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PREFACE.

Ix the following work I have endeavoured to account for the manifold
phenomena of light as electromagnetic phenomena, deriviné the same
from the fundamental differential equations for electromagnetic dis-
turbances. I have treated in Part I. the more familiar phenomena
that can be explained by Maxwell’s theory, and have reserved for
Part II. those for which his theory fails to offer a satisfactory
explénation.

In the treatment of the subject-matter, I have laid more stress
on a rigorous development of the fundamental laws of optics than
on the derivation of the many consequences or secondary laws, that
can be deduced from the former by familiar principles, and have
little to do with our conceptioﬁ of the nature of light; for the
consequences or secondary laws that can thus be deduced I refer
the reader to the various text-books on optics, in which the same are
most extensively treated. I have also omitted a description of all
experiments on the subject-matter treated and have referred to
empirical facts only where a comparison with the theoretical results
has seemed of interest.

At the beginning of each chapter I have endeavoured to give a
brief historical sketch of the subject-matter treated ; and each chapter
has been developed as independently of the preceding omes, as the
treatment of the subject has allowed. Examples pertaining to the
matter treated in the text have been added at the end of each
chapter ; these have been of great service to me in the general
treatment of the principles set forth in the text, and I hope they
may prove as useful to the reader.
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CHAPTER L.

INTRODUCTION.

Finite Velocity of Light.—Until Roemer’s discovery of the finite
velocity of propagation of light from his observations of the satellites of
Jupiter, the many theories and speculations offered for the explanation
of its manifold phenomena were of a most varied and even extravagant
nature. The further discovery of the aberration of light by Bradley
some fifty years later not only confirmed the great truth revealed by
his Danish predecessor, but showed that the light of the fixed stars
travelled with the same velocity as that reflected from the sun. Finally,
about the middle of the last century the ingenious methods devised by
Fizeau and Foucault for the direct determination of the velocity of
light within a room left no further doubt as to its finite velocity.
The discoveries of Roemer and Bradley not only gave us another
example of the continuity of nature, but they opened up a new era
in the history of optics.

Two Modes of Transmission.—If we accept the velocity of light as
finite and the phenomena of vision as a manifestafion of mechanical
energy transmitted from the luminous object to the retina of the eye,
we can evidently conceive only two modes of its transmission: either
by material particles or corpuscles, which are projected at high velo-
cities (that of light) from the luminous body, strike the retina of the
eye and impart their kinetic energy to it; or by means of a medium,
as a fluid, which carries the energy, lmparted to it by the luminous
body in the form of waves or oscillations, from one particle to the
next, until that motion finally reaches the observer, and is transmitted
to the retina of his eye in the form of a similar oscillation, which calls
forth the phenomenon of vision; this latter mode of transmission is
characterised by an entire absence of any passage of material particles

between the luminous object and the observer. The former mode of
A



2 ELECTROMAGNETIC THEORY OF LIGHT.

transmission forms the fundament of the so-called *corpuscular” or
“emission ” theories of light, the latter mode that of the wave theory.

Emission Theory.—The-emission theories are embodied in-the theory
first’ propounded by Newton and modified by him and others—to sur-
mount the many difficulties encountered in a satisfactory explanation
of empirical laws. | “Mest formidable difficulties are. met here at the
very outset, among others the assumption of such enormous velocities
as that of light for material particles; for particles travelling at such
high velocities would impart an enormous momentum to the object
they strike, and thus set it in motion; but observations have failed
to detect any such motion,* even when the supposed particles are
brought to a focus on the given object by means of a lens or mirror.
Moreover, although the law of reflection is evidently the same for
elastic particles and beams of light, it is easy to show that the former
in passing from one medium into another obey quite different laws
from those for the refraction of light: according to the former the
velocity of propagation increases with the density of the medilmql, a
law which is in direct disagreement with all empirical laws of light. |

Its Modifications.—In order to make the material particles behave
according to the empirical laws of refraction, it was found necessary
not only to endow them with many new properties but actually to
assume first the presence of an intervening medium capable of being
set into an oscillatory motion and then certain reciprocal actions
between that medium—its oscillations or waves—and the particles
themselves. The result of these many modifications was that Newton’s
emission theory finally assumed all the aspects of the wave theory
proper ; in its ultimate form it was, in fact, known as Newton’s wave
theory of light; it differs from the wave theory proper only in the
assumption of the presence of the material particles themselves and the
laws regulating the action between the same and the waves of the
medium. Such a complication of ideas, especially where nothing is to
be gained, alone justifies us in abandoning Newton’s wave theory and
aceepting in its place the simpler one, the wave theory proper.

Wave Theory.—Huygens must undoubtedly ~be regarded as the
founder of the wave theory proper; not alone because he was the first
to state it in explicit form, but because he was able to offer a satis-
factory explanation for the greater part of the phenomena then known
to the world, namely those of reflection, refraction, and double refrac-
tion (in crystals). (The difficulty Hapgens encountered in attempting to
explain the rectilinear propagation of light and the presence of shadows

*See, however, P. Lebedew : “Unt'ersuchungen ueber die Driickkraefte des
Lichts,” Drudi’s Annalen 6, 1901, vol. 11, pp. 433-458.
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(eF—"Chrapremall)_alone accounts for the little recognition accorded %&(b
theory when first stated and its entire neglect for almost a century ; it

first received attention upon Young’s discovery of the principle of inter-
ference and Frésnel’s confirmation of the same by experiment. These /1o
phenomena of interference dealt perhaps the last blow to the emission
theory, since the presence of an intervening medium capable of being

set into an oscillatory motion then became not only the essential but

the predominating feature in every theory of light. Tinally, the last
formidable difficulty besetting the wave theory, the explanation of the
phenomenon of polarisation, was removed by Fresnel’s assumption that

the light waves were not longitudinal like those of sound, as had
hitherto been supposed, but transverse, that is, that the vibrations took
place at right angles to their direction of propagation ; the rectilinear
propagation of light and the presence of shadows soon after found a
satisfactory explanatigﬂcf. Chapter V.).

The Ether.-—The medium assumed for the propagation of light is
termed “ether.” Since ether evidently pervades not only terrestial
but interstellar space, it cannot be identical with our atmosphere.
Moreover, we must assume that ether pervades all transparent bodies,
but, as the behaviour of light in such bodies is different from its
behaviour in the air, that the ether pervading the former is different
from that of the air; that is, that the properties to be assigned the
ether differ for diffcrent bodies or media. These properties are
evidently determined by certain unknown actions (resistances) between
the material particles of the given body and the particles (elements)
of the ether pervading that body ; they thus differ for different bodies.
Consequently, opaque bodies could also be conceived as permeated
by ether, and thus ether itself as pervading not only all space, both
terrestial and interstellar, but all bodies; that is, it may be regarded
as a continuous medium.

The Elastic Solid Ether.—Many ethers have already been offered
for the explanation of the phenomena of light, and many more could
readily be conceived that might give similar satisfaction. This free-
dom of choice is due chiefly to our ignorance of the properties of
the ether sought, and our consequent inability to form any concrete
conception of it.* We have observed above that the phenomena of
interference and polarisation can alone be explained satisfactorily by
an ether that is capable of transmitting transverse oscillations ; one of
the first properties to be demanded of a luminiferous ether is, there-
fore, that it is capable of being set into transverse vibrations, and of
transmitting those vibrations further. Such ethers resemble now the

* Cf. Curry : Theory of Electricity and Magnetism, p. 4.
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solid rather than the fluid, since the former alone is capable of being
set into transverse vibrations; hence the termination “elastic solid
ether,” that particular ether which possesses not only the required
property of transmitting transverse oscillations, but other properties
common to the solid.* The elastic solid theory of light was soon
universally accepted ; and it remained the accepted theory till almost
the end of the last century, until Hertz’s great discoveries, which
revealed the striking similarity between the electric waves and those
of light, suggested certain modifications in the constitution of the
elastic solid ether; we could thus designate this new luminiferous
ether as the “electromagnetic ether.” The necessary modifications to
be made in the elastic solid ether were naturally such that the
~ phenomena of light already explained by it were readily and simi-
larly deduced from the electromagnetic ether. Those text-books that
treat light from the elastic solid standpoint have not, therefore, become
entirely obsolete; on the other hand, they may be used to great
advantage by the student, and will often be referred to in the present
treatise. For the fundamental differences between the elastic solid
and the electromagnetic ethers, I refer the student to Section 1 of my
Theory of Electricity and Magnetism.

Maxwell's Ether.—We shall accept Maxwell's equations as our
definition of the electromagnetic or luminiferous. ether, and, as in
my Theory of Electricity and Magnetism, 1 shall leave it to the student
to form any conception of the ether thus defined, that is consistent
with the different properties of these equations. There are, indeed,
other ethers defined by other systems of equations; some may explain
certain phenomena, or even groups of phenomena, as satisfactorily
as Maxwell’s equations do, others are more general and thus allow
greater freedom in the choice of the properties that may be assigned
them, but none have stood the severe test of twenty-five years or
more that Maxwell’s have. This alone surely justifies us in accepting
Maxwell’s ether as the seat and transmitter of not only the electric
and magnetic energy, but that of light.

Helmholtz’s Ether.—Helmholtz’s equations of electricity and magne-
tism define an ether that is more general than Maxwell’s, but at the
same time includes the same as particular case (¢=0, % arbitrary 1) ;
it also includes other particular ethers, which differ essentially from
Maxwell’s ; many of these have been more or less extensively investi-
gated with regard not only to the electric phenomena, but to those of
light. Tumlirz makes use of such a particular system of equations

*Cf. Curry : Theory of Electricity and Magnetism, p. 6.
1 Cf. Ibid., p. 356.
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(k=0) in his book on the electromagnetic theory of light,* but the
value of his book is so greatly impaired by an unfortunate choice of
surface conditions, that it is impossible, before examining his equations
in detail, to pass judgment on their real value or ability to explain
the phenomena treated. Helmholtz’s ether is more general than
Maxwell’s, chiefly in that it is capable of transmitting not only trans-
verse, but longitudinal oscillations; the latter are represented by a
certain function ¢t that appears in Helmholtz’s equations. A pecu-
liarity of Helmholtz’s ether is that its property of being able to
transmit longitudinal oscillations is quite independent of certain other
of its properties and wice versa, provided the given medium be homo-
geneous, that is, its medium-constants € and x constants, in which case
it should be possible to eliminate this property or function ¢ from
Helmholtz’s equations ; this has, in fact, been accomplished by Boltz-
mann by means of certain substitutions. On the other hand, the
possibility of eliminating ¢ revealed its independence to the other
functions. Helmholtz’s ether could thus be conceived here as defined
by two independent systems of equations, the one representing its
longitudinal oscillations and the other its other properties. On making
Boltzmann’s substitutions we find that Helmholtz’s equations reduce to
Maxwell’s.§ Sinee now, as we know, Maxwell’s ether is capable of
transmitting only transverse oscillations—we confine this statement to
the ordinary waves, whose intensity varies inversely as the square of
the distance from the source—we can thus modify our present concep-
tion of Helmholtz’s ether, and conceive it as defined by two
independent systems of equations, the one representing its longi-
tudinal and the other its transverse oscillations. But, as all attempts
to explain the phenomena of light by longitudinal oscillations have
proved fruitless, whereas the assumption that light is a manifestation
of transverse oscillations has become empirical now-a-days, only the
latter oscillations would concern us here ; that is, only that system of
equations, which represent the transverse oscillations, need be examined.
On account of the identity between these equations and Maxwell’s, it is
therefore immaterial, as far as the derivation and explanation of the
phenomena of light are concerned, whether we regard Maxwell’s or
Helmholtz’s ether as the seat and transmitter of light, and treat the
different phenomena according to the equations of the former or those
of the latter ; but, for brevity, we shall employ the more familiar
equations of Maxwell.
* Die elektromagnetische Theorie des Lichtes, Leipzig, 1883.

+ Cf. Curry : Theory of Electricity and Magnetism, § x1.
I Cf. Ibid., p. 401. § Cf. Ibid., p. 402.
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Fundamental Equations.—The phenomena of light with which we
are acquainted are confined almost exclusively to the transparent
bodies, as air, glass, crystals, etc.—the behaviour of light on 1.;he
surface of opaque bodies, as the metals, is perhaps the only exception
of any importance. Since now transparent bodies are bad conductors,
we shall thus have to seek the phenomena of light, with the above
exception, in Maxwell’s equations for insulators and dielectrics ; these

are g
dEneds Oy
v, df  dz dy
Lo 5 N SR S (1)*
v, dt dx dz |
4w dZ_do_dB
v, dt —dy  dz )
and
4= da_d](_(gv_g\
v, di dy  dz
| 4w db _dP dR 9
AL w 495050000600 03000ERATAA 0 (2)t
twdo dQ _dP

v, dt dz dy )

where P, @, K and a, 3, y denote the components of the electric. and
magnetic forces respectively along the z, y, 2 axes, X, ¥, Z and q, ), ¢
their respective moments, and v, the velocity of propagation of electro-
magnetic disturbances (light) in any standard medium as air.

Isotropic bodies are thereby characterised that the magnitude of the
electric moment (displacement) is independent of the direction of the
force acting ; we can thus write

o LB Bt
A=4‘17P,1_Z7—TQ, ZT

D
. 4—71_1.’, ..................... (3)%
where D denotes the electric inductive capacity of the given medium.
The analogous relations between the components of the magnetic
moment and those of the magnetic force, namely
a—ﬂ—{a b—MB HE
= Spr C—E‘_‘)’, ...................... (4)§

where M denotes the magnetic inductive capacity or the magnetic
permeability of the medium, are assumed to hold for all media, as no

*Cf. Curry : Theory of Electricity and Magnetism, formulae (9, ii.) and § xliii.

+ Cf. Ibid., formulae (10, ii.) and § xliii. T Cf. Ibid., § xiv.

§ Cf., Ibid., § xxv.
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appreciable variation with regard to direction has yet been detected in
the value of this quantity 3/ in one and the same medium.

Mazxwell’'s Equations for Isotropic Dielectrics,—By the relations (3)
and (4) Maxwell’s equations can be written as follows for isotropic
media :

Ddp_dB _dy
v, dt  dz dy
DdQ_dy dol 5)*
v, dt dx dz
DdE da df

v, dt dy dr
and

Mda dBR dQ

v dt dy T dz

Mag_ep ar| o
vwdt dz dx
Mdy _d@ dP
v dt  dr  dy

Aeolotropic Media.—Media, in which the electric moment varies
with the direction of the electric force, are called amisotropic or aeolo-
tropic ; the only such, with which we are familiar, are certain crystals,
as the Iceland spar. In such media there are, in general, three direc-
tions, and these are at right angles to each other, along each of which
the electric inductive capacity becomes either a maximum or a mini-
mum ; these directions are known as the principal axes of the crystal.
If we choose these axes as coordinate-axes and denote the values of D
along the same by D), D,, and D,, we must evidently replace the above
relations (3) by the following :

D _Ds _Dsp.
X=PIP, =720, Z=72B; oo (1)
by which Maxwell’s equations (1) can be written

D, dP_dB dy
vy dt  dz dy
ERABE oy b s e ()
v, dt do dz
Dy dR da dp

v, At dy dx
Equations (2) evidently retain their above form, formulae (6).

*Cf. Theory of Electricity and Magnetism, formulae (9) and (10), p. 34.
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Tt is not, however, always convenient to choose the principal axes of
the crystal as coordinate-axes (cf. Chapter VIIL); in which case X, ¥, Z
of formulae (1) are assumed * to be given by the expressions

1 >
X= b DuP+DQ+DE) |
1/24‘_1_7r (DoP + Dgg@+ DygR) by oo 9T
Z= 4%_ (DysP + D@ + Dy )

where these D’s are the following functions of D,, D,, D;, the values of
D along the principal axes of the crystal, and the cosines of the angles
between the principal and the coordinate-axes :

D,, =D, cos®(z, x)+ D, cos?(z', y)+ Dy cos*(@, 2),

Dy, =D, cos(¢, ) cos(y, z) + Dy cos (&, y) cos (', y) + Dy cos (&', z)cos (¥,2),
ete.,

where z, 9, 2 and @, 3, # denote the coordinate and principal axes

respectively. For 2=1', y=, and 2=2, it is evident that

D12=D13=Dzs=0’
and D11=D1, Dy,=D,, Dyg=2D,;

by which the general formulae for aeolotropic mediareduce to formulae(8).

Non-homogeneous Media.—With the exception of our atmosphere,
there are few non-homogeneous media within which phenomena of light
have been observed ; the treatment of the behaviour of light in such
media would, however, meet with no serious difficulties ; the phenomena
of refraction, absorption, etc., of our atmosphere can be quite simply
deduced, only an exacter knowledge of the law of variation of its
density would be desirable ; its introduction, on the other hand, offers
no difficulty.

Transition Films.—The assumption that adjacent media are separated
by transition films, within which all quantities are supposed to vary
rapidly but continuously as we pass through the films, assuming on any
surface the values in the respective medium,} suggests a kind of non-
homogeneity ; on the other hand, it does away with all discontinuities
and thus permits an integration throughout entire space. The import-
ance of these films in the theory of electricity and magnetism urges as
simple a treatment of them as possible ; the simplest and most natural
assumption concerning their constitution is that, aside from the rapid

*Cf. Theory of Electricity and Magnetism, § xliii., pp. 435-437.
+C1. Ibid., § xliii., formulae (25). +Cf. Ibid., § v.
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and continuous change of all quantities as we pass through the films,
Maxwell’s equations (1) and (2) hold at every point of the same. The
surface conditions derived therefrom are then not only consistent with
one another but they suffice for the determination of the quantities
sought.

Surface Conditions.—If we choose the normal to the given dividing
surface as z-axis, we find, on integrating Maxwell’s equations (1) and
(2) throughout any film, the surface conditions

d e J
at Hr1=Xo)=0 } .............................. (10)
=70 B1=0B
and
d( -0
/S e 1)
R1=R0’ leQo

where the indices 0 and 1 refer to the two adjacent media. For the
derivation of these equations cf. § v. of my Zheory of Electricity and
Magnetism.

Homogeneous Isotropic Dielectrics.—Let us examine the electro-
magnetic state of an homogeneous isotropic dielectric; it is given by
the above equations (5) and (6), or, if we replace the electric and
magnetic forces by their moments (cf. formulae (3) and (4)), by
MdX db dec
v, dt dz dy
Rty do” oL (12)
v, df dx dz
MdZ da db
vy dt —dy du

~

and

Ddu_dZ _ay
v di dy  dz
Ddb dX dZ

e Rl L e SO AR PRty 13
v, dt  dz dx { )

Dde dY dX

v dt dr  dy |

It is quite immaterial which of these two systems of equations (5) and
(6) or (12) and (13) we employ in examining the state of the given
medium ; the former contains the forces acting in the medium, by
which, when determined, its state is indirectly given (cf. formulae (3)
and (4)), whereas the latter contains the moments themselves, and
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thus defines its state directly. We shall, however, follow Maxwell’s
example here and make use of equations (12) and (13).

The Electric Moments.—To determine the electric state of the
given medium, we must evidently eliminate the magnetic moments
from formulae (12) and (13); for this purpose differentiate the first
equation of formulae (12) with regard to ¢, and we have, on replacing

g and z_; by their values from formulae (13),
MPX v d (dz}'_ d__Z) d <c_ll_f_ ﬂ{()]
v, di? " D|dz\dz dz) dy\dz dy) ]|
DM #X o, de
\" 2 dtz_VX—Zix’
‘ a2 42 d? 14
where V2=W+W+5l.—32’ .................................... (14)
dX dY dZ
= =3 3 90000000000 5B 80 GBA0EEOEABEEN0000EG 15
eh detdy T’ (15)

¢ denotes the density of the real electricity.*
Similarly, we find for the other component-moments

DUPY__,. de
0,2 df? dy
DM #Z ., de
W E VT

In the given case—for dielectrics—the quantity ¢ is independent of the
time #, but may be a function of the coordinates z, 9, 2. To confirm
this, differentiate formulae (12), the first with regard to z, the second
to », and the third to 2, add, and we have
MddX dY dZ
% dt<ﬁ+@+@)=°’
or by formula (15)

g—;z O, hence « =f(1's Y, z)

The integration of the above equations can thus be performed without
any regard to the value of ¢ at the given point; that is, the accumu-
lation of electricity within a dielectric will evidently have no effect
whatever on the passage of rapid oscillations, as those of light or
the Hertzian waves through it ; its presence can thus be thoroughly
ignored, that is, we may put ¢=0 t in all such cases.

*Cf. Curry : Theory of Electricity and Magnetism, § vi., p- 46.
1 Cf. also Ibid., p. 64.
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We may thus replace the above equations by the simpler ones

DMBEX ..., DM &Y ,., DM&EZ o,
o W_VA’ v—ozd—t’?_v 7 W_O_Zd—ﬂ_v T 350 (16)
The particular integrals of these equations representing plane-
waves have been examined in Chapter IV. of my Theory of Electricity
and Magnetism, to which I refer the student here; their velocity of

propagation is % _, The Hertzian waves are also treated in the
DM

same chapter (cf. also Ex. 1, Chapter IL.).

The Magnetic Moments.—Similarly, we can determine the magnetic
state of the given dielectric, on eliminating the electric moments from
formulae (12) and (13); to accomplish this, we procced exactly as in
the preceding case, and we find

DM d? DM d? DM d?
?(1)2{ ?Zt—g=vgtl, 7]/:;)? Zlﬂ = V2b’ -1—7042{ H?‘Z:V'?c' ......... (17)
The similarity between these equations and those above (16) for the
electric moments—this similarity could have been anticipated from
the analogous parts played by the electric and magnetic moments
in the fundamental equations—renders an examination of only the
one system necessary, provided, of course, the given solutions or expres-
sions hold for both systems or one and the same system of electro-
magnetic disturbances ;, but this would not, in general, be the case,
since certain relations exist between the electric and magnetic moments
(cf. formulae (12) and (13) and Chapter II.), among others that express-
ing the empirical law that the electric and magnetic moments take
place at right angles to each other, the proof of which follows on pp.
14-15.

Plane-Waves.—The most general expression for plane-wave motion

i Y= (@2 ererrereeerseereeerereeens (18)

where y denotes the displacement of any vibrating particle from its
position of rest,  its distance from any given point in the direction of
propagation of the wave, » the velocity of propagation, ¢ the time, and
¢ an arbitrary function. The most familiar such functions ¢ are

g x\

= t+-

Y=asin n( "v)
’

y=a cosn(ti%)

or y= ae” (-+3) SN Ly B0 e RS AR (20)
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where e denotes the so-called “base” of the natural system of
logarithms and ¢, the imaginary unit, - 1.
The expression

y=a sinn(t—%), .............. 23000008A00000G (21)
evidently represents a simple plane-wave of amplitude a propagated
along the z-axis in a sine curve with the velocity v: Since y remains
unaltered when £ is increased by _f, it follows that the periodic time

T=="; the wave-length A is thus
n

) 2
A=vT= “—77-@, hence n="-".
n A
We can, therefore, write the expression (21)
y=a sin & (vt z)=asin 27r(T )\) ................. (22)

the angle (vt x)= 27r< T A) is called the “phase” of the wave.

The other expressions (19) and (20) can be similarly interpreted.

The Intensity of Plane Waves.—We define the intensity of an
electric or magnetic oscillation or beam of light at any point as the
average kinetic energy I of the vibrating particle or particles at that
point. To determine the average kinetic energy of the plane-wave,
represented by formula (22), at any point, differentiate formula (22)
with regard to ¢, and we have

dy

27y
B Tacos—(vt z)

and hence its kinetic energy at any time ¢

m(dy\2 _ 2ma%® , Ox
§(¢lt> =—5z—@*cos T(@t—w),

where m denotes the mass of the given particle ; its average kinetic
energy I is, therefore,

dy ma2? (7 g
I= TJ ( > dt= Ny aQJ 2 cos? (vt — ) d
[

(]

_mz%? mw2a? m7r2a
T -‘. |:1 + cos —(vt—w)]dt— =TT ...(23)
The intensity of an ordinary* electromagnetic or luminous plane-
wave thus varies directly as the square of its amplitude and inversely
*Cf. p. 5.
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as the square of its wave-length or period of oscillation. This law
is not restricted alone to plane-waves, but it also holds for spherical
waves (cf. ex. 3 at end of Chapter). In photometry, where we compare
sources of light of the same period of oscillation, we thus have the
following simple relation between their intensities :

. -2
JRRIGS0ERE

that is, the intensity of the one is to that of the other as the squares of
their respective amplitudes.

We cannot easily compare the intensities of waves or beams of light
of different wave-length or colour, since they produce quite different
impressions on the retina of the eye; this is, of course, due to the
fact that the expression for the intensity contains the wave-length
(cf. formula (23)). We encounter, in fact, this same difficulty to a
less degree in most photometric measurements, where the given sources
are assumed to emit waves of the same wave-length.

Principle of Superposition.—The principle of the superposition
of disturbances or waves is recognised as empirical in the theory
of light, since all problems treated according to the same agree
with observation and experiment. We can state the principle of
superposition as follows: When two or more disturbances are simul-
taneously brought to act on one and the same particle of a medium,
the resultant disturbarice is determined by the direct superposition of
the single disturbances (cf. also Chapter IV.).

Doctrine of Interference, Simple and Compound Waves.—The
doctrine of interference is only another form of or sequel to the
principle .of superposition. The acceptance of some such principle is
evidently indispensable in the treatment of most problems on light;
it must, indeed, be employed at the very outset in the examination
of the particular integrals or solutions of our fundamental equations.
With the exception of the phenomena of interference proper (cf. Chapter
1V.), the only other simple particular integrals of these equations, (16)
and (17), that would concern us here, are those that represent the
so-called “stationary ” waves. We shall now find it convenient to dis-
tinguish between the “simple” waves, represented by such simple or
fundamental particular integrals as (19) and (20), and the “compound ”
wave, the resultant obtained according to the principle of superposition,
of two or more such simple waves ; the stationary waves belong to the
latter class, as we shall see directly.

Stationary Plane-Waves.—The “stationary” waves are so termed
because they have apparently no velocity of propagation, their crests
and troughs remaining stationary with regard to their direction of

518 orfrion oAl RO LS (24)



14 ELECTROMAGNETIC THEORY OF LIGHT.

propagation. The stationary plane-wave must, therefore, be repre-
sented by some such function as
. Am O
PRI =2 7605 S48, 6aboos0sa 035a0605a800500000 25
which can also be written

¢ . 2m o . 2r )
y=§s1nT(wf—l’)+§Slﬂ by (vt +);

that is, according to the principle of superposition, we could thus con-
ceive this stationary plane-wave as the resultant of two simple plane-

waves of one and the same amphtude - and wave- length A, the one

advancing with the velocity » along the z-axis, and the other with the
same velocity in the opposite direction. It is evident that the given
expression (25) is also a particular integral of our differential equations
(16) and (17).

Other compound waves, the resultants of simple waves of different
amplitude and phase, are treated in Chapter IV. on interference.

The Electric and Magnetic Oscillations take place at | to each
other.—Lastly, let us return to the proof of the law stated on p. 11,
namely, that the electric and magnetic oscillations take place at right
angles to each other, restricting ourselves thereby, as above, to plane-
wave motion. Take, for example, the plane-wave

9
y=asin f)%r (I ) e e e e (26)

and let y correspond to the electric moment ¥ of formulae (12) and
(13); the other two moments, X and Z, vanish, and formulae (13)
reduce to

Dda_ _av_

NI

D db Dde dY

wd=0 e Z= %
hence a=b=0 (cf. p- 10),
and c—Dj%th

replace here ¥ by its value ("6), and we find

A.l . 2A
= — cos /\(vt w)dt_ﬁ— n{(vt—x)

l)

or, since v= J%ﬁ (cf. p. 11),

o0
c=a —sm ——(vt z);
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that is, the (resultant) magnetic oscillation accompanying the given
electric one takes place parallel to the z-axis, and hence at right angles
to the given electric oscillation. Since these two oscillations otherwise
differ from one another only in amplitude—their wave-lengths and
phases are the same—it follows that the crests and troughs of the one
wave will coincide, with regard to direction of propagation, with those
of the other; that is, the electric and magnetic moments will attain
maxima simultaneously and periodically at any given point. These
oscillations are represented graphically in the annexed figure.

NN
[

F16. 1.

Relative Position of Crests of Electric and Magnetic Plane-Waves.
—Although the above law is quite general—for its proof see Chapters
II. and IIL* —we cannot conclude that the relative position of the
crests or troughs of all electric waves and the magnetic ones accom-
panying the same is always that just deduced; for example, the
stationary electromagnetic plane-wave behaves quite differently in this
respect. Let us examine it briefly ; take, for example, the stationary
plane-wave

Y =a sin - vt cos Qﬂ-x
¥ X ST

formula (25), as our electric wave ; we have then
X=7=0 and y=17,
and formulae (13) reduce to
a=b=0

and c=%’j%dt=% azfsin%rz‘tsin?%xdt
=" %08 25 vt sin =" a,\/ A Cos el
D A A D A A
It is evident from these expressions for ¥ and ¢ that
(1) for z=0 and t=§,
Y=a and ¢=0,

*Cf. also Maxwell : Electricity and Magnetism, §§ 790-791, vol. ii., pp. 339-401
(second edition).
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Spherical Waves,—Waves that diverge radially from a common
centre or source at finite distance are termed °spherical”; this is
evidently both the more general and the commoner form of radiation,
the plane-wave being only a particular case of it, that, namely, where
the common centre of the advancing wave-fronts lies at infinite distance.

The general equation of wave-motion is

&
R @7)

where » denotes the velocity of propagation of the waves represented
by the function ¢. For plane-wave motion propagated along the
z-axis this equation evidently assumes the simpler form

2 2
%;,f:?ﬂ %}f .............................. (28)

Purely Spherical Waves.—To obtain the particular form assumed
by equation (27) for spherical wave-motion, we shall make use of
that property, by which the simplest kind of spherical waves is
characterised ; these would evidently be waves that diverge radially
with one and the same intensity in all directions from a common
source ; and they would thus possess the common property that their
wave-function, ¢ of formula (27), be a function of r alone, the distance
of any wave-front from its source, and not of the coordinates z, ¥, 2
singly ; let us term such waves “purely ” spherical waves. We may
thus express V2¢ here as a function of  and £, on the assumption that
¢ itself be a function of these variables only. By the analytic relation

r2=x2+y2+z2,

d¢_dp dr_déw
dz " drdz drr

a2 d(l d¢>x 1dé_d (1 d¢> 1d¢

we thus have

da? = da\r dr rdr dr\rdr rdr

B d a2d 1dg
“e @ e dr r dr

and similar expressions for

» ¢ ¢,
{ W and FAE
; P?+yP+2d% P+ +2P dqb 3d¢
hove Br=S® g, B @ ror
_P¢_ 2dp
Tdr T rdr’
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Equation (27) can thus be written here
¢, <d2¢ 2 d¢>

2= \ar rdr/)
On replacing here ¢ by the new variable

VER 2 SRR PR (29)

1d% o d%

we have S &

which for 7 = 0 reduces to

d? dxy

dt.‘gﬂz - S (30)

“This equation is similar in form to those that represent plane-waves ;
the only difference is that the radius-vector r takes the place here of
one of the coordinates z, y, # (cf. formula (28)). The solution of

the latter was
$=fl o).

The corresponding solution of the given equation (30) for purely
spherical waves would thus be

Y=f(r o)
or, by formula (29),

ey 2 R (31)

where f is an arbitrary function of (r % ).
The function ¢>=1~ f(r—uvf) represents a system of spherical waves

diverging radially with uniform velocity, and one and the same in-
tensity and phase in all directions from a common centre r=0; their
phases remain the same, as they advance, but their amplitudes decrease
inversely as the distance 7, since ¢ decreases as r increases (cf. also
pp- 72-74 of my Theory of Electricity and Magnetism). Hence the
empirical law that the intensity of a (purely) spherical wave varies
inversely as the square of the distance from its source.

On the other hand, the function <i>=% f(r+vt) would represent a

system of spherical waves, converging radially with uniform velocity
and one and the same intensity and phase in all directions towards
a common centre ; their phases remain the same, as they advance, but
their amplitudes increase inversely as the distance 7.

The Point r=0.—The determination'of the behaviour of the given
spherical waves at the point r=0 would require special investigations
and these would naturally have to be of a purely mathematical —
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character—since the above equation (30) does not, as we have observed
above, necessarily hold at that point. The purely mathematical treat-
ment of such physical problems seems to me, however, to be seldom
justified, and we surely cannot be surprised when it leads to unsatis-
factory or even absurd results; for what is to be understood by the
presence of a system of waves or the occurrence of a natural pheno-
menon in a mathematical point? It is, therefore, customary to exclude
such points from the region treated, as we shall do later in Chapter V.

The Derivatives of ¢ as Integrals.—We have examined above two
classes of particular integrals of our equation of wave-motion (27),
the plane-waves and spherical waves (31) of the simplest kind; the
latter are of particular interest, since the derivatives of any such
integral or function ¢ with regard to z, 7, z are also particular integrals
of our equation of wave-motion, provided of course the same can
be formed and physically interpreted. This follows, since our equa-
tion of wave-motion (27) is both homogeneous and linear, and its
co-efficient ¢? a constant. These derivatives of ¢ form a new and
interesting class of particular integrals of our equation of wave-motion;
each such integral is a compound * integral (cf. p. 13), that is, it
consists of two or more terms—mnot necessary integrals themselves—
which are thereby characterised that they contain the different powers

1 . g .
of ;a8 factors. Let the following examples serve as illustrations of

this new class of integrals.

The Particular Integral fli)
x

d¢ df1 _xdf
%=m[;f(rivt):|—r—2%—ﬁﬁ

or, since z =1 cos a, where a denotes the angle between the radius-vector

r and the z-axis,
dp (1df 1 39
%_(_--_—-f>cosa. ......................... (32)

This integral is a function not only of 7 and (r%of) but also of the
angle a. For a=g the expression for g—j vanishes, whereas for a>72£
it reverses its sign; it thus follows that there will be no disturbance
throughout the yz-plane, and that on the one side of this neutral plane
the oscillations will take place in an opposite direction to those on the

*The word ‘compound ” is used here in a somewhat different sense from
that employed on p. 13; but, as in any given case, the meaning intended is
apparent, we shall make no further discrimination between the two
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other. The amplitude, and hence the intensity, of the oscillations will
thus decrease, as we recede over any sphere, r= const., from the z-axis
towards the neutral (y2) plane, where both vanish.

Since the expression (32) consists of two terms, we can conceive the
given wave as the resultant of the two waves represented by those
terms. We should observe, however, that, although the expression
itself is a particular integral of our equation of wave-motion (27),
it does not necessarily follow that its single terms are also, or, in
general, that every compound wave is the resultant of two or more
waves, that is, waves in the sense that the functions by which those
waves are represented, be particular integrals of our equation of
‘wave motion (27).

The amplitude of the given compound wave can be determined
by the method given in Chapter IV—it is the resultant of the
amplitudes of the two waves 717‘%[/; cosa and —»rj;cosa determined
by that method. Since the amplitude of the. latter varies inversely
as the square of the distance, and that of the former inversely as
the distance itself, it follows that the amplitude of the given wave

would approach that of its one simple wave, —]—;cos a, near its source
7

and that of its other, % gcos o, at greater distances from it ; the wave

_l;cosa would thus predominate near the source of disturbance

and the wave i .dl cos a at greater distances from the same.

rdr
The particular integrals d and - d) evidently represent similar waves

dy
to that just examined.
The Particular Integral d—‘d_)
dr?
¢ _d (z af = f
da? " dz\r2 dr~ 13 >

_lo_l[__lf +7 <1 df f)xg

2 dr Pdr )
== :j;—r];cos%t+l2 —f(l —3cos?a) - lsf(l - 3 cos?a)
....... 33)
1df f Lad¥f 3df 3f (
o <r2 dr_r_3>+(; it Rdrts >cos2

As above, we can conceive the compound wave, represented by this

integral, as the resultant of the three waves, represented by the three

o s AL 1 ; c .
terms in o and et of which that integral is composed, and advancing
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quite independently of one another with intensities that vary inversely
as the second, fourth, and sixth powers of the distance.

On the other hand, we could conceive the given compound wave as
the resultant of the two waves

14d 1 d2 diss
L (L Ko

The former, as function of 7 alone, represents a purely spherical wave,
or one that is emitted radially with one and the same intensity in
all directions from the given source. The latter is not a funection of
r alone, but contains cos?a as factor; the disturbance represented by
it is thus confined chiefly to the region round the «-axis, diminish-
ing rapidly in intensity, as cos‘a, as we recede along the surface of
any sphere with centre at origin from that axis towards the yzplane,
throughout which it vanishes entirely ; on either side of this neutral
plane the given disturbance is one and the same. The amplitude of
the purely spherical wave is the resultant of amplitudes that vary
inversely as the square and third powers of the distance, whereas the
amplitude of the other component wave is the resultant of amplitudes
that vary inversely, not only as the square and third powers of the
distance, but as the distance itself. The given compound wave would,
therefore, be represented throughout the yz-plane alone by the purely
spherical wave, and in the immediate neighbourhood of the z-axis,
but especially at greater distances from the source, approximately by
the other component wave.

The particular integrals 8% ol L2 represent similar waves.
dy? dz?

The Particular Integral ——d) >

a2
dxdy
45

LN (AT Ry

T dr\etdr 3) 3\dr2 rdr’ 12

If we denote the angle between the radius-vector r and the w-axis
by a, as above, and that which the zr-plane makes with the zy-plane by
0, as indicated below in figure 4, we have the following relations
between these two systems of co-ordinates :

z=rcosa,
y=r sin a cos b,
z=rsinasin §;
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by which the above expression can be written
a2 @*f 3df
ZZZZT:/ r (drl rdr
This function evidently represents an even more complicated dis-
turbance or, more strictly, distribution of the amplitudes according to
their magnitudes and direction of oscillation over any given sphere,
than those already examined. Here not only the yz- and zz-planes are
neutral planes, but the z-axis is also a neutral axis, or one along which
no disturbance appears, whereas the direction of oscillation is reversed,
as we pass through either neutral plane.

+ f) sin a cos « cos 6.

2 x;,‘V;Z

y
FiG. 4.

The Particular Integral A+ p4v=n—It is evident that

'
dardyrdz”’
the higher the derivative of ¢, the more complicated the disturbance
represented by that derivative. Although we cannot enter into the
further explicit examination of such particular integrals here, we shall,
nevertheless, call attention to some of the properties peculiar to them
in general. A glance at the above solutions shows that the »n™ deriva-
tive of ¢ would have the form

: : : 1
Py(cos o, sin a cos 8, sin asin ) r"_“lf
14
+ P (cos a, sin acos 6, sin a sin 6)

+ ...P(cos a, sin a cos 6, sin a sin 6) n_lk = 37{

"f

+...P,(cos a, sin a cos §, sin a sin 0)

where P, the coefficient of the %+ 1** term of this series, denotes a
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function of the n™ degree in cosa, sinacos6, sinasin®; any given
coefficient P, is evidently a function not only of the integer £ but also
of the n derivatives taken or the number of differentiations of ¢ with
regard to , 7, and 2 respectively.

The form of any coeflicient 2, determines the law of distribution of
the amplitudes * of the wave £ over any given sphere, and the other
factors the law of variation of those amplitudes along any vector, The
total resultant disturbance at any point would thus be determined

not only by the various coefficients P, but by the factors ——-; and

n——k+1
df ~k=0, 1 2...m; its actual determination would require, however,

cons1derab1e calculation, especially for large values of n, as we shall see
in the following chapter. Near its source the given disturbance would
be represented approximately by the first term or terms of the series
i

(34) and at greater distances from it by the last term, —* i e

of the same.

We have just observed that the form assumed by any coefficient Py
depends upon the number of differentiations of ¢ with regard to #, 7,
and z respectively ; the number of such coefficients P, of the n™ degree
for any given % evidently increases rapidly as n increases. Kach and
every such coefficient represents a given particular law of distribution
of the amplitudes * ; other laws than those determined by any such
group—#4 given—could be expressed by the sums of these different
coefficients ; let us denote such a sum of P;’s by ZP,. It is now shown
in the theory of spherical harmonics that any given law of distribution
over any finite plane can be represented by a similar coefficient P, or
2P, ; hence it follows that any pencil of plane-waves, whose amplitudes
shall be distributed over any plane pierced by that pencil according to
any given law, however complicated, could be represented analytically
by some given series (34) or sum of such series, provided that pencil be
L 2T or 3220 _of the
spherical waves, represented by that series or sum of series, at a very
great (infinite) distance from their source.

or terms

conceived as the residual—represented b,

* For brevity, we use the expression *distribution of the amplitudes "’ instead
of ““distribution of the amplitudes according to their magnitude and direction of
oscillation.”
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The following relation would, therefore, hold between the intensities of two
ach simple spherical waves of one and the same wave-length (and phase),
I L=ar? s ek e 99990060950 90AG0AIEEHIEKD (1)

(Cf. pp. 12-13.)

Cor. 1. For one and the same wave (a; =a,) this proportion would assume the
‘f.avmilia.r form I: L=r2: 0
(¢, pp. 12-13 and formula 24.)

Jor. 2. If we make I, =1, which is customary in photometric measurements,
proportion (I.) would give y tay =1y i 7

the amplitude of the one wave is to that of the other as r,, the distance of the
one eye of the observer from the source of the former, is to 7, the distance of his
other eye from the source of the latter; these distances are determined by

measurement.

0
5 4. The average kinetic energy of any particle of mass m of the spherical wave

' ‘¢ = l: ST cos o sin w:l sin a cos a cos 6
S rL\2 A YN @ s
: mrh?a® (16 1222 9\ ., .,
is N ;‘E<>\_4+W+7_‘*>Sm o cos®a cos?d.,
y [ 472 2 .
We have d¢ 2 [27” ( u 5 ) sin w — li: v cos w:l sina cos a cos 8,
1 2m1r2v2 o2 . /‘ 4n?
hence = 7 2 sin? 2 2 2
I= ey aSinfacos’a cos® |:< - ) sin%w
127 /472 3 2
e e 352 dt
N ( 2 r2>sm w COS + cos w]
_mmv a?

2 181r
=T 2sm acos2acos20|[2< *T) )\21_:]

4r? 3 1872 6r/4x® 3\ ., |7
[2< _r_?) —W]smwcoew+>\r< 32 —P)sm wl
mm2? a? (167t 1272 ) Y
® Tﬂ( M T
The following relation would thus hold between the intensities of two such
spherical waves of one and the same wave-length (and phase) :
I, : L=a2r8(16m4r + 12022 2 + ONY) : a.2r 8(16 7yt + 1202022 + 9N%). ...(IL.)

Cor. 1. If we make I,=1,, as in photometric measurements, this proportion

would give the following relation between the amplitudes of the two waves:
a2 1 a2 =7 516wyt + 12020212 + 9N : 7 5(16m 4 ® + 120203 2 - ONY),

Cor. 2, If the wave-length A is small in comparison to the distances r, and r,
of the given sources from the point of observation—this would be the case with
light-waves—the last proportion would assume the familiar form :

ay:ay=n7y (L=1L)
5. Show that the functions

3 %sin Qwvt cos2”7
=-s8Iin — -7
17y A A

9\ .
i sinZa cos?a cos?d.

OICNES 2r
and ==gin S—vt sin =~
bq Zan )\vt sin — 7

represent stationary spherical waves.
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6. Show that the coefficients Py of formula (34) assume the following forms :
(a) For n=x=1, up=v=0,

Py=—cosa, P,=cosa.
(b) For n=A=2, u=vr=0,
P,=—(1-3cos?a), Py=1-3cos?a, P,=cos%.

and (¢) Forn=2, A=u=1, »=0,

P,=3 sinacosacos():gsin% cos b,

Ri=I= gsin 2a.cos8, P,= lsm 2a cos 6.

7. The particular integra.l ¢has the form

3 & £
Z—;:co;ai£+3(l "cosga)cosa 2o

1 df
™ dr

—3(3 -5 cos?a)cosa—, ——+3(3 -5 cos?a) cosa —, f

By formula (33) we have

Pe_d(ldf f V& 3 df 3f)
dw dx(rzozr 73>+ T\B A rarts )t

_ed(1df_f\ Bd(1a_3df % 2( dif_3df+3f>
Trdr\r2dr 1 1dr 7 di?” 7t dr 'r-")+ Sdrt ridr 8

31(_1 & 3 df 3f)+x3 1 & 6 15df 15f)

r2dr? rdr’ ot F(ZT-’_F‘dT? 7 dr-

B 1d 3df 3 s (LABf 6 d*f 15df 15
=3cosa (Tgw—pd—ﬁ )+°°“<;Zz}s‘r2d72+?3dr r‘f)

The coefficients P;, of formula (34) thus assume here the form
Py=3(3-5cos%)cosa, P;=—3(3-5cos%)cosa,
Py=3(1-2cos?a)cosa, Py=cos’a.

