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PREFACE

" THE Theory of Differential Equations," said Sophus Lie,
"

is the

most important branch of modern mathematics." The subject may
be considered to occupy a central position from which different

lines of development extend in many directions. If we travel along

the purely analytical path, we are soon led to discuss Infinite Series,

Existence Theorems and the Theory of Functions. Another leads

us to the Differential Geometry of Curves and Surfaces. Between

the two lies the path first discovered by Lie, leading to continuous

groups of transformation and their geometrical interpretation.

Diverging in another direction, we are led to the study of mechanical

and electrical vibrations of all kinds and the important phenomenon
of resonance. Certain partial differential equations form the start-

ing point for the study of the conduction of heat, the transmission

of electric waves, and many other branches of physics. Physical

Chemistry, with its law of mass-action, is largely concerned with

certain differential equations.

The object of this book is to give an account of the central

parts of the subject in as simple a form as possible, suitable for

those with no previous knowledge of it, and yet at the same time

to point out the different directions in which it may be developed.

The greater part of the text and the examples in the body of it

will be found very easy. The only previous knowledge assumed is

that of the elements of the differential and integral calculus and a

little coordinate geometry. The miscellaneous examples at the end

of the various chapters are slightly harder. They contain several

theorems of minor importance, with hints that should be sufficient

to enable the student to solve them. They also contain geometrical

and physical applications, but great care has been taken to state

the questions m such a way that no knowledge of physics is required.

For instance, one question asks for a solution of a certain partial
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differential equation in terms of certain constants and variables.

This may be regarded as a piece of pure mathematics, but it is

immediately followed by a note pointing out that the work refers

to a well-known experiment in heat, and giving the physical meaning
of the constants and variables concerned. Finally, at the end of

the book is given a set of 115 examples of much greater difficulty,

most of which are taken from university examination papers. [I

have to thank the Universities of London, Sheffield and Wales, and

the Syndics of the Cambridge University Press for their kind per-

mission in allowing me to use these.] The book covers the course

in differential equations required for the London B.Sc. Honours or

Schedule A of the Cambridge Mathematical Tripos, Part II., and

also includes some of the work required for the London M.Sc. or

Schedule B of the Mathematical Tripos. An appendix gives sugges-

tions for further reading. The number of examples, both worked

and unworked, is very large, and the answers to the unworked ones

are given at the end of the book.

A few special points may be mentioned. The graphical method

in Chapter I. (based on the MS. kindly lent me by Dr. Brodetsky
of a paper he read before the Mathematical Association, and on a

somewhat similar paper by Prof. Takeo Wada) has not appeared
before in any text-book. The chapter dealing with numerical

integration deals with the subject rather more fully than usual.

It is chiefly devoted to the methods of Runge and Picard, but it

also gives an account of a new method due to the present writer.

The chapter on linear differential equations with constant co-

efficients avoids the unsatisfactory proofs involving
"

infinite con-

stants." It also points out that the use of the operator D in finding

particular integrals requires more justification than is usually given.

The method here adopted is at first to use the operator boldly and

obtain a result, and then to verify this result by direct differentiation.

This chapter is followed immediately by one on Simple Partial

Differential Equations (based on Riemann's "Partielle Differential

gleichungen "). The methods given are an obvious extension of

those in the previous chapter, and they are of such great physical

importance that it seems a pity to defer them until the later portions

of the book, which is chiefly devoted to much more difficult subjects.

In the sections dealing with Lagrange's linear partial differential

equations, two examples have been taken from M. J. M. HilTf

recent paper to illustrate his methods of obtaining special integrals
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In dealing with solution in series, great prominence has been

given to the method of Frobenius. One chapter is devoted to the

use of the method in working actual examples. This is followed

by a much harder chapter, justifying the assumptions made and

dealing with the difficult questions of convergence involved. An
effort has been made to state very clearly and definitely where the

difficulty lies, and what are the general ideas of the somewhat

complicated proofs. It is a common experience that many students

when first faced by a long
"
epsilon-proof

"
are so bewildered by

the details that they have very little idea of the general trend,

I have to thank Mr. S. Pollard, B.A., of Trinity College, Cambridge,
for his valuable help with this chapter. This is the most advanced

portion of the book, and, unlike the rest of it, requires a little know-

ledge of infinite series. However, references to standard text-books

have been given for every such theorem used.

I have to thank Prof. W. P. Milne, the general editor of Bell's

Mathematical Series, for his continual encouragement and criticism,

and my colleagues Mr. J. Marshall, M.A., B.Sc., and Miss H. M.

Browning, M.Sc., for their work in verifying the examples and

drawing the diagrams.

I shall be very grateful for any corrections or suggestions from

those who use the book.

H. T. H. PIAGGIO.

UNIVERSITY COLLEGE, NOTTINGHAM,

February, 1920.
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TO THE REVISED AND ENLARGED EDITION

THIS edition contains a long new chapter of a supplementary

character, dealing with difficulties in the theory of singular solutions,

and some little-known ideas about discriminant-loci regarded as

boundaries
; Riccati's equation ;

two additional methods for total

differential equations (Mayer's general method, and the use of an

integrating factor for homogeneous equations) ;
solutions in series

of linear differential equations of the second order (Fuchs' theorem,

ordinary and singular points, equations of Fuchsian type, charac-

teristic index, normal and subnormal integrals) ;
some equations of

Mathematical Physics (particularly the equation of vibrating strings

and the three-dimensional Wave equation) ;
and approxiinatf

numerical solution (Adams' method and some recent work bj

Remes). The other parts of the book have been revised, and a fe\*

more,examples added. References have been altered when necessary.

I am deeply indebted to several friends for their valuable help

and advice, particularly to Mr. H. B. Mitchell, formerly Professor

at Columbia University, New York, Prof. E. H. Neville of Reading

University, and my colleague, Mr. F. Underwood.

H. T. H. PIAGGIO.

May 1928.

NOTE TO THE NINTH (1933) IMPRESSION

FOR the convenience of physics students and others who require a

simple treatment of the equation of vibrating strings, two short

notes have been added (pp. 61 and 256). The method of parameters

(p. 256) for certain partial differential equations is an extension ot

the usual methods for two standard forms. The new examples on

Lagrange's linear equation (p. 161) include the determination of

particular integrals representing surfaces that pass through given

curves. There are some alternative methods for simultaneous

equations on p. 48, and minor changes elsewhere.

H. T. H. P
May 1933.
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HISTORICAL INTRODUCTION

THE study of Differential Equations began very soon after the

invention of the Differential and Integral Calculus, to which it

forms a natural sequel. Newton in 1676 solved a differential

equation by the use of an infinite series, only eleven years after

his discovery of the fluxional form of the differential calculus in

1665. But these results were not published until 1693, the same

year in which a differential equation occurred for the first time in

the work of Leibniz *
(whose account of the differential calculus

was published in 1684).

In the next few years progress was rapid. In 1694-97 John

Bernoulli f explained the method of
"
Separating the Variables/' and

he showed how to reduce a homogeneous differential equation of

the first order to one in which the variables were separable. He

applied these methods to problems on orthogonal trajectories. He
and his brother Jacob tt (after whom

"
Bernoulli's Equation

"
is

named) succeeded in reducing a large number of differential equa-
tions to forms they could solve. Integrating Factors were probably
discovered by Euler (1734) and (independently of him) by Fontaine

and Clairaut, though some attribute them to Leibniz. Singular

Solutions, noticed by Leibniz (1694) and Brook Taylor (1715), are

generally associated with the name of Clairaut (1734). The geo-

metrical interpretation was given by Lagrange in 1774, but the

theory in its present form was not given until much later by Cayley

(1872) and M. J. M. Hill (1888).

The first methods of solving differential equations of the second

or higher orders with constant coefficients were due to Euler.

D'Alembert dealt with the 'case when the auxiliary equation had

equal roots. Some of the symbolical methods of finding the par-

ticular integral were not given until about a hundred years later

by Lobatto (1837) and Boole (1859).

The first partial differential equation "to be noticed was that

giving the form of a vibrating string. This equation, which is of

the second order, was discussed by Euler and D'Alembert in 1747.

Lagrange completed the solution of this equation, and he also

* Also spelt Leibnitz. t AJ8 spelt Bernoulli, ft Also known as James.
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dealt, in- a series of memoirs from 1772 to 1785, with partial dif-

ferential equations of the first order. He gave the general integral

of the linear equation, and classified the different kinds of integrals

possible when the equation is not linear.

These theories still remain in an unfinished state ; contributions

have been made recently bf Chrystal (1892) and Hill (1917). Other

methods for dealing with partial differential equations of the first

order were given by Charpit (1784) and Jacobi (1836). For higher

orders the most important investigations are those of Laplace (1773),

Monge (1784), Ampere (1814), and Darboux (1870).

By about 1800 the subject of differential equations in its original

aspect, namely the solution in a form involving only a finite number

of known functions (or their integrals), was in much the same state

as it is to-day. At first mathematicians had hoped to solve every
differential equation in this way, but their efforts proved as fruitless

as those of mathematicians of an earlier date to solve the general

algebraic equation of the fifth or higher degree. The subject now
became transformed, becoming closely allied to the Theory of

Functions. Cauchy in 1823 proved that the infinite series obtained

from a differential equation was convergent, and so really did

define a function satisfying the equation. Questions of convergency

(for ^which Cauchy was the first to give tests) are very prominent
jn all the investigations of this second period of the study of dif-

ferential equations. Unfortunately this makes the subject very
abstract and difficult for the student to grasp. In the first period

the equations were not only simpler in themselves, but were studied

in close connection with mechanics and physics, which indeed were

often the starting point of the work.

Cauchy's investigations were continued by Briot and Bouquet

(1856), and a new method, that of
"
Successive Approximations,"

was introduced by Picard (1890). Fuchs (1866) and Frobenius

(1873) have studied linear equations of the second and higher
orders with variable coefficients. Lie's Theory of Continuous

Groups (from 1884) has revealed a unity underlying apparently
disconnected methods. Schwarz, Klein, and Goursat have made
their work easier to grasp by the introduction of graphical con-

siderations, and a recent paper by Wada (1917) has given a graphical

representation of the results of Picard and Poincare. Runge (1895)

and others have dealt with numerical approximations.
Further historical notes will be found in appropriate places

throughout the book. For more detailed biographies, see Rouse

BalTs Short History of Mathematics.



CHAPTER 1

INTRODUCTION AND DEFINITIONS. ELIMINATION.

GRAPHICAL REPRESENTATION

1. Equations such as

*y_ *
(4

v

~j T 7^ , V /
ax 7/s/i i /yflx

Involving differential coefficients, are called Differential Equations.

2. Differential Equations arise from many problems in Algebra,

Geometry, Mechanics, Physics, and Chemistry. In various places

in this book we shall give examples of these, including applications

to elimination, tangency, curvature, envelopes, oscillations of

mechanical systems and of electric currents, bending of beams,

conduction of heat, diffusion of solvents, velocity of chemical

reactions, etc.

3. Definitions. Differential equations which involve only one

independent variable,* like (1), (2), (3), and (4), are called ordinary.

Those which involve two or more independent variables and

partial differential coefficients with respect to them, such as (5), are

called partial.

* In equations (1), (2), (3), (4) x is the independent and y the dependent variable.

In (5) a and * are the two independent variables and y the dependent.
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An equation like (1), which involves a second differential co-

efficient, but none of higher orders, is said to be of the second order.

(4) is of the first order, (3) and (5) of the second, and (2) of the third.

The degree of an equation is the degree of the highest differential

coefficient when the equation has been made rational and integral

as far as the differential coefficients are concerned. Thus (1), (2),

(4) and (5) are of the first degree.

(3) must be squared to rationalise it. We then see that it is of

the second degree, as -r~ occurs squared.

Notice that this definition of degree does not require x or y to

occur rationally or integrally.

Other definitions will be introduced when they are required.

4. Formation of differential equations by elimination. The

problem of elimination will now be considered, chiefly because it

gives us an idea as to what kind of solution a differential equation

may have.

We shall give some examples of the elimination of arbitrary

constants by the formation of ordinary differential equations. Later

(Chap. IV.) we shall see that partial differential equations may be

formed by the elimination of either arbitrary constants or arbitrary

functions.

5. Examples.

(i) Consider x=*A cos (pt-a), the equation of simple harmonic
motion. Let us eliminate the arbitrary constants A and a.

dx
Differentiating, -=- = -pA sin (pt a)

at

and
-jfi

= -p
zA cos (pt

-
a)

= -
p*x.

Thus
-=-jj-

= -p*x is the result required, an equation of the second

order, whose interpretation is that the acceleration varies as the distance

from the origin. .

(ii) Eliminate p from the last result.

Differentiating again, -^ => - p
2 -=- .

(tt (it

__ cPxldx , dzxl /f ,11. i..
Hence -^ 37

- -p2 =
-JTS \x, (from the last result).

at9
1
at at*

\

ffix dx d*x . i-Ti
Multiplying up, x . -^ -=-

-^,
an equation of the third order.
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(iii) Form the differential equation of all parabolas whose axis is

the axis of x.

Such a parabola must have an equation of the form

t/
8 =

Differentiating twice, we get

(-/)
~^and yj^ + (-/)
~^ which is of the second order.

Examples for solution.

Eliminate the arbitrary constants from the following equations :

(1) y = Ae** + Be~ 2
*. (2) y = A cos 3x + B sin 3x.

(3) y-Ae**. (4) y=Ax + A*.

(5) If xa + t/
2 = a 2

, prove that -p= --, and interpret the result

geometrically.
x V

(6) Prove that for any straight line through the origin
- ~-r> and

interpret this.
x x

* UI II

(7) Prove that for any straight line whatever y4=0. Interpret
this.

dx

6. To eliminate n arbitrary constants requires (in general) a differ-

ential equation of the nth order. The reader will probably have

arrived at this conclusion already, from the examples of Art. 5.

If we differentiate n times an equation containing n arbitrary con-

stants, we shall obtain (n + 1) equations altogether, from which the

n constants can be eliminated. As the result contains an nth
differ-

ential coefficient, it is of the nth order.*

* The argument in the text is that usually given, but the advanced student
will notice some weak points in it. The statement that from any (n + 1) equations
n quantities can be eliminated, whatever the nature of those equations, is too sweeping.
An exact statement of the necessary and sufficient conditions would be extremely

complicated.
Sometimes less than (n + 1) equations are required. An obvious case ia

y= (A + B)x, where the two arbitrary constants occur in such a way as to be

really equivalent to one.

A less obvious case is y*= 2Axy + Bx*. This represents two straight lines

through the origin, say i/=m l
a; and y^m zx, from each of which we easily get

-=~, of the first instead of the second order. The student should also obtain
x dx
this result by differentiating the original equation and eliminating B. This will

give



4 DIFFERENTIAL EQUATIONS

7. The most general solution of an ordinary differential equation of

the nth order contains n arbitrary constants. This will probably seem

obvious from the converse theorem tHat in general n arbitrary con-

stants can be eliminated by a differential equation of the nth
order.

But a rigorous proof offers much difficulty.

If, however, we assume * that a differential equation has a solution

expansible in a convergent series of ascending integral powers of

x, we can easily see why -the arbitrary constants are n in number.

Consider, for example,
~ =

-f-, of order three.9 r ' dx3 dx

y (r^

Assume that y =a 4-^x +#291
+ + an~i + t infinity.

Then, substituting in the differential equation, we get

80 08=01,

04=02,

B =an_2 =On_ 4 =etC.

Hence y=

== a -f aj sinh x + a2 (cosh x
-

1),

containing three arbitrary constants, a
,
ax and a2 .

Similar reasoning applies to the equation

- ~dx~' *

dx' dx2 ' '"'
"dx"

In Dynamics the differential equations are usually of the second

d2y
order, e.g. -rf +P

2
y=0, the equation of simple harmonic motion.

To get a solution without arbitrary constants we need two con-

ditions, such as the value of y and dy/dt when t =0, giving the initial

displacement and velocity.

8. Complete Primitive, Particular Integral, Singular Solution. The

solution of a differential equation containing the full number of

arbitrary constants is called the Complete Primitive.

Any solution derived from the Complete Primitive by giving

particular values to these constants is called a Particular Integral.

* The student wiU flee in later chapters that this assumption is not always
justifiable.
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Thus the Complete Primitive of rr-|
=
-p

is y a -f ax sinh x + a% (cosh x -
1),

or y ^c+Oj sinh x+a2 cosh x, where c = a -02 ,

or y c + oe35 + be~x
y
where a \ (a^ -f a2) and 6

This illustrates the fact that the Complete Primitive may often

be written in several different (but really equivalent) ways.
The following are Particular Integrals :

y = 5 sinh x, taking 04
=

5, c = a2
=

;

y = 6coshx-4, taking aa
=

6, ^=0,0= -4;
y=2+ ex -3e~*, taking c = 2, a = l, 6= -3.

In most equations every solution can be derived from the Com-

plete Primitive by giving suitable values to the arbitrary constants.

However, in some exceptional cases we shall find a solution, called

a Singular Solution, that cannot be derived in this way. These will

be discussed in Chap. VI.

Examples for solution.

Solve by the method of Art. 7 :

(i) g-r-

(3) Show that the method fails for -~~^ -
v ' dx x

[log x cannot be expanded in a Maclaurin series.]

(4) Verify by elimination of c that y ex + - is the Complete Primitive

of y = x -f 1 / . Verify also that y* ix is a solution of the differential

equation not derivable from the Complete Primitive (i.e. a Singular

Solution). Show that the Singular Solution is the envelope of the

family of lines represented by the Complete Primitive. Illustrate by
a graph.

9. Graphical representation. We shall now give some examples
of a method * of sketching rapidly the general form of the family of

curves representing the Complete Primitive of

* Due to Dr. S. Brodetsky and Prof. Takeo Wad*.
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where f(x, y) is a function of x and y having a perfectly definite

finite value * for every pair of finite values of x and y.

The curves of the family are called the characteristics of the

equation.

n /*\ dy
EX. (l)

J. =X(y-\\

Here

Now a curve has its concavity upwards when the second differential

coefficient is positive. Hence the characteristics will be concave up
above y = l, and concave down below this line. The maximum or

minimum points lie on x = Q, since dy/dx = Q there. The characteristics

near y 1, which is a member of the family, are flatter than those

further from it.

These considerations show us that the family is of the general form
shown in Fig. 1.

M N

Fia. i.

Ex. (ii)

Here
dx

We start by tracing the curve of maxima and minima y-f ea =0,
and the curve of inflexions t/ + 2e*=0. Consider the characteristic

through the origin. At this point both differential coefficients are

positive, so as x increases y increases also, and the curve is concave

upwards. This gives us the right-hand portion of the characteristic

marked 3 in Fig. 2. If we move to the left along this we get to the

*Thua excluding a function like y/x, which it* indeterminate when x0 and
0=0.
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curve of minima. At the point of intersection the tangent is parallel to

Ox. After this we ascend again, so meeting the curve of inflexions.

After crossing this the characteristic becomes convex upwards. It still

ascends. Now the figure shows that if it cut the curve of minima again

y

Fro. 2.

the tangent could not be parallel to Ox, so it cannot cut it at all, but

becomes asymptotic to it.

The other characteristics are of similar nature.

Examples for solution.

Sketch the characteristics of :

(2)

(3)

_

~dx

dy
dx y + x*.

10. Singular points. In all examples like those in the last

article, we get one characteristic; and only one, through every point
dy d2

t/

of the plane. By tracing the two curves -3- =0 and -r\ =0 we can

easily sketch the system.

If, however, f(x, y) becomes indeterminate for one or more

points (called singular points), it is often very difficult to sketch the
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system in the neighbourhood of these points. But the following

examples can be treated geometrically. In general, a complicated

analytical treatment is required.*

Ex. (i). -=^=^. Here the origin is a singular point. The geo-dx sc

metrical meaning of the equation is that the radius vector and the

tangent have the same gradient, which can only be the case for straight

FIG. 3.

lines through the origin. As the number of these is infinite, in this case

an infinite number of characteristics pass through the singular point.

-0 ,... dy x , y dy
Jbjx. (u).

-=3 i.e. -'-r-= 1.
dx y x dx

This means that the radius vector and the tangent have gradients

FIG. 4.

whose product is -1, i.e. that they are perpendicular. The char-

acteristics are therefore circles of any radius with the origin as centre.

* See a paper,
"
Graphical Solution," by Prof, Takeo Wada, Memoirs of th*

College of Science, Kyoto Imperial University, Vol. II. No. 3, July 1917.
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In this case the singular point may be regarded as a circle of zero radius^

the limiting form of the characteristics near it, but no characteristic of

finite size passes through it.

-, .. v dy y-kx
Ex. (m). / C3 ^

i
-

v ' dx x + ky

Writing dy/dx**ta>n\[s> y/o?=tan 6, we get

tan

i.e.

tan 9 - tan \Is f* & ___________ i
!=j if

1-ftan
'

i.e. tan (6
-

\js)
= k, a constant.

The characteristics are therefore equiangular spirals, of which the

singular point (the origin) is the focus.

FIG. 5.

These three simple examples illustrate three typical cases.

Sometimes & finite number of characteristics pass through a singular

point, but an example of this would be too complicated to give

here.*

See Wada's paper.
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MISCELLANEOUS EXAMPLES ON CHAPTER L

Eliminate the arbitrary constants from the following :

(1) y

(2) y

[To eliminate A, B, C from the four equations obtained by successive

differentiation a determinant may be used.]

(3) y ex(A cos x + B sin x).

(4) y c cosh -, (the catenary).
c

Find the differential equation of

(5) All parabolas whose axes are parallel to the axis of y.

(6) All circles of radius a.

(7) All circles that pass through the origin.

(8) All circles (whatever their radii or positions in the plane xOy).

[The result of Ex. 6 may be used. ]

(9) Show that the results of eliminating a from

(1)

and b from y**x-~-bx*t ............................... (2)
cLx

are in each case x2
7-|-2x~ + 2z/

= ...... * ..................... (3)

[The complete primitive of equation (1) must satisfy equation (3),

since (3) is derivable from (1). This primitive will contain a and also

an arbitrary constant. Thus it is a solution of (3) containing two

constants, both of which are arbitrary as far as (3) is concerned, as a

does not occur in that equation. In fact, it must be the complete

primitive of (3). Similarly the complete primitives of (2) and (3) are

the same. Thus (1) and (2) have a common complete primitive.]

(10) Apply the method of the last example to prove that

and y~-/-y dx

have a common complete primitive.

(11) Assuming that the first two equations of Ex. 9 have a common

complete primitive, find it by equating the two values of ~ in terms
dx

of x, y, and the constants. Verify that it satisfies equation (3) of Ex. 9.

(12) Similarly obtain the common complete primitive of the two

equations of Ex. 10.
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(13) Prove that all curves satisfying the differential equation

dx \dx/ dx

cut the axis of y at 45.

(1*1) Find the inclination to the axis of x at the point (1, 2) of the

two curves which pass through that point and satisfy

(15) Prove that the radius oi curvature of either of the curves of

Ex. 14 at the point (1, 2) is 4.

(16) Prove that in general two curves satisfying the differential

equation

pass through any point, but that these coincide for any point on a

certain parabola, which is the envelope of the curves of the system.

(17) Find the locus of a point sijich that the two curves through it

satisfying the differential equation of Ex. (16) cut (i) orthogonally ;

(ii) at 45.

(18) Sketch (by Brodetsky and Wada's method) the characteristics of

(19) Obtain solutions in series of ascending integral powers of x (as

In Art. 7) of the following differential equations (in which y and y%

denote 7 and 7 9 respectively) :

dx dx2 r

(iii) 2^-2x^ + 20-0; (iv) (l-

(v) (x-

[Answers :

x2 x* x*

(/p2
3.8 3.4

\

aJ~^-j- + ^T-^j-f...)= a^xe~
x

; this, containing only one
1 ! 2t ! o } /

arbitrary constant, is not the complete primitive, for there is

another solution not of the form assumed here (see Chap. IX.) ;

(iii) t/^ajX + Ja^2
;

(v) ,v
= a (l

2 + 22z + 32z2 + ...); see Art. 97.]



CHAPTER II

EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

11. In this chapter we shall consider equations of the form

=,
dx

where M and N are functions of both x and y.

This equation is often written,* more symmetrically, as

Unfortunately it is not possible to solve the general equation of

this form in terms of a finite number of known functions, but we

shall discuss some special types in which this can be done.

It is usual to classify these types as

(a) Exact equations ;

(6) Equations solvable by separation of the variables ;

(c) Homogeneous equations ;

(d) Linear equations of the first order.

The methods of this chapter are chiefly due to John Bernouilli

of Bale (1667-1748), the most inspiring teacher of his time, and to

his pupil, Leonhard Euler, also of Bale (1707-1783). Euler made

great contributions to algebra, trigonometry, calculus, rigid dynamics,

hydrodynamics, astronomy and other subjects.

12. Exact equations,f

Ex. (i). The expression y dx + x dy is an exact differential.

Thus the equation ydx + xdy=* 0,

giving jZ(yz)=0,
t.e. yx**c,

is called an exact equation.

* For a rigorous justification of the use of the differentials <Ja* and Ay see Hardy's
Pure Mathematics, Art. 136 [Arts. 154-155 in later editions].

t For the necessary and sufficient condition that Mdx +N(fy=0 should be exact
tee Appendix A.

12
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Ex. (ii). Consider the equation tan y . c&c + tan x . dy=Q.
This is not exact as it stands, but if we multiply by cos a? cosy it

comes Bjn y cos xdx + sin x cos y dy = 0,

lich is exact.

The solution is sin y sin x**c.

13. Integrating factors. In the last example cos x cos y is

called an integrating factor, because when the equation is multiplied

by it we get an exact equation which can be at once integrated.

There are several rules which are usually given for determining

integrating factors in particular classes of equations. These will be

found in the miscellaneous examples at the end of the chapter. The

proof of these rules forms an interesting exercise, but it is generally

easier to solve examples without them.

14. Variables separate.

dx
Ex. (i). In the equation = tan y . dy, the left-hand side involves

x

x only and the right-hand side y only, so the variables are separate.

Integrating, we get log x
-
log cos y + c,

i.e. log (xcos t/)=c,

BCOS t/=e
c
~a, say.

Ex. (ii). Tx^Xy '

The variables are not separate at present, but they can easily be

made so. Multiply by dx and divide by y. We get

~-%xdx.
y

Integrating, log y = x 2 + c.

As c is arbitrary, we may put it equal to log a, where a is another

arbitrary constant.

Thus, finally, y^ae^.

Examples for solution.

(1) (I2x + 5y-d)dx + (5x + 2y-4:)dy~Q.

(2) {cos x tan y + cos (x -f y)\ dx + {sin x sec 2
y 4- cos (x + y)} dyQ.

(3) (sec x tan x tan y
-

e*) dx + sec x sec 2
y dy = 0.

(4) (x + y)(dx~dy) = dx + dy.

(5) ydx'-xdy + 3x*y*e<*dx = 0.

(6) ydx-xdy=*Q.

(7) (sin x -4- cos x) dy + (cos x sin x) dx = 0.

(8) J-.V.
(9) y dx~xdy*=*xy dx. ' in * tan xdy=* cot y dx.

P.D.I.
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15. Homogeneous equations. A homogeneous equation of the

first order and degree is one which can be written in the form

dx

To test whether a function of x and y can be written in the form

of the right-hand side, it is convenient to put

y- = v or 11 vx.
x

If the result is of the form /(v), i.e. if the x's all cancel, the

test is satisfied.

_, ,.. dii o;
2 + ?/

2
. dy 1 4- v2 _. .

Jbx. (i). j-
= -

3
becomes - =

. This equation is homo-

geneous.
ax zx dx *

Ex. (ii). ^-= ,

becomes ~ = a?v
3

. This is not homogeneous.^ dx x2 rfx
b

16. Method of solution. Since a homogeneous equation can be

reduced to ^=f(v) by putting y = vx on the right-hand side, it is

natural to try the effect of this substitution on the left-hand side

also. As a matter of fact, it will be found that the equation can

always be solved *
by this substitution (see Ex. 10 of the miscel-

laneous set at the end of this chapter).

Put y 33*^,
dy dv

t.*
- v + x ~> (for if y is a function of x, so is v).

- u *> l + v*

The equation becomes v -f x -=- = -
,^ dx 2

i.e. 2x dv*=(l+v
2 -

2v) dx.

. , , 2dv dx
Separating the variables, rr^

==
- \V 1 j X

o

Integrating, j
-
log x + c.

y -2 -2 -2x 2x
But v = -, so r- =

v-l y_ l
y-x x-y

x

Multiplying by x - y, 2x = (x
-

y) (log x + c).

* By
"
solved

" we mean reduced to an ordinary integration. Of course,' tbii

integral may not be expressible in terms of ordinary elementary functions.
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Ex. (ii), (x + y)dy + (x- y) dx- 0.

This gives *-Z.* dx y+x

Putting y vx, and proceeding as before, we get

dv v 1
v + x-j-- ? ,

dx v + 1

, dv v 1 vf + l
i.e. x-j-** --t> = --_.

dx v + 1 v + 1

a - xi i-i (v + l)dv dx
Separating the variables,

- -
$

=
,

-vdv dv dx
**'

Integrating,
-
\ log (v

z + 1
)
- tan"1

*; log x + c,

i.e. 2 log x + log (
v2 + 1

) + 2 tan^t; + 2c = 0,

Iogaj
2
(v

2 + l)-l-2tan-
1v-fa0, putting 2c

Substituting for v, log (t/
2 + x2

) + 2 tan-1 - + a 0.

17. Equations reducible to the homogeneous form.

Ex. (i). The equation y^y-w ^ dx

is not homogeneous.
This example is similar to Ex. (ii) of the last article, except that

y-x . ,
, , y-x + l

- is replaced by ---.r J --
Now y

- x = and y + x = represent two straight lines through the

origin,

The intersection of t/-aj + l=0 and t/-fz + 5 = is easily found to

be (-2, -3).
Put aj==-X'-2; y^Y - 3. This amounts to taking new axes parallel

to the old with (
-

2,
-

3) as the new origin.

Then y-x +l~Y-X and y + a; + 5= Y + X.

Also dx dX and dy dY.

u <*F ^-^
The equation becomes Jv^ ~y v'

As in the last article, the solution is

f.e.
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..' ax y-
This equation cannot be treated as the last example, because the

lines y-z + l=0 and y-x + 5=*Q are parallel.

As the right-hand side is a function oty-x, try putting y-x**z,

dy dz
%*6. -z-- 1 = ^=

dx dx

dz z -+ 1
The equation becomes 1 -f -=- * -,^ dx 2 + 5

. dz -4
i.e. -r-=a--.

dx 2 + 5

Separating the variables, (z + 5) dz - 4 r/a;.

Integrating, ^

Substituting for 2, (y
-

x)
2 + 10 (y

-
a?) -f Sx = 2c,

i.e. (y
-

a;)
2 + 10^

- 2sc a, putting 2c a.

Examples for solution.

(1) (2x -y)dy~ (2y
-

x) dx. [Wales. ]

(2) (x
2 -y*)~~ xy. [Sheffield. ]

dx
\

(8)2 &"l +& [Math. Tripos.]

(4) x
d

(6)

_
dx 3z-4i/-3'

*

(8) (x + 2y) (dx
-
dy)

18. Linear equations.

The equation ^ +Py = 6,

where P and Q are functions of x (but not of y), is said to be linear

of the first order.

A simple example is + -
. y -a^.
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If we multiply each side of this by ,
it becomes

..

Hence, integrating, xy = J x* + c.

We have solved this example by the use of the obvious integrating

factor x.

19. Let us try to find an integrating factor in the general case.

If R is such a factor, then the left-hand side of

is the differential coefficient of some product, and the first term

R j- shows that the product must be Ry.

Put, therefore, R+RPy-Ry^R +y.
aR
-7- ,

mi T*T\ aR
This gives Hry = y -7- ,

i.e. Pdx--j>,
JK

i.e. (pdx=logR,

, 9

This gives the rule : To solve
-p-f Py

=
<?, multiply each side by

\Pdx
t , which will be an integrating factors.

20. Examples.

(i) Take the example considered in Art. 18.

-+- . yx.
dx x y

HereP-, so |P(fo=loga;, and e lo****x.
x J

Thus the rule gives the same integrating factor that we used before.

(ii)

Here P = 23, |P<fcc
= a;

2
, and the integrating factor is e*1 .
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Multiplying oy this, e*
2 ~- + 2xe*y - 2,

Integrating, yef = 2sc + c,

(iii)

Here the integrating factor is e8*.

Multiplying by this, e3* 4- 3e3aty = e6a
,

Integrating, ye
3* = ^e

6*
-f c,

21. Equations reducible to the linear form.

Ex. (i). xy
-~ = y*e~

x
*.

Divide by y
3
, so as to free the right-hand side from y.

rrr 11 dijWe get x . -o--i -;- =e-*\
y y dx

1 1 d (\

Putting -= = z> 2xz + -j-&
2/

2 dx

This is linear and, in fact, is similar to Ex.
(ii) of the last article with

instead of y.

Hence the solution is z * (2x + c) e~**f

This example ia a particular case of
"

Bernoulli's Equation
"

where P and Q are functions of x. Jacob Bernouilli or Bernoulli of

Bale (1654-1705) studied it in 1695,
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Ex. (ii).

This is not linear as it stands, but if we multiply by -=-, we get

dx

.

i.e.
dx^-.
dy y

y

This is linear, considering y as the independent variable.

Proceeding as before, we find the integrating factor to be y
2
, and

the solution
yz = 2y* + c,

i.e. x = 2y
8
H-cy~

I
.

Examples for solution.

(1) (z + a)|-3y=:(z
+ a)

6
. [Wales.]

(2) x cos x~- + y(xsin sc + cos x)l. [Sheffield.]

2 - 3 ~
(3) a; log a?

-^
4- y =- 2 log sc. (4) x 2

y
- x3 ~ ==

y* cos x.

(6) ?/ + 2
d-~y*(x-l). (6) |

(7) dx + x dy = e~y sec 2
1/ dy.

22. Geometrical Problems. Orthogonal Trajectories. We shall

now consider some geometrical problems leading to differential

equations.

T N
FIG. 6.

Ex. (i). Find the curve whose subtangent is constant.

The subtangent TN -PN cot ^ - y
~

.
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dx .__
Hence -j-

..4.

putting the arbitrary constant c equal to k log a.

Ex. (ii). Find the curve such that its length between any two

points PQ is proportional to the difference of the distances of Q and P
from a fixed point 0.

If we keep P fixed, the arc QP will vary as OQ minus a constant.

Use polar co-ordinates, taking as pole and OP as initial line.

Then, if Q be (r, 0), we have j.^-ir
But, as shown in treatises on the Calculus,

Hence, in our problem,

r)*
= (rae)* + (dr)\

-l)7
Idr--

, say.
a r

9 J9

giving r (#**, the equiangular spiral.

Ex. (iii). Find the Orthogonal Trajectories of the family of semi-

cubical parabolas at/
2= a^, where a is a variable parameter.

Two families of curves are said to be orthogonal trajectories when

every member of one family cuts every member of the other at right

angles.
We first obtain the differential equation of the given family by

eliminating a.

Differentiating ay
z x3,

we get 2ay~^3x^dx

whence, by division,
- -^=4- .................................. (1)
y ctx x

dit
Now -~ =tan

\/r,
where

\/r
is the inclination of the tangent to the

uX

axis of x. The value of ^ for the trajectory, say ^/, is given by

tf-^'fcr,
i.e. tan

\js
- cot \f/t

i.e. -~~ for the given family is to be replaced by --=- for the trajectory,
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Making this change in (I), we get

2dx 3

a family of similar and similarly situated ellipses.

Ex. (iv). Find the family of curves that cut the family of spirals

r = a0 at a constant angle a.

As before, we start by eliminating a.

This gives ~^0.
(IT

Now = =tan 0, where
<J>

is the angle between the tangent and the

radius vector. If
<{>'

is the corresponding angle for the second family,

tf>'
=0a,

,
tan

<p db tan a
* ~lqFtan<tanar^I0'

putting in the value found for tan
<f>
and writing k instead of db tan a.

Thus, for the second family,

The solution of this will be left as an exercise for the student.

The result will be found to be

Examples for solution.

(1) Find the curve whose subnormal is constant.

(2) The tangent at any point P of a curve meets the axis of x in T.

Find the curve for which OP = PT, being the origin.

(3) Find the curve for which the angle between the tangent and
radius vector at any point is twice the vectorial angle.

(4) Find the curve for which the projection of the ordinate on the

normal is constant.

Find the orthogonal trajectories of the following families of curves :

(5) sa
-t/

a = a*. (6) s*4-y* = a*.

(7) px* + qy
2
**a*, (p and q constant).

aft

(8) rfl-a. (9) r-^.
(10) Find the family of curves that cut a family of concentric circles

at a constant angle a.
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MISCELLANEOUS EXAMPLES ON CHAPTER II.

(1) (3y-*)|!-y. (2) x
d

^=

^ (3) tan x cos y dy -f sin y dx + e*
111 *

efcc =0.

(4) o^ + 3t/
2 = zy

a
. [Sheffield.]

(5) a

(6) show that
dx hx + by +f

represents a family of conies.

(7) Show that y dx - 2x dy =

represents a system of parabolas with a common axis and tangent at

the vertex.

(8) Show that (4# + 3y + 1) dx + (3x + 2y + 1) dy =0

represents a family of hyperbolas having as asymptotes the lines

x 4- y = and

(9) If ~+2yta,idx

and y when x=%7r, show that the maximum value of y is ^.

[Math. Tripos.]

(10) Show that the solution of the general homogeneous equation

of the first order and degree
~ =/ (

-
)

is

logs =
J-

x/

dv

/(*)-*'
where v y/x.

(11) Prove that xhy* is an integrating factor of

py dx + qx dy + xmy
n
(ry dx + sx dy) =*0

A+w+1 k+n+l.. ,
If _ Qriri1^ ^a - cillv*

y q

Use this method to solve

3y dx -2xdy + x^f-
1(Wy dx - 6a? dy)

- 0.

(12) By differentiating the equation

"*" 8
tx) + W(x)d(x) x

jf(xy)-F(xy) xy

verify that7
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is an integratfe^ factor of

Hence solve (x*y
z
-f xy + 1

) y dx - (x
z
y
z -

(13) Prove that if the equation M dx +N dy^Q is exact

SN^dM
dx By

"

[For a proof of the converse see Appendix A. ]

(14) Verify that the condition for an exact equation is satisfied bj

Hence show that an integrating factor can always be found for

is a function of x only.

Solve by this method

(15) Find the curve (i) whose polar subtangent is constant ;

(ii) whose polar subnormal is constant.

(16) Find the curve which passes through the origin and is such

that the area included between the curve, the ordinate, and the axis

of x is k times the cube of that ordinate.

(17) The normal PG to a curve meets the axis of x in G. If the

distance of G from the origin is twice the abscissa of P, prove that the

curve is a rectangular hyperbola.

(18) Find the curve which is such that the portion of the axis of x

cut off between the origin and the tangent at any point is proportional
to the ordinate of that point.

(19) Find the orthogonal trajectories of the following families of

curves:
(i) (-l) + y + 2B-0,
(ii) r-a0,

(iii) r= a + cos n6,

and interpret the first result geometrically.

(20) Obtain the differential equation of the system of confocal conica

'

and hence show that the system is its own orthogonal trajectory.

(21) Find the family of curves cutting the family of parabolas
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(22) If u + iv^ffa + iy), where u, v, x and y are all real, prove that

the families w== constant, v=> constant are orthogonal trajectories.

AI ^ x 9 2" 3 2w . 9 2v d*v
Also prove that ^2

+ 5-* "* ~
a~i + 3-1-ax2

tf!/
2

eto
2

dy
2

[This theorem is of great use in obtaining lines of force and lines of

constant potential in Electrostatics or stream lines in Hydrodynamics.
u and v are called Conjugate Functions.]

(23) The rate of decay of radium is proportional to the amount

remaining. Prove that the amount at any time t is given by
A -A*-*.

(24) If -r s
*9\l ~p) and v=0 if *0, prove that

v*&tanh .

[This gives the velocity of a falling body in air, caking the resistance

of the air as proportional to v2 . As t increases, v approaches the limiting
value k. A similar equation gives the ionisation of a gas after being

subjected to an ionising influence for time t.]

(25) Two liquids are boiling in a vessel. It is found that the ratio

of the quantities of each passing off as vapour at any instant is pro-

portional to the ratio of the quantities still in the liquid state. Prove

that these quantities (say x and y) are connected by a relation of the

form'
y-cx*.

[From Partington's Higher Mathematics for Students of

p. 220.]



CHAPTER III

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

23. The equations to be discussed in this chapter are of the form

dn~!
y dy

where f(x) is a function of x, but the p's are all constant.

These equations are most important in the study of vibrations

of all kinds, mechanical, acoustical, and electrical. This will be

illustrated by the miscellaneous examples at the end of the chapter.

The methods to be given below are chiefly due to Euler and

D'Alembert.*

We shall also discuss systems of simultaneous equations of this

form, and equations reducible to this form by a simple transformation.

24. The simplest case ; equations of the first order. If we take

n = l and/(z)=0, equation (1) becomes

(2)

i.e. p
7

or PQ log y +px = constant,

BO log y = -
Pix/p 4- constant

- -;PizM>+ log^> say,

giving y**Ae~ P&I**.

26. Equations of the second order. If we take n =2 and f(x) =0,

equation (1) becomes

Jean-le-Bond D'Alembert of Paris (1717-1783) is best known by
" D'Alem-

bert's Principle
"

in Dynamics. The application of this principle to the motion
of fluids led him to partial differential equations.

25
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The solution of equation (2) suggests that y - Aemx , where m ia

some constant, may satisfy (3).

With this value of y, equation (3) reduces to

Aemx (pQm2 +pm +p2)
= 0.

Thus, if m is a root of

flX+jyw+ft-O, ........................... (4)

y = <4ema> is a solution of equation (3), whatever the value of A.

Let the roots of equation (4) be a and /3. Then, if a and /3 are

unequal, we have two solutions of equation (3), namely

y^Ae** and y^Be^.

Now, if we substitute y = Ae
aX + Beftx in equation (3), we shall get

Ae**(pQ a* +p^a +p2) + Betx (p P* + Pl^ +p2)
=

0,

which is obviously true as a and ^8 are the roots of equation (4).

Thus the sum of two solutions gives a third solution (this might
have been seen at once from the fact that equation (3) was linear).

As this third solution contains two arbitrary constants, equal in

number to the order of the equation, we shall regard it as the general

solution.

Equation (4) is known as the
"
auxiliary equation."

Example.

To solve 2y- + 5 +2y=0 put y=*Aemx as a trial solution. This
dx2 dx y ^ y

leads to Aemx(2m* + 5m + 2) =0,

which is satisfied by m = - 2 or -
.

The general solution is therefore

26. Modification when the auxiliary equation has imaginary or

complex roots. When the auxiliary equation (4) has roots of the

form p+iq, p -
iq, where i

2 = -
1, it is best to modify the solution

y-Aett+^+Bete-W*, ........................... (5)

so as to present it without imaginary quantities.

To do this we use the theorems (given in any book on Analytical

Trigonometry) ew = cos qx + i sin qx,

e~^x =cos qx
- i sin qx.

Equation (5) becomes

y = epx(A (cos qx + i sin qx) +B (cos qx
- i sin qx) }

= epx{E cos qx +F sin qx},

writing E for A +B and F for i(A -B). E and F are arbitrary
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constants, just as A and B are. It looks at first sight as if F must

be imaginary, but this is not necessarily so. Thus, if

i and B = l -2i, -2 and JF- -4.

leads to the auxiliary equation

whose roots are m 3 2t.

The solution may be written as

or in the preferable form

y = e3aj ($ cos 2z + J 1

sin 2x),

or again as y = Ce3x cos (2x
-

a),

where C cos a = -E and sin a = -F,

so that C~J(E* + F2
)
and tan a - F/E.

27. Peculiarity of the case of equal roots. When the auxiliary

equation has equal roots a =/3, the solution

reduces to y = (A + B) e*.

Now A + J5, the sum of two arbitrary constants, is really only a

single arbitrary constant. Thus the solution cannot be regarded as

the most general one.

We shall prove later (Art. 34) that the general solution is

28. Extension to orders higher than the second. The methods

of Arts. 25 and 26 apply to equation (1) whatever the value of w, as

long as/()=0.

The auxiliary equation is

giving m =
l, 2, or 3.

Thus y - Ae* + Be 2*
4- Ce3*.

The auxiliary equation w m8 -8=0,
i.e. (m-2) (

w* + 2m + 4) - 0,

giving m = 2 or -lt\/3.
Thus y - Ae2* + e~*(E cos x^/3 + F sin

or y => 4e2*
4- Ce""* cos (x\/3

-
a).
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Examples for solution.

Solve

,6, + 4

, + ! ..
x ' 3 a

(8) What does the solution to the last example become if the initial

conditions are fa
y-l, ~-**Q when x 0,

and if y is to remain finite when x = + oo ?

Solve

(11) + 8y=0. (12) -64y-

(13) l-jx+gQ-O, given that 0-a and --=0 when < = 0.

[The approximate equation for small oscillations of a simple pen-
dulum of length I, starting from rest in a position inclined at a to the

vertical. ]

(14) Find the condition that trigonometrical terms should appear
in the solution of fl*s

[The equation of motion of a particle of mass m, attracted to a

fixed point in its line of motion by a force of c times its distance from

that point, and damped by a frictional resistance of k times its velocity.
The condition required expresses that the motion should be oscillatory,

e.g. a tuning fork vibrating in air where the elastic force tending to

restore it to the equilibrium position is proportional to the displacement
and the resistance of the air is proportional to the velocity.]

(15) Prove that if k is so small that k2
/mc is negligible, the solution

of the equation of Ex. (14) is approximately e~ kt^m times what it would

be if k were zero.

[This shows that slight damping leaves the frequency practically

unaltered, but causes the amplitude of successive vibrations to diminish

in a geometric progression.]
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(16) Solve Lj| + ^ +
^=0, given that Q~QQ and ^=0 when

f 0, and that CR2 < L.

[Q is the charge at time t on one of the coatings of a Leyden jar of

capacity C, whose coatings are connected when 2 = by a wire of resist-

ance R and coefficient of self-induction L. ]

29. The Complementary Function and the Particular Integral. So

far we have dealt only with examples where the/(#) of equation (1)

has been equal to zero. We shall now show the relation between

the solution of the equation when f(x) is not zero and the solution

of the simpler equation derived from it by replacing f(x) by zero.

To start with a simple example, consider the equation

It is obvious that y=x is one solution. Such a solution, con-

taining no arbitrary constants, is called a Particular Integral.

Now if we write y~x+v, the differential equation becomes

.e . a + B
ax* ax

giving v = Ae~*x

so that y =z + Ae~2x

The terms containing the arbitrary constants are called the

Complementary Function.

This can easily be generalised.

If y = u is a particular integral of

lf ,
dnu dn~lu du f . . /fr .

BO that j>
-- + Pl i

-f ... +JV* +pnu =/(x), ......... (7)

put y*=*u+v in equation (6) and subtract equation (7). This gives

dnv dn"1v dv ~ /ov

If the solution of (8) be v = F(x), containing n arbitrary con-

stants, the general solution of (6) is

and F(x) is called the Complementary Function.

P.D.H. D



30 DIFFERENTIAL EQUATIONS

Thus the general solution of a linear differential equation with

constant coefficients is the sum of a Particular Integral and the Com-

plementary Function, the latter being the solution of the equation

obtained by substituting zero for the function of x occurring.

Examples for solution.

Verify that the given functions are particular integrals of the follow-

ing equations, and find the general solutions :

n\ e*. ^_o^4-2w-e* M1 ^ nW '

<&2 dx y ~~
' W *' 5^~ 1 '3

d*u
(3) 2sin3z; ^4 + 4?/- -10 sin 3x.

For what values of the constants are the given functions particular

integrals of the following equations ?

(5) aebt
;

~ -f 9s = GOe' 1
. (6) a sin px ; -=-|

-I- y = 12 sin 2as.

(7) a sin px + b cos px ; y^ + 4 -~ + 3y = 8 cos cc
- 6 sin x.

ii'jc dx

(8)a; +B5 +6sr--

Obtain, by trial, particular integrals of the following :

(11) + 9</
= 40sin5z. (12) -8 + 97/

= 40 sin

30. The operator D and the fundamental laws of algebra. When
a particular integral is not obvious by inspection, it is convenient

to employ certain methods involving the operator Z), which stands

for -7-. This operator is also useful in establishing the form of the

complementary function when the auxiliary equation has equal

roots.

d2 d3

D2 will be used for ^r^, D3 for ^-^, and so on.
dx2 dx*
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Tbe expression 2 j^ -f 5 - + 2y may then be written

or

We shall even write this in the factorised form

faetorising the expression in D as if it were an ordinary algebraic

quantity. Is this justifiable ?

The operations performed in ordinary algebra are based upon
three laws :

I. The Distributive Law

II. The Commutative Law

a6=6a ;

III. The Index Law am . an = am+fl .

Now D satisfies the first and third of these laws, for

and Dm .Dnw=Dm+n .M
(m and n positive integers).

As for the second law, D(cu)=*c (Du) is true if c is a constant,

but not if c is a variable.

Also Dm
(D

n
u)
-Dn

(D
m
u)

(m and n positive integers).

Thus D satisfies the fundamental laws of algebra except in that

it is not commutative with variables. In what follows we shall

write F(D) = p Dn +p1Dn~l + ... +pn^D +pn,

where the p's are constants and n is a positive integer. We are

justified in faetorising this or performing any other operations

depending on the fundamental laws of algebra. For an example
of how the commutative law for operators ceases to hold when

negative powers of D occur, see Ex. (iii) of Art. 37.

31. F(D)eax =eaxF(a). Since

and so on,

F(D) e* = (Po

+ .- +2W +Pn) <?*
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32. F(D){e
ax
V} =eaxF(D -fa) V, where V is any function of x. By

Leibniz's theorem for the wth
differential coefficient of a product,

(D
n
e**) V + n(D

n~1eax)(DV)

n(n - l)a
n~2eaxD*V + ... + eaxDnV

... + Z)")F

Similarly D*-l
{**V}=eP*(D + a)*-

l
V, and so on.

Therefore

-* + ... +pn_J) +pn){e*
x
V}

l + ... +pn-i(D +a) +pn}V

83. F (D 2
) cos ax =F (

- a 2
) cos ax. Since

D2 cos ax = - a2 cos ax,

D4 cos ax = (
- a2

)
2 cos ax,

and so on,

F(D*) cos oa; = (p D2n +p1D2"-2 + ... +pn_1
Da +yn ) cos ax

-
(Po(

- a
)
n
+ft( -a2

)
11-1

4- ... +yj|^( -a2
) +pn } cos

=J(-a2
)cosao:.

Similarly F(D
2
)
sin az =F (

- a2
)
sin ax.

34. Complementary Function when the auxiliary equation has equal

roots. When the auxiliary equation has equal roots a and a, it

may be written ma _ %ma + aa = Q.

The original differential equation will then be

(Z)-a)
2y=0............................ (9)

We have already found that y = Aer
x

is one solution. To find

a more general one put y =e*x V, where F is a function of x.

By Art. 32,

Thus equation (9) becomes

D*F=0,
i.e. V*=A+Bx,

so that
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Similarly the equation (D -
a)*>//

=

reduces to DpV= 0,

giving V = (A l 4- A 2x + A^tf + . . . +Apx*~
l
),

and y = e(LX

(A l + ^4 2 + A 3x* + . . . + ^z*-1
).

When there are several repeated roots, as in

(D~ar(D-p)<i(D-yyy=0, ..................... (10)

we note that as the operators are commutative we may rewrite the

equation in the form

which is therefore satisfied by any solution of the simpler equation

(D- a)*y-0............................... (11)

Similarly equation (10) is satisfied by any solution of

(D-/3)^=0, .............................. (12)

or of (D-y)
ry=0............................... (13)

The general solution of (10) is the sum of the general solutions

of (11), (12), and (13), containing together (p + q + r) arbitrary
constants.

Ex. (i). Solve (#
4 -8D2 + 16)t/

=
0,

i.e. (Z>
2
~4)

2
?/
= 0.

The auxiliary equation is (w
2
~4)

2 =
0,

w = 2 (twice) or -2 (twice).

Thus by the rule the solution is

y (A + Bx) ezx + (E + Fx) e~ 2
*.

Ex. (ii). Solve (Z)
2
-f l)

2
t/
= 0.

The auxiliary equation is (m
2
-f I)

2
0,

m = i (twice) or -
1* (twice).

Thus y - (A + Bx) e** + (
E + Fx) e'**,

or better y (P -f Qx) cos a; + (
R + 6'x) sin a?.

Examples for solution.

(1) (D
4 + 2D3 + Z>2)t/=:0. (2) (D

6 + 3D4 -f3Z)2
-fl)t/-0.

(3) (Z)
4 -2/)3 + 2Z) 2 ~2Z) + l)y-0. (4) (4D

5 - 3Z)3 - D2
) y=0.

(5) Show that

F (D2
) (P cosh ax -fQ sinh ax) = F (a

2
) (P cosh az -fQ sinh az).

(6) Show that (D - a)
4n

(e
ax sin px) =*p*

n
eax sin

^pa:.

35. Symbolical methods of finding the Particular Integral when

f(x) ^e8
-*. The following methods are a development of the idea

of treating the operator D as if it were an ordinary algebraic quan-



34 DIFFERENTIAL EQUATIONS

tity. We shall proceed tentatively, at first performing any opera-

tions that seem plausible, and then, when a result has been obtained

in this manner, verifying it by direct differentiation. We shall use

the notation
-p (^ f(x) to denote a particular integral of the equation

F(D)y-f(x).

(i) If f(x) =e
ax

,
the result of Art. 31,

suggests that, as long as F(a)=J=Q, -^n~\
e*x may ^e a value f

#v7T\
e<1*'

This suggestion is easily verified, for

(ii) If F(a) =0, (D -a) must be a factor of F(D).

Suppose that F(D)~(D-a)<f>(D), where

Then the result of Art. 32,

euggests that the following may be true, if V is 1,

U^L LI*__ =__ --
F(D) (D-a)P4>(D) (D-a)P\<f>(a)

adopting the very natural suggestion that ^ is the operator inverse

to D, that is the operator that integrates with respect to x, while

Y~p integrates p times. Aga

manner is easily verified, for

~
p integrates p times. Again the result obtained in this tentative

ap

by Art. 32,

by Art. 31.
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In working numerical examples it will not be necessary to repeat
the verification of our tentative methods.

Ex. (i).

The particular integral is

~
(2 + 3)

2

Adding the complementary function, we get

Ex. (ii). (D

If we substitute 2 for D in
y-~ ^ 50e 2aj

, we get infinity.
(D 2)

But using the other method,

Adding the complementary function, we get

y - 26z2e2* + (

Examples for solution.

Solve

(1) (D* + 6D + 25)y = 101<?*. (2)

(3) (D
2
-9)?/-54e

3a!
. (4)

(5) (D2
-7)

2
)?/-a8inh^x. (6)

36. Particular Integral when f (x) =cos ax. From Art. 33,

<f> (D
2
)
cos ax = (p(-a

2
)
cos ax.

This suggests that we may obtain the particular integral by

writing
- a2 for D2 wherever it occurs.

Ex. (i). (D2 + 3D 4- 2) y = cos 2x.

^ . cos 2 = - ^=: -
. cos 2z = ;r~ s . cos 2x.D2

-f 37)4-2
"w

"*"--4 + 3D + 2'
wo * Ii-/

3D-2

To get D2 in the denominator, try the effect of writing

^
3Z)-2""9Z)2 -4

>

suggested by the usual method of dealing with surds.

This gives
O T\ i O

cos 2x -
(3Z) cos 2oj -f 2 cos^ -

. - T
1

-(
- 6 sin 2x-f2 cos 2x)



36 DIFFERENTIAL EQUATIONS

Ex. (ii). (D3 -f6D2
-f-llZ)4-6)y2sin3aj.

1
- * o 1

2 sin 3a = 2 on 5/
^ ^ = ^a?

1
sin

D-24
D + 24

sin 3^
Z>2 -576

os 3z + 24 sin 3x)

s 3x + 8 sin 3z).

We may now show, by direct differentiation, that the results

obtained are correct.

If this method is applied to

[<f> (D
2
) + Zty (D

2
) ] y - P cos az + Q sin as,

where P, Q and a are constants, we obtain

(
- a2

) . (P cos or 4- (? sin a#) -f a\/r (
- a2

) . (P sin ax -Q ccs ax)

It is quite easy to show that this is really a particular integral,

provided that the denominator does not vanish. This exceptional case

is treated later (Art. 38).

Examples for solution.

Solve

(1) (D + l)y-10sin2aj. (2) (D*-5Z> + 6) y- 100 sin 4a?.

(3) (D
2 + 8D + 25)t/=>48cosa;--168mx.

(4) (D
z
-f 2D -f 401 ) y - sin 20x + 40 cos 20x.

(5) Prove that the particular integral of

d*s rt , ds n

dfi
+n

dt*P qt

may be written in the form 6 cos (qt
-

f),

where 6 - a/{(p*
-
g
2
)
2
-f 4F?

2
}* and tan c - 2lg/(p

-
?
2
).

Hence prove that if q is a variable and k, p and a constants, 6 is

greatest when q*** \/(p
2 -2k2

)=*p approx. if A; is very small, and then

c =
7T/2 approx and 6 a/%kp approx.

