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PREFACE

This volume contains abstracts of a series of lectures given to
graduate students in electrical engineering at Union College. It
is primarily intended to prepare the student to understand and
to deal mathematically with phenomena which are incidental to
abnormal or transient conditions in electrie circuits.

The first part is practically a reprint of a series of articles
published by the author some years ago in the General Electric
Review. These cover the simple transients in circuits containing
concentrated inductance, capacity, and resistance, which have
been treated by many authors, notably by BEDELL AND CREHORE
in their ¢ Alternating Currents,’’ published 1893.

The second part deals with the somewhat more difficult prob-
lems of transients in circuits of distributed inductance, capacity
and resistance. These were treated mathematically very fully
almost thirty years ago by Heaviside in a series of papers on
“Electromagnetic Theory,” later published in book form. In
1909 Steinmetz’s ‘“Transient Phenomena’ appeared. This
book covered in a broad sense very much the same ground as that
of the authors given above, but covered it in an essentially differ-
ent way; introducing for the first time—asfar as the author knows
—a really advanced book on practical electrical engineering
problems.

The third part of the book deals with problems in electro-
statics. These again have been very fully treated almost fifty
years ago by Maxwell in his famous books on “Electricity and
Magnetism.” Sinece that timealarge number of papers and books
have appeared on the subject, notably by Heaviside, Kelvin,
Gray, Jeans and Webster, and quite recently by Coffin in his
interesting little book on “Vector Analysis.”

While the literature on this phase of engineering is thus very
extensive, it has, for all purposes, been closed to the practical
engineer because of his lack of sufficient mathematical knowledge.
Dr. W. 8. Franklin has, however, recently published a number of
papers, which in a beautifully simple way have demonstrated
that these advanced problems can be solved Wlth simple
mathematics.
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therefore ._E T
YS9, T2
The rate of change of the flux as the current changes is obviously
d¢ E —ir
dt ~ N X118

Therefore when the current is 10 amp. the rate of change is
5,000,000 lines per sec. The rate of change is greatest at
first and becomes zero when the current reaches its final value.

The determination by ecalculation of the inductance L of a
circuit is usually very difficult, in fact almost impossible except
in the very simplest cases, such as parallel long circular con-
ductors. Approximations of one nature or another have almost
always to be resorted to. Usually the inductive circuit contains
iron, and in that case the reluctance (and hence the inductance)
is not constant but changes with the degree of magnetization.
Later in this volume the effect of the changing inductance in
iron circuits will be considered, but at present it shall be assumed
that L is a constant regardless of the value of the current.

The inductance of the field circuit of a dynamo can readily be
determined for any particular field current by experiment. All
that is needed is to run the machine at some speed and to read
the voltage and field current. These data in addition to those
of the field and armature windings suffice. By definition,

_ total flux X turns
~ current X 108

The total flux per pole is determined from the voltage, speed and
armature winding. Consider a 10-kw., two-pole, direct-current,
110-volt generator, having 2.5 megalines of flux per pole, and
1500 field-turns per pole. Assume that at normal voltage its
field current is 3 amp. and that the field spools are connected in
series. Thus

L=

(26)

2.5 X 10% X 1500 X 2
3 X 108

Example No. 2.—Figs. 5 and 6 represent the direct-current
generator referred to above. M is the armature and F the field.
If a voltmeter of 11,000 ohms resistance is connected as shown
and switch S is opened without arc when the field current in
ammeter 4 is 3 amp., what will be the effect on the voltmeter and
will the ammeter and voltmeter read in the same direction as

= 25 henrys.
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before the switch was opened? Before the switch is opened the
current flow is as shown in Fig. 5. As the switch is opened
the field flux can not die away instantancously. The field cur-
rent therefore can not die away instantaneously, but continues to
flow through the only available path, which is that of the volt-
meter. Since the resistance of the voltmeter is 11,000 ohms it is
evident that the voltage across the instrument becomes at the
very first instant very high.

Fic. 6.

It tends to become ir = 3 X 11,000 = 33,000 volts.

Thus the voltmeter will probably burn out as the meedle
swings to the opposite side of the scale. The ammeter ncedle
will remain stationary for the first instant and gradually come
down to zero.

This problem gives an idea of the nature of the shock that is
experienced where the field current of a generator is carelessly
interrupted and permitted to pass through a person. Depending
upon the nature of the contact the resistance of a body may be
from 1000 to 10,000 ohms. If, therefore, a person touches both
sides of the field winding when the field eircuit is interrupted,
he will experience a very severe shock. The energy stored is
usually quite considerable. In this caseitis 14LI2 = 14 X 25 X
9 = 113 joules. Since 1 joule is 0.74 ft.-1b., the energy available
is 84 ft.-lb., 7.e., that of a pound weight dropping 84 ft.

It may bz asked, what would happen if the voltmeter were not
connected across the field winding? Where would the initial
rush of current, of 3 amp. flow, when the switch was opened?

In reality it is impossible to open the field switch without an
arc; therefore the current can not be interrupted instantaneously.
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Furthermore the circuit is more complex than assumed. The
field winding has considerable capacity and therefore acts as if it
were shunted by a condenser. A portion of the 3 amp. will
therefore flow as condenser current, but a large portion will
appear as secondary currents in the iron circuit of the poles.
This phenomenon will be understood later from the investigation
of circuits having mutual inductance.

The problem is instruetive in that it explains frequent burnout
of voltmeters, and in that it teaches that the voltmeter should
always be disconnected before the switch is opened, or otherwise
be connected on the armature side of the field switch. It teaches
also that in opening the field switch a relatively low resistance
should be shunted across the field winding to prevent high vol-
tage, and finally that it is well to open the field switch slowly.
The importance of shunting the field circuit is best illustrated by
a numerical example.

. Ezample No. 3 (Fig. 7).—Assume that the field circuit having a
resistance of 36.5 ohms is shunted by a resistance of 50 ohms, and
assume again, for the sake of simplicity, that the field current of

3 amp. is Interrupted without arc and that L is constant at 25
henrys. The total resistance in the circuit is then 50 4 36.5
ohms or 86.5 ohms. Determine the current in the field winding
and the shunted resistance and the voltage across the ficld coils
which is the same as the voltage across the resistance after the
switch is opened.

Referring to equation (18)

! _rt
3 =g b= e,

For ¢ 0 0.05 0.10 0.20 0.5 1.0
GO+ 1 0.84 0.71 0.50 0.18 | 0.03
1 3 2.32 2.13 1.5 0.54 | 0.09
iR 150 116.0 107.0 75.0 27.0 3.0
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It is seen that in this case the maximum voltage across the field
coils, which, of course, oceurs at the moment of opening the
switeh, is 150 volts, as compared with 33,000 when the voltmeter
shunted the field coils. The field current dies away very rapidly.
In 1 scc. it has almost disappeared. The energy stored in the
field is spent in heating as an 7% loss.

Ezample No. 4.—Prove that in discharging an inductive circuit
all energy stored is spent in heat.

The instantancous value of the current was found to be:

. S8
it =1L,

therefore the energy expended in heat from time zero to infinite

time is:
= = 2r
j 2rdt = I?r e Ltdt
t=0 0

2, 12
- I2r[—— 21;6 L‘]O = —L5 (0-1) =} LI

It is of interest to study the rate at which the field flux, or what
is equivalent, the field current, can build up when closing the
field winding on a constant-potential busbar, and to see how much
more rapidly the field current can be made to build up when a
considerable resistance is inserted in series with the field coils.

It will be assumed that use is made of the winding described
in example 3, that is, one with a resistance of 36.5 ohms and
inductance of 25 henrys. This ecircuit is connected to a
direct-current busbar having a constant potential of 110 volts.
Referring to equation (17),

7 = %[1 — e_ll:‘] -3 [1 _ e_"“‘].

The lower curve in Fig. 8 shows the result of this calculation.

If, instead of exciting the winding from a 110-volt main, it is
connected to a 220-volt circuit and sufficient resistance is inserted
in series to keep the permanent current at 3 amp., the rise in
current will be more rapid than in the first case, as shown in the
upper curve of Fig. 8.

There is an interesting mechanical analogy for the starting or
stopping of a current in an inductive circuit.

To bring a train up to speed a certain force is necessary; this
force must overcome the friction and provide the necessary
acceleration.
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If the train start from rest, then for ¢ = 0, v = O.

o0 =I_P+C5 or, C = _?1)
or, F i
v—f[l—e M ]

By comparing this with the equation for the starting of a current
! T
in an inductive circuit, which is, z = ?[1 — e Lt ],it is seen that

in electrical problems, the current corresponds to velocity, the
e.m.f. to the mechanical force, the ohmic resistance to frictional
resistance and the inductance to the mass.

The analogy can be carried further. The energy stored in the
magnetic field, 14LI2, corresponds to the kinetic energy of a

moving body, 14Mv2.  The electromagnetic momentum LI cor-
responds to the mechanical momentum M, cte.

A problem involving mechanical as well as electrical transients
will next be considered.

Find the equation of the dying away of the field eurrent in a
direct-current self-excited shunt motor disconnected from the
circuit and permitted to decelerate to standstill.

Let the moment of inertia of the revolving part be I. Let the
full speed be N revolutions per second corresponding to an angu-
lar velocity of ag radians per second. Let the power required to
run the motor at full speed but at no-load be P hp., and assume
that this power is represented by friction loss in the brushes and
bearings, which is a very close approximation, particularly after
a few seconds of deceleration, when the core loss becomes very
small; and neglect the ¢2r loss. Assume that the saturation curve
is a straight line, so that proportionality exists between the field
current and the flux.

Let the normal field current be I,. Let the normal flux per
pole corresponding to this current be ®. Let the armature e.m.f.
at full speed and flux be E, and the total ficld-circuit resistance
be r, and let the motor have p poles and each field spool have n
turns.

Mechanical Calculations.—1. Determine the angular velocity
ao. Itis, ag = 27N.

2. Determine the friction torque, or moment Q. We have

2rRN X lb.’

A 5 550
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The problems considered up to this point have all involved
very simple integrations. IFrequently, however, this is not the
case, and to solve the differential equations, it is necessary to
make algebraic transformations.

The most important of these transformations is to separate
fractions into partial fractions.

3.0
2.5 —
o
&
22.0 —— ==
< B\
21—t
@
5
3
O
°
IC]
&
0.5 = § —l
0 ‘ ! x%

<o
-l
©~

3 4 5 6 7 8 9 100 11
Time, Seconds

Fia. 9.

