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thermoelectric action made years ago with no reference to the problem
of electronic emission.
As to the value of the constant A', usually written A and often called

a "universal constant," I predicted3 a year or two ago that it would prove
to be different in different metals. Du Bridge says, regarding this matter,
"On computing the value ofA from carefully taken emission data on several
out-gassed platinum specimens .... values 200 times or more as great as the
theoretical were obtained," the "theoretical" value being that suggested
by Richardson and Dushman and confirmed, approximately, by Dush-
man's study of tungsten, tantalum and molybdenum.

1 Proc. Nat. Acad. Sci., 13, 56, 1927.
2 This is not a gratuitous or a new assumption. See my note on the Temperature

Relations of Photo-Electric Emission and Thermionic Emission. Ibid., 12, 486, 1926.
3 Ibid., 13, 325, 1927.
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In preceding papers' we have shown how the second and third laws
of thermodynamics may be deduced from a single statistical principle
which implied that the properties of a system can be described by assuming
a finite number of possible states. This number was called U. It is
our purpose in this paper to justify and to interpret this assumption, to
restate the fundamental laws upon which quantum theory is based, and
to show how this restatement leads directly to the uncertainty principle
of Heisenberg.2

In our previous work, although we endeavored to say nothing that was
contrary to the new mechanics, we did not use its phraseology. Indeed,
for our statistical purpose, it made no difference whether we considered
the number of ways in which certain particles may be distributed among
the cells of a phase space, or the number of ways in which the same number
of particles with the same energy may be assigned the various discrete
solutions of the mechanical equations. The same value is obtained for
Q, for it has been shown by Schr6dinger3 that between any given limits
the number of such solutions coincides with the number of cells formerly
employed, in the simple cases which have so far been investigated.
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Whether this is always true is a question that must be reopened when in
the next paper we discuss the electronic states of an atom.
The methods that we have been discussing imply either that every sys-

tem can occur only in certain definite and fully quantized states, or that
a larger number, possibly an infinite continuum of states, is possible; but
that within a certain range, that is, within one "cell," these states are
for some fundamental reason inherently indistinguishable from one
another. These two views seem at first sight to exhaust all the possi-
bilities consistent with a finite U. There is, nevertheless, a third view,
which is the one we are going to develop here. According to this view,
while it is quite permissible to account for the properties of a system by
assuming an infinity of states, all distinct from one another, yet it is
sufficient in order to account for the whole behavior of a system to postulate
a minimum number of exactly defined states. This minimum number is Q.
A Restatement of the Quantum Laws.-According to the original law of

Bohr, a system in a definite state B with energy eB changes to the definite
state A with energy eA, emitting, in case the process is one involving
light, the energy hp = eB - eA. However, we know that this law cannot
be exactly true. When allowance is made for Doppler effect and so on,
we recognize that there must be left to every spectra line what is known
as the natural width. For example, in a gas at very low pressure (as in
the nebulae), there would be no self-reversal of lines if the lines were
infinitely sharp, for then no atom would absorb light unless it were exactly
at rest with respect to the emitting atom, which it would never be.

It would be natural to ascribe such phenomena as the natural width
of the spectral lines to a lack of complete definition of the states, but this
is not the only possible explanation. We must consider the possibility
that even when two states are exactly defined, the phenomenon occurring
in the transition between these states is not uniquely determined.

In much of the physics of this century, there is an element of indeter-
minism. It is possible that this will later disappear when we take into
account for an indefinite time the whole sequence of events in a system,
and in all systems with which it is connected. At present we may take
the view that when, for example, we know exactly the energy difference
between two states, and nothing more, we can say only that the most
probable value of the energy given out in the transition is that difference.
The first step in resolving the indeterminism with which we are here

confronted is to ascertain quantitatively the probability that the energy
which is lost differs by a certain amount from that most probable value.
We shall see that for this purpose we must know, not only the energies
of the states, but also their temporal duration. We are familiar with
the effect upon the behavior of a system of the proximity in space of other
systems; we areless familiar with the effect upon a certain event of the
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proximity in time of other events, yet the ideas which we are about to
develop are largely those of classical physics.