8. Show that the coefficients Py, of formula (34) assume the following forms :
(2) For n=3, A=2, wu=1, »=0.

Py=3(1 - 5 cos?a) sin a cos 6,
P,= -3(1 -5 cos%)sinacosé,
P,=(1-6cos?a)sin acos 6,
. Py=sin a cos? cos § =é sin a sin 2a cos 8 ;
and (b) For n=38, A=pu=»=1,
Py= —15sin2%a cos a sin 6 cos § = — % sin a sin 2a sin 26,
2 =l49 sin « sin 2a sin 26,

8 ot e 3
Py= - sin asin 2a sin 26,

Py= - i sin a sin 2a sin 26.



CHAPTER II

SPHERICAL ELECTROMAGNETIC WAVES: PRIMARY AND
SECONDARY WAVES; PECULIAR PROPERTIES OF
SECONDARY WAVE; THE ROENTGEN RAYS.

Wave-Functions and Electromagnetic Wave-Functions,—In the pre-
ceding chapter we have sought solutions of the equation of wave-motion

d? . . ' s
—'-?=1;2V2¢> ; not only these but all particular solutions of this equation

are particular integrals of any or every one of our differential equa-
tions (16 and 17, I)* for electromagnetic disturbances in homogeneous
dielectrics ; but it does not necessarily follow that arbitrarily chosen
particular integrals of the former will be particular integrals of our
systems of equations ((16), I) and ((17), I), that is, that the same
will represent an electromagnetic wave, for not only do certain
relations hold between the components of the electric moment and
others between those of the magnetic moment, but the latter are also
always related to the former; and we have, in fact, made use of those
very relations to obtain our fundamental equations in the given
familiar form ; those relations were

dX aY dz
%"‘ay +?ZE=O ............................. (1)

da db de
i —t+ -t —=0 2
i Tty T gm0 e )

(cf. p. 10), or there is no accumulation of electricity or magnetism in
the given dielectric.

A more convenient System of Differential Equations for Electro-
magnetic Waves.—It will now be found desirable to have a more
convenient form of expression for the electric and magnetic moments
than the above given one, the differential equations (16 and 17, I)

* In referring to formulae of other chapters, we shall insert the chapter directly
after the formula in question.
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with the six variables X, ¥, Z, a, b, ¢ and the conditional relations (1)
and (2) between the same ; such would be a single system of differential
equations with three variables and one conditional relation between those
variables (potentials), from which the electric and magnetic moments
could readily be deduced (see below). For this purpose we first replace
the three variables X, ¥, Z by four new ones, U, ¥, W, and ¢, which
shall be determined as functions of the former by the four equations

X dw av 1 dy

D™ dy d: 4w dx

Y _ dU a7 _ 1 dd\ (3)
D de dx 4w dy
gy el L G
D dr dy 4= dz
aU dv 4dw
and dr +@+—%=0. ............................ (4)

As we are replacing here three variables by four, we can evidently
assume any given relation, as (4), between the latter ; this is, in fact,
necessary, if the new functions shall be determined uniquely.

Differentiate, next, equations (3), the first with regard to z, the
second to 4, and the third to z, add, and we have

7(5) 3 ()5 (0) = -5

or, since D is constant,

dX dY dZ  D_,, .
dz +W+ e I;'V ¥
hence, by formula (1), v =0.

It thus follows from the well-known theorem from the theory of the
potential that ¢ also vanishes, namely: “If 2 =0 at every point
of any region, and ¢ vanishes at infinite distance—this is, of course,
assumed in all such physical problems, ¥ itself then vanishes at every
point of that region.”

Formulae (3) thus reduce to

X dw av
D dy dz
¥ au_dwl )
D dz dr
Z dv dU
D dr  dy

The electric component moments, X, ¥, Z, are replaced here by the
three new variables, U, 7, /¥, and the conditional relation (1) between
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the former is thereby fulfilled, being replaced by a similar relation (4)
between the latter.

We next replace X, ¥, Z in formulae (13, I) by their values (5) in
U, V, W, and we have

1da d?V d2U d2U d&*W d dU dV 4dw
(L8707 o
de " dy = dz

v, i dady  dy? T Y dadn ™ d

1 da
or, by formula (4), — =2y
v ( v, dt
o 1 db
and similarl == =V 6
Y vy dt ®)
1de B
’U—Ocﬁ_ -V

Since the electric moments X, ¥, Z are particular integrals of the
equation of wave-motion (27, /) (cf. also formulae (16, I)), whereby,
however, condition (1) must always be fulfilled, we shall assume that
U, V, W are also particular integrals of the equation of wave-motion
or so-called ‘wave-functions,” which shall satisfy condition (4) ; the
moments X, ¥, Z remain thereby wave-functions, since the derivatives
of any wave-function are also particular integrals of the equation of
wave-motion itself (cf. Chapter I.). Formulae (6) can then be written
1 da 1 42U
% &~ R aE
with similar equations for & and ¢, or integrated,
a= —Z—g%?+f(%: Y 2)s _
with similar equations for b and ¢, where f(z, , z2) denotes the initial
magnetic component moment along the z-axis at given point (z, ¥, z).
[, y, 2) = 0* would denote that the given medium contained a certain
quantity of magnetism that remained constant during the passage of
the given waves; since any such function would evidently have no
effect on the oscillatory behaviour of the medium (see p. 10), we can
therefore put f(x, 5, 2)=0; and we have
5, dU
T

and similarly b= -2 %’ i e e (1)

* Physically speaking, f(x, y,2)=0 would indicate the presence of foreign
bodies, as permanent magnets, in the given dielectric, which has been assumed
above to be homogeneous.
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To determine the component-moments of the magnetic wave that
accompanied any given electric wave, we should, therefore, have to find
U, ¥, W as functions of X, ¥, Z by formulae (5), and then replace
these auxiliary functions by those values in formulae (7). It is, how-
ever, customary to assume U, ¥, /7 as given, and to determine X, ¥, Z
as functions of the former. '

Let the following problems serve as illustrations of electromagnetic
spherical waves :

Problem 1. Let U, ¥, 7 be given by the wave-functions

dep do
U=0, V=- 7 W—@* ....................... (8)
where ¢ shall denote any purely spherical wave-function (cf. p. 17).
‘These values evidently satisfy the given condition (4).
We replace U, ¥, W by these values (8) in formulae (5) and (T7),
and we have y & BV d2p  Z d2¢
D dET & DT Tdudy DT T dwdl?
v, d*p v, d?
Sk o= USsinm =0 dt;y
(cf. also Ex. 1 at end of chapter).

Since we are assuming that ¢ is a purely spherical function, that is,

a function of r and ¢ only, the following relations will hold between its

derivatives : dé qu 1/ dp d =

dy drv dz dr 7
d* 1 dqs_H 4 (1 d¢> 1d¢ (1 d¢)
dy

dy? "7 dr rdr) 7 dr r dr
5 d2qs 1 d¢ (1 d¢>
Y 2= rart? dr\r dr
¢ d (1 dé 1 d\ z
dedy =YT\r dr) Yar <1' dr)
and similarly ) d 1 dpyo
dedz r dr

by which the above formulae for the electric and magnetic moments
can be written X 2dé 2+24d (1 d ¢)

p=rart r  dr\r dr

Y awyd/1dé

D‘“?%(i dr) 1ok (9)
Z_ _we d (1dgy

DR (Tr(? dr)

* H. von Helmholtz, Vorlesungen iiber die elektromagnetische Theorie des Lichis
§§ 36 and 37, pp. 125-130, :
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and a=0
d2<,b
@2 r didr e Aot T E s (10)

2 r didr

Electric and Magnetic Oscillations at 1 to each other.—The
analytic condition that two moments, forces or vectors, f and &,
stand at right angles to each other is

cos(f, h)=cos(f, ) cos(h, )+ cos(f, y) cos(h, y)+eos(f, zycos(h, 2)= O,
S te S by

or, if we replace these cosines by the quotients pal and 7

ZZ, %, where f, fy f; and hy, hy, hy denote the components of f and %
respectively along the z, y, z axes respectively,

cos(f, h) = N kl +f2 i f3

FAT R e

or Jihy+foho+f3ha=0. (11)

The following relation evidently holds between the values (9) and
(10) for the component electric and magnetic moments X, ¥, Z and
a, b, c:

Xa+Yb+Zc=0,
which interpreted according to formula (11) expresses the familiar Jaw:
the electric and magnetic oscillations take place at right angles to each
other.

Magnetic Oscillations at | to Direction of Propagation.—Let us
first examine the magnetic oscillations (10) ; we evidently have not only

az+ by + cz=0,

or, by formula (11), the magnetic oscillations take place at right angles
to their radius vector, but, since a =0, also
by +cz=0,

or they take place along the parallel circles intercepted on the spheres
with centres at =0 by the planes parallel the yzplane. Since the
resultant magnetic moment is given by
A/z/2+22 d?¢p Y%y adz—"s

r didr =" *dtdr
where a denotes the latitude of any circle with regard to the z-axis as
pole, it follows that the amplitude of the given oscillations will vary

as the sin a, as we pass along any meridian from either pole, where it
vanishes, towards the equator, where it reaches a maximum. The

ViEr =
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magnetic oscillations could thus be represented mechanically by the
periodic oscillations of spherical shells about their (x)-axis.

The Electric Wave as Resultant of two Waves,—As above, we can
conceive the electric wave represented by formulae (9) as the resultant
of the two waves [ d¢;

Sen g Y=Z=0, (12)
and
= pr gl T s ddin B s a0
D r dr\r dr)) D r dr\r dr)” D r dr i

rodr

The former oscillations evidently retain one and the same amplitude
and direction of oscillation, that parallel the z-axis, over one and the
same sphere with centre at r=0;* they could thus be represented
mechanically by the periodic oscillation of spherical shells with centres
at r=0 along that axis. The oscillations X", ¥, Z“ take place along
the meridians of the spheres with centres at =0 ;* this follows from
the two analytic relations

X'a+ Yo+ Z'c=0,
or these oscillations take place at right angles to the magnetic ones,

that is, to the circles intercepted on the spheres with centres at r=0
by the planes parallel the yz-plane, and

X”x"l' Y”y+Z”Z=0,

or they take place along the surfaces of the spheres with centres at
7=0. The resultant electric moment X", ¥, Z” is evidently

: D d /1 de¢
0} "y "y — 2,22 272 252 = —
NXE5 Y247 7 VY 2% A oty dr(r dr)

D . d/1d
B — d /1 d¢
=Dyt 22 d—r<;~ W)

The Electric Waves at great distance from Source.—For large
values of r the moments X', ¥’, 27’ may be neglected in comparison
to the moments X", ¥”, Z”, and thus be rejected ; that is, the
periodic oscillations parallel to the z-axis are gradually lost sight of,
when compared with those along the meridians, as the given dis-
turbance recedes from its source. This becomes evident when we

*Cf. v. Helmholtz ; Vorlesungen iiber die elekiromagnetische Theorie des Lichts,
p. 128,
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replace the purely spherical function ¢ by its value I f (r £ ot) (cf.
formula (31, I)) in formulae (9) and also :f, gz by the direction

cosines a, 3, y. We have then
TRV WA TPRTTY)
20 3 [V 3]

r2dr 1 rar rdrt 1
N 1&f 34 f 3 — (13)
p= -8 A natss]
75 1d% 3 df 3
D= " e rart f ] )
which for large values of 7 could evidently be replaced by
X_B+y2d¥f Y_ ofd¥ g__ﬂ_ql_f (14)

DT v @& DT v d® DT rar

The Electric Waves near Source.—Near the source of the disturb-
ance the following formulae would evidently be approximate :

X 1-3 Y 3 Z_ 3
5= T30‘f, 5= - O‘/Gf, 5 “Vf. ............ (15)
Observe that the electric moment X is here a function of both the
moments X' and X”, and is not, as might be supposed, given alone by

the latter.

The Magnetic Wave.—On replacing ¢ by its value = f and ? g

2
P by
a, B3, y in formulae (10) for the magnetic moments, we have

a=0,

% _ﬁ_lﬂlf]
2V | 7 didr 2 di
vO,B lﬁ_ldf

Tl rdidr 2dt

For large values of r the resultant magnetic moment is thus approxi-

mately
% % VB +y? &

PRI Pl
o T r didr’

we observe that the electric and magnetic moments are here of the

same order of magnitude in (%)
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Near the source of the disturbance the resultant magnetic moment
would be approximately

e + W VB A
v+ Pt 2 72 dt’

. el :
which is of a lower order of magnitude in 3 than -the expression for

the resultant electric moment. It would thus follow that, as we
approached the source of the disturbance, the electric oscillations
would become more perceptible than the magnetic ones.

Linearly Polarized Light.—We have seen above that for large
values of r the electric moment X’ (¥’ =2Z'=0) vanishes in comparison
to the electric moment X”, ¥Y”, Z”; as r increases, every element of
wave-front approaches more and more that of a plane, until for
infinitely large values of r X' vanishes entirely, and the wave-front
itself becomes plane. The oscillations X", ¥”, Z” take place, more-
over, at right angles not only to the magnetic ones accompanying
them, but also to their direction of propagation, and are propagated
according to the law that their amplitudes decrease in magnitude
inversely as the distance from their source.* At great distances from
their source these waves may, therefore, be identified with those of
linearly polarized light, or, conversely, linearly polarized light may be
represented by the given system of equations (124) or (14).

Primary and Secondary Waves.—The electric wave represented
by the electric moment X' differs materially from all ordinary
electric waves; it appears only in the neighbourhood of its source,
within which region its amplitude decreases inversely as the square
and third power of the distance (r), whereas the oscillations themselves
take place, in general, neither at right angles to nor along their
direction of propagation. As I shall henceforth draw a sharp dis-
tinction between this kind of wave-motion and the ordinary one, let
us term the ordinary electromagnetic waves, or those whose oscilla-
tions take place at right angles to their direction of propagation, and
whose amplitudes decrease inversely as the distance “primary ” and
all other electromagnetic waves, or those whose oscillations do not
take place at right angles to their direction of propagation, and whose
amplitudes vary inversely as the square and higher powers of the
distance “secondary.” These two definitions of secondary waves,
“ those whose oscillations do not take place at right angles to their
direction of propagation,” and “ those whose amplitudes vary inversely

*We are rejecting here the terms in;l2 and 713, which for large values of »

approximately vanish, when compared with those in &
p=
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as the square and higher powers of the distance,” will be found to be
identical.

As an illustration of the resolution of a compound wave into its
primary and secondary, take that represented by formulae (13); we
conceive the given wave as the resultant of two waves, the primary

X, P+yd¥f T, aBd¥f Z,  ayd¥f

e g D r dr? D r di?’
and the secondary

Xo_ "“3(/3’+7 ) df 2_3(,3°+72)f
D 2 dT 73

Y, 3aBdf 3eB . Z, 3aydf 3a‘yf

DTRaT S DT e

The primary and secondary waves are, in general, dependent on
each other, or the presence of the one demands that of the other, that
is, neither can exist alone by itself ; this follows, since the expressions
for either wave are not, in general, particular integrals of our differ-
ential equations, although their sums are such, the compound wave
being represented by those sums; this is demonstrated by the given
example.

Besides the above class of electromagnetic waves, a primary accom-
panied by a secondary wave, we have, of course, the simple electro-
magnetic wave or primary wave, if we may then term it such, that
is not accompanied by a secondary wave. Such waves are represented
by the simple or purely spherical wave-functions ¢, and not by their
derivatives. An irregular distribution of wave-intensity over any
given sphere, with centre at source of disturbance, would, therefore,
always indicate the presence of a secondary wave in the given electro-
magnetic wave and vice versa.

Analogy between Primary and Secondary Waves and Primary and
Secondary Currents. The Roentgen Rays.—The idea of conceiving a
compound electromagnetic wave as composed of two waves, a primary
and a secondary one, was suggested by the somewhat analogous
behaviour of the primary and secondary currents in current-electricity.
As the primary and secondary currents are dependent upon each
other, so are the primary and secondary waves; this dependence lies
in the one case in the variation in the current-strength of the primary
current, in the configuration of the two conductors or circuits and
their relative position to each other, and in the other case indirectly in
the similarity or relations—the appearance of the same quantities—
between the analytical expressions for the two waves. Let us pursue
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this analogy further. The generation of a secondary current assumes,
first of all, the presence of a conductor or circuit in the field for the
passage of the same ; analogously, the appearance of secondary waves
would demand the presence of foreign bodies or media, aside from
those within which the given electromagnetic disturbance is generated,
in the given, otherwise homogencous, field; the vacuum tube—the
vacuum within the tube, the tube (glass) itself, etc.—employed in the
generation of the Roentgen (X) rays may serve as an example of such
foreign bodies or media brought into the field. The introduction of
the second brass knob of the Hertzian vibrator would, in fact, consti-
tute a field, within which such secondary oscillations might be expected
to appear ; but these knobs are placed so near to each other—2 to 3
- millimetres apart—in the generation of the Hertzian oscillations, that it
would be difficult to detect these secondary oscillations except in the
neighbourhood of the vibrator (cf. Ex. 12 at end of chapter). On the
other hand, could not the insertion of the vacuum tube, employed for
the generation of the Roentgen rays, into the field give rise to
secondary waves that could easily be detected? The integrals em-
ployed for representing given disturbances would naturally have to
be supplemented by the corresponding surface conditions. The
observed variation in the intensity of the (primary) vibrations emitted,
due to the heating of the apparatus, sparking and radiation, would
correspond to the variation in the current-strength of the primary
current, and thus give rise to secondary oscillations. Henceforth
I shall lay no great weight on the given analogy, which is to be
regarded merely as a suggestion..

Problem 2. Let the auxiliary functions U, 7, # be given by the
wave-functions
_ o L, _d% _ ¢
U=-2000 V=gedp W =gagy ~ooeeeeee (16)

where ¢ is a purely spherical wave-function, that is, any spherical
wave-function that is a function of 7 and ¢ only. These functions
evidently satisfy the required condition (4).

Replace U, 7, W by these values in formulae (5), and we find

X_d¢ &b _d (P &
D™ dzdy? dxdzf%(a‘y‘f?iéﬁ)’

Y= . d3¢ d3¢ d < d%p d2¢>>’

D™ T dydz " datdy” T dy\“d2 " da?
Z_d B _d (@ 0
D~ da?dz dy%?z"%(@ i W)’
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or, since ¢ is a function of 7 and ¢ only,

X dTy2-2 d (1dg\]_a(P-A[ & /1dg\ 14 1d¢)]
Tdxl dr( dr)]_ r? [dr2<r dr>—7 EZ}_*(; dr

g_ __[3d_¢>+w2+252_d 1dé

D~ dylr dr r dr(r dr):|

N yl:x2+222 a2 (1 dqb) 2x2+31/2+z2 d <1 dd:)]

T oor r  di?\r dr dr\r dr

and, similarly,
Z 2?4+ 22 @ (1 dd\  202+32+32% d (1 dg
= G o) T RG]
We next replace here the purely spherical wave-function ¢ by its
value %‘ Sf(rxot) (cf. formula (31, L)); for this purpose we build the

following expressions :

d
i _1df 1

dr rdr 2
d*¢_1df 2 df f
= rar " 2artRl
@*¢_1&f 3df>, 64df 6f
B rd R T8 A g
d/1de\ 1d* 1dé
51?( >_

r\r dr) 7 drt " 2dr’
Laf 3 df, 3
v TrRdeT s dr f’
1d$\ 1d%¢ 2dp 2 dd
ged dr“’(r (lr) S R e '

1@ 5 124f 12

hence T
RIS TSIt AY A

by which the above formulae can be written
X_z(y?-2)[d¥ 6 d“’f 15 df 15f:| )

ahe - T e rdE T 2 ar
2 _ g2 2} 2
Tt 3@ gis) &

r dr?
3(202 — 32+ 722) df 1
+(_T?_)(%_;f)] L....(17)
2 2 (2
and, similarly, %= 74 [(.ﬂ 5 7y2)d 9 W le TJ;

3(7”62-}-7_/ —3z2) df lf):I

r2 dr 7 )
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The Primary and Secondary Electric Waves.—Since f and its deri-
vatives with regard to » are evidently of the same order of magnitude

in %, we can thus conceive the given electric wave as composed of four
single waves, whose amplitudes vary as the different powers—the first
four—of = the secondary wave would, therefore, be here the resul-
tant of three waves, whose amplitudes decrease inversely as the second,

third, and fourth powers of the distance. If we exclude the immediate
neighbourhood of the source of disturbance from the region in

question, we may evidently reject the terms in % and %1 of formulae
(17) in comparison to those in }2, and the secondary wave would then

be given approximately by the latter terms. Since the immediate
neighbourhood of any source is seldom accessible to examination, we
shall, in general, exclude it from the region in question ; the secondary
wave would then be represented approximately by the terms of the

second order of magnitude in and we shall, henceforth, refer to it

r?
as thus defined, unless otherwise specified. For the given region the

electric moments of formulae (17) can thus be written (approximately)

X_X, X, _a(f-y) 0% _6a(f—v) &
D~ D" ]7 AT T 2 A

Y_Y, Y, B2y @y 38243y |
D DD r dr3 p A 9 oned (L)
Z_2Zy, Zy_y(@+2B) 0 _3y(a+ 36— y) &f

]) D D 7 d? 72 dT“

where a, B, y are the direction-cosines of 7; 5 Ay ¥, Z) denote the
moments of the primary and X,, ¥,, Z, those of the secondary electric
wave. :

The Magnetic Wave.—By formulae (7) and (16) the magnetic
moments are

- PE Sy gl 0

v dtdydz— o v didr\r Eﬂ’)

pe, e Ji«z“fﬁ(l d_4>)
2 didxdz 2 7 dtdr\r dr

o= o0 BE __tay & (1d¢
P dtdedy 0? ¢ didr\r dr

By the relations on p. 37 between the derivatives of ¢ and J, these
expressions for a, b, ¢ can he written
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_ 20, By d<d2f 3 df 3f)

22 r dit\dr? rdr 'r2

?)Oa‘yd<d2f 3df 3f>

TR T dide T rarT R

P voa,Bd<d2f 3olf 3f>
o diNdr? rdr 72
We can thus conceive the given magnetic wave as composed of three
single waves, whose amplitudes decrease inversely as the first, second,
and third powers respectively of the distance. In the region in
question, that, namely, in which formulae (174) approximately hold,
the secondary magnetic wave would, in general, be represented approxi-

SRR L (18a)

mately by the terms in ;2 of these formulae (184).

Regions in which the Primary Wave disappears.—From a glance at
formulae (174), it is evident that there are certain regions, in which the
secondary (electric) wave alone appears* and cannot, therefore, be
overlooked when compared with the primary (electric) wave, even at
greater distances from the source of disturbance. These regions are
characterised by the disappearance of the primary wave,* that is, they
are determined by the vanishing of the coefficients of the terms of the

. .1 . . . .
first order of magnitude in -9 the given particular regions, lines or

surfaces, of formulae (174) are four in number and are determined by
the following sets of analytic relations :

Region 1. a(B2—v%)=B(a2+2y%) =y (a2 +2B2) = 0. ..overrrreene, (19)
Region 2. a(B2—12)=0, B(a?+2y)=0, y(a2+2BY)=0. ........(20)
Region 3. a(B2—y)=0, B(a+2y2)=0, (o +2B8)=0.......... (21)
Region 4. a(B2-92)=0, B(«®2+2y%)=0, y(a?2+26%)=0.......... (22)

It is easy to show that the vanishing of any two of the given
coefficients is identical to that of all three or to the analytic relations
(19). Moreover, since formulae (17A) are symmetrical in y and 2, it will
be necessary to examine only the first three regions, formulae (22) which
determine the fourth region being analogous to those (21) for the third.

Region 1: The Three Coordinate Axes.—The analytic relation (19)
can evidently be replaced by the following : ;

a=0, B=0 .and hence y=1;

a=0, a®+2y2=0, hence y=0 and B=1;
and B=7, B=0, hence y=0 and a=1,
or the three coordinate-axes.

* Or, more strictly speaking, one or more of the electric component-moments of
the primary wave disappear.
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It thus follows that the electric moment X,, ¥;, Z; vanishes along
all three axes z, 7, 2. The electric moment X,, ¥,, Z, assumes the

following particular form along the same :
X,=Y,=2Z,=0 along the z-axis,

X,=2,=0,Y,= ~ 32D df2 along the y-axis,
and X,=Y,=0, Z,= 3? 3{ along the z-axis ;

that is, the secondary wave disappears entirely along the a-axis, but is
propagated along the y and z axes as a longitudinal wave.

Region 2: The yz and %=+v? Planes.—This region evidently com-
prises the two regions a=0 or the yzplane and 2=7* or two planes
passing through the origin at right angles to each other and bisecting
the angles between the zy- and zz-planes.

For a=0, hence B2+7%=1, formulae (174) reduce to

X=0,
po 2B B 3By Y
- r TR 4
52 dﬁf oo
rdrd 72 dr?

where, for brevity, we have put D=1. These values give
~ 2By d?
s ary a1

e de

and NXE+ Y2+ 7,72 = =2

It thus follows that both the primary and secondary oscillations of

the yzplane take place in that plane and that the amplitude and

intensity of the latter are functions only of the distance from the origin.
Formulae (184) reduce here to

_ 2, By d (d¥f 3df 3f>
=@ o di\d? rdr T
b=c=0;

that is, the magnetic oscillations of the yz-plane take place parallel to
the z-axis.

The analytic relations a=0,
and Be+297) =y (24 220,
or, since a =0 and hence 2+ y2=1,

1
0=0, B2=y'=3

correspond to a particular case of the given one. The particular region
is evidently two straight lines passing through the origin at right
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angles to each other and the z-axis and bisecting the angles between
the y and z axes.

The resultant electric and magnetic moments assume the following
values along these lines :

m—lj{,

For 82=192 hence o + 232 =a? + 292=1, formulae (17A) reduce to
X=0,
_Boy  ge vl
= Trdnt T g

af 3y df
Z drs” rZ dr? D=1

Formulae (184) give here the following expression for the resultant
magnetic moment :

e vy d /A3 3df 3
GRS \/;z 0 (@ T E +f)

Both the primary and secondary oscillations of the planes f(2=7?
thus take place at right angles to the z-axis, whereas their resultant
moments, and also that of the magnetic oscillations accompanying them,
are entirely independent of the direction-cosine a.

Region 3. See Examples 2 and 3 at end of chapter.

Proof of General Laws.—To confirm the validity of formulae (174)
and (184), let us next prove some of the well-known laws of electricity
and magnetism for the oscillations represented by the same.

The Electric and Magnetic Oscillations take place at L to each
other.—The analytic condition that electric and magnetic oscillations
take place at right angles to each other is, by formula (11),

Xa+Yb+ Ze=0.
That the primary (electric) and the magnetic oscillations of the given
problem take place at right angles to each other, the relation must
B hold Xya+ Vyb+Ze=0.
To ascertain whether this condition be fulfilled, replace here the given
moments by their values (cf. formulae (174) and (184)), and we find
Ko+ Vb + Zie=Cafy[2(B* - v%) + (a* + 27%) — (¢ + 2%)] = 0,

] Do, & d (& 3df 3
where C= 22 drd dit ((h r dr f )
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Similarly, we find
X+ Yb+Zye

10 BT [y - @ )+ (a1 38— )0,

or the secondary (electric) and the magnetic oscillations take place at
right angles to each other.

It thus follows that the electric oscillations represented by formulae
(174) and the magnetic ones accompanying the same take place at
right angles to each other. Moreover, it is evident from the form of
the above expressions that not only the magnetic oscillations repre-
sented by formulae (184) but also all three component oscillations, of
which the same may be conceived as composed, take place at right
angles both to the primary and to the secondary (electric) oscillations.
Similarly, it is easy to show that the electric oscillations of the third

and fourth orders of magnitude in% of formulae (17) also take place at

right angles to the different magnetic ones (184) that accompany them.
Hence the general law: the (total) electric and the (total) magnetic
oscillations take place at right angles to each other.

The Magnetic Oscillations take place at | to their Direction of
Propagation.—A glance at formulae (184) shows that the condition
that the magnetic oscillations take place at right angles to their
direction of propagation, namely, ax+ by+cz=0, is fulfilled.

The Primary Oscillations take place at | to their Direction of
Propagation.—It is easy to show that the primary (electric) oscillations
also take place at right angles to their direction of propagation.
Replace X,, ¥}, Z, by their values from formulae (174) in the given
condition, and we have

Xa+Yy+2Zz
~ (@8- 1) - B+ 297 + 2+ 2BY] =0, (D=1)

The Secondary Oscillations do not take place at 1 to their
Direction of Propagation.—Lastly, replace X,, ¥,, Z, by their values
from formulae (174) in the form* of the condition that the secondary
(electric) oscillations take place at right angles to their direction of
propagation, and we find
Xox+ Yoy+ 2,z dQ
= [~ 6a2(B% =)+ 32(a2 - B2 39%) ~ 3y2(a2+ 32— )] L 9L (D=1),

12
=3[(@+ )= (4B | 5

*The word * form ” is used here as in the theory of invariants.
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or, since a2+ 32+ y2=1,
1d
=307~ B ; G4=0;
that is, the condition, that the secondary electric oscillations take place
at right angles to their direction of propagation, is, in general, not
fulfilled. ,

Determination of the Angle of Oscillation.—Let us next determine
the angle the given secondary oscillations make with their direction of
propagation. We denote the given resultant moment by f, and its
direction-cosines by A,, p,, v,; the angle in question, which we shall
denote by (f,, 1), is then given by the familiar formula

005 ( for 1) = Ay 4 o+ VgYy eeeinninniiianinnnnnne (23)
or, since Ay, py, v, may be replaced by the quotients %2, j): Zand 7
2

respectively (cf. p. 31), where f,2=X2+Y,2+ 2,2, v

2a+ Y,B 23 Zgy

cos(fy 1)= J—If2+Z2

Replace here X,, ¥,, Z, by their values from formulae (174), and
we have

....................... (234)

cos(fp 7) = — 8a?(B2 — v*) + 38°(a? - 82+ 3y®) - 3y*(a + 32— ¥?)
2 3\/40.2([)’2 — 72)24_’32(“; /31+ 3.},2)2 +73(a2+ ‘3’3 71)
— 0232 + aZy? — B4 4yt
" VB 22 () + (B 7))
_ =By (e + B+ yY) 23 . Amsh (24)
= W P =~ UEEa
Since this expression for cos (f,, r) assumes one and the same value
along any given vector, that is, for any given ray or pencil of waves,
it will be sufficient to determine its behaviour over any sphere with
centre at the source of disturbance; for this purpose we replace the
rectangular coordinates #, y, z by the polars 7, 6, ¢, already employed
on p. 21, where 6 denotes the angle, which the plane passing through
the z-axis and the veetor 7 or direction of propagation of the given
wave makes with the zy-plane at the point 2, y =2=0, and ¢* the angle
between the vector 7 and the z-axis (cf. figure 4, p. 22).
The following analytic relations hold between these coordinates :

T=7rcos ¢, a=cos ¢
y=rsin pcos §, hence B=sindecosth r. ...ocoennnee (25)
=7 sin ¢ sin 6, y=sin ¢ sin 0

* On page 21 we denoted this angle by a.
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The general formula (234) for the angle (f,, r) can, therefore, also be

written
X, cos ¢+ YV, sin ¢ cos 6 + Z, sin ¢ sin 6

e T e 26
cos (f 7)= ey i (26)
and formula (24) for the given particular wave in the simpler form

cos (fy 7) = — sin ¢ (cos? — sin?0) = — sin pcos 26. ......... (264)

Regions in which the Secondary Oscillations are Longitudinal.—The
given oscillations are longitudinal, when cos(fy, r)=*1, that is, they
are longitudinal in the regions determined by the equation

+1=Fsingcos20, or singeos20=x1.
The region sin¢ cos20=1: this region evidently comprises the
regions sinp=1, cos20=1,
hence <;{>=7—‘;, =0 and =, or the y-axis,
and singp= -1, cos20= -1,
3w T 37
hence b=— 5 9—3 and 55 or the — z-axis.
The region sin ¢ cos 20= — 1: this region comprises the regions
sinp=1, cos20= —1,
hence ¢=g, 0=7—;- and %—r, or the z-axis,
and singp= -1, cos20=1,
3 .
hence b= : , 0=0 and =, or the y-axis.

Regions in which the Secondary Oscillations are transverse.—The
given oscillations are transverse, when cos (f,, r)=0, that is, they are
transverse in the regions determined by the equation

sin ¢ cos 20=0,
or sin ¢=0,

hence ¢=0 and =, or the z-axis.
and cos 26 =0,
37 bmw 717
h ==
ence 6 T T T and —
or two planes passing through the z-axis at rlght angles to each other,
and bisecting the four quadrants (y, 2), (2, —¥), (-, —z) and (-2, y).

‘We have now seen on p. 39 that the given secondary oscillations vanish
along the z-axis, and on p. 41 that they take place at right angles to
that axis throughout the planes 8%2=172 or the planes 9=g, 3%, 577:,
and —- i 5 throughout which they have just been found to be trar;sverse;

their direction of oscillation is thus thereby determined uniquely,
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as indicated in figure 5 below. The resultant moment of these trans-
verse oscillations is

3 \/[32'_,_—2 a2
“/Yzz‘*‘Zzz:——,T‘z‘ ETJ;
(cf. formulae on p. 41), which by formulae (25) can be written
oy 3sing &2
\/Y2Z+Z22= ?2‘ %‘2 b)

that is, their amplitude increases according to sin ¢, as we recede from
the z-axis, where it vanishes, along any circle, intercepted on the planes
32=17% by any sphere with centre at source of disturbance, towards the
yz-plane, where it reaches a maximum, as indicated in figure 5.

2

52
F16. 5.

The Secondary Oscillations of the yz-Plane; Rotation of their
Direction of Oscillation through 90°.—We have seen on p. 40 that
the oscillations of the yz-plane take place in that plane, and that their
amplitude and hence intensity remain constant for any given radius-
vector. Along the lines (vectors) of intersection of this plane and those
of transverse oscillation (82=92), the given secondary oscillations will
thus take place in the yzplane and at right angles to their direction of
propagation ; that is, their direction of oscillation is determined
uniquely along those lines of intersection or vectors. Moreover, it
follows from the expressions for X,, ¥,, Z, along the y- and z-axes (cf.
p- 39), as we recede from the y-axis along the circle, intercepted on the
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yz-plane by any sphere with centre at origin, towards the z-axis, that
the given secondary oscillations are turned through an angle of 90° in
the yz-plane or 180° with regard to their radius-vector, their amplitude
and intensity remaining constant (cf. the above figure). Formula (264)
reduces here to

cos( fy 1) = — cos 26,
hence (f r)=180° - 26;
that is, the angle (f,, r) varies as 180° ~ 26.

The Secondary Oscillations of the xz-Plane; Rotation of their
Direction of Oscillation through 180°. As we recede from the z-axis
along the circle, intercepted on the zz-plane by any sphere with centre
at origin, towards the z-axis, the given secondary oscillations are
turned through an angle of 180° in the axz-plane or 90° with regard
to their radius-vector, whereas their amplitude increases as sin ¢, from
0 at the z-axis to a maximum at the z-axis, as indicated in the above
figure. This follows from the particular form assumed by formulae
(174) and (264) in the given plane. Formulae (17A) reduce here to

x, =574y o g,- @A gy

o2 dr? 72 dr?’
which by formulae (25) can be written
3 sin ¢ sin 2¢ d*f . 3 sin ¢ cos 2¢ df
= 2 dr? ¥2=0, Z,=- T a4
hence the resultant moment is

3y d*f _3sin qS azf

2t 2 4

or the given oscillations take place in the @z-plane, their amplitude
varying as sin ¢. Formula (26A) assumes here the particular form

cos( fy, 7) =sin ¢,

or the given oscillations are turned through an angle of 90° with
regard to their radius-vector, as we pass from the z- to the z-axis; that
is, they either retain one and the same direction in space or they are
turned through an angle of 180° in the zz-plane. To determine the
direction of oscillation in question, we seek the values of the moments
X, and Z, at some intermediate point of the given arc, for example, at
the point =z or $=45°. The above formulae become here

NXE¥ Z,2=

from which it is evident that the oscillations in question are turned
through an angle of 180° in the w:-plane, as we pass from the z to the
r-axis.
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The Secondary Oscillations of the xy-Plane.—Since the given
secondary oscillations are symmetrical with regard to the ay- and
wz-planes, except in sign (cf. formulae (174)), the oscillations throughout
_the former plane will behave similarly to those of the latter, which
we have just examined; namely, as we recede from the z- towards
the y-axis along the circle, intercepted on the zy-plane by any sphere
with centre at origin, the given oscillations are turned through an
angle of 180° in the xy-plane or 90° with regard to their radius-
vector, whereas their amplitude increases as sin ¢, from 0O at the
z-axis to a maximum at the y-axis ; these oscillations are also indicated
in the above figure.

The Primary Wave.—The primary wave of the given problem
differs only immaterially from that of the preceding problem. We
identify it, together with the magnetic wave accompanying the same, as
the linearly polarized electromagnetic or light-wave, whose oscillations,
both electric and magnetic, take place at right angles not only to each
other but to their direction of propagation ; it is, in fact, only another
type—another distribution of the oscillations with regard to direction
of oscillation and to amplitude over any given sphere—of the electro-
magnetic waves, with which we are already familiar.

The Secondary Wave.—The secondary wave of the given problem
differs from that of problem 1 chiefly in that its direction of oscillation
does not remain one and the same at all points—parallel the z-axis—
but varies from point to point; this demonstrates that other secondary
waves than those (the secondary Hertzian), whose oscillations retain
one and the same direction of oscillation throughout the given region,
are consistent with our differential equations. The given particular
law of variation of the direction of oscillation is, of course, only one of
the many possible laws (cf. also p. 63). A peculiarity of the given
secondary (electric) wave, to which we may call attention, is that it
is propagated along the y- and z-axes as a longitudinal wave, unaccom-
panied by either a primary (electric) or magnetic wave (cf. Ex. 12 at
end of chapter).

Problem 3. Let U, 7, 7 be given by the wave-functions,

_doy dd,
U_'bd;y T dz
_dd, dg :
V_—J;_% 15 e e o S T Y S (27)
_Gdy_d4,
dr  dy

where ¢,, ¢,, ¢, denote purely spherical wave-functions. These values
evidently satisfy the required condition (4).
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Since the ¢’s are functions of r and ¢ only, we can write
y

with analogous expressions for 7" and #; or, on replacing the ¢’s by

the f’s (cf. formulae (31, I)) and %:, i{, z by the direction-cosines a, f3, 7,

U- (ﬁ‘gf %ﬂ) e (28)

with analogous expressions for 7 and .

Let us, next, assume that the oscillations represented by the functions
fi» [ f» differ only in amplitude from one another—the more general
case, where these functions shall represent oscillations of different
“phase, is treated in the following chapter. Moreover, let these
functions be the simple sinus functions, namely,

fr=aysin 2T (ot — 1)

) !
fo=aysin % (Uh =) hoeereeerrinsinnieinnn, (29)

f3=azsin ’2'; (vt 1)

where the amplitudes a,, a,, @, shall be constant—not functions of
m’ y’ Z

If we replace f}, fo, f; by the functions (29), formulae (28) assume
the form

U=ty = ayB)c0m 0+ 3 (137 = 08 sin
7=2 (a3a a,7)cos o + (asa ay)sin® by oeeeeenen (30)
= (“118 (,a)COS ® + (dlﬁ @) sin o

O
where n=s and o=n(Vf—17). ..cccoiiiiiniini, (31)

The Wave-Length A.—The wave-length A of the waves of light, with
which we are familiar, is small in comparison to the radius-vector r,
except at or near the source of the disturbance itself ; this region, the
examination of which offers serious difficulties (see Chapter V.), is so
small—it is of the dimensions of the wave-length—that it is of little
importance, if, for no other reason, for that that all empirical data
concerning it are necessarily wanting. Hence, at finite distance from
the given source the second terms of the above expressions for U, ¥,
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would, in general, be small in comparison to the first and could thus
be rejected (cf. also p. 32); on the other hand, U, 7, W would be
represented by the former at or near the source of the disturbance,
provided the given expressions hold there. In general we could

thus put
U= g (aqy — a;B)cos »

n
V=_(aa—ay)coso b (32)
W= % (@,8 - aya)cos w

We, next, replace U, V, W by these functions in formulae (5), and
we find

X n? . n
D=7 0B +7) - a(a +ag7)]sin 0 + 5 a(2a,a + 4y + agy) cos

9

%:71 [a5(02 +72) — B(2,0 + a5y) ] sin o + :—2 B(2a,8 + a0 + agy)cos o p-(33)
B

o=

2
" [ag(a+ B) = y (a0 + aB)] sin o + 3 y (2agy + a0+ a,B)cos o

For similar reasons to those just mentioned, the second terms of these
expressions would, in general, be smalt in comparison to the first, and
could thus be rejected. In those regions, however, where the coeflicients
of the first terms vanish (see below), the electric component-moments

would be represented by the terms of the next higher order in —1_

(cf. also p. 39, and Ex. 12 at end of chapter); but these would not be
the ones given here, since we have already rejected terms of that order
in the above development.

Regions in which Primary Wave disappears.—The vanishing of
the given coefficients signifies that certain analytic relations hold
between the amplitudes a;, @, @, and the direction-cosines a, 3, y.
Since the amplitudes are entirely arbitrary, but given, and the
direction-cosines variable, such relations determine given regions
(cf. also p. 39). The regions in question are evidently determined
by the four sets of analytic relations

2, (B%+79%) ~ a(ayB +azy)=0

ay(a? +92) = Blayo+azy) =0 Foooeeiiiinninnnn. (34)

ag(a?+ ) - y(aya +aB8) =0

@, (8% +v%) — a (a8 + a5y) =0 } .(35)
0=[ay(a? + v2) - B(ayo + agy)| = [a5(a® + 8%) — v (22 + a,8)]=0 )’ :

and two analogous sets, where first the second and then the third
D
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relation of the first set alone holds (cf. also formulae (19)-(22)). We
observe, as on p. 39, that if any two relations of the first set, formulae
(34), hold, the third necessarily follows.

We have just observed that formulae (33) do not hold in all regions,
namely, in those determined by the analytic relations (34), (35), etc.
To derive the formulae for those regions, we must evidently employ
formulae (30) instead of the approximate ones (32) in the above
development ; we thus replace U, 7, W by their explicit values (30)
in formulae (5), and we find

2 ="l (B4 72) ~ (@B +ay)]sin

+2 [2“1 — 30, (8% + v?) + 3a(ayB + agy)]cos »

2
g= % [a5(a?+77) - B(a,a + azy)]sin ©

+;7;[2a2 = 3ay(a?+y%) + 3B(a 0+ agy)]cos ©

Z  n? D /53 :
D [a3(o® + %) — y(aya + @) ]sin ©

+ 7%[2&3 — 3ag(a®+ 82) + 3y (aya + ayf)]cos w |

. . . Ll
where we have rejected the terms of the third order of magnitude in 7

the terms retained, being of the first and second orders, thus represent
the primary and secondary oscillations respectively.
Region 1: the Vectors a:(:y=a,:a,:a,—Formulae (34) can
evidently be replaced by
ayy=0asP, aga=dayy, ©,f=ay;
these equations represent a straight line passing through the source of
the disturbance ; its direction is given by the proportion

a:B:y=0,:0ay:04;

hence a=md,, L=y Y=Mlgy «cccorrreeenaann... (37)
where = %
Vol +ag +ag

Formulae (36) assume the following simple form along these vectors :

£YEN 2, cos Y on Z 2n .
Do AMSe, p="pa0080, =g dsc080;
that is, only the secondary oscillation appears here. This and similar
lines would, therefore, be suited best for an experimental research of the
given secondary wave.
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Region 2, a Surface.—The region determined by the analytic relation
&, (B2 +9?) — a(a,B +azy)=0,
is the surface a (P +22) = (agy +ag2)r=0; ..ol (38)
it passes through the origin and the line determined by formulae (37).
The z-component of the electric moment at any point of this surface not
on the line (37) still remains
X 2n

the other two components are given by the general formulae (36),
where, however, any two of the variables a, 8, y are to be replaced as
functions of the third, after the former have been determined as such
from the analytic relations
(B +7%) = a(ay + a57),
and a2+ B2+ y2=1.
Similarly, analogous formulae hold for the two regions or surfaces
Ay (22 +2%) - (0,2 + a2) y =0,
and ag(r®+y2) — (wx + ayy)z =0,
The Magnetic Waves.—By formulae (7) and (32) we find the fol-
lowing approximate values for the component magnetic moments :
n?

a="" (ayy — ayB)sin o b=n21]0 (aqa - 2,7) sin ©
o= o ’ T e U (40)

2
c= 72—3" (a0, - a,a)sin o

These formulae are also approximate for the regions determined by
the four sets of analytic relations

a5y — =00 —ay=a,8—-a0=0, .....co.cooiiiii. (41)

ayy —a,8=0, aa—-a,y=0, ,8-a,0=0, ..c...connn... (42)

and the two analogous sets, since the terms of the second order of
magnitude in %, which appear in the explicit formulae, contain each the

same factor (¢,y — a,f), (230 — a,y), or (¢, — aye), as the respective term
of the first order. The secondary magnetic wave would, therefore,
always be accompanied by its primary magnetic wave.