Almost any algebra deals with this; nevertheless it may be
opportune to refer to it briefly here, although it is suggested
that the student’s memory be refreshed by reading, for instance,
WiLLsoN’s ““Advanced Algebra,” from which the following is
largely abstracted.

O

7(2) is a fraction, that is, the numerator is of lower degree

than the denominator.

It is known that F(z) can always be expressed as the product
of linear factors, which are not nccessarily real.

If the factors are real, then F(z) can be expressed as the product
of real linear and quadratic factors. Two cases will be here
considered.

First—No factors are repeated.

Example—F(z) = (ax + b1) (axx + by) (as2® + bsx + c3).

Then f(x) = A, o+ A, 4 Asr - Bs
F(@) ~ aw+b: ' asxt+b: " aszz® + 6sx + Cs

where A;, A;, As, and B; are constants, which can readily be
found, since if the expression:
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Up to this point, the problems have involved inductive circuits,
on which a direct-current e.m.f. has been impressed. In case of
alternating current the impressed e.m.f. varies from instant to
instant and, while a harmonic e.m.f. is usually assumed, fre-
quently the variation represented by a wave is muck more com-
plex. Aslong, however, as the e.m.f. is obtained from a dynamo
of symmetrical poles, no matter how shaped, the e.m.f. wave
can be expressed by a series of sine functions of odd frequencies.

In the study of transient phenomena in connection with alter-
nating current, the equations are derived for the fundamental
wave only, that is, the instantaneous values of the e.m.f. are
represented by e = E sin 6.

If it is desired to know the result with distorted waves, the
simplest method is to treat cach harmonic independently and to
add the instantancous values so obtained. If the effective
value is desired the square root of the sum of the squares of the
effective value of each wave should be taken.

As stated previously, the instantaneous value of the e.m.f.
is generally expressed in two ways, either ¢ = FE sin wt or ¢ =
E sin 0, or the expression may be of more general form: ¢ =
Esin (of 4+ «) and e = Esin (6§ + ). In these expressions,
¢ is the particular value of the e.m.f. at time ¢, or at phase angle
0, and E is the maximum value of the e.m.f. In the first case,
the angle ot is expressed in radians, not in degrees. w is the an-
gular velocity = 2 «f, where f is the frequency. The relation
between radians and degrees is 360° = 2 radians, thus 1 radian
is 290

2
degrees it should therefore be written ¢ = F sin (57.3 ot + «),
where in all cases « is expressed in degrees, as is customary. To
reduce the expression to radians it should be written

= 57.3°. To reduce equation e = E sin (wf 4 «) to

. «
e = I sin (wt - -5—73)
Note in connection with this that in the expression, y = sin z,
x is expressed in radians, not in degrees. To bring it to degrees
the equation becomes y = sin 57.3 x.
In the development the value of the sine function
. & P af
Slnx—w—E+l'§~l*zt+

z is again expressed in radians.
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1t is important to have this clearly in mind. It is well worth
while to plot some curves of distorted waves from equations in-
volving phase angle as well as radians.

Ezample No. 5.—Verify the e.m.f. wave in Fig. 10, e = K,
sin wt + Kssin (3 wt + «) for Ky = 10, K; = 5, « = 30° and
the frequency 25 cycles.

%2
1.0 SIS [ s —
8 — /\ - S| (S N S — —
6 - S\ (NN S _ 1
alf | — =l - : | .
2 M - | . B
0 |
20 .40 .60 .80 100 120 140 160 \t80 200 220 240 260 230 300 320 340 [3p0
AL L ngle\in Degree - B
4 . o = [ |

ivifff:ifC*\j
St ENAL
| 1] | N

o 02 03 .04
Time in Seconds

Fia. 10.

Prove by integration that with a distorted wave:
e = Fysin (6t + a1) + E;sin (3 ot + az)

the effective value is e.;; = Ve1 s + €3%fs

Thus in this instance, since the effective value of the funda-

E 10 . .
mental wave is ‘{/é = Vé = 7.07, and that of the triple har-

E 5
monic is —\/—32— = :/—2 = 3.53, the effective value of the wave

recorded by a voltmeter is e =/7.07% + 3.532 = 7.9.
Referring to Tig. 11: prove that ammeter A when placed in a

circuit carrying 10 amp. direct current, 8 amp. 60-cycle current,
and 5 amp. 125-cycle current reads 13.7 amp.
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1t is also convenient to substitute a single letter for ; - Let then
T 4
@3 S L

The immediate problem then is to solve /¢ sin wt dt.

An integral involving exponentials or sine functions is usually
easy to solve, because the differential of the functions are similar
to the funections.

dy
__ ar /S al
If y = ¢ then dr = o€

_ . . d
Similarly if ¥ = sin wz, then blz = w COS WZ,

. dy . .
or if y = cos wz, then ZlJ = — w sin wr.
7
Thus (eat di = ]; eat
4 (64
and f sin wt dt = — - cos wt di.
w

Fortunately for the engincer there are only very few methods of
integration that need to be known. One of these is “ Integration
by Parts.”

That is: Sudv = ww — S odu (30)

In integral /e sin ot dt, let u = ¢ and dv = sin ot dt.

1
Ldu = ae®and v = — - cos wt

R atl
e sin wt dt = —5 cos wt + fg e cos wt dt (31)
w w

This equation is indeed more complicated than the original. It
is evident, however, that by again integrating the last term in 31,
an integral results which contains an exponential term ¢* and a
sine term instead of the cosine term. Thus the final expression
will contain integrals of the same trigonometrical and exponential
functions, which therefore can be solved directly. However, it
is somewhat more convenient to use another method.
Referring again to (30) let in this case:

u = sin ot and dv = ¢ dt

at

1
'.du=w005wtdtandv=&e

o

at
S sin ot dt = S sin wl —fﬁ et coswtdt  (32)
(24
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The effective value of the e.m.f. is

E
Eeys = 72:

and of the current I = Iy:
‘ 2%
It is of interest to note that the transient term is a maximum
when sin (§; — 8) = 1, thatis 6; — 8 = 90, or 6, = 90 + 8.
This value of 6, also gives the maximum value of the perma-
nent current.

[T T T T T T P T T P PP P P T P T P P P I T T T T T T I T T T
T T T L T T T T
[ [T 111 A TImpressed Voltage R -
[ i | 1 | B Current wl}en Switch is Qlosed at ﬁ,io . EREEN
S ‘l N I O g ’s " " " » g::wc'o w—T
AL AL 1B v " 00 e v 0i=120 A 'J'j'
" ” " v B=970° ] 1
EEN L i H g v ) ’ g g i 0:= 7g°GiVing the Permaneng
2 1.4 iy :K Value of Current
£ 12 Pz E T_k,%, EREN [T1T N
2 1.0 = . L ! == \\\
b 24P A
R Y, LA /7 NN
R 7 o f %
g 2 ;/Z i 490 f
& O30 607 907 120 300, 330 % 350 /,150 150, 5107, 5101 5107600
‘é‘ :% Angle in Degrees | ¥ ‘_21: I /L /8 % \
< -6 \ \ v I
8 -8 A= W} \;\
< -10f - N SANNF 5 T N
§-1.2_j 1 - 1 | ] TT
5_1.4 11 i | | [ ‘( i [T ]

Fra. 12.

The exponential term is zero, that is, there is no transient
effect if 6; — 8 = 6 or 6, — S or, in other words, if the circuit is
closed at such a time as would give zero value of the permanent
current.

Fig. 12 shows a series of such transient currents. Each curve
corresponds to the closing of the switch at a particular value 6,
of the phase of the e.m.f.

Thus, for instance, curve D shows the starting current when
the e.m.f. wave has a phase angle of +60°, that is, when 6; =
60°. These curves are calculated with the following constants

E=1r=019 z = 0.98.

Problem No. 6.—Check some curve in Fig.12.
It is of interest to study the rate at which energy is being sup-
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plied at any instant. This is equal to the product of the e.m.f.
and the current:

P=a=E@wxdbmw—m—;ﬁ“”mum—m]u@

By simple transformations the equation becomes
E?rcos B — cos (20 — B) =" (-8
P = - — € X
Z 2

sin (6; — B) sin 0] (45)
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~

The first term in equation 45 must represent the power at any
instant after the conditions have become stable. This power is

expressed by
2

])1=2—Z‘

[cos B — cos (20 — B)] (46)
E2

It consists of two terms, on ¢ a constant term 57 €08 8, the

other a term which changes with double frequency; the net

result of which over a complete period is zero, since the positive

values are as large as the negative. Thus while the instantan-

eous values of the power vary from instant to instant and may






CHAPTER 1I
PROBLEMS INVOLVING MUTUAL INDUCTANCE

Up to this point the problems considered have dealt with cir-
cuits of inductance and resistance only. However, in many
circuits of commereial interest there are secondary circuits which
are more or less closely coupled with the primary, and which
influence the former materially. As instances of such ecircuits
may be given the secondary winding of a transformer, the eddy
currents in pole picces of generators and motors, induced cur-
rents in telephone lines running parallel to transmission lines, ete.

Sometimes the secondary circuits carry currents by virtue of
impressed e.m.fs., but frequently the currents are the result of
the action of the primary currents. With a change of primary
current obviously there is a change of the flux produced by the
current and if this flux interlinks with the sccond cireuit, e.m.fs.
are induced therein, the values of which become higher as the
interlinkage becomes more nearly perfect.  While it is impossible
to arrange {wo circuits so that all flux interlinking one will also
interlink the other, the condition can be approached reasonably
close under the most favorable conditions.

The limiting case is, of course, perfect mutual induction, which
condition will therefore first be considered briefly.

Two Coils of Perfect Mutual Inductance.—Assume then that
it is possible to place two coils so close together that there is no
leakage flux between them, that is, so that all flux that surrounds
one coil also surrounds the other. Let the first coil, the primary
coil, have N; turns and r; ohms resistance, and the secondary
coil N, turns and r, ohms resistance. Determine the open-circuit
voltage of the second winding. When the first is connected to a
source of constant potential E, we have obviously:

B = it gl
The rate of change of flux is thus
dd) E — ’!:17'1'

dt = N,10®
33



34 ELECTRICAL ENGINEERING

Therefore the voltage of the second coil e; is

N, do N, .
100 4 = TN, A
At the instant of starting, when 7, is zero, the secondary voltage
T

is e = — ]%% E, that is, it is proportional to the ratio of turns.
1

When the primary current reaches its constant value I, = .

the secondary voltage e2 is zero. If the secondary winding has
more turns than the primary, then at first the secondary voltage
is higher than the impressed voltage. It decreases rapidly,
however, and soon becomes zero.
Prove that the two voltages are equal numerically when
.. _E
TN
Assume that two coils, which, when considered alone, have
resistances and inductances of ry, re and L;, L., respectively, are
placed so close together that there is perfect mutual inductance
between them (which of course is in reality impossible). Find
the open-circuit voltage of the second coil if the first coil is
connected to a source of constant potential.
In the primary we have:

(N2 — Ny).

