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PREFACE

“Tae Theory of Differential Equations,” said Sophus Lie, * is the
most important branch of modern mathematics.” The subject may
be considered to occupy a central position from which different
lines of development extend in many directions. If we travel along
the purely analytical path, we are soon led to discuss Infinite Series,
Existence Theorems and the Theory of Functions. Another leads
us to the Differential Geometry of Curves and Surfaces. Between
the two lies the path first discovered by Lie, leading to continuous
groups of transformation and their geometrical interpretation.
Diverging in another direction, we are led to the study of mechanical
and electrical vibrations of all kinds and the important phenomenon
of resonance. Certain partial differential equations form the start-
ing point for the study of the conduction of heat, the transmission
of electric waves, and many other branches of physics. Physical
Chemistry, with its law of mass-action, is largely concerned with
certain differential equations.

The object of this book is to give an account of the central
parts of the subject in as simple a form as possible, suitable for
those with no previous knowledge of it, and yet at the same time
to point out the different directions in which it may be developed.
The greater part of the text and the examples in the body of it
will be found very easy. The only previous knowledge assumed is
that, of the elements of the differential and integral calculus and a
little coordinate geometry. The miscellaneous examples at the end
of the various chapters are slightly harder. They contain several
theorems of minor importance, with hints that should be sufficient
to enable the student to solve them. They also contain geometrical
and physical applications, but great care has been taken to state
the questions 1n such a way that no knowledge of physics is required.
For instance, one question asks for a solution of a certain partial
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differential equation in terms of certain constants and variables.
This may be regarded as a piece of pure mathematics, but it is
immediately followed by a note pointing out that the work refers
to a well-known experiment in heat, and giving the physical meaning
of the constants and variables concerned. Finally, at the end of
the book is given a set of 115 examples of much greater difficulty,
most of which are taken from university examination papers. [I
have to thank the Universities of London, Sheffield and Wales, and
the Syndies of the Cambridge University Press for their kind per-
mission in allowing me to use these.] The book covers the course
in differential equations required for the London B.Sc. Honours or
Schedule A of the Cambridge Mathematical Tripos, Part II., and
also includes some of the work required for the London M.Sec. or
Schedule B of the Mathematical Tripos. An appendix gives sugges-
tions for further reading. The number of examples, both worked
and unworked, is very large, and the answers to the unworked ones
are given at the end of the book.

A few special points may be mentioned. The graphical method
in Chapter I. (based on the MS. kindly lent me by Dr. Brodetsky
of a paper he read before the Mathematical Association, and on a
somewhat similar paper by Prof. Takeo Wada) has not appeared
before in any text-book. The chapter dealing with numerical
integration deals with the subject rather more fully than usual.
It is chiefly devoted to the methods of Runge and Picard, but it
also gives an account of a new method due to the present writer.

The chapter on linear differential equations with constant co-
efficients avoids the unsatisfactory proofs involving * infinite con-
stants.” It also points out that the use of the operator D in finding
particular integrals requires more justification than is usually given.
The method here adopted is at first to use the operator boldly and
obtain a result, and then to verify this result by direct differentiation.

This chapter is followed immediately by one on Simple Partial
Differential Equations (based on Riemann’s ‘‘ Partielle Differential-
gleichungen ”’). The methods given are an obvious extension of
those in the previous chapter, and they are of such great physical
importance that it seems a pity to defer them until the later portions
of the book, which is chiefly devoted to much more difficult subjects.

In the sections dealing with Lagrange’s linear partial differential
equations, two examples have been taken from M. J. M. Hill’¢
recent paper to illustrate his methods of obtaining special integrals
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In dealing with solution in series, great prominence has been
given to the method of Frobenius. One chapter is devoted to the
use of the method in working actual examples. This is followed
by a much harder chapter, justifying the assumptions made and
dealing with the difficult questions of convergence involved. An
effort has been made to state very clearly and definitely where the
difficulty lies, and what are the general ideas of the somewhat
complicated proofs. Itis acommon experience that many students
when first faced by a long “ epsilon-proof ”’ are so bewildered by
the details that they have very little idea of the general trend.
{ have to thank Mr. 8. Pollard, B.A., of Trinity College, Cambridge,
for his valuable help with this chapter. This is the most advanced
portion of the book, and, unlike the rest of it, requires a little know-
ledge of infinite series. However, references to standard text-books
have been given for every such theorem used.

I have to thank Prof. W. P. Milne, the general editor of Bell’s
Mathematical Series, for his continual encouragement and criticism,
and my colleagues Mr. J. Marshall, M.A., B.Sc., and Miss H. M.
Browning, M.Sc., for their work in verifying the examples and
drawing the diagrams.

I shall be very grateful for any corrections or suggestions from

those who use the book.
H. T. H. PIAGGIO.

UniversitY COLLEGE, NOTTINGHAM,
February, 1920.



PREFACE
TO THE REVISED AND ENLARGED EDITION

Tris edition contains a long new chapter of a supplementary
character, dealing with difficulties in the theory of singular solutions,
and seme little-known ideas about discriminant-loci regarded as
boundaries ; Riccati’s equation ; two additional methods for total
differential equations (Mayer’s general method, and the use of an
integrating factor for homogeneous equations) ; solutions in series
of linear differential equations of the second order (Fuchs’ theorem,
ordinary and singular points, equations of Fuchsian type, charac-
teristic index, normal and subnormal integrals) ; some equations of
Mathematical Physics (particularly the equation of vibrating strings
and the three-dimensional Wave equation); and approximate
numerical solution (Adams’ method and some recent work by
Remes). The other parts of the book have been revised, and a few
more examples added. References have been altered when necessary.

I am deeply indebted to several friends for their valuable help
and advice, particularly to Mr. H. B. Mitchell, formerly Professor
at Columbia University, New York, Prof. E. H. Neville of Reading
University, and my colleague, Mr. F. Underwood.

H. T. H. PIAGGIO.
May 1928.

NOTE TO THE NINTH (1933) IMPRESSION

For the convenience of physics students and others who require a
simple treatment of the equation of vibrating strings, two short
notes have been udded (pp. 61 and 2566). The method of parameters
(p. 256) for certain partial differential equations is an extension ot
the usual methods for two standard forms. The new examples on
Lagrange’s linear equation (p. 161) include the determination of
particular integrals representing surfaces that pass through given
curves. There are some alternative methods for simultaneous

equations on p. 48, and minor changes elsewhere.
H.T. H P
May 1933. .
viii
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HISTORICAL INTRQDUCTION

TeE study of Differential Equations began very soon after the
invention of the Differential and Integral Calculus, to which it
forms a natural sequel. Newton in 1676 solved a differential
equation by the use of an infinite series, only eleven years after
his discovery of the fluxional form of the differential calculus in
1665. But these results were not published until 1693, the same
year in which a differential equation occurred for the first time in
the work of Leibniz * (whose account of the differential calculus
was published in 1684).

In the next few years progress was rapid. In 1694-97 John
Bernoulli T explained the method of ““ Separating the Variables,” and
he showed how to reduce a homogeneous differential equation of
the first order to one in which the variables were separable. He
applied these methods to problems on orthogonal trajectories. He
and his brother Jacob tt (after whom  Bernoulli’s Equation  is
named) succeeded in reducing a large number of differential equa-
tions to forms they could solve. Integrating Factors were probably
discovered by Euler (1734) and (independently of him) by Fontaine
and Clairaut, though some attribute them to Leibniz. Singular
Solutions, noticed by Leibniz (1694) and Brook Taylor (1715), are
generally associated with the name of Clairaut (1734). The geo-
metrical interpretation was given by Lagrange in 1774, but the
theory in its present form was not given until much later by Cayley
(1872) and M. J. M. Hill (1888).

The first methods of solving differential equations of the second
or higher orders with constant coefficients were due to Euler.
D’Alembert dealt with the case when the auxiliary equation had
equal roots. Some of the symbolical methods of finding the par-
ticular integral were not given until about a hundred years later
by Lobatto (1837) and Boole (1859).

The first partial differential equation to be noticed was that
giving the form of a vibrating string. This equation, which is of
the second order, was discugsed by Euler and D’Alembert in 1747.
Lagrange completed the solution of this equation, and he also

* Also spelt Leibnitz. 1 Also spelt Bernouilli, 1t Also known as James.
Xvii



xviii HISTORICAL INTRODUCTION

dealt, in a series of memoirs from 1772 to 1785, with partial dif-
ferential equations of the first order. He gave the general integral
of the linear equation, and classified the different kinds of integrais
possible when the equation is not linear.

These theories still remain in an unfinished state ; contributions
have been made recently b Chrystal (1892) and Hill (1917). Other
methods for dealing with partial differential equations of the first
order were given by Charpit (1784) and Jacobi (1836). For higher
orders the most important investigations are those of Laplace (1773),
Monge (1784), Ampére (1814), and Darboux (1870).

By about 1800 the subject of differential equations in its original
aspect, namely the solution in a form involving only a finite number
of known functions (or their integrals), was in much the same state
as it is to-day. At first mathematicians had hoped to solve every
differential equation in this way, but their efforts proved as fruitless
as those of mathematicians of an earlier date to solve the general
algebraic equation of the fifth or higher degree. The subject now
became transformed, becoming closely allied to the Theory of
Functions. Cauchy in 1823 proved that the infinite series obtained
from a differential equation was convergent, and so really did
define a function satisfying the equation. Questions of convergency
(for which Cauchy was the first to give tests) are very prominent
in all the investigations of this second period of the study of dif-
ferential equations. Unfortunately this makes the subject very
abstract and difficult for the student to grasp. In the first period
the equations were not only simpler in themselves, but were studied
in close connection with mechanics and physics, which indeed were
often the starting point of the work.

Cauchy’s investigations were continued by Briot and Bouquet
(1856), and a new method, that of * Successive Approximations,”
was introduced by Picard (1890). Fuchs (1866) and Frobenius
(1873) have studied linear equations of the second and higher
orders with variable coefficients. Lie’s Theory of Continuous
Groups (from 1884) has revealed a unity underlying apparently
disconnected methods. Schwarz, Klein, and Goursat have made
their work easier to grasp by the introduction of graphical con-
siderations, and a recent paper by Wada (1917) has given a graphical
representation of the results of Picard and Poincaré. Runge (1895)
and others have dealt with numerical approximations.

Further historical notes will be found in appropriate places
throughout the book. For more detailed biographies, see Rouse
Ball’s Short History of Mathematics.



CHAPTER 1

INTRODUCTION AND DEFINITIONS. ELIMINATION.
GRAPHICAL REPRESENTATION

1. Equations such as

d - .
O = B, oeerrsrerees s (1)
3 2
2 %g +3 gﬁ + ZJ;!: ~10y=¢3*8in B2, ...covunrnnnnns (2)
dneTd 2
[1 +<d_g)] =850 e 3)
d ot
jutv .o (4
dz yé(l +wi) “
0 02
%ﬁl: zéz_?i, .................................. (5)

involving differential coefficients, are called Differential Equations.

2. Differential Fquations arise from many problems in Algebra,
Geometry, Mechanics, Physics, and Chemistry. In various places
in this book we shall give examples of these, including applications
to elimination, tangency, curvature, envelopes, oscillations of
mechanical systems and of electric currents, bending of beams,
conduction of heat, diffusion of solvents, velocity of chemical
reactions, etc.

3. Definitions. Differential equations which involve only one
independent variable,* like (1), (2), (3), and (4), are called ordinary.

Those which involve two or more independent variables and
partial differential coefficients with respect-to them, such as (5), are
called partial.

* In equations (1), (2), (3), (4) z is the independent and g{l:he dependent variable.
In (5) # and ¢ are the two independent variables and y the dependent.
[ ]



2 DIFFERENTIAL EQUATIONS

An equation like (1), which involves a second differential co-
efficient, but none of higher orders, is said to be of the second order.
(4) is of the first order, (3) and (5) of the second, and (2) of the third.

The degree of an equation is the degree of the highest differential
coefficient when the equation has been made rational and integral
as far as the differential coefficients are concerned. Thus (1), (2),
(4) and (b) are of the first degree.

(3) must be squared to rationalise it. We then see that it is of
the second degres, as giy

3 occurs squared.
x

Notice that this definition of degree does not require z or y to
occur rationally or integrally.

Other definitions will be introduced when they are required.

4. Formation of differential equations by elimination. The
problem of elimination will now be considered, chiefly because it
gives us an idea as to what kind of solution a differential equation
may have.

We shall give some examples of the elimination of arbitrary
constants by the formation of ordinary differential equations. Later
(Chap. IV.) we shall see that partial differential equations may be
formed by the elimination of either arbitrary constants or arbitrary
functions.

5. Examples.

(i) Consider =4 cos(pt—a), the equation of simple harmonic
motion. Let us eliminate the arbitrary constants 4 and a.

Differentiating, (‘lzt_a:= ~pA sin (pt —a)
and Z:::= —p?%4 cos (pt — a) = ~ pZr.

22
Thus %ﬁ= —p% is the result required, an equation of the second

order, whose interpretation is that the acceleration varies as the distance
from the origin.

(ii) Eliminate p from the last result.

. . . d*c 4%
Differentiating again, G ke p? 7
dx d*x

d*z
Hence $73 l T ~-pi= e / z, (from the last result).
3, 2p
Multiplying up, . %;'Z :lw, an equation of the third order.



ELIMINATION 3

(ili) Form the differential equation of all parabolas whose axis is
the axis of z.
Such a parabola must have an equation of the form

y=4a(z - h).
Differentiating twice, we get

2g}%=4a,
{e. y%=2a.

dz? " \dz

Examples for solution,

2 2
and yd Yy (‘ﬁ/) =0, which is of the second order.

Eliminate the arbitrary constants from the following equations :
(1) y=Ae?*+ Be—22, (2) y=4 cos 3z + B sin 3z.
(3) y=4de™. (4) y=Az+ 43,

(5) If z2+y%=aqa? prove that Z—y= —f, and interpret the result
geometrically. z Y

(6) Prove that for any straight line through the origin 4 =%y , and
interpret this. T oo

. 2
(7) Prove that for any straight line whatever g;v-yé=0. Interpret
this.

6. To eliminate n arbitrary constants requires (in general) a differ-
ential equation of the n*® order. The reader will probably have
arrived at this conclusion already, from the examples of Art. 5.
If we differentiate n times an equation containing n arbitrary con-
stants, we shall obtain (n +1) equations altogether, from which the
n constants can be eliminated. As the result contains an n'® differ-
ential coefficient, it is of the n'® order.*

* The argument in the text is that usually given, but the advanced student
will notice some weak points in it. The statement that from any (n + 1) equations
n quantities can be eliminated, whatever the nature of those equations, is too sweeping,
An exact statement of the necessary and sufficient conditions would be extremely
complicated.

ometimes less than (n+1) equations are required. An obvious case is
y=(4 + B)z, where the two arbitrary constants occur in such a way as to be
really equivalent to one.

A less obvious case is y*=2Azy + Bz*. This represents two straight lines
through the origin, say y=mz and y=m,z, from each of which we easily get
§=%’ of the first instead of the second order. The student should also obtain
this result by differentiating the original equation and eliminating B. This will

Be (y—x%)(y-Aa)ao.
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7. The most general solution of an ordinary differential equation of
the n*" order contains n arbitrary constants. This will probably seem
obvious from the converse theorem that in general n arbitrary con-
stants can be eliminated by a differential equation of the n** order.
But a rigorous proof offers much difficulty.

If, however, we assume * that a differential equation has a solution
expansible in a convergent series of ascending integral powers of
z, we can easily see why the arbitrary constants are n in number.

Zx’ of order three.

Consider, for example, 3 5

Assume that y =a, +a,z +a,§—l + ... +a,.m +... to infinity.

Then, substituting in the differential equation, we get
x? zn-s... x? zr-l.,
az+ax +(152—I +... +an(m =@ +ax +a32-! +... +anm,

80 ag =a,,
Ay =0y,
Ay =03 =0y,
@y, =0, 5=0a, 4=ectc.

3 2P B A
Hence y=a,,+a1<x+ s1tE T >+a,(—2~~!+1-l+6!+...)

=a, +a, sinh  +a, (cosh z - 1),
containing three arbitrary constants, a,, @, and a,.
Similar reasoning applies to the equation

ary _ ( dy dy ‘111%)
don I\* Y Qg @ d-)

In Dynamies the differential equations are usually of the second

order, e.g. gt’ +p% =0, the equation of simple harmonic motion.

To get a solution without arbitrary constants we nced two con-
ditions, such as the value of y and dy/dt when ¢ =0, giving the initial
displacement and velocity.

8. Complete Primitive, Particular Integral, Singular Solution. The
solution of a differential equation containing the full number of
arbitrary constants is called the Complete Primitive.

Any solution derived from the Complete Primitive by giving
particular values to these constants is called a Particular Integral.

* The student will see in later chapters that this assumption is not always
justifiable.
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Thus the Complete Primitive of ——y -9

dx
is y=a,+a, sinhz+a2(coshx—1),
or y =c+a, sinh z +a, cosh z, where ¢=a,—a,,
or y=c+ae®* +be*, where a=} (a,+a,) and b=3%(ay-a,).

This illustrates the fact that the Complete Primitive may often
be written in several different (but really equivalent) ways.

The following are Particular Integrals :

y=4, : taking c¢=4, a,=0a,=0;
y =5 sinh 2, taking @, =5, ¢=ay;=0;
y =06 cosh z -4, taking a;=6, a,=0,c=-4;
y=2+e"-3e® taking ¢=2, a=1b=-3.

In most equations every solution can be derived from the Com-
plete Primitive by giving suitable values to the arbitrary constants.
However, in some exceptional cases we shall find a solution, called
a Singular Solution, that cannot be derived im this way. These will
be discussed in Chap. VI.

Examples for solution.
Solve by the method of Art. 7:

dy
(1) 2
. 2
(2) =Y.
(3) Show that the method fails for g%= :IE

[log z cannot be expanded in a Maclaurin series.]

4) Venf y by elimination of ¢ that y =cx +e 1 is the Complete Primitive
ofy= :c + 1 / dy' Verify also that y2=4xisa solutlon of the differential

equatlon not derivable from the Complete Primitive (i.e. a Singular
Solution). Show that the Singular Solution is the envelope of the
family of lines represented by the Complete Primitive. Illustrate by
a graph.

9. Graphical representation. We shall now give some examples
of a method * of sketching rapidly the general form of the family of
curves representing the Complete Primitive of

Z_Z =f(92, ?l),

® Due to Dr. S. Brodetsky and Prof. Takeo Wada.
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where f(z, y) is & function of & and y having a perfectly definite
finite value * for every pair of finite values of z and y.

The curves of the family are called the characteristics of the
equation.

Ex. (i) Z—‘Z=x(y—l).
dy
dz?

Now a curve has its concavity upwards when the second differential
coefficient is positive. Hence the characteristics will be concave up
above y=1, and concave down below this line. The maximum or
minimum points lie on =0, since dy/dz=0 there. The characteristics
near y=1, which is a member of the family, are flatter than those
further from it.

These considerations show us that the family is of the general form
shown in Fig. 1.

Hero —y-14+z o y-1),

Fia, 1
Ex. (ii) g% =y +e®
2
Here g_i%= Z—Z+c'=y+2e'.

We start by tracing the curve of maxima and minima y+e®=0,
and the curve of inflexions y+2¢*=0. Consider the characteristio
through the origin. At this point both diflerential coefficients are
positive, 80 as x increases y increases also, and the curve is concave
upwards. This gives us the right-hand portion of the characteristio
marked 3 in Fig. 2. If we move to the left along this we get to the

* Thus excluding a function like y/x, which is indeterminate when =0 and
y=0,
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curve of minima. At the point of intersection the tangent is parallel to
Oz. After this we ascend again, so meeting the curve of inflexions.
After crossing this the characteristic becomes convex upwards. It still
ascends. Now the figure shows that if it cut the curve of minima again

Fia. 2.

the tangent could not be parallel to Oz, so it cannot cut it at all, but
becomes asymptotic to it.

The other characteristics are of similar nature.

Examples for solution.

Sketch the characteristics of :

0] g—g=y(l -z).
(@) ?ig =%y,

d
3) d—z =y +ai

10. Singular points. In all examples like those in the last
article, we get one characteristic, and only one, through every point

. dy d?y
of the plane. By tracing the two curves e =0 and - =0 we can

easily sketch the system.
If, however, f(x, y) becomes indeterminate for one or more
points (called singular points), it is often very difficult to sketch the
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system in the neighbourhood of these points. But the following
examples can be treated geometrically. In general, a complicated
analytical treatment is required.*

Ex. (i). g—g=% Here the origin is a singular point. The geo-

metrical meaning of the equation is that the radius vector and the
tangent have the same gradient, which can only be the case for straight

/

AN

lines through the origin. As the number of these is infinite, in this case
an infinite number of characteristics pass through the singular point.

Fia. 8.

Ex. (ii). W_ 2 . VW,

dx y z dz
This means that the radius vector and the tangent have gradients

Fia. 4.

whose product is —1, {.e. that they are perpendicular. The char-
‘acteristics are therefore circles of any radius with the origin as centre.

* See a paper, ‘‘ Graphical Solution,” by Prof. Takeo Wada, Memoirs of the
College of Scsence, Kyoto Imperial University, Vol. II. No. 3, July 1917.
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In this case the singular point may be regarded as a circle of zero radius,

the limiting form of the characteristics near it, but no characteristic of

finite size passes through it.

dy y-ke

Ex. (iii). o= s hy

Writing dy/dx =tan \, y/z=tan 6, we get

tan 6 -k

tan¢=1 +ktan 6’

f.e. tany,+ktan+ tan O=tan 0 -k,
tan f —tan —k

1+tanftany,
f.e. tan(0-1 )=k, a constant.
The characteristics are thercfore equiangular spirals, of which the
singular point (the origin) is the focus. -

Fia. 5.

These three simple examples illustrate three typical cases.
Sometimes a finite number of characteristics pass through a singular
point, but an example of this would be too complicated to give

here.*
* See Wada's paper.



10 DIFFERENTIAL EQUATIONS

MISCELLANEOUS EXAMPLES ON CHAPTER L

Eliminate the arbitrary constants from the following :

(1) y=4*+ Be2+C.

2 y=Ae*+ Be?® + Ce®2,

[To eliminate 4, B, C from the four equations obtained by successive
differentiation a determinant may be used.]

(3) y=e%(A4 cos z + Bsin z).
(4) y=c cosh %:, (the catenary).

Find the differential equation of

(5) All parabolas whose axes are parallel to the axis of y.

(6) All circles of radius a.

(7) All circles that pass through the origin.

(8) All circles (whatever their radii or positions in the plane zOy).
[The result of Ex. 6 may be used.]

(9) Show that the results of eliminating a from

dy

2yr=zd-5+az, ................................. 1)

and b from yax%—bz', ............................... (2)
. d%y dy

are in each case x’ﬂ-§—2x5+2y=0. SRR ()]

[The complete primitive of equation (1) must satisfy equation (3),
since (3) is derivable from (1). This primitive will contain ¢ and also
an arbitrary constant. Thus it is a solution of (3) containing two
constants, both of which are arbitrary as far as (3) is concerned, as a
does not occur in that equation. In fact, it must be the complete
primitive of (3). Similarly the complete primitives of (2) and (3) are
the same. Thus (1) and (2) have a common complete primitive. ]

(10) Apply the method of the last example to prove that

y +§Z=2ae'
Y _ o
and y-—&5=2be a

have a common complete primitive.
(11) Assuming that the first two equations of Ex. 9 have a common
_ . . dy .
complete primitive, find it by equating the two values of EZ in terms

of z, y, and the constants. Verify that it satisfies equation (3) of Ex. 9.

(12) Similarly obtain the common complete primitive of the twa
equatious of Ex. 10.
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(13) Prove that all curves satisfying the differential equation

dy dy) 2d2
P =1“’(da; +o

cut the axis of y at 45°.

(14) Find the inclination to the axis of x at the point (1, 2) of the
two curves which pass through that point and satisfy

d-'/). 2 2
(a—; =Y -2z +z2.

(15) Prove that the radius ot curvature of either of the curves of
Ex. 14 at the point (1, 2) is 4.

(16) Prove that in gencral two curves satisfying the differential
equation
4 (%) -y 1120
pass through any point, but that these coincide for any point on a
certain parabola, which is the envelope of the curves of the system.

(17) Find the locus of a point such that the two curves through it
satisfying the differential cquation of Ex. (16) cut (i) orthogonally ;
(ii) at 45°.

(18) Sketch (by Brodetsky and Wada’s method) the characteristics of

dy
dx

(19) Obtain solutions in series of ascending integral powers of z (as
In Art. 7) of the following differential equations (in which y, and y,

=z +eY,

denote dy and &y respectively) :

d 2
(@) yz—wyl—y=0; (ii) zyp+2y, +y=0;
(iti) 2%y, - 22y, +2y=0; (iv) (1-2%)y,+2y=0;
(V) (z-2?)y,+ (1 -ba)y, - 4y=0.
[Answers :
(i) y=a <1+ + = cas >+a <E+—xaa+wzf—~+ . );
0 224246 N1'1.3"1.3.56" "

2 g8 4
(ii) y =a1<w - % + % - % + ) =a,xe~®; this, containing only one

arbitrary constant, is not the complete primitive, for there is
another solution not of the form assumed here (see Chap. IX.) ;

(iii) y=a,z+}a2?; .
: [ ® B o
() y=anll =22 vy (2= g =g =% =)

(v) y=a,(12+ 2% + 3%2% +...) ; see Art. 97.]



CHAPTER II

EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

11. In this chapter we shall consider equations of the form
M+N dy =0,
dz

where M and N are functions of both z and .
This equation is often written,* more symmetrically, as
Mdz + Ndy =0.

Unfortunately it is not possible to solve the general equation of
this form in terms of a finite number of known functions, but we
shall discuss some special types in which this can be done.

It is usual to classify these types as

(a) Exact equations ;

(b) Equations solvable by separation of the variables ;
(¢) Homogeneous equations ;

(d) Linear equations of the first order.

The methods of this chapter are chiefly due to John Bernouilli
of Bale (1667-1748), the most inspiring teacher of his time, and to
his pupil, Leonhard Euler, also of Béle (1707-1783). Euler made
great contributions to algebra, trigonometry, calculus, rigid dynamics,
hydrodynamics, astronomy and other subjects.

12. Exact equations.t
Ex. (i). The expression y dx +zdy is an exact diflerential.

Thus the equation ydz+zdy=0,
giving d (yz) =0,
-
fe. yz=c, -
L}

is called an exact equation.

* For a rigorous justification of the use of the different{als dx and dy sce Hardy’s
Pure Mathematics, Art. 136 [Arts. 154-155 in later editions).

t For the necessary and sufficient condition that M dz + N dy =0 should be exact
see Appendix A.

12
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Ex. (ii). Consider the equation tany.dx+tan z.dy=0.
This is not exact as it stands, but if we multiply by coszcosy it

comes sin y cos = dz +sin z cos y dy =0,
ich is exact.
The solution is sin y sin z=c.

13. Integrating factors. ‘In the last example coszcosy is
called an integrating factor, because when the equation is multiplied
by it we get an exact equation which can be at once integrated.

There are several rules which are usunally given for determining
integrating factors in particular classes of equations. These will be
found in the miscellaneous examples at the end of the chapter. The
proof of these rules forms an interesting exercise, but it is generally
easier to solve examples without them.

14. Variables separate.
Ex. (i). In the equation d;z=tnn y . dy, the left-hand side involves

z only and the right-hand side y only, so the variables are separate.
Integrating, we get log z= —log cos y +e¢,

f.e. log (xcosy)=c,

Z co8 Yy =¢®=a, say.

. dy

Ex. (ii). Iz

The variables are not separate at present, but they can easily be
made so. Multiply by dx and divide by y. We get

@ =2z dx.
Y

Integrating, logy=xz2+ec.

As ¢ is arbitrary, we may put it equal to log a, where a is another
arbitrary constant.

Thus, finally, y=ae”.

=2xy.

Examples for solution.

(1) (12z+5y —9) dx + (bx + 2y — 4) dy =0.

(2) {cos z tan y +cos (x+y)} dz + {sin z sec? y +cos (z +y)} dy=0.
(3) (sec z tan z tan y —e®) dx +sec x sec? y dy =0.

(4) (z+y) (dx - dy) =dz +dy.

(6) y dz—x dy + 3x2y%”dx =0.

(6) ydz—xdy=0.

(7) (sin z +cos x) dy + (cos = — sin ) dz =0.

Y 54
(8) a;_a:’y 3

(9) ydz -z dy =2y dz. M tan z dy =cot y dz.
P.D.E.
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15. Homogeneous equations. A homogeneous equation of the
first order and degree is one which can be written in the form

-1()

To test whether a function of x and y can be written in the form
of the right-hand side, it is convenient to put

y_ -
5=V or y=vz
If the result is of the form f(v), ¢.e. if the s all cancel, the
test 1s satisfied.
dy z2+1?

. dy 1+02
Ex. (i). 5°5=-5—— becomes -Z=
geneous. dr  2z? dx 2

This equation is homo-

3
Ex. (ii). %=Zi becomes g%=xv5. This is not homogeneous.

16. Method of solution. Since a homogeneous equation can be
reduced to Z‘% =f(v) by putting y =vz on the right-hand side, it is

natural to try the effect of this substitution on the left-hand side
also. As a matter of fact, it will be found that the equation can
always be solved * by this substitution (see Ex. 10 of the miscel-
laneous set at the end of this chapter).

: dy a?+y?
Ex. (i). = o
Put Y=z,
,  dy dv e . .
e ’E=v+x(ﬂ’ (for if y is a function of z, so is v).
: dv 1+0?
The equation becomes v+z = 9
fe. 2zdv=(1+v2-2v)da.
. . 2dv  dx
Separating thevariables, o s
. -9 .
Integrating, Py logz+e.
But v=Y, so -2 _ -2 _ -2 2
< v-1 Yy 4 y-% z-y
z

Multiplying by -y, 2z=(x-y) (log z+c).

* By “solvea ” we mean reduced to an ordinary integration. Of course,.this
integral may not be expressible in terms of ordinary elementary functions.



EQUATIONS OF FIRST ORDER AND FIRST DEGREE 16

Ex. (ii). (z+y) dy+(z-y) dz=0,

s dy y-=
This gives F ey

Putting y =vx, and proceeding as before, we get

I _v-1

de v+l

fe. z‘?ﬂ_"_‘l_v=_w_
dr v+1 v+1

(v+l)dv=d:c

v+l 3’

—od_ do _ds

v+l w3+l =z

Integrating, —4log(v¥3+1)—-tan"v=logz+e,

v+

Beparating the variables, —

f.e.

te. 2logx+log(v¥+1)+2tan~lv+2¢=0,
log 2 (v3+1) +2 tan~v + a =0, putting 2c=a.

Substituting for v, log (y2 +22) +2 tan“l‘% +a=0,

17. Equations reducible to the homogeneous form.

. . dy y-z+1
Ex. (i). The equation T Y7745

is not homogeneous.
This example is similar to Ex. (ii) of the last article, except that

y._.

y-x . y—x+1
e is replaced by

y+z+5

Now y—z=0 and y+x=0 represent two straight lines through the
origin.

The intersection of y—z+1=0 and y+z+5=0 is easily found to
be (-2, -3).

Put z=X-2; y=Y -3. This amounts to taking new axes parallel
to the old with (-2, —3) as the new origin.

Then y-z+1=Y-X and y+z+b6=Y+X.

Also dr=dX and dy=dY.
. dY Y-X
The equation becomes X-Yix

As in the last a’rticle, the solution is

log (Y2+ X?) +2 tan‘1—§+a=0,

f.e. log[lu+3)%+(x+2)3]+2 tan"Z—ig +a=0,
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da~ y-z+b

This equation cannot be treated as the last example, because the
lines y —z+1=0 and y- z+5=0 are parallel.

As the right-hand side is a function of y —#, try putting y —x =32,
dy =,‘E
ds~ " dw
&z _z+1
dz z+5’
&_ -4
dz z+5°
Separating the variables, (z+5) dz= -4 dz.

Ex. (ii). dy y-o+1

f.e.
The equation becomes 1+

{.e.

Integrating, ' 322 +52= -4z +0,
f.e. 22+10z+8r=2c.
Substituting for 2z, (y —)?+10(y —x) + 8z =2,
t.e. (y-x)2+10y -2z =a, putting 2c=a
Examples for solution.
(1) (2z—y)dy=(2y-x)dx. [Wales.]

(2) (=*- ’)%=zy. [Sheffield. ]

dy_y y?
3) 2 @-5 ot [Math. Tripos.]

(4) z-— y+ V(@ +y?).
) dy 2z +9y - 20
dz”™ 6z +2y -10°
(6) (12z+21y-9) dz+ (475 +40y +7) dy=
dy 3z-4y-2
™ de 3r-4y-3
(8) (z+2y) (dz —dy) =dz +dy.

18. Linear equations.

The equation ZZ +Py =0,

where P and Q are functions of  (but not of y), is said to be linear
of the first order.
dy

. . 1
A simple example is =t y =22
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If we multiply each side of this by z, it becomes
dJ 3
da: +y=2°
. d
e o (ry) =22
Hence, integrating, xy =}at +e.
We have solved this example by the use of the obvious integrating

factor z.

19. Let us try to find an integrating factor in the general case.
If R is such a factor, then the left-hand side of

dy
R 7z +RPy=RQ
is the differential coefficient of some product, and the first term

R dy shows that the product must be Ry.

dy d dy dR
Put, therefore, R +RPy 7 (Ry) = Rdx+ydx'

This gives RPy=y %,

te. Pd —%—e,

IP dz =log R,
dez

R=e

L 4
This gives the rule : To solve g:% + Py =Q, mulliply each side by

[Paz

e, which will be an integrating factor.:

20. Examples. :

(i) Take the example considered in Art. 18.
dy
dzr

Here P ;—), 80 IP dr=logz, and el€Z=2z.

+1 Y= =3,

Thus the rule gives the same integrating factor that we used before.

.. dy o
(ii) Iz + 2zy =2e .

Here P =2z, J.P dz=z? and the integrating factor is e,
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C . dy
Multiplying oy this, e* izt 2we™y =2,

d
f.e. T (ye®') =2.

Integrating, yer' =2z +c,
y‘\,)c (2z+c)e-=,

(iii) %@3y=e2~.
Here the integrating factor is €2,

Multiplying by this, €%* % +3€3%y = €53,

f.e. (-ld;(ye”’) =¢53,
Integrating, ye3= =3eb? 4 ¢,
y=1e¥® +ce 3%,
21. Equations reducible to the linear form.

Ex. (i). zy —(%= yPe
Divide by 43, so as to free the right-hand side from y.
1 1dy

Y e

We get a;.yz ¥ dz e,
1 1d/1\ .,

‘.e. z.g—z'l”éd—x("y—z)——'e .

.1 : z .
Putting y~2=z, 2.11:z+(—1—5J =2e%,

This is linear and, in fact, is similar to Ex. (ii) of the last article with
¢ instead of y.
Hence the solution is t=(2x+c) e,

t.e. i},=(2z+c)e—”, .
et
=* ezt
This example is a particular case of * Bernoulli’s Equation ”

dy
¢‘15+P?/=Qy”,

where P and Q are functions of x. Jacob Bernouilli or Bernoulli of
Bale (1654-1705) studied it in 1695,
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Ex. (ii). (22— 104%) g-i +y=0.

This is not linear as it stands, but if we multiply by g‘g, we get

dx
2z -10y® +y 5 =0,
Y+ g,

de 2z
f.e. (~Z—y+—y =10y3,
This is linear, considering y as the independent variable.
Proceeding as before, we find the integrating factor to be y2, and
the solution Yo =245 +c,
f.e. z=2y8+cy %

Examples for solution.

(1) (z+a) % -3y=(x+a)5. [Wales.]

(2) zcos :cg—z+y(a: sin z+cos z)=1. [Sheffield.]
(3) zlo :zd—?—/+ =2log z (4) —x"@=y4cosz
g 1Y 8 : Yy iz .
®) y+2 Y = pz-1) ©6) (@+24%) % -
Y*% 4a ) Y 3=

(7) de+z dy=evsecy dy.

22. Geometrical Problems. Orthogonal Trajectories. We shall

now consider some geometrical problems leading to differential
equations.

7

(o _— T N »

Fia. 6.

Ex. (i). Find the curve whose subtangent is constant.

d
The subtangent T'N =PN cot =y tT;'
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Hence y Z_x =k,

dr=k ‘z‘z—/,
)

z-+o=klogy,
y=aé,
putting the arbitrary constant ¢ equal to k log a.

Ex. (ii). Find the curve such that its length between any two
points PQ 1s proportional to the difference of the distances of @ and P
from a fixed point O.

1f we keep P fixed, the arc QP will vary as OQ minus a constant.

Use polar co-ordinates, taking O as pole and OP as initial line.
Then, if Q be (r, 6), we have ,_ ;. k.

But, as shown in treatises on the Calculus,
(ds)2=(r d0)? + (dr)2.
Hence, in our problem,

k2(dr)2=(r d0)? + (dr)?,
ie. 0= :t\/(k’—l)‘-if

a7
giving r =ce®, the equiangular spiral.
Ex. (iii). Find the Orthogonal Trajectories of the family of semi-

cubical parabolas ay®=23, where a is a variable parameter.

Two families of curves are said to be orthogonal trajectories when
every member of one family cuts every member of the other at right
angles.

We first obtain the differential equation of the given family by
eliminating a.

Differentiating ay?=a3,
we get 2ay % =33,
. ‘ 2dy 3
whence, by division, !_l G e creercesattacens (1)

Now gi/ tan v, where \/ is the inclination of the tangent to the

axis of z. The value of v for the trajectory, say vy, is given by

\P:‘/"iiw’
fe. tanr= —cot,

{.e. 5= for the given family is to be replaced by —-(E for the trajectory,

dy
* do
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Making this change in (1), we get
2dz 3
Tydy @
2¢ dz + 3y dy =0,
222+ 3y2=c,
a family of similar and similarly situated ellipses.
Ex. (iv). Find the family of curves that cut the family of spirals
r=a0 at a constant angle a.
As before, we start by eliminating a.

rdf

This gives ke 0.
Now %q=tan ¢, where ¢ is the angle between the tangent and the
radius vector. If ¢’ is the corresponding angle for the second family,

¢ =¢xa,
tan ¢+tana  O+k
l1xtan¢ptana 1-46

putting in the value found for tan ¢ and writing k instead of +-tan a.
Thus, for the second family,

rdd 6+ k~

dr  1-k0
The solution of this will be left as an exercise for the student.
The result will be found to be

r=c(0+k)¥tle-k,

tan ¢’ =

Examples for solution.
(1) Find the curve whose subnormal is constant.

(2) The tangent at any point P of a curve meets the axis of z in T.
Find the curve for which OP = PT, O being the origin.

(3) Find the curve for which the angle between the tangent and
radius vector at any point is twice the vectorial angle.

(4) Find the curve for which the projection of the ordinate on the
normal is constant.

Find the orthogonal trajectories of the following families of curves :

(5) 2®—y3=at. (6) ot +yt=at.
(7) pz?+qy*=a3, (p and ¢ constant).
(8) r8=a. 9) r=T‘_‘§_o.

”(10) Find the family of curves that cut a family of concentric circles
at & constant angle a.
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MISCELLANEOUS EXAMPLES ON CHAPTER II.

d d

(1) (3y*-2) 2=. (2) =3 =y +2v/(y*-a9).
< (3) tan z cos y dy +sin y dz + €*2 % dz =0,

() % +3y=zys.  [Shefield.]

d
(5) «° (—lg =y +y*/(y* - 2.
dy __ox+ hy+g
dr  hx+by+f
represents a family of conics.
(7) Show that ydr—2xdy=0

represents a system of parabolas with a common axis and tangent at
the vertex.

(8) Show that (4x+3y+1) dr+(3z+2y+1) dy=0
represents a family of hyperbolas having as asymptotes the lines
z+y=0 and 2r+y+1=0.

(6) Show that

(9) If c_lg_/+2y tan x=sin z
dx

and y=0 when =}, show that the maximum value of y is 1.
[Math. Tripos. ]

(10) Show that the solution of the general homogeneous equation
dy (y)
of the first order and degree iz f 5.

log z J-—L +¢
L A
where v=y/z.

(11) Prove that z*y* is an integrating factor of
Py dw + gx dy + ™y (ry dz + sz dy) =0
h+1 k+1 h+m+1 k+n+l
if ——=— and = .
P q r s
Use this method to solve
3y dz — 2z dy + xy~1(10y dx — 6z dy) =O0.
(12) By differentiating the equation
J’ f(zy) + F(zy) d(zy)
flzy) - Flzy) =y
1
verify that S
e ay{f(ey) - F(ay))

+lo e ¢
gy
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is an integratinyg factor of
S(xy)y dz+ F (xy)x dy =0.
Hence solve (x2y2+zy+1)y do— (2%y? -2y +1)z dy=0.
(13) Prove that if the equation M dz + N dy =0 is exact,
oN oM
% oy’
[For a proof of the converse see Appendix A.]
(14) Verify that the condition for an exact equation is satisfied by

(P dz+Qdy)el’ @ =0
orP _oQ

if ayﬂ*a';'*‘Qf(x)
Hence show that an integrating factor can always be found for
Pdz+Qdy=0
if 1 [QB _X
QLoy o=

is a function of z only.
Solve by this method
(2® + zy*) dz + 2y3dy =0.
(15) Find the curve (i) whose polar subtangent is constant ;
(i) whose polar subnormal is constant.

(16) Find the curve which passes through the origin and is such
that the area included between the curve, the ordinate, and the axis
of x is k times the cube of that ordinate.

(17) The normal PG to a curve meets the axis of z in G. If the
distance of @ from the origin is twice the abscissa of P, prove that the
curve is a rectangular hyperbola.

(18) Find the curve which is such that the portion of the axis of z
cut off between the origin and the tangent at any point is proportional
to the ordinate of that point.

(19) Find the orthogonal trajectories of the following families of
curves : (i) (z—-1)2+y?+2a2=0,
(ii) r=a0,
(iii) r=a+cos nf,
and interpret the first result geometrically.
(20) Obtain the differential equation of the system of confocal conics
z2 y?
an Rl
and hence show that the system is its own orthogonal trajectory.

(21) Find the family of curves cutting the family of parabolas
y?=4az at 45°
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(22) If u+4v=f(x+14y), where u, v, z and y are all real, prove that
the families u =constant, v=constant are orthogonal trajectories.
0% 0% 0% 0%
a—z—2 + ’9?2 -0 = a‘;z + a—yn-

[This theorem is of great use in obtaining lines of force and lines of
constant potential in Electrostatics or stream lines in Hydrodynamics.
u and v are called Conjugate Functions. ]

Also prove that

(23) The rate of decay of radium is proportional to the amount
remaining. Prove that the amount at any time ¢ is given by

A=k
2
(24) If ?;=g<l —;—é§> and v=0 if t=0, prove that

v=Fk tanh gl‘i

[This gives the velocity of a falling body in air, taking the resistance
of the air as proportional to v?. As tincreases, v approaches the limiting
value k. A similar equation gives the ionisation of a gas after being
subjected to an ionising influence for time ¢.]

(25) Two liquids are boiling in a vessel. It is found that the ratio
of the quantities of each passing off as vapour at any instant is pro-
portional to the ratio of the quantities still in the liquid state. Prove
that these quantities (say z and y) are connected by a relation of the

form- y = cz*,

[From Partington’s Higher Mathematics for Students of Chemistry,
p. 220.]



CHAPTER III

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

23. The equations to be discussed in this chapter are of the form
n. n—1,
pog—z‘z +7 %;;% + oo+ Py Z—g +0.y=f(@), ceeereenn()
where f(z) is a function of x, but the p’s are all constant.

These equations are most important in the study of vibrations
of all kinds, mechanical, acoustical, and electrical. This will be
illustrated by the miscellaneous examples at the end of the chapter.
The methods to be given below are chiefly due to Euler and
D’Alembert. *

Wo shall also discuss systems of simultaneous equations of this
form, and equations reducible to this form by a simple transformation.

24, The simplest case ; equations of the first order. If we take
n=1 and f(z) =0, equation (1) becomes

d
p,,zg + 017 =0, it (2)

t.e. P (;_y +p,dz =0,

or Po log y + p,x =constant,
80 log y = — p,/p, +constant

= ‘Pxx/l’o +10g 4, say,
giving y = Ade-Pr#ipo,

25. Equations of the second order. If we taken=2 and f(z)=0,
equation (1) becomes

d d
poz;-y, +p Ey + P39 =0. cerrrrriirennnreenn(3)

® Jean-le-Rond D’Alembert of Paris (1717-1783) is best known by * D’Alem-
bert’s Principle ” in Dynamics. The application of this principle to the motion
of fluids led him to partial differential equations.
25
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The solution of equation (2) suggests that y = dem2, where m is
some constant, may satisfy (3).

With this value of y, equation (3) reduces to

Aem®(pym? + pym + pg) =0.
Thus, if m is a root of
P2 +Pp M +P, =0, ceerriiiiiiiiiiiniinin.(4)

y =Ae™* is a solution of equation (3), whatever the value of 4.

Let the roots of equation (4) be @ and 8. Then, if a and 3 are
unequal, we have two solutions of equation (3), namely

y=A4de** and y=DBe.
Now, if we substitute y = Ae** + Bef* in equation (3), we shall get
Ae*(pya® +pra +py) + B (po 2+, B+ p2) =0,

which is obviously true as a and 8 are the roots of equation (4).

Thus the sum of two solutions gives a third solution (this might
have been seen at once from the fact that equation (3) was linear).
As this third solution contains two arbitrary constants, equal in
number to the order of the equation, we shall regard it as the general
solution.

Equation (4) is known as the * auxiliary equation.”

Example.
ddy _dy . . .
To solve 2 &—5+5d;z+2y=0 put y=Ae™® as a trial solution. This
leads to Ae™=(2m? +b5m +2) =0,

which is satisfied by m= —2 or —4.
The general solution is therefore

y=Ae 2%+ Be-t2,

26. Modification when the auxiliary equation has imaginary or
complex roots. When the auxiliary equation (4) has roots of the
form p +1q, p —1g, where 2= —1, it is best to modify the solution

y=AeP+i0®  Ber-i)Z . .......iiiiiniinnnn(B)
so as to present it without imaginary quantities.

To do this we use the theorems (given in any book on Analytical
Trigonometry) €% =08 qx +1 sin gz,

e~ '%% =cos ¢qx — ¢ sin ¢.
Equation (5) becomes
y =e?*{4 (cos qx +1 sin qz) + B(cos gz - ¢ sin ¢qx)}
=¢P?{F cos qx + F sin qz},
writing E for 4 +B and F for ¢(4 -B). E and F are arbitrary
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constants, just as 4 and B are. It looks at first sight as if # must
be imaginary, but this is not necessarily so. Thus, if
A=1+2 and B=1-2¢, E=2 and F=-4.
Example. d?y _e% dy
dz? " dz
leads to the auxiliary equation
-6m+13=0,

+13y=0

whose roots are m =3+ 21.
The solution may be written as
y = Ae®+20 | Bels-208
or in the preferable form
y=¢3%(E cos 2z + F sin 2z),

or again a8 y=Ce3* cos (22 - a),
where Ccosq=FE and Csina=F,
so that C=,/(E?+ F2) and tan o= F/E.

27. Peculiarity of the case of equal roots. When the auxiliary
equation has equal roots a =3, the solution

y=Ae** + Bef*
reduces to y=(4 +B)e,

Now 4 + B, the sum of two arbitrary constants, is really only a
single arbitrary constant. Thus the solution cannot be regarded as
the most general one.

We shall prove later (Art. 34) that the general solution is

y=(A4 + Bx)e*.

28. Extension to orders higher than the second. The methods
of Arts. 25 and 26 apply to equation (1) whatever the value of n, as
long as f(z) =0.

Py A Y

Ex. (i). p il +lld 6y =0.

The auxiliary equation is
—6m2+11m —6=0,

giving m=1, 2, or 3.

Thus y=Ae®+ B2 + Ce3=,

Ex. (ii). t—za— —8y=-0

The auxiliary equation is ms -8=0,

te. (m—2)(m2+2m+4)=0,

giving m=2 or —114/3.

Thus y=Ae?* +e-2(L cos 24/3 + F sin 24/3),
or y = Ae?®+Ce~® cos (/3 - a).
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Examples for solution.

Solve

) & y dy+3y-o (2) +4y-0
Yy gy _ dy dy

(3) 5+7 7 +12y=0. 4) dxz -4 15y=0.
d%s | ds d¥  ds

M T+ d—y—d—y—% 0

dz

(8) What does the solution to the last example become if the initial

conditions are dy

y=1, d—-—O when z=0,

and if y is to remain finite when z= + o0 ?
Solve

(9) +13 dty

Iz -+ 36y =0.

(10) 3 d-‘/ 13d y+36y=-0

(11 dxa+sy-=o a2 ¢ --—64y 0.
(13) 1 9+ 8=0, given that =q and €Q=O when =0
an I8 d '

[The approximate equation for small oscillations of a simple pen-
dulum of length I, starting from rest in a position inclined at a to the
vertical.]

(14) Find the condition that trigonometrical terms should appear

in the solution of d's ds
+k 5 +cs=0.

7 R

[The equation of motion of a particle of mass m, attracted to a
fixed point in its line of motion by a force of ¢ times its distance from
that point, and damped by a frictional resistance of k times its velocity.
The condition required expresses that the motion should be oscillatory,
e.g. a tuning fork vibrating in air where the elastic force tending to
restore it to the equilibrium position is proportional to the displacement
and the resistance of the air is proportional to the velocity.]

(15) Prove that if k is so small that k2/mc is negligible, the solution
of the equation of Ex. (14) is approximately e~ */2™ times what it would
be if k were zero.

[This shows that slight damping leaves the frequency practically
unaltered, but causes the amplitude of successive vibrations to diminish
in a geometric progression. ]
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(16) Solve L ZQ R‘;? g=o given that Q@ =0, and %—0 when

t=0, and that CR"’ < 4L.

[Q is the charge at time ¢ on one of the coatings of a Leyden jar of
capacity C, whose coatings are connected when ¢=0 by a wire of resist-
ance R and coefficient of self-induction L.)

29. The Complementary Function and the Particular Integral. So
far we have dealt only with examples where the f(z) of equation (1)
has been equal to zero. We shall now show the relation between
the solution of the equation when f(z) is not zero and the solution
of the simpler equation derived from it by replacing f(z) by zero.
To start with a simple example consider the equation

2% 158 5 +ay=5+2z.

Tt is obvious that y =z is one solution. Such a solution, con-
taining no arbitrary constants, is called a Particular Integral.

Now if we write y =z +v, the differential equation becomes

d* dv
2 0+5(1+9) +2(c +0) =5 +25,

. dv _ dv

t.e. 2d’ 5dz+2v—0
giving v=Ae % + B¢ 32,
80 that y=x+ Ae 2% + Be~1*,

The terms containing the arbitrary constants are called the
Complementary Function.
This can easily be generalised.
If y=u is a particular integral of

dan dn—1 d
Po da;?'/‘ +p, dx"-?{ v+ Py E'Z + 0.y =f(®), .reeenni(6)
an dr-1 d
so that Do E&%+p1 dx_"—zf + oo +Pay (—l——: + Pt =f(x), eeeveenn(7)
put ¥ =u +v in equation (6) and subtract equation (7). This gives
dm™ dr—ly dv
PoggntP1 gnmi + oo T Paa a—i+p,,v=0. R (<))

If the solution of (8) be v=F(z), containing » arbitrary con-
stants, the general solution of (6) is
y=u+F(2),
and F(z) is called the Complementary Function.
P.D.E. D
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Thus the general solution of a linear differential equatim with
constant coefficients is the sum of a Particular Integral and the Com-
plementary Function, the laiter being the solution of the equation
obtained by substituting zero for the function of x occurring.

Examples for solution.

Verify that the given functious are particular integrals of the follow-
ing equations, and find the general solutions :

d2 d ‘
(W) es; S5-27+=en (2 3: Z‘Z—lBZy+l2y 36.
(3) 2sin 3z ; j <=5 +4y=—10sin 3z.

For what values of the constants are the given functions particular
integrals of the following equations ?

(4) ae*; jy+1331+4 2y =112¢2.
d%s 2
(6) ae™; +9s=60e". (6) asin px; {L?/+ =12 sin 2z.
azt dz2 Y
2,
(7) asin pr+bcos pz; ‘g‘i+4d‘l+3y 8 cos z — 6 sin z.

2
® a; “YisW 6y_1a,

dz?  “dx
Obtain, by trial, particular integrals of the following :
OF a2 J 31/ +5y =80, (10) 5 &y +2ZJ + 37y =300¢7=.
(11) a—%+9y=40 sin bz. (12) d/+9./ 40 sin bz.
z d

d? d
(13) —’4+8d?’+25y 50.
30. The operator D and the fundamental laws of algebra. When
8 particular integral is not obvious by inspection, it is convenient
to employ certain methods involving the operator D, which stands

for g?c This operator is also useful in establishing the form of the

complementary function when the auxiliary equation has equal
roots.

D2 will be used for ;x” D3 for ;a, and so on.
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The expression 2 % +5 %} +2y may then be written
2D% +5Dy +2y,
or (2D? +5D +2)y.
We shall even write this in the factorised form
@D +1)(D +2)y,
factorising the expression in D as if it were an ordinary algebraic
quantity. Is this justifiable ?
The operations performed in ordinary algebra are based upon
three laws :
I. The Distributive Law
m(a+b)=ma+mb ;
I1. The Commutative Law
ab=ba;
III. The Index Law a™ . a™ =a™+n,
Now D satisfies the first and third of these laws, for
D(u +v) =Du + Do,
and D™, Dru=Dmn  u
(m and » positive integers).
As for the second law, D(cu)=c (Du) is true if ¢ is & constant,
but not if ¢ is a variable.
Also Dm(Dru) =D (Dmu)
(m and n positive integers).
Thus D satisfies the fundamental laws of algebra except in that
it is not commutative with variables. In what follows we shall
WIitB F(D)EPOD" +P1D"—l+ oo +pn—1D+pm
where the p’s are constants and » is a positive integer. We are
justified in factorising this or performing any other operations
depending on the fundamental laws of algebra. For an example
of how the commutative law for operators ceases to hold when
negative powers of D occur, see Ex. (iii) of Art. 37.
81. F(D) e2x =¢3XF(a). Since
Det® — aea:l’
D2eo® — azeaz'
and so on,
F(D)e**=(p,D" + p, D" ' + ... + p,, D +p,)
=(Poa™ + P10t + oot + Ppy@ + Pp) €%
=gl (G).
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82. F(D){e®*V} =e2XF(D +a)V, where V is any function of x. By
Leibniz’s theorem for the n** differentual coefficient of a product,
Dr{e**V'} =(D"e**) V +n(D-e*z)(DV)

+3in(n—1)(Dn2%=)(D?V) + ...+ e (D"V)
=a"e®V +na"-12DV +in(n —1)an2%D2V +... +¢*DnV
=¢¥(a" +na"1D + in(n -1)2D%+ ... + D)V
=¢"(D +a)"V.

Similarly D*-1{e**V} =e**(D +a)"-'¥, and so on.

Therefore
F(D){e=V}=(poD" +p D" + ... +ppyD +po){e*V}

=e{py(D+a)*+p,(D+a)* 1 +... + P,y (D +a) + p,}V
=e**F(D +a)V.

33. F(D? cos ax=F( —a? cosax. Since

D2 cos ar = —a? cos azx,
D* cos ax =( - a?)? cos az,

and so on,

F(D?) cos ax =(p,D** + p,D*"~3 + ... + p,_,D? + p,) cos ax
={po(-a")* + P (-1 +... + P, y(-0a?) +p,} cos az
=F(-a? cos az.

Similarly F(D* sin az = F( - a?) sin az.

34. Complementary Function when the auxiliary equation has equal
roots. When the auxiliary equation has equal roots a and a, it
may be written m3 —2ma +a?=0.

The original differential equation will then be

2
%-% %+a!y=o,
t.e. (D*-2aD +a?)y=0,
(D =aPy=0. eeevvrreverrererrrrreenn(9)

We have already found that y =4e** is one solution. To find
a more general one put y =e**V, where V is a function of z.

By Art. 32,

(D -a)*{c>*V} =e*¢(D - a +a)?V =e*=D?V.

Thus equation (9) becomes

D2V =0,
te. V=A+Bz,
#o that y=e*(4 + Bz)
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Similarly the equation (D - a)ry=0

reduces to DrV =0,
giving V=(4,+4,c+ Ax%+ ... + A ,zP-Y),
and y=e(d,+ Az + A2+ ... + A ,201),
When there are several repeated roots, as in
(D=a)?(D=BY(D-y)yy=0, ..ceevverrrnnnnn..(10)

we note that as the operators are commutative we may rewrite the
equation in the form

(D =B¥(D -yYy{(D -a)?y} =0,
which is therefore satisfied by any solution of the simpler equation

(D=a)?y=0. weererevereeerrrereeenn(11)

Similarly equation (10) is satisfied by any solution of
(D=BYY=0, ceerererererrrrrernenn(12)
or of (D=9)y=0. ccoocervvrrinniineeininennn.(13)

The general solution of (10) is the sum of the general solutions
of (11), (12), and (13), containing together (p-+g+7) arbitrary
constants.

Ex. (i). Solve (DA-8D%+16)y=0,
te. (D%-4)%y=0,
The auxiliary equation is (m2~4)2=0,
m=2 (twice) or -2 (twice).
Thus by the rule the solution is
y=(4 + Bz) ¢?* + (E + Fx) e~2®,

Ex. (ii). Solve (D2+1)%y=0.
The auxiliary equation is (m2+1)2=0,
m=4 (twice) or —¢ (twice).
Thus y=(4+ Bz) e*+(E + Fz) e,
or better y=(P+Qx) cos z+ (R + Sz) sin 2.

Examples for solution. .
(1) (D*+2D8+ D2) y=0. (2) (DB +3D4+3D2+1)y=0.
(3) (D*-2DP+2D%-2D+1)y=0. (4) (4D°-3D*- D2 y=0.
(5) Show that
F (D?)(P cosh ax + @ sinh az) = F (a?)(P cosh az + @ sinh az).
(6) Show that (D —a)"(e*® sin px) = p*e?® sin pa.

35. Symbolical methods of finding the Particular Integral when
f(x) =e**, The following methods are a development of the idea
of treating the operator D as if it were an ordinary algebraic quan-
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tity. We shall proceed tentatively, at first performing any opera.
tions that seem plausible, and then, when a result has been obtained
in this manner, verifying it by direct differentiation. We shall use

the notation —F‘%D—) f(x) to denote a particular integral of the equation
F(D)y ~f(a).
(i) If f(z) =e=, the result of Art. 31,
F(D)es*= e‘”‘F (@)

suggests that, aslong as F (a)=0, 7 ( )e" may be a value of = T I))

This suggestion is easily verified, for

1\ _e=F(a) ,
F (D) {F(a) e } VIOR by Art. 31,
=et%,

(ii) If F(a)=0, (D —a) must be a factor of F (D).
Suppose that F(D)=(D —a)?¢ (D), where ¢ (a)=0.
Then the result of Art. 32,
F(D){e*V}=e*F (D +a)V,
suggests that the following may be true, if V is 1,

L PP S 1 {e”i,.l_}zi"‘_ 14

F(D)" (D-a ) ¢(D)" “(D-a) Up(a)] ~¢(a) D*’
_ e
C¢(a) pV

adopting the very natural suggestion that; - is the operator inverse
to D, that is the operator that integrates Wlth respect to z, while
-Dl—p integrates p times. Again the result obtained in this tentative

manner is easily verified, for

D) { S 21} (D= arp (D) o
s 0-ar {521 ]
=¢ (D) [(/)( o) mp}, by Art. 32,

= ¢ (D) [I/T(d) . l]
me®, by Art. 31.
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In working numerical examples it will not be necessary to repeat
the verification of our tentative methods.

Ex. (i). (D + 8)%y =b0e?=.

The particular integral is
‘__..1_* 2 508"‘_ = 9p2®
(D+3)2 . 50e “=m2—28 .

Adding the complementary function, we get
Y =2¢2*+ (A4 + Bx) e32,

Ex. (ii). (D- 2)’-y 50e%2,
z
If we substitute 2 for D in I 2)2 50¢%%, we get infinity.
But using the other method,
1

(D——:'Q')'z . 50e?® = b0e?* Dlz 1 =502, %(Ez=251282'.

Adding the complementary function, we get
y =2612¢%% + (4 + Bir) €22,

Examples for solution.

Solve

(1) (D2+6D+25) y=104¢=. (2) (D?+2pD+p?+q?) y=eo2.
(3) (D?-9)y=>54e=, (4) (DP-D)y=e®+e "

(6) (D?- p?) y=a sinh pa. (6) (D*+4D?+4D) y=8e22.

36. Particular Integral when f (x) =cos ax. From Art. 33,
¢ (D?) cos ax = ¢ ( — a?) cos ax.
This suggests that we may obtain the particular integral by
writing — a? for D? wherever it occurs.

Bx. (i). (D3+3D +2) y=cos 2z.

1 2 ——-——-1 08 2% —-——L cos 2z
Dt+aD+2 T {3p+2" ¢ 3D-2" .

To get D? in the denominator, try the effect of writing

1 3D+2
3D-2 9D*-¢
suggested by the usual method of dealing with surds.
This gives
—ai—; €08 20=— (3D cos 2x+ 2 cos 2z)

= — (- 6s8in 2z +2 cos 2z)
= 5 (3 sin 2z — cor 2x).
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Ex, (ii). (D3+6D?+11D +6) y=2 sin 3z.
1 . 1 .
D5 reDi+1iD76 2 ¥ =2 gpTpis1iDse 0N
1 .
-mmn 3z
D+24
= DT-576 sin 3z

= — 5 }(3 cos 3z +24 sin 37)
= — y}5(cos 3z +8 sin 3z).
We may now show, by direct differentiation, that the results
obtained are correct.
If this method is applied to
[¢ (D% + Dy, (D?)]y=P cos ax + @ sin az,
where P,  and a are constants, we obtain
¢ (—a? . (P cos ar +Q sin az) + ay) (—a?) . (P sin az—Q ccs ax)
{p (—a} +a{Yr (-a)}2 ‘
It is quite easy to show that this is really a particular integral,

provided that the denominator does not vanish. This exceptional case
is treated later (Art. 38).

. Examples for solution.

Solve

(1) (D +1) y=10 sin 2. (2) (D*-5D+6) y=100 sin 4z.

(3) (D?+8D+25)y=48 cos x— 16 sin z.

(4) (D2+42D+401) y =sin 20z +40 cos 20z.

(5) Prove that the particular integral of

gt:+2k3 +p%s=acos gt
may be written in the form b cos (gt - ¢),
where  b=af{(p®-¢?2%+ 4k2q2}§ and tan e =2kqg/(p®-q¢?).

Hence prove that if ¢ is a variable and %k, p and a constants, b is
greatest when q=+/(p?—2k?% =p approx. if k is very small, and then
e=m/2 approx and b=af2kp approx.

[This differential equation refers to a vibrating system damped
by a force proportional to the velocity and acted upon by an external
periodic force. The particular integral gives the forced vibrations
and the complementary function the free vibrations, which are soon
damped out (see Ex. 15 following Art. 28). The forced vibrations
have the greatest amplitude if the period 2/q of the external force
is very mnearly equal to that of the free vibrations (which is
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27/+/(p? - k*) =27[p approx.), and then ¢ the difference in phase
between the external force and the response is approx. =/2. This
is the important phenomenon of Resonance, which has important
applications to Acoustics, Engineering and Wireless Telegraphy.]

