, 2p), and rank 2n, can be written in the form

=/,
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wherein /is of type (2n, 2?*), and k is of type (2n, 2p), and is unitary, and in

whatever svay this be done, the matrix, of type (2w, 2w),

"s*p

has the same determinant. The number expressed by this determinant, which

was called the multiplicity in the text, is thus uniquely determined by the

matrix a.

(7) A third simple application is to determine the number of integers

representable in the form ax, where a is a square matrix type (n, ri), of non-

vanishing determinant, (m = n = I), and a; is a row of rational fractions, two

rows whose difference consists of integers being counted equivalent. Take,

as before,

a = OcH ;

then ax = z,

where z is a row of n integers, is the same as

tf-6
where Hx =

g, G~lz = f,

so that when z consists of integers, so does f, and conversely, and when x' x

consists of integers, so does ('
= H(x' x), and conversely. The problem

is then of the number of integers representable by cf, that is by

and of these the suitable solutions are manifestly

Ci
= 0, 1 ..... d-1 ; Cj, = 0, 1, ... , c,- 1

; ....

of which the number is c,c.2 ... cn , equal to the determinant of the matrix a.

NOTE II.

THE COGREDIENT REDUCTION OF A SKEW-SYMMETRIC
MATRIX OF INTEGERS.

Consider a bilinear form in the in variables xlt ... ,xm and the m variables

ylt ... , ym , having the" shape

ayx = Sojj (xiijj
- x

}yi),

where the coefficients a,-j are integers ;
we proceed to shew how, by co-

gredient unitary substitutions

v = g, y = gy,

where g is a matrix of integers of type (TO, m) of determinant unity, the form

can be reduced to the shape

^1 (fn+i'/i
-

fi7n+i) + ^1^(^+2% - fi^n+s) + ,

202
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in which the couplets of variables occurring are of the forms

tfifn+i fn+ifii ZiVn+i
~

fn+a'fa. > % fai'/n,

or say (1, n + 1), (2,n+2)..... (, 2n),

in which no two couplets involve the same suffix, and the total number

of variables f is even, = 2n, as of variables 17, while d,, d, ...
,
dn are positive

integers.

(a) In the first place, we can, by unitary substitutions, change the

original form to one in which the only couplets such as (i, j)
= x^ x^ji

which occur are

(1,2), (2,3), (3,4), (4,5), ...
, (ro -l.ro),

in which any two consecutive couplets have a common suffix
;
we may

describe such a form as a linked form.

For consider any two couplets

a (anyj
- a^) + b (xtyt - a^) ;

let m be the greatest common divisor of a and b, and p, a; without common

factor, be integers chosen so that

a<r bp = m ;

putting ^ +1^ =
*;, ^% +

_w =
y/>

axk = xk
'

, pyj + ay1,
= yt ,

the other variables (than x
j}
xk) being unchanged, this being a unitary sub-

stitution, the two couplets become

i (Xiy-
-

Xj'yt),

and instead of two couplets (i,j), (i, k) we have now only one couplet (i,j).

Thus, considering the aggregate of the couplets involving #, and y^ in the

original form, namely

we can first replace the two first couplets by a single couplet

this requiring a substitution, of x^ and x3

'

in place of a;, and x3 (and of y,' and

y,'
in place of y2 and y3) which does not affect any other of the couplets

involving a;, and y, ;
the number c, i2 is a divisor of o,>a , being the greatest

common divisor of a,, 2 and
,, 3 ; taking next the couplets

we can by a substitution replacing ,v2', x^ by a;/', a;4

'

(and similarly 7/2', y4 by

2/a". y/). replace these couplets by a single couplet c,,.,(,/./'- a?4"y,), where
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c,_ 3 is a divisor of
C], 2 and therefore a divisor of a

lt 2 . Proceeding thus the

form is reduced to

a (aw - f2y,) + H,

where H is a, skew-symmetric form in m 1 pairs of variables f2 , 7/2 , fs , r) 3 ...
,

not involving #,, y,, and a is a divisor of a,_ 2 . By applying a similar process

to H, we can, by a unitary substitution which does not affect xlt yl or
.,, 7;.,,

reduce this to a form

where K is a form not involving the variables a;1( ylt or ,, rj.2
. And so on.

The original form is thus reduced, say, to

&
lf , ( JT, Y, - X, Yt ) + 62 , 3 <*, F3

- X3 F2) + . . . + &,_,, , (*_, YM - Xm Ym^.
(j8) From this it appears at once that integer values of xlt ylt ...

,
xm , ?/,,

can be chosen which will make the original form equal to the greatest

common divisor of all the coefficients O] i2 , i j3 ,
...

, 0^3, ...
,
am-i,m-

For, the linked form just written, with coefficients b
iti , being obtained

from the original by unitary substitutions, the greatest common divisor of its

coefficients
6,-,j

is necessarily the same as for the original form. Suppose, for

a time, this factor divided out, so that we may regard 6i, 2> 6
2i3)

... , 6m_, i ,n

as having only unity as common divisor. We can then obtain integers

p.,p3,...,pm ,
without common factor, to make

1,2^2 + 62,3^3 + +&m-i,mj,= 1
5

take then X, = Xt
=

. . . = Xm 1,

and F, = qlt F2
= ?2) ... , Ym = qm ,

so that F2 F, =
jp2 , Fj Yf

= p3 ,
...

,
Ym Ym_1 =pm ,

which is satisfied, for instance, by

F, = 0, F2 =p2 ,
Y3 =p.;+p3 ..... Ym = p.,+p3 +...+pm ;

then, for these values, the linked form has the value unity. Let the corre-

sponding values of xlt ..., xm and ylt ...
, ym ,

obtained from these by the

unitary substitutions, be denoted respectively by Oj, ...,, and bi , ... ,bm ;

for these the original form has also the value unity ;
and as the two matrices

/ a,, civ, ... , am \, I 1
,

1
, ..., 1 \

V blt 62 , ..., bm ) \ q s , q.,,
...

, qm )

are obtained from one another by unitary substitutions, and the binary
determinants from the latter (which are, in part, the numbers p2 , p3 , ...

, pm)

have unity as common factor, the same is true of the former matrix.

The statement is therefore proved in the case when the coefficients of the

form have unity for common factor. It then follows at once in the case when

they have a common factor greater than unity.
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(7) Hence, the original form can be changed to one in which the

coefficient of the first couplet, (1, 2), is equal to the highest common factor of

all the coefficients.

Suppose this highest common factor to be unity, and, as in (/S), let

xl
= a

l , ...,xm = am , 2/1
=

&i ..... ym = bm

be values of the variables reducing the original form to unity. We can then,

as proved in Note I (p. 305), since the binary determinants a( bj ctjbi
have

unity for highest common factor, determine a matrix of integers of

determinant unity whose first two rows are respectively a,, ... , a^. and

&i ..... bm , say
P = I a, , a.lt ..., am \;

b
t ,

62 , ..., bm

putting then

we obtain ayx = PaPi)%,

wherein the coefficient of the couplet ^ l rj., ^rj l
is

m 1...W

(PaP),, 2
= 2 Pl ,

r (aP)r,
,
= 2 ar,, (P,, r P2) ,

- PM P2
,
r)

r-l r,

1...M

as was desired. When the coefficients of the original form have a common

factor greater than unity, the corresponding transformed form is one in

which the coefficient of the couplet fii/a f2 ih is this factor.

