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PREFACE TO FIRST EDITION

This text on the Differential and Integral Calculus is presented
with the helief that it is well adapted for use both in academic
colleges and in engineering schools.

The student who studies this subject because of his attraction.
to mathematics is not well equipped if he lacks a fair appreciation
of the wide applications of the Calculus in modern science and in
engineering. On the other hand, the student who is required to
use the Calculus in some chosen field of science can make more
intelligent and extensive applications if he understands the under-
lying principles of the subject. Hence, whether mathematics is
to be regarded as the queen of the sciences or as the tool of the
scientist, the study of the Ca culus for the futw“teacher of mathe-
matics and for the future engineer should differ on.y in the degree
of emphasis placed on the theory and the applications.

As is well known, a complete rigorous proof of some of the
theorems *n the Calculus is out of the question for the beginning
student, whereas the applications are easily made and are of
extreme importance. With this in mind, the authors have en-
deavored to use only proofs which are valid but which may involve
certain assumptions, the proof of which belongs properly in an
advanced course. These assumptions are pointed out to the
student; for at this stage he should be instructed to examine
proofs more critically, in order that he may realize some of the
difficulties to be encountered, and also that he may avoid the
common pitfalls.

A comprehensive review of as much analytic geometry as is
required in the Calculus has been included in Chapters I, II, and
VIII. These may be omitted, or they may be used only for
reference, at the discretion of the teacher.

The authors are sincerely grateful to Professor W. A. Wilson,

tho has kindly made many pertinent suggestions; to Professor
' v



vi PREFACE TO FIRST EDITION

0. T. Geckeler, who has contributed many problems and valuable
suggestions, and who has prepared the material for several impor-
tant parts of the text; and to the Macmillan Company, the
publishers, who have been most considerate in cooperating with
the authors and the editor in the publication of this text.

J. H. NEELLEY

J. I. TrAaCEY
August, 1932



PREFACE TO SECOND EDITION

In revising this book, special attention has been given to the
selection and arrangement of problems. To increase classroom
utility many additional carefully chosen problems have been
interspersed throughout the text; especially those of a less involved
nature, for purposes of drill, and on the other hand, a number of
highly challenging problems.

Although the general plan and organization of the book remains
unchanged, new material has been added in Chapters VII, VIII,
and IX and some other sections have been rewritten.

The authors are grateful for helpful suggestions from the many
teachers familiar with the earlier edition, and to those who have
manifested an interest in the revision by constructive criticism.

J. H. N.
J. I. T.
June, 1939
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DIFFERENTIAL AND INTEGRAL CALCULUS

CHAPTER 1
COORDINATE SYSTEMS -— GRAPHS

1. Coordinate Systems. A system of coordinates is a method

® representing the position of points by means of numbers. In

.he elementary geometry of the plane two systems are in general
&, rectangular coordinates and polar coordinates.

2. Rectangular Coordinates. To establish a system of rectan-
gular coordinates in a plane, it is necessary to draw a pair of per-
pendicular lines, called axes, and to have an appropriate unit of
length.*

The perpendicular lines are the x axis and the y axis and their
voint of intersection is the origin. It is customary to draw the
z axis horizontally and the y axis vertically; the four quadrants
into which they divide the plane are numbered as in trigonometry.

The position of any point in the plane is designated by two real
numbers, called coordinates, which represent the respective distances
Jrom the axes to the point as measured in terms of the given unit.
These coordinates are called ab-
scissa and ordinate.

The abscissa of a point is the dis-

ance from the y axis to the point. B P,

The ordinate of a point is the dis-
tar. ~e from the x axts to the point.

I. the coordinates of a point are 0 X
z and y, respectively, they are writ-
ten in the form (z, y), the first
number always being the abscissa.

In any system of coordinates it is
%ssential that a given pair of num-
.\ars shall designate one and only one point. Hence it is nec-

psary to distinguish between the coordinates of such points as

* There are coordinate systems in which the axes are not perpendicular, but little
use is made of oblique axes in elementary geometyy.

Y

Fia. 1



2 DIFFERENTIAL AND INTEGRAL CALCULUS [Ca.1

represented in the figure; this is done by making abscissas and
ordinates directed line-segments.

If AB is a directed line-segment, then BA is — ADB, that is,
reading a segment in the opposite direction changes its sign. Thus,
if the length of the segment BA is considered as 4 6 units, then
ABis — 6 units. The signs for directed segments in rectangular
coordinates are usually as follows:

A horizontal segment when read from left to right is positive, if
read from right to left it is negative.

A vertical segment when read upward s positive, if read downward
1t is megalive.

If an oblique segment is directed, it is positive when read upward
and negative when read downward.

However, we shall use an arrow head to designate the positive
airection along each axis, as it is sometimes more convenient to
reverse the positive direction along one of the coordinate axes.

"To plot a point, when its rectangular coordinates are given, is to
mark its position in the plane with reference to the coordinate axes.
Thus the point (4, — 3) is the point 4 units from the y axis in the
positive direction of the x axis and 3 units from the z axis in the
negative direction of the y axis.

In practice, it is customary to
start at the origin O and measure
X a distance along the z axis, in this

case 4 units to the right, then meas-

ure from this point along a perpen-

dicular to the z axis, in this case 3

units downward, and mark the

point.
We may then think of the “point

(4, — 3) as being the intersection

of two lines, one parallel to the y
axis and 4 units to the right of it, the other parallel to the z axis
and 3 units below it.

The axes should always be marked so as to show the scale of
units used.

3. Theorem for Directed Lines. If O, any point on the line
A1A,, ts taken as an origin, then the directed line-segment A1Aq
expressed in terms of OA, and OA, is always equal to OA; minus
OA,.

Y

LS

-5

|

|

|

|

|

|
S S

IS

I

!v
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§ 5] COORDINATE SYSTEMS — GRAPHS 3

Three cases are to be distinguished, one when O is between A,
and A, the others when O is outside the segment A;4,. Let O be
between A; and A.; then

Ai1A, = A0 + OA..
But 4,0 = — OAl, hence F1e. 3
A1A; = — OA, + 04, = 04, — OA,,

4, 0 A,

as was to be proved. The other two cases are left as exercises.

4. Horizontal and Vertical Projections of a Line-Segment.
Let P,P; be any line-segment whose extremities have the coordi-
nates (1, ¥1) and (3, y2) respectively. Through each extremity
of the segment draw a horizontal
and a vertical line. The distance

between the vertical lines, meas-

Py fﬁ'lt.).____.f___N‘ ured along a horizontal, that is,

1 AP, or MM, is known as the

| horizontal distance from P, to P,,

} or the horizontal projection of
|

Y

P\P,. Similarly the distance be-

iz ‘X{Mg o % tween the horizontal .lines as meas-

——— N ured along a vertical, namely,

* P,A or NiN; is known as the ver-

tical distance from P, to P;, or the
vertical projection of P.P,.

To express these horizontal and vertical projections in terms of

the coordinates of P; and P», we have

MM, = MO+ OM, = — 1, + x,.

A E(%,,y,)

Fic. 4

Hence the horizontal projection of PiP; equals x — x;. Similarly,
NNy = N,O 4+ ON, = — %+ Yo

Hence the vertical projection of P1P; equals y» — y;,. That is, the
horizontal projection of PP, is the abscissa of the last-named
point minus the abscissa of the first-named point; the vertical
projection of PP, is the ordinate of the last-named point minus
the ordinate of the first-named point.

5. Length of a Line-Segment. From Fig. 4, we observe
that the horizontal and vertical projections of PP, namely,
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AP; and P, A respectively, are the two legs of the right triangle
P,P,A. Hence, letting P,P; be represented by d, we have

d? = P\Py = P,A* + AP,

But

PA=PMi+MA=—-yi+ys=y— 1y,
and

APy = AN, 4+ NoPy = — o1+ 23 = 23 — 21,
Hence
¢9] d=+vV(x—x)+ (y: —y)2

EXAMPLES

1. Given A(— 7, 3) and B(— 1, — 5), find
(a) the vertical projection of AB;
(b) the horizontal projection of BA;
(c) the length of the segment AB.
SorLuTioN. (a) The vertical projec-
tion of AB is (— 5) — (3) = — 8 units.
() The horizontal projection of BA
B(e,~¢c) is(—=7) — (= 1) = — 6 units.
(¢) The length of AB is
d = v/(+ 6)2 + (— 8)2 = 10 units.
2. Given A(c, d) and B(e, — ¢) find
(a) the horizontal projection of
AB;
! (b) the vertical projection of BA;
/ (c) the length of the segment AB.
Ale,d) Sovurion. (a) The horizontal pro-
jection of AB is
Fra. 5 DB=DM+MB=—c+e

=€ —¢C.

(b) The vertical projection of BA is
DA =DN+NA=—(~¢)+d=d+c
(¢) The length of AB is
d =VAD + DB
= +/(AN + ND)* + (DM + MB):

=V(=d -+ (—c+ep?
= a/lc + A2 4 (e — o).
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PROBLEMS

1. Prove the theorem for directed lines when
(a) the point O is on AB extended;
(b) the point O is on BA extended.

2. Find the horizontal and the vertical projections of the line-segment
P.\P;; of PyP;; also find the length of the segment for Pi\(— 4, — 4) and
P.(1, 3). Ans. 5,7, — 5, —7; /74 units.

3. The same as Problem 2 for P1(0, 1), P,(— 8, 0).
4. The same as Problem 2 for Py(— 3, 3), P2(3, — 3).
5. The same as Problem 2 for Py(1/3, 2), P2(3, — 4/3).
6. The same as Problem 2 for Pi(a, b), P2(c, d).
7. The same as Problem 2 for Pi(m, — n), Py(n, — m).
Ans.n —myn —m; m —n, m —n; (m —n) V2 units.
8. The same as Problem 2 for Pi(— g, &), Py(h, — g).
¢ Inclination. Slope. The inclination of a line is the angle
which its positive direction makes with the positive direction of the

x axis.
/‘he slope of a line is the tangent of its inclination.

Y

Y

R

B,
|

|

|

" o[ b3
! -

| IR TR—

A

Fic. 6 Fic. 7

From either figure we have

tan a = —A—[-—-P2 = 1—4—&
BM  PA
But
APy = AM + MPy = —y1 + 92 = Y2 — 4y,
and

pP,A

]

P1R+RA= —-x1+m2=x2—x1.
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Hence, letting the slope of P,P, be m, we have

Y= Y1 _ Y1 — Y2,

1) tana = m =
Xo — X X1 — X3

That is, the slope of the line joining two given points is the differ-
ence of the ordinates of the two points divided by the difference of
their abscissas taken in the same order.

7. Conditions for Parallelism and Perpendicularity. If two
lines L, and L. are parallel, they have the same inclination and
their slopes arc equal, that is, the condition for two lines with slopes
m; and m. respectively to be parallel is

(III) m; = Mmas.

Conversely, if their slopes are equal, tan «; = tan as, hence the
inclinations are equal and the lines are parallel.

If L, and L, are perpendicular, their inclinations must differ by
90°. If L, has the greater incli-

Y .
nation, then
a) = g + 900.
L a, L+ Hence
2
<o ., 53 tan a = tan (a; + 90°)
= — ctn ay
—_— — 1 -
hd tan a
But
Fic. 8
tan oy = my, and tanas = mo.
Therefore
1
av) m = — my or mm, = — 1.
Conversely, if mymz = — 1,then tan oy = — 1/tan @s = — ctn ao.

Hence the inclinations of the lines must differ by 90° and the lines
are perpendicular. Therefore:

A necessary and sufficient condition for two lines to be perpendicu-
lar is that their slopes be negative reciprocals.

8. The Angle between Two Lines. By the angle between
two lines is meant the angle formed by the positive directions from
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their intersection, the angle being measured counter-clockwise.
This angle is the one which lies entirely above the intersection of
the lines.

In Fig. 9, Bis the angle between

L, and L,, and therefore

(V) B = ap — g,

or

tan ﬂ = tan (0[1 - az) 0 X

_ tanoa —tan oy /’
" 1+ tan a; tan a L,

Hence /

o m — mo .
(W)/t{n p 1 + mym, Fic. 9

Therefore the angle between two lines is the greater inclination
minus the lesser, or the tangent of the angle between two lines in terms
of their slopes is (my — ms)/(1 + mims), wher}m is the slope of
the line with the greater inclination.

9. Mid-Point of a Line-Segment. The coordinates of the
mid-point P of the line-secgment joining the points P; and P, may
be expressed in terms of the coordinates of P, and P as follows.

Draw the horizontal and vertical lines through P,, P, and
P,, as shown in Fig. 10. Since P,P = PP;, we have at once
BP = CP;. But

Y BP = BN + NP = — z, } z,
Py (x,y,) and
CP2=CS+SP2= '“'23+$2.

Hence

Ti ~ 1'jo X
L_____J.___X or
A ]

cKs (%, Yg)

_"U
/<

r— T =22 — 2,

=:c1+x2.
2

Similarly, the vertical projec-
tion of PP is equal to the verti-
cal projection of PP;; and, by similar reasoning, we find

_y1+yz.
v=""3

Fic. 10
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Therefore, the coordinates of the mid-point of the line-segment
P,\P; are

(VII) T e

EXAMPLES

1. Find the angles of the triangle whose vertices are A(— 7, 6), B(2, — 2),
and C(— 3, — 4).

SorutioN. From the triangle ASC, we have the slope of CA given by
Y SA _SM+MA 446 _ 5
A CS “CN+NS “3-7" "2
AN

Similarly, or from the formula for
the slope of a linc segment, we find
that the slope of BA is — 8/9 and that
of CB is 2/5. Hence, CA and CB are
perpendicular, their slopes being nega-
tive reciprocals. That is, £ BCA is a

2 X right angle. The angle between CA
> D andBAis cqual to £ CAB; thercfore

L tan £ CAB =
s e (= 8/9) — (= 5/2)
15 (= =
Fa. 11 + (— 8/9)(—5/2)
Hence £ CAB = 26°33.9".

The remaining angle of the triangle is the supplement of the angle between
the lines BA and CB. Hence formula (VI) gives

(—8/9) = @/5) _ _,

A(-7,6)

(O 20

L
2

DBA = ——F——— - =
tan £ DBA = {5 Z579)2/5)
Therefore
tan £ ABC = tan (180° — £ DBA) = — tan £ DBA =2,
or

£ ABC = 63°26.1".

2. Given A(1,4) and B(5, — 2). (a) If Bis the mid-point of AC, find the
coordinates of C. (b) If AD is perpendicular to AB and AD = AB, find the
coordinates of D.

Sorutions. (a) Let the coordinates of C be (i1, y1), then, since B is the
mid-point of AC, we have from the mid-point formulas

_n+t+1 e _nnt4
5= — 2= T
whence (21, ¥1) is the point (9, — 8).
Using slopes, since the slope of AB is — 3/2, we see that B is 6 units below
and 4 units to the right of A. Accordingly, C is 6 units below and 4 units to
the right of B, which locates it at (9, — 8).
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(b) The slope of AD is 2/3, since it is perpendicular to AB. Then since
AD = AB, D is either 6 units to the right and 4 units above A, or 6 units to
the left and 4 units below A. These locate D at either (7, 8) or (— 5, 0).

These results may also be obtained
algebraically as follows. Let D have

the coordinates (z, y). Then, using ¥ =y)
the slope of AD, we have
y—4_2, 5
z—1 3 AL, 4)
Also, since AD = AB = 23, /
we have D(zny) {0 58(5-3)
Vi -1+ (y — 92 =2v13. '
Solving these two equations simul-
taneously, we have
1) -1+ -4 =52 )
but from the first equation
2 Fia. 12
2) y—-4=§(:c—l).

Substituting this value for (y — 4) in (1), and solving for (z — 1), we get
z—1=+6,z="T7o0r —5;

whence, by (2), y = 8 or 0.

PROBLEMS
1. Given the triangle with vertices (6, 8), (— 4, — 2), (8,4)
(a) Find the length of the sides. Ans. 64/5, 24/5, 104/2 units.

(b) Find the length of the medians.
(¢) Find the slope and inclination of each side.
(d) Find the angles of the triangle.
Ans. (¢) 1/2,26°33.9’; — 2, 116°33.9’; 1, 45°.
Ans. (d) 71°33.9; 18°26.1’; 90°.

2. The same as Problem 1 for (— 6, — 1), (— 2, — 4), (4, 3).

3. Find the distance from (— 4, 6) to the mid-point of the segment joining
(7,1) and (— 3, — 9). Ans. 24/34 units.

4. Do the following sets of three points lieon a line? Prove your answers.
(a) (— 9, 2)1 (— 2: - 1)) (llv - 7); (b) (3, - 1)) (23) 14)) (15v 8)'

5. Construct a line through (4, — 4) with a slopeof — 7/5. Do the points
(- 6, 10) and (10, — 12) lie on this line? Find the points on this line with
integral coordinates which are nearest to the point (4, — 4).

6. What equation must the coordinates of P(z, y) satisfy if P is 11 units
from the point (7, 2)?
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7. If the point (a, b) is in the second quadrant, where is the point (b, a)?
What are the coordinates of the mid-point of the line joining these points, and
in what quadrants may it lic?

8. Prove analytically that the lines joining the mid-points of the sides of
any triangle are each equal to half the opposite side and parallel to it.  [Take
the vertices at points (2a, 0), (2b, 0), and (0, 2¢).]

9. The mid-points of the sides of a given triangle are (— 2, 3), (4, 1), and
(— 1, — 2), respectively. Find the vertices.

Ans. (5, — 4), (=7, 0), (3, 6).
10. Find the inclination of each of the following lines. Construct each line
by using only one point and its slope:
Through (a) (— 2, 0) and (5, — 3); () (1, 3) and (— 2, 7); (¢c) (4, — 5)
and (— 3, — 6).
11. One end of a line-segment 13 units long is (— 4, 8) and the ordinate of
the other end is 3. What is the abscissa of that end? Ans. 8, or — 16.

12. The vertices of any quadrilateral are taken at (2a, 0), 2b), (2¢, 0)
and (2d, 2¢). Prove that the lines joining the mid-points of tH& sides taken
in order form a parallelogram. What are the coordinates of the intersection
of the diagonals of the parallelogram?

13. Two of the vertices of an equilateral triangle are at (2, 24/3) and
(= 2, — 2v3). Find the coordinates of the third vertex.
Ans. (— 6, 24/3) or (6, — 21/3).
14. The extremities of a diagonal of a square are at (— 5, 2) and (3, — 6).
Find the coordinates of the other vertices.

15. The same as Problem 14, for the points (— 6, 2) and (2, — 4).
Ans. (1, 3) or (— 5, — 5).

16. The point P(z, y) is as far from the origin as it is from the point (4, — 6).
What equation must its coordinates satisfy?

17. A given linc has a slope of 2/3. Find the slope of a line which makes
with the given line: (a) an angle of 45°; (b) an angle of 135°. Ans. (a) 5.

18. TFind the slope of a line which makes an angle of 60° with a line whose
slope is 24/3. How many solutions are there?

10. Graphs. The locus of all points whose coordinates z
and y satisfy a given equation is called the curve or graph of the
equation. ~If the equation is algebraic, the corresponding graph is
an algebraic curve. Other equations and curves, such as exponen-
tial and trigonometric, are called franscendental. The graph of
an equation can be approximated by plotting a series of points
whose coordinates satisfy the equation, and then drawing a smooth
curve through them.
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The following procedure will facilitate the work involved:

(a) Solve the equation for y in terms of x.

(b) Make out a table of values for z and y by assigning positive
and negative values for z and calculating for each the corresponding
value or values of y.

(c) Plot the points designated by x and y as abscissa and ordi-
nate respectively. Then draw a smooth curve through the points.

If it is inconvenient or impossible to solve the equation for y, it
may be solved for z in terms of y, in which case arbitrary values
are to be assigned to y and corresponding values for z are calculated
to make out a table of values.

Certain information about the graph of a given equation can be
found which will enable the student to sketch the curve by plotting
only a few points rather than by making out a lengthy table of
values of z and y. The topics to be considered include intercepts,
symmetry, extent of curve, horizontal and vertical asymptotes.

InTerceEPTS. The x intercepts are the abscissas of the inter-
sections of the curve with the z axis. They are found by setting y
equal to zero in the given equation and solving the result for z.
Similarly, the y intercepts are the ordinates of the intersections of
the curve with the y axis. They are found by setting z equal to
zero in the given equation and solving the result for y.

EXAMPLE

Find the intercepts of 22 — 2 y2 — 4z — 5 = 0.
SoLuTioN. Setting y = 0 in the equation we have

22 —4zx -5 =0, z=>5o0r — 1.

Similarly for z = 0, we get y = ++/— 2.5. Hence the z intercepts are 5
and — 1; the y-intercepts are imaginary, in other words the curve does not
cross the y axis.

SYyMMETRY. Two points are symmetric with respect to the
z axis when they have the same abscissa and their ordinates differ
only in sign. If they are symmetric with respect to the y axis,
they have the same ordinate and their abscissas differ only in sign.
Two points are symmetric with respect to the origin as a center
when their respective coordinates are numerically equal but of
opposite signs.

If a curve is symmetric with respect to the z axis, each point
on the curve has the point symmetric to it with respect to the
z axis also on the curve. Then if (z, y) represents any point on
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the curve, the point (x, — y¥) must also be on the curve. That is,
if x and y represent any pair of numbers which satisfy the equation
of the curve, that equation will be satisfied by z and — y also.
We have then the following test:

If in the given equation — y can be substituted for + y without
changing the equation, then the graph is symmetric with respect to
the = axis.

Obviously this condition is satisfied if y is involved in the
equation only with even powers.

Similarly, if in a given equation — x can be substituted for + x
without changing the equation, then the graph of the equation 13
symmetric with respect to the y axis.

If the substitution of both — x for + x and — y for + y in a
given equation does not change fh}equation, then its graph is sym-
metric with respect to the origin.

ExTENT oF THE CURVE. In general, it is easy to determine
whether the graph of a given equation is a closed or an open curve,
and whether there is any region of the plane between two horizontal
lines, or between two vertical lines, in which the curve does not
exist. To do so, solve the equation for y in terms of z; if then this
value of y involves a square root or an even root such that all
values of = between, say, £ = a and £ = b make y imaginary, then
no part of the curve can be between the vertical lines z = a and
z = b. On the other hand, if values of x between a and b are the
only ones which make y real, then the curve lies wholly between
these two vertical lines. If y is real for all values of z, the curve is

Y unlimited in its extent along the
z axis.

Next solve the equation for z
in terms of y and find in a similar
manner whether or not any val-
ues of ¥y make z imaginary, and
whether or not the curve is re-
stricted or unlimited in extent in
the direction of the y axis.

EXAMPLE
Consider the equation
2 -2y —-42—-5=0
mentioned above. Its graph is symmetric with respect to the z axis, but not
with respect to the y axis, nor the origin. Why?

Fia. 13
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SoruTioN. Solving the equation for each variable we have

y = +=V({1/2)(x = 5)(x + 1), =242y F0.

From the first of these we observe that all values of z between z = — 1
and z = + 5 make y imaginary, while all values of z greater than or equal to 5
and less than or equal to — 1 make y real. From the second, all values of y
give two real values of . Also as z increases beyond 5 or decreases beyond
— 1, y? increases and the curve extends indefinitely, as indicated in Fig. 13.

PROBLEMS
Discuss and plot the graph of each of the following equations. (Nos. 1-20.)
1. 22 =4y. 11, 922 — 442 = 0.
2. y*4+4z+4+12=0. 12, 224392~ 15y =0.
3. 3z =y%-—6. 13. zy = 12.
4, 224+ 6y —15=0. 14. zy? = 12.
5. 224+ y*—6z+4y =0. 15, 22 +4y2 =0.
6. 22+ y* —6y = 16. 16. y =4z — 2%
7. 4224 y? =24, 17 y?* =28 — 322,
8 224 4y? =16. 18, y=z2 —1/z.
9. 3z —y? =12 19. y(z2 + 4) = 8.
10. z2 —3y2+4+12 =0. 20. y = 2z — 2).

Discuss the graph of each of the following equations, and plot by giving
appropriate lengths to the literal coefficients. (Nos. 21-28.)

21. y? = 2pz. 25, z'2 4yt = qlf2,

22, 1y =2a. 26, 72/ 4 1218 = @23,

23, z2/a? + y2/b? = 1. 27. y = 8a3%/(z* + 4 a?).
24, z%/a® - y2/b2 4+ 1 =0. 28. y? = axd.

11. Asymptotes. An asymptote of a curve is a straight line
which the curve approaches continuously in such a way that the
distance between the line and the curve approaches zero as they are
indefinitely extended. If a curve has either horizontal or vertical
asymptotes they are easily found when the equation is solved for z
and y. Thus if y in terms of z is an algebraic fraction and any
value of z such as 2 = a makes the denominator zero and the
numerator different from zero, then y increases indefinitely as z
approaches ¢ and = = a is a vertical asymptote. Similarly, to
find horizontal asymptotes, solve for z. If the result is a fraction
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whose denominator becomes zero for some value of y such as
y = b when the numerator differs from zero, then y = b is a
horizontal asymptote.

EXAMPLE

Tracethe curver?y — 22 — 2y 4+4 =0.
SoruTtioN. The intercepts on the z
[ axis are + 2, — 2, on the y axis 2.
The graph is symmetri¢ with respect to
5 the y axis. Solving for z and y, we have

2(y - 2) zt —4

. VYo E e
=% o 3 % If y is between 1 and 2, z is imaginary;
| hence no part of the curve is between the
| { lines y =1 and y = 2. The horizon-
i tal asymptote is y = 1; the vertical are
-5 z = £+/2. 'This information with a few
points on each branch give the curve as

Fia. 14 shown in Fig. 14.

12, Intersections of Curves. From the definition of the graph
of an equation, it follows that if two curves intersect, the coordi-
nates of each point of interscction must satisfy both equations.
Hence, to find the coordinates of all points of intersection of two
curves, solve the corresponding equations simultaneously.

In solving two equations simultaneously only real values for
both z and y will give a real point of intersection, so imaginary or
complex values may be disregarded.

EXAMPLE Y

Find the intersections of the curves
whose equations are 9 z? 4+ 4y? = 37,
y =22 — 1.

SorurioN. Eliminating 22 between the
two equations, we have

2 —_
or 4y + 9@y + 1) = 37, -1\ X
4y?+9y —28 =0,
whence
y+H@y -7 =0
Therefore :
y=_4,§. Fe. 15

For y = —4, z = v — 3 and there are no intersections; for y = 7/4,
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z= % V11/4 = + 1.66. Hence the intersections are (1.66, 1.75) and
(— 1.66, 1.75). The solution should be checked by drawing the graphs.

PROBLEMS

Discuss and draw the asymptotes, then plot the graph of each of the follow-
ing equations. (Nos. 1-16.)

1. zy + 2z = 4. 9. zy? — 2y = 4.
2. y=2z + zy. 10. 2%y =3+ 3y.
3. y=2z+zy + 2. 11, z%y 4 3 z? = 6.
4, y=3z+zy + 4. 12. 2%y — 2y =22 4+ 4.
S. zy+3x+y—-6=0. , 13. zy? =z + 292
6. 22y +4z2—-3y+6=0. 4. +H@E -—1)2=1.
7. 2y =4 —z. 15, zy? +y2 — 4z —2y =0.
8. zy* —4x =12 16. zy? —2y? — 4z = 4.
17. Find the intersection of 3z — 8y =20 and 2z — 7y = 10.
Ans. (12, 2).

18. Find the intersections of (z + 1)2 4+ (y + 1)2 = 13 with each of
the coordinate axes.

19. Find the intersectionof 13z + 3y = 9and 14z — 4y = 35.
Ans. (13, — 33%).

Find the interscetions of cach of the following pairs of curves and check
by drawing their graphs. (Nos. 20-26.)

20, 2z4+y=1 y*+4zx=17.

21. 4224+ y2 =25 8zx+3y+25=0. Ans. (— 2, — 3).

22 2y=12+4+1z, z2+4+4y =19.

23 22 —y?+4=0, 22—y =28. Ans. (£ 412, 4), (£ /5, — 3).

24, zy +8 =0, y?=4x.

25. 22 =4y, y=8/(x+4). Ans. (£2,1).

26. 22 +4y2+62=0, 222 —y?=12

13. Trigonometric Functions, Circular
Measure. If the independent variable
is an angle, it is desirable to have a natu-
ral unit of measure to represent its mag-
nitude. This is obtained by measuring ‘
the angle in radians. Describe an arc of
a circle with its center at the vertex of
the angle. The central angle whose inter-
cepted arc is equal in length to the radius Frc. 16
is one radian. Hence for any central angle '
the length of the intercepted arc divided by the radius gives the
radian measure of the angle.
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That is, if s is the length of the arc and r the radius, then

0= gradians.

Since the circumference is 2 =7,

180° = 7 radians,

90° = /2 radians,

1° = /180 radians = 0.01745 - - - radians.
1 radian = 180/ degrees = 57° 17.7'.

To plot the graph of trigonometric functions, make out a table
of values of the angle in radians and of the required function.

Thus:

z sin tan z sec z
0 0.00 0.00 1.00
n/6 = 0.52 0.50 0.58 1.15
n/3 =1.05 0.87 1.73 2.00

x/2 =1.57 1.00 © ©
2x/3 =2.09 0.87 —-1.73 -2.00
57/6 = 2.62 0.50 —0.58 -1.15
= 3.14 0.00 0.00 -1.00

2 -L/]lo1 2 8

F1c.17. y =sinz

respect to the y axis.
asymptotes of the graphs of tan z and sec = are shown.

A function whose values are repeated after a definite interval p
of the variable, so that

The graph of
y=sinz

will cross the z axis for each
value of = equal to an integral
multiple of =. Moreover, since
sin (—z) = —sinz = — y the
graph of y = sin z is symmetric
with respect to the origin. The
same is true for y = tan 2. But
since sec (— ) = sec z the graph
of y = sec xz is symmetric with

These curves are given below. Likewise,

fx+p) = f(x)
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is called a periodic function. The interval p is called the period.
The maximum absolute value of the function is called the ampli-
tude. Thus, in the function sin z, the period is 2 = and the ampli-
tude is 1. The period of tan z is p = = and it does not have a
finite amplitude. The period of the secant is 2 .

Y

% | |
2

3 i Ly |1 i i
T X - 012 =« X
|
| I |
!
F10.18. y =tanz F1a.19. y =secz

If we consider the function

y = k sin nz,
it is evident that sin nz will be zero when nz is zero or any integral
multiple of =, that is, when z is 0, =/n, 2 x/n, ete. Again, the
period of this function is 2 v/n. The maximum value of sin nz is
+ 1 when nx is /2 or differs from 7/2 by a multiple of 2 x, that
is to say, when z is /2 n or differs from Y
m/2 n by an integral multiple of the period &
2 w/n. Hence the amplitude of the func-
tion k sin nx is k.

14. Inverse Trigonometric Functions.
The function

y =sin'z
means in direct notation
z = sin ¥.

The function sin—! x is called the tnverse of
the function sin x, and is read the angle  Fig.20. y = sin-1z
whose sine is x, or arc sine x. Hence the

graph of y = sin~! z differs from that of y = sin x only by having
the coordinate axes interchanged. The same is true for the other
inverse trigonometric functions.
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15. The Algebraic Sum of Functions. If the given function
consists of a sum of functions, such as

y = fix) + f2(2),

the following alternative method may be used to find the graph of
the function. Plot on the same axes the graphs of y = fi(z) and
y = f2(x). Along each vertical line of the coordinate paper mark
the point whose ordinate is the sum of the ordinates of fi(z) and
f2(x). The desired graph is the smooth curve through the points
located in this manner. Of course, this method can only be used
for values of x which make both f;(z) and f.(z) real.

EXAMPLE

Draw the graph of y = (3/2) cosz + sin (2 z/3).

SoLuTioN. Plot with the same axes the graph of y = (3/2) cos z and the
graph of y = sin (2 z/3). The addition of corresponding ordinates gives the
required graph, as shown in Fig. 21.

Y
H ; - + H _3:3
i BHHRIE gt e
i HH T 8 HL Y g
E- 2w TR 0 ik, ] X
i 1 R atr e Rt
H H y=Jcosz+sin (%) it
Fia. 21
PROBLEMS
Plot the graph of each of the following and find its period. (Nos. 1-9.)
1. y = cos z. 6. y = tan (z + =/4).
2, y=ctnz. 7. y = sinz + cos z.
3. y =cscuz. 8. y = cos z — sin (z/2).
4, y = 2 cos (z/2). 9. y = (1/2) ctn (wz/4).

5. y = 2sin (wz/3).
Plot the graph of each of the following and tell which are periodic.

10. y = (1/2) sin'z. 13, z =2ctn12y.
11, y =2 cos™12z. 14, y = 3sin2z.
12, 2y = tan (/2 — »/4). 15, y = 3sin1 2z,

16. y =1 4 cos (xz/2).
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17 y=z +2sinz, ~2r=z=2~.

18, y =zsinz, —2r =r =2

19. z = 2sin~! (y — 2).

20 y=cost(z+1), —r=y=m

2l. y=2coszxz —cos 2z, 0=z =2

22, y=cosz — 2sin (z/2),0 =z =4

23. z = n/2 + tan~!(y/2).

24, y = sin (xx/2) — cos (2 =z/3), for 1 period.
25. y = z cos (wz/2).

26. y = z* cos wx.

16. Exponential and Logarithmic Curves. The equation
y = a%, in which a is any constant, is an exponential equation.
If a is positive, y is real for all real values of x and a table of values
can easily be obtained from a table of logarithms by the relation
log y = z log a. If ais negative, y is not real for all values of =
between any two given values. Thus, if 2 is given a fractional value
whose denominator is an even number, y would be an even root of
a negative number and hence imaginary. Hence the graph of
y = a*is a smooth unbroken curve only if a is positive. We shall
consider only such equations. Since (1/b)* = (b)~%, if the base
is less than one, the equation can be written with the reciprocal
base. Hence we assume throughout that a is positive and greater
than unity.

The number represented by e (= 2971828 ---), the base of
natural logarithms, is of great importance in exponential equations.

We shall use the symbol log instead of log, hereafter. Thus if
y=e%logy = x.

EXAMPLE

Draw to the same set of axes the graph of ¥y = a* when a has each of the
values 1.5, ¢, 4, and 1/e.
SovuTioN. Form the table shown below.

z (1.5)= e* 4= e~*

-2 0.44 0.135 0.06 7.39

-1 0.67 0.37 0.25 2.72
0 1.00 1.00 1.00 1.00
1 1.50 2.72 4.00 0.37
2 2.25 7.39 16.00 0.135
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The student should observe carefully the nature of the graph of y = a*
as a takes values that increase from a = 1. Also note that the graphs of
y=(1/4)* =4 y = (1/e)* = e*, y = (2/3)* = (1.5)~* can be obtained
from the graphs of y = 4%, y = %, y = (1.5)* respectively by a rotation of
these graphs through 180° about the y axis. Or, we can say that y = a*
and y = a~* are each symmetric to the
other with respect to the y axis; as either
can be obtained from the other by chang-
ing z to — z.