37. Particular integral when f(x) =x™, where m is a positive integer.

In this case the tentative method is to expand in a series of

ascending powers of D. F(D)
. 1
Ex. (l). 'ﬁé‘;z 2= %(1 +-}D2)_1Z‘°'
=1(1-3D2+ D0 ...) ot
=12},
Hence, adding the complementary function, the solution suggested
for (D2 +4) y=22
is y=13(z2-3)+4 cos 2z + B sin 2.
Ex. (ii).
rap 3@ =1 ((op-5=p)e% by partial fract
DIdD T3 =D 5-D y partial fractions,

D D* D3 D¢
-}{(1+D+D2+D3+D4+.. )— (1+ += Y 27+'ﬁ +>}x’
={}+4D+ 33D+ 40D3 + 123 DV +... } 23
=32 + 422 + 302+ 49,
Adding the complementary function, the solution suggested for
(D*-4D+3)y=2*
Is y= ;,x-" + 4§02+ 200+ §9 + de® + Be2,

1 1
Ex, (ll]). EETDZ 4)96Z3 =96 . ~‘D—2{-D2—+—41}2}

=96 . ==. - <2:2 - %), from Ex. {i),

1/a4 z?
-96.4(53"%)
=224 — 622,
Hence the solution of D?(D? +4) y=96x2 should be
y=2a*—-6x2+ 4 cos 22+ Bsin 22+ E + Fz.
Alternative method.
1 1

D? (D +4

=%§, L3(1-1D%+ DA —..) 2

-(24D-1-6+3D1-...) 2}
=24 - 6% + 3,

~—
.
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This gives an extra term 3, which is, however, included in the
complementary function.

* The method adopted in Exs. (i) and (ii), where F(D) does not
contain D as a factor, may be justified as follows. Suppose the expan-
sions have been obtained by ordinary long division. This is always
possible, although the use of partial fractions may be more convenient
in practice. If the division is continued until the quotient contains D™,
the remainder will have D™+ as a factor. Call it ¢(D). D™+, Then

1 ¢ (D). D™+t
I, 2 P
7(D) cotcyD+eyD?+...+c, D™+ D) N § § |
This is an algebraical identity, leading to
1 =F(D){cy+c;D+cyD2+... +¢c, D™} + ¢ (D) . D41, ... 2)

Now equation (2), which is true when D is an algebraical quantity,
is of the simple form depending only on the elementary laws of algebra,
which have been shown to apply to the operator D, and it does nou
involve the difficulties which arise when division by functions of D is
concerned. Therefore equation (2) is also true when each side of the
equation is regarded as an operator. Operating on x™ we get, since
Dmtigm =,

g™ = F(D){(co+¢;D+cyD?+... +e, D™) a™}, ............(3)
which proves that the expansion obtained in (1), disregarding the
remainder, supplies a particular integral of F(D)y=zx™.

It is interesting to note that this method holds good even if the
expansion would be divergent for algebraical values of D.

To verify the first method in cases like Ex. (iii), we have to prove
that

%‘r Aleo+cyD+eyD*+... +¢,, D™) 2™},
be (D 46D ¢, Dk ..+ 0, Do) o,
is a particular integral of {F(D). D} y=2a™,
t.e. that {F(D) . D"} {(coD‘T +01D-—r+l +62D—1+2

Fooe+Cpy D) M =™, e (4)
Now {F(D). D}u=F(D).{Dru},
also Dr{(e,D"+%) o} = (0, D¥) a™;

hence the expression on the left-hand side of (4) becomes
F(D){(cy+¢;D+cyD?+... +c,, D™) a™} =a™, by (3),
which is what was to be proved.
In the alternative method we get r extra terms in the particular

integral, say (Cmp D™ 4 4 ey DM ™,

These give terms involving the (r—1)!* and lower powers of .
But these all occur in the complementary function. Hence the first
method is preferable.

* The rest of this article should be omitted on a first reading.
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Note that if D-lu denotes the simplest form of the integral of u,
without any arbitrary constant,

DY(D.1)=D"1.0=0,
while D(D1.1)=D.z=1,
8o that D(D1.1)zD1.(D. 1,
Similarly D™(D-™.z")==D-™(D™.a"), if m is greater than n.
So when negative powers of D are concerned, the laws of algebra

are nol always obeyed This explains why the two different methods
adopted in Ex. (iii) give different results.

Examples for solution.
Solve (1) (D+1)y=23 (2) (D?+2D)y = 24z.
(3) (D?-6D +9)y=>54x+18. (4) (D*- 6D +9D?)y=>54x+ 18,
(5) (D* - D - 2)y=44 - T6x — 4822
(6) (D*— D?-2D)y =44 — T6x — 4822,

38. Particular integrals in other simple cases. We shall now
give some typical examples of the evaluation of particular integrals
in simple cases which have not been dealt with in the preceding
articles. The work is tentative, as before. For the sake of brevity,
the verfication is omitted, as it is very similar to the verifications
already given.

Ex. (i). (D?+ 4)y =sin 2z.

1 . " .
We cannot evaluate prg4 St 2z by writing —22 for D2, as in

Art. 36, for this gives zero in the denominator.
But ¢sin 2z is the imaginary part of 2%, and

ﬁil_;-;i 2T =g2ir . — ], as in Art. 35,
4
DD+ &)
1 D\
-t 2
%D (”4&) 1

1 D D
- i .
"’4¢D'{(1 ot i )1} ........ 1)

-em—} 1=etic

44D 40
= — 1iz(cos 2z + ¢ sin 2z)

1 . 1 1 1 1 )
the 28 = *)=p-% &
[oherw(-ae Drrat 1)-2@'(D+2s'e ) D—2i<41'e

_ezu%. %_eza ﬁ];

2ix
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hence, picking out the imaginary part,
1 .
* ey oin 2= —}x cos 2z.
Adding the complementary function, we get

y=A4 cos 2z + B sin 2z — }x cos 2z,
Ex. (ii). (D2 -5D +6) y=e22a3,

1 22 _(1 _,,1> 2243
" -5D+6) ° *-\ea-p57p) ¢
1 1
—el2( . T
¢ < D 1-D)’”3
_e24v<__1D__1~D~D2—D3-~D‘—...>1:‘
=e2%( — Jat — 2% - 32% - 62 - 6).
Adding the complementary function, we get

y=A4e3® —e?®(Jat + 2° + 322 + 62 ~ B),
including the term - 6e2* in Be3,

Ex. (iii). (D?*-6D +13) y=8¢3sin 2u.
1 . 1 .
— z — 8¢l
(D*-6D+13)" 8% sin 22 =8¢’ {(D+3)2-6(D+3)+13}° sin 2

=8€3‘DTI+E sin 2z

=863%( — } cos 2z) (see Ex. (i)
= —2xe3® cos 2z.
Adding the complementary function, we get
y=e%%(4 cos 2z + B sin 2z — 2z cos 2x).
These methods are sufficient to evaluate nearly all the particular
integrals that the student is likely to meet. All other cases may

be dealt with on the lines indicated in (33) and (34) of the miscel-
laneous examples at the end of this chapter.

Examples for solution.

Solve

(1) (D*+1)y=4cos =. (2) (D-1)y=(x+3)e?=

(3) (DP-3D-2)y=5402®¢=. (4) (D2+2D+2)y=2¢*sin .
(5) (D*+1)? y=24z cos z. (6) (D5 — D)y=12¢%+8 sin z — 2z.

() (D?-6D+25) y =263 cos 4a + 8¢3®(1 — 2x) sin 4z.

39. The Homogeneous Linear Equation. This is the name given
to the form  (pyz*D" + pan=1D"-1 4 ... +p,) y=f ().

It reduces to the type considered before if we put z =¢'.
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Ex. (#* D3 + 322 D2 + D) y = 2423,
Put T=¢,
dx
§=e‘-z’
d dtd 14d
so that =E;=J‘za—t=5‘jt,
1d 1d 1._.d 1 d d2
2 — —— = - e —_— e == e—
D D(xdt) z”dt+xDl zz( dt2>
1 d d2 2 d d2 1 d d2
=05+ )= (a5 (-5 @)
2<_d d‘) 1( d2+d3)
A\ ataE a ™ dp
1/7.4d dz a3
52535+ )
Py

thus the given differential equation reduces to —d-3=24e"
giving y=A + Bt + Ct? + 3¢
=4+ Blog z+C (log z)? + 3x2.

Another method is indicated in (28)-(30) of the miscellaneous
examples at the end of this chapter.

The equation

Pola +bz)"Dry + pi(a + b)) 1Dy +... + poy =f (z)

can be reduced to the homogeneous linear form by putting

z=a + bz, giving _dy _dydz bdy
Tdx dzdr d2”
Examples for solution.
o) x2—~2zgy+2y 423, (@) = ———+9xg~+25‘/=50
d? y dy
2
3) xadz3+3 dw+8y 65 cos (log z).

(4) a:‘d +2x3dxs+x’gz g-:+y=log z.

) (1+22)2 %Y

= y 6(1+2x)d + 16y =8(1 +2a)3

(6) (1+2)255 ay+(1 +x)dz+y-4 cos log (1 +%),
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40. Simultaneous linear equations with constant coefficients. The
method will be illustrated by an example. We have two de-
pendent variables, ¥y and 2z, and one independent variable .

D stands for ‘%, as before.
Consider BD+4)y-2D+1)z=€"" .cerrrrrerrrrnennn. 1)
(D+8)y~ 32z =bBe® .oevriiiiiriinnnn, (2)

Eliminate 2z, as in simultaneous linear equations of elementary
algebra. To do this we multiply equation (1) by 3 and operate on
equation (2) by (2D +1).

Subtracting the results, we get

(3(6D +4)- (2D +1)(D+8)}y= 3e-=—(2D +1)5e2,
te. (-2D2-2D+4)y= 8e=,
or D2+D-2)y= —4e=,
Solving this in the usual way, we get
y=2e+ Ae* + Be %*,

The easiest way to get z in this particular example is to use
equation (2), which does not involve any differential coefficients of 2.
Substituting for y in (2), we get

14¢=*+94e® +6Be 2% — 32 =bHe~?,
so that z=3e % +34¢” +2Be2>.
However, when the equations do not permit of such a simple
method of finding z, we may eliminate y. (But see p. 48.)
In our case this gives

{-(D+8)(2D+1)+3(5D +4)} z2=(D +8)e~= - (5D +4)5¢~*,
te. (-2D2-2D +4)z=12¢79,
giving 2=3¢"+ Ee* + Fe~?2,
To find the relation between the four constants 4, B, E, and F,
substitute in either of the original equations, say (2). This gives
(D +8)(2¢= + Ae* + Be ?%) — 3(3¢~* + Ee® + Fe**) =be~2,
te. (94 -3E)e*+(6B-3F)e?*=0,

whence E=34 and F=2B,
80 2=3¢*%+Ee® + Fe** =3¢ % +34e* +2Be2%, as before.
Examples for solution.
(1) Dy-z =0,  (2) (D-17)y+(2D-8)z=0,
(D-1)y—(D+1)z=0. (13D -53)y - 22=0.

(3) (2D?*-D+9)y—(D?+D+8)z=0,
(2D*+ D +7)y~ (D2~ D +5)2=0.
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4) (D+1)y=z+e?, (6) (D?+56)y—4z= - 36 cos Tz,
(D+1)z=y +e¢>. y+ D?%2=99 cos Tx.
(6) 2D+1)y+(D+32)2=91e~2+147 sin 2z + 135 cos 2z,
y— (D - 8)z=29¢% +47 sin 2z + 23 cos 2z.

MISCELLANEOUS EXAMPLES ON CHAPTER IIIL
Solve
(1) (D- 1)y =16¢. (2) (4D%*+12D +9) y=144z¢ =,
(3) (D*+6D3+11D2+6D) y=20e-2% sin 2.
(4) (D®— D?2+4D—4) y=68¢*sin 2z.
(5) (D*-6D2-8D-3) y=256 (z+1) 2.
(6) (D*-8D%-9) y=>50 sinh 2z. (7) (D*-2D2+1)y=40cosh z
(8) (D-2)%y=8(x%+€2®+sin 2x). (9) (D - 2)%y=_8x22% sin 2z.
(1€) (D2+1)y=38 cos? z+2 sin z.
(11) (D*+10D?+9) y =96 sin 2z cos =.
(12) (D—-a)*y=a® where a is a positive integer

I NCRUTER Y
(15) jiv; 2},’ (16) (w+1)2—+(x+l)———(2x +3) (22 +4).
an %L§—4%x+4z=y,

§t2+42+4y 252 + 16¢’,
(18) %§=2y; %=2z; -‘Z=2z. (19)_z-’§f+y=o; t'fgm 0.
(20) t2%+t%+2y=0,

zzfl—::zu 13{—2x=0 ]

(21) Show that the solution of (D?"+1-1) y=0 consists of 4e* and
n pairs of terms of the form

¢°% (B, cos sz + C, sin sx),

27r . 27r
where ¢=co8 It and s8=sin g1’
r taking the values 1, 2, 3... n successively.
(22) If (D-a)u=0,
(D-a)v=mu,
and (D-a)y=v,

ind successively u, v, and y, and hence solve (D-a)®*y=0.
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(23) Show that the solution of

(D-a) wb) (D-a—2h)y=0
‘ 2hx
ean be written 4e3® + Bed® "( th”' 1)

Hence deduce the solution of ( D-a)*y=0.

[This method is due to D’Alembert. The advanced student will
notice that it is not quite satisfactory without further discussion. Tt
is obvious that the second differential equation is the limit of the first,
but it is not obvious that the solution of the second is the limit of the
solution of the first.]

0%

0z
—a)3e™® | hadl i
§24) If (D-a)%m™= is denoted by z, prove that z, o and 5 all
vanish when m=a.
Hence prove that 32, xe%®, and z2e3* are all solutions of (D - a)®y=0.

[Note that the operatofs (D-a)® and 9 are commutative. ]

am
cos ax—cos (a+h)z
(25) Show that @ihi-at
is a solution of (D%+a?) y=cos (a+h)z.

Hence deduce the Particular Integral of (D?+a?)y=cos ax.

[This is open to the same objection as Example 23.]

(26) Prove that if V is a function of z and F(D) has lts usual
meaning,

(i) D*[eV] =2D"V +aDr-1V

(i1) F(D) [zV] =zF(D)V + F'(D)V

1 F'(D)

@) 3005571 =2 557 7~ Gy

(iv) ¢(D)[a"V]=argp(D)V +na"1¢'(D)V +... +"C,a»"¢" (D) V
+... to (n+1) terms,

vV,

where ¢ (D) stands for - (D)’

(27) Obtain the Particular Integrals of (i) (D —1)y=xe??,
(if) (D+1)y=1x2cos z,
by using the results (iii) and (iv) of the last example.

(28) Prove, by induction or otherwise, that if 6 stands for m&%,
3 Y 2 0(0-1)(0-2)... (9-n+1)y.

(29) Prove that
(i) F(B)a™  =amF(m);
(i) —1%552:’" =F“T%, provided F(m)s£0;
1

NS U
(lll) T—(—é—)[x V]-—ﬂ’; -mv,

where V is a function of z.
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(30) By using the results of the last questlon, prove that the solu-
tion of d%y

where @ and b are the roots of m(m —"f") —4m+6=0,
te. 2 and 3.
(31) Given that (D-1)y=e22,
prove that (D-1)(D-2)y=0.
By writing down the general solution of the second differential
equation (involving two unknown constants) and substituting in the

first, obtain the value of one of these constants, hence obtaining the
solution of the first equation.

2
(32) Solve (az;yz+pzy=sin ax by the method of the last question.

(33) It u, denotes ea" ue—9% dl"

u, denotes e”j ue ¥ dz,

ete.,
prove the solution of F(D)y=u, where F(D) is the product of n
factors
(D-a)(D-D)...

may be written y=u,.
This is truc even if the factors of F (D) are not all different.
Hence solve (D a) (D - b)y=e%* log .

(34) By putting == 7 into partial fractions, prove tne solution of

(D)
F(D)y=u may be expressed in the form

z ﬁa)e‘“’"‘ e dz,
provided the factors of F(D) are all different.

[If the factors of F(D) are not all different, we get repeated inte-
grations.]

Theoretically the methods of this example and the last enable us to
solve any linear equation with constant cocfficients. Unfortunately,
unless u is one of the simple functions (products of exponentials, sines
and cosines, and polynomials) discussed in the text, we are generally
left with an indefinite integration which cannot be performed.

If u=f(x), we can rewrite eMI we-9% dz
x

in the form j f(Byest=-0ds,
k

where the lower limit k is an arbitrary constant.
P.D.B. »
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{(35) (i) Verify that
y=—j. S(¥)sin p(x—1¢) dt

is a Particular Integral of

ds
d"iﬂn y=f(2).

[Remember that if ¢ and b are functions of z,

b
(%LF(Q:, t)dt=£’(x,b)d _F(z,a )d J'd—F@—t—)dz.]

(ii) Obtain this Particular Integral by using the result of the last
example.

(iii) Hence solve (D2+1)y=cosec .

(iv) Show that this method will also give the solution of
(D2+1)y=f(2)

(in a form free from signs of integration), if f(x) is any one of the func-
tions tan z, cot z, sec x).

(36) Show that the Particular Integral of Ccil 5 +Dp% =k cos pt repre-

sents an oscillation with an indefinitely increasing amplitude.

[This is the phenomenon of RESONANCE, which we have mentioned
before (see Ex. b following Art. 36). Of course the physical equations
of this type are only approximate, so it must not be assumed that the
oscillation really becomes infinite. Still it may become too large
for safety. It is for this reason that soldiers break step on crossing a
bridge, in case their steps might be in tune with the natural oscillation
of the structure. ]

(37) Show that the Particular Integral of
d%y
dta

represents an oscillation with a variable amplitude ;}-}tc‘”.

+2h +(h”+p’)y=ke *cos p

Find the maximum value of this amplitude, and show that it is very
large if A is very small. What is the value of the amplitude after an
infinite time ?

[This represents the forced vibration of a system which is in reson-
ance with the forcing agency, when both are damped by friction. The
result shows that if this friction is small the forced vibrations soon
become large, though not infinite as in the last example. This is an
advantage in some cases. If the receiving instruments of wireless
telegraphy were not in resonance with the Hertzian waves, the effects
would be too faint to be detected. ]
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dty
dat

[This equation gives the lateral displacement y of any portion of a
thin vertical shaft in rapid rotation, z being the vertical height of the
portion considered. ]

(39) 1f, in the last example,

(38) Solve - niy=0.

dy

E;=-y=0 when z=0 and z=l,
prove that  y=E(cos nx - cosh nx) + F(sin nx — sinh nx)
and cos nl cosh nl=1.

[This means that the shaft is supported at two points, one a height
l above the other, and is compelled to be vertical at these points. The
last equation gives n when [ is known.]

(40) Prove that the Complementary Function of

Ay 39% 4%y
st dt”+4

becomes negligible when ¢ increases sufficiently, while that of

+2y=40

oscillates with indefinitely increasing amplitude.

[An equation of this type holds approximately for the angular
velocity of the governor of a steam turbine. The first equation corre-
sponds to a stable motion of revolution, the second to unstable motion
or ““ hunting.” See the Appendix to Perry’s Steam Engine.]

(41) Prove that the general solution of the simultaneous equations :

d2%x

m bk Ve~ He i’
d’y dz
m = He g

where m, V, H, and e are constants, is
z=A4 + Bcos (wt - a),

y=r—lt+0+Bsin(wt-—a),

H .
where w=-1;e and 4, B, 0, a are arbitrary constants.

Given that %—%’:w y=0 when ¢=0, show that these reduce to

|4
z=u—’ﬁ(l - co8 wt),

= LH (wt - 8in wt), the equations of a cycloid.
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[These equations give the path of a corpuscle of mass m and charge
e repelled from a negatively-charged sheet of zinc illuminated with
ultra-violet light, under a magnetic field H parallel to the surface. V is
the electric intensity due to the charged surface. By finding ex-
perimentally the greatest value of x, Sir J. J. Thomson determined

2V . . . .
7L from which the important ratio —’Z is calculated when V and H are
known. See Phil. Mag. Vol. 48, p. 547, 1899.]

(42) Given the simultaneous equations,

I, dl, I
LIT;+M71F’+Zi=Epcosﬂ,
a1, I, 1

vgp M g =0

where Ly, Ly, M, ¢y, ¢,, E and p ave constants, prove that I, is of the
form a; cos pt+ 4, cos (mt—a) + B, cos (nt - B),
and I, of the form

ay cos pt+ A, cos (mt - a) + B, cos (nt— ),

where a,= % pey(1 —pPe,Ly),

. ay= TP"’!%:
k denoting the expression
(LyLy — M3 cyeapt — (Lyey + Locy) p? +1
m and n are certain definite constants? A4,, B,, a and B are arbitrary
constants ; and 4, is expressible in terms of 4, and B, in terms

of B,.

Prove further that m and n are real if L,, Ly, M, ¢,, and c, are real
and positive, and L,L, > M2,

[These equations give the primary and secondary currents I, and
I, in a transformer when the circuits contain condensers of capacities
¢, and ¢,. L, and L, are the coeflicients of self-induction and M that
of mutual induction. The resistances (which are usually very small)
have been neglected. E sin pt is the impressed E.M.F. of the primary.]

Alternative methods for simultaneous equations. In Ex. 3, p. 42,
having found y, we can find z without integration by operating on
the given equations by D and (D +2) respectively and subtracting.
Given f(D), F(D), any two polynomials in D with no common factor

containing D, we can find other polynomials ¢ (D), y (D), such that
¢(D) f(D) - (D) F(D)=1. (Cf. Smith’s digebra, Art. 100.)

In simple cases we can obtain ¢ (D), y-(D) by inspection.
Alternatively, we may replace the given equations of Ex. 3 by

their sum and difference. Proceeding similarly in Ex. 4, weé may
take ¥ +2z and y — z as new variables,



CHAPTER 1V

SIMPLE PARTIAL DIFFERENTIAL EQUATIONS

41. In this chapter we shall consider some of the ways in which
partial differential equations arise, the construction of simple par-
ticular solutions, and the formation of more complex solutions from
infinite series of the particular solutions. We shall also explain the
application of Fourier’s Series, by which we can make these complex
solutions satisfy given conditions.

The equations considered include those that occur in probleras
on the conduction of heat, the vibrations of strings, electrostatics
and gravitation, telephones, electro-magnetic waves, and the
diffusion of solvents.

The methods of this chapter are chiefly due to Euler, D’Alembert,
and Lagrange.*

42. Elimination of arbitrary functions. In Chapter I. we showed
how to form ordinary differential equations by the elimination of
arbitrary constants. Partial differential equations can often be
formed by the elimination of arbitrary functions.

Ex. (i). Eliminate the arbitrary functions fand F from

y=f@—at)+ F(z+at). .veerirriinernannnnnnn. (1)
We get ZZ =f"(x - at) + F'(x +at)
and g;%=f"(x—at)+F”(x+at). RPN ) |
Similarly %%= —af'(z—at) +aF'(z +at)
and E;——jgaazf”(:z:—-at)+a*‘17"’(a:+at). cerrrencencenennes(3)

* Joseph Louis Lagrange of Turin (1736-1813), the greatest mathematician of
the eighteenth century, contributed largely to every branch of Mathematics. He
created the Calculus of Variations and much of the subject of Partial Differential
gauutiions, and he greatly developed Theoretical Mechanics and Infinitesimal

oulus.

49
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From (2) and (3), — e (4)
a partial differential equation of the second order.*

Ex. (ii). Eliminate the arbitrary function f from

=1 (3)

0z Y y)
We get oz _aszf (.;:
0z 1,y
and et ®
a:@+ ?E—-O
80 3 yay— .

Examples for solution.
Eliminate the arbitrary functions from the following equations :

(1) z=f(z +ay). (2) z=f(z+1y) + F(x—1y), where ¢2= —1.
(3) z=f(x cos a+ysin a—at)+ F(x cos a+ysin a+at).
(4) z=f (22 -y2). (6) z=e%%t% f(az — by).

(6) z=x"f(z>

43. Elimination of arbitrary constants. We have seen in
Chapter I. how to eliminate arbitrary constants by ordinary
differential equations. This can also be effected by partials.

Ex. (). Eliminate 4 and p from 2= Ae? sin pz.

0% 0 4 mt o
We get ap2= P Ae?* sin pz,
0% .
and 5= p2AeP! gin pz ;
2, 52
therefore g_:’ + g—t: =0.

Ex. (ii). Eliminate a, b, and ¢ from
z=a(z+7Yy)+b(x—y) +abt +e.

0z

We get ﬁ=a+b’
0z
a—y=a—b,
02
a—t=(lb.

* This equation holds for the transverse vibrations of a stretched string.
The most general solution of it is equation (1), which represents two waves travelling
with speed a, one to the right and the other to the left. See pp. 61, 218, 256.



PARTIAL DIFFERENTIAL EQUATIONS b1

But (a+b)2—(a—Db)2=4ab.
3 2
Therefore (g—;) - (?y) =4 g;

Examples for solution.

Eliminate the arbitrary constants from the following equations :

(1) z=AeP*cos px. (2) z=Ae P cos qu sin ry, where p2=g2+73,
(3) z=ax+(1-a)y+b. (4) z=azx+by+a?+b2

(6) z=(z—a)2+(y—b)2 (6) az+b=a%x+y.

44. Special difficulties of partial differential equations. As we have
already stated in Chapter 1., every ordinary differential equation
of the n'" order may be regarded as derived from a solution con-
taining n arbitrary comstants.* It might be supposed that every
partial differential equation of the n'" order was similarly derivable
from a solution containing n arbitrary functions. However, this is
not true. In general it is impossible to express the eliminant of
n arbitrary functions as a partial differential equation of order n.
An equation of a higher order is required, and the result is not
unique.t

In this chapter we shall content ourselves with finding particular
solutions. By means of these we can solve such problems as most
commonly arise from physical considerations.} We may console
ourselves for our inability to find the most general solutions by the
reflection that in those cases when they have been found it is often
extremely difficult to apply them to any particular problem.§

* It will be shown later (Chap. VI.) that in certain exceptional cases an
ordinary differential equation admits of Singular Solutions in addition to the
solution with arbitrary constants. These Singular Solutions are not derivable
from the ordinary solution by giving the constants particular values, but are of
quite a different form.

+See Edwards’ Differential Calculus, Arts. 512 and 513, or Williamson’s
Differentiul Calculus, Art. 317.

1 The physicist will take it as obvious that every such problem has a solution,
and moreover that this solution is unique. From the point of view of pure
mathematics, it is a matter of great dlﬂ’cult{r to prove the first of these facts:
this proof has only been given quite recently by the aid of the Theory of Integral
E uations (see Heywood and Fréchet’s L’ Equation de Fredholm et ses applications

a Physique Mathématique). The second fact is easily proved by the aid of
Green s Theorem (see Carslaw’s Conduction of Heat, 2nd ed. p. 14).

§ For example, Whittaker has proved that the most general solution of

Laplace’s equation B’V 'a”V e
o @,yn L™ =0
v
in V=£ S(xcost+ysint+iz, ¢) de,

but if we wish to find a solution uatlsfymf certain given conditions on a given
surface, we generally use a solution in the form of an infinite series.
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45, Simple particﬁlar solutions.
2
Ex. (i). Consider the equation gx—i—a—lig—; (which gives the con-

duction of heat in one dimension). This equation is linear. Now, in
the treatment of ordinary linear equations we found exponentials very
useful. This suggests z=¢™*+" ag a trial solution. Substituting in
the differential equation, we get

1
mIemr+nt o ‘_l_, nemz+n¢’

which is true if n=m2al,
Thus e™*+™**% ig a golution.
Changing the sign of m, ¢-™¥+m%% ig also a solution.

Ex. (ii). Find a solution of the same equation that vanishes when
t=+0o0.

In the previous solutions ¢ occurs in ¢”**, This increases with ¢,
since m?%a? is positive if m and a are real. To make it decrease, put
m=1p, 8o that m2a2= — p2a2.

This gives ¢P*-P*** a5 a golution.

Similarly e~ *-7%% jg a golution.

Hence, as the differential equation is linear, e~"*(4¢?% 4 Be #*) ig
a sulution, which we replace, as usual, by

e P E cos pz+ F sin pz).

. v 1 0% 82
Ex. (iii). Find a solution of —— 3t
Y=+, and also when z=0.
Putting z=em*+, we get (m2+ n’) e""’+"’/ =0, so m2+n2=0.
The condition when y= +o0 demands that n should be real and
negative, say n= —p.

=0 which shall vanish when

Then m=+1p.

Hence ePY(Ae'* + Be='P%) ig a solution,
t.e. e P(E cos pz+ Fsin px) is a solution.

But 2=0 if =0, so E=0.

The solution required is therefore Fe*¥sin p.

Examples for solution.

(]) 32 a:; , given that y=0 when = + 00 and also when ¢= + o,
) 0% _ 1 0% given that 2 is never infinite (for any real values of
oz a? oy?’

zor y), and that z—-O when =0 or y=0.

(3) a Z—=O given that z is never infinite, and that g_z =0 when



PARTIAL DIFFERENTIAL EQUATIONS 53

0x? oy 022

y=—o0, and also when z=0.
0V o2V

®) 525 =a550

oV _ov av

oz oy o0z

2 2
(6) %w—z+%~£=%?, given that V=0 when ¢= + o, when =0 or

=0, given that V=0 when z=+o, when

given that V is never infinite, and that V=C and

=0 when z=y=2=0.

l, and when y=0 or L

46. More complicated initial and boundary conditions.* In Ex. (i)
of Art. 45, we found Fe—*¥ sin px as a solution of
0% 0%z
sz toyr Y
satisfying the conditions that 2=0 if y = + o or if z=0.
Suppose that we impose two extra conditions,t say z=0 if z =1
and z=1Iz —2? if y =0 for all values of  between 0 and I.
The first condition gives sin pl =0,
t.e. pl=nm, where n is any integer.
For simplicity we will at first take [ =, giving p =n, any integer.
The second condition gives F sin px =7z —2? for all values of z
between 0 and 7. This is impossible.
However, instead of the solution consisting of a single term, we
may take
Fievsin x + Foe sin 22 + Fye~% sin 3z + ... ,
since the equation is linear (if this is not clear, cf. Chap. IIT. Art. 25),
giving p the values 1, 2, 3, ... and adding the results.
By putting y =0 and equating to 7z - z* we get
F,sin z + F, sin 2z + F; sin 3z +...
=7x — 22 for all values of z between 0 and .

The student will possibly think this equation as impossible to
satisfy as the other, but it is a remarkable fact that we can choose
values of the F’s that make this true.

This is & particular case of a more general theorem, which we
now enunciate.

* As ¢ usually denotes time and x and y rectangular coordinates, a condition
such as z=0 when ¢=0 s called an nitial condition, while one such as z=0 if
z=0, or if x=(, or if y=w=, is called a boundary condition.

+ This is the problem of finding the steady distribution of temperature in a
semi-infinite rectangular strip of metal of breadth /, when the infinite sides are
kept at 0° and the base at (lx ~ 2%)°.
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47. Fourier’s Half-Range Series. Every function of z which
satisfies certain conditions can be expanded in a convergent series
of the form

f () =a, sin & + a, 8in 22 + a4 8in 3z + ... to inf.

for all values of & between 0 and = (but not necessarily for the
extreme values =0 and z=7).

This is called Fourier’s * half-range sine series.

The conditions alluded to are satisfied in practically every
physical problem.}

Similarly, under the same conditions f(z) may be expanded in
a half range cosine series

by + b, cos 2+b, cos 2z + by cos 3z + ... to inf.

These are called half-range series as against the series valid
between 0 and 27, which contains both sine and cosine terins.

The proofs of these theorems are very long and difficult. { How-
ever, if it be assumed that these expansions are possible, it is easy to
find the values of the coefficients.

Multiply the sine series by sin nx, and integrate term by term, §
giving

J.:f(x) sin nz dx =a,j§sin z 8in nx dx +a,ﬂsin 2z 8in nz dx + .0 .

The term with ¢, as a factor is

a, Jw sin? nx dx
0
a, (™ a, 1 . "
= L(l -cos 2nx) dx = 9 [x — g, SiB 2n:c:|0
=ia,m.

* Jean Baptiste Joseph Fourier of Auxerre (1768-1830) is best known as the
author of La Théorie analytique de la chaleur. His series arose in the solution of
problems on the conduction of heat.

1 It is sufficient for f(x) to be single-valued, finite, and continuous, and have
only a limited number of maxima and minima between =0 and x=». However,
these conditions are not necessary. The necessary and sufficient set of conditions
has not yet been discovered.

I For a full discussion of Fourier’s Series, see Carslaw's Fourier’s Series and
Integrals and Hobson’s Theory of Functions.

§ The assumption that this is legitimate is another point that requires
|ustification.
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The term involving any other coeflicient, say a,, is

m
a,‘\- sin rz sin nz dx
0

=‘;’J" {cos (n —=7)x —cos(n +71)z} dx
0

a, {sin (n—nr)z sin(n+r)z7"

n-r n+r
So all the terms on the right vanish except one.
Thus r f(x) sin nz dx =}a,,

0

a,= 2 r S () sin nz dx.
m™Jo

Similarly, it is easy to prove that if
f(x) =by+b, cos z+b,cos 2z +...

for values of z between 0 and , then

b,,—~j‘ f(z) de

and b, = j‘ f(z) cos nx dz
™Jo

for values of n other than 0.

48. Examples of Fourier’s Series.

55

(i) Expand 7z -2?% in a half-range sine series, valid between z=0

and z=1r.

It is better not to quote the formula established in the last article.
Let T —x%=a, sin £+a, sin 2r+a,4sin 3z +... .

Multiply by sin nz and integrate from O to =, giving

T

. . ™
(7@ — z2) sin nx da:=a,,j sin2 nz dr = a,, as before.

2
0
Now, integrating by parts,

- ™ 1
I (7x — 22) sin nx da:=[-——l-(7rx—x’) cos m:‘l +~AY(7r-
0 n Jo mJo

.=o+[—1§(7r—2z) sin nx] +~2—2I sin nz dz
o "°Jo

2x) cos nx dx

=0——Lcos nx} =i if n is odd or O if n is even.

Thus a, = 8 1f n is odd or 0 if # i8 even, giving finally

w:c—a:3=;r(sin Z + g 8in 3z + y§y 8in 5z +...

).
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(ii) Expand f(x)in a half-range series valid from =0 to =, where

f(x)=mz between =0 and z=g

and J(z)=m(7 —x) between x=z2r- and z=m.

In this case f(z) is given by different analytical expressions in
different parts of the range.®* The only novelty lies in the evaluation
of the integrals.

In this case

rf(z) sin nz dz==r S (z) sin nz da;+rf(z) sin nz dz
0 0 4

= Ifm:v sin nz dx +I m(m — z) sin nx dz.
0 3
We leave the rest of the work to the student. The result is

dm . . . .
—;r—(sm 2 — } s8in 3z + 4% sin bz — )y ein Tz +...).

The student should draw the graph of the given function, and
compare it with the graph of the first term and of the sum of the first
two terms of this expansion.t

* Examples for solution.

Expand the following functions in half-range sine series, valid
between x=0 and z=:

(1) 1. (2) . (3) z=. (4) cos z. (b) e=.
(6) f(z)=0 from z=0 to x=?{—, and from :c=37; to ,
3

f(z) =4z~ %) (37— 4x) from z=§ to T=

(7) Which of these expansions hold good (a) for z=0?
(b) for z=m1?

49. Application of Fourier’s scries to satisfy boundary conditions.
We can now complete the solution of the problem of Art. 46.
We found in Art. 46 that
Fievsin z + Fye? sin 2z + Fe~% sin 3z +...
satisfied all the conditions, if
F,sin z + F,sin 2z + F, 8in 3 +... = 72 — 23
for all values of z between 0 and .
* Fourier's theorem applies even if f(x) is given by a graph with no analytical
expression at all, if the conditions given in the footnote to Art. 47 are satisfied.
For a function given graphically, these integrals are determined by arith-
metical approximation or by an instrument known as a Harmonic Analyser.

t Scveral of the graphs will be found in Carslaw’s Fourier’s Series and Integrals,
2nd ed., Chap. V1I. More elaborate ones are given in the Phsl. Mag., Vol. 45 (1898).
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In Ex. (i) of Art. 48 we found that, between 0 and =,
g(sin T + b 8in 3z + )5 8in Sz +...) = 7wx — 22
Thus the solution required is
78; (e¥sinz+47e % gin 32+ 15e ¥ sin 5 +...).

50. In the case when the boundary condition involved ! instead
of 7, we found Fe—?* sin pz as a solution of the differential equation,
and the conditions showed that p, instead of being a positive integer
n, must be of the form n/l.

Thus Fie—v! gin wxfl + Fye~2mv" gin 27afl +...
satisfies all the conditions if
F, sin 7zfl + F, sin 27wzfl +... =lz — 23
for all values of z between 0 and 1.

3
Put 7zfl=2. Then lw—:c2=£,(7rz—zz). The F’s are thus ?,
s ™
times as much as before. The solution is therefore

812 . . .
—; (e sin 7x[l + 5y 6~/ sin 37zfl + 15 €>/ sin Brafl +...).
w

MISCELLANEOUS EXAMPLES ON CHAPTER IV.

2
(1) Verify that V =-\—/—te"ﬁt is a solution of

oV 10V

os* Kot
(2) Eliminate 4 and p from V =A4e?* sin (2p2Kt - px).
(3) Transform v =K °V _ 1A%
ot 0x?

ow _ o*W
to ot =K ox?
by putting V=e¢2W.

[The first equation gives the temperature of a conducting rod whose
surface is allowed to radiate heat into air at temperature zero. The

given transformation reduces the problem to one without radiation.]
(4) Transform
V_K2(,00) , W _p W
ot r2or\ or ot or?
by putting W =rV.
[The first equation gives the temperature of a sphere, when heat
flows radially.]
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(6) Eliminate the arbitrary functions from
V=; [f(r-at) + F(r +a))].

(6) (i) Show that if em=+int jg & solution of
ov 02V
where n and A are real, then m must be complex.

(i) Hence, putting m = —g—if, show that V,e~9®sin (nt-fr) is a
solution that reduces to V,sin nt for =0, provided K(92-f2)=# and
n=2Kfqg.

(ili) If V=0 when x= + o, show that if K and n are positive so
are g and f.

[In Angstrdm’s method of measuring K (the “diffusivity ”’), one
end of a very long bar is subjected to a periodic change of temperature
Vo sin nt. This causes heat waves to travel along the bar. By measur-
ing their velocity and rate of decay n/f and ¢ are found. K is then
calculated from K =n/2fy.]

. . ov. _d*V . .

(7) Find a solution of o= Ka—~2— reducing to Vysin nt for =0
and to zero for = + . ¢ z

[This is the problem of the last question when no radiation takes
place. The bar may be replaced by a semi-infinite solid bounded by
a plane face, if the flow is always perpendicular to that face. Kelvin
found K for the earth by this method.]

(8) Prove that the simultaneous equations

14 ol
~5% = RI+L EL
24 v
- 'a—:‘c =KV + C‘a—t,
are satisfied by V= Vye @+ z4me,
I= Ioe-(ﬂ+(f)z+mt,
if 9*-f?=RK —n?LC,
2fg =n(RC + LK),
and 1,2(R +1iLn) = Vo2(K +1Cn).

[These are Heaviside’s equations for a telephone cable with resist-
ance R, capacity O, inductance L, and leakance K, all measured per
unit length. I is the current and V the electromotive force.]

(9) Show that in the last question g is independent of » if RC=KL.
[The attenuation of the wave depends upon g, which in general
depends upon n. Thus, if a sound is composed of harmonic waves of
different frequencies, these waves are transmitted with different degrees
of attenuation. The sound received at the other end is therefore
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distorted. Heaviside’s device of increasing L and K to make RC=KL
prevents this distortion.]

(10) In question (8), if L=K =0, show that both ¥V and I are
propagated with velocity 4/(2n/RC).

[The velocity is given by n/f.]

(11) Show that the simultaneous equations

P _dy 3B _pda 3R %,

c ot 0y oz co oy 0z’
koQ _0a_0dy. _u3B_oP OR,
cot 0z 0ox’ cot 0z oz’
kOR_08 0a, _pdy 8 0P,
c ot oz dy’ co or oy’
are satisfied by P=0; a=0;
Q=0; B =0, sin p(z—vt);
R=Rysinp(zx—vt); y=0;
provided that v=c/Vku and By= —+/(k/u) R,

[These are Maxwell’s electromagnetic equations for a dielectric of
specific inductive capacity k£ and permeability u. P, @, R are the
components of the electric intensity and a, 8, 7 those of the magnetic
intensity. c¢ is the ratio of the electromagnetic to the electrostatic
units (which is equal to the velocity of light in free ether). The solution

shows that plane electromagnetic waves travel with the velocity ¢/v/%u,
and that the electric and magnetic intensities are perpendicular to the
direction of propagation and to each other.]

(12) Find a solution of aV 6 14 such that

a 2
Voo if t=+400;
V=0 if 2=0 or =, for all values of ¢;
V=mzx—x? if t=0, for values of z between 0 and .

[N.B. Before attempting this question read again Arts. 46 and 49.
V is the temperature of a non-radiating rod of length 7 whose ends are
kept at 0°, the temperature of the rod being initially (7z—22)° at a
distance z from an end.]

(13) What does the solution of the last question become if the
length of the rod is ! instead of r ? .

[N.B. Proceed as in Art. 50.]

(14) Solve question (12) if the condition V=0 for =0 or 7 is

replaced by %—V-—O for =0 or .

[Instead of the ends being at a constant temperature, they are here
treated so that no heat can pass through them.]

(16) Solve question (12) if the expression 7z — 2 is replaced by 100.
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2
(16) Find a solution of aV 6 4 such that

a 2
Voo if t=+00;
V=100 if z=0 or = for all values of ¢;
V=0 if t=0 for all values of  between 0 and .
[Here the initially ice-cold rod has its ends in boiling water.)

(17) Solve question (15) if the length is I instead of w. If l increases
indefinitely, show that the infinite series becomes the integral

2001 e~ K gin az da.
o 0 a
[N.B. This is called a Fourier’s Integral. To obtain this result
put 2r+1)wfl=a and 2w[l=da.

Kelvin used an integral in his celebrated estimate of the age of the
earth from the observed rate of increase of temperature underground.
(See example (107) of the miscellaneous set at the end of the hook.)
Strutt’s recent discovery that heat is continually generated within the
earth by radio-active processes shows that Kelvin’s estimate was too
small.]

(18) Find a solution of -az g f such that
V is finite when t= +00;
a 7
oz =0 when z=0, } for all values of ¢;
V=0 when z=I,
V =V, when t=0, for all values of = between 0 and .

[If a small test-tube containing a solution of salt is completely
submerged in a very large vessel full of water, the salt diffuses up out
of the test-tube into the water of the large vessel. If V is the initial
concentration of the salt and I the length of test-tube it fills, ¥V gives
the concentration at any time at a height = above the bottom of the
test-tube. The condition a—Z=0 when =0 mecans that no diffusion
takes place at the closed end. V=0 when z=1 means that at the top
of the test-tube we have nearly pure water.]

19) Find a solution of a—g—uza—l such that
o oz2

y involves z trigonometrically ;
y=0 when =0 or =, for all values of ¢;

@.’_/.:0 when t=0, for all valuecs of z

ot

y=mz between x=0 and g,
when ¢=0.

y=m(T—z) between z= g and 7,
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[N.B. See the second worked example of Art. 48.

y is the transverse displacement of a string stretched between two
points a distance 7 apart. The string is plucked aside a distance
mar(2 at its middle point and then released.]

2
*(20) Writing the solution of d—y=D3y, where D is a constant, in
dx?

the form

y=eP4 +e¢*PB,

2 2
deduce the solution of g—;gugfg in the form
y=f(t+z)+ F(t—z)

by substituting (% for D, f(t) and F(t) for A and B respectively, and

using Taylor’s theorem in its symbolical form
ft+2)=ef(1).

[The results obtained by these symbolical methods should be
regarded merely as probably correct. Unless they can be verified by
other means, a very careful examination of the argument is necessary
to see if it can be taken backwards from the result to the differential
equation.

Heaviside has used symbolical methods to solve some otherwise
insoluble problems. See his Electromagnetic Theory. ]

*(21) From the solution of ‘z‘l—/= D2y, where D is a constant, deduce

2 dz
that of ?_3{:8__1/ in the form
or o012 52 2 1
—fo+asd+ 22
y oz " 2! gid
[This is not a solution unless the series is convergent.)]
General solution of Gy _1 %
orat SO 92t~ @t o

As a trial solution put y=f(x + mt), where m is constant.
2

This gives  f"(zx+mt) = % [ (z+mt),
which is satisfied if m=-+a.

Thus y=f(z—at) and y=F(zx+at) are two solutions, and as the
differential equation is linear, a third solution is

y=f(z—at)+ F(x+at),.

containing a number of arbitrary functions equal to the order (two)

of the differential equation, 8o no more general solution can be expected.
(Cf. pp. 218 and 256.)

[Arts. 178-181 form a supplement to this chapter. They deal chiefly
with the equation of vibrating strings and with the three-dimensional
wave equation. At the end of Art. 181 is a list of some important
works on the differential equations of Mathematical Physics.]

* To be omitted on a first reading.
P.D.B.



CHAPTER V

EQUATIONS OF THE FIRST ORDER BUT NOT OF THE
FIRST DEGREE

51. In this chapter we shall deal with some special types of
equations of the first order and of degree higher than the first for
which the solution can sometimes be obtained without the use of
infinite series. For brevity dy/d.: will be denoted by p.

These special types are :

(@) Those solvable for p.
(b) Those solvable for y.
{¢) Those solvable for z.

52. Equations solvable for p. If we can solve for p, the equation
of the n'® degree is reduced to n equations of the first degree, to
which we apply the methods of Chap. II.

Ex. (i). The equation p2+pz+py+zy=0 gives

p=-z or p=-y;

from which 2y=—-2%+¢; or z=-logy+ecy;
or, expressed as one equation,
(2y+axt—cy)(@+log y—e) =0. evvrrvvrerirunnnnnen 1)

At this point we meet with a difficulty ; the complete primitive
apparently contains two arbitrary constants, whereas we expect only
one, as the equation is of the first order.

But consider the solution

(Ly+ax2-c)(x+logy—c)=0. .icvevirreiniennennn(2)

If we are considering only one value of each of the constants ¢, c,,
and c¢,, these equations each represent a pair of curves, and of course
not the same pair (unless ¢=¢,=¢,). But if we consider the infinite
set of pairs of curves obtained by giving the constants all possible
values from — o0 to + oo, we shall get the same infinite set when taken
altogether, though possibly in a different order. Thus (2) can be taken
s the complete primitive.

62
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Ex. (ii). p2+p-2=0.
Here p::l or p= -9,
giving y=2+c¢;, or y=-2r+c,

As before, we take the complete primitive as
(y-z-c)(y+22-c)=0,

not (y—z—cy)(y+2x—-c,y)=0.

Each of these equations represents all lines parallel either to
y=2 or to y= —2z.

Examples for solution.

(1) p*+p-6=0. (2) p?+2xp=23z2. (3) p2=2ab.

(4) z+yp*=p (1 +xy). (6) p*-p(a?+zy +y?) +zy(z+y) =0.

(6) p2—2pcosh z+1=0.

53. Equations solvable for y. If the equation is solvable for y,
we differentiate the solved form with respect to .

Ex. (l). pE_py +z=0.
Solving for y, y=p+ Z
Differentiating, P dp 1 _z dp

Tdz + P - ;;—2 dz’
N\dx =

te. (p-1)2+ 21,
p/dp  p?

This is a linear equation of the first order, considering p as the
independent variable. Proceeding as in Art. 19, the student will obtain

2=p(c+cosh™p)(p? - 1)—".

Hence, as y=p +£, y=p+(c+cosh“1p)(p2—l)'§.

These two equations for z and y in terms of p give the parame_ztric
equations of the solution of the differential equation. For any given
value of ¢, to each value of p correspond one definite value of x and
one of y, defining & point. As p varies, the point moves, tracing out
a curve. In this example we can eliminate p and get the equation con-
necting z and y, but for tracing the curve the parametric forms are as
good, if not better.

Ex. (ll). 3])5 -py+ 1=0.
Solving for y, y=3p4 +pL.
Differentiating p= 12;,;3@_7 — 3 ‘!B,
’ dw dz
te. dz=(12p2-p=3)dp.
Integrating, c=4p3+3p2 +c,
and from above, y=3pt+pL }

The student should trace the graph of this for some particular value
of ¢, say ¢=0.
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54. Equations solvable for x. If the equation is solvable for z,

we differentiate the solved form with respect to y, and rewrite g;—;

in the form l
P

Ex. p?—py+x=0. This was solved in the last article by solving
for y.

Solving for z, z=py — ps,
Differentiating with respect to y,
1 dp dp
—=p+y--—2p5-,
p P Yay Py
1) Wy
f.e. (p—p dp+y-—2p,

which is a linear equation of the first order, considering p as the inde-
pendent and y as the dependent variable. This may be solved as in
Art. 19. The student will obtain the result found in the last article.

Exzamples for solution.

(1) z=4p+4p°. (2) p?-2zp+1=0.

(3) y=p*x+p. 4) y==z+p®

(5) pP+p=e. (6) 2y +p?+2p=2x(p+1).
(7) pP*-p(y+3)+2=0. (8) y=psin p+cos p.

(9) y=" tan p+log cos p. (10) erv=p2-1.

~tan (z- 2-J).
(11) p=tan (x T+p8

(12) Prove that all curves of the family given by the solution of
Ex. 1 cut the axis of y at right angles. Find the value of ¢ for that

curve of the family that goes through the point (0, 1).
Trace this curve on squared paper.

(13) Trace the curve given by the solution of Ex. 9 with ¢=0.
Draw the tangents at the points given by p=0, p=-1, p=-2 and p="3,
and verify, by measurement, that the gradients of these tangents are
respectively O, ‘1, ‘2 and ‘3.



CHAPTER VI

SINGULAR SOLUTIONS *

55. We know from coordinate geometry that the straight line
y =mz +% touches the parabola y?=4ax, whatever the value of m.

Consider the point of contact P of any particular tangent. At
P the tangent and parabola have the same direction, so they have

a common value of (%Z’ as well as of z and y.

Fre. 7.

But for the tangent m =%= p say, so the tangent satisfies the
differential equation y =pz +2,

Hence the equation holds also for the parabola at P, where z,
y, and p are the same as for the tangent. As P may be any point

on the parabola, the equation of the parabola y?=4az must be a
solution of the differential equation, as the student will easily verify.

* The arguments of this chapter will be based upon geometrical intuition. The
results therefore cannot be considered to be proved, but merely suggested as
probably true in certain cases. The analytical theory presents grave difficulties
{see M. J. M. Hill, Proc. Lond. Math. Soc., 1918).
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In general, if we have any singly infinite system of curves which
all touch a fixed curve, which we will call their envelope,* and if this
family represents the complete primitive of a certain differential
equation of the first order, then the envelope represents a solution
of the differential equation. Tor at every point of the envelope
z, y, and p have the same value for the envelope and the curve of
the family that touches it there.

Such a solution is called a Singular Solution. It does not
contain any arbitrary constant, and is not deducible from the
Complete Primitive by giving a particular value to the arbitrary
constant in it, save in exceptional cases (Art. 160).

Example for solution.

Prove that the straight line y=z is the envelope of the family of
parabolas y=z+}(z-c)2% Prove that the point of contact is (¢, ¢),
and that p=1 for the parabola and envelope at this point. Obtain
the differential equation of the family of parabolas in the form
y=2+(p—-1)% and verify that the equation of the envelope satisfies this.

Trace the envelope and a few parabolas of the family, taking ¢ as
0, 1, 2, etc.

58. We shall now consider how to obtain singular solutions. It
has been shown that the envelope of the curves represented by the
complete primitive gives a singular solution, so we shall commence
by examining the method of finding envelopes.

The general method 1 is to eliminate the parameter ¢ between
f(z, y, ¢) =0, the equation of the family of curves, and

of
0 =0.
Egq. if f(x,y,¢)=0 is y—cx—% =0, iiiiiiiiiiin (1)
af . . 1
55——0 18 - $+E2-0, ..................... (2)
giving c=x1/+/2.

*In Lamb’s Infinitessmal Calculus, 2nd ed., Art. 155, the envelope of a
family is defined as the locus of ultimate interseotion of conseocutive curves of
the family. As thus defined it may include node- or cusp-loci in addition to or
instead of what we have called envelopes. (We shall give a geometrical reason for
this in Art. 56 ; see Lamb for an analytical proof.)

tSee Lamb’s Infinitesimal Caleulus, 2nd ed., Art. 156. If f(z, y, ¢,) is of
the form Lc®+ Mc+ N, the result comes to M2=4LN. Thus, for
y—cx -—é =0,
te. ctzx-cy+1=0,
the result is yr=4z.

[Arts. 165-156, 2nd ed., become Arts. 138-139 in the 3rd ed.]
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Substituting in (1), y=+24/z,
or y2=4x.

This method is equivalent to finding the locus of intersection of

f (x! y’ C) =0)

and [flz, y, c+h)=0,
two curves of the family with parameters that differ by a small
quantity A, and proceeding to the limit when % approaches zero.
The result is called the c-discriminant of f(z, y, ¢) =0.

57. Now consider the diagrams 8, 9, 10, 11.
Fig. 8 shows the case where the curves of the family have
no special singularity. The locus of the ultimate intersections

¥ie. 8

PQRSTUYV is a curve which has two points in common with each
of the curves of the family (e.g. ¢ and R lie on the locus and also
on the curve marked 2). In the limit the locus PQRSTUYV there-
fore touches each curve of the family, and is what we have defined
as the envelope.

In Fig. 9 each curve of the family has a node. Two con-
secutive curves intersect in three points (e.g. curves 2 and 3 in the
points P, @, and R).

The locus of such points consists of three distinct paris EE’,
d4’, and BB'.

When we proceed to the limit, taking the consecutive curves
ever closer and closer, 44’ and BB’ will move up to coincidence
with the node-locus NN’, while EE’ will become an envelope. So
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in this case we expect the c-discriminant to contain the square of
the equation of the node-locus, as well as the equation of the envelope.

E R

g
A P A
N OO \«/%W N
///Q////° T F "

Fie. 9.

As Tig. 10 shows, the direction of the node-locus NN’ at any
point P on it is in general not the same as that of either branch of
the curve with the node at P. The node-locus has z and y in common
with the curve at I, but not p, so the node-locus is not a solution of
the differential equation of the curves of the famaly.

<
Fia. 10.

If the node shrinks into a cusp, the loci EE’ and NN’ of Fig. 10
move up to coincidence, forming the cusp-locus CC’ of Fig. 11.
Now NN’ was shown to be the coincidence of the two loci 44" and
BB’ of Fig. 9, so CC’ is really the coincidence of three loci, and
its equation must be expected to occur cubed in the c-discriminant.

Tig. 11 shows that the cusp-locus, like the node-locus, is not
{in general) a solution of the differential equation.

ALIET

F1a. 11.

To sum up, we may expect the c-discriminant to contain :
(i) the envelope,
(ii) the node-locus squared,
(ii) the cusp-locus cubed.
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The envelope is a singular solution, but the node- and cusp-
loci are not (in general *) solutions at all.

58. The following examples will illustrate the preceding results :

Ex. (i). y=p2

The complete primitive is easily found to be 4y =(z—c)?,

t.e. ¢c2—-2cx+x2-4y=0.

As this is a quadratic in ¢, we can write down the discriminant at
once as (22)% =4 (22 - 4y),
t.e. y=0, representing the envelope of the family of equal parabolas
given by the complete primitive, and occurring to the first degree only,
as an envelope should.

4

Fia. 18,

" p?
Ex. (ii). 3y=2p:c—2—;.
Proceeding as in the last chapter, we get

~2p 422+ (22 -42) 22
3p-—2p+2x2+ 2 42 iz’

fe. pad—2pi=(20°—4dpa) ‘gg,

te. 22-2p=0 or p==2a:gg. .............................. (A)
de _dp

— =4y

z ?

* We say in general, because it is conceivable that in some special example a
node- or ousp-locus may coincide with an envelope or with a curve of the family.
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log z=2log p-loge,
cx=p?,

whence 3y = 2ctat — 2¢,
f.e. (3y +2¢c)?=4ca?, a family of semi-cubical parabolas with their cusps
on the axis of y.

The c-discriminant is ~ (3y —2%)2=9y3,

te. 3(6y—2°) =0.
The cusp-locus appears cubed, and the other factor represents the

envelope.
It is easily verified that 6y=2% is a solution of the differential

equation, while =0 (giving p= ) is not.
If we take the first alternative of the equations (a),

te. x2-2p=0,
we get by substitution for p in the differential equation
3y =1,

t.e. the envelope.
This illustrates another method of finding singular solut’ons

Yy

Fia, 18

Examples for solution.
Find the complete primitives and singular solutions (if any) of the
following differential equations. Trace the graphs for Examples 1-4:

(1) 4p2-9z=0. (2) 4p*(z-2)=1.
(3) zp?-2yp+4x=0. (4) p2+y2-1=0.
(6) p?+2zp-y=0. (6) xp?-2yp+1=0.

(7) 4xp? +4yp—1=0.
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69. The p-discriminant. We shall now consider how to obtain
the singular solutions of a differential equation directly from the
equation itself, without having to find the complete primitive.

Consider the equation 22p%—yp +1=0.

If we give z and y any definite numerical values, we get a quad-
ratic for p. For example, if

z=4/2, y=3, 2p?-3p+1=0,

p=% or 1.

Thus there are two curves of the family satisfying this equation
through every point. These two curves will have the same tangens
at all points where the equation has equal roots in p, v.e. where
the discriminant y? — 422 =0.

Similar conclusions hold for the quadratic Lp?*+Mp+N =0,
where L, M, N are any functions of  and y. There are two curves
through every point in the plane, but these curves have the same
direction at all points on the locus M2 -4LN =0.

More generaily, the differential equation

f(@, y, p) = Lop™ + Lyp™ 1 + Lyp*2 +... + L, =0,
where the L’s are functions of z and y, gives n values of p for a
given pair of values of z and y, corresponding to »n curves through
any point. Two of these n curves have the same tangent at all
points on the locus given by eliminating p from

’f(x> Y, p)=0,
of
p
for this is the condition given in books on theory of equations for
the existence of a repeated root.

We are thus led to the p-discriminant, and we must now in.

vestigate the properties of the loci represented by it.
60. The Envelope. The p-discriminant of the equation

Y= ac+l
Py
or pz-py+1=0
is y? =4uw.

We have already found that the complete primitive consists of
the tangents to the parabola, which is the singular solution. Two
of these tangents pass through every point P in the plane, and
these tangents coincide for points on the envelope.
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This is an example of the p-discriminant representing an envelope.
Fig. 15 shows a more general case of this.

FIia. 14,

Consider the curve SQP as moving up to coincidence with the
curve PRT, always remaining in contact with the envelope QRU.
The point P will move up towards R, and the tangents to the two
curves through P will finally coincide with each other and with the
tangent to the envelope at R. Thus R is a point for which the p’s
of the two curves of the system through the point coincide, and
consequently the p-discriminant vanishes.

U

Fi6. 15.

Thus the p-discriminant may be an envelope of the curves of
the system, and if 8o, as shown in Art. 55, is a singular solution.

61. The tac-locus. The envelope is thus the locus of points
where two consecutive curves of the family have the same value
of p. But it is quite possible for two non-consecutive curves to
touch.

Consider a family of circles, all of equal radius, whose centres
lie on a straight line.
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Fig. 16 shows that the line of centres is the locus of the point
of contact of pairs of circles. This is called a tac-locus. Fig. 17

E

VR A A A
NN/

FI6. 16. ‘a

shows circles which do not quite touch, but cut in pairs of- néi_gh

bouring points, lying on two neighbouring loci 44’, BB'. "When'
we proceed to the limiting case of contact these two loci comclda
in the tac-locus 7'7". Thus the p-discriminant may be expected to
contain the equation of the tac-locus squared.

NN N NN
[ A A A A \fr
\ \/ \/ \/ \/ R
\_/WW

Fra. 17,

It is obvious that at the point P in Fig. 16 the direction of
the tac-locus is not the direction of the two circles. Thus the
relation between z, y, and p satisfied by the circles will not be
satisfied by the tac-locus, which has the same x and y but a different
p at P. In general, the tac-locus does not furnish a solution of the
differential equation.

w- >

62. The circles of the last article are represented by
(w+ec)2+y?=r2
if the line of centres is Oz.

This gives z+c=Vri-
or © l=-yp/Vri-y},
t.e. yp?+y% -2 =0.

The p-discriminant of this is y%(y? -r%) =0.

The line y =0 (occurring squared, as we expected) is the tac-
locus, y = =7 are the envelopes EE’ and FF’ of Fig. 16; y= v,
giving p =0, are singular solutions of the differential equation, but
y =0 does not satisfy it.

63. The cusp-locus. The contact that gives rise to the equal
roots in p may be between two branches of the same curve instead
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of between two different curves, ¢.e. the p-discriminant vanishes at
& cusp.

As shown in Fig. 18, the direction of the cusp-locus at any
point P on it is in general not the same as that of the tangent to
the cusp, so the cusp-locus is not a solution of the differential equation.

cl

Fra. 18.

Tt is natural to enquire if the equation of the cusp-locus will
appear cubed in the p-discriminant, as in the ¢-discriminant. To
decide this, consider the locus of points for which the two p’s are
nearly but not quite equal, when the curves have very flat nodes.
This will be the locus NN’ of Fig. 19. In the limit, when the nodes

r

N

Fio. 19,

contract into cusps, we get the cusp-locus, and as in this case there
is no question of two or more loci coinciding, we expect the p-
discriminant to contain the equation of the cusp-locus to the first
power only.

64. Summary of results. The p-discrimix;ant therefore may be

expected to contain
(i) the envelope,

(ii) the tac-locus squared,
(ili) the cusp-locus,
and the c-discriminant to contain
(i) the envelope,
(ii) the node-locus squared,
(iii) the cusp-locus cubed,
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Of these only the envelope is a solution of the differential
equation.

65. Examples.

Ex. (). P2 -3y)r=4(1-y).
Writing this in the form
dz 2-3y

—_— = :t.—__—._*_.
dy T 2/(1-y)

we easily find the complete primitive in the form
(z-c)*=y*(1-y).

The c-discriminant and p-discriminant are respectively

y3(1-y)=0 and (2-3y)*(1-y)=0.

1 -y =0, which occurs in both to the first degree, gives an envelope ;
y=0, which occurs squared in the c-discriminant and not at all in
the p-discriminant, gives a node-locus ; 2 -3y =0, which occurs squared
in the p-discriminant and not at all in the c-discriminant, gives a
tac-locus.

It is easily verified that of these three loci only the equation of the
envelope satisfies the differential equation.

y

1 Envelope
W Y \ Tac-locus

2

g

Node-locus
F

Fia. 20,

Ex. (ii). Consider the family of circles
z2+y?+2cx +2¢% -1 =0.
By eliminating ¢ (by the methods of Chap. I.), we obtain the differ-

ential equation
2y2p? + 2xyp + 2 + Yy — 1 =(
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The ¢- and p-discriminants are respectively
22 -2(z?+42-1)=0 and 2%%-2¢%a2®+y2-1)=0,
te. 22+2y2-2=0 and y* (22 + 2y - 2) =0.
#®+2y%-2=0 gives an envelope as it occurs to the first degree in
both discriminants, while y=0 gives a tac-locus, as it occurs squared
fn the p-discriminant and not at all in the c-discriminant. The circle
given by the original equation touches the envelope at the points

{ -2c, :t'\/(l - 202)}’

which are imaginary when c is numerically greater than 3/2.

Tac-focve -
®

F1a. 21,

Examples for solution.

In the following examples find the complete primitive if the differ-
ential equation is given or the differential equation if the complete
primitive is given. Find the singular solutions (if any). Trace the
graphs.

(1) 4z(z—-1)(x-2)p? - (322-62+2)2=0.  (2) 4xp?—(3z-1)2=0.

(3) yp?-2zp+y=0. (4) 3zp?-6yp+z+2y=0.

(6) p?+2pa® 422y =0. (6) p®—4xyp+8y?=0.

(7) z2+y2—2cx+c?cos2a=0. (8) ¢2+2cy—x2+1=0.

(9) c2+(x+y)c+1-ay=0. (10) z2+y2+2cxy +c2-1=0.

66. Clairaut’s Form.* We commenced this chapter by con-
sidering the equation P
Yy=pz +I—"

¢ Alexis COlaude Clairaut, of Paris (1713-1765), although best known in con.
neotion with differential equations, wrote chiefly on astronomy.
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This is a particular case of Clairaut’s Form

Y=L +f(P).  coveerriiiiiiiriiniiiinan. 1)

To solve, differentiate with respect to z.

o1 0P .

p=p+{z+f (D)}
therefore gﬁ =0, P=C cevrrerierriiiiiiiiiiiieena. (2)
or 0= +f(P).  eeeereriiiiiieiririnciriennans 3)
Using (1) and (2) we get the complete primitive, the family of
straight lines, Y=CO+F(C).  wrrrrrrrrerereariaeeraenerans (4)

If we eliminate p from (1) and (3) we shall simply get the p-dis-
criminant.