(8) Still supposing the coefficients in the form to have unity as common

factor, and the form to have been reduced, as in (7), to a form

in which the first couplet has unity as coefficient, let this form be transformed,

as in (a), to a linked form,

-X\ Fa X2 Fi + /32)3 (X? Y3 X3 Fj) + . . . + Pm i, ?n (-^m-i * m ~" -"n *,_]),

in which -X^f,, F^T;,, and the first coefficient, being the common divisor

of all the coefficients, is unity. Herein put

X-L $2t3
X3

= X-f, F, ^2,3 F3
= F] ,

as a transformation for Xlt Ylt the other variables being unaltered
; thereby

we get
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where

involves only m 2 variables X3 , ..., Xm and m 2 variables Y3 , ..., Ym .

Let similar reasoning be applied to the form M, after division of all its

coefficients by their highest common factor, and so on. If dt denote the

highest common factor of the coefficients of the form as originally given,

we thus see that this form can be changed to the shape

d, {(1, 2) + d, [(3, 4) + d, ((5, 6) + ... )]},

or

di (#/#/- BI'VI) + didt(x3-y{- xt'ys') + ... +dl d.J ...dH (*'..,_! y'.M - x'm /2n_,),

wherein d, , d, ..., dn are positive integers, and 2n, an even integer, is

not greater than in, putting now

x'lt-i
=

ft , o'st = fn+i , y'tfc-i
= % > 'Jit

=
'Jn+t i (& = 1

> 2, . . .
, ),

this is the same as

In other words there exist unitary transformations from the original form, say

such that ayx yarjtjl;
= / d X \ T/ ,

Id ft
)

\ X' ft' v'

or gag = / d A. \ ,

Id ft \

>V /^/
where denotes a matrix of n rows and columns of which every element

is zero, d denotes a matrix of n rows and columns having every element

zero except those in the diagonal which are in turn d\, djdj, ..., didj...dn ,

while X, p, v, X', ft are matrices consisting wholly of zeros, of respective types

(n, m 2n), (, m 2), (m -2n, m 2n), (m - 2n, n), (m2n, n). Of the

whole matrix, the minors of 1, 2, 3, 4, ..., 2, rows and columns have, for

the greatest common divisor, respectively,

so that the corresponding invariant factors are

while all determinants of more than In rows and columns are zero. In

particular if the original matrix a is of non-vanishing determinant we
must have m = Zn, and there is a transformation such that

gag = /0 -
rU
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(e) lu the preceding reduction every step can he at once carried out

for any given form. But the number of steps can be reduced, and the

use of the so-called linked form avoided, if we establish in some other

way that values of the variables can be found to render the original form

equal to the greatest common divisor of its coefficients, which we have proved

by the use of the linked form. This result being assumed, the form can be

reduced, as in (7), to the shape

rfi-f = d, [f,77.,
-

.17, + ,, a (,% - ,77,) + ...];

and then, instead of (8), we may put

dF dF
X

l
= A" =?l-2,3fi-"-> y>

=
-Ofc- ='71-02,3% --.,

OT7a 2

dF , SF
*3 = -g-

= ?+M{:j + -, y-i= gt
=

*>* + M% + ">

whereby the form reduces to

<*,{<*.V-^V) + tf}.

where N is a form not containing the four variables #,', x3 , y,', y, for which

then similar reduction is possible (Frobenius, Crelle, LXXXVI. and LXXXVIII.).

() Any form

a (x^ - x^) + b (x3yt
- xty3) + c (x,ys

- xty^ + ...,

in which no two couplets have a common variable, can be at once reduced to

as follows. Take the pair of couplets

A (x,y2
-

2y,) + B (x3yt
- xty,)

in which A, B have no common factor
;
find /JL, v so that A/J, + Bv = 1

; put

xt
= fix^ -Bx, , yi

=
(iyi -By, ,

xi
= x^ -BvXi, 2/2= 3/2' -Bvyl,

yt
= y2

'

+Afj,yt',

which is a unitary substitution, giving, as we at once find,

A (xty3
- x.2yt ) + B (x3yt

- xty3)
=

ar/y,'
- x2'yt

' + AB(x3'yt'-xt'y3').

A repetition of this process suffices for the purpose.

(t) Suppose the skew-symmetric matrix of integers, a, to be of type

(2n, 71),
and of non-vanishing determinant. Then as has been shewn,

we can find a unitary matrix g, of integers, such that

gag = /O -d\,
\d 0>
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where d is a diagonal matrix of positive integer elements d,, d.,, ..., dn

for which each of d3/d,, d3/d.^, ..., d,,/dn_, is integral. Let d" 1 be the inverse

matrix of d, a diagonal matrix of elements dr l

, d-r
1

, ..., dn
~ l

;
we have,

if 1 denote the unit matrix of type (n, n),

frd~
l ON /O - d\ frd~l ON = /O - r\ frd' 1 ON = /O - rN = r /O - 1\ ;

I V U OA l) (d Q) ( l) (r OJ (l O]

if we take r = dn ,
the first invariant factor of a, being the quotient of

the determinant (d,d, ... d,,)
2

,
of a, by the highest common factor

of its minors of order 2/i 1, then

(rd~
l 0\

( l)

is a matrix of integers. Conversely, if 7 be any matrix of integers such that

7/0 -d\y = s/0 -IN,
Id OJ (l OJ

where s is an integer, and ./, of type (2n, 2n), given by

J=/a /3V
W /8-j

be the most general matrix such that

J/0 -lN/=/0 -IN,
U oJ u oJ

we have, from /sd"1 ON /O - d\ /sd"1 ON = s /O - IN ,

I lJU OAO U U O)

the equation /O -d\=s /s~'d ON /O - IN /s~ !d ON ,

U oJ ( o ij U oJ V o i)

and hence 7 /-'d ON /O - IN /*-'d 0\ 7 = /O - IN
,

V o i/U oJVo ij U o)

so that /s~'d ON 7 = J,

V o l)

or 7 = (sd-
1 ON /a /3 N = /sd-]o srf-'/9N ;

v o i; U' &) la /s' ;

now d~'a differs from a in that its first row is divided by d,, its second

row by d2 ,
and so on

;
in order then that all the elements of sd~ l

<x and

d~'/9 should be integers each of the quantities sd,"
1

,
sd3~\ ..., sdn

~l must be

integral, or, if these be fractions with denominators elt et , ..., en ,
the last

row of a must, after division by en ,
consist of integers, as must also the last

row of y8; we have however from the definition of J (cf. p. 314)

<^n,iffn,i
a
'n,\fin,i + 8*&f,t

~ a'n,2^,'2 + + <*n,n$n,n
~

'ji,iiA,"
= 1

i
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thus e,,= 1 and s divides by dn . In other words the most general matrix of

integers, 7, for which

wherein s is an integer, is of the form

7 = fsd~ l ON J,

\ I/

where J is a matrix for which

,7/0 -lN/=/0 -IN,
U oj U oj

and A- necessarily divides by dn , the first invariant factor of the matrix

/O -rfN.

U o;

The matrix f97
is then such that //= s /O IN

,

U oj

and is the most general matrix of integers effecting this transformation,

while s is necessarily equal to, or a multiple of, the first invariant factor

of the matrix a.

NOTE III.

ON TWO FORMS OF EXPANSION OF A DETERMINANT.