\

\

y=e

MULTIPLICATION OF ORDINATES.
The graphs of certain equations
may be obtained by the multiplica-
tion of the corresponding ordinates
of auxiliary graphs. Thus if the
graphs of y = fi(zx) and y = f2(z)
be drawn to the same set of axes,
then the graph of y = fi(z) - f2(z) can

Fia. 22 be obtained for all values of z which
make both fi(z) and f:(xz) real by
multiplying the corresponding ordinates of the two auxiliary graphs.

The equation

Y = ae* sin kx

plays a very important role in physics. Its graph is known as the
curve of damped vibration and can be drawn by multiplying the
ordinates of the graphs of y = ae~* and y = sin kz.

EXAMPLE
Draw an accurate graph of \ Y
y = (3/2)e~= sin (xz/2). A
SovurioN. Draw the graph N\
of y = £ (3/2)e~= and also of W) .
y =sin (rz/2) to the same 1 \x,v:‘?:;&' N

axes. Along each ordinate mark
the ordinate corresponding to
the product of the two given
ordinates and draw a smooth
curve through the points lo-
cated in this way. The dotted
curves of the figure are called
auxiliary graphs and the other
curve is the desired graph.

Note also that the two curves Fia. 23

Yy = == (3/2)e* are boundary curves which the desired curve touches but
never crosses-
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The logarithmic equation is called the inverse of the exponential
since ¥ = a® may be written z = log, y. Therefore, if we write
y = log, x, where a is any positive number except unity, its graph
is the same as that of z = av.

EXAMPLES

1. Draw the graph of ¥ = logi, z and also of ¥ = log z to the same set of
axes.
SorLuTioN. Form the table shown below.

z 0 0.5 1 2 3 4 5
logio = — -0 30 0 0.30 0.48 0.60 0.70
log z — -0 69 0 0.69 1.10 1.39 1.61

Notice that the y axis is an asymptote of each curve.

Y

Fi1a. 24 Fra. 25

2. Draw the graph of y = log Vz? — 4.
SorurioN. The equation may be written

y = (1/2) log (z? — 4).

The lines z = + 2 are asymptotes and the curve crosses the z axis at
z = + /5. If 22 < 4, then y is the logarithm of a negative number, which is
complex. Hence no part of the curve lies between the asymptotes. A few
points with the information above give us the graph of Fig. 25.
This equation may be written
y = (1/2) [log (z + 2) + log (z — 2)].

However, the student cannot find the graph by the method of the addition
of ordinates. If we plot y = (1/2) log (z + 2) and y = (1/2) log (z — 2),
only the values of z which make both z + 2 and x — 2 positive can be used
in this way. That is, log (z — 2) is complex between z =2 and z = — 2
and hence the sum of the ordinates is complex; then for £ < — 2 both
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log (z + 2) and log (z — 2) are complex while the sum of these complex num-
bers is real. Hence this method would give only the part of the curve for
which z > 2. The auxiliary curves are shown in Fig. 26.

| Y
|
1
s mm—
rf 01 27 X
[ ]
F1a. 26
PROBLEMS
Plot the graph of each of the following equations.
1. y = (1/2) e?=. 8 y=logB—12),—-3=z=3.
2, y=(1/2)-= 9. y =log (3 + z).
3. y=(1/2) e, —3=x=3. 10. y = log V9 — 22,
4 y == 11. y = log V22 — 0.
5. y = e/U-2), 12. y = logsin 2 z.
6. y = 2V0-, 13. y = log (=2 + 4).
7: y = logw 3 — ). 14. y = log [1/(z2 4 4)].
15. y = (e +¢72)/2, (Hyperbolic cosine.)
16. y = (ez —e~7)/2, (Hyperbolic sine.)
17 y = (1/3)z, =5 =z =5. 24, y =e%sinz, —3=zr=3.
18. y=e2 —2=cr=2. 25. y=2"Rcosz, 0 =z=4.
19, y =ze*/5, —2=2=2. 26. y =228in3z, —2=r1r=2.
20. ¥y =4e*sin 2. 27. y=¢7*3gin2z, —2=z=nm.
21, y=z1er?, —1 =z =3. 28, y =e¢*sginwr, -3 =2=2.
22, y=e¢*—2cosz. 29, y =e*2¢co82 7z, — 1 =2=2.

23, y =e*?ginwz, —2=r=2. 30, y = —3e*sinnzr, 0 =z =4.
3. y =2:3*2gin3r7r, —- 1 = =2. )
17. Polar Coordinates. In a system of polar coordinates

the position of a point is determined by measuring a distance and a
direction instead of measuring two distances as in rectangular
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coordinates. The system consists of a fixed point O, called the
pole, and a fixed line through O called the polar axis or initial line.

The polar coordinates of any point P in the plane are two
numbers r and 6; r represents the
distance OP and is called the radius
vector of P, and 6 is the angle which
OP makes with the polar axis and is ﬂ
called the vectorial angle. FEach co- N
ordinate may be positive or negative; 2 A
0 is positive when measured from
the polar axis in a counter-clockwise
direction, negative if clockwise; r is
positive if OP is along the terminal Fia. 27
side of 8, and negative if OP is taken
in the opposite direction, along the terminal side produced through
the pole.

Any pair of real numbers (r, ) will determine uniquely a point
P. However, the point P may be designated by more than one
pair of coordinates. Thus the pairs (2,3 n/4), (2, — 5 7/4), and
(— 2, — w/4) each designate the same point.

To plot points in polar coordinates, the paper should be ruled
with concentric circles about the pole and radial lines through the
pole, as shown in Fig. 28.

If an equation is given in r and 6, it can frequently be solved for
r in terms of . Then by making out a table of corresponding
values the graph of the equation is obtained by plotting these
points and drawing a smooth curve through them. The student
should not assume that the complete graph is obtained when the
curve crosses itself. If in doubt, he should continue the table of
values until successive points are repeated.

EXAMPLES

1. Plot the graph of r = 2 — 3 sin 6.
SovutioN. Giving 6 values varying at intervals of 30°, we have:

6 | 0°{30°| 60° |90°| 120° |150°|180°210° 240°|270°|300°330°|360°

2 (0.5|-0.6] -1 —-0.6{05| 2 |3.5/4.6/5.0/4.6]3.5
Point| A | B c D E F{G\H|I | J|K]|L

NI\
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The complete graph is given by an
interval of variation of 6 from 0° to
360°, since 6 and (9 + 2 ) give thesame
value of 7 and the same vectorial angle.
Between § = sin—! (2/3) in the first and
second quadrants r is negative. This
curve is one form of the limagon.

2. Plot the graph of

72 = a2 cos 2 6.

SoruTioN. Give 6 values at inter-
vals of 15° If 6 is between 45° and
135°, cos 2 0 is negative and r is imagi-
nary.

(] 0° 15° 30° 45° | 135° 150° 165° 180°
r +a |£0.93a|%+0 71la 0 0 +0 71a |0 93a]| *a
Point A B C 0 0 D E A

This curve is called the lemniscate. It is completely given by an interval of
variation of 8 from 0° to 180°. This is true since 6 and (8 + =) each give the
same value for 2, and also since (=7, 8) and (& r, 8 + =) locate the same two
points. (See Fig. 29.)

Fia. 29 F1a. 30

3. Plot the graph of r = e, :
SoLuTioN. Let a = 0.2 units and express ad in radians.

0 27| —x| —%/2|0| n/4 | =/2 |3x/4 r [(37/2| 2«

ad | —1.26|—-0.63} —0.311 0} 0.16 | 0.31 | 0.47 [ 0.63 | 0.94 | 1.26
il 0.3 0.5 07 (1112 [1.4 |16 (1.9 |26 |35
Point| A B c D| E F G H I J

This curve is called the logarithmic spiral. (See Fig. 30.)
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18. Relations between the Coordinate Systems. At times it is
convenient to transform an equation given in rectangular coordi-
nates into a corresponding polar form, and conversely. The usual
arrangement is to take the pole at
the origin of the rectangular coor- Y
dinates and the polar axis along the
positive half of the z axis. It is P
apparent that for any point P in |
the plane the following relations l 94
will then exist between its two sets v
of coordinates (z, y) and (r, 8) :

(VIII) x=rcos®, y=rsinb;
= x4y
0 = tan—¥

x

8

B

st

(IX)
= cos-1 _x . Fic. 31
Vi +yt
EXAMPLE

Transform into rectangular coordinates the equation of the lemniscate
r? = a? cos 2 6.

SovurioN. Write cos 26 = cos?6 — sin?6, then the equation becomes
r? = a?(cos?@ — sin?6). Therefore, if the axes arc as shown above,

2yt = aziz ; y:’ or (22 + y)? = a2(z? — y?).
PROBLEMS

Plot the graph of each of the following equations. (Nos. 1-27.)
1. rcosf = 3. 11. r =2(1 — sin@).

2. rgind = — 2. 12, r = 3(1 + cos 6).

3. r= —4sech. 13. r =2 + 3 cosé.

4. r = 5 csch. 14, r =3 — 2sine6.

5. r4+2sind =0. 15. r =1 4 cos 24.

6. r = 4 cos 6. 16. r =1 —2sineé.

7. r =1/ + cos ). 17. r2 =4 cos 240.

8 r =4/ — 2cosb). 18. r =1+ 2 cos (6/2).
9. r =6/(2 — 3sin6). 19. r =1 + sin (8/2).

10. 2rcos 8 + rsin @ = 3. 20. 72 = a?sin 26.
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2. r =a/(1 —ecosf), (<1, =1,>1).

22. r0 = a. 25. r = a sec? (6/2).
23. r =acos26. 26. r =20
24. r =asin 30. 27. r =2cosf — 3siné.

28. Transform into rectangular coordinates the equations of Problems 1,
2,3,45,6,7,8,9, 10, 16.
29. Transform the following equations into polar representation.
(@) zy =2a, (o) 22+ y*+2ay =0, (¢) 2% —a’) +y' =0,

®) z22=2py, @ z2+ax+by=0(f) 22+ y*—3azxy=0.

19. Parametric Equations. We have seen that the equation
of a curve may be given by a single relation connecting the coordi-
nates r and y of any point of the curve. Also « and y may each be
expressed in terms of a third variable, which is called a parameter,
and the two equations together are called the parametric equations
of the curve. The parameter may or may not have gecometric
significance. Each value arbitrarily assigned to the parameter
fixes one or more values for x and y, giving thereby corresponding
points on the curve. If the parametric equations of a curve are
given, the equation in z and y may be obtained provided the pa-
rameter can be eliminated between the given equations.

EXAMPLES

1. Givenz = at3, y = at2. Plot the curve and find its equation in terms of
z and y.

SorLuTioN. Form the table below and plot the points. A smooth curve is
obtained by joining the points in order, as shown in Fig. 32.

t z Y Point
0 0 0 0
+1/2 +a/8 a/4 B
+1 +a a C
+2 +8a 4a D

Eliminating ¢, we have ¢ = + Vy/a; then z = X a(y/a)¥? or y* = az2

2. Given z = a cos 8, y = b sin 6, obtain the graph and the equation in
rectangular coordinates.
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SoruTioN. In this example the parameter is the angle 8. The table below
gives the coordinates of points on the curve in Fig. 33.

Y

D c
D 2a D K‘\
a + A,
_ak

C C _0__/7“?
B\/B
~3a -2a4 -a O a 2 % X
-b

Fic. 32 Fia. 33

[/} T Y Point

0° a 0 A

30° a\/3/2 b/2 B

60° a/2 bv3/2 C

90° 0 b D

To eliminate 6 we have cos § = z/a, sin 8 = y/b. Using the relation
sin2 6 + cos?6 = 1, we find the equation to be

PROBLEMS

Make a table of values and plot the graph of each of the following pairs of
equations. (Nos. 1-10.)

l.z=1—-ty=41L 6. x =4cos6,y = 3sinb.

2.z =1—1ty =4t 7. © =4sech,y = 6tané.

3. z=2/t,y =3¢t 8. z =acos®,y = asin®é.

4. z =142ty =6/t 9. z=3/t—-1),y =2/t +1).

5. 2z =asint,y =acost. 10. z =3¢t/(B*+ 1),y =38/ +1).

11. Derive the rectangular equations of Problems 1 to 10 inclusive by
eliminating the parameter.

Ans. () 4z +y =4; 3)zy = 6; (6)2?/16 + y*/9 = 1; (10)z°* + y* = 3zy.

20. Transformation of Coordinates. It is sometimes desirable
to simplify the equation of a given locus by referring it to a new
set of coordinate axes, since the form of the equation depends on
the position of the axes with respect to the curve. This is known
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as transformation of coordinates. If the new axes are parallel to
the old axes, respectively, the transformation is called transforma-
tion by translation. If the new axes have the same origin as the
old axes but are oblique to them, the transformation is called
transformation by rotation.

If the coordinates of any point P are (z, y) when referred to one
set of axes, and (2, y’) when referred to the other set, then either
set of coordinates can be expressed in terms of the other. Like-
wise, the equation of a given locus referred to one set of axes can
be transformed into the equation
of the same locus referred to the
other set of axes.

Y

Y'
21. Formulas of Translation.

I In Fig. 34 let the z and y axes be

e e parallel to the 2’ and y’ axes, re-
o % spectively. Let the coordinates of
O’ be (h, k) when referred to the
former set; that is, OC = h and
D CO’ = k. Let P be any point in
o’ X' the plane with coordinates (z, y)
Fia. 34 and (z/, y’), respectively; that is,

AP = Z, MP = Y,
BP = z’, NP = y'.

Now AP = AB 4+ BP and MP = MN + NP; hence

X) x=x4+h y=y +=r - Y
22. Formulas of Rotation. Let R
the z’ axis make an angle 6 with b %
the z axis. Let P, any point in st=>x%;
the plane, have coordinates (z, y) H
and (2/, y'), respectively. Then g 1', -
OM =z, MP =y, ON =z, and o\ ¥
NP = y’. Now
OM = OT — SN,
MP = TN + SP. Fia. 35

But OT = 2’ cos 6; likewise SN = ¢’ sin 6, TN = z’ sin 6, and
SP = y’ cos 6. Hence
XI) x=2x"cos® —y'sin®, y=2x'sin0-+ y’' cosb.
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EXAMPLES

1. Change the axes by translation so that the equation 222 4324+ 7 =y
transforms into an equation without a term in 2’ and without a constant term.
SoLuTioN. Translating the origin to (k, k), we have

2@ +h)+3@" +h)+T=y +k
Collecting terms, we find
2z2 4+ 4h+3)2 + 2h+3h+7 —k) =y
By the conditions of the problem we must have
4h+3 =0, 22 +3h+7—-k=0.
Hence h = — 3/4, k = + 47/8. 'That is, by translating the origin to
(— 3/4, 47/8), the transformed equation is
2z =y,
2. Find the transformed equation for z? — y? = a? when the axes are

rotated through 45°.
SoLutioN. From formulas (XI) we have

z = %\/i(x’ -y), y= %\/?(z’ + ).

Hence
1 ’ n2 1 ’ e 2
5@ =y =50 +y) =d
or

2z'y’ +a2=0.

3. By completing the squares, find the translation which will remove the
first degree terms from the equation 222 — 332 — 4z — 2y = 13.
SovuTioN. Completing the squares, we have
. 1\?2 1 4
—1)2 — =) = _ ==,
20 -1 -3(y+3) =+2-1-%
The first degree terms will be eliminated if we make
1
z—1=2, y+z=9¢,

that is, if

r

1
= ! = _——
z=2'+1, y=y 3
Hence, if the origin is translated to the point & = 1, k¥ = — 1/3, the trans-
formed equation will be

44

2zt -3yt = 3 or 6z'2 — 9y =44,
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PROBLEMS
Simplify each of the following equations by translation. (Nos. 1-4.)
1. 22 —fz + 4y = 10. Ans.z? + 4y’ = 0.
2. 3y=z*+4+42 - 8.
3. 22+ 3y2—4x+6y =6,t0(2, —1). Ans. 2’2 + 3y"2 = 13.

4. 322 -2y + 6z +8y =10, to (— 1, 2).
Simplify each of the following equations by rotation. (Nos. 5-8.)

5. zy =12,60 = — n/4. Ans. y'? — 22 = 24,
6. 22 —y2+20=0,0 = /4.
7. 222+ 2y /3 + 942 =7,0 = x/6. Ans. 522 + y'2 = 14.

8 2z —zy/3+y* =100 = x/3.

Simplify each of the following equations by completing the squares. (Nos.
9-11.)

9. 24+ y?+z—y =6. Ans. 222 4+ 2y = 13.

10 222 +3y? -8z 46y = 11.

11. 622 —2y2 -9z + 8y = 10. Ans. 482’1 — 16 ¢ = 43,

Apply translation and then rotation to simplify the equation. (No. 12.)

12, 2?4+ zy+y* — 22+ 2y =2, to (2, — 2) and then 6 = »/4.

i

ADDITIONAL PROBLEMS

Draw the graph of each of the following equations. These curves are im-
portant and many are of historic interest.

1. r =a(l + 2 cos 6), Trisectriz.

2. r=a +xbsing, Limagons (if a = b, cardioids).
3. r=acos 36, T'hree-leafed rose.

4. r = asin26, Four-leafed rose.

5. 23 4 zy? = 2 ay?, Cissord.

6. y =8a3/(z* + 4a?), Witch.

7. y¥/2? = (a + z)/(a — z), Strophoid.

8 z=3at/(1 4+ 1),y =3at2/(1 + 13), Folium.

9. y = (a/2)(e/® + e~zla), Catenary.

10. y = asin kz + b cos kz, Simple harmonic motion.
11. y = ae™¥2, Probability curve.

12, r = a9, Spiral of Archimedes.

13. logr = a8, Logarithmic spiral.



CHAPTER 1II

EQUATIONS OF DEFINED CURVES
EMPIRICAL EQUATIONS

23. The Straight Line. A straight line is determined by two
fixed points P; and P; on it, or by one point P; and its slope m.

To find the equation of the line, we must obtain a relation
connecting the given values i, y1, m, and the coordinates of a
point P(z, y), which is assumed to be any point on the line.

Draw the line through P,
with the given slope m. We
know that the slope of a line

may be obtained from the P(z,y)
coordinates of the extremi- l

ties of any segment of the line M D

Y

asin § 6. Hence, if the slope SL—--—— —————— PX )
is m, we have the relation AR
m=(y —y)/(x — 1), or

1) y—yp=m(x—x), Fia. 36

which is called the point-slope form of the equation of the line.
We may also derive equation (1) from Fig. 36 as follows:

SP _ SM + MP

tana=m=F o= b+ RS’
or
_—wn+ty
m—"'11+$

for any position of P(z, y) on the line.

Let the line be located by any two fixed points P, and P, and
let P(z, y) be any other point on the line. Since the slope of the
segment PP equals the slope of the segment P1P», we have

Y-U_¥—un
(2) X — X Xo — X1,

which is called the fwo-point form of the equation of the line.
This may also be derived from Fig. 37.
31
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.

It is, however, preferable to use equation (1) even when two
points are given. The right-hand member of (2) is m, therefore
use this number m and either of the given points with the point

A

P(z, y) to write the point-slope
form.

Let the given point P; be
the point where the line crosses
the y axis. If the y intercept is
b, then the point P; is (0, b).
Substituting these values for x

/P,{Tu?"

Fia. 37

and y in (1), we have

y=mx-+b,

called the slope-intercept form

of the equation of the line.
If the line is given by its intersections with the axes, and if the
x intercept is @ and the y intercept b, these points are (a, 0)

and (0, b) and the slope of the
line is m = OM/NO = b/(— a).
Substituting this value of m in (3),
we have

X, ¥ _
(4) E+B—l:

which is known as the intercept
form of the equation of the line.

It is important to realize that
these are four forms of the same
equation, and from the given data

Y

\M(o,b)
x

[ N(a,O\X

Fia. 38

regarding the line we determine which form is the more conven-

ient to use.

24. The Linear Equation. We shall now show that the general
equation of the first degree in z and ¥, that is, the linear equation

(1) Ax+ By + C=0,
where A, B, C are any constants, but A and B not both zero, always

represents a straight line.

First, assume B 0. Solving (1) for y, we have

(2) y=-—-pr—

B}
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which is in the form of equation (3) of the preceding article, where
m= — A/B and b = — C/B. That is, when (1) 7s solved for y
the coefficient of x is then the slope of the line and the constant term
1s the y intercept.

Second, assume B = 0. Then (1) reduces to z = — C/A,
which is the equation of a line parallel to the y axis whose z inter-
cept is — C/A. Since any line either crosses the y axis and has a
slope and y intercept, or else is parallel to the y axis, it follows that
every linear equation can be written in the form y = mzx + b or
in the form z = a. Hence the equation Az + By 4+ C =0
represents a straight line.

It is important to recognize the slope of a line from its equation.
Since m = — A/B, we can say that if B ¢ 0, and if the terms in x
and y are on the same side of the equality sign, the slope of the line is
the quotient of the coefficient of x by the coefficient of y with its
sign changed.

EXAMPLES

1. Find the equation of the line through the point (— 3, — 2) which makes
an angle of 120° with the z axis.

SoLurions. (a) The slope of the line is m = tan 120° = — /3. If
P(z,y) is any point on the line, we have from the point-slope form of the
equation of the line

A y—(=2 ¥
3= (=3
or P(’.‘II) F 1
tV3+y+2+3vV3=0. : 2
(b) Again, from Fig. 39 we have It !
tan 120° = — v3 = TP/P\T, or i 01 2X
—v3 = IM+ MP |
“PN+NT’ +
32ty
Vi=37a
zvV3+y+2+3v3=0. F1c. 39

2. Find the equation of the line through the points (2, 3) and (— 3, — 1).
Sovutions. (a) Theslopeofthelineism = [3 — (— 1)]/[2 — (— 3)] = 4/5.
Then, from the point-slope form, if we use the point (2, 3),
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Simplifying, we have
4z -5y +7=0.
(b) By linc-segments, from Fig. 40,

TP, _ NP
PT ~ PN’
TR+ RP, _ "NS + SP

|
0 1 | PM + MT  PM+ MN’
P](:‘;'.I)M 1+3—1+y
3+2 3+2

or

F1a. 40 4z —-5y+7=0.

3. Find the equation of the line crossing the y axis 4 units above the
origin and making with the y axis an angle of 60°.

SorurtioN. From Fig. 41, we see
that the inclination of the linc is 150°
or 30. Hencem = tan150° = — v/3/3,
orm = tan 30° = v/3/3. From either
the slope-intercept form or the sides of
the triangles, we have the equations of
the lines as

z+yV3F 4v3 = 0.

4. Find the equation of the line Fia. 41
through (— 2, 3) which is perpendicu-
lar to the line2z — 3y — 3 = 0.

SoLuTioN. The slope of the given lineism = — [2/(— 3)] = 2/3. Hence
the slope of the required line is — 3/2. The equation of the line by either
method outlined in Example 1 is

3z+2y=0.

25. Parallel and Perpendicular Lines. Given the two lines,
L, with equation A,z 4+ By 4+ C, = 0, and L, with equation
Az + By + C, = 0. Call the slopes of these two lines m,
and ms, respectively. It follows then that m; = — 4,/B; and
me = — As/B,, where B, and B, are both different from zero.

The condition that L; and L. be parallel is (§ 7) that the slopes
be equal. Hence m; = mq, that is, — A1/B1 = — A:/Bs, or

4 B
@ 4B

Therefore, if two lines are parallel the coefficients of x and y in the

equalions of the lines are proportional, and conversely.
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If L, and L, are perpendicular, mym; = — 1 (§7). Therefore
(— Al/Bl)(—Az/Bz) = — 1, or
() A,A; + BB; = 0.

Conversely, if this relation exists, the lines L, and L, are
perpendicular.

26. Special Cases. If, in the equation Az + By + C = 0,

we have 4 = 0, the equation becomes y = — C/B, which is in
the form y = b and is a line parallel to the z axis. If B =0,
the line is x = — C/A, parallel to the y axis. If C = 0, the line

is Az + By =0 or y = (— A/B)z. This equation is satisfied
by the point (0, 0); hence the line passes through the origin.
The converse is also true; that is, if the line passes through the
origin, the constant term in its equation is zero.

PROBLEMS
Find the equation of each of the following lines. (Nos. 1-15.)
1. Through (— 3, 4) and (4, — 5). Ans. 9z + 7y = 1.

Through (2, — 4) with slope — 6/5.
With z intercept — 4 and inclination of /4. Ans.z —y +4 =0.
With y intercept — 3 and slope 2/3.

ok owoN

Through (— 2, — 4) and parallel to the line joining the origin to (3, 2).
Ans. 2z — 3y = 8.

6. Through (— 3, 5) and perpendicular to line joining (— 3, 5) and
(= 5,4).

7. With z and y intercepts — 3/7 and 5/2, respectively.
Ans. 35z — 6y + 15 = 0.

8. Through (5, — 3) with @ = 135°,
9. Through (— 4, 3) with @ = 120°.  Ans. V3z +y +4v3 -3 = 0.
10. Through (6, — 1) with an inclination of 150°,

11. Perpendicular to the line 3z — 4y = 5 and through (— 5, 6).
Ans. 4z +3y+2=0.

12. Parallel to the line 7z + 6 y = 12 and through (— 7, 3).

13. Through (— 2, — 3) and making an angle of 45° with the line
y="7z+ 11 Ans. 3z —4y =6,and4z +3y + 17 = 0.

14, Through (5, — 3) and the intersection of the lines3z — 4y = 7 and
2z +y =1.

15. Through (— 3, 4) and the mid-point of the segment joining (4, 2) and
(-1, -="7. Ans. 1324+ 9y +3 =0.
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16. Find the equation of the perpendicular bisector of the segment joining
(—=2,1)and (- 6, — 5).
17. A diagonal of a square has its extremities at (— 1, — 1) and (3, 5);
find the equations of its sides.
Ans.z —by=4,5z+4+y+6=0,z—-5y+22=0,5z+y = 20.
18. The vertex of the right angle of an isosceles right triangle is at (3, — 1)
and another vertex is at (5, 4). Find the equations of the three sides.

19. The sides of a square have equations z + 3y = 10, z 4+ 3y = 20,
3z —y+5=0and3z —y = 5. Find the equations of the diagonals and
find their point of intersection.
2z —-4y+15=0,
4z 42y =15,

20. The vertices of a triangle are at (3, 3), (— 1, — 5), and (6, 0). Find
the equation of the line through each vertex parallel to the opposite side.

Ans. { 3/2, 9/2).

21. Find the perpendicular distance between the parallel lines3z =y — 2
and6z —2y —1=0. Ans. v/10/4 units.
22. Find the length of the perpendicular from the intersection of the two
linesx —6y =1and 10y —z + 5 =0to thelinez +2y +1=0.
23. TFind the equations of the locus of points equidistant from the lines
z=aandy =b. Ans.z —y=a—-bz+y=a+b.
24. Given the triangle A(— 4, — 2), B(6, 4), C(— 2, 8).
(a) Find the equations of its sides.
(b) Find the equations of the medians.
(¢) Find the equations of the altitudes.
(d) Find the equations of the perpendicular bisectors of the sides.
(¢) Find the intersection of the medians (centroid).
(f) Tind the intersection of the altitudes (orthocenter).
(9) Find the intersection of the perpendicular bisectors (circumcenter).
(h) Prove that the points (¢), (f), and (g) are collinear (Euler line).

27. The Circle. A circle is the locus of a point at a given distance
Jrom a fized point.

Let (h, k) be the fixed point called the center, and let r be the
given distance which is the radius. From the definition any
point P(z, y) on the locus must satisfy the relation CP = r, where
C is the center (&, k). From the right triangle in Fig. 42, we have

12 =CP =CR + RP'
(CN 4+ NR)? 4+ (RM + MP)?
=(—h+2)2+ (- k+y)

This relation, which may be obtained from the distance formula,
gives the equation of the circle as
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(1) x-—h+@-R:=r

If we expand this equation and collect terms, we have
22+ y?—2hr —2ky+h2+ k2 —1r2=0,
which is of the form .
() x*+y*+Dx+ Ey+F=0. "~

These are the two standard forms of the equation of a circle,
and since (h, k) may be any point, and r any distance, this equation
may represent any circle in the plane. Since any circle can be
written in either of these forms,
it follows that an equation of the
second degree represents a circle
only when the coefficients of z? and
y? are the same and the equation
has no term in xy. NfF——

We note the following special
positions of the circle with respect
to the coordinate axes: 0 N—— X

If the equation has no term
in z, then D= —2h =0, or
h = 0, which means that the
center lies on the y axis. Similarly, if there is no term in y, then
k = 0 and the center is on the x axis. If the terms in z and y
are both missing, the equation reduces to
(3) tyr=r,
and the center is the origin. Conversely, if the center is at the
origin the equation of the circle will be in form (3).

If F = 0, then h? 4 k? = 72, and the circle will pass through the
origin.

If the equation is given in form (2), it can be reduced to form (1)
by completing the squares in z and y.

Since equations (1) and (2) each have three constants, we see
that three conditions, which may be expressed as algebraic rela-
tions connecting these constants, are necessary and sufficient to
determine the equation of the circle.

P(z, y)

Fia. 42

EXAMPLES
1. Find the center and radius of the circle whose equation is

2234+ 2y - 10z + 6y = 23.
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SorutioN. Divide each member of the equation by 2 and complete the
squares. Then

(#-s2+ )+ (r+3v+3) -F+2+1

.r2 32
(x—§)+(y+§)=2u

Hence the center is (5/2, — 3/2) and the radius is v/20 units.

2. Find the equation of the circle through the points (0, 0), (- 1, 3),
and (5, — 3).

SoruTioN. Since nothing is known of the center or radius, we shall use the
form (2) of the equation of the circle. Substituting the coordinates of each
point in that equation successively, we have

or

F =0,
10—-D+3E+F =0,
34+5D—-3E+F =0.
Solving these, we find that D = — 11 and E = — 7. Hence the desired
equation is
2+ y2—-1lx -7y =0.
3. Find the equation of the circle through the point (— 6, 2) which is tan-
gent to the y axis and has its center on the linex +y = — 1.

SoLuTioN. Since the circle passes through (— 6, 2), it must lie to the left
of the y axis; hence h = — r. Then its equation has the form

@+ + @ —kr=r2
Using the point (— 6, 2), we may
write
(=64+7m24+ (2 —-k)2=r2
115 Also, since the center is on the
given line, we have

h+k+1=0,

p or —-r+k+1=0.

(-9,2) From thcse relations we have
0 X k* - 16k 4+ 28 =0,

whence
k = 2, 14; h = -3, —15; r =3, 15.
Hence there are two circles satisfying the given conditions; and they are
Z+3)+ (y—2)? =9, and (z +15)% + (y — 14)* = 225.

4. Prove that an angle inscribed in a semicircle is a right angle.
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SoruTioN. Take the origin at the center and the x axis along the given
diameter LM. Let A(a, b) be any
point on the circumference with m, Y
and m; "the slopes of AL and AM
respectively. Then m; = b/(a + 7), A (a,b)
ms = b/(a — r); whence we have
mimg = b%/(a® — r?). But we must
use the fact that A is on the circle,

which gives a? + b = 72 Sub- X
stituting — b2 for a2 — 72 we get L -,0) 0 M (7,0)
mm;= — 1. Hence AL and AM

are perpendicular (§ 7).

Q(T.O) Fi1c. 44
T
‘b P(r.6) 28. The Line and the Circle in
| Polar Coordinates. The equation
e of any line perpendicular to the
o A . .
polar axis and at a distance a from
the pole is
(1) rcos 0 = a.
Fia. 45

If the line is parallel to the polar
axis and at a distance b from it, the equation is

(2) rsin 0 = b.

These equations are the transformations from rectangular to
polar coordinates of £ = @ and
y=1>b [§18, (VIII)], where the
pole is the origin and the polar
axis is the z axis.

If the center of a circle of ra-

dius a is at the pole, its equation C(a,0) M(24,0)
is obviously
3) r=a.

If the center is on the polar axis
with the pole at one extremity
of a diameter, then any point
P(r, 8) on the circle will satisfy the relation

4) r=2acos 0.

FiG. 46
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Similarly, if the center is on the 90° vector with the pole on tke
circle we have

(5) r=2asin 6.

If the pole is on the circle and the intercepts on the polar axis
and 90° vector are ¢ and d re-
spectively, the polar equation is
readily found by transforming the
corresponding rectangular equa-
tionz? + y? — cx — dy = 0. Thus
(Fig. 47)

(6) r= ccos0 - dsin 6.

OUc,o) A 29. The Line and the Circle in

Parametric Form. If z and y are

Fra. 47 each given in terms of a third

variable ¢ and if each is of the first degree in the variable, the rec-

tangular relation connecting  and y is linear. Thus if x = at + b

and y = ct + d, solving each for ¢ and equating the results, we
have

cx — ay = bc — ad.

Each value of t assigns one value to x and one to y. These values
are the coordinates of a point on the
line corresponding to .

Given a circle whose center is the
origin, draw the radius to any point
P(z, y) on the circumference. De-
noting by 6 the angle which the
radius OP makes with the x axis, we
have (Fig. 48)

(1) x=rcos0, y=rsinh,

Y

P(z,y)
r

)
(=)
>

as parametric equations of the circle.
The elimination of 6, as explained
in § 19, gives the equation

2 4yt =

Fia. 48
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PROBLEMS

Find the center and radius of each of the following circles. (Nos. 1-6.)

1. 22+ 92— 10y = 0. Ans. (0, 5), 5 units.
2. 224y 4+ 6z —~4y =17.
3. 524942 —16x4+12y+1=0. Ans. (8, — 6), 3V1I units.
4. 22+ y2 -5z +4y =2
5. 4224+ 4y~ 16z +24y +51 =0. Ans. (2, — 3), 1/2 unit.

6. 362+ 36y? —180x + 48y + 97 = 0.
Find the polarequationof the circle in the following two problems. (Nos.7-8.)
7. With center at (2, #/2) and radius 2 units. Ans.r = 4sin 6.

8. Passing through the origin with center at (4, 0).

Find the equation of the circle satisfying each of the following sets of con-
ditions and draw its graph. (Nos. 9-16.)