To find the c-discriminant we eliminate ¢ from (4) and the result
of differentiating (4) partially with respect to ¢, t.e.

0=2+f'(C). ceereerrrerrenrense ceeenees ceeens(D)
Equations (4) and (5) differ from (1) and (3) only in having ¢
instead of p. The eliminants are therefore the same. Thus both
disoriminants must represent the envelope.*
Of course it is obvious that a family of straight lines cannot
have node-, cusp-, or tac-loci.
Equation (4) gives the important result that the complete primi-
tive of a differential equation of Clavraut’s Form may be written down
smmediately by simply writing ¢ in place of p.

67. Example.

Find the curve such that OT varies as tan i/, where T is the point
in which the tangent at any point cuts the axis of , +} is its inclination
to this axis, and O is the origin.

Y
P,
¥
O I N “
Fia. 22.

* But in some cases the discriminants represent not only the envelope, but also
its inflexional tangents (Art. 161).
P.D.E. o
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From the figure, OTl'=ON-TN
=z~ycot
= — y— ’

P
since tan \=p;
therefore z- % =kp,

f.e. y=pr—kpd
This is of Clairaut’s Form, so the complete primitive is
y=cx — kc?,
and the singular solution is the discriminant of this,
fe. z2=4ky.

The curve required is the parabola represented by this singular
golution. The complete primitive represents the family of straight
lines tangent to this parabola

Examples for solution.

Find the complete primitive and singular solutions of the following
differential equations. Trace the graphs for Examples (1), (2), (4), (7),
(8) and (9).

(1) y=pa+p* (2) y=pz+p*
(3) y=px+cos p. (4) y=pz+4+/(a?p?+b?).
(6) p=log (pz-y). (6) sin pz cos y=cos pz sin y + p.

(7) Find the differential equation of the curve such that the tangent
makes with the co-ordinate axes a triangle of constant area k2 and
hence find the equation of the curve in integral form.

(8) Find the curve such that the tangent cuts off intercepts from
the axes whose sum is constant.

(9) Find the curve such that the part of the tangent intercepted
between the axes is of constant length.

MISCELLANEOUS EXAMPLES ON CHAPTER VI.

Illustrate the solutions by a graph whenever possible.
(1) Examine for singular solutions p? + 2zp =322,
(2) Reduce zyp?— (22 +y2-1)p+ay=0
to Clairaut’s form by the substitution X=22; Y =42

Hence show that the equation represents a family of conics touching
the four sides of a square.
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(3) Show that axyp?+(22-y2-h¥)p—azy=0
represents & family of confocal conics, with the foci at (=%, 0), touching
the four imaginary lines joining the foci to the circular points at infinity.

(4) Show by geometrical reasoning or otherwise that the sub-
stitution z=aX +bY, y=a'X+0'Y,
converts any diflerential equation of Clairaut’s form to another equation
of Clairaut’s form.

(5) Show that the complete primitive of 8p3z=y(12p3-9) is
(z +c)®=3y%, the p-discriminant #%%(922-4y% =0, and the c-dis-
criminant y*(92% - 4y2) =0. Interpret these discriminants.

(6) Reduce the differential equation
d
z®p? +yp(2z +y) +y2=0, where p=&z
to Clairaut’s form by the substitution £=y, n=ay.
Hence, or otherwise, solve the equation.
Prove that y+4x=0 is a singular solution ; and that y=0 is both

part of the envelope and part of an ordinary solution. [London.]
, 2
(7) Solve y2 (1/ —xg—g) =gt (g‘Z) , which can be transformed to

Clairaut’s form by suitable substitutions. [London. ]

(8) Integrate the differential equations :
(i) 3(p+a)*=(p-=)*.
(ii) y%(1 +4p® —2pzxy—1=0.
In (ii) find the singular solution and explain the significance of any
factors that occur. [London. ]
(9) Show that the curves of the family
y2 - 2cx?y + c?(xt — 28) =0
all have a cusp at the origin, touching the axis of .
By eliminating ¢ obtain the differential equation of the family in
the form
4p22(z 1) — dpxy (4= - 3) + (162 — 9)y2=0.
Show that both discriminants take the form #%y2=0, but that =0
is not a solution, while y =018 a particular integral.
[This example shows that our theory does not apply without modi-
fication to families of curves with a cusp at a fixed point.]

(10) Show that the complete primitive of
nir? (Z%)a =g
represents the family of equal lemniscates of Bernoulli
r?=acos 2(0 - a),
fnscribed in the circle r=a, which is the singular solution, with the
point r=0 as a node-locus.
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(11) Obtain and interpret the complete primitive and singular

solution of 2
ili) +72-2ra=0.

do
(12) Show that r=c0 - c? is the complete primitive and 4r =02 the
singular solution of dr  /dr\2
(&)
d6 \do

Verify that the singular solution touches the complete primitive at
the point (c?, 2¢), the common tangent there making an angle tan—Te
with the radius vector.

[For a supplementary discussion of singular solutions, including
difficulties concerning their definition and the definition of an envelope,
the occurrence of particular solutions in the discriminants, the idea of
boundaries, and the methods of calculating discriminants, see Arts.
160-161. These will throw additional light on Exs. 7 and 9 above.}



CHAPTER VIl

MISCELLANEOUS METIIODS FOR EQUATIONS OF THE
SECOND AND HIGIIER ORDERS

68. In this chapter we shall be concerned chiefly with the
reduction of equations of the second order to those of the first
order. We shall show that the order can always be so reduced if
the equation

(i) does not contain y explicitly ;
or (ii) does not contain z explicitly ;
or (iil) is homogeneous.

A special form of equation, of some importance in Dynamics,
may be reduced by using an integrating factor.

The remainder of the chapter will be devoted to the lincar
equation, excluding the simple case, already fully discussed in
Chapter III., where the coeflicients are merely constants. It will
be found that the linear equation of the second order can be reduced
to one of the first order if

(i) the operator can be factorised,

or (ii) any one integral belonging to the complementary function
is known.

If the complete complementary function is known, the equation
may be solved by the method of Variation of Parameters. This
elegant method (due to Lagrange) is applicable to linear equations
of any order.

Further information on linear equations, such as the condition
for exact equations, the normal form, the invariantive condition of
equivalence, and the Schwarzian derivative, will be found in the
form of problems among the miscellaneous examples at the end
of the chapter, with hints sufficient to enable the student to work
them out for himself.

81
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We shall use suffixes to denote differentiations with respect to
z, e.g. y, for Z:ya, but when the independent variable is any other
than z the differential coefficients will be written in full.

69. y absent. If y does not occur explicitly in an equation of

the second order, write p for y;, and gg for y,.

We obtain an equation containing only dp, p, and 2, and so of
dx
the first order.

Consider, for example, zy,+y, =4z.

This transforms into = gg +p=4w,

which can be integrated at once
xp =2x% +a,
. a
te. p=2x +o
By integrating, y=x%+alog z +b,
where a and b are arbitrary constants,

This method may be used to reduce an equation of the n'* order
not containing y explicitly to one of the (n - 1)™.

70. x absent. If x is the absent letter, we may still write p for

. dp . dp dydp dp

Yy, but for y, we now write pa—!} , since p dy ~dz dy " do =y, The
procedure reduces an equation of the second order without z to one
of the first order in the variables p and y.

For example, YY3 =Y,

transforms into yp 3;’; =p?,

from which the student will easily obtain
p=by and y=ac™

Examples for solution.

(1) yycos?z=1. (2) yya+y:* =91 (3) yy,+1=y,*
(4) Reduce to the previous example, and hence solve
h1Ys+ 91" =2y,"
(5) @ys+yy=12z. (6) Yn—2yn-1=¢"
(7) Integrate and interpret geometrically
(1 +.'/1”)’ =k

Ya
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(8) The radius of curvature of a certain curve is equal to the length
of the normal between the curve and the axis of . Prove that the
curve is a catenary or a circle, according as it is convex or concave to
the axis of .

(9) Find and solve the differential equation of the curve the length
of whose arc, measured from a fixed point 4 to a variable point 2, is
proportional to the tangent of the angle between the tangent at P and
the axis of .

*71. Homogeneous equations. If z and y are regarded as of
dimension 1,

y, is of dimension O,

Yy, is of dimension -1,

¥4 is of dimension -2,
and so on.

We define a homogeneous equation as one in which all the terms
are of the same dimensions. We have already in Chap. II. dealt
with homogeneous equations of the first order and degree, and in
Chap. III. with the homogeneous linear equation

Y, + AX" Yy + Bx 2y, o+ ... + Hry, + Ky =0
(where 4, B, ... H, K are merely constants), for which we used the
substitution z =¢' or ¢ =log =.

Let us make the same substitution in the homogeneous equation

s 17T RN § § |
_dt dy ldy
Now S F i T
Ay, _ldy 1ddy

BT Tod tsdzdt

-_Lldy ldidy
Tgdt xdrdd
ldy 1dy

STod Tarde”
Substituting in (1) and multiplying by z, we get

dy _dy\ (TN s, B
v(ad ~af) + (@) =3
. dzy  (dy\? dy

This is an equation, with ¢ absent, similar to those in the last
article with z absent.

¢ Arts. 71-73 may be omitted on a first reading.
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By putting g{ =g, the student will easily obtain

yg=2 (y* +),
giving t+c=}log (y2 +b).
Hence y?+b=¢!lt+d
=az?, replacing e by another arbitrary constant a.

72. The example of Art. 71 came out easily because it had no
superfluous 2’s left after associating z? with ¢, and = with y,. In
fact, it could have been written

 y(@y) +(29y)? =3y (zyy).

But (@ +y2)(y —2yy) + @222 =0 everrenniiennenenann(2)
cannot be so written. To reduce this to a form similar to that of
the last example, put y =vx, & substitution used for homogeneous
equations in Chap. II.

(2) becomes

(@? +22?) (vz — v, 22 — vz) + 2% (2, + 20,) =0,

n.e.  —(1+v%)v, +v2(xv, +20,) =0,
which may be written 02020, =(1 =020 covveeveiiiiinnieecneneennn(3)
We now proceed as before and put z =¢', giving
dv
:I;’Ul =(ﬁ ’
d dv
and xz'v =d[2 - Zl?-
dw d 0]
(3) becomes (dt:’ df) =(1 -2 lﬂ’
. d% dv
t.e. dt‘ =2 wee(4)
an equation with ¢ absent.
dv d dq
As before, put 7=0 g2=9g
dq
(4) becomes vy =
s.e gg L 5 (unless ¢=0, giving y = cx),
b .11
=17y
avdv a?
dt = —:" = <a + *:‘&) d'v,.
t=av+a?log (v-a)+b,
and finally log z =ay/z +a? log (y - az) —a? log  +b.
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73. By proceeding as in the last article, we can reduce any
homogeneous equation of the second order.
Any such equation can be brought to the form
f(y/x’ Y1 27s) =0.
For example, the equation of Art. 71 when divided by z becomes

Darvr=s(2)n

while that of Art. 72 divided by 2 becomes

QS ICANG)

The substitutions # =vz and z =¢' transform
Sflz, vy, 2ys) =0 to  f(v, zv, +0, €20, + 2x0,) =0,
dv d2v dm)
and then to f (v, at? arta =0,
an equation with ¢ absent, and therefore reducible to the first order

Examples for solution.

(1) 2y, -7y, +y=0. (2) 2%y, -y, +by=0.

(3) 222y, +y? =2y,

(4) Make homogencous by the substitution y =23 and hence solve

20®yy, + 4y* =a%y,* + 2zyy,.

74. An equation occurring in Dynamics. The form y,=f(y)
occurs frequently in Dynamics, especially in problems on motion
under a force directed to a fixed point and of magnitude depending
solely on the distance from that fixed point.

Multiply each side of the equation by 2y,. We get

2912 =2 (1)
Integrating, y,2=2 ‘. M) %Z dw =2j' [ ) dy.
This is really the equation of energy.

2
Applying the method to :lltf= - p*, (the equation of simple
harmonic motion), we get
dx d% ... 0%
2% e = g
Integrating with respect to ¢,

(dz 2 2.3 2002 — 2
dt) = — p%? + const. =p?(a? - 7%), say.
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a 1 1
dz p +/(a®-2%)’

1. .z
t==sgin~!- +const.,
P a

Hence

Z =a sin (pt +¢).

Examples for solution.

(1) y3=9—y, given that ;=0 when y=1.

(2) yg=e%, given that y=0 and y,=1 when z=0.

(3) ya=sec?y tan y, given that y=0 and y,=1 when =0,
d®z  ga? dw

(4) ZE= g given that £=h and Jt—=0 when t=0.

[A —z is the distance fallen from rest under gravity varying inversely
as the square of the distance z from the centre of the earth, neglecting
air resistance, etc.]

du P .
(5) 22T %= 1D the two cases
(i) P=pu®; (i) P=pu’;
. d 1
given that 0=¢Tg=0 when u=-, where u, %, and ¢ are constants.

[These give the path described by a particle attracted to a fixed
point with a force varying inversely as the square and cube respectively
of the distance r. wu is the reciprocal of r, 8 has its ordinary meaning
in polar co-ordinates, u is the acceleration at unit distance, and 4 is
twice the areal velocity.]

75. Factorisation of the operator. The linear equation
(+2)y, — 2z +5)y, +2y=(x+1)e®
may be written as
{(z+2)D?- (2 +5)D +2}y =(x +1)e?,

where D stands for 1, as in Chapter III.

dx
Now the operator in this particular example can be factorised,
giving {@+2)D-1}(D -2)y =(z +1)e®.
Put (D-2)y=v.
Then {(x+2)D -1}v =(z+1)e>
This is a linear equation of the first order. Solving as in Art. 20,
we get v=c(xr+2)+e2,

te. (D-2)y=c(x+2)+e?,
another linear equation, giving finally
y =a(2z +5) + be*® - e, replacing - }c by a.
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Of course it is only in special cases that the operator can be
factorised. It is important to notice that these factors must be
written in the right order, as they are not commutative. Thus, on
reversing the order in this example, we get

(D-2){(x+2)D -1}y ={(x +2)D? - (2x +4)D +2}y.

Examples for solution.

(1) (z+1)yy+(z-1)y, -2y =0. (2) zy3+(@-1)y, -4 =0.

3) zyy+(@-1)y, —y=2

(4) zyy+(@*+1)y, +20y=22, given that y=2 and y,=0 when
z=0.

(5) (x®—1)y, - (4x? -3z —b)y, + (4x? — 62 — b)Yy = €?, given that y=1
and y, =2 when =0.

76. One integral belonging to the complementary funection * known.
When one integral of the equation

Yo+ Py +Qy =0 .ccovvniniiiiiiinninin (1)
is known, say y =2, then the more general equation of the second
order Yo+ Py +Qu=R, ...cccevvvvvviniinn(2)

where P, @, R are functions of z, can be reduced to one of the first
order by the substitution y =vz.

Differentiating, Y, =02 + 02,
Yg="V2 + 20,2y + V25,
Hence (2) becomes
vz +9, (22, + P2) +v(zg + P2, + Q2) =&,

ie 2 %%‘+vl(2zl+l’z)=R, e riennrreeeneens(3)

gince by hypothesis 2zq+ Pz, + Q2 =0.

(3) is & linear equation of the first order in v;.

Similarly a linear equation of the n'™ order can be reduced to
one of the (n - 1) if one integral belonging to the complementary
function is known.

77. Example,
Consider again the eq ation

(+2)ys— (28 +5) Y1 +2Y =(T+1)€%. rervervrrerrnnnnes 4)
* The proof of Art. 29 that the general solution of a linear differential equation ia

the sum of a Particular Integral and the Complementary Function holds good when
the coefficients are functions of = as well as in the case when they are constants,
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If we notice that y=e2% makes the left-hand side of the equation

Zero, we can put y=ve?,
giving Y= (v, +2v)e??,
and Yg= (v, +4v; +4v)e?®,

Substitution in (4) gives
(x+2)v,e22+{4(x +2) — (22 +5)} v,e22
+{t(x+2)—2(2x+5) + 2ver®*=(x +1)e?,

f.e. (w+2)%+(2x +3)vy=(x+1)e 2.

Solving this in the usual way (by finding the integrating factor)

we obtain vy=e % +c(x+2)e 22,
Integrating, v=—¢*-}c(2x+5)e 2%+,
whence y=ve?"= — ¢ — }c(2z +5) + be?2,

Examples for solution.

(1) Show that y,+ Py, +Qy=0 is satisfied by y=e® if 1 + P+Q=0,
and by y=zif P+Qr=0.

(2) a%yy+ay, -y =84

(3) 22y, — (22 +2x)y, +(x+2) y=ae".

(4) xy, -2 (z+1)y, +(z+2) y=(x - 2) 2>

(5) z%y,+2y, -9y =0, given that y=2 is a solution.

(6) xyy(x cos x—2 sin ) + (22 +2)y, sin & — 2y (x sin z +cos z) =0,
given that y=22 is a solution.

78. Variation of Parameters. We shall now explain an elegant
but somewhat artificial method for finding the complete primitive
of a linear cquation whose complementary function is known.

Let us illustrate the method by applying it to the example
alrcady solved in two diflerent ways, namely,

(x+2)y, — (22 +5)y, + 2y =(x +1) €% .euvevrerinninnnnn(1)
of which the complementary function is y =a(2z +5) +be*.
Assume that Y=02x +5) 4 +€¥B, ...ccouvvvviiiiiiinnnnnn(2)

where 4 and B are functions of z. .
This assumption is similar to, but more symmetrical than, that
of Art. 77, viz. : y =ve®,
Differentiating (2),
Y1=022+5)4; +e**B, +24 +2e**B. .....c..cceveeeei(d)
Now so far the two functions (or parameters) A and B are only

connected by a single equation. We can make them satisfy
the additional equation

(204 5)d; +€2B,=0. veeveerennsreonvees.(d)
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(3) will then reduce to

Y1=24 +2e*B. ......coeovvnniviiniirennnnnn(D)
Differentiating (5),

=4¢>*B +24, +2¢**B,. RN ()]
Substitute these values of y, y,, and 7, from equatmm (2), (b),
and (6) respectively in (1). The co-factors of 4 and B come to
zero, leaving
2z +2) 4;+2(@ +2)e®B, =(x +1)€? ..covevrrrnnennn(T)
(4) and (7) are two simultaneous equations which we can solve
for 4, and B,, giving
A, B, (x+1)e® (x+1)e—‘”
e —(2r+b) 2e®(x+2)(1-20-b)  4(x+2)?

_ _(@+l)ee e 1 1 \[
Hence Ay =~ o5 “Z{mz (@+2)2)’

and, by integration, 4 =

er .
"Iz +2) +a, where a is a constant.
Similarly,
B = (2et5)(@+1)e” e:f{g _r 1 }
15 T i@+ 4 z+2 (@+2))
and B=g{~l— _2} +b
4 \z+2 :
Substituting in (2),

€ e[ 1 2
(235 +5){ _Z:GAIAQS +a} +’41;—;§ "2} +b€ »
=a (2 +5) +be?® — e=,

79. Applying these processes to the general linear equation of
the second order, ya+ Py, + Qy = JUUURTRURRRPRRRON ¢ )

of which the complementary function au +bv is supposed known,
a and b being arbitrary constants and » and » known functions of z,

we assume that Y=ud +0B, .ccvrirriirrierreennenen(2)
giving Y= A+vB, i (3)
provided that uAd, +vB;=0. .ciiiiiniinieiinnnena(4)

Differentiating (3),
Yo =Ud +V,B+u A, + 9By eevveeriiniinnnene.a(D)
Substltute for y,, ¥, and y in (1).
The terms involving 4 will be 4 (uy + Pu, +Qu), i.e. zero, as by
hypothesis, Uy + Pu, + Qu =0.
Similarly the terms involving B vanish, and (1) reduces to
hd, +9B, =R. .....cuucvviviriinninnnn...(6)
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4, B __ K
v —u VU — U
We then get 4 and B by integration, say
A4 =f (z) +a,
B=F (z) +b,
where f (x) and F (z) are known functions of , and a and b are
arbitrary constants.
Substituting in (2), we get finally
y =uf(z) +vF (z) + au +bv.

Solving (4) and (6),

* 80. This method can be extended to linear equations of any
order. For that of the third order,
Ys+Pyp+Qyy + Ry =8, cevrvinennnnniinnnninnn(1)
of which the complementary function y=au +bv+cw is supposed
known, the student will easily obtain the equations

yY=ud +vB+wC, .cccovviniiiiinniiiiinnin(2)

¢ = A +0,B+w, 0y ooiiviiiiiiniienia(3)

provided that 0=ud,+vB, +wC; «orvverininniniinninnnnn 4)

hence Yo=UpA +0,B+wC, v (D)

provided that 0=ud; +0,By+w,C1 ;5 wovreeennnnnnieiinnnn(6)
then Yy =UgA +v3B +w,C

Fud; + 0By + w015 eeviieeeneeeennnn(7)

by substitution in (1), S=wuyd, +0,B; +10,0;.  ceevriiriniiniiniininns (8)

A,, B,, and C, are then found from the three equations (4), (6)
and (8).

Examples for solution.
(1) y5+y=cosec 2. (2) yy+4y=4tan 2z.

2
® v2-y=13a
(4) @2y, +xy, —y=22?, given the complementary function az + bz
(5) yg—6yy+1ly, —6y=e=,

81. Comparison of the different methods for solving linear equations.
If it is required to solve a linear equation of the sccond order and
no special method is indicated, it is generally best to try to guess
a particular integral belonging to the complementary function and
proceed as in Art. 76. This method may be used to reduce a linear
equation of the n'® order to one of the (n —1)®.

* To be omitted on a first reading.
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The method of factorisation of the operator gives a neat solution
in a few cases, but these are usually examples specially constructed
for this purpose. In general the operator cannot be factorised.

The method of variation of parameters is inferior in practical
value to that of Art. 76, as it requires a complete knowledge of the
complementary function instead of only one part of it. Moreover,
if applied to equations of the third or higher order, it requires toe
much labour to solve the simultaneous equations for 4,, B,, C,, etc..
and to perform the integrations.

MISCELLANEQOUS EXAMPLES ON CHAPTER VII.

(1) yy2-y,*+y,=0. (2) zy,+zy,*~y,=0.

(3) yn2=4yn——l' (4) Yn+Yn_p=8cos 3z.

(5) (x?log x —x?)y, — zy, +y=0.

(6) (x2+2x—1)y,— (322 +8z—1)y, + (222 + 6x)y =0.

(7) Verify that cos nz and sin nx are integrating factors of

Yp+nly=f(z).
Hence obtain two first integrals of
Y+ N2y =sec nz,

and by elimination of y, deduce the complete primitive.

(8) Show that the linear equation

Ay + By, +Cy,+...+8Sy,=T,

where A, B, C,... T are functions of z, is exact, v.e. derivable imme-

diately by differentiation from an equation of the next lower order, if
the successive differential coeflicients of 4, B, C, ... satisfy the relation

A-B,+Cy—...+(-1)"8,=0.
[N.B.—By successive integration by parts,
[ Syt~ Sy~ Sutn-+ Satacat e (= 1080y + [ (- 118,y 20

Verify that this condition is satisfied by the following equation, and
hence solve it :
(272 +32)yy + (62 4+ 3)y, + 2y =(x+1)e®.
(9) Verify that the following non-linear equations are exact, and
solve them : (i) yyg+y,2=0.
(i) zyy,+zy,®+yy,=0.

(10) Show that the substitution y=ve_” P4 transforms
Yo+ Py, +Qy=R,
where P, @, and R are functions of z, into the Normal Form
vg+ Iv=S,
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where I=Q-3P, 117

and S= Re*j paz
Put into its Normal Form, and hence solve
Yo — 4y, + (422~ 1)y = — 3¢*" sin 2.
(11) Show that if the two equations
Ya+ Py, +Qy=0
and 25+ Pz +92=0

reduce to the same Normal Form, they may be transformed inte
each other by the relation

yeij'}’ dz - zeé Ip dx,
i.6. the condition of equivalence is that the Invariant I should be the
same.
(12) Show that the equations

22y, +2(2® - 2)y, + (1 = 222)y =0
and @22, +2(2® + )2, - (1 — 222)2=0
have the same invariant, and find the relation that transforms one into
the other. Verify by actually carrying out this transformation.

(13) If v and su are any two solutions of

Ry T R 1)
S ot
prove that Py 2 W ceerrernsrensareerncsnnsasenasesnnss(2)
2
and hence that 'fé—§(s-2> S TR : )|
8, 2\s;

From (2) show that if s is any solution of (3), sl—k and ss{* are
solutions of (1).

[The function of the differential coefficients of s on the left-hand
side of (3) is called the Schwarzian Derivative (after H. A. Schwarz of
Berlin) and written {s, z}. It is of importance in the theory of the
Hypergeometric Series.]

(14) Calculate the Invariant I of the equation

22y, — (22 + 2x)y, + (x +2)y =O0.
Taking s as the quotient of the two solutions ze® and z, verify that
{3, z} =21,

¥ are solutions of the Normal Form of the original

and that sfi and ss;”
equation.
(15) If v and v are two solutions of
Y2+ Py, +Qy =0,
prove that, v, — Uy + Puv, —vu,) =0,

-(Pdz
and hence that uvy — VU, =ae .

Verify this for the equation of the last example.
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(16) Show that yy, =const. is a first integral of the equation formed
by omitting the last term of

1
Ys "5.’/1"”9“0-

By putting yy, =C, where C is now a function of z (in fact, varying
the parameter C), show that if y is & solution of the full equation, then

01 == y’:
and hence C?=const. — 318,
giving finally y%=asin (z4/2 +b).

[This method applies to any equation of the form
Ya+y.2f(y) + F(y)=0.]

(17) Solve the following equations by changing the independent
variable :
d?y dy

(i) = T 3y —4aPy =843 sin x?;

(i) (142225 ﬁ+2x(1 +x2)d +4y=0.
(18) Transform the diffcrential equation

2
3 Z cos x+zlly sin  — 2y cos® x=2 cos®

into one having z as independent variable, where
2=8in z,
and solve the equation. [London.]
(19) Show that if 2z satisfies
2
by changing the independent variable from  to 2z, we shall transform
d*y + Pi'li/ +Qy=R
do?” "zt YT
d?y

into 7o

+8Sy="T.

2
Hence solve Zzz (l - —) %’{ +4x2ye2% =4 (02 + 23)e 32,

P.D.B. B



CHAPTER VIIT

NUMERICAL APPROXIMATIONS TO THE SOLUTION OF
DIFFERENTIAL EQUATIONS

82. The stadent will have noticed that the methods given in the
preceding chapters for obtaining solutions in finite form only apply
to certain special types of differential equations. If an equation
does not belong to one of these special types, we have to use approxi-
mate methods. The graphical method of Dr. Brodetsky, given in
Chapter 1., gives a good general idea of the nature of the solution,
but it cannot be relied upon for numerical values.

In this chapter we shall first give Picard’s * method for getting
successive algebraic approximations. By putting numbers in these,
we generally get excellent numerical results. Unfortunately the
method can only be applied to a limited class of equations, in which
the successive integrations can be easily performed.

The second method, which is entirely numerical and of much
more general application, is due to Runge.} With proper pre-
cautions it gives good results in most cases, although occasionally
it may involve a very large amount of arithmetical calculation. We
shall treat several examples by both methods to enable their merits
to be compared.

Variations of Runge’s method have been given by Heun, Kutta,
and the present writer.

83. Picard’s method of integrating successive approximations. The
differential equation dy
dz =f (:E, y)’

* E. Pioard, Professor at the University of Paris, is one of the most distinguished
mathematicians of to-day. He is well known for his researches on the Theory of
Funotions, and his Traité d’analyse is a standard text-book.

t C. Runge, Professor at the University of Géttingen, was an authority on
graphical methods.

94
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where y =b when z =a, can be written
X
y=b +j [ (z, y) d=.
a

For a first approximation we replace the y in f(z, y) by b; for

a second we replace it by the first approximation, for a third by the
second, and so on.

Ex. (i). Z—‘Z=z+y’, where y=0 when z=0.
'z
Here y=I (z+y?) da.
0
First approzimation. Put y=0in z+y?, giving
y=| zdz=14a2
Jo

Second approximation. Put y=1322in x+y? giving

y= .x(z +3}at) da = Jo? + 528,
0

Third approzimation. Put y=4a?+4%2° in z +y?, giving

ox
y=| (z+3a*+ %27 + 13520) do
Jo

=32+ 92° + rho2® + 1do0a™,
and so on indefinitely.
dy

- =2,
Ex. (ii). da

dz
(2; =-"33(!I +Z))

where y =1 and z=% when z=0.
Here y=1+j:zd:c and z=-§+-‘:z3(y+z)ds.
First approwimation.
y=1 +j:,}dz=1 +1z,
z=,1;+j:za(1 +3) do=1} + 320
Second approximation.

y=1 +j:(,}+gx4) dz=1+32+ 22",

¢=%+I:x3(%+§z+%#)=§-+%a:‘+11¢x°+,&x‘.
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Third approzimation.
y=1+ j (3+ 34 41425 + &Y da
=1+ %ox + 2528 + 7% + rhga?,
2=} + j::::"’(% +30+ Bt + 15a® + oa?) dz

=} + 328+ {Yad + o5 + g Fpa® + 5 Letd,
and so on.
o oo (dq ) dy
Ex. (iii). g\ g Y where y=1 and R:—c-—-% when z=0,
By putting gy =2z, we reduce this to Ex. (ii).

It may be remarked that Picard’s method converts the differential
equation into an equation involving integrals, which is called an Integral
Equation.

Examples for solution.

Find the third approximation in the following cases. For examples
(1) and (2) obtain also the exact solution by the usual methods.

(1) =2y —222-3, where y=2 when z=0.

(2) gz 2—;, where y=2 when z=1.

%=2az+z,
3) s
- =3zy + %,
dz *
where y=2 and z2=0 when z=0.
(4) e
— =z%+ oy
dz=" ’ .
where y=5 and z=1 when z=0.
d¥y _ ,dy dy
(5) 2= + 24y, where y=>5 and a-—l when z=0.

84. Determination of numerical values from these approximations.
Suppose that in Ex. (i) of the last article we desire the value of y,
correct to seven places of decimals, when z=0-3.

Substituting  =0-3, we get 4 (0-3)2 =0-045 from the first approxi-
mation.

The second adds  %(0-3)® =0-0001215,
while the third adds {3(0:3)8 + ;7% (0-3)2 =0-00000041... .
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Noticing the rapid way in which these successive increments
decrease, we conclude that the next one will not affcct the first
seven decimal places, so the required value is 0-0451219... .

Of course for larger values of z we should have to take more
than three approximations to get the result to the required degree
of accuracy.

We shall prove in Chap. X. that under certain conditions the
approximations obtained really do tend to a limit, and that this limit
gives the solution. This is called an Existence Theorem.

Example for solution.

(i) Show that in Ex. (ii) of Art. 83, =05 gives y=1:252... and
z=0'526... , while z=0-2 gives y=1-100025... and z=0-500632... .

85. Numerical approximation direct from the differential equation.
The method of integrating successive approximations breaks down
if, as is often the case, the integrations are impracticable. But
there are other methods which can always be applied. Consider
the problem geometrically. The differential equation

Yt @ y)

determines a family of curves (the * characteristics ’) which do not
intersect each other and of which one passes through every point

4

=

Fia. 23,

z TN \o
%

in the plane.* Given a point P (a, b), we know that the gradient
of the characteristic through P is f (a, b), and we want to determine

* This is on the assumption that f(z, y) has a perfectly definite value for every
point in the plane. If, however, f(z, y) becomes indeterminate for one or more
points, these points are called singular points of the equation, and the behaviour
of the characteristics near such points calls for special investigation. See Art. 10,
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the y =N@Q of any other point on the same characteristic, given that
t=0N =a +h, say. A first approximation is given by taking the
tangent PR instead of the characteristic PQ, ¢.e. taking

y=NL+LR=NL+PL tan / RPL =b +kf (a, b) =b +}f,, say.

But unless 4 is very small indeed, the error RQ is far from
negligible.

A more reasonable approximation is to take the chord PQ as
parallel to the tangent to the characteristic through S, the middle
point of PR.

Since S is (a + 3k, b+34f,), this gives

y=NL +LQ=NL + PL tan /QPL =b +kf (a +}h, b +1kf,).

This simple formula gives good results in some cases, as will be
seen from the following examples :

Ex. (i) d—y=z+y2; given that y=0 when z=0, required y when
z=03. %

Here a=b=0, h=0-3, f(x,y)=z+y2

Therefore

fo=f(a,b)=0, a+3h=0-15, b+3hf,=0,

giving  .b+Af (a+4h, b+3hfy) =0+0-3 x£(0-15, 0) =0-045.

The value found in Art. 84 was 0-0451219..., so the error is
0-00012... , about } per cent.

Ex. (ii). j—%=2—%: given that y=2 when z=1, find y when z=1-2.

Here a=1, b=2, k=02, f,=2-2=0.
Therefore b+hf (a+3h, b+3hfe)=2+0-2xf(1-1, 2)

=2402x (2—i>=2~036... )
AN 3 |

Now the differential equation is easily integrable, giving y=z+,
so when =12 the value of y is 2-033.... The error is 0-003..., which
is rather large compared with the increment of y, namely 0-036... .

Ex. (iii). %=Z=f (2, y, 2), say,

dz
(E=z"(y+z)=g(m, Yy, 2), 8ay ;

given that y=1 and 2=0-5 when 2=0, find y and z when z=0-5.
Here a=0, b=1, c(the initial value of 2) =05, A=0-5.
Hence  fy=f(0,1,0-5)=06; g,=9(0, 1,0-5)=0.
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By an obvious extension of the method for two variables, we take
y=b+hf (a+%h, b+3hfy, c+3hg)) =1+05 x f(0-25, 1-125, 0-5) =1-2500,
and z=c+hg(a+3%h, b+3hfy, c+4hgy)

=0-5+0-5 x g(0-25, 1-125, 0-5) =0-5127.
The accurate values, found as in Art. 84, are
y=1-252... and 2=0-526....

Thus we have obtained a fairly good result for y, but a very bad
one for 2.

The uncertainty about the degree of accuracy of the result deprives
the method of most of its value. However, it forms an introduction to
the more elaborate miethod of Runge, to Le explained in the next
article.

Examples for solution.

(1) %=(x’— y)i—l ; given that y=4 when =23, obtain the value

y=4-122 when ¢=2-7T. [Runge’s method gives 4-118.]
dy

(2) —5——{3/ -1 +log,(z+1y)}; given that y=2 when z= -1, obtain

the value y=2-194 when x=1. [Runge’s method gives 2-192.]
(3) -2 =92z - !—/ ; given that y =2 when z =1, obtain the value y=2-076

when = 1 -2. Also show that y=§w +;—, g0 that when z=1-2, y is
really 2-071..

86. Runge’s method. Suppose that the function of y defined * by

dy
dx =f($€, Y) .'/"b when z=a,

is denoted by y = F (x).
If this can be expanded by Taylor’s theorem

F(a+h)=F(a)+hF (a) + F”(a) + F”’(a) + e
Now F'(x) =-d—‘z =f (z, y) =f, say.

We shall now take the total differential coefficient with respect
to z (that is, taking the y in f to vary in consequence of the variation
of z). Let us denote partial differential coefficients by

o o ¥,
P=or 10y 0z?’ oxdy = oy’
and their values when z=a and y=>0 by p,, g, etc.

r= 8=

* The conditions under which the differential equation and the initial con-
dition really do define a function are discussed in Chap. X. The graphical treat-
ment of the last article assumes that these conditions are satisfied.
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” df 0 dyd
Then F@) = =(5+ i 5 =P e
Similarly, F"'(z)= (aac + o 3_7/> (p+f9)
=r+pq+fs+f(s+g*+ft).
Thus

F(a+h)-F(a)
=hfo + 31 (Po +fo80) + $8(ro + 250 +/oo + Pofo +folo?) + .- - (1)

The first term represents the first approximation mentioned and
rejected in Art. 85.

The second approximation of Art. 85, 1.e.

y—-b=hf(a+3}h, b+3hfy) =k, say,

may now be expanded and compared with (1).

Now, by Taylor’s theorem for two independent variables,

fla+ih, b+, 1

=fo +3hpo +3hfogo + 31 (1A%rg + 1A% o0 + 1R2f %) + ... »

giving ky =hfo +3h%(po +£0q0) + 303 (ro +2foSo + ) + oot ooenni(2)

It is obvious that £, is at fault in the coefficient of A3.

Our next step is suggested by the usual methods * for the
numerical integration of the simpler differential equation

dy
dz =f ().
Our second approximation in this case reduces to the Trapezoidal
Rule y—-b=nhf(a +4h).

Now the next approximation discussed is generally Simpson’s
Rule, which may be written

y-b=3h{f(a) +4f (a +1h) +f (a +A)}.

If we expand the corresponding formula in two variables, namely

$h{fo+4f (a+3h, b+3hfo) +f (a +h, b+Hfy)},
we eagily obtain
hfo + 3h2(po +foq0) + 2R3 (1o + 21680 + fo2to) + vv sy w0 veren(3)
which is a better approximation than k,, but even now has not the
eoefficient of A% quite in agreement with (1).
To obtain the extra terms in A3, Runge } replaces
hf(a +h, b + hf,)

* See the text-books on Calculus by Gibson or Lamb.
t Mathematische Annalen, Vol. XLV1. pp. 167-178.
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by ¥’ =hf(a+h, b +k"), where k" =hf(a+h, b+hfy). The modified
formula may be briefly written }{&’+4k, +%"’}, where k' =hf,, or
$hy + 1y =y +3 by — k), where ky =3(K +E").

The student will easily verify that the expansion of Runge’s
formula agrees with the right-hand side of (1) as far as the terms
in A, h2, and A3 are concerned.

Of course this method will give bad results if the series (1) con-
verges slowly.

If fo>1 numerically, we rewrite our equation

dx 1

By fla, )~ F @ oo
and now F,<1 numerically, and we take y as the independent
variable.

87. Method of solving examples by Runge’s rule. To avoid
confusion, the calculations should be formed in some definite order,
guch as the following :

Calculate successively &' = Af,,

E'=hf(a+h b+k),
K" =hf(a+h, b+k"),
k, =hf (a+4h, b+3K),
ko =} (K +&"),
and finally k=Fk +1(k, - k).

Moreover, as k, is itself an approximation to the value required,
it is clear that if the difference between &k and k,, namely 3 (k, - &,),
is small compared with %; and %, the error in k is likely to be even
smaller.

Ex. (i). Z—%=x+y'; given that y =0 when =0, find y when 2=0-3.
Here a=0, b=0, A=0-3, f(z y)=z+y? f,=0;

kK =hfy=0;
K'=hf(a+h, b+%k)=0-3xf(0-3,0)=0-3x0-3 =0-0900 ;
E'=hf(a+h b+k")=0-3 xf(0-3, 0-09) =0-3 x(0-3 +0-0081) =0-0924 ;
ky=hf (a+3}h, b+3k)=0-3 xf(0-15, 0)=0-3 x0-15 =0-0450 ;
ky=3(k +%")=%%0-0924 =0-0462 ;
and
k=Fk, +}(ky — k) =0-0450 +0-0004 =0-0454,

As the difference between k=0-0454 and %, =0-0450 is fairly small
compared with either, it is highly probable that the error in k& is less
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than this difference 0-:0004. That is to say, we conclude that the value
is 0-045, correct to the third place of decimals.

We can test this conclusion by comparing the result obtained in
Art. 84, viz. 0-0451219 e

Ex. (ii). d:c y—, given that y=1 when 2=0, find y when z=1.

This is an example given in Runge’s original paper. Divide the
range into three parts, 0 to 0-2, 0-2 to 0-5, 0-5 to 1. We take a small
increment for the first step because f (x, y) is largest at the beginning.

First step. a=0, b=1, k=02, f=1
=hf; =0-200;
E'=hf(a+h, b+k)=02xf(0-2,1:2) =0-143;
K" =hf (a+h, b+k’)=02 xf(0-2, 1-143)=0-140 ;
ky=hf(a+3h, b+3k)=03 xf(0-1,11) =0-167;

k,=3(K +%"")=}x0-340 =0-170;
and k=k,+%(ky—k,)=0-167 +0-001 =0-168;
giving y=1-168 when z=0-2,
Second step.

a=02, b=1-168, k=03, f,=f(0-2,1-168)=0-708.

Proceeding as before we get k,=0-170, k,=0-173 and so k=0-171,
giving . y=1-168+0-171=1-339 when z=0-5.

Third step. a=05, 5=1:339, h=0-5.

We find &k, =k,=k=0-160, giving y=1-499 when z=1.

Considering the & and %,, the error in this result should be less than
0-001 on each of the first and second steps and negligible (to 3 decimal
places) on the third, that is, less than 0-002 altogether.

As a matter of fact, the true value of y is between 1-498 and 1-499,
8o the error is less than 0-001. This value of y is found by integrating
the equation, leading to

a¥

-2 tan —-log,(z" +y2).

Examples for solution.

Give numerical results to the following examples to as many places
of decimals as are likely to be accurate :

(1) ——-=—-{y —1+log,(x+y)}; given that y=2 when z= -1, find

y when z=1, takmg k=2 (as fis very small).

(2) Obtain a closer approximation to the preceding question by
taking two steps.

(3) %=(x’ - y)*— 1; given that y=4 when #=2-3, find y when
®=2-7 (a) in one step, (b) in two steps.
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W oY _ _ 1
(4) Show that if %—2—5 and y=2 when z=1, then y=o+.

Hence find the errors in the result given by Runge’s method, taking
(a) h=0-4, (b) k=0-2, (c) h=0-1 (a single step in each case), and compare
these errors with their estimated upper limits.

(6) If E(h) is the error of the result of solving a differential equation
of the first order by Runge’s method, prove that
E() 1
avo E(nh) " nt’
Hence show that the error in a two-step solution should be about
4 of that given by one step; that is to say, we get the answer correct
to an extra place of decimals (roughly) by doubling the number of steps.

88. Extension * to simultaneous equations. The method is easily
extended to simultaneous equations. As the proof is very similar
to the work in Art. 86, though rather lengthy, we shall merely give
an example. This example and those given for solution are taken,
with slight modifications, from Runge’s paper.

dy y_
Ex. dw=2z—;—f(x’ Y, 2), 88,
dz y

%=m=g(w, Y, 2), say ;
given that ¥=0-2027 and 2=1-0202 when z=0-2, find y and z when
z=0-4.
Here
a=0-2, b=0-2027, ¢=1-0202, f,=f(02, 0-2027, 1-0202)=1-027,
9o=0-2070, A=02;
k' =hfy=0-2x1-027 =0-2054 ;
I =hgy=0-2 x 0-2070 =0-0414;
K’ =hf(a+h, b+k, c+1)=0-2xf(0-4, 04081, 1-0616)  =0-2206;
I"=hgla+h, b+k, c+1l')=02xg(0-4, 04081, 1-0616) =0-0894;
K" =hf(a+h b+ k"', c+1")=0-2 x f(0-4, 0-4233, 1-1096) =0-2322;
V" =hg(a+h, b+k"’, c+1")=02 x g(0-4, 0-4233, 1:1096) =0-0934 ;
ky=hf(a+%h, b+1K, c+31') =02 x £(0-3, 03054, 1-0409) =0-2128 ;
Li=hg(a+}h. b+3k, c+3l') =02 x g(0-3, 0-3054, 1-0409) =0-0641 ;

ky=3} (K +&") =0-2188 ;
L=3l+1") =0-0674 ;
k=Fk,+3(ky— k;) =0-2128 +0-0020 =0-2148 ;
1=1,+}(ly - I;) =0-0641 +0-0011 =0-0652 ;
giving y=0-2027 +0-2148 =0-4175
and 2=1-0202 +0-0652 =1-0854,

probably correct to the third place of decimals.
*The rest of this chapter may be omitted on a first reading.
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Examples for solution.

(1) With the equation of Art. 83, show that if y=0-4175 and
¢=1-0854 when £=0-4, then y=0-6614 and z=1-2145 (probably correct
to the third place of decimals) when z=0-6.

dw 1-w? dr w .

(2) = —2z+‘/( ) ; E;:\/(l e ; given that w=0-7500
and r=0-6 when 2=1:2145, obtain the values w=0-5163 and r=0-7348
when z (which is to be taken as the independent variable)=1-3745.
Show that the value of 7 is probably correct to four decimal places, but
that the third place in the value of w may be in error.

(3) By putting w=cos ¢ in the last example and y=sin ¢, z=r in
the example of Art. 88, obtain in each case the equations

@ _tang: 9,009 dg
E'—tangb, 2z= " +cos¢(ﬁ,

which give the form of a drop of water resting on a horizontal pl;sme.

89. Methods* of Heun and Kutta. These methods are very
similar to those of Runge so we shall state them very briefly. The

problem is: given tha,t —f(x, y) and y=>b when z=a, to find

the increment & of y When the increment of z is A.
Heun calculates successively
=hf (a! b),
k' =hf (a+}h, b+3k'),
K" =hf(a+3h, b+3E"),
and then takes } (X' +3%'"’) as the approximate value of k.
Kutta calculates successively,
=hf (a, b)’
k' =hf (a+3h, b+1K'),
K" =hf (a +3h, b+E"' -3K'),
' =hf(a+h, b+E" -k +F'),
and then takes } (k' +3k" +3k' +%'""') as the approximate value
of k.
The approximations can be verified by expansion in a Taylor’s
geries, as in Runge’s case.

Example for solution.

Given that Tn =~Z+ and y=1 when z=0, find the value of y (to 8
significant figures) when £=0-2 by the methods of Runge, Heun, and
Kutta, and compare them with the accurate value 1:1678417. [From
Kutta’s paper.]

* Zeitscheift fur Mathematdk und Physik, Vols. 45 and 46.
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90. Another method, with limits for the error. The present writer
has found * four formulae which give four numbers, between the
greatest and least of which the required increment of y must lie.
A new approximate formula can be derived from these. When
applied to Runge’s example, this new formula gives more accurate
results than any previous method.

The method is an extension of the following well-known results
concerning definite integrals.

91. Limits between which the value of a definite integral lies. Let
F(z) be a function which, together with its first and second
differential coefficients, is continuous (and therefore finite) between
z=a and z=a+h. Let F"(z) be of constant sign in the interval.
In the figure this sign is taken as positive, making the curve concave
upwards. LP, MQ, NR are parallel to the axis of y, M is the
middle point of LN, and SQT is the tangent at Q. OL=a, LN =A.

7]

/
\

(o] L M N x
F1a. 24.

Then the area PLNR lies between that of the trapezium SLNT
and the sum of the areas of the trapezia PLMQ, QMNR.

That is, rHF (z)dz lies between
’ hF(a +3h) =4, say,
and 14{F (a) +2F (a + k) + F (a + k)} = B, say.
In the figure F”"(z) is positive and 4 is the lower limit, B the

upper. If F”(x) were negative, 4 would be the upper limit and B
the lower.

* Phil. Mag., June 1919. Most of this paper is reproduced here.
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As an approximation to the value of the integral it is best to
take, not the arithmetic mean of 4 and B, but 2B +34, which is
exact when PQR is an arc of a parabola with its axis parallel to the
axis of y. It is also exact for the more general case when

F(z)=a +bx +ca? +ex?,
a8 is proved in most treatises on the Calculus in their discussion of
Simpson’s Rule.

92. Extension of preceding results to functions defined by differential

equations. Consider the function defined by

g—‘z =f(z, y), y=bwhenz=a;
where f(z, y) is subject to the following limitations in the range of
values a to @ +h for x and b—h to b +4 for y. It will be seen from
what follows below that the increment of % is numerically less than &,
so that all values of y will fall in the above range. The limitations
are :

(1) f(z, ) is finite and continuous, as are also its first and second
partial differential coefficients.

(2) It never numerically exceeds unity. If this condition is not
satisfied, we can generally get a new equation in which it is satisfied
by taking y instead of x as the independent variable.

(3) Neither d®/dx® nor 9f/dy changes sign.

Let m and M be any two numbers, such that

-l1=Em<f<MZ=1.

Then if the values of ¥ when « is @ + 44 and a + & are denoted by
b+ and b +F& respectively,*

R =EImh<j<IMh=131h, ccouevvveneennncnn (1)
and -h= mh<k <Mh=h. .ccvvvruvrninnccc(2)

We shall now apply the formulae of the last article, taking y to
be the same function as that defined by

y=>b +r+zF(w)dz,

a+h
so that k=_" F(z)da.
We have to express the formulae in terms of f instead of £.
Now, F(a)=the value of dy/dx when z=a,
so that F(a)=f(a, b).

* The following inequalities hold only if 4 is positive. If h is negative, they
must be modified, but the final result stated at the end of this article is still true.
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Similarly, F(a+3h)=f(a+1h, b+j),
and’ F(a+h)=f(a+h, b+k).
Now, if 9f/dy is positive, so that f increases with y, the inequalities
(1) and (2) lead to
fla+3h, b+imh)<f(a+3}h, b+7)<f(a+3h, b+3MB), ....(3)
and  fla+h, b+mh)<fla+h, b+k)<f(a+h, b+ ME); ...........(4)
while if 9f/dy is negative,
fla+3h, b+imh)>f(a+3h, b+5)>f(a+ik, b+3ME), ...(5)
and  f(a+h, b+mh)y>f(a+h, b+k)>f(a+h, b+Mh). ..........(6)
Thus if F"(z) =d%y/dz® is positive and 9f/dy is also positive, the
result of Art. 91,

A<k<B,
may ke replaced by R A RN | §
where p=hf(a+34h, b+3mh)

and  Q=1h{f(a, b)+2f(a +3h, b+EMR)+f(a+h, b+ MPR)};
while if F”(z) is positive, and 9f/dy is negative,
P<k<q, cocoveniiiicriccnneiienienneenen(8)
where P =hf(a+%h, b+3Mh)
and  g=1h{f(a, b)+2f(a+31k, b+3mh)+f(a+h, b+mh)}.
Similarly, if F”(x) and 9f/dy are both negative,

P>E>Q, i (9)
while if " (x) is negative and 9f/dy positive,
P>k>q coviiiiiiiiiiiiiccnecee . (10)

These results may be summed up by saying that in every case
(subject to the limitations on f stated at the beginning of this article)
k lies between the greatest and least of the four numbers p, P, q, and Q.

As an approximate formula we use k= B +}4, replacing B by
Q or ¢, and 4 by p or P.

93. Application to a numerical example. Consider the example

selected by Runge and Kutta to illustrate their methods,
dy_y-z. . _ -
& yia y=1 when 2=0.

It is required to find the increment % of y when z increases by
0-2. Here f(z, y)=(y —)/(y +=). This function satisfies the con-
ditions laid down in the last article.*

We take M =1, m=(1-0-2)/(1-2 +0-2)=4/T.

* As f(z, y) is positive, y lies between 1 and 1-2. When finding A/ and m we
always take the smallest range for y that we can find. (The conditions m < f < M

can be replaced by m = f =< M, without affacting the final result except to replace
some < signs by = signs.)
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Then p=0-1654321,
P =0-1666667,
q=0-1674987,
Q =0-1690476.

Thus & lies between p and Q. Errors.
3Q +3p=0-1678424, 0-0000007
Kutta’s value 0:1678449, 0-0000032
Runge’s value 0-1678487, 0-0000070
Heun’s value 0:1680250, 0-0001833

The sccond, third, and fourth of these were calculated by Kutta.
Now this particular example admits of integration in finite terms,
giving

log (22 +4?) — 2 tan—! (z/y) =0.
Hence we may find the accurate value of k.
Accurate value =0-1678417.

Thus in this example our result is the nearest to the accurate
value, the errors being as stated above.

We may also test the method by taking a larger interval A =1.
Of course a more accurate way of obtaining the result would be to
take several steps, say & =0-2, 0-3, and finally 0-5, as Runge does.

Still, it is interesting to see how far wrong the results come for
the larger interval.

We take M=1, m=(1-1)/(2+1)=0.
Then 3@ + 3 p =0-50000.
True value =0-49828, Errors.
Kutta’s value =0-49914, 0-00086
Our value =0-50000, 0-00172
Heun’s value =0-51613, 0-01785
Runge’s value =0-52381, 0-02553

This time Kutta’s value is the nearest, and ours is second.

[For a systematic method of determining M and m, and for
Remes’ extension of the method of Arts. 90-93, see Art. 183.

JFor Adams’ numerical method, perhaps the best of all, sce Art.
182.]



CHAPTER IX

SOLUTION IN SERIES. METHOD OF FROBENIUS

94. In Chapter VII. we obtained the solution of several equations

of the form d2y
da?

where P and @ were functions of z.

In every case the solution was of the form

y=af(z) +bF (a),

where a and b were arbitrary constants.

The functions f(z) and F(x) were generally made up of integra
or fractional powers of z, sines and cosines, exponentials, anc
logarithms, such as

dy
+PE(E +Qy=‘0,

3 3

1
(1+22)e®, sinz+zcosz, z'+z 7, z+logz, e,

The first and second of these functions can be expanded b
Maclaurin’s theorem in ascending integral powers of z; the other
cannot, though the last can be expanded in terms of 1/z.

In the present chapter, following F. G. Frobenius,* of Berlin, w
shall assume as a trial solution

y =a°(ay + & + a,2% + ... to inf.),
where the a’s are constants.t

The index ¢ will be determined by a quadratic equation calle
the Indicial Equatton. The roots of this equation may be equa
different and differing by an integer, or different and differing by
quantity not an integer. These cases will have to be discusse
separately.

The special merit of the form of trial solution used by Frobeniu
is that it leads at once to another form of solution, involving log :
when the differential equation has this second form of solution.

* Crelle, Vol. LXXVI., 1873, pp. 214-224.

t In this chapter suflixes will not be used to denote differentiation.
P.D.X. 109 I



110 DIFFERENTIAL EQUATIONS

1

As such a function as e* cannot be expanded in ascending powers
of , we must expect the method to fail for differential equations
having solutions of this nature. A method will be pointed out by
which can be determined at once which equations have solutions of
Frobenius’ forms (regular integrals) and for what range of values
of z these solutions will be convergent.

The object of the present chapter is to indicate how to deal
with examples. The formal proofs of the theorems suggested will
be given in the next chapter.

Among the examples will be found the important equations of
Bessel,* Legendre, and Riccati. A sketch is also given of the Hyper-
geometric or Gaussian equation and its twenty-four solutions.

95. Case I. Roots of Indicial Equation unequal and differing by a
quantity not an integer. Consider the equation

ay d
(2x+z")gz—,—zg—6xy=0. SRR ¢ )
Put z=a%(ay +a,x +a,2® + ...), where a,-0, giving

dz
de =agcx*t +ay(c+1)a° +ay(c +2)z*+ + ...,

)
and 27— ago(o - 1)a by o+ 1) w1 + g0 +2) (0 +1)2° + ..

Substitute in (1),] and equate the coefficients of the successive
powers of  to zero.

The lowest power of zisac-1. Its coefficient equated to zero gives
ao{2¢c(c—1) —c} =0,

te. ¢(20-8)=0, .ccovvrrrernrieiinneennnn(2)
as a,=+0.

* Friedrich Wilhelm Bessel, of Minden (1784-1846), was dircctor of the obser-
vatory at Konicsberg. He is best known by * Bessel's Functions.”

Adrian Marie Legendre. of Toulouse (1752-1833). is best known by his ¢ Zonal
Harmonics” or ‘“Legendre’s Coefficients.”” He also did a great deal of work on
Elliptic Integrals and the Theory of Numbers.

Jacopo Francesco, Count Riccati, of Venice (1676-1754), wrote on “ Riccati’s
Equation,” and also on the possibility of lowering the order of a given differential
equation.

4 Karl Friedrich Gauss, of Brunswick (1777-1855), “ the Archimedes of the

nineteenth century,” published resecarches on an extraordinarily wide range of
subjects, including Theory of Numbers, Determinants, Infinite Series, Theory of
Errors, Astronomy, Geodesy, and Electricity and Magnetism.

+ Tt is legitimate to differentiate a series of ascending powers of r term by term
in this manner, within the region of convergence. See Bromwich, Infinite Seres,
Art. 52.

t Or rather in what (1) becomes when ¢ is replaced by 2.
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(2) is called the Indicial Equation.
The coefficient of 2° equated to zero gives
{2(c+1)c—(c+1)} =0, 1.e.a;=0. ............... (3)
The coefficient of 2°+! has more terms in it, giving
a,{2(c+2)(c+1) —(c+2)} +ao{c(c-1) -6} =0,
s.e. ay(c+2)(2¢+1)+ag(c+2)(c-3)=0,

t.6. ay(2c+1)+ay(c—3)=0. ceourrreeriniiiiinnn(4)
Similarly, ag(2¢+3) +ay(c—2)=0, .cocooevvrrinneinniinnn (D)
a4(2¢ +5) +ay(c 1) =0, ceeuvvrnriiriiniinnnn.(6)

and so on.
From (3), (5), etc., 0 =a, =ag=a5="... =@y,,4.
From (4), (6), etc.,

ay c-3 a, c-1
@y 2c+1 a,  2c+b
ag c+1 Ggp c+2n-5
a, 2+9 Oua  2c+4n-3°
But from (2), ¢=0 or 3.
Thus, if ¢=0,
z=a{1+3z‘z+§z4——1—m°+-lm8...}=au say.
5 157 " 65 P

replacing a, by a; and if c=3,

3 1.3 1.3.5 1.3.5.9
=bit Q2 _ il
2=bs {1+8m 8.1(5504+8.16.24$o 8.16.24.32958"'}

=bv say, replacing a, (which is arbitrary) by b this time.
Thus y =au +bv is a solution which contains two arbitrary con-
stants, and so may be considered the complete primitive.
In general, if the Indicial Equation has two unequal roots a and 3

differing by a quantity not an integer, we get two independent solutions
by substituting these values of ¢ in the series for 2.

Examples for solution.
&y oY diy LT
(1) 4z£;+2d—;+y=0. (2 2z(l—x)dxz+(l—a:)dw+3y-0.
dy - ,dy
(3) 9%(1 - :0) d;i— 12 ‘E+4y-0
(4) Bessel’s equation of order n, taking 2n as non-integral,

2
m”gag+z%+(x’—n’)y=0.
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98. Convergence of the series obtained in the last article. It is
proved in nearly every treatise on Higher Algebra or Analysis that
the infinite series u, +u, +ug+ ... i8 convergent if

n+l

Lt

n-—»>wo

<l

Un

Now in the series we obtained u, =a,,_g2°+2"-2, 1.

Ynt1_ %an .9
Un on—g
c+2n-5 ,
—gm= e o
2c+4n-37"
and the limit when n—o is - 42?2, independent of the value of c.
Hence both series obtained are convergent for | z | < 4/2.
It is interesting to notice that if the differential equation is
reduced to the form

d d
2 Y 1ap() W 4@y =0,

giving in our example p(x)= 21;,
- 6z?
and q(z)= 3 1 a?

p(z) and ¢(x) are expansible in power series which are convergent
for values of x whose modulus |z | < 4/2.

That is, the region of convergence is identical in this example
with the region for which p(z) and ¢(z) are expansible in convergent
power series. We shall show in Chap. X. that this theorem is true
in general.

Examples for solution.

Find the region of convergence for the solutions of the last set of
examples. Verify in each case that the region of convergence is identical
with the region for which p(z) and ¢(z) are expansible in convergent
power series.

97. Case II. Roots of Indicial Equation equal. Consider the
equation
(- xz)dz?h(l 5z)dJ 4y =0.

Put 2=0°(ay + ;% +aa? +...),

and after substituting in the differential equation, equate coefficients
of successive powers of @ to zero just as in Art. 95.
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We get ag{c (c-1)+¢} =0,
te. 2=0, ......... (1)
a,{(c+l)c+c+1} —ap{c(c—1)+5c+4} =0,

te. ac+1)2-ay(c+2)2=0, .ovvrriinnrininiinnnnn(2)

Gy(c+2)2 —a;(c+3)2=0, .eevviiniiniinnnnn(3)

ag(c+3)2—ay(c+4)2=0, .covvvviiinininn (1)
and so on.
Hence

2 =ayT’ {1 + G{—%)’z + <g—li;>’x2 + (%}i)zx“ + }

is a solution if ¢=0.

This gives only one series instead of two.

But if we substitute the series in the left-hand side of the dif
ferential equation (without putting ¢=0), we get the single term
a,c®2°1. As this involves the square of ¢, its partial differential
coefficient with respect to ¢, v.e. 2ayca’~!+ac’xlogz, will also
vanish when ¢=0.

That is,

gc [(x ) d%’ +(1 - 5x) (% - 4«] z=2acx*! +a,cxlog x.

As the differential operators are commutative, this may be
written

2
[(:z: -2%) %2 +(1 - 5z) d‘i - 4] zz =2a,c2°" + a % og x.

0z . . . .
Hence oe 188 second solution of the differential equation, if ¢ is

0

put equal to zero after differentiation.
Differentiating,

0z o fc+2 -1 c+3 -2
semtoga o {2(357). ey 2o grap®

c+4 -3
+2 (m) . '('m—)zxs + ...}.

Putting ¢=0 and a,=a and b respectively in the two series,
z=a{l?+2% +3%?2 + 4% + 6%* + ...} =ay, say,

and g§=bu log z-2b{1 .2z +2.32% +3 . 43 + ...} =bv, say.

The complete primitive is au + bv.
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In general, if the Indicial Equation has two equal roots c¢=a,

we get two independent solutions by substituting this value of ¢ in z and

gz. The second solution will always consist of the product of the

first solution (or & numerical multiple of it) and log z, added to
another series.

Reverting to our particular example, consideration of p(z)
and ¢(z), as in Art. 96, suggests that the series will be convergent
for |z|<1. It may be easily shown that this is correct.

Examples for solution.
d2y dy
— 2 — — Y =
1) (z—z )dx”+(1 m)dz y=0.

(2) Bessel’s equation of order zero

2
g 2+dy+:::y=-0

(3) mé—+(1 +:c) -+2y=0

4) 4(x"—x2)d—x2+8x8§—z-y=o.

98. Case III. Roots of Indicial Equation differing by an integer,
making a toefficient of z infinite. Consider Bessel’s equation of order

unity,
y 3{,”?’ + (22~ 1)y =0.

If we proceed as in Art. 95, we find
apfc(c—-1)+c—-1}=0,
te. A—1=0, .civiiiiiiiinnnnnnn(l)
a{(c+1)* -1} =0,

te. a;=0, .oceviriiinininnnnn(2)
B {(c+2)2 -1} +a5=0, .coovvevirirriiinnnnns 3)
and a,{(c+n)2-1}+0a, 5=0, .ocvriiiiiiiiinnnn 4)

giving -
1 1
""W{l‘(c+1)(c+3)’”’+(c+1)(c+3)2(c+5)”'

1
-GG FEE T )
The roots of the indicial equation (1) are ¢c=1 or —1.
But if we put ¢= —1 in this series for z, the coefficients become
infinite, owing to the factor (¢ +1) in the denominator.
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To obviate this difficulty replace * ay by (¢ +1)%, giving

1 . 1
zkx’{(c+1)—(c+3)x +(c+3)2(c+5):c‘
1
‘(c+3)’(c+5)z(c+7)z5+"'}’ ...... (5)
and xzdz +xdz+(asl 1)z =kat(c +1)(c? - 1) =kat(c +1)%(c - 1).

da?
Just as in Case II. the occurrence of the squared factor (c+1)?

shows that g—z, as well as z, satisfies the differential equation when

c¢=—1. Also putting c=1 in z gives a solution. So apparently we
have found three solutions to this differential equation of only the
second order.

On working them out, we get respectively

kx“l{—%x2+ 1 b — =, 1 x°+...} =ku, say,

22 .4 22 .42.6
— 1 2 _ 1 (2 1\,
kulog x + kx1 {1+§2 PR 4<§+4>x
1 2 21
+22.42.6<2 it 6>9”°+ }=k"’““y’
and kz{2—}:c+ 1 x‘—f—“1 R0+ }=kw say
4 42, 42 62,8 ’ :

It is obvious that w= -4u, so we have only found two linearly
independent solutions after all, and the complete primitive is au + bv.
The series are easily proved to be convergent for all values of .