[This differential equation refers to a vibrating system damped
by a force proportional to the velocity and acted upon by an external

periodic force. The particular integral gives the forced vibrations

and the complementary function the free vibrations, which are soon

damped out (see Ex. 15 following Art. 28). The forced vibrations

have the greatest amplitude if the period 2?r/j of the external force

is very nearly equal to that of the free vibrations (which iff
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approx.), and then e the difference in phase

between the external force and the response is approx. -rr/2. This

is the important phenomenon of Resonance, which has important

applications to Acoustics, Engineering and Wireless Telegraphy.]

37. Particular integral when f(x)
= xm , where m is a positive integer.

In this case the tentative method is to expand ynj^ in a series of

ascending powers of D.

Hence, adding the complementary function, the solution suggested
for

is y = \ (x*
-

J) +A cos 2>x + B sin 2x.

Ex. (ii).

by partial fraction8j

Adding the complementary function, the solution suggested for

Is

**> -)-

-9696
'iVi2~T

Hence the solution of D2
(Z)

a + 4) y = 96x2 should be

y - 2x* - 6x* +4 coa 2x + B sin 2x + E+ Fx.

Alternative method.
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This gives an extra term 3, which is, however, included in the

complementary function.
* The method adopted in Exs. (i) and (ii), where F(D) does not

contain D as a factor, may be justified as follows. Suppose the expan-
sions have been obtained by ordinary long division. This is always

possible, although the use of partial fractions may be more convenient

in practice. If the division is continued until the quotient contains Dm,

the remainder will have Dm+1 as a factor. Call it <J>(D) . Dm+1
. Then

(1)

This is an algebraical identity, leading to

l=F(D){cQ + c
l
D + c 2

D2 + ...+cmD} + <f>(D) .D+1....... (2)

Now equation (2), which is true when D is an algebraical quantity,
is of the simple form depending only on the elementary laws of algebra,
which have been shown to apply to the operator D, and it does noi

involve the difficulties which arise when division by functions of D is

concerned. Therefore equation (2) is also true when each side of the

equation is regarded as an operator. Operating on xm we get, since

............ (3)

which proves that the expansion obtained in (1), disregarding the

remainder, supplies a particular integral of F(D)y~xm .

It is interesting to note that this method holds good even if the

expansion would be divergent for algebraical values of D.

To verify the first method in cases like Ex. (iii), we have to prove
that 1

i.e.

is a particular integral of (F(D) . Dr
}

i.e. that (F(D) . jy}{(cJ)

+ ...+cmD~r+m
)x
m
}
= xm................ (4)

Now (F(D) . Dr}u~F(D).{D
r
u},

also ^{(cgD
~ r

+') xm}
-

(c8D) xm
;

hence the expression on the left-hand side of (4) becomes

F(D){(c + ClD + ctD* + ...+cmD>)x>} = x<, by (3),

which is what was to be proved.
In the alternative method we get r extra terms in the particular

integral, say (^D-H***... +WD") *.

These give terms involving the (r-l)
fch and lower powers of x.

But these all occur in the complementary function. Hence the first

method is preferable.

* The rest of this article ihould be omitted on a first reading.
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Note that if D~lu denotes the simplest form of the integral of u,

without any arbitrary constant,

while

BO that D(D~l
. l)=f=D~

l
. (7) . 1 V

Similarly Dm (D~m . xn)=D-m (Dw . xn
) t

if m is greater than n.

So when negative powers of D are concerned, the laws of algebra
are not always obeyed This explains why the two different methods

adopted in Ex. (iii) give different results.

Examples for solution.

Solve (1) (D + l)y = x*. (2) (D
2 + 2Z))//

= 24z.

(3) (D
2 -6D + 9)i/

= 54x + 18. (4) (D*- 6Z>3 +9D% = 54z-f 18.

(5) (D2 - D -
2)y

= 44 - 76x - 48z2
.

(6) (D
3 - D2 - 21% - 44 - 76z - 48x2

.

33. Particular integrals in other simple cases. We shall now

give some typical examples of the evaluation of particular integrals

in simple cases which have not been dealt with in the preceding
articles. The work is tentative, as before. For the sake of brevity,

the verfication is omitted, as it is very similar to the verifications

already given.

Ex. (i).

We cannot evaluate -

2 ^
sin 2x by writing

- 22 for D2
, as in

Art. 36, for this gives zero in the denominator.

But t sin 2x is the imaginary part of e2ix
,
and

1 *

.1, as in Art. 35,

1

2x+ i sin 2a?)
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hence, picking out the imaginary part,

-. sin 2x = - 1$ cos 2a/.

Adding the complementary function, we get

y = A cos 2z + B sin 2z - J# cos 2x.

Ex. (ii). (D2 - 5D f 6) */
= e2xx*.

*

- e
2x

(
-
Jx

4 -
a;
3 - 3z 2 - 6z - 6).

Adding the complementary function, we get

y Aer* e-

including the term - 6e2x in

Ex. (iii). (D
2

. S<?* sin 2x - 8^Vn 3\2_ 6

X

(n 3) 131
sin 5

1

8e3a!
(
-

^a; cos 2x) (see Ex. (i) )

Adding the complementary function, we get

y = e?x (A cos 2x + B sin 2x - 2x cos 2z).

These methods are sufficient to evaluate nearly all the particular

integrals that the student is likely to meet. All other cases may
be dealt with on the lines indicated in (33) and (34) of the miscel-

laneous examples at the end of this chapter.

Examples for solution.

Solve

(1) (D2 + l)t/ = 4cosz. (2) (Z>-l)t/-(z + 3)e
2
*.

(3) (D3 -3D-2)y540x8e- a
'. (4) (Z)

2 + 2D + 2) y = 26-* sin x.

(5) (D2 + ])'t/
= 24zcosz. (6) (Z>

5
-D)t/ = 12e* + 8 sin x-2x.

(7) (Z>
2 - 6D + 25) y =W* cos 4z + 8e3*(l

-
2z) sin 4s.

39. The Homogeneous Linear Equation. This is the name given
bo the form (p x*Dn + /^a;*-

1/)*-1
4- . . . -fpn ) y =/ (z*).

It reduces to the type considered before if we put x =e*.
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Ex. (j?IP + Zx*D* +

Put x-tf,

Ax .

.othat Z>
'

*J ";
ax dx at x at

xdt

rf d*\ 2/ d d*\ 1 / d d*

thus the given differential equation reduces to -j~at

giving t/
- ^4 + Bt + Ct* + 3e2'

~A + B log x 4- C (log a:)
2
4- 3z 2

.

Another method is indicated in (28)-(30) of the miscellaneous

examples at the end of this chapter.
The equation

Po ( + bx)
nDn

y +pl(a+ bx)"-
1!)"-1

y + ...+pny-f (x)

can be reduced to the homogeneous linear form by putting

-a+fe,gmng - = dyJy dz
=f)

dy
,y dx dz dx dz

Examples for solution.

(3)

(5)

(6) (l+*)
a
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40. Simultaneous linear equations with constant coefficients. The

method will be illustrated by an example. We have two de-

pendent variables, y and z, and one independent variable x.

D stands for -y-, as before.
ax

Consider (5D + )y-(2D + l)z~e-*, ..................... (1)

(JD+8)y- 3z =56-'...................... (2)

Eliminate z, as in simultaneous linear equations of elementary

algebra. To do this we multiply equation (1) by 3 and operate on

equation (2) by (2D + 1).

Subtracting the results, we get

{3 (5Z> + 4)
- (2D + 1)(D + 8)} y - 3e~* - (2D + 1) 56-*,

i.e. (~2D*-2D+)y = 86-,

or (D
2 +D-2)y= -

Solving this in the usual way, we get

The easiest way to get z in this particular example is to use

equation (2), which does not involve any differential coefficients of z.

Substituting for y in (2), we get

Ue~x + $Aex + $Be-*x - 3z = 5e~*,

so th'at z = 3e~x + 3Aex + 2Be~2x
.

However, when the equations do not permit of such a simple
method of finding z, we may eliminate y. (But see p. 48.)

In our case this gives

{ -CD-f8)(2Z> + l)+3(5Z> +4)} Z = (D +8)<r-(5D + 4)5<r,

i.e. (
- 2D2 - 21) + 4) z - 12<r,

giving 2 = Ser* + J?e* + ^e- 2a!
.

To find the relation between the four constants A, B, ,
and F

9

substitute in either of the original equations, say (2). This gives

(D + 8) (26-* + 4e* + <r2
*)
- 3 (3e~

x + Eex + Fe~2x
} = 5e~x9

i.e. (94 - 3E) e* + (65 - 3F) e~*x - 0,

whence E =34 and F = 2B,

so z Se- 35 + #e* -f JPe-2e - 3erx + S^e25
4- 25e" 2a!

, as before.

Examples for solution.

(1) Dy-z -0, (2) (Z>
-

17) y + (2Z>- 8)z = 0,

(3) (2D
2
-D-f9)t/-(Z)2 + Z)-f 3)z-0,
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(4) (/> + l)y- + 6a, (5)

(6)

y-(D-S)z~ 29e-* -f 47 sin 2z + 23 cos 2a?.

MISCELLANEOUS EXAMPLES ON CHAPTER III.

Solve

(1) (Z)-l)
8
2/
= 16e3a!

. (2)

(3)

(4)

(5) (Z)
4 -6Z>2 - 8Z> -3)^== 256(3

(6) (Z)
4 -8Z) 2

-9)?/ = 50sinh2z. (7) (Z>
4 - 2D 2 + 1) y = 40 cosh

(8) (D-2)
2

!/
= 8(x

2 + e 2a:
4-sin2x). (9) (D- 2)

2
?/
= 8x2e 2a: sin 2aj.

(11)

(12) (D-a)a
y = ax

,
where a is a positive integer.

(13) ^i 1 *.'U28 ,, 4)
<i' 2>_

1 '' '
'

' '

(ID) -. (16) (,

<> -*-

s- 1" I' 1" S- fc (W.'S + .-Oi |-a

(21) Show that the solution of (D
2n+l

-l)y = Q consists of Ae* and
n pairs of terms of the form

e* (Br cos sx -f Or sin sx),

2-Trr . . 27rr
where Css=cos

2^+l
and 5s=Sm

2iHhT'

r taking the values 1, 2, 3 ... n successively.

(22) If (Z)-a)w = 0,

(D-a) v = t,

and (D-a)i/ = v,

find successively w, v, and y, and hence solve (Z)-a)
8y0.
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(23) Show that the solution of

(

can be written Ae?x

Hence deduce the solution of (D-a)
3
*/=0.

[This method is due to D'Alembert. The advanced student will

notice that it is not quite satisfactory without further discussion. It

is obvious that the second differential equation is the limit of the first,

but it is not obvious that the solution of the second is the limit of the

solution of the first.]

(24) If (D-a)V11*
ia denoted by z, prove that z, ~~, and |^ all

vanish when m- a.
dm dm

Hence prove that eax
,
xea*

t and x2ea* are all solutions of (D- a)
8
2/=0.

[Note that the operators (Z)-a)
3 and ^ are commutative.]

/n*x cii xi ^ cos ax - cos (a -f h) x
(25) Show that

is a solution of (D
2
-f a 2

) y = cos (a + A) a?.

Hence deduce the Particular Integral of (D2 + a2
)f/
= cos ax.

[This is open to the same objection as Example 23.]

(26) Prove that if F is a function of x and F(D) has its usual

meaning,

(i) Dn
[xV]

(ii) F(D)[xV] =x

(iv) 0(/>)[x
n F]-xn

0(J9)F4-wx
w-1

^^)^+.--+
n^n~r r(^

, f/rix , , , 1 +... to (n-fl) terms,
where 0(^0) stands for

(27) Obtain the Particular Integrals of (i) (D- I)y = o:e
2a:

,

(ii) (D-f !)?/== x
2 cos a,

by using the results (iii) and (iv) of the last example.

(28) Prove, by induction or otherwise, that if 6 stands for x -=- f

n dx

(29) Prove that

(i)

" provided

whore F is a function of x,
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(30) By using the results of the last question, prove that the solu-

tion of

where a and b are the roots of m(m -T) - 4m + 6 = 0,

i.e. 2 and 3.

(31 ) Given that (
D - 1

) y - e 2
*,

prove that (D - 1) (D - 2) y = 0.

By writing down the general solution of the second differential

equation (involving two unknown constants) and substituting in the

first, obtain the valae of one of these constants, hence obtaining the

solution of the first equation.

(32) Solve -~^-f-p
2
2/
= sin ax by the method of the last question.

(33) It u
2
denotes ea* \ ue~ax dx

9

M 2 denotes e*** \ Ujer** dz,

etc.,

prove the solution of F(D)y~u, where F(D) is the product of n

factors

may be written y^^tr

This is true even if the factors of F(D) are not all different.

Hence solve (D-d) (D-b)y = eax log x.

(34) By putting ,, ^.
into partial fractions, prove the solution of

F(D)y~u may be expressed in the form

^-e
a

*J
uer**dx,

provided the factors of F(D) are all different.

[If the factors of F(D) are not all different, we get repeated inte-

grations.]

Theoretically the methods of this example and the last enable us to

solve any linear equation with constant coefficients. Unfortunately,
unless u is one of the simple functions (products of exponentials, sines

and cosines, and polynomials) discussed in the text, we are generally
left with an indefinite integration which cannot be performed.

If u =/(#), we can rewrite e*x 1 ue~ax dx

in the form
\ J(t) *<*-'* dt,
JL

where the lower limit k is an arbitrary constant.

F.D.X. V
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(35) (i) Verify that

1 f
*

y^-] f(t)a\np(x-t)dt

is a Particular Integral of

g+j>ww.
[Remember that if a and 6 are functions of #,

(ii) Obtain this Particular Integral by using the result of the last

example.

(iii) Hence solve (D 2 + l)t/
= cosec x.

(iv) Show that this method will also give the solution of

(in a form free from signs of integration), itf(x) is any one of the func-

tions tan x, cot a, sec x).

(36) Show that the Particular Integral of ~ +p 2
y = kco8pt repre-

cit'

sents an oscillation with an indefinitely increasing amplitude.

JThis is the phenomenon of RESONANCE, which we have mentioned
before (see Ex. 5 following Art. 36). Of course the physical equations
of this type are only approximate, so it must not be assumed that the

oscillation really becomes infinite. Still it may become too large
for safety. It is for this reason that soldiers break step on crossing a

bridge, in case their steps might be in tune with the natural oscillation

of the structure. ]

(37) Show that the Particular Integral of

represents an oscillation with a variable amplitude ^-te"**.

Find the maximum value of this amplitude, and show that it is very

large if h is very small. What is the value of the amplitude after an

infinite time ?

[This represents the forced vibration of a system which is in reson-

ance with the forcing agency, when both are damped by friction. The
result shows that if this friction is small the forced vibrations soon

become large, though not infinite as in the last example. This is an

advantage in some cases. If the receiving instruments of wireless

telegraphy were not in resonance with the Hertzian waves, the effects

would be too faint to be detected.]
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d*u
(38) Solve M-rc4y0.

eta/

[This equation gives the lateral displacement y of any portion of a

thin vertical shaft in rapid rotation, x being the vertical height of the

portion considered.]

(39) If, in the last example,
(Lii
- = ^ = when a?0 and x*=*l,
&x

prove that y = E(coa nx - cosh nx) -f ^(sin nx - sinh nx)

and cos nl cosh nl => 1 .

[This means that the shaft is supported at two points, one a height
I above the other, and is compelled to be vertical at these points. The
last equation gives n when I is known.]

(40) Prove that the Complementary Function of

becomes negligible when t increases sufficiently, while that of

oscillates with indefinitely increasing amplitude.

[An equation of this type holds approximately for the angular

velocity of the governor of a steam turbine. The first equation corre-

sponds to a stable motion of revolution, the second to unstable motion

or
"
hunting.

99
See the Appendix to Perry's Steam Engine.}

(41) Prove that the general solution of the simultaneous equations :

d 2
y dxm

dt-
He

di'

where m, F, H, and e are constants, is

x=*A

V

TJ

where o> = and A, B, Cy a are arbitrary constants.

Given that -=- =
-^
= o; = y='0 when J=0, show that these reduce to

V
x- -^(1 -coa cot),

(l)/l

y

y**=j(wt- sin o><), the equations of a cycloid.
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[These equations give the path of a corpuscle of mass m and charge
e repelled from a negatively-charged sheet of zinc illuminated with

ultra-violet light, under a magnetic field H parallel to the surface. V is

the electric intensity due to the charged surface. By finding ex-

perimentally the greatest value of x, Sir J. J. Thomson determined

nr, from which the important ratio is calculated when V and H are

known. See Phil Mag. Vol. 48, p. 547, 1899.]

(42) Given the simultaneous equations,

d*I2

where L19 L2,
M

y
cv c 2t

E and p are constants, prove that 7 t is of the

orm
! cos pt + A l cos (mt - a) -f B l cos (nt

-
/3),

and 7j| of the form

a
2 cos pt + A 2 cos (mt

-
a) -f B2 cos (nt

-
),

E
where

a^-^pc^l- p*c2L2),

EM ,
2
=
-^-^iC2,

k denoting the expression

(LtL2
-M 2

) c^zp*
-
(ZjCj +L2c2)p* + 1 ;

m and n are certain definite constants"; A lt B lt a and /? are arbitrary
constants ; and A 2 is expressible in terms of A l and B2 in terms

of Bv
Prove further that m and n are real if L19 L& M9 cl9 and ca are real

and positive, and L^L^ > M2
.

[These equations give the primary and secondary currents /j and

7t in a transformer when the circuits contain condensers of capacities

Cj and c2 . L
T
and L2 are the coefiicients of self-induction and M that

of mutual induction. The resistances (which are usually very small)

have been neglected. E sin pt is the impressed E.M.F. of the primary.]

Alternative methods for simultaneous equations. In Ex. 3, p. 42,

having found y, we can find z without integration by operating on

the given equations by D and (D + 2) respectively and subtracting.

Given /(D), F(D), any two polynomials in D with no common factor

containing Dt we can find other polynomials </>(#), \[s(D)> such that

(D)f(D)
-

>/r (D) F(D) - 1. (Cf. Smith's Algebra, Art. 100.)

In simple cases we can obtain (f>(D), \fs(D) by inspection.

Alternatively, we may replace the given equations of Ex. 3 by
their sum and difference. Proceeding similarly in Ex. 4, we may
take v + z and y - z as new variables.



CHAPTER IV

SIMPLE PARTIAL DIFFERENTIAL EQUATIONS

41. In this chapter we shall consider some of the ways in which

partial differential equations arise, the construction of simple par-

ticular solutions, and the formation of more complex solutions from

infinite series of the particular solutions. We shall also explain the

application of Fourier's Series, by which we can make these complex
solutions satisfy given conditions.

The equations considered include those that occur in problems
on the conduction of heat, the vibrations of strings, electrostatics

and gravitation, telephones, electro-magnetic waves, and the

diffusion of solvents.

The methods of this chapter are chiefly due to Euler, D'Alembert,

and Lagrange.*

42. Elimination of arbitrary functions. In Chapter I. we showed

how to form ordinary differential equations by the elimination of

arbitrary constants. Partial differential equations can often be

formed by the elimination of arbitrary functions.

Ex. (i). Eliminate the arbitrary functions / and F from

y=f(x-at) + F(x + at) ......................... (1)

We get g| =f(x
-

at) + F'(x + at)

and
d

^=f"(x-at)
+ F''(x + at) ......................... (2)

Similarly
-j-

- -
af'(x

-
at) + aF'(x + at)

and --a*f"(x-at)+a*F"(x + at) ................... (3)

*
Joseph Louis Lagrange of Turin (1736-1813), the greatest mathematician of

the eighteenth century, contributed largely to every branch of Mathematics. He
created the Calculus of Variations and much of the subject of Partial Differential

Equations, and he greatly developed Theoretical Mechanics and Infinitesimal
Calculus.

49
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3^y j_
a 2

y

dx^a* di*
9

From (2) and (3), g-1, f* .................................(4)

partial differential equation of the second order.*

Ex. (ii). Eliminate the arbitrary function /from

a

I--M!)
, dz I .,/y\and =-- -/(-),

ety x VEX

5s; 9^ _
so a; ^- +?/ 3

- =0.
&e ^<ty

Examples for solution.

Eliminate the arbitrary functions from the following equations :

(1) z**f(x + ay). (2) z=f(x + iy) + F(x-iy), where i2 = -1.

(3) 2; ^/(o: cos a -f ?/ sin a - a) 4- F(# cos a -f ?/ sin a -f at).

(4) s=/(z
2
-?/

2
). (5) z-

(6) z-tf

43. Elimination of arbitrary constants. We have seen in

Chapter I. how to eliminate arbitrary constants by ordinary
differential equations. This can also be effected by partials.

Ex. (i). Eliminate A and p from z Aept sin px.

We get ~-
2
= -p 2Ae pt sin px,

and ~~^
= ^Mepf sin px ;

therefore 1
= 0.

Ex. (ii). Eliminate a, 6, and c from

z = a (x -f t/) 4- 6(x
-

y) + abt -f c.

We get f?
.

8 dx

dz

* This equation holds for the transverse vibrations of a stretched string.
The most general solution of it is equation (I ),

which represents two waves travelling
with speed a, one to the right and the other to the left. See pp. 61, 218, 256.
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But

rru tTherefore

Examples for solution.

Eliminate the arbitrary constants from the following equations :

(1)2== Ae~p
* cos px. (2) z = Ae~pt cos qx sin n/, where p

2 =
q
2 + r1.

(3) 2 = ax + (l-a)t/ + 6. (4) z = aa? + fy/ + a2 + 62
.

(5) z = (#-a)
2 + (*/-&)*. (6) az + b=*a*x + y.

44. Special difficulties of partial differential equations. As we have

already stated in Chapter I., every ordinary differential equation
of the nth order may be regarded as derived from a solution con-

taining n arbitrary constants* It might be supposed that every

partial differential equation of the nth order was similarly derivable

from a solution containing n arbitrary functions. However, this is

not true. In general it is impossible to express the eliminant of

n arbitrary functions as a partial differential equation of order n.

An equation of a higher order is required, and the result is not

unique.f

In this chapter we shall content ourselves with finding particular

solutions. By means of these we can solve such problems as most

commonly arise from physical considerations.]; We may console

ourselves for our inability to find the most general solutions by the

reflection that in those cases when they have been found it is often

extremely difficult to apply them to any particular problem.

* It will be shown later (Chap. VI.) that in certain exceptional cases an

ordinary differential equation admits of Singular Solutions in addition to the

solution with arbitrary constants. These Singular Solutions are not derivable
from the ordinary solution by giving the constants particular values, but are of

quite a different form.

tSee Edwards' Differential Calculus, Arts. 612 and 513, or Williamson's

Differential Calculus, Art. 317.

$ The physicist will take it as obvious that every such problem has a solution,
and moreover that this solution is unique. From the point of view of pure
mathematics, it is a matter of great difficulty to prove the first of these facts:

this proof has only been given quite recently by the aid of the Theory of Integral

Equations (see Heywood and Fr^chet's UEquation de Fredholm et ses applications
a la Physique A[a/hdmatique). The second fact is easily proved by the aid of

Green's Theorem (see Carslaw's Conduction of Heat, 2nd ed. p. 14).

For example, Whittaker has proved that the most general solution of

Laplace's equation

U V~ I f(x cos t + y sin t + iz, t) dt t

but if we wish to find a solution riatisfying certain given conditions on A given
surface, we generally use a solution in the form of an infinite eerieg.
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45. Simple particular solutions.

Ex. (i). Consider the equation ^~a""~j5~ (which gives the con-

duction of heat in one dimension). This equation is linear. Now, in

the treatment of ordinary linear equations we found exponentials very
useful. This suggests z**e*+ ni as a trial solution. Substituting in

the differential equation, we get

which is true if n w2af
,

Thus 6+ is a solution.

Changing the sign of w, C
'mx+m<1^i

is also a solution.

Ex. (ii). Find a solution of the same equation that vanishes when
*= +00 .

In the previous solutions t occurs in e
m*a

**. This increases with t,

since w 2a2
is positive if m and a are real. To make it decrease, put

m =
ip, so that ra 2a2 = -p 2a 2

.

This gives eipx -P
2"** as a solution.

Similarly e-tpx-rw* ia a solution.

Hence, as the differential equation is linear, e~p
*a*t

(Aeipx + Be i<fx
) is

a bdution, which we replace, as usual, by

e-pW(E cos px + F sin px).

92z d 2z
Ex. (iii). Find a solution of

pi-j
+ pTa^O which shall vanish when

y - + oo
, and also when x = 0. Cy

Putting a-gwa+wy, we get (m 2 + n8
)
e"1**-^ - 0, so wa + n 2 = 0.

The condition when y = + oo demands that n should be real and

negative, say n -
p.

Then m^-.ip.
Hence er^AeW* + Be-***) is a solution,

t.c. e~py(E cos px + F sin p:r) is a solution.

But s=>0 if 3=0, so # = 0.

The solution required is therefore Fe~py sin px.

Examples for solution.

9 2v d*v
(1) 3-^

=
^y, given that y=0 when x -f oo and also when < + oo .

CrtZ/ vf

(2) ^-i,
853

-!; H^ given that z is never infinite (for any real values of
c/a? CL oy

x or y), and that z^O when x=0 or y=0.

(3) =- + a=- =0, given that 2 is never infinite, and that =- when
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327 327 327
(4) -W-, + -^-r + -~-r = 0, given that V when & + oo

, when
Ctt/ <71/^ OZ*

y
- oo

, and also when 2 = 0.

9 2F 9 2F
(5) "a"!

^
;f ~~;f

*ven tnat ^ *9 never infinite, and that V^C and

^7 97 3F .
,M () when sc^v^z^O.

3z 3y 53
*

327 927 37
(6) -5-?+ ~-s = ~v , given that F=0 when = +00 , when #=0 or

<7X
4

Cty
4 Ot

I, and when */=0 or I.

46. More complicated initial and boundary conditions.* In Ex. (lii)

of Art. 45, we found Fer*w sin px as a solution of

d*z d*z

Bx* dy*
'

satisfying the conditions that 2=0 if y *> -f cc or if a: == 0.

Suppose that we impose two extra conditions,f say z=0 if # = J

and z = lx ~x* if y for all values of x between and L

The first condition gives sin pZ0,
i.e. pi = mr, where n is any integer.

For simplicity we will at first take I ir > giving p=>n, any integer.

The second condition gives F sin px trx- x2 for all values of x

between and ?r. This is impossible.

However, instead of the solution consisting of a single term, we

may take

Ftf-y sin x + Ftf-^ sin 2x -fFze~*y sin 3x + . . .
,

since the equation is linear (if this is not clear, cf. Chap. TIT. Art. 25),

giving p the values 1, 2, 3, ... and adding the results.

By putting y =0 and equating to TTX -x2 we get

FI sin x -f F2 sin 2x -f .F3 sin 3x4-...

TTX - x* for all values of x between and TT.

The student will possibly think this equation as impossible to

satisfy as the other, but it is a remarkable fact that we can choose

values of the F'a that make this true.

This is a particular case of a more general theorem, which we

now enunciate.

* As t usually denotes time and x and y rectangular coordinates, a condition

uch as =0 when i=0 5a called an initial condition, while one such as z=0 if

x=0, or if x =J, or if y=a;> is called a boundary condition.

t This is the problem of finding the steady distribution of temperature in a

emi-infinite rectangular strip of metal of breadth /, when the infinite sides are

kept at and the base at (Ix
- x2

)*.
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47. Fourier's Half-Range Series. Every function of x which

satisfies certain conditions can be expanded in a convergent series

of the form

f(x) =! sin x + a2 sin 2x +aa sin 3z + ... to inf.

for all values of x between and ?r (but not necessarily for the

extreme values x =0 and x = TT).

This is called Fourier's *
half-range sine series.

The conditions alluded to are satisfied in practically every

physical problem.f

Similarly, under the same conditions/ (x) may be expanded in

a half range cosine series

6 + &! cos a?+ 62 cos 2x + 63 cos 3x + . . . to inf.

These are called half-range series as against the series valid

between and 2-Tr, which contains both sine and cosine terms.

The proofs of these theorems are very long and difficult. J How-

ever, if it be assumed that these expansions are possible, it is easy to

find the values of the coefficients.

Multiply the sine series by sin nx, and integrate term by term,

giving

I f(x) sin nxdx=*0i\ sin x sin nx dx + aa sin 2x sin nx dx + ... .

Jo Jo Jo

The term with an as a factor is

T

sin2 nx dx

-1
n
TJ Jo

an
\

sir

Jo

- cos nx xx- n sin

* Jean Baptiate Joseph Fourier of Auxerre (1768-1830) is best known as the
author of La Theorie analytique de la chaleur. His series arose in the solution of

problems on the conduction of heat.

t It is sufficient for f(x) to be single-valued, finite, and continuous, and have

only a limited number of maxima and minima between #= and x ir. However,
these conditions are not necessary. The necessary and sufficient set of conditions
has not yet been discovered.

% For a full discussion of Fourier's Series, see Carslaw's Fourier's Series and
Integrals and Hobson's Theory of Functions.

The assumption that this ia legitimate is another point that requires
justification.
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The term involving any other coefficient, say a,., is

sin rx sin nx dxa, I si

Jo
d C

n
r

{* Jo
co?(n-r)x-cos(n-f r)x}dx

a, rsin(n-r)x sin
*"

2 L w-r
~~

n+r Jo~
*

So all the terms on the right vanish except one.

f*
Thus I /(x) sin nx dx=%an-w9

Jo

2 f
71

^

or an
= /(x) sin wx dx.

Similarly, it is easy to prove that if

f(x) = 60 + 6! cos x 4- 62 cos 2x -I- . ..

for values of x between and TT, then

and bn = /(x) cos nx dx

for values of n other than 0.

48. Examples of Fourier's Series.

(i) Expand vrx-x 2 in a half-range sine series, valid between x=0
und X = TT.

It is better not to quote the formula established in the last article.

Let TTX x 2 =
dj sin x-f ct 2 sin 2x + ct3 sin 3x-f ... .

Multiply by sin nx and integrate from to TT, giving

(TTX
- x2

) sin nx dx = an I sin 2 nx dx = - an ,
as before.

Jo ^

Now, integrating by parts,

1 (TTX
- x2

)
sin nx dx = (TTX

- x a
)
cos nx -f

-
I (TT

-
2x) cos nx dx

Jo L Jo w Jo

[1

T 2 f
7"

-^ (TT
-
2x) sin nx -H -^ I sin nx dx

n 2 "

Jo w2
J

2 r T 4
"0 5 cos nx =-= if n is odd or if n is even.

n3 L Jo "3

g
Thus on = 3

if w is odd or if n is even, giving finally

2_ 8
/

'

v
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(ii) Expandf(x) in a half-range series valid from #= to x = TT, where

f(x)mx between #0 and x
2̂t

7T
and /(z)=w(7r-z) between x= ~ and z = 7r.

<6

In this case f(x) is given by different analytical expressions in

different parts of the range.* The only novelty lies in the evaluation

of the integrals.

In this case

I f(x) sin nx dx=* I f(x) sin nx dx+ I f(x) sin nx dx
Jo Jo J

pj fir= I wx sin ft dx -f- I m(7r a;) sin n# eta.

Jo J$
We leave the rest of the work to the student. The result is

4wi
-

(sin x-\ sin 3x -f -

s sin 5x -^ Bin 7z 4- ...).

The student should draw the graph of the given function, and

compare it with the graph of the first term and of the sum of the first

two terms of this expansion.f
'

Examples for solution.

Expand the following functions in half-range sine series, valid

between x ** and X TT:

(1)1. (2) x. (3) x*. (4) cosz. (6) e*.

(^)/( ;r
)
=! from x to x= T , and from a? = -7- to TT,

4 4

/(x)---(4x-7r)(37r-4x) from x = ~ to & = .

(7) Which of these expansions hold good (a) for x = ?

(6) for x TT ?

49. Application of Fourier's series to satisfy boundary conditions.

We can now complete the solution of the problem of Art. 46.

We found in Art. 46 that

Ff-y sin x -fFze~* sin 2x+F^v sin So; -f ...

satisfied all the conditions, if

Fl sin x +Fz sin 2x +F3 sin 3x + ... =7rx~a5t

for all values of x between and TT.

* Fourier's theorem applies even if f(x] is given by a graph with no analytical
expression at all, if the conditions given in the footnote to Art. 47 are satisfied.

For a function given graphically, these integrals are determined by arith-

metical approximation or by an instrument known as a Harmonic Analvser.

f Several of the graphs will be found in Carslaw's Fourier's Series and Integrals,
2nd ed., Chap. VII. More elaborate ones are given in the Phil. Mag., Vol. 45 (1898),
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In Ex. (i) of Art. 48 we found that, between and TT,

o

(sin a; -H ^V sin 3x -f Tfa sin 5x + ...)= TTX - #a
.

Thus the solution required is

o

sn x +^e~ y sm %x + ilT*~5y sm x + )
7T

50. In the case when the boundary condition involved I instead

of TT, we found Fe~py sin px as a solution of the differential equation,

and the conditions showed that p, instead of being a positive integer

n, must be of the form n-n-fL

Thus F^e-^
1 sin Trx/l +F^^n sin 2 /I + . . .

satisfies all the conditions if

Fl
sin Trx/l +F2 sm 27rx/l + ... **lx-x*

for all values of x between and I.

72 71

Put TTX/I^Z. Then fa-a;2 - ,(^- f
). The Fs are thus ,

7T
2

7T*

times as much as before. The solution is therefore

072
~
3

in -rrx/l +^e^^11 sin STTX/^ + Ti3 e-
5^ sin STTCC// + ...)

MISCELLANEOUS EXAMPLES ON CHAPTER IV.

1 J^.

(1) Verify that V **r.e *Kt ia a solution of
V*

to

(2) Eliminate ^4 and p from 7 =^-^ sin

dV
(3) Transform

-g-
- JT

aw ^

by putting F-e-*'TF.

[The first equation gives the temperature of a conducting rod whose

surface is allowed to radiate heat into air at temperature zero. The

given transformation reduces the problem to one without radiation.]

(4) Transform

3V K d ( a
9F\ . dW v d*W

Tr*dr\r
Tr)

* -W=
K ~W

by putting W = rV.

[The first Equation gives the temperature of ft sphere, when heat

flows radially.]
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(5) Eliminate the arbitrary functions from

(6) (i) Show that if emx+int
is a solution of

3V 3*V- =
K-^-hV,

where n and h are real, then m must be complex.

(ii) Hence, putting m=>-g-if, show that V e~vx sin (nt -foe) is a

solution that reduces to F sinn< for x = 0, provided K(g
2 -f2

)=*h and

(iii) If 7=0 when $=- + oo
, show that if K and n are positive so

are g and /.

[In Angstrom's method of measuring K (the
"
diffusivity "), one

end of a very long bar is subjected to a periodic change of temperature
F sin nt. This causes heat waves to travel along the bar. By measur-

ing their velocity and rate of decay n/f and g are found. K is then
calculated from K=*n/2fg.]

dV
(7) Find a solution of - = K ^

-
reducing to F sinnt for x=

and to zero for x = + oo .

dt x

[This is the problem of the last question when no radiation takes

place. The bar may be replaced by a semi-infinite solid bounded by
a plane face, if the flow is always perpendicular to that face. Kelvin

found K for the earth by this method.]

(8) Prove that the simultaneous equations

are satisfied by V

Z

if g*-f*=RK-n*LC,

and 7 2
(
R + iLn) - V<?(K + iCn).

[These are Heaviside^s equations for a telephone cable with resist-

ance R, capacity 0, inductance Lt and leakance K, all measured per
unit length. 7 ia the current and V the electromotive force.]

(9) Show that in the last question g is independent of n if RC = KL.
[The attenuation of the wave depends upon g, which in general

depends upon n. Thus, if a sound is composed of harmonic waves of

different frequencies, these waves are transmitted with different degrees
of attenuation. The sound received at the other end is therefore
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distorted. Heaviside's device of increasing L and K to make RC = KL
prevents this distortion.]

(10) In question (8), if Z=*/T=0, show that both V and / are

propagated with velocity \/(2n/RC).

[The velocity is given by n/f.]

(11) Show that the simultaneous equations

*?*L?Z-?- __!^3a^dR_dQ t

c dt dy dz
'

c dt dy dz
'

*?? ==^_?y. _^^ = ?.?_<^?.
c dt dz dx

'

c dt dz dx

kdR
=3 d/3_da t _/5 dy^?? _??.

c dt dx dy' c dt dx dy
'

are satisfied by P =
; a = ;

Q=0; /3
=

/3 sinp(x-vt);

R = RQ gin p (x
-

vt) ; y=0;
provided that v^c/Vk/u. and /3

= - VW/*) ^o-

[These are Maxwell's electromagnetic equations for a dielectric of

specific inductive capacity k and permeability //. P, Q, R are the

components of the electric intensity and a, /3, y those of the magnetic

intensity, c is the ratio of the electromagnetic to the electrostatic

units (which is equal to the velocity of light in free ether). The solution

shows that plane electromagnetic waves travel with the velocity c/Vkjm,
and that the electric and magnetic intensities are perpendicular to the

direction of propagation and to each other.]

dV d 2V
(12) Find a solution of -^- = K^-j- such that

dt ox*

y=^=oo if t=* -f oo
;

V if =0 or TT, for all values of t ;

V^TTX-X* if = 0, for values of x between and TT.

[2V. B. Before attempting this question read again Arts. 46 and 49.

V is the temperature of a non-radiating rod of length TT whose ends are

kept at 0, the temperature of the rod being initially (TTX
- x2

) at a

distance x from an end.]

(13) What does the solution of the last question become if the

length of the rod is I instead of TT ?

[N.B. Proceed as in Art. 50. ]

(14) Solve question (12) if the condition F=0 for x = or TT is

dV
replaced by ^--

= for x=>Q or TT.

[Instead of the ends being at a constant temperature, they are here

treated so that no heat can pass through them.]

(15) Solve question (12) if the expression TTX - x2
is replaced by 100.
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97
(16) Find a solution of

-^-
^K

^-^ such that

F=/=oo if t=* + 00
;

F100 if z = or TT for all values of *
;

F0 if for all values of x between and TT.

[Here the initially ice-cold rod has its ends in boiling water.]

(17) Solve question (15) if the length is I instead of TT. If I increases

indefinitely, show that the infinite series becomes the integral

200 ri K ,
t

. ,-
j

-e~ Kat sm ax da.
TT Jo

[N. B. This is called a Fourier's Integral. To obtain this result

put (2r + l)7r/J
= a and 27r//

= da.

Kelvin used an integral in his celebrated estimate of the age of the

earth from the observed rate of increase of temperature underground.

(See example (107) of the miscellaneous set at the end of the book.)
Strutt's recent discovery that heat is continually generated within the

earth by radio-active processes shows that Kelvin's estimate was too

small.]

dV 92F
(18) Find a solution of -=- = #5-=- such that

at ox*

V is finite when t = + oo
;

9F ^--=0 when x = 0, . ... _

ex
j-

for all values of t ;

F = when x^lj
F=* F when t = 0, for all values of x between and I.

[If a small test-tube containing a solution of salt is completely

submerged in a very large vessel full of water, the salt diffuses up out

of the test-tube into the water of the large vessel. If F is the initial

concentration of the salt and I the length of test-tube it fills, V gives
the concentration at any time at a height x above the bottom of the

97
test-tube. The condition ^ = when z = means that no diffusion

9#
takes place at the closed end. F = when x = l means that at the top
of the test-tube we have nearly pure water.]

9 2V 9 2v
(19) Find a solution of ^-~ = fl

2
=r^ such that

x
dt 2 ox2

y involves x fcrigonometrically ;

^ = when x=*Q or TT, for all values of t ;

~=0 when J=0, for all values of x
;

ot

y**mx between z = and -, I

\ when t=*0.

y m(TT
-

x) between x =
-^ and TT, I
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[N.B. See the second worked example of Art. 48.

y is the transverse displacement of a string stretched between two

points a distance TT apart. The string is plucked aside a distance

m7r/2 at its middle point and then released.]

*
(20) Writing the solution of

j-|
=* Z)2y, where D is a constant, in

the form
y-^A+e-'iB,

deduce the solution of =-? =-v in the form

by substituting ^-
for JD, f(t) and F(t) for A and 5 respectively, and

using Taylor's theorem in its symbolical form

[The results obtained by these symbolical methods should be

regarded merely as probably correct. Unless they can be verified by
other means, a very careful examination of the argument is necessary
to see if it can be taken backwards from the result to the differential

equation.
Heaviside has used symbolical methods to solve some otherwise

insoluble problems. See his Electromagnetic Theory.]

*
(21 ) From the solution of -~ = Z)2y, where D is a constant, deduce

o ~\9 dx

that of 3
= 5-^ in the form

dx dt 2 24

[This is not a solution unless the series is convergent.]

General solution of
|^

=i
|^f.

As a trial solution put y f(x + mt), where m is constant.

m2

This gives f (x + mt) = ^ .f (x + mt),

which is satisfied if m= 0.

Thus yf(x-at) and y = F(x + at) are two solutions, and as the

differential equation is linear, a third solution is

y = /($
_

at) +F (x + a/),.

containing a number of arbitrary functions equal to the order (two)
of the differential equation, so no more general solution can be expected.

(Of. pp. 218 and 256.)

[Arts. 178-181 form a supplement to this chapter. They deal chiefly

with the equation of vibrating strings and with the three-dimensional

wave equation. At the end of Art. 181 is a list of some important
works on the differential equations of Mathematical Physics.]

* To be omitted on a first reading.
P.D.B. V



CHAPTER V

EQUATIONS OF THE FIRST ORDER BUT NOT OF THE
FIRST DEGREE

51. In this chapter we shall deal with some special types of

equations of the first order and of degree higher than the first for

which the solution can sometimes be obtained without the use of

infinite series. For brevity dy/dx will be denoted by p.

These special types are :

(a) Those solvable for p.

(b) Those solvable for y.

(c) Those solvable for x.

52. Equations solvable for p. If we can solve for p, the equation
of the nth

degree is reduced to n equations of the first degree, to

which we apply the methods of Chap. II.

Ex. (i). The equation p
2 +px+py + xy=0 gives

p=* -x or p= -y ;

from which 2y = - x2 + cx or x = -
log y + ca ;

or, expressed as one equation,

(2y + z
2 -c 1)(z + log</-c2)=0 (1)

At this point we meet with a difficulty ; the complete primitive

apparently contains two arbitrary constants, whereas we expect only

one, as the equation is of the first order.

But consider the solution

(2t/+z
2
-c)(z + logy-c)=0 (2)

If we are considering only one value of each of the constants c, c
lf

and c2 ,
these equations each represent a pair of curves, and of course

not the same pair (unless c = c1
= c2). But if we consider the infinite

set of pairs of curves obtained by giving the constants all possible

values from - oo to + oo
, we shall get the same infinite set when taken

altogether, though possibly in a different order. Thus (2) can be taken

as the complete primitive.



EQUATIONS OF THE FIRST ORDER 63

Ex. (ii). ;?
2 + 7>-2=0.

Here p => 1 or p - - 2,

giving f/^z + Cj or t/
=> - 2x -f ca .

As before, we take the complete primitive as

not (y-as-
Each of these equations represents all lines parallel either to

y = x or to y
- 2x.

Examples for solution,

(1) />
2 +p-6 = 0. (2) p* + 2xp~3x*. (3) jo

2 = x5 .

(4) x-f 2/p
a = p(l + #?/). (5) ^

3
-p(^

2 + ^2/ + 2/

2)+ jr2/(a; + 2/)
== 0.

(6) p
2 - 2p cosh a? -f 1 =0.

53. Equations solvable for y. If the equation is solvable for y,

we differentiate the solved form with respect to x.

Ex. (i). p
2 -py -fa? = 0.

Solving for y, y=p + -*

vv/v ,
- dp I x dp

Differentiating, p = - +---o ~r& r dx p p
2 dx

.6. 1 V I 7 \ n

p/ dp p
2

This is a linear equation of the first order, considering p as the

independent variable. Proceeding as in Art. 19, the student will obtain

\~4

x i

Hence, as y**p + -
9 y=*p + (c + cosir1??)^

2
--!) .

These two equations for x and y in terms of p give the parametric

equations of the solution of the differential equation. For any given

value of c, to each value of p correspond one definite value of x and

one of y, defining a point. As p varies, the point moves, tracing out

a curve. In this example we can eliminate p and get the equation con-

necting x and y t but for tracing the curve the parametric forms are as

good, if not better.

Ex. (ii). ap
5
-;py + l=0.

Solving for y, y = 3^
4

-f p~
l

.

Differentiating, p - 12p
3~ -

p~*~,~ - ~,

i.e. dx= (l2p
2 - p~

z
)dp.

Integrating, x = 4^
3
4- \p~

2 + c,

and from above, y = 3^
4 +^r

1
.

The student should trace the graph of this for some particular value

of c, say c=0.
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54. Equations solvable for x. If the equation is solvable for x,
y

we differentiate the solved form with respect to y, and rewrite --,-

^
dy

in the form -
.

P
Ex. p

2 - py + % = 0. This was solved in the last article by solving
for y.

Solving for x, x=py- p1
,

Differentiating with respect to y,

I dp _ dp
~~>p + y^--2p^~,
p

* y
dy ^dy

p/dp^
y "**

which is a linear equation of the first order, considering p as the inde-

pendent and y as the dependent variable. This may be solved as in

Art. 19. The student will obtain the result found in the last article.

Examples for solution.

(1) a; = 4^-f4^
8

. (2) p*- 2o^ + l=0.

(3) y~p*x+p. (4)

(5) p*+p = ey . (6)

(7) p*-p (y-}-3)4-a;
= 0. (8) y = p sin p + cos p

(12) Prove that all curves of the family given by the solution of

Ex. 1 cut the axis of y at right angles. Find the value of c for that

curve of the family that goes through the point (0, 1).

Trace this curve on squared paper.

(13) Trace the curve given by the solution of Ex. 9 with c = 0.

Draw the tangents at the points given by p = Q, p=*'I, p = '2 and p = -3,

and verify, by measurement, that the gradients of these tangents art*

respectively 0, *1, *2 and *3.



CHAPTER VI

SINGULAR SOLUTIONS*

55. We know from coordinate geometry that the straight line

y=*mx + touches the parabola y
2 = 4ax, whatever the value of m.

Consider the point of contact P of any particular tangent. At

P the tangent and parabola have the same direction, so they have

a common value of ^- ,
as well as of x and y.

FIQ. 7.

But for the tangent m=>~=>p say, so the tangent satisfies the
ctx

differential equation y-px+-.

Hence the equation holds also for the parabola at P, where x,

y, and p are the same as for the tangent. As P may be any point

on the parabola, the equation of the parabola j/

2 = 4a# must be a

solution of the differential equation, as the student will easily verify.

* The arguments of this chapter will be based upon geometrical intuition. The
results therefore cannot be considered to be proved, but merely suggested as

probably true in certain cases. The analytical theory presents grave difficulties

(see M. J. M. Hill, Proc. Lond. Math. Soc. t 1918).

65
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In general, if we have any singly infinite system of curves which

all touch a fixed curve, which we will call their envelope* and if this

family represents the complete primitive of a certain differential

equation of the first order, then the envelope represents a solution

of the differential equation. For at every point of the envelope

x, y, and p have the same value for the envelope and the curve of

the family that touches it there.

Such a solution is called a Singular Solution. It does not

contain any arbitrary constant, and is not deducible from the

Complete Primitive by giving a particular value to the arbitrary
constant in it, save in exceptional cases (Art. 160).

Example for solution.

Prove that the straight line y x is the envelope of the family of

parabolas t/
= x + J(x-c)

2
. Prove that the point of contact is (c, c),

and that p=*l for the parabola and envelope at this point. Obtain

the differential equation of the family of parabolas in the form

y = x + (p
-

1)
2

,
and verify that the equation of the envelope satisfies this.

Trace the envelope and a few parabolas of the family, taking c as

0, 1, 2, etc.

56. We shall now consider how to obtain singular solutions. It

has been shown that the envelope of the curves represented by the

complete primitive gives a singular solution, so we shall commence

by examining the method of finding envelopes.

The general method t is to eliminate the parameter c between

f(x, y, c)
= 0, the equation of the family of curves, and

E.g. if /(#, y, c)
= is y-cx-~ = 0, ..................... (1)

c

|-0 is - X +
J.-0,

..................... (2)

giving c=

* In Lamb's Infinitesimal Calculus, 2nd ed., Art. 155, the envelope of a

family is defined as the locus of ultimate intersection of consecutive curves of

the family. As thus defined it may include node- or cusp loci in addition to or

instead of what we have called envelopes. (We shall give a geometrical reason for

this in Art. 66 ; see Lamb for an analytical proof.)

Lamb's Infinitesimal Calculus, 2nd ed., Art. 156. If f(x, y, c,) is of

the form Lc* -fMc + N, the result comes to M* = 4LN. Thus, for

the result is y*=4a;.

[Arts. 155-156, 2nd ed., become Arts. 138-139 in the 3rd ed.]
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Substituting in (1), y - 2V#.
or y

2 = 4x.

This method is equivalent to finding the locus of intersection of

f(x, y, c)=0,

and f(x, y, c + A)=0,
two curves of the family with parameters that differ by a small

quantity h, and proceeding to the limit when h approaches zero.

The result is called the c-discriminant of f(x, y, c)0.

57. Now consider the diagrams 8, 9, 10, 11.

Fig. 8 shows the case where the curves of the family have

DO special singularity. The locus of the ultimate intersections

m a,

PQRSTUV is a curve which has two points in common with each

of the curves of the family (e.g. Q and R lie on the locus and also

on the curve marked 2). In the limit the locus PQRSTUV there-

fore touches each curve of the family, and is what we have defined

as the envelope.

In Fig. 9 each curve of the family has a node. Two con-

secutive curves intersect in three points (e.g. curves 2 and 3 in the

points P, Q, and R).

The locus of such points consists of three distinct parts EE' 9

AA', and BB'.

When we proceed to the limit, taking the consecutive curves

ever closer and closer, AA! and BB' will move up to coincidence

with the node-locus NN', while EE' will become an envelope. So
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in this case we expect the odiscriminant to contain the square of

the equation of the node-locus, as well as the equation of the envelope.

B 1

As Fig. 10 shows, the direction of the node-locus NN' at any

point P on it is in general not the same as that of either branch of

the curve with the node at P. The node-locus has x and y in common
with the curve at P, but not p, so the node-locus is not a solution of

the differential equation of the curves of the family.

FIG. 10.

If the node shrinks into a cusp, the loci EE' and NN' of Fig. 10

move up to coincidence, forming the cusp-locus CC' of Fig. 11.

Now NN' was shown to be the coincidence of the two loci AA' and

BB' of Fig. 9, so CC' is really the coincidence of three loci, and

its equation must be expected to occur cubed in the c-discriminant.

Fig. 11 shows that the cusp-locus, like the node-locus, is not

(in general) a solution of the differential equation.

C -T . o'

To sum up, we may expect the c-discriminant to contain ;

(i) the envelope,

(ii) the node-locus squared,

(iii) the cusp-locus cubed.
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The envelope is a singular solution, but the node- and cusp-
loci are not (in general *) solutions at all.

58. The following examples will illustrate the preceding results :

Ex. (i). y=p2
.

The complete primitive is easily found to be 4z/
= (3-c)

2
,

i.e. c2 - 2cx + x2
-4:y Q.

As this is a quadratic in c, we can write down the discriminant at

once as
(2z)

2 = 4 (x
2

4w),

i.e. t/
= 0, representing the envelope of the family of equal parabolas

given by the complete primitive, and occurring to the first degree only,
as an envelope should.

FIG. 31.

Ex. (ii).

Proceeding as in the last chapter, we get

i.e.

.e.
^ dp

3 or P-2&-J-.r dx

dx O dp

.(A)

* We say in general, because it is conceivable that in some special example a
node- or outp-loous may coincide with an envelope or with a curve of the family.
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log x = 2 log p -
log c,

whence 3y => 2c*cc* - 2c,

i.e. (3y-l-2c)*=4ca^, a family of semi-cubical parabolas with their cusps
on the axis of y.

The c-discriminant ia (3y
- x3)

2 =
9i/

a
,

The cusp-locus appears cubed, and the other factor represents the

envelope.
It is easily verified that Gy^z3

is a solution of the differential

equation, while z=0 (giving p=oo ) is not.

If we take the first alternative of the equations (A),

i.e. x 2
-2p = 0,

we get by substitution for p in the differential equation

i.e. the envelope.
This illustrates another method of finding singular solutions

FIG. 13.

Examples for solution.

Find the complete primitives and singular solutions (if any) of the

following differential equations. Trace the graphs for Examples 1-4:

(1) 4p
a -9a;=0. (2) 4j9

2(-2) = l.

(3) xp* -2yp + 4x*=0. (4) p
2 + t/

2 -l-=0.

(5) p* + 2xp-y**0. (6)

(7)
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59. The p-discriminant. We shall now consider how to obtain

the singular solutions of a differential equation directly from the

equation itself, without having to find the complete primitive.

Consider the equation x2
p

2 - yp -f 1 = 0.

If we give x and y any definite numerical values, we get a quad-
ratic for p. For example, if

3-y% y^y 2p
2
-3p + l=0,

p=| or 1.

Thus there are two curves of the family satisfying this equation

through every point. These two curves will have the same tangent
at all points where the equation has equal roots in p, i.e. where

the discriminant y
2 - 4o;2 =0.

Similar conclusions hold for the quadratic Lp* + Mp+N=*Q y

where L, M, N are any functions of x and y. There are two curves

through every point in the plane, but these curves have the same

direction at all points on the locus M2 - kLN = 0.

More generally, the differential equation

f(x, y y p) s LQp
n +LlPn

-~l +L2p-2 + ... +Ln = 0,

where the L'a are functions of x and y, gives n values of p for a

given pair of values of x and y, corresponding to n curves through

any point. Two of these n curves have the same tangent at all

points on the locus given by eliminating p from

for this is the condition given in books on theory of equations for

the existence of a repeated root.

We are thus led to the p-discriminant, and we must now in.

vestigate the properties of the loci represented by it.

60. The Envelope. The p-discriminant of the equation

or

is y = z.

We have already found that the complete primitive consists of

the tangents to the parabola, which is the singular solution. Two
of these tangents pass through every point P in the plane, and

these tangents coincide for points on the envelope.
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This is an example of the ^-discriminant representing an envelope,

Fig. 15 shows a more general case of this.

Fio. 14.

Consider the curve SQP as moving up to coincidence with the

curve PRT, always remaining in contact with the envelope QRU.
The point P will move up towards R, and the tangents to the two

curves through P will finally coincide with each other and with the

tangent to the envelope at R. Thus R is a point for which the p's

of the two curves of the system through the point coincide, and

consequently the ^-discriminant vanishes.

U

PIG. 15.

Thus the p-discriminant may be an envelope of the curves of

the system, and if so, as shown in Art. 55, is a singular solution.

61. The tac-locus. The envelope is thus the locus of points

where two consecutive curves of the family have the same value

of p. But it is quite possible for two non-consecutive curves to

touch.

Consider a family of circles, all of equal radius, whose centres

lie on a straight line.
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Fig. 16 shows that the line of centres is the locus of the point

of contact of pairs of circles. This is called a tac-locus. Fig. 17

E E'

FIG. 16.

shows circles which do not quite touch, but cut in pairs of

bouring points, lying on two neighbouring loci AA' y BB'. When'

we proceed to the limiting case of contact these two loci coincide

in the tac-locns TT'. Thus the ^-discriminant may be expected to

contain the equation of the tac-locus squared.

FIG. 17.

It is obvious that at the point P in Fig. 16 the direction of

the tac-locus is not the direction of the two circles. Thus the

relation between x, y, and p satisfied by the circles will not be

satisfied by the tac-locus, which has the same x and y but a different

p at P. In general, the tac-locus does not furnish a solution of the

differential equation.

62. The circles of the last article are represented by

(x + c)
2

-f y
2 = r

a
,

if the line of centres is Ox.

This gives x + c => Vr2 -
t/
2

,

or I- -yplVr*-y\
i.e. */

2
y

2 + y
2 -r2 = 0.

The jo-discriminant of this is y
2
(y

2 -r2
)
=0.

The line y=0 (occurring squared, as we expected) is the tac-

locus, y = dtr are the envelopes EE' and FF' of Fig. 16; ?/
=

r,

giving p=0, are singular solutions of the differential equation, but

y = does not satisfy it.

63. The cusp-locus. The contact that gives rise to the equal

roots in p may be between two branches of the same curve instead
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of between two different curves, i.e. the p-discriminant vanishes at

a cusp.

As shown in Fig. 18, the direction of the cusp-locus at any

point P on it is in general not the same as that of the tangent to

the cusp, so the cusp-locus is not a solution of the differential equation.

C'

Pro. 18.

It is natural to enquire if the equation of the cusp-locus will

appear cubed in the p-discriminant, as in the c-discriminant. To

decide this, consider the locus of points for which the two p's are

nearly but not quite equal, when the curves have very flat nodes.

This will be the locus NN' of Fig. 19. In the limit, when the nodes

FlO. 19.

contract into cusps, we get the cusp-locus, and as in this case there

is no question of two or more loci coinciding, we expect the p-

discriminant to contain the equation of the cusp-locus to the first

power only.

64. Summary of results. The p-discriminant therefore may be

expected to contain

(i) the envelope,

(ii) the tac-locus squared,

(iii) the cusp-locus,

and the c-discriminant to contain

(i) the envelope,

(ii) the node-locus squared,

(iii) the cusp-locus cubed,
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Of these only the envelope is a solution of the differential

equation.