E =4+ Ly %

The counter e.m.f. of self-induction of the primary coil is

d oo
— L - dlt!’ and thus the voltage of the second coil is

oo Mo i L di L
cér = — N:IAE L LlLl dt L, (& ury).

Check the values of the primary current and secondary voltage
as given in full lines of Fig. 14.
for
E =10 T, = 0.10 L1 = 2.5 A71 = 10
re = 0.50 Ly, =10 No =20
In the case referred to above the primary current will rise from
zero to a final value of 100 amp., while the secondary voltage
decreases from —20 volts to zero.
If when the primary current has reached its final value the
coil is suddenly short-circuited, what will the primary current
and secondary voltage be?
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The primary current will decrease according to equation:

1 A 1

] L —-—

= ZeTn!
T1

1:1 = IE—-L
_ _Ne, . . __ EN, _
62——N1(E—217‘1)—~— N, ([—e Ll)-

Check numerically the two dotted curves in Fig. 13.
During the discharge of the primary the number of coulombs
are

f 1dt = f Lie Lt dt = 100% = 2500 coulombs.
0 0 1
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Fic. 14.

Obviously, when connecting the primary to the source of supply,
the number of coulombs required up to the time when the current
becomes stationary is infinite, since it takes infinite time for the
current to reach this value.

Two coils of resistances and inductances of ry, 7 and L; L are
connected in series and placed so close together that it is assumed
that they have perfect mutual inductance. What will be the
resualtant, resistance and inductance (a), if the coils are wound
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in the same direction; (b), if the coils are wound in opposite
directions?

The inductance of an air coil is subject to rigid mathematical
determination, but the complete solution is very cumbersome.
However, one of the best approximations, that of Brooks and
Turner, published as an Engineering Experiment Station
Bulletin by the University of Illinois, is:

cm? 106 4+ 12¢ + 2R
10°0 + ¢ + ) * 106 + 10 + 14K
X 0.5 log o <100 = 2b1i1|_R3 ) (1)

L:

For coils which are not extremely thin or extremely long, this
equation becomes approximately :

cm?
L=+t oomio @

Where L is expressed in henrys
c¢m = centimeter length of wire

b and ¢ are the height and thickness respectively of the coil
and R the outside radius, all in ¢m.

&-—C- >
00000 “[oodoo]| K"
00000 00600| ;
00000 codool 4
00000 00900
00000 00¢00|
- i @ >

Fia. 15.

The maximum inductance is obtained when b = C and R = 2C
(see TFig. 15). Then

——2
0.27Cm

L= — 0% 10° henrys.
It is seen that the inductance is proportional to the square of
the total length of wire, which is, of course, proportional to the
turns. Thus the inductance is proportlonal to the square of the

number of turns, or
L = KNz

(a) Coils in the same direction.
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Let N be the number of turns in the first coil, or,
_L_'
K’

and N; the number of the turns in the second colil, or,

Ly
M=~k

The total number of turns in the two coils when considered as
one coil (which is permissible when perfect mutual inductance is
assumed) is

N =

The combined inductance is then

Ly=KNg = (WL + VL) =L + L, + 2/LL,.

The resistance is obviously ro = r + ry.
(b) By similar reasoning it is found that if the turns are in
opposite directions

Lo=L + Iy = 2v/LL,and 1o = 17 + 7y

From the above it is evident that the equation for the starting
current, for instance, is:

i = T—Eo[l - ).

Two Coils of Perfect Mutual Inductance Connected Simulta-
neously to Sources of Constant e.m.fs. E and E;.—Let r, r; and L,
L, be the resistance and inductances respectively, and assume
that the circuits are closed at the same instant. Assume first
that the coils are connected in the same direction, that is, in such
a way that the permanent current in both coils will produce mag-
netic fields of the same polarity. It isevident that inthiscasethe
impressed e.m.f. has to overcome not only the resistance and in-
ductance drop due to the current in the coil, but also the e.m.f.
which by transformer action is induced in one coil by the change
of current in the other. '

Consider one coil alone, for instance the second coil: The
(%1- If it has N; turns, the

Since it has been assumed that

counter e.m.f. of this coil is — L;

L, di,

voltage per turn is — N, dt
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there is no leakage field between the two coils, it is evident that
this same voltage per turn is induced in the first coil by the cur-
rent in the second. Thus the “transformer” e.m.f. in the first

. . . N _ du
coil having NV turns is — N L, di’ and similarly the transformer
1

e.n.f. produced in the second coil by the current in the first is
N] d’L

v Lla

But {\7_ _ ,A
N, Ly

therefore the e.m.f. in the first coil caused by the mutual flux is

_ L d’h _ ‘d’L1
\[L = —VLL

Thus it is seen how, when the mutual inductance usually denoted
by M is perfect, M = A/LL;. In reality M is always smaller
than \/LL;. The general equation dealing with e.m.fs. consumed
by resistance, inductance and mutual inductance, are then

E=ir+Lyg +Md’l 3)
d d
aIld E1 = 7,17'1 + Ll l;tl + M ¢ (4)

To solve for instance 7 the following transformation is conven-
ient, multiplying (3) by L; and (4) by — M and add the equations
so obtained.

It is: dt

L],E — .Z‘I.El = Ll’LT + LLl dt
di
. — Miv — M2 (5)
Since with perfect mutual inductance
M?* = LI, (6)
_ Lyr — ILE + ME, @
h = MT1
. du _ Lir di
MT1 dt

Substituting this in equatlon (3)
r di
E = zr+Ldf +L1r ai

Lyry + Lyr di
T df (8)

r +
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or di o FH Eri
dt Lr, - + Ln‘ Ln + Llr
Thus, 8 o= 7 + Ce™ Lr1+ler 9)

To determine the integration constant C, it would be a mistake
to assume that the current ¢ is zero when t = 0. All that is
known is that the combined coil can not be surrounded instan-
taneously by a flux—it takes some time to produce or alter a
magnetic field, because a transfer of energy is involved. It is
possible that currents will flow the very first instant, currents
which produce m.m.fs. of equal magnitude but in opposite direc-
tion. One particular case of this would be where the currents
were zero, but this is not a general solution.

What is known, then, is that no flux will exist the first instant.
Thus the m.m.fs. must be equal and opposite, and since the cross-
section of the magnetic flux and the direction of the turns are
assumed the same in both coils, it follows that for

t =0,iN = — ;N
or . N . |IL
— 3 — = — —_— 1
“ le z\gl (10)

Substituting this value in equation (7)
L {Jl'I:T = 1E + ME1

-1

L1 ) MT1
or . L.E — ME,
o L7'1 +L11' (11)
for t =0.
L,E — ME, E
Lr1 + LIT 7 + C
0= ME1T+LET1
YT (L + L)

E MEw + LEr, — _m__,
r T r@r+ Ly € T (12)
Similarly ; is found to be

E:  MEri+ LiEx _ _m_,

nT L C T (13)

Problem No. 7.—Prove by complete calculation that if the
terminals of the second coil are reversed the following are the
equations of the currents

L=

o =
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i S E — ZAE;—TI _ J‘[Elr e—LﬂZlLth (14)

S E1 L]Eﬂ" ) ﬂ[ETl __":1_1
1T = 7'1 - r (LTl + Llr) € Lri+Lar (15)
In the case that the two coils are exeited from the same direct-

current busbars when E =" E; the equations become:
For coils wound in the same direction:

. I LTI + Mr _ Gl g
7 =-—11 — — ¢ Lrn+Lir (16)
Lr1 + L}T
E Ly +Mr, __m__,
1, = — = = € Ln+Lir (17)
T L7'1 + Ll’l'
For coils wound in opposite direction:
. K Lry — My __m
i == === Lr1+Llrt] (18)
r Lr1 -+ Llr
E L]T — ﬂ[r; — e g
i = — — 7 . € Intlr ] 19
! T [ LT] + L1T ( )
o L e
T [ — I T
80} ST
- 7 |
.-4—-—- N / |
- 1 A4 Starting Currents
2 60 Two Ooils of Perfect Mutual Inductance
g ‘é N ggl‘i I;lg}z } Wound in same Direction
;:E 10 j_/ g - gg;} §g‘é } Wound in opposite Directions
&/ i RN
§ ProreeA HHE
520 . s o s s e
3 4 —
[6) = =1
= ——
MNP 10 B0 [ | 1190 | [120] | (140 | 160] | [180| | 200
o Tinefn -Second .
20
F1a. 16.

In Fig. 16 are given four curves showing the currents in two such
coils of perfect mutual inductance, having the following constants:

r = 0.10
ry = 0.50
/b £33
L, =10.0

E = E, = 10 volts.
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It is assumed that they are connected in parallel to the same
source of direct current at a constant potential of 10 volts. The
full-drawn curves correspond to the condition in which the turns
are in the same direction; the dotted curves to that in which the
turns are in opposite directions. It is well to verify these curves
by ecaleculation. It is of interest to note from the full-drawn
curves that, while the two coils are

connected to the same source of con-

stant potential, during the first few r=.1
seconds the currents actually flow in

g . L=25
opposite direction. The second coil
having twice as many turns as the =5
first, and therefore a smaller final Ly=10 _

value of current, has a current of T, 17.

negative value at the first instant of

one-half the magnitude of the current in the first coil. Tventu-
ally the currents become positive and are proportional inversely
as the ohmic resistances.

It is of interest to deduce the equations of the currents in the
two coils when the first is connected to a source of constant poten-
tial, and the second is short-circuited upon itself, as shown dia-
grammatically in Tig. 17.

100 1 N ———
| I —
| L] A
80
/ - - 44
L
o 60f 1T 11T
& T T
& ZEn ALl Starting Current 4t
5 071 Two Ooils of Perfect Mutual Inductance |-
SEEEN A - Qoil No.l 1
&l B - Ooil No.2 EEEEEE
b HNE INEEEE T [HRREN 1
520 l i 11 T
5 —1 Tithe in Secon
00 0 4 ©0 O—I 120! 140 lU==lU
B L+
=
20

F1c. 18. 1

Prove that with the coils wound in the same direction:

. E Lry __m_,

T ? [1 3 L’I'l + Lﬂ‘ i ] (20)
. MEr = B ;

73 = — 1—:1(-L71-T|—L—1T) € Ln+ILar (21)
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From (24) and (25)
"o [Ex E .
C = e’ [Zo; cos (6, — ¢) — —sin 01]

2r
.. Erx -] [
.zl=—-7[z—ocos(0—¢)—e 2z ][-Z;cos(el—-go)
sin 6
B iln2 1] (26)

The transient term disappears when

z _ sin 61

7, cos (6, — @) = 9

Expanding and substituting it is readily seen that this occurs
2 .
when tan 6, = »TE, that is when 6, = ¢.