If O], a,, ..., an , Oj', a/, ..., an
'

&,, b,, ..., bn , bi, b2', ..., bn
'

be two rows, each of 2n quantities, the quantity

(a, 6)
= aA' - Oi'&i + aA' - a2'63 + . . . + anbn

' - an'bn

may be called the combinant, or the splice of the two rows. For instance

if we have a matrix of 2 rows and columns such that

U' JS'/VI 0/1/9 y87 U OJ

where 1 denotes the matrix unity of type (n, n), and each of a, /?, a', #' is also

of type (n, n), namely such that

V/3'o-a'/3 /3'o'-a'y87 VI O/

then r,,&,,
-

a,,,/8r,i + + a,-,,,/?*,,,
-

,,A-, = 0,

ar,iP r,i~ r,i^r,i + + <*-r,nft'r,n
~ a'r,n/3r,n = 1,

and so on, namely the splice of any two rows of the matrix

is zero, except of rows of places r and r + n, when the splice is unity.
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(a) If A =(,')
be a matrix of type (2n, 2p), with w 5 p, so that each of , a' is of type

(2n, p), we have, with

%=/0 -IV,
u <v

wherein 1 denotes the unit matrix of type (p, p),

Ae.9A =
(a, a') /O - 1\ /a \ = (a',

-
a) /a \ = a a - aa',

U OJ UV UV
a matrix of type (2?;, 2n), wherein the (r, s)th element is

r,l*,l + + Ctr.pBg.p
ar,l,l ...

<*r,p<*- e,i>,

which is the negative of the splice of the two rows

*r, 1> >
a
r,p> O

r, i> >
^

r,p

s,p

of the matrix (o, a') ; denoting this by (r, s) we thus have

"=/ , -(1,2), -(1,3), . .\.

(1,2), , -(2,3), . .

(1,3), (2,3), , . .

Thus in particular, when n =p, and ^1 is a square matrix of type (2n, 2),

by taking the square root of the determinant of both sides, we have

A = the Pfaffian 2 (1, 2) (3, 4) ... (2n
-

1, 2n),

whereby any determinant of even order 2n is expressed as a Pfaffian in-

volving 1 . 3 . 5 . . . (2re 1) terms, each of which is a product of n splices from

two rows of the determinant. For example, the determinant

A= a,, 61, a/, bi

a.2 , b,, Oj', b,'

a,, b3 , a,', 63

'

at , bt , a/, bt

if (r, s)
= ara,' a,ar

'

+ br b,' b,br',

has the form A =
(1, 2) (3, 4)

-
(1, 3) (2, 4) + (1, 4) (2, 3).

(y9) The same determinant of order 2n can be expanded as a sum of

products of binary determinants. Divide the determinant mentally into

pairs of columns, say the first and second, the third and fourth, in general the

(2A l)th and 2/ith. From the first pair of columns take the &,th and

fc,th rows, and let [k,, k.^! denote the binary determinant so obtained;
from the second pair of columns take similarly the determinant [k3 ,

kt ].,

involving elements from the k,th and &4th rows, and so on ;
we suppose

kt < k.
, k, < kt ,

and so on. Then the determinant can be written
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where the number of terms is

.-(*0 1.8.5.. ..(2.^1),

and the sign is + according as &,, k?, k3 ,
kt , ... is an order formed from

the normal order 1, 2, 3, 4, ... by an even or odd number of inversions. For

instance, for the determinant A we have the ordinary expansion of six terms

A = (0,62- Oybi) (a^ bt

' - at'b3') 4- ... + (a3 bi a4bt)(al
'b3'-a.i'bl').

(7) We can easily connect these two methods of expansion. Take

the second method of expansion to be based upon a subdivision of the

determinant into pairs of columns of which the first pair is constituted

by the first and (n + l)th columns, the second pair by the second and

(n + 2)th columns, ..., the nth pair by the ?ith and 2wth columns. Then

the splice of the rth and sth rows of the determinant is, in the notation

employed in (a) and (/9),

(r, s)
=

[r, s] : + [r, s], + ... + [r, s] n ,

where [r, S]A denotes a binary determinant formed from the /<th pair of

columns. Hence the Pfaffian expansion of the determinant, formed us

in (a), is

2 {[1, 2], + [1, 2], + ... + [1, 2]B ) {[3, 4], + ... + [3, 4] n] {
.........

}

or 2 [1,2] ,[3, 4], [5,6],.. .

+ 2 [3, 4], [1,2], [5,6],...

+ ...

+ 2 [1,2], [3, 4], [5,6],...

wherein, iu each of the first (n !) rows, which are formed from one another

merely by permutation of the suffixes 1, 2, ..., n, there are no two suffixes

equal, while in each of the remaining rows two suffixes (at least) are equal.

Such a row, for example, as

2[<2] 1 [8,4]I [5,8],... >

arises, however, associated with others which, together with it, make the

expansion, in binary determinants, of a determinant in which the second pair

of columns is the same as the first pair, that is of a vanishing determinant.

The Pfaffian expansion thus gives the expansion 'in binary determinants;

and the form of the latter is at once deducible from the form of the former by

permutation of the factors of the terms. For instance, for n = 2, the Pfaffian

expansion is

(1,2), (3, 4) -(1,3) (2, 4) + (1,4) (2, 3),

and the expansion in binary determinants is

[1, 2], [3, 4],
-

[1, 3], [2, 4].2 + [1, 4], [2, 3],

+ [3, 4], [1, 2] 3
-

[2, 4], [1, 3], + [2, 3], [1, 4],.
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NOTE IV.

SOME CURVES LYING UPON THE KUMMER SURFACE, IN CONNEXION
WITH THE THEORY OF DEFECTIVE INTEGRALS.

1. Upon the hyperelliptic surface (x, y, f)
= 0, expressing the relation

connecting the functions x = j^ (u), y = %>,a (u), f = p^ (u), the two integrals

(P- 44)

_ [& l3 da;
- A 12 cfy _ f-

*J f3A/a*
' Ml ~*J

beside being everywhere finite, are single valued save for their additive

periods, and are thus among the everywhere finite integrals belonging to

any algebraic curve upon =
; every such curve of deficiency greater than

2 thus possesses defective integrals.

But upon the Kummer surface, these integrals, of which the integrand
involves rational functions of x, y, z multiplied by the ambiguous quantity ,

though still everywhere finite, are capable of change of sign, and are therefore

not in general among the ordinary everywhere finite integrals of a curve upon
this surface.

Any plane (algebraic) curve possesses, in addition to its ordinary single

valued integrals of the first kind, everywhere finite integrals similarly capable
of change of sign. For example, on the curve

the integral \(x a^

is everywhere finite
; and, on the curve

the integral f(l
- O*^

is everywhere finite; in general if, upon any plane curve of deficiency p, the

adjoint polynomial of 2p2 zeros associated with an ordinary integral of the

first kind, v, be denoted by 9, and 4>, ^f denote such adjoint polynomials each

with the peculiarity of having p 1 repeated zeros, the integral

9
is everywhere finite. These integrals are single valued upon the associated

.surface dissected by the period loops which render the ordinary
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integrals single valued, but the relation connecting the values of an integral

at the two sides of any such loop is of the form

' = (_ ].y>u + fl,

where fl is a constant for that loop, and g, also constant for that loop, is

or 1
;
with each such integral there is thus a set of 2p numbers g, and it can

be proved that, for each of the 2^1 possible sets of such 2p numbers, the

number of linearly independent integrals is p 1 *.