65. Examples.

Ex. (i). j>*(2-3*,)^4(l-y).

Writing this in the form

dx 2-3

we easily find the complete primitive in the form

The c-discriminant and ^-discriminant are respectively

!/
2
(l-y)=0 and (2-3</)

2
(l-t/HO.

1 _ y r=Q, which occurs in both to the first degree, gives an envelope ;

/
= 0, which occurs squared in the c-discriminant and not at all in

the ^-discriminant, gives a node-locus ;
2 -3?/ = 0, which occurs squared

in the p-discriminant and not at all in the c-discriminant, gives a

tac-locus.

Ifc is easily verified that of these three loci only the equation of the

envelope satisfies the differential equation.

Tac-locus

Fhvetope

Node-Jocus

FIG. 20.

Ex. (ii). Consider the family of circles

By eliminating c (by the methods of Chap. L), we obtain the differ-

ential equation

2y
2
2>

2 + 2xyp +za + y*
- 1 ~<
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The c- and ^-discriminants are respectively
z2 -2(z

2 + t/
2 -l)=0 and 2%2

-2?/
2
(:r

2 +
%v
2
-l)==0,

i.e. x2
-f 2t/

2 - 2 = and y
2
(x

2 + 2y
2 -

2) = 0.
2 + 2?/

2 -2=0 gives an envelope as it occurs to the first degree in

both discriminants, while f/
=

gives a tac-locus, as it occurs squared
in the ^-discriminant and not at all in the c-discriminant. The circle

given by the original equation touches the envelope at the points

{-2C) s/(l-2c
2
)},

which are imaginary when c is numerically greater than |\/2.

FIQ. 21.

Examples for solution.

In the following examples find the complete primitive if the differ-

ential equation is given or the differential equation if the complete

primitive is given. Find the singular solutions (if any). Trace the

graphs.

(1) 4x(x-~l)(x-2)p*-(3x*-6x + 2)*~0. (2)

(3) yp*-2xp + y~Q. (4)

(5) p* + 2px*-4x*y=*Q. (6)

(7) z2 + y
2 -2c3 + c2 cos2 a==0. (8)

(9) c* + (x + y)c + l-xy=Q. (10) x2 +
2/

2 + 2cxy + c*-l =0.

66. Clairaut's Form.*

sidering the equation

We commenced this chapter by con-

a

~P
%

* Alexis Claude Olairaut, of Paris (1713-1765), although best known in con-
nection with differential equations, wrote chiefly on astronomy.
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This is a particular case of Clairaut's Form

y~px+f(p)
To solve, differentiate with respect to x.

77

(1)

therefore /=0, p=c, (2)dx r

or O-s+Hp) (3)

Using (1) and (2) we get the complete primitive, the family of

straight lines,
y=cx+f(c) (4)

If we eliminate p from (1) and (3) we shall simply get the ^-dis-

criminant.

To find the c-discriminant we eliminate c from (4) and the result

of differentiating (4) partially with respect to c, i.e.

0-*+/'(c) (5)

Equations (4) and (5) differ from (1) and (3) only in having c

instead of p. The eliminants are therefore the same. Thus both

discriminants must represent the envelope.
*

Of course it is obvious that a family of straight lines cannot

have node-, cusp-, or tac-loci.

Equation (4) gives the important result that the complete primi-

tive of a differential equation of Clairaut's Form may be written down

immediately by simply writing c in place of p.

67. Example.

Find the curve such that OT varies as tan ^, where T is the point
in which the tangent at any point cuts the axis of x, ^ is its inclination

to this axis, and is the origin.

y

o i N *
FIO. 22.

* But in some cases the discriminants represent not only the envelope, but also

Its inflexional tangents (Art. 161).

P.D.S. o
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From the figure, OT~ON-TN

-*-*.

snce

therefore 05-~ = Jti) t

P
*

i.e. y=*px-kp*.

This is of Clairaut's Form, so the complete primitive is

y=*cx-kc
2
,

and the singular solution is the discriminant of this,

i.e. x* = 4%.

The curve required is the parabola represented by this singular
solution. The complete primitive represents the family of straight
lines tangent to this parabola

Examples for solution.

Find the complete primitive and singular solutions of the following
differential equations. Trace the graphs for Examples (1), (2), (4), (7),

(8) and (9).

(1) y=px+p*. (2) y=*px+p*.

(3) y=*px + cosp. (4) y = px + \/(a
2
p* + b*).

(5) p = log(px-y). (6) sin px cos y = cospxsin y+p.

(7) Find the differential equation of the curve such that the tangent
makes with the co-ordinate axes a triangle of constant area ia

, and

hence find the equation of the curVe in integral form.

(8) Find the curve such that the tangent cuts off intercepts from

the axes whose sum is constant.

(9) Find the curve such that the part of the tangent intercepted
between the axes is of constant length.

MISCELLANEOUS EXAMPLES ON CHAPTER VI.

Illustrate the solutions by a graph whenever possible.

(1) Examine for singular solutions

(2) Eeduce xyp*-~(x* + y*-
to Clairaut's form by the substitution X=*x*

; Fy*.
Hence show that the equation represents a family of conies touching

the four sides of a square.
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(3) Show that xyp* + (x* -y*-h*)p-xy*=*()

represents a family of confocal conies, with the foci at (A, 0), touching
the four imaginary lines joining the foci to the circular points at infinity.

(4) Show by geometrical reasoning or otherwise that the sub-

stitution x~aX+bY9 y = a'X+VY,
converts any differential equation of Clairaut's form to another equation
of Clairaut's form.

(5) Show that the complete primitive of 8p*x=*y(l2p
2
-$) is

(x + c)
3 = 3y

2
c, the p-discriminant y

2
(x*~4y*)=*b, and the c-dis-

criminant /
4
(9a?

a ~
4y

2
) =0. Interpret these discriminants.

(6) Reduce the differential equation

x 2
p

2 + yp(2x + y)+y*=*0> where p^-jdx

to Clairaut's form by the substitution y, rj xy.

Hence, or otherwise, solve the equation.
Prove that y + 4# = is a singular solution

;
and that y is both

part of the envelope and part of an ordinary solution. [London. ]

(7) Solve y
2

(y-^Y}^\ij wm̂ h can ke transformed to

Clairaut's form by suitable substitutions. [London.]

(8) Integrate the differential equations :

(i)

(ii)

In (ii) find the singular solution and explain the significance of any
factors that occur. [London.]

(9) Show that the curves of the family

all have a cusp at the origin, touching the axis of x.

By eliminating c obtain the differential equation of the family in

the form

4p
2x2

(x
-

1)
-
4:pxy (4x

-
3) + (16*

-
9)?/

2 -0.

Show that both discriminants take the form x3y
2 =

J
but that z =

is not a solution, while y = is a particular integral.

[This example shows that our theory does not apply without modi-

fication to families of curves with a cusp at a fixed point.]

(10) Show that the complete primitive of

represents the family of equal lemniscates of Bernoulli

ra = a2
cos2(0~a),

Inscribed in the circle r a, which is the singular solution, with the

point r =0 as a node-locus.
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(11) Obtain and interpret the complete primitive and singular
solution of

/dr\*

(m)
+r*- 2 =-

(12) Show that r = c0-c2
is the complete primitive and 4r = 2 the

singular solution of ^ /^. \

Verify that the singular solution touches the complete primitive at

the point (c
2

, 2c), the common tangent there making an angle tan""^
with the radius vector.

[For a supplementary discussion of singular solutions, including
difficulties concerning their definition and the definition of an envelope,
the occurrence of particular solutions in the discriminants, the idea of

boundaries, and the methods of calculating discriminants, see Arts.

160-161. These will throw additional light on Exs. 7 and 9 above.J



CHAPTER VII

MISCELLANEOUS METHODS FOR EQUATIONS OF THE
SECOND AND HIGHER ORDERS

68. In this chapter we shall be concerned chiefly with the

reduction of equations of the second order to those of the first

order. We shall show that the order can always be so reduced if

the equation

(i) does not contain y explicitly ;

or (ii) does not contain x explicitly ;

or (iii) is homogeneous.

A special form of equation, of some importance in Dynamics,

may be reduced by using an integrating factor.

The remainder of the chapter will be devoted to the linear

equation, excluding the simple case, already fully discussed in

Chapter III., where the coefficients are merely constants. It will

be found that the linear equation of the second order can be reduced

to one of the first order if

(i) the operator can be factorised,

or (ii) any one integral belonging to the complementary function

is known.

If the complete complementary function is known, the equation

may be solved by the method of Variation of Parameters. This

elegant method (due to Lagrange) is applicable to linear equations

of any order.

Further information on linear equations, such as the condition

for exact equations, the normal form, the invariantive condition of

equivalence, and the Schwarzian derivative, will be found in the

form of problems among the miscellaneous examples at the end

of the chapter, with hints sufficient to enable the student to work

them out for himself.

81
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We shall use suffixes to denote differentiations with respect to

dhi
x * t-9* y% fr

j

J
2 , but when the independent variable is any other

than x the differential coefficients will be written in full.

69. y absent. If y does not occur explicitly in an equation of

the second order, write p for yl and -j-
for y 2 .

We obtain an equation containing only ,^, p, and x, and so of

the first order.

Consider, for example, xy2 + yl 4x.

This transforms into x~ + p = 4#,
dx r

which can be integrated at once

xp^2x*+ a,

.e. p* x

By integrating, y = x* + a log x + 6,

where a and 6 are arbitrary constants.

This method may be used to reduce an equation of the ntk order

not containing y explicitly to one of the (n
-

l)
th

.

70. x absent. If x is the absent letter, we may still write p for

y> ,
but for y, we now write

j>|,
since p&-g | -g

-
j,,.

The

procedure reduces an equation of the second order without x to one

of the first order in the variables p and y.

For example, yy2
=y^

transforms into yp
~ =p

a
,

from which the student will easily obtain

=*b and y

Examples for solution.

(1) y, cos 1 s-1. (2) yfc+y!
1 -^. (3)

(4) Reduce to the previous example, and hence solve

(5) a?y8 + y,12a?. (6) yn -2yn

(7) Integrate and interpret geometrically
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(8) The radius of curvature of a certain curve is equal to the length
of the normal between the curve and the axis of x. Prove that the

curve is a catenary or a circle, according as it is convex or concave to

the axis of x.

(9) Find and solve the differential equation of the curve the length
of whose arc, measured from a fixed point A to a variable point Py is

proportional to the tangent of the angle between the tangent at P and
the axis of x.

* 71. Homogeneous equations. If x and y are regarded as of

dimension 1
,

y v
is of dimension 0,

y2 is of dimension -
1,

j/ 3 is of dimension -
2,

and so on.

We define a homogeneous equation as one in which all the terms

are of the same dimensions. We have already in Chap. II. dealt

with homogeneous equations of the first order and degree, and in

Chap. III. with the homogeneous linear equation

xnyn +Axn-l
yn_i+Bx

n
-*yn^ -f ... +IIxyl +Ky =0

(where A, B, ... Z7, K are merely constant?), for which we used the

substitution x e
( or t = log x.

Let us make the same substitution in the homogeneous equation

VVV2 +22/i
2
=%2/i............................ (1)

dt dy 1 dy^TNow

dyl l^dy 1 d dy
7fo

"
x*dt xdx dt

y_ I y

x2 dt x dx dt*

_"
x*dt x*dt*'

Substituting in (1) and multiplying by x, we get

This is an equation, with t absent, similar to those in the last

article with x absent.

* Arts. 71-73 may be omitted on a first reading.
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n1J

By putting
-~

=y, the student will easily obtain

gvng
Hence y

2 + 6 = e
4 (t+ c)

= ax4
, replacing e*

c

by another arbitrary constant a.

72. The example of Art. 71 came out easily because it had no

superfluous x's left after associating x2 with y% and x with yx. In

fact, it could have been written

But (*
2 +y

2
)(y-^i)+zyy2 -0 ..................... (2)

cannot be so written. To reduce this to a form similar to that of

the last example, put y=vx, a substitution used for homogeneous

equations in Chap. II.

(2) becomes

(x
2 + x2v2

) (vx
-
i\x

z -
vx) + x*v2

(xv2 + 2^) = 0,

i.e. -
(1 + V2

)vl +v2
(xv2 + 2vl) -0,

which may be written v*x2v2 = (I -v2
}xvl............................ (3)

We now proceed as before and put x = e
f

, giving

dv
xv^df

. , d2v dv
and **>*--'

,n . i 9 fd
2v dv

(3)bccome3 v ~

dv

an equation with t absent.

. , , , dv d2v da
As before, put Tr^tf* j t9 ~Q -j

* tit dt (it)

(4) becomes v2
q y*

=
j,

i.e. = (unless gr
= 0, giving y- cx)t

dv 11

_ av dv / a2 \ -,

fa a f fl-f
) rfV,v-a \ v-a/

and finally log x ay/x + a
2
log (y

-
ax)

- a2
log a? + 6.
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73. By proceeding as in the last article, we can reduce any

homogeneous equation of the second order.

Any such equation can be brought to the form

For example, the equation of Art. 71 when divided by x becomes

while that of Art. 72 divided by x3 becomes

HDCS)*-
The substitutions y =>vx and x^e1 transform

y*> <%) - to / (v y
xvl + v, x2

i\2 + 2xi\)
- 0,

1,1 i f( dv d2v dv
and then to

f(
v>

dt
+ v>

d^ +

an equation with t absent, and therefore reducible to the first order

Examples for solution.

(I) x*yt-xy 1 + y~Q. (2) X2
y 2 -xy 1 +6y-0.

(3) 2x 2
//,v2 + */ = z 5V.

(4) Make homogeneous by the substitution y~z*, and hence solve

74. An equation occurring in Dynamics. The form y^

occurs frequently in Dynamics, especially in problems on motion

under a force directed to a fixed point and of magnitude depending

solely on the distance from that fixed point.

Multiply each side of the equation by 2yL . We get

f dii t

Integrating, yf = 2 / (y) f dx - 2 / (y) dy.
J HiJu J

This is really the equation of energy.

Applying the method to ,
a

-
p*x, (the equation of simple

harmonic motion), we get

o dx dzx o 2
dx

Integrating with respect to ,

(dx

2

J
= ~ p

2x2 + const. = j>
2
(a

2 - cr
2
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TT" ==3 "

da? p
,

1
i= - sin"1 - + const..

> a

x a sn

Examples for solution.

(!) y*=*f-y> given that ^ = when y-1.

(2) t/2
= e2y

, given that ?/
= and y^l when x = 0.

(3) y2 =>sec
2

2/
tan y, given that y^O and t/i^l when z = 0.

W JT 888 ~"
a given that x = h and y-=0 when t = Q.

(tt x dt

[h
- x is the distance fallen from rest under gravity varying inversely

as the square of the distance x from the centre of the earth, neglecting
air resistance, etc.]

(5) i2a + M=a
L2~~a

in the two cases

given that = =0 when = -, where jm, h, and c are constants.
ct(/ c

[These give the path described by a particle attracted to a fixed

point with a force varying inversely as the square and cube respectively
of the distance r. u is the reciprocal of r, 6 has its ordinary meaning
in polar co-ordinates, JJL

is the acceleration at unit distance, and h is

twice the areal velocity. ]

75. Factorisation of the operator. The linear equation

(x

may be written as

where D stands for
j-,

as in Chapter III.

Now the operator in this particular example can be factorised,

giving {(

Put

Then

This is a linear equation of the first order. Solving as in Art. 20,

we get v = c(jc+2) + e*,

i.e. (D-2)y=c(x+2)+e*9

another linear equation, giving finally

y a(2x + 5) + be2x - ex , replacing
-
Jc by a.
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Of course it is only in special cases that the operator can be

factorised. It is important to notice that these factors must be

written in the right order, as they are not commutative. Thus, on

reversing the order in this example, we get

(D -
2) {(x + 2)D -

l}y = {(x + 2)D
2 - (2x + 4)D + 2}y.

Examples for solution.

(1) (x + l)y1 + (a5-l)y1 -2y-0. (2) xyt + (x-l) yi -y-0.

(3) xy z ^(x-l)yl -y^x\

(4) xt/a + (a5
2 + l)y l + 2ajt/==2ir, given that t/<=2 and ^ 1

=a O when

(5) (x
2 -

1) 7/2
-
(4z

2 - 3x - 5) y l + (4x
2 - 6a? - 5) y = e2*, given that y - 1

and 2/i
= 2 when x = 0.

76. One integral belonging to the complementary function * known.

When one integral of the equation

y*+Pyi+Qy~Q .............................. (i)

is known, say y^z, then the more general equation of the second

order yi+fyi+Qy-fl, .............................. (2)

where P, Q, R are functions of x, can be reduced to one of the first

order by the substitution
y=*vz.

Differentiating, y ** v z + vzl9

Hence (2) becomes

vf +% (2^ + Pz) + v (za + Pzl + Qz) =7?,

i.e. z
(

!j+vl (2z1 +Pz)~R, ......................... (3)

since by hypothesis z2 + Pzl -f Qz = 0.

(3) is a linear equation of the first order in t^.

Similarly a linear equation of the nt!l order can be reduced to

one of the (n-l)
th

if one integral belonging to the complementary
function is known.

77. Example.

Consider again the eqi ation

(4)

*The proof of Art. 29 that the general solution ofa linear differential equation M
the sum of a Particular Integral and the Complementary Function holds good when
the coefficients are functions of x as well as in the case when they are constants.
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If we notice that y=*e
2x makes the left-hand side of the equation

zero, we can put y Ve2*
9

giving y l
=

(

and 2/2
^

(

Substitution in (4) gives

(x + 2) v 2e*
x + (4 (x + 2)

-
(2x + 5)} v^e

Solving this in the usual way (by finding the integrating factor)
we obtain ^ e

-x + c
(
x + 2) <r

2x
.

Integrating, v= -cr* -
Jc(2a; + 5)e~

2a3
-f 6,

whence y = t'e
2* == - e

x -
\c (2x + 5) + 6e 2a}

.

Examples for solution.

(1) Show that
yss
+ P^+Qy-O is satisfied by t/

= e* if 1+P + G-O,
and by ^

= x- if

(2)

(3)

(4)

(5) x 2
z/ 2 + ^i~9?/=0, given that

2/
= o^ is a solution.

(6) xy 2-(xcos x-2 sin x) -f (a?
2 + 2)2/1 sin -2y (xsin x-f cos x}0,

given that T/
= x 2

is a solution.

78. Variation of Parameters. We shall now explain an elegant

but somewhat artificial method for finding the complete primitive

of a linear equation whose complementary function is known.

Let us illustrate the method by applying it to the example

already solved in two different ways, namely,

(+2)y1 -(2aj+5)y1 + 2y-(a; + l)c, .................. (1)

of which the complementary function is y =a(2x-f-5) +be
2x

.

Assume that y~(2x+5)A +e2x
B, ........................... (2)

where A and B are functions of x.

This assumption is similar to, but more symmetrical than, that

of Art. 77, viz. :

y=-ve
zx

.

Differentiating (2),

yl
=
(2x + 5)A l -}-e

2xB1 +2A+2eZxB................... (3)

Now so far the two functions (or parameters) A and B are only

connected by a single equation. We can make them satisfy

the additional equation

ttx+5)^+ e^Bt -0....................... (4)
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(3) will then reduce to

............................... (5)

Differentiating (5),

t/2
= 462*B + 24 1 +2e

2*B
1
......................... (6)

Substitute these values of y, yv and y2 from equations (2), (5),

and (6) respectively in (1). The co-factors of A and B come to

zero, leaving

2(z+2)4 1 +2(z+2)6
2*S1 ==(o; + l)e

a!
................. (7)

(4) and (7) are two simultaneous equations which we can solve

for Al and Blt giving

4l g
i ___

e2*
"
-

(<2x + 5)

~ . (s + l)e* e3

'/
1

Hence ^ - - - - -
| 2

6*
and, by integration, A = - -r-

f

-
o\ +a> where a is a constant.

4: (X + 2i
j

Similarly,

E (^+5X^+1)6^^6^1 __l_ __1
\1==

4(x+2)
2 4 I a? +2 (z+2)

2
/'

and JB-

Substituting in (2),

79. Applying these processes to the general linear equation of

the second order, y* + Pyi + Qy-R, ........................... (1)

of which the complementary function au+bv is supposed known,
a and b being arbitrary constants and u and v known functions of #,

we assume that
y = uA+vB, .............................. (2)

giving ft-w^+t^JB, ........................... (3)

provided that uA 1 +vBl =Q............................ (4)

Differentiating (3),

y2 ^u2A+v2B + u1A1 +v1Bl...................... (5)

Substitute for y2, yt and y in (1).

The terms involving A will be Afa + Pu^ + Qu), i.e. zero, as by
hypothesis, u^ +pu +QU ~Q.

Similarly the terms involving B vanish, and (1) reduces to

R............................... (6)
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Solving (4) and (6),
* ~A--?_

& v ' v ' V -U VUi -UV^*

We then get A and B by integration, say

A=f(x)+a,

B~F(x)+b,
where / ($) and F (x) are known functions of x, and a and 6 are

arbitrary constants.

Substituting in (2), we get finally

y - uf(x) +vF (x) +au+ bv.

* 80. This method can be extended to linear equations of any

order. For that of the third order,

y*+Py*+Qyi+Ry-8, .......................... (i)

of which the complementary function y=au + bv+cw is supposed

known, the student will easily obtain the equations

.............................. (2)

,
........................... (3)

provided that 0^uAl -^vBl +wCl ;
........................... (4)

hence y2 =u2A + v2B+w2C, ........................... (5)

provided that 0=u1A 1 +v1
B1 -^-wlC1 ;

........................ (6)

then
*

y s
=u3A + vJS +w sO

+ u2Al +v2Bl +w2C1 ; ........................ (7)

by substitution in (1), 8^ fa2Al +v2Bl -\-w2Cl ......................... (8)

A
19
B19 and Cl

are then found from the three equations (4), (6/

and (8).

Examples for solution.

(4) xz
y2 -f- xy

-
y = x*e*, given the complementary function ax + bar1 *

81. Comparison of the different methods for solving linear equations.

If it is required to solve a linear equation of the second order and

no special method is indicated, it is generally best to try to guess

a particular integral belonging to the complementary function and

proceed as in Art. 76. This method may be used to reduce a linear

equation of the wth order to one of the (n
-
l)

tb
.

* To be omitted on a first reading.
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The method of factorisation of the operator gives a neat solution

in a few cases, but these are usually examples specially constructed

for this purpose. In general the operator cannot be factorised.

The method of variation of parameters is inferior in practical

value to that of Art. 76, as it requires a complete knowledge of the

complementary function instead of only one part of it. Moreover,

if applied to equations of the third or higher order, it requires too

much labour to solve the simultaneous equations for A19 J3,, Clt etc.,

and to perform the integrations.

MISCELLANEOUS EXAMPLES ON CHAPTER VII.

(!) 2/2/2
-

2/i
2 + 2/i -0. (2) a^ + zt/!

2 -
2/i=0.

(3) 2/

2 - tyn-r (4) yn + */M_ 2
= 8 cos to.

(5)

(6)

(7) Verify that cos nx and sin nx are integrating factors of

Hence obtain two first integrals of

?/ 2 + M 2
2/
= sec nx,

and by elimination of y l deduce the complete primitive.

(8) Show that the linear equation

where A, B, C, ... T are functions of x
y is exact, i.e. derivable imme-

diately by differentiation from an equation of the next lower order, if

the successive differential coefficients of A, B, C, ... satisfy the relation

^-J? 1 + 1 -...+(-l)Sn -0.

[N.B. By successive integration by parts,

{
Sy.cZ*

=%,_! - S iyn_2 +Styn_a + ...+(- l)-S,l_1y + J (
- l)Sny da,.]

Verify that this condition is satisfied by the following equation, and

hence solve it :

(9) Verify that the following non-linear equations are exact, and

BO!ve them :

(i) ^g + y^ _, Q.

(ii) xyyt + xy^ + yy^Q.

(10) Show that the substitution y=>ve
J transforms

yt+Pyi+Qy~R,
where P, Q, and R are functions of x, into the "Normal Form
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where /#- \Pl -~\P\

and 8-Re*l
rdm

.

Put into its Normal Form, and hence solve

yz -4:xy l + (4:X
2
-!)?/= - 3ex

*

sin 2x.

(11) Show that if the two equations

and

reduce to the same Normal Form, they may be transformed into

each other by the relation

i.e. the condition of equivalence is that the Invariant I should be the

same.

(12) Show that the equations

and x

have the same invariant, and find the relation that transforms one into

the other. Verify by actually carrying out this transformation.

(13) If u and su are any two solutions of

t>, + It> = 0, .................................... (1)

prove that ??=, -2^, .................................... (2)

and hence that

From (2) show that if s is any solution of (3), s^ and ss^ are

solutions of (1).

[The function of the differential coefficients of s on the left-hand

side of (3) is called the Schwarzian Derivative (after II. A. Schwarz of

Berlin) and written {s, x}. It is of importance in the theory of the

Hypergeometric Series.]

(14) Calculate the Invariant / of the equation

Taking s as the quotient of the two solutions xex and x, verify that

{*,a}-27,

and that $i and ss{~* are solutions of the Normal Form of the original

equation.

(15) If u and v are two solutions of

prove that uv2
- vu2 + P(uv 1

-
vuj = 0,

and hence that uv
1 -vu l

=^ae^J

Verify this for the equation of the last example.
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(16) Show that yyt
** const, is a first integral of the equation formed

by omitting the last term of

y

By putting yy1
= C, where C is now a function of x (in fact, varying

the parameter C), show that if y is a solution of the full equation, then

Ci- -y2
,

and hence C2 = const. - Jy
4
,

giving finally y
2= a sin (x<\/2 + b).

[This method applies to any equation of the form

(17) Solve the following equations by changing the independent
variable :

(18) Transform the differential equation

T-4 cos x + -~- sin x - 2?y cos3 a; = 2 cos5 x
ax2 ax

Into one having z as independent variable, where

z=sin x,

and solve the equation. [London.]

(19) Show that if z satisfies

by changing the independent variable from a; to z, we shall transform

into a

Hence solve -7-^ + f1
- -

) T^ + 4x2ve~ 2a! = 4 (z
2
-f x3) e~

3a>
.

dx2 \ x/dx y v x

P.D.B.



CHAPTER VIII

NUMERICAL APPROXIMATIONS TO THE SOLUTION OF
DIFFERENTIAL EQUATIONS

82. The student will have noticed that the methods given in the

preceding chapters for obtaining solutions in finite form only apply
to certain special types of differential equations. If an equation
does not belong to one of these special types, we have to use approxi-
mate methods. The graphical method of Dr. Brodetsky, given in

Chapter I., gives a good general idea of the nature of the solution,

but it cannot be relied upon for numerical values.

In this chapter we shall first give Picard's * method for getting

successive algebraic approximations. By putting numbers in these,

we generally get excellent numerical results. Unfortunately the

method can only be applied to a limited class of equations, in which

the successive integrations can be easily performed.
The second method, which is entirely numerical and of much

more general application, is due to Runge.f With proper pre-

cautions it gives good results in most cases, although occasionally

it may involve a very large amount of arithmetical calculation. We
shall treat several examples by both methods to enable their merits

to be compared.
Variations of Range's method have been given by Heun, Kutta,

and the present writer.

83. Picard's method of integrating successive approximations. The

differential equation fa

* B. Picard, Professor at the University of Paris, is one of the most distinguished
mathematicians of to-day. He is well known for his researches on the Theory of

Functions, and his Traiti <fanalyse is a standard text-book.

f 0. Runge, Professor at the University of Gottingen, was an authority on

graphical methods.

94
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where y =6 when x a, can be written

y=6 +
J

f(x9 y)dx.

For a first approximation we replace the y in/(x, y) by 6 ; for

a second we replace it by the first approximation, for a third by the

second, and so on.

Ex. (i). ~=*x + 1/
1
, where t/=0 when x=0.

Here y= I (x + y*) dx.

Jo

First approximation. Put t/
= in x + y

2
, giving

y= xdx=*%x*.
Jo

Second approximation. Put ?/
= |x

2 in a; + y
2
, giving

t/=[ (z + i-^)<fa
= z2 +^zB

.

Jo

Third approximation. Put /
= \x

z + ^a;
5 in x 4- y

2
, giving

y - f (x
-

Jo

and so on indefinitely.

I^U
Ex.fii). \f

b
where ^=="1 and z=*\ when x~0.

Here t/^l + l zdx and i2!
s=i

i-l'l
Jo Jo

First approximation.

yl+ f

Jo

2 |+ f
Jo

Second approximation.



96 DIFFERENTIAL EQUATIONS

Third approximation.

and so on.

Ex. (iii). l = *3

(-|
+
y)>

w^re y = l and ^-J when s0.

By putting -^
=

z, we reduce this to Ex. (ii).ax

It may be remarked that Picard's method converts the differential

equation into an equation involving integrals, which is called an Integral

Equation.

Examples for solution.

Find the third approximation in the following cases. For examples
(1) and (2) obtain also the exact solution by the usual methods.

(1) -^
= 2t/-2o;

2
-3, where y2 when z = 0.

dx

(2) -|[-2--, where y = 2 when a = l.

(3)

where y = 2 and 2=0 when

(4)

where t/
= 5 and z=*l when x

._. d 2
y dy * * <, ^V * xv

(5) -j-2
= z

-JT -f- #*y, where v = 5 and V-^l when 05=0.
ax* ax ax

84. Determination of numerical values from these approximations.

Suppose that in Ex. (i) of the last article we desire the value of y,

correct to seven places of decimals, when x=0-3.

Substituting x =0-3, we get (0-3)
2 =0-045 from the first approxi-

mation.

The second adds A(0'3)
5
-0-0001215,

while the third adds T^r(0-3)
8 + TJ

i

bTr(0-3J
11 =0-00000041 ... .
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Noticing the rapid way in which these successive increments

decrease, we conclude that the next one will not affect the first

seven decimal places, so the required value is 0-0451219... .

Of course for larger values of x we should have to take more

than three approximations to get the result to the required degree

of accuracy.

We shall prove in Chap. X. that under certain conditions the

approximations obtained really do tend to a limit, and that this limit

gives the solution. This is called an Existence Theorem.

Example for solution.

(i) Show that in Ex. (ii) of Art. 83, x =0-5 gives y= 1-252... and

z =0-526... , while z=0-2 gives y = M00025. . . and 2=0-500632... .

85. Numerical approximation direct from the differential equation.

The method of integrating successive approximations breaks down

if, as is often the case, the integrations are impracticable. But

there are other methods which can always be applied. Consider

the problem geometrically. The differential equation

j-/*>
determines a family of curves (the

"
characteristics ") which do not

intersect each other and of which one passes through every point

FlO. 23.

in the plane.* Given a point P (a, 6), we know that the gradient

of the characteristic through P is /(a, 6), and we want to determine

* This is on the assumption that f(x, y) has a perfectly definite value for every
point in the plane. If, however, f(x, y) becomes indeterminate for one or more

points, these points are called singular points of the equation, and the behaviour

of the characteristics near such points calls for special investigation. See Art. 10t
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the y **NQ of any other point on the same characteristic, given that

x**ON a+h, say. A first approximation is given by taking the

tangent PR instead of the characteristic PQ, i.e. taking

y ~NL +LR-NL +PL tan /_RPL 6 + hf(a, b) =6 + A/ , say.

But unless h is very small indeed, the error RQ is far from

negligible.

A more reasonable approximation is to take the chord PQ as

parallel to the tangent to the characteristic through S, the middle

point of PR.

Since 5 is (a-t-|A, 6+|A/ ),
this gives

This simple formula gives good results in some cases, as will be

seen from the following examples :

Ex. (i)
~ = z + t/

2
; given that y=0 when = 0, required y when

x-0-3.
ax

Here a = &=0, A = 0-3, f(x,y)~x + y*.

Therefore

giving ,6 + A/(a + JA, 6 + P/ ) =0 + 0-3 x/ (0-15, 0) ==0-045.

The value found in Art. 84 was 0-0451219... , so the error is

0-00012... ,
about | per cent.

Ex. (ii).
~ 2 - -

: given that t/
= 2 when x = 1, find y when x = 1 -2.

tfcc x

Here a = l, 6-2, A=0-2, / = 2-f = 0.

Therefore 6 -f hf (a + JA, 6 + JA/ )
= 2+0-2 x/(l -1, 2)

-2 +0-2x^2 -

Now the differential equation is easily integrable, giving y x + -,
x

so when x -1-2 the value of y is 2-033... . The error is 0-003...
, which

is rather large compared with the increment of y t namely 0-036... .

Ex. (iii).

x, y, z), say;

given that y = l and z =>0*5 when z=0, find y and when o;=0'5.

Here a=0, 6 = 1, c (the initial value of z) =0-5, A =0*5.

Hence /.-/(O, 1, 0-5) -0-5 ; g =g(0 t 1, 0-5) 0.



NUMERICAL APPROXIMATIONS 99

By an obvious extension of the method for two variables, we take

y~b + hf(a + $h, b + J&/ ,
c + J^7 )

= 1+0-5 x/(0-25, 1-125, 0-5) = 1-2500,

and *-c + hg(a + \h, l + Wo> c + &gQ)

-0-5 +0-5x#(0-25, 1-125, 0-5) -0-5127.

The accurate values, found as in Art. 84, are

y-1-252... and 2=0-526....

Thus we have obtained a fairly good result for y, but a very bad

one for z.

The uncertainty about the degree of accuracy of the result deprives
the method of most of its value. However, it forms an introduction to

the more elaborate method of Runge, to be explained in the next

article.

Examples for solution.

(1)
- =,

(x*
-

y) 1 ; given that y = 4 when x = 2-3, obtain the value
dx

f/=*4-122 when x = 2-7. [Runge's method gives 4-118.]

(2) -r=*T^{y -l+loge (x + y)}; given that y = 2 when x -1, obtain

the value t/
= 2-194 when x 1. [Runge's method gives 2-192.]

(3)

"
= 2$ - -

; given that y = 2 when = 1, obtain the value ?/
= 2 -076

eto x 24
when sc = l-2. Also show that y^^x

2 * ,
so that when x= l'2, t/ is

really 2-071... .

6 6x

86. Runge's method. Suppose that the function of y defined *
by

^"/(^y)' y~ b when ^"^

is denoted by y=F(x).
If this can be expanded by Taylor's theorem,

Now W = -/(*,?)=/> say.

We shall now take the total differential coefficient with respect

to x (that is, taking the y in/ to vary in consequence of the variation

of x). Let us denote partial differential coefficients by

y df a2
/ a2

/ . a2
/.

p=>- 9 q**^* r= 3 > 5s=5a > ^ai?F dx *
dy dx2

3xdy dy*

and their values when x**a and y=*b by j? , } ,
etc.

* The conditions under which the differential equation and the initial con-

dition really do define a function are discussed in Chap. X. The graphical treat-

ment of the last article assumes that these conditions are satisfied.
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Similarly, *-"<*)-(;?
+|i)<P+/5)

Thus
-r+pq +fs +

^ . (1)

The first term represents the first approximation mentioned and

rejected in Art. 85.

The second approximation of Art. 85, i.e.

y-b=hf(a + \h, &+Wo)~&i> say,

may now be expanded and compared with (1).

Now, by Taylor's theorem for two independent variables,

-/o

giving *!
-

A/o + I*
1
(p +/cflo) +i*

8
fro +2/o a +/ %) + .......... (2)

It is obvious that &
t
is at fault in the coefficient of A8 .

Our next step is suggested by the usual methods * for the

numerical integration of the simpler differential equation

Our second approximation in this case reduces to the Trapezoidal

Rule y~& = A/(a-4A).

Now the next approximation discussed is generally Simpson's

Rule, which may be written

If we expand the corresponding formula in two variables, namely

JA{/ +4/(a+i
we easily obtain

/ S
) + .. ., ........ (3)

which is a better approximation than klt but even now has not the

coefficient of A3 quite in agreement with (1).

To obtain the extra terms in A3, Runge f replaces

* See the text- books on Calculus by Gibson or Lamb.

t Mathematiache AnnaUn, Vol. XLV1. pp. 167-178.
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by V'
9 -

hf(a + h, b + V), where ft* = hf(a + A, 6 + A/ ). The modified

formula may be briefly written J (ft' +44! 4- ft'"}, where ft' =
/i/o,

or

Iftj + lfts-fti+K^-^i)* where ft^Kft'+ft'")-

The student will easily verify that the expansion of Runge's
formula agrees with the right-hand side of (1) as far as the terms

in h, h2
,
and A3 are concerned.

Of course this method will give bad results if the series (1) con-

verges slowly.

If/ >l numerically, we rewrite our equation

and now FQ<1 numerically, and we take y as the independent
variable.

87. Method of solving examples by Rnnge's rule. To avoid

confusion, the calculations should be formed in some definite order,

such as the following :

Calculate successively ft' hfQ,

, 6+ ft").

and finally ft ftj 4- 1 (kz
-

ft
x ).

Moreover, as ftx is itself an approximation to the value required,

it is clear that if the difference between ft and ftj, namely 3 (&2~^i)j

is small compared with ftx and ft, the error in ft is likely to be even

smaller.

Ex. (i). -^aJ-fy
8

; given that y = whence ==0, find y when x ==0-3.
C133

Here a-0, 6-0, />=0-3, f(x,y)~x + y*t / =0;

A, 6 + ft') -0-3 x/ (0-3,0) =0-3x0-3 -0-0900;

U"-hf(a + h, 64-i")-0-3x/(0-3, 0-09)==0-3 x (0-3 -f 0-0081 ) 0-0924
;

tlB-A/(a + JA, 6 + p') =0-3 x/(0-15, 0) =0-3x0-15 0-0450;

fta i(ft'+ ft'") -ix 0-0924 -0-0462;

and

-0-0454.

As the difference between k ==0-0454 and &!
= 0-0450 is fairly small

compared with either, it is highly probable that the error in ft is leas
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than this difference 0-0004. That is to say, we conclude that the value

is 0-045, correct to the third place of decimals.

We can test this conclusion by comparing the result obtained in

Art. 84, viz. 0-0451219... .

Ex. (ii).
=*--

; given that t/
= l when sc = 0, find y when cc = l.

dx y ~\~ x

This is an example given in Runge's original paper. Divide the

range into three parts, to 0-2, 0-2 to 0-5, 0-5 to 1. We take a small

increment for the first step because/ (x, y) is largest at the beginning.

First step. a=0, 6-1, A=0-2, / = 1 ;

fc' = A/ -0-200;

k" = hf(a + h, 6 + &') =0-2 x/ (0-2, 1-2) -0-143;

2, M43)=0-140 ;

-l, 1-1) = 0-167 ;

*8
=

J(*' + t'")-ix 0-340 -0-170;

and i-ij + lttj-iJ-OaGT+O-OOl -0-168 ;

giving y = 1-168 when x =0-2,

Second step.

a=0-2, 6 = 1-168, A=0-3, / =/(0-2, 1-1 68) =0-708.

Proceeding as before we get ^ = 0-170, &2
= 0-173 and so & = 0-171,

giving * y-l-168-f 0-171 =1-339 when a = 0-5.

Third step. a=0-5, 6 = 1-339, A=0-5.

We find ^ =
2
= k =0-160, giving t/

= l-499 when a = l.

Considering the k and k
jt the error in this result should be less than

0-001 on each of the first and second steps and negligible (to 3 decimal

places) on the third, that is, less than 0-002 altogether.
As a matter of fact, the true value of y is between 1 -498 and 1 -499,

so the error is less than 0-001. This value of y is found by integrating
the equation, leading to

ir - 2 tan-1 - = log,(x
2 + y

2
).x

Examples for solution.

Give numerical results to the following examples to as many places
of decimals as are likely to be accurate :

(1) 7~{*/--l+log (z + t/)}; given that f/
= 2 when g- -1, find

y when x = l, taking A = 2 (as /is very small).

(2) Obtain a closer approximation to the preceding question by
taking two steps.

(3) -^
=

(x
a
-y)*-l ; given that t/=4 when x= 2 -3, find y when

jc-2-7 (a) in one step, (6) in two steps.
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(4) Show that if ~^ =2~- and
t/
= 2 when x=*l, then y = ce + -.

dx x x

Hence find the errors in the result given by Runge's method, taking

(a) &0-4, (6) h 0-2, (c) ^=0-1 (a single step in each case), and compare
these errors with their estimated upper limits.

(5) If E(h) is the error of the result of solving a differential equation
of the first order by Runge's method, prove that

Hence show that the error in a two-step solution should be about

|- of that given by one step ; that is to say, we get the answer correct

to an extra place of decimals (roughly) by doubling the number of steps.

88. Extension * to simultaneous equations. The method is easily

extended to simultaneous equations. As the proof is very similar

to the work in Art. 86, though rather lengthy, we shall merely give

an example. This example and those given for solution "are taken,

with slight modifications, from Runge's paper.

Ex.
2-2*-|-/(*,y,z),8ay.

given that y = 0-2027 and 3= 1-0202 when x = 0-2, find y and z when
x=0-4.

Here

a=0-2, 6-0-2027, c-1-0202, / =/ (0-2, 0-2027, 1-0202) - 1-027,

Jk'=,A/ =:0-2 x 1-027 -0-2054 ;

Z' =%= 0-2x 0-2070 -0-0414;

h
t b + k', c + 1') =0-2 x/(0-4, 0-4081, 1-0616) -0-2206 ;

b + k',c + l') =0-2x0(0-4, 0-4081, 1-0616) -0-0894 ;

6-f 4", c-f H=0-2 x/(0-4, 0-4233, 1-1096) =0-2322 ;

b + k", + 0-0-2x0(0-4, 0-4233, 1-1096) ~0-0934 ;

6-f P', c + JO=0'2x/(0-3, 0-3054, 1 -0409) =0 -2128 ;

3, 0-3054, 1-0409) -0-0641 ;

-0-2188;

-0-0674;

-0-2148;

+0-0011 -0-0652;

giving y -0-2027 +0-2148 =0-4175

and 2 = 1 -0202 +0-0652 - 1 -0854,

probably correct to the third place of decimals.

* The rest of this chapter may be omitted on a first reading.
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Examples for solution.

(1) With the equation of Art. 88, show that if y -04175 and

zl-0854 when x = 0-4, then ?/
= 0-6614 and = 1-2145 (probably correct

to the third place of decimals) when #=0-6.

.-0.7,00

and r = 0-6 when 2 = 1-2145, obtain the values w = 0-5163 and r=0-7348

when z (which is to be taken as the independent variable) = 1-3745.

Show that the value of r is probably correct to four decimal places, but

that the third place in the value of w may be in error.

(3) By putting 10 = cos
<f>

in the last example and t/
= sin 0, x r in

the example of Art. 88, obtain in each case the equations

dz
t

_ sin <t> dd>
3- = tan d> ; 2z=-r- + cos <f>~,
dr ^

r
^ dr

which give the form of a drop of water resting on a horizontal plane.

89. Methods* of Heun and Kutta. These methods are very

similar to those of Runge, so we shall state them very briefly. The

problem is : given that -T^=/(#, y) and y=b when x=a, to find

the increment k of y when the increment of x is h.

Heun calculates successively

f-VM),
4" -*/(*+**, & +**').

and then takes J(jfe'+3i'") as the approximate value of k.

Kutta calculates successively,

and then takes %(k' +$k" +3k
f"
+k"") as the approximate value

oft.

The approximations can be verified by expansion in a Taylor's

series, as in Runge's case.

Example for solution.

Given that -r^^ and v^l when x0, find the value of y (to 8
dx y + x y y

significant figures) when aj=02 by the methods of Runge, Heun, and

Kutta, and compare them with the accurate value 1-1678417. [From
Kutta's paper. ]

*
Ztfochrifl fiir Matfomeiik und Physik, Vols. 45 and 46.
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90. Another method, with limits for the error. The present writer

has found * four formulae which give four numbers, between the

greatest and least of which the required increment of y must lie.

A new approximate formula can be derived from these. When

applied to Runge's example, this new formula gives more accurate

results than any previous method.

The method is an extension of the following well-known results

concerning definite integrals.

91. Limits between which the value of a definite integral lies. Let

F(x) be a function which, together with its first and second

differential coefficients, is continuous (and therefore finite) between

x = a and x = a + h. Let F" (x) be of constant sign in the interval.

In the figure this sign is taken as positive, making the curve concave

upwards. LP, MQ, NR are parallel to the axis of y, M is the

middle point of LN, and SQT is the tangent at Q. OL =a,

M
FIG. 24.

Then the area PLNR lies between that of the trapezium SLNT
and the sum of the areas of the trapezia PLMQ, QMNR.

a+h
That is, 1 F(x)dx lies between

Jo.

say,

and h{F(a)+
(

2F(a + %h)+F(a + h)}=B, say.

In the figure F*(x) is positive and A is the lower limit, B the

upper. If F"(x) were negative, A would be the upper limit and B
the lower.

Phil Mag., June 1919. Most of this paper is reproduced here.



106 DIFFERENTIAL EQUATIONS

As an approximation to the value of the integral it is best to

take, not the arithmetic mean of A and jB, but %B+$A, which is

exact when PQR is an arc of a parabola with its axis parallel to the

axis of y. It is also exact for the more general case when

F (x)
= a + bx + cxa + ex*,

as is proved in most treatises on the Calculus in their discussion of

Simpson's Rule.

92. Extension of preceding results to functions defined by differential

equations. Consider the function defined by

-jx
-/fa, y\ y = b wten x =*<* ;

where /(a?, y) is subject to the following limitations in the range of

values a to a + h for x and b - h to b + h for y. It will be seen from

what follows below that the increment of y is numerically less than h,

so that all values of y will fall in the above range. The limitations

are :

(1) f(x, y) is finite and continuous, as are also its first and second

partial differential coefficients.

(2) It never numerically exceeds unity. If this condition is not

satisfied, we can generally get a new equation in which it is satisfied

by taking y instead of x as the independent variable.

(3) Neither dPy/dx? nor df/dy changes sign.

Let m and M be any two numbers, such that

Then if the values of y when x is a -h JA and a + h are denoted by
b +j and b+k respectively,*

-ift^imft<j<PfA^iA, ........................ (1)

and -h^ mh<Jc<Mh^h......................... (2)

We shall now apply the formulae of the last article, taking y to

be the same function as that defined by
Ca

\Ja
F(x)dx,

fa+h
so that k**\ F(x)dx.

Ja

We have to express the formulae in terms of / instead of F.

Now, -F(a)=-the value of dy/dx when z = a,

so that F(a)-f(a,b).

* The following inequalities hold only if h is positive. If h is negative, they
must be modified, but the final result stated at the end of this article is still true.
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Similarly, F(a + \h) =/(a + \h, b +j),
and F(a+h)=*f(a+h, b+k).

Now, if df/dy is positive, so that/ increases with y, the inequalities

(1) and (2) lead to

f(a + %h,b+%mh)<f(a+%h,b+j)<f(a+%h,b+$Mh), ..... (3)

and /(a + ft, b+mh)<f(a+h, b + k)<f(a + h, b + Mh); ........... (4)

while if dfldij is negative,

/(a + JA, &+iro*)>/(a+|A, 6-fj)>/(a + J*, 6+pf*), ...(5)

and /(a + A, b+mh)>f(a + h, 6-f k)>f(a + h, b+Mh)............ (6)

Thus if F /r

(#)
= (Py/dy? is positive and 9//9y is also positive, the

result of Art. 91,

may tys replaced by p<&<Q, .................................. (7)

where p = hf(a + JA, 6 + JwA)
and Q = JA{/(a, 6) +2/(a + JA, 6 + JMA) -f/(a + A, 6 + MA)} ;

while if J"(x) is positive, and df/dy is negative,

P<k<q, ................................... (8)

where P = hf(a + \h, b + JMA)
and ?

= 4A{/(, 6)+2/(a+JA, 6+mA)+/(a + A, 6+m/i)}.

Similarly, if ^(x) and 9//3y are both negative,

p>k>Q, .................................. (9)

while if F"(x) is negative and 9//9y positive,

P>k>q.................................. (10)

These results may be summed up by saying that in every case

(subject to the limitations on/ stated at the beginning of this article)

k lies between the greatest and least of the four numbers p, P, q, and Q.

As an approximate formula we use &== B +^A, replacing B by

Q or q, and A by p or P.

93. Application to a numerical example. Consider the example
selected by Runge and Kutta to illustrate their methods,

dy y-x , , -.J^z- t/! when z=0.
dx y +35

y

It is required to find the increment k of y when x increases by
0-2. Here/(x, y)

= (y-x)/(y+x). This function satisfies the con-

ditions laid down in the last article.*

We take M=l, ro=(l-0-2)/(l-2+0-2)=4/7.
* As f(x, y) is positive, y lies between 1 and 1-2. When finding M and m we

always take the smallest range for y that we can find. (The conditions m<f<M
can be replaced by m^f^M, without affecting the final result except to replace
some < signs by^ signs.)
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Then p -0-1654321,
P =0-1666667,

q -0-1674987,

Q =0-1690476.

Thus Ic lies between p and Q. Errors.

lQ + lp -0-1678424, 0-0000007

Kutta's value 0-1678449, 0-0000032

Runge's value 0-1678487, 0-0000070

Heun's value 0-1680250, 0-0001833

The second, third, and fourth of these were calculated by Kutta.

Now this particular example admits of integration in finite terms,

giving

log (x
2 + */

2
)
-2 tan-1

(x/y) =0.

Hence we may find the accurate value of k.

Accurate value =0-1678417.

Thus in this example our result is the nearest to the accurate

value, the errors being as stated above.

We may also test the method by taking a larger interval Al.
Of course a more accurate way of obtaining the result would be to

take several steps, say h =0-2, 0-3, and finally 0-5, as Runge does.

Still, it is interesting to see how far wrong the results come for

the larger interval.

We take M-l, w =
(1 -l)/(2 +1) =0.

Then |Q 4-^^=0-50000.

True value - 0-49828, Errors.

Kutta's value =0-49914, 0-00086

Our value =0-50000, 0-00172

Heun's value =0-51613, 0-01785

Runge's value = 0-52381, 0-02553

This time Kutta's value is the nearest, and ours is second.

[For a systematic method of determining M and m, and for

Remes* extension of the method of Arts. 90-93, see Art. 183.

.For Adams' numerical method, perhaps the best of all, see Art,

182.]



CHAPTER IX

SOLUTION IN SERIES. METHOD OF FROBENIUS

94. In Chapter VII. we obtained the solution of several equations
of the form

where P and Q were functions of x.

In every case the solution was of the form

y=af(x)+bF(x) 9

where a and 6 were arbitrary constants.

The functions /(x) and F(x) were generally made up of integra

or fractional powers of x, sines and cosines, exponentials, an<

logarithms, such as
, i i

(l+2x)e
x

, sinz+zcosz, x* -f x
,

x + logx, e
x

.

The first and second of these functions can be expanded b;

Maclaurin's theorem in ascending integral powers of x ; the other

cannot, though the last can be expanded in terms of 1/x.

In the present chapter, following F. G. Frobenius,* of Berlin, w
shall assume as a trial solution

y=tf (ao+ajX-f a<p? + ... to inf.),

where the a's are constants.*)"

The index c will be determined by a quadratic equation calle<

the Indicial Equation. The roots of this equation may be equa
different and differing by an integer, or different and differing by

quantity not an integer. These cases will have to be discusse

separately.

The special merit of the form of trial solution used by Frobeniu

is that it leads at once to another form of solution, involving log c

when the differential equation has this second form of solution.

*
Crelle, Vol. LXXVL, 1873, pp. 214-224.

t In this chapter suffixes will not be used to denote differentiation.

P.D.B. 109 I
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1
As such a function as e

x cannot be expanded in ascending powers
of x, we must expect the method to fail for differential equations

having solutions of this nature. A method will be pointed out by
which can be determined at once which equations have solutions of

Frobenius' forms (regular integrals) and for what range of values

of x these solutions will be convergent.

The object of the present chapter is to indicate how to deal

with examples. The formal proofs of the theorems suggested will

be given in the next chapter.

Among the examples will be found the important equations of

Bessel,* Legendre, and Riccati. A sketch is also given of the Hyper-

geometric or Gaussian equation and its twenty-four solutions.

95. Case I. Roots of Indicial Equation unequal and differing "by a

quantity not an integer. Consider the equation

Put z = a?(a +a1z+<z2#
2 +

),
where a ^0, giving

+a2(c

d?z
and -

Substitute in (1),J and equate the coefficients of the successive

powers of x to zero.

The lowest power of x is of"1
. Its coefficient equated to zero gives

o{2c(c-l)-c}-0,

i.e. c(2c-3)=0, ........................... (2)

* Friedrich Wilholm Bessel, of Minden (1784-1846), was director of the obser-

vatory at K.6ni<jsberg. He is best known by
"
Bessel'B Functions."

Adrian Marie Legendre, of Toulouse (1752-1833), is best known by his " Zonal
Harmonics" or "Legendro's Coefficients." He also did a great deal of work on

Elliptic Integrals and the Theory of Numbers.

Jacopo Francesco, Count Riccati, of Venice (1676-1754), wrote on "
Riccati's

Equation," and also on the possibility of lowering the order of a given differential

equation.
Karl Friedrich Gauss, of Brunswick (1777-1855), "the Archimedes of the

nineteenth century," published researches on an extraordinarily wide range o/

subjects, including Theory of Numbers, Determinants, Infinite Series, Theory of

Errors, Astronomy, Geodesy, and Electricity and Magnetism.

f It is legitimate to differentiate a series of ascending powers of x term by term
in this manner, within the region of convergence. See Bromwich, Infinite Series,

Art. 52.

t Or rather in what (H become* when
ij

is replaced by z.



SOLUTION IN SERIES 111

(2) is called the Indidal Equation.

The coefficient of of equated to zero gives

o
3 {2(c + l)c-(c + l)}0, i.e. ^=0................ (3)

The coefficient of af+1 has more terms in it, giving

i.e. a2(2c + l)+a (0-3)=0......................... (4)

Similarly, a 3(2c + 3)-f o^c-^J-O, ........................ (5)

a4(2c + 5) +a2(c -!)=(), ........................ (6)

and so on.

From (3), (5), etc., 0=a1 a 3 =ai ... a2n+1.

From (4), (6), etc.,

2 C-3 04 C-l

Oo" ~2c+l'
"

But from (2), c=0or|.
Thus, if c=0,

=aw, say,

replacing aQ by a ; and if

^=6v say, replacing (which is arbitrary) by 6 this time.

Thus y^au + bv is a solution which contains two arbitrary con-

stants, and so may be considered the complete primitive.

In general, if the Indidal Equation has two unequal roots a and /3

differing by a quantity not an integer, we get two independent solutions

by substituting these values of c in the series for z.

Examples for solution.

(3)

(4) Bessel's equation of order n, taking 2n as non-integral,
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96. Convergence of the series obtained in the last article. It is

proved in nearly every treatise on Higher Algebra or Analysis that

the infinite series %+ u2 +u 3 + ... is convergent if

Lt <L
n->o>

Now in the series we obtained un
= a2n-2a^

+2n~2
> **&

n-a

and the limit when w->o> is -
Jx

a
, independent of the value of c.

Hence both series obtained are convergent for
|

x
\
< <\/2.

It is interesting to notice that if the differential equation ia

reduced to the form

1

giving in our example p(x) = ~-^A ~\~ X

p(x) and y(x) are expansible in power series which are convergent
for values of x whose modulus

|

x
|
< \/%.

That is, the region of convergence is identical in this example
with the region for which p(x) and q(x) are expansible in convergent

power series. We shall show in Chap. X. that this theorem is true

in general.

Examples for solution.

Find the region of convergence for the solutions of the last set of

examples. Veiify in each case that the region of convergence is identical

with the region for which p(x) and q(x) are expansible in convergent

power series.

97. Case II. Roots of Indicial Equation equal Consider the

equation

Put z ^^(aQ+a^x+a^c
2 + ...),

and after substituting in the differential equation, equate coefficients

of successive powers of x to zero just as in Art. 95.
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We get a {c(c-l)+c}=0,

i.e. c*=0, .................................... (1)

and so on.

Hence

i.e. a1 (c + l)
2 -a (c + 2)

2
=0, ........................ (2)

a2(c+2)
2
-^(0+3)2-0, ........................ (3)

<x
2 (c-f4)

2
===0, ........................ (4)

x + \
... I

J

is a solution if e=0.

This gives only one series instead of two.

But if we substitute the series in the left-hand side of the dif

ferential equation (without putting c=0), we get the single term

a c?3f~l . As this involves the square of c, its partial differential

coefficient with respect to c, i.e. 2a
Q
cxc'1 + a cV" 1

log x, will also

vanish when c = 0.

That is,

lc[(x
"

xZ)^ + (l
~
5x) fx

*
*]*

= 2<V*
C-1 + a^V^loga

As the differential operators are commutative, this may be

written

s .

Hence
-^-

is a second solution of the differential equation, if c is

put equal to zero after differentiation.

Differentiating,

Putting c=>0 and a =a and b respectively in the two series,

and =*bu log x -26{1 . 2x -f 2 . 3#2
-1-3 . 4x8 + ...} <=bvt say.

The complete primitive is au +bv.
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In general, if the Indidal Equation has two equal roots c = a,

we get two independent solutions by substituting this value of c in z and

~-. The second solution will always consist of the product of the

first solution (or a numerical multiple of it) and log x, added to

another series.

Reverting to our particular example, consideration of p(x)
and q(x), as in Art. 96, suggests that the series will be convergent
for

|
x

|
< 1. It may be easily shown that this is correct.

Examples for solution.