First, we must assert with all possible emphasis that what we know about
the states of a system is a deduction from the whole set of phenomena which
the system exhibits. In other words, all that we observe is the behavior
of a system, after which we invent a set of states which will account in
the simplest possible manner for the phenomena observed. For example,
we obtain a large number of spectral lines belonging to some gas and then
find that these can be interpreted to be the result of transitions between
a relatively small number of individual states.

Ordinarily it is advantageous to assume the smallest number of states
which will account for the whole behavior, and the search for this mini-
mum number of states is identical with the search for the number Q,

F1g aure l.

Intensity

Frequency

which plays so fundamental a part in statistics and thermodynamics.
In some cases the particular states which it is necessary to assume are
unique. A system with such properties may be called a "definitely
quantized" system. In other systems, such as a monatomic gas which
has only translational energy, the particular states may be assumed
more or less arbitrarily, and only the minimum number of states necessary
to account for the observed phenomena of the system is unique. Such
a system may be called "arbitrarily quantized."

Returning to the case of the spectral lines, we may regard Bohr's law
as an exact limiting law when the several events occurring within a system
are infinitely remote from one another in time. In such case, the lines
being infinitely sharp, there is no difficulty in ascertaining the states which
account for these lines. When, however, the individual states are of
short duration the lines are broadened. Can we still explain the phe-
nomena without assuming a larger number of exactly specified states?
Our answer, which we shall attempt to justify both qualitatively and
quantitatively in the following pages, is that we can.
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We shall assume that the states are exact but that the phenomenon
observed in a given transition is never twice the same. Thus the energies
EB and eA of two states are regarded as absolutely fixed, but the energy
emitted in the transition will not be equal to eB - eA. It will fluctuate
about this value, the average fluctuation being greater the shorter the lives
of the individual states. We thus abandon the law of conservation of
energy for an individual transition.

Generalizing now from the particular case of spectral lines to all phe-
nomena of all systems, we may postulate the following as the first basic
quantum law: I. All of the phenomena of any system of finite energy may
be interpreted by the assumption of a finite number of exactly determined
states.
As a corollary of this law, since the system must always be in one state

or another, we may state as the second quantum law: II. The transition
from one state to another is instantaneous. This corollary is of much signi-
ficance since, both in the older theories of light and in the newer theories
of mechanics, it has often been assumed that an exact mathematical state-
ment concerning an undulatory field would require a knowledge of how
the field is built up and how it dies out. According to our view, each
field (at a given point) appears instantly, disappears instantly, and re-
mains constant for the time of duration of the given state.

Finally, we may state a third independent quantum law which at present
has only an empirical basis, and which we shall not use further in this
paper, but is of vital importance to thermodynamics: III. When the
minimum number of states required to account for the behavior of an isolated
system has been ascertained, each state wUl, in the course of time, be found
just as often as any other state.

The Uncertainty in Phenomena Caused by the Finite Life of States.-In
classical electromagnetic theory, a system passing, through loss of radiation,
from a state B to a state A was believed to generate in space a field, un-
dulating according to the laws of simple harmonic motion. The Poynting
vector derived from this field, integrated over a closed surface, gave the
rate of loss of radiant energy.

Similarly, the present known facts of optics may be interpreted by as-
suming that a system in a given state may pass into any one of a number
of other states, and that the probability of any one transition, let us say
from B to A, is determined by a field, entirely analogous to the electro-
magnetic field, undulating with a frequency which is exactly equal to
(B-eA)/h. The integrated Poynting vector now gives what is statistic-
ally identical with the rate of flow of energy, namely, the probability that
the energy associated with this process will be emitted in unit time.

In the electromagnetic picture, the undulating field might change in
amplitude owing to damping, and might perhaps change also in frequency.
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Our present picture is a simple one, for we assume that the undulating
field is constant both in amplitude and in frequency, from the instant that
the state B appears to the instant that it disappears.

In neither picture does the constancy of frequency over a limited period
of time imply the emission of monochromatic light.4 Any simple har-
monic motion of limited duration is resolved, either by a Fourier analysis,
or by physical apparatus such as a prism or a grating, into a whole con-
tinuum of frequencies. The amplitude, at a given distance from the
central frequency, is determined by the duration of the simple harmonic
motion.