For the case of a plane quartic curve, f= 0, with p = 3, there are,

associated with any set of 6 numbers g, twelve f bitangents, forming a so-

called Steiner system, breaking into couples xlt ,, x, ^, ..., x6 , ff6 , such that,

for i = 3, . . . , 6, we have

where A { ,
B( are constants

;
and the corresponding integrals J are

, dx [ . dx

On the Kummer surface, the factor under the integral sign, in the

integrals u2 ,
ut ,

which is not rational in x, y, z, is f ; or, since the ratios

f:i;:f:T are rational in x, y, z, it may be taken to be any linear form

l\~n + t?+ S
T

;
we nave (Ex. 7, p. 152) the identities

= 2

wherein 0, </>, ^ are roots of the fundamental quintic ;
the sign of the square

root under the integral sign may thus be expressed in terms of any one of

the 20 radicals of these forms, of which any two have a rational ratio
;
these

20 radicals are all expressible linearly in terms of four of them, for example
in terms of

vV- ^."/VV
This suggests at once the relations among the square roots of the products

of two bitangents of a plane quartic curve. To see how, in the case of a

plane section of a Kummer surface, these radicals reduce to square roots of

products of two bitangents, consider any plane passing through the two

points at infinity

x

1

* A proof is given in the anther's AlieVf Theorem, Chap. xiv. See p. 420.

t loc. cit., p. 381.

J A very general case of such factorial integrals, and theta functions formed with them, is

considered by Wirtinger, Untenur.hungen iilifr Thetiifiinctionen (Leipzig, 1895), pp. 73125.
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where 0, $ are not necessarily roots of the fundamental quintic ;
the equation

of the plane may therefore be taken to be

or say Pe^
=m

;
if we put

(*-*) (Vr-g)g.

~(0-4>)(0-+r "(*-*)(*-*)
wliere

i/r,
like and 0, is any quantity, and

and put also X = P^, F=P^,a ,
Z =

we have* the identity

= 4.X FZ + a2^2 + 6= rs + <?Z - 26cF - ZcaZX - 2abXY ;

from this identity, taking ^ = oo
,
we have

[Otf+ (0 + <*>) *? + ?? = 4P9P*P^ + (0
-

<)-' (P* -
PeY,

where P9
= y -f Ox 2

,
and 0, <f>

are arbitrary ; while, taking -ty
to be any

root of the fundamental quintic, so that c = 0, we have, still with 6 and
<f>

arbitrary,

thus when P = TM we have

now we know that the cubic function in x, y, z, obtained by squaring the left

side, gives, when equated to zero, a surface touching the Kummer surface

wherever it meets it
;
the right side therefore represents the square root of

the product of two double tangents of the plane quartic obtained by the

section of the Kummer surface with the plane P^ = m. For this plane

quartic the square root under the integral sign, in the two surface integrals

,, M,, is thus reduced, as regards its sign, to any one of the six radicals

obtained by taking -|f equal in turn to all the roots of the fundamental

sexticf ;
and of these radicals all are expressible linearly by any two of

them, since we have

2 (^ - *) (4mP^,PWi + (a,PWl
- biP^ = 0.

1,8, S

* We know (p. 152) that the terras of the third order in x, y, z, on the two sides, agree ; and

it is easily found that the cubic surface obtained by equating the right side to zero has nodes at

(X, Y, Z) = (Q, 0, 0), (0, ca, ab), (be, 0, ab), (be, ca, 0), as on p. 143; for P^-be is the same as

P^ = **/(0 -
,/-)-,

= K'^
- K^ ; putting Jf

,
= - aX+ bY+ cZ, 1

=aX -
It Y+ cZ, Zl

=aX + 1,Y - cZ,

T,=9abc - aX - l,Y-c%, the surface reduces to X,-' + y,-' + ,-> + T,-
1 = 0.

t Thus the 28 double tangents of the plane section
I'g^

m are determined, consisting of the
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When the plane P^,= m becomes a tangent plane of the Kuimncr

surface we have m = 0, or m ab, corresponding to the two tangent planes

through the chord (6, <f>)
at infinity ;

in either case the radical

becomes rational in x, y, z, and the integrals 2 , , become ordinary integrals

of the first kind upon the section, which is now a hyperelliptic quartic curve

of deficiency 2.

In general, upon any algebraic curve on the Kummer surface, in order

that the integrals M2 , M, of the surface should be integrals of the first kind

for this curve, it is clearly necessary and sufficient that, upon this curve,

?>
=

firaCw). should be expressible rationally by the coordinates x, y, z of the

point of this curve. Consider, with the Kummer surface, the surface

^ (x > V> %) = ;
we have f = *JM (x, y, z), where R is a rational function, and,

to any point (x, y, z) of a curve upon the Kummer surface, correspond two

16 intersections of the plane with the singular tangent planes, and the 12 determined in the text,

which form a Steiner system. The pairs of this system intersect in the six points such as

P^= 0, P^= 0, Pg^
= m

; the plane Pe^
= is the polar pluue of z/1 = - y \f)

=
zjff*

= oc in the linear

complex associated with the root ^ (whose form is given p. 74 ; see p. 105), and the six points

1^= 0, P^= 0, Pe^
= m are the poles of the plane P^,

= m in the six linear complexes; they lie

on a conic, as follows from the identity 2 (Fjzx')
2=

(p. 174) ; cf. Klein, Math. Annul, n. (1870),

p. 216.

Conversely, given any plane quartic curve, there can be drawn through it x * Kummer
surfaces. We have in various ways, in this volume, reduced the equation of a Kummer surface to

a form containing three explicit constants (e.g. p. 153) ; adding the 15 constants of a general

protective transformation we have 18 constants ; making the surface pass then through 14

(
=4.4-3+1) points of an arbitrary quartic curve, there remain 4 constants. The theorem is

proved by Kummer (Berlin. Moiuitsbei: 1864, p. 256), by identifying the irrational form of tb

qnartic curve with the section, by its plane, of the Kummer surface taken in irrational form. The

quartic curve being regarded as the envelope of the conic \fi-U+ \l/V+ ir=0 (Salmon, Higher Plane

Curves (1879), p. 226), there are six values of ^ for which this conic represents two straight lines;

the six points of intersection of these pairs are easily shewn to lie upon a conic, S; dividing these

six points into two triangles in one of the ten possible ways, there exists a unique conic, 2, of

which these are self-polar triangles; taking two arbitrary noa-intersectiug straight lines through

the two points in which this unique conic, i), cuts one side of one of the two triangles, these lines

and the conic 2 determine a ruled quadric ;
it is then easy to determine six linear complexes,

every two in involution, in which the poles of the given plane, of the quartic curve, are the

angular points of the two inscribed triangles of the conic .S'. Hence the Kummer surface can be

found as desired (Ciani, Ann. <li Mat. 3rd Series, t. n. (1899), p. 93). The six complexes being

F,, ..., F6 (cf. p. 168), the two arbitrarily assumed lines are the directrices F,
-

iTo, and the quadric

is Fj F2
~' r3 (.t)'-'

=
(cf. p. 81) ; the involutory transformation (x')

= V.2
~ l

l\ (x) may be denned by

drawing from
(.r)

the secant of I
1

,*/!
1

.,, and taking the fourth harmonic point (.t');
the six linear

complexes are obtained by the sequence of such a transformation and reciprocation in regard to

the quadric surface (cf. Hudson, Kummer's Quartic Surface, p. 41). Finally, the construction in

the text enables us to obtain the Kummer surface, as the locus of nodes of a certain cubic surface

with four nodes, which touches its tritangent plane at the points of contact, with the given plane

quartic curve, of one of the bitangents of this curve. The conic \fU+if/V+ l('=0 lies on this

cubic surface.
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points (x,y,%), (x,y, %) of the associated curve upon "$? (x, y, f)
=

; if,

however, upon this curve, R
(as, y, z) [U (x, y, z)\-, where U is a rational

function, the associated curve upon ^ (x, #, )
= breaks up into two curves,

one satisfying
= U(x,y,z), the other satisfying

= U(x,y,z), where, on

the right, z is to be replaced by its rational expression in x, y and . Of this

the tangent plane section of the Kummer surface forms the handiest example ;

if in the identity

?]
a = 4P,PP* + (0

-
<)

we put (p. 38)

s-
e-<t>

we have

(- &' + 1^ + C)
1 - (- fy + V* + r')

2

= 4 [(x
-

x'} (xy'
-

x'y) -(y- y"f] [xy
-

x'y + z'- z],

and thus, upon the tangent plane of the Kummer surface, which, with fixed

(x, y', /), is expressed by

xy' x'y + z' z = 0,

we have* - / + t)x' + = + (- %'y + rj'x + %'),

or - ft + r,x' + f = - (- 'y + jx

of which the former is the same as

1 - /A,, + ate,, + A,,-''
where An , etc., are the minors in the determinant A (p. 41).