<i)(*-*')g
+(i-)g-jr-a

(2) Bessel's equation of order zero

,4)

98. Case III. Roots of Indicial Equation differing by an integer,

making a Coefficient of z infinite. Consider Bessel's equation of order

d*y dy
-

If we proceed as in Art. 95, we find

a
fl{c(c-l)+c-l}=0,

i.e. c"-l=0, ........................ (1)

i.e. Oj-0, (2)

! + 2)
2 -l}+a =0, (3)

It f\ I A \

giving

1

~a#f \\
-
7^ (c + l)(c+3)

2
(c

__ 1 __
(c + l)(c+3)*(c+6)

The roots of the indicial equation (1) are c = 1 or - 1.

But if we put c = - 1 in this series for z, the coefficients become

infinite, owing to the factor (c + 1) in the denominator.
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To obviate this difficulty replace
* a by (c + l)Jc, giving

f 1 1
-faM(c + l)- a? + -.

-
JTT

(c+3)

^ + "T ...... (

and a*j~+s+(x-^
Just as in Case II. the occurrence of the squared factor (c-f l)

a

shows that ~~
,
as well as z, satisfies the differential equation when

c= -1. Also putting c = l in z gives a solution. So apparently we

have found three solutions to this differential equation of only the

second order.

On working them out, we get respectively

2 2 1

and

It is obvious that w => -
4w, so we have only found two linearly

independent solutions after all, and the complete primitive is au + bv.

The series are easily proved to be convergent for all values of x.

The identity (except for a constant multiple) of the series obtained

by substituting c = - 1 and c 1 respectively in the expression for z

is not an accident. It could have been seen at once from relation (4),

If c-1, this gives an {(l +w)
2 -l}+an_2 =0...................... (6)

Ifc--l, an{(-
hence replacing n by n + 2,

l}+0n=0...................... (7)

Thus ["?*] -f^s-l ......................... (8)
L an J i Lan_2Jc=1

As [zjc^-! has or1 as a factor outside the bracket, while [z]c=i has

, relation (8) really means that the coefficients of corresponding
* Of course the condition a ^ is thus violated ; we assume in its place that
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powers of x in the two series are in a constant ratio. The first series

apparently has an extra term, namely that involving ar1
, but this

conveniently vanishes owing to the factor (c + I).

In general, if the Indicial Equation has two roots a and /3 (say

a>/3) differing by an integer, and if some of the coefficients of z became

infinite when c =/3, we modify theform of z by replacing a by k(c-/8).
We then get two independent solutions by putting c=*/3 in the modified

form of z and ~- . The result of putting c a in z merely gives a

numerical multiple of that obtained by putting c/3.

Examples for solution.

(1) Bessel's equation of order 2,

(4)

99. Case IV. Roots of Indicial Equation differing by an integer,

making a coefficient of z indeterminate. Consider the equation

Proceeding as usual, we get

c(c-l)-0, ............... (1)

=0, ............... (2)

-0, ............... (3)

0, ............... (4)

and so on.

(1) Gives c=0 or 1.

The coefficient of al in (2) vanishes when c=0, but as there is no
other term in the equation this makes a^ indeterminate instead of

infinite.

If c = l, %=().

Thus, if c=0, from equations (3), (4), etc.

etc. f
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giving

This contains two arbitrary constants, so it may be taken as the

complete primitive. The series may be proved convergent for

I*KI.
But we have the other solution given by c = l. Working out

the coefficients,

that is, a constant multiple of the second series in the first solution.

This could have been foreseen from reasoning similar to that in

Case III.

In general, if the Indicial Equation has two roots a and /3 (say

a>/3) differing by an integer, and if one of the coefficients of z becomes

indeterminate when c=r/3, the 'complete primitive is given by putting

c=/3 in z, which then contains two arbitrary constants. The result oj

putting c = a in z merely gives a numerical multiple of one oj the series

contained in the first solution.

Examples for solution.

(1) Legendre's equation of order unity,

(1_^_ 2a;^v ' dx* dx

(2) Legendre's equation of order n,

100. Some cases where the method fails. As ex cannot be expanded
in ascending powers of x, we must expect the method to fail in

some way when the differential equation has such a solution. To

construct an example, take the equation -ri-y^Q, of which e*
(IZ

'

-I

and e~z are solutions, and transform it by putting z=-.
x

* TTT i dy dx dt/ 1 dy dy* We have -f = -,-
-

-/-
- -

-f-
-x*

/-
dz dz dx z* dx ax

, d*y dx d /dy\ 9 df 2 %\ .d^y dy
and j-* -j- j -j )= -x2

i (
- x2

-f )
=cc4 -j\ + 2X8 -/-.

dz2 dz dx\dz/ dx\ dx/ dx2 dx
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Hence the new equation is

_..
dx y

If we try to apply the usual method, we get for the indicia!

equation, -a =>0, which has no roots,* as by hypothesis a =f:0.

Such a differential equation is said to have no regular integrals
\ _ i_

in ascending powers of x. Of course e x and e * can be expanded in

.1
powers of -

.

The examples given below illustrate other possibilities, such as

the indicial equation having one root, which may or may not give

a convergent series.

It will be noticed that, writing the equation in the form

in every case where the method has succeeded p(x) and q(x) have

been finite for oj=0, while in all cases of failure this condition is

violated.

For instance, in the above example,

J>(s)-2,

q(x)=* --g, which is infinite if z=0,

Examples for solution.

(1) Transform Bessel's equation by the substitution x = 1/2.

Hence show that it has no integrals that are regular in descending

powers of x.

(2) Show that the following equation has only one integral that is

regular in ascending powers of x, and determine it :

2z)^-2y=0.'dx y

(3) By putting y=*vx
2
(l + 2z) determine the complete primitive of

the previous example.

(4) Show that the following equation has no integral that is regular
in ascending powers of x, as the one series obtainable diverges for all

values of x : fa

(5) Obtain two integrals of the last example regular in descending

powers of x.

Or we may say that it has two infinite roots.
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(6) Show that the following equation has no integrals that are

regular in either ascending or descending powers of x :

[This is the equation whose primitive is

MISCELLANEOUS EXAMPLES ON CHAPTER IX.

(1) Obtain three independent solutions of

* dx a

(2) Obtain three independent solutions, of the form

dz , d*z
*>

We'
and W

of the equation za^ + 3zy^ + (l -z)-~ -t/==0.

(3) Show that the transformation y r-"r~ reduces Riccati's equation

dii

-~-+oy
2 = cxm

ax

to the linear form j^ bcvx.

(4) Show that if y ia neither zero nor an integer, the Hypergeometric

Equation

has the solutions (convergent if \x\ < 1)

F(a, P, y, x) and xl -yF(a -y + 1, /8~y + l, 2-y, x),

where F(a, /3, y, x) denotes the Hypergeometric Series

, , aft

l.y 1.2.y(y + l) 1 . 2 . 3 . y(y + l)(y + 2)

(5) Show that the substitutions #= 1 -z and x l/z transform the

hypergeometric equation into

and (!
-

2) + {(!
- a -^ -

(2
-
y) 2} + afy=0

respectively, of which the first is also of hypergeometric form.
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Hence, from the last example, deduce that the original equation has

the additional four solutions :

(l-x)r *F(y-ft y-a, 1+y-a-ftl-s),
x-"F(a, a + l-y, a + l-ft or1),

and ar0F(ft /3 + 1 -y, /3-f 1 -a, ar1
).

(6) Show that the substitution ^ = (1 -x)
nY transforms the hyper-

geometric equation into another hypergeometric equation if

w = y-a-/3.
Hence show that the original equation has the additional two

solutions :
(i _s)Y--/jF(y _ 0| y _ y,

x)

and xl

-y(l-x)y-*~f*F(l-a, 1-ft 2-y, a?).

[Note. Ex. 5 showed how from the original two solutions of the

hypergeometric equation two others could be deduced by each of the

transformations x=*l-z and x = l/z. Similarly each of the three

1 z z I
transformations x = --

,
x = -, x =- , gives two more, thus making

1 z z J. z

twelve. By proceeding as in Ex. 6 the number can be doubled, giving
a total of twenty-four. These five transformations, together with the

identical transformation x z, form a group ; that is, by performing two
such transformations in succession we shall always get a transformation

of the original set. ]

(7) Show that, unless 2n is an odd integer (positive or negative),

Legendre's equation

has the solutions, regular in descending powers of x,

[The solution for the case 2n = - 1 can be got by changing x into

ar1 in the result of Ex. 4 of the set following Art. 97.]

(8) Show that the form of the solution of Bessel's equation of

order n depends upon whether n is zero, integral, or non-integral,

although the difference of the roots of the indicial equation is not n

but 2n.



CHAPTER X

EXISTENCE THEOREMS OF PICARD, CAUCHY,f AND
FROBENIUS

101. Nature of the problem. In the preceding chapters we have

studied a great many devices for obtaining solutions of differential

equations of certain special forms. At one time mathematicians

hoped that they would discover a method for expressing the solution

of any differential equation in terms of a finite number of known
functions or their integrals. When it was realised that this was

impossible, the question arose as to whether a differential equation
in general had a solution at all, and, if it had, of what kind.

There are two distinct methods of discussing this question.

One, due to Picard, has already been illustrated by examples

(Arts. 83 arid 84). We obtained successive approximations,
which apparently tended to a limit. We shall now prove that

these approximations really do tend to a limit and that

this limit gives the solution. Thus we shall prove the exist-

ence of a solution of a differential equation of a fairly general

type. A theorem of this kind is called an Existence Theorem.

Picard's method is not difficult, so we will proceed to it at once

before saying anything about the second method. It must be

borne in mind that the object of the present chapter is not to

obtain practically useful solutions of particular equations. Our

aim now is to prove that the assumptions made in obtaining

these solutions were correct, and to state exactly the conditions

that are sufficient to ensure correctness in equations similar to

those treated before, but generalised as far as possible.

* This chapter should be omitted on a first reading.

t Augustn Louis Ciuchy. of Paris (1789-1857), may be looked upon as the

creator of the Theory of Functions and of the modern Theory of Differential Equa-
tions. He devised the method of determining (Jefinjte integrals by Contest

Integration.

121
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102. Picard's method of successive approximation. If - ?
=/($, y}

and j/=6 when x = a, the successive approximations for the value

of y as a function of x are

IX
f(x, b)dx = yly say

a

fJC.

b + \ f(xy y^dx=*y& say, and so on.
Ja

We have already (Arts. 83 and 84) explained the application of

this method to examples. We took the case where /(x, y)*=x+y*z

fr=a=0, and found

These functions appear to be tending to a limit, at any rate for

sufficiently small values of x. It is the purpose of the present

article to prove that this is the case, not merely in this particular

example,, but whenever f(x, y) obeys certain conditions to be

specified.

These conditions are that, after suitable choice of the positive

numbers h and k, we can assert that, for all values of x between

a - h and a + ft, and for all values of y between b-k and 6 -f k, we

can find positive numbers M and A so that

(i) \f(*,y)\<M,

(ii) \f(x,y)-f(x,y')\<A\y-y'\ 9 y and y' being any two

values of y in the range considered.

In our example/(x, y) =x -f y
2

,
condition (i) is obviously satisfied.

taking for M any positive number greater than |a |
+4 + {|

6
1

so condition (ii) is also satisfied, taking ^t = 2(| 6| +k).

Returning to the general case, we consider the differences between

the successive approximations.

f*
\

Ja
f(x, b)dx, by definition,

a

but \f(x, b) |
< M, by condition (i),

*.. <M\x-a\<Mh (1)
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f
*

f
*

Also ya
-
yl =6 + 1 /(x, yi)dx

- b - I /(x, b)dx, by definition,
Ja Ja

f*

but |/(x, 2/x) -/(x, 6) |
< 4

| yl
- b

\
, by condition (ii),

<AM |x-a |, from (1),

f*
Bo|y2 ~"yil< I AM(x a)dx.

Ja
, i.e. -

Similarly, | yn
-
yn_, |

< ^}

MAn~lhn (3)

Now the infinite series

is convergent for all values of A, A, and M.
Therefore the infinite series

each term of which is equal or less in absolute value than the corre-

sponding term of the preceding, is still more convergent.
That is to say that the sequence

and so on, tends to a definite limit, say Y(x), which is what we
wanted to prove.

We must now prove that Y satisfies the differential equation.

At first sight this seems obvious, but it is not so really, for we
must not assume without proof that

Lt I f(x 9 yn-i)dx= f(x, Lt yn-i)dx.
n->ooJa Ja n->

The student who understands the idea of uniform convergence
will notice that the inequalities (1), (2), (3) that we have used to

prove the convergence of our series really prove its uniform con-

vergence also. If, then, f(x, y) is continuous, yl9 y2 , etc., are

continuous also, and Y is a uniformly convergent series of con-

tinuous functions; that is, Y is itself continuous,* and Y-yn_i

tends uniformly to zero as n increases.

Hence, from condition (ii), f(x, Y)-f(x 9 2/n-i) tends uniformly

fco zero.

* See Bromwich'e Infinite Series, Art. 46.
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From this we deduce that

{f(x, Y) -f(x, ?/_!)} tends to zero.
Ja

Thus the limit of the relation

y = & + f(*> Vn-i)dx
J a

is Y=b
f

therefore* -r- =f(x, Y), and Y b when x=*a.

This completes the proof.

103. Cauchy's method. Theorems on infinite series required.

Cauchy's method is to obtain an infinite series from the differential

equation, and then prove it convergent by comparing it with another

infinite series. The second infinite series is not a solution of the

equation, but the relation between its coefficients is simpler than

that between those of the original series. Our first example of this

method will be for the simple case of the linear equation of the first

order dii , .

dx pW' y'

Of course this equation can be solved at once by separation ol

the variables, giving

However, we give the discussion by infinite series because it is

almost exactly similar to the slightly more difficult discussion of

d*y / x dy-

and other equations of higher order.

We shall need the following theorems relating to power series.

The variable x is supposed to be complex. For brevity we shall

denote absolute values by capital letters, e.g. A n for \an \.
00

(A) A power series ^ anx
n is absolutely convergent at all

o

points within its circle of convergence J
x

\

R.

(B) The radius R of this circle is given by
1 _ T4- ^n+l
7?~ ~A~~*n -> --n

provided that this limit exists.

* When differentiating the integral, the student should remember that the

integral varies solely in consequence of the variation of ita upper limit.
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~l
, within |

x
\
- R.

(D) If we have two power series, then for points within the

circle that is common to their circles of convergence,

(2?) If ^ an#
n =*2 ^nX

" ^or a^ va^ues f x within the circle

|#|=JB, then an =bn .

(F) An < MR~n
, where M exceeds the absolute value of the

sum of the series at points on a circle |x|=J? on which the series

is convergent.

Proofs of these theorems will be found in Bromwich's Infinite

Series :

A in Art. 82 [Art. 84 in 2nd ed.],

B is an obvious deduction from D'Alembert's ratio test, Art. 12,

C in Art. 52 [Art. 12 becomes Art. 12-2 in 2nd ed.],

D 54,

E 52,

F 82 [Art. 84 in 2nd ed.].

Two theorems on uniform convergence will be required later on,

Out we will defer these until they are needed.

dy
104. * Convergence of the solution in series of =3 yp(x). Let

ox

p(x) be capable of expansion in a power series 2 Pnx
" which is

o

convergent everywhere within and on the circle
|
x

\
JZ. We shall

00

prove that a solution y ^ anx
" can ^e obtained which is

convergent within this circle.

Substituting in the differential equation, we obtain

V najr* -2 a x"S P x" (Theorem C)00
**

(anPo + an~iPi + n-zPa + + aoPn)
n

. (Theorem D)

Equating the coefficients of a?*-1, (Theorem E)

n^1............. (1)

Revise Art. 7 before reading the following.

P.D.I. K
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Hence for the absolute values of the a's andp's, denoted by the

corresponding capital letters, we get

nAn^An_lPQ +A n^P1 +An_ 3P2 + ...+A Pn_1 .......... (2)

Let M be a positive number exceeding the absolute value of

5 (x) on the circle
|
x

\

=
22,

ihen Pn < MR- ; ......... (3) (Theorem F)
therefore, from (2) and (3),

Define Bn (n> 0) as the right-hand side of (4), and define

5 as any positive number greater than A ; then An < Bn .

M
But (A^ +An_2R~i +An_ 3R~* + ...

Hence, defining Bn as above,

B -M A + (n -
*.- n-^.-i+-

-

n

A
whence, dividing by Bn_ and using k for -~

, so that ^ A < 1,

thence Lt

Mk 1 _ 1

n"
+

fi wB
7? -I

n

Therefore the series V Bnx
n is convergent within the circle

x\=R. ^
(Theorem B.)

00

Still more therefore is the series 2 anxn convergent within the
o

ame circle, since An < Bn .

The coefficients alf a2 , ... can all be found from (1) in terms of

he y's, which are supposed known, and the arbitrary constant a .

105. Remarks on this proof. The student will probably have

ound the last article very difficult to follow. It is important not

o get confused by the details of the work. The main point is this.

A 1
e should like to prove that Lt ^-==- . Unfortunately the

n->oo^n~l ^
elation defining the A'B is rather complicated. We first simplify
t by getting rid of the n quantities P , Plf ... P^_l9 Still the
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relation is too complicated, as it involves n A's. We need a simple

relation involving only two. By taking a suitable definition

of Bn we get such a relation between Bn and Bn^19 leading to

Lt
B - l

*A ~D
--

T>
'

^ao#n~l K
We repeat that the object o*f giving such a complicated dis-

cussion of a very simple equation is to provide a model which the

student can imitate in other cases.

Examples for solution.

(1) Prove that, if p(x) and q(x) can be expanded in power series

convergent at all points within and on the circle X = R, then a power
series convergent within the same circle can be found in terms of the

first two coefficients (the arbitrary constants) to satisfy

[Here

Hence, if M is any number exceeding the absolute values of both

p(x) and q(x) at all points on the circle X=Ry

M
<~(l

Define the right-hand side of this inequality as Bn and then proceed
as before.]

(2) Prove similar results for the equation

106. Frobenius' method. Preliminary discussion. When the

student has mastered the last article, he will be ready for

the more difficult problem of investigating the convergence of

the series given by the method of Frobenius. In the preceding

chapter (which should be thoroughly known before proceeding

further), we saw that in some cases we obtained two series

involving only powers of x, while in others logarithms were

present.

The procedure in the first case is very similar to that of the last

article. But in the second case a new difficulty arises. The series

with logarithms were obtained by differentiating series with
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respect to a parameter c. Now differentiation is a process of taking
a limit and the summation of an infinite series is another process

of taking a limit. It is by no means obvious that the result will

be the same whichever of these two processes is performed first,

even if the series of differential coefficients be convergent.

However, we shall prove that in our case the differentiation is

legitimate, but this proof that our series satisfy conditions sufficient

to justify term-by-term differentiation is rather long and bewildering.

To appreciate the following work the student should at first

ignore all the details of the algebra, concentrating his attention on

the general trend of the argument. When this has been grasped,

he can go back and verify the less important steps taken for granted

on a first reading.

107. Obtaining the coefficients in Frobenius' series when the roots

of the indicial equation do not differ by an integer or zero. Consider

the expression

where p (x) and q (x) are both expansible in power series ^ Pr$*
* o

and 2 ?n#
n which are convergent within and on the circle

|
x

|

= fi.

a

We are trying to obtain a solution of the differential equation

If y is replaced by of f] anx (with a =0), $ (x, y, -,
becomes u

oo

^anaf+
n
{(c + n) (c + n - 1) -(c + n)p (x)- q (x)}

oo

=S 9ntf+
n

, say,
o

where g = a {c (c
- 1 )

- pQc
-
qQ }

and ?n = n{(c + n)(c + n-l)-j) (c4-n)-? }

-n-i (Pi (c + n -
1) +ql } -an_2 {p2 (c + n -2) +

... -aQ (pnc+qn ).

For brevity, denote

c(c-l)-y c-y by/(c),

so that (c + n) (c + n-l)-p (c + n)-g =/(c-ftt),
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Then n ~0if

+ an_a {p2 (c + n -
2) + &}

+ ...+a (W + gn).......... (2)

If we can choose the a's so that all the #'s vanish, and if the
00

Beries ^J an^
n 8 obtained is convergent, a solution of (1) will have

been obtained.

Now as a ^0, g^^O gives

c(c-l)- Poc-qQ =Q............................ (3)

This is a quadratic equation in c, and is called the Indicial

Equation.

Let its roots be a and ft.

If either of these values is substituted for c in the equations

?i "O* ffi^O, ffs^O, > values for Oj, a2, a3 ,
... are found in the form

an -aj>n (c)l[f(6 + n)f(e + n-l) .../(c + 1)], ............ (4)

where hn (c) is a polynomial in c. The student should work out the

values of a, and aa in full if he finds any difficulty at this point.

The process by which an is obtained from (2) involves division

by / (c + n). This is legitimate only when / (c + n)=f=0.

Now as /(c) (c
-
a) (c

-
/3),

/(c + n)=(c + n-a) (c + n-/J),

BO /(a+n)=*n(a+n-/3), .............................. (5)

and /(/3+n)n(/3+n-a)............................... (6)

Thus, if a and ft do not differ by an integer, the divisors

cannot vanish, so the above process for obtaining the a's is satis-

factory. If a/3, only one series is obtained.

108. Convergence of the series so obtained. Let M be a positive

number exceeding the absolute values of p(x) and q(x) at all points
on the circle |a;| =B.

Then P9<MR~*
and Q8<MR-'9

BO that \p8 (c 4-n - s) +qs
\
< M(C + n - s + !)#-*.

From these inequalities and from (2),

A n<M{An_l(C+n)R-* 4- ... +A a(C + l)R-}IF(c +n), ...(7)

say A n<Bn , denoting the right-hand side of (7) by Bn . This

defines Bn if n>0. Define B as any positive number greater
than A . This definition of Bn gives

Bn+iF( +*+ 1)
-BnF(c + n)R~

l ~AnM(C+n
- kBnM(C + n + IJfi-

1
, where ^ i < 1,
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, Bn+l _ F(c -f n) + JcM(C + n + 1)
so that -- -

>

-
>

~
y | +JcM(C-

#|(c-f n + l)(c-fn) ~PO(C + n+1) -ry |

Now for large values of n the expression on the right approaches

the value nz ^

Thus Lt^-i.

Therefore the series ^ ^n^" an(i 8tiH more the series V ancc"
o o

converges within the circle \x\
= R.

Thus, when and /3 do not differ by an integer, we get two

convergent infinite series satisfying the differential equation.

109. Modification required when the roots of the indicia] equation

differ by zero or an integer. When a and
/3 are equal, we get one

series by this method.

When a and ft differ by an integer, this method holds good
for the larger one, but not for the smaller, for if a -/3 =r (a positive

integer)/ then from (5) and (6)

/(a + n)
= n(a +n -ft) ^n(n -f r),

but / (ft + n)
=
n(/3 +n-a)=n(n- r),

which vanishes when n = r
y giving a zero factor in the denominator

of ar when c =/3. As exemplified in Arts. 98 and 99 of the preceding

chapter, this may give either an infinite or indeterminate value for

some of the a's. This difficulty is removed by modifying the form

assumed for y, replacing a by k(c-fi). This will make a
,
a

l9 ...
,

r-i all zero and ar ,
ar+1 , ... all finite when c is put equal to ft. This

change in the form assumed for y will not alter the relation between

the as, and so will not affect the above investigation of convergence.

110. Differentiation of an infinite series with respect to a parameter

c, the roots of the indicial equation differing by an integer. In Art. 107

we obtained an infinite series af^anx
n

, where the a's are functions
o

of c. As in the preceding chapter, we have to consider the

differentiation of this series with respect to c, c being put equal to

the smaller root ft after the differentiation.
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Now while this differentiation is being performed we may con-

sider x as a constant. The series can then be considered as a series

oo

of functions of the variable c, say ^w(c)> where

= tf+najin(c)l[f(c+ri)f(c + n-l) .../(c + 1)], from (4),

where a =
fc(c-/3) and the factor (c-ft) is to be divided out if it

occurs in the denominator.

Now Goursat (Cours <TAnalyse, Vol. II. 2nd ed.* p. 98) proves
that if (i) all the i//s are functions which are analytic and holo-

morphic within a certain region bounded by a closed contour and

continuous on this contour, and if (ii) the series of \]/s is uniformly

convergent on this contour, then the differentiation term by term

gives a convergent series whose sum is the differential coefficient

of the sum of the original series.

For the definitions of holomorphic and analytic, sec the beginning

of Vol. II. of Goursat. It will be seen that the \//s satisfy these

definitions and are continuous as long as we keep away from values

of- c that make them infinite. These values are a -
1, ft -I, a- 2,

$ -2, etc. To avoid these take the region inside a circle of centre

c=/3 and of any radius less than unity.

We shall now prove that the series is uniformly convergent

everywhere inside this region. This will prove it is uniformly

convergent on the contour of a similar but slightly smaller region

inside the first.

Let 5 be a positive integer exceeding the largest value of C within

the larger region.

Then for all values of c within this region, for values of n exceed-

ing 5,

F(c + n)
= \(c+ri)(c + n -1) -PQ(C + U) -<? | > by definition of F,

g , as \u-v\ > \ u\
-

\ v\,

, as P <M and Q < M,

> nz +In + J, say, where 7 and J are independent o

n, x. or c........................................ (8)

For sufficiently great values of n, say n > w, the last expression

ts always positive.

Let // denote the maximum value of

M[Am^(C +m)R~l +Am^(C +m- 1)R~* + ... +A (C + !)#
m
] (9)

for all the values of c in the region.
*

p. 96 in 4th ed*
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Then if Em be any positive number greater than J5m , and, if,

for values of n > m, En be defined by
/rf < f/j I 9 -4- Vt I J\ ~* -4- r? ( Q -I- VYL I 1 ^ Tr'^fl'f^W \ J. // 7?~*W"f^W

|jt
ZIUL

i^
XV

j 1 \v i 'w I ** i *-'m\" ' "* ' * ) "' J ' ** **' /T /\\
n

n2 +/n+<7 * (1U)

so that Bm+1 ^:
which has a numerator greater than and a denominator less than

those of Bm+ly from (8), (9), and the definition of Bn as the right-

hand side of (7), we see that

Similarly En> Bn for all values of w> m.
Tji 1

From (10) we prove Lt -fr^r*- This piece of work is so
n->< ti n **

similar to the corresponding work at the end of Art. 108 that we

leave it as an exercise for the student.
CO

Hence VUJRj11 is convergent if R < R.

Therefore within the circle
|

x
\
=*Rl and within the region

specified for c,

This shows that 2anxc+n satisfies Weierstrass's M-test for uniform

convergence (Bromwich, Art. 44), as Rl9 5, and the E'& are all inde-

pendent of c.

This completes the proof that 2^>

n =2on
c+fl satisfies all the

conditions specified, so the differentiation with respect to c is now

justified. This holds within the circle \x\ ^R^ We can take R^

great enough to include any point within the circle \x\ =R.

If the roots of the indicial equation are equal instead of differing

by an integer, the only difference in the above work is that a is

not to be replaced by &(c-/3), as no (c-/3) can now occur in the

denominator of an .

[For a supplement to Chaps. IX. and X. see Arts. 171-177. They
deal with regular integrals, Fuchs' theorem, ordinary and singular

points, equations of Fuchsian type, characteristic index, normal and

subnormal integrals.]



CHAPTER XI

ORDINARY DIFFERENTIAL EQUATIONS WITH THREE
VARIABLES, AND THE CORRESPONDING CURVES AND
SURFACES

111. We shall now consider some simple differential equations

expressing properties of curves in space and of surfaces on which

these curves lie, or which they cut orthogonally (as in Electro-

statics the Equipotential Surfaces cut the Lines of Force ortho-

gonally). The ordinary
* differential equations of this chapter are

closely connected with the partial differential equations of the

next.

Before proceeding further the student should revise his solid

geometry. We need in particular the fact that the direction-cosines

of the tangent to a curve are

(dx dy dz

\dsW? ds'

i.e. are in the ratio dx:dy: dz.

Simultaneous linear equations with constant coefficients have

already been discussed in Chapter III.

112. The simultaneous equations ^ =
^r
= ^- These equationsr Q R

express that the tangent to a certain curve at any point (x, y, z)

has direction-cosines proportional to (P, Q, R). If P, Q, and R are

constants, we thus get a straight line, or rather a doubly infinite

system of straight lines, as one such line goes through any point of

space. If, however, P, Q, and R are functions of x, y, and z, we get

a similar system of curves, any one of which may be considered as

generated by a moving point which continuously alters its direction

*
i.e. not involving partial differentia] coefficients.

133
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of motion. The Lines of Force of Electrostatics form such a

system.*

Bz. (i).
-- .................................. (1)

Obvious integrals are x-z = a, .................................... (2)

y--6..................................... (3)

the equations of two planes, intersecting in the line

which by suitable choice of the arbitrary constants a and b can be made
to go through any given point, e.g. through (/, g, h) if a=f-h and

6-0-A..
Instead of picking out the single line of the system that goes through

one given point, we may take the infinity of such lines that intersect

a given curve, e.g. the circle x2 +
2/
2 = 4, 2 = 0.

The equations of this circle, taken together with (2) and (3), give

and hence a* + 62 = 4 ..................................... (5)

This is the relation that holds between a and b if the line is to inter-

sect the circle. Eliminating a and b from (2), (3), and (5), we get

the elliptic cylinder formed by those lines of the system which meet
the circle.

Similarly the lines of the system which meet the curve

0(s,y)-o, s=o

form the surface
<f> (x

-
z, y

- z) = 0.

Ex.(ii). 7-7?-^ .................................. (6)

Obvious integrals are a?
2
-f z2 a, .................................... (7)

V = b........................................ (8)

a right circular cylinder and a plane that cuts it in a circle.

The differential equations therefore represent a system of circles,

whose centres all lie on the axis of y and whose planes are all perpen-
dicular to this axis.

One such circle goes through any point of space. That through
(/> 9, h) is X 2 + 22^2 + h*

9 y =sgt

A surface is formed by the circles of the system that intersect a

given curve.

*The equations of the lines of force are dx/^- =dy/'S-^d*/S^ t where
y is the potential function. I o* / W / d*
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If the given curve is the hyperbola

--'. -.
(7) and (8) give, for a circle intersecting this hyperbola,

xa =a, y = b,

a 6a

and hence

Eliminating a and 6 from (7), (8), and (9), we get the hyperboloid
of one sheet, X2 + zz 2

formed by those circles of the system that intersect the hyperbola.

Similarly, starting from the curve 0(z
2

, t/)=0, 2=0, we get the

surface of revolution 0(x
2

-f- 22, t/)=0.

113. Solution of such equations by multipliers. If

dx _dy _dz
~p-~Q-~R'

each of these fractions is equal to

Idx + mdy+ndz~~

This method may be used with advantage in some examples to

obtain a zero denominator and a numerator that is an exact

differential, or a non-zero denominator of which the numerator is the

differential.

Ex (i)

dx = dy = dZ
' v;

z(x-y) x2 + y*'

^ . f . xdx-ydy-zdz xdx-ydy-zdz
Each fraction = .

----r~\ nr~ '
*"\

=- A
---

xz(x + y)- yz(x -y)- z(x* + y
z
)

therefore x dx - y dy
- z dz = 0,

i.e. #2
y
2 - z

2 = a.

Similarly ydx + xdy-zdz=*Q,

i.e. 2xy -z
z =*b.

.

I+y l+x z

dz dx + dy dx-dy= -- ==--
,

z 2+x+y y-x

giving log2 = log(2 + o; + 2/)
+ loga= -log(x-!/) +log6,

t.0. a(2 + x + y) =&/(
-

y).
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Examples for solution.

Obtain the system of curves, denned by two equations with an

arbitrary constant in each, satisfying the following simultaneous dif-

ferential equations. Interpret geometrically whenever possible.

^-^ ^? (9\
^ dy dz

x y z* mz-ny nx-lz ly-mx'

/rt . dx dy dz .. dx dv dz
'*) ,. . 2 ~2=ikr.= r*^' (V ~

z ~w^*
dx dy dz xdx dy dz

(5) == = (6) ~z ^ o = s sa .

y + z z + x x + y z2 -2yz-y
2

y + z y-z

(7) Find the radius of the circle of Ex. 2 that goes through the

point (0, -n, m).

(8) Find the surface generated by the curves of Ex. 4 that intersect

the circle y
2 + z2 = 1 , xQ.

(9) Find the surface generated by the lines of Ex. 1 that intersect

the helix x2 + y
2 = r2

,
z=*k tan-1 -

x

(10) Find the curve which passes through the point (1, 2, -1) and

is such that at any point the direction-cosines of its tangent are in the

ratio of the squares of the co-ordinates of that point.

114. A second integral found by the help of the first. Consider the

equations dx dy dz

An obvious integral is y+2x=a (2)

Using this relation, we get

dx _ dz

T ~3z2 sma'

giving z -x3 sin a =6.

Substituting for a, z-x*ain(y +2#)=6 (3)

Is (3) really an integral of (1) ?

Differentiating (3),

{dz
- 3x2dx sin (y + 2x)}

- * cos (y + 2x) . {dy + 2 dx} 0,

which is true in virtue of (1). So (3) is an integral.

Examples for solution.

dx dy dz /0 dx dy dz

1

"*

3 "Sz + tanfy-Sx)' %**-%**>

^
xy y

2
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115. General and special integrals of simultaneous equations. li

w = a and v~b are two independent integrals of the simultaneous

equations fa fy fa

T~Q=R'
then

<j>(u, v)=0 represents a surface passing through the curves of

the system, and should therefore give another solution, whatever

the form of the function
</>.

An analytical proof of this is reserved for the next chapter, as

its importance belongs chiefly to partial differential equations.

<f>(u, v)=0 is called the General Integral. Some simultaneous

equations possess integrals called Special, which are not included in

the General Integral.

Examples for solution.

(1) In the Ex. of Art. 113 u~x*-y*-z* and v~2xy-z2
, so the

General Integral is 0(z
2
-t/

2 - 2
, 2xt/-3

a)0. The student should

verify this in the simple cases where

<f>(u, v)~u-v or <t>(u,v)=

(2) Verify that for the equation

dx dy dz
"

the General Integral may be taken as

while z**x + y is a Special Integral.

116. Geometrical interpretation of the equation

Pdx+Qdy+Rdz = 0.

This differential equation expresses that the tangent to a curve

is perpendicular to a certain line, the direction-cosines of this tangent
and line being proportional to (dx, dy, dz) and (P, Q, R) respectively.

But we saw that the simultaneous equations

dx_dy _dz
P^-R

expressed that the tangent to a curve was parallel to the line (P, Q, R).

We thus get two sets of curves. If two curves, one of each set,

intersect, they must intersect at right angles.

Now two cases arise. It may happen that the equation

Pdx+Qdy+Rdz~Q
is integrable. This means that a family of surfaces can be found,

all curves on which are perpendicular to the curves represented by
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the simultaneous equations at all points where these curves cut the

surface. In fact, this is the case where an infinite number of surfaces

can be drawn to cut orthogonally a doubly infinite set of curves,

as equipotential surfaces cut lines of force in electrostatics. On the

other hand, the curves represented by the simultaneous equations

may not admit of such a family of orthogonal surfaces. In this

case the single equation is non-integrable.

Ex. (i) . The equation

integrates to

a family of parallel planes.
We saw in Ex. (i) of Art. 112 that the simultaneous equations

dx ^ dy _ dz

T'T^T
represented the family of parallel lines

x-a y-b z__ _ -.

The planes are the orthogonal trajectories of the lines.

Ex. (ii). zdx-xdz=09

, dx dz .

i.e. -0
x z

integrates to z = ex,

a family of planes passing through the axis of y.

We saw in Ex. (ii) of Art. 112 that the corresponding simultaneous

equations dx _dy __
dz

~z

=S

!)*
:S

~x

represented a system of circles whose axes all lie along the axis of y,

so the planes are the orthogonal trajectories of the circles.

Examples for solution.

Integrate the following equations, and whenever possible interpret

the results geometrically and verify that the surfaces are the orthogonal

trajectories of the curves represented by the corresponding simultaneous

equations :

(1) xdx + ydy + zdz**Q.

(2) (y
2 + z2 -x*)dx- 2xy dy

- 2xz dz - 0. [Divide by x2
. ]

(3) yzdx + zxdy + xydz=*Q. (4) (y + z)dx + (z + x)dy + (x + y)dz**Q.

(5) z(ydx-xdy)**y*dz. (6) xdx + zdy + (y + 2z)dz = 0.

117. Method of integration when the solution is not obvious. When
an integrable equation of the form
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cannot be solved by inspection, we seek for a solution by considering

first the simpler case where z is constant and so dz =0.

For example, yzdx +2zxdy -3xydz=Q becomes, if z is constant,

giving xy
2 =a.

As this was obtained by supposing the variable z to be constant,

it is probable that the solution of the original equation can be

obtained by replacing the constant a by some function of z, giving

xy*=f(z)

leading to y
2dx + 2xy dy - ~- dz = 0.

This is identical with the original equation if

Jf
y
2

2xy __
dz

yz 2zx -
3xy

df 3xy* 3/(z)
f.e. -y-

=*- = ----
9

dz z z

df_3dz

giving the final solution xy
2 =cz3

.

For a proof that this method holds good for all integrable

equations, see Art. 119.

Examples for solution.

(1) yz log z dx - zx log zdy + xy dz =0.

(2) 2yzdx + zxdy-xy(l+z)dz = Q.

(3) (2x* + 2xy + %xz* + l)dx + dy + 2zdz**Q. [N.B. Assume x con-

stant at first. ]

(4) (y
2 + yz) dx + (zx + z2

) dy + (y
2 -

xy) dz = 0.

(5) (x
2
y -y

3 -
y
2
z) dx + (xy

2 - x2z - a?
3
) dy + (xy

2 + x2
y) dz =0.

(6) Show that the integral of the following equation represents a

family of planes with a common line of intersection, and that these

planes are the orthogonal trajectories of the circles of Ex. 2 of the set

following Art. 113 :

(mz - ny) dx + (nx
-

Iz) dy + (ly- mx) dz = 0.

118. Condition necessary for an equation to be integrable. If

Pdx+Qdy+Rdz=Q ........................... (1)

has an integral ^ (xy y, z)
=

c, which on differentiation gives

-
dg+?fdz-0,y

dz
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a^ a-L a^
then

Multiply equations (2), (3), and (4) by P, Q, and R respectively,

and add. We get

If the equation (1) is integrable, this condition must be satisfied.

The student familiar with vector analysis will see that if P, Q, R
are the components of a vector A, the condition may be written

A. curl A =0.

Ex. In the worked example of the last article,

yz dx + 2zx dy - 3xy dz = 0,

The condition gives

yz(2x + 3x) + 2zx( -3t/- 1/) -3xy(z-2z) =0,

i.e. 5xyz
-
Sxyz -f Sxyz 0,

which is true.

Examples for solution.

(1) Show that the equations in the last two sets of examples

satisfy this condition.

(2) Show that there is no set of surfaces orthogonal to the curves

given by efo dy dz

z x + y I
'

* 119. The condition of integrability is sufficient as well as necessary.

We shall prove that the condition is sufficient by showing that

when it is satisfied the method of Art. 117 will always be successful

in giving a solution.

We require as a lemma the fact that if P, Q, R satisfy the con-

dition, so also do P1 =XP, Ql =XQ, R1 =Xfi, where X is any function

of x, y, and z. We leave this as an exercise to the student.

To be omitted on a first reading.
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The method of procedure is to eliminate one of the variables and
its differential, say z and <fe, from these two equations and the differ-

ential of the second of them.

Differentiating (2), 2dx -dy-dz=*Q.

Multiplying by x and adding to (1),

(y + 2x) dx + (z-x-y)dy=*Q,
or using (2), (y + 2x)dx + (x-2y~l)dy = 0,

which gives xy + x*-y
2 -y c2............................... (3)

Thus the curves of the family that lie in the plane (2) are the sections

by that plane of the infinite set of rectangular hyperbolic cylinders (3).

The result of this example could have been expressed by saying
that the projections on the plane of xy of curves which lie in the plane

(2) and satisfy equation (1) are a family of concentric, similar and

similarly situated rectangular hyperbolas.

Examples for solution.

(1) Show that there is no single integral of dz =* 2y dx -f x dy.

Prove that curves of this equation that lie in the plane z = x y lie

also on surfaces of the family (x
-

l)
2
(2y

-
1) =c.

(2) Show that the curves of

that lie on the ellipsoid

lie also on the family of concentric spheres

x 2 + y
2 + z2 = k*.

(3) Find the orthogonal projection on the plane of xz of curves

which lie on the paraboloid 3z = x2 + y
2 and satisfy the equation

2dz = (x + z) dx + y dy.

(4) Find the equation of the cylinder, with generators parallel to

the axis of y, passing through the point (2, 1, -1), and also through a

curve that lies on the sphere xz
-f y

2 + z2 ** 4 and satisfies the equation

(xy -f 2xz) dx -f y
2
dy + (#

a
-f yz) dz = 0.

MISCELLANEOUS EXAMPLES ON CHAPTER XI.

dx <fy dzm
{ '

~

(4)

xy' y*x-2x* 2y*
-
x*y $z (x*

~
y*Y

dz
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(5) (2x+y* + 2xz)^
+
2xy^+x*ji*~l.

(6) Find f(y) if f(y) dx-zxdy-xy log y dz is Integrable.

Find the corresponding integral.

(7) Show that the following equation is not integrable :

3y dx + (z
-
3y) dy + xdz*=Q.

Prove that the projection on the plane of xy of the curves that

batisfy the equation and lie in the plane 2x + y-~z = a are the rectangular

hyperbolas X2 +3^ _
^2
_^ ^^

(8) Find the differential equations of the family of twisted cubic

curves y = ax 2
; y

2 = bzx. Show that all these curves cut orthogonally
the family of ellipsoids

(9) Find the equations of the curve that passes through the point

(3, 2, 1) and cuts orthogonally the family of surfaces x + yz
= c.

(10) Solve the following homogeneous equations by putting x uz,

y=*vz:

(i) (x
z -

1/

2 - 21 -f 2xy 4- 2xz) dx 4- (y*
- z2 - x2 + 2yz + 2yx) dy

(ii) (2xz
-

yz) dx 4- (2yz
-

xz) dy
-
(z

a -

(iii) z 2dx + (z
2 -

2yz) dy + (2^/
2 -

yz
-
xz} dz = 0.

(11) Prove that if the equation

P ldx l

is integrable, then

9P. dP
t
\

(dP, dP,\ dPr dP.

t

~
dx.)

'
\dxr

~
dx

t

where r, 5, t are any three of the four suffixes 1, 2, 3, 4.

Denoting this relation by Cr8t =Q, verify that

^234 ~ ^2 <?i34 + PzCiz*
~ ^123 =

identically,

showing that only three of these four relations are independent.

Verify that these conditions are satisfied for the equation

(Xj
3 - Z2 3z4 )

dx
1 + (x2

3 - x
t
za :r4 )

dx.2

4- (x3
3 - x^x^ dji'z + (#4

3 -
^0^2X3) dx =0.

(12) Integrate the equation of Ex. 11 by the following process :

(i) Suppose a?3 and x4 constant, and thus obtain

a?!
4
4- 2

4 ~
^XyX2xzx^ = a.

(ii) Replace a by /(a?8,
o?4). By differentiation and comparison with

df df
the original equation obtain ~

, ~, and hencey and the solution

a?!
4

4- a?2
4
4- a?8

4
4- a;4

4 - 4g
1
x
> 8&4 - o.
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(13) Integrate the equation of Ex. 11 by putting x^ux^ x
2
^vxit

Xs WXi>

(14) Show that the following equation satisfies the conditions of

integrability and obtain its integral :

y sin w dx + x sin w dy
-
xy sin wdz-xy cos w dw = 0.

(15) Show that the equation

adx* + b dy* + cdz* + 2fdy dz + 2g dz dx + %h dx dy^Q
reduces to two equations of the form

Pdx+Qdy + Rdz^Q
if ale + 2fgh

-
of

2 -
lg

2 - ch2 => 0. (Cf . a result in Conies.)

Hence show that the solution of

xyz (dx
2 + dy

2 + dz 2
) + x(y

2 + z 2
) dydz + y (z

2 + x2
)
dz dx

+ t(x
2 + y

2
)dxdy~Q

is (x
2 + y* + z*-c) (xyz

-
c) =0. (Cf . Art. 52.)

(16) Show that the condition of integrability of

Pdx +Qdy + Rdz = Q ........................... (1)

implies the orthogonality of any pair of intersecting curves of the

families

dx/P^dy/Q^dz/R .............................. (2)

A 1and dx --5- ^- --5" = \^~- .............
dz dy/

y
l\dx SzJ l\dy dxj

'

Hence show that the curves of (3) all lie on the surfaces of (1).

Verify this conclusion for P~ny-mz, Q = lz-~nx, R*=mx-ly.
(For the solutions of the corresponding equations, see earlier examples

in this chapter.)

(17) The preceding example suggests that if a = const., /3
= const.

are two integrals of equations (3), the integral of equation (l) should

be expressible in the form /(a, /3)= const., and hence that

Pdx+Qdy + Rdz

should be expressible as A da + B d/3, where A and B are functions of

a and
ft.

Verify that for the case

Q=-zxlogz, R = xy,

A** -ft, and Z? = a.

Hence obtain an integral of (1) in the form a=Cj&,

i.e. f/=cxlogz.

[For a supplement to the chapter see Arts. 168-170. They deal with

an integrating factor for homogeneous equations, and with Mayer's



CHAPTER XII

PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST

ORDER. PARTICULAR METHODS

121. We have already (in Chap. IV.) discussed the formation oi

partial differential equations by elimination of arbitrary functions

or of arbitrary constants. We also showed how in certain equations,

of great importance in mathematical physics, simple particular

solutions could be found by the aid of which more complex solutions

could be built up to satisfy such initial and boundary conditions as

usually occur in physical problems.
In the present chapter we shall be concerned chiefly with equa-

tions of geometrical interest, and seek for integrals of various forms,
u
general,"

"
complete," and "

singular," and their geometrical

interpretations. Exceptional equations will be found to possess

integrals of another form called
"
special."

122. Geometrical theorems required. The student should revise

the following theorems in any treatise on solid geometry :

(i) The direction-cosines of the normal to a surface /(x, y, z) =0
at the point (x, y, z) are in the ratio

#.#.#.
dx

'

dy
'

dz
*

Since

dfjdf dz , df/df dz-
* <*-

= *- = P> sav
>

and -
*

-

/ *-=-*-= <7> say,
3xi dz dx ^ J

dyl dz dy
* J '

this ratio can also be written p : q :
- 1.

The symbols p and q are to be understood as here defined all

through this chapter.

(ii) The envelope of the system of surfaces

f(x, y, z, a, 6)-0,
146
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where a and 6 are variable parameters, is found by eliminating

a and b from the given equation and

The result may contain other loci besides the envelope (cf.

Chap. VI.).

123. Lagrange's linear equation and its geometrical interpretation.

This is the name applied to the equation

Pp+Qq-R, .............................. (1)

where P, Q, R are functions of x, y, z.

The geometrical interpretation is that the normal to a certain

surface is perpendicular to a line whose direction-cosines are in the

ratio P : Q : R. But in the last chapter we saw that the simultaneous

equations dx dy dz /0 ,

T-^-72
................................. (2)

represented a family of curves such that the tangent at any point

had direction-cosines in the ratio P:Q:R, and that
</> (u y v)=ff

(where u= const, and v= const, were two particular integrals of

the simultaneous equations) represented a surface through such

curves.

Through every point of such a surface passes a curve of the

family, lying wholly on the surface. Hence the normal to the

surface must be perpendicular to the tangent to this curve, i.e.

perpendicular to a line whose direction-cosines are in the ratio

P : Q : R. This is just what is required by the partial differential

equation.

Thus equations (1) and (2) are equivalent, for they define the

same set of surfaces. When equation (1) is given, equations (2) are

called the subsidiary equations.

Thus
(f> (u, v) =0 is an integral of (1), if u = const, and v = const.

are any two independent solutions of the subsidiary equations (2)

and
<f>

is any arbitrary function. This is called the General Integral

of Lagrange's Linear Equation.

Ex. (i). p + q~l.

The subsidiary equations are those discussed in Ex. (i) of Art. 112,

viz. dx dy dz

T
=T~P

representing a family of parallel straight lines.
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Two independent integrals are

x-z-a,

y-z=*b,

representing two families of planes containing these straight lines.

The general integral is <f>(x-z, t/-2)=0, representing the surface

formed by lines of the family passing through the curve

0(3, y)=0, 2 = 0.

If we are given a definite curve, such as the circle

o?
2
-f*/

2 = 4, 2=0,
we can construct a corresponding particular integral

the elliptic cylinder formed by lines of the family meeting the given
circle.

Ex. (ii). zp~ -x. [Cf. Ex. (ii) of Art. 112.]
The subsidiary equations are

dx
_^ dy dz

"

of which two integrals are x2 + z2 a, y b.

The general integral (x* + z2
, t/)=0 represents the surface of

revolution formed by curves (circles in this case) of the family inter-

secting the curve (^ y)
= o, 2=0.

Ex. (in). Find the surfaces whose tangent planes cut off an intercept
of constant length k from the axis of 2.

The tangent plane at (x, yy z) is

Z-z=p(X-x)+q(Y-y).
Putting Z=F = 0, Z = z-px-qy = k.

The subsidiary equations are

dx dy dz

x y z-k 9

of which y = ax, z-k=*bx, are integrals.

The general integral 0R,-J=0 represents any cone with its
\x x '

vertex at (0, 0, k), and these surfaces clearly possess the desired property.

Examples for solution.

Obtain general integrals of the following equations. [Cf. the first

set of examples in Chap. XL ]

(1) xp + yq = z.

(2) (mz-ny)p + (nx-lz)q^ly-mx.
(3) (y* + z2 -x*)p-2xyq -f 2^2 = 0.

(4) yzp+zxq=*xy.

(5) (y+z)p + (z + x)q**x+y.
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(6) (z*-2yz~

(7) 2? + 32 = 5-3 + tan (?/-3;e).

(8) zp-zq = z2 + (y + x)*.

(9) Find a solution of Ex. (1) representing a surface meeting the

parabola */
2 =

4,r, z = l.

(10) Find the most general solution of Ex. (4) representing a conicoid.

(11) Show that if the solution of Ex. (6) represents a sphere, the

centre is at the origin.

(12) Find the surfaces all of whose normals intersect the axis of z.

124. Analytical verification of the general integral. We shall now

eliminate the arbitrary function
</>

from (w, t;)=0, and thus

verify analytically that this satisfies Pp-\-Qq^R, provided u =a and

v = 6 are two independent* integrals of the subsidiary equations

dx _ dy dz

p"g"fl-
Differentiate <^>(w, v)=0 partially with respect to x, keeping y

constant; z will vary in consequence of the variation of x. Hence

we get
fy(

du dudz\ d/dv Sv dz\

du \dx dz dx/ dv \ dx dz dx)
'

deb /du du\ d<f>/dv dv\ -
i.e. -*r(cr+P^-)+*(* +P--T =0.

du \dx * dz/ dv \dx * dz/

ri . ., , dfh/du du\ dc/>/dv dv\ -

Snarly -(^+9%)^ (Sy
+ 9& ='

Eliminating the ratio -^ :
-^ from these last two equations,

du du\fdv dv\ /du du\/dv dv

/dudv_dudv\ /dudv__dudv\
\dy dz dz dy/

* \dz dx dx dz/
^

du dv du dv
^ '

dydx

-o ^ f du * du 3 du * ~
But from u =a, -- - dx + ~ - ay +--- dz =0,

dx dy
y

dz

and hence from the subsidiary equations, of which u = a is an integral,

a-a--a- -

dx
^
dy dz

If u and v are not independent, ( ^^-^^ )
and the other two similar

expressions ail vanish identically (Edwards' Differential Calculus, Art. 610), which
reduces equation (1) to 0=0
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-11 T> ^ Ti ~
Similarly P ^- + # =- +# ~- - 0.J dx dy dz

Hence

p /i 7?
'

\""

\9v dz dz dy)
'

\dz dx dx dz/
'

\&e By By dx/
'

so (1) becomes Pp+Qq*=R9 the equation required.

125. Special integrals. It is sometimes stated that all integrals

of Lagrange's linear equation are included in the general integral

(w, v) =0. But this is not so.

For instance, the equation

has as subsidiary equations

dx _ dy _ dz

Thus we may take u=x+y,v=x- ^/z, and the general integral as

<f>(x+y, z-Vz)= '

But z=0 satisfies the partial differential equation, though it is

obviously impossible to express it as a function of u and v.

Such an integral is called special. It will be noticed that in all

the examples given below the special integrals occur in equations

involving a term which cannot be expanded in series of positive

integral powers.

In a recent paper M. J. M. Hill* has shown that in every case

where special integrals exist they can be obtained by applying a

suitable method of integration to the Lagrangian system of sub-

sidiary equations (see Examples 5 and 6 below). He also under-

takes the re-classification of the integrals, the necessity of which

task had been pointed out by Forsyth.f

Examples for solution.

Show that the following equations possess the given general and

special integrals :

(1)

(2)

(3)

[Chrystal.]

* Proc. London Math. Soc. 1917.

t Proc. London Math. Soc. 1905-*.
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(4) By putting (z-x-yy^w in Crystal's equation (Ex. 3), obtaii

[dw dw ~\
2 (1 -f iv) ^- -f 2 =- + 1 HO.

ox oy J

This shows that z x y=*Q is a solution of the original equation.

[Hill.

(5) Show that the Lagrangian subsidiary equations of Chrystal'

equation (Ex. 3) may be written

dx 4 f
dz

and deduce that T-(2 -E-2/)= -(z x y) ,

of which 2-x-?/ = Oisa particular solution. [Hill.

(6) Obtain the general and special integrals of the equation

by imitating Hill's methods as given in Exs. 4 and 5.

126. The linear equation with n independent variables. Th(

general integral of the equation

where Pi=^ , pz^-, ... etc., and the P's and R are function*
OX^ uX^

of the X'B and z, is ^(w^ w2 , w3 ,
... wn)=0,

where % = const., w2
= const., ... etc., are any n independent integrals

of the subsidiary equations

dx _ dx2 _ dxs _ __
dz

'P\-P2 -P~---R-
This may be verified as in Art. 124. The student should write

out the proof for the case of three independent variables.

Besides this general integral, special integrals exist for excep

fcional equations, just as in the case of two independent variables.

Examples for solution.

(2)

(3) (Xi-x

(4)

(5)

(6)
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*w *s p%*

127. The equation P --_-
-fQ *- -fR n -0. If P, Q, 72 are functions

ox oy <?z

of x, y, z but no of /, the equation can be viewed from two different

aspects.

Consider, for example,

=0............................ (1)

We may regard this as equivalent to the three-dimensional

equation p-q = Z/z, ................................. (2)

of which 0(x+y, x-i/z)=Q is the general integral and z=0 a

special integral.

On the other hand, regarding (1) as an equation in four variables,

we get the general integral

which is equivalent to /=^(x +y, x -
\/z), where

\js
is an arbitrary

function, but if

Thus/=z is no an integral of (1), although /== certainly

gives a solution.

In general it may be proved that

regarded as four-dimensional, where P, Q, R do not contain /, has

no special integrals.* A similar theorem is true for any number of

independent variables.

Examples for solution.

(1) Verify that if /=z, /=0 is a surface satisfying

and hence that this differential equation, interpreted threc-dimension-

ally, admits the three special integrals x = 0, y = 0, 2 = and the general

integral <f> (^/z
-
\/x, *Jz

-
<\/y)

= 0.

(2) Show that the general integral of the last example represents
surfaces through curves which, if they do not go through the origin,

cither touch the co-ordinate planes or lie wholly in one of them.

[Hint. Prove that jr^Jt
--

),
and that djo/ds

= Q if z-0,

unless x, y, z are all zero. ]

* See Appendix B.
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(3) Show that \Jx ~- 4- \/y ~- = 0, regarded two-dimensionally, repre-

sents a family of parabolas \/y \/x + c, and their envelope, the

co-ordinate axes o? = 0, t/
= 0; while regarded three-dimensionally it

represents the surfaces z = (f>(y
-

a;').

128. Non-linear equations. We shall now consider equations in

which p and q occur other than in the first degree. Before giving

the general method we shall discuss four simple standard forms, for

which a
"
complete integral

"
(i.e. one involving two arbitrary

constants) can be obtained by inspection or by other simple means.

In Arts. 133-135 we shall show how to deduce general and singular

integrals from the complete integrals.

129. Standard I. Only p and q present. Consider, for example,
this equation q

= 3p
2

.

The most obvious solution is to take p and q as constants satisfying

the equation, say p =a, q =3a
2

.

Then, since dz=--pdx +qdy = adx+ 3a2
dy,

z = ax 4- 3a2
y 4- c.

This is the complete integral, containing two arbitrary constants

a and c.

In general, the complete integral of /(p, q) =0 is

z ax~ 4- by 4- c,

where a and 6 are connected by the relation /(a, b) =*0.

Examples for solution.

Find complete integrals of the following :

(1) 2>
= 2 2

4-l. (2) ;>
a
4-j

a = l.

(3) p = &. (4) pV = l.

(5) ^2_ 5
2 == 4 < ( 6) pq^p + q.

130. Standard II. Only p, q, and z present. Consider the equation

As a trial solution assume that z is a function of x-\-ay

( -w, say), where a is an arbitrary constant.

ml dz dz du dz dz dz du dz
Then T? =--=-_-. -~ = ^- ; q = ^ = , - = a -^

-
.

c/# aw (to aw cty aa a// aw
*

/dz\ 2

Substituting in (1), z2
( -j- ) (2* 4- a2

)
=

1,

i.e. 9 ( 4- ay + &)*
-=

(^
2

4- a*)
8
.
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In general, this method reduces /(*, y, #)=0 to the ordinary

differential equation
dz dz

Examples for solution.