In accordance with the newer trend in mechanics, we may assume that
not merely a process in which light is evolved but any process whatsoever
is associated with a similar undulating field, which will enable us to predict
the probability that the process will occur. Since 411 of such fields have
a temporal variation corresponding to simple harmonic motion, it will
be understood that the remarks we are about to make concerning the proc-
ess of light emission may be applied without essential change to all
processes.

Let us assume that, just as in classical theory the squares of the ampli-
tudes corresponding to different frequencies represent the amount of light
emitted at these frequencies, so in our present case the squares of these
amplitudes represent statistically the amount of energy emitted at the
various frequencies when the system is made to drop repeatedly from the
state B to the state A.
For simplicity, we shall assume that when a system is in the state B,

it has not recently been in that state and will not for a long time appear
in that state again. Our mathematical problem then consists in fitting
a Fourier integral to a curve whose ordinate is zero from minus infinity
to a certain point, follows a simple sine curve for a limited number of
periods, and is then zero to plus infinity. The calculation is further
simplified by assuming that the number of periods is integral and, though
finite, is large. The necessary mathematical steps are given in Mathe-
matical Note I. The result is that if P, is the probability that light of
frequency v will be emitted when the system passes from state B to state A,

In2sm7T( -P'o)(1
T7r2(J - Vo)2

where vP is (eB -eA)/h and T is the life of the state B.
This equation is plotted in figure 1. It is of the same form as the

familiar diffraction curve for a single slit, showing again the essential
similarity of time and space. One way to obtain a spectrum with in-
tensities corresponding to figure 1 would. be to interrupt a beam of mono-
chromatic light with a shutter operating at a frequency, say, of 10-11 or
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10-12 seconds, when a prism or a grating would give an intensity curve
duplicating figure 1.

The General Problem of Uncertainty.-We have seen that by employing
methods which are essentially classical we have arrived at the idea that
even though the possible states of a system are exactly defined, there is
no certainty regarding the phenomena which occur in transitions between
these states. Our next step is to show that the uncertainty thus found
entirely coincides with the quantitative statement of the uncertainty
discovered by Heisenberg.
The tuidth of a spectral line may be defined so that the product of this

width by the maximum ordinate is equal to the total area under the in-
tensity curve. The area determined by Equation 1 is unity, the maximum
ordinate is r and therefore the width, which we may call Av and use as a
measure of the uncertainty in frequency, is,

Av=-. (2)

It is readily seen that in the present case the width coincides with that
distance with respect to which the curve is periodic.

Hitherto we have assumed the life of a given state to be always the same.
We shall show, however, (Mathematical Note II) that if the life is variable,
following the same law as that of radioactive change, we obtain precisely
the same equation for Av when r represents the average life. In such
case, T may be considered as the temporal uncertainty of the process, as
AP represents the uncertainty in frequency. Representing by Ae the
uncertainty in the emitted energy, we may write,

Ae = hA', (3)

an equation which according to the new mechanics has a far wider range
of validity than the mere processes of light emission. Combining Equa-
tions 2 and 3

FAe = h. (4)

This is one of the important relations of Heisenberg.
We may remark parenthetically, although it is aside from our main

topic, that the equation for diffraction from a slit, which corresponds to
Equation 1, leads to a similar relation between the width of the diffraction
pattern and the width of the slit. Light diffracted by the slit suffers a
change in momentum, which is not due to a change in its scalar magnitude,
but to a change in direction. The change in momentum corresponding
to the width of the diffraction curve we may call Ap and regard as a measure
of the uncertainty in momentum due to the slit. The width of the slit I
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may be regarded as the uncertainty in position of the light as it passes
through. The calculation is entirely similar to the one we have just
made, and gives

lAp = h. (5)

This is the second of the Heisenberg uncertainty relations which,
however, we shall presently meet again in a case which has a more direct
bearing upon our main problem.