The identity (except for a constant multiple) of the series obtained
by substituting ¢= —1 and ¢=1 respectively in the expression for z
is not an accident. It could have been seen at once from relation (4),

a{(c+n)2-1}+a,_,=0.

If ¢=1, this gives a,{(1 +n)2=1}+a,_,=0. .ccovvrrrrerrirnna...(6)

Ife=-1, a{(-1+n)2-1}+a,_,=0;
hence replacing n by n +2, .

Qpo{(L+0)2 =1} +a,=0. .corvvrnvnnnrnnnnnnnn(T)

Thus [‘%_ﬂ] =[a“"] e eereereeeeeseens s en(8)
n —e=-1 n—2-le=1

As (z].__, has 2! as a factor outside the bracket, while [2],, has
z, relation (8) really means that the coefficients of corresponding

* Of course the condition a, %0 is thus violated ; we assume in its place that
k0.
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powers of z in the two series are in a constant ratio. The first series
apparently has an extra term, namely that involving 22, but this
conveniently vanishes owing to the factor (c+1).

In general, of the Indicial Equation has two roots a and B (say
a > 8) differing by an integer, and if some of the coefficients of z become
wnfinite when ¢ =3, we modify the form of z by replacing a, by k(c - B).
We then get two independent solutions by putting ¢ =3 tn the modified
form of z and g{ The result of pulting c=a tn z merely gives a
numerical multiple of that obtained by putting ¢ = 3.

Examples for solution.
(1) Bessel’s equation of order 2,
2 02 1
«T;;HB( u+(z” 4)y=0.

dy

(2) z(1- Z)———&c —y=0.

3) z(1 —-x)ﬂ-(l +3x)—-—y-0.

4 (:c+x2+x3)d Y + 30 ad —2¢=0.

99. Case IV. Roots of Indicial Equation differing by an integer,
making a coefficient of z indeterminate. Consider the equation
1- a;’) d%y +2x:Z+y=0.

Proceeding as usual, we get

c(c-1)=0, cc.ceevrvnnnns (1)

a,(c+1)c=0, ccccvvvvnnnnnn(2)

ay(c+2)(c+1)+ag{ —c(c—1)+2¢+1} =0, coeuvvrvrnnneni(3)
az(c+3)(c+2)+a{-(c+1)c+2(c+1)+1}=0,. «.(4)

and so on.
(1) Gives ¢=0 or 1.

The coefficient of a, in (2) vanishes when ¢ =0, but as there is no
other term in the equation this makes a, indelerminate instead of
infinite.

If c=1, a,=0.

Thus, if ¢ =0, from equations (3), (4), ete.

2a, +ay =0,

6a4 +3a, =0,

12a, + 3a, =0,
etc.,
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. . 1 1 1 1\
gving [z]c=o=ao{1-§$2+8 w‘+80 z"j

3
+a1{ 2z"‘+ z5+560 }

This contains two arbitrary constants, so it may be taken as the
complete primitive. The series may be proved convergent for
|z| <1.

But we have the other solution given by ¢=1. Working out
the coefficients,

(2] _l—aofc{l —lx’+ 1 a:‘+ 3 28.. }
g 2 560

that is, a constant multiple of the second series in the first solution.

This could have been foreseen from reasoning similar to that in
Case III.

In general, if the Indictal Equation has two rools a and 3 (say
a>3) differing by an integer, and if one of the coefficients of z becomes
indeterminate when ¢ =3, the complete primitive is given by pulting
c=0 in z, which then contains two arbitrary constants. The result of
pulling ¢ =a tn z merely gives a numerical multiple of one of the series
contained vn the first solution.

Examples for solution.
(1) Legendre’s equation of order unity,

(1- x”)dy 2ccdj

d+2y =0.

(2) Legendre’s equation of order =,

d2y dy
(1- )d 2 2xd +n(n+1)y=0.

1
3) Z_z_?:+x!y=o_ 4) (2+x2)dz2+xd—‘/ +(1+x)y=0.

100. Some cases where the method fails. As ez cannot be expanded
in ascending powers of z, we must expect the method to fail in
some way when the differential equation has such a solution. To
construct an example, take the equation ;;?2— -y=0, of which e
and e~ are solutions, and transform it by putting 2 =2

* We have D i i Bl

-5 18- o Y-t ethraedt

Il
»

and
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Hence the new equation is
L L]

da? do
If we try to apply the usual method, we get for the indicial
equation, —a,=0, which has no roots,* as by hypothesis a,+0.

Such a differential equation is said to have no reqular integrals
1 1

in ascending powers of z. Of course e® and e = can be expanded in
1
powers of z

The examples given below illustrate other possibilities, such as
the indicial equation having one root, which may or may not give
a convergent series.

It will be noticed that Writing the equation in the form

dxz +wp(x) +q(w)y=0,

in every case where the method has succeeded p(x) and ¢(x) have
been finite for =0, while in all cases of failure this condition is
violated.

For instance, in the above example,

p(x) =2,
q(@)= —l which is infinite if z=0.

Examples for solution.

(1) Transform Bessel’s equation by the substitution z=1/2.

Hence show that it has no integrals that are regular in descending
powers of .

(2) Show that the following equation has only one integral that is
regular in ascending powers of z, and determine it :

zaj Y 1 (1 - 20) y—-Zy =0.
(3) By putting y =vz?(1 +2z) determine the complete primitive of
the previous example.

(4) Show that the following equation has no integral that is regular
in ascending powers of z, as the one series obtainable diverges for all

values of @ : d
?’ -(1- 3x)d +y=0.

(5) Obtain two integtals of the last example regular in descending
powers of .

* Or we may say that it has two infinite roots.
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{6) Show that the following equation has no integrals that are
regular in either ascending or descending powers of z:

d?y
dxz

[This is the equation whose primitive is ae®t%~! +be~%-="1,]

aA(1 — 22) 2 +2:::3 -(1-22%3%y=0.

MISCELLANEOUS EXAMPLES ON CHAPTER IX.
(1) Obtain three independent solutions of

2 &Y d% o dy
dma+27x +83-—y0

(2) Obtain three independent solutions, of the form

2 _a_z and ?2
> dc’ oc?’

9z

. By . dY dy
of the equation x’d—wg + 3xd72 +(1-x) Y =0.
(3) Show that the transformation y=bl_v ?ig reduces Riccatd’s equation

Y =
. +by?=ca™
2

to the linear form d* _ beva™ =0,

dx?

(4) Show that if y is neither zero nor an integer, the Hypergeometric
E'quation d2: d
Yy
a(l —x)ﬁ+{y—(a+ﬁ+l)x}3}—a,3y=0
has the solutions (convergent if |z| <1)
F(a, B, y,7) and a'-YFla-vy+1, B~y+1,2-5,2),
where F(a, 3, v, ) denotes the Hypergeometric Series

aﬁ ala+1)B(B+1) ala+1)(a+2)B(B+1)(B8+2)
P T 2 gy s D) ©F 1.2.8 yly+D)(y+d) ° 7

(5) Show that the substitutions =1 -2z and z=1/z transform the
hypergeometric equation into

2(1 -z)dfi{+{a+,e+1—y—(a+3+1)z}di’-a5y=o

ern o

end 22(1 - z) -+z{1 a-B)-2- -y)z}d +aBy=0

respectively, of which the first is also of hypergeometric form.
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Hence, from the last example, deduce that the original equation has
the additional four solutions :

Fla, B, a+B+1-y,1-2),
(l-z)r-*-BF(y-B,y-a, 1+y-a-B,1-1),
z7F(a, a+1l—-y, a+1-8, 27,
and z-fF(B, B+1-vy, B+1—-a, zY).
(6) Show that the substitution y=(1 —2)"Y transforms the hyper-
geometric equation into another hypergeometric equation if

n=y—a-0.
Hence show that the original equation has the additional two
solutions : (1-2)*-2PF(y-a, y-0, v, 2)
and 2 Y1 -2)r=+-FF(1~a,1- 8,2, 2).

[Note.—Ex. 5 showed how from the original two solutions of the
hypergeometric equation two others could be deduced by each of the
transformations ¢=1-2z and z=1/z. Similarly each of the three
transformations z = i—l_-;, T= 2—j—1, z=z—;—1—, gives two more, thus making
twelve. By proceeding as in Ex. 6 the number can be doubled, giving
a total of twenty-four. These five transformations, together with the
tdentical transformation £ =z, form a group ; that is, by performing two
such transformations in succession we shall always get a transformation
of the original set. ]

(7) Show that, unless 2n is an odd integer (positive or negative),
Legendre’s equation

d?y dy
—z2) =g 9, =
Q1 :v)d 3 2md +n(n+1)y=0

has the solutions, regular in descending powers of z,
e 1F(dn+4, in+1, n+3, 272),
o F(—3n, $—3n, 3 —n, 2.
[The solution for the case 2n= -1 can be got by changing « into
z1 in the result of Ex. 4 of the set following Art. 97.]

(8) Show that the form of the solution of Bessel’s equation of
order n depends upon whether n is zcro, integral, or non-integral,
although the difference of the roots of the indicial equation is not
but 2a.



°CHAPTER X

EXISTENCE THEOREMS OF PICARD, CAUCHY,} AND
FROBENIUS

101. Nature of the problem. In the preceding chapters we have
studied a great many devices for obtaining solutions of differential
equations of certain special forms. At one time mathematicians
hoped that they would discover a method for expressing the solution
of any differential equation in terms of a finite number of known
functions or their integrals. When it was realised that this was
impossible, the question arose as to whether a differential equation
in general had a solution at all, and, if it had, of what kind.

There are two distinct methods of discussing this question.
One, due to Picard, has already been illustrated by examples
(Arts. 83 and 84). We obtained successive approximations,
which apparently tended to a limit. We shall now prove that
these approximations really do tend to a limit and that
this limit gives the solution. Thus we shall prove the exist-
ence of a solution of a differential equation of a fairly general
type. A theorem of this kind is called an Existence Theorem.
Picard’s method is not difficult, so we will proceed to it at once
before saying anything about the second method. It must be
borne in mind that the object of the present chapter is not to
obtain practically useful solutions of particular equations. Our
aim now is to prove that the assumptions made in obtaining
these solutions were correct, and to state exactly the conditions
that are sufficient to ensure correctness in equations similar to
those treated before, but generalised as far as possible.

* This chapter should be omitted on a first reading.

t Augustin Louis Cauchy. of Paris (1789-1857), may be looked upon as the
creator of the Theory of Functions and of the modern Theory of Differential Equa-
tions. He devised the method of determining definite integrals by Contoer
[ntegration. )

12)
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102. Picard’s method of successive approximation. If ZZ =f(z, ¥}

snd y=b when z=aqa, the successive approximations for the value
of y as a function of z are

b+ [ f(z, bydz =y, say,

b+ af(w, ?Il)d‘”‘:yz: say,

b+| f(=, y,)dz=ys, say, and so on.

We have already (Arts. 83 and 84) explained the application of
this method to examples. We took the case where f(z, y) =2 +y2
b=a=0, and found

Y= % x’)
Ya =%_z2 + "210'1‘5’
Y5 =302 + 228 + 13528 + et

These functions appear to be tending to a limit, at any rate for
sufficiently small values of #. It is the purpose of the present
article to prove that this is the case, not merely in this particular
example, but whenever f(z, y) obeys certain conditions to be
specified.

These conditions are that, after suitable choice of the positive
numbers 4 and %, we can assert that, for all values of 2 between
a-~h and a+h, and for all values of y between b—-% and b +%, we
can find positive numbers M and A4 so that

i) |f@ i< M,

(i) |f@ 9)~f@ y)|<A|y-y'|, y and y' being any two
values of y in the range considered.

In our example f(z, y) = + 4?2, condition (i) is obviously satisfied.
taking for M any positive number greater than |a | +% +{] b | +%}%

Also |z +3) - (245 =y +1 |y -y’ | <2(b] + By -y,
so condition (ii) is also satisfied, taking 4 =2(| b| + k).

Returning to the general case, we consider the differences between
the successive approximations.

y-b =r f(x, b)dz, by definition,
a
but | f(z, b)| < M, by condition (i),
erz, io. <M|5-6|<Mh. oo.(l)
a

%0 ly-bl <
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Also y,-y,=b +r [, y,)dz -b - r [(z, b)dz, by definition,

=I:{f (@, y,) -f (=, b)}dzx;

but | f(x, y) -f(z, b)| < 4| y,—b]|, by condition (ii),
<AM|z-a]|, from (1),

80 [y,—-y1[<H‘:AM(:v—a)dx

, e <3AM(z-aR<}AM. ..(2)

Similarly, PR <h1‘! A oo (3)
Now the infinite series

b+ Mb+FMAI + ...+ MAShn.. = (e ~1) +b

NS

is convergent for all values of A, 4, and M.
Therefore the infinite series

b+ (r=0)+ (W2 =9) + e +(Yn — Y1)+
each term of which is equal or less in absolute value than the corre-
sponding term of the preceding, is still more convergent.
That is to say that the sequence

h=b+(y -b),
Y2=b+(y-b) + (- 1),
and so on, tends to a definite limit, say Y (z), which is what we
wanted to prove.
We must now prove that Y satisfies the differential equation.
At first sight this seems obvious, but it is not so really, for we
must not assume without proof that

z

Lt [ f@ yo)do= f(o, Tt .o

n—>0Ja a n—rw

The student who understands the idea of uniform convergence
will notice that the inequalities (1), (2), (3) that we have used to
prove the convergence of our series really prove its uniform con-
vergence also. If, then, f(z, y) is continuous, y,, y,, etc., are
continuous also, and Y is a uniformly convergent series of con-
tinuous functions; that is, Y is itself continuous,* and Y -y,_,
tends uniformly to zero as n increases.

Hence, from condition (ii), f(z, Y)-f(, ¥,-,) tends uniformly
to zero.

* 8ee Bromwich’s Infinfte Serfes, Art. 45.
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From this we deduce that

r {flz, Y) —f(z, yn_y)} tends to zero.
Thus the limit of the relation

Yn= b +—‘-af(x’ yn—l)dz

is Y-b +rf(z, Y)de;

therefore * Z—Z=f(x, Y), and Y =b when z=a.

This completes the proof.

103. Cauchy’s method. Theorems on infinite series required.
Cauchy’s method is to obtain an infinite series from the differential
equation, and then prove it convergent by comparing it with another
infinite series. The second infinite series is not a solution of the
equation, but the relation between its coefficients is simpler than
that between those of the original series. Our first example of this
method will be for the simple case of the linear equation of the first
order gz —p(@). 4.

Of course this equation can be solved at once by separation of
the variables, giving

logy=c +j-p(x)dx.

However, we give the discussion by infinite series because it is
almost exactly similar to the slightly more difficult discussion of

d? d
h=p@). Y +q).y,
and other equations of higher order.
We shall need the following theorems relating to power series.

The variable x is supposed to be complex. For brevity we shall
denote absolute values by capital letters, e.g. 4, for |a,]|.

(4) A power series D> a,z" is absolutely convergent at all

0
points within its circle of convergence | z | =R.
(B) The radius R of this circle is given by
1 An+l
R4

provided that this limit exists.

* When differentiating the integral, the student should remember that the
Integral varies solely in consequence of the variation of its upper limit.
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O A (S0r) S0, witin 1 -1
0 0

(D) If we have two power series, then for points within the
circle that is common to their circles of convergence,

(2 a.,,:z;") (i(;: b,,x") = 2 (@ubo +@p. by + ... +aghy)z".

(B) It i} a,,x"=§: b,z for all values of « within the circle
[} 0

|z| =R, then a,=b,.

(F) A, < MR-, where M exceeds the absolute value of the
sum of the series at points on a circle |z| = R on which the series
is convergent. .

Proofs of these theorems will be found in Bromwich’s Infinite
Series :

4 in Art. 82 [Art. 84 in 2nd ed.],
B is an obvious deduction from D’Alembert’s ratio test, Art. 12,
C in Art. 52 [Art. 12 becomes Art. 122 in 2nd ed.],
D ” 54’,
E ”» 52’
r , 82 [Art. 84 in 2nd ed.].

Two theorems on uniform convergence will be required later on,
but we will defer these until they are needed.

104. * Convergence of the solution in series of g=yp (x). Let

p(x) be capable of expansion in a power series i'pnx" which is
[]

convergent everywhere within and on the circle |z|=R. We shall

prove that a solution y=i a,a" can be obtained which is

0
convergent within this circle.
Substituting in the differential equation, we obtain

i na, "1 i a,z" i Pl (Theorem C)
0 0 0

= 5) (@pPo + BpyPy +CpgPy + -.. + Aep,) 2" (Theorem D)
0

Equating the coefficients of z"-, (Theorem E)
NG, =0p_1Po + Cp_oPy +Bp_gPs+ o+ QoPp_ge ceoveennnnni(l)

® Revise Art. 7 before reading the following.
P.D.R. X
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Hence for the absolute values of the a’s and p’s, denoted by the
sorresponding capital letters, we get

nd, < A, Py+A4, Pi+A4, Py+...+ AP, 4. «euc.....(2)
Let M be a positive number exceeding the absolute value of
7 (z) on the circle |z | =R,

ihen P, <MR-; ........ (3)  (Theorem F)
herefore, from (2) and (3),

4, < 1‘: (Apy + Ay R+ A, R34 ...+ ARM). ......(4)

Define B, (n> 0) as the right-hand side of (4), and define
B, as any positive number greater than 4,; then 4, < B,.

But 5‘"5 (Apy+ Ay R+ A, JR*+ ... + AR

M n-1M
=W An—l +""’;R"h"_—‘i (A”_2+An_3R_l + ... +A0R—"+2).

Hence, defining B,, as above,

M (n-1)B,_,
B”—';L-A”_l“" n - R Ty

vhence, dividing by B,_; and using % for %’1?—1 ,s0that 0 g k<1,

n-1
,I.}_"_,_-—]L[_]f.f..l, — .,1_
B,, n R nR’
B, 1
vhence ”_I;EO BTR
Therefore the series EB,,w" is convergent within the circle

z|=R. 0 (Theorem B.)
0

Still more therefore is the series > a,2" convergent within the
0

ame circle, since A, < B,.

The coefficients a,, ay, ... can all be found from (1) in terms of
he p’s, which are supposed known, and the arbitrary constant a,.

105. Remarks on this proof. The student will probably have
ound the last article very difficult to follow. It is important not
o get confused by the details of the work. The main point is this.

Ve should like to prove that Lt An ==—1R. Unfortunately the
n-1

11—> 0

elation defining the 4’s is rather complicated. We first simplify
b by getting rid of the n quantities Py, P,, ... P,_,. Still the
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relation is too complicated, as it involves n 4’s. We need a simple
relation involving only two. By taking a suitable definition
of B, we get such a relation between B, and B,_;, leading to

B, 1
daB R
We repeat that the object of giving such a complicated dis-
cussion of a very simple equation is to provide a model which the

student can imitate in other cases.

Examples for solution.

(1) Prove that, if p(z) and g¢(x) can be expanded in power series
convergent at all points within and on the circle X =R, then a power
geries convergent within the same circle can be found in terms of the
first two coefficients (the arbitrary constants) to satisfy

' d

=P . 3+ q@)y.

[Here n(n-1)a,=(n—1)a,_1po+(n—2)a,_opy+... +a19, 4
tan 2ot st t..- +Gn_s

Hence, if M is any number exceeding the absolute values of both
p(x) and q(x) at all points on the circle X =R,

4, < %{(A,,_l +4, R 1+... +A1R—n+9)
+(4, 3+ A4, sR1+...+4,R2)}
< % (1+R) (A, +4, B +...+ A R"H),

Define the right-hand side of this inequality as B, and then proceed
as before. ]

(2) Prove similar results for the equation

3 2
%=p(z).%+q(x).g—z+r(z).y.

106. Frobenius’ method. Preliminary discussion. ~When the
student has mastered the last article, he will be ready for
the more difficult problem of investigating the convergence of
the series given by the method of Frobenius. In the preceding
chapter (which should be thoroughly known before proceeding
further), we saw that in some cases we obtained two series
involving only powers of =z, while in others logarithms were
present.

The procedure in the first case is very similar to that of the last
article. But in the second case a new difficulty arises. The series
with logarithms were obtained by differentiating series with
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respect to & parameter ¢. Now differentiation is a process of taking
a limit and the summation of an infinite series is another process
of taking a limit. Itis by no means obvious that the result will
be the same whichever of these two processes is performed first,
even if the series of differential coefficients be convergent.

However, we shall prove that in our case the differentiation is
legitimate, but this proof that our series satisfy conditions sufficient
to justify term-by-term differentiation is rather long and bewildering.

To appreciate the following work the student should at first
ignore all the details of the algebra, concentrating his attention on
the general trend of the argument. When this has been grasped,
he can go back and verify the less important steps taken for granted
on a first reading.

107. Obtaining the coefficients in Frobenius’ series when the roots
of the indicial equation do not differ by an integer or zero. Consider
the expression

d*y d dy d?
Ez‘dxé—xp(z).a'g—q(:t).y=¢<$, Y a%’ EEZ)! say,

where p (z) and ¢ (z) are both expansible in power series ip,,x"

W 0
and )’ ¢,&” which are convergent within and on the circle |z | = R.
0

We are trying to obtain a solution of the differential equation

¢ (% 9, gg, %) I, RO )

. > . dy d¥
If y is replaced by 2* > a,2" (with ay#0), ¢ (2, y, 5~ 55
becomes < ( dz’ d.s* >

Sha,aen{(c +n) (c+n—-1) - (c+n) p (2)- ¢ (¥)}

= E gn""“*‘"r say,
0

where Go=a {c(c—1) — PoC — o}
and gn=0n {(c+n)(c+n 1) -po(c+n) - qo}
=Gy {Pr(c+n-1)+q1} —an 5 {P;(c+n -2) +¢;}
- —Q (.pnc+9n)-
For brevity, denote
¢(¢—1) —poc - go by f(c),
so that (c+n)(c+n—-1)—po(c+n)—go=f(c+n).
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Then g,, =0 if
anflc+n)=a,_ {pylc+n-1)+q} +a, s {ps(c+n-2)+¢,}
Foe + 0 (PpC +Gn)e ooeereenn(2)
If we can choose the a’s so that all the ¢’s vanish, and if the

series > a,z" 80 obtained is convergent, a solution of (1) will have

been ol‘;tained.
Now a8 a,70, g,=0 gives
c(c—1) =P —qo=0. cevevrreiriinnninnreecnennn(3)
This is & quadratic equation in ¢, and is called the Indicial
Equation.
Let its roots be a and 8.
If either of these values is substituted for ¢ in the equations
9, =0, g4=0, g3 =0, ..., values for a;, a,, a3, ... are found in the form
ap=ah, () [flc+n)flc+n-1)...f(c+1)], ceerevrenrnn(4)
where %,,(c) is a polynomial in ¢. The student should work out the
values of a, and g, in full if he finds any difficulty at this point.
The process by which a, is obtained from (2) involves division
by f(c+n). This is legitimate only when f (¢ +n)%0.

Now as f©)=(c-a)(c-B),
flc+n)=(c+n—a)(c+n-),
80 Sl@a+n)=n(a+n-FB), cevirriiininnininnnnninnnnd(d)
and JBHR)=n(B+0—a) .cvveerrinnnrreiiinnniiennnnni(6)

Thus, if « and B do not differ by an integer, the divisors
cannot vanish, so the above process for obtaining the a’s is satis-
factory. If a=g3, only one series is obtained.

108. Convergence of the series so obtained. Let M be a positive
number exceeding the absolute values of p(z) and ¢(z) at all points
on the circle |z| =R.

Then P,< MR~
and Q< MR-,
go that |ps(c+n—-8)+g| < M(C+n-38+1)R~,

From these inequalities and from (2),

A, <M{4, ,(C+n)R+...+4,(C+1)R"}/F(c+n), ...(T)
say 4,< B,, denoting the right-hand side of (7) by B,. This
defines B, if n>>0. Define B, as any positive number greater
than 4, This definition of B, gives

Bp, F(c+n+1)-BF(c+n)R1=4,M(C+n+1)R?

=kB,M(C+n+1)R-}, where0gk <1,
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B, Flc+n)+IM(C+n+1)
B, RFE(c+n+1) ’
_l(e+n)(c+n—1) - pyc+n) —qo| +k +kM(C+n+1)

so that

Rl(c+n+1)(c+n)—pylc+n+1)—q

Now for large values of n the expression on the right approaches

the value nt 1
Rn* R
1
n+l -
Thus wEtm B, "R

Therefore the series > B,2" and still more the series > a,a"
] 0

converges within the circle |z| =
Thus, when « and 3 do not differ by an integer, we get two
convergent infinite series satisfying the differential equation.

109. Modification required when the roots of the indicial equation
differ by zero or an integer. When a and 3 are equal, we get one
series by this method.

When « and 8 differ by an integer, this method holds good
for the larger one, but not for the smaller, for if a — 8 =7 (a positive
integer), then from (5) and (6)

fla+n)=n(a+n-B)=n(n+r),
but f(B+n)=n(B+n-a)=n(n-r),
which vanishes when n=r, giving a zero factor in the denominator
of a, when ¢c=3. As exemplified in Arts. 98 and 99 of the preceding
chapter, this may give either an infinite or indeterminate value for
some of the a’s. This difficulty is removed by modifying the form
assumed for y, replacing a, by £(c~3). This will make a,, a,, ...,
a,_, all zero and a,, a,,,, ... all finite when ¢ is put equal to 3. This
change in the form assumed for y will not alter the relation between
the a’s, and so will not affect the above investigation of convergence.

110. Differentiation of an infinite series with respect to a parameter
¢, the roots of the indicial equation differing by an integer. In Art. 107

0
we obtained an infinite series a° > a,z", where the a’s are functions
0 .

of c¢. As in the preceding chapter, we have to consider the
differentiation of this series with respect to ¢, ¢ being put equal to
the smaller root 8 after the differentiation.
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Now while this differentiation is being performed we may con-
sider z as a constant. The series can then be considered as a series

of functions of the variable ¢, sayi Yra(c), where
0

\/I‘,,(G) =rt"a,
=x°tngoh, (/[ f(c+n)f(c+n-1) ... f(c+1)], from (4),
where a,=k(c—3) and the factor (c—3) is to be divided out if it
occurs in the denominator.

Now Goursat (Cours d’Analyse, Vol. II. 2nd ed.* p. 98) proves
that if (i) all the /’s are functions which are analytic and holo-
morphic within a certain region bounded by a closed contour and
continuous on this contour, and if (ii) the series of v/’s is uniformly
convergent on this contour, then the differentiation term by term
gives a convergent series whose sum is the differential coellicient
of the sum of the original series.

For the definitions of holomorphic and analytic, sec the beginning
of Vol. IL. of Goursat. It will be seen that the y’s satisfy these
definitions and are continuous as long as we keep away from values
of ¢ that make them infinite. These values are a -1, 8-1, a -2,
B-2, etc. To avoid these take the region inside a circle of centre
¢=[3 and of any radius less than unity.

We shall now prove that the series is uniformly convergent
everywhere inside this region. This will prove it is uniformly
convergent on the contour of a similar but slightly smaller region
inside the first.

Let s be a positive integer exceeding the largest value of C within
the larger region.

Then for all values of ¢ within this region, for values of n exceed-
ing s,

F(c+n)=|(c+n)(c+n—1)—po(c+n)—qq|, by definition of F,
Z(C+n)2=(Py+1)(C+n)-Q,, a8 |u—v|=|u|-]|v]|,
>(n-8)2—-(M+1)s+n)—-M, asP,<M and Qo<M,
> n®+In+J, say, where I and J are independent of

PO o) TP (- |

For sufficiently great values of n, say » >m, the last expression
is always positive.

Let H denote the maximum value of

M[A4,,(C+m)R*+A4,, 5(C+m-1)R-2+...+A4,(C+1)R-™] (9)
for all the values of ¢ in the region.
* p. 96 in 4th ed.
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Then if E,, be any positive number greater than B,, and, if,

for values of n > m, E, be defined by
B M{E. (s+n)R1+... B, (s +m +1) R-"4m} + HR-n+m
" n:+In+J

ME,(s+m+1)R-' + HR!

m+1R2+I(m+1)+J
which has a numerator greater than and a denominator less than
those of B,,,,, from (8), (9), and the definition of B, as the right-
hand side of (7), we see that

Em+l > Bm+l'
Similarly E,> B, for all values of n>m.

»(10)

so that Epy=

From (10) we prove Lt E7;ﬂ=112' This piece of work is so

n—> w0

similar to the corresponding work at the end of Art. 108 that we
leave it as an exercise for the student.

Hence i E.R." is convergeut if B, <R.

Therefore within the circle |z| =R, and within the region

specified for ¢,
|an x| <A, Rt < B,R" < E Ry +n.

This shows that Za,z°*" satisfies Weierstrass’s M-test for uniform
convergence (Bromwich, Art. 44), as R,, s, and the E’s are all inde-
pendent of c.

This completes the proof that 3\, =Za,z*t" satisfies all the
conditions specified, so the differentiation with respect to ¢ is now
justified. This holds within the circle |z| =R,. We can take R,
great enough to include any point within the circle |z| =R.

If the roots of the indicial equation are equal instead of differing
by an integer, the only difference in the above work is that a, is
not to be replaced by k(c - ), as no (¢ -3) can now occur in the
denominator of a,.

[For a supplement to Chaps. IX. and X. see Arts. 171-177. They
deal with regular integrals, Fuchs’ theorem, ordinary and singular
points, equations of Fuchsian type, characteristic index, normal and
subnormal integrals.]



CHAPTER XI

ORDINARY DIFFERENTIAL EQUATIONS WITH THREE
VARIABLES, AND THE CORRESPONDING CURVES AND
SURFACES

111. We shall now consider some simple differential equations
expressing properties of curves in space and of surfaces on which
these curves lie, or which they cut orthogonally (as in Electro-
statics the Equipotential Surfaces cut the Lines of Force ortho-
gonally). The ordinary * differential equations of this chapter are
closely connected with the partial differential equations of the
next.

Before proceeding further the student should revise his solid
geometry. We need in particular the fact that the direction-cosines
of the tangent to a curve are

(dx dy dz)
ds’ ds’ ds/
t.e. are in the ratio dz : dy : dz.

Simultaneous linear equations with constant coefficients have
already been discussed in Chapter III.

. . dx dy dz .

112. The simultaneous equations P Q R These equations
express that the tangent to a certain curve at any point (z, y, 2)
has direction-cosines proportional to (P, @, R). If P, @, and R are
constants, we thus get a straight line, or rather a doubly infinite
system of straight lines, as one such line goes through any point of
space. If, however, P, @, and R are functions of z, y, and 2, we get
a similar system of curves, any one of which may be considered as
generated by a moving point which continuously alters its direction

* {.e. not involving partial differential coefficients.
133
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of motion. The Lines of Force of Electrostatics form such a
system.*

dz dy dz
i ST E—, siieeecesesesitscesseccnatanens 1
Ex. (i). T=1°1 (1)
Obvious integrals are B—2=0, veeeereeeeneeesnenrasacsennosenens-(2)
Y—=2=b, eriiiriiriiiniiiee (3)

the equations of two planes, intersecting in the line
z—a y__b z

B it Bt LIS R R (4)

which by suitable choice of the arbitrary constants a and b can be made
to go through any given point, e.g. through (f, g, #) if a=f—A4 and
b=g—h..

Instead of picking out the single line of the system that goes through
one given point, we may take the infinity of such lines that intersect
a given curve, e.g. the circle z2+y2=4, 2=0.

The equations of this circle, taken together with (2) and (3), give

z=a,
y=b,
and hence a?+b2=4. .....ceueenennn cereneens(D)

This is the relation that holds between a and b if the lme is to inter-

sect the circle. Eliminating @ and b from (2), (3), and (5), we get

(z—2)2+(y—2)%=4,
the elliptic cylinder formed by those lines of the system which meet

the circle.
Similarly the lines of the system which meet the curve

¢(x, y)=0, 2=0

form the surface ¢(x—2, y—2)=0.
. de dy dz
Ex. (ll). ';—3=—_—;. .................................(6)
Obvious integrals are Z2H22=00, ceevriiirrnnii i e )
y=b, SRR (<) |

a right circular cylinder and a plane that cuts it in a cncle

The differential equations therefore represent a system of circles,
whose centres all lie on the axis of y and whose planes are all perpen-
dicular to this axis.

One such circle goes through any point of space. That through

(f, 9, h) is z?+22=f21 08, y=g.
A surface is formed by the circles of the system that intersect a
given curve.

* The equations of the lines of force are dx/a!{:dy/avzdz/%g, where
V is the potential function. 7]



ORDINARY EQUATIONS WITH THREE VARIABLES 135

If the given curve is the hyperbola
a2 2
ZE - "B;'z =] y % =0,
(7) and (8) give, for a circle intersecting this hyperbola,
z2=q, y=b,

2
and hence Ai' —'%—2= Lo erreieeeereneeerecnecnncensnens (9)
Eliminating @ and b from (7), (8), and (9), we get the hyperboloid
of one sheet, 22+22 g2
b

formed by those circles of the system that intersect the hyperbola.
Similarly, starting from the curve ¢(x2, y)=0, 2=0, we gel the
surface of revolution ¢ (z2%+22, y)=0.

113. Solution of such equations by multipliers. If
dv_dy _de
P Q r
each of these fractions is equal to
lde+mdy+ndz

“IP+mQ+nR
This method may be used with advantage in some examples to

obtain a zero denominator and a numerator that is an exact

differential, or a non-zero denominator of which the numerator is the
differential.

. dx dy dz
w0 aty) “Ha-y) P
N zdex-ydy-zdz zdv-ydy-zdz
Each fractlon—zz(x+y) e~ g) — 2@t + ) =% H
therefore zdr —ydy —zdz=0,
se. at-y’-2'=a.
Similarly ydr+xdy —2dz=0,
te. 2zy—-2:=b.
. dx dy dz
EX- (u) _+—y_l—a:—?'

Here fl_z= d:fj_'_fd_y =(_ifv;d_!./’
z 2+x+y y-w

giving logz=log (2+z+y)+loga= —log (x—y) +logb.
se. z=a(2+z+y)=b/(x-y)
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Examples for solution.

Obtain the system of curves, defined by two equations with an
arbitrary constant in each, satisfying the following simultaneous dif-
ferential equations. Interpret geometrically whenever possible.

de dy dz dx dy dz
(1) T y z 2) mi-ny nx—lz ly—ma’
) dx dy dz de_dy dz

yi+z2-22 -2y -—2a2 ye = ay

d d dz zdx dy dz
() ==L =2, (6) 5—g——~-

y+z 2+x T4y 22 - 2yz—y? y+z y z

(7) Find the radius of the circle of Ex. 2 that goes through the
point (0, —n, m).

(8) Find the surface generated by the curves of Ex. 4 that intersect
the circle y2+2%2=1, z=0.

(9) Find the surface generated by the lines of Ex. 1 that intersect
the helix z2+y?=r3 z=Fktan! g

(10) Find the curve which passes through the point (1, 2, —1) and
is such that at any point the direction-cosines of its tangent are in the
ratio of the squares of the co-ordinates of that point.

114. A second integral found by the help of the first. Consider the

equations da: _dy _ dz )
~9 = 3gisin(y 1 22)
An obvious integral 1B y+2=06. ceovriiniiiiiiiiiiiiiinninn(2)
Using this relation, we get
do__dz__
1 3a%sind’
giving z—-a%sina=b.
Substituting for @, z-z3sin(y +2x) =b. ....ccvevrinreriiirinnnn(8)

Is (3) really an integral of (1) ¢
Differentiating (3),
{dz - 32®dz 8in (y +2x)} —2®cos (y +2x) . {dy +2 dz} =0,
which is true in virtue of (1). So (3) ¢s an integral.

Examples for solution.

) dz _dy dz @ ) dz_ dy dz
1 38 bz+tan(y—3x) e z’+(y+z)"

9) dr dy dz d:v dy dz

) — e e

(P +zy) —yr(Bd+ay) 2 xy y? ey - 28
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115. General and special integrals of simultaneous equations. If
u=a and v=>b are two independent integrals of the simultaneous

equations dz dy dz

P QR
then ¢ (u, v) =0 represents a surface passing through the curves of
the system, and should therefore give another solution, whatever
the form of the function ¢. i

An analytical proof of this is reserved for the next chapter, as
its importance belongs chiefly to partial differential equations.

¢ (u, v) =0 is called the General Integral. Some simultancous
equations possess integrals called Special, which are not included in
the General Integral.

Examples for solution.

(1) In the Ex. of Art. 113 u=2%-y2-2? and v=2zy -2, so the
General Integral is ¢(z2-y2?-22, 2zy—23)=0. The student should
verify this in the simple cases where

d(u, V)=u—-v or ¢y, v)=::i__12.

(2) Verify that for the equation

a___dy_ds
1+4/(z-2z-y) 1 2’
the General Integral may be taken as
${2y-2 y+2¢/(z-2-y)} =0,
while z=% +y is a Special Integral.

116. Geometrical interpretation of the equation
Pdzx+Qdy +Rdz=0.

This differential equation expresses that the tangent to a curve
is perpendicular to a certain line, the direction-cosines of this tangent
and line being proportional to (dz, dy, dz) and (P, Q, R) respectively.

But we saw that the simultaneous equations

expressed that the tangent to a curve was parallel to the line (P,Q, R).
We thus get two sets of curves. If two curves, one of each set,
intersect, they must intersect at right angles.

Now two cases arise. It may happen that the equation

Pdz+Qdy+Rdz=0

is integrable. This means that a family of surfaces can be found,
all curves on which are perpendicular to the curves represented by
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the simultaneous equations at all points where these curves cut the
surface. In fact, this is the case where an infinite number of surfaces
can be drawn to cut orthogonally a doubly infinite set of curves,
as equipotential surfaces cut lines of force in electrostatics. On the
other hand, the curves represented by the simultaneous equations
may not admit of such a family of orthogonal surfaces. In this
case the single equation is non-integrable.

Ex. (i). The equation dx+dy+dz=0
integrates to z+y+z=c,
a family of parallel planes.
We saw in Ex. (i) of Art. 112 that the simultaneous equations

iz _dy_ds
1 1 1
represented the family of parallel lines
z-a_y-b s
1 1 1
The planes are the orthogonal trajectories of the lines.
Ex. (ii). 2dx—xzdz=0,
f.e do_dz_ 0
. z oz
integrates to 2 =c,

a family of planes passing through the axis of y.
We saw in Ex. (ii) of Art. 112 that the corresponding simultaneous
equations dz dy dz
Z 0 -u
represented a system of circles whose axes all lie along the axis of y,
go the planes are the orthogonal trajectories of the circles.
Examples for solution.

Integrate the following equations, and whencver possible interpret
the results geometrically and verify that the surfaces are the orthogonal
trajectories of the curves represented by the corresponding simultaneous
equations :

(1) xdz+ydy+2zdz=0.

(2) (y?+22—2?)de— 22y dy — 222 dz=0. [Divide by 22.]

() yzdz+2zdy+aydz=0. (4) (y+2)dz+(2+7)dy +(x+y)dz=0.

(6) z(y dx—x dy) =y? d. (6) xdzx+zdy+(y+22)dz=0.

117. Method of integration when the solution is not obvious. When

an integrable equation of the form
Pde+Qdy+Rdz=0
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cannot be solved by inspection, we seek for a solution by considering
first the simpler case where z is constant and so dz =0.
For example, yzdz + 22z dy — 3wy dz =0 becomes, if 2 is constant,
ydx +2x dy =0,
giving xy?=a.
As this was obtained by supposing the variable z to be constant,
it is probable that the solution of the original equation can be
obtained by replacing the constant a by some function of z, giving

zy* =f(2)
leading to yidz +2xy dy - % dz=0.
This is identical with the original equation if
df
y* 2y  dz
yz 2zx  -3ay
. df 3xy® 3f(2)
Yo T2 T
df 3dz
7%
J(z)=c2?,

giving the final solution xy? =cz®.
For a proof that this method holds good for all integrable
equations, see Art. 119.

Examples for solution.

(1) yzlog z dwv—zxlog z dy + zy dz=0.

(2) 2yz dx + 2z dy — zy (1 +2) dz=0.

(3) (2x2+2zy+2222+1)dx +dy +22dz=0. [N.B.—Assume z con-
stant at first. ]

(4) (y2+y2)dw + (22 +22) dy + (y? — zy) dz=0.

(5) (z%y — y® —y2)dx + (xy? — 2%z — 2®) dy + (zy? + 22y) dz =0.

(6) Show that the integral of the following equation represents a
family of planes with a common line of intersection, and that these

planes are the orthogonal trajectories of the circles of Ex. 2 of the set
following Art. 113 :

(mz — ny)dz + (nz - l2) dy + (ly — mz) dz=0.

118. Condition necessary for an equation to be integrable. If
Pdx+Qdy+Rdz=0......ccuvuuvineceerenn (1)

has an integral ¢ (2, y, 2) =¢, which on differentiation gives

O 9% op o, _
oz dx + 2y dy + o dz=0,
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2
then 5‘5 =\P; ——-==>\Q, ?=>\R
Hence 5 - V)= ayaz aigy az( A
e. (af aR) Q --=o ceeeeeereee{2)
Similatly x(aa—f—%f) Rg;‘ PR, i)
oP_2Q\, pi\
"(@“m) Qa erereeneenn(d)

Multiply equations (2), (3), and (4) by P, Q, and R respectively,
and add. We get
0Q OR oR 0P oP 0Q\ _
P(az ay> +Q<§5 "a’%) +R(3y ‘ax> =0.
If the equation (1) is integrable, this condition must be satisfied.

The student familiar with vector analysis will see that if P, @, B
are the compenents of & vector A, the condition may be written

A .curl A=0.
Ex. In the worked example of the last article,
yz dz + 222 dy - 3zy dz =0,

P=yz, Q=222, R=-3zy.

The condition gives
yz(2z + 3z) + 2zx( — 3y — y) — 3zy (2 — 22) =0,
t.e. bzyz-—8zyz+3zyz=0,
which is true.

Examples for solution.

(1) Show that the equations in the last two sets of examples
satisfy this condition.

(2) Show that there is no set of surfaces orthogonal to the curves
given by dz  dy dj

zz+y1

*119. The condition of integrability is sufficient as well as necessary.
We shall prove that the condition is sufficient by showing that
when it is satisfied the method of Art. 117 will always be successful
in giving a solution.

We require as a lemma the fact that if P, @, R satisfy the con-
dition, so also do P, =AP, Q, =)@, R, =\R, where X is any function
of z, y, and z. We leave this as an exercise to the student.

* To be omitted on & first reading.
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The method of procedure is to eliminate one of the variables and
its ditferential, say z and dz, from these two equations and the differ-
ential of the second of them.

Differentiating (2), 2dx — dy — dz=0.
Multiplying by # and adding to (1),
(y +2z) dz + (2 —x — y) dy =0,
or using (2), (y+2x) dx + (2 — 2y — 1) dy =0,
which gives y+rd—y2-y=c% ......... ceenne(3)

Thus the curves of the family that lie in the plane (2) are the sections
by that plane of the infinite set of rectangular hyperbolic cylinders (3).

The result of this example could have been expressed by saying
that the projections on the plane of xy of curves which lie in the plane
(2) and satisfy equation (1) are a family of concentric, similar and
similarly situated rectangular hyperbolas.

Examples for solution.

(1) Show that there is no single integral of dz=2y dz +z dy.
Prove that curves of this equation that lie in the plane z=z +y lie
also on surfaces of the family (x —1)2(2y—1)=c.

(2) Show that the curves of
22

xdm+ydy+c\/<1 —a—ﬁ> dz=0
that lie on the ellipsoid

lie also on the family of concentric spheres
x2+y?+2i=k2
(3) Find the orthogonal projection on the plane of xz of curves
which lie on the paraboloid 3z=x2+y? and satisfy the equation
2dz=(x +2) de+y dy.
(4) Find the equation of the cylinder, with generators parallel to

the axis of y, passing through the point (2, 1, —1), and also through a
curve that lies on the sphere z2+y2+22=4 and satisfies the equation

(zy +2x2) dx + y2dy + (#® + yz) dz =

MISCELLANEOUS EXAMPLES ON CHAPTER XL

do dy d @t _ Wi
b= yz xy Pr-2at 2t -2dy 9z(zP-4P)
dy  dz

(3) d—w=z, d—may.

de dy % (v —sinz) % =
4) (z+z’)cosza-—(z+z’)a+(]—-z)(y smx)dt-—O.
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dy N
7 +z E-t =],

(6) Find f(y) if f(y) dz — 2z dy — zy log y dz =0 is integrable.
Find the corresponding integral.

(5) (2z+y*+ 2xz) TR T

(7) Show that the following equation is not integrable :

3y dz+ (2 — 3y) dy + = dz=0.

Prove that the projection on the plane of zy of the curves that
satisfy the equation and lie in the plane 2z +y —z=a are the rectangular
hyperbolas @3+ 3zy — y® —ay =b.

(8) Find the differential equations of the family of twisted cubic
curves y=az?; y?=0Uzz. Show that all these curves cut orthogonally
the family of ellipsoids

22+ 2y? 4 322 =2,

(9) Find the equations of the curve that passes through the point
(3, 2, 1) and cuts orthogonally the family of surfaces z+yz=c.

(10) Solve the following homogeneous equations by putting z=wuz,
y=vz:

(i) (22— y?— 23+ 2zy + 2x2) dz + (y? — 28 — 22 + 29z + 2yz) dy

+ (22 - 22— y% + 222+ 22y) dz=0;

(i) (2wz - yz) dx+ (2yz — 22) dy — (2 — 2y + y?) dz=0

(iil) 22dz + (22 - 2y2) dy + (2y2— yz — 22) dz =

(11) Prove that if the equation

P.dz, + Pydxy+ Pydxg+ Pydry=0

is integrable, then

oP, oP oP, oP, oP, oP,

P, <Er: - 55:) +P, <aa:, Oz, ) P, (ax ap,) 0,
where 7, 8, t are any three of the four suffixes 1, 2, 3, 4.
Denoting this relation by C,, =0, verify that
P,Cy3q— PyC 134+ P3C s — PyCry3 =0 identically,

showing that only three of these four relations are independent.

Verify that these conditions are satisfied for the equation

(21® — By237,) dty + (2, — 2, 247,) dry
+ (23 - m2,2y) dug + (23 ~ 2,2575) dzy =0,
(12) Integrate the equation of Ex. 11 by the following process :

(i) Suppose z; and z, constant, and thus obtain

z 4+ 28 — 4z 207y =a.

(ii) Replace a by f (x4, z,). By differentiation and comparison with

the original equation obtain 3z, Bry » and hence f and the solution
Z4 2t + xgh + - da x0T, =c.
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(13) Integrate the equation of kx. 11 by putting @, =ur,, ©,=1x,,
xs = ’w:l}‘.

(14) Bhow that the following equation satisfies the conditions of
integrability and obtain its integral :
y sin w dz + zsin w dy — zy sin w dz — xy cos w dw =0.
(15) Show that the equation
adx?+b dy? +c dz? +2f dy dz + 29 dz de +2h dx dy =0
reduces to two equations of the form
Pdz+Qdy+ R dz=0
if abe +2fgh — af2 - bg? — ch?=0. (Cf. a result in Conics.)
Hence show that the solution of
zyz (dae?+dy?+dz?) + x (y2 +2%) dy de +y (22 +a?) de da
+¢ (22 +y?) de dy=0

is (x®+y2+22-¢) (xyz—c)=0. (Cf. Art. 52.)
(16) Show that the condition of integrability of
Pde+Qdy+Rdz=0...ccueuurerrererevennnnn. (1)
implies the orthogonality of any pair of intersecting curves of the
families
dz[P=dy[Q=d2[R ...cvcvrevrerrviriniennnnn(2)
)= G- 50) =+ (5 -%)
and d’”](%"ay =dy i =dz 3y ) (3)

Hence show that the curves of (3) all lie on the surfaces of (1).

Verify this conclusion for P=ny—-mz, @=k-nz, R=mx-ly.

(For the solutions of the corresponding equations, see earlier examples
in this chapter.)

(17) The preceding example suggests that if a=const., 8=const.
are two integrals of equations (3), the integral of equation (1) should
be expressible in the form f(a, 8) =const., and hence that

Pdx+Qdy+Rdz

should be expressible as 4 da+ Bd/3, where 4 and B are functions of
aand 8.

Verify that for the case
P=yzlogz, Q= -zxlogz, R=uy,
a=yz§, ,B-——xz’klogz, A=-B, and B=a.
Hence obtain an integral of (1) in the form a=c¢f3,
te. y=czlogz.
[For a supplement to the chapter see Arts. 168-170. They deal with
an integrating factor for homogencous equations, and with Mayer’s



CHAPTER XII

PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST
ORDER. PARTICULAR METHODS

121. We have already (in Chap. IV.) discussed the formation of
partial differential equations by elimination of arbitrary functions
or of arbitrary constants. We also showed how in certain equatious,
of great importance in mathematical physics, simple particular
golutions could be found by the aid of which more complex solutions
could be built up to satisfy such initial and boundary conditions as
usually occur in physical problems.

In the present chapter we shall be concerned chiefly with equa-
tions of geometrical interest, and seek for integrals of various forms,
“ general,” “complete,” and “singular,” and their geometrical
interpretations. Iixceptional equations will be found to possess
integrals of another form called “ special.”

122. Geometrical theorems required. The student should revise
the following theorems in any treatise on solid geometry :

(i) The direction-cosines of the normal to a surface f (z, y, z) =0
at the point (, y, 2) are in the ratio
oo o
ox ' dy " 0z"
Since
of 1of 0z _ af jof 0z
"oz 9z "oz~ P8RV Toyloz "oy~ T SRV
this ratio can also be written p:¢q: —1.
The symbols p and g are to be understood as here defined all
through this chapter.

(ii) The envelope of the system of surfaces

f(z’ Y, 2, a, b) "O;
146

and
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where a and b are variable parameters, is found by eliminating
a and b from the given equation and

of o o_
=% ="

The result may contain other loci besides the envelope (cf.

Chap. VL.).

123. Lagrange’s linear equation and its geometrical interpretation.
This is the name applied to the equation

Pp+Qq=R, .....ccecevvvvvevrennnnnnn(1)
where P, @, R are functions of z, ¥, 2.

The geometrical interpretation is that the normal to a certain
surface is perpendicular to a line whose direction-cosines are in the
ratio P: Q : R. Butin the last chapter we saw that the simultancous
equations B2 _0Y B2 e (2)

P Q R
represented a family of curves such that the tangent at any point
had direction-cosines in the ratio P:Q:R, and that ¢ (u, v)=¢€
(where u =const. and v=const. were two particular integrals of
the simultaneous equations) represented a surface through such
curves.

Through every point of such a surface passes a curve of the
family, lying wholly on the surface. Hence the normal to the
surface must be perpendicular to the tangent to this curve, ¢.e.
perpendicular to a line whose direction-cosines are in the ratio
P:Q:R. This is just what is required by the partial differential
equation.

Thus equations (1) and (2) are equivalent, for they define the
same set of surfaces. When equation (1) is given, equations (2) are
called the subsidiary equations.

Thus ¢ (u, v) =0 is an integral of (1), if u =const. and v =const.
are any two independent solutions of the subsidiary equations (2)
and ¢ is any arbitrary function. This is called the General Integral
of Lagrange’s Linear Equation.

Ex. (i). p+g=1.
The subsidiary equations are those discussed in Ex. (i) of Art. 112,
viz. de dy dz
T1°T

representing a family of parallel straight linea.
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Two independent integrals are
T—2=0,
y—z=b,
representing two families of planes containing these straight lines.
The general integral is ¢(z -z, y—2)=0, representing the surface
formed by lines of the family passing through the curve
¢ (z, y)=0, 2z=0.
If we are given a definite curve, such as the circle
z2+y?=4, 2=0,
we can construct a corresponding particular integral
(@=2)2+(y-2)? =4,
the elliptic cylinder formed by lines of the family meeting the given
circle.
Ex. (ii). 2p=—=. [Cf. Ex. (ii) of Art. 112.]
The subsidiary equations are
dr dy dz
2 0 "3
of which two integrals are #2+22=a, y=b.
The general integral ¢ (z2+22% y)=0 represents the surface of
revolution formed by curves (circles in this case) of the family inter-
secting the curve ¢ (22, 4) =0, z=0.

Ex. (iii). Find the surfaces whose tangent planes cut off an intercept
of constant length % from the axis of z.
The tangent plane at (z, y, 2) is

Z-z=p(X-2)+q(Y -y).
Putting X=Y =0, Z=z-pr—qy=*F.
The subsidiary equations are

x y z-k
of which y=ax, 2—k =0z, arc integrals.

The general integral ¢ <g, z—;") =0 represents any cone with its
vertex at (0, 0, k), and these surfaces clearly possess the desired property.

Examples for solution.

Obtain general integrals of the following equations. [Cf. the first
set of examples in Chap. XI.]

(1) zp+yg=2.

(2) (mz—ny)p+(ne-1ls)g=1ly —ma.
(3) (y2+22—a%)p—22yq+222=0.
(4) yzp +2zq=2xy.

(0) (y+2)p+(z+2)g=z+y.
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(6) (22 -2yz—y*) p +(zy +a2) g =2y ~22.
(7) p+3g9=>5z+tan(y - 3x).
(8) zp-2¢=2%+(y+w)2
(9) Find a solution of Ex. (1) representing a surface meeting the
parabola y2=4x, z=1.
(10) Find the most general solution of Ex. (4) representing a conicoid.

(11) Show that if the solution of Ex. (6) represents a sphere, the
centre is at the origin.

(12) Find the surfaces all of whose normals intersect the axis of 2.

124. Analytical verification of the general integral. We shall now
eliminate the arbitrary function ¢ from ¢ (4, v)=0, and thus
verify analytically that this satisfies Pp +Qq =R, provided uw =a and
v=> are two independent * integrals of the subsidiary equations

de_dy dz
P Q R

Differentiate ¢ (u, v) =0 partially with respect to z, keeping y

constant; z will vary in consequence of the variation of z. Hence

we geb o <au ou az) o < v v 6z> -0,
u\az T 0282/ T ov \ox T 020z
. b (0w Ou\ Op /v 0v
i, h(Gar5) ot (Garp ) =
. 0p(Ou  Ou\ 0p(0v v\ _
Similarly E <ay +q- > + 2 <ay +q 62) =0,
Ehmlnatlng the ratio —a/) s from these last two equations,

Gy+150) Gorr) =Gar 5 (5403

<an v Ou av> <au ov ou av>

yoz” 020y/ P T \Gz 05 0202/ 1
udv_oudv 1
a'xaq 3y a ()
But from u =a, 6 " dx + dy+ dz
and hence from the submdlary equatlons, of which % =a is an integral,
au
PG+ FAL
a‘uav Cu v

*If 4 and v are not independent, and the other two similar

C Z
expressions all vanish identically (Edwa.rds Differentsal Calculus, Art. 510), which
reduces equation (1) tc 0=0



1560 DIFFERENTIAL EQUATIONS

Similarly pgg +Q gg ‘R glz’ -0,

Hence
Oudv. Judv\ (Oudv Oudv\ (Oudv Judv
P-Q-R=(apar’a;'az,> (G 32 2m58) -(ag-a’g‘ag;a;)'
80 (1) becomes Pp +Qq =R, the equation required.

125. Special integrals. It is sometimes stated that all integrals
of Lagrange’s linear equation are included in the general integral
¢ (u, v)=0. But this is not so.

For instance, the equation

P-9=2v2
has as subsidiary equations
de_dy _ dz.
1 -1 247

Thus we may take u =z +y, v =x — 4/2, and the general integral as

¢ (x+y, x—4/2)=0.

But z =0 satisfies the partial differential equation, though it is
obviously impossible to express it as a function of » and v.

Such an integral is called special. It will be noticed that in all
the examples given below the special integrals occur in equations
involving a term which cannot be expanded in series of positive
integral powers.

In a recent paper M. J. M. Hill* has shown that in every case
where special integrals exist they can be obtained by applying a
guitable method of integration to the Lagrangian system of sub-
sidiary equations (see Examples 5 and 6 below). He also under-
takes the re-classification of the integrals, the necessity of which
task had been pointed out by Forsyth.}

Examples for solution.

Show that the following equations possess the given general and
special integrals :

(1) p+202¥=324; g(@-2}, y—2h=0; z=0.
@) p+ql+Gz-yh=1; ¢{z-2 2+3¢z-pY; 2=y.

@) (1+V(z-2-y)}p+9=2; ¢{2y-2 y+24/(2—-2-y)}=0;
1=+y. [Chrystal.]

* Proc. London Math. Soc. 19117.
t Proc. London Math. Soc. 1905-6.
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b win Chrystal’s equation (Ex. 3), obtai

w[?(l +w)%§0+2@a—:§+l]=0.

(4) By putting (z-z~y)

This shows that z—2—y=0 is a solution of the original equation.
[Hill.

(5) Show that the Lagrangian subsidiary equations of Chrystal’
equation (Ex. 3) may be written

do

3, dz
dy ’

=9

l1+(z—-z-y) dy

and deduce that (%(z—x-— y)= - (z—w—y)*,

of which 2~ —y=0 is a particular solution. [Hill.

(6) Obtain the general and special integrals of the equation

P—9=22
by imitating Hill’s methods as given in Exs. 4 and 5.

126. The linear equation with n independent variables. Thi
general integral of the equation
Pip, +Pyp, + Pypy + ... + P,p, =R,

where p1=aaz s Pa= ~a£, ... etc.,, and the P’s and R are functions
2y or,
of the s and z, is D (U, Ug, Uy, ... Uy) =0,
where u, = const., 4, =const., ... etc., are any » independent integrals
of the subsidiary equations
doey _dv, dz, &z
PP, P, T R’

This may be verified as in Art. 124. The student should write
out the proof for the case of three independent variables.

Besides this general integral, special integrals exist for excep
tional equations, just as in the case of two independent variables.

Examples for solution.
(1) pa+py=1+p;
(2) z,p,+2x4p, + 3wgpg + 4y =0.
(3) (23— Tg) Py + T3Py — T3Py =Ty (T +75) — 7,2
(4) T3P, +25%) Py + 2123 P + Ty ,%5 =0.
(B) p1+%1Pg+T1T3Py =275\ 2.
(6) py+py+Pe{l +V/(2— 21—y —24)} =3.
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127, The equation P 2t gfy+R of =0. If P, @, R are functiona
of z, y, z but not of f, the equation can be viewed from two different
aspects.

Consider, for example,

of _of of _o
a}_ay+2\/ 0. veiiriren i 1)
We may regard this as equivalent to the three-dimensional
equation P=q=2/2 eeiiiiiiiiiiiiinneinnnnannno(2)

of which ¢(z+y, x—4/2)=0 is the general 1ntegral and z=0 a
special integral.
On the other hand, regarding (1) as an equation in four variables,
we get the general integral
</’(f:3’+y,w—\/z)=0, )
which is equivalent to f=+(z +y, - 1/2), where  is an arbitrary
function, but if

f=z, af; ?f+2\/ ,f =24/2=2+/f.

Thus f=z is not an lntegral of (1), although f=2=0 certainly
gives a solution.
In general it may be proved that

af+Qaf +rY -0

regarded as four-dimensional, where P, @, R do not contain f, has
no special integrals.* A similar theorem is true for any number of
independent variables.

Examples for solution.
(1) Verify that if f=x, f 0 is a surface satisfying

\/x +\/y f+\/z»z—0

and hence that this dlfferen‘mal oquatlon, interpreted threc-dimension-
ally, admits the three special integrals z=0, y=0, =0 and the general
integral ¢ (v/z2—1/, vVz2—1/y) =

(2) Show that the general integral of the last example represents
surfaces through curves which, if they do not go through the origin,
either touch the co-ordinate planes or lie wholly in one of them.

[Hint. Prove that f—lf=\/(——”—) and that dz/ds=0 if z=0,

s T+y+z

unless 2, y, z are all zero. ]

* See Appendix B.
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(3) Show that /= g;; +4/y ?7; =0, regarded two-dimensionally, repre-
sents a family of parabolas 4/y=4/z+c¢, and their envelope, the
co-ordinate axes =0, y=0; while regarded three-dimensionally it
represents the surfaces z= ¢(y?‘ -z,

128, Non-linear equations. We shall now consider equations in
which p and ¢ occur other than in the first degree. Before giving
the general method we shall discuss four simple standard forms, for
which a “ complete integral” (i.e. one involving two arbitrary
constants) can be obtained by inspection or by other simple means.
In Arts. 133-135 we shall show how to deduce general and singular
integrals from the complete integrals.

129. Standard I. Only p and q present. Consider, for example,
this equation q =3p2.

The most obvious solution is to take p and q as constants satisfying
the equation, say p=a, ¢ =3a®

Then, since  dz=pdz +qdy=adz +3a?dy,

z=ar +3a%y +c.

This is the complete integral, containing two arbitrary constants
a and c.

In general, the complete integral of f(p, ¢) =0 is

z=ar+by +c,
where @ and b are connected by the relation f(a, b) =0.
Examples for solution.
Find complete integrals of the following :

(1) p=2¢2+1. (2) p2+¢%=1.

(3) p=el. (4) pP=1.

(5) p?-¢*=4. (6) pg=p-+q.

130. Standard II. Only p, q, and z present. Consider the equation
2R+ =1. i (1)

As a trial solution assume that 2z is a function of z+ay
(=w, say), where a is an arbitrary constant.
Then p=§§=d{' ou _dz q=83 _dz au:a@.
or du or du’ oy du 0y ~du
Substituting in (i) 2 <{lé>a(z’ +a?) =1
’ du ’
t.e du
T odz
te. w+b=2}(2* +at)l,
t.e. 9(x+ay +b)2=(2%+a%)

= £2(2*+ a,z)*’
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In general, this method reduces f(z, p, ¢)=0 to the ordinary
differential equation

dz dz)
f(z, d_L_l" aa—/& =0.
Examples for solution.
Find complete integrals of the following :

(1) 42=pq. (2) 22=1+p2+qt

(3) ¢2=22p%(1 - pY). 4) pPP+¢®=27z.

(6) p(z+p)+¢=0. (6) pP=2q.

131. Standard ITII. f(x, p)=F(y, q). Conside~ the equation
p=32t=¢"-y.

As a trial solution put each side of this equation equal to an
arbitrary constant a, giving

p=3xt+a; qg=+/(y+a).

But dz=pdz+qdy
=(322 +a)dz ++/(y +a)dy ;
therefore z=z%+ar+%(y +a)g +b,

which is the complete integral required.

Examples for solution.
Find complete integrals of the following :

(1) pr=q+=. (2} py==y.
() yp=2yz+logg. (4) g=zyp*.
(5) pe=ge®. (6) q(p—cosx)=cosy.

132. Standard IV. Partial differential equations analogous to Clair-
aut’s form. In Chap. VI. we showed that the complete primitive of
y=pz+f(p)

was i =cz +f(c), a family of straight lines.
Similarly the complete integral of the partial diflerential equation
z=pz+qy +/(p, 9)
is z=az +by +f(a, b), a family of planes.
For example, the complete integral of
z=px+qy+p?+q*
is z=ax +by +a®+b%
Corresponding to the singnlar solution of Clairaut’s form, giving
the envelope of the family of straight lines, we shall find in the next
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article a “singular integral ” of the partial differential equation,
giving the envelope of the family of planes.

Examples for solution.

(1) Prove that the complete integral of z=px+qy—2p—- 3¢ repre-
sents all possible planes through the point (2, 3, 0).

(2) Prove that the complete integral of z=pz+qy++/(p2+¢2+1)
represents all planes at unit distance from the origin.

(3) Prove that the complete integral of z=pz+qy+pe/(pg—p-9)
represents all planes such that the algebraic sum of the intercepts on
the three co-ordinate axes is unity.

133. Singular Integrals. In Chap. VI. we showed that if the
family of curves represented by the complete primitive of an ordinary
differential equation of the first order had an envelope, the equation
of this envelope was a singular solution of the differential equation.
A similar theorem is true ¢oncerning the family of surfaces repre-
sented by the complete integral of a partial differential equation of
the first order. If they have an envelope, its equation is called a
“singular integral.” To see that this is really an integral we have
mercly to notice that at any point of the envelope there is a surface
of the family touching it. Therefore the normals to the envelope
and this surface coincide, so the values of p and ¢ at any point of
the envelope are the same as that of some surface of the family, and
therefore satisfy the same equat'ion.