Find complete integrals of the following :

(1) 4z=*pq. (2) z 2 = I*? 2
*?*.

(3) q* =zy(1
- p). (4) p* + q*

= 27*.

(5) p(z + p)+q-0. (6) p* = zq.

131. Standard HI. f(x, p) =F(y, q). Consido*: the equation

p - 3.T
2 =

(f
-
y.

As a trial solution put each side of this equation equal to an

arbitrary constant a, giving

p=3x*+a ; <?
=
\/(y +a).

But dz=pdx+qdy
= (3x

2
-f a) rfx + ^/(y+a) dy ;

therefore = x3 + ax + (y 4- a)* + 6,

which is the complete integral required,

Examples for solution.

Find complete integrals of the following :

(1) p* =

(3) yp =

(5) pe
v =

qe
x

. (6) q(p- cos a?)
= cos y.

132. Standard IV. Partial differential equations analogous to Clair-

aut's form. In Chap. VI. we showed that the complete primitive of

was y=cx +/(c), a family of straight lines.

Similarly the complete integral of the partial differential equation

is z=ax+by +/(a, 6), a family of planes.

For example, the complete integral of

z = px + yy -f p
a + g

a

is z=ax+by -f aa +62
.

Corresponding to the singular solution of Clairaut's form, giving

the envelope of the family of straight lines, we shall find in the next
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article a
"
singular integral

"
of the partial differential equation^

giving the envelope of the family of planes.

Examples for solution.

(1) Prove that the complete integral of z*=px + qy-%p- 3q repre-

sents all possible planes through the point (2, 3, 0).

(2) Prove that the complete integral of z=px + qy + <\/(p
2 + q* + 1)

represents all planes at unit distance from the origin.

(3) Prove that the complete integral of z = px + qy + pq/(pq-p-q)
represents all planes such that the algebraic sum of the intercepts on

the three co-ordinate axes is unity.

133. Singular Integrals. In Chap. VI. we showed that if the

family of curves represented by the complete primitive of an ordinary

differential equation of the first order had an envelope, the equation

of this envelope was a singular solution of the differential equation.

A similar theorem is true concerning the family of surfaces repre-

sented by the complete integral of a partial differential equation of

the first order. If they have an envelope, its equation is called a
"
singular integral." To see that this is really an integral we have

merely to notice that at any point of the envelope there is a surface

of the family touching it. Therefore the normals to the envelope

and this surface coincide, so the values of p and q at any point of

the envelope are the same as that of some surface of the family, and

therefore satisfy the same equation.

We gave two methods of finding singular solutions, namely from

the c-discriminant and from the p-discriminant, and we showed that

these methods gave also node-loci, cusp-loci, and tac-loci, whose

equations did not satisfy the differential equations. The geometrical

reasoning of Chap. VI. can be extended to surfaces, but the dis-

cussion of the extraneous loci which do not furnish singular integrals

is more complicated.* As far as the envelope is concerned, the

student who has understood Chap. VI. will have no difficulty in

understanding that this surface is included among those found by

eliminating a and 6 from the complete integral and the two derived

equations /(x, y, z, a, 6)=0,

i

i
* See a paper by M. J. M. Hill, Phil. Trans. (A), 1892.
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or by eliminating p and q from the differential equation and the

two derived equations

F(z,y, *, P> q)=0,

dF
-0

dp
u '

!r
--

3q

In any actual example one should test whether what is apparently
a singular integral really satisfies the differential equation.

Ex. (i). The complete integral of the equation of Art. 132 waa

Differentiating with respect to a,
= x 4- 2a.

Similarly 0=> y + 2b.

Eliminating a and b, 4z = -
(x

2
-f

?/

2
).

It is easily verified that this satisfies the differential equation

and represents a paraboloid of revolution, the envelope of all the planes

represented by the complete integral.

Ex. (ii). The complete integral of the equation of Art. 130 was

9(z + a</ + 6)
2 =

(z
2 + a2

)
3.......................... (1)

Differentiating with respect to a,

18y(x + ay + b)= 6a(z* + a 2
)*...................... (2)

Similarly 18(x + ay + b)=Q..................................... (3)

Hence from (2), a-0..................................... (4)

Substituting from (3) and (4) in (1), z=0.
But 2=0 gives p = =0, and these values do not satisfy the differ-

ential equation 22(p
2z2 -f g

2
)
= 1 .

Hence 2=0 is not a singular integral.

Ex. (iii). Consider the equation p* zq.

Differentiating with respect to p, 2^=0.
Similarly = 2.

Eliminating p and q from these three equations, we get
2 = 0.

This satisfies the differential equation, so it really is a singular

integral.

. But it is derivable by putting 6=0 in

which is easily found to be a complete integral.

So s0 is both a singular integral and a particular case of th6

complete integral.
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Examples for solution.

Find the singular integrals of the following :

(1) z = px + qy 4- log pq. (2) z ~ px -f qy + pz
-f pq + g

a
.

(3) z=px + qy + \p
2
q\ (4) z=>px + qy+p/q.

(5) z=pq. (6) za= l+7?
2 + ?

2
- (7) 2>

3 + ?
3 = 27*.

(8) Show that no equation belonging to Standard I. or III. has a

Ingular integral. [The usual process leads to the equation 1.]

(9) Show that z**Q is both a singular integral and a particular case

f a complete integral of q
2 = z2p z

(l p*).

134. General Integrals. We have seen, in Ex. (i) of the last

rticle, that all the planes represented by the complete integral

z = az-t-6iy +a2 + 62 ........................... (1)

ouch the paraboloid of revolution represented by the singular

ntegral 42=3 -(z
2
+2/

2
)
............................... (2)

Now consider, not all these planes, but merely those perpendicular
o the plane y =0. These are found by putting b = in (1), giving

>f which the envelope is the parabolic cylinder

4z = -a*.................................. (3)

Take another set, those which pass through the point (0, 0, 1).

From (1), l~a2 +6 2
,

(1) becomes z=axy\/(l -a2
) + 1,

>f which the envelope is easily found to be the right circular cone

(z-l)
2-*^2............................ (4)

In general, we may put 6 =/(), where/ is any function of o,

[iving z = az+?//(a)+a
2 + {/(a)}

2...................... (5)

The envelope of (5) is found by eliminating a between it and

he equation found by differentiating it partially with respect to a,

i.e. 0=x+yf'(a)+2a+2f(a)f(a)................ (6)

If / is left as a perfectly arbitrary function, the eliminant is

ailed the
"
general integral

"
of the original differential equation.

Equations (3) and (4) are particular integrals derived from the

;eneral integral.

We may define the general integral of a partial differential

quation of the first order as the equation representing the aggregate

1 the envelopes of every possible singly-infinite set of surfaces that

P.D.H. If
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can be chosen out of the doubly-infinite set represented by the

complete integral. These sets are defined by putting 6 / (a) is

the complete integral.

It is usually impossible to actually perform the elimination of

a between the two equations giving the envelope, on account of the

arbitrary function/and its differential coefficient. The geometrical

interest lies chiefly in particular cases formed by taking / as some

definite (and preferably simple) function of a.

135. Characteristics. The curve of intersection of two con-

secutive surfaces belonging to any singly-infinite set chosen from

those represented by the complete integral is called a characteristic.

Now such a curve is found from the equation of the family of

surfaces by the same two equations that give the envelope. For

instance, equations (5) and (6) of the last article, for any definite

numerical values of a, /(a), and /'(a), define a straight line (as the

intersection of two planes), and this straight line is a characteristic.

The characteristics in this example consist of the triply-infinite set

of straight lines that touch the paraboloid of revolution (2).

The parabolic cylinder (3) is generated by one singly-infinite set

of characteristics, namely those perpendicular to the plane t/=0,

while the cone (4) is generated by another set, namely those that

pass through the fixed point (0, 0, 1). Thus we see that the general

integral represents the aggregate of all such surfaces generated by the

characteristics.

If a singular integral exists, it must be touched by all the char-

acteristics, and therefore by the surfaces generated by particular

sets of them represented by the general integral. It is easily verified

that the parabolic cylinder and right circular cono of the last article

touch the paraboloid of revolution.

136. Peculiarities of the linear equation. To discuss the linear

equation Pp+Qg = R (1)

on these lines, suppose that u const.

and v= const,

are two independent integrals of the subsidiary equations.*

Then it is easily verified that an integral of (1) is

u+av 4-6 = (2)

11 Since u and v are independent, at least one of them must contain z. Let
this one be u. We make this stipulation to prevent u+ av + b being a function of

x and y alone, in which case u+av +bQ would make terms in (1) indeterminate,
instead of definitely latisfying it in the ordinary wa*



PARTICULAR METHODS 159

This may be taken as the complete integral. The general

integral is found from
w +flw+/=0, .............................. (3)

*+/'()=<> ............................... (4)

From (4), a is a function of v alone,

say a =F (v).

Substituting in (3), u =a function of v,

say ti-^Mv),

which is equivalent to the general integral </(w, v)=0 found at the

beginning of the chapter.

The linear equation is exceptional in that its complete integral

(2) is a particular case of the general integral. Another peculiarity

is that the characteristics, which are here the curves represented by
the subsidiary equations, are only doubly-infinite in number instead

of triply-infinite. Only one passes through a given point (in general),

whereas in the non-linear case, exemplified in the last article, an

infinite number may do so, forming a surface.

Examples for solution.

(1) Find the surface generated by characteristics of

that are parallel to the axis of x. Verify that it really satisfies the

differential equation and touches the surface represented by the singular

integral.

(2) Prove that 3a =4a?y is an integral of

representing the envelope of planes included in the complete integral
and passing through the origin.

(3) Prove that the characteristics of
</
=

3/)
2 that pass through the

point (-1, 0, 0) generate the cone (x-f-l)
2
-f 12?/z=-0.

(4) What is the nature of the integral (?/ -f 1
)

2 + 4a?z = Oof the equation

z-px + qy+pfal

(5) Show that either of the equations

ax + by,

may be taken as the complete integral of a certain differential equation,
and that the other may be deduced from it as a particular case of the

general integral. [London.]
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(6) Show that z (x + a)
2eby is a complete integral of the differential

equation p* = 4zeqyf*.

(xy
\

2~v~-
)

is part of the general integral of the
" ~ y*

same equation, and deduce it from the above given complete integral,

[London.]

MISCELLANEOUS EXAMPLES ON CHAPTER XII.

(1) z~px + qy-p 2
q. (2)

= ^x-f qy-(px + z)
2
q.

(3) z(z
2 + xy)(px-qy)~x*. (4) p*-q* = 3x-2y.

(5) P 1

2 ^2x2p2 +x^p^0. (6)

(7) p* + q*-3pqz~Q. (8)

(9) Pi+Pz+Ps^te. (10)

(11) z 2
p

2
y + 6zpxy + 2zqx* + 4x 2

y==Q. (12)

(13) p
2z2 + q

2 ~p2
q. (14) (z-px-

(15) Find the particular case of the general integral of

that represents the envelope of planes included in the complete integral
and passing through the point (1, 1, 1).

(16) Prove that if the equation P dx -fQ dy -f- R dz = is integrable, it

represents a family of surfaces orthogonal to the family represented by

Hence find the family orthogonal to

(17) Find the surfaces whose tangent planes all pass through the

origin.

(18) Find the surfaces whose normals all intersect the circle

-z2 +
2/

2
=4, * = 0.

(19) Find the surfaces whose tangent planes form with the co-

ordinate planes a tetrahedron of constant volume.

(20) Prove that there is no non-developable surface such that

every tangent plane cuts off intercepts from the axes whose algebraic
sum is zero.

(21) Show that if two surfaces are polar reciprocals with respect to
the quadric x2 + y

2
=*Zz, and (x, y, z), (X, Y, Z) are two corresponding

points (one on each surface) such that the tangent plane at either point
is the polar plane of the other, then

Hence show that if one surface satisfies

/(z, y> 2>^>?)=0,
the other satisfies /(P.Q.PX+QY- Z, X, Y) 0.

(These equations are said to be derived from each other by the

Principle of Duality.)
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(22) Show that the equation dual to

b

giving

z~PX+QY-Z=-XY.
Hence derive (as an integral of the first equation) z= -xy.

(23) 87 means of a partial differential equation eliminate the

arbitrary function from the equation

[Differentiating partially with respect to x and yy we get

and l + q

Hence (1 +<p) (y + zq)
=

(1 + q) (x + zp),

or (

(24) Use the method of Ex. 23 to verify the solutions of the examples
on p. 148.

(25) Find particular integrals of the following partial differential

equations to represent surfaces passing through the given curves.

(i) p + q
= l

; x=0, y
2 = z. (ii)

(iii) (y-z)p + (z-x)q =x-y ; 2=0, y

(iv) x(y-

(v) yp~
(vi) (y-

[Eliminate x, y, z from the two equations of the curve and two

independent integrals u(x, y, z)=a, v(x, y, z)=b of the subsidiary

equations. This gives a relation between a and b. Replace a by u (x, y, z),

b by v(x, y, z), and we get the integral required.
Thus for (i) u(x, y, z)zsx-z=a, v(x, y, z)^y-z=^b. (Cf. p. 148.)

From these and the curve equations x=0, y*
=

z, we get a=* -y2
,

fc^y-y
2
, BO (6-a)

2 = -a.

Replace a by x - z, b by y
-

2, and we get the integral

(y
-
x)

2 = z - x.

Similarly for (ii), (iii), and (iv). In (v) and (vi) we eliminate x> y, z, I

from five equations.

Answers, (ii) yz~(x + y)*. (iii)

(iv) (x + y + z)*
=
27xyz. (v)

(vi)
8 -



* CHAPTER XIII

PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST

ORDER. GENERAL METHODS

137. We shall now explain Charpit's method of dealing with

equations with two independent variables and Jacobi's method for

equations with any number of independent variables. Jacobi's

method leads naturally to the discussion of simultaneous partial

differential equations.

The methods of this chapter are considerably more complicated
than those of the last. We shall therefore present them in their

simplest form, and pass lightly over several points which might be

considerably elaborated.

138. Charpit's f method. In Art. 131 we solved the equation

j>-3s=g-y (1)

by using an additional differential equation

p-3z2
=a, (2)

solving for p and q in terms of x and y, and substituting in

dz^pdx+qdy, (3)

which then becomes integrable, considered as an ordinary differential

equation in the three variables x, y, z.

We shall now apply a somewhat similar method to the general

partial differential equation of the first order with two independent
variables F (x, y, z, p, q)=0 (4)

We must find another equation, say

f(x, y, z, p, y)=0, (5)

* To be omitted on a first reading.

fThis method was partly due to Lagrange, but was perfected by Charpit.
Charpit's memoir was presented to the Paris Academy of Sciences in 1784, but
the author died soon afterwards and the memoir was never printed.

162



GENERAL METHODS 163

such that p and q can be found from (4) and (5) as functions of

x, y, z which make (3) integrable.

The necessary and sufficient condition that (3) should be in-

tegrable is that

n fdQ dR\ ~fdR dP\ ^fdP dQ\ A ,., x . .

P
(

-

a
-

)
+ Q (a- -a- +#

( -a- ~a^H (identically),
\9z 3y/ \9x 9z/ \3y 9z/

v 7 "

where P^ P) Q =
q y #= -1,

By differentiating (4) partially with respect to x, keeping y and

z constant, but regarding p and q as denoting the functions of x,

y, 25 obtained by solving (4) and (5), we get

9q dx

Similarly +.o......................... (8)J ox

From (7) and (8), J=-, ........................... (9)v ' v " dx Bx dp dp dx v '

, T . , ,

where J stands for ^- ~--^- -
.

ag> op

_. .. . T
SimUarly J- ' ..................... <10)

dz (/Z u(J oQ (/Z

Substituting in (6) multiplied by
*
/, we get

(3

T7I ~\f 3 XT' 3f\ /3TP ^f 3f "^f\
OJ! Of OJu Of \ / OJj Of OJ* Of \

dz dp dpdzJ
^
\dzdq dqdz/

dydq dqdy dxdp dpdx'

_ y dFdf ( dF dF\df* J A I fn
^. Q J

A-

dpdx dq dy v dp
*
dq/ dz

* J cannot vanish identically, for this would imply that F and /, regarded as

functions of p and q, were not independent. This is contrary to our hypothesis
that equations (4) and (5) can be solved for p and g.
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This is a linear equation of the form considered in Art. 126,

with x, y, z, p, q as independent variables and / as the dependent

variable.

The corresponding subsidiary equations are

& Jy - dz___&_____dq_ df (U)
~~d]?~ 3F~ dF dF~dF d]F~~dF dF

' v '

'dp ~dq
~ P

dp
q
dq ~dx

+P
dz dy

+?
dz

If any integral of these equations can be found involving p or

q or both, the integral may be taken as the additional differential

equation (5), which in conjunction with (4) will give values of p
and q to make (3) integrable. This will give a complete integral of

(4), from which general and singular integrals can be deduced in

the usual way.

139. As an example of the use of this method, consider the

equation 2xz-px*-2qxy +pq=Q ......................... (1)

Taking the left-hand side of this equation as F y
and substituting

in the simultaneous equations (14) of the last article, we get

dx
__ dy _ dz _ dp _dj_<tf

x2
~-q

~
2xy^p ~~px*~+2xyq -2pq

~~

2z~-% ~
1)

~
0~

'

of whi(5h an integral is q=*a..................................... (2)

From (1) and (2), p

777 2x(z-ay)dx ,

Hence dz^pdx+qdy = ^ ^ -f a dy,X Q>

dz-ady __2x dx*/ " *~" n >

z-ay xz -a

i.e. z^ay +b(x*-a).

This is the complete integral. It is easy to deduce the Singular

Integral z=z2
y.

The form of the complete integral shows that (1) could have

been reduced to z =PX -f qy
-
Pq,

which is a particular case of a standard form, by the transformation

o v T> dz I dz
jc
2 =Z; P=*^=;r-^~.dX %x dx

Equations that can be solved by Charpit's method are often

solved more easily by some such transformation.
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Examples for solution.

Apply Charpit's method to find complete integrals of the following :

(1) 2z + ;p
2
-f^ + 2?/

2 =0. (2) yzp
z =

q.

(3) pxy + pq+qy**yz. (4) 2x(z
2
q
2 + l)=*pz.

(5) q
=
$p*. (Cf. Art. 129.) (6) z*(p*z* + q*)

= l. (Cf. Art. 130.)

(7^ 7>-3z
2 =

9
2
-?/. (Cf. Art. 131.)

(8) z=*px + qy+p* f ?
a

. (Cf. Art. 132.)

(9) Solve Ex. 2 by putting */

2 = F, z 2 =Z.

(10) Solve Ex. 4 by a suitable transformation of the variables.

140. Three or more independent variables. Jacobi's* method.

Consider the equation

F(xlt x2 ,
z 3 , plt p2 , p 3)=0, ........................ (1)

where the dependent variable z does not occur except by its partial

differential coefficients pl9 p2 , p 3 with respect to the three independent
variables xl ,

x2 , x 3 . The fundamental idea of Jacobi's method is

very similar to that of Charpit's.

We try to find two additional equations

Fifa, **> *a> Pi, V* PB)
=

<*i> ........................
(
2

)

jF2 (z!, Xa, a? 3 , ft, ft, p 3)=a2 ........................ (3)

(where a
x and a2 are arbitrary constants), such that p^ p2 , p z can

be found from (1), (2), (3) as functions of xlt x2 , x$ that make

dz=p1dxi+p2dx2 +psdx 3 ........................ (4)

integrable, for which the conditions are

dxl

Now, by differentiating (1) partially with respect to xlf keeping

x2 and x3 constant, but regarding plt p2 , p3 as denoting the functions

of xlt XK $3 obtained by solving (1), (2), (3), we get

dF dF dPl dF dp2 dF dp3
X- T ^- 7i

--T ^- X"~ ~T ^
- ^- U.............. .....lUl

dxl dpl dx dp2 dxl dp3 dxl
v '

.
., ,

dF
l dFl dpl dF^p2 3F

l dp3 A ...

Similarly a-
1 ** 5 + a iF+i" / ^...................(?)J OX
l dpl

OXL Op2 OX1 Opt OX)

* Carl Gustav Jacob Jacobi of Potsdam (1804-1851) may be considered as erne

of the creators of the Theory of Elliptic Functions. The "
Jacobian

"
or

" Func-

tional Determinant
"

reminds us of the large part he played in bringing deter-

oi inante into general uae.
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From (6) and (7),

9(^A)
,

W *i) ??2
,

, 9l), . .. MT ,. y,BFdFl dF
where ~ - ^ denotes the Jacobian =-- --;$-"

3 (a^, ft) a^j 3ft 9^
Similarly

and | + > i + l , (10)

Add equations (8), (9), (10).

Two terms are

d(F, F-L) dpz d(F, FI) dpl

Similarly two other pairs of terms vanish, leaving

\ + ^

.

^ _ x + _ + t _ l =0
a^i ayx a^?i aa^ a^2 a^2 a^2 a^2 a#3 ap3 a^3 a^3

*

This equation is generally written as (F, FJ =0.

Similarly (F,Ft)=0 and (^,^=0.
But these are linear equations of the form of Art. 126. Hence

we have the following rule :

Try to find two independent integrals, .P
1
=a1 and F^=a2J of the

subsidiary equations

do^ dpl dx2 dp% dx<i

If these satisfy the condition

and if the p's can be found as functions of the x's from

F-F^Oi-Ft-a^O,
integrate the equation* formed by substituting these functions in

dz

* For a proof that this equation will always be integrable, see Appendix C,
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141. Examples on Jacobi's method.

Ex. (i). tyjX&t +Sp&S+pSp^O......................... (1)

The subsidiary equations are

dxl dp l
dx 2 dp2 dx3 dp3

-
2xjX3 2;^ - 3x3

* - 2p2p3

""
- p2

* 2^
of which integrals are -^i^i^i ^^i* ................................. (2)

and F2 ?==p2 *=a2.................................. (3)

Now with these values (Fl9
F

2) is obviously zero, so (2) and (3) can

be taken as the two additional equations required.

Hence dz = a1x 1

~ldx 1 + a2dx2
- a 2

~ 2
(2a 1

x 3 -f 3a 2x 3
2
)
dx3

or 2; = ax log a?!

the complete integral.

Ex. (ii). (

This equation is not of the form considered in Art. 140, as it involves

z. But put
dz dx. du I du _ ._--

where u is an integral of (4).

Similarly p2
- - P2/P4 ; p, - - P3/P4 .

(4) becomes (z2 + ^)(^2 +^3)
2 -^A^4 = 0, ..................... (5)

an equation in four independent variables, not involving the dependent
variable u.

The subsidiary equations are

ax
l _dPl ^ dx

z___dP2_____ 2_ _
of which integrals are F

l
^P

l
=a

ly .................................... (6)

*V^P2-P3
=

2, .............................. (7)

F*=x*Pi-<**.................................. (8)

We have to make sure that (Fr ,
F8) =0, where r and s are any two

of the indices 1, 2, 3. This is easily seen to be true.

Solving (5), (6), (7), (8), we get

P!-^; P4
= asa?r

1
;

2P2-a 2 V{<W(* 2 + *3)} ;
P3

=P-a;
BO du = aj dx 1 -f a3x^~

l
dx^ + \a2 (dx2

- dx3)

W{a
i
a3/(x 2 + z 3)} (dx 2 -f dx3),

i.e u a^j + as log x4 4- Jaaf^a
~ x*) ^ V{a i

as(2;2 + ^s)} + a *
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So w=*0 gives, replacing

z4 byz, a
1/a3 by A v Ja2/a3 by A 2 , aja3 by 48,

log z + A 1x1 + A 2 (x 2
- zs) \/{^i(2 + ^3)} + ^8^0,

the complete integral of (4).

Examples for solution.

Apply Jacobi's method to find complete integrals of the following :

(1) Pi
8 + P

B + Pa-l. (2)

(3) p&t+ptx^pa*. (4)

(7) p

(8) (

142. Simultaneous partial differential equations. The following

examples illustrate some typical cases :

Ex. (i). F^p^ +p^x^^Q, ........................... fl)

^l=Pl + P2^2=0..................................... (2)

Here

f

1

-^
Thus the problem may be considered as the solution of the equation

(1), with part of the work (the finding of FJ already done.

The next step is to find F% such that

(F,Fj=0 = (Fl9 Fj.
The subsidiary equations derived by Jacobi's process from F are

dx^ dpi dx% dp 2 dx$ dp$

Pl"
"
-

An integral is p1 ==a.....................................(3)

We may take F2 as plt since this satisfies (F, F 2) (Flt FJ.

Solving (1), (2), (3) and substituting in dz = p l
dx

l +p 2 dx2 + p9 dxB,

dz a
(Zxj,

- ax2

~~1 dx2 -f ax9

~2 dx3)

BO z = a (x1
-
log x2

x3

~l
) + b.

Ex. (ii). 1^1*1 +^2-^-0, ........................... (4)

*isJJl -pt +p,-l-0............................ (5)

Here (F, J1)=p l -fpa( -l) = Pi-p a -

This must vanish if the expression for dz is to be integrable.
Hence we have the additional equation

7>i-P8 =0..................................(6)

Solving (4), (5), (6) and substituting,

2

f -log
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In examples of this type we do not have to use the subsidiary

equations. The result has only one arbitrary constant, whereas in

Ex. (i) we got two.

Ex. (iii). JFaaV + flCs'+Pa-O, ........................... (7)

^i~?i+P2 + z3
2=3 ............................ (8)

Here (F, FJ)=2x1 + 2x2 -2x3 .

As x
l9
x2 ,

xs are independent variables, this cannot be always zero.

Hence we cannot find an integrable expression for dz from these

equations, which have no common integral.

Ex. (iv). jF
f

sp1 +p1 +j>a
1 -3

1
-3a?a -4x 8

2 = 0, .................. (9)

Fl^x lp 1
-x2p2 -2x l

* + 2x 2
* = 0, ........................ (10)

JF.ssp,- 238 -0.............................................. (11)

Solving (9), (10), (11) and substituting in the expression for dz,

dz = (2x l -f x2 )
dx l + (x l + 2x 2)

dx2 + 2x3dx3 ,

so z = X)
2
-f Xfl2 + x2

*
4- x3

2 + a.

This time there is no need to work out (F, Fj 9 (F, Fj, (Flt
F2).

Ex. (v). F^pt+pz-l-x^O, ........................... (12)

Sj-Xj-O, ........................... (13)

These give dz = x2dx l + dx 2 -f x^dx^.
As this cannot be integrated, the simultaneous equations have no

common integral.

Ex. (vi). Fzsxipi-x&i +pa-pi^Q, ........................ (15)

JFjM^+pj-^-Xg-O............................... (16)

Here (F, FJ -^ - x
x(
-

1)
- p 2 + x 2(

-
1) -^ - p2 + x

l
- x 2 .

As in Ex. (ii), this gives us a new equation

F2^p l -p2 + xl -x2 ^0.......................... (17)

Now (F, I^-P!-*!-^-!)*^-!)- ^i=0,

and (F 19
^2)=(~l)-l-l-(-l)r-l)-(-l)=0,

BO we cannot get any more equations by this method.

The subsidiary equations derived from F are

dx
l _dp l _ dx2 _ dp 2 _ dx3 _ dp B _ dx^ _ dp^

-aj 1 "~^ 1
""x2 ~-p 2

~-l""
""

1

"~

0*

A suitable integral is F3
= p3 =a, ................................. (18)

for this satisfies (F, Fj-(F l9 FJ-(F F3)=0.

We have now four equations (15), (16), (17), (18). These give

BO
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But in this example we can obtain a more general integral. The
two given equations (15) and (16) and the derived one (17) are

equivalent to the simpler set :

Pi-x* .................................... U9)

Pi-*i, .................................... (20)

P3 -?4=0...................................... (21)

From (19) and (20), z X LXZ 4- any function of x3 and x4 .

(21) is a linear equation of Lagrange's type, of which the general

integral is
tf>(z,

z3 + z4)=0,

i.e. z is any function of (#3 + #4), and may of course also involve x
l

and x2 .

Hence a general integral of all three equations, or of the two given

equations, is z = x^ +^ (^ + x^
involving an arbitrary function. The complete integral obtained by
the other method is included as a particular case. The general integral

could have been obtained from the complete, as in Art. 134.

Examples for solution.

Obtain common complete integrals (if possible) of the following
simultaneous equations :

(1) Pi'+V-Sfri + a^'-O.
(Pi -Pz)(xi

~ x
z) +^3*3- 1 =0.

(2) xSptp^xJptfi-Xtfpjpi**!.

(3) PiP2P3-^x i
x^3 ss^ W 22:3^3 -2^4 = 0,

p2 + y) 3
- 2x 2

- 2z 3
= 0. 2j>j

- p 2
= 0.

(5) Pix3
* + p 3

= 0, (6)

(7)

(8) Find the general integral of Ex. (5).

(9) Find the general integral of Ex. (7).

MISCELLANEOUS EXAMPLES ON CHAPTER XIII.

(1) 2*^3^^3 + 2^2 = 0. (2)

(3) Qx&tfi (pa + pa)
-

4/>4
2 -

0, (4) ^zp^ + p 3 )
- 4 - 0,

(5)

(6) p^-^-y^-^-y^
(7) Find a singular integral of z

representing the envelope of all the hyper-surfaces (in this case hyper-

planes) included in the complete integral.

(8) Show that no equation of the form F(x lt
x 2 ,

a?3 , p l9 p%t p 8)
t-

has a singular integral.
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(9) Show that if z is absent from the equation F(x, y t z, p, 9)=0,

Charpit's method coincides with Jacobi's.

(10) Show that if a system of partial differential equations is linear

and homogeneous in the p's and has a common integral

Z==a 1
w 1 + a 2w2 + ... ,

where the w's are functions of the x's, then a more general integral in

2=^>(M1 ,
W 2 , ...).

Find a general integral of the simultaneous equations

(11) It Pi and ;?2 are functions of the independent variables x
l9

satisfying the simultaneous equations

F(xv x2 , p l9 ^ 2 ) =0 = ^(05!, sca , p l9 p z),

prove that (F 9
Fl} + -

f&) -0.^

Hence show that if the simultaneous equations, taken as partial

differential equations, have a common integral, (F, F-^^0 is a necessary
but not a sufficient condition.

Examine the following pairs of simultaneous equations :

(i) Fsj

7) ( 77* 7P ^

[Here ^-7
- ^- =

identically, and the equations cannot be solved
90>i> P)

for p l
and p 2 .]

r) ( F J? \

[Here (F, jPj) and
^-

-
^- both come to functions which vanish

when the p's are replaced by their values in terms of xl and #2 There

is no common integral.]

(iii)
F==Pl -p2

* + x2
= O

t

[These have a common integral, although ^4 ^ comes to a
d(Pi> P*l

function that vanishes when the ^'s are replaced by their values.]

Note on Charpit's Method (pp. 162-164).

Sometimes we can find an equation /(#, y, z, p, q)= which is an

integral, not of the subsidiary equations (14), but of simpler equations
obtained from these by using the original differential equation (4.). This

will satisfy (13), not identically, but in virtue of (4), and in conjunction
with (4) will still make (3) integrable. Thus in Ex. 2, Art. 139, pz = a'iB

an integral, not of dzl(-2yzp
2 + q)

=
dplyp*, but of dz[(

-
yzjt)

=

giving finally the resuJA on p. xvi. Similarly for Jacobi's method.



CHAPTER XIV

PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND
AND HIGHER ORDERS

143. We shall first give some simple examples that can be

integrated by inspection. After this we shall deal with linear

partial differential equations with constant coefficients ; these are

treated by methods similar to those used for ordinary linear equations

with constant coefficients. The rest of the chapter will be devoted

to the more difficult subject of Monge's* methods. It is hoped that

the treatment will be full enough to enable the student to solve

examples and to make him believe in the correctness of the method,

but a discussion of the theory will not be attempted.f
Several examples will deal with the determination of the arbitrary

functions involved in the solutions by geometrical conditions. J

The miscellaneous examples at the end of the chapter contain

several important differential equations occurring in the theory of

vibrations of strings, bars, membranes, etc.

The second partial differential coefficients ^~t ~ ~-, ^-s will

i A * ,3 u , * i
dx dxdlJ dV

be denoted by r, s, t respectively.

144. Equations that can be integrated by inspection.

Ex. (i). s = 2x + 2y.

Integrating with respect to x (keeping y constant),

\

Similarly, integrating with respect to y,

<f>(y)dy + f(x),

say z - x*y + xy* +f (x) + F(y).

*
Gaspard Monge, of Beaune (1746-1818), Professor at Paris, created Descriptive

Geometry. He applied differential equations to questions in solid geometry.
t The student who desires this should consult Goursat, Sur rintegration de*

equations^ aux derivees partielles du second ordre.

t Frost's Solid Geometry, Chap. XXV., may be read with advantage.

172
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Ex. (ii) Find a surface passing through the parabolas

3 = 0, t/
2 = 4o& and 3 = 1, y

2 ** -4.ax9

and satisfying xr + 2p**Q.

The differential equation is

giving

Ju

The functions / and F are to be determined from the geometrical
conditions.

Putting 20 and x =
7/

2
/4a,

Similarly

Hence

, 1 t/

and ^^o"^""'2 8aa;

i.e. Saxz = 4aa? -
1/
2

,
a conicoid.

Examples for solution.

(1) r = 6x. (2) jrys-1.

(3) * = sma:i/. (4) o>r -f p = Qx2
!/

3
.

(5) t/5 + p = cos(x + ?/)~t/sin(x + 7/). (6) t-xq = x z
.

(7) Find a surface satisfying s = 8xy and passing through the circle

(8) Find the most general conicoid satisfying

(9) Find a surface of revolution that touches 2=0 and satisfies

(10) Find a surface satisfying J^Gz
3
?/, containing the two lines

t/=0 = 2, y = l=2.

145. Homogeneous linear equations with constant coefficients. In

Chap. III. we dealt at some length with the equation

(Di+ajD*-
1 +aJD~* + ...+<Oy -/(), ............... (1)

where D&ZJ-.
dx

P.D.E. R
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We shall now deal briefly with the corresponding equation in

two independent variables,

(D
n +a^-W + aa7)-

2
J9'a + ... + anD'*)z=f(x, y), ...... (2)

where D^| ,
D^~ .

ox oy
The simplest case is (D - mD')z =0,

i.e. p-mq0 9

of which the solution is
<f>(z, y+mx) =0,

i.e. z**F(y+mx).

This suggests, what is easily verified, that the solution of (2)

if /(a, y)=0is

z^F^y -f m^) +F2(y+m2x) + ... + J?n (?/ +wwz),

where the w^ m2 ,
... mn are the roots (supposed all different) of

mn
4- om*1-1

-f o^m"-
2
4- . . . 4- an = 0.

The roots of m3 -3m 2 + 2?n=-0 are 0, 1, 2.

Hence z = F^y) -f- Fa (y + x)

Examples for solution.

(1) (D
3 -6D aD' + llDZ)' t

-6D')2i-0.

(2) 2r + 55 + 2<=0. (3) l^-f-^ -
x 7

ax2
a?/

2

(4) Find a surface satisfying r-f.9 = and touching the elliptic

paraboloid z = 4x2 + ?/
2
along its section by the plane y 2x + 1. [2V. B.

The values of p (and also of q) for the two surfaces must be equal for

any point on y**2x + l.]

146. Case when the auxiliary equation has equal roots. Consider

the equation (D-mD') 2z=Q ............................... (1)

Put (D-mD')z = u.

(1) becomes (D - mD') u -0,

giving u =F (y + mx) ;

therefore (D -
wZ)') 2 =F(y+ mx),

or p
- m^ = F (y + mx).

The subsidiary equations are

dx _ dy dz
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gvng
and dz-F(a)dx~Q,

i.e. z - xF (y + mx) = 6,

BO the general integral is

<j){z-xF(y + mx), y +wx}=0 or z=xF(y +mx) + F1(y+mx).

Similarly we can prove that the integral of

is z =*xn
~l
F(y+mx) +xn~2Fl(y + mx) + ... +Fn^(y + mx).

Examples for solution.

(1) (4D
2 + 12DD' + 9D' a

)z=0. (2) 25r- 40s + l&=0.

(3) (D*-D*D'+lDD'*)z==>0.

(4) Find a surface passing through the two lines 2J = x =
)

2i-l =z~2/=0, satisfying r-4s -f 4 = 0.

147. The Particular Integral. We now return to equation (2) of

Art. 145, and write it for brevity as

F(D,D')z=f(x,y).

We can prove, following Chap. III. step by step, that the most

general value of z is the sum of a particular integral and the

complementary function (which is the value of z when the differ-

ential equation has/(x, y) replaced by zero).

The particular integral may be written jrrn
~~

y\ -f(x, y), and
J. \*J) I'

)

we may treat the symbolic function of D and D' as we did that of

D alone, factorising it, resolving into partial fractions, or expanding
in an infinite series.

IQx*

so the solution of (Z)
2 - 6DD' + 9Z)/2

)
2 - 12x2 + 3Qxy

s

Examples for solution.

(1)

(2)
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(3) Find a real function V of x and y, reducing to zero when y=0
and satisfying S2y ^y

148. Short methods. When /(x, y) is a function of ax+by,
shorter methods may be used.

Now D<t> (ax + by)
=

a<j>' (ax + by) ; D'^> (ax + &*/)
=

b<f>' (ax + 6y).

Hence jP (D, 1)') (ax + by)
= F (a, 6)

(H)

(ax -f 6y),

where (n) is the nth derived function of 0, n being the degree of

F(D, D').

Conversely

-^"**^' ......... (A)

provided F (a, &)=/=0, e.^._ 1_ -sin(2x+3y)_
'*
COS (JiC +^} "2^*: 2 . 3T4 .273*

since ^ (2x +3y) may be taken as -sin (2x -f3y) if

<t>'" (22? +3y) -cos (2x +3y).

To deal with the case when F(a, b) =0, we consider the equation

(D - mD') z = p-mq = xr

\}s(y -f mx),

of which the solution is easily found to be

xr+l
z=^i

BO we may take

Hence

(B)

e '9 '

D*-WD'+D'
tan (y

while

111 (4a: +^=^ ' T' 8in

~ cos

-
j a; cos (4x + y) by (B).
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Examples for solution.

(1)

(2)

(3)

(4) 2r--3* = 5e*/e*. (5) + -L

(6) 4r-

149. General method. To find a general method of getting a

particular integral, consider

(D-mD')z = p-mq=f(x, y).

The subsidiary equations are

- ty - dz

~T~~~^m~~f(x9 yY
of which one integral is y +mx =c.

Using this integral to find another,

dz=f(x, c-mx)dx t

z "
I f(x >

c ~~ mx
)
&x "*" constant,

where c is to be replaced by y + mx after integration.

Hence we may take
j^
-

^> .f(x t y) as \ f(x, c -mx) dx, where

c is replaced by y +mx after integration.

Ex. (D-2D')(D + D')z = (y-l)e*.

Here \f(x, c-2x)dx=\ (c-2x-l)e
xdx = (c-2x + l)e*.

Therefore ^ -., . (y-l)e
x
**(y + l)e

x
9 replacing c by y + 2x.

Similarly -=? . (y -hi )e* is found from 1

by replacing c by y-x, giving ye*, which is the particular integral

required.
Hence z*ye

x + <j>(y+2x)+\ls(y- x).

Examples for solution.

(1) (Z)
2 + 2DZ) /

-fZ)/2)22cost/~a;smy.

(2) (D*-2DD'-l5D'*)z=*l2xij. (3)

(5) r-<=tan3 xtan y
- tan x tan3 y.

im?^ 4?^.^-iw
a *a x'
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150. Non-homogeneous linear equations. The simplest case is

i.e. p-mq^az y

giving </> (ze~
ax

, y + mx) = 0,

or z=eax
\[s(y + mx).

Similarly we can show that the integral of

(D-mD
f

-a)(D-nD'--b)z=0
is z = eaxf (y + mx) + ebxF (y + nx),

while that of (I)
~mU -

a)
2z =0

is z=eax
f(y+mx) -f xeaxF(y + mx).

But the equations where the symbolical operator cannot be

resolved into factors linear in D and D r

cannot be integrated in this

manner.

Consider for example (D
2
-D')z=0.

As a trial solution pat z ^=ehx+kv
, giving

So z=# (x+hv} is a particular integral, and a more general one is

hv
\ where the A and h in each term are perfectly arbitrary,

and any number of terms may be taken.

This form of integral is best suited to physical problems, as waa

explained at some length in Chap. IV. Of course the integral of

any linear partial differential equation with constant coefficients

may be expressed in this manner, but the shorter forms involving

arbitrary functions are generally to be preferred.

Examples for solution.

(1) DD'(D-2D'-3)z=Q. (2)

(5) (2J9
4 ~3Z) 2D / + D/2

)2=0. (6)
~~
ox oy

(7) (J9~2Z)
/

(8) Find a solution of Ex. (4) reducing to 1 when x= +00 and to

t/

2 when z = 0.

151. Particular Integrals. The methods of obtaining particular

integrals of non-homogeneous equations are very similar to those in

Chap. III., so we shall merely give a few examples.

Ex. (i).

23 -3.2.
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Hence *- -

where A8 - Zhk + li + 1 - 0.

Ex. (ii). (D f D'-

{1 H- D -f D' + terras of higher degree}

( D + 2D'
^ , , . . , \x n + -

-f terms of higher degree r

. L 4D + 5D' A ... . , \^^ j
1 _l h terms of higher degree

j-

Acting on 4-f3x + 6y, this operator gives

Hence 2 - 6 + x + 2/y + e*f (y
-

x) -f <**F(y
-

2x).

Ex. (Hi). (D*-DD'-2D)z=*am(3x

" Sn

3-f2D .

sm

3-27)"

TV sin (3cc + 4?/) + T
2
T cos (3-c -f- 4?/),

Hence z = yV sin (3x + y) + T
2
T cos (3x + 4y)

-

where A2 -M-2/i-0.

Examples for solution.

(1) (D~D'-l)(7)~Z)'-2)2 = e 2a;-y.

(2) s +p-5=2 + i/. (3) (D-Z

(6) (Z)-3Z)
/

152. Examples in elimination. We shall now consider the result

of eliminating an arbitrary function from a partial differential

equation of the first order.

Ex. (i). 2px-qy = <j>(x*y).

Differentiating partially, first with respect to x and then to t/, we get

2rx -sy + 2p=> 2xy<j>'(x
2
y) t

and *

2sx-ty-q= x2
<}>'(x

2
y),

whence x(2rx -sy + 2p) = 2y(2sx
-
ty

-
q)

or 2#2r - bxys -\ 2y
2
t + 2 (px + qy) 0,

which is of the first degree in r, , t.
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The same equation results from eliminating \fs from

Ex. (ii). j>
2
+g

This gives 2pr + s = 20'(2a; + t/),

and 2ps + 0' (2z -f y),

whence 2pr -f s = 4ps + 2,

again of the first degree in r, ,
f.

Ex. (Hi). y-p=</>(x-q).
This gives

- r **
(1
-

s) 0'(z
-

y),

and l-s" -^0'(ic ~?)>

whence rJ = (l-s)
a

or 2s + (r*-s
2
)
= l.

This example differs from the other two in that p and q occur in

the arbitrary function as well as elsewhere. The result contains a

term in
(rt

- $)

Examples for solution.

Eliminate the arbitrary function from the following :

(1) W -? + 3y
2 = 0(2z+ y

2
)- (2) --0(*).

(3) p + x-y = <f>(q-2x + y). (4)

(5) p*-x = <f>(q*-2y). (6)

153. Generalisation of the preceding results. If u and t; are

known functions of x, y, z, p, q, and we treat the equation u =
<f> (v)

as before, we get

du du du du ( dv dv dv dv
r A- + 5 ^

- -f - + p ^~ = r w- + * -- + ;r- + A-
3p 3y dx ^ dz \ 9p dq dx ^

dz

, 9?/ 9u 9w du ( dv dv dv dv\ ,. .

and * a
' +^ a~ +a-+?^-=(* a-H-^ a-+aT+?a-) -0 (

v
)-

9p 9? dy
* dz \ dp dq dy

*
dz/ ^ ^ '

Eliminating 0' (v) we find that the terms in rs and s cancel out,

leaving a result of the form

\ ,, .

)
. c& (v),

J Y v ;

where R, S, T, U and V involve p, y, and the partial differential

coefficients of u and t; with respect to x, y, z, p, q.

m, . Tr du dv dv du
The coefficient U =

a
-

5-
~ -=- ,

op cty dp 9g

wAicA vanishes if v is a function of x, y, z only and not of p or q.

These results will show us what to expect when we start with

the equations of the second order and try to obtain equations of the

ftrsfc order from them.
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154. Monge's method of integrating Rr + Ss +Tt=V. We shall

ow consider equations of the first degree in r, s, t, whose coefficients

!,
S

9 T, V are functions of p, q, x, t/, z, and try to reverse the process
E Arts. 152 and 153.

Since dp = -- dx +^ dy=*rdx

ad dq=sdx+tdy,

ecomes R + Ss + T

i.e. Rdpdy + Tdqdx-Vdydx-s (R dy
2 -Sdydx + Tdx2

)=Q.

The chief feature of Monge's method is obtaining one or two

Nations between p, q, x, y, z (each relation involving an arbitrary

inction) to satisfy the simultaneous equations

R dp dy + Tdqdx-Vdydx~Q.
These relations are called Intermediate Integrals.

The method of procedure will be best understood by studying
rorked examples.

Ex. (i). 2x 2r - 5xys + 2y*t + 2(px + qy) =0.

Proceeding as above, we obtain the simultaneous equations

2x*dy* + 5xydydx + 2y
2 dx2

=*0, ........................ (1)

nd 2x2
dpdy + 2y

2
dqdx + 2(px + qy) dydx^Q................... (2)

(1 ) gives (x dy + 2y dx) (2x dy + y dx) = 0,

i.e. xz
y a or xy

2 = b.

If we take x2
y
= a and divide each term of (2) by xdy or its equivalent

-2ydx, we get 2xdp-ydq + 2pdx-qdy=09

i.e. 2px-qy=*c.

This, in conjunction with x2
!/
= a, suggests the intermediate integral

2px-qy = <f>(x
2
y), .............................. (3)

here is an arbitrary function. [Cf. Ex. (i) of Art. 152.]

Similarly xy
2 = 6 and equation (2) leads to

px-2qy = \{,(xy
2
) ............................... (4)

Solving (3) and (4),
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so

i.e.

z~ij <f>(x
2
y) . d log (x*y)

-
i
J
Wxy*) . d log (xy*),

or z=(x*y)

Ex. (ii).

Eliminating r and t as before, we are led to the simultaneous equa-
fci ns

y*dy* + 2ydydx + dxz =
Q, ........................ (5)

and y*dpdy + dqdx-(p + 6y) dydx = ................... (6)

(5) gives

i.e.

Using this integral and dividing each term of (6) by y dy or its

equivalent ~dx, we get

.e. py
This suggests the intermediate integral

As we have only one intermediate integral, we must integrate this

by Lagrange's method.

The subsidiary equations are

dx dy dz
'

One integral is 2x + y* = a. Using this to find another,

i.e. z-y* + y<}> (2x -f y
2
)
= b.

Hence the general integral is

\J,{z
-
y
3 +

y</> (2x + y
2
), 2x + 1/

2
} -0,

or z***

Ex (Hi). pt-qs^q*.
The simultaneous equations are

qdydx + pdx*=*Q, ........................... (7)

and pdqdx-q*dy dx*=>Q............................ (8)

(7) gives dx = or qdy + pdx(=dz)=Q,
i.e. x = a or z = b.

If dx = Q (8) reduces to 0=0.
If z =*

b, q dy
-
p dx and (8) reduces to

p
i.e.

giving
~- + x~c = \ls(z) ................................ (9)
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(9) may be integrated by Lagrange's method, but a shorter way ia

fco rewrite it g^ \

jr---TH,),

giving y xz - I
\fs (z)

dz + F(x)

Examples for solution.

(1) r- I cos 2 x + p tan x=0.

(2) (x-y)(xr-xs-y8 + yt)-

(3) (q + l)s = (p + l)t. (4) J-

(5) Xy(t-r)+(x
2
-y*)(s-2)=py-qx.

(6) (l-f^)
2
r-2(l-f-^ + g + j

(7) Find a surface satisfying 2x 2
r-5xys + 2y*t + 2(px-{-qy)=0 and

touching the hyperbolic paraboloid z=*x*~y
2
along its section by the

plane yl.
(8) Obtain the integral of $

2
r-2^5-fp

2t=0 in the form

and show that this represents a surface generated by straight lines that

are aJl parallel to a fixed plane.

*155. Monge's method of integrating Rr-fSs +Tt +U(rt-s 2)=V.
As before, the coefficients J?, /S, T, C7, V are functions of p, q,

x, y, z.

The process of solution falls naturally into two parts :

(i) the formation of intermediate integrals ;

(ii) the further integration of these integrals.

For the sake of clearness we shall consider these two paits

separately.

156. Formation of intermediate integrals. As in Art. 154,

r (dp
- s dy)/dx

and t = (dq
- s dx)/dy.

Substitute for r and t in

Rr + Ss + Tt + U (ft- s2
)
= V,

multiply up by dx and dy (to clear of fractions), and we get

R dp dy + T dq dx + U dp dq
- V dx dy

say N-sM-0.
* The remainder of this chapter should be omitted on a first reading. Thin

axtension of Monge's ideas is due to Andr6 Marie Ampere, of Lyons (1775-1836),
whose name has been given to the unit of eleotrio ourivmt.
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We now try to obtain solutions of the simultaneous equations

M=0,
#=0.

So far we have imitated the methods employed in Art. 154, but

we cannot now factorise M as we did before, on account of the

presence of the terms U dp dx + U dq dy.

As there is no hope of factorising M or N separately, let us try

to factorise M+\N, where X is some multiplier to be determined

later.

Writing M and N in full, the expression to be factorised is

Rdy2 + Tdx2 -(S+\V)dxdy + Udpdx + Udqdy
+\R dp dy +\T dq dx +\U dp dq.

As there are no terms in dp* or dq
2
, dp can only appear in one

factor and dq in the other.

Suppose the factors are

Ady+Bdx+Cdp and Edy + Fdx + Gdq.
Then equating coefficients of dy

2
, dx2

, dp dq,

We may take

A=R, E =
l, B = kT, F^l/k, C = mU, G=\/m.

Equating the coefficients of the other five terms, we get

kT+R/k = -(S+xF), ..................... (1)

\R/m = U, ................................. (2)

\T, ............................... (3)

\R, ............................... (4)

U.................................. (5)

From (5), m = k, and this satisfies (3).

From (2) or (4), m=Xfi/l7.

Hence, from (1),

\ 2 (RT + UV)+\US + U2 =Q.............. . ....... (6)

So if X is a root of (6), the factors required are

i.e. ~(Udy+\Tdx+\Udp).~(\Rdy +

We shall therefore try to obtain integrals from the linear

equations U dy +\Tdx+\Udp=Q ........................ (7)

and \Rdy + Udx+\Udq=Q 9 ........................ (8)

where X satisfies (6).
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The rest of the procedure will be best understood from worked

examples.

157. Examples.

Ex. (i). 2* + (rf-s) = l.

Substituting R=T=Q, S=2, U~V= l in equation (6) of the last

article,* we get X2 -f-2X 4-1 =0,
a quadratic with equal roots -1 and -1.

With X -1, equations (7) and (8) give

dy-dp=0,

dx-dq^09

of which obvious integrals are

y-p = const.

and x-q const.

Combining these as in Art. 154, we get the intermediate integral

y-p=f(x-q).

Ex. (ii). r + 3s + * + (rt-*
1
)-!.

The quadratic in X comes to

so X => - 1 or -
.

With X = -
1, equations (7) and (8) give

dy-dx-dp=0,

-dy + dx-dqQ,
of which obvious integrals are

p + x-y=>const.................................. (1)

and q
- x + y const.................................. (2)

Similarly X = - \ leads to

p + x - 2y = const.................................. (3)

and q-2x + y=> const.................................. (4)

In what pairs shall we combine these four integrals ?

Consider again the simultaneous equations denoted by M = 0, N =0
in the last article. If these are both satisfied, then M -fX 1

Ar = and

M + X 2N = are also both satisfied (where X x and X 2 are the roots of the

quadratic in X). Therefore one of the linear factors vanishes for X^Xj
and one (obviously the other one, or else dy=Q) for X = X 2 .

That is, we combine integrals (1) and (4), and also (2) and (3),

giving the two intermediate integrals

and p + x-2y=*F(q-x

* We quote the results of the last article to save space, but the student is

advised to work each example from first principles,
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Ex. (iii). 2yr 4- (px + qy)$ + xt- xy(rt
- *2

)
- 2 - pq.

The quadratic in X comes to

\*xypq
-
Xzt/(ps + qy) + x*y*

=> 0,

giving *=*ylP or z/j.

Substituting in (7) and (8) of the last article, we get, after a little

reduction, pdy-dx + ydp-0, .............................. (5)

2y dy-px dx-xy dq=Q, .............................. (6)

~qydy + xdx-xydp-=Q, .............................. (7)

and -2dy + qdx + xdq=*Q............................... (8)

Combining the obvious integrals of (5) and (8), we get

But (6) and (7) are non-integrable. This may be seen from the

way that p and q occur in them. Thus, although the quadratic in X has

two different roots, we get only one intermediate integral.

Examples for solution.

Obtain an intermediate integral (or two if possible) of the following :

(1) 3r + ts + t + (rt-s*)~l. (2) r + t-(rt-s*) = l.

(3) 2r + te*-(rt-s*)=2e*. (4) rt-s' + l-O.

(5) 3s + (rt-s
2
)~2.

(6)' qxr + (x + y) $ + pyt + xy(rt-s
2
)*=*l- pq.

(7) (q
2
-l)zr- Zpqzs + (p

a -
1) zt + z* (rt

-
s*) =p* + q*

- 1.

158. Further integration of intermediate integrals.

Ex. (i). Consider the intermediate integral obtained in Ex. (i) of

Art. 157, y-p^f(x-q).
We can obtain a

"
complete

"
integral involving arbitrary constants

a, 6, c by putting x-q==a
And y

- p =/ (a)
= &, say.

Hence dz ~>pdx + qdy=>(y- b) dx + (x~ a) dy

and z**xy-bx-ay + c.

An integral of a more general form can be obtained by supposing
the arbitrary function / occurring in the intermediate integral to be

linear, giving y
- p - ro(s

-
9) + n.

Integrating this by Lagrange's method, we get

z=-xy + <f>(y + mx) - nx.

Ifix. (ii). Consider the two intermediate integrals of Ex. (ii), Art. 157P

and p + x-2y**F(q-
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If we attempt to deal with these simultaneous equations as we dealt

vrith the single equation in Ex. (i), we get

If the terms on the right-hand side are constants, we get the absurd

result that x, t/, p, q are all constants !

But now suppose that a and $ are not constants, but parameters,

capable of variation.

Solving the four equations, we get

p~y-x+f(a),

q~x-y + f},

giving dz*pdx + qdy
dy)+f(a) dx + /3dy

To obtain a result free from symbols of integration, put

(Za*(o) and
f /(a)(Za*0

Now
[ jSF'dS) d/3

= /3F(/3)-\F (/3) dj3 9 integrating by parts,

Hence --*(*- y)
1 -^ (a)-

r 2 =-i(x-t/)
2
-</>

or finally
-j

x = /3
-

a,

These three equations constitute the parametric form of the equation
of a surface. As the solution contains two arbitrary functions, it may
be regarded as of the most general form possible.

Examples for solution (completing the solution of the preceding set).

Integrate by the methods explained above :

(1) p + a;-2y-/te-23 + 3y). (2) p-x-f(q-y).

(3) p-e*=f(q-2y). (4) p-y

(5) p-y~f(q-2x), (6) px-y~f(qy-x).
p-2y-F(q-x). (7) (zp-x)=f(zq-y).

(8) Obtain a particular solution of (4) by putting <f> (a)
- }a

2
,

^ (B) ="
iy8

2 and eliminating a and p.
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MISCELLANEOUS EXAMPLES ON CHAPTER XIV.

(1) r-2i/
a

. (2) log- + y. (3) 2yq + y*t

(4) r-2s + *=sin (2x + 3t/). (5)

(6) rx* -35X2/4- 2ty
2

(1)

(8)

(9)

(10) rtf
- s2 - s (sin x + sin y)

= sin a; sin y.

(11) 7r-8s-3* + (rt-5
2H36.

(12) Find a surface satisfying r = 6x-f2 and touching z=*x* + y*

along its section by the plane x + y + 1 = 0.

(13) Find a surface satisfying r-2s + J = 6 and touching the hyper-
bolic paraboloid z = xy along its section by the plane y = x.

(14) A surface is drawn satisfying r + = and touching x 2 + s
2 = l

along its section by 2/
= 0. Obtain its equation in the form

z 2
(*

2 + z2 -l)=2/
2
(z

2 + z2
). [London.]

(15) Show that of the four linear differential equations in x, y, p t q

obtained by the application of Monge's method to

2r + qs + xt - x (rt
- s2

)
= 2,

two are integrable, leading to the intermediate integral

while the other two, although non-integrable singly, can be combined

to give the integral p -f J^
2 - x = a.

Hence obtain the solutions

z = \x*
- 2mxy - mV + nx 4- (y + jmx

1
)

and z - (a
-
J&

2
)
x 4- Jx

2 + by + c,

and show that one is a particular case of the other.