The first set of analytic relations (41) is identical to the analogous
one (cf. formulae (34)) for the electric moments ; these relations deter-
mine the line a:B:y=a,:a,:a5 (cf. p. 50).

The magnetic moments vanish along this line, whereas the electric
ones were those of a secondary oscillation only. It thus follows that
the secondary oscillations are not, necessarily, always accompanied by
magnetic ones (cf. also p. 47).
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The Wave-Length A.—On p. 48 we have observed that the wave-
length A of all light-waves, with which we are familiar, is small in
comparison to the distance » from source, and we, therefore, rejected
the second terms of formulae (30) in our derivation of the formulae
(33) for the electric moments; subsequently, upon the examination
of those particular regions, in which the coefficients of the first terms
of the latter formulae vanished, we found it necessary to retain the
terms we had just rejected. The rejection of the given terms was
evidently justified, as long as we were dealing with light-waves proper ;
but just as soon as our investigations are to be applied to electro-
magnetic waves of long wave-length or electric waves proper (Hertzian)
(cf. also next page), those terms must be retained.

Explicit Pormulae for Moments.—Instead of seeking, as above, par-
ticular formulae for the different kinds of electromagnetic waves, let
us take the general (explicit) formulae for the electromagnetic waves
in question and interpret the same according to the different values
assigned the given quantities and constants. We replace U, 7, W by
their explicit values (30) in formulae (5) and (7), and we find

%= n;[al (B*+92) - a(ay,B +0gy)]sin o

+ % [2a, — 30, (3% +7?) + 3u (2,8 + ayy)] cos ®
+ 1 (20, - 30, (B + 79 + 30 (0, + 4p9)] sin
% =%2 [a5(e® +9%) - B(aa + agy)] sin o
+7_ﬁ2 (204 — 30,(0? + ¥2) + 3B(a,0 + ayy)] cos w o] (43)
+ 1 [20y ~ 30,2 + 99 + 3B (a0 + ag)] sin o
D 1 g a2+ ) - y(0,0 + 2, 8)]sim o

+% (245 — 3a5(a? + B2) + 3y(aya + a,B)] cos o

1
ta (205 = 3a5(a® + 82) + 3y(a,0 + a,f) ] sin o
and =" (a2y a53) < sine — %cos w)

b="20 5 (59— ary) ( sine — % oS m) 1 PR (44)

2% (al,B a,n) ( sinw — l 5COS w)
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Distinction between Light and Electric Waves; the Quantity n.—
The expressions for the electric moments X, ¥, Z are composed each

of three terms, arranged according to the different powers of % or 7.
The order of magnitude of any such term evidently depends not only
upon these powers of % and #, but also upon the actual distance r from

the given source and the value of the quantity n. There are now two
classes of electromagnetic waves, characterized by »’s of quite different
orders of magnitude and between which we shall, therefore, have to
discriminate ; these are the light-waves proper and the electric (Hertzian)
waves. The former have wave-lengths of the dimensions 10-3mm. ;
by formula (31) n would, therefore, be very large for all light-waves.
On the other hand, the wave-length A of the electric waves proper is of
the dimensions of the metre or of the other quantities (r) that appear
in formulae (43) for the given electric moments ; their » would, there-
fore, be of the same order of magnitude as their A or the other quan-
tities. It thus follows: For light-waves, the second and third terms of
the expressions for the electric moments X, ¥, Z of formulae (43) will be
very (infinitely) small in comparison to the first terms of the same, and
may, therefore, be rejected not alone at great or finite distances from

g Il R : g
the source—due to the functions ;—but also in its immediate neigh-

bourhood—due to the value of #; in other words, the amplitude of
the secondary wave that accompanies any (primary) light-wave will be so
very (infinitely) small in comparison to that of the light-wave proper,
that we cannot expect to detect the same except in the source itself.
Consequently, we may conceive light-waves proper as wunaccompanied
by secondary electric disturbances. For electric waves, the second and
third terms of the given expressions will vanish, when compared with the
first terms of the same, only at greater distances from the source ; the
primary electric wave will thus be accompanied by a secondary electric
wave to a considerable distance from its source, the intensity of the latter
evidently being of the same order of magnitude as that of the former
in the immediate neighbourhood of the source, but decreasing somewhat
more rapidly than that of the primary wave, as we recede from the
same. On the other hand, the secondary wave will evidently be repre-
sented by the second terms of the given expressions, except in the
immediate neighbourhood of the source.

For one and the same amplitudes a,, @,, a, the amplitude of the light-
wave would be very (infinitely) large in comparison to that of the
electric wave. To obtain amplitudes of the dimensions of those of the
light-wave or of the same dimensions as the amplitudes of the electric
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wave for the light-wave, we replace the quantities a;, a,, a,, the ampli-
tudes of the functions f,, fp f, for electric waves, by the quantities
7%12, %22, ;(::}2, respectively for thg light-waves, where m? shall denote a
quantity (number) of the same order of magnitude as n ; the secondary
electric light-wave will then vanish, as above, whereas the wave-length

A will remain unaltered.

Electric and Magnetic Oscillations at L to each other.—To confirm
the general law that “the electric and magnetic oscillations take
place at right angles to each other” in the given case, we must
employ the explicit and mnot the approximate expressions for the
moments. Let us denote the quantities of the first and second orders

- of magnitude in %‘ by suffixing the indices 1 and 2 to the same; we can

then write
X=X +X, Y=N+V, Z=Z+2,

and a=a;+0,%  b=b +0b, e=0¢; + Cy 1
where the quantities or terms of the third order of magnitude in =
X,, Y,, Z, have been rejected (cf. p. 52); for the proof of the %iven
general law, where the terms of the third order of magnitude in ) are
retained, see Iix. 10 at end of chapter. '

The analytic condition that the electric and magnetic oscillations take-
place at right angles to each other, namely,

Xa+Yb+Zc=0
(cf. formula (11)) becomes here
(X + Xo)(ay +ag) + (X1 + T (by +by) + (£ + Zo) (e + ¢9) =0

. : 1] :
Since terms of only the same order of magnitude in = can evidently

be compared with one another, this condition can be replaced by the
three,
X0y + Y1by + Z1¢, = 0, terms of the second order,
(Xy0g + Xomy) + (Yidy + Toby) + (Zy0y + Zoty) = 0, ”» third »
and Xty + Yoby + Zye, =0, . fourth
To ascertain whether these conditions be fulfilled, we replace the

given moments by their values and evaluate the formst in question.
Let us examine here the second condition ; we have

Xyay + Xony = Ola, — 20, (B2 + %) + 2a (0,8 + a57)](a5y — a,8),

*The moments @, and a, are not to be confounded with the amplitudes a;, a,, ()
of the wave-functions f, f,, f;.
tSee footnote on p. 42,
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and, similarly,
by + Yoby = Clay — 2a,(0? + y2) + 2B(a,0 + agy)] (a0 — a,7),
and Z\Cy+ Zigty = Clag — 2a5(a? + 52) + 2y (aq0. + ay3)](a,8 - 1ya),

2n% Dy, .
where C= p 0 sin w cos o.

The coefficient of a; of the form* of the given condition is thus
C{[L = 2(B+¥*)(azy - a5B)

= 7[a; - 205(a® + 9*) + 2B(aya + azy)] + 205028

+ Bag — 2a5(a? + 82) + 2y(a,0 + a,8)] — 2a,02y},
which evidently vanishes, The form itself thus reduces to

C{2a(ayB +az7)(ayy — asB) + [ay - 205(a? + %) + 2a,By]aza
=[5 — 2a5(o? + B?) + 20,B8y] aya},

the different terms of which evidently cancel one another, and the given
condition is thus fulfilled. The proof of the validity of the other two
conditions offers no difficulties.

Magnetic and Primary Electric Oscillations at 1 to Direction of
Propagation.—From a glance at formulae (44) for the magnetic
moments, it is evident that the magnetic oscillations take place at
right angles to their direction of propagation.

It is, likewise, easy to show that the primary oscillations X, 7, Z,
also take place at right angles to their direction of propagation ; this is
not, however, true of the secondary oscillations X,, Y, Z,, as the
ensuing development will show. '

Determination of the Angle (f,, r).—Let us, next, determine the
angle of oscillation (f,, r), which the given secondary oscillations make
with their direction of propagation; we denote their resultant moment
by f, and the direction-cosines of that moment by A,, p, v, as on
p- 43, and we have

oS (fpy 7) = Aya + po3 + vpy
(cf. formula (23)). Replace here A, p,, v, by the respective moments
(cf. p. 43) from formulae (43), and we have
i)
cos(fy 7)= :lzf {[20; - 30, (B2 + ) + Ba(asB + agy)] o
2
+[2a, - 3a,(a? + 92) + 3B(a 0 + a57)]B
+[2a, - 3a5(a? + B2) + 3y(t10 + ayf)] y} cos o
20D
e

(a,0.+ 0,8+ azy)cos o,

* See fcot-note, p. 42.
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where f, is to be replaced by
fo=NXE+ Y2+ 2

=n77€ a2(1 + 3a2) + a2(1 4 36%) +a,2(1 + 392)

+6 (4,050 + ayugay + “;‘QB}’) cos o

nD
=—5./0.2 4+ 0,2 + a2 + 3(a,a + a3+ asy)icos o.
1~2 1 2 3 1 2 3

We thus have

B 2(a@+aS+azy) 5
c08(f r>_\/al2+a22+ a2+ 3 (a0 + a,B + agy)? (45)

- This general expression for cos (f,, ) is evidently too complicated to
admit of a simple analysis. In order to acquire some knowledge of the
behaviour of these secondary (electric) waves—and among other pro-
perties one of the most important is the variation of their angle of
oscillation throughout the given region—we shall undertake to examine
the expression (45) for some particular case, for example, that, where

a4 =0y=03=a.

The expression for cos( f,, r) then reduces to

__ 2e+B+7)

cos(fy 1) S rafraysfy) (46)
Since this expression, as also the general one, assumes one and the
same value along any given vector, it will suffice to examine its
behaviour over the surface of any given sphere with centre at origin.
The evaluation of the same at different points on the surface of any
such sphere will evidently be facilitated by the introduction of the
polar coordinates 7, 6, ¢ employed in the preceding problem (cf. p. 43).

By formulae (25) the given expression (46) can then be written

2[cos ¢ + sin ¢p(sin 6 + cos 6)] . (47)
+ sin ¢ cos ¢ (sin 6 + cos 6) + sinZ¢ sin 0 cos 19]

cos(fo 7) = Jﬁ[l

2[cos ¢ + sin ¢ (sin 6 + cos 6)]

.......... (474)
3 [2 + sin 2¢(sin 6 + cos ) + sin¢ sin ?6]

To determine the angle (f,,7) at any point, we plot the curves =07,
15°, 30° ... 180° for different values of ¢ between 0° and 360° choosmg
the angle (f;, 7)—its degrees—as ordinate and the angle <j>—1ts degrees
—as abscissa. To plot these curves, we shall find it sufficient to
determine the angle (f,, r) for every 15° of ¢, except in the case of the
curve 6 =45° between ¢ =45° and 60° (see below).
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The Hemisphere 6 =0° to 90°.—It is evident that the expression for
cos(fy, ) will remain unchanged when we replace 6 by 90° — 6 ; hence
we need plot only the curves 8=0°, 15°, 30°, and 45°, the other curves,
6=60° 75°, and 90°, being identical to the curves #=30°, 15°, and 0°
respectively.

The formula (47) for cos(f, 7) reduces for the given hemisphere
to the following :

For (1) 6=0° or 90°,
2(cos ¢ + sin )

c0s (fy, 7) = JGTlﬂilms_@ 5ol e e oo ot ole e ala s o o e mieales (48)

(2) 6=15° or 75",

2(cos ¢+ 12247 sin ¢)

S —— . ..., 49
cos(fp 1) JV6(1 412247 sin ¢ cos ¢ + 0-25 sin? ¢>) (49)
(3) 6=30° or 60°,
2(cos ¢ +1-366 sin ¢) 50
cos(fy 1) = J6(1 + 1366 sin ¢ cos ¢ + 0°433 sin? ¢) """" (50)
and (4) 6=45°,
cos(fy 7)== —"COSMIS’“ “’) ............... (1)

Upon evaluating these expressions for ¢=0°, 15°...180°, we find
the values given in foot-note* for the angle (f,, ), which evidently
suffice for the plotting of the curves in question, with the exception of
the curve 6=45° between ¢=45" and 60°. It is now easy to show
that this curve touches the ¢-axis between these two values; in which
case formula (51) would assume the particular form

2(cos ¢ + /2 sin ¢)
~/6(1+fs111¢cos¢+0 sm’qf:)

* The curves 6=0° or 90°, §=15° or 75°, 6=30° or 60° and 6=45".

................ (52)

¢=0° 35°17 35°17 35° 17 35°17
15° 26° 34/ 24° 25’ 23° & 29° 34/
30°% 21° 10 17° ©13°57 12° 57
45° 19° 28’ 13° 7° 40/ 4° 55
60° 21° 10’ 13° 35’ 7° 3 2° 40/
il 26° 34/ 18°25' 12° 45 10° 30/
90° 35°17 26° 26 21°18 19° 26/
105° 48°11 38° 20 32°50/ AN
120° 66° 47 55° 38 49°21 47° 21’
135° 90° '9" 33 73° 1V 72° 14/
150° 113° 18 * 106° 30/ 102° 100° 26
165° 131° 49 128° 57 127° 5 126° 26
180° 144° 43 144° 43’ 144° 43 144° 43

and  54°4% (far 7)=0°
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This equation must then serve for the determination of ¢ or that
point, at which the given curve touches the ¢-axis.

Equation (52) gives

2 (c0s2 + 24/2 sin b c0s ¢ 4- 2 sin%p) = 3(1 ++/2 sin ¢ cos ¢ + 4 sin?p),
or sin2p — 2= — 2.7 sin pcos p= — 2/2 sin /1 — sin® ;
which squared gives 9 sin*¢ —12sin%$ +4 =0,

hence sin ¢ = ", OF =544, evrvveeirrrrenenne (53)

which is also included among the values of ¢ in foot-note on p. 57.

We observe that, if the resulting equation for ¢ had no real root,
the above assumption, that the givén curve touch the ¢-axis, would
have to be abandoned (cf. Ex. 7 at end of chapter). Upon including
this particular value of ¢ among those above, we can plot the given
curves, as in fig. 6 on next page.

For ¢>180°=180°+ ¢, the general expression (47) for cos(f,, r)
remains unchanged, except in sign, since

sin(180° + ¢') = —sin ¢,
and cos(180° + ¢") = —cos ¢
It thus follows that

c08(f iy = =08 (fy 1) = cO8{180° = (f 1))

or (for M) =180° = (fy )y wvvvvvrvevnerunirnnnn. (54)
where the indices ¢ and ¢’ denote that the angle (f,, 7) is to be taken
in the regions ¢=0° to 180° and ¢'=180° to 360° (0°=6=90°)
respectively.

The values of the angle (f, 7) in the region $=180° to 360°
(0°=6=90°) thus follow directly, by formula (54), from the values
for that angle in the region ¢ =0° to 180° (0° = 6 = 90°) (cf. foot-note,
p- 57). We can evidently obtain the curves represented by these
values, upon revolving the plane ¢=0° to 180° and (f,, 7)=0° to 180°,
together with its curves §=0°, 15°, 30°, and 45°, through 180° about;
the line (f,, 7)=90° in that plane as axis, and then dlsplamug the
same (plane and curves) the distance 180° along the ¢-axis.

The Hemisphere 6 =90° to 180°.—Our general formula (47) reduces
here to the following :

For (1) =105"=90"+6 and 6=165°=90°+¢,

2(cos ¢ +0-7071 sin ¢)
CosS(foy MmO ... 55
(o) \/6(1+U 7071 sin ¢ cos ¢ — 0‘75s1n‘¢>) (53)
where the plus-sign is to be taken for ¢ =15 and the minus-sign
for 0'="75°%;
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(2) 6=120°=90°+6¢ and 6=150°=90°+6,
9 . 1 \
SR (pﬂsj; + 0366 sin ¢) ' :
V6(1£0°366 sin ¢ cos ¢ — 0-433 sinZe)
the plus-sign to be taken for 8 =30° and the minus-sign for & =60°;
{(for 7)

140

59 -

16 - //

100 /

o /
/

/

\\\

/

&9
\ 0=L159&7

b,
4= J Q
=
X5
0 15°  30° 45° 60° 75° 90° 105° 120° 135° 150° 165

(3) 6=135"=90"+6,
e N L SPCHE I RIE T ) & (57)
V6(1 =05 sin“p)
and (4) 6=180°=90"+4,

i Sscon R S skl o e e 58
cos(fy, 7) BT T (58)
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Upon evaluating these expressions for dhg different values of ¢
between 0° and 180°, we observe that
€08 (fo, T)o0+9, 90° -0 = —€OS(Jy . *g, 0
where the given indices denote, as above, that the angles in question

are to be taken in the regions 90°+ ¢, 90° - 6" and 90° — ¢, 6 respec-
tively, the angles ¢ and &' being assigned the values

$=15°, 30°, 45°, 60°, and 75°

and # =15° and 30°.
It thus follows that
<f2, 7')90°+4,’ 90° -0 — 180° — <f2, 7')9()" —h, B eereeeieiaiies (59)

- (cf. formula (54)).
By this and formulae (55)—(58) we ﬁnd the values given in foot-
note* for the angle (f,, ), which give the six curves of fig. 7 on next page.
As above, the expressions for cos(f,, r) remain unchanged, except in
sign, when we put ¢ =180°+ ¢’ ; it thus follows that

(o Py = 180° = (i )5

The values of the angle (f,, ) in the region ¢=180° to 360°
(90° = 0=180°) thus follow directly from those in the foot-note*
below, whereas we can obtain the curves represented by the same,
as above, upon revolving the curves ¢ =15° 30°...90° through 180°
about the line (f,, 7)=90" as axis and then displacing the same the
distance 90° along the ¢-axis.

It is evident from the above systems of curves that:

1. The given (secondary) oscillations are longitudinal along the two
vectors §=45°, $=>54° 43" and 6=45°, p=234° 43,

2. The longitudinal oscillations (1) take place in opposite directions
with regard to their vectors or in the same direction in space.
*Thecurvesd’ =13°, 6'=30°, 6'=45°, 0'=60°, 9’'="75° and 6’ =90°.
p= O 35° 17 35°17 35°17 35° 17" 35°17 35° 17

15° 29° 26’ 32° 15’ 36° 39’ 40°41  44°37 48°12
30° 26°47 33°18’ 40° 54’ 49° 22’ 58° 14/ 66° 36
45° 27° 15 36° 39’ 48° 12 61° 49’ 76° 27 90°
60° 30° 50/ 43° 4 58° 54/ 78° 97° 24’ 113° 24’
75° 37° 40/ 52° 56 73° 1Y 96° 15 116° 48" 131° 48’
90° 48° 12 66° 37" 90° 113° 23 131° 48" 144° 43
105° 63° 12’ 83°45" - 106°4Y 127° 4/ 142° 20/ 153° 24/
120° 82° 36/ 102° 121° ¢ 136° 56" 149° 10 158° 427

135° 103° 33’ 118° 11 131° 48’ 143° 21’ 152° 45’ 160° 42’
150° 121° 46’ 130° 38’ 139° 6’ 146° 42' 153°13 158° 42’
165° 135° 23 139°19 143° 21’ 147°10 150° 34/ 153° 24
180° 144° 43 144° 43 144° 43’ 144° 43’ 144° 43 144° 43



SPHERICAL ELECTROMAGNETIC WAVES, 61

The Longitudinal & ndary Electric Wave.—We have seen on
pp- 50-51 that the seer  .ry (electric) wave was unaccompanied by either -
a primary (electric’ . 2 magnetic wave along the twa vectors a:f8:y
=a,:0,:0y; these were the only vectors, along which the primary
(electric) or magnetic wave did not appear. From the given formulae
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for the‘secondary (electric) wave along these vectors it is evident
that these secondary oscillations take place along those vectors, that
is, that they are longitudinal along the same. It is now easy to show
that these longitudinal oscillations and those of (1) and (2) above
are the same, the latter corresponding only to the particular case
of the former, where a,=a,=a;=a. It thus follows that the longi-
tudinal oscillations of (1) and (2) are unaccompanied by either a
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primary (electric) or a magnetic wave; hence the general law: In
those regions, where the primary (electric) and magnetic waves fail to
appear, the secondary (electric) wave is longitudinal and conversely
the longitudinal secondary (electric) oscillations are thereby charac-
terized that they are unaccompanied by either a primary (electric) or
a magnetic wave.

The Transverse Secondary Electric Wave.—By formulae (46) the
secondary (electric) oscillations are transverse throughout the plane

a+B+y=0(t=0=0g), ccocererririiriiiinn (60)

which passes through the origin. Throughout this plane the electric
moments evidently assume the simpler form

X, Y, Z, n* .
D=DTD T
or the moments of the primary (electric) wave are independent of the
direction-cosines, and
X, Y, Z, n
DD D" Rese

or the moments of the secondary (electric) wave are also independent
of the direction-cosines. It is evident that the primary and secondary
waves, represented by the more general formulae (43), possess this same
property throughout the plane a;a + a8+ a,y =0.

By formulae (44)—a, =a,= a,—the resultant moment of the magnetic

wave 1S

S : 1
JEFFEEE =" iy B+ (@ = )7+ (B o) (3 sin = gooso)

g 1
=n%0 J2 - 2(af+ay+ By) (gsmw—-pcosw).

The secondary (electric) oscillations are transverse throughout the plane
a+B+7y=0, that is, here the relation holds a + 3+ y =0, which squared

gives o+ B +y?+2(aB +ay+By) =0,
or, since 02+ 324 42=1,
2@B+ay+By)=—Loiiiiiiiiiiieae, (61)

The analytic relation (60) between the direction-cosines can thus be
replaced by this relation (61), and hence the above expression for the
resultant magnetic moment throughout the plane a + 8+ y =0 written

—_— 3, d
\/a2+b2+cz=m /'—zsmw~lcosw
) 7 72 R

or the resultant moment of the magnetic wave is here independent of the
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direction-cosines. It is also easy to show that the resultant moment of
the magnetic wave represented by formulae+ (44)—a, = 0, = a,—is
independent of the direction-cosines throughout the plane ¢,a+a,8
+a,y=0 (cf. Ex. 16 at end of chapter).

The above results can evidently be summed up as follows :

The transverse secondary (electric) wave is thereby characterized
that (1) its amplitude is independent of the direction-cosines, depending
ouly upon 7, the distance from the source, and (2) it is accompanied by
a primary (electric) and a magnetic wave, whose amplitudes, likewise,
depend alone upon the distance from the source; and conversely, in
those regions, the plane a,a + a,6 + a;y =0, where the amplitudes of the
primary (electric) and the magnetic waves are functions only of the
distance from the source, the secondary (electric) wave is transverse.

The Primary Electric Waves.—The primary wave of this problem
differs only immaterially from those of problems 1 and 2; it is the
(primary) electromagnetic or light-wave, with which we are already
familiar ; it reveals only another law of distribution of the amplitudes
with regard to magnitude and direction of oscillation (over any given
sphere).

The Secondary Electric Waves; the Roentgen (X) Rays.—The
secondary wave of the given problem is also similar to those of the
preceding problems, in that it belongs to one and the same class of
wave-motion, namely that which is thereby characterized that the
oscillations do not, in general, take place at right angles to their
direction of propagation. Moreover, the secondary waves of all three
problems display certain properties that are common to all. One of
the most striking such properties is that there are certain regions,
throughout which the secondary (electric) wave is unaccompanied by
either a primary (electric) or a magnetic wave, and that in those
regions the secondary wave is longitudinal ; in problem 1 the given
region was the z-axis (cf. Ex. 12), in problem 2 the y- and z-axes
(cf. p. 39) and in problem 3 the vectors a:fB:y=a,:ay:a; (cf. p. 61).
In this respect the longitudinal secondary electric waves would resemble
the Roentgen (X) rays, which have not yet been found to be influenced
by magnetic disturbances. Another similarity between these waves
and the Roentgen rays is the empirical confirmation* that the latter
advance with the velocity of light, which is evidently the velocity
of propagation of the former (cf. formulae (43)). As to the law of
intensity of the Roentgen rays, the few empirical data we have would

* ¢ Sur Pégalité de la vitesse de propagation des rayons X et de la vitesse de la

lumiére dans I’air.” Note de M. R. Blondlot. Comptes Rendus, Tome CXXXY.,
No. 18, Nov., 1902.
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tend to show that it is not according to the inverse square of the
distance from source, but that their intensity diminishes much more
rapidly, perhaps according to the fourth power of the distance, the law
of variation of our secondary electric waves.

Summary,—Lastly, let us compare the results found on pp. 61-62
pertaining to the longitudinal and transverse secondary (electric) waves
and their respective primary (electric) and magnetic waves of pro-
blem 3 with the results of Exs. 2, 4 and 12-16 at end of chapter
pertaining to the respective waves of problems 1 and 2; we find the
following general results : ’

1. In those regions, where the primary (electric) and the magnetic
waves do not appear, the secondary wave is either longitudinal, as in
problems 1, 2 and 3, or it does not appear at all, as in problem 2 along
the z-axis.

2. The longitudinal secondary (electric) wave is unaccompanied by
either a primary (electric) or a magnetic wave (problems 1, 2
and 3).

3. In those regions, where the secondary (electric) wave is transverse,
its amplitude is independent of the direction-cosines, that is, one and
the same for any r=const.; and, conversely, in those regions, where
the amplitude of the secondary (electric) wave is independent of the
direction-cosines or a function only of 7, the same is transverse
(problems 1 and 3).

4. The transverse wave is accompanied by a primary (electric) and a
magnetic wave, whose amplitudes are independent of the direction-
cosines, that is, remain the same for any r=const. ; and, conversely, in
those regions, where the amplitudes of the primary (electric) and
magnetic waves are independent of the direction-cosines or functions
only of 7, the secondary (electric) wave is transverse (problems 1 and 3).
3 and 4 do not hold for the waves of problem 2; the explanation of
this is evidently to be sought in the particular form chosen for the
auxiliary functions U, 7, W, which are unsymmetrical with regard to
the coordinate-axes. On the other hand, we call special attention to
their validity for the waves of problem 3, where the auxiliary functions
U, 7, IV have been chosen symmetrical with regard to the z, ¥, # axes,
but as derivatives of three arbitrary wave-functions b1, Py Py since
waves of most various types can evidently be represented by the
derivatives of three such arbitrary functions (a; = a, = ay).
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EXAMPLES.

1. The Hertzian oscillations are represented by Hertz by the following deriva-
tives of the function II, which is assumed to be a purely spherical wave-

function : P11 A1 @I @PII
P=-Zar = Gya P=mmtap
2 — 2
and = 1 d*1 1 a2l =0}

Ss@ay P aide
where P, @, R (X, Y, Z)*and a, 8, y (L, M, N )* denote the electric and magnetic
forces respectively.t
Show, on assuming that the function IT has the form
H=El sinm(r— vt)’
r

where El is a constant and m——. that P, @, R and &, B, ¥ are given by the
expressions

= Elm’smm(r vt) + Elm cos m(r — vt)
3 .
- 7 Y Flsin m(r—vt),
Q—ﬂyElmzsm m(r— vt)+ Y Eim cosm(r—vt)
_ _ﬂ_’y i .
3 Bl sinm(r — vt),

2 _3(a2+ B2
R= —#?Elm?sin m(r—vt)+2—3%—t‘3—)EZm cos m(r —vt)

_9(g21 Q2
—wlﬂsinm(r—vt),

and =}3 Elm?sin m(r — vt) + B Elm cos m(r - vt),

B=-2 Elm2s1n m(r—vt) - P Elm cos m(r —vt),

¥= 0
(cf. formulae (39), p. 83, of my Theory of Electricity and Jl[agnetzsm), where a, 8, v
are the direction-cosines of 7.

These (Hertzian) oscillations are evidently those already examined in problem 1
of the text, being referred only to a different system of coordinates (cf. formulae
(10) and (13)).

2. Show that region 3 of problem 2, determined by the analytic conditions

a(f?-9) =0, B@®+29%)=0, v(a®+28%)=0,
comprises the two regions 8=0 or the xz-plane and o?+2y2=0, hence g*=1 or the
y-axis; and that throughout the former the resultant electric moments are

NX7P+ Y]2+Zl2=~/X12+Zl“=ﬂz-,{r
NXZ+T Y2+ Z2=NX32+Z, —377 Z—T{’
and along the latter
3 d¥

NXPZ+YP+22=0, NX2+Y2+Z=Y,=-575 (D=1)

* The Hertzian notation.
t Cf. Hertz, Untersuchungen ueber die Ausbreitung der elektrischen Kraft, p. 150;
and Curry, Theory of Electricity and Magnetism, formulae (28) and (29), p. 77.
f E
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Throughout the zz-plane both the primary and secondary oscillations thus take
place in that plane, whereby the intensity of the former is a function of the
direction-cosines « and v and that of the latter a function of v alone, whereas
along the y-axis the primary wave disappears entirely and the secondary one is
propagated as a longitudinal wave.

The moments of the magnetic wave that accompanies the given electric wave are

a=c=0, b= 2 (iz[_?_’df 3f)

vt r dt\dr® rdr r?
throughout the az-plane, and

a=b=c=0
along the y-axis. The magnetic oscillations of the xz-plane thus take place at
right angles to that plane, whereas no magnetic disturbance whatever appears
along the y-axis.

The only disturbance that appears along the y-axis is, therefore, a secondary
(electric) wave, which is propagated along that axis as a longitudinal wave. The
appearance of a secondary (electric) wave, unaccompanied by either a primary
(electric) or magnetic wave, along one vector, at least, is thus consistent with our
differential equations.

3. The analytic conditions

B(a®+2v%)=0, a(8-v")=7(a*+28%)=0

determine the region a= -y= %, B=0 or a straight line passing through the

origin, lying in the zz-plane and bisecting the quadrant x, —z; the resultant
moments along this vector are

2
VERT TP= - o P and VXFHZ= \/grz Z}; (D=1.)
4. Examine the electric and magnetic waves in region 4 of problem 2.

Show that a secondary (electric) wave, unaccompanied by either a primary (elec-
tric) or a magnetic wave, is propagated in longitudinal oscillations along the z-axis.

5. Show, when a,=a,=4a,;, that no region is determined by the following
particular form of formulae (35):

B +vi=a(B+7),
a®+9* - Blaty)=a?+ 8 - y(a+B) =0.

6. To find in problem 3 the electric and magnetic moments in the region deter-
mined by the analytic conditions

Ay~ 43$=0, a-a;y=0, af-aa=0
(cf. formulae (42)), replace 8 and y by
ﬂ_x/a22+a Nl-a? y=— 2
in formulae (36) and (40) respectively.
Also show that no region is defined by the analytic conditions
ayy —asf=0, aza—ary=a8-a,a=0.

. The curves 6=0°, 15°, and 30° of Fig. 6 (p. 59) do not touch the ¢-axis.

For 6=0 our general formula (47) would reduce to the following at any point
on the ¢-axis :

1 N1-a?
~/a +a3

2(cos ¢ +sin¢)=N6(1+sin g cos @) ; ......... R T (a)
which would give sin2¢p =2,
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Since the sine of an angle cannot be greater than unity, it follows that there is
no value ¢ that satisfies the given equation (@) (assumed), and hence that the
given curve does not touch the ¢-axis. We find similar equations, that cannot
be satisfied, for §=15° and 6=230°.

8. In problem 1 show that the angle of oscillation of the secondary (electric)
oscillations is given by %,

COB ([ 7) = —mmmms 5 veniesrienniicisiintonaneeoreseanes (o)
moreover, that the angle of oscillation of the (electric) oscillations represented by
the terms of the third order of magnitude in l is given by the same expression (a)
with sign reversed. a

9. Show that the electric oscillutions of the third and fourth orders of magni-
tude in L of problem 2 make one and the same angle of oscillation with their

r
direction of propagation, namely
382 -%) _ 3singcos 26

NAB+v2) +5(F2~+%)? N4+ 5sin’p cos?20

To find this expression, write the coefficients of the given component moments
in the form

150 V(1 +a?) (B2 +7%) - 4% 3B8(5a2+1042-3), 3y(5a2+103%-3).

Show that the oscillations in question, those represented by the terms

cos (f3,4, )=

of the third and fourth orders of magnitude in 71., are transverse or longitudinal

in the same regions, in which the secondary oscillations that are represented by

the terms of the second order of magnitude in 1 are transverse or longitudinal
respectively. r

10. In problem 3 show that the electric oscillations that are represented by
the terms of the third order of magnitude in ;l: make the same angle of oscillation

with their direction of propagation as the secondary electric oscillations that are
represented by the terms of the second order of magnitude.
It thus follows that the secondary electric oscillations proper or those represented

by the terms of all higher orders of magnitude in % than the first are transverse or

longitudinal in the same regions, in which the secondary electric oscillations that
are represented alone by the terms of the second order of magnitude are
transverse or longitudinal respectively. This law is quite general (cf. Exs. 8
and 9).

11. In problem 3 -the electric and magnetic oscillations take place at right
angles to each other—this has been proved on pp. 54-55 for only the approximate
values of the moments. To confirm this law for the exact values of X, ¥, Z and
a, b, ¢, we evidently need prove the validity of only the two additional equations

Xoa,+ Y3by+ Zye, =0
and X0+ Yoba+ Zac, =0 :
(cf. p. 54). Since now the moments X,, Y3, Z, and X,, Y,, Z, have one and the
same coefficients in a,, a,, a; and a, 8, v (cf. formulae (43)), and the moments a,,
by, ¢y and ay, by, ¢, also (cf. formulae (44)), the validity of these two equations
follows directly from those confirmed on pp. 54-55.
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Moreover, since both Xoay+ Yoby + Zse, =0
and X,ag+ Yiby+ Zc, =0,
it follows: The electric and magnetic oscillations of not only the same but
different orders of magnitude in % take place at right angles to each other. It
would, therefore, be impossible to separate or pair off the electric and magnetic

waves of the same order of magnitude by means of the property that they take
place at right angles to each other.

12, In problem 1 the only region, in which primary (electric) and magnetic
waves do not appear and the secondary (electric) wave becomes longitudinal, is
the x-axis.

By the formulae on p. 35, the moments of the given primary wave are

X BAPAY p_ eBdY , aydy

v dr® TP T ar®
and those of the secondary
o 2~ 3(ﬁ2+72) af Y2_3aﬁ df Z,= %vy df (D=1),

r dr?

g S w2 a DP=he .(b)
where we have rejected the terms of the third order of magnitude in I
7
The resultant moment of the primary wave is thus
1
NEFE TP Zp =N ey -
=BT = L e ()

rdr?
which can vanish only when 82+42=0, hence a?=1, or the x-axis.
Replace A;, uy, 75 by their values from formulae (b) (cf. p. 43) in formulae (23)
for cos( f;, 7), and we have

- 2 2 2
Y ) 20 — 3a.(3%+ %) + 3a 3%+ 3ay

N4 -12(8%+7) + 9 (B + 777+ 9a%B% + GaPy?
2a

That these oscillations be longitudinal, we must evidently have
i 20,

Vi3

hence 4 - 3(82++2)=4a?, or a?=1, or the z-axis.

The resultant moment of the magnetic wave is

m%g"/"?;“ﬁ(ddtfif;_;‘g) .................. —

(cf. formulae for a, b, ¢ on p. 33); that this moment vanish, we must have

+1=

B%2++%=0, or the x-axis, Q.E.D.

13. In problem 1 the secondary (electric) wave is transverse throughout the
yz-plane only, throughout which both its resultant moment X,, ¥,, Z, and
those of the primary (electric) and the magnetic waves are independent of the
direction-cosines, that is, are constant for »=const.

By formula (d), Ex, 12, the given secondary oscillations are evidently transe
verse only, when a=0, that is, throughout the yz-plane,
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By formula (b), Ex. 12, the resultant moment X,, ¥,, %, is

NXZ+ Y2+ Z2=Ni-3(B2++7) }2%’
or throughout the yz-plane, where the secondary wave is transverse,
vy 1 df
R I .
OEER GRS Trdr
By formulae (c) and (¢), Ex. 12, the resultant moments X,, Y3, Z; and @, b, ¢ are
evidently independent of the direction-cosines throughont the yz-plane. Q.E.D.

14. In problem 2 show that the secondary (electric) wave is longitudinal along
the y- and z-axes only, whereas primary (electric) and magnetic waves fail to
appear along all three coordinate-axes.

15. In problem 2 the secondary (electric) wave is transverse throughout the
planes 32=+2 (cf. p. 44) ; show that throughout these planes the resultant moment
Xy, Yy, Z,and those of the primary (electric) and magnetic waves are functions
of the direction-cosines, that is, vary for r =const.; moreover, that the only regions,
where the resultant moments X,, Y, Z;, and a, b, ¢ are independent of the
direction-cosines, are the y- and z-axes, along which the same vanish entirely.

16. The amplitude of the magnetic wave of problem 3 is independent of the
direction-cosines throughout the plane

B+ BB+ Ay =0. coovvinviiiiiiniii e (a)
By formulae (44) the resultant moment of the given wave is

Na?+ b2+ = %%’ (7—:. sinw - % cos w) N(agy — @85+ (aga — )2+ (2,8 — aga)?

nvy (n . 1
=—"|=sinw~—5cosw
v \r 7

% Na2(B2+97%) + a2 (@® + %) + a5 (a® + §7) - 2(ay0508 + ay gty + AggBy)- -.....(D)

The condition (a) representing the plane, throughont which the given secondary
electric wave is transverse, can now be replaced by the condition

(ta+ a8 +ayy)?=0,
0 %% + @287+ ag’y? -+ 2,290 + Ay 830y + ap38y) =0

by which the expression (b) for the resultant moment can be written

ey AU [N . 1
N2 52 ="20 —sinw-—;cosw
S\ 7

x Nay (B2 +9%) + ag(o? + %) + aga® + B7) + ay %P + a?f + agy
or, since a?+ B2 +y2=1,
7 nvy (N . 1 5 =
Na2+ b2+ 2=—( =sinw— = cos w | Na,® + a;? + ag’
v \7” 7 =
which is independent of the direction-cosines.

17. Examine, in detail, problem 3 for the particular case, where

;=0 (a,=ay).
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18. Show, on replacing the functions f;, /5, /3 of formulae (29) by
R4
JSi=0, sin x (vt—7),
JSr=a,sin g;_r (vt — 1),

P

that the primary electric wave is represented by the moments

0S W

X sin w ¢
ﬁ: n?[a, (8%+7?%) — ayef] - nPagay

Y, S @
’D‘ =n?[ag(a®+7
Zy sinw ., ., cos w
=" 2y (a,a + asf3) + nPay(a? + 8% ——
the secondary electric wave by the moments
%—2— - ‘3na3a'y +n[2a] — 3o, (B2 +y
r,_ ,
D~
gg:?t% [3(a®+ B —2] sin w os @

+3ny (oqa + agfB)

D
and the magnetic wave by the moments

n?

- ; (a3B €Os w — ayy sin w) + 2 (ag-y cos w+asB3 sin w):]

b= 1;” [n (aga cos w — @,y sin w) + (a.l'y cos w+aza sin w)]
7"0
— (a,lﬁ' a,a)sin w — ; (2,8 — a,a) cos w

19. Show that for the electromagnetic waves of Ex. 18 the analytic relation
holds
(Xy+Xo)a+ (Y4 o) b+ (Z+ Zp) =0,
or the resultant electric and magnetic moments are always at right angles to each
other,

20. Show that the primary (electric) oscillations of Ex. 18 take place in planes
that are at right angles to the direction of propagation, and that the angle
between the vector f, of any element of the secondary (electric) oscillations of the
same and the direction of propagation is for the particular case, where @, =a,=a,,
determined by the formula

o R . 4[—-y_s,in¢..:+(a+;3)cosu.:]2 ,
(1+3v?) sin%w + 18ay sin w cos w + [2 + GaB + 3 (a? + £2)] cos®w

or in polars
Sodt (e ‘ 8 [ —‘sin ¢ tﬁiI.l 4 sin w + (cos. b+ §in ¢ cos ) cos w]?
2(1 + 3 sin%p sin“d) sin*w + 9 sin 2¢ sin 6 sin 2w
+2[2 + 3(cos?p + sin 2¢ cos 0 + sinp cos?d)] cos?w.







CHAPTER 1II

LINEARLY, CIRCULARLY, AND ELLIPTICALLY POLARIZED
OSCILLATIONS ; GENERAL PROBLEM OF ELLIPTICALLY
POLARIZED ELECTROMAGNETIC OSCILLATIONS.

Different Kinds of Light.—In the foregoing chapters we have
examined certain periodic oscillations of the ether without attempting
to identify them directly with what we call “light”; still, we recog-
nize, if light is to be regarded as an electromagnetic phenomenon, it
has already been identified with that periodie state of the ether, where
two kinds of transverse oscillations, known as the electric and magnetic,
which are closely allied to each other (cf. Chapter IL), are taking place
(at right angles to each other). Whether the light-wave is to be
regarded as a particular kind* of electric or magnetic disturbance is a
matter of little consequence. Likewise, no attempt was made in
Chapters I. and II. to discriminate between the different kinds of
light. The first distinetion to be made is that between ordinary
and so-called “polarized” light.

Polarized Light.—A ray of light is termed polarized” when its
behaviour is not one and the same round its direction of propagation,
circularly polarized light exceptedt; the (extraordinary) ray that
emerges from a plate of tourmaline and passes through a second such
plate is known to vary in intensity, as we rotate the latter (plate) round
the ray (its direction of propagation); the ray emerging from the first
plate is thus termed “ polarized.” Or, to express ourselves analytically,
we call a ray “polarized ” when its wave-front elements describe similar
and similarly situated paths (during given finite intervals); if the paths

* Oscillations of very short wave-lengths, those of light waves.

t Although circularly polarized light exhibits the same properties round its
direction of propagation, it differs materially from ordinary light, as Chapter VIII.
on the behaviour of light in crystals will show.
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described are parallel straight lines, the ray is termed ¢ linearly”
polarized ; if the given paths are similar and similarly situated ellipses
or circles, the ray is then said to be ‘“elliptically ” or *ecircularly”
polarized.

One of the simplest kinds of linearly polarized oscillations or waves
can be represented by equations of the form

g/=asing}?(-vt—x), ............................ (1)

which represents an infinite succession of similar changes or vibrations
in a given (the xy-) plane. HKquations of this form may be used to
represent linearly polarized light.

Ordinary Light.—When the behaviour of a ray is one and the same
round its direction of propagation, or, more strictly, when the particles
or elements of its wave-front describe quite arbitrary paths or similar
and similarly situated paths for only infinitely short intervals, the ray
(light) is termed  ordinary.” We can thus imagine any particle of an
ordinary light ray as oscillating for an infinitely short time in any
given path, for example, in a straight line, in the next interval in
another path, a flat ellipse, then in a circle, and so on, and assume the
number of such changes in polarization during the (finite) interval
required for light to impart an impression on the retina of the eye to
be so large that the mean of the displacements in any and every
direction (at right angles to the direction of propagation) during that
interval becomes approximately one and the same. This conception of
ordinary light not only “explains the empirical fact that a ray of
ordinary light shows one and the same behaviour round its direction
of propagation, but it also agrees with the observations made by
Michelson,* that a change of polarization is possible after the elapse of
540,000 vibrations, which would correspond to thousands of changes in
polarization during the interval required for an impression of light on
the retina of the eye. Moreover, the given conception will enable us
to explain certain empirical laws on the interference of polarized and
ordinary light (cf. Chapter IV.).

Homogeneous waves are those of one and the same wave-length (colour)
or period of oscillation and keferogeneous those of different wave-lengths
(colours) or periods of oscillation ; when the different wave-lengths are
equally represented in the given waves, we have waves of so-called
“white” light.