9. With center at (— 3, 4) and passing through (1, 1).
Ans. 22 4+ y? 4+ 6z — 8y = 0.

10. With center at (— 2, 4) and passing through the origin.

11. With center on the line 22 — 3y 4+ 2 = 0 and passing through the
points (4, — 2) and (11, 3). Ans. 22 +y2 -~ 10z —8y +4 = 0.

12. Tangent to the x axis, with one extremity of a horizontal diameter at
the point (2, — 2). (Two cases.)

13. Concentric with the circle z? 4 y*> — 5z 4 4y = 1, and passing
through (— 2, 4). Ans. 22 + y? — 5z + 4y = 46.

14. Through the points (0, 3), (— 3, 0) and (0, 0).

15. Through the points (1, 0), (2, 0) and (0, 3).
Ans. 3224+ 3y2 -9z —-11y +6 =0.

16. Which has the segment of 2z — 3y + 6 = 0 cut off by the reference
lines'as a diameter.

17. Find the locus of the vertex of a right angle if its sides pass through the
points (1, 1) and (1, 7), respectively. Ans. 22 +y? -2z -8y +8 =0.

18. Find the locus of points four times as far from (— 2, 1) as from (1, — 3).

19. Transform into polar coordinates the equation of the circle through the
origin with center (— 4, 2). Ans.r + 8cosf —4sind =0.

20. Find the locus of a point if the square of its distance from the point
(1, — 3) is six times its distance from the y axis.

21. Find the points at which the y axis cuts the circle having the segment
from (2, 1) to (— 4, — 3) as a diameter. Ans. (0, — 1 5= 2V3).

22. Find the circles passing through (— 3, 4) and tangent to both axes.
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23. Find the circle with center at (— 5, 1) and tangent to the line
4z+3y =3. Ans. 22+ y2+ 102 — 2y + 10 = 0.

24. Find the circle through the origin and tangent to theline5z — 2y = 16
at the point (2, — 3).

25. Chords of the circle r + 10 cos 6 = 0 are drawn through the pole.
Find the locus of their mid-points. Ans.r + 5 cos 8 = 0.

26. Chords of the circle r = 6 sin 6 are drawn through the pole and each
produced its own length. Find the locus of the extremities.

27. A chord of the circle 2 + y?> 4+ 22 4+ 4y = 44 has its mid-point at
(— 3, 1). Find the equation of the chord and its length.

Ans. 2z — 3y 4+ 9 = 0; 12 units.

28. The equations of two circles are =2 + y* + Diz + Eyy + Fi, = 0 and
22+ y? + Dyr + Ey + F2 = 0. Find the relation connecting these coeffi-
cients if the circles are (a) equal; (b) concentric; (c) tangent to each other.

30. The Parabola. A parabola is the locus of points equi-
distant from a fized point and a fized line. The fixed point is called
the focus and the fixed line the

D )Y directrix.
N Let F be the focus and D’D the
E P(z,y) directrix, with p the distance be-

tween the focus and the directrix.
o Through F draw AF perpendicular
AcZol M F0) Y to the directrix.

The z and y axes may be taken in
any convenient position with respect
to the focus and directrix, and the
corresponding equation of the curve
obtained. However, the simplest
and standard form of the equation
is found by taking the origin midway between the focus and di-
rectrix with the line AF as one of the axes, say the z axis. If
P(z, y) is any point on the parabola, from the definition we have
EP = FP. But

l
|
!

D’
Fic. 49

EP=EN+NP=7—2D+:::,

and

FP =\[MF* + MP* =\/(OF — OM)*+ MP*
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W L+a

Squaring and collecting terms, we get the form

(1) y:= 2 px.

Since we see that the curve is symmetric to the z axis, the line
AF is called the axis of the parabola. The intersection of the
curve and its axis is the vertex. The curve is open and extends
indefinitely to the right of the y axis.

Any chord of the parabola through F is called a focal chord
The focal chord perpendicular to the axis of the parabola is called
the latus rectum; its length is 2 p.

Equation (1) may be written in the form

(2) x = ky?,

Hence

where k is any constant not zero. The graph extends to the right
or to the left from the origin according as k is positive or negative.
In a similar manner the equation

3) y = kx%,
where k is any constant not zero, is a parabola with vertex at the

origin and with its axis along the y axis. It is concave upward or
concave downward according as k is positive or negative.

31. Other Forms of the Equation of the Parabola. Two
important equations of the parabola are

1) y=ax*+ bx+c,
and
(2) x=ay*+ by + c.

The former equation defines a parabola with its axis parallel to
the y axis. For, on completing the square, we have

2
y=a|:x2+ z+4a2]+c—£—a,
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b? b \?
() -r( B
From this equation, we see that a translation of the origin to

the point (— b/2 a, ¢ — b%*/4 a) will reduce equation (1) to the
form (see § 21)

3) Yy = ax’? !

or

Likewise equation (2) represents a parabolajwith axis parallel
to the z axis. '

If we substitute for 2 and y in either equation (1) or (2) the
coordinates of any three distinct points no% on the same straight
line, we obtain three corresponding relations connecting the co-
efficients a, b, and ¢. The solution of these relations will deter-
mine a unique set of values for a, b, and ¢. Hence:

Through any three distinct points not on the same straight line,
one and only one parabola can be drawn with a vertical axis, and one
and only one parabola can be drawn with a horizontal axis.

32. Construction of the Parabola. When the focus and direc-
trix are given, points on the parab-
ola may be found readily by means
of a ruler and compasses. Draw
F any line parallel to the directrix
B and on the same side as the focus.
a fi I Let its distance from the directrix
be a. With F as a center and a
radius @, mark the points on the
given line at a distance a from F.
LY These are points on the parabola.
15 If the directrix is taken parallel to
Bipy | either set of ruled lines of the co-
Bip ordinate paper, points on the curve
Fia. 50 can be marked rapidly with the
compasses, and an accurate sketch of the curve can be drawn.

)

33. Parabolic Segment. A segment cut from a parabola by a
chord perpendicular to the axis is known as a parabolic segment.
If we take the curve y = kx? and draw through two points P,
and P; the chords perpendicular to the axis (Fig. 51), we have

yr=kx,  ys = kx.?;
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whence

2
1 Iy

n _ (2 21)?
T 75

Y2 (x)?

But 2 ; and 2 2, are the lengths of the two chords and ¥ and ¥,
are their respective distances from the vertex. Hence without
reference to the coordinate
axes we have the theorem: Y

In any parabola the squares
of any two chords which are
perpendicular to its axis are

to each other as their distances N,

from the vertex of the parabola. Q Pz, y))
In the segment Q:0P;, QP \ Ny

is called the base and ON; the Q'\ /P’ (2 1)
altitude of the segment. In

practical problems the base of 0 X
the parabolic arch is usually Fia. 51

called the span.

EXAMPLES

1. Find the equation of the parabola with y = 6 as directrix and (— 4, 2)
as focus. Find the vertex and extremities of the latus rectum.
SoLuTioN. Assume P(z, y) any
Y point on the parabola. Draw PF
and draw PD perpendicular to the
directrix. From the definition, we have
|4 PD = FP. But

PD =P8+ 8D = —y + 6,

™

P(zy)
N
}

L N L and
M F-42)
I | X FP = V(FL + LM)? + (MS + SP)?
/ s AN _varorcITos

Hence

@E+4'+ @y —-2?=(6 -y

F1c. 52 or
2

X
y——-s——$+2.

The vertex is evidently (— 4, 4) and the ends of the latus rectum are
(— 8,2) and (0, 2).
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2. In the parabolic segment shown in Fig. 53, find z.

SoruTioN. It is evident that
the two chords are, respectively,
15 + z and 15 — z feet. Hence

(15 + 22 _ 10
-

b -(—15—_—_—;—)—2 or

= o 154z _ V10
15—z 2

TR 2 Solving for z, we find

Fia. 53 z = 5(7 — 2v10) = 3.38 feet.

PROBLEMS

Find the focus, directrix, and extremities of the latus rectum of the follow-
ing parabolas. (Nos. 1-8.)

1. 22 -2y =0. Ans. (0,1/2),2y + 1 =0, (&1, 1/2).
2. 22412y = 0.
3. y24+9z2 =0. Ans. (— 9/4,0),42 =9, (— 9/4, 4+ 9/2).
4. y2? — 62 =0.
5. 4224+ 9y = 0. Ans. (0, — 9/16), 16y = 9, (£ 9/8, — 9/16).

6. 5y24+ 16z = 0.
7. 224 2py = 0.
8. y? = kx.

Derive the equation of the parabola which has the following given parts.
(Nos. 9-16.)

9. Vertex at the origin, focus at (0, — 5/2). Ans. 22+ 10y = 0.
10. Focus at (— 9/4, 0), directrix = 9/4.
11. Vertex at (5, 1) and directrix y = — 3.

Ans. 22 — 102z — 16y + 41 = 0.
12. Vertex at (2, — 1) and focus at (— 1, — 1).

13. Focus on the z axis, vertex at the origin, passes through (4, — 3).
Ans. 4 y? = 9z,

14. Vertex at the origin, directrix parallel to the z axis, passes through
the point (3, — 1).

15. Focus at (— 2, 4), one extremity of the latus rectum at (3, 4).
Ans. 22 +4x + 10y = 6l,orz2 + 42 — 10y + 19 = 0.

16. Extremities of the latus rectum at (1, 6) and (1, — 4). (T'wo cases.)

17. Find the locus of a point whose distance from (2, 3) is two units more
than its distance from the line z + 5 = 0. Ans. y* — 6y — 18z = 36.
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18. Find the locus of a point whose distance from the point (— 2, 8) is
three units less than its distance from the z axis.

19. Find z in the parabolic segment, Fig. 54. Ans. 2.252 ft.
20. Find AC in the parabolic segment, Fig. 55.
21. Find 4 in the parabolic segment, Fig. 56. Ans. 10.8 ft.

> FiG. 55
S
|20’ ]
10’ 200’
Fig. 54 Fic. 56 "

22, A parabolic arch of height h spans a strecam of width w. (a) What part
of the width of the stream has a clearance of at least (3/4) h? (b) What part
has a clearance less than (h/2)?
(¢) What do these results be-
come if h = 24 feetandw = 150
feet?

23. TFind the height of a para-
bolic segment if/%O = OI? = Gf)', 1 5 B
CB = 10’,and CD = 12’. (See
Fig. 57). Ans. 394 ft. Fia. 57

24. Tind the height of a parabolic arch if its base is 24 feet and if there is a
clearance of 10 feet at a distance of 4 feet from the end of the base line.

25. Find the equation of the parabola with a vertical axis which passes
through the points (— 5, 1), (3, — 1), and (0, — 4).

Ans. 4y = z2* +z — 16.

26. TFind the equation of the parabola with a horizontal axis which passes
through the three points in Problem 25.

27. Find the equation of the parabola with a horizontal axis which passes
through the points (— 3, 0), (1, _4), and (6, — 4).

Ans. 32z = 13 y2 — 20y — 96.

28. Find the equation of the parabola with a vertical axis which passes
through the three points in Problem 27.

Find the vertex of each of the following parabolas. Translate the origin to
the vertex and find the transformed equation.

29, 2 —8x+6y +17 =0. Ans. (1, — 3); y? =82,
30. 2z =8+4y — y%
31, y =6 —2z — x%/3. Ans. (—3,9); 2 +3y" = 0.

32, y=2z22 -5z — 3.
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34. The Ellipse. An ellipse ts the locus of a point the sum of
whose distances from two fized points is a constant.

Let F’ and F be the two fixed points at a distance of 2 ¢ from each

other. These points are called the

Y foci. Let the sum of the distances

of any point P (z, y) on the ellipse

P&,y from F’ and F be 2 a. Take O,

the mid-point of F'F, as the origin

|
I and F'F along the z axis. The
/ ' coordinates of the foci are then
} X (%*¢0). Any point P on the
Fiee,0) 0 b F(0) ellipse must satisfy the definition

F'P 4+ FP = 2a.

Then, using the distance formula,
or from Fig. 58, we have

VEe+e)+y+ViE—c)l+y:=2a

Transposing one radical, say the second, squaring both sides, and
collecting terms, we find

4ex=4a*—4aVvV (@ —c)+ y
Solving for the radical, we have

VET TR =S

a

F1a. 58

Squaring again, we obtain, after collecting terms,

(a? — ¢?) a2
_—E"’— + y? = a? — ¢?,
or

2 y?

I+ ¥ -1
a2 a2_,c2

From Fig. 58 it is obvious that 2a > 2 c or a > ¢; then if we
set a? — ¢ = b?it follows that b?is positive and hence b is real for
every ellipse. The equation takes the form

x2 2
() St a1l

This equation shows that the ellipse is symmetric with respect
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to both axes and to the origin. The z intercepts are + a, the
y intercepts &= b. Solving for y and z in turn, we get

y= :i:g\/az—-x’,
z = :t%vbz—— yi

These forms show that no real point of the curve can have an
abscissa numerically greater than
a, nor an ordinate numerically
greater than b. The ellipse is a
closed curve and is inscribed in the
rectangle whose sides arex = + a,
y ==+ b. The segment V'V is
called the major axis, its extremi-
ties V' and V being the vertices.
The segment B’B is the minor
axis. The length of the major axis
is 2 a, and the length of the minor F1a. 59
axis is 2 b.

The chord through either focus perpendicular to the major axis
is called a latus rectum. To find its length, set z = =+ ¢in equation
(1), then y = + b2/a. Hence the length of the latus rectum is

Y

B

=

2 b?/a.
If the foci are on the y axis, the equation of the ellipse is
x2 y2
(2) b + pri 1.

35. Limiting Forms. Eccentricity. If ¢ = 0, since we have
a? — ¢ = b? it follows that a = b. That is, if F’ and F are made
to coincide at the center, the major and minor axes become equal,
and the equation becomes

z? 4+ y? = al

Hence the circle is the limiting form of the ellipse as the foci
approach coincidence.

On the other hand, if F’ and F approach V' and V, respectively,
when they coincide ¢ = ¢ and b = 0. Hence, as ¢ approaches
a and b approaches 0, the ellipse flattens and approaches as a
limiting form the line-segment V'V.

The shape of the ellipse depends on the relative lengths of



50 DIFFERENTIAL AND INTEGRAL CALCULUS [Ca.II

cand a. The ratio ¢/a is called the eccentricity of the ellipse. It

is denoted by e and may have any value between 0 and 1, these

two extremes being the eccentricities for the limiting forms of the
circle and the line-segment, respectively.

36. More General Forms of the Equation of an Ellipse. It is
important to recognize that the equation
(1) Ax* 4+ By2=C

represents an ellipse provided 4, B, and C have the same sign.

Writing this in the form

172 y2 _

c/AatomB ™

we see that the major axis is along the z axis or the y axis accord-

ingas A < Bor A > B.
Completing the squares, we may write the equation

(2) Ax*+ By*+ Dx + Ey + F = 0,
where A and B have like signs, in the form
D\? EN:_ .,
A(e+gg) +8(+sp)= 0
where C' = D?/(4 A) + E?/(4 B) — F. Hence, translating the

origin to the center (— D/2 A, — E/2 B), we obtain the trans-
formed equation

1,

Az’?2 + Byt = (',
which is like equation (1) if C’ has the same sign as 4 and B.

Y EXAMPLES

F 1. Given the ellipse 25 22 + 9 2 = 196. Find
the coordinates of the vertices and foci, and find
the eccentricity.

SorurioN. Dividing both sides by 196, we
B’ B have

x2

_z oLy
MO

5 3
P Hence the major axis is along the y axis, and
\ a = 14/3, b = 14/5. Then ¢ = 56/15. The ver-

tices are (0, 4= 14/3); the foci are (0, =+ 56/15);
F1a. 60 and e = c/a = 4/5.

2. Derive the equation of the ellipse if its foci are at (— 2, 3) and (6, 3)
with one vertex at (— 4, 3).
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SovuTioN. The center of the ellipse is the mid-point between the foci or
(2, 3). Hence the semi-major axis a is 6, so the other vertex is (8, 3).

If a =6, and ¢ = 4, then b = 2/5. The extremities of the minor axis
are (2, 3 + 2v5) and (2, 3 — 2v/5). By the definition of the ellipse, we see
that the sum of the distances from any

point P(z, y) on the curve to (— 2, 3) Y
and (6, 3) is 2a = 12. Hence ,we Plzy)
find F'P + FP = 12. That is, {
Ve +2?:+ @y -3+ |
Va6t @ -ar=12 (L ,/N 10 v
F(-2,3) c ; F(6,3)
Rationalizing, we have ]
l
52249y —20x —54y —79 =0. V\_y X
3. Change the equation of Example

2 to the form of (1) by completing Fia. 61
squares. '
SorutioN. Write the equation in the form

5 —2)2+9(y — 3)2 =79 + 20 4 81 = 180.
Then a translation of the origin to the center (2, 3) gives
522 4+ 9y'2 = 180.

PROBLEMS

Find the coordinates of the vertices and foci, the eccentricity, the lengths
of the major and minor axes, and sketch each of the cllipses whose equations
are given below. (Nos. 1-6.)

1. 422+ y* =12 Ans. (0, £ 2v3), (0, £ 3), V3/2, 4V3, 2V3.
2. 22+ 4y =16.

3. 222+ 5y2 =40,  Ans. (£2V5,0), (£ 2V3, 0), V3/5, 4V5, 4V2.
4. 7x2+ 5y =170.

5. 4224+ 9y =72,  Ans. (£ 3VZ,0), (£ V10, 0), V5/3, 6v2, 4V2.

6. 8z 4+ 3y =48.
Find the remaining values a, b, ¢, e; then write the equation of each ellipse
when the given parts are as follows. (Nos. 7-10.)

7. Fociat (£ 3,0),e =1/2. Ans.a =6,b = 3V3, 22/36 + y2/27 =1.

I

I

8. Center at the origin, minor axis 4 units along the y axis, semi-major
axis V5 units.

9. Center at the origin, extremities of a latus rectum (& 10/3, 4).
Ans.a =6,b = 2v5,¢c =4, ¢ = 2/3, 22/20 + y2/36 = 1.
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10. Extremities of minor axes (4 8, 0), e = 3/5.

From the definition of an ellipse derive its equation if it has the following
parts. (Nos. 11-15.)

11. Foci at (— 2, 3) and (6, 3), e = 2/3.

Ans. 5(x — 2)2 + 9(y — 3)2 = 180.

12. Verticesat (— 1,8) and (— 1, — 4), e = 2/3.

13. Extremities of the minor axis (— 1,0) and (— 1, — 4), one focus
2, — 2). Ans. 4(z + 1)2 + 13(y + 2)? = 52.

14. One vertex at (— 3, 4), nearer focus at (— 1, 4), e = 1/2.

15. Center at (— 2, 3), one focus at (— 2, — 1), the major axis is twice as
long as the minor axis. Ans. 12(x + 2)2 4+ 3(y — 3)2 = 64.

16. Find the equations of the two ellipses with axes parallel to the coordi-
nate axes, respectively, which have the foci and the extremities of the minor
axes on the circle 22 + y? — 2z 4+ 4y — 20 = 0.

Locate the center, and translate the origin to the center. Find the trans-
formed equation and sketch. (Nos. 17-21.)

17. 4224+ y2 =8z —4y. Ans. (1, — 2),4 2t + y'? = 8.
18. z24+4y? —22 — 16y +1=0.
19. 222 +3y*2+ 8z —6y = 1. Ans. (—2,1),22'2 4+ 3y"2 = 12.

20, 72242y 4+ 7z +6y+25/4 =0.

21, £ =3+4+2sin6,y =1+ 3 cosb. Ans. (3,1),9z'2 + 4 y'2 = 36.

22, A line of constant length a + b units has its extremities on the coordi-
nate axes. Find the locus of a point P on this line which is a units from one
extremity and b units from the other.

23. The axes of an ellipse coincide with the coordinate axes. Find its
equation if it contains the points (2, 4) and (6, — 2).

Ans. 3 22 + 8 y2 = 140.
24, The same as Problem 23, if it contains the points (— 3, 5) and (4, — 1).

25. A semi-elliptic arch spans a roadway 150 feet wide. If the center of
the arch is 30 feet above the road, what width of the road will have a clearance
of at least 20 feet? Ans. 50v/5 = 111.8 ft.

26. A semi-elliptic arch is to be built over a four-lane highway. It is
required that the arch shall be at least 20 feet above the two central sections,
each of which is 15 feet wide, and at least 15 feet above the two outside sec-
tions, each of which is 10 feet wide. Find the necessary height and span of
the arch.

37. The Hyperbola. The hyperbola is the locus of a point the
difference of whose distances from two fixed points is a constant. Let
the two fixed points which are called the foci be taken on the z axis
at F’ and F with the origin at the mid-point. Call 2 ¢ the length
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of F'F. Assume P(z, y) to be any point on the hyperbola; then
we have, by the definition above, v

F'P — FP = 2q, P(z,y)
or

FP — F'P = 2aq,

where 2a is the constant differ-

ence. Corresponding to these rela-
tions, we have the equation

@+ ot gt — F-c0) |O F(c,0)
Vi —c)+yt=+2a.
The rationalized form of this Fra. 62
expression is identically the same
as the form obtained for the ellipse in which case the sum of the
same two radicals is 2 a.* That is,
’iz _21’,1—5 =1
a? ' a®—c
But in the triangle F’PF the difference of F’P and FP is always
less than F'F, that is, 2a < 2c¢ or a < c. Hence, by writing
— b? for a? — ¢?, so that b? is positive and b is real, the equation
becomes

Equation (1) shows that the
hyperbola is symmetric with
respect to both the axes and the
origin. The x intercepts are =+ a.
There are no y intercepts.

If 22 < a? y is imaginary,
which means that no part of the
curve can lie between the lines
z = £ a. The segment V'V is
called the transverse axis, V'
and V being the vertices. The
segment B’B is called the con-
Jugate axis. O is the center of the hyperbola. The ratio ¢/a

* This is due to the fact that the rationalized form of each of the four radical
equations Va + Vb = + V¢ is obtained by equating to zero the product

(Va + Vb + Vo) (Va — Vb — Vo) (— Va+ Vb — Vi) (— Va— Vb + Vo).

|
|
|
|
|
1
D X

~

F1a. 63
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is called the eccentricity of the hyperbola; it is denoted by e,
and is always greater than 1. The chord through either focus
perpendicular to the transverse axis is called a latus rectum.

If the foci are on the y axis the equation is

2 xZ

@) -:/1—2 — =L

AsymproTEs. The hyperbola has two asymptotes which pass
through the center of the curve. These are lines which the hyper-
bola approaches so that its distance from them approaches zero as it
1s 1ndefinitely extended. The equation of any line through the
center is y = mz, and its intersections with the hyperbola are
found by solving this equation simultaneously with (1). This gives

ab abm
2 2,02 y==x 2 Pl
Vb — a*m Vb2 — a*m

The intersections will be real or imaginary according as the
expression under the radical, b2 — a?m?, is positive or negative.
However, if b2 — a?m? = 0, that is, if m = =+ b/a, the curve
approaches these lines but has no finite intersection with them.
To prove this statement, let (21, ¥:) be a point on either line
y = = (b/a)z, and let (x;, y2) be a point on the hyperbola with the
same abscissa. Then

b b
Y = :l:a-xl, Yo = :i:(;\/.‘l:l2 — a2

r = =+

Y The difference of these ordinates is
F,0 b
\ Bi—y=E (- V' —a?)
©,0)
= 4 ——-——ib—z————;o
F=¢0) F(c0) 7+ Ve —a
/|
.01 9 @0 X Hence, as 2 increases indefinitely, ys
bt approaches y;, since y; — y, approaches
7 0, and the hyperbola approaches the lines
F’(cl,—c) y = % (b/a)x as asymptotes.
The two curves
x2 y2
Fia. 64 3) il +1

are called conjugate hyperbolas. They have the transverse and
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conjugate axes interchanged, have the same asymptotes, a common
center, and foci at the same distance from the center. The
eccentricities are e; = ¢/a and e, = ¢/b, respectively.

Draw the rectangle £ = 4 a, y = 4 b. Its diagonals are the
asymptotes to each of the con-
jugate hyperbolas (3). The circle Y
circumscribing this rectangle inter-
sects the axes in the foci for each
curve.

38. Equilateral Hyperbolas. If
a = b, the two conjugate hyper-
bolas have the same shape and 0 X
eccentricity. The asymptotes are
the lines « & y = 0 and the equa-
tions of the two curves become
(1) x?—y?= &+ a’ '

These hyperbolas are called equi- Fic. 65
lateral or rectangular hyperbolas.

A more important form of the equation of the equilateral hyper-
bola is obtained by taking the asymptotes as the coordinate axes.
This equation may be obtained from (1) by using the equations of
transformation by rotation (§ 22), for § = 45°. These equations
are

= (V2/2)@ —y), y=2/2)@ +y).
Substituting in (1) and simplifying, we find the result

2
@) Xy =+ 5

39. Other Forms of the Equation of the Hyperbola. The
following forms of the equation of the hyperbola are important:

(1) Ax*4+ By*+ Dx+ Ey+4 F =0,

where A and B are of unlike sign. By completing the squares,
and translating the origin to the center, (1) becomes

() Ax'?+ By'r = C,

where A and B are the same as in (1). This hyperbola has its
transverse axis along the z’ axis or y’ axis according as C’ has the
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same sign as A or as B. If C' = 0, then (2) is the product of
linear factors, and the graph is a pair of straight lines.
The equation

_ax+b

3) y= x+d’
where a, b, ¢, d have any values, is an equilateral hyperbola. It
is evident that cx + d = 0 or x = — d/c is a vertical asymptote.
Solving (3) for z, we get
= — dy — b’
cy —a

from which we see that ¥ = a/c is a horizontal asymptote. If we
translate the origin to the intersection of these asymptotes
(— d/e, a/c) by writing (' — d/c) and (y’ + a/c) for z and y,
respectively, equation (3) reduces to
4) x'y’' =k,

where k = (bc — ad)/c2.

It can be shown that the asymptotes of the hyperbola in equation
(2) are the linear factors of Az’2 4+ By’2 = 0. This brings us to a
useful converse theorem which is stated without proof.

If L, and L, are any two linear expressions in x and y, and k has
any value except zero, then L, L, = k 4s some hyperbola whose
asymptotes are Ly = 0 and L, = 0.

EXAMPLES
1. Given the hyperbola 9 22 — 16 y2 4+ 100 = 0, find the coordinates of

the foci and vertices, the eccentricity,
and the equations of the asymptotes
and of the conjugate hyperbola.
SoruTioN. Write the equation in the
\ form

Yy 2 1.
2 3

Here the transverse axis along the
y axis is of length 5, the vertices being
(0, = 5/2); ¢ = Va® + b? = 25/6, and
the foci are (0, & 25/6); ¢ = 5/3. The
F1a. 66 slopes of the asymptotes are = 3/4;

hence the equations of the asymptotes are

K"

~

TR
/ .

3
y = :i:zz.



§ 39] DEFINED CURVES 57

The conjugate hyperbola is

Gy oy

2. Find the equation of the hyperbola Y
with foci at (2, — 1) and (— 6, — 1) with
e =2,

Sovution. The center is (— 2, — 1). Pz

o &Y.
The transverse axis is along y = — 1;
e =c/a =2andc =4. Hence a =2 and
the vertices are (0, — 1), and (— 4, — 1). v'\/ O
Let P(z, y) be any point on the hyper- F'(-6,~1) C/j2—1)
bola. Then we must have, from the defini- '
tion, F'/P — FP = x 2a, or

VE+6)2+ (y+ 1) —
Vi -2+ @+ 1= x4

Rationalizing this equation, we obtain the
equation

==
ol B4
™

(2,-1)

F1c. 67

322 —y?*+ 12z -2y —1=0.

PROBLEMS
Find the vertices and foci, the eccentricity, the equations of the asymptotes
and sketch each of the following hyperbolas. (Nos. 1-8.)

1. 322 —2y2 424 = 0. B o
Ans. (0, == 2v3), (0, & 2v5), V5/3, V3 £y V2

2. 427 —y? = 16.
3. 922 — 16 y2 = 144. Ans. (£4,0), (£5,0),5/4,3z +4y
4, 322 —-4y24+60 = 0.

5. 5y — 3z2 = 30.
Ans. (0, == V6), (0, = 4), 2v6/3, zvV3 £ y V5 = 0.

6. 92 —4y2 = 49.

7. 3y? —Tzx? =24,
Ans. (0, £ 2v/2), (0, &= 4V'5/7), V10/7, zvV7 £+ yv3 = 0.

8 72 —3y? =284

Find the remaining values g, b, ¢, ¢; then write the equation of the hyperbola
with the given parts below. (Nos. 9-12.)

9. Center at the origin, a focus at (5, 0), e = 2.
Ans.a = 5/2,b = 5v3/2,1212 — 42 = 75.

10. Extremities of the conjugate axis (+ 5, 0), e = 3/2.

I
i

I
e
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11. Foci at (0, + 6), slope of asymptotes & 4/3.
Ans.a =24/5,b = 18/5,¢ = 5/4, (5y/4)* — (6 2/3)? = 36.

12, Center at the origin, extremities of a latus rectum at (4 14/3, 8).
Derive the equation of each hyperbola in the following cases. (Nos. 13-16.)
13. Center at (— 2, 2), one focus (— 2, 7), one vertex (— 2, — 1).

Ans. (z 4+ 2)2/16 — (y — 2)2/9 + 1 = 0.
14. Foci at (3, 5) and (13, 5), ¢ = 5/4.
15. Extremities of the conjugate axis (— 1,2) and (— 1, — 6), e = V2,

Ans.z? —y* 4+ 2z — 4y = 19.

16. Vertices at (3, 2) and (3, — 4), length of latus rectum 32/3 units.

17. Find the equation of the hyperbola with center at the origin, foci on the

z axis, and passing through the points (5, 9/4) and (4v'2, 3).
Ans. 22/16 — y2/9 = 1.

18. Two vertices of a triangle are fixed at (£ a, 0). Find the equation of
the locus of the third vertex if the product of the slopes of the variable sides
is b?/a2.

19. Find the locus of a point whose distance from (3, 4) is 3/2 its distance
from the line £ = 1. Ans. 52 —4y2 4+ 6z 4 32y = 91.

20. Tind the locus of a point whose distance from (— 2, — 4) is twice as
great as its distance from the line y + 1 = 0.

Find the center of each of the following hyperbolas. Translate the origin
to the center and find the eccentricity. (Nos. 21-24.)

21, 522 —-2y*+20x —4y — 18 = 0. Ans. (=2, — 1), V7/2.
22, 322 —-3y* —4z 4 8y = 31
23, 322 -2y + 122 +4y+20=0. Ans. (-2, 1), V5/3.

24, 422 -8y +42x+32y+1=0.
Translate the origin to the center and find the transformed equation.

(Nos. 25-26.)
25. 2 =5y +8)/(4y — 1) Ans. (5/4, 1/4), 16 2"y’ = 37.

26. y =8z —-5)/Qz+7).
27. One vertex of a hyperbola is at (1, 3), the corresponding focus at (1, 6).
If the slope of one asymptote is 3/4, find the center and eccentricity.
Ans. (1, — 118), 5/3.
28. Given the equilateral hyperbola z? — y2 = a2 Prove that the dis-
tance of any point on the curve from the center is the mean proportional

between its distances from the foci.
29. Change 922 — 4y2? + 36 = 0 to parametric form if y = 3 sec 0 is to

be one equation.
30. Sketch and name z =3 tan ¢, y — 2 = 4 sec t. Transform to its
rectangular equation,
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40. Conics. The parabola, ellipse, and hyperbola are included
in a class of curves called conics or conic sections. A conic may be
defined as the locus of a point such that its distance from a fized
point is in a constant ratio to its
distance from a fixed line. The
constant ratio is the eccentricity e, |y
and the curve is an ellipse, parab-
ola, or hyperbola according as e }
is less than, equal to, or greater [
than 1. The fixed point is a focus : o |
and the fixed line a directrix. To T ) W
derive the equation of the conic in ‘_L’l
polar coordinates, let the given focus
be the pole and let the directrix be per-
pendicular to the polar axis, and
at a distance p from the focus. Then if P(r, 6) is any point
on the locus, by the definition we have OP/NP = e, that is,
OP = e¢-NP. Hence r = e(p + r cos 6), from which we find

D

Fic. 68

(1) r ep

“T—ecosb

\ D In general the equations
(4, 90°) + ep

r=1:1:ecos9’
+ ep

r=l:i:esin6‘

0 (2,0)|(60) A .
) represent conics. The latter equa-

tions are the forms obtained when
the directrix is parallel to the polar

(4, 270°) axis
D

Fia. 69

EXAMPLES

1. Plot the graph of 7(1 4 cos ) = 4.
SovuTioN. This is a parabola since e = 1. Then p = 4. Some pairs of
values are:

0 | 0° 60° i 90° | 120° | 180° [ 240° | 270°| 300° |360°

r | 2 | 83| 4| 8 |« | 8| &4 | 83| 2
from which the curve can be drawn (Fig. 69).
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2. Draw the graph of 7(3 — 2sin6) + 6 = 0.
SoLuTioN. This equation may be written

-2 — (2/3)3
T T o ¢
l——gsme 1—§sm8
Hence e = 2/3, p = 3, and the locus is an ellipse (Fig. 70).
[/ , 0° | 30° 90° | 150° | 180° I 210° I 270° 330° 360°
r | —2| -3| -6| -3 —2|-32|-6/5|-32| -2
D } D Let the student show that the
e graph of 7(3 + 2 sin §) = 6 gives the
(-%,270°) same ellipse. Explain
2,09 1 (-2, 180%)
o} A
i N
(-6, 90°) /
D’ D

Fi1a. 70

3. Draw the graph of r(4 — 5 cos ) = 9.
SorurioN. Write the equation

i (00

r= 5

5
1 -—Zcoso 1 ——acosa

Hence e = 5/4, p = 9/5. The curve is a hyperbola. We observe that the
values of 6 which make 1 — (5/4) cos § = 0 will make r become infinite. These
values of 6 give the lines through the pole which are parallel, respectively,
to the asymptotes.
0 l 0° , 60° l 90° l 120° | 180° | 240° | 270° I 300° | 360°
r | —9| 6 |9/4|1813| 1 |1813| 94| 6 | —9
Note that the transverse axis between (— 9, 0°) and (1,180°) is of length 8.

PROBLEMS
Plot the graph of each of the following equations. (Nos. 1-8.)
1. 2r =4 +4 rsginé. 3. r=2+rcosé.

2, 3r+4 =5rsiné. 4, r=3 —2rsiné.
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S. r(4 ~4sin0) =9. 7. r(2cos§ —5) +6 =0.
6. r(4cosf —3) =9. 8. (1 4 cos ) = 5.
Derive the equation of each of the following curves. (Nos. 9-12.)