(16) A surface is such that its section by any plane parallel to x=0
is a circle passing through the axis of x. Prove that it satisfies the

functional and differential equations

(17) Obtain the solution of x2r + 2xys + y
2t~0 in the form

and show that this represents a surface generated by lines that intersect

the axis of z.

(18) Show that rt-8*=*Q leads to the
"
complete

"
integral
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Show that the
"
general

"
integral derived from this (as in Art. 134)

represents a developable surface (see Smith's Solid Geometry, Arts.

222-223).
Hence show that for any developable surface q

ssef(p)

(19) Find the developable surfaces that satisfy

pq(r
-

1)
-
(p

2 - g) s + (py
-
qx) (rt

- *a
) 0.

[Assume Q~f(p). This is called Poisson's method. We get

q*=ap or 7>
2 + 2 = &a,

giving ** <p(x + ay) or z = bx cos a + by sin a + c.

The second of these integrals represents a plane which generates the

developable surface given by the corresponding
"
general

"
integral.]

(20) Show that if

then r-TI(RT-S*) y
- -~S/(RT-S2

), t-R/(RT-S*) t

^7
where 72 =

^-^,
etc.

Hence show that the equation

ar + &s + ct + e(rt
-

s*) =*0

transforms into A T - BS + CR + E - 0,

where a, 6, c, e are any functions of x, y, p, q, and A, B, C, E the corre-

sponding functions of P, Q, X, F.

Apply this Principle of Duality (cf. No. 21 of the Miscellaneous

Examples at the end of Chap. XII.) to derive two intermediate integrals

of pq (r -t)-(p
2
-q*)s + (py

-
qx) (rt

~ s2
)
= 0.

(21) Prove that if x, t/, u, v are real and u + iv=f(x + iy), then Fti
and V = v are both solutions of

and the two systems of curves w = const.,

v= const.,

are mutually orthogonal.

Verify these properties for the particular cases

(i) u + tt; = sc + t'y,

(ii)

(iii)

[The differential equation is the two-dimensional form of Laplace's

equation, which is of fundamental importance in gravitation, electro-

statics and hydrodynamics, u and v are called Conjugate Functions.

See Ramsey's Hydro-Mechanics, Vol. II. Art. 41.]

(22) Obtain the solution of

P.D.B.



l&O DIFFERENTIAL EQUATIONS

subject to the conditions y*=f(x) and J~**F(x) when t =0, in the form

1 Cx+at

s- F(\)d\.
*a Jx-at

[y is the transverse displacement of any point a; of a vibrating

string of infinite length, whose initial displacement and velocity are

given by f(x) and F(x). See Ramsey's Hydro-Mechanics, Vol. II.

Art. 248.]

(23) If y=f(x) cos (nt + a) is a solution of

show that f(x)**A sin mx + B cos mx +H sinh mx +K cosh mx, where

w = \/(n/a
a
).

[The differential equation is that approximately satisfied by the

lateral vibrations of bars, neglecting rotatory inertia. See Rayleigh's

Sound, Art. 163.]

(24) Show that

w=*A sin (rmrx/a) sin (mry/b) cos (pet + d)

,. d*w 9 fd
2w d 2

satisfies ._..(__ +

and vanishes when

2=0, ?/=0, # = a or y = 5,

provided that m and n are positive integers satisfying

(p/ir)-(m/a) + (n/6).

[This gives one solution of the differential equation of a vibrating
membrane with a fixed rectangular boundary. See Rayleigh's Sound,
Arts. 194-199.]

(25) Show that w =AJ (nr) cos (net + a)

,. n o 1 div\
satisfies - c

I Tl + "
"a" )

d^ 2 \3/*2 r or/

where J is Bessel's function of order zero (see Ex. 2 of the set following
Art. 97).

[This refers to a vibrating membrane with a fixed circular boundary.
See Rayleigh's Sound, Arts. 200-206.]

(26) Show that V = (Ar
n + Br~n-1

)
Pn (cos 0)

..
fi

d*V 2dV 1 9 2F cotOBV A
satisfies ^ H-- -^^-^ +-_

^-=0,
where Pn is Legendre's function of order n (for Legendre*s equation,
Bee Ex. 2 of the set following Art. 99).

[2V. B. Take /x
= cos0 as a new variable. This equation is the

form taken by Laplace's potential equation in three dimensions, when
V is known to be symmetrical about an axis. See Routh's Analytical

Statics, Vol. II. Art. 300.]



CHAPTER XV

MISCELLANEOUS METHODS

159. This chapter consists of six sections. The first (Arts. 160-

161) is supplementary to Chap. VL, and deals with some difficulties

in the theory of singular solutions, especially the definition of an

envelope and the way in which particular solutions may occur in

the discriminants. The conception of discriminant-loci as boundaries

appears to be very little known.

The second section (Arts. 162-167) deals with Riccati's equation,

chiefly in its generalised form. The examples include a series which

indicate in what cases Eiccati's original equation can be integrated

in finite terms.

The third section (Arts. 168-170) deals with total differential

equations, and is supplementary to Chap. XI. The use of an

integrating factor for homogeneous equations will appeal to the

elementary student, while Mayer's method is of great interest from

the point of view of theory.

The fourth section (Arts. 171-177) deals with linear differential

equations of the second order and their solution by series. It is

supplementary to Chaps. IX. and X. A few results concerning

equations of higher order are included.

The fifth section (Arts. 178-181) deals with some equations of

Mathematical Physics, particularly those concerned with wave-

motion. It is supplementary to Chaps. IV. and XIV.

Finally the sixth section (Arts. 182-183) deals with numerical

approximations to the solution of differential equations (supple-

mentary to Chap. VIII.). After describing the method of Adams,

perhaps the best that has yet been devised, it gives a summary of

some extensions (due to E. Remes) of the author's method (i.e. that

of Arts. 90-93).
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160. Some difficulties in the theory of singular solutions.* We
shall now supplement Chap. VI. by pointing out some diffi-

culties concerning envelopes, singular solutions, and particular

integrals.

The old definition of an envelope of a family of curves, as the

locus of the ultimate intersections of consecutive curves, must be

abandoned, for it has been found to lead to the ridiculous conclusion

that a curve is not the envelope of its own circles of curvature.f De
la Vallee Poussin's definition is the locus of the isolated characteristic

points (i.e. of ordinary points on a curve whose distances from neigh-

bouring curves are small to an order beyond the first). However,
it has been pointed out that this is still unsatisfactory in certain

respects. f For our purposes the most convenient definition appears

to be a curve which touches every member of the family, and which, at

each point, is touched by some member of thefamily. This agrees with

the definition given on p. G6
;
the second part of the definition was

not explicitly stated there, but it was implied by the following

sentence.

There are at least three different definitions of a singular solution.

Our definition (p. 66) is that it is a solution corresponding to an

envelope of thefamily of curves represented by the complete primitive.

However, in exceptional cases the envelope is also a particular curve

of the family. Thus the parabola y~c(z-c)
2 touches the line y~Q

at the point (c, 0), so y= is the envelope of the family obtained by

giving all possible non-zero values to c, as well as the particular

curve given by c=0. In accordance with our definition, ?/~0 must

be considered to be both a singular solution and a particular integral

of the differential equation of the family (Ex. 6, p. 76). But some

prefer to confine the term singular to a solution which cannot be

obtained by giving any constant value to the arbitrary constant occurring

* For envelopes, see Fowler's Elementary Differential Geometry of Plane Curves,

Chap. V. For singular solutions, see the Encyklopddie der Mathematischen Wissen-

tchaften U. A 4a and III. D 8.

f C and C", the centres of curvature corresponding to two neighbouring points
P and P' of a curve, lie on the evolute of that curve. The difference between the
radii of curvature CP and C'P* is the arc OC1

of the evolute. This arc is in general
greater than the chord CO 7

, i.e. greater than the distance between the centres of

curvature. Thus one circle of curvature completely encloses the other, and there
arc no real intersections. For other cases where the old definition fails, see Ex. 13,

following Art. 161.

J Neville, Proc. Camb. Phil. Soc. t Vol. XXI. p. 97, 1922.

But see the end of this article for the exceptional case of envelopes parallel
to the axis of y.
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in the complete primitive. A third definition * of a singular solution

is that it is a solution which occurs in the p-discriminant. It will be

shown in Art. 161 that such a solution need not represent an envelope.

It may be a particular solution, or its limiting form.

It is natural fqr the student to suppose that every family of

curves depending on one parameter will possess an envelope and

consequently that every differential equation of the first order and

of degree higher than the first will possess a singular solution. But

this is not the case. In discussing envelopes, it is implicitly assumed

that the functions occurring in the equation of the family satisfy

certain conditions concerning continuity. These conditions are

usually satisfied for the complete primitives of the simple differential

equations given in an elementary treatment of singular solutions,

but this is due to the fact that in constructing such examples the

complete primitives were really taken as the starting point. If

we start from the most general differential equation of similar form,

there is no reason to suppose that the complete primitive will satisfy

the conditions required for the existence of an envelope. In fact,

we may say that the existence of a singular solution must be con-

sidered as the exception rather than the rule.f

It should be noticed that the usual process for finding envelopes

(Art. 56) may fail for one form of the complete primitive, and yet be

effective for another. For example, it fails for #*+y*=c% or for

x+ sin~1
2/=c, but is effective for

(x +y- c)
2= &xy, or for y= sin (c

-
x).

The equation x^ +y^ c^, leading to y~xp
2

, illustrates another

point. The differential equation is satisfied by y=0, but hardly

by z= 0, which, giving p=co, leaves both sides indeterminate.

However, x=0 and y Q are both envelopes of the family of curves

(parabolas touching the axes) and both satisfy y(dx)
2
~x(dy)

2
, a

differential relation which really represents the geometrical facts

more accurately than the differential equation. [Cf. Ex. 9, p. 79

and Ex. 11, p. 233. In the first x=0 is a limiting form of a partic-

ular curve, and in the second an envelope and also a cusp locus.]

In such cases we feel compelled to refuse x=0 a place among

* This is the one adopted by most advanced treatises (cf. Ince's Ordinary Differ-
ential Equations, p. 87, and Bieberbach's Differentialgleichungen, p. 85). In quoting
results from various sources it is necessary to give the definitions on which they are

based, or much confusion may be caused.

f See Ex. 10, following Art. 161.
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the solutions, but the rejection may be considered as due to the

failure of the differential equation to represent fairly directions

parallel to the axis of y, rather than to any peculiarity in the

envelope itself.

181. Discriminants, Particular Solutions, and Boundaries. In this

article we shall confine ourselves to complete primitives of the

form/(x, y, c)=0, where/(#, y, c) is a polynomial in x, y t
and c, which

may also be written in the form

ofo y}c
n +na l(x, y)c

n~l +Jn(n- I)a2(z, y)c
n~2

4- ... +an(x, y)=0.

The c-discriminant Ac is defined (except for a numerical factor) as

the product of a 2n~2 and the squares of the differences of the roots.

The a 2n~2
is introduced to make the result a polynomial in a

or

aj ... an . Thus for n=2, 3, 4 we get respectively

2\ffj n _ /7 2\

As in Chap. VI. we shall sometimes use the word discriminant to

denote, not only the function Ac ,
but also the equation Ac =:0 and the

loci represented by this equation.

In working examples on singular solutions it is desirable to

employ .a systematic method of calculating the discriminants. For

quadratics, cubics and quartics, the above results may be used.*

If, as in Art. 56, we obtain Ac by elimination, there is a risk that some

factors will be overlooked. It is often recommended that Sylvester's

dialytic method should be used to perform this elimination. To

apply this here, we multiply / by cn
~2

,
cn

~3
,

... c, 1, and df/dc by
c"-1

,
cn
~2

,
... c, 1, and then eliminate c2n

~2
,
c2"-3

,
... c, 1 from the

(2n
-

1) equations thus formed, giving a determinant of (2n
-

1) rows

and columns. For the quadratic a c2 -h2a 1c+a2 ^0, this gives

a
,

2a
l9

a2

2a
, 2aj, =4a (a a2 -a1

2
).

0, 2a
, 2aj

But this contains the superfluous factor a . It is easy to see that the

same superfluous factor will occur whatever the degree of/, giving

an expression of degree (2n
-

1) instead of the proper degree (2n
~

2).

If Sylvester's method is employed for the examples at the end of this

article, this factor must be removed.
* In using these, remember that the a's are not the actual coefficients, which have

also binomial numerical factors ; e.g. for a quartic the coefficient of c2 is not a,, but

60,.
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The primary purpose of these examples is to illustrate some ways
in which particular solutions or their limiting forms may be given

by the c- and* ^-discriminants. In some cases the solutions occur

as merely one part of a particular curve (Ex. 1). Their geometrical

significance takes various forms. They may be envelopes and so

also singular solutions (Ex. 2), or node-loci (Ex. 3), or cusp-loci

(Ex. 4), or tac-loci (Ex. 5), or asymptotes (Ex. 6), or tangents

touching all the curves of a family at the same point (Ex. 8). They

may be merely lines (not tangents) through a common point of a

family (Ex. 7). In connection with Clairaut's form they are

furnished (Ex. 9) by the inflexional tangents to the envelope.

It is sometimes stated that when particular solutions occur in

the discriminants, they do so to the first power in Ac ,
and cubed

in Ap
. This rule may be combined with those of Art. 64 in the

symbolical form: AC
-A72C3

P, A
p
=AT26fP8

,
where E, N, C, P, T

denote envelope, node-locus, cusp-locus, particular solution, and

tac-locus respectively. These rules are useful as suggestions in

simple cases, but examples in which they fail are easily constructed

(Exs. 3, 4, 6, 13, 14).

We shall now explain the conception of particular solutions and

other exceptional loci as boundaries.* We restrict ourselves to the

case where /(x, y, c) is a polynomial in x, y, c, and such that corre-

sponding to every pair of real values of x, y we get an equation in c

of degree n with, say, m real roots corresponding to real curves, and

(n-m) imaginary roots corresponding to imaginary curves. We
further stipulate that the roots, which are, of course, functions of

x and y, shall vary continuously when x and y do so.

Let a certain curve B (x, y)
= (not occurring in a multiple form,

or made up of a number of simpler curves) be a boundary between

two regions, in one of which m has a certain valueM and in the other

a value M - 2. As the point (x, y) travels continuously out of the

first region, across the boundary B, into the second, a pair of real

unequal roots become less unequal, then equal (on B) and finally

(in the second region) conjugate complex. Ac ,
which contains the

square of the difference of these roots, must vanish on B and then

change sign, as the square of the difference of two conjugate complex

* Here and elsewhere I have made considerable use of some valuable suggestion*
made by Mr. H. B. Mitchell, formerly Professor of Mathematics at Columbia Uni-

versity, New York. However, he must not be held responsible for my treatment,
for our points of view are rather different.
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roots is negative. B(x, y) must also change sign as (x, y) travels

across it. More generally, if m changes from M to M 2r, where r

is an odd integer, Ac will change sign, and B (x t y) will occur in A
to an odd power (which, however, need not be r

;
cf. Ex. 14, where

B(x, y) occurs cubed, but r=l). If r is an even integer, B(x9 y)

occurs to an even power. Conversely, if B(x, y) occurs to an odd

power, r must be odd. However, if B (x, y) occurs to an even power,

so that Ac does not change sign, r need not be even
;

it may be zero,

as in Ex. 13, where B is an envelope which is crossed by all the

curves of the family. In such cases the envelope must occur to an

even power, contrary to the rule &C
=EN2C*P. Similar considera-

tions apply to Ap ,
on replacing the number of real curves through

a point by the number of real directions through it. A specially

interesting case is that of Clairaut's form (Ex. 9). An inflexional

tangent to the envelope corresponds to two equal roots in p, and so

leads to Ap =0. As for Clairaut's form Ac
= A^, Ac also.

An alternative geometrical method * of investigating singular

solutions is to replace p by z, thus converting the differential equation

into the algebraic equation of a surface. Similarly, in the complete

primitive c may be replaced by z. This method requires a good

knowledge of the geometry of surfaces.

The difficulties in the theory of singular solutions are great even

for differential equations with coefficients which are polynomials in

x and y. When the coefficients are transcendental functions, with

singularities of various degrees of complexity, the difficulties are

greatly increased.!

Examples for solution.

[We shall use C.P., Diff. Eq., A c , A^, and S.S., to denote respectively

complete primitive, differential equation, c-discriminant, p-discriminant,
and singular solution. Ac and Ap have been obtained from the formulae

given above, but numerical factors have been omitted.

The student should draw rough graphs (without calculating exact

values of x and y) which will show the form of a few members of each

family of curves and their position relative to the loci given by the

discriminants.]

(1) Given the C.P. y(x + c)+ c2 =0, obtain the Diff. Eq.

also Ac
=

y(4:c-t/),

*
Encyklopadie der Mathematischen Wissenschaften, III. D 8, or Qoursat'i Conn

?Analyst Mathtmatique, Vol. II. 4th ed., Art. 435.

t M. J. M. Hill, Proe. Loud. Math. Soc. t Series 2, Vol. 17, 1918, p. 149.
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[The O.P., for non-zero values of c, represents a family of rectangular

hyperbolas, y=0 is an asymptote of all these hyperbolas, and also part
of the particular integral zt/=0 obtained from the C.P. by putting c=0.

y4z is an envelope (a S.S.). The rules &C~EN2
C*P, AP T2CP3

hold good. The plane can be divided into four regions, in two of which

the number of real curves of the family through any point is two, while

in the other two regions the number is zero. The boundaries between
these regions are the loci given by the discriminants, and both occur to

odd powers. This agrees with our theory of boundaries, for in this case

M = 2, M-2r=*0, so r-1, which is odd.]

(2) Given the C.P. t/-c(z-c)
2
, obtain the Difi. Eq.

p
3 - 4xyp -f 8y

2 = 0,

also A
fl -y(27y-4x), Ap

- ^(270-4^).
[As mentioned in Art. 160, y=*0 is an envelope (a S.S.) and also a

particular integral. Moreover, it may be regarded as a tac-locus.

27y = 4x3
is an envelope. The second and fourth of these geometrical

interpretations, but not the first and third, are suggested by the rules

(3) Given the C.P. 4y
2 = 3c2z(z

-
c)

2
, obtain the Diff. Eq.

also Ac

[The calculation of the discriminants is rather laborious. y=0 is a

node-locus as well as a particular solution. cc = is a common tangent
at the origin to all the curves except that for which c=0. (Of. Ex. 8.)

3z5 =
64t/

2
is the envelope. To understand why the various factors in

the discriminants occur to odd or even powers we notice that x Q is a

boundary between regions where the number of real curves through any
point increases from zero to two, while the envelope is the boundary
between regions where this number increases from two to four. On

y = the four coincide in pairs, but on each side of the positive part,
between it and a branch of the envelope, the number is the same, namely,
four. The rules A C -^]V2C3

P, Ap-M^CP3
fail to suggest the

geometrical interpretation of the loci as=0, and y =0.]

(4) Given the C.P. 4y
3
=c(3a?-c)

2
, obtain the Difi. Eq.

also Ac

[The C.P., for non-zero values of c, represents a family of semi-

cubical parabolas with cusps on y0, which is a cusp-locus and also

a particular solution. y*=x* is an envelope (a S.S.). The rules

AC
=## 2C3

P, AP
=#T2CP3

suggest that t/=0 is a cusp-locus, but they
fail to indicate that it is also a particular solution.]

(5) Given the C.P. y
2
=c(3a;-c

2
), obtain the Difi. Eq.

also Ac
- y

4 -
4ar>, Ap

- yV - 4s3).
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[The C.P., for non-zero values of c, represents a family of parabolas
with y =0 as axis, any point of which is the vertex of two such parabolas
with their concavities turned opposite ways. y=0 is a tac-locus and

also a particular solution, y
4 = 4a^ is an envelope (a S.S.). y

2= c(3x
- c2)

touches the envelope at the points {c
2
, >/(2c

3
)}, which are imaginary

if c is negative, and intersects it at {Jc
2

, W( - c )}> which are imaginary
if c is positive. The rules suggest the tac-locus, but not the particular

solution.]

(6) Show that for all values of m except 0, the complete primitive

Of ytn-2^2 I jg 4^fn
sm2(x + c)2

Show that for the three cases,m an odd positive integer greater than 1,

m = 1, and m an odd negative integer, Ac and AP are respectively

and tf~\ y, y
2-,

provided that these discriminants are obtained from equations multi-

plied by the least power of y necessary to get rid of negative powers.

[y
= is in the first case a cusp-locus, in the second an envelope (a

S.S.), and in the third the limiting form of a particular solution, which is

asymptotic to all curves included in the complete primitive. c = oo

gives t/~
m =0, if m is negative, so in general this limiting form of a

particular integral contains the solution y= Q in a multiple form. If

m= 1, but not otherwise, the particular solution occurs to the powers

given by the rules AC
= W2C3

P, Ap
= r2CP3

. The rules give the

powers of the cusp-locus correctly only for m = 3.]

(7) Given the C.P. y = x(x + c)
2

, obtain the Difl. Eq.

x2
p

2 -
2xyp + y

2 - &x3
y = 0,

also Ae-zy, Ap
= xb

y.

Show that i/=0 is an envelope (a S.S.), and # a limiting form of a

particular solution, but not itself a solution.

[The vanishing of the discriminants at the origin, a point common
to all the curves of the family, could have been predicted. For since

at the origin the equation of the family is satisfied for any value of c,

the coefficients of every power of c and also the term independent of c

vanish there, hence A c =0, for every term in it vanishes. As the curves

have different tangents at the common point, the Difi. Eq. is satisfied

there for any value of p, so by an argument similar to that for

AC,AP
=0. (Cf. Ex. 7, p. 79).]

(8) Show that for all non-zero values of c, the curves of the family

y*
= x(x + c)

2 touch sc=0 at the origin. Obtain the Difi. Eq.
ix2

p
2 -

ixyp + y
2 - x* 0,

also Ac =xy
2

, Ap^ar
5
.

Show that 2/=*0 is a node-locus, while =0 is a limiting form of a

particular solution (though not itself a solution), and also a line touching
all the curves, except that for which c0, at one point. (Such a line

does not satisfy our definition of an envelope.)
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[As in Ex. 7, A c must vanish at the origin. Ap also vanishes

(although the curves this time have not different tangents). Cf. Ex. 9,

p. 79.]

(9) Show that for the differential equation (of Clairaut's form)

[27t/
= 4z3

is the envelope (a S.S.) ; t/
2 =0 is a particular solution,

and represents the inflexional tangent to the envelope. Now through

any point three tangents to 27y = 4x3 can be drawn. All of these are

real for the region in the first quadrant between the curve and y = 0, also

for the similar region in the third quadrant. For the other regions two
are imaginary. For a point on y=0 two are coincident, so t/=0 must
occur in the discriminants. Similarly, \\ henever the envelope solution

of any other differential equation of Clairaut's form possesses inflexional

tangents, these occur in the discriminants.]

(10) Given a differential equation

/(*,y,j>)-o...................................(i)

deduce that + .p + =o.................................. (2)3x r
^>y dx^p

Hence show that for any point on a solution given by the ^-discrimi-

nant, for which

+ -o........................................... (4)dx r
dy

Equations (1), (3) and (4) are necessary conditions for a singular
solution. For Clairaut's form/(#, y, p)~y-px-F(p) > so equation (4)

is satisfied identically. But in general there is no reason why all three

should possess a simultaneous solution, so in general a differential

equation has no singular solution.

[Applying this to Ex. (i) on p. 75, we find the three conditions are

l-t/=0, giving j>=0, satisfies all three, but 2-3?/=0 does not

satisfy the first.]

(11) [In this example the third definition of a singular solution (Art.

160) is to be used. Ex. 10 holds for all three definitions.]

Show that if a curve exists for every point of which the three

equations

have a common solution in X, then along it
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of
and hence

dy
'

ety

Hence show that if -
^/=0, \**p and the curve is a singular solution

y 7-^f T^f
of the differential equation /(cc, y, p) =0, while if ^~ =*0, then =0 also.

oy ox

[This shows that the necessary conditions for a singular solution,

given in Ex. 10, become sufficient by the addition of the condition
7} f "^ f
- =0. But this last condition is not necessary. In Ex. 2, = 16y

- 4 zp.
O?/ ot/

This is zero for one envelope y=0, but not for the other, 27y = 4z3
.]

(12) Show that the locus of the points of inflexion of the curves

represented by the complete primitive of equation (1) of Ex. 10 satisfies

equation (4) of Ex. 10, and hence will be included in the result obtained

by eliminating p between these equations.

Apply this process to the equations of Ex. 7, performing the elimina-

tion by Sylvester's method, and obtain 6
y(4y ~se3)=0. [Notice that

all the loci of Ap are included, as well as the locus of inflexions 4?/
= a;

3
.]

(13) Show that the equations y
2 = (x-c)

3
, ?/

= (z-c)
3

,
a +y$=A

all represent families of curves in which neighbouring curves do not

intersect in real points, and yet an envelope y exists. (In the third

case x0 is also an envelope.)
Obtain the corresponding DifE. Eqs., Sp

3
27t/, ?)

3 = 27y
2

, xp* +y0 ;

c-discrirainants, y
4

, y
2

, x*y*(x
-

y)
2
(x + y)* ;

and
'

p-discriminants, t/

2
, y

4
,
x2

t/
2

.

[Notice that in all these cases the envelope occurs to an even power,
for the reason given in the discussion of discriminant-loci as boundaries.

For the first and third families the envelope is also a cusp-locus, so

ordinary rules hold, but this is not so for the second family. The loci

x-t/=:0, x +yQ arc where two imaginary curves, given by negative
values of c in the equation of the third family, become coincident.]

(14) Show that
t/
= (a?-c)

4
represents a family of curves having four-

point contact with its envelope y=0.
Obtain the corresponding Difi. Eq. p

4 = 256i/
3
, and discriminants

A< = 2/

3
, AP =y

9
-

[The envelope again occurs to a power higher than the first. This

time the power is odd, as it should be, since the number of real curves

through any point is two on one side of the envelope, and zero on the

other side.]

(15) Show that each of the equations x*+y*=c*, x* + y*c,
(x + y

-
c)

2 =
4zy, (x + y-c2

)

2 = 4xy, represents a family of parabolas
with a common axis bisecting the angle xOy, and having x=0 and t/=*0

as envelopes. Show that the attempt to determine Ac fails for the first

and second forms (or it may be considered to give 1, the equation
of the line at infinity, which touches all parabolas), while for the third

A xy9 and for the fourth A x2y
2
(x
-
y)

2
.
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[*-y0 is a particular curve corresponding to c 0. In discussing
discriminants we should avoid forms like the first and second, in which
the terms are not single-valued, and also like the fourth, where different

curves correspond to different values of c2 and not of c itself.]

162. Riccati's equation. This name was originally given to the

differential equation
*

where 6, c, and m are constants. For a certain set of particular

values of m it can be integrated in finite terms (see Exs. 7-14 below),
but in general the solution requires infinite series closely connected

with Bessel Functions.f

By a Riccati's equation is now usually understood the generalised
form

y^P +Qy +fijf, .............................. (1)

where P, Q, and R are functions of x. This equation is of some

importance in Differential Geometry.^

163. Reduction to a linear equation of the second order. Put

When we substitute in equation (1) the terms in u disappear.

Hence, on multiplying up by R2u
y
we obtain

i.e. Riit
- (QR +#>! +PR*u=0, .................. (2)

a linear equation of the second order. In special cases (as in the

examples below) this may be integrated in finite terms, but in

general solution in series will be required. However, in every case

the solution will be of the form

u=Af(x)+BF(z) 9

mvinor 41 _ i ___sr_
giving y-

citf(x)+RF(x)'
where A/B has been replaced by c.

* Suffixes denote differentiations with respect to *.

f For the history of Riccati's equation and its connection with Besee) Functions,
lee Watson's Theory of Beaad Functions, pp. 1-3 and 85-94.

J There are 20 references to Riccati in the index of Darboux's Lemons sur la

Theorie Generate des Surfaces. See also Eisenhart's Differential Geometry, pp. 25,

168, 249, 429, and Forsyth's Differential Geometry, pp. 20, 383.

This property is the real reason for choosing the substitution and enables us to

recall it if it is forgotten.
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This gives the important result that the general integral ofRiccati's

equation is a hvmographic function of the constant of integration.

Conversely, it is easily shown (as outlined in Ex. 6 below) that we

obtain a Riccati's equation by eliminating the arbitrary constant c

from any equation of the form

cg(x)+G(x)

164. The cross-ratio of any four particular integrals of a Riccati's

equation is independent of x. We may take the four integrals to be

p(x), q(x), r(x), s(x), which are derived from
+j/

b7 giving c

the four spec/al values a, /8, y, S.

Then o-ag+G ^+G_(a-l3)(gF-f6)Jhen -_---_-
t

with similar expressions for the other differences of any two of

p 9 qy r
y s. When we form the cross-ratio, all the factors involving

functions of x cancel out, and we obtain

where C is independent of x.

165. Method of solution when three particular integrals are known.

Let these be q(x), r(x), s(x). Then it follows from the last result,

with p(x) replaced by yy
that the general solution is

{y-q(x)}{r(x)-s(x}}_

so in this case the general solution has been obtained without

quadratures (i.e., without integrations),

166. Method of solution when two particular integrals axe known.

Let these be q(x), r(x).

Then, as yi

and

Similarly y^r^y- r){Q +(y+ r)R}.

Hence l^i_2^=(? _ r)
y-q y-r

w

giving log ^3-
=c 4- \(q

-
r)Rdx,

y *

BO in this case the general solution requires one quadrature-
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167. Method of solution when one particular integral is known. Let

fchis be q(x).

The substitution *
y~q(x) +- transforms equation (1) into

But, since q(x) is an integral,

Subtracting and multiplying up by z2
,
we get

or z
l +(Q-{-2qR)z=-R 9

a linear equation which can be solved by the use of an integrating

factor exp
|
\(Q + 2qR) dx \ . The determination of this factor requires

one quadrature and the completion of the solution (as in Arts. 18-20)

requires another, making two in all.

Examples for solution.

In Exs. 1-5 the student should work from first principles, imitating
the methods used above. He should not merely quote the results and
substitute in them.

(1) By reduction to a linear equation show that the solution of

is

(2) Show that the solution of

yfy l + 2-
is

(3) Show that tan x is one integral of yl
= 1 -f t/

2
,
and hence obtain

the general solution in the form

t/(c-tan x) c tan x + l.

(4) Show that there are two values of the constant k for which

kjx is an integral of x2(y l + y
2
) =2, and hence obtain the general solution.

[& = 2 or -1
; y(cz

4
-z)=2co;

3 + l.]

(5) Show that 1, x, x2 are three integrals of

x(x*
-
l)y + x* - (x

2 -
l)y

-
1/
2
-0,

and hence obtain the general solution

* This appears artificial. A more natural (but longer) method is first to put
yssq(jc) +u, which will give an equation of Kiccati's form with P replaced by zero.

But this is a special case of Bernoulli's equation (Art. 21), and the usual method of

solution requires the substitution l/u=z. By combining these two substitutions
we get that given in the text. ^
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(6) By eliminating the arbitrary constant c from the equation

cg(x) + G(x)
y
~cf(x)+F(x)

obtain the Riccati's equation

(gf - Gf)yi
= (gG^g.G) + (Gf,

-QJ-gF^g^y + (fFl -fiPtf.

(7) Show that when m=*0 Riccati's equation

can be integrated in finite terms.

\-l)^c(Ae^
k
-l) t

where k**J(bc), if be is positive ;

yk*=c tan (A -kx), where k^J( -6c), if 6c is negative ;

ycx + A t if 6*0 ;

l, if c-0.]

(8) Show that the substitution y z/z transforms Riccati's equation
into

and hence show that the latter equation can be integrated in finite terms

if w=0. [Use the result of Ex. 7.]

(9) By the substitution z**yx* 9
transform the equation

xz1 -az + bz* = cxn

Into &1-y 1 + 6y
a -aul|-aB

.

By the further substitution J = x obtain an equation of Riccati's

form, -with b, c, m replaced by 6/a, c/a, (n-2a)/a respectively. Hence
show that the first equation of this example can be integrated in finite

terms if n = 2a.

(10) Show that the substitution z = 7-1- transforms the first
v '

b u

equation of Ex. 9 into one of similar form with a, 6, c replaced by
n -f a, c, 6 respectively. Hence show that either equation is integrable

in finite terms if n = 2<z or n 2(n 4- a). By a repetition of this reasoning
show that the first equation of Ex. 9 is integrable in finite terms if

n2(sn + a), where (as also in the following examples) s is zero or any

positive integer.
xn

(11) Show that the substitution 2 = transforms the equation of

Ex. 9 into one of similar form with a, 6, c replaced by n - a, c, 6 respec-

tively. Deduce that either is integrable in finite terms if n =2(sn - a).

(12) From the results of Exs. 9, 10, and 11 deduce that Riccati's

equation is integrable in finite terms if m + 2 = 2s(w4 2) 2.

Show that this result is equivalent to w= -4r/(2rl), where r,

like 5, is zero or a positive integer, or to 2/(rw + 2)=*an odd integer

(positive or negative).

(13) Show that the substitutions y*=r-+~2v ^a?m^ 3
, transform

uX X JL
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Riccati's equation into another of similar form with b t c, m replaced

by c/(m-f3), 6/(m + 3),
- (m 4- 4)/(m + 3) respectively. Deduce that if

m is of the form -4s/(2s-l), the transformation replaces s by (s-1).

By considering s such transformations show that in this case Riccati's

equation is integrable in finite terms.

(14) Show that the substitutions y=l/Y, X~xm+l
, transform

Riccati's equation into another of similar form with 6, c, m replaced by
c/(m + 1), 6/(m -f 1),

- ml(m + 1) respectively. Deduce (using the result

of Ex. 13) that Riccati's equation is integrable in finite terms if m is of

the form -4s/(2s + l).

168. Two methods of integrating the total differential equation

Pdx4-Qdy+Rdz= Q. We have already (in Chap. XI.) given the

necessary and sufficient condition of intcgrability of this equation,

and a general method of obtaining the integral when the condition

is satisfied. We shall now give two additional methods. One of

these (involving an integrating factor) has the defect that it can be

used only for certain homogeneous equations, but for these equations

it is perhaps the simplest method available. The other (Mayer's

method) is quite general. It requires only one integration, and this

gives it a theoretical advantage over the other general method (Art.

117), which requires two. However, the beginner is not advised to

use this method, for the single integration required is often more

difficult to effect (on account of the lack of symmetry of the expres-

sions involved) than the two integrations required in Art. 117.

Moreover, Mayer's method, if applied without careful attention to

certain conditions, may give results that are absolutely wrong.

169. Integrating factor for homogeneous equations. Let

Pdx+Qdy+Rdz=Q (1)

be an integrable equation in which P, Q, R are homogeneous func-

tions of the same degree n in x, y, z, that is to say, in which P, Q, B
may be expressed in the forms

xnf(u, v), xng(u, v), xnh(u, v)

respectively, where u~ylx, and Wz/x.
Then dy=udx+xdu, dz=vdx+xdv.

Hence equation (1) becomes

xn{f(u, v)dx +g(u, v)(u dx +x du) +h(u, v)(v dx -f-x dv)}=Q,

i.e. %n{(f+ug +vh)dx +x(g du +h dv)}=0,

from which, dividing by xn+1(f+ug +vh), if this expression is not

zero, we obtain dx gdu+hdv_^
v

+ ~

P.D.B.
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Now since equation (1) is integrable, so is equation (2), either

immediately or after multiplication by an integrating factor. But

the first term in equation (2) involves only z, and the second term

only the variables u and v. One variable is separated from the other

two, and this separation, which is the most favourable form for

integration, would be destroyed by multiplication by any factor

(except a mere constant). Hence no integrating factor (except a

constant) can exist, so equation (2) must be exact as it stands. But,

apart from the change of variables, equation (2) was derived from

equation (1) by division by the factor xn+1(f+ng+vh) )
which is

equal to Px+Qy +Rz.

Hence I/(Px+Qy+Rz) is an integrating factor of the integrable

homogeneous equation

Pdx+Qdy+Rdz=Q,

except when Px +Qy+RzQ. A similar theorem holds good for

the equation
P1dx l +P2dx 2 + ... +jPn<te==0.

Ex. (y
2 + yz)dx + (zx + zz)dy + (t/

2 -
xy)dz= 0.

Here Px + Qy + Rz xy
2 + xyz + xyz + yz

2 + y
zz - xyz

= y(%y + xz + z2 + yz)
= y(x + z)(y + z),

so the' integrating factor is l/{y(x + z)(y + z)}.

Multiplying the differential equation by it we obtain

dx zdy J^J7.?)*L
x + z y(y + z) (x + z)(y + z)

dx
!

x + z y(y + z) (x + z)(y~+z)

dx du dy dz dz
fir __i__y __y_ j_______A
VJL i l

" V/

x+z y y+z x+z y+z
dx + dz dy dy + dz _

or -f - -y-- =0,x+z y y+z
whence _ log (x + z) + log y

-
log (y + z)

= log c,

giving y(x + z) = c(y + z).

Examples for solution.

Apply this method to the following examples, 2 on p. 138 ; 10 (i),

10 (ii), and 11 on p. 144.

170. Mayer's method. Write the total differentiaLequation in the

form

dz=P(x, y, t)dx+Q(x, y, z)dy.

It may be proved that if the condition of integrability (Arts. 118 and
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119) is satisfied, and if the functions P and Q are holomorphic in the

neighbourhood of a point (^o^o^o)* then there exists one solution (and

only one) of the differential equation representing a surface passing

through this point.* Mayer's method determines this surface by

finding the curve of intersection of the surface and a variable plane

drawn parallel to the axis of z through the point (x y z
). The

simplest values consistent with the holomorphic condition are taken

for XQ and ?/ ; e.g. and 0, or and 1, or 1 and 1. z occurs in the

final result as the arbitrary constant. The procedure will be best

understood by a study of the following examples. (Of course these

examples can be solved at sight, but if harder ones had been chosen

the principle of the method might have been obscured by the details of

the complicated integrations which Mayer's method often involves).

Ex. (i). dz = 2xdx + ydy..............................(1)

The condition of integrability is

2z(0 -0) + 4y(0 -0) -1(0 -0) =0,

which is satisfied. We may take x =0 and yQ 0, as the functions 2x

and 4t/ are holomorphic in the neighbourhood of (0, 0, z ). The plane

through this point parallel to the axis of z is given by

y = mx, dy = mdx..............................(2)

From equations (1) and (2),

whence we get Z-ZQ (\ +2m2
)x

2
, .............................. (3)

determining the constant of integration by the condition that Z ZQ

when z=0.

Equation (3) represents a cylinder (with generators parallel to the

axis of y) through the curve of intersection of the plane (2) and the

surface required.

Eliminating m from equations (2) and (3) we get as the equation of

the surface

This is the general solution of equation (1), if z is taken to be an

arbitrary constant.

n /.-v * 3zdx 2zdy /A .

Ex. (u). dz- ---^ ............................... (4)

The condition of integrability is

y y

which is satisfied. We cannot take z =*0, yQ ^Q, as this makes the

functions 3z/z and 2zjy infinite. However, ar = l, y = l will do.

Goursat, Cour d?Analyse MatUmaiiqut, VoL II., 4th ed., Arts. 385 and 441.
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Put yl+m(-l) ............................... (5)

Equation (4) becomes

3z dx 2zmdx
dz

giving log z - log z = 3 log x
- 2 log (1 + m(x - 1)},

whence z{l+ w(x-l)}
a = z 3

............................... (6)

Eliminating m from (5) and (6), we get the solution

zy* =*<??.

It will be observed that all the surfaces of this family pass through
the point (0, 0, ZQ).

Examples for solution.

(1) Show that the attempt to solve Ex. (ii) above, with (0. 0, 2 )

as the fixed point, breaks down when we try to make the cylinder

corresponding to equation (6) pass through that point.

(2) Solve y*dz = ydx + (y*
- x} dy.

[The correct result, choosing the fixed point as (0, 1, z
)
is

y(*~2o)
=3 y(- 1 )+ aj -

The choice of (0, 0, e
) leads to the incorrect result z-z =

y.]

(3) Solve (1 + xy)dz = (1 + yz) dx + x(z
-
x) dy.

[Result 2 = 05 + Z (l 4- ?/).]

171. Linear differential equations of the second order. The

following discussion (Arts. 171-177) is supplementary to Chaps. IX.

and X. Suffixes will be used to denote differentiations with respect

to x. We shall use h(x), k(z),j(x), H(x) y K(x), or sometimes h, k,j,

H, K, to denote functions of x which are Jiolomorphic at the origin

(i.e. expansible in power series convergent within a sufficiently small

circle whose centre is the origin) and which have the further property
that they do not vanish at the origin. Their reciprocals also will be

holomorphic,* and so will their logarithmic derivates such as

h^hix).
Whenever we speak of singular points, it is to be understood that

these points are isolated, i.e. that a circle of sufficiently small radius

with any one point as centre will exclude all the others.

172. Regular integrals. It was mentioned on p. 110 that solu-

tions of Frobenius' forms are called regular integrals. We shall now
consider in more detail what is implied by this. Let us examine th

forms of the answers to the examples in Chap. IX. Although we

* Bromuictfs Infinite Series, 2nd ed., Arts. 54 and 84.
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distinguished four * cases in the process of solution, there were only

two essentially different forms of the complete primitive au+bv.

One integral, say u, was always of the form xa
h(x). The second

integral, v, had in some examples a similar form, say x ft

k(x), as in

Arts. 95 and 99
;

in others, as in Arts. 97 and 98, it had the form

xa{h(x) log x +x'k(x)},

where s was an integer, positive or negative (e.g. 1 in Ex. 1, Art. 97,

and -4 in Ex. 1, Art. 98).

We take these forms as the definitions of integrals regular at the

origin f (of a linear differential equation of the second order), with

the slight modification that s is allowed to take also the value zero.

This makes no real difference, for if s is zero we can replace the

integral v=x*{h(x) log x -f k(x)} by the linear combination of integrals

,, X1 7/ x- = *a h(x) log x +%) "

which is of similar form except that k(x) has been replaced by a new

holoniorphic function of which x is a factor. Similarly in the first

form of v, namely x^k(x) y
we can always suppose a and /3 unequal,

for if not v can be replaced by v - ^ u, which has za4 * as a factor.

For linear differential equations of the mth order an integral

regular at the origin is defined as one of the form

xa
{h(x)(\og x)

r
-f x*k(x)(log x)'*

1 + ... +xn
j(x)},

where s, ... n are zero or any integers (positive or negative), and r

can have any of the values 0, 1, 2, ... w 1. Thus for first-order

equations regular integrals cannot involve logx. For the second

* In the method of Frobenius for equations of the mth order (Crelle, Vol. LXXVI.
1873, pp. 214-224, or Forayth's Theory of Differential Equation*, Vol. IV. pp. 78-93,
or luce's Ordinary Differential Equations, pp. 396-402), it is convenient for the

theoretical treatment to distinguish only two cases, the second of which includes our
cases II., III. and IV. To deal with this second case the series with its coefficients

as functions of * is multiplied by f(c + 1 )/(c -f 2) .../(c + r), where /(c)=0 is the
indicia! equation, and r is the greatest difference between any two of its roots

that belong to a set differing by integers (cf. our method for case III.). In this

series and its successive partial differential coefficients with respect to c are

substituted respectively the roots, arranged so that the difference between any one
and the following is a positive integer or zero. However, in solving examples this

method often leads to a large amount of unnecessary work, and hence in Chap. IX.
we have modified it considerably, particularly in our Case IV.

t Points other than the origin are considered in Art. 175. It is unfortunate that

the word regular has in Differential Equations a meaning different from that usual

in Theory of Functions, where it is equivalent to holoniorphic (as defined in Art. 171).
Thus an expression involving log x or xa (where a is not zero or a positive integer)

may bo an integral regular at the origin, and yet cannot be a function regular at

that point.



210 DIFFERENTIAL EQUATIONS

order the logarithm occurs either linearly or not at all. This may
also be deduced from Chap. X. as follows : In Art. 107 both integrals

were free from logarithms. In Art. 110 we obtained a second

integral by differentiating partially with respect to c a series of

the form xc anx
n

,
where the a's were functions of c, and then, after

differentiation, replacing c by /?. The result (not given in Art. 110) is

which is of the form

x?{h(x) log (x) + x'k(x)}

If the first X of the coefficients an(/3) are zero and also the first
JJL

of

c)fl
io\

the coefficients -^-^, then a=/3-fX and s=/z-X.
up

It will be noticed that the co-factor of log x is itself an integral.

This may be proved independently. Take the differential equation

as

yt+0iP(s)+!#(*)=o, ........................... (i)

where P(x) and Q(x) are uniform *
(i.e. single-valued) in the neigh-

bourhood of the origin.

If in the left-hand side of this equation we substitute for y the

integral xa
{h(x) logx+x*k(x)}=u logz-fw say, the result must, by

definition of an integral, be identically zero. In this result logx

occurs with a co-factor (u 2 +U-J? +uQ). This and all the other terms

in the result, except logx, are the product of xa and a uniform

function, since u and w
y
and hence also u

l9
u 2 ,

w
} ,
w2 ,

are products

of this kind, while P and Q are uniform. If we could divide the

identity by the co-factor of log x, we should obtain the absurd result-

that the non-uniform function log x is the quotient of two uniform

functions, i.e. is itself a uniform function. Hence the division is

illegitimate, and this can be due only to the co-factor being zero ;

i.e. u is itself an integral.

A similar theorem holds for the co-factor of the highest power of

log x occurring in a regular integral of an equation (with coefficients

uniform in the neighbourhood of the origin) of the mth order. Thus

in every case in which there are regular integrals at least one of them

must be free from logarithms and of the form xh(x).

* This differential equation includes as particular cases those considered in Chape,
IX. and X.
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173. Fuchs* theorem. The necessary and sufficient condition

that a linear differential equation of the second order, whose coefficients

are uniform in the neighbourhood of the origin ,
should 'have all its

integrals regular at the origin is that the equation should be expressible

in the form

where p and q are holomorphic at the origin.

The discussion of the method of Frobenius (Arts. 106-110) proves
that this condition is sufficient. We have now to prove that it is

necessary. From Art. 172, at least one integral is of the form

xa
h(x). Denote this by u(x). Put y u\zdx, and substitute in

equation (1) of Art. 172. The terms involving the sign of integration

have a factor (w2 +u^P +uQ) and therefore vanish, as u is an integral,

and we get
2u lz+uz1 +Puz~Q............................... (2)

Now the integral y may have either of the two forms

(x), xa
{h(x) log x +x'k(x)}.

Hence =a^-
,

Or
,

u(x) h(x)
&

h(x)

or log x +x'H(x), say,

so that z= ^)=*''{(/3-

or x-1 +xa~ l

(sH
In both cases we can write z in the form * x^K (x), where K(x) is

holomorphic with 7i(0)^0. Hence from equation (2)

p= _?i_2w1== _y_^i_2a_2Ai= p(5)
z u x K x h x *'

where p is holomorphic at the origin.

Also, since xah(x) is an integral of equation (1),

xah2 +2aar~
lhl + a(a

-

giving

where q is holomorphic at the origin.

On multiplying each side of equation (1) by x2
,
and replacing xP

and x2Q by p and q respectively, we get the form required by the

theorem.

* In the first case 7=/3-a-l. In the second case 7=-! or-l, according
as the integer s is positive or negative.
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Example for solution.

By eliminating the arbitrary constants from y = Ax^ 4- Ex* log *,

obtain the differential equation

8x2(4 - log x)y2 + 2z(8
-
log x)y

-
y log x- 0,

which is therefore a linear differential equation of the second order

having all its integrals regular at the origin, but is not expressible in the

form given in Fuchs' theorem.

[This example shows the importance of the stipulation that the

coefficients of the differential equation should be uniform in the neigh-
bourhood of the origin. In fact, this imposes a severe restriction, for

it excludes all complete primitives of the form

y = AxPj(x) + Bxa
{h(x) log x + x'k(x)}>

except for the special case where x^j(x) is merely a numerical multiple
of xh(x).]

174. Ordinary and singular points. It may happen that (unlike

the other holomorphic functions A, &, j, H, K) p and q may vanish

at the origin. In particular if p is divisible by x and q by a;
2

,
the

equation in its original form (1) has P and Q holomorphic at the origin.

In this case the origin is said to be an ordinary point, and on applying
the method of Frobenius we shall obtain an indicial equation
with and 1 as roots, leading (as in Art. 99) to an indeterminate

coefficient and finally to two linearly independent integrals that are

both power series. Neither logarithms nor indices other than positive

integers (or zero) can occur. But the indicial equation may have

and 1 for roots without the origin being an ordinary point, as in

Ex. 2 of Art. 98.

Points which are not ordinary are called singular. If at a

singular point (in whose neighbourhood the coefficients of the

equation are uniform) all the integrals are regular, it is called a

regular singular point.

These definitions refer to singular points of the differential

equation itself, that is, of its coefficients when it is written in the

form (1). Our discussion of ordinary points shows that the singu-

larities of the integrals are singularities of the equation, but the

converse is not always true. For example, by eliminating the

arbitrary constants A and B from y=Axm +Bxn
,
we get

If m and n are unequal positive integers, or if one is zero and the

other a positive integer other than 1, the origin is a singularity of

the equation but not of the integrals. When, as here, every integral
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is holomorphic at a point which is singular for the equation, the

singularity is said to be apparent. In all other cases the singularity

is said to be real. At an apparent singularity it is necessary that the

roots of the indicial equation should be unequal positive integers, or

zero and a positive integer greater than 1 . It is also necessary that

the smaller root should lead to an indeterminate coefficient (very

much as in Art. 99).

Examples for solution.

(1) Show that a necessary (but not sufficient) condition for the

origin to be an apparent singularity of the equation

where p(x) and q(x) are holomorphic at the origin, is p(0) a negative

integer, while the necessary and sufficient conditions for the origin to be

an ordinary point are p(0) q(0) qi(Q) =0.

(2) Show that the origin is an apparent singularity of

and obtain the complete primitive

(3) Show that the origin is a real singularity of 2
*/ 2 -i-(x

2
-2)y=0,

but that all the integrals are free from logarithms.

[The roots of the indicial equation are -1 and 2. The smaller root

gives a3 indeterminate (cf . Art. 99;. The infinite series obtained can be

summed, giving finally y Ax^^oa x + x sin x) + Bx~
1
(sm x-x cos x).]

175. Equations of Fuchsian type. To deal with points other

than the origin we make a change of variable, putting X= x-a, or

X=x~ 1
, according as the point to be considered is the finite one

x= a, or that at infinity x=oo . It follows that for equation (1), if

the functions P and Q are holomorphic at every finite point except

a limited number a, 6, c, ...
, then these are the only possible finite

singular points. Thus we can find these points by inspection, by

seeing where P and Q fail to be holomorphic, without making a

change of variable ; e.g. if

"D_. n r\ (i f\

x(x-3)
v~x2

(x-3)(x-4)
3 '

the only possible finite singular points are given by x= 0, 3, 4. More-

over, to test whether a singular point x=a is regular, we have only

to notice whether (x-a)P and (x-a)
2Q are both holomorphic at

x=a. In the example given and 3 are regular singular points,

but 4 is irregular, since (x~4)
2
() is not holomorphic at x= 4, owing

to the factor (x-4) in the denominator.
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The point at infinity x=oo is best dealt with by a change of

variable.

If all the singular points of an equation (whose coefficients are

everywhere uniform) are regular, the equation is said to be of

Fuchsian type.

Examples for solution.

(1) Show that, for the Hypergeometric equation

the only singular points are 0, 1 and oo
,
which are regular.

(2) Show that for Legendre's equation

the only singular points are 1,
-

1, and oo
, which are regular.

(3) Show that for Bessel's equation

the only singular points are and oo
, of which the first is regular, but

not the second.

f a b c
}

(4) Show that Riemann's P-equation y = P \ a fi y x\ t

( a' /3V J

1 " a " a

x _ a x _ a X -a) X -)(x-o
has a, 6, c as regular singular points and all other points, including oo

,

as ordinary points, provided that a-f-a'-t-/3 + /3' + y + y'
= l.

By change of variable show that a and a are the roots of the indicial

equation corresponding to the point a.

(5) Show that the equations of Exs. 1, 2 and 4, but not 3, are of

Fuchsian type.

(6) Show that the following equation is of Fuchsian type :

where
\fs

is the product of any number, say n, linear factors (x-a) t

(x-b), (x-c), ... of which no two are equal, and P, Q are polynomials
in x of degrees not greater than (n

-
1) and (2n

-
2) respectively.

176. Characteristic index. Consider the equation

y2 +x~
x
p(x)ij 1 -fz-^(%=0,

where X, ^ are positive integers or zero, and p, q are holomorphic
functions of x which are not zero when x =0.

If we attempt to solve this equation by the method of Frobenius,

we get the indicial equation by replacing y by a series of powers of x

(starting with x*), and equating to zero the coefficient of the lowest
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power of x in the result furnished by the left-hand side of the differ-

ential equation. The lowest powers of x from its first, second, and

third terms will be respectively c-2, c~A-l, and c-^u. Three

cases arise :

(i) if the first of these numbers is not greater than either of the

others, the indicial equation is of the second degree ;

(ii) if the second of these numbers is less than the first and not

greater than the third, the indicial equation is of the first

degree. (Cf. Exs. 2 and 4, p. 118) ;

(iii) if the third of these numbers is the least, then the indicial

equation is of zero degree. (Cf. the example at the top
of p. 118).

In case (i) X < 1 and /x
<

2, so by Fuchs' theorem there must be

two regular integrals.

In case (ii) there may be one regular integral. If, however, as is

often the case (cf. Ex. 4, p. 118), the single series obtained is divergent
for all values of x, there is no regular integral.

In case (iii) there is no series and hence no regular integral.

The characteristic index may be defined as the number denoting

the case which arises, but starting from zero, i.e. for case (i), 1 for

case (ii), and 2 for case (iii). It is easy to extend this definition and

the discussion of the maximum possible degree of the indicial

equation to equations of any order, leading to the conclusion that

a linear differential equation of order m and characteristic index r

cannot have more than m-r regular integrals.

177. Normal and subnormal integrals. We saw in Art. 100 that

the method of Frobenius failed to discover an integral with a factor
i

e*. This is a particular case of a normal integral, defined as one of

the form e*u, where z is a polynomial in 1/x (in the simplest case a

numerical multiple of l/#), and u is a function of x such as occurs in

a regular integral. Subnormal integrals differ from normal integrals

only by having x replaced by its square root (or by its cube or other

higher root in the case of differential equations of order higher than

the second).

A method of obtaining normal or subnormal integrals is shown

by the following examples :

Ex. (i)., t/2 ~2ar
1
y1 + ar*(~4 +2a;%0 (1)

Here the indicial equation has no roots and there are no regular

integrals (i.e. the characteristic index is 2). This is due to the term
- 4ar4 in the coefficient of y.
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Put y= e*u,

giving yl
- e

8^ 4- Zjtt), t/2
-

e*{u 2 4-2*^ -f (z

Equation (1) is transformed, after division by e*, into

To get rid of the term -4ar4
,
take z

l
as aar2

,
where a= 2. Equa-

tion (2) becomes

u 2 4- (
- 2ar1

4- 2aor2
)w 1

4- (2x~
2 - 4aar3

)u
= 0,

which has a characteristic index 1, and so may have a regular integral.

Applying the method of Frobenius to find this, we get the simple result

u = x2 for both values of a. Multiplying by the exponential factor, we
obtain finally the two normal integrals x2e~2lx and xze2/x .

Ex. (ii) , y2 4- 4ar2
y 1 4- ar6(

- 4 4- 6x2 - 4a%- 0.

Again there are no regular integrals. Proceeding as in Ex. (i), we
obtain

u 2 4- (4ar
2
4- 2z1)w 1

-i (
- *ar6 4- 6or4 - 4ar8 4- 4x~2z1 4- Zj

2
4- z2)u 0.

To get rid of the term 4X"8
,
take zl to contain a term for3

, where

6= ^2. If z
l
= ax~2

4- 6jr3
, the coefficient of u will contain no term in

x""
5
, provided that a is chosen so that 4&4-2a& = 0, i.e. a= -2.

The choice zx
= - 2ar2

4- 2ar3 leads to

which has one regular integral, u = x.

The other choice, z1
= - 2ar2 - 2x~3, leads to

u
2
- 4x~3w1 4- 8x~%

1
==0.

This has no regular integral, for the only series obtainable, namely,

. , . 1.3 . 1.3.5 .

Is divergent. Hence the original equation has one normal integral,

Ex. (Hi). y 2 + ar2
(
- 1 + 3x)y i 4- ar2

y = 0.

This time the characteristic index is 1 . The indicial equation is of the

first degree, but (as pointed out in Ex. 4, p. 118) the series obtained is

divergent.

Proceeding as before, we get

u2 + (
- or1 4- 32T1 4- 201)u1 4- {or

2
4- (

- or2
4- Sar1)*! 4- Zj

2
4- z 2}w =0.

As the troublesome term in the original equation was -x~2 in the

coefficient of yv while the coefficient of y was only such as occurs when
the integrals are regular, it might be thought desirable to simplify the

coefficient of u by taking zl
= Jar

2
. But this will introduce a term in aH

into the coefficient of w, giving an equation with no regular integrals.

Let us try to get another equation with characteristic index 1, in

the hope that the corresponding series may converge. Put 2^
= oar2

.
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The coefficient of u will be free from terms in or4 if a2 -a 0, i.e. a~0
or 1. a=0 gives the original equation, but a = l gives

u 2 + (32T
1 + x-2

)^ + (x-
2 + x-3

)
u - 0,

which has the regular integral u**x~l
, giving the one normal integral

Ex. (iv). ya + lor
1^ -

x~*y =0.