Plane of Polarization.—~The methods for obtaining polarized from
ordinary light are familiar to us all; of these that by reflection is of

*A. A. Michelson : American Journal of Seience, vol. xxxiv. p. 427, 1887.
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special interest on account of the terminology used. We know,
namely from experiment, that there is one angle of incidence, the
so-called “angle of polarization” or the *polarizing angle,” for which
ordinary light upon falling on certain bodies, as a glass mirror, is
reflected as linearly polarized light. If we now let this linearly
polarized light fall at the polarizing angle upon & second mirror, the
intensity of the reflected light will be found to depend upon the angle
the plane of incidence chosen makes with the first plane of incidence ;
namely the smaller this angle the greater the intensity, and the
nearer this angle approaches a right angle the smaller the intensity.
That particular plane of incidence, in which the light is most copiously
reflected, is now known as the “plane of polarization”; this plane
is evidently the plane of incidence or reflection of the polarizing
surface or first mirror. Since now the oscillations reflected from
the polarizing surface or the first mirror evidently take place in
some particular plane, as an examination of them by the polariscope
will show, it is natural to assume some characteristic plane as plane
of oscillation ; this would naturally be either the plane of polarization
or that at right angles to it. In the elastic theory of light it is a
pure matter of taste, which of these planes be chosen as plane of
oscillation ; Fresnel assumes that the light oscillations take place
at right angles to the plane of polarization, and Neumann in
the plane of polarization. In this respect the electromagnetic
theory of light differs materially from the elastic; the former
demands fwo just such characteristic planes (at right angles to
each other), the one for the electric and the other for the magnetic
oscillations ; which one of these, the plane of polarization or that at
right angles to it, be the plane of (electric) oscillation, is also
apparently a matter of choice; this is not, however, the case, as
the chapter on the hehaviour of light in ecrystals will show;
we shall find, namely, that the electric oscillations take place
at right angles to and the magnetic ones in the plane of polar-
ization.

Elliptically Polarized Oscillations.—We know from experiment that
it is possible to obtain other kinds of polarized light than the linearly
polarized, also that the most general form of polarization is the
elliptic. This suggests the supposition, that an elliptically polarized
oscillation be identical to two linearly polarized oscillations of the
same period of oscillation, but of different amplitudes and phases,
that are taking place at right angles to each other; this is only
another or somewhat more general form of the principle of the resolu-
tion and composition of forces or displacements. TLet us examine
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the resultant of two such oscillations, for example, the two rectangular
(linearly polarized) periodic oscillations
z=a,sinn [vf - (2+8;)]
y=dysinn [vf— (2+8,)] <n = 2%) }’
their planes of oscillation being the 2z and yz-planes, and the direction
of propagation the z-axis, where & —8, denotes their difference in
phase. To find the path described by any element under the simul-
taneous action of these two displacements (oscillations), we must
eliminate the time ¢ from the two equations (2). For this purpose
we write the same explicitly
z=a, sin n (vt — 2) cos nd, — a, cos n(vf — 2) sin nd,
Y=y sin n (vt — 2) cos nd, — a, cos n (vt — 2) sin ndy ;
which give

2 cos ndy — 2 cos nd; = — cos n(vt — 2)sinn (s, - 8,)
a, ay
and o, sin nd, — ;e ndy= —sinn(vf - 2)sinn(8, — 8,) ;
and these, squared and added,
3, o8
51—2 + 3—22- - 2-}1%2 0087 (8, — 8y) = SN2 (8, = 8. wrvreverveenne. 3)

This is the equation of an elliptic cylinder (cf. Ex. 22), whose
infinitely long axis is the zaxis. The path of oscillation of any
particle of the wave represented by formulae (2) is evidently the
ellipse intersected by this cylinder on the plane z=a, where a denotes
the distance of that particle from the origin. It thus follows that
two linearly polarized oscillations of the form (2) compound to an
elliptically polarized oscillation.

Mode of Propagation of Elliptic Oscillations.—To form a conception
of an elliptically polarized wave, we choose its direction of propagation
as axis of an elliptic cylinder, and imagine a wire wound loosely round
that cylinder; the spiral described by the wire would represent an
elliptically polarized wave at any given time, and the uniform dis-
placement of that spiral along the surface of the cylinder in the
direction of its axis, the manner in which that wave were propagated.
For a circularly polarized wave the elliptic eylinder would have to be
replaced by a circular one.

Circularly Polarized Oscillations.—Let us examine the analytic
equation (3). That the oscillation (polarization) (3) be circular, the
following conditions must evidently be satisfied :

= a3,
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or the amplitudes of the given oscillations (2) are the same, and

7 3
cosn(d; — 8,)=0, hence n(8 —3&,) =7—; or Tﬂ-,
: R A 3A
or, since n== 8, —8,= 1T

or the oscillations differ in phase by quarter of a wave-length.
We must, however, discriminate here between the two cases

A 3\
81_82:1 and & _82=T;
in the former the circularly polarized oscillations are evidently repre
sented by equations of the form

r=asinn [vf— (2+8,)],
y=asinn|:vt— (z+ 8, —%)]:acosn[ﬂt— (#+8,)],
and in the latter by r=asinn vt - (2 + &),

y=asinn|:1;t— (z+31 —%>J= —acosn[vf—(2+8)]

~

Fic. 8.

Right and Left-handed Circular (Elliptic) Oscillations.—The differ-
ence between the two above circular oscillations or waves becomes
apparent upon the determination of their so-called “azimuths”; the
azimuth is the angle ¢ (cf. the above figure), which the vector from
the position of rest of any given element (particle) to any point of
the path described by the same makes with any such fixed vector,
as the y-axis. Let us denote the azimuths of the two oscillations in
question by ¢, and ¢, respectively, measuring the same from the
y-axis, as indicated in figure 8; we have then

¢, =arctan g =nfvt—(2+48,)], ¢o= ~n[vi—(2+8)]
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As t increases, ¢, increases and ¢, decreases. For an observer at any
point on the positive z-axis, along which the given waves are advancing,
¢, is thus rotating from right to lefi and ¢, from left to right; the
former is, therefore, known as a “left-handed” and the latter as a
“right-handed ” circular oscillation. The same distinction is, of course,
to be made between the elliptic oscillations.

Linearly Polarized Oscillations.—That the resultant of two rect-
angular linear oscillations remain linear, sinn (3, - 8,) of formula (3)
must evidently vanish ; that is,

n(8, —8)=0 or =,

A
hence 8,—8,=0 or 3
In which case formula (3) reduces to
2 2 2
il % + =Y, 0,
L A U
hence 2 _Y_o
Ay Qg
or ﬁ e -z =
a,  a,

respectively ; which are the equations of straight lines.
The component rectangular oscillations sought are, therefore,

r=a,sinn [vf - (2 + 8,)],
y=agsinn [vf — (2+8,)], for 8§, —3,=0,
and - z= —aysinn[vt - (2+8,)],

B

A
y=a,sinn[vi - (2+38,)], for & -8,=5

a
hence tan = +-1,
thy

or the azimuth is constant, that is, the resultant oscillation is linear
in both cases, A
8, —8,=0 and o
The resultant amplitude is in both cases
Nrt 2= +a?sinn [vf - (24 8,)].

The Elliptic Polarization the most general—We have seen on
PP. 74-75 that two rectangular oscillations of the form (2) compound to
an elliptic oscillation. Let us next show that the path described by any
particle under the simultaneous action of three rectangular (linear)
periodic oscillations of different amplitudes and phases, but of the
same period of oscillation, is an ellipse, that is, that the most general
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form of polarization, obtained from the composition of rectangular
(linear) oscillations, is the elliptic. Three such rectangular oscillations
are

z=a,sin n(vt - &;)

Y=l = 8) b, e 4)

z=agsin n(vt - &)

To determine the path described by any particle under the simul-
taneous action of these three oscillations, we must eliminate the
time ¢ from the same. We first write the given expressions (4)
explicitly, namely,

& = a, sin naf cos né; — a, cos not sin nd;
¥ = Qysin nvt cos nd, — a,co8 nUESIN N8y 1y «oviinniiinnis (44)
== aysin nvt cos ndy — 4008 nvt sin nd;

sinn (8, — &

multiply the first by ;T—S), the second by S_nﬂz_(fs;sl) and the

third by _S..in_7ijl—_—8?—), add, and we have
3

sin (8, — 8,) - sin n(8, — 8,) o sin (8, — &,) ;
ay a, ay
= (sin net cos 18, — cos nt sin n8, ) (sin nd,cos nd; — cos nd,sin nd,)
; . . . N )
+ (sin nwt cos nd, — cos nut sin nd,) (sin nd,cos nd; — cos ndgsin 1))
+ (sin not cos ndy — cos nut sin n8,) (sin nd, cos nd, — cos nd, sin nd,)
=0

that is, since a linear equation holds between the three variables =, 7, ,
the path of oscillation of the given particle will lie in a plane, the
one determined by that (linear) equation.

To determine the path described in the plane of oscillation (5), we
seek relations between the different pairs of the three variables, z, g,
which will give the projections of the path of oscillation on the
coordinate-planes.

The first two equations (4a) give

sin nd, z -~ el y = — sin ot sin n(8; - 8,)

n ty
cos nd, 5 908 nd,

&y

and o Y= —cos notsin n(8; — &) ;
2
and these, squared and added,
2 2 oy . ,
a? + g 2 cosn (8, —,) o =sin’n (8, - &,),

with similar equations in , z, and ¥, 2, which is the equation of an
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ellipse (cf. Ex. 22 at end of chapter). The projections of the path of
oscillation on the coordinate planes are, therefore, ellipses, that is, the
path of oscillation itself is an ellipse (in the plane of oscillation (5)).
The rectangular oscillations (4) thus represent an elliptic oscillation,
and hence conversely the elliptic oscillation (polarization) is the
most general form of oscillation (polarization), as maintained above.

The Electromagnetic Waves of Chapter IL.—The oscillations just
examined represent fundamental types of polarized wave-motion ; they
are, in the strictest sense, polarized oscillations. Electromagnetic
waves, like light waves, may be either polarized or not; those
examined in the preceding chapter are not, strictly speaking, polarized,
except at infinite distance from their source. At greater distances
from its source any such electromagnetic wave or ray may now
be regarded as polarized, since the paths described by the different
elements of its wave-front remain approximately similar and similarly
situated (during finite intervals). Although the disturbances treated
in the preceding chapter are not, in the strictest sense, polarized,
it is, nevertheless, of interest to examine the paths described by the
elements of given rays of the same; we shall find that they are
linear.

The primary (electric) oscillations of Problem 1, Chapter II., are
represented by the moments

X BEPB y BAY ey

ro dr? 1T T e d® YT T e

where D=1. To find the path described by any element (at any

given point), we eliminate the time ¢ or f from these formulae, and
we have

XY :Z,=B+y?:-af:-ay,
which is the equation of a straight line; for different values of a, 5, 7,
the direction of this line evidently changes.

The secondary (electric) oscillations of Problem 1, Chapter IL., are
represented by the moments

2-3(B2+%) df 3aB df 3ay df el
S $ A 2= 3 (D=1)
which give Xo:Y,: Z,=[2-3(82+9?)]:3a3: 3ay,
that is, these oscillations take place along the lines determined by
this proportion.

Similarly, we find that the primary and secondary (electric) oscilla-
tions of Problems 2 and 3, Chapter IIL, also take place along lines
determined by similar proportions.
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We observe that the oscillations examined in the preceding
chapter all take place along straight lines; moreover, that the
directions of these lines of oscillation are functions alone of the
direction-cosines a, 8, y. In any region situated at a distance r from
the source of the disturbance, that is large in comparison to the
dimensions of that region, the directions of oscillation of the given
waves would, therefore, be approximately parallel; that is, at any
point at considerable distance from the source any ray or pencil of
rays could be regarded as approximately linearly polarized. We
observe, moreover, that the direction-cosines appear in the above
expressions for the determination of the directions of oscillation, not
in the first, but in the second and third powers; this will evidently
correspond to a more complete polarization in distant regions.

More General Problem; Elliptically Polarized Electromagnetic
Oscillations.—A most general case of an electromagnetic disturbance
in elliptic paths can be obtained, if we somewhat generalize
Problem 3 of the preceding chapter; let the auxiliary functions
U, V, W be the same functions of the purely spherical wave-
functions ¢,, ¢, ¢, as in Problem 3, but let the functions f,, f,, /s
which differed there from one another only in amplitude, differ here
also in phase; namely let

Si=oysinw; =a; sinnfvi— (r+8))]
Jo=aysinoy=aysinn[vt— (r+8,)] o ooveneiriiiinn, (6)
Js=0;sin o, =ay sinnfvf — (r+8;) ]

We replace f, f,, f; by these functions in formulae (28, II) for
U, V, 7, and we have

n 1l g c
U= = (a,ycosw, — a,3coswy) + ;2 (ayy sin 0, — a,f sin w,),
" 1 : ]
=3 (agacos o, — a,ycosw;) + o) (agasin v, — a,y sin o)),
" 1 ; s
== (a,8cos 0, — a,acosw,) + o (0,8 sin o; — aya sin w,).

We then replace U, 7, 7 by these values in formulae (5, II), and
we find

X n? . k . y
e [2,(B2+ ¥?) sin 0, — ayaf3 sin 0, — a0y sin w,]

n
+ ﬁ{[Qal — 3a,(% + ¥%)] cos v, + 3a,af3 cos v, + 3az0y cos w,} (7)

1 s 4 .
+5{[20; = 3a,(8* + ¥%) ] sin o, + 3,03 5in w, + 3az0y sin w,}
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and similar expressions for ¥ and Z. The different terms of these
expressions for the moments represent simple waves; these waves
evidently interfere with one another (cf. Chapter IV.), and may give
rise to phenomena of interference. But here we are considering only
the resultants of these simple waves, the compound waves themselves,
and not the phenomena due to the interference of the former.

Electric and Magnetic Moments at 1 to each other.—It is easy to
show that the resultant electric moment X, ¥, Z of formulae (7) and
the resultant moment a, b, ¢ of the magnetic disturbance accompanying
the given electric one always stand at right angles to each other (cf.
Ex. 13). This is the form which the law for linearly polarized oscilla-
tions (cf. p. 54) assumes for elliptically polarized ones.

The Primary Wave.—We conceive the path described by any
element of any given wave-front of the disturbance represented by
formulae (7) as the resultant of the paths described by that element
due to the passage of the waves represented by the terms of the
different orders of magnitude in 1/r. We shall, first, examine the
path described by any element due to the passage of the primary
wave ; but, beforehand, let us call attention to a property of the
primary wave that will be of service to us in the examination of the
path described by any element of the same.

The Vector X,, ¥;, Z; at L to Direction of Propagation.—The
primary (electric) wave is represented by the moments

2
1= n7 [a,(82 + ¥2) sin o, — a,af3 sin , — agay sin v,]
2 ) )
= ?—;— [a2(a2 +v?) sin o, — 0L3,3'y sin wg — alaﬂ sin wl] ‘ . .(8)

ne
Z, = n7 [25(a2 + B2) sin wy - a0y sin o, — a,Bysinv,), (D=1)

It is now evident from the form of these expressions that the
resultant moment X, ¥}, Z, always stands at right angles to the
direction of propagation of the wave represented by the same; that
is, the primary oscillations take place in planes at right angles to
their direction of propagation. For replace X, ¥;, Z; by these
values in formula (234, II) for the angle (f,¥, r), and we find

cos(f;, 7)=0, hence (f;, ¢).—_%
(cf. also Ex. 17 at end of chapter).
The Path of Oscillation.—To obtain the path described by any
element of the primary wave represented by formulae (8), we must
*This vector (moment) f; is not to be confounded with the wave-function f,

of formulae (6).
F
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eliminate the time ¢ from those equations (8); for this purpose we
write the same in the explicit form
%T- =a,(B2+v?) [sinn (¢t — r) cos nd; — cos n (v — 1) sin n81]\
— ayaf3 [sin n (vt — 1) cos nd, — cos n (vt — ) sin ndy] [ +o+(9)
— agary [sin n (vt — r) cos nd; — cos n (vt — 1) sin ndy ]
with similar expressions for ¥; and Z;, and eliminate first the
sinn (vt —r) and then the cosn(vt—r) from any two of the same;
the elimination of the former function from the first two equations
gives
Xyr Y
A2"ﬁ12——A1—7ll2—=(A1B2—A2Bl)COST, ................ (10)
where A, =a,(B8%+ y?) cos nd, — .0 cos nd, — agzay cos nd,
B =a,(82+y?) sin nd; - a,00 sin nd, — azay sin nd,

....... 1
Ay =ay(0? + ¥?) cos nd, — a,By cos nd, — a;08 cos nd, |’ (1)
By =y(a2 + ?) sin nd, — a,By sin n8, — a,af sin nd;
and TR (V=) 5o (12)
and the elimination of cosn (v¢ — 7) from the same two equations
Xir Yir .
82712‘31—%12*:(14132_14231) SN o oneneo06000000 (13)

We, next, eliminate the function 7 from equations (10) and (13); for
this purpose we square the same, add, and we have

(424 By 22" LTy

-2(d,4,+ B,B;) =1

+(4,2+ B 2)

=(AIB2—AQBI) b aesonsBascacadiaanacoooosons (14)
Upon evaluating the coefficients of this equation, we find
A+ By =0,%a%3 + 4, (a2 + 92)2 + a2y
= 2a,a508(a® + y?)cos n(8, — 8,) + 2a,a,a3% cos (8, — &;)
= 2058, (a? + y2) cos n(8, — &,)
A12 o B12 — a]?(ﬁﬁ + .),2)2 + aQ‘Za‘IB? + (1/32(12‘}’2
= 2a,a508(B? + y%)cos n(8, — 8,) — 2a,a,ay (B2 + y2)eos n (8, - ;)
+ 2a40502By cos n (8, ~ &) >-(15)
A4y + BBy= - a2aB (B2 +92) - a,%af (a2 + ¥2) + a 203y
+ 040520737 + %) 08 n(8; — 8,) + 2,048y (202~ 1)cos n (3, — 8y)
+ ay050y (23% — 1)cos n (8, — 8,)
and (4,B,- 4,B,2=[ - a,a;y?sinn (8, — 8,) + a,a,By sin n(8, — ;)
— aya5ay sin n (8, — 8,)]2

/
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Equation (14) is that of a cylindrical surface parallel to the z-axis,
It will thus suffice to determine the curve intersected by the same
on the zy-plane.

The Conic (14) an Ellipse.—As equation (14) is of the second degree,
the corresponding curve will be a conic. To determine the particular
conic in question, we make use of the well-known properties peculiar
to the same. The general equation of a conic can be written

Ax*+2Bry+ Cy2 + 2Dz + 2Ey+ F=0. ............... (16)

Upon comparing equation (14) with this one, we observe that the
coefficients 4, B, ... of the former assume here the particular form

2 2

A=(42+B2) L, B=-(d,4,+BB)"
P " (17)

C=(4.2+5B?2 port D=E=0, F=-(A4,B,~4,B))?

We, first, evaluate the determinates

ABD

BCE

DEF

of the given conic (14): we replace here 4, B, ... by their values (17),
and we have

3 7 i
e [(A22 e 322)‘ - (A1A2 i BIB2)2] 8 o (A1B2_' A2Bl)2 n8

Bg N and A=

a=

4
and A= (AC-B)F=aF= - (4,B,~ 4B}

hence ol = 0N and WA O/ e A ()
except in the particular case where
Ao B B . B (19)

The conditions (18) do not suffice for the determination of the
conic in question ; we must also know the value or sign of the quotient

; we have

7’ A (4B, - 4,B,)*r* a 9
A~ AiT BT hence 7 i Qe AL e (20)
except where A\By,=A4,B,.

Equation (14) is now determined uniquely as that of an ellipse by
the conditions (18) and (20).

The Particular Case 4,B,=A4,B,; here the determinates « and A
vanish, and the conic in question is determined by the values of the
coefficients 4 and C and the determinates

4D
B=|Dr

*This determinate o is not to be confounded with the direction-cosine a.
t These determinates are not to be confounded with the direction-cosines g and v.

and 7=|%§, .T
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We replace here A4, B, ... by their values (17) and (19), and we
have

2 7”2
A=(A22+B22)n—4>0, C’=(A12+BIZ)7—51>0,
and B=y=0;

by which conditions equation (14), where 4,B,= A4,B,, is determined
as that of a double straight line. To confirm this, replace 4, by

its value AJQ),BI from formula (19) in equation (14), and we have
2

X 2B X, Y2 B2 Y r?
(4.2 + B2 7147 --B—:(A22+322) 1n4‘ +B_;2(A22+B22) 7114 =0,
g e 2
hence (Bfﬁg - Bl%:r> =0 cooooos e (21)

It thus follows that the cylinder represented by equation (14)
intersects the zy-plane in an ellipse, except, where 4,B,=4,B,, when
the given ellipse contracts to a double straight line.

To interpret the condition (19), we recall the last of formulae (15),
by -which we can write the same in the form

a,05y2sinn (8, — 8,) — a,a,By sin n (8, — &) + agazay sinn(3, — 8;) = 0. (22)
This can be replaced by the fwo conditions

=9
or

0,y sin n(8) — 8;) — ay0,8 sin 1 (8, — 85) + ayaza sinn (8, — 35) = 0. (224)

The zy-plane is defined by the former, and a plane, passing through
the origin and making angles with the coordinate-axes, that are deter-
mined as functions of the quantities a,, ay a5 and §;, 5,, 8;, which are
given, by the latter condition (cf. Ex. 12).

Path of Oscillation determined by Intersection of Elliptic Cylinders;
Primary Wave Elliptically Polarized.—Equation (14) determines the
path of any element, set in oscillation by the passage of the given
primary (electric) wave, with regard to the z and y axes; that is, the
path sought lies on the elliptic cylinder defined by this equation. To
determine the path described on this eylinder (14) by the given
element, we must evidently seek a second equation, in X,, Z, or ¥}, Z,,
which represents a surface, upon which the given path also lies. This
equation is derived in a similar manner to the one above (14) and is
evidently also similar to it in form. The intersection of the two
cylinders represented by these equations gives then the path (in space),
along which the given element is oscillating.
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The equation in X, Z; similar to (14) is evidently

2
(4+ BT 9(d,dy + BBY DD 1 (424 By L

=(AyBy= AGBL, ovveeeeeeeeeeeeee e, (23)

where Ay =a5(a? + £2) cos nd; — a,ay cos nd; — a,By cosnd,
B, =a,(a2 + 82) sin nd; — a,ay sin n; — a,By sin nSl}'
Surfaces of the second degree intersect, in general, in a curve of
the fourth degree. 'We have now scen on p. 81 that the given
oscillations take place in planes that are at right angles to the
direction of propagation. The elliptic cylinders represented by
equations (14) and (23) must thus intersect in a curve that lies in a
plane. A more thorough examination of the form of these elliptic
cylinders, the relative position of their principal axes to each other
and the lengths of the same (cf. Exs. 20, 21, 23, and 24), shows that
they intersect in a curve that lies in two given planes or better in
two curves, the one lying in the one and the other in the other plane.
Since now an elliptic eylinder and a plane, for example the plane, in
which one of these curves lies, intersect in an ellipse (provided, of
course, they intersect), the given cylinders will evidently also intersect
in (two) ellipses. Of these two ellipses that one determines the path
of oscillation of the given element, which lies in the plane that is at
right angles to the direction of propagation ; it can also be determined
as follows : the equation in ¥, Z; similar to equations (14) and (23)
represents an elliptic cylinder parallel to the z-axis, which intersects
either of the other two elliptic cylinders (14) or (23), for example
the former, in two ellipses, each lying in a plane ; of these two ellipses
one and only one is identical to one of the above two ellipses, the
intersections of the elliptic cylinders (14) and (23), and that ellipse is
evidently the one sought or that of oscillation of the given particle or
element. The given primary electric wave is thus elliptically polarized.
The Secondary Wave ; Determination of the Angle (f;, 7).—Let us,
next, determine the path described by any ether-element upon the
passage of the secondary electric wave, represented by the moments
X,, Y, Z, of formulae (7). For this purpose we, first, determine the
angle (f,, 7), which the vector f,* from the position of rest of that
element to its position at any time ¢ makes with the direction of pro-
pagation of the wave, to which that element belongs. By formula
(234, II) the angle (f,, ) is given by the formula

Xyo+ Y8+ Z,y
SRUe ) \/jYZ+Y2+/l

* This vector £, is not to be confounded with the wave-function f, of formulae (6).
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where X,, T, Z, are to be replaced by their values

X,= % {[2a, — 3, (% +v?)] cos w; + 3a,03 cos v,y + 3agay cos w3}'

Y,= ?2 {[2a, - ay(a2 + y?)] cos v, + 3agBy cos wy + 3a,af cos o } L ....(25)

Zy= % {[2a; - 3a5(a?+ )] cos wy + 3a,ay cos w; + 3a,fBy cos wz}]

! (D=1)
(cf. formulae (7)). We thus find
2(a + 2yf3 COS W, + ;Y COS W
cos(fy 1) = == (fl,‘? o ‘;)1 2182 = 2 - 2 -
Na2(1 + 3a?)cos’o, +ay2(1 + 33%)cos? w, L 28)

+a,2(1 + 37?) cos?wy + 6 (2,a,af3 cOS v, COS W,
+ 2,050y COS ®] COS Wy + Uylly 5y COS W, COS wy)

2(a,a c0s w; + . 00S w, + (Y COS ®,)
Na2eos?w; + a, 0082w, + a5 cos?o, . (264)
+ 3(a,u COS 0] + Ayf3 COS W, + 3y COS wy)?

or cos(fy, 7)=

The Vector X,, ¥, Z, rotates in a Plane.—At any given point
(o, B, y) cos (fy, 7) is evidently a function of the time ¢ only. Is now
this expression for cos(f,, r) such a function of ¢ that as ¢ varies the
vector f, rotates in one and the same plane, like the vector f; of any
element of the primary wave represented by formulae (8)? If this
be the case, there must then evidently be a line n passing through
the position of rest of the given element, for which cos(f, n)=0 for
all values of £. On the other hand, if this condition can be satisfied,
such a line » must exist and, conversely, the direction of the same
thereby be determined.

If the line » exist, then cos(f, n) must vanish for all values of £
We write cos (f,, n) in the familiar form

cos (fy, n) =cos (f,, ) cos (n, z)
+¢0s (fy y) eos (n, ¥) +cos (fy, 2) cos (n, 2),

replace the cosines (f, ), (fy ¥), and (f, 2) by {2, z‘-’, and Zy
rsspectively, and we have Jo Jy Jo

X,cos(n, 2) + Y,cos(n, y) + Z,cos(n, z)
fo '

That this expression vanish, we must have

cos (fy, n) =

X,cos(n, z) + Yyc0s(n, y) + Zycos(n, 2) = 0.
Replace here X,, ¥, Z, by their values (25), and we find, upon
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expanding the cos’s as functions of the angle n(vf—7) and the n8’s

(cf. formulae (6)),
(4, cosn(vt — )+ By'sinn(vt - r)] cos(n, x)

+[4, cos n(vt — ) + By sin n(vt - r)] cos(n, y)

+[45 cos n(vt — ) + By sinn (vt — r)] cos(n, 2) =0,

where
A, =[2a, — 3a,(8%+ y?)] cos nd, + 3a,a8 cos nd, + 3azay cos nd,
B =[2a, - 3a,(B% + y?)] sin nd, + 32,00 sin 18, + 3a,ay sin nd,
A4y =[2a, — 3a,(a? +y?)] cos nd, + 3a,By cos nd, + 30,03 cos nd,
B, =[2a, - 3a,(a? + y?)] sin n8, + 3a,By sin nd; + 3a,a0 sin nd,
Ag =[2a5— 3a,(a? + 52)] cos nd; + 3a,ay cos nd; + 3a,By cos nd,
By =[2a; - 3a;(a? + (£2)] sin n8, + 3a,ay sin nd, + 3a,By sin nd,

,...(27)

or {4, cos(n, 2) + 4, cos(n, y) + A4 cos(n, 2)] cos n(vt — 1)
+ [ By cos(n, z) + By cos(n, y) + By cos(n, )] sin n(vé —r)=0.

That this equation hold for all values of # the coefficients of
cosn (vt —r) and sinn(vf—r) must evidently vanish; that is, we must
have

A,'cos(n, x) + 44 cos(n, y) + .45 cos(n, z) =0
and By'cos(n, z) + B, cos(n, ) + B, cos(n, 2)= 0}
These two equations can evidently always be satisfied, provided the

cosines (n, z), (n, %), and (n, z) be so chosen that they are determined
by the same and the analytic relation

cos?(n, ) + cos?(n, y) +cos?(n, 2)=1. .....c....ooonnn (29)

On the other hand, these three equations suffice for the unique
determination of the direction of the line n.

Determination of Normal to Plane of Oscillation.—Upon eliminating
cos(n, z) and cos(n, ) from equations (28) and (29), we find the fol-
lowing expression for cos?(n, 2):

‘4],2 (AIIB2, - A21B1’)2 3
(A 2+ 4N Ay By - ASB) Y- 24,4 (4 By - 4,By)
X (dyBy' — Ay B)) +(4,* + 4;*)(4,'By — 4, B,')?

= (4)By — 4, B/) )

(dy'By - 43 B))+ (4 By - A/ B/} +(Ay By - 4B, )

and similarly

cos?(n, 2) =

+.(30)
R (dy By — 44'By)* ] wh

(dyBy — A4y B/ +(A, By - 4 B))+(Ad, By~ 43 By)*
2 A (A3’B1’ o A1’Bs')2

cos?(n, ) =
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To express these direction-cosines in terms of the given quantities
ay, @y ag and 8, 8, 5, and the direction-cosines a, B, y of the vector 7,
we must, first, evaluate the three expressions

A/B,) — A, B), AyBy - AyB, and 4B - 4)By;

by formulae (27) we find ‘
Ay By - 4y By

=,a,(2 — 3y?) sin nd;, + 30,0487 sin nd g — 3aya507y sin Ny,
Ay By - Ay/B,)

= a04(2 — 3a?) sin ndy; — 3a a0y sin nd, + 3ayagafSsinndy, b (31).
A4,B/ - A4,B,)

= —a,a5(2 — 33?%) sin nd 5 — 3a,a,00 sin nd,; — 3a,a,8y sin nd,,

‘where 81g=0,— 8, 8,3=38 —&; and 8,3=5,- 8, )
Replace the given expressions by these in formulae (30), and we find
cos?(n, x)
(525 (2 — 3a?) sin ndyy — 3a,ap0y sin nd,, + 3a,a5af3 sin 15 ]2
a,2a,2 (4 — 3y?) sin® nd,, + a,%a 2 (4 — 35%) sin? nd 4
+ a,2a,2 (4 — 3a?) sin? nd,, + 6a,a.a,(a, Bysinnd,, sin nd 4
~ @g0y sin nd,, sin 18y, + a4 sin 18, 4 sin nd,,)

_ [ag25(2 — 3a?) sin ndy; — Ba,agay sin nd;, + 3a,a5008 sin’nd , >
— 4(a%a? + a’a,’ + a,’e,?)
— 8(a,04y SIn 18, — 1,0, SN 18, 5 + G50 SIN NSyg)?
cos?(n, ¥)
[ = a,a,(2 — 3B?) sinnd,, — 3a,a50Bsinndy — 3a,a,Bysinnd,|?
T 4(e %0 + aa? + a,’as?)
— 3(a,a,y sin 8, — a,a,0 sin 78,5 + Ay040 sin nd,,)*

. (32)

cos?(n, 2)
_ [405(2 — 3y?) sin nd )y + 30,a,By sin nd 4 — a,a,ay sin ndy]?
T 4(a a2 + 0,202 + ag’a,?) _
— 3(a,ayy sin nd;, — a1, 8in 13,5 + @240 8In 18,5)2

It thus follows that there is a fixed line m, passing through the
position of rest of the given oscillating element, and with which the
vector f, always makes a right angle ; the direction-cosines of that line
are given by formulae (32). The given secondary (electric) oscillations,
like the primary ones, which they are accompanying, thus take place
in planes (cf. also Ex. 16 at end of chapter); these planes of oscillation
do not, however, in general, stand at right angles to the direction of
propagation of the waves, as was the case with the primary oscillations,
but they make angles with the same, which vary from point to point
and for different values of the quantities a,, a,, a; and 8, 8,, 8;. For
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another proof of the above, namely that the given oscillations take
place in planes, see Ex. 16 at end of chapter, where the equation of
those planes is determined.

Regions in which the Secondary Oscillations take place at L to
Direction of Propagation.—We have just seen that the secondary
electric oscillations take place in planes that do not, in general, stand
at right angles to the direction of propagation. Are there now
vectors o, (3, y, along which the secondary wave is propagated in planes,
that stand at right angles to its direction of propagation? and, if there
be such vectors, let us determine the same. That the given oscillations
take place in planes that stand at right angles to the direction of
propagation, cos (f,, ) must vanish for all values of #; that is, the
following relation must evidently hold between the direction-cosines
sought and the given quantities a,, a,, a5 and 8,, 8,, 8, for all values of ¢:

4,0 COS 0 + A3 COS Wy + gy COS wy =0
(cf. formula 26)), or explicitly
a,a[cos n(vt — 1) cos nd, + sin n(vé - r) sin nd, |
+ o3[ cos n (vt - ) cos nd, + sin n (vt — r) sin nd,)
+ agy[cos n(vt — r) cos ndy + sin n (vt — r) sin ndy] = 0.

That this equation hold for all values of # the coefficients of
cosn(vt —7) and sinn(vf—7) must evidently vanish; that is, the two
equations @,0.¢08 118, + @3 c0s 18, + a7y cos ndy =0
and a,0. sIn 18, + 4,0 sin né, + ayy sinnd; =0
must be satisfied, and also the analytic condition between the direc-
tion-cosines a+ B2 4yi=1.

We have here three equations for the determination of the three
quantities (a, B, v) sought; the former can, therefore, be satisfied,
provided the latter be determined thereby. The first two equations

e a,Bsin nd y= — a,y sin nd,,,
the last two
(@B sin nd, + ayy sin n8,)2 + a,%(82 + y2) sin?né, = a,? sin? nd,,
and the elimination of 8 from these the following value for y:
v = *ta,a,sin nd, sin nd ,F-1.
and hence  B= +a,a,sinnd, sin nd F-1

and a= # a,a, sin nd, sin nd,, F1 (33)
Whess F2 = a2(a,2 sin®nd, + a,? sin*nd;) sin?ndy,
+ a,(a,? sin?nd, + a,%sin’nd,) sin?nd,g

— 2a,%,%sin nd, sin nd, sin nd,, sin nd;4
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Path of Oscillation.—To obtain the path described by any element
of the given secondary (electric) wave in its plane of oscillation, which,
as we have seen above, is thereby determined that its normal (n) is
given by formulae (32), we must eliminate the time ¢ from formulae (25),
by which that wave is represented. For this purpose we write these
formulae explicitly, expanding the cosw’s as functions of the angle
n(vt—7r) and the 28, as on p. 87, and we have

2
%L—A cos T+ B/ smrl

Y2 .

;’L oy SINT by eeeieiiiieeeiieeeans (34)
Z? , .

—Z—:A_‘3 cos 7+ B, sin T

where A, B/, ... are given by formulae (27) and

T=n(vt-7r).
The first two equations (34) give
B’X By B (/B — 4/B)cos
’ ’ Y ’
and A, — A —==(4,B/ - 4/B,)sinr;

and these, squared and a,dded, the following quadratic equation
in X, ¥y:

(472 +B, Ll

Yr‘*

74y + B/'B,) +(4,2+ B?) =2

=(4,'By - A2'31 )2 S R S— (35)
Upon evaluating the coefficients of this equation, we find
Ay + By?=0,7[2 - 3(a? + 92 I + 90,2322 + 90,2232
+6a,05[2 - 3(a® + y%)] cos ny; + 64,0508
x [2 — 3(a? 4+ ¥%)] cos ndy, + 13a,a,a3%y cos nd,,
A4y + By By =3a,%af3[2 - 3(8%+¥%) ] + 3a,2aB[2 — 3(a2 +9?)]
+9a;%aBy? — a,0,(2 - 3y — 18a282) cos nd,,
= 32,8,y (1 - 6a?) cos nd,,
— 3aga50y (1 - 632) cos nd,,
and 4,2+ B/?=0a,2[2 - 3(B%+v?) |2+ 90,2232 + 9a,%a2y?
+60,0,a3[2 - 3(B82+ y?)] cos nd,
+ 60,050y [2 - 3(B2 +y2) | cos nd,,
+ 18,502y cos nd,, ;
A'By ~ 4y B} is given by formulae (31).

...(36)
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Equation (35) evidently represents a cylindrical surface parallel to
the zaxis. It is the same equation as that (14) examined on pp.
83, 84, differing only in the values of its coefficients. The cylindrical
surface represented by this equation is thus elliptical, except where

A/B) — 4B =0
(cf. p. 83) or upon the surface
,0,(2 — 3y?) sin nd,, + 3a,a,By sin nd;; — 3a,azay sinndyy =0 .....(37)
(cf. formulae (31)); in which particular case the elliptical cylinder
contracts to a double plane; that is, the ellipse, intersected on the
zy-plane, contracts to a double straight line upon the surface (37).

Path of Oscillation determined by Intersection of Elliptic Cylinders;
Secondary Wave Elliptically Polarized.—Equation (35) determines the
path of the given oscillating element with regard to the 2- and y-axes
only. As on pp. 84, 85, we must also seek the equations in X,, Z, or
Y,, Z, representing surfaces, upon which the given element also lies.
The intersection of these surfaces will then determine the path
described. The equations in X,, Z,, and Y,, Z, are obtained in a
similar manner to the one above (35) in X,, ¥, and are evidently also
similar to the same in form, representing elliptic cylinders parallel
to the y- and z-axes respectively.

Since now equation (35) and the two analogous ones in X,, Z, and
Y, Z, are the same equations as those (14), (23), etc., already ex-
amined, differing only in the values of their coefficients, the results
deduced on p. 85 for the latter will also hold here: namely, since
the secondary oscillations X,, ¥,, Z, take place in planes, as we have
seen above, the elliptic cylinders (35), ete., will intersect in curves
that lie in planes, that is, in ellipses, and the oscillations them-
selves will thus take place in elliptic paths. The primary and
secondary waves, represented by the moments X), 17, Z, of formulae
(8) and X,, ¥, Z, of formulae (25) respectively, and belonging to
any given pencil, will thus be elliptically polarized ; the only material
difference between the paths of these two waves is that the planes
of oscillation of the former are always at right angles to the direction
of propagation, whereas those of the latter make variable angles with
the same.

Confirmation that the Elliptic Cylinders intersect in Plane Closed
Curves.—The conclusions drawn on p. 85 and applied above to the
secondary oscillations also, namely that the elliptic cylinders (14)
and (23) and (35) and the analogous one in X,, Z, intersect in plane
ellipses, were founded on the fact that by the formula on p. 81 for
cos (f;, 7) and formula (26) for cos (f, r) the vectors f; and f, of any
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oscillating element always made right angles either with the direction
of propagation of the wave or with some fixed line » in space (cf. also
Ex. 16 at end of chapter). That now the two elliptic cylinders (14)
and (23) or (35) and the analogous one in X,, Z, or ¥, Z, intersect
in two plane closed curves—only closed curves would come into con-
sideration as paths of oscillation—the cylinders themselves must
evidently be of such dimensions that their breadths with regard to
that coordinate axis, which stands at right angles to the plane passing
through the two infinitely long axes of the given cylinders, be the

z
X, Z
Xz
> anBt’y
X2z | 7
64 x7 G
5
XY A |8
Xy
Fic. 9.

same ; for example, the breadth of the cylinder (35) with regard to
the z-axis, which breadth we denote, as indicated in the annexed figure,
by the distance z,"-2,, must be the same as that of the analogous
cylinder in X,Z, with regard to the same axis (z), denoted by the
distance z,” -,, as in figure. Let us now confirm this proposition for
the two cylinders X,Y, and X,Z,, whose intersection determines the
path of the oscillating element of the given secondary wave at any
point a, B, v, the origin of our coordinates X, ¥, Z,, X,=¥,=2,=0
being the position of rest of that element. For the proof of this pro-
position for the cylinders (14) and (23), whose intersection determines
the path of any oscillating element of the primary wave, see Ex. 29.
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To determine the points z and =z, where the tangents to the
ellipse (35) that are parallel to the y-axis intersect the a-axis (cf. the
above figure), we first seek those values of ¥, of the given equation
(35), for which X, is a maximum and minimum. For this purpose
we first express X, as function of ¥,: we write the given equation

0 X2 40X, Yo+ eV 2+d=0, cooorrininniinnnnn. (38)

4 . o
putting a=(4;?+By?) %’ = -2(4,/4, + B/'By) :L:Q

G (‘41'2 +BI,2) :_:"’ d= - (A11B2I - A2,B1,)2

and we have

bY,

A N GET ) SR T I0 A N (40)

The equation D=0 ooccoo0osoooeaaceosaoaasococansos (41)

(
determines now, as we know, those values of Y, of the curve (38), for

which X, becomes a maximum and minimum.
By formula (40) this equation (41) can be written

b LI 1 b? - 4acY, ~0
T30 20 J(2 - 4ac) Yy — dad
which gives the following equation for the determination of ¥,:
(b - 4ac)?Y 2 = b2[ (B2 — dac) Y2 - 4ad],
b%d
c(8? - 4ac)

v, /(Y2 =

hence o

that is, the two values

[ d " __ d V 7‘
Y2 =bl”6(b2_—4ac) and Y2 ——b/\/c(b—.z—-m, ........ (42)

which of these values is that, for which X, becomes a maximum or
minimum, is evidently immaterial.

We then determine those values of X, to which these values (42)
of ¥, belong, upon replacing Y, by those values (4") in equation (38)
or better (40) ; we evidently have

Yoo bﬂ\/ d +1\/(b2—4ac)d
G c(b2—4ac)™ 2a ¢

b 0 d 1 [(B—4ac)d
i Zz\/c(lﬂ — 4ac) ~ *o ¢

that is, two values for X, and two for X,". Of the two values for
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X, the one is evidently the minimum (cf. figure 9) sought, whereas
the other is that other or smaller value of X,, which belongs to
the same value Y, of ¥, and together with the latter determines that
point of the given ellipse, which we have marked in the above figure
with a eross (x). To determine which of these two values for X,
is the value (minimum) sought, we must evidently' compare the same
with regard to their absolute values and choose the larger of the
two.

We have
i b2 d 1 (P-4 4ac)d \/ )
&= \/0(62 4ac)+ b% — dac
and
o 62\/ i 1 [PF-tad . (44
2 " 2aNe(@T—4ac) 2a c
o b2-2ac | d
T e ¢ (b2 — dac) J

Let us now assume that the former of these expressions be the
larger (in absolute value) of the two. The following inequality must

then hold :
S Td Pl -2 [ d
["Zx/z'ﬁga] A= \/6@2_4%)]

—we take the squares of the given expressions, since we are
comparing their absolute values—hence

2 _ 2
4c >—(b 22 ac)
a2
or 4022 > bt — 4b%c + 4a2c?
or 0> b2(b? - 4ac).

Replace here a, b, ¢ by their values (39), and we have
’ ’ ’ ’ ’ ’ ’ ’ ’ " I 'l 16
0>16(A, 4y + ByB))*[(A) 4y + B)By)* - (4, + B,*)(4,? + B,?)] %
or 0> ~16(4y Ay + BBV (A By ~ Ay BTy
which is evidently always the case.

The above assumption, namely that the minimum value of X, be
given by the former of the above expressions (44), namely

e (45)

is thus correct.
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Similarly, we can show that the maximum value of X,” is given by
the expression
"_ b d \/(bz dac)d cd
X, ST e =2 it dar eeennnna(46)
The breadth of the cylinder X,Y, with regard to the z-axis is now
evidently determined by the absolute value of the difference between

the maximum and minimum values of X, which are given by these
formulae (45) and (46) ; we thus have

n ’ *—d
|2 -2, |=4\/bngM, ........................... (47)

where the vertical lines denote that the absolute value of the given
expression is to be taken.

Similarly, we evidently find the following analogous expression for
the breadth of the cylinder X,Z, with regard to the z-axis:

Iz -, |_4\/b, T Soooesveaasenoainsenss (48)
where  @/=(dy?+ By V= -2(did) + BB

74 R (49)
¢= (‘41,2 ih B112)772! d'=- (AIIBSI - ASIBll)z

Replace abed and a'b'c'd by their values (39) and (49) in formulae
(47) and (48), and we find

£ 14 ’ ’ ’ ’ 7.4
—(4,%+B,?)(4,/By) - 4, B, )27@
Iwz’/_mzll=4

? ’ ! ’ ’ , ’ I 7‘8
4[(4, 4y + BB,)? - (4,*+ B,?)(4,* + B, 2)]@

=7 4By - 44B)) \/ 2,41',42'31'}32'[4—1 Z’fé;g —A4,2B?
= ‘%‘ R R P A P e (50)
and similarly
|z, ~=,|= 2—“ A EB . o (51)

that is, one and the same expression for the breadths of the given
cylinders with regard to the z-axis.