Besides the tangent planes there is an infinite number of curves upon the

Kummer surface upon which the integrals of the surface are integrals of the

first kind
;

if C be the cubic polynomial in x, y, z obtained by squaring any
function of the form J f + lt ij + 1^+ l,r (cf. pp. 139 150), and P, Q be

any two integral polynomials in x, y, z, any surface CQ* = P2 cuts the

Kummer surface in such a curve
;
the surface CQ2 = P2

is one which touches

the cubic surface C = at all their common points.

If we consider any birational transformation of the Kummer surface

whereby to a point P corresponds a point P', we may associate with P the

integrals of the surface belonging to P'
;
these will be single valued, as well

as finite, on an algebraic curve of the surface containing P, if the integrals

of the surface are single valued on the corresponding curve containing P'-

* This may be easily obtained also by applying the oouverne of Abel's Theorem to the equation

(c(. p. 121).

21
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In particular, the transformation from a point to its satellite point

us to associate with the points of any curve on the surface the integrals (p. 78)

which are single valued on a curve upon which <rQ3 is expressible as the

square of a homogeneous rational function of
, r), f, T of effective dimension

3. For instance the curve of intersection of the Weddle surface with the

quadric cone

where (x,, ya , z ) are the coordinates of any point of the Kummer surface, or

of the Kummer surface A = with the cubic surface

3A 9A 3A 8A

this being the locus of the points satellite to those of a tangent section of

the Kummer surface (p. 76), is a curve upon which the above integrals are

integrals of the first kind. We have considered in this volume a group of

32 birational transformations
;
these are made up however by combining the

process of passing to the satellite point, just considered, with the process of

adding a half period to the integrals of the surface.

2. We proceed now to consider a particular curve upon the Weddle

surface, of which the corresponding curve upon the Kummer surface is one

of the principal asymptotic curves (cf. Exx. 18 20, p. 162) ;
it will be seen

to be of deficiency 5 and to have five integrals of the first kind reducible to

elliptic integrals ;
it is the curve of contact of a tangent cone from a node, of

which the points are expressible by single valued periodic functions
;

it thus

furnishes a good example of Chapter VII.
; and, like the plane quartic curves

of four concurrent bitangents, it lies upon cubic cones, whose elliptic integrals

give the defective integrals of the curve.

Let x, y, z be homogeneous coordinates in a plane, and

C = yza (yc' zb') + zxb (zaf xc') + xyc (xb
1

yd),

Q = bcx (y z) + cay (z x) + abz (x y),

P = x(b-c) + y(c-a) + z(a-b),

where a' = 1 a, b' = 1 b, c' = 1 c ;

the sextic curve F=C*- txyzPQ =

has cusps at the angular points of the triangle of reference and at the points

(1, 1, 1), (a, b, c), and is of deficiency 5
;

it touches the join of every two

cusps. The five cuspidal tangents, of which two are

a' (b
-

c) as + b' (c
- a) y + c (a -b)z = 0,

a' (b
-

c)
- + b' (c

-
a) f + c' (a

- b)- = 0,
Cb V C
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meet in one point,
xa' _ yb' _ zc'

a
"

b
'

c
'

which lies on the curve, and on the conic

bcx(y z) + cay (z x) + abz (x y)
= 0,

which is the conic containing the five cusps, the conic and sextic having the

same tangent at this point, namely

a'2

(6
-

c)
-

4- i'
2

(c
-

a) |
+ c'

2

(a
-

6)
- = 0.

We have xFl + yF* + zF3
= 0,

dxFl + dyF3 + dzF3
= 0,

where Fr
=

dF/dx, etc.
;
and hence

ydz zdy _ _x (ydz
-
zdy) 4- y (zdx

- xdz) + z' (xdy
-
ydx)

where x, y, z are arbitrary, and if this be denoted by du>, the integrals of

the first kind are of the form

IfldtB,

where fi = is a cubic curve through the five cusps. In particular a cubic

curve can be drawn through one cusp to touch, at the remaining four cusps,

the joining lines of these to the first cusp ;
and these 5 cubic curves are

linearly independent ;
for instance the curve

or (c-a)x (bz* + cy") + (b-c)y (or
2 + a?2

) + 2 (a b) cxyz = 0,

can easily be seen to be such a cubic for the cusp x = 0, y = 0, touching the

lines x = 0, y = 0, x y = 0, xb ya = at the remaining cusps. Taking

correspondingly x' = 0, y
1 =

0, there is an integral of the first kind

mo (xdy -ydx)
J dF/dz

we find however on calculation that there is for points on the sextic the

identity

[1 )'
= 16 (1

-
a) (1

-
6) xy (x

-
y) (bx

-
ay) fl

;

the above integral is thus a constant multiple of the elliptic integral

dt

and there are four other linearly independent integrals of the first kind also

similarly each reducing to an elliptic integral.

212
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Take now the equation to a Weddle surface referred to four of its nodes

as corners of tetrahedron of reference, the other two nodes being (a, b, c, 1)

and (1,1,1,1), and regard t = as the plane at infinity; this equation is

(cf. Proc. L&nd. Math. Soc. Ser. 2, Vol. i. 19034, p. 250)

xyzP + C + Q = 0,

and the tangent cone from the origin (0, 0, 0) is

C2 - IxyzPQ = 0,

containing the plane curve considered above. Any point (x, y, z) of the

surface projects, from the origin, to a point of the surface of coordinates

f=, J^, j=\ (loc. cit. p. 257), where H is a function capable, in virtue of the

equation of the Weddle surface, of the forms

_ zx (z'a! x'c') _ xy (x'b'
-

y'a') _ xyzP
ca'z'x c'azx' ab'x'y a'bxy' Q

'

where x' = \ x, a' = I a, etc.; thus the curve of contact of the Weddle

surface with the sextic tangent cone from the node (0, 0, 0) is characterised

by H = 1, and lies on the cubic cones

ab'x'y a'bxy' = xy (x'b' y'a'), (i)

ca'z'x c'azx
1 = zx (z'a' x'c'), (ii)

as well as on the surfaces

supplying a fourth coordinate t (= 1) the two cones (i), (ii) are

t' (xa'b yab') + 2t (a b) xy 4- xy (a'y b'x)
= 0, (i' )

t
2

(xa'c
-

zac') + Zt(a- c) xz + xz (a'z
-

c'x)
= 0, (ii')

i\

D

of which the former, with vertex at C, has DOB and DCA for tangent planes,

and the latter, with vertex at B, has DBC and DBA for tangent planes.