The transient is a maximum when:

0, L 005 6 — o) = S50] —0
that is when tan 6, = — u or
2z
61 = ¢ — 90°.
Limiting Cases.—(a) r small compared with 2x. ..o = 90°
and cos (6 — ¢) = sin # and cos ¢ = 0.
The transient effect is greatest when
R —-Esineandi= l?sino (27)
7 2r
() rlarge compared with 2z when
7 = z;' and 7 = — 2E; (28)

When dealing with commereial problems involving mutual
inductance it is never possible except as a first approximation to
assume perfect mutual inductance M? is always smaller than LL.
In that case the solution demands differential equations of the
second or even higher order.

Fortunately, however, the solutions of these equations are as
a rule simple.

The majority come under the class of linear differential equa-
tions with constant coefficient or they are of the types given
below.!

1For a complete discussion see “A Course in Mathematics,”
Woobps aAxp Bainey, vol. II; “Differential Equations,” Jounson; “Differ-
ential Equations,” Murray, or indeed almost any book on differential
equations.
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¢ directly from equation (57). Substituting these values in (61)
and remembering that for { = 0, 4; = 0, the integration constant
A;is found to be:

Lllg — AIEl + 7)7,21(LL1 = 11[2)

A= — ) (LLy— MY (62)
A= - A+ D) (63)

Similarl LE, — ME + myIy(LL, — M? _
e ) B s e i) (ZLI,( 7o) - (64)

The equations of the currents are found by substituting these
constants in cquations (57) and (58). They are so long and
cumbersome, however, that it seems unnecessary to insert them
in this text.

Assume that the two coils are identical and wound in the
same direction, and are connected across the same constant
potential busbars. What are the equations of the currents?

my and m. are found from equations (54) and (55).

r .
nmy = — EW (6())
S T (67
M= < pTM )
A; = Biisfound from equation (62) by substituting these values.

E
A]_ = B1 = = ? = = I
thus Az = Bg = 0.
Referring to equation (57):

.. E R )

z=21=—;[1—e L+ M ] (68)

This shows that the mutual inductance acts as self-inductance.

It is also evident that if the two coils are wound in opposite
directions the circuit is almost non-induetive. It would be non-
inductive if M = L; that is, with perfect mutual inductance.
It is of particular interest to study the relations of the currents
in two such identical windings inductively related when one is
supplied with current from a source of constant potential and
the other is short-circuited.









CHAPTER III
CIRCUITS OF RESISTANCE AND VARIABLE INDUCTANCE

In the discussions given so far it has been assumed that the
inductance L has been constant. In almost all cases of interest
to engineers this is, however, not the case because almost all
magnetic circuits contain iron, and the permeability of iron is not

10000 l = constant but depends upon
- *, e FOAZ 7T the magnetization. In other
sooo“»-i : /| words the flux produced by a
AT f given current is not pro-
6000 1 {++H portional to the current.
1 Fig. 21 gives the saturation
/_ o curve of an entirely closed

- |

|

|

]

|

I
~
T

4000

iron magnetic circuit, as

shown in Fig. 22. It is the

familiar hysteresis loop, which

shows how the magnetism

Exeiting Current | lags behind the m.m.f. pro-
ducing it.

This particular sample has
a remnant magnetism of 7600
lines per em.?, so that this
—eooo ] density corresponds to an
Wi 7 exciting current of 0 amp.
00 ',f N : The maximum density 1is

RE/iNEE | 10,000, which corresponds to
Z[J:/‘ e an exciting current of 4.5

Fra. 21. amp. If, after the maximum
density is reached, the current is gradually reduced the rela-
tion between existing current and density is found in curve a.
The flux does not disappear until the current is 2.6 amp. in op-
posite direction to the original 4.5 amp.

If, instead of being entirely of iron, the magnetic circuit con-
sisted partly of air circuit and partly iron (Fig. 23), the influence
of the air circuit would as a rule be so much greater than that of
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the iron that the shape of the saturation curve would become
materially modified. Thus the saturation curve of a dynamo,
having a magnetic -circuit
largely of iron but also of at
least a small air gap, ean be
represented by a set of curves
similar to those in Fig. 24.
If the air eircuit is very small
the two curves corresponding
to a and b in Fig. 21 can be observed. If the gap is reasonably
large the two curves merge into one as shown in the dotted line.

TrovLicH evolved an equation of such a saturation curve for a
magnetic circuit consisting partly of iron and partly of an air
gap; which, modified by KENNELLY, can be written thus

ke
R e

where ¢ is the flux corresponding to an exciting current of 7 amp.

Fig. 22. Fia. 23.

| 11 _/;/__/W_J
2l 1T T T 11
-] - 2z — . L 1
] a A
% — _L—’)// 44— S
i Zn 11110 |
=1 //
e |- ] G I N S O
N7 . SEREEN
0 L i N S N | L]
0 2 4 6 8 10
Current in Amperes

Fig. 24.

If the number of turns of the exciting winding is known then
the inductance for any particular value of current ¢ ean be
determined. It is

L = i\(f)“‘i where N' = number of turns.
! NE10-8
.. L = 1 —i—_]{:’i

The general equation thus becomes:

. d . . di  .dL
=1r+gt(Lz) = zr+L(—l—[ —l—1~d?
— NE10® di  iNkk:107° di
=Tt T kg d T (1 — ka)? di

(3]

()]
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Thus A = and B = il

+ ek: r+ ek,

The intergral is thus broken up into two simple integrals

- rdi kadi
(e —ir) (1 + ki) (r+eki) (e — ir) (r 4 eky) (1 + ko)
. ki1 .
- J:Pk JJog (e = i) + 7 - log (14 k)

- 1 14k
Trdeky B e —ar
1+ % 108¢
" log et Z.;L = (r+ eky) Nk + C.

If it is desired to find the value of 7 at any time after the circuit
is closed then ¢ = 0 for t = 0

C = log
(1 + ki) 10%
o2t e r i e e
9 (r + ek1) 108t
. b 1w 75)
e — 1Ir e

The curve connecting ¢ and ¢ ean conveniently be obtained by
assuming different values of ¢ and solving for the left-hand mem-
ber of the equation. The value of ¢ can then, of course, be easily
determined.

Curve a in TFig. 25 shows the relation between the exciting cur-
rent and the time for the field current of a direct-current generator
having the following constants:

e = 100 volts = voltage impressed on the field.
r = 100 ohms = field resistance.
N = 4000 = total number of field-turns in series.
¢1 = 1 megaline with 1 amp. excitation.
¢2 = 0.6 megaline with 0.5 amp. excitation.
From YroOLIicH’s equation follows then:

1= i and 0.6 0.5k

1+ = T 05 k=15

ki = 0.5.

It is instructive to verify this curve.

Curve b gives the corresponding values if the saturation curve
had been a straight line, 7.e., if the flux were 1 megaline for 1 amp.
excitation, and 0.5 megaline for 0.5 amp. excitation.
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The method of calculating is illustrated in the table given below
and the results plotted in full-drawn lines in Fig. 27.

First approximation Second approximation
t Ap ZTAp 2! 1—7 Ag ZAp 7
|

0.10 0.25 0.25 0.182 0.818 0.205 0.205 0.146
0.20 0.205 0.41 0.316 0.684 0.171 0.376 0.286
0.30 0.171 0.547 0.447 0.553 0.138 0.514 0:413
0‘40! 0.138 0.652 0.555 0.445 0.111 0.625 0.525
0.50 ‘ |

The starting of an alternating current in an inductive circuit
containing iron is of special interest since almost all electrical
devices used with alternating current have iron. Unfortunately
the equations are very complex and are not subject to solution,
even with long and elaborate treatment by series. Even in the
simplest case, when the saturation curve can be represented by
FrOLICH’s equation, an accurate solution is not possible, although
to be sure it is not difficult to bring the relation into the form of a
linear differential equation. The problem in that case can be
solved as far as a mathematician is interested; but the engineer,
and indeed the mathematician, can not use the solution for any
practical purpose.

To illustrate this assume that an alternating-current e.m.f. is
impressed on a magnetic circuit having N effective turns per
kv
L+ &y
Assume that the resistance of the winding is r ohms, and that the
impressed e.m.f. is a sine wave. At any instant the following

relation exists:

phase, and a saturation curve represented by ¢ =

dL
FE sin ot —'Lr-I—Ldt + 1 a
ButL = ]i\:)f where N = number of turns,

!¢ is read off the saturation curve or since in this particular case a satura-
tion curve which can be expressed by FrovLicH’s equation has been assumed
1.5

fe e ¢ _
for the relation ¢ = 5—05:° = TF 05
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where r is the resistance

. Esin wl dt = irdt 4+ 103 do (84)
8
. d¢ =E;2]<V10 sin wt dt — zrl\IIO dt (85)

If, with full-load effective current I, the resistance drop is p per
cent. of the rated voltage, then

Ir —TOO \/_,and for ‘myother valueof I as ,ir = 1001 \/2 (86)
. E X 10 P
Ldg = = [sm whdt — I 100~/2 dt]

or since d COZ @ _ sin wtd

do =

IQ(I_OS[_ 408 ot pidi ]
N w 1001, NG

It is usually more convenient in alternating-current problems to
introduce 6, the phase angle, instead of wf.

In that case § = of and dt = d0
Referring to. (127)
_EX10°1sin6dg  pidf
e 1100\/%]
_ Exier pido
= Ne  |sin0do— 20 \/5]
E X 10°

= [d cos 0 + I_ET(%%\—/_E da] (87)

In most problems E, N, ®,., and the frequency are known,
so that numerical values can directly be substituted in the above
equation. Since, however, there is a relation between them, one
or more of the quantities may be unknown.