We gave two methods of finding singular solutions, namely from
the c-discriminant and from the p-discriminant, and we showed that
these methods gave also node-loci, cusp-loci, and tac-loci, whose
equations did not satisfy the differential equations. The geometrical
reasoning of Chap. VI. can be extended to surfaces, but the dis-
cussion of the extraneous loci which do not furnish singular integrals
is more complicated.* As far as the envelope is concerned, the
student who has understood Chap. VI. will have no difficulty in
understanding that this surface is included among those found by
eliminating @ and & from the complete integral and the two derived

equations f(z, y, 2, a, b) =0,
of
% =0,
of .
a6 =03

@ Sec a paper by M. J. M. Hill, Pkil. Trans. (A), 1892.
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or by eliminating p and ¢ from the differential equation and the
two derived equations
F(z,y, 2, p, q)=0,
oF

op =0,
oF
a‘q— - 0.

In any actual example one should test whether what is apparently
a singular integral really satisfies the differential equation.

Ex. (i). The complete integral of the equation of Art. 132 was
z=az+by+a?+12
Differentiating with respect to a, 0= +2a.
Similarly 0= y  +2b
Eliminating @ and b, dz=— (22 +93).
It is easily verified that this satisfies the differential equation
z=pr+qy+p?+q?
and represents & paraboloid of revolution, the envelope of all the planes
represented by the complete integral.

Ex. (ii). The complete integral of the equation of Art. 130 was

9(x+ay+b)2=(22+a?P wcvreerriininnennn (1)

Dlﬂ'erentlatlng with respect to a,
18y(z+ay+by=64(22+a?)t ..cccovviniinnennn ()
Similarly 18(z+ay+b)=0. ccevvrnviviiireiieniineinninnnnn(3)
Hence from (2), A=0. ciriiiiiiiiiie e (4)

Substituting from (3) and (4) in (1), 2
But 2=0 gives p=¢=0, and these values do not satisfy the difler-
ential equation 22(p%2 +¢q2) =1.

Hence 2=0 is not & singular integral.

Ex. (iii). Consider the equation p?=zq.
Differentiating with respect to p, 2p=0.
Similarly 0==z.
Eliminating p and ¢ from these three equations, we get
z=0.
Thix satisfies the differential equation, so it really is a singular
integral.
. But it is derivable by putting b=0 in

z = betrtaly,
which is easily found to be a complete integral.

So z=0 is both a singular integral and a particular case of the
complete integral.
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Examples for solution.
Find the singular integrals of the following :

(1) z=px+qy+log pg. (2) z=px+qy+p?+pg+qd
(3) z=pz+qy+3ip3e> (4) z=pz+qy+plq.
(5) 4z=pq. (6) 22=1+p2+q> () pP*+¢3=2T7z.

(8) Show that no equation belonging to Standard I. or III. has &
ingular integral. [The usual process leads to the equation 0=1.]

(9) Show that z=0 is both a singular integral and a particular case
f a complete integral of ¢2=22p2(1 — p2).

134. General Integrals. @ We have seen, in Ex. (i) of the last
rticle, that all the planes represented by the complete integral

z=ar+by+a?+b% ... (1)
ouch the paraboloid of revolution represented by the smmgular
ntegral 4= —(Z2HY2). rreererreeieieie e en(2)

Now consider,not all these planes, but merely those perpendicular
o the plane y =0. These are found by putting =0 in (1), giving
z=ax +a?,
f which the envelope is the parabolic cylmder
dz=—2% ... .-(3)
Take another set, those which pass through the pomt (O 0, 1)
From (1), 1=a2+102
o (1) becomes z=az+y+/(1 -a?) +1,
f which the envelope is easily found to be the right circular cone
(z-12=22+9y% ()
In general, we may put b=f(a), where f is any function of a,
jiving z=az +yf(a) +a?+ {f(a)}% PR () |

The envelope of (5) is found by ehmmatmg a between it and
he equation found by differcntiating it partially with respect to a,

t.e. 0=z +yf (a) +2a+2f (a)f'(a). .crvvrenennni(6)

If f is left as a perfectly arbitrary function, the eliminant is
alled the ‘‘ general integral”’ of the original differential equation.
iquations (3) and (4) are particular integrals derived from the
eneral integral. '

We may define the general integral of a partial differential
quation of the first order as the equation representing the aggregate

f the envelopes of every possible singly-infinite set of surfaces that
PD.E. M
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can be chosen out of the doubly-infinite set represented by the
complete integral. These sets are defined by putting b=f(a) is
the complete integral.

It is usually impossible to actually perform the elimination of
a between the two equations giving the envelope, on account of the
arbitrary function f and its differential coefficient. The geometrical
interest lies chiefly in particular cases formed by taking f as some
definite (and preferably simple) function of a.

185. Characteristics. The curve of intersection of two con-
secutive surfaces belonging to any singly-infinite set chosen from
those represented by the complete integral is called a characteristic.

Now such a curve is found from the equation of the family of
surfaces by the same two equations that give the envelope. For
instance, equations (5) and (6) of the last article, for any definite
numerical values of a, f(a), and f’(a), define a straight line (as the
intersection of two planes), and this straight line is a characteristic.
The characteristics in this example consist of the triply-infinite set
of straight lines that touch the paraholoid of revolution (2).

The parabolic cylinder (3) is generated by one singly-infinite set
of characteristics, namely those perpendicular to the plane y =0,
while the cone (4) is generated by another set, namely those that
pass through the fixed point (0, 0, 1). Thus we see that the general
integral represents the aggregate of all such surfaces generated by the
characteristics.

If a singular integral exists, it must be touched by all the char-
acteristics, and therefore by the surfaces generated by particular
gets of them represented by the general integral. It is easily verified
that the parabolic cylinder and right circular cone of the last article
touch the paraboloid of revolution.

136. Peculiarities of the linear equation. To discuss the linear

equation PPp+QG=R ccooveeeeveevrevererrerrernennn(l)
on these lines, suppose that w =const.
and v =const.

are two independent integrals of the subsidiary equations.*
Then it is easily verified that an integral of (1) is

UFAV+D=0. covrvereerriereeieeeeceeeenee(2)

* Since u and v are independent, at least one of them must contain z. Let
this one be u. We make this stipulation to prevent u +av +b being a function of
z and y alone, in which case u +av +b =0 would make terms in (1) indeterminate,
instead of definitely satisfying it in the ordinary war
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This may be taken as the complete integral. The general
integral is found from

U+av+f(a)=0, .ccoovrrvriiiiiiinieinnnnnn(3)
VAL (@) =0 evereeereeie e (4)
From (4), a is a function of v alone,
say a=F (v).
Substituting in (3), u =a function of v,
say u =1,(v),

which is equivalent to the general integral ¢ (u, v) =0 found at the
beginning of the chapter.

The linear equation is exceptional in that its complete integral
(2) is a particular case of the general integral. Another peculiarity
is that the characteristics, which are here the curves represented by
the subsidiary equations, are only doubly-infinite in number instead
of triply-infinite. Only one passes through a given point (in general),
whereas in the non-linear case, exemplified in the last article, an
infinite number may do so, forming a surface.

Examples for solution.
(1) Find the surface generated by characteristics of
z=pr+gy+p+pg+¢t
that are parallel to the axis of #. Verify that it really satisfies the

differential equation and touches the surface represented by the singular
integral.

(2) Prove that 22=4zy is an integral of
z2=px+qy +log pq

representing the envelope of planes included in the complete integral
and passing through the origin.

(3) Prove that the characteristics of ¢=3p? that pass through tle
point (-1, 0, 0) generate the cone (z+1)2+12yz=0.
(4) What is the nature of the integral (y +1)2 + 4wz =0of the equation
z=pr+qy+plqt
() Show that either of the equations
2=(x+Yy)®+ax+by,
ma? + nyd
z=(z+y)2+ ———;LTy—

may be taken as the complete integral of a certain differential equation,
and that the other may be deduced from it as & particular case of the
general integral. [London.]
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(6) Show that z=(z +a)% is a complete integral of the differential
equation p3=4zeWh,

2-y
Show that yzz=4<—£g—-> is part of the general integral of the

9
same equation, and deduceyit from the above given complete integral.
[London.]
MISCELLANEOUS EXAMPLES ON CHAPTER XII.
(1) z=pz+9y-p?. (2) 0=pz+qy-(pz+2)%.
(3) 2(z% +ay) (px—qy) =2t (4) pt—g*=3z-2y.
(5) p\®+22,p, +24%py =0, (6) Z5py+xypy+ 1Py =0.
(7) p*+¢°-3pgz=0. (8) 1,2+ pa®+ps® =1z
(9) p,+py+ps=4a (10) p?+6p+2g+4=0.
(11) 22p2y + 62pwy + 22q2% + 4%y =0.  (12) 2py2=2=(y? +2%2).
(13) p%2+¢*=p%. (14) (2-pz —qy)2°y? = g*2° - 3p°2%2.

(15) Find the particular case of the general integral of p+q=pq
that represents the envelope of planes included in the complete integral
and passing through the point (1, 1, 1).

(16) Prove that if the equation P dz +Q dy + R dz=0 is integrable, it -
represents a family of surfaces orthogonal to the family represented by
Pp+Qq=R.

Hence find the family orthogonal to

¢{z(z+y)?, o* - y%} =0.

(17) Find the surfaces whose tangent planes all pass through the
origin.

(18) Find the surfaces whose normals all intersect the circle

“2?+y?=1, z=0.

(19) Find the surfaces whose tangent planes form with the co-

ordinate planes a tetrahedron of constant volume.

(20) Prove that there is no non-developable surface such that
every tangent plane cuts off intercepts from the axes whose algebraic
sum is zero.

(21) Show that if two surfaces are polar reciprocals with respect to
the quadric 22+y2=22, and (z, ¥, 2), (X, Y, Z) are two corresponding
points (one on each surface) such that the tangent plane at either point
is the polar plane of the other, then

X=p; Y=¢q; Z=pr+qy-2z; z=P; y=Q.
Hence show that if one surface satisfies
f(e, 9,2, p, 9 =0,
the other satisfies f(P, Q, PX+QY ~Z, X, Y)=0.

(These equations are said to be derived from each other by the
Prinoiple of Duality.)
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(22) Show that the equation dual to

2=px+qy-+pg
is 0=2Z+XY,
.- 0Z .
giving z=P=a_X=_Y, y=Q=-X,

1=PX+QY-Z=-XY.
Hence derive (as an integral of the first equation) z= —ay.

(23) By means of a partial differential equation eliminate the
arbitrary function from the equation

z+y+2z=f(a?+y3+2%).
[Differentiating partially with respect to z and y, we get
L+p={f'(a®+y*+2°)}(2z + 22p),

and 1+g={f"(a®+y? +2%)} (2y + 22¢).
Hence (1+p)(y+2z9)=(1+g)(z+2p),
or (y-2)p+(z-2)g=2-y.]

(24) Use the method of Ex. 23 to verify the solutions of the examples
on p. 148.

(25) Find particular integrals of the following partial differential

equations to represent surfaces passing through the given curves.
(i) p+g=1; z=0, y?==z. (i) zp+yg=2; z+y=1, yz=1.

(iii) (y-2)p+(-2)g=2-y,; 2=0, y="2z.

(iv) ¢(y-2)p+y(z-2)g=2(z-y); z=y=2

(V) yp—2ayq=2w2; z=t, y=1% z2=15.

(vi) (y-2){2zyp + (2" - y*) g} +2(2 - 4%) =0; @ =1 y=0, 2=1"

[Eliminate z, y, z from the two equations of the curve and two
independent integrals u(z, y, z)=a, v(z, y, 2)=b of the subsidiary
equations. This gives a relation between a and b. Replace a by u(z, ¢, 2),
b by v(z, y, 2), and we get the integral required.

Thus for (i) u(x, y, 2)=z-2=a, v(z, y, 2)=y-2=>b. (Cf. p. 148.)

From these and the curve equations =0, y2=z, we get a= —3?,
b=y-y? 80 (b-a)t= —a.

Replace a by  —z, b by y -2, and we get the integral

' (y-z)P=2-a.

Similarly for (ii), (iii), and (iv). In(v)and (vi) we eliminate z, y, 2, ¢
from five equations.

Answers. (i) yz=(x+y) (iii) B(z+y+2)2=9(2?+y% +2%)

(iv) (@ +y+2)°=2Tzyz. (V) (x2+y)3=32y%2
(vi) 2% —3zyd =22 - 2yz.



*CHAPTER XIII

PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST
ORDER. GENERAL METHODS

137. We shall now explain Charpit’s method of dealing with
equations with two independent variables and Jacobi’s method for
equations with any number of independent variables. Jacobi’s
method leads naturally to the discussion of simultaneous partial
differential equations.

The mcthods of this chapter are considerably more complicated
than those of the last. We shall therefore present them in their
simplest form, and pass lightly over several points which might be
considerably elaborated.

138. Charpit’s + method. In Art. 131 we solved the equation

R L T BN § § |
by using an additional differential equation
P=32T=0, ceocviriiiiiiiinieniinen e (2)
solving for p and ¢ in terms of z and ¥, and substituting in
dz=pdr+qdy, .cccvvvvvviniiniininnnnn(3)

which then becomes snfegrable, considered as an ordinary differential
equation in the three variables z, y, z.

We shall now apply a somewhat similar method to the general
partial differential equation of the first order with two independent

variables Fx,y,2,0 ¢ =0. coovvrvvinniiinninnnnen(4d)
We must find another equation, say
S@ 9, 2,0 ¢)=0, .eeviriinniiiiniiniies (D)

*To be omitted on a first reading.
t This method was partly due to Lagrange, but was perfected by Charpit.

Charpit’s memoir was presented to the Paris Academy of Sciences in 1784, but
the author died soon afterwards and the memoir was never printed.

162
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such that p and ¢ can be found from (4) and (5) as functions of
z, ¥, z which make (3) integrable.

The necessary and sufficient condition that (3) should be in-
tegrable is that

P <aa(;) aa;z> +Q (%1: %Iz’> +R @ly’ "%%) =0 (identically),

where P=p, Q=¢, R=-1,

dg Jp Op 6q
paz qaz' ay aw u--n..............(ﬁ)
By differentiating (4) partially with respect to z, keeping y and

z constant, but regarding p and ¢ as denoting the functions of «,
y, z obtained by solving (4) and (5), we get

oF 0Fop OFdq_
5 +a;3 3§+ 3q P R ¢ | |

of of op afaq
b5t opou ogan =0 eeeeeee®)

og oFof oFof
From (7) and (8), Jax 65 9p " 3p 30’ SRR ()

OFof oF of
opdq dq op°
Similatly J gg - %g gé _ g;” Z ,
;o _ _OFf OFof
o dydg dqdy
gop_ _OFof oFof
02 9z g aq oz’
Substituting in (6) multiplicd by * J, we get
Fof oF g oF of oF g
7’<aaz a;; ap aQ +q<az ag”'a’q af)
oF3f_aFy oFof oy,

t.e.

Similarly

where J stands for

Yoy o oqay T oz ap opox
ﬁl’%-??@f-( oF | 3F>3f
opoz _ogoy \PapTe ag a2

oF oF af oF\ of
+< +Paz>8p KaJ a)aq =0. ...(13)

* J cannot vanish identically, for this would imply that F and f, regarded as
functions of p and g, were not independent. This is contrary to our hypothesia
that equations (4) and (5) can be solved for p and g¢.
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This is a linear equation of the form considered in Art. 126,
with z, y, 2, p, ¢ as independent variables and f as the dependent
variable.

The corresponding subsidiary equations are

de _ dy dz ___dp dg __df (14)
oF aF oF oF 6F BF “oF_oF 0°
"o "o Py iy mPeu oyl

If any integral of these equations can be found involving p or
q or both, the integral may be taken as the additional differential
equation (5), which in conjunction with (4) will give values of p
and ¢ to make (3) integrable. This will give a complete integral of
(4), from which general and singular integrals can be deduced in
the usual way.

139. As an example of the use of this method, consider the
equation 2xz — pa? - 2qxy + pq =0. RN ¢ 3

Taking the left-hand side of this equation as F and substituting
in the simultaneous equations (14) of the last article, we get

dz _ dy dz _ dp _dg_ df
gt —q Zxy-p pet+2ayg-2pg 22-2qy 0 0O’
of which an integral is =080 ceriiinnniinniiinniieiineeneieen(2)
From (1) and (2), =?3§§§9)
Hence dz=pdx+qdy= M +ady,
dz-ady 2xdx

z-ay 2'-d
t.e. z=ay+b(z®-a).
This is the complete integral. It is easy to deduce the Singular

Integral z=aYy.
The form of the complete integral shows that (1) could have
been reduced to 2=PX +qy - Pg,
which is a particular case of a standard form, by the transformation
dz 1 0z
=X; P- 0X " % oz’

Equations that can be solved by Charpit’s method are often
solved more easily by some such transformation.
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Examples for solution.

Apply Charpit’s method to find complete integrals of the following :
(1) 22+ p%+qy +2y2=0. (2) yzp?=q.
(3) pry+pe+qy=y2. (4) 2z(2%¢®+1) =pa.
(6) g=3p2 (Cf. Art. 129.)  (6) 23(p2?+¢?)=1. (Cf. Art. 130.)
(1Y p-3x2=¢2-y. (Cf. Art. 131.)
(8) z=px+qy+p2+q% (Cf. Art. 132.)
(9) Solve Ex. 2 by putting y*=Y, 22=Z.

(10) Solve Ex. 4 by a suitable transformation of the vuriables.

140. Three or more independent variables. Jacobi’s* method.
Consider the equation

F (2, Ty T3, Pyy P P3) =0y evveevvvnviinnnnnnnnnn(1)

where the dependent variable z does not occur except by its partial
differential coeflicients p,, p,, ps with respect to the three independent
variables z,, 7,, z,. The fundamental idea of Jacobi’s method is
very similar to that of Charpit’s.

We try to find two additional equations

Fi(my, o9, T3, D1y Doy P3) =gy cvveeereenerieninnnnnnn(2)

Fy(2y, @9y T3, P1y Poy P3) =0y veerererreneresenneeens(3)
(where a, and a, are arbitrary constants), such that p,, p,, p; can
be found from (1), (2), (3) as functions of z,, x,, z; that make
dz =p,dx, + Py + Pad®y wevvevvieniiniinninn(4)
integrable, for which the conditions are

Op,_ 0% _Opy, Opy _Opi, 9Py 0Py

or, ox,0r, O0x," 0r, 0x, 83;, Oy

Now, by differentiating (1) partially with respect to z,, keeping
z, and 2, constant, but regarding p;, p,, p; as denoting the functions
of z,, z;, oy obtained by solving (1), (2), (3), we get

oF oF @p_, oF op, OF op,
o, +apl o2, 3p2 2, +aP3 oz, =0, ceeriiinieennn (6)

. oF, 0F, dp, OF, dp, OF, dp,
Similarly +3p1 32, +_8E 35—1+8p4 o, =0, iiierienenennnn(7)

* Carl Gustav Jacob Jacobi of Potsdam (1804-1851) may be considcred as one
of the creators of the Theory of Elliptic Functions. The * Jacobian” or * Fune-
tional Determinant ” reminds us of the large part he played i bringing deter.
wminants into general use.
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From (6) and (7),
o(F, F\)  o(F, F,) 9p, O(F, F,) dp;

(171’ Pl) 9(P2s P1) axl 9(ps, 1) 32}1

oF B ., OF 0F, OF oF,
where 8(_1;:,»?715 denotes the * Jacobian ox, Op, 0p, 0z,

Similarly

<0, erreereeenn(8)

oF, Fy) Oo(F, F) 3P1+3(F I) op, _
0(Z2 Pa) O (P1 P2) O3 9(P3, Po) 812
o(F, F)) a(F, F)ap1 (F I’)ap2
d R 1 + 7 =0. veeverenn..(10
an (3, p3) a(?’p P3) 024 (Pz, Ps) a'Es (10)
Add equations (8), (9), (10).
Two terms are
O F) 0 O F) o0 (0(F, ) O, B))
9(Pas Pl) a(]’b P2)

0(pa p1) 02, 3(py, Py) Oty a‘l;la‘l:Z
Similarly two other pairs of terms vanish, leaving

o, 1) oI, F,) o(F,F,)
FIEWAREIENS +a(x3, ) =0, cereereennnnn(11)
OF 0F, 0F 0F, OF OF, 0F ok, 0F0F, OFOF, .
® 9z, 0p, Op, 0z, 0z, Op, Op, 0z, @ O, Ip, Op, 0z,
This equation is generally written as (F, F,) =0.
Similarly (F, Fp)=0 and (F, F,)=
But these are linear equations of the form of Art. 126. Hence
we have the following rule:
Try to find two independent integrals, Fy=a, and Fy=a,, of the
subsidiary equations

If these satisfy the condition

_ ~(3F, 0F, 0F,dF,
(Fy, F=>( oz, p, o, az,> =0,

and if the p’s can be found as functions of the x’s from
F=F -a,=F,-a,=0,

inlegrate the equation* formed by substituting these functions in
dz = pydx, + pda, + pydic,.

* For a proof that this equation will always be integrable, see Appendix C.
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141. Examples on Jacobi’s method.
Ex. (i). 2012, X3+ 3PgZg® 4+ Po®pg=0. cevveriiriiiiiniinnnn, (1)
The subsidiary equations are

de, _ dp, _ dz, dp, dxg dp,
—2,8;, 2Py - 3T2—2pypy 0 - Pa? 2pyy +6pyzs’
of which integrals are Fi=p,@,=03, ceccvrerririeiiinininiiininannes (2)
and Fo=p; =ag cooivivrneiennniiniiinnnn.(3)

Now with these values (F,, F,) is obviously zero, so (2) and (3) can
be taken as the two additional equations required.
P1=0Zy7h Py=ay  Ppy=—ay *(2a,75+30,75%).
Hence dz=a,2,71dx, +a,dx, — a;~2(2a,24 + 3u,z,?) dag
or z2=a,log z; + a,wy — a,"%(a,24% + a,xs?) +ag,
the complete integral.

Ex. (ii). (g +23) (Pa+ D)2 +2p;=0. crvvivriiniiiiiinnenn(4)
This equation is not of the form considered in Art. 140, as it involves

z. But put
0z Oz,  Ou [Ou

T P80, 0, om0
where u=0 is an integral of (4).
Similarly Pe=—P,[Py; p3=—P,[P,
(4) becomes (Tg+23) (Py+ P3)2 =2 PiPy=0, .ocevvinrneninnnnn. (5)
an equation in four independent variables, not involving the dependent

variable u.
The subsidiary equations are
*, du, P, de,
Py 0 —2(xy+x5)(Pp+ Pg) (Pyt Pg)?  —2(zy+33)(Py+ Py)
dPy __ dzy __dP,
(Po+Dy)® 2Py -PP
of which integrals are FI=P,=0a;, ccerveivriviirnienineneiinninnennn (6)
Fy=Py—Pg=0a3, ..cceveervrrinrrinvininennnn. (7
Fo=2,Py=a; .ccovvrvvininnniiiininnencn (8)
We have to make sure that (F,, F;)=0, where r and s are any two
of the indices 1, 2, 3. This is easily seen to be true.
Solving (5), (6), (7), (8), we get
Py=a,; Py=agrs?; 2Py=ay++/{0,a,/(x,+25)}; Py=Py—a,;
BO du=a,dz, +azst dag + 3a, (de, — dag)
+3/{a,0,/ (2, + 25)} (dzy + dag),

f.e u=0a,2, +a4log 2+ 3ag(zy—x5) 1 1/{a,05(25 + )} + a4

- P,/P,, say,
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So u=0 gives, replacing
g, by 2, a)jagby 4;, layfaz by A, agfag by 4,
log 2+ A&, + A3(%y — T3) £ /{A (%3 +23)} + 43 =0,

the complete integral of (4).

Examples for solution.
Apply Jacobi’s method to find complete integrals of the following :

(1) p+pt+ps=1 (2) @32p 2po2pa® + pi®pa® — pa®=0.
(3) Pr&y +PaZy=ps* (4) p1P2ps+PedT12,T378 =0.
(5) P1Pops=2"TZoTs. (6) pa®s(py+pg) +o,+2,=0.

() P ®+peps—2(py+ps)=0.
(8) (pr+x))2+(Py+Tp) %+ (pg + %) 2 =3(T) + 25 +Ty).

142. Simultaneous partial differential equations. The following

examples illustrate some typical cases :

Ex. (i). F=p 2+ pyps2232=0, cevvrrvrirrvrnierennennnnn(l)
Fi=p,+p,2,=0. ccovvvirivirinriniivinnininnennn(2)

- Here

OF 0F, OF oF,
(F, Fl) 21 (a.E,- apr ap oz, > (Pzpaxaz)zz‘(Psxzzaz)Pz‘—‘O-

Thus the problem may be considered as the solution of the equation

(1), with part of the work (the finding of F,) already done.

30

The next step is to find ¥, such that
(F, Fﬁ) =0=(F1: Fl)'
The subsidiary equations derived by Jacobi’s process from F are

_ﬂl; _ ‘illl _ dz,  dp, _ dzg _ dpy
=2p; 0 —pg@ms®  Papaty®  —PaTaEa?  2p,paTaTs
An integral is pi=a. ... ceeeeen(3)

We may take Iy as p,, since this satlsﬁeq (F Fz) 0—(F1, F,)
Solving (1), (2), (3) and substituting in dz=p, dz, + p, dcg + pg dxg,

dz=adz, - av," dxy + axy—2 du,,
z=a(x,—log vy— ;1) +b.

Ex. (ii). F=px, +p,2s—ps?=0, ceovvreriviiiininecnnnn..(4)
Fi=p, - pg+ps—1=0. .oieiiriiiiiniirinannnn. (5)
Here (F, Fy)=p,+p( —1)=p; — py.

This must vanish if the expression for dz is to be integrable.
Hence we have the additional equation
=Pe=0. i (6)
Solving (4), (5), (6) and substituting,
P L
T, +a,
s=log (z, +a,) + 74 +a.
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In examples of this type we do not have to use the subsidiary
equations. The result has only one arbitrary constant, whereas in
Ex. (i) we got two.

Ex. (iii). F=x24+2,24+p;=0, cocvvvvrrvrninniiniiennnnn (7
FIEpl +pz+$32=0. --------------------------- (8)
Here (F, Fy) =22, +2x, - 2x,.

As z,, z,, x; are independent variables, this cannot be always zero.
Hence we cannot find an integrable expression for dz from these
equations, which have no common integral.

Ex. (iv). F=p,+py+pa®—-32,—30,— 422=0, cuevevrrenrnnnn. (9)
Fi=x,p; —®ypy— 22,2+ 20,2 =0, ceevvrrrrvraninninennne. (10)
Fy=p3-22;=0. cecovrviriineniiiiiininniieniniiininnenes (11)

Solving (9), (10), (11) and substituting in the expression for dz,
dz=(2z, +x,) dz, + (z, + 2x,) dz, + 2x,dz,,

80 z=z2+ 2,2, + 2,2+ 257 +a.
This time there is no need to work out (F, F,), (F, F,), (F,, F,).
Ex. (v). F=p +p,—-1-2,=0, cccocivviiiiiiiiniinnnn, (12)

Fi=p,+P3—2;—23=0, ccooervrrirnninniininn(13)
Fo=p,4+p3-1-2,=0. cevrrvriiiviiinnancncnan(14)
These give dz=z,dx, + dz, + x,dz,.
As this cannot be integrated, the simultaneous equations have no
common integral.
Ex. (vi). F=x,p, - P+ P35~ Pg=0, cevvrevineiiinivennnn. (15)
Flomp +Py—%,—T3=0. ceovrnirniiiiininiiinininn, (16)
Here (F, F))=p,-2,(-1)=py+ay(-1)=p;—py+2; -2,
As in Ex. (ii), this gives us a new equation
Fo=p,—pp+2;,—23=0. ccoe.ciiiiiinniinnnn(17)
Now (F, Fy)=py—z—py(—1) +3y(-1)=F, =0,
and (Fy, Fo)=(-1)-1+(-1)(-1)-(~-1)=0,
80 we cannot get any more equations by this method.
The subsidiary equations derived from F are
Aoy _dpy_dz,_ dpy _dzy_dpy _dze_dp,
-z, p, ¥ -p, -1 O 1 0
A suitable integral is Fy=pg=a, coceenrinerivniiiniinnnninnnee..(18)
for this satisfies (F, Fg)=(F,, Fg)=(F,, F3)=0.
We have now four equations (15), (16), (17), (18). These give
P1=T3; P3=%1; P3=0a; Pa=84;
80 e=2,%. +a(2y+x,) +b.
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But in this example we can obtain a more general integral. The
two given equations (15) and (16) and the derived one (17) are
equivalent to the simpler set :

Pr=Fgs ceveerrecrnenenrineneenreninnenn.(19)
Pa=Fq cverrrrenierenirrnreranerennenenness(20)
Ps=Pa=0. ererriiiiniiiiniiiiine(21)

From (19) and (20), z=2,2,+any function of 23 and 4.

(21) is a linear equation of Lagrange’s type, of which the general
integral is (2, T3 +1,) =0,
t.e. 2 is any function of (x;+2,), and may of course also involve z,
and x,.

Hence a general integral of all three equations, or of the two given
equations, is 2=2,85 +\r (T3 + 1),
involving an arbitrary function. The complete integral obtained by
the other method is included as a particular case. The general integral
could have been obtained from the complete, as in Art. 134.

Examples for solution.
Obtain common complete integrals (if possible) of the following
simultaneous equations :
(1) py%+py*—8(w, +2,)%=0,
(Pr = P2) (@) —@5) + pgzg — 1 =0.
(2) 2,°papg=23*pap1=23°p1py=1.

(3) P1pap;—8z,2,25=0, (4) 2z3p,p;5 — 24P =0,
Po+Pg— 2, —225=0. 2p, — pe=0.

(5) pyxs®+py=0, (6) p2®+py®+2, +22,+333=0,
Pa®3® + pazy?=0 P11+ Py —1=0.

(7) 2py+pe+ps+2p,=0,

P1Ps— P2Pa=0.
(8) Find the general integral of Ex. (5).
(9) Find the general integral of Ex. (7).

MISCELLANEOUS EXAMPLES ON CHAPTER XIII

(1) 22,252p1ps+2yp, =0. (2) @yps+@Pa=p1P3~ PaPat 2 =0.
(3) 97\24py (pa+ps) — 4pe*=0, (4) 9z12py(py+ps) - 4=0,
P1%1+ Py~ p3=0. Pi%+Py—p3=0.

(5) @1paps=Tapsp, =T3P Py =222, %,T5.

(6) py2®—2,2=pye®— 1,2 =pg2® - 2,2 =0.

(7) Find a singular integral of 2=p,2, + pyZ, + PaZs + P12+ P2 + P,
representing the envelope of all the hyper-surfaces (in this case hyper-
planes) included in the complete integral.

(8) Show that no equation of the form F(z,, g, Z3, Py, Pg» Ps) =0
has a singular integral.
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(9) Show that if z is absent from the equation F(z, y, z, p, ) =0,
Charpit’s method coincides with Jacobi’s.

(10) Show that if a system of partial differential equations is linear
and homogeneous in the p’s and has a common integral
z=au,+au,+...,
where the u’s are functions of the «’s, then & more general integral ia
z=¢p(uy, Uy, ...).

Find a general integral of the simultaneous equations

TPy~ TaPg+22P3 =0,
TaP3 — TqPq + T5Ps =0
(11) If p, and p, are functions of the independent variables z;, z,
gatisfying the simultaneous equations
F(zy, x4, Py, po) =0=Fy(zy, Ty, Py, Pa)s
op, Opy\ 0(F, Fy)
rove that F, F +<-——1 - --—‘) ot L
P ( 1 0xy 0xy/ 0(py, Pa)

Hence show that if the simultaneous equations, taken as partial
differential equations, have a common integral, (F, F,) =0 is a necessary
but not a sufficient condition.

Examine the following pairs of simultaneous equations :

(i) F=p,+2p,-2=0,
Fy=(p, +2py)*-1=0.
a(F7 Fl)

9(p1, pa)
for p, and p,.]

[Here =0 identically, and the equations cannot be solved

(ii) F=p,-p,2=0,
Fy=p,+2p,x,+2,2=0.
[Here (F, Fy) and oF, Fy both come to functions which vanish
9(py, o)

when the p’s are replaced by their values in terms of «; and z; There
is no common integral.]
(ii)) F=p,-p,*+z,=0,
Fy=p, +2p,z, +2,2+7,=0.
o(F, Iy) comes to a
- 9(py, o)
function that vanishes when the p’s are replaced by their values.]

Note on Charpit’s Method (pp. 162-164).

Sometimes we can find an equation f(z, y, 2, p, ) =0 which is an
fntegral, not of the subsidiary equations (14), but of simpler equations
obtained from these by using the original differential equation (4). This
will satisfy (13), not identically, but in virtue of (4), and in conjunction
with (4) will still make (3) integrable. Thus in Ex. 2, Art. 139, pz=a is
an integral, not of dz/(—2y2p®+q) =dp/yp®, but of dz/( - yzp?) =dp[yp®,
giving.ﬁnally the resul% on p. xvi. Similarly for Jacobi’s method.

[These have a common integral, although



CHAPTER XIV

PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND
AND HIGHER ORDERS

143. We shall first give some simple examples that can be
integrated by inspection. After this we shall deal with linear
partial differential equations with constant coefficients; these are
treated by methods similar to those used for ordinary linear equations
with constant coefficients. The rest of the chapter will be devoted
to the more difficult subject of Monge’s* methods. It is hoped that
the treatment will be full enough to enable the student to solve
examples and to make him believe in the correctness of the method,
but a discussion of the theory will not be attempted.}

Several examples will deal with the determination of the arbitrary
functions involved in the solutions by geometrical conditions. }

The miscellaneous examples at the end of the chapter contain
several important differential equations occurring in the theory of
vibrations of strings, bars, membranes, etc.

0% 02 0%

The second partial differential coefficients 5 3y oy will

be denoted by 7, s, ¢ respectively.

144. Equations that can be integrated by inspection.

Ex. (i). s=2z+2y.

Integrating with respect to @ (keeping y constant),
q=2%+2ay + ¢ (y).

Similarly, integrating with respect to y,

s=sy+ay+ | $0) dy+ S
say z=z% +zy? +f(z) + F(y).
* Gaspard Monge, of Beaune (1746-1818), Professor at Paris, created Descriptive

Geometry. He applied differential equations to questions in solid geometry.

t The student who desires this should consult Goursat, Sur l'intégration des
equations aux dérivées partielles du second ordre.

1 Frost’s Solid Geometry, Chap. XXV., may be read with advantage.
172
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Ex. (i) Tind a surface passing through the parabolas
z2=0, y?=4az and z=1, y?= -daz,
and satisfying or +2p =0,

The differential equation is
op
oz
giving z*p=f(y),

p= ;—zf ),

z=- +2p=0,

2=~ f (1) + Fly)

The functions f and F are to be determined from the geometrical
conditions.
Putting z=0 and z=y?/4q,

4
0= —y—':f(y)+F(y)-
- da
Similarly 1= ¥ [ () + F(y).
1 y2
Hence F(y) =5 f(y),=g;
and 2 =% - 8_1:1—;’

t.e. 8awz=4ax-y?, a conicoid.

Examples for solution.

(1) r=6x. - (2) zys=1.
(3) t=sin zy. (4) or+p=9z2%83.
(5) ys+p=cos(z+y)—ysin (z+y). (6) t—zq=2a2

(7) Find a surface satisfying s =8xy and passing through the circle
z2=0=2%4+y?~-1,
(8) Find the most general conicoid satisfying xs+¢=4z+2y+2.
(9) Find a surface of revolution that touches z=0 and satisfies
r=122%+ 4y2
(10) Find a surface satisfying ¢t =623y, containing the two lines
y=0=2, y=1=z

145. Homogeneous linear equations with constant coefficients. In
Chap. III. we dealt at some length with the equation
(D® +a;, D1 + @, D2 + ... +a,)Y =f(Z), coererrnneennn(l)

where D= ‘%:

P.D.E. .}
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We shall now deal briefly with the corresponding equation in
two independent variables,
(D™ +a, D™D +a, DD + ... +a, D'z =f(x, y), «ee... (2)
2
oy’
The simplest case is (D -~mD’')z=0,
1.e. p-mg=0,
of which the solution is ¢(z, y +mz) =0,

where D= 2, D=
ox

te. z=F(y+mz).
This suggests, what is easily verified, that the solution of (2)
if f(z, y) =0 is
z2=F (y +mx) + Fy(y + myz) + ... + F,(y + m,z),

where the m,, m,, ... m, are the roots (supposed all different) of
m" +am 1 +am*2 + ... +a,=0.

0% %2 3%

a5 Saray Zasap "
fe. (D*-3DD' +2DD'%)z=0.
The roots of m3—3m2+2m=0 are 0, 1, 2.
Hence z=F (y) + Fy(y + ) + Fy(y +22).

Ex.

Examples for solution.

(1) (D*-6D*D’'+11DD'2-6D'3)2=0.

(2) 2r+5s+2t=0 (9) 02 _0% _

) or? 0dy?

(4) Find a surface satisfying r+s=0 and touching the elliptic

paraboloid z =42 + y% along its section by the plane y =2z +1. [N.B.—

The values of p (and also of ¢) for the two surfaces must be equal for

any point on y=2x +1.]

0.

146. Case when the auxiliary equation has equal roots. Consider

the equation (D =mD')22=0. ...cvureaernreeernreerennnan(1)
Put (D-mD")z=u.
(1) becomes (D-mD"yu=0,

giving u=F(y+maz);

therefore (D -mD')z=F(y +maz),

or p —mq =F(y + mz).

The subsidiary equations are
de _dy dz

1~ -m  F(y+maz)
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giving y+mz=a,
and dz — F(a)dz =0,
te. 2—zF (y+mz)=b,
80 the general integral is
o{z-zF(y +mx), y +mr}=0 or z=xF(y+mx)+F(y+m).
Similarly we can prove that the integral of
(D -mD")z2 =0
i8 2=2"1F(y + mz) +a"2F\(y + mz) + ... + F,_,(y + mz).
Examples for solution.
(1) (4D*+12DD’ +9D'%)z=0. (2) 257 — 405 +16t=0.
(3) (D®-4D2D’ +4DD'?)z=0.
(4) Find a surface passing through the two lines 2z=2z=0,
z2—-1=x-y=0, satisfying r — 45+ 4t =0.
147. The Particular Integral. We now return to equation (2) of
Art. 145, and write it for brevity as
F(D, D"z =f(z, y).
We can prove, following Chap. ILL. step by step, that the most
gencral value of z is the sum of a particular integral and the

complementary function (which is the value of z when the differ-
ential equation has f(z, y) replaced by zero).

The particular integral may be written Yt D 7 f(x, y), and

we may treat the symbolic function of D and I’ as we did that of
D alone, factorising it, resolving into partial fractions, or expanding
in an infinite series.

1 3D\
E.g. -'lj'z_6—*-~D—1),—+‘9—D—,2 (12(132 + 36.'Ey) I)z < -'D-) (1222 + 3627y)

1/, 6D D»
1‘7=<1+ +9T ], + ) (1223 + 36zy)

6
ViR 36z
=4 + 623 + 9zt =102* + 6%y,
8o the solution of (D?-6DD’ +9D’?) z=12a® + 36y
is 2 =102 + 623y + ¢(y +3%) + xy (y + 3x).
Examples for solution.
(1) (D*-2DD’ + D'%)z=12zy.
(2) (2D*-5DD' +2D'"%) =24 (y - ).

=—“z (1222 + 362y) +
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(3) Find a real function V of z and y, reducing to zero when y=0
and satisfying 22V an
Frel a 2
148. Short methods. When f(z, y) is a function of az+by,
shorter methods may be used.
Now D¢ (ax +by) =a¢’(ax +by); D’¢p(ax +by)=by’ (ax +by).
Hence F (D, D')¢(ax +by)="F (a, b)¢p™ (az +by),
where ¢ is the n'* derived function of ¢, n being the degree of
F(D, D).

= —47(z2+y2).

Conversely .
F(E:D") (]5(") (a:v + by) Fla ( b) (aa: + by), ......... (A)
provided F (a, b)=0, e.g.
1 --sin (2z + 3y)

cos (2z +3y) =

D3 =4D?D" +4DD" 2;:; .22,.3+4.2.3%

--33 sin (2z +3y),

since ¢ (2 +3y) may be taken as —sin (2z +3y) if
¢ (2x +3y) =cos (2 +3y).
To deal with the case when F(a, b) =0, we consider the equation
(D -mD")2=p-mg=2"\(y +mz),
of which the solution is easily found to be

1
= Z V(g +ma) + (g +ma),

80 we may take
1
DomD " L@ (y + mx) =771 \,b(y +mz).

Hence

1 1
m‘/’(y+m‘5)=m-x\ﬁ(y+mm)=..,

._—_.ZZ! V(Y +mMT), crieeieinniiinvennnnn(B)

1
e.g. m tan (y +$) = %xz tan (3/ +x)’
while
._____L—-—————— sin (42 +y) = ! —““1 7
D 5DD 4D y)'D_TD—"D—D’s
.=D___4D, . =} cos (4z +y) by (A)
= -} zcos (4z +y) by (B).

in (4z +y)
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Examples for solution.

(1) (D2-2DD’" + D'2)z=met2,

(2) (D*~6DD"+9D'?)z =6z +2y.

(3) (D®-4D2D’ +4DD'?)z =4 sin (22 +y).

0%V an
(4) 2r —8—-3t=5efev. (5) Py 'a?/?
(6) 4r— 45 +t=16 log (z+29).

149. General method. To find a general method of getting a
particular integral, consider
(D-mD")z=p-mg=1(z, y).

The subsidiary equations are

=12(z+y)

dr_dy _ dz
1 -m f(z’ .'1/)’
of which one integral is y +mz=c.

Using this integral to find another,
dz=f(z, c —ma)dz,

z =I [ (z, ¢ - mx) dz + constant,
where ¢ is to be replaced by y + mz after integration.
Hence we may take —D—:lm—D—, Sz, y) as .‘. [z, ¢ —maz) dz, where
¢ 18 replaced by y +ma after integration.
Ex. (D-2D)(D+D')z=(y—1)e>.
Here jf(:c, c—2z) dx=J.(c—2x-l)e”dx=(c—2:c+l)e‘.

Therefore —D——_%ﬁ .(y—1)e®=(y+1)e?, replacing ¢ by y+2z.

Similarly D—_l_l——ﬁ . (y +1)e® is found from I (c+x+1)e*dz=(c+z)e*

by replacing ¢ by y—=, giving ye®, which is the particular integral
required.
Hence g=ye®+ ¢p(y +2z) +\ (y — 2).

Examples for solution.
(1) (D2+2DD' +D'%)2=2 cos y—sin ¥.

(2) (D?-2DD' -15D"%)z=122y. (3) r+s—6t=y cos z.
(4) 32__@31_ 0% (22% + 2 2 - co
ox? Oxdy a 75 =(22% + 2y — y?) sin 2y — cos zy.

(6) r—t=tan® z tan y —tan z tan® y.
ry 0% 4z ¢
©) st~
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150. Non-homogeneous linear equations. The simplest case is
(D -mD" —a)2z=0,
t.e. p-mg=az,
giving ¢ (ze~°%, y +mx) =0,
or z=e%\, (y +mx).
Similarly we can show that the integral of
(D-mD" —a)(D—-nl"-b)z=0

is z =e%f (y + mx) +e'*F (y +nx),
while that of (D -mD' —a)22=0
It z =e%f (yy + mx) + e F (y +mx).

But the equations where the symbolical operator cannot be
resolved into factors linear in D and D’ cannot be integrated in this
manner.

Consider for example (D? - D') z=0.

As a trial solution put z =€, giving

(D?-D’")z=(h? - k) et™,

So z=€"“*™ iz a particular integral, and a more general one is
Z4e=t™) where the 4 and & in each term are perfectly arbitrary,
and any number of terms may be taken.

This form of integral is best suited to physical problems, as was
explained at some length in Chap. IV. Of course the integral of
any linear partial differential equation with constant coefficients
may be expressed in this manner, but the shorter forms involving
arbitrary functions are generally to be preferred.

Examples for solution.

(1) DD'(D-2D' -3)z=0. (2) r+2s+1+2p+2q +2=0.
2V v . e o
(3) ) =5 (4) (D2~ D2+ D - D')z=0.

e 92V 92V
(5) (2D%~3D2D’ + D'%)z=0. ©) 3 + 50

(1) (D-2D'—1)(D-2D't~1)z=0.

(8) Find a solution of Ex. (4) reducing to 1 when z= +c0 and to
y% when 2=0.

=n2F.

151. Particular Integrals. The methods of obtaining particular
integrals of non-homogeneous equations are very similar to those in
Chap. IIL,, so we shall merely give a few examples.

Ex. (i). (D*=3DD’ + D +1)z=e22+3,

1 e2x+3y
. e22+3Y

DS-3DD +D+1 2%-3.2.3+2+1

- Je2etdy,
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Hence g= —}e?THW 4 T heF
where R -3 +h+1=0,
Ex. (ii). (D +D' -1)(D+2D' —3)z=4+3x+6y.

1 1, , 4{ _1)+2D'}-l
D=1 Drap—s - (P+D1-—
=3{1 + D+ D’ +terms of higher degree}

X {1 + DE2D +terms of higher degree}
{ 4D +5D’
R

Acting on 4 + 3z + 6y, this operator gives
1{4+3x+6y+4+10}=6+x+2y.

=1
-3

+terms of higher degree}-

Hence z2=6+x+2y +e*f (y — x) + 3 F(y — 2x).
Ex. (iii). (D2 - DD’ -2D)z=sin (3z + 4y).
1 1
D DD oD .sin (3z +4y) = pi Eay g w vy )2 sin (32 + 4y)
3+2D 3 sin (3@ + 4y) + 6 cos (3 + 4y)
=5_4D% .sin (3z +4y) = 9-4(=3Y)

=y 8in (3z +4y) + 1% cos (3x + 4y).
Hence z= & sin (3% +4y) + % cos (3z +4y) + Zdet+5y,
where h®—hk-2h=

Examples for solution.
(1) (D= D' ~1)(D- D' ~2)z=c2e-v.

(2) s+p—q=2+zy. (3) (D-D'?)z=cos (z - 3y).
(4) r—s+p=1. (5) aj g'; — g+,

(6) (D-3D" —2)%=2¢* tan (y +32).

152. Examples in elimination. We shall now consider the result
of eliminating an arbitrary function from a partial differential
equation of the first order.

Ex. (i). 2pz - qy = ¢ (c*y).

Differentiating partially, first with respect to = and then to y, we get

2rw — sy +2p =2xy¢' (%),

and ' 2sx — ty — g=x2¢p’ (x2y),
whence x(2rx — sy +2p) =2y(2sx—ty -q)
or 2x%r — brys 4 2y% + 2(px +qy) =0,

which is of the first degree in r, s, t.
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The same equation results from eliminating \ from
P —2qy =r(zy?).

Ex. (ii). pPr+a=¢(2z+y).

This gives 2pr+8=2¢'(2z+y),
and 2ps+t=¢' (22 +y),
whence 2pr +s=4ps+2t,
again of the first degree in 1, s, ¢.

Ex. (iii). y-p=¢(z-9q).

This gives —r=(1-s)¢'(z-q),
and l-s=—t¢'(z—9q),
whence rt=(1-s)2
or 2s +(rt—s?) =1.

This example differs from the other two in that p and ¢ occur in
the arbitrary function as well as elsewhere. The result contains a
term in (rt—s%

Examples for solution.

Eliminate the arbitrary function from the following :

(1) py—q-+3y*=p(2z+y9). @ x—§=¢(z).
(3) prz—y=¢(g-2z+y). (4) pz+qy=p(p*+¢?).
6) p®-z=p(q?-2y). (6) p+29=p(2).

153. Generalisation of the preceding results. If » and v are
known functions of z, y, 2, p, ¢, and we treat the equation u =¢ (v)
as before, we get

ou OJu Ju Ou ov dv dv v ,
TopTSog s TP o =<’a§”a‘q+a§;+f’ 2) - #0),
ou Ou Ou du ov ov dv, v\ |,
“’ap*‘é&*é@*qﬁi"(saﬁ*té‘f‘a@*"e‘é)'¢ (v).
Eliminating ¢’ (v) we find that the terms in rs and st cancel out,
leaving a result of the form
Rr+8s+Tt+U(rt-s?)=V,

where R, S, T, U and V involve p, ¢, and the partial differential
coefficients of w and v with respect to z, y, 2, p, q.

The coefficient U= gg gg - g; —aai;,
which vanishes if v s a function of z, y, z only and not of p or q.

These results will show us what to expect when we start with
the equations of the second order and try to obtain equations of the
Girst order from them.

and
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154, Monge’s method of integrating Rr+8s +Tt=V. We shall
ow consider equations of the first degree in r, 8, t, whose coefficients
8, T, V are functions of p, ¢, 2, y, 2, and try to reverse the process
£ Arts. 152 and 153.

Since dp=g£dx +g]y7dy=rdx+sdy

nd dq=sdzr +tdy,
Rr+S8s+Tt-V =0

ecomes R< d; dy) +8s+T (dq d; da:) V=0
te. Rdpdy+Tdgde—-Vdyde—-s(Rdy?-Sdydx+T dx?)=0
The chief feature of Monge’s method is obtaining one or twe
slations between p, q, z, y, 2 (each relation involving an arbitrary
inction) to satisfy the simultaneous equations
Rdy*-Sdydx+T dz?=0,
Rdpdy +T dgdx -V dy dz=0.
These relations are called Intermediate Integrals.
The method of procedure will be best understood by studying
rorked examples.

Ex. (i). 2x%r — Bxys + 2y% + 2(pz + qy) =0.
Proceeding as above, we obtain the simultaneous equations
222 dy? + by dy dz +2y2 dz? =0, ..ocvvvvrnninninnenne. (1)
nd 2z3dp dy +2y2dg dz +2(px + qy) dy dxz=0. ...cvveveeneen..n. (2)
(1) gives (z dy +2y dz) (2 dy + y dx) =0,

te. x®y=a or xy’:=b.
If we take 2y =a and divide each term of (2) by zdy or its equivalent
-2y dz, we get 2z dp -y dq+2pdz —qdy=0,
te. 2px-—qy=c.
This, in conjunction with 2y =a, suggests the intermediate integral
2P — @Y =P (T2Y), evrrerrriirinnenininiinnnnen(3)

here ¢ is an arbitrary function. [Cf. Ex. (i) of Art. 152.]
Similarly zy2=>5 and equation (2) leads to

px =29y =Yr(Ty?). .euueen. cerrecrrerntanenees «o(4)
Solving (3) and (4),
3pz =24 (z%) — Y (zy?),
3qy = ¢ (z%) - 2y (y?),
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2dr d dr 2d
e 2=3] plat) . dlog (@) -3 [ Wiy . dlog (@,
or z=f (%) + F (zy?).

Ex. (ii). y¥r—2ys+t=p+6y.

Eliminating r and ¢ as before, we are led to the simultancous equa-
tions y2dy? + 2y dy do+dz2 =0, ..oocciviiiinneieninnn. (5)
and y3dpdy+dgdx —(p+6y) dyde=0. ....ccecevvrenenn. (6)

(5) gives (y dy +dx)2=0,

fe. 2z+y%=a.
Using this integral and dividing each term of (6) by ydy or its
equivalent —dx, we get
y dp - dg+(p+6y) dy=0,
te. py—q+3yi=c.
This suggests the intermediate integral
Py —q+3y2=¢ (22 +y?).
As we have only one intermediate integral, we must integrate this
by Lagrange’s method.
The subsidiary equations are

de dy dz
Yo -1 32+ p(2x+yd)
One integral is 2+ y2=a. Using this to find another,
dz+{-3y%+ ¢(a)} dy =0,
te. 2—y+yp(2x+y?)=>.
Hence the general integral is
Viz -y +yé(2x + y?), 22+ y?} =0,
or z=1°% - yp(2z +y?) +f (22 +y?).
Ex (iii). pt-qs=¢
The simultaneous equations are
gdydz+pdz?=0, ..ccoovrvrirrinnnennnn(7)
snd pdgde—@dydr=0. .......ccovrvnniininiinnnes (8)
(7) gives dz=0 or gqdy+pdx(=dz)=0,
te. T=a or z=b.

If dx =0 (8) reduces to 0=0.
If 2=b, ¢dy= - pdz and (8) reduces to

pdq+q%p dx=0,
f.e. dq/g*+dz=0,

giving -;—+x==c==\b(z). R )|



BECOND AND HIGHER ORDERS 183

(9) may be integrated by Lagrange’s method, but a shorter way is

to rewrite it oy 1
5= =2V,
giving y=zz—J.\/r(z) dz+ F ()
y=zz+f(2) + F(x).

Examples for solution.

(1) r-tcos?z+ptanz=0.

(2) (-y)(zr—zs—ys+yt)=(z+y)(p-9).

(3) (g+1)s=(p+1)t. (4) t—rsecty=2¢tany.

(5) wy(t—1)+ (22— y?) (s -2) =py —qz.

(6) (1+¢)*-2(1+p+qg+pg)s+ (1 +p)2=0.

(7) Find a surface satisfying 2z% —5xys+2y2% +2(pr+4qy) =0 and

touching the hyperbolic paraboloid z=x2—y2 along its section by the
plane y=1.

(8) Obtain the integral of 9% —2pgs + p% =0 in the form
y+af (2) = F(2),
and show that this represents a surface generated by straight lines that
are all parallel to a fixed plane.

* 155. Monge’s method of integrating Rr +Ss +Tt +U (rt —s2)=V.
As before, the coefficients R, S, T, U, V are functions of p, ¢,
z, Y, 2.
The process of solution falls naturally into two parts:
(i) the formation of intermediate integrals ;
(ii) the further integration of these integrals.

For the sake of clearness we shall consider these two parts
separately.

156. Formation of intermediate integrals. As in Art. 154,
r=(dp - s dy)/dx
and t=(dgq — s dz)/dy.
Substitute for r and ¢ in
Rr+8Ss+Tt+U(rt-s?) ="V,
multiply up by dz and dy (to clear of fractions), and we get
Rdpdy+Tdqde+Udpdq-V dzdy
-8 (Rdy?-Sdxdy+T da? + U dp dx + U dq dy) =0,
say N-sM=0.
* The remainder of this chapter should be omitted on a first reading. This

sxtension of Monge’s ideas is due to Audré Marie Ampére, of Lyons (1775-1836),
whose name has been given to the unit of electrio ourrent.
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We now trv to obtain solutions of the simultaneous equations
M=0,
N=0.

So far we have imitated the methods employed in Art. 154, but
we cannot now factorise M as we did before, on account of the
presence of the terms U dpdx + U dq dy.

As there is no hope of factorising M or N separately, let us try
to factorise M +AN, where A is some multiplier to be determined
later.

Writing M and N in full, the expression to be factorised is

Rady+T da? - (S+AV)dxdy+Udpdx +Udgdy
+ARdpdy +AT dg dx +2\U dp dq.

As there are no terms in dp? or d¢?, dp can only appear in one
factor and dq in the other.

Suppose the factors are

Ady+Bdx+Cdp and Edy+Fdz+Gdg.

Then equating coefficients of du?, dz?, dp dg,

AE=R; BF=T; CG=\U.
We may take
. A=R, E=1, B=kT, F=1/k, C=mU, G=\/m.
Equating the coefficients of the other five terms, we get

ET +Rlk=-=(S+AV), wievvvrviienerenenn(l)
ARImM=U, .ccovuvvriiriiinniiiennnnn(2)
ETNM=AT, oeeveeieeieeeeeeernenn(3)

MU= AR, .ocoviiiiiiiiiiiiiineee, (4)
MUk=U. cceovvreereievireresresnannonn(B)

From (5), m =k, and this satisfies (3).

From (2) or (4), m=AR/U.

Hence, from (1), .
AN(RT+UV)+AUS +U%=0. ....c.e.eeuuneennn(B)

So if A is a root of (6), the factors required are

(Ray+x BT ax +xRap) (9 + 0 dn+ U ag),

ie. B (Udy+\Tdz+\Udp). s (Rdy+U dz+AU dg).

We shall therefore try to obtain integrals from the linear
equations Udy+ATdx+AUdp=0 ....ccceeeevuvenneee.(7)

and ARdy +Udx +\U dg=0, .......ccuvcevuevenn.o(8)
where \ satisfies (6).
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The rest of the procedure will be best understood from worked
examples.

157. Examples.

Ex. (i). 28+ (rt—s?) =1.
Substituting R=T=0, §=2, U=V =1 in equation (6) of the last
article,* we get A2 +2\ +1=0,

a quadratic with equal roots —1 and -1.
With A= -1, equations (7) and (8) give
dy —dp=0,
dr—dg=0,
of which obvious integrals are
y —p=const,
and x — ¢ =const.
Combining these as in Art. 154, we get the intermediate integral
y-p=f(z-9.
Ex. (ii). r+3s+t+(rt—s?)=1.
The quadratic in X comes to
2A2+3A +1=0,
soA=-1lor -4
With A = -1, equations (7) and (8) give

dy —dx—dp=0,
—dy +dz—dg =0,
of which obvious integrals are
PHT—Y=const. oeiiiiiiiiiii i (1)
and g—T+Yy=0const. eeecirvrrrirniniiininiiiiinnennna(2)
Similarly A = — % leads to
p+x— 2y==const. PPN (5 )
and g—2Z+y=00nst. cevrrrrnerininniiiiniieninennnnn(4)

In what pairs shall we combine these four integrals ?

Consider again the simultancous equations denoted by M =0, N =0
in the last article. If these are both satisfied, then M +A,N =0 and
M +X\,N =0 are also both satisfied (where A, and A, are the roots of the
quadratlc in A). Therefore one of the linear factors vanishes for 7\ A
and one (obvxously the other one, or else dy=0) for A=X,.

That is, we combine integrals (1) and (4), and also (2) and (3),
giving the two intermediate integrals

ptz-y=f(q-2z+y)
and p+z~-2y=F(g-z+y).

* We quote the results of the last article to save space, but the student is
advised to work each example from first prmclple;,
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Ex. (iii).  2yr+(px+9y)s+at—2xylrt—s%)=2-pq.
The quadratic in A comes to
Aaypq - Aay (pz +qy) +z%y* =0,

giving A=ylp or zfq.
Substituting in (7) and (8) of the last article, we get, after a little
reduction, pAdy—de+ydp=0, ..cccoceevrniiriiininnnnnnnne (D)
2ydy—prdz—zy dg=0, ..cecvvrvvriirniinnnnnnnenn.(6)
—qydy+adr—2ydp=0, cocoeevriiniiiiininiiinns (7)
and —2dy+qdo+zdg=0. ccococeervirininnincrnnnnn(8)

Combining the obvious integrals of (5) and (8), we get

yp-z=f(-2y+qz).

But (6) and (7) are non-integrable. This may be seen from the
way that p and ¢ occur in them. Thus, although the quadratic in A has
two different roots, we get only one intermediate integral.

Examples for solution.

Obtain an intermediate integral (or two if possible) of the following :

(1) 3r+4s+t+(rt—s?) =1. (2) r+t—(rt—s?)=1.

(3) 27 +te® — (rt — s2) =2e®, (4) rt—s*+1=0.

(5) 3s+(rt—s2)=2.

(6) qor+(z+1y) s+ pyt+zy(rt—s2) =1 - pq.

(7) (2—1)2r —2pqes+ (p3—1)2t +22 (rt—s?) =p2+ g2 -1,

158. Further integration of intermediate integrals.

Ex. (i). Consider the intermediate integral obtained in Ex. (i) of

Art. 157, y-p=f(z-q.
We can obtain a “ complete ” integral involving arbitrary constants
a, b, ¢ by putting z-q=a
and y-p=f(a)="b, say.
Hence dz=pdr+qdy=(y-b)dz+(z—-a)dy
and z=zy—br-ay+e.

An integral of a more general form can be obtained by supposing
the arbitrary function f occurring in the intermediate integral to be
linear, giving y—-p=m(z—q)+n.

Integrating this by Lagrange’s method, we get

2=xy + ¢ (y +mz) — na.

Ex. (ii). Consider the two intermediate integrals of Ex. (ii), Art. 157,
p+z-y=f(g-2x+y)
and p+z-2y=F(g-z+y)
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If we attempt to deal with these simultaneous equations as we dealt
with the single equation in Ex. (i), we get

¢-2x+y=a,
g-z+y=0,
p+z-y=[(a),
p+z—2y=F(B).
If the terms on the right-hand side are constants, we get the absurd
result that z, y, p, q are all constants !

But now suppose that a and 8 are not constants, but parameters,
capable of variation.

Solving the four equations, we get
z=8-a,
y=f(a) - F(B)’
p=y-z+f(a),

g=z-y+B,
giving  de=pdr+qdy

=(y-o)(dz-dy) +f(a) dz + Bdy
=-3d(@-y)*+f(a) d8~f(a) da+ Bf'(a) da - BF'(B) dB;

fe z=—-3(z-y)2- j (a) da - jﬁF,IB>dIB+IBf

To obtain a result free from symbols of integration, put
[f@ta=gt ana [FE128-y6.
Now _[,epw) i8-BF(B) - jp(ﬁ) 4B, integrating by parts,
=BV(B)- ¥ (B

Hence z2e= — (- y)" ¢ (a) - BY'(B)+(B) + B¢’ (),
z=—$(x-y)2 - ¢ (a) +{ (B) + By,
or finally { =B-a,
y=¢'(a) - (B).

These three equations constitute the parametric form of the equation
of a surface. As the solution contains two arbitrary functions, it may
be regarded as of the most general form possible.

Examples for solution (completing the solution of the preceding set).
Integrate by the methods explained above :

(1) p+z—-2y=f(q-2x+3y). (2) p-z=flg-y).
(3) p-e*=f(q-2y). 4) p-y=/f(q+2),
p+y=F(q-=).
(6) p—y=£(g-2a), (6) pz—y=f(qy-z).
p-2y=F(g-2). (7) (zp-2)=f(2g-y).

(8) Obtain a particular solution of (4) by putting ¢ (a)= - }a?,
¢ (B) =182 and eliminating a and .
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MISCELLANEOUS EXAMPLES ON CHAPTER XIV.

(1) r=2y2 (2) logs=z+y. (3) 2yg+y%=1.
(4) r—2s+t=sin (22 + 3y). (5) x% —2xs+t+¢=0.
(6) ra?—3szy +2ty? + pr+2y=2+2y.
(7) y%r +2xys + 22 + px+9y=0.
(8) br+6s+3t+2 (rt—s2) +3=0.
(9) 2pr+2qt —4pq(rt—s2)=1.
(10) 7t—s®—s(sin « +sin y) =sin z sin y.
(11) Tr—8s -3t + (rt - s2) =36.
(12) Find a surface satisfying r=6z+2 and touching z=23+y"
along its section by the plane £ +y+1=0.
(13) Find a surface satisfying r —2s+¢=6 and touching the hyper-
bolic paraboloid z=zy along its section by the plane y=uz.
(14) A surface is drawn satisfying r+¢=0 and touching z%?+22=1
along its section by y=0. Obtain its equation in the form
22(z?+22-1) =y2(22 +22). [London.]
(15) Show that of the four linear differential equations in 2, y, p, ¢
obtained by the application of Monge’s method to
2r+qs+axl —z(rt — s2) =2,
two are integrable, leading to the intermediate integral

P“":f(?z‘z!/)y
while the other two, although non-integrable singly, can be combined
to give the integral p+ip-z=a.

Hence obtain the solutions
z=3x2— 2may — §MmEA3 + nx + ¢ (y + Jma?)
and z=(a—-}0Yz+ 3z + by +e,
and show that one is a particular case of the other.

(16) A surface is such that its section by any plane parallel to =0
is a circle passing through the axis of z. Prove that it satisfies the
functional and differential equations

y2+22+ yf (z) + 2F (z) =0,
(y2+23)t+2(z—yg) (1 + 4% =0.
(17) Obtain the solution of % + 22ys + 4% =0 in the form

() 1er(2)

and show that this represents a surface generated by lines that intersect
the axis of z.