The two cubic cones, with a common generator along which they touch, have

therefore, as residual intersection, a space curve vf order 7, of which DA is

the tangent at A. As we see from its projection upon the plane ABC,

previously considered, its deficiency is 5. In accordance with general con-

siderations, this may also be seen by drawing a quadric surface (2 = 3 + 3 4)

to touch the plane DBC along BC ;
such a quadric is of the form

x (Ax + By + Cz + Dt) + f = 0,
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containing p = o terms; as the space curve touches DA at A, and the nodes

are symmetrical, the space curve touches DB at B and DC at C, and hence

touches the quadric at B and 0; the Weddle surface contains the line of

intersection of DBG with the plane yc zb' = (b c) t, which joins A to the

nodes (a, b,c, 1), (1, 1, 1, 1), and contains the line BC
;
thus DBG is a tangent

plane of the Weddle surface, at the point t= 0, = 0, yc'
=

zb', and the space

curve passes through this point, and has its tangent line in the plane DBG,
and therefore also touches the quadric at this point ;

there are thus

2.7 6 = 8 = 2 (p 1) further intersections of the quadric and the space

curve, as should be the case. Further it may be remarked that not only are

the tangent lines of the space curve at the five nodes, other than D, con-

current in D, but the osculating planes at these meet in one line, namely
X(l tJi) Zi

= *r- = , which is the tangent of the curve at D.
a b c

The integral of the first kind associated with the cubic curve in the plane
z = which is given by the cone (i') is

\(xdy ydx)/[t (xa'b yab') + (a b) xy],

the denominator being obtained by differentiation in regard to t, and being
in fact, when equated to zero, the quadric cone containing the lines which

join the node C to the other five nodes
;
in virtue of (i') this denominator is

capable of the form

[(a
- by#y -

xy (xa'b
-

yab') (a'y
-

b'x)$,

or [a'b'xy (x
-

y) (bx
-

ay)}^,

so that we come back to the defective integral previously considered for the

plane sextic in t =
;
the space curve has thus five integrals of the first kind

each of which reduces to an elliptic integral ; to find any one it is only necessary
to draw the cubic cone joining one of the five nodes, other than D, to the curve,

and to put down the elliptic integral associated with a plane section of this ;

our previous discussion of the plane sextic, in the plane t = 0, shews that the

integrals so obtained are linearly independent, each being associated with a

cubic cone whose vertex is D having a particular geometrical description.

In the notation used in this volume the space septic is given by

ff (2u) = 0,

or 2w = ul
'
a

,

this being the consequence of supposing two satellite points, for which

to coincide
;

the homogeneous coordinates of the points of the curve may
thus be taken to be

fm (*') :
*> (*') : fri (K'

a
) :

fr'm (*'"),
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which are single valued periodic functions of variables whose number is less

than the deficiency. The reduction of the integrals arises from the fact that

the curve is on cones whose plane sections are of lower deficiency than the

curve, each generator of any one of these cones being a multiple secant of

the curve. The 32 birational transformations of the Weddle surface,

arising by projections from the nodes, reduce in the case of a point on the

space-septic to 16, obtained by adding half-periods to the arguments of the

functions $m(h ut '
a
\ etc. In fact, if (1) denote the node (1,1,1,1) and

(a) denote the noile (a,b,c, 1), any point (x,y,z, 1) of the curve gives rise

to the eight points (Proc. Land. Math. Soc. 1903, p. 257), also on the curve,

(Ala) = (BO) =
y

and also to the eight points obtained by writing here throughout, (xl ,yl ,
zt)

respectively for (x,y,z\ where

ax' by' cz'

the point (x^,yl ,z1 ) being that obtained by projection from the node (1).

The integral of the first kind we have written at length,

xdy ydx
'

xa'b yob' + (a b) xy
'

has thus the same value at the four points

b \ a b

In the notation used in this volume, the two planes joining the node

(1,
-

b, V, - b3

) respectively to (0, 0, 0, 1), (1,
-

0, <9
2

,

- s
) and to (0, 0, 0, 1),

(l,-, -<') are

and the quadric cone whose vertex is (l, b,b*, b3) containing the other five

nodes is

thus the general form of the defective integrals is

~~

~Qi~-~bQ, + b*Qt

where b is in turn the five roots of the fundamental quintic.

It does not appear that the integrals of the surface are single valued upon
the curve.
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ADDITIONAL BIBLIOGRAPHICAL NOTES.

P. 10. The integral R%'
" and the polynomial F(x, z) are given in Weierstrass's lectures,

Werie, Bd. iv. (1902), pp. 273, 274. They may be obtained directly from a formula given

by Abel, (Eueres Completes (1881), vol. I. p. 49 ; as in the author's Abel's Theorem (1897),

p. 195.

P. 20. The conception of a theta function of order r goes back at least to Hermite
;

cf. Compt. Rend. t. XL. (1855), and a letter from Brioschi to Hermite, ibid. t. XLVII. (1858),

and Schottky, Abrist einer Theorie der Abel'schen Functionen von drei Variaheln (Leipzig,

1880).

P. 36. This particular deduction of the algebraic form of the zeta functions was given
in the author's Abel's Theorem, p. 320. See also Bolza, Oott. Nachr. .1894, p. 268, Amer.

Journ. xvu. (1895).

P. 38. The equations ^22=^1+^21 1*21= -B\XS . Pn = etc., are given by Brioschi,

Ann. di Math. Ser. 2, t. xiv. (1887), p. 298.

P. 39. For the forms for the squares of the functions
jf>222 , etc., see Proc. Camb. Phil.

Soc. voL IX. part ix, 1898, p. 517; also ibid. vol. xn. part in. 1903, p. 219, and Acta

Math. t. xxvii. (1903), p. 135. That such expressions should exist follows from the

general theorem of p. 21.

Pp. 41-54. See the references of the preceding Note. The algebraic deduction of the

diflTerential equations here given is probably the most elementary that can be given ;
but

it would appear that a development is required on the lines that are possible for the

differential equation of the elliptic function ty () ;
the functions p^ (u), etc. are single

valued meromorphic quadruply periodic functions whose infinity construct is the repetition

of that expressed by u = u''
a

(pp. 34, 96). And there is, besides, an algebraic problem:

putting down the five equations ^2222 6l^2 = A i ^22 + ^1^21 + ^1^11 + ^11 to determine

directly the possible forms for the 20 coefficients A
t , ..., />6 in order that these five

equations should be consistent, under the hypothesis that |^22 , fftl , j?n are the second

partial derivatives of a single function (cf. 12, p. 49).

P. 50. As remarked in Ex. 16, p. 162, the linear transformation for the functions

j?22> Vni fn ' s 'he most general linear homogeneous transformation leaving unaltered the

form jtePn-ft,,
2
.

P. 77. The formulae

-n _C_ -r

are cited by Hudson, Rummer's Quartte Surface, p. 172, as having been given by Mr
II. \V. Richmond. See also H. Bateinan, Proc. Land. Math. Soc. vol. ill. (1905), p. 229.

P. 82. For the 32 binitional transformations of the Rummer surface and the six

linear complexes a paper of Klein, Math. Annul, n. (1870), p. 213 is fundamental.
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Pp. 83 97. The results of this chapter were obtained in 1898
;
see the references in the

Note to p. 39. Linear partial differential equations for the theta functions of two variables,

involving differentiations in regard to the roots of the fundamental quintic, are given by

Brioschi, Ann. di Mat. Ser. 2, t. xiv. (1887), p. 300, and applied by him to the expansions
of the functions. For the case of the even functions he returns to the matter in Quit.

Nachr. 1890, p. 236, and his results are developed by Bolza, Amer. Journ. of Math. vol. xxi.

