S ORENINGS
TNT E MODERN
OROUGH"AND RAMKE:

GIIT OF
 Albert L.Hilliard

CHESS OPENINGS

ANCIENT AND MODERN

REVISED AND CORRECTED UP TO THE PRESENT TIME FROM THE BEST AUTHORITIES
By

E. FREEBOROUGH

AND

REV. C. E. RANKEN

```
With numerous original variations and
SugGestions br geo. b. Fraser, dundee,
REV. W. WAYTE, LONDON, AND OTHER
EMINENT PLATERSAND ANALYSTS
```


PHILADELPHIA, DAVID McKAY PUBLISHER, 604 So. WASHINGTON SQUARE

PREFACE TO SECOND EDITION.

——: $0:-$

(2)HE first edition of this work has become a useful and convenient book for reference among Chess writers, correspondence players, \&c., not only throughout Great Britain and Ireland, but also in America and the Colonies. The present edition was begun about two years ago, under the impression that it would be chiefly a reprint of the former one, with improvements in detail and arrangement. The progress of knowledge has however led to the introduction of new ideas, and new lines of play, with which every amateur of moderate strength, desirous of doing full justice to his skill, ought certainly to be acquainted. The result is necessarily a larger book, with the recommendation that it is likely to be useful to a larger circle of players. This will now include all who are interested in Club Handicap Tournaments and odds-play, as trell as all students, and Chess-lovers generally.

Readers will please note that the Index in the present edition is transferred to the end of the volume.

Digitized for Microsoft Corporation by the Internet Archive in 2007. From University of California Libraries. May be used for non-commercial, personal, research, or educational purposes, or any fair use.
May not be indexed in a commercial service.

INTRODUCTION.

THIS Work is a corapilation on the principle of arrangement introduced in Cook's Synopsis, with such additions and improvements as have suggested themselves by comparison with the German Handbuch des Schachspiels and other treatises on the Openings. Mr. Cook's arrangement is unsurpassed for facility of reference, and for the clearness with which it places the results of various lines of play before the reader. We have taken his columns as a starting point and posted them up to the present time from published and unpublished games, availing ourselves of the labours of several eminent analysts for the purpose of supervision. We have varied the arrangement where we have found the original stem of an opening hidden by the growth of variations. In such cases we have either transferred the accretion of material to some kindred opening or used it as the foundation of a distinct début. Thus some variations of the Philidor defence which were unknown in Philidor's time, find their place in the Three Knights' game; while we have relieved the Bishop's Opening and the Petroff Counter Attack from the joint charge of the Boden-Kieseritzky Gambit, and established the Hungarian Defence and the Jerome Gambit as openings on their own account. On the other hand there has been a shrinkage in the popularity of some openings, as for instance the Damiano Gambit, and the Lopez Gambit, to which we have awarded secondary places, the former among the Irregular Defences to the King's Knight's Opening, and the latter among the offshoots from the King's Bishop's 0 pening.

In adapting the various lines of play which we have found already arranged in the pages of the Synopsis, the American Supplement, and the Handbuch, we have taken nothing on trust We have gone carefully through every variation, and noted alternative moves; selecting the latter
for our columns if they showed themselves on examination to be improve. ments on the previous text. Mr. Cook's preference was for actual play, but the play of even the best masters over the bonrd is uneven, as their own annotations sufficiently show. On the other hand long series of moves, supplied originally by ingenious analysts as the best on both sides, are never met with in practice. If they involve intricate or apparently risky play they are commonly disregarded. Something simpler is called for, and is invariably forthcoming. Thus true progess is made by a combination of practice and theory. We have utilised one to correct the other. Where the correction required several moves we have given them. Where it allowed freedom of action we have contented ourselves with naming the initial move. It is possible and also probable that we are not always right in our selections. Every existing Chess work supplies illustrations of the danger of being too positive. One of our objects has been to make the book useful to correspondence players and industrious students, who with the aid of an alternative move, not necessarily superior to the one it replaces, will often be able to upset the plans of older players, whose ideas with time and practice move most freely in familiar grooves.

It is a weak point in books of this class that they are not and never can be exhaustive. However carefully and elaborately they are worked out they simply provide a foundation upon which ingenious players build novel combinations. The Handbuch is the most advanced worl of the kind, but the many variations it supplies, while contributing to its completeness, take away from its handiness. It has become chiefly valuable as a book of reference, and as such deservedly holds the first place. Here again it follows, as a matter of necessity, that the greater the number of variations the greater the difficulty of arranging them, and of tracing any one of them when arranged. Further, there is the reader's pocket to consider. To meet these considerations we have enlarged upon Mr. Cook's text in those directions where a novice will be likely to require further information, and deleted columns and notes that with the natural progress and cultivation of the game seem now poor and commonplace. We have also added a special introduction to each opening, to show the general principles which govern the play. If the student's memory fails him with regard to the order of moves, he ought at all events to remember the principle of the opening he is playing, and so evolve suitable moves from his internal consciousness according to his strength. Assuming him to be possessed of a moderate share of analytical acumen it is probable that he will derive as much benefit from this process as he will by wading through the details of every variation. He will certainly be in a better position for satisfying his immediate requirements oyer the board, for there will not be that discrepancy between his plans and his performance that so frequently characterises a book player when he arrives at the mid-game.

In addition to all this we have given a list or summary of the general principles on which the play in the openings is established. "From analogies of positions," remarks Mr. Steinitz, "in the play of old end modern masters certain maaims have been deduced which dispense with
a good deal of analysis, and are generally accepted by experts as scientife laws." We are indebted to Mr. Potter for this idea, and have supplemented his list by others that have been suggested to us in working out various lines of play, and their consequences.

Having thus done what we can to economise the student's time and money, with a due regard for efficiency, we have not thought it essential to dive very deeply into questions and variations which occupied the minds of Chess players a generation or two ago. They have for the most part been disposed of by some preliminary or alternative move which we have given and marked as best with the sign !. If a move occurs to the reader that we have not treated, he must not too rashly assume that wo have missed it. It will be safer to suppose that it is contrary to some fundamental principle, or that there is something objectionable about it which we consider fairly within the limits of an ordinary Chess-player's capacity to discover. The tendency in practical play is to turn from those openings or variations which have been most thoroughly analysed and select, in preference, others less familiar. Both players are thus placed on a more equal footing. To meet this tendency we have supplied in our notes numerous alternative lines of play which will be found useful for consideration or practice. In cases where we are not certain whether the alternative.moves we give are the best, and it is a matter of importance, we generally supply a reference to the player or writer. When this is not done it implies that the original author of the suggestion is not known, that our authority has failed to supply the source from which he had it, or that it is an effort of our own to fill up a gap left by some previous writer.

As a general rule our columns supply the best, or main, variations, while the notes give the sub-play. There are, however, exceptions, sometimes arising out of space considerations, sometimes where an apparently stronger move or combination has not yet passed the ordeal of analysis and practice, and sometimes when an inferior but plausible continuation requires many moves to demonstrate its disadvantages. It follows that the columns and notes must be considered together. We have occasionly given in the latter, as illustrations of the resources of an opening, the results of actual practice carried into mid-game. We have preferred this course to that of adding a complete series of fllustrative games; such games-the practice of the best masters-being, so far as they are available, the material out of which our columns and notes are con: structed.

With reference to the signs + and $=$ used in this work, they must not be regarded as mathematically exact. The student should bear in mind that $=$ does not mean absolute equality, but that there is no decisive advantage on either side, or not sufficient advantage to justify the use of the sign +. Further the application of the signs may possibly appear in some cases to be less a matter of fact than of fancy. It is not casy at all times to ostimate the resources of position as opposed to force. Where there is a difference of opinion on these points between the readgr
and the compilers, the former must take into account that we have had before us in many cases a continuation of the various games, or moves, as our guide in positions that he may consider open to question. In case no sign at all is affixed to a column, the conclusion is, that there is more to be said on both sides, and that this is left to future analysis.

One of the principal advantages to be derived from an examination of the Openings is a knowledge of the art of transposition. It is very rarely that we meet with an opponent who sticks to the text of an^{\prime} analysed opening. When he departs from it he usually makes an inferior moye, but this does not necessarily follow. He may be transposing by some indirect method into another opening or variation in which he is'more at home, or by which he hopes to gain an advantage. It is clear that this requires a corresponding change of tactics on the other side, so as to force him into a line of play which shall yield him no benefit through his innovation. The summary of sections prefixed to each book will show generally the various ramifications of kindred openings from a single stem, and enable the student to contract or enlarge his base of attack or defence according to his knowledge. We have pointed out where one opening runs into another, and a little observation and practice will enabie the student to invent transpositions for himself. He will quickly find their utility: He will discover, among other things, that tact and inference are useful in Chess, as in other games of skill, although they are not regarded as the special accomplishments of a Chess-player; and also that independent thought is by no means cramped or weakened, but rather encouraged and strengthened by familiarity with book openings.

It will be seen from these remarks that we do not encourage the student to rely implicitly on memory. A book is useful to point out where the novice has gone astray. A player who commences with the idea of becoming a first-rate by mastering the theory, and studying the principles of the game, may exhaust himself in encountering the numerous exceptions which crop up in actual practice, and discover too late that he might or ought to have won but did not. On the other hand a player who despises book knowledge, and determines to find out everything for himself, may expend the whole of his Chess life in ascertaining the truth of elementary principles. It is well to give our predecessors credit for knowing something of the game, and economy of time and labour to accept the result of their experience as if it were our own; although it is not our own, till it fits in with our own practice and requires little effort of memory to recall.

To those players and analysts who have assisted us with original variations we must express our deepest gratitude. Mr. Geo. B. Fraser, of Dundee, whose reputation is world wide, has supplied us with much original analysis, which we doubt not will be highly appreciated by numerous players. Mr. Ranken in addition to general revision, is responsible for the entire plan and compilation of the Scotch Gambit, the Four Knights' Game, the Vienna Opening, the Steinitz Gambit, and the Centre Gambit. Mr. Freeborough's special contribution in this respect
is the Allgaier Gambit, with some original variations of the King's Gambit proper. The majority of the Prefaces to the Openings and the General Introduction are also from his pen. The Rev. W. Wayte has exercised his unrivalled theoretical and book knowledge in general supervision. We are largely indebted for miscellaneous assistance to Messrs. D. Forsyth, of Edinburgh, J. Russell of Glasgow, W. H. S. Monck of Dublin, Edward Marks of London, W. Nash of St. Neots, W. T. and J. Pearce, and numerous other players for hints and special variations.

The joint labour (suggestive, constructive, or critical) of so many experienced players has, we trust, fully carried out our programme, and enabled us to submit to the Chess world a reliable text-book which will provide alike for the requirements of the student and the skilful player.

In our second edition we have extended the process of discrimination and selection to the works on Chess published since 1889. Our principle has been to fit into our treatise whatever seemed worthy of adoption or consideration while avoiding variations of inordinate length, untested by practice or deficient in general interest.

In addition to new lines of play supplied in the latest edition of the German Handbuch, Mr. Steinitz' Modern Chess Instructor, and other publications, we have had to consider numberless corrections or suggestions received from British and Colonial Amateurs. The introduction of these variations, founded generally on hard experience, has added materially to the utility of our work. We have accepted them gladly as evidence of the wide-spread interest taken in the subject ; further, in connection with the novelties given in our first edition and not to be found in the great German treatise, they enable us to take up a more independent standpoint. They contribute to the formation of a British School of Analysis, distinguishable from others by its preference for what is simple and solid rather than for what is subtle and far-fetched; advancing by easy stages from precedent to precedent, rather than trying to arrive at important conclusions by leaps and bounds.

It is an instance of the widely spread knowledge and study of the game, that many of the suggestions we have received refer to openings and variations that Chess writers are apt to consider as almost obsolete, but which, it is apparent, still hold their ground away from Chess centres among a large class of amateurs.

With regard to the German analysts they aim at thoroughness and are certainly most remarkable for industry. The Handbuch, in its seventh edition, is a receptacle for both good and bad lines of play, far beyond the capacity of a single mind to assimilate. We find therein long continuations of weak moves, very possibly exhibitions of fine Chess, but, which turn away the reader's attention from the object he has in view in ronsulting the work. We have preferred to add short games in which
our students may take at least a passing interest as illustrations of traps and surprizes incidental to the opening under treatment. The special lessons they inculcate are generally easy to remember.

The Modern Chess Instructor has introduced many ingenious variations, worked out laboriously by Mr. Steinitz to conclusions which have not alway been confirmed by subsequent practice and analysis. We have accepted these innovations so far as they appeared to be sound and in accordance with the spirit of the time. We have, however, declined to follow him in excursions which chiefly serve to illustrate his special manner. Players who admire and cultivate this manner will, of course, study Mr. Steinitz' book for themselves. He has elsewhere partially explained his peculiar style of play by remarking that as a rule he is " not a dangerous assailant in the early part of a game." He approves and does not scruple to adopt moves which for a time transfer the attack to his opponent. They are founded upon a subtle and very possibly sound distinction between extreme care and timidity. On the other hand he sees success where less careful players find disaster. One of the results of experience in Chess is that every style of development is good for the player who thoroughly understands it, and bad for the tyro who favours it simply because Steinitz, or Blackburne, or some other master has contrived to make it a success. Imitation generally goes hand in hand with defeat until it is unnecessary; that is until the disciple has acquired a style of his own.

The kind of development most in vogue at present for serious play is that which may be described as irregular, in which the arrangement is broken, and each piece treated as a separate entity, with an eye to general utility as circumstances may permit. The system of arranging the pieces early in the game to bear on one point is somewhat out of fashion. The old attacking combinations to force a win are however only held in abeyance, and not forgotten. It is still requisite to know them both in principle and practice.

The force and flexibility of genius are never better displayed than in the discovery of some simple move or easily secured position that enables the player to avoid a number of intricate variations. There is an instance of this kind in the Ruy Lopez Knight's game, arising out of the advocacy by Mr. Steinitz of the defence, 1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB3}$, Kt-QB3; 3 B-Kt5, P-Q3, \&c. It would be premature to say that the last-named move supersedes the many variations given in our treatise, but it is certain that the Lopez will no longer be extended on the old lines, and that more complicated variations will either go out of practice or be fitted into other openings by transposition of moves.

The Petroff Defence is another opening that has been simplified by the additional light thrown upon it by the Modern Chess Instructor. Mr. Steinitz' treatment has brought into notice its affinity with the French Defence, and also indirectly its affinity-less 'obvious in this instancewith the Queen's Pawn game and other openings in which the advance of
the Queen's side-pawns is a characteristic feature. He has shown that it is not difficult to place several methods of development in one group, and so save trouble in detail by bringing them under a general law:

Other works on the openings, published since 1889, comprise sundry small Handbooks, and Mr. Gossip's Theory of the Chess Openings. The former may be described as unpretentious, but useful. Mr. Gossip's book is more pretentious. It is, however, largely made up with extracts from the Modern Chess Instructor reprinted without reference to Mr. Steinitz' motives for introducing certain moves, and in some cases obviously without critical examination.

It will be seen that we have added in this edition very considerably to the size and scope of our work, and that some openings have been re-arranged and partly re-constructed.

The Vienna Opening and the French Defence have had much attention bestowed upon them in late years, and there is apparently yot scope for many changes of practice and opinion with regard to them. In the Vienna Opening the additions are chiefly in the interest of the defence, the variation $2 \ldots, \mathrm{Kt}$-KB3 being now generally looked upon by experts as the strongest reply to $2 \mathrm{Kt}-\mathrm{QB} 3$; while avoiding the complications and choice of attack which follow the replies $2 \ldots, \mathrm{Kt}$-QB3 and 2 ., B-QB4. This is a return to the opinion expressed in the Handbuch and Praxis more than thirty years ago.

In the French Defence, the first player's game has been strengthened by the development of attacking continuations on the King's side of the board, and as these arise naturally from Black's first move, blocking his Queen's Bishop, the tendency of discovery in this direction will probably be maintained. Analytical study has also led to suggestions for the better treatment of the counter attack on the Queen's side. This opening therefore bids fair to become the most scientific embodiment of the close game when forced by the second player.

The addition of a sixth book treating upon Games at Odds will, we apprehend, be much appreciated by the large and increasing class of players who take part in Club Tournaments. It will most probably lead to the discovery of other methods of attack and defence superior to those we have been able to find in the existing literature on the subject. What we have given is sufficient to give our students a good start. Innate ingenuity combined with experience of analagous positions will, no doubt, enable them to add improvements. which are not sufficiently on the surface to be obvious to ordinary capacities.

In lieu of the old form of index adopted by Chess writers, generally a mere list of contents, we have substituted an. alphabetical arrangement giving the leading moves in every opening. This will be found a great
improvement for facility of reference to any special opening or variation. The variations are named after the players who invented, adapted, analysed or favoured them. The old arrangement is retained in the Summary of Sections prefixed to each book.

Among the many amateurs who have kindly taken an interest in our labours, and furnished us with corrections, suggestions, and analyses, for the present edition, we ought specially to name Messrs. J. H. Blake of Southampton, W. P. Turnbull of Wolverhampton, W. J. Greenwell of Newcastle-on-Tyne, and F. J. Young of Tasmania. Others are named in our pages as their variations come into the text, some prefer to remain unknown, and one wishes his name to be withdrawn. We must include all in our acknowledgment of obligations, and hope our readers will agree with us that the additional material dealt with in the second edition will very considerably add to its usefulness for practical parposes to all classes of players.

PRINCIPI،ES.

1.

A game may be termed well-commenced-set openings apart-when the pieces are brought out so that no piece obstructs the action of another, and that each piece be so well planted that it cannot be attacked with impunity.-(Walker.)

II.

An opening to be well constructed should be made quickly (Walker), consequently the same piece should not be moved twice until the other pieces are in play.-(Steinitz.)

The exceptions to this rule are when a greater or at least an equal loss of time can be inflicted upon your adversary, also when an improper move on his part brings an important advantage within measurable distance.

III.

There are two styles of development; the attacking and the defensive. In one the pieces are spread about to secure the greatest possible command of the board. In the other they are kept together mutually supporting or defending each other.

Whichever method is adopted the player should be prepared to change from one to the other at short notice, that is unless he sees a certain win bv the first course.

IV.

A man in pay should not be exchanged for a man out of play. The exreption is when to retreat would entail the loss of the attach.

V.

To gain a Pawn in the opening it is worth while to lose one move. To gain a Pawn it is seldom worth while to lose one move and the attack, against a good player. To expend two moves with a Knight in order to win the excluange is rarely adrisable.

VI.

A Pawn may generally be sacrificed in the opening with advantage when it accomplishes two objects i.e., when it brings an undeveloped piece into play, and at the same time keeps an opponent's piece out of play. This applies especially to Gambit attacks.

There are other ends which may be substituted for that of keeping an opponent's piece out of play, such as to facilitate access to his King, \&c.

VII.

Weigh jour advantages and disadvantages. When you have an opportunity of making a good move, and you see before you another move which permits several good continuations, select the latter. Your adversary will most probably hasten to stop your good move at the risk of a bad game.

This is the principle upon which the finest Gambit attacks such as the Muzio and the Allgaier, are founded, and it may be summed up in the maxim " retain as much freedom of action as possible."

VIII.

When you cannot see your way to an attacking move, play a development move. When you cannot make a development move, play, if possible, a restraining move that will check your opponent's development.

IX.

When your opponent shows a disposition to play a backward or defensive game, do not play a forward game. Keep your pieces together, play steadily and look out for weak spots.

If he pushes forward rapidly in the centre, try to get round him. If he advances Pawns on both sides try to cut his game in two. If he advances rapidly on one flank, wait till he has fairly committed himself in that direction, and then attack him on the other side. This assumes that your game is not so far committed as to leave you no option.

These maxims may appear obvious. The difficulty is, however to recognise their applicability in the position under your eyes when playing. This is the point which requires careful attention.

X.

P to KR3 to restrain the adverse Queen's Bishop from pinning your Knight at K B 3 is deprecated by the modern school, for although it does not always compromise the game yet it mostly loses time and gives unnecessary trouble on the King's side. When attacking a hostile piece the advance of the Rook's Pawn becomes useful in order to make room for the Knight, as well as for dislodging an opponent's piece.-(Steinitz.)

XI.

Advanced Pawns should be supported from the side of the board and not from the centre. A Queen's Pawn used as a supporting Pawn is especially weak, being open to attack on all sides.

XII.

On the same principle, a supporting piece should always be placed where he is least liable to attack, or where, if attacked, he can support while retreating. For this reason a Knight is inferior as a supporting piece. A good player will aim at the supports rather than at the front rank.

XIII.

A Rook on the same file as your opponent's King or Queen is always well placed, intervening men notwithstanding. In the former position, with Queen and the other Rook on adjoining files, you may generally force the garne. This is easier if the intervening Pawns are disarranged. This principle may be extended to the Queen and two Bishops on three adjoining diagonals bearing upon the adverse King's quarters, but the rule is not so certain in this case, unless there are adranced Pawns to assist in the attack.

XIV.

In exchanging, aim at securing a majority of Pawns on your Queen's side. That is if your King is castled on the other side.

> XV.

To be avoided or carefully guarded against are -
1.-A sacrifice or capture which brings your King into position for a diverging attack by Queen, Rook, Bishop, or Knight. A double check is equally to be shunned.
2.-A sacrifice or capture which drives your King away from the defence of a piece by proximity.
This maxim applies to any piece, but in the openings it is generally the King that is aimed at through the K B Pawn which he alone defends. The sacrifice alluded to is, of course, your opponent's, the capture yours.

- XVI.

An attack on the Castled King with four pieces will usually force the game and permit one piece to be sacrificed in order to clear the way.

XVII.

Castling on the Queen's side is not so safe as castling on the King's side, especially for the second player, because it leaves the QR Pawn undefended. There are, however, some notable exceptions to this rule, viz :-when the Queen's file is open for the player so castling, and not for his adversary; or when the Pawns on King's side can be advanced for a strong attack on his adversary's King already castled on that side.

Some of these principles are mainly applicable to mid-game and endgame play, and may therefore be considered beyond the scope of our present undertaking. They are, however, coming events which cast their shadows before as far as the openings, and frequently decide the course of action in critical positions. We add for the same reason Mr. Potter's Minor Principles, published in Bland's Chess Player's Annual, 1882. They will be found very useful in making exchanges. The words in brackets are ours.

MINOR, OR SPECIAL PRINCIPLES.

1.-Two Bishops are stronger than two Knights.
2.-Two Bishops are stronger than Bishop and Knight.
3.-A Bishop is stronger than a Knight in the middle game.
4.-A Knight alone is stronger than a Bishop alone in the end-game. This means, however, where they are opposed, seeing that :-
5.-A Bishop makes a better struggle than a Knight against Pawns.
6.-A Knight is weaker than a Bishop against a Rook.
7.-Two Rooks and a Bishop are stronger than two Rooks and a Knight.
8.-Queen and Bishop are stronger than Queen and Knight.
9.- Queen, Rook, and Knight are stronger than Queen, Rook, and Bishop. (This applies to the end-game only.)
10.-Two Rooks co-operating are stronger than a Queen (assuming the Rook player's King to be sheltered); but unless such co-operation exists, or can be certainly foreseen, it is not wise to exchange Queen for two Rooks.
11.-The Queen may usually be advantageously exchanged for two Bishops and a Knight.
12.-Two Knights and a Bishop are often weaker than Queen not. withstanding that there are other forces.
13.-Rook and Bishop struggle better against the Queen than Rook and Knight.
14.-Rook, Bishop, and Pawn are in numerous cases more than a match for the Queen. This implies that the Pawn is either on, or can be forced up to the seventh square.
15.-Two Knights co-operate more powerfully when not protecting, than when protecting each other.
16.-A Rook is at his best when in possesion of a clear road. Motto :-" Sieze the open file."
17.-Pawns when advanced are in most cases safer against the Rook than when not advanced. This assumes their having a certain amount of support.
18. - When a Queen faces an adverse Rook on the same file there is danger, however many men there may be between them.
19.-A Knight at KB5 bodes ill for the adverse King castled on that side.
20.-In average end-games the King is better on the King's or Queen's file than at either wing.

EXPLANATION OF NOTATION AND TABLE OF ABBREVIATIONS.

- HDVIG

bsyo	$\left\lvert\, \begin{aligned} & \text { bs } 7 \mathrm{HO} \\ & \text { Q Kt8 }\end{aligned}\right.$	$\left\lvert\, \begin{gathered}\text { bs c } \\ \text { Q B } 8\end{gathered}\right.$	$\begin{gathered} 6 s 8 \\ \text { Q } 8 \end{gathered}$	$\begin{gathered} \text { bs H } \\ \text { K } 8 \end{gathered}$	bsq C	$\left\lvert\, \begin{gathered}\text { bs } \\ \text { Y Y Y } \\ \text { Kt8 }\end{gathered}\right.$	bsy H KR 8
740	674 0	7GO	80	\% H	8G ${ }^{\text {g }}$	774	74
QR 7	Q Kt7	Q B 7	Q 7	K 7	K B 7	K Kt7	K R 7
840	8740	8 CO	80	8 H	8 AX	87Y	84 4
QR6	Q Kt6	Q B6	Q 6	K 6	KB6	KKt 6	K R 6
T40	TYH 0	万GO	70	T H	FG H	77H	D 4 H
QR 5	Q Kt5	Q 55	Q 5	K. 5	K B 5	K Kt 5	K R 5
69 \% 0	974 0	9 ${ }^{\text {¢ }}$	98	9 H	9¢ 4	974 4	9 ¢ 4
QR 4	Q Kt4	Q B 4	Q 4	K 4	KB4	K Kt4	K R 4
9 4 0	97\% 0	9 G O	98	9 H	9\&	97С	9 4 H
Q R 3	Q Kt3	Q B 3	Q 3	K 3	KB3	KKt 3°	K R 3
	L\#H O	$\angle G O$	40	4 H	LG H	L. 4 H	L \& H
Q R 2	Q Kt2	Q B_{2}	Q 2	K 2	K B2	$\mathrm{KKt2}$	K R2
840	8740	8 CO	80	8 H	8G H	874 4	8 4 H
QRsq	Q Ktsq	QBsq	Q sq	K sq	KBsq	K Ktsq	KR sq

WHITE.

PLAN OF THE WORK.

The Tables are so arranged that each column contains the moves of a single variation. The moves are expressed as fractions: the move of the first player, whom we invariably call " White," being above the line, and the move of the second player, "Black," below the line.

ABBREVIATIONS.

K st	stands for	King or King's
Q	, ",	Queen or Queen's
R	", "	Rook or Rook's
B	" ",	Bishop or Bishop's
Kt	"	Knight or Knight's
P	"	Pawn or Pawn's
0.0	"	Castles on King's side
0.0 .0		Castles on Queen's side

$\underline{+} \quad$ " White wins. $\quad \frac{-}{+}$ stands for Black wins.

- " ", equal game, or doubtful advantage on either side.

The figures at the top of the tables are the numbers of the columns, inserted for reference.

The numbers in the margin indicate the order in which the moves are to be played.

> REFERENCES.
B. C. M. - British Chess Magazine.
C. P. C. - Chess Player's Chronicle.
C. M. - Chess Monthly.

Handbook - Staunton's Chess Player's Handbook.
M. C. I. - Modern Chess Instructor, by W. Steinitz.

Handbuch - Handbuch des Schachspiels.
Salvioli - Teoria e Pratica del Giuoco degli Schacchi.
Cook - Cook's Synopsis.
A. 8. - American Supplement to the Synopsis.

Walker - Walker's Treatise on Chess, 1841. Others are named in full.

BOOKI.

THE KING'S KNIGHT'S OPENING.

THE King's Knight's Opening springs from the moves 1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3$. It is the method of development most in vogue at the present time. White attacks an unprotected Pawn, brings a useful piece into play, and prepares for castling on King's side. Black has the choice of a variety of replies for his second move, viz., P-KB3, P-Q3, KtQB3, B-Q3, Q-K2 or B3, as defensive moves; P-Q4 and P-KB4 as countergambits; B-B4 as a counter development move, giving up the Pawn, and Kt-KB3 as a counter attack. Four of these replies, viz., P-KB3, B-Q3, Q-B3, and B-B4, give a bad game, and may be dealt with summarily. They are occasionally adopted against a weak antagonist, but between good. players they are obsolete, and are therefore classified as Irregular and Unusual Defences (Sec. I.). P-KB4 and P-Q4 require more attention, and are frequently played in off-hand contests. The former constitutes tho Greco Counter Gambit (Sec. II.), and the latter the Queen's Pawn Counter Gambit (Sec. III.). Kt-KB3 has proved a strong reply, and constitutes the Petroff Counter Attack (Sec. IV.). P-Q3 is the Philidor Defence, considered safe but slow (Sec. V.). Kt-QB3 is, however, the defence most frequently selected. It leads to the most interesting positions, and is also favourable to the regular development of Black's pieces, while on the other hand it yields White the advantage of a selection of powerful attacks (Sections VI.-XVI.).

In all these variations the line of action for White is indicated by his second move, Kt-KB3. It is an attack on Black's centre, upon which it is customary and commendable to bring all the pieces to bear as quickly as possible. Both players must, however, be on the alert to divert their pieces to one side or the other when an eligible opportunity offers; and it becomes necessary to do so if the centre is blocked, or so well guarded as to leave no chance of breaking through with advantage. The side Pawns may then be advanced with effect. This must not be done too early or your opponent will be able to break them up, or get round them, and so turn your flank, which, in Chess, as in war, is generally fatal. If the heavy pieces are exchanged, and the centre open, with the side Pawns on the second and third lines, equal on both sides, the game ought to turn out a draw unless there is considerable difference between the strength of the players.

From this point of view it is apparent that the best reply to the first player's move 2 Kt -KB3 should logically be $2 \ldots, \mathrm{Kt}-\mathrm{QB} 3$, which not only defends the attacked King's Pawn, but is in itself a development move, commanding another important central square. It is not quite so good as $2 \ldots, \mathrm{Kt}$-KB3 in some respects, and chiefly because it does not facilitate castling. Blăck has still two pieces to play out on the King's side, or two pieces and a Pawn on Queen's side before be can accomplish this operation. Upon this small foundation the first player is able to construct a strong and enduring attack. Greco (1615) recommended the counter gambit, $2 \ldots, \mathrm{P}-\mathrm{KB} 4$, to avoid the continuation 3 B-Kt5. Lopez (1561) for the same reason preferred $2 \ldots$... P-Q3. Philidor (1749) combining $2 \ldots$ P-Q3, with 3 ..., P-KB4, thought the second player got so strong a game that White's move 2 Kt -KB3 was no longer advisable, while Jaenisch (1842) considered the counter attack 2 ..., Kt-KB3 to be the strongest reply. We know that Philidor and Jaenisch subsequently modified their ideas on this subject, but these fluctuations of opinion show that a slightly inferior move, in the hands of an eminent player, may hold its ground for years against all the resources of theory and analysis.

It will be seen from the annexed summary of sections that the player who wishes to play the Scotch Game (Sec. VIII.) must be prepared to deal with the defences in Sections I.-V., and if he proposes to play the Evans Gambit (Sec. XIV.) or the Lopez (Sec. XV.) he will have to add a knowledge of the Two Knights' Defence (Sec. IX.), and also the Hungarian Defence (Sec. X.). For defensive purposes the second player need only know one or two of the first five sections. If he is content to limit his practice to the Petroff Counter Attack (Sec. IV.) or the Philidor Defence (Sec. V.), and knows them thoroughly, his acquaintance with the best moves in these openings will, in actual play, balance any inferiority that has so far been proved against them by analysis. Monotony is however wearisome and consequently undesirable. The Defences treated in Sections II.-III. are useful for occasional practice against a slightly inferior player, also against an opponent who persistently adheres to one method of attack. For general purposes it is best to be prepared to play the Scotch Game, the Evans, or the Lopez, which not fonly produce the finest games, but tend to form a good style by giving breadth to the player's views and dépth to his combinations.

SUMMARY OF THE SECTIONS INTO WHICH THE KING'S KNIGHT'S OPENING IS DIVIDED.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{~K} \mathrm{~B} 3 .
$$

Saction I. Irregular and Unustal Defences. $2 \ldots$, P-KB3, Q-B3, B-Q3, and B-B4.
;, II. The Greco Counter Gambit. 2 ..., P-KB4, \&c.
III. The Queen's Pawn Counter Gambit. 2-..., P-Q4, \&c.
, IV. Petrof's Counter Attack. 2 ..., Kt-KB3, \&c.
,, V. Philidor's Defence. 2 ..., P-Q3, \&c.
s, VI. The Three Knights' Games. $2 \ldots, \mathrm{Kt}-\mathrm{QB} 3$ or Kt-KB3; $3 \mathrm{Kt}-\mathrm{B} 3$, \&c.
,, VII. Staunton's Opening. 2 ..., Kt-QB3; 3 P-B3, \&c.
,, VIII. The Scotch Game, or Gambit. 2 ..., Kt-QB3; 3 P-Q4, \&c.
IX. The Two Knights' Defence.

2 ..., Kt-QB3 ; 3 B-B4, Kt-B3, \&c.
X. The Hungarian Defence. 2 ..., Kt-QB3 ; 3 B-B4, B-K2, \&c.
XI. The Giuoco Piano.

2 ..., Kt-QB3; 3 B-B4, B-B4, \&c.
XII. Maw Lange's Attack.

2 ..., Kt-QB3: 3 B-B4, B-B4; 4 Castles, \&c.
,, XIII. The Jcrome Gambit.
2 ..., Kt-QB3; 3 B-B4, B-B4; 4 B \times Pch, \&c.
, XIV. The Evans Gambit, accepted and declined. $2 \ldots$ Kt-QB3; 3 B-B4, B-B4; 4 P-QKt4, \&c.
," XV. Ruy Lopez' Knight's Game. 2 ..., Kt-QB3; 3 B-Kt5, \&c.
XVI. The Four Knights' Gamc. 2 ..., Kt-QB3; 3 Kt -B3, It-B3, \&c.

SECTION I.

IRREGULAR AND UNUSUAI DEFENCES.

1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3$, (P-KB8, Q-B3, B-Q3, B-B4.

THESE defences are moves which suggested themselves to Chess players four hundred years ago. They are found in the oldest treatises on the game as it is played at the present time. In the survival of the fittest they have gone down in public estimation as replies to 2 Kt -KB3, but with a slight change in their environment they are still occasionally feasible in ordinary play. We utilise them to introduce certain combinations with which the student ought to be familiar.

It is probable that the general warning given by most Chess writers against the move $2 \ldots$, P-KB3 had its origin in the disastrous result of the Damiano Gambit for the second player (Col. 1, Notes 1 and 2). P-KB3 has, however, been resuscitated in late years, by Mr. Steinitz, as a good defence to the King's Pawn in Staunton's Opening, and its reputation is improving. Mr. Reichhelm of Philadelphia supplies a generalisation. "It is part of Steinitz's system of play that when the adverse King's Bishop is off the board, or not in a position to play effectively to QB4, then the King's Pawn is best defended by P-KB3."

The move $2 \ldots, \mathrm{Q}$-B3 (Col. 2) survives as a later move in the Scotch Game and the Evans Gambit, but its popularity is on the wane in other variations of the King's Knight's Opening.

B-Q3 (Cols. 3 and 4) is objectionable on principle, as it confines the Queen's Pawn and so shuts up the Queen's Bishop. As a defensive move in the Allgaier Gambit it is highly effective, this reason notwithstanding. It has been suggested as available for the defence in other openings where the player is not pressed for time, with the idea of subsequently playing the piece to QB 2 , or QKtsq , so as to command a long diagonal.

B-B4 (Col. 5) is at first sight the least promising of the four, but in Petroff's Counter Attack, after 1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}$-KB3; 3 B-B4, may be played by the first player without disadvantage.

These remarks illustrate G. Walker's aphorism that "one of the greatest advantages to be derived from a knowledge of the openinga is tho perceiring how and when they may be aafely laparted from."

Table 1.-IRREGULAR and UNUSUAL DEFENCES.

1P.K4, P.K4; 2Kt.KBs.

(1) The Damiano Gambit; so named by Chess writers for purposes of identifica tion, without regard to authorship. White may also play with advantage $3 \mathrm{~B}-\mathrm{B} 4$, (if) Kt -QB3; $40-\mathrm{O}+$.
(2) If $3 \ldots, \mathrm{P} \times \mathrm{Kt}$; $4 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{K}-\mathrm{K} 2$; $5 \mathrm{Q} \times \mathrm{KPch}, \mathrm{K}-\mathrm{B} 2$; 6 B-B4ch, P-Q4; $7 \mathrm{~B} \times$ Pch, K-Kt3; 8 P-KR4, P-KR3 or 4 ; $9 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3$; $10 \mathrm{Q}-\mathrm{QR} 5+$. Lewis in his Lessons (1842) gives full analysis. See also Staunton's Handbook.
(3) If now $4 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{P}-\mathrm{KKt3}$; $5 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{Q} \times \mathrm{Pch}$, followed by $\mathrm{Q} \times \mathrm{Kt}$.
(4) Threatening 12 Q-Kt6.
(5) Or 5 Kt-Kt5, Kt-KR3 (if P-Q4; $6 \mathrm{Q}-\mathrm{B} 3, \mathrm{P}-\mathrm{B3} ; 7 \mathrm{P} \times \mathrm{QP}, \mathrm{P} \times \mathrm{Kt}$; $8 \mathrm{P}-\mathrm{Q} 6+$); $6 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P} ; 7 \mathrm{Q} \cdot \mathrm{R} 5, \mathrm{Q}-\mathrm{B} 3(\mathrm{if} \mathrm{P-Q4;} 8 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; ~ 9 \mathrm{Kt}-\mathrm{KB} 3$); $8 \mathrm{Kt} \times \mathrm{BP}+$. (C. E. R.)
(6) If $2 \ldots$ P-QB3; $3 \mathrm{Kt} \times \mathrm{P}$ (or $3 \mathrm{Kt}-\mathrm{B} 3 \mathrm{I}), \mathrm{Q}-\mathrm{K} 2$; $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P}-\mathrm{Q} 3$; $5 \mathrm{Kt}-\mathrm{KB} 3$, Q \times Pch; 6 B-K31+. (Monck.)
(7) If $4 \mathrm{P} \cdot \mathrm{Q} 3$; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Kt}$; $6 \mathrm{P} \times \mathrm{Bt}$.

SECTION II.

THE GRECO COUNTER GAMBIT

1 P.K4, P.K4; 2 Kt-KB3, P-KB4.

THIS Counter Gambit dates from the early part of the seventeenth century. It has chiefly been favoured by players remarkable for dash and brilliancy. It is founded on the maxim that the strongest defence is a counter attack. It is theoretically unsound, being a variation of the King's Gambit played by the second player with a move behind. Nevertheless some of its variations give rise to interesting and intricate manœurring. It appears to have held its ground, along with $2 \ldots, \mathrm{Kt}$-QB3, as a fair reply to 2 Kt -KB3, until a comparatively recent period. In 1839 five of the strongest players in Berlin-Hanstein, Pledow, Mayet, Bilguer, and Von der Lasa-held a weekly meeting, and took this opening as a subject for consideration. Their investigations were afterwards arranged by Herr v. der Lasa, and published in the German "Handbuch." Mr. Fraser subsequently contributed an entirely new defence by 3 (Kt \times P) Kt-QB3. This move was also suggested by H. Möller about the same time (1873). The variations supplied by Mr. Fraser show that there is still room for discoveries in both attack and defence. The suggestions furnished by other analysts for the present edition are chiefly in the interest of the attack. Col. 3, named, but not worked out, by Walker in 1841, seems worthy of attention as an alternative line of play.

The variation given in Note 5 (Col. 4) was the old continuation, until it was found that $7 \mathrm{Q}-\mathrm{R} 3$, in lieu of R4, gave a decided advantage to the first player. The special feature of this gambit is White's attack with Queen and Knight, and the ingenious defence and counter attack, as given in Cols. 6-9. This kind of attack fails in the Damiano Gambit (see previous section) owing to Black's KBPawn being advanced one square instead of two. It is evaded in Col. 4 by the reply $3 \ldots$, Q-B3, but the Black Queen is thus brought within easy range of the adverse Knights, which loses valuable time.

The variation treated in Cols. 13-15 may be produced in the Giuoco Piano, by the moves 1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4, P-B4; also in the King's Bishop's Opening, by 1 P-K4, P-K4; 2 B-B4, P-KB4; 3 Kt -KB3, Kt-QB3, \&c. The Gambit may be adopted by the first player with a move in hand, viz., 1 P-K4, P-K4; 2 Kt-QB3, Kt-KB3; 3 P-KB4, \&c. This constitutes a strong development. It is a variation of the Vienna Opening.

Greco's treaties was first printed in Paris in 1615.

Table d.-THE GRECO COUNTER GAMBIT. 1P.K4, P-K4; 2Kt.KB3, P.KB4.

1

	$\mathrm{P} \times \mathrm{P}$?	
$\mathrm{P} \cdot \mathrm{Q} 3$		
4	$\mathrm{P} \cdot \mathrm{Q} 4$	(1)
$\mathrm{P} \cdot \mathrm{K} 5$		

	Kt -B3 (3)
P-K5	$\overline{\mathrm{P} \times \mathrm{P}}$
Q-K2	KKt \times P
Q-K2	$\overline{\text { Q-B3 (4) }}$
Kt-Q4	P.Q4
Kt-KB3?	B-Kt5
P-KKt4	$\underline{\mathrm{B} \cdot \mathrm{QB4} 4+}$

3
$\frac{\mathrm{Kt} \text { - } \mathrm{B}}{\mathrm{P} \times \mathrm{P}}$

Q-Kt5ch
7
Kt-QB3
$\frac{\mathrm{Q} \times \mathrm{K} t \mathrm{P}}{\mathrm{Kt} \times \mathrm{P}}$
B-Kt5ch
$\overline{\mathrm{Kt} \times \mathrm{B}+}$

10

11

5
(3) $\mathrm{Kt} \times \mathrm{P}$!
$\overline{\text { Q-B3 (5) }}$

Kt-KB3 B-B4
$\frac{\mathrm{P}-\mathrm{Q} 4}{\mathrm{P} \cdot \mathrm{Q} 3}$
$\overline{\mathrm{P} \times \mathrm{P}}$
$\frac{\mathrm{Kt}-\mathrm{B} 4}{\mathrm{P} \times \mathrm{P}} \frac{\mathrm{Kt}-\mathrm{B} 7}{\mathrm{Q}-\mathrm{K} 2}$

$\mathrm{Kt}-\mathrm{B} 3!$	(7)	$\mathrm{Kt} \times \mathrm{R}$
$\mathrm{P} \cdot \mathrm{B} 3$	(8)	$\mathrm{P} \cdot \mathrm{Q} 4$

Notes to Table 2.

(1) If 4 P-KKt4, P-KR4; 5 B.R3, P \times P; 6 B \times P, P.KRts.
(2) Haughton v. Mackenzie.
(3) Mentioned by Walker. The continuation, 3 .., P-Q3; 4 P-Q4 transposee into the Philidor defence (Sec. V.)
(4) 4 ... Kt-KB3; 5 B-B4, P.Q4; $6 \mathrm{Kt}-\mathrm{QP}, \mathrm{Kt} \times \mathrm{Kt}$; $7 . \mathrm{Q}$-R5ch, P-KKt3; $8 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{P} \times \mathrm{Kt}$; $9 \mathrm{Q} \times \mathrm{Pch}+$. (Monc \& $\mathrm{\nabla}$. Philip.)
(5) The old line of play was 3 Q-K2; $4 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{P}-\mathrm{KKt} 3 ; 5 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{Q} \times \mathrm{Pch}$; $6 \mathrm{~B}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{KB3}$; $7 \mathrm{Q}-\mathrm{R} 3 \mathrm{l}, \mathrm{P} \times \mathrm{Kt} ; 8 \mathrm{Q} \times \mathrm{R}, \mathrm{Q} \times \mathrm{KtP}$; $9 \mathrm{R}-\mathrm{Bsq}+$.
(6) If $4 \ldots, \mathrm{P} \times \mathrm{P} ; 5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{Q} 3$?; $6 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{Qsq} ; 7$ Q-R5ch, P-KKt3; $8 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{B}-\mathrm{Kt5} ; \quad 9 \mathrm{Q} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{Q} \times \mathrm{KtPch}, \mathrm{K}-\mathrm{Q} 2$; 11 Q-B5ch (De Soyres v. Foster.)
(7) Threatening Kt-Kt5 as well as Kt-Q5. (See diagram on previous page.) He might also play 6 P-Q5-a useful move in several variations.
(8) Or $6 \ldots, \mathrm{~B}-\mathrm{B} 4$ (d) ; 7 P-KKt4 (a) (c), B-Kt3; 8 B-Kt2, Kt-B3; 9 B-K3? (or 9 P-Q51 Kt-K4; $10 \mathrm{~K} \times \mathrm{Kt}, Q \times \mathrm{Kt}$; 11 O-0. Fraser.) The Handbuch, in reply to 9 B-K3, continues $9 \ldots, \mathrm{O}-\mathrm{O}$ O. Mr. Fraser suggests $9 \ldots$ P-Q4; (if) $10 \mathrm{Kt} \times$ QP, Q-B2; $11 \mathrm{Kt}-\mathrm{B4}, \mathrm{Q} \times \mathrm{KKt}$; $12 \mathrm{Kt} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; $13 \mathrm{~B} \times \mathrm{P}, \mathrm{O}-\mathrm{O} .0$, \&c. If $10 \mathrm{Kt}-\mathrm{K} 5$; 0.0-0.
(a) 7 Kt -Q5, Q-B2; 8 KKt -K3 (or 8 . QKt-K3! Pilkington $\overline{\mathrm{V}}$. Fraser,) B-K31; 9 P-QB4 (b), P-B3; 10 Kt -B3, P-Q4; $11 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$. White may now check with B , and bring Q -R4 after interposition of Kt , but carried on for some moves further the positions show little difference.
(b) If 9 B-B4, K-Qsq!; 10 B-Kt3, P-B3.
(c) $7 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Kt}-\mathrm{QR} 3$; $8 \mathrm{Kt}-\mathrm{K} 3, \mathrm{P}-\mathrm{B} 31 ; 9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 2$, \&c. If $7 \mathrm{P}-\mathrm{B} 3$, $\mathrm{P} \times \mathrm{P} ; 8 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{B} 3 ; 9 \mathrm{Kt}-\mathrm{K} 3, \mathrm{~B}-\mathrm{K} 3=$.
(d) Black may also play $6 \ldots, \mathrm{Q}-\mathrm{K} 2$; 7 Q-K2, Kt-KB3; 8 B-Kt5, B-B4; $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; 10 P-KKt4, B-Kt3; 11 B-Kt2+. Or 6 .., Q-Kt3; $7 \mathrm{P}-\mathrm{B} 3, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{Q} \times \mathrm{P}$ (threatening $\mathrm{B}-\mathrm{Q} 3$).
(9) If 9 .., K-Qsq. ${ }^{10 \mathrm{Kt} \times \mathrm{Pch}, \mathrm{K}-\mathrm{B} 2 ; ~} 11 \mathrm{Q} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q}$: $12 \mathrm{Kt}(\mathrm{B} 4)-\mathrm{R} 5+$.

Table 3.-THE GRECO COUNTER GAMBIT.

1 P.K4, P-K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{P} \cdot \mathrm{KB4}$; $3 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \cdot \mathrm{QB} 3$ (1).

	6	7	8	9	10
	Q-R5ch (2)				$\mathrm{Kt} \times \mathrm{Kt}$
4	P-KKt3				$\overline{\mathrm{QP} \times \mathrm{Kt}}$
	Kt $\times \mathrm{KtP}$				Q-K2 (8)
5	Kt-B3				$\overline{\mathrm{P} \times \mathrm{P}!(\text { dia. })}$
6	Q-R4 (3)				$\mathrm{Q} \times \mathrm{Pch}(9)$
6	R-KKtsq			$\overline{\mathrm{P} \times \mathrm{P}}$	B-K2
7	$\mathrm{Kt} \times \mathrm{B}$	P.K5		$\mathrm{Kt} \times \mathrm{R}$	B-B4
7	$\overline{\mathrm{R}-\mathrm{K} t 5}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$		P.Q4	Kt-B3
8	Q-R6	$\mathrm{Kt} \times \mathrm{Kt}$		Q-Kt3	Q-K2
8	$\mathrm{R} \times$ Pch	Q-K2		Kt-Q5	B-KB4
	K-Qsq (4)	K-Qsq	P.KB4	Q-K5ch	P-Q3
9	Kt-KKt5	Q \times Kt	R-Kt5	Kt-K3	Q-Q3
	Q-R5ch	P-Q4	Q-B2	P-Q3	P.KR3
10	$\overline{\mathrm{K} \times \mathrm{Kt}}$	Q-K3	P-Q3	B-Q3	0-0.0
	Q \times BPch	B.QB4	P-Q4	Q-B3!	0.0
11	K-Kt2	Q \times B	$\overline{\mathrm{P} \times \mathrm{Kt}}$	Q-K2	KR-Ksq
	Q-B3!	Q $\times \mathrm{Kt}$	$\mathrm{QP} \times \mathrm{P}$	P-QR3	B-K3
12	$\bar{Q}-\mathrm{R5} \quad$ (5)	B-K2	$\overline{\mathrm{Kt}} \mathrm{K} 5$	$\overline{\mathrm{P} \times \mathrm{QP}+}$	Q-Q2 (10)

(1) Suggested in 1873 by Mr. Fraser; also the same year by H. Möller.
(2) Frequently played. If $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{Q}-\mathrm{R} 5!$; (if then) $5 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt}$; $6 \mathrm{P}-\mathrm{K} 5$, B-K3, \&c.
(3) Or 6 Q-K2, taking three Pawns for the piece. If 6 Q-R3, R-KKtsq; $7 \mathrm{Kt} \times \mathrm{B}_{1}$ Q-K2; $8 \mathrm{Kt}-\mathrm{K} 6+$. See diagram p. 28.
(4) 9 B-K2, Q-K2, $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{R} \times \mathrm{Bch}$; $11 \mathrm{Kt} \times \mathrm{R}, \mathrm{Kt}-\mathrm{Q} 5 ; 12 \mathrm{O}-\mathrm{O}, \mathrm{Kt} \times \mathrm{Ktch}+$: (Fraser.) If $10 \mathrm{Kt} \times \mathrm{RP}, \mathrm{R} \times$ Bch; 11 K -Qsq, Kt-KKt5; 12 Q-Kt6ch and can draw: (Monck.)
(5) 13 P-KKt3, Kt-Q5, 14 Q-Kt2, Kt \times BPch; $15 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{Kt} 5 \mathrm{ch} ; 16 \mathrm{~B}-\mathrm{K} 2$, $R \times B$ and wins. (Fraser.)
(6) 13 R-Ksq, Q-B2 ; 14 B-Kt5, Q-R4ch; 15 P-B3, Q \times B; $16 \mathrm{R} \times$ Bch, K-Qsq; $17 \mathrm{Q} \times \mathrm{Q}, \mathrm{R} \times \mathrm{Q}=$.
(7) 13 Q-B3, B-Q2 I; $14 \mathrm{Kt}-\mathrm{B} 3!\mathrm{B}-\mathrm{B} 3$; $15 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Kt}$; $16 \mathrm{Q}-\mathrm{B} 2, \mathrm{Q}-\mathrm{B} 4$; 17 B-K3+. Cols. 8-10 are supplied by Mr. Fraser.
(8) $\mathrm{P} \times \mathrm{P}$. may also be played. If $5 \mathrm{P}-\mathrm{K} 5, \mathrm{~B}-\mathrm{K} 3$; $6 \mathrm{P}-\mathrm{Q} 4, \mathrm{Q}-\mathrm{R} 5$. If $5 \mathrm{P}-\mathrm{Q} 4$, Q-R5 as in Note 2. Messrs. Potter, Wayte, and Ranken suggest 5 B-B4!, which Mr. Ranken continues:-5.., Q-Q5 (a) (b); 6P-Q3, P \times P; 7 Q-K2, Kt-B3; 8 P-KB3+.
(a) $5 \ldots, \mathrm{Q}-\mathrm{K} 2 ; 6 \mathrm{O}-\mathrm{O}, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{B} ; 8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{B} 4 ; 9 \mathrm{R}-\mathrm{Ksq}, \mathrm{O}-0.0$: $10 \mathrm{Kt} \times \mathrm{P}+$.
(b) $5 \ldots$, Q-R5 (Fraser); $6 \mathrm{P}-\mathrm{Q} 3$ (if $\mathrm{O}-\mathrm{O}, \mathrm{Kt}$-B3; $7 \mathrm{P}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{Q3}, \& \mathrm{c}$.), $\mathrm{P} \times \mathrm{P}: 7 \mathrm{Q}-\mathrm{K} 2$, B-KB4; $8 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{B}$; $9 \mathrm{Kt}-\mathrm{Q} 2$ (if P-KKt3, $\mathrm{Q}-\mathrm{Kt} 5$), $\mathrm{O}-0-0 ; 10 \mathrm{P} \times \mathrm{P}$, \&c.
(9) If $6 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}!\mathrm{K}-\mathrm{K} 2 ; 7 \mathrm{~B}-\mathrm{B} 4, \mathrm{Q}-\mathrm{Ksq}!$ Or $7 \mathrm{Q}-\mathrm{K} 5 \mathrm{ch}, \mathrm{B}-\mathrm{K} 3 ; 8 \mathrm{Q} \times \mathrm{KP}$. Kt-B3; 9 Q-QKt4ch? K-B2; $10 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{QB} 4$; $11 \mathrm{Q} \times \mathrm{BP}, \mathrm{R}$-Ksq.
(10) Good game though minus a Pawn.

Table 3.
(Col. 6.)

After White's 6th move.
(Col. 10.)

After Black's 5th move.

The two positions given above represent the stage of the game from which the struggle between superiority of force on one side, and superiority of development on the other may be studied and carried forward.

Table 4.-THE GRECO COUNTER GAMBIT.

1 P-K4, P.K4; 2 Kt-KB3, P.KB4.

	11	12	18	14	15
8	B-B4				
	$\overline{\mathrm{P} \times \mathrm{P}} \quad(1)$		Kt-QB3		
	$\mathrm{Kt} \times \mathrm{P}$		P-Q4 (7)		
4	P-Q4 (2)		P-Q3		
	Q-R5ch		Kt-Kt5	$\underline{Q P \times P}$	P.B8
6	P-KKt3		$\overline{\mathrm{Kt}}$-R3	$\overline{B P} \times \mathrm{P}$	B-K2
	$\mathrm{Kt} \times \mathrm{P}$		P-Q5	Q-Q5	Q-Kt3
6	$\overline{\mathrm{P} \times \mathrm{Kt}}$ (3)		$\overline{\mathrm{Kt}-\mathrm{K} 2 ~(8)}$	Q-K2	Kt-B3 (12)
	Q \times R	Q \times Pch	Kt-QB3	B-KKt5	Kt-K5
7	K-B2	K-K2	P-B3 (9)	B-K3	It-QR4
8	B-K2 (4)	P-Q4	P-B4	Q $\times \mathrm{KP}$	Q-R4ch
	B-Kt2	$\overline{\mathrm{Kt}}$-KB3	$\overline{P \times Q P}$	P-Q4	P-B3
	Q-R7 (5)	B-KKt5	$\mathrm{P} \times \mathrm{QP}$	$\mathrm{B} \times \mathrm{P}$	B-K6+
9		Q-Q3	P-K5	$\overline{\mathrm{B} \times \mathrm{B}}$	
10		$\mathrm{B} \times \mathrm{QP}(6)-$	B-Kt5ch	Q \times B	
		$\overline{\text { QKt-Q2 }}$	B-Q2	Kt-B3	
11			$\underline{\mathrm{Kt}-\mathrm{K} 6+(10)}$	$\underline{\mathrm{B} \times \mathrm{Kt} \text { (11) }}$	
				$\mathbf{P} \times \mathrm{B}$	
				0.0	
12				$\overline{\mathbf{P} \times \mathrm{P}}$	

(1) $3 \ldots$ P:Q3 transposes into Col. 13. See also Table 11, note 1. If 3 .., KtKB3; $4 \mathrm{Kt} \times \mathrm{KP}+$.
(2) $4 \ldots, \mathrm{Q}-\mathrm{Kt4}$; $5 \mathrm{Kt}-\mathrm{B} 7, \mathrm{Q} \times \mathrm{KtP}$; $6 \mathrm{R}-\mathrm{Bsq}, \mathrm{P}-\mathrm{Q} 4 ; 7 . \mathrm{Kt} \times \mathrm{R}, \mathrm{P} \times \mathrm{B} \mathrm{l}$; 8 Q-R5ch, P-KKt3; $9 \mathrm{Q} \times$ RP, B-K3; $10 \mathrm{Q} \times \mathrm{KtPch}, \& c$.
(3) 6 .., Kt-KB3; $7 \mathrm{Q}-\mathrm{K} 5 \mathrm{ch}, \mathrm{B}-\mathrm{K} 2$; $8 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Kt} ; 9 \mathrm{Q} \times \mathrm{Qch}, \mathrm{K} \times \mathrm{Q}$; $10 \mathrm{~B}-\mathrm{K} 2+$. The variation arising from $6 \mathrm{P} \times \mathrm{Kt}$ is supplied by Mr. Fraser.
(4) 8 Q-Q4, B-K3; 9 B-Kt3, Kt-QB3, 10 Q-R4, or K3 and Black has a good game.
(5) The Queen escapes, but not without disadvantage in position.
(6) $10 \mathrm{Q} \times \mathrm{Ktch}, \mathrm{Q} \times \mathrm{Q}$; $11 \mathrm{~B} \times \mathrm{Qch}, \mathrm{K} \times \mathrm{B}$; $12 \mathrm{~B} \times \mathrm{QP}$, \&c. (Monck.)
(7) If $4 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{B} ; 5 \mathrm{P}-\mathrm{Q} 4, \mathrm{P}-\mathrm{Q3}=$.
(8) $6 \ldots$... Kt-QKtsq; $7 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{QK} \leftrightarrows \times \mathrm{P}, \mathrm{B}-\mathrm{B} 4=. \quad$ (Steinitz.)
(9) Or $7 \ldots$. P-B51 (Fraser). If $7 \ldots$ K-Kt3: 8 Q-R5, B-K2: $9 \mathrm{Kt} \times \mathrm{P}+$.
(10) If 11 .. Q-Bsq; 12 Q-Q4, R-KKtsq; 13 Q-R4 \&c.
(11) 11 Q-Kt5+. (Ranken.) The Col. is De Riviere v. Anderssen. Black won.
12) $6 \mathrm{Kt}-\mathrm{R4}$; 7 Q-R4ch, P-B3; $8 \mathrm{~B} \times \mathrm{Kt}$, $\mathrm{R} \times \mathrm{B}$; $9 \mathrm{P} \times \mathrm{KP}+$.

SECTION III.

THE QUEEN'S PAWN COUNTER GAMBIT.

P.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{P} \cdot \mathrm{Q} 4$.

THIS defence is a combination of a counter attack with a development move, releasing the second -player's Queen's Bishop. For this reason it is slightly stronger than Greco's Counter Attack by 2, P-KB4; as is subsequently shown in Philidor's Defence, in which the two lines of play are opposed to each other. In the position on the diagram, if the first player replies to Black's second move by taking the King's Pawn he may have a difficult game (Col. 5). It is better for him to keep his attack on the King's Pawn and take the Queen's Pawn, by which course he gains time. The second player may either accept the loss of a Pawn, and take what he can get for it in the way of develop. ment by $3 \ldots$, B-Q3 (Col. 1) ; or he may push his K Pawn on the White Knight, which is a premature attack (Col. 2); or he may at once retake the Pawn with his Queen, which will transpose the opening into the Centre Counter Gambit with a weak K Pawn (Col. 4); or into the Centre Gambit with a move behind (Col. 3). In any case the first player will have the advantage.

The result of this and the Greco Counter Gambit shows that although, as George Walser writes, "counter attack is the soul of the game, and the word ought to be written on the margin of the Chessboard," yet it leads to nothing unless it can be followed up; that is to say unless it is correctly timed.

Table 5.-THE QUEEN'S PAWN COUNTER GAMBIT.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{~K} \mathrm{~B} 3, \mathrm{P} \cdot \mathrm{Q} 4 .
$$

	1	2	3	4	5	
3	$\mathrm{P} \times \mathrm{P}$!				$\mathrm{Kt} \times \mathrm{P}$	
8	B-Q3	P-K5	$\overline{\mathrm{Q} \times \mathrm{P}}$		$\bigcirc \times \mathrm{P}$	(6)
4	P-Q4	Q-K2	Kt-B3		P-Q4	(7)
4	P-K5	B-K2 (1)	Q-K3	Q-R4	B-K3	
5	Kt-K5	Q \times P	B-Kt5ch (3)	B.B4	B-QB4	
σ	Kt-KB3	Kt-KB3	B-Q2 (4)	Kt-QB3	$\overline{\mathrm{B} \times \mathrm{B}}$	
6	B.QB4	B-Kt5ch	0.0	0.0	$\mathrm{Kt} \times \mathrm{B}$	
6	0.0	B-Q2 (2)	P-QR3	$\overline{\text { B-Q3 (}}$ ($\overline{\text { P.KB4 }}$	
7	0.0+	Q-K2	$\mathrm{B} \times \mathrm{Bch}$	R-Kıq	0.0	-
7		Ktx P	$\overline{\mathrm{Kt} \times \mathrm{B}}$	P-B3	Kt-KB3	=
8		$\mathrm{B} \times$ Bch	P-Q4	P-Q4+		
8		$\bar{Q} \times \mathrm{B}$	0.0 .0			
9		P.Q4	R-Ksq+			
8		0.0				
10		0.0				
10		Kt-QB3				
11		P-B4+				

(1) This variation was played between Morphy and Paulsen. If 4 .., Q - K 2 : 5 Kt-Q4, $1 \mathrm{Kt}-\mathrm{KB} 3$ (If 5 .., Q-K4; $6 \mathrm{Kt}-\mathrm{Kt} 5$); $6 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q}-\mathrm{K} 4 ; 7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{K} 2$: 8 Kt-KKt5 +. If $4 . ., \mathrm{P}-\mathrm{KB} 4$; $5 \mathrm{P}-\mathrm{Q} 3, \mathrm{Q} \times \mathrm{P}$; 6 QKt-Q2, Kt-KB3; $7 \mathrm{Kt}-\mathrm{Kt5}$, and wins a Pawn.
(2) If 6 P-B3 White is prepared to give up his Q for the discovered check.
(3) 5 P-QKt3, Kt-QB3; 6 B-B4, Q-Kt3; 7 Q-K2, B-Q3; 8 P-Q4, B-KKt5. (Wisker v. Bird.)
(4) 5 P-QB3; $\dot{6}$ B-R4, B-K2; $70.0+$.
(5) Or 6 B-K2; 7 R-Ksq, Kt-KB3; 8 P-Q4, P×P. If $6 \ldots$, B-KKt5 (Gossip) ; $7 \mathrm{~B} \times$ Pch, \&c.
(6) If 3 B-Q3; $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $5 \mathrm{~B}-\mathrm{QB} 4, \mathrm{~B} \times \mathrm{Kt}$; $6 \mathrm{Q}-\mathrm{R} 5, \mathrm{Q}-\mathrm{K} 2 ; 7 \mathrm{P} \times \mathrm{B}$. (Wormald). A brilliant variation introduced by Mr. Cochrane comes in here:$3 . ., \mathrm{Q}-\mathrm{K} 2 ; 4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P}-\mathrm{KB} 3$; $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P} \times \mathrm{Kt} ; 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 3$ (or Q-B2); $7 \mathrm{P} \times \mathrm{P}$, $Q \times P ; 8$ B-Q3, B-Q3; 9 P-KB4 with a fair game.
(7) An old variation is $4 \mathrm{~B}-\mathrm{B4}, \mathrm{Q}-\mathrm{Kt4}$; $5 \mathrm{Kt} \times \mathrm{P}$ ($\mathrm{B} \times \mathrm{Pch}$ is no better in the end), Q \times KtP; 6 R-Bsq, B-KKt5; 7 P-KB3, B \times P; 8 R-B2, Q-Kt8ch; 9 R-Bsg, Q-Kt5 + : Gossip gives 7 B-K2 also to Black's advantage.

SECTION IV.

PETROFF'S COUNTER ATTACK.

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4$; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{KB} 3$.

THIS counter attack is an attempt on the part of the second player to equalise the game by bringing about a similarity of positions. It dates from the Göttingen MS. 1490. Walker, in 1841, described it as "a counter attack but a bad one." It was however revived by the Russian player, M. Petroff, and carefully analysed by M. Jaenisch who, in the Palamède, 1842, considered it the best reply to 2 Kt -KB3. It has since that time been adopted in several important correspondence games, but has not held its ground in public estimation, and is now rarely played. Cols. 1.3 show that the first player, by retaining the lead, is able to securs ultimately an advantage, and that his opponent cannot avoid it by introducing complications. The first player may, if he pleases, turn the opening into a lively gambit attack by $3 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3 ; \mathrm{Kt} \times \mathrm{P}$ (Cols. 16.20); or, as recommended by Mr. Steinitz, he may play 3 P-Q4 (Cols. $5 \cdot 10$) ; or he may transpose the game into the BodenKieseritzky Gambit by $3 \mathrm{~B}-\mathrm{B} 4, \mathrm{Kt} \times \mathrm{P}$; $4 \mathrm{Kt}-\mathrm{B} 3$. If he plays a straightforward game, the position becomes one that may occur in the French Defence, where the King's Pawns are exchanged early, and the Bishops and Knights brought gradually into action supported by the Rooks (Cols. 10-15). This slow development permits considerable variety in the order and selection of moves. It is hardly likely that the moves given in the last named columns will be made in the same order in ordinary practice, Exhaustive analysis is impossible in such positions, and all that can be done is to indicate the general tendency of certain lines of play which have been selected by analysts and players as the strongest on both sides.

It may be noted that in those variations where the Black Knight, after taking White's K Pawn, falls back to KB3 the position is frequently similar to that obtainable in the French Defence with the advantage of a move in band.

Tadee 6.--PETROFF'S OOUNTER ATTACK.
1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3$, Kt-KB3.

	1^{\prime}	2^{\prime}	3	4	5
3	$\mathrm{Kt} \times \mathrm{P}$ (1)				P-Q4
	$\overline{\mathrm{Kt} \times \mathrm{P}}$			Q-K2?	$\overline{\mathrm{P} \times \mathrm{P}}$
4	Q-K2			P-Q4 (6)	P-K5
	Q-K2			P-Q3	$\overline{\mathrm{Kt}-\mathrm{K} 5 ~(8)}$
5	Q $\times \mathrm{Kt}$			Kt-KB3	Q-K2
	P-Q3			Q×Pch	$\overline{\mathrm{Kt}-\mathrm{B4}}$ (9)
6	P-Q4			B-K2 !	$\mathrm{Kt} \times \mathrm{P}$
	P-KB3			B-B4	B-K2 (10)
7	P-KB4			P-B4 (7)	Kt-QB3
	Kt-Q2!			B-K2	0.0
	Kt-QB3			0.0	B-B4
8	$\overline{\text { QP } \times \mathrm{Kt}}$	$\overline{\mathrm{BP} \times \mathrm{Kt}}$		0.0	Kt-K3
9	Kt-Q5	$\underline{\mathrm{BP} \times \mathrm{P}}$ (3)		$\underline{\mathrm{Kt}-\mathrm{B} 3+}$	$\mathrm{Kt} \times \mathrm{Kt}$
	Q-Q3 (2)	$\overline{\mathrm{P} \times \mathrm{P}}$			$\overline{\mathrm{BP} \times \mathrm{Kt}}$
10	$\mathrm{QP} \times \mathrm{P}$	Kt-Q5			B-Kt3 (11)
	$\overline{\mathrm{P} \times \mathrm{P}}$	Kt-B3			
11	$\mathrm{P} \times \mathrm{P}$	B-Kt5ch			
	Q-QB3	$\overline{\text { P-B3 (4) }}$	$\overline{\mathrm{K}} \mathrm{Q}$ Q q		
	B-QKt5	$\mathrm{Kt} \times \mathrm{Ktch}$	$\mathrm{Kt} \times \mathrm{Kt}$		
12	Q-KKt3	$\overline{\mathrm{P} \times \mathrm{Kt}}$ (5)	$\overline{\mathrm{P} \times \mathrm{Kt}}$		
	$\underline{Q} \times \mathrm{Qch}$	$\mathrm{B} \times \mathrm{Pch}$	$\underline{\mathrm{P} \times \mathrm{P}}$		
13	$\overline{\mathrm{P} \times \mathrm{Q}}$	K-Qsq	$\overline{\mathrm{P} \times \mathrm{P}}$		
	$\underline{\mathrm{Kt} \times \mathrm{Pch}+}$	B-Q2+	$\underline{\mathrm{B}-\mathrm{Q} 2+}$		

(1) 3 B-B4 transposes into the King's Bishop's Opening, and Kt-B3 into the Three or Four Knights' Game: for 3 .., P-Q3 see Cols. 11-20.
(2) $9 . \therefore$, $\mathrm{Q}-\mathrm{Qsq}$; $10 \mathrm{QP} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 2$ (if $11 . ., \mathrm{P}-\mathrm{QB} 3$; $12 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}$ wins). (C. E. R.)
(3) Or 9 Kt -Q5. (Steinitz.)
(4) If $11 \ldots$ B-Q2; $12 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{Kt}$; $13 \mathrm{Q} \times \mathrm{KtP}, \mathrm{R}-\mathrm{Qsq} ; 140-\mathrm{O}$, (if) $\mathrm{P} \times \mathrm{P}$; 15 B-KK $45+$.
(5) If $12 \ldots, \mathrm{Q} \times$ Kt Black loses through $12 \mathrm{P} \times \mathrm{P}$ and $13 \mathrm{~B}-\mathrm{Q} 3$.
(6) If 4 Kt -KB3 Black can equalise by $4 \ldots, \mathrm{Kt} \times \mathrm{P} \mid 5$ B-K2, Q-Qsq.
(7) $\mathrm{Or} 7 \mathrm{Kt}-\mathrm{R3}$ (if then) P-Q4; $8 \mathrm{O}-\mathrm{O}, \mathrm{B} \times \mathrm{Kt}$; $9 \mathrm{R}-\mathrm{Ksq}+$. (C.E. R.)
(8) $4 \ldots$ Q-K2; $5 \mathrm{~B}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{Kt} 5$; $6 \mathrm{O}-0, \mathrm{Kt} \times \mathrm{KP}$; $7 \mathrm{R}-\mathrm{Ksq}$: or $6 \ldots, \mathrm{Kt}-\mathrm{QB} 3$;
$7 \mathrm{Kt} \times \mathrm{P}, \mathrm{KKt} \times \mathrm{P} ; 8 \mathrm{R}$-Ksq, \&c. (Steinitz.)
(9) If $5 \ldots, \mathrm{~B}-\mathrm{Kt5ch} ; 6 \mathrm{~K}-\mathrm{Qsq}, \mathrm{P}-\mathrm{Q4}$ (if $6 . ., \mathrm{Kt}-\mathrm{QB4}, 7 \mathrm{~B}$-Kt5); $7 \mathrm{P} \times \mathrm{P}$ en pas, P-KB4; $8 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P} ; \quad 9 \mathrm{Kt} \times \mathrm{P}+$.
(10) $\mathrm{Or} 6 \ldots \mathrm{Kt}-\mathrm{K} 3 ; 7 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt}$; $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3$.
(11) The difference in favour of White is very slight. (W. W.)

Table 7.-PETROFF'S COUNTER ATTACK.

	6	7	8	9	10
8	P-Q4				
	P×P	$\overline{\mathrm{Kt} \times \mathrm{P} \quad(2)}$			
4	P.K5	B-Q3			
	Kt-K5	P-Q4			
5	Q \times P	$\mathrm{Kt} \times \mathrm{P} \quad$ (3)			
	P-Q4	B-K3	B-K2	B.Q3	P.QB4
6	$\underline{P} \times$ Pen pas	Q-K2 (4)	0.0	0.0	B-Kitsch
	$\overline{\mathrm{Kt} \times \text { QP }}$	Kt-Q3 (5)	0.0	0.0	B-Q2
7	B-KKt5	0.0	$\underline{\mathrm{B} \times \mathrm{Kt}}$ (8)	P.QB4	$\mathrm{Kt} \times \mathrm{B}$
	P-KB3	B-K2	$\overline{\mathrm{P} \times \mathrm{B}}$	P.QB3 (10)	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
8	B.KB4	R.Ksq	QKt-B8	Kt-QB3	0.0.
	Kt-B3	$\overline{\text { Q-Bsq (6) }}$	P-KB3 (9)	Kt×Kt	$\overline{\text { P.QR3 (13) }}$
9	Q.Q2 (1)	QKt-B3	Kt-B4	$\mathrm{P} \times \mathrm{Kt}$	$\mathrm{B} \times$ Ktch
		0.0	P-KB4	$\overline{\mathrm{B} \times \mathrm{Kt}}$ (11)	Q \times B
10	.	Q-R5	B. $\mathrm{B} 4+$	$\mathrm{P} \times \mathrm{B}$	P-KB3
		P-KB4 (7)		$\overline{\mathrm{P} \times \mathrm{P}}$ (12)	Kt-B3
11		$\underline{\mathrm{Kt}-\mathrm{K} 2+}$		$B \times P$	R-Ksq ch
				$\overline{\mathbf{Q} \times \mathbf{Q}}$	K-Qsq
13				$\underline{R} \times \mathrm{Q}+$	B.Kt5
					B-K2
13					$\underline{\mathrm{Kt} \text {-B3 + }}$

(1) Steinitz notes that White has hardly any advantage.
(2) If $3 \ldots, \mathrm{P}-\mathrm{Q} 4 ;, 4 \mathrm{P} \times \mathrm{QP}$.
(3) $5 \mathrm{P} \times \mathrm{P}$?, Kt-QB3; $60-0, \mathrm{~B}-\mathrm{QB} 4$; $7 \mathrm{P}-\mathrm{B} 4, \mathrm{~B}-\mathrm{K} 3=$. Steinitz supplies the following variations. Compare with Cols. 13-15.
(4) 6 O-O, Kt-Q2; 7 P.KB4, P-KB4; 8 Kt-Q2, QKt \times Kt; 9 BP \times Kt, B-K2; 10 Q.R5ch, P-KKt3; $11 \mathrm{Q}-\mathrm{R} 3, \mathrm{Q}-\mathrm{Q} 2=$. (Mackenzie v. Golmayo.)
(5) $6 \ldots, \mathrm{P}-\mathrm{KB} 4$; $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{BP} \times \mathrm{B}$; $8 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}+$
(6) If $8 \ldots, \mathrm{O}-\mathrm{O}$; $9 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{Kt}$; $10 \mathrm{Q} \times \mathrm{B}, \mathrm{R}-\mathrm{Ksq}$; $11 \mathrm{Q} \times \mathrm{Q}+$. If $8 \ldots$ P.B3; $9 \mathrm{Kt}-\mathrm{Kt} 6+$.
(7) If $10 \ldots$ P-KKt3; $11 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{BP} \times \mathrm{Kt}$; $12 \mathrm{~B} \times \mathrm{P}_{2}$ \&c.
(8) Or 7 R-Ksq, or Q-K2.
(9) 8 .., P-KB4; 9 P-B3+.
(10) Or 7 .., B-K3; 8 P-B4, P.KB4 \&c.
(11) If 9 :., B-K3; 10 P-KB4, $\mathrm{B} \times \mathrm{Kt} ; 11 \mathrm{BP} \times \mathrm{B} \& \mathrm{c}$.
(12) If $10 \ldots$, B-K3; 11 Q-R5.
(13) $8 \ldots, \mathrm{P} \times \mathrm{P}$; $9 \mathrm{Q} \times \mathrm{P}, \mathrm{KKt}-\mathrm{B} 3$; : $10 \mathrm{R}-\mathrm{K}$ sq ch, B-K2; 11 Kt -B3, P-QR3; 12 B-R4, P-QKt4; 13 B-Kt3, Kt-Kt3; 14 B-Kt5 (if) Q-Q3; $15 \mathrm{R} \times$ Bch, $\mathrm{K} \times$ R ; 17 Q \times QKt, \&c.

Table 8.-PETROFF'S COUNTER ATTACK.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-KB3; $3 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \cdot \mathrm{Q} 3$; $4 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \times \mathrm{P}$; $5 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \cdot \mathrm{Q} 4$; $6 \mathrm{~B} \cdot \mathrm{Q} 3$.

$6 \overline{\mathrm{Kt}-Q B 3}$
$7 \frac{\mathrm{O}-\mathrm{O}!}{\mathrm{B}-\mathrm{K} 2}$
$8 \frac{\mathrm{P}-\mathrm{B4}}{\mathrm{~B}-\mathrm{KKt5}} \quad$ (1) $\frac{\mathrm{Kt} \text {-B3 }}{\mathrm{Kt} \times \mathrm{Kt} \quad(2)}$ $\frac{\mathrm{P} \times \mathrm{Kt}}{\mathrm{P} \times \mathrm{P}}$

Q-Q3
$12 \frac{\mathrm{Q}-\mathrm{R} 4}{0-0}$
$13 \frac{\mathrm{Q} \times \mathrm{BP}}{\mathrm{B} \times \mathrm{Kt}}$
14 $\frac{B \times B}{\text { Kt-Qsq }}$
$15 \xrightarrow{\text { P.QR4- }}$

11
12
13
14
15

Notes to Table 8.

(1) If $8 \mathrm{R}-\mathrm{Ksq}$, B-KKt5; $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 10 \mathrm{R} \times \mathrm{P}, \mathrm{B} \times \mathrm{Kt} ; 11 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \times \mathbf{P}$ (Handbuch). Compare Cols. 7-10.
(2) This seems needlessly to strengthen White's centre. $9 \ldots$ Kt-B3 is better. If $9 \ldots, \mathrm{~B} \times \mathrm{Kt}$; $10 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{QP}$; $11 \mathrm{Q}-\mathrm{Kt4}$. (C. E. R.)
(3) If $10 \ldots, 0-0 ; 11$ R-Ktsq followed by R-Ksq+.
(4) $11 \mathrm{~B} \times \mathrm{BP}, \mathrm{O}-\mathrm{O}$; $12 \mathrm{~B}-\mathrm{QKt5}, \mathrm{Q}-\mathrm{Q4}$ (if .., Q-Q3; 13 P-QR4 C. R. R.); 13 P-B4, Q-KB4; $14 \cdot \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$ \&c.
(5) If $8 \ldots, \mathrm{Kt}-\mathrm{KB} 3$ the same position may be brought about in the French Defence with Black to move. [Thus:-1 P-K4, P-K3; 2 P-Q4, P-Q4; $3 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$: 4 B-Q3, Kt-QB3; $5 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{KB} 3 ; 6$ O-0, B-K2; 7 P-QB4.]
(6) If $9 \ldots, \mathrm{~B}-\mathrm{QKt5}$; $10 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{R}$; $11 \mathrm{P} \times \mathrm{P}+$. If $9 \ldots \mathrm{P}-\mathrm{B4} ; 10 \mathrm{Kt}-\mathrm{B} 3$. Mr. Steinitz continues by $10 \ldots, \mathrm{Kt} \times \mathrm{Kt}$, to White's advantage. Mr. Rankon suggests 10 .., Kt-Kt5.
(7) Initiating en advance with the Pawns on Queen's side. If 10 ... P-QKt3: 11 Q-R4, B-Q2; 12 B-QKt5, Kt-QKtsq; $13 \mathrm{Kt}-\mathrm{K} 5+$. (M. C. I.)
(8) If 11 Kt-B3, B-Kt5; 12 B-K3 (M. C. I.), $\mathrm{B} \times \mathrm{P}$! to relieve Black's geme. CE. R.)
(9) If 9 P-B5, P-QKt3; 10 P-QKt4?, P-QR4; $11 \mathrm{P} \times \mathrm{KtP}, \mathrm{RP} \times \mathrm{P}: 12 \cdot \mathrm{P} \times \mathrm{P}$. $\mathrm{Q} \times \mathrm{P}+$. (M. C. I.)
(10) Or $8 \ldots$ P-B3 providing a retreat for the Bishop in case of 9 P-B5: Salvioli continues by $9 \mathrm{Q}-\mathrm{Kt3}$, and the Handbuch by $9 \mathrm{Q}-\mathrm{B} 2.8 \ldots, \mathrm{Kt}-\mathrm{KB} 3$, as in other cases, works into the French Defence: $9 \mathrm{~B}-\mathrm{KKt5}, \mathrm{~B}-\mathrm{K} 3 ; 10 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{P} \times \mathrm{P} ; 11 \mathrm{~B} \times \mathrm{P} \mathrm{f}$ $\mathrm{B} \times \mathrm{B} ; 12 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt}-\mathrm{B} 3$; 13 Kt -B3. (Morphy v. Barnes.)
(11) Better than Jaenisch's move 9Q-Kt3. If $9 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $10 \mathrm{Kt}-\mathrm{QB} 3 . \mathrm{Kt} \times \mathrm{Kt}$; $11 \mathrm{P} \times \mathrm{Kt}, \mathrm{P}-\mathrm{QB4}$; $12 \mathrm{~B} \times$ Pch.
(12) Or $9 \ldots, \mathrm{Kt}-\mathrm{KB} 3$; (if) $10 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{Kt} \mathrm{QB} 31$
(13) Mr. Steinitz proposes 10 P-B5 followed immediately by P-QKt4.
(14) From a correspondence game between Pesth and Paris. If 11 ... Kt-B3 (M.C. I.) ; $12 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; 13 Kt-K5 (Monck), $\mathrm{Q}-\mathrm{B} 3$, \&c. If $11 \ldots, \mathrm{~B} \times \mathrm{Pch}$: followed by $12 \ldots, \mathrm{~B}-\mathrm{Q} 4$; then $13 \mathrm{~B} \times \mathrm{P}$!
(15) If $13 \ldots, \mathrm{~B}-\mathrm{Bsq} ; 14 \mathrm{Q} \times \mathrm{R}, \mathrm{Q}-\mathrm{Kt3} ; 15 \mathrm{Kt} \times \mathrm{KP}$!
(16) If $6 \ldots, P-Q B 4$?; 7 P-B4, P-B4 (if $7 \ldots$ Kt-QB3, or $P \times Q P ; 8$ O-O, \&c.); 8 O-O, $\mathrm{P} \times \mathrm{BP} ; 9 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QB} 3$; $10 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{M4}$; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{B}$; 12 Q-R4ch, B-Q2; $13 \mathrm{Q} \times \mathrm{K}_{\mathrm{t}}+$.
(17) Or 7 Kt-B3! to be fcllowed by Kit-K2。 (C. E. R.)
(18) 8 Kt K5, O-O: 9 P.KE4t: (M. C. I.)

Table 9.-PETROFF'S COUNTER ATTACK.

1PR4. P.K4: $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt.KB3, $3 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \cdot \mathrm{Q} 3$;

$$
4 \mathrm{Kt} \times \mathrm{P}(1), \mathrm{K} \times \mathrm{Kt}
$$

	16	17	18	19	20
5	B.B4ch		P.Q4	$\frac{\text { B-KKt5 (4) }}{\text { P-KR3 }}$	B-K3
	$\overline{\mathrm{P}-\mathrm{Q} 4}$	$\overline{\mathrm{B}-\mathrm{K} 3}$	P-KKt3		
6	B-Kt3 (2)	$\mathrm{B} \times \mathrm{Bch}$	Kt-B3		$\frac{\mathrm{P}-\mathrm{Q} 5}{\mathrm{~B}-\mathrm{Q} 2}$
	B-K3 (3)	$\overline{\mathrm{K} \times \mathrm{B}}$	B-Kt2		
7	Kt-B3	$\frac{\mathrm{P} \cdot \mathrm{Q} 4}{\mathrm{~K} \cdot \mathrm{~B} 2}$	B-B4ch		$\frac{\mathrm{Kt} \cdot \mathrm{~B} 3}{\mathrm{~B} \cdot \mathrm{~K} 2}$
	$\overline{\mathrm{P} \times \mathrm{P}}$		B-K3		
8	$\mathrm{B} \times \mathrm{Bch}$	$\frac{0.0}{\mathrm{~B}-\mathrm{K} 2}$	$\frac{\mathrm{P}-\mathrm{Q} 5}{\mathrm{~B}-\mathrm{Q} 2}$	$\frac{\text { B-R4 }}{\text { P•KKt4 }}$	$\frac{\mathrm{B} \cdot \mathrm{QB} 4}{\mathrm{R} \cdot \mathrm{Ksq}}$
	$\overline{\mathrm{K} \times \mathrm{B}}$				
9	$\underline{K t \times P}$	$\frac{\mathrm{P}-\mathrm{QB} 3}{\mathrm{QKt}-\mathrm{Q} 2}$	$\frac{\mathrm{P}-\mathrm{K} 5 ?}{\mathrm{P} \times \mathrm{P}+}$	$\frac{\mathrm{B}-\mathrm{Kt} 3}{\mathrm{R}-\mathrm{Ksq}}$	P.K5
	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$				
10	Q-Kt4ch	Q-Kt3ch		B-Q3	
	K-B2	P-Q4		B-B4+	
11	Q $\times \mathrm{Kt}$	P-K5 +			
11	Q-K2+				

(1) An invention of Mr. Cochrane's Mr. Staunton notes in the Praxis that the peculiarity of this attack is that if White attempts to set up any very fierce assault upon the Black King he will assuredly fail. The proper course appears to be for, White to develop his forces, castle on Queen's side and then push'on with his King's wing Pawns.
(2) If $6 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3 ; 7 \mathrm{O} .0, \mathrm{R}-\mathrm{Bsq}$; $8 \mathrm{P} \cdot \mathrm{Q4} 4$, K-Ktsq. (Steinitz.)
(3) Or 6 .., B-KKt5!; 7 P-KB3, B-K3. (Wormald.)
(4) White's best procedure probably is to play E-Q3 and 0.0 as soon as possible. (C. E. R.)

SECTION V.

PHILIDOR'S DEFENCE.
 . 1 P.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{P} \cdot \mathrm{Q} 3$.

THE idea of this defence, introduced by Philidor (1749), is to protect the advanced King's Pawn from the adverse Knight before proceeding with Greco's Counter Gambit, P-KB4. The second player limits the action of his King's Bishop, and submits to a cramped position in the hope of establishing a strong centre of Pawns. The first player, however: having the move, commences an attack on his own account by 3 P-Q4, or 3 B-B4 (threatening $4 \mathrm{Kt}-\mathrm{Kt5}$). Against the latter $3 \ldots, \mathrm{P}-\mathrm{KB4}$ is unsatisfactory, as was proved by Allgaier in 1795 (Note 1, Col. 6). Cols. 1-3 show the consequences if Black disregards his opponent's move 3 P-Q4. "The weakness of the Philidor," says Mr. Potter (1885), "consists in the fact of $3 \ldots, \mathrm{KP} \times$ QP being apparently incumbent on Black, whereby all his means of development become paralysed. Could that capture be rendered unnecessary his development though slow would be assured, and the future of the game would be such as skill, hand in hand with patience, might hopefully face." Cols. 8-10 give various trials, showing on the whole that, as Mr. Potter adds, the inferiority which results is not very pronounced. He demonstrated in Land and Water that the line of play given in Col. 8 permits numerous variations, from which we may conclude that it has not yet reached its final form.

Mr. Steinitz has recommended as the best defence in the Ruy Lopez Knight's game (Sec. XV.) a line of play leading into the Philidor defence given in Col. 5 , which has therefore had more attention bestowed upon it; the result being, as far as the Philidor is concerned, a decided preference for the variation in Col. 6, in which (after 3 P-Q4, $\mathrm{P} \times \mathrm{P}$) Black's Pawn is retaken with the Knight instead of the Queen.

The first player has the option of turning the game into a position - brought about in the Vienna Opening by 1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}$ KB3: 3 Kt-B3, P-Q3, The same position may occur also in the Three Knight's Game by transposition of moves. A similar result may follow 3 B-B4, which also leads into the Hungarian Defence. As it somewhat confuses the issue to place all these variations in the Philidor proper, we have relegated them to the above named openings, in which they will be found in their places. The great leseon of the Philidor is the relative strength of the atteck 3 P.Q4, and the counter attack $3 \ldots$, P-KB4, after and in coniunction with P.K4.

Table 10.-PHILIDOR'S DEFENCE.

```
1 P.K4, P-K4; 2 Kt:KB3, P.Q 3.
```


	1	2	3	4	5
B	P.Q4				
	P-KB4			$\overline{\mathrm{P} \times \mathrm{P}}$	
4	Kt-B3́ ! (1)		$\mathrm{P} \times \mathrm{KP}$	$\mathrm{Q} \times \mathrm{P} \quad$ (7)	
	$\overline{\mathrm{P} \times \mathrm{QP}}$	$\overline{\mathrm{Kt}} \mathrm{K} \mathrm{K} 3$ (3)	$\overline{\mathrm{BP} \times \mathrm{P}}$	B-Q2	$\overline{\mathrm{Kt}} \mathrm{QB} 3(10)$
5	$\underline{Q} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{KP}$	Kt-Kt5	B-QB4 (8)	B-QKt5
	$\overline{\mathbf{P} \times \mathrm{P}}$	$\overline{\mathrm{K}} \times \mathrm{P}$	P-Q4	Kt-QB3	B-Q2
6	B-KK 5	$\mathrm{Kt} \times \mathrm{Kt}$	P-K6	Q K3	$\mathrm{B} \times \mathrm{Kt}$
	Kt-KB3	$\overline{\mathrm{P} \times \mathrm{Kt}}$	B-QB4 (5)	B-K2	$\overline{\mathrm{B} \times \mathrm{B}}$ (11)
7	$\mathrm{K} \dot{t} \times \mathrm{P}$	Kt-Kt5	$\mathrm{Kt} \times \mathrm{KP}$ (6)	Q.QKt3+	B-Kt5 (12)
	B-K2	P-Q4	B-K2	(9)	Kt-B3 (13)
8	B-QB4	P-K6	Q-R5ch		Kt-B3
	Kt-B3	B-B4	P-KKt3		B-K2
9	Q-K3	$\mathrm{Kt} \times \mathrm{KP}$	Q-K5		0.0.0 -
	$\overline{\mathrm{Kt}}$-QR4	B.K2	Kt-KB3		0.0
10	B-Kt5ch	Q-R5ch	$\mathrm{Kt} \times \mathrm{Ktch}$		
	$\overline{\mathrm{K}}$ - $\mathrm{B} 2!$ (2)	P-KKt3	$\overline{\mathrm{B} \times \mathrm{K}}$		
11	$\underline{\mathbf{B} \times \mathrm{Kt}+}$	Q.K5	Q.Kt3-		
		0.0 (4)	O.0 -		

Notes to Table 10.

(1) Zukertort's Attack. Col. 3 gives the older form.
(2) If $10 \ldots$ P-B3; $11 \mathrm{Kt} \times$ Ktch.
(3) If P \times KP; 5 QKt \times P, P-Q4; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; 7 Q -R5ch, P-KKts; $8 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB3} 3 ; 9 \mathrm{Q}-\mathrm{K} 5 \mathrm{ch}+$. If $4 \ldots, \mathrm{Kt}-\mathrm{QB} 3 ; 5 \mathrm{~B}-\mathrm{QKt5}, \mathrm{P} \times \mathrm{KP} ; 6$ QKt $\times \mathrm{P}$, . $\mathrm{P}-\mathrm{Q4} ; 7 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 8 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt} ; 9 \mathrm{~B} \times \mathrm{Pch}+$.
(4) Englisch v. Pitschel continued 12 B-E6, B-B3; 13 P-K7! and wins the exchange. Black should play 11 .., R-Bsq.
(5) If $6 \ldots, \mathrm{Kt}-\mathrm{KR} 3$; $7 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{B} 3$; $8 \mathrm{KKt} \times \mathrm{KP}, \mathrm{P} \times \mathrm{Kt}$ (if $8 \ldots, \mathrm{~B} \times \mathrm{P}$; $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 10 \mathrm{Q}-\mathrm{Q} 4) ; 9 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{P}-\mathrm{KKt} 3 ; 10 \mathrm{Q}-\mathrm{K} 5, \mathrm{R}-\mathrm{Ktsq} ; 11 \mathrm{~B}-\mathrm{KKt5}$, (Löwenthal), B-Kt2! 12 P-K7!, Q-Q2; 13 Q-B4+.
(6) If 7 Kt -B7, Q-B3; 8 B-K3, P-Q5. (Barnes v. Morphy.) A game between Messrs. Goldschmidt and Esling was continued :-7 Kt-QB3, Q-KB3?; 8 B-Kt5ch, P-B3; $90-0, \mathrm{~B} \times \mathrm{KP}$? (Steinitz gives P-K6 as best); $10 \mathrm{~B}-\mathrm{QB4} 4, \mathrm{P}-\mathrm{K} 6$. (Again the Bishop cannot be taken on account of 11 QKt \times P.) 11 QKt-K4, $\mathrm{P} \times \mathrm{Kt} ; 12 \mathrm{Kt} \times \mathrm{B}$, $\mathrm{P} \times \mathrm{Pch} ; 13 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B}-\mathrm{Kt} 3 ; 14 \mathrm{~B}-\mathrm{KKt5}, \mathrm{Q}-\mathrm{Kt3} ; 15 \mathrm{R} \times \mathrm{P}, \mathrm{Kt} \mathrm{Q} 2 ; 16 \mathrm{Q} \times \mathrm{Ktch}$ and mates in four more moves.
(7) Mr. Ranken notes that he has tried 4 B-QB4 advantageously. It transposes the opening into the Centre Gambit, in which the position is reached by 1 P-K4, P-K4; 2 P-Q4, P×P; 3 Kt-KB3, P-Q3; 4 B-QB4, Kt-KB3 or B-K2.
(8) White may also play 5 B-KB4, Kt-QB3; 6 Q-Q2, Kt-B3; 7 B-Q3, B-K2; $8 \mathrm{Kt}-\mathrm{B3}, \mathrm{O}-\mathrm{O} ; 9 \mathrm{O}-\mathrm{O}-\mathrm{O}+.5 \mathrm{~B}-\mathrm{K} 3$ results in a similar position, with the recommendation that it does not prevent the subsequent advance of the KBP: in this case Steinitz prefers 7 Kt -B3, to avoid exchanges. For variations arising through the first player bringing out his QKt see Vienna Game. If 5 B-KKt5, Black may reply by 5 .., P-KB3, Kt-KB3, or Kt-QB3, suggested by Mr. Wayte. The last may be continued by $6 \mathrm{~B} \times \mathrm{Q}$?, as given in Cook's Synopsis, or by 6 Q-B3, P-B3; 7 B-R4, P-Q4 ! ; 8 Q-K3, \&c.
(9) The variation is brought into a form of the Centre Gambit unfavourable to the second player.
(10) Or 4 .., Kt-KB3; 5 Kt -B3 may be played at this point.
(11) Or $6 \ldots, \mathrm{P} \times \mathrm{B}$; 7 B-Kt5, Q-Ktsq. (Steinitz.)
(12) Or 7 B-K31
(13) 7 .., P-B3; 8 B-R4 (B-K3 is preferred by Steinitz), Kt-R3; 9 Kt -B3, Q-Q2; 10 O-O, B-K2; 11 QR-Qsq, O-0; 12 Q-B4ch, (if) R-B2; 13 P-K5+. (See Morphy's Games, p. 54.) Black may play $7 \ldots$ B-K2; (if) $8 Q \times \mathrm{KtP}$, B-B3; $\exists \mathrm{Q} \times \mathrm{R}, \mathrm{B} \times \mathrm{Q} ; 10 \mathrm{~B} \times \mathrm{Q}, \mathrm{B} \times \mathrm{KtP} ; 11 \mathrm{~B} \times \mathrm{P}, \mathrm{K}-\mathrm{Q} 2 ; 12 \mathrm{~B}-\mathrm{R} 5, \mathrm{~B} \times \mathrm{R} ; 13 \mathrm{~B}-\mathrm{B} 3$, $\mathrm{B} \times \mathrm{B} ; 14 \mathrm{Kt} \times \mathrm{B}, \mathrm{R}-\mathrm{Ksq}$; $15 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{P}-\mathrm{B} 4$, \&c. (Steinitz.)

Table 11.-PHILIDOR'S DEFENCE.

(1) If 3 B-B4, B-K2; 4 P-Q4, P \times P; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3 ; 6 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{O}-\mathrm{O}$. See Three Knights' Game (Col. 4) for continuation: if $3 \ldots, \mathrm{P}-\mathrm{KB} 4$? $4 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{KP}$ (Salvioli gives $4 \ldots, \mathrm{P} \times \mathrm{QP}$; $5 \mathrm{Kt}-\mathrm{Kt5}$, Kt-KR3; $6 \mathrm{Kt} \times \mathrm{RP}$ or $\mathrm{O} . \mathrm{O}$!) $5 \mathrm{Kt} \times \mathrm{P}$, $\mathrm{P} \times \mathrm{Kt} ; 6 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}+$. See also Table 4. If $3 \ldots \mathrm{P}-\mathrm{QB} 3 ; 4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} . \mathrm{Q} 4$; $5 \mathrm{P} \times \mathrm{QP}, \mathrm{P}-\mathrm{K} 5$; $6 \mathrm{Kt}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P}$. If $3 \ldots$.., Kt-KB3; $4 \mathrm{Kt}-\mathrm{Kt5}$. Macdonnell v. Gunsberg runs $3 \ldots$ Kt-QB3; 4 P-B3, B-It5; 5 P-Q4 (Q-Kt3!), P \times P; $6 \mathrm{Q}-\mathrm{Kt3}$, $\mathrm{Q}-\mathrm{Q} 2 ; 7 \mathrm{~B} \times \mathrm{Pch}, \mathrm{Q} \times \mathrm{B} ; 8 \mathrm{Q} \times \mathrm{P}, \mathrm{K}-\mathrm{Q} 2 ; 9 \mathrm{Q} \times \mathrm{R}, \mathrm{B} \times \mathrm{Kt} ; 10 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{BP}$; 11 R-Bsq ?, P-Q6 and wins. The Col. from the fifth move is Paulsen's attack.
(2) Or 9 B-K3 may be played. Or 9 Q-K3. (Wayte.)
(3) If $10 \ldots, \mathrm{P}-\mathrm{QB} 3$; $11 \mathrm{R}-\mathrm{Qsq}$ gives White a fine attack. (Steinitz.)
(4) $7 \ldots, \mathrm{P} \times \mathrm{P}: 8 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2$; $9 \mathrm{~B} \times \mathrm{Bch}, \mathrm{Kt} \times \mathrm{B}$; $100 \mathrm{O}, \mathrm{Q} \times \mathrm{Kt}$; $11 \mathrm{R}-\mathrm{Ksq}$, Kt-K4; 10 Q-R5ch+.
(5) If 4 Kt-QB3, QKt-Q2. See Note 1, p. 43. If 4 B-KKt5, B-K2 (or $4 \ldots, \mathrm{P} \times \mathrm{P}$ first.)
(6) If 5 .., B-K3; 6 B-Q5, Kt-B4; 7 B-Kt5, Q-Q2; 8 Kt-B3+.
(7) Or 4 P-QB3! which threatens B-B4, followed by Q.Kt3: if 4 .., KKt-B3; 5 Q-B21 (better then 5 B-Q3 on eccount of the reply 5..., P.Q4. W. W.)
(2) If 3 .., Kt.K4; $10 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{F} \times \mathrm{Kt}$; $11 \mathrm{Q}-\mathrm{Kt5ch}+$. (Fraser.)

SECTION VI.

THE THREE KNIGHTS' GAMES.

1 P.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-KB3; 3 Kt - B 3 .
or 1 P.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{Kt} \cdot \mathrm{B} 3$.

THE advantage to the first player of an early development of the Queen's Knight has been generally appreciated by advanced Chess players. It has led to the introduction of several modern openings, notably the Three and Four Knights' Games, and the Vienna Opening with its numerous variations. The idea springs from an old maxim: " Move your pieces out before your Pawns: or you may be prevented from forming a strong attack by the intervention of your own Pawns." There was at one time an objection to the move on account of its "apparent tameness." It attacked nothing, and seemed to give the second player an opportunity of assuming the offensive. Staunton, however, pointed out in the Praxis that "there is perhaps no one legitimate opening where the defence would not prove successful, if the dofending player were allowed an extra move;" while Walker, alluding to the Steinitz' Gambit (in Bell's Life) showed that 2 Kt -QB3 prepared the way for one of the most daring and chivalrous of modern openings. The move, in fact, strengthens the first player's game for either attack or defence.

The "Three Knights"" has been selected by first rate players for some of their most important contests. The attack is on the centre Pawns, and it is questionable whether the second player should allow them to be broken up or resort to the Four Knights' Game. The idea of playing 3 ..., P-KKt3 to follow with B-KKt2, which was one of the special points of this opening (Cols. 6-8) has not worked out so satisfactorily as its originators anticipated.

In several variations the positions are similar to those in the Philidor Defence, to which opening we oppend it. The Four Knights' Opening leads to a totally different game, more akin to the Ruy Lopez' Knight's Game.

Tabli 12.-THE THREE KNIGHTS GAME.

1 P.K4, P.K4: $2 \mathrm{Kt} \cdot \mathrm{K}$ B 3. Kt.KB3; $3 \mathrm{Kt} \cdot \mathrm{B} 3$.

1
8
P.Q3
$4 \frac{\mathrm{P} \cdot \mathrm{Q4}}{\mathrm{P} \times \mathrm{P}} \quad$ (1)
$\begin{array}{lll}\mathrm{Q} \times \mathrm{P} & & \mathrm{Kt} \times \mathrm{P} \quad \text { (4) } \\ \mathrm{B} \cdot \mathrm{K} 2 & \text { (3) } & \mathrm{B} \cdot \mathrm{K} 2!\end{array}$
$6 \frac{\mathrm{~B}-\mathrm{K} 3}{0.0}$
$\frac{\mathrm{B} \cdot \mathrm{Q3}}{0.0 \quad \text { (5) }}$
$\frac{0.0 .0}{\mathrm{Kt}-\mathrm{B} 3}$
$\frac{\mathrm{Q} \cdot \mathrm{Q} 2}{\mathrm{P} \cdot \mathrm{QR} 3}$
B-Q3+
9

10
11

5

7

$8 \frac{\mathrm{Q} \cdot \mathrm{Q} 2}{\mathrm{P} \cdot \mathrm{QR} 3}$
$\frac{\text { P.B4 }}{\text { B-Kt5 }}$
$\frac{\mathrm{Kt} \text {-B3 }}{\mathrm{P} \text {-133 }}$
P-KR3+

3
4
5
0.0

P-B4 (6)
KKt-K2
Q-Kt3
K-Rsq !
$\overline{\mathrm{Kt}-\mathrm{B3}}$
P-KB4+

$\overline{\mathrm{B}-\mathrm{Kt5} \quad(9)^{i}}$
$\frac{\mathrm{K} t \times \mathrm{P}}{\mathrm{B} \times \mathrm{K} t}$
$\frac{\mathrm{QP} \times \mathrm{B}}{\mathrm{P} \cdot \mathrm{Q} 3}$
Kt -B3
$\overline{\mathrm{Kt} \times \mathrm{P}}$
B.Q3
$\overline{\mathrm{Kt}}$-KB3
$\frac{0.0+}{0.0}$
(8)
$\overline{\mathrm{B} \times \mathrm{B}}$
$\frac{\mathrm{Kt} \cdot \mathrm{QB} 3}{\mathrm{Q} \cdot \mathrm{Qsq}}$
$\frac{\mathrm{B} \cdot \mathrm{B} 4-}{\mathrm{Kt} \cdot \mathrm{R} 3-}$
(1) This variation may arise in the Philidor Defence by 1 P.K4, P.K4; 2 Kt -KBS, P-Q3; 3 P-Q4, Kt-KB3; 4 Kt-B3.
(2) Or 4 Kt -Q2, followed by P-QB3, if, and when necessary.
(3) Mason against Bird played 5 B-Q2, which is a form of the Philidor defence,
(4) The Philidor form is 1 P.K4, P.K4; $2 \mathrm{Kt}-\mathrm{KB3} 3, \mathrm{P} . \mathrm{Q3} ; 3$ P-Q4, $\mathrm{P} \times \mathrm{P}$; $4 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}$-KB3; $5 \mathrm{Kt}-\mathrm{QB} 3$.
(5) $6 \ldots$ Kt.B3; $7 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $80.0,0.0$; $9 \mathrm{P} . \mathrm{B} 4, \mathrm{P}-\mathrm{Q4} ; 10 \mathrm{P}-\mathrm{K} 5$, Bch; $11 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt}$-Kt5; 12 Q-Ksq, P-B4; 13 Kt -Qsq, B-K3; $14 \mathrm{Kt}-\mathrm{K} 3, \mathrm{Kt}-\mathrm{R} 3$ (Judd v. Blackburne.)
(6) Steinitz prefers 7 .., P-Q4, but the development is still in White's favour.
(7) Better than 6 B-KB4, which interferes with the advance of White's KB Pawn. (C.E.R.) The Philidor form is 1 P-K4, P-K4; 2 Kt-KB3, P-Q3। 3 B-B4. B-K2; $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \mathrm{KB} 3: 6 \mathrm{Kt}-\mathrm{QB} 3$.
(8) Or $9 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Q} 2$.
(9) If 3 .., B-B4, White may play 4 B-QB4 (Giuoco Piano), 4 P-Q4 (Scotch game), or $4 \mathrm{Kt} \times$ P. (Petrofí)

Table 13.-THE THREE KNIGHTG' GAME.

1 P.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-QB3; $3 \mathrm{Kt} \cdot \mathrm{B} 3$.

	6	7	8	9	10
3	P-KKt9			B-B4 (8)	
4	P-Q4		B-Kt5 (7)	$\mathrm{Kt} \times \mathrm{P}$!	
	$\mathrm{P} \times \mathrm{P}$		B-Kt2	Kt $\times \mathrm{Kt}$	$\overline{\mathrm{B} \times \text { Pch }}$
5	$\underline{\mathrm{Kt} \times \mathrm{P} \quad \text { (1) }}$		P-Q3	P-Q4	$\mathrm{K} \times \mathrm{B}$
	B-Kt2		Kt-KB3	B-Q3	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
6	B-K3 (2)		$\mathrm{B} \times \mathrm{Kt}$	$\mathrm{P} \times \mathrm{Kt}$	P.Q4
	Kt-B3 (3)		$\overline{\mathrm{QP} \times \mathrm{B}}$	$\overline{\mathrm{B} \times \mathrm{P}}$	$\overline{\text { Q-B3ch (10) }}$
7	$\mathrm{Kt} \times \mathrm{Kt}$	B-K2	$\underline{\mathrm{K} \times \mathrm{P}}$	B.Q3 (9)	K-Ktsq (11)
	$\overline{\mathrm{KtP} \times \mathrm{Kt}}$	0.0	$\overline{\mathrm{Kt} \times \mathrm{P}}$	Kt-K2	Kt-Kt5
8	P-K5	$0 \cdot 0 \quad$ (6)	$\underline{\mathrm{Kt} \times \mathrm{Kt}}$	0.0	Q-Q2
	Kt-Ktsq	Kt-K2	$\overline{\mathrm{B} \times \mathrm{Kt}}$	P-QB3	Kt-K2
9	P.KB4	B.B3 -	B-R6	Q-R5+	P-KR3+
	P-Q3 (4)	$\overline{\mathrm{P} \cdot \mathrm{Q} 4}$ -	$\mathrm{B} \times \mathrm{KtP}$		
10	Q-B3		Q-K2		
	B-Q2		Q-K2		
	$\underline{0.0 .0+(5)}$		$\underline{\text { R-QKtsq }}$ +		

(1) 5 Kt-Q5, B-Kt2; 6 B.KKt5, QKt-K2; $7 \mathrm{Kt} \times$ QP. (Rosenthal v. Steinitz.)
(2) $6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{KtP} \times \mathrm{Kt}$; $7 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{K} 2$; 80.0 , P.Q3; $9 \mathrm{P} . \mathrm{B} 4,0.0$; 10 P-KR3, P-KR3; 11 B-K3, K-R2; 12 Q-Q2, \&c.
(3) 6 KKt-K2; 7 Q-Q2, O-O; 8 O-O-O, P-Q3; 9 B-K2, B-K3; 10 P-B4+. Steinitz proposes 7 P-KR4, P-KR3; 8 P-B4, \&c.
(4) If $9 \ldots, \mathrm{R}-\mathrm{Ktsq}$; $10 \mathrm{~B}-\mathrm{B} 4, \mathrm{R} \times \mathrm{P}$? ; $11 \mathrm{~B} \cdot \mathrm{Kt} 3, \& \mathrm{c}$.
(5) If $11 \ldots, \mathrm{P} \times \mathrm{P}$; $12 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$ or Kt-K2; $13 \mathrm{~B}-\mathrm{QB} 4$. (M. C. I.)
(6) Or 8 Q-Q2, to follow with O-O-O, and attack with Pawns on King's side.
(7) 4 B-B4, B-Kt2; 5 P-Q3, Kt-B3; 6 B-K3, P-Q3; 7 P-KR3, ${ }^{\circ}$ P-KR3; 8 Q-Q2, Q-K2; 9 O-O, P-KKt4; 10 Kt -R2. (Lee v. Burn.)
(8) If 3 B-Kt5; $4 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{B} 3$; $5 \mathrm{Kt} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{Kt}$; $6 \mathrm{P}-\mathrm{B} 31 \mathrm{Kt}-\mathrm{B} 3 ; 7 \mathrm{~B}-\mathrm{Kt5}$. A game Berger v. Frölich runs:-3.., P-Q3! 4 B-Kt5, B-Kt5; 5 Kt-Q5, KKt-K2; 6 P-B3, P-QR3; 7 B-R4, P-QKt4; . 8 B-Kt3, Kt-R4; $9 \mathrm{Kt} \times \mathrm{KP}, \mathrm{B} \times \mathrm{Q}$; $10 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}$, $\mathrm{P} \times \mathrm{Kt}$; 11 B mates.
(9) Or 7 Kt-K2, P-QB3; 8 P.KB4, E-B2. (C. E. R.)
(10) 6 .., Kt-Kt3; 7 B-QB4, P-Q3; 8 R-Bsq, B-K3; $9 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$ 10 Q-Kt4+.
(11) Or 7 K -K.sq. (Handbuch.)

SECTION VII.

$$
\begin{aligned}
& \text { STAUNAOM'S OPENING. } \\
& 1 \text { P-K4, P•K4; 2.Kt-KB3, Kt-QB3; } 3 \text { P-B3. }
\end{aligned}
$$

THE Handbuch styles this development the English Game. We call it Staunton's Opening, to distinguish it from that commencing 1 P-QB4, which is also known as the English Opening. The move 3 P-QB3 dates from the Göttingen MS. Mr. Staunton thought highly of it: he played it in his match with Harrwitz, and considered that analysers had not done justice to it. A year or two later in the Handbook (1847) he prophesied that it would attain a higher place in the category of legitimate openings than had previously been assigned to it. He did not take into account the superior claims of Kt-QB3, which has superseded the Pawn's move, and has, in fact, taken the place in public opinion that Staunton prognosticated for the "QBP one" game.

The object of the move 3 P-QB3 is to turn the opening into the Ruy Lopez' Knight's Game, or the Giuoco Piano, according to Black's play. But the second player is not obliged to adopt either alternative. He may base his action on the purely preparatory character of White's move, and commence a counter attack by $3 \ldots, \mathrm{P}-\mathrm{KB} 4$, or $3 \ldots, \mathrm{P}-\mathrm{Q} 4$. The former line of play is treated in Cols. 1-5. It is the Philidor Defence, with the advantage of having the QKt out. This counter attack is met by the first player with 4 P-Q4, which, as has been shown in the Philidor, is the strongest reply. In Staunton's Opening it is made more powerful by the preliminary advance of the QB Pawn, and White ought to obtain the superiority. This is not the case with the counter attack springing from 3 ..., P-Q4.

According to Mr. Potter "the most powerful enemy of Staunton's attack'" is $3 \ldots$, Kt-KB3 (Cols. 14-20). All these variations lead to curious and remarkable positions, upon which much attention has been bestowed by analysts and players. The result shows itself in the subtle character of the play on both sides, some of the moves being so far under the surface as to be exceptions to the ordinary rules of development.

The defence is diffeult for routine players, and the opening is consequently useful for occasional practice by those who are acguainted with its peculiarities.

Table 14.-STAUNTON'S OPENING.
1 P.K4, P.K4; 2Kt-KB3,.Kt-QB3; 3 P.B3, P.B4(1); 4 P-Q4 (2).

5

4	P-Q3!				P×KP?
6	P-Q5 (8)		$\mathrm{P} \times \mathrm{KP}$		$\mathrm{Kt} \times \mathrm{P}$
	$\mathbf{P} \times \mathrm{P}$	QKt-K2	$\widehat{\mathrm{BP} \times \mathrm{P}}$		Kt-B3
6	Kt-Kt5	B-QKt5ch	Kt-Kt5		B-KKt5
	$\overline{\mathrm{Kt} \text {-Ktsq }}$	P-B3 (5)	P-Q4!		P-Q3 (10)
7	$\mathrm{Kt} \times \mathrm{KP}$	$\mathrm{P} \times \mathrm{QBP}$	P-K6 (dia)		$\mathrm{Kt} \times \mathrm{Kt}$
	Kt-KB8	$\overline{\mathrm{KtP} \times \mathrm{P}}$	Kt-K4 (7)	Kt-R3 !	$\overline{\mathrm{P} \times \mathrm{Kt}}$
8	B-Q3	B-QB4!	Q-Q4	B-Kt5	Kt-Q2
	$\overline{\mathrm{Kt} \times \mathrm{P}}$	Q-Q2 (6)	Q-Q3	Q-Q3	P-Q4
9	Kt-Kt5		Kt-QR3	Q-R5ch	P.B3+
	Kt-KB3		$\overline{\text { P-B3 ! }}$	P-KKt3	
10	$\mathrm{Kt} \times \mathrm{P}$		B-KB4 (8)	Q-R3 (dia)	
10	Kt $\times \mathrm{Kt}$		Kt-Q6ch		
11	Q-R5ch		$\mathrm{B} \times \mathrm{Kt}$		
	K-Q2		$\overline{\mathbf{Q} \times \mathrm{B}}$		
12	$\mathrm{B} \times \mathrm{Kt}$		Kt -B7		
2	P-KKt3		$\overline{\mathrm{K}}$-R3		
18	Q-Kt4ch		Kt \times R		
d	$\overline{\text { E.B }}$ ((${ }^{\text {(}}$		$\overline{\text { Et-B4 (9) }}$		

Notes to Table 14.

(1) Ponziani's Counter Attack. If 3 .., P-Q3; 4 B-Kt5, B-Q2; 5 P-Q4, Kt-B3. The position may arise in the Ruy Lopez' Knight's Game, by 3 B-Kt5, P-Q3; 4 P-Q4, B-Q2; 5 P-B3, Kt-B3.
(2) If $4 \mathrm{P} \times \mathrm{P}$? P-Q3; $5 \mathrm{P}-\mathrm{Q4}, \mathrm{P}-\mathrm{K} 5$; $6 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B} \times \mathrm{P} ; 7 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 4$; $8 \mathrm{Kt} \times \mathrm{KP}, \mathrm{B} \times \mathrm{Kt} ; 9 \mathrm{Q}-\mathrm{R4ch}$, \&c.: if $5 \mathrm{~B}-\mathrm{Kt5}, \mathrm{~B} \times \mathrm{P} ; 6 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{Kt} \times \mathrm{P}$, \&c. If 5 P-KKt4, P-KR4; $6 \mathrm{Kt}-\mathrm{Ktsq}, \mathrm{P} \times \mathrm{P}$ (or $\mathrm{Q}-\mathrm{R} 5!$ C. E. R.); $7 \mathrm{Q} \times \mathrm{P}, \mathrm{KKt}$-K2; $7 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P}-\mathrm{KKt3+}$. If $4 \mathrm{~B}-\mathrm{Kt5}, \mathrm{P} \times \mathrm{KP}$; $5 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt} 4+$.
(3) Dr. Schmidt's variation. The defence 4 .., P-Q3 was given by E. Morphy. If $5 \mathrm{~B}-\mathrm{QKt5}, \mathrm{P} \times \mathrm{KP} ; 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 7 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{B} ; 8 \mathrm{Q}$-R5ch, K-Q2; 9 Q-B5ch, K-K2; 10 Q-Kt5ch, K-Q2; 11 Q-B5ch, K-K2; drawn by perpetual check: or $8 \ldots$ KK2; 9 B-Kt5ch, Kt-B3; $10 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 4,11 \mathrm{~B}-\mathrm{R4}, \mathrm{~B}-\mathrm{R} 3$ and the Pawn at QB3 is a disadvantage to White.
(4) Mr. Fraser continues by $14 \mathrm{Q}-\mathrm{QB} 4 \mathrm{ch}$ 1, K-Q2; $15 \mathrm{~B} \times \mathrm{P}+$.
(5) Or $6 \ldots, \mathrm{~B}-\mathrm{Q} 2$; 7 Q-Kt3, P-B3.
(6) The Handbuch plays $8 \ldots, \mathrm{P} \times \mathrm{P}$; $9 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4110 \mathrm{~B}-\mathrm{K} 2+.8$.., Q-Q2 is given by Mr. Ranken.
(7) $7 \ldots, \mathrm{~B}-\mathrm{B} 4$; $8 \mathrm{Kt} \times \mathrm{KP}, \mathrm{B}-\mathrm{K} 2$; $9 \mathrm{Kt}-\mathrm{Kt3}, \mathrm{~B} \times \mathrm{P}$; $10 \mathrm{~B}-\mathrm{Q} 3$. Compare Cols. 2-3, p. 39.
(8) Or $10 \mathrm{P}-\mathrm{KB4} 4, \mathrm{P} \times \mathrm{P}$ en pas; $11 \mathrm{~B}-\mathrm{KB} 4, \mathrm{P} \times \mathrm{P}, \& \mathrm{c}$. (Wormald.)
(9) 14 Q-R4, B-B4: 15 O-O, B \times KP ; 16 B-K2, K-K2; and Black is considered to have the advantage.
(10) If $6 \ldots, \mathrm{~B}-\mathrm{K} 2$; $7 \mathrm{~B}-\mathrm{Kt5}, \mathrm{O}-0$; $8 \mathrm{Q}-\mathrm{Kt3ch}, \mathrm{P}-\mathrm{Q} 4$; $9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{~B} \times \mathrm{P}$, $\mathrm{B}-\mathrm{K} 3$; $11 \mathrm{~B} \times \mathrm{R}, \mathrm{Q} \times \mathrm{B}$; $12 \mathrm{Kt}-\mathrm{R} 3+$. Rosenthal v. Anderssen played $12 \mathrm{Kt}-\mathrm{Q} 2$ which was continued thus:-12 .., B-Q3; 13 P-KR3? Kt-R4; 14 B-K3, Kt-B5; $15 \mathrm{~B} \times \mathrm{Kt} . \mathrm{B} \times \mathrm{B} ; 16$ O-O-O?, P-QR4; 17 P-R3? (a), P-R5; 18 Q-R2, Q-R3; 19 KR-Ksq, P-B4!; 20 P-B4, $\mathrm{P} \times \mathrm{QP}$; 21 K-Ktsq, $\mathrm{P} \times \mathrm{P}$; $22 \mathrm{R} \times \mathrm{P}, \mathrm{B}-\mathrm{B} 4$; $23 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B} \times \mathrm{Kt}$; $24 \mathrm{R} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 3$; $25 \mathrm{R}(\mathrm{Q} 4) \times \mathrm{B}, \mathrm{P}-\mathrm{B} 6 ; 26 \mathrm{R}-\mathrm{Q} 6, \mathrm{Q} \times \mathrm{R}$; $27 \mathrm{R} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q} ; 28 \mathrm{~K} \times \mathrm{B}, \mathrm{R} \times \mathrm{P}$; $29 \mathrm{~K}-\mathrm{Ktsq}, \mathrm{R} \times \mathrm{QKtPch}: 30 \mathrm{~K}-\mathrm{Rsq}, \mathrm{R} \times \mathrm{P}$; 31 R-QB6, R-Kt6; 32 P-R4, P-R4; 33 K-Ktsq, R-Kt5 and wins.
(a) White's 17th move should have been P-QR4. (Handbuch.)
(Col. 3.)

After White's 7th move.
(Col. 4.)

After White's 10th move.

Table 15.-STAUNTON'S OPENING.

1P.K4, P-K4; 2 Kt-KB3, Kt-QB8; 3 P-B8, P.Q4; 4 B. Kt $5, \mathbf{P} \times \mathbf{P}(1) ; \quad 5 \mathrm{Kt} \times \mathrm{P}, \mathbf{Q} \cdot \mathbf{Q} 4$.

	6	7	8	9	10
6	Q-R4				B \times Ktch
	KKt-K2 (2)				$\overline{\mathrm{P} \times \mathrm{B}}$
7	$\mathrm{Kt} \times \mathrm{Kt}$		P.KB4		Q-R4
γ	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$		$\overline{\mathrm{P} \times \mathrm{P} \text { en pas }}$	B-K3	Kt-K2
8	$0.0 \quad$ (3)		$\mathrm{Kt} \times \mathrm{P}$ (B6)	B-B4	Kt-B4
-	B-Q2	B-Q3	P-QR3	Q-Q3	B-K3
9	R-Ksq	R-Ksq	B-K2 ! (5)	$B \times B$	QKt-R3 (8)
\bigcirc	0.0.0	0.0	Kt-Kt3	$\overline{\mathrm{Q} \times \mathrm{B}} \quad \mathbf{(7)}$	Kt-B4
10	$\underline{R} \times \mathbf{P}$	$\mathrm{B} \times \mathrm{Kt}$	$0.0 \quad$ (6)		Kt-K3
	P-QB8 +	$\overline{\mathbf{P} \times \mathrm{B}}$			$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
11		Q $\times \mathrm{KP}$			QP $\times \mathrm{Kt}$
11		Q-KR4 (4)			$\overline{\mathrm{B} \times \mathrm{Kt}}$ (9)

(1) Mr. Wayte suggests 4 .., P-B3; (if) $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; 6 Qch, K-K2; $7 \mathrm{~B} \times \mathrm{Kt}$, $\mathrm{P} \times \mathrm{B} ; 8 \mathrm{Q} \times \mathrm{KPch}, \mathrm{K}-\mathrm{B} 2, \& \mathrm{c}$.: if $5 \mathrm{Q}-\mathrm{R} 4, \mathrm{KKt}-\mathrm{K} 2$ and the position is that reached by 4 Q-R4, P-B3; 5 B-Kt5, KKt-K2.
(2) $6 \ldots, \mathrm{~B}-\mathrm{Q} 2 ; 7 \mathrm{Kt} \times \mathrm{B}, \mathrm{K} \times \mathrm{Kt}$; $80-0$, $\mathrm{B}-\mathrm{Q} 3$ (Fraser); or $8 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{B}$; 9 Kt-R3. (Handbuch.)
(3) If 8 B-B4, Q-KKt4.
(4) Continued 12 P-KKt3, B-Kt5; 13 P-Q4, B-B6; 14 Q-Q3, QR-Ksq; 15 B. K3? R-K5; 16 Q -Bsq, R-R5; $17 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{R} \times \mathrm{RP}$ and wins. (Zukertort.)
(5) If 9 B-B4, Q-K5ch; $10 \mathrm{~K}-\mathrm{B} 2, \mathrm{~B}-\mathrm{K} 3$; 11 P-Q3, Q-B4!
(6) If $10 \ldots, \mathrm{~B}-\mathrm{Q} 2$; $11 \mathrm{~B}-\mathrm{B4}, \mathrm{~B}-\mathrm{B4} \mathrm{ch}$ (if $11 \ldots, \mathrm{Q}-\mathrm{Q} 3$; 12 Q-Kt3); $12 \mathrm{P}-\mathrm{Q} 4$, $\mathrm{Kt} \times \mathrm{P}$; $13 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Pch} ; 14 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Q}-\mathrm{QB} 4 ; 15 \mathrm{Q}-\mathrm{Kt} 3+$. (Fraser.)
(7) If now $10 \mathrm{Q} \times \mathrm{KP}, \mathrm{P}-\mathrm{B} 3$; $11 \mathrm{Q}-\mathrm{B} 4, \mathrm{Kt}-\mathrm{Q} 4$ winning a piece.
(8) If $9 \mathrm{Kt}-\mathrm{K} 3, \mathrm{Q}-\mathrm{Q} 6+$.
(9) $12 \mathrm{Q} \times \mathrm{B}, \mathrm{Q}-\mathrm{Q} 6$; $13 \mathrm{Q}-\mathrm{R4}$, B-B5; $14 \mathrm{Q}-\mathrm{Qsq}$, and though White has a little the worst, yet with Bishops on different colours he will be able to draw. (C. E. R.) If 14 Q \times Pch, K-Qsq; 15 Q \times Rch, K-Q2t. (Fraser.)

Table 16.-STAUNTON'S OPENING.

(Col. 12.)

After Black's 5th move.

Notes to Table 16.

(1) 8 .., B-Q3; 9 B-Kt5? $\mathrm{P} \times \mathrm{B}$; $10 \mathrm{Q} \times \mathrm{KPch}$ (Janssens v. Brien) Kt-K2; 11 Q \times R, P-QB3; 12 P-Q3, O-O; 13 B-K3, B-Kt2: $14 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{QB4}$; 15 Q-R3, $\mathrm{QB} \times \mathrm{P}+$.
(2) See Diagram. 6 O-O, B-Q2 (if $\mathrm{P} \times \mathrm{P}$; $7 \mathrm{Q} \times \mathrm{KP}, \mathrm{B}-\mathrm{B4}$; $8 \mathrm{~B} \times \mathrm{Ktch}$, \&c.); 7 P-Q3, P-QR3; $8 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 9 \mathrm{Q}-\mathrm{B} 2, \mathrm{Q}-\mathrm{Q} 2 ; 10 \mathrm{~B}-\mathrm{K} 3, \mathrm{P}-\mathrm{KR} 4 ; 11$ QKt-Q2, P-R5; 12 P-KR3, O-O-O (Von Popiel $\mathrm{\nabla}$. Schwartz).

Or $6 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P} ; 7 \mathrm{O}-\mathrm{O}(\dot{a})$, $\mathrm{B}-\mathrm{Q} 2 ; 8 \mathrm{P}-\mathrm{Q} 4!\mathrm{P} \times \mathrm{P}!(b) ; 9 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}$; K4 ! ; $10 \mathrm{~B} \times \mathrm{Bch}, \mathrm{Q} \times \mathrm{B}$; $11 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{Kt} \times \mathrm{Ktch}$; $12 \mathrm{Q} \times \mathrm{Kt}, \mathrm{O}-\mathrm{O}-\mathrm{O} ; 13 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B4}$; $14 \mathrm{~B}-\mathrm{K} 3, \mathrm{~B}-\mathrm{Q} 3$; $15 \mathrm{P}-\mathrm{QR4}=$. (Alapin.)
(a) 7 B-B4, Q-K5ch; $8 \mathrm{~K}-\mathrm{Bsq}, \mathrm{B}-\mathrm{K} 3!$; $9 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B} \times \mathrm{B}$; $10 \mathrm{Q} \times \mathrm{B}$, (if) $\mathrm{P} \times \mathrm{P}$; $11 \mathrm{P} \times \mathrm{P}, \mathrm{O}-\mathrm{O}-\mathrm{O}$; $12 \mathrm{~B}-\mathrm{K} 3$, \&c.
(b) $8 . .$, P-K5 is not so good; 9 KKt-Q2, P-B4; 10 R-Ksq, P-QR3: 11 B-B4, Q-R4; 12 Q-B2, 0-0-0, \&c.
(3) $7 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $8 \mathrm{Q}-\mathrm{K} 4$ (c), Kt-Kt3; 9 P-Q4, P-QR3; 10 B-K2, P-B4; 11 Q-B2, P-K5; $12 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Q}-\mathrm{B} 31$; $13 \mathrm{Kt}-\mathrm{KR} 3, \mathrm{P}-\mathrm{R} 3$ (Rosenthal v. Zukertort). (c) 8 Q-Kt3, Kt-Kt3; 9 B-K3, B-Q3; 10 QKt-Q2, Q-K2; 110.0 (Winawer ∇. Bier).
(4) Or $9 \ldots, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{P} \times \mathrm{P}$, Kt-R4.
(5) Or 11 B-K3, Kt-KKt3; 12 R-Qsq, R-Qsq; 13 P-Q4: or $13 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$ 14 QKt-Q2. (Potter.)
(6) Mr. Potter suggests, in reply to Jaenisch's move, (3 .., Kt-B3;) 4 Q-R4, P-QR3; 5 B-B4 after which, he says, Black has nothing better than B-K2, or B.B4. Mr. Wayte prefers 4 Q-B2.
(7) If $4 \ldots$ P-Q3; 5 P-Q5+. If $4 \mathrm{P} \times \mathrm{P} ; 5 \mathrm{P}-\mathrm{K} 5+$.
(8) If $5 \ldots, \mathrm{P} \times \mathrm{KP} ?$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 2 ; 7 \mathrm{Q}-\mathrm{R} 4, \mathrm{Kt} \times \mathrm{Kt} ; 8 \mathrm{P} \times \mathrm{Kt}+$.
(9) 7 Q-Kt3, Q-K2? (d); $8 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt}$; $9 \mathrm{Q} \times \mathrm{KtP}(\mathrm{Q} \times \mathrm{KKt}$), Kt-B6oh; 10 K -Bsq. Mate in two moves. (Grundy v. Ranken).
(d) $7 \ldots$ Kt-Q3 (e) ; $8 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 90-0, \mathrm{~B}-\mathrm{K} 2=$; or $8 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{B} ; 9 \mathrm{Kt} \times \mathrm{B}$, $\mathrm{Kt}(\mathrm{Kt} 4) \times \mathrm{QP}$; ' $10 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt}=$.
(e) $7 \ldots, \mathrm{Kt} \times \mathrm{Kt} ; 8 \mathrm{Q} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2 ; 9 \mathrm{Q} \times \mathrm{Kt}(\mathrm{K} 4), \mathrm{B} \times \mathrm{B} ; 10 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Q} ; 11 \mathrm{P} \times \mathrm{Q}$, O-O-O; $12 \mathrm{~B}-\mathrm{K} 3, \mathrm{R}-\mathrm{Ksq}$; $13 \mathrm{Kt}-\mathrm{Q} 2=$.
(10) The idea of giving up a piece is due to Mr. Fraser. $6 \ldots, \mathrm{Kt} \times \mathrm{KBP} ; 7$ Q-Q5, $\mathrm{B}-\mathrm{Kt3}$; $8 \mathrm{~B}-\mathrm{QB4}$ (for $8 \mathrm{P} \times \mathrm{KtP}$ see Col. T6), $\mathrm{O}-\mathrm{O} ; 9 \mathrm{P} \times \mathrm{KtP}, \mathrm{B} \times \mathrm{P} ; 10 \mathrm{Q} \times \mathrm{B}$, $\mathrm{Kt} \times \mathrm{R} ; 11 \mathrm{~B}-\mathrm{KKt5}, \mathrm{Q}-\mathrm{Ksq} ; 12 \mathrm{~B}-\mathrm{R} 4, \mathrm{P}-\mathrm{QB} 3 ; 13$ QKt-Q2, R-Ktsq; 14 Q-R6, P-Q4; 15 B-Kt3, P-K5; $16 \mathrm{Kt}-\mathrm{Q4}, \mathrm{Kt}-\mathrm{B} 7$, drawn. (Ranken v. Wayte.)
(11) Or $7 \ldots$ P-Q4 (preferred by Staunton) ; $8 \mathrm{P} \times \mathrm{KtP}, \mathrm{B} \times \mathrm{P} ; 9 \mathrm{Q}-\mathrm{R4ch}, \mathrm{P}-\mathrm{QB} 3$; 10 QKt-Q2, P-KB4; $11 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{BP} \times \mathrm{Kt}$; $12 \mathrm{~K} \times \mathrm{B}, \mathrm{O}-\mathrm{O}$; $13 \mathrm{~B}-\mathrm{K} 3, \mathrm{P} \times \mathrm{Kt}$; 14 P-KKt3, Q-Bsq; 15 B-B5, R-B3; 16 R-Qsq, P-QR4; 17 R-Q2, B-R3; $18 \mathrm{~B} \times \mathrm{B}$, $\mathrm{Q} \times \mathrm{B} ; 19 \mathrm{R}-\mathrm{Ksq}, \mathrm{P}-\mathrm{K} 5 ; 20 \mathrm{P}-\mathrm{QR} 3$ (P-B4 I). (Wayte v. Ranken.)
(12) If $11 . .$. , B-Kt3, the Handbuch continues 12 B-KKt5: Salvioli prefers 12 K-Qsq.

Table 17.-STAUNTON'S OPENING.

1P-K4, P.K4; 2 Kt-KB 3, Kt-QB3; 3 P.B3.

16
17
18
19
20
3
$\overline{\text { Kt-B3 }}$
$4 \frac{\mathrm{P}-\mathrm{Q} 4}{\mathrm{Kt} \times \mathrm{KP}}$

5	$\mathrm{P}-\mathrm{Q} 5$
6	$\frac{\mathrm{P} \times \mathrm{Kt}}{\mathrm{K} 4} \mathrm{~K} \times \mathrm{KBP}$

$7 \frac{\text { Q-Q5 }}{\text { B-Kt3 }}$
$\frac{\mathrm{P} \times \mathrm{KtP}}{\mathrm{B} \times \mathrm{P}}$
$\frac{\mathrm{Q} \times \mathrm{B}}{\mathrm{K} t \times \mathrm{R}}$
$\frac{\text { B-KKt5 }}{\text { P-KB3 }}$
B-R4
$\overline{\text { P-Kt4 (1) }}$
$\mathrm{K} t \times \mathrm{KtP}$
$\overline{\mathrm{P} \times \mathrm{Kt}}$
$B \times P$
$\overline{\text { R-QKtsq }}$
$\frac{\mathrm{B} \times \mathrm{Q}}{\mathrm{R} \times \mathrm{Q}}$
B-R4
15 R-Bsq+
(1) 11 .., P-QB3; 12 QKt-Q2 1 R-QKtsq ; 13 Q-R6, P-KKt4, \&c. If 12 P-R4, P-QR4 wins Queen. If $12 \mathrm{Kt} \times \mathrm{P}, \mathrm{R}-\mathrm{QKtsq} ; 13 \mathrm{Q}-\mathrm{R} 6, \mathrm{Q}-\mathrm{K} 2+$ ((C. E. R.)
(2) Or 9 B-K2! (Fraser.) If 9 .., B-Kt3; 10 B-KKt5 (Tschigorin.)
(3) Or 13 B-KKt5. (C. E. R.)
(4) If $9 \mathrm{Q}-\mathrm{B4}, \mathrm{P}-\mathrm{Q} 4+$. If $9 \mathrm{Q}-\mathrm{Kt3}, \mathrm{P}-\mathrm{Q} 4 ; 10 \mathrm{P} \times \mathrm{P}$ en paz, $\mathrm{Q} \times \mathrm{P} ; 11 \mathrm{Kt} \times \mathrm{Kt}$, P×Kt; $12 \mathrm{~K} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}+$. (Froser.)
(5) 5 Q-K2, Kt-Q3; 6 KtxF . (Potter.) This variation may. occur in the Ray Lopez' Kt's Game.

SECTION VIII.

THE SCOTCH GAME OR GAMBIT.

1 P-K4. P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3$; 3 P-Q4.

THE Scotch Game or Gambit received its modern title from having been adoptod with success, both in attack and defence, by the Scotch players in the celebrated match by correspondence between Edinburgh and London in 1824-1826. The opening was noticed by the Italian writers Ercole del Rio (1750) and Lolli (1763); but it did not come into general practice until after the above mentioned match. The advantage of this early advance of the Queen's Pawn is that it sets free at once White's Queen, and Queen's Bishop, and entirely prevents the formation of a centre by Black, since he has nothing better to do than to take the Pawn. Upon White's retaking with Knight, which is now thought to be the best contination, Black has three main lines of defence, Q-R5 (Cols. $6-15), \mathrm{B}-\mathrm{B} 4$ (Cols. 16-29), and Kt-B3 (Cols. 81-35); though he may also without danger exchange Knights, and then play Kt-K2 (Col. 5). Modern analysis has shown that the first named move yields Black a very difficult game, while by either the gecond or the third he may obtain a satisfactory defencc. Nearly all the variations of the Scotch Gambit lead to interesting positions. A remarkable feature in this opening is the number of ways of attack and defence that have been adrocated by experts at various times. As soon as one method has been catisfactorily met, another equally eligible has sprung up to take its place, showing that the resources of the opening are practically inexliaustible.

Table 18.-THE SCOTOH GAME.

1 P-K4, P.E4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-QB3; 3 P.Q4, Kt×P. (1)

	1	2	3	4	5
	K t $\times \mathrm{P}$				Kt \times Kt
4	$\overline{\mathrm{Kt}}$-K3				$\overline{\mathrm{P} \times \text { Kt }}$
	P-KB4 (2)	B-QB4			$\mathbf{Q} \times \mathbf{P}$
5	B-B4 (3)	P-QB3			Kt-K2 (7)
	B-B4 (4)	O-0	$\underline{\mathrm{B}} \times \mathrm{Kt}$	$\mathrm{Kt} \times \mathrm{BP}(5)$	B-QB4 (8)
6	P-Q3	Kt-B3	Q-R4ch	$\overline{\mathrm{K} \times \mathrm{Kt}}$	Kt-B3
	B-Kt5ch	Kt-QB3	Kt-QB3	B \times Ktch	Q-Q5
7	P-QB3	B-B4	$\overline{\text { Q } \times \text { KKt }}$	$\bar{K} \times \mathrm{B}$	Q-B3
	Kt \times QBP	K-Rsq	B-Kt3	0.0	O.0 (9)
8	$\overline{\mathrm{P} \times \mathrm{Kt}}$	P-Q3	B-B4	P-Q4	B-Kt5 (10)
	$\mathrm{B} \times \mathrm{Pch}$	Kt-Q3	O.O-	R-Ksq	P-QB3-
9	B-Q2	B-Kt3	-	K-B2	B-R4 -
	$\mathrm{B} \times \mathrm{R}$ -	P-B4 -		B-K3	
10	Q \times B -	0.0 -		(6)	

(1) 3 ... P-Q3; $4 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 5 \mathrm{Q} \times \mathrm{Qch} . \mathrm{K} \times \mathrm{Q}$; $6 \mathrm{Kt}-\mathrm{B} 3$ threatening B-KKt5ch, and 0.O-Och.
(2) Or 5 Kt-QB3, B-Kt5 (if 5 ..,P-Q3; 6 B-Kt5ch); 6 B-Q2, Kt-B3; 7 P-B3, O-O; 8 B-QE4, P-Q3; $9 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{~B} \times \mathrm{Kt} ; 10 \mathrm{~B} \times \mathrm{B}$ (Göring v. Paulsen.)
(3) If 5 .., Kt-B3; 6 B-Q3, Kt-B4 (Steinitz); 7 B-B4 (Blake.)
(4) If 4 Kt -KB3, Q - K 2 (Wormald).
(5) Mr. Cochraine's attack; hazardous, but requiring to be carefully answered.
(6) 10 ..., B-QKt5 (or 10 .., B-K3; Steinitz); 11 P-QB3, B-R4; 12 B-Q4, Kt-B3; 13 P-K5, Kt-K5 + .
(7) 5 .., Q-B3; 6 P-K5, Q-QKt3; $7 \mathrm{~B}-\mathrm{K} 3, \& \mathrm{c}$. ; or $7 \mathrm{Q} \times \mathrm{Q}, \mathrm{RP} \times \mathrm{Q}$; $8 \mathrm{Kt}-\mathrm{B} 3$, threatening Kt-Kt5.
(8) $6 \mathrm{~B}-\mathrm{KKt} 5$ or KB4 mey also be played: or $6 \mathrm{~B}-\mathrm{K} 3, \mathrm{Kt}-\mathrm{B} 3$; $7 \mathrm{Q}-\mathrm{Q} 2$.
(9) Up to this point the moves are those of one of the celebrated correspondence games between Edinburgh and London. The former played 8 kt -B3.
(10) 8 ... [5t-Kt5; 9 Q-Qsq, B-B1. (M. C. I.)

Table 19.-THE SCOTCH GAME. 1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 8 P.Q4, P×P; $4 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \cdot \mathrm{R} 5$. (1)

	6	7	8	9	10
6	$\frac{K_{t-K t 5} \quad(2)}{Q \times K P c h}$		$\overline{\text { B-Kt5ch (6) }}$		
6	B-K3 !	B-K2	P-QB3		B-Q2 (12)
	$\overline{\mathrm{K}-\mathrm{Qsq}}$ (3)	K-Qsq	Q \times KPch		Q \times Pch
7	Kt-Q2	0.0	B-K3 (7)		B-K2
	Q-Kt3	P-QR3	B-R4		K-Qsq
8	Kt-KB3	QKt-B3 (5)	Kt-Q2		0.0
	$\overline{\text { P-QR3 (4) }}$	Q-K4	Q-Kt3	$\overline{\text { Q-K2? (10) }}$	B \times B
9		Kt-Q5 !	Kt-B4	Kt-B4	Kt \times B (18)
		$\overline{\mathrm{P} \times \mathrm{Kt}}$	P-QR3	P-QR3 (11)	Q-KB5
10		B-KB4	$\mathrm{Kt-Q4}$ (8)	Kt-Q4	P-B4
		Q-Q5	B-Kt3	B-Kt3	$\overline{\mathrm{Kt}-\mathrm{B} 3 \text { (14) }}$
11		$\mathrm{B} \times \mathrm{Pch}$	$\mathrm{Kt} \times \mathrm{B} \quad$ (9)	$\mathrm{K} t \times \mathrm{B}$	
		K-Ksq	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$	
12		Q-Ksq+	Kt-B3	$\underline{\mathrm{Kt} \text { - } \mathrm{B}^{+}+}$	
			P-Kt4		
			B-Q3+		

Notes to Table 19.