This equation has no regular integrals. Proceeding as before,

we get

uz + (lx
~l + %*i)ui + (

- xr3 + Jx-^i 4- Z!
2 + z 2)u

= 0.

To get rid of the term - or3
,
take z

l
= &x~3/2

, where A - 1.

This gives 2 + (Jar
1 + 2fci;-3 /2)ui-*"5/2w-0.

00

uxc
^j anx

in will be an integral if

o

ac(2&c-&)=0, so that c = ,

ai{2k(c + J)
-

A;} + a {c(c
-

1) -f \c] -0,

i.e. ^-1-0 = 0, so a^O.
Similarly, an = for all values of n>l, so w = x*.

The original equation has the two subnormal integrals

and

Examples for solution.

Find normal or subnormal integrals of the following equations

(1M5) :

(1)

(2)

[^4n5. xW* 9 xh~ ilx
;

or x* cos (1/x), x* sin (1/x).]

(3) y 2 -f x~2
(
- 2 + x)y ! + x~4(l -f x - x2 + x4)y = 0.

[/Ins. we~ 1/4;
,
ve~1/a;

,
where u and v are as on p. 1 15.]

(4) y 2 -ix~
1

i/ 1
-4x-3

y=0. [Ana. x(l +|xtyr
4
*-*, x(l

-
Jx*)e

4x
"*.]

(5) t/ 2
-x-6(l+5x%=0.

[ylns. x~1
(l + Jx

2
)^*^* ;

z = ~
|x~

2
gives a divergent series.]

(6) Transform Bessel's equation of order zero by the substitution

xaasl/JSC, and attempt to find normal integrals of the transformed

equation. Show that the series obtained are divergent. Reverting to

the original variable, obtain the series

1 Six 2! (Six)
2

3! (Six)
3

'

and a similar series with the sign of i changed.

[The transformed form of Bessel's equation is given in the answer

to Ex. 1, p. 118.

These series, although divergent, are very useful. They are called

asymptotic. For any given value of x, sufficiently large, they give an
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approximation whose error can be made reasonably small, though not

indefinitely so. See Whittaker and Watson's Modern Analysis, 4th ed.,

Arts. 8-1 -8-32 and 17-5.]

(7) From Whittaker's confluent hypergeometric equation

k -/ . -m
y.+(-i+i+V~

obtain (by the process of Ex. 6), the series

e-t^Fl + yK-^-OT{^-(t-
L /=! r\ xr\ xr

[This series is in general the asymptotic expansion of the function

denoted by Wt>m (x), but if (k-$m) is a positive integer the series

terminates, giving an integral in finite terms. Another series W _
j_ m (

-
x)

can be obtained from W^m (x) by changing the signs of k and x.]

1/8. The equation of vibrating strings. This is

1 32F
cte

2 a2 3<2
'

where a is a constant.

PutX=x-at, T=x+at.

Th ^Z-^ZM ^?^_^r
BCB ~3Z 3x

+
VT 3

~

'

VV_ -d /3F\_/_3.
^-^V^/-\3Z

32F

o- -i 3F_9F3Z 3
bimilarly

- -. - +

.(1)

Substituting in equation (1), we get

giving 2j,

and
V=f(X)+^<j>(T)dT,

or

t.c. V=f(x-at)+F(x+at), ........................(2)

where/and F are arbitrary functions.
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f(x
-

at) is unaltered if # is increased by a and t by 1
;
hence it

represents a wave moving along the positive direction of the axis

of x with speed a. Similarly F(x +at) represents a wave moving

along the same line with the same speed in the opposite direction.

An alternative method of solving equation (1) is to use the general

result given in Art. 145, with x, y, z replaced by t, x, V respectively.

Writing the equation as

or (D
2 ~a2D'2)F=0,

we get the auxiliary equation m2 -a2 = 0, whose roots are -a and a,

leading to

V=f(x-at)+F(x+at).

179. Particular solutions of the Wave equation. This is

327 327 B2F ! 327
'

where a is a constant. It is the three-dimensional analogue of the

one-dimensional equation (1). Let us attempt to find a solution

similar to (2), but with x, y, z, t instead of x, t.

Try Vf(h -{-my +nz - at) +F(lx -{-my +nz +at), ........... (4)

where I, m, n are constants. Equation (3) is satisfied if

In this case I, m, n are the actual direction-cosines of a certain line.

The first function is unaltered if x, y, z, t are increased by la, ma, na,

1 respectively, so it represents a plane wave (whose normal has

direction-cosines l
y m, n) moving parallel to itself with speed a.

The second function represents a parallel wave moving with the

same speed in the opposite direction. Hence equation (4) represents

the propagation of plane waves. This is one particular solution of

the Wave equation.

To obtain a solution for spherical waves transform equation (3)

into spherical polar coordinates. The work is essentially a trans-

formation of Laplace's equation,* and we get

* See Edwards' Differential Calculus, Art. 532, or, for a simpler method using
Gauss 1

theorem, any book on Analytical Statics.
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For a solution symmetrical in all directions about the origin,

i.e. independent of and <, this reduces to

By the transformation V=rV, we get

9r
'

so equation (6) becomes, after multiplication by r,

&U_l'&U
3r2 ~a2 3*2

'

giving U-f(r -
ot) +F(r -f at),

(7)

This represents two spherical waves with the same speed a, one

diverging from the origin and the other approaching it. The factor

1/r shows that the intensity of the disturbance decreases as the

distance from the origin increases.

180. Poisson's (or Liouville's) general solution. This obtains V
at any time t at a point P in terms of the mean values over a sphere
of centre P and variable radius at of the functions, say g and G,

3F
which give the values of V and respectively when J= at any

point in space.

Take spherical polar coordinates with P as origin.

Now the mean value/of a function /(r, 0, 0, t) over a sphere of

radius r is given by

Take the mean value over a sphere of radius r of each term of the

Wave equation (5). The second term becomes

rr2

JoJo;o Jo ' Ul/ x uiy/ *'" Jo L ^Jo
and the third
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Both are zero, for sin 6 vanishes at both limits, while
</>
= 2?r gives the

same value of as 0=0 (which is really the same position). The

first and fourth terms do not vanish. These give

1 3 /.3F\ 1 -&V
.^tt\r --sfr'a i? ' .......................... (8)

BO that rV=f(r-at)+F(r+at), .......................... (9)

=/(
-

<ti) +lf(aO + r{f'(
-

at) +F(at)} +W'( ~
at)

+!'(<*)} + ....................................(10)

If F is to be finite at the origin (r=0) for all values of t

f(-at)+F(at)=Q,

Hence, from equation (10), using a suffix to denote the result

of putting r=0,

F =/(-oO+F(a*)=2F(aO ........................(11)

From equation (9),

and r^-- af'(r -at)+ aF'(r +at),
Ot

whence 2F'(r +at)=^- (rV) +- -~
,

uT (I ut

for all values of r and t. Putting (=0, and using the initial con-

ditions, we get

whence, giving r the special value at, and using equation (11),

But F
,
the average value of F over a sphere of zero radius, is

simply F .

Thus F ! ($)+

It follows from the form of this solution that at any time, t, the

value of F at any point P depends only upon the initial disturbance

at points on the surface of a sphere of centre P and radius at. In an

F.D.B. a



222 DIFFERENTIAL EQUATIONS

explosion the initial disturbance is generally confined to a region

bounded by a closed surface 8. If P is external to this surface and

A is the shortest distance from P to S, no effect will be produced at P
until a time d/a has elapsed, for before then the sphere concerned

will go only through regions where there is no initial disturbance.

At any time I the Wave-front (the locus of points just reached by
the disturbance) is a surface obtained from S by producing all the

outward normals a distance at.

Other general solutions of the Wave equation have been given

by Kirchhoff *
(whose form is of importance in Optics), Whittaker, f

and Bateman.J

Example for solution.

Verify that

F I I f(x sin u cos v + y sin u sin v + z cos ti + at, ti, v) du fo,
J -irJ -IT

where the function / is such that differentiations under the sign of

integration are legitimate, is a solution of the Wave equation. [This
is Whittaker's solution.]

181. Other differential equations of Mathematical Physics. These

include Laplace's equation

3z2 V as2

Poisson's equation
327

the equation of the conduction of heat

the equation of telegraphy

Schrodinger's equation (of Wave Mechanics)

P ~'
of which, in a particular case, a solution is indicated in the example
at the end of this article.

* See Jeans, Electricity and Magnetism (6th ed.) Art. 580, or Drude, Theory of

Optics (translated by Mann and Millikan), p. 179. For a physical discussion of

another equation connected with wave propagation, see Jeans, Art. 645.

t See Whittaker and Watson, Modern Analysis (4th ed.), Art. 18-6.

J Ibid. p. 402.
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These equations may be discussed from two points of view.

Treatises on pure mathematics *
give a logical discussion of the

general solutions, but the physicist complains of the great length of

the discussion, and of the difficulty of applying these general solu-

tions. On the other hand, treatises on physics use a combination

of logic and intuition to obtain solutions (usually particular rather

than general) which have a physical meaning, and might never have

been reached at all by logic alone.

There is usually little doubt that these results are substantially

correct, but any uncertainty, however slight, is repugnant to the

pure mathematician. Probably his knowledge of the unreliability

of intuition in pure mathematics prevents him from appreciating
the valuable and generally reliable part that it has played in physics.

Either point of view requires a very extensive treatment, which

cannot be given here.f

[The more elementary equations of mathematical physics have

been dealt with in several places in this book, e.g. pp. 24, 28, 29, 36,

46-48, 49-61, 189, 190, 234, 235, 241-247, 250, 251.]

Example for solution.

From Schrodinger's equation, with A/2?r replaced by K, and V given
the special form - e2/r, obtain, by changing from Cartesian to spherical

polar coordinates, replacing \fs by r-l U(r)S(9, 0), (cf. Art. 179),

By taking rlS to be a solution of Laplace's equation (and hence
a solution of what our last equation becomes when m is replaced by zero),

obtain

*

dr*

Finally, by the substitutions

reduce it to Whittaker's confluent hypergeometric equation (Ex. 7,

following Art. 177), with U t Et and (I + )
in place of yt x, m respectively.

[For the physical meaning of this work see Biggs, Wave Mechanics.]
'

e.g. Goursat, Cours d*Analyst Mathematique, Vol. TIT.

f See Riemann-Weber, Partielle Differentialgleichunyen und deren Anwendung
auf physikalische Fragen (the latest edition has been quite transformed, and bears

the title Die Differential- und Integralgleichungen der Mechanik und Physik);

Jeffreys, Operational Methods in Mathematical Physics (Heaviside's methods);

Picard, Lemons sur Quelquts Type* Simples #Equations aux Derivees Partidles avec

des Applications a la Physique Mathematique ; Webster, Partial Differential Equa.
tions of Mathematical Physics ; Bateroan, Partial Differential Equations of Malhe-

matical Physic*,
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182. Numerical approximation. Adams' method. Resuming the

subject of Chapter VIII. we shall now give a method * which

Prof. Whittaker considers to be the best of all those tested in the

Edinburgh Mathematical Laboratory. It may be shortly described

as the combined use of Taylor's theorem and of a certain formula,

given below, belonging to the Calculus of Finite Differences. Taylor's

series is used for increments of x small enough to make the series

converge rapidly. After thus obtaining a few (generally four) values

of y we have sufficient data to obtain further values from the Differ-

ence Formula, thus avoiding the use of Taylor's series for large

increments of x. The error in the final result may be estimated by a

method explained below.

Ex. Given the differential equation x^--ft/~2x=0, with the initial

values x=2, t/
= 2-5, find the values of y corresponding to x = 2*05, 2*10,

2-15, 2-20, 2-25, 2-30, 2-35, 240, 2-45, 2-50, and estimate the order of

the errors in the results.

We shall use h to denote the increment of x, xn for (x -f-nA), and yn
for the value of y corresponding to xn .

The successive differential coefficients of y with respect to x will be

denoted by y', y" , y'", ... and their initial values by the suffix .

To determine the coefficients in the Taylor's series

put sc = 2, y-2'6 in the original differential equation and in the result*

of differentiating it successively. We get

-, -o
and so on, leading finally to

y.2l + l(x-Z) + l(x-W-j,(s-W +M*-W-M*-*r + ~' (1)

If we put in succession x 2-05, 2*10, 2-15, 2*20 in this series, the

numerical value of the last term written there will be, at its greatest,

T̂ (0-2)
5
=0-000005,

so the corresponding values of y will be correct to five places of decimals.

Thus we get

ft- 2-53780, y2
- 2-57619, ya

- 2-61512, y4
- 2-65455.

* Due to J. C. Adams and described in Theories of Capillary Action, by F.

Bashfortb and J. C. Adams. See also Chap. XIV. of The Calculus of Observations,

by E. T. Whittaker and G. Robinson.
John Couch Adams, of Cambridge (1819-1892) is best known by his deduction

of the existence of the then unknown planet Neptune from the perturbations ol

Uranua.



NUMERICAL APPROXIMATION 225

We now use the Difference Formula *

Sf+i-y-? + tAgB.1 +AA1
jn-iH-fAVi +H*Al

s1l
-4 -f ... (2)

where qn denotes the value oth-^- when xxn , y ~yn ,
so in our example

ctx

A^ denotes
jfn+1 -jfn>

A2
gn denotes Ajn+i - Agn ,

and so on.

Putting n=*5, equation (2) gives

y5*
s
y4 + J4 + iAg, +AA^1 + |A

8
j1 + *Al

j + ............... (3)

Now qQ -0-05(2
-

t/ /z )
-0-03750.

Similarly

j t =0-03810, q2 =0-03866, q3 =0-03918, y4 =0-03967.

Hence A^ =
^j -<7

= 0-00060, and so on. For the calculation of these

differences it is convenient to write the numbers in the form of the

following table :

0-00001

Let us examine the numerical value of the various orders of differ-

ences shown in this table. On passing from Ag to A2
gr
we find a

decided decrease. But there is only a slight further decrease in A3
,

and none at all in A4
g. This suggests that A3

<j
and A4

g are inaccurate.

We therefore disregard them and apply equation (3) in the approximate
form.

- 2-65455 + 0-03967 +0-00025-0-00001

- 2-69446,

The error due to taking only four terms of the series may be expected
to be distinctly less than the last term retained, and therefore negligible

to five places of decimals. On the other hand, although the true value of

the first and second terms cannot difier from their respective five-figure

* This is obtained by integrating with respect to r, between the limits and 1,

the interpolation formula

See Whittaker and Robinson's Calculus of Observation*, p. 365.
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approximations by more than 0*000005, these errors may, in an unlucky
case, be doubled in Ag and doubled again in A2

g. Even if every term

us^d in the calculation of y5 had its greatest possible error, and if these

errors all occurred with the same sign, the resulting error in y6 would be

less than 0-000025.

We now calculate g6
= 0-05(2 -t/5/z5)=0-040 12. This can be relied

upon as accurate to five places of decimals, as an error of 0-000025 in ya
would be multiplied by the small number 0-05/2-25, and so become

negligible to our order of approximation. Adding the value q$ to our

table we can at once get A<?4
= 0-00045, and A2^^ -0-00004, and hence

-2-69446+0-04012 +0-00022-0-00002-2-73478.

(As the last digit is odd for both A^ 3 and A<?4 ,
in halving we have to

choose between two equally good five-figure approximations. We
choose the larger and smaller alternately, so as to prevent an accumula-

tion of errors.)

Proceeding in this way, we obtain the results given in the following
table:

y 9 AJ Af
j

y =2-50000 g =0-03750

^=2-63780 ^=0-03810

t/t =2-57619 5, =0-03866

y3
= 2-61612 q3 =0-03918

y4 =2-66455 q4 =0-03967

y6 =2-69446 q6 =0-04012

ye =2-73478 ?6 =0-04055

y7
= 2-77554 g7

=0-04095

y% =2-81668 q% =0-04132

yg = 2-85817 qg =0-04167

y10 =2-90001

The y's may be expected to have small errors in the last digit. As
a matter of fact, the differential equation that we have chosen has the

exact solution y-x + l/x. Calculating from this we find an error of

0-00002 in y& 0-00001 in y7 , yQ , y9J yw ,
and zero in the others.

To obtain greater accuracy we may calculate yv y2 , y3 , y4 ,
to more

places of decimals, say eight. The student should do this. It will be
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found that A#, A2
g, A8

g and A4
g all appear to be reliable, and so capable

of use in the difference formula. The final results are

y = 2-500,000,00;

ft =2-537,804,88;

yt =2-576,190,48;

y3 =2-615,116,28;

y4= 2-654,545,45;

j/6
= 2-694,444,42 (error -2 in last digit) ;

j/6
= 2-734,782,58 (error

- 3 in last digit) ;

y7
= 2-775,531,88 (error

- 3 in last digit) ;

y8= 2-816,666,61 (error
- 6 in last digit) ;

yg =2-858,163,23 (error -4 in last digit) ;

y10 =2-899,999,93 (error -7 in last digit).

The last term used in the calculation of t/10 , namely f^A4
^, has

the value -0-000,000,09. The magnitude of this indicates that the

errors this time (unlike those for the five-figure work) probably occur

from neglect of the higher differences. To remedy this, we can either

calculate y5 accurately from the Taylor's series, and use A5
g, or (as is

more usual) diminish the interval sufficiently to ensure that A6
</ may

be negligible to our desired order of approximation.

183. Remes' extension of the method of Arts. 90-93. E, Remes
has given

* a systematic method of determining suitable values foi

the numbers m and M defined in Art. 92, namely,

Case (i) m=/(a, 6), M =/{a +A, 6 +A/(a +A, 6 + A)}, if

dfldx>0, 3//cty>0 ;

Case (ii) i=/(a, 6), M=/{a+A, b+kf(a, 6)}, if

df/dxX), 3//fy<0 ;

Case (iii) m=f{a+h,.b+hf(a+h, 6 -A)}, M=f(a, 6), if

Case (iv) w=/{a+A, 6+/(a, 6)}, Jtf =/(a, 6), if

dfjdx<09 3//3y<0.

These values satisfy the inequalities (7), (8), (9), (10) of p. 107.

Remes shows that if we define R and r by the relations

r= JA{/(a, 6) +f(a +A, 6 +m*)} f R=$h{f(a, b) +/(a +A, 6 +Mh)},

the inequalities hold also when q is replaced by r and Q by R.

* Phil. Mag., Series 7, Vol. 6, Feb. 1928.
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Let 2' denote (p +2Q) if >0,

butl(P+2?
)if|<g<0.

Let 2" denote J(2p +R) if

butl(2P +
r)if|g<0.

Then Remes proves that the errors in the approximations 2' and

2" are at least of the fourth and third order respectively (taking the

increment to be small of the first order) if ^ -J- Va<0, but at least
'

oy ax ax*

of the third and fourth orders respectively if ~-~\^" T2>^- This

conclusion depends upon m and M being chosen as explained above.

The error in the example on p. 107 was much smaller than would

be expected from this result, but this seems to be due to luck in the

choice of m and M
,
which were not obtained in the way stipulated

by Remes. In general the methods of Adams or Kutta seem much

better.



APPENDIX A

The necessary and sufficient condition that the equation M dx +N dy**Q
should be exact

(a) If the equation is exact,

M dx -fN dy = a perfect differential = df, say.

So M-% and N-%;ux dy

^ f
dN a 2

/ a 2
/ dM

therefore ^- =. ^
*- =

5-^- *= -5- ,

ax axe?/ cty&c a?/

BO the condition is necessary.

(b) Conversely, if y^^-* Put F=*\ M dx, where the integration

is performed on the supposition that y is constant.

-.M i ^^jLnen ~^ M. anu ^ ^ ^ ^~ ^ ~^
ox ox dy oy ox oy ox

O El

2V _ - = a constant as far as a; is concerned, that is,

^ a function of y,

Then

Now put /
j

Then N =y.
dy

fl Jf

Also M =
-5- by definition of F
ox

=^-,
since F and / differ only by a function of y.

Thus M dx +N dy = dx -f
yj- dy rf/, a perfect differential.

So the equation is exact, that is, the condition is sufficient.

d2f B2f
[Our assumption that a~a ^ppr ig justified if / and its first and

second partial differential coefficients are continuous. See Latnb'j

Infinitesimal Calculus, 2nd ed., Art. 210 ; or 3rd ed., Art. 1S3.]
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APPENDIX B

The equation P(xt y, z)
J- +Q (x, y, z)-t + R (x, y, z)

= 0, regarded cw

four-dimensional, has no special integrals. (See Art. 127.)

Let u(x, y, z)
= a,

v(x,y,z) = b,

be any two independent integrals of the equations

dx/P

Then we easily prove that

and P +Q + R = . - ..............................(2)
dx By dz

The left-hand side of (1) does not contain a, and therefore cannot

vanish merely in consequence of the relation w = a. Hence it must
vanish identically. Similarly equation (2) is satisfied identically.

Naw let f=w(x,y,z) be any integral of the original partial

differential equation, so that

.o...............................(3)
dx dy dz

This is another identical equation, since / does not occur in it.

Eliminating P, Q9 R from (1), (2), (3), we get

^4=0 identically.
o(x9 y,z)

Hence w is a function of u and v, say

w =
(f>(ut v).

That i&jfw is part of the General Integral, and therefore, as/=t0
is any integral, there are no Special Integrals.

[The student will notice the importance in the above work of a

differential equation being satisfied identically. Hill's new classification

of the integrals of Lagrange's linear equation (Proc. London Math. Soc.

1917) draws a sharp distinction between integrals that satisfy an

equation identically and^those which have not this property.]
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The expression obtained for dz by Jacobi's method of solving a singh

partial differential equation of the first order (Art. 140) is always

integrable.

To prove that dz =pldxl +p%dx2 +p^dx3

is integrable it is accessary and sufficient to prove that

L =M = ^-0, ......................................(A)

where L-dp~* -^ M?-8 -^ N=^ - %WllL-lt? Ll- _ _
y

1X1.=- -
I JT =A -

OX3 OX 2 OX1 OXZ OX2 OXl

Now, by adding equations (8), (9), (10) of Art. 140 and using the

relation (F, FJQ, but not assuming the truth of (A), we get

(B)

Similarly L'- +M 1 + 2V = .............. (C)

and L+M*+N*- .............(D,
9(^2>?3) d(p*Pi) ^(P^Pz)

From equations (B), (C), (D) we see that either L M N=0 or

A = 0, where A is the determinant whose constituents are the

coefficients of L, M y
N in (B), (C), (D).

But these coefficients are themselves the co- factors of the constituents

of the determinant

and by the theory of determinants A=72

Now J cannot vanish,* for this would imply the existence of a

functional relation which would contradict the hypothesis of Art. 140

that the p's can be found as functions of the a?'s from

F^Ft-a^Fz-a^Q.
Hence A=fO; therefore L = 1/ =N = 0.

* All the equations of this appendix are satisfied identically.
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APPENDIX D

Suggestions for further reading

-No attempt will be made here to give a complete list of works on
differential equations. We shall merely give the names of a very
small number of the most prominent, classified in three sections.

I. Chiefly of analytical interest (forming a continuation to Chapter X.).

(a) Forsyth : Theory of Differential Equations (1890 and later years,

Cambridge Univ. Press).
This important work is in six volumes, and is the most exhaustive

treatise in English upon the subject. It should not be confused with
his more elementary work in one volume (4th ed. 1914, Macmillan).

(b) Goursat : Cours d"Analyse mathtmatique, Vols. II. and III. (2nd
ed. 1911-15, Gauthier-Villars

; English translation published by Ginn).
This deals almost entirely with existence theorems.

(c) Schlesinger : Handbuch der Theorie der linearen Differential-

gkichungen (1895-8, 3 vols, Teubner).

II. Partly analytical but also of geometrical interest.

(a) Goursat : liquations aux dtrivees partielles du premier ordre (1891).

(b) Goursat : Equations aux derivees partielles du second ordre

(1896-98, 2 vols., Hermann et fils).

(c) Page : Ordinary differential equationsfrom the standpoint of Lie's

Transformation Groups (1897, Macmillan).
This deals with the elements of differential equations in a highly

original manner.

III. Of physical interest (forming a continuation to Chapters III. and IV.).

(a) Riemann : Partielle Differentialgleichungen und deren Anwendung
auf physikalische Fragen (1869, Vieweg).

(6) Riemann-Weber : A revised edition of (a), with extensive
additions (1900-01, Vieweg).

(c) Bateman : Differential Equations (1918, Longmans).
This contains many references to recent researches.

It is impossible to mention original papers in any detail, but the
recent series of memoirs by Prof. M. J. M. Hill in the Proceedings of the

London Mathematical Society should not be overlooked.

Addenda (published since 1920).

I. (d) Ince : Ordinary Differential Equations (1927, Longmans).
I. (e) Bieberbach : Differentialgleichungen (2nd ed., 1926, Springer).
II. (d) Dickson : Differential Equations from the group standpoint (1924,

Princeton Univ. Press).
For other references see the second footnote to Art. 181. The new

editions of I. (b) and of Forsyth's one-volume work are very little altered.
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MISCELLANEOUS EXAMPLES ON THE WHOLE BOOK

[London.]
dy
dx

(2) dx

(3) tan y
~~

-I- tan xcos ycoa*x.

(5) (l-

(6)

(7)

(8)

du
(9) cos x sin x ~ y + cos .

/Z

(10)
=

+ 1.

(13)

(14) I

(15) (

(16)

1 xy dx

(17) a3>~2

(18) (x + 2y
-

*)p + (3y
-

z) } - x 4- y ,

233

[London. ]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

[London.]

I London.]
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(19) Wg+:-0. [London.]

(20) p(x+p)+q(y + q)**z. [London.]

(21) r + 8**p. [London.]

(22) z-%px-qy**p*/x*. [London.]

(23) r-x=*t-y. [London.]

(24) z=>px + qy-sxy. [London.]

(25) z(rt~s
2
)+pqs=*Q. [London.]

(26) x2r + 2xy$ + y
2
t = xy. [London.]

(27) rq(q + l)-s(2pq+p + q + l)+tp(p + l)=*Q. [London.]

(28) f = xy*p + x*p*. [Math. Trip.]

(30) |-~ + x*ny~0. [Math. Trip.]ax x ax

(31) (zp + x)
2 + (zq + y)

2 ~l. [Math. Trip.]

(32) Find a solution of the equation -j-|
- 3 ~ -f 2y = e

3* which shaU

vanish when x = and also when z = log2. [Math. Trip.]

(33) Solve the equation

d2x n dx
, , .

,.
.

-jp
+ 2/c -T + (/c

2 + X 2
) x = A cos pfc

Show that, for different values of 7), the amplitude of the particular

Integral is greatest when 7?
2=A 2 -/c 2

, and prove that the particular

integral is then

(A/2K\) cos (pt
-

a), where tan a =>p/K. [London.]

(34) Solve the equation

d2u du
y-~: + tanaj-f ycos

2 z=*0
dx2 dx J

by putting z =* sin x.

(35) (i) Assuming a solution of
~^-^

+ ~5~z + ~5~T Q ^ ke f the

form F(r + z), where r2 = x 2 + y
2 + z2

, obtain the function F
; and by

integrating with respect to z, deduce the solution F z log (r -f z)
- r..97 9 2F

(li) Assuming a solution of "oT^^^i ^ ^e ^ ^e f rm ^(^)>

where =#/\/, obtain the function
</> ;

and deduce a second solution

by differentiating with respect to x. [London.]

(36) Obtain a rational integral function V of x, y, z which satisfies

the condition 927 927

and is such as to have the value Az* at points on the surface of a sphere
of unit radius with its centre at the origin. [Math. Trip.]



MISCELLANEOUS EXAMPLES 235

(37) Show that a solution of Laplace's equation V 2w==0 is

u - (A cos nd 4- B sin n6) e*** Jn (Xr),

where r, 0, 2 are cylindrical co-ordinates and A, B, n, A are arbitrary
constants. [London.]

(38) Show that Jn (r) (an cosn0 + 6n sinn0), where r and 9 are

polar co-ordinates and an and fcn are arbitrary constants, is a solution

of the equation gay

(39) Show how to find solutions in series of the equation

du 9 d
2u

"&-
and solve completely for the case in which, when x=0,

w a
^-
= C cosh *. [London.]

(40) Obtain two independent solutions in ascending powers of x of

the equation d

and prove by transforming the variables in the equation, or otherwise

that the complete solution may be written in the form

where A and B are arbitrary constants. [London.]

(41) Show that the complete solution of the equation

where P, Q, R are functions of x, can be obtained by the substitution

y
= y l + l/z)

if a particular solution, yl9 is known.

Show that, if two particular solutions yx and y 2 are known, the

complete solution is

1
R tot

~
i) ** + const -

Obtain the complete solution of the equation

which has two particular solutions, the product of which is unity.

(42) Show that the differential equation

has a solution of the form (1 +x)p (l x)
q
, where p and q are determinate

constants. Solve the equation completely ; and deduce, or prove

otherwise, that if 2a is a positive integer n, one solution of the equation
is a polynomial in x of degree n. [Londoa]
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(43) Verify that 1 - x* is a particular solution of the equation

a2
) t/~0,

and solve it completely.

By the method of variation of parameters or otherwise, solve com

pletely the equation obtained by writing (1 -a;2
)
3 instead of zero on the

right-hand side of the given equation. [London.]

(44) Show that the complete solution of the equation

where P, Q are given functions of x, can be found if any solution of the

is known.

Hence, or otherwise, solve the equation

d^y dy

(45) Prove by putting v***weix that the complete solution of the

d2v _ dv . , ,

equation x-T-^-zn-j-
-fxv0, where n is an integer, can be expressed

in the form

(A cos x -f B sin x)/(x) -f (A sin x - B cos x) (x),

where /(x) and (x) are suitable polynomials. [London.]

(46) If u, v are two independent solutions of the equation

where dashes denote differentiation with regard to x, prove that the

complete solution is Au + Bv + Cw, where

)f(x)dx f uf(x)dx

and A, B, C are arbitrary constants.

Solve the equation

x2
(x

a + 5)y"
/

-x(7x + 25)y
/ ' + (22x

l + 40)y'~30x?/-0,

which has solutions of the form xn . [London.]

(47) Obtain two independent power-series which are solutions of

the equation .75

and determine their region of convergence. [London.]

(48) Prove that the equation
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has two integrals

, r- ._
where an ""

\F(nTl) f

" [London.]

(49) Form the differential equation whose primitive is

A f . cos x\ _ / sin x\
y=*A( sin a; -\

--
J
+ B ( cos x--

J
,

where A, B are arbitrary constants. [London.]

(50) Obtain the condition that the equation

may have an integrating factor which is a function of x alone, and apply
the result to integrate

(3xy
- 2ay

2
)
dx + (x*- 2axy) dy - 0. [London. ]

(51) Show that the equations

dy ^

have a common primitive, and find it. [London.]

(52) Prove that any solution of the equation

is an integrating factor of the equation

and conversely that any solution of the latter equation is an integrating
factor of the former.

Hence integrate the first of these equations completely, it being

given that <p /P\ R rT , ,

- [London - ]

(53) If the equation -| -f P-/ -f Qy == 0,
ax* dx

where P and Q are functions of x, admits of a solution

y =A sin (nx -f- a),

where A and a are arbitrary constants, find the relation which connects

P and Q. , [London.]

(54) Solve the equation ^| - 4y
2y

t ,

d%> (1 Xj

having given that it has two integrals of the form

a + bx ^M r. ,

ysss ^ [London.]
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(55) Show that the linear differential equation whose solutions are

the squares of those of -| + P
(
-^ + Qy =

(IOC dX

may be written
(J-

+2
p) (g +P|

(56) Show that the total differential equation

satisfies the conditions of integrability, and integrate it. [London.]

(57) The operator j- being represented by D, show that if X is a

function of x and (f>(D)
a rational integral function of D,

Extend the result to the case in which l/</>(D)
is a rational integral

function of D.

Solve the differential equation
d3v
T-| + Sy = 3x2 + xe~2x cos sc. [London. ]

(58) Show that 3 - + 4o -
8y -

has an integral which is a polynomial in x. Deduce the general solution.

[Sheffield.]

(59) Show that, if in the equation Pdx +Qdy + Rdz = Q, P y Q, R
are homogeneous functions of x,y, z of the same degree, then one variable

can be separated from the other two, and the equation, if integrable,

is thereby rendered exact.

Integrate

2
3
(x

2dx + y
2
dy) + z{xyz* + z4 - (x

2 + y
2
)

2
} (dx + dy)

+ (x + y) {z*
- z2 (x

2 + y
2
)
-

(x
2 + y

2
)
2
} dz

- 0,

obtaining the integral in an algebraic form. [London.]

(60) Show that, if the equation Pdx + Qdy+ Rdz = Q is exact, it

can be reduced to the form A du + /jidv=*Q ;
where X/M is a function of

u, v only and u= constant, v = constant are two independent solu-

tions of dx dy . dz

^_a#~a#_ap~ap_aQ*
dz dy dx dz dy dx

Hence, or otherwise, integrate the equation

(yz + z2) dx -xzdy + xy dz = 0. [London. ]

(61) Prove that z*~2xy is not included in

which is the general solution of

{2y(*
2 -

2xy) -2x- l}zp + {1 4- 2y
- 2V(*

a -
2*y)}zq - x - y,

but that it is nevertheless a solution of the equation. [Sheffield.]
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(62) (i) Show how to reduce Riccati's equation

to a linear equation of the second order ; and hence 01 otherwise prove
that the cross-ratio of any four integrals is a constant.

(ii) Verify that J -fa; tan x y J- x cot x are integrals of

and deduce the primitive. [London.]
dx

(63) By solving ^ =
-o>y,

dy
Jt=

X

in the ordinary way, and eliminating t from the result, prove that the

point (x, y) lies on a circle.

Also prove this by adding x times the first equation to y times the

second.

[The equations give the velocities, resolved parallel to the axes, of

point which is describing a circle with angular velocity o>.]

(64) Find the orthogonal trajectories of the curves

y
2
(a
~

x) ~ x8 .

Prove that they reduce to the system

r2 = 62 (3-fcos20). [Sheffield.]

dx
(65) T- =ny-m,

dy .

J = fe-n*.

dz

where I, m, n are constants, prove that

Ix + my -f nz,

,

and

are all constant. Interpret these results.

(66) A plane curve is such that the area of the triangle PNT is

m times the area of the segment APN, where PN is the ordinate, NT
the subtangent at any point P, and A the origin, which is on the

curve; show that its equation is y
zm~l = a?m~2

x.

Show that the volume described by the revolution of the segment
APN about the axis of x bears a constant ratio to the volume of the

cone generated by the revolution of the triangle PNT. [London.]
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(67) By using the substitutions xrcos0, t/rsin0, or otherwise,

solve the differential equation

Also find the singular solution, and interpret the results geo-

metrically. [London. ]

(68) Show that the equation

can be reduced to Clairaut's form by making y
2 - y? a new dependent

variable ; solve it and show that the singular solution represents two

rectangular hyperbolas. Verify also that this solution satisfies the

given equation. [London.]

(69) Prove that the curves in which the radius of curvature is equal
to the length intercepted on the normal by a fixed straight line are

either circles or catenaries. [London.]

(70) Solve the equation

y x - %ap -f ajP,

and find the singular solution, giving a diagram. [London.]

(71) A plane curve is such that its radius of curvature p is con-

nected with the intercept v on the normal between the curve and the

axis of x, by the relation pv c
2

. Show that, if the concavity of the

curve is turned away from the axis of x,

t/
2 c2 sin2

</>
+ &,

where
<f>

is the inclination of the tangent to Ox. Obtain the value of

a? as a function of
<f>

in the case 6 =
;

and sketch the shape of the

curve. [London.]

(72) Show that, if the differential equation of a family of curves be

given in bipolar co-ordinates r, r', 9, 9', the differential equation of the

orthogonal trajectories is found by writing rd9 for dr, r' dff for dr',

-dr for rd9, -dr' for r'dQ'.

Find the orthogonal trajectories of the curves

a b

-r

+?~ C>

c being the variable parameter. [London.]

(73) The normal at a point P of -a curve meets a fixed straight line

at the point G, and the locus of the middle point of PG is a straight

line inclined to the fixed straight line at an angle cot^S. Show that

the locus of P is a parabola.
'

[London.]

(74) Solve the equation 2(p-l)y=*p
zx

;
show that the "^-dis-

criminant
"

is a solution of the equation, and is the envelope of the

family of curves given by the general solution. [London.]

(75) Obtain the differential equation of the involutes of the parabola

y
1

iax, and integrate it. What is the nature of the singular solution 1

[London.]
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(76) Prove that if the normals to a surface all meet a fixed straight

line, the surface must be one of revolution, [London.]

(77) Integrate the partial differential equation

Give the geometrical interpretation of the subsidiary integrals and

of the general integral. [London.]

(78) Integrate the differential equation

z(* + 2^)~-*(y +
2z)|==t,*-*.

Find the particular solutions sucn that the section by any plane

parallel to z = shall be (i) a circle, (ii) a rectangular hyperbola.

[London.]

(79) A family of curves is represented by the equations

where a, /3 are parameters.
Prove that the family of curves can be cut orthogonally by a family

of surfaces, and find the equation of this family. [London.]

(80) Solve b(bcy + axz)p + a(acx + byz)q
= ab(z

2
-c?) i

and show that the solution represents any surface generated by linea

meeting two given lines.

(81) (i) Solve L

where L, R, and E are constants.

[This is the equation for the electric current / in a wire of resistance

R and coefficient of self-induction L, under a constant voltage E.]

(ii) Determine the value of the arbitrary constant if /=/ when
t-0.

(iii) To what value does / approximate when t is large I

[Ohm's law for steady currents.]

(82) Solve L~+RI~Ecospt.

[The symbols have the same meaning as in the last question, except
that the voltage E cos pt is now periodic instead of being constant.

The complementary function soon becomes negligible, i.e. the free

oscillations of the current are damped out.]

(83) Find the Particular Integral of

[This gives the charge Q on one of the coatings of a Leyden jar

when a periodic electromotive force E cos pt acts in the circuit con-

necting the coatings. The Particular Integral gives the charge after

the free electrical oscillations have been damped out.]
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(8d) Show that the equations

dx dy dx

dt dt dt

are satisfied by the trial solution y = mx, provided that in is a root of

the quadratic 2 +3w 16 + 3w

dx
and x is given by 7 -=- -(2-f 3w) z = 0.

Hence prove that two sets of solutions of the differential equations
are

y = x

and y
-

so that the general solution is x = Ae2i + Be~l

,

(85) Use the method of the last example to solve

dzx
7 - + 23^-8^ = 0,

[Equations of this type occur in problems on the small oscillations

of systems with two degrees of freedom. The motion given by y = %x

(or by t/== -5$) is said to be a Principal or Normal Mode of Vibration.

Clearly it is such that all parts of the system are moving harmonically
with the same period and in the same phase. If y

- 2x and y + 5o5 are

taken as new variables instead of x and y, they are called Principal or

Normal Coordinates.]

(86) Given that L, M, N 9 R, S are positive numbers, such that LN
is greater than M2

, prove that x and y, defined by

diminish indefinitely as t increases.

[Show that x=*Aeat + Bebt and y => Eeat
4- Febt

,
where a and 6 are

reaZ and negative. These equations give the free oscillations of two

mutually influencing electric circuits. L and N are coefficients of

self-induction, M of mutual induction, and R and S are resistances.]

(87) Show (without working out the solutions in full) that the

Particular Integrals of the simultaneous equations
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are unaltered if in the first equation the term I- dt is omitted and L

is replaced by L--^.

[This follows at once from the fact that the Particular Integrals are

of the form A sin (pt
-

a).

These equations give the currents in two mutually influencing
circuits when the primary, which contains a condenser of capacity c,

is acted upon by an alternating electromotive force. This example
shows that the effect of the condenser can be compensated for by in-

creasing the self-induction.]

<88 >
If i

and M
a

where LN -M2 is a very small positive quantity, show that the Com-

plementary Function for x represents a very rapid oscillation.

[These equations occur in Rayleigh's theory of the oscillatory dis-

charge of a condenser in the primary circuit of an induction coil with

a closed secondary. Notice that the second equation shows that the

secondary current is at its maximum when the primary current is at iti

minimum. See Gray's Magnetism and Electricity, Arts. 489 and 490.]

(89) Prove that the Particular Integrals of the simultaneous equations

d2xm - a(x
- X) + k cos pt,

u .

may be written x =
-^ ^ cos pt,

-ak

where 6 = mp2 - a and B = Mp2 -
(a + A).

Hence show that x and X are both infinite for two special values

of p.

[These equations give the oscillations of the
"
elastic double pen-

dulum." Masses m and M are arranged so that they can only move
in the same horizontal line. A spring connects M to a fixed point of

this line and another spring connects m to M. A periodic force acts

upon m, and the solution shows that both masses execute forced vibra-

tions whose amplitude becomes very large for two special values of p.

Of course this is the phenomenon of Resonance again. It is important
to notice that the values of p that give resonance in this case are not

the same as they would be if only one mass were present. This may
be applied to the discussion of the

"
whirling

"
in a turbine shaft.

See Stodola's Steam Turbine.]
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(90) Show that the solution of the simultaneous equations

where m=*M and a=6, may be expressed by saying that 6 and
<f>

are

each composed of two simple harmonic oscillations of periods %7r/pi and

%Tr/pz , p^ and pa
2
being the roots of the quadratic in p

2
,

28aV -
Slagp

2 + 270
2 = 0.

[These equations give the inclinations to the vertical of two rods

of masses m and M and lengths 2a and 2b respectively when they are

swinging in a vertical plane as a double pendulum, the first being freely

suspended from a fixed point and the second from the bottom of the

first. The two oscillations referred to are known as the Principal (or

Normal) Oscillations. Similar equations occur in many problems on

small oscillations. A detailed discussion of these is given in Routh's

Advanced Rigid Dynamics, with special reference to the case when the

equation in p has equal roots.]

<91 > +*-*

[These equations give the motion of the bob of a gyrostatic pen-
dulum which does not swing far from the vertical. Notice that if the

initial conditions are such that B Q, we get motion in a circle with

angular velocity p, while if A = 0, we get motion in a circle with angular

velocity q in the opposite sense. (For p, q, A, B see the answers.)
Similar equations hold for the path of revolving ions in the ex-

planation of the Zeeman Effect (the trebling of a line in a spectrum

by a magnetic field). See Gray's Magnetism and Electricity, Arts.

565-569.]

(92) Given (dx

dz ,

2-**

where o, 6, e are constants, obtain a differential equation for z.

Hence prove that if z = -=- when t 0,

z - c -f -^T [be~
at - ae~bf

].

[These equations occur in Physical Chemistry when a substance A
forms an intermediate substance B, which then changes into a third
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substance C. x, y, z are the
"
concentrations

"
of A, B, G respectively

at any time t. See Harcourt and Esson, Phil. Trans. 1866 and 1867.]

(93) The effect on a simple dynamical system with one degree of

freedom of any other dynamical system to which it is linked can be

represented by the equation

If the exciting system of waves is maintained steady so that

X A cos pt, find the value of p for which there is resonance, and prove
that if JUL exceeds a certain value there is no resonance. Draw curves

illustrating both cases. [Math. Trip.]

(94) Solve the differential equation

+ 2/be + ti
2z = when ft* < n2

.

In the case of a pendulum making small oscillations, the time of a

complete oscillation being 2 sees, and the angular retardation due to

the air being taken as -04 x (angular velocity of pendulum), show that

an amplitude of 1 will in 10 complete oscillations be reduced to about

40'. [Take log, e = 4343.] [Math. Trip.]

(95) The motion of a system depends practically on a single co-

ordinate x ; its energy at any instant is expressed by the formula

\mx
2 + \ex

2
;
and the time-rate of frictional damping of its energy is

\kx
2

. Prove that the period (TO)
of its free oscillation is

1 &2 \-4

Prove that the forced oscillation sustained by a disturbing force of

e k2

type A cos pt is at its greatest when p
2 =-- r ^ and that the amplitude

M 1l

of this oscillation is then ~
9
while its phase lags behind that of the

7T/C

force by the amount tan"1-. [Math. Trip.]

(96) Show that the substitution T-- (-=-
J

reduces

i7*+K:jf)
a

-Q
TT/TJ

to the linear form -j- -f 2PT= Q.

From

vrith the conditions ^-=0 and s=*2a when J0, obtain

-*-
, <Ps gud -.
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[This gives the solution of the dynamical problem :

" A uniforn

chain is coiled up on a horizontal plane and one end passes over fi

smooth light pulley at a height a above the plane ; initially a lengtl
2a hangs freely on the other side. Prove that the motion is uniforml)
accelerated." See Loney's Dynamics of a Particle and of Rigid Bodies

p. 131.]

(97) Find a solution of the equation

3 /
290\ 1 d ( . .30\

x- 1 r2 -^- ) + . K ^ \
sin 6 = 1=0

or \ or/ sin 6 06 \ dd/

of the form
<f> =/(r) cos 0,

given that ~ = F cos when r a

and -S- =a when r = oo .

dr

[<^>
is the velocity-potential when a sphere of radius a moves witl

velocity F in a straight line through a liquid at rest at infinity. Se<

Ramsey's Hydro-Mechanics, Part II. p. 152.]

(98) Find a solution of -.
= c2~

fjt Oli

which shall vanish when x = 0, and reduce to A cos (pt + a) when x = 5.

[This gives the form of one portion of a stretched string, fixed ai

both ends, of which a given point is made to move with the periodi<

displacement A cos (pt -h a). The portion considered is that between th<

given point and one of the ends. See Ramsey's Hydro-Mechanics
Part II. p. 312.]

(99) Obtain the solution of

\3>a+ r dr,

in the form r<f>*=*f(ct-r) + F(ct+r).

[<f>
is the velocity-potential of a spherical source of sound in air

See Ramsey, p. 345.]

(100) Obtain a solution of

such that d(/>ldy=*Q when y -h
and varies as coB(mx-nt) when #=0.

[</>
is the velocity-potential of waves in a canal of depth h, the sidoi

being vertical. See Ramsey, p. 265.]

(101) Obtain the solution of the simultaneous differential equations

dx
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with the initial conditions

^ dx _ dii _

,-, y-O. -0, =0,

m the form z =

where z= x + iy and g
=

Show that the solution represents a hypocycloid contained between
two concentric circles of radii a and an/q.

[This example gives the theory of Foucault's pendulum experiment

demonstrating the rotation of the earth. See Bromwich, Proc. London
Math. Soc. 1914.]

(102) Obtain an approximate solution of Einstein's equation of

planetary motion $u m

in the following manner :

(a) Neglect the small term 3mu2
, and hence obtain

w=S{l +e cos (<f>- ui)}, as in Newtonian dynamics.

(6) Substitute this value of u in the small term 3mu2
,
and hence

obtain

d?u m 3m3 6m3
. 3m3

e2

dfi
+ U =W + ~W +

p-e
cos (0-o) +^^{

(c) Neglect all the terms on the right-hand side of this differential

equation except ,-2
and

-7^-
e cos (0 or). The term in cos (0

-
trr) must

be retained
;

it is of the same period as the complementary function, and
therefore produces a continually increasing particular integral. [See the

resonance problem Ex. 36 on p. 46.] Hence obtain

u =
2
\ 1 + e cos (0

-
or) + -p- e<f>

sin (0
-

or) h

=
, 2 {1

+ e cos (0
- or - e)} approximately,

where e = -y^-
and e

2 is neglected.

[This result proves that when the planet moves through one revolu-

tion the perihelion (given by0-CT-e= 0) advances a fraction of a

revolution given by - =
-^-.

When numerical values are given to the

constants it is found that Einstein's theory removes a well-known

discrepancy between observed and calculated results on the motion

of the perihelion of Mercury. See Eddington, Report on the Relativity

Theory of Gravitation, pp. 48-62.]
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(103) L(x, y, x', y') is a function of the variables x, y, x', y*.

X, Y are defined by the equations

T 3L v dL

*~M' *~dy''

If these equations can be solved for x' and y' as functions of X, Y, x, y,

and ifH (X, Y, x, y) is the function obtained by expressing

Xx'+Yy'-L

entirely in terms of X, Y, x, y, then prove that

dn dL
and ~ __ _ . ^j

Prove also that the equation

dt\dx'J dx

is transformed into -rr= -^~ (4)
dt dx

^ '

[This is the Hamiltonian transformation in dynamics. Equation (3)

is a typical Lagrangian equation of motion in generalised co-ordinates.

Hamilton replaces it by the pair of equations (1) and (4). See Routh's

Elementary Rigid Dynamics, Chap. VIII. This transformation should

be compared with that of Ex. 21 of the miscellaneous set at the end of

Chap. XII., where we had two partial differential equations derivable

from each other by the Principle of Duality.]

(104) Show that Jacobi's method (Art. 140) applied to Hamilton**

partial differential equation

s- + a (xlt X2,
... xny Pi t p2, pnt t)**Q

leads to ~~r~~ % > ~j
~ ~~

a~~" (f^l* 2, ... n),

which are the equations of motion of a dynamical system, in Hamilton*!

form. [See Whittaker's Anal;/fical Dynamics, 2nd ed., Art. 142.]

(105) (i) Prove that if u(xt y,z)=*a

and v(x, y, z)^b

are any two integrals of the system of differential equations

dx dy dz

P(X, y, z)

"
q(x, y, z)

"
r(x, y, z)

9

. 1 d(u, v) 1 d(u, v) I d(u, v) . .

then -
^7 r

-
^7- r = -

,^7 r = m(x, t/, z), say,
p d(y> z) y o(z>

x) r v(x, y)

[tn is called a multiplier of the system.]
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(ii) Show that m satisfies the partial differential equation

(iii) If n(xy y9 z) is any other multiplier of the system, show that

d

and hence that -^7 ~~^=0 identically,
d(x, y, z)

JJ

so that m/n is a function of u and v, anl mjn c is an integral of the

original system of differential equations.

(iv) If u(Xj y, z) a can be solved for z, giving zf(x9 y, a), and

if capital letters F, P, Q, R, M denote the functions of x9 y, a, obtained

by substituting this value of z in v
9 p9 q 9 r, m, then prove that

dx dij

V(x9 y, a) = 6 is an integral of
-p
=
^.

Prove also that 3fP= - ~- ^~
dy oz

am dv du
and MQ= ^~ or
/ d \

(where ^ is to be expressed in terms of x9 y9 a\ so that

[This suggests that if any integral w = o and any multiplier m are

known, then M(Qdx-Pdy) l~ will be a perfect differential, leading

to an integral of the system when a is replaced by u(x y y 9 z).

For a proof of this theorem see Whittaker's Analytical Dynamics,

2nd ed., Art. 119. A more general theorem is that if (n-1) integrals

of a system of differential equations

dx1
dx2 dxn __

dx

Ih**!^**'"***!**" P
are known and also any multiplier, then another integral can be deter-

mined. This is generally referred to as the theorem of Jacobi's Last

Multiplier. In Dynamics, where this theorem is of some importance

(see Wbittaker, Chap. X.), the last multiplier is unity.]

(v) Show that unity is a multiplier of

dx dy dz

and a^ + t^ +z^a an integral, say u(x9 y9

Show that in this case

and hence obtain the secorjcj integral
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ibe*'/(0 dt, where a and 6 are constants, then
a

Hence prove that y will satisfy the differential equation

if

and

Use this method to obtain

as a solution, valid when x>0, of

^V dy .

sJ
+ -*-a

The corresponding solution for the case sc<0 is obtained by taking
the limits of the first integral as 1 to co

, instead of -co to -1.

[Exs. 106408 give some of the most important methods of obtaining

solutions of differential equations in the form of definite integrals.]

(107) Verify that v= v +~-\ e~*dz
VTTJo

, ,. . dv d*v
is a solution of ^- =A: ^~o>

dt dx?

reducing, when t = 0, to VQ + V for all positive values of x and to v - V
for all negative values.

[v is the temperature at time t of a point at a distance x from a

certain plane of a solid extending to infinity in all directions, on the

supposition that initially the temperature had the two different constant

values v + V and VQ
- V on the two sides of the plane x = 0.

Kelvin used this expression for v in his estimate of the age of the

earth (see Appendix D of Thomson and Tait's Natural Philosophy). The

discovery that heat is continually generated by the radio-active dis-

integration of the rocks introduces a new complexity into the problem.]

(108) (a) Show that

F=ffe'*+w*+ ne
/(s, t)dsdt

(the limits being any arbitrary quantities independent of x, t/, z) is a

solution of the linear partial differential equation with constant

coefficients 3
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if l
t m, n are any constants or functions of s and t such that

F(l, m, n)=0.

Extend the theorem to the case when there are n independent
variables x, y, z, ... ,

and (n- 1) parameters s, t, ... .

Obtain F-
[ [

e*<*
cos t+y 8ln t+ *z)/ (s, ) <fo (ft

, .. 92F 92F dV32Y
as a solution of -=- + Vr = -^~- [H. Todd.]

3x2 3/
2 oz

L J

(O

*J ~\\

p"~ 5~~ jr)
^ = ^8 a homogeneous linear

partial differential equation with constant coefficients a solution is

2, ) e&,

where the limits are any arbitrary quantities independent of x, y, z, and

/, my n are any constants or functions of t such that

F(l,m, n)=0.

Extend the theorem to the case when there are n independent
variables and (n

-
2) parameters. [See H. Todd, Messenger of Mathe-

matics, 1914.]

Obtain F=
J
f(x cos t + y sin 1 4- iz, t) dt

32F 92 F 92F A
%s a solution of 19+ ~^~9 + ~^~r ""0.

d^2
a?/

2 ^ 2

[Whittaker's solution of Laplace's equation.]

(109) By substituting the trial solution

a, a.- ao + x
+ ^ +-

in the differential equation -,- -I- y= -
,

ax x

. . t 0! 1! 2! 3!
obtain the series t/

= + + -^+ ~4 + -

Prove that this series is divergent for all values of at.

Obtain the particular integral
exfx ex

-r
J -00 *

and by repeated integration by parts show that

e* , 0! 1! 2! n! f* (n +!)!

Hence prove that if x is negative the error obtained by taking n -f 1

terms of the series instead of the particular integral is less than the

numerical value of the (n + l)
th term.

[Such a series is called asymptotic. See Bromwich's Infinite Seriet,

Arts. 130-139 ; or 2nd ed., Arts. 106-118.]
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(110) Show that if the sequence of functionsfn (x) be defined by

/ (x) a -f b (x
-

c), where a, 6, c are constants,

and, *

Hence show that
*/
=

n(x)
^9 a solution of

provided that certain operations with infinite series are legitimate (foi
a proof of which see Whittaker and Watson's Modern Analysis, p. 189.*

They give a proof of the existence theorem for linear differential equa-
tions of the second order by this method).

(Ill) Prove that the solution f of the two simultaneous linear differ-

ential equations with constant coefficients

(where D stands for d/dt), may be written

where V is the complete primitive of

Hence show that if the degrees of/, .F, </>, \fs
in D be p, qy r, 8 respec-

tively, the number of arbitrary constants occurring in the solution will
in general be the greater of the numbers (p + s) and (q + r), but if

(p + s)
=

(q + r) the number of arbitrary constants may be smaller, and
may even be zero as in the equations

(112) (a) Prove that if -u(s),

y~v(x)
are any two solutions of the linear differential equation of the first order

then
(vMj

so that v au, where a is a constant.

(b) Prove that if y= u (x), y**v(x), y**w(x)
*

p. 195 in 3rd and 4th editions.

t This,jt may be proved, cannot be the most general solution if it gives the
number of different arbitrary constants for x and y together less than for F, a* will
happen if f(D) and F(D) have a common factor other than a mere constant.
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are any three solutions of the linear differential equation of the second

order P()

then P
-j- (WJL

-
vwj) +Q(wvl

- wo^ =0
ctx

and P j-(uv1 -vttl)-\-Q(uv1 -vul) =0.

Hence show that w= au + bv.

[By proceeding step by step in this manner we may show that a

differential equation of similar form but of the wth order cannot have

more than n linearly independent integrals.]

(113) Let w, v, w be any three functions of x.

Prove that if constants a, b, c can be found so that y~
vanishes identically, then

u v w
W =0,

while conversely, if this determinant (the Wronskian) vanishes, the

functions are not linearly independent.
Extend these results to the case of n functions.

[Consider the differential equation of the second order formed by

replacing u, u^, u2 in the determinant by y, yv yz respectively. Such

an equation cannot have more than two linearly independent integrals.

The Wronskian is named after Hoene Wronski, one of the early

writers on determinants.]

(114) Prove that z= e^x^" 1^ satisfies the partial differential equation

Hence, if Jn (x) is defined as the coefficient of t
n in the expansion

eW'-VO-f}^*),
oo

prove that y~Jn (x) satisfies Bessel's equation of order n,

[The operations with infinite series require some consideration.]

(115) If ux denotes a function of x, and E the operator which changes
ux into ux+l , prove the following results :

(i) Eax= a . a*, i.e. (E-a)a*=Q.

(ii) E2a a5= as .a*.

(iii) E (xa
x
)
= a (xa

x
) + a . a*, i.e. (E-a) (xa*)

= a . a.

(iv) (E-a)*(xa*) = Q.

(v) (pQE2
-\'plE+p^aai= (p^'}-p la+p2)a

a>

9 if thep's are constant.
P.D.B. S
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(vi) u
g!
**Aa i* + Bb* is a solution of the linear difference equation

i.e.

if ^4 and J9 are arbitrary constants and a and 6 the roots of the auxiliary

equation p w? +p l
m 4-p2 =0. (Of. Art. 25.)