(1898), where many references will be found. Writing, for an even function,

Bolza obtains, after Brioschi, the equation

where D is a complicated operator in regard to the roots of the two cubic factors of a."

with which the particular function considered is associated. The result obtained is that

all the coefficients are integral polynomials in 9 covariants of these two cubics. The

reader may also consult, besides the papers of Klein and Burkhardt on the theory of the

hyperelliptic sigma functions (Math. Annal. xxvu. xxxn. xxxv.), Wiltheiss, Crelle, xcix. ;

Math. Annal. xxix. xxxi. xxxni. xxxvi. ; Pascal, Ann. di Mat. Ser. 2, t. xvn. xvm. six.

The procedure- of the text is less simple in theory than that considered by these

authors, in that it expresses any term in the expansion in terms of all preceding terms,

and is applicable, in the form given, only to functions of two variables. For these,

however, it would seem to be in practice much simpler, as not involving differentiations

in regard to the coefficients of the fundamental sextic. It is much to be desired that the

differential equations for the hyperelliptic functions of three variables, and the associated

algebraic constructs, should be studied on the lines here followed for the case of two

variables ; a beginning is made in the papers given in the note to p. 39.

P. 100. The formula for a (u + v)<r(u-v)/tr
2
(u)o

3
(v) was obtained in the author's

Abel's Theorem, p. 333
;
and a method for obtaining the corresponding formula for any

hyperelliptic case is worked out in detail Amer. Journ. of Math. vol. xx. (1898), p. 384.

But materials for the formula were already at hand
;

it is easy to shew, and it is shewn by

Humbert, Liouville, Ser. 4, t. ix. (1893), p. 112, that <r(u+ v)a (ti-v) = represents a

tangent section of the Kuiamer surface, and it was known (Klein, Math. Annal. 11. (1870)),

that the tangent section is associated with a linear complex (cf. p. 76 of this volume).

P. 107. For orthogonal matrices of theta functions cf. Brioschi, Ann. di Mat. xiv.

(1887), p. 343; Caspary, Crelle, xcyi. (1884), pp. 182, 324; Frobenius, ibid. p. 100;

Weierstrass, Berlin Sitzungsber. 1882, i-xxvi. p. 506.

P. 108. The identity of Ex. 7, p. 152, gives also, if 6, 0, fa, fa, fa be the roots of

the fundamental quiutic,

P. 113. For the geometrical Ixshaviour of the asymptotic lines, see a drawing given by
Rohn, Math. Annal. xv. (1879), p. 340.

P. 147. For a similar identity see Humbert, Liouville, IX. (1893), p. 98.

P. 173. The simplified forms of the linear complexes are those used by Klein, Math.
Annal. II. (1870).
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P. 181. This proof of the converse of Abel's Theorem utilises Riemann's normal

elementary integral of the third kind. The proof given in Weierstrass's Lectures
( Werke,

iv. (1902), pp. 417-419) is different in form; but, I think, not essentially different in

substance.

P. 185. Another proof of the inequality is obtainable from the complex integral

of p. 17.

P. 187. A proof of Weierstrass's implicit function theorem derived from Cauchy's

complex integral is given in Picard, Traite d'Analyse, t. n. (1893), p. 245, after Simart.

P. 193. The theorem here proved is quoted by Weierstrass, Werke, in. (1903), p. 79, as

belonging "to the elements of the Theory of Functions"; the proof given in the text is

modified from that which applies to the case of rational functions, given later p. 273 ;

see also Blumenthal, Math. Annul. LVII. (1903), p. 356.

Pp. 199-204. The reader will naturally consult Weierstrass's papers on functions of

several variables (Oesamm. Werke). See also the references given p. 285 of this volume.

Pp. 205-215. This account is given in Weierstrass's posthumous paper, Werke, m.

(1903), pp. 71-104. The reader should compare Wirtinger's paper, Monatsh. fiir Math. u.

Phyiik, Jahrgang vi. (1895), p. 69, which proceeds on similar lines. The references given
in this last ]>aper seem worth repeating here : (1) Hermite, in the Appendix to Edition 6

of Lacroix, TraM de calcul differ, et integ. Paris, 1861
;
Deutsch von Natani, 1863

;

(2) Weierstrass, Berlin Monattber. 1869, 1876, Crelte, LXXXIX. (1880) ; (3) Hurwitz, Crelle,

xciv. (1883) ; (4) Poincare' et Picard, Compt. Rend. (1883), t. xcvu. p. 1284 ; (5) Laurent,

Traite d'Analyse ; (6) Appell, Liouville, Ser. 4, t. vn. (1891) ; to these may be added also

the references given p. 285 of this volume.

P. 217. The argument of 60 is not given by Weierstrass, and is possibly in need of

further examination. The conclusion of Weierstrass's posthumous paper referred to is

brief, and relies on Hurwitn's paper quoted on p. 202 of this volume. The argument
constructed in Chap. ix. of this volume has seemed clearer.

P. 229 ff. This chapter, as stated in the text, is capable of much further development,
both on the transcendental side and the geometrical side. As to the former we may
instance the points referred to in the footnotes of pp. 241, 255 and 267 ; cf. Wirtinger,

(fntersuchungen iiber Thetafunctionen, II. Teil ; as to the latter, the geometrical properties
of curves in a plane, and in space, possessing defective integrals, seem worthy of further

study. Cf. the case considered Appendix to Part n. Note iv.

P. 245. References as to complex multiplication are given in the author's Abel's

Theorem, chap. xxi.

P. 267. The letter of Gauss to Olbers quoted at the beginning of this volume (p. iv.)

is said to refer to the general theorem of which a particular case is here used.

P. 280. The theorem of 79 suggests the corresponding question for a corpus of

rational functions of n independent variables ; if an aggregate of rational functions of n

todepmdeat variables be taken, not necessarily all rational functions, but such that any
rational function of functions of the aggregate also belongs to the aggregate, can a set of n
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(or less) functions of the aggregate be found in terras of which all other functions of the

aggregate are rationally expressible? The theorem has been proved for n=\ and = 2;
forre=l see Liiroth, Math. Annal. ix. (1876), p. 163

;
for n=2 see Castelnuovo et Enriques,

Math. Annal. XLVIII. (1897), p. 313. I have here to make an acknowledgment ;
I had

constructed, as part of this chapter, a proof that the theorem is true for any value of n ;

Prof. W. Burnside, F.R.S., who was kind enough to read it, pointed out to me that this

was not in general valid.

P. 285. See also Hartogs, Uber neuere UntersV:Chungen auf dem Oebiete der

analytischen Funttionen mehrerer Variablen, Jahresber. d. Deut. Math. Ver. xvi. (1907),

p. 223, and the references there given.

P. 303 flf. For the subject matter of Notes I. and II see Frobenius'n papers, Crettt

LXXXVI. Lxxxvm. (1879, 1880).
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GENERAL INDEX.

Abel's Theorem, 176 ;
its converse, 181

Addition of arguments for the
jf> functions, 132 138

Algebraic equations, Kronecker's analysis of, 273

Algebraic functions, behaviour about any point, 190

Analytical continuation, account of, 214

Asymptotic directions of Kummer surface correspond to conjugate directions of Weddle

surface, and conversely, 127

Asymptotic lines of Kummer surface, 113, 151, 162 ; of Weddle surface, 125
;
of Steiner's

quartic surface, and of its reciprocal cubic surface, 151

Birational transformation of Kummer surface, 79, 154 ;
of Weddle surface, 131

Canonical and normal systems of periods, 2, 263

Collinear points of a Kummer surface, 118

Complementary system of defective integrals, 240

Complexes, linear, six in involution, 168 ; linear, associated with the Kummer

surface, 74

Complex linear, a particular, 67

Complex multiplication, or principal transformation, 245

Complex surface, Pliicker's, 158

Conjugate points on a Kummer surface, 114

Construct, monogenic, meaning of, 215

Continuation, analytical, account of, 214

Corpus of algebraic functions, 281

Correspondence, of points of Kummer and Weddle surface, 39, 65, 76 ; between a set of