9. The circle of radius 5 units tangent to 6 = 0 at the pole.
Ans.r = % 10 sin 6.

10. The ellipse with ¢ = 1/2, r sin § + 2 = 0 as directrix, and focus at the
pole.

11. The hyperbola with e = 3/2 and a line 10 units from the pole per-
pendicular to the polar axis as directrix, and focus at the pole. (T'wo cases.)
Ans. 27 = 3(10 £ r cos 6).

12. The same as Problem 11 except the directrix is parallel to the polar axis.

13. Transform 22 = y(2 @ — y) to polar coordinates. Name and draw its
graph. Ans.r = 2asin 4.

14. Discuss 7(1 — e cos 6) = ep with reference to symmetry, asymptotes,
closed or open form, for e = 1, 2, 0.2, 3, 0.3.

15. The same as Problem 14 for 7(1 + ¢ sin 8) = ep, ¢ = 0.5, 1, 2.

16. Find the locus of P if its distance from the pole is 2/3 of its distance
fromr cos 8 + 3 = 0.

41. Cycloid. Involute Y
of a Circle. These curves
have some important ap-
plications and their equa-
tions are usually given
in parametric form. The \
cycloid s the path traced
by a point on the circum-
ference of a circle as it
rolls along a straight line. Fre. 72
Let C be the center of a
circle of radius a and let P(z, ¥) be any point on the circumfer-
ence.

To find the locus of P as the circle rolls along the z axis, let O,
the point where P is in contact with the line, be the origin. We
can express the coordinates of P in terms of the angle 6 which the
radius CP makes with the vertical line CN. Thus

x=0M = ON — MN = arc NP — PS = a6 — asin 9,
and

olM N xa 2da X

y=MP =NC—8C =a— acosb.
Hence
(1) x=a® —sin0), y=a(l— cos@).
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Each value for 6 in (1) fixes a value for z and a value for y and
hence a point on the cycloid.

If a string is wound about a fixed
circle, the path traced by any point of
Y the string as it vs kept taut and un-
wound from the circle is called an invo-

lute of the circle.
—t~L Let O be the center of the fixed circle
/ o/ LN/ p (z,yy and P be the point of the string which
[ NV meets the circle at R on the z axis.
A o 8 /TR M X Let T be the point of tangency corre-
\\ / sponding to the point P and call ¢ the
S—p— angle between the radii OT and OR.

Fig. 73 Then

TP = arc RT = aé.

If we draw T'S perpendicular to OR and NP perpendicular to ST,
we find

z=0M =0S + NP = acos 0 + af sin 9,
and
y=MP = 8T — NT = asin § — af cos 6.

Therefore, the involute of the circle has the equations

2) {x= a(cos O + 0 sin 9),
y = a(sin @ — 6 cos ).

PROBLEMS
Draw the graph of cach of the following pairs of parametric equations.
(Nos. 1-3.)
1. z =2(9 —sin6), y = 2(1 — cos 6).
2. z=1—cos6,y =0 —sin 6.
3. =30 +sinf),y = 3(1 — cos9).
4. Sketch a section of an involute of a circle with a radius of 3 units.

42. Empirical Equations. Often the exact form of an equation
is not known, the only information obtainable being a table of
corresponding values of the related variables. Even then, the
values of the variables are inexact if they are obtained by measure-
ment. In that case, the problem is to find a formula or relation
between the variables which the given values satisfy approxi-
mately. There are six such formulas, with two constants, generally
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used for fitting a curve to the points determined by the given data.
By fitting we mean the constants may be determined so that the
graph of the formula will come as near the plotted points of the
given data as the accuracy of the observations demands.

43. Two-Constant Formulas. The formulas with two constants
commonly used are:

(1) y=mx-+0b (straight-line formula),

(2) y=ax*+ b (paradbolic formula),

3) y=ax* (power formula),

(4) y=ae”, or y=ab® (exponential formula),
(5) xy=ax-+ b (hyperbolic formula),

(6) =xy = ax+ by (hyperbolic formula).

We determine which formula to use as follows:

(a) If the table of data is plotted and the curve suggested by the
points is a straight line, assume formula (1).

(b) Let z2 = z and (2) becomes a straight-line formula with
each point located at (z, y).

(¢) Taking the logarithm of each member of (3), we have

log y = log a 4+ n log z,

which is linear in log y and log z. Hence, if the points plotted
from the logarithms of the given data suggest a straight line,
assume formula (3). Either natural or common logarithms may
be used.

(d) Treating formula (4) in like manner, we have

log y = log a + bx log e, or logy =loga+ zloghb,

which are linear in z and log y. Hence, if the points plotted with
the given values of one variable as abscissas and the logarithms
of the values of the other as ordinates suggest a straight line,
assume formula (4).

(e) Setting zy = 2z, we see that formula (5) takes the form
2 = ar + b and that it is linear in z and z. Here we plot the
given data with the ordinates replaced by the products of corre-
sponding variable values and, if the points suggest a straight line,
we assume formula (5).
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(f) Formula (6) is usually written
a b
" + = 1,
and may be used if 1/x and 1/y suggest a straight-line formula.

44. Methods of Determining Constants. (a) GRAPHICAL
MertHop. Plot the points determined by the given data. In
so doing, choose as coordinates either (z, y) or (z? y) or
(log z, log ¥), or (z, log y), or (z, 2y), or (1/x, 1/y), where z and y
are corresponding values of the given data.

If the formula is one of the two-constant formulas of § 43, one
set of points will suggest a straight line. Draw a straight line
fitting the points and substitute the coordinates of two points on
the line in the formula chosen to get two equations involving the
unknown constants. These are solved simultaneously for the
constants.

In constructing the straight line, it is desirable to have as many
of the plotted points as near the line as possible, as well as the same
number on each side of it. Of course, the two points used to
determine the constants have their coordinates read from the
graph and consequently are inaccurate. However, better results
are obtained if the two points used to determine the constants
are chosen as far apart as possible in the group of plotted points.

(b) METHOD OF AVERAGES. A method which takes into account
all the data, and not merely two selected points which may not
even occur in the given observations, is that of averages. In
using this method, we must determine the formula to be used as in
the previous method, but, having fixed on the formula, the prob-
lem is arithmetical. Proceed as follows: Substitute each pair of
values used in plotting the points in the linear formula assumed.
That gives as many equations as there are pairs of corresponding
values. Then divide these equations into two groups as nearly
equal in number as possible. Add corresponding members of the
equations of each group, thus obtaining two equations to deter-
mine the two constants. Solve these equations simultaneously
and make the proper substitutions in the original formula.

If the form of the desired formula is known from the nature of
the problem or is given together with the data, the method of
averages does not depend upon any graphical observations. In
any case, this method is generally the better to apply because it
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takes into account all given data and does not depend upon read-
ing fractional values of coordinates. However, if the data are not
necessarily of equal validity, the graph will suggest the pairs of
values which are questionable and probably negligible.

45. A More General Parabolic Formula. The parabolic
formula

(1) y=ax?+4+bx+c

occurs occasionally. The method of averages may be used at
once. Merely divide the observational equations into three
groups, add corresponding members of the equations of each
group, and solve the three equations for a, b, and c.

EXAMPLE
Find a two-constant formula for the following data:
z | 0 | 2.1 | 5.6 | 93 | 115
v | 20 | 1892 | 1734 | 158 | 14.96

SorurioN. We find from trial that points with coordinates = and logio ¥
fit a straight line. The table of values for those points and the corresponding
graph are given below.

]ong
x logm Y
0 1 3010
2.1 1.2769 1.85
- 1.80
56 1.2390 125 T~ =
1.20 —
9.3 1.1987 - Svug
11.5 1.1749 1.10
1.05
(a) GrapuicAL METHOD. Draw a 100

0 28 5678
straight line fitting the points plotted. ! 4 s10i1z X

The straight line seems to pass through Fic. 74

the points (0, 1.3) and (11.5, 1.17).

One recognizes the absurdity of attempting to read or plot the second point
chosen for the assumed scale. However, using the selected points, we have the
two equations from

logio y = logio @ + bz logu e
as follows:
1.3 = logw a, 1.17 = logw a + b(11.5)(0.4343).
Solving these, we find
logoa = 1.3, b = — 0.0260,
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whence a = 19.95, and the desired formula is

y = 19.95 ¢0-0%0z,

(b) METHOD OF AVERAGES. Substitute in
logioy = logea + bz logw e.

Then
1.3010 = logiea + 0O,

1.2769 = logw a + 2.1(0.4343)b.
Adding, we find
2.5779 = 2logwa + 0.9120b.

Also
1.2390 = logio a + 5.6(0.4343)b,

1.1987 = logiw @ + 9.3(0.4343)b,
1.1749 = logw a + 11.5(0.4343)b.

Adding, we have
3.6126 = 3 logea + 11.4655 b.

Solving the equations derived by additions, we find
logie a = 1.3004, b = — 0.0252,

whence a = 19.97, and the desired formula is
y = 19.97 ¢~o-m22,

PROBLEMS
The following sets of data satisfy approximately the given formula. Find
the laws.
z| 05 10 | 1.5 | 20 2.5 30
1. —
y| 031 08 | 129 | 1.8 2 51 3.02
fory = az + b. Ans. y = 1.1 z — 0.30.
2 % | 10 20 | 30 | 40 50 60
vyl 326 | 473 | 6.24 | 7.49 9.01 10.51
fory = mx + b.

3 T | 6.0 | 6.9 7.5 8.7
T T T 13.8 20.5
fory = a 4 ba Ans. y = 0.5 22 — 10.6.
. z | 2.0 | 47 | 7.1 8.4
"y | e | 857 | 245 2.4

fory =a + bz?ory = a-b*
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5 z 3.0 l 4.1 | 53 | 7.0
Ty 1 90 575 | 118 | 24.10

for y = ax? + bzx. Ans.y = 0.70 22 — 1.47 z.
6 ° 0 5 | 10 | 15 | 20 30
"yl o 50 | 68 | 7.4 | 8.0 8.7

fory = ax? + b or x = azy + by.

. Z 5 10 15 20 25 30
"y 20.0 243 | 283 32.1 35 6 39.0
fory = ax? + bz +c. Ans.y = — 0.004 22 + 0.9 z + 15.5.
N T | .5 [ 20 | 35 | 4.5
"y | o1 | o9 | 22 | 33

for y = azm.

o Z]_10 ' 15 ) 20 | 25 30 | 35
"yl 1o 41 85 | 141 210 | 201
fory = ax? + b. Ans.a = 2.5,b = —1.5.
I 26.4 ' 224 | 191 | 16.3 ’ 140
Cop| a7 175 | 208 | 245 28.8

for pur = c.
" z | 122 | o042 | 0047 | 0.005
"y | oew | oora | o0.004 | 0
fory = az~. Ans.a = 040, n = 1.78.
" z | 124 | 0342 | 0511 | 0730
' vy | 1.002 0.604 | 0494 | 0.414
for y = a(y/z)".
2| 5 | 10 | 15 | 20 | 2 | 30
13.
vy| 61 | 68 | 74 | so | 85 | 9.2
fory = z/(ax + b). Ans.a = 0.1, b = 0.5.
d | 1.5 | 30 l 4.0 [ 6.0
14.
B | 13.43 | 7513 | 15251 | 409.54
for B = a-d".
z| 1 | 05 | 02 | 017 | 0.0
15.
v | 07 | o045 | 03¢ | 02 | 0.6

for zy = az + by.

Ans. zy = 149z — 0.09 y.
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z 1.3 ' 3.4 l 6.2 I 8.3

y 05 | o091 | 111 | 118
forzy = az + by ory = az".

16.

17. An iron plate with one straight edge has its width given by d at inter-
vals r along the straight edge. Find a law for the other edge if we have

z , 0 | 4 | 8 | 12 ' 16 | 20
al 2 | &« | 5 | 6 | 9 |
Ans. d = 0.006(zx — 8)% + 4.81.

ADDITIONAL PROBLEMS

1. Find the locus of a point P if the difference of its distances from the
fixed points (0, = ¢) is a constant 2 a. Ans. A hyperbola.

2. Write the general equation of a line through P, so that it will have only
one arbitrary constant.

3. Write the general equation of the line through P; and parallel to
az +by +c=0. Ans.a(x —x) + by —y) = 0.

4. The same as Problem 3 except perpendicular to the given line.
In Problems 5-8, find the equation of each of the lines described below.

5. Through the origin and making an angle of 45° withz = 2y + 3.
Ans.y = 3 z.

6. Through (4, — 6) and perpendicularto 6z — 7y + 1 = 0.

7. Through (— 1, — 1) and perpendicular to the line through that point
and (2, 3). Ans. 3z +4y+7=0.

8. Through (3, 5) and parallel to the line through (2, 5) and (— 5, — 2).
9. Find the distance from z +2y =5 to (2, — 6).  Ans. 3V5 units.

10. Given A(2, — 5) and P,. Find the equation of AP,, its length, its
slope, and its mid-point.

11. Find the equation of the circle with its center at the point (— 2, —2)
which is tangent to z +y = 6. Ans. (x + 2)2 4+ (y + 2)2 = 50.

12, Find the equation of the circle through (3, 4) and tangent to the z
axis at (— 1, 0).

13. The channel of a river for some distance remains equidistant from a
rock in the stream and a straight shore line. If the rock is 600 feet from the
shore, derive an equation for this part of the channel.  Ans. y2 = 1200 z.

14. Find the circle through the vertex and focus of 22 = 8 y with its center
onz —y —2=0.

15. Find the circle whose diameter is the chord of y* = 1 — z cut off on
z—y+1=0 Ans. 2z +3)2+ 2y +1)2 = 18.
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16. Find the equation of the parabola with its focus at the center of the
circle 322 + 3 y?2 4+ 12z — 6y = 10 if its directrix is parallel to the z axis
and tangent to the circle. (Two cases.)

17. Find the locus of a point whose distance from (0, 9) is twice its distance
from y = 4. Ans. z? —3y*+ 14y + 17 = 0.

18. A parabolic arch of 100 ft. base has 12 ft. clearance 6 ft. from one end of
the base. What clearance has the arch at its top?

19. A parabolic arch is 10 ft. high and 15 ft. wide at its base. How far from
the end of the base is the clearance 6 ft.? Ans. 4.74 ft.

20. Find the equation of the circle which passes through the vertex and the
extremities of the latus rectum of the parabola 22 + 10y = 0.

21. If two vertices of a triangle are fixed at (& @, 0), find the locus of the
third vertex if the product of tangents of the base angles is b2/a2.
Ans. Ellipse.

22. Using the definition of the ellipse, derive its equation if the foci are
(2, 2), (6, — 3) and it passes through (2, 0). What is the value of e?

23. Name each curve, sketch, and transform to rectangular representation:
(@) r(1 —sing) =3; (b) r@+2sinb) =5; (c) r(2 —3cos) =5.
Ans. (a) Parabola, 22 = 6y + 9.

24. Two lighthouses are 5 miles apart. If a distress signal is heard at one
lighthouse 15 scconds before it is heard at the other, what path should a vessel
take to locate the signal? (Assume sound travels 1 mile in 5 seconds.)

25. Which law, zy = ax + b, y? = az + b, or zy = ax + by, is best adapted
for the following data?

z I 8.05 ’ 7 54 | 516 ' 3 22 ' 1.57

1.20 141 215 2 59 2.01
Ans. y? = 10.3 — 1.1 z.

26. The no-load magnetization curve of a direct-current generator taken at
1200 r.p.m. was found by test to include the following points:

)

I [ 0 , 01| 0.2[ 03| 0.4] 0.5| 0.6
E | 44 | 206 | 52.6 | 73.1 | 91.5 | 105.3 | 115.1
I 08 10 | 1.2| 14 | 16 | 2.0
E 1264 | 1321 | 134.7 | 135.9 | 136.4 | 137.1

where [ is field current in amperes and E is no-load voltage. Find the em-
pirical equation for this curve:

(a) Using Froelich’s equation £ = al /(b + I).

(b) Using a modification of Froelich’s equation E = al/(b + I) + c.

(¢) Using a power series | = a + bE + cE*---.

27. Derive equation (8), § 28, directly from a figure.



CHAPTER III
THE DERIVATIVE

46. Constants, Variables. A quantity which has a fixed
value is called a constant. These are of two kinds. An absolute
constant is a fixed number, as 2, — 3/2,V/5, =, logy 17, sin 24° 15"
An arbitrary constant is one which is represented by some letter, as
a, ¢, k, m. Such a constant is assumed to have a definite value
which it retains throughout a particular problem.

A variable is a quantity which may have different values in
a given problem. Thus the temperature of a certain object is a
variable quantity. The length of a chord of a circle of radius 10
is a variable which may have any value between 0 and 20. A
variable is usually represented by some letter in the latter part of
the alphabet, as z, y, u, v.

47. Functions. A function of a given variable x is another
variable quantity which has one or more definite values corresponding
to each value assigned to the variable . To illustrate, 24/25 — z?
is a function of the variable z since it is also a variable quantity,
and depends for its value on the value assigned to . A function
of x is commonly represented by the symbol f(z), which is read
“f of 2,” or by a single letter, as y. Then z is called the inde-
pendent variable and f(z), or y, is called the dependent variable or
function of x. In general we speak of z simply as the variable and
of f(z), or y, as the function. We may refer to the function men-
tioned above either by f(z) = 2/25 — z? or y = 2/25 — 22,
where f(r) or y are merely other symbols for the expression
2v/25 — x%. This function has the following geometric interpre-
tation: In a circle of radius 5 units, if any chord is drawn at a
distance of x from the center, then the length of the chord, v, is
2v/25 — z%. Hence we can say that this function expresses the
length of a chord of the given circle in terms of its distance from the
center of the circle.

A function of a variable may be represented (a) by an equation
connecting the variable and the function, and (b) by a graph in
which the corresponding values of the variable and function are

70
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the abscissas and ordinates, respectively. If a function is given
by a formula or equation, the corresponding pairs of values may be
obtained from it and the graph constructed. However, two physi-
cal quantities may be related without being connected by a known
formula. Thus, the temperature at a given place may be a func-
tion of the time. A table of values of time and temperature can
be recorded by observation and the results plotted to form a graph,
but it is impossible to write a formula expressing the temperature
in terms of the time, or to calculate the temperature at some future
time.

Since y = f(x) means that y is a function of x, in a similar
manner z = f(u, v) means that z is a function of the two vari-
ables v and ». To distinguish between different functions in the
same discussion, different letters are used, as f(z), g(z), ¢ (x), ¢ ().
Throughout the same discussion, however, the same symbol
refers always to the same function. Thus if we have given
y=[f(x) =22 — 9+ z? then f(4) means the value of f(z)
when 4 is substituted for z. That is, f(4) = 3; similarly
f0) = =3,f(—2) =—4—+13,f(a) =2a — V9 + a

48. Inverse Functions. If y = f(z), then any value assigned
to y will determine one or more corresponding values of z. That
is, x is also a function of y, or x = ¢(y); then ¢(y) is called the
inverse function of f(x). To get ¢(y), solve the equation
y = f(z) for z. There are many cases where this cannot be
done by mcans of elementary algebra, but the relation x = ¢(y)
in general exists. Examples of inverse functions are

y=z*4+2zx—1 and r=—1xV2+y;
y = 3 log, (z/2) and x = 2 a3
y = (1/3) sin (2z) and x = (sin"13y)/2.

49. Explicit and Implicit Functions. In the form y = f(z) we
call y an explicit function of x since y is given explicitly in terms of z.
However, if two variables z and y are connected by a relation
of the type ¢(z, y) = 0, then y is called an implicit function of z,
since the existence of this relation implies that y is a function of z.
Likewise, z is an implicit function of y. Solving ¢(z, y) = 0 for
either variable gives an explicit function in terms of the other.
For example,

¢ y) =2+ 22y —y*+4=0
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gives z and y implicitly. Solving for each variable in turn, we
obtain the explicit functions y = = = /2 2? + 4, and its inverse,
T=—yxV2y — 4

50. Types of Functions. The functions which are used in an
clementary course of the calculus are algebraic functions, and
certain transcendental functions including logarithmic functions,
inverse logarithmic or exponential functions, trigonometric functions,
and inverse trigonometric functions. These are the functions which
are of fundamental importance also in a study of the physical and
engineering sciences.

PROBLEMS

1. Express the area of a squarc inscribed in a circle as a function of its
radius. Ans. A = 272,

2. Express the volume of a right circular cone whose altitude is one-half
the radius of its base as a function of the altitude.

3. Express the volume of a right circular cylinder whose altitude is equal
toitsdiameterof a base as a function of theradius of the base. Ans. V = 2 #r3,

4. Express the surface of a eylinder of volume V cubic units in terms of the
radius of the base.

5. Express the volume of a vessel made of a cylinder with hemispheres on
each end as a function of the length of the vessel, if the length of the cylindrical
part is three times the radius of the ends. Ans. V = 13 nl3/375.

6. Express the volume of a sphere as a function of its surface. Express the
surface as a function of the volume.

7. A right triangle has a hypotenuse 10 units long. From the vertex of
the right angle the altitude and median are drawn to the hypotenuse. Express
the area of the triangle as a function of the segment of the hypotenuse between
the median and the altitude. Ans. A = 5V'25 — z.

8. The velocity of a falling body varies as the square root of the distance
it has fallen. If the velocity is 32 ft. per second when it has fallen 16 ft.,
express the distance as a function of the velocity.

Write the inverse of each of the following functions. (Nos. 9-16.)

9. y=1-—22 Ans.z = = V1 — y.
10. z =2 —3y-+2y%
11. y = 3 sin (z + 7/2). Ans. z = cos™(y/3).
12, = =2 cos™t (2y/3).
13. y = sin z cos . Ans. z = (1/2) sin~' 2 y.

14. y = e,
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15. y = log V2? + al. Ans. x = x Ve — qat,

16. z = (1/2) (e + ev).

Express explicitly cach variable as a function of the other in the following
cases. (Nos. 17-22.)

17. U2 4 12 = 4, Ans.y = (4 —zV9)% z = (4 — y¥2)2

18. 23 — y?3 = 8.

19. 224 2zy +4y? = 5.

Ans.y = (1/4)(—z %+ V20 — 329,z = —y + V5 — 342
20. 3sinzy = 2.

21, 2logz —3logy = 4. Ans. y = (x/e?)?3, z = + etyVy.
22. 2logzy = 5.

51. Limits. An idea of fundamental importance in the calculus
is that of the limiting value of a function of a variable,.

Let f(x) be any function of the variable x. Then, as x approaches
any constant a, if the corresponding values of f(x) approach a definite
constant 1 tn such manner that the numerical value of the difference
I — f(z) becomes and remains less than any preassigned positive
number, however small, then [ is said to be the limit of f(x).

The notation

lim f(x) =1
is read “ the limit of f(z), as x approaches a, is I.”” In other words,
this statement means that f(x) is as near as we like to [ if = is near
enough to a.

The student is already familiar with illustrations of a function
approaching a constant as a limit. Thus the sum of the first
n terms in the geometric progression

(1) Se=1+1/2+1/4+1/8+ -+ 1/2

is evidently a function of n, the number of terms involved. The
limit which S, approaches as n increases is 2, and the expression

lim S,. =2
Ny
is read * the limit of S, as n increases without limit is 2.”

Again, the area C of a circle is defined as the limit approached
by the area A of a regular inscribed or circumsecribed polygon as
the number, 7, of its sides increases without limit, or

lim 4 = C.

Ne—p ©
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A function may or may not attain its limit. In the series (1),
the addition of successive terms will never add up to 2; nevertheless
the limit exists.

52. Theorems on Limits. Certain theorems on limits are
stated without proof. In cach one the existence of the limit is
implied.

TueoreMm 1. The limit of an algebraic sum of any finite number
of variables vs equal to the same algebraic sum of therr respective
limats.

TuroreM I1. The limit of the product of any finite number of
variables 1s equal to the product of their respective limats.

TureoreM III. The limit of the quotient of two variables vs equal
to the quotient of their respective limits, provided the limit of the
denominator vs not zero.

TueoreM IV. If f =g = h and of lim f = lim h, then we have
lim g = lim h.

53. Infinitesimals. An infinitesimal is a variable whose limit
78 zero. From the definition of the limit of a function it follows
that the difference between a function and its limit is an infinitesi-
mal. Hence if

lim f(z) =1

then [ — f(x) is an infinitesimal whenever a — z is an infinitesi-
mal. As other examples, we may state that if v is an infinitesimal,
so are also kv (where k is any constant), sin v, and (1 — cos v).

54. Continuous Functions. A function f(x) is said to be con-

tinuous for x = a if
lim f(z) = f(a).

A function is continuous in the interval x = x; to x = x, if it is
continuous for all values of x in this interval.

A function is said to be discontinuous for x = a if the condition
for continuity is not satisfied. The only functions which we shall
consider are those which are in general continuous, but which may
have a discontinuity for some value or values of the variable. As
examples of discontinuity we mention the following:
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(a) When the function f(z) increases without limit or decreases
without limit as = approaches a, that is, when

lim f(zx) = .

Thus the function y = 1/x2 y
(Fig. 75) is continuous for every
value of z excepting z = 0, for
which it is not defined.

(b) The function f(z) may ap-
proach different values as a limit
according as the variable z ap-
proaches a from a value greater
than a, or less than a. Thus the 1
function y = 1/(1 — z) decreases
indefinitely as z approaches 1
from a greater value, but in- F1a. 75
creases indefinitely if x ap-
proaches 1 from a smaller value. This function is not defined for
2 = 1 but is continuous for all other values. (Fig. 76.)

of 1 2 X

Y
| ’ Y
I
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l ________________
| 0 z
|
I
|
F1G. 76 Fia. 77

(c) Another illustration is shown in the graph of
y = 2vs,

As z approaches 0 from positive values y increases without limit
but as z approaches 0 from negative values y approaches the
limit 0. 'This graph possesses what is known as an end point at the
origin. The function is not defined for z = 0. (Fig 77.)
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55. Evaluation of Limits. It is necessary to know the values of
some important limits used in the calculus. Among these are:

(@) lim sin 0 ’
9—>0 0

if 6 is measured in radians.
In Fig. 78, OA B is a circular sector with AC a tangent at A, and
central angle . We have

c
A OAB < sector OAB < A OAC.
B That is,
1 2 Q1 1 2 1 2
2r s1n0<2r9<2r tan 6
or, on dividing by (r2/2) sin 6,
]
’
0 4 1< L < sec 6.
F1a. 78 sin 6

But lim [sec 6] = 1; therefore, by Theorem IV, § 52,
=0

lim F—.i‘—:l -
—0 _sm 0

Hence the reciprocal ratio will have the limit 1, or

(1) tim | $2.87 = 4,
e 0
() lim,:l —ecos 0].
6—>0
Since
1—cosé@ tan?
sin 8 2’
we have

1 —cosf@ siné 0
= - tan

9 g ‘2ng

Hence, by Theorem 11, § 52,

lim [I—*C-‘l“-‘?] — lim [S-‘-’l—"] lim [tan 9] - 1.0,
>0 0 e—of 0 =0 2
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or
. [1—cos®] _
(¢) im (1 4+ x)¥2. The proof that lim (1 4 z)V* exists is
—0 z—0

beyond the scope of this book, but it is given in advanced courses*
and will be assumed when needed.
Since this limit does exist, we can approximate its value by the
following logarithmic calculation.
Let
y= QA +a2)"
then

logioy = logw (1 + x)'2 = (1/z) logw (1 4 z).

By referring to a more extensive table of logarithms (an 8- or
10-place table), we obtain the values below.

T 1/z) logy (1 + z) y = (1 + x)l=
10t 0.41393 2.5938
10—2 0 43214 2.7048
103 0.43408 2.7169
10— 0 43427 2.7181
—-10! 0 45757 2.8679
—-102 0.43648 2 7320
—-10-3 0.43451 2 7196
—10 0.43432 2.7184

It is known that, as x approaches zero either from positive or
negative values, (1 + )V~ approaches a definite limit known as e,
which is one of the most important constants in mathematics. To
eight significant figures, it is

lim (1 4 x)V* = e = 2.7182818,

T—>0
and to the same number of significant figures,

logi e = 0.43429448.

* Pierpont, The Theory of Functions of Real Variables, Vol. 1, §§ 306-308.



78 DIFFERENTIAL AND INTEGRAL CALCULUS [Ca.III

PROBLEMS
1. Discuss e!/* between x = — land z = 1.
2. Discuss ¢/0-2) between = — 1 and z = 3.
3. Discuss and draw the graph of y = 1/(z — 2) fromz = — 3 toz = 4.
4. Discuss and draw the graphof y = 2/(z — 1)2fromz = — 3 toz = 4.
5. Find the nature of the function sin (1/z) as x approaches zero.
6. Draw a careful graph of y = (1 + z)V/2 fromz = — 0.9 toz = 4.
. x2—4 . tan@ .
7. Evaluate (a) 11_1_1:2—;—__—2, (b)ol_l_rpo et Ans. (a) 4; () 1.
. 8in36 . 1+ cosd6
8. Evaluate (a) Ll—n»lo el (b)gll:,?/‘;w .
. sind 8 . see?d —1
o Bvaluate @) I, Ginvzse i 2 sino

Ans. (a) 1/8; () 1/2.

56. Increments. If a variable changes from one value to
another, the difference of the two values, obtained by subtracting
the first value from the second, is called the increment of the
variable. Thus if z changes from z; to z,, the increment of z is
3 — z;.  This increment is represented by the symbol Az (read
‘“delta ) so that Az = z» — ;. When the variable z is given
an increment in a discussion or a problem, it is customary to
assume the values z and z + Az rather than z; and z,, respectively.

Now consider any function of z, such as f(z) = 22 — 6z + 7.
It is evident that a change in the value of the variable z will pro-
duce in general a change in the function. Thus, when z = 2,
f2) = — 1, and if Az = 4, that is, £ + Az = 6, then f(6) = 7.
As z changes to z + Az the function changes from f(z) to
f(x + Az); the difference f(x + Az) — f(z) is called Af(x), the
increment of the function. Or, if we call the function y, an
increment Az assigned to the variable produces a corresponding
increment Ay in the function so that y + Ay = f(z + Az) and
Ay = f(x + Az) — f(x). Hence the increment of the function,
Ay, is expressed in terms of both the variables x and Azx.

EXAMPLE

Given the function y = 22 — 6z + 7. Calculate the increment of the
function.
SoruTrioN. First assign the variable x an increment Az. Then

y+ Ay = f(z + Ar) = (z + Az)? — 6(z + Ax) + 7.
But
Y = f(x) = z? -6z + 7.
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Subtracting, we find
Ay = f(x + Az) — f(x) = 2z Az + AT — 6-Az,
which is a function of z and Az.

57. Average Rate of Change. Consider the function y = f(z).
A change of Az in the variable produces a corresponding change
of Ay in the function, the ratio Ay/Ax is defined as the average rate
of change of the function with respect to the variable in the given
interval x to x + Ax.

Let the graph of the function be drawn and mark on it any gen-
eral point P(z, y). Give z an increment Az and mark the point @
on the graph whose abscissa is (x + Az). Itsordinateis (y + Ay).
Figure 79 is the graph of the
function ‘ Y

y=xz2—6x+4 7.

The points P and @ of the 5
graph are taken at (2, — 1) and
(6, 7), respectively, which cor-
respond to the values of z and —\-
z + Az arbitrarily selected in ‘

the preceding article. Here a 5 ! 7 }
change in the variable from 2 PaNLt_[ % X
to 6, making Az = 4, produced e o

a change in the function from (';Q:fé. 79

—1 to 7, making Ay = 8.
Hence in this interval the average rate of change of the func-
tion with respect to the variable, that is, Ay/Az, is 2.*

From the graph above it is evident that Ay/Az is the difference
of the ordinates of P and @ divided by the difference of the abscis-
sas taken in the same order and is, therefore, the slope of the secant
line PQ. The same statement would hold true for the graph of
any other function. Hence we have the following important
relation.

The average rate of change of a function with respect to a
variable in a given interval is equal to the slope of the secant line

* This does not mean that the function is changing twice as fast as the variable
throughout the interval. An examination of the graph reveals that in the first
part of this interval, as the variable changes from 2 to 3, the function is actually
decreasing; while in the latter part of the interval, as the variable changes from

5 to 6, the function increases from 2 to 7, which is five times the corresponding
change in the variable.
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Jjoining the lwo points on the graph of the function corresponding to
the extremities of the interval.

PROBLEMS

Express Ay as a function of z and Az and find its value corresponding to
the values given in each of the following cases. (Nos. 1-8.)

1. y=2z2%, z=2 Az =0.5. Ans. 4z-Azx + 2 A7, 4.5
2. y=2—3z2% z=-—1, Az =1.

. y=x3—-—z2z+4 =z=2 Ax =025 -
i Ans. 32%-Az + 32-AT + Az — A%, 3.

4, y=5z — 7%

S. y=z2z+14+1/z2 z2=3, Az =2.
Ans. Az — (2 z-Az + AT) /22 (x + Az)?,  434/225.

6. y=x—1/z, z =4, Az =2
7. y =22 —2/x%, x=—3, Azr=2.

Ans. 2 z-Ax + AT + (4 z-Az + 2 A7°) /z¥x + Az)?,  — 88/9.
8 y=2*~-2/r, z=3, Az =001

Find the average rate of change of cach of the following functions and
evaluate for the given interval. (Nos. 9-18.)

9. s =(1+18/1 —¢) for at. Ans. 2/LA—8) (1 —t — AD].
10. s =100t — 162, t =3, At =2

1. fx) =2 —z/(z — 1), z =0, Az =0.5. Ans. 2.
12. f(y) =2y/2—-3y»), y=2 Ay=1L1

13. f(t) =t* —t+1/t, t=2 At= —0.5. Ans. 23.
4. f(x) =x/(x2—1) +3, =z =25 A4r=—0.5.

15. y=V2r+1, z=4 Az =03. Ans. 0.328.
16. y =1/V3+z, z=3 4az=2.

17 fly) =1/y —y*—4, y=3, ay=1 Ans. — 37.

18. f(z) = V4 — 12, z =1 Az = — 025

58. The Derivative. Many important properties of a function
of a variable are found with the aid of a related function called
the derivalive of the function with respect to the variable. Let the
given function be y = f(zx). The derivative is obtained as
follows:

Tfirst, assign to the variable x an increment Ax and calculate Ay,
the corresponding increment of the function.
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Next, divide Ay by Az and evaluate the limit of this quotient as
Az approaches zero. That is, find

lim él/= lim f(x + Arx) -f(x).

Az AT Ar—( Az

Thes limat is the derivative of y with respect to x.

We have seen (§ 56) that Ay is a function of z and Ax. The
same is true of the quotient Ay/Az, but the limit of this quotient as
Az approaches zero, namely, the derivative, is a function of z
alone.