The proposition stated on p. 92 is thus confirmed, and hence the
conclusions drawn therefrom, which were founded on the same.

For a further examination of the ellipses (14), (23), (35), etc., the
determination of the angles, which their principal axes make with the
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coordinate-axes, and of the lengths of those (major and minor) axes,
see Exs. 20-21 and 23-25 at end of chapter.

The Magnetic Waves Elliptically Polarized in Planes at 1 to
Direction of Propagation.—The paths of oscillation of the magnetic
(primary and secondary) oscillations are likewise determined by the inter-
sections of elliptic cylinders (cf. Exs. 10 and 11 at end of chapter). Itis
easy to show that these cylinders intersect in plane ellipses, and that the
planes of oscillation of both the, primary and the secondary oscillations
stand at right angles to the direction of propagation. In this respect
the secondary electric and the secondary magnetic oscillations differ
from each other, the former taking place in planes that make variable
angles, not always 90°, with the direction of propagation, whereas the
planes of oscillation of the latter always stand at right angles to the
same. On the other hand, the vector X, Y, Z, always stands at
right angles to both magnetic vectors, a;, b, ¢; and ay, b, ¢, whereas
the vector X;, ¥, Z, stands at right angles to the former magnetic
vector (a, b;, ¢;) but not to the latter (cf. Ex. 14 at end of chapter).

EXAMPLES.
1. Show, when the rectangular oscillations (2) differ in phase by %, that the

principal axes of the ellipse described by any element under the simultaneous
action of those oscillations coincide with their directions of oscillation.

2. Show that sinn (8, - 3,) and cosn(d; —8,) of formulae (3) can be interpreted

geometrically as follows :
0C _OD

[
AE _BF
cosn(d, —-62):ZP=BP,

sinn(d; — 6,)=

where & and F' denote the points of contact of the tangents to the given ellipse

£d
F P
C
/ A x
F1e. 10.

parallel to the y- and x-axes respectively, P the point of intersection of those
tangents, 4 and B the points, in which the same intersect the x- and y-axes
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respectively, and € and D the points of intersection of the given ellipse and the
- and y-axes respectively, as indicated in the annexed figure.

3. Show that the directions of the principal axes of the ellipse described by the
elliptic oscillation r=asinwt, y=bsin(wt+?)
are given by tan 2¢ = aEL—bbﬁ cos 3,*
where ¢ denotes the angle these axes make with the -, y-axes.

4. The velocity of oscillation of a circular oscillation is uniform.
Take the circular oscillation
r=asinnfvi—(z+8)],
y=acosn[vi—(z+8,)];

dx\?  (dy\?
and we have v vel. of osc. = f\/ (%> + (E%)
=anv=2mr ;’,,
which is constant with regard to .
5. The circular oscillation is the only one, whose velocity of oscillation is
uniform.
The velocity of oscillation V of the elliptic oscillation

rx=a;sinn[vt - (z+8;)]=a, sin w;,
Yy =ayc0o8n[vt— (z+3,) ] =, cos w,

is V=nvNa,?cos? v, + a,?sin® w,.
That this velocity remain uniform, we must evidently have
av_ iy ;% cos w; sin w; — a2 sin wy cos w, 0
= — = T =Y
dt ;2 cos? w) +2,” sin? w,
hence a,%sin 2w, — a,? sin 2w, =0,

or explicitly
[@,% cos 2n8) — a,? cos 2nd,] sin 2n (vt —2) — [a,? sin 2nd; — a,? sin 2rd,] cos 2n (vf —z) =0.
That this equation hold for @l values of ¢, its coefficients must evidently vanish,
that is, the relations must hold
a,? cos 218, — a,? cos 2nd, =0,
and a,2 sin 208, — a,? sin 2nd,=0.
Show that these relations between the a’s and &’s can be satisfied only when

@, =ty and n (8, — 62)=%, that is, when the given oscillation is circular.

6. For ay=a,=a;=1 the coefficients in formulae (14) and (23) assume the follow-
ing form throughout the xy-plane :
A2+ B2= 82 — 203° cos nd,,,
A2+ B2=0a?—2a33 cos ndyy,
A32 + B2= 1,
A, A4,+ B, By= - a3 +2a2B? cos nd,y,
A, A3+ B By=2cos nd;5 — aff cosnd (83— dyo),
A,By— A,B,=0,
AyB;— A3B, = — §2sin 18,5+ aB sin n(dg ~ 010,
where 8p=0,-08, and &;3=8, ;.

*Cf. Preston’s Theory of Light (second edition), Ex. 5, p. 56.
G
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The given formulae thus assume here the form

2 X, Yr? Ye2r2
a2(1 — 2a3 cos ndy,) X;;'r +2a8(1 — 2af3 cos nd;,) 1n41 +B%(1 — 2af3 cos nd;y) 7‘# =0
X.r Y. 2
or (a. E;; +8 7;:) =5(0) 0n0n000000000000aA0000BI S0a00ATBAES (a)

a double plane passing through the origin and the z-axis—observe that the
angles this plane makes with the x- and y-axes are functions of a and 8 only and
not of the &’s—and

2,2 X Zyr?
X:ZZ‘ —2B[B cos ndy3— a cos n(d5— 612)]_]7»4_ %
o
+B2(1 - 20f cos ndyg) 21" = @ sin ndyy —a sin (33— 01g) P

Confirm that this equation is that of an elliptic cylinder parallel to the y-axis
or an ellipse in the 2z-plane (cf. p. 85). The familiar conditions

a=>0, AZ=0, and

must then hold. We have here

% <0 (cf. p. 83)
2
*a=A4C- Bgz% B2[1 - 2a cos ndy, — % cos?nd;y

- a2cos2n (8,3 — 8y9) +2af3 cos ndyc08 1 (813 — 81) 1,
or, since here a2+ 82=1,

7 e :
a=_5 B2 {a?sin? n (5,3 — 8y5) + B?sin%nd;y
+2a8[cos 18,3 (cos nd;; cOS ndyy+ Sin 1z 5in ndye) — cos Ndyp]}

2
= B2[a? sin®n(Byg - 815) + B sin® néy; — 20 sin 0y sin (85— d12)]

2
=:L7§2[asinn(613~612)—Bsinn613]2>0;. e eennn(€)
moreover, since A=aF (cf. p. 83)
and here F= - @2[Bsinnd;;—asinn(dz—d,)]1%
by formula (c)

7 5 . . .
- A= - o B%[a sin (8,5 ~ 85) — B sin nd5]2[ B sin nd;3 — a sin 1 (55— 015)12<0 5

and lastly, since 4=1,
A
= A<O. Q.E.D.
Equations (a) and () thus intersect in an ellipse, that is, the given oscillations
are elliptic throughout the xy-plane (cf. p. 85).

7. Show that the vectors (in the xy-plane), along which the oscillations of
Ex. 6 become linear, are
=1, g=0, (v=0)
and
a_ sin®ndg Ll sin?n (83 — 8y0) _
i sin?n (8,3 — 8y9) +s8in® nd;5’ P 1(8y3 — ) +8in%ndyy’ =

* This determinate a is not to be confounded with the direction cosine a.
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8. For a;=a,=a3=a the coefficients (36) in equation (35) assume the following

form in the xy-plane :
A%+ By2=4 - 3a2 + 6a8(2 — 3a2) cos nd,y,

AV Ay + BBy =3aB - 2(1 — 9a28?) cos ndy,,
A2+ By?=4 - 332+ 6a3(2 - 38?) cos ndy,,
AYBy - 4,/ B)/’=2sinnd,,
where . Oya=0) — 35,
Confirm that the given equation (35) in X,7, is that of an ellipse, showing that
AC~ B?=[4- 3a%+6a8(2 - 3a2) cos nd,,] [(4 — 35%) + 6B (2 — 34?) cos nd,,]
—[3aB - 2(1 — 9a?32) cos nd;, ,]2
=45sin%wé,,> 0, etec.

The coefficients in the equation in X, and Z, similar to (35) assume here the
form A%+ By?=1, A%+ B, same as above,

A,/ A5 + B By = — (2 - 382%) cos nd,3 — 3aB cos n(dyy — dy3),
4yBy — A/ B, =(2 - 38%) sin nd;g — 3aB sin n(8;5 — 8;3),
where 81p=0, -0, and &;3=205,— 3,

To confirm that the equation in X,, Z, is here that of an ellipse, we first
replace the 4”s, B”s, C"’s by these values in the determinate a, and we have

AC - B*=4-382+6aB(2 - 332) cos nd;,

—[(2 - 33%)2cos®nd, 3+ Ya?B2cos™n (8, — 813) + 623 (2 — 38%) cos nd 5c08 (815 — A13)] 5
which we can write
=4-36%-(2-36%)2%(1 - sin*nd5) — 98%(1 — B%) [1 — sinn(dy, — 8;3)]
+6a3(2 — 38%) [cos 18,5 — COS 183(COS 1;,C08 N3+ 8in ndy5sin 70;3)]
=(2 - 38%)2sinnd,5+ 982(1 — B2)sin2n (8,5 — 8y5)
+6a8(2 — 382%) (cos nd,,8in®nd;3 — sin nd;,8in nd 3 co8 nd;z)
=(2-38%2sin21d)5 + 9a28% sin?n (), — 6y3)
- 6aB(2 — 3432%) sin nd gsin 1 (5,5 — 6;3)
=[(2- 3B?% sin nd;3 — 3aBsinn (5, — §;3)]2 >0, ete.

We observe that the equation (35) in X,, ¥, contains here 8,5 only ; for §,,=0 it
evidently reduces to that of a plane. It is thus evident that the path of oscilla-
tion of the given secondary wave (a;=a,=az=a) will be that of an ellipse
throughout the xy-plane, when §,,=8;, — 5,=0.

In the xy-plane the equation in X,, Z, reduces to that of a plane, when

(2-3B%) sin nd;3=3aBsIin 7 (813 — F1g)- -eevvrrrrerrreiveerrinnnnns (@)

Along the vectors a and 8 determined by this equation the given elliptic cylinder
will thus contract to a plane, and hence the given secondary oscillations take
place in ellipses.

Lastly, show, when the relation () holds and §,,=0, that the given secondary
oscillations become linear along the four vectors,

AT
“11='\/5 T oo, ﬁn=«/-7f>/— 09627, (y=0);

2
ap= ~0271, Bie= — 09627, (y=0);
w.»1=—\/5+1“2/———0 872, ,321=\/7 *17—0 4808, (y=0);

and 25y =0"872, o= — 04898, (y=0).
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9. Show that along those vectors, for which the secondary oscillations of Ex. 8
become linear, the same do not take place at right angles to their direction of
propagation.

10. Show that the moments @, b;, ¢; of the primary magnetic oscillations that
accompany the electric oscillations represented by formulae (7) are determined
by the formulae

=A4,sint-B,cosT

b/ =A38INT— ByCOST ry wevvniiiiiiiiieiiiiineiiaeees ()
¢/ =Assinr — BycosT
vor vor , v r
where a=——a b/=— = G'=— —¢
T m? P T Ty T Ty 2l

A, =a,ycosndy— a8 cosnds,  B;=ayysinnd,— a8 sin nd;,
A,=azacosnd;~aycosnd,, B,=o0gasinnd;—ayysinnd),
Az=a,Bcos nd, — agacosnd,, By=a,Bsinnd, —ayasin nd,,
~and r=n(vt-7r); -
moreover, that these oscillations take place in elliptic paths, which lie in planes
that are at right angles to the direction of propagation and are determined by
the intersection of the elliptic cylinders

(42 + By * — 2(A, Ay + B By)ay'b) + (A + BP)by 2= (4, By - 4, B,
and (424 B2 a,?-2(4,4,+ B By)ay' ¢, + (A2 + B?) ¢,)/?=(4,B;~ A3B,)? +; ....(b)
or  (Ag*+B5%) b 2(dpds+ ByBs) by'ey’ + (Ag? + By?) ¢ ?= (A4, By ~ 43 By)?
and, lastly, that these cylinders contract to double planes along the planes

v¥=0, B=0 and a«=0respectively, ....c...c..ceverrun.... (c)
and all three (cylinders) along the plane
a0,y sin n(8) — 8,) — @38 sin n(8; — 83) + @yaza sin 128, — §3)=0 ...........(d)

(cf. also p. 84), throughout which (d) the given oscillations thus become linear.

11. Show that the moments a,, by, ¢, of the secondary magnetic oscillations that

accompany the electric oscﬂla,tmns represented by formulae (7) are determined by
the formulae

=A,sint- B, cosT
b'=A4, sint— By cosT [,

=Ajy'sinT - By cosr

2 2 72
v 7 v 7 v
where ay = — Uy byf=———by, € =———cy
vy N v N Yo 1

A, =ayy sin 28, — ayB sin nd,, Bl’ =ayy COS Ndy — 0y COS N3,
Ay =azasinnd; —ayysinnd,, By =aacosnd; —ayy cos nd;,
43 =a,Bsinnd, —ayasinnd,, By =a,8 cos nd; — ama cos nd,,
and r=n(vt-7);
moreover, that these oscillations, like the primary magnetic, also take place in
ellipses, which lie in planes that make 7ight angles with the direction of propaga-
tion and are determined by the intersection of the elliptic cylinders
(427 + By?) 0y~ 2(A,' Ay + B) B )ayby +(A4,2 + B,'2)b,2=(A,'By - A, B,')?
and
or

(A3 + By b2~ 2(Ay Ay + By By) by'e, + (A5 + By?) ey*= (A4 By — Ay By)?
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and, lastly, that these cylinders contract to double planes throughout the same
planes (¢) and (d), Ex. 10, as the elliptic cylinders (b), Ex. 10, for the primary
magnetic oscillations.
12. Show that the plane determined by formula (224) or formula (d), Ex. 10,
passes through the origin and that the direction-cosines of its normal are
cos (1, &)= 0y sin (8, — d3),
cos(n, ¥)= — a,azsin n(8, — d;),
cos(n, z) =a,a,sin n (8, — 8,).
13. Show that the total resultant electric moment X, Y, Z of formulae (7) and
the total resultant magnetic moment @, b, ¢ of the magnetic wave that accom-

panies the given electric wave always stand—their respective vectors—at right
angles to each other.

14. Show, for the general problem treated in the text, that the resultant
electric moment X,, Y,, Z,, formulae (25), always stands at right angles to the
resultant (magnetic) moments a,, b;, ¢, and a,, by, ¢, of the magnetic wave that is
accompanying the given electric wave, formulae (7); moreover, that the resultant
electric moment X,, Y;, Z,, formulae (8), and the resultant magnetic moment
@y, by, ¢, also always stand at right angles to each other; and, lastly, that the
resultant electric and magnetic moments X,, Y, Z, and a,, b,, ¢, make right
angles with each other only throughout the plane

@, 0yy Sin 85 — (g8 Sin 105+ agaa sin 7 (85 — 835) =0.
15. Show that the magnetic wave that accompanies the electric wave repre-

sented by formulae (7) can vanish only when §,=8,=48; and then only along the
vectors a: 3:y=a, : ay: as (cf. also p. 51).

16. The following linear equation holds between the component-moments X,,
Y,, Z, of formulae (25) :

(Ag'By — Ay By) Xo+(4y/ By = Ay'BY) Y+ (4 By — 4,/ By) Z,=0.
We write formulae (25) in the form (34), namely
2 2 2

“%L:Al’ cosT+ By sinT, Y%:AQ’ cosT+ By sinT, ‘éf:; =44 cos7+ By sinr,

multiply the first of these equations by A4,’, the second by -4/, add, and we

have ’ r2 ’ ’ ’ ’ d
(4yX,- 4, Yy) ﬁ=(A2 By - 4,'B))sin7,

and similarly, (44 Y,-A)Zy) %Qz (A4 B, — A,/ By)sinT;
and these equations, the first multiplied by (44'B, — 4,'By’) and the second by
(4B - A{B,’) and added, give
(dy'By = A5 By) (4, Xy~ 4/ 1)) ;: ~(4y'By - A/ B))(A3'Y, - 47 Z)) %2=0
or A)(AgBy -~ AyBYXo+ A, (A)/By - A B)) Y+ A, (45 By - Al’BZ’)Z2=QOE; y

that is, the path described by any particle X,, Y5, Z, lies in a plane, that deter-
mined by this equation.

17. Show that the following linear equation holds between the component-
moments X;, ¥;, Z; of formulae (8):
(A3By— 43B3) Xy + (A, By~ A3By) Yy + (Ao By - 41B5) 2, =05
that is, the primary (electric) oscillations (8) take place in planes.
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18. Show, when §,=28,=38;=0, that the secondary electric oscillations repre-
sented by formulae (25) take place in planes that are at right angles to the
respective directions of propagation throughout the plane

X+ axy + agz=0.

19. The secondary electric oscillations represented by formulae (25) become
(elliptically) longitudinal, that is, they take place in planes, whose normals make
right angles with the respective directions of propagation, throughout the plane

0y SIN N85y — @038 Sin 0138 + Aoty Sin Ndsga =0.
"That the normal n to any plane of oscillation make a right angle with the
direction of propagation, the analytic relation must hold
cos (r, »)=cos(r, x)cos (n, x)+cos (r, y)cos (r, y)+cos (r, z) cos (n, z)=0
a cos (n, x)+ B cos(n, y)+vcos(n, 2)=0.
Replace here cos (n, 2), cos (n, y) and cos(n,z) by their values from formulae
(32), and we have
ay030 (2 — 3a2) sin ndy; — 30 a.0%y sin 08y, + 3a,a50%8 sin 28,5
— 0,033(2 — 33%) sin nd,y — 3,050 8% sin N8,y — 3a,0,8%y sin ndy,
+ a5y (2 — 392) sin 78y, + 3a,058y? sin 185 — 3auaz0y? sin ndy; =0
or — QY Sin N8y + a6 sin 0,3 — Az 8in Ny =0

(cf. also formula (224) and Exs. 10 and 11).

20. Equation (14) is that of an ellipse, whose principal axes make the angle

W= arctan A3 +B BZ)
2 AP+ B?-42-B,
with the coordinate-axes X; and Y.
We write equation (14)
aX32+0X Y+ e 2+d=0, i, (a)

2 2
putting a=(42+ Bf) ::4, b= -2(4,4,+ B, B,) 1%
v

=42+ BT, d= (4B~ 4B

To transform this equation to its principal axes, which we shall denote by =
and v, we make use of the following familiar relations between the given (X;Y;)
and the new coordinates uv :

gy L "’}, .................................. ©
Y, =usinw+vcosw

where w, which denotes the angle between the two systems of rectangular co-
ordinates, shall be determined thereby, that the term wv of the cquation of the
ellipse in # and v sought vanish, that is, that 4 and » be the principal axes.
Replace X and Y, by their values (c) in # and v in equation (@), and we have
o {ucos w —vsin w)® +b(ucos w—vsin w) (u sin w+ v cos w)+ ¢ (u sin w+v cos w)24+d=0
or ’
(& cos?w+ b sin w cos w + ¢ sin’w) u2 - [2(a — ¢) sin w cos w — b{cos?w — sin%w) ] uv D
"+ (asin?w — bsin w cos w+ ¢ cos?w) 12+ d =0



EXAMPLES. 103

That the term in wv vanish, its coefficient must vanish; we thus have the
following equation for the determination of w:

2(a—c)sinwcosw—b(cos?w —sin?w)=0..........ccoeeevnnn.... (e)
or ’ (a - ¢)sin 2w — b cos 2w =0,
hence tan 2w= N ]
a-c
or, by formulae (b), 5 G0 EIEOBA0BE0ANNAAIOGI0ON! )
2(4,4,+ B B,) J
0 — _ 1491 D1 Dy
tan 2o = AP+ B2— 4,*— B®

21. Determine the lengths of the principal axes of the ellipse represented by
formula (14).

The equation of the given ellipse referred to its principal axes, « and v,
is evidently

(o cos?w+ b sin w cos w+ ¢ sin®w) u? + (@ sin%w — b sin w cos w+ ¢ cos?w) 12 +d =0
(cf. formula (&), Ex. 20), where w is to be replaced by its value (f), Ex. 20.
Equation (e) or (f), Ex. 20, evidently gives
sin2w—-l:tl L
T e Tt

1.1 a-c
cos?w= 3 F 5 N ﬁ;?)é’

b .
2024 (a- +(a— c)2
by which the equation in uv can be written

[a+c rl)~/b2+(a—c)2:| u2+[%'—cﬂ:é'\/.b-2-—+(a'—C)Z:I’U2+d=0

u? 22 1
or — + - =i,

and sinwcosw=F3

ate_1 ., a+c 1
?:F§~/112+(oc—c)'2 T:*:Q\‘b2+(a—c)2

The lengths of the principal axes of this ellipse are thus given by the ex-
pression
\/ -2d
O (A <
a+ctNb+(a—c)?
or, by formulae (0), Ex. 20,
ON2n2(A, By - A,B;)

AR+ BR+ A2+ BRn&(A Ay + BBy + (A + B - A - ByY

where the plus sign is to be taken for the minor axis and the minus sign for the
major.

22, Show that equation (3),
En 2+ _1/ —2cosn(d; — dy) OZCX—Z?:sin?n(aI —8y),
is that of an ellipse, whose principal axes make the angle

1 20,05 cOS 1 (8 — 0)
w=zarctan 12 ——1 2%
2 % - agy
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with the coordinate-axes x, y, and the lengths of whose major and minor axes
are given by the expression
2/2a,0,sin 1 (8, - 8,)

W a2 + a2+ N (0.2 + a,2)? - day%a,? sin®n (5, — 0,)

where the plus sign is to be taken for the minor and the minus sign for the major
axis. ’
23. Show that the angle w, which the principal axes of the ellipse (23) make
with the coordinate-axes X, Z,, is given by
1 2(A4,4;+ B, By)
w=3al ctan 212'*'312——‘432"3—32
24, Show that the lengths of the major and minor axes of the ellipse (23) are

given by the expression
23/232( A, B, — A,B))

N A@+BE+ A2+ BPiNA(4, 4, + BB + (A2 + B - A2- B
where the plus sign is to be taken for the minor and the minus sign for the major
axis.

25. Show that the angle, which the principal axes of the ellipse (35) make with
the coordinate-axes X,, Y, is given by a similar expression to that (f), Ex. 20,
for the angle, which the principal axes of the ellipse (14) make with the co-
ordinate-axes X, Y, (X,, Y,).

26. Show that the lengths of the major and minor axes of the ellipse (35) are
given by the expression

WN2n(d,B, - 4,B))
P42+ B2+ A)*+ B2+ NA(A, A, + By By '+ (d,%+ By?- A, - B’}
where the plus sign is to be taken for the minor and the minus sign for the
major axis.

27. Determine the angle, which the major and minor axes of the elliptic
cylinders (b) of Ex. 10, whose intersections determine the path of oscillation of
the primary magnetic wave that accompanies the electric wave represented by
formulae (7), make with the coordinate-axes, and also the lengths of those axes.

28. Determine the angle, which the major and minor axes of the elliptic
cylinders (b), Ex. 11, make with the coordinate-axes, and also the lengths of those
axes.

29. Show that the breadths of the cylinders (14) and (23) with regard to the
x-axis are given by one and the same expression

&n
- NA*+ B2



CHAPTER IV.

INTERFERENCE; INTERFERENCE PHENOMENA OF THE
PRIMARY AND SECONDARY (ELECTROMAGNETIC)
WAVES.

Doctrine of Interference —The doctrine of interference is only
another form or consequence of the principle of superposition, a
superposition not of the intensities but of the displacements (ampli-
tudes) of the given single oscillations. The phenomena of interference
embrace those cases, where the resultant intensity of two or more
oscillations is not the sum of the single intensities,* which is the case
when the given oscillations are taking place at right angles to each
other (¢f. Chapter IIL.), and include the particular case, where the
resultant intensity entirely vanishes. The doctrine of interference
does not require us to make any new hypotheses, it is a direct
consequence of the undulatory theory of light and can readily be
deduced from the properties peculiar to the same: For take two
systems of waves, represented by the moments X', Y7, Z'and X", ¥”, Z,
and both particular integrals of our fundamental differential equations
of wave-motion (cf. formulae (16, I)); since now these equations are
linear and homogeneous, it follows that the system of waves repre-
sented by the sums of their respective component-moments,

X=X+X" Y=Y'+Y" Z=Z+7Z,
will also be particular integrals of these equations. The system of
waves represented by the moments X, ¥, Z is now the sum of the
two given single systems, X', ¥, Z and X", Y", Z", that is, the
resultant component-moments of the given single waves are found
by the superposition of their respective component-moments or

*Strictly speaking, we must exclude here the particular case, where the given
oscillations differ in phase by quarter of a wave-length (cf. p. 107 and Ex. 4).
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displacements. The doctrine of interference thus teaches that the
intensity of two or more oscillations is not given by the sum of the
intensities of the given single oscillations, but that it is the intensity
of the (resultant) oscillation represented by the sums of the respective
component moments of the given single oscillations; for the actual
determination of this resultant intensity see below. -

Interference of Plane-Waves.—Let us first examine the interference
of two similarly linearly polarized plane-waves of the same period of
oscillation or wave-length (colour) A but of different amplitude and
phase, for example the two waves

Y =a, sinn (vt - )
)
¥ =ay sinn(vt - "

‘ 2 , ” . .
where n= ~ (cf. formulae (31, 11.)) and «’ and #” denote given distances
on the r-axis. :

The resultant displacement # at any time #is now according to the
prineiple of superposition

y=vy +y" =0, sinn(vt — ) +a," sinn(vt -2")
=g sinn (vt — ),

where ¢ and z are to be determined as functions of ay, a,", 2/, 2” and «.

To find these quantities, we write this equation between the same
and the five given quantities explieitly, as follows:

(ay cosna’ + a,” cos na")sin vt — (@, sin na’ + a,” sin nx”") cos nut
= sin nvf cos ne — a cos net sin na ;

from which evidently follow, since this equation must hold for all
values of ¢,
@ c0s N =@, cos nx’ +a,’ cosna’,

asin nr=a, sinna’ +a,” sinna” ;
an(  these equations give
" o 2__ 4’9 23 ] /o ;
@ =a,2+ a2+ 20, ay oS N(T —&")yiiii i (2)

a, sin na’ +a,” sin na”

and tan nr = —2 z L -
a, cos ny’ + a,’ cos nx

The resultant amplitude ¢ is thus a function of the two given
amplitudes, ¢, and a,”, and the quantity n(z'—2") ; the latter is known
as the difference in phase of the two oscillations. The resultant phase
is a function of the amplitudes and phases of the given oscillations.

For a geometrical interpretation of these formulae see Ex. 1 at end
of chapter.
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When 2’ - 2"=0, A, 2A, ..., that is, when the given oscillations have
the same phase (or differ in phase by whole wave-lengths), then
at=(ay +ay")?

that is, the resultant amplitude (intensity) becomes a maximum.
When the given oscillations differ in phase by half a wave-length,
that is, when

, A 3A BA
CTE =y g g
then a?=(a, —ay")?,

and the resultant amplitude (intensity) becomes a minimum. For
ay =ay’, @ then vanishes, and we have total (destructive) interference.

Lastly, when the given oscillations differ in phase by quarter of a
wave-length, that is, when

.. A 3N DA
r—-a —4, Z—, ‘Z coog
then ar=a2+a"% ... P (4)

or the intensity of the resultant oscillation is given by the sum of
the intensities of the given oscillations. In this particular case the
given oscillations would appear to advance quite independently of each
other, that is, not to interfere the one with the other, like two linearly
polarized oscillations, whose planes of oscillation stand at right angles
to each other, and which compound, as we have seen in Chapter IIL,
to an elliptically polarized oscillation. Two similarly linearly polarized
oscillations that differ in phase by quarter of a wave-length would
thus produce the same effect (intensity) as two similar linearly
polarized oscillations, whose planes of oscillations stand at right angles
to each other (cf. Ex. 4).

Two linear oscillations of the same wave-length and plane of
oscillation (polarization) do not therefore, in general, ac*ar e in-
dependently of each other, like oscillations, whose planes o lation
are at right angles, but they interfere with each other, compounding
to a linear oscillation, whose amplitude (intensity) increases or
decreases, or even vanishes (a, =a,”), according to the difference in
phase between the given oscillations (cf. formula (2)) and whose
phase is determined as a function of the given amplitudes and phases
by formula (3).

Phenomena of Interference: Bright and Dark Bands.—We have
just seen that two oscillations (1) that differ only in amplitude and
phase co-operate or (partially) neutralize each other according to
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their difference in phase. The amplitudes of waves from one and
the same source are now, in general, the same, whereas the waves
themselves differ in phase according to the distances they traverse.
The resultant amplitude of two waves from one and the same source
would, therefore, be double and hence their intensity four times that
of either wave singly, when their phases were the same, and vanish
entirely, when they differed in phase by half a wave-length. Let us
now consider the effect produced on a screen that is illuminated by
similar waves from two sources that are close together—to obtain two
systems of similar waves (beams of light), we let the waves from any
given source pass through a very narrow slit and then through two
apertures (sources) that are close together (cf. pp. 112-113). Let the
screen of observation 4B be placed at right angles to the mean direction

A
71-
P
2
c
R
% P
E ,
R
B

Fie. 11.

of propagation of the waves or to the perpendicular OP to the line
(plane) CD joining the two apertures (sources) C and D at its middle
point O, where P is a point of the screen (cf. Fig. 11). The waves
from C and D will now co-operate at P, since the distances CP and
DP traversed by the same are equal, and we shall have a bright
spot of four times the intensity of that produced at that point by
either wave singly. As we recede along the screen from the central
point P upwards towards 4, the distance to the one source € will
decrease and that to the other D increase, until we arrive at a point P,,
where the difference in these distances becomes half a wave-length ;
at that point the given waves differ in phase by half a wave-length
and thus neutralize each other, that is, the illumination will be zero.
Similarly, as we recede downwards towards B, the distance to C
will increase and that to D decrease, until we arrive at a point P/,
where the difference in these distances becomes half a wave-length and
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hence no illumination. The locus of the point P; or P, is evidently
in the plane of the paper an hyperbola and in space an hyper-
boloid of revolution, that generated by the revolution of the given
hyperbola round the line CD as axis. The locus of P, on the screen
is the line (curve) intersected on the same by that hyperboloid ; this
line will appear on the screen as a dark line or band. As we continue
to recede from the central point P, the distance to the one source
will increase or decrease and that to the other decrease or increase
respectively, until we arrive at a point P, (P,), where the difference
in those distances becomes a whole wave-length ; here the given waves
co-operate again and we have a bright spot similar to that at P;
similarly, the locus of P, is a hyperboloid of revolution, whose inter-
section on the screen determines the position of a (the first) bright

C
(o] & p
o

F16. 12,

line or band. Similarly, as we continue to recede from the central
point P, we obtain alternately dark and bright lines or bands,
determined by the intersections of hyperboloids of revolution on
the screen.

Distance of any Band from Central Point.—ILet us determine the
distance of any band P, from the central point P in terms of the
given quantities. The band P, evidently corresponds to a difference
in the distances traversed by the two waves or to a retardation of the
one over the other of n half wave-lengths. We denote the distance
of the band P, from P by 2, the distance of the screen 4B from the
sources C and D (the distance OP) by ¢ and the distance CD between
the sources by b (cf. Fig. 12). With P, as centre describe au arc of
radius P,C from C to the point E of the line DP, and draw the
straight line CE, as in figure. The line CE is now perpendicular to
OP, and CD to OP, therefore the angle DCE will be equal to the
angle P,0P and hence the right-angle triangle DCE* similar to the

* The angle DEC is only approximately a right angle.
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right-angle triangle P,0P. The similarity of these triangles gives
now the following proportion between their sides:

PR OB = DB R e e (5)
or B0 = nT)\ : CE approximately,*

which for small values of the angle DCE, corresponding to small values
of z, may evidently be written approximately

w:c:q_;)\:C'D=7?ib,

or 7 1A
o2

b e (6)

D

The given band will, therefore, be bright or dark according as n is
even or odd, whereas its distance from the central point will vary
directly as the wave-length (colour) of the waves employed.

Width of Band.—By formula (6) the width of any band, from
darkness to darkness, is evidently

/ -2
xn_.xn_zz[%\_<?%>&];=k TN (1)

that is, it is directly proportional to the wave-length (colour) of the
waves employed. Since now this width and the distances b and ¢
can be ascertained by measurement, we can employ this formula for
the determination of the wave-length of different kinds (colours) of
light. If the light-waves employed could be procured absolutely
homogeneous, that is, waves of exactly one and the same wave-length
(colour) A, then the screen would be covered entirely with similar |
bright and dark bands; but neither is the former possible nor is the
latter confirmed by experiment (see below).

Coloured Bands or Fringes.—If the light waves employed are
. heterogeneous or those of ordinary (white) light, we evidently get a
system of coloured bands or fringes: for, each wave-length or colour
represented in the given waves will give rise to a system of bands
of given (but different for different colours) width, the violet bands
being the narrowest and the red the broadest. Near the central
point or band, which will be brightly illuminated but not eoloured, the

*The angle DEC is only approximately a right angle.

+ This formula holds only for small values of x ; for large values of x see Ex. 12
at end of chapter.

+Provided the screen be small, that is, formula (7) hold (cf. Ex. 12 at end of
chapter).
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resultant (coloured) interference bands will be very distinet, but, as we
recede from the same, there will be an overlapping of these numerous
systems of coloured bands, and this overlapping will not only increase
more and more but it will become more and more irregular, uutil
finally, at a comparatively short distance from the central band, the
total interference will become approximately one and the same at all
points in regard not only to (resultant) intensity but to colour; this
accounts for the rapid disappearance of the coloured interference bands
as we recede from the central point and their entire obliteration at
a comparatively short distance from the same. For similar reasons,
together with the fact that it is quite impossible to procure absolutely
homogeneous light, the interference bands of ‘“homogeneous” waves
will extend to no great distance from the central band, although, of
course, to a much greater distance than the coloured bands obtained
from heterogeneous or white light; this explains the empirical fact
that only a small portion of the screen can be covered with inter-
ference bands in spite of the most skilful contrivances for procuring
homogeneous light.

Conditions for the Interference of Polarized Waves.—We have
assumed above given paths of oscillation for the waves treated, that is,
we have examined polarized oscillations, whose amplitudes have been
assumed to remain the same for finite intervals. This assumption
holds now only for polarized waves that are obtained from one and
the same polarized wave. Two polarized waves obtained from an
ordinary (homogeneous) wave, for example, the ordinary and extra-
ordinary waves (rays) that emerge from a doubly refracting crystal,
upon the surface of which a ray of ordinary (non-polarized) light is
incident, will each be linearly polarized and at right angles to each
other (cf. Chapter VIIL.), and each will retain its character, the same
amplitude, etc., as long as the vibration in the incident wave remains one
and the same. During this interval the two waves upon being brought
into the same plane of polarization would interfere like the ordinary
and extraordinary waves that are obtained from one and the same
polarized wave by double refraction (see below); this interference is a
consequence of the difference in phase between the two waves,.due
to a relative retardation of the one with respect to the other in their
passage through the crystal and to the different paths traversed by
the same. The interval, during which the refracted waves retain the
same amplitudes or the incident wave the same direction of vibration,
is now infinitely short, since the direction of oscillation in an ordinary
wave changes, as we have observed on p. 72, thousands of times per
second. During the succeeding interval of one and the same direction
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of vibration in incident wave each refracted (component) wave would
retain one and the same amplitude, but these (component) amplitudes
would differ from those, which the refracted waves had in the first
interval, and hence also the interferences and resultant intensities
during those two intervals. It is now the mean of thousands of such
different intensities that is received as total effect by the retina of the
eye, and that mean would evidently be approximately one and the
same at every point of the field, quite regardless of the variation
of the difference in phase between the two (refracted) waves from
point to point, due to any difference in the distances traversed by
the two waves. The field or screen would thus be uniformly illumin-
ated, that is, there would be no perceptible or permanent interference,
in which case the waves are said not to interfere permanently.

If the incident wave is polarized, the refracted waves will retain
the same character or amplitudes for finife intervals and thus interfere
permanently when brought into the same plane of polarization ; for at
those points of the field, where the refracted waves have the same
phase, there will be permanent co-operation or maxima of intensity,
and at those, where they differ in phase by half a wavelength, per-
manent (partial) neutralization or minima of intensity; that is, we
shall have phenomena of permanent interference, and the given waves
are said to interfere. :

Conditions for the Interference of Ordinary Homogeneous Waves.—
Two waves of ordinary homogeneous light from different sources or
from different parts of the same source (flame) do not interfere (when
brought to overlap). This is evident from the following : the character,
both direction of oscillation and phase, of the wave from the one source
will change irregularly and, as we have already observed, thousands
of times per second, with regard to the character (direction of oscillation
and phase) of the wave from the other source, and we shall thus
have co-operation and neutralization in such rapid succession that only
the mean of the same over the (finite) interval required for an im-
pression on the retina of the eye can come into consideration; and this
mean will be approximately the same at all points of the field, since
any difference in phase, due to difference in the paths traversed by
the two waves, can evidently be entirely neglected. From considera-
tions similar to those on the interference of polarized waves obtained
by double refraction from one and the same polarized wave, it is
evident that two ordinary homogeneous waves can interfere only
when they are exactly alike. To obtain two such similar waves, we
let a beam of ordinary light fall on a narrow slit (in a screen), placed
symmetrically near two apertures and with its length at right angles
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to the line joining the same ; the slit must be made so narrow that it
admits only a line of light. Kach point of the slit being symmetrical
with regard to the two apertures will now send waves to each aperture
that are alike, so that the resultant wave emitted by the one will be
similar to that emitted by the other. At any point of the region
(screen), where the waves from these two apertures overlap, the only
difference between them will be one in phase, due to the different
distances traversed ; and this difference in phase will be one and the
same for the thousands of oscillations of different direction of oscilla-
tion arriving at the given point during the interval necessary for an
impression on the retina of the eye. At those points of the field,
where there is no difference in phase between the waves emitted by
the two apertures, we shall have co-operation or maxima of intensity,
at those points, where the difference in phase is half a wave-length,
neutralization or minima of intensity, and at all intermediate points
intensities that correspond to the position of the same with respect to
the points of maximum and minimum intensities; that is, we shall
have a (permanent) system of bright and dark bands; and the given
waves are said to interfere permanently.

Conditions for Interference of Heterogeneous Waves.—For reasons
similar to those on the preceding page, it is evident that two waves
of white or heterogeneous light (cf. p. 72) can interfere only when
they are exactly alike; such waves may be produced in a similar
manner to that suggested above for the generation of similar waves
of homogeneous light.

Fresnel's and Arago’s Laws on Interference.—The above results on
the conditions for interference can evidently be summarized in the
following laws, which were first stated and empirically established by
Fresnel* and Arago:

(1) Two waves (rays of light) polarized at right angles do not
interfere under the same circumstances as two waves (rays) of ordinary
light.

(2) Two waves (rays) of light polarized in the same plane interfere
like two waves (rays) of ordinary light.

(3) Two waves (rays of light) polarized at right angles may be
brought to the same plane of polarization without thereby acquiring
the quality of being able to interfere (permanently) with each other.

(4) Two waves (rays of light) polarized at right angles and after
wards brought to the same plane of polarization interfere (permanently)
like waves (rays) of ordinary light, if they originally belonged to the
same wave (beam) of polarized light.

*Cf. Oeuvres, tom. 1, p. 521.
H
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Conditions for Interference of Elliptically Polarized Waves.—We
have been considering above only the linearly polarized oscillations
and the phenomena of interference to which they give rise. Let us
now examine the interference of elliptically polarized oscillations and
waves. Since now an elliptically polarized oscillation can be resolved
into two rectangular linearly polarized ones, the interference of two
elliptically polarized oscillations could be determined as follows: we
resolve each elliptically polarized oscillation into any two rectangular
component linearly polarized ones, that is, we resolve each along any
two rectangular axes, as the  and z coordinate-axes, the x-axis being
chosen as direction of propagation; the two component oscillations
along either axis would now behave like two linearly polarized
oscillations, that is, they would interfere permanently, if they belonged
originally to one and the same polarized wave, producing a system of
interference bands on a screen placed in the field, where they overlapped ;
but the two component oscillations along the one axis would, in
general, differ from the two along the other axis not only in amplitude
but also in phase, so that the system of interference bands produced
by the one pair of component linear oscillations would differ both in
intensity and position of the bands from that produced by the other
pair; the resultant effect produced on the screen would be that due
to the mutual action of these two systems of bands, which would
also be a system of bands. The resultant system of bands would
evidently be more or less distinet according as the given oscillations
were less or more elliptically polarized respectively, the bands
disappearing entirely, when the given polarization were circular, and
becoming most distinet, when it approached the linear polarization.

Resultant of two Elliptically Polarized (Plane) Waves.—Let us
determine the resultant of two elliptically polarized plane-waves of
the same period of oscillation; let the given waves be represented
by the analytical expressions

¥ =a, sin n(vt - ')

¥ =ay sinn(vt—a' - &)
and Y ' =a," sin n(vt — 2"

' =a,"sin n(vt —2" - &")
where 2’ and 2" denote given distances on the z-axis, the direction
of propagation, and & and §” small augmentations of those distances.

By the principle of superposition the resultant of the waves (8)
will be that wave, whose two components are

y=y +y" =ay sin n(vt - 2') + a," sin n (vt - 2),
=7+ =ay sinn(vt -2 — &)+ a," sin n (vt —2" - &),
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or, expanded,
y=(a, cos nz’ + ay” cos nx") sin nvt — (a, sin nx' + a,” sin nz”) cos nat,
z=[a; cos n(x' + &) +a;” cos n(z" + 8”)] sin nut
— [ sin n(z' + &) +a," sin n(x” + 8")] cos net,
or y=a,sin n(vt—z), z=azsinn(wt—x-3), .............. .(9)
where d,, a,, r, and § are determined by the equations
ay' cos nz' + a,” cos nz” = a, cos nz,
a, sin nz' + a,” sin nr” = a, sin na,
ay cos n(x +8) +a," cos n(z” +8") = a, cos n(x +9),
ag’ sin n(z' +8') +a,” sin n(z” + 8") = ay sin n(z + 5),
as follows :
a2 =a,%+ 0, + 2a, 0, cos n (2’ - 2") l

az' sin nx’ + uz" sin n2” ) S (10)
tan nx =
! J ” ”
@'y €08 NT + "y cos W% J
and
2 = I2 ”2 B ! ” p / U v I
a? =ay? + a3 + 204 a" cos n (2’ + & - 2" - §")
e (5 B ay’ cos n(2' +3') +a," cos n(x” + 8") 2109000005¢ (11)

ay sin n(x' 4+ 8') + ay” sin n(2” + &)

The resultant oscillation will, therefore, be elliptic, that one, whose
rectangular linear component oscillations (9), their amplitudes and
phases, are determined by these formulae (10) and (11). Two elliptic
oscillations (8) will thus compound to an elliptic oscillation.

Spherical Waves.—We have examined above waves, whose wave-
fronts have been assumed to be plane; that is, either their source
must be at infinite distance (the sun) or the waves themselves, upon
being emitted from a source at finite distance, must be brought by
means of a lens to advance along parallel lines. Strictly speaking,
such waves do not exist in nature, so that the analytic expressions
for the same would have no real meaning; they constitute only a
particular or limiting (theoretical) case of the general one, where the
source is at finite distance and the waves themselves are propagated
radially or in spherical shells or wavefronts from the same, their
amplitudes decreasing as their distance from the source increases;
hence the termination “spherical” waves. These more general
spherical waves open up a much broader and more interesting field
for research than the (theoretical) ones examined above, since they
behave quite differently at different points of any region of finite
dimensions (cf. below).
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Resultant of two Linearly Polarized Spherical Waves.—Let us fil
determine the resultant of two similarly linearly polarized sphericis
waves, for example those represented by the analytic expressions 3

v =% sin n(vt—2)
¢ 5 coc0e R - 0000 RN (

y'= %, sinn (vf — ")

where 2 and 2” denote the distances of the waves from their respe:
sources.