The most general aspect of the problem is given by eliminating
the numerical value of the impressed voltage, turns and fre-
quency, and specifying the maximum value of the flux: ¢ maximum
= &. :

We have the following well-known relation between ®, N, E
and w.
2rf N @ wN

108~ 108
E 108

wN

E =

(88)
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of operation the maximum flux is 1.4 megalines, that normal
effective current is 1.7 amp., and that the resistance drop is
3.91 per cent. Then

A¢p = — 1.4 [A cos 0 4+ 0.002867]
— 1.4 A cos 8 — 0.004:

The total flux is obviously ZA¢. If the switch is closed when
the e.m.f. passes through zero and is rising, the normal flux at
that instant would be a maximum in the negative direction as
shown in Fig. 29. As it has been assumed that the flux really is
zero it is evident that there is a transient stage in the mag-
netization before permanent condition is reached. It is evident
also that if the switch were closed when the e.m.f. was a maxi-
mum no transient condition would result, because the condition
then demands zero flux, and the flux is assumed to be zero.
In the numerical example it is assumed that the switch is closed
when the e.m.f. wave passes through zero.

The method of using the above equation is best shown by the
table given below.

No. 1 ‘ No.2 No. 3 No. 4 No. 5 I No. 6 No. 7 No. 8 No. 9

[} Cos ¢ l Acosf |— 1.4A cos8, ZAp 3 0.004: ZA¢ 7
4

0 1.0 0 0 0 0 0 0 0
10 0.98 | —0.02 0.028 0.028 0.01884| 0.000075/ 0.027925] 0.01875
20 0.94 | —0.04 0.056 0.0839 | 0.0576 | 0.00023 | 0.08367 | 0.0573
30 0.87 | —0.07 0.098 0.18167; 0.1289 | 0.000516| 0.1811 0.1288
40 0.77 | —0.10 0.14 0.32115| 0.2398 | 0.000959| 0.3202 0.2395
50 0.64 | —0.13 0.182 0.5020 | 0.402 0.001608| 0.5004 0.4010
60 0.50 | —0.14 0.196 0.6960 | 0.604 0.002416/ 0.6935 0.6020
70 0.34 | —0.16 0.224 0.9175 | 0.881 0.00352 | 0.9139 0.8740
80 0.17 | —0.17 0.238 1.1519 | 1.247 0.00497 | 1.1469 1.238
90 0.00 | —0.17 0.238 1.385 1.712 0.00684 | 1.3781 1.699

Column No. 1, phase angle; No. 2, the cosine of the phase angle; No. 3, difference in the
value of the cosine between two successive steps, for instance cos 20°—cos 10°; No. 4 is
self-explanatory; No. 5, first approximation of the flux (sum of No. 8 of the preceding line
and No. 4 on the line under consideration); No. 6, current as obtained from the saturation
curve or the equation if such is given; No. 7, ohmic drop; No. 8, second approximation to
the flux which takes into consideration the ohmic drop (the algebraic sum of No. 5 and
No. 7); No. 9, current corresponding to the last approximation of the flux column, No. 8.



CHAPTER 1V
CHARACTERISTIéS OF CONDENSERS

The charge ¢ of a condenser is proportional to the voltage;
or ¢ = Ce, where C is the capacity the value of which depends
upon the mechanical construction, dimensions, ete., of the con-
denser, and e is the voltage.

The charge ¢ is expressed in coulombs or ampere-seconds.
Thus the charge dg given in a time df when the current is 7 amp.
is:

dq = idt.

The capacity is expressed in farads, a very large unit; so large
indeed that in actual practice it is never used. The capacities
of condensers are almost always given in microfarads, that is,
in a unit which is one-millionth of a farad. Nevertheless,
in all formule involving capacity, C stands for farads, not
microfarads (m-f.) unless stated to the contrary.

To give an idea of the capacity of condensers used in engi-
neering, it may be of interest to know that the ordinary paraffine
paper and tinfoil 500-volt blocks of the size of the average
text-book have a capacity from 1 to 2 m-f. In a high-potential
transmission line the capacity of one wire against neutral is
about 0.016 m-f. per mile. The capacity of underground
cables is relatively high. Depending upon the voltage and
type of cable, ete., it must obviously vary much. It is usually
less than 2 m-f. per mile and more than 1{o m-f. The capacity
of an ordinary Leyden jar is extremely small—a very small
fraction of a microfarad.

The fundamental equations for the condenser are as stated
above

and dq = idt (2)
From these follow: ) = % (3)
dg = Cde 4)

and . _dg
i= ©
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Substituting (4) in (2)

Cde = 4dt or ¢ =C@ (6)
dt
or ¢, the voltage across the condenser = %fidt (7

The rate of energy supply or power is el
or from (6),

Cde de

d=cy =Coqy #)
or from (3) and (9), 1,9 q dq
fi=Gi=Ca ©

The energy stored in a condenser, which is the same as that
required to charge a condenser to a voltage E or to a final
charge Q, is therefore the rate of energy multiplied by the time.

It is:
E
de ededt e CE2
ﬁ & P CI "o 2T e (10)
or q dq dq 1 9_2
detdt f dt = 02 50 (11)

Equations (10) and (11) are obviously identical, since at any
instant
g = Ce thus for ¢ = E when q = Q
@ = CE, which, substituted in (11), gives
CE*  (CKE?

ST

As in the case of inductance, the calculation of the capacity
of any but the simplest circuits is difficult. It will be dealt
with in later chapters.

Of particular interest to engineers, —i—
however, are a few simple forms of con- 1
densers, the approximate capacity of é/
which are given by equations which are Fra. 30.
well known.

Thus the capacity between parallel plates, Fig. 30 is:

¢ = 11, 35‘; J0° in microfarads
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where K, the specific inductive capacity is approximately 1 for
air, 2 for paraffin paper, 3 for rubber, 5 for mica and 6 for glass.
A, the effective area is given in sq. cm. and d, the thickness
of the dielectrie, in centimeters.
The capacity between concentric conductors (Fig. 31) is:

_ 0.03861K

D
IOglo d

C » in microfarads

where the length 1 is given in miles of cable, K
{ : is the specific inductive capacity, D the inside
; | i | diameter of the outside conductor, and d the
1

K-d—> | - .
[P i diameter of the inside conductor. This is the
' — ' capacity between the conductors, not the

1G. .

capacity to neutral or ground. The capacity of
one conductor 1 mile long to neutral is twice as great.
The capacity between transmission lines is:

0 = 0_0§§?)l; in microfarads
10g10 7

where [ is expressed in miles and the capacity is that of one line
against neutral. D is the distance between wires, center to center,
and r the radius of wire. The charging current is thus

2nfCe

=l

108

where e is one-half of the line voltage in the single-phase system
and 58 per cent. thereof in the three-phase system.

Circuits Containing Concentrated Capacity and Resistance

Consider at first the case of a constant e.m.f. E impressed
upon a ecircuit of resistance r and r
capacity C, Fig. 32. After the cir- S~ — MW
cuit is established a current flows
and energy is delivered to the re-
sistance and the condenser. In the
resistance heat is developed and
in the condenser an electrostatic
field is produced. The energy given by the source of supply of
power is J Eidt. The energy supplied to the resistance is

JSierdt

Il

e e
l ==
s

Fia. 32.
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are calculated under the assumption that a constant impressed
ce.m.f. of 100 volts is impressed on a circuit of 2000 ohms resist-
ance and 200 m-f. capacity, as shown in Fig. 33.

An interesting problem in connection with the charging and
discharging of condensers, is to consider the flow of current be-
tween two Leyden jars of different
capacity and voltage (Fig. 35). The
energy stored in condenser A at volt-

@ c
age E is 14CE2.  The energy stored Ny i
in condenser A at voltage e is 14Ce2.
The energy stored in condenser B at Fia. 35.

voltage K, is 14C,E,%. The energy
stored in condenser B at voltage e; is 14Cie;2.  While current
flows between the two condensers, a readjustment of energy takes
place.

The energy equation is obviously:

0.5CE? + 0.5C B2 — 0.5Ce? — 0.5Ce,2 = fi%rdt.
By differentiating this equation, the following results:
— Cede — Cieidey = 2%rdt (26)
As it is assumed that the voltage of A is higher than that of B,
the latter being charged; thus
' = C‘E (27)

where e; is the voltage of B at any time. Equation (26) containg
three variables, e, e;, and 7, which, however, are dependent upon
each other.

At any instant the following relation exists between the e.m.fs.

e =1 + e
Thus de  di | de; _ de; | de
@ - "ata et
Substituting in (26)

- C(Clr(z—etl + 61) (Clr% -+ %?) = (7161(%l = Ci%r (%)2 (28)

or
die , de dey

- C(Cﬂ'%—k 61) (Clrdt? ot dt) - C %GZI(CIT—CE + 31) 0

]

or de; dex d’; der\
— (oG + ) (00 g + 0O G+ 0%g) = 0
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®
i

1000 — 0.667 X 500(1 — =150
500[2 — 0.667(1 — e1501)]
er = 500 + 0.333 X 500 (1 — e15%)
500[1 4 0.333(1 — e1309)],
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Fort = o, ey = ep; = 0.667 volts which is the final voltage of
the two jars.

Fig. 36 gives the result of these calculations.

Harmonic E.m.f. Impressed upon a Circuit of Resistance and
Capacity in Series.—let ¢ = K sin of be the impressed e.m.f., r
the resistance, C the capacity and ¢ the charge at any instant.









80 ELECTRICAL ENGINEERING

In TFig. 38 is shown a series of curves which illustrate this in
the case where the resistance is considerable and the circuit is
closed when 6; = 0. The constants for the circuit are:

E=1r=0052=2,=1
1o is the total line current, the dotted sine wave is the impressed

ean.f., i, the current in the condenser circuit, and 7y the current
in the inductive circuit. As is seen, 7, is a unidirectional current

1.1 ,
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of slight pulsation, slowly decreasing in magnitude. After a
number of cycles it would become a small alternating current, as
shown in the curve marked Final 4.

This feature of a tuned circuit might be of practical importance
in connection with problems of rectification—charging of storage
batteries from an alternator by occasional interruption of the
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As an application of these formula will be considered a 100-
mile 60-cycle transmission line supplying power to a cable net-
work of 50 miles. For the sake of simplicity and for the sake of
later instructive comparison the resistance of the cable and of
the overhead line will be neglected in this particular investigation
and it will also be assumed that the inductance of the cables and
the capacity of the overhead lines are so small as to be negligible
when compared with the inductance of the overhead line and the
capacity of the cables.

While the inductance of a line, of course, depends upon the
size of the conductors and the distance between them, in reality
it is not subject to a great deal of variation in ordinary lines.
It is about 0.002 henrys per mile of single conductor.

The capacity of a cable system is, however, subject to great
variation, depending upon the nature of the cables. Assume
that in this case it is 2 m-f. per mile of single conductor, when
referring to neutral voltage:

i C = 1101 farads and L = 0.2 henrys
1 C
a = m = 223 \/; = 0.0223
T, = Q%f(? = 26.4 ohms
x = 2rfL = 75.4 ohms
w = 2rf = 377.