The symbol most frequently used to represent the derivative
with respect to the independent variable x is d/dx. Thus the
derivative of y with respect to x is dy/dx or (d/dz)f(xz). The
primed symbols y’ or f’(x) are also used. Some texts use the
symbols D, and D,y in place of d/dx and dy/dzx, respectively.
It is important to remember that whatever symbol is used it
represents the result obtained by performing the operations above
on the given function. Thus,

dy .. Ay
1) dx = Am Ay

Similarly, if u is a function of ¢, then du/dt = lim (Au/At), or,
At—>»Q

if s = f(v), then s’ or f'(v) = lim (As/Av).
Av—>()

EXAMPLES
1. Finddy/dzif y = 2* — 3 z.
Sorurion. Give z an increment Az and calculate Ay. Thus

y + Ay = (z + Az)? — 3(z + Ax),
Y = z? -3z

Ay = 2z-Az + AT — 3-Ax.

Dividing both sides by Az, and calculating the lim (Ay/Az), we find
Az—>()

A
EZZ =2z -+ Az — 3,
whence
lim 2% = lim (22 +Av — 3) =2z — 3,
a—»04Z Az
or

dy _
a;~21‘-3.
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2. Given f(¢) = (2/t) + 5, find f'(¢).
SoLuTioN. Assign the independent variable ¢ an increment Af, then

Je+an = 2o+ 5,

MO = f+8) =10 = g ~ 5 = s
whence
o) _ 2
Al - Tt ay’
and
’ = h A_f_(t) = li __.__.._..2 = _2
7® = Jim A0 < im[ ~ ity ] =~ 2

3. Find d/dzx of azx? + 2 bz + ¢.
SoLuTioN. Lety = az? 4+ 2bz 4+ ¢. Then we have

y + Ay = a(z + Az)?2 + 2b(z + Az) + ¢,

hence
Ay = 2ax-Az + a-ar + 2b-Az,
and
Ay _ .
v =2azx +a-Axz +2D.
Therefore
lim 2 = lim (2az 4 a-az + 2b) = 2az + 2b;
Az—0AT  Az—sg
that is,

(—;—15 (az? 4+ 2bz + ¢) = 2(ax + V).

The student should now be able to comprehend the following
definition.

DEFINITION OF A DERIVATIVE. Given a continuous function of a
variable, if the increment of the function is divided by the tncrement
of the variable, the limit of the quotient, as the increment of the variable
approaches zero, is called the derivative of the function with respect
to the variable.

All functions which we shall consider will be differentiable,
that is, the derivative of the function is in general another con-
tinuous function which may become discontinuous only for
particular values of the variable. For any value of = for which
the limit of Ay/Ax exists, the derivative is said to exzst.

PROBLEMS
Find the derivative of each of the following functions. (Nos. 1-17.)
1. y=2—z+4. Ans. 2z — 1.

2, y=xt -5z
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Jhoy=2*+4x*-5z+17.
4, y=(x*—z —1)3
S. y=1/(x - 1).

6. f(z) =1/3 —2xz).
7. f(t) =32+ 100t — 1642,
8 f) =2+4+y/y — 1.

9. fy) =y —y —4/y.

10. f(xr) = z? — 1/z%atz = 1.
11. f(z) =2z/(2 — 3 z).

12. f(t)y =2 — (¢ —2)/¢ + 2).
13. f(s) = 2s/(4 — 3s?).

Ans. 3z +8z — 5.

Ans. — 1/(z — 1)2

Ans. 100 — 321¢.

Ans. 2y — 1 4+ 4/y2

Ans. 4/(2 — 3 z)2.

Ans. (8 + 652 /(4 — 3 522

14. f(x) = VI —z. (Hinr: Rationalize numerator of Ay/Az.)

15. f(zr) = V2 + 1 — Vz,
16. y = ax/(x — a).
17. f(u) = a/(a? — u?).

Ans. 1/(2Vz 4 1) — 1/(2V7).

Ans. 2 au/(a? — u?)?

18. If y has a derivative with respect to z for a given value of z, what con-

dition must be satisfied by Ay as Az — 0?

19. Find f'(t) if f(t) = (¢t — 3)~V=,
Ans. — (1/2) (¢t — 3)~¥2,

20. Find the derivative of any of the
functions given in the problems on p. 80.

59. Geometric Interpretation of
the Derivative. Let us assume Fig.
80 to be the graph of y = f(z) with
P(z, y) any point on it. Give z an
increment Az, then Ay/Az is the
tangent of £ RPQ, or the slope of
the secant line joining P(z, y) and
Qx + Az, y + Ay) (see §57).

o
-~ Jo X

Fia. 80

Let Az approach zero, then, since f(z) is a continuous function,
Ay approaches zero. That is, the point @ moves along the graph
and approaches P as a limit. Hence if Ay/Az has a limit, it is
the slope of the limiting position of the secant line. But, by defi-

nition, we have

The tangent to any curve at a point P is the limiting position
of the secant joining P and another point Q on the curve as Q

approaches P.
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Therefore, lim (Ay/Az) is the slope of the tangent line to the
Ax—»()

graph of y = f(z) at the point P(z, y). Or, we can say:
The numerical value of the derivative dy/dx for any given value
zy assigned to the variable 1s the slope of the tangent line at the

point on the graph of y = f(x) whose abscissa is x,.

EXAMPLE

Draw the graph of 3y = z* — 2 z* — 4 z by making a table of values and
showing the slope at each point marked.

SorutioN.  Finding the derivative, we obtain
' yoom et
Make a table of values of z, ¥, and
1 y'. Through cach point (z, y) draw
/-\\ , anarrow 1n the direction indicated by
7 o T ,”X y’, the slope of the tangent.
/ \\ / z y y/
! \
" \\
/ \ Y —2 | —8/3 | 16/3
/ \ / -1 1/3 1
[ " 0 0 —4/3
/ il 1| —5/3 | —5/3
' 2 —8/3 0
Fiu. 81 3 -1 11/3

60. Physical Interpretation of the Derivative. Let two physi-
cal quantities be connected by a functional relation.  Calling them
w and v we have, ©w = f(v). Then any change Av in the variable »
produces a corresponding change Au in u.  The ratio of these incre-
ments, Au/Av is the average rate of change of u with respect to v
in the interval Av. Now let Av approach zero; then Au approaches
the limit zero, since u is assumed to be a continuous function of v.
Hence if Au/Av has a limit, it is defined to be the rate of change of u
with respect to v at the beginning of the interval. That is:

The lim (Aw/Av), or du/dv is the exact rate of change of the

Av—>0

function u with respect to the variable v and is measured in units
of u per unit v.

Thus the distance s, in feet, of an object falling by the influence
of gravity is a function of the time £, in seconds. An increment of
time At changes the distance by As. Then As/At is the average
rate of change of s per unit ¢ in the interval. This we call the
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average velocity during the interval and is measured in feet per
second. The value of ds/dt for any given t is the exact velocity at
that instant in feet per second.

Also the temperature T at which water boils is a function of
h, the altitude. If T is measured in degrees C, and A in meters,
then dT'/dh is the rate of change of degrees C per unit h, that is,
degrees per meter.

Again, the pressure p and the volume v of a gas in a container are
connected by a functional relation. If p is measured in pounds
per unit area and v in cubic inches, then dp/dv for any value of v
is the rate of change of p with respect to », which is measured in
(Ibs. per unit area) per cu. in.

EXAMPLE

If a body falls from rest under the influence of gravity, the relation between
the velocity » in feet per second, and the distance fallen s in feet, is approxi-
mately » = 8Vs. (a) At what rate is v
v changing with respect to s when s is
4 feet? 36feet? (b) For what value of s i (64,60
are v and s changing at the same rate?

SoruTioN. To find dv/ds, give s an
increment As and caleulate Av.  Then

v+ Av = SV\_—m, 2
Av = 8(Vs + as — V),
Av/as = 8(Vs + As — Vs)/as. 16
Rationalizing the numerator, we have /
Av/As = 8 As/As(Vs + As + V) 0
= 8/(Vs + as + V),

whence
dv lim av_ lim 8 =
ds  As—088  A—>0Vs fAs+ Vs Vs
(@) When s = 4 ft., dv/ds = 2, that is, v is changing at the rate of 2 units
of v per unit change in 8. When s = 36 ft., dv/ds = 2/3, and therefore v is
changing at the rate of 2/3 units » per unit s, or 2/3 (ft./sec.) per ft.
(b) The velocity v is changing at the same rate as s when dv/ds = 1. That
is

4
v - 1, s = 16 ft.
This does not mean that v and s are the same, for when s = 16 ft., v is
32 ft. per sec., but v is then changing at the same rate as s is changing.
Draw the graph of v = 8V, taking s as abscissa and v as ordinate. By
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using dv/ds, we find the slopes of the tangents at s = 4 and s = 36 to be 2 and
2/3, respectively.  Also the slope of the tangent is 1 at the point where s = 16.

We observe that s and v are numerically the same in their respective units
when s = 64, but then dv/ds = 1/2; that is, v is then changing 1/2 as fast as
8 is changing.

PROBLEMS

Form a table for z, y, and dy/dz for each of the following equations and plot
points showing the direction of the curve at each point. (Nos. 1-10.)

l. y =224+ 4z 6. (y —3)(zx —2) =6.
2. =6 —y. 7. y=zfromzr = —2tozx = 2.
3. 22y =9. 8 y=3xz—1%
4. z =4y — y* 9. zy — 52 = 4.
"5 3r=(y— 12 10. 3y =2 — 4z
11. Find the rate of change of the area of a sector of a circle of radius a
units with respect to the angle. Ans. a?/2 sq. units per unit of angle.

12. The distance a body falls from rest under the force of gravity is
s = 1642  Find its veloeity at any time. Find its acceleration. What is its
velocity and the distance fallen after 3 seconds?  What is its velocity after it
has fallen 48 ft.?

13. The law connecting the pressure and the volume of a fixed quantity of
gas at constant temperature is pv = c¢. What is the rate of change of p with
respeet to v when » is 4 cubic units?  What is the rate of change of v with re-
spect to p when v is 4 cubic units? How are these two rates related?

Ans. — ¢/16 units p per unit »; — 16/c units » per unit p; reciprocals.

14. A ball thrown vertically upward has its distance from the starting
point given by s = 100¢ — 16 ¢2. When does it stop rising? What is its
velocity at the end of 4 seconds?

15. Tind the values of x for which the tangents to y = 32 and y = z8
are parallel. Ans. 0, 2.

16. Find the direction a particle is moving at the point determined by
z = 2if it follows the graph of y = 22 — 72

17. Tind the rate of change of the volume of a sphere with respect to its
radius. Evaluate the rate when 7 = 3 units.  Ans. 36  cubic units per unit r.

18. Tind the rate of change of the volume of a sphere with respect to its
diameter. Evaluate for r = 2 units,

19. Set up the volume of a solid made up of a right circular cylinder with a
hemisphere on each end.  If the length of the cylinder is twice the radius of an
end, find the rate of change of the volume of the solid with respect to the
radius of one end. Ans. 10 772 cubic units per unit r.

20. In Problem 19, find the rate of change of the solid with respect to its
total length.
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ADDITIONAL PROBLEMS

Find the average and exact rate of change of the following functions.
(Nos. 1-8.)

1. 3z — 2% Ans.3 — 2z — Az, 3 —2z.
2. 4 -2y — 2
3. 1/u — u Ans. — 1/u(u + Au) —2u — Au, —1/u?—2u,
4, u/(u —1).
5. v3 —1/v. Ans. 302+ 3v-Av + AV + 1/v(v + Av), 302+ 1/,
6. 2z — 3/x.
7. 2/Vz — 3.

Ans. —2/Vr —3Vx + Az — 3(Vz + 3 + Vz + Ax — 3),

— (z — 3)7,

8 Vzr+1/x.

Draw the graph of each of the following equations with the help of the
derivative. (Nos. 9-14.)

9. y =3z + z2 12, 3z=9y*4+2y — 5.
10. zy = — 8. 13. 6y =4z — z
11. 2y =32 — x5 14, zy — 222 — 4 =0.

15. Find points on zy — 5 22 = 4 where the slope of the tangent is 1.
Ans. (1,9), (=1, —9).

Express each of the following quantities as a function of the suggested vari-
able. Ifind the rate of change of each function with respect to its variable.
(Nos. 16-24.)

16. The area of a circle in terms of its circumference.

17. The volume of a box with square base as a function of its altitude if
h is 3 times a side of its base. Ans. h3/9, h?/3.

18. The surface of a box with square base as a function of a side of the base
if its volume is constant.

19. The total surface of a circular cylinder as a function of the radius of one
end if its volume is constant. Ans. 2ar2 + 2V /r,47ar — 2V /r,

20. The volume of a box made by cutting squares from the corners of a
rectangular shect 12’ by 6 as a function of the side of the squares.

21. The total surface of a cone as a function of its altitude if r = 2 h.
Ans. 2 7h*(2 + V5), 4 7h(2 + V5).

22. The volume of a cone as a function of its altitude if r = (h/2).

23. The volume of a sphere as a function of the area of a great circle.

Ans. (A/6 7) VA, (1/4 »)V7A.

24. The volume of a sphere in terms of its surface.



CHAPTER IV

DIFFERENTIATION OF ALGEBRAIC, LOGARITHMIC,
AND EXPONENTIAL FUNCTIONS

61. Derivation of Formulas. The method of forming the
derivative of a function, as explained in the last chapter, is per-
fectly general and can be applied to all differentiable functions.
However, by differentiating a special type of function we obtain a
formula which, when memorized, may be used to write down the
derivative of any function belonging to that type.

A thorough knowledge of the formulas derived in the following
articles ts essential,

62. Derivative of a Constant. Let the function be a con-
tant ¢. Call it y and write ¥ = ¢. Then any increment Az
assigned to the independent variable z will not affect the function,
since it is constant. Hence we have

¥+ Ay = ¢, and Ay =0,

whence

Ay _

ac = O
and

im &Y _ W
All_,nt, Ar  dx

Therefore

dc
@ =0

The derivative of a constant with respect to any variable is zero.

This result is evident if we consider the graph of y = ¢, which is
a straight line parallel to the z axis. For any two points (z, ¢)
and (z + Az, ¢) on the line, the rate of change of y with respect to =
is zero. In other words, the slope of the graph is always zero.

63. Derivative of the Independent Variable. Let the function
be z. Then an increment Az will produce the same increment in
the function y. That is, Ay = Axz.

Then

Az
88
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and p
Y _
= b
or
dx
(I1) = 1.

The derivative of a variable with respect to itself is unity.
Is this result apparent from the graph of y = z? Explain.

64. Derivative of a Constant Times a Function. Given the
function cu, where cis a constant and « is any differentiable function
of z. Give z an increment Ax; this will change u to u -+ Ay,
and the function y = cu to

¥+ Ay = c(u + Au),

then
Ay = c-Au,
Ay Au
— = ¢ -—)
Ax Ax
lim 2Y = lim ¢ 2% = ¢lim 2% = ¢ %,
do0 AL azo AT azp A dx

since u is a differentiable function of z. Hence

d(cu) _ du
(tm) Tdx = Cdx
The dertvative of a constant times a function is equal to the constant
times the derivative of the function.

65. Derivative of an Algebraic Sum of Functions. Let u, v,
and w be any differentiable functions of z, and consider the
function

y=u-+v—w
Give = an increment Az. This will cause u, v, and w each to
assume a corresponding increment. Then
y+ Ay =u+ Au+ v+ A — (w4 Aw),
Ay = Au + Av — Aw,
Ay _ du Av _ dw
Ar Az ' Ar Az’
dy i [Au Av Aw:| _du | dv dw
= lim -,

ol R T et &
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by Theorem I, § 52. Therefore

du+v—-w) du dv dw
av) & & Td T &
The derivative of an algebraic sum of functions is the corresponding
algebraic sum of the derivatives of the functions. A finite num-
ber of functions is assumed.

66. Derivative of a Power of a Function. Let y = «", u being
any differentiable function of z. Give z an increment Az, then

Yy + Ay = (u + Aw)™.

Assuming n to be a positive integer and expanding by the bi-
nomial theorem, we have

Y+ Ay = u* + nutAu + Z&"T.:z_ﬁun—z.ﬂz + -+ AW,
Ay = nu™1-Au +"\"l.*2v_1_)un_2_z;2 + -0+ AU
AY _ A n(n = 1), Bu RO s
R v v R A A v A

Taking the limit of both sides as Az approaches zero and keeping
in mind that lim Au = Qsince « is a continuous function of x, and

Az—»(Q

that du/dz exists, then

dy —_ n——lfdil'
dr =™ d
or*
dlu~) _ "_Id__u'
V) dx W g

Since Formula V is known to be perfectly general, we shall use it
for all values of n.

67. Derivative of the Product of Two Functions. Let u and »
be any differentiable functions of z. We wish to find dy/dx when

\ y = .

* Formula V is derived on the assumption that n is a positive integer. We shall
prove (§ 70) that the formula is true for n any rational number, and we shall discuss
the general case in § 73.
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Assign to « an increment Az. Then

Y+ Ay = (u + Au)(v + Av),
Ay = u-Av 4+ v-Au + Au-Av,

and
Ay _ Av Au | Au-Av
ar = "ma T 'ar t A
Then
' dy .. Av . Au . Au-Av
dr uA]:_n.lOAx + vAE_r_n,OAx + Al_:in.o Ar

The last term may be written either lim Aw - lim (Av/Ax), or
Az~—>() Az—()

lim (Au/Az) - lim Av, either of which is zero since du/dxr and
Ax—-0 Ax—-0

dv/dz exist and lim Ay = lim Av = 0. Hence

Azx—»() Ar—»()
dy _ %, du
%—udx—*_vdx’
or
du-v) _  dv du
(VD) ax YTV

The derivative of the product of two functions is the first function
times the derivative of the second plus the second function times the
derivative of the first.

68. Derivative of the Quotient of Two Functions. Let u
and v be any differentiable functions of z. We wish to find dy/dzx
where yis u/v, and v is not zero. Proceed in the usual way to assign
an increment Az to . Then

_u+ Au

y+Ay'~v+ A;’
u+Au uw  vAu — u-Av
Ay=——— - = ————,

Az v + Av) °
Taking the limit of both sides as Az approaches zero and remem-
bering that du/dx and dv/dz exist and that lim Av = 0, we find
Az—»(Q

du _, d
giﬂ _ T dx dx
dr v? !

v
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or

pdu _, dv
d[u dx dx
o Ly=te e

The derivative of the quotient of two functions is the denominator
times the derivative of the numerator minus the numerator times the
derivative of the denominator all divided by the square of the denomina-
tor. ’

SerciaL Cases. (a) If w = ¢, y = ¢/v, and

d/fc\ ¢ dv
(VI a) 35(5)“ T otdx

This is the same result we would obtain by differentiating y = cv™!
by Formula V. The student can now prove the validity of Formula
V for n any negative integer, by differentiating the function
1/v* by Formula VII a.

@) lfv=cy=u/c=(1/c)u, and

d (u 1 du
(VII ) a(z)—?d—x‘
This is just a repetition of Formula III, for if ¢ is a constant so

is 1/c. This case should always be recognized as a constant
(1/¢) times a function and differentiated accordingly.

EXAMPLES

1. Differentiate z? — 3 22/2 + 5 2 — 7 with respect to z.

SorutioN. Let y = 23 — 322/2 + 52 — 7, whenee y is an algebraic sum
of functions. Then d(x¥)/dx = 3 22, by V; d(3 2%/2)/dx = 3z, by III and
V; d(5x)/dx = 5, by Il and II; and d(7)/dx = 0, by I. Hence

dy _ g0 _ 5
dx—-3:c 3z + 5.

2. Finddy/dzify = (x3 — 3 295
Sorurion. Here y = u® where u = 28 — 3z% But, by V,

Ay _ g 0du
dz = %z’
and, as in Example 1,
% = (%c(:c’ — 324 =32~ 1223
Substituting for u and du/dz their respective values, we have
dy

iz = 5(z% —3z94- (322 — 127%) = 15 z21(1 — 3 0)*(1 — 4 z).
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3. Finddy/dzif y = (2? — 2)(x — 3 23).
Sorurion., This function is a product u-v where u is (x?2 — 2) and v is
(x — 3x%. Then, by VI, we have

dy _ A a
ds = (x? —2){1x(x — 31 + (x —3z3)(l_v(x2 -2

(22 —2)1 — 922 + (x — 32%)(22)
= — 15z% + 21 22 — 2.
4. Differentiate (z — 3 z2)/V2 2z — 5 23 with respect to z.

SorutioN. This is a quotient u/v», and hence by VII, calling y the function,
we have

dy _V2z =521 —6z) — (x —32%)-(1/2)(2x — 5% (2 — 151?)
dr 2r — 513

_ 22z —5rH1 —6x) — (z —32)(2 — 152?)

- 2(2x — b x?)¥2

_ 2z — 181224 527 4 1524

- 2@z — 529

i

PROBLEMS

Differentiate cach of the following functions with respect to its variable.

1. 322 —4x3 — 7. Ans. 6z — 12 22,
2. 3% — 3/13 + x2%/3.

3. ax? —bxr + ¢+ dxL. Ans. 2az — b — dx™2
4. Bz — 1)2(z — 1)3.

5. (z2 —2ux)% Ans., 6(z? — 2 )%z — 1).
6. (z*+4)4 — )%

7. (a —z%)/(a + x?). Ans. — 4 ax/(a + x%)%
8 7/(y*+8).

9. Vity+ vVl —y4. Ans. (V1 —y — V1 F y)/(2VI = ).
10. (y? — 2)3¥2,
11, (22 4 4)¥2 — (4 — 2)792, Ans. 3 z(z? + 4)V2 — 3(4 — 2)7¥2/2.

12. (6 + 1)Ve: — 1.
13, (y* — 2)4/(y* + 2). Ans. 2y(® — 235y + 12y + 2)/(y? + 2)2
14. V/2 —V2z +V1/2z — V2/z.

15. (z2+2z)/V1 —z. Ans. (4 + 2z — 322)/2(1 — z)¥2,
16. VU —z9)(1 + 22z).
17. Vz/(@ + 1). Ans. (1 — 2 2%) /3 z2/3(x® + 1)43,

18. v/(1 — VI —?).
10. w/(ut — Vu? —4). Ans. (4 — urVu — 4)/Vu? — 4w — Vui—4)*
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20. zVz? — a* — a’z/ V2 — al
21. [(a + bz?)/(a — bx?) /4, Ans. (abx)/(a + bx?)¥4(a — bx?)¥/4,
22. (a2 — z?)/Va? + 7.
23, (VEF 1+ V- 1)/(VEE+ 1 — Vai—1).
Ans. 2(z + 23/Vzt = 1).

24. Vat* —2bt/V2ct — d in three ways, using V, VI, and VIIL.

25. Suppose y = au + bv?, where u and » are differentiable functions of z.
What formulas are used when you obtain dy/dx?

26. Suppose y = (au-v?)/w"?, where u, v, and w are differentiable functions
of t. What formulas are used in obtaining dy/dt?

69. Derivative of a Function of a Function. If y is a function
of v and u in turn is a continuous function of x, then an increment
Az assigned to x will produce a corresponding increment Au in u,
and Ay in y. For any value of thesc increments, provided Au is
not zero,* we have

Ay Ay Au

Ax Au Aa:

whence, taking the limit of both sides, we find

W fim [A2. 8% ) 8V i A%,
dx Ar—>() Au A A(z——>0 Au Ar—>() Az

since Au approaches the limit zero as Ax approaches zero. Then

dy dy du
(Vi) dx = du'dx’

If y is a function of u and u is a function of x, the derivative of y
with respect to x is the product of the derivatives of y with respect to u,
and of u with respect to x.

To express y directly as a function of x, we must eliminate u
between the two given functions.

From Formula VIII we have at once:

dy

dy _ dx
(VIII a) du= au
dx

* For a proof of VIII when Au = 0, see Pierpont, Theory of Functions of Real
Variables, Vol. I, p. 234.
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70. Derivative of Inverse Functions. If the given function is
expressed as the inverse of y = f(z), namely, x = ¢(y) (see § 48),
then for corresponding increments Az and Ay, provided Az 5 0,

Ay 1
Ar ~ Az’
Ay
Taking the limits of both sides as Az approaches zero, we have
dy 1
dy

That is, the derivative of y with respect to x is the reciprocal of the
derivative of x with respect to y.*

In this case dx/dy, that is ¢’ (y), is expressed in terms of y, and
its reciprocal dy/dx will be given also in terms of y.

71. Parametric Equations. Suppose z and y are both given in
terms of a parameter ¢, that is,

z=yg®), y=J0.
From § 69 it follows at once that
dy 4
dy _dy dt _ dt
dez  dt dr  dz
dt
* Since Formula V has been proven valid for n any negative integer (§ 68) as

well as positive, now we can show it is valid for n, any rational number. If p and q
are any integers, then consider the function,

y = ule, where u = 1P,

Then

Y= u, and y = opla,
Since u is an integral power of both y and v,

du a1 du

— = and - = 1

v qy v pvP1,
But by IX,

gl’:l 1—¢=l P/q)1-q
F q(v e
Then, since dy/du exists, we have, from VIII,

.‘i’! = (lvP/G'P)(pvP—l)
dv q

P
= =ple-1,
q

Hence for » and y, differentiable functions of z, from VIII we have
dy _» p/g—1 @ ‘.i”_" = pyn-1 ‘_hf
dzx (—11) = & @

where 7 is any rational number.
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Therefore

dy _ f'(t)
X dx = g0’

This formula will give dy/dz in terms of {.

72. Differentiation of Implicit Functions. Given a function of
z and y, say f(z, y) = 0. It is possible to find dy/dx without
solving the cquation f(x, y) = 0 for cither variable explicitly in
terms of the other.

If each term in f(z, y) = 0 be differentiated with respect to z,
the resulting expression df/dx = 0 will contain terms in z, y, and
dy/dx. Solving this equation for dy/dz, we have the desired result
in terms of x and y.

EXAMPLES
1. Findds/dtifs = (1 +7)/(1 —r)andr = V21 — 2,
SoLUTION.
ds _ (1 =n(1) —(14+n(=1) 2 .
dr (1 —r)2 T (1 =r1)2
Also
dr 1 1 -1

ar _ 2 — 2)-VQ —~ =
G= @t =2 —21) vy
Hence, by VIII,

ds 21—

e (1 — V2L -

2. Find dy/dz when z = V1 + 2/(1 — y).
SovutioN. Tirst find dz/dy.

dz _ (1 —y/2)(1 +y)722y) — A +y)"*(=1)

dy (1 —yp
_yd =)/ +ynvr 4+ (4 + D2 14y .
1 —y? (I — 921 +y)v2

Therefore, by IX,

,]!1 _ (1 — 21 + yz)llz.
dr — 14y

3. Finddy/drif z = 3at/(1 + £3) and y =3 at2/(1 + #3).
SoLuTION.

dy _ (L+t96at) — Ba)(38) _ 3at@ — 1)
dt (1 +06) TTaTor
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Also
dz _ (1 +)Ba) — Bat)(3¢) _3al —28)

dt (1 +t3)2 1+
Then, by X, we have
dy _ 3at2 — ) t(2 — ta)

dr  3a(l —20) 1—2¢

4. Find dy/dzx if 2* + y* — 3 azy + a® = 0.
SovrurioN. Differentiating implicitly with respect to z, we have,

3x2+3y’——3 ( )=O.

Solving for dy/dx, we get

dy _ay —z?,
dz ~ y? —az’

PROBLEMS
Find dy/dz if:

97

1L z=y(l+y: Ans. 1/By + 4y + 1).

2.z =(y — Dy
Find dz/dy if:

3. y=(@*—-22)(1 — 292  Ans. 1/2(1 —2)(52* - 3234z — 1)].

4. y=(*—2)/0 —x?.
Find dy/dz and dz/dy if:

S.z=t—thy=t+t2 Ans. 1 +28)/01 -2, A —28/(1 + 2¢).

6. x =t —3t,y=1—2¢.

7. x =3 —6%y =26 Ans. — 36, — 1/36.
8 x=1t,y=(1—t2)%att =1
9. ¢ =2ty =2V —tatt =2 Ans. 3/2V2, 2V2/3.

10. z = at, y = bt — gt*/2, and find ¢ if dy/dx =

11. 2% 4 y? = a2 Ans. — z/y, — y/=.

12, 23 + %3 = @3,
13. 2?4 zy + ¥ = a’

Ans. — 2z +y)/Qy +2), — QCy+2)/2z + ).

14, y?(2a —z) =z atz = a.

15. 2% 4 4a% = 8a’at (2aq, a). Ans. — 1/2, — 2.

16, 22 —4zy+2z+y+3=0.

17 y*z +2y) =z —2y. Ans. dy/dz = (1 — ) /2(1 + zy + 3 y2).
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18. z — Vzy +y = 4.

19. z%? —z/y = 1.
Ans. (y — 2zy")/(x + 2 2%%), (z + 2 2%%)/(y — 2 zy*).

200 Ve+y+ Ve —y =
21. 2% + (a%)¥3 = al. Ans. dy/dx = — 3 xy'/3/a4/3.
73. Derivative of the Logarithm of a Function. Let the func-
tion be y = log, v and assign to » an increment Au, then -
y + Ay = loga (u + Au),
Ay = log, (u + Au) — logs u

log. (1 + é;—‘)

Ay 1 Au
Au Aulog“ <1 + )

To evaluate the limit of the right-hand member as Au approaches
zero, it is written in the following form:

u/Au
Ay _ _w log, (l + élf) = llog,, (1 + Au) .
- Au u

dy 1 .. Au\*A* 1 . A
du = A [‘Og"( + ) ]" o8 | Jm 1+ ‘

But, by § 55(c), we have

Jim (1 + éﬁ) — lim (1 4 2)V= = e.

Au—0 z—0

Therefore*
d(logsw) 1
Tdu T ul%Be

Hence, if v is a differentiable function of z, we have, by VIII,

d(log.u) 1 log. e du
dx  u %8¢ '4x

* Certain assumptions are involved in this proof. One is that u is definitely not
zero, and must be positive if the function log, u is real. Another is that the limit
of the logarithm of a function is the logarithm of the limit of the function. This is
true under the existing conditions but the proof belongs in a more advanced course.
Still another is the actual existence of the lim (1 4+ Au/u)“/Av which has already

Au—>0

(XI)

been pointed out in § 55(c). It will be understood that the use of formulas XI
and XIe involves these assumptions.
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If y = log u, this becomes
d(logu) 1 du

(X a) dx  u dx

Note: The proof that Formula V is valid for any value of n,
irrational as well as rational, depends on Formula XI a, provided
the function y = u" satisfies the restrictions imposed by the use of
that formula. (See footnote on p. 98.)

That is, taking the logarithm of both sides, we have

log y = nlog u.

Since u is a differentiable function of z, so is log u, also n log u or
log y; hence, differentiating implicitly, we have

1 dy _ 1 du

y dz " udz
or

(_i_gl Q@_ n—1 (_llt
dr = "wds T ™ dz

The formulas for differentialing the product of functions, and
the quotient of two functions, are readily obtained in a similar manner.

EXAMPLE

Tind dy/dz if y = log [Va? + 22/(2 ax — )]
SorutioN. From the fundamental laws of logarithms we can write y as
follows:

y = (1/2) log (a® 4 z2) — log (2 ax — x?).

Then, by XIa, we have
dy 1 2z 2a -2z =& 2(a — x)

dz 2 e+t 2ar -2 &+ 2 2az — 22’

or
@ 8+ 2a% — 2al

dz~ (@ + 29 az — 27)

74. Derivative of the Exponential Function. Assume the
function to be y = a*, where u is any differentiable function of z.
Take the natural logarithm of both sides, then

log y = ulog a.

Since u is log y times a constant, du/dy exists, likewise its reciprocal
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dy/du, and therefore dy/dz. Then, differentiating with respect to
z, we get

1 dy _du
y &~ do B
and
dy _ du
dr =Y log iz’
or
d(@) _ du
(XII) = ¢ log aq
If a = e, this becomes
d(e") _ ,.du,
(XII a) dr = e dx
If y = e, we have
d(e?) _ .
(XII b) ~de = e

Hence the exponential function e* has the interesting property
that its rate of change with respect to the variable is always equal
to the value of the function. Likewise the graph of the function
e* has the slope at every point equal to the ordinate of that point.

EXAMPLES
1. (;i (37%2) = log 3+ 3" 2.3 x2/2 = (3/2)x%+ 3 =¥/2 . log 3.
d —z? —22 —z2
2. (e = (= 27) = — 2 7et

dx

PROBLEMS

Find the derivative of each of the following functions with respect to its
variable. (Nos. 1-12.)

1. 3log (x? 4+ 4). Ans. 6 x/(2? + 4).
2. log VI = 42 ‘ ,

3. log V(I =90/ + v Ans. -iz y/(1 = y).
4. log V(©* = Dt — 9. .

5. 3¢ 4 Ang. — G te®.
6. 4=,

7. € — 2¢Y2, Ans. 3e¥7 4 6e¥=/z8,
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8. ¢*(9z*+ 6z — 2).

9. logo (2z + Viz® + 1). Ans. 2 logoe/V4ix? + 1.
10. (log z%)2
11. y = x*. (HinT: Take log of both sides.) Ans. z=(1 + log z).

12, ¢ = (1 4 ¢*2) /(1 — e*).

Find dy/dx and d.c/dy in each of the following cases (Nos. 13-15.)

13. z = ¢*, y = let, cvaluatcat t = 1. Ans. 1/e¢, e.
14. =
15. z = 28/2 y = te=t. Ans. (1 — 8)/(3 eV, B etV /(1 —t).
T'ind dy/dx in each of the following cases. (Nos. 16-25.)

16. y =log V(z + )/(x — 1).

17, y =log[V2zx — 3/(z— z%)?].
Ans. dy/dex = (1122 — 25z 4+ 12)/z(1 — z)2z — 3).

18. z = 3w/V1 — 2 2

%!, y = tlogt, evaluate at ¢ = 1.

19. y = zrlog V1 — . Ans. dy/dz = z/2(x — 1) + log V1 — z.
20. y = log® (x¢%).
21, y = e¢*’log z% Ans. dy/dx = 2 ¢**/x)(2 2 log z + 1).

22, zy = 4log (ry).
23, e —4zy = 2. Ans. — y/z.
24, zlogy* + ylog 2? = a.
25. Ifz = Va? — y? —alog [(a + Va* — y¥)/y] find dy/dx.
Ans. y/Va? — 2.

ADDITIONAL PROBLEMS
Find the derivative of cach of the following functions. (Nos. 1-7.)