(1) Mr. Pulling's move, to which the reply by' 5 Kt .Kt5 was introduced by Horwitz.
(2) $5 \mathrm{~B}-\mathrm{K} 3$ is at least as good. If $5 \mathrm{Kt}-\mathrm{QB} 3$, B-Kt5; $6 \mathrm{Q}-\mathrm{Q} 3$ (Kt-Kt5 see a transposition in Note 12), B $\times \mathrm{Ktch}$; $7 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{B} 3+$.
(3) Played by Steinitz in a match game with Martinez (B. C. M. 1884, p. 17). The move with the King appears to be the best way of meeting the attack on his weak QB Pawn. If Black play instead 6 B-QKt5ch, then $7 \mathrm{Kt}-\mathrm{Q} 2$, with the better game.
(4) White has a Pawn short, but has ample compensation in the number and weight of the pieccs that can be brought to bear upon Black's King.
(5) Blackburne v. Burn continued 8 KKt-B3, Q-Ksq; 9 Kt-Q2+. After 8 QKtB3, Q-Ksq; Staunton gives 9 Kt -Q4 as best for White. We follow the Handbook in this column as far as 10 B-KB4. The continuation is from a game De Visser ∇. Blackmar in the Brooklyn Chronicle, vol. III., p. 109.
(6) He may also play 5 .., B-B4: 6 Q-B3, Kt-Q5 (C. E. R.)
(7) Suggested by Mr. Fraser, and analysed by Mr. Ranken (C.P.C. vol. IV., 1880, pp. 10, 123, 226.)
(8) White may play $10 \mathrm{~B}-\mathrm{Q} 3$, and if $\mathrm{Q} \times \mathrm{P}$, then B-K4. The Bishop cennot be taken on account of Kt-Q6ch.
(9) Or $11 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt}$; $12 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$; $13 \mathrm{Q}-\mathrm{Q} 4, \mathrm{Q}-\mathrm{B} 3$; $14 \mathrm{Q} \times \mathrm{KtP}$ (M. C. I.)
(10) Steinitz gives $8 \ldots, \mathrm{Q}-\mathrm{Q} 4!$; (if) $9 \mathrm{Q}-\mathrm{R} 4, \mathrm{P}-\mathrm{QR} 3$; $10 \mathrm{Q} \times \mathrm{B}, \mathrm{Q} \times \mathrm{KKt}$, $11 \mathrm{Q} \times \mathrm{Q}, \mathrm{P} \times \mathrm{Q}=$: but $9 \mathrm{Kt}-\mathrm{B4} 4, \mathrm{Q} \times \mathrm{Qch} ; 10 \mathrm{R} \times \mathrm{Q}, \mathrm{K}-\mathrm{Qsq} ; 11 \mathrm{Kt} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{Kt}$; $12 \mathrm{~B}-\mathrm{KB} 4, \mathrm{P}-\mathrm{Q3} ; 13 \mathrm{Kt} \times \mathrm{BP}, \mathrm{K} \times \mathrm{Kt} ; 14 \mathrm{R} \times \mathrm{P}$, (if) $\mathrm{Kt}-\mathrm{QB} 3$; $15 \mathrm{R}-\mathrm{Q} 5 \mathrm{dis} \mathrm{ch}$; K-Kt3; and White mates neatly in four moves (C. E. R.)
(11) If $9 \ldots$, P-Q3, or K-Qsq, or Q-Qsq, then 10 Q-R4 with a fine attack.
(12) $6 \mathrm{Kt}-\mathrm{Q} 2$ is inferior. If $6 \mathrm{QKt}-\mathrm{B} 3, \mathrm{Q} \times \mathrm{Pch}$; $7 \mathrm{~B}-\mathrm{K} 2, \mathrm{~K}-\mathrm{Qsq}$ I: if $7 \ldots$, $\mathrm{B} \times \mathrm{Ktch}\left(\mathrm{M}_{\mathrm{C}}\right.$ C. I.) ; $8 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{KtP} ; 9 \mathrm{~B}-\mathrm{B} 3, \mathrm{Q}-\mathrm{R} 6 ; 10 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{~K}-\mathrm{Qsq} ; 11 \mathrm{~B}-\mathrm{B} 4$, P-Q3; $12 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} \times \mathrm{Kt} ; 13 \mathrm{Q} \times \mathrm{Pch}$ and wins.
(13) $\mathrm{Q} \times \mathrm{B}, \mathrm{P}-\mathrm{QR} 3$; 10 QKt-B3, Q-K4; $11 \mathrm{Kt}-\mathrm{R} 3, \mathrm{P}-\mathrm{QK} 44$; $12 \mathrm{~B}-\mathrm{B} 3, \mathrm{KKt}-\mathrm{K} 2$; 13 QR-Qsq, R-QKtaq + Against $10 \mathrm{KKt}-\mathrm{B} 3$ Steinitz against Golmayo played Q-KR5.
(14) Played in a correspondence game between Vienna and London, won by the la,tter. Steinitz suggests as playable 10 .., P-QR3; 11 Kt -QB3, KKt-K2; 12 P-KKt3, Q-R31: or 10 .., Kt-R3; (if) $11 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{R}-\mathrm{Ksq}$; $12 \mathrm{P}-\mathrm{KKt3}, \mathrm{Q}-\mathrm{B} 3$; $13 \mathrm{Kt}-\mathrm{B} 3$, P-QKt3+.

Table 20.-THE SCOTCH GAME.

1 P-K4, P.K4; $2 \mathrm{Kt}-\mathrm{KB} 3$, Kt.QB3; $3 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $4 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}$-R5. (Diagram, p. 54.)

(1) If 6 P-KKt3, Q-B3; or if 6 B-K3, Kt-QKt5.
(2) If $9 \mathrm{P}-\mathrm{B} 3, \mathrm{KKt}-\mathrm{K} 4$; $10 \mathrm{Q}-\mathrm{K} 3, \mathrm{~B} \times \mathrm{Kt}$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{QKt} \times \mathrm{P}+$.
(3) The invention of Mr. Fraser (C.P.C., 1877, pp. 1 and 25). It leads to some striking variations, but has not found so much favour as 5 Kt -Kts
(4) If either 6 .., Kt-Kt5, B-B4, P-Q3, Kt-KB3, or Q-K2 Black gets an inferior game. If $6 \ldots, \mathrm{P}-\mathrm{Q} 4$; 7 O-O, B-K3; $8 \mathrm{Kt}-\mathrm{B} 3$, \&c.
(5) Or $9 \mathrm{~B}-\mathrm{QKt5}, \mathrm{Q}-\mathrm{Q4}$; $10 \mathrm{Q}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{Qsq}+$. In a game between Golmayo and Etcinitz the former played $9 \cdot \mathrm{R}-\mathrm{Ksq}$, and the continuation was Q-Q4; $10 \mathrm{Kt}-\mathrm{Q4}$, It $\times \mathrm{Kt}$; $11 \mathrm{P} \times \mathrm{Kt}, \mathrm{O}-\mathrm{O}$; $12 \mathrm{~B}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Q} 3$; $13 \mathrm{P}-\mathrm{QKt} 3+$.
(6) Or 10 TRt-T1, Q-Q4; 11 B-Q2, O-O; $12 \mathrm{~B}-\mathrm{B3}$ (Fraser), Q-QKt4; 13 P-QKt3, E-Q4; $14 \mathrm{P}-\mathrm{B} 4, \mathrm{Q}-\mathrm{Kt} 3$; $15 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}+$. If $15 \mathrm{~B}-\mathrm{K} 3, \mathrm{P}-\mathrm{Q} 5+$ (C. E. R.)
(7) If 7 IUt-Q4, F-QB4; 8 Kt-QB3, Q-Kt3, \&ic.

Table 21.-THE SCOTCH GAME.

1 P.K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 4 \mathrm{Kt} \times \mathrm{P}$, B-B4; 5 B-K $3, \mathrm{Q}-\mathrm{B} 3$ (1) ; $6 \mathrm{P}-\mathrm{QB} 3, \mathrm{KKt}-\mathrm{K} 2$ (2).

16
17
18
19
20

7	Q-Q2 (3)			B-QKt5	B-K2 (18)
7	P-QR3	$\overline{\mathrm{B} \times \mathrm{Kt}} \quad$ (7)	$\overline{\text { P-Q4 (13) }}$	P-Q3 (17)	P-Q4!
8	P-KB4 (4)	$\mathrm{P} \times \mathrm{B}$	Kt-Kt5 (14)	0.0	B-B3 !
	P-Q3 (5)	P-Q4	$\overline{B \times B}$	$0-0$	$\overline{\mathrm{P} \times \mathrm{P}}$
9	B-B4 (6)	Kt-B3 (8)	$\mathrm{Q} \times \mathrm{B} \quad(15)$	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{B} \times \mathrm{P}$
9	B-Q2	$\overline{\text { B-K3 (9) }}$	K-¢̧q (16)	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{B} \times \mathrm{Kt}}$
10	0.0	B-Q3 (10)	$\mathrm{P} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{B}$	$\mathrm{P} \times \mathrm{B}$
	$0-0$	$\overline{\mathrm{P} \times \mathrm{P}}$ (11)	R-Ksq	$\overline{\mathrm{P} \times \mathrm{KB}}$	0.0
11	Q-KB2 -	$\mathrm{Kt} \times \mathrm{P}$	$\mathrm{B}-\mathrm{K} 2+$	B-Q4	0.0
11	Kt-Et3 -	Q-R5		Q-Kt3 -	$\overline{R-Q s q}+$
12		$\frac{0.0-}{0.0 .0-(12)}$			

Notes to Table 21.

(1) 5 .., Q-K2; $\quad 6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt} ; \quad 7 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B} ; 8 \mathrm{~B}-\mathrm{Q} 3$ \&c.: otherwise 5.., Kt $\times \mathrm{Kt}$; $6 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 7 \mathrm{Q} \times \mathrm{B}$ transposes into Col. 23, Note 6.
(2) These six moves are considered to be the strongest forboth attack and defence in this form of the opening.
(3) Threatening Kt-Kt5. First played by L. Paulsen at the Wiesbaden Congress .of 1880, and introduced into England by Mr. Blackburne.
(4) If 8 B-K2, Black can reply advantageously with P-Q3, or O-O, but not with P-Q4 (Hooke v. Wayte, B. C. M. 1886, p..235).
(5) 8 .., P-Q4; 9 P-K5, Q-R3; $10 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B} \times \mathrm{Kt}$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{B}-\mathrm{B} 4 ; 120-0,0.0$ (Schottländer v. Schallopp).
(6) He may also play, as suggested by Mr. Blake, 9 Q-KB2, followed by 10 Kt -B2.
(7) $7 \ldots, \mathrm{Kt} \times \mathrm{Kt} ; 8 \mathrm{P} \times \mathrm{Kt}$, B-Kt3; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{KR} 3$; $10 \mathrm{~B}-\mathrm{QB4} 4, \mathrm{P}-\mathrm{Q} 3$; 110.0 , Kt-B3; $12 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{Kt3}$; $13 \mathrm{KR}-\mathrm{Ksq}, \mathrm{O}-\mathrm{O}$. (Blackburne v. Gunsberg.)
(8) 9 P-K5, Q-Kt3; $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{B} 4$; $11 \mathrm{~B}-\mathrm{K} 2, \mathrm{Q} \times \mathrm{P}$; 12 O-O-O, \&c. (M.C.I.)
(9) If $9 \ldots$ Q-Kt3, White should reply $10 \mathrm{P}-\mathrm{B} 3$, or $\mathrm{Kt}-\mathrm{Kt5}$, and not $\mathrm{P} \times \mathrm{P}$, on account of Kt-Kt5; nor $10 \mathrm{Kt} \times \mathrm{P}$ on account of $\mathrm{Kt} \times \mathrm{Kt}$; $11 \mathrm{P} \times \mathrm{Kt}, \mathrm{Kt}$ - K 2 : Blake v. Locock played $10 \mathrm{~B}-\mathrm{QK} t 5 \mathrm{I}, \mathrm{Q} \times \mathrm{KtP}$; $110-0-0$. If $9 \ldots, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{P}-\mathrm{Q} 5$, followed by Kt-Kt5.
(10) Or 10 P-K5, Q-Kt3; 11 Kt -K2 (Blake), Kt-B4; (if) 12 Kt (B4, Q-R3; $13 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Kt}=$.
(11) Or $10 \ldots, \mathrm{Q}-\mathrm{R} 5$; 11 0-0, P-B3. (Blake.)
(12) White may drive the Black Queen about for a move or two, but can da no harm, and he has an isolated Pawn to protect.
(13) Or 7 .., $\mathrm{P}-\mathrm{Q} 3$; $8 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B} \times \mathrm{B} ; 9 \mathrm{Q} \times \mathrm{B},-\mathrm{K}=\mathrm{Qsq} \stackrel{-}{ } 10 \mathrm{Kt} \mathrm{Q} 2$ (or B-K2), P-QR3; 11 KKt-R3, R-Ksq, \&c.-a promising variation. (W. T. Pierce.) The Handbuch gives $7 \ldots, \mathrm{O}-\mathrm{O}$!; 8 P-KB4 \&c.
(14) $8 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $9 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B} \times \mathrm{B}$; $10 \mathrm{P} \times \mathrm{B}, \mathrm{B}-\mathrm{K} 3$; $11 \mathrm{P}-\mathrm{B} 4, \mathrm{MK} t-\mathrm{Kt5}$; 12 Kt \times Pch, K-K2; $13 \mathrm{Kt} \times \mathrm{R}, \mathrm{R}-\mathrm{Qsq}$; $14 \mathrm{Q}-\mathrm{B} 3, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch} ; 15 \mathrm{P}-\mathrm{Kt3}, \mathrm{Q}-\mathrm{K} 5$; 16 R-Ktsq, Kt-B7ch; 17 K-B2, Kt-K4; 18 R-Kt2, R-Q8; 19 K-Ktsq, B-R6! (X. v. Zuikertort. C. M. vol. V., p. 51).
(15) $9 \mathrm{P} \times \mathrm{B}, \mathrm{O} .0$; $10 \mathrm{Kt} \times \mathrm{BP}, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{Kt} \times \mathrm{R}, \mathrm{R}-\mathrm{Qsq}$; $12 \mathrm{Q}-\mathrm{Bsq}$ (or $12 \mathrm{Q}-\mathrm{QB} 2$, Kt-Q4), Kt-B4; 13 P-KKt3, Q-Kt4; 14 K-B2, Kt-K4; 15 B-K2, R-Q6+(M.C.I.)
(16) If $9 \ldots, \mathrm{Q}-\mathrm{K} 4$, then $10 \mathrm{Kt}-\mathrm{Q} 2$. If $9 \ldots, \mathrm{O} . \mathrm{O}$, then $10 \mathrm{Kt} \times \mathrm{BP}, \mathrm{R}-\mathrm{Ktsq}$; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt}$; $12 \mathrm{P} \times \mathrm{Kt}, \mathrm{B}-\mathrm{B} 4$; $13 \mathrm{~B}-\mathrm{K} 2, \mathrm{KR}-\mathrm{Ksq}$; $14 \mathrm{Q}-\mathrm{Q} 2, \mathrm{Q}-\mathrm{Kt} 3$; 15 O-O, B-K5; 16 P-B3, B \times QP (Pierce); 17 B-Q3, \&c. Or 12 .., Kt-Kt5; $13 \mathrm{P} \times \mathrm{Kt},(a) \mathrm{Q} \times \mathrm{KtP}$; $14 \mathrm{Q}-\mathrm{QB} 3, \mathrm{R}-\mathrm{Ksq} \mathrm{ch} ; 15 \mathrm{~K}-\mathrm{Qsq}, \mathrm{Q} \times \mathrm{BP}$. (Von Bardeleben and Von Gottschall.)
(a) 13 Q-Q2, B-Kt5 (Fraser); 14 B-B4, KR-Ksq ch; $15 \mathrm{~K}-\mathrm{Bsq}, \mathrm{P}-\mathrm{QKt} 4$ $16 \mathrm{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $17 \mathrm{Kt}-\mathrm{B} 3, \mathrm{R} \times \mathrm{P}$; $18 \mathrm{P}-\mathrm{Q} 6, \mathrm{R}-\mathrm{Qsq}$; $19 \mathrm{R}-\mathrm{K} \mathrm{sq}, \mathrm{QR}-\mathrm{Ktsq}$ \&o.
(17) Herr Zukertort favours $7 \ldots$ Kt $\times \mathrm{Kt}$. If $7 \ldots, \mathrm{Q}$-Kt3! 80-0; and Black cannot safely tako the KP. Glasgow ∇. Hull continued $8 \ldots \mathrm{P}-\mathrm{Q} 3 ; 9$ Q-K2, 0.0 ; $10 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{~B} \times \mathrm{Kt} ; 11 \mathrm{~B} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{B} ; 12 \mathrm{P} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q} 4 ; 13 \mathrm{P}-\mathrm{B} 3=$
(18) If 7 Kit. 32 (Dr. Meitner), $\mathrm{B} \times \mathrm{B}$; $8 \mathrm{Kt} \times \mathrm{B}$, P-Q3; 9 Kt QR 3 , P-QR3;

Table 22.-THE SOOTCH GAME.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3 ; \quad 3 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $4 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{B} 4$.

	21	22	23	24	25
5	B-K8				Kt-B5 ?
	Q-B3		$\overline{B \times K t}$		P-Q4! (7)
6	P.QB3		$\mathrm{B} \times \mathrm{B}$		Kt. \times Pch
	KKt-K2		$\overline{\mathrm{Kt} \text {-B3 (6) }}$		K-Bsq
7	P-KB4	B.QB4	$\mathrm{B} \times \mathrm{Kt}$	Kt-B3	Kt-R5 (8)
	$\overline{\text { P-Q4 (1) }}$	Kt-K4 (5)	Q \times B	0.0	Q-R5
8	P-K5	B-K2!	Kt-B3	B-K3	Kt-Kt3
	Q-R3 (2)	Q-Kt3!	O-0	R-Ksq	Kt-B3
9	Q-Q2	0.0	B-Q3	B-Q3 -	B-K2
	$\overline{\mathrm{B} \times \mathrm{Kt}}$ (3)	P-Q4 -	P-Q3	P-Q3 -	B-KKt5 (9
10	$\mathrm{P} \times \mathrm{B}$ -		$0 \cdot 0$		B-K3 (10)
	$\overline{\mathrm{B} \cdot \mathrm{B4-} \mathrm{(4)}}$		B-Q2		$\overline{\mathrm{KB} \times \mathrm{B}}$
11			P-B4+		$\underline{\mathrm{P} \times \mathrm{B}}$
					$\begin{gathered} \overline{\mathrm{Kt}} \text { or } \mathrm{P} \times \mathrm{P} \\ + \end{gathered}$

(1) Stronger than 7 ..; P.Q3. Wormald recommends 7 .., Q-Kt3; (if) 8 Q-B3, $\mathrm{Kt} \times \mathrm{Kt} ; 9 \mathrm{P} \times \mathrm{Kt}(\mathrm{B} \times \mathrm{Kt} \mathrm{l})$, B-Kt5ch; 10 Kt -B3, P-Q4; $11 \mathrm{P}-\mathrm{K} 5, \mathrm{Q}-\mathrm{B} 7+($ M.C.I. $)$
(2) The Queen may check at R5; but must not go to Kt3 on account of 9 P•B5.
(3) Or $9 \ldots, 0.0$; (if) $10 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B}-\mathrm{Q} 2$; $11 \mathrm{Kt} \times \mathrm{BP}, \mathrm{R}-\mathrm{QBsq}$ (Blake).
(4) If $10 \ldots$. Kt-B4; 11 B-B2t
(5) If $7 \ldots, \mathrm{Q}$-Kt3: $8 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt} ; 9 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; 10 Q -R5ch, P-KKt3; $11 \mathrm{Q} \times \mathrm{B}, \mathrm{Q} \times \mathrm{P}$; $12 \mathrm{O} .0+$ (C. E. R.) Or $12 \mathrm{Kt}-\mathrm{Q} 2$ (W.W.), if $\mathrm{Q} \times \mathrm{P}$; 13 O-O.O.
(6) If $6 \ldots, \mathrm{Kt} \times \mathrm{B} ; 7 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{B} 3$; $8 \mathrm{P}-\mathrm{K} 5, \mathrm{Q}-\mathrm{KKt3}$; $9 \mathrm{Kt}-\mathrm{R} 3, \mathrm{Kt}-\mathrm{K} 2$; 10 O-0-0, Kt-B3; 11 Q-K3, O.O; 12 P-KB4+.
(7) Or 5 .., Q-B3; $6 \mathrm{Kt}-\mathrm{B} 3, \mathrm{KKt}-\mathrm{K} 2$; $7 \mathrm{Kt}-\mathrm{K} 3, \mathrm{P}-\mathrm{Q} 3$; $8 \mathrm{~B}-\mathrm{K} 2, \mathrm{O}-\mathrm{O} ; 9 \mathrm{O}-\mathrm{O}$, B-K3; $10 \mathrm{~K}-\mathrm{Rsq}$, QR-Qsq, \&c. Or 5 .., P-KKt3 (C.E.R.) ; if $6 \mathrm{Kt}-\mathrm{K} 3$, B-Q5; 7 B-Kt5, B-Kt2, \&c.
(8) If $7 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 5, \& \mathrm{c}$. If $7 \mathrm{Q} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Q}$; $8 \mathrm{P} \times \mathrm{Q}, \mathrm{Kt}-\mathrm{Q} 5$.
(9) Tho Handbuch gives $9 \ldots \mathrm{Kt} \times \mathrm{P}!10$ O-O, B-K3; $11 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $12 \mathrm{~B}-\mathrm{K} 3, \mathrm{~B} \times \mathrm{B} ; 13 \mathrm{P} \times \mathrm{B}$, R-KKtsq. Steinitz continues with $9 \ldots, \mathrm{Kt}-\mathrm{K} 4$; 10 P-KR3, R-KKtsq; threatening $\mathrm{R} \times \mathrm{Kt}$.
(10) Schraid v. Wayte played $10 \mathrm{Kt}-\mathrm{Q} 2$, to which the best reply is $\mathrm{P} \times \mathrm{P}$.

Table 23.-THE SCOTCH GAME.

(1) Or 6 Q-Q2, if White does not want to exchange Queens.
(2) Or $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{K} 2$; $9 \mathrm{~B}-\mathrm{K} 3, \mathrm{~B}-\mathrm{Kt} 3=$. (Paulsen v. Max Lange.)
(3) $5 \ldots$, B-K2 is recommended by some experts.
(4) 6 P-QB4, P-Q3; 7 Kt-B3, Kt-B3?; 8 B-K2, Kt-K4; 9 P-B4, QKt-Kt5; 10 P-QB5 I, P \times P; $11 \mathrm{Q} \times \mathrm{Qch}, \mathrm{K} \times \mathrm{Q} ; 12 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{Ktsq} ; 13 \mathrm{P}-\mathrm{KR} 3, \mathrm{QKt}$; 3 ; 14 B-K3. (Schallopp v. Gunsberg).
(5) Introduced by M. Benima in the Vizayanagaram Tourney. It is fairly safe, but gives Black a cramped game.
(6) 6 B-QB4, B-K3, or P-QB3 may be played here.
7) From a consultation game. (Walton and Aspa v. Ranken and Locock.)

Table 24.-THE SCOTCH GAME.

1 P-K4, P.K4; 2Kt-KB3, Kt-QB3; 8.P.Q4, P×P; $4 \mathrm{Kt} \times \mathrm{P}$. Kt-B3!

	31	32	88	34	35
	KtxKt (1)				Kt-QB3
5	$\overline{\mathrm{KtP} \times \mathrm{Kt}}$				B-Kt5
	B-Q3			P-K5 (11)	$\mathrm{Kt} \times \mathrm{Kt}(15)$
6	P-Q4			Q-K2 (12)	$\overline{\mathrm{KtP} \times \mathrm{Kt}}$
	Q-K2 (2)	P-K5		Q-K2	Q-Q4 (16)
7	B-K2 (3)	$\overline{\mathrm{Kt} \text {-Kt5 (6) }}$		Kt-Q4	Q-K2
8	0.0 (4)	$\mathrm{O}-\mathrm{O} \quad(7)$		P-QB4 (13)	P-B3 (dia)
	0.0	B-QB4 (dia)		B-R3	P-KR3 (17)
9	B-KB4	B-KB4	P-KR3	P-QKt3(14)	Q-B4 (18)
9	$\overline{\mathrm{R}-\mathrm{Ktsq}}$	$\overline{\mathrm{K} t \times \mathrm{BP}(8)}$	$\overline{\mathrm{Kt} \times \mathrm{KP}}$ (9)	0-0-0	+(19)
10	Kt-Q2	$\mathrm{R} \times \mathrm{Kt}$	$\mathrm{R}-\mathrm{Ksq}$	B-Kt2	
10	R-Ksq	$\overline{\mathrm{B} \times \text { Rch }}$	Q-B3	$\overline{\text { Q-Kt4 + }}$	
	P-K5 -	$\mathrm{K} \times \mathrm{B}$	Q-K2		
11	$\overline{\text { B-Bsq-(5) }}$	Q-R5cb	0.0 (10)		

(Col. 32.)

After Black's 8th move.
(Col. 35.)

After White's 8th move.

Notes to Table 24.

(1) 5 B-QB4 or B-KKt5 can be adopted here, but not so advantageously.
(2) $7 \mathrm{P} \times \mathrm{P}$ also equalises at least.
(3) $7 \ldots, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{B}$ leads to an even game.
(4) Or 8 P-K5.
(5) From a consultation game, Blackburne and Zukertort v. Potter and Steinitz.
(6) If $7 \ldots$,.. Kt-Q2; 8 O-O, B-B4; 9 B-KB4 (or K-Rsq, C. E. R.), Kt-Bsq; $10 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{K} 3$; $11 \mathrm{~B}-\mathrm{Kt} 3, \mathrm{O}-\mathrm{O}$; $12 \mathrm{~K}-\mathrm{Rsq}+$.
(7) 8 B-KB4, P-Kt4; 9 B-Kt3, B-Kt2, \&c.
(8) Steinitz gives 9 ... P-KKt4; 10 B-Kt3, P-KR4; 11 P-KR3, P-R5; 12 B-R2, $\mathrm{Kt} \times \mathrm{B} ; 13 \mathrm{~K} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Kt5} ; 14 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt4}$, \& c .
(9) Or 9 .., P-KR4 (C.E. R.)
(10) Continued $12 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Pch} ; \quad 13 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B} \times \mathrm{P} ; \underset{\mathrm{K}}{14 \mathrm{P} \times \mathrm{B}, \mathrm{Q}-\mathrm{B} 6 \mathrm{ch} ; 15 \mathrm{~K}-\mathrm{R} 2,}$ B-Q3, \&c.: or Black might play $12 \ldots, \mathrm{~B} \times \mathrm{Pch}$; $13 \mathrm{~K}-\mathrm{Bsq}, \mathrm{B} \times \mathrm{R}$ dis ch, \&c.
(11) Or 6 Q-Q4, P-Q4; $7 \mathrm{Kt}-\mathrm{QB} 3$, \&c. If $6 \mathrm{~B}-\mathrm{KKt5}, \mathrm{P}-\mathrm{KR3}$: $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B}$: 8 P-QB3.
(12) 6 .., Kt-K5; 7 Q-B3, Kt-Kt4; 8_Q-KKt3, Kt-K3; 9 B-Q3, P-B3 (M.C.I.)
(13) 8 P-KKt3 suggested by Mr. J. Russell, of Glasgow, seems a decided improvement.
(14) 9 P-KB4, (if) O-O-O; 10 Q-KB2 (M.C. I.)
(15) 6 B-KKt5, P-KR3; $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B} ; 8 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~K}-\mathrm{Qsq} 1 ;{ }^{9} \mathrm{Q}-\mathrm{B} 3, \mathrm{Q} \times \mathrm{Q}$; $10 \mathrm{P} \times \mathrm{Q}, \mathrm{P}-\mathrm{QR} 3$; $11 \mathrm{Kt}-\mathrm{R} 3, \mathrm{~B} \times \mathrm{KKt}$; $12 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{Q} 5+$ (M.C.I.)
(16) 7 B-Q3, O-O; $80.0, P-Q 4, \& c$.
(17) Or 8 .., P-B4; 9 Q-B2: $8 \ldots$ P-Q4, 9 B-KKt5 is in White's favour.
(18) 9 B-Q2, P-Q4; 10 O-0.O, P-B4; $11 \mathrm{Bch}, \mathrm{B}-\mathrm{Q} 2 ; 12 \mathrm{~B} \times \mathrm{Bch}, \mathrm{K} \times \mathrm{B}$; 13 Q-B2, P-Q5, \&c.
(19) 9 .., B-Kt2; 10 P-QR3, B-R4; $1 f$ B-K2. B-Kt3; 12 B-Q2, \&c.

Table 25.-THE SCOTCH GAME.

1 P.R4, P.K4; 2 Kt-KB3, Kt-QB3; 3 P-Q4, P \times P; $4^{\text {B }}-\mathrm{QB} 4$, B-B4(1).

	86	37	38	39	40
5	P-B3	0.0		Kt-Kt5 (11)	
	P-Q6 (2)	$\overline{\text { P-Q3 (}}$ (4)		$\overline{\mathrm{Kt}}$-R3! (12)	
6	P-QKt4	P-B3 (5)		$\mathrm{Kt} \times \mathrm{BP}$	Q-R5
	B-Kt3	$\overline{\text { B-KKt5 (6) }}$	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	Q-K2! (17)
7	Q-Kt3 (3)	Q-Kt3	Q-Kt3	B \times Ktch	0.0
	Q-K2	$\overline{\mathrm{B} \times \mathrm{Kt}}$ (7)	Q-B3 (10)	$\overline{\mathrm{K} \times \mathrm{B}}$	P-Q3 (18)
8	0.0	$\mathrm{B} \times \mathrm{Pch}$	K t $\times \mathrm{P}$	Q-R5ch	P-KR3
	P-Q3	$\overline{\mathrm{K}}$-Bsq	KKt-K2	P-KKt3	B-Q2
9	P-QR4	$\mathrm{B} \times \mathrm{Kt}$ (8)	Kt-Q5	$\mathrm{Q} \times \mathrm{B} \quad$ (13)	P.B4
	P-QR3	$\overline{\mathrm{R} \times \mathrm{B}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	P-Q4 (14)	0.0 .0
10	B-KKt5	$\mathrm{P} \times \mathrm{B}$	$\mathrm{P} \times \mathrm{Kt}$	O-0! (15)	$B \times P$
	Kt-B3	P-KKt4	$\overline{\mathrm{Kt}}$-K2	B-K3 (16)	$\overline{\mathrm{Kt} \times \mathrm{B}}$
21	QKt-Q2 -	Q-Qsq	B-KKt5	P-QB3	$\underline{Q} \times \mathrm{Kt}$!
	Kt-K4 or	Q-Q2	Q-Kt3	$\overline{\mathrm{P} \times \mathrm{KP}}$	QR-Ksq+
12	B.K8 -	P-Kt4	B-Kt5 cht	$\mathrm{P} \times \mathrm{P}$	
		$\overline{\text { B-Kt3 }}$		$\overline{\mathbf{Q} \times \mathbf{P}+}$	
18		B-Kt2			
18		$\overline{P \cdot Q 6 ~(9)}$			

Notes to Table 25.
(1) $4 \ldots$ Kt-B3; 5 P-K5, P-Q4; 6 B-QKt5, Kt-K5; $7 \mathrm{Kt} \times \mathrm{P}$ transposes into the Two Knights' Defence (Col. 15): White may play also 5 Kt)Kt5. 4 ..., Q-B3 is obsolete: White castles and shortly obtains the advantage. If $4 \ldots, \mathrm{P}-\mathrm{Q} 3,5 \mathrm{Kt} \times \mathrm{P}$.
(2) If $5 \ldots, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{~B} \times \mathrm{Pch}$. If $5 \ldots$ KKt-K2, $6 \mathrm{Kt}-\mathrm{Kt5}+$. For $5 \ldots$ Kt-B3, or P-Q3 see the " Giuoco Piano." If $5 \ldots, \mathrm{Q}-\mathrm{K} 2 ; 6$ O-O.
(3) Or 7 P-Kt5, Q-K21; 8 O-O, Kt-K4; $9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt}$; $10 \mathrm{Q}-\mathrm{Kt3}, \mathrm{Q}-\mathrm{R} 4$; 11 P-K5. (Handbook.)
(4) Or $5 \ldots$, Kt-KB3, which transposes into Max Lange's Attack. If $5 \ldots, \mathrm{Q}$-B3: 6 P-B3.
(5) If 6 P-K5, P-Q4; 7 B-QKt5, B-KKt5, \&c. 6 P-QKt4 is sometimes played at this point, leading to a variation of the Evans Gambit: if $6 \ldots, B \times K t P ; 7$ P.B3, $\mathrm{P} \times \mathrm{P} I$ (Steinitz.)
(6) Zukertort recommends $6 \ldots, \mathrm{Kt}$-B3.
(7) $7 \ldots$, Kt-R4 may be played but with less advantago.
(8) If $9 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{P}(9 \ldots, \mathrm{Kt}-\mathrm{B} 3+$; Bird) ; $10 \mathrm{~B} \times \mathrm{Kt}$ (if $10 \mathrm{~K} t \times \mathrm{P}, \mathrm{Kt} \mathrm{Q} 5$, \&c. If $10 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{K} 4$; $11 \mathrm{~B}-\mathrm{R} 5, \mathrm{P}-\mathrm{KKt3}$. If $10 \mathrm{~B}-\mathrm{R} 5, \mathrm{P}-\mathrm{KK} 3$), $\mathrm{R} \times \mathrm{B}$; $11 \mathrm{Kt} \times \mathrm{P}$, P-KKt4, \&c. +
(9) Continued $14 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}$-K4; $15 \mathrm{Q}-\mathrm{K} 2, \mathrm{Q}-\mathrm{R} 6$; $16 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{P}-\mathrm{Kt5}$ and wins. (Kolisch $\mathrm{\nabla}$. Anderssen.)
(10) Or $7 \ldots$ Q-Q2: $8 \mathrm{Q} \times \mathrm{BP}, \mathrm{P}-\mathrm{B} 3, \& \mathrm{c}$. Or $7 \ldots, \mathrm{Kt}-\mathrm{R} 41$ (Handbook.)
(11) Or 5 P-K5, P-Q4; 6 B-QKt5! (if $6 \mathrm{P} \times \mathrm{P}$ en pas, $\mathrm{Q} \times \mathrm{P} ; 7$ O-O, KKt-K2; 8 Kt-Kt5, O-O; 9 Q-R5, Q-Kt3), P-KR3; 7 O-O (if Kt×P, Q-R5), B-KKt5; 8 QKt-Q2, KKt-K2; 9 Kt-Kt3, B-Kt3; $10 \mathrm{QKt} \times \mathrm{P}, \mathrm{O}-\mathrm{O}=$.
(12) If 5 .., Kt-K4, the same continuation works out to White's advantage. After $6 \mathrm{Kt} \times \mathrm{BP}$ Black may play Bch?; $7 \mathrm{P}-\mathrm{B} 3, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch}, \& \mathrm{c}$., but he suffers in position.
(13) If 9 Q-Q5ch, K-Kt2; $10 \mathrm{Q} \times \mathrm{B}, \mathrm{R}-\mathrm{Ksq}$! ; $11 \mathrm{P}-\mathrm{KB} 3, \mathrm{P}-\mathrm{Q} 4 ; 12 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{P} \times \mathrm{P}$; $13 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \cdot \mathrm{B} 4+$.
(14) The invention of M. Schoumoff. Black may also play 9 .., P-Q31; 10 Q-QKt5, R-Ksq!: if $10 \mathrm{Q}-\mathrm{R} 3, \mathrm{R}-\mathrm{Ksq}$; $11 \mathrm{Q}-\mathrm{KB} 3 \mathrm{ch}, \mathrm{K}-\mathrm{K} t 2+$.
(15) $10 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Q} 2$, and $\mathrm{P}-\mathrm{K} 5$ are inferior moves. After $10 \mathrm{Q} \times \mathrm{Pch}, \mathrm{Q} \times \mathrm{Q}$; $11 \mathrm{P} \times \mathrm{Q}, \mathrm{Kt}-\mathrm{Kt5} ; 12 \mathrm{Kt}-\mathrm{R} 3, \mathrm{Rch} ; 13 \mathrm{~K}-\mathrm{Qsq}, \mathrm{Kt} \times \mathrm{QP} ; 14 \mathrm{R}-\mathrm{Ksq}$, and Black has no perceptible advantage. (Blake.)
(16) If $10 \ldots, \mathrm{P} \times \mathrm{P}$; 11 B-Kt5, Q-Ksq; 12 P-KB3, P-K6; 13 P-QB3+. Black may, however, play 11 .., Q-Q3.
(17) 6 .., Q-B3; 7 P-B4, P-Q3; (if) 8 P-KR3, B-Q2; 9 O-O, Q-Kt3; 10 Q-B3, O-O-O; 11 P-B5, Q-B3; 12 K-Rsq, Kt-K4; 13 Q-QKt3, B-B3+: Steinitz plays $8 \mathrm{P}-\mathrm{B} 5$!, (if) Kt-K4; $9 \mathrm{Kt} \times \mathrm{RP}, \mathrm{R} \times \mathrm{Kt}$; $10 \mathrm{~B}-\mathrm{KKt5}$, Kt-B6ch (or $10 \ldots, \mathrm{Q} \times \mathrm{B}$; $11 \mathrm{Q} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{B} . \mathrm{C} . \mathrm{E} . \mathrm{R}.) ; 11 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{K} 4 ; 12 \mathrm{~B} \times \mathrm{Pch}, \& \mathrm{c}$. If $6 \ldots$ O-O; $7 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Rsq} ; 8 \mathrm{~B}-\mathrm{Kt6}, \mathrm{Q}-\mathrm{B} 3$; $9 \mathrm{~B}-\mathrm{B} 51$: or $8 \mathrm{Kt} \times \mathrm{RP}, \mathrm{R} \times \mathrm{B} ; 9 \mathrm{~B} \times \mathrm{Kt}$, $\mathbf{P} \times \mathrm{B} ; 10 \mathrm{Q} \times \mathrm{R}, \mathrm{Q}-\mathrm{K} 2$!
(18) The following continuation has been played repeatedly: 7 .., Kt-K4; 8 B-Kt3, P-Q3; 9 P-KR3, B-Q2; 10 P-KB4, Kt-Kt3; 11 P-B5, P-Q6 dis ch; $12 \mathrm{~K}-\mathrm{Rsq}$, $\mathrm{P} \times \mathrm{P} ; 13 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}-\mathrm{K} 4 ; 14 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{Qsq} ; 15 \mathrm{P}-\mathrm{B} 6, \mathrm{O}-\mathrm{O} ; 16 \mathrm{Kt}-\mathrm{K7ch}, \mathrm{~K}-\mathrm{Rsq}$; $17 \mathrm{P} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{P} ; 18 \mathrm{Q} \times \mathrm{Ktch}, \mathrm{K} \times \mathrm{Q} ; 19 \mathrm{Kt}-\mathrm{K} 6$ dis ch, K-R4; $20 \mathrm{R}-\mathrm{B} 5 \mathrm{ch}$, K.R5; 21 R-B4ch, K-R4; 22 Kt-Kt7ch, K-Kt4; 23 R-Et4 dou ch, K-B3; 24 Kt-Q5 mate.

Table 26.-THE SCOTCH GAME.

	41	42	43	44	45
	B-QB4				P-B3 (19)
4	$\overline{\text { B-Kt5ch (1) }}$				$\overline{\mathrm{P} \times \mathrm{P}!(18)}$
	P-B3				B-QB4
5	$\overline{\mathrm{P} \times \mathrm{P}}$				$\overline{\mathrm{Kt}}$-B3
	0.0			$\mathrm{P} \times \mathrm{P} \quad$ (9)	Kt-Kto (14)
6	$\overline{\mathrm{P} \times \mathrm{P} \text { ? (2) }}$		P.B7	$\overline{\text { B-R4 }}$	Kt-K4
	$\mathrm{QB} \times \mathrm{P}$		Q \times BP	0.0!	B-Kt3
7	$\overline{\mathrm{Kt} \text {-B3 (}}$ (3)		P-Q3	P-Q3 (10)	P-Q4
	Kt-Kt5		P-QR3	P-K5	$\mathrm{KP} \times \mathrm{P}$
8	$\overline{0.0}$		B-QB4	$\overline{\mathrm{KKt}}$-K2(11)	B.QKt5
	P-K5		P-QKt4	Q-R4	0.0
9	P-Q4	$\overline{\mathrm{Kt} \times \mathrm{P}!}$	B-Kt3 (6)	O-0	0.0
	$\mathrm{P} \times \mathrm{Kt}$	$\mathrm{B} \times \mathrm{Kt}$	Q-Kt3	R-Qsq+	QKt \times P
0	$\overline{\mathrm{P} \times \mathrm{B}}$	$\overline{\mathrm{P}-\mathrm{Q4}}$	$\overline{\text { Q-B3 (7) }}$		P-KR3
	Q-R5	B-Q3 (4)	B-Kt2		KKt-K4
1	P-KR3	Kt-Kt5	$\overline{\mathrm{Q}-\mathrm{Kt3}}{ }^{(8)}$		$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
	$\underline{\mathrm{P} \times \mathrm{P}+}$	Kt-KB3	P-QR4 -		$\mathrm{Kt} \times \mathrm{Kt}$
12		$\overline{\mathrm{Kt} \times \mathrm{B}}$ (5)	P-QR3 -		Q-R5 (15)

(1) Considered inferior to 4 B-B4.
(2) If 6 .., Q -B3; 7 P-K5, $\mathrm{P} \times \mathrm{P}$; $8 \mathrm{P} \times \mathrm{Q}, \mathrm{P} \times \mathrm{R}(\mathrm{Q})$; $9 \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}, \mathrm{B}-\mathrm{K} 2$; 10 B-Kt2, \&c. (Handbuch.)
(3) 7 .., B-Bsq, P-B3, and K-Bsq are also unfavourable for Black.
(4) Or 11 B-K2! (Steinitz.)
(5) $13 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{B} 3$; $14 \mathrm{P}-\mathrm{B4}, \mathrm{~B}-\mathrm{B} 4 \mathrm{ch}$ (or 14 .., P-B4; Steinitz); $15 \mathrm{~K}-\mathrm{Rsq}$, P-KKt3; $16 \mathrm{~B}-\mathrm{K} 2=$.
(6) If 9 .., Kt-Q5; $10 \mathrm{~B} \times$ Pch, K-Bsq ! ; $11 \mathrm{Q}-\mathrm{Q} 3!+$.
(7) Or 10 .., Q-K2; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3$; $12 \mathrm{~B}-\mathrm{KKt5}$ (M. C. I.)
(8) Steinitz continues $11 \ldots, \mathrm{Kt}-\mathrm{K} 4$ (if $11 \ldots, \mathrm{Q}-\mathrm{Kt} 3$; $12 \mathrm{Kt}-\mathrm{R} 4+$); $12 \mathrm{~K}-\mathrm{Rsq}$ to
follow with $\mathrm{Kt} \times \mathrm{Kt}$ and P-B4.
(9) Introduced by Mr. Cochrane.
(10) If $7 \ldots$ Kt-B3; 8 P-K5, P-Q4; $9 \mathrm{P} \times \mathrm{P}$, en pas, \&c. If 7 .., KKt-K2, 8 Kt-Kt5. If 7 .., B-Kt3; 8 P-K5, KKt-K2; $9 \mathrm{~B}-\mathrm{R} 3+$.
(11) If $8 \ldots, \mathrm{P} \times \mathrm{P} ; 9 \mathrm{~B} \times \mathrm{BPch}, \mathrm{K} \times \mathrm{B}$; $10 \mathrm{Kt} \times \mathrm{Pch}+$.
${ }^{112)}$ The Göring Gambit; leading into the Danish Gambit if Black plays $5 . ., \mathrm{P} \times \mathrm{KtP}$.
(13) $4 \ldots$ P-Q4; $5 \mathrm{P} \times \mathrm{QP}, \mathrm{Q} \times \mathrm{P}$; $6 \mathrm{P} \times \mathrm{P}$, (if) $\mathrm{B}-\mathrm{KKt5}$; $7 \mathrm{~B}-\mathrm{K} 2$ and Kt-B3.
(14) So played Metger v. Zukertort. Another variation is 6 O-O! B-K2; 7 P-K5. Kt-KKt5; $8 \mathrm{Q}-\mathrm{Q} 5, \mathrm{O}-\mathrm{O} ; 9 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3$. (Schwede v. Wayte.) Steinitz suggests $6 \mathrm{Kt} \times \mathrm{P}$ (if) $\mathrm{B}-\mathrm{Kt5} ; 7 \mathrm{O}-\mathrm{O}, \mathrm{B} \times \mathrm{Kt} ; 8 \mathrm{P} \times \mathrm{B}, \mathrm{P}-\mathrm{Q} 3 ; 9 \mathrm{P}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{Q}-\mathrm{R} 4$, O.U; $11 \mathrm{~B}-\mathrm{R} 3, \mathrm{R}-\mathrm{Ksq} ; 12 \mathrm{QR}-\mathrm{Qsq}, \mathrm{B}-\mathrm{Q} 2$; $13 \mathrm{Kt}-\mathrm{Kt} 5+$.
(15) After 13 Q-Q4, B-Q3, Mr. Wayte suggests 14 P.B4 + .

SECTIONIX.

THE TWO KNIGHTS DEFENCE.

1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B}-\mathrm{B} 4, \mathrm{Kt} \cdot \mathrm{B} 8$.

TUHE Two Knights' Defence has three forms. In the position given on the above diagram by continuing with $4 \mathrm{P}-\mathrm{Q4}$, or 0.0 (Cols. 11-19), the first player turns the opening into a variation which may be brought about in the Giuoco Piano by a transposition of moves. The second form arises out of $4 \mathrm{Kt}-\mathrm{Kt} 5$, P-Q4; $5 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$ (Cols. 8-10). White by thus sacrificing his Knight obtains a very powerful attack the defence to which is difficult and the issue doubtful. The Black King is brought into the centre of the board and so environed with dangers that it requires great care to extricate him. This is the "Fegatello" (fried liver) of the early Italian writers Polerio and Gianuzio. If, however, instead of $5 \ldots, \mathrm{Kt} \times \mathrm{P}$ the second player moves $5 \ldots, \mathrm{Kt}-\mathrm{QR} 4$ (Cols. 1-7) he converts the opening into what is unquestionably the strongest Counter Gambit in the King's Knight's Game. The Black Bishops and Queen are brought at once into active play, and the first player, being put upon the defensive before he has completed his development, has for some time an uncomfortable game. The labours of analysts and expert players in endeavouring to decide between the respective merits of the attack and defence have resulted in the variations being carried into the mid-game; but advantages and disadvantages are so evenly balanced that the question as to which side has the superiority is not yet definitely determined. In modern practice the second player will usually avoid the move $5 \ldots, \mathrm{Kt} \times \mathrm{P}$, which might gain him a Knight for a Pawn, and select 5 ..., Kt-QR4, which gives up a Pawn for a counter attack.

Table 27.-THE TWO KNIGHTS' DEFENCE.

1 P-K 4, P-K 4 ; $2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{Kt}-\mathrm{B} 3 ; 4 \mathrm{Kt}$. Kt5, P-Q4; $5 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QR} 4$; $6 \mathrm{~B} \cdot \mathrm{Kt} 5 \mathrm{ch}, \mathrm{P}-\mathrm{B} 3 ; 7 \mathrm{P} \times \mathrm{P}$. $\mathrm{P} \times \mathrm{P} ; 8 \mathrm{~B}-\mathrm{K} 2(1), \mathrm{P} \cdot \mathrm{KR} 3,9 \mathrm{Kt}-\mathrm{KB} 3$ (2), P-K5(3).

	1	2	3	4	5
10	Kt-K5				
	Q-B2! (4)	Q-Q5			
11	P-KB4 (5)	Kt-Kt4	P-KB4!		
	B-Q3 !	$\overline{\mathrm{B} \times \mathrm{Kt}}$	B-QB4		
12	P-Q4	$\mathrm{B} \times \mathrm{B}$ (dia)	R -Bsq (dia.)		
	0.0	P-K6 (7)	Q-Q3	$\overline{\mathrm{Q} \cdot \mathrm{Qsq} \text { (13) }}$	0.9
19	P-B3! (6)	B-B3 (8)	P.B3 (10)	P-B3	P.B3
	P-B4	$\overline{\mathrm{P} \times \text { BPch }}$	$\overline{\mathrm{Kt}}$-Kt2	$\overline{\mathrm{Kt}}$-Q4	Q-Qsq
14	Kt-R3	K-Bsq	P.QKt4(11)	Q-R4	P-QKt4
	P-R3	0.0.0	B-Kt3	$0 \cdot 0$	Kt-Q4
15	$\underline{\mathrm{Kt} \text { - }{ }^{\text {2 }}+}$	P-B3	$\underline{\mathrm{Kt} \text {-R3 (12) }}$	$\mathrm{Q} \times \mathrm{KP}$	P-KKt3(14)
		Q-Q6ch	$\overline{0.0}$	P-B3	
16		B-K2 !	QKt-B4	B-Q3	
		Q-B4	$\overline{\text { Q-B2 }}$		
17		P-QKt4 (9)			

(1) If 8 B-R4, P-KR3; 9 Kt-KB3, P-K5, 10 Q-K2 (if Kt-K5, Q-Q5), B-K3, $11 \mathrm{Kt}-\mathrm{K} 5, \mathrm{Q}-\mathrm{Q} 5,12 \mathrm{~B} \times \mathrm{Pch}, \mathrm{Kt} \times \mathrm{B}, 13 \mathrm{Kt} \times \mathrm{Kt}$ (if Q-Kt5, B-QB4+), Q-B4+ If $8 \mathrm{~B}-\mathrm{Q} 3$ (Gunsberg v. Tschigorin), Kt-Q4, 9 Kt -B3 or I-IEt, Kit-KB5. (C. E. R.)
(2) 9 Kt-KR3, B-QB4 (or $9 \ldots$, B-Q3, Steintz), $10 \mathrm{P}-\mathrm{Q} 3, \mathrm{O}-\mathrm{O}$ (or $10 \ldots$ PKKt 41), $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{Q} 4$; 12 Kt -R4, B-Q3, $13 \mathrm{Kt}-\mathrm{Ktsq}, \mathrm{P} . \mathrm{KB}$ (Stainitz v. Tschigorin): if $9 \ldots, \mathrm{~B} \times \mathrm{Kt}, 10 \mathrm{P} \times \mathrm{B}, \mathrm{Q}-\mathrm{Q} 4,11 \mathrm{~B}-\mathrm{B} 3, \mathrm{P}-\mathrm{K} 5$; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{K} 4$; 13 B-Kt2+.
(3) $9 \ldots$, B-Q3, 10 P-Q4, P-K5, 11 KKt-Q2, Q-B2, 12 QKt-B3 (or Kt-KBsq), P-K6 (if $12 \ldots, \mathrm{~B}-\mathrm{KB4}$; $13 \mathrm{Kt}-\mathrm{Bsq}$ thence to $\mathrm{Kt3}$), $13 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P} \times \mathrm{Pch}, 14 \mathrm{~K} \times \mathrm{P}$, Kt-Kt5ch; $15 \mathrm{~K}-\mathrm{Ktsq}$ (M.C.I.) Mr. Monck suggests 10 P-Q3.
(4) If 10 ., B-Q3; 11 P-KB4, Q-B2, \&c. . if 11 ., P-Kt4, $12 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{BP}$: $13 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Q} 4,14 \mathrm{O}-\mathrm{O}, \mathrm{Kt} \times \mathrm{B}, \quad 15 \mathrm{R} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Kt}, \quad 16 \mathrm{R} \times \mathrm{KP}(\mathrm{C} . \mathrm{M}$.
(5) If $11 \mathrm{P}-\mathrm{Q4}, \mathrm{~B}-\mathrm{Q} 3$; $12 \mathrm{P}-\mathrm{KB4}$ (Mr Panken suggests $12 \mathrm{~B}-\mathrm{KB4}$), $\mathrm{P} \times \mathrm{P}$ eń pas; $13 \mathrm{Kt} \times \mathrm{P}$ (KB3), B-KKt5 : or $13 \ldots, \mathrm{Kt}$-Kt5.
(6) If 13 O-O, P-B4; 14 P-B3, R-Ktsq (or R-Qsq ; 15 B-K3, Kt-Q4); 15 P-QKt3, $\mathrm{K} t-\mathrm{B} 3 ; 16 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt}$.
(7) Or $12 \ldots$, B-B4: 18 O-O, P-K6, $14 \mathrm{~B}-\mathrm{B} 3, \mathrm{P} \times \mathrm{Pch}$; $15 \mathrm{~K}-\mathrm{Rsq}$, 8c. (Fraser.) If $12 \ldots, \mathrm{Kt}-\mathrm{B} 5$; $13 \mathrm{P}-\mathrm{B} 3$ providing an outlet for the Queen. if $13 \mathrm{O}-\mathrm{O}, \mathrm{Kt}-\mathrm{K} 4!=$.
(8) Or 13 B-K21 (Bird.)
(9) If now $17 \ldots, \mathrm{Kt}-\mathrm{Q} 4$? ; $18 \mathrm{P}-\mathrm{Q} 4!$ threatening B-Kt4. (Bowley.)
(10) Stopping 13 .., Kt-Q4, as played in Col. 4.
(11) Or 14 Q-R4, Kt-Qsq, \&c. (Hirschfeld v. Kolisch.)
(12) 15 P-QR4! P-QR4; 16 P-Kt5, (if) $\mathrm{P} \times \mathrm{P}$; $17 \mathrm{~B} \times \mathrm{Pch}$: if $16 \ldots, \mathrm{P}-\mathrm{B} 4$: $17 \mathrm{Kt}-\mathrm{R} 3$, \&c. (M. C.I.)
(13) Played by Mr. Starbuck of Cincinnati. (A. S.) Or 12 .., B-Q3 13 P-B3, Q-Kt3: $14 \mathrm{Q}-\mathrm{R} 4, \mathrm{~B}-\mathrm{Q} 2 ; 15 \mathrm{Kt} \times \mathrm{B}, \mathrm{K} \times \mathrm{Kt}$.
(14) Given with 15 Q-B2 (A. S.) as White's best resource; if 15 Q-B2, Q-R5ch: $16 \mathrm{P}-\mathrm{Kt} 3, \mathrm{Q} \times \mathrm{RP} ; 17 \mathrm{Q} \times \mathrm{KP}, \mathrm{B}-\mathrm{R} 6 ; 18 \mathrm{P} \times \mathrm{B}, \mathrm{B} \times \mathrm{R} ; 19 \mathrm{~K} \times \mathrm{B}, \mathrm{Q} \times \mathrm{P} ; 20 \mathrm{Q}-\mathrm{B} 3+$.
(Col. 2.)

After White's 12 th move.
(Col. 8.)

After White's 12th move.

Table 28.-THE TWO KNIGHTS' DEFENCE.
1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3$, Kt.QB3; $3 \mathrm{~B} \cdot \mathrm{~B} 4$, Kt-B3.
6
7
8
9
$4 \frac{\text { Kt-Kt5 }}{\mathrm{P}-\mathrm{Q} 4}$
$\bar{K} \times \mathrm{P}$
$5 \frac{\mathrm{P} \times \mathrm{P}}{\mathrm{Kt}-\mathrm{QR4}}$
$\mathrm{B} \times \mathrm{Pch}(17)$
K-K2
P-Q4 (18)
P-KR3 (19)
$\mathrm{Kt} \times \mathrm{Kt}$
$\overline{\mathrm{K} \times \mathrm{B}}$
P-Q5
$\overline{\mathrm{Kt}-\mathrm{K} 2}$
Q-R5ch (20)
P-KKt3
$\mathrm{Q} \times \mathrm{KP}$
B-Kt2
Q-B4ch
K-Ktsq
$\underline{\text { QKt-B3 }+}$

$\overline{K t \times P}$
$\mathrm{Kt} \times \mathrm{BP}(10)$
$\overline{\mathrm{K} \times \mathrm{Kt}}$
$\mathrm{Q}-\mathrm{B} 3 \mathrm{ch}$
$\mathrm{K}-\mathrm{K3}$
$\mathrm{Kt}-\mathrm{B} 3$ (dia.)

18

14
15
$\frac{\text { B-Kt5ch }}{\text { P-B3 (1) }}$
$\mathrm{P} \times \mathrm{P}$
$\overline{\mathrm{P} \times \mathrm{P}}$
$\frac{\mathrm{Q}-\mathrm{K} 2}{\mathrm{Kt} \times \mathrm{B}}$
$\frac{\mathrm{B}-\mathrm{R4}}{\mathrm{~B}-\mathrm{Q} 3}$
$\frac{\mathrm{P}-\mathrm{Q} 3}{\mathrm{O}-0}$
0.0

P-KR8
Kt-K4 -
Kt×Kt -
$\frac{\mathrm{P} \times \mathrm{Kt}}{\mathrm{B}-\mathrm{QB4} 4(6)}$
$\frac{\text { P-KR3 }}{0.0}$
$\mathrm{Kt}-\mathrm{R} 2$ (dia.) $\mathrm{B} \times \mathrm{QKt}(11)$
P-QKt4 (7)
Kt-QB3 (8)
$\overline{\mathrm{P} \times \mathrm{P}}$
$\frac{\mathrm{Q} \times \mathrm{BP}}{\mathrm{Q}-\mathrm{Q} 3}$
$0-0!$
Kt-Kt5 (9)
(Coz. 7.)

After White's 11 th move.

After White's 8th mote.

Notrs to Table 28.

(1) $6 \ldots$ B-Q2 ?, 7 Q-K2, B-Q3; 8 Kt-QB3 (or $8 \mathrm{~B} \times \mathrm{Bch}, \mathrm{Q} \times{ }^{\mathrm{r}} ; 7$ P-QB4, Handbuch), $\mathrm{O}-\mathrm{O} ; 9 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B}$; $10 \mathrm{P}-\mathrm{QR} 3, \mathrm{P}-\mathrm{QB} 4 ; 11 \mathrm{P}-\mathrm{Q} 3+$
(2) $8 \ldots, \mathrm{P} \times \mathrm{B}$; $9 \mathrm{Q} \times \mathrm{R}, \mathrm{Kt}-\mathrm{Kt2}$; $10 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{QB4}$; $11 \mathrm{Q}-\mathrm{R} 6, \mathrm{O} \mathrm{O} ; 12 \mathrm{Q} \times \mathrm{P}$, P-KR3, \&c. (Mortimer v. St. Bon): or 9 ..., B-QB4; 10 Q-B3, B-Kts; 11 Q-Kt3, O-O. (Handbuch.)
(3) $9 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{~B}-\mathrm{KKt5}$; $10 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Kt} \times \mathrm{Kt}$; $11 \mathrm{Q} \times \mathrm{Kt}$, R-Qsq. (M.C.I.)
(4) If $6 \ldots, \mathrm{Kt} \times \mathrm{P}$; $7 \mathrm{QB} 3, \mathrm{~B}-\mathrm{K} 3$; $8 \mathrm{Kt} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; $9 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}+$.
(5) Boden against Morphy played $7 \ldots, \mathrm{Kt} \times \mathrm{B}$; $8 \mathrm{P} \times \mathrm{Kt}, \mathrm{B}-\mathrm{Q} 3$.
(6) Or 9 ..., B-K2, $10 \mathrm{Kt}-\mathrm{Q4}, \mathrm{P}-\mathrm{B} 3=$ (Gossip). White may, however, play 10 KKt-Q2 1, (if) B-KB4; 11 P-KB3, \&c.
(7) Steinitz prefers $11 \ldots, \mathrm{P}-\mathrm{K} 6 ; 12 \mathrm{~B} \times \mathrm{P}, \mathrm{B} \times \mathrm{B} ; 13 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 5 ; 14 \mathrm{Kt}$-Bsq, Q-R5ch; 15 P-KKt3, Q-B3; 16 P-B3, B-B4+.
(8) If 12 P-QKt3, $P \times P$; $13 P \times P, B-R 3$, \&c.
(9) Black can recover the Pawn by either $15 \ldots, \mathrm{~B} \times \mathrm{Kt}$ or $15 \ldots, \mathrm{Q} \times \mathrm{P}$. (B.C. MA., vol. IV., p. 164.) The moves to this point occur in a game between Bird and Tschigorin.
(10) 6 Q-R5, P-KKt3; 7 Q-B3, $\mathrm{Q} \times \mathrm{Kt}$; $8 \mathrm{~B} \times \mathrm{Kt}$, Kt-Qsq; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{K} 2=$. (M. C. 1.)
(11) Or 11 B-R4 (Wayte), P-KKt4; 12 B-Kt3, B-Kt2.
(12) Or $12 \mathrm{O}-\mathrm{O}$, or $\mathrm{Q}-\mathrm{K} 4$ at once. (Fraser.)
(13) $15 \mathrm{Q} \times$ Pch, K-B2; $16 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt} ; 17 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Bsq}$; $18 \mathrm{~B}-\mathrm{Kt} 3 \mathrm{I}$, R-B41; 19 Q-K4, Q-B2; 20 QR-Ksq, B-K2; 21.P-Kt4, R \times P; 22 Q-R7, K-Ksq, \&c.
(14) 9 P-Q4, Kt \times BPch; $10 \mathrm{~K}-\mathrm{Qsq},{ }^{\prime} \mathrm{Kt} \times \mathrm{P}$; $11 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{K}-\mathrm{Q} 3$; $12 \mathrm{Q}-\mathrm{B} 7$, K-B4; 13 B-Kt5, Q-Q2; $14 \mathrm{Q} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q} ; 15 \mathrm{~B} \times \mathrm{P}, \mathrm{R}-\mathrm{QKtsq}, 16 \mathrm{Kt}-\mathrm{K} 4 \mathrm{ch}$, K-Kt3; 17 B-Q5, \&c. (W. T. Pierce). If 9 B-Kt3, P-B3, \&c.
(15) The Handbuch gives $10 \ldots$ B-Kt2; 11 P-Q4, Q-Q3, 12 P-QR3, Kt-R3; $13 \mathrm{~B}-\mathrm{KB} 4+$. The reply to $10 \mathrm{Kt} \times \mathrm{P}$ would be $10 \ldots, \mathrm{P}-\mathrm{B} 3$; $11 \mathrm{Kt}-\mathrm{B} 3$, B-R3! (M. C. I.)
(16) $14 \mathrm{Q} \times$ Pch, K-Q2; $15 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \& \mathrm{c}$.
(17) If $5 \mathrm{Kt} \times \mathrm{BP}, \mathrm{Q}-\mathrm{R} 5$; $6 \mathrm{O}-\mathrm{O}$ (if $6 \mathrm{P}-\mathrm{KKt} 3$, $\mathrm{Kt} \times \mathrm{KtP}$), B-B4, $7 \mathrm{Kt} \times \mathrm{R}$? (P-Q4!), Kt \times BP; $8 \mathrm{~B}-\mathrm{B} 7 \mathrm{ch}, \mathrm{K}-\mathrm{K} 2 ; 9 \mathrm{R} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Rch}$; $10 \mathrm{~K}-\mathrm{Rsq}, \mathrm{P}-\mathrm{Q} 3$; 11 P-KR3, B-B4 +.
(18) 6 P-Q3, Kt-B3; 7 B-Kt3, P-Q4; 8 O-O, P-KR3; 9 Kt-B3, B-Kt5 : $10 \mathrm{R}-\mathrm{Ksq}, \mathrm{Q}-\mathrm{Q} 3$; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{R} 3 ; 12 \mathrm{~B}-\mathrm{KB} 4+$: if 8 P-KB4?, B-Kt5; $9 \mathrm{Q}-\mathrm{Q} 2$, K-Q2; 10 Kt -B7 (Gossip suggests $100-01$), $\mathrm{Q}-\mathrm{Ksq}$; $11 \mathrm{Kt} \times \mathrm{R}, \mathrm{P} \times \mathrm{P}$ dis ch ; $12 \mathrm{~K}-\mathrm{Bsq}, \mathrm{Kt}-\mathrm{Q} 5$; $13 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{QB} 4+$. If $6 \mathrm{Kt} \times \mathrm{Kt} . \mathrm{K} \times \mathrm{B} ; 7$ QKt-B3, P.KKt3 (Gossip).
(19) If $6 \ldots, \mathrm{Kt}$ Q3; 7 Kt -K61 If $6 \ldots, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{Q}-\mathrm{K} 2$. If $6 \ldots, \mathrm{Kt}-\mathrm{B} 3$ or P-Q4, $7 \mathrm{P} \times \mathrm{P}$. If $6 \ldots, \mathrm{P}-\mathrm{Q} 3$, or $\mathrm{Kt} \times$ QP ; 7 B-Q5.
(20) Or 9 P-Q6! here, or on the twelfth move. (C. E. R.)

Table 29.-THE TWO KNIGHTS' DEFENCE.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4$; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$. Kt.QB3; $3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{Kt} \cdot \mathrm{B} 3$;
$4 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$ (1).

	11	12	13	14	15
5	0.0			P-K5	
5	$\overline{\mathrm{K}} \times \times \mathrm{P}$! (2)			P-Q4	
6	R-Ksq			B-QKt5	
6	$\overline{\mathrm{P}-\mathrm{Q} 4 \quad(3)}$			$\overline{\mathrm{Kt}}$-K5	
7	$\mathrm{B} \times \mathrm{P}$			0.0	$\mathrm{Kt} \times \mathrm{P}$
7	$\overline{Q \times B}$			B-QB4	$\overline{\text { B-Q2! }}$
8	Kt-B3			$\mathrm{Kt} \mathrm{\times P}$	$\mathrm{B} \times \mathrm{Kt}$ (10)
	Q-B5	Q-Qsq	$\overline{\text { Q-KR4 }}$	B-Q2	$\overline{\mathrm{P} \times \mathrm{B}}$
9	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{R} \times \mathrm{Ktch}$	Kt. \times Kt	$\mathrm{B} \times \mathrm{Kt}$	0.0
9	$\overline{\text { B-K3 (4) }}$	B-K2	B-K2 (7)	$\bar{P} \times \mathrm{B}$	B-K2 (11)
10	P-QKt3 (5)	$\mathrm{K}+\times \mathrm{P}$	$\underline{\mathrm{Kt} \times \mathrm{P}-}$	B-K3	B-B4
10	Q-Q4	P-B4!	(8) -	Q-K2	O-0
11	B-Kt5	R-B4		P-QB3 -	Kt-QB3
11	$\overline{\mathrm{B}-\mathrm{K} 2!~(6)}$	O-0		(9) -	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
12	$\mathrm{B} \times \mathrm{B}$	$\mathrm{Kt} \times \mathrm{Kt}$			$\mathrm{P} \times \mathrm{Kt}$ -
12	$\overline{\mathrm{K} \times \mathrm{B}}$	Q \times Qch			P-QB4-
18	Q-Bsq+	$\mathrm{Kt} \times \mathrm{Q}$ -			
13		$\overline{\mathrm{P} \times \mathrm{Kt}}$ -			

(1) If $4 \ldots$.. KKt $\times P$; $5 \mathrm{P} \times \mathrm{P}+$. If $4 \ldots, \mathrm{QKt} \times \mathrm{P}$; $5 \mathrm{~B} \times \mathrm{Pch}$.
(2) 5 .., B-B4 leads into Max Lange's Attack.
(3) 6 .., B-K2 (Schallopp); $7 \mathrm{R} \times \mathrm{Kt}$, P-Q4; $8 \mathrm{R} \times \mathrm{Bch}, \mathrm{Kt} \times \mathrm{R}$; $9 \mathrm{~B}-\mathrm{Kt} 3$, P.QB4; 10 P-B3, P \times P; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 5$; 12 Kt -K4. Q-B2; $13 \mathrm{~B}-\mathrm{R} 4 \mathrm{ch}, \mathrm{K}-\mathrm{Bsq}$; 14 B-KKt5 + (M.C. I.)
(4) If 9 .., B-K2; 10 B-B4.
(5) $10 \mathrm{~B}-\mathrm{K} t 5, \mathrm{~B}-\mathrm{QKt5}$; $11 \mathrm{P}-\mathrm{B} 3, \mathrm{P} \times \mathrm{P}$; $12 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{R} 4+$.
(6) If 11 .., B-QB4, or K-Q2; 12 P-QB4. If 11 .., B-QKt5; 12 P-B31
(7) Or 9 .., B-K3; If $10 \mathrm{~B}-\mathrm{Kt5}$ (or Kt $\times \mathrm{Pl}$), B-QKt5; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Q}$; $12 \mathrm{KR} \times \mathrm{Q}=$. (Handbuch.)
(8) If $10 \mathrm{~B}-\mathrm{KK} t 5$, B-KKt5; $11 \mathrm{~B} \times \mathrm{B}, \mathrm{B} \times \mathrm{K} t$; $12 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \mathrm{P} \times \mathrm{Kt}$: $13 \mathrm{~B} \times \mathrm{P}$ disch.
(9) If $11 \ldots, \mathrm{Q} \times \mathrm{P}$; 12 R -Ksq.
(10) Or $8 \mathrm{~K} t \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $9 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{QB4}$; $10 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{KR5}$; $11 \mathrm{Q}-\mathrm{K} 2, \mathrm{~F} \times \mathrm{B}$,
(11) Or 9 .., $\mathrm{B}-\mathrm{QB4} 4 . \mathrm{Or} 9$.., P-QB4; $10 \mathrm{Kt}-\mathrm{KB} 3$, B-K3; $11 \mathrm{Q}-\mathrm{K} 2, \mathrm{~F}-\mathrm{QB3}$; 12 P-QB3, B-K2 (M. C. I.) Cols. 14 and 15 may occur in the Ginoco Piano.

Table 30.-THE TWO KNIGHTS' DEFENCE.

1 P.K4, P.K4; 2 Kt.KB3, Kt-QB3; 3 B-B4, Kt-B3.

(1) Or $4 \ldots$, B-B4 ! reverting to the Giuoco Piano.
(2) Or 6 B-QKt5. (C. E. R.)
(3) Or $9 \ldots$, B-K2 1 (C. E. R.) Steinitz adds +.
(4) Or $5 \ldots, \mathrm{P} \times \mathrm{P}$!
(5) Or $7 \mathrm{~B} \times \mathrm{Kt}!\mathrm{BP} \times \mathrm{B}$; ४ $\mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{P}-\mathrm{KKt3}$; $9 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{Kt}-\mathrm{B} 3$; $10 \mathrm{Q}-\mathrm{R} 4$, R-KKtsq; $11 \mathrm{Kt} \times \mathrm{B}+$. (C. E. R.)
(6) Or $8 \ldots, \mathrm{~K} \times \mathrm{B} 1$; $9 \mathrm{Q}-\mathrm{Kt4ch}, \mathrm{~K}-\mathrm{B} 2$; $10 \mathrm{Q} \times \mathrm{Kt}, \mathrm{B}-\mathrm{K} 2:$ or $10 \ldots, \mathrm{P}-\mathrm{Q4}$, \&c. (C. E. R.)
(7) Or 5 Kt-B3 may be played. (C. E. R.) If 5 R-Ksq, P-Q4. This Col. is from a game Wisker $\mathrm{\nabla}$. Boden.
(8) If $4 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{P}$ l. See Four Knights' Game.
(9) Schallopp against Burn. Black's KP becomes weak in this variation.
(10) Or 6 Kt-Kt5, (if) P-KR3, or B-K2; 7 Q-B8. (C. E. R.)
(11) The Handbuch prefers 6 .., B-KKt5.

SECTION X.

THE HUNGARIAN DEFENCE.

1P.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt.QB3; 3 B.B4.B.K2.

THE Hungarian Defence dates from Cozio (1766), and is considered quite sound, but it has hitherto received comparatively little attention from Chess writers. It was played in a correspondence game between Paris and Pesth, in order to avoid the Giuoco Piano. The game was won by the Hungarians. Jaenisch notices this début as a slow develop. ment for Black, but it is not mentioned as a regular opening by either Staunton, Wormald, Gossip, Bird, or Cook. We find it, however, so described in the "classification nouvolle et méthodique," appended to the "compte rendu du Congrès de 1857." It stops all combinations founded upon $\mathrm{B} \times \mathrm{Pch}$, followed by Kt-KKt5. Mr. Potter speaks favourably of it, and notes that in playing $3 \ldots$, B-K2 Black supports his Queen at the very moment she wants support. The allusion is to the continuation of the position on the diagram by $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P}-\mathrm{Q} 3 ; 5 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{Q} \times \mathrm{Q}$. $B \times Q$.

The position taken up by the second player is similar to that which has been found most effective for meeting the Riuy Lopez Attack; without the disadvantage of compromising the defence by an early advance of the Pawns on Queen's side. The first player has for some time no scope for combinations. Mr. Potter notes that the effect of 5 P-Q5 (Col 2), a natural move which appears at first sight to gain time, is to deprive White of the slight advantage properly belonging to the first move. Extended analysis of the opening is not required, simplicity being its special characteristic. By the contination 4 P-Q4, P.Q3; 5 P-B3, P-KB1 the defence is turned into a, variation of Greco's Counter Gambit, treated on page 29 (Col. 15).

Table 31.-THE HUNGARIAN DEFENCE.

1 P.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{~B} \cdot \mathrm{~B} 4$ (1),

$$
\text { B } \cdot \mathrm{K} 2 \text { (2). }
$$

	1	2	8	4	5
4	P-Q4				P.Q3 (7)
	P-Q3!			$\widehat{\mathbf{P} \times \mathrm{P}}$	P.Q3
5	$0.0 \quad$ (3)	P-Q5	P-B3	$0-0$	0.0
	Kt-KB3	Kt-Ktsq	Kt-B3	Kt-B3	$\overline{\mathrm{Kt}}$-B3
6	P.Q5 ?	B-Q3	Q-B2	R-Kıq (6)	Kt-B3
	Kt-QKtsq	Kt-KB3	$\overline{\mathrm{P} \times \mathrm{P}}$ (5)	0.0	$\overline{0.0}$
7	Kt-B3	0.0	$\mathrm{P} \times \mathrm{P}$	P-K5	Kt-K2
	$\overline{0.0 \quad(4)}$	B-Kt5	P-Q4	$\overline{\mathrm{Kt}}$-Ksq	P-QR3
8		P-B4	$\mathrm{P} \times \mathrm{P}$	$\mathrm{Kt} \times \mathrm{P}$	Kt-Kt3
		P-B3	$\overline{\mathrm{Kt} \times \mathrm{P}}$	P-Q4	Kt-QR4
9		Kt-B3 -	$\mathrm{B} \times \mathrm{Kt}$	$\mathrm{Kt} \times \mathrm{Kt}$	B-Kt3
		Kt-R3 -	$\overline{\mathrm{Q} \times \mathrm{B}}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{K} t \times B}$
10			Kt-B3	B-Q3 -	$\underline{\mathrm{RP} \times \mathrm{Kt} \mathrm{(8)}}$
10			-	P-Kt3 -	

(1) Or White may play 3 B-K2, (if) B-B4: $3 \mathrm{Kt} \times \mathrm{P}$. (Walker.)
(2) Or $3 \ldots$, P-Q3 : see game Macdonnell v. Gunsberg, p. 41 note 1.
(3) If $5 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{PI}$; $6 \mathrm{Q} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q}$: if $5 \ldots, \mathrm{Kt} \times \mathrm{P}$; $6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; 7 Q-R5+.
(4) Black, according to Mr. Potter, has an excellent game. He now proposes Kt -Ksq followed by P-KB4.
(5) Or $6 \ldots, \mathrm{O}-\mathrm{OI}$ If $6 \ldots$, B-Kt5; 7 B-QKt5.
(6) P-K5, Kt-K5 (if Kt-KKt5; 7 B-KB4); 7 B-Q5 (C. E. R.): if 7 R-Ksq, P-Q4, \&c.
(7) P-B3, P-Q3; 5 O-O, Kt-B3; 6 P.Q3, O-O; 7 B-Kt3, B-Kt5?; 8 P-KR3, R.RA; 9 P-KKt4t: if $8 \ldots, \mathrm{~B} \times \mathrm{Kt} ; 9 \mathrm{Q} \times \mathrm{B}$, to be followed soon by P.KJit3, Q-K2, K-Kt2, and P-KB4. (Steinitz.)
(8) Blackburne v. Mason.

SECTION XI.

THE GIUOCO PIANO.

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3 ; 3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{~B} 4$

THE Giuoco Piano is a quiet and regular opening, leading naturally to a perfectly sound and strong game. The Pawns and pieces are gradually opposed to each other and changed off, the result of the game being determined by the player's treatment of slight irregularities and disarrangements incidental to the process of exchanging. Away from the main track there are numerous traps for the unwary and inexperienced player, but, as a rule, any attempt to hurry the action will recoil on the attempter. Numerous attempts of this character have been made at various times. The most interesting of these are now classified as regular openings, notably the Evans Gambit, the Two Knights' Defence, ànd Max Lange's Attack. The Jerome Gambit is a modern instance. The variation which arises from the continuation 4 P-B3, Kt-KB3; 5 P-Q4 is another example, although it is still classified as Giuoco Piano, while that which springs from 5 P-Q3 has been called the Giuoco Pianissimo. The latter is, however, the sound, quict opening implied by the term "Piano." It has been adopted by Mr. Blackburne in some of his most important match games.

The opening is generally favoured by students because it enables them to make an apparently good stand for some time against stronger antagonists. The following remarks by great players will be found particularly applicable.
(1) The advance of the QP at the proper moment always appears to turn the tables on the first player of the Giuoco Piano. (Staunton),
(2) Next to the QP, the KBP is the strongest Pawn. Löwenthal notes that Morphy never missed an opportunity of advancing the KBP when supported by the Rook. The move is almost always formidable, and in this opening particularly potent.
(3) To pin the KKt in this opening before the adversary has castled is worse than useless. He can push on his Pawns without fear and obtain command of the board. (Wisker).
(4) After K-Rsq the capture of the pinned Knight, opening the KKt file to the Rook, must be deemed very hazardous. (Wisker supported by Steinitz). A similar capture of the Queen's Knight, on the other side of board, for the sole purpose of giving Black a doubled Pawn, is also questionable policy. Mr. Steinitz notes that the Queen's Rook at QKt sq after the file is opened is always a considerable compensation.

In making exchanges the chief points to be considered will be found in Mr. Potter's Minor Principles given on page 16. Black's play in Col. 14 will serve as an example.

Table 32.-THE GIUOCO PIANO.

1 P.K 4, P-K 4 ; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3$; $3 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B} \cdot \mathrm{~B} 4(1) ; 4 \mathrm{P}-\mathrm{B} 3$, Kt-B3; $5 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{P} \times \mathrm{P}, \mathrm{B} \cdot \mathrm{Kt} 5 \mathrm{ch} ; 7 \mathrm{~B} \cdot \mathrm{Q} 2$.

	1	2	9	4	5
7	$\overline{\mathrm{B} \times \mathrm{Bch}}$				$\overline{\mathrm{Kt} \times \mathrm{KP}}$
8	QKt \times B				$\mathrm{B} \times \mathrm{B} \quad(10)$
	P-Q4	$\overline{\mathrm{Kt} \times \mathrm{KP}}$			$\overline{\mathrm{Kt} \times \mathrm{B}}$
9	$\mathrm{P} \times \mathrm{P} \quad$ (2)	$\mathrm{Kt} \times \mathrm{Kt}$ (5)			B \times Pch
	$\overline{\mathrm{KKt} \times \mathrm{P}}$	P-Q4			$\overline{\mathrm{K} \times \mathrm{B}}$
10	Q-Kt3	$\mathrm{B} \times \mathrm{P} \quad$ (6)	KKt-Kt5		Q-Kt3ch
	QKt-K2	$\overline{\text { Q }}$ B	$\overline{0-0} \quad(9)$	P×B	P-Q4
11	0.0	0-0 (7)	Q-R5	Q-R5	Q \times Kt! (11)
	0.0	$\overline{\text { B-Kt5 (8) }}$	B-B4	Q-K2	$\overline{\mathrm{R}-\mathrm{Ksq}}$
12	KR-Ksq	Kt-B3	$\mathrm{Kt} \times \mathrm{RP}$	0.0.0+	0.0
	P-QB3 (3)	$\overline{\mathrm{B} \times \mathrm{Kt}+}$	B \times QKt		P-QR4
13	Kt-K5-(4)		$\mathrm{Kt} \times \mathrm{R}$		Q-Kt3
	Q-Kt3-		$\mathbf{P} \times \mathrm{B}+$		R-R3
14					$\underline{\mathrm{Kt} \text {-B3 - }}$
					-

(1) 3 .., P-B4 transposes into Cols. 13-15 p. 29: see also p. 41, note 1. If 3 .., Kt-Q5 (tempting $4 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt} 4) ; 4 \mathrm{Kt} \times \mathrm{Kt}$ as in Bird's defence to the Lopez.
(2) Or 9 B-Q3.
(3) $12 \ldots, \mathrm{Kt}$-B5 is inferior, on account of R-K4 and QR-Ksq.
(4) Or 13 P-QR4! (Schiffers), Kt-Kt3 (Steinitz). Mr. Ranken suggests 13 Kt-K4)
(5) $9 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt} \times \mathrm{Kt}$; $10 \mathrm{Q} \times \mathrm{Kt}$, Kt-K2; $11 \mathrm{P}-\mathrm{Q} 6, \mathrm{P} \times \mathrm{P}$; $12 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 4$ (or O-O!); 13 Q-Q5, Kt-R3; 14 O-O-O. (Steele.)
(6) $10 \mathrm{~B}-\mathrm{Q} 3$, and $10 \mathrm{~B}-\mathrm{Kt5}$, have also been analysed by Zukertort, and found wanting. Mr. Ranken continues $10 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{Kt}$; $11 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{K} 2$; $12 \mathrm{Q}-\mathrm{Kt3}$, O-O; 13 R-Qsq, \&c.
(7) $11 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q}-\mathrm{K} 3 \mathrm{ch}$; $12 \mathrm{Q}-\mathrm{K} 2, \mathrm{Q} \times \mathrm{Qch} ; 13 \mathrm{Kt} \times \mathrm{Q}, \mathrm{B}-\mathrm{Kt5}$; $14 \mathrm{Kt}-\mathrm{K} 5$, $\mathrm{B} \times \mathrm{Kt}$; $15 \mathrm{Kt} \times \mathrm{Kt}$, \&c.
(8) If $11 \ldots, \mathrm{O}-\mathrm{O}$; $12 \mathrm{Kt}-\mathrm{B3}, \mathrm{Q}-\mathrm{Qsq}$; $13 \mathrm{P}-\mathrm{Q} 5+$. (Zukertort.)
(9) If $10 \ldots, \mathrm{~B}-\mathrm{B} 4$; $11 \mathrm{Kt} \times \mathrm{BP}$ (Bowley), $\mathrm{K} \times \mathrm{Kt}$; 12 Kt Kt3.
(10) 8 O-O, P-Q4; 9 R-Ksq, O-O; $10 \mathrm{~B}-\mathrm{Q3}, \mathrm{R}-\mathrm{Ksq}$; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{KB} 4$; 12 Kt KKt5, B \times Kt; $13 \mathrm{P} \times \mathrm{B}, \mathrm{Q}-\mathrm{B} 3+$. (Steele v. Blackburne.)
(11) $11 \mathrm{Kt}-\mathrm{K} 5 \mathrm{ch}, \mathrm{K}-\mathrm{B} 3$; $12 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P}-\mathrm{B} 4$; $13 \mathrm{Q}-\mathrm{QR4}, \mathrm{Q}-\mathrm{Kt3}$!: if $13 . ., \mathrm{Q}-\mathrm{Ksq}$; 14 Q-Qsq + (Albin v. Tarsasch.)

Table 33.-THE GIUOCO piano.

$4 \overline{\mathrm{Kt}} \mathrm{B} 3$!
P.Q4
$5 \widehat{\mathrm{P} \times \mathrm{P}}$
$\frac{\mathrm{P}-\mathrm{K} 5 \quad \text { (1) }}{\mathrm{P}-\mathrm{Q4}}$
B-QKt5!(3)
$7 \overline{\mathrm{Kt}-\mathrm{K} 5 \text { (dia.) }}$
$\mathrm{P} \times \mathrm{P} \quad$ (4)
$\overline{\text { B-Kt3 }}$
0.0
0.0
$\frac{\mathrm{Kt}-\mathrm{B} 3}{\mathrm{~B} \mathrm{Kt} 5}$
$\frac{\text { B-K3 }}{\text { P-B4 }}$
$\underline{\mathrm{P} \times \mathrm{P} \text { en pas }}$
$\overline{\mathrm{Kt} \times \mathrm{Kt}(5)}$
$\mathrm{P} \times \mathrm{Kt}$
18
14

$\overline{\mathrm{Q} \times \mathrm{P}}$	B-Ksq
B-K2	Kt -B5
$\overline{\mathrm{B} \times \mathrm{Kt}}$	Q-Bsq
$\mathrm{B} \times \mathrm{B}$	Q-Kt3
$\overline{\mathrm{Kt}}$-K2	Kt-K2
Q-Kt3	B-Q3
QR-Qsq	-

(Col. 6.)

After Black's 7th move.

9
10

	P-Q3 (11)
P-QKt4 (8)	P-QKt4(12)
B-Kt3 (dia.)	B-Kt3
P-Q3 (9)	Q-Kt3
P-Q3	Q-K2
P-QR4 (13)	P-QR4 (18)
P-QR4	P-QR4
P.Kt5	P-Kt5
Kt-K2	Kt-Qsq
B-K3	P-Q3
$\overline{\mathrm{B} \times \mathrm{B}}$!	Kt-KB3
$\mathrm{P} \times \mathrm{B}$	QKt-Q2
P-B3	Kt-K3
0.0	Kt -Bsq
0.0	Kt-B4
Kt-R3	Q-B2
$\overline{\mathrm{K}} \mathrm{t}-\mathrm{Kt} 3$	B-K3
B-Kt3-	Kt-K3
$\overline{\mathrm{P}}$-Q4-(10)	$\overline{0.0}$

(Col. 9.)

After Black's 5th move.

Notes to Table 88.

(1) 6 B-KKt5, P.KR3; $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B}$; $8 \mathrm{P} \cdot \mathrm{K} 5, \mathrm{Q} \cdot \mathrm{B} 41$ (if $\mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \cdot \mathrm{K} 2$); $90.0, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{O} . \mathrm{O}$; \& c .
(2) $6 \ldots, \mathrm{Kt}-\mathrm{K} 5$; $7 \mathrm{~B}-\mathrm{Q} 5$? (a), $\mathrm{Kt} \times \mathrm{KBP}$; $8 \mathrm{~K} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Pdch}$; $9 \mathrm{~K}-\mathrm{Kt} 3$, $\mathrm{P} \times \mathrm{P} ; 10 \mathrm{QB} \times \mathrm{P}, \mathrm{Kt}-\mathrm{K} 2 ; 11 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Kt} \times \mathrm{B} ; 12 \mathrm{Kt} \times \mathrm{BP}, \mathrm{O} . \mathrm{O} ; 13 \mathrm{Kt} \times \mathrm{Q}$, B-B7ch; $14 \mathrm{~K}-\mathrm{R} 3, \mathrm{P}-$ Q3dch; $15 \mathrm{P}-\mathrm{K} 6, \mathrm{Kt}-\mathrm{B} 5 \mathrm{ch} ; 16 \mathrm{~K}-\mathrm{Kt4}, \mathrm{Kt} \times \mathrm{KP} ; 17 \mathrm{P}-\mathrm{Kt3}$, Kt \times Ktdch; 18 K-R4, R-B5ch; 19 K-Kt5, Kt-K3ch; 20 K-R5, P-Kt3ch; 21 K-R6, R-R5ch; $22 \mathrm{P} \times$ R, B-K6 mate. (Hoffman v. Petroff).
(a) $7 \mathrm{P} \times \mathrm{Pl}:$ if $7 \mathrm{Q}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 4 ; 8 \mathrm{P} \times \mathrm{P}$ en pas, $\mathrm{O}-\mathrm{O}+$.
(3) $7 \mathrm{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $8 \mathrm{P} \times \mathrm{KtP}, \mathrm{R}$-KKtsq ; 9 B-Kt5, P.B3 (or Q.Q3! C. E. R.); $10 \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}, \mathrm{Q}-\mathrm{K} 2$; $11 \mathrm{~B} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Qch} ; 12 \mathrm{~K} \times \mathrm{Q}, \mathrm{P}-\mathrm{Q} 6 \mathrm{ch}+$ (Gunsberg).
(4) $8 \mathrm{Kt} \times \mathrm{P}, \mathrm{O} .0$; $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; 100.0 , B.R3; $11 \mathrm{R}-\mathrm{Ksq}, \mathrm{P} . \mathrm{B} 3 ; 12 \mathrm{P} . \mathrm{K} 6$. (G. v. Steinitz.)
(5) Or $12 \ldots, \mathrm{Kt} \times \mathrm{P}$ (B3) ; $13 \mathrm{~B}-\mathrm{K} 2$, \&c. If in this col. Black play $10 \ldots$ P.B3, as in our first edition, White may reply 11 Q-R4, (C. E. R.)
(6) Or $9 \ldots$ Q-K2, or $\mathrm{Kt} \times \mathrm{B}$ may be played.
(7) $10 \ldots, 0.0$; 110.0 (P-KR3, C. E. R.), B.Kt5; $12 \mathrm{~B}-\mathrm{K} 3, \mathrm{Kt} \times \mathrm{Kt}: 13 \mathrm{P} \times \mathrm{Kt}$, P-KB3; 14 P-QR4, P \times P; 15 P-R5, P-K5 + . (Gunsberg).
(8) If 5 Kt-Kt5, O.O; 6 P-Q3, P-KR3 (P.Q31); 7 P-KR4, P.Q3; (if) 8 Q.B8, Q-K2+: if 6 P.B4, P-Q4 1
(9) 6 Q-Kt3, O.O: 7 P.Q3 (a), P.Q3; 8 P-QR4, P.QR3; 9 P-R5, B-R2; $10 \mathrm{~B}-\mathrm{KKt5}, \mathrm{Q}-\mathrm{K} 2 ; 11 \mathrm{O}-\mathrm{O}, \mathrm{Kt}-\mathrm{Qsq}$; 12 QKt Q2, Kt-K3; $13 \cdot \mathrm{~B}-\mathrm{R} 4, \mathrm{Kt}-\mathrm{B} 5$. (Bird v. Rosenthal.) If $6 \mathrm{P}-\mathrm{Kt5}, \mathrm{Kt}-\mathrm{QR4} ; 7 \mathrm{Kt} \times \mathrm{P}, \mathrm{O}-\mathrm{O} ; 8 \mathrm{Q}-\mathrm{R4} 4 \mathrm{P}-\mathrm{Q} 3 ; 9 \mathrm{Kt}$-B3, $\mathrm{Kt} \times \mathrm{B} ; 10 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{P}$.
(a) A game (Rowe v. Ward) runs:-7 Kt-Kt5, B \times Pch; 8 K-Bsq ?, B-Kt3; $9 \mathrm{Kt} \times \mathrm{BP}, \mathrm{Kt} \times \mathrm{KP}$; $10 \mathrm{~K} \cdot \mathrm{~K} 2, \mathrm{Q}-\mathrm{R} 5$; $11 \mathrm{R}-\mathrm{Bsq}, \mathrm{Kt}$-B7; $12 \mathrm{Kt} \times$ Pdch, K -Rsq; ${ }^{13} \mathrm{P}-\mathrm{Q} 4, \mathrm{~B} \times \mathrm{P} ; 14 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{~B} \times \mathrm{B} ; 15 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt}-\mathrm{Q} 5 \mathrm{ch} ; 16 \mathrm{~K} \cdot \mathrm{Ksq}, \mathrm{Kt}-\mathrm{Q} 6 \mathrm{dbl} \mathrm{ch}$; $17 \mathrm{~K}-\mathrm{Qsq}, \mathrm{Q}-\mathrm{K} 8 \mathrm{ch}$; $18 \mathrm{R} \times \mathrm{Q}$, Kt-B7 mate.
(10) Bird v. Zukertort.
(11) 4 ..., Q-K2; 5 P-Q4, B-Kt3; 6 O.O, P-Q3, \&c. If $4 \ldots$ P-B4; 5 P-Q4,, $\mathrm{P} \times \mathrm{QP} ; 6 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{P}-\mathrm{Q} 4 ; 7 \mathrm{~B} \times \mathrm{P}, \mathrm{P} \times \mathrm{KP} ; 8 \mathrm{~B} \times \mathrm{KKt}, \mathrm{R} \times \mathrm{B} ; 9 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{\rho}$ P.KKt3; $10 \mathrm{Q} \times \mathrm{RP}, \mathrm{Q}-\mathrm{Q} 4$; $11 \mathrm{P} \cdot \mathrm{QB4}$, \&c. (Gossip).
(12) Bird v. Flechsig. An old form of this variation, as played betweeu Labourdonnais and McDonnell, also Staunton and Horwitz, runs as follows:5 P.Q4, $\mathrm{P} \times \mathrm{P}$; $6 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt3}$; 7 Kt.B3 (Staunton played P-Q5 first), Kt-B3; 8 P-Q5, $\mathrm{Kt}-\mathrm{K} 4$ ($\mathrm{Kt}-\mathrm{K} 2$ permits $\mathrm{Kt}-\mathrm{Q} 4$) ; $9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}=$.
(13) Or P.QR3

Table 34.-THE GIUOCO PIANO.

$$
\text { Iि-K4, P-K4; } 2 \mathrm{Kt} \cdot \mathrm{~KB} 3, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B}-\mathrm{B} 4 .
$$

(1) $5 \ldots$ P-Q4?; $6 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $7 \mathrm{P}-\mathrm{QK} t 4$, followed by P-Kt5, wins a Pawn.
(2) Blackburne v. Zukertort.
(3) Or 9 Q-K2!
(4) Ryall v. Narraway.
(5). If $5 \mathrm{~B}-\mathrm{K} 3$, Black may play $\mathrm{B} \times \mathrm{B}$; $6 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}$-R4 to leave White with two Knights, against Bishop and Knight.
(6) 13 Q-R4ch?; $14 \mathrm{~K} \cdot \mathrm{~K} 2, \mathrm{Q}-\mathrm{B} 2$; 15 P-KKt4, Kt-R2 (Noa v. Steinitz); 16 QR-KKtsq 1 : good when practicable.
(7) $5 \ldots, \mathrm{~B}-\mathrm{KKt5} ; 6 \mathrm{Q}-\mathrm{Kt3}, \mathrm{Q}-\mathrm{Q} 2 ; 7 \mathrm{~B} \times \mathrm{Pch}, \mathrm{Q} \times \mathrm{B} ; 8 \mathrm{Q} \times \mathrm{KtP}, \mathrm{K}-\mathrm{Q} 2$ $9 \mathrm{Q} \times \mathrm{R}, \mathrm{B} \times \mathrm{Kt}$; $10 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{P}(\mathrm{B} 6)$, \&c. (Mills v. Marriott.) $5 \ldots, \mathrm{~B}-\mathrm{K} 3$ may be ventured. (C. E. R.)
(8) If $9 \mathrm{~B}-\mathrm{K} 3, \mathrm{Kt} \times \mathrm{KP}$. (C. E. R,)
(9) $10 \ldots, \mathrm{Q}-\mathrm{K} 2$; $11 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $12 \mathrm{Q} \cdot \mathrm{B} 2$.

Table 35.-THE GIUOCO PIANO.

1 P.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3$; 3 B.B4. B.B4.
16
17
18
19
20

$\frac{\mathrm{Kt}-\mathrm{B} 3}{\mathrm{Kt}-\mathrm{B} 3}$
$5 \frac{\mathrm{R}-\mathrm{Ksq}}{\mathrm{Kt}-\mathrm{B} 3}$
P-Q3 (2)
$\frac{\mathrm{P}-\mathrm{Q} 3}{\mathrm{P}-\mathrm{Q} 3}$
$6 \frac{\mathrm{P} \cdot \mathrm{B} 3}{\mathrm{O}-\mathrm{O}}$
$7 \frac{\mathrm{P}-\mathrm{Q} 4}{\mathrm{~B}-\mathrm{Kt} 3}$
B-KKt5?
B-K3.
$\overline{\text { P-KR3 }}$
$\frac{\text { B-R4 }}{\text { P-KKt4! }}$
$\frac{\text { Q-K2 }}{\text { B-K3 }}$
$\frac{\mathrm{Kt}-\mathrm{QR} 4}{\mathrm{~B}-\mathrm{Kt} 3} \quad \frac{0.0}{\mathrm{~B}-\mathrm{KKt} 5}$

P-KKt4!
$8 \frac{\mathrm{P} \times \mathrm{P}}{\mathrm{Kt}-\mathrm{KKt} 5}$
$\frac{\text { B-KKt3 }}{\text { P-KR4 }}$
$\frac{\mathrm{B}-\mathrm{Kt3}}{\mathrm{Q}-\mathrm{K} 2}-$
$\frac{\mathrm{Kt} \times \mathrm{B}}{\mathrm{RP} \times \mathrm{Kt}}$
B-KKt5? (5)
$\mathrm{Kt} \times \mathrm{KtP}$
$\frac{\mathrm{B}-\mathrm{KKt} 5}{\mathrm{~B} \times \text { Pch }}$
$\overline{\text { P.R5 }}$
P-QR3 (4)
Kt-Q5
$\frac{\mathrm{K}-\mathrm{Bsq}}{\overline{\mathrm{B} \times \mathrm{R}}} \quad \frac{\mathrm{Kt} \times \mathrm{P}}{\mathrm{P} \times \mathrm{B}}$
$B \times \mathbf{Q} \quad \mathrm{Kt} \times \mathrm{Q}$
$\overline{\mathrm{Kt}-\mathrm{K} 6 \mathrm{ch}+} \overline{\mathrm{B} \cdot \mathrm{KKt} 5+}$
(3)
(1) $6 \mathrm{Kt}-\mathrm{Kt5}$?, $\mathrm{B} \times \mathrm{Pch}$; $7 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt}-\mathrm{KKt5}$; $8 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Bsq} ; 9 \mathrm{Kt}-\mathrm{K} 6 \mathrm{ch}$, $\mathrm{B} \times \mathrm{Kt}$; $10 \mathrm{~B} \times \mathrm{B}, \mathrm{B} \times \mathrm{R}$; $11 \mathrm{Q} \times \mathrm{Kt}, \mathrm{B}-\mathrm{R} 5+$.
(2) 5 P-QKt4, B \times KtP $!$ transposes into the Evans Gambit, and 5 P-Q4 is Max Lange's Attack, (See Note 1, p. 83.) If 5 P-B3, Kt×P; 6 P-Q4 (B-Q5!), P.Q4; 7 B-QKt5, $\mathrm{P} \times \mathrm{P}$; $8 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3$. (Handbuci).
(3) Continued 12 Q-Q2, Kt-Q5; 13 Kt -B3. Black mates in seven moves (Fedden v. Wayte). If $11 \mathrm{Kt} \times \mathrm{R}, \mathrm{Q}-\mathrm{K} 2$ and wins, whether White play B-B7ch, or Kt.B7.
(4) White plays to keep two Bishops on the board.
(5) No use until the opponent has castled.

SECTIONXII.

MAX LANGE'S ATTACK.

1P.K4, P.K4; 2 Kt.KB3,Kt-QB3; 3 B.B4, B.B4:,
$40 \cdot 0, \mathrm{Kt}-\mathrm{KB} 3 ; 5 \mathrm{P} \cdot \mathrm{Q} 4$.

THE Max Lange Attack is not so much a regular opening as a form of proceeding applicable to séveral openings. It produces some fine and critical positions, calculated to embarrass an inexperienced opponent, and is thus a formidable weapon in the hands of an expert. It is not generally considered quite sound against analysis, nevertheless the second player, who has the option in the matter, will usually avoid the variations we have treated in Cols. 3-5, and prefer to seek his advantage some other way. The Max Lange has hitherto been classified as a variation of the Giuoco Piano, and we have made the opening moves in the same manner in order to introduce the defence $5 \ldots, \mathrm{~B} \times \mathrm{P}$ (Cols. 1-2) which is not favourable for the first player. The more favourable form, $5 \ldots, \mathrm{P} \times \mathrm{P}$ (Cols. 3-5), may, however, be brought about in the Scotch Gambit, thus:-1 P-K4, P-K4; 2 Kt -KB3, Kt-QB3; 3 P-Q4, P \times P; 4 B-B4, B-B4: 5 Castles, Kt-B3; 6 P-K5, \&c.

In the two Knights' Defence it follows the moves-1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4, Kt-B3; 4 P-Q4, P \times P; 5 Castles, B-B4: 6 P-K5, \&c.

It may also arise in the Bishop's Opening, by 1 P-K4, P-K4; 2 B-B4, Kt-B3 ; 3 Kt-KB3, Kt-QB3; 4 P-Q4, P \times P; 5 Castles, B-B4; 6 P-K5, \&c.

In the Giuoco Piano there is a similar variation, but it does not turn out so well for the first player, viz.: $4 \mathrm{P}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3$; $5 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; 6 P-K5, P-Q4, \&c. The student will note that in all the previous openings above named, White gains a move by the sacrifice of his Queen's Pawn, and that it is this sacrifice which makes the Max Lange playable. It may easily be avoided by a little attention to transposition.

Table 36.-MAX LANGE'S ATTACK.

> 1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B•B4, B-B4: 4 Castles, Kt-B3.

	1	2	3	4	5
;	P-Q4 (1)				
	$B \times \mathrm{P}$ (2)		$\overline{\mathbf{P} \times \mathrm{P} \text { ? }}$		
6	$\underline{\mathrm{Kt}} \times \mathrm{B}$		P-K5		
	Kt $\times \mathrm{Kt}$		$\overline{\mathrm{P}-\mathrm{Q} 4!~(6)}$		
7	P-B4		$\mathrm{P} \times \mathrm{Kt}$		
	P-Q3		$\overline{\mathrm{P} \times \mathrm{B}}$		
8	$\mathrm{P} \times \mathrm{P}$	5	R-Ksqch (8)	(dia.)	
	$\overline{\mathrm{P} \times \mathrm{P}}$		K-Bsq ?		B-K3
9	B-KKt5ıdia)		B-Kt5! ${ }^{\text {- }}$	$\mathrm{P} \times \mathrm{Pch}$	Kt-Kt5
	Q-K2!	B-K3	$\overline{\mathrm{P} \times \mathrm{P} \quad(9)}$	$\overline{\mathrm{K} \times \mathrm{P}}$	Q-Q4 (17)
10	P-B3	$\underline{\mathrm{B} \times \mathrm{Kt}}$ (5)	B-R6ch	Kt-K5 ! (13)	Kt-QB3(18)
	Kt-K3	P×B	K-Ktsq	$\overline{\mathrm{Kt} \times \mathrm{Kt}(14)}$	Q-B4
11	$\mathrm{QB} \times \mathrm{Kt}$	$B \times B$	Kt-B3	$\mathrm{R} \times \mathrm{Kt}$	P-KKt4(19)
	$\overline{\mathrm{P} \times \mathrm{B}} \quad(3)$	$\overline{\mathrm{Kt} \times \mathrm{B}}$	$\overline{\text { B-B4 (10) }}$	$\overline{\mathrm{B}-\mathrm{K} 2!(15)}$	Q-Kt3 (20)
12	P-QKt4	Kt-QB3	Kt-K4	Q-R5	QKt-K4(21)
	$\overline{\mathrm{R}-\mathrm{KKtsq}(4)}$	P-QB3	B-KBsq	$\overline{\text { P-KR3 (16) }}$	B-Kt3
13		$\underline{Q} \times \mathrm{Q}$	Q-Q2	R-Q5	$\underline{\text { P-B4 (22) }}$
		R×Q	$\overline{\mathrm{B} \times \mathrm{B} \text { ((11) }}$	B-Q3	$\overline{0-0.0}$
14		$\mathrm{R} \times \mathrm{P}$	$\mathrm{Q} \times \mathrm{B}$	B-B4	P-B5
		R-Q7	$\overline{\mathrm{B} \times \mathrm{Kt}(12)}$	Q-B3	$\overline{\mathrm{B} \times \mathrm{P}}$
15		R-B2	$\mathrm{R} \times \mathrm{B}$	$B \times B$	$\mathrm{P} \times \mathrm{B}$
		$\mathrm{R} \times \mathrm{R}$	P-B4	$\overline{\mathrm{P} \times \mathrm{B}}$	$\overline{\mathrm{Q} \times \mathrm{P}(\mathrm{B4})}$
		$\mathrm{K} \times \mathrm{R}$	Kt-R4+	Kt-Q2+	$\underline{\mathrm{P} \times \mathrm{P}+(23)}$
16		Kt-Q5+			

(1) If 5 P-QKt4, B \times KtP; 6 P-B3, B-K2; 7 P-Q4, P-Q3; 8 Kt-Kt5, O-O; $9 \mathrm{P}-\mathrm{B} 4, \mathrm{P}-\mathrm{KR} 3$; $10 \mathrm{BP} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 9 \mathrm{Kt} \times \mathrm{P}, \mathrm{R} \times \mathrm{Kt} ; 10 \mathrm{~B} \times \mathrm{Rch}, \mathrm{K} \times \mathrm{B}$; 11 Q-R5ch, K-Ktsq+: if 5 .., B-K3; 6 P-Kt5!
(2) If $5 \ldots, \mathrm{QKt} \times \mathrm{P}$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{K} 3$; $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{BP} \times \mathrm{B} ; 8 \mathrm{Kt}-\mathrm{Q} 3+$
(3) Or $11 \ldots, \mathrm{Q}-\mathrm{B} 4 \operatorname{ch} \mathrm{l}$; $12 \mathrm{~K}-12 \mathrm{sq}, \mathrm{Q} \times \mathrm{B}$; $13 \mathrm{~B} \times \mathrm{KP}, \mathrm{O}-\mathrm{O}+$. (C. E. R.)
(1). Mr. W.T. Pierce prefers 10 Kt -R3: also after 10 P-B3, Kt-K3; $11 \mathrm{~KB} \times \mathrm{Kt}$?,

P×B; 12 P-QKt4, B-Q2; 13 Q-B3, \&c. (B. C. M., 1889, p. 454.)
(5) 10 Kt -R3, Q-K2; $11 \mathrm{P}-\mathrm{B} 3, \mathrm{~B} \times \mathrm{B}$; $12 \mathrm{Kt} \times \mathrm{B}$; Kt-K3; $13 \mathrm{~B} \times \mathrm{Kt}$ ior 13 B-K3, Pierce), $\mathrm{P} \times \mathrm{B}$ [or $13 \ldots, \mathrm{Q}-\mathrm{B} 4 \mathrm{ch}!$ as in note 3. (C. E. R.)] ; 14 Q-R4oh, P-B3; $15 \mathrm{Kt}-\mathrm{K} 3, \mathrm{R}-\mathrm{KK} t \mathrm{sq}$; $16 \mathrm{~K}-\mathrm{Ps} q, \mathrm{Kt}$-B4; $17 \mathrm{Q}-\mathrm{B} 2, \mathrm{O}-\mathrm{O}-\mathrm{O} ; 18$ QR-Qsq, $R \times R$; $19 R \times R, R-Q s q ; 20$ P-QKt4. (Minckwitz v. Anderssen): Cordel gives $16 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{B} 4 \mathrm{ch} ; 17 \mathrm{~K}-\mathrm{Rsq}, \mathrm{O}-\mathrm{O}-\mathrm{O} ; 18 \mathrm{Kt} \times \mathrm{P}$. If $10 \mathrm{~B} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{B} ; 11 \mathrm{Q} \times \mathrm{Q} \mathrm{h}$, $\mathrm{R} \times \mathrm{Q}$; $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $13 \mathrm{R} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 5:$ or $13 \mathrm{Kt}-\mathrm{B} 3, \mathrm{R}-\mathrm{Q} 7$.
(6) If $6 \ldots, \mathrm{Kt}-\mathrm{K} 5 ; 7 \mathrm{~B}-\mathrm{Q} 5$, or R-Ksq !
(7) If 7 B-QKt5, Kt-K5; $8 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 2+$
(8) If $8 \mathrm{P} \times \mathrm{P}, \mathrm{R}$-KKts̊q; $9 \mathrm{~B}-\mathrm{Kt5}$ (if $9 \mathrm{R}-\mathrm{Ksq} \mathrm{ch}, \mathrm{B}-\mathrm{K} 2$), $\mathrm{B}-\mathrm{K} 2$; $10 \mathrm{~B} \times \mathrm{B}$, $\mathrm{K} \times \mathrm{B} ; 11 \mathrm{R}-\mathrm{Ksq}$ ch, $\mathrm{B}-\mathrm{K} 3$; $12 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{R} \times \mathrm{P}$; $13 \mathrm{Q}-\mathrm{R} 5, \mathrm{Q}-\mathrm{Q} 4, \& \mathrm{c}$.
(9) If $9 \ldots, \mathrm{Q}-\mathrm{Q} 4$; $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{B} 4$; $11 \mathrm{Kt}-\mathrm{K} 4+$
(10) $11 \ldots, \mathrm{~B}-\mathrm{KKt} 5$; $12 \mathrm{Kt}-\mathrm{K} 4, \& c$.
(11) If $13 \ldots$, B-Kt3; $14 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B} ; 15 \mathrm{Kt} \times \mathrm{QP}, \mathrm{R}-\mathrm{Qsq} ; 16$ P-QB3t.
(12) If $14 \ldots$ B-Kt3; $15 \mathrm{Kt}-\mathrm{R} 4+$. (Gossip).
(13) 10 Kt-Kt5, R-Ksq; $11 \mathrm{R} \times \mathrm{R}, \mathrm{Q} \times \mathrm{R}$; $12 \mathrm{Kt} \times \mathrm{RP}, \mathrm{B}-\mathrm{B} 4 ; 13 \mathrm{Kt}-\mathrm{Kt} 5, \mathrm{~B} \times \mathrm{P}+$.
(14) $10 \ldots, \mathrm{~B}-\mathrm{K} 3$; 11 Q-R5, B:KBsq; $12 \mathrm{Kt}-\mathrm{Kt4}, \mathrm{P}-\mathrm{KR} 3$ (R-KKtsq!); $13 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}$-Ktsq; $14 \mathrm{R} \times \mathrm{B}$ and wins. (Praxis.) If $10 \ldots, \mathrm{R}-\mathrm{Ksq}$; 11. B-R6ch, K -Ktsq; $12 \mathrm{Kt} \times \mathrm{Kt}, \& \mathrm{c}$.
(15) 11 .., B-Q3; 12 R-Kt5ch, K-Bsq; 13 Q-R5, Q-K2; $14 \mathrm{~K}=\mathrm{Bsq}, \mathrm{P}-\mathrm{Q} 6$; $15 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{K} 3,16 \cdot \mathrm{R}-\mathrm{Kt7}, \mathrm{~K} \times \mathrm{R}$; $17 \mathrm{~B}-\mathrm{R} 6 \mathrm{ch}, \mathrm{K}-\mathrm{Ktsq}$; 18. Kt-Q5, Q-Qsq; 19 R-Ksq, B-KBsq ; 20 R-K3+.
(16) $12 \ldots$, R-Ksq; 13 B-R6ch, K-Ktsq; $14 \mathrm{~K}-\mathrm{Q} 5, \mathrm{~B}-\mathrm{Bsq}$; $15 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{Q}-\mathrm{K} 2, \& c .:$ if 13 Q-R6ch, K-Rsq; 14 R-R5, B-KB4; $15 \mathrm{R} \times \mathrm{B}$?, B-Kt4 and wins.
(17) If $9 \ldots, \mathrm{O}-\mathrm{O} ; 10 \mathrm{R} \times \mathrm{B}, \mathrm{P} \times \mathrm{R}$; $11 \mathrm{P}-\mathrm{B} 7 \mathrm{ch}, \mathrm{K} \cdot \mathrm{Rsq}$; $12 \mathrm{Q}-\mathrm{R} 5, \mathrm{P}-\mathrm{KR} 3$; 13 Q-Kt6+. Mr. Loman suggests $9 \ldots, \mathrm{P}_{-}$KKt3.
(18) If $10 \mathrm{P} \times \mathrm{P}, \mathrm{R}-\mathrm{KKtsq}, 11 \mathrm{Kt} \times \mathrm{RP}, \mathrm{B}-\mathrm{K} 2$: or $11 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q}-\mathrm{B} 4$; $12 \mathrm{P}-\mathrm{KKt4}$, Q-Kt3; 13 QKt-K4, B-K2 instead of to Kt3:(Loman).
(19) Or. 11 QKt-K4, B-Kts; $12 \mathrm{Kt} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; $13 \mathrm{P}-\mathrm{B} 7 \mathrm{ch}, \mathrm{K}-\mathrm{Q} 2$.
(20) If $11 ., \mathrm{Q} \times \mathrm{P}(\mathrm{B} 3)$; $12 \mathrm{QKt}-\mathrm{K} 4, \mathrm{Q}-\mathrm{K} 2 ; 13 \mathrm{Kt} \times \mathrm{QB}, \mathrm{P} \times \mathrm{Kt} ; 14 \mathrm{~B}-\mathrm{Kt} 5$.
(21) If $12, \mathrm{R} \times \mathrm{Bch}, \mathrm{P} \times \mathrm{R} ; 13 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3 ; 14 \mathrm{Kt} \times \mathrm{KtPch}, \mathrm{K}-\mathrm{Q} 2 ; 15 \mathrm{Kt}-\mathrm{Q} 5 ;$ Kt-K4. If $12 \mathrm{KtxBl} \mathrm{P} \times \mathrm{Kt} ; 13 \mathrm{R} \times \mathrm{Pch}, \mathrm{K}-\mathrm{B} 2$; $14 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{~B}-\mathrm{Q} 3 ; 15 \mathrm{P}-\mathrm{Bs}$, P-KR4, \&c.
(22) Or $13 \mathrm{Kt} \times \mathrm{B}!\mathrm{P} \times \mathrm{Kt}$; $14 \mathrm{P} \cdot \mathrm{B} 7 \mathrm{ch}, \mathrm{Q} \times \mathrm{P}!$; $15 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Q}-\mathrm{Q} 2 ; 16 \mathrm{Kt} \times \mathrm{KP}+$. (Wormald.)
(23) White will now be able to play K-Rsq and R-Bsq (Gossip.)
(Col. 1.)

After White's 9th move.
(Col. 3.)

After White's 8th move.

SECTION XIII.

THE JEROME GAMBIT.

1 P.K4, P•K4; 2 Kt-KB3, Kt-QB3; 3 B.B4, B•B4;• $4 \mathrm{~B} \times \mathrm{Pch}$.

THE Jerome Gambit is an American invention, and a very risky attack. It is described in the American Supplement to Cook's Synopsis as unsound but not to be trifled with. The first player sacrifices two pieces for two pawns, with the chances arising from the adversary's King being displaced, and drawn into the centre of the board. "The defence requires study, and is sometimes difficult." It may be added that it is equally difficult for the first player to maintain the attack.

After $4 \mathrm{~K} \times \mathrm{B} ; 5 \mathrm{Kt} \times$ Pch, Kt \times Kt; 6 Q-R5ch, Black may obtan a safe game by K-Bsq (Col. 4), or he may follow out Mr. Steinitz's theory that the King is a strong piece which not only possesses great power for defensive purposes, but can be made use of for the attack early in the game, with the object of being posted more favourably for the ending in the centre of the board. (Cols. 1-3).

Mr. S. A. Cbarles of Cincinnati, Ohio, is named in the American Supplement as the clief analyst of this opening. It is very rarely practised, but as a similar sacrifice of a minor piece for two pawns to stop Black from castling may often occur in the King's Knight's opening, we give the Jerome Gambit as a representative form of this kind of attack on its merits, showing its strength and weakness apart from accidental circumatances, which in actual play may materially affect the result.

Table 37.--THE JEROME GAMBIT.

1 P.K4, P.K4; 2 Kt.KB3, Kt.QB3; 3B.B4, B.B4;
$4 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B} ; 5 \mathrm{Kt} \times \mathrm{Pch}, \mathrm{Kt} \times \mathrm{Kt}$.

	1	2	3	4	5
6	Q-R5ch				P.Q4
	K-K3 (1)			K-Bsq	$\overline{\mathrm{B} \times \mathrm{P}}$
7	Q-B5ch (2)			Q $\times \mathrm{Kt}$	$Q \times B$
	K:Q3			Q-K2	Q.B3 (6)
8	P.Q4		P.KB4	Q-B5ch	Q-Qsq
	$\bar{B} \times \mathrm{P}$		Q-B3	K-Ksq	P-Q3
	Kt-R3		$\mathrm{P} \times$ Ktch	Kt-B3	0.0
8	Kt-K2? (3)	P.B3	Q \times P	P-Q3	P-KKt3
10	Q-R3	P-B3	Q-B3	Q.B3	P.KB4
	Q-Bsq	Q-B3	Kt-B3	Q-B2 (4)	Kt-B3+
	$\mathrm{Kt-Kt5ch}$	$\mathrm{P} \times \mathrm{B}$	P.Q3	Q-K2	
11	K-B4	$Q \times Q$	K-B3	$\overline{\mathrm{Kt}-\mathrm{R} 3 ~(5)}$	
	$\mathrm{Kt} \times \mathrm{B}$	$\mathrm{P} \times \mathrm{Q}$	Kt-B3	0.0	
12	$\overline{\mathrm{K} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt}}$-B2	P-Q3+	P-QB3+	
	Q-K3ch	B-B4ch			
18	K-B5	K-K2+			
	P-QR4+				

(1) If $6 \ldots, \mathrm{Kt}$-Kt3; 7 Q-Q5ch, K-Ksq; 8 Q×B, P.Q3; 9 Q-B3, Kt-B3; 10 P.Q3, K-B2. +
(2) If 7 P-KB4, P-Q3. If $70-0, \mathrm{P}-\mathrm{Q} 31$; $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3+$: or 7 .., P.KKt3; 8 Q-R3ch, K moves; -9.Q-QB3. (A. S.)
(3) $9 \ldots, \mathrm{~K}-\mathrm{B} 3+$. (A. S.) Or 9 .., Q -B3 which might also be played in lieu of 10 .., Q-Bsq. (C. E. R.)
(4) Or Kt-B3! (E. F.)
(5) Or 11 Kt -K2 or Kt-B3. (C. E. R.)
(6) If $7 \mathrm{P} \cdot \mathrm{Q3}$, Kt-B3: $8 \mathrm{Q} \cdot \mathrm{B3}$, \&c.: or $8 \mathrm{~F}, \mathrm{Kt}-\mathrm{B3}$,

SECTION XIV.

THE EVANS GAMBIT. Part I.

1 P.K 4, P.K 4 ; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt•QB3; $3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{~B} 4$;
$4 \mathrm{P} \cdot \mathrm{Q}$ Kt $4, \mathrm{~B} \times \mathrm{Kt} \mathrm{P}$.

0^{7}F the Evans Gambit it may well be said that it is the product of innumerable minds. Walker, writing in 1841, notes that " it was introduced some seven years ago by my friend Capt. Evans, R.N., who presented its leading variations in MS. at the same time to Mr. Lewis and myself," It is usually described by Chess writers as a variation of the Giuoco Piano, the first three moves being the same in both openings. At this stage the first player by the sacrifice of one of his least valuable Pawns obtains so much command of the board that while forwarding his own game he can keep his opponent occupied with defensive measures for a longer time than is possible in any other opening. This can be done in such a variety of ways that the Evans is practically half a dozen openings in one. After 5 P-B3 it branches in two directions, with different surroundings and characteristics. We have treated them as if they were separate openings. The continuation 5 , B-B4 has been chiefly favoured by British players, and $5 \ldots$, B-R4 by the Germans. There is a point of fusion in what is known as the normal position (see diagram) after the moves $60 \cdot 0, \mathrm{P} \cdot \mathrm{Q} 3 ; 7 \mathrm{P} \cdot \mathrm{Q4}, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{P} \times \mathrm{P}, \mathrm{B} \cdot \mathrm{Kt} 3$.

Starting from the above position the practice of the Chess world lingered for a while over such moves as 9 P-KR3, 9 Kt -Kt5, 9 B-R3, \&c., the general idea being to prevent Black castling and institute a barassing attack on his centre. As the defence became strengthened all mores of the
merely protective and constructive order were discarded, as loss of time, while directly attacking moves were held back as possibilities and coupled with some preparatory move. 9 Kt -B3 is one of the best of these pre. liminaries. After the reply $9 \ldots$, B-KKt5 it combines well with 10 Q-R4. This variation was analysed and brought into vogue by Mr. Geo. B. Fraser, supplemented by Mr. James Mortimer, and is known as the Fraser-Mortimer attack. The move $9 \mathrm{Kt}-\mathrm{QB} 3$ also initiates several other variations in which White aims at securing an early advantage by vigorous action. Of these, one of the most popular at present is that commencing 9 Kt -B3, Kt-R4; $10 \mathrm{~B}-\mathrm{KKt5}$, \&c.-Dr. Göring's attack.

Another combination, leading to a more enduring. if less violent attack, springs out of the normal position from B-Kt2, preceded or followed by P-Q5. A second normal position is produced by the moves 9 P-Q5, Kt-R4; 10 B-Kt2, Kt-K2; 11 B-Q3, 0.0 ; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{Kt} 3$; 13 Kt-K2, P-QB4: 14 Q-Q2, P-B3. Here the practice varies. White may play $15 \mathrm{R}-\mathrm{QBsq}$, or K-Rsq (Anderssen's move), or B-B3. The game really begins afresh at this stage. This fine variation was first elaborated by Herr Anderssen for the attack, and Herr L. Paulsen for the defence. Black is allowed to castle, and White attacks him in his intrenchments. The heavy pieces act as supports until called into action by the progress of the game.

There is yet another form of defence which has the merit of being advocated by Mr. Steinitz. It arises out of the normal position by the moves 9 P-Q5, QKt-K2; 10 P-K5, Kt-R3. This variation has not yet been thoroughly investigated, appearances being somewhat against it. Its effect is to expose the Black King, but this is not regarded by Mr. Steinitz as a permanent disadvantage.

With regard to other deviations from the mainplay they have been at various times subjected to searching analysis, and every departure has, as a rule, some penalty attached to it against the best play. There are, however, two or three moves in Anderssen's attack (after 9 P-Q5, Kt-R4) concerning which the authorities are not unanimous, notably Black's moves $10 \ldots$, Kt-K2; $12 \ldots, \mathrm{Kt}-\mathrm{KKt} 3$; and $13 \ldots$, P-QB4. So far there has been no convincing evidence produced either against them or in favour of alternative moves.

The time gained in this déhut, by sacrificing the QKtP, so far strengthens various forms of attack, which are inconclusive in other openings, as to make them irresistible in the Evans. The second player must carefully avoid, giving his opponent an opportunity of introducing such variations. Thus Black must not risk Max Lange's attack by playing Kt-KB3 before P-Q3. On the other hand White's game has to be constructed with special attention to economy of force. A single false, or oven weak move, is sufficient to cause an immediate collapse. With care and patience Black may hope to win by means of his extra Pawn, but the balancc between force on one side and position on the other is so even that there is practically an equal chance for both players. Any prema. ture attempt to force the game will lose it.

The Evans is eminently an opening for great players, and has led to. some of the finest games in Chess literature.

Table 38.--THE EVANS GAMBIT. (Part I.)
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{~B} \cdot \mathrm{~B} 4$, B-B4; $4 \mathrm{P} \cdot \mathrm{Q} \mathrm{Kt} 4, \mathrm{~B} \times \mathrm{KtP} ; 5 \mathrm{P} \cdot \mathrm{B} 3$.

	1	2	3	4	5
5	$\overline{\mathrm{B}-\mathrm{K} 2 \quad(1)}$		B-Q3		
	Q-Kt3	P-Q4	P-Q4 (7)		
6	Kt-R3	Kt-R4 (5)	Kt-B3 (8)		
	P-Q4	$\mathrm{Kt} \times \mathrm{P}$	0.0		Kt-Kt5
7	$\overline{K_{t}^{t}-\mathrm{R} 4}$	$\overline{\mathrm{Kt} \times \mathrm{B}}$	P-KR3		0.0
	Q-R4	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{Kt} \times \mathrm{P}$		P-B4
8	$\overline{\mathrm{Kt} \times \mathrm{B}}$	P-Q4	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	$\overline{\mathrm{P} \times \mathrm{BP}}$
	$\underline{\mathrm{Q} \times \mathrm{Kt}}$	$\mathrm{P} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{B}$	$\mathrm{P} \times \mathrm{Kt}$	P-K5
9	$\mathrm{P} \times \mathrm{P}$	$\overline{Q \times P}$	$\overline{\text { QKt } \times \text { P }}$	$\overline{\mathrm{B} \times \mathrm{P}}$	$\overline{\mathrm{B} \times \mathrm{P}}$
	$\underline{\mathrm{B} \times \mathrm{Kt}}$ (2)	Kt -K3 -	B-Kt3	P-B4	P \times B
10	P×B	Q-Qsq -	P-Q3	B-Q3	$\overline{\mathrm{Kt} \times \mathrm{P}}$
	$\mathrm{P} \times \mathrm{P}$		P-KB4	P-K5	B-Kt3
11	P-Q3		Kt-B3	B-B4ch	P-KR3
	0.0		B-R3	K-Rsq	Kt-KR3
12	R-KKtsq		B-K3	P.Q4	P.Q3 (9)
	K-Rsq		$\underline{\mathrm{Kt}-\mathrm{Q2}+}$	$\mathrm{P} \times \mathrm{Kt}$	
13	Q-Q2			$\overline{\mathrm{P} \times \mathrm{B}}$	
	Kt-B3 (3)			R-Ksqch	
14	P.QB3			B-K3	
	P-Q5			$\mathrm{P} \times \mathrm{P}$	
15	R×P			R-KKtsq	
	R-KKtsq			$\mathrm{Q}-\mathrm{R} 5+$	
16	$\overline{\mathrm{R} \times \mathrm{BP}}$ (4)				

(1) 5 ..., B-Bsq; 6 P-Q4, Q-K2 (if $6 \ldots, \mathrm{P} \times \mathrm{P}$; $7 \mathrm{O}-\mathrm{O}, \mathrm{Kt}-\mathrm{R} 4$; $8 \mathrm{~B} \times \mathrm{Pch}$: Anderssen); 7 O-O, P-Q3; 8 Q-Kt3, P-KKt3; $9 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 10 \mathrm{R}$-Qsq. (Tschigorin v. Steinitz.)
(2) Or $10 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3$; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{QB} 3$; $12 \mathrm{O}-\mathrm{O}$, \&c.
(3) Or 14 Kt-Q21. (C. E. R.)
(4) 17 R-Kt3, P-QB4; 18 P-K5+. (Labourdonnais v. Boncourt and Mouret.)
(5) If $6 \ldots, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{Q}-\mathrm{Kt3}, \mathrm{Kt}-\mathrm{R4}$; $8 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Bsq}$; $9 \mathrm{Q}-\mathrm{R4}$, \&c. (亡̇Handbuch.)
(6) Or 7 B-Q3! (C. E. R.)
(7) 6 O-O, Kt-R4; $7 \mathrm{Kt} \times \mathrm{P}$ (B-K21 C. E. R.), $\mathrm{B} \times \mathrm{Kt}$; $8 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; 9 Q-R5ch, K-Bsq ; $10 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt}-\mathrm{QB} 3$, \&c.
(8) Or $6 \ldots$ Q-K2; 7 O-O, Kt-B3; " 8 R-Ksqt. If $6 \ldots$., P-KR3, 7 O-O, KKt-K2; $8 \mathrm{Kt} \times \mathrm{P}$ (C. E. R.): Dr. Hunt suggests $7 \ldots$ Q-B3!
(3) Anderssen v. Kieseritzky.

Table 39.-THE EVANS GAMBIT. (Part I.)
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B}-\mathrm{B} 4$; $4 \mathrm{P} \cdot \mathrm{QKt} 4, \mathrm{~B} \times \mathrm{Kt} \mathrm{P} ; 5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B} \cdot \mathrm{~B} 4 ; 6 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{P} \times \mathrm{P}(1)$.

	6	7	8	9	10
7	B-Kt5ch		B-Kt3		
8	K-Bsq		O-0 (6)		
	Q-K2 (2)		P-Q3!		
9	P-K5	P.QR3	P-QR4 (7)	R-Ksq	
9	P.Q3 (3)	B-R4	B-Kt5 (8)	Kt-R4	B-Kt5 (12)
10	P-Q5	R-R2	B-QKt5 (9)	$\mathrm{B} \times \mathrm{Pch}(10)$	B-QKt5 (13)
10	$\overline{\mathrm{Kt} \times \mathrm{P}}$	P-QKt3	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{K} \times \mathrm{B}}$	$\overline{\mathrm{B} \times \mathrm{Kt}}$ (14)
	Q-R4ch	P-K5 (5)	$\mathrm{P} \times \mathrm{B}$	Kt-Kt5ch	$\mathrm{P} \times \mathrm{B}$
11	K-Bsq !	B-Kt2	P-QR3	K-Ksq	Q-R5
	$\mathrm{Q} \times \mathrm{B}$	$\underline{\text { P-Q5 - }}$	$\mathrm{B} \times$ Ktch	P-K5	B-K3
12	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	-	$\mathrm{P} \times \mathrm{B}$	$\overline{\mathrm{P} \times \mathrm{P}}$ (11)	KKt-K2
	$\mathrm{P} \times \mathrm{Kt}$		P-R5	$\mathrm{R} \times \mathrm{Pch}$	P-Q5
13	B-R6ch		B-R2	Kt-K2	$\overline{\mathrm{B} \times \mathrm{B}}$
	K-Ktsq		Kt-B3	Q-B3	$\underline{R \times B}$
14	Q-B3		$\overline{\mathrm{Kt}}$-K2	R-Bsq	$\overline{\mathrm{O}-\mathrm{O}}$
	B-Q3		$\underline{\mathrm{Kt} \text {-K2 - }}$	Q-R5ch	$\underline{\mathrm{P} \times \mathrm{K} \mathrm{t}}$
15	$\overline{\mathrm{Q} \times \mathrm{P}+(4)}$		-	$\begin{aligned} & \text { P-Kt3 } \\ & \text { Q'×RP } \end{aligned}$	$\begin{aligned} & \hline \text { Q-Kt4ch } \\ & \text { K-Rsq } \end{aligned}$
16					$\overline{\text { Q } \times \text { B }}$

(1) If 7 O-O, P-Q31. if $7 . ., \mathrm{P}-\mathrm{Q} 6$?, $8 \mathrm{Kt}-\mathrm{Kt5}$, \&c: if $7 \ldots, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{~B} \times \mathrm{Pch}$, \&c
(2) If $8 \ldots$, Kt-B3, 9 P-QR3, B-R4; 10 P-Q5, Kt-K2; 11 P-K5 +.
(3) If 9 .., P-QKt3; 10 P-QR3, and 11 R-R2. (C. E. R.)
(4) If Black had played 11 .., B-Q2 White would now continue by 16 Q-K4ch.
(5) If $11 \mathrm{R}-\mathrm{K} 2, \mathrm{~B}-\mathrm{Kt} 2$ and $0-0-0$.
(6) 8 B-Kt2, Kt-R4; 9 P-Q5, Kt-K2, 10 B-Q3, P-Q3. (Bitd.)
(7) 9 B-R3, Kt-R4; 10 B-Q3, Kt-K2; 11 P-K5, O-O+ or $9 \ldots$ B-Kt5; 10 Q-R4, B-Q2; 11 Q-Kt3, Kt-R4 +. 9 P-KR3 is met by Kt-R4, 10 B-Q3 Kt-K2: 9 B-KKt5 runs into Cols. 12-15.
(8) $9 \ldots$ Kt-R4; $10 \mathrm{~B}-\mathrm{R} 2, \mathrm{Kt}-\mathrm{KB} 3$; $11 \mathrm{Q}-\mathrm{B} 2,0 . \mathrm{O}$; $12 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{K} 8 q$; $13 \mathrm{Kt}-$ Kt5, P-Kt3; 14 P-K6+.
(9) Or 10 B-Kt2. (C. E. R.)
(10) Or 10 Kt -B3, B-Kt5; $11 \mathrm{P} \cdot \mathrm{K} 5+: 10 \mathrm{~B} \times \mathrm{Pch}$ is by Mr. Harvey and appeared in the Dubuque Journal. White draws at least.
(11) If $12 . \therefore$ P-Q4; 13 Q-B3; Kt-R3 (if $13 \ldots, \mathrm{Q}-\mathrm{K} 2 ; 14 \mathrm{~B}-\mathrm{R} 3$); 14 Q -R5ch.
(12) If $9 \ldots, \mathrm{Kt}-\mathrm{B} 3$; $10 \mathrm{P}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P} ; 11 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 2$; $12 \mathrm{Kt} \times \mathrm{P}, 0.0$; $13 \mathrm{~B}-\mathrm{R} 3+$. (Gossip.)
(13) 10 Q - Kt 3 is inferior.
(14) If $10 \ldots, \mathrm{~K}-\mathrm{Bsq} ; 11 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $12 \mathrm{~F}-\mathrm{K} 5$, Kt-K2; $13 \mathrm{~B}-\mathrm{Ktb}$, \&o. The Col. is Burn ∇. De Vere:

Table 40.-THE EVANS GAMBIT. (Paht I.)
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{KB} 3$, Kt-QB3; 3, B-B4, B B4; $4 \mathrm{P} \cdot \mathrm{Q}$ Kt $4, \mathrm{~B} \times \mathrm{Kt} \mathrm{P} ; \quad 5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B}-\mathrm{B} 4 ; 80-0, \mathrm{P} \cdot \mathrm{Q} 3$; $7 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{P} \times \mathrm{P}, \mathrm{B} \cdot \mathrm{Kt} 3$. (Diagram p. .)
11
12
13
14
15

9	Kt-B3				
	$\overline{\mathrm{Kt}-\mathrm{B} 3}$?	Kt-K4.			
10	P-K5	B-KKt5 (2)			
10	$\overline{\mathrm{P} \times \mathrm{P}}$	P-KB3.(3)			Kt-K2
11	B-R3	B-B4 (4)		$\mathrm{B} \times \mathrm{Kt}$	Kt-Q5 (11)
	Kt-QR4 (1)	$\overline{\mathrm{Kt} \times \mathrm{B}}$		$\overline{\mathrm{R} \times \mathrm{B}}$ (8)	P-KB3 (12)
12	R-Ksq	Q.R4ch		B-R4	$\mathrm{B} \times \mathrm{P}$
	$\overline{\mathrm{Kt} \times \mathrm{B}}$	Q-Q2	$\overline{\mathrm{K} \cdot \mathrm{B} 2 \quad \text { (7) }}$	B-Kt5	P×B
13	Q-R4ch	Q $\times \mathrm{Kt}$	Q \times Ktch	P.K5 !	$\mathrm{Kt} \times \mathrm{KBPch}$
	P-B3	Q-B2 (5)	B.K3	QP \times P	K-Bsq
14	$\mathrm{Q} \times \mathrm{Kt}$	Kt-Q5	P-Q5	R-Ksq	Kt-Kt5
	B-K3	B-K3	B.Q2	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt}}$-Ktsq!
15	$\mathrm{P} \times \mathrm{P}$	Q-R4ch	Kt.K2-	$Q \times B$	$\underline{\mathrm{KKt} \times \mathrm{Pch}}$ (18)
	Q-Q2	B-Q2	Kt-K2-	Q \times P	K-Kt2
	$\mathrm{R} \times \mathrm{Bch}$	Q-R3		$\mathrm{R}-\mathrm{K} 4 \quad$ (9)	Q-R5
16	$\mathrm{P} \times \mathrm{R}$	R-Bsq		Q.Q2	Q $\times \mathrm{Kt}$
	$\underline{\mathrm{Kt}} \mathrm{K} 5+$	$\underline{\text { KR-Ksq (6) }}$		R.Qsq	$\mathrm{Kt} \times \mathrm{Q}$
17				Q-B2 (10)	$\overline{R \times Q ~(14)}$

(1) If $11 \ldots, \mathrm{~B} \times \mathrm{P}$; $12 \mathrm{Q}-\mathrm{Kt} 3+$.
(2) If 10 Kt -Kt5, R-Ksq, or B-R3, then $\mathrm{Kt} \times \mathrm{B}$: if $10 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{K} 2$; 11 P -K5, P-Q4. If $10 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; $11 \mathrm{P}-\mathrm{K} 5, \mathrm{~K}-\mathrm{Bsq}$; $12 \mathrm{P}-\mathrm{Q} 5, \mathrm{~B}-\mathrm{KB4}+:$ if $12 \mathrm{R}-\mathrm{K}$ sq or Kt-Q5, Kt-QB3 + . (Gossip.)
(3) Or $10 \ldots$ Q-Q2.
(4) Preferable to 11 B-R4.
(5) Or $13 \ldots$, P-B3: or $13 \ldots, \mathrm{Kt}-\mathrm{K} 2$ followed by Kt-Kt3, and Q-B2.
(6) To follow with P.K5 and B-Kt5 if, and when necessary (Blake). If $17 \mathrm{Kt} \times \mathrm{B}$, $\mathrm{RP} \times \mathrm{Kt}$; $18 \mathrm{Q}-\mathrm{R} 7, \mathrm{Kt}-\mathrm{K} 2$; $19 \mathrm{KR}-\mathrm{Bsq}$!: if $19 \mathrm{Q} \times \mathrm{P}(\mathrm{Kt7})$, B-B3: if $19 \mathrm{QR}-\mathrm{Beq}$, B-Kt4; 20 KR-Ksq, Kt-B3, \&c.
(7) Or $12 \ldots, \mathrm{P}-\mathrm{B} 3$; $13 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{K} 2$.
(8) Or $11 \ldots, \mathrm{P} \times \mathrm{B}$. The Col. is Showalter ∇. Logan.
(9) 16 Q -R5ch! (if) P-Kt3; $17 \mathrm{Q} \times \mathrm{RP} ; \mathrm{O}-\mathrm{O}-\mathrm{O}: 18 \mathrm{Kt}$-K2. (C. E. R.)
(10) Mr. Ranken continues by 18 Q-B5+.
(11) If $11 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; $12 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{R}-\mathrm{Ksq}$! (Tschigorin ∇. Gunsberg).
(12) $11 \ldots, \mathrm{Kt} \times \mathrm{B}: 12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{Q} 2$; $13 \mathrm{~B}-\mathrm{B} 6$ (Mackenzie), Q-Kt5!; 14 P-KR3, Q-Kt3; 15 Kt -R4, Q-R3 : or 14 Q -R4ch, P.B3; $15 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}+$.
(13) If $15 \mathrm{QKt} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Kt2} ; 16 \mathrm{Q}-\mathrm{R} 5$ (if $16 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B}:$ if $16 \mathrm{Kt}-\mathrm{B} 7, \mathrm{Q}-\mathrm{R} 5$), $\mathrm{Kt} \times \mathrm{B} ; 17 \mathrm{Q}-\mathrm{B} 7 \mathrm{ch}, \mathrm{K}-\mathrm{R} 3 ; 18 \mathrm{Q} \times \mathrm{Kt}(\mathrm{B} 5), \mathrm{R} \times \mathrm{Kt} ; 19 \mathrm{Kt} \times \mathrm{R}, \mathrm{K} \times \mathrm{Kt}+$. If $15 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt} ; 16 \mathrm{Q}-\mathrm{B} 3 \mathrm{ch}, \mathrm{B}-\mathrm{B4} ; 17 \mathrm{~B}-\mathrm{K} 6, \mathrm{Kt}-\mathrm{B} 3+$. If $15 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Ki}$; $16 \mathrm{Kt} \times \mathrm{Pch}, \mathrm{R} \times \mathrm{Kt}$; $17 \mathrm{~B} \times \mathrm{R}, \mathrm{B} \times \mathrm{P}+$.
(14) $18 \mathrm{Kt} \times \mathrm{Rch}, \mathrm{K}-\mathrm{R} 3$; $19 \mathrm{~B} \times \mathrm{Kt}, \mathrm{K} \times \mathrm{Kt}$; $20 \mathrm{QR}-\mathrm{Qsq}, \mathrm{Kt}-\mathrm{B} 3$; $21 \mathrm{P} \cdot \mathrm{Q} 5$, Et-K4 + (Berger).

Table 41.-THE EVANS GAMBIT. (Part I.)