If the circuit is closed when the impressed e.m.f. is zero, that
is, when ¢; = 0, then equations 209 and 210 become:

er = — 0.54E[sin 377t — 1.69 sin 223¢]
and i = — 0.0204E[cos 377t — cos 223t]
The time for one complete cycle of the fundamental wave is
6—10— = 0.0166 sec.
If, therefore, the circuit is closed when the impressed e.m.f.
is a maximum, that is, when
t1 =t = 0.00416
then the equations become:
e1 = — 0.54E[sin 377t — cos 223(t — 0.00416)]
i = — 0.0204E[cos 377t + 0.59 sin 223(t — 0.00416)]
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These curves are shown in Figs. 44 and 45 when the impressed
e.m.f, is 100 volts.

The curve e; in Fig. 44 shows the e.m.f. across the condenser,
the curve ¢ the current when the switch is closed at zero value of
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the impressed e.m.f. The corresponding lines in Fig. 45 show
the same quantities when the switch is closed when the impressed
e.m.f. is a maximum. In both figures the dotted sine wave is
the impressed e.m.f.
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The capacity per mile of concentrie cable previously given is
0.0386 K

Cmf = = (0.795 m-f. per mile.

Ylog d

Thus the capacity of the 20 miles of cable is 15.9 m-f. and the
equivalent capacity at the end of the line is 7.95 m-f., or 7.95
by 10-¢ farads. ,

Since the determination of the inductance of a concentric
cable involves the general method applied to other systems, it
will be given below, although such determinations do not come
within the scope of this treatise.

The inductance is recollected to be numerically equal to the
interlinkages of the turns and flux per unit current.

In general if the m.m.f. acting in a circuit is M then the flux
4rM X area of magnetic circuit_
length of magnetic circuit
factor is that fraction of the total current which is enclosed by

the flux and

produced is The interlinkage

1 . .
L = I—Z flux X turns X interlinkage factor.
Consider first the flux in the inside conductor due to the assumed
uniform distribution of the current.
. x . wr?
At a distance z from the center see Fig. 47, the m.m.f. is l:r}i I

where I is the total current. The area of the flux per centimeter
of length of conductor is dx and the length of the magnetic circuit
is 2mz. ’

. z? _ dzx a7
dtp1=47r’2[2*ﬂ_£=21 2d:l) \

This flux interlinks w1th -z of the total current, and hence the

. . B
interlinkage factor is S

r 3
Ly = L oI ™ 4z = 14 (assuming u = 1)
I o T

Between the conductors the flux interlinks with the whole
current, and hence by a similar reasoning we get

dil)) R
Lz_I'[2I$ 210g1‘
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5550 _

The frequency of the oscillation is o

885 cycles, and the

time for one oscillation 0.00113 sec.

The maximum value of the current is determined by differen-
tiation. It oceurs when ¢ = 0.000246 sec. When 5550t =
78.5°, the current is 17.1 amp. The next maximum value occurs
when ¢ = 0.000246 + 0.00113 = 0.001376 scc.

The maximum value of the voltage across the condenser is also
determined by differentiation. It oceurs when ¢ = 0.000565
sec., when e; = 763 volts. The next high value oceurs obviously
at ¢ = 0.001695 see.

These curves are shown in IFig. 48.
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Fic. 48.

1t is of interest to note that for a given distance of transmission
the capacity, and therefore the charging current, is several times
as great in the case of the concentric cable as in the case of the
cable with parallel wires.

Similarly the inductance is several times as great in the case of
an overhead line as in the case of the cable. As a second numer-
ical application of these equations will be considered: 100 miles
of overhead transmission line supplying energy to a cable network
50 miles in length.

It will be assumed that the eable system consists of a large
number of short cables projecting in different directions from the

terminal substation, as would be the case when a high-tension
7
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line supplies energy to a city lighting network. The resistance
of the cable system can therefore be neglected. It will be
assumed that the high-potential line is three-phase and consists
of No. 00 B. & S. wire, having a resistance per 100 miles of 40
ohms and an inductance of approximately 0.2 henry. Hence the
capacity of the overhead line is very small compared with that of
the cable and it will be neglected.

The problem is to determine the values of the current and vol-
tage across the condenser when a steady e.m.f. of E volts is
applied at the generating station.

E = 100

r =40

L =02

C = 0.0001 farad.
.r2 = 1600
4(? = 0.8 X 10* = 8000.
Lt = £

— 1s negative.
C £

Therefore there is an oscillation when the switceh is elosed, and
the constants are to be obtained from case (b).

4, S: 80
— JEE . =2 = el = et =
S, o r 80, - 10 ° 2 .. tan y
and . 7w ﬂ _ ’§1_ - ,89 =
7= 0839, =24 = 100, 5 = g4 = 100

Co1 = 0.025Ee % sin 160¢
and ep = E[1 — 1% 1,12 sin (160¢ + 63.5°)].

The time for a complete cycle is % = 0.0392 sec., corresponding

1 ..
to a natural frequency of T = 25.5 cycles per sec. 1t is inter-

esting to see that the effect of the resistance is to lower the
natural frequency, since if the resistance is neglected it would be
1

== = 35.5 cycles.
92v/LC cycles
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Problem.—Assume reasonable values for the constants, and
plot a series of curves for the voltages at various values of ¢ and z.

Case (b).—Alternating voltage impressed on the circuit.

From equation (39) in Chap. I, the solution of (4) is found to
be:

Er. . _ R+ R
f = 7 [sm (wt — B) — sin (why — B)e " Li+1: m] (7)
where ¢, is the time at which the circuit is closed.

=V (Rl+ R1)?*+ (Ll + Ly)*w?
and 8 = tan LW+ L) e
AR+ R
Differentiating (7),
. 5 +
3—;=§[w cos (wt — B) +leiL sin wt; — B)e LI+ Lt S ")](8)
Substituting (7) and (8) in (2), or,
_ o[sin (et + 8" —B) | sin (B — B) sin (wt; — B)
e =EZ/| Z T L+,
e L+l ‘T ‘*)] (9)

=V (Rr+ R.)*+ (Lr+ L1)%2w? and 8 = tan™ (Z§x++f’é)§
Referring to (7) and (9) it is seen that the current is the same
as if the resistance and inductance were concentrated, but the
voltage is different at different points, being modified in magni-
tude, and displaced in time phase.
It is noticed that no transient component in the voltage or
current exists at any point of the line, if the circuit is closed at

where

h = g, or in other words when sin (wf; — 8) = 0.

If sin (wf; — B) is not zero, the transient voltage appears at all

Lz + L) o

—_ ’

values of z except z = [, for 8/ can not equal 3, or -— Br+ Ri
(L4 L) o

can not equal to R+ R, unless ¢ = L.

When ¢ becomes large, that is, many cycles after the circuit is
closed, the exponential term approaches zero and the whole cir-
cuit becomes free of the transient, and (7) and (9) become:

i = gsin (w0t — B) (10)

e= Ezésin (wt + B — B) (11)






CHAPTER VI

CIRCUIT CONTAINING DISTRIBUTED LEAKAGE CON-
DUCTANCE AND CAPACITY

A low-voltage cable may be considered as an approximate
representation of such a circuit, since it contains distributed
leakage conductance and capacity but usually low resistance and
inductance. Since the resistance and inductance are considered
negligible as a limiting case, it remains to consider a system of
parallel conductance and capacity. The voltage may be con-
sidered the same at all points of the circuit, that is, independent
of .

- ., 01 .
Let 7 in Fig. 51 be the current at z, then 7 4 a;dx is the current

at z + dz. Let C be the capacity in farads per unit length of the
conductor against the ground or neutral, and @ the conductance

1 1
1 - 1 o]
{ . . P S z. |
1 I +di AT |
X
i

o 4 3= sf 51 =31 §::ei§:= si 3l
\ :

-

Fra. 51.

in ohms per unit length of the conductor to the neutral. Hence
the current in the path of the capacity is Cd:cgf, and the current
in the path of the conductance is Gdxe. The difference in cur-

rent between the two sides of the element dz is 9 drx. Therefore

ax
at de
or dz = Cdzx a + Gdze,
or dt- de
55: = Ca + Ge (1)

110
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This equation is similar to (1) in Chap. V with < for e, e for 1,
C for L, and G for R.
As e is independent of z, equation (1) integrated gives:

i=(C§§+Ge)x+K @)

It is of no interest to consider short circuit of the cable, since
the resistance and inductance are neglected, for it would mean
a dead short-circuit on the generator. Therefore consider the
case of switching the generator on the open cable. Thus, where
z=0,7=0. .. K =0, and (2) becomes:

i=<C%+Ge>x 3)

Case (a).—Unidirectional voltage impressed on the cable.
In this case, it is assumed that ¢ = K from { = 0 to ¢t = o,

but just before { = 0, ¢ = 0. Therefore it is assumed that
Z; = o just before { = 0, and gg = 0, just after { = 0; that is,
equivalent to assuming that the fictitious condensers were charged
with an infinitely large current during an infinitely small period.
In reality, the rise of the impressed e.m.f. takes time, though
extremely short, and the resistance and inductance of the circuit
limit the initial value of the current and lengthen the period of
charging.

These assumptions thus do not allow a study of the transient
condition. The equation indicates simply that¢ = «,for¢{ = 0.
de

= 0, and (3) becomes:

For the permanent condition we have

1 =GLz 4)

which is expected.

Case (b).—Alternating voltage impressed on the cable.

Let the impressed e.m.f. be e = E sin wt, and the time of apply-
ing to the cable be ¢;, thus ¢ = E sin w(t — t,). Hence,

de

i Ew cos w(t — t;).

Substituting these in (3)
i = [Cwcos w(t — t;) + G sin w(t — ¢,)]Ez,
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To find the time for the wave to decay to el of its original

value, we have:
time — distance \/
velomty CR1rf
1 -1
“2 wawa - 2xf

Thus the time required for a given decay varies inversely as
the frequency. The third harmonic requires only one-third of
the time of that of the fundamental.

Instance.—A concentric cable 100 miles long. Assume a
capacity of 1 m-f. per mile to the neutral.

Using the mile as the unit of distance,

C = 10¢.

Assume the cable to have a resistance (of one conductor) of 1
ohm per mile.

Then R =1
At 60 cycles, f = 60 and w = 377.
. Velocity of propagation = 210%2717 = 27.500 miles per

sec. The velocity of the triple frequency wave would be,
v/3 X 27,500 = 47.500 miles per sec.
The main wave is reduced to 37 per cent. of its original value
after % = 0.00265 sec.; and the triple frequency wave is

reduced to the same fraction in one-third of the time or 0.0009
sec. In the first case the wave has traveled 73 miles; in the case
of the triple harmonic 42 miles.