(18) Show that 7t —s2=0 leads to the ‘‘ complete ” integral
g=az+by+ec.
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Show that the * general ” integral derived from this (as in Art. 134)
represents a developable surface (see Smith’s Solid Geometry, Arts.
222-223).

Hence show that for any developable surface g=F£(p).

(19) Find the developable surfaces that satisfy

pg(r—t) - (p*—q%) s +(py — 92) (1t - 8%) =0.

[Assume ¢=f(p). This is called Poisson’s method. We get

g=ap or p*+q?=b%,
giving z=¢(z+ay) or z=bxrcosa+bysina+e.

The second of these integrals represents a plane which generates the
developable surface given by the corresponding * general ”’ integral.]

(20) Show that if

X=p, Y=¢q Z=pzt+qy-z

then ¢=T/(RT-S?%, 8=-S/(RT-8%, t=R/(RT-S?,
where R= iaijZi , ete.

Hence show that the equation

ar +bs+ct+e(rt—s?) =0

transforms into AT - BS+CR+ E=0,
where a, b, ¢, e are any functions of z, y, p, ¢, and 4, B, C, I the corre-
sponding functions of P, @, X, Y.

Apply this Principle of Duality (cf. No. 21 of the Miscellaneous
Examples at the end of Chap. XII.) to derive two intermediate integrals
of pa(r =)~ (p*~ %)+ (py - g2) (1t~ 5%) =O0.

(21) Prove that if z, y, , v are real and u +tw=f (x +1y), then V =u
and V =v are both solutions of

02V 0V
Py + 5!73— =0,
and the two systems of curves u=const.,
v=const.,

are mutually orthogonal.
Verify these properties for the particular cases

(1) u+w=x+1y,
(i) u+w=(z+1y)3
(iil) w+w=1/(z+7y).
[The differential equation is the two-dimensional form of Laplace’s
equation, which is of fundamental importance in gravitation, electro-

statics and hydrodynamics. w and v are called Conjugate Functians.
8ee Ramsey’s Hydro-Mechanics, Vol. II. Art. 41.]

(22) Obtain the solution ot
Oy _ 0%
a0 = v
P.D.B. o
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subject to the conditions y=f(z) and g_t_ F(x) when ¢=0, in the form

1 x+at
y=§f(x+al)+§f(x—-at)+2—aL_MF(7\) d\.

{y is the transverse displacement of any point & of a vibrating
string of infinite length, whose initial displacement and velocity are
given by f(z) and F(x). See Ramsey’s Hydro-Mechanics, Vol. 1I.
Art. 248.]

(23) If y=f(z) cos (nt+a) is a solution of

2, iy
gtzj e g =0
show that f () =4 sin mz + B cos mz + H sinh mz + K cosh mz, where
m=4/(nfa?).

[The differential equation is that approximately satisfied by the
lateral vibrations of bars, neglecting rotatory inertia. See Rayleigh’s
Sound, Art. 163.]

(24) Show that

w =4 sin (mwzfa) sin (nmy[b) cos (pct + &)
satisfies azzg (a%u 62w>
o2 ox? ay
and vanishes when
r=0, y=0, z=a or y=b,
provided that m and n are positive integers satisfying
(p/m)?=(m[a)®+(n[b)>.

[This gives one solution of the differential equation of a vibrating
membrane with a fixed rectangular boundary. See Rayleigh’s Sound,
Arts. 194-199.]

(25) Show that w=A4Jy(nr) cos (nct + a)
satisfies ?ZW <82w 1 aw)

ot? ort r or
where J, is Bessel’s function of order zero (see Ex. 2 of the sct following
Art. 97).

[Th)is refers to a vibrating membrane with a fixed circular boundary.
See Rayleigh’s Sound, Arts. 200-206.]

(26) Show that V =(4s"+ Br—n-1) P, (cos 0)
satisfies 0%V 2 aV 1 82V+cot9 ov —0,

mtratrrt A G
where P, is Legendre’s function of order n (for Legendre’s equation,
see Ex. 2 of the set following Art. 99).

[N.B.—Take u=cos§ as a new variable. This equation is the
form taken by Laplace’s potential equation in three dimensions, when
V is known to be symmetrical about an axis. See Routh’s Analytical
Statics, Vol. II. Art. 300.]



CHAPTER XV

MISCELLANEOUS METHODS

159. This chapter consists of six sections. The first (Arts. 160-
161) is supplementary to Chap. VI., and deals with some difficulties
in the theory of singular solutions, especially the definition of an
envelope and the way in which particular solutions may occur in
the discriminants. The conception of diseriminant-loci as boundaries
appears to be very little known.

The second section (Arts. 162-167) deals with Riccati’s equation,
chiefly in its generalised form. The examples include a series which
indicate in what cases Riccati’s original equation can be integrated
in finite terms.

The third section (Arts. 168-170) deals with total differential
equations, and is supplementary to Chap. XI. The use of an
integrating factor for homogeneous equations will appeal to the
elementary student, while Mayer’s method is of great interest from
the point of view of theory.

The fourth section (Arts. 171-177) deals with linear differential
equations of the second order and their solution by series. It is
supplementary to Chaps. IX. and X. A few results concerning
equations of higher order are included.

The fifth section (Arts. 178-181) deals with some equations of
Mathematical Physics, particularly those concerned with wave-
motion. It is supplementary to Chaps. IV. and XIV.

Finally the sixth section (Arts. 182-183) deals with numerical
approximations to the solution of differential equations (supple-
mentary to Chap. VIIL.). After describing the method of Adams,
perhaps the best that has yet been devised, it gives a summary of
some extensions (due to E. Remes) of the author’s method (¢.e. that
of Arts. 90-93).

191
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160. Some difficulties in the theory of singular solutions* We
ghall now supplement Chap. VI. by pointing out some diffi-
culties concerning envelopes, singular solutions, and particular
integrals.

The old definition of an envelope of a family of curves, as the
locus of the ultimate intersections of comsecutive curves, must be
abandoned, for it has been found to lead to the ridiculous conclusion
that a curve is not the envelope of its own circles of curvature. De
la Vallée Poussin’s definition is the locus of the isolated characteristic
points (1.e. of ordinary points on a curve whose distances from neigh-
bouring curves are small to an order beyond the first). However,
it has been pointed out that this is still unsatisfactory in certain
respects.] For our purposes the most convenient definition appears
to be a curve which touches every member of the famaly, and which, at
each point, is touched by some member of the family. This agrees with
the definition given on p. 66 ; the second part of the definition was
not explicitly stated there, but it was implied by the following
sentence.

There are at least three different definitions of a singular solution.
Our definition (p. 66) is that it is a solution corresponding to an
envelope § of the family of curves represented by the complete primative.
However, in exceptional cases the envelope is also a particular curve
of the family. Thus the parabola y=c(z - ¢)? touches the line y=0
at the point (¢, 0), 80 y=0 is the envelope of the family obtained by
giving all possible non-zero values to ¢, as well as the particular
curve given by ¢=0. In accordance with our definition, ¥ =0 must
be considered to be both a singular solution and a particular integral
of the differential equation of the family (Ex. 6, p. 76). But some
prefer to confine the term singular to a solution which cannot be
obtained by giving any constant value to the arbitrary constant occurring

* For envelopes, see Fowler's Elementary Differential Qeometry of Plane Curves,
Chap. V. For singular solutions, see the Encyklopidie der Mathematischen Wissen-
schaften II. A 4a and III. D 8.

1 C and C, the centres of curvature correspending to two neighbouring points
P and P’ of a curve, lie on the evolute of that curve. The difference between the
radii of curvature CP and C’P’ is the arc CC’ of the evolute. This arc is in general
greater than the chord CC’, f.e. greater than the distance between the centres of
curvature. Thus one circle of curvature completely encloses the other, and there
are no real intorsections. For other cases where the old definition fails, see Ex. 13,
following Art. 161.

t Neville, Proc. Camb. Phil. Sec., Vol. XXI. p. 97, 1922.

§ But see the end of this article for the exceptional case of envelopes parallel
to the axis of y.
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in the complete primitive. A third definition * of a singular solution
is that it is a solution which occurs in the p-discriminant. It will be
shown in Art. 161 that such a solution need not represent an envelope.
It may be a particular solution, or its limiting form.

It is natural for the student to suppose that every family of
curves depending on one parameter will possess an envelope and
consequently that every differential equation of the first order and
of degree higher than the first will possess a singular solution. But
this is not the case. In discussing envelopes, it is implicitly assumed
that the functions occurring in the equation of the family satisfy
certain conditions concerning continuity. These conditions are
usually satisfied for the complete primitives of the simple differential
equations given in an elementary treatment of singular solutions,
but this is due to the fact that in constructing such examples the
complete primitives were really taken as the starting point. If
we start from the most general differential equation of similar form,
there is no reason to suppose that the complete primitive will satisfy
the conditions required for the existence of an envelope. In fact,
we may say that the existence of a singular solution must be con-
sidered as the exception rather than the rule.t

It should be noticed that the usual process for finding envelopes
(Art. 56) may {fail for one form of the complete primitive, and yet be
effective for another. For example, it fails for z# +yt=c}, or for
z +sin—ly=c, but is effective for

(x+y—-c)?=4xy, orfor y=sin (c—x).

The equation z? +y¥=ct, leading to y=ap?, illustrates another
point. The differential equation is satisfied by y=0, but hardly
by x=0, which, giving p=ocw, leaves both sides indeterminate.
However, 2=0 and y=0 are both envelopes of the family of curves
(parabolas touching the axes) and both satisfy y(dz)®=x(dy)? a
differential relation which really represents the geometrical facts
more accurately than the differential equation. [Cf. Ex. 9, p. 79
and Ex. 11, p. 233. In the first =0 is a limiting form of a partic-
ular curve, and in the second an envelope and also a cusp locus.]
In such cases we feel compelled to refuse z=0 a place among

* This is the one adopted by most advanced treatises (cf. Ince’s Ordinary Differ-
ential Equations, p. 87, and Bieberbach’s Differentialgleichungen, p. 85). In quoting

results from various sources it is necessary to give the definitions on which they are
based, or much confusion may be ca

t See Ex. 10, following Art. 161.
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the solutions, but the rejection may be considered as due to the
failure of the differential equation to represent fairly directions
parallel to the axis of y, rather than to any peculiarity in the
envelope itsclf.

161. Discriminants, Particular Solutions, and Boundaries. In this
article we shall confine ourselves to complete primitives of the
form f(z, y, ¢)=0, where f(z, y, c) is a polynomial in z, y, and ¢, which
may also be written in the form

ay(x, y)e™ +nay(z, y)cr 1t +in(n - ay(z, y)c™2 +... +a,(z, y)=O0.

The c-discriminant A, is defined (cxcept for a numerical factor) as
the product of a?*~2 and the squares of the differences of the roots.
The a,?"~2 is introduced to make the result a polynomial in ay,
a; ... a,. Thus for n=2, 3, 4 we get respectively

ay, — a,?,

(@93 — @,10,) — 4(a4a, — a,*)(a,a5 - a5),

(g4 — 40,04 +30,%)° — 2T(g0 904 +20,0905 — Ay@s% — @ 20, — a,3)%
As in Chap. VI. we shall sometimes use the word discriminant to
denote, not only the function A,, but also the equation A,=0 and the
loci represented by this equation.

In working examples on singular solutions it is desirable to
employ .a systematic method of calculating the discriminants. For
quadratics, cubics and quartics, the above results may be used.*
If, as in Art. 56, we obtain A, by elimination, there is a risk that some
factors will be overlooked. It is often recommended that Sylvester’s
dialytic method should be used to perform this elimination. To
apply this here, we multiply f by ¢"=2%, ¢"-3, ... ¢, 1, and 9f/oc by
¢ 1 ¢"2 ...¢ 1, and then eliminate ¢27-2, ¢2"-3, ... ¢, 1 from the
(2n — 1) equations thus formed, giving a determinant of (2n — 1) rows
and columns. For the quadratic ayc?+2a,c +a,=0, this gives

ay, 2ay, a,

2ay, 2a5, 0 |[=4da(a,ay-a?).

0, 2a, 2a,
But this contains the superfluous factor a,. It is easy to see that the
same superfluous factor will occur whatever the degree of f, giving
an expression of degree (2n — 1) instead of the proper degree (2n — 2).
If Sylvester’s method is employed for the examples at the end of this
article, this factor must be removed.

* In using these, remember that the a’s are not the actual coefficients, which have
also binomial numerical factors ; e.g. for a quartic the coefficient of ¢? is not a,, but

80y
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The primary purpose of these examples is to illustrate some ways
in which particular solutions or their limiting forms may be given
by the c- and p-discriminants. In some cases the solutions occur
as merely one part of a particular curve (Ex. 1). Their geometrical
gignificance takes various forms. They may be envelopes and so
also singular solutions (Ex. 2), or node-loci (Ex. 3), or cusp-loci
(Ex. 4), or tac-loci (Ex. 5), or asymptotes (Ex. 6), or tangents
touching all the curves of a family at the same point (Ex. 8). They
may be merely lines (not tangents) through a common point of a
family (Ex. 7). In connection with Clairaut’s form they are
furnished (Ex. 9) by the inflexional tangents to the envelope.

It is sometimes stated that when particular solutions occur in
the discriminants, they do so to the first power in A, and cubed
in A, This rule may be combined with those of Art. 64 in the
symbolical form: A,=EN3*(*P, A,=ET*CP3, where E, N, C, P, T
denote envelope, node-locus, cusp-locus, particular solution, and
tac-locus respectively. These rules are useful as suggestions in
simple cases, but examples in which they fail are easily constructed
(Exs. 3, 4, 6, 13, 14).

We shall now explain the conception of particular solutions and
other exceptional loci as boundaries.* We restrict ourselves to the
case where f(z, y, c) is a polynonial in z, y, ¢, and such that corre-
sponding to every pair of real values of z, ¥ we get an equation in ¢
of degree n with, say, m real roots corresponding to real curves, and
(n-m) imaginary roots corresponding to imaginary curves. We
further stipulate that the roots, which are, of course, functions of
x and y, shall vary continuously when z and y do so.

Let a certain curve B (z, ) =0 (not occurring in a multiple form,
or made up of a number of simpler curves) be a boundary between
two regions, in one of which m has a certain value M and in the other
a value M —2. As the point (z, y) travels continuously out of the
first region, across the boundary B, into the second, a pair of real
unequal roots become less unequal, then equal (on B) and finally
(in the second region) conjugate complex. A,, which contains the
square of the difference of these roots, must vanish on B and then
change sign, as the square of the difference of two conjugate complex

* Here and elsewhere I have made considerable use of some valuable suggestions
made by Mr. H. B. Mitchell, formerly Professor of Mathematics at Columbia Uni-
versity, New York. However, he must not be held responsible for my treatment,
for our points of view are rather different.
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roots is negative. B(z, y) must also change sign as (z, y) travels
across it. More generally, if m changes from M to M — 2r, where 7
is an odd integer, A, will change sign, and B (z, y) will occur in A,
to an odd power (which, however, need not be r; cf. Ex. 14, where
B(z, y) occurs cubed, but #=1). If r is an even integer, B(z, y)
occurs to an even power. Conversely, if B(z, y) occurs to an odd
power, r must be odd. However, if B (z, ) occurs to an even power,
so that A, does not change sign, r need not be even ; it may be zero,
as in Ex. 13, where B is an envelope which is crossed by all the
curves of the family. In such cases the envelope must occur to an
even power, contrary to the rule A,=EN2C3P. Similar considera-
tions apply to A,, on replacing the number of real curves through
a point by the number of real directions through it. A specially
interesting case is that of Clairaut’s form (Ex. 9). An inflexional
tangent to the envelope corresponds to two equal roots in p, and so
leads to A,=0. As for Clairaut’s form A,=A,, A.=0 also.

An alternative geometrical method * of investigating singalar
solutions is to replace p by 2, thus converting the differential equation
into the algebraic equation of a surface. Similarly, in the complete
primitive ¢ may be replaced by z. This method requires a good
knowledge of the geometry of surfaces.

The difficulties in the theory of singular solutions are great even
for differential equations with coefficients which are polynomials in
z and y. When the coefficients are transcendental functions, with
singularities of various degrees of complexity, the difliculties are
greatly increased.¥

Examples for solution.

[We shall use C.P., Diff. Eq., A,, A,, and 8.8., to denote respectively
complete primitive, differential equation, ¢-discriminant, p-discriminant,
and singular solution. A, and A, have been obtained from the formulae
given above, but numerical factors have been omitted.

The student should draw rough graphs (without calculating exact
values of  and y) which will show the form of a few members of each
family of curves and their position relative to the loci given by the
discriminants.]

(1) Given the C.P. y(z+c) +¢c*=0, obtain the Diff. Eq.
@’p? +y(2z - y)p +y* =0,
also A.=ydz-y), Ap=y(4z~y).

* Encyklopddie der Mathematischen Wissenschaften, III. D 8, or QGoursat’s Coure
8'Analyse Mathématique, Vol. II. 4th ed., Art. 435.

t M. J. M. Hill, Proc. Lond. Math. Soc., Series 2, Vol. 17, 1918, p. 149.
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[The O.P., for non-zero values of ¢, represents a family of rectangular
hyperbolas. y=0 is an asymptote of all these hyperbolas, and also part
of the particular integral zy =0 obtained from the C.P. by putting c=0.
y=4z is an envelope (a S.8.). The rules A,=EN2C?*P, A,=ET*CP3
hold good. The plane can be divided into four regions, in two of which
the number of real curves of the family through any point is two, while
in the other two regions the number is zero. The boundaries between
these regions are the loci given by the discriminants, and both occur to
odd powers. This agrees with our theory of boundaries, for in this case
M =2, M -2r=0, so r=1, which is odd.]

(2) Given the C.P. y=c(z —¢)?, obtain the Diff. Eq.

P - dayp +8y*=0,
also A,=y(27y —423), Ap=1°2Ty - 4a?).

[As mentioned in Art. 160, y=0 is an envelope (a S.3.) and also a
particular integral. Moreover, it may be regarded as a tac-locus.
27y =4z is an envelope. The second and fourth of these geometrical
interpretations, but not the first and third, are suggested by the rules
A,=EN*C3P, A,=ET*CP3)]

(3) Given the C.P. 4y*=3c%(z - c)?, obtain the Diff. Eq.

(2ps - y)* = 325(2pz - 3y)?,
also A =2%4(32% - 64y%), A,=a?y}(32° - 64y?).

[The calculation of the discriminants is rather laborious. y=0isa
node-locus as well as a particular solution. #=0 is a common tangent
at the origin to all the curves except that for which ¢=0. (Cf. Ex. 8.)
3% =64y? is the envelope. To understand why the various factors in
the discriminants occur to odd or even powers we notice that z=0is a
boundary between regions where the number of real curves through any
point increases from zero to two, while the envelope is the boundary
between regions where this number increases from two to four. Ona
y =0 the four coincide in pairs, but on each side of the positive part,
between it and a branch of the envelope, the number is the same, namely,
four. The rules A,=EN?C3P, A,=ET?CP?® fail to suggest the
geometrical interpretation of the loci =0, and y=0.]

(4) Given the C.P. 4y®=c(3z —c)?, obtain the Diff. Eq.

yp® - 3xp + 2y =0,
also A=y (2 -3, A,=y(y®—23).

[The C.P., for non-zero values of c, represents a family of semi-
cubical parabolas with cusps on y=0, which is a cusp-locus and also
a particular solution. y®=a3® is an envelope (a S.S.). The rules
A,=EN?*C3P, Ap=ET?CP? suggest that y=0 is a cusp-locus, but they
fail to indicate that it is also a particular solution.]

(6) Given the C.P. y®=c(3x ~c?), obtain the Diff. Eq.

8y2p® - bdxp + 27y =0,
also Ac=yt-42°, Ap=yi(y* - 42°).
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[The C.P., for non-zero values of ¢, represents a family of parabolas
with y =0 as axis, any point of which is the vertex of two such parabolas
with their concavities turned opposite ways. y=0 is a tac-locus and
also a particular solution. y*=4z%isanenvelope (aS.8.). y?=c(3z-c?)
touches the envelope at the points {c?, +./(2¢%)}, which are imaginary
if cis negative, and intersects it at {}c?, 4-3./( — ¢®)}, which are imaginary
if ¢ is positive. The rules suggest the tac-locus, but not the particular
golution.]

(6) Show that for all values of m except O, the complete primitive
of y™2p2=1 is dy™=m¥(z + ).

Show that for the three cases, m an odd positive integer greater than 1,
m=1, and m an odd negative integer, A, and A, are respectively

UATI
and g™y, P,
provided that these discriminants are obtained from equations multi-
plied by the least power of y necessary to get rid of negative powers.

[y=0 is in the first case a cusp-locus, in the second an envelope (a
S.8.), and in the third the limiting form of a particular solution, which is
asymptotic to all curves included in the complete primitive. c¢=o00
gives y™™=0, if m is negative, so in gencral this limiting form of a
particular integral contains the solution y=0 in a multiple form. If
m= —1, but not otherwise, the particular solution occurs to the powers
given by the rules A,=EN2C3P, A,=ET?*CP3. The rules give the
powers of the cusp-locus correctly only for m =3.]

(7) Given the C.P. y==(z +¢)?, obtain the Diff. Eq.

x?p? — 2xyp + y* — 4a’y =0,
also A, =xy, Ap=ady.

Show that y=0 is an envelope (a $.8.), and =0 a limiting form of a
particular solution, but not itself a solution.

[The vanishing of the discriminants at the origin, a point common
to all the curves of the family, could have been predicted. For since
at the origin the equation of the family is satisfied for any value of ¢,
the coefficients of every power of ¢ and also the term independent of ¢
vanish there, hence A, =0, for every term in it vanishes. As the curves
have different tangents at the common point, the Diff. Eq. is satisfied
there for any value of p, so by an argument similar to that for
A, A,=0. (Cf. Ex.7,p.79).]

(8) Show that for all non-zero values of ¢, the curves of the family
y®=2z(z+c)? touch z=0 at the origin. Obtain the Diff. Eq.

4a?p® — dwyp + y? — 423 =0,
also A,=xy?, A,=25

Show that y=0 is a node-locus, while =0 is a limiting form of a
particular solution (though not itself a solution), and also a line touching
all the curves, except that for which ¢=0, at one point. (Such a line
does not satisfy our definition of an envelope.)
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[As in Ex. 7, A, must vanish at the origin. A, also vanishes
(although the curves this time have not different tangents). Cf. Ex. 9,
p- 79.]

(9) Show that for the differential equation (of Clairaut’s form)

(!/ _pz)z =P3,
A, =y°(2Ty - 42%) = A,

[27y=44® is the envelope (a 8.8.); 42=0 is a particular solution,
and represents the inflexional tangent to the envelope. Now through
any point three tangents to 27y =423 can be drawn. All of these are
real for the region in the first quadrant between the curve and y =0, also
for the similar region in the third quadrant. For the other regions two
arc imaginary. For a point on y=0 two are coincident, so y=0 must
occur in the discriminants. Similarly, whenever the envelope solution
of any other differential equation of Clairaut’s form possesses inflexional
tangents, these occur in the discriminants.]

(10) Given a differential equation

J@& 4 D) =0, e, (1)
of ,  of dpof
deduce that S + pay o 3p =0, tirieiiniieiirie e (2)
Hence show that for any point on a solution given by the p-discrimi-
nant, for which
of
Bp =0 e (3)
of , of _
3z + p,é':"/ e (4)

Equations (1), (3) and (4) are neceqqary conditions for a singular
golution. For Clairaut’s form f(z, y, p)=y - pr- F(p), so equation (4)
is satisfied identically. But in general there is no reason why all three
should possess a simultaneous solution, so in general a differential
equation has no singular solution.

[Applying this to Ex. (i) on p. 75, we find the three conditions are

PH2-3y)*=4(1-y), 2p(2-3y)*=0,
p{—6p%2 - 3y) +4}=0.
1-y=0, giving p=0, satisfies all threce, but 2-3y=0 does not
satisfy the first.]

(11) [In this example the third definition of a singular solution (Art.
160) is to be used. Ex. 10 holds for all three definitions.]
Show that if a curve exists for every point of which the three
equations

7@ 9 0=0, =0, Fir o

have a common solution in A, then along it
of d +af af d)\ 0,
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and hence -A fda:+ fdy-O

Hence show that if f-,J:O A =p and the curve is a singular solution

of the differential equatlon f(z, y, p) =0, while if 'yf=0 then —! -0 also.

[This shows that the nccessary conditions for a smgular solutlon,
given in Ex. 10, become sufficient by the addition of the condition

af

Thls is zero for one envelope y =0, but not for the other, 27y =443.]

(12) Show that the locus of the points of inflexion of the curves
represented by the complete primitive of equation (1) of Ex. 10 satisfies
equation (4) of Ex. 10, and hence will be included in the result obtained
by eliminating p between these equations.

Apply this process to the equations of Ex. 7, performing the elimina-
tion by Sylvester's method, and obtain z%y(4dy —2%) =0. [Notice that
all the loci of A are included, as well as the locus of inflexions 4y =23.]

(13) Show that the equations y*=(z —c)3, y=(z-c)3, P +y§ =ct,
all represent families of curves in which neighbouring curves do not
intersect in real points, and yet an envelope y=0 exists. (In the third
case =0 is also an envelope.)

Obtain the corresponding Difl. Egs., 8p3=2Ty, p® =272, 2p®+y=0;

c-discriminants, ¥4, y?, 'y (z - y)Hx +y)?;
and ° p-discriminants, y?, yt, z?y%

[Notice that in all these cases the envelope occurs to an even power,
for the reason given in the discussion of discriminant-loci as boundaries.
For the first and third families the envelope is also a cusp-locus, so
ordinary rules hold, but this is not so for the second family. The loci
z-y=0, 2+y=0 arc where two imaginary curves, given by negative
values of ¢ in the equation of the third family, become coincident.]

(14) Show that y=(z — c)* represents a family of curves having four-
poirt contact with its envelope y=0.

Obtain the corresponding Diff. Eq. p*=256y% and discriminants
Dc=y", Dp=y".

[The envelope again occurs to a power higher than the first. This
time the power is odd, as it should be, since the number of real curves
through any point is two on one side of the envelope, and zero on the
other side.]

(15) Show that each of the equations ot +y*=c*, :c*+y"’=
(z+y-c)=4zy, (x+y-c?)?=4zy, represents a family of parabolas
with a common axis bisecting the angle 20y, and having z=0 and y=0
as envelopes. Show that the attempt to determine A, fails for the first
and second forms (or it may be considered to give O=1, the equation
of the line at infinity, which touches all parabolas), while for the third
A=y, and for the fourth A,=az?y*(z — y)2

0. But this last condition is not necessary. In Ex.2, ’%5— 16y—-4zp.
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[z -y =0 is a particular curve corresponding to 6 =0. In discussing
discriminants we should avoid forms like the first and second, in which
the terms are not single-valued, and also like the fourth, where diflerent
curves correspond to different values of ¢ and not of ¢ itself.]

162. Riccati’s equation. This name was originally given to the

differential equation *
Yy +by?=ca™,

where b, ¢, and m are constants. For a certain set of particular
values of m it can be integrated in finite terms (see Exs. 7-14 below),
but in general the solution requires infinite series closely connected
with Bessel Functions.} ,

By a Riccati’s equation is now usually understood the generalised
form

N=P+QY+Ry% .cccovrruurnrirrenniiienennns(l)

where P, Q, and R are functions of . This equation is of some
importance in Differential Geometry.}

163. Reduction to a linear equation of the second order. Put
2
When we substitute in equation (1) the terms in u,? disappear.§
Hence, on multiplying up by R%*, we obtain
— Ru, +Ru,=PR* - QRu,,
t.e. Ru,— (QR+R,u, +PR*u=0, ....... RN )]
a linear equation of the second order. In special cases (as in the
examples below) this may be integrated in finite terms, but in
general solution in series will be required. However, in every case
the solution wil’ be of the form
u=Af(x) + BF(z),
u,__ Afy()+BF, ()

Y=~ Ru~ " R{Af@) + BF@)
@ +FE@
cRf(z) + RF(z)’
where 4 /B has been replaced by c.

giving

* Suffixes denote differentiations with respect to z.

t For the history of Riccati’s equation and its connection with Bessel Functions,
see Watson’s Theory of Besseb Functions, pp. 1-3 and 85-94.

} There are 20 references to Riccati in the index of Darboux’s Legons sur la
Théorie Générale des Surfaces. See also Eisenhart’s Differential Geomelry, pp. 25,
168, 249, 429, and Forsyth’s Differential Geometry, pp. 20, 383.

§ This l})roperty is the real reason for choosing the substitution and enables us to
recall it if it is forgotten.
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This gives the important result that the general integral of Riccati’s
equation s @ homographic function of the constant of integration.
Conversely, it is easily shown (as outlined in Ex. 6 below) that we
obtain a Riccati’s equation by eliminating the arbitrary constant ¢
from any equation of the form

¢g(z) +G(x)
“of@) +F@)"

164. The cross-ratio of any four particular integrals of a Riccati’s
equation is independent of x. We may take the four integrals to be
¢g(x) +G(z)

/(@) +F()
the four special values «, 3, v, 4.
_ag+G _Bg+G_(a-B)gF -[fG)
Then  p=4=t i 7~ Bf+F— (J+B) B +F)’
with similar expressions for the other differences of any two of
P, ¢, 7, 8. When we form the cross-ratio, all the factors involving
functions of  cancel out, and we obtain

(P=)(r=s)_(a=pB)y—-9)
(p-s)r-9)~ (a NMy-6)

where C is independent of =.

p(x), q(z), r(x), s(z), which are derived from by giving ¢

=( say,

165. Method of solution when three particular integrals are known.
Let these be g(z), r(x), s(x). Then it follows from the last result,
with p(x) replaced by y, that the general solution is

(Y= g@r(e) s} _
{y — s(@)Hr(z) - q(x)}
so in this case the general solution has been obtained without
quadratures (t.e., without integrations).

166. Method of solution when two particular integrals are known.
Let these be ¢(z), r(z).
Then, as Yy, =P +Qy +Ry?,
and ¢,=P +Qq +R¢’,
Y1- 1 =H- i@ +(y +9)R}.
Similarly  y;~r,=(y-r)}{Q +(y +r)B}.

Hence Ut N1l g-p)B,
y-q9 y-r
giving log %Eg; c+ j(q -r)Rdz,

go in this case the general solution requires one quadrature.
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167. Method of solution when one particular integral is known. Let
this be g().

The substitution * y=¢(r) +£ transforms equation (1) into

e (o000 D
But, since ¢(z) is an integral,
0,=P +9Q +¢°R.
Subtracting and multiplying up by 22, we get
—2,=20) +(229 +1)R,
or 2 +(Q +2qR)z= - R,
a linear equation which can be solved by the use of an integrating

factor exp{ [(Q +2¢R) dx}. The determination of this factor requires

one quadrature and the completion of the solution (asin Arts. 18-20)
requires another, making two in all.

Exanples for solution.
In Exs. 1-5 the student should work from first principles, imitating

the mecthods used above. He should not merely quote the results and
substitute in them.

(1) By reduction to a linear equation show that the solution of
y1=—2-by -2y
is 2y(ce®® + 1) = — (ce®® +4).
(2) Show that the solution of
2%y, +2 - 2zy + 2*y2 =0
is y(x% + cx) =2 +c.

(3) Show that tan z is one integral of y; =1 +4? and hence obtain
the general solution in the form

y(c—tan z)=c tan z+1.
(4) Show that there are two values of the constant k for which
k/x is an integral of #?(y, +y?) =2, and hence obtain the general solution,
[k=2or —1; y(cat —x)=2ca+1.]
(5) Show that 1, z, % are three integrals of
z(22~1)y + 22~ (22~ 1)y —~ y2 =0,
and hence obtain the general solution
y(x +c¢) =z + ca?
* This appears artificial. A more natural (but longer) method is first to put
y =q(«) +u, which will give an equation of Riccati’s form with P replaced by zcro.
But this is a special case of Bernoulli’s equation (Art. 21), and the usual method of

solution roquires the substitution 1/u=z. By combining these two substitutions
we get that given in the text. v
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(6) By eliminating the arbitrary constant ¢ from the equation
g 500) +6(@)
of (x) + F(x)
obtain the Riccati’s equation
(9F - Gf)y,=(9Gy —9:,@) + (Gf, - Gof ~9F1 +9:F)y + (fF, - /L F)y*.
(7) Show that when m =0 Riccati’s equation
Y1 +by*=ca™
can be integrated in finite terms.
[yk(Ae™® +1) =c(Ae** - 1), where k=,/(bc), if be is positive ;
yk=c tan (4 — kz), where k=,/( - bc), if bc is negative ;
y=cx+A4, if b=0;
y(bz+4)=1, if ¢=0.]
(8) Show that the substitution y=12/z transforms Riccati’s equation
into
x2y — 2 + be? = ca™+?,
and hence show that the latter equation can be integrated in finite terms
if m=0. [Use the result of Ex. 7.]
(9) By the substitution z=yx?, transform the equation
zz, —az+ bt =ca”
{nto 2%y, + by =ca™2,

By the further substitution X =2% obtain an equation of Riccati’s
form, -with b, ¢, m replaced by bfa, cfa, (n—2a)/a respectively. Hence
show that the first equation of this example can be integrated in finite
terms if n=2a.

a "

3t transforms the first
equation of Ex. 9 into one of similar form with @, b, ¢ replaced by
n+a, c, b respectively. Hence show that either equation is integrable
in finite terms if n=2a or n=2(n+a). By a repetition of this reasoning
show that the first equation of Ex. 9 is integrable in finite terms if
n=2(sn+a), where (as also in the following examples) s is zero or any
positive integer.

(10) Show that the substitution z=

n
(11) Show that the substitution z=% transforms the equation of

Ex. 9 into one of similar form with a, b, ¢ replaced by n —a, ¢, b respec-
tively. Deduce that either is integrable in finite terms if n =2(sn —a).
(12) From the results of Exs. 9, 10, and 11 deduce that Riccati’s
equation is integrable in finite terms if m + 2 =2s(m + 2) 4-2.
Show that this result is equivalent to m= —47/(2r41), where ¥,
like s, is zero or a positive integer, or to 2/(m+2)=an odd integer

(positive or negative).

(13) Show that the substitutions ynl—:_z +a—u_‘1—17’ X =2™43, transform
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Riccati’s equation into another of similar form with b, ¢, m replaced
by ¢/(m+3), b/(m+3), —(m+4)[(m+3) respectively. Deduce that if
m is of the form —4s/(2s—1), the transformation replaces s by (s—-1).
By considering s such transformations show that in this case Riccati’s
equation is integrable in finite terms.

(14) Show that the substitutions y=1/Y, X=g™+, transform
Riccati’s equation into another of similar form with b, ¢, m replaced by
¢/(m+1), b/(m+1), —m/(m+1) respectively. Deduce (using the result
of Ex. 13) that Riccati’s equation is integrable in finite terms if m is of
the form —4s/(2s +1).

168. Two methods of integrating the total differential equation
Pdx+Qdy+Rdz=0. We have already (in Chap. XI.) given the
necessary and sufficient condition of integrability of this equation,
and a general method of obtaining the integral when the condition
is satisfied. We shall now give two additional methods. One of
these (involving an integrating factor) has the defect that it can be
used only for certain homogeneous equations, but for these equations
it is perhaps the simplest method available. The other (Mayer’s
method) is quite general. It requires only one integration, and this
gives it a theoretical advantage over the other general method (Art.
117), which requires two. However, the beginner is not advised to
use this method, for the single integration required is often more
difficult to eflect (on account of the lack of symmetry of the expres-
sions involved) than the two integrations required in Art. 117.
Moreover, Mayer’s method, if applied without careful attention to
certain conditions, may give results that are absolutely wrong.

169. Integrating factor for homogeneous equations. Let

Pde+Qdy+Rdz=0 ..coovrreervvrienniinnnnnn. 1)
be an integrable equation in which P, @, R are homogeneous func-
tions of the same degree # in z, y, 2, that is to say, in which P, @, R
may be expressed in the forms

zf(u, v), x"g(u, v), T h(u, v)
respectively, where u=y/z, and v=2/z.

Then dy=udx +z du, dz=vdx+zdv.

Hence equation (1) becomes

z7{f(u, v)dz +g(u, v)(v dz +x du) +h(u, v)(v dz +x dv)} =0,
t.e. z™{(f +ug +vh)de +x(g9 du +h dv)}=0,
from which, dividing by z"*(f+wug +vh), if this expression is not
gero, we obtain dz gdu+hdv
—_—ge——— =
\ z  f+ug+vh
P.D.BE. »
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Now since equation (1) is integrable, so is equation (2), either
iramediately or after multiplication by an integrating factor. But
the first term in equation (2) involves only z, and the second term
only the variables w and v. One variable is separated from the other
two, and this separation, which is the most favourable form for
integration, would be destroyed by multiplication by any factor
(except a mere constant). Hence no integrating factor (except a
constant) can exist, so equation (2) must be exact as it stands. But,
apart from the change of variables, equation (2) was derived from
equation (1) by division by the factor x"*+(f+ug+wvh), which is
equal to Pr+Qy+Rz.

Hence 1/(Px +Qy + Rz) is an integrating factor of the integrable
homogeneous equation

Pdz+Qdy+Rdz=0,
except when Pz +Qy+Rz=0. A similar theorem holds good for
the equation
P.dz, +Pydzy+... +P,dz,=0.
Ex. (y% + y2)dz + (zz + 2¥)dy + (y* — zy)dz=0.
Here Pz +Qy + Rz=ay? + zyz + xyz + y2* + y*2 — xy2
=y(zy +22+22+yz) =y(z +2)(y +2),
go the integrating factor is 1/{y(x +z)(y +2)}.
Multiplying the differential equation by it we obtain
dz  zdy | (y-a)dz
z+2z yly+z) (z+2)(y+2)
4z {y+2)-yydy {y+2)-(z+2)idz_

=Y,

e T+z y(y+2) (x+2)(y+2) ’
or _d_z__{,.gy__dg.,._f.j?_._ﬁ_=0’
z+z Y Y+z T+z Y+2
or M + .d_y - d_y_:*._ilf =0,
Tz+z Yy  y+z
whence _ log(x+2)+logy—log (y+2z)=loge,
giving y(z +2)=c(y +2).

Examples for solution.

Apply this method to the following examples, 2 on p. 138 ; 10 (i),
10 (ii), and 11 on p. 144.

170. Mayer’s method. Write the total differential equation in the
form
dz=P(z, y, 2)dz +Q(z, y, z)dy.
It may be proved that if the condition of integrability (Arts. 118 and
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119) is satisfied, and if the functions P and Q are holomorphic in the
neighbourhood of a point (x4%y2,), then there exists one solution (and
only one) of the differential equation representing a surface passing
through this point.* Mayer’s method determines this surface by
finding the curve of intersection of the surface and a variable plane
drawn parallel to the axis of z through the point (zyyy2,). The
simplest values consistent with the holomorphic condition are taken
for 2y and y,; e.g. 0 and 0, or O and 1, or 1 and 1. 2, occurs in the
final result as the arbitrary constant. The procedure will be best
understood by a study of the following examples. (Of course these
examples can be solved at sight, but if harder ones had been chosen
the principle of the method might have been obscured by the details of
the complicated integrations which Mayer’s method often involves).

Ex. (i). dz=22dx+4y dy. .cccoveenrerirniiniinnnnnnn. (1)
The condition of integrability is
2x(0 - 0) +4y(0 -0) -1(0 - 0) =0,
which is satisfied. We may take z,=0 and y,=0, as the functions 2z
and 4y are holomorphic in the neighbourhood of (0, 0, 2z,). The plane
through this point parallel to the axis of z is given by
Y=mz, dY=mde. ..cccooevrrriraririeriranec. (2)
From equations (1) and (2),
dz=(2+4m%z dz,
whence we get 2—2o=(1+2m2)23, .cccovrreiirrnnrrnceniianenn. (3)
determining the constant of integration by the condition that z=z,
when z=0.
Equation (3) represents a eylinder (with generators parallel to the

axis of y) through the curve of intersection of the plane (2) and the
surface required.

Eliminating m from equations (2) and (3) we get as the equation of
the surface

2 —2y=2%+2y°.
This is the general solution of equation (1), if 2, is taken to be an
arbitrary constant.

Ex. (ii). dz=

3zdz  2zdy 7
o T Ty s

y
The condition of integrability is

32 (:3- o)—?f (0 -§>-1(o—0)=o,
z\y Yy T

which is satisfied. We cannot take zy=0, y,=0, as this makes the
functions 3z/z and 2z/y infinite. However, xy=1, yo=1 will do.

* Goursat, Cours d’ Analyse Mathématique, Vol. II., 4th ed., Arts. 385 and 441.



208 DIFFERENTIAL EQUATIONS

Put Y=14+mT=1). ceeririeriinnrnrinsnniennenes (5)
Equation (4) becomes

3z dzx 2zm dz
dz=

z  l+m(z-1)’

giving log 2 - log 2z, =3 log  — 2 log {1 + m(x — 1)},
whence Hl+m(z—-1)P=223  .oiiiiiiiiniinnannn canenes (6)
Eliminating m from (5) and (6), we get the solution
2y? =242

It will be observed that all the surfaces of this family pass through
the point (0, 0, z,).

Examples for solution.

(1) Show that the attempt to solve Ex. (ii) above, with (0. 0, 2z,)
as the fixed point, breaks down when we try to make the cylinder
corresponding to equation (6) pass through that point.

(2) Solve yrdz=ydz+(y®-2) dy.

[The correct result, choosing the fixed point as (0, 1, z,) is

Yz -z) =y(y - 1)+ 2.

The choice of (0, 0, 2,) leads to the incorrect result z —zy=y.]

(3) Solve (1+zxy)dz=(1+yz)dz+z(z—2x)dy.

[Result z=xz +2(1 +2y).]

171. Linear differential equations of the second order. The
following discussion (Arts. 171-177) is supplementary to Chaps. 1X.
and X. Suffixes will be used to denote diflerentiations with respect
to z. We shall use A(z), X(x), j(z), H(x), K(z), or sometimes 4, £, 7,
H, K, to denote functions of « which are holomorphic at the origin
(t.e. expansible in power series convergent within a sufficiently small
circle whose centre is the origin) and which have the further property
that they do not vanish at the origin. Their reciprocals also will be
holomorphic,* and so will their logarithmic derivates such as

hy(@)/ k().
Whenever we speak of singular points, it is to be understood that

these points are isolated, i.e. that a circle of sufficiently small radius
with any one point as centre will exclude all the others.

172. Regular integrals. It was mentioned on p. 110 that solu-
tions of Frobenius’ forms are called regular integrals, We shall now
consider in more detail what is implied by this. Let us examine th
forms of the answers to the examples in Chap. IX. Although we

® Bromuich’s Infinite Series, 2nd ed., Arts. 54 and 84.
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distinguished four * cases in the process of solution, there were only
two essentially different forms of the complete primitive au +bv.
One integral, say u, was always of the form zA(z). The second
integral, v, had in some examples a similar form, say z°k(z), as in
Arts. 95 and 99 ; in others, as in Arts. 97 and 98, it had the form
z2{h(z) log x +2*k(z)},

where s was an integer, positive or negative (e.g. 1 in Ex. 1, Art. 97,
and —4 in Ex. 1, Art. 98).

We take these forms as the definitions of integrals reqular at the
ortgin T (of a linear differential equation of the second order), with
the slight modification that s is allowed to take also the value zero.
This makes no real difference, for if s is zero we can replace the
integral v=2°{h(x) log  + k(x)} by the linear combination of integrals

v - = {ba) o o+ 10) - 410
which is of similar form except that k(z) has been replaced by a new
holomorphic function of which z is a factor. Similarly in the first
form of v, namely zfk(x), we can always suppose a and 3 unequal,
+(0)
h(0)

For linear differential equations of the mth order an infegral
regular at the origin is defined as one of the form

ze{h(x)(log z)" +a*k(z)(log z)™! +... +27j(2)},
where s, ... n are zero or any integers (positive or negative), and r
can have any of the values 0, 1, 2, ...m~1. Thus for first-order
equations regular integrals cannot involve logz. IFor the second

for if not v can be replaced by v— u, which has z**1 as a factor.

* In the method of Frobenius for equations of the mth order (Crelle, Vol. LXXVI.
1873, pp. 214-224, or Forsyth’s 7'heory of Differential Fquations, Vol. IV, pp. 78-93,
or Ince’s Ordinary Differential Equations, pp. 396-402), it is convenient for the
theoretical treatment to distinguish only two cases, the second of which includes our
cases I1., III. and IV. To deal with this second case the series with its coeflicients
a8 functions of ~ is multiplied by f(c+1)f(c+2) ... f(c+7), where f(c)=0 is the
indicial equation, and r is the greatest difference between any two of its roots
that belong to a set differing by integers (cf. our method for case IIL)., In this
series and its successive partial differential coeflicients with respect to ¢ are
substituted respectively the roots, arranged so that the difference between any one
and the following is a positive integer or zero. However, in solving examples this
method often leads to a large amount of unnecessary work, and hence in Chap. IX.
we have modified it considerably, particularly in our Case IV.

t Points other than the origin are considercd in Art. 175. It is unfortunate that
the word regular has in Differential Equations a meaning different from that usual
in Thoory of Functions, where it is equivalent to kolomorphic (as defined in Art. 171).
Thus an expression involving log « or #* (where a is not zero or & positive integer)
may be an integral regular at the origin, and yet cannot be a function regular at
that point.
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order the logarithm occurs either linearly or not at all. This may
also be deduced from Chap. X. as follows : In Art. 107 both integrals
were free from logarithms. In Art. 110 we obtained a second
integral by differentiating partially with respect to ¢ a series of

the form ¢ i a,z", where the a’s were functions of ¢, and then, after
(]

differentiation, replacing ¢ by 8. The result (not given in Art. 110) is
s[(S $3204(8) }
(3 o) o+ (57557

which is of the form
z{h(x) log (z) +z*k(x)}
If the first \ of the coefficients a,(8) are zero and also the first u of
the coefficients a—%‘é@, then a=8 +\ and s=p—A.
It will be noticed that the co-factor of log z is itself an integral.
This may be proved independently. Take the differential equation

as
Yo + 11 P(x) +7Q(2) =0, creererrrneinnnniiiiannn. (1)

where P(z) and Q(x) are uniform * (i.e. single-valued) in the neigh-
bourhood of the origin.

If in the left-hand side of this equation we substitute for y the
integral z2{k(z) log z +2'%k(z)} =u log  +w say, the result must, by
definition of an integral, be identically zero. In this result logz
occurs with a co-factor (u, +u, P +uQ). This and all the other terms
in the result, except log z, are the product of z* and a uniform
function, since « and w, and hence also u,, u,, w,, w,, are products
of this kind, while P and @ are uniform. If we could divide the
identity by the co-factor of log z, we should obtain the absurd result
that the non-uniform function log z is the quotient of two uniform
functions, 4.e. is itself a uniform function. Hence the divigion is
illegitimate, and this can be due only to the co-factor being zero ;
t.e. u is itself an integral.

A similar theorem holds for the co-factor of the highest power of
log z occurring in a regular integral of an equation (with coefficients
uniform in the neighbourhood of the origin) of the m* order. Thus
in every case in which there are regular integrals at least one of them
must be free from logarithms and of the form z°A(z).

* This differential equation includes as particular cases thoso considered in Chape.
IX. and X.
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173. Fuchs’ theorem. The necessary and sufficient condition
that a linear differential equation of the second order, whose coefficients
are uniform wn the meighbourhood of the origin, should have all its
tntegrals reqular at the origin is that the equation should be expressible
wn the form .
@Yy +2y,p(2) +yq(2)=0,
where p and q are holomorphic at the origin.

The discussion of the method of Frobenius (Arts. 106-110) proves
that this condition is sufficient. We have now to prove that it is
necessary. From Art. 172, at least one integral is of the form

z°h(z). Denote this by u(x). Put y:uIz dx, and substitute in

equation (1) of Art. 172. The terms involving the sign of integration
have a factor (u4 +u,P +u@) and therefore vanish, as v is an integral,

and we get
2uqz +uz; +Puz=0. .ooveeiiiriiiiniiiiiiinnnnn, (2)

Now the integral y may have either of the two forms
xfk(z), x*{h(z) log x +x*k(x)}.
I C)) k(x)

Hence 17(.75_):1; hiz) or logz+a! h(z)
=zf-2H(z), or logxz+a*H(z), say,
d (3
8o that e= <‘@{>=xﬂ‘“'l{(ﬁ‘ a)H +zH,},
or z-t +a*-Y (sl +zH,).

In both cases we can write 2 in the form * xvK(x), where K(x) is

holomorphic with K(0)#0. Hence from equation (2)
_n 2y K 2a_%,_sa)
P= : w2 K =z K gz

where p is holomorphic at the origin.

Also, since z*h(x) is an integral of equation (1),

x°hy +20a3*~th, +a(a — 1)z*~%h + (2°h, + ax*—*h)P +2°hQ =0,
giving
2
Q=~1{—?—h}ig—2—(%ﬁ—l—-a(a—l)—-(?—;:—l +a>p}=g%) say,

where ¢ is holomorphic at the origin.

On multiplying each side of equation (1) by 22, and replacing P
and 2%Q by p and ¢ respectively, we get the form required by the
theorem.

* In the first caso y=8-a~1. In the second case y= -1 or s - 1, according
as the integer s is positive or negative.



212 DIFFERENTIAL EQUATIONS

Example for solution.
By eliminating the arbitrary constants from y= Azt + Bzl log s,
obtain the differential equation
8z%(4 - log z)y, + 22(8 - log z)y, — y log =0,
which is therefore a lincar differential equation of the second order
having all its integrals regular at the origin, but is not expressible io the
form given in Fuchs’ theorem.

[This example shows the importance of the stipulation that the
coeflicients of the differential equation should be uniform in the neigh-
bourhood of the origin. In fact, this imposes a severe restriction, for
it excludes all complete primitives of the form

y = AzPj(x) + Bx*{h(z) log z + z*k(z)},
except for the special case where ##j(x) is merely a numerical multiple
of z°h(z).]

174. Ordinary and singular points. It may happen that (unlike
the other holomorphic functions %, %, 5, H, K) p and ¢ may vanish
at the origin. In particular if p is divisible by z and ¢ by =2, the
equation in its original form (1) has P and @ holomorphic at the origin.
In this case the origin is said to be an ordinary point, and on applying
the method of Frobenius we shall obtain an indicial equation
with 0 and 1 as roots, leading (as in Art. 99) to an indeterminate
coefficient and finally to two lincarly independent integrals that are
both power series. Neither logarithms nor indices other than positive
integers (or zero) can occur. But the indicial equation may have
0 and 1 for roots without the origin being an ordinary point, as in’
Ex. 2 of Art. 98.

Points which are not ordinary are called singular. If at a
singular point (in whose neighbourhood the coefficients of the
equation are uniform)all the integrals are regular, it is called a
regular singular point.

These definitions refer to singular points of the differential
equation itself, that is, of its coeflicients when it is written in the
form (1). Our discussion of ordinary points shows that the singu-
larities of the integrals are singularities of the equation, but the
converse is not always true. For example, by eliminating the
arbitrary constants 4 and B from y=Aa™+Bz", we get

2%y, — (m+n - Dy, +mny=0.
If m and » are unequal positive integers, or if one is zero and the
other a positive integer other than 1, the origin is a singularity of
the equation but not of the integrals. When, as here, every integral
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is holomorphic at a point which is singular for the equation, the
singularity is said to be apparent. In all other cases the singularity
is said to be real. At an apparent singularity it is necessary that the
roots of the indicial equation should be unequal positive integers, or
zero and a positive integer greater than 1. It is also necessary that
the smaller root should lead to an indeterminate coefficient (very
much as in Art. 99).

Examples for solution.
(1) Show that a necessary (but not sufficient) condition for the
origin to be an apparent singularity of the equation
2y, + 24,p(2) + yg(2) =0,
where p(z) and ¢(x) are holomorphic at the origin, is p(0)=a ncgative
integer, while the necessary and sufficient conditions for the origin to be
an ordinary point are p(0)=¢(0) =¢,(0) =0.
(2) Show that the origin is an apparent singularity of
(1 +2%)y, -y, - 2%y =0,
and obtain the complete primitive
y=A(1 + 32t — fea® + 128~ ...) + B(x? - }at + b — 4 al...).
(3) Show that the origin is a real singularity of zy, + (2% —2)y =0,
but that all the integrals are free from logarithms.
[The roots of the indicial equation are —1 and 2. The smaller root

gives ay indeterminate (cf. Art. 99). The infinite scries obtained can be
summed, giving finally y=Az~(cos z + z 8in z) + Bz~1(sin z — z cos z).]

175. Equations of Fuchsian type. To deal with points other
than the origin we make a change of variable, putting X=x —a, or
X=z"1, according as the point to be considered is the finite one
r=a, or that at infinity z=o . It follows that for equation (1), if
the functions P and @ are holomorphic at every finite point except
a limited number @, b, ¢, ..., then these are the only possible finite
singular points. Thus we can find these points by inspection, by
secing where P and @ fail to be holomorphic, without making a
change of variable ; e.g. if

z+2 3

Pie-5 ™ Cap-ge-ar

the only possible finite singular points are given by 2=0, 3, 4. More-
over, to test whether a singular point z=a is regular, we have only
to notice whether (z—a)P and (z-a)?Q are both holomorphic at
z=a. In the example given 0 and 3 are regular singular points,
but 4 is irregular, since (z —4)?Q is not holomorphic at z=4, owing
to the factor (z —4) in the denominator.
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The point at infinity z=o0 is best dealt with by a change of
variable.

If all the singular points of an equation (whose cocflicients are
everywhere uniform) are regular, the equation is said to be of
Fuchsian type.

Examples for solution.
(1) Show that, for the Hypergeometric equation
z(l -2)y, +{c - (a+b+1)z}y, —aby =0,

the only singular points are 0, 1 and oo , which are regular.

(2) Show that for Legendre’s equation

(1 -2%)y, - 22y, +n(n+1)y =0,

the only singular points are 1, — 1, and oo, which are regular.

(3) Show that for Bessel’s equation

2%y, +xy; + (a* - n?)y =0,

the only singular points are O and o0, of which the first is regular, but
not the second.

a bec
(4) Show that Riemann’s P-equation y=P { a By a:},
al 6/ ‘Y,
. l-a-a ad’(@-b)(a-c) y
v yz+2< z—-a )y’+{z rT-a }(x—a)(z—b)(z—c) 0,

has a; b, ¢ as regular singular points and all other points, including o,
as ordinary points, provided that a+a’+B8+ 8 +y+v'=1.

By change of variable show that a and a’ are the roots of the indicial
equation corresponding to the point a.

(5) Show that the equations of Exs. 1, 2 and 4, but not 3, are of
Fuchsian type.

(6) Show that the following equation is of Fuchsian type :

P
Yat ‘_P'yl +\%y=0,

where - is the product of any number, say =, linear factors (z —a),
(z-b), (x—c), ... of which no two are equal, and P, @ are polynomials
in @ of degrees not greater than (n—1) and (2n - 2) respectively.

176. Characteristic index. Consider the equation
Y2+ pla)y, +27q(2)y =0,
where A, u are positive integers or zero, and p, ¢ are holomorphic
functions of & which are not zero when z =0.
If we attempt to solve this equation by the method of Frobenius,
we get the indicial equation by replacing y by a series of powers of z
(starting with z¢), and equating to zero the coefficient of the lowest
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power of z in the result furnished by the left-hand side of the differ-
ential equation. The lowest powers of « from its first, second, and
third terms will be respectively ¢~2, ¢~A—1, and ¢—pu. Three
cases arise :
(i) if the first of these numbers is not greater than either of the
others, the indicial equation is of the second degree ;
(ii) if the second of these numbers is less than the first and not
greater than the third, the indicial equation is of the first
degree. (Cf. Exs. 2 and 4, p. 118);
(iid) if the third of these numbers is the least, then the indicial
equation is of zero degree. (Cf. the example at the top
of p. 118).

In case (i) A =1 and u =2, 8o by Fuchs’ theorem there must be
two regular integrals.

In case (ii) there may be one regular integral. 1If, however, as is
often the case (cf. Ex. 4, p. 118), the single series obtained is divergent
for all values of , there is no regular integral.

In case (iii) there is no series and hence no regular integral.

The characteristic index may be defined as the number denoting
the case which arises, but starting from zero, i.e. 0 for case (i), 1 for
case (ii), and 2 for case (iii). It is easy to extend this definition and
the discussion of the maximum possible degree of the indicial
equation to equations of any order, leading to the conclusion that
a linear differential equation of order m and characteristic index r
cannot have more than m — r regular integrals.

177. Normal and subnormal integrals. We saw in Art. 100 that
the method of Frobenius failed to discover an integral with a factor

¢. Thisis a particular case of a normal integral, defined as one of
the form e*u, where z is & polynomial in 1/z (in the simplest case a
numerical multiple of 1/z), and u is a function of z such as occurs in
a regular integral. Subnormal integrals differ from normal integrals
ouly by having x replaced by its square root (or by its cube or other
higher root in the case of differential equations of order higher than
the second).

A method of obtaining normal or subnormal integrals is shown
by the following examples :

Ex. (i).. Ya—20 Ny + 24— 4+ 222y =0. .ccerririiirnniannnns 1)

Here the indicial equation has no roots and therc are no regular
integrals (i.e. the characteristic index is 2). This is due to the term
~ 421 in the coefficient of y.
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Put Yy =e*u,
giving Y= (u; +2,u), yp=e{u,+22,u, + (2,3 +2,)u}.
Equation (1) is transformed, after division by €%, into
Ug+ (2071 +22))u; +( -4z + 22 - 2271z, + 2.2 + 2,)u=0. .......... (2)

To get rid of the term — 44, take 2, as az~2, where a= 4-2. Equa-
tion (2) becomes
g+ (~ 2z + 2ax~?)u, + (2272 — daz3)u =0,
which has a characteristic index 1, and so may have a regular integral.
Applying the method of Frobenius to find this, we get the simple result
u=2a? for both values of @. Multiplying by the exponential factor, we
obtain finally the two normal integrals z%~2/* and z%%~.

Ex. (ii). Yo+ 4%y, + 278 — 4 + 62% - 423y =0.

Again there are no regular integrals. Proceeding as in Ex. (i), we
obtain

Uy + (42724 22))u; 4 (— 2378+ 624 — 423 + 4222 + 2,2 + 2,)u=0.

To get rid of the term =428, take z; to contain a term bz—3, where
b=+42. If z;=axr2+bs3 the coefficient of u will contain no term in
275, provided that a is choscn so that 4b+2ab=0, i.e. a = —2.

The choice 2z, = — 2272 + 2273 leads to

Uy +4a3u, — dx~*u=0,
which has one regular integral, u=2.
The other choice, 2z, = — 222 — 223, leads to
Uy —4a7%u, + 8z~4u, =0.
This has no regular integral, for the only series obtainable, namely,
z’(l +}z2+17'2§ ar;4+l 'fa' 5 z8 + )

is divergent. Hence the original equation has one normal integral,
zel2r—t—z%)

Ex. (iii). Yy +27%(-143z)y, + 2% =0.

This time the characteristic index is1. The indicial equation is of the
first degree, but (as pointed out in Ex. 4, p. 118) the series obtained is
divergent.

Proceeding as before, we get

Uy + (=272 4+ 3071 + 22 )uy + {22+ (~ 272 + 3z Y)2, + 2,2 + 2,}u=0.

As the troublesome term in the original equation was —z~2 in the
coefficient of y,, while the coefficient of y was only such as occurs when
the integrals are regular, it might be thought desirable to simplify the
coefficient of u by taking 2, =422 But this will introduce a term in z—4
into the coefficient of u, giving an equation with no regular integrals.

Let us try to get another equation with characteristic index 1, in
the hope that the corresponding series may converge. Put z;=az%,
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The coefficient of u will be free from terms in z—4 if a® —a =0, 1.6. a=0
or 1. a=0 gives the original equation, but a=1 gives
U+ Bzl + 2%y, + (22 + 27 3u =0,

which has the regular integral u=x"1, giving the one normal integral
y=z"le" V=,

Ex. (iv). Yg+ix7ly, —273y=0.

This equation has no regular integrals. Proceeding as before,
we get

Uy + (3271 + 227 )uy + (— 23 + 12, + 2.2 + 2,)u=0.
To get rid of the term —z-3, take 2; = kz~3/%, where k= J-1.
This gives u,+ (4~ + 2kz—3%)u, - ka=u=0.

a
w=2¢Y, a,z¥ will be an integral if
0

ay(2kc -~ k) =0, so that c=3,
a,{2k(c +3}) — k} + ap{c(c - 1) + §¢} =0,
ve. ka; +0=0, s0 a,=0.
Similarly, a,, =0 for all values of n>>1, 8o u=xzt,
The original equation has the two subnormal integrals

zte22 b and gl i

Examples for solution.
Find normal or subnormal integrals of the following equations
(1)-5) :
(1) yo+2z7 2y, —z~% =0. [Ans. el/z, e1z]
(2) yo+zy +27 (1 - }2%)y =0.
[Ans. zheilz, ghe=ilz; or at cos (1/z), z¥ sin (1/z).]
3) Yo+ X -2+m)y;, +2 41l +x - 2%+ 2%y =0.
[Ans. ue=1%, ve~1/%, where u and v are as on p. 115.]
(4) yo -3y, — 423 =0. [dns. z(1 +}at)et2" ¥ 2(1 - Jat)el= 1))
(6) y,—z8(1 + Ha?)y =0.
[Ans. z7Y(1 + Ja?)ets; 2= —}2-2 gives a divergent series.]
(6) Transform Bessel’s equation of order zero by the substitution
z=1/X, and attempt to find normal integrals of the transformed
equation. Show that the series obtained are divergent. Reverting to
the original variable, obtain the series
) 12 12,32 1%2.3%.57
e ‘{ V-5 tai@i~ sieims }
and a similar series with the sign of ¢ changed.
[The transformed form of Bessel’s equation is given in the answer
to Ex. 1, p. 118.
These series, although divergent, are very useful. They are called
asymptotic. For any given value of z, sufficiently large, they give an
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spproximation whose error can be made reasonably small, though not
indefinitely so. See Whittaker and Watson’s Modern Analysis, 4th ed.,
Arts. 8-1 -8-32 and 17-5.]

(7) From Whittaker’s confluent hypergeometric equation
) k }-m?
yl+<—*+5+% z2 >?/==0.
obtain (by the process of Ex. 6), the series
P LS L TRl LR e )

—1 rlzr

[This series is in general the asymptotic expansion of the function
denoted by W ,(x), but if (k—4%-4-m) is a positive integer the serics
terminates, giving an integral in finite terms. Another series W _g (- 2)
can be obtained from W, y, () by changing the signs of k£ and x.]

178. The equation of vibrating strings. This is

*V_ 1V
s (1)

where a is a constant.
Put X=z-at, T=x+at.
9V oV 23X 3V or ov oV

Then  35=5X o ToT oo ~0X *oI’
' BV _ 2 (AV\_(D D\ oV oV
aad o= (55)=Gx+s7) Gz +37)
I AN A 4
=axzt%axor T
. oV oV aX oVl oV oV
Slmxlarly —a—t=,§X _87+5T 5{—-—0«<—'5.—X +3—T>,
RV 2V W RV
and 5 =*(Gp-2 501 +5m)
Substituting in equation (1), we get
RV
4 sxor=%
. 14
giving s7=¢(T)
and V=f(X) +j¢(T) dr,
or V=f(X)+F(T),
t.e. V=f(z—at) +F(Z +al), ceeeerrrerrrenunceenann 2)

where f and F are arbitrary functions.
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f(z - at) is unaltered if z is increased by @ and ¢ by 1; hence it
represents a wave moving along the positive directicn of the axis
of « with speed a. Similarly F(z +at) represents a wave moving
along the same line with the same speed in the opposite direction.

An alternative method of solving equation (1) is to use the general
result given in Art. 145, with z, y, 2 replaced by ¢, z, V¥ respectively.
Writing the equation as

i o2
(5~ 52)7=0.
or (D2 —a2D'?) V=0,

we get the auxiliary equation m?— a?=0, whose roots are —a and a,
leading to
V=f(x - at) + F (x +at).