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P}-\mathrm{K} 4$; $2 \mathrm{Kt}-\mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B}-\mathrm{B} 4$. $\mathrm{B} \cdot \mathrm{B} 4$; $4 \mathrm{P}-\mathrm{QKt} 4, \mathrm{~B} \times \mathrm{Kt} \mathrm{P}$; $5 \mathrm{P}-\mathrm{B} 3, \mathrm{~B}-\mathrm{B} 4$; $60-\mathrm{O}, \mathrm{P}-\mathrm{Q} 3$; $7 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt} 3 . \quad$ (Diagram p. 87.)
16
17
18
19
20

Kt-B3
B-Kt5 (1)
10

$\begin{array}{ll}\mathrm{Q}-\mathrm{R4} 4 & \text { (9) }\end{array}$	
$\mathrm{B} \times \mathrm{Kt}(10)$	
$\mathrm{B}-\mathrm{Q} 2$	
$\mathrm{P}-\mathrm{Q} 5$	
$\mathrm{Q}-\mathrm{Kt5} \quad$ (11)	$\mathrm{Kt-R4}$

11
$\frac{\mathrm{B}-\mathrm{QKt} 5}{\mathrm{~K}-\mathrm{B} q} \quad$ (2)

$\overline{\mathrm{B} \times \mathrm{Kt}}$
$\frac{\mathrm{B} \times \mathrm{Kt}}{\mathrm{P} \times \mathrm{B}}$
$\frac{\mathrm{P}-\mathrm{K} 5}{\mathrm{P} \times \mathrm{P} \quad \text { (6) }}$
B-Kt5 (11)
$13 \frac{\mathrm{P} \times \mathrm{B}}{\mathrm{P} \times \mathrm{P}}$
$\frac{\mathrm{R}-\mathrm{Ksq}}{\mathrm{KKt}-\mathrm{K} 2}$ (7)
$\overline{\mathrm{P} \times \mathrm{P}}$
K-Bsq
$\frac{\text { P-Q5 }}{\text { QKt-Ktsq(8) }}$
$\frac{\mathrm{Q} \times \mathrm{Pch}(12)}{\mathrm{B}-\mathrm{Q} 2} \frac{\mathrm{Q}-\mathrm{B} 2!(13)}{\mathrm{K} \times \mathrm{B} \text { (dia.) }}$
$\frac{\text { B-R3ch }}{\mathrm{Kt}-\mathrm{K} 2}$

Q.Q5

B-K3
B-Kt5ch
$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{Q} \times \mathrm{Q} \quad \text { (5) }}$
$\frac{\mathrm{K} t \times \mathrm{P}}{\mathrm{B}-\mathrm{KB} 4}$
K-Bsq
$\frac{\mathrm{KR} \times \mathrm{Q}}{\mathrm{K}-\mathrm{Ks} q+}$

B-KKt5
$\overline{\mathrm{B}-\mathrm{B} 4}$
$\mathrm{Kt} \mathrm{\times P}$
$\overline{\mathrm{R} \times \mathrm{Kt}}$

$\frac{\mathrm{Q}-\mathrm{Q} 3}{\mathrm{Kt}-\mathrm{K} 2}$
$\frac{\text { B-Kt5 (15) }}{\text { Q-Ksq }}$
$\frac{\mathrm{P}-\mathrm{K} 6 \mathrm{ch}}{\mathrm{B} \times \mathrm{P} \quad(17)}$
$\mathrm{P} \times \mathrm{B}$ ch
17

18

19

21

$\mathrm{P}-\mathrm{Q} 6$	$\mathrm{~B}-\mathrm{K} 3$
$\overline{\mathrm{~B} \times \mathrm{Pch}}$	$\overline{\mathrm{K}-\mathrm{B} 2}$
$\mathrm{~K} \times \mathrm{B}$	$\mathrm{P}-\mathrm{B} 4$
$\overline{\mathrm{~B}-\mathrm{K} 3 \text { disch }}$	$\mathrm{P}-\mathrm{KB} 4$
$\mathrm{~K}-\mathrm{Ktsq}$	$\mathrm{B} \times \mathrm{B}$
$\overline{\mathrm{B} \times \mathrm{B}}$	$\overline{\mathrm{RP} \times \mathrm{B}}$
$\mathrm{P} \times \mathrm{Kt}+$	$\mathrm{B}-\mathrm{B} 4$

P-K5 (14)
P-KR3
P-Q5
$\overline{\mathrm{Kt}-\mathrm{KB} 3}$
$\overline{\mathrm{K} \times \mathrm{P}}$
R-Ksqch18;
K-B2
$\frac{\mathrm{Kt}-\mathrm{KR} 4}{\mathrm{Q}-\mathrm{Q} 2}$
Q-Kt6ch
K-Bsq
Kt -B5
Q-B2t

Notes to Table 41.

(1) Mr. Steinitz recommends 9 :., QKt-K2; (if) 10 Kt -KKt5, Kt-R3; 11 P-B4, P-Q4; $12 \mathrm{QKt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt}$; $13 \mathrm{P} \times \mathrm{Kt}, \mathrm{O}-\mathrm{O}+$: if $13 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P}-\mathrm{QB} 3$, \&c.
(2) $10 \ldots, \mathrm{~B} \times \mathrm{Kt}$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{K}-\mathrm{Bsq}$; $12 \mathrm{Kt}-\mathrm{K} 2:$ if $11 \ldots, \mathrm{Q}-\mathrm{B} 3$; $12 \mathrm{Kt}-\mathrm{Q} 5$, $\mathrm{Q} \times \mathrm{QP} ; 13 \mathrm{Kt} \times \mathrm{Pch}$. Or Black may play $10 \ldots, \mathrm{P}-\mathrm{QR} 31$
(3) 11 B-K3, KKt-K2 (or QKt-K2 Șteinitz) ; 12 P-QR4,' P-QR4 (or Kt-R4! Gossip) ; $13 \mathrm{~B}-\mathrm{QB} 4$. (Petersburg v. London.)
(4) Or 12 B-K3, Kt-K2; $13 \mathrm{Kt}-\mathrm{K} 2, \mathrm{Q}-\mathrm{Q} 2$; $14 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{Q}-\mathrm{K} 3$; $15 \mathrm{Q}-\mathrm{B} 2, \mathrm{~B} \times \mathrm{Kt}$; $16 \mathrm{P} \times \mathrm{B}, \mathrm{QR}-\mathrm{Ksq}$. (Macdonnell v. Bird.)
(5) If $15 \ldots, \mathrm{~B}-\mathrm{Q} 5$? ; $16 \mathrm{Q}-\mathrm{B} 2, \mathrm{~B} \times \mathrm{KP} ; 17$ QR-Qsq, B-Q3; 18 Kt-K4 +.
(6) $11 \ldots, \mathrm{KKt}-\mathrm{K} 2$; $12 \mathrm{~B}-\mathrm{Kt5}, \mathrm{P}-\mathrm{KR} 3$; $13 \mathrm{P}-\mathrm{K} 6, \mathrm{P} \times \mathrm{P}$; $14 \mathrm{~B} \times \mathrm{KKt}, \mathrm{Q} \times \mathrm{B}$; 15 P-Q5, Kt-K4; $16 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $17 \mathrm{Q}-\mathrm{R5ch}+$. (Schachzeitung.)
(7) Or 12 P-Q5, Kt-Ktsq ; $13 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{K} 2$; $14 \mathrm{Q}-\mathrm{Kt4}$, \&c. Or $13 \ldots, \mathrm{~B} \times \mathrm{B}$; $14 \mathrm{Kt} \times \mathrm{B}, \mathrm{P}-\mathrm{QR} 3$, to follow with $\mathrm{Kt}-\mathrm{K} 2$.
(8) $13 \ldots, \mathrm{Kt}-\mathrm{Q} 5$; $14 \mathrm{~B} \times \mathrm{Bch}, \mathrm{Q} \times \mathrm{B}$; $15 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 4$; $16 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{R}-\mathrm{Qsq}$; 17 B-R3, R-Q2; . $18 \mathrm{R}-\mathrm{K} 5, \mathrm{Q}-\mathrm{Kt3}$; $19 \mathrm{Kt}-\mathrm{B} 5, \mathrm{~B} \times \mathrm{Kt} ; 20 \mathrm{~B} \times \mathrm{B}, \mathrm{QKt}-\mathrm{B} 4$ (Neumann จ. Schallopp); 21 Q-R4+. (Handbuch.)
(9) Mr. Fraser's Attack. (See Diagram.)
(Col. 18.)

After White's 10th move.
(Col. 19.)

After Black's 13th move.
(10) $10 \ldots$ K-Bsq; 11 P-Q5, QKt-K2 ; $12 \mathrm{Kt}-\mathrm{K} 2$, Kt-Kt3; $13 \mathrm{KKt}-\mathrm{Q} 4$. (Wisker v. Bird.)
(11) $11 \ldots$ Q-B3; $12 \mathrm{P} \times \mathrm{Kt}, \mathrm{O}-0.0$; $13 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{Kt3}$; $14 \mathrm{P} \times \mathrm{Poh}+$.
(12) Or 13 P-K5! (W. W.)
(13) Mr. Mortimer's variation.
(14) Or 14 P-Q5. (Ranken.)
(15) He may also play 16 P-K6, or P-Q5.
(16) 20 P-Q5 is in Black's favour. White may play 20 QR-Qsq, Kt \times P! 21 R-K6, R-Ksq; 22 QR -Ksq (if $R \times K t P, K-B 2$), $R \times R$; $23 R \times R$, \&c.: if $22 \ldots, K-B 2$, $23 \mathrm{~B}-\mathrm{Q} 2, \mathrm{R} \times \mathrm{R}$? ; $24 \mathrm{Kt}-\mathrm{Kt5ch}$. (Monck).
(17) $16 \ldots, \mathrm{~K}-\mathrm{Ktsq} ; 17 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{P}$; $18 \mathrm{Kt}-\mathrm{KR} 4, \mathrm{P}-\mathrm{Kt4}$; $19 \mathrm{Kt}-\mathrm{Kt6}, \mathrm{R}-\mathrm{R} 2+$. (Wormald).
(18) 17 Q-Kt6, Q-KBsq; 18 B-Kt5, P.B8; 19 KR-Ksq ch, K-Q2+.

Table 42.-THE EVAN'S GAMBIT. (Part I.)
1 P-K4, P-K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B} \cdot \mathrm{~B} 4$, B-B4; $4 \mathrm{P}-\mathrm{QKt} 4, \mathrm{~B} \times \mathrm{Kt} \mathrm{P}$; $5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B}-\mathrm{B} 4$; $60-0$, P-Q 3 ; $7 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{P} \times \mathrm{P}, \mathrm{B} \cdot \mathrm{Kt} 3$. (Diagram p. 87.)

	21	22	23	24	25
	B-Kt2				
	P-B3	B-Kt5	$\overline{\mathrm{Kt}}$-R4	KKt-K2	$\overline{\mathrm{K} t-B 3}$
10	Kt-R4! (1)	P-Q5 (2)	B-Q3	Kt-Kt5	P-Q5 (6)
	$\overline{\mathrm{P}-\mathrm{Kt} 3}$	Kt-K4	Kt-K2	P-Q4	Kt-K2 (7)
11	R-Ksq	B-Kt5ch	Kt-Kt5 (3)	$\mathrm{P} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{Kt}$
	K-Bsq	K-Bsq	P-KR3	Kt-R4	$\bigcirc \times \mathrm{B}$
12	Kt -R3	QKt-Q2 +	Q-R5	P-Q6	P-QR4 (8)
	K-Kt2		0.0	$\overline{\mathrm{Kt} \times \mathrm{B}}$	0.0
13	P-B4		P-K5	$\mathrm{P} \times \mathrm{Kt}$	K-Rsq
	P-B4		B-KB4	Q-Q4	P-KB4 (9)
14	$\mathrm{Kt} \times$ BPch		$\mathrm{B} \times \mathrm{B}$	Kt-QB3	Kt-Kt5
	$\overline{\mathrm{P} \times \mathrm{Kt}}$		$\overline{\mathrm{Kt} \times \mathrm{B}}$	$\overline{\mathrm{K}} \times \times \mathrm{B}$ (5)	P-KR3
15	Q-R5		Kt-KB3	$\mathrm{Kt} \times \mathrm{Q}$	Kt -R3
	Q-B3		Q-Q2	$\overline{\mathrm{Kt} \times \text { Q }}$	$\overline{\mathrm{P} \times \mathrm{P}}$
16	P-K5		QKt-Q2	$\mathrm{KR} \times \mathrm{Kt}$	R-R3
	Q-Kt3		$\overline{\text { P-Q4 (4) }}$	P-QB3	$\overline{\mathrm{Kt}-\mathrm{Kt} 3}$
17	Q-Qsq			$\mathrm{Kt} \times \mathrm{B}$ —	R-KKt3
	P-KR4			$\overline{\mathrm{RP} \times \mathrm{Kt}}$ -	Q-R5

R-K3 P-R5
(1) Mayet ∇. Hanstein. If $10 \mathrm{P}-\mathrm{K} 5, \mathrm{QP} \times \mathrm{P}$; $11 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{B}$; $12 \mathrm{Q}-\mathrm{Kt}$, $\mathrm{R}-\mathrm{Bsq} ; 13 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 14 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt} ; 15 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{K} 2$; $16 \mathrm{Kt}-\mathrm{Q} 2$, B-K3 (C. E. R.) : (if) $16 \ldots, \mathrm{Q} \times \mathrm{B}$; $17 \mathrm{QR}-\mathrm{Ksq}, \mathrm{B} \times \mathrm{Pch}$, \&c. (W. W.)
(2) If $10 \mathrm{~B}-\mathrm{K} t 5$, K-Bsq. If $10 \mathrm{Q}-\mathrm{K} t 3$, Kt-R4; $11 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Bsq}$; $12 \mathrm{Q}-\mathrm{Q} 5$, Kt-KB3; $13 \mathrm{Q}-\mathrm{KKt5}, \mathrm{~B} \times \mathrm{Kt}$; $14 \mathrm{P}-\mathrm{K} 5, \mathrm{~K} \times \mathrm{B} ; 15 \mathrm{P} \times \mathrm{B}, \mathrm{R}-\mathrm{Ksq} ; 16 \mathrm{P} \times \mathrm{Kt}$, $\mathrm{Q} \times \mathrm{P}+$.
(3) $11 \mathrm{P}-\mathrm{Q} 5$ transposes into Col. 36. If $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{O}_{\mathbf{\prime}} \mathrm{O}$; $12 \mathrm{Kt}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 4$.
(4) 17 P-Kt4, P-Kt3; 18 Q-R3, Kt-Kt2; 19 P-K6 $=$.
(5) $14 \ldots, \mathrm{Q} \times \mathrm{Kt}$; $15 \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}, \mathrm{P}-\mathrm{B} 3$; $16 \mathrm{Q} \times \mathrm{Kt}$, B-R6; 17 P-Kt3, B $\times \mathrm{R}$: $18 \mathrm{~K} \times \mathrm{B}, \mathrm{K} \times \mathrm{P}$; $19 \mathrm{~B}-\mathrm{R} 3 \mathrm{ch}+$.
(6) If $10 \mathrm{P}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{~B}-\mathrm{R} 3, \mathrm{~B}-\mathrm{K} 31$: if $10 \mathrm{Q}-\mathrm{B} 2, \mathrm{O}-\mathrm{O}$; $11 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{Ksq}$ (Handbuch).
(7) $10 \ldots, \mathrm{Kt}$-R4 transposes into Col. 30. The continuation is Bird ∇. Steinitz with the latter's correction of his 17 th move.
(8) If $12 \mathrm{Kt}-\mathrm{Q} 4, \mathrm{P}-\mathrm{KB} 4$: if $12 \mathrm{Kt}-\mathrm{R4}, \mathrm{Kt}-\mathrm{Kt} 3$.
(9) Undoubling the Pawn is Black's first object, before moving the Knight.

Table 43.-THE EVAN'S GAMBIT. (Part I.)
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt.QB3; $3 \mathrm{~B} \cdot \mathrm{~B} 4$; B. B4; $4 \mathrm{P} \cdot \mathrm{QKt} 4, \mathrm{~B} \times \mathrm{KtP}$; $5 \mathrm{P} \cdot \mathrm{B} 3$, $\mathrm{B} \cdot \mathrm{B} 4$; $60 \cdot 0$, $\mathrm{P} \cdot \mathrm{Q} 3$; $7 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{P} \times \mathrm{P}, \mathrm{B} \cdot \mathrm{Kt} 3$. (Diagram p. 87.)

	26	27	28	29	30
	P.Q5				
	Kt-K4	Q-B3	Kt-R4		
10	$\underline{\mathrm{Kt}} \times \mathrm{Kt}$	$\mathrm{P} \times \mathrm{Kt}$	P-K5		B-Kt2 (12)
	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{Q} \times \mathrm{R}}$	Kt-K2 (dia.)		Kt-KB3
11	B-R3 (1)	$\mathrm{B} \times \mathrm{Pch}(2)$	Kt-QB3 (5)	P-K6	B-Q3
	B-Q5	K-Bsq (3)	B-KB4 (6)	$\overline{\mathrm{P} \times \mathrm{P} \text { (10) }}$	B-KKt5(13)
12	Kt -Q2	$\mathrm{B} \times \mathrm{Kt}$	B-KKt5 (7)	$\mathrm{P} \times \mathrm{P}$	Kt-B3 (14)
	$\overline{\mathrm{B} \times \mathrm{R}}$	$\overline{\mathrm{R} \times \mathrm{B}}$	$\overline{\mathrm{K} t \times \mathrm{B}}$ (8)	$\overline{0.0}$	P-B3
18	$\underline{Q \times B-}$	Kt-Kt5	Q.R4ch	Kt-Kt5 (11)	Kt -K2
	\square	$\overline{\mathrm{Q} \times \mathrm{P}}$	Q-Q2	$\overline{\mathrm{Kt} \times \mathrm{B}}$	O-0
14		Kt-QB3	$\underline{\mathrm{Q} \times \mathrm{K}}$	Q-Q3	Q-Q2(dia.)
		Q-B5	0.0	$\overline{\mathrm{Kt}-\mathrm{Kt} 3}$	$\overline{\mathrm{R}-\mathrm{Bsq}}$ (15)
15		Kt.Q5	KR-Ksq	Q \times QKt	Q-Kt5
		K-Ksq	QR-Ksq	P-Q4	$B \times \mathrm{Kt}$
16		Q-R5ch	P-K6	Q-K2	$\mathrm{P} \times \mathrm{B}$
		P-Kt3	$\overline{\mathrm{P} \times \mathrm{P}}$	P.KR3	$\overline{\mathrm{P} \times \mathrm{P}}$
17		$\underline{\mathrm{Q} \times \mathrm{RP}+}$	$\mathrm{P} \times \mathrm{P}$	Kt-B7	K-Rsq
			Q-B3 (9)	$\begin{gathered} \overline{Q \cdot K s q} \text { or } \\ \text { Q.B3 } \end{gathered}$	$\overline{\mathrm{Kt} \text {-B5 (16) }}$

(1) Or 11 B-Kt2 followed by K-Rsq and P-B4.
(2) 11 Q-Kt3, Q.B3; 12 P-K5, $\mathrm{P} \times \mathrm{KP}$; 13 R-Ksq, $\mathrm{P} \times \mathrm{P}$; 14 B.KKt5 + (Kolisck v. Schoumoff).
(3) If $11 \ldots, \mathrm{~K} \times \mathrm{B}$; $12 \mathrm{Q}-\mathrm{Kt} 3 \mathrm{ch}$, \&c.
(4) $10 \ldots, \mathrm{Kt} \times \mathrm{B}$; $11 \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}, \mathrm{B}-\mathrm{Q} 2$; $12 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Kt} \mathrm{K} 2$; (if) $18 \mathrm{P}-\mathrm{K} 6, \mathrm{P} \times \mathrm{P}$; 14 P \times P, B-B3; 15 Kt-Kt5, O.O; 16 Q-B2, Kt-Kt3; 17 P-KR4, Q-B3+.
(5) Or 11 B-Q3. If $11 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}!$; $12 \mathrm{~B}-\mathrm{Q} 3, \mathrm{O}-0$; (if) $13 \mathrm{Q}-\mathrm{B} 2, \mathrm{P}-\mathrm{KB4}$. (if) $13 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{P}-\mathrm{KR3}$: (if) $13 \mathrm{~B}-\mathrm{Kt2}, \mathrm{~B}-\mathrm{KB} 4.13 \mathrm{~B} \times \mathrm{Pch}$ is premature.
(6) $11 \ldots, \mathrm{Kt} \times \mathrm{B}$; $12 \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}, \mathrm{B}-\mathrm{Q} 2$; $13 . \mathrm{Q} \times \mathrm{Kt}, 0.0$; $14 \mathrm{Kt}-\mathrm{K} 4, \mathrm{~B}-\mathrm{KKt}$; $15 \mathrm{~B}-\mathrm{K} t 2$ (Oarstangen ∇. Anderssen).
(7) There are numerous methods of continuing the attack, but this appears the most difficult to defend.
(8) $12 \ldots, \mathrm{O}-\mathrm{O}$; $13 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B} \times \mathrm{B} ; 14 \mathrm{Q} \times \mathrm{B}, \mathrm{Q}-\mathrm{Q} 2 ; 15 \mathrm{P}-\mathrm{K} 6, \mathrm{P} \times \mathrm{P} ; 16 \mathrm{P} \times \mathrm{P}$, $\mathrm{Q} \times \mathrm{P} ; 17 \mathrm{QR}-\mathrm{Ksq}, \mathrm{Q}-\mathrm{B4}$; $18 \mathrm{Q} \mathbf{Q Q 2}, \mathrm{Kt}-\mathrm{Kt3}$; $19 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{QR}-\mathrm{Ksq}$ (or Kt-QB5) + (Crosskill v. Freeborough.)
(9) 18 Q-Kt3, B-Q6; 19 QR-Qsq, B-B5+.
(10) 11 ... O-O; $12 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{P}-\mathrm{KR} 3$; $13 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Ksq}: 14 \mathrm{~B}-\mathrm{Q} 3+$: for if $14 \ldots, \mathrm{Kt} \times \mathrm{P} ; 15 \mathrm{Kt} \times \mathrm{Pch}$, and if $14 \ldots$ B $\quad \mathrm{Q} 5$; $15 \mathrm{Q}-\mathrm{Kt4}, \mathrm{~B} \times \mathrm{R}$; $16 \mathrm{Kt} \times \mathrm{Pch}$, \&c: if $12 \ldots \mathrm{Kt} \times \mathrm{B}$; 13 Q -R5, P-KR3; $14 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}$-Ksq; $15 \mathrm{Kt} \times \mathrm{RPch}$, $\mathrm{P} \times \mathrm{Kt} ; 16 \mathrm{Q}$-Kt4ch, Q -Kt3. If $12 \mathrm{P} \times \mathrm{Pch}, \mathrm{R} \times \mathrm{P} ; 13 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Kt} \times \mathrm{B} ; 14 \mathrm{Q}-\mathrm{B} 2$, Kt-K4; $15 \mathrm{Q} \times$ RPch, K -Bsq; 16 Q -R8ch, Kt-Ktsq; $17 \mathrm{Kt}-\mathrm{R} 7 \mathrm{ch}, \mathrm{K}-\mathrm{K} 2$; 18 B-KKt5ch, Kt-B3: (if) 18 Kt-QB3, B-Q5+.
(11) Or $13 \mathrm{Q}-\mathrm{B} 2, \mathrm{Kt} \times \mathrm{B} ; 14 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q} 4 ; 15 \mathrm{Q}-\mathrm{KKt4}, \mathrm{Kt} t \mathrm{~KB} 4+$.
(12) 10 B-R3, Kt-K2; 11 P-K5, O-0, \&c.
(13) If $11 \ldots, \mathrm{O}-\mathrm{O}$; 12 Kt -B3 and the play may be continued on the same lines as Cols. 41-45 to White's advantage.
(14) As played by Anderssen. Or 12 R-Ksq may be played.
(15) Another game runs $14 \ldots$ Kt-Q2; 15 Q-B4, B-R4; 16 Kt -Kt3, B-Kt3; 17 QR-Qsq, $\mathrm{P} \times \mathrm{P}$; $18 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 4$; $19 \mathrm{Kt}-\mathrm{B} 5, \mathrm{Kt} \times \mathrm{B}$ and Anderssen playing White announced mate in four moves.
(16) 17 .., Kt-Ksq! (C. E. R.) After 17 .., Kt-B5; 18 R-KKtsq, Kt-Ksq and White mates in five moves.
(Col. 28.)

After Black's 10th move.
(Col. 30.)

After White's 14th move.

Table 44.-THE EVANS GAMBit. (Part I.)

1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3$; $8 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B}-\mathrm{B} 4$; $4 \mathrm{P}-\mathrm{QKt} 4, \mathrm{~B} \times \mathrm{KtP}$; $5 . \mathrm{P}-\mathrm{B} 3, \mathrm{~B}-\mathrm{B} 4$; $60-0$, $\mathrm{P}-\mathrm{Q} 3$; $7 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{P} \times \mathrm{P}, \mathrm{B} \cdot \mathrm{Kt} 3 . \quad$ (Diagram p. 87.)

31	32	33	34	35

9	$\frac{\text { P-Q5 }}{\text { QKt-K2 }}$
10 P-K5! (1)	

$10 \overline{\mathrm{Kt}-\mathrm{R} 3}$
$\overline{\mathrm{Kt}-\mathrm{Kt} 3} \overline{\mathrm{P} \times \mathrm{P}} \overline{\mathrm{B}-\mathrm{Kt} 5(13)}$

$\frac{\mathrm{P}-\mathrm{K} 6}{\mathrm{P} \times \mathrm{P}}$
$\frac{\mathrm{Kt} \times \mathrm{P}}{\mathrm{Kt}-\mathrm{KB} 3(9)}$
$\frac{\text { Q-R4ch }}{\mathrm{B}-\mathrm{Q} 2} \quad(14) \quad$ B-Kt2?
$\frac{\mathrm{Kt}-\mathrm{K} 4 \quad \text { (2) }}{\mathrm{P} \times \mathrm{P}}$
$\mathrm{P} \times \mathrm{P}$
$\overline{\mathrm{KKt}-\mathrm{K} 2(5)}$
$\frac{\mathrm{B}-\mathrm{Kt} 5 \mathrm{ch}(10)}{\mathrm{P}-\mathrm{B} 3 \quad(11)}$
$\frac{\mathrm{Q}-\mathrm{Kt} 3}{\mathrm{Kt}-\mathrm{Kt} 3} \quad \frac{\mathrm{P} \times \mathrm{P}}{\mathrm{Q} \times \mathrm{P}}$
$\frac{B \times K i t}{P \times B}$
$\frac{\text { Kt-Kt5 }}{0-0 \quad \text { (dia.) }}$
$\frac{\mathrm{P} \times \mathrm{P}}{0-0}$
Kt-B3 (dia.) $\quad \mathrm{B} \times \mathrm{P}$
12
$\frac{\mathrm{Kt} \times \mathrm{P}}{\mathrm{Kt}-\mathrm{B} 4}$
Kt-QB3 (6)
$\frac{\mathrm{B}-\mathrm{R} 3}{\mathrm{~B} \times \operatorname{Pch}(12)}$
$\mathrm{Kt} \times \mathrm{Kt}$
R-KKtsq
14
$\frac{\mathrm{Kt}-\mathrm{Kt} 4-}{\mathrm{K}-\mathrm{Rsq}-(3)}$

B-Kt3	(7)
P-B3	(8)
Kt-R4	
$\overline{\mathrm{P}-\mathrm{Q} 4}$	

K -Rsq
P.Q6

B-Kt2
-
16

17
$\frac{\mathrm{Kt} \times \mathrm{B}}{\mathrm{Q} \times \mathrm{Kt}}$
$\frac{B-R 3}{\text { QKt-Kt3 }}$
$\frac{\text { QKt-Q2 }}{\text { B-QB4 }}$
B-B2+
$\underline{B \times R+}$
19
18
$\underline{\mathrm{B}-\mathrm{B} 2+}$
(1) If $10 \mathrm{~B}-\mathrm{Kt2}$, $\mathrm{Kt}-\mathrm{KB} 3$; $11 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; 12 Kt -Q4 (or see Col. 25), P-KB4+.
(2) Or $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $13 \mathrm{Q}-\mathrm{Q} 2, \mathrm{P} \times \mathrm{P}$; $14 \mathrm{QR}-\mathrm{Ksq}$, \&c.
(3) Neumann v . Steinitz. The former.continued 16 R -Ktsq, having in view the sacrifice of the Rook, to check with Q at QRsq.
(4) If $11 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{KKt}-\mathrm{K} 2$. If $11 \mathrm{~B}-\mathrm{Kt} 2, \mathrm{P} \times \mathrm{P}$; $12 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3$; $13 \mathrm{~B} \times \mathrm{Kt}$, $\mathrm{Q} \times \mathrm{B} ; 14 \mathrm{R}-\mathrm{Ksq} \mathrm{ch}, \mathrm{Kt}-\mathrm{K} 21$. If $11 \mathrm{~B}-\mathrm{KKt5}, \mathrm{KKt}-\mathrm{K} 2 ; 12 \mathrm{P}-\mathrm{K} 6, \mathrm{O}-\mathrm{O} ; 13 \mathrm{Kt}-\mathrm{R4}$, $\mathrm{Ktx} \times \mathrm{Kt}$; $14 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{P}$; $15 \mathrm{P} \times \mathrm{P}, \mathrm{R}-\mathrm{B} 5$; $16 \mathrm{Q}-\mathrm{R} 5$, $\mathrm{P}-\mathrm{KKt} 3$, \& \& .
(5) Or $12 \ldots$.., Q-B3.
(6) $14^{\prime} \mathrm{Q} \cdot \mathrm{R5}$, P-KR3; $15 \mathrm{Q} \times \mathrm{Kt}!\mathrm{Kt} \times \mathrm{Q}$; $16 \mathrm{P}-\mathrm{K} 7$ dis ch, $\mathrm{P}-\mathrm{Q} 4 ; 17 \mathrm{P} \times \mathrm{Q}$ (queens), $\mathrm{R} \times \mathrm{Q}$; $18 \mathrm{R}-\mathrm{Qsq}$, \&c. (Wormảld). If $15 \mathrm{Kt}-\mathrm{B} 7, \mathrm{Q}-\mathrm{Ksq} ; 16 \mathrm{P}-\mathrm{KR4}$, threatening $17 \mathrm{~B} \times \mathrm{RP}, \mathrm{P} \times \mathrm{B} ; 18 \mathrm{Q} \times \mathrm{P}$ to follow with P -R5, \&c. : or $16 \mathrm{~B}-\mathrm{Kt2}$, P-Q4; $17 \mathrm{~B} \times \mathrm{QP}, \mathrm{Kt}-\mathrm{B} 5$; $18 \mathrm{Kt} \times \mathrm{Pch}$, or Q-K5, \&c. (Ranken.)
(7) 15 Q-R5, P-KR3; $16 \mathrm{Kt}-\mathrm{B} 7, \mathrm{Kt} \times \mathrm{Kt} ; 17 \mathrm{P} \times \mathrm{Ktch}, \mathrm{K}-\mathrm{R} 2$; $18 \mathrm{Kt}-\mathrm{K} 4$, Kt-B4 I: if $18 \ldots, \mathrm{P}-\mathrm{B} 3 ?$; $19 \mathrm{Kt}-\mathrm{Kt5ch}, 20 \mathrm{Q} \times \mathrm{Pch}$, and $21 \mathrm{~B}-\mathrm{Kt2ch}$, \&c. (Gossip.)
(8) Or $15 \ldots$ P-KR3; $16 \mathrm{Kt}-\mathrm{B} 7, \mathrm{Kt} \times \mathrm{Kt}$; $17 \mathrm{P} \times \mathrm{Ktch}$, K-R2: or 16 KKt -K4, $\mathrm{K} \cdot \mathrm{Rsq} ; 17 \mathrm{~K} \cdot \mathrm{Rsq}, \mathrm{P}-\mathrm{Q4}$; $18 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{KP}$. (Ranken.)
(9) $11 \ldots, \mathrm{Kt}-\mathrm{Kt3}$; $12 \mathrm{R}-\mathrm{Ksq}, \mathrm{Kt} \times \mathrm{Kt}$; $13 \mathrm{R} \times \mathrm{Ktch}, \mathrm{Kt}-\mathrm{K} 2$; $14 \mathrm{~B}-\mathrm{R} 3+$.
(10) Or 12 P-Q6+. (C. E. R.)
(11) Or $12 \ldots, \mathrm{~K}$-Bsq to win the QP. The players in this column are Morphy ∇. De Rivière.
(12) Better $14 \ldots, \mathrm{Q} \times \mathrm{Q}!15 \mathrm{R} \times \mathrm{Q}, \mathrm{KKt}-\mathrm{Q} 4$. (C. E. R.)
(13) The Bishop should go to KB4. If then 11 Qch, Q-Q2, \&c.
(14) If now $11 \ldots, \mathrm{Q}-\mathrm{Q} 2$; $12 \mathrm{~B}-\mathrm{QKt5}, \mathrm{P}-\mathrm{QB} 3$; $13 \mathrm{P}-\mathrm{K} 6, \mathrm{P} \times \mathrm{KP} ; 14 \mathrm{Q} \times \mathrm{B}$, $\mathrm{P} \times \mathrm{B} ; 15 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 2 ; 16 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Kt} 3 ; 17 \mathrm{~B}-\mathrm{Kt2}+$.
(15) If $13 \ldots$ KKt-K2; 14 P-K6 and Kt-Kt5+. If $13 \ldots, \mathrm{Kt}$-R3; 14 B-KKt5. If $13 . ., \mathrm{P} \times \mathrm{P}$; $14 \mathrm{P}-\mathrm{Q} 6, \mathrm{Q}-\mathrm{B} 3$; $15 \mathrm{Kt}-\mathrm{K} 4, \mathrm{Q}-\mathrm{B} 4 ; 16 \mathrm{Kt}-\mathrm{Kt} 3$ thence to R5. See diagram below.
(16) If $15 \ldots, \mathrm{P} \times \mathrm{P}$; $16 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \cdot \mathrm{Bsq}$; $17 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{B}$; $18 \mathrm{~B}-\mathrm{R} 3, \mathrm{~B}-\mathrm{B} 3$; 19 QR-Qsq, \&c.
(17) Or 11 .., K-Bsq. This column is from a game Harrwitz v. Boden.
(18) Or 12 B.Kt5ch. (C. E. R.)
(19) $17 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{RP}$; $18 \mathrm{Kt}-\mathrm{Ksq}, \mathrm{R} \times \mathrm{Pch} ; 19 \mathrm{Kt} \times \mathrm{R}, \mathrm{Q}-\mathrm{Kt6}$; and White resigns.
(Col. 32.)

After Black's 13th move.
(Col. 34.)

After White's 18th move.

Table 45.-THE EVANS GAMBIT. (Part I.)
$1 \mathrm{P}-\mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{K} \mathrm{B} \mathrm{3}, \mathrm{Kt-Q} \mathrm{~B} 3$; $3 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B}-\mathrm{B} 4$; $4 \mathrm{P}-\mathrm{Q}$ Kt $4, \mathrm{~B} \times \mathrm{Kt} \mathrm{P} ; \quad 5 \mathrm{P}-\mathrm{B} 3, \mathrm{~B} \cdot \mathrm{~B} 4$; $60-\mathrm{O}, \mathrm{P} \cdot \mathrm{Q} 3$; $7 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt} 3 ; 9 \mathrm{P}-\mathrm{Q} 5$, Kt-R4; 10 B - Kt 2 , Kt -K 2.
36
37
38
39
40
$11 \frac{\mathrm{~B}-\mathrm{Q} 3}{} \frac{\text { (1) }}{\mathrm{O}-\mathrm{O}} \quad(2)$

Kt-B3

$\overline{\mathrm{B}-\mathrm{Kt5}}$
$\mathrm{Kt}-\mathrm{K} 2$
$\mathrm{~B} \times \mathrm{Kt}$
$\mathrm{P} \times \mathrm{B}$
$\mathrm{Kt-Kt3} \quad$ (3)

15

16
17
$\overline{\text { P-QB3 }}$

P-KB4?
$\overline{\mathrm{Kt}-\mathrm{Kt} 3}$
13
$\overline{\mathrm{B} \times \mathrm{Kt}}$ $\frac{\mathrm{Q} \cdot \mathrm{Q} 2}{\mathrm{P} \times \mathrm{P}}$
$\overline{\text { P-KB4 }}$
Kt-KKt5
Q-Ksq Kt-K2
$14 \frac{\mathrm{P} \times \mathrm{B}}{\mathrm{Kt}-\mathrm{Kt} 3 \quad(3)}$
$\frac{\mathrm{Kt} \times \mathrm{P}}{\mathrm{Kt}-\mathrm{Kt} 3} \quad \frac{\mathrm{QR}-\mathrm{Ksq}}{\mathrm{P} \times \mathrm{KP}}$
Kt-K6
P.KB3
$\begin{array}{lll}\mathrm{Kt} \times \mathrm{B} & \text { (4) } & \frac{\mathrm{Kt} \times \mathrm{P}}{\mathrm{Q} \times \mathrm{Kt}} \\ \mathrm{Kt} \times \mathrm{P}\end{array}$
$\frac{\mathrm{P} \times \mathrm{B}}{\mathrm{P}-\mathrm{B} 5 \quad \text { (7) }}$
$\frac{\mathrm{KKt}-\mathrm{Q} 4}{\mathrm{R}-\mathrm{B} 2 \quad(8)}$

QR-Ktsq
$\frac{\text { QKt-Kt5 }}{\text { P-KR3 (6) }}$
$\frac{\mathrm{Kt}-\mathrm{Q} 5}{\mathrm{Kt}-\mathrm{Kt} 3}$

K-Rsq!
$\frac{\text { Q-B3 ? }}{\text { P-B3 }}$
$\frac{\mathrm{Kt}-\mathrm{K} 6}{}$
$\underline{\text { Q-Kt4 }+}$
P-QB4 Kt-K6
Q-Ksq
$\frac{\mathrm{Kt}-\mathrm{Q} 4}{\overline{\mathrm{Kt}} \mathrm{KB} 5+}$
$\frac{\mathrm{R} \times \mathrm{B}}{\mathrm{Kt}-\mathrm{KB5}}$
(5)
$\underline{\mathrm{R} \times \mathrm{QP}+}$
P-B4
$\overline{\mathrm{B} \times \mathrm{Ki}}$
$\mathrm{P} \times \mathrm{B}$
R-QB2
B-B3
P-B5
20
B-B2+
R-Qsq
(1) If $11 \mathrm{~B} \times \mathrm{P}, \mathrm{R}-\mathrm{KKtsq}$; $12 \mathrm{~B}-\mathrm{Q} 4, \mathrm{Kt} \times \mathrm{B}$; $13 \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}, \mathrm{Q}-\mathrm{Q} 2 ; 14 \mathrm{Q} \times \mathrm{Kt}$ R \times Pch; 15 K-Rsq, Q-R6; 16 QKt-Q2, Kt-Kt3; 17 R-KKtsq, Kt-R5+.
(2) If $11 \ldots, \mathrm{P}-\mathrm{KB} 3$; $12 \mathrm{Kt}-\mathrm{R} 4$.
(3) $15 \mathrm{~K}-\mathrm{Rsq}$, (if) Q-R5; $16 \mathrm{Kt}-\mathrm{Kt} 3, \mathrm{P}-\mathrm{KB} 3$; $17 \mathrm{Kt}-\mathrm{B} 5, \mathrm{Q}-\mathrm{R} 6 ; 18 \mathrm{R}-\mathrm{Bsq}$, Kt-R5: or $18 \ldots, \mathrm{Kt}-\mathrm{K} 4$ or B 5 ; $19 \mathrm{R}-\mathrm{KKtsq}$ (Gattie). If $15 \mathrm{P} \cdot \mathrm{B} 4, \mathrm{Q}-\mathrm{R} 5$; 16 Kt-Kt3, P-B3, \&c.
(4) If $15 \mathrm{Kt}-\mathrm{B} 4$!, Kt-K4!.
(5) This Col. is by Steinitz but White's play is questionable. Mr. Gattie also dissents from the conclusion in Black's favour, and suggests $19 \mathrm{~B}-\mathrm{B} 2, \mathrm{Kt}$-B3; 20 Q-B4ch, \&c.
(6) If $16 \ldots, \mathrm{~B}-\mathrm{KB4} ; 17 \mathrm{~B} \times \mathrm{P}$.
(i) If $15 \ldots, \mathrm{R}-\mathrm{B} 3$; $16 \mathrm{Kt}-\mathrm{Q} 5$. (C. E. R.)
(8) Zukertort v . Schulten. If $14 \ldots, \mathrm{P}-\mathrm{QB4}$; $15 \mathrm{Kt}-\mathrm{KB} 5, \mathrm{~B} \times \mathrm{K} t ; 16 \mathrm{P} \times \mathrm{E}$, Kt-F4; $17 \mathrm{Kt}-\mathrm{B} 4$, thence to K6t.

Table 46.-THE EVANS GAMBIT. (Part I.)

1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B}-\mathrm{B} 4$, B-B4; 4 P-QKt4, B \times KtP; 5 P-B3, B-B4; $60-0, ~ P-Q 3 ;$ $7 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; \quad 8 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt} 3$; $9 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{R} 4$; 10 B-Kt2, Kt-K2; $11 \mathrm{~B}-\mathrm{Q} 3, \mathrm{O}-\mathrm{O}$; $12 \mathrm{Kt}-\mathrm{B} 3$, Kt-Kt3; 13 Kt -K 2, P.QB4; 14 Q.Q2 (1), P-B3. (Diagram p. 101.)

	41	42	43	44	45
15	K-Rsq			QR-Bsq	B-B3
	B-B2		B-Q2	Kt-K4	B-B2
16	QR-Bsq (2)		QR-Bsq	$\mathrm{Kt} \times \mathrm{Kt}$ (9)	Kt-Kt3
	R-Ktsq		P-QR3	$\overline{\mathrm{BP} \times \mathrm{Kt}}$	P-QR3
17	Kt-Kt3	KKt-Ktsq	Kt-Kt3	K-Rsq	Kt-B5
	P-Kt4	P-Kt4	K-Bsq (7)	Q-R5	P-Kt4!
18	Kt-B5	P-B4	$\underline{\mathrm{Kt}} \mathrm{B} 5$	P-B4	QR-Bsq(10)
	P-B5	P-B5	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\text { R-B3+ }}$	Kt-Kt2 (11)
19	B-Ktsq (3)	B-Ktsq	$\mathrm{P} \times \mathrm{B}$		P-Kt4
	P-Kt5	P-Kt5	Kt-K4		$\overline{\mathrm{B} \times \mathrm{Kt}}$
20	B-Q4	B-Q4	$\mathrm{Kt} \times \mathrm{Kt}$ (8)		$\mathrm{KtP} \times \mathrm{B}(12)$
	B-R3!	P-B6	$\overline{\text { QP } \times \text { Kt }}$		$\overline{\mathrm{Kt}}$-K4
21	R-Ktsq	Q-Qsq	KR-Qsq		$\mathrm{Kt} \times \mathrm{Kt}$ -
	P-B6 (4)	Kt-B5	R-KB2		$\overline{\mathbf{Q P} \times \mathrm{Kt}}$
22		Kt-B3	B-K4 -		(dia.) (13)
		B-Kt3	R-Q2 -		
23		P-B5 (5)			
		$\overline{\mathrm{KILt}}$-K4 (6)			

(1) Or $14 \mathrm{R}-\mathrm{Bsq}, \mathrm{P}-\mathrm{B} 3$; $15 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B}-\mathrm{B} 2$; $16 \mathrm{Kt} \mathrm{K} t 3$ (if) $\mathrm{Kt}-\mathrm{B} 5$; $17 \mathrm{Q}-\mathrm{Q} 2$ and White has saved time.
(2) $16 \mathrm{Kt}-\mathrm{Ksq}, \mathrm{R}-\mathrm{Ktsq}$; $17 \mathrm{Kt}-\mathrm{Kt3}, \mathrm{P}-\mathrm{Kt4}$; $18 \mathrm{Kt}-\mathrm{B} 2, \mathrm{P}-\mathrm{Kt5}$; $19 \mathrm{Kt}-\mathrm{K} 3$, \& Kt -K41
(3) The continuation of this column is given in the Schachzeitung. The Handbuch treats it as suggestive but open to question.

If $19 \mathrm{~B}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{Kt} 2 ; 20 \mathrm{KKt}$ - Q 4 (if $20 \mathrm{~B}-\mathrm{Q} 4, \mathrm{~B}-\mathrm{K} t 3$), B-Q2; $21 \mathrm{P}-\mathrm{B4}, \mathrm{Kt}-\mathrm{B} 4+$.
Lf 19 B-K2, P-Kt5; 20 B-Q4, P-B6; 21 Q-Qsq, Kt-KB5 (B-Kt3?; 22 P-QR3); $24 \mathrm{~F} \cdot \mathrm{Kt4}, \mathrm{Q}-\mathrm{Ksq} ; 23 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Kt} \times \mathrm{B} ; 24 \mathrm{Q} \times \mathrm{Kt}, \mathrm{E} \times \mathrm{Kt} ; 25 \mathrm{KtP} \times \mathrm{B}, \mathrm{Q}-\mathrm{Kt4}+\mathrm{f}$.
(4) 22 Q-K3, Kt-QB5; 23 Q-Ksq, Kt-B5; 24 P-Kt4, Kt-QKt7; 25 P-Kt5, QKt-Q6?; $26 \mathrm{P} \times \mathrm{P}+$. Mr. Monck proposes $25 \ldots$.., P - K t3, (if) $26 \mathrm{P} \times \mathrm{P}, \mathrm{R} \times \mathrm{P}$ giving up the exchange.
(5) $23 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B}$; $24 \mathrm{Q}-\mathrm{Ksq}, \mathrm{Q}-\mathrm{K} 6$; $25 \mathrm{P} \cdot \mathrm{B} 5$, KKt-K4 + .
(6) $24 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{BP} \times \mathrm{Kt}$; $25 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B}$; and the Handbuch notes that after 26 R-B3, Kt-Q7; 27 R-R3, Q-B7; 28 B-Q3, B-Q2 White has no attack left.
(7) Or 17 .., B-Kt5; 18 Kt-B5, P-B5; 19 B-K2. (Handbuch.)
(8) Or $20 \mathrm{~B} \times \mathrm{Kt}$.
(9) Neumann v. Mortimer. If $16 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt} \times \mathrm{B}$; $17 \mathrm{Q} \times \mathrm{KKt}$ Q-Ksq; $18 \mathrm{Kt} \mathrm{R4}$, B-Qsq, \&c.
(10) If $18 \mathrm{Kt} \times \mathrm{QP}, \mathrm{P}-\mathrm{Kt} 5+$.
(11) $18 \ldots, \mathrm{~B} \times \mathrm{Kt}$?, $19 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 4$; $20 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{BP} \times \mathrm{Kt}$; $21 \mathrm{P}-\mathrm{B} 4, \mathrm{Kt} \mathrm{K}$ K2; $22 \mathrm{P}-\mathrm{B} 6, \mathrm{R} \times \mathrm{P} ; 23 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 24 \mathrm{R} \times \mathrm{R}, \mathrm{Q} \times \mathrm{R}$; $25 \mathrm{R}-\mathrm{KBsq}, \mathrm{Q}-\mathrm{Qsq} ; 26 \mathrm{~B}-\mathrm{K} 4$, Q-R5; $27 \mathrm{~B}-\mathrm{B} 5, \mathrm{P}-\mathrm{K} 5 ; 28 \mathrm{P}-\mathrm{Q} 6, \mathrm{~B} \times \mathrm{P} ; 29 \mathrm{Q}-\mathrm{Q} 5 \mathrm{ch}, \mathrm{K}-\mathrm{Rsq} ; 30 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; $31 \mathrm{Q} \times$ Ktch and wins. (Freeborough v. Clarke.)

Or 18 ... P-Kt5! 19 B-Rsq, B-Kt3; 0 P-Kt4, B \times Kt; $21 \mathrm{KtP} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 4$; $22 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt}$; $23 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt}$ Kt2; $24 \mathrm{R}-\mathrm{KKtsq}, \mathrm{K}-\mathrm{Rsq}$; $25 \mathrm{R}-\mathrm{Kt3}$, Kt-Q3; 26 QR-KKtsq, R-R2 and Black won.

If 18 .., P-B5; 19 B.Ktsq, Kt-Kt2; 20 KKt-Q4, with a good position.
(12) $20 \mathrm{KP} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 4$; $21 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt}$.
(13) Continued 22 K-Rsq, P-B5; 23 B-B2, P-QR4; 24 R-KKtsq, P-Kt5; 25 B-Rsq, Kt-B4; 26 Q-R6, Q-Q2; 27 R-Kt3, B-Q31; 28 QR-KKtsq, R-B2; $29 \mathrm{R}-\mathrm{R} 3, \mathrm{~K}-\mathrm{Bsq} ; 30 \mathrm{Q} \times \mathrm{RP}$. If $25 \mathrm{Q}-\mathrm{R} 6, \mathrm{Q}-\mathrm{Q} 2$; $26 \mathrm{~B}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{Kt} 3 ; 27 \mathrm{R}-\mathrm{Kt2}$, P-B6, \& c .
(Cols. 41.45.)

After Black's 14th move.
(Col. 45.)

After Black's 21st move.

SECTION XIV.

THE EVANS Gambit. Part II.
1 P-K 4, P.K4; 2 Kt-KB3, Kt-Q B 3 ; 3 B-B4, B-B4; 4 P.QKt4, B \times KtP; 5 P.B3, B.R4.

THE variation of the Evans Gambit commencing, as in the position above, with Black's move 5 ..., B-R4 has:received much attention from experts, particularly in Germany. The result of their labours is an accumulation ${ }^{-}$ of analysis that has, to some extent, defeated its own object, and left this division of the Evans as intricate as ever in some of its principal variations. In the early days of this opening the move $5 \ldots$, B-R4 was thought preferable to $5 \ldots$, B-B4, for the simple reason that when placed on the latter square the Bishop was liable to attack by the advance of White's Queen's Pawn, while if it was intended that he should afterwards retire to Kt 3 it made no difference.

The objection to $5 \ldots$, B-R4 was that White could continue by 6. O-0, P-Q3; $7 \mathrm{P}-\mathrm{Q4}, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{Q}-\mathrm{Kt3}$ without fear of $\mathrm{Kt}-\mathrm{QR4}$. This is now known as Waller's Attack. It was analysed by Mr. G. Waller of Dublin, in the Chess Players' Chronicle for 1848. The analysis is also given in Staunton's Chess Players' Companion.

To get rid of this attack the defence was strengthened by the substitution of an older form mentioned as best by Walker in the Philidorian (1838) :-6 O-0, Kt-B3, instead of $6 \ldots$, P.Q3, or B-Kt3. $6 \ldots, \mathrm{Kt}-\mathrm{B} 3$ lexds
to the Richardson Attack by 7 P-Q4, 0-0; $8 \mathrm{Kt} \times \mathrm{P}$ (Cols. 31-40). Mr. P. Richardson of New York has the oredit of introducing this line of play, which brings about some extremely critical and beautiful situations. It can be avoided by $7 \ldots$... Kt or $\mathrm{P} \times \mathrm{P}$ (Cols. 21-23), or $7 \ldots$ P-Q3 (Col. 24), but analysis has shown that the attack may be met on its merits; and that it ought to turn out to the advantage of the second player.

After some fluctuations of opinion with regard to the best way of treating the defence $6 \ldots$, Kt-KB3, the conclusion has been generally accepted that it is better for White to play 6 P-Q4 than to Castle. 6 P.Q4 was first suggested by Mr. Stanley in the American Magazine (1847) and further improved by Morphy (1859) after $6 \ldots, \mathrm{P} \times \mathrm{P} ; 7$ 0-0, $\mathrm{Kt}-\mathrm{KB} 3$, by the continuation $8 \mathrm{~B}-\mathrm{R} 3$: it completes the dividing line between the two main variations of the Evans Gambit. After 6 P-Q4 the play is altogether different. White gives up three Pawns, including the gambit Pawn, in the continuation $6 \ldots, \mathrm{P} \times \mathrm{P} ; 70.0, \mathrm{P} \times \mathrm{P}$ (the "Compremised Defence"); and obtains in return a strong attack, on Mr. Waller's principle, by 8 Q-Kt3 (Cols. 43-60). It is necessary to break the force of this attack, otherwise White should win by the time gained, and Black accordingly takes an early opportunity of playing P-QKi4, thereby returning one of the Pawns he has in hand in order to free his Queen's Bishop and Queen's Rook. This course was originally proposed and generally practised by Anderssen. It was approved by Zukertort, who enriched it.with numerous analytical variations and suggestions (see Westminster Papers, 1874, also the Chess Monthly). In its advanced stages it calls into exercise profound judgment of the value of position and the. force of various pieces acting in combination. The researches of the most careful analysts have, however, frequently proved unequal to the resources. of the attack in actual play.

Another defence, suggested by the Rev. T. C. Sanders, and analysed by Messrs. Pierce and Ranken, springs from the moves 6 O-0, P-Q3; 7 P-Q4, B-Q2 (Cols. 11-15). It avoids the mêlee of pieces which characterises the two variations last named, but substitutes other difficulties, and demands careful management to keep clear of disaster. Mr. Steinitz has more recently tried $60-0$, Q-B3 (Cols. $6-10$); but this variation has little to recommend it, and is not generally considered sound.

According to several eminent authorities the best way of treating the Evans Gambit is to decline it. This leads to an entirely different class of positions, which have, of late years, received considerable attention, and the analysis has. been enlarged in consequence.

Table 47.-THE EVANS GAMBIT. (Part II.

1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4 B-B4; 4 P-QKt4, $\mathrm{B} \times \mathrm{KtP}$; $5 \mathrm{P} \cdot \mathrm{B} 3, \quad \mathrm{~B} \cdot \mathrm{R} 4$. (Diagram p. 102.)

	1	2	3	4	5
6	Q-Kt3	0.0			
6	Q-K2 (1)	$\overline{\mathrm{P}-\mathrm{Q} 3}$ (2)			KKt-K2
7	B-R3	P-Q4			Kt-Kt5
7	P-Q3	$\overline{\mathrm{P} \times \mathrm{P} \text { (dia. } \mathrm{p}}$	105.)		P-Q4
8	P.Q4	$\mathrm{P} \times \mathrm{P}$	Q-Kt3 (5)		$\mathrm{P} \times \mathrm{P}$
8	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{Kt} \text { - } 3 \text { ? ? (3) }}$	Q-B3	Q-K2 (8)	$\overline{\mathrm{Kt} \times \mathrm{P}}$
9	0.0	P-K5	P-K5	P-K5	P-Q4 (12)
9	Kt-B3	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{P} \times \mathrm{KP}}$	0.0
10	P-K5	Q-Kt3 (4)	R-Ksq (6)	R-Ksq	$\mathrm{P} \times \mathrm{P}$
10	Kt-K5	Q-K2	$\overline{\mathrm{B}-\mathrm{Q} 2}$ (7)	B-Q2	B-K3
11	R-Ksq	$\underline{\mathrm{P} \times \mathrm{P}+}$	B-KKt5	B-R3 (9)	Q-R5
11	$\overline{\mathrm{Kt}}$-B4		Q-B4	Q-B3	P-KR3
12	$\beta \times \mathrm{Kt}$		Q \times P	$\mathrm{Kt} \times \mathrm{KP}$	$\mathrm{Kt} \times \mathrm{B}$
12	$\overline{\mathrm{P} \times \mathrm{B}}$		R-Bsq!	$\overline{0.0 .0 ~(10) ~}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$
	P-K6		B-Q5	$\mathrm{Kt} \times \mathrm{P}$	$\underline{\mathrm{B} \times \mathrm{RP} \text { (18) }}$
18	P-B3		$\overline{\mathrm{R}-\mathrm{Ktsq}}$	$\overline{\mathrm{P} \times \mathrm{P}}$	
14	Kt-R4		$\mathrm{R} \times \mathrm{Pch}$	$\mathrm{Kt} \times \mathrm{QR}(11)$	
14	P-Kt3		Q $\times \mathrm{R}$	Kt×Kt	
	P-B4		$\mathrm{B} \times \mathrm{Pch}$	B-Kt4	
15	0.0		$\overline{\mathrm{K}-\mathrm{Bs}} \mathrm{q}$	B-Kt3	
	P-B5		Q \times Rch	Q-B2	
16	P-KKt4		$\overline{\mathrm{Kt} \times \mathrm{Q}}$	Kt-R3	
	Kt-B3		$\mathrm{Kt} \times \mathrm{Q}$	$\underline{\mathrm{Kt} \times \mathrm{P}+}$	
17	B-Kt3		$\overline{\mathrm{P} \times \mathrm{P}}$		
18	P-QR4		B-Kt8 +		

(1) $6 \ldots, \mathrm{QB} 3 ; 7 \mathrm{P}-\mathrm{Q4}, \mathrm{P} \times \mathrm{P} ; 80-\mathrm{O}, \mathrm{P}-\mathrm{Q} 3$; $9 \mathrm{P}-\mathrm{K} 5$, transposing into Col. 3. The play in the Col. is Kipping v. Pindar. Ultimately won by White.
(2) If $6 \ldots, \mathrm{~B}-\mathrm{Kt} 3$; $7 \mathrm{P}-\mathrm{Q4}, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{P}-\mathrm{K} 5, \mathrm{P}-\mathrm{Q} 4 ; 7 \mathrm{P} \times \mathrm{P}$ on pas. (Ghulam Kassim), $\mathrm{P} \times \mathrm{P}$!
(3) If $8 \ldots, \mathrm{Q}-\mathrm{K} 2 ; 9$ P-Q5, Kt-K4; $10 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt} ; 11 \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}, \mathrm{B}-\mathrm{Q} 2$; $12 \mathrm{Q} \times \mathrm{KB}, \mathrm{Q} \times \mathrm{R} ; 13 \mathrm{Kt}$ - 3 and wins. 8 B-It3 reverts to the normal position. (p. 87.)
(4) If 10 B-R3, B-K3.
(5) Weller's Attack. After $7 \ldots, \mathrm{~B}-\mathrm{KKt5} ; 8 \mathrm{Q}$-Kt3, (if) $\mathrm{Q}-\mathrm{Q} 2 ; 9 \mathrm{~B} \times \mathrm{Pch}, \mathrm{Q} \times \mathrm{B}$; $10 \mathrm{Q} \times \mathrm{P}$, \&c. Tschigorin played $8 \mathrm{Q}-\mathrm{R4}$, or 8 B-QKt5.
(6) 10 B-KKt5, Q.B4; . $11 \mathrm{Kt} \times \mathrm{KP}$ (Morphy v. Kipping), $\mathrm{Q} \times \mathrm{Kt}$; $12 \mathrm{~B} \times \mathrm{Pch}$, K-Bsq+. See diagram below.
(7) If $10 \ldots$ Kt-R3; 11 B-KKt5, Q-B4; 12 Q-R3+. If $10 \ldots, \mathrm{~B}-\mathrm{Kt3}$; 11 B-KKt5, Q-B4; $12 \mathrm{Kt} \times \mathrm{KP}, \mathrm{Kt} \times \mathrm{Kt}$; $13 \mathrm{P}-\mathrm{B} 4$ (or Q-Kt5ch 1 C . E. R.), $\mathrm{P} \times \mathrm{P}$ disch; $14 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B}-\mathrm{Q} 5 ; 15 \mathrm{Kt} \times \mathrm{P}, \mathrm{K}-\mathrm{Bsq} ; 16 \mathrm{QR}-\mathrm{Qsq}, \mathrm{Kt} \times \mathrm{B} ; 17 \mathrm{Q} \times \mathrm{Kt}$, $\mathrm{B}-\mathrm{K} 3$; $18 \mathrm{Q} \times \mathrm{KB}, \mathrm{P}-\mathrm{KB} 3$; $19 \mathrm{Kt}-\mathrm{K} 4+$.
(8) $8 \ldots, \mathrm{~B}-\mathrm{K} 3$; $9 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$; $10 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 2$; $11 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{Qsq}$; $12 \mathrm{P} \times \mathrm{P}$, $\mathrm{Kt} \times \mathrm{P} ; 13 \mathrm{Q} \times \mathrm{P}+$.
(9) Or $11 \mathrm{~B}-\mathrm{Q} 5$ (Lange), B-Kt3; $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $13 \mathrm{~B}-\mathrm{R} 3, \mathrm{Q}-\mathrm{B} 3$; $14 \mathrm{P} \times \mathrm{P}+$.
(10) Not advisable to take the Kt.
(11) If $14 \mathrm{Kt} \times \mathrm{KR}, \mathrm{P}-\mathrm{B} 7$; $15 \mathrm{~B}-\mathrm{Kt2}, \mathrm{~B} \times \mathrm{R}$ and wins.
12) Or $9 \mathrm{Kt} \times \mathrm{BP}, \mathrm{K} \times \mathrm{Kt}$; $10 \mathrm{Q}-\mathrm{B} 3 \mathrm{ch}$, and either draws by perpetual check, or secures the best position.
(13) The Handbuch gives $13 \ldots, \mathrm{R}$-B2; 14 R-Qsq+: if $14 \ldots, \mathrm{Q}-\mathrm{K} 2$: i5 B-KKt5, Q moves; 16 B-Q3, \&c.
(Cols. 2-4.)

After Black's 7th move.
(Col. 8.)

After White's 10th move.

Table 48.-THE EVANS GAMBIT. (Part II.)
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4$; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{~B} \cdot \mathrm{B4}$, B-B4; $4 \mathrm{P} \cdot \mathrm{Q}$ Ḱt 4 , $\mathrm{B} \times \mathrm{KtP}$; $5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B} \cdot \mathrm{R} 4$; 60.0 , Q.B. 3 (Steinitz' Defence).

	6	7	8	9	10
7	P.Q4				
	KKt-K2		B-Kt3	$\overline{\mathrm{Kt}}$-R3	P-KR3 (14)
8	B-KKt5 (1)		Q-R4	B-KKt5	Q.R4 (15)
	Q.Q3 (dia.)		$\overline{\mathrm{P} \times \mathrm{P}}$ (10)	Q-Q3	B-Kt3
9	P-Q5	Q-Kt3 (4)	P-K5	P-Q5	B-QKt5
	Kt-Qsq	0.0'	Q-Kt3	Kt-Qsq	KKt-K2
10	Q-R4	Kt-R3 . (5)	$\mathrm{P} \times \mathrm{P}$	Q-R4	B-R3
	B-Kt3 (2)	P.QR3	$\overline{\mathrm{K}} \times \mathrm{QP}$	B-Kt3	$\overline{\mathrm{P} \times \mathrm{P}}$
11	Kt-R3	$\underset{\mathrm{B}}{ } \times \mathrm{Pch}(6)$	$\mathrm{Kt} \times \mathrm{Kt}$	Kt-R3	P.K5
	$\overline{\text { P-QB3 }}$	R×B	$\overline{B \times K t}$	$\overline{\text { P.QB3 (12) }}$	Q-Kt3
12	QR-Qsq	Kt.B4	$\underline{\mathrm{B}} \times \mathrm{Pch}$	B-K2	$\mathbf{P} \times \mathbf{P}$
	Q-Ktsq	Q.-Et3 (7)	(11)	B-B2	(16)
13	$\mathrm{B} \times \mathrm{Kt}$	QKt \times P (8)		Kt -B4	
	$\overline{\mathrm{K} \times \mathrm{B}}$	$\overline{\mathrm{Kt}} \times \mathrm{Kt}$		Q.Bsq	
14	P.Q6ch	$\mathrm{Kt} \times \mathrm{Kt}$		(dia.) (18)	
	K.Bsq	Q-K3			
15	Q-Kt4	K t \times R			
	P-KB3 (3)	$\overline{\mathrm{K} \times \mathrm{Kt}}$			
16		$\mathrm{B} \times \mathrm{Kt}$			
		$\overline{\mathbf{Q} \times \mathbf{Q}}$			
		$\mathrm{P} \times \mathrm{Q}$			
17		$\overline{B \times P \quad(9)}$			

(1) 8 Kt-Kt5, P-KR3l; $9 \mathrm{Kt} \times \mathrm{P}, \mathrm{R}-\mathrm{Bsq}$; $10 \mathrm{Kt} \times \mathrm{KP}, \mathrm{Kt} \times \mathrm{Kt}$; $11 . \mathrm{P} \times \mathrm{Kt}$, $\mathrm{Q} \times \mathrm{P}+$.
(2) $10 \ldots$ P-QKt3; 11 Kt -R3, P-QR3; 12 B-Q31, B \times P; 13 QR-Ktsq (if 13 QR-Bsq, Q-Kt5), B-Kt2; 14 Kt-B4, Q-B4! 15 B-K3, P-QKt4; $16 \mathrm{~B} \times \mathrm{Q}, \mathrm{P} \times \mathrm{Q}$; 17 P -Q6 and wins a piece.
(3) Continued 16 B-Kt3, or K-Rsq, followed by Kt-R4 or Kisq, and P-KB4. (C. E. R.)
(4) 9 Q-R4, $\mathrm{E}-\mathrm{Kt3}$; $10 \mathrm{Kt}-\mathrm{R} 3, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{Kt} \mathrm{Kt} 5, \mathrm{Q}-\mathrm{Ktz!} 12 \mathrm{~F} \times \mathrm{P}, \mathrm{P}-\mathrm{QR} 3$; $13 \mathrm{~F}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 4 ; 14 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B} ; 15 \mathrm{Kt}-\mathrm{KB3}, \mathrm{Q}-\mathrm{R} 3 ; 16 \mathrm{~B}-\mathrm{Kt} 3, \mathrm{O}, \mathrm{O}$; 17 QR-Bsq; P-QB3; 18 QKt-Q4, P-QB4 (Gunaborg p. Steinitz).
(5) Threatening $11 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Q}-\mathrm{Kt} 3 ; 12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{K} \times \mathrm{B}$; $13 \mathrm{Kt} \times \mathrm{KP}$.
(6) Or 11 B-Q.5. (C. E. R.)
(7) If $12 \ldots \mathrm{Q}-\mathrm{K} 3$; $13 \mathrm{P}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{Kt3}$ or 5 ; $14 \mathrm{P} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{Pl}$; $15 \mathrm{QKt} \times \mathrm{P}$, $\mathrm{Kt} \times \mathrm{Kt}$; $16 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{K} 3$; $17 \mathrm{Kt} \times \mathrm{R}$ 。
(8) If $13 \mathrm{~B} \times \mathrm{Kt}$, P-Q31; $14 \mathrm{~B}-\mathrm{R4}, \mathrm{P}-\mathrm{Kt4}$; 15 QKt-Q2, K-Rsq, \&c. (C. E, R.)
(9) Continued 18 QR-Bsq, B \times P; $19 \mathrm{~B}-\mathrm{Q} 8, \mathrm{P}-\mathrm{B} 3$; $20 \mathrm{~B}-\mathrm{B} 7+$. (C. E. R.)
(10) Or 8 .., Kt-Qsq; 9 P-Q5, reverting to Col. 6. If 8 .., Kt-QR4; 9 B-Q3+.
(11) Continued $12 \ldots, \mathrm{Q} \times \mathrm{B}$; $13 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 2 ; 14 \mathrm{~B}-\mathrm{R} 3,0.0 ; 15 \mathrm{Kt}-\mathrm{B3} \boldsymbol{\varepsilon}_{\mathrm{r}}$ R.Ksq; $16 \mathrm{~B} \times \mathrm{Kt}+$.
(12) Or 11 .., Q -KKt3! (Steinitz).
(13) Continued $14 \mathrm{P}-\mathrm{Q} 61, \mathrm{~B} \times \mathrm{P}$) (if $14 \ldots, \mathrm{P}$-Kt4; $15 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{Kt2}$; $16 \mathrm{Q}-\mathrm{R} 3$, \&c.); 15 Kt -Kt6, R-QKtsq; $16 \mathrm{Q} \times$ RP, Kt-Ktsq !. Steinitz, against Tschigorin, played $16 \ldots, \mathrm{Kt}-\mathrm{K} 3$; and against Gunsberg $16 \ldots, \mathrm{Kt}$-Kt5 ?
(14) Considered a safe reply by Mr. Steinitz.
(15) 8 B-QKt5, KKt-K2; 9 B-R3, $\mathrm{P} \times \mathrm{P}$ (B-Kt3! Steinitz); $10 \mathrm{P} \times \mathrm{P}$!; Mr. Ranken suggests 8 P-Q5, Kt-Qsq; 9 Q-R4, B-Kt3; 10 B-R3 with a_{0} good game. If $8 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{KKt}-\mathrm{K} 2 ; 9 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P} ; 10 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt} ; 11 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Qsq}$ and Steinitz likes Black's game.
(16) Continued 12 .., Kt-Q4; 13 R-Ksq 1, Kt-B5 (QKt-K21 Steinitz); 14 P-Kts, Kt -R6ch ; $15 \mathrm{~K}-\mathrm{Kt2}$, Q-Kt5; 16 QKt-Q2, Kt-Kt4; $17 \mathrm{~B}-\mathrm{Kt} 2!\mathrm{Kt}-\mathrm{K} 2$ (17 ... 0-0; 18-P-Q5+); 18 B-K2, Kt-K3 (or-18 .., Q-K3); $19 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Q}-\mathrm{B} 4 ; 20 \mathrm{Kt}-\mathrm{R} 4+$.
(Col. 6.)

After Black's 8th move.
(Col. 9.)

After Black's 13th move.

Table 49.-THE EVANS GAMBIT. (Part II.)

$1 \mathrm{P}-\mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{~B} 4$; $4 \mathrm{P} \cdot \mathrm{Q} \mathrm{Kt} 4, \mathrm{~B} \times \mathrm{KtP}$; $5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B} \cdot \mathrm{R} 4$; $60 \cdot 0, \mathrm{P} \cdot \mathrm{Q} 3$; 7 P-Q4, B-Q 2 (1).

	11	12	18	14	15
8	$\mathrm{P} \times \mathrm{P}$ (dia. p	109)		Kt-Kt5	
	$\overline{P \times P}$			Kt-R3	
9	Q.Q5		Q-Kt3	P-Q5	P-B4
	Q-K2	Q-B3 ?	Q-K2	$\overline{\mathrm{Kt}-\mathrm{K} 2 ~(6)}$	$\overline{P \times Q P}$
10	B-R3	B-KKt5	B-R3	Kt-K6 (7)	P-K5
	Q-B3	Q-K3	Q-B3	$\overline{\mathrm{P} \times \mathrm{Kt}}$	0.0 (11)
11	B-Kt5	Q-Kt5	Kt-Kt5 (5)	$\mathrm{P} \times \mathrm{P}$	P-K6
	B-Kt3	Q-Q3	Kt-R3	B-B3	$\overline{\mathrm{B} \times \mathrm{KP}(12)}$
12	Kt-Q2 (2)	Q-Kt3 (3)	P-R4 -	Q-R5ch	$\mathrm{B} \times \mathrm{B}$
	KKt-K2	Q-Kt3	B-Kt3 -	Kt-Kt3	$\overline{\mathrm{P} \times \mathrm{B}}$
13	Q-Kt3	R-Qsq		B-KKt5	$\underline{\mathrm{Kt} \times \mathrm{KP}}$
	0.0.0	$\overline{\text { B-Bsq (4) }}$		Q-Bsq	Q-B3
14	$\underline{\mathrm{Kt} \text { - } 4 \text { - }}$	$\mathrm{Kt} \times \mathrm{P}$		P-B4 (8)	$\mathrm{K} \times \times \mathrm{R}$
	-	$\overline{\mathbf{Q} \times \mathrm{B}}$		$\overline{\mathbf{P} \times \mathrm{P}}$	$\mathrm{R} \times \mathrm{Kb}$ (18)
		$\mathrm{Kt} \times \mathrm{P}$		$\underline{\mathrm{B} \times \mathrm{P} \quad(9)}$	
15		Q-K2		P-Kt4 (10)	
		$\underline{\mathrm{Kt} \times \mathrm{R}+}$			

1) Suggested by the Rev. T. C. Sanders; analysed by Messrs. T. W. Pierce and Ranken (C. P. C., 1877-1878).
(2) If $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 13 \mathrm{Q} \times \mathrm{KPch}, \mathrm{Q} \times \mathrm{Q}$; $14 \mathrm{Kt} \times \mathrm{Q}, \mathrm{B}-\mathrm{Kt4} ; 15 \mathrm{R}-\mathrm{Ksq}$, P-KB3; $16 \mathrm{Kt}-\mathrm{B} 3, \mathrm{O}-\mathrm{O}-\mathrm{O}+:$ if $15 \mathrm{R}-\mathrm{Qsq}, \mathrm{P}-\mathrm{KB3} ; 16 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{K} 7$; $17 \mathrm{R}-\mathrm{Q} 2$, $\mathrm{B} \times \mathrm{Kt}$; $18 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{R} 3$, \&c.
(3) Or 12 B-Q5, B-Kt3; 13 R-Qsq, \&c.
(4). If $13 \ldots$ B-KKt5 ; $14 \mathrm{~B} \times \mathrm{Pch}, \mathrm{Q} \times \mathrm{B} ; 15 \mathrm{Q} \times \mathrm{P}$.
(5) If 11 R-Ksq, R-Qsq, \&c.
(6) $9 \ldots$ Kt-QKtsq is also a safe defence.
(7) This ingenious attack is the invention of Mr. Fraser.
(8) Mr. Fraser played 14 B-Q5, which should have been answered by $B \times B$, and then Kt-B4.
(9) If $15 \mathrm{R} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt3ch}$; $16 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B}-\mathrm{K} 6+$.
(10) See diagram. If $16 \mathrm{~KB} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt3ch} ; 17 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B} \times \mathrm{B} ; 18 \mathrm{Q} \times \mathrm{Bch}$, P-B3; 19 Q-B4, Kt-Kt5+.

If $16 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{K} \mathrm{t} 3 \mathrm{ch}$; 17 K -Rsq, $\mathrm{O}-\mathrm{O}+$.
If $16 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{QB} ; 17 \mathrm{~B}-\mathrm{Kt} 3, \mathrm{Q}-\mathrm{Qsq}+$.
If $16 \mathrm{~B}-\mathrm{QKt3}, \mathrm{Q}-\mathrm{Kt2}$; $17 \mathrm{~B} \times \mathrm{Kt}$ (if $17 \mathrm{~B}-\mathrm{Kt5}$, B-Kt3ch; $18 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B} \times \mathrm{P}$; 19 Q-K2, Kt-K4 +), B-Kt3ch; $18 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B} \times \mathrm{P} ; 19 \mathrm{Q} \times$ Pch, B-B3; $20 \mathrm{Q}-\mathrm{K} 2$, Kt-R5; $21 \mathrm{~B}-\mathrm{R} 4, \mathrm{~B} \times \mathrm{B}$; $22 \mathrm{~B} \times \mathrm{P}$ (if $22 \mathrm{Q}-\mathrm{Kt4}$ or $\mathrm{B} 4, \mathrm{Kt} \times \mathrm{P}+$; if $22 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$, Kt-Kt3; $23 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{B} 3$), B-B3; $23 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{Kt}-\mathrm{Kt} 3$; $24 \mathrm{Q}-\mathrm{Kt} 4$ (if $24 \mathrm{Q}-\mathrm{R} 3$, Kt-R5), R-KKtsq; 25 B-B6, Kt-K2; 26 Q-R5ch, R-Kt3+. (Ranken.)
(11) If $10 \ldots, \mathrm{P} \times \mathrm{KP}$; $11 \mathrm{~B}-\mathrm{R} 3$, \&c.
(12) If $11 \ldots, \mathrm{P} \times \mathrm{KP}$; $12 \mathrm{Q}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{B} 4$; $13 \mathrm{Kt} \times \mathrm{KP}$: or $12 \ldots$ P-KKt3: 13 Q-R3, K-Kt2; $14 \mathrm{~B} \times \mathrm{P}+$.
(13) Tschigorin v. Alapin continued $15 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; 16 B-Kt2, B-Kt3; 17 K-Rsq, KKt-B4; 18 Q-Q3, Kt-K7; $19 \mathrm{~B} \times \mathrm{Q}, \mathrm{Kt}$ (B4) Kt6ch; and Black won. The Field suggests 15 Q-Kt3ch, K-Rsq; $16 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Qsq} ; 17 \mathrm{Q}-\mathrm{Kt5}, \mathrm{~B}-\mathrm{K} t 3$; 18 Q-Q3, $\mathrm{P} \times \mathrm{P}$ dis ch; 19 B-K3, P-B7+.
(Cols. 11-15.)

After Black's 7th move.
(Col. 14.)

After Black's 15th move.

Table 50.-THE EVANS GAMBIT. (Part II.)

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ;{ }^{2} \mathrm{Kt}-\mathrm{KB3}, \mathrm{Kt} \cdot \mathrm{QB} \mathrm{3;} \quad 3 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B}-\mathrm{B} 4$;					
	16	17	18	19	20
7	Kt-Kt5				B-R3
	0.0				P.Q3
8	P-B4				P.Q4
	P-Q4!				0.0 (4)
	$\mathrm{P} \times \mathrm{QP}$				$\mathrm{P} \times \mathrm{P}$
9	$\overline{\mathrm{Kt} \times \mathrm{P}}$				$\overline{\mathrm{KKt} \times P}$
10	B-R3 (1)				Q-B2 (5)
	$\overline{\mathrm{Kt} \times \mathrm{KBP}}$				Kt-B4
11	$\underline{R \times K t \quad(2)}$		$\mathrm{Kt} \times \mathrm{BP}$		$\mathrm{B} \times \mathrm{Kt}$
	$\overline{Q \times K t}$		$\overline{\mathrm{R} \times \mathrm{Kt}}$		$\overline{\mathrm{P} \times \mathrm{B}}$
12	R-Bsq		$\mathrm{B} \times$ Rch	Q-Kt3	QKt-Q2
	B-Kt3ch		$\overline{\mathrm{K} \times \mathrm{B}}$	Q-Ksq	R-Ktsq
18	K-Rsq	P-Q4	P-Kt3	$\mathrm{B} \times$ Rch	QR-Qsq
	$\overline{\mathrm{Kt}}$-R4	$\overline{\mathrm{Kt}}$-R4	B-Kt3ch (3)	$\underline{Q} \times \mathrm{B}$	Q-K2
14	$\mathrm{B} \times \mathrm{R}$	$B \times R$	P.Q4	$\underline{Q} \times$ Qch	KR-Ksq
	$\overline{\mathrm{Kt} \times \mathrm{B}}$	$\overline{\mathrm{Kt} \times \mathrm{B}}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	$\overline{\mathrm{K} \times \mathrm{Q}}$	P.QKt4
	B-R3	B-B5	$\mathrm{BP} \times \mathrm{Kt}$	P-Kt3	B-Q3
15	B-E3.+	$\overline{\mathrm{B} \times \mathrm{B}}$	B \times Pch .	B-Kt3ch	P-KR3 +
16		$\mathrm{P} \times \mathrm{B}$	K-Rsq	P-Q4	
16		B-K3	Q-Q4ch	B-R6	
17		Q-Bsq	Q-B3	R-B2	
		$\overline{\mathbf{Q} \times \mathrm{Q}}$	Q×Qch	$\overline{\mathrm{K} t \times \mathrm{P}}$	
18		$\mathbf{R} \times \mathrm{Q}$	$\mathbf{R \times Q}$	$\underset{\mathrm{BP} \times \mathrm{Kt}}{ }$	
		QR-Qsq+	B-Kt5	$\stackrel{B}{ } \times \mathrm{P}$	
10			R-Bsq	$\underline{P \times K t}$	
19			B-K7	$\overline{\mathrm{B} \times \mathrm{QR}}$	
20			Kt-Q2	P \times Pch	
20			$\overline{\mathrm{B} \times \mathrm{QR}+}$	K-K3 +	

(1) Mr. Fraser suggests, as possibly a líttle better for White, either 10 Q-R5 followed by $11 \mathrm{~B}-\mathrm{R} 3$; or $10 \mathrm{P} \times \mathrm{P}$, (if) $\mathrm{Kt} \times \mathrm{P}$; $11 \mathrm{Q}-\mathrm{R5}$; or if $10 \ldots, \mathrm{Q} \times \mathrm{Kt}$; $11 \mathrm{~B} \times \mathrm{Kt}$.
(2) 11 P-R4, P-KR3: $12 \mathrm{Kt} \times \mathrm{P}, \mathrm{R} \times \mathrm{Kt}$; $13 \mathrm{~B} \times \mathrm{Rch}, \mathrm{K} \times \mathrm{B}$; 14 P-Kt3, B-Kt3ch; $15 \mathrm{P}-\mathrm{Q} 4, \mathrm{Kt} \times \mathrm{P}$; $16 \mathrm{KtP} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{B} 7 \mathrm{dis} \mathrm{ch}+$.
(3) Mr. Wayte's correction of the Handbuch, continued on move 19 by Mr. Ranken.
(4) $8 \ldots$, B-Kt3; $9 \mathrm{P} \times \mathrm{KP} . \mathrm{P} \times \mathrm{P}$; $10 \mathrm{Q}-\mathrm{Kt3}, \mathrm{Kt} \times \mathrm{KP}$; $11 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Q} 2$; $12 Q$ mates. (Bird v. Wisker.) Compare this Col. with No. 23.
(5) If $10 . \mathrm{B}-\mathrm{Q} 5, \mathrm{Kt} \times \mathrm{BP}$. If $10 \mathrm{Q}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{B} 4$. If $10 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{QP}$.

Table 51.-THE EVANS GAMBIT. (Part II.)

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{~B} 4$; 4 P.QKt 4 , $\mathrm{B} \times \mathrm{KtP}$; 5 P.B3, B-R4; 60.0 , Kt.B3.

	21	22	23	24	25
7	P. Q4				
	$\overline{\mathrm{Kt}} \times \mathrm{KP}$		$\overline{\mathrm{P} \times \mathrm{P}}$	P-Q3	0.0
8	$\mathrm{R}-\mathrm{Ksq}$ (1)		B-R3 !	Q-R4	$\mathrm{P} \times \mathrm{P}$ (15)
8	$\overline{\mathrm{Kt} \times \mathrm{QBP}(2)}$	P-Q4	P-Q3 (11)	$\mathrm{P} \times \mathrm{P}$	$\overline{\mathrm{KKt} \times \mathrm{P}}$
9	$\underline{\mathrm{Kt} \times \mathrm{Kt}}$ (3)	$\mathrm{R} \times \mathrm{Kt}$	P-K5	P-K5	B-Q3 (16)
	B×Kt	$\overline{\mathrm{P} \times \mathrm{R}}$ (7)	$\overline{\text { P-Qt (12) }}$	$\overline{\mathrm{Kt} \text {-KKt5 }}$	P-Q4!
10	Q-Kt3	Kt-Kt5	B-Kt5	$\mathrm{BP} \times \mathrm{P}$	Q-B2
	B $\times \mathrm{KR}$	$\overline{\mathrm{B}-\mathrm{K} 3}$ (8)	Kt-K5	B-Q2	B-B4!
11	B \times Pch	P-Q5	$\mathrm{P} \times \mathrm{P} \quad$ (13)	Q-R3	Kt-Q4
	K-Bsq	$\overline{\text { B-Kt3 (9) }}$	B-Q2	B-Kt3	$\overline{\text { B-KKt3 ! }}$
12	B-Kt5	B-Kt3	Q-Kt3	B-KKt5	P-KB4
	$\overline{\mathrm{Kt} \times \mathrm{P}}$	P-K6	P-QR3	P-B3	Q-Q2
18	Q-K3 (4)	$\mathrm{P} \times \mathrm{B} \quad$ (10)	B-Q3	$\mathrm{P} \times \mathrm{QP}$	B-K3
	Kt-B4!	$\overline{\mathrm{P} \times \text { Pch }}$	B-Bsq	$\overline{\mathrm{P} \times \mathrm{P}}$	P-QR3 (17)
14	Q-R3ch	K-Bsq.	R-Bsq	R-Ksqch	$\mathrm{Kt} \times \mathrm{Kt}$
	Kt-K2 (5)	Q \times Qch	B-Kt3	Kt-K2	$\overline{\mathrm{P} \times \mathrm{Kt}}$
15	$\mathrm{Kt} \times \mathrm{P}$	$B \times \mathrm{Q}$	$\underline{\mathrm{R} \times \mathrm{K} \text { t }}$	B-B4	P-B4
	P-Q3	P-B3+	$\overline{\mathrm{P} \times \mathrm{R}}$	B-B2	B-Kt3
16	Q-KB3 (6)		Q-B2	Kt-B3	P.QB5
			B-Kt2	$\overline{\mathrm{K}-\mathrm{Bsq}}$ (14)	B.R2
17			QKt-Q2	$\underline{R} \times \mathrm{Kt}$	B-Q4
			$\underline{\text { K }} \times \mathrm{Kt}$	Q \times R	-
18			$\underline{\mathbf{Q} \times \mathrm{Kt}}$	$\underline{\mathrm{Kt}} \mathrm{Q}$ 5 +	
			P-R3		
19			QR-Ksq+		

19
(1) Or 8 P-Q5 (E. F.), $\mathrm{Kt} \times \mathrm{QBP}$? (Kt-K21); $9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Kt}$; $10 \mathrm{P} \times \mathrm{Kt}$, $\mathrm{B} \times \mathrm{R}$: $11 \mathrm{~B}-\mathrm{KKt5}, \mathrm{P}-\mathrm{B3} ; 12 \mathrm{Q} \times \mathrm{B}$, (if) $\mathrm{P} \times \mathrm{B} ; 13 \mathrm{Q} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Bsq} ; 14 \mathrm{Q}-\mathrm{Q} 5$, Q-B3; $15 \mathrm{P} \times \mathrm{KtP}:$ or $13 \ldots, \mathrm{Q}-\mathrm{K} 2 ; 14 \mathrm{Q} \times \mathrm{BP}, \mathrm{Q}-\mathrm{B} 3 ; 15 \mathrm{R}$-Ksqch, $\mathrm{K}-\mathrm{Bsq}$; $16 \mathrm{P} \times \mathrm{QP}$ or KtP. (Monck.)
Or $8 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{QBP} ; 9 \mathrm{Kt} \times \mathrm{Kt}$ (or $\mathrm{Q}-\mathrm{Kt3}$, or $\mathrm{B} \times \mathrm{Pch}$. Monck), $\mathrm{B} \times \mathrm{Kt}$; Q-Kts, \&c.

If $8 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4(\mathrm{Kt} \times \mathrm{Kt1}): 9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt} ; 10 \mathrm{Q}-\mathrm{R} 4+:$
(2) If $8 \ldots$ Kt-Q3; $9 \mathrm{~B}-\mathrm{KKt5}, \mathrm{P}-\mathrm{B} 3$; $10 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{B}$; $11 \mathrm{P} \times \mathrm{Ktch}, \mathrm{K}-\mathrm{Bsq}$; 12 Q-Q5, Q-B3; $13 \mathrm{Kt} \times \mathrm{P}$ and wins.
(3) 9 Q-Kt3, Kt \times Kt; $10 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Bsq}$; $11 \mathrm{~B}-\mathrm{Kt5}, \mathrm{Kt} \times \mathrm{P}$: 12 Q-K3, Kt \times Ktch; $13 \mathrm{P} \times \mathrm{Kt}, \mathrm{B}-\mathrm{Q} 7+$. (Monck.)
(4) If 13 Q-R3ch, B-Kt5, followed by 14 P-B4+.
(5) Mr. Ranken suggests here 14 .., B-Kt5, as in Note 4. Mr. Monck continues 15 Q \times Bch, P-B4 116 Q-Kt4, Kt-R3+.
(6) Cook's Synopsis works out this important Col. to White's advantage by 16 $\mathrm{K}-\mathrm{Ksq} ; 21 \mathrm{R}-\mathrm{Qsq}, \mathrm{Q} \times \mathrm{R}$; $22 \mathrm{Q} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Bch} ; 23 \mathrm{~K}-\mathrm{Kt4}, \mathrm{P}-\mathrm{KKt} 3$; $24 \mathrm{Q}-\mathrm{Q} 5+$. Mr. Ranken notes that the win for White is inconclusive, for $23 \ldots, \mathrm{Kt}$-Q3 or 5 is better than P-KKt3: if 23 .., Kt-Q3; 24 Q-Q5, K-Q2; 25 Q \times KP, QR-Ksq, \&c.
(7) If $9 \ldots, \mathrm{P} \times \mathrm{B}: 10 \mathrm{Kt} \times \mathrm{P}, 0-\mathrm{O}$; $11 \mathrm{Q}-\mathrm{R} 5$ (or $\mathrm{Kt} \times \mathrm{Kt}$ first), $\mathrm{Kt} \times \mathrm{Kt}$; $12 \mathrm{R}-\mathrm{R} 4+$.
(8) $10 \ldots, 0-0$; 11 Q-R5, P-KR3; $12 \mathrm{Kt} \times \mathrm{P}, \mathrm{R} \times \mathrm{Kt}$; $13 \mathrm{~B} \times \mathrm{Rch}, \mathrm{K}-\mathrm{Bsq}$; $14 \mathrm{~B}-\mathrm{R} 3 \mathrm{ch}, \mathrm{Kt}-\mathrm{K} 2$; $15 \mathrm{~B}-\mathrm{K} t 3$ and wins-a frequent variation.
(9) 11 .., Q-Q2; 12 Q-Q2, O-O-0; $13 \mathrm{P} \times \mathrm{B}+$.
(10) $\mathrm{Or} 13 \mathrm{Kt} \times \mathrm{R}, \mathrm{P} \times \mathrm{Kt} ; 14 \mathrm{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Pch} ; 15 \mathrm{~K}-\mathrm{Bsq}, \mathrm{Q} \times \mathrm{Qch} ; 16 \mathrm{~B} \times \mathrm{Q}$ $\mathrm{P} \times \mathrm{P}$; 17. B-B3, $\mathrm{O}-\mathrm{O}-\mathrm{O}+$. (C. E. R.)
(11) If $8 \ldots, P_{i} Q 4 ; 9 P \times P, K t \times P ; 10 Q-K t 3+$.
(12) If $9 \ldots, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{Q}-\mathrm{Kt} 3$, \&c. If $9 \ldots, \mathrm{Kt}-\mathrm{K} 5$; $10 \mathrm{P} \times \mathrm{P}(\mathrm{Q} 6), \mathrm{Kt} \times \mathrm{P}(\mathrm{Q} 3)$; 11 R -Ksqch + . If $9 \ldots$ Kt-KKt5; $10 \mathrm{P} \times \mathrm{P}(\mathrm{Q} 6), \mathrm{BP} \times \mathrm{P} ; 11 \mathrm{Kt} \times \mathrm{P}, \mathrm{O}-\mathrm{O}$; $12 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $13 \mathrm{QB} \times \mathrm{P}, \mathrm{R}-\mathrm{Ksq}$: $14 \mathrm{Q}-\mathrm{B} 3+$: or White may play $11 \mathrm{R}-\mathrm{Ksqch}$, Et -K2; $12 \mathrm{~B}-\mathrm{Kt} 5 \mathrm{ch}, \mathrm{Z}$-Beql for if $12 \ldots, \mathrm{~B}-\mathrm{Q} 2$; $13 \mathrm{~B} \times \mathrm{QP}+$.
(13) Morphy v. Greenaway, transposing 6th and 7th moves. A game of.Mackenzie's at the odds of Queen's Rook is continued:-11 $\mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 2 ; 12 \mathrm{Kt}-\mathrm{Kt} 3, \mathrm{~B}-\mathrm{Kt} 3$; $13 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{KBP} ; 14 \mathrm{Kt}-\mathrm{B} 5, \mathrm{Kt}-\mathrm{B} 2 ; 15 \mathrm{Kt} \times \mathrm{B}, \mathrm{Kt}$-R 6 douch; $16 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt} \times \mathrm{Q}$; $17 \mathrm{Kt}-\mathrm{B6}$ mate. After $11 \mathrm{P} \times \mathrm{P}$ as in the Col. if $11 \ldots, \mathrm{Q}-\mathrm{Q} 2$ (instead of B-Q2); 12 Q-R4, \&c.
(14) Or 16 B-B3! (C.E.R.)
(15) The Column is Mr. W. T. Pierce's analysis given in the Huddersfield College Magazine, Vol. VI., p. 191. Oxford v. Cambridge (1849) played 8 B-R3, P-Q3; $9 \mathrm{P} \times \mathrm{P}, \mathrm{KKt} \times \mathrm{P}$; $10 \mathrm{Q}-\mathrm{B} 2$, which transposes into column 20.
(16) If 9 R-Ksq, P-Q4: $10 \mathrm{P} \times \mathrm{P}$ en pas, $\mathrm{Kt} \times \mathrm{QP}$; $11 \mathrm{~B} \cdot \mathrm{KK} t 5, \mathrm{Q} \cdot \mathrm{Q} 2$ (Gossip).
(17) Or 13 .., B-Kt31 (C. E. R.)

Table 52. - The EVANS Gambit. (Part II.) $1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{~B} 4$; $4 \mathrm{P} \cdot \mathrm{QKt} 4, \mathrm{~B} \times \mathrm{KtP}$; $5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B} \cdot \mathrm{R} 4$; $60 \cdot \mathrm{O}, \mathrm{Kt} \cdot \mathrm{B} 3$; 7 P.Q4, 0.0.

	26	27	28	29	30
8	$\mathrm{P} \times \mathrm{P}$		B. KKt5	Q.B2	
8	$\overline{\mathrm{KK}} \times \mathrm{P}$		P.KK3 (4)	P.Q3?	Q-K2!
9	Q.B2 (1)	B.Q5	B-R4	$\mathrm{P} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$
9	P.Q4	$\overline{\mathrm{Kt}}$-B4 ! (2)	P.Q3	QKt \times P	QKT \times P
10	R.Qsq	B. R3	Q.Q3	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{Kt} \times \mathrm{Kt}$
10	B.K3	$\overline{\mathrm{B}} \cdot \overline{\mathrm{K} t 3!~(3)}$	B.Kt3	P×Kt	$\overline{\mathrm{Q} \times \mathrm{Kt}}$
11	B.K3		QKt-Q2	B.R3	B.Q3
11	P.B4		P-KKt4	R.Ksq	$\overline{\mathrm{Kt}}$-Kt5
	$B \times Q P$		B-Kt3	R.Qsq	P.Kt3
12	$\overline{B \times B}$		Kt.KR4	Kt.Q2	B Kt3
18	P.B4			Q.Kı3	$\mathrm{Kt} \cdot \mathrm{R} 3$
13	$\mathrm{K} \overline{\mathrm{t}} \mathrm{K}$ t5			Q.B3	P.Q4
14	Q.Kı2			R-Q3	B.KB4 (6)
14	P.B5			Q-KKt3	Q.R4
15	B.Bsq			Q.R4	P.R4
15	$\overline{\mathrm{Kt} \times \mathrm{BP}}$			B-Kt3	P.KR3
	$\mathrm{K} \times \mathrm{Kt}$			$\underline{\text { R.B3 + }}$	K-Kt2
16	B.Kt3ch				P.Kt4
17	K.Ksq				P.B3
17	$\mathrm{B} \times \mathrm{Kt}$				$\mathrm{P} \times \mathrm{B}$
18	$\underline{R} \times \mathbf{Q}$				$\mathrm{P} \times \mathrm{Kt}$
18	$\overline{\mathrm{QR} \times \mathrm{R}+}$				$\overline{\mathrm{Q} \times \mathrm{KtP} \text { (7) }}$

(1) If 9 Q.Q5, $\mathrm{Kt} \times \mathrm{QBP}$; $10 \mathrm{Q} \cdot \mathrm{Q} 3, \mathrm{P} . \mathrm{Q} 4 ; 11 \mathrm{~B} . \mathrm{Bt} 3, \mathrm{Kt} \times \mathrm{Kt} ; 12 \mathrm{R} \times \mathrm{Et}$, Kt -K2 + If $9 \mathrm{~B} \cdot \mathrm{R} 3, \mathrm{P} \cdot \mathrm{Q} 3$ runs into Col 20.
(2) If $9 \ldots, \mathrm{~B} \times \mathrm{P} ; 10 \mathrm{~B} \times \mathrm{Rt}, \mathrm{B} \times \mathrm{R} ; 11 \mathrm{~B} \times \mathrm{Pch}, \mathrm{B} \times \mathrm{B} ; 12 \mathrm{Kt}-\mathrm{Kt} 5, \mathrm{~K} \cdot \mathrm{Kt} 3$; $13 \mathrm{Q} \cdot \mathrm{Kt4}+$. If 9 , $\mathrm{Kt} \times \mathrm{QBP}, 10 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Kt} ; 11 \mathrm{Kt}-\mathrm{Kt} 5, \mathrm{Kt} \times \mathrm{P} ; 12 \mathrm{Q} \cdot \mathrm{B} 21$ Mr Monck's correction: if $12 \mathrm{Q} \cdot \mathrm{R} 5, \mathrm{P} \cdot \mathrm{KR} 3$; $13 \mathrm{P} \cdot \mathrm{B} 4, \mathrm{Q} \cdot \mathrm{B} 3$ (Budden); $14 \mathrm{P} \times \mathrm{Kt}$, B-Q5ch, \&c.
(3) If $10 \ldots$ P. Q3; $11 \mathrm{~B} \times \mathrm{QKt}, \mathrm{P} \times \mathrm{B}$ (Monck), $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 13 \mathrm{Q} \cdot \mathrm{R4}$, \&c.
(4) Mr. Potter gives $8 \ldots, \mathrm{P} . \mathrm{Q} 3$; $9 \mathrm{P} \cdot \mathrm{Q} 5$, Kt-Ktsq or E 2 ; $10 \mathrm{~B} \times \mathrm{Bt}, \mathrm{P} \times \mathrm{B}$: $11 \mathrm{Kt}-\mathrm{R4}, \mathrm{~K} \cdot \mathrm{Rsq}$, $12 \mathrm{P} \cdot \mathrm{B4}, \& \mathrm{c}$. The Col. is by Mr. Ranken.
(5) Or 9 B-R3I (Wayte.)
(6) Or 14 K-Rt21 (C. E. R.)
(7) $19 \mathrm{R} \times \mathrm{P}, \mathrm{Q} \cdot \mathrm{R} 6 \mathrm{ch}$; $20 \mathrm{~K} \cdot \mathrm{~B} 3, \mathrm{P} \cdot \mathrm{KR} 4+$.

Table 53.-THE EVANS GAMBIT. (Part II.)

1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4 B-B4; $4 \mathrm{P}: \mathrm{QKt} 4, \mathrm{~B} \times \mathrm{KtP}$; $5 \mathrm{P}-\mathrm{B} 3, \mathrm{~B}-\mathrm{R} 4$; $60-\mathrm{O}$, Kt-B3; 7 P.Q4, O.O; $8 \mathrm{Kt} \times$ P. (Richardson's Attack.)
31
32
33
34
35

8	$\overline{\mathrm{Kt} \times \mathrm{Kt} \text { ? }}$		Kt×KP		
9	$\mathrm{P} \times \mathrm{Kt}$		B-Q5	B.R3	Q-R5
9	$\overline{\mathrm{Kt} \times \mathrm{P}}$		$\overline{\mathrm{Kt} \times \mathrm{Kt}}$ (3)	P.Q3	P-Q4!
10	Q-Q5		$\mathrm{B} \times \mathrm{Kt}$	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{Kt} \times \mathrm{BP}$
10	$\overline{\mathrm{B} \times \mathrm{P}}$		$\overline{\mathrm{Kt}-\mathrm{Kt} 3 \text { (4) }}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{R} \times \mathrm{Kt}}$
11	$\mathrm{Kt} \times \mathrm{B}$		Q-R5	Q-R4	$\mathrm{B} \times \mathrm{P}$
11	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$		$\overline{\text { B-Kt3 (5) }}$	$\bar{B} \times \mathrm{P}$	Kt-Q3
12	Q-B3!		B-Kt5	$\mathrm{Kt} \times \mathrm{B}$	$\mathrm{B} \times \mathrm{Rch}$ (8)
12	$\overline{\mathrm{Kt}}$-R5	$\overline{\mathrm{P}-\mathrm{Q}}$	Q-Ksq	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt} \times \mathrm{B}+}$
13	Q-KKt3	$\mathrm{P} \times \mathrm{P}$ enpas.	Kt -Q2	Q \times BP	
13	P-Q4! (1)	Kt-R5 (2)	Q-K3	R-Ktsq	
14	B-KR6	B-R3	P.KB4 (6)	$\mathrm{B} \times \mathrm{Pch}$	
14	P-KKt3	$\overline{\mathrm{P} \times \mathrm{P}}$	P-KB4	$\overline{R \times B}$	
15	$\underline{B \times R}$	QR-Qsq+	P-KKt4 -	Q $\times \mathrm{Kt}$ -	
15	$\overline{\mathrm{P} \times \mathrm{B}}$		(7)-	-	
16	B-R6+				

(1) From the Schachzeitung. Or 13 .., K-Rsq; 14 B-KKt5, Q-Ksq; $15 \mathrm{KR}-\mathrm{Ksq}$, Kt-Kt3; $16 \mathrm{~B}-\mathrm{B} 6, \mathrm{R}-\mathrm{KKtsq} ; 17 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{B}$; $18 \mathrm{P} \times \mathrm{P}, \mathrm{R} \times \mathrm{Q}$ (if $\mathrm{Q}-\mathrm{Bsq} ; 19 \mathrm{Q}-\mathrm{R4}$, R-Kt3 [if P-KR3, $20 \mathrm{R}-\mathrm{K} 8$]; $20 \mathrm{~B} \times \mathrm{R}, \mathrm{P} \times \mathrm{B} ; 21 \mathrm{R}-\mathrm{K} 7$ and wins) $19 \mathrm{R} \times \mathrm{Qch}$, R-KKtsq; 20 QR-Ksq, and mates in two moves. The Col. leaves White with a very slight advantage.
(2) $13 \ldots, \mathrm{Q}-\mathrm{B} 3$; $14 \mathrm{Q} \times \mathrm{Q}, \mathrm{P} \times \mathrm{Q}$; $15 \mathrm{R}-\mathrm{Ksq}, \mathrm{P} \times \mathrm{P}$; $16 \mathrm{~B}-\mathrm{Kt2}+$.
(3) Or $9 \ldots$, Kt-B3. (W. W.) If $9 \ldots, \mathrm{Kt}$ or $\mathrm{B} \times \mathrm{QBP}$, then $10 \mathrm{Kt} \times \mathrm{BP}$.
(4) If $10 \ldots$ Kt-B3; $11 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 2$; $12 \mathrm{P}-\mathrm{Q} 6, \mathrm{P} \times \mathrm{P}$; $13 \mathrm{~B}-\mathrm{R} 3+$.
(5) If $11 \ldots$ P-QB3; 12 B-R3, R-Ksq; 13 B-B2, P-Q4; 14 P-KB4+.
(6) Or 14 Q-B3 (C. E. R.) The following move in the column, $15 \mathrm{P}-\mathrm{KKt4}$ is Mr. Fraser's suggestion: if $15 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{K} 6 \mathrm{ch}+$. (Balson.)
(7) If $15 \ldots, \mathrm{Kt} \times \mathrm{P} ; 16 \mathrm{R} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 17 \mathrm{R} \times \mathrm{Rch}, \mathrm{K} \times \mathrm{R} ; 18 \mathrm{Q} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Pch}$ $19 \mathrm{~K}-\mathrm{Rsq}$ and wins. (Dr. E. R. Lewis, Indianapolis.)
(8) If $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R}$-B4 1 This column is given by Mr. Wayte in B. C. M.

Table 54.-THE EVANS GAMBIT. (Part II.)

(1) Introduced by Mr. J. A. Douglas, of New York. If 11 .., Kt \times QBP; 12 Q -R5ch, K-Ktsq ; $13 \mathrm{P} \times \mathrm{Kt}+$. (C. E. R.) If $11 \ldots, \mathrm{Kt}-\mathrm{Ktsq} ; 12 \mathrm{P}-\mathrm{Q} 6, \mathrm{P} \times \mathrm{P}$ (or P-B3) ; $13 \mathrm{R}-\mathrm{Ksq}, \mathrm{B} \times \mathrm{P} ; 14 \mathrm{R} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{R} ; 15 \mathrm{Q}$-R5ch, K-Bsq; $16 \mathrm{~B}-\mathrm{K} t 5$, B-B3; $17 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B} ; 18 \mathrm{Q}-\mathrm{R} 6 \mathrm{ch}+$.
(2) If $13 \mathrm{Q} \times \mathrm{QKt}, \mathrm{P}-\mathrm{Q} 3 ; 14 \mathrm{Q}-\mathrm{B} 4 \mathrm{ch}, \mathrm{Q} \times \mathrm{Q} ; 15 \mathrm{~B} \times \mathrm{Q}, \mathrm{B} \times \mathrm{P} ; 16 \mathrm{Kt} \times \mathrm{B}$. Kt×Kt.
(3) $14 \mathrm{R} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{RPch}$; $15 \mathrm{~K}-\mathrm{Bsq}, \mathrm{Q}-\mathrm{R} 8 \mathrm{ch}$; $16 \mathrm{~K} \cdot \mathrm{~K} 2, \mathrm{Kt}-\mathrm{B} 3+$. If 14 P-KR3, QKt \times SP or B-Kt3+.
(4) If 16 Q-K7ch, K-Kt3; 17 R-K3, P-Q3; 18 R-Kt3ch, B-KKt5 + .
(5) Nash v. Ranken. (B. C. M., 1882, p. 369.) If 16 .., P-Q3; 17 B-B4, Q-R5! (Gattie).
(6) White may also recover the piece, though less advantageously, by 12 Q-K2. If 12 QR5ch, Kt-Kt3; 13 P-Q6, P-B3.
(7) $21 \mathrm{R} \times \mathrm{QKtP}, \mathrm{Kt}-\mathrm{Q} 6$; $22 \mathrm{KR}-\mathrm{B} 7, \mathrm{P}-\mathrm{Kt} 3$; $23 \mathrm{R} \times \mathrm{P}, \mathrm{R} \times \mathrm{R}$; $24 \mathrm{R} \times \mathrm{R}$, $\mathrm{Kt} \times \mathrm{Pch}, \& \mathrm{c}$.
(8) If $12 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{K}-\mathrm{Ktsq}$; $13 \mathrm{P}-\mathrm{Q} 6, \mathrm{P} \times \mathrm{P}+$.
(9) If 14 Q-QB4, QKt \times P; 15 B-Q2, P-QKt4; 16 Q.Kt3, Q-R5! $17 \mathrm{~B} \times \mathrm{Kt}$, Q.QB5+.
(10) If $16 \ldots, \mathrm{~K}-\mathrm{Bsq} ; 17 \mathrm{R} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{R}$; 18 R -Ksq, \&c.

Table 55.-THE EVANS GAMBIT. (Part II.)

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{~B} 4$; 4 P . QKt $4, \mathrm{~B} \times \mathrm{KtP}$; $5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B} \cdot \mathrm{R} 4$; $6 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P}(1) ; 7$ 0.0.

41
42
43
44
45
7

	Q-Kt3	
8	Q-B3!	
	R-Ksq	(3)
\bigcirc	P-Q3	

$\frac{\mathrm{P}-\mathrm{K} 5}{\mathrm{P} \times \mathrm{P}}$
$\frac{\text { B-KKt5 }}{\text { Q-Q3 }}$
$\mathrm{B} \times$ Pch
$\bar{K}-\mathrm{Bsq}$
QKt-Q2
13
B-Kt3

Kt-B4
B-K3
$B \times B$
15
$\overline{Q \times B}$
$\mathrm{KKt} \times \mathrm{P}+$

17

$\overline{\mathrm{B} \times \mathrm{P}}$	$\overline{\mathrm{P} \times \mathrm{P}}$	
$\mathrm{Kt} \times \mathrm{B}$	Q-Kt3 (8)	
$\overline{\mathrm{P} \times \mathrm{Kt}}$	Q-K2	
Q-Kt3 (4)	$\mathrm{Kt} \times \mathrm{P} \quad$ (9)	
Q-b3 (5)	Q-Kt5	
P-K5	$\mathrm{B} \times \mathrm{Pch}$	
$\overline{\mathrm{Kt} \times \mathrm{P}}$ (6)	$\overline{\mathrm{K}} \mathrm{Q}$ sq	
Kt \times Kt (7)	B-Kt5ch	
$\bar{Q} \times \mathrm{Kt}$	KKt-K2	Kt-B3
$\mathrm{B} \times \mathrm{Pch}$	Kt-Q5	Kt-Q5
K-Bsq	$\overline{Q \times Q}$	$\overline{Q \times Q}$
B.R3ch +	$\mathrm{P} \times \mathrm{Q}$	$\mathrm{P} \times \mathrm{Q}$
	B-Kt3	P-KR3
	KR.Bsq	B-R4
	P-KR3	R-Bsq
	$\mathrm{R} \times \mathrm{Kt}$	B-Kt6
	$\overline{\mathrm{P} \times \mathrm{B}}$	P.Q3
	$\mathrm{Kt} \times$ B	P-K5
	$\overline{\mathrm{BP} \times \mathrm{Kt}}$	$\overline{\mathrm{P} \times \mathrm{P}}$
	$\underline{\mathrm{R} \times \mathrm{KtP}+}$	KR-Qsq+

$\overline{\mathrm{B} \times \mathrm{Kt}}$
Q \times B
Kt-B3 (10)
B-R3
P-Q3
P-K5
Kt-K5 $\frac{\mathrm{Q} \text {-Kt2 }}{\text { QKt } \times \mathrm{P}}$ $\frac{\mathrm{Kt} \times \mathrm{K}_{\mathrm{t}}}{\mathrm{Q} \times \mathrm{Kt}}$
KR-Ksq+
(1) $6 \ldots, \mathrm{P} . \mathrm{Q3} ; 7 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{Q} \cdot \mathrm{Kt3}$, \&c.
(2) If 7 .., Kt-B3; $8 \mathrm{~B}-\mathrm{R} 3$, reverting to column 23.
(3) Or 9 P-K5, (if) $\mathrm{Kt} \times \mathrm{P}$; $10 \mathrm{R}-\mathrm{Ksq}$: if $9 \ldots$. Q-Kt3; 10 R-Qsq. (C. E. R.)
(4) Or 9 B-R3, P-Q3; 10 Q-Kt3, or P-K5.
(5) If 9 .., Q-K2; 10 B-R3, Q-B3; 11 P-K5, Q-Kt3; $12 \mathrm{Kt}-\mathrm{Kt} 5$.
(6) $10 \ldots, \mathrm{Q}$-Kt3; $11 \mathrm{Q} \times \mathrm{P}$ transposes into column 48.
(7) Or 11 R-Ksq, P-Q3; $12 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $13 \mathrm{Q}-\mathrm{Kt5ch}, \mathrm{P}-\mathrm{B} 3$; $14 \mathrm{R} \times$ Pch $\mathrm{Kt}-\mathrm{K} 2$; 15 Q-B5, \&c. (C. E. R.)
(8) If 8 P-K5, KKt-K2; $9 \mathrm{Kt}-\mathrm{Kt5}$ or Q-Kt3 turns out to Black's advantage.
(9) If $9 \mathrm{~B}-\mathrm{KKt5}, \mathrm{Q}-\mathrm{Kt5} ; 10 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \cdot \mathrm{Bsq}$, \&c. (Wayte.)
(10) 10 .., P-B3 ; 11 B-Q5, Q-Kt5; 12 Q-B2, KKt-K2 ; 18 R-Ktsq, Kt-Qt (Hirschfeld v. Zukertort): or 11 B.R3, P-Q3; 12 B-Q5+.

Table 56.-THE EVANS GAMBIT. (Part II.)
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3 ; 3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{~B} 4$; $4 \mathrm{P} \cdot \mathrm{QKt} 4, \mathrm{~B} \times \mathrm{KtP}$; $5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B} \cdot \mathrm{R} 4$; $6 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $70.0, \mathrm{P} \times \mathrm{P}$.

	46	47	48	49	50
8	Q.Kt3				
	Q-B3				
9	B-KKt5	P-K5			
	Q-Kt3	$\overline{\mathrm{Kt} \times \mathrm{P}}$	Q-Kt3		
10	$\underline{\mathrm{Kt} \times \mathrm{P}}$	R.Ksq	$\mathrm{Kt} \times \mathrm{P}$		
	$\overline{\mathrm{B} \times \mathrm{Kt}}$	P.Q3	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{KKt}}$-K2 (4)	(dia. p. 118)
	Q \times B	Q-R4ch	Q \times B	Kt-K2	
11	P.B3 (1)	K-Bsq	KKt-K2	P.Kt4	0.0?
	B.B4	$\mathrm{Kt} \times \mathrm{Kt}$	R-Ksq! (2)	B-Q3 (5)	B-Q3
12	$\overline{\text { P.Q3+ }}$	P-B7	0.0	Q-K3	Q-K3 (9)
		$\underline{\mathrm{Kt}-\mathrm{Kt6ch}+}$	B-Q3	Q-Kt2	$\mathrm{B} \times \mathrm{Pch}$
13			$\overline{\text { P-B4 (3) }}$	$\overline{\mathrm{Kt}-\mathrm{Kt}} 3$	K-Rsq
			B.QB4ch	Kt-B4	Q-R4
14			K-Rsq	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	P-Q3
			B-Kt2	$\mathrm{B} \times \mathrm{Kt}$	Kt-B4 (10)
15			P.Q4	P-KR3 (6)	Q-Q2
16			$\mathrm{P} \times \mathrm{Pen}$ pas.	QR-Bsq (7)	P-K6
			P×.P	P-R3	$\overline{\mathrm{P} \times \mathrm{P}}$
17			$\frac{\mathrm{QR} \cdot \mathrm{Qsq}+}{(3)}$	KR-Qsq (8)	$\frac{\mathrm{Kt} \text {-Kt5 }}{\text { P.K4 (11) }}$

(1) If 11 .., Kt-B3 (Zukertort v. Steinitz) ; 12 P-K5, Kt-K5; 13 Q-K3, with , good position.
(2) Or 12 B.R3, O.O; 13 QR-Qsq followed by KR-Ksq.
(3) $17 \ldots$ P-Q4; $18 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{B}$; $19 \mathrm{R} \times \mathrm{Kt}, \mathrm{R}-\mathrm{KKtsq}$; $20 \mathrm{R}-\mathrm{Q} 6$, \&c: if on move $13 \ldots, \mathrm{Q}-\mathrm{R} 4$; $14 \mathrm{R}-\mathrm{K} 4, \mathrm{Kt}-\mathrm{Kt3}$; $15 \mathrm{P}-\mathrm{Kt4}$, \&c. (Rosenthal.)
(4) If $10: \therefore$, P-QKt4; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{R}-\mathrm{Ktsq}$; $12 \mathrm{Q}-\mathrm{K} 3, \mathrm{P}-\mathrm{QR3}$; $13 \mathrm{Kt}-\mathrm{Q} 6 \mathrm{ch}:$ or 12 .., Kt-K2; 13 Q-K2, Q-R4; $14 \mathrm{Kt}-\mathrm{Q} 6 \mathrm{ch}$, \&c.
(5) If 12 B or $\mathrm{Q} \times \mathrm{P}, \mathrm{R}-\mathrm{Ktsq}+$.
(6) 15 .., P-QR3; 16 QR-Bsq, B-Kt2; 17 KR-Qsq, B-Kt3; 18 B-K4, Kt-R4; $19 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Q}-\mathrm{K} 2 ; 20 \mathrm{~B} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{B} ; 21 \mathrm{Q}-\mathrm{K} 2$, and keeps the attack. Or $16 \mathrm{Kt}-\mathrm{Kt} 5$, Q-K2; 17 P-K6, P-B3; $18 \mathrm{Kt} \times \mathrm{RP}, \mathrm{P}-\mathrm{Q} 3 ; 19 \mathrm{Q}-\mathrm{Bsq}$, \&c. (Handbuch.)
(7) Or $16 \mathrm{~B} \times \mathrm{KtP}, \mathrm{R}-\mathrm{QKtsq}$; $17 \mathrm{Q}-\mathrm{K} 2$. (Monck.)
(8) In lieu of $17 \ldots, \mathrm{~B}-\mathrm{Kt2}$; $18 \mathrm{C}-\mathrm{Ktsq}$, \&c. Mr. Rankon suggests $17 \ldots$.., 0.0; if 18 Q-Ktsq (to prevent B-Kt2), R-Qsq + : if 18 B-Ktsq, R-K or Qsq; (if) 19 Q-B2, P.Kt3: if $18 \mathrm{Kt}-\mathrm{Q} 4, \mathrm{Kt} \times \mathrm{Kt} ; 19 \mathrm{Q} \times \mathrm{Kt}, \mathrm{B}-\mathrm{Kt2}$; $20 \mathrm{~B}-\mathrm{Ktsq}, \mathrm{KR}-\mathrm{Qsq}+$. Silviolj gives $16 \ldots, \mathrm{R}-\mathrm{QKtsq}$; 17 B-Ktsq, O-O; $18 \mathrm{Kt}-\mathrm{R} 4, \mathrm{Q}-\mathrm{Kt5}$; $19 \mathrm{P}-\mathrm{Kt}$, \&c.
(9) $12 \ldots, \mathrm{Q}-\mathrm{Kt5}$; $13 \mathrm{Kt}-\mathrm{B} 4, \mathrm{P}-\mathrm{Q} 4$; $14 \mathrm{P}-\mathrm{K} 6$: or $14 \mathrm{~B}-\mathrm{K} 3$. (Ranken.)
(10) If 15 Q-KR4, Q-Kt5.
(11) 18 QKt-K6, R-B3; 19 Q-KR4, R-R3; $20 \mathrm{Kt}-\mathrm{B} 7 \mathrm{ch}+$.

Table 57.-THE EVANS GAMBIT. (Part II.)
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4$; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{~B} 4$; $4 \mathrm{P} \cdot \mathrm{QKt} 4, \mathrm{~B} \times \mathrm{Kt} \mathrm{P} ; 5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B} \cdot \mathrm{R} 4 ; 6 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $70.0, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{Q} \cdot \mathrm{Kt} 3, \mathrm{Q} . \mathrm{B} 3 ; 9 \mathrm{P} \cdot \mathrm{K} 5, \mathrm{Q} \cdot \mathrm{Kt} 3$; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} \mathrm{Kt} \cdot \dot{\mathrm{K}} 2 . \quad$ (Diagram.)

	51	52	153	54	55
11	B-R3				R-Ksq (17)
	R-QKtsq		P.Kt4	0.0	P-Kt4
12	Kt-Q5 (1)		$\mathrm{Kt} \times \mathrm{P}$	QR-Qsq(12)	$K t \times P$
	$\overline{\mathrm{K} t \times \mathrm{K}}$	$\overline{\text { P.Kt4 (5) }}$	R-QKtsq	P-Kt4 (13)	R-QKtsq
	$\mathrm{B} \times \mathrm{Kt}$	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{B} \times \mathrm{Kt}$ (10)	B-Q3 (14)	Kt-R4
18	P-Kt4	$\overline{\mathrm{K} t \times \mathrm{K}}$	$\overline{\mathrm{K} \times \mathrm{B}}$	Q-R4!	Q-R4 (18)
	P-K6 (2)	$\underline{\mathrm{B} \times \mathrm{Kt}}$ (6)	Q-R3ch	Kt-K4	R-K4
14	$\overline{\mathrm{BP} \times \mathrm{P}}$	K $\times 13$	B-Kt5	R-Ktsq	P-Kt4
	$\mathrm{B} \times \mathrm{Kt}$	Q-R3ch (7)	Q.K3	KKt-Kt5	B-K2
15	$\overline{\mathrm{P} \times \mathrm{B}}$	K-Ksq (8)	K-Qsq	K-Rsq	Q-R3
	Kt-K5	Q \times B	Kt-Kt5	P.B4	Q-QR3
16	Q-K5	$\overline{\mathrm{P} \times \mathrm{B}}$	R-Bsq	Kt-Q5	P-R3
17	Q-KKt3	$Q \times B P$	QR-Qsq+	Q-Ktsq	Kt-Q4
	P-Kt3	Q-K+3	(11)	P-Kt5	B-Kt5
18	Q-Kt5	Q-Q6 (9)		B.Bsq (15)	Q-Q3
	P-Kt5			B-Kt3	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
19	Q-B6 (3)			$\underline{\mathrm{K}}$-Rsq+	$\mathrm{R} \times \mathrm{Kt}$
	R-Bsq			(16)	Q-Kt2
	Q-Kt7				Kt-B3
80	$\overline{\mathrm{R} \cdot \mathrm{Kt4}}$ (4)				P.R3t

Notes to Table 57.
(1) Or 12 QR-Qsq (Pierce.) Or 12 Kt-QKt5, (if) P-QR3; 13 Kt-Q6ch? $\mathrm{P} \times \mathrm{Kt}$; $14 \mathrm{P} \times \mathrm{P}$, Kt-B4 (Mr. Pierce gives $14 \ldots$ P-Kt4 1); 15 KR .Ksqch, $\mathrm{B} \times \mathrm{R} ; 16 \mathrm{R} \times \mathrm{Bch}, \mathrm{K}-\mathrm{Bsq} ; 17 \mathrm{~B}-\mathrm{Q} 5, \mathrm{R}-\mathrm{Rsq} ; 18 \mathrm{Q}-\mathrm{Kt} 6, \mathrm{P}-\mathrm{B} 3 ; 19 \mathrm{~B} \times \mathrm{Kt}$, $\mathrm{KtP} \times \mathrm{B} ; 20 \mathrm{Kt}-\mathrm{R} 41+$ (Monck): 13 QKt-Q4 is to Black's advantage.
(2) This seems premature. 14 B-B5 would be a good preparatory move, though the Schachzeitung condemnsit. (C. E. R.) Mr. Wayte gives B-Kt3 as the answering move, leaving the QKtP to be taken.
(3) $19 \mathrm{KR}-\mathrm{Ksq}, \mathrm{Q}-\mathrm{B} 4$; $20 \mathrm{Q} \times \mathrm{Q}, \mathrm{KtP} \times \mathrm{Q}$; $21 \mathrm{~B}-\mathrm{Kt} 2, \mathrm{O}-\mathrm{O}$; $22 \mathrm{Kt} \times \mathrm{P}, \mathrm{R}-\mathrm{Kt4} \cdot$ $31 \mathrm{Kt} \times \mathrm{RP}, \mathrm{R}-\mathrm{Q} 4$; $24 \mathrm{Kt} \times \mathrm{B}, \mathrm{R} \times \mathrm{Kt}$; $25 \mathrm{R} \times \mathrm{P}$. (Monck.)
(4) Mr. W. T. Pierce analysing this position thinks 21 QR-Qsq will effect a draw. If $21 \ldots, \mathrm{R}-\mathrm{Q} 4$ or $\mathrm{Q}-\mathrm{R} 5$; $22 \mathrm{Kt} \times \mathrm{BP}$, \&c.: if $21 \ldots, \mathrm{R}$ or $\mathrm{Q} \times \mathrm{Kt}, 22 \mathrm{R}-\mathrm{Q} 8 \mathrm{ch}, \& \mathrm{c}$. (B. C. M., 1884, p. 123.)
(5) This Col. is by Zukertort from the 1883 Tournament Book.
(6) $14 \mathrm{~B} \times \mathrm{KtP}, \mathrm{P}-\mathrm{QB} 3$; $15 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{B}$; $16 \mathrm{Q}-\mathrm{R} 3$, $\mathrm{B}-\mathrm{Kt3}$; $17 \mathrm{~B}-\mathrm{Q} 6+$ (Zukertort v. Smith.)
(7) If 15 B-Q3, Q-QKt3? ; 16 Kt-Kt5. (Monck.)
(8) Or $15 \ldots, \mathrm{~K}-\mathrm{Qsq}$; $16 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{Kt3}$; $17 \mathrm{Kt}-\mathrm{Kt5}$, \&c. (Zukertort.)
(9) If $18 \ldots, \mathrm{Q} \times \mathrm{Q}$; $19 \mathrm{P} \times \mathrm{Q}, \mathrm{B}-\mathrm{R} 3 ; \cdot 20 \mathrm{KR}-\mathrm{Ksq} \mathrm{ch}, \mathrm{K}-\mathrm{Bsq} ; 21 \mathrm{R}-\mathrm{K} 7$, with s fine attack. (Zukertort.) Or'18 .., P-KR4 to play R-R3. (Turnbull.)
(10) 13 Q-R4, P-QR3? (B-Kt31 alsó B-Kt2!); $14 \mathrm{Kt}-\mathrm{Q} 6 \mathrm{ch}, \mathrm{P} \times \mathrm{Kt}$; $15 \mathrm{P} \times \mathrm{P}$, Kt-B4 (if B-Kt2; 16 QR-Qsq); $16 \mathrm{KR}-\mathrm{Ksq} \mathrm{ch}, \mathrm{B} \times \mathrm{R}$; $17 \mathrm{R} \times \mathrm{Bch}, \mathrm{KKt}-\mathrm{K} 2$; $18 \mathrm{~B}-\mathrm{Q} 5$. (C. E. R.) If $18 \mathrm{P} \times \mathrm{Kt}, \mathrm{R}-\mathrm{Kt8}$; $19 \mathrm{~B} \times \mathrm{Pch}$. (Monck.)
(11) The Schachzeitung has a continuation 17 P-QR3; 18 P-K6, R $\times \mathrm{Kt}$, \&c.
(12) If $12 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Kt} \times \mathrm{Kt}$; $13 \mathrm{~B} \times \mathrm{Kt}$, R-Qsq. Tschigorin v . Riemann played $12 \mathrm{Kt}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 3$; $13 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{B} 4$; $14 \mathrm{Kt}-\mathrm{R} 4, \mathrm{Q}-\mathrm{K} 3$; $15 \mathrm{Kt} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{Kt}$; $16 \mathrm{Q}-\mathrm{B} 2$, QKt-Q51; $17 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{Kt} ; 18 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Rsq} ; 19 \mathrm{Q}-\mathrm{Q} 3, \mathrm{Q} \times \mathrm{KP} ; 20 \mathrm{Q}-\mathrm{R} 3$, Kt-K7ch; 21 K-Rsq, Kt-B5; 22 Q-R4, P-KKt4; 23 Q-R6, Q-Kt2; 24 B-Kt2, P-KB3 and wins.
(13) If 12 P-QR3; $13 \mathrm{Kt}-\mathrm{Q} 5$.
(14) 13 B-Q3, Q-K3; $14 \mathrm{~B} \times$ Pch, K-Rsq: or White may play 14 Kt -Q5. Another continuation is 13 B-Q3, Q-Kt5; 14 P-KR3, Q-K3; $15 \mathrm{~B} \times$ Pch, K-Rsq; 16 Kt -Q5, P-Kt5; $17 \mathrm{~B}-\mathrm{Bsq}, \mathrm{Kt} \times \mathrm{Kt} ; 18 \mathrm{R} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{K} 2 ; 19 \mathrm{~B}-\mathrm{K} 4, \mathrm{~B}-\mathrm{Kt2} 1$; $20 \mathrm{KR}-\mathrm{Qsq}$ ($20 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B} \times \mathrm{R}$), $\mathrm{Kt} \times \mathrm{R} ; 21 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Q} \times \mathrm{P} ; 22 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 23 \mathrm{R} \times \mathrm{B}$, Q-K8ch; $24 \mathrm{~K}-\mathrm{R} 2, \mathrm{Q} \times \mathrm{B}$; $25 \mathrm{Q}-\mathrm{KB} 3, \mathrm{P}-\mathrm{KKt3}$. (C. M.): Mr. Gattio prefers 14 Kt-K4 (if) R-Ktsq; 15 KKt-Kt5.

If $13 \mathrm{Kt} \times \mathrm{P}, \mathrm{R}-\mathrm{Ktsq} ; 14 \mathrm{Q}-\mathrm{R} 4$, or B-Q3, followed by Q-R4: after $14 \mathrm{Q}-\mathrm{R4}$, P-QR3; $15 \mathrm{~B} \times \mathrm{Kt}$ wins back the Pawn. See Cols. 59 and 60 for 13 B -Q3! after KR-Qsq.
(15) If 18 B-Kt2, B-Kt3 followed by KKt-B4.
(16) If now $19 \ldots$, KKt-B4; $20 \mathrm{Q} \times \mathrm{P}$, \&c.: if $19 \ldots, \mathrm{P} \cdot \mathrm{QR4}$; 20 Kt-Kt3 followed by $\mathrm{K} t \times \mathrm{RP}$. See also Cols. 59 and 60 .
(17) 11 Kt -K4 is suggested as playable by Mr. W. T. Pierce. - See B. C. M. 1891, p. 274. If $11 \ldots, \mathrm{Q} \times \mathrm{Kt}$; $12 \mathrm{Kt}-\mathrm{Kt5}$. If $11 \mathrm{P}-\mathrm{QR} 4$?, $\mathrm{B} \times \mathrm{Kt} ; 12 \mathrm{Q} \times \mathrm{B}, \mathrm{P}-\mathrm{Q} 41$; $13 \mathrm{P} \times \mathrm{P}$ en pas, $\mathrm{P} \times \mathrm{P}$; $14 \mathrm{~B}-\mathrm{R} 3, \mathrm{~B}-\mathrm{Kt5} ; 15 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{R} 3 ; 16 \mathrm{KR}-\mathrm{Ksq}, \mathrm{O}-\mathrm{O}+$.
(18) Or $13 \ldots$ Q.Kt5; 14 Q-R4, K-Qsq; $15 \mathrm{Kt}-\mathrm{KB} 3 . \mathrm{B} \times \mathrm{R}$; $16 \mathrm{Kt} \times \mathrm{B}$, P.oR3t.

Table 58.-'THE EVAN'S GAMBIT. (Part II.)
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B}-\mathrm{B} 4$; $4 \mathrm{P} \cdot \mathrm{Q} \mathrm{Kt} 4, \mathrm{~B} \times \mathrm{Kt} \mathrm{P}$; $5 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{~B} \cdot \mathrm{R} 4 ; 6 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; 70.0. $\operatorname{P} \times \mathrm{P} ; \quad 8 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{Q}-\mathrm{B} 3 ; \quad 9 \mathrm{P}-\mathrm{K} 5, \mathrm{Q}-\mathrm{Kt} 3$; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{K}$ Kt-K2. (Dia. p. 118.)

(1) Or 14 Q-Kt2, P-QR3; 15 QKt-Q4, Q-Q4; 16 Kt-Kt3, \&c. (Potter.)
(2) 14 B-K2, P-QR3; $15 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Q}-\mathrm{B} 4$; 16 P-Kt4.
(3) $15 \ldots, \mathrm{Kt} \times \mathrm{Q}$; $16 \mathrm{Kt} \times \mathrm{RP}, \mathrm{Kt} \times \mathrm{B}$; $17 \mathrm{R} \times \mathrm{Kt}=$.
(4) $16 \ldots, \mathrm{~K}-\mathrm{Bsq}$; $17 \mathrm{~B}-\mathrm{KB} 4$.
(5) Or $19 \mathrm{Kt}-\times$ Pch. White for choice. (Potter.)
(6) $11 \ldots$ B-Kt3; 12 Q-R3, O-0; $13 \mathrm{Kt}-\mathrm{K} 2$, or B-KB4, or B-Q3.
(7) Or 12 B-Q3, Q-R4I (C. E. R.)
(8) Or $14 \mathrm{~B} \times$ Pch.
(9) $14 \ldots$ Kt $\times \mathrm{Kt} ; 15 \mathrm{~B} \times \mathrm{Pch}$. If $14 \ldots, \mathrm{~B}-\mathrm{Kt} 5$; $15 \mathrm{~B} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{B}$; $16 \mathrm{Q} \times \mathrm{Kt}$, Kt $\times \mathrm{Kt} ; 17 \mathrm{~B} \times \mathrm{Pch}$ followed by $\mathrm{Q} \times \mathrm{R}+$.
(10) Or 16 P-KR3, Q-K3; $17 \mathrm{~B}-\mathrm{B} 4, \mathrm{Q}-\mathrm{K} t 3$; $18 \mathrm{~B}-\mathrm{Bsq}=$.
(11) $14 \ldots, \mathrm{~B}-\mathrm{Kt2} ; 15 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{B} ; 16 \mathrm{Q} \times \mathrm{KtP}$. If $14 \ldots, \mathrm{R}-\mathrm{Ktsq}$; 15 P-KR3 threateining Kt (K4) Kt5 +: for 15 KKt Kt5 see Col. 54.
(12) 16 R -Qsq is better in Mr. Potter's opinion. He gives, but does not recommend the continuation $17 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \mathrm{P} \times \mathrm{Kt}$; $18 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch}$; $19 \mathrm{~K} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B}$; on $\mathrm{Q} \times \mathrm{Q}, \mathrm{R} \times \mathrm{Q}: 21 \mathrm{P} \times \mathrm{Kt}, \mathrm{R}-\mathrm{Ksq}$; 22 QR -Bsq, \&c. The variations on this page is from Land and Water.

Table 59.-THE EVANS GAMBIT DECLINED.

(1) 5 .., P-QR4; 6 P-Kt5, Kt-Q5; $7 . \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt4}+$. For other variations see Giuoco Piano Opening, p. 78, Cols. 9 and 10.
(2) So played Bird ∇. Rosenthal. Blackburne and Potter v. Steinitz and Zakertort went as follows;-7 Q-K2, P-Q3; 8 P-Q3, B-K3; $9 \mathrm{Kt}-\mathrm{R} 3, \mathrm{Kt}-\mathrm{K} 2$; $100-0, \mathrm{P}-\mathrm{B} 3=$.
(3) 7 P-B3, B-Kt5 ; 8 P-Q3, Q-B3; 9. B-K3, KKt-K2; 10 QKt-Q2, Kt-Kt3. (Tschigorin v. Zukertort.)
(4) Zukertort v. Englisch.
(5) 6 B-K2, Kt-B3 (or P-Q4 ! Barbier) ; 7 P-Q3, P-Q3; 8 B-Kt5. P-KR3; 9 B-R4. (Pollock v. Blackburne.)
(6) If $8 \ldots, \mathrm{P} \times \mathrm{Kt} ; 9 \mathrm{~B} \times \mathrm{K} t \mathrm{P}, \mathrm{Q} \times \mathrm{P}$; $10 \mathrm{Q} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q}$; $11 \mathrm{~B} \times \mathrm{R}, \mathrm{B} \times \mathrm{R}$; 12 B-Q3, K-K2; 13 B-Kt7, \&c.
(7) Or $9 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 3$; $10 \mathrm{Kt} \times \mathrm{R}, \mathrm{B} \times \mathrm{P}$; $11 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{K}-\mathrm{K} 2$; $12 \mathrm{Q}-\mathrm{B} 7 \mathrm{ch}$, $\mathrm{Q} \times \mathrm{Q} ; 13 \mathrm{~B}$ or $\mathrm{Kt} \times \mathrm{Q}, \mathrm{B} \times \mathrm{R}+$. If White plays $10 \mathrm{Q}-\mathrm{R} 5$, or P-K5, the result is also in Black's favour. (Rosenthal.) Gossip gives 9 ... Q-R5.
(8) If $10 \ldots, \mathrm{P} \times \mathrm{Kt}$; $11 \mathrm{P} \times \mathrm{P}$ wins. If $10 \ldots, \mathrm{R}$-Bsq, 11 Kt -B3+. (Rosenthal.)
(9) This attack was analysed by Rosenthal in La Strategie.
(10) $15 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{K} 6 \mathrm{ch} ; 16 \mathrm{Q}-\mathrm{K} 2, \mathrm{Q} \times \mathrm{Qch} ; 17 \mathrm{~K} \times \mathrm{Q}, \mathrm{P} \times \mathrm{B}: 18 \mathrm{P} \times \mathrm{P}$ P-Q3, \&c. (Wayte.)

Table 60.-THE EVANS GAMBIT DECLINED.

1 P.-K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B} \cdot \mathrm{~B} 4$, B-B4; 4 P.Q Kt 4 , B.Kt 3 .

	6	7	8	9	10
5	P.Kt5				0.0
	Kt-R4				Kt-B3 ?
6	$\mathrm{Kt} \times \mathrm{P}$				P-Kt5
	Q-Kt4		B-Q5	Q.B3	Kt-QR4
7	$\mathrm{Kt} \times \mathrm{BP}$	Q-B3	$\mathrm{Kt} \times \mathrm{BP}$	$\mathrm{B} \times \mathrm{Pch}$	$\mathrm{Kt} \times \mathrm{P}$
	$\overline{\mathrm{Q} \times \mathrm{KtP}}$	$\overline{\mathrm{Q} \times \mathrm{Kt}}$	Q-B3	$\overline{\mathrm{K}-\mathrm{Bsq}}$ (4)	$\overline{\mathrm{Q} \cdot \mathrm{O}} \quad(6)$
8	R-Bsq	$\mathrm{Q} \times \mathrm{Pch}$	Q.K2	P.Q4	$\mathrm{B} \times \mathrm{Pch}$
	$\overline{\mathrm{Q} \times \mathrm{KPch}}$	K-Qsq	$\overline{\mathrm{K} t \times \mathrm{B}}$	P-Q3	$\overline{\mathrm{R} \times \mathrm{B}}$
9	Q-K2	B-Kt2 (1)	$\mathrm{Kt} \times \mathrm{R}$	$\underline{\mathrm{B} \times \mathrm{Kt}}$	$\underline{K t \times R}$
	Q×Qch	Q \times KPch	$\overline{B \times R}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{K} \times \mathrm{K} t}$
10	$\underline{K} \times \mathrm{Q}$	K-Qsq	$\mathrm{Q} \times \mathrm{Kt}$	B.Q5	P-K5
	$\overline{\mathrm{K} t \times \mathrm{B}}$	Q-K2 (2)	$\overline{\mathrm{Kt}}$-K2	P.B3	Kt-Ksq
11	$\mathrm{Kt} \times \mathrm{R}$	$\mathrm{B} \times \mathrm{P}$	P.QB3	B-R3ch	B-R3
	P-Q4	$\overline{\mathrm{Kt} \times \mathrm{B}}$	P-Q4	K-Ksq	$\overline{\mathrm{K}-\mathrm{Ktsq}}$
	P-Q3	$Q \times$ Qch	$\underline{\mathrm{Q} \times \mathrm{BP}+}$	0.0	Q-B3
12	Kt-Q3	$\overline{\mathrm{Kt} \times \mathrm{Q}}$		$\overline{\mathrm{P} \times \mathrm{B}}$	P.Q3
	R-Ktsq	$\mathrm{B} \times \mathrm{R}$		Kt - B3	$\underline{\mathrm{R}-\mathrm{Ksq}}+$
13	K-Bsq	$\overline{\mathrm{P} \cdot \mathrm{Q} 4+(3)}$		$\overline{\mathrm{B} \times \mathrm{P}}$	
	B-Kt2			$\mathrm{Kt} \times \mathrm{P}$	
14	Kt-B4			Q-B2	
	Kt-B3			B-Q6	
15	$\overline{\mathrm{KKt}}$-K2+			(5)	

(1) $9 \mathrm{QB} 8 \mathrm{ch}, \mathrm{Q}-\mathrm{Ksq}$; $10 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}$-K2 (if $10 \ldots, \mathrm{Kt} \times \mathrm{B}, 11 \mathrm{P} \cdot \mathrm{Q} 3$); $11 \mathrm{~B} \cdot \mathrm{~B} 7$. Q-Bsq; 12 Q-B6. (C. E. R.) White has three Pawns for his piece.
(2) $10 \ldots, \mathrm{Kt} \times \mathrm{B}$; $11 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2$; $12 \mathrm{Q} \times \mathrm{Qch}, \mathrm{Kt} \times \mathrm{Q}$; $13 \mathrm{~B} \times \mathrm{R}, \mathrm{B} \times \mathrm{P}+$. (Rosenthal.)
(3) Berber v. Göring. (C. P. C., 1878.)
(4) If 7 ..., K-K2 : . 8 P-Q4, P-Q3; 9 B-R3, Kt-R3 ; 10 B-Kt3+.
(5) If $15 \ldots, \mathrm{Kt}$-B5; $16 \mathrm{Kt}-\mathrm{B} 7 \mathrm{ch}, \mathrm{K} \cdot \mathrm{Qsq}$; $17^{\circ} \mathrm{B} \times \mathrm{KP}, \mathrm{Kt} \times \mathrm{B}$: $18 \mathrm{Q} \times \mathrm{B}$ and wins: if $15 \ldots, \mathrm{~B}-\mathrm{Kt} 3$; $16 \mathrm{~B} \times \mathrm{KP}, \& \mathrm{c}$.
(6) If $7 \ldots$ P- 23 ; $8 \mathrm{~B} \times$ Pch, K-Bsq; 9 B -R3. The Col. and Note are given Gossip's Theory of the Chess Openings.

Table 61.-THE EVANS GAMBIT DECLINED.
$1 \mathrm{PK} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B}-\mathrm{B} 4$; 4 P-QKt4, P-Q4.