Problem.—Develop the equation of the voltage and the cur-
rent in a closed cable under alternating impressed e.m.f.

Case (b).—Direct current supplied to the cable.

Ezample No. 1.—Consider the line open at the receiving
end (z = 0).
Assume,

e = K + ZAe=tbt gin (ax + Bt + v)

where z = 1, e = E for all values of ¢,

This is evidently only possible if

ZAeH sin (ol + Bt +v) =0and K = E.
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or, e = Eocos w/LC X sin wt (25)
i= E(]\/gsill wVLC X cos wr (26)

Therefore the generator voltage is:
e = cos w\/LC lE,sin ot = E sin wt,
0 = T 0
cosw\/LC 1
and (25) becomes:
cosw\/LCx
cos w VLCL
which is obviously identical with (23) as obtained before.
It is seen at once that the receiver voltage is
S P R
coswVLC 1
times that of the generator e.m.f. As the cosine is always less
than unity except I = 0, the receiver voltage is always greatel
than the generator e.m.f.
Therefore the receiver voltage would approach infinity, when

e = E sin wt

w \/L—C I =5
or) 2ef VLCL = 5
or, 1 1 1

T=4VICi ~ivVuney ~4v/Le G
that is, when the natural frequency of the line and the frequency
of the impressed e.m.f. coincide.
L
w\/Lo_C;
Thus the velocity of propagation =

The wave length is A =
2y 1
w \/ R VAT
If the inductance inside of the conductor is negligible, then the
velocity becomes that of light = 188,000 miles per second. In
reality it is somewhat less.
So for instance in a transmission line consisting of No. O
B. & S. wires, 18 in. apart,
L = 1.6 X 1072 henrys per mile.
C = 0.019 X 10~ farads per mile.

'ﬂl>‘

Then 1 .
—=—= = 182 1 .
VILC 182,000 miles per sec
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For short distances,
sin w VVLC ¢ = wv/LC
coswVLCz =1
Coe = Iy sin ot
1 = I, z w \V/LCzx cos wt

5

n E
EoCwx cos ot = = cos wit
where . is the capacity reactance of length « of the cable. It is
seen that the current in time phase leads the voltage by 90°.

Transient Condition.—When a steady voltage is impressed
upon the circuit.

Dr. Frankrin in his book on waves and his paper before the
A. L. . . of April, 1914, has approached the subject from a most
simple and instructive point of view and has been able to make
some generalizations which are of great value.

He shows that whatever the distribution of the current or
c.m.f. in a travelling wave along a transmission line there must
be a fixed ratio between the instantaneous values, which ratio is

\/I(: when the line resistance and leakage reactance are negligible,

and it can be represented by a somewhat more complicated ex-
pression when they are taken into consideration. 2

His reasoning is briefly as follows:

If the current in an element of the line is 7 the magnetic flux
in the area a, b, ¢, d, Vig. 53, is Lidz.

If the current wave progresses toward the right with a velocity

. . . d
V the time required for the flux to sweep past be is —If; thus the

. . Lidz .
e.m.f. induced along be is gz = LiV.

Vv

Similarly if €’ is the voltage in the line element then the charge
on ab is ¢'Cdzx.

. e d .
This charge flows past the point in time Vw, where V' is the
velocity of propagation of the e.m.f. distribution; thus
. Q Cdx
4 —
t t ~°% dr
I

= Ce'V'.
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generator. Should the overhead line be open at the receiving
end the voltage will be doubled as the reflected wave starts on
its journey back. Thus as a maximum at the junction the volt-
age would equal 3.76 times the impressed value.

The mathematical solution of the problem is given in equation
(11) which can be written in the following way:

= K+ ZAsin (+ ar + kat + ) (27)

where i
- VILC

+a applies to the waves issuing from the generator and — «
to those going toward it. From the expression + ax + kat, it
is seen that the waves of all frequencies travel with the same
velocity, 4k or —k where the signs indicate the direction of
motion.

It will be shown that in the case of an open line connected to a
source (of negligible resistance) of undirectional voltage, four
waves have to be considered before the cycle repeats itself.

First the outgoing rectangular wave of value E which begin-
ning at the generator progresses toward the open end of the line.
Second the reflected wave also of strength E which returns from
the open end toward the generator which with the initial wave
gives a wave of double voltage. Third a negative wave of
strength —FE which progresses from the generator toward the
open end of the line, which wave is necessary in order to maintain
the generator voltage E. Fourth the reflected wave of the
negative wave which is of strength —F and which progresses
toward the generator.

Consider now what happensat a point located say at one-fourth
of the length of the line from the generator.

If the time required for the wave to reach the end of the line
is T', it is evident that during 14 7T there is no voltage at the point.
After that time the voltage remains constant at a value E until
the first reflected wave arrives. 'This occurs evidently when ¢ =

134T. Thus between t = % and ¢t = 1.75T the voltage at the

point is E.
From that on it has a value of 2F until the negative gener-
ator wave reaches the point which occurs when ¢ =27 +

= 2.25T. After that time the voltage has a value of 2E —

M'ﬂ
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E = FE until the reflected wave of the negative wave arrives

which is when ¢ = 47 — i—v = 3.75T. Then the voltage = 2K —

2E = 0, and it remains zero until a time ¢ = 4.257 when the
voltage again equals E and the cycle is repeated.
The result is the wave shown in Fig. 54.

E.M.F, Wave
2E | ~ = A E ’> ;
yos = = ! |
| | ‘
| ! L |
1 ! — 1 =
0 4 5 L0 15 }22[0 |25 30 a5 (;1‘.0)\ 45
-z x N2 (1% 2z 2(l-w
TR & | s S
Fia. 54

A train of waves would pass the point indefinitely since we
have neglected the energy loss in resistance. The wave length
is evidently four times that of the open line.

Consider now the current wave of Fig. 55.

As successive equal elements of the line are being charged to
voltage E a constant current has been shown to flow from the
generator while the voltage wave progresses toward the end of

Current Wave
|
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Fra. 55.

the line. At the end the current must be zero, therefore the
reflected current wave must be equal but opposite to the incoming
wave. The reversed current reaches the generator after a time
2T, when the current becomes zero. After that time the genecra-
tor supplies —E voltage and a negative wave of current flows
until it also is neutralized by the reflected current which occurs
when t = 47T.

Consider the current at the particular point mentioned above.
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and — x+ ki — 1l = — x4+ 1 = 0.250
6 lies in the first quadrant, thus:
1 . T
Eﬁhln (—x+ Kkt —1) = +1
.. ¢ = 2K which agrees with the curve.
The current wave may similarly be checked. When for

. L. . . .
instance ¢ = " 1t 1s readily seen that the algebraic sum of the

trigonometric terms become Z
_Ee Cr_ \ﬁl'l ith th
Soi=5 —Alp, o = By, which agrees wi e curve.

Itisthus seen that when considering the outgoing wavesonly the

relation between the current and e.m.f. waves must be % = \g’
j

the equation also shows that when considering the reflected waves

v _ \/C
¢ NL

The effect of the line resistance is to taper the waves so that
instead of their being represented as a ribbon of parallel sides
the sides slant toward cach other; thus the reflected e.m.f. wave
is not as great as the original wave, and the line soon reaches a
state of permanent condition.

In reality the wave front is not vertical but slants and the
corner is rounded off, due to the skin effect of the conductors.
The higher harmonics of the current meet a much higher resist-
ance than do the lower, and hence the resistance is not a constant
quantity but different resistances should be assumed in connec-
tion with the different harmonies.

The mathematics involved becomes, however, altogether too
complicated for any practical application. The important
point is that if the values of the waves are determined in a cir-
cuit having no resistance, the most pronounced variations in
current and e.m.f. are discovered.

A circuit having no resistance and no leakage is said to produce
pure waves the characteristics of which are, as has been shown,
such that

15Ce? = L4Lc?
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Substituting the general solution in (3) or (4) and equating
the coeflicient, we get
a’? = LOB"*(RC + GL)S' + RG 5)
Substituting ¢ 4+ jo for o’ and b + j8 for 8’ in (5) and separat-
ing the real and imaginary terms, we have
a® — o = LC (b — B8%) 4+ (RC + GL)b + RG (6)
and 2ac = 2LCBHB 4+ (RC + GL) B (7)
A slight consideration shows that the exponential solution
given above can be written
e =k 4+ SAet®*%gin (8 + azx + v) (8)
If now for the sake of simplicity only the permanent condition
is considered we get
e =1Fk4 SAet ™ sin (8t + ax + v) 9)
If as a further limitation the current and e.m.f. are assumed
to be simple sine functions, depending in time upon the impressed
frequency, then 8 has only one value w. From (6) and (7) follows

then that only two values of a and a exist, one being positive the
other negative

e = At sin (Bt + ax 4+ v1) + A *sin (Bt — ax + v2) (.10)

In this equation, one term represents the sum of the outgoing,
the other the sum of the incoming waves.

If the line is open at the receiving end then the beginning value
of the reflected waves must be identical with the final value of
the incoming waves when z = 0.

Thus under this condition for 2 = 0

Ayrsin (Bt + v1) = Az sin (Bt + v2)
Since this must hold for all values of ¢
Coyr=vzand 4, = A»
If the voltage at the generator end is K sin wf, then
E =sinwt = A, e sin (Bt + of + 71) + e sin (8t — of + v1)]
which by simple transformation becomes
E sin wf = A, {sin gt [e cos (al + v1) + € cos (— al — 71)]
+ cos Bt[el sin (al + v1) + e sin (— al + v1)])
= A1\t 2l L 2(cos?al — sinad) sin (Bt + 0)
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al . —al
where v1 = tan—! [:H_+ :_J tan al]
¢ = tan—1%
a
¢ = tan—! (;;0
pr=¢+tv1—o0
and, - o
"'Rg 1202 GVZ’W VC“2? . RG — LCw?
o () (B ) RO
R?+ L%? G2+ C%? RG — LCw?
a=+\/+\/< L =t @

the latter two values being determined from (6) and (7) by let-
ting b = 0 and 8 = w.

These solutions apply when the transient terms become negli-
gible, z.e., when ¢ is large enough to make e comparatively
small.

Case (b).—Direct-current distribution in an open line. Con-
sider the line open as before. For the permanent component of
the solution, 7.e., a solution which applies after the line has been
switched to the generator for a sufficient length of time, the equa-
tion can be derived as follows:

Referring to equations (6) and (7), b is zero, when only the
permanent component is considered, and 8 is also zero, as there
exists no periodic phenomenon, when the impressed voltage is
constant and when the starting phenomenon is reduced to negli-
gible magnitude.