Returning now to figure 1, we shall next examine the case in which
a number of such curves overlap. Let us consider, as an example, the
familiar case of a molecule which can exist in various vibrational states
equally spaced in energy. We may assume that the energies are so nearly
alike that the various states occur equally often. For further simplicity,
we may ignore rotational levels, and we may also think only of those transi-
tions which occur between the various other states and the zero state.
We then have a series of emission lines of equal intensity, equally spaced
in frequency, and all having the same width if the various states have
the same life. Supposing now, without changing the energy levels, we
gradually diminish equally the life of each state (in a similar way, but in
a less random way, than would result from an increase in the number of
molecular collisions). The emission lines now broaden. A remarkable
phenomenon occurs when 1/r just equals the frequency difference between
the spectral lines. Except at the beginning and end of the series, the
curves now add exactly to give a horizontal straight line (see Mathe-
matical Note III); in other words, except for the end portions, we obtain
a continuous spectrum of constant intensity.
A similar phenomenon is deduced from the diffraction equation. Con-

sider a plane wave of monochromatic light passing in a normal direction
through a large number of equal, parallel, long and narrow slits, equally
spaced. To one observing in the normal direction from the further side,
the slits, if properly spaced, will disappear and seem to be replaced by a
field of uniform illumination.

Returning to the vibrational spectrum, it is evident that the whole cen-
tral portion of this spectrum, which in the particular circumstances that
we have just described is entirely uniform, gives no evidence of any par-
ticular quantum states. Any section of it, however, can be interpreted
by the assumption of a minimum number of 4uantum states, and this
minimum number may be obtained by taking the first state at any arbi-
trary point and laying off the others at equal intervals, this interval being
1T. The example that we have given illustrates the sharp transition
from the cases in which we determine what states must be postulated to
account for the behavior of a system, to those cases in which we only
determine how many states must be postulated. In other words, it is
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the transition between systems which are definitely quantized and those
which are arbitrarily quantized.
From this example, we obtain a clear picture of the meaning of quanti-

zation even in so extreme a case as that of a simple monatomic gas. We
may, if we choose, interpret the phenomena exhibited by the gas by
assuming an infinite number of perfectly distinct states, but while, such
a number of states may be sufficient, it is not necessary. Just as in the
case of the vibrators, there is a minimum number of discrete states which
will explain the observed phenomena, and here again the spacing of these
states with respect to energy is determined by the relation

ale = h.

In this case, r, the life of the states, is determined as before by the fre-
quency of events. But these events are now the collisions- of the molecules
with each other or with the enclosing walls.
As with the vibrators, one of the states may be chosen quite arbitrarily

and then the others are laid off at the proper intervals. This produces
no ambiguity in determining Q, except in the immediate neighborhood of
the zero state, or the state of lowest energy. Regarding conditions in
this small neighborhood, we know nothing at present except that they
are of no importance in the great majority of systems with which we have
to deal. It remains to show that the minmum number of states which
we thus set up is identical with the number of cells into which the phase
space is ordinarily divided for statistical purposes, which, in turn, has
been shown by Schrodinger to be equal to the number of solutions of his
mechanical equations.

Before doing so, lest there be any confusion, we may point out that,
in the general case, the states of which we have been speaking are states
of the system as a whole. Each event that we have to consider is some
transition from one state to another state of the whole system. It some-
times happens, however, and this is true for the ideal vibrator, for the
ideal monatomic gas, and for radiation, that we can assign states to the
individual particles; and that the properties, such as the energy, of these
states are not materially affected by the presence of other particles. In
such ideal cases, our procedure is greatly simplified, for if the several
atoms are alike and therefore can be assigned the same series of possible
states, the minimum number of states Q for the whole system is merely
the number of ways in which all the atoms may be distributed among the
several states, in such a way as is consistent with whatsoever conditions
are imposed.

In order to show that the minimum number of atomic states which we
derive is the same as the number of cells ordinarily used in statistics, let
us begin by adopting Ehrenfest's expedient of dealing with a hypothetical
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one-dimensional gas. Here we shall say that the life of an atom in a given
state is the time that elapses after striking one wall before meeting the
opposite wall, assuming that collisions between molecules may be neglected.
This is the same for all particles of the same velocity v and if I is the dis-
tance between walls,

(6)
V

but from the fundamental relationship (4),

rAE = h)
where Ae is the difference of energy between successive states in the
particular region of velocity we are considering. This difference in
energy requires a difference in momentum Ap. According to the laws
of mechanics,

Ae = vAp. (7)

Eliminating r and Ae from these three equations, we find finally,

lAp = h. (8)

If we regard the individual states as defined merely by the momentum,
nothing being said about the position of the particle, I may be regarded
as the uncertainty in position, while Ap, the difference between the states,
is the uncertainty in momentum. Just the same equations are obtained
for photons when we consider a one-dimensional Hohlraum.