Solve by this method (2#
2 + 5^ + 2)^= 0.

(vii) u
tt *=(A + Bx)a* is a solution of (E

2 -2aE + a?)ux =Q.
Here the auxiliary equation w2 -2aw + a2 =0 has equal roots.

(Cf. Art. 34.)

(viii) ux= r*(P cos xQ +Q sin xO) is a solution of

if P and Q are arbitrary constants, piq the roots of the auxiliary

equation pQm2
-f jjjW + p%=

and p + t'2
= r (cos -ft sin 0). (Cf. Art. 26.)

Solve by this method (E
2

(ix) The general solution of a linear difference equation with constant
coefficients

is the sum of a Particular Integral and the Complementary Function,
the latter being the solution of the equation obtained by substituting
zero for the function of x occurring on the right-hand side. (Cf.
Ar. 29.)

(x) a x
/F(a) is a particular integral of

provided that F(a)^0. (Cf. Art. 35.)

Solve by this method (E* + 8E-$)ux =*2*.

[For further analogies between difference equations and differential

equations, see Boole's Finite Differences, Chap. XL]

(116) Show that by applying the method of Art. 53 to Lagrange'g
equation

y~xF(p)+f(p),
we get in general (but not for Clairaut's form, where F(p)=p) the com-

plete primitive in the parametric form

Hence show that if Cv (7 2 , (7
3 are any three curves included in this

primitive, corresponding to the values c
lt

c2 ,
c3 of c, and PI(XV t/j),

P*(X2> !/2)> ^3(^3* 2/3) points on Clt
C 2 ,

C3 respectively, such that the

tangents at these points are all parallel, then
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i.e Pj, P2 ,
P3 are collinear, and the ratio PxP3 P%P$ is constant

as the points move, each along its own curve, in such a way as to keep
the corresponding tangents parallel. [Thus given two curves included

in the complete primitive, we can construct geometrically any number
of others.]

(117) Prove that a plane curve, such that the length of the radius of

curvature at any point is twice the length of the normal intercepted
between the curve and a fixed straight line, is either a cycloid, whose

base is the straight line, or a parabola, whose directrix is the straight

line. [London.]

(118) A curve possesses the property pkt&n^ where p is the

radius of curvature, \]s
is the angle the tangent makes with the axis of x

t

and k is positive. Show that the curve has a branch given by the

equations
x = k(l

- cos 0), y = &{lo (sec 6 + tan 6)
- sin 0},

where 0:S0 <TT, and the origin is taken at the point 0=0. Show that,

if s is the length of the arc measured along this branch from the same

point,
k

s = k log f . [London.]
K X

(119) Obtain a solution of the equation -~a=*c
2
^~2

*n ^e *orm

f(x) sin mt, which is such that
x

- - *=K
9
a constant, when x=0 and J=0,

ot

~-0, when x=0, for all values of t. [London.]ox
X-V.O O9

(120) Obtain for the equation ;r-2
+ ~~"2

a solution which satisfies

the following conditions :
^

(i) when y=0, z = sin x\

(ii) when x~0 or x, z
;

(iii) z does not become infinite anywhere in the region of the plane
of x

y y in which y > and TT > x > 0. [London.]

(121) By two integrations by parts show that, if P, Q, R are functions

of x, and suffixes denote differentiations with respect to x,

+ Ry)dx - z(PVl + Qy)
-
y(Pz) l + y{(P*) 2

-
(Qz^ + Bztfx.

Deduce that the two equations

are such that any integral of one is an integrating factor of the other.

[Such equations are said to be adjoint to each other.]



256 DIFFERENTIAL EQUATIONS

Show that, if D represents the operator djdx t the equation adjoint to

is {D-q(x)}{D-p(x)}z=0.

Verify this for the equation ya + ( + x2)y1 4-(2x + x3)y=0. [Here
J>(s)=a, q (x)=x*.]

General solution of ;rl=4 !*!-9x2 a2
dt*

Factorising the operator, the equation may be written

/3 13U/3 1 9\ I n _y9 1 3MY 3 * 9>
i \

\fo~adiJ {\dx
+
aW y

] -""^dx
+
a Wt) \\dx~a~di)

y
)'

Hence (cf. p. 33) the original equation is satisfied by any integral
of either of the two Lagrange linear equations

S4&-0 and JM&-OLox a ot dx a at

For the first of these the subsidiary equations are (from Art. 123)

dx dt _<fy

T~I/a~o~'
Two independent integrals are

y = 6, x-at=*o.
The general integral is

-/(*-aO-

Similarly the second Lagrange equation gives y=JF(a& + a^). These
are both integrals of the original differential equation. As it is linear,
a third integral is

containing two arbitrary functions, and no more general solution of an

equation of order two can be expected. (Cf. pp. 61 and 218.)
A similar method canfoe used for the equation of Art. 145.

The Method of Parameters. (C. N. Srinivasiengar.)
If a partial differential equation becomes an identity on substituting

p=/(x, a)/(p(z, a), q^F(y, a)/<f>(z9 a), we can use these expressions in

conjunction with dz*=pdx + qdy to obtain the complete integral

\<f>(z, a)dz\f(x, a)dx+\F(y, a)dy + b.

For example, the equation z2 (p + q)
= x* -f y

a becomes an identity if

y = (a;
a + a)/s

2
, q = (y

2 -
a)/z

2
,

giving z* x8 + y
8
-f Sax - 3ay + 6.

This method will deal with all equations of Standard Forms I and
III (Arts, f29 and 131) and some of II (Art. 130).



ANSWERS TO THE EXAMPLES

CHAPTER I.

Art. 5.

. .

(5) The tangent to a circle is perpendicular to the line joining the

point of contact to the centre.

(6) The tangent at any point is the straight line itself.

(7) The curvature is zero.

Art. 8.

Z S A

(1) y

(2) y a -f bx - a^ - 6 ^ + a -
-= + . . . = a cos x + 6 sin x.

41 Ol 4:1

Miscellaneous Examples on Chapter I.

{'+(!)'}:-<:)' t-
(12) y-ae + 6ar. (14) 60 and -60
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d?y
(15) Differentiate and put & 1, y=*2. This gives j--2

and hence
/>,

(17) (i) aj + 1 0; (ii) 2/

2

CHAPTER II.

Art. 14.

(1) 6a^ + 5x!/ + ^
2
~9x-42/=o. (2) sinxtany-f sin(sc

(3) secajtany-e
a5

o. (4) &-t/ + c = log(z +

(5) x + ye****cy. (6) t/=cz.

(7) e y
(sinx + cosaj)=-c. (8) ofy + 4c?/ -f 4 = 0.

(9) ye' cB. (10) sinxcosyo.

Art. 17.

(1) (x + y)*~c(x-y). (2) z2 + 2t/
2
(c-flog y)

(3) xf-c(x-y)*. (4)

(5) (2x-?/)
2 =

c(a; + 2?/-5). (6)

(7) s-y + c-log(&j-4y + l). (8)

Art. 21.

(1) 22/==(a; + a)
8 + 2c(-fa)

8
. (2) a?y

= sin x -f c cos x.

(3) 7/logx
=
(logx)

2 + o. (4) a?
3 =

?/

3
(38ina; + c).

(5) ^(s + ce*)-!; (6) x2/
3

-f-ci/. (7)
-

e-"(c + tan t/),

Art. 22.

(1 )
The parabola y

2 = 4ase + c.

(2) The rectangular hyperbola xy = c2 .

(3) The lernniscate of Bernoulli r2 = a2 sin 20.

x c

(4) The catenary y
= A;cosh -j. (5) xy^c

2
.

(6) y'-ai' + o
1

. (7) yP = cafl. (8) r
2 = ce".

(9) log r + J0
2
4- J0

8 - o. (10) The equiangular spirals r = ce 9 ten

Miscellaneous Examples on Chapter II.

(1) xy =f + c. (2)

(3) sin a sin y + e sln *<>. (4)

(5) cxy=
3
y + 'v

/
(y

a -xa
). (11)

(12) tm~l
(xy) + \og(x/y)=*c. (14) (x

2 -]

(15) (i)
The Reciprocal Spiral r(0

-
a) o.

(ii)
The Spiral of Archimedes r=c(0-a).

(16) The parabola 3Ay
2 ~2s. (18) a=y(o -4 log y).
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(19) (i) a + (y
-

c)
a 1 +c*, a system of coaxal circles cutting the given

system orthogonally,

(ii) r2 ce
~ e\ (iii) n2

=> r {c + log (cosec nO 4- cot n6)}.

(20)

(21)

CHAPTER III.

Art. 28.

(1) y-Aer
9 + Be~**. (2) y 4 cos 2a? + B sin 2a?.

(3) t/
-4-8a8 + J5e~4 *. (4) y e2x(,4 cos x + /^ Bin x).

(5) --(4cos3< + J3sin30. (6) *-

(7) y-4e + Be- + 06-a
. (8) y

= 2

(9) y - ^ cos (2iC
-

a) + JB cos (3x
-
^).

(10) y-4cosh(2x-a)H-/*cosh(3.i;-$), or

(11) y

(12) y-A&* + Be~2x + Ee~x cos (x^/3
-

a) 4- .Fc* cos

(13)
= a cos

(16) g-0 e-oosn + ~8inn, where n -

Art. 29.

(1) y-e^l+^cosx + Bsinz). (2)

(3) !/
= 2sm3x-f ^1 cos2x + sin 2z. (4) a = 2

;
6 = 1.

(5) a = 6; 6--1. (6) a- -4; p = 2. (7) o = l; 6-2;

(8) a -2. (9) 4^*. (10) 3e7iC
.

(11)
- f sin 5s. (12) fl cos 5a - j J sin 5-c. (13) 2.

Art. 34.

(1) y

(2) y

(3) y = (A -f- j&e) e* + E cos # 4- JF sin x.

(4) y-

Art. 35.

(1) y-2e
8a! -fe-8a!(^co84x + Bsin4x).

(2) y = e~v*(A cos jj? -f B sin js) 4- e
aa!

/{(a

(3) ?/
=

(4) y-
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(5) y = (A 4- ax/2p) cosh px + B sinh px.

(6) y

Art. 36.

(1) y = 2sin2a;-4cos2x + .4e-"*.

(2) y = 4 cos 4z - 2 sin 4z + ^le2* + Be3
*.

(3) y = 2 cos a? + e~4x (^4 cos So; + B sin So;).

(4) y - sin 20z + e-*(^f cos 20z 4- 5 sin 20z).

Art. 37.

(1) y-a?-3a5* + 63--6 + -4e-. (2) y - 6s2 - 6s 4- 4

(3) y

(4) y

(5) y

(6) y

Art. 38.

(1) y = 4cosa + (B + 2z)sma;. (2)

(3) y - Ae
2x

(4) ^ = {^1 sin ic-f(B--a;) cos x}e~
x

.

(5) y ^ (4 4- Bx - a;
3
) cos x + (

E + Fx + 3x2
)
sin x.

(6) ?/

(7) y ={^I sin 4o? + (B - x + x2
) cos 4z}e

3x
.

Art. 39.

(1) y~Ax + Bx* + 2x*.

(2) y 2 + ^4x~4 cos (3 log x) + Bx~* sin (3 log z).

(3) y = 8 cos (log x)
- sin (log x) + J.or2 + I?x cos (v"3 log 05

-
a).

(4) y = 4 + log x + Ax + Bx log x + Gx (log x)
2
-f Do; (log x)

3
,

(5) y(l +23)
2
[{log (1 -f 2z)}

2 + A log (1 +2z) + B],

(6) y^ cos {log (1 +B) -a} + 2 log (1 +) sin log (1 +x).

Art. 40.

(1) y*=*A cos (o3-a) ; as -A sin (#-a).

(2) y- A<*x + Be3a:
;

- 64e5x - 7Be3aj
.

(3) y^e^H-B cos (2x-a) ; z = 2Aex-B cos (2x-a).

(4) y = 6^ + 4 + Be~2
*; * = e* +4 - Be- 2a5

.

(5) y =A cos (o;-a) + 4Bcos (2x
-

/3) + cos To;;

z=*A cos (a;
-
a) 4- B cos (2x

-
/3)

- 2 cos 7x.

(6) y
- S^e335 - 4Be4* + 2e-a + cos 2x - sin 2a; ;

z -4e8aj -f Be4*
-I- 3e-* + 4 cos 2x -f 6 sin 2x.
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Miscellaneous Examples on Chapter IIL

(1) y~(A + Bx + Cx*)e
x + 2e*x . (2) y = (A + Bx + Gx*)

(3) y = Ae~** + Be-** + Ce~x + E + 2e-2*(sin x - 2 cos x).

(4) y 4e* -f cos (2x
~

a)
- 2e* (4 sin 2x + cos 2x).

(5) y = (A + Bx + Cx*)e~* + (E + x + 2x*)e**.

(6) y =A sin (x
-

a) + B sinh (3x
-

/3)
- 2 sinh 2x.

(7) y~(A + Bx + 5z2
) cosh a; + (E + Fx) sinh x.

(8) ^3 + 4z + 2z2 + (4 + J3x + 4z2)e
2a5 icos2x.

(9) y = (A + j5x -f 3 sin 2x - x cos 2x - 2x2 sin 2x) e2*.

(10) y = A cos ($
-

a) + |
- ^ cos 2x - \x cos x + TV sin 3x.

(11) y ^4 cos (a?
-

a) 4- J5 cos (3x
~
/3)~3x cos x -f x cos 3x.

(12) y

(13) y-J-f-J51ogx-}-2(logx)
3

. (14) y-
(15) i/

(16) y

(17) x - ^e8 '
-f <r3 '

-I E cos t -f J? sin - e* ;

t/ Ae 4 25^e-3 + (3 JS - 4J) cos ( + (3 F + 4 fl) sin < - e

(18) x = ^62t + J5e- f cos(V^-a);
t/
- Ae* -f J5e~' cos

(V& - a -f 2?r/3) ;

^4e2f + fie-
4 cos

(\/3i
- H- 4-7T/3).

(19) x**At + Btrl
; y~Brl -At.

(20) x == 4 cos (log t - a) 4- J^"1 cos (log J
-

) ;

y = At sin (log J - a)
- Bt~l sin (log t -

/3).

(27) (i) (z-l)e
2
*; (ii) J(x

2 -2x + l) sin x-f J(x
a
-l) cos *.

(31) y-^-f 4e*.

(32) y = (sin ax)/(p
2 -a?)+A cos px + B sin yx.

(33) ?/ ^eaa! + Beb + e& xe^a
" ^x

(log x
- 1

)
dx.

(35) (iii) y ^A cos (x
-

a) x cos x 4- sin x log sin x.

(37) (i) Jc/(2phe) ; (ii) zero.

(38) y = JB cos nxi- F sin wx + cosh MX 4- 1/ sinh nx.

dz dz
(1) aT fl

S-

CHAPTER IV.

Art. 42.

(2) ^"2
+ 5~a

=a'' (Laplace's equation in two dimensions.)

/ o \
"^ "^ i. C/ Z

i
. . v^I C/S _

vX vV tt vt (/X VU
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{5 ) 6 J + a f? = 2a&*.
dx By

(6) x 2~ + y
- = ws. (Euler's theorem on Homogeneous Functions.)

ox oy

Art. 43.

Art. 45.

(1) y *=* Ae~ tfte+ti*
(2) 2 -4 sin px sin j?at/. (3) z => A coa p(ax

-
y)

(4) F = ^e~^ar+5y sin ^\/(^
a + f)> where p and ^ are positive.

(5) V - cos (pjo? + jp
2
y -f ^

2
0).

(6) F Ae~~ri sin (m7rx/l) sin (n7ry/l), where m and n are any integers

Art. 48.

^
(1) -(din x-f ^ sin 3o5 + ^ sin 5s + ...).

7T

(2) 2(sina;-^sm2a;-f J sin 3x -...).

I* ^\ - o (^ **\ - o 1- - 8m -
VT

-
F-;

8ln 2a; + (y
-
w) 8ln to-

J-

o

(5)
-

[|(1 +e*) sin x + -|(l -e*) sin

/^v 32 *
1 . n-TT/. . W7T W7T\ .

(6) ^:Ss
sm T\ T ~ n7r <*>*-

)*
mnx-

(7) (a) (2), (3), and (6) ; (6) (6).

Miscellaneous Examples on Chapter IV.

(7) f F enf* sin (nt-gx), where 5f
- -f \/(n/2K).

(12) F-~(e-^sina; + ^re-
9^sin3a; + T^e-26^

sin 6a

(13) Replace a; by ?ra;/i, * by 7r
2
*/P, and the factor S/TT
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(14) V -
g

-
(e"

4*< cos 2x + \e~
l*Ki cos 4xH^86*' cos 6x + ...).

400
(15) F - (e- sin x + \e~

9Ki sin 3x + ie~
26*< sin 5x + ...).

7T

[Notice that although F 100 for all values of x between

and TT, F = for x=0 or TT, a discontinuity.]

(16) Write 100- F instead of F in the solution of (15).

AV
(18) F - ^

{
e-*"W cos(7rx/2Z) ^e-9**2^2

cos (37TZ/2J) + ...}.
7T

4wi
(19) ^ (sin x cos vf - } sin 3x cos 3vt +^ sin 5a? cosM -...).

7T

CHAPTER V.

Art. 52.

(1) (y-2a?-c)(y + 3s-c)-0. (2) (2

(3) 49(t/-c)
2 = 4x7

. (4) (2

(5) (2 2/-x
2 -

(6) (y-e"-

Art. 54.

(The complete primitives only are given here. It will be seen latei

that in some cases singular solutions exist.)

(1) x

(2) x

(3) (p-

(4) z

(5) x = 2 tan~xp - p"
1 + c

; y log (p
3 + p).

(6) x

(1) x

(8) x==sin^p-fo; y**p&inp + cos p.

(9) xtanp + c; y**p tanp + logcos p.

(10) i-log(jp + l)-log(p-l)-flogjp + c;

(11) aj-y/(l+^
2
)+tan-^; y-c-l/(l -f p

2
). (12)

CHAPTER VI.

Art. 58.

(1) C.P. (y + c)*-x
8

;
x~0 is a cusp-locus.

(2) C.P. (y + c)
2 -x-2 ; 8.8. x2.
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(3) C-P.^ + cy + ^-O; S.S.
2/

2 ~43a
.

(4) C.P.y-sin(x + c); S.S.t/
2 = l.

(5) C.P. (2X
3 + 3xy + c)

2 - 4 (a;
2
rf y)* ; x1 + 1/

= is a cusp-locus.

(6) C.P. c2 - I2cxy + 8cy*
-
12afy + 16a;

3
; y

2 - a; is a cusp-locus.

(7) C.P. c2 + Gary
-

2C?/
3 -

x(3y
2 -

a;)
2 -

; y
2 + - is a cusp-locus.

Art, 65.

(1) C.P. (</ + c)
a = z(a;-l)(a;-2); S.S. (-!)( -2) -0 ; x-l-l/VS

is a tac-locus and x =* 1 -f- 1/-\/3 a tac-locus of imaginary points
of contact.

(2) C.P. (?/ + c)
2
~z(:r-l)

2
; S.S. z=0; a: = 1/3 is a tac-locus; x = l

is a node-locus

(3) C.P. t/
2 -2cx-fc2 =0; S.S. 7/

2 = x>.

(4) C.P. z2 + c(z-3?/) + c2 = 0; S.S. (3y+j)(y-a?)-0

(5) C.P. y-cx
2 -c2

=*0; S.S. x4 + 4^ = ;
x == is a tac-locus.

(6) C.P. y=*c(x-c)
2

; t/=0 is a S.S. and also a particular integral;

27y-4o;
3 :=0is a S.S.

(7) Difi. Eq. pycosa
a-2pa;yan

aa + y
a -asma

a-<);

S.S. y
2 cos2a ^a;2 sin2a ; y ="0 is a tac-locus.

(8) Diff. Eq. (a?-l)^
a
-2z?/p-a;

2 = 0; S.S.

x=>0 is a tac-locus.

(9) Diff. Eq. (2x
2
-fl)p

2
-f(x

2 + 2x7/

S.S. x2 + 6xy -f?/
2
==4; xt/isa tac-locus.

(10) Diff. Eq. ^(l-z^-Cl-YHO; S.S. - zfcl and y dbl

Art. 67.

(1) C.P. y-ca + c* ; S.S. 2
-f 4y = 0.

(2) C.P. y-coj + c3
;
S.S. 27^

2 + 4 3 - 0.

(3) C.P. 2/=>cz + cose; S.S. (y-x sin-1^)
2 -! -x1

.

(4) C.P. y-c + V(
2c2 + &2

) J
S.S. X2

la
2 + y

2
lb

2 ~l.

(5) C.P. 2/-cx-e; 8.8. y = aj(log -l).

(6) C.P. y ~ ex - sin^c ; S.S. y = V( a -
1)
- siirV(l -

1/^
2
).

(7) J(y-jw?)
2a- -pi

a
; 2xy=*k

2
,
a rectangular hyperbola with the

axes as asymptotes.

(8) (a;
-
#)

a - 2&(# -f y) + A;
2 => 0, a parabola touching the axes.

(9) The four-cusped hypocycloid x$ + y$**k*.

Miscellaneous Examples on Chapter VI.

(1) No S.S. ;
z=0 is a tac-locus. (2) rP.Y + P/(P-l).

(5) 2y3a; represent envelopes, y0 is both an envelope and a

cusp-locus.
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(6) C.P. xy~
(7) C.P. x-iyc + xyc*; S.S. y + 4z2 =0. (Puty-l/F; z-l/X)
(8) (i) Putting p + x**3t* we get

(ii) C.P. y
2 + 4c2 1 + 2cz ; S.S. a? - 4t/

2 + 4 =
; y is a tac-locus,

(11) C.P. r = a{l -i cos ($-a)}, a family of equal cardioids inscribed in

the circle r = 2a, which is a S.S. The point r = is a cusp-
locus and aluo a S.S.

CHAPTER VII.

Art. 70.

(1) ylogsec x + ax + b. (2) a + t/ + 51og (y-b).

(3) ay cos (ax -f 6). (4) x = log {sec (ay + b) + tan (ay + 1)} + e.

(5) 2/

(6) y

(7) The circle (x
-
a)

2
4- (y

-
&)

2 =& The differential equation ex-

presses that the radius of curvature is always equal to k.

(9) \/(l + t/j
2
)
=

Jcy2 ; the catenary y-b = k cosh {(x
-

a)/&}.

coth

(1) y = z(a log x + b).

(3) y =

(1)

(5) (i) The conic w -

(ii) cw = cos.0\/(l

(1)

(3)

(2) y**

(4) y =

(6) t/==

(1) ;y
= (a

(2) y=|a-logtan

Art. 73.

(2) y - ax cos (2 log x) + bx sin (2 log x).

(4) t/
= x2

(

Art. 74.

(2) (3)

4- (1/c
-
pflf) cos ;

or cosh0\/(/x/A
2
~l), according as

Art. 75.

(2) y=.a(*-

(4) y-1+6'

Art. 77.

(A) y^(

(5) ,v
= a

Art. 80.

cos 2x + 6 sin 2a?

(5)
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(3) y ^{a

(4) y-ax + bxrl + (l-arl
)e*. (5) y

Miscellaneous Examples on Chapter VII.

(1) y = ae*i*-b. (2)

O/j.n+1 gn a:""*1

(4) t/
-

(5) 2/=-ax + 61ogx. (6)

x 1

(7) y = a cos nx + 6 sin no? + - sin nx
^
cos n log sec nx.

(8) t/(

(9) (i) y-Vtax + fc); (ii) y- V( log * + 6).

(10) y (a cos x + 6 sin x 4- sin 2x) e^.

(12) y-a**. (14) /--J.
(17) (i) y-ae^ + te-^-sinx2

. (Pute = x2
.)

(ii) y(l-fx
2)-a(l~x2

)
+ 6x. (Put x-tan z.)

(18) j-|-2/
= 2(l-2;

2
); y = sin2x4-^ cosh

(19) 2/
=

CHAPTER VIII.

Art. 83.

(1) y
= 2 + x + x2 - ^x

4 - ^x5
; exact solution t/

= 2 4- x-fx1 .

(2) y = 2x - 2 log x
-
^ (log x)

3
; exact value t/

x H

(3) t/

25= 3x2 4- fx
4

(4) t/

(5) t/ has the same value as in Ex. 4.

Art. 87.

(1) 2-19. (2) 2-192. (3) (a) 4-12
, (b) 4-118.

(4) Errors 0-0018 ; 0-00017 ; 0-000013
;

Upper limits 0-0172 ; 0-00286 ; 0-000420.

Art. 89.

M678487; 1-16780250 ; 1-1678449.
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CHAPTER IX.

Art. 95.

(1) u|l-JI +^-...|.ooB
V'*; v =

z2 3s3 3z4 3s5

^44^
8 8.11 8.11.14

. 8(1

^____

4.8.12(l+n)(2 + n)(3 + n)

To get v from u change n into - n. If u is multiplied by

the constant ^~^~f
-^ the product is called Bessel's function

~-

of order n and is denoted by Jn (x).

Art. 96.

(1) and (4), all values of x. (2) and (3), |x|< 1.

Art. 97.

2 2.5 , 2.5.10

(2) w

gj-^^
w is called Bessel's function of order zero and is denoted by

J (x).

(3)

,A^ ,
!- 3 2 1.3.5.7 . 1.3.5.7.9.11

(4) _x*n._ a
- +-_

w-w log s + 2z4



TO DIFFERENTIAL EQUATIONS

Art. 98.

f 1 1 1 ,

( ) u=*x
^~2274 23 .4. 6

X
~23T42 .6".8*

.42 .62 .8.10
x10

")'

__
22 .42 .62 .

(2) u=*x

(3) u-{l.
v - u = u log x + {

-

(4) u~{
v w log +{1 ~x - 5x2 - x3 +^x4

...}.

Art. 99.

0) y

(2) ^a^l^^a-^i^l^^
5!

[For solutions in powers of l/x see No. 7 of the Miscellaneous

Examples at the end of Chapter IX.]

(3)

(4) 2/
=

Art. 100.

(1) ^ + ^^4.n-f.Wy-0. (2)

(3) y = x2 (1 + 2a;) {a + b \ x~* (1 + 2x)~*e* dx}.

where 2 I/a;.
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Miscellaneous Examples on Chaster IX.

l-f
+ll*** *+...}..

3 9 , 27
+
4i"

+
fi*

+
io

3 9 , 27

(2) tt

to = (log as)
8 + 2 (o

- M log z) log x

8 6
\

CHAPTER XI.

Art. 113.

(1) xla = y/b
= z; straight lines through the origin.

(2) Ix + m^/ -f- nz = a
;
x2 + 1/

2
4- z

2= 6 ; circles.

(3) /
= az;

2
-f 7/

2 + 22 =>62:; circles.

(4) x2 - y
2 a

;
x2 - z2 = 6 ;

the intersections of two families of rect-

angular hyperbolic cylinders.

(5) x-y~a(z~x)\ (x-y)
2
(x + y + z)=*b.

(6) x2 -f y
2
-f z

2 = a
; y

2 -
2yz -z

2
*=b; the intersections of a family of

spheres with a family of rectangular hyperbolic cylinders.

(7) yW + n*)- (8) The hyperboloid y
2 + z2 - 2a* - 1 .

(9) (x
2
-f y

2
) (k tan-V)2 - *2/2 . (10) l/x

-
l/y + 1/2

-
1/z + 2.

Art. 114.

(1) t/-3s=

(2) t/ + a

(3) xy=*a\ (z
2 + xy)

2 -x*=*b. (4)

Art. 116.

(1) cc
a
-ft/

2 4-22 = ca
; spheres with the origin as centre.

(2) x2 +ys + z*= cx; spheres with centres on the axis of x, passing

through the origin. (d) ^z-c3
.
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(4) yz 4- zx + xy c2 ; similar conicoicis with the origin as centre.

(5) x-cy=ylogz.

(6) x2 + 2yz + 2z2 c2
; similar conicoids with the origin as centre.

Art. 117.

(1) y^cxlogz. (2) or'y^cze*. (3)

(4) y(x + z)
= c(y + z). (5)

(6) ny - wz c(nx
-

fo). The common line is

Art 120.

(3) z-ce2
-. (4)

Miscellaneous Examples on Chapter XI.

(1) yox; 22 -x2/-6. (2) y?fz~a\ x* +

(3) y + z-ae
85

; y
z -z2 **b. (4) !/

= sinD + C2;/(l +2
2
).

(5) x2 + ir?/
2 + i*z**t + o. (6)

(8) dxlx~dyl2y = dzfiz. (9) y

(10) (i) x2 + 2/

2
-i-2:

2
c(x-f-y+2:); (ii) x* -

(iii) y
z
-yz-xz=*cz*.

(14) xy = cez sin^.

CHAPTER XII.

Art. 123.

(1) </> (z/z, y/) = 0. (2) (fa 4- my 4- wz, x2 + 1/
2
4-

2
) 0.

(3) ^{y/, (x
2
4- y

2 + ^)/} = 0. (4) (z
2 -

1/

2
, x

2 - 22
)
- 0.

(5) <{(z-y)
2
(z-f y + 2), (x-y)/(2-o;)}0.

(6) 0{z
2 + y

2 + z2
, y

2 -
2y2

- z2}
= 0.

(7)

(8)

(9) y
2 = 4xz. (10) a(z

2 -

(12) (f>(x
z + y

2
, z) ;

surfaces of revolution about the axis of z.

Art. 126.

(1) $(Z + X19 X! + X 2 ,
X
1 + X3)^0.

(2) 0(z,

(3)

(4)

(5) 0(4V^~^3
2

>
2x3 ~x2

2
,
2x2 -x1

2
)=0; special integral z=0.

(6) ^{ap-Sajp ~3x9f + 6V(3~i >

-3g -a?)}0; special integral
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Art. 129.

(1) z(2&a + Da; + 01/4-0. (^) =a;cosa-f /sin a-f c.

(3) z = ax -f t/ log a *f c. (4) 2 a3x + a~2t/ -f c.

(5) 2 = 2zseca + 2ytana + c. (6) 2 = x(l +a) + y(l + l/a)H- c.

Art. 130.

(1) az**(x + at/ + 6)
2

, (2) 2= dbcosh{(z + a

(3) 22 -a2 ~(z + a*/ + 6)
2
, or 2 = 6. (4) 22 (1

(5) (2 + a)e*+y~&. (6) 2

Art. 131.

(1) 32 = 2(z + a)* + 3a*/ + 3&. (2) 2a2

(3) az-ax2 -fa2a; + ea^4-a6. (4) (22

(5) z=*a(e
x + ey)+b. (6) az = a2x -f a sin x + sin y 4- a6.

Art. 133.

(1)
- - 2 - log a;y. (2) 3* = xy

- x2 - 1/
2

. (3) 8 3 - - 27z2
?/ .

(4) zx** -y. (5) 2 = 0. (6) z2 -!. (7) 2-0.

Art. 136.

(1) 4s~-y2
.

(4) A particular case of the general integral, representing the surface

generated by characteristics passing through the point (0,
-

1, 0).

Miscellaneous Examples on Chapter XII.

(1) z ax -f by
- a?b

; singular integral z2 x*y.

(2) zx = ax + by- a?b
; singular integral 22 = y.

(3) 0{^,(z
2 + ^)2 -a;4}0.

(4) z 3X3 - 3az2 -f a?x + 2i/
4 - 4a^ + 3a2y

2 -
a*y + 6.

(5) z=*axl + 61oga;2 + (a
2 + 26)ic8

-1
-f c.

(6) *-#{(! + *a)/i.*i
i -

8*}-

(7) 3a(x -f ay + 6)
=

(1 + a8
) log 2, or z 6. = is included in 2 = 6, but

it is also a singular integral.

(8) z(l+a^ + Vt
)^(x1 + ax2 + bxB + c)^.

(9) ^(s-S-e
4
*!, ze***, 2-J-e^)=.0. (10) 2aa;-(

(11) sa ax2 -(2 + 3a + Ja
sV + &. (12) 22 *(l

(13) z a tan (x + ay + 6), or 2 = 6. 2 = is a singular integral, but it is

also included in 2 = 6.

(14) s2 ax2 + 6y
2 - 3a8 + b*. Singular integral

2 -
2a?/9

-
y*/4.

(15) *-3 + y~l2V{(*-lHy-l)}. (16)
2 -xy-a
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(17) 0(z/x, zly)=Q ; cones with the origin as vertey.

(18) a?
2
4- y

2
4- za - '2x cos a 4- 2y sin a 4- c ; spheres with centres on the

given circle. The general integral gives other solutions.

(19) xyz^c. (This is the singular integral. The complete integral

gives the tangent planes.)

(20) The differential equation (z-px-qy)(l-llp~llq)-*Q has no

singular integral, and the complete integral represents planea.

Every integral included in the general integral represents the

envelope of a plane whose equation contains only one

parameter, that is, a developable surface.

CHAPTER XIII.

Art. 139.

(1) y
a
{(x-a)

2 4Y + 2z}~&. (2)

(3) z = ax + bev(y + a)-*. (4) 2
2 = 2(

(5) z~ax + 3a?y + b. (6) (z
2
-f a

(7) z-x* + ax+l(y + a)*'* + b. (8) z = ax

Art. 14L

(1) 2;a 1

(2) z**a lxl + afl 2 . sin"1 (a 1
a 2^3)-f a8 .

(3) 2 ax log xl + a 2 log x 2 3V(a i +

(4) 22 = a^!
2 + a

2# 2
2
4- a3a? 3

2 - 2 (a

(5) 2(a 1
a 2a3)

l/8
log z = &\x>\ + 2

a?
2
2

"*" asx3
2 + !

(6) 4a^ =- 4a x
2
log jr3 + 2a 1

a2 (x1
-

o;2)
-

(xj + x

(7) (1 4- a^g) log 2 (aa + a2) (x t 4- a^g 4- a 2
T 3 4- a3).

(8) 2 -(a 1 4-o 2)o;1 4-(2a 1
-a 2 )a; 2 -t-( ~a

Art. 142.

(1 ) z dt (a?i 4- a?2)
2
4- log #3 -ha. (2) No common integral.

(3) z =*
a?!

2
4- #2

2
4- x 3

2
4- a, or z = Xj

2
4- 2x2x8 -f a.

(4) z a (x x 4- 2x 2) 4- 6 log x 3 4- 2a6 log x 4 4- c.

(5) 2=a(3x 1 4-x2
3 ~x3

3
)4-6. (6) No common integral.

(7) i?a(x1 ~x 4)4-6(x 2 -x3)4-c, or Z = a(x 1
-2x 2)4-6(2x3 -x 4)4-

(8) ^-^(S^ +V-^a8
)-

(9) -0(x1 -x4 , Xa-^s)* or 2 = 0(x 1
~2x2 ,

2x3 -x4).

Miscellaneous Examples on Chapter XIII.

(1 )
2* - ax log x1

-
aja2 log x2 4- a2 log xs 4- a3 .

(2) No common integral.

(3) aj
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(4) -&! log XJL

(5) 21ogz~crfc(x1
2 + x2

* + ay8

). (6) afl-

(7) 4z + x^-f z2
2 + x 3

2 -0. (10) 2 =

(11) (iii) Sz^x^-SXiXj+c.

CHAPTER XIV.

Art. 144.

(1) *-x* + x/(</) + *X</). (2)

(3)
- -1 sin xy + yf(x) + F(x). (4)

-ay +/(y) log cc +

(5) ^sin(a; +
2/)4-i/(a;)4-J?

t

(2/). (6) *- -

(7) 2( 2
-ft/

2
)

2 -l. (8)

(9) 2 (x
2 + i/

2
)
a
. (10)

Art. 145.

(1) 2: = J?'1 (y + a;) + F2 (t/ + 2x) + ^3(i/-f3aJ).

(2) -/(y-2x) + J(2y-x). (3) *-f(y + x) + F(y-x).

(4) The coiiicoid 4X2 - 8xy + y
a + 8z-

Art. 146.

(1) 2=/(2y-3x)+xl'(2y-3x). (2)

(3) (2=-/(2/ + 2x)+x^
T

(2/ + 2x) + ^(2/). (4)

Art. 147.

(1) 3 = x4 +2x3
?/-f/(t/-f-x)-fxJF(2/ + x).

(2) z - 6x2
t/ + Sx3 +/(y + 2x) -f F(2y -f x). (3) F- -

Art. 148.

(1) z-

(2) 2 =

(3) 2- -x2
eos(2x + y)+/(y + 2x

(4) 2

(5)

(6) 2

Art. 149.

(1) z**X8iny+f(y-x) + xF(y--x).

(2) x* + 2xsy-f-/(f/4-5x) + J?(y-3x).

(3) z = sin x - y cos x +f(y -3x) + F(y + 2x1,
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(5) z-*

(6) y x log t 4- 1 log a? +f(t 4- 2z) 4- JF(*
-
2x).

Art. 150.

(1) *-/(*) + ^(y)+6
8Xt/ + 2x).

(2) *--{/(y-)4-*J(y-)}. (3) 7 -

(4) * -/(y + x) 4 e~*F(y - a?). (5) z -

(6) F^S^^-H"*^ (7) *-

(8) c-l+-{(y-*)-l).
Art. 151.

(1) 2=-

(2) ii-l+aj-y-xy +^/^ +^
- 3

^/) + 9 cos (a
-

l

( + *). (5) y

(6) 2 - 6"{o tan (y +3) + */(y +3a;) + ^ (y

Art. 152.

(1) y*r
-
2ys + < p + 6y. (2) jrf

-
g*
-

(3)

(4)

(5) 2pr + ^-2^(ri- a)l. (6)

Art. 154.

(1) -/(y + sina?) f ^(y-sina?). (2)

(3) y~^(x + y + z)~<f>(x), or /
(4) /(a? + tany) + JF(a?-tan y). (5)

(6) y-/(*-f + *)+a?J?'( + y+). (7)

Art. 157.

(1) p +3-2y/(g-23 + 3y); X--^
(2) p-*-/(j-y); Xoo. (3) y---/(-2y)
(4) p-y=f(q + x); p + y-F(q-x); X-dbl.

(5) p-y-/(j-2x); p-2y~F(q-x)i X-lor -J.

(6) px-y~f(qy-x)\ X~xor -y.

(7) sp
- x /(2g

-
y) ; X -

Art. 158.

(1) *aa;-f-&y-Jir
2 + 2a;y-|ya

-H(?;

25 Ja;
2
(l -f 3m2

) -f (2 4- 3mjay -f n 4- 0(y 4- wi)
-

J (x
2
4- 3y

2
) 4- n* 4-^(y + ww)-
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(2) z

(3) z

(4) *

(5) x

(6) 2; 4- t//m + wx - w log x <J>{x
m
y) ; the other method fails.

(7) 22 = x2 +
2/

2
-f2ax4-26t/+c; ^x^ + i/

2 * 2nx + i/r(y + wx).

(8) 2z = t/
2 -x2

.

Miscellaneous Example on Chapter XIV.

(1) -*y + */(y) + *(y). (2)

(3) yz

(4) z

(5) /(*/ + log x) + x-F(t/ + log x). (6)

(7) *

(8) 4z=6x2/-3x
2 -

42 = 6x?/
- 3s2 -

(9) 3^-3c2(a;-h

(10) mz -f sin y -fm2 sin x mnx = m^> (y + mx).

(11) 2

(12) 2=^ +
2/

3 + (a;-ff/-f-l)
a
. (13) z

(20) pa + ^y ~f(p* + q*) \ py-qx F(q/p).

Miscellaneous Examples on the Whole Book.

U) (a?-t/
2
)
2 =

c*t/. (2) y = x* + ce~*\

(3) 2secx8ec2/=i x4-sinxcosaj + c. (4) (xy + c)
z = (x

2 + y)(y
2
~cx).

(5) 1+ xy^tKc + sin^aOv^l-x
2
). (6) 2/

= (^ -
Jo?) cos 2x + J5 sin 2ac

<J5
/ OQ

1

(7) y - . ~
^~ + +~ xea (sin 2x - cos 2a?) -f Ae~* -f ^e 35 cos (2a? 4- a),

D ^0 1ZD lo

(8) y J 4- Bx + Cx log x -flog x-fjx (log )* + Ja^.

(9) t/ + sec # = ctan x.

(10) aj-4e2/ + 5e-2
'-|(co8-Bin); y=^e2t -35e~2<

-| cos *.

(11) x2/3 (y-l)
2/s -f c;S.S. ?/-1. (12) y = acosec(6-x).

/ X2 \ / Xs \

(13) y - (^ + -Bx +
J
sin 2x + ( E + Fx - -

J
cos 2x.

(14) 2x2/=3x
2
-f c. (15) z + xy=*c(x + y-xy).

(16) a^ + y> + i-ca^. (17) z ~f (xy)
-
$x*

-
$y*.

(18)

(19)

(20) 2 - ax -f by + a2 -f- 62 ; singular integral 4* + x2 + y
2

0.

(21) *-/(* -
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(22) z**ax* + by + 4af
; singular integral 1 62-1- z*0.

(23) s./fc + yJ +Jte-^^ + y
8
).

(24) z-xf(y)+yF(x). (25) cs - (s + a) (y + 6).

(26) z = lxy+f(y/x)+xF(ylx). (27) a-/(* + ) + JP

(28) y (a; + c)
= &x

; singular solutions y = and y + 4z2 - 0.

_
(31) z2 + y

2 + 32 2(a;cosa + y8ma+c). (32) y-e'-fe
8" + $*".

(33) x = e-*' (a cos \J + 6 sin X<) 4- cos (^/
-

a),

where - 4/V{(^
2 + X2 - ^

2
)
2 + 4*VK tan a - 2^/(/c

2 + X8 -

and a and 6 are arbitrary constants.

(34) y^Acos (sin x) + B sin (sin x).

(35) (i) ^-^log(r4-^) + 5;

(ii) <f>-A\ff-W*df+B;

(36) F =^{Hf
where r

2 x2 + y
2 + 22 .

(39) u-o(l-f-x x
\ a

(41) y-a =

(42) y = (l

If 2a is an integer, the integral can be evaluated by

putting z=*(l +#)/(! -x).

(43) (i) y
= (l-x*)(A + Blogx)', (ii) y-(l-a-)(aj + 4 + Blog*).

(44) (1
- x2

) y = (a + 6
J

e-*
2

te) c**
2
- [Put log y -

J

(u
-
JP) rf. t4 - x is

a solution of the differential equation in u.]

l

(2w-l)2! (2n-i)(2n-2)(2n-3)i!

(46) y - ^Iz5 + By? + E(x
2 + 1), replacing C/6 by B.

6!

BJ (J3! Vo'

both converge within the circle \x\
=
|a|.
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(60)

(51 )

i r/5p r5o^

p> i 5 =- ! must bs a function of x alone ; x*v -
Q \dy dx)

y

(52) we"- a vV dx + 6, where v-#/P and w 1 v dx.

(53)

(54) y (1
-

a?)
-4 (3

-
2x) e2* + J5(l

-
2x) e~2a>.

(56) xS + ys-cfy + z).

(57) y - 4e-a*
-f e

x
(
B cos x\/3 + sin x\/3)

Yirhrv e
~2x

{ 157x(6 cos x + 11 sin x}

+ 3 (783 cos x - 56 sin x)}.

(58)

(59)

//?ov /-x T> .

(62) (i) rut V"1 /l/ y

(59) 24(x + t/)
4
(x

2 + t/

2 H-0
2
)-c(a;

2
-fy

2 - 2
). (60) x*

^W /'-x 1 x(c + tanx)-~~ --r~7~ -^^--
x)dx'

v/ *
2 1-ctanx

[See Ex. 41 for method.]

(65) If a particle P moves so that its velocity is proportional to th

radius vector OP and is perpendicular to OP and also to a

fixed line OK, then it will describe with constant speed a

circle of which OK is the axis.

(67) f2sin 2(# + a)-l ; singular solution r4 -!.

(68) t/
2 - x2 = ex + 2a* a\/(4a

2 - c1) ; singular solution y
1 x2 =

2ay.

(70) 4a(y
-

c)
- (x

-
c)

a
; singular solution y - x - a.

(71) x +accos ^4-clogtan J0. (72) acos + &cos 0'-i.

(74) 2cf/
=

(x-t-c)
2

; singular solution y(y-2x)0.

(75) x-f^y + ay
2

0; (y + apJv^-t-lJ-c-f asinh"^,
%V(P

2 + l)+p(o+ a sinh""1^) = 0.

There is no singular solution. The p-discriminant y
2 -4ax

represents the cusp-locus of the involutes.

(77) y~ax, s-fc +v^ + S
1
) ; *-V(^ + y*) +/(/*)

The subsidiary integrals represent a family of planes through
the axis of z and a family of right circular cones with the axis

of z as axis ; the general integral represents a family of surfaces

each of which contains an infinite number of the pairs of straight
lines in which the planes and cones intersect.

(78)

(79)

(80) (ax - by)t(z + c) -/{(ax + fy)/(s
-

c)},
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(81) (i) I~EIR+ Ae- RttL
; (ii) A^I^E/R; (iii) I-E/R.

(82) 7 - a cos (pt -e) + Ae-
RtlL

, where a - /yXIP + Z*p), tan e

and A is arbitrary.

(83) Q - a sin (jrf
-

e), where tan e - (CLp
1 -

l)/pCJ? and

a-SCW{(OLp -
1)

2 +p2C2^2
}.

(85) x~Acos(t-a) + BcoB(3t-/3); y~'2A cos (<-a)-55 cos(3*-)

(86) a and 6 are the roots of \*(LN -M*)+\(RN + LS) + RS~Q.

(91) x**A cos (pt-a) + cos (qt~/3), y^A sin (^-a)-Bsin (JJ-/3)

where 2^p
- V(4c2 + ^) + * 2S - \/(4c2 + JK

1
)
-

<c.

(92) J-f(a
+
6)^

+ a6^a6c.

(93) p y^(n
2 ~

2/x
2
)
makes tne amplitude of the particular integral a

maximum, provided 2ju? does not exceed n2
.

(94) x 4e~H cos (^ - 6), where ^p \/(n2
~ ^2)-

(97) 0=*FaV-
a cos0. (98) y sin (p6/c)

-A sin (ps/c) cos (pt + a)

(100) 0Ccosh m(y-f A) cos (mx~n<).

(115) (vi) a=4(-2

(viii) MZ=2*P cos -~ + g sin

y**-xv .

(119) u = cos sin mt.
* ' m c

(120) z

Note on alternative forms of answers.

In several examples a slight variation in the method of solution may
lead to a different form of the complete primitive. Thus in Ex. 3, Art.

70, the answer given is aiy
= cos (ax + 6), but the student may equally

well obtain ay = sin (ax + 6), or ay^sinh (ax + b). If in the first form

b is replaced by (b
-

|?r) we obtain the second, while if in the second a

and 6 are replaced by ai and bi respectively, we obtain the third after

division by t. Other forms may be obtained by replacing a by I/a.

In the answer to Ex. 4, Art. 116, c2 jnay be replaced by -c2
,
or c,

or c. In general an arbitrary constant must be supposed to have

all values, real, imaginary, or complex, and may be replaced by any
function of a new arbitrary constant.

Where pairs of integrals are needed, alternative pairs often arise very

naturally. Thus the answers to Exs. 5 and 6, Art. 113, may be replaced
fcy

and by
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respectively. In this set of examples the pairs u=a, t?6 may be

replaced by f(u, v)a, F(u, v)
=

6, where/ and F are any two inde-

pendent functions of u and v.

Alternative answers are to be found for several of the example on

partial differential equations, e.g. sin a=^- cos a for Ex. 3, Art. 42,
ox oy

and 22(a~y
2
)
=

( + 6)
2 for Ex. 2, Art. 139 (see note on p. 171).
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Adams, 224.

Adams' numerical method, 224.

Adjoint equations, 255.

Ampere, xvi, 183.

Angstrftm's determination of diffusivity,
58.

Apparent singularity, 213.

Approximate methods, 5, 94, 224, 247.

Arbitrary constants, 2, 60, 126, 127,
252.

Arbitrary functions, 49, 137, 147, 172.

Asymptotic series, 217, 251.

Auxiliary equation, xv, 26, 174, 254.

Bar, vibrating, 190.

Bateraan, 222, 232.

Bernoulli, xv, 12, 18.

Bernoulli's equation, 18.

Bessel, 110.

Bessel's equation, 114, 116, 118, 120,

214, 217, 253.

Boole, xv.

Boundaries, discriminant-loci as, 195.

Boundary conditions, 53, 66.

Briot and Bouquet, xvi.

Brodetsky's graphical method, vi, 6.

Bromwich, 247.

Cauchy, xvi, 121, 124.

Cayley, xv.

c-diseriminant, 67, 155.

Change of variables, 40, 61, 79, 85, 91,

93, 119, 120, 164.

Characteristic index, 214.

Characteristics, 6, 97, 158.

Charpit, xvi, 162.

Charpit's method, 162.

Chemistry, 244.

Chrystal, xvi, 150.

Clairaut, xv, 76.

Clairaut's form, 76, 79, 195, 196, 199.

Common primitive, 10.

Complementary function, 29, 87, 175,
254.

Complete integral, 153.

Complete primitive, 4.

Conditions of integrability, 139, 144,

229, 231.

Conduction of heat, 52, 53, 57, 58, 59,

60, 250.

Coniluent hypergeometric equation, 218.

Confocal conies, 23, 79.

Conjugate functions, 24, 189.

Constant coefficients, xv, 25, 49, 173,

178, 250, 252, 254.

Constants, arbitrary, 2, 50, 126, 127,
252.

Convergence, xvi, 112, 124.

Corpuscle, path of a, 48.

Cross-ratio, 202.

Cusp-locus, 68, 73, 195, 198.

D'AIembert, xv, 25, 44, 49.

Darboux, xvi.

Definite Integrals, solution by, 250, 25L
Degree, 2.

Depression of order, 81.

Developable surface, 1 89.

Difference equations, 254.

Difficulties, special, of partial differen-

tial equations, 51.

Diffusion of salt, 60.

Discriminant, 67, 71, 155, 194.

Duality, 160, 161, 189, 248.

Dynamics, 2, 24, 28, 36, 46, 47, 50, 61,

85, 86, 190, 242-249.

Earth, age of, 60, 212.

Einstein, 247.

Electricity, 24, 29, 46, 48, 58, 59, 134,

241-244.

Elimination, 2, 49, 50, 179, 194.

Envelope, 66, 71, 146, 155, 192, 195, 196,

200.

Equivalence, 92.

Euler, xv, 12, 25, 49.

Exact equations, 12, 23, 91, 191.

Existence theorems, 121, 252.

Factorisation of the operator, 86.

Falling body, 24, 86.

Falling chain, 246.
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Finite differences, 253, 254.

First order and first degree, ordinary,

12, 133 ; partial, 147, 151.

First order but higher degree, ordinary,

62, 65 ; partial, 153, 162, 165.

Fontaine, xv.

Forsyth, 150, 232.

Foucault's pendulum, 247.

Fourier, 54.

Fourier's integral, 60.

Fourier's series, 54.

Frobenius, xvi, 109.

Frobenius' method, 109, 127, 208.

Fuchs, xvi.

Fuchsian type, equations of, 213, 214.

Fuchs' theorem, 211.

Functions, arbitrary, 49, 137, 147, 172.

Gauss, 110.

General integral, xvi, 137, 147, 149, 157.

General solution, 4.

Geometry, 5, 19, 65, 133, 137, 146, 173,

188, 189, 192, 255.

Goursat, xvi, 172, 232.

Graphical methods, 5, 8.

Groups, xvi, 120, 232.

Hamilton's equations, 248.

Heat, 52, 53, 57, 58, 59, 60, 250.

Heaviside, 58, 61.

Heun, 94.

Heun's numerical method, 104.

Hill, M. J. M., vi, xv, xvi, 65, 150, 155,

196, 230, 232.

Homogeneous equations, xv, 14, 40, 44,

83, 144, 171, 173, 205, 251.

Homogeneous linear equations, 40, 44,

171, 173,251.

Hydrodynamics, 246.

Hypergeometric equation, 119, 120, 214.

Hypergeometric series, 92, 119.

Indicial equation, 109, 111.

Inflexion, locus of points of, 200.

Initial conditions, 4, 28, 53.

Inspection, integration by, 12, 172.

Integrating factor, xv, 13, 17, 22, 23, 91,

205, 237, 265.

Integrability, 139, 144, 229, 231.

Integral equation, 96.

Intermediate integral, 181.

Invariant, 92.

Jacobi, xvi, 165.

Jacobi's Last Multiplier, 249.

Jacobi's method, 165, 231, 248.

Kelvin, 58, 60, 250.

Klein, xvi.

Kutta, 94, 104, 108.

Kutta's numerical method, 104.

Lagrange, xv, 49, 81, 162.

Lagrange's dynamical equations, 248.

Lagrange's equation, 254.

Lagrange's Hnear partial differential

equation, xvi, 147, 151, 158, 230.

Laplace, xvi.

Laplace's equation, 61, 189, 190, 234,

235, 261.

Last multiplier, 249.

Laws of algebra, 30.

Legendre, 110.

Legendro's equation, 117, 120, 214.

Leibniz, xv.

Lie, v, xvi, 232.

Linear difference equations, 254.

Linear equations (ordinary), of the

first order, 16, 252 ; of the second

order, 86, 87, 88, 109, 127, 208, 252 ;

with constant coefficients, xv, 25, 252.

Linear equations (partial), of the first

order, xvi, 60, 147, 151, 158, 192;
with constant coefficients, 49, 173,

178, 250.

Linearly independent integrals, 253.

Lines of force, 24, 134.

Liouville's solution of the wave equa-
tion, 220.

Lobatto, xv.

Maxwell's equations, 69.

Mayer's method, 206.

Mechanics, see Dynamic*.
Membrane, vibrating, 190.

Monge, xvi, 172.

Monge's method, 181, 183.

Multipliers, 135, 248, 249.

Newton, xv.

Node-locus, 68, 196.

Non-integrable equations, 142.

Normal form, 91, 92.

Normal integrals, 215.

Normal modes of vibration, 242, 244.

Number of linearly independent inte-

grals, 253.

Numerical approximation, 94, 224.

One integral used to find another 87,

136.

Operator />, 30, 44, 86, 174, 252,

Operator 0, 44.

Orbits, planetary, 86, 247.
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Order, 2.

Ordinary point, 212.

Orthogonal trajectories, xv, 20, 23, 138,

189.

Oscillations, xv, 2, 28, 29, 36, 46, 47,

48, 50, 61, 190, 241-245.

Page, 232.

Particular integral, xv, 4, 29, 33, 44, 87,

175, 178, 195, 254.

p-discriminant, 71, 155.

Pendulum, 28, 244, 245, 247.

Perihelion of Mercury, 247.

Physics, see Conduction of heat, Cor-

pusclet Diffusion, Dynamics, Electri-

city, Hydrodynamics, Potential, Ra-

dium, Resonance, Telephone, Vapori-

sation, Vibrations, Wave equation, etc.

Picard, xvi, 94, 121.

Picard's method, xvi, 94, 122.

Poincar6, xvi.

Poisson's bracket expression (F, F^), 166.

Poisson's method, 189.

Poisson's solution of the Wave equation,
220.

Potential, 134, 190.

Power series, xv, xvi, 4, 109, 124.

Primitive, 4.

Radium, 24.

Real singularity, 213.

Reduction of order, 81.

Regular integrals, 110, 118, 208.

Regular singular point, 212.

Remes' numerical method, 227.

Resonance, 37, 46, 243.

Riccati, 110.

Riccati's equation, 201.

Riemann, vi, 232.

Riemann's P-equation, 214.

Runge, xvi, 94, 99, 100.

Runge's numerical method, 99.

Schwarz, xvi, 92.

Schwarzian derivative, 92.

Schlesinger, 232.

Sohrodinger's equation, 222.

Second integral found by using a first,

87, 136.

Separation of the variables, xv, 13.

Series, solution in, xv, xvi, 4, 109, 124.

Shaft, rotating, 47.

Simple harmonic motion, 2, 85, 242, 244.

Simultaneous equations, 42, 59, 133,

168, 171,252.

Singular integral, 155.

Singular point, 7, 212.

Singular solution, xv, 4, 65, 192.

Solid geometry, 133, 137, 146, 173, 188,

189.

Solving for p, x, or y, 62.

Special integral, 137, 150, 230.

Standard forms, 153.

String, vibrating, xv, 50, 61, 190, 218,
246.

Subnormal integrals, 215.

Subsidiary equations, 147, 164, 166.

Substitutions, 40, 61, 79, 85, 91, 93, 119,

120, 164.

Sylvester's dialytic method of elimina-

tion, 194.

Symbolical methods, xv, 33, 44, 46, 61,*

175, 178, 252.

Tac-locus, 72, 195.

Taylor, xv.

Telephone, 58.

Todd, 213.

Total differential equations, 137, 205.

Transformations, 40, 61, 79, 85, 91, 93,

119, 120, 164.

Transformer, electrical, 48.

Vaporisation, 24.

Variation of parameters, 88, 93.

Vibrating strings, equation of, 50, 61,

218, 256.

Vibrations, xv, 2, 28, 29, 36, 46, 47, 48,

60, 61, 190, 218, 241-215.

Wada, xvi, 5, 8, 9.

Wave equation, 219.

Wave mechanics, 222.

Weber, 194.

Whittaker and Watson, 252.

Whittaker's solution of Laplace's equa-

tion, 51, 251.

Whittaker's solution of the Wave equa-

tion, 222.

Wronski, 253.

Wronskian, 253.

x absent, 82.

y absent, 82.

Zeeman effect, 244.
