	11	12	18	14	15
5	$\mathrm{P} \times \mathrm{P}$				$\mathrm{B} \times \mathrm{P}$ (10)
	$\overline{\mathrm{Kt} \times \mathrm{P}}$				$\overline{\mathrm{Kt} \times \mathrm{P}}$
6	$0.0 \quad$ (1).	$\mathrm{Kt} \times \mathrm{P}$		B-R3	B-Kt3 (11)
	B-Kt5 (2)	$\overline{\mathrm{Kt} \times \text { QP (4) }}$	Q-Kt4	Q-Q3	Kt-KBZ
7	R-Ksq	B-Kt5ch (5)	$0-0 \quad$ (7)	P-QB3 (9)	Q-K2
	P-KB3	P-QB3	B-R6	$\overline{\mathrm{Kt} \times \mathrm{QP}}$	O-O
8	P-B3	Kt \times QBP	P-Kt3 (8)	$\mathrm{B} \times \mathrm{B}$	O-0
	$\overline{\mathrm{B} \times \mathrm{Kt}}$	Q-Kt3	$\overline{\mathrm{B} \times \mathrm{R}}$	Q \times B	B-Kt5
9	Q-R4ch	Q-K2ch.	P-Q4	Q-Kt3	B-Kt2 -
	P-B3	K-Bsq	Q-K2	KKt-B3	Q-K2 -
10	$\mathrm{P} \times \mathrm{Kt}$	Kt-Kt4	$\mathrm{K} \times \mathrm{B}$	$\mathrm{Kt} \times \mathrm{P}$	
	B-Q5	B-K3	O-0.0	O-O	
11	$\underline{\mathrm{Kt} \text { - } 3 \text { + (3) }}$	$\mathrm{Kt} \times \mathrm{Kt}$	P-QB3	P-Q4 -	
		$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt} \times \text { QP ! }}$	Q-Q3 -	
12		0.0	Q-B3		
		Q-Kt3	P-QB3		
18		P-Kt3 (6)	$\underline{K t \times K B P+}$		

(1) 6 P-B3, Kt \times QP; $7 \mathrm{~K} t \times \mathrm{P}, \mathrm{B}-\mathrm{K} 3$; 8 Q-Kt3, B-Kt3; 9 P-QR4, \&c.
(2) 6 .., Q-Q3; $7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{KB3}$; $8 \mathrm{R}-\mathrm{Ksq}$ (C. M.). Or $6 \ldots, \mathrm{~B}-\mathrm{B4} ; 7$ P-Q3, \&c.
(3) If $11 . ., \mathrm{B} \times \mathrm{Kt}$; $12 \mathrm{P} \times \mathrm{B}, \mathrm{B} \times \mathrm{QP}$; $13 \mathrm{R}-\mathrm{Qsq}, \mathrm{Kt}-\mathrm{K} 2$; $14 \mathrm{~B} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{B}$; 15 P-QB4, \&c.
(4) Or $6 \ldots, \mathrm{Q}-\mathrm{B} 3 ; 7 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B} \times \mathrm{P}$: if $7 \mathrm{O}-\mathrm{O}, \mathrm{B}-\mathrm{Q5}$ (or Kt-K2); 8 P-QB3, $\mathrm{B} \times \mathrm{Kt}$; $9 \mathrm{Q}-\mathrm{R4ch}, \mathrm{~B}-\mathrm{Q} 2 ; 10 \mathrm{Q} \times \mathrm{Kt}, \mathrm{O}-\mathrm{O} \mathrm{O}$ (C. E. R.)
(5) Or 7 P-Q4, B-Kt5ch; $8 \mathrm{~B}-\mathrm{Q} 2, \mathrm{~B} \times \mathrm{Bch} ; 9 \mathrm{Kt} \times \mathrm{B}, \mathrm{B}-\mathrm{K} 3=$.
(6) Black can recover his Pawn, and the game looks about equal, (C. E. R.)
(7) If 7 Q-K2, Kt \times Pch ; 8 K-Qsq, Kt-Q5 ; 9.B-Kt5ch +. (Minckwitz): if $9 \mathrm{Kt}-\mathrm{B} 3 \mathrm{dch}, \mathrm{Q}-\mathrm{K} 2$; $10 \mathrm{Q} \times \mathrm{Qch}, \mathrm{Kt} \times \mathrm{Q}$; $11 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Kt}$; $12 . \mathrm{Kt}-\mathrm{QB} 3$, $B \times P$!
(8) If $8 \mathrm{Q}-\mathrm{BS}, \mathrm{Q} \times \mathrm{Kt} ; 9 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{BP} ; 10 \mathrm{Q}-\mathrm{QKt3}, \mathrm{~B}-\mathrm{Q} 3!$; $11 \mathrm{P}-\mathrm{KKt3}$, $\mathrm{Kt}-\mathrm{Q} 5 ; 12 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch} ;{ }^{2} 13 \mathrm{~K}-\mathrm{Rsq}, \mathrm{R}-\mathrm{Qsq} \mathrm{i}^{2} 14 \mathrm{~B}-\mathrm{Kt2}, \mathrm{Q}-\mathrm{R} 4+$.
(9) Or $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B}$; $8 \mathrm{P}-\mathrm{B} 3, \mathrm{~B}-\mathrm{QB4}=$.
(10) $5 \mathrm{~B}-\mathrm{Kt5}, \mathrm{P} \times \mathrm{P}$! ; $6 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; $7 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{B}$; 8 Q or $\mathrm{P} \times \mathrm{P}$, Kt -K2+.
(11) If $6 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{B} ; 7 \mathrm{Kt} \times \mathrm{Kt} ; \mathrm{P}-\mathrm{QB} 3$; $8 \mathrm{Kt}-\mathrm{K} 3=.6 \mathrm{~B} \times \mathrm{Pch}$ is not so good.

SECTIONXV.

RUY LOPEZ' KNIGHT'S GAME.

1P.K4, P-K4; 2Kt-KB3, Kt.QB3; 3 B.Kt5.

IT is somewhat difficult for the student to master the theory of this opening, owing to its present form having been arrived at by a slow process of trial and selection, which is not yet so far advanced as to have reached simplicity. It dates from the Göttingen MS, 1490, but derives its title from a Spanish Bishop, who lived in the reign of Philip II. The original idea in playing $3 \mathrm{~B}-\mathrm{K} t 5$ was to continue the attack on Black's King's Pawn. This, howeser, led to no advantage, and Walker, so recently as 1841, wrote " your third move (B-Kt5) was weak, as Black may safely let you win KP"' (Col. 4, note 9). The Giuoco Piano development, by 3 B-B4, had then the preference, until the defence to that opening was strengthened, and the second player got a little better position by the moves 3 B-B4, B-B4; 4 P-B3, Kt-B3; 5 P-Q4, P \times P; 6 P-K5, P-Q4. Here 7 B-QKt5 serves to check the opposing player's development; hence the conclusion that B-Kt5 on the third move would save time. The answering thought for the second player was to attack the Bishop at Kt5 by $3 \ldots$, P-QR3, and in case he took the Kt with the idea of doubling a pawn, secure an open game by $\mathrm{QP} \times \mathrm{B}$. To prevent this, the Bishop retired to R4, and it was found that to follow him up by P-QKt4 did not turn out satisfactorily. The Bishop by this process was driven to a good
square (QKt3) where the Giuoco Piano defence, above named, was still unavailable, while Black's advanced Pawns were frequently an element of weakness in the end-game. They were besides liable to be broken up at any time by P-QR4 on the other side. Accepting therefore the restraining move $3 \mathrm{~B}-\mathrm{K} \mathrm{t} 5$ as quite sound, the usual defence becante Kt-KB3 before, or after 3..., P-QR3. The Knight's move as a counter attack is stronger in the Lopez than in the Giuoco Piano. Owing to the White KBishop being off the diagonal commanding Black's KBPawn the retort by Kt-Kt5, as played in the Two Knight's Defence, loses its force The first player has however still at command the Piano attack by P-Q3, followed in due time by P-Q4 or P-KB4; also the more rapid attack arising out of P-Q4 at once, or after castling. Or he may defer aggressive operations and bring out his QKt. The first and last of these three courses being transpositions of the Giuoco Piano, and Four Knight's Game, lead after a few moves to positions which may occur in approved forms of those openings. The attacking player obtains a good development, and retains for a long time the advantage of the first move. The second line of play (P-Q4) is a further check on his opponent's development, for the latter has no better square for his King's Bishop than K2. Planted there he strengthens the King's file, clears the way for castling, and guards KKt4 against a supported piece. On the other hand he stands in the way of both Queen and Queen's Knight, and blocks the position generally. The idea of the Lopez is thus a synthesis of two principles.

1. That a development move is good.
2. That, by inversion, a move which hinders the adversary's development is good.
3. That a move which is partly developing and partly restraining is also good.

In cramping Black's game, by an early attack on his Centre, the first player is 'obliged to leave his own Queen's side undeveloped. His opponent should therefore so frame the defence that the two moves which White must ultimately devote to bringing out his Q Knight and Bishop will give time to equalise the positions. Meanwhile Black will have to guard carefully against combinations with the Pawns and Pieces already in play. The question whether he should drive the Bishop to QR4 on his third move has not yet been satisfactorily decided. The German players are in favour of $3 \ldots$, Kt-KB3 and, as a rule, the British and Americans prefer $3 \ldots$, P-QR3. All that can be said at present is that the latter move may be postponed without disadvantage.

A number of tentative, or counter attacking moves, have been introduced into the defence, such as $3 \ldots$, P-KKt3, P-KB4, Kt-Q5, QKt-K2, \&c., all of which have special points which tend to cloud the issue. They have the disadvantage of making the defence more difficult against strong play, and it has not yet been shown that they get rid of the attack any sooner, or any more effectually than $3 \ldots, \mathrm{Kt}$-KB3. Mr. Steinitz has recently advocated $3 \ldots$, P-Q3 which transposes the opening into a variation of the Philidor defence.

Table 62.-RUY LOPEZ' KNIGHT'S.GAME.,
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4$; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{~B} \cdot \mathrm{Kt} 5$.

	1	2	3	4	5
3	P-Q3 (1)	B-B4		P-QR3	
4	P.Q4 (2)	P-B3 (5)		$B \times \mathrm{Kt}$	B-R4
4	B-Q2 (3)	KKt-K2 (6)	Q-K2	$\overline{\mathrm{QP} \times \mathrm{B}!}$	P-QKt4(12)
5	$\mathrm{B} \times \mathrm{Kt}$	0.0	0.0	$0.0 \quad(9)$	B-Kt3
5	$\overline{\mathrm{B} \times \mathrm{B}}$	0.0	P.B3	B-Q3	$\overline{\mathrm{Kt}-\mathrm{R} 4}$ (18)
6	Kt-B3	P-Q4	P.Q4	P-Q4	$0.0 \quad$ (14)
6	P-B3	$\overline{\mathrm{P} \times \mathrm{P}}$	B-Kt3	$\overline{\mathrm{P} \times \mathrm{P} \quad(10)}$	$\overline{\mathrm{Kt} \times \mathrm{B}}$
7	$0 \cdot 0$	$\mathrm{P} \times \mathrm{P}$	$\mathrm{Kt-R3} \mathrm{(8)}$	$Q \times P$	$\mathrm{RP} \times \mathrm{Kt}$
7	Kt-K2	B-Kt3	$\overline{\mathrm{Kt}}$-Qsq	P-B3	P-Q3
8	$\mathrm{P} \times \mathrm{P}$	P-Q5	Kt -B4	R-Ksq	P.Q4
8	$\overline{\mathrm{QP} \times \mathrm{P}}$	Kt-Ktsq	Kt-B2	Kt-K2	P-KB3
9	Q-K2	P-Q6	Kt-K3	P-K5	Kt-B3
9	Kt-Kt3	$\overline{\mathrm{P} \times \mathrm{P}} \quad$ (7)	P-B3	\bigcirc	B-Kt2
10	B-K3		Kt-B5+	$\underline{\mathrm{Kt} \times \mathrm{P}}$	P-Q5
10	Q-Q2		Q-Bsq	0.0	Kt-K2
11	QR-Qsq-			B-Kt5-	$\underline{\mathrm{Kt}}$-K2 +
11	.Q-B2 -			Q-Ksq (11)	

(1) If $3 \ldots, \mathrm{P}-\mathrm{B} 3 ; 4 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 5 \mathrm{Kt} \times \mathrm{KP}$!
(2) If 4 P-B3̧, P-B4 1 (Steinitz.)
(3) $4 \ldots, \mathrm{P} \times \mathrm{P}$; $5 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 2$; $6 \mathrm{~B} \times \mathrm{Kt} \mathrm{B} \times \mathrm{B} ; 7 \mathrm{~B}-\mathrm{Kt} 5+$. This variation frequently occurs in Philidor's Defence. See Table 10, Col. 5.
(4) Or 5 O-O, B-K2; $6 \mathrm{Kt}-\mathrm{B} 3, \& \mathrm{c}$. Or $5 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{O}-\mathrm{O}, \mathrm{B}-\mathrm{Q} 3 ; 7 \mathrm{Kt}-\mathrm{B} 3$, \&c.
(5) If $4 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 5 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch}, \& \mathrm{c}$.
(6) Or 4 ... Q-B3; $5 \mathrm{O}-\mathrm{O}, \mathrm{KKt}-\mathrm{K} 2$; $6 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{~B}-\mathrm{Kt} 5$ or $\mathrm{B} \times$ Kt. If 4 .., Kt-B3; $5 \mathrm{P}-\mathrm{Q4}, \mathrm{P} \times \mathrm{P}$; $6 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{K} 5 ; 7 \mathrm{O}-\mathrm{O}$: or $7 \mathrm{P} \times \mathrm{P}$ with a better position: a game Mayet v. Anderssen runs:-5 $\mathrm{B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 60-0, \mathrm{~B}-\mathrm{KKt5} ; 7 \mathrm{P}-\mathrm{KR} 3, \mathrm{P}-\mathrm{KR4}$; $8 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{P} ; 9 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Kt6} ; 10 \mathrm{P}-\mathrm{Q} 4, \mathrm{Kt} \times \mathrm{P} ; 11 \mathrm{Q}-\mathrm{Kt4}, \mathrm{~B} \times \mathrm{P}: 12 \mathrm{Q} \times \mathrm{Kt}$, $\mathrm{B} \times \mathrm{Pch} ; 13 \mathrm{R} \times \mathrm{B}, \mathrm{Q}-\mathrm{Q} 8 \mathrm{ch} ; 14 \mathrm{R}-\mathrm{Bsq}, \mathrm{R}-\mathrm{R} 8 \mathrm{ch}$ and Q mates.
(7) If $10 \mathrm{~B}-\mathrm{KB} 4, \mathrm{P}-\mathrm{Q} 4$. Gossip gives $10 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{B} 2$; $11 \mathrm{Q}-\mathrm{R} 3, \mathrm{P}-\mathrm{Q} 4$ 12 R-Qsq + .
(8) If 7 P-QR4! (Steinitz), P-QR3; 8 B-B4, P-Q3; 9 P-R5, B-R2!
(9) If 5 Kt $\times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 5, \& \mathrm{c}$. After $5 \mathrm{O}-\mathrm{O}, \mathrm{Q}-\mathrm{B} 3$ may come in.
(10) If $6 \ldots, \mathrm{~B}-\mathrm{KKt5} ; 7 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{Kt} ; 8 \mathrm{Q} \times \mathrm{B}, \mathrm{B} \times \mathrm{P} ; 9 \mathrm{Q}-\mathrm{QKt3+}$.
(11) $12 \mathrm{Kt}-\mathrm{B} 4, \mathrm{Kt}-\mathrm{B} 4$; $13 \mathrm{R} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Q}$; $14 \mathrm{R} \times \mathrm{Rch}, \mathrm{K} \times \mathrm{R}$; 15 QKt-R3, \&c.
(12) If 4 .., P-KB4; 5 P-Q4!
(13) 5 .., B-Kt2; 6 O-O, P-KKt3; 7 P-Q3, B-Kt2; 8 P-QR4 (Anderssen) or Kt-Kt5 (Steinitz).
(14) Or 6 P-B3, (if) Kt \times B; 7 Q \times Kt, Kt-B3 or B-K2; 8 P-Q3, P-Q3; 9 P-QRAt.

Table 63.-RUY LOPEZ' KNIGHT'S GAME.

1P.R4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3 ; 9 \mathrm{~B} \cdot \mathrm{Kt} 5, \mathrm{P} \cdot \mathrm{QR} 3$; 4 B-R4, Kt.B3.

	6	7	8	9	10
5	P.Q3				
	P-Q3				P-QKt4
6	$\mathrm{B} \times$ Ktch	P.B8		Kt-B3	B-Kt3
	$\overline{\mathrm{P} \times \mathrm{B}}$	B-K2	P-K.Kt3	P-KKt3 (6)	B-Kt5ch (8)
7	P-KR3 (1)	P.KR3 (3)	QKt-Q2 (5)	0.0	P-B3 (9)
	P-It8	0.0	B-Ķt2	P-QKt4	B-R4.
8	B-K3	Q-K2	$\underline{\mathrm{Kt}} \mathrm{Bsq}$	B-Kt3	B-K3
	B-KKt2	Kt-Ksq	0.0	B-Kt5	P.Q3
9	Kt-B3	P-KKt4	Kt-Kı3	Kt-Q5	0.0
	R-QKtsq	PiQKt4	P-QKt4	Kt-Q5 ?	Kt-K2
10	P-QKt3	B-B2	B-B2	$\underline{\mathrm{KKt}} \times \mathrm{Kt}$	QKt-Q2
	P-B4	B-QKt2	P-Q4	$\overline{\mathbf{B} \times \mathbf{Q}}$	Kt-Kt3
11	Q-Q2	QKt-Q2	0.0	Kt -B6	P-Q4
	P-R3	Q-Q2	P-R3	Kt \times Kt	Q-K2 -
12	P-KKt4	Kt-Bsq	B-Q2-	$\underline{K t \times Q+}$	
	$\overline{\mathrm{Kt} \text {-Ktsq (2) }}$	Kt-Qsq	B-K3-	$\overline{\mathrm{R} \times \mathrm{Kt}}$ (7)	
18	$\underline{\mathrm{Kt} \text {-K2 - }}$	Kt.K3-			
18	-	$\overline{\mathrm{Kt}}$-K3-(4)			

(1) To play B-K3 without fear of Kt-Kt5.
(2) Thence, by K2, and QB3, to reach Q5. (Handbuch.)
(8) 7 QKt-Q2, O-O; $8 \mathrm{Kt}-\mathrm{Bsq}$, Kt-Q2; 9 B-K3, P-B4; $10 \mathrm{P} \times \mathrm{P}, \mathrm{R} \times \mathrm{P}$; 11 B:Kt3ch, K-Rsq. (Paris v. Vienna.)
(4) Ṡteinit< ∇. Blackburne.
(5) Rosenthal v. Zukertort. If 7 P-Q4?, P-QKt4; 8 B-B2, P $\times P$; $9 P \times P$ P-Q4; 10 P-K5, Kt-K5 ; 11 O-0, B-KKt5 (Steinitz).
(6) Or 6 .., B-K2; 7 P-KR3, O-O; 8 B-K3, B-K3; 9 P-Q4, \&c.
(7) Blackburne v. Zukertort.
(8) The Handbuch notes as playable $6 \ldots$, P-Q4. If $6 \ldots, B-B 4 ; 70.01$, P.Q4? ; $8 . \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; 9 R-Ksq. (C. E. R.)
(9) If $7 \mathrm{~B}-\mathrm{Q} 2, \mathrm{~B} \times \mathrm{Bch}$; and Black's QKt plays by K2 to KKt3. Hence 8 B-K3 to keep the command of KB4. The idea of this column is to work into a Giwoco Piano position.

Table 64.-RUY LOPEZ' KNIGHT'S GAME.

1P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3$, Kt-QB3; $3 \mathrm{~B}-\mathrm{Kt} 5, \mathrm{P}-\mathrm{QR} 8$; 4 B-R4, Kt. B 3 .

	11	12	13	14	15
5	P-Q3	P-Q4		Q-K2	Kt-B3
	B-B4	$\overline{\mathrm{P} \times \mathrm{P}!(3)}$		P-QKt4!	B-B4
6	O-O (1)	P-K5 (4)		B-Kt3	P-Q3 (12)
	P-QKt4	Kt-K5		$\overline{\mathrm{B}-\mathrm{B4}} \quad(9)$	$\overline{\text { P-QKt4 }}$
7	B-Kt3	0.0		P-QR4 (10)	B.Kt3
	P-Q3	B-K2		R-QKtsq	P-Q3 (18)
8	B-K3	R-Ksq	$\mathrm{K} t \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$	B-Kt5
	$\overline{\text { B-KKt5 }}$	Kt-B4	Kt-B4	$\overline{\mathrm{P} \times \mathrm{P}}$	P-R3
9	P-B3	$\mathrm{B} \times \mathrm{Kt}$	Kt-B5 (6)	Kt-B3	$\mathrm{B} \times \mathrm{K} t$
	P-R3	QP×B	0-0! (7)	P-Kt5 (11)	Q \times B?
10	QKt-Q2-	$\mathrm{Kt} \times \mathrm{P}$	Q-Kt4	Kt-Q5	Kt-Q5 +
	$\overline{0.0-(2)}$	O-0	P-KKt3	0-0	Q-Qsq
11		Kt-QB3-	$\mathrm{B} \times \mathrm{Kt}-$	O.0-	
		P-B3 -(5)	$\overline{\mathrm{QP} \times \mathrm{B}-(8)}$	P-Q3-	

(1) 6 Kt-B3, P-QKt4; 7 B-Kt3, P-Q3. If 6 P-B3, P-QKt4; 7 B-Kt3, P-Q4?; $8 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $90-0$ (Handbuch).
(2) If $10 \ldots, \mathrm{Kt}-\mathrm{K} 2$; $11 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$; $12 \mathrm{~B} \times \mathrm{Pch}$, \&c.
(3) If $5 \ldots, \mathrm{Kt} \times \mathrm{QP}$; $6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $7 \mathrm{P}-\mathrm{K} 5$, Kt-K5; $8 \mathrm{Q} \times \mathrm{P}$, Kt-B4. If 6.., $\mathrm{Kt} \times \mathrm{KP}$; 6 O-O leads into Col. 16.
(4) Moves 6 and 7 are frequently transposed. If $7 \ldots, \mathrm{~B}-\mathrm{B} 4$?; 8 P-B3.
(5) If $11 \ldots$ Kt-K3; $12 \mathrm{Kt}-\mathrm{B} 5, \mathrm{~B}-\mathrm{Kt4}$; $13 \cdot \mathrm{Q}-\mathrm{Kt4}, \mathrm{~B} \times \mathrm{B}$; $14 \mathrm{QR} \times \mathrm{B}, \mathrm{Q}-\mathrm{Kt4}$; $15 \mathrm{Q} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Q}$; $16 \mathrm{Kt}-\mathrm{K} 7 \mathrm{ch}, \mathrm{K}-\mathrm{Rsq} ; 17 \mathrm{P}-\mathrm{B4}, \& \mathrm{c}$.
(6) $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B}$; $10 \mathrm{~B}-\mathrm{K} 3, \mathrm{O}-0$; $11 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{KB} 3$; (if) $12 \mathrm{P} \times \mathrm{P}, \mathrm{R} \times \mathrm{P}$; 13 Q-K2, R-B2 (or 13 .., R-Kt3); 14 QR-Qsq, Q-Bsq, \&c. The Col. runs as played between Zukertort and Mackenzie.
(7) If $9 \ldots, \mathrm{Kt} \times \mathrm{B}$; $10 \mathrm{Kt} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Bsq} ; 11 \mathrm{~B}-\mathrm{R} 6, \mathrm{~K}-\mathrm{Ktsq} ; 12 \mathrm{Kt}-\mathrm{K} 6, \mathrm{BP} \times \mathrm{Kt}$; 13 Q-Kt4ch, B-Kt4; $14 \mathrm{~B} \times \mathrm{B}, \mathrm{QKt} \times \mathrm{P}$; 15 Q-Kt3 and wins.
(8) $12 \mathrm{Kt} \times \mathrm{Bch}, \mathrm{Q} \times \mathrm{Kt}$; $13 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{R}-\mathrm{K} \mathrm{sq}$; $14 \mathrm{R}-\mathrm{Ksq}, \mathrm{B}-\mathrm{B} 4, \& \mathrm{c}$.
(9) If $6 \ldots$ B-Kt2; 7 P-Q3. If $6 \ldots, \mathrm{~B}-\mathrm{K} 2$; 7 P-QR4, P-Kt5; $8 \mathrm{P}-\mathrm{Q} 4 \mathrm{P} \times \mathrm{P}$; 9 P-K5+.
(10) $7 \mathrm{P}-\mathrm{B}, \mathrm{O}-\mathrm{O}$; $8 \mathrm{P}-\mathrm{Q} 3:$ if $80-0, \mathrm{P}-\mathrm{Q41} ; 9^{\circ} \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $10 \mathrm{Kt} \times \mathrm{P}$?, Kt -B5 1 ; if $11 \mathrm{Q}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{R} 6 \mathrm{ch}$; or if $11 \mathrm{Q}-\mathrm{K} 4, \mathrm{Q}-\mathrm{R} 5+$. (Pollock.)
(i1) $9 \ldots, \mathrm{O}-\mathrm{O}$; $10 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{P}-\mathrm{Q} 3$; $11 \mathrm{P}-\mathrm{KR} 3, \mathrm{Kt}-\mathrm{KR4}$; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B5}$; $13 \mathrm{Q}-\mathrm{Bsq}, \mathrm{R} \times \mathrm{B} ; 14 \mathrm{P} \times \mathrm{R}, \mathrm{Kt}-\mathrm{Kt5}$! $15 \mathrm{~K}-\mathrm{Qsq}$, KKt-Q6; $16 \mathrm{R}-\mathrm{KR} 2, \mathrm{P}-\mathrm{B4}$; $17 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Kt} \times \mathrm{KBPch}$; $18 \mathrm{~K}-\mathrm{Ksq}$, Kt-B7ch and wins. (Riemann v. Anderssen.)
(12) $60-0$, is not so good after $3 \ldots, \mathrm{P}-\mathrm{QR} 3$. If $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt} ; 7 \mathrm{P}-\mathrm{Q4}, \mathrm{~B}-\mathrm{Q3}$; 8 O-0, O-O; 9 P-B4, Kt-B51; 10 P-K5, B-K2: $11 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{P}$; 12 B-Kt3, P-Q4 1.
(13) If 7 P-R3; $8 \mathrm{Kt}-\mathrm{K} 2$.

Table 65.-RUY LOPEZ' KNIGHT'S GAME.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{~B} \cdot \mathrm{Kt} 5, \mathrm{P} \cdot \mathrm{QR} 3$; $4 \mathrm{~B} \cdot \mathrm{R}^{\prime} 4, \mathrm{Kt} \cdot \mathrm{B} 3$; $50 \cdot 0, \mathrm{Kt} \times \mathrm{P}$. (1)

After Black's 5th move.

	16	17	18	19	20
6	P-Q4			Kt-B3	R-Ksq
	P;QKt4 (2)			$\overline{\mathrm{K}} \mathrm{t} \times \mathrm{Kt}$	$\overline{\mathrm{Kt}-\mathrm{B4}}$ (11)
7	B-Kt3		P-Q5 (7)	$\underline{\mathrm{KtP} \times \mathrm{Kt}}(9)$	$\mathrm{B} \times \mathrm{Kt}$
	P-Q4		$\overline{\mathrm{P} \times \mathrm{B}}$ (8)	P-QKt4	QP×B
8	$\mathrm{P} \times \mathrm{P} \quad$ (3)		$\mathrm{P} \times \mathrm{Kt}$	B-Kt3	P-Q4
	Kt-K2	13-K3	P-Q3	P-Q4!	Kt-K3
9	R-Ksq (4)	P-B3 (5)	R-Ksq	P-QR4 (10)	Kt \times P (12)
	Kt-QB4	B-QB4 (6)	B-B4	R-QKtsq	B-K2
10	Kt-Q4	B-B2	P-B3	$\mathrm{P} \times \mathrm{P}$	B-K3 (13)
	Kt-K3	$0 \cdot 0$	B-K2	\bigcirc	O-O
11	P.QB3	Q-K2	$\mathrm{Q} \times \mathrm{RP}$	$\underline{\mathrm{R}-\mathrm{K} s q+}$	P.KB4 (14)
	P-QB4	B-B4	$\overline{\mathrm{Kt}}$-B4 +		P-B3
12	Kt-B3	B-B4 -			Kt-KB3-
	$\overline{\mathrm{Kt}}$-B2+	-			Q.Q4 -

Notes to Table 65.

(1) 5 .., B-K2; 6 Kt-B31, P-QKt4; 7 B-Kt3, P.Q3; 8 P-KR3, 0.0; 9 P-Q3, Kt-QR4; 10 B-K3, P-B3, \&c.
(2) $6 \ldots, \mathrm{~B}-\mathrm{K} 2$; $7 \mathrm{R}-\mathrm{Ksq}, \mathrm{P}-\mathrm{QKt4}$; $8 \mathrm{R} \times \mathrm{Kt}$ (Wayte v . Thorold). If then 8 .., P.B4; $9 \mathrm{R} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{R}$; $10 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 11 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \& \mathrm{c}$.
(3) $8 \mathrm{Kt} \times \mathrm{P}$ may also be played. Tschigorin v. Rosenthal played 8 P-QR4;
(4) Threatening $10 \mathrm{R} \times \mathrm{Kt}$, (if) $\mathrm{P} \times \mathrm{R}$; $11 \mathrm{~B} \times \mathrm{Pch}$. If $9 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Kt} \times \mathrm{Kt}$ $10 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B}-\mathrm{Kt} 2$ (or 10 .., P-QB3 I) ; $11 \mathrm{Q}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Q} 2$; $12 \mathrm{Kt}-\mathrm{B} 3$ (Zukertort).
(5) If 9 P-QR4, P-Kt5! (Handbuch). If 9 B-K3, B-K2; 10 Q-K2 (a), Kt-R4; $11 \mathrm{KKt}-\mathrm{Q} 2, \mathrm{Kt}$-B4.
(a) 10 P-B3, O.O; 11 QKt-Q2, Kt $\times \mathrm{Kt}$; 12 Q $\times \mathrm{Kt}$, Kt-R4; 13 B-B2,.Kt-B5; 14 Q-Q3, P-KKt3 = .
(6) If 9 .., B-K2; $10 \mathrm{~B}-\mathrm{B} 2, \mathrm{Kt}-\mathrm{B} 4$; $11 \mathrm{Kt}-\mathrm{Q} 4, \& c$. (Steinitz) : or $10 \mathrm{R}-\mathrm{Ksq}, \mathrm{O}-\mathrm{O}$; 11 Kt -Q4, Q-Ksq (Moscow v. Petersburg): if $11 \ldots, \mathrm{Q}-\mathrm{Q} 2$?; $12 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q}$ or $\mathrm{P} \times \mathrm{Kt}$: $13 \mathrm{R} \times \mathrm{Kt}+$. (Tarrasch.)
(7) If $7 \mathrm{Kt} \times \mathrm{P}$ (Friess), $\mathrm{Kt} \times \mathrm{Kt}$; $8 \mathrm{P} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q4}$; $9 \mathrm{P} \times \mathrm{P}$ en $\mathrm{pas}, \mathrm{B} \times \mathrm{P}$, \&c.
(8) If 7 ... Kt-R4; 8 Q-Ksq. If 7 .., Kt-K2; 8 B-Kt3, P-Q3; 9 R-Ksq, Et-QB4, \&c.
(9) Mr. Ranken prefers $7 \mathrm{QP} \times \mathrm{Kt}$, to stop the advance of Black's QP .
(10) Fritz v. Bardeleben. P-Q4 and $\mathrm{Kt} \times \mathrm{KP}$ are in Black's favour.
(11) The Handbuch gives the following variation :-6 .., Kt-B3; 7 P-Q4, P-K5; 8 P-Q5, P.QKt4; 9 B-Kt3, Kt-QR4; $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{B}$; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt}$; $12 \mathrm{R} \times$ Ktch, $\mathrm{B}-\mathrm{K} 2$; $13 \mathrm{P}-\mathrm{Q} 6, \mathrm{P} \times \mathrm{P}$; $14 \mathrm{~B}-\mathrm{Kt5}, \mathrm{P}-\mathrm{B} 3$; $15 \mathrm{~B} \times \mathrm{P}, \mathrm{P} \times \mathrm{B}$; $16 \mathrm{Kt}-\mathrm{R} 4$, B-Kt2 $1=$. See note 12, p. 134.
(12) If 9 R-P, B-Q3; 10 R-Ksq, O.O, \&c.
(13) If 10 P-QB3, 0.0 ; 11 P:RB4, P-B3, \&c.
(14) $11 \mathrm{Kt}-\mathrm{QB3} 3, \mathrm{P}-\mathrm{B} 3$; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{R}-\mathrm{Ksq}$; 13 Kt -K2, Kt.Beq. (Blake v. Vincent.)

Table 66.-RUY LOPEZ' KNIGHT'S GAME.
$1 \mathrm{P} \cdot \mathrm{K} 4$, P.K4; $2 \mathrm{Kt} \cdot \mathrm{K} \dot{\mathrm{B}} 3$, Kt.QB3; 3 BKt 5 .

21	22	23	24	25

3	P-QR3	KKt-K2	Kt-B3		
4	B-R4	P.Q4 (4)	P.Q3 (6)		
4	KKt-K2	$\overline{\mathrm{P} \times \mathrm{P}}$	B-B4		P-Q3 (11)
5	P.Q4 (1)	$\mathrm{Kt} \times \mathrm{P}$	P.B3 (7)		P.B3
5	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	Q-K2 (8)		$\overline{\text { P-KKt3(12) }}$
6	$\underline{\mathrm{Kt} \times \mathrm{P} \quad(2)}$	$Q \times \mathrm{Kt}$	0.0		P.Q4
	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	P-QB3 (5)	0.0		B-Q2
7	$\underline{Q} \times \mathrm{Kt}$	B-R4	P-Q4		QKt-Q2
7	P-QKt4	P-Q4	B-Kt3		B-Kt2
8	B-Kt3	Kt-B3	$\mathrm{B} \times \mathrm{Kt}$.	B-Kt5	$\mathrm{P} \times \mathrm{P}$
8	P-Q3	B-K3	$\overline{\mathrm{KtP} \times \mathrm{B}}$	P-Q3	$\overline{\text { QKt } \times P}$
9	P.QB3	B-K3+	$\mathrm{Kt} \times \mathrm{P}$	$\mathrm{B} \times$ QKt	$\mathrm{Kt} \times \mathrm{Kt}$
9	B-K3		P-Q3 (9)	$\overline{\mathrm{P} \times \mathrm{B}}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$
10	O.O (3)		$\mathrm{Kt} \times \mathrm{QBP}$	$\mathrm{P} \times \mathrm{P}$	Q-K2
10	Kt-B3		Q \times P	$P \times P$	0.0
11	$\underline{\text { Q-Qsq }}+$		Kt-Kt4	Q-R4	P-B3 or
11			P-B4	P-KR3	B.Q3-
12			Kt-B2-	B-R4 -	-
12			$\overline{\mathrm{B} \cdot \mathrm{R} 3-(10)}$	$\overline{\text { B-Kt2 - }}$	

(1) $5 \mathrm{O}-\mathrm{O}$ is also a good continuation: if $5 \mathrm{P}-\mathrm{B} 3, \mathrm{P}-\mathrm{Q} 41$: if $5 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{Kt3}$. (C. E. R.)
(2) Martinez against Steinitz played 6 P-B3-a venturesome sacrifice.
(3) If 10 B-B2, P-Q4 I (Steinitz).
(4) 4 P-B3, P-Q3; 5 P-Q4, B-Q2; $60-0$ (B-QB4, Steinitz), Kt-Kt3; $7 \mathrm{Kt}-\mathrm{Kt} 5$, P - KR3, $8 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} \times \mathrm{Kt}, 9 \mathrm{Bch}, \mathrm{K}-\mathrm{K} 2,10 \mathrm{Q}-\mathrm{R} 5, \mathrm{Q}-\mathrm{Ksq}(a), 11 \mathrm{Q}-\mathrm{Kt} 5 \mathrm{ch}, \mathrm{P} \times \mathrm{Q}$; $12 \mathrm{~B} \times \mathrm{P}$ mate (Zukertort $\cdot \mathrm{v}$. Anderssen). If (a) $10 \ldots, \mathrm{~B}-\mathrm{Ksq}$; $11 \mathrm{~B}-\mathrm{Kt5ch}, \mathrm{P} \times \mathrm{B}$; 12 Q \times Pch, K-Q2; 13 Q-B5ch and mates next move.
(5) $6 \ldots, \mathrm{P}-\mathrm{QR} 3$ transposes into Col. 21: Steinit2 prefers $6 \ldots, \mathrm{Kt}$-B3.
(6) If $4 \mathrm{Q}-\mathrm{K} 2, \mathrm{~B}-\mathrm{B} 4,5 \mathrm{~B} \times \mathrm{Kt}($ or $\mathrm{O}-0), \mathrm{QP} \times \mathrm{B} ; 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 5, \& \mathrm{c}$.
(7) This Col. is Steinitz v. Rosenthal. Noa against Englisch played 5 Kt-B3.
(8) $\mathrm{Or} 5 \ldots, \mathrm{O}-\mathrm{O} ; 6 \mathrm{~B} \times \mathrm{Kt}(b), \mathrm{KtP} \times \mathrm{B} ; 7 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 41,8 \mathrm{Kt} \times \mathrm{QBP}, \mathrm{Q}-\mathrm{Ksq}$; $9 \mathrm{Kt}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}+($ Handbuch $)$: if $8 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}$ or $\mathrm{Q}-\mathrm{Ksq}$, $9 \mathrm{O}-\mathrm{O}$, and $10 \mathrm{P}-\mathrm{Q} 4+$ (Steinitz).
(b) Neumann v. Anderssen played $60-\mathrm{O}, \mathrm{P}-\mathrm{Q} 3$ ($\mathrm{P}-\mathrm{Q} 4 \mathrm{I}$); $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; 8 P-Q4, B-Kt3; 9 B-Kt5, P-KR3, $10 \mathrm{~B}-\mathrm{R} 4, \mathrm{P}-\mathrm{Kt4}$; $11 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{P} \times \mathrm{Kt} ; 12 \mathrm{~B} \times \mathrm{P}$, K-Kt2, \&c. White won.
(9) $9 \ldots, \mathrm{Kt} \times \mathrm{P}, 10 \mathrm{R}-\mathrm{K} s q$, P.KB4; $11 \mathrm{Kt}-\mathrm{Q} 2+$
(10) 13 R-Ksq, Q.R5, 14 P.B3, P.Q4 $=$.
(11) 4 .., B-Q3; 5 P-B3, \&c. See Col. 41.
(12) Or $5 \ldots$ B-Q2; ${ }_{5}$ QKt-Q2, P-KKt3; 7 B-R4, B-Kt2; 8 Kt-Bsqุ, 0.0 9 Kt -K3 (Steinitz). See Cols. 7 and 8.

Tabie 67.-RUY LOPEZ' KNIGHT'S GAME.

+1 P-K4, P-K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-Q.B3; 3 B-Kt 5, Kt-B3.

	26	27	28	29	30
4	P-Q3		P-Q4		
4	P-Q3	Kt-K2	$\overline{\mathrm{P} \times \mathrm{P} \quad \text { (5) }}$		$\overline{\mathrm{Kt} \mathrm{\times QP}}$
5	Kt-B3	Kt-B3 (2)	0.0		$\boldsymbol{K} \mathbf{t} \times \mathrm{Kt}$
5	P-KKt3	Kt-Kt3	B-K2		$\overline{\mathrm{P} \times \mathrm{Kt}}$
6	P-KR3	$0-0 \quad$ (3)	P-K5		Q \times P (10)
6	B-Kt2	P-B3	$\overline{\mathrm{Kt}}$-K5		P-B3
	B-K3	B-R4 (4)	$\mathrm{Kt} \times \mathrm{P}$!	R-Ksq	B-QB4
7	B-Q2	P-Q3	$\overline{0.0 ~(6) ~}$	$\overline{\mathrm{Kt} \text {-B4 (8) }}$	P-Q4
8	Q-Q2	B-Kt3	Kt-B5 !	$\underline{\mathrm{K}} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$
8	P-KR3	$\overline{\text { B-K3orK2- }}$	P-Q4	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	$\overline{\mathrm{K}} \times \times \mathrm{P}$
9	O.0-		$\mathrm{Kt} \times$ Boh	$\underline{Q} \times \mathrm{Kt}$	Kt-B8+
9	$\overline{\text { P-Kt4-(1) }}$		$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	O-0	
			P-KB3 (7)	B-K3- (9)	
10			P-QB3	P-Q4-	
			$\mathrm{P} \times \mathrm{Kt}-$		
11			$\overline{\text { Q-Kt3ch- }}$		

(1) Zukertort's correction of a game with Rosenthal.
(2) This Col. is Mortimer's variation. If $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{QB} 3$ wins a piece for two Pawns by: Q-R4ch. If $5 \mathrm{~B}-\mathrm{QB4}, \mathrm{P}-\mathrm{Q} 3 ; 6 \mathrm{Kt}-\mathrm{KKt5}, \mathrm{P}-\mathrm{Q} 4 ; 7 \mathrm{P} \times \mathrm{P}, \mathrm{QKt} \times \mathrm{P}$ (Blake).
(3) 6 P-KR4, P-KR4; 7 B-QB4, B-K2; 8 Kt-KKt5. $0-0$; 9 Kt-Q5! (Blake).
(4) Or 7 B-QB4, B-K2 (Zukertort).
(5) $4 \ldots, \mathrm{Kt} \times \mathrm{KP}$; $5 \mathrm{P}-\mathrm{Q} 5$, "Kt-Q3; $6 \mathrm{~B} \times \mathrm{Kt}$, KtP $\times \mathrm{B} ; 7 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{K} 5 ; 8 \mathrm{Kt}-\mathrm{Q} 4$, $\mathrm{P} \times \mathrm{P} ; 9 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 2=: 5 \mathrm{O}-\mathrm{O}, \mathrm{B}-\mathrm{K} 2 ; 6 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4 ; 7 \mathrm{P}-\mathrm{B} 4, \mathrm{P}-\mathrm{QR} 3 ; 8 \mathrm{~B} \times \mathrm{Ktch}$, $\mathrm{P} \times \mathrm{B} ; 9 \mathrm{Q}-\mathrm{B} 2, \mathrm{O}-\mathrm{O} ; 10 \mathrm{Kt}-\mathrm{Q} 4$ (Tschigorin v . Gunsberg).
(6) $7 \ldots$ Kt \times Kt; $8 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{B} 4$; $9 \mathrm{P}-\mathrm{KB4}$; P-QKt3; 10 P-B5, Kt-Kt6!; 11 Q-K4 (a), $\mathrm{Kt} \times \mathrm{R}$; 12 P-B6!, B-B4ch:- $13 \mathrm{~K}-\mathrm{Rsq}$, R-QKtsq; 14 P-K6, P-Ktsq; $15 \mathrm{Q} \times \mathrm{P}, \mathrm{R}-\mathrm{Bsq} ; 16 \mathrm{P} \times \mathrm{BPch}, \mathrm{R} \times \mathrm{P}$; 17 R -Ksqch, B-K2; 18 Q-Kt8ch, R-Bsq; 19 P-B7 mate (Bird v. Steinitz)?
(a) 11 Q-KKt4, Kt $\times \mathrm{R} ; 12 \mathrm{Q} \times \mathrm{P}, \mathrm{R}-\mathrm{Bsq} ; 13 \mathrm{P}-\mathrm{B} 6, \mathrm{Bch} ; 14 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt} \times \mathrm{P}$; 15 P-K6, Kt-Q5; $16 \mathrm{P} \times \mathrm{BPch}, \& \mathrm{c}$. (Bird v. De Vere.)
(7) Or 10 P-QB3! (C. E. R_{r}) This Col. is Rosenthal v. Zukertort.
(8) Or 7 Kt-Kt4.
 - Wingwer.
(10) Or 6 P-K5, P.B8; 7 O-O, (if) $\mathrm{P} \times \mathrm{B}$; 8 B-Kth, \& $8 .+$

Table 68.-RUY LOPEZ KNIGHT'S GAME.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3 ; 3 \mathrm{~B} \cdot \mathrm{Kt} 5$, Kt. B 3 ; 40.0 , $\mathrm{Kt} \times \mathrm{P}$ (1).

31
B.K2
$\frac{\mathrm{Q} \cdot \mathrm{K} 2 \quad \text { (6) }}{\mathrm{Kt} \cdot \mathrm{Q} 3}$
$\frac{\mathrm{B} \times \mathrm{Kt}}{\mathrm{KtP} \times \mathrm{B}(7)}$
$\mathrm{P} \times \mathrm{P}$
$\overline{\mathrm{Kt} \cdot \mathrm{Kt2}}$
Kt -B3
(8)
$\overline{\mathrm{Kt}}$-B4
Kt-Q4
$\overline{0.0}$
R.Ksq (10)
$\overline{\mathrm{Kt}}$.K3
Kt.B5
P.B3
B. Q2
$\overline{\mathrm{P} \times \mathrm{P}}$
$\mathrm{Q} \times \mathrm{P}$ (11)
B. B3
$\frac{\mathrm{Q} \cdot \mathrm{Kt} 3-}{\mathrm{P} \cdot \mathrm{Q} 4-}$

5
$\frac{\mathrm{B} \times \mathrm{Kt} \quad \text { (3) }}{\mathrm{QP} \times \mathrm{B}}$
$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{Kt} \cdot \mathrm{B} 4}$

Kt -B3
P.KR3

10

K•Bsq -
12

33

35

Notes to Table 68.

(1) $4 \ldots$ P-QR3; $5 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 6 \mathrm{Kt} \times \mathrm{P}$, and Black dare not take the KP on account of 7 R-Ksq. (B. C. M. 1885, p. 18.) For 4°.., P.Q3 sce, Col. 1. with notes 3 and 4.
(2) $5 \ldots, \mathrm{P}-\mathrm{QR3}$; $6 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B}$; $7 \mathrm{R}-\mathrm{Ksq}(\mathrm{C} . \mathrm{E} . \mathrm{R}):$. or $6 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P}-\mathrm{Q4}$; 7 P-B4 (Zukertort).
(3) $6 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{B}$; $7 \mathrm{P}-\mathrm{QR4}, \mathrm{KKt}-\mathrm{Q} 5$; $8 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{Kt}$; $9 \mathrm{Q} \times \mathrm{Kt}, \mathrm{B} \cdot \mathrm{K} 2=$.
(4) $6 \therefore, \mathrm{KtP} \times \mathrm{B}$; $7 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Kt2}$; $8 \mathrm{R}-\mathrm{Ksq}, \mathrm{B}-\mathrm{K} 2$; $9 \mathrm{Kt}-\mathrm{Q} 4,0.0$; $10 \mathrm{Kt}-\mathrm{QB} 3$, Kt-B4; 11 B-K3, \&c. (Gossip).
(5). White may play $7 \mathrm{P} \times \mathrm{P}$, (if) $\mathrm{Kt} \times \mathrm{B} ; 8 \mathrm{P}-\mathrm{B} 4, \& \mathrm{c}$. (Mortimer).
(6) $6 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{Q} 3$; $7 \mathrm{~B}-\mathrm{K} 2(a), \mathrm{P}-\mathrm{K} 5 ; 8 \mathrm{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt} ; 9 \mathrm{P} \times \mathrm{Pch}, \mathrm{B} \times \mathrm{P}$; $10 \mathrm{~B} \times \mathrm{P}, \mathrm{O}-\mathrm{O}=$. If $6 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4$!
(a) $7 \mathrm{P} \times \mathrm{Kt}$ soon equalises. If $7 \mathrm{~B} \times \mathrm{Kt}(c), \mathrm{QP} \times \mathrm{B} ; 8 \mathrm{P} \times \mathrm{P}(b), \mathrm{P}-\mathrm{KB} 3+$ (Tschigorin v. Zukertort).
(b) If $8 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 9 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 3$ followed by 0.0 is Black's best development (Zukertort).
(c) $7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{Ktsq}$; 8 B-Q3, P-KB3?; $9 \mathrm{Kt}-\mathrm{KR4} 4, \mathrm{Kt}-\mathrm{B} 2$; 10 Q-Kt4, P-KKt3; 11 P-Q61, B \times P; 12 P-B41, Bch; 13 K-Rsq, P-Q4; 14 Q-K2, P-K5; $15 \mathrm{~B} \times \mathrm{P}$, $\mathrm{P} \times \mathrm{B} ; 16 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 2$; $17 \mathrm{R}-\mathrm{Qsq}$!, B-Q2; 1 P $\mathrm{P}-\mathrm{B} 51 \mathrm{Kt}-\mathrm{K} 4 ; 19 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $20 \mathrm{Kt} \times \mathrm{Pch}, \mathrm{K}-\mathrm{B} 2$ (if $20 \ldots, \mathrm{~B} \times \mathrm{Kt}$; $21 \mathrm{Kt} \times \mathrm{P}$); $21 \mathrm{Kt} \times \mathrm{B}, \mathrm{QKt} \times \mathrm{Kt} ; 22 \mathrm{Kt}-\mathrm{B} 3$ (Showalter v. Lipschütz).
(7) $7 \ldots, \mathrm{QP} \times \mathrm{B} ; 8 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 4$; $9 \mathrm{R}-\mathrm{Qsq}, \mathrm{B}-\mathrm{Q} 2$; $10 \mathrm{P}-\mathrm{K} 6, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{Kt}-\mathrm{K} 5+$.
(8) $9 \mathrm{Kt}-\mathrm{Q4}, \mathrm{O}-0$; $10 \mathrm{R}-\mathrm{Qsq}, \mathrm{Q}-\mathrm{Ksq}$; $11 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{B} 3=$: if $11 \mathrm{R}-\mathrm{Ksq}, \mathrm{Kt}-\mathrm{B} 4$ (B-B41); 12 Kt-B5, Kt-K3; 13 Q-Kt4, \&c.
(9) If 10 .., B-R3; 11 Q-Kt4. This Col. was played Zukertort v. Minckwitz.
(10) Or 11 R-Qsq (threatening $K t \times P$).
(11) $14 \mathrm{Kt} \times \mathrm{Bch} 1$ (C. E. R.)
(12) 5 .., Kt-B3 may lead into the variation given in Note 11, p. 130. Or White may play $6 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 7 \mathrm{R} \times \mathrm{Pch}, \mathrm{B}-\mathrm{K} 2 ; 8 \mathrm{Q}-\mathrm{Ksq}$, leaving K 2 open for the Rook if attacked by Kt at Kt5 or Q2. The Handbuch continues 8 Kt -Q2 by Kt-Bsq, thence to K3.
(13) $6 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 7 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 2$; $8 \mathrm{P}-\mathrm{Q} 3, \mathrm{O}-\mathrm{O}=$. A game Brown v. Cooling runs:-6 Kt-B3, Kt $\times \mathrm{B} ; 7 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 2$; $8 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Kt} \times \mathrm{Kt} ; 9 \mathrm{R} \times \mathrm{Kt}, \mathrm{O}-\mathrm{O}$; $10 \mathrm{Kt} \times$ Bch, K-Rsq; 11 Q-R5, P-KKt3 (to stop $11 \ldots, \mathrm{Q} \times$ Pch); 12 Q-R6 (threatening R-R5) + .
(14) 8 P-Q4, $\mathrm{Kt} \times \mathrm{B}$! (not P-KB3 on account of R-Ksq); $9 \mathrm{R} \times \mathrm{Kt}$, P-Q4. Steinitz tried $8 \mathrm{~B}-\mathrm{Bsq}$ (B. C. M. 1886, p. 63). also 8 Kt -B3, $\mathrm{O}-\mathrm{O}$ (if $8 \ldots, \mathrm{Kt} \times \mathrm{B}$; 9 Kt Q 5); 9 B-Q3, B-B3; 10 R-K3, P-KKt3; 11 P-QKt3.
(15) $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 8 \mathrm{Q}-\mathrm{K} 2$. (Steinitz.)
 that the seliy of the Quece is prometure.
(17) $10 \ldots$ P.Keq; 11 B-R3. This Col. and the variations ars taken from the last match belwecn' Messrs. Steinitiz and Zukertort.

Table 69.-RUY LOPEZ' KNIGHT'S GAME.

1 P.K4, P-K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt-QB3; 3 B. Kt 5.

	36	37	88	89	40
3	Kt-Q5				Q-B3
4	K t $\times \mathrm{Kt}$		B-B4	B-R4 (7)	P-B3 (9)
4	P×Kt		$\overline{\mathrm{Kt} \times \mathrm{Ktch}}$	Kt×Ktch(8)	P-QR3
5	P-Q3	O.0	$\underline{Q} \times \mathrm{Kt}$	$\mathrm{Q} \times \mathrm{Kt}$	$\underline{\mathrm{B} \times \mathrm{Kt}}$ (10)
5	P-QB3 (1)	$\overline{\text { P.KR4 (5) }}$	Q-B3	B-B4	Q×B
6	B-QB4 (2)	P-Q3 (6)	Q-QKt3	Q-KKt3	0.0
6	Kt-B3	P-QB3	B-B4	Q-B3	$\overline{\mathrm{Q} \times \mathrm{P}}$
	$0.0 \quad$ (3)	B-QB4	0.0	Kt-B3	Kt \times P 11
7	$\overline{\mathrm{P}-\mathrm{Q} 4}$	B-B4	P-Q3	P-B3	$\overline{\mathrm{B}-\mathrm{K} 2}$
	$\mathrm{P} \times \mathrm{P}$	P.B4	Kt-B3	P-Q3	R-Ksq
8	$\overline{\mathrm{K}+\times \mathrm{P}}$	P-Q4	P-B3	Kt-K2	Q-KB4
9	Kt-Q2 (4)	$\mathrm{P} \times \mathrm{P}$	P-Q3	B-K3	P-Q4
9	B-K3	$\overline{\mathrm{P} \times \mathrm{P}}$	Kt-K2	B.Kt3	P-Q3
10	Kt-K4 -	B-Kt5ch -	B-K3+	0.0	Kt -B3 -
10	B-K2 -	K-Bsq -		P-KR3	B-K3
11				P-KB4+	

(1) If 5 .., B-B4; $6 \mathrm{Q}-\mathrm{R} 5, \mathrm{Q}-\mathrm{K} 2 ; 7 \mathrm{~B}-\mathrm{Kt} 5$, B-Kt5ch; $8 \mathrm{P}-\mathrm{B} 3, \mathrm{P} \times \mathrm{P} ; 9 \mathrm{~B} \times \mathrm{Q} 1$ $\mathrm{P} \times$ Pdis ch; $10 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{R}(\mathrm{Q}) ; 11 \mathrm{Q}-\mathrm{QB} 5, \mathrm{Q} \times \mathrm{Ktch} ; 12 \mathrm{~K}-\mathrm{K} 2+$ (Barbier).
(2) 6 B-R4, Kt-B3; 7 O-O, (if) P-Q4; $8 \mathrm{P}-\mathrm{K} 5$, \&c.
(3) Anderssen v. Blackburne. Or 7 B-KKt5, (if) Qch: 8 B-Q2. Or 7 Q-K2!
(4) Or 9 R-Ksqch I, B-K2 (if B-K3; 10 Q-Kt4); 10 Q-K2, B-K3; 11 P-KB47 (C. E. R.)
(5) Mr. Bird's variation, stopping Q-R5. Or 5 .., P-QB3; 6 B-R4 (if 6 B-B4: - Kt-B3; 7 Q-K2), Kt-K2; 7 P-Q3, P-Q3, \&c.: if $6 \ldots, \mathrm{Kt}-\mathrm{B} 3 ; 7 \mathrm{R}-\mathrm{Ksq}$! B-K2 or B4; 8 P-K5 + .
(6) Or 6 B-B4, B-B4. Or 6 P-K5. (C. E. R.)
(7) $4 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{B}$; $5 \mathrm{Kt} \times \mathrm{BP}, \mathrm{K} \times \mathrm{Kt}$; 6 Q -R5ch. (Mackenzie.)
(8) 4 .., B-B4; 5 P.B3, Kt $\times \mathrm{Ktch}$; $6 \mathrm{Q} \times \mathrm{Kt}$. (Mackenzie v. Bird.)
(9) Or 4 Kt -B3 (Salvioli).
(10) The Handbuch continustion. I think s B-R4 is better. (C. E. R.)
(11) I prefer 7 P-Q4. (C. E. R.)

Table 70.- RUY LOPEZ' KNIGHT'S GAME.
1 P'K4, P-K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt.QB3; 3 B.Kt 5.

	41	42	48	44	45
3	B-Q3	P-B4		$\overline{\text { P-KKt3 }}$	
	P-B3	P.Q3 (2)	$\mathrm{P} \times \mathrm{P}$	P.Q4 (5)	0.0
4	P-QR3	$\overline{\mathrm{Kt} \text {-B3 (3) }}$	P-K5	$\overline{\mathrm{P} \times \mathrm{P}}$ (6)	B-Kt2
5	B-R4 !	0.0	Q-K2	$\mathrm{Kt} \times \mathrm{P} \quad$ (7)	P.B3
	P-QKt4	B-B4	Q-K2	B.Kt2	QKt-K2
6	B-Kt3	Kt-B3	$B \times \mathrm{Kt}$	B-K3	P.Q4
	$\overline{\mathrm{Kt}}$-B3	P.Q3	$\overline{Q P \times B \times 1}$	$\overline{\mathrm{Kt} \text { - } \mathrm{B3} \text { (8) }}$	$\overline{\mathrm{P} \times \mathrm{P}}$
7	0.0	B.Kt5	Kt.Q4	Kt -QB3	$\mathrm{P} \times \mathrm{P}$
	$\overline{\mathrm{Kt} \times \mathrm{P}}$!	P.KR3	Kt-R3	0.0	P.QB3
8	R.Ksq	$\mathrm{B} \times \mathrm{KKt}$	P.KKt4	$0.0 \quad-(9)$	B.R4
	Kt-B3	$Q \times$ B	P-KKt3	Kt-K2-	Kt-B3
9	P.Q4	Kt-Q5	Kt.QB3		P-K5
	P-K5	Q-B2	$\overline{\mathrm{P} \times \mathrm{P}}$		KKt-Q4
10	B.Kt5 (1)	P.QKt4	$\mathrm{P} \times \mathrm{P}$		Kt-B3
	B-K2	B-Kt3	$\overline{\mathrm{Kt} \times \mathrm{P}}$		Kt-Kt3
11	$\mathrm{B} \times \mathrm{Kt}$	P.QR4	Q.R5ch		B.Kt3 -
	$\overline{\mathrm{B} \times \mathrm{B}}$	P.QR4	Q-B2		P.Q4 -
12	$\mathrm{R} \times \mathrm{Pch}$	$\underline{\mathrm{Kt}-\mathrm{Q} 2+}$	$\mathrm{Q} \times \mathrm{Q}$		
	Kt-K2		$\overline{\mathrm{K} \times \mathrm{Q}}$		
13	P.Q5 -		$\underline{\mathrm{KKt}}$-K2 +		
	P.Q3 -				

(1) $\mathrm{Or} 10 \mathrm{Kt}-\mathrm{Kt} 5,0.0 ; 11 \mathrm{Kt} \times \mathrm{KP}, \& \mathrm{c}$. (C. E. R.).
(2) If $4 \mathrm{Q}-\mathrm{K} 2, \mathrm{P} \times \mathrm{P} ; 5 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 6 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3 ; 7 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3$; $8 \mathrm{Q}-\mathrm{K} 2,0.0$ with the best position. White may also play $4 \mathrm{O}-\mathrm{O} 1$ or 4 Kt - B 3 , $\mathrm{P} \times \mathrm{P} ; 5 \mathrm{QKt} \times \mathrm{P}, \mathrm{P} . \mathrm{Q} 4,6 \mathrm{Kt}$ - 3 or Kt 3 , or $\mathrm{Kt} \times \mathrm{P}+$. $\mathrm{Or} 4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{QP}(a)$; $5 \mathrm{Kt} \times \mathrm{P}=$: Steinitz prefers the chances springing from $5 \mathrm{P}-\mathrm{K} 5$ I.
(a) $4 \ldots, \mathrm{P} \times \mathrm{KP} ; 5 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B}, 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3 ; 7 \mathrm{O}-\mathrm{O}, \& \mathrm{c}$.
(3) Salvioli gives $4 \ldots, \mathrm{P}-\mathrm{Q} 3$; $5 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3$; 6 B-Kt5, B-K2; 7 O.O.
(4) Or $6 \ldots$ KtP \times BI; 7 Kt -Q4, P.B4; $8 \mathrm{Kt}-\mathrm{Kt3}, \mathrm{P}-\mathrm{Q4}$; 9 P-Kt4, P-KR4, \&c. (C. E. R.)
(5.) 4 P.QB3, B-Kt2; 5 P-Q4, P \times P; 6 P \times P, QKt-K2; $70-0, \mathrm{Kt}$-B3 (Rees). Or 4 P-Q3. (See p. 44, Col. 8.)
(6.) Or $4 \ldots, \mathrm{Kt} \times \mathrm{P} ; 5 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt} ; 6 \mathrm{Q} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 3 ; 7 \mathrm{P}-\mathrm{K} 5, \mathrm{Q}-\mathrm{Kt} 3=$. (C.E.R.)
(7) $5 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 6 \mathrm{Q} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Q} ; 7 \mathrm{Kt} \times \mathrm{Q}$. (Edinburgh v . Glasgow.)
(8) $6 \ldots, \mathrm{KKt}$ K2? ; $7 \mathrm{~F} . \mathrm{QB3}, 0.0 ; 80.0+$.
(9) Or 8 Kt or $\mathrm{B} \times \mathrm{Kt}$.

SECTION XVI.

THE FOUR KNIGHTS' GAME.

1 P-K4, P-K4; 2 Kt -KB3, Kt-QB3; 3 Kt -B3. Kt-B8.

THE Four Knights' Game is of comparatively recent growth, not laving been adopted in any important match before the Paris Tourney in 1878. Although not yielding such a cramping attack to the first player as its congener the Ruy Lopez, it provides him with a safe and excellent game, and there are pitfalls which need care on the part of the defence to elude. These are too numerous to be pointed out separately, and not sufficiently profound to make it desirable that much space should be devoted to that purpose. The best course for the student is to examine carefully for himself the motive which prompts every move. Mr, Potter's minor principles will be found useful in this opening. One of its chief features is the study and pursuit of minute advantages. The weighing of these, discriminating between small and lesser evils, and selecting the one in order to avoid the other, with due regard to their constantly fluctuating values, so as to secure a superior position in the end-game, is the task the player sets himself.

In its soundest forms the Four Knights' Game is one of the dullest of the open games. It is probably for this reason that its popularity has of late somewhat declined. The forms of attack introduced by Mr. Blackburne and Dr. Flechsig are lively enough, but the former can hardly be considered reliable for players lacking Mr. Blackburne's ingenuity, and both may be easily avoided. The characteristic positions in this opening can be reached by various transpositions in the Ruy Lopez, Vienna, and Petroffi débuts. By 4 P -Q4 the first plajer may bring about a variation of the Scotch Game.

Table 71.-THE FOUR KNIGHTS: GAME.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt.QB3; $3 \mathrm{Kt} \cdot \mathrm{B} 3, \mathrm{Kt} \cdot \mathrm{B} 3$; $4 \mathrm{~B} \cdot \mathrm{Kt} 5, \mathrm{~B} \cdot \mathrm{Kt} 5$; $5 \mathrm{Q} \cdot \mathrm{O}, 0 \cdot \mathrm{O}(1) ; \mathrm{Kt} \cdot \mathrm{Q} 5(2), \mathrm{B} \cdot \mathrm{B} .4$.

	1	2	3	4	5
7	P.Q4 (3)				
	Kt $\times \mathrm{Kt}$	P. \times P	$\overline{\mathrm{Kt} \times \mathrm{QP}}$		$\overline{\mathrm{B} \times \mathrm{P}}$
8	$\mathrm{P} \times \mathrm{B}$	B-Kt5	$\mathrm{KKt} \times \mathrm{Kt}$		$\underline{K t \times B}$
	$\overline{\mathrm{Kt}-13}$	$\overline{\text { R-Ksq (6) }}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$	BxKt	$\overline{\text { QKt } \times \mathrm{Kt}(1 \mathrm{l})}$
9	$\mathrm{B} \times \mathrm{Kt}$	R-Ksq (7)	B-Kt5	B-Kt5	B-Kt5
	$\overline{\mathrm{QP} \times \mathrm{B}}$	Kt-K4 (8)	R-Ksq	$\overline{\mathrm{R}-\mathrm{Ksq}}$	Kt×B
10	$Q \times Q$	$\underline{K} \mathrm{~K}$ t $\times \mathrm{Kt}$	Q-B3	Kt \times Ktch	P.KB4
	$\overline{\mathrm{R} \times \mathrm{Q}}$	$\overline{\mathrm{R} \times \mathrm{Kt}}$	B-K2	P×Kt	P-Q3 (12)
11	B-Kt5	P-KB4	$\mathrm{Kt} \times \mathrm{B}$	B-R6	$\mathrm{P} \times \mathrm{P}$
	$\overline{\mathrm{R}-\mathrm{Ksq}}$	$\cdots \times \mathrm{B}$	$\overline{\mathrm{Q} \times \mathrm{Kt}}$	K-Rsq	$\overline{\mathrm{P} \times \mathrm{P}}$.
12	$\mathrm{B} \times \mathrm{Kt}-$	$\underline{\mathrm{Kt} \times \mathrm{Ktch}(9)}$	KR.Ksq	P-B3	$\underline{\mathrm{R} \times \mathrm{Kt}}$
	$\overline{\mathrm{P} \times \mathrm{B}-(5)}$	Q \times K ${ }^{\text {c }}$	Q-K4	B-Kt3	P-B3 (13)
13		$\mathrm{P} \times \mathrm{R}$	B $\times \mathrm{Kt}$ -	B. $\mathrm{B4}_{+}^{+}$	R.Kt6
		$\overline{\mathrm{Q} \times \mathrm{P}}$	$\overline{\mathrm{P} \times \mathrm{B}}$ -		$\overline{\mathrm{RP} \times \mathrm{R}(14)}$
14		P.K5			$\underline{\mathrm{B} \times \mathrm{Q}+}$
		$\overline{\text { P.QB3 (10) }}$			

Nótes to Table 71.

(1) $5 \ldots, \mathrm{~B} \times \mathrm{Kt}$ is contrary to sonnd principles e.g.: $-5 \ldots, \mathrm{~B} \times \mathrm{Kt}$; $6 \mathrm{QP} \times \mathrm{B}$, P-Q3; $7 \mathrm{~B} \times$ Ktch, $\mathrm{P} \times \mathrm{B}$; $8 \mathrm{~B}-\mathrm{Kt5}, \mathrm{P}-\mathrm{KR3}$; $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B}$ and White has a Kt for a B, with doubled Pawns on both sides.
(2) Or 6 P-Q3, P-Q3; 7 B-Kt5, B \times Kt; $8 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 2$ or $\mathrm{B}-\mathrm{Q} 2=$.
(3) A mode of attack introduced by Mr. Blackburne. White may play 7 P.B3!. See Col. 10.
(4) Steinitz recommends 9 Q-Q3, Q-K2; $10 \mathrm{~B}-\mathrm{K} 3, \mathrm{P}-\mathrm{Q} 3 ; 11 \mathrm{Kt}-\mathrm{Q} 2+$.
(5) From a match game Zukertort v. Rosenthal.
(6) See Diagram. If $8 .:$, P-Q3; 9 Q-Q3, B-K3; $10 \mathrm{~B} \times \mathrm{Qkt}, \mathrm{P} \times \mathrm{B}$; $11 \mathrm{Kt} \times \mathrm{Ktch}$, $\mathrm{P} \times \mathrm{Kt} ; 12 \mathrm{~B}-\mathrm{R} 6, \mathrm{R}-\mathrm{Ksq} ; 13 \mathrm{Kt} \times \mathrm{P}, \& \mathrm{c}$. : if $9 \mathrm{Q}-\mathrm{Q} 2$, Black can play $\mathrm{Kt} \times \mathrm{P} \mathrm{t}$. (C. E. R.)
(7). Proposed as best by Messrs. Rosenthal and Zukertort.
(8) If 9 ... P-Q3? ; 10 Q-Q2.
(9) If $12 \mathrm{P} \times \mathrm{R}$ then Kt -Ksq!
(10 If $14 \ldots, \mathrm{P}-\mathrm{Q} 4 ; 15 \mathrm{P} \times \mathrm{P}$ en pas, B -KKt5; $16 \mathrm{P}-\mathrm{Q7}, \mathrm{R}-\mathrm{KBsq}$ (if $\mathrm{B} \times \mathrm{Q}$; 17 R-K8ch, B-Bsq; $18 \mathrm{R} \times \mathrm{R}, \& \mathrm{c}$.$) ; 17 \mathrm{Q}-\mathrm{Q} 3, \mathrm{P}-\mathrm{QB} 3!$ The Col. is continued after 14 .., P-QB3 by. 15 B-Q3, P-Q4; $16 \mathrm{P} \times \mathrm{P}$ en pas, B-KKt5 $=$.
(11) Black may at least equalise by $\mathrm{S} \ldots, \mathrm{KKt} \times \mathrm{Kt}$.
(12) Or $10 \ldots$ P-B31 $11 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{Kt}$; $12 \mathrm{~B}-\mathrm{R} 6, \mathrm{P}-\mathrm{Q} 41$; $13 \mathrm{P} \cdot \mathrm{B} 5, \mathrm{~K}-\mathrm{Rsq}$; 14 Q-R5, R-KKtsq (see diagram); $15 \mathrm{R}-\mathrm{B} 3$ (a); $\mathrm{P} \times \mathrm{P}$; $16 \mathrm{R}-\mathrm{KR} 3, \mathrm{Kt}-\mathrm{Q} 5$; 17 R-QBsq (if either $17 \mathrm{~B}=\mathrm{K} 3, \mathrm{P}-\mathrm{B} 3$ or R-Qsq; $18 \mathrm{~B} \times \mathrm{P}$), Kt-B6ch; $18 \mathrm{~K}-\mathrm{Rsq}, \mathrm{R}-\mathrm{Kt4}$; $19^{\prime} \mathrm{B} \times \mathrm{R}$ (if $19 \mathrm{Q} \times \mathrm{P} ; 20 \mathrm{~B} \times \mathrm{P}$), $\mathrm{Kt} \times \mathrm{B}+$: or White may play $11 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; $12 \mathrm{R} \times \mathrm{Kt}$, \&c.
(a) 15 QR-Qsq, Kt-Q3; $16 \mathrm{P} \times \mathrm{P}$ (if $16 \mathrm{R}-\mathrm{Q} 3, \mathrm{Kt} \times \mathrm{KP}$; $17 \mathrm{R}-\mathrm{KR} 3, \mathrm{R}-\mathrm{Kt4}, \& \mathrm{c}$.), $\mathrm{P} \times \mathrm{P} ; 17 \mathrm{R} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt} 3 \mathrm{ch} ; 18 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Q}-\mathrm{B} 3 ; 19 \mathrm{R}-\mathrm{Q} 2, \mathrm{Q}-\mathrm{K} 5+$. If $15 \mathrm{KR}-\mathrm{Ksq}$ Black still plays Kt-Q3. (Ranken.)
(13) He cannot take the Rook, but 12 .., Q-Q2 looks safe enough.
(14) If the Black Queen is moved White wins by Kt-B6ch, and Q-R5; and if $13 \ldots$ P-B3; $14 \mathrm{~B} \times \mathrm{P}, \mathrm{R} \times \mathrm{B} ; .15 \mathrm{Kt} \times$ Rch and wins.
(Col. 2.)

After White's 8th move.
(Note 12.)

After Black's 14th move,

Table 72.-THE FOUR KNIGHTS' GAME.

lP.K4, P.K4; $2 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB} 3$; $\mathbf{3} \mathrm{Kt} \cdot \mathrm{B} 3, \mathrm{Kt} \cdot \mathrm{B} 3$; 4 B.Kt 5 , B.Kt 5 .

	6	7	8	9	10
5	0.0			Kt-Q5	
	0.0			$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	B-B4
6	Kt-Q5			$\mathrm{P} \times \mathrm{Kt}$	P.B3 (10)
	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$		B-K2!	Kt.Q5 (8)	$\overline{\mathrm{Kt} \times \mathrm{P}}$
7	$\mathrm{P} \times \mathrm{Kt}$		P-Q3	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{P} \cdot \mathrm{Q} 4$
	$\overline{\mathrm{Kt} \text {-Q5 (1) }}$	P-K5	P-Q3	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{P} \times \mathrm{P}}$
8	$\mathrm{Kt} \times \mathrm{Kt}{ }^{\text {(2) }}$	$\mathrm{P} \times \mathrm{Kt}$	Kt -K3 (6)	Q-Kt4!(dia.)	$\mathrm{P} \times \mathrm{P}$
	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$ (3)	$\overline{\mathrm{Kt}-\mathrm{Q5}}$	Q,K2ch (9)	$\overline{\mathrm{QKt} \times \mathrm{P}(11}$
9	Q-Kt4	$Q \times P$	B-B4	K-Qsq	$\underline{\mathrm{Kt}} \times \mathrm{Kt}$
	1-B4	$\overline{\mathrm{KtP} \times \mathrm{P} \cdot(4)}$	P-B3	Q-B3	P.QB3
10	P.Q3	B.R4	P-B3	R-Ksqch	0.0
	P-QB3	$\overline{\text { B-Kt2 (5) }}$	$\overline{\mathrm{Kt} \times \text { Ktch }}$	$\overline{\mathrm{K}}$-Q9q	P×Kt!
11	B-B4	P. 13	Q $\times \mathrm{Kt}$	R-K4	Kt-B5
	Q-B3	$\overline{\mathrm{B} \cdot \mathrm{B} 4}$	B.K3	B-B4	0.0
12	R.Ksq	P-Q4	B-K.t3	P.Q3	$\mathrm{Q} \times \mathrm{P}$
	P-Q3	B-Kt3	Q-Q2	P-KR3	R - $\mathrm{Rq} \mathrm{q}^{\text {(12) }}$
18	Q-Kt5 -	B-Kt3 -	Q-K2	B-KB4+	B-Q3
	-	P.Q4 -	P-Q4		Q-B3
14			$\mathrm{P} \times \mathrm{P}$		$\mathrm{B} \times \mathrm{Kt}$
			$\overline{\mathrm{P} \times \mathrm{P} \quad(7)}$		$\overline{\mathrm{R}-\mathrm{K} 4 ~(13)}$

(1) See dia. p. 141. If $7 \ldots, \mathrm{Kt}-\mathrm{K} 2$; $8 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} t \times \mathrm{P}$; $9 \mathrm{P}-\mathrm{QB} 3$ with a slightly better game.
(2) If, as suggested ingeniously by Mr. Steinitz, $8 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{B}$; 9 P-QR4, Kt-Q5; $10 \mathrm{P}-\mathrm{QB} 3$, then $\mathrm{B}-\mathrm{B4}$; $11 \mathrm{P} \times \mathrm{Kt}$ (if $11 \mathrm{P}-\mathrm{QKt4}(a), \mathrm{B}-\mathrm{Q} 3 ; 12 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{P}$), $\mathrm{B} \times \mathrm{P} ; 12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{B} 3$; and we prefer Black's game. (a) 11 Kt -Q3, P-Q3; $12 \mathrm{P}-\mathrm{QKt4}$, (if $12 \mathrm{Kt} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; $13 \mathrm{P} \times \mathrm{Kt}$) $\mathrm{B}-\mathrm{KB4}+$.
(3) $8 \ldots, \mathrm{QP} \times \mathrm{P}$; $9 \mathrm{~B}-\mathrm{K} 2, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{~B} \times \mathrm{P}$ (Steinitz).
(4) If $9 \ldots, \mathrm{QP} \times \mathrm{P}$; 10 B-K2! (C. E. R.), B-Q3; 11 P-B3, P-QB4; 12 R-Qsq: if $10 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B} \times \mathrm{P}$; $11 \mathrm{R}-\mathrm{Qsq}, \mathrm{Q}-\mathrm{R} 5+$: (Fraser.)
(5) Erom a game Gunsberg v. Ranken in the Vizayanagaram Tournament. If 11 Q-QKt3, P-QR4; 12 P-QB3, B-B4; if now $13 \mathrm{Q} \times \mathrm{B}, \mathrm{B}-\mathrm{K} t 3$ and wins.
(6) Or $8 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 9 \mathrm{Kt}-\mathrm{K} 3, \mathrm{P}-\mathrm{B} 4$; $10 \mathrm{P}-\mathrm{QKt3}, \mathrm{Kt}-\mathrm{Ksq}$; $11 \mathrm{~B}-\mathrm{Kt2}, \mathrm{P} \cdot \mathrm{B} 4$; $12 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $18 \mathrm{Kt}-\mathrm{Q} 2+$.
(7) Zukertort v. Rosenthal.
(8) Or $6 \ldots, \mathrm{P}-\mathrm{K} 5!$; $7 \mathrm{P} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{P}$; $8 \mathrm{~B}-\mathrm{K} 2$ (B. C. M., Vol. 10, p. 25).
(9) See diagram below. If $8 \ldots, \mathrm{Q}-\mathrm{B} 3 ; 90-0$ (or $9 \mathrm{P}-\mathrm{KB} 4$ to prevent Q -K4ch), B-K2 (if $\mathrm{O}-\mathrm{O}$; $10 \mathrm{~B} \times \mathrm{P}$; $10 \mathrm{R}-\mathrm{Ksq}, \mathrm{P}-\mathrm{QR} 3 ; 11 \mathrm{P}-\mathrm{Q} 6+$. Steinitz suggests $9 .$. , P-B3; 10 R-Ksqch, K-Qsq $11 \mathrm{~B}-\mathrm{B} 4, \mathrm{P}-\mathrm{Q} 3 ; 12 \mathrm{Q}-\mathrm{Kt3}, \mathrm{~B}-\mathrm{KB} 4 ; 13 \mathrm{P} \cdot \mathrm{QB} 3, \mathrm{~B}-\mathrm{B} 4=$. Or $8 . ., \mathrm{O} .0 ; 9 \mathrm{O}-\mathrm{O}, \mathrm{B}-\mathrm{B4} ; 10 \mathrm{P}-\mathrm{Q} 6, \mathrm{~B} \times \mathrm{P} ; .11 \mathrm{Q} \times \mathrm{QP}, \mathrm{B}-\mathrm{K} 2=$. (Schachzeitung).
(10) Introduced by Dr. Flechsig at the Liepzig Congress, 1877. Steinitz gives $6 \mathrm{P}-\mathrm{Q} 3, \mathrm{Kt} \times \mathrm{Kt} ; 7 \mathrm{P} \times \mathrm{Kt}$, Kt-Q5; $8 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Kt}: 9 \mathrm{P}-\mathrm{QB} 3, \mathrm{~B} \cdot \mathrm{~B} 4!, \& \mathrm{c}$.
(11) If $8 \ldots$ B-Kt5ch; 9 K-Bsq, B-K2!; 10 B-KB4, Kt-Q3; 11 B-Q3, 0.0; $12 \mathrm{P}-\mathrm{KR} 4+$. 'If $10 \ldots$ P-Q3; $11 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Kt}$; $12 \mathrm{P} \cdot \mathrm{Q} 5, \mathrm{P}-\mathrm{QR} 3$; (if) $13 \mathrm{Q}-\mathrm{R4}$, Kt -B4 l; $14 \mathrm{P} \times \mathrm{Kt}, \& \mathrm{c}$.
(12) If $12 \ldots, \mathrm{Q}-\mathrm{Kt3}$; $13 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B} ; 14 \mathrm{~B}-\mathrm{R} 6+$.
(13) Continued $15 \mathrm{Q}-\mathrm{B} 4, \mathrm{P}-\mathrm{Q4} ; 16 \mathrm{~B} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Kt}: 17 \mathrm{Q} \times \mathrm{B}, \mathrm{R} \times \mathrm{B}=$. If 15 Kt -R6ch, $\mathrm{P} \times \mathrm{Kt}$; $16 \mathrm{Q}-\mathrm{Q} 3, \mathrm{P}-\mathrm{Q} 3 ; 17 \mathrm{~B} \times$ Pch (if B-Q2, then B-B4), K.Bsq; 18 B-Q2, Q-R5 =. (Ranken.)
(Col. 6.)

After Black's 7th move.
(Col. 9.)

After White's 8th move.

TABL\& 73.--THE FOUR KNIGHTS', GAME.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{K} \cdot \mathrm{B} 3, \mathrm{Kt} \cdot \mathrm{Q} \mathrm{B} 3$; $3 \mathrm{Kt} \cdot \mathrm{B} 3$, Kt-B3; 4 B. Kt 5 .

	11	12	13	14	15
4	$\overline{\text { B-B4 (1) }}$		P-QR3		
5	$\mathrm{Kt} \times \mathrm{P}$	0,0	$\mathrm{B} \times \mathrm{Kt} \quad$ (8)		
5	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$ (2)	P-Q3 (5)	$\overline{\mathrm{QP} \times \mathrm{B}}$		
6	P-Q4 (dia.)	P-Q4	$\mathrm{Kt} \times \mathrm{P}$		
6	B-Q3! (3)	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$ (9)		
7	P.B4 (4)	$\mathrm{Kt} \times \mathrm{P}$	$\mathrm{Kt} \times \mathrm{Kt}$		
7	Kt-B3 !	B-Q2	Q-Q5		
8	P-K5	$\underline{\mathrm{Kt} \times \mathrm{Kt} \mathrm{(6)}}$. 0.0		
8	B-Kt5	$\overline{\mathrm{P} \times \mathrm{Kt}}$	Q $\times \mathrm{KKt}$		
9	$\mathrm{P} \times \mathrm{Kt}$	B-Q3	R-Ksq. (10)		
9	$\overline{\mathbf{Q \times P}+}$	O-0	B-K3 (11)		
10		Kt-R4	P-Q4		
10		B.Kt3	Q-Q4	Q-KB4	
11		$\underline{\mathrm{K}} \times \mathrm{B}$	B-Kt5 (12)	B-Kt5	
11		$\overline{\mathrm{RP} \times \mathrm{Kt}}$	$\overline{\mathrm{K}} \mathrm{Q} 2$! (13)	P-R3	B-Q3
12		P-KB4	Q-Q2	Q-Q3	P-KKt4
12		Q-K2	R-Ksq (14)	K-Q2 (16)	Q-Q4 (17)
13		R-Ksq. (7)	PQKt3!	B-R4	Q-Q2
13			K-Bsq	R-Ksq	0.0
			P-QB4	P-QB4	P.QB4
14			Q-Q2	K-Bsq	Q \times BP
			QR-Qsq	QR-Qsq+	Kt-B6ch
15			$\overline{\mathrm{B}-\mathrm{KB4}}$ (15)		$\overline{\mathrm{K}}$-Rsq (18)

(1) If $4 \ldots$ P-Q3; $5 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B}-\mathrm{Q} 2 ; 6 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 7 \mathrm{Q}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{Kt} \times \mathrm{P}+$: or White may play 6 B-Kt5, B-K2; 7 P-Q5, Kt-QKtsq; 8 B-QB4 + .
(2) Black may safely play $5 \ldots, \mathrm{Q}-\mathrm{K} 2$. If however $5 \ldots, \mathrm{~B} \times \mathrm{Pch}$; then $6 \mathrm{~K} \times \mathrm{B}$, $\mathrm{Kt} \times \mathrm{Kt} ; 7 \mathrm{P}-\mathrm{Q} 4$ with the better game.
(3) Or $6 \ldots, \mathrm{~B}-\mathrm{Kt5}$; $7 \mathrm{P} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{P}$; 8 Q -Q4 (he may also play $\mathrm{Q}-\mathrm{Kt4}$), $\mathrm{Kt} \times \mathrm{Kt}$; $9 \mathrm{P} \times \mathrm{Kt}, \mathrm{B}-\mathrm{K} 2$; $10 \mathrm{P}-\mathrm{K} 6, \mathrm{~B}-\mathrm{B} 3=$.
(4) Weak before Castling (Zukertort). If $7 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{P}$; $80-0$: or $8 \mathrm{Kt}-\mathrm{K} 2$, Q-K2, and may win a Pawn; but 9 B.Q3!, Kt \times P;. 10 O-O, P-Q4; 11 R-Ksq, O-O; 12 Kt-B4, R-Qsq ; 13 Q-K2, and White will at least recover the Pawn.' (Steivitz.)
(5) 5 .., Q-O; $6 \mathrm{Kt} \times \mathrm{P}$ (or $6 \mathrm{P}-\mathrm{Q} 31) \mathrm{Kt} \times \mathrm{Kt}$; $7 \mathrm{P}-\mathrm{Q4}$, B-Q3; $8 \mathrm{P}-\mathrm{B4}$!, Kt-B3; 9 P-K5, B-K2; 10 P-Q5+: if $6 \ldots, \mathrm{R}-\mathrm{Ksq} ; 7 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt} ; 8 \mathrm{~B}-\mathrm{B} 4$, P.QKt41; 9 B-K2, KtxP; $10 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{Kt}$; $11 \mathrm{~B} \cdot \mathrm{~B} 3, \mathrm{R}-\mathrm{K} 3 ; 12 \mathrm{P} \cdot \mathrm{Q} 31+$. (B. C. M., Vol. 3, p. 13.) Compare Col. 15, page 128.
(6) Or $8 \mathrm{Kt}-\mathrm{B} 5, \mathrm{Q}-\mathrm{O}$; $9 \mathrm{~B}-\mathrm{KKt5}$, $\mathrm{B} \times \mathrm{Kt}$; $10 \mathrm{P} \times \mathrm{B}+$. (Paulsen v. Zukertort.)
(7) Schwarz v. Mackenzie (Vienna 1882) won by the former.
(8) The variations consequent on this move are by Mr. Ranken, from the Chess Player's Chronicle, December, 1879. For 5 B-R4 see the "Ruy Lopez' Kts Game."
(9) Mr. Wayte has shown this is the only way by which Black can recover his Pawn. If $6 \ldots$..., B-QKt5; 7 O-O, B $\times \mathrm{Kt}$; $8 \mathrm{KtP} \times \mathrm{B}, \mathrm{Q}-\mathrm{K} 2$;. $9 \mathrm{P}-\mathrm{Q4}, \mathrm{Kt} \times \mathrm{P}$; 10 R-Ksq, Kt×QBP; 11 Q-Q2+.
(10) Steinitz prefers 9 P-Q4, Q-KB4; 10 P-KB4, \&c. See diagram below.
(11) If $9 \ldots, \mathrm{~B}-\mathrm{K} 2$; $10 \mathrm{P}-\mathrm{Q} 4, \mathrm{Q}-\mathrm{KB} 4!$ (if Q-Q4; $11 \mathrm{~B}-\mathrm{Kt5}, \mathrm{~B}-\mathrm{K} 3 ; 12 \mathrm{~B} \times \mathrm{B}$, $\mathrm{K} \times \mathrm{B}$; $13 \mathrm{Kt-QB5}, \& c.) 11 \mathrm{Kt}-\mathrm{Kt} 3$, Q-Kt3 (best, otherwise 12 Kt -R5); $12 \mathrm{~B}-\mathrm{B} 4$ winning a Pawn.
(12) 11 Kt-B3, Q-Q2; 12 B-Kt5, P-R3; 13 Q-R5, P-KKt3; 14 Q-R4, B-Kt2; 15 B-K3, P-KKt4; 16 Q-Kt3, O-O-O. (Clerc v. De Riviere.)
(13) If $11 \ldots$, B-Q3; 12 P-QKt3, P-Kt4 F ; $13 \mathrm{Q}-\mathrm{Q} 2, \mathrm{O}-0$; $14 \mathrm{P}-\mathrm{QB} 4, \mathrm{P} \times \mathrm{P}$; $15 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{BP} ; 16 \cdot \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \mathrm{K}-\mathrm{Rsq}$! ; $17 \mathrm{R}-\mathrm{K} 4, \mathrm{~B}-\mathrm{KB} 4 ; 18 \mathrm{R}-\mathrm{R} 4+$.
(14) If 12 .., B-Q3; 13 P-QKt3, QR-Ksq; 14 P-QB4, Q-KB4; 15 QR-Qsqt.
(15) Continued $16 \mathrm{P}-\mathrm{B} 3, \mathrm{~B} \times \mathrm{Kt}$; $17 \mathrm{P} \times \mathrm{B}+$.
(16) If $12 \ldots, \mathrm{Q}-\mathrm{Kt} 3$; $13 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \mathrm{P} \times \mathrm{Kt} ; 14 \mathrm{R} \times \mathrm{Bch}, \mathrm{K} \cdot \mathrm{Q} 2 ; 15 \mathrm{Q} \times \mathrm{Q}, \mathbf{P} \times \mathbf{Q}$; $16 \mathrm{~B} \times \mathrm{BP}+$.
(17) If $12 \ldots, \mathrm{Q}-\mathrm{Kt} 3$; $13 \mathrm{P}-\mathrm{KB} 4+$.
(18) If $15 \ldots, \mathrm{P} \times \mathrm{Kt}$; $16 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 4 ; 17 \mathrm{R}-\mathrm{K} 5$, \&c. The Col. is continued 16 QR-Bsq, Q-Kt4; ' 17 P-QR4, Q \times PP: 18 Q-Q3, P-KKt3; 19 Q-KR3, P-KR4; $20 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{KtP}$; $21 \mathrm{~B}-\mathrm{B} 6 \mathrm{ch}$ ând wins.
(Col. 11.)

After White's 6th move.
(Col. 13.)

After'White's 9th move.

Table 74.-THE FOUR KNIGHTS' GAME.
1 P-K4, P-K4; 2 Kt-KB3. Kt-Q B 3; 3 Kt-B3, Kt-B3.

	16	17	18	19	20
4	B-Kt5	P-Q4	$\mathrm{Kt} \times \mathrm{P}$	B.B4 (8)	
	Kt-Q5	$\overline{\text { B-Kt5 (6) }}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	
5	$\mathrm{Kt} \times \mathrm{P} \quad$ (1)	P-Q5	P.Q4	$\mathrm{B} \times \mathrm{Pch}$	0.0
	$\overline{\mathrm{Kt} \times \mathrm{KP}}$ (2)	Kt-QKtsq	Kt-Kt3	$\mathrm{K} \times \mathrm{B}$	Kt×Kt
6	$\mathrm{Kt} \times \mathrm{Kt}$ (3)	$\mathrm{Kt} \times \mathrm{P}$ -	P-K5	$\mathrm{Kt} \times \mathrm{K} \mathrm{t}$	QP. \times Kt
	Q-K2 (4)	P-Q3 -	Kt-Ktsq (7)	P.Q4	Q-K2
7	0.0		B.QB4	QKt-Kt5ch (9)	R-Ksq
	$\overline{\mathbf{Q} \times \mathrm{Kt}}$		P.QB3	K-Ktsq (10)	P.Q3
8	R.Ksq		Q.B3	P.Q4	Kt-Kt5
	B-K2		P.Q4	P.KR3	$\overline{\mathrm{Kt}}$-Qsq
9	Kt-B3 (5)		$\mathrm{P} \times \mathrm{P}$ en pas	Kt-R3	P.B4
			Kt-B3	$\overline{\mathrm{B} \times \mathrm{Kt}}$	1-B3
10			Q.K2ch	$\mathrm{P} \times \mathrm{B}$	$\mathbf{P} \times \mathrm{P}$
			$\overline{\mathrm{K} \cdot \mathrm{Q} 2+}$	P-K5	$\overline{\mathrm{QP} \times \mathrm{P}}$
11				Kt-K5	Q-R5ch
				$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	P-KKt3
12				$\mathrm{P} \times \mathrm{Kt}$ -	Q-R4
				P-B3 -	B-Kt2
18					Kt-K4
					B-K3+

(1) Or $5 \mathrm{~B}-\mathrm{B} 4, \mathrm{Kt} \times \mathrm{KP} \cdot 6 \mathrm{~B} \times \mathrm{Pch}, \& \mathrm{c}$.
(2) If $5 \ldots, \mathrm{Kt} \times \mathrm{B}$: $6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q} 3$; $7 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt} \times \mathrm{P}$; 8 Q-K2, Q-K2; $9 \mathrm{Kt} \times \mathrm{BPch}+$.
(3) If 6 B-B4, Q-Kt4; 7 O-O+. Steinitz дotes 6 .., Kt-Q3 good enough.
(4) Or he may safely take the Bishop.
(5 If $9 \ldots, \mathrm{Q}-\mathrm{Q} 3$; $10 \mathrm{~B}-\mathrm{B4}:$ if $9 \ldots, \mathrm{Q}-\mathrm{QB4}$; $10 \mathrm{P}-\mathrm{QKt4}, \mathrm{Q} \times \mathrm{P}$; 11 Kt Q 5 , Q-B4; $12 \mathrm{Kt} \times \mathrm{B}+$. (Steinitz.)
(6) $4 \ldots, \mathrm{P} \times \mathrm{P}$! ; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt5}$ transposes into the Scotch Game. See p. 61. Col. 35.
(7) $6 \ldots, \mathrm{Q}-\mathrm{K} 2$; 7 B-KKt5, P-KR3; $8 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{Qsq} ; 9 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{~B} \times \mathrm{BP}$, \&c.
(8) $4 \mathrm{P}-\mathrm{QR} 3, \mathrm{P} \cdot \mathrm{Q} 4$ (or P-QR3) ; $5 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{QKt} \times \mathrm{Kt} ; 7 \mathrm{Q}-\mathrm{K} 2=$.

- (9) If 7 KKt-Kt5ch, K-Ksq; 8 Q-R5ch (or 8 Q-B3, Q-K2), P-Kt3; 9 Q-B3. B-KB4 + .
(10) Or $7 \ldots, \mathrm{~K} \cdot \mathrm{Ksq}$!

B O O K II.

THE KING'S BISHOP'S OPENING.

$$
1 \mathrm{P}-\mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{~B}-\mathrm{B} 4 .
$$

IN practice the King's Bishop's Opening is often treated as if it were merely a transposition of the King's Knight's Opening, and recent analysis tends to the same conclusion. It has, however, a separate history and a special form. The principle upon which it is founded is the plausible one that it must be better to play $2 \mathrm{~B}-\mathrm{B} 4$ than 2 Kt -B3, because the former does not interfere with the advance of the KB Pawn. Accepting a theory so unexceptionable, the older experts for the same reason recommended the reply $2 \ldots$, B-B4. Walker (1841) considered $2 \ldots, \mathrm{Kt}$-KB3 an inferior move, its good points notwithstanding. It attacked the King's Pawn, and if White paused to defend the same, Black, after $3 \ldots$, B-B4, was in a position to Castle, and the attack on bis weak KB Pawn, of which much was made by early writers, had lost Lits force. To obviate this apparent loss of time, White played the counter
attack $3 \mathrm{Kt}-\mathrm{KB} 3$, and in reply to $3^{\circ} \ldots$, $\mathrm{Kt} \times \mathrm{P}$ he was advised to play 4 Q-K2 (Col. 7). The ingenious but artificial variation in which this development works out to Black's advantage is evidence of the time and labour bestowed upon it. The result was the discovery of the BodenKieseritzky Gambit (4 Kt-QB3 for the first player instead of $4 \mathrm{Q}-\mathrm{K} 2$) ; and subsequently in Q-K2 being adopted for White on the third move, as the continuation most in accordance with the spirit of the attack. This move when played after $2 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B}-\mathrm{B} 4$ is fairly met by $3 \ldots, \mathrm{Q}-\mathrm{K} 2$ on Black's part. After $2 \ldots$, Kt-B3; Q-K2, the reply Q-K2 is stopped by development considerations. White threatens the advance of his centre Pawns, while keeping in hand the possibility of $\mathrm{B} \times \mathrm{Pch}$.

Besides the development move $2 \ldots$, B-B4, and the counter attack 2 ..., Kt-KB3, Black may reply to 2 B-B4 by the purely defensive move 2 ..., P-QB3 (to stop the action of White's K Bishop by P-Q4), or by the counter attack $2 \ldots, \mathrm{P}-\mathrm{KB} 4$. The latter is a little stronger in this opening than in the King's Knight's opering, owing to White's move 2 B -B4 not being so immediately attacking as $2 \mathrm{Kt}-\mathrm{KB} 3$. Both these variations have been elaborated by the older writers and we have found little to add to previous analysis.

The counter development by $2 \ldots$, B-B4, as now continued, leads to a game very similar to the Giuoco Piano (Cóls. 11-17). Mr. Potter, in reviewing the Bishop's opening, is disposed to abandon all these lines of play as obsolete, and rest his prospects for the first player on the variation given in Col. 1, and Note 4. Here it will be seen that White adopts a defensive attack while Black plays an attacking defence. The same position may be brought about in the Giuoco Piano by the moves 1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4, B-B4; 4 P-B3, Kt-B3; 5 P.Q3, O.O; 6 Q-K2, P-Q4; 7 B-Kt3. See diagram below.

SUMMARY OF THE SECTIONS INTO WHICH THE KING'S BISHOP'S OPENING IS DIVIDED.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{~B} \cdot \mathrm{~B} 4
$$

Section I. The Berlin Defence. 2 ..., Kt-KB3, \&c. Colṣ. 1-10.

The Classical Defence. 2 ..., B-B4, \&c. Cols. 11-22.

McDonnell's Double Gambit.
$2 \ldots$, B-B4; 3 P-QKt4, B \times P; 4 P-B4, \&c. Col. 23.

The 'Queen's Bishop's Paun Defence. 2 ..., P.QB3, \&c. Cols. 24-25.

The Calabrese Counter Gambit 2 ..., P-KB4, \&c. Cols. 26-30.

Section II. The Boden-Kieseritzky Gamisit.

$$
2 \ldots, \mathrm{Kt}-\mathrm{KB} 3 ; 3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt} \times \mathrm{P} ; 4 \mathrm{Kt}-\mathrm{B} 3, \& \mathrm{c} .
$$

SECTIONI.

Table 75.-THE BERLIN DEFENCE.
1 P-K4, P-K4; 2 B-B4, Kt-KB3.

	1	2	3	4	5
3	Q-K2		Kt-QB3	P-Q4	
	$\overline{\mathrm{Kt}} \mathrm{QB} 3$ (1)		$\overline{\text { B-B4 (7) }}$	$\overline{\mathrm{P} \times \mathrm{P} \text { ! }}$	
4	P.QB3 (2)		P-Q3	P-K5 (8)	Kt-KB3
	B-B4 (3)		$\overline{\mathrm{Kt}}$-B3	P-Q4	$\overline{\mathrm{K} t \times \mathrm{P}}$
5	P.B4 (4)		B-KKt5	B-Kt3! (9)	$\mathbf{Q} \times \mathbf{P}$
	$\overline{\mathrm{B} \times \mathrm{Kt}}$		P-Q3	Kt-K5	$\overline{\mathrm{Kt}-\mathrm{B4}}$
6	$\mathrm{R} \times \mathrm{B}$		Kt-Q5 -	Kt -K2	Kt-K5
	0.0	P-Q4	-	$\overline{\mathrm{B} \cdot \mathrm{QB4}}$ (10)	$\overline{\mathrm{Kt}}$-K3
7	P-Q3 (5)	$\mathrm{P} \times \mathrm{QP}$		P-KB3	0.0
	P-Q4	B-Kt5		Kt-Kt4	$\overline{\mathrm{Kt} \times \mathrm{Q}} \mathbf{(1 1)}$
8	$\mathrm{B} \times \mathrm{P}$	Q-K3		Kt \times P -	$\mathrm{B} \times \mathrm{Pch}$
	$\overline{\mathrm{Kt} \times \mathrm{B}}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$		Kt-K3 -	K-K2
9	$\mathrm{P} \times \mathrm{Kt}$	Q-Kt3 4			B-Kt5ch
	$\overline{\mathrm{P} \times \mathrm{P}}$				K-Q3
10	$\mathrm{B} \times \mathrm{P}$				Kt-B4ch
	$\overline{\mathrm{R}-\mathrm{Ksq}}$				K-B3
11	B-K3				$B \times \mathrm{Q}$
	$\overline{\mathrm{Kt}-\mathrm{K} 4+(6)}$				P-Q4 (12)

(1) If $3 \ldots, \mathrm{~B}-\mathrm{B} 4 ; 4 \mathrm{~B} \times \mathrm{Pch}$?, $\mathrm{K} \times \mathrm{B} ; 5 \mathrm{Q}-\mathrm{B} 4 \mathrm{ch}, \mathrm{P}-\mathrm{Q} 4 ; \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{P}+$.
(2) $4 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{~B}-\mathrm{B} 4 ; 5 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{P}-\mathrm{Q} 4 ; 6 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P} ; 7 \mathrm{P}-\mathrm{Q} 3,0.0$ (Gunsberg v. Burn).
(3) If $4 \ldots, \mathrm{P}-\mathrm{Q} 4 ; 5 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P} ; 6 \mathrm{P}-\mathrm{Q} 4!$
(4) Or 5 Kt-B3, O-O ; 6 P-Q3, P-Q4; 7 B-Kt3 =. (Potter.) Dia. p. 146.
(5) If $7 \mathrm{P}-\mathrm{B} 5, \mathrm{P}-\mathrm{Q} 4 ; 8 \cdot \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P} ; 9 \mathrm{P} \cdot \mathrm{KKt4}, \mathrm{P}-\mathrm{K} 5+$.
(6) 12 P-KR3, B-B4; 13 P-Q4, B-Q6, \&c.
(7) $3 \ldots \mathrm{Kt} \times \mathrm{P} ; 4 \mathrm{~B} \times \mathrm{Pch}$ or $\mathrm{Q}-125$. C. E. R.), $\mathrm{K} \times \mathrm{B} ; 5 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q4}$ (or Kt-B3; 6 Q-B3ch, K-Ksq) ; 6. Q-B3ch, K-Ktsq; 7 Kt-Kt5 (or Q-QKt3l), Q-Q2+: or 4 Kt \times Kt, P-Q4; $5 \mathrm{Q}-\mathrm{R} 5, \mathrm{P} \times \mathrm{B} ; 6 \mathrm{Q} \times \mathrm{KPch}, \mathrm{B}-\mathrm{K} 3 ; 7 \mathrm{Kt} \mathrm{KB} 3$? (Hallerv: Pollock), or 7 P-QR3! (Lee.) If 3 .., P-B3; 4 P-B4. If $3 \ldots$, P-QKt4 Black plays the Evans Gambit with a move behind.
(8) $4 \mathrm{Q} \times \mathrm{P}$ leads into the centre Gambit. If. $4 \mathrm{~B}-\mathrm{KKt5}$, Kt-QB3 (or B-K2; 5 P -K5, Kt-Ktsq). After $3 \ldots, \mathrm{Kt} \times \mathrm{P} ; 4 \mathrm{P} \times \mathrm{P}$ with a good game.
(9) 5 B-Kt5ch, B-Q2; $6 \mathrm{~B} \times \mathrm{Bch}, \mathrm{KKt} \times \mathrm{B} ; 7 \mathrm{Q} \times \mathrm{P}, \mathrm{QKt}-\mathrm{B} 3 ; 8 \mathrm{Q} \times \mathrm{P}, \mathrm{KKt} \times \mathrm{P}+$ 。
(10) Or $6 \ldots$, B-Kt5ch. (C. E. R.)
(11) This Col, is Prince Ouroussoff's variation. Black may play 7 .., Kt-QB3 or B-B4+.
(12) $12 \mathrm{Kt}-\mathrm{K} 3, \mathrm{~B}-\mathrm{K} 3=:$ if $11 \ldots, \mathrm{Kt} \times \mathrm{P}$; $12 \mathrm{R}-\mathrm{Bsq}, \mathrm{Kt} \times \mathrm{R}$; $13 \mathrm{Kt}-\mathrm{K} 5 \mathrm{ch}$, K-Q3; $14 \mathrm{~B} \times \mathrm{Fch}, \mathrm{K}-\mathrm{K} 2$; $15 \mathrm{Kt-QB3}, \mathrm{~K}-\mathrm{B} 3$; $16 \mathrm{Kt}-\mathrm{Q} 5 \mathrm{ch}, \mathrm{K}-\mathrm{B4} ; 17$ P-KKt4ch end wins.

Table 76.-THE BERLIN DEFENCE.

1 P-K4, P-K4; 2 B-B4, Kt-KB3.

	6	7	8	9	10
3	P.B4	Kt-KB3	P-Q3		
	$\overline{\mathrm{Kt} \times \mathrm{P}}$ (1)	$\overline{\mathrm{K} \times \mathrm{P}}$	P-Q4 ?	$\overline{\text { B-B4 }}$	Kt-B3
4	P-Q3	Q-K2 (4)	$\mathrm{P} \times \mathrm{P}$	P-KB4 (7)	P.KB4
	Q-R5ch (2)	P-Q4	$\overline{\mathrm{Ktx}} \mathrm{P}$	P-Q4	$\overline{\mathrm{B}}$ - $\mathrm{B}^{\text {d }}$
5	P-KKt3	13-Kt3 (5)	Kt-KB3	$\mathrm{B} \times \mathrm{P} \quad$ (8)	$\mathrm{P} \times \mathrm{P}$ (10)
	Kt $\times \mathrm{KtP}$	Kt-QB3	Kt-QB3	$\overline{\mathrm{Kt} \times \mathrm{B}}$	QKt× ${ }^{\text {P }}$
6	Kt-KB3	P.Q3	O.O	$\mathrm{P} \times \mathrm{Kt}$	B-Kt3
	Q-R4	Kt-B4	$\overline{\mathrm{B}}$ - K	$Q \times \mathrm{P}$	0.0
7	R-Ktsq	$\mathrm{K} \times \times \mathrm{P}$	R-Ksq	Kt-KB3	Kt-KB3(11)
	$\overline{\mathrm{P}-\mathrm{Q} 4}$!	Kt-Q5	P-KB3	$\stackrel{P}{P \times P}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
8	$\mathrm{B} \times \mathrm{P}$	Q-K3	P-Q4+	$\mathrm{B} \times \mathrm{P}$	Q $\times \mathrm{Kt}$
	$\overline{\mathrm{P} \times \mathrm{P} \quad(3)}$	$\overline{\mathrm{Kt}}(\mathrm{B4}) \times \mathrm{B}$		$\overline{\mathrm{B}-\mathrm{K}} \overline{3}$ (9)	P-Q4
9		$0 \cdot 0 \quad$ (6)		Kt-B3	B-Kt5 !
		$\overline{\mathrm{Kt} \times \mathrm{P}}$		Q-K3ch -	$\overline{\mathrm{P} \times \mathrm{P}}$
10		Q-K2			$\mathrm{P} \times \mathrm{P}$
		$\overline{\mathrm{Kt}}$ (K+6,Q) ${ }^{\text {a }}$			B-KKt5+

(1) $3 \ldots, \mathrm{P} \times \mathrm{P}$ transposes into the German defence to the Bishop's Gambit. If $3 . ., \mathrm{P}-\mathrm{Q} 4 ; 4 \mathrm{BP} \times \mathrm{P}(\mathrm{P} \times \mathrm{QP} ; 4 \mathrm{P} \times \mathrm{P}$ is also a position in the Bishop's Gambit), $\mathrm{Kt} \times \mathrm{P} ; 5 \mathrm{Q}-\mathrm{B} 3, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$, (or Kt-QB3); $6 \mathrm{P}-\mathrm{KKt} 3, \mathrm{Kt} \times \mathrm{KtP} ; 7 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B}$; 8 Kt-B3, B-K3; 9 P-Q3, Q-B3; 10 B-Kt5 (or KKt-K2! C. E. R.), P-Q5 +.
(2) Mr Wayte notes that $4 \ldots, \mathrm{Kt}$-Q3 is worth consideration. He continues by $5 \mathrm{~B}-\mathrm{Kt3}, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{QB} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 4$. (B. C. M., 1891, p. 506.)
(3) Black's advantage is doubtful against White's development. If $7 \ldots, \mathrm{Kt}$ - B 4 ; 8 R-Kt5, Q-R6; $9 \mathrm{~B} \times$ Pch, K-K2: if $9 . ., \mathrm{K} \times \mathrm{B}$; $10 \mathrm{R}-\mathrm{R} 5, \& c$.
(4) 4 Kt -QB3 transposes into the Boden-Kieseritzky Gambit. If 4 P-Q3, Kt-Q3; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{B} ; 6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q} 4 ; 7 \mathrm{Kt}-\mathrm{K} 5, \mathrm{~B}-\mathrm{Q} 3$; $8 \mathrm{P}-\mathrm{Q} 4, \& \mathrm{c}$.
(5) If $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 3!$
(6) If $9 \mathrm{~K} \cdot \mathrm{Bsq}, \mathrm{B}-\mathrm{QB4}$.
(7) 4 Kt-QB3 runs into the Giuoco Piano.
(8) If $5 \mathrm{P} \times \mathrm{QP}, \mathrm{Kt}-\mathrm{Kt} 5$. If $5 \mathrm{P} \times \mathrm{KP}, \mathrm{Kt} \times \mathrm{P}$.
(9) Or Blaek could castle and give up the Bishop's Pawn. (Handbuch.)
(10) $5 \mathrm{Kt}-\mathrm{KB} 3$ transposes into the King's Gambit declined, and $5 \mathrm{Kt}-\mathrm{QB} 3$ into the Vienna Game.
(11) Or 7 B.K゙5 ! (Handbuch.) If 7 P-Q4, Kt $\times \mathrm{P}$ threatening Q-R5ch.

Table 77.-THE CLASSICAL DEFENCE.

	11	12	13	14	15
3	P.QB3				
	Kt-KB3				Q-Kt4 (7)
4	P-Q4				Q-B3 (8)
	$\overline{\mathrm{P} \times \mathrm{P}}$				Q-Kt3!
5	P-K5 !				Kt -K2
	$\overline{\mathrm{P} \cdot \mathrm{Q} 4 \quad(1)}$			Q-K2?	$\overline{\mathrm{Kt}}$:QB3
6	B-QKt5ch	$\mathrm{P} \times \mathrm{Kt}$	B-Kts	$\mathrm{P} \times \mathrm{P}$	P-Q3
	B-Q2	$\overline{P \times B}$	Kt-K5	B-Kt5ch	P-Q3
7	$\mathrm{B} \times \mathrm{Bch}$	Q-R5	$\mathrm{P} \times \mathrm{P}$	K-Bsq !	B-K3
	$\overline{\mathrm{KKt} \times \mathrm{B}}$	0.0!	$\overline{\mathrm{Q}-\mathrm{R} 5}$ (4)	$\overline{\mathrm{Kt} \text {-K5 }}$	B-Kt3
8	$\mathrm{P} \times \mathrm{P}$	Q \times B	R-K3 !	Q-Kt4	Kt-Q2
	B-Kt5ch	R-Ksqch	B.Kt5ch	P-K134 (6)	KKt-K2-
9	Kt-QB3	Kt -K2 (3)	K-Bsq !	Q-R5ch	
	0.0	P-Q6	P-QB3	P.Kt3	
10	Kt-K2	B-K3	P-Kt3 (5)	Q.R6	
	P-QB4	$\overline{\mathrm{P} \times \mathrm{Kt} \text {. }}$	B-R6ch	P-B3	
11	$\mathrm{P} \times \mathrm{P}$	Kt -Q2	$\mathrm{Kt} \times \mathrm{B}$	P-B3	
	$\overline{\mathrm{Kt} \times \mathrm{BP}}{ }^{(2)}$	Kt-R3	$\overline{Q \times \mathrm{Ktch}}$	P.Q4	
12	0.0	$\mathrm{Q} \times \mathrm{P}$ (B5)	K-Ktsq	B-K2+	
	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$Q \times P$	P-KR3		
13	$\underline{\mathrm{K}} \times \mathrm{B}$	Q \times KP-	B.B2 -		
	P-Q5	$\underline{-}$	-		
14	Kt-K2-				
14	Kt-B3 -				

(1) 5 ... Kt.K5; 6 Q.K2, Kt-Kt4; 7 P-B4. Kt-K3: 8 P.B5, Kt-Bsq; $9 \mathrm{Kt}-\mathrm{B} 3$, $\mathrm{P} \times \mathrm{P} ; 10 \mathrm{Kt}-\mathrm{Kt} 5+$.
(2) $11 \ldots \mathrm{Kt} \times \mathrm{KP}$ leaves the isolated QPawn less defensible after the 14 th move.
(3) $9 \mathrm{~K} \cdot \mathrm{Bsq}, \mathrm{P} \times \mathrm{QBP}$; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 6 \mathrm{ch} ; 11 \mathrm{KKt}-\mathrm{K} 2, \mathrm{R} \times \mathrm{Kt} ; 12 \mathrm{Q}-\mathrm{Q} 5$, R-QB7ch+.
(4) Black cau play $7 \ldots$, B-Kt5ch, or B-Kt3 with advantage. (C. E. R.)
(5) I prefer $10 \mathrm{Kt}-\mathrm{K} 2$, followed by P-B3: or $10 \mathrm{Kt}-\mathrm{KB} 3$: (C. E. R.) •
(6) 8 P-QB3; $3 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P} \cdot \mathrm{Q} 4 ; 10 \mathrm{~B} \times \mathrm{P}, \mathrm{P} \times \mathrm{B} ; 11 \mathrm{Q} \times \mathrm{QP}+$.
(7) Approved by Jaenisch. If $3 \ldots$ Q-K2; $4 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P}-\mathrm{Q} 3$; $5 \mathrm{O}-\mathrm{O}, \mathrm{B}-\mathrm{K} 3$, \&e.
(8) 4 E.Bsq, Q.K ; 5 P-Q4, B-Kt3; 6 Kt-B3. P-Q3, \&c.

Table 78.-THE CLASSICAL DEFENCE.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{~B}: \mathrm{B} 4, \mathrm{~B} \cdot \mathrm{~B} 4 .
$$

	16	17	18	19	20
$\$$	P.QB3		Q-K2		
	P-Q4		Kt-KB3	Q-K2	P-Q3 (8)
4	$\mathrm{B} \times \mathrm{P}$ (1)		P-B4 (5)	P-B4 (6)	P-B4 (9)
	Kt-KB3		P-Q4	Kt-KB3	$\overline{\mathrm{B} \times \mathrm{Kt} \text { ? }(10)}$
5	Q-B3 ! (2)	P-Q4	$B \times \mathrm{P}$	Kt-KB3	$\mathrm{R} \times \mathrm{B}$
	$0.0 \quad$ (3)	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{K} \times \mathrm{B}}$	P-Q3	$\overline{\mathrm{P} \times \mathrm{P}}$
6.	P-Q4 (4)	$\mathrm{P} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{Kt}$	Kt -B3	P-Q4
	$\overline{\mathrm{P} \times \mathrm{P}}$	B-Kt5ch	. $\overline{0.0}$	P-B3	Q-R5ch
7	B-Kt5	Kt-QB3	$\mathrm{P} \times \mathrm{P}$	P-Q3	P-KKt3
	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{K}} \times \overline{\mathrm{B}}$	$Q \times P$	B-KKt5	$\overline{\mathrm{P} \times \mathrm{P}}$
8	$\mathrm{B} \times \mathrm{Kt}$	$\mathrm{P} \times \mathrm{Kt}$	Kt-QB3	P.B5	$\mathrm{R} \times \mathrm{P}$
	P-B7	$\bar{Q} \times \mathrm{P}$	Q-Qsq	QKt-Q2	Kt-KB3
9	Kt-B3	Kt-B3	Kt-B3	B-KKt5 (7)	B-KKt5
	$\overline{\mathrm{Q} \times \mathrm{QB}}$	B-Kt5	B-KKt5:	P.KR3	Q-R4
10	$Q \times Q$	B-K3		B.R4	Q-Kt2
	$P \times Q$	$\overline{\mathrm{B} \times \mathrm{KKt}}$		P-KKt4	Kt-Kt5
11	Kt-B3	$Q \times B$.		$\mathrm{P} \times \mathrm{P}$ en pas	B.Q2
	P-B3	$\overline{Q \times Q}$		$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$
12	B-Kt3	$\mathrm{P} \times \mathrm{Q}$ -		P-KR3	B-K2+
	P-B4	-		$\overline{\mathrm{B} \times \mathrm{Kt}}$	
13	P.K5 -			$\mathrm{Q} \times \mathrm{B}$ -	
	B-K3 -			0:0.0-	

(1) If $4 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch}$; $5 \mathrm{~K} \times \mathrm{B}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}+$.
(2) Or 5 Q-R4ch, P-B3; $6 \mathrm{~B} \times$ Pch, K-Bsq; $7 \mathrm{Kt}-\mathrm{B} 3!$ P-QKt4; 8 Q-Kt3, $\mathrm{Kt} \times \mathrm{P} ; 9 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 10 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P} ; 11 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Kt} ; 12 \mathrm{~B}-\mathrm{K} 3$, \&c. (C. E. R.) Or $5 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{O}-\mathrm{O} ; 6 \mathrm{~B} \times \mathrm{KtP}$ or Kt-B3, \&c.
(3) Or $5 \ldots, \mathrm{Kt} \times \mathrm{B}$; $6 \mathrm{P} \times \mathrm{Kt}$; P-B4; (if) $7 \mathrm{Kt}-\mathrm{K} 2,0-0$; $8 \mathrm{P}-\mathrm{Q} 4, \mathrm{P}-\mathrm{K} 5$; $9 \mathrm{Q}-\mathrm{Kt} 3$, $\mathrm{B}-\mathrm{Q} 3 ; 10 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B} \times \mathrm{B} ; 11 \mathrm{Kt} \times \mathrm{B}$, \&c.
(4) Or 6 B-B4, B-KKit5; 7 Q-Q3, Q-K2; $8 \mathrm{Q}-\mathrm{B} 2, \mathrm{~B}-\mathrm{K} 3$; $9 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$; $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3$; $11 \mathrm{P}-\mathrm{Q3}$, (if) Kt-Kt5; $12 \mathrm{R}-\mathrm{Bsq}$! (Handluch.)
(5) Or 4 P-Q3. (C. E. R.) For $4 \mathrm{~B} \times$ Pch see Note 1, Col. 1.
(6) The Lopez Gambit. (Cols. 18-20.) If $4 \ldots, \mathrm{P} \times \mathrm{P}$; $5 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P}-\mathrm{KKt4}$; 6 P.KR4, \&c.
(7) Or 9 P.KR3! (C.E.R.)
(8) 3 .., Kt-QB3; 4 P-QB3, Kt-B3 transposès to Col. 1: $4 \mathrm{~B} \times \mathrm{Pch}$ is not good.
(9) Or 4 P-QKt4, $\mathrm{B} \times \mathrm{P}$; $5 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B} ; 6 \mathrm{Q}-\mathrm{B} 4 \mathrm{ch}, 8 \mathrm{c}$.
(10) Or 4 ..., Kt-KB3; 5 P-Q3, KthKt5; 6 Kt-KB3, B-B7ch; 7 K-Qsq, B-QB4 ER.Bsq, Kt-QB3, \& C.

Table 79.-THE CLASSICAL DEFENCE, \&c.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{~B}-\mathrm{B} 4 .
$$

	21	22	23	24	25
2	B-B4			P-QB3 ?	
3	P-B4	Q-R5 (5)	P-QKt4	Q-K2	P-Q4
	$\overline{\mathrm{B} \times \mathrm{Kt}!(1)}$	Q-K2	$\overline{\mathrm{B} \times \mathrm{KtP}}$	Kt-B3	$\overline{\mathrm{Kt}}$-B3
4	Q-R5 (2)	Kt-KB3	P-134 (8)	P-B4	Kt-KB3
	Q-K2	P-Q3	P-Q4! (9)	$\overline{\mathrm{P} \times \mathrm{P} \text { ? (11) }}$	P-Q4
5	$\mathrm{R} \times \mathrm{B}$	Kt-Kt5	$\mathrm{P} \times \mathrm{QP}$	P-K5	$\mathbf{P} \times \mathrm{KP}$
	Kt-QB3	Kt-KB3	P-K5	Kt-Q4	$\overline{\mathrm{Kt} \times \mathrm{P}}$
6	P-Q3	$\mathrm{Q} \times \mathrm{Pch}$ (6)	Kt-K2	P-Q4	B-Q3 -
	Kt-B3	$\overline{Q \times Q}$	Kt-KB3	B-K2	P-KB4 -
7	Q-K2 (3)	$B \times$ Qch	$0.0 \quad$ (10)	$\mathrm{B} \times \mathrm{Kt}$	
	Kt-Q5	K-K2	0.0	B-R5ch	
8	Q-Qsq	B-B4	QKt-B3	P-KKt3	
	P-Q4	P-KR3	P-B3	$\bigcirc \times P$	
9	P-B3	Kt-KB3	$\mathrm{P} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{Pch}$	
	$\overline{\mathrm{Kt}} \mathrm{Kt5}$	$\overline{\mathrm{Kt} \times \mathrm{B}}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	$\overline{\mathrm{K} \times \mathrm{B}}$	
10	P-KKt3	O-0 -	K-Rsq	Q-B3ch+	
	$\overline{\mathrm{P} \times \mathrm{B}}{ }^{(4)}$	$\overline{\mathrm{K}-\mathrm{Qsq}}$-(7)	$\overline{\mathrm{B}-\mathrm{Kt} 5+}$		

(1) 3 .., Kt-KB3 or P-Q3 will transpose into the King's Gambit declined. If 3 .., P \times P?; $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch} ; 5 \mathrm{~K}-\mathrm{Bsq}, \mathrm{B}-\mathrm{Kt3} ; 6 \mathrm{Kt}-\mathrm{KB} 3+$.
(2) If $4 \mathrm{R} \times \mathrm{B}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$; $5 \mathrm{P}-\mathrm{KKt3}, \mathrm{Q} \times \mathrm{RP}$; $6 \mathrm{~K}-\mathrm{Bsq}, \mathrm{P}-\mathrm{Q} 4+$.
(3) $7 \mathrm{Q}-\mathrm{Qsq}, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{~B} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4, \& \mathrm{c}$.
(4)- $11 \mathrm{P} \times \mathrm{Kt}, \mathrm{KP} \times \mathrm{QP}$; $12 \mathrm{P}-\mathrm{KR} 3, \mathrm{Kt}-\mathrm{B} 3$; $13 \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}, \mathrm{P}-\mathrm{B} 3 ; 14 \mathrm{Q} \times \mathrm{P}$ (B5), $\mathrm{B} \times \mathrm{P}+$.
(5) If 3 Q-Kt4, Q-B3. 3 Kt-KB3 transposes into the Giuoco Piano. If 3 P-Q4, $\mathrm{B} \times \mathrm{P}: 4 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}$-QB3 (or Q-B3) ; $5 \mathrm{P}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt3}: 6 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Kt}-\mathrm{R} 3$; 7 Q-R5, Q-B3+.
(6) $\mathrm{B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Qsq} ; 7 \mathrm{Q}-\mathrm{R4}, \mathrm{R}-\mathrm{Bsq}$; $8 \mathrm{~B}-\mathrm{B} 4, \mathrm{Kt}-\mathrm{Kt} 5$; $90-0, \mathrm{R} \times \mathrm{P}+$.
(7) To provide against P-Q4, or Kt-R4.
(8) If 4 P-QB3; B-B4?;'5 P-Q4, P \times P: $6 \mathrm{~B} \times$ Pch, \&c.: if $4 \ldots, \mathrm{~B}-\mathrm{R} 4$ White may vary with $5 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{Q}-\mathrm{B} 3$; $6 \mathrm{P}-\mathrm{B} 4, \& \mathrm{c}$.
(9) White's move $4 \mathrm{P}-\mathrm{B} 4$ constitutes McDonnell's Double Gambit. If $4 \ldots, \mathrm{P} \times \mathrm{P}$; 5 Kt-KB3, P-Q4 or B-K2); $6 \mathrm{P} \times \mathrm{P}(6 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3$; $7 \mathrm{P}-\mathrm{B} 3$, Kt $\times \mathrm{B}$ followed by $\mathrm{B}-\mathrm{Q} 3$ or $\mathrm{Kt} \times \mathrm{KtP}+$), Kt-KB3; $7 \mathrm{P}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Q} 3+$ (Sanders.)
(10) 7 P-B3!, B-QB4; $8 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$ en pas; $9 \mathrm{Q} \times \mathrm{P}, \mathrm{O}-\mathrm{O}!10 \mathrm{~B}-\mathrm{R} 3, \mathrm{~B} \times \mathrm{B}$; $11 \mathrm{Kt} \times \mathrm{B}, \mathrm{B}-\mathrm{Kt5}$, \&c. (Mongredien v. Morphy.)
(11) Or $4 \ldots$ P-Q3; $5 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $6 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{~B}-\mathrm{Q} 3,2 \mathrm{c}$.

Table 80.-THE CALABRESE COUNTER GAMBIT.

1 P-K4, P-K4: $2 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{P} \cdot \mathrm{K} \mathrm{B} 4$ (1).

	26	27	28	29	30
3	P-Q3 (2)			$\mathrm{B} \times \mathrm{Kt}$	$\mathrm{P} \times \mathrm{P}$
	Kt-KB3			$\overline{\mathrm{R} \times \mathrm{B}}$	Kt-KB3
4	P-B4 (3)			Q-R5ch (7)	Kt-QB3 (9)
	$\overline{\text { P-Q4 (4) }}$	P-Q3	$\overline{\mathrm{P} \times \mathrm{BP}}$	P-Kt3	$\overline{\mathrm{P}-\mathrm{Q4}}$
5	$\mathrm{P} \times \mathrm{QP}$	Kt-KB3	$\mathrm{B} \times \mathrm{P}$!	$\mathrm{Q} \times \mathrm{RP}$	Kt \times P
	$\bigcirc \times \mathrm{P}$	$\overline{\mathrm{P} \times \mathrm{KP}}$ (6)	$\mathrm{P} \times \mathrm{P}$	R-Kt2	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
6	Q-K2ch	$\mathrm{QP} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$	Q-R8	Q-R5ch
	B-K2	B-Kt5	Q-K2	Q-Kt4	K-K2
7	Kt-QB3	$\mathrm{P} \times \mathrm{P}$	P-K5	Q-R3	P-Q4
	QKt-Q2	$\overline{\mathrm{B} \times \mathrm{Kt}}$	P-Q3	$\overline{\mathrm{P} \times \mathrm{P}}$	Q.Q3
8	$\mathrm{B} \times \mathrm{P}$	$\mathrm{Q} \times \mathrm{B}$	Q-K2	Kt-QB3	B-Kt5ch
	Kt-Kt3	$\overline{\mathrm{P} \times \mathrm{P}}$	$\mathrm{P} \times \mathrm{P}$	$\overline{\text { Q-B4 }}$	Kt. KB 3
9	$\underline{0.0 \cdot 0+(5)}$	Q-QKt3	B \times P	Q-K3	Kt-B3
		Q-Bsq	P-B3	R-B2	P-K5
10		B-KKt5 +	$\underline{\mathrm{Kt}-\mathrm{KB3}+}$	Kt-R3	or Q-Kı5ch
				$\overline{\text { P-Q4 (8) }}$	

(1) $2 \ldots$ P-QKt4; $3 \mathrm{~B} \times \mathrm{KtP}, \mathrm{P}-\mathrm{KB4}$; $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{QP}$; $5 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{B} 3 ; 6 \mathrm{~B}-\mathrm{B} 4$, Kt-B3!; 7 B-KKt5, B-K2; 8 P-K5, Kt-Kt5; $9 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B}$; $10 \mathrm{Kt}-\mathrm{KB} 3!$
(2) The reply 2 .., P-KB4 constitutes the Calabrese Counter Gambit. If 3 P-Q4, $\mathrm{P} \times \mathrm{QP} ; 4 \mathrm{~B} \times$ Kt (or $\mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QB} 3$; $5 \mathrm{Q}-\mathrm{K} 3, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{Q} \times \mathrm{Pch}, \mathrm{Q}-\mathrm{K} 2=$), $\mathrm{R} \times \mathrm{B}$; $5 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 31 ; 6 \mathrm{Q}=\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 2 ; 7 \mathrm{Q}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{Q} \times \mathrm{KP}, \mathrm{P}-\mathrm{KKt3}=$.
13) $4 \mathrm{Kt}-\mathrm{KB} 3$ gives a position in the King's Gambit declined, with White a move in hand.
(4) $4 \ldots, \mathrm{P} \times \mathrm{KP}$; $5 \mathrm{P} \times \mathrm{KP}^{\prime}$ (if $5 \mathrm{QP} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B3}, \& \mathrm{c}$.), $\mathrm{P}-\mathrm{Q} 4$; $6 \mathrm{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $7 \mathrm{P} \times \mathrm{KtP}, \mathrm{B} \times \mathrm{P}$; $8 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}+$. (C. E. R.)
(5) Or $9 \mathrm{P}-\mathrm{Q} 6, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{~B}-\mathrm{K} 55 \mathrm{ch}$, or $\mathrm{B}-\mathrm{K}$ Q +. (C. E. R.)
(6) $5 \ldots, \mathrm{P} \times \mathrm{BP}$; $60-\mathrm{O}, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{P} \times \mathrm{P}$, \&c.
(7) $4 \mathrm{Kt}-\mathrm{QB} 3$!, Q-Kt4; $5 \mathrm{Q}-\mathrm{B} 3, \mathrm{P}-\mathrm{Q} 3$; $6 \mathrm{P}-\mathrm{Q} 4, \mathrm{Q}-\mathrm{Kt3}=$. If $4 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 41$ 5 Q -R5ch, $\mathrm{P}-\mathrm{KKt3} ; 6 \mathrm{P} \times \mathrm{P}, \mathrm{R} \times \mathrm{P} ; 7 \mathrm{Q} \times \mathrm{RP}, \mathrm{Q}-\mathrm{B} 3+$. (Handbuch.)
(8) $11 \mathrm{Kt} \times \mathrm{QP}, \mathrm{Kt}-\mathrm{B} 3$; $12 \mathrm{P}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{Q} 5+$: if $12 \mathrm{P}-\mathrm{QB} 3, \mathrm{~B}-\mathrm{K} 3, \& c$.
(9) $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 5 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4 ; 6 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{B} 3 ; 7 \mathrm{Q}-\mathrm{K} 3 \mathrm{ch}, \mathrm{K}-\mathrm{B} 2 ; 8 \mathrm{Kt}-\mathrm{K} 2$, B-Kt5ch; 9 P-B3, R-Ksq; $10 \mathrm{Q}-\mathrm{Kt3}$, B-Q3 + . Another variation is 4 P-KKt4, P-Q4; 5 B-Kt3, P-KR4: or $5 \ldots, \mathrm{~B}-\mathrm{B} 4$ as in the King's Gambit. Advantage in the col. is doubtful.

SECTION II.

THE BODEN-KIESERITZKY GAMBIT.

1P.K4, P.K4; 2 B.B4, Kt.KB3; $3 \mathrm{Kt} \cdot \mathrm{KB} 3$, Kt \times P.

THERE is a combined proprietorship in this opening owing to its discovery simultaneously by Messrs. Boden and Kieseritzky. It is worthy of attention as an example of the difficult and occasionally dangerous position which may arise through the capture of an opponent's King's Pawn before your King has castled. After $4 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{Kt} ; 5 \mathrm{QP} \times \mathrm{K} \mathrm{t}$, P-KB3, White has to all appearance an overpowering attack with his Queen, two Bishops, and Knight ; and this no doubt would be the case if he were free to go on with it. But he is not quite safe at home. He is therefore obliged to expend a preliminary move in castling, which gives Black time to form a line of defence with his Pawns. There is a period of "Sturm und Drang," but in the end Black, with care and patience, will either retain the Pawn captured on his third move, or gain an advantage in position. He may, if he prefers it, turn the opening into the Two Knights' Defence by playing Kt-QB3 on his third move, or be may secure an even game by Kt-QB3 on his fourth move, thereby transposing into the Four Knights' Game.

The Gambit position may be brought about in the Petroff Counter Attack, or the Vienna Opening.

Table 81.-THE BODEN-KIESERITZKY GAMBIT.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{Kt}-\mathrm{KB} 3 ; 3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt} \times \mathrm{P}$ (1). (Diagram p. 154.)

(1) $3 \ldots$, Kt-B3 is the "Two Knights' Defence."
(2) The same position may occur in the Petroff Counter Attack by 1 P.K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}$-KB3; $3 \mathrm{~B}-\mathrm{B} 4, \mathrm{Kt} \times \mathrm{P}$; $4 \mathrm{Kt}-\mathrm{B} 3$; also in the Vienna Game by $1 \mathrm{P}-\mathrm{K} 4$, P-K4; $2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}-\mathrm{KB} 3: 3 \mathrm{~B}-\mathrm{B} 4, \mathrm{Kt} \times \mathrm{P}$; $4 \mathrm{Kt}-\mathrm{T} 3$.
(3) $4 \ldots$ Kt-QB3 transposes into the Four Knights' Game. If $4 \ldots$ P-Q4; $5 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3$; $6 \mathrm{~B}-\mathrm{Kt3}, \mathrm{~B}-\mathrm{Q} 3$; $7 \mathrm{P}-\mathrm{Q} 3$ or 4 . 'If ... $4 \mathrm{Kt}-\mathrm{KB} 3$; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4$; 6 B-Kt3, B-Q3; 7 P-Q4+. If 4 .., Kt-Q3; 5 B-Kt3, P-K5; 6 Q-K2, B-K2; $7 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt} ; 8 \mathrm{Q} \times \mathrm{Kt}, 0.0 ; 90.0$, \&c.: $5 \ldots, \mathrm{P} . \mathrm{KBB}$, to hold the Pawn, gives Black a difficult game.
(4) Or $5 \ldots$, $\mathrm{B}-\mathrm{K} 2$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{O}-\mathrm{O}$, \&c. If $5 \ldots, \mathrm{P}-\mathrm{QB} 3 ; 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4 ; 7 \mathrm{O}-\mathrm{O}$, B-Q3; 8 B-Q3, $0-0=$ (Suhle and Neumann.)
(5) If $8 \ldots, \mathrm{P}-\mathrm{KB4}$; $9 \mathrm{Kt} \times \mathrm{BP}, \mathrm{B} \times \mathrm{Kt}$; $10 \mathrm{Q}-\mathrm{Q} 5, \& \mathrm{c}$.
(6) The Handbuch gives 9 .., $\mathrm{P} \times \mathrm{P} ; 10 \mathrm{Qch}, \mathrm{K}-\mathrm{Qsq}, \& c$.
(7) If 11 Kt -Kt6, Q -Ksq; 12 Q -R3 (or $12 \mathrm{~B}-\mathrm{K} 21$ Pierce), $\mathrm{Q} \times \mathrm{Kt}$; $13 \mathrm{P} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q}$; $14 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{P}+$. The continuation of the column is by Mr. Potter. The Rev. W. C. Green proposes $11 \mathrm{~B} \times \mathrm{P}$, if $\mathrm{P} \times \mathrm{B}$;-12 P-B6, \&c. See B. C. M., 1891, p. 17.
(8) 6 .., P-KKt3; 7 R-Ksq, P-Q3; 8 Kt-Kt5, $\mathrm{P} \times \mathrm{Kt}$; $9 \mathrm{R} \times$ Pch+. (Staunton จ. Horwitz.) If 6 ..., Kt-B3; 7 Kt-R4, Kt-K2; 8 B-Q3, P-Q4; 9 Qch, K.Q2; 10 P -KB4+: if 7 .., Q-K2; 8 R-Ksq, P-Q3; 9 Qch, \&c., as in note 12.
(9) 7 Kt-R4, P-KKt3; 8 K-Rsq, P-QB3+.
(10) If $7 \ldots$ P-B3 White may obtain a strong attack by $8 \mathrm{R} \times \mathrm{P}, \mathrm{P} \times \mathrm{R}$; $9 \mathrm{~B}-\mathrm{KKt5}$, Q-B4; 10 Q-K2, P-Q4; $11 \mathrm{Kt} \times$ P, B-K3; 12 Kt -Kt6, K-Q2; 13 P-QKt4 or R-Ksq. (Pierce.) B. C. M., 1890, p. 327. The Schachzeitung gives:-7.., Kt-B3; $8 \mathrm{Kt}-\mathrm{Q} 4$, $\mathrm{Kt} \times \mathrm{Kt} ; 9 \mathrm{P} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q} 3 ; 10 \mathrm{P} \times \mathrm{P}, \mathrm{QP} \times \mathrm{P}+$. Compare col. 20, p. 144 .
(11) 8 .., P-KKt3 and 8 .., B-K3 have been examined by Mr. W. T. Pierce. See B. C. M., 1891, p. 549, and 1892, p. 166.
(12) 9 Q-R5ch, K-Qsq; 10 B-Q3, Q-Ksq; 11 B-Kt6, Q-K3; $12 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt5}$; $13 \mathrm{Q} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q} ; 14 \mathrm{Kt}$-Kt6, $\mathrm{K}-\mathrm{Q} 2 ; 15 \mathrm{Kt} \times \mathrm{Bch}, \mathrm{QR} \times \mathrm{Kt}$, \&c.: if $10 \ldots \mathrm{~B}-\mathrm{K3}$; 11 Kt -Kt6, $\mathrm{B}-\mathrm{B} 2$; $12 \mathrm{Kt} \times \mathrm{Q}(a), \mathrm{B} \times \mathrm{Q} ; 13 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{Kt} ; 14 \mathrm{~B}-\mathrm{QR} 6$, \&c. Mr. Ranken suggests $10 \ldots$. P-KKt4; if $11 \mathrm{Kt}-\mathrm{Kt6}, \mathrm{Q}$-Ksq, \&e.
(a) $12 \mathrm{Q}-\mathrm{R} 4, \mathrm{~B} \times \mathrm{Kt}: 13 \mathrm{~B} \times \mathrm{B}, \mathrm{P}-\mathrm{KR} 3$, \&c.
(13) Or $6 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B}-\mathrm{K} 3 ; 7 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B} ; 8 \mathrm{Q}-\mathrm{B} 3$.
(14) If $6 \ldots, \mathrm{P} \times \mathrm{Kt}$; $7 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{K} 2$; $8 \mathrm{~B}-\mathrm{Kt5}$, and wins
(15) If $10 \ldots, \mathrm{~B}-\mathrm{Kt5}$; $11 \mathrm{R} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q}$; $12 \mathrm{~B}-\mathrm{Kt5ch}, \mathrm{~K}$ moves; $13 \mathrm{R} \times \mathrm{B}+$.
(16) Or 5 B-Kt3, B-QB4; 6 0.O, Kt-QB3;’ 7 P-Q3, \&o. (C. E. R.)
(17) If 5 .., B-K3; 6 B-Kt3, Q-Kt4; 7 Kt-KB3, \&c.
(18) $6 \mathrm{~B} \times \mathrm{Pch} 1$; $7 \mathrm{~K}-\mathrm{Qsq}, \mathrm{B}-\mathrm{Kt3}$; $8 \mathrm{~B}-\mathrm{Kt} 3, \mathrm{Q}-\mathrm{K} 2$; $9 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt}$; $10 \mathrm{P} \times \mathrm{P}$, \&c.: if $9 \mathrm{~B} \times \mathrm{P}$, Black may continue with $\mathrm{Q} \times \mathrm{Kt}$, or Kt . B 7 ch followed by $\mathrm{Kt} \times \mathrm{R}$. (C. E. R.)
(19) 5 B-K21 (if) Q-Kt4; Kt-Kt4 (C. E. R.) . If $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2$, \&c.
(20) If 7 P-Q3, B-Q3; \& P-KKt3, Kt-Kt4, \&c.
(21) If $8 \ldots, \mathrm{Q}-\mathrm{K} 2$; $9 \mathrm{~B} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch} ; 10 \mathrm{Q} \times \mathrm{B}, \& \mathrm{c}$.
(22) $11 \mathrm{~K} \times \mathrm{B}$ better, but it would not save the game. (C. E. R.)

BOOK III.

THE KING'S GAMBITS.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{P} \cdot \mathrm{~KB} 4 .
$$

THE original idea of a Gambit attack was to " trip up" the adversary, or make it difficult for him to maintain the balance of position. The preliminary process in the King's Gambits is to bring about - irregularity of formation by a sacrifice which, at the same time, helps your development. The second step is to confine the opposite player's attention to one quarter of the board. The third to strengthen the attack in that direction, until every available piece is bronght into action. The fourth to press gradually forward until the adverse pieces are either confined or crowded; when assuming that the defence has been good, and is too strong to be forced by a further sacrifice, the first player may avail himself of his greater command of the board to turn the attack in some other direction, and ultimately recover the value of his Gambit Pawn, or s.t all events be enabled to draw the game.

The main object is to get a position in which superior skill can win against superior force. This implies superior skill on the part of the Gambit giver, which will account for Mr. Reichhelm's remark that all Gambits are sound, for the attack generally wins two-thirds of the games. On the other hand it has been noticed that masters in supreme contests do not risk their reputation on Gambits. The scope of this observation is limited by another remark, that a master when confronting anothèr player of the bighest ability becomes conservative, and his clioice, in the openings at least, takes a narrower range. Mr. Reichhelin's view of the matter may be modified to this extent-that in a series of games the first player will win as many by a Gambit attack as be can by any other form of development.

Gambit play has been treated somewhat unsympathetically by Chess writers, who have generally dwelt more on analytical than on actual results. This is natural, and would be right enough if Chess were a solitary game, or if perfectly sound play were the rule rather than the exception. As, however, there are no two players, whose minds are of exactly the same order, it follows that good generalship in Chess will include an estimate of your opponent's style, of the strength of his nerves, of his liability to be led away from purely logical deductions by impulse or cupidity; whether he prefers a forward or a backward game, and last, not least, whether his judgment is sufficiently sound to supply the place of analysis in novel and intricate positions, where exLaustive analysis in actual play is inconvenient and perhaps impracticable.

In all Gambit attacks where a piece is given, the defending player sbould be prepared to exchange his Queen for Rook and Bishop, or Rook and Kuight, if the latter are well to the front. The King's Gambit may be declined without disadvantage, or the second player may convert it into a counter-gambit by Falkbeer's continuation (Dec. VLII.) 2..., P-Q4; $3 \mathrm{P} \times \mathrm{QP}, \mathrm{P}-\mathrm{K} 5, \& \mathrm{c}$.

SUMMARY OF THE SECTIONS INTO WHICH THE KING'S GAMBITS ARE DIVIDED.

$$
1 \text { P-K4, P-K4; } 2 \text { P-KB4. }
$$

Suction I. The King's Gaxabit (Proper). 2..., P \times P; 3 P.Q4, P-KR4, Kt-KBS, tc.
II. The Salvio Gambit.
2..., P×P; 3 Kt-KB3, P-KKt\&; \& B-B\&. P-Kt5; 5 Kt -K5, \&c.

- III. The Musio Gambit.
$2 \ldots, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P} \cdot \mathrm{KKt4} ; \quad 4 \mathrm{~B}-\mathrm{B} 4$,
$\mathrm{P}-\mathrm{Bt} 5 ; 5 \mathrm{~B} \times$ Pch, Kt-B3, P.Q4, 0.0, \&c.
© IV. The Kicaervitiky Gambit.
2..., P \times P; 3 Kt-KB3, P.KRt4; 4 P-KR4; P-Kt5; $5 \mathrm{Kt}-\mathrm{K} 5$, \&c.
- V. The Allgaier Gambit.
$2 \ldots$, 'P \times P; 3 Kt-KB3, P-KKt4; 4 P.KR4, P-Kt5: 5 Kt-Kt5, \&c.