Proceeding to three dimensions, we may choose arbitrarily three per-
pendicular directions, x, y and z. We may then define the states of a
particle by allowing the momenta px, py and p, to assume independently
certain discrete values. The problem is to determine the distance apart
of these successive values of momentum.

Let us consider two adjacent states in which py and p5 are the same, but
differing by Api. Designating by Ae the difference in energy, we have
from mechanics,

Axe = vxPx, (9)

where vx is, in states of this neighborhood, the velocity in the direction x.
The determination of T, or what we may here call r., is by no means so

obvious as in the one-dimensional case. We may, however, consider the
gas as contained in a rectangular box with dimensions lx, etc., and write
in a somewhat formal way,

=Ix (10)lxTx-;.(0
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Now combining the last two equations with the fundamental Equation 4,
we find,

lxApx= h. (11)

We thus see that our quantization corresponds entirely with the ordinary
partition of a phase space into cells.
We shall not at present discuss the more complicated case in which

the pressure is so high that the life of a state is determined by collisions
between particles rather than by collisions with walls. It should, however,
be remarked that the complex phenomenon of the broadening of spectral
lines through pressure is probably, in its simplest form, merely the result
of shortening the lives of the states through collisions. Hitherto it has
been possible to give only a vague definition of a collision, -but we may now
define it precisely. A collision is any event depending upon the proximity
of other molecules which consists in a change of state of one or more
molecules. Since the states are usually very close together these collisions
occur thousands or millions of times as frequently as the very pronounced
collisions of the old kinetic theory. Intermediate between these two are
such collisions as have been experimentally studied by Knauer and Stern,6
where a molecular ray is slightly deflected by gas at low pressure. They
found such collisions to occur much more frequently than the collisions of
classical theory.

Mathematical Note I.-Starting with a function which has the value

f(t') = a sin 27rvot' (12)
between t' = -r/2 and t' = +r/2 (where r is an integral multiple of the
period 1/vo), and which has the value zero at all other points, this function
may be replaced by the Fourier integral

+ m + c

f(t) = 2 J ]s f(t') cos 2rv(t' - t)dt'dv, (13)
0 co

or in differential form,
co

af() = 2 f f(t') cos 2irv(t' - t)dt'. (14)

The limits of integration may be replaced by -T /2 and +T/2, since
f(t') is zero outside these limits, and substituting Equation 12, we may
perform the integration and obtain

fs7r(v -2o) sin 27rvt. (15)

If only those frequencies are significant which are very close to vO, as is
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the case when r contains a large number of periods, the equation reduces
to the simpler form,

bf(t) a sin7 r(v-o) sin 27rvt. (16)
bv T(V - Po)

The coefficient which does not involve t may be regarded as a sort of
amplitude, a,, that is,

a a sin -rr(V-O) (17)
IV

r(v - Po)

The energy at each frequency is proportional to a', the integral of which
over all values of v proves to be a2r. We may therefore normalize the
expression for a' if we divide by this integral. Thus, if I, is the ratio
between the energy at a given frequency to the total energy,

sin2 7rr(zT(- (18
Iv=- 2 * ~~~~~~(18)

Tr2( - Vo)2
Since we have assumed that all the significant frequencies are nearly the
same, we may replace I, by P, where Pdv represents the probability that
when the transition occurs between state B and state A, the light emitted
will have a frequency lying between v and v + d'.