1. y=ax’—bx*+c/z% Ans. 3ax? — 2bx — 3c¢/xt.
2. z=QBy -2y —y»)

3. s=1t(8—2t4+ ). Ans.ds/dt =3 — 4t + 3 2
4. y=z/(x*+4).

5. y =z/(zx — Var +4).

Ans. dy/dz = (x + \/ﬂ'i)/(z — Vzt + ) Vz? + 4.
6. y =log (x — Vz? + 4).
7. y = log V(er — e=*)/(e* + e77). Ans. dy/dx = 2/(e?* — e~2%).
Tind the derivative of each variable with respect to the other in Nos. 8-11.
8 ay = (x +
9. ay =z + e, Ans. dz/dy = (z + e)/(1 — y).
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10. zy + 2z + 3y = 6, and find what value of x makes dy/dz = 0.

11.
12.

z =ety = ety Ans. dy/dz = — 2 ¢3tM, dx/dy = — e™3¢71/2,

Find the slope of y = ze* at the point where z = 0. Also find = where

the slope is zero.

13.
14.
15.
16.
17.
18.

Tind the slope of 22 + 3 zy + y% &= 5 at (1, 1). Ans. — 1,
Draw the curve y = ¢—=* using the derivative at cach point plotted.
The same as Problem 14 for y = log z.

The same as Problem 14 for y = ¢!/=,

The same as Problem 14 for y = xe==.
Show that y = (a/2) (e*'® 4 e=*/2) and y = a + 22/2 a have the same

slope at their intersection (0, @). This means the curves are tangent to cach

other.

Find the derivative of cach of the following cases. (Nos. 19-29.)

19. y = a*™-., Ans. 2 za**! log a.

20. y = log V(z — 3)/(x + 3).

21, y = 3= le, Ans. 3(1 + 2/23)e=~V=,

22, y = ar?a®,

23, z = aw, Ans. a®v*! log a.

24, 5 = log? (zy).

25, 5 =272 — (2¢)2 Ans. — 2172t log 2 — 81¢.

26, u = ¢~ log Vo2 — 9.

27, 2+ xy — y? = 0. Ans. dy/dx = 2z + y)/2y + z).

28, z? —2zVry +2yVry —y: = 0.

29, r =logtyhy =logitatt =e. Ans. dy/dx = dz/dy = 1.

30. Find the slope of £3? + 1 =z + 2y at (1, 2).

31. Pind the slope and the rate of change of the slope with respect to z for
Ty =x —y. Ans. (1 —y)/(1 + 1), 2(y — 1)/ + 2)2

32.

Find the slope and the rate of change of the slope with respect to z for

z =3 — 12,y = 2 and evaluate each at ¢t = 2.



CHAPTER V
SOME APPLICATIONS OF THE DERIVATIVE

75. Tangents. Normals. We have seen (§59) that at any
point P, (x1, y1) on the graph of y = f(x) the slope of the tangent
is the value of the derivative for x = x;. If the derivative has
been obtained implicitly, and is expressed in terms of both z and y,
then the substitution of z; and y; for  and y, respectively, will give
the slope of the tangent at P,. That is,

dy _dy _
%{;:;‘} S ™ (a constant).

Then the equation of the tangent at P; is (§ 23),
(1) Yy—y = ml(x —_ xl).

The normal to a curve at a point P, is the line perpendicular
to the tangent at ;.. Hence the slope of the normal is (§ 7)

1l _dm_ 1
dyy  dy m’
le

and the equation of the normal at P, is
1
() y—y1=‘“ﬁ(x—x1)-

76. Angle of Intersection of Two Curves. By the angle of
intersection of two curves is meant the anglc between the tangents
to the respective curves at a point of intersection. Let P; be a
point of intersection of the curves whose equations are y = f,(z)
and y = fy(z). Then, if the slopes of the tangents at P; are my
and m,, the angle of intersection 8 is (§ 8) such that

ml—mz,

® e P = m,

where m, 1s the slope of the tangent with the greater inclination. Or,
103
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if the inclination of each tangent line is found after the slope is
obtained, then (§ 8)

(30) B=(!1—02.

EXAMPLES
1. Find the equations of the tangent and the normal to the curve
y =x2+ 4z + 2 at the point where the tangent is perpendicular to the
line2c —4y+5=0.
SoLutioN. The slope of the given line is m = 1/2, hence the slope of the
required tangent is — 2, and that of the normal is 1/2. From the equation

y=z+4x+2
we have, on differentiating,

dy _
a£~2x+4.

N

The point on the curve which has its
slope — 2 is located then by

0 1x 2z 44 =2
P(-3,-1) -
Hence the point of contact desired is
(=3, — 1), and from (1) and (2) the
tangent and normal are, respectively,
2z + Y + 7 = Ov
Fia. 83 and

z—2y+1=0.

2. Find the angle between the curves
2 —3y =1 and 224 3y* = 30,

at their intersection in the second quadrant.

SorutioN. Solving the equations simultancously, we find the real inter-
sections are (3, 2) and (— 3, 2). Differentiating, we obtain, from the first
equation,

Y
dy _ 2z,
dxr ~ 3
and, from the second equation,
dy _
4z +6 yaz =0, 1 1
or ] X
dy _ _2z, =
dzr 3y
Hence, at the point (— 3,2), theseslopesare
2z
2o 2=
3 Mty Fic. 84
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and
- g—:-; =+ 1 = m,,
respectively. Hence, by (3),
tan 8 = —_1—2_——5—1 =3, 8 =171°33.9".
PROBLEMS

Find the equations of the tangent and the normal at the required point on
each of the following curves. (Nos. 1-11.) Draw the graph in each case.

1. zy = 8§, at (2, 4). Ans. 2z 4+y—-8=0,z -2y +4+6 =0.
2. y = a2 4+ 2z + 3, at the point where the tangent is perpendicular to
T —2y =2.
3. y =2 — 3+ 42? — 23, where the tangent has the inclination 45°.
Ans.z —y+2=0,272 - 21y +22=0,z4+y —6 =0,
272+ 27Ty — 58 = 0.
4. y =28 — 322 — 6z + 12, at the point where z = 2; at the points
where the slope is 3.
5. y =2+ 42%at (— 1, 3).
Ans. bz +y+2=0,z~5y+ 16 = 0.
6. r2 — 2y + 4y = 0, where the slope is — 3/2.
7. z? 4 4 y? = 8, at the point in the first quadrant where the tangent is
parallel to the line through the positive ends of the major and minor axes.
Ans.z2 +2y —4=0,22 -y -3 =0.
8. y = log 2, where the tangent is parallel to ¢ — 2y + 6 = 0; perpen-
diculartoz +y = 1.

I

z log z, where the tangent has slope 3/2.
Ans.3z —2y —2Ve=0,4z +6y — 7Ve = 0.
10, y=log(2z —¢),atz =e.

9 vy

11. y = 2¢-2/3, at the crossing of the y axis.
Ans.2x 4+ 3y =6,3z -2y +4=0.

12. For what values of r are tangents on 3 y = 4 z? and y = z° perpen-
dicular?

Find the angle of intersection between each of the following pairs of curves.
(Nos. 13-21.)

13. 24+y+2=0,224+y2—10y = 0. Ans. tan—1(1/7).
14, zy =2, 22+ 4y = 0.
15. y2 =4z, 22+ y? = 5. Ans. tan™1(— 3),

16, 22+ 3y =3,2* —y? 4+ 25 =0,
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17 22 =2y + 1),y = 8/(z* + 4). Ans. n/2.
18. 2y — 92 =0, 3z + 4y = 0, in the fourth quadrant.

19, y? =8z, 4z + y? = 32. Ans. tan™1(3).
20. z%y = 4, y(z2+4) = 8.

21. y = (1/2)¢-*/2 and the y axis. Ans. tan—1(4).

22. Docs y = 3 r bisect the angle between y = 2z and y = 42? Prove
your answer.

23. Show that a tangent to a parabola makes equal angles with its axis and
with the line from the focus to the point of contact.

24. Show that the tangent to vVi+4 \/5 = Vaat P is yy V2 4 xx,7V2 = ql/2,

25. A tangent to the curve zy = ¢ forms a right triangle with the coordi-
nate axes. Show that the area of this right triangle always has the constant
value 2 ¢ 8q. units.

77. Increasing and Decreasing Functions. A function of a
variable is said o be an increasing function if it increases as the
variable increases. It is a decreasing function if it decreases as the
variable increases.

Consider the graph of the function, say y = f(z), and trace the
curve from left to right so that the variable (or abseissa) is increas-
ing. Then the function (or ordinate) is increasing if the curve is
rising; it is decreasing if the curve is falling.

Since the derivative gives the rate of change of the function
with respect to the variable, if the derivative vs positive, the function
18 increasing; if the derivative is
negative, the function is decreasing.
Recalling the definition of the

Y

B

derivative, we see immediately

/ 1\ that the sign of Ay/Ax will be

(0,0 ! 0 positive or negative according as
} 0 ko \if the infinitesimals Ay and Az have

| the same or opposite sign. In

! Fig. 85, any value of x in the in-
terval from z =a to z = b will
Fie. 85 make the derivative positive and
throughout this interval, y in-

creases as ¥ increases. Again, in the interval x = b to z = ¢, the
derivative will be negative and throughout this interval, y decreases
as r increases. For any value of z for which the function changes
from an increasing to a decreasing function, or conversely, the de-

C
A
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rivative must change sign; hence it must be zcro, if it exists at
all, for that value of . At the corresponding point on the graph
of the function, the slope being zero, the tangent is horizontal.

EXAMPLES

1. Find the intervals of the variable z in which the following function
y =f(x) = — 3+ 122 — 9 x% 4 2 r? increases and decreases, respectively.

SoLurion. Find the values of z for which the derivative is zero, that is, for
which the function may change from increasing to decreasing, or converscly.
Now

Z—Z =12 -18z + 622 =6(z — 1)(z — 2).

When dy/dz = 0, x = 1, 2. Since dy/dx is continuous, the sign of the
derivative can change only at x = land x = 2. Hence it has one sign in cach
of theintervalsz < 1,1 <z < 2,and x > 2. Try valuesof zineach interval.
Thus for z = 0, dy/dr = 12 and hence is positive for z < 1. Similarly,
z = 1.5 makes dy/dx = — 3/2 or dy/dx <0 for 1 <z <2. Also z =3
makes dy/dx = 12 and so dy/dz > 0 for x > 2. We may rcpresent this by
the following diagram.

z =1 r =2
— +
z <1 1<z<2 z> 2
dy/dz positive dy/dzx negative dy /dz positive
¥ increasing y decreasing ¥ increasing

2. Find the interval of time ¢ in which a body moves in the direction
in which its distance s from a fixed point is measured positively, if
s=—20—24t 49t — 3

SoruTioN. As in Example 1, set the derivative equal to zero. Then

%j—=—24+18t—3t2=——3(&—2)(t—4)=0,

whence
t=2 4.

Therefore, using ¢ = 0, 3, and 5, we get the information shown below.

t=2 t=4
- 4+
t<2 2<t<4 t> 4
ds/dt negative ds/dt positive ds/dt negative
s decreasing 8 increasing 8 decreasing

Hence the body moves in the direction in which s is measured positively
in the interval 2 < ¢t < 4.
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PROBLEMS

Find the intervals of the variable in which each of the following functions
ncreases and those in which each decreases. (Nos. 1-7.)

1, y=2% — 322 Ans. Increases z < 0, ¢ > 2; decreases 0 < z < 2.
2, y =zx¥z — 2)2
3. y=2*—-322 -6z + 12 B
Ans. Increasesz < 1 — V3,2 > 1 + V3;
decreases 1 — V3 <z <1 + V3.
4, s =213 —-212460¢+ 5.
5. 8 =04/4 —-T70/3 — 412 —2.
Ans. Increases — 1 <z <0,z > §;
decreasesz < — 1,0 <z < 8.
6. y = ze®.
7. 8
8. If p =3v3 — 792+ 4, when is dp/dv increasing?

9. If 65 =2¢ — 3¢+ 12¢ — 4, where s represents the distance of a
particle from a fixed origin, for what interval of ¢ is the particle moving in the
direction opposite to which s is measured positively? Ans. 1 <t <2.

10. The height of a ball is given by A = 120¢ — 16 (2. How long and how
high will it rise?

log t/t. Ans. Increases 0 <t < e; decreases t > e.

11. The position of a point on a straight line as given by its distance s from
some starting point is represented by s = t4/4 — 8¢3/3 4 10¢* — 16¢ + 7.
When is the motion opposite to the positive direction for s?  Ans. ¢t < 4.

12, Where does the slope of y = z4/12 4 23/6 — x? + 3 = decrcase?

13. Aparticlemovesalongalinewith avelocitygivenby v = 1 4+ 32 — 23,
When is its velocity increasing? When is its acceleration decreasing?
Ans. 0 <t <1;t>05.

14. A variable rectangle is inseribed in the area bounded by the parabola
r?2 = 8 y and its latus rectum. One side of the rectangle lies along the latus
rectum. As one vertex of the rectangle moves along the curve so that y
increases from y = 0 to y = 2, for what values of y will the arca of the rec-
tangle increase?

15. A variable rectangle is inscribed in a circle of radius a units with sides
parallel to the reference lines.  As a vertex P(z, y) moves along the circle from
1 position where z = 0 to z = a, for what values of z will the area of the
rectangle decrease? Ans. z > a V2/2 units.

78. Second and Higher Derivatives. We have found that
the derivative of a function of a variable, as f(z), is in general
another function of that variable, f/(z). This new function can
be differentiated with respect to the variable giving what is known
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as the second derivative of the original function. This we repre-
sent by f'/(z). Similarly, the derivative of the second derivative,
if it exists, is /' (z), the third derivative of the original function.
Calling the original function y we have the corresponding symbols
for the higher derivatives.

dy _ ., _dy

i el

Second derivative, f''(z) = e

3 r’
Third derivative, f'"'(x) = :_iix_z; =y = d_;/; = Diy.

From the meaning of the derivative, it is evident that dy’/dz
is the rate of change of y’ with respect to . Interpreted on the
graph of y = f(z), this means the rate of change of the slope of the
tangent with respect to the abscissa of its point of contact. Also
(§ 77) y’ is an increasing or decreasing function according as y’’ is
positive or negative. Then as z increases, if ¥’/ is positive the
slope of the tangent is increas-
ing; that is, in moving along
the curve to the right the tan-
gent, will continually turn in a

counter-clockwise direction so \A 7
that the curve will be concave \ m
upward. 'This is illustrated in B X

Fig. 86 along the arcs 4 to B,
and C to D. If y’' is negative,
y’ is decreasing; that is, in mov-
ing along the curve to the right, Fra. 86

the tangent will turn in a clock-

wise direction so that the curve is concave downward. This is il-
lustrated along the arcs B to C, and D to E.

79. Points of Inflection. If the derivative y’ changes from an
increasing to a decreasing function as z increases, that is, if the
curve changes from concave upward to concave downward, as at
B or D in Fig. 86, then the second derivative, y’/, changes from a
positive to a negative value. Likewise, if y’ changes from a
decreasing to an increasing function, as at C, then y’’ changes
from a negative to a positive value. At such points of the curve,
B, C, and D, the second derivative changes sign and becomes zero if
it exists; otherwise it may become infinite. 'These points on the curve
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at which the direction of concavity changes are called points of
inflection. At a point of inflection the tangent crosses the curve,
since an arc which is concave upward is above the tangent at any
point of the arc, whereas if the arc is concave downward it is below
the tangent at any point of the are.

EXAMPLE

1. If the equation of a given curve is
y=2x3—92x24 12 x — 3, for what values
of = will it be concave downward and for
what values will it be concave upward?

SorutioN. This is the same function
which is given in Example 1, § 77. Then

y =6*—-3z+2), y' =62z —3).

Hence y”” is positive or negative ac-

X cording as r > 3/2 or < 3/2. Hence the
graph is concave downward to the left of
z = 3/2 and concave upward to the right
of x = 3/2.

PROBLEMS
Find the second and the third deriva-
tives of each of the following functions. (Nos. 1-6.)

I'rG. 87

1. y =24/2 — 322 Ans. 622 — 6, 12 .
2.y =212+ 9z + 4

3.y =e Ans. — 2e 2 (1 — 212%), 4xe—** (3 — 2 2?).
4. y = res.

5. y = log?z. Ans. 2(1 — log z)/z%, 2(2 log z — 3)/x3.

6. s = Va?— (.

Tind d%/dx? and d3y/dz3. (Nos. 7-9.)

7. z=t—thy=1t+4+1t4 Ans. 4/(1 — 213, 24/(1 — 2 0)5.
8 z=t+1/t,y=1t— 1/t

9. Find ds/dt, d*s/dt? if s — s +t* = 0.
Ans. 2t/(1 —25s),8¢2/(1 —2s)%+2/(1 —25).

Find the points of inflection of each of the following curves and observe their
intervals of concavity. (Nos. 10-19.)
10. y = 28 — 3 22

11, 12y =24 — 428 — 1822 4 26 = + 51.
Ans. (— 1, 1), (38, — 5); upward for ¢ < — 1, z > 3, downward for
—-1<z<3.

12. y = 28 — 4% TFind the direction of the tangent at the inflection.
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e, Ans. (£ V2/2, e-V?); upward z < — V2/2, z > V2/2,
downward — v2/2 <z < V2/2.

14. y =423 — 622+ 3. Find the slope of the inflectional tangent.

15. y = log (22 — 22 + 3). 3
Ans. At z = 1 £ V2; upward 1 — V2 <z <1 + V2, downward
<1l —V2z>1+ V2

= ge~*.

13. y

I

16.

17. y = z/(a? + z?). ~ B
Ans. At x =0, x£aV3; upward —aV3 <z <0, z> aV3,
downward ¢ < — aV3,0 <z < aV3.
18. y =06z/(x* + 1).

19. y = (1/x) log z.
Ans. (e¥2, 3e=%2/2); downward 0 < z < €%2, upward = > e¥2.

<

20. Is the curve y = x4/2 — 3 z22 cver concave upward?

21. Discuss the concavity of y = 23 — 322 +4atz = -2, — 1, 1, 2.
Ans. Down, down, neither, upward.

22. Isthe curvey = 23 — 322 — 20 z + 40 concave upward or downward
at z = — 1? I8y increasing or decrcasing at z = — 17

23. What are the signs of dy/dx and d?y/dx? for each of the following cases?
The curve is (@) concave down but rising; (b) concave up and rising; (c) con-
cave up but falling; (d) concave down and falling.

24, Testthecurvey = 2* — 423 + 6 22 + 21 2 — 7 for points of inflection.
How do you explain the result?

80. Maxima and Minima. Let f(x) be a continuous single-
valued function of the variable z. By single-valued we mean
that the function has one and only one real value for each value of
the variable. If, as z increases, the function y first increases, then
decreases, as in Fig. 88 from 4 to C, there will be one value of the
variable, say = b, for which the function is greater than it is for
any value of z either a little greater, or a little less than b. Then
f(®) is called a maximum value of the function; that is, MB in
Fig. 88 represents a maximum value of f(z).

Similarly, as z increases, if the function decreases, then increases,
as from C to E, for some value of the variable, as £ = d, the func-
tion will be less than it is for any value of z cither a little greater, or
a little less than d. Then f(d) is a minimum value of the function;
that is, ND represents a minimum value of f(x).

If y changes from an increasing to a decreasing function, as
when z increases through the value x = b, then the derivative
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dy/dz must change from a positive to a negative value. But if y
changes from a decreasing to an increasing function, as when x
increases through z = d, the deriv-
¥ ative dy/dx must change from a
negative to a positive value. At
— B and at D, where the function

}"— g assumes its extreme values, the
4 ! I N derivative, if continuous, must
0 X be zero. We have then the follow-

! ing theorem.
D Given the function f(z), if, as
increases through the value x = a,
Fic. 88 the derivative changes from a posi-
tive to a megative value, the function f(x) is a maximum at x = a;if
the derivative changes from a negative to a positive value, the function

f(x) is a mindimum at x = a.

The derivative may change sign by becoming zero, or by becom-
ing infinite. These two cases are illustrated in Fig. 89. The
function is a maximum at A where y’ = 0, and a minimum at B
where y’ becomes infinite.

o X

I1a. 89 Fia. 90

As z increases, the derivative may become either zero, or infinite,
without changing sign. Thus if the graph of the function has a
point of inflection with a horizontal tangent, as at 4 in Fig. 90,
both y’ and y’’ become zero. Here y’ decreases until it becomes
zero at A, then increases without changing sign. B is a point of
inflection with a vertical tangent, that is, ¥’ is infinite, but the sign
of ¥’ on either side of Bis the same. At such points the function is
neither a maximum nor a minimum.
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81. Critical Values. Tests for Maxima and Minima. The
values of the variable which make the derivative of the function
zero, or make the derivative infinite, are called critical values of the
variable. Each value of the variable for which the function is a
maximum or a minimum is a critical value; but from § 80 it is
evident that the converse is not true. Henee to find the maximum
and the minimum values of a function, obtain the critical values
of the variable, that is, the values for which f’(z) = 0, and those
for which 1/f'(z) = 0, and apply to each value one of the follow-
ing tests:

First TesT. Let £ = a be a critical value. Substitute in
the original function f(z) a value of z a little less than a, then again
substitute a value a little greater than a. If f(z) in both cases is
less than f(a), then f(a) is & maximum. If f(z) in both cases is
greater than f(a), then f(a) is & minimum.

Seconp Trst. Substitute a value of z, first a little less than a,
and then a little greater than a in the derived function f’(z), and
observe the sign of the derivative in each case. If the sign of the
derivative changes from positive to negative, the function is a
maximum for z = a. If the sign of the derivative changes from
negative to positive, the function is a minimum for z = a.

In applying either of the tests above for a given critical value, care
must be taken that no other critical value lies in the interval between
the two values selected for the test.

Tumrp Test. If f(x) is continuous for x = a, when a is a
critical value, then substitute a for z in the second derivative,
S (x). If f'"(a) is negative, then f'(x) is a decreasing function;
but a is a critical value, hence f'(x) decreases through the value
zero for x = a, and the graph is concave downward. Hence if
f"(a) is negative, f(a) is & maximum.

Similarly, if f’"(a) is positive when @ is a eritical value, then
f'(z) is increasing through the value zero, the curve is concave
upward, and f(a) is a minimum. If f/(a) is zero, the curve
usually has a point of inflection at © = @, but not always.

The first and second tests may be applied to all critical values of
the variable; the third test only to those critical values for which
the first derivative is zero. To say that the derivative becomes
infinite for some value of the variable, as = a, is merely to say
that it increases or decreases without limit and is not defined for
that particular value.
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EXAMPLES
1. Locate the maximum and minimum points, and points of inflection of
y=2x*—322— 9z — 3. Trace the graph.
Sorution. Differentiating, we have

Y
l y =3 —2zr —3)
£\ =3z -3z +1),
~3-9f-1§01 2 8 4[5 X
-5 and ¥y’ =6(z —1).
-0l Set y' = 0 to find critical values,
r= —1,3.
-5 Set "’ = 0 to locate possible points of in-
-20 flection. This gives
z =1
Here the third test is the simplest.
-0 . If z=—1, ¥ =0, y’ is negative,
Fra. 91 hence y = f(— 1) = 2 is & maximum. If
z =3,y =0, y” is positive, hence y = f(3) = — 30 is a minimum.

Since y”’ changes sign at z = 1, the point (1, — 14) is a point of inflection,
with a slope of curve at that point of — 12. Note that different scales are
used for abscissas and ordinates in Ilig. 91 and this must be taken into con-
sideration in estimating the slope at any point.

2. Examine (z — a)V3(2z — a)?3 for v
maxima and minima. a

SoLuTioN.  Denoting the function by
y,wehavey = (x —a)V/*2z — a)¥3,and

,_ (22 —a)¥s 4(x — a)¥/3
Y = B@ —a)h T32z = a)it
_ 6x —Ha . 0
3(x — a)32x — a)V/s

Trom y' = 0, and 1/y’ = 0, we have the
critical values

2=t 2230 Loy /
_21 —6’ - .

Use the second test on these values.

Setting z = a/3 and 2 a/3 in turn, we have y’ positive and negative respec-
tively. Hence z = a/2 makes y a maximum.

Test z = 5 a/6, using the values 2 a/3 and 9 a/10. These show y’ to be
successively negative and positive, so the function has a minimum value at
z =5a/6.

Apply the test to z = a, with the values 9 a/10 and 2 a. Thesc show y’
positive in both cases and hence at z = a, 1/y’ = 0, and the graph of the
function has a vertical tangent with neither a maximum nor a minimum.
At z = a there is a point of inflection, as shown. The maximum, at the
point (a/2, 0), is called a cusp.

F1a. 92
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PROBLEMS

Find the critical values of the variables in each of the following functions.
(Nos. 1-16.) Test each and find the maximum and minimum values of the
functions.

1. z8 — 3z2
Ans. Max. (0) atz = 0. Min. (—4)atz = 2.

2, 228 -3z — 12z 4 2.
3. ¥z — 2)2

Ans. Max. (3456/3125) at z = 6/5. Min. (0) at x = 2. Inflection
at z = 0 critical value.

4. 2%/2 — z%/3.
5 zt —22x2% 4 3.

Ans. Min. (21/16) at x = 3/2. Inflection at z = 0.
6. 6z/(z%+1).
7. 3e~*. Ans. Max. 3) at z = 0. (NoTEe: e* = 0.)
8. ze=.
9. 3ze. Ans. Max. Be ) atz = 1.

10. (z + 2)%3 (x — 5)2
11. 32° — 6523 + 540 .

Ans. Max. atr = — 3,2. Min.atz = — 2, 3.
12. 2z — a)2/Bz + 2 a)V/s.
13. z/log z. Ans. Min. (¢) at £ = ¢.  What about z = 1?
14. g V=,
15. aec® 4 be—c=, (a, b positive). Ans. 2Vab (min.).

16. 3 e** + 5e7?=,

17. If y = Z(z — x)%* where z, are constants, ¢ = 1,2,---n, what values
of z make y a minimum? Ans. x = ..

18. The equation of the curve described by a jet of water projected from a
hose may be represented by y = kx — (1 4 k%)x2/100. What does k repre-
gent? What value of k& will make the water reach the greatest height on a
wall (a) 25 feet from the nozzle? (b) 45 feet?

19. The total waste per mile in an electric conductor is w = c? + k?/r.
What resistance 7 will make the waste a minimum if the current c is kept con-
stant? Ans. k/c units.

20. The work done by a voltaic cell of constant E.M.F. and constant
internal resistance r in sending a steady current through an exterior circuit of
resistance R is k*R/(r + R)* in a given time. What value of R makes the
work a maximum? Ans. R =r.

* 5 here means the sum of n terms formed by giving ¢ consecutive values from
1 to n inclusive.
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82. Applications of Maxima and Minima. Many important
problems require for their solution that the maximum or minimum
value of some quantity be found. Suppose the problem be to
find the maximum area of a geometric figure which satisfies given
conditions, or to find the minimum amount of material required to
build a tank of given capacity, or to find when two moving objects
will be nearest together; in all such problems there is a definite
method of procedure for finding a solution.

First, the quantity which is to be a maximum or a minimum is
always the function to be examined. Hence express the function
in terms of the variable or variables which occur in the problem.
If the function is obtained in terms of a single variable, the critical
values of the variable and the maximum or minimum values of
the function can then be found as in the preceding article.

If the function is expressed in terms of two variables, then an
additional relation connecting those two variables must be found.
Using this relation, one of the variables can be eliminated so that
the function will be expressed in terms of a single variable.

Similarly, if the function is given in terms of three variables,
two additional relations connecting the three variables must be
found. With these relations, two of the variables can be elimi-
nated and the function obtained in terms of a single variable.

After finding the necessary additional relations connecting the
variables, the remainder of the solution may be varied as shown in
Example 2 below.

EXAMPLES
1. A right circular cone is circumscribed about a sphere of radius a. Find
the dimensions of the cone if its volume is & minimum.
A SoruTtioN. Since the volume V is to be a minimum,
it is the function in the problem. Hence the function is

1
(1) V = 31r7‘2h

To express the function in terms of a single variable,
p Wwe must find a relation connecting 2 and r. Using

\
\
Q\ similar triangles in Fig. 93,
A\\ AE _ AC
)

BE ~ DC’

Fia. 93 or
VEEF¥r: h-a

r a

2
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Squaring both sides and solving for r2, we find

a*h
®) = h=2a’
Substituting (3) in (1), we get

wa’h?
@) V‘3(h—2a)'
Hence

razh h—4a

®) e N v |

Placing the derivative equal to zero, we find
h =0, h =4a.

Both the function and its derivative become infinite if A = 2 a and hence
this value of A cannot be considered. The value b = 0 is extraneous since it
does not satisfy (2). By applying the second test to the critical value h = 4 q,
we observe that dV/dh is negative for h < 4 a, and positive for A > 4 a.
Hence b = 4 a makes V a minimum. That is, the altitude of the cone is twice
the diameter of the sphere and the dimensions of the coneare h = 4 a,7 = a V2.

2, What are the most economical proportions for an open cylindrical can
of given capacity, if no allowance is made for waste of material?

SorutioN (a). Obviously this means that the volume V of the cylinder is a
constant, and that the amount of material M in the can (which forms the
lateral surface and one base) is to be & minimum. Then M is the function.
Calling the radius r, and the altitude A,

1) M = 7r? + 2 7rh,
where 7 and h are connected by the relation,
(2) wr?h = V, a constant.

Here it is easier to eliminate A, hence from (2) we use

v
3) h = et
Substituting (3) in (1), we find M in terms of r, or
@) M=+ 2_:_’
Then
aM 2V

(5) o =2m -0
Using the value of V from (2), we have
(6) %1]‘7-{—-211'7'—2171—21(7'—’1).
Hence

aM

—dT—O when r =h,
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Differentiating (5), we see that d2M /dr? > O for all possible r. Therefore M is a
minimum for an open cylinder with fixed volume if its altitude is equal to its

radius.
Sorution (b). Differentiate implicitly, say with respect to r, both relations
(1) and (2); then

7) ddM 21r1‘+21r(h+r
=27r(r+h+rdh

and
®) . (T’% + 2rh) = 0.
Substituting the value of dh/dr from (8) in equation (7), we find
9) dd[:[ 2x(r+h —2h) =2x(r — h).
Hence

- _ =0 when r =nh

dr

If the independent variable r < h, dM/dr < 0, and if » > h, dM /dr > 0,
therefore M is & minimum.

3. The amount of fuel consumed per hour by a certain steamer varies as the
cube of its speed. When the speed is 15 mi. /hr., the fuel consumed is 414 tons
of coal per hour at $4 per ton. The other expenses total $100 per hour.
Find the most economical spced, and the cost of a voyage of 1980 miles.

SoLutioN. The cost of the voyage C is the function. The cost per hour

is (kv® + 100) dollars where

18 _2,
15* ~ 375

The time of the trip is s/v where s is the distance. Then
v? 50
¢= (375 + 100) =2s\37 7)’
ac _ 4 (_v_ _ 25)
v 375 v?

Equating this to zero, we find the critical value
= (375)(25) = (125)(75).

k =

Whence
v = 5V/75 = 21.086 mi./hr.

C"” = 4s(1/375 + 50/¢®) which is positive for all positive values of v, and
hence, by the third test, C is a minimum. dC/dvis infinite when v = 0, but this
makes C infinite. The cost of the trip for 8 = 1980 miles is

(150)(1980)

1056 = $14:085.

C= 375 S+ 100)
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PROBLEMS

1. The sum of two positive numbers is 10. Find the numbers if their
product is a maximum. Ans. 5, 5.

2. The sum of two positive numbers is 12. Find the numbers if the sum
of their squares is a minimum.

3. A page of a book must have 18 sq. in. of printed matter and must have
2 in. margins at top and bottom and 1 in. margins on each side. What dimen-
sions will require the least amount of paper? Ans. 5 in. by 10 in.

4. What number exceeds its square by the greatest amount?

5. (a) A man has 100 rods of fencing and wishes to erect it along three
sides of a rectangular ficld which borders on a straight shore line. What
dimensions will give the maximum area? Ans. 25 by 50 rods.

(b) Yor any given length of fence, what is the shape of the rectangle?

6. What is the area of the largest isosceles triangle which may be inscribed
in the parabolic segment bounded by y? = 8z and x = 8, if its vertex is at
the point (8, 0)?

7. The strength of a rectangular beam varies as the product of its breadth
b and the square of its depth A, What is the relation between b and & for the
strongest beam which may be cut from a log of radius a units?

Ans. b = bV2.

8. A power house on a river bank supplies power to a plant on the other
side and 3 mi. down stream. If the river is 2 mi. wide and the power line costs
4/5 as much per mile on land as under water, what line would be cheapest?
Would the line under water be changed if the plant were farther down stream?

9. Find the area of the largest rectangle which may be inscribed in a
parabolic segment of 30 unit base and 20 unit altitude.
Ans. 400V3 sq. units.

10. Same as Problem 9 for a semicircle of radius a units.

11. Find the dimensions of the maximum rectangle inseribed in the ellipse
z2/a? + y2/b% = 1. Ans. aV'2, bV'2 units.

12. A rectangular box with square base and cover is to contain 800 cu. ft.
If material for the bottom costs 15 cts., for the top 25 cts., and for the
sides 10 cts. per square foot, what is the least possible cost of the box?

13. Find the shortest distance from the line 22 + y = 3 to the point
(—86,0). Ans. 3V/5 units.
14. Find the shortest distance from(—6,0) to the hyperbola z? —y2416 =0.
15. A telephone company finds that it makes a net profit of $15 per phone
for 1000 phones or less in a given period. If the profit decreases 1 ct. per phone

over 1000, what number of phones would yield the greatest profit?
Ans. 1250 phones.

16. What are the dimensions of the largest right circular cylinder which
may be inscribed in a sphere of radius a units?
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17. (a) What is the least material needed to make an open circular cylindri-
cal can of volume 8 7 cu. in.?
(b) For any fixed volume what must be the relation between the radius and
altitude of such a can? What if closed at both ends?
Ans. 127 sq.in.; r =h h =27,

18. The distance of a body from a fixed point is given by the relation
s =1/12 - 583/6 +2+31+ 1.
If the body moves along a straight line, when is it moving most slowly?
19. (a) An ellipse of 6 and 8 unit axes is revolved about its major axis.
What is the volume of the largest right circular cone which may be inscribed in
the solid if its vertex is at an end of the major axis? Ans. 128 7/9 cu. units.

(b) Prove that such an inscribed cone always has its altitude equal to two-
thirds of the corresponding axis of the ellipse.

20. (@) Find the equation of the line through (4, 3) which cuts off the
triangle of least area in the first quadrant.
(b) What are the intercepts of such a line if it goes through (a, 0)?