By the principle of superposition the resultant of the waves (
will be the wave

’ "

y=y’+y"=%sin n(vt— ) +gr,sin n (vt — ") =a sinn (vf - z),

where a and nz are to be determined from the equations
al , a" .
7 cosna +Ev7’ cos nz’ = a cos nx,

’ ”

a - / a 4 ” .
— SINNX + — SN WX = a SIN ML
T x
which give

a/2 a"2 "

P =—+ =5+ ——cosn(z’ — 2"
X Zz an (13)
o L B RS0 COOCREBER o

ax sInnr +a 2 s ny

0

and tan nae = ——; ; -
@'2” cos na’ +a"2 cos na

These expressions differ from those already found for plane-waves
(cf. formulae (2) and (3)) therein only, that they contain the distances
2’ and 2" of the given waves from their sources ; otherwise the results
obtained and the conclusions to be drawn therefrom are similar to
those already stated on pp. 106-110.

Resultant of two Elliptically Polarized Spherical Waves.—Similarly,
we can determine the resultant of two elliptically polarized spherical
waves of the same period of oscillation, for example those represented
by the expressions
’ 3
Y =% sin n (vt - 2)

=% sinn(ot-o/ - 9)

Ty
and Y= 72,, sin n(vf - 2")

”
o

G =
2 =xi,, sinn (vt — 2" - 8")

J




INTERFERENCE OF PRIMARY WAVES. 117

tere z' and z” denote the distances of the waves from their respec-

ve sources. We find, namely, that the resultant wave is also

an elliptically polarized spherical wave, that, to which the two rect-

angular linearly polarized spherical waves
y=aysinn(vi—2z) and z=a,sinn(vt -z - 0),*

»se amplitudes and phases are determined by the following formulae,
;pound :

2a,'ay’

a22— ,1+ ,,2+ e cos n(x - 2")
a, %" sin na’ + a,"x’ sin na”
tan ne=—5— ; 7 7
a,z” cos na' + a,"x cos nx
P L (15)
2a,'a
and a2= + = ,,7 dws’x"a cosn(z +8 —a’ - §")

a,'%" sin n (2 +8)+a3xs1nn(w +3")

tann(m+6)_ S0 cosn(z +8) +a;"% cos n(z” +6")

Lastly, we observe that the resultant intensity of superposed oscillations,
as (14), is determined not alone by the squares of the amplitudes of the
given single oscillations but also by the interference-term or terms, to
which the superposition of the similar displacements (moments) in
question give rise (cf. Exs. 5, 6, 10 and 11 at end of chapter).

The Electromagnetic Waves; those of Problem 3, Chapter IL—We
have considered above single waves, that is, waves propagated in a
given direction or along a given vector without any reference to
possible disturbances along other vectors. Such waves cannot a prior:
be identical to electromagnetic waves, since the latter are, in general,
propagated from their source in all directions or along all vectors.
At the same time, we have made no attempt to identify the waves
treated above with the electromagnetic waves, having taken quite
arbitrary solutions of the general equation of wave-motion without
any reference to the relations that must hold between such solutions,
if the same are to represent electromagnetic waves.

The electromagnetic waves examined in Chapter II. are all linearly
polarized t spherical waves. As those of problem 3 are the most
general, let us employ the same for an examination of the field
traversed by two systems of linearly polarizedt electromagnetic
waves, that are similar with regard to their radial distribution of
energy from source into space (see below).

*a, and a, are here not constant but functions of the distances from the sources
¢’ and 2’.
+Ct. p. 78.
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Superposition of two Primary Waves.—We, first, examine the
mutual action of the two primary waves of problem 3 (cp. formulae (36,
1L.)) at any point P of the field ; they are represented by the moments

2 2 n2
n?, . n . ol b,
Xl’=7l’ sin o Yl’=7 m’ sin o, Zl’=?p sin o

, ....(16)
and X,"= Z—l,i I"sino’, 1}’ =7;—,2, m”sinw’, Z,"= :f, P’ sin”
where U=a/(B2+7?) —d (@B +a5y) )
m' =ay (a2 +7?) - B(a)/d + a5y
P =ag(@?+B%) -y (@)« +ay8) an
Vo af (B y) — oy B agy) [
w=a (&) - B+ 07
P= g @ B~ oo )
and o'=nfvt— (" +8)], o =n[vt-("+8)] o (18)

P

AN

F

13.

The waves represented by the moments X', ¥}, Z,' are emitted
by any given source (' and the moments themselves are referred to
any given system of rectangular coordinates ', y’, # with origin at
0’; the waves of the second system are emitted by any other given
source 0" and their moments X,”, ¥,”, Z,” referred to the system of
coordinates 2", 4, z”. Let now the latter system of coordinates be
parallel to the former or given system 2/, #, #, as indicated in the
annexed figure. The moments X', ¥, Z;" are functions of o/, &, ¥/,
the direction-cosines of the vector, along which the wave X', Y7, Z’
is advancing, with regard to its coordinate axes (2, ¥, #), and the
moments X", ¥\, Z,” the same functions of a”, 8", ¥”, the direction-
cosines of the vector, along which the wave X", ¥,", Z," is advancing,
with regard to its coordinate axes (27, ¢, #') (cf. formulae (17)); we
have attempted above to express this similarity between the two
systems of waves by referring to a similar radial distribution of
energy from the two sources into space.
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The Resultant Primary Wave; its Amplitude and Phase.—The
resultant action of the two waves represented by formulae (16) at
any point P of the field (cf. formulae (17)) is now given by the
component-moments

by M, M, L,
X, =X/'+X, =7l sin @ +;7l sin o
/n’zl : . 0
=7l (sin not cos n(r’ + 8') — cos nvt sin (¢ + )]

,n2 ” L3 4 a o 4
+.7 I"[sin not cos n (1" + 8") — cos nwt sin n (1" +68")]

"

W L v s
=n? [77 cos n (1 +8) + ,7¢08 n(” +8 ):I sin not

7

—n? [l sinn (2’ + &) +Z sinn(r" + 8”):| cos nut,

which ean be written in the form
X, =a;sinnfvi—(r+8,)] = a;sinnetcosn (r + 8;) -a, cosnvt sinn (r+8;), (19)
where ¢, and n(r+8,) are determined by the equations
n? [i—, cos n (1" + &) + 57; cosn(r” + 6”):| =g, cos n(r+9,)
l NA l” ‘/I c
and n? p = sin n (v’ +b)+ ;sinn(r” +8") | =a, sinn(r+3¢,)
as follows :
s [P 1T ol
al=mn 7,2+ e ,,,cosn(r 7+ )
SOy
I'r” sinn(r' +8) + 1" sin n(r” +8")
Ir” cos n(r' + &) +1"1" cos n (1" +8")

and tann(r+8;) =

and similarly,

Yi=a,sinn[vi— (r+8,)] and Z,=aysinn[vf—(r+35)], ...(20)

mlg 7)7/”2 m/m”
where . af=nt| 4 42 mcosn (' — 1"+ 8 - &)

m'r” sin ’ﬂ(T' + &) +m"7 sinn(r” +8")

ta, "4 8,) = G
ey~ mr’ cosn(r + &) +m"r cosn(r” +38")

. (204)

//z

and a2 =nt |:]) + 2 }l{p s eosn(r —1" +8 — 8"):|

P sinn(r' +8) +p"r sinn(r” +38”)
P cosn(r’ +8) +p"r cosn(r” +8")

tan n(r+8,) =
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The resultant oscillation will, therefore, be that, whose rectangular

linear component-oscillations are

X, =a;sinn[vt-(r+3)],

Y, =ay,sinn [vt - (r +8y)],

Z, =aysinn [vt — (r +8;)],
where a,, a,, a; and 8, 8, 8 (r+38,, 743, r+3;) are determined by
formulae (194) and (204). Since these component-oscillations differ
not only in amplitude but also in phase from one another, the
resultant oscillation will be elliptic, that is, the resultant of the two
primary waves (16) will be an elliptically polarized spherical wave
(cf. Ex. 14).

Examination of Expression for Amplitude.—The amplitude of the
resultant primary wave (19) and (20) will evidently be given by the
expression
1242 4 p2

2 _q.2 2 2_ pt
A =0a,"+ A"+ a3*=n I: 7

+l 2+mnz+p 2+2” +mfn” O cosn(r' —r"+¢ - 8")]....(21)
r r'r

The first term of the expression in the larger brackets, times n?, is the
amplitude squared of the wave X', ¥}, Z/, were it advancing alone
through the medium, and the second term, times n#, that of the wave
X" Y, Z, were it alone in the medium. The third term arises
from the simultaneous presence or action of both waves at any
point P; it represents the interference of those waves at that
point. The quantities & and 8" of this interference term can be
regarded as given, they express given differences of phase in the
two sources. The & in either source has also been assumed
(cf. formulae (16) and (18)) to have one and the same value along
all vectors from that source, that is, to remain constant throughout
the medium,

Resultant Primary Wave Elliptically Polarized; Conditions for
Linear Polarization of Resultant Wave.—We have observed that the
resultant oscillations X, ¥}, Z, of formulae (19) and (20) take place
in elliptic paths. If now the sources of the two linearly polarized
waves (16) are near together and the point of observation P is at
considerable distance from those sources, the two oscillations (16)
will take place along approximately the same lines (see below),
provided the proportion

” ”

‘., L Ug ", .
05 30y g =N A A e D L (22)

hold between the amplitudes @, o), a, and ¢,", a,’, a;" (cf. formulae
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(6, ur)). But, if these amplitudes are entirely arbitrary, the lines
of oscillation of the two systems of waves will, in general, make
finite angles with each other and the resultant oscillations X,
Y,, Z, thus be highly elliptically polarized. This general case,
where no relation exist between the amplitudes o, a,, a; and
a)’, a5, a;” would, therefore, be of little interest, since, as we have
seen in Chapter III, two linearly polarized waves, whose planes of
oscillation are not the same, interfere less and less, as the angle
between the same approaches more and more 90°.

In the following we shall thus assume the relation (22). As
the distance between the two sources decreases and the point of
bbservation P recedes from those sources, the angle between the planes
of oscillation of the two oscillations (16) will become smaller and
smaller, that is, the eccentricity of the elliptic path of oscillation
of the resultant oscillation X, ¥, Z; will become greater and greater
and hence also the interference between the two given oscillations
(16); for, the nearer the sources are together and the further the
point of observation is removed from the same, the more the angles,
which the vectors »” and " make with their respective coordinate-axes,
and hence the direction-cosines of those vectors, o, B, ¥' and a’, 8, ¥,
approach one and the same values. On the other hand, if the
distance between the sources 0’ and 0" of the two waves (16) is of
the same dimensions as the distances of the point of observation P from
those sources, then the angle between the planes of oscillation of the
given oscillations will be of finite dimensions and hence the resultant
oscillation X, ¥}, Z, more or less highly elliptically polarized. This
general case is evidently of no particular interest as far as the
phenomena of interference are concerned, whereas, its examination
would offer difficulties, which we do not encounter, when the given
sources are very (infinitely) near together and the point of observa-
tion P is at considerable (finite) distance from the same; in the
general .case all distances would namely be of the same dimensions,
so that the expressions in question could not be replaced by first
approximations, obtained on their expansion according to any small
quantity or distance (cf. below).

It should now be possible to deduce the conclusions just drawn
directly from the expression (21) for the resultant amplitude; let us
examine the same. The first and second terms of the given expression
cannot vanish, but they will assume given (positive) values at any
given point ; the third term contains the two factors, I'l" +m'm” + p'p’,
which we shall call the coefficient of that term, and cosn(r' — 7" +8& —&");
the latter, which gives rise to the phenomena of interference, will
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vary periodically throughout any region of very (infinitely) small
dimensions, but it is not a function of the relative position of that
region with regard to the coordinate-axes; in this respect it differs
from the other factor or its coefficient, which, like the first and second
terms of the given expression, will evidently retain approximately one
and the same value throughout any such region. "The mean value
assumed by the third term of the expression (21) in any such region will
thus depend alone on the value of the coefficient of that term in that
region. This coefficient can now evidently vanish; its vanishing would
determine given regions (cf. Exs. 15, 16 and 18), within which there
would be no interference of the given waves (16); the vanishing of
this coeflicient would thus correspond to the particular case, where the
planes of oscillation of the two waves (16) make right angles with
each other. On the other hand, maximum values of the given
coefficient would correspond to the particular case, where the two
oscillations (16) are taking place along one and the same lines. On
the assumption that relation (22) hold and the two sources 0’ and 0"
be very (infinitely) near together, the lines of oscillation of the two
waves (16) will be, as we have seen on p. 121, approximately one and
the same at any distant point, that is, the given waves will interfere
throughout all distant regions; in formula (21) this would evidently
correspond to that particular form of the same, where the coefficient

: U +m'm” + p'p"
does not vanish (cf. below).

The Sources of Disturbance near together and the Point of Obser-
vation at Great Distance.—On the assumption of relation (22) and
that the sources 0" and 0”.be very (infinitely) near together and the
point of observation P at considerable (finite) distance from the same,
o, B, v and o, B8’ y" respectively will differ only infinitesimally from
one another ; that is, we can put

o' =a'=a, F'=f=B y=v=7
and hence UVim” p"=l':m': .

Formulae (17) then assume the particular form

4 ’ ’ ’ Z”
I'=a (:82'*'72)_‘1(“2/34'“37):;’

m'=ay (a2 +y%) - B(ay/a +ay'y)= 777( .

P =05 (@ +B?) - y (1) +a,B) =E

- b
K

where « denotes the factor of proportionality between the s and a”’s.
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Replace 7, m, p’ and I, m”, p” by these values in formula (21), and
we have
a2 =n4[a,2 (B2 + 92) + 0,2 (0 + 92) + 0,2 (a2 + 82)
- 2a)'ay'0f - 2a,'a,'ay — 2a,'a, By]
X [l—+L2 + e cos n(r' —1"+8& - 8”)]
7202y P
=nt[a,2+ 0,2 + a7~ (a,'a+a) B +a57)*]
2
X [1—1,2 + 75—2 + 3,—;, cosn(r —7"+8 - 8”)j|,
or, most approximately,
4
= % [a,2 + ay® + a,”% — (a,/a + a'yB + a5'y)?]
x[1+k2+2ccosn(r’ —r"+8 =8")], .......... .(23)
where 7 denotes the mean distance of the point of observation from the
given sources.

Examination of Expression for Resultant Amplitude ; its Behaviour
for Light Waves.-——The expression in the first pair of large brackets
of the expression (23) for the resultant amplitude is a function
only of the direction-cosines a, B, y and the ¢’s; it can thus be
regarded as constant in any region, whose dimensions are very
(infinitely) small in comparison to the distance of that region from
the given sources. A region of such dimensions is now one of the
dimensions of the wavelength A of light waves. In such a region
the factor in the second or last pair of large brackets of the ex-
pression (23) will not, however, remain constant, since its last or
interference-term will evidently vary rapidly, as »"—+" increases or
decreases by a quantity of the dimensions of that wave-length; the
first two terms of this factor are constants. The behaviour of the
resultant amplitude or intensity throughout the given region will
thus depend alone on that of the interference-term. The value
assumed by the interference-term will now vary as that of its factor
cos n(r — 1" + &' - §"), which oscillates between the values +1 and —1;
for the former value the resultant amplitude becomes a maximum
and for the latter a minimum. For light waves or electromagnetic
waves of very short wavelength, these maxima and minima will
succeed one another rapidly, as we recede from any point; the
breadth and distribution of these maxima and minima of intensity or
bright and dark bands will evidently be determined by formulae
similar to those of (6) and (7) above (cf. also below). '

Behaviour of Expression for Resultant Amplitude for Electro-

magnetic Waves Proper.—If we employ the Hertzian or electro-
magnetic waves of wave-length of the dimensions of the meter, the
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interference-bands will be very far apart (cf. formulae (7) and (26)),
in fact, their width could be of greater dimensions than those of
the region, where the resultant amplitude (21) may be determined
alone by the value of the interference-term; this would evidently
correspond to a greater irregularity not only in the distribution but
also in the intensity of the bands. The detection of the interference-
bands of electromagnetic waves proper, at least their laws of distribu-
tion and intensity, would thus be more difficult than that of those of
light-waves.

The Interference-Term ; Evaluation of same for given case.—Let
us, next, examine the interference-bands of electromagnetic light-
waves, whose intensity at any point is determined by formula (23),
in any region P of the dimensions of the wavelength A of those
P

F1a. 14.

waves. We choose the line, on which the two sources 0’ and 0" lie,
as zaxis and the point O half-way between the same as origin of
a system of rectangular coordinates @, y, z denoting the distance
between the sources by 2¢, as indicated in the annexed figure.

The distances 7" and 7" of any point P of the given region from
the sources 0’ and 0" will then be given by the expressions

"P=(x4+ 2+ 12422 1"2=(z—e€) 4y 422

Since now, by assumption, ¢ is very small in comparison to z, ¥, z, we
can thus write

Qex
=24+ Y2+ 22+ Ber = (a4 42 + 22 (1 +—)
Yy ( Y +27) 2+rE+2)

2 2ex
r 2=w2+zﬂ+z2-2ew=<w2+y2+zﬁ>(l ‘m"ymz)’



/
{

INTERFERENCE OF PRIMARY WAVE&\ ) 925 =
or, by the binomial theorem, as first approximation ~ =
NG ot )
=N x2+;l/"+z2(1 _ﬁ:—%:—zé> 5
hence 7= r’: = %;2—4_—21 ....................................... (24)

The factor cosn(r'—1"+8 —8") of our interference-term will thus
assume here the form

cosn(r' —r"+8& — &) =cosn [

2“ 4 4
m 5 +& -8 ] 8 aoooo0s
that is, maxima of intensity will appear, where

2ex
[+ i+ 22

and minima, where

+8-8=0, A\, 2\, ...,

Breadth of Interference-Bands.—Let now the point P move parallel
to the z-axis and let us denote any two such points, whose distance
apart is of the dimensions of the quantity ¢ by P, and P,; the
factors cosn(r, —r"+8& —38") and cosn(ry —ry” +8 —8") of the inter-
ference-terms at these two points can then, by formula (?5), be written

in the form
cos n(r) —r" +8 —8")=cosn <~/—ﬂ—'>
IRNRe! e+ g2+ 2R
and cos n(ry —ry"+8 — 8")=cos n(-ﬂ———L)
2 Jr2 R+ 22

Since now #; and z, differ from z by a quantity of the dimensions
of ¢ and the latter has been assumed to be very (infinitely) small
in comparison to z, y, 2, we may evidently interchange 2; and z, with
« in the expressions z,2+y2+22 and z,2+32+2? without altering
except infinitesimally the values of the expressions for the given inter-
ference-terms ; we can thus write the given factors

» ” 4 26%1
cos n(r, i +& -8 )=cosn<m)

’ ” 4 /" 26%2
and cosn(ry +7, +8& —8")=cosn .
E L+
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Two such points P, and P, will evidently determine consecutive
bands of one and the same intensity, when

2e () — 2p) _ A

Jr2 P+ 2
MELRATR -
hence z, - %:_a;;:ey_+7_ ................... (26)

(cf. also formula (7)); that is, when the two points P, and P, are so
chosen that their distance apart is given by this expression (26),
they will be points of equal intensity (maxima, minima, ete.).

Summary : Laws of Interference.—From formula (26) follow : (1) The
further the region P is from the sources (' and 0" and the nearer
these sources are to each other, the broader are the interference-bands ;
by a suitable choice of the former we could, therefore, always obtain
a measurable distance for the latter (z, — ).

(2) The longer the wavelength A of the waves employed, the
broader the interference-bands; for example, the bands obtained from
the red rays would be broader than those produced by the blue ones,
whereas for electromagnetic disturbances proper, as the Hertzian
waves, the distance between consecutive bands would be of quite
different dimensions from those for light waves (see above).

(3) Conversely, we can determine by formula (26) the wave-
length A of the waves employed, on measuring the distance between
consecutive bands.

These results are similar to those already deduced above (cf.
p- 110).

Superposition of two Secondary Waves.—Let us next examine the
resultant action of the two secondary waves that accompany the
primary waves represented by formulae (16) at any point P of
the field ; these waves are represented by the moments

Xy = 7% Veoso, Y, = m cos w, Z,/ = 7—7,7'2 P cos o
n n , (27)
and X, = 73 " cos w’, V"= 72 m’ cos o, 2, = 73 p" cos o
ey V=20, = 3ay (B%+7) + 30’ (ay ' +057)
m' = 2a, 2 - 3ay (a2 +v'2) + 38 (0, +a5'y")
V' =2ay = 3ug (24 B%) + 3y'(ay/a’ + 0y B),
I'=2a," - 3a," (B2 +y"2) + 30" (0B’ +agy") b (28)
m =20 = 30,/ (@ + /%) + 3 (1’ +a,'7)
=90 = 30 (4 B 437 0 )
and o n[wt ~(F+&)), o =n[ut— (" +8")]
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(cf. formulae (36, 11.)); the systems of coordinates 2, ¥/, 2’ and a7, y”, 2’
are those employed above, on p. 118 (cf. also figure 13).

The resultant action of the two waves (27) at any point P of the
field (cf. figure 13) will now, by the principle of superposition, be given
by the component-moments

X,=X,+X,” ——l’cosm +,—,2l cos o”

= ,.n} U [cos not cos n (1’ + ') + sin nut sin n (1’ + §')]

+ ;71,2 I"[cos nvt cos n(r” +8") + sin net sin n(r” +8”)]

U . coan o U vyoom |
=n{|:;,72s1nn(r +8)+77§smn(r +8)}s1nm;t

+ [ J cos a(r + &)+ l,/2 cosn(r” + 8"):] cos m;t},

which can be written in the form
Xy=a,cosnfvt - (r+8,)]
=a,[cos nvt cos n(r+8,) + sin netsinn(r+48,)], ...... (29)

where o, and (r+8,) are evidently determined by the equations

l 0 ol Y
a, cosn(7‘+81)=n[ﬁcos n(r +8)+T,,200sn(1- +8 ):l

and a; sinn(r+98,)= nl;l sinn(r’ +8) + 7 l 5 sin n (1’ + 8")]
as follows :

Iz e 2 2050 SO
112—n2|: SRR ,,2cosn(r -1 +8 -8

e ...(294)
I'rsinn(r +8&)+1"r? sinn (v + &)

Ir2cosn(r +8) +1"r"? cos n(r” +8")

and tann(r+38,) =

and similarly,

Y,=a,cos n[vt — (r+3,)] and Z,=a, cosn[vt - (r +3;)],...... (30)
where a,, n(r +8,) and a,, n(r + &,) are determined by similar formulae
to (294).

The Resultant Secondary Wave Elliptically Polarized.—The re-
sultant oscillation X,, V,, Z, represented by formulae (29) and (30)

is evidently elliptically polarized (cf. Ex. 20) like the primary oscilla-
tion, which it is accompanying.
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The amplitude of the resultant oscillation at any point P is
evidently

l12 L, m/2 4 79 l02 i, m”2 o 79
a?=a?+a,? +a? =n’ |: e Py 77 £
T +m'm” 1o e 3
+2—+‘7127#z+‘&005 n(r -7 -{-8'»-—-3 ):l ............ (31)

Sources of Disturbance near together and Point of Observation at
Great Distance.—The expression (31) is similar to the one (21) found
for the amplitude of the primary waves; the same conclusions as
those drawn from the latter (cf. pp. 120-122) will, therefore, hold
for the given. expression. For similar reasons to those set forth
~ above we shall also restrict ourselves here to an examination of the
particular case, where the relation (22) holds between the given
amplitudes, the sources O and (" are very (infinitely) near
together and the point of observation P is at considerable (finite)
distance from the same; in which case a”, 87, " and «, 3, ¥y’ re-
spectively will differ only infinitesimally from one another and may
thus be interchanged.

Expression for Resultant Amplitude.—In the given particular case
formula (31) can evidently be written

2
at= %(12 +m2+p?)[1 + &2+ 2k cosn(r — 1" +& - §")),
where UV=kl=kl m' =xm'=xm p"=«xp'=xkp

(cf. p. 122); or, if we replace here I, m, p (', w0/, p) by their values (28),
2
= T4+ 07+ %) = B[y 2B+ ) + 04264 1) + 020+ )
+6(a)'ayaf +a,agay +ayagBy)}
x [1+K2+2xcosn(r' — 1" +8 -&)]
2
B nﬁ[(allz +ay% +ay%) + 3(a)a -+ ay B +a57)’]
x[1+k2+2ccosn(e’ 7"+8-8)]......... (32)

This expression is similar to that (23) already found for the
amplitude of the primary wave, being composed of two factors, the
one a function of the direction-cosines o, 3, ¥ and the a”s and the
other a function of the distances 7’ and 7. The interference-term has
the same form in both expressions, so that the results obtained above
for the interference-term of the primary wave will hold here for
that of the secondary wave (cf. pp. 124-126); we cannot, however,
conclude that the phenomena of interference, to which the secondary
waves may give rise, will be the same as those produced by the
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primary waves, as an examination of the expressions (23) and (32)
and the relative behaviour of the two systems of waves will show.
Behaviour of Resultant Amplitude for Light-Waves.—For light-
4
waves the factor ?;'2 of formula (23) for the amplitude squared of the

primary waves will be very (infinitely) large compared with the corre-
2
sponding factor % of formula (32) for the amplitude squared of the

secondary waves except in the neighbourhood of the origin; at
considerable (finite) distance from the same the phenomena of
interference, to which the latter waves might give rise, would thus
vanish, when compared with those produced by the former. We
have now seen above, unless the point of observation P be removed
to considerable distance from the sources, that the oscillations to be
superposed will not take place in the same planes, and hence that
the interference-formulae established will not hold even approximately;
this would correspond, on the one hand, to a less marked interfer-
ence between the secondary waves and, on the other hand, to a certain
irregularity in the resultant intensity and distribution of the same
throughout any region that is not at considerable distance from the
sources. The detection of phenomena of interference between two
systems of secondary waves of light would thus be difficult not only
at considerable distance from the sources but in their neighbourhood.
Behaviour of Resultant Amplitude for Electromagnetic Waves
Proper.—For electromagnetic waves proper (the Hertzian) the quan-
tities n* of formula (23) and 72 of formula (32) are of the same
dimensions, and hence the detection of the secondary waves not only in
the neighbourhood of the sources but at considerable (finite) distance
from the same possible (cf. p. 53); but at such distances the above
interference-formulae will hold for regions of the dimensions of the
wave-length of light-waves, but only approximately for those of the
dimensions of the wave-length of the waves in question. Since now
the interference-phenomena sought could be observed only in regions
of the latter dimensions (cf. p. 124) and throughout such regions not
only the two systems of waves would be only approximately similarly
polarized but also the formulae in question only approximately hold,
all observations on interference-phenomena between the two systems
of secondary waves would be accompanied by difficulties.
Interference-Phenomena of the Primary and the Secondary Waves ;
those in Regions, where the latter alone appear.—The most distinct
phenomena of interference would evidently be the familiar ones
produced by the primary waves (of light) at considerable distance from
1
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their sources, whereas those to which the secondary waves might
give rise would have to be sought under considerable difficulties in the
neighbourhood of the sources. The detection of the latter would
evidently be facilitated greatly by the entire disappearance of the
former. This would be the case only when the primary waves them-
selves disappeared entirely ; that now the primary waves, those repre-
sented by formulae (16) to (18), disappear, the first factor in the
larger brackets of the expression (23) for the resultant intensity must
vanish ; * this will be the case in those regions, where
(0 + 05 +0%) - (00 + 0, B+ a; 7} =0,
that is, along the surface
(252 + ag ) + ()% + ag B)y? + (0,2 + a,%)e?
=20, ayxy — 20,00z — 20, a5 yz=0,% ... (33)
which is the equation of a cone with apex at origin (cf. also Ex. 15).
Along this surface (the vector a:B:y=a;":a, :a)* the formula
(32) for the amplitude squared of the resultant secondary wave will
evidently assume the form

2
a?= :—% 40,2+ ay? + a3?)[1 + k2 + 2k cosn(r’ — 7"+ & = 8")]. ....(34)

Since this expression does not contain the direction-cosines, the
resultant amplitude will have one and the same value at all points
on the surface (33) (the vector a:f:y=a,:a, :a,)* that are
equidistant from the given source. The entire disappearance of the
primary waves along this surface (33) (the vectora: B:y=a,":a, : a;)*
would facilitate the detection of the interference-phenomena, to which
the secondary waves might give rise, along the same. We recall
here the important property of the secondary waves in those regions,
where the primary waves disappear, namely their longitudinality
(cf. p. 61).

Point of Observation near Sources of Disturbance ; Expression for
Amplitude of Resultant Secondary Wave.—Lastly, let us examine the
case, where the distance between the sources 0 and 0” is of the

* On the assumption that the amplitudes ?’, m/, p’ and I, m”, p” of formulae (17)
be real and not imaginary quantities, not only the given factor, 22+ m?+ 22, but
also the different terms of the same must vanish ; this is, for real values of the
amplitudes of the component-oscillations (16)—only such values would evidently
come into consideration here—the relations

B=m?=p?=0
must also hold. These relations determine the vector a:f:y=a,": ay : a5 (cf.
p. 61)—one solution of equation (33)—which will evidently lie on the cone repre-
sented by that equation. The vanishing of the two primary waves along other
vectors of the cone (33) would evidently correspond to ¢maginary values of the
amplitudes ', »/, p’, and ¥, m”, p” of the component-oscillations of those waves.
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same dimensions as the distances of the point of observation P from
the same, and, for simplicity, when a,/'=a,)=0y=0,"=0,"=a,"=1,
that is, the two sources shall emit similar waves. This particular
case is of importance, since, as we have just seen, the marked
phenomena of interference of the secondary waves must be sought
in the neighbourhood of the given sources, that is, the point of observa-
tion P must be taken at a distance from the sources, that is, of the
same dimensions as the distance between the sources themselves. For
the given case (region) the general formula (31) for the resultant
amplitude of the secondary wave will evidently assume the form

’ , "G n " "9
a2=3n2{1+(a ‘;'f +7) +1+(“ ';‘,E +7")

2[1 _ (a/_l_ﬁr n 7!)2 - (f’-”‘I'B”'F 7")2
o 3(“’ +B1+7r) ((1”+,8”+‘y”) (O-IO-"+B’B”+YI'}’”)] = (35)
+ e
X cosn(r’-—r”+8’—8”)}

The Sources of Disturbance on x-Axis; Coefficient of Interference
Term.—Let us, next, assume that the sources 0' and 0" lie on one and
the same axis # at the distance b apart; the following relations will
then hold between the coordinates #, %/, 2 and 2", ", 2" of any point P:

W =r'+b Y=y &=7, } ...................... (36)
hence = (2 +0)2+y?+ 22

For the given particular case (36) we can evidently write the
coefficient of the interference-term of the above expression (35) as
follows : '

! {7 N p P 2
lfl/l+m/m”+plp”=3{1_<m +f, +~> _ <x +b"|:,y +Z/)

=
+3<w’+g/+z') o +b+y +2 m’(m’+b)+g/2+z’2:l
T’ ( r'l ) T’T”

(cf. formula (31))
3 J 7 i g U f
=;,m{(m2+y2+z2)[(w +b)2+y%+ 2%

— @+ Y+ (@ +D)2+y2+22] - (& + b+ y P @I +y P+
+3@ +y +2)(@ +b+y +2)[F @ +b)+y2+27]}
3 e
=g (@2 Y2+ 2 [2(? + 42 + 7 + 2y + 07 + YY) ]

+0(32 +9/ +7)]

Myrhis (37)
+0(@ +y + ) [ +y +2)+b(2 —y —2)]} J
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Coefficient of Interference-Term on Screen || yz-Plane.—On a screen
placed parallel to the yz-plane at the distance ¢ from the source 0 the
coefficient (37) of the given interference-term will assume the form

l!l” + mlmll + pl]?”
= %,,2—{ (R+y2+ZD[2A+Y2+ 22+ ey + e+ Y2 )+b(Bec+y +2)] 1. .(37A)

+bo(c+y +2)e(c+y +2)+b(2c—y - 2)]}
It is now evident that the interference-bands will vanish in those
regions on the given screen, for which this coefficient® vanishes, that
is, along and in the neighbourhood of the curve
(E+y2+ 22 +y2+ 2% oy +c’ +y2)+ (3 +y +7)] } ..(38)
+h(c+y +2)elc+y +2)+b(2c -y —2)]=0% |
Regions of greatest Interference.—On the other hand, the inter-
ference will evidently be greatest at those points on the given
screen, where the coefficient (37A) of the interference-term becomes a
maximum ; and this will evidently be the case in those regions,
where the value of this coeflicient approaches the particular values
assumed by the coefficients of the first two terms of the expression
(35) for the resultant amplitude. Let us now determine the
region, in which the coefficient of the interference-term and that
of the first term of expression (35) are the same for the given par-
ticular case; the region sought will evidently be that determined by
the relation

1 4
7 (P +Y?+ 2[R+ Y2+ 22 ko o +y2) +DBe+y + 2 )]
+b(c+y + ) ele+y +2)+b(2c—y =)} =1+(a' + B +7)?

(cf. formulae (35) and (374)), or, if we replace here o, £, ' by their
particular values (cf. formula (36)),

P2 (Y +2)P
- 2 b

which relation is evidently satisfied, when % =# =0, the point in
which the 2-axis meets the given screen; a result which we might
have anticipated.

Similarly, it is easy to show that for 4/ =2 =0 the coefficient of
the second term of expression (35) assumes here the same value as
that of the third or interference term (cf. Ex. 21).

The neighbourhood of the point 4'=# =0 on the given screen would
thus be suited best for an observation of the interference-phenomena
produced by the given secondary waves.

*Cf. foot-note to p. 130, +Then 2= (c+b)? (cf. formulae (36)).
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Expression for Resultant Amplitude on Screen; approximate Ex-
pressions for same in Region of greatest Interference.—The resultant
amplitude of the given secondary waves at any point on the screen
z=c will evidently be given by the expression

g 3712{62 + 92+ Jlrz(c +9 +2)? 1_4

7 r
((‘+b)2+7/2+~/2 +(e+b+y +2)? 1
7 iz
2+ Y2+ 222+ Y2+ 22+ ey + ¢ Ay ) +D(Be+y +2)] 5o (39)
+20(c+y +2)elc+y +2)+b(2c—y — Z)]
72

cosn(r’ —1" + & — 8")}

N

+

1
aree
J
which in the neighbourhood of the point y =2=0 will assume the
approximate value

a2=6n2{°+yc+z ”174 6+b+gg+z ;174 l

(e +b) + (2 b)(7' ) cl+ ............ (394)

2 i3 "Jc+ y+'z, S _ "}
WADLOAI 40 Ly 13-} |

cof. Ex. ; or, if we replace ' and +” by their approximate values,
f. Ex. 22); if pl d " by their app 1
a2=6n2{ciy +4 c+b+y +2 Zc(c+b)-!-(2c+b)(y +2)
3 (c+b)° ¢3(c+0)3 .(39B)
x cos n(r’ + 1"+ 8 — 8”)}

Formula (39) holds for both light-waves and the electromagnetic
waves proper ; formula (39A) would hold also for both types of waves,
whereas formula (398) would hold for the former most approximately
but for the latter only approximately. We obtain a more approximate
expression for the electromagnetic waves proper on replacing ¢4, "¢
and 7'%"% of formula (394) by their more approximate values

=t 4 263 (y'? + 2'7),
1"4=(c+0)* + 2(c+ by +27),
and r2+0"2 =2+ b2+ [+ (c+ b)) (y 2+ 72).

The Electromagnetic Waves of the General Problem of Chapter IIIL
and Phenomena of Interference.—The electromagnetic waves treated
in the more general problem of Chapter II and represented by
formulae (7, m1.) would be of little interest for us here, since they
are more or less highly elliptically polarized and would thus give
rise only to very small and irregular variations of intensity when
superposed (cf. p. 114).
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EXAMPLES.

1. Show that the equations
a?=a?+a"?+2a'a” cosn(x’ - 2”)
Bl A o’ sin na’ +a” sin na”
~a cosna’ +a” cos na”

which may also be written in the form
o' sinn(z-2')+a”sinn(x-2")=0
(cf. formulae (2) and (3)), can be represented graphically as follows :
Take any fixed line OX and draw OP equal to o, and making the angle nx’
R with OX, similarly draw OQ equal to o”, and
making the angle nar”=QOX, then, if we com-
plete the parallelogram OPRQ, its diagonal
OR will be equal to a and the angle ROX
which it makes with OX will be equal to nz,
while POQ will be equal to the difference
in phase n(2’ -2") (cf. the annexed figure).
%  The amplitudes ¢’ and a” will, therefore, com-
Fre. 15. pound like forces.*

2. Show that a right-handed circular oscillation, for example

y' =ay sinn(vt - 2'),

g A
7= -a,/sinn (vt - - i =a, cosn(vt— '),

and a similar left-handed circular one, namely

Yy =a, sin n (vt - &),

4

compound to a linear oscillation, namely

. A
2= +a, sinn <@~t -’ —> )= —ay cosn(vt—x'),

y=2a, sinn(vt - x').

3. Show that the elliptic oscillation

Yy =a,sin n(vt - x), 2= —aasinn(vt—x—%):ascosn(vt—x)

may be regarded as the resultant of the two oppositely directed circular
oscillations

o il .
y :g(a,.2+a3)sm n(vt —x), z’=%(a2+ t3) cos n (vt - x),
pil .
and Y :‘2(% —ag)sinn (vt —x), =~ %(o;2 — ag) cos n(vt - x).

4. The intensity of two similarly linearly polarized oscillations that differ in
phase by quarter of a wave length is the same as that of two similar linearly
polarized oscillations, whose planes of oscillation are at right angles to each other.

Two such pairs of oscillations are

y' =o' sinn(vt-2')
y'=a"sinn(vt-a"))’

B0 G 200A000G000 00D BAAGEA0AA00 (a)

* Cf. Preston, Theory of Light, pp. 48, 49.
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where n(x’—x”):’—é, and
Yy =a’sinn(vt - x')
ey (3 eereseee teotenertecannes eserenee ...(B)
2"=a"sinn (vt - )
where 2’ and «” are entirely arbitrary.
The resultant (oscillation) of the former pair (4) is, by the principle of super-
position (cf. p. 13),

Yy=asin n(vt - )y coerrennnn. A0000000aA0AO0AA0AA0AA00A00AAC (c)
where A=NEZEAZ i, (p)
1 a' sinnx’ — a” cos nx’
a’nd x=- arctan S I IR )
n a’ cosnx’ +a” sin nx

the particular form assumed by formulae (2) and (3) respectively, when

n(w,"@/’)z—
The intensity I (generated by a complete oscillation) of the resultant oscilla-
tion () is
m matn®? (T o
e Tf ( ) dat ——2,1—,—f cos?n (vt — x)dt
0
maZn2v?
=47 f [1 +cos2n (vt — x)]dt
0
2,2
MRty n,vzl T+—— sin 2n(v7T - x) I ma2'n -
41
’2 1 2\ 2
or, by formula (), = m(a"+a?)n*?

The intensity of the elliptic oscillation (B) (cf. formulae (2) and (3), 11L) is now,
since its component-oscillations take place entirely independently of each other,
given by the sum of the intensities of those component-oscillations, that is,

4 _ 1 Tm (dy'\? 1 (Tm (dz"\?
I_Il+Iz_7j,f '2‘(35) dt+7,f E(ﬂ) d
0 . 0

19,2.2 rT 202002 TT
_ma;;l'v] cos?n(vt—m')dt‘*maQﬁvf cos?n (vt - 2")dt
i 0
b ma2nv? " ma2n2? _m (a2 + :—"2) nzvz_‘ Q.E.D.
= 4 1

5. The resultant intensity of the two similarly linearly polarized oscillations
y' =a'sinn(vt-2'),
¥’ =a"sinn (vi - a;”)
(cf. formulae (1)) is given by the expression |

mn

4= [a,’2 +a”+2a'a” cosn(x' —x")],

where m denotes the mass of the oscillating element.
The intensity I of any linear oscillation y is given by the integral

_1 (™m (dy\?
I—,,,f 5(;#) sy
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Here y=y'+y"=a’sinn(vt —2')+a"sinn(vt - 2") ;

T
hence I:%’/ n20%[a’ cosn(vt —x')+a” cos n(vt — ") Pdt

n%z

{ "Zf coszn(at—x)dt+a”2f cos?n (vt —2")dt

0
+20/a "f cosn(vt —x')cos n (vt — x”)dt}
uili's d 1+ cos 2n (vt — )] di
=m _f [1+ cos 2n (vt — ') dt + 2] [1 + cos 2n (vt — )] dt

+2a'a’ f [cos na’ cos na” cos?nvt + sin na’ sin na” sinZnvt

+sin n(x' + 2”)cos nvt sin nvt] dt}

sin 20 (vt — &)
+—_——

2nv

mn?? (a'? sin 2n (vt - z') "+ a”
ST 2 2nv 0o 2

(T
+a'a’ cosna’ cosna” | (1+ cos2nut)dt
0

+a’a”sin nx'sin nx f (1 - cos 2nuvt)dt

+a'a”"sin n(x’ +x") [ sin 2net dt}
0

2,21 /2 " 7
mnr*? [ o a sin 2not
=—| = T+— T+a'a” cosnx’ cosnx” | t+—
o7 [ g Tttt 2nv |o
sin 2nvt cos 2nvt
+a'a”sinnx’ sinna’” | ¢ — + a'a” sinn(x +2") |- 55—
2nv 2nv o
mn2? a2+ a”?
=57 T +a'a’ cos nx’ cos nx" T+ a'a” sin nx’ sin nax” T’
27 2
mn
s ——[a'2+a"+2a'a" cosn(x' — )] Q.E.D.

Derive this expression also directly from the resultant oscillation
y=asinn (vt - x),
where o and x are determined by formulae (2) and (3).

6. Show that the resultant intensity of the two elliptic oscillations represented
by formulae (8) is given by the expression

Ti=

mn%

[a,)2+ ay? + ag? + ag"™ + 20,y % cosn(x' —a")
+2a5'ay’ cosn(x' + 8 — 2" - §8")],

where m denotes the mass of the oscillating particle.

7. Determine the difference in phase nd between the components (9) of the
resultant elliptically polarized plane-wave examined on p. 115.
The formula (11) for tann(z+8) can be written

tan nx+tannd _

t8'“”'(‘”-’-6):1 —tan nx tap nd



EXAMPLES. 137

“3 sin n(x'+8') + ay” sin n(x” + 8”)

where
a5 cosn(@ + )+ a; cosn(:d’+6”)’ ........................ (a)

which gives the following value for tan =g :
A + tan nx

LSy ve

Replace here A by its value (a) and tannx by its value from formulae (10),
and we have
tan nd
[ay’ sin n (2 +8') + a3” sin n(x” + 8”)][ay’ cos na’ + ay” cos na’]
+[ay cosn(x' +08')+ay” cosn(x"+ 6")){ay’ sin nx’ + a,” sin nx”)
[“3 cosn(x’'+98') + az” cos n(x” + 6”)][ay’ cos nax’ +ay’ cos nx”]
+[as’ sin n(x' +8") +a," sin » (2" + §”)][a,’ sin nax’ + a,” sin nx”]

ay'as’ sinn(2x' + 8') + ay'ay sin n (2’ + 27 + 8')
+ay'as" sin n(x' + 2" +8") + a,’a,” sin n (22" + &)
a2 ay’ cos nd’ +ay"ay’ cos n{x’ — " +8') +a,ag’ cos n(x’ — 2" — 8") + a,’ay” cos nd”

8. Determine the resultant of the two elliptically polarized spherical waves

’

a .
=?‘“’, sin n(vt - 2'),

’? ’

,_ag . , A a’y ’

Z==ginn(vt-x'-< )= —-—cosn(vt—x
&7 4 x' ( )

and l/_q’2{’ g 9 m/l
K iy s1nn(zt— )1
II )\ 7
2" =-x—,,-s1nn vt—z” = z” cosn(tt )Y
The components of the resultant wave are

ay’ . .
=y +y'= —sm n(vt x’)+;f,, sin n (vt — &) = ay sin n(vt — x),*

where a, and nx are given by formulae (13), and

2=z2'+2"'= -i‘,cosn(vt— )—?cosn(vt—w”)z — agcos n(vt — x — 6),%

where a; and n(x+ 8) are determined by the equations
’ "
a. a.
;3’, cosnx’ +—% cos nx’ =a, cos n(x+3),

; "
as’ . . .

—% sin na’ + -2 sin na” = ag sin n(x + 9),
P @

as follows :

2 1"
a; a. as Q.
2=t i 3 33 ’ %
a. + +2-99% cosn(x' — z”
3T s ( »

as'x” sinnx’ + as "z’ sin nac”

and
tann(x+061)= ;'@ cos nat’ +a;'x cos nx’
(cf. formulae (15)).

Show, when ay=a, and a,’=a,’, that is, when the given oscillations are
circularly polarized and similarly directed, that =0, that is, that the com-
ponents of the resultant oscillation have the same phase.