V1. The Cunningham Gambit.

$$
\begin{aligned}
& 2 \ldots, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt} \cdot \mathrm{KB3}, \mathrm{~B} \cdot \mathrm{~K} 2 ; 4 \mathrm{~B} \cdot \mathrm{B4}, \\
& \mathrm{~B} \cdot \mathrm{R} 5 \mathrm{ch}, \& \mathrm{c} .
\end{aligned}
$$

., VLI. The King's Bishop's Gambit.

$$
2 \ldots, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{~B}-\mathrm{B} 4, \& \mathrm{c} .
$$

n VIII. The King's Gambit Declined.
2..., P.Q4, P-Q3, Kt-KB3, B-B4, \&c.

SECTION 1.

THE KING'S GAMBiT. (PROPER.)

1 P.K4, P.K4; 2 P.KB4.
Diagram p. 157.

THE King's Gambit was first mentioned by Ruy Lopez in 1561, but its chief exponents have been the Italian writers. It opens out many beautiful ways of conducting the game by which the first player may obtain the advantage, unless the defence is accurately played. Its brilliant off-shoots the Kieseritzky and Allgaier Gambits are the most effective continuations for the attack, and have won a name for themselves. The parent opening is a collection of variations, some of which are almost obsolete. It is nevertheless advantageous to know them for the light they throw upon Gambit play generally. The most important one, the King's Knight's Gambit (commencing with Col. 12), is thoroughly met by the Classical defence, placing King's Bishop at KKt2; with Black Pawns at KR3, KKt4, and KB5. The weight of four Pawns to two on the King's side ought to win in the end game. White. may adopt a ponderous game with a Pawn short, waiting for chances (Col. 29); or he may break through Black's lines by pushing forward his KRPawn on the fifth move (Cols. 31-35) ; or he may add to the force of his attack by the further sacrifice of a piece. This is frequently recoverable in after play, but no continuation has yet been discovered which, when analysed, yields full compensation for the Gambit Pawn. The main difficulty is to bring, out the Queen's Knight and Queen's Bishop without losing time. The nearest approach to success is shown in Cols. 21-23. Black may however compel the Salvio or the Muzio Gambit.

The progress of analysis has been more satisfactory for the defence than for the attack. Besides the Salvio and Muzio continuations, which now stand in favour of the second player, he may obtain at least an even game in many ways. The resources of the opening are, however, far from being exbausted. The Pierce Gambit is a recent form, for though White's second move is varied the resulting positions are frequently obtainable in the King's Gambit. Other modern variations leading to interesting positions are the Quaada, and Rosentreter Gambits. Both spring out of Black's play, and may easily be avoided.

Table 82. -THE KING'S GAMBIT. (PROPER.)

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P}: \mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{~KB} 4, \mathrm{P} \times \mathrm{P}
$$

	1	2	3	4	5
3	P-Q4 (1)		P.KR4 (3)		
	Q-R5ch		B-K2		P-Q4!
	K-K2		Kt-KB3 (4)		$\mathrm{P} \times \mathrm{P}$
4	P-Q4		Kt-KB3	P-Q3	$\overline{\mathrm{Q} \times \mathrm{P}}$ (7)
	$\mathrm{P} \times \mathrm{P}$		P-Q3	P-Q4	Q-K2ch
5	$\overline{\mathrm{Kt} \text {-KB3 }}$	$\overline{\mathrm{BQ}}$ (${ }^{(2)}$	P-Q4!	B-Kt5	B-K3
	Kt-KB3	P-B4	$\mathrm{P} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{P}$	Kt-QB3
6	B-KKt5	P-QKt3	$\overline{\mathrm{K} \times \mathrm{P}}$	$\overline{\mathrm{B} \times \text { Pch }}$	Q-Q2
	P.B4	Kt-KB3	P.B4	$\mathrm{R} \times \mathrm{B}$	P.Q3
7	QKt-Q2	B-KKt5	$\overline{\mathrm{Kt}-\mathrm{K} 6}$ (5)	$\overline{\mathrm{B} \times \mathrm{Kt}}$	B-Q3
	K-Q2	K-Q2	$\mathrm{B} \times \mathrm{Kt}$	$Q \times B$	Kt -R3
8	Q-B7ch	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{P} \times \mathrm{B}}$	Q \times Rch	Kt-QB3
	Q-K2	$\mathrm{Q} \times \mathrm{B}$	P-Q4	$\underline{\text { P-KKt3 (6) }}$	Kt-QKt5
9	Kt-K5ch	$\overline{\mathrm{Kt}}$-Q2	$\overline{\text { B-KKt5 + }}$		0.0 .0
	K-B2	P-QKt3			$\mathrm{Kt} \times \mathrm{B}$
10	B-KB4	P-QR4			$\overline{\mathrm{P} \times \mathrm{K} \text { t }}$
	K-Kı3	Kt-B3			K t \times P
11	B-K2	Kt-K2.			$\overline{\text { B-Kt5 }}$
	$\mathrm{B} \times \mathrm{P}$	K-B2			Q.Q2
12	0.0 .0	0.0			Q-Ksqch +
13	P.QR3 -	B-Q3			
	$\overline{\mathrm{KR}-\mathrm{Ksq}}$ -	$\overline{\mathrm{Kt}} \mathrm{K} \mathrm{K} 3$			
		B.Q2 -			
14		-			

(1) A form of the opening given in Polerio's MS., hence called the Polerio Gambit. This Col. runs as played Ensor v. McDonnell. Compare the Steinitz Gambit. A game Fraser v. Birks runs:- $3 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Qch} ; 4 \mathrm{~K}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 4 ; 5 \mathrm{Kt} \times \mathrm{P}, \mathrm{Bch}$; 6 Kt-KB3, Kt-QB3!
(2) Or $5 \ldots$ Q-K2ch to draw, but White might prevent this by $5 \mathrm{Kt}-\mathrm{KB} 3$, B-KKt5 ; $6 \mathrm{P} \times \mathrm{P}$, or P-K5 (Fraser). Black may also play $5 \ldots$. B-Kt5ch; $6 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}$-Q2 (or $\mathrm{B} \times$ Ktch; Fraser); 7 P-B4, O-0.0; $8 \mathrm{~K}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{B} 3$; with a good game (Gattie). The Col. is Ensor v. Bardeleben.
(3) The King's Rook's Pawn Gambit. 3 P-KKt3 may also be played: a game Orchard v. Thomson runs $3 \ldots \mathrm{P} \times \mathrm{P} ; 4 \mathrm{KKt}-\mathrm{B} 3, \mathrm{P} \times \mathrm{P} ; 5 \mathrm{~B}-\mathrm{B} 4, \mathrm{KKt}-\mathrm{B} 3 ; 6 \mathrm{R} \times \mathrm{P}$, $\mathrm{Kt} \times \mathrm{P} ; 7 \mathrm{R}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 4 ; 8 \mathrm{~B} \times \mathrm{P}, \mathrm{Q} \times \mathrm{B} ; 9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{KR} 4 ; 10 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{R} 8 \mathrm{ch}$; $11 \mathrm{~K}-\mathrm{B} 2, \mathrm{Q} \times \mathrm{Q}$; $12 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \mathrm{K} \cdot \mathrm{Qsq} ; 13 \mathrm{R}$ mates.
(4) If 4 Q-Kt4, P-Q4+.
(5) If $7 \ldots$, B-Kt5ch; 8 K-B2! (Handbuch)
(6) White brings out QKt, and Castles on Q's side, with a good development although he has lost the exchange.
(7) Or $4 \ldots$ B-Q3 may be plajed.

Table 83:-THE KING'S GAMBIT. (PROPER.)

(1) If 3 Q-Kt4, P-Q4-not P-KKt4 on account of 4 P-KR4. If 3 Q-R5, P-Q3 or Kt-QB3. If $3 \mathrm{Q}-\mathrm{K} 2$ (or B3) or $3 \mathrm{Kt}-\mathrm{K} 2$, or $3 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$, \&c. See p. 161, note 1.
(2) 3 .., P-Q3; 4 B-B4, B-K3; $5 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$; $6 \mathrm{P}-\mathrm{Q4}+$.
(3) $4 \ldots$ P-KKt4; 5 P-KR4, P-KKt5; 6 Kt -Kt5 transposes into a variation of the Allgaier Gambit not favourable for the first player. $4 \ldots, Q \times P$; 5 Kt -B3 leads into the King's Gambit declined.
(4) Or 6 P-KR4! (C. E. R.)
(5) Or 4 P-K5, P-Q3; 5 P-KR4 (if $\mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; 6'B-B4, \&c. C. E. R.), $\mathrm{P} \times \mathrm{P}$: $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3 ; 7 \mathrm{P}-\mathrm{Q4}, \mathrm{~B} \times \mathrm{Kt}=$.
(6) Or $6 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{B} 3 ; 7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{B} 3 ; 80-0, \mathrm{~B} \times \mathrm{P}$; 9 Kt -K5! (Fraser.)
(7) Or 4 P-Q3, Kt-R4; 5 B-K2, P-KKt4; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Kt}$; $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{P}$; $8 \mathrm{~B}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Kt4} ; 9 \mathrm{Q}-\mathrm{Q} 2=$. If $4 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt} 5$; $5 \mathrm{P}-\mathrm{K} 5, \mathrm{~B} \times \mathrm{Kt} ; 6 \mathrm{QP} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 5$; $7 \mathrm{~B} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4 ; 8 \mathrm{P} \times \mathrm{P}(\mathrm{e} \mathrm{p}), \mathrm{Kt} \times \mathrm{QP}$ (Pierce): Salvioli gives $4 \ldots, \mathrm{P}-\mathrm{Q} 41$
(8) Or 5 .., P-KKt3; 6 P-Q4, B-Kt2; 7 O-0, P-Q3; 8 Kt.B3, O.0, \&c.: if 9 Kt -Ksq, $\mathrm{P} \times \mathrm{P}$. (Tchigorin v. Steinitz)
(9) If $3 \ldots, \mathrm{Kt}-\mathrm{QB} 3$; 4 P-KR4, and Black cannot hold the Gambit Pawn.
(10) $6 \ldots, \mathrm{~B}-\mathrm{Kt5}$; $7 \mathrm{P}-\mathrm{KR3}, \mathrm{~B}-\mathrm{R4}$; $8 \mathrm{P} / \mathrm{KKt4}, \mathrm{P} \times \mathrm{P}$ en pas; $9 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; $10 \mathrm{Kt}-\mathrm{Kt} 5 \mathrm{dch}, \mathrm{K}-\mathrm{Ksq} ; 11 \mathrm{Q} \times \mathrm{B}+$.
(11) $4 \mathrm{Kt}-\mathrm{B} 3$ (if) P-Kt5; $5 \mathrm{Kt}-\mathrm{K} 5, \mathrm{Qch} ; 6 \mathrm{P}-\mathrm{KKt3}, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{Kt7}$ (dch); $8 \mathrm{Q} \times \mathrm{Q}, \mathrm{P} \times \mathrm{R}$ (queens); $9 \mathrm{Q}-\mathrm{R} 5$, \&c.: or $7 \ldots \mathrm{Q} \times \mathrm{Q}$; $8 \mathrm{Kt} \times \mathrm{Q}, \mathrm{P}-\mathrm{Q} 4 ; 9 \mathrm{~B} . \mathrm{R3}$, $\mathbf{P} \times \mathrm{KP} ; 10 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \mathrm{K}-\mathrm{Qsq}$, \&c. (Quaada's Gambit).
(12) $5 \mathrm{Kt}-\mathrm{K} 5, \mathrm{Qch} ; 6 \mathrm{P}-\mathrm{KKt3}, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{Kt7} \mathrm{dch} ; 8 \mathrm{Q} \times \mathrm{Q}, \mathrm{P} \times \mathrm{R}(\mathrm{Q}):$ 9 Kt QB3: or $7 \ldots, \mathrm{Q} \times \mathrm{Q}$!; $8 \mathrm{Kt} \times \mathrm{Q}, \mathrm{P}-\mathrm{Q} 4,9 \mathrm{Kt}-\mathrm{K} 3, \mathrm{P} \times \mathrm{KP} ; 10 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QB} 3$ or Kt-KB3. (Rosentreter's Gambit.)
(13) Or 8 P-K5. The Handbuch gives this Col. as Soerensen's Gambit.

Table 84.-THE KING'S GAMBIT. (PROPER.)

1 P.K4, P.K4; $2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt} \cdot \mathrm{K} \mathrm{B} 3, \mathrm{P} \cdot \mathrm{KKt} 4$.

11	12	13	14	15

$4 \frac{\text { B-B4 }}{\text { P-KR3 }}$

B-Kt2 (5)
5
Kt-K5
${ }_{\mathrm{P}}^{\mathrm{P} \cdot \mathrm{Q4}} \mathrm{-Q3}-(6)$

$6 \frac{\mathrm{P}-\mathrm{Q} 4}{\mathrm{P}-\mathrm{Q} 3}$
$\frac{\text { P.B3 }}{\text { P-Kt5 (dia.) }}$
Kt-Q3 (1)
$\mathrm{QB} \times \mathrm{P} \quad(7)$

$\mathrm{Q} \times \mathrm{P}$
$\mathrm{Kt}-\mathrm{KR} 3$
$\mathrm{P} \cdot \mathrm{Q} 4$
0.0

Kt-1'33 (11) (dia. p. 164)
Kt-KB3
P.K5 (2)
$\overline{\mathrm{P} \times \mathrm{P} \quad(3)}$
$\mathrm{P} \times \mathrm{Kt}$
$\mathrm{P} \times \mathrm{P}$
9
13.KKt5
$\frac{\mathrm{Q} \cdot \mathrm{Q} 2}{\mathrm{Q} \cdot \mathrm{K} 2}$
0.0

11
$\overline{\mathrm{Kt}-\mathrm{K} 5}$
B-K3
$\frac{\mathrm{B} \times \mathrm{B}}{\mathrm{P} \times \mathrm{B}}$
$\frac{\mathrm{QH} \times \mathrm{P}}{\mathrm{P}-\mathrm{Q} 3+(8)}$
Kt-K2 (12)
Kt-K2 (13)
$\overline{\text { QKt-B3 }} \overline{\text { B-Kit5 (16) }}$
$\mathrm{QB} \times \mathrm{P}(14) \quad \mathrm{QB} \times \mathrm{P}$

$\mathrm{P} \times \mathrm{B}$	$\overline{B \times K t}$
$\mathrm{Kt} \times \mathrm{P}$	$\mathrm{R} \times \mathrm{B}$
B.Kt5	$\overline{\mathrm{P} \times \mathrm{B}}$
P-B3	$\mathrm{R} \times \mathrm{P}$ (17)
$\overline{\text { Q.Q2 (15) }}$	0.0 (18)
B-Kt5	Q.KBsq
	-Ksq (1)

(1) Or $7 \mathrm{Kt} \times \mathrm{P}, \mathrm{R} \times \mathrm{Kt} ; 8 \mathrm{~B} \times \mathrm{Rch}, \mathrm{K} \times \mathrm{B}$; $9 \mathrm{P}-\mathrm{KR} 4, \mathrm{Kt}-\mathrm{KB} 3 ; 10 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; 11 P-KKt3, B-Kt5; 12 Q-Q3, Q-K2+.
(2) If $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{K} 2$ or $\mathrm{B}-\mathrm{K} 3$.
(3) If 8 .., P-Q4; 9 B-Kt5ch, P-B3 (or B-Q2; $10 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B}$; $11 \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}+$); $10 \mathrm{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 11 \mathrm{P}-\mathrm{KR4}, \mathrm{Q} \times \mathrm{P} ; 12 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P} ; 13 \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}+$.
(4) If $9 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{KB} 4$.
(5) For 4 .., P-Kt5 see the Muzio Gambit. If 4 ... P-Q3 White may play P-KR4: if 4 ..., P-KB3; $5 \mathrm{~K} 6 \times \mathrm{P}+$: if $4 \ldots$, B-B4, or Q-K2; 5 P-Q4+: if $4 \ldots$... P-QB3; 5 P-KR4, or 0.O.
(6) Or 5 ... P-KR3; 6 P-B3, Kt-K2; 7 O-O; P-Q4: 7 ..., P-Q3 transposes into Col. 21. If 5 ..., P-Kt5; $6 \mathrm{Kt}-\mathrm{Ktsq}$ (Tschigorin), or $\mathrm{O}-\mathrm{O}$, or $\mathrm{QB} \times \mathrm{P}$, or $\mathrm{Kt}-\mathrm{K} 5$.
(7) 7 Q -Kt3 is also bad for White. Salvioli gives 7 Kt -Ktsq, and prefers therefore 6 .., P -KR31. Another variation is $7 \mathrm{O}-\mathrm{O}, \mathrm{P} \times \mathrm{Kt} ; 8 \mathrm{Q} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 3$: if now $9 \mathrm{Q}-\mathrm{R} 5$, $\mathrm{Q}-\mathrm{Kt} 3$; or if $9 \mathrm{P}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P} ; 10 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{QKt3ch}$; or if $9{ }^{\circ} \mathrm{QB} \times \mathrm{P}, \mathrm{Kt}$-B3 (C. E. R.): if $8 \ldots, \mathrm{~B}-\mathrm{R} 3$; $9 \mathrm{Q}-\mathrm{R} 5, \mathrm{Q}-\mathrm{K} 2$; $10 \mathrm{QB} \times \mathrm{P}, \mathrm{B} \times \mathrm{B} ; .11 \mathrm{R} \times \mathrm{B}, \& \mathrm{c}$.: if $8 \ldots, \mathrm{~B}-\mathrm{K} 3$; $9 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B} ; 10 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$, \& c.
(8) 10 Q-Kt3 (or $\mathrm{B} \times \mathrm{Kt}$), K-Rsq; 11 B-KKt5, P-KB3; 12 B-R4, Kt-B3; $13 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{K} 2 ; 14$ QR-Ksq, Kt-Kt3; $15 \mathrm{Kt} \cdot \mathrm{B} 3, \mathrm{Kt} \times \mathrm{B} ; 16 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \cdot \mathrm{KB} 4+$.
(9) If 6 P-KKt3, P-Kt5; 7 Kt-R4, P-B6; 8 P-Q4, Kt-QB3; 9 P.B3, Q.K2+. See Col. 21.for the proper time to play P-KKt3.
(10) If $6 \ldots$ B-K3; $7 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B} ; 8$ P-B3, P-K4; 9 Q-Kt3, P-Kt3; 10 Q-K6ch. Another variation, lively but hazardous, is $6 \ldots, \mathrm{Kt}-\mathrm{KR} 3 ; 7 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Kt}$; $8 \mathrm{QB} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt3} ; 9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B} ; 10 \mathrm{~B} \times \mathrm{Poh}, \mathrm{K}-\mathrm{Qsq} ; 11 \mathrm{P}-\mathrm{K} 5 . \mathrm{B}-\mathrm{Q} 2 ; 12 \mathrm{P} \times \mathrm{P}$. Q \times QP; 13 P-B3, \&c.
(11) If 7 P-KKt3, P-Kt5! (if $7 \ldots \mathrm{P} \times \mathrm{P} ; 8 \mathrm{~B} \times \mathrm{Pch}$) ; $8 \mathrm{Kt}-\mathrm{R} 4$ (or $8 \mathrm{QB} \times \mathrm{P}$), P.B6; 9 P-B3, B-B3 (or Kt-K2 or Q-K2); $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 11 \mathrm{Q} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2+$. If $7 \mathrm{Kt}-\mathrm{R} 4, \mathrm{P} \times \mathrm{Kt}$; $8 \mathrm{R} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3+$. If $7 \mathrm{P}-\mathrm{K} 5, \mathrm{P}-\mathrm{Q} 4 ; 8 \mathrm{~B}-\mathrm{Kt} 3$. See diagram.
(12) Or 7 .., Kt-QB3; $8 \mathrm{Kt}-\mathrm{K} 2$, \&c. The Handbuch gives 7 .., B-K3 as bettery; or Black may play 7 .., P-QB3; $8 \mathrm{Kt}-\mathrm{K} 2, \mathrm{~B}-\mathrm{K} 3, \& \mathrm{c}$. (C. E. R.)
(13) If 8 K -Risq, O .0 . If 8 P -KKt3, P-Kt5; $9 \mathrm{QB} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{Q} \times \mathrm{P}$, $\mathrm{B} \times$ Pch; 11 K-Rsq, B-K3+. (Ranken v. Wavte.)
(14) Or 9 P-B3I (C. E. R.) This leads into a variation of the Pierce Gambit. If 9 P-KKt3, $\mathrm{P}-\mathrm{Kt5}$; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; $11 \mathrm{Q} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch}$; $12 \mathrm{~K} \cdot \mathrm{Rsq}, \mathrm{Kt}-\mathrm{K} 4$, \&c. (Pierce.)
(15) Or 11 \&., Kt-Kt3; $12 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt} ; 13 \mathrm{Q}-\mathrm{Rt}$, \&o.
(16) If $8 \ldots$ P-Kt5; $9 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{Q} \times \mathrm{P}, 0.0$; $11 \mathrm{P} . \mathrm{B} 3, \& \mathrm{c}$. If $8 \ldots$ Kt-Kt3, White continues by 9 P-KKt3, \&c,
(17) Or $11 \mathrm{Kt} \times \mathrm{PI}$ (C. E. R.)
(18) Or $11 \ldots, \mathrm{P}-\mathrm{Q} 4$; $12 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P} ; \cdot 13 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B}$; $14 \mathrm{P}-\mathrm{B} 4$. Whether the $B P$ be taken or not the $Q R$ is brought into the attack.
(19) Continued 13 R-Kt4, Kt-Q2 ; 14 Q-B3, K-Rsq; 15 R-KBsq threatening Q-Kt3, \&c. The method of sacrificing a piece given in Cols. 14-15 is seldom adopted, but may be played for variety, and offers chances.
(Col. 12.)

After Black's 6th move.
(Col. 14.)

After White's 7th move.

Table 85.-THE KING'S GAMBIT. (PROPER.)

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{K} 34, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P} \cdot \mathrm{KKt} 4$; 4 B-B4, B-Kt2; 50-O, P-Q3; 6 P-Q4, P-KR3.

16	17	18	19	20

$7 \frac{\mathrm{P} \cdot \mathrm{B} 3 \text { (dia. p. 168) }}{\mathrm{Q} \cdot \mathrm{K} 2}$

$8 \frac{$| $\mathrm{Q} \cdot \mathrm{K} 2$ |
| :---: |
| $\mathrm{P}-\mathrm{K} 5$ |
| $\mathrm{P} \times \mathrm{P}$ |
| (1) |}{(2)}

$\frac{\mathrm{Kt}-\mathrm{R} 3}{\mathrm{P} \cdot \mathrm{R} 3 \quad(4)}$
$\frac{\mathrm{P}-\mathrm{KR4} 4}{\mathrm{P}-\mathrm{Kt} 5 \quad \text { (6) }}$

Q-Kt3	(9)
$\mathrm{Kt}-\mathrm{Q} 2$	

$\overline{\mathrm{Kt}-\mathrm{KB} 3 ?}$
$9 \frac{\mathrm{~K} \times \mathrm{P} \times \mathrm{KP}(2)}{\mathrm{B} \times \mathrm{Kt}}$
kt-B2
$\frac{\mathrm{QB} \times \mathrm{P}}{\mathrm{P} \times \mathrm{K} t}$
$\frac{\mathrm{P}-\mathrm{KR} 4}{\mathrm{Kt}-\mathrm{Kt} 3}$
$\frac{\mathrm{P}-\mathrm{K} 5}{\mathrm{P} \times \mathrm{P}}$
$\frac{\text { Q-Kt3 }}{0.0}$

10 | 10 | $\mathrm{R}-\mathrm{Ksq}$ |
| ---: | :--- |
| $\mathrm{B}-\mathrm{K} 3$ | |
| | $\mathrm{~B} \times \mathrm{B}$ |
| $\mathrm{P} \times \mathrm{B}$ | |

$\frac{\text { B-Q3 }}{\text { Kt-KB3 }}$
$\frac{\mathrm{Q} \times \mathrm{P}}{\mathrm{B} \cdot \mathrm{K} 3}$
$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{P} \times \mathrm{P}}$
$\frac{\mathrm{Kt} \times \mathrm{KP}+}{(10)}$

12
$\frac{\mathrm{R} \times \mathrm{B}}{\mathrm{Kt}-\mathrm{QB} 3}$
$\frac{\mathrm{P} \cdot \mathrm{QK}}{\mathrm{QKt}-\mathrm{Q} 2}$
Kt-Q2
Kt-R3

18
$\frac{\mathrm{R}-\mathrm{Ksq}}{0.0 .0}$
$\frac{\mathrm{P}-\mathrm{KR} 3}{\mathrm{Kt}-\mathrm{Kt} 3}$
Kt \times B
$\frac{\mathrm{Q}-\mathrm{Kt4}}{\mathrm{R}-\mathrm{Ksq}}$
$\frac{\mathrm{P}-\mathrm{B} 4}{\mathrm{Kt} \text {-R4 }}$
$\frac{B \times Q P}{P \times B}$
R -Ksq $\mathrm{Kt} \times \mathrm{Pch}$
14

15
$\frac{\mathrm{P}-\mathrm{QK} \mathrm{t} 3}{\mathrm{Kt}-\mathrm{B} 3+}$
$\overline{\mathrm{Kt}-\mathrm{Kt} 6}$

K-Qsq
$\mathrm{K} \times \mathrm{BPch}$
$\overline{\mathrm{Kt}-\mathrm{B} 3+}$
$\widehat{0.0+}$
K-Bsq (8)
(1) If 8 R-Ksq, P-Kt5. Löwenthal v. Wayte played 8 P-QKt3, B-K3; 9 B-R3, $\& c$.
(2) Salvioli suggests 9 R-Ksq !, P-K5; 10 Q-B2, \&c.
(3) $13 . \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{K}-\mathrm{Bsq}$; $14 \mathrm{R}-\mathrm{Ksq}, \mathrm{Kt}-\mathrm{B} 3$; $15 \mathrm{Q}-\mathrm{K} 2, \mathrm{QR}-\mathrm{Ksq}$; $16 \mathrm{Kt}-\mathrm{R} 3$ (Wormald), P-R31; 17 Kt -B4. (Hull v. Leeds.)
(4) If $8 \ldots$, Kt-QB3; 9 Q-R4, B-Q2 ; 10 Kt-Kt5.
(5) Petersburg ∇. Moscow. If 12 B-R3, P-B4; 13 P-R3, Kt-R4; 14 P-Q5, $\mathrm{B} \times \mathrm{RP} ; 15 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{Kt6}$; $16 \mathrm{R}-\mathrm{B} 2, \mathrm{~B} \times \mathrm{P}$; $17 \mathrm{R}-\mathrm{Ktsq}, \mathrm{P}-\mathrm{KR} 4$, \&c. (Handbuch.)
(6) $8 \ldots, \mathrm{P} \times \mathrm{P} ; 9 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Kt} ; 10 \mathrm{R} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2 ; 11 \mathrm{R} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P} ; 12 \mathrm{R} \times \mathrm{B}$, \&c. If $8 \ldots, \mathrm{~B}-\mathrm{Kt5} ; 9 \mathrm{Q}=\mathrm{Kt3}$. If $8 \ldots, \mathrm{Kt}-\mathrm{QB3} ; 9 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 10 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Kt}$; $11 \mathrm{~B} \times$ Pch, \&c.
(7) Or 9 Kt-R2, P-B6; 10 P.-Kt3, \&c.
(8) $15 \ldots$ K-Ksq draws. The Handbuch continues 16 P-K5, R-Ktsq; 17 Q-Kt4, R-R2; 18 Q-B5, R-KRsq; 19 Q-Kt6+.
(9) If 8 or 9 P-KKt3, P-Kt5+.
(10) $10 \ldots, \mathrm{Q}-\mathrm{Ksq}$ I; 11 Kt-Kt6, P-Kt4; $12 \mathrm{~B} \times \mathrm{KtP}, \mathrm{Q}-\mathrm{K} 5$; $13 \mathrm{Kt}-\mathrm{K} 5, \mathrm{~B}-\mathrm{K} 52$; 14 Kt-B3. (Blackburne v. Mason.)

Table 86.-THE KING'S GAMBIT. (PROPER.)

(1) If $8 \ldots, \mathrm{P} \times \mathrm{P}$?; $9 \mathrm{QB} \times \mathrm{P}$ (Blackburne), or $\mathrm{KB} \times \mathrm{Pch}$ may be played.
(2) $9 \mathrm{QB} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 10 \mathrm{Q} \times \mathrm{P}, \mathrm{O}-\mathrm{O} ; 11 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{K} 3 ; 12 \mathrm{P}-\mathrm{Q} 5, \mathrm{~B}-\mathrm{Q} 2 ; 13 \mathrm{Q}-\mathrm{R} 5$, \&c: if $11 \mathrm{~B} \times \mathrm{RP}, \mathrm{B} \times \mathrm{B}$; $12 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{K} 2$; $13 \mathrm{Q}-\mathrm{R} 5, \mathrm{Kt}-\mathrm{Q} 2+$.
(3) $10 \mathrm{P}-\mathrm{KR} 3, \mathrm{P}-\mathrm{KR} 4$; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; $12 \mathrm{Q} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $13 \mathrm{Q} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Q} 2$; 14 R-B2, Q-KBsq+. Or $10 \mathrm{Kt}-\mathrm{R} 3, \mathrm{O}-\mathrm{O}$; $11 \mathrm{~B}-\mathrm{B4}, \mathrm{QKt}-\mathrm{B} 3$; $12 \mathrm{Q}-\mathrm{Q} 2$. If $10 \mathrm{Kt}-\mathrm{B} 5, \mathrm{Kt} \times \mathrm{Kt} ; 11 \mathrm{P} \times \mathrm{Kt}, \mathrm{QB} \times \mathrm{P}$; $12 \mathrm{R}-\mathrm{Ksqch}, \mathrm{K}-\mathrm{Bsq} ; 13 \mathrm{Q}-\mathrm{Kt} 3$, B-Kt3; $14 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Q} 2+$. (C. E..R.)
(4) If $12 \mathrm{Q}-\mathrm{R} 5, \mathrm{~K}-\mathrm{R} 2$; 13 B BP, Kt-Ktsq, and position same as in Col. 22. Black may however play $12 \ldots, \mathrm{~B}-\mathrm{K} 3+$.
(5) $13 \mathrm{~B}-\mathrm{K} t 5, \mathrm{R} \times \mathrm{B} ; 14 \mathrm{Q} \times \mathrm{R}, \mathrm{P} \times \mathrm{B} ; 15 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{K}-\mathrm{K} t s q$; (if) $16 \mathrm{Q} \times \mathrm{P}$, QKt-B3 or B-K3+.
(6) $13 \ldots, \mathrm{Q}-\mathrm{Q} 2$; $14 \mathrm{~B} \times \mathrm{RP}, \mathrm{Q}-\mathrm{R} 6$; $15 \mathrm{~B}-\mathrm{B} 4 \mathrm{dch}, \mathrm{Q} \times \mathrm{Q}$; $16 \mathrm{~B} \times \mathrm{Q}=$.
(7) $14 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{Rch} ; 15 \mathrm{~K} \times \mathrm{R}, \mathrm{K} \times \mathrm{B} ; 16 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{Bsqch} ; 17 \mathrm{~B}-\mathrm{B} 4=$.
(8) $13 \ldots, \mathrm{Q}^{2}-\mathrm{Q}^{2} ; 14 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 6$ (if $\mathrm{B} \times \mathrm{B}: 15 \mathrm{R}-\mathrm{B} 6$); $15 \mathrm{~B}-\mathrm{B} 4 \mathrm{dch}, \mathrm{Q} \times \mathrm{Q}$: $16 \mathrm{~B} \times \mathrm{Q}, \mathrm{QKt}-\mathrm{B} 3$; $17 \mathrm{Kt}-\mathrm{Q} 21=$: if $17 \mathrm{Kt} \mathrm{R} 3, \mathrm{Kt} \times \mathrm{P} .1, \& \mathrm{C}$.
(9) $11 \ldots, \mathrm{P}-\mathrm{KB} 3$ preferable here and on the next, move. (C. E. R.)
(10) $17 \mathrm{R} \times \mathrm{Q}$, (if) $\mathrm{Kt} \times \mathrm{P}, 18 \mathrm{~B} \times \mathrm{KP}$, Kt-Kt4; $19 \mathrm{R} \times \mathrm{RP}+$.

Table 87.-THE KING'S GAMBIT. (PROPER.)

 4 B-B4, B-Kt2; 50-0, P-Q3; 6 P-Q4, P-KR3.
26
27
28
29
30

P-B3 (dia. p. 168)
Kt-Q2
$8 \frac{\mathrm{P}-\mathrm{KKt3}}{\mathrm{P} \cdot \mathrm{Kt} 5} \overline{\mathrm{Kt}-\mathrm{Kt} 3}$

$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{B} \cdot \mathrm{R} 6}$

Kt-QB3 (9)

Q-Kt3	(10)
Q-K2	(11)

Kt-R3 P.K5
$10 \frac{\mathrm{Q} \times \mathrm{P}}{\mathrm{Kt}-\mathrm{Kt} 3}$
B-K5 (2)
11

12	$\mathrm{B} \times \mathrm{Kt}$	$\mathrm{P} \times \mathrm{P}$
12	$\overline{\mathrm{Q} \times \mathrm{B}} \quad(3)$	Q-K2
	$\mathrm{B} \times \mathrm{Pch}$	K-R2
13	K-K2	B-K3
14	Q-Kt2	$\mathrm{B} \times \mathrm{B}$ -
14	Q-Ktı	$\overline{Q \times B-}$
	P-KR4	
15	Q-Kt5	
10	$\underline{\mathrm{Kt}} \mathrm{R} 3 \quad(4)$	

17

$$
\frac{\mathrm{Kt}-\mathrm{B} 5-}{-} \frac{\mathrm{Q} \cdot \mathrm{Q} 3}{\mathrm{Kt}-\mathrm{B3}(14)}
$$

(1) If $9 \mathrm{Kt}-\mathrm{Ksq}$ or $\mathrm{R4} 4, \mathrm{P}-\mathrm{B} 6 ; 10 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; $11 \mathrm{Q} \times \mathrm{P}, \mathrm{KKt}-\mathrm{B} 3$, \&c.
(2) $11 \mathrm{~B} \times \mathrm{Pch}$? $\mathrm{K} \times \mathrm{B}$; $12 \mathrm{~B}-\mathrm{K} 5 \mathrm{ch}, \mathrm{Kt}-\mathrm{B} 3$; $13 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B}$; $14 \mathrm{P}-\mathrm{K} 5$, \&c.
(3). If $12 \ldots, \mathrm{~B} \times \mathrm{B} ; 13 \mathrm{~B}-\mathrm{Kt} 3$.
(4) Black may continue 16 .., B-K3; (if) 17 R-B4, Q-R6; 18 Q-KB2, QR-KBsq; 19 R-KBsq, B-Q2, \&G. Or Black might even play 16 ... R-Bsq and if 17 R-B4, $\mathrm{R} \times \mathrm{B}=$. (C. $\mathrm{E} . \mathrm{R}$.) If $16 \ldots, \mathrm{~B}-\mathrm{Bsq}$; $17 \mathrm{R}-\mathrm{B} 4, \mathrm{Q}-\mathrm{Kt2}$; $18 \mathrm{~B}-\mathrm{R} 5, \mathrm{~K}-\mathrm{Qsq}$; $19 \mathrm{R}-\mathrm{B} 7$, Q-Ktsq; 20 Kt -Kt5+.
(5) Or 9 .., P-Kt5; $10 \mathrm{Kt}-\mathrm{R} 4, \mathrm{Kt}-\mathrm{K} 2$, \&c.
(6) Or $11 \mathrm{P} \times \mathrm{P}, \mathrm{Q}$ - Bsq (if $11 \ldots, \mathrm{Q}-\mathrm{Q} 2 ; 12 \mathrm{~K} t \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 13 \mathrm{R} \times \mathrm{P}+$); $12 \mathrm{~B} \times \mathrm{Pch}$. K.Qsq; $13 \mathrm{Kt}-\mathrm{R} 2, \mathrm{Kt}-\mathrm{B} 3 ; 14 \mathrm{~B}-\mathrm{Kt6}$, \&o.
(7) Or 11 .., Q.Q21 to cestle QR. (C. E. R.)
(8) 12 .., P.Kt5; 13 Kt-Ksq, Q.R5; 14 Q-K2 (or Q.Q3), and Kt-Kt2.
(9) If $7 \ldots$ P. PB 3 ?; 8 P-KKt3, P-Kt5; $9 \mathrm{QB} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{Q} \times \mathrm{P}, \mathrm{Q} . \mathrm{B} 3$ (if $\mathrm{B}-\mathrm{K} 3 ; 11 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B} ; 12 \mathrm{~B} \times \mathrm{QP}+$); $11 \mathrm{Q}-\mathrm{R} 5, \mathrm{Q}-\mathrm{Kt3} ; 12 \mathrm{Q} \times \mathrm{Q}, \mathrm{P} \times \mathrm{Q}$; $13 \mathrm{~B} \times \mathrm{QP}, \mathrm{Kt}-\mathrm{B} 3$; $14 \mathrm{Kt}-\mathrm{Q} 2+$.
(10) Or 8 Q-R4!, K-Bsq (if $8 \ldots, B-Q 2$; 9 Q-Kt3, and if $8 \ldots$, Q-Q2; 2 B-Kt5) +. If 8 P-KKt3, Kt-R4; $9 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{R6}$; $10 \mathrm{R}-\mathrm{B} 2, \mathrm{Kt} \times \mathrm{B} ; 11 \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}, \mathrm{Q}-\mathrm{Q} 2$; $12 \mathrm{Q} \times \mathrm{Kt}:$ or $8 \ldots, \mathrm{P}-\mathrm{Kt5} ; 9 \mathrm{QB} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 10 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3$; (if) $11 \mathrm{P}-\mathrm{K} 5$, B-Kt5; $12 \mathrm{Q}-\mathrm{K} 3, \mathrm{P} \times \mathrm{P}$; $13 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}$-Q4+. A game Löwenthal $\cdot \mathrm{\nabla}$. Wayte runs 8 .., P-Kt5; $9 \mathrm{Kt}-\mathrm{K} 4, \mathrm{P}-\mathrm{B} 6 ; 10 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 11 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3 ; 12 \mathrm{Kt}-\mathrm{Q} 2,0-0$; 13 Q-B4, P-Q4; 14 P-K5, Kt-E2 ; 15 B-Q3, Kt-Kt4, \&c. (Or 15 .., Q-Kt4! C. E. R.)
(11) Or $8 \ldots, \mathrm{Q}-\mathrm{Q} 2$.
(12) Or $10 \ldots \mathrm{O}-\mathrm{O} 1$ to follow with P-QKt3.
(13) If $11 . \ldots$ P-Kt5; 12 Kt -Ksq, $\mathrm{K} t \times \mathrm{P}$; $13 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Pch}$; 14 . K.Rsq, Kt-Kt6ch; $15 \mathrm{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{P} ; 16 \mathrm{~B}-\mathrm{Kt5ch}, \mathrm{P}-\mathrm{B} 3 ; 17 \mathrm{Q} \times \mathrm{KtP}, \& \mathrm{c}$.
(14) Steinitz v. Neumann. Won by Black after about eleven hours' play.
(15) 8 ... Kt-R4; 9 Q-R4ch, P-QB3; $10 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; 11 P-QKt4, P-QKt4; $12 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Q}$; $13 \mathrm{P} \times \mathrm{Q}, \& c$.
(16) 14 Q-B2 (or P-K61 C. E. R.), Q-Kt3ch; $15 \mathrm{~K}-\mathrm{Rsq}$, B K3 (or R-Ksg 1: 16 B-Q3, Kt-Bsq; C. E. R.) ; 16-B-Q3, P-KB4; $17 \mathrm{P} \times \mathrm{P}$ en pas, $\mathrm{Kt} \times \mathrm{P}$; 18 P-KR4, Kt-R4, \&c.
(Cols. 16 to 30.)

After White's 7th move.
(Col. 29.

After White's 11th move.

Table 88.-'THE KING'S GAMBIT. (PROPER.)
1 P.K4, P.K4; 2 P-KB4, P \times P; 3 Kt.KB3, P•KKt4; 4 B-B4, B-Kt2; 5 P-KR4, P.KR3 (1); 6 P-Q4, P-Q3.

	31	32	33	34	35
7	Kt-B3	Q-Q3	$\mathrm{P} \times \mathrm{P}$	P-B3 !	
7	$\overline{\text { P.QB3 (2) }}$	Kt-QB3!	$\overline{\mathrm{P} \times \mathrm{P}}$	P-Kt5 (7)	
8	$\mathrm{P} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$	$\mathrm{R} \times \mathrm{R}$	Kt-Ktsq (8)	Q-Kt3
	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{B} \times \mathrm{R}}$	Q-K2 (9)	Q-K2
9	$\underline{R} \times \mathrm{R}$	$\mathrm{R} \times \mathrm{R}$	Q-Q3 (6)	Q-K2	O-0
9	$\overline{B \times R}$	$\overline{B \times R}$	Kt-KR3!	Kt-KB3	$\overline{\mathrm{P} \times \mathrm{Kt}}$
10	Kt-K5 (3)	P-K5	P-KKt3	P-K5	$\underline{R} \times \mathrm{P}$
10	$\overline{\mathrm{P} \times \mathrm{Kt}}$	B-Kt2 (5)	Q-K2	\bigcirc	Kt-QB3
11	Q-R5	Kt-B3	Kt -B3	$\mathrm{P} \times \mathrm{P}$	QB \times P
11	Q-B3	$\overline{\mathrm{K} t-R 3}$	$\overline{\mathrm{P}-\mathrm{QB} 3}$	$\overline{\mathrm{Kt}-\mathrm{R} 4+}$	$\overline{K t-Q s q}+$
12	$\mathrm{P} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$		(10)
12	Q-Kt2	$\overline{\mathrm{P} \times \mathrm{P}}$	P-Kt5		
13	P-K6	Kt-Q5	Kt-KKt5		
13	$\overline{\mathrm{B} \times \mathrm{P}}$ (4)	K-Bsq	P.B3+		
14	$\mathrm{B} \times \mathrm{B}$	$\mathrm{Kt} \times \mathrm{KtP}$			
14	$\overline{\mathrm{Kt}}$-B3	$\overline{\mathrm{Q} \times \mathrm{K} t}$			
15	$\mathrm{B} \times \mathrm{Pch}$	$\mathrm{B} \times \mathrm{P}$			
	K-K2	Q-R5ch			
16	Q-Kt6	P-KKt3			
	$\overline{\mathrm{Q} \times \mathrm{B}+}$	Q-R8ch			
17		K-Q2			
17		$\overline{\text { Q-Kt7ch }+}$			

(1) $5 \ldots$ P-Kt5; 6 Kt Kt5, Kt-KR3; 7 P-Q4, P-KB3; $8 \mathrm{~B} \times \mathrm{P} . \mathrm{P} \times \mathrm{Kt}$: $9 \mathrm{~B} \times \mathrm{KtP}, \mathrm{B}-\mathrm{B} 3 ; 10 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Pch} ; 11 \mathrm{~K}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{Kt} 4 \mathrm{ch} ; 12 \mathrm{~K}-\mathrm{Q} 3=$.
(2) If $7 \ldots$ B-K3: $8 \mathrm{Q}-\mathrm{K} 2$. If $7 \ldots$ P-K't5?: $8 \mathrm{Kt}-\mathrm{Ktsq}$. If $7 \ldots$ Kt-QB3?; 8 Kt -K2.
(3) The Calabrese Gambit. If $10 \mathrm{~K}-\mathrm{B} 2, \mathrm{P}-\mathrm{Kt5}$ (or B-Kt2, or Kt-KB3); 11 Q-Rsq, B-Kt2. If $10 \mathrm{P}-\mathrm{KKt}$, P-Kt5; $11 \mathrm{QB} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 12 \mathrm{Q} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $13 \mathrm{~B} \times \mathrm{Pch}$, $\mathrm{K} \times \mathrm{B}$; $14 \mathrm{~B}-\mathrm{K} 5$ disch, $\mathrm{K}-\mathrm{K} 2$; $15 \mathrm{~B} \times \mathrm{B}, \mathrm{Q}-\mathrm{Bsq}+$. After $10 \mathrm{Kt}-\mathrm{K} 5$ Black may also play $\mathrm{B} \times \mathrm{Kt}+$. (Fraser.)
(4) $13 \ldots, \mathrm{Kt}-\mathrm{B} 3$; $14 \mathrm{P} \times \mathrm{Pch}, \mathrm{K}-\mathrm{K} 2+$.
(5) $10 \ldots$ K-Bsq; 11 Q-R7, B-Kt2; 12 Q-R5, Kt-R3 (or P.-Q4; 13 B-Q3, P-B3. C. E. R.) ; $13 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt} 5+$.
(6) Or 9 K-B2, to play Q-Rsq.
(7) Or $7 \ldots$ P-B3, or $7 \ldots, \mathrm{Q}-\mathrm{K} 2$ reverting to Col. 18. The Handbuch recommends $7 \ldots$ Kt-Q2 thence to Kt3 to release the QB and castle on Q 's side if possible. $7 \ldots, \mathrm{Kt}$-QB3, $8 \mathrm{Q}-\mathrm{Kt3}$ runs into Col. 35 after a few moves
(8) If $8 \mathrm{QB} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 9 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB3} ; 10 \mathrm{O}-\mathrm{O}$, $9 \ldots, \mathrm{~B}-\mathrm{K} 3 ; 10 \mathrm{Kt}-\mathrm{Q} 2$ (or P-Q5), Kt-K2; 11 P.R5, B \times B; $12 \mathrm{Kt} \times \mathrm{B}, \mathrm{P} \cdot \mathrm{Kt4}$; $13 \mathrm{Kt}-\mathrm{K} 3$, QKt-B3+.
(9) Or $8 \ldots$, B-B3.
(10) If $11 \ldots, \mathrm{~B} \times \mathrm{Fch}: 12 \mathrm{P} \times \mathrm{B}, \mathrm{K} t \times \mathrm{P}: 13 \mathrm{Q}-\mathrm{RAch}+$

SECTION II.

THE SALVIO GAMBIT.

1P.K4, P-K4; 2 P.KB4, P \times P; 3 Kt .KB3, P.KKt4;
4 B-B4, P-Kt5.

THE Salvio is one of the oldest variations of the King's Gambit. It has been traced to a Peninsular writer quoted by Polerio and Salvio. The move 4 ..., P-Kt5, is quite as good analytically as $4 \ldots$, B-Kt2, but the second player must be prepared to meet the Muzio attack (Sec. 3) as well as Salvio's continuation 5 Kt -K5. After this move, Black gets an important check by $5 \ldots$, Q:R5, with the choice of four lines of play, viz. :-Kt-KB3, Kt-KR3, P-B6, and Kt-QB3. 6..., Kt-KB3, given by Salvio, leaves a Pawn and Rook to be taken in consideration of a strong counter attack (Col. 1). $6 \ldots, \mathrm{Kt}$-KR3 is better play, according to present lights, bat Black, after White's reply 7 P-Q4, must not follow it up with the natural move 7 ..., P-Q3, but play 7 .., P-B6. (Cols. 5-15.) The advance of this Pawn on the 6th move is the Cochrane Gambit, which has been much admired by earlier writers "for the brilliant features of interest it never fails to present" (Cols. 17-20.) 6 ..., Kt-QB3 has been worked out by Herr Czank.

The Salvio was adopted by Steinitz in preference to the Muzio Gambit for match play with Anderssen and Zukertort. It will be seen that the Gambit player's plan of campaign, as formulated in the introduction to the King's Gambit (p. 157), is interrupted by Black's fourth move, and cannot be taken up again. The second player ought always to keep the Pawn with at least an equal position. The check with Queen at Rook's fifth, upon which the defence rests, may be prevented by the first player moving 4 P-KR4, which is thus indicated as theoretically correct, if not more potent than 4 B-B4.

Table 89.-THE SALVIO GaMBit
1 P.K4, P.K4; 2 P.KB4, P \times P; 3 Kt-KB3, P.KKt 4 ; 4 B-B4, P-Kt 5 ; $5 \mathrm{Kt}-\mathrm{K} 5, \mathrm{Q} \cdot \mathrm{R} 5 \mathrm{ch}$. (1)

	1	2	3	4	5
6	K-Bsq				
	Kt-KB3	Kt-KR3			
7	Kt-QB3 (2)	P.Q4			
	Kt-B3	P-Q3		P.Q4	P-B6!
8	P-Q4	Kt-Q3		$\mathrm{KB} \times \mathrm{P}$	B. B4
	Kt $\times \mathrm{Kt}$	P.B6	P-Kte	$\overline{\mathrm{P} \cdot \mathrm{B}} 6$	$\widehat{\mathrm{P} \times \text { Pch }}$
9	$\mathrm{P} \times \mathrm{Kt}$	P-KKt3	$\mathrm{QB} \times \mathrm{P}$	Kt-Q3	$\mathrm{K} \times \mathrm{P}$
	Kt.R4	$\overline{\text { Q-K2 ! (4) }}$	Kt-Kt5	$\overline{\mathrm{P} \times \mathrm{Pch}}$	P-Q3
10	Q.Q5 (3)	Kt-B3 (5)	Q-Q2	$\mathrm{K} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{Kt}$
	Kt-Kit6ch	$\overline{\mathrm{P} \cdot \mathrm{QB} 3}$	Kt \times Pch	Q-R6ch	$\overline{\mathrm{B} \times \mathrm{B}}$
11	K-Ktsq	P.KR3	K-Ktsq	K-Ktsq	Kt-Q3
	$\overline{\mathrm{K}} \times \mathrm{R}$	$\overline{\mathrm{P} \times \mathrm{P}}$	B.Kt2	P-Kt6	Q-R6ch
12	Q \times BPch	$\mathrm{B} \times \mathrm{Kt}$	Q-K3	Kt-B4	K-B2
	$\overline{\mathrm{K}-\mathrm{Qsq}}$	$\overline{\mathrm{B} \times \mathrm{B}}$	Q-R4	P \times Pch	B-K6ch
13	$B \times \mathbf{P}$	$Q \times P$	Kt-Q2 -	$\mathrm{R} \times \mathrm{P}$	K-Ksq
	B-B4ch	B-Kt2	-	$\overline{\text { Q-Kit5ch (6) }}$	$\overline{\text { P-Kt6 }}$
14	$\mathrm{K} \times \mathrm{Kt}$	Kt-K2		Q \times Q	
	R-Bsq	Kt-Q2.		$\overline{\mathrm{Kt} \times \mathrm{Q}}$	
15	B-KKt3	Kt-B2 -		R-Kt2	
	Q-R3	$\overline{\mathrm{K}}$ t-B3-		P.QB3	
	$\underline{\text { Q }} \mathrm{Q} 5+$			B-Kt3 (7)	

(1) 5 .., Kt-KR3; $6 \mathrm{Kt} \times \mathrm{KtP}(\mathrm{O}-\mathrm{O}$!), Qch (or P-Q4) ; $7 \mathrm{Kt}-\mathrm{B} 2, \mathrm{P} . \mathrm{Q} 4 ; 8 \mathrm{P} \times \mathrm{P}$, P-B6, \&c.
(2) $7 \mathrm{Q}-\mathrm{Ksq}, \mathrm{Q} \times \mathrm{Q}$; $8 \mathrm{~K} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{P}$, or $\mathrm{P} \cdot \mathrm{Q} 3$, or $\mathrm{Kt}-\mathrm{QB} 3=$. Handbuch. If $7 \mathrm{Kt} \times \mathrm{BP}, \mathrm{P}-\mathrm{Q} 4 ; 8 \mathrm{Kt} \times \mathrm{R}, \mathrm{P} \times \mathrm{B}+$. If $7 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{K} 2 ; 8 \mathrm{~B}-\mathrm{Kt} 3, \mathrm{P}-\mathrm{Q} 3+$.
(3) Or 10 Q.Ksq! (C. E. R.)
(4) Showing the inferiority of P-Q3 before P-B6. If $9 \ldots, \mathrm{Q}-\mathrm{R} 6$ the White Kt at Q3 threatens the Q on two squares. (W. W.) White may then continue $10 \mathrm{~K} \cdot \mathrm{Ksq}$, Q-R4; $11 \mathrm{Kt}-\mathrm{B} 4+$: if $10 \ldots, \mathrm{Q}-\mathrm{Kt7}$; $11 \mathrm{Kt}-\mathrm{B} 2$ followed by B-Bsq+.
(5) 10 Kt -B2 (Steinitz), B-K3; $11 \mathrm{Kt}-\mathrm{QR} 3, \mathrm{~B} \times \mathrm{B}$; $12 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q}-\mathrm{K} 3+.$. Gossip gives $10 \mathrm{~K}-\mathrm{B} 2, \mathrm{~B}-\mathrm{K} 3 ; 11 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}=$.
(6) $13 \ldots$ R-Ktsqch; $14 \mathrm{Kt}-\mathrm{Kt2}$, Q-Kt6; 15 Q-Bsq, B-K3; $16 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}_{\text {; }}$ $17 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B}$; $18 \mathrm{~K} \cdot \mathrm{Rsq}!$ (Steinitz v. Fraser.)
(7) Steinitz v. Young. Black should now reply P-KR4.
(8) $10 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{Kt2}$; $11 \mathrm{Kt}-\mathrm{B} 2=$. (Gossip.) See col. 6.

Table 90.-THE SALVIO GAMBIT,

1 P-K4, P'K4; 2P-KB4, P×P; 3.Kt-KB3, P.KKt4;
$4 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{P} \cdot \mathrm{Kt} 5$; $5 \mathrm{Kt} \cdot \mathrm{K} 5, \mathrm{Q} \cdot \mathrm{R} 5 \mathrm{ch}$; $6 \mathrm{~K} \cdot \mathrm{~B} \mathrm{sq}$, Kt-KR3; 7 P-Q4, P-B6!

	6	7	8	9	10
8	B-B4	Kt-B3		P-KKt3	Q-Ksq
	P-Q3	P-Q3	Kt-B3	Q-R6ch	$\overline{Q \times Q} \mathbf{Q}$
9	Kt-Q3	Kt-Q3	B-B4	K-B2	$\mathrm{K} \times \mathrm{Q}$
	P×Pch	$\overline{\mathrm{P} \times \text { Pch (3) }}$	P-Q3	Q-Kt7ch	$\overline{\mathrm{P} \times \mathrm{P}}$
10	$\mathrm{K} \times \mathrm{P}$	$\mathrm{K} \times \mathrm{P}$	$\mathrm{Kt} \times \mathrm{Kt}$	K-K3	R-Ktsq
	$\overline{\mathrm{Kt}-\mathrm{B} 3 \quad(1)}$	B-Kt2	P \times Pch	P-KB4! (5)	P-Q3
11	B-KKt3	Kt.B4	$\dot{\mathrm{K}} \times \mathrm{P}$	$\mathrm{Kt-B3} \quad$ (6)	Kt-Q3
	Q-K2	Kt-B3	$\overline{\mathrm{P} \times \mathrm{Kt}}$	P-13	Kt-Ktsq
12	Kt-B2	B-K3	R-KBsq	B-Q3 (7)	$\mathrm{R} \times \mathrm{P}$
	B-Kt2	$0 \cdot 0$	B-Q2	P-Q3	P.KR4 +
13	P-B3	Q-Q2	Q-Q2	Kt-B4	
	B-Q2	K-Rsq +	B-Kt2	$\overline{\mathrm{P} \times \mathrm{P}}$	
14	Kt -Q2		QR-Ksq	QKt \times P	
	0.0:0 (2)		$\overline{0.0 ~(4)}$	Kt-B4ch	
				K-B4	
15				$\overline{\text { B-R3ch }}$	
				Kt -Kt5	
16				0.0+	

(1) 10 .., B-Kt2; 11 P-B3, Kt-B3 1; 12 B-KKt3, Q-K2; 13 Kt-Q2. (Anderssem จ. Zukertort.) See col. 5 .
(2) Bird, Blackbarne, and Winawer v. L. Paulsen, W. Paulsen, and Zukertort.
(3) Rightly timed to stop 10 P-KKt3.
(4) Steinitz v. Tschigorin.
(5) Or $10 \ldots, \mathrm{P}-\mathrm{KB3}$; $11 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{B} 2$; $12 \mathrm{Kt}-\mathrm{B} 4, \mathrm{~B}-\mathrm{R} 3$.
(6) $11 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{P}$; $12 \mathrm{Kt}-\mathrm{B4}, \mathrm{Kt}-\mathrm{B} 4 \mathrm{ch} ; 13 \mathrm{~K} \times \mathrm{KP}, \mathrm{Q}-\mathrm{B} 7 ; 14 \mathrm{Q}-\mathrm{Ksq}, \mathrm{Q} \times \mathrm{QPch}$;
$15 \mathrm{~K} \times \mathrm{Ktch}, \mathrm{B}-\mathrm{K} 2 ; 16 \mathrm{~K} \times \mathrm{P}, \mathrm{Q} \times \mathrm{B} ; 17 \mathrm{~K} \times \mathrm{P}, \mathrm{P}-\mathrm{K} 43 ; .18 \mathrm{Q}-\mathrm{K} 4, \mathrm{Q} \times \mathrm{Qch}$;
$19 \mathrm{~K} \times \mathrm{Q}, \mathrm{B}-\mathrm{Kt} 2 \mathrm{ch} ; 20 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{R} 3+$. If $11 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3 ; 12 \mathrm{Kt} \mathrm{Q} 3, \mathrm{Kt} \times \mathrm{Pch}$;
13 K-K4, P-B7dch; $14 \mathrm{~K}-\mathrm{B4}$, B-R3ch; $15 \mathrm{~K} \times \mathrm{P}$, Kt-K6ch; $16 \mathrm{~K}-\mathrm{R} 5, \mathrm{Q}-\mathrm{R} 6$ mate.
(7) $12 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{P}$; 13 Kt -B4; Kt-B4ch; $14 \mathrm{~K} \times \mathrm{KP}, \mathrm{P}-\mathrm{Q} 4 \mathrm{ch} ; 15 \mathrm{~B} \times \mathrm{P}$, P×Bch; 16 QKt \times P, $\mathrm{Et}-\mathrm{Q} 3 \mathrm{ch}+$. (A. S.)

Table 91.-THE SALVIO GAMBIT.

1 P-K4, P-K4; 2 P.KB4, P×P; 3Kt-KB3, P.K.Kt4; $4 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{P} \cdot \mathrm{Kt} 5$; $5 \mathrm{Kt} \cdot \mathrm{K} 5, \mathrm{Q} \cdot \mathrm{R} 5 \mathrm{ch} ; 6 \mathrm{~K} \cdot \mathrm{Bsq}$, Kt.KR3; 7 P-Q4, P-B6!

	11	12	13	14	15
8	Q-Q2 (1)	$\mathrm{P} \times \mathrm{P}$		$\mathrm{B} \times \mathrm{Kt}$	
	$\overline{\mathrm{P} \times \mathrm{Pch}}$	P-Q3		$\overline{B \times B}$	
9	$\mathbf{Q} \times \mathrm{P}$	Kt-Q3	$\underline{K} \times \mathrm{KtP}(3)$	$\mathrm{P} \times \mathrm{P}$	
	P-Q3	$\overline{\mathbf{P} \times \mathrm{P}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	$\overline{\mathrm{P}} \cdot \mathrm{Q4}$	
10	Kt-Q3	Kt-B2	$\underline{P} \times \mathrm{Kt}$	$B \times P$	
	Kt-B3	B-R6ch	B \times P	$\overline{\mathrm{P} \times \mathrm{P}}$	
11	B-K3	$\mathrm{Kt} \times \mathrm{B}$	Q-Q3	$\mathrm{Q} \times \mathrm{P}$	$\mathrm{Kt} \times \mathrm{P}$ (7)
	B-Kt2	Q \times Ktch	B-R6ch	B-R6ch	B-R6ch
12	P.B3	K-B2 (2)	K-K2	$\mathrm{K} \cdot \mathrm{K} 2$	K-K2
	B-Q2	Q-Kt7ch	R-Ktsq $+(4)$	P-KB3	Q-B5
13	Kt-Q2	K-K3		$\mathrm{B} \times \mathrm{P}$	Q-Q3 (8)
	$0.0 .0+$	Kt-Kt5ch		$\underline{P \times K t}$	P-QB3
14		K-B4		R-Ktsq	B-Kt3
		B-R3ch		R.Bsq	Kt-Q2
15		K-B5		Q-KKt3	Kt-Q2
		Kt-K6ch		Q-R4ch	0-0.0
16		$\mathrm{B} \times \mathrm{Kt}$		K-Ksq	QR-Ksq
		Q-Kt3 mate		B.B5 (6)	$\overline{\mathrm{Kt}} \cdot \mathrm{B4}+(9)$

(1) 8 Q-Q3, P-Q3; $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B}$; $10 \mathrm{Kt} \times \mathrm{P}$ (B7), R.Bsq; $11 \mathrm{Kt} \times \mathrm{B}, \mathrm{P} \times \mathrm{P}$ d.ch + .
(2) Or $12 \mathrm{~K}-\mathrm{Ksq}, \mathrm{Kt}-\mathrm{Kt} 5+$.
(3) $\cdot \mathrm{If} 9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{~B} \times \mathrm{B}, \mathrm{KtP} \times \mathrm{P}+$.
(4) Or 12 .., B-Kt2 + .
(5) 9 Q -Ksq, $\mathrm{P} \times \mathrm{Pch}{ }^{\circ}$; $10 \mathrm{~K} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 6 \mathrm{ch}$; $11 \mathrm{~K}-\mathrm{B} 2, \mathrm{P}-\mathrm{Q} 3$ (or B.Kt4! C. E. R.)
(6) Continued 17 Q-B2, $P \times P ; 18$ R-Rsq, $Q-Q K t 4 ; 19 B \times R, Q \times P+$.
(7) If $11 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{K} 2$; $12 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{R} 6 \mathrm{ch}$; $13 \mathrm{~K}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{Q} 2$; $14 \mathrm{R}-\mathrm{Ktsq}$, $\mathrm{Kt} \times \mathrm{Kt}$; $15 \mathrm{P} \times \mathrm{Kt}, \mathrm{KR}-\mathrm{Bsq}+$.
(8) Or 13 Q-Q2. (C.E.R.)
(9) Continued 17 Q-B3, B.Kt5; $18 \mathrm{KR} \cdot \mathrm{Bsq}, \mathrm{Kt} \times \mathrm{P}$; $19 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times$ Ktch; 20 K.B2, Q.B5 + (Zukertort.)

Table 92.-THE SALVIO GAMBIT.

1 P-K4, P-K4; 2 P-KB4, P×P; 3 Kt-KB3, P-KKt 4 ; 4 B-B4, P-Kt5; 5 Kt.K5, Q-R 5 ch ; $6 \mathrm{~K} \cdot \mathrm{~B}$ sq.

| 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- |

6	Kt-QB3	$\overline{\text { P-B6 (3) }}$			
	$\dot{\mathrm{B}} \times \mathrm{Pch}$ (1)	P-Q4!		$\mathrm{B} \times \mathrm{Pch}(8)$	$\mathrm{Kt} \times \mathrm{P}$ (B7)
7	K-K2	P \times Pch	$\overline{\mathrm{Kt}-\mathrm{KB} 3 \text { (6) }}$	K-K2	Kt-KB3
8	$\mathrm{Kt} \times \mathrm{Ktch}$	$\mathrm{K} \times \mathrm{P}$	$\mathrm{B} \times$ Pch (7)	$\mathrm{P} \times \mathrm{P} \quad$ (9)	$\mathrm{Kt} \times \mathrm{R}$
	QP×K $\overline{\text { t }}$	Q-R6ch	K-K2	P-Q3	$\overline{\mathrm{Kt} \times \mathrm{P}}$
9	$\underline{B \times K t}$ (2)	K-Ktsq (4)	B-B4 or Kt3	$\mathrm{B} \times \mathrm{Kt}$	Q-Ksq
	$\overline{\mathrm{R} \times \mathrm{B}}$	Kt-KR3	B-Kt2	$\mathrm{R} \times \mathrm{B}$	P×Pch
10	Q-Ksq	Q-Q3	Q-Ksq	$\underline{\mathrm{Kt}} \times \mathrm{P}$	$\mathrm{K} \times \mathrm{P}$
	P-Kt6 !	$\overline{\mathrm{Q} \times \mathrm{Q}}$	Q \times Qch	$\overline{\mathrm{B} \times \mathrm{Kt}}$	Q-R6ch
11	P-Q3	$\mathrm{P} \times \mathrm{Q}$	$\mathrm{K} \times \mathrm{Q}$	$\mathrm{P} \times \mathrm{B}$	K-Ktsq
	P-B6	P-Q3	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{R} \times \mathrm{P}}$	B-B4ch+
12	P-KR3!	$\mathrm{B} \times \mathrm{Kt}$	R-Ktsq	P-Q3	
	B-Kt5	$\overline{\mathrm{B} \times \mathrm{B}}$	R-Q3	Q-R6ch	
18	Q-K3	$\mathrm{Kt} \times \mathrm{BP}$	Kt-B7	K-Ksq	
	R-Kt3+	$\overline{\text { B-K6ch (5) }}$	$\overline{\mathrm{R}-\mathrm{Bs} q}+$	R-Kt7 +	

(1) If $7 \mathrm{Kt} \times \mathrm{BP}, \mathrm{P}-\mathrm{B6}:$ or $7 \ldots$, B-B4; $8 \mathrm{Q}-\mathrm{Ksq}_{2} \mathrm{P}-\mathrm{Kt6}$; 9 P-B34, B-B7, \&c. If $7 \mathrm{Q} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Q}$; $8 \mathrm{Kt} \times \mathrm{Q}, \mathrm{P}-\mathrm{Q4} ; 9 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Q} 5+$.
(2) If 9. B-Kt3, Kt-B3 (or $9 \ldots$... P-B6) ; 10 P-Q3I, Kt-R4; 11 Q-Ksq, P-Kt6 (or $11 \ldots, \mathrm{Q}-\mathrm{Kt4}$) ; (if) 12 P-KR3 or Kt-Q2, B-Kt5 to be followed by B-Kt2 and R-KBsq. The Col. is Dublin v. Cambridge.
(3) Cochrane's Gambit.
(4) Mr. Ranken suggests $9 \mathrm{~K}-\mathrm{B} 2$!, (if) Q-R5ch; $10 \mathrm{~K} \cdot \mathrm{~K} 2$.
(5) 14 K-Kt2, K-Bsq; 15 R-Bsq, B \times P+.
(6) $7 \ldots, \mathrm{Kt}$-KR3 transposes into Cols. 5-15.
(7) Tschigorin against Winawer played $8 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P} \times \mathrm{Pch}, \& c$. If $8 \mathrm{~B} \cdot \mathrm{B4}, \mathrm{P}-\mathrm{Q} 3$; $9 \mathrm{Kt} \times \mathrm{P}$ (B7), R-Ktsq; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{Kt} ; 11 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{Pch} ; 12 \mathrm{~K} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 6 \mathrm{ch}$; $13 \mathrm{~K}-\mathrm{Ktsq}, \mathrm{P} \times \mathrm{B} ; 14 \mathrm{~B} \times \mathrm{R}, \mathrm{Kt} \times \mathrm{B}+$. If $8 \mathrm{Kt} \times \mathrm{BP}, \mathrm{P}-\mathrm{Q} 4 ; 9 \mathrm{~B}-\mathrm{KKt5}, \mathrm{P} \times \mathrm{Pch}$; $10 \mathrm{~K} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 6 \mathrm{ch} ; 11 \mathrm{~K}-\mathrm{Ktsq}, \mathrm{P} \times \mathrm{B}$; $12 \mathrm{Kt} \times \mathrm{R}, \mathrm{P}-\mathrm{Kt6}$; $13 \mathrm{~B} \times \mathrm{Kt}$, B-R3; $14 \mathrm{Q}-\mathrm{n}^{2} 2$, B-Kt5; 15 Q-Kt2, Bch; 16 K -Bsq, B ch-and wins.
(8) If 7 P-KK.t3, Qch; 8 K-Ksq, Q-Kt7: or $8 \mathrm{~K}-\mathrm{B} 2, \mathrm{Kt}-\mathrm{KB} 3, \& \mathrm{c}$. + If $7 \mathrm{P} \times \mathrm{P}$, $\mathrm{Kt}-\mathrm{KB} 3:$ if $8 \mathrm{Q}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 3$; $9 \mathrm{Kt} \times \mathrm{BP}, \mathrm{P} \times \mathrm{P}$: if 8 Q -Ksq, Q -R6ch: if $8 \mathrm{Kt} \times \mathrm{BP}$, $\mathrm{P}-\mathrm{Q4} ; 9 \mathrm{Kt} \times \mathrm{R}, \mathrm{P} \times \mathrm{BP}$: if $8 \mathrm{P}-\mathrm{KR} 3, \mathrm{P} \times \mathrm{RP}$: if $8 \mathrm{Kt} \times \mathrm{KtP}$; Kt $\times \mathrm{Kt} ; 9 \mathrm{P} \times \mathrm{Kt}$, Qch+.
(9) $8 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{B}$; $9 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3$ (P-Kt6! C. E. R.); $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{R} \times \mathrm{Kt} . \mathbb{d}$. If $8 \mathrm{Q} \cdot \mathrm{Ksq}$ or P-Q4; $\mathrm{P} \times$ Pch: if $8 \mathrm{~B}-\mathrm{Kt3}, \mathrm{~B}-\mathrm{Kt} 2$ t.

SECTION III.

THE MUZIO GAMBIT.

1 P.K4, P.K4; 2 P.KB4, P \times P; 3 Kt-KB3, P.KKt4:

4 B-B4, P-Kt5. (Diagram p. 170.)

T has been shown in Section I. that the further sacrifice of a piece by the first player of the King's Gambit, ought to be accompanied by the gain of at least one additional. move in order to obtain an equivalent in position. This is nearly accomplished in the Muzio where Black, instead of bringing out a piece, expends a time in playing $4 \ldots$, P-Kt5 to win White's Knight. White in return obtains a formidable attack on his opponent's King's Bishop's Pawn, The earlier English writers, Sarratt, Lewis, and Walker, have given much attention to this opening. Walker writes in 1841, "While I do not now consider the sacrifice of the Kt to be radically sound, yet from the defence being so exceedingly difficult to discover in actual play, I should seldom fear staking the chances of victory upon this brilliant and impetuous assault. The student wishing to excel will indeed play the Muzio whenever opportunity arises, since hardly any other opening so forcibly exemplifies the power of a few pieces, well combined, over a mass of inert force. Could White castle, as in Italy, with King at once to corner, I believe the game sould not be defended."

Since Walker's time the defence has been strengthened by Paulsen's move Q-KB4 (col. 23), but the unexplored resources of the opening still leave the above remarks generally applicable. White has three continuations, viz.:-5 0.0, the original Muzio; 5 P-Q4 introduced by Koch, and Ghulam Kassim; and 5 Kt -B3, McDonnell's variation. Against both 5 Kt -B3 and 5 P-Q4, Black, after $5 \ldots, \mathrm{P} \times \mathrm{Kt}$, may play $6 \ldots, \mathrm{P}-\mathrm{Q} 4$, and Kt-KB3. This resource is not available after 5 0.0. A minor variation is $5 \mathrm{~B} \times \mathrm{Pch}$.

The title of the Muzio Gambit has little connection with its authorship. The opening is found in Polerio's MS. (1590.) Muzio was a playor of later date.

Table 93.-THE MUZIO GAMBIT.
$1 \mathrm{P}-\mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{P}-\mathrm{KB4}, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt}-\mathrm{KB} 3$, P-KKt4; 4 B-B4, P-Kt 5 .

	1	2	3.	4	5
5	$\mathrm{B} \times \mathrm{Pch}$		Kt-B3		P-Q4
	$\overline{\mathrm{K} \times \mathrm{B}}$		$\overline{\mathrm{P} \times \mathrm{Kt}}$		$\overline{\mathrm{P} \times \mathrm{Kt}}$ (9)
6	Kt-K5ch		$Q \times \mathbf{P}$		$Q \times P$
	$\overline{\mathrm{K}-\mathrm{K} s q}$ (1)		P-Q4 (3)		P.Q4!
7	$Q \times P$		B. \times P !		$\mathrm{B} \times \mathrm{QP}$
	Kt-KB3	Q-B3	$\overline{\mathrm{P} . \mathrm{QB} 3}$ (4)		$\overline{\mathrm{Kt}} \mathrm{KB} 3$!
8	Q \times BP	Q-R5ch	$\mathrm{B} \times \mathrm{KBPch}$	B-Kt3	0.0
	P-Q3 (2)	K-K2	K \times B	B-K3	P-B3
9	Kt-B4	Kt-QB3	Q-R5ch (5)	$\mathrm{B} \times \mathrm{B}$	$\mathrm{B} \times \mathrm{KBPoh}$
	Kt-B3	P-B3	K-Kt2	$\overline{\mathrm{P} \times \mathrm{B}}$	$\overline{\mathrm{K} \times \mathrm{B}}$
10	0.0	Kt-B7	P.Q4 (6)	Q-R5ch (7)	$\mathrm{B} \times \mathrm{P}$ (10)
	B-Kt2	$\overline{\text { Q } \times \text { Kt }}$	B-K3	K-Q2	$\overline{\text { Q } \times \text { Pch }}$
11	P-Q3	Q-K5ch	$\mathrm{B} \times \mathrm{P}$	P-Q4	B-K8
	B-K3	K-Qsq	B-B2	Q-B3	Q-K4
12	Q-Kt3	Q $\times \mathrm{R}$ -	B-K5ch	0.0	B. B4
	Q-K2+	$\overline{\mathrm{Kt}-\mathrm{K} 2-}$	$\overline{\mathrm{K} t}$-B3	Q-Kt3	B-B4ch
18			Q.Kt5ch	Q-R5	K-Rsq
			$\overline{\text { B.Et3 }}+$	Et-QR3 (8)	Q-K2
14					P-K5
					B-KKt5
15					$\mathbf{P} \times \mathrm{K} \mathbf{t}$
					Q-K3+

(1) $7 \ldots$ K-K3; $8 \mathrm{Q} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{Kt} ; 9 \mathrm{Q}-\mathrm{B} 5 \mathrm{ch}, \mathrm{K} \cdot \mathrm{Q} 3$; $10 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B} \cdot \mathrm{~K} t 2$;- $11 \mathrm{~B} \times \mathrm{Pch}$, K-K2; 12 B-Kt5ch, B-B3; 13 O-O, \&c.
(2). If 8 .., B-Q3; 9 0-0, R-Bsq; 10 P-Q4, Kt-B3; 11 Q-R6!
(3) $6 \ldots$ P-Q3 is simpler; if $7, Q \times P$ or P-Q4, B-K3. $6 \ldots, \mathrm{Q}-\mathrm{B} 3,6 \ldots, \mathrm{~B}-\mathrm{R} 3$, and $6 \ldots, \mathrm{Kt}-\mathrm{QB} 3$ all lead to a won game for White. (H゙andbuch.)
(4) Or 7 .., Kt-KB3! ; 8 0-0, P-QB3.
(5) 9 P-Q4, Kt-B3; 10 P-K5, B-Kt2; $11 . \mathrm{B} \times \mathrm{P}, \mathrm{R}-\mathrm{K} q$; $12 \mathrm{~B}-\mathrm{Kt5}, \mathrm{Q} \times \mathrm{P}$; $13 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B}-\mathrm{Kt5}+$: if $9 \mathrm{Q} \times \mathrm{Pch}, \mathrm{Kt}=\mathrm{B} 31$.
(6) If 10 P-K5, Kt-KR3 !. (Handbuch.)
(7) Or 10 P-Q4. (Anderssen.)
(8) $14 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt} 5$; $15 \mathrm{Q}-\mathrm{R} 4, \mathrm{Kt}-\mathrm{K} 2+$. Mr. Ranken suggests for White 13 Q-R3!
(9) Or 5 .., Q-K2. (Morphy.)
(10) After this move or $10 Q_{2} \times P$ the Handbuch plays 10 , i, B-Kt2 giving up a piece to simplify the game.

Table 94.-THE MUZIO GAMBIT.

	6	7	8	9	10
5	P.Q4			0.0	
	$\overline{\mathrm{P} \times \mathrm{Kt}}$		P-Q4	$\overline{\mathbf{P} \times \mathrm{Kt}}$	
6	$\mathrm{Q} \times \mathrm{P}$		$\mathrm{KB} \times \mathrm{P}$	$Q \times P$	
	$\overline{\mathrm{P}-\mathrm{Q} 3 \text { ? (1) }}$		P-QB3 (6)	B-R3?	
7	O-0		B-Kt3 (7)	P-Q4 (8)	
	Q-B3	B-K3	$\overline{\mathrm{P} \times \mathrm{Kt}}$	P-Q3	Q-B3
8	Kt-R33 (2)	P-Q5	$Q \times P$	Kt -B3 (9)	P-K5
	Q \times Pch	B-Q2	Q \times P	Q-B3	Q-B4
9	K-Rsq	$B \times P$	Q ${ }^{\text {B }} \times \mathrm{P}$	K-Rsq (10)	Kt-B3
	B-R3	Q-K2	Kt-B3!	B.-K3	$\overline{\mathrm{Kt}-\mathrm{QB} 3(11)}$
10	QB \times P	P-K5	Kt -Q2	P-K5	Kt -K2
	Q-B3 (3)	$\bigcirc \times \mathrm{P}$	B-KKt5 +	$\overline{\mathrm{P} \times \mathrm{P}}$	KKt-K2
11	Q-K3	$\mathrm{B} \times \mathrm{P}$		$\mathrm{P} \times \mathrm{P}$	B-Q3
	Q-Kt3	$\overline{\mathrm{Q} \times \mathrm{B}}$ (4)		$\overline{\mathrm{Q} \times \mathrm{P}}$	Q-K3
12	P-K5	Q \times Pch,		$\mathrm{B} \times \mathrm{B}$	P-B3
	B \times B	K-Qsq			Kt-Kt3
18	$\underline{R} \times$ B	Q \times KBch		$\underline{Q} \times \mathrm{KtP}$	Q-R5
	B.K3	Q-Ksq		Q-QB3	$\overline{\mathrm{B}-\mathrm{K} 2} 2$
14	$\underline{\mathrm{P} \times \mathrm{P}+}$	P-Q6		Q-B8ch	$\underline{B \times P}$
		$\bigcirc \times \mathrm{P}$		K-K2	$\overline{0-0}$
15		$\underline{Q} \times \mathbf{P}$		$\underline{\mathrm{B} \times \mathrm{P}+}$	$\underline{\mathrm{Kt} \text {-Kt8 }}$
		$\overline{\mathrm{Kt}-\mathrm{K} 2}$ (5)			QKt-K2(12)

(1) $6 \ldots, \mathrm{Q}-\mathrm{B} 3$; 7 P-K5, Q-B4; 8 O-O, B.R3; $9 \mathrm{Kt}-\mathrm{B} 3$ runs into Col. 10. If $6 \ldots$ Q-R5ch; 7 P-KKt3, Q-R6; 8. QB \times P, P-KB3; 9 P-K5 or Kt-B3, \&c.: if 9 Q-QKt3 ?, Q-Kt7+.
(2) $8 \mathrm{~K}-\mathrm{Rsq}$, with the reply $\mathrm{Q} \times \mathrm{P}$, or B-R3 also bad for Black.
(3) $10 \ldots, \mathrm{Q}-\mathrm{Kt2}$; $11 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Kt}-\mathrm{R} 3$; $12 \mathrm{QB} \times \mathrm{P}, \mathrm{P} \times \mathrm{B}$; $13 \mathrm{Kt} \times \mathrm{Pch}+$.
(4) $11 \ldots, \mathrm{P}-\mathrm{KB} 3$; $12 \mathrm{~B}-\mathrm{Q} 4, \mathrm{~B}-\mathrm{Kt2}$; $13 \mathrm{Kt}-\mathrm{B} 3$, K-Qsq; $14 . \mathrm{P}-\mathrm{Q} 6$, with a strong attack.
(5) $16 \mathrm{~B}-\mathrm{B} 7, \mathrm{Q}-\mathrm{Bsq}$; 17 Kt -B3, and wins.
(6) Or $6 \ldots, \mathrm{P} \times \mathrm{Kt} ; 7 \mathrm{Q} \times \mathrm{Pl}$. If $6 \ldots$ Kt-B3; $7 \mathrm{~KB} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; 8 Kt-Kt5ch, followed by $9 \mathrm{~B} \times \mathrm{P}$, \&c:
(7) $7 \mathrm{~B} \times \mathrm{KBPch}, \mathrm{K} \times \mathrm{B}$; $8 \mathrm{Kt}-\mathrm{K} 5 \mathrm{ch}, \mathrm{K}-\mathrm{Ksq}+$.
(8) Or 7 P-K5. Or $7 \mathrm{Kt}-\mathrm{B} 3$, (if) $\mathrm{Q}-\mathrm{B} 3$; $8 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{Q} 5 \mathrm{ch}$; $9 \mathrm{R}-\mathrm{B} 2, \mathrm{Q} \times \mathrm{B}$; 10 P-Q3; Q-B3 (Q-Q5 !); $11 \mathrm{~B} \times \mathrm{P}+$.
(9) $\mathrm{Or} 8 \mathrm{QB} \times \mathrm{P}, \mathrm{B} \times \mathrm{B} ; 9 \mathrm{Q} \times \mathrm{B}, \mathrm{Q}-\mathrm{K} 2 \quad 10 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Qsq} ; 11 \mathrm{P}-\mathrm{K} 5$, \&c. $7 \ldots \mathrm{Q}-\mathrm{K} 2$ is a trangposition of this variation.
(10) Or 9 P-K5. (C. E. R.)
(11) If $9 \ldots$ Kt-K2; $10 \mathrm{Kt}-\mathrm{K} 4+$.
(12) $16 \mathrm{Kt}-\mathrm{K} 4, \mathrm{P}-\mathrm{KB} 3$; $17 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $18 \mathrm{~B}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{Q} 4 ; 19 \mathrm{~B} \times \mathrm{B}$ 卢。

Table 95.--THE MUZIO GAMBIT.

1 P-K4, P-K4; . 2 P-KB4, P \times P; 3 Kt-KB3, P-KKt 4 ; 4 B-B4, P-Kt5; 5 0.0, $\mathrm{P} \times \mathrm{Kt}$; $6 \mathrm{Q} \times \mathrm{P}$.

11 | 12 | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- |

6	Q-K2				
7	$\mathbf{Q} \times \mathbf{P}$			P-Q4	P-Q3
7	Q-B4ch		$\overline{\mathrm{Kt}-\mathrm{KR} 3 \text { (3) }}$	$\overline{\mathrm{Kt}} \mathrm{QB} 3$ (5)	P-Q3
8	P-Q4		Kt-B3	Kt-B3 (6)	QB \times P
8	Q P Pch	Q \times B	$\overline{\text { P-QB3 (4) }}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	B-K3 (8)
9	B-K3	Q-K5ch	P-Q4	Q-Q3	B-KKt5
9	Q $\times \mathrm{KB}$	Q-K3	P-Q3	Kt-K3	Q-Q2 (9)
10	Q-K5ch	$Q \times R$	B-Q2	Kt-Q5	Kt-B3
10	$\overline{\mathrm{Kt}}$-K2	Q-KKt3	R-Ktsq	Q-B4ch	Kt-QB8
11	$Q \times R$	Q-K5ch	QR-Ksq	K-Rsq	Kt-Q5
11	Q $\times \mathrm{KP}$ (1)	B-K2	B-KR6	P-Kt4	B-Kt2
12	B-R6	$\mathrm{Q} \times \mathrm{P}$	R-B2	B-Kt3	
12	$\overline{\mathrm{Kt}} \mathrm{K} \mathrm{K} 3$	Kt-QB3	Kt-Q2	B-KR3	
13	Q-Kt8+	Q-B4	R-K3	B-Q2	
13		$\overline{\mathrm{Kt} \times \mathrm{P}}$ (2)	B-K3	Q-Bsq (7)	

(1) Or 11 .., P-Q31; $12 \mathrm{Q} \times \mathrm{P}$, or $\mathrm{Kt}-\mathrm{Q} 2$ with at least an equal game. (Hand buch.)
(2) Continued $14 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{Kt} 3$; $15 \mathrm{R}-\mathrm{B} 2, \mathrm{~B}-\mathrm{Kt2}$; $16 \mathrm{~B}-\mathrm{K} 3, \mathrm{Kt}-\mathrm{K} 3$; $17 \mathrm{Q}-\mathrm{B} 3$ or B5, Kt-B3+. (C. M.)
(3) If $7 \ldots, \mathrm{Kt}-\mathrm{QB} 3$; $8 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Qsq} ; ~ .9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{K} 4 ; 10 \mathrm{Q} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Q}$; 11 P-Q41+.
(4) 8 ..., B-Kt2; 9 P-K5, P-QKt4; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{R} 3$; 11 P-Q4, B-Kt2; 12 Kt-Q6ch+. The Col. leaves White with a good game.
(5) Löwenthal connected this move with Kt-Qsq. 5 .., B-Kt2 is inferior.
(6) $8 \mathrm{P}-\mathrm{B} 3, \mathrm{Q}-\mathrm{B} 2, \mathrm{Q} \times \mathrm{P}$ and $\mathrm{QB} \times \mathrm{P}$ are all to Black's advantage.
(7) So far Dufresne and Zukertort... Dr. Schwede adds 14 Q-QB3, B-KKt2; $15 \mathrm{Kt} \times$ QBPch, $\mathrm{K}-\mathrm{Qsq} ; 16$ Q-R5, Kt×Kt; 17 B-Kt4, P-Q3!; 18 QR-Qsq, B-K4; $19 \mathrm{R} \times \mathrm{QPch}, \mathrm{B} \times \mathrm{R}$; $20 \mathrm{R}-\mathrm{Qsq}, \mathrm{K}-\mathrm{Ksq} ; 21 \mathrm{~B} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 2$; $22 \mathrm{Q} \times \mathrm{Kt}$, B-Kt5; 23 R-Q5, R-Bsq; 24 Q-Kt7, B-K3; 25 Q \times KtPch, B-Q2; 26 Q-Kt7, B-B3; 27 B-R4+.
(8) Or 8 .., B-Kt2! (C. E. R.)
(9) 9 .., P-KB3; 10 P-K5! (Winawer v. Zukertort), P-Q4! (Steinitz), The yariation in this Col. is not yet thoroughly analysed.

Table 96.-THE MUZIO GAMBIT.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{KB4}, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P} \cdot \mathrm{KKt} 4$; $4 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{P} \cdot \mathrm{Kt} 5 ; 5 \mathrm{O} \cdot \mathrm{O}, \mathrm{P} \times \mathrm{Kt} ; 6 \mathrm{Q} \times \mathrm{P}, \mathrm{Q} \cdot \mathrm{B} 3$!.

	16	17	18	19	20
7	P-Q3			P-B3 ?	P-K5
	B-R3	$\overline{\mathrm{Kt}} \mathrm{QB3}$	$\overline{\text { P-Q4 (4) }}$	Kt-QB3	Q-QKt3ch(8)
8	Kt-B3	$\mathrm{QB} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{QP}$ (5)	P-Q4	K-Rsq
	Kt-K2	B-B4ch	P-B3	$\overline{\mathrm{K} t \times \mathrm{P}}$	B-R3
9	$\mathrm{QB} \times \mathrm{P}$ (1)	K-Rsq	Kt-B3	$\mathrm{P} \times \mathrm{Kt} \quad$ (7)	Kt-B3
	$\overline{B \times B}$	P-Q3	$\overline{\mathrm{B}-\mathrm{Q} 3}$ (6)	Q \times Pch	Q-B4
10	Q \times B	Kt-B3	B-Kt3	K -Rsq	P-Q3
	$\overline{Q \times Q}$	B-Kt3	Kt-K2	$\overline{\mathrm{Q} \times \mathrm{B}}$	$\overline{\mathrm{Q} \times \mathrm{P}}$
11	$\mathrm{R} \times \mathrm{Q}$	Q-Kt3	$\mathrm{QB} \times \mathrm{P}$	$\mathrm{Q} \times \mathrm{P}$	Kt-Q5
	P-Q3	(3)	$\overline{\mathrm{B} \times \mathrm{B}}$	B-Q3	Kt-K2
12	$\mathrm{B} \times \mathrm{Pch}$		Q \times B	Q-B3	$B \times P$
	K-Qsq		$Q \times Q$	B-K4	$\overline{\mathrm{B} \times \mathrm{B}}$
13	QR-KBsq		$\mathrm{R} \times \mathrm{Q}$	P-QKt3	QR-Ksq
	QKt-B3		$\overline{\mathrm{B}-\mathrm{K} 3+}$	+	$\overline{\text { Q-Kt4 }}$
14	P-KR3 ! (2)				$\mathrm{R} \times \mathrm{Ktch}$
	Kt-K4				K-Qsq
15	P-Q4				$\underline{\mathrm{R} \times \mathrm{BP}_{+}}$

(1) This may be played a move earlier. If $9 \mathrm{P}-\mathrm{K} 5, \mathrm{Q} \times \mathrm{P}$; $10 \mathrm{~B}-\mathrm{Q} 2, \mathrm{QKt}-\mathrm{B} 3$; 11 QR-Ksq, Q-B4! (Col. 23): if $10 \mathrm{QB} \times \mathrm{P}, \mathrm{Q} \times \mathrm{B}$; $11 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Qsq}, \& \mathrm{c}$.
(2) Or 14 R-R4! (C. E. R.) The Handbuch gives 14 P-KR3 (Winawer v. Wittek) to White's advantage.
(3) If now $11 \ldots, \mathrm{Q}-\mathrm{K}+3$; $12 \mathrm{~B} \times \mathrm{QP}$! (Taubenháus). In case $8 \ldots, \mathrm{Q} \times \mathrm{P}$; $9 \mathrm{~B} \times \mathrm{Pch}+$.
(4) Or $7 \ldots$ P-QKt4!; if 8 P-K5 (a) Q-QKt3 ch; $9 \mathrm{~K}-\mathrm{Rsq}, \mathrm{P} \times \mathrm{B} ; 10 \mathrm{Q} \times \mathrm{R}$, B-QKt2; 11 Q \times Ktch, K-K2; 12 R-B3, Kt-R3; 13 Kt-B3, B-Kt2; 14 Ktch, $\mathrm{B} \times \mathrm{Kt} ; 15 \mathrm{Q} \times \mathrm{Q}, \mathrm{RP} \times \mathrm{Q}+$ (Turnbull).
(a) If $8 \mathrm{Kt}-\mathrm{B} 3!, \mathrm{P}-\mathrm{B} 3$; 9 B-Kt3 (if $9 \mathrm{~B} \times \mathrm{KtP}, \mathrm{B}-\mathrm{Kt5}$ or B-KR31), P-Q3; $10 \mathrm{Q} \mathrm{B} \times \mathrm{P}$ (if $10 \mathrm{Q}-\mathrm{R} 5, \mathrm{Q}-\mathrm{Kt3}$), $\mathrm{B}-\mathrm{K} 3$; $11 \mathrm{Q}-\mathrm{R} 5$ or $\mathrm{Kt3}, \mathrm{~B} \times \mathrm{B}+$. (C. E. R.)
(5) $8 \mathrm{P} \times \mathrm{P}$, if B-R3; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{K} 2$; $10 \mathrm{Kt}-\mathrm{K} \dot{4}, \mathrm{Q}-\mathrm{QKt} 3 \mathrm{ch}$; $11 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt}$-Kt3 ; 12 Q-R5, B-Kt2; 13 P-Q6, \&c.
(6) If $9 \ldots, \mathrm{P} \times \mathrm{B} ; 10 \mathrm{Kt} \times \mathrm{P}$ leads to a rin for White. (Handbuch).
(7) Or $9 \mathrm{~B} \times \mathrm{Pch}, \mathrm{Q} \times \mathrm{B}$; $10 \mathrm{P} \times \mathrm{Kt}, \mathrm{B}-\mathrm{R} 3, \& \mathrm{c}$.
(8) 7 Q.B4; 8 P.Q4, B.R3 transposes into Col. 10.

Table 97.-THE MUZIO GAMBIT.
1 P.K4, P.K4; 2 P.KB4, P \times P; 3 Kt-KB3, P-KKt 4 ;
4 B-B4, P-Kt5; $50-0, \mathrm{P} \times \mathrm{Kt}(1) ; 6 \mathrm{Q} \times \mathrm{P}(2), \mathrm{Q} \cdot \mathrm{B} 3!$; $7 \mathrm{P} \cdot \mathrm{K} 5, \mathrm{Q} \times \mathrm{P}(3)$; $8 \mathrm{P} \cdot \mathrm{Q} 3(4), \mathrm{B} \cdot \mathrm{R} 3$; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \cdot \mathrm{K} 2$; 1б B-Q2. (Dia. p. 18i,)

	21	22	23	24	25
10	P-QB3		QKt-B3		
11	QR-Ksq		QR-Ksq		
	Q-QB4ch		Q-KB4 (9)		
12	K-Rsq (5)		Kt-Q5		R-K4
	0.0	P-Q4!	K-Qsq		0.0 (12)
13	Kt-K4	Q-R5	B-B3		QB \times P
	Q-B4	Q-Q3	$\overline{\mathrm{R}-\mathrm{Ksq}}$ (dia.)	$\overline{\mathrm{R}-\mathrm{KKtsq}(10)}$	B-Kt2
14	P-KKt4	$B \times \mathrm{QP}$	Kt-B6	$\mathrm{R} \times \mathrm{Kt}$	Q-K2
	Q-Kt3	$\overline{0.0}$	R-Bsq	$\overline{\mathrm{K}} \times \mathrm{R}$	P.Q4
15	P-Kt5	$\mathrm{R} \times \mathrm{Kt}$	P-KKt4	B-B6	QB \times P (18)
	B-Kt2 (6)	$\overline{\mathrm{P} \times \mathrm{B}}$ (8)	Q-Kt3	R-Ksq	Q-Kt4 (14)
	Kt-B6ch	$\underline{K t \times P}$	P-KR4	P-KKt4	P-KR4
16	$\overline{\mathrm{K}}$-Rsq	Kt-B3	P-Q4	Q-Kt3	Q-Kt3
17	$\mathrm{R} \times \mathrm{Kt}$	$\mathrm{B} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{P}$	Q-K2	$\mathrm{Kt} \times \mathrm{P}$ (15)
	$\overline{\text { P-Q4 }}$	$\bar{B} \times \mathrm{B}$	$\overline{\mathrm{B} \times \mathrm{P}}$	B-Bsq (11)	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
	B-Kt3	$\mathrm{R} \times \mathrm{B}$	$\underline{Q} \times \mathrm{B}$	P-Kt5	$\mathrm{B} \times \mathrm{Kt}$
18	$\overline{\mathbf{Q} \times \mathrm{KtP}}$	$\overline{\mathrm{Q} \times \mathrm{R}}$	Q×Qch	P-Q3	$\overline{\text { B-B4 (16) }}$
	R-KKtsq	$\underline{K t \times Q}$	Kt \times Q	$\mathrm{Kt} \times \mathrm{KBP}$	QR-KB4
19	Q-B4	$\overline{\mathrm{K}} \times \mathrm{R}$	R-KKtsq	Q-B4	B-K3
	Q-Kt2	Q-Kt5ch	B-B3	P.KR3-	$\mathrm{B} \times \mathrm{B}$
20	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt}-\mathrm{Kt} 3}$	P-B4	P.KR3-	$\overline{\mathrm{P} \times \mathrm{B}}$
	$\mathrm{R} \times \mathrm{BP}$	Kt-R5-	B-B6		R-K4
21	R-Ksq	P-B4 -	K-Q2		$\overline{\mathbf{R} \times \text { Rch }}$
	$\underline{\mathrm{R} \times \mathrm{B}+}$		P-Q4		$\mathrm{K} \times \mathrm{R}$
22			$\overline{\mathrm{P} \times \mathrm{Kt}+}$		$\overline{\mathrm{R}-\mathrm{KBsqch}}$

(1) 5 :., Q-K2 (Kling and Horwitz) may run into Col. 9, note 9. OrWhite may play 6 P-Q4 (if. 6 Kt -B3, Q-B4ch; $7 \mathrm{P}-\mathrm{Q4}, \mathrm{Q} \times \mathrm{B}, \& \mathrm{c}$.), $\mathrm{P} \times \mathrm{Kt} ; 7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{Q} 3 ; 8 \mathrm{Kt} \mathrm{Q} 5$, $\mathrm{Q}-\mathrm{Q} 2 ; 9 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QB} 3 ; 10 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt2}(a) ; 11 \mathrm{Kt} \times \mathrm{Pch}, \mathrm{Q} \times \mathrm{Kt} ; 12 \mathrm{~B} \times \mathrm{Pch}$, K-Bsq; 13 B-Kt3disch, Kt-B3; 14 Q-R4, K-Ksq; $15 \mathrm{~B}-\mathrm{Kt} 5, \mathrm{R}-\mathrm{Bsq} ; 16 \mathrm{~B} \times \mathrm{Kt}$ equalising after the exchanges.
(a) If $10 \ldots, \mathrm{Kt}-\mathrm{Qsq} ; 11 \mathrm{Q}-\mathrm{B}, \mathrm{Kt} \times \mathrm{Q}$; $12 \mathrm{Kt} \times \mathrm{Kt}$ may draw by perpetual oheck: Anderssen played 11 Q-Kt3, P-QB3; $12 \mathrm{Q} \times \mathrm{Kt}_{2}$ \&c.

If $5 \ldots, \mathrm{P}-\mathrm{Q} 4 ; 6 \mathrm{~B} \times \mathrm{P}, \mathrm{P}-\mathrm{QB3} ;{ }^{2} \mathrm{~B}-\mathrm{Kt3}, \mathrm{P} \times \mathrm{Kt} ; 8 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{R} 3 ; 9 \mathrm{P} \cdot \mathrm{Q} 4$, $\mathrm{Q} \times \mathrm{Pch} ; 10 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt}-\mathrm{B} 3 ; 11 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt5} ; 12 \mathrm{Q}-\mathrm{Kt3}, \mathrm{~K} t \times \mathrm{P} ; 13 \mathrm{R}-\mathrm{Ksq}+$.
(2) If $6 \mathrm{P} \cdot \mathrm{Q} 4$?, $\mathrm{P}-\mathrm{Q} 4$, , not $6 \ldots, \mathrm{P} \times \mathrm{P}$ on account of $7 \mathrm{~B} \times \mathrm{Pch}$.
(3) $7 \ldots, \mathrm{Q}-\mathrm{B} 4$; $8 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B}-\mathrm{R} 3$; 9 Kt -B3: see Col. 10.
(4) $8 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; $9 \mathrm{P}-\mathrm{Q} 4, Q \times \operatorname{Pch}(\mathrm{Q}-\mathrm{B} 41)$; $10 \mathrm{~B}-\mathrm{K} 3, \mathrm{Q}-\mathrm{B} 3$; $11 \mathrm{~B} \times \mathrm{BP}$, B-Kt2; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{K} 2$; $13 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Kt} \times \mathrm{Kt}$; $14^{-} \mathrm{Q} \times \mathrm{Ktch}, \mathrm{Q}-\mathrm{K} 3$; 15 B -R6dis ch, K-Ktsq ; 16 QR-Ksq and wins.
(5) Or 12 R-B2 I (Staunton.)
(6) If $15 \ldots$, P-Q4; $16 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; $17 \mathrm{R} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt5}$; $18 \mathrm{Q} \times \mathrm{P}$, \&c. (Handbuch.)
(7) $14 \ldots, \mathrm{P} \times \mathrm{B} ; 15 \mathrm{Kt} \times \mathrm{P}$, QKt-B3; $16 \mathrm{~B}-\mathrm{B} 3!(\mathrm{R} \times \mathrm{Ktch}, \operatorname{Praxis}, \mathrm{p} .310$), Q-Kt3; $17 \mathrm{Q} \times \mathrm{Q}, \mathrm{BP} \times \mathrm{Q} ; 18 \mathrm{~B} \times \mathrm{R}, \mathrm{K}-\mathrm{B} 2 ; 19 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{Kt} ; 20 \mathrm{R} \times \mathrm{Bch}, \mathrm{B}-\mathrm{B} 4$; $21 \mathrm{~B}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{Q} 4+$. ancomp
(8) Or $15 \ldots, \mathrm{Q} \times \mathrm{R}$; $16 \mathrm{Q} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$; $17 \mathrm{Kt} \times \mathrm{P}, \& \mathrm{c}$.
(9) Paulsen's variation. If $11 \ldots, \mathrm{Q}-\mathrm{QB4ch} ; 12 \mathrm{~K}-\mathrm{Rsq}$ (or R-B2), Kt-Q5 (a); $13 \mathrm{R} \times$ Ktch, $\mathrm{Q} \times \mathrm{R}$; $14 \mathrm{Q}-\mathrm{R} 5, \mathrm{Kt}-\mathrm{K} 3 ; 15 \mathrm{Q} \times \mathrm{B}, \mathrm{Q}-\mathrm{Kt4} ; 16 \mathrm{Q} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Q}$; 17 Kt -Q5 + .
(a) Or $12 \ldots$ Kt-K4; 13 Q-R5, \&c.: or $12 \ldots$ P-Q3; 13 Kt-Q5, KtrR4; $14 \mathrm{R} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{R}$; $15 \mathrm{~B}-\mathrm{Kt4}+$.
(10) 13 .., R-KBsq; (if) 14 B-B6, B-Kt4. (Field.)
(11) Or 17 .., B-Kt4; 18 Q-K5, \&c.
(12) Better than $12 \ldots$ Kt-K4. Lange suggests $12 \ldots, \mathrm{P}-\mathrm{Q} 3 ; 13 \mathrm{QB} \times \mathrm{P}, \mathrm{B}-\mathrm{Bsq}$ I: Bird played 13 Q-K2.
(13) If $15 \mathrm{~B}-\mathrm{Q} 6, \mathrm{P} \times \mathrm{R}$; $16 \mathrm{R} \times \mathrm{Q}, \mathrm{B} \times \mathrm{R}$; $17 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{B} ; 18 \mathrm{P} \times \mathrm{P}, \mathrm{B} \cdot \mathrm{Kt}+\mathrm{t}$. If $15 \mathrm{~B}-\mathrm{K} 5, \mathrm{Q}-\mathrm{Kt4}$ (or $\mathrm{P} \times \mathrm{R}$); $16 \mathrm{~B} \times \mathrm{B}, \mathrm{K} \times \mathrm{B} ; 17 \mathrm{P}-\mathrm{KR4}, \mathrm{Q}-\mathrm{R} 3$, \&c.
(14) I prefer $15 \ldots, \mathrm{Q}-\mathrm{Q} 2$; (C. E. R.)
(15) Or $17 \mathrm{~B} \times \mathrm{P}, \mathrm{B} \times \mathrm{Kt}$; $18 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{P}$; $19 \mathrm{~B} \times \mathrm{P}, \mathrm{P} \cdot \mathrm{B} 4$ f.
(16) Or $18 \ldots$ Kt-Q5; 19 Q-B2, Kt-K3. (C. E. R.)
(17) $23 \mathrm{~K} . \mathrm{Ktsq}, \mathrm{Kt}-\mathrm{Q} 5$; $24 \mathrm{Q}-\mathrm{Qsq}, \mathrm{R}-\mathrm{QBsq} ; 25 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{R} \times \mathrm{B} ; 26 \mathrm{P} \times \mathrm{Kt}$, Q-Kt6+.
(p. 180.)

After White's 10th move.
(Col. 23.)

After Black's 13th move.

SECTION IV.

THE KIESERITZKY GAMBIT.

1 P-K4, P-K4; 2 P-KB4, P \times P; 3 Kt-KB3, P-KKt4;
4 P-KR4, P-Kt5, 5 Kt-K5.

THE Kieseritzky is an advanced form of the King's Gambit. By playing 4 P -KR4 as above, the first player prevents the Classical Defence on that move (4 ..., B-Kt2), followed by the peculiar arrangement of Pawns on King's side, which characterises the King's Gambit Proper. (p. 163, Cols. 14, \&c.) Black's best reply is $4 \ldots$. P-Kt5, moving a Pawn already in play, which enables White, without losing time, to plant his King's Knight on an attacking square, in the centre of the board. His loss is, or may be, limited to the Gambit Pawn, in exchange for which he gets a strong position, which the gain of one more move will easily convert into a superior game. This consideration obtains in several variations in which a further sacrifice is offered to secure the necessary time.

The numerous lines of play available for both attack and defence, make the Kieseritzky a tolerably safe opening between equal players, while the complications that spring out of irregularity of arrangement add to the chances of the more skilful or more practised player. The opening occupies a medium position between the King's Gambit and the Allgaier variation; it is more enterprising than the former, and not so risky as the latter.

In reply to $4 \mathrm{Kt}-\mathrm{K} 5$, Black has the choice of eight recognised moves, 4 ..., P-Q3, P-Q4, Q-K2, B-K2, Kt-QB3, Kt-KB3, B-Kt2, and P-KR4. Of these Kt-KB3, and B-Kt2 are generally preferred; B-K2 is the least satisfactory; P-Q3 and P-KR4 do not make the most of the situation; Kt-QB3 and Q-K2 aim at simplicity and equality ; and P-Q4 calls for considerable skill on the part of the second player to carry out proporly. His recompense lies in the opportunities for elegant play which not unfrequently present themselves in this variation.
In. The Kieseritzky variation, which now gives its name to the opening, is given in Col. 35. The move 5 Kt -K5 was proviously known as the King's Knight's Gambit. It is the Gambitto Grande of the Italian writers.

Table 98.-THE KIESERITZKY GAMBIT.

1 P.K4, P.K4: $2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; ~ 3 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{P} \cdot \mathrm{KEt} 4$: 4 P.KR4, P-Kt5; 5 Kt.K5.

	1	2	3	4	5
5	$\overline{\text { P-Q3 (1) }}$		$\overline{\text { P-Q4 (9) }}$		
6	$\mathrm{Kt} \times \mathrm{KtP}$		P-Q4		$\mathrm{P} \times \mathrm{P}$
	$\overline{\mathrm{P}-\mathrm{KB4}}$	$\overline{\mathrm{B} \cdot \mathrm{K} 2 \quad(4)}$	P-B6	$\overline{\mathrm{Kt}-\mathrm{KB} 3!}$	Q-K2
7	$\underline{\mathrm{Kt} \text { - } 22 \quad(2)}$	P-Q4	$\mathrm{KtP} \times \mathrm{P}(10)$	$\mathrm{B} \times \mathrm{P}$	Q-K2
	$\overline{\mathrm{Kt}} \mathrm{B} 3 \quad$ (3)	$\overline{\mathrm{B} \times \text { Pch }}$	B-K2	$\overline{\mathrm{K}} \times \mathrm{P}$	Kt-KB3
8	P.Q4	Kt - B 2	B-K3 (11)	B-Q3+	P-Q4
	$\mathrm{P} \times \mathrm{P}$	$\overline{\text { Q-Kt4 (5) }}$	B \times Pch	B-Q3	Kt-R4
9	$B \times \mathrm{P}$	Q-B3 (6)	K-Q2	(dia.) (12)	Kt-Q3!
	B-K3	Kt-QB3!dia)	B-B3 +		B-B4
10	P.B4-	$\mathrm{Q} \times \mathrm{P}$ (7)			Q \times Qch
	P.Q4-	B \times Ktch			$\overline{B \times Q}$
11		$\mathrm{K} \times \mathrm{B}$			B-K2 (13)
		Q×Qch			$\overline{\mathrm{K}} \mathrm{t}$-Kt6
12		$B \times \mathrm{Q}$			R-R2
		$\mathrm{Kt} \times \mathrm{P}$			B-Q3
13		B-Q3			Kt -B3
		P-KB3 (8)			$\overline{\mathrm{Kt} \times \mathrm{B}}$
14	,	Kt-B3			$\underline{\mathrm{Kt}} \times \mathrm{Kt}$
		B-Q2			$\overline{\mathrm{B} \times \mathrm{Kt}}$
15		R-R5 -			$\mathrm{P} \times \mathrm{B}$
		-			P-B6+

(1) Recommended by Kolisch.
(2) Or $7 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; 8 Kt -B2, (threatening $\mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$ followed by $\mathrm{Q}-\mathrm{QKt5ch}$), Kt-KB3; 9 P-Q3, B-R3; 10 Q-B3, \&c. (C. E. R.)
(3) If $7 \ldots$.., Q-K2; 8 Q-R5ch (P-Q4 transposes into Col. 6), K-Qsq; 9 Q-K2. (C. E. R.)
(4) Or 6 ..., B-Kt2; 7 P-Q4. P-KB4; 8 Kt-B2 !, Q-K2; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{KB} 3$; 10 P-Q5. (E. F.)
(5) If $8 \ldots, \mathrm{Q}-\mathrm{B} 3$ or $\mathrm{B}-\mathrm{Kt} 6$; $9 \mathrm{Kt}-\mathrm{B} 3!$
(6) Or θ QKt-B3, QKt-B3; $10 \mathrm{Kt}-\mathrm{K} 2$. (Brentano): if $9 \ldots, \mathrm{~B} \times \mathrm{Ktch}$; $10 \mathrm{~K} \times \mathrm{B}$, Q.Kt6ch; 11 K-Ktsq, B.Kt5; 12 B.K2. (Wayte.)
(7) If 10 P-B3, B-Kt6; 11 Kt-QR3, Kt-B3; $12 \mathrm{Kt}-\mathrm{Kt5}$, B-Kt5; 13 Q \times KE, , $\mathrm{P} \times \mathrm{Q} ; 14 \mathrm{~B} \times \mathrm{Q}, \mathrm{P} \times \mathrm{Ktch} ; 15 \mathrm{~K} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{KPch} ; 16 \mathrm{~K}-\mathrm{K} 3, \mathrm{Kt} \times \mathrm{B} ; 17 \mathrm{Kt} \times \mathrm{BPch}$, $\mathrm{K}-\mathrm{Q} 2 ; 18 \mathrm{Kt} \times \mathrm{R}, \mathrm{B}-\mathrm{K} 3 ; 19 \mathrm{P}-\mathrm{B} 4, \mathrm{P}-\mathrm{Q} 4+$. Or $10 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 4 ; 11 \mathrm{Q} \times \mathrm{P}, \mathrm{B} \times \mathrm{Ktch}$; $12 \mathrm{~K} \times \mathrm{B}, \mathrm{Q}-\mathrm{Kt3}$; $13 \mathrm{~B}-\mathrm{Kt5ch}, \mathrm{~B}-\mathrm{Q} 2 ; 14 \mathrm{~B} \times \mathrm{Bch}, \mathrm{K} \times \mathrm{B} ; 15 \mathrm{~K}-\mathrm{Ktsq}, \mathrm{R}-\mathrm{K} s \dot{q} ;$ 16 Kt-B3, \&c.
(8) Or 13 .., Kt-KB3 threatening Kt-K5ch. (C. E..R.)
(9) E. Mórphy's move, a strong and important defence. If now $6 \mathrm{Kt} \times \mathrm{KtP}$, $\mathbf{P} \times \mathrm{KP}$.
(10) Or $7 \mathrm{~B}-\mathrm{KB4} \mid$ If $7 \mathrm{P} \times \mathrm{QP}, \mathrm{Q} \times \mathrm{QP}$? ; $8 \mathrm{~B}-\mathrm{QB4} 4, \mathrm{Q}-\mathrm{K} 5 \mathrm{ch} ; 9 \mathrm{~K}-\mathrm{B} 2, \mathrm{P} \times \mathrm{P}$; 10 R-Ksq, Q-B4ch: $11 \mathrm{~K} \times \mathrm{P}$, \&c. (O. E. R.)
(11) $8 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{B} \times \mathrm{Kt}$; $9 \mathrm{P} \times \mathrm{B} . \mathrm{B} \times \mathrm{Pch}$; $10 \mathrm{~K}-\mathrm{K} 2, \mathrm{Q}-\mathrm{K} 2$; $11 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{QB} 3$, \& .
(12) Dr. Brentano notes that White has numerous lines of play, but none to avoid defeat. The play is however uncertain; we append two continuations:-
$90-\mathrm{O}, \mathrm{Q} \times \mathrm{P} ; 10 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $11 \mathrm{P}-\mathrm{KKt3}, \mathrm{Q}-\mathrm{R} 4 ; 12 \mathrm{R}-\mathrm{B} 21, \mathrm{~B} \times \mathrm{Kt} ; 13 \mathrm{~B} \times \mathrm{B}$, R-Bsq; $14 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{KB4} ; 15 \mathrm{Q}-\mathrm{Q} 2$ (threatening R-R2), Q-Kt3; $16 \mathrm{Q}-\mathrm{B} 4$ (or QR-KBsq), Kt-R3; $17 \mathrm{Kt} \times \mathrm{P}$, \&c.
$9 \mathrm{O}-\mathrm{O}, \mathrm{O}-\mathrm{O} ; 10 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt} \times \mathrm{Kt} ; 11 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{P} ; 12 \mathrm{P}-\mathrm{KKt} 3, \mathrm{Q}-\mathrm{K} 2$ (if $\mathrm{Q}-\mathrm{RA}$ or 6; $13 \mathrm{R}-\mathrm{B} 2$); $13 \mathrm{~B}-\mathrm{R} 6, \mathrm{P}-\mathrm{KB} 4 ; 14 \mathrm{~B} \times \mathrm{R}, \mathrm{Q} \times \mathrm{B} ; 15 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{P} ; 16 \mathrm{~B} \times \mathrm{P}$, $\mathrm{B} \times \mathrm{B} ; 17 \mathrm{R} \times \mathrm{B}, \mathrm{Q}-\mathrm{Kt2}$; $18 \mathrm{Q}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Q} 3$; $19 \mathrm{Q} \times$ Pch, K-Rsq; 20.R-Kt5, \&c. Black may also play 8 .., Kt-QB3.
(13) Or $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Kt6}$; $12 \mathrm{R}-\mathrm{R} 2, \mathrm{~B}-\mathrm{Q} 3$; $13 \mathrm{~K}-\mathrm{B} 2$ (or B-Kt5ch ! C. E. R.) $\mathrm{Kt} \times \mathrm{B} ; 14 \mathrm{R}$-Rsq, $\mathrm{Pch} ; 15 \mathrm{~K} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{P}+$. (Brentano.)
(Col. 2.)

After Black's 9th move.
(Col. 4.)

After Black's 8th move.

Table 99.-THE KIESERITZKY GAMBIT.
I P.K4, P.K4; 2 P.KB4, P×P; $3 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{P} \cdot \mathrm{KKt} 4$; 4 P.KR4, P-Kt5; 5 Kt -K 5 .

	6	7	8	9	10
5	Q-K2 (1)		B-K2 (8)		
6	P-Q4 (2)		Kt \times KtP	$Q \times P$?	B-B4!
6	P-Q3	P-KB4	P-Q4 (9)	P-Q3	B×Pch
7	$\mathrm{Kt} \times \mathrm{KtP}$	B-QB4! (5)	$\mathrm{P} \times \mathrm{P}$	Q-Kt7	K-Bsq
	P-KB4	Kt-KB3	$\overline{\mathrm{B} \times \text { Pch }}$	B \times Pch	Kt-KR3
8	Kt-B2	Kt-QB3	Kt -B2	K-Qsq	$\mathrm{Kt} \times \mathrm{KtP}$
	$\overline{\mathrm{Kt} \text {-KB3 (3) }}$	P-Q3 (6)	$\overline{\mathrm{B} \times \mathrm{Ktch}}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
9	$\mathrm{B} \times \mathrm{P}$	B-B7ch	$\mathrm{K} \times \mathrm{B}$	$\mathrm{Q} \times \mathrm{R}$ (10)	$\underline{Q} \times \mathrm{Kt}$
	$\overline{\mathrm{Kt} \times \mathrm{P}}$ (4)	K-Qsq	$\overline{\mathrm{Q} \times \mathrm{P}}$	B-Kt5ch	P-Q4
10	Q-R5ch	$B \times P$	P-Q4	B-K2	Q \times P
	K-Qsq	QKt-Q2	Kt-QB3	Q-Kt4 (11)	P×B
11	B-K2	B-QKt3	P-B3	B-B3 (12)	$\underline{R \times B+}$
	Kt-KB3	K-Ksq	Kt-B3	$\overline{\mathrm{B} \times \text { Bch }}$	
12	Q-B3 -	Kt-B7	$\mathrm{B} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{B}$	See also
	$\overline{\mathrm{Kt}}$-B3-	$\overline{\mathrm{R}-\mathrm{KKtsq}} \mathbf{(7)}$	B-Kt5+	Q-Kt7	Col. 11
13		Kt-KKt5		Q \times KPch	
		R-Kt2		K-Bsq	
14		$\underline{\mathrm{Kt}} \mathrm{K} 6$ +		Q-QB5ch	
				$\overline{\mathrm{Kt}}$-K2 +	

(1) Rosenthal. A defence which equalises the game. Or, after 6 P-Q4, Black may transpose into Col. 5 by $6 \therefore$, P-Q4.
(2) If $6 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{P}-\mathrm{KB} 4$!.
(3) $8 \ldots, \mathrm{P} \times \mathrm{P}$; $9 \mathrm{Qch}, \mathrm{K}-\mathrm{Qsq} ; 10 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3 ; 11 \mathrm{Q}-\mathrm{K} 2, \mathrm{P}-\mathrm{KR} 4 ; 12 \mathrm{P}-\mathrm{B4}$, \& C
(4) $9 \ldots, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{P}-\mathrm{Q} 5, \mathrm{P}-\mathrm{KR} 4, \& \mathrm{c}$. : if $10 \mathrm{~B}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 4$; $11 \mathrm{Bch}, \mathrm{K}-\mathrm{Qsq}=$.
(5) If $7 \mathrm{~B} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3$; 8 B-KKt5, Kt-KB3; $9 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{B} 3+$.
(6) $8 \ldots, \mathrm{Kt} \times \mathrm{P}$ loses Rook for Kt.
(2), If $12 \ldots$ Kt $\times \mathrm{P}$; 13 Kt -Q5.
(8) Salvio and Polerio.
(9) Or $6 \ldots, \mathrm{~B} \times$ Pch.
(10) Or $9 \mathrm{Q} \times \mathrm{KPch}, \mathrm{Q}-\mathrm{K} 2$; $10 \mathrm{Q} \times \mathrm{R}, \mathrm{B}-\mathrm{Kt} 5 \mathrm{ch}$; $11 \mathrm{~B}-\mathrm{K} 2, \mathrm{~B} \times \mathrm{Bch} ; 12 \mathrm{~K} \times \mathrm{B}$, Q \times Pch + .
(11) $10 \ldots, \mathrm{~B} \times$ Bch; $11 \mathrm{~K} \times \mathrm{B}, \mathrm{Q}-\mathrm{Kt4}$; $12 \mathrm{~K} \cdot \mathrm{Bsq}, \mathrm{P}-\mathrm{B} 6 ; 13 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \cdot \mathrm{Kt6}$; $14 \mathrm{R} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Pch}=$. White can draw and has chances of winning.
(12) Neither 11 Kt-B3 nor $11 \mathrm{R} \times \mathrm{B}$ is good for White.

Table 100.-THE KIESERITZKY GAMBIT.
1 P-K4, P-K4; 2P-KB4, P×P; 3 Kt-KB3, P-K Kt 4 ; 4 P-KR4, P-Kt5; $5 \mathrm{Kt}-\mathrm{K} 5$.

	11	12	13	14	15
5	B-K2	$\overline{\mathrm{Kt}-\mathrm{QB} 3 \text { (3) }}$			
	B-B4 !	$\mathrm{Kt} \times \mathrm{KtP}$	P-Q4	$\mathrm{Kt} \times \mathrm{K}_{t}$	
6	$\overline{\mathrm{B} \times \text { Pch }}$	P-Q4	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	$\overline{\text { QP } \times \text { Kt }}$	
	K-Bsq	$\mathrm{P} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{Kt}$	P-Q4 (9)	
7	P-Q4	Q-K2ch	P-Q3	Kt-B3	
	$\underline{\mathrm{B} \times \mathrm{P}} \quad$ (1)	B-K2	$\underline{\mathrm{B} \times \mathrm{P}} \quad(8)$	$\underline{B \times P \quad(10)}$	Kt-B3
8	Kt-KR3	Kt-Q5	B-Kt2	$\overline{\mathrm{Kt} \times \mathrm{P}}$	Kt-R4
	P-Q4	Kt-B2	B-B4	B-Q3	B-QB4.
9	B-Kt4 (2)	$\overline{\mathrm{Kt}} \mathrm{KBB} 3$ (4)	Q-K2	$\overline{\mathrm{Kt}-\mathrm{Q} 3}$ (11)	$\overline{\mathrm{Kt}-\mathrm{Kt6}}$
	Kt-QB3	Kt-B3 (5)	Kt-B3	Kt-133	R-R2
10	P-QB3	B-Kt5 (6)	$\overline{\mathrm{P} \times \mathrm{P}+}$	B-Kt2	Q-K2
	B-Kt3	$\underline{\mathrm{K}} \times \times \mathrm{B}$		Kt-K2	Q-Q3
11	P-KB3	Kt \times Kt		$\overline{0.0}$	B-R3 (12)
	Kt-Q3	P-Q3 (7)		P-B3	B-Q2
12	$\overline{\mathrm{Q} \times \mathrm{P}}$	Kt-K6		B-B4	P-Kt4
	$\mathrm{B} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{Kt}$		Q-B2	B-Kt3
13	$\overline{\mathrm{B} \times \mathrm{B}}$	Q×B		$\overline{\mathrm{B} \times \mathrm{B}}$	B-Kt2 (18)
14	$\underline{\mathrm{Kt}} \times \mathrm{B}$	Q-Q2		Q \times B	0.0.0
14	Q×Qch	Q-Kt6ch		K-Ksq	0.0+
15	$\underline{R} \times \mathbf{Q}$	K-Bsq		0-0.0	
15	Kt-B2	R-KKtsq		+	
16	Kt-Kt6	R-KKtsq			
16	R-Ktsq	B-R3+			
17	$\underline{R} \times \mathrm{P}+$				

(1) $8 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KR} 3$; $9 \mathrm{P}-\mathrm{Q} 4, \mathrm{O}-\mathrm{O}$; $10 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{~B}-\mathrm{B} 4$; $11 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 3$; 12 Q-Q2, B-Kt3!; $13 \mathrm{~K}-\mathrm{Ktsq}, \mathrm{Kt-B4}$; $14 \mathrm{Kt}-\mathrm{K} 4$ or QR-KBsq+. (Blackburne.)
(2) Or $9 \ldots$ Q-Kt4; 10 Q-Q2, B-Kt6; 11 Kt -QB3.
(3) Simpler than $5 \ldots$, B-Kt2 or Kt-KB3. Advocated by Neumann in the Stratégie.
(4) If $9 \ldots, \mathrm{P}-\mathrm{B} 6 ; 10 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Pch} ; 11 \mathrm{~K}-\mathrm{Bsq}, \mathrm{Kt}-\mathrm{RP} ; 12 \mathrm{~B}-\mathrm{Kt5ch}$, \&c.
(5) Or 10 P-B3. (C. E. R.)
(6) If $10 \ldots$ P-B6; $11 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times$ BPch; $12 \mathrm{~K}-\mathrm{Bsq}, \mathrm{Kt}-\mathrm{Q} 5 ; 13 \mathrm{P}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{B} 4$; 14 B-Kt5, O-O-O; 15 Q-Q2 (or KKt-K4. C. E. R.), R-Ksq; 16 R-Ksq+.
(7) Or 12 O-O1 (C. E. R.)
(8) If $8 \mathrm{~B}-\mathrm{QB4} 4, \mathrm{Q}-\mathrm{K} 2$.
(9) Or B-K21' (Potter.)
(10) If 8 P-K5, Kt-R4+.
(11) $9 \ldots, \mathrm{~B}-\mathrm{Q} 3$ (Kt-B3 is inferior) ; $10 \mathrm{Q}-\mathrm{Bsq}$ (if Q-K2, Q-K2), Kt-Kt6; $11 \mathrm{R}-\mathrm{R} 2$, Q-K2ch; $12 \mathrm{~K}-\mathrm{Qsq}, \mathrm{B}-\mathrm{KB} 4$; $13 \mathrm{Kt}-\mathrm{B} 3, \mathrm{O}-\mathrm{O}-\mathrm{O}+$: or $10 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 11 \mathrm{Q}-\mathrm{Q} 3$, P-KR4 (Q-K2; 12 O-O, B-Q3; 13 Kt-Q2, B-K3; 14 P-KKt3, O-O-O); $12 \mathrm{Kt}-\mathrm{Q} 2$, B-K3: 13 O-O-O, Q-Q2; 14 P-KKt3, $\mathrm{B} \times \mathrm{Ktch} ; 15 \mathrm{R} \times \mathrm{B}, \mathrm{O}-\mathrm{O}-\mathrm{O}, ~ \& c$.
The Handbuch, gives $9 \ldots, \mathrm{Q} \times \mathrm{P}$; 10 Q-K2, P-KB4; 11 QKt-Q2, B-K2; 12 0-0.O+.
(12) Or $11 \ldots$ B-B4; $12 \mathrm{QB} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; 13 O-O-O, Kt-Q3. (C. E. R.)
(13) Or $13 \ldots$ P.Kt5; (if) $14 \mathrm{Kt}-\mathrm{K} 2, \mathrm{~K} t \times \mathrm{P}+$. (C, E. R.)

Table 101.-THE KIESERITZKY GAMBIT.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{KB4}, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P} \cdot \mathrm{KKt} 4$; 4 P-KR4, P-Kt5; 5 Kt-K 5
16
17
18
19
20
5
Kt-KB3 (1)
6
B-B4
(2)

Q-K2
P-Q4!

7	$\frac{\mathrm{P}-\mathrm{Q} 4}{\mathrm{P}-\mathrm{Q}}$
8	$\frac{\mathrm{~B} \times \text { Pch }}{\mathrm{K}-\mathrm{Qsq}}$

$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{B}-\mathrm{Q3}}$
$\frac{\mathrm{P}-\mathrm{Q4}}{\mathrm{Kt}-\mathrm{R} 4 \quad \text { (7) }}$
$\frac{\mathrm{B}-\mathrm{Kt} 3}{\mathrm{P} \times \mathrm{Kt}}$
0.0
(8) Kt-QB3!
$\frac{\mathrm{P} \times \mathrm{P} \text { d.ch }}{\mathrm{B}-\mathrm{Q} 2}$
$\frac{Q-K s q}{Q \times Q}$
$\frac{\mathrm{B}-\mathrm{Kt} 5 \mathrm{ch}(11)}{\mathrm{P}-\mathrm{B} 3 \quad(12)} \frac{\mathrm{Kt}-\mathrm{K} 2}{\mathrm{Q}-\mathrm{K} 2 \quad(16)}$
$\overline{B-K t 2!}$
Kt-QB3
0.0
P.Q4
$\overline{\mathrm{Kt}}$-R4
10
11
$\frac{\mathrm{P} \times \mathrm{Kt}!}{\mathrm{Q} \times \mathrm{Pch}(4)}$
$\frac{R \times Q}{0.0}$
$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{P} \times \mathrm{P}} \frac{\mathrm{QKt} \times \mathrm{P}}{\mathrm{Kt} \times \mathrm{Kt}}$
$\frac{\mathrm{Kt}-\mathrm{K} 2}{\mathrm{P}-\mathrm{QB4}!}$
$\frac{\mathrm{P}-\mathrm{B} 3}{\mathrm{P} \times \mathrm{P}}$
$12 \frac{\mathrm{~K}-\mathrm{Bsq}!(5)}{\mathrm{B}-\mathrm{Q} 3} \frac{\mathrm{~B}-\mathrm{Q} 3}{\mathrm{R}-\mathrm{Ksq}}$
$\frac{\mathrm{Kt}-\mathrm{Q} 5 \text { (dia.) }}{\mathrm{Q}-\mathrm{K} 3 \text { (13) }} \frac{\mathrm{B} \times \mathrm{Kt}}{\mathrm{P}-\mathrm{B} 3}$
$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{Kt}-\mathrm{Q} 2}$
Kt -B3
13 Q-B4
$14 \frac{\mathrm{Q} \cdot \mathrm{Q} 5 \quad(6)}{\mathrm{Q} \times \mathrm{KBP}}$
Kt -B7ch(14) $\quad 0.0$
$\overline{\mathrm{B} \times \mathrm{Kt}} \overline{\mathrm{P} \times \mathrm{Kt}}$
$\underline{\mathrm{Kt} \times \mathrm{Kt}(17)}$
$\frac{\mathrm{B}-\mathrm{B} 4}{\mathrm{Q}-\mathrm{K} 2 \quad(15)} \frac{\mathrm{B}-\mathrm{Kt5}}{\mathrm{Q}-\mathrm{Q} 2}$
×
$\mathrm{B} \times \mathrm{Pch}$
$\mathrm{P} \times \mathrm{P}$
$15 \frac{\mathrm{Kt}-\mathrm{K} 4}{\mathrm{Q}-\mathrm{K} 2}$
$\overline{\mathrm{Q} \times \mathrm{B}} \overline{\mathrm{B}-\mathrm{B} 4 \mathrm{ch}}$
$\mathrm{Kt} \times \mathrm{B}$
$\frac{\mathrm{K} t \times \mathrm{Q}}{\overline{\mathrm{K} \times \mathrm{Kt}+}} \quad \frac{\mathrm{K}-\mathrm{Rsq}}{\mathrm{B}-\mathrm{KKt} 3}$
$\frac{\mathrm{B} \times \mathrm{P}}{\mathrm{R}-\mathrm{Bsq}}$
$\mathrm{Q} \cdot \mathrm{Q} 2+$
$\underline{\mathrm{Q} \times \mathrm{KtP}+}$
(1) Philidor's Defence.
(2) Or 6 P-Q4, P-Q3; $7 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{Kt} \times \mathrm{P}$; $8 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2$; $9 \mathrm{Q}-\mathrm{K} 2, \mathrm{~B}-\mathrm{K} t 2 ; 10 \mathrm{P}-\mathrm{B3}$.
(3) If $9 \ldots, \mathrm{~B}-\mathrm{K} 3$; $10 \mathrm{~B} \times \mathrm{P}$.
(4) If $11 \ldots, \mathrm{Q} \times \mathrm{BP}$; $12 \mathrm{P} \cdot \mathrm{KK} \mathrm{ti}$. (Schachzeitung.)
(5) If $12 \mathrm{Q}-\mathrm{K} 2, \mathrm{Q}-\mathrm{B} 4+$.
(6) If 14 P-B7, R-Bsq.
(7) See diagram. $8 \ldots, \mathrm{Q}-\mathrm{K} 2$; $9 \mathrm{~B} \times \mathrm{P}$ (or $0-0$), Kt-R4; 10 P.KKt3, P-KB3; $11 \mathrm{Q} \cdot \mathrm{K} 2, \& \mathrm{c}$. If $10 \mathrm{O}-\mathrm{O}, \mathrm{Kt} \times \mathrm{B} ; 11 \mathrm{R} \times \mathrm{Kt}, \mathrm{P}-\mathrm{KB} 3+$.
(8) $9 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{Kt}-\mathrm{Kt6}$; $10 \mathrm{R}-\mathrm{R} 2, \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}$; $11 \mathrm{~K}-\mathrm{B} 2, \mathrm{P} \cdot \mathrm{KR4}+$. A fine game Mieses v. Anderssen runs thus :-9 B-Kt5ch, P-QB3; $10 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 11 \mathrm{Kt} \times \mathrm{QBP}$, $\mathrm{Kt} \times \mathrm{Kt}$; $12 \mathrm{~B} \times \mathrm{Ktch}$, K-Bsq (B-Q2I) ; $13 \mathrm{~B} \times \mathrm{R}$, Kt-Kt6; 14 R.R2 (a), B.KB4; 15 B-Q5, K-Kt2 ; $\$ 6 \mathrm{Kt}-\mathrm{B} 3, \mathrm{R}-\mathrm{Ksq}$ ch; $17 \mathrm{~K}-\mathrm{B} 2, \mathrm{Q}-\mathrm{Kt} 3$; $18 \mathrm{Kt}-\mathrm{R} 4 ; \mathrm{Q}-\mathrm{R} 3$; $19 \mathrm{Kt}-\mathrm{B} 3$, B-K4; $20 \mathrm{P}-\mathrm{R} 4$ and Black mates in four moves.
(a) If $14 \mathrm{~K} \cdot \mathrm{~B} 2, \mathrm{Kt} \times \mathrm{Rch} ; 15 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P} \cdot \mathrm{Kt} 6 \mathrm{ch}$ (or B-R3) ; $16 \mathrm{~K} \cdot \mathrm{Ksq}, \mathrm{Q} \cdot \mathrm{K} 2 \mathrm{ch}+$.

If $9 \mathrm{~K} \cdot \mathrm{~B} 2, \mathrm{Kt}$ Kt6: $10 \mathrm{R} \cdot \mathrm{Ksq}, \mathrm{Q} \times \mathrm{P}$; $11 \mathrm{Kt}-\mathrm{KB} 3 \mathrm{~d} . \mathrm{ch}, \mathrm{Kt}-\mathrm{K} 5 \mathrm{~d} . \mathrm{ch} ; 12 \mathrm{~K} \cdot \mathrm{Ktsq}$, Q-B7ch; 13 K-Ksq, P-KB4, \&c.

If 9 Q-Q3, P-KB3; 10 B-Kt5ch, K-Bsq ; 11 Kt-B4, Kt-Kt6+.
(9) If $9 \ldots$, P-B6; $10 \mathrm{Q}-\mathrm{Ksq}$. (Schwede.)
(10) $\mathrm{Or} 9 \ldots, \mathrm{O}-\mathrm{O}$; $10 \mathrm{Kt}-\mathrm{K} 2$. If $9 \ldots$ Kt-Kt6; $10 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{R}$; 11 P-KKt3: or $11 \mathrm{Kt}-\mathrm{K} 4, \mathrm{Q} \times \mathrm{Pch}$ (if $11 \ldots$ B-KB4; $12 \mathrm{~B} \cdot \mathrm{KKt5}$) ; $12 \mathrm{P} . \mathrm{KKt3}$. $\mathrm{Kt} \times \mathrm{P}+$. (Hand. buch.) If $9 \ldots$, P.KB3; 10 B-QKt5ch, \&c.
(11) If $100.0, \mathrm{~B} \times \mathrm{Kt}$.
(12) If $10 \ldots, \mathrm{~K}-\mathrm{Bsq}$ or $\mathrm{Qsq} ; 110.0+$.
(13) Or $12 \ldots$ Q-Qsq; $13 \mathrm{Kt} \times$ QBP, $\mathrm{Kt} \times \mathrm{Kt}$; $14 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{B}-\mathrm{Q} 2$; $15 \mathrm{~B} \times \mathrm{R}$, Q \times B; 16 Q-K2ch (or P-B4 (C. E. R.), K-Bsq (or K-Qsq. C. E. R.) +. Or $12 \ldots$, Q-Kt2; 13 B-R4 (Kt-QB4, B-B2; $14 \mathrm{~B}-\mathrm{R} 4$), B-K3; 14 QKtxP. (Zukertort v. Flechsig.)
(14) Or 13 O-O, (if) $\mathrm{P} \times \mathrm{B}$ (Gossip); $14 \mathrm{Kt} \times \mathrm{P}$ (B5), $\mathrm{K} t \times \mathrm{Kt}$; $15 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{Q} 2$; $16 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt}$; $17 \mathrm{R}-\mathrm{Ksqch}+$.
(15) Or $14 \ldots$, Q-B4. (C. E. R.)
(16) $10 \ldots \mathrm{~B} \times \mathrm{Kt}$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{P}-\mathrm{B} 6$; $12 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $13 \mathrm{~B}-\mathrm{KKt5}, \mathrm{P}-\mathrm{KB} 3$; $14 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 3 ; 15 \mathrm{Q} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{Kt}$; $16 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt6ch} ; 17 \mathrm{~K}-\mathrm{Q} 2, \mathrm{O}-\mathrm{O} ; 18$ QR-KKtsq, and wins. (Morphy v. Bird.)
(17) Steinitz v. Zukertort. Or $13 \mathrm{Kt} \times \mathrm{P}(\mathrm{B} 2)$, if $\mathrm{R} \times \mathrm{Kt}$; $14 \mathrm{P} \cdot \mathrm{Q} 6$, \&c. : if $13 \ldots$ Q-B3, 14 Kt -Kt5. Compare Col. 26.
(Col. 17.)

After Black's 8th move.
(Col. 18.)

After White's 12 th move.

Table 102.-THE KIESERITZKY GAMBIT

1 P.K4, P.K4; $2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P}$; $3 \mathrm{Kt} \cdot \mathrm{KB} 3$, P.KKt 4 ; 4 P-KR4, P.Kt5; 5 Kt.K 5 , Kt.KB3.

21	22	23	24	25

$\frac{\mathrm{Kt} \times \mathrm{KtP}(1)}{\mathrm{Kt} \times \mathrm{P}}$
$7 \frac{\mathrm{P}-\mathrm{Q} 4}{\mathrm{Q}-\mathrm{K} 2} \quad$ (3) $\frac{\mathrm{P}-\mathrm{Q} 3}{\mathrm{Kt}-\mathrm{Kt6}}$
$8 \frac{\mathrm{Q}-\mathrm{K} 2}{\mathrm{P}-\mathrm{Q} 4}-\frac{\mathrm{B} \times \mathrm{P}}{\mathrm{Kt} \times \mathrm{R}}$

	Q-K2ch ?	
B-Kt5	B-K2	
B-K2	$\overline{\text { Q-Kt5ch (9) }}$	Kt \times R
- Q -K2	Q-Q2!	B-Kt5
P-KR4!	Q×Qch	P-KB3 (12)
Kt-B6ch (7)	$K t \times Q$	Kt \times Pch
$\overline{\mathrm{K}}$-Bsq ${ }^{\text {- }}$	$\overline{\mathrm{Kt} \times \mathrm{R}}$	K-B2
Q-K5	$\mathrm{Kt-B6ch}(10)$	Kt-K4
Kt-B3	K-Qsq	Q-K4
$\mathrm{Kt} \times \mathrm{QPch}(8)$	Kt-Q5	B-R5ch
$\overline{\mathrm{K} \cdot \mathrm{Ktsq}}+$	B-K2	K-Ktsq
	0.0.0	Q-B3
	Kt-B7	Q-K3
	R-Bsq	QKt-B3
	$\overline{B \times P}$	P-KR3
	$\underline{\mathrm{B} \times \operatorname{Pch}(11)}$	B-K3+

16

$\mathrm{Kt}-\mathrm{B} 2$
$\mathrm{Kt}-\mathrm{Ktt} 6$
$\mathrm{Q} \times \mathrm{Qch}$
$\mathrm{B} \times \mathrm{Q}$
$\mathrm{R}-\mathrm{R} 2$
$\mathrm{~B}-\mathrm{Q} 3+$

Q-K2ch	B-Kt5
Q-K2	B-K2
Kt -B6ch	Q-K2
K-Qsq	P-KR4!
$\mathrm{B} \times \mathrm{Pch}$	Kt -B6ch (7)
$\overline{\mathrm{K} \times \mathrm{B}}$	K-Bsq
Et-Q5ch	Q-K5
K-Qsq	$\overline{\mathrm{Kt}}$-B3
$\mathrm{Kt} \times \mathrm{Q}$	$\mathrm{Kt} \times \mathrm{QPch}(8)$
$\overline{\mathrm{B} \times \mathrm{Kt}}$	K-Ktsq+

(1) $6 \mathrm{Kt} \times \mathrm{BP}$ is an inferior variation of the Allgaier Gambit.
(2) $6 \ldots, \mathrm{Kt} \times \mathrm{Kt}$; $7 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q} 4$; $8 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3$; $9 \mathrm{P}-\mathrm{K} 5, \mathrm{Q}-\mathrm{K} 2$; $10 \mathrm{P}-\mathrm{Q} 4$, P-QB4 ; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P} \times \mathrm{P} ; 12 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Pch} ; 13 \mathrm{Q} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q} ; 14 \mathrm{~B}-\mathrm{KB} 4, \mathrm{~B} \times \mathrm{B}$; $15 \mathrm{Kt} \times \mathrm{B}, \& \mathrm{c}$. (C.E.R.) If $6 \ldots, \mathrm{P}-\mathrm{Q} 4 ; 7 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{Q} \times \mathrm{Kt} ; 8 \mathrm{Q}-\mathrm{K} 2$ or Kt-B3, \&c.
(3) Or $7 \ldots,{ }^{4} \mathrm{~B}-\mathrm{K} 21$
(4) If 14 Kt -B3, R-Ksq ! If 14 Q-R5, Kt-Kt6.
(5) If $14 \ldots, \mathrm{~B}-\mathrm{Q} 3$; $15 \mathrm{Q}-\mathrm{Kt} 5 \mathrm{ch}, \mathrm{K}-\mathrm{B} 2 ; 16 \mathrm{Kt}-\mathrm{B} 3$. If $14 \ldots, \mathrm{R}-\mathrm{Ksq}$; $15 \mathrm{~B}-\mathrm{K} 2$, \&c.
(6) $16 \ldots$, R-Bsq; $17 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}$-Kt6; $18 \mathrm{~B}-\mathrm{K} 2$ or Kt-Q2, B-B4 + : or $16 \ldots$

B \times Pch; 17 K-Q2, R-Ksq; 18 Kt-R3, Kt-Kt6! Morphy's Games, p. 260.
(7) If 11 Q-K5, P-KB3; $12 \mathrm{Kt} \times \mathrm{Pch}, \mathrm{K}-\mathrm{B} 2 ; 13 \mathrm{Q}-\mathrm{Q} 5 \mathrm{ch}, \mathrm{K}-\mathrm{Kt2}$ and wins.
(8) If $13 \mathrm{Q}-\mathrm{KB} 4, \mathrm{~K}-\mathrm{Kt} 2$ wins.
(9) Or $9 \ldots, \mathrm{Q} \times \mathrm{Bch}$!, to equalise.
(10) Or 11 B-K5, P-KB3; $12 \mathrm{Kt} \times$ Pch + ,
(11) $16 \ldots, \mathrm{~K}-\mathrm{Ksq}$; ${ }^{\circ} 17 \mathrm{~B}-\mathrm{Q} 6, \mathrm{Kt}-\mathrm{R} 3$; $18 \mathrm{P}-\mathrm{Q} 4+$.
(12) 10 .., Q-Kt5ch; 11 P.B3, Q \times KtP; $12 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \mathrm{K}-\mathrm{K} 2$; $13 \mathrm{Q}-\mathrm{R} 4+$.