n points of a Riemann surface and a point of a surface in n dimensions, 279

Cross-ratio identity between theta functions and integrals of the third kind, 35

Cubic surface with four nodes, 139150, 152, 153

Curves of Kummer surface for which the surface integrals are single valued, 320

Curve upon the Weddle surface with defective integrals, 322

Cycles of roots of an algebraic equation, 177, 190

Defective integrals, in general, 228
;

the case of one integral reducing to an elliptic

integral, 250

Defining equation for general theta function, 19

Determinant, the expansion of a, 314 ;
invariant factors of, 165

Differential equations satisfied by signia functions, 48 ; the general covariantive form

of these equations, 49 54

Dissection of a Riemann surface, 2, 263

Double argument, |jf>
functions of, 120124, 129

Elementary factors of a determinant, 165

Elementary integral of the third kind, 5, 9

Expansion of the sigma functions, 83

Expression of multiply-periodic functions by theta functions, 283



General Index. 333

Factorial integrals, 318

Gopel tetrad of nodes, 153

Group of birational transformations of a Kummer surface, 7982 ;
of a Weddle surface,

131
; of a septic curve in space, 326 ;

of a Riemann surface, 255

Hyperelliptic surface, 155, 321

Identical vanishing of theta function, 33, 96

Implicit-function theorem, Weierstrass's, 187

Indeterminate parameters, 198, 273

Indetermination, points of, 200

Index, the, in case of defective integrals, 232

Infinitesimal periods, 203

Infinity-construct, of a meromorphic function, 201

Inflexional lines of Kummer surface, 113
;

of Weddle surface, 125, 127 ; of Steiner's

quartic surface and its reciprocal, 151 ; principal asymptotic curves of Kurnmer

surface, 162, 322

Integrals of the first, second or third kind, 2
; elementary integral of second kind deduced

by differentiation from elementary integral of third kind, 9

Integrals of Kummer surface which are integrals of the first kind, 320

Integral functions of two variables, fundamental properties, 17

Interchange of argument and parameter for integral of third kind, 8, 11

Invariant factors of a determinant, 165

Inversion problem for integrals of the first kind, 29, 246, 250

Jacobian functions, zeros of a simultaneous system, 293

Jacobi's inversion problem, 29
; generalised, 246, 250

Kronecker's method for algebraic equations, 273

Kummer matrix, 56

Kummer surface :

parametric expression of, 38, 40

its equation by a symmetrical determinant, 41, 59

finite (ambiguously signed) integrals upon, 43

other finite integrals upon, 115

finite integrals for the satellite of a point, 78

its singular points and planes deduced, 60 65

its equation at length, 41

correspondence with Weddle surface, 39, 65, 76

satellite point upon, 75

birational transformation of, 79 82

the fundamental linear complexes and quadrics, 79 82, 320

irrational equation of, 108, 110, 328

tangent section of, 78, 110, 321, 328

asymptotic or inflexional curves, 113, 162, 322

whose singular planes are tangent planes of original, having a singular conic common
with this, 136

referred to a Rosenhain tetrahedron, 153

referred to a Gopel tetrahedron of nodes, 153

degenerating into a Pliicker complex surface, 158

Incoming a tetrahedroid, 156

determined to pass through an arbitrary plane quartic curve, 320

integrals of first kind of curves of, 320



334 General Index.

Limiting points of an aggregate, 212

Linear complexes, 74, 79, 163

Linear transformation of periods, 252
;
of |> functions, 103 j

of Kutntner surface, 79

Logarithmic coefficients of an algebraic integral, 4

Matrix notation, explanation of, 12

Matrix, elementary factors and reduction of, 165

the six fundamental for a Kummer surface, 73, 74, 79

six in involution, 168, 320

orthogonal, of bilinear forms, 176

orthogonal, of sigma functions, 106

reduction to diagonal form, 303

skew-symmetric, of integers, 307

Meromorphic functions, 202

Monogenic construct, 215

Multiplication, complex, 245, 263, 329

Multiplicity, the, in case of defective integrals, 232, 250

Normal and canonical systems of periods, 2, 263

Orthogonal matrix of bilinear forms, 175 ; of sigma functions, 106

Parameter of a place on a Kiemann surface, 2, 177

Parametric expression of Kummer and Weddle surface, 39, 77

Periods of elementary normal integrals, 7
;

relations between periods of integrals of

first and second kind, 14
;
relations necessary for a general multiply-periodic function,

224
; rule for half-periods obtained by integration between branch places on a

Riemann surface, 32

Periodic function in general, 203
;
values assumed by upon a monogenic construct, 219

Plane section of Kummer surface, 320
;
of a certain hyperelliptic surface, 155

Pliicker's complex surface, 158

Power series in two variables, 183
; a set of simultaneously vanishing, 192

f> function, expressed algebraically, 38

expression of squares of its differential coefficients, 39
differential equations satisfied by, 48, 49, 59

the fundamental, 97

formulae for addition of half periods, 102104
of double arguments, 120 124, 129

of arguments u+ v, 132 138

Quadrics, the ten fundamental for a Kummer surface, 81, 320

Quartic curve of 168 collineations, 265
;

of four concurrent bitangents, 255 ; Kummer
surface passing through an arbitrary, 320

Quartic surface, Cayley's paper referred to, 68 ; Steiner's, 139150

Reduction of theory of general multiply-periodic function to theory of algebraic func-

tions, 199

Relations connecting periods of integrals of first and second kind, 14
; connecting

periods of general multiply-periodic function, 224
Riemann surface, with defective integrals, 231

;
with defective elliptic integral is capable

of birational self-transformation, 255
; a set of n arbitrary places of birationally

related to one place of a surface in n dimensions, 279
Rosenhain tetrahedron, 153
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Satellite point upon a Rummer, or Weddle surface, 75, 114

Series for the sigma functions, 83

Sigma function, the fundamental, 97

expansion of, 83

expression of a (u + v) a (u
-

v)/<r* (u) a* (v), 100; of <r*(u, q)/<r*(u), 101

See also Theta function

Tangent section of Kummer surface, 76, 110, 321, 328

Transformation, birational, of Kummer surface, 79, 154
;

of Weddle surface, 131
;

of

Riemann surface, 255, 279 ;
of Weddle and Kummer surface, 65, 76

Transformation, of periods, 237, 252
; principal, or complex multiplication, 245, 263, 329

Triply-periodic functions, 161

Tetrahedroid, 157

Twin points upon a Kummer surface, 114, 117

Theta function, general, denning equation for, 19 ; of first order, fundamental identities,

23 ; upon a Riemann surface, number and position of zeros, 27
;
identical vanishing

of, 33, 96 ; of the second order, 98, 108 ; arising in connexion with multiply-periodic

function, 228
;
a general, number and sum of zeros, 234, 235. See also Sigma function

Variability of an analytic function, 218

Weddle matrix, 65

Weddle surface, parametric expression of, 38, 40, 77

elementary properties of, 66, 67

construction for tangent plane of, 68

its equation at length, 71, 78

fundamental equation for projection from a node, 72

asymptotic lines of, 125

birational transformation of, 131, 326

correspondence with Kummer surface, 39, 65, 76

curve of contact of tangent cone from node upon, 322

Zero construct of meroinorphie function, 201

Zeros of theta function upon a Riemann surface, 27

Zeros of simultaneous system of vanishing Jacobian functions, 293

Zeta function expressed by integrals of the second kind, 37
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