Mathematical Note II.-It is possible that when we assume the existence
of precise quantum states, the life of each state should also be regarded
as exactly determined. In that case, it would be necessary to consider
such experiments as those of Wien as showing only an apparent variability
in the life of a state, in the same sense that a study of the energy emitted
in a transition shows an apparent variability in the difference of energy
between the two states. Nevertheless, we may, for the moment, assume
that if we have a large number of identical systems undergoing the same

transition, the fraction of these transitions occurring per unit time, bx/bt,
follows the simple law of exponential decay,

ax = 1 e-t/r (19)

where T is well known to be the average life. If r is the actual life in any
one system, then all the systems in which the transition occurs at the end
of time t have T = t and the fraction of these is

dx = I eT/T dT. (20)

If we write PP,T for the characteristic probability of Equation 1 for sys-
tems of life T I
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=m=T2(V- v.) (21)

Then the characteristic probability at the frequency v' of all the systems,
is obtained by integrating P,,dx. By the last two equations,

p- e~' sinwr -(v-o) dr. (22)
o0 Tr 72( - vO)

This is a known integral (see Bierens De Haan, Tables D'Intigrales
Dffinies, Leiden, 1867, Table 365, 4) and,

=- log~l + 4w2'r2(v - 110)2J 23
PP = r gt +2F2( ( -)2 °)](23)

The total integral of P. over all values of v must, of course, be unity, and
is so found when the integration is performed (De Haan, Table 134, 12).
Since the area under the curve of PP is unity the width of the curve Av,
as we have defined it, is the reciprocal of the maximum ordinate. Finding
this ordinate to be X by making v = Po,

Avv = -, (24)

which is the same as Equation 2, except that i is now the mean life. Equa-
tion 23 gives curves which, when spaced at a distance equal to their width,
do not, like the curves of Equation 1, add together to give a straight line,
but an undulating curve.

Mathematical Note III.-The proof that curves corresponding to Equa-
tion 1 add together to a straight line when uniformly spaced at a distance
AV= 1/T is as follows. Consider an abcissa at a distance d from one of
the maxima. If n assumes all integral values, the sum of the ordinates
at this point will be

=+coTsin 7rT d+ ;) mn+ C rsn(rd+n
E2P = E 2rs(n'(lr=dEn(r)2 (25)

Since the term n ir contributes nothing to the sine it may be omitted,
and removing from the sum the invariant quantities, we find,

s=in21- ds+D 1 (26)
#2 nTd= n)
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This sum is known, and is equal to 7r2/sin2 irrd, so that at every point, the
sum of the ordinates amounts to r.

1 Lewis and Mayer, these PROC1MDINGS, 14, 569 and 575 (1928).
2 W. Heisenberg, Zeits. Physik, 43, 172 (1927).
3 E. Schr6dinger, Phys. Zeits., 27, 95 (1926).
4 For a discussion of this phenomenon, see W. C. Mandersloot, Jahrb. Radioakt.

und Electronik, 13, 1 (1916). Since, however, our assumptions are different from his, our
equations are of a different character.

5Knauer and Stern, Zeits. Physik., 39, 764 (1926).
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The luminescence of the ruby under cathodo- and also under photo-
excitation has been investigated, among others, by G. C. Schmidt,'
J. Becquerel,2 Miethe,3 DuBois and Elias,4 Mendenhall and Wood,5 K. S.
Gibson.6 As the result of their studies the following characteristics have
been established:

1. The activator is chromium, presumably in the form of a chromium
oxide, in solid solution in aluminium oxide.

2. The sensitiveness of A1203 to activation by chromium is extreme-
so much so that -it is difficult to procure or produce A1203 which does not
glow with the characteristic ruddy glow of the ruby when subjected to
cathodo-bombardment.

3. Strictly pure A1203 does not exhibit luminescence of this type.
4. The most striking feature of the luminescence spectrum is the well-

known doublet of narrow bands at 0.6918 ju and 0.6932 p .
5. Coinciding as to wave-length with these are narrow absorption bands

and it is possible by suitable adjustments to get reversals suggestive of
the reversals of the bright lines of flame spectra.

6. In addition to these bands there are in the spectrum various other
narrow bands and that these correspond to absorption regions is strikingly
shown by maps of the red portion of the spectrum by DuBois and Elias.

7. The bands of both luminescence and absorption are narrowed to
line-like proportions by cooling the crystal under observation to the tem-
perature of liquid air, a fact that was utilized by DuBois and Elias in their
search for the Zeeman effect.
The similarity of the phenomena summarized above to those brought

out in our own studies of the luminescence of the uranyl salts and of solid
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