Table 103.--THE KIESERITZKY GAMBIT.

1 P-K4, P-K4; 2P-KB4, P \times P; $3 \mathrm{Kt}-\mathrm{KB} 3$, 'P-KKt 4 ; 4 P.KR4, P-Kt5; 5 Kt.K5, B.Kt2. (Paulsen's Defence.)
26
27
28
29
30
$\frac{\mathrm{P}-\mathrm{Q} 4}{\mathrm{Kt}-\mathrm{KB} 3}$
B-B4
7
P-Q4
$8 \frac{\mathrm{P} \times \mathrm{P}}{\mathrm{O}-\mathrm{O} \text { dia. (1) }}$
$9 \frac{\mathrm{O}-\mathrm{O}}{\mathrm{P} \cdot \mathrm{B4} \quad(2)}$

10 | 10 | $\begin{array}{l}\mathrm{P}-\mathrm{B} 3 \\ \mathrm{P} \times \mathrm{P} \\ 11\end{array}$ |
| :--- | :--- |
| $\begin{array}{l}\mathrm{P} \times \mathrm{P} \\ \mathrm{Kt} \times \mathrm{P}\end{array}$ | |

Kt-QB3!(4)
$\overline{\mathrm{Kt} \times \mathrm{Kt}}$ (5)
$\frac{\mathrm{P} \times \mathrm{Kt}}{\mathrm{B} \times \mathrm{Kt} \quad(6)}$
$\mathrm{P} \times \mathrm{B}$
$\overline{Q \times Q}$
(7)
$\frac{R \times Q}{B \cdot K 3}$
P-Q4
$\overline{\mathrm{Kt}}$-B3
$R \times P$
$\overline{\mathrm{Kt} \times \mathrm{P} \quad(8)}$
$\frac{\mathrm{B} \times \mathrm{P} \quad \text { (9) }}{\mathrm{Kt} \times \mathrm{P}}$
$\frac{\mathrm{B} \times \mathrm{Kt} \mathrm{(10)}}{\mathrm{Q} \times \mathrm{B}}$
$\frac{0.0 \quad \text { (dia) }}{\mathrm{Kt}-\mathrm{B} 3 \quad(11)}$
P-B3 (12
$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
$\frac{\mathrm{P} \times \mathrm{Kt}}{\mathrm{Q} \cdot \mathrm{Kt} 4}$

Q-Q2	B-Kt5
$\overline{\mathrm{B} \times \mathrm{P}}$	Q-Kt3
$\mathrm{B} \times \mathrm{B}$	Q-B4ch
$\overline{\mathrm{Q} \times \mathrm{B}}$	$\overline{\mathrm{K}}$-Rsq
Kt -R3	QR.Ksq-
$\overline{\text { B.K3 }}+$	Kt-Ksq -

M-Ksq (14)
$\frac{\mathrm{Kt} \times \mathrm{BP}}{\mathrm{R} \times \mathrm{Kt}}$
$\frac{\mathrm{B} \times \text { Rch }}{\mathrm{K} \times \mathrm{B}}$
$\frac{\mathrm{B} \times \mathrm{P}}{\mathrm{Q}-\mathrm{Ksq}(13)}$
$\frac{0-0}{\mathrm{~K}-\mathrm{Ktsq}}$
$\frac{\mathrm{Q} \cdot \mathrm{Q} 3}{\mathrm{Kt} \cdot \mathrm{B} 3}$

B-Kt
$\frac{\mathrm{Kt} \times \mathrm{KtP}}{\mathrm{P} \cdot \mathrm{Q} 4}$
$\mathrm{Kt} \times \mathrm{KtP}$
P.Q4
$\frac{\mathrm{Kt} \times \mathrm{P}}{\mathrm{Q}-\mathrm{K} 2}$
$\frac{\mathrm{Q} \cdot \mathrm{K} 2}{\mathrm{Kt}-\mathrm{QBS}}$
P-B3
Kt-R3
Kt-B2
$\overline{\mathrm{Kt}-\mathrm{B} 4!}$
$Q \times$ Qch
$\bar{K} \times Q$
P.-Q4

Kt-Kt6
R-R2
R-Ksq
B-Kt5
K-Bsq d.ch
K-Qsq
$\overline{\mathrm{R}-\mathrm{K} 6!(18)}$
$B \times R$
$\overline{\mathrm{P} \times \mathrm{B} \quad(19)}$

$$
\frac{\mathrm{Kt}-\mathrm{QB} 3(15)}{\mathrm{P}-\mathrm{Q} 3} \frac{\mathrm{Kt}-\mathrm{B} 2}{} \quad(16)
$$

$$
\frac{\text { Kt-QB3 ! }}{\text { P-Q3 }}
$$

(1) $8 \ldots$ Kt-R4 ! ; 9 Kt-QB3, O-O, \&c. See Col. 20.
(2) Or $9 \ldots, \mathrm{Kt} \times \mathrm{Pl}$ (Lange.)
(3) If $10 \mathrm{P} \times \mathrm{P}$ en pas, $\mathrm{Kt} \times \mathrm{P}$; $11 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $12 \mathrm{QB} \times \mathrm{P}, \mathrm{Kt}-\mathrm{R} 4$; $13 \mathrm{~B}-\mathrm{K} 3$, $\mathrm{Q} \times \mathrm{RP}$. If $10 \mathrm{P}(\mathrm{Q} 4) \times \mathrm{P}, \mathrm{Kt}-\mathrm{R} 4, \& \mathrm{c}$.
(4) $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B}$; $13 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q}-\mathrm{Qsq}$; $14 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3$; $15 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; 16 Kt -K2, \&c.
(5) $12 \ldots, \mathrm{Kt}-\mathrm{K} t 3$; $13 \mathrm{~B}-\mathrm{Kt3}, \mathrm{Kt}-\mathrm{B} 3$; $14 \mathrm{R} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt}$; $15 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Qch}$; $16 \mathrm{~B} \times \mathrm{Q}, \mathrm{B} \times \mathrm{P}+$.
(6) If $13 \ldots, \mathrm{Q} \times \mathrm{RP}$; $14 \mathrm{Kt} \times \mathrm{BP}$! (C. E. R.)
(7) $14 \ldots, \mathrm{Q} \times \mathrm{P}$; $15 \mathrm{R} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3$; $16 \mathrm{~B}-\mathrm{R} 3, \mathrm{R}-\mathrm{Qsq} ; 17 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Rsq}$; i3 B.Q6, Q.Kt4; 19 P.K6, $\mathrm{Q} \times \mathrm{R}$; $20 \mathrm{~B} \times \mathrm{Q}, \mathrm{R} \times \mathrm{Qch} ; 21 \mathrm{R} \times \mathrm{R}+$.
(8) Continued $18 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$; $19 \mathrm{R}-\mathrm{K} 4, \mathrm{R}-\mathrm{B} 4$; $20 \mathrm{~B} \cdot \mathrm{~B} 4$, Kt-Kt3; 21 B-Kt3, and White recovers the Pawn.
(9) $9 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{B} 4$ (or Kt-R4; $10 \mathrm{Kt}-\mathrm{K} 2, \mathrm{Q}-\mathrm{B} 3$); $10 \mathrm{P} \times \mathrm{P}$ en pas (if $\mathrm{B} \times \mathrm{P}$, $\mathrm{Kt}-\mathrm{R} 4), \mathrm{Kt} \times \mathrm{P}$; $11 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $12 \mathrm{QB} \times \mathrm{P}, \mathrm{R}-\mathrm{K} q \mathrm{ch}$; $18 \mathrm{Kt}-\mathrm{K} 2$. (Handbuch.)
(10). 10 B-KKt3, Kt-K6; 11 Q-K2, Q \times QP; 12 P-B3, Q-Kt3 ; 13 B-Kt3, B-K3; $14 \mathrm{Kt}-\mathrm{Q} 2$, Kt-B3; $15 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 16 \mathrm{Kt}-\mathrm{K} 7 \mathrm{ch}, \mathrm{K}-\mathrm{Rsq} ; 17 \mathrm{P} \times \mathrm{B}, \mathrm{KR}-\mathrm{Ksq}$; $18 \mathrm{Kt}-\mathrm{B} 4, \mathrm{Kt} \times \mathrm{Kt}$; $19 \mathrm{P} \times \mathrm{Kt}, \mathrm{B}-\mathrm{B} 3 ; 20$ 0.0-0, $\mathrm{R} \times \mathrm{Kt}$; $21 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt} 2$. (Thornton v. Steinitz. A. S.)
(11) $11 \ldots$ P-QB4; 12 P-B3 (a), P \times P; $13 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{Q}-\mathrm{K} 3$; $14 \mathrm{Kt}-\mathrm{B} 2, \mathrm{Q}-\mathrm{QKt3}$; 15 P.B4, B-K3; $16 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{Q} 2+$. (Steinitz v. Zukertort.)
(a) $12 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q} \times \mathrm{Pch} ; 13 \mathrm{Q} \times \mathrm{Q}, \mathrm{P} \times \mathrm{Q} ; 14 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{B} 3: 15 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $16 \mathrm{Kt}-\mathrm{K} 7 \mathrm{ch}, \mathrm{K}-\mathrm{Rsq} ; 17 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt} 2$; 18 Kt -K5, QR-Bsq. (Steinitz v. Blackburne.)
(12) If $12 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $13 \mathrm{~B} \cdot \mathrm{~K} 3, \mathrm{P}-\mathrm{QB4}+$.
(13) 11 .., Kt-B3; 12 0.O, K-Ktsq; 13 B-Kt5, P-KR3; $14 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B}$; $15 \mathrm{Kt}-\mathrm{K} 2+$.
(14) Mr. Ranken's suggestion. Mr. Wayte prefers. White, Black's development being difficult. The Handbuch gives $16 \ldots$ P-KR3; $17 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 18 \mathrm{P}-\mathrm{R} 5+$.
(15) If 7 B-Q3, P-Q3; $8 \mathrm{Kt}-\mathrm{B4}, \mathrm{Kt}-\mathrm{R4}$ or P-Q4+. If $7 \mathrm{Kt} \times \mathrm{KtP}, \mathrm{Kt} \times \mathrm{P}$; $8 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2$ or $\mathrm{O} . \mathrm{O}+$. If $7 \mathrm{~B} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3 ; 8 \mathrm{Kt}-\mathrm{B} 4, \mathrm{Kt} \times \mathrm{P} ; 9 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{K} 2$ or $\mathrm{O} . \mathrm{O} 1$ (C. E. R.) ; 10 Q-K2, P-KB4 or B-B4 + .
(16) If $7 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}$; $8 \mathrm{~K}-\mathrm{B} 2, \mathrm{~B}-\mathrm{Q} 5 \mathrm{ch}$ and wins. If $7 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{~B} \times \mathrm{P}$, $\mathrm{Q} \times \mathrm{QP} ; 9 \mathrm{Q} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q}$; $10 \mathrm{P}-\mathrm{B} 3, \mathrm{~B} \times \mathrm{Kt}+$. If $7 \mathrm{Kt}-\mathrm{B} 3$ or $\mathrm{P}-\mathrm{Q} 3$ or $\mathrm{P}-\mathrm{B} 3, \mathrm{P} \times \mathrm{P}$. If $7 \mathrm{Q}-\mathrm{B} 3, \mathrm{Q}-\mathrm{K} 2$, \&c.
(17) Or $7 \ldots$ Kt-K2; $8 \mathrm{P} \times \mathrm{P}$ (or P-Q3), 0.0 ; $9 \mathrm{~B}-\mathrm{K} 2$ or Kt-B3, Kt-B4 + .
(18) In a game with Anderssen, Zukertort, who introduced Black's 11th move, notes that 16 Kt -KR4 is not so good as the text move. White may reply by $17 \mathrm{~B}-\mathrm{K} 2$ or R-Rsq.
(19) 18 Kt-Q3, B-B4; $19 \mathrm{Kt}-\mathrm{R} 3, \mathrm{R}-\mathrm{Qsq} ; 20 \mathrm{Kt}-\mathrm{QB} 2, \mathrm{~B} \times \mathrm{P}$; $21 \mathrm{P} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{P}$; $22 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{Kt}$; $23 \mathrm{R}-\mathrm{Bsq}$ (if $\mathrm{K}-\mathrm{B} 2, \mathrm{P}-\mathrm{QR} 3$), $\mathrm{B} \times \mathrm{Kt}$; $24 \mathrm{~B} \times \mathrm{B}, \mathrm{R} \times \mathrm{Bch}$; 25 K-Ksq, R-Q7; $26 \mathrm{R}-\mathrm{B} 3, \mathrm{R}-\mathrm{K} 7 \mathrm{ch} ; 27 \mathrm{~K}-\mathrm{Qsq} ; \mathrm{R} \times \mathrm{QKtP} ; 28 \mathrm{R} \times \mathrm{KP}, \mathrm{Kt}-\mathrm{B} 8$ and wins.
(Col. 26.)

After Black's 8th move.
(Col. 27.)

After White's 11th move.

Table 104.-THE KIESERITZRY GAMBIT.

1 P-K4, P-K4; $2 \mathrm{P}-\mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{P} \cdot \mathrm{KKt} 4$; 4 P.KR4, P.Kt5; 5 Kt-K5, P.KR4.

	31	32	83	34	85
6	B-B4 (1)				
	Kt-KR3		R-R2		
7	P-Q4 (dia.)		P-Q4 (9)		
	P-Q3 (2)	Q-B3	P-Q3 (10)		P-B6
8	Kt-Q3	Kt-QB3 (7)	Ktx.BP	Kt-Q3	P-Kt3? (20)
	P-B6	P-B3	$\overline{\mathrm{R} \times \mathrm{Kt}}$	P-B6 (13)	$\overline{\mathrm{Kt}}$-QB3
9	$\mathrm{P} \times \mathrm{P} \quad$ (3)	Kt -K2	$\mathrm{B} \times$ Rch	$\mathrm{P} \times \mathrm{P}$ (14)	Kt-Kt6 (2ij
	B-K2	P-Q3	$\overline{\mathrm{K} \times \mathrm{B}}$	B-K2 (15)	B-Kt2 (22)
10	B-K3 (4)	$\mathrm{QB} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{P}$	B-K3	B-KKt5
	B \times Pch	$\mathrm{P} \times \mathrm{Kt}$	B-R3	$\overline{\mathrm{B} \times \text { Pch }}$	$\overline{\text { B-B3 }}$
11	K-Q2	$\mathrm{B} \times \mathrm{KP}$	0.0	K-Q2	Q-Q2
	$\overline{\mathrm{P} \times \mathrm{P}}$	Q-K2	$\overline{\mathrm{K}-\mathrm{Kt2}}$ (11)	$\overline{\mathrm{P} \times \mathrm{P} \quad(16)}$	$\bar{B} \times \mathrm{B}$
12	$\mathrm{Q} \times \mathrm{P}$	$0.0 \quad$ (8)	P-KKt3(12)	$Q \times P$	$\mathrm{P} \times \mathrm{B}$
	B-Kt5	$\overline{\mathrm{R} \cdot \mathrm{K} \text { tiq }}$	$\bar{B} \times \mathrm{B}$	$\overline{\mathrm{B}-\mathrm{Kt5}}$ (dia.)	$\overline{P \times K t}$
13	Q-B4! (5)		$\underline{\mathrm{R} \times \mathrm{B}}$	Q-B4 (17)	$\underline{B \times K t}$
	Kt-B3		$\overline{\mathrm{B}} \mathrm{K} 3+$	$\overline{\mathrm{Kt}}$-Q2 (18)	$\overline{\mathrm{R}-\mathrm{Kt2}}+$
14	Kt-B3			Kt-B3	
	$\overline{\mathrm{Kt} \times \mathrm{P}}$			$\overline{\mathrm{Kt}} \mathrm{Kt} 3$	
15	$\mathrm{B} \times \mathrm{Kt}$			B-Kt3	
	$\overline{\text { B-Kt4 }}$			$\overline{\mathrm{R}-\mathrm{Kt} 2}$	
16	$B \times R$			P-K5 -(19)	
	B×Qch			B-Kt4-	

17
$\underline{K t \times B \quad(6)}$
(1) If $6 \mathrm{P}-\mathrm{Q4}, \mathrm{P}-\mathrm{Q} 3 ; 7 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{P}-\mathrm{B6}$, \&c.
(2) $7 \ldots, \mathrm{~B}-\mathrm{K} 2$; $8 \mathrm{QB} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch} ; 9 \mathrm{P}-\mathrm{KKt3}, \mathrm{~B}-\mathrm{Kt4} ; 10 \mathrm{R} \times \mathrm{P}$ (or $10 \mathrm{Q}-\mathrm{Q} 2$
C. E. R.), $\mathrm{B} \times \mathrm{B}$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{P}-\mathrm{Q} 3$; $12 \mathrm{Kt} \times \mathrm{KtP}$. $\mathrm{B} \times \mathrm{Kt}$; $13 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{Q}$;
$14 \mathrm{R} \times$ Rch, $\mathrm{K}-\mathrm{Q} 2$; $15 \mathrm{R} \times \mathrm{Qch}, \mathrm{K} \times \mathrm{R}$; $16 \mathrm{Kt}-\mathrm{Q} 2+$.
(3) 9 P-KKt3, P-KB4 (or Kt-QB3, or B-Kt2); $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{Kt} \times \mathrm{P}$, Kt.B4; $12 \mathrm{~K}-\mathrm{B} 2$. (MacDonnell v. Bird.) If $9 \ldots \mathrm{P}-\mathrm{Q4}$; $10 \mathrm{P} \times \mathrm{P}_{2}$ Kt-B4; $11 \mathrm{~K}-\mathrm{B} 2, \mathrm{Kt} \times \mathrm{QP}$ (if B-K2, Kt-K51) ; $12 \mathrm{~B}-\mathrm{KKt5+}$. (Synopsib.)
(4) Or $10 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B} \times \mathrm{Pch} ; 11 \mathrm{~K}-\mathrm{Q} 2, \mathrm{P} \times \mathrm{P} ; 12 \mathrm{Q} \times \mathrm{P}$, . $-\mathrm{K} t 5 ; 13 \mathrm{Q} \cdot \mathrm{K} 3+$. If $10 \mathrm{~B}-\mathrm{KKt5}, \mathrm{~B} \times \mathrm{B}$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{P}$, \&c.
(5) If 13 Q-Bsq, B-Kt4; 14 Q-Ktsq to bring Q Rook to King's side as oppcrtunity permits.
(6) If $17 \ldots$, Q-Kt4?; 18 QKt-Q5+. If $17 \ldots$.., P-QB3; 18 QR-KBsq, Q-Kt4; 19 B-Q4, \&c.
(7) Or 8 P-B3! for the attack is hardly worth a piece. If then $8 \ldots$ B- Q3; 9 Kt-Q3, P-B6; $10 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt6ch} ; 11 \mathrm{~K}-\mathrm{Bsq}, \mathrm{P}=\mathrm{Q} 3 ; 12 \mathrm{~B}-\mathrm{KKt5}, \mathrm{Q} \times$ Pch; $13 \mathrm{Q} \times \mathrm{Q}, \mathrm{P} \times \mathrm{Q}$; $14 \mathrm{Kt}-\mathrm{Q} 2=$.
(8) If $12 \mathrm{~B} \times \mathrm{R}, \mathrm{Q}-\mathrm{Kt} 5 \mathrm{ch}+$.
(9) $7 \mathrm{Kt} \times \mathrm{BP}, \mathrm{R} \times \mathrm{Kt}$; $8 \mathrm{~B} \times \mathrm{Rch}, \mathrm{K} \times \mathrm{B}$; $9 \mathrm{P} . \mathrm{Q} 4, \mathrm{P}-\mathrm{B} 6$; $10 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3+$. Or 9 .., B-R3; $10 \mathrm{~B} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3+$.
(10) If $7 \ldots, \mathrm{~B}-\mathrm{K} 2$; $8 \mathrm{QB} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch}$; $9 \mathrm{P}-\mathrm{KKt} 3, \mathrm{~B}-\mathrm{Kt4}$; $10 \mathrm{R} \times \mathrm{P}, \mathrm{R} \times \mathrm{R}$; $\mathrm{E} 1 \mathrm{~B} \times \mathrm{Pch}, \& \mathrm{c}$. If $7 . ., \mathrm{Q}-\mathrm{B} 3 ; 8 \mathrm{Kt}-\mathrm{B} 3!, \mathrm{Kt}-\mathrm{K} 2 ; 9 \mathrm{O}-\mathrm{O}, \mathrm{B}-\mathrm{R} 3 ; 10 \mathrm{QB} \times \mathrm{P}, \mathrm{B} \times \mathrm{B}$; 11 P-KKt3+. If $7 \ldots, \mathrm{~B}-\mathrm{R} 3$; $8 \mathrm{Kt}-\mathrm{B} 3$, Kt-QB3; $9 \mathrm{Kt} \times \mathrm{BP} 1$
(11) If $11 \ldots, \mathrm{~B} \times \mathrm{B} ; 12 \mathrm{R} \times \mathrm{Bch}, \mathrm{K}-\mathrm{Kt2}$; $13 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{K} 3$; $14 \mathrm{Q}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{KB} 3$; 15 QR-KBsq, QKt-Q2; $16 \mathrm{R} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{R}$; $17 \mathrm{Q}-\mathrm{Kt} 5 \mathrm{ch}$, \&c.
(12) Or 12 Q-Q21 (E. F.) Compare this Col. with Col. 11, p. 163.
(13) If $8 \ldots, \mathrm{~B}-\mathrm{K} 2$; $9 \mathrm{QB} \times \mathrm{P}$. If $8 \ldots, \mathrm{Q}-\mathrm{K} 2$; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{KB} 3$; 10 0-O.
(14) If 9 P-KKt3, Kt-K2.
(15) If 9 .., P-Kt6; 10 B-KKt5, B-K2; $11 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B} ; 12 \mathrm{~K}-\mathrm{Bsq}$.
(16) If $11 \ldots$ B-Kt4; 12 Q-Ktsq or P-B4+.
(17) Or 13 Q-Bsq.
(18) Or 13 .., R-Kt2; $14 \cdot$ Kt-B3, B-Kt4; 15 Q-B2, Kt-Q2; 16 QR-KBsq. If $13 . ., \mathrm{Q}-\mathrm{B} 3$; $14 \mathrm{Kt}-\mathrm{B} 3$. If $13 \ldots, \mathrm{Kt}-\mathrm{QB} 3$; $14 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{P}$; 15 QR-KBsq, B-B3; 16 Kt-Q5, B-Rsq; $17 \mathrm{Q} \times \mathrm{B}, \mathrm{P} \times \mathrm{Q}$; $18 \mathrm{R} \times \mathrm{R}, \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch} ; 19 \mathrm{R} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{R}$; $20 \mathrm{R} \times \mathrm{B}+$.
(19) If 16 QR-KBsq, B-Kt4; $17 \mathrm{Q}-\mathrm{B} 2, \mathrm{Q}-\mathrm{K} 2 ; 18 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Bch} ; 19 \mathrm{Q}-\mathrm{B} 4$, P-KB3.
(20) White should play $8 \mathrm{P} \times \mathrm{P}$ and transpose into Col. 34. If 8 .., P-Q3; 9 B-KKt5 (Kt-Q3!), B-K2; $10 \mathrm{~B} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{B}$; $11 \mathrm{Kt-Q3} \mathrm{Kt}-,\mathrm{Kt3+} \mathrm{}. \mathrm{(Handbuch)}$. (21) $8 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt}$; $9 \mathrm{~B}-\mathrm{B} 4, \mathrm{Q}-\mathrm{K} 2$; $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{K} 3$; $11 \mathrm{P}-\mathrm{Q} 5, \mathrm{~B} \times \mathrm{P}$; $12 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B} ; 13 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{QB} 3+$.
(22) Or $9 \ldots, \mathrm{P} \times \mathrm{Kt}$; $10 \mathrm{~B} \times \mathrm{Kt}$, R-Rsq.
(Col. 31.)

After White's 7th move.
(Col. 34.)

After Black's 12th move.

SECTION V.

THE ALLGAIER GAMBIT.

1P.K4, P-K4; 2P-KB4, P×P; 3 Kt-KB3, P-KKt4; 4 P.KR4, P-Kt5; 5 Kt-Kt 5 .

THE Allgaier Gambit is opened in the same way as the Kieseritzky but by varying his fifth move, the first player offers a piece to deprive his opponent of the shelter afforded by the King's side Pawns, and prevent him Castling. Black cannot do better than accept the sacrifice. A series of attacking moves is thus placed at White's disposal, and his success or failure will largely depend on the order in which they are made, and how long he can keep up the pressure. The ordinary rules with regard to minute advantages do not obtain in this opening. The struggle on one side is to secure a winning position with a few pieces well combined, and on the other to bring the reserves into action and compel exchanges. The loss of a move by either player is generally of more consequence than the loss of a Pawn or the exchange. With a piece already in hand, it is frequently good policy on the part of the second player to give up his queen for two pieces, and so equalise the forces, and break up the attack.

The Allgaier yields positions which are among the finest in Chess. It is especially rich in brilliant endings. It was played in Philidor's time, but is named after the German writer, Allgaier, who devoted considerable attention to it, and thought it invincible. His leading line of play (Col. 4) was found faulty by Horriy. It was superseded by that ascribed to Prince Ouroussoff (Cols. 18-20) and more recently by Mr. Thorold's variation (Cols. 5-17). The last mentioned leads to the most enduring attack, and is generally preferred in this country.

Table 105.-THE ALLGAIER GAMBIT.

1 P.K4, P.K4; 2 P.KB4, P \times P, 3 Kt.KB3, P.KKt 4 ; 4 P-KR4, P-Kt5; 5 Kt-Kt 5 .

	1	2	3	4	5
5	$\overline{\text { P-Q4 (1) }}$	P-KB3	P-KR4	P-KR3 !	
6	$\mathrm{P} \times \mathrm{P}$? (2)	$\mathrm{Q} \times \mathrm{P}$	B-B4	$\mathrm{Kt} \times \mathrm{P}$	
	P-KR3	P-KR4	Kt-KR3	$\overline{\mathrm{K} \times \mathrm{Kt}}$	
7	Kt-K4. (3)	Q-B5	P-Q4	Q \times P	P-Q4 (10)
	P-KB4	$\overline{\mathrm{P} \times \mathrm{Kt}}$.	P-KB3	Kt-KB3!	P-Q3
8	KKt-B3	Q-Kt6ch	$\mathrm{B} \times \mathrm{P}$	$\mathrm{Q} \times \mathrm{BP}$	B-B4ch (11)
	B-Q3	K-K2	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\text { B-Q3! (7) }}$	K-Kt3
9	P-Q4	Q \times Pch	$\mathrm{P} \times \mathrm{P}$	B-B4ch	$\mathrm{B} \times \mathrm{P}$
	$\overline{\text { Kt-KB3+ }}$	$\overline{\mathrm{K}-\mathrm{K} q} \mathrm{q}$	$\overline{\mathrm{Kt}} \mathrm{B} 2 \quad$ (4)	K-Kt2	$\overline{\mathrm{Kt}}$-KB3
10		Q-K5ch	P-Kt6	Q-B2 (8)	Q.Q3 (12)
		Q-K2	$\overline{\mathrm{K}} \mathrm{t}$ Q3 (5)	R-Bsq	Q-Ksq
11		Q \times R	$\mathrm{B} \times \mathrm{Kt}$	0.0	Kt -B3
		$\overline{\text { Q } \times \text { KPch }}$	$\overline{\mathrm{P} \times \mathrm{B}}$	Kt-Kt5	$\overline{\mathrm{Kt}}$-B3
12		B-K2	B-B7ch	Q-Q4ck	P-R5ch
		$\overline{\mathrm{Q} \times \mathrm{KtP}}$	K-K2	B-K4	$\overline{\mathrm{Kt} \times \mathrm{P}}$
13		$\underline{Q} \times$ Pch	0.0	Q-Q5	$\mathrm{R} \times \mathrm{Kt}$
		K-K2	Q-R4	R \times Rch	$\overline{\mathrm{Kt}-\mathrm{Kt5}}$
14		$\underline{\text { Q-Kt5ch }+}$	B:Q5 (6)	$\mathrm{K} \times \mathrm{R}$	Q-K2
				Q-B3ch (9)	$\overline{\mathrm{K} \times \mathrm{R}}$ (18)

(1) If $5 \ldots, \mathrm{Kt}-\mathrm{KB} 3$; $6 \mathrm{P}-\mathrm{Q4}, \mathrm{P}-\mathrm{KR} 3$; $7 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} \times \mathrm{Kt}$; $8 \mathrm{~B} \times \mathrm{P}$ (if), P-Q4; 9 B-K2. (Col. 11.) If $5 \ldots, \mathrm{~B}-\mathrm{K} 2$; $6 \mathrm{Q} \times \mathrm{P}$.
(2) $6 \mathrm{P}-\mathrm{Q} 4$ (Ouroussoff), P-KR3; $7 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} \times \mathrm{K} t$; $8 \mathrm{~B} \times \mathrm{P}$, \&ic.
(3) If 7 Q-K2ch, Kt-K2; $8 \mathrm{Kt}-\mathrm{K} 4, \mathrm{~B}-\mathrm{Kt} 2+$.
(4) If $9 \ldots, \mathrm{Kt}$-Ktsq ; $10 \mathrm{~B}-\mathrm{K} 5$.
(5) If $10 \ldots$ Kt-Kt4; 11 Q•Q2 (or B-K5), Kt $\times \mathrm{P}$; $12 \mathrm{Bch}, \mathrm{K} \cdot \mathrm{K} 2$; 13 B-Kt5ch, Kt in ; 14 Q-K3ch, K-Q3; 15 P-B4 and wins: if $12 \mathrm{Kt}-\mathrm{B} 9, \mathrm{~K} t \times \mathrm{Q}$; 13 B ch, and 14 Kt mates.
(6) $14 \ldots$, K-Ksq; 15 Q-Bsq, K-Qsq; 16 Q-Kt5ch, B-K2; 17 P-Kt7 and wins.
(7) Horny's move. The Col. runs as played between Thorold and Macdonnell
(8) If so played on move 9 Black's reply is,K-Kt2. If now $10 \mathrm{Q}-\mathrm{B} 5, \mathrm{~B}-\mathrm{Kt} 6 \mathrm{ch}$ and 1R-Bsq: if $10 \mathrm{Q}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3+$.
(9) Black mates in six moves.
(10) Mr. Thorold's attack.
(i1). Or 8 B \times P, B-K2; 9 B-K2, B \times Pch; 10 P-KKt3, B-Kt4; 11 0-O, \&c.
(12) Or 10 Kt -B3! (Potter.)
(13) 15 P.R3, Kt-B3; $160.0 .0, \mathrm{~K}-\mathrm{Kt} 3$; $17 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{R}-\mathrm{R} 2 ; 18 \mathrm{P} \cdot \mathrm{K}$ ², R-B2; 19 B-Q3ch, K.Kt2; 20 Kt -B6t. (Gunsberg v. Ballard.)

Table 106.-THE ALLGAIER GAMBIT.
1 P-K4, P.K4; 2 P-KB4, P \times P; 3 Kt-KB3, P-KKt 4 ; 4 P-KR4, P-Kt5; 5 Kt-Kt5, P-KR3; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} \times \mathrm{Kt}$; 7 P-Q4, P-Q4; 8 B \times P.

	6	7	8	9	10
8	$\overline{\mathrm{P} \times \mathrm{P}(1) \text { dia }}$	p. 197			B-K3
9	B-B4ch (2)				B-Q3 (17)
	K-Kt2 (3)				Kt-KB3
10	0.0	Kt-B3		B-K5ch (14)	0.0
	Kt-KB3	Kt-KB3	B-Q3	Kt-K.B3(di.)	K-Kt2
11	Q-Q2 (4)	Q-K2 (9)	$0 \cdot 0$	Q-Q2 (15)	Kt-B3
	Kt-B3	B-Q3 (10)	$\bar{B} \times \mathrm{B}$	Kt-B3	B-K4
12	Kt-B3	0.0	$\mathrm{R} \times \mathrm{B}$	Q-B4 (16)	Kt-Kt5
	B-Q3 (5)	$\overline{\mathrm{R}-\mathrm{KBsq}(11)}$	Kt-KB3	B.Q3	$\overline{\mathrm{Kt}}$-R3
	$\underline{\mathrm{Kt}-\mathrm{K} 2 \quad(6)}$	$\mathrm{B} \times$ Pch	Q-K2	Kt-B3	B-K5
13	$\overline{\mathrm{B} \times \mathrm{B}}$	$\overline{\mathrm{K} \times \mathrm{B}}$	Q \times Pch	Q-K2	P-B3
14	$\mathrm{R} \times \mathrm{B}$	Q-K3ch	K-Rsq	Kt-Q5	Kt-B3
	Kt-K4	K-Kt3 (12)	R-Bsq	$\overline{\mathrm{B} \times \mathrm{B}+}$	Q-Q2
	Q-B3	Q-Kt5ch	QR-KBsq		Q-Q2
15	$\overline{\mathrm{Kt} \times \mathrm{B}}$	K-R2	(18)		QR-KBsq.
	$\underline{\mathrm{Q} \times \mathrm{Kt}}$	$\mathrm{Kt} \times \mathrm{P}$			Q-B4
16	$\overline{\mathrm{R}-\mathrm{Bsq}}$ (7)	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$			$\overline{\mathrm{Kt}-\mathrm{Kt5}+}$
	$\underline{\mathrm{Kt} \text {-Kt3 }}$	B-Kt8ch			
17	$\overline{\text { Q-Q3+ (8) }}$	and draws			

(1) If $8 \ldots, \mathrm{~B}-\mathrm{Kt2}$; $9 \mathrm{Kt} \mathrm{B} 3, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{~B}-\mathrm{B} 4 \mathrm{ch}, \mathrm{K}-\mathrm{Kt} 3$; . $11 \mathrm{Kt}-\mathrm{Q5}, \& \mathrm{c} . \mathrm{:}$ or 9 :. $\mathrm{Kt}-\mathrm{KB} 3$; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt}$; 11 B -B4. If $8 \ldots, \mathrm{~B}-\mathrm{K} 2$; $9 \mathrm{~B}-\mathrm{K} 2, \mathrm{~B} \times \mathrm{Pch}$; 10 P-KKt3. If 8 .., Kt-QB3; 9 Kt -B3, B-Kt5; $10 \mathrm{~B}-\mathrm{K} 2$: or 9 .., $\mathrm{Kt}-\mathrm{B} 3$; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt}$ or' KtxP; $11 \mathrm{~B}-\mathrm{B} 4$. If 8 ..., P-B3; $9 \mathrm{~B}-\mathrm{K} 2, \mathrm{P}-\mathrm{KR} 4$; 10 O.O, \&c.
(2) If 9 B-K2, P-KR4; 10 B-K5, B-Kt2; 11 O.Och, K-Kt3+.
(3) If $9 \ldots$. K-Ksq; $10 \mathrm{~B}-\mathrm{K} 5$!. If $9 \ldots, \mathrm{~K}-\mathrm{Kt} 3$; 10 Kt-B3, B-Kt2 (for $10 \ldots$, B-Q3 compare Col. 8); 11 Kt-Q5 (E. F.): or 10 P-R5ch, K-R2; 11 B-B7, B-KB4 (Kt-K21) ; $12 \mathrm{~B}-\mathrm{Kt} 6 \mathrm{ch}, \mathrm{B} \times \mathrm{B}$; $13 \mathrm{P} \times$ Bch. (Pierce.)
(4) If $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Q} 3$; but if now 11 .., B-Q3; $12 \mathrm{~B}-\mathrm{KKt5!}$
(5) $12 \ldots \mathrm{Q} \times \mathrm{Pch} ; 13 \mathrm{Q} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Q} ; 14 \mathrm{~B}-\mathrm{K} 5, \mathrm{Kt}$-B4; $15 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 2$; 16 R-B4, (if) P-KR4; 17 QR-KBsq, K-Kt3; $18 \mathrm{Kt}-\mathrm{Kt} 31, \mathrm{Kt} \times \mathrm{Kt}$; $19 \mathrm{R} \times \mathrm{Ktch}$, \&c.
(6) If $13 \mathrm{~B}-\mathrm{K} 3$, $\mathrm{Kt}-\mathrm{QR4}$; $14 \mathrm{R} \times \mathrm{Kt}$ (B-K2 is a fatal loss of time), $\mathrm{Q} \times \mathrm{R}$ (if $\mathrm{Kt} \times \mathrm{B}, 15 \mathrm{~B} \times \mathrm{Pch})$; $15 \mathrm{~B}-\mathrm{Q} 5, \mathrm{~B}-\mathrm{KB4}$; $16 \mathrm{R}-\mathrm{KBsq}, \mathrm{Q}-\mathrm{Kt} 3 ; 17 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}$-B3.+.
(7) Or $16 \ldots, \mathrm{Q} . \mathrm{K} 2$ followed by B-K3. (C. En K.)
(8) If 13 QR-KBsq, B-K3; $19 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt} \times \mathrm{P}$ I
(9) 11 Q-Q2, B-Q3 (if $11 \ldots$, Kt-QB3; $12 \mathrm{Kt}-\mathrm{K} 2$ or Kt5, B-Q3: if $12 \mathrm{P}-\mathrm{Q} 5$, Kt -K2; 13 Kt -Kt5, Kt-Kt3: perhaps 12 0-O-O is best); $12 \mathrm{~B}-\mathrm{KK} t 5$ (if $12 \mathrm{R}-\mathrm{Bsq}$, P-K61), B-K2; 13 R-KBsq. Kt-B3; $14 \mathrm{Kt} \times \mathrm{P}$, Kt×Kt; 15 R-B7ch. K-Kt3; $16 \mathrm{Q}-\mathrm{B} 4, \mathrm{Kt} \times \mathrm{B}$ (or $16 \ldots, \mathrm{~B}-\mathrm{Kt5ch} 117 \mathrm{P}-\mathrm{B} 3, \mathrm{Q} \times \mathrm{P}$. Potter) ; $17 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{Q} 3$; 18 R-Kt7ch. K-R4; $19 \mathrm{~K}-\mathrm{K} 21$, Kt \times Pch; $20 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{R} 7$; $21 \mathrm{~B}-\mathrm{B} 7 \mathrm{ch}, \mathrm{K}-\mathrm{R} 5$; $22 \mathrm{Q}-\mathrm{K} 4, \mathrm{~B} \times \mathrm{P}$; $23 \mathrm{R}-\mathrm{KRsq}, \mathrm{Q} \times \mathrm{R}$; $24 \mathrm{P}-\mathrm{Kt3ch}+$. (Freeborough v. Amateur.)
(10) $11 \ldots, Q \times P$; 12 R-Qsq gives White a strong attack with a move gained. If $11 \ldots, \mathrm{Kt}-\mathrm{B} 3 ; 12$ O-0-O, $\mathrm{Kt} \times \mathrm{P} ; 13 \mathrm{R} \times \mathrm{Kt}$ (or $13 \mathrm{Q}-\mathrm{B} 2, \mathrm{P}-\mathrm{QB} 4 ; 14 \mathrm{~B}-\mathrm{K} 5$, Q-K2; $15 \mathrm{Q}-\mathrm{B} 4, \& \mathrm{c} . \quad$ Potter.), $\mathrm{Q} \times \mathrm{R}$; $14 \mathrm{R}-\mathrm{Qsq}, \mathrm{Q}-\mathrm{B} 4 ; 15 \mathrm{~B}-\mathrm{K} 3, \mathrm{Q}-\mathrm{K} 4$ (Q-KR4 1); $16 \mathrm{~B}-\mathrm{Q} 4$, (if) Q-B5ch; $17 \mathrm{~K}-\mathrm{Ktsq}$, B-K̨2; $18 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{Q}-\mathrm{Q} 3 ; 19 \mathrm{R}-\mathrm{Bsq}, \mathrm{R}-\mathrm{Bsq}$; $20 \mathrm{Q} \times \mathrm{KP}, \mathrm{B}-\mathrm{K} 3$; $21 \mathrm{~B}-\mathrm{Q} 3$, \&c.
(11) Or $12 \ldots, \mathrm{~B} \times \mathrm{B}$; $13 \mathrm{R} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Pch}$; $14 \mathrm{~K}-\mathrm{Rsq}, \mathrm{R}-\mathrm{Bsq}$ (if $14 \ldots, \mathrm{Kt}-\mathrm{R} 4$; $15 \mathrm{R} \times \mathrm{KtPch}, \mathrm{K}-\mathrm{R} 2$; $16 \mathrm{R}-\mathrm{KBsq})$: if $15 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt}$; $16 \mathrm{R} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{B} 3$; 17 R-K7ch, K-Rsq; 18 R-K8, Kt-B31; $19 \mathrm{R} \times$ Rch, $\mathrm{Q} \times \mathrm{R}$; $20 \mathrm{R}-\mathrm{KBsq}, \mathrm{B}-\mathrm{B} 4$; 21 B-Q3! See Col. 8. Another alternative is $12 \ldots, \mathrm{Kt}$-B3.
(12) If $14 \ldots, \mathrm{~K}-\mathrm{R} 2$; $15 \mathrm{Kt} \times \mathrm{P}$, after which B-Q3 becomes available.
(13) If $15 \ldots, \mathrm{P}-\mathrm{B} 3 ; 16 \mathrm{Kt} \times \mathrm{P}$: or if $15 \ldots, \mathrm{P}-\mathrm{QKt4}$; $16 \mathrm{~B}-\mathrm{Kt3}, \mathrm{QKt} \mathrm{Q} 2(a)$; $17 \mathrm{Kt}-\mathrm{Q} 5$, \&c. If $15 \ldots \mathrm{Kt}-\mathrm{B} 3 ; 16 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt} ; 17 \mathrm{R} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{Rch} ; 18 \mathrm{Q} \times \mathrm{R}$, Q.B3 ; $19 \mathrm{R}-\mathrm{B} 4, \mathrm{Q} \times$ RPch ; 20 K -Ktsq, Kt-K4; $21 \mathrm{R}-\mathrm{B} 7 \mathrm{ch}$, \&c. (F. J. Young.)
(a) If $16 \ldots \mathrm{~B}-\mathrm{Kt2} ; 17 \mathrm{R} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{R}$; $18 \mathrm{Q} \times \mathrm{KtPch}+$.
(14) Mr. Potter suggests 10 Q-K2, Kt-QB3 (or Kt-KB3) (b); 11 P-Q5, Kt-R4; 12 B-K5ch, Kt-B3; 13 R-Bsq, B-K2; $14 \mathrm{Kt}-\mathrm{B} 3$, \&c.
(b) If $10 \ldots$, $\mathrm{B}-\mathrm{Q} 3$; $11 \mathrm{~B}-\mathrm{K} 5 \mathrm{ch}$ (or $\mathrm{B} \times \mathrm{B}$), $\mathrm{B} \times \mathrm{B}$; $12 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}$-QB3 (if $12 \ldots$, Q-Q5; 13 Q-Bsq, Q-K6ch; $14 \mathrm{~K}-\mathrm{Qsq}, \mathrm{Q}-\mathrm{Q} 5 c h ; 15 \mathrm{Kt} \mathrm{Q} 2$. Potter) ; $13 \mathrm{Kt}-\mathrm{Q2}$, Kt-Q5 (or Q-K2! to play B-K3) ; 14 Q-B2, B-K3. (C. E. R.)
(15) See diagram. If $11 \mathrm{O}-\mathrm{O}$ (c), B-K2; 12 Kt -B3 (if P-Q5; 13 Bch), Kt -B3 ; $13 \mathrm{Kt} \times \mathrm{P}$ (if Kt-Q5 or R-B4, $\mathrm{Kt} \times \mathrm{B}+$), $\mathrm{Kt} \times \mathrm{B}$; $14 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}$. (Fraser.)
(c) If $11 \mathrm{R}-\mathrm{Bsq}, \mathrm{B}-\mathrm{K} 2$; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3$; $13 \mathrm{Q}-\mathrm{K} 2, \mathrm{Kt} \times \mathrm{P}$; $14 \mathrm{Q} \times \mathrm{KP}$; Kt -B3+.
(16) If 12 R-KBsq, B-K2+.
(17) A similar line of play follows 9 B-K2, or 8 .., Kt-KB3; 9 B-K2, B-K3. In this case White's 16 th move may be R-B4.
(Col. 6.)

After Black's 8th move.
(Col. 9.)

After Black's 10th maye.

Table 107.-THE ALLGAIER GAMBIT.

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{KB4}, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt}-\mathrm{KB} 3$, P-KKt4; $4 \mathrm{P}-\mathrm{KR} 4, \mathrm{P}-\mathrm{Kt} 5$; $5 \mathrm{Kt}-\mathrm{Kt} 5, \mathrm{P}-\mathrm{KR} 3 ; 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} \times \mathrm{Kt}$; 7 P-Q4, P:Q4; 8 B \times P, Kt-KB3. (?)

	11	12	13	14	15
9	B-K2! (2)			B-K5 ?	P-K5 ?
	Kt-B3	$\stackrel{\widetilde{\mathrm{P}} \times \mathrm{P}}{ }$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	B-Q3	$\overline{\mathrm{Kt}} \mathrm{R} 4$ (12)
10	$\mathrm{Kt-B3} \quad$ (3)	Kt -B3 (4)	0.0	Kt -B3 (10)	B-K2 (18)
	K-Kt2	$\overline{\mathrm{Kt}} \mathrm{B} 3$ (5)	K-Ksq (8)	$\overline{\mathrm{K}} \mathrm{t}$-B3	$\overline{\mathrm{Kt} \times \mathrm{B}}$
11	B-K3	P.Q5	$\mathrm{B} \times \mathrm{KtP}$	$\underline{\mathrm{Kt} \times \mathrm{P}}$ (11)	$0 \cdot 0$
	B-K2	$\overline{\mathrm{Kt}}$-K2	$\overline{\mathrm{B} \times \mathrm{B}}$ (9)	Kt \times B	K-Kt2
12	$\mathrm{B} \times \mathrm{KtP}$	B-B4	$Q \times B$	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{R} \times \mathrm{Kt}$
	$\overline{\mathrm{Kt} \times \mathrm{QB}}$	$\overline{\mathrm{K}-\mathrm{Kt} 3 \text { ? (6) }}$	Q-Q2	Kt-B6ch	$\overline{\text { P-KR4 }}$
13	$B \times B$	B-K5	Q-Kt6ch	$\mathrm{P} \times \mathrm{Kt}$	Q-Bsq
	$\overline{\mathbf{Q} \times \mathrm{B}}$	B-Kt2	Q-B2	$\overline{\text { B-Kt6ch }+}$	B-K3
14	$\mathrm{P} \times \mathrm{Kt}$	P-R5ch	Q \times Qch		R-B6
	Kt-R2	K-R2	$\overline{\mathrm{K} \times \mathrm{Q}}$		R-R3
15	$\mathrm{P} \times \mathrm{P}$	Q-Q2	B-K5disch		Q-B4
	Q-B4	B-B4	K-Ktsq		$\mathbf{R} \times \mathbf{R}$
16	Q-Q4	0.0.0	$\underline{B \times R+}$		Q-Kt5ch
	KR-Bsq-	$\overline{\mathrm{R}-\mathrm{KBsq}}$			K-Rsq
17		Q-B4 (7)			$\mathbf{P} \times \mathrm{R}$
					$\overline{\mathrm{B}-\mathrm{B2}}+$

(1) See note 1, page 196, for other variations.
(2) 9.Kt-B3, K-Kt2; 10 B-K2, Kt-B3; 11 B-K5, \&c.: 9 .., B-Kt5; $10 \mathrm{~B}-\mathrm{K} 5$ (a), $\mathrm{Kt} \times \mathrm{P}$; $11 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Kt} \times \mathrm{Kt}$; 12 O-Och, K-Ktsq; 13 Q-Ksq, Kt-K5; $14 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Q}$; $15 \mathrm{Bch}+$ (Gunsberg): or (a) $10 \mathrm{~B}-\mathrm{K} 2, \mathrm{~B} \times \mathrm{Ktch}$; $11 \mathrm{P} \times \mathrm{B}$, $\mathrm{Kt} \times \mathrm{P} ; 12 \mathrm{O}-\mathrm{O}, \mathrm{Kt} \times \mathrm{P}$; $13 \mathrm{~B} \times \mathrm{BPdisch}, \mathrm{K}-\mathrm{Ktsq} ; 14 \mathrm{~B} \times \mathrm{Q}, \mathrm{K} \mathrm{t} \times \mathrm{Q} ; 15 \mathrm{QR} \times \mathrm{Kt}=$.
(3) If $10 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{K} 5$.
(4) 10 B-K5, B-Kt2 (Pierce) ; 11 O-0, P-KR4; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~K}-\mathrm{Kt3}$ (B. C. M., 1882, p. 241.)
(5) Or 10 ..., B-Q3! (E. F.)
(6) If 12 .., K-Kt2; 13 P-R5 to transpose: for if 13 Kt -Kt5, Kt-Kt3
(7) $17 \ldots$ Q-Bsq (Kt-Ksq! C. E. R.) ; 18 P-Q6, $\mathrm{P} \times \mathrm{P}$; $19 \mathrm{~B} \times \mathrm{P}, \mathrm{KKt}$-Ktsq ; $20 \mathrm{~B} \times \mathrm{KKtch}, \mathrm{Kt} \times \mathrm{B} ; 21 \mathrm{~B} \times \mathrm{R}$, (if) $\mathrm{B} \times \mathrm{Kt} ; 22 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B} ; 23 \mathrm{KR}-\mathrm{Bsq}$, Kt-K2; 24 Q.K5, threatoning R-Q7, \&c. (B. C. M., 1886, p. 375.)
(8) Or 10 .., K-Ktsq ; (if) $11 \mathrm{~B} \times \mathrm{KtP}, \mathrm{R}-\mathrm{R} 2$. (C. E. R.)
(9) Or 11 .., Kt-Q2. (Potter.)
(10) $10 \mathrm{Q}-\mathrm{Q} 2, \mathrm{~B} \times \mathrm{B}$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{K} t \times \mathrm{P}$; $12 \mathrm{Q}-\mathrm{B} 4 \mathrm{ch}, \mathrm{K}-\mathrm{Kt2+}$.
(11) $11 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~K} t \times \mathrm{E}$; $12 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{P}$; $130-\mathrm{O}, \mathrm{K}-\mathrm{Kt} 2+$.
(12) $9 \ldots$ Kt-K5 ; 10 B-Q3, P-B3; 11 O-O, K-Ksq; 12 Kt-Q2, B-KB4; 13 Q-K2, \&c.
(13) If $10 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{K} 3 ; 11 \mathrm{Kt} \mathrm{B} 3, \mathrm{~K}-\mathrm{Kt2}!; 12 \mathrm{Q}-\mathrm{Q} 2, \mathrm{Kt} \times \mathrm{B} ; 13 \mathrm{Q} \times \mathrm{Kt}$, B.Kt5, and R-Bsq+. (Prgan.) See B. C. MF., 1885, p. 340.

Table 108.-THE ALLGAIER GAMBIT.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt}-\mathrm{KB} 3$, P.KKt 4 ; 4 P-KR4, P.Kt 5 ; 5 Kt-Kt5, P-KR3; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{K} \times \mathrm{Kt}$.

16
17
$7 \frac{\mathrm{P}-\mathrm{Q} 4}{\mathrm{P} \cdot \mathrm{B6} \quad \text { (1) }}$
$8 \frac{\mathrm{P} \times \mathrm{P}}{\mathrm{B}-\mathrm{K} 2}$
$10 \frac{\mathrm{~B} \times \operatorname{Pch}(\mathrm{di} .)}{\mathrm{K} \cdot \mathrm{Ksq}}$
11
0.0
(4)

P-Kt6
$\frac{\mathrm{P} \cdot \mathrm{KB} 4}{\mathrm{P} \cdot \mathrm{KR4}}$
$\frac{\mathrm{B} \times \mathrm{Kt} \quad(5)}{\mathrm{B} \cdot \mathrm{KKt5}}$
$\frac{Q \cdot Q 3}{R \times B}$
Q-Kt3
K-Bsq
$\mathrm{Q} \times \mathrm{QK} \mathrm{P}$
$\overline{Q \times P c h}$
K-Kt2
B-K7+
B-K5
Kt-KB3
Q-B4

Kt-B3

18
$\frac{\text { B-B4ch (9) }}{\mathrm{P} \cdot \mathrm{Q} 4!}$
B-KB4 (di.) $\quad \mathrm{B} \times \mathrm{Pch}$
P-Q4 (6)
$\frac{\mathrm{Q}-\mathrm{Q} 2}{\mathrm{P} \times \mathrm{KP} \quad(7)}$
$\overline{\mathrm{B}-\mathrm{Q} 3}$ (8)
$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{KP} \times \mathrm{P}}$
$\overline{\mathrm{Kt}-\mathrm{B} 3}$
$\frac{0.0 .0}{\mathrm{Q} \cdot \mathrm{K} 2+}$
-

$\mathrm{B} \times \mathrm{B}$
$\mathbf{Q \times B}$
$\mathbf{Q} \times \mathrm{Q}$
$\mathrm{K} t \times \mathbf{Q}$
$\mathrm{P}-\mathrm{Q} 5$
$\mathrm{Kt}-\mathrm{K}+5+$

19
20

K-Kt2		K-Ksq
P.Q4	$B \times P$	P-Q4
Q-B3 (10)	$\overline{B \times B}$ (13)	Kt-KB3(16)
Q-Q3 (11)	$\mathrm{Q} \times \mathrm{Pch}$	Kt-B3
Kt-K2	K-B2	B-Kt5
Kt -B3	Q-R5ch	$\mathrm{B} \times \mathrm{BP}$
QKt-B3	K-K2!	$\overline{\mathrm{Kt} \times \mathrm{B}}$
P-K5	Q-K5ch	$\mathrm{P} \times \mathrm{Kt}$
Q-Kt3	K-Q2	$\overline{\mathrm{B} \times \text { Kıch }}$
B-K4	Q \times R	$\mathrm{P} \times \mathrm{B}$
B-B4	Kt-KB3	$\overline{Q \times Q P}$
$\mathrm{B} \times \mathrm{P}$	P-K5 (14)	Q-K2ch
$\overline{\mathrm{R}-\mathrm{Qsq}}$ (12)	$\overline{\mathrm{B} \times \mathrm{P}}$	K-B2
$\mathrm{B} \times \mathrm{B}$	R-R2	0.0
$\overline{\mathbf{Q} \times \mathrm{B}}$	P-B6	$\overline{\mathrm{K}-\mathrm{Kt}} \mathbf{}$
$\mathbf{Q} \times \mathrm{Q}$	$\mathbf{Q} \times \mathrm{K}$ t	B-K5 + (17)
$\overline{\mathrm{Kt} \times \mathrm{Q}}$	$\overline{Q \times Q}$	
P-Q5	$\mathrm{P} \times \mathrm{Q}$ (15)	

(1) 9 .., Q-Ksq; $10 \mathrm{~B}-\mathrm{QB4ch}, \mathrm{~K}-\mathrm{K} 2$; $11 \mathrm{QB} \times \mathrm{P}, \mathrm{K}-\mathrm{Qsq}$. (Potter.)
(2) If 9 B-K3, B \times Pch; $10 \mathrm{~K}-\mathrm{Q} 2, \mathrm{P}-\mathrm{Q} 3+$: or 10 .., P-Q4; $11 \mathrm{Kt}-\mathrm{B} 3$, QP \times P; 12 B-B4ch, K-Kt2; 13 P-B4, B-KB4, \&c.
(3) If 10 .., K-Kt2; 11 B-K3, B \times Pch; 12 K-Q2, Kt-QB3 (12 .., Kt-KB3 also feasible. C. E. R.) ; 13 P-KB4, P-KR4; 14 P-B3, \&c.
(4) $11 \mathrm{~B}-\mathrm{K} 3, \mathrm{~B} \times \mathrm{Pch}$; $12 \mathrm{~K}-\mathrm{Q} 2$, P-KR4 (or Kt-KB3! C. E. R.) ; $13 \mathrm{Kt}-\mathrm{B} 3$, P-B3 (Pierce, Gosssip, \&c.) ; 14 B-Kt3, B-Kt4; (if) $15 \mathrm{P}-\mathrm{B4}, \mathrm{~B} \times \mathrm{P}+$: if $15 \mathrm{~B} \times \mathrm{B}$, $\mathrm{Q} \times$ Bch; $16 \mathrm{~K}-\mathrm{Q} 3, \mathrm{P}-\mathrm{QKt} 3+$. If $11 \mathrm{Q}-\mathrm{Q3}, \mathrm{~B} \times$ Pch; $12 \mathrm{~K}-\mathrm{Qsq}, \mathrm{Kt}-\mathrm{QB3}$, \&c.
(5) 13 Kt -KB3, B-QKt5; $14 \mathrm{Q}-\mathrm{K} 2, \mathrm{Q} \times$ RP (Wormald). Dr. Schmid gives 13 P-B5, Kt-KB3; $14 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{Kt} 5$; $15 \mathrm{P}-\mathrm{K} 5, \mathrm{~B} \times \mathrm{RP}$; $16 \mathrm{P}-\mathrm{B} 6, \mathrm{Kt}$-B7; (if) 17 P-B7ch, K-Bsq; 18 Q-B3 or Q2, B-Kt5.
(6) 8 ..., P-B7ch; $9 \mathrm{~K} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 4$; $10 \mathrm{~B}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{KB} 3$; $11 \mathrm{R}-\mathrm{Bsq}, \mathrm{Kt} \times \mathrm{Pch}$; 12 K -Ktsq, and the position is that in Col. 13 after White's 10th move. If 8 .., $\mathrm{E}-\mathrm{K} 2 ; 9 \mathrm{Q}-\mathrm{Q} 2$ (B-Kt3 loses time), $\mathrm{P} \times \mathrm{P} ; 10 \mathrm{~KB} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch} ; 11 \mathrm{~K}-\mathrm{K} 2$, $\mathrm{P}-\mathrm{Q3}$; 12 Kt -B3, B-B3; 13 QR-KBsq. If 8 !., P-Q3; 9 Q-Q2, Kt-QB3 (or P-B3); $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt} 2$; $11 \mathrm{~B}-\mathrm{K} 3, \mathrm{Kt} . \mathrm{B} 3$; 12000 . If $8 . ., \mathrm{Kt}-\mathrm{KB} 3$; $9 \mathrm{P} \times \mathrm{P}$.
(7) If $9 \ldots, \mathrm{~B}-\mathrm{K} 3$; $10 \mathrm{~B}-\mathrm{K} 5, \mathrm{Kt} \mathrm{KB} 3$; $11 \mathrm{Q}-\mathrm{B} 4, \mathrm{P}-\mathrm{B} 3$; $12 \mathrm{Kt}-\mathrm{Q} 2!$ to stop B-Kt5. If $9 \ldots, \mathrm{Kt}-\mathrm{KB} 3$; $10 \mathrm{~B}-\mathrm{K} 5, \mathrm{Kt} \times \mathrm{P}$; $11 \mathrm{Q}-\mathrm{B} 4 \mathrm{ch}, \mathrm{Kt}-\mathrm{KB} 3$; $12 \mathrm{Kt}-\mathrm{B} 3$, B-Kt5; 13 O-O-O. If 9 .., B-Q3; 10 P-K5, Q-K2; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt5} ; 12$ O-0.0. \&c.
(8) $11 \ldots$ Kt-B3; $12 \mathrm{Kt}-\mathrm{B3}, \mathrm{Kt} \times \mathrm{P}$; $130-0.0, \mathrm{P}-\mathrm{B} 4$; $14 \mathrm{Kt} \times \mathrm{P}$: or $11 \ldots$, B-K2 or Kt2; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3$; 13 O-O-0, \&c.
(9) Prince Ouroussofi's attack.
(10) $9 \ldots, \mathrm{Kt}-\mathrm{KB} 3$; $10 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{B} 6$ (if $10 . .$. Kt-R4; $11 \mathrm{Kt}-\mathrm{K} 2$. Pierce) ; $11 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{K} t 5$: if 10 O.0, $\mathrm{Kt} \times \mathrm{B}$; $11 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{RP}$ or B-Q3: if $10 \mathrm{QB} \times \mathrm{P}$, $\mathrm{Kt} \times \mathrm{B} ; 11 \mathrm{P} \times \mathrm{Kt}$, B-Q3. Dr. Schmid gives also $9 . ., \mathrm{P}-\mathrm{B} 6$ (or B-Q31 C.E.R.); $10 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Kt6} 1$ The Praxis gives the older play 9 .., B-K2.
(11) 10 P-K5, Q-B4; 11 O-O, P-B6; $12 \mathrm{~B} \times \mathrm{BP}$? (Pierce.) Zukertort against Steinitz played $10 \ldots$, Q-KKt3; 11 P-R5, Q-B4; 12 O-O, P-B6; 13 Kt-Q2 ($\mathrm{B} \times \mathrm{KBP}$. Pierce), Kt-K2; $14 \mathrm{~B}-\mathrm{K} 4, \mathrm{Q} \times \mathrm{RP}$; $15 \mathrm{Kt} \times \mathrm{P}, \mathrm{QKt} \mathrm{B} 3$ ($15 \ldots, \mathrm{P} \times \mathrm{Kt}$ gives Black a difficult game) ; 16 Kt -R2, Kt-Kt3 and ultimately won. If 10 Kt -QB3, B-Kt5.
(12) Or $14 \ldots, \mathrm{~B} \times \mathrm{Bl}$ (Schmid.)
(13) Simpler and better than P-B6 which runs thus:-9... P-B6; $10 \mathrm{~B} \times \mathrm{B}$ (if $10 \mathrm{~B} \times \mathrm{R}, \mathrm{P} \times \mathrm{P}$; 11 R -Ktsq, $\mathrm{Q} \times \mathrm{RPch}+$), $\mathrm{Q} \times \mathrm{B}$; $11 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3$. (Steinitz gives P-KR4 or Kt-KB3-P-Kt6 is inferior) ; 12 R-Ktsq. P-Kt6; 13 P-Q4, Q-R6; 14 Q-K2, Kt-QB3; 15 B-K3, KKt-K2; 16 Kt-B3, Kt-Kt3; 17 P-K5, B-Kt5; 18 0-0.0+.
(14) Dr. Schmid suggests as rather less disadvantageous $14 \mathrm{P}-\mathrm{QKt3}, \mathrm{~B} \times \mathrm{P}$; 15 B-Kt2 or R3.
(15) $17 \ldots, \mathrm{~B}-\mathrm{B} 4$ (if B-Q3; $18 \mathrm{R} \times \mathrm{B}$); $18 \mathrm{P}-\mathrm{Q4}, \mathrm{~B} \times \mathrm{P}$; $19 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{K} 41$: $20 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{Kt}$; $21 \mathrm{R}-\mathrm{R} 3$, \&c.: if $19 . ., \mathrm{Kt}-\mathrm{B} 3$; $20 \mathrm{Kt} \times \mathrm{P}, \mathrm{R}-\mathrm{Ksqch} ; 21 \mathrm{~K}-\mathrm{Q} 2$, \&c.
(16) 9 .., P-B6 1; $10 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 2$, and position reverts to Col. 16. Black may vary by $10 \ldots$, P-Kt6 (Schmid), or $10 \ldots, \mathrm{Q}$-B3 (B. C. M., 1882, p. 238).
(17) If $16 \ldots$, R-Ktsq; 17 Q-Q3ch, K-R4; 18 R-B5ch+. Black may however play $14 \ldots$, K-Qsq.
(Col. 16.)

After White's 10 th move.
(Col. 17.)

After White's 8th move.

SECTION VI.

THE CUNNINGHAM GAMBIT.

1 P.K4, P.K4; $2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{~B} \cdot \mathrm{~K} 2$; $4 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B}-\mathrm{R} 5 \mathrm{ch}$.

THE defence of the King's Gambit by 4 ..., B-K2 has at first sight an advantage over the usual play arising from 4 ..., P-KIIt4, for it disturbs the attacking player's arrangement more than that of his adversary. But the student will soon discover that appearances are deceptive in this opening, and that White shortly obtains ample compensation for the damage done to his position. After Black's fourth move (B-K5ch) the opening branches in two very different directions. By moving his King to Bishop's square, as in the Bishop's Gambit, the first player may secure a good development, recovering his Gambit Pawn without difficulty; or he may give up three Pawns and add considerably to the strength of his attack. The former is the correct play, the latter leads to the most animated game, and constitutes the Cunnipgham Gambit proper. It is not quite sound, although extremely troublesome to defend.

This opening has been little favoured by first class players with the exception of Mr. Bird, to whose games we are indebted for several of our columns. It is the "Three Pawns Gambit" of the early writers Bertin and Stamma. It has been ascribed to Cunningham the historian, but Mr. Wayte (B. C. M:, 1888, p. 129) has pointed out that this is an error, and that the credit of introducing it as a playable game should be given to another Scotchman, Alexander Cunningham, of Block, a scholar, critic, and Chess player, who lived at the Hague in the early part of the eighteenth century, and who was visited there by Chess players from all parts of Europe.

Table 109,_THE CUNNINGHAM GAMBIT.

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt} \cdot \mathrm{KB} 3, \mathrm{~B} \cdot \mathrm{~K} 2$; 4 B-B4(1), B-R5ch. (Dia. p. 201.)

	1	2	3	4	5
5	K-Bsq.				
	Kt-KR3	P-Q3	P-Q4		B-B3 (8)
6	P-Q4	P-Q4	$B \times P$		P.K5
	$\overline{\mathrm{Kt}} \mathrm{K} \mathrm{t} 5$ (2)	B-Kt5 (3)	Kt-KB3		B-K2
7	Q-K2	QB \times P (4)	Kt-B3		P.Q4
	Kt-B7	Q-B3	0.0	$\overline{\mathrm{Kt} \times \mathrm{B}}$	P-Q4
8	$\mathrm{Kt} \times \mathrm{B}$	B-K3	P-Q4	$\mathrm{Kt} \times \mathrm{Kt}$	B-K2
	$\overline{\mathrm{Kt} \times \mathrm{R}}$	Kt-K2	P-B3 (5)	$\overline{0.0 ~(6) ~}$	P-QB4 (9)
9	Kt-KB3	QKt-Q2	B-Kt3	$\mathrm{Kt} \times \mathrm{B} \quad(7)$	P.B3
	Kt-Kt6ch	P-KR3	B-Kt5	Q \times KKt	Q-Kt3 -
10	$\mathrm{P} \times \mathrm{Kt}$	P-KR3	QB \times P	$\mathrm{Kt} \times \mathrm{QBP}$?	
	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{B} \times \mathrm{Kt}}$	Kt-R4	Kt-B3	
11	B-B4 or	$\mathrm{K} t \times \mathrm{B}$	Q-Q2	$\mathrm{Kt} \times \mathrm{R}$	
	KKt5 +	$\overline{\mathrm{Kt}-\mathrm{Q} 2}$	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt}-\mathrm{Q} 5}$	
12		K-Ktsq,	$\mathrm{P} \times \mathrm{B}$	Kt-B7	
		B-Kt6	$\overline{\mathrm{K}-\mathrm{Rsq}}$	P-B6+	
13		Q-Q2+	R-KEtsq +		

(1) 4 P-KR4 prevents the check, but with no advantage. See p. 161, Table 82; Cols. 3-5.
(2) Or $6 \ldots, 0-0 ; 7 \mathrm{QB} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Kt5} ; \mathrm{Q}-\mathrm{K} 2$, \&c.
(3) If $6 \ldots, \mathrm{Q}-\mathrm{B} 3$; $7 \dot{\mathrm{P}}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2$; $9 \mathrm{QB} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt5}$; $10 \mathrm{Kt}-\mathrm{B3}$; P-QB3; $11 \mathrm{Kt}-\mathrm{K} 4+$.
(4) Or 7 Kt-B3! (Wisker). The Col. to move 12 , is Steinitz v. Bird.
(5) $8 \ldots, \mathrm{Kt} \times \mathrm{B} ; 9 \mathrm{P} \times \mathrm{Kt}$, (or $\mathrm{Kt} \times \mathrm{Kt} \mathrm{I}$), B-Kt4; $10 \mathrm{P}-\mathrm{KR} 4, \mathrm{~B}-\mathrm{R} 3$; $11 \mathrm{Q}-\mathrm{Q} 3$, P-KB4; 12 Q-B4, K-Rsq; $13 \mathrm{Kt}-\mathrm{K} 2+$ (Handbuch). The Col. is Wisker v. Bird.
(6) So played by Bird. (Modern Chess. p. 186.)
(7) $9 \mathrm{P}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{Kt5}$; $10 \mathrm{~B} \times \mathrm{P}, \mathrm{P}-\mathrm{KB} 4$; $1.1 \mathrm{Q}-\mathrm{K} 2, \mathrm{P} \times \mathrm{P}$; $12 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3$; 13 R-Qsq, Q-Ksq; 14 P-KKt3, Kt-K4; $15 \mathrm{Kt} \times \mathrm{P}, \mathrm{R} \times \mathrm{B}$; $16 \mathrm{Kt} \times \mathrm{Q}, \mathrm{R} \times \mathrm{Ktch}$; $17 \mathrm{~K}-\mathrm{Kt2}, \mathrm{R} \times \mathrm{Kt} ; 18 \mathrm{Q}-\mathrm{Kt5}, \mathrm{QR}-\mathrm{KBsq} ; 19 \mathrm{Q} \times \mathrm{Kt}, \mathrm{R}-\mathrm{B} 7 \mathrm{ch} ; 20 \mathrm{~K}$-Ktsq, B-RG, and wins. (Macdonnell v. Bird.) 9 P-Q4 transposes into note 5.
(8) If $5 \ldots, \mathrm{~B}-\mathrm{Kt} 4 ; 6 \mathrm{P}-\mathrm{Q} 4, \mathrm{P}-\mathrm{Q} 3 ; 7 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Kt!} 8 \mathrm{Q}-\mathrm{B} 3+$.
(9) Wormald. The Synopsis gives $8 \ldots$ P.KKt4; 9 P-KR4, to White's adrantage

Table 110.--THE CUNNINGHAM GAMBIT.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{~B} \cdot \mathrm{~K} 2$; $4 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B} \cdot \mathrm{R} 5 \mathrm{ch} ; 5 \mathrm{P} \cdot \mathrm{KKt} 3, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{O}-\mathrm{O}, \mathrm{P} \times \mathrm{Pch}$; $7 \mathrm{~K} \cdot \mathrm{R}$ sq.

	6	7	8	9	10
7	P-Q4		P.Q3	Kt-KR3	B-K2?
8	$\mathrm{B} \times \mathrm{P} \quad$ (1)		$\mathrm{B} \times$ Pch	P.Q4	$\mathrm{B} \times \mathrm{Pch}$
	Kt-KB3		K \times B	P-Q4 (8)	$\mathrm{K} \times \mathrm{B}$
9	$\mathrm{B} \times \mathrm{BPch}(2)$	B-Kt3	Kt-K5ch (5)	$\mathrm{B} \times \mathrm{Kt}$	Kt-K5dis.ch
	$\overline{\mathrm{K} \times \mathrm{B}}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	K-K.sq (6)	$\overline{\mathrm{P} \times \mathrm{KB}}$	K-K3 (9)
10	$\mathrm{Kt} \times \mathrm{B}$	Q-K2	Q-R5ch	Kt-K5	Q-Kt4ch
	R-Bsq	Q-K2	P-KKt3	$\overline{\mathrm{P} \times \mathrm{B}}$	K-Q3
11	P.Q4 (3)	$\mathrm{B} \times \mathrm{Pch}$	$\mathrm{Kt} \times \mathrm{P}$	$\mathrm{Kt} \times \mathrm{KBP}$	Kt-B7+
	$\overline{\mathrm{K}} \mathrm{K} \mathrm{tsq}$	$\overline{\mathrm{K} \cdot \mathrm{Bsq}}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$	Q-K2	-
12	B-Kt5 (4)	Q \times P	$\mathrm{Q} \times \mathrm{Pch}$	$\mathrm{Kt} \times \mathrm{R}$	
	$\overline{\mathrm{Kt} \times \mathrm{P}}$	Kt-Kt6ch	K-Q2	Q \times Pch	
13	$B \times \mathrm{Q}$	K-Kt2	Q-B5ch	$\mathrm{K} \times \mathrm{P}$	
	R×Rch	$\overline{\mathrm{Kt} \times \mathrm{R}}$	K-B3	B-Kt5	
14	Q \times R	Q \times B	Q-Q5ch (7)	Kt-B3	
	Kt-Kt6ch	$\overline{Q \times Q}$		Q-K3	
15	$\mathrm{K} \times \mathrm{P}$	$\mathrm{Kt} \times \mathrm{Q}$		Q-Q2	
	$\overline{\mathrm{Kt} \times \text { Qch }}$	$\overline{\mathrm{K} \times \mathrm{B}+}$		B-Kt4	
16	K-Ktsq			Q-B2+	
	Kı-K6+				

(1) If $8 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{B} 31$ (if $\mathrm{B}-\mathrm{R} 6 ; 9 \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}$) ; $9 \mathrm{Kt}-\mathrm{K} 5, \mathrm{~B} \times \mathrm{Kt} ; 10 \cdot \mathrm{R}-\mathrm{Ksq}$, Kt-K2; $11 \mathrm{R} \times \mathrm{B}, \mathrm{O}-\mathrm{O}+$.
(2) $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{B}$; $10 \mathrm{Kt} \times \mathrm{Kt}$, B-Kt5; $11 \mathrm{Kt}-\mathrm{K} 3$ (Buckle). If $9 \mathrm{Kt} \times \mathrm{B}$, $\mathrm{Kt} \times \mathrm{B} ; 10 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt} ; 11 \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}, \mathrm{K}-\mathrm{Qsq} ; 12 \mathrm{Q} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Qch} ; 13 \mathrm{~K} \times \mathrm{Q}$, P-KB3+.
(3) If 11 P-Q3, K-Ktsq; 12 B-Kt5, P-KR3+. If 11 P-K5, Q:Q4ch; $12 \mathrm{Kt}-\mathrm{KB} 3$, Kt-R4, \&c.
(4) $12 \mathrm{Kt}-\mathrm{QB} 3$ also gives Black the freer game,
(5) If $9 \mathrm{Kt} \times$ Bdisch, Kt-KB3; 10 P-Q4, R-Bsq; $11 \mathrm{~B}-\mathrm{Kt5}, \mathrm{~K}-\mathrm{Ktsq}$; $12 \mathrm{Kt}-\mathrm{QB} 3$, P-KR3+.
(C) If $9 \ldots, \mathrm{~K}-\mathrm{K} 2$; $10 \cdot \mathrm{Q}-\mathrm{R} 5, \mathrm{P} \times \mathrm{Kt}$, and White draws.
(7) White draws by perpetual check.
(8) If $8 \ldots, \mathrm{O} \mathrm{O}$; $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $10 \mathrm{Kt}-\mathrm{K} 5+$.
(9) If $9 \ldots$ K-Ksq (Handbuch and Synopsis) ; $10 \mathrm{Kt}-\mathrm{B} 7$ (C. E. R.)

Table 111.-THE CUNNINGHAM GAMBIT.
1 P-K4, P-K4; 2 P-KB4, P \times P $3 \mathrm{Kt}-\mathrm{KB} 3$, B-K 2 ;
$4 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{~B} \cdot \mathrm{R} 5 \mathrm{ch} ; 5 \mathrm{P} \cdot \mathrm{KKt} 3, \mathrm{P} \times \mathrm{P} ; 60.0, \mathrm{P} \times \mathrm{Pch}$; $7 \mathrm{~K} \cdot \mathrm{R} \mathrm{sq}, \mathrm{B} \cdot \mathrm{B} 3$.

	11	12	13	14	15
8	P-K5	Kt -K5			
	P-Q4	$\overline{\mathrm{B} \times \mathrm{Kt}}$	Kt-KR3	$\overline{\text { P-Q4! (4) }}$	
9	$\mathrm{P} \times \mathrm{B}$	Q-R5	Q-R5	$B \times P$!	
	$\overline{\mathrm{Kt} \times \mathrm{P}}$	Q-K2	Q-K2 (3)	$\overline{\mathrm{B} \mathrm{K} 3}$ (5)	
10	B-Kt3	$\mathrm{R} \times \mathrm{P}$	P-Q4	$\mathrm{B} \times \mathrm{B}$	
	B-K3	Q-B4	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\bigcirc \times B$	
11	P-Q4 (1)	R-B8 d.ch!	$\mathrm{B} \times \mathrm{Kt}$	Q-R5ch	
	$\overline{\mathrm{K}} \mathrm{t}$-K5	K-K2	$\overline{\mathrm{B} \times \mathrm{P}}$	P-KKt3	
12	B-KB4	P-Q4	$\mathrm{R} \times \mathrm{P}$	Q.B3	
	P-KB4	$\overline{\mathrm{Q} \times \mathrm{P} \quad(2)}$	$\overline{\text { Q } \times \text { Pch }}$	$\overline{\mathrm{Kt}}$-Q2	Q-K2
18	QKt-Q2	B-Kt5ch	R-B3dis.ch	P-Q4	P-Q4
	Q-K2	$\overline{\mathrm{K}} \mathrm{Q} 3$!	P-KKt3	Q-K2	$\overline{\mathrm{B} \times \mathrm{Kt}}$ (6)
14	P-B4	Kt-Q2	B-B7ch	$\underline{\mathrm{Kt}} \times \mathrm{Kt}$	$\mathrm{P} \times \mathrm{B}$
	P-B3	Kt-KB3	K-K2	Q \times Kt	Kt-QB3
15	$\mathrm{P} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{Kt}$	Q-Kt5ch+	P-K5	B-Kt5
	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{R} \times \mathrm{R}}$		B-Kt2	Q-Kt2
16	R-Bsq -	P-B3		$Q \times P$	Kt -B3 !
	$\overline{\mathrm{Kt}-\mathrm{QB} 3}$ -	Q-B4		Q-Q4ch	P-KR3 (7)
17		$\underline{\mathrm{Kt} \text {-Kt3 }+}$		$Q \times Q$	Kt-Kt5
				$\overline{P \times Q}$	$\overline{\mathrm{P} \times \mathrm{B}}$
18				Kt - B3 -	$\mathrm{Kt} \times$ BPch
				P-B3 -	$\overline{\mathrm{K} \cdot \mathrm{Q} 2 \quad(8)}$

(1) If 11 P-Q3, P-KR3; 12 B-KB4, P-B4, \&c.
(2) If $12 \ldots, \mathrm{Q} \times \mathrm{B} ; 13 \mathrm{Q}-\mathrm{K} 8 \mathrm{ch}, \mathrm{K}-\mathrm{Q} 3 ; 14 \mathrm{Q} \times \mathrm{KBch}, \mathrm{K}-\mathrm{B} 3$; $15 \mathrm{Kt}-\mathrm{R} 3, \& \mathrm{c}$. If $12 \ldots, \mathrm{~B} \times \mathrm{P}$; 13 Q -B7ch, $\mathrm{K}-\mathrm{Q} 3$; $14 \mathrm{P}-\mathrm{Kt4}, \mathrm{Q} \times \mathrm{P}$; $15 \mathrm{~B}-\mathrm{R} 3+$: or $14 \ldots, \mathrm{Q}-\mathrm{B} 3$; $15 \mathrm{~B}-\mathrm{B} 4 \mathrm{ch}, \mathrm{B}-\mathrm{K} 4$; $16 \mathrm{Kt}-\mathrm{B} 3$, and wins.
(3) Or $9 \ldots, \mathrm{O}-\mathrm{O}$; $10 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B} \times \mathrm{Kt}$; $11 \mathrm{~B} \times \mathrm{Kt}$ (or $11 \mathrm{P} \times \mathrm{B}$), $\mathrm{B} \times \mathrm{P}$; $12 \mathrm{R} \times \mathrm{P}, \mathrm{R} \times \mathrm{R}$; $13 \mathrm{~B} \times \mathrm{Rch}, \mathrm{K}-\mathrm{Rsq}$; $14 \mathrm{~B}-\mathrm{Kt5}, \mathrm{~B}-\mathrm{B} 3 ; 15 \mathrm{~B}-\mathrm{Kt6}, \mathrm{Q}-\mathrm{Ktsq}$; $16 \mathrm{~B} \times \mathrm{P}$ and draws. If $9 \ldots, \mathrm{~B} \times \mathrm{Kt}$; $10 \mathrm{R} \times \mathrm{P}$. If $9 \ldots, \mathrm{P}-\mathrm{KKt} 3 ; 10 \mathrm{Q}-\mathrm{B} 3$.
(4) $8 \ldots$. $\mathrm{Q}-\mathrm{K} 2$; $9 \mathrm{P}-\mathrm{Q} 4!, \mathrm{B} \times \mathrm{Kt}$ (or P-Q3! C. E. R.); $10 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Qsq}$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{P} ; 12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{KB3}$; $13 \mathrm{~B}-\mathrm{KB} 4, \mathrm{Q}-\mathrm{K} 2$; $14 \mathrm{P}-\mathrm{K} 5, \mathrm{Q} \times \mathrm{B}$; $15 \mathrm{P} \times \mathrm{Kt}$, $\mathrm{P} \times \mathrm{P}$ ($\mathrm{P}-\mathrm{KKt3}$!); $16 \mathrm{~B}-\mathrm{K} 5+$.
(5) Or $9 \ldots, \mathrm{~B} \times \mathrm{Kt} 1$; $10 \mathrm{Q}-\mathrm{R} 5, \mathrm{Q}-\mathrm{Q} 3, \& c$.
(6) If $13 \ldots, \mathrm{Kt}-\mathrm{B} 3$; $14 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $15 \mathrm{P}-\mathrm{K} 5+$. If $13 \ldots, \mathrm{Kt}-\mathrm{QR} 3$; 14 Kt-B61, Q-Q2; 15 P-K5, B-Kt2; $16 \mathrm{Kt}-\mathrm{K} 7, \mathrm{~K} \times \mathrm{Kt}$; 17 Q-B7ch, K-Qsq; 18 B-Kt5ch, K-Bsq; 19 Q-B8ch+.
(7) If $16 \ldots, \mathrm{Kt} \times \mathrm{P}$; $17 \mathrm{Q}-\mathrm{R} 3, \& \mathrm{c}$.
(8) $19 \mathrm{Kt} \times \mathrm{R}, \mathrm{Kt}-\mathrm{R} 3 \mathrm{l} ; 20$ QR-Qsqch, K.Bsq, and the Kt is lost.

SECTION VII.

THE KING'S BISHOP'S GAMBIT.

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4$; $2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; \quad 3 \mathrm{~B} \cdot \mathrm{~B} 4$.

THE development of the King's Bishop on the third move, instead of the King's Knight (as in Secs. I. to VI.), varies the game in a remarkable manner. Black, in reply, has a check with his Queen at KR5, which, although not quite so effective as in the Salvio Gambit (Sec. IL.) prevents White castling, and by keeping his King's Rook out of play stops many combinations available for the first player in Sec. I. The Queen may, however, be driven away with the loss of a time, and there is a weakened centre. Upon this double foundation White is enabled to establish an enduring attack abounding in critical and difficult positions. His Pawns and minor pieces occupy the centre of the board, and Black must be prepared to dispense with Castling, and utilise his King for defensive purposes. The Gambit Pawn is usually defended but cannot be maintained unless another Pawn is given for it. Hence the opening has been called the strongest of the Gambits. It has been a favourite with many great players, and both attack and defence have been elaborated with much care and ingenuity.

There are numerous lines of play for the defence. The oldest, 3 ..., P-QB3 and Kt-KB3 (Lopez, Salvio, Cozio, \&c.), deal with the central attack (Cols. 1-5) : to these has been recently added 3..., Kt-QB3 (Maurian), which is not altogether satisfactory, in the light of an analysis by Professor Berger (Cols. 16-20). 3 ..., P-KB4 (Lopez, Gianuzio, and Salvio), to bring about similarity of position, leads to equality, but the play is difficult (Cols. 6-10). 3 ..,, P-QKt4 (Bryan and Kieseritzky) is a risky counter gambit working out, by analysis, unfavourably for the second player (Cols. 13-15). 3 .., P-KR4 (Cols. 11-12) is insufficient against 4 P-KR4. $3 \ldots, \mathrm{Q}$-R5ch is the usual play, combined with P-KKt4, and frequently preceded by P-Q4 (Cols. 21-40). The analysis of this variation has been carried far into the game leaving the result undetermined. Taking into consideration the number of possibilities left open on both sides the opening may be said to offer an even chance for both players. The alternative moves 3 B-K2 (Cols. 41 AB) and B-Q3 (Cols. 44-45) are minor variations.

Table 112.-THE KING'S BISHOP'S GAMBIT.

1P-K4, P-K4; 2 P:KB4, P×P; 3 B-B4.
1
2
8
4
5

3
$\overline{\text { P-QB3 (1) }} \overline{\mathrm{Kt}-\mathrm{KB} 3}$
4

$\mathrm{P}-\mathrm{Q} 4$	(2)
$\mathrm{P}-\mathrm{Q} 4$	

$\frac{\mathrm{P} \times \mathrm{P}}{\mathrm{P} \times \mathrm{P}}$

Kt-QB3
B-Kt5
P-K5
P-Q4

P

P-B3	
Q-B3	

$\overline{\mathrm{Kt}-\mathrm{B} 3}$
Kt B3
$\mathrm{B}-\mathrm{Kt} 5$

$\frac{\text { P-K5 ? (10) }}{\text { P-Q4 (11) }}$
B-Kt3 $\overline{\mathrm{Kt}-\mathrm{K} 5}$
B-Kt5ch
B-Kt5ch (3)
P-Q4
0.0

Kt-KB3
$\overline{\text { Kt-QB3 }}$
P-B3
(4)

B-Q3
$\frac{\mathrm{B} \times \mathrm{P}}{\mathrm{Q} \cdot \mathrm{Kt} 3}$
$\mathrm{P} \times \mathrm{Kt}$
P-Q3
$\frac{\text { Q-K2ch }}{\text { B-K3 }}$
$\frac{\text { Q-K2ch }}{\text { B-K3 }}$
Q-B2
$\frac{\mathrm{P}-\mathrm{B} 3}{0.0 .0}$
$\frac{\mathrm{Q} \times \text { Pch }}{\mathrm{Kt}-\mathrm{B} 3}$
Kt-B3 -
Kt-B3 -
11

$\mathrm{Kt-B3}$	(5)	$\mathrm{B} \times \mathrm{P}$
$\mathrm{Q} \times \mathrm{P}$	$\mathrm{Kt} \mathrm{\times B}$	
$\mathrm{Q} \times \mathrm{KtP}$	$\mathrm{K} t \times \mathrm{Kt}$	
$\mathrm{R}-\mathrm{QBsq}(6)$	$\mathrm{Q}-\mathrm{R4ch}(9)$	

$\mathrm{B} \times$ Ktch
$\overline{\mathrm{P} \times \mathrm{B}}$
P-Q4
P-QB4
P-B3
B-K2+
(1) If $3 \ldots, \mathrm{~B}-\mathrm{K} 2 ; 1$ Q-R5.
(2) Or 4 Q-B3I
(3) Schulten v. Morphy lost in 17 moves by 6 PxKt.
(4) $6 \ldots$ KKt-Q2; $7 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{R4}$, \&c.
(5) Or $10 \mathrm{P} \times \mathrm{P}+$. (C. E. R.) If $10 \mathrm{Q} \times \mathrm{KtP}$; Kt-Q5.
(6) $12 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 4$; $13 \mathrm{Kt}-\mathrm{B} 7 \mathrm{ch}, \mathrm{R} \times \mathrm{Kt}$; $14 \mathrm{Q} \times \mathrm{R}, \mathrm{Q}-\mathrm{K} 5 \mathrm{ch}$; $15 \mathrm{~K}-\mathrm{Qsq}, 0.0$; 16 P-Q3, Q-Kt3; $17 \mathrm{Q} \times \mathrm{P}$ (B4)+. (Paulsen v. Kolisch.)
(7) If 4 .., P-Q4; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3 ; 6 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{Q} \times \mathrm{Kt} ; 7 \mathrm{P} . \mathrm{Q4}, \mathrm{Qch}$; 8 K-Bsq+.
(8) 9 .., B-Kt5; $10 \mathrm{P} \times \mathrm{P}$ (or B-KKt5), Rch; $11 \mathrm{~K}-\mathrm{Bsq}, \mathrm{Kt} \times \mathrm{P}$; $12 \mathrm{~B}-\mathrm{KKt5}$, \&c.
(9) $12 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{~B}-\mathrm{Kt5}$; $13 \mathrm{~B}-\mathrm{Q} 2, \mathrm{R}-\mathrm{Ksqch}$; $14 \mathrm{~K}-\mathrm{Bsq}, \mathrm{Kt}-\mathrm{B} 3$; $15 \mathrm{Kt}-\mathrm{B} 3$ (if) $\mathrm{B} \times \mathrm{KKt} ; 16 \mathrm{P} \times \mathrm{B}$: (if) $15 \ldots, \mathrm{QR}-\mathrm{Qsq} 16 \mathrm{P}-\mathrm{QR} 3+$.
(10) 4 P-Q3 equalises by P-Q4; $5 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P} ; 6 \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}, \mathrm{B}-\mathrm{K} 3 ; 7 \mathrm{~B} \times \mathrm{Kt}$, $\mathrm{Q} \times \mathrm{B} ; 8 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{QB} 4 ; 9 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P}-\mathrm{QB} 3$; $10 \mathrm{Kt}-\mathrm{B} 3$, \&c. If $4 \mathrm{Q}-\mathrm{K} 2, \mathrm{~B}-\mathrm{B} 4$, and castles shortly with an even game.
(11) Or 4 .., Kt-K5; 5 Kt-KB3, P.Q4; 6 B-Kt3̣, Kt-Kt4; 7 P-Q4, Kt-K3. The Col. is Anderssen v. Morphy.

Table 113.-THE KING'S BISHOP'S GAMBIT.

1 P.K4, P.K4: 2P-KB4, P \times P; 3B-B4, P.KB41.

	6	7	8	9	10.
4	Q-K2 (1)	Kt-QB3	P-K5	P-Q3	$\mathrm{P} \times \mathrm{P}$
	Q-R5ch	$\overline{\text { Q-R5ch (8) }}$	P-Q4 (13)	Q-R5ch	Q-R5ch
5	K-Qsq !	K-Bsq	$\mathrm{P} \times \mathrm{P}$ en pas	K-Bsq	K-Bsq
	$\overline{\mathrm{P} \times \mathrm{P}!}$	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{B} \times \mathrm{P}}$	$\overline{\mathrm{P} \times \mathrm{P}}$	P-B6
6	Q \times Pch (2)	$\mathrm{Kt} \times \mathrm{P}$	Kt -KB3	$\mathrm{P} \times \mathrm{P}$	P-Q4
	B-K2 (3)	$\overline{\mathrm{Kt}-\mathrm{KB} 3 \text { (9) }}$	Q-B3	B-B4	P×Pch
7	$\underline{\mathrm{B} \times \mathrm{Kt}}$	Kt-KB3	O-O	Q-B3	$\mathrm{K} \times \mathrm{P}$
	$\overline{\mathrm{R} \times \mathrm{B}}$	Q-R3	Kt-B3	$\overline{\mathrm{B} \times \mathrm{Kt}}$	Kt-KB3
8	Kt-KB3	Q-K2 (10)	P-Q4	$\mathrm{R} \times \mathrm{B}$	Q-K2ch
	$\overline{\text { Q-R4 (5) }}$	B-K2	P-KKt4	Kt-KR3	$\overline{\mathrm{K}}$-Qsq
9	R-Ksq	P.Q4	R-Ksqch	Kt-B3	B-K3
	Kt-B3	P.Q4 (11)	KKt-K2	$\overline{\mathrm{Kt}}$-Kt5+	-Kt-B3
10	Kt-B3	Kt \times Ktch	Kt-B3		P-B3
	P-Q3	$\overline{\mathrm{Q} \times \mathrm{Kt}}$	B-Q2		P-Q4
11	P-Q3 (6)	$B \times \mathrm{QP}$	Kt-Q5		B-Kt3
	B-B4	P-B3	Q-Kt2 +		B-Q3
12	Q-QB4	B-Kt8			Kt-Q2
	$0.0 .0 \quad$ (7)	B-KKt5(12)			$\overline{\mathrm{R}-\mathrm{Ksq}+(14)}$

(1) If $4 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$.
(2) If $6 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{~K}-\mathrm{Qsq}$! or $6 \ldots$ P-B3; $7 \mathrm{~K} t \times \mathrm{P}, \mathrm{K}-\mathrm{Qsq}$: or $6 \ldots$... B : ; $7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{B}$; $8 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{~K}-\mathrm{Qsq}$, \&c.
(3) Or $6 \ldots, \mathrm{Kt}-\mathrm{K} 2$; $7 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{B} 3$; $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Kt} 5$, \&a.
(4) Or 7 P-Q4, Kt-KB3; $8 \mathrm{Q} \times \mathrm{BP}$, \&c.
(5) $8 \ldots, \mathrm{Q}-\mathrm{B} 3$; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{B} 3$; $10 \mathrm{P}-\mathrm{Q} 4, \mathrm{P}-\mathrm{Q} 4$; $11 \mathrm{Q} \times \mathrm{BP}=$.
(6) If $11 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{~B}-\mathrm{B} 4 ; 12 \mathrm{Kt} \times \mathrm{KBP}$; $\mathrm{B} \times \mathrm{Q}$; $13 \mathrm{Kt} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Ktch}$; $14 \mathrm{P} \times \mathrm{B}$, $\mathrm{K}-\mathrm{Q} 2$, or $\mathrm{O}-\mathrm{O}-\mathrm{O}$, \&c.
(7) 13 Kt-Q5, B-B3; $14 \mathrm{Kt} \times \mathrm{KBP}, \mathrm{Q}-\mathrm{K} t 5$; $15 \mathrm{P}-\mathrm{KR} 3, \mathrm{Q}-\mathrm{K} t 6$; $16 \mathrm{R}-\mathrm{K} 2$, KR-Ksq or $\mathrm{Kt}-\mathrm{K} 4=$.
(8) If $4 \ldots$ Kt-KB3; 5 P-K5, Kt-Kt5; 6 Kt-B3, P-Q3; 7 P-Q4, P $\times P$; $8 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Qch} ; 9 \mathrm{Kt} \times \mathrm{Q}, \mathrm{Kt}-\mathrm{QB} 3$; $10 \mathrm{~B} \times \mathrm{P}$, \&c.
(9) If $6 \ldots$ P-B3; 7 Kt-KB3, Q-R4; 8 Q-Ksq, K-Qsq; 9 QKt-Kt5, P-Q4; 10 Q-K5, Kt-KB3, \&c. (Handbuch.) If $6 \ldots, \mathrm{Kt}-\mathrm{H} 2$; 7 Q-K2, QKt-B3; $8 \mathrm{Kt}-\mathrm{KB} 3$, \&c.
(10) Or 8 Q-Ksq 1 (Salvioli.) The Queen's move also follows 7 .., Q-R4.
(11) Or 9 .., R-Bsq!
(12) Continued 13 B-Q2, K-Qsq; 14 P-Q5, R-Ksq; $15 \mathrm{~B}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Bsq}$; $16 \mathrm{Q}-\mathrm{Q} 2$, $\mathrm{B} \times \mathrm{Kt}$; $17 \mathrm{P} \times \mathrm{B}, \mathrm{B}-\mathrm{Q} 3$; $18 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $19 \mathrm{~B} \times \mathrm{P}$. (Tschigorin v. Hellwig.)
(13) Ow 4 .., Qch; 5 K-Bsq, P-B6; \&c,
(14) $18 \mathrm{Kt}-\mathrm{Bsq}, \mathrm{B}-\mathrm{B5} ; 14 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Kt5ch}, \& \mathrm{c}$. White's play is questionable Mr. Wayte suggests 11 B-Q3 to deiend Pawn, instead of $11 \mathrm{~B}-\mathrm{Kt} 3$.

Table 114.-THE KING'S BISHOP'S GAMBIT.

	11	12	13	14	15
3	P-KKt4		$\overline{\text { P-QKt4 (4) }}$		
	P-KR4		$\mathrm{B} \times \mathrm{KtP}$		$\mathrm{B} \times \mathrm{BPch}$
4	P-KR3	$\overline{\text { P.Kt5 (2) }}$	P-QB3	Q-R5ch	$\overline{\mathrm{K} \times \mathrm{B}}$
5	P-Q4	P-Q4	B.B4 (5)	K-Bsq	Q-R5ch
	B-Kt2	$\overline{\text { B-R3 (3) }}$	P-Q4	$\overline{\text { B.Kt2 (7) }}$	P.Kt3
6	$\mathrm{P} \times \mathrm{P}$	Kt-QB3	$\mathrm{P} \times \mathrm{P}$	Kt-QB3	Q.Q5ch
	$\overline{\mathrm{P} \times \mathrm{P}}$	P-Q3	Q-R5ch	$\overline{\mathrm{Kt}-\mathrm{QB3}}$ (8)	K.Kt2
7	$\mathrm{R} \times \mathrm{R}$	Q-Q3	K-Bsq	P.Q4	$Q \times R$
	$\bar{B} \times \mathrm{R}$	Kt-KB3	P.B6	Kt-B3	Kt-QB3
8	Q-R5	KKıt-K2	P-Q4	P.Q5 (9)	Kt-QB3(11)
	Q-B3	$\overline{\mathrm{Kt}}$-R4	P×KtPch	Kt-K4	Q-R5ch
9	P-K5	P.KKt3	$\mathrm{K} \times \mathrm{P}$	Kt.B3	K-Qsq
	Q-Kt2	P-B6	B.Q3	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	B-R3
10	$\underline{\mathrm{Kt}-\mathrm{KR} 3+}$	$\mathrm{B} \times \mathrm{B}$	Kt-QB3 (6)	$\mathrm{Q} \times \mathrm{Kt}$	P.R4
	(1)	$\overline{P \times K t}$	Kt-B3	Kt.R4	P-Kt5
11		$\underline{\mathrm{K} \times \mathrm{P}+}$	Q-K2ch	P-KKt4	Kt.Q5
			K-Qsq	$\overline{\mathrm{P} \times \mathrm{P} \text { en pas }}$	B.Q3
12			$\underline{\mathrm{Q}} \mathrm{B} 2+$	K-Kt2	P.Q4
				$\overline{\text { B-Q3 (10) }}$	$\overline{\mathrm{KKt}}$-K2 +

(1) Black may continue $10 \ldots$ P.Q4 with a view to $\mathrm{B} \times \mathrm{Kt}$.
(2) If $4 \ldots, \mathrm{P}-\mathrm{KB} 3$; White mates in 5 moves. If $4 \ldots, \mathrm{P} \times \mathrm{P}$ or $\mathrm{B} \cdot \mathrm{R} 3 ; 5 \mathrm{Q}$-R5+. If 4 .., P-KR4; $5 \mathrm{Kt}-\mathrm{KB} 3$, P-Kt5; 6 Kt -Kt5. See Table 105, Col. 8.
(3) $5 \ldots, \mathrm{~B}-\mathrm{K} 2$; $6 \mathrm{QB} \times \mathrm{P}, \mathrm{B} \times$ Pch; 7 P.KKt3, B-K2; 8 P.B3, P.KR4; $9 \mathrm{Q}-\mathrm{Kt} 3, \mathrm{R}-\mathrm{R} 2$; $10 \mathrm{R} \times \mathrm{P}, \mathrm{R}-\mathrm{Kt2}$; $11 \mathrm{R}-\mathrm{R} 8+$.
(4) Bryan and Kieseritzky. The Col. is Mr. Calthrop's variation.
(5) Or 5 B-K2. (Brien.)
(6) If $10 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{~B}-\mathrm{R} 6 \mathrm{ch}+$.
(7) 5 . \quad, P-KB4; 6 P-K5 B-Kit2; 7 Kt.KB3, Q.R4; 8 P-Q4, P.KKt4; 9 Kt-QB3, P-Kt5. (Forsyth v. Blackburne.)
(8) Or $6 \ldots, \mathrm{Kt}-\mathrm{KB} 3$.
(9) Or 8 Kt-B3 first, and then P.Q5, or perhaps P-K5.
(10) $13 \mathrm{P} \cdot \mathrm{K} 5, \mathrm{~B} \times \mathrm{KP}$; $14 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; $15 \mathrm{Q} . \mathrm{B} 5 \mathrm{ch}, \mathrm{K} . \mathrm{Q} 3$; $16 \mathrm{Kt}-\mathrm{K} 4 \mathrm{ch}$ $\mathrm{K} \times \mathrm{P}$; 17 R -Qsqch and wins; if $\mathrm{K} \cdot \mathrm{B} 3$ by $18 \mathrm{Q} \cdot \mathrm{Q} 7 \mathrm{ch}$, and if $\mathrm{K} \cdot \mathrm{B} 5$, by $18 \mathrm{Q} \cdot \mathrm{Bsqch}$.
(11) If 8 P-Q4 similar play follow. If $8 \mathrm{Kt}-\mathrm{KB3}, \mathrm{~B}-\mathrm{B4} ; 9 \mathrm{P}-\mathrm{Q} 4, \mathrm{Kt}-\mathrm{B} 3$; $10 \mathrm{P} \times \mathrm{B}, \mathrm{Q}-\mathrm{K} 2$; $11 \mathrm{O} \cdot \mathrm{O}, \mathrm{Q} \times \mathrm{BPch} ; 12 \mathrm{~K} \cdot \mathrm{Rsq}, \mathrm{B} \cdot \mathrm{R} 3+$

Table 115.-THE KING'S BISHOP'S GAMBIT.
1 P.K4, P.K4: 2 P.KB4, P \times P; 3B.B4, Rt.QB3;
4 P.Q4. (1)
16
17
18
19
20

(1) Or $4 \mathrm{Kt}-\mathrm{KB} 31$. If $4 \mathrm{Kt}-\mathrm{QB} 3$, Qch; $5 \mathrm{~K}-\mathrm{Bsq}, \mathrm{B}-\mathrm{B} 4$; $6 \mathrm{Q} \cdot \mathrm{K} 2, \mathrm{Kt}-\mathrm{Q} 5$; 7 Kt -B31
(2) Or $7 \mathrm{Kt}-\mathrm{KB} 3$. The Col. is worked out by V. Nielsen.
(3) If $7 \ldots, \mathrm{Q}-\mathrm{K} 2$; 8 QKt-B3, Kt-B3; 9 P-K5, \&c.
(4) $14 . \mathrm{Kt} \times \mathrm{R}, \mathrm{B} \times \mathrm{R}$; $15 \mathrm{~B} \times \mathrm{Kt}, \mathrm{KtP} \times \mathrm{B}$; $16 \mathrm{Q}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{Kt3}$; 17 O-O.0, \&c.
(5) 5°.., P-QKt4; $6 \mathrm{~B} \times \mathrm{KtP}, \mathrm{R}-\mathrm{Ktsq} ; 7 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{KHt4}$; $8 \mathrm{Kt}-\mathrm{Q} 5 \mathrm{l}$, \&c.
(6) If $6 \ldots$ KKt-K2; 7 P-KKt3, $\mathrm{P} \times \mathrm{P} ; 8 \mathrm{~K}$ Kt2, P-Q41; $9 \mathrm{P} \times \mathrm{KtP}, \mathrm{Q}-\mathrm{Kt5}$; 10 B-K2 (Gattie): if $7 \mathrm{Kt}-\mathrm{Kt5}$, K-Qsq; $8 \mathrm{~KB} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt2}$; $9 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Q}$-R3; 10 P-Q5, Kt-K4: (E. F.) If 6.., P-Q3; $7 \mathrm{Kt}-\mathrm{B} 3$, \&c.
(7) 14 Q-Ksq, Q-K3 (Berger.) If 15 B-B4, K-Qsq: if $15 \mathrm{~B}-\mathrm{Kt4}, \mathrm{P}-\mathrm{B} 4$.
(8) 7 B-K2, B-Kt2; $8 \mathrm{Kt}-\mathrm{K} 5, \mathrm{Q}-\mathrm{R} 3$; $9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt}+$: or $7 \mathrm{P}-\mathrm{KR} 4$, P-Kt5; 8 Kt-Ktsq, P-Q3; 9 P-B3, Kt-B3, \&c.
(9) Or 7 .., Kt-K4 (W. W.); 8 Q-Q4, !, Kt-Kt3. (C. E. R.)
(10) $14 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{QP} \times \mathrm{Kt} ; 15 \mathrm{~B}-\mathrm{Kt3}, \mathrm{Kt} \times \mathrm{P}, \& \mathrm{c}$. Cols. 18 -19 are by Zukertort.
(11) White might play 8 Q-Q3. (C.E. R.)
(12) $8 \ldots, \mathrm{Kt} \times \mathrm{P}$ equalises after exchanges.
(13) $14 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 15 \mathrm{R} \times \mathrm{R}, \mathrm{B} \times \mathrm{R}$; $16 \mathrm{Kt}(\mathrm{K} 4) \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $17 \mathrm{P} \cdot \mathrm{B3}_{2}$ t K 8 ; $18 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $19 \mathrm{Q} \cdot \mathrm{R} 4 \mathrm{ch}=$.

Table 116.-THE KING'S BISHOP'S GAMBIT.

	21	22	23	24	25
4	K-Bsq				
	B-B4	P-Q3	$\overline{\mathrm{Kt}-\mathrm{KB} 3 \text { (6) }}$	P-KKt4	
5	P-Q4	Q-B3 (4)	Kt-KB3	Kt-KB3 (9)	
	B-Kt3	P-KKt4 (5)	Q-R4	Q-R4 :	
6	Kt-KB3	P-KKt3	Q-Ksq!	P-Q4	P-KR4
	Q-R4!	Q-Kt5	P.Q3 (7)	$\overline{\mathrm{B}-\mathrm{Kt2}}$ (10)	P-KR3 (14)
7	P.K5 (1)	P-Q3	P-K5	Kt-B3 (11)	Kt -B3
	$\overline{\mathrm{Kt}}$-K2 (2)	B-R3	$\mathrm{P} \times \mathrm{P}$	P-Q3	Kt-K2
8	QB \times P	$\underline{Q} \times \mathbf{Q}$	Kt \times P	P-K5	$\mathrm{B} \times \mathrm{Pch}$
	0.0	$\overline{B \times Q}$	B-K3	$\overline{\mathrm{P} \times \mathrm{P}}$	Q \times B
9	Kt.B3	P-KR4	Kt \times P	P-KR4	Kt-K5
	P.Q3	$\overline{\mathrm{KtP} \times \mathrm{P}}$	$\overline{Q \times K t}$	B-K3 (12)	Q-B3
10	$\mathrm{P} \times \mathrm{P}$	$\mathrm{R} \times \mathrm{P}+$	$\mathrm{B} \times \mathrm{B}$	$B \times B$	Q-R5ch+
	$\overline{\mathrm{P} \times \mathrm{P}}$		Q-K2	$\overline{\mathrm{P} \times \mathrm{B}}$	
11	$\mathrm{B} \times \mathrm{QP}$		P-Q4 (8)	$\mathrm{Kt} \times \mathrm{KtP}$	
	Kt-B4			$\overline{\text { Q } \times \text { Qch }}$	
12	B-B4			$\mathrm{K}+\times \mathrm{Q}$	
	Kt-B3			K-K2	
13	Kt-K2			$\mathrm{P} \times \mathrm{P}$	
	$\overline{\mathrm{KKt} \times \mathrm{P}(3)}$			$\overline{\mathrm{B} \times \mathrm{P}}$ (13)	

(1) If $7 \mathrm{QB} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3$; $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt5}$. If $7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{Q} 3$; $8 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{~B}-\mathrm{K} 3$.
(2) 7 .., P-Q3 is playable, but. 7 .., P-KB3 is inferior. (Schwede.)
(3) $14 \mathrm{QKt} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{Kt}$; $15 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{QB4}=$. (Schwede.)'
(4) Or 5. Kt-QB3!. Or $5 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Q}-\mathrm{R4}$; $6 \mathrm{P}-\mathrm{KR} 4$ or P-Q4.
(5) $5 \ldots$ Kt-QB3; 6 P-KKt3, Q-B3; $7 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Q} 5$; 8 B-Kt3, B-K3 ; 9 Kt-QB3, P-KR4; 10 P-Q3, P-R5; $11 \mathrm{Q} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Q}$; $12 \mathrm{~K}-\mathrm{Kt2}, \mathrm{~B} \times \mathrm{B}+$. (Mortimer v. Bird.)
(6) For $4 \mathrm{Kt}-\mathrm{QB} 3$ see Cols. 17-20. If $4 \ldots$... Q-B3; $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{B} 3 ; 6$ P-Q4, PsQ3; 7 Kt -B3, P-KKt4; 8 P-KR4, P-KR3; 9 P-K5 +.
(7) If $6 \ldots, \mathrm{Kt}-\mathrm{QB} 3$; 7 P-K5, Kt-Ktsq ; 8 Kt -B3, P-KKt4; $9 \mathrm{Kt}-\mathrm{Q} 5+$.
(8) Or 11 P-QKt3 or B-B8+. If 11 .., P-KKt4; 12 P-QKt3.
(9) $5 \mathrm{P}-\mathrm{KKt} 3, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{Q}-\mathrm{B} 3, \mathrm{Pch}$; $7 \mathrm{~K} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KR} 3$; $8 \mathrm{P}-\mathrm{Q} 4, \mathrm{Kt}-\mathrm{B} 3$; 9 P-B3, B-K2 and holds the Pawn.
(10) If $6 \ldots$, P-Q3; 7 P-KR4, B-R3; $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt} 5=$.
(11) Another variation is 7 P-B3, P-KR3; 8 Q-Kt3. (B. C. M., 1889, p. 171.)
(12) $9 \ldots, \mathrm{~B}-\mathrm{Kt5}$ or Kt-K2 may be played here. If $9 \ldots \mathrm{P}-\mathrm{KR} 3$; $10 \mathrm{Kt} \times \mathrm{KP}+$.

For 10 Kt -Q5 see Col. 26. If so played on move 9 Black's reply is P-K5.
(13) If 14 Kt-R3, QKt-B3 and White cannot win the Pawn.
(14) Or 6 .., B-Kt2. See Table 118, note 2.

Table 117.-THE KING'S BISHOP'S GAMBIT.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4$; $2 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{~B} \cdot \mathrm{~B} 4, \mathrm{Q} \cdot \mathrm{R} 5 \mathrm{ch}$;
$4 \mathrm{~K} \cdot \mathrm{~B}$ sq, P•KKt 4 ; $5 \mathrm{Kt} \cdot \mathrm{QB} 3$, B.Kt2.

	26	27	28	29	30
6	P-Q4			P-KKt3	
	P-Q3	$\overline{\mathrm{Kt}-\mathrm{K} 2}$		$\overline{\mathrm{P} \times \mathrm{P}}$	
7	Kt -B3 (1)	P.KKt3	Kt-B3	Q-B3	
	Q-R4	$\overline{\mathrm{P} \times \mathrm{P}}$	Q-R4	P-Kt7ch	$\overline{\mathrm{Kt}-\mathrm{KB3}(8)}$
8	P-KR4	K-Kt2	P.KR4	$\mathrm{K} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$
	P-KR3	P-Kt5!	P-KR3	Kt-KR3	Q-Kt5
9	P-K5	$\mathrm{P} \times \mathrm{P}$	K-Ktsq	Kt.Q5	P.Q4
	$\overline{\mathrm{P} \times \mathrm{P} \quad(2)}$	Q-B3	Q-Kt3 (5)	$\overline{\mathrm{K}-\mathrm{Qsq}} \quad(6)$	Q×Qch
10	Kt-Q5	$\underline{Q} \times \mathrm{P}$	P-K5	P-Q4	$\mathrm{Kt} \times \mathrm{Q}$
	K-Qsq	$\overline{\mathrm{P}-\mathrm{Q} 4}$ (4)	P-Q3	$\overline{\mathrm{B} \times \mathrm{P}}$ (7)	P.KR3
11	K-Ktsq	P-K5	Kt-QKt5	Q-Kt3	Kt-K5 +
	Q-Kt3	$\overline{B \times Q}$	Kt-R3	$\overline{Q \times Q}$	
12	Kt \times KP	$P \times Q$	P.R5	$\mathrm{P} \times \mathrm{Q}$	
	Q-B4	$\overline{\mathrm{B} \times \mathrm{P}}$	Q-B4	Kt-Kt5	
13	Q-R5	Kt \times P	$\mathrm{P} \times \mathrm{P}$	Kt-KB3	
	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	P.QB3	P.QB3	
14	$\mathrm{P} \times \mathrm{B}$	$\mathrm{B} \times \mathrm{Kt}$	Q-K2	Kt-Kt4	
	P-QB3	P-B3	Q-B3	P-QR4?	
15	B.Q2	B-B3	$\underline{\mathrm{P} \times \mathrm{Kt}+}$	Kt-Q3	
	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\text { B-B4 }}$		B-B3	
16	$\mathrm{KB} \times \mathrm{P}$	P.B3 -		$\underline{\text { P-K5 }+}$	
	$\overline{\text { QKt-B3 (3) }}$	Kt-Q2-			

(1) Or 7 B-K2 (Jaenisch) see Praxis, p. 367, or Chess Player's Chronicle, 1852.
(2) If $9 \ldots, \mathrm{Q}-\mathrm{Kt3}$; $10 \mathrm{Q}-\mathrm{K} 2+$. Anderssen recommended 9 P -KB3.
(3) $17 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 3$; $18 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B} ; 19 \mathrm{R}-\mathrm{KBsq}, \mathrm{Q} \times \mathrm{BP}$; $20 \mathrm{~B} \times \mathrm{P}$, Q-B4ch; $21 \mathrm{~K}-\mathrm{R} 2, \mathrm{Kt} \times \mathrm{P}$; $22 \mathrm{P}-\mathrm{Kt6}$, Kt-KB3. (A. S.)
(4) If $10 \ldots, \mathrm{Q} \times \mathrm{P}$; $11 \mathrm{Kt}-\mathrm{B} 3+$.
(5) $9 \ldots, \mathrm{P}-\mathrm{Kt5}, 10 \mathrm{Kt}-\mathrm{R} 2, \mathrm{P}-\mathrm{B} 6$ (a) $; 11 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 12 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3$; 13 B-K2े, B-Kt5; $14 \mathrm{~K} \cdot \mathrm{~B} 2, \mathrm{P}-\mathrm{KB4}, \& \mathrm{c}$. (Suhle and Neumann.)
(a) If $10 \ldots, \mathrm{Q} \times \mathrm{P}, 11 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{Kt3}$; $12 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Qsq} ; 13 \mathrm{~B}-\mathrm{Q} 3+$.
(6) If $9 \ldots, \mathrm{O}-\mathrm{O}, 10 \mathrm{P} \cdot \mathrm{Q} 3$!, Kt-B3; $11 \mathrm{Q}: \mathrm{Kt} 3, \mathrm{Q} \times \mathrm{Qch} ; 12 \mathrm{P} \times \mathrm{Q}+$.
(7) If $10 \ldots, \mathrm{P} \cdot \mathrm{QB} 3$; $11 \mathrm{Kt}-\mathrm{B} 3$, and if $\mathrm{B} \times \mathrm{P}$ or P-Q3 or P-Q4; $12 \mathrm{Q} \cdot \mathrm{Kt3}+$: if $11 \ldots$ Q-Kt5ch; $12 \mathrm{Q} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Q}$; $13 \mathrm{P}-\mathrm{KR} 3, \mathrm{Kt}-\mathrm{KR} 3$; $14 \mathrm{~B} \times$ Pch, P-B3; 15 B-K4 +.
(8) If $7 \ldots \mathrm{Q}$ B5; $8 \mathrm{Kt}-\mathrm{Q} 5+$ If $7 \ldots \mathrm{P} \times \mathrm{P} ; 8 \mathrm{Q} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Qsq}: 9 \Gamma$-Q4+. If $7 \ldots \mathrm{P}-\mathrm{Q} 4,8 \mathrm{P} \times \mathrm{KtP}, \mathrm{Q}-\mathrm{K}+5 ; 9 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Qch} ; 10 \mathrm{Kt} \times \mathrm{Q}$, P-Kt5; $11 \mathrm{Kt}-\mathrm{K} t 5, \mathrm{P} \cdot \mathrm{KR} 3$; $12 \mathrm{Kt} \times \mathrm{KBP}+$. Cols. 29 and 30 are due to Mr. Eraser.

Table 118.-THE KING'S BISHOP'S GaMBIT.
 $4 \mathrm{~B} \times \mathrm{P}(1), \mathrm{Q} \cdot \mathrm{R} 5 \mathrm{ch} ; 5 \mathrm{~K} \cdot \mathrm{Bsq}, \mathrm{P} \cdot \mathrm{KKt} 4 ; 6 \mathrm{Kt} \cdot \mathrm{Q} \mathrm{B} 3(2)$, B-Kt2; 7 P.Q4, Kt-K2; $8 \mathrm{Kt} \cdot \mathrm{B} 3, \mathrm{Q} \cdot \mathrm{R} 4$; $9 \mathrm{P} \cdot \mathrm{KR} 4$, P-KR3.

10	31	32	33	34	35
	K-Ktsq		P-K5 (7)		Q.Q3 (12)
	P-Kt5 (3)		O-0 (8)		P-QB3
11	Kt.K5	Kt-Ksq	K-Ktsq	B-K4 (10)	B-Kt3
	$\overline{\mathrm{B} \times \mathrm{Kt}}$	P-B6 (5)	P-Kt5	P-QB4	B-Kt5
12	$\mathrm{P} \times \mathrm{B}$	$\mathrm{P} \times \mathrm{P}$!	Kt -Ksq	Kt -K2	Kt-K2
	Kt-Kt3	$\bigcirc \times \mathrm{P}$	R-Qsq	QKt-B3	$\overline{\mathrm{Kt} \cdot \mathrm{Q} 2 \text { (13) }}$
13	Kt -K2	K-B2	Kt-Q3 (9)	K-Ktsq	P.B4+
	P.B6	QKt-B3	$\overline{\mathrm{Kt} \times \mathrm{B}}$	$\overline{\mathrm{Kt} \times \text { QP }}$	
14	Kt . B_{4}	P-K5	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{P} \times \mathrm{P}$ (11)	
	Q \times KP	B-B4!	$\overline{\mathrm{R} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt} \times \mathrm{KKtch}}$	
15	$\mathrm{Kt} \times \mathrm{Kt}$	$\mathrm{KB} \times \mathrm{P}(\mathrm{B} 6)$	$\underline{\mathrm{K}} \times \mathrm{P}$	$\underline{\mathrm{B} \times \mathrm{Kt}}$	
	P×Kt	Q-Kt3	Q \times KP	Q \times P	
16	B-K3	KR-Ktsq	$\mathrm{Kt} \times \mathrm{R}$	$\underline{\mathrm{QB} \times \mathrm{P} \text { - }}$	
	(4)	$\overline{\mathrm{Q} \cdot \mathrm{R} 2 \quad(6)}$	Q $\times \mathrm{Kt}+$	-	

(1) If $4 \mathrm{P} \times \mathrm{P}$?, $\mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$; $6 \mathrm{~K} \cdot \mathrm{Bsq}, \mathrm{B}-\mathrm{Q} 3$ followed by Kt-K2.
(2) Or $6 \mathrm{Kt}-\mathrm{KB3}, \mathrm{Q}-\mathrm{R4}$; 7 P-KR4, B-Kt2; $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{KR} 3$; 9 P.Q4, Kt -K2, \&c. Gossip gives 8 K -B2 1, but his analysis his incomplete: the Handbuch differs.
(3) If $10 \ldots, \mathrm{Q}-\mathrm{Kt} 3$ (Rosenthal) ; $11 \mathrm{~B}-\mathrm{B} 4$ to follow with B-Q3 or ${ }^{\text {'K2 }}$ 2.
(4) $16 \ldots$ Kt-B3; 17 Q-Q2, R-Bsq; $18 \mathrm{R}-\mathrm{KBsq}, \mathrm{B}-\mathrm{K} 3!+$. (Salvioli.) If $16 \ldots$, P-B3; 17 B-Q4, Q-Kt6; 18 Q-Q2, Q \times Pch $=$.
(5) $11 \ldots$ QKt-B3; $12 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{O}-\mathrm{O} 1$; $13 \mathrm{P}-\mathrm{B} 3$ (Handbuch): if $13 \mathrm{Kt} \times \mathrm{BP}$, P-B6 (C. M.) ; 14 B-K3, R-Ktsq, \&c.
(6) $17 \mathrm{~B}-\mathrm{K} 3, \mathrm{O}-\mathrm{O}-\mathrm{O}$; $18 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{B}$; $19 \mathrm{Q}-\mathrm{B} 3, \mathrm{KR}-\mathrm{Ktsq} ; 20 \mathrm{Kt}-\mathrm{K} 2$ or QR-Qsq. (B. C. M, 1891, p. 546.)
(7) Mortimer v. Steinitz. Steinitz, who gives the continuation, notes that the advance of this Pawn should be delayed as long as possible.
(8) If $10 \ldots$ QKt-B3; $11 \mathrm{~B} \times$ Ktch, Kt takes B; (if) $12 \mathrm{Kt}-\mathrm{Q} 5,0.0$;
$13 \mathrm{Kt} \times$ QBP, R-Ktsq (Handbuch): Salvioli gives $13 \ldots, \mathrm{R}$-Qsq.
(9) $13 \mathrm{~B}-\mathrm{K} 4, \mathrm{~B} \times \mathrm{P}$; $14 \mathrm{Kt}-\mathrm{K} 2, \mathrm{~B} \times \mathrm{Pch} ; 15 \mathrm{~K} . \mathrm{Bsq}$. (Blake.)
(10) Berger's variation. If $11 \mathrm{~B}-\mathrm{Q} 2$ or B-QB4, R-Qsq. If $11 \mathrm{Q}-\mathrm{Ksq}, \mathrm{QKt}-\mathrm{B} 3$; $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{B}$; $13 \mathrm{Kt}-\mathrm{K} 2, \mathrm{~B} \cdot \mathrm{Kt} 5$.
(11) Mr. Wayte proposes here $14 \mathrm{Kt}(\mathrm{B} 3) \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $15 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}$; 16 QB \times P, \&c.
(12) Wisker $\mathrm{\nabla}$. Rosenthal: recommended by Mr. Potter. If 10 Kt -K5 (Wisker), $\mathrm{Q} \times \mathrm{Qch} ; 11 \mathrm{Kt} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Kt}$; $12 \mathrm{P} \times \mathrm{B}, \mathrm{R}$-Ktsq; $13 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $14 \mathrm{Kt}-\mathrm{B3}$, F-QB3 and Kt-Kt3+.
(18) If $12 \ldots$ Kt-R3; 13 P.B3, \&c. Black's aim is to castle on Queen's side.

Table 119.-THE KING'S BISHOP'S GAMBIT.

1P-K4, P.K4; 2P.KB4, P \times P; 3B.B4, P-Q4;

$$
4 \mathrm{~B} \times \mathrm{P}
$$

	36	37	88	39	40
4	Q-R5ch				Kt-KB3
	K-B.sq				Q-K2 (6)
5	P-KKt4	B-Q3		$\overline{\mathrm{Kt}-\mathrm{KB3} \text { ? }}$	$\overline{\mathrm{Kt} \times \mathrm{B}}$
6	Kt-QB3	P.Q4	Kt-KB3	Kt-KB3 (4)	$\underline{\mathrm{P} \times \text { Ktdisch }}$
	Kt-K2? (1)	Kt-K2	Q-R4	Q-R4	B-K2
	Kt-B3	Kt-QB3	Q-K2	Kt-B3	Q-B3
7	Q-R4	P-KB3	P-KB3	P-QB3	B-R5ch
	P-KR4	Q-K2	P-Q4	B-Kt3 (5)	P-KKt3
8	P-KR3 (2)	P-B3	$\overline{\mathrm{Kt}} \mathrm{K} 2$	B-KKt5	$\overline{\mathrm{P} \times \mathrm{P}}$
	$\mathrm{B} \times \mathrm{Pch}$	B-Kt3	Kt-B3	P-Q4	$\mathrm{P} \times \mathrm{P}$
9	$\overline{\mathrm{Q} \times \mathrm{B}}$	B-KKt5	P-B3	$\overline{\text { P:KKt4 }}$	$\overline{\mathrm{B}-\mathrm{Kt} 4}$
	Kt-K5	Q-B2	B-Kt3	P.K5+	Kt-B3 -
10	Q-B3	Q×Qch	B-KKt5		-
	Q.R5ch	$\underline{K} \times \mathrm{Q}$	P-KR3		
11	K-Qsq	QKt-Q2	Kt-Kt3		
	Kt-B7ch	Kt-B3 -	K-Ktsq		
12	K-Q2	0.0.0 -	$\overline{\mathrm{B} \times \mathrm{Kt}}$		
	$\mathrm{K} t \times \mathrm{R}$		$\underline{Q} \times \mathrm{B}$		
13	$\overline{\mathrm{Q} \times \mathrm{KKt}}$		$\mathbf{Q \times Q}$		
	$\underline{\mathrm{P} \times \mathrm{P}+}$		$\underline{\mathbf{P} \times \mathbf{Q}}$		
14					

(1) Or $6 \ldots$, Kt-QB3! (Handbuch). For $6 \ldots$, B-Kt2 1 see p. 212.
(2) If 5 ... P-QB3; 6 B-Kt3, P-Kt5; 7 Kt-KKt5 +.
(3) $14 \ldots$ Kt-R5; $15 \mathrm{~K}-\mathrm{B} 2, \mathrm{P}-\mathrm{KK} 44$; $16 \mathrm{~B}-\mathrm{Q} 2, \mathrm{Kt}$ Q2; 17 QR-Qsq, $0.0-\mathrm{O}=$
(4) To stop $6 \ldots, \mathrm{Kt}$-Kt5.
(5) Lipschütz $\begin{gathered}\text {. Pope. Mr. Ranken prefers } 8 \text { B-B4. }\end{gathered}$
(6) $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{~B}-\mathrm{QKt5} ; 6 \mathrm{KKt} \mathrm{K} 2, \mathrm{~B} \times \mathrm{Kt} ; 7 \mathrm{KtP} \times \mathrm{B}^{\prime}$ (if $7 \mathrm{Kt} \times \mathrm{B}, \mathrm{B}-\mathrm{Kt} 5$), $\mathrm{Kt} \times \mathrm{B} ; 8 \mathrm{P} \times \mathrm{Kt} . \mathrm{Q} \times \mathrm{P}+$ (J. Russell).

Table 120.-THE KING'S BISHOP'S GAMBIT (LIMITED).

(1) This move discounts both Q-R5ch, and P-KKt4. See p. 209, cols. 17-19.
(2) If 4 .., P-Q3; 5 Kt-QB3, B-K3; 6 P-Q4, Q-B3; 7 Kt-B3, P-KKt4; 8 P.KR4, P-KR3; 9 P-K5+. Or $4 \ldots$ Q-K2; 5 Kt-QB3, Kt-KB3 (P-QB31); 6 PeQ3, P-KKt4; 7 P-KR4! ($7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{KR} 3$; 8 P-KR4?, Kt-KR4 +), B-R3; $8 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{R}-\mathrm{Ktsq} ; 10 \mathrm{Kt} \times \mathrm{B}, \mathrm{R} \times \mathrm{Kt} ; 11 \mathrm{~B} \times \mathrm{P}, \mathrm{R}-\mathrm{Kt3}$; 12 P.K5+. (Cunningham v. Charlton.)
(3) If $12 \ldots, \mathrm{P} \times \mathrm{P}$; $13 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 2 ; 14 \mathrm{Kt}-\mathrm{Q} 6 \mathrm{ch}, \mathrm{B} \times \mathrm{Kt} ; 15 \mathrm{Q} \times \mathrm{B}, \mathrm{Q}-\mathrm{Kt2}$; $16 \mathrm{~B}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{Q} 2 ; 17 \mathrm{~B}-\mathrm{B} 3+$. If $12 \ldots$ P-Kt5; 13 Kt -Ktsq, $\mathrm{P}-\mathrm{B} 6 ; 14 \mathrm{P} \times \mathrm{BP}$, $\mathrm{P} \times \mathrm{KP} ; 15 \mathrm{P} \times \mathrm{KP}, \mathrm{Q} \times \mathrm{P} ; 16 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{P} ; 17 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{R} 6 \mathrm{ch} ; 18 \mathrm{~K}-\mathrm{B} 2$, Bch; $19 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Ktch}, \& \mathrm{c}$. White has a little better development in exchange for his pawn.
(4) If $3 \ldots \mathrm{P}-\mathrm{Q} 4 ; 4 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}$; $5 \mathrm{~B}-\mathrm{B} 3:$ or $4 \ldots, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$; 5 K -Bsq, B-Q3, \&
(5) Given by Mr. Pollock to White's advantage. (B. C. M., 1888, p. 372.)
(6) Bird ∇. Weiss played $5 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P} \times \mathrm{P}$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Qch}, \& \mathrm{c} .:$ the Handbuch prefers 5 P-Q4, but continues to Black's advantage. The Col. is Bird v. Zukertort.
(7) Mr. Forsyth's variation. If 3 .., B-B4; 4 Kt -KB3, P-Q3 or P.KKt4: White may now play 5 P-QKt4, \&c. If $3 \ldots, \mathrm{Kt}$-QB3; 4 P.B3. If 3 .., B-K. 2 ; $4 \mathrm{Kt}-\mathrm{KB} 3$, Bch; $5 \mathrm{~K}-\mathrm{Bsq}, \mathrm{P}-\mathrm{Q} 3 ; 6 \mathrm{~F}-\mathrm{E} 3$.
(8) 9 .., Kt-QB3; 6 Kt .KB3, Q-R4; 7 P.B3, P.Q3, \&c,

SECTION VIII.

THE KING'S GAMBIT DECLINED.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{P} \cdot \mathrm{~KB} 4,\left\{\begin{array}{l}
\mathrm{P}-\mathrm{Q} 4 \\
\mathrm{P}-\mathrm{Q} 3 \\
\mathrm{Kt}-\mathrm{K} 3 \\
\mathrm{~B} \cdot \mathrm{~B} 4, \& \mathrm{c} .
\end{array}\right.
$$

EARLY writers recommended Chess-players to take the Gambit Pawn and try to keep it. Modern players frequently act on the principle that it is good policy to evade an opening for which your antagonist shows a predilection. The usual course in declining the King's Gambit is to play $2 \ldots$, P-Q4 or $2 \ldots, \mathrm{~B}-\mathrm{B} 4$. The former leads to an an open game somewhat in White's favour. But Black may play Falkbeer's Counter Gambit 2 ..., P-Q4; $3 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{K} 5$, and so turn the tables on his opponent. (Cols. 3-5.) This can be avoided by $3 \mathrm{Kt}-\mathrm{Kl} 33$ (Col. 6.) The defence $2 \ldots$, B-B4.(Cols. 10-15) leads to a game unlike any other pariation of the opening. It most resembles the King's Knight's Opening, and from this point of view is rather in Black's favour, for White cannot castle without losing time in excbanging or otherwise disposing of Black's King's Bishop. He may sacrifice a Pawn for this purpose, by Mr. Thorold's variation (Col. 14, Note 10), but the attack is insufficient compensation.

Nevertheless, although thus put under restraint, the first player is able, in time, to acquire a good game by correct play. He may, however, easily draft into a difficult and dangerous position. The other variations $2 \ldots, \mathrm{P}-\mathrm{Q} 3$ and $2 \ldots, \mathrm{Kt}-\mathrm{KB} 3$ are not so advantageous for the defending player.

It is obvious that a fair knowledge of the Gambit declined is easential to every lover of the King's Gambit.

Table 121. -THE KING'S GAMBIT DECLINED.
1 P-K4, P-K4; 2•P:KB4, P-Q4(1).

	1	2	3	4	5
8	$\mathbf{P} \times \mathbf{Q P}$				
	$\overline{\mathbf{Q} \times \mathrm{P}}$	$\overline{\mathbf{P} \times \mathbf{P}}$	P-K5		
4	Kt-QB3	B-Kt5ch (5)	B-Kt5ch	Kt-QB3	P-Q31 (10)
	$\overline{\text { Q-K3 (2) }}$	B-Q2	P-B3	Kt-KB3	Q \times P (11)
5	Kt-B3 (3)	Q-K2ch	$\mathbf{P} \times \mathrm{P}$	Q-K2	$\mathrm{Kt-QB3}^{\text {- }}$
	P-K5 (4)	Q-K2	$\overline{\mathrm{Kt} \times \mathrm{P}!(6)}$	B-Q3 !	B-QKt5
6	Kt-K5	Kt-QB3	$\mathrm{B} \times \mathrm{Ktch}$	P-Q3 (9)	B-Q2 (1.2)
	Kt-KR3	Kt-KB3	$\overline{\mathrm{P} \times \mathrm{B}}$	0.0	$\overline{\mathrm{B} \times \mathrm{Kt}}$
7	B-B4	$\mathrm{B} \times \mathrm{Bch}$	P-Q4 (7)	$\mathrm{P} \times \mathrm{P}$	$B \times B$
	Q-K2	$\overline{\text { QKt } \times B}$	B-R3	$\overline{\mathrm{Kt} \times \mathrm{P}}$	P-KB3
8	B-Kt3	P-Q4 -	Kt-QB3	$\underline{\mathrm{K}} \times \mathrm{K} \mathrm{t}$	Q -K2+
	P-KB3	0-0.0 -	$\overline{\mathrm{B}-\mathrm{K} t 5}$	$\overline{\mathrm{R}-\mathrm{K} s q}$	
9	Kt-B4		KKt-K2	Q-B3	
	B-K3		Kt-B3	P-KB4+	
10	Q-K2-		0.0		
	-		0-0 (8)		

(1) If $2 \ldots, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch} ; 3 \mathrm{P}-\mathrm{KK} \mathrm{t} 3, \mathrm{Q}-\mathrm{K} 2 ; 4 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}$; 5 B-Kt2, P-Q4; 6 P-Q4, Q-K3; 7 P-K5+.
(2) I prefer $4 \ldots, \mathrm{Q}$-QR4. (C. E. R.)
(3) $5 \mathrm{P} \times \mathrm{P} . \mathrm{Q} \times \mathrm{Pch}$; $6 \mathrm{~B}-\mathrm{K} 2, \mathrm{~B}-\mathrm{Q} 3 ; 7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{K} 2 ; 8 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B}-\mathrm{K} 3$; $90-0+$.
(4) $5 \ldots$ P \times Pdch; 6 K-B2, (thr. Bch, and R-Ksq), B-K2 (a); 7 P-Q4, Kt-KB3; 8 Bch, P-B3; 9 R-Ksq, Q-Q3; 10 B-QB4 or Q3, O-O, \&c. (a) $6 \ldots$ B-Q2; 7 P-Q4, B-Q3; 8 B-Q3, Kt-K2; 9 Kt-K4, P-KB3; 10 R-Ksq, Q-B2; $11 \mathrm{Kt} \times \mathrm{Bch} ; \mathrm{P} \times \mathrm{Kt}$; $12 \mathrm{QB} \times \mathrm{P}$, \&c.
(5) 4 Kt-KB3 transposes into the King's Gambit, Col. 6, or into Note 3 above.
(6) $5 \ldots, \mathrm{P} \times \mathrm{P}$; $6 \mathrm{~B}-\mathrm{R} 4$? (B-B4!) Q-Q5; $7 \mathrm{P}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Q} 3$; $8 \mathrm{Kt}-\mathrm{K} 2$, B-Kt5; $90-0, \mathrm{Q}-\mathrm{Q} 6 ; 10 \mathrm{R}-\mathrm{Ksq}, \mathrm{Bch} ; 11 \mathrm{~K}-\mathrm{Bsq}$?: mate in two moves. If 11 K -Rsq, B-B6; 12 P-KR3, Kt-B3; $13 \mathrm{~B}-\mathrm{B} 2, \mathrm{~B} \times \mathrm{Pch} ; 14 \mathrm{~K} \times \mathrm{B}, \mathrm{Q}-\mathrm{B} 6 \mathrm{ch} ; 15 \mathrm{~K}-\mathrm{R} 2$, P-KR4 and wins.
(7) 7 Q-K2, Kt-B3; 8 Kt-QB3, B-KB4; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{K} 2$; $10 \mathrm{Kt}-\mathrm{KR} 4, \mathrm{~B}-\mathrm{KKt5}$; 11 Q-K3, O-O, \&c. White may play P-Q4 before B×Ktch.
(8) $11 \mathrm{P}-\mathrm{QR} 3, \mathrm{~B} \times \mathrm{QKt}$; $12 \mathrm{P} \times \mathrm{B}, \mathrm{P}-\mathrm{B4}=$: or $11 \mathrm{R}-\mathrm{Ksq}, \mathrm{Kt}-\mathrm{Q4}$; $12 \mathrm{P}-\mathrm{QR3}$, $\mathrm{QB} \times \mathrm{Kt} ; 13 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{Kt}$; $14 \mathrm{Q}-\mathrm{B4} \mid \mathrm{Kt}-\mathrm{Kt4}$; $15 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{QP} 1$ (B. C. M., 1891, p. 507).
(9) If $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{O}-\mathrm{O} ; 7 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{Q} \times \mathrm{Kt} ; .8 \mathrm{P}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{Q} 2 ; 9 \mathrm{Q}-\mathrm{B} 2$, B-QKt5ch, \&c. P-Q3 may also be played on the fifth move.
(10) If 4 B-B4, Kt-KB3; 5 P-Q3, B-KKt5; 6 Kt-K2, \&c.
(11) Or $4 \ldots$ Kt-KB31
(12 If, $6 \mathrm{Q}-\mathrm{Q} 2, \mathrm{Q}-\mathrm{K} 3 ; 7 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{Kt} ; 8 \mathrm{Q} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Pch} ; 9 \mathrm{~K}-\mathrm{B} 2, \mathrm{Kt}-\mathrm{KB} 3$; $10 \mathrm{~B}-\mathrm{Q} 3$, (B-Kt5ch, P-B3; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{O}-\mathrm{O} ; 12 . \mathrm{R}-\mathrm{Ksq}, \mathrm{P} \times \mathrm{B}$!), Q-B3; $11 \mathrm{Q} \times \mathrm{Q}$, Kt×Q; $12 \mathrm{Kt}-\mathrm{B} 3=$.

(1) This evades the Falkbeer Counter Gambit. (Cols. 3-5.)
(2) If $4 \ldots$ B-QB4; 5 Q-R5. If $4 \ldots$ Kt-QB3; 5 B-Kt5, Kt-B3; 6 P-Q4, $\mathrm{P} \times \mathrm{P}$ en pas; $7 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $8 \mathrm{~B} \times \mathrm{Pch}, \mathrm{B}-\mathrm{Q} 2 ; 9 \mathrm{~B} \times \mathrm{R}, \mathrm{Q} \times \mathrm{B} ; 10 \mathrm{Q} \times \mathrm{P}$, $\mathrm{Q} \times \mathrm{P} ; 11 \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}, \mathrm{Q} \times \mathrm{Qch} ; 12 \mathrm{~K} \times \mathrm{Q}, \mathrm{B}-\mathrm{QB} 4 ; 13 \mathrm{~B}-\mathrm{K} 31, \mathrm{~B}-\mathrm{K} t 4 \mathrm{ch} ; 14 \mathrm{P}-\mathrm{B} 4$, $\mathrm{B} \times$ Pch; $15 \mathrm{~K}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{K} 5 \mathrm{ch}$; $16 \mathrm{~K}-\mathrm{B} 2$, (if) $\mathrm{B} \times \mathrm{B}$; $17 \mathrm{R}-\mathrm{Ksq}$, \&c.

Anderssen v. Schallopp runs :-4 .., B-Q3; 5 B-B4, B $\times \mathrm{Kt}$; $6 \mathrm{P} \times \mathrm{B}, \mathrm{Q}-\mathrm{Q} 5$? ; $7 \mathrm{Q}-\mathrm{K} 2, \mathrm{Q} \times \mathrm{KP}$; $8 \mathrm{P}-\mathrm{Q} 4, \mathrm{Q} \times \mathrm{QP}$; $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{KB} 31$; $10 \mathrm{~B}-\mathrm{K} 3, \mathrm{Q}-\mathrm{Qsq}$; 11 O-O, P-KR3; 12 B-B5, QKt-Q2; 13 Q \times Pch and wins.
(3) If 5 Kt-QB3, P-KB4; 6 Qch, P-KKt3; $7 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{B} 2$; $8 \mathrm{Q} \times \mathrm{BP}$, $\mathrm{B} \times \mathrm{Kt}$; $9 \mathrm{Q}-\mathrm{K} 5 \mathrm{ch}, \mathrm{Q}-\mathrm{K} 2$; $10 \mathrm{Q} \times \mathrm{R}, \mathrm{Kt}-\mathrm{KB} 3+$.
(4) If 3 Kt-QB3, P-Q4. See Vienna Opening, p. 225.
(5) $6 \ldots$ Kt-K3; 7 B-Q3, B-K2; 8 O-O, P-QB4; 9 P-B3, \&c.
(6) Or 7 .., B-QKt5ch. (C. E. R.)
(7) Or 5 or 6 P-Q4! This Col. is Steinitz v. Barbour. Black won.
(8) If $3 \mathrm{P} \times \mathrm{P}$, Qch. If $3 \mathrm{Q}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{QB} 3$; $4 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Q} 5$. (C. E. R.)
(9) If $3 \ldots$ P-Q4; $4 \mathrm{Kt} \times \mathrm{P}$.
(10) 4 P-QKt4, leads to an inferior variation of the Evans Gambit; The Handbuch gives $4 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $5 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \cdot \mathrm{R} 5 \mathrm{ch}$, \&c.