21. For a given hypotenuse of 2 k units, what is the area of the largest right
triangle? Ans. Area = k? sq. units.

22, A ship sails south 6 mi./hr. and another east 8 mi./hr. At 4 p.M. the
second ship crosses the path of the first at the point where the first was at
2 p.M. When are the ships closest to each other?

23. Given an amount of lumber to make a rectangular box of largest
volume. What dimensions should be used if there is no top and if the base
dimensions are in the ratio 2 : 1? Ans. 6:3: 2.

24. A right triangle with hypotenuse 3 in. is revolved about one leg.  What
dimensions will the triangle have if the volume generated is a maximum?

25. The intensity of light varies inversely as the square of the distance from
its source. If two lights are 300 yds. apart, and one light is 8 times as strong
as the other, where should an object be placed between the lights to have the
least illumination? Ans. 200 yds. from the stronger light.

26. Find the dimensions and volume of the right circular cylinder of largest
surface which may be inscribed in a right circular cone of dimensions r and .

27. What percent of a preciousstone, spherical in shape, may be saved if it is
cut in the shape of a right circular cone? Ans. 2933%,.

28. Same as Problem 27 except that the shape is a regular pyramid with
square base.

29. Asilo is to be built in the form of a cylinder with a hemispherical roof.
The floor and wall are of the same material but the roof costs 214 times as
much per sq. unit as the floor. Find the most economical shape.

Ans. h = 4 r for eylinder.

30. Prove that the maximum and minimum line segments from the point

(h, k) to the curve whose equation is y = f(z) meet the curve at points where
the tangent is perpendicular to the segment.
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83. Rates. The essential meaning of the derivative has been
shown to be the rate of change of the function with respect to the
variable. If the function in question is a linear function, that is,
involves the variable to the first degree, as y = ax 4+ b, then
dy/dx = a, or y changes at a constant rate with respect to .
The student is already familiar with the fact that the graph of
such a function is a straight line and @, the cocfficient of z, is the
slope of the line. Thus if r and s are connected by the relation

s = — 2r 4+ 5, then s is decreasing at twice the rate r increases
since ds/dr = — 2, and 5 is the value of the function s when
r=0.

If the function y = f(z) is not lincar, then the derivative f’(z)
is also a variable quantity and will depend for its definite values
upon particular values assigned to z. That is, the rate of change
of the function with respect to the variable will depend on the
variable.

A case of extreme importance is that in which the independent
variable is the time ¢, or else the independent variable is itself a
function of the time. If y = f(¢), then dy/dt is the rate of change
of y per unit time. In many physical problems the time rate of
change dx/dt of the independent variable x is given, or can be
found, and the time rate of change dy/dt of a related variable y is
desired. To solve such a problem, the relation y = f(x) connect-
ing the variables must be obtained; then the
desired rate is given at once by the formula

dy _ dy dx
dt  dx dt
EXAMPLES

1. A balloon in the form of a right circular cone
surmounted by a hemisphere and having its diameter
equal to the height of the cone is being inflated. How
fast is its volume V changing with respect to its total F1a. 94
height A?  What is the result when h = 9 units?

SorurioN. Given h = 37, to find dV/dh. Hence we must express V in
terms of . The volume of the cone is7r2-2 r/3, and that of the hemisphere is
27r3/3. Adding these, we have
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Then

dv _ 4 =h?

dh 27
Hence V is changing 4 wh2/27 times as fast as h. When h = 9,dV/dh = 12,
that is, V is then changing 12 = times as fast as A.

N 2. A ship is 41 miles due north of a
second ship. The first sails south at the
4_1. rate of 9 miles per hour, the second sails

west 10 miles per hour.  (a¢) How rapidly
are they approaching each other 114 hours
later? (0) How long will they continue
to approach each other?
SorutioN. After ¢t hours of sailing let
z be the distance of the first ship from
w —1 the intersection of the courses, y the dis-
. r” tance of the second ship, and z the distance
Fra. 95 between them. Since z is decreasing 9
mi./hr.,, and y is increasing 10 mi./hr., we have

4Imi,

dx . dy .
d[ = =9 ml./hl‘., az =10 mx./hr.

We require in (a) to find dz/df when ¢t = 114; in (b) to find what value of ¢
makes z a minimum.

(@) To find dz/dt express z in terms of x and y, the variables whose rates are
given. Ewvidently

1) 2t = % 4+ ¢
Now z, y, and hence z are each functions of ¢, since
2) =41 —-9¢ y =10t
Differentiating (1) with respect to ¢, we find
dz _ dz dy
22@ =2z a +2yaz,
or
dz dy
2 @ TVa  —9z 410y
3) i= = .
z 2z

When ¢t = 114, from (2) and (1) we have
z = 27.5, y = 15, z = 31.325.
Hence

dz _ —247.54+150 _ _ o, mi./hr.,

that is, in 114 hours the ships are approaching each other at the rate of 3.11
mi./hr.
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An alternative method of solution is to express z directly in terms of ¢ by
substituting equations (2) in (1).
(b) The ships will continue to approach until z is a minimum, or until

dz _ -9z + 10y -0
dt z !
that is, when

-9z 410y =0.

Substituting values of (2), we have,
— 369 +81¢+ 100t =0, 181t = 369,

or ¢ = 2.04 hrs. nearly.

PROBLEMS

1. A spherical balloon is inflated so its volume increases 12 cu. ft./min.
How fast is the radius changing when it is 6 ft.? Compare the rates of change
of the volume and surface when the radius is 8 ft.

Ans. 1/(12 =) ft./min.; 4 : 1 numerically.

2. Ify =28 — 622+ 3z + 5, at what points arc the ordinates and the
slopes of the curve changing at the same rate with respect to z?

3. If the amount of wood in a tree is proportional to the cube of its
diameter, compare the rates of the growths of two trees of 3 ft. and 6 ft. diame-
ters. Ans. 1:4.

4. Two ships are at the same point. One leaves at 10 A.M. sailing east
9 mi./hr.; the other at 11 A.M. sailing south 12 mi./hr. How fast are they
separating at noon?

5. A point moves along the curve y = 4 — 222 so that its abscissa is
decreasing 5 units per second. How fast is its ordinate changing as the point
passes through (1, 2)? Ans. 20 units/sec.

6. The height of a ball thrown upward is given by h = 120¢ — 16 ¢
How fast is the ball rising or falling at ¢ = 3 sec., 4 sec.? How long does it
rise?

7. A man 6 ft. tall walksat 2 ft./sec. toward a light 10 ft. above the ground.
How fast is the length of his shadow decreasing? How fast is the end of his
shadow moving? Ans. 3 ft./sec.; 5 ft./sec.

8. A barge, whose deck is 10 ft. below the level of a wharf, is drawn in by
a cable through a ring in the floor of the wharf. A windlass at the level of the
deck hauls the cable in 5 ft./sec. How fast is the barge moving toward the
wharf when it is 20 ft. away? Is there a maximum velocity for the barge?

9. A conical funnel of height and radius each 6 units contains a liquid
which escapes at the rate of 1 cu. unit/min. How fast is the surface falling
when it is 4 units from the top of the funnel? Ans. 1/(4 7) units/min.

10. In Problem 9, how fast is the inner surface of the funnel being exposed
above the liquid?
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11. In Problem 9, how fast is the area of the exposed surface of the liquid
changing? Ans. — 1 sq. unit/min.

12. A body is being raised by a rope over a pulley 25 ft. above the body.
A man’s hand holding the end of the rope is 5 ft. above the body. If the rope is
50 ft. long, at what rate will the body start to rise if the man walks away from
under the pulley at 10 ft./min.?

13. In a right triangle the legs are increasing 1 unit/sec. and 2 units/sec.
respectively. At what rate is the hypotenuse changing at the time the legs
are 3 and 4 units in length? Ans. 235 units/sec.

14. Solve Problem 13 if the first leg increases 1 unit/sec. and the other
decreases 3 units/sec.

15. An isosceles triangle has its vertex at P(z, y) a point of the curve
y = e*. Its base is along the z axis with one extremity fixed at the origin.
If P is moving along the curve so that its ordinate is increasing 5 units/sec.,
how fast is the area of the triangle changing? Ans. 5(z + 1) sq. units/sec.

16. In Problem 15 let the vertex P be on the curve y = z log . Find the
rate of change of the arca of the triangle and evaluate this for the point (e, ¢).

17. A man walks across a bridge at the rate of 5 ft./sec. and a boat beneath
him passes down stream 12 ft./sec. If the bridge is 30 ft. above the water, how
fast are man and boat separating 4 sec. later? What does this rate approach
as ¢ increases without limit?

Ans. 338/V901 ft./sec. = 11.30 ft./sec.; 13 ft./sec.

18. A train is moving along an elevated track 20 ft. high at 30 ft./sec.
Immediately below it, a truck is going in the same direction 10 ft./sec. How
fast are the train and the truck separating one minute after the train is above
the truck?

19. The lower end of a ladder 26 ft. long is being pulled away from a vertical
wall at 3 ft./sec. How fast is the upper end, resting against the wall, descend-
ir;g when the lower end is 10 ft. from the wall; 24 ft. from the wall? When are
both ends moving at the same rate? Ans. 114 ft./scc.; 7% ft./sec.

20. A trough 8 ft. long has for a cross-section an isosceles trapezoid of
altitude 1 ft., upper base 4 ft., lower base 2 ft. 1f water is poured into the
trough at the rate of 2 cu. ft./min., how fast is the depth increasing when it is
6 inches?

21, Water is being poured into a 10 ft. trough at the rate of 25 cu. in./sec.
If the ends are isosceles triangles with altitude equal to one half of the base,
find the rate of rise of the level of the water when it is 10 inches deep.

Ans. 1/96 in./sec.

22. A balloon is rising vertically 10 ft./sec. from a point on the ground.
After 1 min,, how fast is it receding from an observer 800 ft. from the point?

23, Water is running out of a horizontal cylindrical tank 9 ft. long and 3 ft.
in diameter. When the water is 1 ft. deep, the surface area of the water is de-
creasing 2 sq. ft./min. At what rate is the depth decreasing?

Ans. 2v/2/9 ft./min.
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24, If the circumference of a great circle on a sphere is decreasing 2 in./sec.,
show that the rate at which the volume of the sphere decreases is numerically
equal to the area of the square circumscribing the great circle.

25. A spherical tank of 10 ft. diameter is receiving water at 12 cu. ft./min.
At what rate is the depth of the water increasing at 8 ft.? Ans. 3/(4 =) ft./min.

26. An arc light is 24 ft. above one side of a street which is 30 ft. wide. A
man 6 ft. tall walks along the opposite side at the rate of 5 ft./scc. When he is
40 ft. from the point opposite the light, how fast 1s the tip of his shadow mov-
ing? How fast is his shadow lengthening?

27. The adiabatic law for the expansion of air is pv* = ¢ where n = 1.41,
approximately. If the air has a volume of 600 cu. in. at 40 lb. pressure per
sq. in., what is the rate of change of the volume with respect to the pressure
when p = 40 Ibs./sq. in.? Approximately how much will the volume be
changed due to an increase of 2/3 Ib./sq. in. in the pressure?

Ans. — 10.64 cu. in./unit p; 7.09 cu. in. decrease.

28, A point moves along the curve y = z log z so that y decreases at the
rate of 2 units/sec. (@) How fast is x changing when the point crosses the
line ¢ = 3 y? (b) Find how fast the slope of the graph is changing. (c)
Show that the abscissa, ordinate, and slope are changing at the same rate when
the point crosses the z axis.

84. Rectilinear Motion. Onc kind of time-rate problem which
deserves special mention is rectilinear motion.

Let a particle move along a straight line so that its distance s
from a fixed origin on the line is a function of the time . We have
seen (§ 60) that the rate of change of s with respect to ¢, the time
derivative of s, is the velocity v of the particle. Hence if s = f(¢),
by differentiating we have

ds _
v= = @®).

Similarly, the rate of change of v with respect to ¢, the time
derivative of v, is the acceleration a of the particle. Hence

d?s oy
0/=Et—'d—t'§—-f (t).

If the velocity is constant, the motion is called uniform. If the
acceleration is constant the motion is called uniformly accelerated
motion. Thus, a particle near the carth’s surface, which is subject
to the force of gravity only, moves with an acceleration of
g = 32 ft./sec.?, approximately.



126 DIFFERENTIAL AND INTEGRAL CALCULUS [Cu.V

EXAMPLE

A ball thrown vertically upward has its distance in fect from the starting
point given by s = 104 ¢ — 16 ¢2, wherc ¢ is measured in seconds. Tind its
velocity, acceleration, and the height the ball will rise. How high is the ball
after 3 seconds; after 4 seconds? What distance does the ball pass over
during the fourth second?

SorutioN. The velocity and acceleration are given at once by

ds

i (104 — 32 t)ft./sec.;

d?s «
a = d—[) = — 32 ft./SeC-2

The ball will rise until s is a maximum, that is, when

ds
U—m—o.

Hence 104 — 321 =0, t = 3Y4 sec. The height it will rise is the value of
s fort = 344, or
s = 169 feet.

For t = 3 scc., s = 168 ft.; and for ¢t = 4 sec., s = 160 ft. The distance
the ball moves during the fourth second is not As for ¢ = 3 and At = 1, since
the velocity changes sign during the fourth second and henee As changes sign.
Since we have found the maximum value of s to be 169 ft., we see that during
the fourth second the ball rises 1 ft. and falls 9 ft. Therefore the distance
traveled during the fourth second is 10 ft.

PROBLEMS
The following laws refer to straight-line motion in each case.

1. A body moves so that s = {2 — 8t 4 7. When will its velocity be
positive? Ans. t > 4.

2. A body moves with » =1 4 3¢ — 2¢. When is its acceleration
decreasing?

3. If s = 100¢ — 16 ¢, when is (a) s increasing; (b) v decreasing; (c) a
increasing? Ans. t < 31%; z:,;t; constant.

4. If s = 3 — 21¢? when is v increasing? Is s increasing or decreasing at
t=1?

5. What is the direction of motion of a body if its distance s from a fixed
point is given by s = 2 — 21¢2 4+ 60¢ + 5?
Ans. s increasing 2 < t < 5, decreasing ¢t < 2, ¢ > 5.

6. ThesameasProblem 5if (2) s = 6 +24¢ — 152 — 243, (b) s = #2logt.

7. The same as Problem 5if s = 3 — 32 4+ 3¢ + 4.
Ans. Always forward except v =0 at ¢ = 1.



§ 84] SOME APPLICATIONS OF THE DERIVATIVE 127

8. The motion of a point is determined by s = — ¢ — 8¢t + 7. When is
it speeding up?

9. The velocity of a car after ¢ min. is given by v =13 — 212 4 80¢.
When is it in reverse? Ans. 5 <t < 16.

10. If v =13 — 512+ 7t — 3, when is the distance s increasing? How
fast does the point move when its acceleration is a maximum or & minimum?

11. If s =t* — 2 — 12¢2 + 36¢ — 10, when is s increasing? When is
the particle not in motion? When is its velocity decreasing? When is »
constant? Has its acceleration an extreme value?

Ans. — V6 <t <3/2 t>V6; t=xV6 3/2; —1<t<2;
t=—1,2; min.att = 1/2.

12. A particle moves according to each of the following laws. Graph each
of the functions s, », and a against the variable ¢ on the same set of reference
lines. Study graphs to obtain data about increasing, decreasing, extreme, and
stationary values of s, v, and a.

(a) s =13/3 — (2 (c) s = 4(4 — e ¥2),
) s =log V2 =3t d) s = (logt)/t.

ADDITIONAL PROBLEMS

1. Find the tangent and the normal to zy = 6 at (2, 3).
Ans. 3z +2y —12=0,22—-3y +5=0.

Find the tangent and the normal to y3 = 2 22 + 3 yz? at (— 1, 2).
Show that the tangent to ¥ = 2 px at (x1 y1) is yiy = p(z + x1).

how N

(a) The line 4 x — 3y = 55 is tangent to the curve whose equation is
3y =% — 322 — 20z + 25. Find the point of contact.

(b) Find the point at which the line 3z + 4 y = 54 is normal to the same
curve.

5. Find the line through (— 4, — 3) which is parallel to the tangent to
y=zxt—-322+23zxatz = — 2. Ans. 3z —y +9 =0.

6. Find the line through (— 2, — 1) which is perpendicular to the tangent
toy =28 —-2zatzxr =1

7. Show that the tangent to the ellipse 22/a? + y2/b? = 1 at the point
(21, 1) 18 mx/a? + yy/b? = 1.

8. Find the area of the triangle formed by the tangent to y2 =9 z at
(4, 6), the normal at the same point, and the z axis.

9. Find the slope of the tangent tox = at, y = bt — (1/2) g¢* at any point.
Find the value of ¢ which makes the slope zero. Interpret this value.
Ans. (b — gt)/a, b/g.

Find the angles between the following pairs of curves. (Nos. 10-12.)
10, 2y = 4, 22 — y? = 6.
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11, 422+ y? =52, 3y? = 16 2. Ans. tan™! (54/23).

12, 22 = 4 ay, y? = 8 a*/(x% + 4 a?).

13. Find the angle between the tangent to 22 =4y + 4 at (— 2, 0) and
the line through (3, — 2) and (— 2, 0). Ans. tan=1 (3/7).

14. Find the tangents toy = 222 — 2 and y — 22 + 1 = 0 at their inter-
sections and find the angle between them.

15. The curves y = 2 e¢~*/2and y = log (z + ¢)? mect on the y axis. Find
the angle of interseetion. Ans. tan! [(2 4+ ¢) /(2 — e)].

16. If P(z, y) is on y = x® and the tangent at P cuts the « axis and the
y axis at @ and R, respectively, show that PR = 3 Q.

Find the intervals in which each of the following functions increase and those
in which they decrease. (Nos. 17-19.)

17, =3 + 4 2%
Ans. Increases ¢ < — 8/3, z > 0; decreases — 8/3 <z < 0.
18. z4/2 — 3 z2
19, 12¢2 — 283 — ¢4,
Ans'. Increases ¢ < — (3 + V105)/4, 0 <t < — (3 — V105)/4;
decreases — (3 4+ V105)/4 <t <0,t> — (3 — V105)/4.
20. If the position of a particle is given by s = t* — 62 + 9t — 12, when
is v increasing, when decreasing?
21. If a point on a line is s units from a starting point, find when its veloc-
ity is increasing if:
(@) s =3+4+4t4+30¢24 8¢ — ¢4
() s =5t — 14 ¢ + 300¢* 4 360 ¢.
Ans. (@) —1 <t <5; (b) Forallt.
Examine each of the following curves for inflections and types of concavity.
(Nos. 22-26.)
22, y=2%—-322 -6z + 12.

23. y=a23—-224+6z2 — 1.
Ans. (1/3,25/27); upward z > 1/3, downward z < 1/3.

I

24, y =2¢2,
25, y =3zt —4x% — 622 + 4.
Ans. (= 1/3, 95/27), (1, — 3); upward if < —1/3, z> 1,
downward — 1/3 <z < 1.
26. y = log(@® + 1).
Tocate maximum and minimum values of each of the following functions.
(Nos. 27-29.)
27, 428 — 622 4 3. Ans. At z = 0, max. (3); at z = 1, min. (1).
28. z* — 12 2% + 36 22 — 50.

29, 3xt — 4z
Ans. Min. (— 1) at z = 1; inflection at critical value z = 0.
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30. Draw the graphs of y = z log z, and y = z/log z to the same set of
axes. Show that cach curve passes through the point of the other at which y
is a minimum.

31. Draw a careful graph of y = 218 (z + 4) between z = — 4and z = 3.
Find high or low points and points of inflection.
Ans. (— 1, — 3) low point; (0, 0) and (2, 6v'2) inflections.
32. A potato crop is now 120 bushels and worth $1 per bushel. If the crop
would grow 20 bushels per week and lose 10 cts. per bushel in price, when
should they be dug to get the best value? ,

33. Anisosceles triangle with its vertex at (0, 0) ;md with a horizontal base
above the vertex has the ends of its base on 22 4 2y = 4. Find the area of
the largest such triangle. Ans. 8/3V3 gq. units.

34. An open box with a square base is to be made with a given inner sur-
face. Ior a maximum volume, find the relation between the height of the box
and the side of the base.

35. A covered box whose basc has sides 2 : 1 is to contain 360 cu. ft. If the
bottom costs 4 cts., lid 6 cts., and sides 3 cts. per sq. ft., what are the dimen-
sions for a minimum cost? Ans. 6V3 X 3V3 X 20V3/3 ft.

36. A closed cylindrical vessel is to contain a fixed volume V. (a) Find the
relation of the radius and the height of the most economical vessel. (b) If
the curved surface and the ends of this vessel each have a thickness of a units,
show that the shape of the vessel should remain unaltered for different values
of V.

37. A fixed quantity of metal is to be divided between two molds, one a
sphere of radius r, and the other a cube of side s. When will the total surface
of these solids have an extreme value?

Ans. Max. if s = 2r; min. if s = Qorifr = 0.

38. Tind the maximum trapezoid which can be inscribed in the ellipse
822 + 9 y% = 72 if onc base of the trapezoid coincides with the major axis of
the ellipse.

39. A body of weight w is dragged along a horizontal plane by a force F
whose line of action makes an angle 6 with the planc. Find when F is least if
F = mw/(m sin 0 + cos 8), where m is the coefficient of friction.

Ans. For 6 = tan~'m.

40. What point on 4 y = z?is: (a) nearest the point (0, 4)? (b) nearest
the linex — y = 5?

41. The perimeter of a sector of a circle is 50 units. What radius will make
the area of the sector a maximum? Ans. r = 1/4 of the perimeter.

42, Water escapes from a conical vessel at the rate of 2 cu. units/sec. and
is poured in at the rate of 5 cu. units/sec. The altitude of the vessel is 10 in.
and the diameter at the top is 15 in.

(@) At what rate is the depth of the water increasing when 4 in. deep?

(b) At what rate is the top surface of the water increasing?

(c) At what rate is the conical surface being inundated?
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43. Find the dimensions of the largest circular cylinder which may be cut
from a right circular cone of height &, and radius of base r.
Ans. Alt. of cylinder = h/3.
44. At a certain time, the radius of a cylinder is 2 ft. and is increasing at the
rate of 1 ft./hr., and the altitude is 4 ft. and is dccreasing at the rate of
1 ft./hr. When will the cylinder have a maximum volume?

45. A ship is sailing north at the rate of 10 mi./hr. Another ship 190 miles
north of the first ship sails S 60° E at the rate of 15 mi./hr. When are they
nearest each other? Ans. In 7 hrs.

46. A car running 60 ft./sec. passes directly beneath a balloon at the
instant a bomb is released. The height of the bomb after ¢ seconds is
800 — 16 ¢2; at what rate is the distance between the car and the bomb chang-
ing at the end of 5 seconds?

47. A conical funnel loses water so that its depth decreases 2 in./sec. when
the water is 6 in. dcep. If the funnel is 9 in. deep and 6 in. across the top,
how fast is the wet surface of the funnel decrcasing at that instant?

Ans. (8/3) #V10 sq. in./sec.

48. Find the rate of change of the total surface of a cylinder if h = 47
at the instant r is 4 units and if the volume is decreasing 10 cu. units/min.

49. At a given instant the legs of a right triangle are 4 and 9 units respec-
tively. Assume that the shorter leg is caused to decrease 2 units/sec., and the
area to increase 5 8q. units/sec. How is the longer leg changing?

Ans. Increasing 7 units/sec.

50. The velocity of a stream of water issuing from the nozzle of a fountain
is given by the formula v? = 2 gh, where g is the acceleration of gravity,
32 ft./scc.?, and A is the height of the surface of the water above the nozzle.
If the surface of the water is falling at the rate of 6 inches per hour, at what
rate is v changing when & = 25 ft.?

51. Given a semicircle lying above its horizontal diameter. Chords are
drawn parallel to the diameter and on cach chord as a diameter a circle is
drawn. What chord will have the highest point of its circle at a maximum
distance from the diameter of the semicircle? Ans. rV2 long.

52. A rhombus ABCD is made by fastening together with hinges 4 rods
of length 13 inches each. If A and C are drawn together at the rate of
5 in./scc., at what rate is the area of the rhombus changing when AC = 10
inches?

53. A tank standing on level ground is kept full of water to the depth of
a ft.; water issucs horizontally from a small hole, at a distance of 4 ft. below the
surface, with the velocity V'2 gh ft./sec. What value of & will make the water
strike the ground at the greatest possible distance from the tank?

Ans. h = a/2.

54. A cone-shaped container of dimensions a and r units is filled with water.
Find the radius of the solid sphere which when placed in the container will
displace the greatest amount of water.

Ans. ar/(Va? + r? — r) units.



CHAPTER VI
DIFFERENTIALS. THEOREM OF MEAN VALUE

85. Order of Infinitesimals. We have seen that the incre-
ments of the independent variable and of the function, when
used in the process of differentiation, are infinitesimals. An
important idea in the use of infinitesimals is that of their order.

Given two infinitesimals v and » such that » is a function of .
These infinitesimals are said to be of the same order provided

. v
(1) ll_l;l‘(l)a = k’
where k has a finite value not zero.

If the lim (v/u) = 0, then vis said to be of a higher order than .
U0
In general, if

2) lim % = & = 0,
U—>»Q u
where k is finite, then v is said to be an infinitesimal of the nth
order with respect to u.
If  and v are of the same order, then from relation (1) we may
write

3) v = ku+ 3,

where ¢ is a function of % that approaches zero as u approaches
zZero.
Dividing both sides of (3) by « and taking limits, we have
lima— = 0.
u—so U

Thus é is an infinitesimal of higher order than u.
86. Differential of a Function. In any given function, as
y = f(z), if im (Ay/Az) = f'(xz) # O for a given value of z, then
Az—>(0
Ay and Az are infinitesimals of the same order for that value of z.
From the reasoning of the preceding article we can write

(1) Ay = Af(z) = f'(z) - Az + 3,
131
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where §, a function of Az, is an infinitesimal of higher order than
Az, since
. ]
2%as ~

The expression f'(z) - Az in (1) is known as the principal part of
the increment of the function and is called the differential of the
function. Hence:

The differential of a function is the product of the derivative of
the function by the increment of the independent variable.

The symbol for the differential of a function y is dy, so that

2) dy = df(z) = f'(z) - Az.

If the function equals the independent variable, that is, if
f(x) = z, then f’(z) = 1, and we have

3) dx = Az.

Hence, the differential of the independent variable is its increment.
However, the differential of any
function, other than a linear func-
tion, will differ from the increment
of the function.

Let Fig. 96 represent the graph
of the function y = f(x). Let
P(xz, y) be any point of the graph
and @ any other point of the graph
located by giving z an increment.
Draw the tangent PT at P and
let « be its inclination. Now
the value of the derivative f’(x)
at P is the slope of PT, which is the tangent of its inclination.
Hence

1] nf(l)

Fia. 96

tan a = f'(z) = %a-g:’
or

RS = f'(z) - Ax = dy,

since this is the definition of the differential of the function.
However, the increment Ay of the funciion is RQ.

Obviously, if P is taken at a point of the graph such that the arc
PQ is concave downward, then dy is greater than Ay. It is impor-
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tant to keep in mind that for any continuous function the difference
between Ay and dy approaches zero as Az approaches zero; in
other words, the difference of Ay and dy is an infinitesimal of higher
order than Az.

Since the differential of a function is its derivative multiplied
by the differential of the independent variable, all formulas for
differentiation become differential formulas when multiplied by
the differential of the independent variable. Thus from

d (uv) = u + v
we have
dv du
d(uwv) = u%dx + va—z—;dx
but by definition
dv Cdu
dxd = dv, E;:dx = du,
hence

d(w) = u-dv +v-du,

and similarly for each of the formulas for differentiation.

EXAMPLES
1. Finddyify = (x — 22)(2 — 2z — z?)V2,

SoruTioN. Since dy = f'(z)dz, we have

(x —2)(1 + =)
dy = [ 2 -2z — )7

=2 —-T7c4+3224+32)2 —2z — z?)"V2(z.

+ 2 -2z — )21 — 22)] dx

2, Ifzy + 23 =y — 3z/y evaluate dy for z = 1, and dz = 0.03.
SovurioN. The differential of such an implicit function can be written

down at once as follows:
zdy +ydx + 3xdzr = dy — 3m—y:x@-

When z =1, y = — 3. Substituting these values, and dz = 0.03, in the
equation above, we get
dy — 3(0.03) + 3(0.03) = dy — 3[(~ 3)(0.03) — dy1/9,
or
dy = — 0.09 unit.
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PROBLEMS
Find the differential of each of the following functions. (Nos. 1-6.)
. y=14+22z)/1 —2x). Ans. 4dz/(1 — 22)%
2. y=2zV4 — 22
3. f(s) = (a+8) Va—s. Ans. 3[(a — 33)/Va — s]ds.
4. f(s) = V(e + bs)/(a — bs).
5. f(t) =t/logt. Ans. df(t) = [(log ¢t — 1)dt]/log? .

6. f(t) = e *VI — 12,

Determine dy in terms of z, y, and dz from each of the following equations.

(Nos. 7-13.)

7. y(@2+1) =z Ans. dy = [(1 — 2zy)/(z? + 1)]dxz.
8 ylogz = z2

9. z =logt, y=e2 Ans. dy = — 2 ye* dx.
10. z2/a* + y*3/b%3 = 1.
11. 2z 4+ 1)¥3 (2y — 1)23 = 5.

Ans.dy = V(1 — 23)/(1 + 2 z) dz.

12, log (y/z) —zy =17.
13, e* —ev = zy. Ans. dy = [(e= — y)/(e¥ + z)]dz.

Evaluate the differential of one variable for the given data in each of the
following cases. (Nos. 14-19.)

14,
15.
16.
17.
18.
19.
20.

y=2—~zz =2 dxr = — 0.002.

22243y =72z =1,dz = 0.15. Ans. dy = + V3/(10V5).
Vi+Vy=3y=2dy=—02.
=tlogt t =e ds = 0.03. Ans. dt = 0.015.

z=a" y=a,dy =001a.
z =logt?y =log?t t =¢ dt =0.02e. Ans. dz = dy = 0.04.

If e is an infinitesimal, is each of the following an infinitesimal?

(@ 3+2¢ ) e+2¢, (c) sin ¢ (d) cos ¢ () /(1 + €2), (f) (1 + €2),
(9) log ¢ (h) €. Which are of the same order as ¢ Which of higher order?

21.

Given s = 80¢ — 16 ¢?, calculate the difference between As and ds

when (a) t =2, dt =01; (b) t =4, dt = —02. Ans. — 0.16; — 0.64.

22. Given y =z —z and z = 3, find the difference between Ay and dy if
Az = dz = 0.02.

23. If y = 22 — 2/2? find Ay — dy for x = 2, dz = 0.03. Ans. 0.115.

24, If s = et —logtfind As —dsfort = 3, dt = 0.1.
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87. Approximations. Errors. The differential of a function
affords a simple method of approximating the change in a given
function due to a small change in the independent variable. Sup-
pose, for instance, it is desired to find the change in the area of a
circular metal plate due to expansion caused by a rise in tempera-
ture. Simple measurements give the diameter or radius of the
plate before and after the change in temperature. Now if A4 is the
area and r the radius of the plate, the problem is to approximate A4
by finding dA for a given r and Ar. To solve, merely express 4 as a
function of r and find its differential. Then substitute in the
expression for dA4 the values of r and dr, respectively, and obtain the
desired approximation.

In many such problems as the one above, it would be absurd
to find AA by the more cumbersome method of increments, since
any values obtained by measurement, as r and dr, are in themselves
merely approximations.

All calculations which are based on measurements involve errors
and these may be approximated by differentials. Thus if it is
assumed that the error in measuring the radius of a circle does not
exceed 0.1 inch, then the possible error in the calculation of the
area can be approximated by finding dA when dr = 4 0.1 inch.

If z is given an increment, Ax = dz, in the function y = f(z), the
function becomes y + Ay. However, an approximation of this
value by differentials is y + dy = f(z) + f'(z)dz.

EXAMPLES

1. Heat applied to a metal plate expands its diameter from 15 inches to
15.14 inches. Approximate the change in area.
SorurioN. The function is A = #r2.  To find dA when r = 7.5 in. and
dr = 0.07 in.,
dA =2 mr-dr

15 7(0.07) = 1.05 = sq. in. approximately.

We note in this example that 44 may be interpreted as a rectangular strip of
length 2 = and width dr, whereas A4 is a circular ring of thickness dr bordering
1 circle of radius r.

2. Tind by differentials the reciprocal of 5.03.
Sorution. This example involves the reciprocal function,

1
x

.

:[/:

Convenient values for z and dxr may be chosen provided dz is relatively
small.  Since the reciprocal of 5 is 0.2, let x = 5 and dz = 0.03. By differen-
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tials we can find the approximate change in the function due to a change of
0.03 in the variable. Thus
1

dy = — ﬁd’t

-1 (0,03) = — 0.0012.
25

That is, the reciprocal of 5.03 15 approximately 0.0012 less than the reciprocal
of 5. Hence
y 4+ dy = 0.2 — 0.0012 = 0.1988.

3. Approximate by differentials a root of the equation 22 + 32z — 6 = 0.
SoruTioN. Substituting £ = 0, 1, 2, we find there 1s a root such that
1<z <2
lety =22 4+3xz —6. Then
dy = 2z + 3)dx.

Forz =1,y = — 2. But for the root, y should equal 0, whence we let the
change in y, namely, dy = 4 2 and we have
de=5W -2 0.4.

2r+3 21+3°
The new value of z is then
z4+der=14+04 =14.

But r = 1.4 makes y = 0.16, so taking dy = — 0.16,

o dy 0.16 _
dr =5 E s T Taot4a +3 - 0028

The desired approximation is then
z + dxr = 1.4 — 0.028 = 1.372,

which should be compared with the solution by the formula.

88. Relative Error. When errors of measurement areinvolved
in a problem, the ratio of the magnitude of the error to the magni-
tude of the quantity is usually more significant than the magnitude
of the error itsclf. Evidently, the same actual error made in
measuring both a large quantity and a small quantity may be
negligible in the former case but not in the latter. If an error Az
is made in the measurement of a given quantity z, then Az/r is
called the relative error. 1If any function y = f(z) is computed
from data which are in error, the ratio dy/y is an approximation for
the relative error in the function and 100 (dy/y) is the approximate
percentage error.
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The relative error may be approximated directly by logarithmic
differentiation since the differential of log y is dy/y.

The applications of the differential may be extended to funec-
tions of two or more variables. This, proved in Chapter IX, will
be assumed here.