* Cf. footnote to p. 117.
*+ This 6 is evidently not identical to the & of formulae (15).
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9. Show that the difference in phase nd between the components of the
resultant elliptically polarized spherical wave represented by formulae (14) is
given by the expression

ay'as'2"? sin n (22 + 8') + ay"as'x’x” sin n(x’ + 2’ + 8')
+ ay'as"x'x" sin n(x’ + 2"+ 8") + ay’as"x? sin n (22" + ")
'z cosn(x' —x"+38')
+ag " z's" cos n(x — x” - 8") + ayay"x'? cos nd”

t = e
anmi= ' as'x"? cos nd’ + ay"as'x

10. Determine the resultant intensity of the two similarly linearly polarized
spherical waves represented by formulae (12).
The intensity I in question is given by the integral

1 (Tm (dy\?
I—’Tf 2(2:7) dt
0

where y=asinn (vt — z), and @ and nx are determined by formulae (13).
We thus have

2202 (T
[:mz;af cos?n(vt — x)dt

0T 2,202
_mnva/‘ [1+cos2n(vt — x)]dt= %,

or, on replacing a? by its value,

22 2 o
:mviv [a Z”"+2 ,a,,cosn(x x):l

11. Show that the intensity of the resultant elliptically polarized spherical
wave represented by formulae (14) is given by the expression
2592 /2 "
SLELY % +a +a2—x‘,*_,2’z—+ ; ,,[azaz cos n{x' —x")
+ag'a;" cosn(x’+8" — 8")]
12. The distance x of a dark or bright point or band at considerable distance
from the central band is given by the expression

n\a - (a)
Vi e R R

For large values of x, that is, large values of the angle DCE of Fig. 12, the
distance O cannot evidently be replaced by the distance C'D between the sources.
We must, therefore, employ the following proportion instead of that (5) chosen
onp. 110:

PP,:0P,=DE:(CD,

or x:\/a.2+x"=n—2)\:b,
which gives x2= _4__ Q.E.D.
b2~ L
4

This expression shows that the number of bands cannot exceed 2_;)

13. The width of a bright band at considerable distance from the central
band is given (approximately) by the expression
2\a
7o i
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By example 12 (cf. formula (4)) the exacter expression for the distance between
two consecutive (dark) bands that are at considerable distance from the central
band is

e ma  (n-2)\a .
n IR A - Nt NADE = (- 2)22

Since now 4b? is large in comparison to n2A? even at considerable distance from
the central band and n? is very large compared with n—interference has been
observed with retardations of over 200,000, even 500,000, wave-lengths—the terms
47\? and —4\? under the square-root-sign of the second term of this expression
for the width of band may evidently be neglected in comparison to the two other
terms, 4b> and —n%\?% and thus rejected. The given expression can thus be
written most approximately
n\a (n—2)xa _ 2X\a

x. = = =
TTEUNADT AN NABE N 4D —n2\?

n— L,

Q.E.D.

Observe that this expression reduces to that of formula (7), the one in general
use, for small values of 7.

A comparison of the expression (A) for the width of any distant interference
band with that (7), which holds only for bands near the centre, shows that
the bands do not retain one and the same width, as we recede from the centre,
but that they increase in width, Take, for example, the 10,000th interference
band of waves of wave-length 2000 x 10~ mm., that is, n=10% and A\=2x10-3.
By formula () the width of this band is JbTT);gE—m_)z
b=10 ecm. the 10,000th band would be about 5-4 J, broader than those near the
centre, and that for =10 mm. the 10,000th band could not appear.

Show then that for

14. Show that the resultant oscillations X, Y, Z; represented by formulae (19)
and (20) take place in plane elliptic paths (cf. p. 120).

15. Show, when the sources O’ and O of the waves represented by formulae (16)
are very (infinitely) near together and the point of observation P is at consider-
able (finite) distance from the same, that the coefficient I'l”+m'm”+p'p” of the
interference term of the expression (21) for the amplitude of the resultant
(primary) wave assumes the form

I +m'm” +p'p"=ay'a)" (B2 +7%) + ag'ay” (a2 +v2) + a,/a;’ (o + 52)
— (all%ﬂ + azlalll) aﬁ — (al/asﬂ + a3fal(/) a‘y — (a‘zlaall + asfazll)ﬂ‘y,
where a=a'=a", B=g'=g), v=v'=7";
that is, the given coefficient vanishes along the surface
(@y'ay’ +az'a")a® + (ay' 0" + ag'ay”) Y2 + (a)'0y" + a5/ ay")e? }: «en(a)
e (al/a2” + aglalll) xy » (allaaﬂ + a3lal”)m - (az’as’l + a3la2”) yz = 0

the equation of a cone with apex at origin.

16. On a screen placed parallel to the yz-plane at the distance ¢ from the origin
formula (a) of Ex. 15 assumes the form

(alrall/ + a3’a3’l) y2 + (allalll + a2Ia2”) 22 ~y (a‘zla3”+ a3la2ﬂ) yz
’ "
- ()" +aja)) ey - (ay'ay" + agay") e+ (ay ') + ayay") =0,

the equation of a conic.
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Show, when a,'=a,"=0, that the coefficient I'?’+m'm”+p’p” of the given
interference-term vanishes at the points

y=z= :tc azla2ll+a3’a3”
'\/ S T RATE
(ay —ay')(ay" —ag

on the given screen (x=c), whereas the coefficients "2+ m'2+p? and "2+ m"?+ p"?
of the first and second terms of the given expression for the resultant amplitude
do not vanish at those points.

17. Show, when the distance between the sources O’ and O” is of the same
dimensions as the distances of the point of observation P from the same, that the
coeflicients of the different terms of the expression (21) for the amplitude of
the resultant (primary) wave assume the form

P m e pR =3 (@ + B 4y )
2+m4p?=3 - (a"+8"+Y")
lllll+mlmlr+pll)ll=3 _ (a; +l3/ +7/)2 _ (a,”+18”+~/")2
+ (al +ﬂ/ +.yl)(afl+ B”_’_’y”)(a‘/all +ﬁlﬁ”‘yl’y’/)'

On the assumption that the sources O’ and O” lie on one and the same axis

(cf. formulae (36)), these coefficients assume the form

’ ’ Z' 2 2(x12+ (2+z12_xl , _ xrzr _ylzl)
12 " 29 _ x +?/ + = Yy Yy !
+mB+p==3 ( s FLEwT
" 0 g "+2\2 20’ + DR+ Y2+ (2 + b)Yy - (2 +b)2 —y'Z]
) m g x+b+y+z)= Y
+m +p 3 ( 7 (:c'+b)2+y'2+z’2 ’

"+ m'm’ + p’p”=7217,2 {3(9:’2 +y2+2 (2 + P+ Y2 +27)
(& +y 2P + DR+ Y2+ 2]~ ( + b+ Y +2 P (&P + Y2+ 2?)
+(@' +y +2) (@ +b+y + ) [ (@ + D)+ Y%+ 2'2]}
= 7751,72 {(x’2 +y2+2)[2(x2+y? +22 -2y - 2 -y
+b(5x" -y’ —2')+20%] - (' +y' +2")[b(x' + b))+ (x’+y’+z’)b2x'}.

18. On a screen placed parallel to the yz-plane at the distance ¢ from the

source O’ the expression for the coefficient 20" +m'm” +p'p” of Ex. 17 assumes the
form

l'l”-}- m’m”+p’p"= /,‘,217.,@{(62+y'2+2’2)[2 (02 +yl2+zl2 -4 cyl = C-Z, =) y/z/) ]

re (4)
+b(Be—y —7)+22] — (c+y +2/2[b(c+b)]+(c +y’+z’)b2c}j

The interference-bands will thus vanish at those points on the given screen,
where this expression for the coefficient vanishes.

The interference-bands will be most distinct at those points on the given
screen, where the coefficient (o) becomes a maximum, that is, where the value
of this coefficient approaches those assumed by the coefficients of the first
and second terms of the given expression for the resultant amplitude.

Show that the coefficients of the different terms of the given expression for the

resultant amplitude all assume the same value at the point 3 =2'=0 on the
given screen.
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19. Show that the amplitude of the resultant primary wave of Ex. 17 is
given approximately by the following expression in the neighbourhood of the
point y'=2"=0 on the screen x=c:

R e

72

@ 72 c+b 7

L2e(e+b) - Re+b)y'+2) 1,
+ c(c+D) T,,r,,coxan(r -+ 8 -5 )}

(cf. also p. 133).

20. Show that the resultant secondary oscillations represented by formulae (29)
and (30) take place in plane elliptic paths.

21. Show that for z"=c+b, 2'=b, y'=y'=2"=2'=0 (cf. formulae (36)) the
coefficient of the second term of expression (35) assumes the same value as that
of the interference-term.

22, Determine the approximate value of the expression (39) in the neighbour-
hood of the point ¥’ =2'=0.

In the neighbourhood of the given point y’2 and 2”2 will be very small in
comparison to y’, 2" and the given quantities ¢ and b, and they may thus be rejected
in the determination of the coefficients of the different terms of the given
expression ; we thus have

2 2 2 ’ ’ ’ ’
z'2+ma+pfe=?%ﬂliﬂ=6<c_+cyi>,
BLc+D)%+ (c+b)2+2(c+b)(y +2)]_6{c+b+y'+72)
(c+b)? - c+b ’

lll2 + m/l2 +p/12 =
and 'V +m'm” + p'p”
=E}c2[2cz+ 2e(y’ +2') +b(3c+y +2')]+3b{c[c®+2c(y’ + )]+ b[2c2 +c(y +2')1}

c?(e+b)?
_ 3[c®(2¢%+ 4¢b + 202) + ¢(2¢% + 3¢b + b?) (¥ +72')]
=) c2(c+b)?
_3[2¢%(c+b+c(2e+b) (c+b)(y +7')] _3[2¢(c+b) +(2c+b)(y +2)]
5 cEc+Db)? - c(c+b)

The given expression can thus be written

e (ST 1 el 52 1
c

e c+b 7
2(c+b)+(2c+b) (¥ +2) 1 Y }
db= c(cih) e cosn(r'—r"'+9 )t

23. Determine and examine, as in text, the expressions for the amplitudes of
the resultant primary and secondary waves obtained by the superposition of two
(similar) electromagnetic (Hertzian) waves of the type represented by formulae (9)
of Chapter II.

24. Determine and examine the expressions for the amplitudes of the magnetic
waves that accompany the resultant (electric) primary and secondary waves
examined in the text, those represented by formulae (19) and (20), and (29) and
(30) respectively.



CHAPTER V.

HUYGENS'S PRINCIPLE.

Rectilinear Propagation of Light.—In Chapter I. we have observed
that the wave-theory, as first postulated by Fresnel, accounts for the
rectilinear propagation of light and thus furnishes another argument
for its universal acceptance. At first sight a rectilinear propagation
would appear to be explained better by the emission than by the
wave-theory, which would argue in favour of the former. On the
other hand, a closer examination of light phenomena shows that
light is propagated only approximately in straight lines and that, like
sound, although in a much less degree, it bends round the edges
of obstacles placed in its course; for example, the actual shadow
cast by a small body that is illuminated through a narrow slit is
smaller than the geometrical shadow. The rectilinear propagation of
light is, therefore, only an apparently or approximately rectilinear
one. It is evident that the emission theory would fail to account for
any but a strictly rectilinear propagation, whereas, as we have main-
tained above and shall confirm below, the approximately rectilinear
propagation of light in an homogeneous medium and the bending of
its rays round the edges of obstacles placed in its course are direct
consequences of the wave-theory.

Huygens’s Principle.—Huygens’s attempt to explain the rectilinear
propagation of light was founded on his so-called “principle,” which
can be stated as follows: Every point of any wavefront of a system
of light waves is conceived as the source of a system of elementary
or secondary * waves that are propagated radially from that point
with the same velocity as that of the light waves themselves. The
envelope of the elementary waves emitted from the various points or
sources on any given wave-front will, after the elapse of any given

* Not to be confounded with the secondary waves of Chapters II. and IIL
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time, evidently coincide with the wave-front of the given wave at
that time. Huygens now assumes that the effective parts of these
elementary waves in generating the new wave-front are confined alone
to those portions of them that touch the given envelope. In this
manner any and all subsequent wave-fronts are supposed to be gene-
rated and the wave itself thus propagated.

We may illustrate Huygens’s principle as follows: Let O be the
source of a system of (spherical) waves, 4B a screen with aperture
CD placed in their course, and EF, an arc of radius r, any given
wave-front of the pencil of waves, that are passing through the given
aperture, at any time £, as indicated in the annexed figure. According
to Huygens's principle every point of the wave-front EF is to be
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conceived as a source of elementary (spherical) waves, after the lapse
of any time #, each source will have emitted a (spherical) wave, all
the wave-front elements of which have advanced to one and the same
distance, #,9, from that source, where v is the velocity of propagation
of light. The wave-fronts of the elementary waves, emitted from
the various points or sources on the given wave-front EF, at the
time £, will thus be spheres of one and the same radius, ¢, described
about those points as centres, as indicated in the above figure. The
envelope of these spheres is now the two ares B F) and E,F, of radii
r—tw and r+tw respectively, and not, as Huygens assumes, the
latter alone, which evidently represents the wave-front of the given
wave at the time #,. The arc E,F, would correspond to a wave
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that is propagated backwards from the given wavefront EF sowards
the eentre of disturbanee 0 ; the presence of such reflected waves in an
bomogeneons mediv is not, howerer. confirmed by facts.

Dificulties encountered in Huygenss Principle —Apart from the
difficulty encountered in ridding Huygens’s prineiple of the reflected
waves, just mentioned, it is evident, if we assume, as Huygens does,
that the effective parts of the clementary waves be only those portions
of them that touch the envelope of the waves, that the wavefront EF
would be propagated radially from (amd towards) the cenmtre of dis-
turbance 0, that is, light would be propagated according to Huygens's
prineiple always in straight lines: this would now exclude the possi-
bility of acoounting for the slight bending of light rays (wawves) round
edges, a5 those C and I of Figure 16, or upon their passage through
parrow slits. ‘

Huygens's Principle and the Laws of Refraction and Reflection.—
It is easy to show that the laws of reflection and refraction of rays
(waves) on their passage from one medium into another can be explained
on the assumption of Huygens’s principle ;* but this argues little in
favour of the above form of presentation of the same, since these laws
are only direct consequences of the simplest assumptions. {

Presnel's Modifications of Huygens's Principle.—Fresnel rejected
Huygens’s purely arbitrary assumption that the effective parts of the
elementary waves be only these portions of them that touch the
envelopes of their wave-fronts and attempted to calculate on the theory
of interference the oscillatory state due to the resultant action of those
waves at any point. These calculations not only give only an approxi-
mately rectilinear propagation of light-waves through an homogeneous
medium and a slight bending of the same round edges, but they also—
on the assumption of a suitable law for the action of the elementary
wave with regard to its obliquity (cf. below)—rid Huygens’s principle
of the reflected waves mentioned above.

Determination of LightVector by Fresnel’'s Method.—Let us next
calculate by Fresnel’s method the oscillatory state at any point due
to the resultant action of the elementary waves emitted from any
given (spherical) wavefront. Let O be the source of disturbance,
ABCP, a sphere of radius r, with centre at 0, the wavefront of
any given wave emitted from that source, and Q a point outside
the given sphere, the point, at which the oscillatory state due to
the resultant action of the elementary waves, emitted from the
numerous (elementary) sources on the given wave-front, at that point,
is sought (cf. Figure 17).

#Cf. Preston, Theory of Light, §66. +CL ibid., §§58 and 65.
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Division of Wave-Front into Zones or Half-Period Elements.—
Fresnel now divides the surface of the given sphere or wave-front
up into zones referred to their so-called “pole” P or that point on
the surface of the sphere that is nearest to the point of observation
Q (cf. Figure 17). The region (on the surface of the given sphere)
round this pole extending as far as the ecircle, whose distance

from the point ¢ is 72—7‘1+g, where 7, denotes the distance of that

point from the source O (cf. Figure 17), is termed the first *“zone” or
“half period element”; let us denote the circle bounding this region by
M. The second zone extends from the circle }; to that circle M, on
the surface of the given sphere, whose distance from @ is r,—7 +A.
Similarly, by describing on the surface of the given sphere circles
M, M, etc., whose distances from the point ), are 7‘2—7‘1+%,
79— 7,4+ 2\, ete., we obtain the 3rd, 4th, etc., zones or half-period
elements. These zones are evidently not of the same width, but
they decrease in width, as we recede from the pole P towards the
circle 4C (cf. Figure 17), from which circle they increase in width,
as we approach the point B; A4C is here that circle on the surface
of the given sphere, for which the vectors from the point ¢ are
tangents to the same, and B the point diametrically opposite the
pole P.

Determination of Area of any Zone.—Let us now consider the
action of the elementary waves emitted from any zone, for example
the second, at the point (. For this purpose we divide the given
zone up into an infinite number of concentric circular zones or zonal
elements of infinitesimal width; let this width be so chosen that,
if p denote the distance from the point @ to any circle M’ forming
the boundary between any two such zonal elements, the next such
bounding circle M” be taken at the distance p+dp from @; let 0
denote the angle the vector OM' makes with the vector OP at O
and 6+ d0 the angle between the vectors OM” and OP (cf. Figure 17).
The area do of the zonal element M'M” is evidently

do=2mr sin 07, df =2xr2sin do. .................. (2)

The following analytic relation now holds between the quantities
P 1y, Ty and O
PP=r2 4 —2r1,c08 05 ivnniiiiiiinn, (3)

which differentiated gives the following relation between the differ-
entials dp and d6 :
pdp=rr,sin 6d6. ......... % O o2 (4)
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By this formula we can write the expression (2) for the area do,
-
— 2T
do= 2= Ty PAP. e (5)

Expression for the Light-Vector.—We have seen above that the
light-vector s at any point M can be represented by the expression

a . 27
S=r_1 sin (vt —1y).

The light-vector s’ at an external point ¢ due to the action of the
elementary wave emitted from any such source M on the given wave-
front would now be inversely proportional to the distance of the point
¢ from that source; it would also be a function of the obliquity
or the angle ¢ between the normal to the given wave-front at the
point M and the vector from that element to the point @ (cf.
Figure 17). The light-vector s at the external point ¢ due to the
action of the elementary wave emitted from the source M could,
therefore, be represented by the expression

g=2 f((’b) [1t — (P (6)

n
where f(¢) expresses the law of variation of s with regard to the
obliquity ¢.

Light-Vector produced by Elementary Waves of any Zonal Element.—
The light-vector at ¢ due to the action of the waves emitted from
all the points or elementary sources on any zonal element, for example
M’'M", is now assumed (cf. p. 164) to be proportional to the number
of those sources, that is, to the area do of that zonal element; if
we denote that vector by di’, we should thus have

a8 =sdo="1 (¢) 2 ot =+ )10, e )
or, on replacing do by its value (),
v S 2
as’ = 27rccji(7;i:—2 sin ‘)Z—T [vt=(ry+p)]dp. ceovvvennnnn. (74)

Laws of Obliquity; Natural Law.—The light-vector & at an
external point evidently depends upon the law of variation of the
light-vector over the wave-front of the elementary wave, that is,
its law of variation with regard to the angle the vector from the
source (M) of the elementary wave to any wave-front element of
the same makes with the normal to the wave-front .proper at that
source. It is now natural to assume that this light-vector vanishes at
all points behind the wave-front proper; that is, we suppose each
elementary source (M) to emit only a hemispherical wave, that in
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front of the wave-front proper (cf. Figure 17), and we thus exclude all
reflected waves (cf. p. 144) from the medium. Moreover, it is natural
to assume that the law of variation of the light-vector over this hemi-
sphere be according to the cosine of the obliquity or the angle ¢
between the vector from the source (J/) to the given element and
the normal to the wave-front proper at that source, the vector thus
varying from zero at the base of the hemisphere or equator to a
maximum at its pole. Since now the light-vector s at an external
point @ is determined by the action of that wave-element of the
elementary wave in question that passes through that point, it would
thus be proportional to the cosine of the obliquity ¢ of the given
element. Let us express this law, which we shall designate as the
“Natural Law of Obliquity,” in the form

§ proportional to cos p=F(P). ....c.oeriiiiiiiinin. (8)

Stokes's Law of Obliquity.—Sir G. G. Stokes* has now found
that the light-vector s’ at an external point varies as 1+cos¢; let
us express this law in the form

§ proportional to (1+¢c0s ¢)=F(P). .cevvvirrrrinenn.e. 9)
J(¢) becomes a maximum, 2, for the elementary wave emitted from
the pole P and decreases in value, as we recede from the pole, assuming
the value unity for the waves emitted from the circle (4 (), for which
the vectors from the external point (¢) are tangent to the wave-front
proper (4 BCP), towards the point B diametrically opposite the pole 2,
at which point f(¢) vanishes (cf. also p. 175). According to this law
of Stokes the wavefront of the elementary wave must evidently be
regarded as a complete sphere and not as an hemisphere, as assumed
above, and hence the presence of reflected waves granted.

Laws of Obliquity in Terms of p.—The obliquity ¢ can now be
expressed as a function of the given quantities r;, and r, and the
variable p (cf. Ex. 1). We could thus express the law of variation
of the light-vector s’ with regard to ¢ in the form

§ proportional to F(r,, 4, p),

or, for given 7, and r,,
§ proportional to F(p). ....ccocuverniriinnnnn, (

Throughout any given zone M, - M, , p increases from

nA q
Pn=Ty=T1+ 5 for the circle M,

n+1 :
to Pat1="o—T1 +—;— A for the circle M, ,,

#¢¢On the Dynamical Theory of Difiraction,” Math. and Phys. Papers, v
p. 243.
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B i i 2 : :
that is, it increases by the quantity ;. For light-waves A is now so

small compared with r; and r, that the function #(p) could be regarded
as approximately constant throughout any zone. In determining the
light-vector S, at an external point) Q, due to the action of the waves
emitted from any zone M, — M, ,, or n, we could, therefore, set F(p)
before the sign of mtegratlon.

Determination of Light-Vector produced by Elementary Waves
of any Zone.—For light-waves the vector S, due to the action of
the elementary waves emitted from any zone n would, therefore, by
formula (74), be given by the integral

7‘1""14'%)\
Fip)y\ . 27
S, =2wa — 2 sin - [vt = (r; +p)]dp

n+1
7'2""1+—;-— A

ﬁ;{f){oos A[vt—(%%—%\)]—cos?%r[vt—( n+1 >]}

A 1’(P){cos (vt —7,) cos nar — cos 2%- (vt —1ry) cos (n+1) 71'}

= (- 1y2ax ) (P cos "A( R e (10)

Light-Vector produced by Elementary Waves of two Consecutive
Zones.—Let us now consider the light-vector at an external point @
due to the mutual action of the elementary waves emitted from two
consecutive zones. It is evident from formula (11) (cf. also formula
(5)) that the waves emitted from the one zone, being opposite in
phase to those emitted from the other, would neutralize each other,*
provided their variation in obliquity could be entirely neglected (cf.
also p. 164). The only effect that could be produced at an external

*The waves emitted from the zonal element included between the vectors
A A
p=1*2—1'1+7% and p+dp=7~2—r1+%~+dp

{ the one zone would differ in phase from those emitted from the zonal element
ncluded between the vectors

1
p=r2—7'1+n—+l7\ and p+dp=r2—rl+7%)\+dp

2
of ti.c other zone by half a wave-length ; since now the elements of area included
bet+ - these two pairs of vectors are the same (cf. formulae (5) and (11)), the
vaves un the one zone would neutralize those from the other., Similarly, the
wav ‘on the next and all following consecutive zonal elements of the one

«olion 1 . neutralize those from the corresponding elements of the other zone.
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point would, therefore, be that due to the variation in the (mean)
obliquity hetween the waves emitted from the one zone and those
emitted from the other (cf. also p. 165). The total resultant effect or
light-vector at an external point would thus be given by a sum of
such effects 231(S",+8',.,) arising from the variations in obliquity
between the waves emitted from consecutive zones. Let us deter-
mine the expression for such an effect.

For two consecutive zones, n and n+ 1, the law of variation of s
with regard to obliquity could be expressed by the functions

F(7‘2—rl+z?> and F<r2—'rl+nj)-1)\>

(cf. formula (10)) or for light-waves, since A is then infinitely small
compared with r, — r;, approximately by the functions

A ) N 1., P
F<72—7"1+%—> and F <1‘2-—rl+%>+—2—)»lf (7’2—7‘1+%—>, (12)
where F” denotes the derivative of F with regard to A.
By formula (11), the resultant effect or light-vector, &', +,,, due
to the mutual action of the elementary waves emitted from any two
consecutive zones n and n+ 1 could thus be written

A A 21
S48 i =(~1)2 L;—QF (7”2—7’1 +7—;—) cos —;\I(vt —17y)

A A 2
+ (- 1)”*12% [F <r2 —rl+%> +% AF (7*2 - 'rl+%)] cos xﬂ_(zt ~Ty)

=(-1)"1 ‘%’;F’ <r2 -1+ 1—?) cos ?%(vt =Tl eereneniranes (13)

Expression for Total Effect or Light-Vector.——The resultant effect
or light-vector (13) is now small, proportional to A, compared with
that (11) produced by the waves emitted from either zone. It
follows, moreover, from formula (11) that the light-vector S, due
to the action of the elementary waves emitted from any zone differs
in sign from that S’,,; due to the action of the waves from the
adjacent zone. If we denote the absolute value of any light-vector
S, by 8, the total resultant effect or light-vector S at an external
point @ due to the mutual action at that point of all the elementary
waves emitted from any (spherical) wave-front 4BCP (cf. Figure 17)
will, by the principle of superposition, be given by the series

S=8,-8+8: -8+ = .(=1)"S, cereiirei (14)

(cf. formula (11)), where m+1 is the number of zones, into which
the given wave-front can be divided.
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Whatever law of variation of light-vector with regard to obliquity
be assumed, it must evidently be such that the greater the obliquity
the smaller the light-vector; since now the variation of S, is alone
due to a variation of the obliquity (cf. p. 150), it would follow
that, as n increased, S, would decrease in value ; that is

SApTS e

For m even, m =2x, where « is an integer, the above series (14) for S

can evidently be written

S,
S=%+(%’—Sl+—22)+<%2—ss+%)+
+<S'§‘“—Sm_l+%>+%'

Relation between the Light-Vectors of Consecutive Zones.—Let
us now examine any bracket term

Sn—] S'n+1
< 5 St )

of the series (15); here n must evidently be taken odd.
By formula (13), we have

B (15)

8,4 S =8t Sy = (— 1Y F'(TQ_TI+"Z)‘>COS—(Q;_1 )
Ty
which for n odd becomes

2

=ﬂ[4” ('r2 -1 +n?)\> COS ~— (vt 75) 3
Ty

and similarly,

‘Sn+Sn-1=S',,+S',,_1_( 1)7:%@}’( +712/}>cos2%r(wt—7'2)

2aA A A 2
1) o (aone )] o v

which for n odd becomes

= - EFI( -7+ ,n;) cos ~- T (vt — )3

Add these two expressions, and we have
S,1— 28, 8, 1=0. ceeriin i, (16)

In obtaining this relation between the S’s, we have rejected only
terms of the third and higher orders of magnitude in A, those arising
from the development of the function F with regard to that quantity
(cf. formula (12)); the given expression between the S’s can, there-
fore, differ from zero by a quantity of only the third or higher orders
of magnitude in A, that is, by a quantity, whose order of magnitude
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in A is at least two higher than that of the expression (11) for S,.
It is evident that such quantities can be rejected, when compared
with S, (S,), even when the number of terms of the given series

is of the same order of magnitude as % The series (15) thus

reduces to the simple expression

Similarly, it is easy to show, when m is odd, that the series (14)
for S reduces to
g=50_5n
2 2
(cf. Ex. 2 at end of chapter).
The.light-vector S at an external point (@) would thus be given
by the expression ’

Replace here S; and S, by their values from formula (11), and
‘we have

al m)\ 2 -
S=7;[F(72—71)1F<72-T1+?>j|008 )\(vt—r2), ...... (174)

where m + 1 is the number of zones that contribute to the total effect
at the given point.

Laws of Obliquity.—To evaluate the expression (17A) for S, we
must now know the law of variation of the light-vector s” with regard
to the obliquity ¢, that is, the function #(p) (cf. formula (10)). For
Stokes’s law (cf. formula (9)), we find (cf. Ex. 1 at end of chapter)

% _(r _ o)
F(p)= 9—2(:;)—’1. ........................... (18)
We have seen on p. 148 that this law gives reflected waves. That
no reflected waves may appear, it is evident that the law of variation
of the light-vector s* with regard to the obliquity ¢ must be such
that the elementary waves emitted from the zones, for which ¢ is
greater than 90° will have no effect at the point in question. On the
other hand, the law sought must evidently express the empirical fact
that the larger ¢, between 0° and 90°, the smaller the light-vector s’.
The simplest such law is now the natural law proposed on p. 148,

namely,
s’ proportional to cos ¢ (0= ¢ =90°)

* For another proof of this formula see: A. Schuster, Philosophical Magazine,
vol. 31, p. 85.
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(cf. formula (8)); which gives the following value for the function ¥(p):

Crper2op?
F(p)= R A i e (184)

(cf. Ex. 1 at end of chapter).

Total Light-Vector for Natural Law.—On the assumption of the
natural law (184) the last term of the expression (174) for S evidently
vanishes, and S is then given by the expression

A2 '
S=0;—2cos Tﬂ-(vi—re). ........................... (19)

Total Light-Vector for Stokes's Law.—On the assumption of
Stokes’s law (18) S is evidently given by the expression

2a\ 2= .
S= 7, cos (vt — B anooononooqeaqascancoogaoe (20)

Approximately Rectilinear Propagation of Light-Waves. Effect of
Small Circular Screen at Pole: Bending of Waves.—On the assumption
of either of the above laws (18) or (18a) the following relation
evidently holds between the total light-vector S and the light-vector S,
due to the action of the elementary waves emitted from the central
zone only :

(cf. formula (17)); that is, the total light-vector S at an external
point ¢ could be conceived as produced alone by the action of the
elementary waves emitted from the first half of the central zone, or
the effective portion of the given wave-front could be regarded as
confined to a very small area (of the dimensions of the wave-length A)
around the pole P; in other words, the light received at ¢ could be
conceived as propagated from the source O in approximately straight
lines. This approximately rectilinear propagation of light is evidently
a consequence of the extremely short wave-length of the light waves ;
for waves of long wave-length, as the electromagnetic waves proper
(Hertzian) or those of sound, the propagation would deviate con-
siderably from the rectilinear. If the first half of the central zone
be intercepted at the pole P by an opaque screen, the elementary
waves emitted from the other portions of the given wave-front would
have apparently no effect at the point ¢, that is, that point would
receive no light. This conclusion is now neither correct nor is it
confirmed by experiment. If we screen off the first half of the central
zone by means of a small circular screen placed at P, the first zone
will then extend from the edge of that screen to the ecircle on the
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given wave-front, whose distance from the point @ is 'rg—rl+% 5

the second zone from this circle to that whose distance from @ is
5\ q
TNt ete. ; the total effect at the point ), therefore, would not

be zero, as concluded above, but it would be given by a series similar
to that (14) already found, which, like the latter, would assume most

approximately the value —, where S, denotes the light-vector produced
y 9 1 g P

by the elementary waves emitted from the (first) zone bounded by the
edge of the screen and the circle on the given wave-front, whose

distance from the point @ is 7y~ + %f\ The point @ or the line PQ

would, therefore, be not dark but illuminated, and evidently (cf. for-
mulae (11) and (184)) only to an infinitesimally less degree than in the
case, where no obstacle were placed in the course of the waves; this
would be interpreted according to the Emission Theory as a bending of
the waves around the edge of the screen or obstacles placed in their
course, a result that is confirmed by experiment. If the screen be
large, of dimensions not of the wave-length but of the distance of the
point ¢ from the screen, then the effect at that point would be small
compared with that, where no obstacle were placed in the course of
the waves (cf. formula (184)).

Effect of Small Screen of Irregular Contour: Great Diminution in
Intensity.—A case, where the total effect or light-vector at the point
@ will be found to be small compared with that where no obstacle
is placed in the course of the waves, is that where the screen is
comparatively large—large compared with A2—and either not exactly
circular or not placed with its centre at the pole P ; these conditions
would evidently correspond somewhat better to the actual facts of
experiment than those assumed above. To determine the resultant
effect or light-vector at the point ¢, we imagine the edge or contour
of the given screen replaced by a great (infinite) number of very
(infinitely) short circular arcs of varying radius with common centre
at the pole P. The light-vector dS produced by the elementary
waves emitted from that unscreened portion of the given wave-front
that lies between any two such consecutive vectors extended will
then, by formula (19), be given by the expression

2
d8=%=}—1%1 %1 COs —;\T[vt—(rl+pl)],
where d¢, denotes the angle subtended at the pole P by those two
vectors and p, the radius of the corresponding circular are (given
portion of edge of screen).
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Similarly, the light-vector dS, to which the unscreened portion of
the next circular sector of the given wave-front would give rise, will
be given by

ZS—J% __aA de,
2 7+ py 27

The total effect or light-vector S at the point @ produced by the

action of the elementary waves emitted from the entire unscreened

portion of the given wave-front will, therefore, be given by the sum

of all the light-vectors diS =d§“

os — [vt - (ry+p,)], ete.

; we thus have

dS, aA( d
§=23 971'{"'1 -l‘{)lp cos, A y - (Tl ety % COS X (22)
d(# } g secsaces -
i —(r, + +...+ t—(ry +pe
x [vf — (1, + p3)] T+ cos A [1; (1”1 P )]

where « denotes the number of circular arcs, by which the contour
of the given screen has been replaced.

Since now the contour of the given screen is assumed to vary only
very little from that of an exact circle with centre at P, p;, py,... will
vary only very little from one another, and they may thus be re-
placed by any mean value of the same, p, in the coefficients of the cosines
in the expression (22) for S, but they cannot evidently be replaced by
any such mean value in the arguments of those cosines, since 7 + py,
7y +pg... are divided here by the small quantity A. The above
expression (22) for § can thus be written most approximately
ak {dqslcos (vt — (ry+ py)] + db, cos 2/(—1- 1

" 2m(r +p) e, (224)

x [vt — (r; + py)] + ... +dpy cos 2% [vt - (r, +pK)]}

The smallest deviations in the contour of the given screen from
the exact circle with centre at P would now, in general, at least for
light-waves, correspond to variations of several waves-lengths in the
quantities p;, p,..., and hence to a great irregularity in the values
assumed by the different cosines in this expression (22A) for §; some
would be positive, others negative, and others vanish entirely. The
value assumed by the series in the largest pair of brackets would,
therefore, be small here compared with that of the series for the
case, where the p’s and hence each term of the series have one and
the same value. The total effect or light-vector S at the point &
screened off from the source O by a small (of the dimensions of the
millimetre) opaque body would, in general (for light-waves), thus be
small compared with the natural light-vector; that is, the points
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directly behind the screen or the line PQ would be illuminated only
weakly.

Effect of Large Screen with Small Circular Aperture at Pole:
Maxima and Minima of Intensity.—If we replace the small opaque
screen employed on p. 153 by a large one with a small circular aperture
at P, we obtain quite different results from those above for the quasi-
complementary case. If the given aperture admit the waves of only
the first half of the central zone, the light-vector at @ will evidently
be exactly the same as when the screen is removed, that is, it will
be the normal or natural light-vector or intensity. If the aperture be
increased to admit the waves of the whole central zone only, the light-
vector will be double the natural light-vector or the intensity four
times the natural one. If the aperture admit all the waves from the
central and first zones only, the resultant light-vector and hence the
intensity at ¢ will approximately vanish. As we increase the opening
in the screen, the resultant intensity at P will thus vary periodically
between maxima and minima, but these maxima and minima will
evidently become less and less pronounced, so that after the opening
‘has attained a certain size, there will be no appreciable variation in
the illumination at ). These results, all of which are also confirmed
by experiment, differ materially from those obtained by means of a
small opaque screen at the pole P; here the intensity varies periodically
between maxima and minima, as the aperture is increased in size,
approaching a given uniform intensity, after the aperture has attained
a certain size, whereas in the quasi-complementary case the intensity
decreased from a given finite maximum continuously but rapidly to a
small value, as the dimensions of the screen approached those of the
distance (squared) of the point ¢ from the same. Instead of varying
the size of the small intercepting screen or that of the aperture in the
large screen, we can evidently obtain the same results by taking the
point of observation ¢ at different points on the line Q.

Effect of Large Screen with Small Irregular Aperture: Natural
Intensity.—When the aperture in the intercepting screen is not exactly
circular (with respect to pole), it is evident from considerations similar
to those on the preceding page that the maxima and minima of
intensity at the point ¢ will be much less marked than when the
aperture is exactly circular (with respect to pole); the resultant
intensity will then approach one and the same, the natural intensity,
for all sizes of aperture (cf. Ex. 3 at end of chapter). For the quasi-
complementary case, where the aperture was replaced by a small
screen, we found only a weak illumination along the line P@.

The Electromagnetic Vector.—The above formulae, from (11) on,
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have been deduced on the assumption that the wave-length A were very
(infinitely) small compared with the distances 7, and 7,; they would
thus hold for light-waves but not for electromagnetic waves proper,
as the Hertzian. Let us now examine the resultant effect or electro-
magnetic vector at an external point @ (cf. Figure 17) due to the action
of .the elementary waves emitted from any given wave-front 4 BCP of
a system of (spherical) waves of long wave-length, as the electromagnetic
waves proper.

Determination of Electromagnetic Vector produced by Elementary
Waves from any Zone.—For waves of long wave-length the electro-
magnetic vector .S, due to the action of the elementary waves emitted
from any zone n would evidently be given by the integral

S, = ?TaIF(p sin —[vt —(ryp)]dp i (23)

(cf. formulae (74) and (10)), where F(p) cannot be regarded as constant
throughout the given zone, as on p. 149, and has thus been retained
under the sign of integration. In order to evaluate this integral we
must now assume some law of variation for the electromagnetic vector
s with regard to the obliquity ¢, that is, we must know the function
F(p) (cf. p. 152). Let us assume here the natural law of obliquity,
expressed by formula (8) or (184).

Replace F(p) by its value (184) in the expression (23) for S,’, and
we have

2 _ 2
S, = mT~72'7_—7‘1—)j-s1n ['ut —(r +p) ]ip
a1 P (24)
Tm j in —[%t = (ry+p)]pdp
2 1
which we write S=dAS 4By i (244)
Al
where 4= ma(ry’ =1y?) B D eegesursesnserarasns (25)
o o
Sai= J‘sin ) d—P, SN= -[sin OPAP, i (26)
" p -

o

where w=7[vt—(rl+p)]. e SI0RERE O o (264)

Let us first evaluate the integral S, . By the reduction-formulae

sinwdp A (d(cosw) A cosw+1£ cos o dp
T 3m) pc 2r pr ok 2m) petd

P~ 2

and

coswdp  Afd(sino) A sino 1 A(sinwdp
T T ox)  pr T2 pr o« 2m) petl

pK
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2 2 . :
8y, = 4/\ 2[sin 77;- <7;t Ty~ n‘;\ > sin 2% <vt - Ty— n_-‘l)- L /\>:|
A A 2 A
+2—7r[('r2—r1+n2>cos 5 (vt—q—%) , (284)

2
_<7*2—7’1+%/\) cos Tﬂ-(vt—rz—njl)\)]

and, on developing these sines and cosines as functions, sines and

2 q
cosines, of the angles %r (vt —7,) and n or (n+ 1) respectively,

’

2
8y = 4A 2Iism 1z = (vt - r,) cos nw — sin 2" (vt 79)c0s (n+ 1) ]
A nA
+ %I:(TQ -ntg > €oS - (vt 74) COS 7
n+1

- (7“2 —ry+ —2— )L) COs Tr (vt ~ry)cos (n+1) w:! - (28B)

=(- 1)” 5= sin 2% (vt 7g)

2
+(—1)"%[2(7‘2 1)+2n+1 A]cos—f(vt—g)

Determination of Total Effect or Electromagnetic Vector.—The
total effect or electromagnetic vector S produced at the point @ by
the elementary waves emitted from the whole effective wave-front
APC (cf. Fig. 17) is now given by the expression

S=A(S') +8 + 5, +...8 )+ B(S'y + 8+ + ... S’y (29)
(cf. formulae (244)).

On replacing the S8',’s of the first series of this expression by their
values (274), we find, since the first term of the given expression for
any §'; and the second or last term of the corresponding expression
for the preceding S, §';,_p evidently cancel,

S+ 8, + 8+ .. 8 )
= A cos[ A +2—7r(e;t—'r)]— A
27 (ry — 1)) 2r(ry—ry) A 2 271_(7‘2_ r+ m+e /\)

2
A 2 m+e
xcos[) m+€/\>+w<'ut—7*2——2—)x>]

2 (rg—rl s>
where e<1 (cf. below).

Similarly, the first and third terms of the expression (284) for
any S’zu and the second and fourth (last) terms of the corresponding

4

L, ...(30)

J
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expression for the preceding S5, S, , will evidently cancel, so that
the second series in the expression (29) for § will reduce to
Sy 8+ + .. 8y \
AZ . 27 A 2
= =50 T(vt —7)+ 5 (ry— 1) cos ~ (vt =1y

A2 2 A b (&L
R (o) - () O

2r
X COS — X <vt m;—e /\)

where e<1. g

The given wave-front between ¢=0° and ¢=90" could, in general,
be divided up into only m whole zones or half period elements ; that is,
the m+1 zone would be not a whole zone but only part of one, that
namely extending from the circle on the given wave-front, whose
distance from the point @ is

Pm_72_7'1+§ y

to that circle, for which the vectors p from ¢ are tangent to that wave-
front, that is, for which ¢=90°. The distance p of any point on the
latter circle from @ is evidently

m N ENCE
p=ry— 1+ _g:)x= NI (32)

by which the quantity ¢ which is smaller than unity, is determined
as a function of the given quantities r,, 7, m, and A. The particular
case, where the given wave-front could be divided up into exactly
m+1 whole zones, would evidently be characterized by the following
conditional relation between 7y, 7, m, and A :

ry-1, +”i1)\ N/ T (324)

Replace mEey by its value from formula (32) in the expressions

(30) and (31) for the two series in formula (29), and we find, by the
latter and formulae (25), the following expression for S':

g_malrE-rd[ [%(T:t 71)4.2%(1;;5—72)]

791 27 (ry - 7'1)
A A 27 —
- cos +——vt—-1'—\/7'2—r2]}
or \/7‘22 —r2 I:gﬂ- \/,,.22 —r? n ( 1 2 1)

T )\,2 . 271' A 27
= E’—{‘F sin T(vt —7y) + 2—(7'2 —1,) cos —A—(vt —1Ty)

A2 sin 2
- ast (vt 7 — 12 —712)——Jr2 12008 — (vt -1, — 2 —12) )}



HUYGENS'S PRINCIPLE. 161

which we write in the two terms
aX A o
S= E;;{(’r? + TI)COS [;2_”—(7_2_—1‘1) + T(Ut - 7'2):|
om AL Om
= (ry—1,) cos T(vt —Ty) = g, sin T(’Ut - 72)}

A ——
s {Jrf ~ 72 cos [ + %z—r('vt — 1y = AT - 7*12)] t....(33)

21,7,

2rJr22 -7?