Table 123.-THE KING'S GAMBIT DECLINED.

$$
1 \text { P-K4, P-K4; } 2 \text { P-KB4, B-B4!. }
$$

	11	12	18	14	15
3	Kt-KB3				
	P-Q3				
4	B-B4			P-B8 (10)	
	$\overline{\mathrm{Kt}} \mathrm{KB} 3$ (1)		Kt-QB3	Kt-KB3	$\overline{\text { B-KKt5 }}$
5	P-B3 (2)	P-Q3	P-B3 (7)	P-Q4 (11)	B-B4 (18)
	Q-K2! (3)	O-O	$\overline{\mathrm{Kt}}$-B3	$\overline{\mathrm{P} \times \mathrm{QP}}$	Kt-QB3
6	Q-K2	Kt-B3 (4)	P-Q4	$\mathbf{P} \times \mathbf{P}$	P-Kt4 ? (14)
	P-B3	P-QR3 (5)	$\bar{P} \times \mathbf{Q P}$	$\overline{\text { B-Kt3 (12) }}$	B-Kt3
7	P-Q3	P-B5	$\mathbf{P} \times \mathbf{P}$	B-Q3-	P-QR4
	P-QKt4	P-QKt4	B-Kt3 (8)	0.0-	P-QR3
8	B-Kt3	B-Kt3-	0-0-		P-Q3
	KKt-Q2	B-Kta-(6)	$\overline{0.0-(9)}$		Kt-B3
	P-B5 -				P-R3
9	B-Kt2 -				$\overline{\mathrm{B} \times \mathrm{Kt} \text { (15) }}$

(1) If $4 \ldots$ B-KKt5; $5 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $6 \mathrm{~B} \times \mathrm{Pch}, \& \mathrm{c} .+$.
(2) If $5 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 5$, \&c. For $5 . \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{B} 3$; $6 \mathrm{P} . \mathrm{Q3}$, see Vienna Opening. Col. 1.
(3) If $5 \ldots$ Kt-B3; $6 \mathrm{P} \times \mathrm{P}$. The Coil. is from $A . S$.
(4) If $6 \mathrm{P}-\mathrm{B} 5, \mathrm{P}-\mathrm{Q4} ; 7 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{K} 5+$. If $6 \mathrm{Q}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 4 ; 7 \mathrm{~B}-\mathrm{Kt3}, \mathrm{P} \times \mathrm{BP}$; (if) $8 \mathrm{P}-\mathrm{K} 5, \mathrm{~B}-\mathrm{KK} 55!$ (Pqtter): if $7 \mathrm{P} \times \mathrm{QP}, \mathrm{P} \times \mathrm{P}$!
(5) 6 .., B-KKt5; $7 \mathrm{Kt}-\mathrm{QR} 4$? (P-KR3!), Kt-B3; $8 \mathrm{Kt} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; 9 P.B3, $\mathrm{P} \times \mathrm{P}$; $10 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KR} 4$; (if) $11 \mathrm{Q}-\mathrm{Q} 2, \mathrm{~B} \times \mathrm{Kt}$; $12 \mathrm{P} \times \mathrm{B}, \mathrm{Qch}+:$ or $11 \mathrm{~B}-\mathrm{K} 3$, Kt-K4, \&c.
(6) White may follow with B-Kt5, or Q-K2 and B-K3, or P-KR3 and P-Kt4, but "Black's game is all right." (Potter.)
(7) 5 Kt-Kt5, Kt-R3; 6 Q-R5, O-O; 7 P-B5, P-Q4; $8 \mathrm{R} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $9 \mathrm{Kt} \times \mathrm{BP}, \mathrm{K} t \times \mathrm{K} t ; 10 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \mathrm{Q} 5 ; 11 \mathrm{Q} \times \mathrm{KP}, \mathrm{Kt} \times \mathrm{Pch} ; 12 \mathrm{~K}-\mathrm{Qsq}, \mathrm{B}-\mathrm{Q} 5+$. (Handbuch.)
(8) If $7 \ldots, \mathrm{~B}-\mathrm{Kt} 5 \mathrm{ch} ; 8 \mathrm{~B}-\mathrm{Q} 2, \mathrm{Kt} \times \mathrm{KP} ; 9 \mathrm{~B} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{B} ; 10 \mathrm{~B} \times \mathrm{Pch}_{2} \mathrm{~K} \times \mathrm{B}$; 11 Q-Kt3ch; B-K3; $12 \mathrm{Q} \times \mathrm{Kt}, \mathrm{B}-\mathrm{Q} 4=$. (C. E. K.)
(3) If $9 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt5}$; $10 \mathrm{~B}-\mathrm{K} 3, \mathrm{R}-\mathrm{Ksq}$; $11 \mathrm{Q}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{Kt5}$!
(10) Or. 4 P-Q4, $\mathrm{P} \times \mathrm{P} ; 5 \mathrm{~B}-\mathrm{Q} 3$. (Thorold): if $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3+$. Or 4 P-QKt4 may be tried. (C. E. R.)
(11) If $5^{\prime} \mathrm{P} \times \mathrm{P} ; \mathrm{P} \times \mathrm{P} ; 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} 2$; $7 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B}-\mathrm{Q} 3+$. (Potter.)
(12) Or $6 \ldots, \mathrm{Bch} ; 7 \mathrm{Kt}$-B3, $0-0$; 8 P-K5! (Potter.) •
(13) If $5 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B} \times \mathrm{Kt}$ and $\mathrm{B}-\mathrm{Kt3}$. . If $5 \mathrm{~B}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{QB} 3+$.
(14) Or $6 \mathrm{P} \cdot \mathrm{Q} 3$ and $7 \mathrm{Q} \cdot \mathrm{K} 2$. (Lipschütz.)
(15) $10 \mathrm{q} \times \mathrm{B}, \mathrm{E} \times \mathrm{P} ; 11 \mathrm{~B} \times \mathrm{P}, \mathrm{Bt} \mathrm{K} 4 ; 12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 13 \mathrm{Kt} \mathrm{Q} 2, \mathrm{O} .0+$.

BOOK IV.

MISCELLANEOUS GAMBITS,

INCLUDING THE QUEEN'S KNIGHT'S GAME.

THE group of openings presented in Book IV. includes some of the most popular débuts in modern practice. Among these the Vienna, or Queen's Knight's Game, takes the first place. After 1 P-K4, P-K4; 2 Kt -QB3 the first player may adopt safely sundry developments treated in our previous pages as of questionable soundness; or he may allow his opponent to commence the attack and play a defensive game with a move in hand ; or he may transpose into the Giuoco Piano, or King's Bishop's Opening. A prominent continuation is the Steinitz Gambit (Sec. II.) $2 \ldots, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{P}-\mathrm{B} 4, \mathrm{P} \times \mathrm{P} ; 4 \mathrm{P}-\mathrm{Q4}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$, \&c. It is an example of one of the most advanced ideas of the time, viz. :- that the King is a strong piece, and, as such, may risk attack in the middle of the board in order to guard the centre Pawns or secure a favourable position for the end-game. The chances, are, however, rather in Black's favour (1) by the loss of time in moving White's King, (2) by the swifter character of the counter attack, (3) by the facility of exchanging pieces, and so drawing the game, (4) by the possibility of winning by a counter Gambit. The opening may also be turned into a variation of the King's Gambit, given in Table No. 82.

The Centre Gambit (Sec. III.) is an old and simple form of the game. White riske nothing, nor need he play for any special attack. His object is to ensure a good development, and a clear board for the mid-game. He may, however, transpose into the Scotch Gambit or offer the Danish Gambit. The former we have already treated. The latter (Sec. IV.) is an adaptation of the Cunningham or Three Pawns' Gambit to the Queen's side of the board. The sacrifice of the Pawns in this variation leads to a strong diagonal attack on Black's King not unlike that obtainable by the first player in the Evans Gambit.

The From Gambit (Sec. V.) 1 P-KB4. P-K4; $2 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3, \& c$., offers a Pawn for a strong counter attack. In our columns we assume the Pawn to be taken, but White may play 2 P-K4 transposing into the King's Cambit, or 2 P-Q3 as given by the Handbuch. Also after $2 \mathrm{P} \times \mathrm{P}$, P-Q3, instead of capturing the second Pawn he may play $3 \mathrm{Kt} \cdot \mathrm{KB} 3$, and transpose into a variation of the King's Gambit Declined by the continuation $3 \ldots, \mathrm{P} \times \mathrm{P} ; 4$ P-K4, B-QB4; 5 B-B4, Kt-QB3, \&c.

Another variation of the same idea, but brought about by the first player, is the Blackmar Gambit, 1 P-Q4, P-Q4; 2 P-K4, P×P; 3 P-KB3, \&c. (Sec. VI.) The object, as in From's Gambit, is to gain time and freedom of movement for a forward game with the minor pieces.

The Centre Counter Gambit (Sec. VII.) 1 P-K4, P-Q4 is played to prevent an elaborate attack on the King's side. Black gives up a move in addition to his first. It is, by transposition, an inferior form of the French Defence. Nevertheless Mr. Potter considers it a playable opening between strong players. This, he says, is a "fighting defence, aurd one far removed from drawish tendencies."

The Queen's Gambit (Sec. VIII.) 1 P-Q4, P-Q4; 2 P-QB4, P \times P dates from the earliest writers. Stamma, a native of Aleppo and a contemporary of Philidor, brought it for a time into high favour. There is no risk in it, and the development is not rapid, although quick enough to yield White a fair game with an open centre. "Should you," writes Walker, "erroneously cling to the acquired. Pawn and think to keep the spoil, you will find this opening has paths to destruction as brilliant as the Muzio itself." The best course is to decline the Gambit, which leads us to another group of openings dealt with in Book V. under the heading of The Close Game.

In this group the Queen's Gambit Declined (1 P-Q4, P-Q4; 2 P-QB4, P-K3, \&c.) is treated in Book V. as a variation of the Queen's Pawn game. It is in fact the main line of play, the accepted form of the Gambit being very rarely adopted by modern players.

SUMMARY OF THE SECTIONS INTO WHICH BOOK IV. IS DIVIDED.

Sxotion 1. The Vienna Opening.
1 P-K4, P-K4; 2 Kt -QB8, \&c.
The Fyfe Gambit.
1 P-K4,, P-K4; $2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}-\mathrm{QB3}$; 3 P-Q4, \&o. The Pierce Gambit.
1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}-\mathrm{QB} 3$; 3 P-KB4, $\mathrm{P} \times \mathrm{P} ; 4 \mathrm{Kt}-\mathrm{KB} 3$, P-KKt4: $5 \mathrm{P} . \mathrm{Q} 4$, \&c.

The Hamppe-Allgaier Gambit.
1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{QB3}, \mathrm{Kt}-\mathrm{QB3}$; 3 P-KB4, $\mathrm{P} \times \mathrm{P} ; 4 \mathrm{P}-\mathrm{KR4}, \mathrm{P}-\mathrm{K} t 5 ; 5 \mathrm{Kt}-\mathrm{Kt} 5$, \&c.
II. The Steinitz Gambit.

1 P-K4, P-K4; 2 Kt -QB3, Kt-QB3; 3 P-B4, $\mathrm{P} \times \mathrm{P} ; 4 \mathrm{P}-\mathrm{Q} 4, \& \mathrm{c}$.
III. The Centre Gambit.

1 P-K4, P-K4; 2 P-Q4, \&c.
IV. The Danish Gambit.

1 P-K4, P.K4; 2 P.Q4, P×P; 3 P-QB8, P×P; 1 B-QB4, \&c.
V. The From Gambit.

1 P-KB4, P-K4; $2 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q}$; $8 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}, \mathrm{\& c}$.
VI. The Blackmar Ganbit.

1 P.Q4, P.Q4; 2 P.K4, P×P; 3 P.KB8, P \times P; $4 \mathrm{Kt} \times \mathrm{P}$, \&c.
VII. The Centre Counter Gambit.

1. P-K4, P-Q4; $2 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}$, \&c.
VIII. The Quen's Gambit.

1 P-Q4, P.Q4; 2 P.QB4, P×P, \&c.

SECTIONI.

THE VIENNA OPENING.

1 P-K4, P.K4; 2 Kt-QBs.

THIS opening was frrst brought into practical use for Tourney purposes at the Vienna Chess Congress in 1873. It was adopted and analysed by Herr Hamppe, an Austrian player, and is sometimes called by his name. It was previously called the Queen's Knight's Opening, and it was thought by Jaenisch and other authorities to throw away the attack and the advantage of the first move. Further acquaintance has shown that it is one of the strongest modes of commencing the game.

The main idea in bringing out the Q Kt at this early stage is, as in the modern method of treating the Sicilian Defence, to protect the K Pawn, and to prevent the opponent advancing P-Q4. But the Knight at QBs has other uses. It may often be advantageously planted at Q5, commanding Black's Q B Pawn, with a serviceable retreat to K3; and in some variations by being played to QR4 it enables the first player to get rid of the adverse K Bishop, and so prepare the way for White's advance with Q Pawn, or KB Pawn.

The usual defences are $2 \ldots, \mathrm{Kt}$-QB3, Kt-KB3, or B-B4, but Black may also play 2 B-Kt5, P-KKt3, or P-Q3. The three last named are very rarely played and yield only an inferior game. After the three first mentioned White generally continues with 3 P-KB4, when, if Black has played $2 \ldots$, Kt-QB3, he preferably accepts the gambit, and the attack proceeds with either 4 P-Q4 (the Steinitz Gambit), or 4 Kt -B3 leading to the Hamppe-Allgaier and other varieties of the King's Gambit. If, however, Black has played $2 \ldots$, B-B4 or Kt-KB3, he must not take the proffered Pawn but move 3 :.., P-Q4 in the latter case, and in the former 3..., P-Q3; which transforms the game into a sort of King's Gambit declined.

Instead of offering the Gambit White may play 3 B-B4 (Bardeleben's variation), or $3 \mathrm{Kt}-\mathrm{B} 3$, resolving into the KKt opening, or $3 \mathrm{P}-\mathrm{KKt} 3$ followed by B-Kt2 as favoured by Herr Paulsen.

Taple 124.-THE VIENNA OPENING.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{QB} 3, \mathrm{~B} \cdot \mathrm{~B} 4 \text { (1). }
$$

	1	2	3	4	5
	P.B4				Kt-B3 (9)
3	P-Q3!			$\overline{\mathrm{B} \times \mathrm{Kt}}$	P-Q3 (10)
4	Kt-B3			$\mathrm{R} \times \mathrm{B}$	Kt-QR4(11)
	$\overline{\mathrm{Kt}-\mathrm{KB} 3 \text { (2) }}$			Kt-QB3	$\overline{\mathrm{Kt}-\mathrm{Q} 2(12)}$
5	B-B4 (3)			$\mathrm{P} \times \mathrm{P} \quad$ (8)	$\mathrm{Kt} \times \mathrm{B}$
	Kt-B3 (dia.)	P-B3 (7)		$\overline{\mathrm{Kt} \times \mathrm{P}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
6	P-Q3 (4)	P-Q3	$\underline{P \times P}$	P-Q4	P.Q4
	B-KKt5 (5)	Q-K2	$\bigcirc \times \mathrm{P}$	$\overline{\mathrm{Kt}} \mathrm{Kt} 3$	$\overline{\mathrm{P} \times \mathrm{P}}$
7	Kt-QR4 (6)	Q-K2	Q-K2	Q-B3 !	Q \times P
	B-Kt3	B-KKt5	QKt-Q2	P.Q3	Kt-K3
8	$\mathrm{Kt} \times \mathrm{B}$	B-K3	P-Q3	B-K3 +	Q-K3
	$\overline{\mathrm{RP} \times \mathrm{B}}$	QKt-Q2	P-QKt4		Kt-B3
9	B-Kt5 -	0.0.0-	B.Kt3 -		B.Q3 -
	-	0.0.0-	P-QR4 -		0.0

(1) If $2 \ldots$, B-Kt5; 3 P-B4 or 3 Kt -Q5. Black may also play $2 \ldots$. B-K2; to stop the continuation 3 P-B4. If $2 \ldots$ P-KB4; $3 \mathrm{P} \times \mathrm{P}$ and White plays the King's Gambit defence with a move gained.
(2) If $4 \ldots, \mathrm{~B}-\mathrm{KKt5}$ (a); 5 P-KR3 (or B-K2 Handbuch), $\mathrm{B} \times \mathrm{Kt} ; 6 \mathrm{Q} \times \mathrm{B}$, (if) QKt-B3; 7 B-Kt5, otherwise B-B4, and Kt-K2 early as possible. (Steinitz.) If 5 K にQR4, Kt-Q2
(a) 4 ... P-QR3; 5 B-B4 (or $5 \mathrm{P} \times \mathrm{P}$ as in Note 3), Kt-QB3; 6 P-Q3, B-KKt5 (or $6 \ldots, \mathrm{Kt}-\mathrm{R4}$) ; 7 P-KR3, $\mathrm{B} \times \mathrm{Kt} ; 8 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt}$-Q5 (dia); 9 Q-Kt3, $\mathrm{Kt} \times$ Pch? ; $10 \mathrm{~K}-\mathrm{Qsq}, \mathrm{Kt} \times \mathrm{R} ; 11 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; 12 R -Bsq, Kt-B3; $13 \mathrm{Q} \times \mathrm{KtP}$, K-Q2; $14 \mathrm{R} \times \mathrm{Kt}$, B-Q3; $15 \mathrm{~B}-\mathrm{KK} t 5, \mathrm{Q}-\mathrm{Ksq}$; $16 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{R}-\mathrm{KKtsq} ; 17 \mathrm{R} \times \mathrm{Pch}$, K -Bsq; $18 \mathrm{R} \times \mathrm{Pch}, \& \mathrm{c}$. (Tschigorin v. Martinez).
(3) If $5 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 5$ (or B-Q51); $7 \mathrm{Kt}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{Kt3}, ~ \& c$. 5 P-Q4 leaves a weak K Pawn.

Or 5 P-Q3, Kt-B3; 6 Kt-QR4, B-Kt3; 7 (B-K2, B-Kt5; $8 \mathrm{Kt} \times \mathrm{B}, \mathrm{RP} \times \mathrm{Kt}$: 9 P-B3, Q-K2: 10 O-O, O-O; $11 \mathrm{Kt} \times \mathrm{P}$, (Van Yliet v . Lee.)
(4) Or 6 P-QR3.
(5) If $6 \ldots$ B-K3; 7 B-Kt5. If $6 \ldots$ Kt-KKt5; 7 Q-K2, (if R-Bsq, Kt $\times P_{\text {p }}$) B-B7ch; $8 \mathrm{~K}-\mathrm{Qsq}, \mathrm{B}-\mathrm{Kt3} ; 9 \mathrm{R}-\mathrm{Bsq}, \mathrm{O}-\mathrm{O} ; 10 \mathrm{P}-\mathrm{KR} 3+$. Other variations 25θ 6 ..., P-QR3, 6 .., Kt-QR4, and 6 .., P-KR3.
(6) Or 7 B-QKt5 or P-KR3, Compare with Table 123, Col. 12, Note 5.
(7) $5 \ldots$ O.O; $6 \mathrm{P}-\mathrm{Q} 3, \mathrm{P}-\mathrm{B} 3 ; 7 \mathrm{P} \times \mathrm{P},(\mathrm{a}), \mathrm{P} \times \mathrm{P}$; 8 Kt-K2, Q-K2; (Zukertort v. Judd): or 6 .., P-QR3; 7 P-B5, P-QKt4; 8 B-Kt3, B-Kt2. (Potter.)
(a) If 7 Q-K2, P-QKt4 is practicable, followed by QKt-Q2, P-QR4, B-R3 and R-Ksq.
(8) If 5 B-B4 or Kt5, Qch; 6 P-KKt3, Q \times RP; $7 \mathrm{~K}-\mathrm{Bsq}, \mathrm{P}-\mathrm{Q} 3+$.
(9) If 3 Kt-R4, B \times Pch, or B.K2. (W. W.) See B. C. M., 1889, p. 439, to illustration. If 3 P-QKt4, B×P; 4 Kt-Q5, B-B4; 5 Q-Kt4, P-KKt3+.
(10) If 3 .., Kt-QB3; $4 \mathrm{Kt} \times \mathrm{P}+$. This Col. is Paulsen v. Anderssen.
(11) Or 4 B-B4 transposing into the Giuoco Piano.
(12) Or 4 .., B-Kt3; $5 \mathrm{Kt} \times \mathrm{B}, \mathrm{RP} \times \mathrm{Kt}$; $6 \mathrm{P} \cdot \mathrm{Q4}$, \&c.
(Col. 1.)

After White's 5th move.
(Note 2 a.)

After Black's 8th move.

Table 125.-THE VIENNA OPENING.

1 P.K4, P.K4; 2 Kt-QB3, Kt.KB3; 3 P-B4(1), P-Q4(2).

	6	7	8	9	10
4	$\mathrm{P} \times \mathrm{KP}$ (3)		P-Q3		
	$\overline{\mathrm{Kt} \times \mathrm{P} \text { (dia.) }}$		$\overline{\mathrm{P} \times \mathrm{BP}}$	$\overline{\text { B-QKt5(12) }}$	
5	Q.B3 (4)	Kt -B3	P-K5 (10)	$\mathrm{P} \times \mathrm{KP}$	
5	$\frac{1}{\text { Kt } \times \text { Kt (5) }}$	$\overline{\mathrm{B}-\mathrm{QKt5}}$ (9)	$\overline{\mathrm{P}-\mathrm{Q} 5}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	P-Q5 (14)
6	$\underline{\mathrm{KtP} \times \mathrm{Kt}}(6)$	B-K2	$\mathrm{P} \times \mathrm{Kt}$ (11)	$\mathrm{P} \times \mathrm{Kt}$	P-QR3 (15)
6	Q-R5ch (7)	0.0	$\overline{\mathrm{P} \times \mathrm{Kt}}$	Q-R5ch	B-R4
7	P-Kt9	0.0	Q-K2ch	K-K2	$\mathbf{P} \times \mathrm{Kt}$
7	Q-K5ch	Kt-QB3+	B-K3	$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{P} \times \mathrm{Kt}}$
8	$\mathbf{Q} \times \mathbf{Q}$		$\mathrm{P} \times \mathrm{KtP}$	$\mathrm{P} \times \mathrm{B}$	P-QKt4
8	$\overline{P \times Q}$		$\overline{\mathrm{KB} \times \mathrm{P}}$	B-Kt5ch	B-Kt3
9	B-KKt2		P-QKt3	Kt-B3	$\underline{\mathrm{P} \times \mathrm{P}+}$
9	Kt-B3		$\overline{0.0}$	$\overline{\mathrm{P}} \times \mathrm{P}$	
10	P-Q4		$\mathrm{B} \times \mathrm{P}$	Q-Q4	
10	$\mathrm{P} \times \mathrm{P}$ en pas		$\overline{\mathrm{R}-\mathrm{Ksq}}+$	$\overline{\mathrm{B}-\mathrm{R} 4}$ (dia.)	

(8)
(1) For 3 B-B4 see p. 148, Col. 3: for 3 Kt-B3 see p. 43. If 3 P-QR3, Kt-B3; 4 Kt-B3, P-Q4; $5 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{KKt} \times \mathrm{Ktl}$; 7. Kt $\times \mathrm{Kt}$, $\mathrm{Kt} \times \mathrm{Q} ; 8 \mathrm{Kt} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{BP} ; 9 \mathrm{Kt} \times \mathrm{BP}, \mathrm{Kt} \times \mathrm{R} ; 10 \mathrm{Kt} \times \mathrm{R}, \mathrm{B}-\mathrm{KB} 4 ; 11 \mathrm{~B}-\mathrm{B} 4$ (a) (b), B-Q3; 12 P.KKt3, O-0.0; 13 B-Q5, R-Ksqch (this also follows $13 \mathrm{Kt}-\mathrm{B} 7$); $14 \mathrm{~K}-\mathrm{Bsq}, \mathrm{B}-\mathrm{R} 6 \mathrm{ch}$; $15 \mathrm{~B}-\mathrm{Kt2}, \mathrm{R}-\mathrm{Bsq} \mathrm{ch}$; $16 \mathrm{~K} \cdot \mathrm{Ktsq}, \mathrm{B} \times \mathrm{B}$; $17 \mathrm{~K} \times \mathrm{B}, \mathrm{Kt}$-B7+. (C. E. R.)
(a) 11 P-KKt3, O.0.0; 12 P.Q3!, R-Ksq ch; $13 \mathrm{~K} \cdot \mathrm{Q} 2, \mathrm{~B} \cdot \mathrm{B4}$; $14 \mathrm{Kt}-\mathrm{B} 7$, P-KR3+.
(b) 11 P-Q3, B-Q3; 12 P-KKt3, Kt \times P; $13 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Pch}$; 14 K -Qsq, K-K2 or Bsq and wins with the Pawns.
(2) If $3 \ldots, \mathrm{P} \times \mathrm{P}$; $4 \mathrm{P}-\mathrm{K} 5+$. If $3 \ldots, \mathrm{P}-\mathrm{Q} 3$; 4 Kt -B3 (or $4 \mathrm{P}-\mathrm{Q4}$), B-Kt5; 5 P-KR3, \&c. If 3 ..., Kt-B3; $4 \mathrm{P} \times \mathrm{P}, \mathrm{QKt} \times \mathrm{P}$; $5 \mathrm{P}-\mathrm{Q} 4$, \&c.
(3) If $4 \mathrm{P} \times \mathrm{QP}$, Black may equalise by $4 \ldots, \mathrm{Kt} \times \mathrm{P}$; $5 \mathrm{Kt} \times \mathrm{Kt}$, (if 5 Q -R5, $\mathrm{Kt} \times \mathrm{P}$), $\mathrm{Q} \times \mathrm{Kt}$, \&c.: or he may play $4 \ldots$.., P-K5 (see King's Gambit Declined). Mason against Gossip played $4 \ldots, \mathrm{P} \times \mathrm{P} ; 5$ B-Kt5ch, B-Q2; 6 Q-K2ch, B-K2; 7 Kt -B3, O-O; 8 O-O, R-Ksq! (B. C. M. 1890, p. 384).
(4) 5 Q-K2, Kt-QB3; $6 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{Kt}$; (or $6 \ldots$ B-KB4); $7 \mathrm{KtP} \times \mathrm{Kt}$, B-K2; 8 P-Q4, O-O; 9 Q-B2, P-KB3+: if $5 \ldots$, Qch; 6 P-KKt3, Kt $\times \mathrm{KtP}$; 7 Q-B2+.
(5) If 5 ... P-KB4; 6 Kt-R3 ! (threatening Kt-B4, and Q-R5ch), P-B3; 7 Kt-B4, P-KKt3; 8 P-Q3, (if) Kt-Kt4; 9 Q-Kt3, \&c. (W. W.)

If $5 \ldots$ Kt-QB3; 6 B-Kt5, (if $6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{Q} 5$: or $6 \ldots, \mathrm{Kt} \times \mathrm{P}$; 7 Q-Kt3, Q-K2, \&c.), Kt \times Kt; $7 \mathrm{KtP} \times \mathrm{Kt}, \mathrm{P}-\mathrm{QR} 3$ (c); $8 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{B}$; $9 \mathrm{Kt}-\mathrm{K} 2, \mathrm{~B}-\mathrm{K} 2$; $10 \mathrm{O} .0,0.0$; $11 \mathrm{Kt}-\mathrm{Q4}$ (Tschigorin v. Gunsberg), or $11 \mathrm{P} \cdot \mathrm{Q4}$! (C. E. R.)
(c) A game Baird v. Burn runs:- 7 .., B-K2; 8 P-Q4, B-F3; 9 Kt-K2, Q-Q2; 10 O-O, P-B3; $11 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P} ; 12 \mathrm{~B}-\mathrm{R} 3, \mathrm{O}-\mathrm{O}-0 ; 13 \mathrm{Q}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{B} 2 ;$ 14 QR-Ktsq, B-Kt3; $15 \mathrm{~B}-\mathrm{R} 61, \mathrm{Kt}-\mathrm{R} 4 ; 16 \mathrm{~B} \times \mathrm{Pch}, \mathrm{Kt} \times \mathrm{B} ; 17 \mathrm{Q}-\mathrm{R} 6, \mathrm{P}-\mathrm{B} 3$; 18 B-Q6, \&c. Baird won.
(6) Or $6 \mathrm{QP} \times \mathrm{Kt}$ may be played: $6 \ldots$... B-K2; 7 B-KB4, B-K3; 8 0.0.0. (Paulsen v. Mason.)
(7) 6 .., B-K2; 7 P-Q4, O-O; 8 B-Q3, P-KB4I; 9 Kt-R3, P-B3; 100.0 (Blackburne v. Bell): if $8 \ldots$, B-Kt4; $9 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B}$; $10 \mathrm{Q} \times \mathrm{QP}, \mathrm{Q}-\mathrm{K} 6 \mathrm{ch}$; 11 Kt-K2, B-Kt5; 12 Q-K4+. (C. E. R.)
(8) $11 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{B}$; $12 \mathrm{P} \times \mathrm{P}$, B-R3 (Delmar v. Mason) or $12 \ldots$ B-KB4 (C. E. R.)
(9) 5 ... B-K2; 6 P-Q4, P-QB4; 7 B-Q3, Kt-QB3; $8 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $9 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{QP}$; $10 \mathrm{~B}-\mathrm{K} 3$ (British C. Club v. Liverpool); or $10 \mathrm{Kt} \times \mathrm{Kt}$ (Mason).
(10) $5 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P} ; 6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt} ; 7 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3 ; ~ 8 \mathrm{Q}-\mathrm{Q} 2,0.0+$. (Blackburne v. Burn).
(11) $6 \mathrm{QKt}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{Kt5} ; 7 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QB} 3$; $8 \cdot \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Q} 4$ with a fine game.
(12) $4 \ldots, \mathrm{P}-\mathrm{Q} 5$ is inferior. If $4 \ldots, \mathrm{P} \times \mathrm{KP}$; $5 \mathrm{BP} \times \mathrm{P}, \mathrm{Kt}-\mathrm{Kt5} ; 6 \mathrm{Kt} \times \mathrm{P}$ (if $6 \mathrm{P}-\mathrm{Q4}, \mathrm{P}-\mathrm{K} 6$ as in the Philidor Defence), $\mathrm{Kt} \times \mathrm{KP}$ (if $6 \ldots, \mathrm{Kt}-\mathrm{QB} 3 ; 7 \mathrm{P}-\mathrm{B} 3$); 7 P-Q4, Kt-Kt3; 8 Kt-KB3, B-K2 (if 8 .., Q-K2; 9 K-B2 C. E. R.) ; 9 B-QB4 or Q3, \&c.
(13) If $11 \mathrm{~K}-\mathrm{K} 31, \mathrm{~B} \times \mathrm{Kt}$; $12 \mathrm{P} \times \mathrm{B}, \mathrm{Q}-\mathrm{K} 8 \mathrm{ch}$; $13 \mathrm{~K}-\mathrm{B} 4, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$ and draws: if $12 \mathrm{~B}-\mathrm{Kt} 5 \mathrm{ch}, \mathrm{P}-\mathrm{QB} 3$; $13 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{B} ; 14 \mathrm{Q} \times \mathrm{KP}, \mathrm{Q} \times \mathrm{Q}$; $15 \mathrm{~K} \times \mathrm{Q}, \mathrm{Kt}-\mathrm{B} 3$, \&c.: the Handbuch gives $15 \ldots, 0-0$; to which Gossip replies $16 \mathrm{R}-\mathrm{Qsq}$!
(14) If 5 .., Kt-Kt5; $6 \mathrm{~B}-\mathrm{Q} 2$ or P-Q4+.
(15) Mr. Ranken's suggestion. If $6 \mathbf{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt} ; 7 \mathrm{P}-\mathrm{QKt3}, \mathbf{Q} \times \mathbf{P}=$.
(Col. 6.

After Black's 4th move.
(Col, 9.)

After Black's 10th move.

Table 126.-THE VIENNA OPENING.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{QB} 3, \mathrm{Kt} \cdot \mathrm{Q} \mathrm{~B} 3 .
$$

	11	12	13	14	15
3	P-KKt3 (1)	B-B4	P-Q4 (10)		
	B-B4 (2)	$\overline{\mathrm{Kt}-\mathrm{B} 3}$ (5)	$\overline{\mathrm{K}} \times \mathrm{P}$	$\widehat{\mathbf{P} \times \mathrm{P}}$	
4	B-Kt2	P-QR3 (6)	P.B4	Kt-Q5	Kt-Kt5
	P-QR3 (3)	B-B4 (7)	B-Kt5 (11)	Kt-B3	B-B4 (17)
5	P-Q3 (4)	P-Q3	Kt.B3	B-KB4	B-KB4
	P-Q3	P-Q3 (8)	$\overline{\mathrm{B} \times \mathrm{Ktch}(12)}$	P-Q3 (16)	P-Q3
6	Kt -B3	B-KKt5	$\mathrm{P} \times \mathrm{B}$	B-QKt5	Kt-K2
	Kt-B3	B-K3	Kt \times Ktch	P-QR3	P-QR3
7	B-K3	Kt-Q5	$Q \times K t$	B-R4	QKt \times P(Q4)
	$\overline{\mathrm{B} \times \mathrm{B}}$	$\overline{\mathrm{B} \times \mathrm{Kt}} \quad(9)$	$\bigcirc \times \mathrm{P}$	P-QKt4	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
8	$\underline{\mathrm{P} \times \mathrm{B}}$	$\mathrm{P} \times \mathrm{B}$	$\underline{\mathrm{B} \times \mathrm{P} \quad(13)}$	B2QKt3	$\mathrm{Kt} \times \mathrm{Kt}$
	-	$\overline{\mathrm{Kt}}$-QKtsq	P-Q3	B-K2	Q-K2
9		Q-B3	Q-Kt3 (14)	P-KB3	P-KB3
		QKt-Q2	$\overline{\mathrm{Kt} \text {-B3 }}+$	Kt-KR4	P-B4 +
		Kt-K2-	(15)	Kt-K2-	
10		-		\longrightarrow	

(1) A favourite continuation with L. Paulsen.
(2) Or $3 \ldots$, Kt-B3; 4 B-Kt2, B-B4; 5 P-Q3, P-QR3; 6'P-B4, P-Q3; 7 P-B5, \&c. (Paulsen and Bier v. Schwartz and Schottländer.)

If $3 \ldots$ P-B4; 4 B-Kt2, P-QR3! is given by Gossip.
(3) $4 \ldots$ P-Q3; $5 \mathrm{KKt}-\mathrm{K} 2, \mathrm{P}-\mathrm{B} 4 ; 6 \mathrm{P}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{B3}{ }^{+}$; 7 O-0, O-O; $8 \mathrm{Kt}-\mathrm{R4}$, B-Kt3; $9 \mathrm{Kt} \times \mathrm{B}, \mathrm{RP} \times \mathrm{Kt}$; $10 \mathrm{P}-\mathrm{KB} 4$, \&c. (Pitschel v. Schwartz.)
(4) If $5 \mathrm{KKt}-\mathrm{K} 2, \mathrm{Kt}$-B3; 6 P-KR3 to stop Kt-KKt5.
(5) If $3 \ldots, \mathrm{~B}-\mathrm{B} 4 ; 4 \mathrm{Q}$-Kt4. This Col. is Bardeleben's variation.
(6) If 4 P-Q3, Kt-QH4.
(7) $4 \ldots, \mathrm{Kt} \times \mathrm{P} ; 5 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B} ; 6 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Q} 4$; $7 \mathrm{Kt}-\mathrm{Kt} 3, \mathrm{~B}-\mathrm{QB4}$ 8 P-Q3, R-Bsq; 9 B-K3 = .
(8) If $5 \ldots$ P-KR3; $6 \mathrm{Kt}-\mathrm{B3}, \mathrm{P}-\mathrm{Q} 3 ; 7 \mathrm{Kt}-\mathrm{QR} 4$.
(9) If $7 \ldots \mathrm{P}-\mathrm{KR} 3$; $8 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $9 \mathrm{P}-\mathrm{QB} 31$: if $9 \mathrm{Q}-\mathrm{R} 5$, Kt-Q5. (C.E.R.)
(10) The Fyfe Gambit originated by Mr. Fyfe of Glasgow.
(11) Or $4 \ldots, K t-Q B 3$. (Forsyth.)
(12) If $5 \ldots$ Kt-QB3; 6 P-B5, which also follows $5 \ldots \mathrm{Kt} \times \mathrm{Ktch} ; 6 \mathrm{Q} \times \mathrm{Kt}$, P-Q3.
(13) If $8, \mathrm{~B}-\mathrm{QB} 4, \mathrm{Q}-\mathrm{K} 2 ; 9 \mathrm{QB} \times \mathrm{P}$, Kt-B3; $10 \mathrm{P}-\mathrm{K} 5, \mathrm{P}-\mathrm{Q} 4 ; 11 \mathrm{~B}-\mathrm{Kt3}$, P-B3+. (C.E. R.) If $11 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt5}$; $12 \mathrm{Q}-\mathrm{Q} 3, \mathrm{O}-\mathrm{O}-\mathrm{O}$.
(14) Or 9 B-B4. (Forsyth.)
(15) If $10 \mathrm{~B}-\mathrm{Q} 3$, or P-K5, Kt-R4: if $10 \mathrm{Q} \times \mathrm{P}, \mathrm{R}-\mathrm{KKtsq}$; $11 \mathrm{Q}-\mathrm{R} 6, \mathrm{R}-\mathrm{Kt3}$; $12 \mathrm{Q}-\mathrm{R} 4, \mathrm{Kt} \times \mathrm{P}+$ (C. E. R.) After $10 \mathrm{~B}-\mathrm{K} 2, \mathrm{Kt} \times \mathrm{P}$; $11 \mathrm{Q} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 3$, \&c.
(16) If $5 \ldots, \mathrm{Kt} \times \mathrm{Kt} ; 6 \mathrm{P} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{K} 2 \mathrm{ch} ; 7 \mathrm{~K}, \mathrm{Q} 21, \mathrm{Q}-\mathrm{Kt} 5 \mathrm{ch} ; 8 \mathrm{~K}-\mathrm{Bsq}$! : if $6 \ldots$ B-Kt5ch; $7 \mathrm{~B}-\mathrm{Q} 2, \mathrm{Q}-\mathrm{K} 2 \mathrm{ch} ; \mathrm{B}^{8} \mathrm{Q}-\mathrm{K} 21, \mathrm{~B} \times \mathrm{Bch} ; 9 \mathrm{~K} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Q}=\mathrm{h}$; $10 \mathrm{~B} \times \mathrm{Q}, \mathrm{Kt}-\mathrm{Kt5}$; $11 \mathrm{~B}-\mathrm{B} 3$ or $\mathrm{B} 4=$. (C. E. R.)
(17) 5 ... Kt-KB3 and Bch also turn out in Black's favour.

Table 127.-THE VIENNA OPENING.

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt} \cdot \mathrm{QB} 3$, Kt-QB3; 3P.KB4, P×P.

	16	17	18	19	20
4	Kt-Q5 (1)		Kt-B3 (7)		
4	Kt-B3	Q-R5ch (5)	B-K2	B-B4 (11)	P-KKt4
5	Kt-KB3 (2)	K-K2	B-B4 (8)	P-Q4? (12)	B-B4
5	B-B4!	$\overline{\mathrm{Kt}-\mathrm{Q} 5 \operatorname{ch~(6)}}$	B-R5ch	$\overline{\mathrm{K}} \times \mathrm{P}$	P-Kt5
6	P.Q3 (3)	K-Q3	P-Kt3 (9)	$\mathrm{Kt} \times \mathrm{Kt}$	O-0
6	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	Kt-K3	$\overline{\mathrm{P} \times \mathrm{P}}$	Q-R5ch	$\overline{\mathrm{P} \times \mathrm{Kt}}$
7	$\mathrm{P} \times \mathrm{Kt}$	Kt-KB3	0.0	K-K2	$\mathrm{Q} \times \mathrm{P}$ (15)
7	Kt-Q5	Q-R4	P×Pch	P-Q4	Kt-K4
8	$\mathrm{B} \times \mathrm{P} \quad$ (4)	P-B4	K-Rsq	Q-Q3 ! (13)	$Q \times P$
8	$\overline{\text { Q-B3+ }}$	P-QB3	$\overline{\text { P-Q3 (10) }}$	B-Kt5ch	Q-B3
9		Kt-B3 -	$\mathrm{B} \times \mathrm{Pch}$ -	Kt-B3	Q-Kt3
9		-	$\overline{\mathrm{K}}$-Bsq -	$\overline{0.0 .0 ~(14)}$	Q-Kt2+

(1) Suggested, independently of each other, by Mr. G. B. Fraser of Dundee, and Mr. J. G. Cunningham of London: analysed by Mr. Fraser.
(2) If 5 P-Q4, Kt $\times \mathrm{Kt}$; $6 \mathrm{P} \times \mathrm{Kt}$, Q-R5ch; $7 \mathrm{~K}-\mathrm{K} 2$, Q -R4ch+. If $5 \mathrm{~B}-\mathrm{B} 4$ (Fraser), B-B4; $6 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt} \times \mathrm{P}$; and if $7 \mathrm{P}-\mathrm{Q4}, \mathrm{Kt} \times \mathrm{P}$; or if $7 \mathrm{Q}-\mathrm{K} 2, \mathrm{O}-\mathrm{O}+$. (C. E. R.) 5 Q -B3, and $5 \mathrm{Kt} \times \mathrm{Ktch}$, are also inferior.
(3) 'If $6 \mathrm{P}-\mathrm{Q} 4, \mathrm{QKt} \times \mathrm{P} ; 7 \mathrm{KKt} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{Kt}$; $8 \mathrm{P} \times \mathrm{Kt}$, $\mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$; $9 \mathrm{~K} \cdot \mathrm{~K} 2$, P-B6ch; $10 \mathrm{~K}-\mathrm{K} 3, \mathrm{P} \times \mathrm{P} ; 11 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{Kt4ch} ; 12 \mathrm{~K}-\mathrm{B} 2, \mathrm{Q}-\mathrm{B} 3 \mathrm{ch}$ and wins.

If $6 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{Q} \times \mathrm{Kt} ; 7 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt} \times \mathrm{P}$; $8 \mathrm{Q}-\mathrm{K} 2, \mathrm{O}-\mathrm{O}_{+}$. (C. E. R.)
(4) If $8 \mathrm{Kt} \times \mathrm{Kt}$, Q-R5ch, \&c.; and if $8 \mathrm{P}-\mathrm{B} 3, \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}$. (C. E. R.)
(5) This Col. and note contain Mr. Fraser's analysis.
(6) 5 .., B-B4; $6 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Q}-\mathrm{B} 7 \mathrm{ch}$; $7 \mathrm{~K}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{K} 4 \mathrm{ch}$; $8 \mathrm{~K}-\mathrm{B3}, \mathrm{Kt} \times \mathrm{Kt}$; $9 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{Q} 5 \mathrm{ch} ; 10 \mathrm{~K}-\mathrm{Kt} 3+$.
(7) If 4 P-KR4, B-K2; $5 \mathrm{Kt} \mathrm{B} 3, \mathrm{P}-\mathrm{Q} 3$; 6 P-Q4, (if $6 \mathrm{~B}-\mathrm{B4} 4 \mathrm{Kt}-\mathrm{K} 4$, \&o.) $\mathrm{B}-\mathrm{Kt5} ; 7 \mathrm{~B}-\mathrm{B4}(\mathrm{or} 7 \mathrm{~B} \times \mathrm{P}$) $\mathrm{B} \times \mathrm{Pch}+$. If $4 \mathrm{~B}-\mathrm{B4}, \mathrm{Qch} ; 5 \mathrm{~K}$ - $\mathrm{Bqq}, \mathrm{B}-\mathrm{B} 4$; $6 \mathrm{Q}-\mathrm{K} 2, \mathrm{Kt}$-Q5; 7 Kt -B3!: $5 \ldots$. P-KKt4 and 4 .:, Kt-B3 lead into the Bishop's Gambit; Cols. 17 and 4 respectively.
(8) Or, 5 P-Q4, P-KKt4 (if B checks, K-K2+); 6 P-Q5, or B-QB4. (C. E. R.)
(9) Or, 6 K-Bsq, P.Q3; 7 P-Q4, B-Kt5; 8 QB \times P, Kt-B3; 9 Q-Q2+. (C. E. R.) See the Cunningham Gambit.
(10) If 8 .., B-B3; $9 \mathrm{P}=\mathrm{K} 5, \mathrm{P}-\mathrm{Q} 3$; $10 \mathrm{P} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{P}=$.
(11) A line of play suggested by Mr. Adamson of London.
(12) 5 B-B4, Kt-Q5; 6 P-Q3, P-KKt4; 7 P-KR4+. (C. E. R.)
(13) $\mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3$, and $\mathrm{K}-\mathrm{Q} 3$ are all inferior.
(14) 10 P-K5, P-KKt4 (if $10 \ldots$ Kt-B3; $11 \mathrm{~B} \times \mathrm{P}$); $11 \mathrm{~B}-\mathrm{Q} 2+$.
(15) If $7 \mathrm{P}-\mathrm{Q} 4, \mathrm{Kt} \times \mathrm{P}$ (or $\mathrm{B}-\mathrm{Kt21)}$; $8 \mathrm{Q} \times \mathrm{Kt}$? (if $8 \mathrm{QB} \times \mathrm{P}, \mathrm{Kt}-\mathrm{K} 3: 9 \mathrm{Q} \times \mathrm{P}$, Q-B3). Q-Kth: $9 \mathrm{R}-\mathrm{B} 2, \mathrm{~B} \cdot \mathrm{~B} 4 ; 10 \mathrm{QB} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Pch} ; 11 \mathrm{R} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q} \mathrm{ch} ; 12 \mathrm{R}-\mathrm{B} 2$, E-Q3t. (iNash.) The Colo is by Mr. J. Russell of Glasgow.

Table 128.-THE PIERCE GAMBIT.

$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{P} \cdot \mathrm{B} 4, \mathrm{P} \times \mathrm{P}$; 4 Kt-B3, P-KKt 4 .

	21	22	23	24	25
	P-Q4 (1)				
	B-Kt2		P-Q3	P-Kt5	
6	P-Q5 !		P-Q5	B-B4	
	$\overline{\mathrm{Kt}} \mathrm{K} 4$ (dia.)		$\overline{\mathrm{Kt}} \mathrm{K} 4$ (6)	P \times Kt	
7	Kt-Q4 (2)	P-KR4	B-Kt5ch	O-O (9)	
	P-Q3	P-KR3	$\overline{\mathrm{B}-\mathrm{Q} 2}$ (7)	P-Q3	$\overline{\text { P.Q4 (18) }}$
8	B-Kt5ch	P-KKt3	$\mathrm{B} \times \mathrm{Bch}$	$\mathrm{Q} \times \mathrm{P}$	$\mathrm{P} \times \mathrm{P}$ (dia.)
	B-Q2	$\overline{\mathrm{P} \times \mathrm{KtP}}$	$\overline{\mathrm{K} \times \mathrm{B}}$	B-K3	B-KKt5
9	P-KR4 (3)	$\mathrm{P} \times \mathrm{P}$	P-KKt3	$\mathrm{B} \times \mathrm{B} \quad(10)$	R-Ksqch
	$\overline{\mathrm{B} \times \mathrm{B}}$ (4)	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\text { P-KR4 }}$	$\bigcirc \times B$	KKt-K2
10	QKt \times B	$\mathrm{R} \times \mathrm{R}$	$\mathrm{P} \times \mathrm{P}$	Q-R5ch (11)	Kt-K4
	$\overline{\mathrm{P}}$ QR3	$\overline{\mathrm{B} \times \mathrm{R}}$	$\overline{\mathrm{Kt} \times \mathrm{Ktch}}$	K-Q2	B-Kt2
11	Kt-QB3	$\underline{\mathrm{Kt} \times \mathrm{P}}$	$\underline{Q} \times \mathrm{Kt}$	P-Q5 .	$\mathrm{P} \times \mathrm{P}$
	P-R3+	B-B3 (5)	P-Kt5 (8)	Kt-Q5 (12)	$\overline{\text { B-R6 (14) }}$

(1) The Pierce Gambit. See Messrs. Pierce's book su called, also B. C. M.. fo: numerous articles and notes by Messrs. W. T. Pierce and C. E. Ranken.
(2) 7 P-Q6, Kt $\times \mathrm{Ktch} ; 8 \mathrm{Q} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{P}$; $9 \mathrm{P}-\mathrm{KR4} 4, \mathrm{P}-\mathrm{KR3} ; 10 \mathrm{~B}-\mathrm{B} 4$ (Parísen ∇. Englisch), Kt-B3! (Gossip): if $9 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B}-\mathrm{K} 4$; $10 \mathrm{Q}-\mathrm{QR3}, \mathrm{P}-\mathrm{Q4} . \& \mathrm{c}$. (C. E. K.)
(3) 9 Kt-B5, B-KB3; $10 \mathrm{P}-\mathrm{KR} 4, \mathrm{P}-\mathrm{KR} 3$; $11 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}($ a) ; $12 \mathrm{R} \times \mathrm{R}, \mathrm{B} \times \mathrm{R}$; 13 Q-R5, Q-B3 (13 .., B-B3! C. E. R.) ; . 14 P-KKt3, P \times P! (Pierce $\%$. Hart).
(a) $11 \ldots, \mathrm{~B} \times \mathrm{P} ; 12 \mathrm{~B} \times \mathrm{Bch}, \mathrm{Q} \times \mathrm{B} ; 13 \mathrm{P}-\mathrm{KKt3}$, Kt-Kts; $14 \mathrm{P} \times \mathrm{P}_{1}$ $\mathrm{Kt} \times \mathrm{P}$; $15 \mathrm{Q}-\mathrm{Kt4}, \mathrm{Kt}-\mathrm{Kt3}$; $16 \mathrm{Kt}-\mathrm{Kt7ch}, \mathrm{~K}-\mathrm{Qsq}$; $17 \mathrm{~B} \times \mathrm{Bch}, \& \mathrm{c}$. (Pierce.)
(4) Or 9 .., P-QB3 followed by P-KR3. (C. E. R.)
(5) 12 Q-R5, B \times Kt; 13 Q-R8, Kt-B6ch (or $13 \ldots, \mathrm{~K}-\mathrm{Bsq}:$ Pierce v. Hart); $14 \mathrm{~K}-\mathrm{K} 2$, Kt-Kt8ch; $15 \mathrm{~K}-\mathrm{Q} 3, \mathrm{~K}-\mathrm{Bsq} ; 16 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B} ; 17 \mathrm{~B}-\mathrm{Kt2}$, \&c Mr. Ranken prefers 11 .., P-Q3. B. C. M., 1892, p. 215.
(6) $6 \ldots$ P-Kt5; $7 \mathrm{P} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt}$; $8 \mathrm{Q} \times \mathrm{BP}, \mathrm{P} \times \mathrm{P}$; $9 \mathrm{~B}-\mathrm{QB4}$ (Pierce), $\mathrm{Q}-\mathrm{B} 3$ or $\mathrm{B} \cdot \mathrm{K} 3=$. (C. E. R.)
(7) If $7 \ldots, \mathrm{P}-\mathrm{B} 3$; $8 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $10 \mathrm{Q}-\mathrm{Q} 5+$. (C. E. R.)
(8) If 12 Q-Kt3, Q-K2; $13 \mathrm{~B}-\mathrm{Q} 2, \mathrm{P}-\mathrm{KB4} ; 14 \mathrm{Q}-\mathrm{Q3}, \mathrm{P} \times \mathrm{P}$ (R.Ksq I); 15 Q-Kt5ch, K-Bsq; 16 O-0.0, Kt-B3; $17 \mathrm{KR}-\mathrm{Ksq}$, B.R3, \&o

Or 12 Q-Q3, Q-R5ch; 13 K-K2, P-QR3, \&c.
(9) If $7 \mathrm{QB} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3$; $8 \mathrm{Q} \times \mathrm{P}$ (if $80-0, \mathrm{~B}-\mathrm{Kt} 5$), $\mathrm{Kt} \times \mathrm{P}$; $9 \mathrm{Q}-\mathrm{B} 21$, Kt-K3; $100.0, \mathrm{Q}-\mathrm{B} 3+$. (C. E. R.) If $7 \mathrm{Q} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$; $8 \mathrm{P}-\mathrm{Kt3}, \mathrm{Kt} \times \mathrm{P}$. (Pieree.)
(10) If 9 B-Kt5, P-QR3 ! ; not $9 \ldots, B-Q 2$ on account of $10 \mathrm{Q} \times \mathrm{P}$.
(11) Or $10 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{B} 3$ (a); $11 \mathrm{P}-\mathrm{K} 5$ (Pierce), $\mathrm{P} \times \mathrm{P}$; $12 \mathrm{P} \times \mathrm{P}, \mathrm{B}-\mathrm{B} 4 \mathrm{ch}$; $13 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Q}-\mathrm{Kt3}$; $14 \mathrm{QR}-\mathrm{Qsq}, \mathrm{R}-\mathrm{Qsq}+:$ if $14 \mathrm{Kt}-\mathrm{K} 4, \mathrm{Kt}-\mathrm{Q} 5$; $15 \mathrm{Q}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{Kt3}$; 16 P-B3, O-0-O. (C. E. R.)
(a) $10 \ldots$ Kt $\times \mathrm{P}$; 11 Q-R5ch, K-Q2; 12 B-K5.
(12) Continued $12 \mathrm{~B} \times \mathrm{P}, \mathrm{Q}-\mathrm{Ksq}$; $13 \mathrm{Q}-\mathrm{Qsq}, \mathrm{P}-\mathrm{K} 4$; $14 \mathrm{~B}-\mathrm{K} 3, \mathrm{Q}-\mathrm{Kt3}$; (if) $15 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $16 \mathrm{Q} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt2}$; $17 \mathrm{Q}-\mathrm{Q} 3, \mathrm{R}-\mathrm{Ksq}+$. (C. E. R.)
(13) Or $7 \ldots$ B-Kt2; but $7 \ldots$ Kt \times P, Kt-K4, and Q-Kt4 are inferior: $7 \ldots$, $\mathrm{Kt} \times \mathrm{P}$ is met by $8 \mathrm{QB} \times \mathrm{P}$ not $\mathrm{Q} \times \mathrm{Kt}$.
(14) $12 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{R4}$; $13 \mathrm{~B}-\mathrm{K} t 5 \mathrm{ch}, \mathrm{P}-\mathrm{B} 3$; $\mathrm{I} 4 \mathrm{P}-\mathrm{Q} 6, \mathrm{P} \times \mathrm{B}$; 15 Kt-Kt5, B-K3; 16. $\mathrm{Kt} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt} ; 17 \mathrm{R} \times \mathrm{P}, \mathrm{O}-\mathrm{O} ; 18 \mathrm{~B}-\mathrm{Kt5}, \mathrm{Q}-\mathrm{Q} 2 ; 19 \mathrm{R} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{P}$; 20 P-B3 with two Pawns for his piece: (B. C. M., 1891, p. 511.)
(Col. 21.)

After. Black's 6th move.
(Col. 25.)

After White's 8th move.

Table 129.-THE HAMPPE ALLGAIER GAMBIT.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4$; $2 \mathrm{Kt} \cdot \mathrm{QB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3$; $3 \mathrm{P} \cdot \mathrm{B} 4, \mathrm{P} \times \mathrm{P}$; 4 Kt-B3, P.KKt 4 ; 5 P.KR4, P-Kt5; $6 \mathrm{Kt} \cdot \mathrm{KKt} 5$.
$\begin{array}{lllll}26 & 27 & 28 & 29 & 30\end{array}$

(1) If $6 \ldots, \mathrm{P}-\mathrm{B} 3 ; 7 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{KR} 4$; $8 \mathrm{Q}-\mathrm{B} 5, \mathrm{QKt}-\mathrm{K} 2 ; 9 \mathrm{Q} \times \mathrm{P}$ (B4), $\mathrm{P} \times \mathrm{Kt}$; 10 Q-K5, R-R3; 11 B-B4, \&c.
(2) $\mathrm{Or} 8 \ldots, \mathrm{P} \times \mathrm{Kt} ; \mathrm{F}^{9} \mathrm{~B} \times \mathrm{Kt}, \mathrm{P}-\mathrm{KB} 3 ; 10 \mathrm{~B}-\mathrm{Kt3}, \mathrm{P}-\mathrm{Q} 3=$. (C. E. R.)
(3) Or $10 \mathrm{Kt} \times \mathrm{P}$, (if) $\mathrm{B}-\mathrm{K} 3$; $11 \mathrm{~B} \times \mathrm{BP}$. (Monck.)
(4) If 8 B-B4ch P-Q4; $9 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Kt} 3$; 10 P-Q4, KKt-K2; ' $11 \mathrm{~B} \times \mathrm{P}$, $\mathrm{B}-\mathrm{Kt} 2+$: If $8 \mathrm{Q} \times \mathrm{P}, \mathrm{P}-\mathrm{KR4} 49 \mathrm{Q} \times \mathrm{BPch}, \mathrm{Q}-\mathrm{B} 3+$.
(5) Or 10 .., K-Ksq; $11 \mathrm{~B}-\mathrm{K} 3, \mathrm{Q}-\mathrm{K} 2$; $12 \mathrm{Q}-\mathrm{Q} 2$ and $\mathrm{O}-\mathrm{O}-\mathrm{O}$ (Pierce): . or $12 \mathrm{O}-\mathrm{O}, \mathrm{Q} \times \mathrm{RP}$? ; $13 \mathrm{R}-\mathrm{B} 7, \mathrm{P}-\mathrm{Kt6}$; $14 \mathrm{R} \times \mathrm{B}, \mathrm{Q}-\mathrm{R} 7 \mathrm{ch} ; 15 \mathrm{~K}-\mathrm{Bsq}, \mathrm{Q}-\mathrm{R} 8 \mathrm{oh}$; 16 B-Ktsq. (Zukertort v. Ernst.)
(6) If $11 \ldots \mathrm{P} \times \mathrm{P} ; \mathrm{I} 2 \mathrm{Q}-\mathrm{Q} 3 \mathrm{ch}, \mathrm{K}-\mathrm{B} 3 ; 13 \mathrm{~B}-\mathrm{Kt} 5 \mathrm{ch} \mathrm{I}, \mathrm{P} \times \mathrm{B} ; 14 \mathrm{R}$-KBsqch, $\mathrm{K}-\mathrm{K} 2$; 15 R-B7ch, K-Ksq; 16 Q-Kt6+: or $12 \ldots, \mathrm{~B}-\mathrm{B} 4$; 13 Pch, K-B3; $14 \mathrm{P} \times$ Pch, Kt $\times \mathrm{P}$; $15 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{K} \times \mathrm{B}$; $16 \mathrm{Q}-\mathrm{K} 3 \mathrm{ch}+$. (E. F.) If $11 \ldots, \mathrm{KKt}$-K2; $12 \mathrm{Pch}, \mathrm{K}-\mathrm{R} 2 ; 13$ P-K6.
(7) For $8 \ldots$ P-E6, or P-KR4, see the Allgaier Gambit. $8 \ldots, \mathrm{~B}-\mathrm{Kt} 5$ is inferior.
(8) $9 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 3$; $10 \mathrm{~B}-\mathrm{B4} 4, \mathrm{Kt}$-B3 (if $10 \ldots$, B-Kt2; $11 \mathrm{~B} \times \mathrm{P}$); $11 \mathrm{~B} \times \mathrm{P}$, $\mathrm{Kt} \times \mathrm{Kt} ; 12 \mathrm{P} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{P} ; 13 \mathrm{~B} \times \mathrm{Bch}, \mathrm{Q} \times \mathrm{B} ; 14 \mathrm{O}$-O. (Steinitz.) $9 \mathrm{~B} \times \mathrm{P}$ is an Allgaier Variation.
(9) Or $9 \ldots, \mathrm{Q}-\mathrm{K} 2 \mathrm{ch}$; $10 \mathrm{~K}-\mathrm{B} 2, \mathrm{P}-\mathrm{Kt} 6 \mathrm{ch}$; $11 \mathrm{~K}-\mathrm{Ktsq}, \mathrm{Kt} \times \mathrm{P}$; (if) $12 \mathrm{Q} \times \mathrm{Kt}$, Q-B4 (Salvioli) : or $10 \mathrm{~B}-\mathrm{K} 2, \mathrm{P}-\mathrm{B} 6 ; 11 \mathrm{O}-\mathrm{O}, \mathrm{Q} \times \mathrm{P}$; $12 \mathrm{~B}-\mathrm{KB4}, \mathrm{Kt}-\mathrm{B} 3$, \&c.
(10) 11 O-O, P-B6; $1.2 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Kt6}$; $13 \mathrm{~B}-\mathrm{B4}, \mathrm{Kt}$-B4 +
(11) $15 \mathrm{Q}-\mathrm{Q3}, \mathrm{Q}-\mathrm{K}+4 ; 16 \mathrm{Kt} \mathrm{K} 4, \mathrm{Q} \times \mathrm{KP} ; 17 \mathrm{O}-0, \mathrm{~B}-\mathrm{Q} 3 ; 18 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Kt}:$ 19 QR-Ksq, R-Bsq; $20 \mathrm{R} \times \mathrm{R}, \mathrm{Kt} \times \mathrm{R} ; 21$ Q-QB3ch, K-B2; $22 \mathrm{R}-\mathrm{Bsqch}, \mathrm{K}-\mathrm{Ksq}$; 23 Q-Kt7, Q-K2; 24 Q-Kts to follow with B-Q3 and B-Kt6+ (Pierce v. Budden.)

SECTIONII.

Table 130.-THE STEINITZ GaMBIT.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 4 ; 2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3 ; 3 \mathrm{P}: \mathrm{KB} 4, \mathrm{P} \times \mathrm{P}$;
$4 \mathrm{P}-\mathrm{Q} 4, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$; $5 \mathrm{~K}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 4$.

	1	2	3	4	5
6	$\mathbf{P} \times \mathrm{P}$				
	B-KKt5ch		Q-K2ch(10)		
7	Kt-B3		K-B2		
	0-0.0 (1)		Q-R5ch		
8	$\mathrm{P} \times \mathrm{Kt}$		P-KKt3		
	$\overline{\mathrm{B}-\mathrm{QB4}}$		$\overline{\mathrm{P} \times \text { Pch }}$		
9	$\mathrm{P} \times \mathrm{Pch}$ (2)		K-Kt2 (dia.)		
	K-Ktsq		$\overline{\mathrm{Kt} \times \mathrm{P}}$	B-Q3	
10	Kt-Kt5 (3)	(dia.)	$\mathrm{P} \times \mathrm{P}$	Q-Ksqch(14)	$\mathrm{P} \times \mathrm{Kt}$
	Kt-B3	$\overline{\mathrm{B} \times \mathrm{Ktch}(6)}$	Q-Kt5	QKt-K2	$\overline{\mathrm{P} \times \mathrm{RP}}$
11	P-B3 (4)	$\mathrm{KtP} \times \mathrm{B}$	Q-Ksqch(11)	$\mathrm{P} \times \mathrm{P}$	KKt-K2
	KR-Ksqch	P-QR3	B-K2 (12)	$\overline{\mathrm{Q} \times \mathrm{QP}}$	B-R6ch
12	K-Q3	P-B3!	B-Q3	Kt - 3 (15)	K-B3
	Q-R4 (5)	$\overline{\mathrm{P} \times \mathrm{Kt}}$	K-Qsq	Q-Kt3	0.0 .0
13		Q-Q3 (7)	B-KB4	B-K3	$\mathrm{P} \times$ Pch
		Kt-B3	Kt-B4	Q \times P	K-Ktsq
14		B-Q2 (8)	Kt-B3 -	B-Q3	B-B4 -
		KR-Ksqch	B-Q3 -	B-QKt5	$\overline{\text { B-Kt5ch }}$
15		K-Qsq	(13)	B.Q4	
		P-Kt5 (9)		$\overline{\text { P-KB3 (16) }}$	

(1) If $7 \ldots$ QKt-K2; 8 P-Q6, \&c.
(2) Or 9 Q-Ksq. (L'hermet of Magdeburg.) If $9 \ldots, \mathrm{R}-\mathrm{Ksqch}$; $10 \mathrm{~K}-\mathrm{Q} 2, \mathrm{Q}-\mathrm{Qsq}$. (Steinitz plays $10 \mathrm{~K}-\mathrm{Q} 3$ and makes White give up his Queen for three pieces.) Mr. Wayte notes (if) 11 Q-R4, Kt-B3; $12 \mathrm{P} \times \mathrm{Pch}$, and $13 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B} \times \mathrm{Kt}+$. Mr. Ranken gives $9 \ldots, \mathrm{Q}-\mathrm{R} 4$; (if) $10 \mathrm{~K}-\mathrm{B} 2, \mathrm{R} \times \mathrm{P}$: : (if) $10 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3$ or $\mathrm{B} \times \mathrm{P}$.
(3) $10 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{B} 3$; $11 \mathrm{Q} \times$ Rch, $\mathrm{R} \times \mathrm{Q} ; 12 \mathrm{~B}-\mathrm{Q} 2, \mathrm{R}-\mathrm{Ksqch} ; 13 \mathrm{~K}-\mathrm{Qsq}$, Q-B7; $14 \mathrm{~K}-\mathrm{Bsq}, \mathrm{B} \times \mathrm{Kt}$; $15 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{KBP}$ and wins. (New York v. Philscolphia.)
(4) If 11 K-Q3 (Steinitz), Black can at least draw by B-B4ch; (ii) $12 \mathrm{~K}-\mathrm{B} 3$, Kt-K5ch; $13 \mathrm{~K}-\mathrm{Kt3}, \mathrm{Q}-\mathrm{B} 3$; $14 \mathrm{Q}-\mathrm{Ksq}$, KR-Ksq; $15 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B} \times \mathrm{P}+$. (Stsinitz叉. Shipley.) If $12 \mathrm{~K}-\mathrm{B} 4, \mathrm{~B}-\mathrm{K} 3 \mathrm{ch} ; 13 \mathrm{~K}-\mathrm{Q3}$, \&c.: or $13 \mathrm{~K} \times \mathrm{B}, \mathrm{P}-\mathrm{QR4}$; $14 \mathrm{Kt} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 4 \mathrm{ch} ; 15 \mathrm{Kt}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{Q} 2 \mathrm{ch} ; 16 \mathrm{~K}-\mathrm{Kt5}, \mathrm{Q} \times \mathrm{Q} ; 17 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \& \mathrm{c}$,
(5) With a strong attack. If here $12 \ldots, \mathrm{~B}-\mathrm{B} 4 \mathrm{ch}$; $13 \mathrm{~K}-\mathrm{B} 4, \mathrm{~B}-\mathrm{K} 3 \mathrm{ch} ; 14 \mathrm{~K} \times \mathrm{B}$, P-QR4; $15 \mathrm{Kt} \times \mathrm{P}$ (if Kt $\times \mathrm{Q}$ mate in two), Q-R4ch; $16 \mathrm{Kt}-\mathrm{K} 51 \mathrm{Kt} \mathrm{Q} 2 \mathrm{ch}$ (a); $17 \mathrm{~K}-\mathrm{Kt5}, \mathrm{Q} \times \mathrm{Q}$; $18 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{R} \times \mathrm{Kt}$; $19 \mathrm{~B} \times \mathrm{P}, \mathrm{Q} \times \mathrm{R} ; 20 \mathrm{~K}-\mathrm{Kt} 6$ and wins.
(a) He can recover the two pieces by $16 \ldots, \mathrm{~K} \times \mathrm{Kt}$, and if $17 \mathrm{Q} \times \mathrm{Q}, \mathrm{R}-\mathrm{Q} 4 \mathrm{ch}$, but would lose by Pawns: if $16 \ldots, \mathrm{Q} \times \mathrm{Q} ; 17 \mathrm{Kt}$-B6ch, \&c. (B. C. M., 1885, p. 53.)
(6) Analysed by Mr. Gossip. (C. P. C., 1882, pp. 61 and 287.)
(7) 13 Q-Kt3, or Q-Q2, or B-Q2 or P-R4 may be played. If $13 \mathrm{~K}-\mathrm{Q} 3, \mathrm{~B} \times \mathbf{P}$; $14 \mathrm{P} \times \mathrm{B}, \mathrm{R} \times \mathrm{Pch}$. (Rosenthal.)
(8) If $14 \mathrm{Q} \times \mathrm{KtP}, \mathrm{KR}-\mathrm{Ksqch}$; 15 K moves, $\mathrm{Q}-\mathrm{B} 7+$.
(9) $16 \mathrm{~K}-\mathrm{B} 2, \mathrm{Kt}-\mathrm{Q4}$; 17 R -Bsq (Steinitz), $\mathrm{P} \times \mathrm{P}$; $18 \mathrm{P} \times \mathrm{P}, \mathrm{R}-\mathrm{K} 3+$.
(10) Introduced by Rev. G. A. Macdonnell. If 7 K-B3, Q-R5, \&c. White may avoid this variation by $6 \mathrm{Kt}-\mathrm{B} 3$, (if) Q-K2; 7 P-K5. (Fraser.)
(11) $11 \mathrm{~B}-\mathrm{KB} 4, \mathrm{~B}-Q B 4$ (exchanging Queens here is bad); $12 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{Kt} \times \mathrm{Kt}$; $13 \mathrm{~B} \times$ Ktch, K-Qsq; $14 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{KB} 3$; $15 \mathrm{Q}-\mathrm{K} 2, \mathrm{~B}-\mathrm{Q} 2 ; 16$ QR-Ksq, Kt-K2; 17 P.Q6! (Burn v. Miniati.) Black replies 17 .., Kt-Q4! See B. C. M., 1888, p. 155.
(12) 11 .., K-Qsq ; 12 B-Q3, P-KKt4? ; 13 Kt-K4, P-KB3; 14 Q-B3, Kt-B4; $15 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 2$; $16 \mathrm{~B}-\mathrm{KB} 4+$.
(13) If $15 \mathrm{Kt}-\mathrm{K} 5, \mathrm{~B} \times \mathrm{Kt}$; $16 \mathrm{Q} \times \mathrm{B}$, Kt-Q3; $17 \mathrm{R}-\mathrm{R} 4, \mathrm{P}-\mathrm{B} 3$, \&c. (C. E. R.)
(14) 10 Q-K2ch, QKt-K2 ; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{R} 6 \mathrm{ch}$, \&c.
(15) $12 \mathrm{R}-\mathrm{R} 4, \mathrm{Q}-\mathrm{B} 3$; $13 \mathrm{Kt}-\mathrm{K} 4, \mathrm{Q}-\mathrm{Kt} 3$; $14 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{KB} 4$; $15 \mathrm{KKt} \cdot \mathrm{B3}$. (Steinitz.)
(16) R-QKtsq (or $R \times P$. C.E.R.), $B \times K t ; 17 B \times B, Q \times R P$; $18 \mathrm{R}-\mathrm{Kt5}$, \&c. Gossip gives White a won game.
(Col. 1.)

Aficr White's 10th move.
(Col. 3.)

After White's 9th move.

Table 131.-THE STEINITZ GAMBIT.

1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt} \cdot \mathrm{QB} 3 ; 3 \mathrm{P}-\mathrm{B} 4, \mathrm{P} \times \mathrm{P}(1)$; $4 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{Q} \cdot \mathrm{R} 5 \mathrm{ch}$; $5 \mathrm{~K}-\mathrm{K} 2$.

	6	7	8	9	10
5	P-Q4		$\overline{\text { P-Q3 (3) }}$	P-QKt3 (7)	
6	$\underline{\mathrm{Kt} \times \mathrm{P}}$	P-K5	Kt-B3	Kt-Kt5	Q-Q2 (10)
	B-KKt5ch	B-KKt5ch	B-Kt5	B-R3	P-KKt4
7	Kt-B3	Kt-B3	$\mathrm{B} \times \mathrm{P}$	P-R4	Kt-Q5
	0-0.0	0-0.0	$\overline{0.0-0 \quad(4)}$	$\overline{\mathrm{B} \times \mathrm{Ktch}(8)}$	$\overline{\mathrm{K}} \mathrm{Q} \mathrm{Q} q$
8	$\underline{\mathrm{B} \times \mathrm{P}} \quad$ (2)	$\underline{B} \times$	K-K3- (5)	$\mathrm{P} \times \mathrm{B}$	Kt-KB3(11)
8	$\overline{\text { P.B4+ }}$	P-B3	Q-R4- (6)	Q-R4ch	Q-R4
9		B-Kt3		Kt-B3	K-Qsq (12)
		Q-R4		Q×KtPch	B-KKt2
10		$\mathrm{P} \times \mathrm{P}$		K-B2	B-K2
		$\overline{\mathrm{Kt} \times \mathrm{BP}+}$		Q-KR4	Q-Kt3
11				$\mathrm{B} \times \mathrm{P}$	P-K5
				$\overline{\mathrm{Kt}-\mathrm{B} 3 \quad(9)}$	KKt-K2 -

(1) If $3 . ., \mathrm{B}-\mathrm{B} 4 ; 4 \mathrm{P} \times \mathrm{P} 1, \mathrm{~B} \times \mathrm{Kt}$; $5 \mathrm{R} \times \mathrm{B}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}$; $6 \mathrm{P}-\mathrm{KK} t 3, \mathrm{Q} \times \mathrm{RP}$; 7 R-Kt2, followed by Kt-Q5 and P-Q4+. (W. W.)
(2) 8 P-B3, P-B4; 9 Q-Q3, $\mathrm{P} \times \mathrm{P}$; $10 \mathrm{Q} \times \mathrm{P}$, P-KKt4; 11 B-Q2, B-Kt2 or Q-R4+.
(3) If $5 \ldots$ P-KKt4; $6 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{~K}-\mathrm{Qsq}$; $7 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Q}-\mathrm{R4}$; $8 \mathrm{~K}-\mathrm{B} 2, \mathrm{~B}-\mathrm{Kt2}$; 9 B-K2, or P-B3. (C. M., 1887.) A game Guest ${ }^{\text {® }}$. Bird runs:-6 Kt-B3, Q-R4; 7 Kt Q5, B-Kt2; 8 P-B3, Kt-B3; $9 \mathrm{Kt} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Qsq} ; 10 \mathrm{Kt} \times \mathrm{R}, \mathrm{Kt} \times \mathrm{KP}$; 11 Q-R4, R-Ksq; $12 \mathrm{~K}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{Kt3}$; $13 \mathrm{~K}-\mathrm{B} 4, \mathrm{KtPch}$; $14 \mathrm{~K} \times \mathrm{P}, \mathrm{Kt}$-Q3ch; $15 \mathrm{~K}-\mathrm{B} 5, \mathrm{Q}-\mathrm{K} 3$ and wins: if $16 \cdot \mathrm{Q}-\mathrm{Kt} 3$ (Handbuch) Kt-K5ch; $17 \mathrm{~K}-\mathrm{Kt5}, \mathrm{Kt} \times$ QPch and mates in two moves.
(4) $7 \ldots, \mathrm{~B} \times \mathrm{Ktch} ; 8 \mathrm{~K} \times \mathrm{B}$ (if $\mathrm{P} \times \mathrm{B} . \mathrm{Q} \times \mathrm{B}$; 9 Kt Q 5 and White can only gain R and P for B and Kt), Kt-B3; $9 \mathrm{~B}-\mathrm{QKt5}$. (Lipschütz v. Mackenzie.)
(5) 8 B-Kt3, Q-B3; 9 P-Q5, Kt-Q5ch, or $\mathrm{Kt}-\mathrm{K} 4=$. (C. E. R.)
(6) $8 \ldots, \mathrm{~B} \times \mathrm{Kt}$; $9 \mathrm{Q} \times \mathrm{B}, \mathrm{P}-\mathrm{B} 4$; $10 \mathrm{P}-\mathrm{Q} 5$. (Steinitz \vee. Winawer.)
(7) Played first at the Baden Congress, 1870, between Steinitz and Minckwitz.
(8) For 7 .., O-O-O, see Cols. 11-15: if $7 \ldots, \mathrm{Kt} \times \mathrm{Pch}$; $8 \mathrm{Q} \times \mathrm{Kt}$, P-QB3, \&c.
(9) If 12 P-K5, Kt-Q4; 13 B-Q2+.
(10) Mr. W. T. Pierce's variation. If now $6 \ldots, B-R 3 c h ; 7 \mathrm{~K}-\mathrm{Qsq}, \mathrm{B} \times \mathrm{B}$; 8 Kt-B3, \&c.
(11) If 8 P-KKt3, Q-K4chl; $9 \mathrm{~K}-\mathrm{Ksq}, \mathrm{Q}-\mathrm{Kt3}:$ if $9 \mathrm{~K}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{QR} 3 \mathrm{ch}$, \&c.
(12) If $9 \mathrm{~K}-\mathrm{B} 2, \mathrm{Q}-\mathrm{K} t 3$; $10 \mathrm{P}-\mathrm{K} 5, \mathrm{P}-\mathrm{K} t 5$; $11 \mathrm{Kt} \times \mathrm{KBP}, \mathrm{Q}-\mathrm{K} t 2$; $12 \mathrm{Kt}-\mathrm{K} \pm$, , Rt×QP. (C.E. R.)

Table 132.-THE STEINITZ GAMBIT.

1P-K4, P-K4; $2 \mathrm{Kt} \cdot \mathrm{QB} 3$, Kt.QB3; $3 \mathrm{P} \cdot \mathrm{B} 4, \mathrm{P} \times \mathrm{P}$; 4 P-Q4, Q-R5ch; $5 \mathrm{~K}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} \mathrm{Kt} 3$ (1); $6 \mathrm{Kt}-\mathrm{Kt} 5$, B-R 3 (2) ; 7 P-R4(3), 0-0-0; $8 \mathrm{Kt} \cdot \mathrm{B} 3, \mathrm{Q} \cdot \mathrm{K} 2$; $9 \mathrm{~K} \cdot \mathrm{~B} 2$, Kt.B3.

	11	12	18	14	15
10	Kt-Q6ch	$\mathrm{Kt} \times \mathrm{RPch}$		$B \times P$	P-K5
	$\overline{\mathrm{K}-\mathrm{Ktsq}}$	$\overline{\mathrm{K}-\mathrm{Kt2}}$		$\overline{\mathrm{Kt} \times \text { Pch }}$	Kt-Kt5ch
11	$\mathrm{B} \times \mathrm{B}$	$\mathrm{B} \times \mathrm{Bch}$		K-Ktsq	K-Ktsq
	$\overline{\mathrm{Kt}-\mathrm{Kt5ch}}$	$\overline{\mathrm{K} \times \mathrm{B}}$		$\overline{\mathrm{B} \times \mathrm{Kt}}$	$\overline{\mathrm{B} \times \mathrm{Kt}}$
12	K-Bsq (4)	$\mathrm{Kt} \times \mathrm{Kt}$	P-R5	$\mathrm{P} \times \mathrm{B}$!	$\mathrm{P} \times \mathrm{B}$
	Q $\times \mathrm{Kt}$	$\overline{\mathrm{Kt} \times \text { Pch }}$	Kt \times Pch	$\overline{\mathrm{Kt}}$-R4	$\overline{\text { QKt } \times \text { KP }}$
13	P-K5	K-Bsq	K-Bsq	P.B3	$\mathrm{P} \times \mathrm{Kt} \quad$ (8)
	Q-R3	$\overline{\mathrm{P} \times \mathrm{Kt}}$	$\overline{\mathrm{K} \times \mathrm{Kt}}$?	P-KB3	$\overline{\mathrm{Q} \times \mathrm{P}}$
14	Q-K2	$\mathrm{B} \times \mathrm{P}$	$\mathrm{P} \times$ Pdisch	Q-B2	P-B3
	P-B3+	$\overline{\text { P-KB4 }}$	$\overline{\mathrm{K} \times \mathrm{P}}$	P-Q4	B-B4ch
15		Q-Q3ch	Q-Q3 (6)	P-QKt4	Kt-Q4
		K-Kt2 (5)		$\overline{\mathrm{Kt}}$-Kt2 (7)	$\overline{\text { P-Kt4 + }}$

(1) First analysed by Mr. Fraser in C. P. C., 1879, p. 97. See Cols. 9-10. Against Tschigorin, Steinitz played 5 ..., Kt-B3. (B. C. M., 1892, p, 217.)
(2) $6 \ldots$ Kt-B3 (Martinez) ; 7 Kt KB3, Q-Kt5 ; $8 \mathrm{Kt} \times \mathrm{Pch}$, (P-K5 1), K-Qsq ; $9 \mathrm{Kt} \times \mathrm{R}, \mathrm{Kt} \times \mathrm{KP}$; $10 \mathrm{P}-\mathrm{QB4} 4, \mathrm{~B}-\mathrm{Kt5!}$; $11 \mathrm{Q}-\mathrm{R4} 4, \mathrm{Kt} \times \mathrm{QPch}$ and wins. (Morgan จ. Shipley.)
(3) Moves 6 and 7 may be transposed : 7 P-B4 is very inferior.
(4) 12 K-K2 seems feasible, followed by P-K5, P-R3, or R-Ksq, according to Elack's play. (C. E. R.)
(5) 16 R-Ksq, Q-Kt5 ; 17 P-QKt3, B-Q3 ; 18 B-Q2 I, Kt \times Bch ; $19 \mathrm{Kt} \times \mathrm{Kt}$, $\mathrm{B} \times \mathrm{RP}+$.
(6) The reply $15 \ldots$ Kt-Ktsq given in our first edition is weak against 16 R-R4. Mr. Fraser now suggests $15 \ldots, \mathrm{Kt}-\mathrm{Kt5}$, as good enough for equality.
(7) $16 \mathrm{R} \times \mathrm{P}, \mathrm{P}-\mathrm{Kt4}$; $17 \mathrm{~B}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{Kt2}$; 18 B-Q3, QKt-Q3+
(8) If $13 \mathrm{P}-\mathrm{R} 3, \mathrm{Kt}-\mathrm{K} 6: 14 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{Ktch}$, \&c.

SECTION III.

THE CENTRE AND DANISH GAMBI'TS.

1 P-K4. P.K4 2 P.Q4, P \times P.

THE Centre Gambit has received very little notice in the earlier works on the game. Though one form of it at least is as old as Stamma, who was a contemporary of Philidor, the latter makes no mention of it in his treatise. It is not to be found in the first three editions of the Handbuch, and not until Staunton introduced a brief notice of it in his Praxis (1860) does it appear to have been recognised in this country as a legitimate and separate book opening. The reason of this is probably that in many of its phases it is closely allied to the Scotch Opening, but the form contained in our Cols. 1 to 5 has little affinity with that début and was only resuscitated in modern times at the Berlin Congress of 1881. The general advantages of the Centre Gambit are that it cannot like other gambits be safely refused; Black is practically compelled to take the Pawn. Then too, by at once opening scope for action to all White's pieces save his Rooks, it yields a rapid development. Further, in the form given in Cols. 1 to 5 the White Queen at K3 prevents the effectual advance of Black's Queen's Pawn, and the posting of his Bishop at QB4.

The Danish or Scandinavian Gambit is a graft upon the Centre by the sacrifice of a second Pawn, and is so called because it was chiefly practised by Copenhagen players and by the Swedish player Herr Lindehn. The Prussian Master, Von der Lasa, has published a valuable analysis of it. Though the sacrifice of the Pawns is not sound, it yields a strong attack, and often easily trips up those players who are unacquainted with the proper defence.

Table 133.-THE CENTRE GAMBIT.
$1 \mathrm{P}-\mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ; 2 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 8 \mathrm{Q} \times \mathrm{P}$, Kt-QB8.

	1	2	8	4	5
4	Q-K3 (1)				
	B-Kt5ch (2)		B-K2	P-KKt3	$\overline{\text { P-QKt3 }}$
5	P-B3		B-Q2 (6)	B-Q2 (7)	B-Q2 (9)
	B-R4		Kt-B3	B-Kt2	B-Kt2
6	Q-Kt3!		Kt-QB3	Kt-QB3	Kt-QB3
	Q-B3 (3)		P-Q3	P-Q3	B-B4
7	B-KB4 (4)	P-KB4	B-K2	P-KB4	Q-Kt3
	P-Q3	P-Q3	O-0	KKt-K2 (8)	Kt-B3
8	Kt-Q2 (5)	B-Q3	0.0.0-	0.0.0	0.0.0+
	B-K3	B-Kt3	B-K3 -	B-K3	
9	KKt-B3	Kt-B3		Kt-B3	
	Q-Kt3-	KKt-K2		Q-Q2	
10		Kt-R3 -		Kt-Q5	
		B-Q2 -		O-0-0	
11				B-B3+	

(1) Introduced 1881 by W. Paulsen, but the line of play dates from Stamma, 1745.
(2) $4 \ldots$ P-B4 (Philip); $5 \mathrm{P} \times$ Pdisch, $\mathrm{B}-\mathrm{K} 2$ (if $5 \ldots$, K-B2; $6 \mathrm{Kt}-\mathrm{KB} 3$); 6-B-Q3t: if 6 B-B4 in this or previous variation, P-Q4 with a good game. If $4 \ldots, Q-B 3$; $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}-\mathrm{Q} 5$; $6 \mathrm{~B}-\mathrm{Q} 3, \mathrm{~B}-\mathrm{B4} ; 7 \mathrm{Q}-\mathrm{Kt} 3$ (Winawer v . Tschigorin), or $\mathrm{Kt}-\mathrm{Q5}$. (C. E. R.)
(3) If $6 \ldots, \mathrm{Kt}-\mathrm{B} 3$; 7 B-Q3 !: if $7 \mathrm{Q} \times \mathrm{KtP}, \mathrm{R}-\mathrm{KKtsq}$; B Q-R6, Q-K2; 9 P-B3, P-Q4: if $7 \mathrm{P}-\mathrm{K} 5, \mathrm{Q}-\mathrm{K} 2$: if $7 \mathrm{~B}-\mathrm{KKt} 5, \mathrm{Kt} \times \mathrm{P}$; $8 \mathrm{Q}-\mathrm{K} 3, \mathrm{Q} \times \mathrm{B}$. (Pollock.)
(4) Or 7 Kt-QR3, P-Q3; 8 B-QKt5, B-Q2; $9 \mathrm{Kt}-\mathrm{K} 2$, KKt-K2; $10 \mathrm{Kt}-\mathrm{QB4}$, B-Kt3: 11 P-QR4, P-KR3; 12 0-0, B-K3. (Hull v. Glasgow.)
(5) Or 8 B-QKt5. (Winawer v. Riemann.)
(6) If $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}-\mathrm{QKt5}$ and 6 .., P-Q4. If $5 \mathrm{Q}-\mathrm{KKt} 3$, Kt -B3!.
(7) Or $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{~B}-\mathrm{Kt} 2($ or Kt-Kt5. W. W.) ; 6Kt-Q5. Or 5 P-KB4.
(8) If $7 \ldots$ Kt-B3; 8 B-K2 I. This Col. is Tschigorin v. Maokenzie.
(9) Mr. Potter gives 5 B-Kt5.

T3BLE 184.-THE CENTRE GAMBIT.

	6	7	8	9	10
8	$\mathbf{Q} \times \mathbf{P}$	Q-Qsq?	Q-R4	Q-B4	Rt-KB3
	Kt-QB3				B-Kt5ch(18)
4	Q-K3				B-Q2
	Kt-KB3	Kt-B3	$\overline{\text { B-B4I (8) }}$	$\overline{\mathrm{Kt}-\mathrm{B} 3 ~(12)}$	Q-K2
5	P-K5 (1)	B-Q3 (5)	Kt-KB3 (9)	B-Kt5	B.Q3
	$\overline{\mathrm{Kt}-\mathrm{KKt5}}$ (2)	P-Q4	P-Q3	B-K2	Kt-QB3
6	Q-K4	$\mathrm{P} \times \mathrm{P}$	B-QB4 (10)	Kt-QB3	0.0
	P-Q4 (3)	$\overline{\mathrm{Q} \times \mathrm{P}} \quad$ (6)	Kt-B3	P-Q3	$\overline{\mathrm{B} \times \mathrm{B}}$
7	$\underline{\mathrm{P} \times \text { Pdisch }}$	Kt-KB3	Kt-B3 (11)	Kt-B3	QKt \times B
	B-K3	B-Kİt5	$\overline{\mathrm{B}-\mathrm{Q} 2+}$	B-K3	P-Q3
8	B-K2 (4)	QKt-Q2		Kt-Q5	B-Kt5
	$\overline{\mathrm{Kt}} \mathrm{B} 3$	0-0.0		$\overline{\mathrm{B} \times \mathrm{Kt}}$	B-Q2 (14)
9	$\mathrm{P} \times \mathrm{P}$	0.0		$\mathrm{P} \times \mathrm{B}$	$\mathrm{B} \times \mathrm{Kt}$
	Q \times P	B-Kt5		$\overline{\mathrm{Kt}} \mathrm{K} 4$	$\overline{\mathrm{B} \times \mathrm{B}}$
10	Q-QR4	B-K2 (7)		$\underline{\mathrm{K}} \times \mathrm{K}$ t	$\underline{K} \times \mathbf{P}$
	B-QB4	$\overline{\mathrm{KR}-\mathrm{Ksq}}+$		$\overline{\mathbf{P} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt}}$-R8
11	Kt-QB3 -			0.0.0-	Q-R5 -
	0-0 -			-	O-0

(1) Or 5 B-K2, Q-K2 combined with Kt-QKt5 and.P-Q4. 5 B-B4 leads into Col. 11. If 5 B-Q3, Bch; 6 P-QB3, B-R4 followed by $\mathrm{O}-\mathrm{O}$ and R-Ksq+. Compare Col. 3, p. 31.
(2) 5 .., Kt-Q4: 6 Q-K4, Kt-Kt3; 7 Kt-KB3, B-K2; 8 Kt-B3, O-O; 9 B-Q3, P-Kt3; 10 B-KR6, R-Ksq; 11 O-O-0, P-Q3=. (C. E. R.)
(3) An invention of Prof. Berger, of Gratz.
(4) Or $8 \mathrm{~B}-\mathrm{QKt} 5, \mathrm{Q} \times \mathrm{P}+$. If $8 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{Q} 8 \mathrm{ch} ; 9 \mathrm{~K} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{Pch}$, \&c. (Berger.)
(5) If $5 \mathrm{Kt}_{\mathrm{r}} \mathrm{QB} 3, \mathrm{~B}-\mathrm{Kt5}$; $6 \mathrm{~B}-\mathrm{Q} 2, \mathrm{O}-\mathrm{O}$; $7 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P}-\mathrm{Q4}, \& \mathrm{c}$.
(6) Or $6 \ldots, \mathrm{Kt} \times \mathrm{Pl}$. After $6 \ldots, \mathrm{Q} \times \mathrm{P}$; $7 \mathrm{Q}-\mathrm{B} 3$ (C. E. R.) may follow.
(7) If 10 P-KR3, P-KR4. (C. E. R.)
(8) 4 B-Kt5ch; 5 P-B3!, B-B4; 6 Kt-B3, P-Q3; 7 B-KKt5, Kt-B3!; 8 QKt-Q2, B-Q2; 9 Q-B2, P-KR3 =.
(9) If $5 \mathrm{~B}-\mathrm{QB} 4, \mathrm{Kt}-\mathrm{B} 3$.
(10) 6 B-Q3 is perhaps better. If 6 B-QKt5, B-Q2, followed by P-QR3.
(11) Or 7 O-O, B-Q2; 8 Q-Kt3, O-O or Kt-QR4.
(12) If $4 \ldots$ P-QKt4; $5 \mathrm{Q} \times \mathrm{KtP}$?, R-Ktsq, $6 \mathrm{Q}-\mathrm{Q} 3$. If $4 \ldots$ P-Q4; $5 \mathrm{P} \times \mathrm{P}$, Kt-Kt5; 6 B-Q2, Kt×QP. If $4 \ldots, \mathrm{P}-\mathrm{Q} 3$; $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{KKt3}$; $6 \mathrm{~B}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{Kt2}$; 7 P-B4, Kt-B3; 8 Kt -B3 or $\mathrm{O}-\mathrm{O}-\mathrm{O}, \mathrm{B}-\mathrm{K} 3=$. Move $4 \mathrm{Q}-\mathrm{B} 4$ was introduced by Mr. J. E. Hall, of Bradford.
(13) 3 .., P-Q3 transposes into the Philidor Defence, and Kt-QB3, or B-B4, into the Scotch Game. If $3 \ldots, \mathrm{Kt}-\mathrm{KB3}$; 4 B-QB41 or P-K51. If $3 \ldots$..., P-QB4; 4 B:QB4, P-QKt4; 5 B-Q5. See Table 135, note 2.
(14) If $8 \ldots$ Q.B3; 9 P-K5, $\mathrm{P} \times \mathrm{P}$; $10 \mathrm{Kt} \times \mathrm{KP}, \mathrm{Kt}$ - 2211 QKt-B3, B.B4. (rraser.)

Table 185.-THE CENTRE GAMBIT.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 4 ; 2 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} .
$$

	11	12	18	14	15
8	B-QB4 (1)				
	Kt-KB3 (2)		B-Kt5ch	B-B4	
4	Q \times P (3)		P-B3	$\mathrm{B} \times \mathrm{Pch}$	
	Kt-B3		$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{K} \times \mathrm{B}}$	
5	Q-K3		$\mathrm{P} \times \mathrm{P} \quad$ (6)	Q-R5ch	
	B-Kt5ch		Q-B3	P-KKt3	
6	P-B3		Q-Kt3 (7)	$Q \times B$	
	B-R4		B-B4	$\overline{\mathrm{Kt}} \mathrm{QB3} 3$ (8)	
7	Kt -B9 (dia.)		Kt-B3	Kt-K2 (9)	Kt-KB3(dia)
	B-Kt3	0-0	P-Q3	P-Q3	$\overline{\mathrm{K}} \mathrm{t}-\mathrm{B} 8$
8	Q-B4	0.0	O-0	Q-B4ch	B-Kt5 (18)
	O-0	R-Ksq	Kt-B3	B-K3	R-Ksq
9	0.0	Kt-Kt5	Kt-R3	Q:Q3 (10)	QKt-Q2
	P-Q3	$\overline{\text { P-Q4 (4) }}$	$\overline{\text { B-Kt3 }}$	P; Q4	P-Q3
10	B-K3	R-Qsq	or Q2 -	$\underline{P \times P \quad(11)}$	Q-B4ch
	$\overline{B \times B}$	P-KR3		Q \times P	P-Q4
11	Q \times B	$\mathrm{B} \times \mathrm{P}$		Q-KKt3(12)	Q-Kt3 (14)
	Kt-KKt5	$\overline{\mathrm{P} \times \mathrm{Kt}}{ }^{(5)}$		R-QBsq	K-Kt2+
12	Q-B4 -	$\mathrm{B} \times$ Pch		B-B4	(15)
	EKt-K4 -	$\overline{\mathrm{K} \times \mathrm{B}}$		Kt-Kt5	
		$\mathbf{R} \times \mathrm{Q}$		Kt-R31	
18		$\overline{\mathrm{Kt} \times \mathrm{R}+}$		$\overline{\mathrm{Kt}}$-KB3 or P	Q6+

(1) If 3 P-K5, Kt-QB3; 4 P-KB4, B-B4; 5 Kt-KB3, P-Q3; 6 B-Q3, Kt-R3; 7 O-O, Kt-B4; 8 Q-K2, Kt-K6+. If 3 P-KB4, B-B4; 4 Kt-KB3, Kt-QB3; 5 P-QR3, P-QR4; 6 B-Q3, Kt-KB3; 7 P-KR3, P-Q4+.
(2) If $3 \ldots$ P-QB4; 4 P-QB3 (a), Kt-QB3; 5 Kt-B3, Q-B3 (b) ; 6 O.O, $\mathrm{P}-\mathrm{Q} 3 ; 7 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{~B}-\mathrm{QKt5}, \mathrm{~B}-\mathrm{Q} 2$. (Praxis.) $3 \ldots, \mathrm{Kt}-\mathrm{QB} 3$ resolves into the Scotch Game, and 3 .., P-Q3 into a form of the Philidor Defence, where White may continue with $4 \mathrm{Kt}-\mathrm{KB3}$. (p. 40, Note 7.)
(a) $4 \mathrm{Kt} \mathrm{KB} 3, \mathrm{P}-\mathrm{Q} 3$; 5 O-0, Kt-QB3 ; 6 P-QB3, P-Q6; 7 R-Ksq, B-Kt5 ; 8 P-K5, Kt \times P; $9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Q}$; $10 \mathrm{~B}-\mathrm{QKt} 5 \mathrm{ch}, \mathrm{K}-\mathrm{K} 2$; $11 \mathrm{~B}-\mathrm{K} t 5 \mathrm{ch}, \mathrm{P}-\mathrm{B} 3$; $12 \mathrm{Kt}-\mathrm{K} t 6 \mathrm{disch}, \mathrm{K}-\mathrm{B} 2$; $13 \mathrm{Kt} \times \mathrm{R}$ mate. (Potter v. Matthews.)
(b) $5 \ldots, \mathrm{P}-\mathrm{KB4}!(\mathrm{P} \times \mathrm{P}$ is inferior); $6 \mathrm{Q}-\mathrm{Kt3}, \mathrm{Kt}$-R4; 7 B-B7ch, K-K2: 3 B-Kt5ch, Kt-KB3; 9 Q-Q5, \&c. (Salvioli.)
(3) For 4 P.K5 and 4 Kt-KB3, see.Table 75, Cols. $4-5$.

Kt-K4.

(5) Or, $11 \ldots, \mathrm{Kt} \times \mathrm{B}$; $12 \mathrm{R} \times \mathrm{Kt}, \mathrm{Q}-\mathrm{K} 2$, \&c.: preferred bý Mr. Wayte.
(6) If $5 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; $6 \mathrm{Q}-\mathrm{K} t 3 \mathrm{ch}, \mathrm{P}-\mathrm{Q} 4$; $7 \mathrm{Q} \times \mathrm{B}, \mathrm{P} \times \mathrm{KtP}$; $8 \mathrm{~B} \times \mathrm{P}_{\mathrm{z}}$ Et-KB3; 9 P-K5, R-Ksq+.
(7) If $6 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{R}$; $7 \mathrm{Q}-\mathrm{Kt3}, \mathrm{P}-\mathrm{Q} 4 \mathrm{I}$; $8 \mathrm{~B} \times \mathrm{P}, \mathrm{B}-\mathrm{K} 3$; $9 \mathrm{~B} \times \mathrm{B}, \mathrm{P} \times \mathrm{B}$; 10 Q \times Pch, Kt-K2, \& ${ }^{\prime}$.
(8) See Diagram. 6 , „, P-Q4 is inferior.
(9) If 7 B-Kt5, Kt-B3; 8 Kt-Q2, P-Q3; 9 Q-B4ch, B-K3; 10 Q-R4; P-QR3: 11 KKt-B3, P-Kt4; 12 Q-R3, Q-Q2, \&c.
(10) If 9 Q-R4, Q-B3; $100-0$ or $\mathrm{Kt}-\mathrm{Q} 2, \mathrm{P}-\mathrm{Q4}, \& \mathrm{c}$. (C. E. R.)
(11). If $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{Kt} \times \mathrm{B}$ or $\mathrm{Kt}, \mathrm{P} \times \mathrm{Q} ; 12 \mathrm{Kt} \times \mathrm{Qch}, \mathrm{R} \times \mathrm{Kt}+\mathrm{t}$,
(12) $11 \mathrm{Kt}-\mathrm{B} 4$ is mot by Q-B5.
(13) If 8 P-K5, P-Q3; $9 \mathrm{P} \times \mathrm{P}, \mathrm{R}-\mathrm{Ksqch}$, \& C : or if 8 O.O, P-Q3; 9 Q.B4ah, P-Q4.
(14) If $11 \mathrm{~B} \times \mathrm{Kt}, \mathrm{K} \times \mathrm{B}$; or if $11 \mathrm{Q}-\mathrm{Q} 3$, then B-B4.
(15) If $11 \ldots, \mathrm{Kt} \times \mathrm{P}$; $12 \mathrm{~B} \times \mathrm{Q}, \mathrm{Kt}$-B4disch; $13 \mathrm{~K}-\mathrm{Qsq}, \mathrm{Kt} \times \mathrm{Q}$; $14 \mathrm{Kt} \times \mathrm{K} \mathrm{K}_{\mathrm{t}}$ R×B; $15 \mathrm{KKt} \times \mathrm{P}$.
(Col. 11.)

After White's 7th mote.
(Col. 14.)

After Black's 6th move.

SECTION IV.

Table 136.-THE DANISH GAMBIT.
1 P.R4, P-K4; $2 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{P} \cdot \mathrm{QB} 3$ (1).
1
2
3
$\overline{\mathrm{P} \times \mathrm{P} \quad(2)}$
B-QB4
Kt-KB3
$\overline{\mathrm{P} \times \mathrm{P} \quad(6)}$
$5 \frac{\mathrm{Kt} \times \mathrm{P}}{\mathrm{B}-\mathrm{Kt} 5}$
$6 \frac{\mathrm{Kt-K2} \quad \text { (3) }}{0.0}$
$\frac{\mathrm{P} \cdot \mathrm{K} 5}{\mathrm{P} \cdot \mathrm{Q} 4} \frac{\mathrm{QB} \times \mathrm{P}}{\mathrm{Kt}-\mathrm{KB} 3}$
P.K5
$\overline{\mathrm{P} \cdot \mathrm{Q4}+(4)}$
8

9

10
$\frac{0.0 .0 \mathrm{ch}}{\mathrm{B} \cdot \mathrm{Q} 6+}$
11
$\frac{\mathrm{Kt} \times \mathrm{P} \quad \text { (5) }}{\mathrm{P} \times \mathrm{B}}$
$\frac{\text { Kt-QB3 }}{\text { B-Kt5 (7) }} \frac{\text { P-K5 } \quad \text { (9) }}{\text { B-Kt5ch }}$
$\mathrm{Q} \times \mathrm{Qch} \quad \mathrm{Kt}-\mathrm{K} 2 \quad \mathrm{~K}-\mathrm{Bsq}$ (10)

8
$\frac{\mathrm{P} \times \mathrm{Kt}}{\mathrm{P} \times \mathrm{P}}$
$\frac{0.0}{\mathrm{Kt} \times \mathrm{Kt}}$
$\frac{\mathrm{P} \times \mathrm{Kt}}{\mathrm{P} \times \mathrm{B}} \quad \frac{\mathrm{Q}-\mathrm{R} 4 \operatorname{ch}(11)}{\mathrm{KKt}-\mathrm{Q} 2}$
B-B4
$\frac{K t \times K t}{B \times K t}$
$\frac{\mathrm{Q} \cdot \mathrm{R} 4 \mathrm{ch}}{\mathrm{Kt}-\mathrm{B} 3}$
$\frac{\mathrm{B} \times \mathrm{P}}{\mathrm{Q}-\mathrm{K} 2}$

12

18

3
4

SECTIONV.

Table 137.-THE FROM GAMBIT.
1 P-KB4, P-K4; $2 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q}$ 3; $3 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; 4 Kt-KB3.

	1	2	8	4	5
4	$\overline{\mathrm{Kt}} \mathrm{KR} 3$ (1)				$\overline{\mathrm{Kt}-\mathrm{KB3}}$
5	P.Q4 (2)	P-Q3		P.KK68	P-Q4
	Kt-Kt5	$\overline{\mathrm{K}}$-Kt5		$\overline{\mathrm{Kt} \text {-Kt5 }}$	Kt-B3
6	B-Kt5	P-B3	B-Kt5	P-Q3	B-Kt5
	P-KB3	$\overline{\mathrm{Kt}-\mathrm{QB} 3}$ (5)	P-KB3	$\overline{\mathrm{Kt} \times \mathrm{P}}$	B-KKt5
7	B-R4	Q-R4	B-Bsq	$\mathrm{Kt} \times \mathrm{Kt}$	P-K3
	P-KKt4	0.0	P-QB3	B \times Pch	Q-Q2
8	P-KR3 ! (3)	B-Kt5	P-KKt3	K-Q2	$\underline{B} \times \mathrm{Kt}$
	Kt-K6	P-KB3	Q-B2	Q-R5	P×B
9	Q-Q3	B-Q2	B-R3	P-K3	B-Kt5
	B-B5	$\overline{\mathrm{R}-\mathrm{K} q} \mathrm{q}$	Kt×P (6)	P-KR4 (8)	0.0 .0
10	P-KKt4	P-K4	$\underline{\mathrm{R} \times \mathrm{Kt}}$	Q-B3	P-Q5
	$\overline{\mathrm{Kt} \text {-B3 (4) }}$	P-B4	B \times Pch	Kt-B3	Q-K2 (9)
11	P-B3	B-Kt5	K-Bsq	P-Q4	
	Kt-K2	B-K2	$\overline{\mathrm{B} \times \mathrm{R}}$	R-R3	
12	B-B2	$B \times B$	$B \times B$	Kt-QB3	
	QKt-Q4	$\overline{\mathbf{Q} \times \mathrm{B}}$	Q \times B	B-K3	
13	P-B4	QKt-Q2	$\underline{\mathrm{Kt} \times \mathrm{B} \quad(7)}$	$\underline{\text { Q-Kt2 }}+$	
	$\overline{\mathrm{Kt} \text {-QKt5 }}+$	$\overline{\mathrm{Kt}} \mathrm{K} 6+$			

(1) For transpositions see introduction p. 220. Wormald gives 4 .., P-KKt4 6 P-Q3. This defence is approved by Mason. (B. C. M., 1892, p. 438.)
(2). Or 5 P-K3 ?, Kt-Kt5; 6 P-KKt3!, Kt \times RP ; $7 \mathrm{R} \times \mathrm{Kt}, \mathrm{B} \times$ Pch; 8 R-B2, B-Kt5; 9 B-K2, Kt-B3, \&c. The Col. is Soerensen v. From. If 5 P-K4 ?, Kt-Kt5 6 Q-K2, Kt-QB3; $7 \mathrm{P}-\mathrm{Q} 4, \mathrm{~B} \times \mathrm{P}$; $8 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}+$.
(3) If $8 \mathrm{~B}-\mathrm{B} 2, \mathrm{Kt} \times \mathrm{B}$; $9 \mathrm{~K} \times \mathrm{Kt}, \mathrm{P}-\mathrm{Kt5}$; $10 \mathrm{Kt}-\mathrm{Ksq}, \mathrm{B} \times \mathrm{P}$ (C. M.) or P-KB4 (Handbuch).
(4) $10 \ldots, \mathrm{P} \times \mathrm{B}$?; $11 \mathrm{Q}-\mathrm{K} 4 \mathrm{ch}, \mathrm{Q}-\mathrm{K} 2$; $12 \mathrm{Q} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{Pch} ; 13 \mathrm{~K}-\mathrm{Qsq}, \mathrm{Kt} \times \mathrm{R}$.
(5) Or $6 \ldots, \mathrm{O}-\mathrm{O}$. If $6 \ldots$, Kt or $\mathrm{B} \times \mathrm{P}$; 7 Q -R4ch and 8 Q -K4ch.
(6) Or $9 \ldots, \mathrm{~B} \times \mathrm{Pch}$; $10 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Pch}$; $11 \mathrm{~K}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{B} 7$; $12 \mathrm{Q}-\mathrm{Ksq}, \mathrm{B} \times \mathrm{B}$ $13 \mathrm{R} \times \mathrm{B}, \mathrm{Kt}-\mathrm{K} 5 \mathrm{ch}$, \&c.
(7) $13 \ldots$, Q-R6ch; 14 K-Ktsq, Q-Kt6ch; $15 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Kt}-\mathrm{Q} 2$: advantage doubtful.
(8) If 9 .., Kt-B3; $10 \mathrm{~B}-\mathrm{Kt2}$, (if) $\mathrm{B} \times \mathrm{Kt}$; $11 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{B}$; $12 \mathrm{Q}-\mathrm{K} 2+$ (C. E. R.)
(9) Continued $11 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times$ Pch; $12 \mathrm{Q}-\mathrm{K} 2, \mathrm{Q}-\mathrm{B} 8 \mathrm{ch} ; 13$ Q-Qsq, QR-Ksqch $14 \mathrm{~B} \times \mathrm{R}, \mathrm{R} \times$ Bch; $15 \mathrm{~K}-\mathrm{B} 2, \mathrm{Q}-\mathrm{K} 6 \mathrm{ch} ; 16 \mathrm{~K}-\mathrm{Bsq}, \mathrm{B} \times \mathrm{Kt}$; $17 \mathrm{P} \times \mathrm{B}, \mathrm{B}-\mathrm{Bs}$ 18 K-Kt2, R-Ktsqqch+. (Bird v. Steinitz.)

SECTIONVI.

Table 138.-THE BLACKMAR GAMBIT:
1P-Q4. P-Q4; $2 \mathrm{P}-\mathrm{K} 4, \mathrm{P} \times \mathrm{P}$; 3 P-KB3, $\mathrm{P} \times \mathrm{P}$ (1); $4 \mathrm{Kt} \times \mathrm{P}$.

	1	2	3	4	5
4	P-K3	$\overline{\mathrm{B}} \cdot \overline{\mathrm{B} 4}$		B-Kt5	
5	B-Q3	P-B3		P.B3	B.QB4
	Kt-KB3	P-K3		P-QB3 (5)	P-K3
6	P-B3	B-QB4	B-K2	B-Q3	0.0
	P-QKt3 (2)	B-K2 (3)	P-K4?	P-K3	Kt-KB3
7	B-K3	0.0	$\mathrm{Kt} \times \mathrm{P}$	0.0	Kt -B3
	B-Kt2	Kt-KB3	$\overline{\mathrm{B} \times \mathrm{Kt}}$	Kt-B3	B-Q3
8	QKt-Q2	QKt-Q2	$\mathrm{R} \times \mathrm{B}$	QKt-Q2	B-K3
	QKt-Q2!	P-B3	Q-R5ch	B-Q3	QKt-Q2
9	Q-K2	$\underline{\mathrm{Kt} \mathrm{K} 5+(4)}$	P-KKt3	Q-Ksq	Q-K2
	B-Q3		Q-K5	$\overline{\mathrm{B} \times \mathrm{Kt}}$ (6)	$\overline{\mathrm{P}-\mathrm{B} 3+(7)}$
10	0.0.0		0.0	$\mathrm{Kt} \times \mathrm{B}$	
	Q-K2+		Q \times R	QKt-Q2	
11			Q-Kt3 +	B-K3	
				Q-K2 +	

(1) Or 3 .., P.K3 or $4!$ (Maurian.) After 3 Kt-QB3, P-KB4!
(2) If 6 .., B-Q3; 7 O-0, Kt-B3 (or QKt-Q2, thence to Bsq and Kt3. C. E. R.) ; 8 QKt-Q2, O-O (P-KR3!) ; $9 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{P}-\mathrm{KR} 3$; $10 \mathrm{R} \times \mathrm{Kt}$, (if) $\mathrm{P} \times \mathrm{R}$; $11 \mathrm{Kt}-\mathrm{R} 7$, R-Ksq or P-B4; 12 Q-R5 with a strong attack: if $10 \ldots, \mathrm{Q} \times \mathrm{R}$; 11 QKt-K4, Q-K2; $12 \mathrm{Q}-\mathrm{R} 5, \mathrm{~B}-\mathrm{Q} 2$; $13 \mathrm{Kt}-\mathrm{R} 7, \mathrm{~K} \times \mathrm{Kt} ; 14 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \& \mathrm{c}$. : if $10 \ldots, \mathrm{P} \times \mathrm{Kt} ; 11 \mathrm{Q}-\mathrm{R} 5+$. A game Blackburne v. Farrar runs: $6 \ldots$ B-K2; 7 O-O, Kt-B3; 8 QKt-Q2, P-KR3; $9 \mathrm{Kt}-\mathrm{K} 4, \mathrm{O}-\mathrm{O}$? ; $10 \mathrm{KKt}-\mathrm{Kt5}, \mathrm{P} \times \mathrm{Kt}$; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 2$; $12 \mathrm{R} \times \mathrm{Kt}_{\text {, }}$ $B \times R ; 13$ Q-R5, R-Ksq; 14 B-R7ch and mates next move.
(3) Or $6 \ldots$, B-Q3 and Kt-Q2! (C. E. R.)
(4) Threatening $R \times B$: 9 Kt-Kt5 may also be played. The Col. is continued 9 .., B-Kt3; 10 QKt-B3, QKt-Q2: 11 Q-K2, B-R4; 12 Q-Ksq, B \times Kt: $13 \mathrm{Kt} \times \mathrm{KBP} 1$ (Blackmar v. Atkinson.)
(5) 5 .., P-K4; 6 Q-R4ch, B-Q2; 7 Q-Kt3, P-K5; 8 Kt-Kt5, Q-B3; 9 B-QB4, Kt-KR3; 10 R -Bsq+. (Blackmar v. Labatt.)
(6) Or $9 \ldots$ QKt-Q21 (C. E. R.)
(7) Another game runs 9 .., Kt-Kt3; $10 \mathrm{~B} \cdot \mathrm{Kt3}, \mathrm{P}-\mathrm{B} 3$; $11 \mathrm{~B}-\mathrm{B} 2, \mathrm{Q}-\mathrm{B} 2$, \& ${ }^{\text {c. }}$.

SECTIONVII.

Table 189.-THE CENTRE COUNTER GAMBIT. 1 P-K4, P-Q4.

	1	2	3	4	5
2	$\mathrm{P} \times \mathrm{P}$				
	$\overline{Q \times P}$				Kt-KB3
3	Kt-QB3 (1)				P-Q4! (9)
	Q-Qsq	$\overline{\text { Q-QR4 }}$		Q-K4ch (8)	$\overline{\mathrm{Kt} \times \mathrm{P}} \mathbf{(1 0)}$
4	P-Q4	P-Q4 (3)		B-K2	P-QB4
	Kt-KB3	Kt-KB3 (4)	P-K4	P-QB3	Kt-KB3
5	B-K3	B-Q3	$\underline{\mathrm{P} \times \mathrm{P}}$ (6)	Kt-B3	Kt-QD3
	$\overline{\mathrm{Kt} \text {-B8 }}$ (2)	Kt-B3	Q \times Pch	Q-B2	B-B4
6	'B-QKt5	KKt-K2	B-K2	P-Q4+	Kt-B3
	B-Q2	B-Kt5 (5)	$\overline{\text { B-QKt5 (7) }}$	Kt-B3	P-K3
7	Kt-B3	P-B3			B-K3
	P-K3	B-R4			B-QKt5
8	0.0	$0 \cdot 0$			Q-R4ch !
	B-Q3	P-K3			Kt-B3
9	Q-K2 -	P-K3 -			Kt-K5
	$0.0-$	B-Kt3 -			$\overline{0.0 \quad(11)}$

(1) If 3 P-Q4, Q-K5ch; $4 \mathrm{~B}-\mathrm{K} 3, \mathrm{~B}-\mathrm{B4}$ (if P-K4, $5 \mathrm{Kt}-\mathrm{Q} 2$) ; $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q} \times$ BP; $6 \mathrm{Q} \times \mathrm{Q}, \mathrm{B} \times \mathrm{Q} ; 7 \mathrm{R}$-Bsq, B-B4; $8 \mathrm{Kt}-\mathrm{Q} 5$, \&c.
(2) Or 5 .., P-K3; 6 Kt-B3, B-Kt5; 7 B-KKt5. Or 5 .., B-B4. (C. E. R.)
(3) If 4 Kt-B3, P-K4? (B-Kt5; 5 P-Q4, P-QB3, \&c.); 5 B-Kt5ch (a), P-B3 (b) 6 B-B4 or K2;'B-KB4; 7 O-O, Kt-Q2; 8 R-Ksq, P-B3; 9 Kt-KR4+.
(a) 5 B-B4, Kt-QB3; 6 O-O, B-K2; 7 R.Ksq, Kt-KB3; 8 P-Q4, P \times P. (W.W.)
(b) 5 .., B-Q2; 6 Q-K2, P-KB3; $70-0, \mathrm{~B}-\mathrm{Q} 3$; P-Q4+. (C. M.)
(4) Or 4 ... P-QB3; 5 Kt -B3 (if B-Q2, Q-B2), B-Kt5; $6 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Kt}-\mathrm{Q} 2$ or P-K3, \&c. Or 4 .., P-KKt3; 5 B-K3, B-Kt2; 6 Q-Q2+. (Potter.)
(5) Or $6 \ldots$, P-K4 1 (C.E.R.)
(6) Or 5 Q-K2. (C. E. R.)
(7) 7 B-Q2 is White's best. (W. W.) Morphy played 7 Kt -KB3, sacrificing a Iown for the sake of development.
(8) 3 .., Q-Q3 is suggested by Mr. Potter to help forward Black's K Pawn.
(9) Superseding 3 B -Kt5 ch, which attracted much attention when introduced in 1846.
(10) $\mathrm{Or} 3 \ldots, \mathrm{Q} \times \mathrm{PI}$ (C. E. R.)
(11) Continued, $10 \mathrm{Kt} \times \mathrm{Kt} . \mathrm{B} \times \mathrm{Ktch} ; 11 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt} ; 12 \mathrm{Q} \times \mathrm{BP}, \mathrm{Kt}-\mathrm{K} 5$ (if B-K5; $13 \mathrm{Q}-\mathrm{B} 5$) ; $13 \mathrm{R}-\mathrm{Bsq}, \mathrm{R}-\mathrm{Ktqq}$; $14 \mathrm{Q}-\mathrm{R} 4, \mathrm{Q}-\mathrm{K} 2$; $15 \mathrm{~B}-\mathrm{K} 2, \mathrm{R}-\mathrm{Kt7}$; 16 B-B3t. (C. M.)

SECTION VIII.

Table 140.-THE QUEEN'S GAMBIT.

$$
1 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \cdot \mathrm{Q} 4 ; 2 \mathrm{P} \cdot \mathrm{Q} \mathrm{~B} 4, \mathrm{P} \times \mathrm{P}
$$

	1	2	3	4	5
3	P.K3 (1)	P-K4	Kt-KB3 ! (9)		Kt-QB3
	$\overline{\text { P-K4 ! (2) }}$	P-K4!	P-K3	Kt-KB3	Kt-KB3
4	$\mathrm{B} \times \mathrm{P}$!	P-Q5 (7)	P-K3	P-K3	P-K3 (12)
	$\overline{\mathrm{P} \times \mathrm{P}}$	P-KB4!	$\overline{\mathrm{Kt}}$-KB3	B-Kt5	P-K4
5	$\mathrm{P} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{P}$
	$\overline{\mathrm{Kt}-\mathrm{KB} 3 \text { (3) }}$	Kt-KB3	B-K2	P-K3	$\overline{\mathrm{P} \times \mathrm{P}}$
6	Kt -KB3 (4)	Kt-QB3	Kt-B3	Kt -B3	$\mathrm{P} \times \mathrm{P}$
	B-Q3!	B-Q3 (8)	O-O	P-QR3	B-Q3 -
7	O-0	Kt-B3	0.0	0.0	
	0.0	$\overline{\mathrm{P} \times \mathrm{P}}$	P-QKt3!(10)	B-K2	
8	P-KR3 (5)	Kt-KKt5	P-K4 -	Q-K2	
	P-KR3	B-KB4	B-Kt2 -	0.0	
9	Kt-B3	Q-R4ch		R-Qsq	
	Kt-B3	QKt-Q2		Kt-B3	
10	B-K3 -	Kt-K6		P.QKt3	
	$\overline{\mathrm{Kt}-\mathrm{K} 2-(6)}$	Q-K2		Kt-Q4	
11		0.0		B-Kt2 -	
		P-QR3		(11)-	
12		B-KKt5 -			
		$\overline{\mathrm{R}-\mathrm{QBsq}}$ -			

(1) If 3 Qch, P-B3; $4 \mathrm{Q} \times \mathrm{P}$ (B4), P-K4; $5 \mathrm{P} \times \mathrm{P}, \mathrm{Qch} ; 6 \mathrm{~B}$ or Kt in, $\mathrm{Q} \times \mathrm{P}=$.
(2) If $3 \ldots$, P-QKt4; 4 P-QR4, B-Q2!; $5 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $6 \mathrm{P}-\mathrm{QKt} 3$ or Kt-QB3+.
(3) Or 5 .., B-Q3! (Handbuch.)
(4) Or 6 Q-Kt3 (or Kt-QB3), Q-K2ch; 7 Kt-K2 (or B-K3l), Q-Kt5ch; 8 QKt-B3, $\mathbf{Q} \times \mathrm{Q} ; \quad 9 \mathrm{~B} \times \mathrm{Q}, \mathrm{B} \cdot \mathrm{K} 2=$.
(5) B-KKt5 would be premature before Kt-QB3. If now 8 B-KKt5, P-KR3; 9 B-K3! (Potter.)
(6) $11 \mathrm{Kt}-\mathrm{Ksq}$, P-B3; 12 P-KKt4!, QKt-Q4; 13 Q-B3, B-K3. (Potter v. De Vere.)
(7) If $4 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Qch} ; 5 \mathrm{~K} \times \mathrm{Q}, \mathrm{Kt}-\mathrm{Q} 2$; $6 \mathrm{P}-\mathrm{B4}, \mathrm{Kt}-\mathrm{B} 4 ; 7 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{QB} 3$: 8 KB \times P, P-QKt4; 9 B-Kt3, P-Kt5; 10 Kt moves, Kt $\times \mathrm{P}$, \&c.
(8) If $6 \ldots, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{KKt}-\mathrm{K} 2$, and the KP is recovered shortly: $7 \mathrm{Ft} \times \mathrm{P}$, Kt \times Kt; 8 Q-R5 is unsound. (Synopsis.) The Col. is Owen v. Boden.
(9) Blackburne's variation.
(10) If 7 .., QKt-Q2; 8 P-K4.
(11) 11 ... B-B3; $12 \mathrm{Kt}-\mathrm{K} 4$, B-K2. (Blackburne v. Clerc.)
(12) If $4 \mathrm{P}-\mathrm{K} 4, \mathrm{P}-\mathrm{K} 4 ; 5 \mathrm{P} \times \mathrm{P}$?, $\mathrm{Q} \times \mathrm{Qch} ; 6 \mathrm{Kt} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{P} ; 7 \mathrm{~B} \times \mathrm{P}, \mathrm{Bch}$; 8 K.K2, Kt-QB3t. Eee the Queen's Pawn Game for 2 ..., P-K3, \&c.

BOOK V.

THE CLOSE GAME.

THE Close Game comprises openings in which the centre of the board is occupied by the Pawns, while the minor pieces (with the exception of the King's Knight) are posted in the rear, to act as supports or for defensive purposes. The King's Pawn is usually advanced one square only. This may be done on the first move, as in the Van 't Kruys Opening and the French Defence, or postponed for a move or two, as in the English Opening and the Sicilian Defence. Mr. Zukertort frequently commenced with 1 Kt -KB3, but this is only a transposition, the following move being either P-K3 or P-Q4. Placed at K3 the Pawn is for some time a strong defence to the King after castling with King's Rook. The action of the adversary's King's Bishop at QB4 is blocked, and his Queen's Bishop becomes a more serviceable piece for attacking purposes, especially when planted on the long diagonal at QKt2 or QB3.

There is considerable liberty of action with regard to the order in which the first eight or ten moves are made on both sides. In the Queen's Pawn game the simplest course is for both parties to make similiar moves as far as circumstances allow, but either player may vary to tempt a premature attack, or exchange It is one of the points of this game that the pieces may be moved about repeatedly in the opening, in order to group the Pawns favourably. There are two main lines of advance. One is on the Queen's side, the QB Pawn and Q Pawn leading; the other on the King's side with the KB Pawn. The advance on the Queen's side although less direct is the most effective, and is sanctioned by the practice of the leading players. That on the King's side may generally be repelled with advantage. Hence it is customary to castle early in the game.

The French and Sicilian Defences may be converted into open games by an early exchange of Pawns, but experience has shown that the first player derives no benefit from this mode of proceeding.

SUMMARY OF THE SECTIONS INTO WHICH BOOK V. IS DIVIDED.

Seotion I. The French Defence.
1 P:K4 P-K3; \&c.
" II. The Sicilian Defence.
1 P-K4, P-QB4; \&c.

- III. The Queen's Pawn Game (including the Queen's Gambit Declined)

1 P-Q4, P-Q4, P-KB4; \&c.
^ IV. The English Opening.
1 P-QB4, P-K4, P-KKt3, P-K3, P-KB4; \&c.
V. The King's Bishop's Pawn Game.

1 P-KB4, P-K3, P-Q4, P-KB4; \&c.

- VI. The Van 't Kruy's Opening.

1 P-K3, P-K4, P-KB4; \&c.
The Fianchetto Openings.
1 P-QKt3, P-K4, P-K3; \&o.
1 P-KKt3, P-K4; \&c.
n VII. The Fianchetto Defence.
1 P-K4, P-QKt3, P-KKt3; \&C.
" VIII. Unusual and Irregular Openings.

SECTIONI.

THE FRENCH DEFENCE.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 3 .
$$

THE French Defence dates from Lucena (1497). It has been much favoured of late years in matches and tournaments. Mr. Potter, one of its chief exponents, notes that "though the adoption of $1 \ldots$, P-K3 does not entirely deprive White of the profit derived from playing first, yet it goes nearer than any, other defence in placing the players on equality at starting." In the resulting positions this opening has much in common with the Petroff Counter Attack and the Sicilian Defence, both of which it has to a great extent superseded in general practice. In some variations it gains a move on the former, and avoids certain minute disadvantages in the latter. A notable feature is the marked augmentation of the power of the Bishops with its corollary in a sensible diminution of scope on the part of the Knights. The tendency at the present time is to treat it as a variation of the Queen's Pawn Game, in which the first player gains nothing by advancing his King's Pawn two squares before his game is fully formed. Black's advance, when the centre is blocked, is with the QB Pawn, and the battle may be fought out on the Queen's wing. Or the first player may avail himself of his opponent's Q Bishop being shut out of the play to establish an attack on the King's side. This line of play has been strengthened since our first edition.

The Sicilian Defence is first mentioned in Polerio's MS. It should be studied along with the French. It had at one time the reputation of being the best reply to 1 P-K4, but this has' not been confirmed by popular practice. Several eminent players have, however, held to the opinion that it is quite trustworthy.

Table 141.-THE FRENCH DEFENOE.

$1 \mathrm{P}-\mathrm{K} 4, \mathrm{P} \cdot \mathrm{K} 3$; $2 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \cdot \mathrm{Q} 4 ; \quad \mathrm{B} \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $4 \mathrm{Kt} \cdot \mathrm{KB} 3$ (1), Kt-KB3(2): 5 B-Q3 (3), B-Q3.

	1	2	8	4	5
6	0.0				Kt-B3
	0.0				B-KKt5
7	Kt-B3 (4)				B-K3 (10)
	P-B3		B-K3	Kt-B3	Kt-B3
8	Kt-K2		R-Ksq	B-KKt5	Q-Q2
	Q-B2	B-KKt5	Kt-B3	B-KKt5 (8)	0.0
9	Kt-Kt3	Kt-Kt3	Kt-QKt5	K-Rsq (9)	P-KR3
	B-K3 (5)	$\overline{\mathrm{K}}$-R4 (6)	P-QR3 (7)	B-K2	B-K3
10	P-QKt3	P-KR3	$\mathrm{Kt} \times \mathrm{B}$	Q-Q2	P-R3
	QKt-Q2	$\overline{\mathrm{Kt} \times \mathrm{K} t}$	Q $\times \mathrm{Kt}$	Q-Q2 -	P-QR3
11	P.B4 -	$\mathbf{P} \times \mathrm{K} t$	Kt-K5		0.0
	-	B-R4	$\overline{\mathrm{K}}$-K2		Kt-K2
12		P-KKt4 -	B-KKt5		
		B-Kt3 -	Kt-Kt3		
13			Q-Q2		
			QR-Ksq -		

(1) If 4 P-QB4, Kt-KB3; 5 Kt-QB3, B-QKt5; 6 P-QR3, \&c.: if 6 B-Q2, Q-K2ch.
(2) If $4 \ldots$ P-QB4; $5 \mathrm{Bch}, \mathrm{Kt}-\mathrm{QB} 3 ; 6 \mathrm{P}-\mathrm{B} 4$. (Lange): or 6 0-0, \&c.
(3) 5 B-K3, B-Q3; $6 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{K} 3$; $7 \mathrm{R}-\mathrm{Bsq}, \mathrm{Kt}-\mathrm{B} 3$; 8 P-KR3, Kt-K2; 9 P-B4, P-B3; 10 B-Q3, O-O ; 11 O-O, P-KR3; 12 R-Ksq, Kt-Q2, \&c. (Paulsen จ. Schwede.) Or 5 .., B-K2; $6 \mathrm{Kt}-\mathrm{K} 5, \mathrm{Kt}$-B3. (Tschigorin v. Gunsberg.)
(4) Or 7 P-QB4 to open the QB file for his Rooks: Black may also reply to 7 Kt-B3 with P-QB4. Steinitz introduced here 7 P-QKt3.
(5) Or 9 .., Kt-Kt5; 10 P-B3, P-KKt3. (Potter.). The Col. is Zukertort v. Sellman ; White may continue by $10 \mathrm{R}-\mathrm{Ksq} \mathrm{Kt}-\mathrm{Bsq}$ and $\mathrm{P}-\mathrm{KR} 3$: or by $10 \mathrm{~B}-\mathrm{K} 3$.
(6) Or $9 \ldots, \mathrm{Q}-\mathrm{B} 2$; $10 \mathrm{P}-\mathrm{KR} 3, \mathrm{~B} \times \mathrm{P}(\mathrm{B} \times \mathrm{QKt} ; 11 \mathrm{P} \times \mathrm{KB})$; $11 \mathrm{P} \times \mathrm{B}, \mathrm{B} \times \mathrm{Kt}$; $12 \mathrm{P} \times \mathrm{B}, \mathrm{Q} \times$ Pch; $13 \mathrm{~K}-\mathrm{Rsq}, \mathrm{Q} \times$ Pch; $14 \mathrm{Kt}-\mathrm{R} 2, \mathrm{Kt}-\mathrm{K} 5, \& \mathrm{c}$. (Potter.)
(7) Or $9 \ldots, \mathrm{~B}-\mathrm{K} 2$ first I (C. E. R.)
(8) If $8 . .$, B-K2; 9 R-Ksq, P-KR3; $10 \mathrm{~B}-\mathrm{R} 4!$ (A.S.)
(9) If $9 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B}$; $10 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{Pch}, 8 \mathrm{c} .:$ or $9 \ldots, \mathrm{Q} \times \mathrm{B}$; $10 \mathrm{Kt} \times \mathrm{P}$. Q-R3+.
(10) 7 O.O. O-O; 8 P-KR3, B-R4; 9 P-KKt4, B-Kt3; 10 P-Kt5, Kt-R4; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{QB} 3$; $12 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{Q} 2$; $13 \mathrm{Kt}-\mathrm{K} 41$ (Weiss v. Schwarz.)

Table 142.-THE FRENCH DEFENCE.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 3 ; 2 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \cdot \mathrm{Q} 4 .
$$

	6	7	8	9	10
3	Kt-QB3				
	Kt-KB3				
4	B-KKt5 (1)		P.K5		
4	B-K2		$\overline{\mathrm{KKt}-\mathrm{Q} 2}$		
5	P-K5	$\underline{\mathrm{B}} \times \mathrm{Kt}$	P.B4		QRt.K2(16)
	KKt-Q2	$\overline{B \times B}$	P-QB4		P-QB4
	$\mathrm{B} \times \mathrm{B} \quad$ (2)	Kt -B3 (7)	$\mathrm{P} \times \mathrm{P}$		P-QB3
6	$\overline{Q \times B}$	$0 \cdot 0 \quad$ (8)	$\overline{B \times P}$	$\overline{\mathrm{Kt} \mathrm{\times P}(14)}$	$\overline{\mathrm{K}}$-QB3
	Q-Q2 (3)	B-Q3 (9)	Q-Kt4 (dia.)	Kt -B3	P.KB4 (17)
7	P-QR3 (4)	P-QKt3(10)	P-KKt3(13)	Kt-B3	Q-Kt3
8	Kt-Qsq (5)	P-KR4!	Kt -B3	B-K2	Kt -B3
	$\overline{\text { P-QB4 }}$	$\overline{\text { B-Kt2 (11) }}$	Kt-QB3	Q-Kt3	B-K2
	P.QB3	P-K5	P-QR3	R-QKtsq	Kt -Kt9
9	Kt-QB3	B-K2	Kt-Kt3	Kt-Q2	$\overline{\mathrm{P} \times \mathrm{P}}$
	P.KB4	$\mathrm{B} \times \mathrm{Pch}$	B.Q3-	B-Q2	$\mathrm{P} \times \mathrm{P}$
10	P.QKt4!	$\overline{\mathrm{K} \times \mathrm{B}}$	B-Q2-	(15)	B-Kt5ch
	(6)	Kt -Kt5ch			K-B2
11		$\overline{\mathrm{K}-\mathrm{Kt} 3 \text { (12) }}$			P-B3+

(1) If $4 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P}-\mathrm{QB4} 1$; if then $5 \mathrm{KP} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$ I. If $4 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B} \cdot \mathrm{Kt5} ; 5 \mathrm{~B}-\mathrm{Q} 3 \mathrm{I}$, (if) Kt-B3; 6 B-KKt5 (Steinitz): or 4 P-B3, B-Kt5; 5 Q-Q3, \&c.
(2) If $6 \mathrm{~B}-\mathrm{K} 3, \mathrm{P}-\mathrm{QB} 4 ; 7 \mathrm{P}-\mathrm{B} 4, \mathrm{Kt}-\mathrm{QB} 3$; $8 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Kt3}+$.
(3) Or $7 \mathrm{~B}-\mathrm{K} 2$ (C. E. R.) If $7 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P}-\mathrm{QR} 3$ to play P-QB4. If $7 \mathrm{Kt}-\mathrm{B} 3$ or P-KB4, P-QR3 and P-QB4. Or 7 Kt-Kt5, Q-Qsq (C. M.)
(4) Or $7 \ldots$ O-O1; $8 \mathrm{Kt}-\mathrm{Qsq}$. (or K2) or P-B4: if $8 \mathrm{Kt}-\mathrm{Kt5}$, Kt-Kt3. Or $7 \ldots$, Kt-QB3; 8 Kt-Kt5, Kt-Kt3.
(5) To connect the Pawns and plant Kt on K3: 8 QKt-K2 or P-B4 may be played.
(6) 11 IKt-B3, P-B4 (or P-B3 to open the game on King's side); 12 Kt-K3, Kt-Kt3; 13 B-Q3, R-QKtsq. (Winawer v. Blackburne): or Black may play $10 . ., \mathrm{P} \times \mathrm{P} ; 11 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{K} t 5$, \&c.
(7) Or 6 P-K5, B-K2; 7 B-Q3, P-QB4; 8 Q-Kt4 (Lee v. Leather).
(8) 6 .., P-QB4! (Steinitz), or $6 \ldots$, Kt-B3. (C. E. R.) If $6 \ldots, \mathrm{P}-\mathrm{QR} 3$; 7 Q-Q2 (Salvioli): if $7 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P}-\mathrm{B4} ; 8 \mathrm{P} \times \mathrm{BP}$ (or $8 \mathrm{P}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P} ; 9 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}, \& \mathrm{c}$.), $\mathrm{B} \times$ Ktch; $9 \mathrm{P} \times \mathrm{B}, \mathrm{P} \times \mathrm{P} ; 10 \mathrm{~B} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Q} ; 11 \mathrm{R} \times \mathrm{Q}, \mathrm{P} \cdot \mathrm{B} 4 ; 12 \mathrm{~B} \cdot \mathrm{Q} 3, \mathrm{Kt}-\mathrm{Q} 2+$ (Lasker).
(9) Or $7 \mathrm{Q} \cdot \mathrm{Q} 2$ or P.KR4. See Diagram.
(10) If 7 .., P-KR3 1; 8 P-KKt4, \&c. If 7 .., P-B4; 8 P-K5, B-K2; 9 P \times P, \&c. If 7 .., Kt-B3 ?; 8 P-K5, B-K2; 9 P-KR4, Kt-Kt5; $10 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B}$; 11 Kt-Kt5ch, B \times Kt; $12 \mathrm{P} \times$ Bdch., K-Ktsq; 13.Q-R5, P-B3; 14 P-Kt6 and wins (Ward-Higgs v. Moriau).
(11) Or 8 .., B-R3!
(12) $12 \mathrm{Kt}-\mathrm{K} 2, \mathrm{~B} \times \mathrm{Kt} ; 13 \mathrm{P} \times \mathrm{B}, \mathrm{P}-\mathrm{KB} 4$; $14 \mathrm{KtP} \times \mathrm{P}$ e.p., R-Rsq; $15 \mathrm{Kt}-\mathrm{B} 4 \mathrm{ch}$, K-B2; 16 Q-Kt4, R \times Rch; $17 \mathrm{~K}-\mathrm{Q} 2, \mathrm{P} \times \mathrm{P}$; 18 Q-Kt6ch, K-K2; 19 Q-Kt7ch, K-Ksq; 20 Q-Kt8ch, K-K2; $21 \mathrm{Q} \times$ Pch, K-Bsq; $22 \mathrm{R} \times \mathrm{R}, \mathrm{B}$-Bsq. White mates in 4 moves. (Fritz v. Mason.)
(13) See Diagram. 7 . -, O-0; 8 B-Q3, P-B4; 9 Q-R3, Kt-QB3; 10 Kt -B3, R-Ksq. (Blackburne v. Burn.) Mr. Ranken prefers $8 \ldots, \mathrm{R}$-Ksq followed by Kt-Bsq (B. C. M., 1892, p. 77).
(14) If $6 \ldots, \mathrm{Kt}-\mathrm{QB} 3$; 7 P-QR3, $\mathrm{B} \times \mathrm{P}$; 8 Q-Kt4, \&c.
(15) To follow with Kt-QR4 and 0.0 (Schallopp v. Tarrasch).
(16) Or 5 Kt -KB3!
(17) Mr. Reeves advocates 7 B-K3. See B.C.M., 1892, p. 209.
(Col. 7.)

After White's 7th move.
(Col. 8.)

After White's 7th move.

Table 143.-THE FRENCH DEFENCE.

	11	12	13	14	15
3	Kt-QB3		Kt-Q2	B-Q3	P-K5
	B-Kt5 (1)	$\overline{\mathrm{P} \times \mathrm{P} \text { ? }}$	$\overline{\mathrm{Kt} \text {-KB3 (6) }}$	$\overline{\mathrm{P} \times \mathrm{P} \quad(7)}$	P-QB4
4	$\mathrm{P} \times \mathrm{P}$	$\mathrm{Kt} \times \mathrm{P}$	P-K5	$\mathrm{B} \times \mathrm{P}$	P-QB3 (9)
	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{K}} \mathrm{t}$-KB3	KKt-Q2	$\overline{\mathrm{Kt}}$-KB3	Kt-QB3
5	Kt-B3 (3)	$\mathrm{Kt} \times \mathrm{Ktch}$	B-Q3	B-B3 !	P-KB4 (10)
	$\overline{\mathrm{B} \times \mathrm{Ktch}(4)}$	$\overline{Q \times K t}$	P-QB4	P-B4	Q-Kt3
6	$\mathrm{P} \times \mathrm{B}$	Kt-B3	P-QB3	Kt -K2	Kt-B3
	$\overline{\mathrm{B}-\mathrm{K} 55}$	Kt-B3	Kt-QB3	Q-Kt3	B-Q2
7	B-K2	B-KKt5	Kt-K2	QKt-B3	B-K2
	Kt-KB3	Q-B4	Q-Kt3	B-Q2	Kt-R3 (11)
8	B-R3 -	B-Q3	Kt-KB3	O-0	$0-0 \quad$ (12)
	-	Q-R4ch -	P-B3	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{P} \times \mathrm{P}}$
9		(5)	$\mathrm{P} \times \mathrm{P}$	$\mathrm{Q} \times \mathrm{P} \quad$ (8)	$\mathrm{P} \times \mathrm{P}$
			$\overline{\mathrm{Kt} \times \mathrm{P}}$	B-B4	$\overline{\mathrm{Kt} \times \text { QP }}$
10			Q-Kt3 -	Q-Q3 -	$\underline{\mathrm{Kt}} \times \mathrm{Kt}$
			-	B-B3 -	$\overline{\mathrm{Kt}}$-B4 +

(1) Or $3 \ldots$, B-K2 may now be prayed.
(2). If $4 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P}-\mathrm{QB} 41$. If $4^{\circ} \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{K} 2$; $5 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P}-\mathrm{QB} 4 ; 6 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 5$; 7 Q-Kt4, B-R4 or QKt-B3, \&c.
(3) Or 5 B-Q3 to play Kt-K2.
(4) 5 .:, Kt-KB3; 6 B-Q3, Kt-B3!: or 6 .., Q-K2ch; 7 B-K3, Kt-K5 (Potter): f $6 \ldots ; \mathrm{O}-\mathrm{O} ; 7 \mathrm{O}-\mathrm{O}, \mathrm{B} \times \mathrm{Kt} ; \quad 8 \mathrm{P} \times \mathrm{B}$, to follow with R-Ktsq and P-QB4 (Steinitz):
(5) If $8 \ldots, \mathrm{Q}-\mathrm{Kt5} ; 9 \mathrm{P}-\mathrm{KR} 8, \mathrm{Q} \times \mathrm{KtP}$; $10 \mathrm{R}-\mathrm{R} 2+$.
(8) If $3 \ldots, \mathrm{P}-\mathrm{QB4}$; $4 \mathrm{QP} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $5 \mathrm{P} \times \mathrm{P}, \mathrm{P}$ or $\mathrm{Q} \times \mathrm{P}=$.
(7) 3 .., P-QB4; 4 P-QB3, (if) Kt-QB3; $5 \mathrm{Kt}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{B} 3$; $6 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}-\mathrm{Q} 2$; $70-0+$
(8) Or $9 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt}-\mathrm{B} 3$ or B-Q3.
(9) 4 B-Kt5ch, Kt-QB3; $5 \mathrm{~B} \times \mathrm{Ktch}, \mathrm{P} \times \mathrm{B} ; 6 \mathrm{P}-\mathrm{QB} 3, \mathrm{Q}-\mathrm{Kt3} ; 7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{R} 3+$.
(10) Or 5 Kt-KB3, Q-Kt3; 6 B-Q3, \&c.
(11) Or 7 QR-Bsq.
(12) If $8 \mathrm{P}-\mathrm{QKt3}, \mathrm{P} \times \mathrm{P}$; $9 \mathrm{P} \times \mathrm{P}, \mathrm{Bch}$, with a good game.