EXAMPLE

If the radius of a right circular cone is measured as 5 in. with a possible
error of 0.02 in, and the altitude as 8 in. with a possible error of 0.025 in.,
what are approximations for the possible relative error, and the possible per-
centage error in the volume as computed from these measurements?

SorutioN. We have the values r = 5 in,, dr = £0.02 in, h = 8 in,,
dh = 4 0.025 in. The double sign must be used since the error may be
positive or negative. The function is

V= grzh,

whence, taking its logarithm and writing the differential, we have

Using the positive values for dk and dr, we may write

‘-i—v!:, = 0.008 + 0.0031 = 0.0111,

which is the approximate relative error in V; or

100%—1—, = 1.119,
which is the approximate percentage error in V.

If negative values are taken for dr and dh, the results are numerically the
same as those above. However, if the values of dr and dh differ in sign, the
results are numecrically less than those given above. Hence only one set of
calculations is necessary to determine the possible errors.

PROBLEMS

1. The radius of a circular plate increases by heating from r, to ro + Ar.
Find an expression in terms of ro and Ar for (a) the increase in the area; (b)an
approximation for the increase in the area; (c) the error if the result of (b) is
assumed correct. Ans. (210 Ar + Z?); 2 wro AT AT sq. units.

2. The cost of painting a hemispherical dome is 20 cts. per sq. ft.
Approximate the error in the estimated cost due to a 3 in. error in measuring
the radius as 50 ft. How accurately must the radius be measured if the
possible error in the estimated cost must not exceed $10?

3. Approximate the volume of a right circular cone with a vertical angle
of /2, if the diameter of its base is 2.9997 units. Ans. 1.1247 = cu. units.
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4. A sphere is to be cut from a cube of edge 2 z. If the diameter of the
sphere is to be 2 z and an error of 19, is made in measuring z, approximate the
error in the amount of material to be cut from the cube.

5. Approximate the volume of a right circular cylinder of radius 4.97 in. if
its altitude is threc times the radius of onc end. Ans. 368.25 7 cu. in.

6. How accurately must the diameter of a sphere be measured if it is
necessary that the error in the calculated area shall not exceed 0.1%,?

7. The edge of a cube is near 6 units. How accurately must it be measured
to give an error not to exceed 1 cu. unit in the volume? Ans. 1/108 unit.

8. Derive a formula for an approximation of the volume of a thin spherical
shell of thickness ¢. How much is the error in your formula?

9. The hypotenuse and a leg of a right triangle are measured as 5 and 4
inches, respectively. If there is a possible error of 0.01 in. in each measure-
ment, approximate the possible error in the other leg if it is computed from
these data. Ans. + 0.03 in.

10. A central angle is computed from the measurements of the radius and
the arc. If 29, errors are possible in each, approximate the possible crror in
the angle.

11. Approximate the change in the total surface of a right circular cylinder
of altitude 10 ft. and radius 4 ft. if its volume is changed 1/2 cu. ft. and the
altitude is kept constant. Ans. 9/40 sq. ft.

12. How accuratcly must the altitude of a right circular cone with
r = (4/3)h be measured if it is necessary that the percentage error in the
calculated volume shall not exceed 39,?

13. If s = kpv? and pis changed by + 2% and s by — 3%, find an approxi-
mation for the change in ». Also the relative and percentage changes in v.
Ans. — 0.025 v, — 0.025, — 2.5%.
14. If the edge of a cube is near 5 in. and there is a possible error of 0.02 in.,
approximate the resulting relative and percentage errors in the volume and in
the surface.
15. A sphere’s mass is determined as 1 oz. with a possible error of 0.05 oz.
and its diameter as 2 in. with a possible error of 0.02 in. Approximate the
possible error in its computed density. Ans. 3/5 = units.

Use differentials to approximate the values of each of the following expres-
sions. (Nos. 16-26.)

16. /33.

17. V26. Ans. 239,
18. 1/V50.

19. (123.5)43, Ans. 615,

20. %, if e? = 7.389.
21. log 10.2, if log 10 = 2.303. Ans. 2.323.
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22, 7'%, if log 7 = 1.946.

23. 2/[1 + (2.001)z]. Ans. 0.3999.
24, 2% —z,if z = 2.002.
25. zt 4422+ 1,if z = 1.997. Ans. 32.856.

26. 2t —2x + 227 if zis 2 £ 0.015.

Approximate irrational roots of each of the following equations. (Nos.
27-30.)

27, 23—z —3 =0. Ans. 1.674.
28, z? —-3zxz+5=0.
29, z24+3x —10 =0. Ans. 1.699.

30. 22 —22 —-5=0.

89. Rolle’s Theorem. Let F(z) be a continuous, single-valued
function which vanishes for z = @ and z = b. As « varies from
a to b, it is evident that F(x)
cither incrcases then decreases, or
decreases then increases, so that
F(x) will have at least one maxi-
mum value or one minimum value
between £ = a and = = b. Now
if we add the further condition that
F’(x) is continuous in the interval Lx
z=atozx=">0 then F/(x) must 0 [@o Ub,t»
become zero at least once in this
interval. This gives rise to the
following theorem:

RorLLr’s THEOREM. If F(x) is a single-valued function which
vanishes for x = a and z = b, and if both F(x) and F'(x) are
continuous*® in the tnterval x = a to x = b, then F'(x) will vanish for
at least one value of x in this interval.

Y

)

Y,

Fic. 97

90. Theorem of Mean Value. Let Fig. 98 represent the graph
of y=F(z) fromz =atox =b. Let R be [a, F(a)] and S be
(b, F(b)]. Then the slope of the secant RS, which is the average
rate of change of the function F(x) fromx = atoz = b, is

F®) —F(a),
b—a

¥t is in fact sufficient to assume that F’(z) exists everywhere, but the theorem
as stated is all that we shall need.
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The equation of the secant line BS may be written in the form
= F®) ~ Fla) (x — b) + F().

(1) Yy p—

For any value of z in the given
interval, the difference of the two
ordinates represented by the y
of cquation (1), and by F(z) is
another function of z, say o¢(z).
Then

(2) ¢(2) =F(b) — F(x)

Fb) — F(a), ..

+—3=F @0

We sce by inspection that ¢(z)

vanishes for z = @, and for z = b.

Hence, by Rolle’s Theorem, ¢’(x) will vanish for some value of
x as x; between a and b. That is,

3) ¢@) =—F(@) + E(_bg__:%@ —0

or

(4) F'(x1)

Y

[9) (a,0) (x,0) b0 X

Fi1a. 98

, for T = a2,

_F(b) — F(a)
- b—-a ’

But F’(z,) is the slope of the tangent to y = F(z) at the point
located by x = x; and the right-hand member of (4) is the slope
of the secant BS. We have then the following theorem:

THEOREM OF MEAN VALUE. If F(x) is a single-valued function
arm—m&) are continuous wn the interval x = a to
x =0b, then

a<x<b.

F(b) — F(a) = F'(x)(b — a),

where a < x; < b.

This is also called the law of the mean. There are two other
forms in which this law has important applications. One is
obtained by substituting x for b, thus making a variable interval.
Then

(5) F(x) = F(a) + F'(x1))(x — a), a<x<x

The other is obtained by letting a = 2, b = z + Az, then the
interval is Az, and,

(6) F(x+Ax)=F(x)+Ax-F'(x+k-Ax), 0< k<.
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91. Extended Theorem of Mean Value. Now let the function
be given parametrically by the equations

x=g(t), y=IrQ),

where g¢(¢), f(t), ¢’(t) and f'(t) Y
are continuous in the interval
t=a to t=>. Furthermore,
we must assume g’(t) % 0, so
that dy/dx = f'(t)/¢g’(t) shall
exist and be continuous in the
interval. The coordinates of R
and S are then [g(a), f(a)] and
lg(d), f(b)] respectively. Follow- —5 .
ing the method of the preceding
section, we find the equation of
the secant RS to be

fb) — f(a)
M Y= ® @
For any value of ¢ in the interval, the difference of the correspond-
ing ordinates to the curve and to the secant line is the difference of
() and the right-hand member of (1), namely,

@) 10 ~L= T8 0 - gl - 1@

Call this function ¢(¢). It vanishes for ¢ = a and for ¢ = b;
henee, by Rolle’s Theorem, ¢’(¢) will vanish for some value of ¢,
as t = t;, between a and b, that is

’ — f(b)—f((l) ’ — —
@) WO =0 gy I® =0 for t=1t

or

|
|
|
I
[
|

Fia. 99

[z = g(a)] + f(a).

@ f0) = @) _ f(t)
gd) —g(@) g'(t)’
This is the extended theorem of mean value or extended law
of the mean.* If we make the interval variable by letting b = ¢,
it takes the form
5) 10 = fl@) _ f'(t)
g(t) —ga) g'(t)
* This theorem is due to the French mathematician Cauchy and (4) is frequently

called Cauchy’s formula. The geometric proof above was suggested by Professor
A. A. Bennett in the American Mathematical Monthly, 1924, Vol. 31, p. 41.

a<t<b

a<tHh <t
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The geometric interpretation of the law of the mean or the
extended law of the mean is obvious from Figs. 98 and 99, namely,
that the slope of the tangent at @ is equal to the slope of the secant
RS. Or we can say #f a function and its derivative are continuous
i any interval, for some value of the variable within that interval
the rate of change of the function will be the same as the average rate of
change of the function throughout the interval.

92. The Indeterminate Form 0/0. If two functions f(z) and
g(x) both vanish for z = a, their quotient f(a)/g(a) has no mean-
ing. However, the lim [f(z)/g(x)] may be perfectly definite.

We have already seen this in the case of (sin z)/x for z = 0.
Also in the derivative of the function y = f(x), both numerator
and denominator of (Ay)/(Az) approach zero as a limit, yet the
limit of the quotient exists. Such a limit, if it exists, may be
found for special cases as in § 55, but a more general method can be
obtained from the extended law of the mean. From (5), § 91, we
have

f@) = fla) _ f'(z1)
g) —gla)  ¢'(n)’ a<umxm<uz.

But f(a) = g(a) = 0; and, since lim z; = a, it follows that

f(x) J'(e) _ fa)
@ T A T 7@
if g’(a) # 0. If both f’(z) and g¢’(z) are zero for z = a, this
method may be extended to the form
J(@) /(@) _ /" (z)
li lim «+» = lim
e 4@) e '@ T @)

where all derivatives of f(z) and g(z) up to the nth derivative are
zero for = a. If either nth derivative is not zero for £ = a the
limit of the quotient can be evaluated.

EXAMPLES

1. Find 11m —r - 6.

=3 -3
Sorurion. This quotient may be found by writing

2 —x—6_ (x+2)(x—3)
rt—3 z —3

=z+2
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only if x # 3. Using the method of the last section we have

2 —_ —
lim 22 =6 _ 221
z—>3 & —3 >3 1
2. Evaluate lim & _xx- -
—>a z
loga
SoLuTION.
lim =2 = lim ez =hm:}=—a,
x—>a logf z—>a log z—loga 4., l
a z

) . 1 —x+logz
3. Emluatezlﬁll PP S

SovutioNn. Call the numerator f(z) and the denominator g(z), then

. flx) 0 . .
31::11 0@ =0 indeterminate.
1
—14-=
@) z _0 . .
zli,ml 7@ _351211 31 0 indeterminate.
1

lim I7(x) = lim =
—>1 g”(x) z—>1 6z

- -1
=76

93. Other Types of Indeterminate Forms. If the functions
f(x) and g(x) arc such that lim f(z) = « and lim g(z) = o,

T—>a T—>Qa
then the fraction f(x)/g(x) assumes the indeterminate form
/oo, The same method is then used as in the case for the indetermi-
nate form 0/0. A rigorous demonstration of this fact belongs more
properly in an advanced coursc and will be omitted here.
If lim f(z) = 0, and lim g(x) = o, then f(z) - g(x) becomes

T—>Qa
0 - for x = a, which is indeterminate. In this case we write the
function

_ Jf=) g(x)
f(x)'g(x)—m; or m;

so that the transformed expression takes one of the forms 0/0 or
o /o, and its limit, if it exists, can be evaluated by the method
explained in § 92.

An exponential function may assume one of the indeterminate
forms 0°, 9, or 1% for some value of the variable. In this case the
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logarithm of the function may assume the form 0 - « and its limit,
if it exists, can be evaluated. (See footnote, § 73.)

The difference of two functions for some value of the variable
may assume the indeterminate form « — o. In this case a
transformation may be found which will reduce the function to one
of the other types of indeterminate forms which have been men-
tioned.

EXAMPLES

1. Tind the lim _Z10BZ .
z—>oZ +logz

SorurioNn. This function has the indeterminate form e« /oo,
zlogx

lim -85~ _ ]iml—_H_(._).g.Ez
—w +logr 5.1+ 1/2

’

since the denominator has the limit 1, while the numerator increases without
limit.
2. Evaluate lim zV/(-2),
z—>1

Sovurion. Call this function f(z), then log f(z) =[1/1 — z)] log =.
Here f(z) has the indeterminate form 1%, for z = 1; and log f(z) has the form

o -0, Writing log f(z) as (log x)/(1 — z), we have

1
lim—]i)g—gc=limi= -1
11 =2 o5 —1
Jence
lim log f(z) = — 1, or lim z//(1=2) = ¢71 = 1/e.
o~»1 z—>1
3. Find lim (—— - 1).
o\ —1 =z

SorutioN. This function has the indeterminate form « — o for z = 0.
Nrite it in the form (z — ¢ 4+ 1)/z(e* — 1). Then
r—e*+1 1 —e®

. . 0
;,h_r:lo z(e® — 1) “mxe’-'}-e’—l -0

Differentiating again, we get

lim - = lim ——% = Iim —L = _ L
ol + € —1 . gxe*+2e L, oz +2 2
PROBLEMS
Evaluate the limit, if it exists, of each of the following cases. (Nos. 1-19.)
1. lim [(z? — 2z)/(z% — 4)]. Ans. 1/2.
2

2, lim [(x — 2)/(x2 + 4)].
3. im[((bz —422)/2z2 —z +4)]. Ans. — 2.
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4. lim [z/(1 — e*)].
>0
5. im[(Bz —42?) /(222 +e* — 1)]. Ans. 3.
>0
6. lim [z log z].
z—>0
7. lim [(z™ — 1)/(z* — 1)]. Ans. m/n.
z—>1
8. lim [(log z)/2%].
9. lim [(log z?)/(x — 1)]. Ans. 2.
z—>1
10. lim [{log (z — a)}/(z — a)].
11. lim [(e*! — a="1)/(x2 — 1)]. Ans. (1 — loga)/2.
z—r1

12. lim [1‘1__ - —i—]
z—>1Llogz =z — 1

13. lim [(1 + kx)V=]. Ans. €*.
=0

1 kxz
14. lim [(1 +—) ]
Z—> X
15 lim Y32 - Vv8-z Ans. 1/2V.
z—2 3z —2V15 — 3z

16. lim [z" log z27].
=0

17. lim [(1 + az)®~/=], Ans. eoP,
z—0

18, lim [(log z)k/(-log 2)7],
z—>e

19. lim [(e®* 4 ba)°/*]. "~ Ans. ecatb,
>0

20. Given the curve whose equation is ¥ = (1 + z)¥/2. Prove that the
limiting value of the slope of the tangent as the point of contact approaches
the y axis is — ¢/2.

ADDITIONAL PROBLEMS

1. If the edge of a cube is 3 in. and is expanded to 3.002 in., approximate
the volume. Ans. 27.054 cu. in.
2. Approximate the volume of a right circular cone of h = 2r if r is
measured as 4.98 in.
3. A sphere of radius 2 ft. has its radius reduced 3 in. Approximate the
resulting change in its surface. What is the exact change?
Ans. — 4 7sq. ft.; — 334 = sq. ft.
4. A spherical casting of » = 1 ft. is smoothed down so that the radius is
decreased 0.1 in. Approximate the volume removed. What is the error in
the approximation?
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5. Show that (z + dz)? is approximately equal to 22 + 2 z dx.

Derive formulas similar to the one in Problem 5 to approximate each of the
folléwing expressions. (Nos. 6-10.)

6, 1/(x + dz).

7. Vz + dr. Ans. Vz + dz/(2V7).
8. vz + dx)2

9. log(z + dx). Ans. log z + dz/x.
10. qlz+dD),

Approximate the irrational roots of cach of the following equations. (Nos.
11-16.)

11, 28 —22+4+5 =0. Ans. — 1.43.
12, 28 — 42?2 -22+4+8=0.

13. 22 -3z +1=0. Ans. — 1.88, 0.42, 1.59.
14, 28 -8z +2 =0.

15, 22+ —4 =0. Ans. 1.38.

16, z* — 1122424 = 0.

17. Two iron spheres are each approximately 10 inches in diameter.  When
immersed in a pail of water it is found that one sphere displaces 20 cu. in. more
of water than the other. Approximate the difference in their radii

Ans. 1/(5 ) in.

18. What is the percentage error in w if there is an error of 1 in the fourth

decimal of log u?

19. What error in the common logarithm of a number will be produced
by an error of 19, in the number? Ans. 0.0043.

20. The motion of an object is givenby s = ¢3 + 442 — 3¢ + 5. Approxi-
mate the distance moved from ¢ = 2 to ¢ = 2.02 sce.

21. The same as Problem 20 except from ¢ = 1to ¢ = 2.998 sec.
Ans. 51.904 units.

22. A point moves along the curve z = 3Vi, y =1 +2V:. TFind the
rectangular equation of its path and approximate the change in y when z
changes from 9 to 8.97.

23. Rectangles with sides parallel to the two axes are inscribed in the
area bounded by ¥? = 6 xz and its latus rectum. The value of ¥ for one of these
rectangles is measured as 1.5 units with a possible error of 0.04 unit, approxi-
mate the possible error resulting in its area. Ans. 0.03 sq. units.

24. If s = kpY%? approximate the relative change and the percentage
change in s for 3%, change in v and 1149, change in p.



CHAPTER VII

TRIGONOMETRIC FUNCTIONS — CURVATURE

94. Derivative of sin u. Let y = sin w. Give the independent

variable u an increment; then
Yy + Ay = sin (u + Au),

and
Ay = sin (v + Au) — sin u.

Using the formula
A B:l . I:A — B:l
sin| —— |,

. B . . +
s1nA—me—2co,s|: 5 5
we get
Au\ . Au
Ay = 2005(u+7)sm—2—~
Then
Au) . Au
Ay 2 cos <u -+ —2—> sin —-
Au Au
sin du
= COS <u + —A—z—t) . 2
2)" au
2
Let Au - 0; then
sin Au
lim <u + éﬂ) =wu, and, by §55, lim 2 _ 1.
Au—»0 2 Au—>0 _A_’l_,t
2
Hence
&y _ cos U
du :
If u is a differentiable function of z, since
dez ~ du dz’
then
d . _ du
(XI1ID) dx (sin u) = cos u - dx’

147
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95. Derivative of cos u. The derivative of cosu may be
obtained by using cither the relation cosu = sin (v/2 — u) or
cos™ = sin (r/2 + u). Using the former, we have

% (cos u) = Ed; [sin (v/2 — u)]

cos (/2 — u) - % (x/2 — u)

cos (r/2 — u) (—— d——u)

dx

Therefore

d . du
(XIV) E)—c(cosu)——smu-a-

96. Derivative of tan u, ctn u. To differentiate the tangent
function, write tan 4 = sin u/cos u. Then using the formula for
differentiating a quotient, we have

d . . d
€S U+ (sin u) — sin u - o (cos u)

d
dz (tan u) = cos? u
_cos®u +sin*u du
N cos? u dz
I S
" costu dx
Hence
d  ennz., du
XV) Z)—c(tanu)-—secu dx
In a similar manner we derive the formula
d _ ., du
XVI) ax (ctn u) = — csc’u dx
97. Derivative of sec u, csc u. Write sec v = 1/cos 4. Then
d
i(sec W - @ (cos u) _ sinu_du
dzx - cosu cos?u dz
That is,
d du
(XVII) a}(secu)—secu-tanu-a-
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In like manner we find

d du
(XVIII) ax (cscu) = —cscu-ctnu '
EXAMPLES

1. Finddy/dzify = (1/3) sin 2z — tan? 3 z.
SoLuTION.

dy _ 1 -

iz = 3 (cos 2 z)(2) — 2(tan 3 x)(sec? 3 x)(3)

=2

30032x — 6 tan 3z sec? 3 x.

2. If r = [sect (0/2) — cos? (6/2)] ctn (8/2), find dr/d6.
SorurioN. This function is of the form u-v. Hence,

dr_ (qec‘ g_ cos? Q)[(_ csc? 9)(1)]
de T2 ] 2/\¢
+ ctn g [(4 sec3 o tﬂ.n 2) (Z) 2 cos ; (— sin ) (2)]
1

/] 1 0
P 2 - — _ gect 2 = 4 2 2_.
2ctn 5 2%ec 2csc +2sec +cos 5

PROBLEMS

Differentiate each of the following functions with respect to its variable.
(Nos. 1-16.)

1. y = ctn (z/3). Ans. — (1/3) csc? (z/3).
2, y = cos’ z2
3. y =sin?5t. Ans. 5 sin 10 ¢.
4. s = tan%2¢.

5. =8in(2—3y)cos 2y — 1).
Ans. —2sin (2 —3y)sin 2y —1) —3cos (2 —3y)cos 2y — 1).

6. y = sin® 2 x cos 3 z.

7. y =sin®z-e®" 2z, Ans. (1/2) sin 4 z- €08 2=,
8. y = log sin? (3 z/2).

9. s = sin (log ¢). Ans. (1/t) cos (log t).
10. y = log (sec 3z + tan 3 z).

11. y = log {[1 — sin (z/2)]/[1 + sin (z/2)]}. Ans. — sec (z/2).
12, y = (tan )/

13. y = 4sin (z/2) — 2z cos (x/2). Ans.  sin (z/2).

secr — tan o
HinT: (sec z + tan z) and (sec z — tan z) are reciprocals. Why?

14, y = Jsecx+t,anx_
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15. y

I

2 sin? (z/2) cos (x/2).
Ans. sin (z/2) [2 cos? (z/2) — sin? (z/2)].

16. y =cse2(l —22z)ctn (1 — 2x).

Find the derivative of one variable with respect to the other in each of the
following cases. (Nos. 17-26.)

17. zy = sin 3 x. Ans. dy/dx = (1/z) (3 cos 3z — y).
18. xy = e°823,

19. cos (x + y) + cos (x — y) = 0. Ans. dy/dx = — tan r ctn y.
20. xy + ctnzy = 0.

21. sinzxcosy +cos2xsin2y = 1.
Ans. dy/dx = (2sin2xsin2y — cosxcosy)/(2cos2xcos2y — sin x sin y).

22, r2sin 36 = a cos 0. Find dr/db.

1— cos 6
23. y =log \/1 T ::;70 . Ans. csc 6.

24, rsecf = sin24.

25. z =a(@ +sin@), y = a(l — cosb).
Ans. dy/de = (sin 0)/(1 + cos 8) = tan (6/2).

26. Tt =acosf +afsinfd, y = asinl — ab cos 0.

Find dy/dx and d2y/dx? for each of the following cases. (Nos. 27-31.)

27. x =2sint,y =2 cost. Ans. — tant, — (1/2) sec3 t.
28. z=2s8int+3cost y =sint.

29. r =atanf, y = b sin 0. Ans. (b/a) cos? 8, — (3b/a?) cos* @ sin 6.

a cos? 6.

-30. = = asin®f, y

31. z

I

e y =2 + cos 4.
Ans. — (2sin4t)/e?t, 4(sindt — 2cos 4t)/e?t,

32. Derive the formula for differentiating cos u with respect to = by incre-
ments.

33. The same as Problem 32 for tan u.

98. Derivatives of the Inverse Trigonometric Functions.

Let
y =sin"lu

where u is a differentiable function of z, then

u = sin y.
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Differentiating u with respect to y, we have

%=cosy=:b\/1—sin2 =+ V1 — v
Hence

dy _dy de_ 1 au

de  du dz T \/T = dz

Observe that the double sign enters in the result. This
is because y is a many-valued function of u in y = sin™!u,
whereas u is a single-valued function of y in w = siny. Since
du/dy = cosy, and the smallest values of y for which cosy is
positive lie between —m/2 and /2, we shall ordinarily restrict
the values of y to satisfy — 7/2 =y = /2, so that the derivative
will not be negative. Then

du
d dx
XIX — (sin"!'u) = ————.
(XIX) gy st =
Differentiating ¥ = cos™ u in a similar manner, we find
du _ sin
dy Y.

Here again y is a many-valued function of w and if we restrict
y to an interval for which sin y is positive or zero, namely,
0 =y =, the derivative will then be necgative or zero, and

du  siny Vi-w
or
du
d 1) = — __gf__
(XX) d_i (COS u) - \/—1—_—1‘—2
If y = tan~' u, u = tan y, and du/dy = sec®y, then

y o+ _ 1 _ 1 |

du  sec’y 1+ tan’y 14 u?
Hence

du
d _ _dx .
(XX1) a?c(tan1u)-———~—l+u2
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For y = ctn~! u, du/dy = — csc?y. Hence
y _ v ___1 |
du ~  cesety 1 +4ctnty 1+ ul
Therefore
du
d = _ _ _dx
(XX11) a;(ctn u) = T+
In like manner we obtain the additional formulas
du
d . _ dx
(XXTII) o (seclu) = 1
where 0 =u < 7/2,or —r=u < — /2, and
du
d dx
——(csclu) = — ———e,
(XXIV) ¢ ) e =1

where 0 < u==/2,or —r < u = — =/2.

PROBLEMS
Differentiate each of the following functions with respect to its variable.
(Nos. 1-16.)

1. y = tan™122 Ans. 2z/(1 + z4).
2. y = ctn™ (1/22).
3. y =sin!6¢ Ans. 6/vV1 — 36 ¢
4, y = cos~1V1 — z2,

5. y = xseclx. Ans. 1/@ + sec™1z.
6. y = x? tan™! (a/z).

7. s =ctn71[t/(1 — )] . Ans. — 1/(1 — 2t + 282
8. ¥y = zcsc™'V1 + 22

9. y = 2%?sin! (2/x). Ans. 2 7 sin™ (2/2) — 2z/V2? — 4.
10. y = 2V1 — 22 + coslz.

11. s = %8 t.gin71 (1 — ¢).

Ans. — €8 t[1/V21 — 7 + sin ¢ sin (1 — )]

12. y = zsinV1 — 22 — V1 — 22

13. y = z tan~laz — (1/a) logV1 + a%z2 Ans, tan™? az.
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14. y = tan~1Vz? — 1 + cos™ (1/z).

15. y =3z ctnt 3z + logV1 + 922 Ans. 3 ctn13 z.
16. y = (tan™!22)3

Find the derivative of one variable with respect to the other in the following.

(Nos. 17-26.)

17. zsin'z +cos2zsin2y = 1.
Ans. dy/de = [2sin 2z sin 2y —sin~1z — 2/V1 — 22]/(2 cos 2z cos 2 y).
18. y\/ar:2 + 2z — tan'Vz2 4+ 22 = 0.

19. y¥siuz 4y = tan~lz.

Ans. dy/de = [1/(x? + 1) — y3 cosz]/(1 + 3 y2 sin z).

20. z%y? =z —sin~!2z.

21. z =sin™1¢, y = cos7lL. Ans. — 1,
22, z =sin7'¢% y = tan™! 2¢.

23. log(z? + y?) — tan~(y/z) = 0. Ans. dy/dx = 2z +y)/(x — 2y).
24, logsin?y +sect4z = 0.

25, tan™12x 4 y2-et%* =7,

Ans. dy/dx = [y?sinz ez — 2/(1 4 4 22)7]/(2 ye®s*).

26. z+ V2ay — y% = acos”! [(a — y)/al.

27. 1If an angle z is mecasured in degrees, how may you differentiate a

function of it with respect to x?

28. Answer Problem 27 for tan™! z - log cos z.

99. Applications of Trigonometric Differentiation. Many im-
portant problems involving trigonometric functions are included
under the various topics discussed in Chapter V. In fact, many
problems in that chapter may be solved readily by using trigono-
metric relations to express a required function.

Whenever the differentiation of trigonometric or inverse trigono-
metric functions is involved it is essential to remember that the
formulas were derived on the assumption that the angle is expressed
in radian measure. All these formulas depend on the derivative
of sin u, containing E—T) [(sin 8) /6] which is unity only when 6 is

expressed in radians.

EXAMPLES

1. A wall is to be braced by means of a beam which must pass over a
lower wall b feet high and standing a feet from the first wall. What is the
shortest beam that can be used?
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SorutioN. Let ! be the length of the beam and let it make an angle 6 with
the horizontal. Then

=(a+x)sccd and =z =bctno.
Hence

l =asect +bcsco;
then

dl
N %—asoc()-tan()—b(‘sco-ctno—o.

\
Solving, we have
b a sin 0 — b cos 0
cos? 0 sin?g ’
4 or
l = e sin?® 6 b 3(b
1. 100 cos0  a’ tan 0 = a’

Applying the third test, we have
2
(%é = a sec 0 (sec? 0 + tan20) + b csc @ (csc? 9 -+ ctn26).

Hence d?/dg? is positive and [ is a minimum. The length of the beam is

b\ 23 bh\2/3
“\/”(‘“) ”\/““(”)

a a
(a¥/3 + b33z,

2. The hands of a tower clock are 414 ft. and 6 ft. long, respectively. How
fast are the ends approaching at four o’clock?
SoLuTION. Let s be the distance between the ends, and 6 the angle between
them. Then using the law of cosines, we_have
s? = 62 4 (4.5)? — 12(4.5) cos @
= 56.25 — 54 cos 0.

l

]

Hence
ds . do ds _ 27sin6 a8
2sm—54sm0-a—t, and T PL
At four o’clock 6 = 2 x/3, s? = 56.25 + 27 = 83.25. Since ¢ is decreasing

at the rate of (2 — #/6) = 11 #/6 radians per hr., we have

e 117 . .
@ = 360 radians per minute.
Therefore
o7 V3 V3 ( ]1 7r)
ds - .{()0
. dt 1/83.25

- 0.246 ft./mm.

3. An acute angle A of a right triangle is computed from measurement of
the sides a and b. If 19 error is assumed in cach measurcment, approximate
the possible error in the calculated value of 4.
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SorLuTioN, Since tan A = a/b, then A = tan™! (a/b) and
bda — adb
="y

To approximate the largest possible error in A, assume that da = = 0.01 a
anddb = F 0.01 b; then,

ab .
dA = %+ m radians.
PROBLEMS
1. Find the slope of the normal to the curve x = 2 cos®t, y = 2 sin*¢ at
t = =/6. Ans. V3.
2. Tind the angle between the curves y = cos z and y = cos 2 z between
=r/2and z = =.

3. Find the maximum vertical width of the cardioid » = 1 + cos 6.
Ans. 3V/3/2 units.

4. Has lim (sin6/0) = 1 any importance in the development of the
0—0
calculus? Mention instances in which it is used.

5. Find the equation of the tangent and the normal to z = a cos 6,
y = bsin 6 at the point determined by 6 = =/4.
Ans. bz 4+ ay = abv'2, (axr — by) V2 = a? — b2
6. Find maximum and minimum values of z + 2 sin z.
7. Find ¢ if tan 0 + ctn 6 is a minimum. Ans. r/4.
8. An isosceles triangle has equal sides of 6 inches which include the
angle 0. If 6 increases 1°/see., how fast is the area of the triangle changing?
9. In Problem 8 find the intervals of 6 in which the area of the triangle
increases and decreascs. Ans. 0 < 0 < 7/2, w/2 <0 < m
10. Examine y = sin 2z — 1 for inflections. Evaluate maximum and
minimum valucs for y.
11. Tind maximum and minimum values of sin?z by calculus and check.
Ans. 1, 0.
12. T'ind the slope of a cycloid at any point.
13. Show that y = ¢722 cos 2z and y = ¢72% have a common tangent at
any common point.
14. Derive our known formulas for cos 2 8 from sin 2 6 = 2 sin 8 cos 6.

15. A planc is moving horizontally 200 mi./hr. at an elevation of 4200 ft.
How fast will an angle of clevation from the ground change if it is near 30°?
Ans. 1°/sec.

16. Find the minimum area cut from the first quadrant by a line through
1,3).
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17. Approximate the change in tan 8 if 6 decreases 15’ from = /4.
Ans. — 0.0087 unit.

18. Find maximum and minimum values for logV'1 + 22 + ctn™ z.
19. If y = sin? 3 z, is y increasing at z = =/4; is the curve concave up at
= 7/6; what is an approximate value of y if ¢ = 45° 10’?

Ans. No; no; 0.4913.

20. Find an approximation for the change in cos 8 if 8 decreases from /6
by 0.01 radian.

21. Show that a line through any point of a rolling wheel tangent to the
generated cycloid cuts the wheel at its highest point.

22. A roofer wishes to make an open gutter of maximum capacity, its cross-
section being an isosceles trapezoid with lower base and equal sides 10 in. each.
What should be the width of the top?

23. Approximate log, sin 33° if log;o 8in 30° = — 0.301 and logice = 0.434.

Ans. — 0.262.

24. A man on a wharf 20 ft. above the water pulls in the rope of a boat so
that the boat approaches the wharf at the rate of 3 ft./scc., when it is 15 ft.
distant. At what rate is the rope being drawn in?

25. A man slides a 10 ft. ladder up a wall, so that the foot of the ladder
approaches the wall at the rate of 3 ft./sec. How fast is the top of the ladder
going up the wall when the bottom is 4 ft. distant? Ans. 6/V21 ft. sec.

26. Given y = 2? —sin'z. I'ind (a) the approximate change in z for

— 0.02 unit change in y; (b) the approximate relative and percentage errors
in y for 0.02 unit crror in z.
27. Evaluate the following limits.

(a) E-Toﬂgz*;w- Ans. 2.
b ot =2, o,
© ll_nlo‘—b-‘l—n%‘“ﬁ . Ans. 1.

28. Find a point of inflection on y = (z 4 1) tan—1 z.

29. From the point A(r, 0) on the circle 22 4 y? = r? the arc AB and the
tangent AT arc drawn so that AT = AB. Find the limiting intersections of
TB with the diameter through 4 as B approaches A. Ans. (— 27, 0).

30. AB is a diameter and O the center of a circle of radius ». The chord
AC makes an angle 6 with AB. A ray of light from A is reflected by the circle
at C and the reflected ray meets AB at P. Find the limiting position of P
as C approaches B. Ans. OP = r/3.

31. Solve Problem 30 if the source of light is (a) at M the mid-point of 04 ;

(b) at N, such that A is the mid-point of ON.
Ans. (a) OP = r/4; (b) OP =2 r/5.
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32. Two diamectral paths cross a circular courtyard at right angl