179. Particular solutions of the Wave equation. This is
o2V RV *V 1 &V
] +‘a‘y—2 +%? =—a—2 TE? rreeeeeeneessesenees (3)
where a is a constant. It is the three-dimensional analogue of the

oue-dimensional equation (1). Let us attempt to find a solution
similar to (2), but with 2, y, 2, ¢ instead of z, ¢.

Try V=f(lx +my +nz - at) + F (lx + my +nz +at), ..... ceeee(4)
where I, m, n are constants. Equation (3) is satisfied if
B+m? +n?=1.

In this case I, m, n are the actual direction-cosines of a certain line.
The first function is unaltered if z, y, 2, ¢ are increased by la, ma, na,
1 respectively, so it represents a plane wave (whose normal has
direction-cosines I, m, n) moving parallel to itself with speed a.
The second function represents a parallel wave moving with the
same speed in the opposite direction. Hence equation (4) represents
the propagation of plane waves. This is one particular solution of
the Wave equation.

To obtain a solution for spherical waves transform equation (3)
into spherical polar coordinates. The work is essentially a trans-
formation of Laplace’s equation,* and we get
120,00) 120000y, L oV 137
2o\ or/) Ym0 a—9<sm %) st 0 0¢2 a® o2’ +(5)

* See Edwards’ Differential Caleulus, Art. 532, or, for a simpler method using
Gauss’ theorem, any book on Analytical Statics.
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For a solution symmetrical in all directions about the origin,
t.e. independent of 6 and ¢, this reduces to

oVy\ 1oV
7_2 af(f é;) a"? —é't“i s ececcsscssscescescssscene (6)
By the transformation U=rV, we get
oU oV
or Vit o’
U aV ?V _192/,0
and =t (" )
80 equation (6) becomes, after multiplication by r,
U 12U
o T a? o2’
giving U=f(r-at) +F(r +at),
ie. V= 17{ F(r=at) +F(r4at)}. eereerrrssessrssenn, )

This represents two spherical waves with the same speed a, one
diverging from the origin and the other approaching it. The factor
1/r shows that the intensity of the disturbance decreases as the
distance from the origin increases.

180. Poisson’s (or Liouville’s) general solution. This obtains V
at any time ¢ at a point P in terms of the mean values over a sphere
of centre P and variable radius at of the functions, say ¢ and G,

which give the values of V and -If respectively when t=0 at any

point in space.
Take spherical polar coordinates with P as origin.

Now the mean value f of a function f(r, 6, ¢, t) over a sphere of
radius 7 is given by

_ 1 2 . 1 2m .
f:E;ZJ';L fﬂsxn9d6d¢=;{7~rL Jofsmé)de dep.

Take the mean value over a sphere of radius  of each term of the
Wave equation (5). The second term becomes

1¢(>1 0 oV 1 (% oV
E;HO 79 ( n0%) d"d‘/‘:mjo [sin 6.5 ['ds,

and the third
1 1 1 oV
I;rj _[ 7% sin 0 a¢2 d9 dp= Wr [sm 6 2¢ 8.
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Both are zero, for sin 0 vanishes at both limits, while ¢ =27 gives the
same value of ‘%}; as ¢=0 (which is really the same position). The

first and fourth terms do not vanish. These give

%%(rﬂ%}’):%%& .......................... 8)

so that rV=f(r—at) + F(r +at), «ceoeeeeeeeeervrneneennens 9)
=f(-at) +F(at) +r{f'(- at) + F'(at)} +3r*{f"( - at)

FE(Q)} +eve eerernreenencersereoserancansses (10)

If V is to be finite at the origin (r=0) for all values of ¢
f(—at) +F(at)=
o . d
giving f(-a)= df(( ‘”)) { d-g f;-”)} F(at).

Hence, from equation (10), using a suffix 0 to denote the result
of putting r=0,
Vo=f(—at) +F'(at)=2F'(al). eeeereereerrerercone (11)
From equation (9),

% (V) =f'(r - at) + F'(r +at),

and r %l: = —af'(r — at) +aF'(r +at),
whence 2F'(r +at)=— (f V)+- E:It/ )

for all values of r and ¢. Putting ¢=0, and using the initial con-
ditions, we get

2 ()= 20r) + 72,
whence, giving r the special value at, and using equation (11),

Vo=x j (atg) +1G.

a( t
But 7, the average value of ¥V over a sphere of zero radius, is
gimply V.
Thus Vom2 () +16.

It follows from the form of this solution that at any time, ¢, the
value of V at any point P depends only upon the initial disturbance
at points on the surface of a sphere of centre P and radius af. Inan

P.D.B. °
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explosion the initial disturbance is generally confined to a region
bounded by a closed surface 8. If P is external to this surface and
d is the shortest distance from P to S, no effect will be produced at P
until & time d/a has elapsed, for before then the sphere concerned
will go only through regions where there is no initial disturbance.
At any time ¢ the Wave-front (the locus of points just reached by
the disturbance) is a surface obtained from S by producing all the
outward normals a distance at.

Other general solutions of the Wave equation have been given
by Kirchhoff * (whose form is of importance in Optics), Whittaker, ¥
and Bateman.}

Example for solution.
Verify that

" L3
V=J- f(z sin u cos v+y sin u sin v+ 2 cos u +at, u, v)du do,

where the function f is such that diffcrentiations under the sign of
integration are legitimate, is a solution of the Wave equation. [This
is Whittaker’s solution.]

181. Other differential equations of Mathematical Physics. These
include Laplace’s equation

’an an 2V
MR A =0;
Poisson’s equation
RV ¥V OV _

ol o i+ 5= ~4d7yp}
the equation of the conduction of heat
62V aﬂV °*V _19V
ay2 % a7t
the equation of telegraphy
Cd 4 oV oW
LK —; T +KR =, L
Schrédinger’s equation (of Wave Mechanics)
82\// 621/, 62\// 8rPm(w—-TV)r_ 0,
Erog ayz 72
of which, in a particular case, a solution is indicated in the example
at the end of this article.

® See Jeans, Electricity and Magnetism (5th ed.) Art. 580, or Drude, Theory of
Optics (translated by Mann and Millikan), p. 179. For a physmnl discussion of
another equation connected with wave propagation, see Jeans, Art. 645.

t See Whittaker and Watson, Modern Analysis (4th ed.), Art. 18-6.

$ Ibid. p. 402.
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These equations may be discussed from two points of view.
Treatises on pure mathematics * give a logical discussion of the
general solutions, but the physicist complains of the great length of
the discussion, and of the difficulty of applying these general solu-
tions. On the other hand, treatises on physics use a combination
of logic and intuition to obtain solutions (usually particular rather
than general) which have a physical meaning, and might never have
been reached at all by logic alone.

There is usually little doubt that these results are substantially
correct, but any uncertainty, however slight, is repugnant to the
pure mathematician. Probably his knowledge of the unreliability
of intuition in pure mathematics prevents him from appreciating
the valuable and generally reliable part that it has played in physics.

Either point of view requires a very extensive treatment, which
cannot be given here.t

[The more elementary equations of mathematical physics have
been dealt with in several places in this book, e.g. pp. 24, 28, 29, 36,
46-48, 49-61, 189, 190, 234, 235, 241-247, 250, 251.]

Example for solution.

From Schrédinger’s equation, with &/2+ replaced by K, and V given

the special form - e?/r, obtain, by changing from Cartesian to spherical
polar coordinates, replacing - by r2U(r)S(0, ¢), (cf. Art. 179),

U 2m e U1 2/7/. ,08 1 28
o+ (w+€)u}s +ﬁ{_‘sin 55005 035) * g a—q,a}"o'

By taking 'S to be a solution of Laplace’s equation (and hence r+18
a solution of what our last equation becomes when m is replaced by zero),

obtain
au (2 A Ui+1)
372—+{~K2m<w+;>— A }Uﬂo.

Finally, by the substitutions

B=Svi-om, k= [(57),

reduce it to Whittaker’s confluent hypergeometric equation (Ex. 7,
following Art. 177), with U, R, and (I +4) in place of y, z, m respectively.
[For the physical meaning of this work see Biggs, Wave Mechanics.)

¢ e.g. Goursat, Cours d’ Analyse Mathématique, Vol. IIL

4 See Riemann-Weber, Partielle Differentialgleichungen und deren Anwendung
auf physikalische Fragen (the latest edition has been quite transformed, and bears
the title Die Differential- und Integralgleichungen der Mechanik 1f.nd Physik) ;
Jeffreys, Operational Methods in Mathematical Physics (Hequsxde (] n§ethods);
Picard, Legons sur Quelques Types Stmples d’ﬁqzzations aux D_erwéga Pam.ellea avec
des Applications & la Physique Mathématique ; Webster, Partial Differential Equa-
tions of Mathematical Physics; Bateman, Partial Differenisal Equations of Mathe-
matical Phyasics,
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182. Numerical approximation. Adams’ method. Resuming the
subject of Chapter VIII. we shall now give a method * which
Prof. Whittaker considers to be the best of all those tested in the
Edinburgh Mathematical Laboratory. It may be shortly described
as the combined use of Taylor’s theorem and of a certain formula,
given below, belonging to the Calculus of Finite Differences. Taylor’s
series is used for increments of = small enough to make the series
converge rapidly. After thus obtaining a few (generally four) values
of y we have sufficicnt data to obtain further values from the Differ-
ence Formula, thus avoiding the use of Taylor’s series for large
increments of z. The error in the final result may be estimated by a
method explained below.
dy
dx
values z=2, y =25, find the values of y corresponding to z=2-05, 2-10,
2-15, 2-20, 2-25, 230, 2-35, 2:40, 2-45, 2-50, and estimate the order of
the errors in the results.

We shall use & to denote the increment of z, z,, for (z,+nk), and y,
for the value of y corresponding to z,,.

The successive differential coefficients of y with respect to « will be
denoted by ¢, "', y', ... and their initial values by the suffix ,.

To determine the coefficients in the Taylor’s series

, (z-2)% ,, (x-2
y=Yo+(x—-2)y, ‘*‘g_é‘!")'.’/o +'('"’3; )

Ex. Given the differential equation # -7 +y -~ 22 =0, with the initial

e

3
Yo H e s

put z=2, y=2-5 in the original differential equation and in the results

of differentiating it successively. We get
zy' +y-22=0, Yo

oy’ +2y' -2=0, y"=1-y)/'=1;
and so on, leading finally to

y=23+3(@-2)+3(=-2)" - (2 - 2)° + g5z - 2) — (2 -2)°+... (1)
If we put in succession z=2-05, 2-10, 2-15, 2-20 in this series, the

numerical value of the last term written there will be, at its greatest,

#4(0-2)3=0-000005,

8o the corresponding values of y will be correct to five places of decimals.

Thus we get
Y, =2-53780, y,=2-57619, y;=2:61512, y,=2-65455.

/ 3 .
=1
4 1

* Due to J. C. Adams and described in T'heories of Capillary Action, by F.
Bashforth and J. C. Adams. See also Chap. XIV. of The Calculus of Observations,
by E. T. Whittaker and G. Robinson.

John Couch Adams, of Cambridge (1819-1892) is best known by his deduction
t()}f the existence of the then unknown planet Neptune from the perturbations of

ranus.
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We now use the Difference Formula *
Ynt1=Yn=qnt %AQn‘l + TEQ'ABQW-Q + %Aa%-a + %‘%’&A‘Qn-l + .. (2)
where ¢, denotes the value of A % when z=z,, y =y, 80 in our example
4n=0-05(2 - !/n/%):
Ag, denotes ¢,4+;—¢,,
A2q, denotes Ag,+q—Ag,, and so on.
Putting n=5, equation (2) gives
Ys=Ya+qat s0¢s+ 5 A%, + A% + 353 A+ .00 e, (3)
Now ¢o=005(2 - yo/z,) =0-03750.
Similarly
¢,=0-03810, ¢,=0- 03866 ¢:=003918, ¢,=0-03967.
Hence Agqy= =q1=9 =0-00060, and so on. For the calculation of these

differences it is convenient to write the numbers in the form of the
following table :

q Ag Ay Ay AYy
g,=0-03750
0-00060
¢,=003810 ~0-00004
000056 0-00000
¢4=0-03866 - 0-00004 000001
000052 000001
g3 =003918 -0-00003
000049
=0-03067

Let us examine the numerical value of the various orders of differ-
ences shown in this table. On passing from Ag to A% we find a
decided decrcase. But there is only a slight further decrease in A3q,
and none at all in A%. This suggests that A%g and Aq are inaccurate.
We therefore disregard them and apply equation (3) in the approximate
form.

Ys=Ya+qat+ 1005+ 15 A%,
=2-65455 +0-03967 +0-00025 ~ 0-00001
=2-69446.

The error due to taking only four terms of the series may be expected
to be distinctly less than the last term retained, and therefore negligible
to five places of decimals. On the other hand, although the true value of
the first and second terms cannot differ from their respective five-figure

* This is obtained by integrating with respect to r, between the limits 0 and 1,
the interpolation formula

+1 r(r+1)(r+2
qn(x"+rh)=q,+rAq"_,+r('2l )A'Qn-r“( 3)5 )A'Qn—o

See Whittaker and Robinson’s Calculus of Observations, p. 365.
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approximations by more than 0-000005, these errors may, in an unlucky
case, be doubled in Ag and doubled again in A%g. Even if every term
used in the calculation of y; had its greatest possible error, and if these
errors all occurred with the same sign, the resulting error in y; would be
less than 0-000025.

We now calculate g5=0-05(2 — yg/xs) =0-04012. This can be relied
upon as accurate to five places of decimals, as an error of 0:000025 in y,
would be multiplied by the small number 0-05/2:25, and se become
negligible to our order of approximation. Adding the value g5 to our
table we can at once get Ag,=0-00045, and A%gg= —0-00004, and hence
Ye=Ys+ 05+ 100+ 'A%

=2-69446 + 0-04012 +0-00022 — 0-00002 = 2-73478.

(As the last digit is odd for both Ag; and Agy, in halving we have to
choose between two equally good five-figure approximations. We
choose the larger and smaller alternately, so as to prevent an accumula-
tion of errors.)

Proceeding in this way, we obtain the results given in the following
table :

y q Ag AYyg

Yo=2:50000  g,=0-03750
0-00060

y,=2:53780 ¢, =0-03810 —0-00004
0-00056

ys=2-57619  g,=0-03866 - 0-00004
0-00052

Y3 =2:61612  ¢3=0-03918 - 000003
0-00049

¥, =2:66455 ¢, =0-03967 - 0-00004
0-00045

ys=2-69446 g, =0-04012 -0-00002
000043

Yg=2"T3478  ¢4=0-04055 -0-00003
0-00040

y,=2T7654  ¢,=0-04095 - 0-00003
0-00037

s =2'81668  gg=0-04132 - 000002
0-00036

Yo =286817  ¢g=0:04167

Y10=2-90001

The y’s may be expected to have small errors in the last digit. As
a matter of fact, the differential equation that we have chosen has the
exact solution y=z+1/z. Calculating from this we find an error of
0-00002 in yg, 0-00001 in y,, ¥s, ¥y, Y10, and zero in the others.

To obtain greater accuracy we may calculate y,, 4,, 93, y,, to more
places of decimals, say eight. The student should do this. It will be
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found that Ag, A%, A%qand A% all appear to be reliable, and so capable
of use in the difference formula. The final results are
Yo =2-500,000,00 ;
¥, =2-637,804,88 ;
Y3 =2-576,190,48 ;
y3=2615,116,28 ;
Y4 =2-654,5645,45 ;
Y5 =2-694,444,42 (error -2 in last digit) ;
Yg=2-734,782,568 (error -3 in last digit) ;
¥,=2775,631,88 (error —3 in last digit);
Y3 =2816,666,61 (error — 6 in last digit) ;
Yy =2-868,163,23 (error -4 in last digit) ;
Y10=2-899,999,93 (error —7 in last digit).

The last term used in the calculation of y,,, namely 253Ad%, has
the value —0-000,000,09. The magnitude of this indicates that the
errors this time (unlike those for the five-figure work) probably occur
from neglect of the higher differences. To remedy this, we can either
calculate y; accurately from the Taylor’s series, and use ASq, or (as is
more usual) diminish the interval sufficiently to ensure that AS; may
be negligible to our desired order of approximation.

183. Remes’ extension of the method of Arts. 90-93. E. Remes
has given * a systematic method of determining suitable values for
the numbers m and M defined in Art. 92, namely,

Case (i) m=f(a, b), M=f{a+h, b+Af(a+h, b+h)}, if
df/dz>0, 2f[oy>0;

Case (ii) m=f(a, b), M=f{a +h, b+hf(a, b)}, if
df|dz>0, 9f[oy<0;

Case (iii) m=f{a +4, b +hf(a +h, b-h)}, M=f(a, b), it
df/dz<0, 2f[oy>0;

Case (iv) m=f{a +h, b +1f(a, b)}, M=f(a, b), if
df|dz<0, 9 ffoy<O.

These values satisfy the inequalities (7), (8), (9), (10) of p. 107,
Remes shows that if we define R and r by the relations

r=4h{f(a, b) +f(a +}k, b+mh)}, R=3h{f(a, b) +f(a +h, b+Mh)},
the inequalities hold also when g is replaced by 7 and Q by R.

* Phil. Mag., Series 7, Vol. &, Feb. 1928.
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Let Z’ denote {(p +2Q) if - of 3j;>0

but 3(P +29¢) if ,.[ wf

8 d f

oy da?
but 3(2P +7) xf:{ lf2<0

Then Remes proves that the errors in the approximations 2’ and

3" are at least of the fourth and third order respectively (taking the

fﬂdf

increment to be small of the first order) if == -~ <% <0, but at least

of the third and fourth orders respectively if 5‘5 [‘11[ {i_j>0 This
conclusion depends upon m and M being chosen as explained above.
The error in the example on p. 107 was much smaller than would
be expected from this result, but this seems to be due to luck in the
choice of m and M, which were not obtained in the way stipulated
by Remes. In general the methods of Adams or Kutta seem much

better.

Let 2" denote }(2p +R) if = 55 >0,
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The necessary and sufficient condition that the equation M dz+ N dy =0
should be exact
(a) If the equation is exact,
M dx + N dy=a perfect differential =df, say.
So M=§‘Z and N-—=a¢f;
o oy

ON _o*f o oM
oz axay a_/az oy’

8o the condition is necessary.

(b) Conversely, if aaN aaM, put F==.“M dz, where the integration
is performed on the supposition that y is constant.
oF 0:F 0*F oM ON

Then "‘a‘——~M and a ay—m“-a‘y‘—b—z-.

S ACE DR

N- %——=a constant as far as x is concerned that is,
a function of y,

therefore

= ¢ (y), say.
oF
Then N==—a§+¢(y).
Now put f=F+j¢(y) dy.
of
Then =a—y-

Also M =%—§ by definition of F

-gj;; since F and f differ only by a function of y.

Thus M dz+ N dy —5[ dz +a o dy df, a perfect differential.

So the equation is exact, that 1s, the condition is sufficient.
[Our assumption that aag =5 'g is justified if f and its first and

second partial differential coefﬁmentq are continuous. See Lamb’s
Infinitesymal Calculus, 2nd ed., Art. 210 ; or 3rd ed., Art. 193.]
229



APPENDIX B

The equation P(z,y, 2) A +Q(z, y, 2) o +R(z, ¥, 2) of =0, regarded as
oz Y% 5y oz

four-dimensional, has no special integrals. (See Art. 127.)
Let u(x, ¥, z)=a,
v(z, y, 2)=b,
be any two independent integrals of the equations
dz/P =dy/Q =dz/R.
Then we easily prove that

ou . 0u ou
P85+Qé—‘1;+Ra;=0 ........... ..-(1)
ov . ov ov
B.ﬂd P’a*:‘v-i-Qa?)-FR’a‘; =0, e reeeerereeeeneeranaes (2)

The left-hand side of (1) does not contain a, and therefore cannot
vanish merely in consequence of the relation w=a. Hence it must
vanish identically. Similarly equation (2) is satisfied identically.

Naw let f=w(z, y,2) be any integral of the original partial
differential equation, so that
Ow_
0z
This is another identical equation, since f does not occur in it.
Eliminating P, @, R from (1), (2), (3), we get

0(u, v, w)
d(z, y, 2)
Hence w is a function of u and v, say

w=p(u, v).

That is, f=w is part of the General Integral, and therefore, as f=1w
is any integral, there are no Special Integrals.

[The student will notice the importance in the above work of a
differential equation being satisfied ¢dentically. Hill’s new classification
of the integrals of Lagrange’s linear equation (Proc. London Math. Soc.
1917) draws a sharp distinction between integrals that satisfy an
equation identically and.those which have not this property.]

ow ow
G e — 3)

=0 identically.

oon
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The expression obtained for dz by Jacobi’s method of solving a single

partial differential equation of the first order (Art. 140) ¢s always
tntegrable.

To prove that dz=p,dz, + pydz, + pyda,
is integrable it is .ecessary and sufficient to prove that

VG S (A)
P2 _0ps 4y Ops_Opy N 0P Ops
where "0z, Oxy’ M_axl or,’ N_axz or,

Now, by adding equations (8), (9), (10) of Art. 140 and using the
relation (¥, F;)=0, but not assuming the truth of (A), we get

o(F, F)) o(F, Fy) a(F, F))
L L +M +N -
a(])zy }73) a(pa, pl) a(pl’ pz)
Similarly La(Fl’ F,) Ma(Fp Fy) Na(FI, FZ)_

9(p2> ps) 9(ps, P1) 9(p1s P2) h

o(F,, F) 0(Fy, F) 0(F,, F)
3(pp P3) +M (re o) +N 30, 73 0. e (D)

From equations (B), (C), (D) we see that either L=M=N=0 or
A=0, where A 1is the determinant whose constituents are the
coefficients of L, M, N in (B), (C), (D).

But these coefficients are themselves the co-factors of the constituents
of the determinant a(F, F, F)

2 2 1

0. o, (B)

[ (©)

and

9(P1s Pas Pa)’
and by the theory of determinants A =J%.
Now J cannot vanish* for this would imply the existence of a
functional relation which would contradict the hypothesis of Art. 140
that the p’s can be found as functions of the z’s from

F=F,—a,=Fy—a,=0.
Hence A=£0; therefore L=M=N=0.

¢ All the equations of this appendix are satisfied sdentically.
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APPENDIX D
Suggestions for further reading

-No attempt will be made here to give a complete list of works on
differential equations. We shall merely give the names of a very
small number of the most prominent, classified in three sections.

I. Chiefly of analytical interest (forming a continuation to Chapter X.).

(a) Forsyth : Theory of Differential Equations (1890 and later years,
Cambridge Univ. Press).

This important work is in six volumes, and is the most exhaustive
treatise in English upon the subject. It should not be confused with
his more elementary work in one volume (4th ed. 1914, Macmillan).

(b) Goursat : Cours d’Analyse mathématique, Vols. I1. and III. (2nd
ed. 1911-15, Gauthier-Villars ; English translation published by Ginn).

This deals almost entirely with existence theorems.

(¢) Schlesinger : Handbuch der Theorie der linearen Differential-
gleichungen (1895-8, 3 vols, Teubner).

II. Partly analytical but also of geometrical interest.

(a) Goursat: Equations auz dérivées partielles du premier ordre (1891),

(b) Goursat: Equations auz dérivées partielles du second ordre
(1896-98, 2 vols., Hermann et fils).

(c) Page: Ordinary differential equations from the standpoint of Lie's
Transformation Groups (1897, Macmillan).

This deals with the elements of differential equations in a highly
original manner.

I11. Of physical tnterest (forming a continuation to Chapters I11. and IV.).

(@) Riemann : Partielle Differentialyleichungen und deren Anwendung
auf physikalische Fragen (1869, Vieweg).

(b) Riemann-Weber: A revised edition of (a), with extensive
additions (1900-01, Vieweg).

(c) Bateman : Differential Equations (1918, Longmans).

This contains many references to recent researches.

It is impossible to mention original papers in any detail, but the
recent series of memoirs by Prof. M. J. M. Hill in the Proceedings of the
London Mathematical Society should not be overlooked.

Addenda (published since 1920).

I. (d) Ince : Ordinary Differential Equations (1927, Longmans).

L. (e) Bieberbach : Differentialgleichungen (2nd ed., 1926, Springer).

IL. (d) Dickson : Differential Equations from the group standpoint (1924,
Princeton Univ. Press). .

For other references see the second footnote to Art. 181. The new
editions of I. (b) and of Forsyth’s one-volume work are very little altered.
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MISCELLANEOUS EXAMPLES ON THE WHOLE BOOK

(1) dy _y+3z%y
d:l: x3+3:cy

(2) —~+2zy=2x (1 +:!:’)

(3) tany dI +tan z==cos y cos’z.

) y=20 2 1 (%)’

(6) (1- w’) d—z - zy =zl

(6) (D2 +4)y=-sin2x.
(7) (D®- D2?+3D +5) y=x?+e® cos 2.
(8) (#*D?+x2D?) y=1+z +22

(9) cos xsinx%=y+co& z.

(10) 3—;=z+y+2cos t

dy
o =3z -y.

d 3
1) yax(d—z> +1,
12) y dy 2(dy> Y.
(13) (D‘+8D’+16)y=mcos2z.

(14) Iz’dy+jzyda:=z’.
(15) (y2+yz—2)dz+ (22 +2z—2)dy+ (z+y—zy)de=

[London.]

[London. ]

[London.]
[London.]

[London.]

[London.]
[London. ]
[London.]

[London.]

[London.]

[London.])

[London.]
[London.]
[London.]
[London.]

(16) (223 — 43 —2%) yz dx + (2 — 2* — &) 2w dy + (22° - x" ¥y dz=0.

(A7) zp--yq+(2*-y*) =0. .
(18) (z+2y—2)p+(8y—2)g=x+y.
233

[London.]
[London.)
| London.]
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2(a:z—yz+:cy)=0

(19) zp+yq + ty_z+z [London.)

(20) p(z+p)+q(y+g)=2. [London.]

(21) r+s8=p. [London.]

(22) z—4pz—qy=p3fzr [London.]

(23) r—z=t—y. [London. ]

(24) z=pzx +qy — sxy. [London.]

(25) 2 (rt—s2) +pgs=0. [London.]

(26) x?r +2zys + y2% =xy. [London. ]

(27) rq(q+1)—s(2pg+p+q+1)+tp (p+1)=0. [London.]

(28) y3=a:y 2p +atpl [Math. Trip.}

dy dy)’

(29) By Y a2~ <dz *

(30 d—y —g ley +zny =0, [Math. Trip.]

(1) (zp +x)%+(2q +y)2=1. [Math. Trip.]

2

(32) Find a solution of the equation g Z Z—%+2y =¢3% which shall
vanish when z=0 and also when z =log, 2. [Math. Trip.]

(33) Solve the equation

d2
d;+2x +(k2+A2%) =4 cos pt.

Show that, for different values of p, the amplitude of the particular
Integral is greatest when p?=A%?-«2% and prove that the particular
integral is then

(4/2«\) cos (pt - a), where tan a=p/«k. [London.]

(34) Solve the equation

d?y dy
da? it dz
by putting 2z =sin .

tan x +y cos?x =0

oV an oV
3 ayz+—a;;=0 to be of the
form F(r+z), where r2=z%+y2+22, obtain the function F; and by
integrating with respect to z, deduce the solution V=zlog (r+2)~-r.
(i) Assuming a solution of %‘;—azaaz to be of the form ¢ (£),
where £=2/+/t, obtain the function ¢; and deduce a second solution
by differentiating with respect to z. [London.]
(36) Obtain a rational integral function V of z, y, z which satisfies
the condition 22V oV 8V
%5+ a5 +55=0,
0z%  0y? 022
and is such as to have the value 424 at points on the surface of a sphere
of unit radius with its centre at the origin. [Math. Trip.]

(35) (i) Assuming a solution of
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(37) Show that a solution of Laplace’s equation V2u=0 is
t=(4 cos n0+ Bsin nB)e>* J, (A7),
where 1, 0, z are cylindrical co-ordinates and 4, B, n, \ are arbitrary
constants. [London.]

(38) Show that J, () (a,cos nO+b,sinnf), where r and O are
polar co-ordinates and a, and b, are arbitrary constants, is a solution

of the equation aa'-:: %ZV LTV 0. [ondon]
(39) Show how to find solutions in series of the equation

du 0%

o~ o

and solve completely for the case in which, when =0,

u=a %—1:—; =Ccosh ¢. [London.]

(40) Obtain two independent solutions in ascending powers of z of

the equation d2

4 Eég +92y=0;
and prove by transforming the variables in the equation, or otherwise
that the complete solution may be written in the form

y= Abei(w’}) + Bz*.]_i (z%),
where 4 and B are arbitrary constants. [London.]
(41) Show that the complete solution of the equation
dy 2
d—x+P+Qy+Ry =0,

where P, @, R are functions of z, can be obtained by the substitution
y =1y, +1/z, if a particular solution, y,, is known.

Show that, if two particular solutions y, and y, are known, the
complete solution is

log (Z Z‘) j R (yg-y,) dz + const.
Obtain the complete solution of the equation
(z2-1) Z—Z+x+1 —(z?2+1)y+(z-1)y2=0,
which has two particular solutions, the product of which is unity.
(42) Show that the differential equation [London.]
(1-22?) Z—;‘%+2{b +(a- l)x}g—g+2ay==0

has a solution of the form (1 +#)*(1 — x)9, where p and ¢ are determinate
constants. Solve the equation completely; and deduce, or prove
otherwise, that if 2a is a positive integer n, one solution of the equation
is a polynomial in  of degree . [London,]



236 DIFFERENTIAL EQUATIONS

(43) Verify that 1 — 2 is a particular solution of the equation
z(1-22)?2 Z y +(1 - 23) (1+3x’)——+4x(1+x’)y=0
and solve it completely.

By the method of variation of parameters or otherwise, solve com
pletely the equation obtained by writing (1 —«2)® instead of zero on the

right-hand side of the given equation. [London.]
(44) Show that the complete solution of the equation
d? d
AP +Qy=0,
where P, Q are given functions of x, can be found if any solution of the
equation du 1dP 1
e TPV TS Bt s 2.
T g g0
is known.
Hence, or otherwise, solve the equation
(1- )Zmz 4x—+(z‘ 3) y=0. [London.)

(45) Prove by puttmg v=we* that the complete solution of the

equation z d:cv 2n A Y o= 0, where = is an integer, can be expressed
in the form
(4 cosz+ Bsinz) f (x) +(A4 sin x — B cos z) ¢ (),
where f(2) and ¢ (x) are suitable polynomials. [London.]
(46) If u, v are two independent solutions of the equation
f@y"-f(@)y"+¢ @)y +x(2)y=0,

where dashes denote differentiation with regard to z, prove that the
complete solution is 4u+ Bv+ Cw, where

[ vf(z)de uf (z) de
w=uI (W' —u'v)3 v .‘- (wv' —u'v)?

and 4, B, C are arbitrary constants.
Solve the equation

z3(22+5)y" — x(Tx3+25)y"’ + (2222 + 40)y' — 30zy =0,
which has solutions of the form z". [London.)

(47) Obtain two independent poweroseries which are solutions of
the equation

(22 a’) +bzu+cy=0

and determine their region of convergence. v [London.]
(48) Prove that the equation

z(1 —x) +(1 2z)———1y—0
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has two integrals

el n > 1 1 1
Zanz ’ Z():an( 10g$+1 2 3—' ...—'2-;‘> x",
T'(n+
where a, = {T—éﬁg} [London.]

(49) Form the differential equation whose primitive is
y=4 (smz+——-~> +B( osz—ml:f) ,
z z

where 4, B are arbitrary constants. [London.]

(60) Obtain the condition that the equation
Pdx+Qdy=0
may have an integrating factor which is a function of « alone, and apply
the result to integrate

(3xy — 2ay?) dx + (2 — 2axy)dy =0. [London.]
(61) Show that the equations
Sy, 202 dy
Yot y? dm =0,

w’—y’+2(my+bz2)(-l~2—:=0,
have a common primitive, and find it. [London.]
(62) Prove that any solution of the equation
d u
d 2+Q Iz “+ Ru=0
is an integrating factor of the equation
dz d
F(Pu) -7 (Qu) + Ru=0,

and conversely that any solution of the latter equation is an mtegratmg
factor of the former.
Hence integrate the first of these equations completely, it being

i that 2
given tha dez (g) +g= 0. [London.]

. d*y dy
(63) If the equation Tt P s Qy=0,

where P and Q are functions of z, admits of a solution
y=A sin(nz + a),
where 4 and a are arbitrary constants, find the relation which connects

P and Q. . [London.]

. d%y 2
(54) Solve the equation 171,3 4y= =2’

having given that it has two integrals of the form

a+br
y=1- x~e"". (London. ]

P.D.E. 3
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(55) Show that the linear differential equation whose solutions are

@y pdy
the squares of those of T2t P P +Qy=0

may be written (ai‘i +2P> (%w%mqy) +2Qflg -o0.
(56) Show that the total differential equation
3z (y +2)dz+ (2 —ad)dy + (y2 —a®)dz=0
satisfies the conditions of integrability, and integrate it. [London.]

(67) The operator (% being represented by D, show that if X is a

function of z and ¢(D) a rational integral function of D,
¢ (D)zX =z (D)X + ¢’ (D) X.
Extend the result to the case in which 1/¢ (D) is a rational integral
function of D.
Solve the differential equation

3
Z—;Z +8y=3a?+ z¢~*® cos z. [London.]
@y W
has an integral which is a polynomialin z. Deduce the general solution.

[Sheffield. ]
(69) Show that, if in the equation Pdz+Qdy+ Rdz=0, P,Q, R
are homogeneous functions of z,y, z of the same degree, then one variable
can be separated from the other two, and the equation, if integrable,
is thereby rendered exact.
Integrate
23 (2¥dx + y2dy) + z{wyz?® + 2% — (2? + )%} (dx + dy)
+(z+ y) {24 — 22(22 + 4?) — (22 + y?)2}dz =0,
obtaining the integral in an algebraic form. [London.]
(60) Show that, if the equation Pdx+Qdy+ Rdz=0 is exact, it
can be reduced to the form A du +udv=0; where A[u is a function of
u, v only and u=constant, v=constant are two independent solu-

tions of dz dy e
00 oR OR oP 0P oQ
92 0y 0x 0z oy oz
Hence, or otherwise, integrate the equation
(yz+2%)dz — xz dy + zy dz=0. [London.]
(61) Prove that 22=2zy is not included in
T+ Y +1/(22 - 2zy) = f(z + y + 2%),
which is the general solution of
{24/(2% - 2zy) ~ 22— 1}2p + {1 + 2y - 24/(2* — 2zy)} 2q mz — g,
but that it is nevertheless a solution of the equation. [Sheffield.]
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(62) (i) Show how to reduce Riccati’s equation

%=%(x)+a1(w)y+aa(7ﬂ)y’

to a linear equation of the second order; and hence or otherwise prove
that the cross-ratio of any four integrals is & constant.

(ii) Verify that § +ztan®, $ —zcot z are integrals of
dy
T E:;: =23 - % + y’,

and deduce the pripitive. [London.]
(63) By solving %a{-a - wy,
Y_
E_t =0x

in the ordinary way, and eliminating ¢ from the result, prove that the
point (z, y) lies on a circle.

Also prove this by adding « times the first equation to y times the
second.

[The equations give the velocities, resolved parallel to the axes, of
® point which is describing a circle with angular velocity w.]
(64) Find the orthogonal trajectories of the curves
y*(a—-2z) =23
Prove that they reduce to the system
2 =b%(3 + cos 20). [Sheffield. ]

dx
(6b) 7= ™

d—"1=lz~m:,

dt
dz
=M ly,
where [, m, n are constants, prove that
Iz +my +nz,
z?+y? +22,

dz\? rdy\? /dz\%
sod (@) + () + @)
are all constant. Interpret these results.

(66) A plane curve is such that the area of the triangle PNT is
m times the area of the segment APN, where PN is the ordinate, NT
the subtangent at any point P, and A4 the origin, which is on the
curve ; show that its equation is y2"™-1=a?""%,

Show that the volume described by the revolution of the segment
APN about the axis of z bears a constant ratio to the volume of the
cone generated by the revolution of the triangle PN 7' [London.]
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(67) By using the substitutions z=r cos 6, y=rsin 6, or otherwise,
solve the differential equation
(@ +y%) (zp -y =1 +p1.
Also find the singular solution, and interpret the results geo-
metrically. [London.]

(68) Show that the equation
(@ +y* - 2apy)* = daPy? (1 ~ p?)
can be reduced to Clairaut’s form by making %2~ a* a new dependent
variable; solve it and show that the singular solygion represents two
rectangular hyperbolas. Verify also that this solution satisfies the
given equation. [London.]

(69) Prove that the curves in which the radius of curvature is equal
to the length intercepted on the normal by a fixed straight line are
either circles or catenaries. [London.]

(70) Solve the equation
y=2z-2ap+apl,
and find the singular solution, giving a diagram. [London.]

(71) A plane curve is such that its radius of curvature p is con-
nected with the intercept » on the normal between the curve and the
axis of z, by the relation py=c® Show that, if the concavity of the
curve is turned away from the axis of ,

y?=c?sin® ¢+,
where’ ¢ is the inclination of the tangent to Oz. Obtain the value of

x as a function of ¢ in the case b=0; and sketch the shape of the
curve. [London.]

(72) Show that, if the differential equation of a family of curves be
given in bipolar co-ordinates r, ', 8, ', the differential equation of the
orthogonal trajectories is found by writing rd0 for dr, r'd6’ for dr',
—dr for rd0, —dr’ for r'd6’.

Find the orthogonal trajectories of the curves

a b
-+ 5=c,
ror
¢ being the variable parameter. [London.]

(73) The normal at a point P of a curve meets a fixed straight line
at the point G, and the locus of the middle point of PG is a straight
line inclined to the fixed straight line at an angle cot™3. Show that
the locus of P is a parabola. [London.]

(74) Solve the equation 2(p—1)y=p?*r; show that the ‘ p-dis-
criminant ” is a solution of the equation, and is the envelope of the
family of curves given by the general solution. [London.]

(76) Obtain the differential equation of the involutes of the parabola

¢* = 4az, and integrate it. What is the nature of the singular solution ?
(London.)



MISCELLANEOUS EXAMPLES 241

(76) Prove that if the normals to a surface all meet a fixed straight

line, the surface must be one of revolution. [London.]
(77) Integrate the partial differential equation
pT+qy=+/(2"+4%).
Give the geometrical interpretation of the subsidiary integrals and
of the general integral. [London.]

(78) Integrate the differential equation
oz 0z o
z(z+2y) a—:—c—z(y+2:v) @_y -8,

Find the particular solutions such that the section by any plane

parallel to z=0 shall be (i) a circle, (ii) & rectangular hyperbola.
[London.]
(79) A family of curves is represented by the equations
#2+y?+622=qa, 2x%+b5y+2+4wy=,0,

where a, (3 are parameters.

Prove that the family of curves can be cut orthogonally by a family
of surfaces, and find the equation of this family. {London.]

(80) Solve b(bcy + azz) p + a(acz + byz) g =ab(2% - c?),

and show that the solution represents any surface generated by lines
meeting two given lines.

(81) (i) Solve a-t~+RI =E,

where L, R, and E are constants.

[This is the equation for the electric current I in a wire of resistance
R and coefficient of self-induction L, under a constant voltage E.]

(i) Determine the value of the arbitrary constant if I=I, when
t=0.

(ili) To what value does I approximate when ¢ is large

[Ohm’s law for steady currents.]

(82) Solve L g{l +RI=E cos pt.

[The symbols have the same meaning as in the last question, except
that the voltage E cos pt is now periodic instead of being constant.
The complementary function soon becomes negligible, f.e. the free
oscillations of the current are damped out.]

(83) Find the Particular Integral of
Q5 de Q

La+Eg+
[This gives the charge @ on one of the coatings of a Leyden jar
when a periodic eleetromotive force E cos pt acts in the circuit con-

necting the coatings. The Particular Integral gives the oharge after
the free electrical oscillations have been damped out.]

= FE cos pt.
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(84) Show that the equations

de  _ dy dx
2a?+3dt—16a:—3y==0, 7a—2a:-3y-—0
are satisfied by the trial solution y=ma, provided that m is a root of
the quadratic 2+3m 16+3m
T T 2+43m’
- dz
and « is given by 7 F (2 +3m) x=0.
Hence prove that two sets of solutions of the differential equations
are y=4z=44e
and y=—3z= —3Be,

so that the general solution is «=Ae* + Be™,
y=44e* - 3Be ",
(85) Use the method of the last example to solve

th +23x -8y =0,
d*x _ d?y
3dt—“‘ 2&?2—13x+10y=0.

[Equations of this type occur in problems on the small oscillations
of systems with two degrees of freedom. The motion given by y =2z
(or by y= —5) is said to be a Principal or Normal Mode of Vibration.
Clearly it is such that all parts of the system are moving harmonically
with the same period and in the same phase. If y—2x and y+ b5z are
taken as new variables instead of 2 and y, they are called Principal or
Normal Coordinates. ]

(86) Given that L, M, N, R, S are positive numbers, such that LN
is greater than M2, prove that x and y, defined by

Lo dy
a--»+Md_+Rz=0

dz

M%+N Y} 8y=0,

diminish indefinitely as ¢ increases.

[Show that x=dAe%+ Bet and y= Eet + Fe, where ¢ and b are
real and negative. These equations give the free oscillations of two
mutually influencing electric circuits. L and N are coefficients of
self-induction, M of mutual induction, and R and S are resistances. ]

(87) Show (without working out the solutions in full) that the
Particular Integrals of the simultaneous equations

dz dy J’xdt .
LdT+M3f+Rx+ T-Esm Pt

th +N +Sy-0
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are unaltered if in the first equation the term .“Ec dt is omitted and L
. 1

1 -
is replaced by L P

[This follows at once from the fact that the Particular Integrals are
of the form 4 sin (pt - a).

These equations give the currents in two mutually influencing
circuits when the primary, which contains a condenser of capacity e,
is acted upon by an alternating electromotive force. This example
shows that the effect of the condenser can be compensated for by in-
creasing the self-induction. ]

dz dy IJ'
(88) If Ld +Mdt z dt=f(t)
dy
and Ma? 0

where LN — M2 is a very small posntwe quantity, show that the Com-
plementary Function for « represents a very rapid oscillation.

[These equations occur in Rayleigh’s theory of the oscillatory dis-
charge of a condenser in the primary circuit of an induction coil with
8 closed secondary. Notice that the second equation shows that the
secondary current is at its maximum when the primary current is at its
minimum. See Gray’s Magnetism and Electricity, Arts. 489 and 490.]

(89) Prove that the Particular Integrals of the simultaneous equations

gz = —a(z—X)+k cos pt,
M ‘th -AX +a(x-X)
may be written x=&§~1ﬁ;—)—3 cos pt,
X= ——bB cos pt,

where b=mp?—a and B=Mp?-(a+ 4).

Hence show that # and X are both infinite for two special values
of p.
[These equations give the oscillations of the * elastic double pen-
dulum.” Masses m and M are arranged so that they can only move
in the same horizontal line. A spring connects M to a fixed point of
this line and another spring connects m to M. A periodic force acts
upon m, and the solution shows that both masses execute forced vibra-
tions whose amplitude becomes very large for two special values of p.
Of course this is the phenomenon of Resonance again. It is important
to notice that the values of p that give resonance in this case are not
the same as they would be if only one mass were present. This may
be applied to the discussion of the ‘ whirling” in a turbine shaft.
Bee Stodola’s Steam Turbine.]
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(90) Show that the solution of the simultaneous equations

(3m+ M) da g:f+ aMb ‘fa‘f= —g(m+2M)6,
1 @y

3t 7 = -9
where m =M and a=>b, may be expressed by saying that 6 and ¢ are
each composed of two simple harmonic oscillations of periods 27 /p, and
27 [ps, pi? and p,? being the roots of the quadratic in p?,

28a2pt - 84agp? + 2742 =0.

[These equations give the inclinations to the vertical of two rods
of masses m and M and lengths 2a and 2b respectively when they are
swinging in a vertical plane as a double pendulum, the first being freely
suspended from a fixed point and the second from the bottom of the
first. The two oscillations referred to are known as the Principal (or
Normal) Oscillations. Similar equations occur in many problems on
small oscillations. A detailed discussion of these is given in Routh’s
Advanced Rigid Dynamics, with special reference to the case when the
equation in p has equal roots.]

d%z d dy

d? dz
c‘u‘g - K(,v‘ll + C’y =0

[These equations give the motion of the bob of a gyrostatic pen-
dulum which does not swing far from the vertical. Notice that if the
initial conditions are such that B=0, we get motion in a circle with
angular velocity p, while if 4 =0, we get motion in a circle with angular
velocity ¢ in the opposite sense. (For p, ¢, 4, B see the answers.)

Similar equations hold for the path of revolving ions in the ex-
planation of the Zeeman Lffect (the trebling of a line in a spectrum
by a magnetic field). See Gray's AMagnetism and Electricity, Arts.
565-569.]

(92) Given

rz+y+z=e,
where a, b, ¢ are constants, obtain a differential equation for 2.

Hence prove that if z =Z—:=O when =0,

mc+—C ! _ g~
z c+a_b[be"° ae™].

[These equations occur in Physical Chemistry when a substance 4
forms an intermediate substance B, which then changes into & third
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substance C. =z, y, z are the ““ concentrations ” of 4, B, C respectively
at any time ¢&. Seec Harcourt and Esson, Phil. Trans. 1866 and 1867.]

(93) The eflect on a simple dynamical system with one degree of
freedom of any other dynamical system to which it is linked can be
represented by the equation

i4+2ut+n2r=X.

If the exciting system of waves is maintained steady so that
X =4 cos pt, find the value of p for which there is resonance, and prove
that if u exceeds a certain value there is no resonance. Draw curves
illustrating both cases. [Math. Trip.]

(94) Solve the differential equation
&+ 2ki+n2c=0 when k® < n?

In the case of a pendulum making small oscillations, the time of a
complete oscillation being 2 secs. and the angular retardation due to
the air being taken as -04 x (angular velocity of pendulum), show that
an amplitude of 1° will in 10 complete oscillations be reduced to about
40", [Take log,,e=+4343.] [Math. Trip.]

(95) The motion of a system depends practically on a single co-
ordinate z; its energy at any instant is expressed by the formula
§mi? + Jex?; and the time-rate of frictional damping of its energy is
$k43. Prove that the period (r,) of its free oscillation is

9 <e__l k2>~i
T\n 16 mr/)

Prove that the forced oscillation sustained by a disturbing force of
8m>’
, while its phase lags behind that of the

type A cos pt is at its greatest when p?= 7% - and that the amplitude

mTy

of this oscillation is then

k
force by the amount tan-lé%l?-. [Math. Trip.]
o 1 /ds\?
(96) Show that the substitution T'=g <Zi_t > reduces
d?s ds\2
+P(g) -¢
. ar
to the linear form T +2PT=Q.
d?s  (ds\?
From (s+a) a2t <(§> =(s-a)g,
ds

with the conditions - =0 and s=2a when ¢ =0, obtain

dt
ds\? 2

(7) = e-20)
d’s_g
ar 3

and
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[This gives the solution of the dynamical problem: ‘A uniforn
chain is coiled up on a horizontal plane and one end passes over &
smooth light pulley at a height a above the plane ; initially a length
2a hangs freely on the other side. Prove that the motion is uniformly
accelerated.” See Loney’s Dynamics of a Particle and of Rigid Bodies
p. 131.]

(97) Find a solution of the equation

(") v § a% (sin 9%3)=°

of the form ¢=f(r)cos 6,
given that - g‘? =V cos 6 when r=a
and —gﬁ=0when r=o0.

or

[¢ is the velocity-potential when a sphere of radius a moves witl
velocity V in a straight line through a liquid at rest at infinity. Sec
Ramsey’s Hydro-Mechanics, Part II. p. 152.]

Py _ 2%
o 0x?
which shall vanish when =0, and reduce to 4 cos (pt+a) when z=>».

[This gives the form of one portion of a stretched string, fixed at
both ends, of which a given point is made to move with the periodic
displacement A4 cos (pt+a). The portion considered is that between the
given point and one of the ends. See Ramsey’s Hydro-Mechanics
Part I1. p. 312.]

(99) Obtain the solution of

' ¢ _ (82¢ 2 a¢)
o ot " r or
in the form ro=f(ct—r)+ F(ct +7).

[¢ is the velocity-potential of a spherical source of sound in air
See Ramsey, p. 345.]

(100) Obtain a solution of

(98) Find a solution of

0*p 0%

a2 Ty y? =0,
such that 0¢[0y=0 when y=—h
and ¢ varies as cos (mx —nt) when y=0.

[¢ is the velocity-potential of waves in a canal of depth A, the side

being vertical. See Ramsey, p. 265.]
(101) Obtain the solution of the simultaneous differential equations
: a2 dy 2
@ g tre=0,

d? dx
g, + 5y =0,



MISCELLANEOUS EXAMPLES 247

with the initial conditions

d d
r=a, y=0: g'—"o, jtq— y
1n the form z= gq {(g+n)eia-mx 4 (g —n)e-iatm,
where z=x+ty and g=+/(p+n?).

Show that the solution represents a hypocycloid contained between
two concentric circles of radii a and an/q.

[This example gives the theory of Foucault’s pendulum experiment
demonstrating the rotation of the earth. See Bromwich, Proc. London
Math. Soc. 1914.]

(102) Obtain an approximate solution of Einstein’s equation of
planetary motion d2u

quz =52
in the following manner :
(@) Neglect the small term 3mu?, and hence obtain

+ 3mud

1 +ecos (¢ — @)}, as in Newtonian dynamics.

U=l

(b) Substitute this value of » in the small term 3mu?, and hence
obtain

d?u m 3m® 6md 3mBe?
a—‘;2+u=zg+ -5'4- + F*C cos ((P“‘TD’)‘{‘"éh(‘{l + cos 2((‘6—"[5)}.

(c) Neglect a,ll the terms on the right-hand side of this differential

equation except m? —¢cos(¢p—). The term in cos (¢ — @) must

r?
be retained ; it is of the same period as the complementary function, and
therefore produces a continually increasing particular integral. [See the
resonance problem Ex. 36 on p. 46.] Hence obtain

U= {l +ecos (¢p— m)+»- e¢ sin (¢p — zr;)}
=52 {1 + e cos (¢ — @ — €)} approximately,

3m2 5 and ¢ is neglected
where €=~3 ¢ an ¢? is neglected.

[This result proves that when the planet moves through one revolu-

tion the perihelion (given by ¢ —@ —e=0) advances a fraction of a
2

revolution given by < = 3% When numerical values are given to the

constants it is found that Einstein’s theory removes a well-known

discrepancy between observed and calculated results on the motion

of the perihelion of Mercury. See Eddington, Report on the Relativity

Theory of Gravitation, pp. 48-52.]
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(103) L(z, y, 2, y') is a function of the variables z, y, ', ¥
X, Y are defined by the equations

oL oL
X =ai a 7 Y = ‘a‘y‘, .
If these equations can be solved for ' and y’ as functionsof X, Y, z, y,
and if H (X, Y, «, y) is the function obtained by expressing

X'+ Yy - L
entirely in terms of X, Y, x, y, then prove that
oH
éTX = seesessescscstccctcactesssasetssscecccactoons (1)
oH oL o
a.nd "a'x' = - é;b- o eeescessecssecesscsansstesctccsrtttren (.4)
Prove also that the equation
d (oL\ 0L
% <é;> R — (3)
. . dX oH
is transformed into To = T g e (4)

[This is the Hamiltonian transformation in dynamics. Equation (3)
is a typical Lagrangian equation of motion in generalised co-ordinates.
Hamilton replaces it by the pair of equations (1) and (4). See Routh’s
Elementary Rigid Dynamics, Chap. VIII. This transformation should
be compared with that of Ex. 21 of the miscellaneous set at the end of
Chap. XII., where we had two partial differential equations derivable
from each other by the Principle of Duality.]

(104) Show that Jacobi’s method (Art. 140) applied to Hamailton's
partial differential equation

0z
at +H($], Tas «os Ty P15 Pas +++ Py t)=0

ds, 8H dp, oH
leads to “zt——- a};‘;, —d—t—— _321;, (f=1, 2, . n),

which are the equations of motion of a dynamical system, in Hamilton’s
form. [See Whittaker’s Anal:tical Dynamics, 2nd ed., Art. 142.]

(105) (i) Prove thatif  wu(z, y, 2)=a
and v(z, y, 2)=b
are any two integrals of the system of differential equations

de __ dy dz
(9.2 qz 92 1y 2)
19(w,v) _10(u,v)_1 o(u, v)
=m(z, ¥, 2), say.

P30, D) 406 ) 7 omy) "
[m is called a multiplier of the system.]

then
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(ii) Show that m satisfies the partial differential equation
0 2 0
Py (mP)+§E/(m'Q) + 3, (mr) =0.

(iii) If n(z, y, 2) is any other multiplier of the system, show that

2 <m> 2 ('f') a(m =0
Poz\n +q3y PYRE> ;)— !
o(m/n, u, v)
9(z,y,2)
so that m/n is a function of » and v, an1 m/n=c is an integral of the
original system of differential equations.
(iv) If u(z, y,z2)=a can be solved for 2, giving z=f(z, y, a), and
if capital letters ¥, P, @, R, M denote the functions of , ¥, a, obtained
by substituting this value of z in v, p, ¢, r, m, then prove that

and hence that

=0 identically,

g . dz _dy

V(x, y, a)=Db is an integral of 70
Prove also that MP= - oV 0u
dy 0z

ou % 02
(Where o is to be expressed in terms of z, y, a), go that

dV=M(de—de)/g—:f.
[This suggests that if any integral u=a and any multiplier m are
known, then M(Q dz - P dy) / g: will be a perfect differential, leading

to an integral of the system when a is replaced by u(z, y, 2).

For a proof of this theorem see Whittaker’s Analytical Dynamacs,
ond ed., Art. 119. A more general theorem is that if (»—1) integrals
of a system of differential equations

da, _dz,_ _dz, _dz
P1 P2 Pn P
are known and also any multiplier, then another integral can be deter-
mined. This is generally referred to as the theorem of Jacobv’s Last
Multiplier. In Dynamics, where this thcorem is of some importance
(see Whittaker, Chap. X.), the last multiplier is unity.]
(v) Show that unity is a multiplier of
dz dy  dz
22-2y 20-yz YP-2
and 22 + 42 + 22 =a an integral, say u(z, y, z) =a.
Show that in this case

0
MQdz-Pdy) [ =d{ Yoy~ v(a-2*~ ),
and hence obtain the second iptegml ay+2=b,
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b
(106) Show that if y =I e**f (t) dt, where a and b are constants, then
a

20 (32) 11 v (L)y=e0 01/ 0 -4 @1 @

[etsororgoro-yosoa
Hence prove that y will satisfy the differential equation

o6 (5:)y+v () 9=0

if ¢ () f(t)=exp { J.tg; dt}
and 23 (b) f (b) =0=e** ¢ (a) f (a)-

Use this method to obtain
dt

T v =] e

as a solution, valid when z >0, of
d”y dy
Tt a0
The corresponding solution for the case £<C0 is obtained by taking
the limits of the first integral as 1 to o, instead of — to -1.
(Exs. 106-108 give some of the most important methods of obtaining
solutions of differential equations in the form of definite integrals.]

5/24/(xt)

(107) Verify that v=vy+ \2;;[ e dz
. . ov o
is a solution of 3 =K 3

reducing, when ¢=0, to vy+ V for all positive values of z and to v,— ¥
for all negative values.

[v is the temperature at time ¢ of a point at a distance z from a
certain plane of a solid extending to infinity in all directions, on the
supposition that initially the temperature had the two different constant
values vo+ ¥V and vy— V on the two sides of the plane z=0.

Kelvin used this expression for v in his estimate of the age of the
earth (see Appendix D of Thomson and Tait’s Natural Philosophy). The
discovery that heat is continually generated by the radio-active dis-
integration of the rocks introduces a new complexity into the problem.]

(108) (@) Show that
V=J.j elxtmytnef (g 1) dsdt

(the limits being any arbitrary quantities independent of . y, 2) is a
solution of the linear partial differential equation with constant
ooefficients 7 o 0 0o Vo

(ax oy’ az)
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if I, m, n are any constants or functions of s and ¢ such that
F(l, m, n)=0.
Extend the theorem to the case when there are mn independent
variables @, y, 7, ..., and (n—1) parameters s, ¢, ... .

Obtain V=] er(zcorttysinttalf(s 1) dsdt
. oV o*V ov
a8 a solution of Pl --éy—2= e [H. Todd.]
(b) Show that if F <—a— 9. 9 V=0 is a homogeneous linear
oz’ 9y’ Oz 9

partial differential equation with constant coefficients a solution is
V=jf(lx+my+nz, t) dt,

where the limits are any arbitrary quantities independent of =, y, z, and
l, m, n are any constants or functions of ¢ such that
F(l, m, n)=0.
Extend the theorem to the case when there are n independent
variables and (n—2) parameters. [See H. Todd, Messenger of Mathe-
matics, 1914.]

2w
Obtain V=I f(zcost+ysint+iz, t)d
0
. otV oV  o*V
«s8 a solution of 2 + W + P =0.

hittaker’s solution of Laplace’s equation.
p q
(109) By substituting the trial solution

a a
y=ag+ i+ S

z?
. . . . dy 1
in the differential equation =y
. . o 1! 2! 3!
obtain the series y=,tatstatee

Prove that this series is divergent for all values of .
Obtain the particular integral
X @
y= e“‘j % dz,
and by repeated integration by parts show that
L (F e o 1! 2! nl(* (n+l)le®
€ ZJ.—m*x—d$=;+5§+E ...+W+e Ij_w——-—*—‘—xn_‘_z dz.

Hence prove that if z is negative the error obtained by taking n+1
terms of the series instead of the particular integral is less than the
numerical value of the (n+ 1)t} term. '

[Such a series is called asymptotic. See Bromwich’s Infinite Series,
Arts. 130-139 ; or 2nd ed., Arts. 106-118.] ’
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(110) Show that if the sequence of functions f, (z) be defined by
Jo(@)=a +b(x - c), where a, b, c are constants,

wd. fu@=[C-ar0fm0a,
then A al)= = F @) foa o)
Hence show that y= ifn(z) is a solution of
0

P 1 yF(2)=0,

dx?
provided that certain operations with infinite series are legitimate (for
a proof of which see Whittaker and Watson’s Modern Analysis, p. 189.*
They give a proof of the existence theorem for lincar differential cqua-
tions of the second order by this method).

(111) Prove that the solution 1 of the two simultaneous linear differ-
ential equations with constant cocflicients
S(D)z+ F(D)y=0,
#(D)z+Y(D)y=0
(where D stands for d/dt), may be written
z=F(D)V,
y=-f(D)V,

where ¥ is the complete primitive of

{f(D) ¥ (D) - F(D) $(D)} 7 =0.

Hence show that if the degrees of f, F, ¢, Y in Dbe p, q,r, 8 respec-
tively, the number of arbitrary constants occurring in the solution will
in general be the greater of the numbers (p+s) and (g +7), but if
(p+8)=(g+r) the number of arbitrary constants may be smaller, and
may even be zero as in the equations

(D+1)z+ Dy =0,

(D+3)x+(D+2)y=0.
(112) (a) Prove that if y=u(z),
y=v(z)

are any two solutions of the linear differential equation of the first order
P(2)y, +Q(z)y =0,
then (vuy — uvy)/ud =0,
80 that v =au, where a is a constant.
(b) Prove thatif y=u(z), y=v(z), y=w(z)
® p. 196 in 3rd and 4th editions.

t This, .it may be proved, cannot be the most general solution if it gives the
" number of different arbitrary constants for z and y together less than for ¥V, as will
bappen if f(D) and F(D) have a common factor other than a mere constant,
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are any three solutions of the linear differential equation of the second

order P(x)y, +Q(x)y; + R(x)y =0,

then Pd% (w0, — v10,) + Qv — vw0) =0

and p 0% (uvy — viy) +Q (uvy — vu;) =0.
Hence show that w=au+bv.

[By procecding step by step in this manner we may show that a
differential equation of similar form but of the n'" order cannot have
more than n linearly independent integrals.]

(113) Let u, v, w be any three functions of z.

Prove that if constants a, b, ¢ can be found so that y=au+bv+cw

vanishes identically, then

% v w

th v W, =0,

Uy Vy Wy
while conversely, if this determinant (the Wronskian) vanishes, the
functions are not linearly independent.

Extend these results to the case of » functions.

[Consider the differential equation of the second order formed by
replacing u, u,, u, in the determinant by y, y;, ¥, respectively. Such
an equation cannot have more than two linearly independent integrals.

The Wronskian is named after Hoéné Wronski, one of the early
writers on determinants.)

(114) Prove that z=e#=(*=1/) gatisfies the partial differential equation
2(5)- oo+
téi ‘ai —4.7; t+t z+2x t—t z.
Hence, if J,, () is defined as the coefficient of ¢# in the expansion
ebz(t— l/t)_ZJ ing (x)’

prove that y=J,(x) satisfies Bessel’s equation of order n,

dzy
dxz
[The operations with infinite series require some consideration.]

+xd~ + (2% - n?)y=0.

(115) If u, denotes a function of z, and E the operator which changes
u, into u, ., prove the following results :

(i) Ea®=a.a® {.e. (E—-a)a®=0.

(ii) E%a®=a3. a®
(iii) E(za®)=a(za®) +a.a® {.e. (E-a)(za®)=a.a®
(iv) (B -a)*(xa®)=0.

(v) (pB%*+p,E +pg)a®= (poa’ +p,a + pg)a®, if the p’s are constant.
P.D.R,
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(vi) u,=A4a®+ Bb® is a solution of the linear difference equation
PoUasg+PrUszsy+Pat, =0,
te. (poB?+pE+py)u,=0,

if 4 and B are arbitrary constants and @ and b the roots of the auxiliary
equation pgm?+p,m+p,=0. (Cf. Art. 25.)

Solve by this method (2E245E +2)u,=0.

(vii) u,=(4 + Bz)a® is a solution of (E?~2aFE +a?)u,=0.

Here the auxiliary equation m2?-2am+a?=0 has equal roots.
(Cf. Art. 34.)

(viii) u,=r%(P cos z +Q sin 20) is a solution of

(PoE?+py B + py)u, =0

it P and @ are arbitrary constants, p+igq the roots of the auxiliary
equation PemE+pym + py=0
and p+ig=r(cos O+¢sin §). (Cf. Art. 26.)

Solve by this method (E2—2F +4)u,=0.

(ix) The general solution of a linear difference equation with constant
coefficients

F(E)UGE(])OE" +p1En—l +eee +pn—1E +pn) Uy =f(22)

is the sum of a Particular Integral and the Complementary Function,
the latter being the solution of the equation obtained by substituting
zero for the function of z occurring on the right-hand side. (Cf.
Art. 29.)

(x) a®/F(a) is a particular integral of

F(E)u,=a?

provided that F(a)#0. (Cf. Art. 35.)

Solve by this method (E2+8E —9)u,=22.

[For further analogies between difference equations and differential
equations, see Boole’s Finite Differences, Chap. X1.]

(116) Show that by applying the method of Art. 53 to Lagrange’s
equation
y=2F(p)+f(p),
we get in general (but not for Clairaut’s form, where F(p)=p) the com-
plete primitive in the parametric form

z=cg(p) +(p),
y=cF(p)p(p) + F(p)Y:(p) +1(p)-

Hence show that if C,, C,, C, ate any three curves included in this
primitive, corresponding to the values c;, ¢y, cg of ¢, and Pi(z;, ¥,),
Py(x4, y,), Py(x3, y5) points on Cy, C,, C, respectively, such that the
tangente at these points are all parallel, then

(xs— 21)/ (x5 —2g) = (c3— ;) /(3 — C) = (Y3~ ¥1) (Y5 ~ Y3}
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t.e P,, P, P, are collincar, and the ratio P,Pg: P,P; is constant
as the points move, each along its own curve, in such a way as to kecp
the corresponding tangents parallel. [Thus given two curves included
in the complete primitive, we can construct geometrically any number
of others.]

(117) Prove that a plane curve, such that the length of the radius of
curvature at any point is twice the length of the normal intercepted
between the curve and a fixed straight line, is either a cycloid, whose
base is the straight line, or a parabola, whose directrix is the straight
line. [London.]