Table 144.-THE FRENCH DEFENCE.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{~K} 3 .
$$

	16	17	18	19	20
2	P-K5 (1)		P-Q3	P-KB4 (6)	
	P-Q4 (2)		P-Q4	P-Q4 (7)	
8	$\mathrm{P} \times \mathrm{P}$ en pas		Kt -Q2 (4)	$\mathrm{P} \times \mathrm{P}$	P-K5
	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{B} \times \mathrm{P}}$	P-QB4	$\overline{\mathrm{P} \times \mathrm{P}}$	P-QB4
4	P-Q4	P-Q4	P-KB4	Kt-KB3	P-B3
	Kt-KB3	$\overline{\mathrm{Kt}} \mathrm{KB3}$ (3)	Kt-QB3	P-QB4 (8)	Kt-QB3
5	P-KB4	B-Q3	Kt-KR3	P-Q4	Kt-B3
	P-Q4	Kt-B3	Kt-B3	Kt-QB3	P-B3
6	B-Q3	P-B3	Kt -B2	P-B3	Kt-R3
	Kt-B3	P-QKt3	B-K2	$\overline{\mathrm{Kt}}$-B3	Kt-R3
7	Kt-KB3	B-KKt5	P-B3	B-K3	Kt-B2
	B-Q3	P-KR3	0.0 (5)	Q-Kt3	B-Q2
8	P-B3	$\mathrm{B} \times \mathrm{Kt}$		P-QKt3	P-Q4
	Q-B2	$\overline{\mathrm{Q} \times \mathrm{B}}$		B-Q2	Q-Kt3
9	P-KKt3	Kt-Q2		B-Q3	P-QKt3
	B-Q2	B-Kt2		$\overline{\mathrm{R}-\mathrm{Bsq}}+$	R-Bsq
	QKt-Q2 -	$\underline{\mathrm{Kt} \text {-K4 - }}$			B-Q3
10	-	-			Kt-B2 (9)

(1) Played by Steinitz, but little favoured.
(2) If $2 \ldots$ P-Q3 the same continuation follows. If $2 \ldots$ P-QB4; 3 P-KB4, Kt-QB3; 4 Kt-KB3, P-Q4 (C. E. R.), or 4 .., P-B3 (Zukertort). Or 2 ..., P-QKt3, keeping Q Pawn unmoved (Blackburne). If $2 \ldots, \mathrm{P}-\mathrm{KB3}$; 3 P-Q4, P-QB4; $4 \mathrm{P} \times \mathrm{QBP}, \mathrm{B} \times \mathrm{P} ; 5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q}-\mathrm{B} 21 ; 6 \mathrm{~B}-\mathrm{KB} 4$?, Q-Kt3; $7 \mathrm{Q}-\mathrm{Q} 2, \mathrm{~B} \times \mathrm{Pch}, \& \mathrm{c} .+$. (Steinitz v. Winawer.)
(3) 4 .., Kt-K2; 5 B-Q3, Kt-Kt3; $6 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{B} 3$; $7 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{Kt} 5$; 8 B-QB4, P-QB3; $9 \mathrm{Kt}-\mathrm{K4}, \mathrm{~B}-\mathrm{B} 2$; 10 O-O, O-O; $11 \mathrm{R}-\mathrm{Ksq}$, Kt-Q4. (Steinitz ∇. Flechsig.)
(4) This Col. is by Mr. Fraser. If 3 P-QB3, P \times P; 4 Q-R4ch, B-Q2; $5 Q \times$ KP, B-Q3; 6 Q-K2: or White may play P-QB3 on his second move: or 3 Q-K2 or B-Q2 to avoid the exchange of Queens.
(5) White advances on King's side.
(6) If 2 P-QB4, P-QB4; 3 P-Q4, $P \times P$; $4 Q \times P, K t-Q B 3$ and Black has gained a move. He may afterwards play P-KKt3 and B-Kt2 as by Staunton v. Cochrane and Horwitz. (W. W.)
(7) 2 .., P-QB4 transposes into the Sicilian defence.
(8) 4 .., B-Q3; 5 P-Q4, Kt-KB3; 6 B-K2, O.O; 7 O.O, P-B4; 8 Kt-B3 P-QR3; (if) $9 \mathrm{~B}-\mathrm{K} 3, \mathrm{Kt}-\mathrm{Kt5}+$.
(9) $11 \mathrm{~B}-\mathrm{K} 3, \mathrm{P} \times \mathrm{QP}$; $12 \mathrm{P} \times \mathrm{QP}, \mathrm{B}-\mathrm{Zt5ch}+$.

SECTION II.

Table 145.-THE SICIMIAN DEFENCE.
$1 \mathrm{P} \cdot \mathrm{K} 4, \mathrm{P} \cdot \mathrm{QB4} ; 2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Kt}-\mathrm{QB} 3 ; 3 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P} \cdot \mathrm{K} 8(1)$; $4 \mathrm{P} \cdot \mathrm{Q} 4(2), \mathrm{P} \times \mathrm{P} ; 5 \mathrm{Kt} \times \mathrm{P}$!

(1) 3 .., P-KKt3; 4 P-Q4, P×P; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt2}$; $6 \mathrm{~B}-\mathrm{K} 3, \mathrm{P}-\mathrm{Q} 3$ (Kt-KB3. Bird); 7 Kt -Q5 (Gunsberg), or B-K2 or Q-Q2 (Ranken), or B-QKt5 (Mackenzie), See Diagram. ${ }^{\text {' Or }} 3$.., Kt-KB3; (if) 4 P-K5, Kt-KKt5; 5 Q-K2, Q-B2; 6 Kt-Q5 or QKt5, Q-Ktsq+: (or) 4 P-Q41, P×P; $5 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3 ; 6 \mathrm{~B}-\mathrm{QKt5}$ or B-K2 or P-B4, \&c. See also Col. 8, note 7.
(2) If $4 \mathrm{~B}-\mathrm{Kt} 5$, KKt-K2. (Potter.) If $4 \mathrm{~B}-\mathrm{K} 2, \mathrm{Kt}-\mathrm{Q} 5.4 \mathrm{~B}-\mathrm{B} 4$ is inferior.
(8) Or $6 \ldots, \mathrm{~B}-\mathrm{K} 2 ; 7 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{Kt}$. (Potter.) Or $6 \ldots$ P.Q3. If $6 \ldots$ B-Kti ; 7 Q-Q3 or 0.0
(4) Or 7 O.0, B-K2; $8 \mathrm{Kt} \times \mathrm{Kt}$, \&c.
(*) O 9 ... Q-R2; $10 \mathrm{P} \cdot \mathrm{KB} 4, \mathrm{Q} \cdot \mathrm{Kt3}$, \&c. (C. E. R.)
(6) 11 .., Q.R4ch; 12 B-Q2, Q-K4; $13 \mathrm{Kt} \times \mathrm{Ktch}, \mathrm{Q} \times \mathrm{Kt}$; $14 \mathrm{~B}-\mathrm{QB} 3+$. Marriott.)
(7) 6 .., P-Q3; 7 B-KB4, P-K4; 8 B-Kt3 to play P.B4. (Bird.)
(8) Or $7 \mathrm{P}-\mathrm{QR3}$ as in Col. 5.
(9) If 8 ... Q-R4; 9 Q-Q2, P-K4; $10 \mathrm{Kt}-\mathrm{B} 4, \mathrm{~B} \times \mathrm{Kt} ; 11 \mathrm{P} \times \mathrm{B}, \mathrm{Q}-\mathrm{B} 2$; 12 B-Kt5+. (C. E. R.)
(10) 10 B-KKt5, P-Q41 (or Q-R4); $11 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}, \& \mathrm{c}$. The Sypopsis gives 10 B-Q2, P-Q4! (Wayte.) The Col. is Zukertort v. Schallopp.

- (11) If $6 \mathrm{Kt} \times \mathrm{Kt}$, KtP $\times \mathrm{Kt} ; 7$ P.K51 Kt-Q4; $8 \mathrm{Kt}-\mathrm{K} 4, \mathrm{Q} \cdot \mathrm{B} 2$; 9 P.KB4, Q.Kt3! (Ranken): if 7 B-KKt5, B-Kt5; 8 P-K5, Q-R4; 9 Q.Q4, Kt-K5: $10 \mathrm{Q} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Ktch}, \& \mathrm{c}$.
(12) $14 \mathrm{Kt} \times \mathrm{B}, \mathrm{P} \times \mathrm{Kt}$; $15 \mathrm{Q}-\mathrm{K} 2+$. The defence may possibly be improved. Mr. Ranken suggests 6 ..., B-Kt5 and the Handbuch 6 .., P-Q3.
(13) Mr. Potter suggests 5 .., Q-B2; 6 KKt-Kt5, Q-Ktsq; 7 B-K2, P.QR3 $=$.
(14) If $6 \ldots, \mathrm{~B} \times \mathrm{Ktch} ; 7 \mathrm{P} \times \mathrm{B}, \mathrm{KtP} \times \mathrm{Kt}$; 8 Q -Q4: or $7 \ldots, \mathrm{QP} \times \mathrm{Kt}$; $8 \mathrm{~B} \cdot \mathrm{E} 3$, or Q-Q4, or B-R3, \&c.
(15) Zukertort $\mathrm{\nabla}$. Blackburne.
(Col. 2.)

After Black's 5th move.
(Note 1.)

After Black's 6th move.

Table 146.-THE SICILIAN DEFENCE.

$$
1 \text { P.K4, P.QB4. }
$$

	6	7	8	9	10
,	Kt-QB3		Kt -KB3 (5).		
2	P.IK3 (1)		Kt-QB3		P-K3 !
3	Kt-B3 (2)	P-KKt3 (3)	P-Q4 (6)		P-Q4
3	Kt-KB3	Kt-QB3	$\overline{\mathrm{P} \times \mathrm{P}}$		$\overline{\mathrm{P} \times \mathrm{P}}$
4	P-Q4	B-Kt2	$K \mathrm{~K} \times \mathrm{P}$		$\mathrm{Kt} \times \mathrm{P}$
4	$\overline{\mathrm{P} \times \mathrm{P}}$	Kt-B3	$\overline{\mathrm{Kt}} \mathrm{B} 3$	$\overline{\text { P-K3 (10) }}$	$\overline{\mathrm{Kt}-\mathrm{KB3} 3(11)}$
5	$\underline{\mathrm{Kt}} \times \mathrm{P}$	KKt-K2 (4)	Kt $\times \mathrm{Kt}$ (7)	Kt-Kt5	B-Q3 (12)
5	B-Kt5	P-QR3	$\overline{\mathrm{KtP} \times \mathrm{Kt}}$	P-QR3	Kt-B3!
6	B-Q3	P.Q4	B-Q3	Kt-Q6ch	B-K3 (18)
6	Kt-B3	$\overline{\mathrm{P} \times \mathrm{P}}$	P-Kt3 (8)	$\overline{\mathrm{B} \times \mathrm{Kt}}$	P-Q4
	KKt-K2	$\mathrm{K} t \times \mathrm{P}$	P-QKt3	Q \times B	$\mathrm{P} \times \mathrm{P}$
7	P-Q4	Q-B2	B-KKt2	Q-K2	$\overline{\mathrm{P} \times \mathrm{P}}$
	$\mathbf{P} \times \mathrm{P}$	0.0	B-Kt2	Q-Kt3 --	0.0
8	$\overline{\mathrm{P} \times \mathrm{P}}$	B-K2	0.0	P-B4 -	B-Q3
	0.0-	B-K3 -	0.0		P-KR3
9	0.0-	0.0 -	$\overline{\mathrm{P} \cdot \mathrm{Q4}} \quad \mathbf{(9)}$		P-KR3

(1) 2 .., Kt-QB3; 3 P-KKt3, P-Q3; 4 B-Kt2, P-K4, \&c.
(2) If 3 B-B4, P-QR3; 4 P-QR4, Kt-QB3; 5 P-Q3, Kt-B3!
(3) Paulsen's variation.
(4) 5 P-Q3, B-K2; 6 P-KB4, O-O; 7 Kt-KR3, P.Q4; $8 \mathrm{Kt}-\mathrm{B} 2$. (De Rividre.)
(5) This Col. is Mason v. Paulsen. 2 P-Q4 is a transposition of moves. Or White, after $2 \ldots, \mathrm{P} \times \mathrm{P}$, may vary by $3 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QB3}$; $4 \mathrm{Q}-\mathrm{K} 3$ or $\mathrm{Q}-\mathrm{Qsq}$, \&c.
(6) Or $3 \mathrm{~B}-\mathrm{Kt5}$, P-K3; $4 \mathrm{~B} \times \mathrm{Kt}, \mathrm{KtP} \times \mathrm{B} ; 50-\mathrm{O}$, \&c. (Winawer v. Tschigorin.)
(7) 5 Kt-QB3, P-Q3; 6 B-QB4, P-K3; 7 O-O, B-K2; 8 B-K3, O.O; 9 Q-K2, B-Q2; 10 QR-Qsq. (Zukertort v. Sellman.) See Col. 1, note 1.
(8) Or $6 \ldots$ P-K4! (C.E. R.)
(9) $10 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{~B}-\mathrm{Kt2}=$.
(10) Or 4 .., P-KKt3; 5 B-K3: or $5 \mathrm{Kt} \times \mathrm{Kt}$, $\mathrm{KtP} \times \mathrm{Kt}$; 6 Q-Q4. See Col. 11.
(11) If 4 .., B-B4; $5 \mathrm{Kt}-\mathrm{QB} 31, \mathrm{Q}-\mathrm{Kt3}$; $6 \mathrm{Kt}-\mathrm{R4} 4$ \& $\mathrm{\& c}$.
(12) $5 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{~B}-\mathrm{Kt5}$; $6 \mathrm{Kt}-\mathrm{Kt} 5, \mathrm{O}-\mathrm{O} ; 7$ B-Kt5, Kt-B3; 8 P-B4, B-K2; $9 \mathrm{Kt}-\mathrm{Q} 6, \mathrm{P}-\mathrm{QR} 3 ; 10 \mathrm{P}-\mathrm{K} 5, \mathrm{Kt}$-Ksq; $11 \mathrm{~B} \times \mathrm{B}, \mathrm{Q} \times \mathrm{B} ; 12 \mathrm{QKt}$-K4, P-B4; $13 \mathrm{P} \times \mathrm{P}$ en pas, $\mathrm{Kt} \times \mathrm{P} ; 14 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Kt}(\mathrm{B} 6)+$. (Mayet v. Hirschfeld.) If $15 \mathrm{Kt} \times \mathrm{B}$, Q×BP.
(13) $6 \mathrm{Kt} \times \mathrm{Kt}$, KtP $\times \mathrm{Kt}$; 7 O-0, P-Q4; 8 P-K5, Kt-Q2; 9 P.KB4, B-B4ch; $10 \mathrm{~K} \cdot \mathrm{Rsq}, \mathrm{O} .0$, \&o. (Macdonnell ∇. Bardeleben.)

Table 147.-THE SICILIAN DEFENCE.

$$
1 \mathrm{P} \cdot \mathrm{~K} 4, \mathrm{P} \cdot \mathrm{QB} 4
$$

	11	12	13	14	15
2	Kt-KB3	P.KB4	B-B4	P-KKt3	P-QKt3(10)
2	$\overline{\text { P-KKt3 }}$	$\overline{\text { P-K3 (5) }}$	P-QR3 (8)	Fit-QB3 (9)	Kt-QB3
3	P-Q4 (1)	Kt-KB3	P-QR4	B-Kt2	B-Kt2
3	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\text { P-Q4 (6) }}$	P-K3	P-K4	P-QR3
4	$\mathrm{Kt} \times \mathrm{P} \quad$ (2)	$\mathrm{P} \times \mathrm{P} \quad$ (7)	Kt-QB3	Kt-K2	P-QR4
4	B-Kt2	$\overline{\mathrm{P} \times \mathrm{P}}$	Kt-K2	P-Q3	P-K3
5	B-K3	B-Kt5ch	P.Q4	0.0	Kt-KB3
5	Kt-QB3 (3)	B-Q2	P-Q4	Kt-B3	P-Q3
6	Kt-QB3 (4)	$\mathrm{B} \times \mathrm{Bch}$	$\mathrm{P} \times \mathrm{QP}$	P-QB3	Kt-B3
6	Kt-B3	$\overline{\mathrm{Kt} \times \mathrm{B}}$	$\overline{\mathrm{KP} \times \mathrm{P}}$	Q-B2	$\overline{\mathrm{Kt}}$-B3
	B-K2	0.0	B-K2	P-Q4	B-K2
7	P-Q3	B-Q3	\bigcirc	B-Q2	B.K2
8	$0.0-$	Kt-B3	Q \times P	Kt-R3	O.0-
8	P-QR3-	Kt-K2	$\overline{\mathrm{Kt}}$-QB3+	P-QR3	0.0
9		P Q3 or 4-			

(1) Or 3 Kt-B3, B-Kt2; 4 B-B4, Kt-KB3?; 5 P-K5, Kt-Ktsq (if Kt-Kt5; $6 \mathrm{~B} \times \mathrm{Pch}, \& \mathrm{c}$.) The Col. is Wisker v. Potter.
(2) If $4 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3$; 5 P-K5, Kt-B3; $6 \mathrm{Q}-\mathrm{QB} 4, \mathrm{P}-\mathrm{Q} 4$!
(3) Or 5 .., P-QR3, then P-K3, and Kt-K2 : or 5 .., P-Kt3, and B-Kt2. (C.P.C.)
(4) 6 P-QB3, Kt-B3; $7 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{O}-\mathrm{O}$; $8 \mathrm{~B}-\mathrm{K} 2, \mathrm{P}-\mathrm{QR} 3$, and Q-B2. (C. P. C.)
(5) 2 .., P-K4; 3 Kt-KB3, P-Q3; 4 B-B4, Kt-QB3; 5 O-O, B-K2; 6 P-Q3, Kt-B3; 7 Kt-B3, O-O; 8 P-B5, \&c.
(6) $3 \ldots$ Kt-QB3; 4 B-Kt5, KKt-K2 ; 5 Kt -B3, P-QR3; $6 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{B}$, \&c.: or 4 Kt-B3, KKt-K2; $5 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{Kt} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{Kt} ; 7 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{B} 3$; 8 Q-B2, \&c.
(7) 4 P-K5, Kt-QB3; 5 P-B3, Q-Kt3 (or P-B3) : see French Defence, Col. 20.
(8) 2 ..., P-K3; 3 Kt-QB3, Kt-K2; 4 Q-K2, QKt-B3; 5 Kt-B3, P-QR3; 6 P.Q3, Kt-Kt3 (or Kt-R4, C. E. R.); 7 O-O, B-K2; 8 B-K3, 0.0 (Kieseritzky v. Anderssen). The Régence gives $9 \mathrm{P}-\mathrm{QR4}=$.
(9) Anderssen against Paulsen, played $2 \ldots$ P-K3; 3 B-Kt2, Kt-K2; 4 Kt-QB3, P-Q3; 5 P-Q3, QKt-B3; 6 Kt-KR3, P-QR3; 7 O-O, B-Q2; 8 P-B4, P-B4. The Col. is Steinitz v. Anderssen. Mr. Ranken prefers White's game.
(10) Kieseritzky v. Anderssen. If 2 P-QKt4 (an old variation), $\mathrm{P} \times \mathrm{P}$; 3 P-Q4, P -K3 (or $\mathrm{P}-\mathrm{Q4}$) ; $4 \mathrm{P}-\mathrm{QR} 3, \mathrm{P} \times \mathrm{P}$; $5 \mathrm{~B} \times \mathrm{P}, \mathrm{B} \times \mathrm{B} ; 6 \mathrm{R} \times \mathrm{B}, \mathrm{Kt}-\mathrm{QB} 3 ; 7 \mathrm{P}-\mathrm{KB4}$, P-Q4; 8 P-K5, Kt-R3+.

SECTION III.

THE QUEEN'S PAWN GAME.

1PP.Q4, P.Q4, \&c.

P-Q4 on both sides is a primitive and classical method of commencing the Close Game. Ingenuity has striven to obtain special advantages or avoid special disadvantages by 1 P-QB4 (Sec. IV.) the English Opening, 1 P-QKt3 (Sec. VI.) the Fianchetto, P-K3 (Sec. VI.) Van 't Kruy's Opening, Kt-KB3 (Sec. VIII.) Zukertort's Opening, and P-KB4 (Sec. V.) the King's Bishop's Pawn Game, sometimes called Bird's Opening, but the positions brought about are frequently identical, and the general treatment is the same. All these moves may follow P-Q4. The Queen's Pawn so placed stops combinations by the opponent's minor pieces against the KB Pawn and leads them to act independently of each other. Instead of attack we have development. The pieces are opposed to each other, or placed so as to be opposed when convenient, but there is an intervening array of Pawns, and it has often been noticed that the player who first breaks up this arrangement does not improve his position. He has to beware of having a minority of Pawns on Queen's side, of clearing the ground for his adversary's men, and of having his P at K3 left on his hands useless and helpless. The Queen's Pawn Game is thus one for which patience and judgment are leading qualifications. It is frequently adopted by players who place reliance on their skill in midgame tactics. The advance of the Pawns on Queen's side generally decides the result of a well fought game. The first player may also play 1P-Q3 for his opening move: the game will then most probably become a variation of the Philidor Defence, White having a move in hand.

The English Opening (1 P-QB4) is played either as a transposition of the Queen's Pawn Game or to tempt 1...,P-K4 on the other side, in which case White can play the Sicilian Defence with a move in hand. 1 P-QKt3 (the Fianchetto attack) and 1 P-K3 (Van 't Kruys opening) are moved with a similar object. $1 \mathrm{Kt}-\mathrm{KB} 3$ is a neutral move which may be followed by any of the others above named according to Black's play. 1 P-KB4 is to give the player's Bishop, when posted at QKt2, free scope without intervening. Pawns, and so secure a diagonal as well as a direct attack; but in this, as in other openings, the advance with KB Pawn is less sound than that with the Q Pawn.

Table 148.-THE QUEEN'S PAWN GAME.

$$
1 \mathrm{P} \cdot \mathrm{Q} 4(1), \mathrm{P} \cdot \mathrm{Q} 4(2)
$$

	1	2	3	4	5
2	P-K3				Kt-QB3\} 16)
	P-K3	B-B4	$\overline{\mathrm{Kt}-\mathrm{KB3}}$		$\overline{\mathrm{P}-\mathrm{QB4}}$
3	Kt -KB3	Kt-KB3(13)	Kt-KB3		B-B4 (17)
	Kt-KB3 (3)	P-K3	B-Kt5		P-K3
4	B-K2 (4)	B-K2	B-K2 (13)		P-K3
	B-K2 (5)	Kt-KB3	P-K3	$\overline{\mathrm{B} \times \mathrm{Kt}}$	P-B5
5	P-B4	0.0	P.B4	$\mathrm{B} \times \mathrm{B}$	P-QKt3
	$\overline{\text { P-B4 (6) }}$	B-Q3	P.B3	P-K3	B-Kt5
6	0.0	P-B4	Kt-B3	O-O	Kt-K2
	0.0	P-B3	QKt-Q2	$\overline{\mathrm{B}} \mathrm{Q} 3$	Q-R4
7	P-QKt3	Kt-B3 (9)	Q-Kt3	P-B4	Q-Q2
	P-QKt3	$\overline{\mathrm{Kt}} \mathrm{Q}$ 2 (10)	Q-B2	P-B3	Kt-KB3
8	B-Kt2	P-B5 (11)	B-Q2	Kt-B3	P-B3
	B-Kt2	B-B2	$\overline{\mathrm{R}}$-Bsq	QKt-Q2	P-QKts
9	Kt-B3 (7)	P-QKt4	R-QBsq	P-QKt3	$\mathrm{P} \times \mathrm{P}$
	Kt-B3	Kt-K5	B-K2	R-QBsq	$\overline{\mathrm{B} \cdot \mathrm{R} 3+}$
10	R-Bsq	B-Kt2	P-KR3	B-Q2	
	R-Bsq	P-KR4	$\overline{\text { B-R4 }}$	B-Ktsq	
11	Kt-QR4 -	P-Kt5 -	$\mathrm{P} \times \mathrm{P}$	R-Ksq -	
	(8) -	P-Kt4-(12)	$\overline{\mathrm{Kt} \times \mathrm{P}!(14)}$	P-KR4-	

(1) 1 P-Q3, P-K4; 2 P-K4, P-Q4; $3 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}$; 4 Kt-QB3, B-QKt5; $5 \mathrm{~B}-\mathrm{Q} 2, \mathrm{~B} \times \mathrm{K} t$; $6 \mathrm{~B} \times \mathrm{B}$: compare Col. 5 , p. 39. The same position springs from 1 P-K4, P-K4; 2 P-Q3, \&c. If 1 .., P-Q4; 2 P-QB3, P-K3 or 4; 3 P-K4, P \times P; 4 Q-R4ch, \&c.
(2) If $1 \ldots$ P-QB4\% $2 \mathrm{P}-\mathrm{Q} 5$!: if $2 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{K} 3$; 3 P-QKt4, P-QR4; $4 \mathrm{P}-\mathrm{QB} 3$, P-QKt3; 5 P-QR4, P×BP; 6 P-Kt5, P-Q4, \&c.
(3) Or $3 \ldots$. P-QB4. Zukertort frequently trausposed White's moves by $1 \mathrm{Kt}-\mathrm{KB} 3$, '2 P-Q4, 3 P-K3, \&c.
(4) Or 4 P-QB4 : or 4 B-Q3 favoured by Zukertort.
(5) Or 4 B-Q3 may be played, but the Bishop is sometimes useful at KB3 to oppose tho adverse Bishop when planted at QKt2. See note 8.
(6) Early exchanges of the contre Pawns are not advantageous.
 Bsq and Kt3. (C. E. R.)
(8) With Black's King's Bishop placed at Q3 and his QKt at Q2, the line of play in this Col. might be continued thus: $11 \ldots, \mathrm{P} \times \mathrm{QP} ; 12 \mathrm{KP} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $13 \mathrm{P} \times \mathrm{P}$, B-B5!; $14 \mathrm{R}-\mathrm{B} 2, \mathrm{~B}-\mathrm{B} 3$; $15 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B} \times \mathrm{Kt} ; 16 \mathrm{P} \times \mathrm{B}, \mathrm{Kt}-\mathrm{R} 4 ; 17 \mathrm{Kt}-\mathrm{K} 4, \mathrm{Q}-\mathrm{R} 5$; 18 Kt-Kt3, QKt-B3, \&c. See diagram.
(9) If 7 P-B5, B-B2; 8 P-QKt4, Kt-K5 (C. E. R.): if 8 Kt-B3, P-QKt4• 9 P-QKt4, P-QR4, \&c.
(10) If $7 \ldots, \mathrm{P} \times \mathrm{BP}$; $8 \mathrm{P}-\mathrm{QR4} 4$
(11) Or 8 Kt Ksq. See diagram.
(12) $12 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{Kt}$; $13 \mathrm{Kt}-\mathrm{K} 5$, \&c. (Hull ∇. Glasgow.)
(13) Or P-QB4, and if P-K3, Q-Kt3! (C. E. R.)
(14) $12 \mathrm{P}-\mathrm{K} 4, \mathrm{Kt} \times \mathrm{Kt}$; $13 \mathrm{P} \times \mathrm{Kt}, 0.0$; 14 O 0 , and KR-Ksq. (Zukertort $\mathrm{\nabla}_{\text {. }}$ Tschigorin.)
(15) Zukertort v. Mason,
(16) If 2 Kt-KB3, Kt-KB3; 3 P-K3, P-QB3; 4 B-Q3 or P-B4 followed in some events by Q-Kt3.
(17) If 3 P \times P, P-Q5; 4 Kt-K4, P-B4; 5 Kt-Kt3, P-K4; 6 P-QKt4, P-QKt3: $7 \mathrm{~B}-\mathrm{R} 3, \mathrm{P} \times \mathrm{P}, \& \mathrm{c}$. (if): $8 \mathrm{P} \times \mathrm{P}, \mathrm{Qch}$ and wins Bishop.
(Col. 1.)

After White's 11th move.
(Col. 2.)

After Black's 7th move.

Table 149.-THE QUEEN'S PAWN GAME.

$$
1 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \cdot \mathrm{Q} 4
$$

	6	7	8	9	10
2	P.QB4			B-B4	
	P-K3 ! (1)			P-K3	P-QB4
8	Kt-QB3 (2)			Kt-KB3. (8)	$\mathrm{B} \times \mathrm{Kt}$ (12)
3	Kt-KB3 (3)			Kt-KB3	$\overline{\mathrm{R} \times \mathrm{B}}$
4	B-Kt5		B-B4	P-K8	$\mathrm{P} \times \mathrm{P}$
4	B-K2		P-QB4 (7)	B-Q3	Q-R4ch
5	P-K8		P-K3	B-Kt3 (9)	Kt-QB3
5	O-0		$\overline{\mathrm{P} \times \text { QP }}$	$0-0$	P-K3
6	$\mathrm{Kt-KB8}$ (4)		$\mathrm{KP} \times \mathrm{P}$	B-Q3	P-K4.
6	$\overline{\mathrm{P} \times \mathrm{P}}$	P-QKt3	$\overline{\mathrm{P} \times \mathrm{P}}$	P-B4	$\overline{\mathrm{B} \times \mathrm{P}}$ (18)
7	$B \times P$	B-Q3	$\mathrm{B} \times \mathrm{P}$	P-B3 (10)	$\mathrm{B}-\mathrm{Kt5ch}(14)$
7	QKt-Q2	B-Kt2	$\overline{\mathrm{Kt}}$-B3	$\overline{\mathrm{Kt}}$-B3	K-Bsq
8	0.0	0.0	Kt-B3	QKt-Q2	$\mathrm{P} \times \mathrm{P}$
8	P-B4	QKt-Q2	B-K2	R-Ksq	Q-Kt3 -
9	Q-K2	$\mathrm{P} \times \mathrm{P}$	0.0	$\mathrm{Kt-K5}$	
9	P-KR3	$\overline{\mathrm{P} \times \mathrm{P}}$	0.0	Q-B2	
	B-R4	R-Bsq	R-Ksq -	P-KB4 (11)	
10	$\overline{\mathrm{Kt} \text {-Kt3 (5) }}$	P-B4 (6)	-		

(1) $2 \ldots, \mathrm{P}-\mathrm{QB} 3$ has been tried bý Steinitz. For $2 \ldots, \mathrm{P} \times \mathrm{P}$ see Queen's Gambit, p. 245.
(2) $\mathrm{Or} \mathrm{Kt}-\mathrm{KB} 3$ first.
(3) Or 3 .., P-QB3. 3 .., B-Kt5 to double White's Pewns is not good. (Steinitz.)
(4) Or $6 \mathrm{~B}-\mathrm{Q} 3$, or $6 \mathrm{Q}-\mathrm{Kt3}$. Mr. Bird approves of 6 Q -B3.
(5) $11 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; $12 \mathrm{KR}-\mathrm{Qsq}, \mathrm{QKt-Q2}$; $13 \mathrm{P}-\mathrm{K} 4+$. (Zukertort $\mathrm{\nabla}$. Steinitz.)
(6) $11 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $12 \mathrm{Q}-\mathrm{R} 4, \mathrm{Kt}-\mathrm{K} 5=$. (Steinitz v. Anderssen.)
(7) $4 \therefore$ B-K2; 5 P-K3, O-O; 6 Kt-KB3, P-QKt3, \&c. (Blackburne v: Taubenhaus.) The Col. is Zukertort v. Steinitz.
(8) 3 P-T3, Kt-KB3; 4 P-QI23!, P-B4; 5 QKt-B3, P-QR3, \&c. (Mason v. Mackenzie.)
(9) Or 5 B-KKKt5! (Mason.) The Col. is Mason v. Mackenzio.
(10) Not to be generally recommended. (Mason.)
(11) $10 \ldots, \mathrm{P} \times \mathrm{QP}$; $11 \mathrm{KP} \times \mathrm{P}, \mathrm{P}-\mathrm{KKt3} ; 12 \mathrm{O}-\mathrm{O}, \mathrm{K}-\mathrm{Kt2} ; 13 \mathrm{Q}-\mathrm{B} 2, \mathrm{KKt}-\mathrm{Ktsq}, \& \mathrm{c}$.
(12) If $3 \mathrm{P} \times \mathrm{P}$?, Kt-QB3; $4 \mathrm{Kt}-\mathrm{KB3}, \mathrm{P}-\mathrm{B} 3$; $5 \mathrm{P}-\mathrm{K} 3, \mathrm{P}-\mathrm{K} 4 ; 6 \mathrm{~B}-\mathrm{K} t 3$, $\mathrm{B} \times \mathrm{P}$, \&c. (Mason v. Steinitz.)
(13) Or $6 \ldots, \mathrm{Q} \times \mathrm{P}$. (Walker.)
 KtxKt; 11 Q-Kt5ch, P.is; 12 Q \times Bch, K-B2; 13 B-K8ch and wins the Quetn (Meson v. Tschigorin).

Table 150.-THE QUEEN'S PAWN GAME.

$1 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \cdot \mathrm{KB4}$.					
2	P-QB4	Kt-KB3	P-K4 (5)		
	Kt-KB3	P-K3	$\overline{\mathbf{P} \times \mathrm{P}}$		
8	Kt-QB3	P-K3	Kt-QB3		P-KB8
	P-K3	Kt-KB3	Kt-KB8 (6)		$\overline{\mathrm{P} \times \mathrm{P}}$ (10)
4	P-QR3 (1)	P-B4	B-KKt5		$\mathrm{Kt} \times \mathrm{P}$
	B-K2	B-Kt5ch	P-B3!	$\overline{\text { P-K3 }}$	Kt-KB3
5	B-KB4	QKt-Q2	$\mathrm{B} \times \mathrm{Kt}$	$\mathrm{B} \times \mathrm{Kt}$	B-Q3
	0-0	P-QKt3	$\overline{\mathrm{KP} \times \mathrm{B}}$	$\overline{\mathrm{Q} \times \mathrm{B}}$	P-Q3 (11)
6	P-K3	B-K2	$\mathrm{Kt} \times \mathrm{P}$	$\mathrm{Kt} \times \mathrm{P}$	P-KR3
	P-QKt3 (2)	B-Kt2	Q-Kt3	Q-Kt3 (8)	Kt-B3
7	P-Q5 (3)	0.0	B-Q3 (7)	B-Q3	Kt-Kt5
	P-Q3	0.0	P-QtI	Q \times P	P-KKt8
8	$\mathbf{P} \times \mathbf{P}$	Q-B2	Kt-QB3	Q.R5ch	$\mathrm{Kt} \times \mathrm{P}$
	$\overline{B \times P}$	Kt-B3	$\overline{\text { Q K KtP + }}$	P-KKt3	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$
9	Kt-B3	R-Q8g		Q-K5	$\mathrm{B} \times \mathrm{Pch}$
	$\overline{\mathrm{Kt}}$-K5	Q-Ksq		Q \times R	$\overline{\mathrm{K}}$-Q2
10	$\mathrm{Kt} \times \mathrm{Kt}$	Kt -Bsq;		$\mathbf{Q} \times \mathrm{R}$	$\underline{\mathrm{Q} \cdot \mathrm{R} 5+(12)}$
	$\overline{\text { P. } \times \mathrm{Kt} \mathrm{(4)}}$	B-K2		$\begin{array}{r} \bar{Q} \times \text { KKtch } \\ (9) \end{array}$	

(1) Not essential. P-KKt3 also good. See Note 5.
(2) Or 6 .., P-Q3, threatening Q-Ksq and Kt-R4. (C.E.R.) Compare Table 152.
(3) Leipzig v. Hamburg. Englisch v. Bird, continued 7 Kt -B3, B-Kt2; 8 B-Q3, Kt -K5; 9 P-KR4, \&o.
(4) $11 \mathrm{Kt}-\mathrm{Q} 4, \mathrm{Q}-\mathrm{Q} 2 ; 12 \mathrm{R}-\mathrm{Bsq}, \mathrm{B}-\mathrm{B} 3 .=$
(5) Introduced by Staunton. Tschigorin played 2 B-KKt5, P.KR3; 3 B-R4, F-KKt4; 4 B-Kt3: (if) $4 \ldots$ P-B5; 5 P-K3, P-KR4; 6 P \times P, P-R5; 7 B-K2, P-Q4. (Bird.) Or 2 P-KKt3, Kt-KB3; 3 B-Kt2, P-K3; 4 Kt-KB3, B-K2; 5 P-B4, B-Kt5ch; 6 KKt-Q2. (Steinitz v. Zukertort.)
(6) Potter v. Steinitz. If 3 .., P-K3; 4 Qch , \&c.
(7) The Handbuch plays 7 Q-K2 to an ultimate win for Black.
(8) $6 \ldots, \mathrm{Q}-\mathrm{K} 2 ; 7 \mathrm{~B}-\mathrm{Q3}, \mathrm{P}-\mathrm{Q} 4$; 8 QKt-B3. (Gunsberg v. Bird.)
(9) Continued $11 \mathrm{~K}-\mathrm{Q} 2, \mathrm{Q} \times \mathrm{R}$? ($\mathrm{Q} \times \mathrm{RP}$!) ; $12 \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch}, \mathrm{K}-\mathrm{B} 2 ; 18 \mathrm{Q}$-Kt8ch, $\mathrm{K} \times \mathrm{Kt}$; 14 Q \times Bch, K-Kt4; 15 P-KB4ch, K-Kt5; 16 B-K2ch, K-R6; 17 Q-R6ch, $\mathrm{K}-\mathrm{Kt7} ; 18 \mathrm{Q}-\mathrm{K}+5 \mathrm{ch}, \mathrm{K} \times \mathrm{P}$; $19 \mathrm{~B}-\mathrm{B} 3$ and wins. (Göring v. Minckwitz.)
(10) Or 3 .., P-K3; 4 Kt-B3. See B. C. M., 1892, p. 363.
(11) Given in A.S. 5.5 Blackmar's Second Gambit, If 5 .., P.K3, or P-KKt3; 6 Kt -Ktt, followed by $\mathrm{Kt} \times \mathrm{RP}$ as in the From Grabit.
(12) If $10 \ldots$ F-K3; 11 F.Q5, Kt-K4; $12 \mathrm{P} \times$ Pob, E mores; $13 \mathrm{~B} \times \mathrm{Kt}+$ (A. S.)

SECTION IV.

Table 151.-THE ENGLISH OPENING.
1 P-QB4.

	1	2	3	4	5
λ	P-QB4	P-K4			
2	P-B4	Kt-QB3	P-K3		Kt-QB3
	P-B4	$\overline{\text { B-Kt5 ? (2) }}$	Kt-KB3		
3	P-Q3	Kt-Q5	$\overline{\mathrm{K}-\mathrm{Qt5}}{ }^{(6)}$	P.QR3	P.QR3
	Kt-KB3	B-K2		P-Q4	P-KKt8
4	Kt-QB3	P-Q4 (3)	Kt-Q5	$\mathrm{P} \times \mathrm{P}$	$\mathrm{Kt}-\mathrm{QB} 3$
	P-Q3	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	$\overline{\text { B-K.t2 }}$
5	P.K4	B-B4	$\mathrm{P} \times \mathrm{Kt}$	Kt-KB3	$\frac{\mathrm{P}-\mathrm{Q} 3 \quad \text { (9) }}{\text { P-Q3 }}$
	Kt-B3	$\overline{\text { P-QB3 (4) }}$	0.0	B-Q3	
	Kt-B3	Kt \times B (5	B-B4	Kt-B3	B-K2
6	P-K4	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	$\overline{\mathrm{P} \cdot \mathrm{Q} 3}$	$\overline{\mathrm{Kt} \times \mathrm{Kt}}$	P-B4
7	B-Q2	Q \times P	$\mathrm{Kt}-\mathrm{K} 2$	$\mathrm{KtP} \times \mathrm{Kt}$	B-Q2
	Q-K2	$0 \cdot 0$	$\overline{\mathrm{B}-\mathrm{KB4}}$	0.0	QKt-K2
	P-QR3	P-K4	0.0	P-Q4	Q-B2
8	$\overline{\text { P-KKt3 (1) }}$	P-Q4	$\overline{\mathrm{Kt}-\mathrm{Q} 2}$	$\overline{\mathrm{P} \times \mathrm{P}}$ (8)	P-B3
9	P-KKt3-	0.0.0	P-Q4 (7)	$B \mathrm{P} \times \mathrm{P}$	Kt-B3 -
	B-Kt2-	B-K3		P-QB4	$\overline{\mathrm{Kt} \text {-B3 - }}$
		Kt-B3		P-Q5	
10		$\overline{\mathrm{Kt}}$ Q2		$\overline{\mathrm{Kt}}$ Q2	
		Kt-Kt5		B-Kt2	
11		P-KR3		$\overline{\mathrm{Kt}}$-B3	
		$\mathrm{KP} \times \mathrm{P}$ -		B-B4	
12		B.B4 -		$\overline{\text { P-QR3\% }+~}$	

(1) In this Col. the mid-game position is approached in the simplest manner. If $8 \ldots, \mathrm{KP} \times \mathrm{P} ; 9 \mathrm{~B} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $10 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P} ; 11 \mathrm{Kt}-\mathrm{Q} 5, \& \mathrm{c}$.
(2) This Col. is London v. Vienna. $2 \ldots, \mathrm{Kt}-\mathrm{KB} 3$, and P-KKt3 are transpositions of Cols. 3 and 5.
(3) If $4 \mathrm{P}-\mathrm{K} 3$, Kt-KB3; $5 \mathrm{Kt} \times \mathrm{B}, \mathrm{Q} \times \mathrm{Kt}$; $6 \mathrm{Kt}-\mathrm{K} 2$, P-QKt3; $7 \mathrm{Kt}-\mathrm{B} 3$, B-Kt2; 8 P-B3, Kt-R4; 7 P-KKt3, P-KB4+.
(4) Or 5 Kt-QR3!
(5) If $6 \mathrm{Kt}-\mathrm{B} 7 \mathrm{ch}, \mathrm{Q} \times \mathrm{Kt}$; $7 \mathrm{~B} \times \mathrm{Q}$, B-Kt5ch, and Black wins a Pawn.
(6) For 3 P-Q4 see.Van 't Kruys Opening, Col. 1.
(7) Zukertort's correction of 4 Kt -K2, as given in our first edition.
(8) Steinitz v. Rosenthal. Or 8 P-K5!
(9) Skipworth v. Winawer. Or 5 Kt-B3, KKt-K2; $6 \mathrm{~B}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q4} ; 7 \mathrm{P} \times \mathrm{P}$, Kt×P; 80.0, O.O; 9 Q-B2, \&ic. (Zukertort v. Blackburne.)

Table 152.-THE ENGLISH OPENING.

(1) 2 P-Q4, P-Q4 transposes into the QP game which may be brought about in various ways as ultimately in this Col. played between Steinitz and Gelbfuhs. In Cols. 7 and 8 Black transposes moves 1 and 2.
(2) 2 .., P-QB4; 3 P.QKt3, P-Q4; $4 \mathrm{Kt}-\mathrm{KB} 3$, P-Q5. (Liverpool v. Calcutta.) See Table 154, Col. 2 , for 3 P-Q4.
(3) This Col. is Skıpworth v. Burn. Against Steinitz, Paulsen played 1 .., P-Q3; 2 P-Q4. P-KKt3; 3 Kt-QB3, B-Kt2, \&c.
(4) A position in the Van 't Kruys Opening.
(5) Mason v. Tschigorin. Or 4 .., B-K2; 5 B-Q3, P-QKt3; $6 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt2}$; $70.0,0-0, \& c$. (Hruby v. Mason.)
(6) 2 P-Q4, P-K3; 3 Kt-QB3, Kt-KB3; 4 P-QR3, B-K2; 5 P-K3, O-O; 6 B-Q3, P-QKt3, \&c. (Neumann v. Paulsen.) The Col. is Wisker v. Bird.
(7) Or 11 P-KKt4! (C. E. R.)
(8) Potter against Zukertort. The objection to this move is that it leaves a weak , KP if followed by P-Q4; or permits White to play P-Q5 as in Col. 7.

SECTIONV.

Table 153.-THE KING BISHOP'S PAWN GAME. 1 P.KB4.

12

(1)	
2	Kt-KB3 (2)
2	Kt-KB3 (3)
3	P-K3
	B-K2
4	B-K2 (4)
	P-QKt3
	$0 \cdot 0$
5	B-Kt2
6	P-QKt3
	O-0
	B-Kt2
7	P-B4
	Q-Ksq
8	Kt-B3
	P-KR3
9	$\overline{\mathrm{P} \cdot \mathrm{Q4}}$ (5)

10
11
12

3

P-Q4	P-KB4 (11)	
P-K3 (8)	P-K3	P-K4
P-QB4	P-K3	$\mathrm{P} \times \mathrm{P}$
Kt-KB3	B-K2	P-Q3
P-K3	$\overline{\mathrm{Kt}}$-KB3	$\overline{\mathrm{P} \times \mathrm{P}}$
P-QKt3	P-QKt3	$\mathrm{B} \times \mathrm{P}$
Kt-KB3	B-K2	Kt-KB3
B-Kt2	B-Kt2	Kt-KB3
$\overline{\mathrm{Kt}}$-B3	0.0	P-K3
B-Kt5 (9)	Kt-KB3	İt-Kt5
$\overline{\mathrm{B}} \mathrm{Q} 2$	P-Q3	P-KKt3(12)
O-0	P-QR4	P-KR4
B-K2	Kt-K5 ?	B-R3
$\mathrm{B} \times \mathrm{QKt}$	P-Q3	P-R5
$\overline{\mathrm{B} \times \mathrm{B}}$	B-B3	$\overline{\mathrm{B} \times \mathrm{Kt}}$
P-Q3	P-B3	$\mathrm{P} \times \mathrm{B}$
0.0	Kt-B4	$\overline{\mathrm{Kt}-\mathrm{Q} 4}$
Kt-Kt5 -	P-QKt4	$\mathrm{P} \times \mathrm{P}$
B-Ksq-	KKt-Q2	Q-K2
(10)	Q-Kt3	$\mathrm{R} \times \mathrm{P}$
	Q-Ksq	$\bigcirc \times \mathrm{R}$
	Kt-Q4+	$\mathrm{P} \times \mathrm{R}$
		Q-Kt5ch(18)

(1) 1 .., P-K4; 2 P-K4 leads into the King's Gambit. See also the From Gambit.
(2) 2 P-K4, P-Q4 or P-QB4 transposes into the Sicilian Defence.
(3) Or 2 P-QKt3. (Blackburne.)
(4) Or 4 P-QKt3, O-O ; 5 B-Kt2, P-QKt3; 6 P-QR4 (Bird), B-Kt2; 7 B-K2!
(5) Mr. Potter notes that this line of play foils White's chances.
(6). Mason v. Schallopp. Zukertort and Hoffer prefer 5 .., Kt-KB3.
(7) I much prefer P-Q4. (C. E. R.)
(8) Or 2 Kt-B3, P-KKt3; 3 P-K3, B-Kt2. When the KB is played on the other diagonal, Bird's attack on the KKt Pawn with Bishop posted on QKt2 and Q on KKt3 (via Ksq) is not easily met (Lasker).
(9) 6 B-K2, B-K2; 7 O-O, P-QR3: Bird v. Tarrasch continued 8 Kt-K5, Q-B2;
$9 \mathrm{P}-\mathrm{Q} 3, \mathrm{O}-\mathrm{O} ; 10 \mathrm{Kt}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{Q} 2 ; 11 \mathrm{QKt}-\mathrm{B} 3, \mathrm{P}-\mathrm{B} 3 ; 12 \mathrm{Kt} \times \mathrm{QKt}, \mathrm{Q} \times \mathrm{Kt}$; 13 Q-Ksq, P-QKt4; 14 P-QR4, B-Kt2; 15 Q-Ksq, \&c.
(10) Burn against Thorold played $10 \ldots$, R-Bsq.
(11) If 1 ... P-KKt3; 2 P-K4. (C. E.'.R.) The Col. is Bird v. Pitschel.
(12) Or $6 \ldots, \mathrm{Q}-\mathrm{K} 2$; (if) $7 \mathrm{Kt} \times \mathrm{RP}, \mathrm{Kt} \times \mathrm{Kt}$; $8 \mathrm{Qch}, \mathrm{K}-\mathrm{Qsq} ; 9 \mathrm{~B} \times \mathrm{Kt}$, E-KKt3+.
(13) 13 K.Bsq, Q.KR5; 14 B.KtGch, K-K2; 15 Q-KR5 and wins. (Bird v. Gelbfuhs.)

SECTIONVI.

Table 154.-THE VAN 'T KRUYS AND FIANCHETTO OPENINGS.

	1	2	3	4	5
1	P-K3		P.QKt3		P.KKt3
	P-K4?	P-KB4 (2)	P:K4	P-K3 (6)	P-K4
2	P-QB4	P-QB4	B-Kt2	B-Kt2	B-Kt2
	Kt-KB3	P-K3	P-KB3	P-KB4	P-Q4
3	Kt-QB3	P-Q4 (3)	P-K3	P-K3	P-Q3
	P-Q4	Kt-KB3	P-Q4	Kt-KB3	$\overline{\mathrm{Kt} \text {-KB3 (8) }}$
4	$\underline{\mathrm{P} \times \mathrm{P}} \quad$ (1)	P-B4	Kt-K2. (4)	P-QB4	P.KB4
	$\overline{\mathrm{Kt} \times \mathrm{P}}$	P-B4	$\overline{\mathrm{Kt}-\mathrm{KR} 3}$	B-K2	$\overline{\mathrm{P} \times \mathrm{P}}$
	$\underline{\mathrm{Kt}} \mathrm{B} 3+$	P.Q5	Kt-Kt3	P.QR3	$\mathbf{Q B} \times \mathbf{P}$
5		Q-B2	B-K3	P-Q3	B-Q3
6		Kt-KB3	P-QB4	P-Q4	B-Kt5
		B-K2	P-B3	0.0	P-B3
7		B-K2	B-K2	Kt-KB3	Kt-QB3
		0.0	B-Q3	P-QKt3	QKt-Q2
		0.0	0.0	P.Kt3	Kt-B3
8		P-QKt3	O-O	B-Kt2	0.0
		Kt-B3	P-Q3	B-Kt2	P-K4
9		$\overline{\text { P-QR3 }}$	$\overline{\mathrm{Kt}}$-Q2	$\overline{\mathrm{Kt}-\mathrm{K} 5}$	Q-Kt3
		P-QKt3	Kt - 3 3	0.0	Q-Q2
10		B-Kt2	$\overline{\text { P-R3! (5) }}$	Kt-Q2	+
		B-Kt2	B-B3 -	Kt -Ksq	
11		P-QKt4	$\overline{\mathrm{Kt}-\mathrm{Kt} 3-}$	QKt-B3	
		$\mathrm{P} \times \mathrm{KP}$ -		P-B3	
12		$\overline{\mathrm{QP} \times \mathrm{P}}$ -		$\overline{\mathrm{Kt}-\mathrm{Kt4}+(7)}$	

(1) $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{KP} \times \mathrm{P}$; $5 \mathrm{KP} \times \mathrm{P}, \mathrm{B}-\mathrm{QKt5}$; $6 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Kt}-\mathrm{K} 5$; 7 Q-Kt3, Q-K2; 8 B-K3, O-O; 9 B-K2 (if $\mathrm{P} \times \mathrm{P}, \mathrm{R}-\mathrm{Ksq}$; thr. Kt $\times \mathrm{P}$), Kt-QB3, \&c.
(2) $1 \ldots, \mathrm{P}-\mathrm{K} 3$ or P-Q4; 2 P-Q4 transposes into the QP game.
(3) The position is that in the English Opening. The play is Zukertort ∇. Anderssen.
$\begin{array}{ll}\text { (4) Or } 4 \text { P-Q4 } 1 & \text { (C. E. R.) The Col. is Skipworth v. Burn. }\end{array}$
(5) To prevent $10 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $11 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B}-\mathrm{Ktsq}$; $12 \mathrm{~B} \cdot \mathrm{R} 3$, \&c.
(6). Or 1 .., P-Q4, (if) 2 B-Kt2, P-KB3; followed by Kt-KR3, and Kt-B2.
(7) The position may be brought in the QP game, or English, or Van 't Kruys Opening. (Cols. 1-2.) Black may now play his Queen out via King's square.
(8) Or 3 .., P-KB4 (Steinitz); if then 4 P-KB4, Kt-QE3, stopping the edranes of White's K Pawn, The Col. is Burn v. Owen.

SECTIONVII.

Table 155.-THE FIANCHETTO DEFENCE.

1 P.K 4.

	1	2	3	4	5
1	P-QKt3 (1)				P-KKt3
2	P-Q4				P.Q4 (8)
	P-K3,		B-Kt2	PKKt3	P.Q3
3	B.Q3	P-Q5	P-KB3 (5)	B-Q3	B. Q3
3	B-Kt2	B-Kt2	P-K3	B-QKt2	Kt-KB3
4	$\mathrm{Kt}-\mathrm{K} 2 \quad$ (2)	$\mathrm{P}-\mathrm{QB4}$	B-Q3	B-K3	P.QB4
4	Kt-KB3	B-B4	P-QB4	B-Kt2	B-Kt2
5	Kt-Kt3	Kt-QB3	P.B3	Kt-KB3	Kt-QB3
5	P-B4	$\overline{\mathrm{Kt}}$-K2	$\overline{\mathrm{P} \times \mathrm{P}} \quad(6)$	P-K3	$\overline{0.0}$
6	$\mathrm{P} \times \mathrm{P}$!	B-K2 (4)	$\mathrm{P} \times \mathrm{P}$	Kt-B3	P-B4
6	$\overline{\mathrm{KB} \times \mathrm{P}}$ (3)	$\overline{\mathrm{Kt} \text {-Kt3 }}$	B-Kt5ch	Kt-KB3	P-K4
7	Kt-B3	Kt-B3	Kt-B3	Q-K2	$\mathrm{BP} \times \mathrm{P}$
7	Kt: B3	0.0	Kt-K2	$\overline{\mathrm{Kt} \text {-B3 (}}$	$\overline{\mathrm{P} \times \mathrm{P}}$
8	B-EB4 -	P-QR3	Kt-K2	P-K5	P-Q5-(9)
	P-Q4 -	P-QR4	0.0	Kt-Q4	P-B3 -
9		O.0-	O-0 -	$\underline{\mathrm{Kt} \times \mathrm{Kt}+}$	
9		P-B4 -	-		

(1) 1 P-QKt3 for the first player resolves shortly into a Var. of the QP game, unless P-K4 follows; for which see p. 266.
(2) Or 4 Kt-KR3 (Tschigorin v. Skipworth). Or 4 B-K3, Kt-KB3; 5 Kt Q2, P-B4; 6 P-QB3, Kt-B3; 7 R-Bsq, Q-B2; $8 \mathrm{Kt}-\mathrm{R} 3, \mathrm{P}-\mathrm{Q} 3 ; 9$ O-O, O-O-O, \&c. (Ranken v. MacDonnell.)
(3) If $6 \ldots, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{P}-\mathrm{QB4}$ with a good game.
(4) Or 6 P-KKt3 to play B-Kt2. (C. E. R.)
(5) Or 3 B-Q3, P-KB4: White may continue by 4 P-KB3, and afterwards Kt -KR3 and B 2 . Another course is $4 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P}$; 5 Q -R5ch, P-KKt3; $6 \mathrm{P} \times \mathrm{P}$, B-KKt2 (if $6 \ldots \mathrm{Kt}-\mathrm{KB3} ; 7 \mathrm{P} \times$ Pdis ch, and $\mathrm{B}-\mathrm{Kt6}$ mate !) ; $7 \mathrm{P} \times$ Pdis ch, $K-B s q ; ~ 8 P \times K t$ (Queen) ch, $K \times Q ; 9 \mathrm{Q}-\mathrm{Kt4}, \mathrm{~B} \times \mathrm{R}$; $10 \mathrm{P}-\mathrm{KB} 3, \& \mathrm{c}$. (W. W.)
(6) Or $5 \ldots$ Kt-QB3; $6 \mathrm{Kt}-\mathrm{K} 2, \mathrm{P} \times \mathrm{P}$, \&c. (Burn v. Owen): or $6 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 4$; 7 B-K2+. (C. E. R.)
(7) $7 \ldots, 0.0$ is better, followed by P-Q4. (C. E. R.)
(8) 2 P-KB4, P-K3; 3 Kt-KB3, P-QB4; 4 P-Q4, P-Q4; $5 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B}-\mathrm{Kt2}, ~ \& \mathrm{c}]$ Gandbuch.)
(9) If taken the Pawn is recovered by Kit-Kt5.

SECTIONVIII.

Table 156.-UNUSUAL AND IRREGULAR OPENINGS.

	1	2	3	4	5
1	P.K4	P.K4	P.K4	P-K4	Kt-KB3(12)
	P-K4	P-Q3	$\overline{\text { P-QB3 (6) }}$	Kt-QB3	P-Q4
2	P-QB3	P-Q4 (4)	P-Q4	P-Q4 (9)	P-K4 (13)
	P-Q4! (1)	Kt-KB3 (5)	P-Q4	P-K4	$\overline{\mathrm{P} \times \mathrm{P}}$
8	Kt-B3 (2)	B-Q3	$\mathrm{P} \times \mathrm{P} \quad$ (7)	$\mathrm{P} \times \mathrm{P} \quad$ (10)	Kt-Kt5
	$\overline{\mathrm{P} \times \mathrm{P}}$ (3)	Kt-B3	$\overline{\mathrm{P} \times \mathrm{P}}$ (8)	Kt \times P	Kt-KB3 (14)
4	Kt \times P	P-QB3	B-Q3	P-KB4	B-B4 (15)
	B-Q3	P-K4	Kt-QB3	$\overline{\mathrm{Kt}-\mathrm{Kt}} 3$	P-K3
5	Kt-B4	P-Q5	P-QB3	B-K3	Q.K2
	B-K8	Kt-K2	Kt-B3	B-Kt5ch	Q-Q5
6	P-Q4	P-KR3	Kt-B3	P-B3	P-QB3
	$\mathrm{P} \times \mathrm{P}$ e.p.	$\overline{\mathrm{K} t-\mathrm{Kt}}$ -	B-Kt5	B-R4	Q-K4
7	$\mathrm{B} \times \mathrm{P}$		P-KR3	Kt-KB3	P.Q3
	Kt-K2		B-K4	B-Kt3	(16)-
8	0.0-		B-KB4	Q-Q2	
	0.0-		P-K3	P-QB3	
9			QKt-Q2	$\underline{\mathrm{Kt} \text {-R3 + }}$	
			B-Q3	(11)	
10			$\underline{B \times B}$		

(1) If $2 \ldots, \mathrm{Kt}-\mathrm{KB} 3 ; 3$ P-KB4, Kt×P; 4 Q -B3 as in the defence to the Greco Counter Gambit: if 3 P-Q4, Kt $\times \mathrm{P}: 4 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q4} ; 5 \mathrm{~B}-\mathrm{K} 3$, $\mathrm{B}-\mathrm{K} 3$ or $\mathrm{QB} 4=$.
(2) $3 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}$; $4 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$; $5 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{QB4}$; $6 \mathrm{~B}-\mathrm{K} 3, \mathrm{P} \times \mathrm{P}$; $7 \mathrm{Q} \times \mathrm{P}=$: if $4 \ldots \mathrm{Kt}-\mathrm{QB} 3: 5 \mathrm{Kt}-\mathrm{B} 3$, P-K5. See Table 26, Note 13.
(3) Or 3 .., P-KB3 as in Staunton's Opening: or 3 .., Kt-QB3.
(4) $2 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P}-\mathrm{K} 4$; 3 Kt -B3: see "Philidor's deferce. Or $2 \mathrm{P}-\mathrm{KB} 4, \mathrm{P}-\mathrm{K} 4$; 3 P-Q4, Kt-KB3: 4 Kt-QB3, \&c. (C. E. R.)
(5) $2 \ldots$ P-KKt3 : see Fianchetto defence, p. 267, Col. 5. If 2 .., P-KB4; 3. Kt-QB3 (or $3 \mathrm{~B}-\mathrm{Q} 3, \mathrm{P} \times \mathrm{P}$; $4 \mathrm{~B} \times \mathrm{P}$, \&c.), $\mathrm{Kt}-\mathrm{KB3}$; $4 \mathrm{P}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P} ; 5 \mathrm{P} \times \mathrm{P}$, Q PQ; $6 \mathrm{Kt} \times \mathrm{Q}, \mathrm{Kt}-\mathrm{Kt5} ; 7 \mathrm{P}-\mathrm{KB4} 4:$ if $3 \ldots$ P-K4; $4 \mathrm{Kt}-\mathrm{KBB}$ transposes into Philidor's defence.
(6) If $1 . .$, P-FB4; $2 \mathrm{P} \times \mathrm{P}, \mathrm{Kt}-\mathrm{KB} 3$; 3 P-KKt4 as in the defence to the King's Gambit. If $1 . .$, P. KB ? ? 2 P-Q4, P-K3; 3 B-Q3, Kt-K2; $4 \mathrm{Kt}-\mathrm{KB3}:$ if 4 P-QD̃, P-Q3.
(7) If 3 P-KB3, P-K3 I: $3 \ldots, \mathrm{P} \times \mathrm{P}$ on this move opens White's game. If hoviever 3 Kt-QE3, P-K3?; 4 B-Q3, Kt-B3; 5 P-K5, KKt-Q2; 6 P-B4 or QRt-K2: if $3 . ., \mathrm{P} \times \mathrm{Pl} ; 4 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{KB4}$ or P-K4. If $3 \mathrm{P}-\mathrm{K} 5, \mathrm{~B}-\mathrm{B} 4 ; 4 \mathrm{P}-\mathrm{KB} 4$ or $\mathrm{B}-\mathrm{Q} 3$.
(8) If $3 \ldots, \mathrm{Q} \times \mathrm{P}$; $4 \mathrm{Kt}-\mathrm{QB} 3$ as in the Centre Counter Gambit. The Col. is given in the Handbuch.
(9) 2 Z
(10) 3 P-Q5, QKt-K2; 4 B-Q3, P-Q3; 5 P-QB4. P-KB4; 6 P-B4, \&c.
(11) ૬ .., KKt-K2; 10 B-Q3! (Salvioli).
(12) If 1 Kt-QB3, P-Q4; 2 P-K3, P-K4; 3 P-KKt3, B-K3; 4 P-Q4, P \times P; 5 Q \times P, Kt-KB3; 6 B-Q2, B-K2 + .
(13) This Col. is the Tennison Gambit. After 2 P-Q4, B-Kt5 Mr. Ranken gives 3 QKt-Q2 followed by P-B4: Salvioli plays 3 Kt-K5, B-R4; 4 P-KKt4, B-Kt3; 5 P-KR4, \&c. See also Col. 6.
(14) $3 \ldots \mathrm{Q}-\mathrm{Q} 4 ;{ }^{4} \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P}$ e. p.; ${ }_{5} \mathrm{~B} \times \mathrm{P}, \& \mathrm{c} .:$ if $4 \mathrm{P}-\mathrm{KR} 4, \mathrm{Kt} \mathrm{KB} 3$; $5 \mathrm{Kt} \mathrm{QB} 3, \mathrm{Q}-\mathrm{K} 4+$. (C. E. R.) If 3 .., P-KB4; $4 \mathrm{~B}-\mathrm{QB} 41, \mathrm{Kt}-\mathrm{KB} 3$?; $5 \mathrm{~B}-\mathrm{B} 7 \mathrm{ch}$, K-Q2, 6 Kt-K6 wins.
(15) 4 Kt-QB3, B-Kt5; 5 B-K2, B-B4; 6 B-B4, P-K3; 7 Q-K2, Q-Q2; $8 \mathrm{KKt} \times \mathrm{P}$ (K5), $\mathrm{Kt} \times \mathrm{Kt}$; $9 \mathrm{Kt} \times \mathrm{Kt}$, Kt-B3 and 0-O-O, (Golmayo): ' or $7 .$. , $\mathrm{Kt}-\mathrm{B} 3$; $8 \mathrm{KKt} \times \mathrm{P}(\mathrm{K} 5) \mathrm{Kt} \times \mathrm{Kt} ; \quad 9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Kt}-\mathrm{Q} 5 ; 10 \mathrm{Q}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{R} 5 ; 11 \mathrm{Q} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{Ktch}+$. (C. E. R.)
(16) This opening may be made a variation of the Centre Counter Gambit, viz: 1 P-K4, P-Q4; $2 \mathrm{Kt}-\mathrm{KB} 3$, \&c.

For variations springing from 1 P-Q3 see the Queen's Pawn Game. p. 259, note 1.

Tabix 157. -UNUSUAL AND IRREGULAR OPENINGB.

	6	7	8	c	10
1	Kt-KB3	P-QR4 (2)		P-Q4	P-QKt4
	$\overline{\text { P-K3 (1) }}$	P-K4		$\overline{P-Q 4 ~(6) ~}$	P-K4 (9)
2	P-Q4	P-QB3	P-R5	P-KB4	B-Kt2
	Kt-KB3	P-Q4	$\overline{\text { P-Q4 (4) }}$	$\overline{\text { P-K3 (7) }}$	P.Q3 (10)
3	P-K3	P-Q4	P-K3	Kt-KB3	P-K3 (11)
3	P-QKt3	P-K5	Kt-KB3	Kt-KB3	B-B4
4	B-K2	B-B4	P-R6	P-K3	B-K2 (12)
4	B-Kt2	B-Q3	$\overline{\mathrm{P} \times \mathrm{P}}$ (5)	B-Q3 (8)	Kt-Q2
5	0.0	$\mathrm{B} \times \mathrm{B}$	Kt-KB3	B-Q3	P.Q3
5	B-K2	$\overline{Q \times B}$	B-Q3	P-B4	P-Q4
6	P-B4	P-K3	P-Q4	P-B3	P-QR3
6	0.0	B-K3+ (3)	B-KKt5	Kt-B3	P-QB4
7	Kt-B3		$\mathrm{P} \times \mathrm{P}$	0.0	$\mathrm{P} \times \mathrm{P}$
7	P-Q4		$\bar{B} \times \mathrm{P}$	P-QR3	Q-R4ch
8	P-QKt3		P-KR3	B-Q2	Q-Q2
8	P-B4		$\overline{\mathrm{B} \times \mathrm{Kt}}$	0.0	$\overline{Q \times B P}$
9	B-Kt2 -		Q \times B -	B-Ksq -	Kt -KB8
9	Kt-B3orQ2		P-B3 -	-	B-Q8

(1) Or 1 .., P-Q4; 2 P-Q4, P-K3; 3 P-K3, \&c. The Col. is Zukertort ∇. Noa, and transposes into the Q Pawn game, Col. 1, p. 259. See also Col. 5, p. 259.
(2) Or 1 P-QR3, when if P-K4; 2 P-QB4, playing the Sicilian Defence with a move gained. Black may, however, reply 1 .., P-Q4 1
(3) Ware v. Keyes: Black played $6 \ldots$ B-B4. Cols. 7-8 are the "Meadow Hay" Opening, invented by Mr. Preston Ware, of Boston, U.S.
(4) Or 2 P-QR3!
(5) Or 4 P-QKt3.
(6) $1 \ldots$ Kt-KB3; 2 P-KB4, P-KKt3; 3 Kt-KB3, B-Kt2; 4 P-K3, P-Q3; 5 B-K2, O-O; 6.O-O, QKt-Q2; 7P-B4, P-B3; 8 Kt -B3, Q-B2; 9 P-K4, P-K4. (Ware v. Paulsen.) The Col. is "The Stonewall Opening," introduced by Mr. Ware.
(7) $2 \ldots$, B-B4 is also a good move. (C. E. R.)
(8) Or $4 \ldots$ B-K21
(9) Or I .., P-QR4; 8 P-Kt5, P-QB3; 3 P-QR4, P-K4. (Jenkins ∇. Blackburne. 1 Or 1 .., P-K3, or P-QKt3. Or 1 .., P-Q4 !; 2 B-Kt2, P-K3; 3 P-QR3, P-QB4,t. (C. E. R.)
(10) Or 2 .., P-KB3.।
(11) Or 3 P-Kt5, P-QR3; 4 P-QR4, \&c.
(12) Or 4 Q-B3 1.

BOOKVI.

GAMESATODDS.

SUMMARY OF SECTIONS.

Section I. The Pawn and Move Game.
" II. The Pawn and Two Moves Game
III. The Odds of a Knight.

SECTIONS I. AND II.

THE PAWN AND MOVE ALSO PAWN AND.

 TWO MOVES GAMES.

IT has been noted by Mr. Potter in the Westminster Papers, that one of the most important principles of the Pawn and one or two moves game is that the Royal Pawns, unless provoked, should be kept on their own half of the board until everything is matured for the Rubicon to be crossed with effect. The preliminary consideration for the odds giver is to guard against a check by the White Queen at KR5. This is however not unfrequently a harmless move which may be permitted with impunity or even invited as a premature attack. Another point for Black, if his opponent will give him time, is to castle on his King's side, so as to command the open King's Bishop's file with his Rook. If he castles on the Queen's side, he is not only exposed to the ordinary disadvantages of that proceeding when adopted by the second player, but his King's side Pawns are dangerously weakened for the end game. He need not be afraid of early exchanges, or an open game. His implied superior skill will enable him to overcome any little difficulty that may arise in consequence. Even a Pawn ending, if Black_can keep his King's Rook's

Pawn unmoved and his King at hand, is not necessarily a win for the first player, his extra Pawn notwithstanding. Analysts condemn on principle certain variations in which Black offers a second Pawn for an open game. This condemnation must always be qualified by a consideration of the style, as well as the strength of the players. Some play an open game much stronger than a close game.

One of Black's difficulties is to develop his Queen's Bishop, and bring his Queen's Rook into action. The line of play which accomplishes this object in the Queen's Pawn and Fianchetto openings leaves him in this case, with a backward and unsupported King's Pawn. His leading idea should be to treat the opening pretty much as he would the French Defence, with due allowance for the special modifications. He has to maintain the balance of position, as well as he can, with less freedom of action. His adversary may advance against him on either side of the board.

The first player, on his part, must try to keep his adversary's development backward. He has one resource always at hand in case of emergencies. He can give up a minor piece for two Pawns and remain with very little inferiority of force. For example a Bishop at Q3 attacking a Black Pawn at KKt3, which is defended by the Rook's Pawn only, may be sacrificed in the early part of the game, if the White Queen is free to retake the supporting Pawn. White's three Pawns on King's side will then have a clear course, and become very strong. To meet this kind of attack Black may play his Queen in two moves to KKt2 after P-KKt3. Another strong attack, after Black has played P-KKt3, is by promptly advancing the King's Rook's Pawn. If White commences the game with P-Q4 or P-QB4 he does not aim at early advantages, and the play is conducted on the same lines as the Queen's Pawn game, in which Black has time to secure a fair development and prepare for mid-game contingencies.

SECTIONI.

Table 158.-THE PAWN AND MOVE GAME.
 (Remove Black's King's Bishop's Pawn.)

(1) If 2 P-KB4, Kt-KR3. If $2 \mathrm{Kt}-\mathrm{KB} 3$, P-Q4; 3 P-K5, P-B4.
(2) If $2 \ldots$, P-KKt3; 3 B-Q3, P-B3 and P-Q4. See Col. 4. Or $2 \ldots, \mathrm{Q}-\mathrm{K} 2$; 3 B-Q3, Kt-QB3; 4 Kt -KB3: here Steinitz replied by $4 \ldots$ Kt-Qsq, thence to B2. White may vary with $4 \mathrm{P}-\mathrm{QB} 3$ to play Q-B2 in which case it is sometimes convenient for Black to play P-KKt3 and Q-KKt2. A game Wayte v. Horwitz runs: 2 .., P-KKt3, 3 B-Q3, P-B4; 4 P-KR4, P \times P; 5 P-R5, B-Kt2; $6 \mathrm{P} \times \mathrm{P}$, \&c.
(3) If 5 B-KKt5, B-K2; $6 \mathrm{P} \times \mathrm{P}$?, $\mathrm{O}-0$; and Black has the attack: if 6 B-QKt5ch, K-B2 (Fraser v. Steinitz): or $6 \ldots, \mathrm{P}-\mathrm{B} 3$; $7 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}$; $8 \mathrm{Kt}-\mathrm{QB} 3$, O-O; (if) 9 P-Q6, Kt-Kt5, \&c.
(4) If 3 P-K5, P-B4 as in the French Defence. Or 3 B-Q3, (if) 3 .., P-KKt3; 4 Kt-KB3, P-B4; 5 P-B3, \&c. The Col. is Devinck v. Morphy.
(5) Or 2 B-B4, Kt-KB3; 3 P-Q3: or 3 P-Q4, Kt-B3 (not Kt \times P); 4 Kt-QB3, P-K3 or 4.
(6) If $3 \mathrm{P}-\mathrm{K} 5, \mathrm{P} \times \mathrm{P} ; 4 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{Qch} ; 5 \mathrm{~K} \times \mathrm{Q}, \mathrm{Kt} \mathrm{K} t 5$, \&c.
(7) If $3 \ldots$ P-K4; $4 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$; $5 \mathrm{Q} \times \mathrm{Qch}, \mathrm{K} \times \mathrm{Q}$; $6 \mathrm{~B}-\mathrm{KK} t 5, \mathrm{~B}-\mathrm{K} 3$; 7 0-O-Och.
(8) De Vere ∇. Steinitz played 8 P-B5, B-Q2; 9 B-QB4, Q-K2; 10 O-0, O-O-O.
(9) If $2 \ldots$ P-K3; 3 B-Q3, Kt-QB3; $4 \mathrm{~B}-\mathrm{K} 3$, Kt-B3; $5 \mathrm{P}-\mathrm{QB} 3$, \&c. Or $2 \ldots$ B-K3; 3 Qch, P-KKt3; 4 Q-QKt5ch, B-Q2; 5 Q \times P, Kt-QB3; 6 Kt-KB3, B-Kt2, \&c. (Brien v. Löwenthal.). If 2 ..., Kt-QB3; 3 Kt-KB3, B-Kt5?; See Col, 8 , note 4.
(10) If $3 \mathrm{P} \times \mathrm{P}, \mathrm{Q}$ R5. (C. E. R.)
(11) $3 \ldots, P \times P$ gives White a good game.

Table 159.-THE PAWN AND MOVE GAME.
(Remove Black's King's Bishop's Pawn.)

$$
1 \text { P.K4, Kt-QB3; } 2 \text { P.Q4. }
$$

	6	7	8	9	10
2	$\overline{\text { P-Q4 }}$	P-K3	$\overline{\text { P-K4 (4) }}$		
8	P-K5 (1)	Kt-KB3	P-Q5 (5)		$\mathbf{P} \times \mathrm{P}$!
B	B-B4	P-Q4	QKt-K2		$\overline{\mathrm{K} \times \times \mathrm{P}}$
4	B-QKt5	P-K5	B-KKt5		P-KB4 (9)
4	Q-Q2	KKt-K2 (2)	KKt-B3	P-Q3	Kt-B2
5	Kt-K2	B-KKt5	$\mathrm{B} \times \mathrm{Kt}$	B-Q3 (7)	B-B4
5	0-0.0	P-KR3	$\overline{\mathrm{P} \times \mathrm{B}}$	P-KKt3	KKt-R3
6	0.0	B-R4	Q-R5ch	P-KR4	B-K3 (10)
6	P-QR3	Q-Q2	Kt-Kt3	P-KR3	P-B3
7	B-Q3	B-Q3	Kt-KB3	B-K3	KKt-B3
7	$\overline{B \times B}$	P-KKt3	$\overline{\mathrm{K}-\mathrm{K} 2 ~(6) ~}$	B-Kt2	B-Kt5ch
8	Q \times B	$\mathrm{B} \times \mathrm{Kt}$	P-Q6ch -	Kt-K2	P-B3
8	P-K3	$\overline{\mathrm{Kt} \times \mathrm{B}}$ (3)	$\overline{\mathrm{K} \times \mathrm{P}}$ -	$\overline{\mathrm{Kt}} \mathrm{KBB} 3$ (8)	B-R4
9	$\mathrm{P}-\mathrm{QB} 3+$				Q.Kt3+

(1) $3 \mathrm{P} \times \mathrm{P}$ is not so good: or 3 Q -R5ch, $\mathrm{P} \cdot \mathrm{KKt3} ; 4 \mathrm{Q} \times \mathrm{QP}, \mathrm{Q} \times \mathrm{Q} ; 5 \mathrm{P} \times \mathrm{Q}$, $\mathrm{Kt} \times \mathrm{P}+$. (Salvio.) If $3 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P} \times \mathrm{P}$; $4 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 4 ; 5 \mathrm{Kt} \times \mathrm{P}$, \&c. An attack approved in C. P. C. is 3 B-QKt5, P-K3; 4 Q-R5ch, \&o.
(2) Or $4 \ldots$, P-KKt3.
(3) If 9 Kt-R4, R-KKtsq; 10 0-0, Kt-B4; $11 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Q}-\mathrm{Kt2}$; $12 \mathrm{Kt}-\mathrm{B} 3$, P-B3; $13 \mathrm{Kt}-\mathrm{K} 2, \mathrm{~B}-\mathrm{K} 2, \& \mathrm{c}$.
(4) 2 .., P-Q3; 3 Kt-KB3, B-Kt5?; $4 \mathrm{P}-\mathrm{Q} 5, \mathrm{Kt}-\mathrm{K} 4$; $5 \mathrm{Boh}, \mathrm{P}-\mathrm{B3} ;{ }^{6} \mathrm{P} \times \mathrm{P}$, $\mathrm{P} \times \mathrm{P} ; 7 \mathrm{Kt} \times \mathrm{Ktl}$, (if) $\mathrm{B} \times \mathrm{Q}$; $8 \mathrm{~B} \times \mathrm{Pch}+$. If $2 \ldots$.. $\mathrm{P}-\mathrm{KKt3}$; $3 \mathrm{P}-\mathrm{KR} 4$, \&c.
(5) If $3 \mathrm{~B}-\mathrm{QKt5}, \mathrm{P} \times \mathrm{P}$?; $4 \mathrm{~B} \times \mathrm{Kt}, \mathrm{QP} \times \mathrm{B} ; 5 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}+$: if $3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P} \times \mathrm{P}$; 4 B-QB4, Q-B3 (Owen v. Morphy).
(6) Better than 7 .., Q-K2 or K-B2 on account of. Salvio's move 8 P-Q6 with a strong attack.
(7) Or $5 \mathrm{~B} \times \mathrm{Kt}, \mathrm{Q} \times \mathrm{B}$; $6 \mathrm{~B}-\mathrm{Q} 3$, P-KKt3; 7 P-KR4, \&c.
(8) If 9 P-QB4, Kt-Kt5; 10 Q-Q2, P-B4; $11 \mathrm{Kt}-\mathrm{B} 3, \mathrm{~B} \cdot \mathrm{Q} 2$; 12 O-0-0, P-R3, \&c.
(9) $4 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt} \times \mathrm{Ktch}$; $5 \mathrm{Q} \times \mathrm{Kt}$, Kt-B3; $6 \mathrm{~B} \cdot \mathrm{KKt5}, \mathrm{~B}-\mathrm{K} 2$, \&c.
(10) If 6 Q-Q4, B-K2 1 indirectly guarding the KKt Pawn: or $6 \mathrm{Kt}-\mathrm{KBB}$, B.B4, \&C.

Table 160.-THE PAWN AND MOVE GAME.
(Remove Black's King's Bishop's Pawn.)

	11	12	13	14	15
1	P-K4				P-Q4 (8)
	Kt-KR3 ?		P-B4? (5)	$\overline{\text { P-KKt3 (7) }}$	$\overline{\mathrm{Kt}-\mathrm{KB} 3}$ (9)
2	P-Q4 (I)		Q-R5ch	P-Q4	Kt-QB3
	Kt-B2		P-KKt3	B-Kt2	P-K3
3	P-QB4 (2)	P-KB4	$Q \times B P$	P-KR4!	P-K4
	P-K3	P-K3	Kt-QB3	P-K4	B-Kt5
4	Kt-QB3	P-B4 (4)	Kt-KB3	P-QB3	B-KKt5
	P-B3 (3)	B-Kt5ch	P-K4	$\overline{\mathrm{K}}$-K2	P-KR3
5	P-Q5	Kt-QB3	Q-B3	$\mathrm{P} \times \mathrm{P}$?	$\mathrm{B} \times \mathrm{Kt}$
	P-Q3	O-0	B-Kt5	$\overline{\mathrm{B} \times \mathrm{P}}$	$\overline{\mathrm{Q} \times \mathrm{B}}$
6	P-KB4	Kt-B3	Q-Kt3	P-KB4	P-K5
	Kt-QR3	P-Q3	Q-K2 (6)	B-Kt2	Q-B2
7	Kt-KB3	B-Q3	P-B3+	B-B4	B-Q3
	P-KKt3	Kt-B3		QKt-B3	0.0
8	B-Q3	0.0		P-R5	Kt -B3
	B-Kt2	$\overline{\mathrm{B} \times \mathrm{Kt}}$		P-Q3	Kt-B3
	O-0+	$\underline{\mathrm{P} \times \mathrm{B}+}$		$\underline{\mathrm{Kt}}$-KR3+	O-0+
9		Kt-K2			

(1) Better than $2 \mathrm{Kt}-\mathrm{QB} 3$: If 2 P-KB4 ?, P-K4.
(2) If 3 B-QB4, P-K3: after the text move or 3 B-Q3, P-K3 or 4 may follow.
(3) 4 .., P-B4; 5 P-Q5, P-Q3; 6 P-B4, Kt-QR3; 7 Kt-B3, P-KKt3; 8 P-KR4, B-Kt2; $9 \mathrm{P}-\mathrm{R} 5, \mathrm{P}-\mathrm{K} 4$; $10 \mathrm{RP} \times \mathrm{P}, \mathrm{RP} \times \mathrm{P} ; 11 \mathrm{R} \times \mathrm{R}, \mathrm{B} \times \mathrm{R}$; $12 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{B} 3$. (Devinck v. St. Amant.)
(4) Brien v. Löwenthal: or 4 B-K3 may be played.
(5) This is better in the Pawn and Two Moves game. It may be played on the second move, viz.:-1 .., P-K3; 2 P-Q4, P-B4; 3 Qch, ${ }^{2}$. Kt-KB3; 5 B-KKt5, BK or Kt2; $6 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 7 \mathrm{Q} \times \mathrm{BP}, \mathrm{Kt}-\mathrm{B} 3 ; 8$ P-QB3, $\mathrm{P}-\mathrm{Q} 3$ and $\mathrm{O}-\mathrm{O}$: or $3 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{R4ch}:$ or $3 \mathrm{Kt}-\mathrm{KB} 3$ or $\mathrm{P}-\mathrm{Q} 5$ is playable.
(6) Or $6 \ldots, \mathrm{Kt}-\mathrm{B} 3$; $7 \mathrm{P}-\mathrm{B} 3+$. This variation is given by Mr. Potter.
(7) 1 .., P-QKt3 follows the Fianchetto Defence (See Table 155): De Vere v. Steinitz continued :- 2 P-Q4, B-Kt2; 3 B-Q3, Kt-QB3; 4 Kt-KB3, P-K3: 5 O-O, \&c. The Col. is from Cochrane's Treatise: Staunton gives 5 B-QB4.
(8) 1 P-QB4, P-K4; 2 P-Q3, Kt-KB3; 3 Kt-QB3, P-B3; 1 P-K3, P-Q4 $5 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 6 \mathrm{~B}-\mathrm{Q} 2, \mathrm{Kt}-\mathrm{B} 3$, \&c. Compare the English Opening, p. 263.
(9) $1 \ldots$ P-Q4; 2 P-QB4 as in the Queen's Pawn game to White's advantage or 2 P.K3, Kt-KB3, \&c. The Col. is De Vere v. Steinitz.

SECTIONII.

Table 161.-THE PAWN AND TWO MOVES GAME. (Remove Black's King's Bishop's Pawn.)

$$
1 \text { P-K4, } \ldots ; 2 \text { P-Q4. }
$$

	1	2	8	4	5
$2 \overline{\text { P-K3 }}$					
8	B-Q3 (1)			P-QB4	
8	P-B4! (2)			P-B4!	$\overline{\mathrm{Kt}-\mathrm{QB} 3}$ (9)
4	P-K5 ?	P-Q5	P-QB3 (8)	P-Q5	Kt-KB3
	Q-R4ch (3)	P-Q3	P-KKt3	P-Q3	P-Q4
5	B-Q2	P-QB4 (6)	P-KB4	P-KB4	P-K5
	Q-Kt3	P-KKt3	P-Q4	Kt-KR3	B-Kt5ch
6	Q-R5ch	P-KR4	P-K5	Kt-QB3	Kt-B3
	$\overline{\mathrm{K}-\mathrm{Qsq}}$	B-Kt2	Kt-KR3	$\overline{\mathrm{Kt}}$-B2	KKt-K2
7	Q-B7 (4)	P-R5	Kt-KB3	Kt-B3	B-Q3
	Kt-K2	P-K4	$\overline{\mathrm{Kt}-\mathrm{B}}$	B-K2	0.0
8	Kt-QB3	Kt-Q.B3	O-0	B-Q3	$\mathrm{B} \times \mathrm{P} \operatorname{ch}(10)$
	$\overline{\mathrm{P} \times \mathrm{P}}$	Kt-Q2	B-K2	Kt-QR3	$\overline{\mathrm{K} \times \mathrm{B}}$
9	Kt-Kt5	$\mathrm{P} \times \mathrm{KtP}$	K-Rsq +	0.0	Kt-KKt5ch
	Q-B4	$\overline{\mathrm{P} \times \mathrm{P}}$		0.0	K-Kt3
10	Kt-KB3	$\mathrm{R} \times \mathrm{R}+$		P-K5+	P-KR4+
10	QKt-B3 (5)	$\overline{\mathrm{B} \times \mathrm{R}}$ (7)			(11)

(1) Better than 3 P-KB4 played in Philidor's time. Ses Col. 14. If $3 \mathrm{Kt}-\mathrm{QB} 3$ P-KKt3l: if 3 Qch?, P-KKt3; 4 Q-K5, Kt-KB3, \&c.
(2) Or $3 \ldots$... P-Q3; $4 \mathrm{Kt}-\mathrm{KB} 3$; Q-K2 approved by Mr. Potter. If $3 \ldots$.., P-Q4; 4 P-K5, P-KKt3 (or $4 \ldots, \mathrm{Q}-\mathrm{Q} 2$: or $4 \ldots$ Kt-K2; 5 B-KKt5: if $4 \ldots, \mathrm{Q}-\mathrm{R} 5$; $\left.5{ }^{\circ} \mathrm{Kt}-\mathrm{KB} 3\right)$; $5 \mathrm{P}-\mathrm{KR} 4, \mathrm{P}-\mathrm{B} 4 ; 6 \mathrm{P}-\mathrm{R} 5, \mathrm{P}-\mathrm{B} 5 ; 7 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{B} ; 8 \mathrm{R} \times \mathrm{P}, \mathrm{P} \times \mathrm{P}$ or B-Kt2; 9 Q-R5 and wins.
(3) If 4 .., P-KKt3; 5 P-KR4, P×P; 6 P-KB4, Kt-K2; 7 P-R5, B-Kt2; $8 \mathrm{Q}-\mathrm{Kt4}+$.
(4) Staunton gives $7 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{P} \times \mathrm{P}$; $8 \mathrm{Kt}-\mathrm{K} 4$.
(5) 11 O-O, P-QR3; $12 \mathrm{Kt}-\mathrm{Q} 6, \mathrm{~K}-\mathrm{B} 2$; (if) $13 \mathrm{Q}-\mathrm{B} 4, \mathrm{Kt}-\mathrm{Q} 4$, \&c.
(6) Or 5 P-K5, to follow with 6 Qch , (if) P-KKt3; $7 \mathrm{~B} \times \mathrm{Pch}$, \&c.
(7) 11 Q-Kt4, Kt-Bsq; 12 Q-Kt3, B-133; 13 Kt-B3, \&c.
(8) If $4 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}$. If 4 Q -R5ch, P-KKt3; $5 \mathrm{Q}-\mathrm{K} 5$, Int-KB3; 6 B-KKt5, $\mathrm{B}-\mathrm{K} 2 ; 7 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 8 \mathrm{Q} \times \mathrm{BP}$; Kt-B3; $9 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{~B}-\mathrm{K} 2$; $10 \mathrm{Q}-\mathrm{QKt5}, \mathrm{O}-\mathrm{O}$, \&c. (Handbuch.)
(9) $3 \ldots$, B-Kt5ch gives White a good game.
(10) Or 8 B-KKt5, Q-Ksq (Szen v. Labourdonnais).
(11) $10 \ldots$, Q-Ksq; 11 Pch, K-T33; 12 Q-32, Kt-B4; 13 P.KJl4, QKt \times QF ; 14 KKt \times Pdis $\operatorname{ch}, \mathrm{K}-\mathrm{R} 2$; $15 \mathrm{Kt} \times \mathrm{K} t, \mathcal{\&} \mathrm{c}$.

Table 162.-THE PAWN aND TWO MOVES GAME. (Remove Black's King's Bishop's Pawn.)

(1) 3 .., P-K9; 4 Kt-KB3, Kt-K2!; 5 P-KR4, P-KKt3; 6 P-R5, R-Ktsq. (Potter).
(2) $4 \ldots \mathrm{P} \times \mathrm{P}$; $5 \mathrm{P}-\mathrm{Q} 5$, Kt-Kt5; $6 \mathrm{Qch}, \mathrm{K}-\mathrm{Q} 2 ; 7 \mathrm{Q}-\mathrm{Kt4ch}$, \&c. If $4 \ldots$ $\mathrm{Kt} \times \mathrm{QP} ; 5 \mathrm{Qch}, \mathrm{K}-\mathrm{Q} 2 ; 6 \mathrm{Q}-\mathrm{Kt4ch}, \mathrm{Kt}-\mathrm{K} 3 ; 7 \mathrm{~B}-\mathrm{B} 4$ or $5+$.
(3) Black will castle on Queen's side and have a good game.
(4) Or 3 P-QB4: or 3 P-K5, (if) $\mathrm{P} \times \mathrm{P}$; $4 \mathrm{Q}-\mathrm{R5ch}$ (Staunton).
(5) $3 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{R} 4 \mathrm{ch}$; $4 \mathrm{Kt}-\mathrm{QB} 3, \mathrm{Q} \times \mathrm{P}$; $5 \mathrm{~B}-\mathrm{Q} 3$, \&c. Or $3 \mathrm{P}-\mathrm{Q} 5, \mathrm{P}-\mathrm{Q} 3$; 4 P-KB4 to be followed by Kt-KB3 (Potter).
(6) If $5 \mathrm{P}-\mathrm{KB} 3, \mathrm{P}-\mathrm{K} 4 ; 6 \mathrm{Q}-\mathrm{Q} 5, \mathrm{P} \times \mathrm{P} ; 7 \mathrm{~B}-\mathrm{QB} 4, \mathrm{Q}-\mathrm{K} 2$ thence to $\mathrm{K}-\mathrm{K} t 2$: or 7 .., Q-R4ch to simplify.
(7) If $6 \ldots, \mathrm{Kt}-\mathrm{B} 3$; $7 \mathrm{~B}-\mathrm{Kt} 5+$. Black plays for chances.
(8) 2 .., P-KKt3 is a very risky defence; 3 P-KR4, B-Kt2; 4 P-R5, \&c.
(9) If 5 P-B4, P-K3; $6 \mathrm{Kt}-\mathrm{B} 3$ is better than $6 \mathrm{P} \times \mathrm{P}$, and excharging Queens. (Staunton.)
(10) Or 3 .., P-K3 and afterwards P-Q4 (B. C. M., 1881, p. 201).
(11) If $4 \mathrm{Q}-\mathrm{R} 5 \mathrm{ch}, \mathrm{P}-\mathrm{KKt} 3 ; 5 \mathrm{Q} \times \mathrm{QP}, \mathrm{Q} \times \mathrm{Q} ; 6 \mathrm{P} \times \mathrm{Q}, \mathrm{Kt} \times \mathrm{P}$ with a fair game, Another variation is 4 P'B5, Kt-B3; 5 P-K5, Kt-K5; 6 Qch, P-KKt3: $7 \mathrm{~F} \times \mathrm{B}$, B-Kt2; $8 \mathrm{P} \times$ Pdis ch, K-Bsq; $9 \mathrm{P}-\mathrm{B} 3, \mathrm{Q}-\mathrm{Ksq}$, \&c.
(12) Or $6 \ldots$, Kt-R3 and B-K2 as given by Staunton.

Table 163.-THE PAWN AND TWO MOVES GAME.
(Remove Black's King's Bishop's Pawn.)

		1	P-K4		
	11	12	18	14	15
2	P-Q4			P.KB4	Kt-KB3 (9)
2	$\overline{\mathrm{K}} \mathrm{t}$ QB3			P-K3	P-Q4
3	B-Q3		Kt-QB3 (6)	$\mathrm{Kt-KB3}$	P-K5
3	P-Q4	P-K4	$\overline{\text { P-K4 (7) }}$	$\overline{\mathrm{P}-\mathrm{Q} 4}$	P-B4
4	P-K5	P-KB4 (2)	$\mathrm{P} \times \mathrm{P}$	P-K5	P-B3
4	B-K3	P×QP (3)	$\overline{\mathrm{Kt} \times \mathrm{P}}$	P-B4	Kt-QB3
5	Kt-KBs	P-K̇5	P-B4	P-Q4	P-Q4
6	Q-Q2	$\overline{\mathrm{Kt}} \mathrm{R} 3$ (4)	Kt-B2	Kt-QB3	B.Kt5
6	P-QB3 (1)	$\mathrm{B} \times \mathrm{P}$?	B-B4	P-B3	B-K24
6	0-0.0	$\overline{\mathrm{R} \times \mathrm{B}}$	KKt-R3	Q-Kt3	P-K¢
7	P-QKt4	Q-R5ch	Q-Q4!	Q-Kt3	
7	B-Kt5	P-KKt3	B-K2 ?	Kt-R3	
8	P-QR4+	Q \times P Pch	Q $\times \mathrm{KtP}$	B-Q3	
8		R-B2	B-B3	P-B5	
9		Kt-KB3	B \times Ktch	$\underline{Q} \times \mathbf{Q}$	
9		Kt-K2	$\overline{\mathrm{K}} \times \times \mathrm{B}$	$\overline{\mathbf{P} \times \mathrm{Q}}$	
10		Q-R5	Q-Kt4	$\mathrm{B}-\mathrm{B} 2+$	
10		P-Q3 (5)	P-Q4 (8)	B-Q2	

(1) Or $6 \mathrm{Kt}-\mathrm{Kt5}$!. If then $6 \ldots, \mathrm{Kt} \times$ QP; $7 \mathrm{~B} \times \mathrm{RP}$: if $6 \ldots$, P.KKt3 or B-B4; 7 P-QB3.
(2) Or 4 P-Q5, QKt-K2; 5 B-Kt5: or $4 \mathrm{P} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; 5 P-KB4 or Q-R5ch.
(3) If $4 \ldots \mathrm{P} \times \mathrm{BP}$; $5 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt} \times \mathrm{P}$; 6 Qch ; \&c. If $4 \ldots, \mathrm{Kt} \times \mathrm{P}$; 5 Qch , $\mathrm{K}-\mathrm{K} 2 ; 6 \mathrm{Q} \times$ Pch, Kt-K3; 7 P-B5, P-Q3 (C. E. R.) If 4 .., P-Q3; 5 P-Q5, QKt-K2; 6 Kt -B3 or R3, or P-B5 +. After P-KB4, Kt-KR3 will generally be found satisfactory (Tinsley).
(1) If 5 .., P-KKt3; 6 P-KR4, \&c.
(5) $11 \mathrm{Kt}-\mathrm{Kt5}, \mathrm{~B}-\mathrm{Kt5}$; $12 \mathrm{Kt} \times \mathrm{R}, \mathrm{B} \times \mathrm{Q}$ with at least an equal game.
(6) 3 Kt -QB3 is better.in reply to $2 \ldots \mathrm{Kt}$-QB3 than to $2 \ldots$.., P -K3. Or 3 Kt -KB3 , (if) P-Q4; $4 \mathrm{P} \times \mathrm{P}, \mathrm{Q} \times \mathrm{P}$; $5 \mathrm{Kt}-\mathrm{B} 3, \mathrm{Q}-\mathrm{KR4}$; $6 \mathrm{~B}-\mathrm{K} 2+$. Another alternative is 3 P-QB3 approved by Steinitz.
(7) 3 ..., P-K3; 4 Kt-B3, P-Q3; 5 B-K3, P-KKt3; 6 B-QB4 or P-KR4. (B. C. M., 1892, p. 279.)
(8) $11 \mathrm{Q} \cdot \mathrm{B} 3, \mathrm{~B} \times \mathrm{Ktch}$; $12 \mathrm{P} \times \mathrm{B}+$.
(9) If $1 \mathrm{~F}-\mathrm{K} 3 \ldots, 2 \mathrm{~B}-\mathrm{Q} 3, \mathrm{Kt} \mathrm{KR} 3$; $3 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{B} 2$: if $3 \ldots$... P-Q3; $4 \mathrm{Kt}-\mathrm{K}$ 触 F-KKts: $6 \mathrm{Kt} \times \mathrm{P}$, \&e.

SECTION III.

'THE ODDS OF A KNIGHT.

BoOOK knowledge is of little practical value to a Student in playing with the odds of a Knight. If he accepts an open game such as the Evans, or King's Gambit, and conducts it on regular lines, the first player will bring a Rook into early action instead of the missing Knight, and the substitution is a decided advantage in certain combinations. If, on the other hand, he plays a close game, there is a centre of Pawns which permit the odds-giver to arrange his pieces in the best possible manner for his superior skill in a side attack. Both these methods of play are admirably illustrated in Löwenthal's collection of Morphy's Games. Either way White, with the advantage of the first move, ought to obtain a good position sooner or later. On the principle better later than sooner (from the weaker player's point of view) Mr. Reichhelm has laid down, in Brentano's Monthly, some lines of play for the conduct of the defence, upon which, with variations from extraneous sources, we have constructed the following columns. They must only be regarded as an outline of the best method of meeting initial difficulties. The main struggle between position and force comes later in the game, and would require a much larger treatise to elucidate.

It will however be seen from our columns that when a Knight is given the opponent's move P-Q4 is much strengthened, and that this consideration largely governs the choice of his opening moves. Mr. Reichhelm's ideal position for the second player resembles that obtainable in the French Defence, but with an open centre. (See Col. 1, Note 4.) In this respect be confirms the opinion expressed by older masters.

Table 164.-THE ODDS OF Q̨UEEN'S KNIGHT.

(Remove White's Queen's Rnight.)

(1) Black may also play the French or Sicilian Defence or King's Fianchetto on lines previously given in Book V. on "The Close Game."
(2) 2 .., P-Q3; 3 B-B4, P-QB3; 4 P-B3, P-Q4! (Stapunton). Other defences follow the normal lines.
(3) If $4 \mathrm{Q}-\mathrm{K} 2, \mathrm{Q}-\mathrm{K} 2$; 5 Kt moves, KKt-B3 followed by Q-Qsq and B-Q3. Compare Table 5.
(4) To follow with Q home, P-B3 and Q-B2, QKt (by Q2) to Q-Kt3, B-K3, B4, or.Kt5, and development of the Rooks as time and opportunity permit.
(5) If $3 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{KP}$; $4 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3$; $5 \mathrm{P}-\mathrm{KB} 4$ (or Kt-B4 C. E. R.), $\mathrm{P} \times \mathrm{P}$ en pas; $6 \mathrm{Kt} \times \mathrm{P}$ (B3), Kt-KB3; $7 \mathrm{~B}-\mathrm{K} 2, \mathrm{O}-0+$.
(6) Or 8 .., K-Qsq; 9 P-Q4, Q \times Pch; $10 \mathrm{~K}-\mathrm{Rsq}, \mathrm{B}-\mathrm{R} 3, \& \mathrm{c}$.
(7) Given by Steinitz. If $9 \ldots, \mathrm{Q} \times$ Pch; $10 \mathrm{~B}-\mathrm{K} 3, \mathrm{Q}-\mathrm{B} 3$; 11 Q-R5ch, Q-KKt3; $12 \mathrm{R} \times$ Pch, Kt-KB3; $13 \mathrm{R} \times \mathrm{Ktch}, \mathrm{K} \times \mathrm{R}$; $14 \mathrm{~B}-\mathrm{Q} 4 \mathrm{ch}, \mathrm{K}-\mathrm{K} 2$; 15 R-Ksq ch+. See Table 97, Note 4, where White's QKt obstructs.
(8) Continued $9 \ldots, \mathrm{~B} \times \mathrm{Kt}$; $10 \mathrm{R} \times \mathrm{B}, \mathrm{P}-\mathrm{QB} 4$; $11 \mathrm{~B} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QB} 3$; $12 \mathrm{QR}-\mathrm{KB}$ 酎, $\mathrm{P} \times \mathrm{P}$; $13 \mathrm{R}-\mathrm{R} 3$, Kt-B3; $14 \mathrm{~B}-\mathrm{QB} 7 \mathrm{I}, \mathrm{Q} \times \mathrm{B} ; 15 \mathrm{R} \times \mathrm{Kt}, \mathrm{P} \cdot \mathrm{KKt} 3$; $16 \mathrm{Q} \times \mathrm{KtPch}$, and R mates (Rosenthal).

Table 165.-THE ODDS OF QUEEN'S KNIGHT.
(Remove White's Queen's Knight.)

	6	7	8	9	10
1	P-K4		P.QB3	P-KB4 (4)	P-K4 (7)
	P-K4		P-K4	P-K4 (5)	P-K4
2	B-B4		Q-B2	Kt-B3 (6)	Kt-KB3
	B-B4	Kt-KB3	P.Q4	P-K5	P-Q3
3	Q-K2	Q-K2	P-Q3	Kt-K5	P-Q4
	Kt-KB3 (1)	P-Q4	Kt-KB3	P-Q3	P-KB4
	P-B4	$\mathrm{P} \times \mathrm{P}$	B-Q2	Kt-B4	$\underline{\mathrm{P} \times \mathrm{KP} \quad(8)}$
4	$\overline{\mathrm{B} \times \mathrm{Kt}}$?	B-Q3	P-B4	P-Q4	$\overline{\mathrm{BP} \times \mathrm{P}}$
5	$\mathrm{R} \times \mathrm{B}$	P-Q4or KB4	0.0.0	Kt-K5	Kt-Kt5
	$\overline{\mathrm{P} \times \mathrm{P}}$	$\overline{O-Q+}$	Q-R4 (3)	B-Q3 +	P-Q4
	P-Q4		K-Ktsq		P-K6
6	0-0		$\overline{\mathrm{Kt} \text {-B3 }}$		B-B4
	$\mathrm{QB} \times \mathrm{P}$		P-KR3		Kt-B7
7	$\overline{P-Q 4!~(2) ~}$		B-K3		Q-B3
8			P-K3		Q-K2
			B-K2		$\overline{\mathrm{QB} \times \mathrm{P}}$
0			P-KKt4		$\mathrm{Kt} \times \mathrm{R}$
2					0-0.0 (9)

(1) $3 \ldots$ Kt-QB3! See Table 75, Note 1.
(2) $7 \ldots, \mathrm{Kt} \times \mathrm{P}$; $8 \mathrm{Q} \times \mathrm{Kt}, \mathrm{R}-\mathrm{Ksq}$; $9 \mathrm{~B}-\mathrm{K} 5, \mathrm{P}-\mathrm{Q} 3$; $10 \mathrm{R}-\mathrm{KBsq}, \mathrm{R}-\mathrm{K} 2 .(\mathrm{B}-\mathrm{K} 3 \mathrm{I})$; 11 O-O.O, $\mathrm{P} \times \mathrm{B}$; $12 \mathrm{P} \times \mathrm{P}, \mathrm{Q}-\mathrm{Bsq}$; $13 \mathrm{R} \times \mathrm{P}+$. (Macdonnell v. Amateur.)
(3) This Col. is arranged by Senor Vasquez, to avoid exchanging pieces. If now 5 .., Kt-B3; 6 P-KB4, B-Q3: 7 P-KKt3, O-O; 8 P-K4, Q-B2; 9 P-B5, \&c. (B.C.M., 1892, p. 11).
(4) If 1 P-Q4, P-Q4; 2 B-B4, P-K3, \&c., on the usual lines.
(5) To keep an open centre.
(6) Or 2 P-K4! transposing into Cols. 3-5. If $2 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3$ as in From's Gambit, Table 137, playing for a counter attack.
(7) Black (not White) gives Kt in this column, so remove Black's Queen's Knight.
(8) Compare Table 10, Note 6.
(9) 10 Kt-B3, Kt-K2; 11 P-KR3, Kt-B4; 12 P-KKt4, Kt-Q5; 13 Q-Qsq, Kt-B6ch; $14 \mathrm{~K}-\mathrm{K} 2, \mathrm{P}-\mathrm{Q} 5$ and wins. (Duffy.)

Table 166.-THE ODDS OF KING'S KNigHT.
(Remove White's King's Knight.)

	11	12	13	14	15
1	P-K4				
	P-K4				P-K3
2	B-B4		P-Q4	B-B2 (7)	P-Q4
	P-QB3 (1)	$\overline{\text { Kt-KB3 }}$	$\overline{\mathrm{P} \times \mathrm{P}}$ (5)	Kt-KB3	P-Q4
3	Kt-B3	P-Q4	B-QB4	P-Q3	Kt-B3
	$\overline{\mathrm{Kt} \text {-B3 (2) }}$	$\overline{\mathrm{Kt} \times \mathrm{P}}$	B-B4	B-B4	P-QB4
4	P-Q4	$\mathrm{P} \times \mathrm{P}$	P-B3	0.0	$\mathrm{P} \times \mathrm{QP}$
	P-Q4!	$\overline{\mathrm{Kt} \times \mathrm{P} \text { ? }}$	P×P?	0.0	$\overline{\mathrm{KP} \times \mathrm{P}}$
5	$\mathrm{P} \times \mathrm{QP}$	0.0	Q-Kt3	K-Rsq	$\mathrm{P} \times \mathrm{P}$
	P-K5	$\overline{\mathrm{Kt} \times \text { Q }}$	Q-B3	P-Q3	P-Q5
6	$\mathrm{P} \times \mathrm{P}$	$\mathrm{B} \times \mathrm{Pch}$	0.0	P.KB4	Kt -K4
	$\overline{\text { QKt } \times \text { P (3) }}$	K-K2	P-Q3	Kt-B3	Q-K2
7	P-Q5	B mates	$\underline{\mathrm{K} \times \mathrm{P}}$	P-B3	B-Kt50h
	$\overline{\mathrm{Kt}-\mathrm{K} 4+}$	(4)	P-QB3	Q-K2	B-Q2
8			P-K5 !	P-B5	0-0!
			$\overline{\mathrm{P} \times \mathrm{P}}$	B-Q2	$\overline{\mathrm{B} \times \mathrm{B}}$
9			Kt-K4	P-KKt4	$\mathrm{R}-\mathrm{Ksq}$!
			$\overline{\text { Q-K2 (6) }}$	K-Rsq (8)	$\overline{\mathrm{K}-\mathrm{Qsq}!(9)}$

(1) Or $2 \ldots$ P-Q4! (C. E. R.) If $2 \ldots$, B-B4; $30-0, \mathrm{Kt}$-K2 may be played: if 3 P-QB3; Kt-KB3; 4 P-Q3 I, P-QB3; 5 O-O, P-Q4+. See Table 79, Cols. 24-25.
(2) To other moves Black replies with P-Q4 as in Col. 1.
(3) Or $6 \ldots, \mathrm{P} \times \mathrm{P}$. (Reichhelm).
(4) Bird v. Jacobsen. Compare Col. 7, also Tables 75 and 76.
(5) If $2 \ldots, \mathrm{P}-\mathrm{Q} 4 ; 3 \mathrm{P} \times \mathrm{KP}, \mathrm{P} \times \mathrm{P}$; $4 \mathrm{Q} \times \mathrm{Qch}, \mathrm{K} \times \mathrm{Q}$; and White simplifies without a compensating advantage: if $3 \mathrm{Kt}-\mathrm{B3}, \mathrm{~B}-\mathrm{Kt5} ; 4 \mathrm{P} \times \mathrm{QP}, \mathrm{Q} \times \mathrm{P}+$. (Reichhelm.)
(6) $10 \mathrm{~B}-\mathrm{K} 3, \mathrm{~B} \times \mathrm{B}$? ; $11 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K}-\mathrm{Bsq}$; $12 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B}+\mathrm{Kt3}$; $13 \mathrm{~K}-\mathrm{Rsq}, \mathrm{R} \times \mathrm{B}$; $14 \mathrm{P}-\mathrm{B} 4, \mathrm{R}$-Rsq; $15 \mathrm{P} \times$ Pdisch, K-Ksq; $16 \mathrm{Kt}-\mathrm{Q} 6 \mathrm{ch}, \mathrm{K}-\mathrm{Qsq} ; 17 \mathrm{Kt}$-B7ch, K-B2; 18 P-K6, Q \times P; 19 Q-KKt3ch, K-Q2; 20 QR-Qsqch, K-K2; 21 Q-Kt5ch, $\mathrm{K}-\mathrm{Bsq}$; 22 R -Q8ch and mates in three moves. (Buckle v. Amateur:)
(7) If $2 \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{QB} 3$; $3 \mathrm{~B}-\mathrm{B} 4, \mathrm{~B}-\mathrm{Kt5}$; 40.0 , Kt-B3 to follow with P-Q4, \&c. If 2 P-KB4, P-Q4; 3 Kt-B3, P-Q5; 4 Kt -K2 (if $4 \mathrm{Kt}-\mathrm{Q} 5, \mathrm{P}-\mathrm{QB} 3+$), B-KKt5. (Reichhelm.)
(8) P-Kt5, Kt-KKtsq; 11 P-KR4, P-B3, \&c. (Mc. Donnell v. Cap. Evans.)
(9) $10 \mathrm{~B}-\mathrm{Kt5}, \mathrm{P}-\mathrm{B} 3$; $11 \mathrm{Kt} \times \mathrm{P}, \mathrm{P} \times \mathrm{Kt} ; 12 \mathrm{R} \times \mathrm{Q}, \mathrm{B} \times \mathrm{R}$; $13 \mathrm{Q} \times \mathrm{Pch}, \mathrm{Kt} \mathrm{Q} 2$; 14 P-QKt4, P-KR3; $15 \mathrm{~B}-\mathrm{B} 4+$. (Blackburne v. Younger.)

A P P E N DIX.

Page 47, Note 1. Black may also play 4..., P-B4: See page 126, note 2.
54, After $4 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}-\mathrm{KKt} 3$; $5 \mathrm{~B}-\mathrm{QB} 4$, B-Kt2 has been suggested for trial.
56, Col. 11. If 6 Q-K2, Kt-Q5; $7 \mathrm{Kt} \times$ Pch, K-Qsq: $8 \mathrm{Q} \cdot \mathrm{B} 4, \mathrm{Kt}-\mathrm{B} 6 \mathrm{ch} ; 9 \mathrm{~K} \cdot \mathrm{Q} s q_{2}$, Q \times BP ; $10 \mathrm{~B}-\mathrm{K} 2, \mathrm{Kt}-\mathcal{K} 4$; (if) $11 \mathrm{Q}-\mathrm{Q} 5, \mathrm{Et}-\mathrm{KB} 3$; $10 \mathrm{Q} \times \mathrm{Kt}$, P-Q3, \&c. 57, Col. 19. See B. C. M., 1892, pp. 334-340 for a long analysis by Mr. Pierce.
Є5, Note 2. After $6 \ldots, \mathrm{Q} \cdot \mathrm{B} 3,7 \mathrm{P} \times \mathrm{P}$ may be played. If $7 \ldots, \mathrm{P} \cdot \mathrm{Q} 3 ; 8 \mathrm{~B}-\mathrm{KKt5}$.
, 1, 13. For $5 \mathrm{P} \times \mathrm{QP}$ read $5 \mathrm{KP} \times \mathrm{P}$.
91, Fill in the heading Diagram, p. 87.
114, Note 7. A later note by Mr. Pollock gives $15 \ldots, \mathrm{P} \times \mathrm{B} ; 16 \mathrm{P}-\mathrm{B} 5, \mathrm{Q} \cdot \mathrm{K}$ sq ; $17 \mathrm{P} \times \mathrm{Kt}, \mathrm{R} \times \mathrm{Rch} ; 18 \mathrm{R} \times \mathrm{R}, \mathrm{P} \times \mathrm{P}$; $19 \mathrm{Q}-\mathrm{R} 4 ; \mathrm{P}-\mathrm{Q} 4 ; 20 \mathrm{~B} \cdot \mathrm{~K} 7, \mathrm{~B}-\mathrm{K} 3$; $21 \mathrm{R}-\mathrm{B} 8 \mathrm{ch}, \mathrm{Q} \times \mathrm{R} ; 22 \mathrm{~B} \times \mathrm{Q}, \mathrm{R} \times \mathrm{B}$; and Black ought to win.
,, 121, Col. 4. Mr. G. A. Schott notes that it is better to play 10 Kt -QB3 before.Q-B3. Mr. Blake, however, continues by $10 \ldots, \mathrm{P} \times \mathrm{Kt}$; $11 \mathrm{Q} \cdot \mathrm{B} 3$, B-Kt5 ! \&c. See Deighton v. Blake, B. C: M., 1893, pp 240.
" 125, The variation named in the last paragraph, 3 ..., QKt.K2 refers to Col. 27, 4..., QKt-K2.

126, Note 3. A game, Tarrasch v. Marco, shows the disadvantage of delaying
 $8 \mathrm{~B} \times \mathrm{Kt}, \mathrm{B} \times \mathrm{B} ; 9 \mathrm{P} \times \mathrm{P}, \mathrm{P} \times \mathrm{P} ; 10 \mathrm{Q} \times \mathrm{Q}, \mathrm{QR} \times \mathrm{Q} ; 11 \mathrm{Kt} \times \mathrm{P}, \mathrm{B} \times \mathrm{P} ? ;$ $12 \mathrm{Kt} \times \mathrm{B}, \mathrm{Kt} \times \mathrm{Kt} ; 13 \mathrm{Kt}-\mathrm{Q} 3$!, P-KB4; $14 \mathrm{P}-\mathrm{KB} 3, \mathrm{~B} \cdot \mathrm{~B} 4 \mathrm{ch} ; 15 \mathrm{Kt} \times \mathrm{B}$, $\mathrm{Kt} \times \mathrm{Kt}$; $16 \mathrm{~B}-\mathrm{Kt5}$, and Black resigns. Gunston v. Blake played $4 \mathrm{~B} \times \mathrm{Ktch}$, $\mathrm{P} \times \mathrm{B} ; 5 \mathrm{P} \cdot \mathrm{Q} 4, \mathrm{P} \cdot \mathrm{B} 3$, \&c.
,, 131, Col. 22. After $3 \ldots, \mathrm{KKt}-\mathrm{K} 2$; 4 Kt - B 3 is probably the best continuation : if $4 \ldots, \mathrm{P}-\mathrm{KKt} 3$; $5 \mathrm{P}-\mathrm{Q} 4 . \mathrm{P} \times \mathrm{P}$; $6 \mathrm{Kt} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt2}$; $7 \mathrm{~B}-\mathrm{K} 3,0 \cdot 0$; $8 \mathrm{P} \cdot \mathrm{KB} 4$, P-Q3; $90-0, \& c$., compare with Mr. Rees' Analysis. (playing P-KKt3 on Black's third move) in B. C. M., 1891, p. 476.
,, 134, Note 3. Or $9 \ldots, \mathrm{P} \cdot \mathrm{Q4}$! If $7 \ldots$ P-Q3; $8 \mathrm{P} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{P}$; 9 R .Ksq, B-K2!; $10 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{Kt} ; 11 \mathrm{Q} \times \mathrm{Qch}, \mathrm{K} \times \mathrm{Q}$; $12 \mathrm{R} \times \mathrm{P}, \mathrm{B}-\mathrm{Q} 3, \& \mathrm{c}$. (Baird ∇. Lasker.)
,, 136, Note 5. Mr. Blake plays 7 Kt -B3 !, (if) KKt-B3; 8 P-K5, KKt-Q4; $9 \mathrm{Kt} \times \mathrm{Kt}, \mathrm{Kt} \times \mathrm{Kt}$; $10 \mathrm{Q}-\mathrm{Kt} 3$!
179, A variation attributed by Mr. Donaldson ("Delta") to an Indian Amateur, Cap. J. G. Bell, hence styled the Bello Gambit, runs :-7 QKt-B3, Q-Q5ch; $8 \mathrm{~K}-\mathrm{Rsq}$ (or $8 \mathrm{R}-\mathrm{B} 2$), $\mathrm{Q} \times \mathrm{B} ; 9 \mathrm{P}-\mathrm{Q} 3, \mathrm{Q}-\mathrm{K} 3 ; 101 \mathrm{~B} \times \mathrm{P}$ or $\mathrm{Kt}-\mathrm{Q} 5$. See B. C. MC., 1891, p. 512.
,, 212, Note 2. If 6 P-KKt3, $\mathrm{P} \times \mathrm{P}$; $7 \mathrm{~K}-\mathrm{Kt2}, \mathrm{~B}-\mathrm{Q3}$; $8 \mathrm{P}-\mathrm{K} 5, \mathrm{~B} \times \mathrm{P} ; 9 \mathrm{Q}$-Ksq, Q-Q5; $10 \mathrm{~B} \times \mathrm{Pch}, \mathrm{K} \times \mathrm{B} ; 11 \mathrm{Kt}-\mathrm{KB} 3$, B-R6ch; $12 \mathrm{~K} \times \mathrm{B}, \mathrm{P} \cdot \mathrm{Kt} 5 \mathrm{ch}$ and wins.
224, Note 9. After 3 Kt-R4 C. M. now declares $3 \ldots, \mathrm{~B} \times$ Pch unsatisfactory. An analysis by J. Berger is given in C. M., May, 1893. The leading moves are $4 \mathrm{~K} \times \mathrm{B}, \mathrm{Q}-\mathrm{R} 5 \mathrm{ch} ; 5 \mathrm{P}-\mathrm{KKt} 3, \mathrm{Q} \times \mathrm{KP} ; 6 \mathrm{Q}-\mathrm{Ksq}$!
225, Note 5. Or $6 \ldots$ Kt-QB3!; 7 B-Kt5, Q-R5ch; $8 \mathrm{~K}-\mathrm{Bsq}, \mathrm{B}-\mathrm{B4+}$. If $9 \mathrm{Kt}-\mathrm{K} 2$ (B. C. M., 1892, p. 445), $0 \cdot 0$; $10 \mathrm{~B} \times \mathrm{Kt}, \mathrm{P} \times \mathrm{B} ; 11 \mathrm{P}-\mathrm{Q} 4$, B-Kt3+ (Wayte). Mr. Wayte notes that after $5 \ldots$, P-KB4 the burden of equalising falls on White.
,, 229, Col. 21. Mr. Ranken prefers 8 K -Bsq! If $11 \mathrm{Q}-\mathrm{R} 5$ (Pierce), Kt-KB3; $12 \mathrm{Q} \times \mathrm{KtP}, \mathrm{P} \times \mathrm{Kt} ; 13 \mathrm{Q} \times \mathrm{B}, \mathrm{R}-\mathrm{KKtsq} ; 14 \mathrm{Q}-\mathrm{R} 6, \mathrm{R}-\mathrm{Kt3} ; 15 \mathrm{Q} \times \mathrm{BP}$, P-Kt5; $16 \mathrm{Q}-\mathrm{B} 5, \mathrm{R} \times \mathrm{Pch} ; 17 \mathrm{Kt}-\mathrm{K} 2, \mathrm{Q}-\mathrm{K} 2$; $18 \mathrm{~B}-\mathrm{Kt} 5$, QKt-Kt5; 19 Q-B3. Mr. Ranken continues by 19 ..., Q-K4; $20 \mathrm{P} \cdot \mathrm{B} 3,0.0-0$; $21 \mathrm{R}-\mathrm{Qsq}, \mathrm{R}-\mathrm{Ksq}$; $22 \mathrm{R} \cdot \mathrm{Q} 2, \mathrm{Kt} \times \mathrm{P}+$.
,, 230, Note 13. After $7 . . ., \mathrm{B}-\mathrm{Kt2}$; $8 \mathrm{P}-\mathrm{K} 5, \mathrm{P}-\mathrm{Q4}$; $9 \mathrm{~KB} \times \mathrm{P}, \mathrm{B}-\mathrm{Kt5}$; $10 \mathrm{P} \times \mathrm{P}$, $\mathrm{B}-\mathrm{R} 6$; $11 \mathrm{R}-\mathrm{B} 2, \mathrm{Q} \cdot \mathrm{R5}+$. But White may play $8 \mathrm{QB} \times \mathrm{P}$!, $\mathrm{B} \times \mathrm{Pch}$; 9 K -Rsq, and if $\mathrm{B} \times \mathrm{Kt}$; $10 \mathrm{~B} \times \mathrm{Pch}$ will draw (Pierce) : $8 \ldots, \mathrm{Kt} \times \mathrm{P}$ is also unsatisfactory : $8 \ldots$, P.Q4 to gain a move is apparently Black's best.

INDEX.

Centre Gambit. Introduction 296
1 P.K4, P-K4; $2 \mathrm{P}-\mathrm{Q} 4, \mathrm{P} \times \mathrm{P} ; 3 \mathrm{Q} \times \mathrm{P}, \mathrm{Kt}-\mathrm{QB} 3$ 237
3 Kt -KB3 238
3 B-QB4, \&c. 239
Close.Game, Book V. Introduction and Summary of Sections 246-247
Classical Defences,(so called).
King's Bishop's Opening (2 .., B-B4) 150.152
King's Bishop's Gambit (3 .., Q-R5 ; or 3 .., P-Q4; 4 B \times P, Q-R5) 210-213
Cochrane's Gambit. See Salvio Gambit (6 .., P-B6) 174
Cochrane's Variation in Petroff's Counter Attack ($4 \mathrm{Kt} \times \mathrm{P}$) 37
Do. The Queen's Pawn Counter Gambit (3 .., Q-K2) 31
" Variations in the Scotch Game ($6 \mathrm{Kt} \times \mathrm{BP}$ and $6 \mathrm{P} \times \mathrm{BP}$) 53, 65
Compromised Defence. See Evans' Gambit, Cols. 43-60 116-120
Cozio's Defence in the King's Bishop's Gambit (3 . . , Kt-KB3) 206
Cunningham Gambit. Introduction 201
1 P-K4, P-K4; 2 P-KB4, P×P; 3 Kt-KB3, B-K2; 4 B-B4, B. 55 ch ; 5 K -Bsq 202
5 P-KKt3. (Bertin and Stamma.) 203.204
Cunningham (J. G.) Variation in the Vienna Game (4 K.t-Q5) 228
Czank's Variation of the Salvio Gambit (6 .., Kt-QB3) 174
Damiano Gambit. See Introduction 22
1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{P}-\mathrm{KB3}$; $3 \mathrm{Kt} \times \mathrm{P}$, \&c.. (Col. 1) 23
Distinction from the Greco Counter Gambit. 24
Danish (or Scandinavian) Gambit. Introduction 236
1 P-K4, P-K4; 2 P-Q4, P \times P; 3 P-QB3 241
Double Fianchetto Defence (1 P-K4, P-QKt3; 2 P-Q4, P-KKt3) 267
Double Ruy Lopez. See Four Knights' Game 138, 140
Douglas' Defence in the Evans Gambit (11 .., Kt-K4) 115
English Game. See Staunton's Opening 45.
English Opening. Introduction '258
1 P-QB4, P-QB4, P-K4 or 3, P-KB4, P-Q3, and P-KKt3 263264
Evans Gambit (Part I.) Introduction 87
1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B.B4, B.B4; 4 P.QKt4, $\mathrm{B} \times \mathrm{KtP}$; 5 P-B3, B-B4, \&c. 90
Variations before reaching the Normal position on page 87 89-90
Do. following the Normal position (Cols. 8-45) 90.101
Development of Defence by P-Q3 before Kt-KB3 88
Evans Gambit (Part II.) Introduction 102*
1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4, B-B4; 4 P-QKt4, $\mathrm{B} \times \mathrm{KtP}$; 5 P-B3, B-R4 104
Variations springing from 6 Q-Kt3 and 60.0 104-115
Dò. do. 6 P-Q4 116
The Compromised Defence. (Cols. 43-60) 116-120
Evans Gambit Declined (4 .., B-Kt3 and 4 .., P.Q4). 121.123°

Falkbeer's Counter Gambit-
1 P.K4, P.K4; 2 P-KB4, P-Q4; 3 P×QP, P.K5, \&c. (Culs. 3-5).. 216
Fegatello. See Two Knights' Defence 66, 63
Fianchetto Defences. 1 P-K3, P-QKt3, and P-KKt3. 267
,, Openings. 1 P-QKt3 and 1 P-KKt3 266
Flechsig's Variation in the Four Knights' Game 141
Forsyth's Variation in the King's Bishop,s Gambit (3 B-Q3) 214
Four Knights' Game. Introduction 137
1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3 ; 3 Kt-B3, Kt-B3 .. $138-144$
Fraser's (and Mortimer's) Attack in the Evans Gambit .. 88, 92
Attack in the French Game (2 P-Q3) 253
(also Möllers) Defence in the Greco Counter Gambit (3 .., KtQB3) 24, 27 Variation in the Bishop's Gambit. .. (Col. 29, 30).

211

Do. Sciotch Gambit (7 B-K3)	54	
Do.	(5 Kt.KB3 $)$	56

$\begin{array}{lllllr}\text { Do. } & \text { do. } & \text { (5 Kt-KB3) } & \text {.. } & \text {.. } & \text {. } \\ \text { Do. } & \text { Steinitz Gambit .. } & \text {.. } & \text {.. } & \text {.. } & 235\end{array}$
Do. Vienna Opening...(Col. 17).. 228
Freeborough's Variations in the Allgaier Gambit. .. (Cols. 6-13, 17) 196.199
French Defence. Introduction 248
I P.K4, P-K3; 2 P-Q4, P-Q4; 3 P \times P, and Kt-QB3 .. $249-253$
3 Kt-Q2, B-Q3, and P.K5 252
2 P-K5, P-Q3, P-KB4, and P.QB4 253
From's Gambit. Introduction 220
1 P-KB4, P-K4; $2 \mathrm{P} \times \mathrm{P}, \mathrm{P}-\mathrm{Q} 3 ; 3 \mathrm{P} \times \mathrm{P}, \mathrm{B} \times \mathrm{P} \quad$.. $\quad . .242$
Fyfe Gambit (1 P-K4, P-K4; 2 Kt-QB3, Kt-QB3 ; 3 P-Q4) 227
Games at Odds. Introductions 272, 280
Games, Illustrative. $40,41,44,47,50(2), 64,79(2), 81,96,98,101,109$, $110,112,114,119,126,128,131,132,161,188,195,197,202,216,217$, 234, 235, 239, 243, 251 (2), 261, 262, 281, 282 (2), 283 (2).
Ghulam Kassim's Variation in the Evans Gambit 104
" " Attack in the Muzio Gambit (5 P-Q4) .. 176-177
Gianuzio's Defence in the Bishop's Glambit (3 .., P.KB4) .. 205-207
Giuoco Piano. Introduction and Maxims 75.76
$\begin{array}{cccc}1 \text { P-K4, P-K4; } 2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{QB3} ; & 3 \mathrm{~B}-\mathrm{B} 4 . \mathrm{B}-\mathrm{B} 4 ; & 4 \mathrm{P} \cdot \mathrm{B} 3, \mathrm{P}-\mathrm{Q} 3, \\ \mathrm{O}-\mathrm{O} \text {, and Kt-B3 } & \text {.. } & . . & . . \\ 77-81\end{array}$
*Göring's Attack in the Evans' Gambit (10 B-KKt5) 91
Greco Counter Gambit. Introduction 24
1 P.K4, P-K4; 2 Kt-KB3, P.KB4; 3 P \times P, Kt-B3, Kt \times P, and B.B4 25.29
Hall's Variation in the Centre Gambit (4 Q-B4) 238
Hamppe-Allgaier Gambit in the Vienna Opening (5 P-KR4) 231
Hamppe-Allgaier-Thorold Gambit (8 P-Q4) 231
Hamppe's Opening. See Vienna Opening 222
Harvey's Variation in the Evans Gambit (10 B \times Pch) 90
Horny's Defence in the Allgaier Gambit (8 .., B.Q3).. 195
Horwitz's Attack in the Scotch Gambit (5 Kt-Kt5) 54
Hungarian Defence. Introduction 73
1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4, B-K2 74
Inversions. .. 24, 74 (note 1), 148 (note 7), 153 (note 3), 223 (note 1), 258 259 (note 1), 268 (note 1), 269 (note 6), 270 (note 2)
Introduction General 5
Illustrative Games. See Games
Italian Game. See Giuoco Piano 75
Irregular Openings 270
, and Unusual Defences to the King's Knight's Opening. 22
2 .., P-KB3, Q-B3, B-Q3, B-B4, and P-QB3 23
Jänisch's Counter Gambit in the Ruy Lopez Knight's Game (3P.RB4) 136
, Variation in Staunton's Opening (3 .., Kt-B3) 49
Jerome Gambit. Introduction 85
1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4, B-B4; 4 B \times Pch 86
Kassim. See Ghulam Kassim.
Kieseritzky-Bryan Counter Attack in the King's Bishop's Gambit (4 .., P-QKt4) 208
Kieseritzky-Boden Gambit in King's Bishop's Opening 154
Kieseritzky Gambit. Introduction 182
1 P-K4, P-K4; 2 P.KB4, PxP; 3 Kt-KB3, P-KKt4; 4 P-KR4, 5 Kt-K5
5 .., P-Q3 (Kolisch) and 5 .., P-Q4 (E. Morphy) 183
5 .., Q-K2 (Rosenthal) and 5 .., B-K2 (Salvio, Polerio, \&c.) 185-186
5 .., Kit-QB3 (Neumann) 186
$5 \ldots, \mathrm{Kt}$-KB3 (Philidor) 187-189
5 .., B-Kt2 (L. Paulsen) 190
5 .., P-KR4 (Kieseritzky, \&c.) 192
King's Bishop's Pawn Game (Bird, \&c.) 265
King's Bishop's Pawn, as a Defensive Move 22
King's Bishop's Gambit. Introductiou 205*
1 P-K4, P-K4; 2 P-KB4, P \times P; 3 B-B4,
3 .., P-QB3 and Kt-KB3 (Lopez, Cozio, Lichtenhein, \&c.) 206
3 .., P-KB4 (Lonez, Gianuzio, Salvio, \&c.) 207
3..., P-KKt4 and P-QKt4 (Bryan, Kieseritzky, Calthrop, \&c.) 208
3 .., Kt-QB3 (Maurian) 209
3 .., Q-R5ch ; or 3 .., P-Q4; 4 B \times P, Q-R5 \&c., (Classical Defences) 210-213
3 B-K.2 and 3 B-Q3 (Forsyth) 214
King's Bishop's Openings (Book II). Introduction 145
; Summary of Sections 147
King's Fianchetto. (1 P-KKt3) 266
King's Gambits (Book III). Introduction 157
" Summary of Sections 159
King's Gambit (Proper). Introduction 160
1 P-K4, P-K4; 2 P-KB4, P \times P ; 3 P-Q4, P-KR4, \&c., 161
3 Kt-KB3, P-Q4, P-KB4, Kt-KB3, Kt-K2 or QB3, and P-KKt4 162-169
King's Gambit Declined. Introduction 215
1 P-K4, P-K4; 2 P-KB4, P-Q4, P-Q3, KtKB3, and B-B4 216-218
King's Knight's Defence in the King's Bishop's Opening 148
King's Knight's Gambit. See Kieseritzky Gambit 182
King's Knight's Opening (Book I). Introduction, \&c. 19
King's Rook's Pawn Gambit. See King's Gambit (3 P-KR4) 161
Kling and Horwitz's Defence in the Evans Gambit (5 .., Q-K2). 180
Koch and Ghulam Kassims's Attack in the Muzio Gambit. (5 P-Q4) 176-177
Kolisch's Defence in the Kieseritzky Gambit (5 .., P-Q3) 183
Lange. See Max Langa,
Lewis' Counter Gambit in the King's Bishop's' Opening. (Cols. 16, 17). 151
Lichtenhein's Counter Attack in the King's Bishop's Gambit (3 .., Kt-KB3) 206
Limited Bishop's Gambit (3 B-K2) 214
Lopez' Counter Gambit: 1 P-K4, P-K4; 2 Kt-KB3, P-Q3; 3 B-B4, P-KB4 (note 1) 29
Lopez' Gambit in the King's Bishop's Opening-
1 P-K4, P-K4; 2 B-B4, B-B4; 3 Q-K2, \&c. (Cols. 1, 2, 18, 19, 20) 148, 151Lopez-Philidor Defence-
1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3 ; 3 B-Kt5, P-Q3 126
Lopez' Variation in the Bishop's Gambit (3 .., Kt-KB3, \&c.) 206
Lopez' Knight's Game (1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-Kt5) 124"
Macdonnell's Variation in the Steinitz Gambit (6 . ., Q-K2ch)' 232
Mackenzie's Defence in the Greco Counter Gambit. 25
Maurian's do. King's Bishop's Gambit (3 .., Kt-QB3) 209
Max Lange's Attack. Introduction and Transpositions 82
1 P-K4, P-K4; \& Kt.KB3, Kt-QB3; 3 B-B4, B-B4; 4 0-0, Kt-B3 5 P-Q4 83
McDonnell's Attack in the Muzio Gambit (5 Kt-QB3) 176
Double Gambit in the King's Bishop's Opening 152
Meadow Hay Opening. (Irregulàr) 270
Meitner's Variation in the Scotch Gambit (7 Kt-B2). 58
Minckwitz's Variation in the Steinitz Gambit (5 .., P-QKt3) 234
Minor Principles 16
Miscellaneous Gambits. Introduction, and Summary of Sections 219.221
Möller's (also Fraser's) Defence in the Greco Counter Gambit (3 . ., Kt-QB3) 27
Morphy's Defence in the Kieseritzky Gambit (5 .., P-Q4) 183
," Variation in Staunton's Opening (4 ... P-Q3) 47
Mortimer's Attack in the Evans Gambit. . . . (Col. 19) 92
,, Defence in the Ruy Lopez' Knight's Game (4 .., Kt-K2) 132
Muzio Gambit. Introduction 175*
1 P-K4, P-K4; 2 P.KB4, P \times P; 3 Kt-KB3, P-KKt4; 4 B-B4, P.Kt5$5 \mathrm{~B} \times \mathrm{Fch}, \mathrm{Kt}-\mathrm{B} 3, \mathrm{P}-\mathrm{Q4}$, and 0.0 .
Neumann's Defence in the Kieseritzky Gambit (5 .., Kt-QB3) 186
Normal position in the Evans Gambit. Part I. (Diagram). 87
Notation, Explanation of 17
Odds of a Knight 280
Ourousoff's Attacks in the Allgaier Gambit 195, 199
" Variation in the King's Bishop's Opening 148
Pagan's Variations in the Allgaier Gambit. (Cols. 14, 15).. 198
Paulsen (L.) Attacks in the Scotch Gambit, (7 Q-Q2 and 7 B-QKt5) 57
Attack in Philidor's Defence ($5 \mathrm{P} \times \mathrm{P}$) 41
Defence in the Evans Gambit (10 .., Kt-K2) 99
$\begin{array}{lllll}\text { " Kieseritzky Gambit (5 .., B-Kt2) } & \text {.. } & \text {.. } & 190 \\ \text { Muzio Gambit (11 .., Q-B4).. } & . . & . . & 180\end{array}$
Variation in the French Defence (3 Kt-QB3) 250
Vienna Opening (3 P-KKt3) 227
Paulsen (W.) Variation in the Centre Gambit (4 Q-K3) 237
Pawn and Move Game 272
Pawn and Two Moves Game 272, 277
Petrofi's Counter Attack. Introduction.. 32
1 P-K4, P-K4; $2 \mathrm{Kt}-\mathrm{KB} 3, \mathrm{Kt}-\mathrm{KB} 3$; $3 \mathrm{Kt} \times \mathrm{P}, \mathrm{P}$-Q4 \&c. - 33
Transpositions, and resemblance to the French Defence. 32, 36
Philidor's Defence in the King's Knight's Opening, Introduction 38
1 P-K4, P-K4; 2 Kt-KB3, P-Q3; 3 P-Q4, P-KB4, \&c. 39-41
Philidor's Defence in the Kieseritzky Gambit (5 .., Kt-KB3) 187
Do. King's Gambit (4 ..., B-Kt2) 163
Transpositions in his King's Knight's GamePianissimo. See Giuoco Piano
75
Pierce.(W, T.) Gambit in the Vienna Opening (5 P-Q4) 229-230
Variations: Boden-Kieseritzky Gambit 156
Evans Gambit 111, 119
Scotch Gambit 58
Polerio's Defence in the Kieseritzky Gambit (5 .., B-K2) 185
Polerio Gambit. See King's Gambit 161
Ponziani's Opening. See Staunton's Opening 45
" Counter Attack in Staunton's Opening (3 ... P-B4) 46
Potter's Minor Principles 16
" Variations in Staunton's Opening.. 49.50
Principles 13.16
Pulling's Variation in the Scotch Gambit (4 .., Q-R5) 54
Quaada's Gambit. See King's Gambit 162
Queen's Bishop's Pawn Defence in the King's Bishop's Opening. 152
Queen's Bishop's Pawn Game. See Staunton's Opening 45
Queen's Fianchetto (1 P.QKt3) 266

Stamma's Variation of the Centre Gambit (3.Q.K3) 237
Staunton's Opening. Introduction 45*
1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 P-B3, P.B4, P-Q3 or 4, and Kt -B3 46.51
Steinitz' Defences in the Evans Gambit 88, 93, 97, 99, 106
Do. do. Ruy Lopez' Knight's Game. 126
Variation in the French Defence (2 P-K5). 253
Variation in the Three Knights' Game (3 .., P-KKt3) 44
Variations in Petroff's Counter Attack 34
Steinitz' Gambit. Introduction 219
1 P.K4, P.K4; 2 Kt-QB3, Kt-QB3; 3 P-B4, P \times P; 4 P-Q4, Q-R5ch; 5,K-K2, P-Q4 232-234
5 .., P-Q3, P.KKt4, and P-QKt3. 234-235
Stonewall Opening. (Irregular) 270
Swedish, or Scandinavian Gambit. See Danish Gambit 236-241
Summary of Sections. The King's Knight's Opening 21 21
Do. Bishop's Opening 147
Do. Gambits 159
Miscellaneous Gambits 221
The Close Game 247
Games at Odds 271
Tarrasch's Trap in the Ruy Lopez a. (note 6) 130
Tennison Gambit: 1 Kt-KB3, P-Q4; 2 P-K4 268
Thorold's Attack in the Allgaier Gambit (7P-Q4) 195
Attack in the King's Gambit Declined 218
Three Knights' Games. Introduction 42.
1 P.K4, P-K4; 2 Kt-KB3, Kt-KB3; or 2 .., Kt-QB3 43.44
Three Pawns' Gambit. See Cunningham Gambit 203
Two Bishops' Opening. See Classical Defences 150
Two Knights' Defence. Introduction 66
1 P-K4, P-K4; 2 Kt-KB3, Kt-QB3; 3 B-B4, Kt-B3 ; 4 Kt-Kt5 67.69
4 P-Q4, O.O, P-Q3, and Kt-B3 71.72
Unusual and Irregular Openings 268.270
Van't Kruys Opening (1 P-K3) 266
Vienna, Opening. Introduction 222
1 P-K4, P-K4 ; 2 Kt-QB3, B-B4, and Kt-KB3 223-226
2 .., Kt-QB3; 3 P-KKt3, B-B4, P-Q4, \&c. 227
3P-B4 (Pierce, Hamppe, Steinitz, \&c.) 228-235
Waller's Attack in the Evans Gambit (8 Q-Kt3) 104
Wing Gambit in the King's Bishop's'Opening (3 P-QKt4) 152
Zukertort's Opening (1 Kt -KB3) 270
Variations.in Philidor's Defence (4 Kt-B3) \quad. 39
Do. the Compromised Defence 115.116
Do. King's Bishop's Gambit 209
Do. Salvio Gambit 173

1

RETURN TO the circulation desk of any University of California Library or to the
NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station University of California
Richmond, CA 94804-4698
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS 2 -month loans may be renewed by calling (415) 642-6233

1 -year loans may be recharged by bringing books to NRLF
Renewals and recharges may be made 4 days prior to due date

DUE AS STAMPED BELOW SEP 15109

JUL 281989

6
2
2