— /2 —r2cos 2%(% — 1, =N = 1%)

= Zifr sin 27”(115 -1 - \/m} )

Expression for Electromagnetic Vector; reduces to Light-Vector
for very small values of A.—The first term of the expression (33)
represents the residual electromagnetic vector produced at the point @
by the elementary waves emitted from the central zone, whose action
at that point has not been annulled by the action of the waves emitted
from the next (first) zone, and the second or last term the residual
electromagnetic vector produced by the elementary waves emitted from
the m+1st or last zone, whose action has not been annulled by the
action of the waves emitted from the mth zone ; the other elementary
waves, from the first to the mth zone, produce no effect at the point ¢.
It is now easy to show that for light-waves the expression (33) reduces
to

ar 2w

§= = cos T(vl )
(cf. Ex. 6 at end of chapter), which is the expression for the light-
vector of light-waves (cf. formula (19)). The expression (33) for waves
of long wavelength thus differs from that for light-waves in the
appearance of terms of the second and higher orders of magnitude in A.
Approximate Expression for Electromagnetic Vector—A small.—
Let us examine the expression (33) for S, when A is small but not
very (infinitely) small in comparison to the distances r, and 7, that is,
let us retain terms of only the first, second and third orders of
magnitude in A in the given expression for S. On developing the
cosines of the first terms in the two pairs of largest brackets in
expression (33) as functions, sines and cosines, of the single angles,
and replacing the sines and cosines of the angles
A A
2w (ryg—1y) and 2.,,-\/,«22 -2
by the trigonometric series for the same, we can write the expression
sought

L
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A2 o
{(r2 +7,) [ " S, 1) )2) cos T(m‘ —7,)
A 2
S )sm (@t 72):| (ry—1y) cos 2T (vt Ty) — 2 T(vt - 72)}

al A? 2
= {r,M"?z = 7‘12 l:(]. =] m) COos T(?}t =T =N 1'22 = 7'12)

2ryry
A e o)
WZ—_ )\ (vt 7y = AT =1y )]
5 2 —~ A . 27 - »
-7 cos -x(vt —r —NrE - H + 5 sin T(@t — 1y =Ty — 711)}
aX 2= ar? )

=— 08 sin 2 (vt Ty)
Ty

T('vt —ry) = 27y (ry — 1)
a3 Tatry

T G T

I Nl ool (334)
S 2 __p 2
to ¥ 1 /\(vt 7y —NTE — 12
3
+ o T 008 2ot = 1y i)
16a2ryr,

Examination of Approximate Expression for Electromagnetic
Vector; Behaviour of same compared with that of Light-Vector.—
The first three terms of the expression (33A) represent the residual
electromagnetic vector produced at the point ¢ by the elementary
waves emitted from the central zone and the last two terms the
residual vector due to the waves emitted from the m + 1st or last zone
(cf. above). The former is represented by terms of the first, second, and
third orders of magnitude in A and the latter by such of the second
and third orders only. The total effect or electromagnetic vector at ¢
could, therefore, be regarded as produced chiefly by the action of the
waves emitted from the central zone, except for (very) large values
of A, that is, the maximum deviations in the paths of propagation of
the given waves from the rectilinear would be approximately of the
dimensions of the central zone. For values of A, for which the terms
of the second order of magnitude in A of the given expression (334)
contribute materially to the total electromagnetic vector at @),
that vector would have to be regarded as the sum of two such,
that produced by the waves emitted from the central zone, and that
due to those emitted from the m+ 1st or last zone; and here the
former would be given not alone by the first term of expression (334),
the light: —-ector proper, but by the sum of two or more terms contain-
ing A in not only the first but also the second (and third) power; at
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the same time the total effect at @ could not be regarded as produced
alone or chiefly by the action of the waves emitted from the central
zone, for the waves from the last zone then contribute materially to
the total effect; in other words the given propagation would then be
said according to the Emission Theory to deviate materially from the
rectilinear. If we intercept the given waves at the pole P by a circular
screen, the effect at ¢ will evidently diminish only very little, as the
size of the screen is increased, that is, figuratively speaking, there
will be a marked bending of the waves round the edges of obstacles
placed in their course. It is also easy to show (cf. Ex. 7) that slight
deviations in the contour of the intercepting screen from the exact
circle with centre at pole will have little effect at the point ¢ ; in this
respect the light-waves and the electromagnetic waves of long wave-
length will differ materially from each other (cf. p. 155). It is also
possible to show (cf. Ex. 8) that the electromagnetic vector, like the light-
vector, will pass through maxima and minima, as the circular aperture
in the large intercepting screen is increased in size ; but these maxima
and minima of intensity will not be so pronounced as those produced
by light-waves on account of the appearance of terms of the second
and higher orders of magnitude in A—these vanish for light waves—
which will tend to diminish the maxima and to increase the minima
(cf. Ex. 8 at end of chapter). For reasons similar to those stated in
Ex. 7 at end of chapter, it is evident that slight deviations in the
contour of the aperture from the exact circle with centre at pole
will have little (infinitesimal) effect on the value assumed by the
given electromagnetic vector.

Shortcomings of Huygens's Principle as postulated by Fresnel;
Necessary Modifications. Another Methed.—Although the (approxi-
mately) rectilinear propagation of light (electromagnetic) waves through
homogeneous media, the apparent bending of the same around the
edges of obstacles placed in their course, and their behaviour, as
confirmed by experiment, where they are intercepted by small screens
or pass through small apertures in large opaque screens, can be deduced
from Huygens’s principle as modified by Fresnel, there are several
serious shortcomings embodied in the same. The light-vector S at
an external point () is evidently

S= % sin %r(vt T L R e ST (34)
MG B
d not =2 oo (0t —
and no 7 cos )\(zt T3),

as found above (cf. formula (19)); that is, Fresnel's method gives not
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only a false phase for the light-vector at ¢, one that differs from the
actual phase by quarter of a wave length, but also-a false amplitude,
one that is A times the actual amplitude. We observe that the
expression (334) found for the electromagnetic vector at @ differs
from the given one (34) still more than that (19) which has been
deduced for the light-vector does. How are now these incorrect
expressions for the vectors to be accounted for? Let us examine the
above development, as postulated by Fresnel, in detail. The light-
vector s’ at the point ¢ due to the action of the elementary waves
emitted from any source M on the wave-front 4 BCP (cf. Fig. 17) was,
by formula (6),
¢ =5 18 sin Tt 1,4}

and the light-vector dS’ at Q due to the action of all the elementary
waves emitted from any zonal element was then assumed to be s’ times
the area do of that element. This assumption is now evidently not
justified. The elementary waves emitted from any such zonal element
may be assumed to have one and the same phase, but not one and the
same direction or plane of oscillation ; take, for example, the primary
waves treated in Chapters II. and III. or any system of primary waves,
that is, waves whose oscillations are taking place at right angles to
their directions of propagation, whereby their directions or paths of
oscillation (in planes of oscillation) may change thousands of times per
second (cf. p. 72); two such waves emitted from different parts of
any zonal element will now have different planes of oscillation at
the point ¢, so that the resultant effect at ¢ would not be given by
the sum of the single effects or light-vectors, without any reference
to the nature of the same, as assumed above, but it would have to be
obtained from the superposition of the single effects, according to
the doctrine of interference. The effect at @ due to the action of all
the elementary waves emitted from any zonal element would, therefore,
be not s'do, as assumed by Fresnel, but that obtained from the super-
position of all the single effects at ¢, according to the doctrine of
interference, and the latter would evidently be less than s'do, since
many of the different component moments both in the plane at right
angles to the line 0@ and along that line would neutralize one another
or interfere destructively.

Again, on p. 149, it is taken for granted that the only effect that could
be produced at the point @ 'due to the joint action of the elementary
waves emitted from two consecutive zones would be that due to the
variation in the mean obliquity between the waves emitted from the one
zone and those emitted from the other ; this assumption is also incorrect,
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for there will evidently be a certain effect produced at the point @ by
the variation in the mean angle, which the planes of oscillation of the
waves from the one zone and those from the other make with the line
0Q. An attempt to calculate the total light (electromagnetic) vector
at @ on the introduction of this and the foregoing modifications would
evidently prove fruitless, for, in the first place, we really know nothing
about the behaviour (direction or path of oscillation, etc.) of the
light (electromagnetic) vector along the surface of the given wave-
front—we could only treat given particular cases as the problems
of Chapters II. and III.—and secondly, if we did, the actual calcula-
tions would present unsurmountable difficulties. For this reason we
shall abandon the above method of treatment of Huygens’s principle
and seek to confirm the same from an entirely different standpoint,
where no knowledge of the behaviour of the light (electromagnetic)
vector throughout the region in question will be required, except that
it be a particular integral of the general equation of wave-motion ;
this will enable us to treat not only light-waves and electromagnetic
waves, whose directions of oscillation are always at right angles to
their directions of propagation, but apparently electromagnetic waves, as
the secondary, whose planes of oscillation are not at right angles to their
directions of propagation ; the rigorous treatment of the latter accord-
ing to Fresnel’s method would evidently present even more serious
difficulties than those encountered in the treatment of the former.

Rigorous Proof of Huygens’s Principle; Derivation of Formula for
Function at any Point in Terms of Surface and Volume-Integrals of same
throughout any Closed Region.—In the rigorous proof of Huygens’s
principle we shall start from a formula between the volume-integral
of a given function of a certain function U and 7 and the surface-
integral of another function of the same (see below). Let us first
derive the formula in question. Let the function U contain z, %, z and
also r explicitly, where 7 denotes the distance of the point in question
from the origin of the coordinates =z, ¥, 2, that is, r”2=2a2+y2+22;
oU oU oU = oU
2 Jy’ oz or
to a change in the variable z, y, 2z or r respectively, whereby the three
other variables contained in U shall remain constant ; and, lastly, let
a0 U 4y
dz’ dy dz
or dz along the @, y or z-axis respectively, whereby r will evidently
undergo a change. We have then

dU_2U U or_aU dUsz_3U dU
R T e mL G

further, let denote the change in U due alone

denote the change in U due to the increment d, dy,
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or, if we write here Lgy in place of U,
r ox
e e (T
dz\r ?r—>_23x r or Z)r<r o )COS (r, z),

or, since 7 is to be regarded as constant by the differentiation 62’
7z

d 18U) 122U 109U

2
cos (7, )+~ Lt Ucos (7, %) )

de\r o) r o2 2 oz r orox
and similarly _
4N 12T 100, LU ....(35)
d_g/(é‘ ay) r o oy O y)"‘ COS(T: Y)
. i(l@_U) 120_190, o .1 aU (
A de\r 0z /) r 022 12 0z ’ roree 8D ) )

Let now %ﬂv denote the change in U due to the increment dr along
r

the vector r; the total change in U due to this increment will evidently
consist of four (partial) changes, that in U due alone to the change in
r and those due alone to the changes in z, ¥ and z singly ; that is, the
total change in U will evidently be given by the expression

dU _oU oU oU oU
—r =7 T, ©08 (r, x)+a—ycos (r y)+—87 cos (7, ) ;5 ......(36)

if we write here %Iin place of U, we have

deU\_2U U
%\’a?) o Torow
Add the three equations (35), and we have
d (1 U g_<1 U i(l?if o i azU+a2U+aﬂ_g>
i ?W) dy ;@)ﬂzz r dz> K‘a‘f R

Callf cos (r, 2). (37)

22U
cos (7, “)““ara cos(r -’/)‘“ara

= :2 l:aaU cos(r, z) + yUcos (r, )+ Ucos(r, z):l

i Rt s(r, © +—82U 7 )+82U os(r z)]
| B P o e U s o8 A
which, by formulae (36) and (37), can be written
d (12U d(l AU\ , d 1_a£>_1 82__U+a2_U+a?_U)
t_i—w< ) dy r'éy) Zfz(*r 0z _;<89:2 D2 " 02
dU aU 1[ BU U
( dr

& ~%m )
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or. since — - d (BU)_'_»}’ CIipe (78—U->
rdr o Ad\ o)
eU M. U @h 1 d ol
‘7(W+a—yﬂ+ﬁ‘m)+ﬁ #(r 5 - U)
Multiply both sides of this equation by dzdydz and integrate the
same through the region bounded by any closed surface S, and we have

1 BU d 10U\ d /12U
‘Uj.[dx dy (r '6y>+5l§<; B—)]dwdydz
'alU 62U ot U
=t = . ..(38
m <Bx2 T oE o )d by 38)

+jjj;12 %( oUu_ U)dzdydz

Let us now assume that the functions (1 aU) (1 a—q) and (l ?J—I)
r r oy r oz

and their derivatives with regard to z, ¥, z be single-valued, finite and
continuous throughout the region bounded by the surface S. We can
then integrate the different terms of the first integral of formula
(38) by parts, the first with regard to z, the second to y and the
third to 2, and we have

([T (27 ey ([ avas (2 52),

the limits of integration to be taken at those values a,, ay a5... of =
on the surface S, where the cylindrical element dydz (as base) parallel to
the 2-axis enters and leaves the given region (cf. the annexed figure) ;
we thus have

Z
<, 16 < /\,
dyds oF ' % b
O N 7,
”3
0 a, 1 4, a, a,
X
Y

[l )t
~[Jrad -G ). G F) -G R )

*This % is evidently the partial differential.
- y the p
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If ds denotes the area of the surface S intercepted by the cylindrical
element dydz at the different points a,, a,, s, ..., then

dxdy=ds, cos (n,, ¥) = — ds, cos (ny, )=ds,cos (n,, z)...

(cf. Fig. 18); and the given integral can be written

d/1oU 100
j_”cﬁ(? S )d:cdydz: —j; o cos(n, x)ds

Similarly, the other two volume-integrals of the left-hand member
of formula (38) can be replaced by surface-integrals, namely,

H%(l aU)d dydz= —F U oo (n, y)ds

oo HJEEC %U)d e f- S cos (n, 2)s.

Formula (38) can thus be written
Jl I:aUcos(n x)+aU00s(n, y)+ Ucos , z):|ds

_ '(32U 82U a2U_a2U
B ( 2z T t5E T o

1 d oU
+HL2 dr(r - U) dudydz

y S +aU n +9[_]- S(n 2)=
5 ©° (n, ) —@cos(,y) =, co , 8)=

)dxdjdz eeen(39)

or, since

oU

_ﬁ’

where %g denotes the change in U produced alone by the increments

in the variables z, y, # as we advance the distance dn along the inner
normal to the surface S—that is, 7 is to be regarded here as constant—

12U 1/02U 32U U U
Ir on ds-Jjj <’az2 T 3y2 0 8r2>d Raye

19U
+j“;2 dr(r a5 U )dzdydz,

the formula sought (cf. above).

In formula (40) we must now discriminate between the two cases:

I. The region of integration, enclosed by the surface S, contains the
origin of our system of coordinates z, y, z; in which case the given
formulae would not hold in their above form, since 1/r then becomes
infinite at the origin ; and

II. The origin of our system of coordinates lies outside the region
of integration.
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Case I.: The Point ¢ lies inside the Surface S.—In order to be
able to apply formula (40) to this case, we must evidently exclude the
origin of our system of coordinates from the region of integration ;
for this purpose we describe a sphere of very small radius p with
centre at origin around the same. The region of integration
will then be bounded by the given outer surface S and the surface
of the small sphere, as inner surface. The value assumed by the first
or surface-integral of formula (40) on the surface of the given sphere
will now be very (infinitely) small, since the area of that surface is
proportional to p? whereas 1/p alone appears in the expression to be
integrated ; the value assumed by this integral on the surface of the
sphere may, therefore, be neglected compared with that assumed by
the same on the surface S. Similarly, since the volume of the given
sphere is proportional to p® and the expression under the integration-
signs of the first volume-integral of formula (40) contains p in the
first power only in the denominator, the value assumed by the given
integral throughout that sphere will be very (infinitely) small com-
pared with that assumed by the same throughout the given region;
we could, therefore, extend the given integration throughout the whole
region bounded by the surface S instead of throughout the given
region or that bounded by S, as outer surface, and the surface of the
given sphere, as inner surface, without effecting the value sought.

Lastly, let us examine the last integral of formula (40); for this
purpose we imagine the given region divided up into elements formed
by the intersections of cones with apices of solid angular aperture d¢
at the origin and of spheres with common centre at the origin and
whose radii differ from one another by dr. The volume of any
such element will evidently be

r2dpdr.

Replace the rectangular volume-element dzdydz by this new one in

the given integral, and we have

”Eﬁdir( fellf= U)dxdydz_jd¢Id1 (r g U) |
o]

At the lower limit r%[ becomes infinitely small as p approaches

.(41)

zero and can thus be rejected, whereas, as we know from the theory of
the potential,

' jd¢UP=()=4n~U0, ........................... (42)
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where U, denotes the value of U at the centre of the given sphere
or origin.

At the upper limit, the surface S, the following relation will
evidently hold between the surface-element 72d¢ and the surface-
element ds of the surface S, intercepted by the cone d¢ :

r’dp= —dscos(n, ),

where n denotes the inner normal to the surface.
At the upper limit the given integral can thus be written

jdcf) jds cos (n, r) 1 BU a5 ]

= j—ds cos (, 7) o <7U) [ ’

where the integration is to be extended over the whole surface S.
In the given case formula (40) will thus assume the form

12U RU RU *U RU
L, 2 a5 j” (G5t - o )dadyds

[l

r——UI

jcos(n 7),a <U> ds+47U,,

2(U\ 10U
j[cos(n, 1)5.(7) 3 an]als ] i)
BU U 2U_FU ’
=m'< + ot = e ) dadyde +4x U,

where the surfaee-integration is to be extended over the whole surface
S only and the volume-integration over the whole region enclosed
by that surface.

Case II. The Point ¢ lies outside the Surface S.—This case differs
from the foregoing in that the origin of our system of coordinates lies
outside the region of integration, so that the considerations pertaining
to the sphere employed in the latter will not have to be introduced
here. In the given case the third or last integral of formula (40)
can now be brought into another form; for this purpose we first
replace there the volume element dzdydz by r?d$dr introduced above,
and we have

(13402 - pmim-fif w2 )

j " , (45)
dep

or

r___Ul
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where 7, denotes the distance from the origin of the point on the
surface S, at which the cone of solid angular aperture d¢ with apex at
origin enters that surface, and r; the distance from origin of the point
on given surface, at which that cone leaves the same.

We next replace the surface-element r?d¢ by its value in terms of
the surface-element ds intercepted on the surface S by the given cone;
at the point, where this cone enters the surface S, we evidently have

r,2d¢ = +ds,cos(n,, ),
and at that, where it leaves the same, !
r2dp= —ds,cos(n, 7),

where n denotes the inner normal to surface.
We can then write the integral (45)

¢ U
jﬂﬂ o 50— U )dadyds

J.ds,cos(n,, r)[l %TU Z Ids cos(n,, 1) [l %f g]

A - jdszcos (ny, 7) [,&(—7)]” - jds, cos(n,, T) [58,‘(%] >]n

these last two integrals are evidently equivalent to the single integral

jds cos(n, r)= 5 <U>

where the integration is to be extended over the whole surface S.
In case II. formula (40) will thus assume the form

ﬂ}os (n, 1) g(g) - % aa—][{:l ds

2 62U c2U 22U
=”j (%g S+ - S ) dadydz.

Application of Formula (44) to Huygens’s Principle.—We can now
employ formula (44) for an examination of Huygens’s principle as
follows : Let the function U be the light-vector s of argument (¢ - r/r),
where 1 denotes the distance of any point of the region enclosed by
the surface S from the point of observation @, which shall lie within
that region and which we shall choose as origin of our system of
coordinates ; that is, we put

U=s@t—1/v),........ PR - - 411 (47)

At the point @, U will then assume the value
U=l o ()M o i Wt A (474)

..(46)
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Since now any light-vector s is thereby defined, that it is an integral
of the partial differential equation

(cf. formulae (16 and 27, I.)), it follows that the light-vector U will
also be a particular integral of the same equation or
tU
=7 = GV cop 05 00650d0050085658080000058 (484)
The Light-Vector s a Purely Spherical Wave-Function.—Let us now
examine the case, where the light-vector s is a purely spherical wave-
function, that is, a function of r (and £) alone and not of «, y, 2 singly.
The general differential equation (48) will then assume the simple form

0% ,0%
dioz@——,_,............., ................... (49)
(cf. pp. 17 and 18). Since now U is also a function of r (and ¢) only,

it will likewise be defined by the same equation or

oy U :
szﬂw. .............................. (49A)
By formulae (484) and (494) the following relation will, therefore,
hold here: U U
=z =" V2U=v 52
2
hence ViU = i U+82U+82U=8 U o . (50)

ox? T oyt " 02 or?’
Replace now U by its value (47), etc., in formula (44), and we have,
since by (50) the volume-integral of the same vanishes,

"-[cos(n, 'r) O Ui l ° (t - 7/11)] ds=4msy(f). ....... (51)

r

We can now interpret this formula as follows: The light-vector s,
at any point @, which we choose as origin of our system of coordinates,
and at any time ¢ can be conceived as produced by elementary
disturbances emitted at the times (¢—-7/v) by any surface S enclosing
that point, where » denotes the distance of any point or elementary
source J on that surface from the point @ and v the common velocity
of propagation, with which those disturbances are approaching that
point. After the elapse of the times r/v we shall have the same phase
along the surface S, as we had at ¢, when the given disturbances left
that surface. We observe that these disturbances are of a much more
complicated nature than those emitted by Fresnel’s elementary sources,
the latter having been assumed to be proportional merely to the light-
vector s (cf. p. 147).
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§=- sm—(vt r).—By formula (51) we can evidently determine the
Iight-vector s5,(t) at any point @, provided we know the light-vector s
and ;5% along any closed surface S enclosing that point. Let us

assume that the light-vector s() at any point of the region enclosed
by the surface S be given by the expression

where p denotes the distance of that point from the source of dis-
turbance O—s(t) is here a purely spherical wave-function, as assumed
above. The function U will then assume the form

U=s(t—r/v)= —sm —['ut —(pH+7)] et (53)

This function U must now remain finite throughout the region of
integration (cf. p. 167); this condition will be satisfied, if the source
of disturbance O lies outside the region of integration, enclosed by the
surface S. The relative positions of the points 0, M, and @ to the
surface S could then be represented as in the annexed figure.

Fig. 19.

Let us now determine the expressions under the integral-sign of the
integral (51) for the given case; we have, by formula (53), .

ar[S(t —Tr/%)]_a_r{_ s1n—[?)t e _,_T)]}

= —@cos—[ﬂt—(p+9)] )t Tt - (p+n),

and ——[s(t r/v)]= 5 { sin )\[vt-—(p +1)]}

= 3% {psm —[wt-(p +T)]} cos(n, p)

=t {g.’%‘f B~ [q;t —(p+1)]+ 2s.m [vt— (p+'l')]} cos(n, p);
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we can thus write the integral (51) for s,(¢) here

2za 1 2
3 rleos o ) contn, o fet~ (o)1 |
. (54)
caf B[00 o 2o =t |

Approximate Expression for s (f) for Light-Waves.—For waves of
small wave-length A, as those of light, the second or last integral of
the expression (54) for sy(¢), being of a higher order of magnitude in A
than the first integral, would be very (infinitely) small compared with
the latter and could thus be rejected. The light-vector s,(f) would
then be given most approximately by the integral

54(f) = QBX_‘.:?[COS (n, p) —cos(n, 7] cos%%r [vt — (p +7)]ds. ...(55)

Approximate Expression for s (f) compared with that obtained by
Fresnel's Method.—Let us compare the expression (55) for sy(f) with
that obtained above according to Fresnel’s method. For this purpose
‘we compare the two expressions for any surface-element do (ds) of
the surface S. The light-vector due to any such element is, according
to Fresnel’s method,

2 L8 i Xt (1,4 )]

(cf. formula (7 )), and by formula (55)

))\ 7‘[cos (n, p) — cos(n, r)]cos —[vt —(p+7)]ds.

Since now the 7, of the former expression is the r of the latter,
we must evidently put

fig) =T e )2_/\"08 e (56)

if we neglect the difference in phase between the two expressions.

For the surface-element at the point M, where the line 0@ of
Fig. 19 enters the surface S—this element corresponds to the element
at the pole P of Fresnel’s construction (cf. Fig. 17),

cos(n, p)= —cos(n, 1)
(cf. Fig. 19), and formula (56) will assume the simple form

fo($)= cos("’ .

If the element at the point M/ stands at right angles to the line 0@,
as in Fresnel’s construction, then cos(n, p)=1 (cf. Fig. 19), and hence

Sl #) =3
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the value for f(¢) obtained from a comparison of the expression for
the total light-vector at any point according to Fresnel’s method with
the actual expression for the same (cf. p. 164).

For the surface-element at the point M, where the line 0Q
leaves the surface S (cf. Fig. 19), cos(n, p)=cos(n, r), and hence the
effect contributed to the total effect at ¢ by this element zero;
that is, by formula (55), no elementary waves will be propagated
directly backwards towards the source, from which the given
wave is advancing, as postulated by Stokess law of obliquity (cf.
p. 148).

Confirmation of Formula (55).—Lastly, it is evident that formula
(55) will give the correct phase for sy(f), smce the integration by

parts of the given integral always gives sin 2 [@t——(p+r):| and not
08 ——[vt—(p+r)] as factor in the term of the lowest order of mag-

nitude in A, which term alone is to be retained for waves of short
wave-length, as the light-waves; for a confirmation of this statement
see Ex. 9 at end of chapter, where by a suitable choice of the surface S
the light-vector s,(f) will, in fact, be found to be given, as determined
by formula (55), by

a . 2w
so(H) = o sin == (vt —ry),

the correct expression for the same. Formula (55) thus differs from
Fresnel’s formula also in that it gives the correct phase for the light-
vector (cf. p. 164).

General Expression for s, (f) for Waves of any Wave-Length;
Evaluation and Confirmation of Validity of same for a Sphere S
with centre at (.—Lastly, let us evaluate the integral (54) for sy(f)
for waves of long wave-length, when the surface S is a sphere with
centre at point of observation §. For this purpose we divide the
surface of the given sphere up into surface-elements ds similar to
the zonal elements do employed on p. 146—the construction is
that -represented in Fig. 17 with the points 0 and ¢ interchanged,

The area of any such surface-element ds can now by formula (5) be
written in the form

ds= 271';pdp,
2

where 7, the », of Fig. 17, denotes the radius of the given sphere

and 7, the distance of the point of observation @ from the source
of disturbance 0.

For the given surface the inner normal n—the inner normal is
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always to be taken (cf. p. 171)—at any point M will evidently
coincide with the vector —r (cf. Fig. 19); we thus have

COS (n’ P) = COS( =T P)’
and cos(n, r)=cos(—7, r)= —1.
The angle (—7, p) is now the angle ¢ employed on p. 147 (cf. also

Fig. 17); it can, therefore, be expressed as a function of the distances
7, 74, and p (cf. Ex. 1 at end of chapter); we have, namely,

—r2_
OOS¢>—T§PP——COS(—r, p)=cps(n, P)eeriiinnns (57)

By this and the above relations that hold for the given surface, the
integral (54) for s,(f) can be written

dmia[ry?2 — 12— 2 \
4msy(t)= —”:i——h;—& + I:I €08 - [v1—(p+7)]dp

Ty

9 2_42_ o2 1
+—7,r—aj|:r“’—2;—’)§—&+ :Ism—[vt (p+7)]dp

47% (12 ~ 1% [cos wdp 1
_7'2{ 9 IT_ﬁ PCOSMdP+JCOSmdP

T sin wdp .
+ @{(722 - 72)j = + jsm ® dp}

2w
where w== [vt = (p+1)]

“

By the reduction formulae on p. 157 the first and fourth integrals
of this expression for s, can now be integrated as follows:

cosodp A sine A icos:»_l_l_)»_ A sino
p 2 p 2r |27 p? | 22x| 27 P

1 ACOSw_'_
3|2r pt 7T
__Asiﬂ’_(}_fm 1 *>3sinw+l<£>“w__++
T2 2 P +2!<2_7r PP 3N\2w P
LAY, Ay, | ne
@ 21Tp> +4!<27rp> it

2r p
A 1<A>3+1<L5 A cosw
" Z7p " 30\3mp/) Th Qrp)‘+--- Ir p
A COS—)\—Sinw+ in—%\—— cos w>
__57;( 2mp p : 2mp  p
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or, since the coefficient of sin g;{ [#t — (ry+ 27r)] evidently vanishes,
2
s(t) = %’ sin %(mﬂ. ah

the correct expression for the given vector at the point @. It thus
follows that not only the approximate formula (55), but also the
exacter one (54), which holds for waves of any wave-length, will give
the correct expression for the light (electromagnetic) vector, both ampli-
tude and phase.

The Light or Electromagnetic Vector a Spherical Function and
Huygens’s Principle; the Primary and Secondary Waves.—Formula
(564) evidently holds for both light and electromagnetic waves of any
wave-length, but provided only the vector s employed be a purely
spherical wave-function, that is, a function of » (and ) only and not
of #, y, z singly. For the general spherical wave-function the differ-
ential equation (49), which defines the purely spherical function, does
not now hold, and hence the rclation (50) also not ; in which case, the
volume integral of formula (44) will not vanish ; this would evidently
complicate the treatment of the given case, since it would then require
a knowledge of s and its derivatives not only along the surface .S, but
also throughout the whole region of integration. On the other hand, the
given treatment would also be complicated greatly, since not only the
general spherical wave-function itself always consists of two or more
terms, neither of which is a particular integral of our general equation
of wave-motion (48) (cf. p. 35), but also its value is a function not
alone of 7, the distance from the source, but also of z, y, # singly.
‘Whether it would be possible to evaluate sy(f) for such a function is
a question that could be decided only by investigation.

EXAMPLES.
1. Confirm the expressions for F(p) of formulae (18) and (184), Stokes’s and the
natural laws of obliquity.
The annexed figure (cf. also Fig. 17) gives the following relations between the
obliquity ¢, the angles 6 and 6’, and the distances p, 7, and ry:

p=0+0,
pE=rg2+ 12— 2ryr cos b,
and rE=r2+4p*~2rypcos b,

by which equations ¢ can evidently be determined as a function of p, 7, and 7,.
The last two equations give

cos 6 =£“’2——’:—ﬁ‘2-_£2 hence sin 6=+ N = (rf 1+ ) + 2 (P P+ 7'12P2)’
ity 21y,
and cos ¢’ =M hence sin® = + N = (et + pt) £ 2(rr 2 + 2% + 1y %)
2rp 2rap
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Since now 0 =6 == and 0=6'< /2, sinf and sin ¢’ will always be positive,
that is, the plus signs must be taken before the expressions for sin 6 and sin ¢'.

-~

o

Q

F1a. 20.

By the first of the above relations the obliquity ¢ can thus be written
cos ¢ -—cos(0+ 6')=cos 6 cos 8" —sin 0 sin 4’
=t - pt 4+ 2% 7'24 + 7t 4 pt = 2(r 22 + e+, %0%)
4r’rip dr’ryp

—RPSGET
T 2mp

which is the natural law of obliquity in terms of p, 7, and 7.
Stokes’s law of obliquity can thus be written

rf—rP-p?_rd-(r—p)

/ 2 — —
s’ proportional to (1+cos¢)=1+ W 2rp Q.E.D.
2. Show, when m is odd, that the series (14) for S reduces to
_Sﬂ Sm
S= BT

3. The (Fresnel) light-vector S assumes most approximately one and the same
values, those of the natural light-vectors, along the line PQ, Fig. 17, when the
small aperture in the large intercepting screen is not exactly circular.

To determine the light-vector produced at any point @ by the elementary
waves that are admitted through any irregular aperture at the pole P, we
divide the given aperture or unscreened portion of the given wave-front up
into circular sectors, as on p. 154 the small screen, replacing the edge or
contour of the given aperture by circular ares with common centre at P ; the
light-vector dS produced by the elementary waves that pass through any such
unscreened sector of the given aperture will then, by formulae (17) and (174),
be given by the expression

dS—% id%m—‘—-(%)‘ %[F(rz-rl):l:F(pl)]cos——(vt — 7o) erennen weeee(@)
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where d¢, denotes the angle subtended by the arc of the given sector at the pole P
and p, the distance of that arc (edge of aperture) from the point Q@ ; m; corresponds
to that value of m, for which p,=r,— rl+—2L)\

The total effect or light-vector S produced at the point @ by the elementary
waves admitted through the whole aperture will, therefore, be given by the sum
of the light vectors dS; we thus have

dS,,,

K

2

where x denotes the number of sectors, into which the given aperture is
divided, or by (a),

8= (2 F(rgw ) Zdo, cos =4 (vt 7p)
Al 2
L dpuF () £ A3y F (po) & ... £ dp F ()} 08 (08 =) v ()

The series in the larger brackets in the second term of this expression will now
be small compared with the value assumed by the same, when the aperture is
exactly circular and with its centre at P, since approximately (in mean) one half
of the terms of this series will be positive and the other half negative. The
approximate value assumed by the expression (b) for S will thus be

N (vt - "”2)— 5

a function of r, only, the distance of the point of observation @ from the given
source (cf. p. 153).

S:% F(ry— rl)cos2

4. Show that the following relation holds between the S’y’s (cf. formulae (288))
of any three consecutive zones :
Sy o, N
il —;"il 0.
5. On the assumption of Stokes’s law of obliquity (cf. formulae 18)), show that
the total electromagnetic vector at the point @, Fig. 17, is determined by the
expression

aN

2 2
S= T {(7’2+ 1) COS l:m Tﬂ- (vt - *r‘_,):] — (ry—3ry) cos T’r (vt —7y)

A . 2m
‘27?“7(”“’”2)}
a\

A 2 2
_% {(r2 — ) cos [m + T(vt -ry— 21*]):| — (rg—7;) cos ~ (vt =7y —21y)

N W0k
~ 5, SN (vt—r2—2r])},

which for comparatively small values of A can be written approximately in the
form

_2ax a2 . 2w aN® 7‘2+r1
S= = cos—(zt—rz) e o) in == (vt —1s) —

2
cos - (vt — 7y}

2 A3
aN 2w Ty

+m cos ~ (vt —1ry—20) + - — 167r“’r2r1 e ey s1n (vt —1y—2r)
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(cf. formula (334)) ; it is evident that this expression reduces to that (20) for the
light-vector proper for very small values of A.

6. For light-waves the expression (33) for the electromagnetic vector reduces
to that for the light-vector (cf. formula (19)). This follows directly from the
approximate expression (cf. formula (334)) for the electromagnetic vector.

7. Small deviations in the contour of the intercepting screen from the exact
circle with centre at pole will have no appreciable effect on the value of the
electromagnetic vector behind that screen. This is evident, since all the terms
of the series for the electromagnetic vector, corresponding to the different
elements of arc, by which the contour of the given screen may be replaced,
will have, in general, one and the same and not, as in the case of light waves,
different signs (cf. Ex. 3), so that the given series will assume a finite value.

8. Determine the behaviour of the (electromagnetic) vector at the point Q,
Fig. 17, due to the action of electromagnetic waves admitted through a small
circular aperture (with centre at pole) in a large intercepting screen.

The examination of the following two particular cases will suffice for the
determination of the behaviour of the given vector: (1) the aperture admits the
waves from the whole central zone only, and (2) the aperture admits the waves
from the whole central and adjacent (first) zones only.

Cask 1. By formulae (244)~(264), (27), and (28) the total electromagnetic vector
at @ will evidently be given here by the expression

,ma(r?—-n? A A _
S=: Sl e 08 2""P [vt (ry+p)]

wa [ A2
o {47rzsm —-[vt— r1+p)]+2 pcos—[u—(rl+p)]}
where the integration is to be extended from

p=ry—7y to p=ry—1r;+A2

Replace here p by these limits, and we have

ma (r?—r?) [ ~ :I
S= rory {..1r(’l'2 rl) o ("'2—7'1) (’Ut 73)
A
" 2r(r,- r1+>\/2) Fos |:21r(7‘2-—'rl+)\/‘2) X (0= "/2)]}
Nt
‘;,7“2-% msm—)\‘(”t—’fz)+§;( )cos—(vt 7o)

- .
- 4%2 sin 2% (1t —ry—N[2) - % (rg— 7y +7/2) cos —% (vt—ry— )\/2)],

or, approximately (for comparatively small values of )),

A2 A
S—'—'—(Tz'f'?'l){[l m] COo8 — (vt-rg) 2 ( ) T,)}
aN e : aN? . 2mr a\(ry? — 7'12) -
" 2rn s5hleok T(u paL Trrgr, o T(vt “Hald 2rgry(ry— 71+ A[2)

x{l:l—-—-——)f————:l 2—7‘-(vt—r)————l———sin?—1-r(vt—r)}
8, A N21 ] S X Y S+ N2) DN 2

a\ 2 a2 . 27
a5 272’_](1«2 — 71+ 7/2) cos —)\—(vt —Ty)— m sin T(vt —1y)
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_a\ 2 an? 2 aXd  r+r 2
cos )\( t—19) — 27r—'rl(r—rr) (vt 7g) — 16#27"27-1( 2_”_1)2005 X (vt 7y)

an aN¥ry+\/4)
7y Zrira -+ N2)
an? aN®  (rg+r)(ry—7y+ )\/4)
orry(ry—my)  dwrgry (rg—m)(rp—7y+ >\/2)
aN aXs (1t 1) (B = 1P+ B(ry — r)N4 -+ N38]
{16#27'21'1 (rg—7y)? " 167y (rg— )Ty — 1y + N2) }

0032 (vt —17y)

(vt 7y)

xcos (vt 7o),

or, if we reject all terms of higher orders of magnitude in A than the third,

az? 2w ar®  rytr
S= 2{—005 (vt —19) — m —(vt-'r2) S e ) cos— (vt - r2)}
aN¥(ry-+\[4) ar? ro+7y .
B T X T e G e Xot=ra)

A comparison of this expression with that (33a) for the natural electromagnetic
vector or that produced, when no obstacle is placed in the course of the given
waves, shows that the given electromagnetic vector is approximately twice as
large as the natural one, or, more exactly, that the former differs from the latter
(doubled) by an expression that is of one higher order of magnitude in A than that
for either.

Cask 2. Similarly, the electromagnetic vector would evidently be given here by
the expression

S= wa 1y _"'12),(

A A 2w
oy \2r(rp—ry) *”Ezw(rg—rl)““T(”“’"?’]

A A 2
_27r(7'2 - r1+7\) cos [27(7.2 —-1'1+)\)+T(w —ry— 7\)]}

2
|:4 2sm x (vt —y) +5 ( -7} cos T.’r(vt —7y)

7"27'

_a)\;?sinT’r(vt—rz—)\)—ﬂ(rg—rl+)\)cos(vt-rg—7\):|;

which for values of A, that are small compared with r, and 7, can be written

_ax 2w ar? . 2w aN Tyt
S= g, con (v =) = g s St =)~ [

aA(r?=r?) ([ s ] Lo
T Qe (g - 7'1+>\)1 T 8aHry— 1 +N)? R (vt - )

- ——L——Sill —(vt—r )
27r(rz—r +X) A 2

2
08 (vt —13)

A2
+ Z vy sin —(vt 7o),

(r2 71 +A) cos—(vt 7'2)+4

2
or, if we reject all terms of higher orders of magnitude in X than the third,

. aN(2ry+N)
T 2y (ry— 1+ N)
A comparison of this expression with that (33a) for the natural electromagnetic
vector shows that the given electromagnetic vector is determined by an expression

aN¥(ry+17y)

s———2—=—=sin 2—"r('ut —17y)
Srrgr(rg—r A A2 DX 2}

2
08 T’r(vt —75)—
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that is of one higher order of magnitude in A than that for the former (cf. also
p. 156).

9. Evaluate the integral (55) for the light-vector sy(f), when the surface of
integration S is a sphere with centre at the point of observation Q.
We divide the surface of the given sphere up into surface-elements ds as on
p- 175 ; the following relations will then hold :
r
ds =21r; pdp,

g

cos (n, p)=cos( -, p)=cosp=-2 o7

where we are assuming the natural law of obliquity, and
cos(n, r)=cos(—-7,r)=-1

(cf. formulae on pp. 175-176) 3 by which the integral (55) can be written

s(t)= f = l:r2 QTP + l:l cos _[vt (p+7)1dp

_amry —r"‘fcoswdp ar 1
N 2ryr p N 2ryr

ar
p cos wdp+}\—r2fcos wdp,

where wz-%r[vt —(p+7)].

These three integrals have now been evaluated on pp. 176-177. Since we have
retained terms of only the lowest order of magnitude in X in formula (55), we can
evidently retain only such terms in the evaluation of the vector sought or its
integrals ; the approximate values of these integrals are evidently

cosw, A sinw

——dp=— / lp = 2l si and /cos d'——Asinw
= p= 5= Ak peoswdp=—5_psinw, an wdp=—5_ 5

Replace the integrals by these values in the above expression for s(t), and

we have
so(t)= 95 el X R T T
Qs dryr p T’ o, ’
where the integration is to be extended from
p=7—7 t0 py=ry+7.

Replace here p by these limits, and we have

S R K _l:l i ?.I I
8ot)= rzl: = rz_r+4r('r2 7) 5 |sin (vt — 1)

DR 1 or .
+7'2[ 4r rg+7-+47.(7'z+7'1) 2 Bln [vt (rg+27)]

=2 gI( t—
_7'2 n A v ’"2),
the actual expression for the light-vector at the distance r, from source.
10. Show that the function f(¢) employed in the determination of the light-
vector according to Fresnel’s method must be assigned the value

Slg)=229,

in order that we may obtain the correct expression for the amplitude of the
light-vector.



CHAPTER VL
DIFFRACTION.

Diffraction Phenomena.—The phenomena that appear at the boun-
daries of the geometrical shadow, when light rays pass through a very
small aperture or by the edge of an opaque body placed in their course,

“are known as the phenomena of  Diffraction” ; they arise, figuratively

speaking, from the light rays deviating from their rectilinear paths.
A similar class of phenomena that arise from the same cause, the
deviation of the light rays from their rectilinear paths, has been
examined in the preceding chapter ; there we investigated briefly the
behaviour of light (its intensity) directly behind small screens and
small apertures in large screens—along the central axis of the geo-
metrical shadow or image respectively. For the particular case, where
the aperture or the small intercepting screen or obstacle is very small,
this latter class of phenomena is, as we shall see below, to be included
in the former or that of the phenomena of diffraction.

First Observations on Diffraction.—The first observations on diffrac-
tion were made by Grimaldi* at Bologna in 1665; he found upon
placing a small opaque obstacle (wire) in the cone of light admitted
into a dark room through a very small aperture that the shadow cast
an a screen behind that obstacle was much larger than the geometrical
shadow ; he also observed that the enlarged portion of the shadow
consisted of coloured bands or fringes that ran parallel to the edge of
the geometrical shadow. Newton{ was among the first to examine
the complementary case or the image cast by light admitted through
a very small aperture or narrow slit; the slit employed was formed
by two knife blades, which admitted only a very narrow strip of
light; he found that the image was then bordered exteriorly by parallel

* Physico-mathesis de lumine, coloribus et iride, Bononiae, 1665.
+ Opticks, vol. iii.
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coloured fringes similar to those already observed by Grimaldi on the
exterior of the shadow cast by a small obstacle (see below).

Young’s Explanation of Diffraction.—The first attempt to explain
diffraction phenomena was made by Dr. Young ;¥ he attributed the
(coloured) fringes to the interference of the rays that pass very near to
the edge of the obstacle and those that are reflected by the same at
grazing incidence. This explanation would evidently stipulate that
the given phenomena be more or less marked according to the degree
of polish and sharpness of the edge. Fresnel has now shown by most
exact experiments 7 that these factors, polish and sharpness of edge,
have no effect whatever on the fringes produced, the fringes retaining
the same position (with regard to edge) and intensity, whether the
back or (sharp) edge of the knife (razor) be employed and whether
that edge be highly polished or not.

Fresnel’s Theory of Diffraction.—Fresnel, who had demonstrated
experimentally the incorrectness of Young’s explanation of diffraction
phenomena, not only offered us another explanation but also confirmed
the same by a series of most ingenious and exact experiments.]
Fresnel attributes the phenomena of diffraction to the mutual action
of the elementary waves that are supposed, according to Huygens’s
principle, to be emitted from any wave-front, here that which passes
through the edge of the intercepting obstacle; the mutual action of
these waves at any external point is then calculated according to the
principle of interference (cf. Chapter IV.). Diffraction phenomena are,
therefore, to be conceived as due to the mutual action or interference
of the elementary waves emitted from the various (elementary) sources
on the wave-front in question, just as interference phenomena are due
to the mutual action or interference of two systems (pencils) of waves.

Let us first examine those problems on diffraction that can be
treated by the simple methods employed 1n the preceding chapter ;
these methods, which are only approximate ones, have been deduced
from Huygens’s principle as postulated by Fresnel and the principle of
interference.

Diffraction of Light on the Edge of an Opaque Obstacle; the
Exterior Bands.—Let O be the source of a system of spherical light
waves, 4 the straight edge of an opaque obstacle 4B, MN the screen
of observation, and P, that point (line) on the screen that lies on the
continuation of the line (plane) or ray (rays) 04, as indicated in the

*¢On the Theory of Light and Colours,” Phil. Trans., p. 12, 1802.

*+ Fresnel, Ocuvres complétes, tom. i., pp. 148 and 280.

¢ Mémoire sur la diffraction de la lumiére,” Mémoires de P’Acad. frang.,
tom. v. Poggend. Annal., vol. xxx. Qeuwvres complétes, tom. 1.
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annexed figure. P, will then mark the upper boundary of the
geometrical shadow on the screen. Let us first consider the illumina-
tion at any point @ on the screen outside the geometrical shadow.
For this purpose we draw the spherical wave-front S that passes
through that point of the edge A4 of the obstacle 4B, which
corresponds to the point ¢ We denote the point, where the
line or vector O intersects this wavefront by P; P is then
the so-called “pole” of the given wave-front with respect to the
external point ¢ (cf. p. 146). According to Fresnel the (light) effect
at ¢ can now be conceived as produced by the mutual action at
that point of the elementary waves emitted from the wavefront S,
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