(118) A curve possesses the property p==F%tan), where p is the
radius of curvature, \/- is the angle the tangent makes with the axis of z,
and % is positive. Show that the curve has a branch given by the
equations

z=k(1 —cos 0), y=k{log (sec O + tan 0) —sin 6},

where 0=0 <44, and the origin is taken at the point §=0. Show that,
if s is the length of the arc measured along this branch from the same
point,

s=klog k—f—x . [London.]

2,
=cz?--~u in the form

(119) Obtain a solution of the equation ac )

[(z) sin m¢, which is such that Ca
%3:=K, a constant, when =0 and ¢=0,

,5-5=0, when z=0, for all values of ¢. [London.]
(120) Obtain for the equation —; o g i 5 =0 a solution which satisfies
the following conditions : ozt 'ay
(i) when y=0, z=sinz;
(i) when z=0or 7, 2=0;
(iii) z does not become infinite anywhere in the region of the plane
of , y in which y > 0 and 7+ >z > 0. [London.]

(121) By two integrations by parts show that, if P, @, R are functions
of , and suffixes denote differentiations with respect to =,

J-z(Pyz, +Qy, + Ry)dz =2(Py, + Qy) — y(Pz), + I {(P2), - (Q2), + Rz}dz.
Deduce that the two equations
Py, +Qy, + Ry=0, (Pz)y—(Q2),+ Rz=

are such that any integral of one is an integrating factor of the other.
[Such equations are said to be adjoint to each other.]
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Bhow that, if D represents the operator d/dz, the equation adjoint to

{D+p@)}{D+q(x)}y=0
is {D-g(@)}{D-p(a)}z=0.
Verify this for the equation y,+(z+2%)y, +(2x+a%)y=0. [Here
p(2)=2, g(z)=a]
General solution of =%

Factorising the operator, the equation may be written

10 10 2 .10 9 190
(az a a:) {<6z a at) }_ _<ax a ot { 55—597>y}'
Hence (cf. p. 33) the original equation is satisfied by any integral
of either of the two Lagrange linear equations

dy 10y -0 d oy 10y -0,

3z a ot R " T
For the first of these the subsidiary equations are (from Art. 123)
9 a ‘12
1/a

Two independent integrals are
y=b, z—at=e.

y=f(z-at).
Similarly the second Lagrange equation gives y=F(z +at). These
are both integrals of the original differential equation. As it is linear,
a third integral is

The general integral is

y=f(z-at)+F(z +at),

containing two arbitrary functions, and no more general solution of an
equation of order two can be expected. (Cf. pp. 61 and 218.)
A similar method can be used for the equation of Art. 145.

The Method of Parameters. (C. N. Srinivasiengar.)

If a partial differential equation becomes an identity on substituting
p=f(z, a)/¢(z, a), g=F(y, a)/(2, a), we can use these expressions in
conjunction with dz=p dz +¢ dy to obtain the complete integral

_[qs (2, a)de =j 1, a)ds+ IF(y, a)dy+b.
For example, the equation 22(p + g) =22 + y3 becomes an identity if
p=("+a)f2%, g=(y'-a)/2,
giving 2B =a3+y®+3az — 3ay + b.

This method will deal with all equations of Standard Forms I and
IIT (Arts. #29 and 131) and some of 1T (Art. 130). i



ANSWERS TO THE EXAMPLES

CHAPTER L
Art, 5.
d*y d*y
(V) 5 a=ty. (2) Ga=~9y.
d?y (dy dy  (dy
) Y 2= (dz> #) y=23 +<dz>

(5) The tangent to a circle is pcrpcndlcular to the line joining the
point of contact to the centre.

(6) The tangent at any point is the straight line itself.
(7) The curvature is zero.

Art. 8.
2
(1) y=a+ax+a—;!—+a§+ag+...=ae".
i :z:‘ .
(2) y=a+ba:—-a21 b3! gite .=acos & +bsin x.

Miscellaneous Examples on Chapter I.

d”y ds Py Py . dy
(1 @) 5= d--2+11 ? —6y=0.
®) 3 dy j’/+2/=0

(4)y10g¢[dy «/{ d” }] \/{1+ } (5)3—%
o AT, b e
o w2l -)-()

@y Y\? dy
®) { ( >}dx3 3(%2) -2 (11) y=az +Bat.
(12) y=ae®+be—>, (14) 60° and - 60°
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(15) Differentiate and put z=1, y=2. This gives g;g and hence p.

(17) (1) z+1=0; (i) y*=22+6z+1.

CHAPTER IL

Art. 14.
(1) 62 +5zy+y? -9z -4y =o. (2) sinztany+sin(z+y)=o.
(3) secztany —e*=c. (4) z-y+c=log(z+y).
(8) z+ye™ =oy. (6) y=ca.
(7) e¥(sin z+cos z) =c. (8) aty+4cy+4=0.
(9) ye*=ca. (10) sin  cos y=o.

Art, 17.
(1) (@+y)*=c(z-y). (2) 2 +24*(c+log y) =O0.
@) s =c(z-y> (4) cz*=y+v/(a* +y?).

(5) (2z-y)2=c(x+2y-b). (6) (z+b6y—4)3(3z+2y+1)=c.
(7) —y+o=log(3z -4y +1). (8) 3z -3y +c=2log(3z+6y—1).
Art. 21.

(1) 2y=(z+a)’+2¢(x +a)s. (2) xy=sin z+c cos 2.

(8) ylog z=(log z)%+o. (4) 2*=43(3sinz+c).

(5) y2(x+ce®)=1. (6) z=1y3+cy. (7) z=¢¥(c+tany).
Art. 22,

(1) The parabola y?=4az +c.

(2) The rectangular hyperbola xy =c3.

(8) The lemniscate of Bernoulli 7%= a?sin 26.

(4) The catenary y=£k cosh :v_];g (6) zy=c"

(6) yﬁ =t 4o, (7) y?=cat. (8) r2=ce”.

(9) logr+362+46=0. (10) The equiangular spirals r = cex9tans,

Miscellaneous Examples on Chapter II.

(1) zy=y*+e. (2) e =y+v/(y*~2%).

(8) sin z sin y +e*P* =, (4) 22— 2zy + 3y + 2¢ca®y =0,
(6) cxy=y++/(* - 7). (11) #¥y%+ 228y 3 =c.

(12) tan-1(zy) +log(zfy) =c. (14) (3 -1 +yhe’ =,

)
(15) (i) The Reciprocal Spiral r(6 - a) =c.
(i) The Spiral of Archimedes r=¢(6 - a).
(16) The parabola 3ky®=2z. (18) z=y(o -k log y).
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(19) (i) 22+ (y —c¢)?=1+¢?, a system of coaxal circies cutting the given

system orthogonally.

(ii) r2=ce~?" (ii) n2=r {c+log(cosec 10+ cot nO)}.
(20) (:c+ yjy> (z -y j:c) =a? - b3,
L+2
(21) log(22% £y +y?) + \/—7 tan—1 —77-
CHAPTER IIL
Art. 28.
(1) y=Ae ™+ Be32, (2) y=4 cos 2z + Bsin 2z.
(3) y=Ae 32+ Be™t2, (4) y=€*%(4 cos « + B sin x).

(6) s=e~2%(4 cos 3t+ B sin 3t). (6) s=A4+ Be~*.
(7) y=Ae*+ Be==+ Ce 22, (8) y=2¢=—¢22,
(9) y=4 cos (22 —a) + B cos (3z - ).
(10) y=A cosh (2z— a) + B cosh (34— 3), or
y=Ee** + Fe 2* + Ge3* + He32,
(11) y=Ae2*+ Be® cos (z4/3 — a).
(12) y=Ae2®+ Be~2%+ Le~% cos (24/3 — a) + Fe® cos (z4/3 - B).

(13) O=a cos ty/(g/). (14) &* < dme.
(16) @=Q e RU2L (cos nt + R~ sin nt) where n=\/< L —Rz)
0 2Ln ’ LC 4L
Art. 29,
(1) y=e%(1+ 4 cos z + B sin z). (2) y=3+ Ae®+ Bel?e,
(3) y=2sin 3z + A cos 2z + B sin 2. (4) a=2; b=1.
() a=6; b= —1. (6) a=—4; p=2. (7) a=1; b=2; p
(8) a=2. (9) 4de®=. (10) 3e’=.
(11) —-$§ sin 5z. (12) £5 cosbz — 39 sin bur. (13) 2.
Art. 34.

(1) y=A4A+ Bz +(E + Fx)e =,

(2) y=(A4 + Bz +Cz?) cos z+(E + Fz + Ga®) sin 2.
(3) y=(4 + Bx)e®+ E cos x+ F sin .

(4) y=A+ Bz +Ce®+(E + Fz)e 1~

Art. 35.
(1) y=2e**+¢3%(A4 cos 4z + B sin 4z).
(2) y=e*(A cos qx + B sin gz) + e%%[{(a + p)*+ ¢
(3) y=(4 +9x)e3* + Be3=,
(4) y=A+(B+3x)e*+(C+ix)e .
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(5) y=(4 +a=z/2p) cosh pz + B sinh pa.
(6) y=A4 +(B+Cx - 2z% 22,

Art. 36,
(1) y=2s8in 20— 4 cos 2w + Ae2.
(2) y=4 cos 4z — 2 sin 4z + Ae?® + Bed®,
(3) y=2 cos z+¢42(4 cos 3z + B sin 32).
(4) y=-sin 20z +e~%(4 cos 20z + B sin 20z).

Art. 37.
(1) y=a%-32%+ 62 -6+ de". (2) y=6a?-6x+ A4+ Be?a,
(3) y=6x+6+ (A + Bx)ed
(4) y=2*+3a2+ Ez+ F + (4 + Bz) %2,
(5) y=24a?+14w -5+ de~*+ Be*=,
(6) y=8z%+Ta? -6+ Ade*+ Be?** +C.,

Art. 38.
(1) y=A4 cos v+ (B +2x) sin 2. (2) y=Ade®+(x+2)ete,
(3) y=A4e**+ (B + Cr — 202? - 2023 — 152% — 925) =2,
(4) y={4 sinx+(B—-2x) cos z}e?.
(5) y=(A4+ Bz —?) cos x+ (Il + Fu + 3°) sin x.
(6) y=A+(B+3x)e®+Ce®+a?+ Ii cos z + (F +2z) sin @.
(7) y={4 sin 4z + (B -z + «?) cos 4z}

Art. 39,
(1) y=Ax+ Bx?+ 223,
(2) y=2+ Az cos (3 log z) + Bz~ sin (3 log ).
(3) y=8cos (log x) —sin (log x) + Ax~2 + Bx cos (1/3 log # - a).
(4) y=4+log z+ Az + Bxr log z+ Oz (log ) + Dz (log x)3.
(6) y=(1+2x)%[{log (1 +2x)}*+ 4 log (1 +22) + B].
(6) y=4 cos {log (1 +z) —a}+2 log (1 +) sin log (1 +%).

Art. 40,

(1) y=Acos(z—a); 2= —Asin (z-a).
(2) ym=Ades®+ Bed*; z=64¢5* -7 Bed®,
(3) y=Ade®*+ B cos (2x—a) ; z2=2A4e*—- B cos (2x—a).
(4) y=e*+ A+ Be?*; z=¢*+ A - Be %2,
(6) y=A cos (x—a)+4B cos (2 - 3) +cos Tz ;

z=A4 cos (x — a)+ B cos (22— 3) -2 cos Tz.
(6) y=—b5Ae3® - 4Bet®+2¢~*+cos 22 —sin 21}

2= A6’ + Bet® + 3¢~% + 4 cos 2z + b sin 2z.
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Miscellaneous Examples on Chapter IIL
(1) y=(A4 + Bz + Cz?)e® + 26%2. (2) y=(A4 + Bz +6a3)e-81,
(3) y=Ae 3%+ Be=2* + Ce % + I} +2¢~%(sin z — 2 cos 7).
(4) y=Ade®+ B cos (22 — a) —2¢%(4 sin 2z + cos 2x).
(5) y=(4+ Bx+Cua?)e®+(E +x + 22?%) 3=,
(6) y=4 sin (x —a) + B sinh (3z — 8) — 2 sinh 2z.
(7) y=(A4 + Bz +b52?) cosh z + (E + Fx) sinh z.
(8) y=3 +4w +2a* + (A + Bz + 42*) €*® 4 cos 2z.
(9) y=(A4 + Bz +3 sin 2z — 4x cos 2z — 242 sin 2x) €22,
(10) y=A cos (x—a)+3 — % cos 2z — $x cos T + 1% sin 3z.
(11) y=A4 cos (z—a)+ B cos (3z ~ 8) — 3z cos ©+z cos 3z.
(12) y=(dg+ Az + A, 7% +... + A4 2% V) e+ a?[(log a — a)8
(13) y=A4+ Blog z +2(log z). (14) y=A + Bz + §a?,
(15) y=Ax®+ Bcos(1/2logz —a).
(16) y=A + Blog (z+1) +{log (z +1)}*+2® + 8z.
(17) x=Ae% + Be 3+ Ecost+ Fsint—et;
y=Ae"+ 25Be3 + (3E - 4F) cos t+(3F +4E) sint —e
(18) z=Ae* + Be~' cos (v/3t—a) ;
y=Ae* + Be™' cos (/3 — a+27/[3) ;
2=Ae* + Be~t cos (/3L —a+47w[3).
(19) z=At+ Bt ; y=DBt1- At.
(20) x=At cos (logt—a)+ Bt~ cos (logt—f8);
y=Atsin (log ¢t - a) — Bt~tsin (log t - B).
(27) (i) (z—-1)e?®; (ii) }(x®—22+1)sin x+ §(2? - 1) cos =.
(31) y=¢€*=+ de®.
(32) y={(sin ax)/(p?-a?) + 4 cos px+ B sin px.

(33) y=Ae**+ BeP®+ e"“j we“~Y%(log z ~ 1) dx.

(35) (iil) y=4 cos (z —a) —z cos = +sin z log sin .
(37) (1) k/(2phe) ; (i) zero.
(38) y=E cos nz + F sin nx + G cosh nx + H sinh na.

CHAPTER 1IV.

Art. 42,
0z 0z
(1) ay =q 6»5 .
2) azvz+ »a~25=0 (Laplace’s equation in two dimensions.)
ox? 0y 4
0% 0% 1 0%

0z 0z
(3) 0wt 02 ud o’ 4y PP 3y~ 0.
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0z

az+a———2abz;

) ba 3

(6) a, + Yy g =nz. (Euler’s theorem on Homogeneous Functions.)

Art. 43.
) ggﬁ;?; @) g+g§§+%;§=o. @) ;:+g;=1.
e
we (G ey
Art. 45.

(1) y=de-#@+0  (2) z=Asin prsin pay. (3) z=4 cos p(az —y)

(4) V =Ae-P*+9 sin 24/(p? +¢?), where p and ¢ are positive.

(5) V =0C cos (pgx + p*y + ¢*2).

(6) V=Ae " sin (mwxfl) sin (nwyfl), where m and n are any integers
and rl? = 7?(m3 + n?).

Art,. 48,
(1) ql(sin z+} sin 3z + } sin bz + ...).
T
(2) 2(sin -} sin 2+ sin 3z - ...).
2 w3 91"' . a3 67 > ( 67!') :]
) }[(T— [3)8m w—(z 98 sin 27 + 339 gin 3z ..

47 2 4 6
(4) [22 1sm2ms+4 lsm4x+6 1sm(;‘»:t:+ ]

6) = [—,‘;(1 +e¢7) 8in  + 3(1 —e7) sin 20+ 3;(1 +¢7) sin 3z
+44% (1 —ev) sin 4z +... ]

(6) 3:«0 n si (4 sin —— — nr cos —4—2 sin na,
(7) (a) (2), (3), and (6) ; (b) (6).

- Miscellaneous Examples on Chapter IV.
6217 10V 2V a20/,0V
D &N ®) Za =7 a;( )
(1) V=Voe 9% sin (nt — gx), where g = ++/(n/2K).
a2z v -i—i(e"x‘ 8in @ + gye Xt gin 32 + g4 gin bx +...).

(13) Replace z by =w/l, ¢t by 7%/l?, and the factor 8/= by 8I*/=>.
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: |
(14) V=~7(:~ — (e~ cos 2% + 1 e~ 10K cos 4z + J e 88K cos 62 +...).

(15) V=‘—199(e"“ sin £+ 4 e*%*sin 3z + e~ 2K gin b +...).
™

[Notice that although ¥V =100 for all values of x between 0
and 7, V=0 for =0 or 7, a discontinuity.)
(16) Write 100 — V¥ instead of V in the solution of (15).

(18) 7 = 270 (o Bmuntt oo (/21 — § K514 o (3c/20) + .. }.

T

(19) ym%n(sin @ cos vt — } sin 3z cos 3t + g sin bw cos bt —...).

CHAPTER V.
Art, 52,
(1) (y-2z—c)(y+3z—c)=0. (2) (2y—a%-c)(2y+32%—-¢c)=0,
(3) 49(y —c)?=4a". (4) (2y—2%-c)(2z—y*—¢)=0.

(6) 2y—a®—c)(y—ce®)(y+x—1~—ce %) =0.
(6) (y—e*—c)(y+e®~c)=0.

Art, 54.
(The complete primitives only are given here. It will be seen later
that in some cases singular solutions exist.)
(1) z=4p+4p%; y=2p%+3p*+ec.
(2) z=3(p+p™); y=1p*-flogp+e.
() (p-1Pz=c-p+logp; (p-1Py=p*(c-2+log p)+p.
(4) z=4p*+3p+3log(p-1)+c; y=p*+3p*+3p+3log (p-1)+e.
(6) z=2tan"'p—-p+c; y=log (p+p).
(6) x=p+ce?; y=4p*+c(p+1)e>.
(1) z=2p+ep(pr-1)}; ympt=1+c(p2-1)4
(8) z=sin p+0; y=psin p+cos p.
(9) x=tan p+c¢; y=p tan p+log cos p.
(10) «=log (p+1)~log (p—1)+log p+ec; y=p-log (p*-1).
(11) z=p/(1 +p% +tanlp; y=c—-1/(1 +p?. (12) c=1.

CHAPTER VL

Art. 58,
(1) C.P. (y+c)*=2®; =0 is a cusp-locus.
(2) CP. (y+¢)t=x-2; 8.8. z=13.
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(3) CP.a%+cy+c2=0; S.8. y2m4g?,

(4) CP.y=sin(z+c); S.8.y2=1.

(5) C.P. (223 +3zy +c)? —4(a* +y)®=0; 2?+y=0 is a cusp-locus.

(6) C.P. @ —12¢cmy + 8cy® — 12222 +1623=0; y?—2z=0is a cusp-locus,
(7) C.P. +6cxy —2¢y® —(3y* ~2)*=0; y*+x=0is a cusp-locus.

Art. 65.

(1) CP. (y+c)2=z(z-1)(x-2); S88. 2(z-1)(x-2)=0; x=1-1/4/3
is a tac-locus and z=1+1/4/3 a tac-locus of imaginary points
of contact.

(2) C.P. (y+c)2=x(x-1)2; S8. 2z=0; z=1/3 is a tac-locus; x=1
is a node-locus

(3) C.P. 2 -2cx+c*=0; S.8. y?=2a?.

(4) C.P. P +e(x—3y)+c2=0; 8.8. 3y +2)(y —x)=0

(6) C.P. y—ca®-c*=0; 8.8. 2*+4y=0; z=01is a tac-locus.

(6) C.P. y=c(x—-¢c)?; y=0is a 8.8. and also a particular integral;
27y -4a°=0is a 8.8.

(7) Diff. Eq. p*y? cos?a —2pxy sin®q + 4® — 2? sin?a =0 ;

8.8. 42 cos?q =2 sin%q ; y=0 is a tac-locus.

(8) Diff. Eq. (#®-1) p® -2zyp-2®=0; 8.8. a?+42=1;

z=0 is a tac-locus.

(9) Diff. Eq. (222 +1) p?+ (2 + 22y + 42 +2) p+2y2+1=0;

S.S. 22+ 62y +y?=4; z=y is a tac-locus.
(10) Diff. Eq. p*!(1 -2?)-(1-4?)=0; SS.z=x1and y= %1

Art. 67.
(1) CP. y=cz+c2; S.S. 2 +4y=0.
(2) CP.y=cx+c®; 8.8. 2792 +4a3=0.
(3) C.P. y=cx+cosc; S.8. (y—=z sin~z)?=1 -2
(4) C.P. y=cx++/(a%2+b?); S.8. a?[a? +4?[02 =1,
(6) C.P. y=cx—e; 8.8. y=x(logz—-1).
(6) C.P. y=cx—sin"lc; 8.8. y=1/(2?—1) —sin"4/(1 - 1/a?).
(7) 3(y —px)*=—pk*; 2zy=k?% a rectangular hyperbola with the
axes as asymptotes.
(8) (x—-y)?—2k(x+y)+Xk*=0, a parabola touching the axes.
(9) The four-cusped hypocycloid z¥ + y¥ =&,

Miscellaneous Examples on Chapter VI.
(1) No 8.8.; =018 a tac-locus. (2) Y=PX+P/(P-1).

(6) 2y = +3x represent envelopes, y=0 is both an envelope and a
cusp-locus.
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(6) CP.zy=yc+c
(7) CP.ax=yc+ayc?; 8.8. y+422=0. (Puty=1/Y; z=1/X.)
(8) (i) Putting p+2z=3¢> we get
2r=3(3—12); 40y=9(5t°+2t5—bis) +¢.
(ii) C.P. > +4c*=1+2cx; 8.8. 22 -4y +4=0; y=01is a tac-locus.
(11) C.P. r=a {1+ cos (0 — a)}, & family of equal cardioids inscribed in
the circle r=2a, which is a 8.8. The point r=0 is a cusp-
locus and also a S.8.

CHAPTER VII.

Art. 70.
(1) y=log sec z+az+b. (2) x=a+y+blog (y-b).
(3) ay=cos (az+Db). (4) z=log {sec (ay +b) +tan (ay +b)} +e.

(5) y=2>+axlogz+bxr+c.

(6) y=—e®+ae®®+ba"2+cx" 3+ ... + hw +k.

(7) The circle (x—a)?+(y—b)2=£%% The differential equation ex-
presses that the radius of curvature is always equal to k.

(9) V(1 +y,2)=ky,; the catenary y —b=Fk cosh {(z - a)/k}.

Art. 73.
(1) y==(a log z+b). (2) y=ax cos (2 log z) + bz sin (2 log z).
(3) y=z(alog z+b)2 (4) y=22(a log 2 +D)2

Art. 74.
(1) y= =coth 2}29 (2) y=—log (1l —z). (3) y=sin"z.

(4) t=(l~l\/<2ﬁg-> {h cos“\/; +4/(xh - :1:2)}.

(5) (i) The conic uw=ufh®+(1/c— u/h?) cos O;
(ii) cu=cos.04/(1 — uf/h?) or cosh 84/(u/h? —1), according as u= A3

Art. 75,

(1) y=a(a®+1)+be->. (2) y=a(x—1)+be >

(3) y=a(z—1)+be~=+a2 (4) y=1+e-*2 (6) y=6>
Art. 77.

(2) y=a+ax- b/, (3) y=\2"+a2)e> “bu.

(4) y=e**+(aa®+0b)e?, (6) y=as®+bx3,

(6) y=ax?+bsin .
Art. 80,

(1) y=(a—x)cos z+(b +log &'n ) 8% 2 2.

(2) y= {a ~log tan (Z +:c)} cos 2z + b sin 2z
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(3) y={a-e®+log(l+e=)}e"+{b~log (1 +e)}e.
(4) y=az +bz1+(1 —x)e® (5) y=ae®+(b—1x)e® +ce’,

Miscellaneous Examples on Chapter VII.
(1) y=ae*®—b. (2) y=a+log (x*+b).

3 y= (2:1)l+2a "+a’(n”1—)+bx”*2+cx”'3+ .+ hz+ k.
(4) y=-3*"cos {8z —}w(n—2)} +acosz+bsinz+ca™3+...+ha+k
(5) y=ax+blog . (6) y=ae®+b(z?-1)e2.
. T . 1
(7) y=a cos nz+bsin ne+ - sin nz— cos nx log sec nz.

(8) y(2x+3)=alogz+b+e>.

(9) (i) y=+/(ax+Db); (il) y= \/(alogz+b)
(10) y=(a cos z+b sin z +sin 2z)e*.

(12) y=a?2. (14) I=-1.
(17) (i) y=ae®+be~® —sgin 22, (Put z=22.)
(i) y(1+2?) =a(l —2?) +bzx. (Put z=tanz.)
(18) %—2y=2(1 —2%); y=sin?z+ A4 cosh (/2 sin z +q).

(19) y=acos {2(1 +z)e =} +bsin{2(1 +x)e*} + (1 +x)e®.

CHAPTER VIII.
Art. 83.

(1) y=2+z+a® - Jat — %2®; exact solution y=2+z+2*.
(2) y=2x-2logx—3}(logx)®; exact value y=x+£.
(3) y=2+2% +a® + %2 + %28 ;

2=32% + Jot + §a8 + 307 + b,
(4) y=b+z+ 3 a:‘+gz6+-53m7+77x9

z=1+ ‘w3+z5+px°+§w8+ N
(5) y has the same value as in Ex. 4.

Art. 87.
(1) 2-19. (2) 2-192. (3) (a) 412, (b) 4-118.
(4) Errors 0-0018; 0-00017; 0-000013 ;
Upper limits 0-0172 ; 0-00286 ; 0-000420.

Art. 89.
11678487 ; 116780250 ; 1-1678449.
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CHAPTER IX.
Art. 95.

z o3 ) 3 x 22 .
(1) u={l——2»!+a-—...}=a003\/m, V=2 {1—§i+a—...}=mn V.
322 328 31* 328

(2) u—-{l 3x +I’—3+5*'5'+B—~7+7 9+ }, ")=5E‘}(1-—$).

1 , 1.4.7 4.
(3) u={1+3x+3—-é +3 6 9x3+...}=(1—z) ;
8 8.1 , 8.11.14
, .
10°%10.13" +10.13.16”“"‘}'
1 1

4) u=w"{1‘1(1+n)“”+4.8(1+n)(2+")w‘
1

Pl
.g

4.
6.

v= x7/3{1 +-—

- -~ x8 + }
4.8.12(1+n)(2+n)(3+n)
To get v from w change n into —n. If u is multiplied by

1 . , .
the constant T (n 1) the product is called Bessel’s function

of order n and is denoted by J,(=).

Art. 96.
(1) and (4), all values of z. (2) and (3), |z|< 1.
Art. 97.
2 2.5 2.5.10
2 Vo .
(1) u= {1+x+4x i 9903+4 9162 T },

=ulog z+{ -2z 2% - }4a3...}.

1 1 1
@) “={1‘9@“”*’2‘2—.12”‘“55“.‘1%@”“*"'};
1 1
v=ulogz+{22 N 1+%):¢:“+22 oR 62(1+§+-},)z0_...}.

w is called Bessel’ function of order zero and is denoted by

Jo().
3 4
3) u= {1 —2x+gz2-§!x°+...} H

v-ulog:c+{2(2-4})a:— —=(2+%-1)a?+ 4 i(2+3+3- })x”—...}.

1. 3 5.7 1.3.5.7.9.11 . }
- .o 9

. — t1909. 0.9 00
(4) u a:{l+ w” o x+ 2 g 19 %+
v=ulog z+22 {—112—(1+1 -3¢

e (RSSESE PR L
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Art. 98.
1 1 1

=3 - 8
(1) u=z { F ATt 6% T 68"

+——————l-———x‘°—...};
2%.42.6%.8.10

1 1 11
u=1=-ulog:z;+ac*’{1+—2—2:z:”+2z 712954— ~‘4—§—~62wf
31
to e e I

(2) u=2+222+32 +...=z(1 —2)-2;
v=ulogz+l+z+2®+...=ulogz+(1-z)"L
(3) u={1.222+2.323+3. 42 +...};
v-u=ulogz+{-1+w+3s2+52% +7Ta* + ...},
(4) u={22+22%-23 -+ 5a% ... };
v=ulog z+{1 -2 —52? — &3+ 1z, }.

Art. 99.

(1) y=as{l -2 — 3t - 1ab..} +az= ao{l %xlogl }+a1x

@) y=a0{l——(-2T1)zz n(n - 2)(n4-'r1 (n+3) _ }
+a1{ (n— 1)(n+2) gy =Din— 3)5(!n+2)(n+4)z5 }

[For solutxons in powers of 1/z sce No. 7 of the Miscellaneous
Examples at the end of Chapter 1X.]

1 1
—_ 8 2
) y‘“°{ ”‘”3 1.7.87 "3 4.7.8.11.12° +}
1 1
—— e —— 9-— a . .
+“l{” 4.5””4.5.8.9” 158012, 13% +"}

(4) y=ap{l - Ja* — 523+ 52b. .} +ay {o — Jad — Aot + 5425 )
Art. 100,
1) z dJ+7a Y-ty =0, (2) y=az? (1 +22).

3) y=2*(1+22){a+b ] 272 (1 + 22) e da}.

(5) z¢~% and [ze—zlogz+z’{ Y:K” >z+3‘(1+ %)22—...}],

where 2= 1/z.
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Miscellaneous Examples on Chavter IX.

3 9 27
= —i{ 2 T3 }n
(1) u=2x 1+3lx+6!x + ER AT

V= {1 3! +9::c2 ~——’.m3+...};

(1.8 9 2, 27
w=z {21 51“81‘”*111”8* ]

1 1 1
(2) un{l +ﬁx+1,.22x2+12‘22.32a:"+...};

v-.=ulogx+2{ 1, ! (l+1>

g
1 11 1.
12.22.32(1+2+3 e

w=u(logz)2+2 (v-ulogz)logx

6 8 6 ]I
+16z+ 22 e 23 17 98 2.,

CHAPTER XI.

Art. 113,

(1) z/a=y[b=2; straight lines through the origin.

(2) le+my+ne=a; B*+y?+22=b; circles.

(3) y=az; 2?+y?+22=bz; circles.

(4) x> ~y?=a; 22—22=b; the intersections of two families of rect-
angular hyperbolic cylinders.

(6) x~y=a(z-z); (z—y)*(z+y+2)=b.

(6) 22 +y2+22=a; y2—2yz—2*=>b; the intersections of a family of
spheres with a family of rectangular hyperbolic cylinders.

(T) A/ (m2+n?), (8) The hyperboloid 72+ 2% — 222 =1
(9) (2% +y?) (k tany[z)? =222, (10) 1/z=1/y+1/2=1[z+2.
Art. 114,

(1) y—3z=a; bz+tan (y — 3z) =be®.
(2) y+z=a; log {2+ (y+2)%} - 2w=b.
(3) zy=a; (P+ay)i-at=b. (4) y=ax; log(z-2x[y)—x=>b.

Art. 116.
(1) 22 +y2+22=c?; spheres with the origin as centre.
(2) #®+y*+2=cxw; spheres with centres on the axis of z, passing

through the origin. (3) wyze=cl
P.D.E. v
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(4) yz+22+2y=c?; simiiar conicoids with the origin as centre.
(6) z—cy=1ylog z.
(6) #®+2yz+222=c?; similar conicoids with the origin as centre.

Art. 117,
(1) y=czlogz. (2) xiy=cze. (3) (z+y +22) " =0
(4) y(x+2)=c(y+2). (6) (y+2)/z+(x+2)]y=c.
(6) ny —mz=c(nx—Iz). The common line is z/l=y/m=2[n.
Art, 120.
(3) z=ce?®, (4) 2?z2+4=0.
Miscellaneous Examples on Chapter XI.
(1) y=ax; 22—2y=>. (2) 2Py*2=a; 23+ y3=_bac2y’.
(3) y+z=ae®; y2—22=b. (4) y=sinx+cz/(1 +22%).
(5) 2?®+zy?+az=t+c. (6) f(y)=ky; o*=cy
(8) dawfz=dy/2y=dz/3z. (9) y+2=3¢%3; 4> —22m3.

(10) (1) BB+y?+22=clz+y+2); (i) 22-ay+y?=cz;
(i) y%—yz—wz=ce?
(14) 2y =ce*sin w.

CHAPTER XII.

Art. 123.

(1) ¢ (zfz, y[z)=0. (2) ¢ (lo+my+n2, 2 +y%+2%) =0,

(3) p{ylz, (@*+y%+2%)[2}=0. (4) ¢p(ax?—y? a?—2%)=0C.

(5) ${(w-yP@+y+2), (@-y)(z -} =0.

(6) p{x®+y%+22, 32 —2yz—2%=0.

(1) ¢ [y-3z, e5%{bz+ tan(y — 3z)}]=0.

(8) ¢p{y+w,log(2?+y>+2yx +a?) — 22} = 0.

(9) y*=4az. (10) a(a?—y%) +b(a?—22) +¢c=0.
(12) ¢(a®+4? 2)=0; surfaces of revol:tion about the axis of 2.

Art. 128,
(1) plz+2y, T+ Ty, Ty +a5)=0.
(2) ¢z, 22257, 2’257 2y'0,7Y) =0,
(3) ¢p(z—2y®q, )+ 29+ x5, T505)=0.
(4) p(22+2,2, 2.2 -x.% 0,2 —2?) =0.
(5) ¢p(44/2—x4?, 203 —2,2, 20, —2,%) =0; special integral z=0.
(6) ¢p{z—3x;, 2-3xs, 2+64/(2-3,~2g—2,1}=0; special integral
g=2, + g+ Ty
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) Art. 129,

(1) z=202 + Dz + oy +e. (2) 2=z cosa+ysina+e.

(3) 2=az+yloga+ec. (4) z=a’c+a %y +c.

(6) 2=2xsec a+2ytana+e. (6) z=x(l +a)+y(l+1/a)+ec.
Art. 130,

(1) az=(z +ay +b)2 (2) 2= cosh{(z+ay +b)[v/(1 +a*}.

(3) 22—at=(z+ay+b)? or 2=b. (4) 2*(1 +a®) =8(x+ay+b)>.

(5) (z+a)e*tW=ph, (6) 2=Dbesztay,
Art. 131.

(1) 32=2(z +a)t + 3ay + 3. (2) 2az=a%?+ 9%+ 2ab.

(3) az=aa?+ a*xs +e% +ab. (4) (22— ay® - 2b)%=16az.

(6) z=a(e*+e¥) +b. (6) az=a% +asin z+sin y +ab.
Art. 133,

(1) 2= -2 -log zy. (2) Bz=my—-a*—y2 (3) 8= —2Ta%2

(4) zz=—y. (6) 2=0. (6) 2%=1. (7) 2=0.
Art. 136.

(1) 42= -2
(4) A particular case of the general integral, representing the surface
generated by characteristics passing through the point (0, —1, 0).

Miscellaneous Examples on Chapter XII.

(1) z=ax+by — a®b; singular integral 22 =a?y.

(2) 2z=ax-+by —a?b; singular integral 22=y.

(3) iy, (2 +ay)* -} =0.

(4) z=32% - 3az? + a?x + 2y* — 4ay® + 3a?y? — a3y + b.

(5) z=ax,+blog zy+ (a®+2b) x5t +c.

(6) 2= g{(m, +x5)[y, @,% — 7%}

(7) 3a(z+ay+b)=(1+a®)logz, or z=b. z=0isincluded in 2=, but

it is also a singular integral.

(8) 2(1 +a®+ %) =(x, + axy+ bxy +c)3.

(9) p(z+e*, 2%, 23 €49) =0, (10) z2maz—(2+3a+3a?)y+b.
(11) 22=a2® - (2+3a+§a?)y? +b. (12) 22=(1+a?)2®+ay?+b.
(13) z=atan(z+ay+b), or z=b. 2z=01is a singular integral, but it is

also included in 2=b.
(14) 22 =a2®+ by —3a®+ b2 Singular integral 22 = +-22%/9 - 14/4.
(15) zmz+y—-1+2¢4/{(x-1)(y - 1)} (16) 22 —ay=o.
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(17) ¢(z/z, 2/y) =0 ; cones with the origin as vertex.

(18) o +¢® + 22 =2z cos a+2ysin a+c; spheres with centres on the
given circle. The general integral gives other solutiona.

(19) wyz=c. (This is the singular integral. The complete integral
gives the tangent planes.)

(20) The differential equation (z2—pz—qy)(1-1/p-1/7)=0 has no
singular integral, and the complete integral represents planes.
Every integral inclided in the general integral represents the
envelope of a plane whose equation contains only one
parameter, that is, a developable surface.

CHAPTER XIIIL

Art, 139.
(1) y¥*{(x—a)®+y2+22}=b. (2) 22=2azx +a%? +b.
(3) z2=ax+be'(y +a)0. (4) 2=2(a%+1)2%+2ay +b.
() z=ax+3a%y+b. (6) (22+a?)®=9(x+ay+b):
() 2=a28+axr+%(y+a)®2+b. (8) z=ax+by +a®+ 2

Art. 141,

(1) z=ax, + 0,25+ (1 —a®—a?) w3 +ay.
(2) z=a,x, +a,x,+8in"1(aa,74) +ag.
(3) z=a,logz, +a,logx, 251/ (a; +a,) +a,.
(4) 2z2=0,2,2+a,2,% +agx,? - 2(a,0,a,) P log z, +ag.
(5) 2(a,a,05)Blogz=a,2.%+a,z,? +agzs?+1,
(6) 4a,z2=4a,2log 24+ 2a,a,(2, — 2,) — (2, +2,)% + 4a,a,.
(7) (1 +a,a,) logz=(a,+a,)(r,+a,3,+a,xs+ag).
(8) 2= —(a,+ay)xy+ (20, —ay)zy + (—a, + 2a,) x4
=3 (@2 + 2 + %) £ 5 {2, + 7, + 25— 20,7 + 20,0, - 20,77 + ay.
Art. 142,
(1) z= *=(z, +2,)* +log z, +a. (2) No common integral.
3) 2=z 2+, +x%+a, or z=2,2+2zx,04+a.
(4) z=a(x, +2x,) + blog 24+ 2ablog x4 +ec.
(5) z2=a(3z,+z,%~25%) +b. (6) No common integral.
(7) z=alx,—3,) +b(xy—235) +0, or 2=0a(z, —2z,) +b(223-x,) +o.
(8) 2= ¢ (32, + 2, —2,8).
(9) z= (2~ 2y, Ty—%y), OF 2=¢p(T, - 224, 205 —y).
Miscellaneous Examples on Chapter XIII.
(1) 22=a,log 2, - a,a,log 2, +azlog 25+ ay.
(2) No common integral.
(3) zma,logz; +agrs+(a,+ag)zy+4/{a,(a, +2a,) 2,2} + a,.
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{4) 0=a,log @, +ay7,+ (6, +0,) T3+ V{a,(a; +2a,) 2% + 1.

(5) 2logz =10 (2,2 + 2%+ x4?%). (6) B=zd+z3+x,3+ec.

(7) 4242+ 3,2+ 14,2=0. (10) 2=¢p(3,25, Ta+T3+Ty, T4T5).
(11) (iii) 3z=z,3- 3z,z4+o0.

CHAPTER XIV.
Art. 144,
(1) z=2*+zf(y) + F(y). (2) z=logzlogy +f(z)+ F(y).

(3) 2= —%,A;éin zy +yf(z) + F(z). (4) =23 +f(y) logz+ F(y).

(6) z=sin(z+y)+!1}f(w)+F(y). (6) 2= —xy +f(x) + e F ().

(7) 2= (2?2 +y?)2 -1. (8) z=y2+2xy+2y +ax®+bx+e.
(9) z=(a?+y%)2 (10) z=a3P+y(1 -8
Art. 145,
(1) z=F (y+x)+ Fy(y + 2z) + Fg(y + 32).
(2) 2=f(y - 2z) + F (2y - x). ) z=fly+2)+ F(y-2).
(4) The conicoid 4u® —8zy +y*+ 8z —4y+2+2=0.
Art. 146.
(1) z=f(2y — 3z) + = F (2y — 3x). (2) z=f(by +4x) +zF (5y + 4x)
(3) z=f(y+2x)+xF(y+2x)+ p(y). (4) 2(2x+y) =3z,
Art. 147.
(1) z=a*+22% + f(y + 2) +aF(y + 2).
(2) 2=622y + 3z + f(y + 2x) + F(2y +x). (3) V= —27ayr.
Art. 148,

(1) z2=me®? + f(y+2) + 2 F(y +x).

(2) 2=a?(3x+y) + f(y + 3x) + x F (y + 3x).

(3) 2= —2%cos(2z +y) + f(y +2u) + = F (y + 2x) + ¢ (y).
(4) z=xe® ¥ + f(y —z) + F (2y + 32).

(5) V=(x+9y)3+f(y+x)+ F(y — ).

(6) 2=2a2log(z +2y) + f(2y +x) + xF (2y +x).

Art. 149,
(1) 2=zs8iny+f(y —x) +zF(y — ).
(2) z=at+22% + f(y +b2) + F(y — 3z).
(3) z=sinz—ycosx+ f(y —3z) + F(y + 2z}
(4) z=sinxzy + f(y +22) + F(y - )
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() 2=%tanztan y + f(y +z) + F(y — ).
(6) y=wzlogt+tlogz+ f(t+2x)+ F(t—2z).

Art. 150,
(1) z=f(z) + F(y) + & p(y + 22).
(2) z2=e2{f(y-x) +zF(y—)}. (3) V=S 4ett=tM,
(4) z=f(y+=) +e*F(y —x). (6) 2= ZAe =) 1 T Bekl=tt),
(6) V=3I Aerwoorotysinal (7) z2=e?{f(y +22) + ZA ety
(8) =1+e={(y-a)* -1}, A
Art. 151,
(1) z=32>V +e%f(y +2) + E°F (y +2).
(2) z=1+z—-y—zy+e3f(y)+eVF(x).
(3) 2= {sin (z — 3y) +9 cos (z — 3y)} + SAtW+ED,
(4) z=z+f(y)+e°F(y+x). (5) y= —e?t2 4 S erreoetstana,
(6) z=e2*{z® tan (y +32) +zf (y +3z) + F (y + 3x)}.

Art. 162.
(1) y2r—2ys+t=p+6y. (2) pt—qs=¢>
(3) r+3s+t+(rt—s%)=1.
(4) pg(r—)—(p*—9*) s +(py — qx) (rt - 5*) =0.
(5) 2pr +qt —2pq(rt —s¥) =1, (6) gr+(2q—p)s—2zpt=0.

Art. 154.
(1) z=f(y+sinz) + F(y—sinz). (2) z2=f(z+y)+ F(zy).
(3) y—Y(x+y+2)=¢(x), or z=f(z)+ F(z+y+2).
(4) z=f(x+tany)+ F(z—tan y). (B) z=f(2%+4?) + F(y/z) +zy.
(6) y=flz+y+2)+aF(z+y+2z). (7) 3z=4xy—-a*y*-6logy-3.

Art. 157,
(1) p+2-2y=f(q-22+3y); A= -4.
(2) p—z=flg~-y); A=00. (8) p—e*=flg—2y); A=wo.

(4) p-y=f(g+2); p+y=F(g-2); A==x1.
(6) p-~y=flg—-22); p-2y=F(g—2); A=-1or —}.
(6) pr—y=flgy—2); A= -z or —y.

() 2p-z=f(zg-y) ; A=2/Pq.

Art. 158,
(1) zmaz+by — 2%+ 22y — §y* +¢;
z=32%(1 +3m?) + (2 + 3m) Yy + nx + G(y +mz)
w 2zy — §(2? + 3y?) + nw + Y (y + ma).
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(2) 2=3(@*+y®) +az+by+c; 2=3(2®+4?) +nax+ Y (y +ma).

(3) z=e*+ 2 +axr+by+c; z=€"+y* +nx+ (y +ma).

@) z=%(a-B); y=HY'(B) - ¢'(a)}; z=ay+}{¢(a) -V (B)} +By.
() z2=B-a; y=¢'(a) =Y (8); z=2y—p(a) +y(B) +By.

(6) 2+y/m+mx—nlogx=q¢(z™y) ; the other method fails.

(7) 2=a?+ 12 +2ax +2by +¢; 22=2%+ 32 +2nz +\(y + mz).

(8) 2z=y% a2,

Miscellaneous Examples on Chapter XIV.

(1) z=a*y+af(y) + F(y). (2) z=e¥V +f(2) + F(y).
(3) yz=ylogy-f(z) +yF ().
(4) z2=f(x+y)+xF(x+1y)—sin(2z + 3y).
(8) z=f(y+log z)+xF(y +logx). (6) z=z+y+f(zy)+ F(x?y).
(7) 2=log(s+y) . f(e* ~y?) + F(a? - ).
(8) 42=6zy—3x® - by +dar+4by+c;

4z = 6zy — 322 — by® + 2nx + 2y  (y + ma).
(9) 32=3c+2(x+a)*?x2(y+b)*-.
(10) mz+sin y +m?sin & — mnx =me (y +mzx).
(11) Zo=a-B; 2y=v/(8) - ¢'a) ;

22 =322 - 6zy — Ty2 + ¢(a) —\(B) +2y.
(12) z=23+ 3+ (x+y+1)% (13) z=22—zy + 9~
(20) pz+qy=F(p*+¢%); py—qx="F(g/p).

Miscellaneous Examples on the Whole Book.

) (- y2)2=cxy. (2) y=a+ce %,
(3) 2secwsecy=z+sinwcosz+c. (4) (zy+c)2=4(x®+y)(y? - cx).
(6) 1+zy=y(c+sin~z)/(1 -2?). (6) y=(4 - }x)cos2z+ Bsin 2z
My =%z— g—g + 1%8—5 + i%xe‘(sin 2 — cos 22) + Ae~* + Be? cos (22 + a).
(8) y=A + Bz + Cx log z +log # + §x(log x)? + $22.
(9) y+sec z=ctanz.

(10) z=Ae* + Be~% — §(cos t—sin t) ; y=Ae* -3Be~%—$ cos .

(11) 228 =(y—1)22+ ¢;8.8. y=1. (12) y=a cosec (b - 2).

2 . N
(13) y=<A+Bz+61>sm2z+<E+Fx——96>cos2x.

(14) 22y =32+c. (16) 2+zy=c(z+y—2y).
(16) ®+y3+28=cayz. (17) z=f(zy) — }a? — §33.
(18) (@ y)de-Me=D = f{(z - By +2)/(z~ y)}).

(19) (z+2)2=(2+2y) f (y/2).

(20) z=ax+ by +a®+b?; singular integral 42+ 2%+ 42 =0.
(21) z=e2f(c—y)+ F(y).
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(22) z =aa?+ by + 4a*; singular integral 16z + 2% =0,
(23) z=f(z+y)+ F(z-y) +3 (& +¥°).
(24) z=uaf (y) +y F (). (25) cz=(z+a)(y +Db).
(26) z=134zy+f (y[z) +zF (y[z). (27) z=f(z+z)+ F(z+y.
(28) y (z+¢)=c*z; singular solutions y=0 and y +4a?=0.

g+l Zn+l
(29) ay’=(z+b)s. (30) y=A cos< 1>+Bsm (1-1)
(31) 22 +y?*+22=2 (zcos a+ysina+c). (32) y=e"—$e2=+ 46",
(33) z=¢"**(a cos At +bsin At) + C cos (pt - a),

where C= A[+1/{(x? + A2 — p%)? + 4k2p%}, tana =2cp[(k? + A? — p?),
and a and b are arbitrary constanta.

(34) y=A cos (sin x) + Bsin (sin z).
(35) (i) F=Alog(r+2)+B;
(i1) ¢= A j e—§3/4a? df.;. B: 3¢ = _4_ e—¥4adt
T oz A/t )

(36) V =A{L+3(322—r2) + (3524 — 30222 + 3r4)},
where 2 =22+ 4% + 22

(39) u=-C(1+ +4TA¢ 5:055+ )cosht

2 b b z? .
+C(2'a2 3'a8+6ra'6+§m+...>slnh‘.
(41) y—z=c(zy—1)e "™
(42) y=(L+=x)**(1 - z)*t* {4+ B I (1 +xz)"0+-1(1 ~ g)~o-b-1dz},
If 2a is an integer, the integral can be evaluated by
putting z=(1 +x)/(1 — ).
(43) (i) y=(1 —-2?)(A + Blog=z); (ii) y=(1 —2*)(x+ A + Blogx).
(44) 1 -2 y=(a+bd j e~ % dx) et [Put log y =-J(u -4P)dw. u=wis
a solution of the differential equation in u.]
_,_(2n-2)a* (2n-2)(2n-4)(2n-6)a* .
5) f@=1- (o 121" @n i) @n-2)@n_3) 4l "
_(2n-2)(2n-4)s®
¢ @) =2 (o T @n=2)3I
(46) y=Aa®+ Bx®+ E(2?+1), replacing C/6 by E
z\? e{c+2(b+1)} (@
47 ""”éi(‘) T (a)

c{c+2(b+1)}{c+4(b+3)}
6! <a) tee

fc+b} (z\* {c+b}{c+3(b+2)} (x .
”-(a> 3l <a> Bl (a> ted
both converge within the circle |z| = |a|.
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(49) xz_m..(z o) y.

(60) Q{aP aag} must be a function of z alone ; z*y — az®y*=e.

(61) 2+ 42+ 2bxy = 2az.
(62) uvewuaj-v”ew dx +b, where v=Q/P and w njv dx.
(63) Pn cot (nx + a) +Q =n2,
(54) y(1 —=z)=A(3 - 2z) e+ B(1 — 2x) e~22,
(66) 2’ +yz=c(y +2).
(67) y=Ae 2+ e%(B cos 24/3 + C 8in 24/3)

+ 32 + 5 d1ve22{1572(6 cos z + 11 gin )

+3(783 cos x — 56 sin x)}.

(58) y=(3+42*){4+B J.(S +4?%)2¢- ' dg},

(59) 24(z+y)42? +y? +22) =c(a® + y2 — 7). (80) wz=c(y +2).
. 1 du l _Zlc+tanaz)
(62) (i) Put y= "W;) iz’ (i) y “1_ctanz

[See Ex. 41 for method.]

(65) If a particle P moves so that its velocity is proportional to the
radius vector OP and is perpendicular to OP and also to a
fixed line OK, then it will describe with constant speed a
circle of which OK is the axis.

(67) r2sin 2(6+a)=1; singular solution r=1.

(68) 4% — 2% =cx+2a%+a4/(4a® - ) ; singular solution y2 — 22 = +2ay.

(70) da(y —c) =(x —c)?; singular solution y =z —a.

(71) z+a=ccos ¢ +c log tan }¢. (72) a cos 6+bcos O’ =k.

(74) 2cy=(x +c)*; singular solution y(y — 2z)=0.

(75) z+py+ap*=0; (y+ap)y/(p*+1)=c+asinhp,

z4/(p?+1) + p(c+a sinh1p) =0,

There is no singular solution. The p-discriminant y2=4az

represents the cusp-locus of the involutes.
(T7) y=az, z=b+ /(&' +4%) ; 2= /(2" +y*) +f(y/2).

The subsidiary integrals represent a family of planes through
the axis of 2z and a family of right circular cones with the axis
of z as axis ; the general integral represents a family of surfaces
each of which contains an infinite number of the pairs of straight
lines in which the planes and cones intersect.

(78) 2+ yt+2=fla? + g2+ (v +y)3}; P+y2+ed=c?; 22=ay+c.
(79) (2x—-y)? =cB2(z +2y).
(80) (az - by)/(z + ) =f{(az +by)/(z ~c)}.
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(81) (i) I=E[R+ de~®IL; (ii) A=Iy— E[R; (iii) I=E/R.

(82) I=acos(pt—¢)+Ae-F/L, where a= E[+/(R?+ L*p?), tan ¢=Lp/R,
and 4 is arbitrary.

(83) @ =a sin (pt—¢), where tan € = (CLp*—1)/pCR and

a=EC[\/{(CLp*-1)*+ p*C*R%}.

{85) =4 cos (t—a)+ Bcos (3t—3); y=24 cos (t—a)—b5B cos (3t-B)

(86) a and b are the roots of \2(LN — M?)+ (RN + LS) + RS =0.

(91) =4 cos (pt— a)+ B cos (¢t — B), y=A sin (pt — a) — Bsin (gt - B)
where 2p =4/(4¢ + k%) 4+, 29 =1/(4¢> + ®) —~ k.

(92) %+(a+b) ?5+abz=abo.

(93) p=4/(n*—-2u?) makes the amplitude of the particular integral a
maximum, provided 242 does not exceed n?.

(94) x=Ae* cos (pt —€), where p=+/(n?—Fk?).

(97) p=4%Va32cos 6. (98) y sin (pb/c) = 4 sin (pz/c) cos (pt + a)
(100) ¢ =C cosk m(y + h) cos (mx —ni).

(118)  (vi) u,=A(-2)*+B(-3)";

(vili) , =2(P cos T+ Qsin 1;.1‘) ;

X7 zz
(x) u,=A4(-9) +B+i—l .

(119) u=—-{{- co8 72 sin mt.
m c
(120) z=¢"Y sin 2.

Note' on alternative forms ot answers.

In several examples a slight variation in the method of solution may
lead to a different form of the complete primitive. Thus in Ex. 3, Art.
70, the answer given is ay=cos (az +b), but the student may equally
well obtain ay=sin (az +b), or ay=sinh (ax+b). If in the first form
b is replaced by (b-347) we obtain the second, while if in the second &
and b are replaced by ai and bi respectively, we obtain the third after
division by ¢«. Other forms may be obtained by replacing a by 1/a.

In the answer to Ex. 4, Art. 116, c® may be replaced by —c?, ore,
or —c. In general an arbitrary constant must be supposed to have
all values, real, imaginary, or complex, and may be replaced by any
function of a new arbitrary constant.

Where pairs of integrals are needed, alternative pairs often arise very
naturally. Thus the answers to Exs. 5 and 6, Art. 113, may be replaced

by y-z=a(y—z), (y—2)*(xv+y+2)=>,
and by B+yt+2t=a, «*+2y*-2yz=),
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respectively. In this set of examples the pairs u=a, v=b may be
replaced by f(u, v)=a, F(u, v)=b, where f and F are any two inde-
pendent functions of u and v.

Alternative answers are to be found for several of the examples on
partial differential equations, e.g. % sin a=§zy cos o for Ex. 3, Art. 42,
and 2%@a - y?) = (z + b)? for Ex. 2, Art. 139 (see note on p. 171).
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Adams, 224.

Adams’ numerical method, 224.

Adjoint equations, 256.

Ampére, xvi, 183.

Angstrom’s determination of diffusivity,
58.

Apparent singularity, 213.

Approximate methods, 5, 94, 224, 247.

Arbitrary constants, 2, 50, 126, 127,
252.

Arbitrary functions, 49, 137, 147, 172.

Asymptotic series, 217, 251.

Auxiliary equation, xv, 26, 174, 254.

Bar, vibrating, 190.

Bateman, 222, 232.

Bernoulli, xv, 12, 18.

Bernoulli’s equation, 18.

Bessel, 110.

Bessel’s equnation, 114, 116, 118, 120,
214, 217, 253.

Boole, xv.

Boundaries, discriminant-loci as, 195.

Boundary oonditions, 53, 56.

Briot and Bouquet, xvi.

Brodetsky’s graphical method, vi, 5.

Bromwich, 247.

Cauchy, xvi, 121, 124.

Cayley, xv.

c-discriminant, 67, 1565.

Chango of variables, 40, 61, 79, 85, 91,
93, 119, 120, 164.

Characteristic index, 214.

Characteristics, 6, 97, 168.

Charpit, xvi, 162.

Charpit’s method, 162.

Chemistry, 244.

Chrystal, xvi, 150.

Clairaut, xv, 76.

Clairaut’s form, 76, 79, 195, 196, 199.

Common primitive, 10.

Complementary function, 29, 87, 175,
264.

Complete integral, 153.

Complete primitive, 4.

Conditions of integrability, 139, 144,
229, 231.

Conduction of heat, 52, 53, 57, 58, 59,
60, 250.

Coniluent hypergeometric equation, 218.

Confocal conics, 23, 79.

Conjugate functions, 24, 189.

Constant coeflicients, xv, 25, 49, 173,
178, 250, 252, 254.

Constants, arbitrary, 2, 50, 126, 127,
252,

Convergence, xvi, 112, 124.

Corpuscle, path of a, 48.

Cross-ratio, 202.

Cusp-locus, 68, 73, 195, 198.

D’Alembert, xv, 25, 44, 49.

Darboux, xvi.

Definite Integrals, solution by, 250, 251,

Degree, 2.

Depressiou of order, 81.

Developable surface, 189.

Difference equations, 254.

Difficulties, special, of partial differen-
tial equations, 51.

Diffusion of salt, 60.

Discriminant, 67, 71, 155, 194.

Duality, 160, 161, 189, 248.

Dynamics, 2, 24, 28, 36, 46, 47, 50, 61,
85, 86, 190, 242-249,

Farth, age of, 60, 212.

Einstein, 247.

Electricity, 24, 29, 46, 48, 68, 59, 134,
241-244.,

Elimination, 2, 49, 50, 179, 194.

Envelope, 66, 71, 146, 155, 192, 195, 196,
200.

Equivalence, 92.

Euler, xv, 12, 25, 49.

Exact equations, 12, 23, 91, 191.

Existence theorems, 121, 252.

Factorisation of the operator, 86,
Falling body, 24, 86.
Falling chain, 246.
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Finite differences, 253, 264.

First order and first degree, ordinary,
12, 133 ; partial, 147, 151.

First order but higher degree, ordinary,
62, 65 ; partial, 163, 162, 165.

Fontaine, xv.

Forsyth, 150, 232.

Foucault’s pendulum, 247.

Fourier, 54.

Fourier’s integral, 60.

Fourier’s series, 54.

Frobenius, xvi, 109.

Frobenius’ method, 109, 127, 208.

Fuchs, xvi.

Fuchsian type, equations of, 213, 214.

Fuchs’ theorem, 211.

Functions, arbitrary, 49, 137, 147, 172.

Gauss, 110.

General integral, xvi, 137, 147, 149, 157.

General solution, 4.

Geometry, 6, 19, 65, 133, 137, 146, 173,
188, 189, 192, 255.

Goursat, xvi, 172, 232,

Graphical methods, 5, 8.

Groups, xvi, 120, 232.

Hamilton’s equations, 248,

Heat, 52, 53, 57, 58, 59, 60, 250.

Heaviside, 58, 61.

Heun, 94.

Heun’s numerical method, 104.

Hill, M. J. M., vi, xv, xvi, 65, 150, 155,
196, 230, 232.

Homogeneous equations, xv, 14, 40, 44,
83, 144, 171, 173, 205, 251.

Homogencous linear equations, 40, 44,
171, 173, 251.

Hydrodynamics, 246.

Hypergeometric equation, 119, 120, 214.

Hypergeometric series, 92, 119.

Indicial equation, 109, 111.

Inflexion, locus cf points of, 200.

Initial conditions, 4, 28, 53.

Inspection, integration by, 12, 172.

Integrating factor, xv, 13, 17, 22, 23, 91,
205, 237, 2565.

Integrability, 139, 144, 229, 231.

Integral equation, 96.

Intermediate integral, 181.

Invariant, 92.

Jacobi, xvi, 165,
Jacobi’s Last Multiplier, 249.
Jacobi’s method, 165, 231, 248.

Kelvin, 58, 60, 250.

Klein, xvi.

Kutta, 94, 104, 108.

Kutta’s numerical method, 104.

Lagrange, xv, 49, 81, 162.

Lagrange’s dynamical equations, 248,

Lagrange's equation, 254.

Lagrange’s Jinear partial differential
equation, xvi, 147, 151, 168, 230.

Laplace, xvi.

Laplace’s equation, 51, 189, 190, 234,
235, 251.

Last multiplier, 249,

Laws of algebra, 30.

Legendre, 110.

Legendre’s equation, 117, 120, 214.

Leibniz, xv.

Lie, v, xvi, 232.

Linear difference equations, 254.

Linear equations (ordinary), of the
first order, 16, 252; of the second
order, 86, 87, 88, 109, 127, 208, 252 ;
with constant coefficients, xv, 25, 252.

Linear equations (partial), of the first
order, xvi, 50, 147, 151, 158, 192;
with constant coefficients, 49, 173,
178, 250.

Linearly independent integrals, 253.

Lines of force, 24, 134.

Liouville’s solution of the wave equa.
tion, 220.

Lobatto, xv.

Maxwell’s equations, 59.
Mayer’s method, 206.
Mechanics, see Dynamsics.
Membrane, vibrating, 190.
Monge, xvi, 172.

Monge’s method, 181, 183.
Multipliers, 135, 248, 249,

Newton, xv.

Node-locus, 68, 195.

Non-integrable equations, 142,

Normal form, 91, 92.

Normal integrals, 215.

Normal modes of vibration, 242, 244.

Number of linearly independent inte.
grals, 253.

Numerical approximation, 94, 224.

One integral used to find another 87,
136.

Operator D, 30, 44, 86, 174, 252.

Operator 6, 44.

Orbits, planetary, 86, 247.
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Order, 2.

Ordinary point, 212.

Orthogonal trajectories, xv, 20, 23, 138,
189.

Oscillations, xv, 2, 28, 29, 36, 46, 47,
48, 650, 61, 190, 241-245.

Page, 232.

Particular integral, xv, 4, 29, 33, 44, 87,
175, 178, 195, 254.

p-discriminant, 71, 165.

Pendulum, 28, 244, 245, 247.

Perihelion of Mercury, 247.

Physics, see Conduction of heas, Cor-
puscle, Diffusion, Dynamics, Eleciri-
city, Hydrodynamics, Potential, Ra-
dium, Resonance, Telephone, Vapori-
sation, Vibrations, Wave equation, etc.

Picard, xvi, 94, 121.

Picard’s method, xvi, 94, 122.

Poincaré, xvi.

Poisson’s bracket expression (F, F,), 166.

Poisson’s method, 189.

Poisson’s solution of the Wave equation,
220.

Potential, 134, 190.

Power scries, xv, xvi, 4, 109, 124,

Primitive, 4.

Radium, 24.

Real singularity, 213.
Reduction of order, 81.
Regular integrals, 110, 118, 208.
Regular singular point, 212.
Remes’ numerical method, 227.
Resonance, 37, 46, 243.
Ricceati, 110.

Riceati’s equation, 201.
Riemann, vi, 232.

Riemann’s P-equation, 214.
Runge, xvi, 94, 99, 100.
Runge’s numerical method, 99.

Schwarz, xvi, 92.

Schwarzian derivative, 92.

Schlesinger, 232.

Schrodinger’s equation, 222.

Second integral found by using a first,
87, 136.

Separation of the variables, xv, 13.

Series, solution in, xv, xvi, 4, 109, 124,

Shaft, rotating, 47.

Simple harmonic motion, 2, 85, 242, 244,

Simultancous cquations, 42, 59, 133,
168, 171, 252.

Singular integral, 155.

Singular point, 7, 212.

Singular solution, xv, 4, 65, 192.

Solid geometry, 133, 137, 146, 173, 188,
189.

Solving for p, =, or y, 62.

Special integral, 137, 150, 230.

Standard forms, 1563.

String, vibrating, xv, 50, 61, 190, 218,
246.

Subnormal integrals, 215.

Subsidiary equations, 147, 164, 166.

Substitutions, 40, 61, 79, 83, 91, 93, 119,
120, 164.

Sylvester’s dialytic method of elimina-
tion, 194.

Symbolical methods, xv, 33, 44, 45, 61,
175, 178, 252.

Tac-locus, 72, 198.

Taylor, xv.

Telephone, 58.

Todd, 213.

Total differential equations, 137, 205.

Transformations, 40, 61, 79, 85, 91, 93,
119, 120, 164.

Transformer, elcctrical, 48.

Vaporisation, 24.

Variation of parameters, 88, 93.

Vibrating strings, equation of, 50, 61,
218, 256.

Vibrations, xv, 2, 28, 29, 36, 46, 47, 48,
50, 61, 190, 218, 241-215.

Wada, xvi, 5, 8, 9.

Wave equation, 219.

Wave mechanics, 222,

Weber, 194.

Whittaker and Watson, 252.

Whittaker’s solution of Laplace’s equa.
tion, 61, 251.

Whittaker’s solution of the Wave equa-
tion, 222.

Wronski, 253.

Wronskian, 253,

z absent, 82.
y absent, 82.

Zeeman offect, 244.
