Substituting b = 0 and 8 = 0 in (6) and (7) we get:

a? — a* = RG and 2aa = 0,

from the latter, either a or a must be zero, while from the former
a can not be zero, since « itself must not be imaginary.

S.a=0and e = + VRG.
-Let ¢’ be the permanent component of the voltage and assume:
¢ = A0 + Ageor (18)
wherex =1, ¢ = E
B = A + A (19)












CHAPTER XI

THE DISTRIBUTION OF FLUX OR CURRENT IN A CYLIN-
DRICAL OR FLAT CONDUCTOR

The general reasoning and the mathematics involved in the
study of flux or current distribution in conductors is very simi-
lar to that involved in the study of propagation phenomena in
transmission lines. It is therefore included in this part of the
book even though it is again and more fully considered in a later
chapter, where the subject is approached from a different point
of view.

Distribution of Flux in Cylindrical and Flat Bars.—When a
cylindrical bar is magnetized by a winding surrounding it, the

flux of final flux density corresponding to the external m.m.f.
appears at the surface nearest to the magnetizing winding.

At a distance from the surface of the bar, the flux density is
less than that at the surface, because as the flux penetrates the
inner layers of the bar, it induces a voltage in the outer layers,
which causes a flow of current that produces m.m.f. of a direction
more or less in opposition to the external impressed m.m.f.

Referring to Fig. 57, consider a concentric tubular element of

150



DISTRIBUTION OF FLUX 151

thickness dz and mean radius z, then another of thickness dx but
mean radius z + dx.

Let ¢ be the flux in the tubular element of radius z, and ¢ -+ d¢
that of radius # + dx. Thus d¢ is the increment of flux in the
tubular element, as z increases from x to x 4 dx, but the total
flux in the tubular element is ¢.

¢ is the result of the external m.m.f. and the m.m.f. (demagnet-
izing) due to the current between x and xo; ¢ + dé¢ is the result
of the external m.m.f. and the m.m.f. due to the current between
x + dr and zo. Therefore d¢ is caused by the decrement of
demagnetizing m.m.f. due to the current between x and z + dr,
t.e., within dx.

Let 7 be the current density at x, then the current within dz is
tldx, and the m.m.f. due to it is also ¢ldz, as the number of turns
is unity (I being the length of the cylinder).

Let B be the flux density at x then dB the increment of flux
density as x increases from x to z + dz. Thus d¢ = 2rxdzdB.

m.m.f.
reluctance

Sinece flux = 0.4 7

and the reluctance in this case is

21 X dayp *
' 0.4rild
We get dp = 2r X4 X dB = "; =
2 Xidxip
thus dB .
dr = 04mrue (1)

If p is the spec. resistance

X
e . 2mp
then the resistance that the ecurrent within dx meets 1s fplc;rxp\

. . 2rx/ .
and the e.m.f. consumed by the resistance = ¢ldz flgi = 2rpxi.

Let e be the e.m.f. induced in the circle of radius z, and e + de
that in the circle of radius x + dz.

As no external e.m.f. is applied around the circle of radius »
the sum of the consumed and the induced e.m.fs. is zero, thus:

e+ 2mpxi = 0 (2)

Substituting (2) in (1)

dB _ 0.4mue 3)

dr = = 2npx
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Field Intensity.—Surrounding electric charges or magnet-poles
is a field, and the intensity of the field at a point is defined as the
property of the space, which is measured by the foree exerted by
the field on unit charge or unit pole located in that point, when
clectric and magnetic fields, respectively, are considered.

Because of this definition, it must not be inferred that the
intensity of the field is a force; it is not a force, but merely a
space function just as the gravitational field intensity is a space
function. The force acting on a certain mass at a certain point
may have any value, depending upon the particular mass used
in the experiment.

Important Theorems.—While CouvrLoms’s law forms the basis
on which the theories rest, the progress in the art would probably
have been slow were it not that a number of theorems have been
worked out more or less directly from that law. These theorems
are:

Gavuss’s theorem, the divergence theorem, GREEN’S and
STokE’s theorems, ete., all having important bearing on prac-
tical problems.

Surface Integral of a Distributed Vector.—As a preliminary
to these theorems the surface integral of a distributed veector
will be defined.

It will be assumed that an electric field exists due to some
charge and that lines of force or tubes of force radiate from the
charge in all directions. It is desired to find the number of lines
that go through a surface, say a cap that is placed in the field.
In Fig. 61, AB may be assumed to be, for instance, the inter-
section of the plane of a loop of wire, over which the cap is made,
with the plane of the paper.

If the surface of the eap were divided up into a number of
elements and the direction and the intensity of the field at every
point were known, then it obviously would be possible to calculate
the total number of lines (the flux) that crosses the cap or the
surface.

The sum of the fluxes normal to each clement of the surface
is called the surface integral of the normal field intensity over the
cap, or the total outward flux through the cap. (The normal to
the elementary surface is always understood to be drawn out-
ward from the surface. On account of the sign of trigonometric
funetion a normal drawn inward will lead to a negative surface
integral.)
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But, to return to Gauss’s theorem, it is readily seen that the
shape of the bag is immaterial. Assume so, for instance, that
the shape is that shown in Fig. 65.

Fia. 66.

The vector R cuts the surface three times. The outward
normal flux is positive at 4, negative at B, and again positive
at €. Thus the net result is one positive outward flux (Fig. 65).
Were the charge outside of the envelope, then the flux cuts the
bag two, four, six or an even number of times, so that the total
outward flux is cancelled by an equal total inward flux (Fig. 66).

The net result then is, that

fdeS == O,
when the bag does not contain a charge.

Potential.—The electric potential is similar to the potentlal
energy of matter; it is a space function.

The electric potentlal at a point is defined as the work done
in bringing a unit positive charge from a place of zcro field to the
point under consideration.

The magnetic potential is defined in a similar way, substituting
unit pole for unit charge.

P

Path of Unit
Charge

Fia. 67.

Referring to Tig. 67 R is the intensity at a point of the path of
the unit charge in its journey from infinity, where the field is
zero, to the point PP, where the potential is to be determined, then

V = — SR cos 6ds,
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the minus sign being adopted by convention; but

X dr
dr = dscos 9, .".ds = P

V= —f_ Rdr = — ﬁ%dr=(2‘11p =0
o r r Tp

© ©

and,

In general, the potential at a point due to several point charges
is:
V = EQ, or V=123
r r
It is interesting to note that the potential is not dependent
upon the path chosen in the journey;’it depends only upon the
point charge at A and the distance between P and A. It is
strictly a space function.
The potential is the same on any surface the elements of which
have the same distance from the point charge.
Thus the potential of the surface of a sphere having a point
charge in its center, and influenced by no other charge, is:

where r 1s the radius.
Since by definition the capacity is C = 8, we note that the

capacity of an isolated sphere is C = 7.

The capacity in the electrostatic system of units is in centi-
meters. A sphere of 10 em. radius is said to have a capacity
of 10 cm.

It will be shown later that to convert the capacity to farads
V: o (3 X 10Y)*

involves a division by 100 = 0 = 9 X 101, Thus in

this case the capacity of the particular sphere would be C =
10 '

9 % 101 farads.

Line Integral.—The intensity R of the electric field has not
only a definite numerical value, but also a definite direction.
Let the components of R along any three rectangular coordi-
nates be, X, Y and Z, and let the components of the distance ds
on Ehe respective axes be dz, dy and dz. Then, since the poten-
1
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When the radius is very large, the surface of the sphere ap-
proaches a plane, Fig. 72, and a approaches p. Thus, if d, in
Tig. 72, is the distance of the point charge from the plane of
zero potential, we have:

J=p+dy

which, substituted in (1), gives:

B= 20— o+ 09 = 2 (20— 0o,

pT1
or, since d? is small compared with 2pd, Py
2Q.d !
R=- »Q;‘:
T
Q
and the surface density of charge is: P d o
o =g
2mr,3 Fia. 72.

The surface density of charge decreases inversely as the cube
of the distance from the point.

Assume now that the sphere is insulated and without charge,
it will then have some potential not zero.
It was shown, that, when the sphere is at zero potential, it

acts as if it had a charge Q. = —Ql% at the inverse point BB

of point A. In order that its charge shall be zero, we have to
apply mathematically, somewhere in the sphere, a charge =

— Q2 = +Q: Ip; Then the total charge obviously is zero.
Since the resultant potential of the external charge @, and the
internal charge —Q, § gives zero potential of the spherical

surface, in order to maintain a uniform potential ¥V all over the
sphere, the assumed charge must be applied in the center of the
sphere. .
Thus we deal with three charges, which combined cause the
external field.
First.—The field due to the external point charge Q1.
Second.—The field due to the charge Q. at the inverse point.
Third.—The field due to the charge —@- in the center of the
sphere.
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The charge —Q, gives a uniform surface density of

_ Q@ _ O
71 47p? T 4 4 p;

The combined effect of Q; at A and Q. at B has been shown to
give a surface density of

-9 L
LI 47{"7']3 p
Thus the actual surface density is:
0. 1, p2— 1.2
o=t =gt (14550 ®)

Equation (3) then gives the distribution of the surface charge
on an insulated sphere without any independent charge. The
equation must, and does show, that ¢ is positive on one side and
negative on the other side, in order that the total charge be zero.

The potential of the sphere is obviously,

charge  Quw _ @1,
radius oL L

This is of interest, in that it shows that the potential of a sphere

due to a point charge Q, situated L e¢m. from the center is %

This can be proven in a more general way as follows:

Assume that a non-conducting sphere be placed in an electric
field caused by a number of point charges, a, b, ¢, ete. Let the
potential of a small element of the sphere be V. The value of
V changes from point to point of the surface of the sphere.

The average value of the potential V" is:

Voo Vas
™ A7r?
where dS is an element of the surface.

Referring to Fig. 73:
dS = rsin 6d¢rdé

" V= oS SV sin 6dds

and the average potential gradient along the radius is:

. v
—br— 41rff— sin 0d¢dl = — ff ds.

7

Since % is the intensity as well as the gradient it follows that
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Problem.—Construct the equipotential surfaces between an
insulated charged sphere and a point charge, when

p = 10 cm.,
L = 20 cm.,
Q, =1,
and V- 21
20°

Potential Distribution between Two Spheres.—Let sphere A4
in Fig. 75 have a pot. V and a radius R; and sphere B have a
pot. Vi and a radius ;.

|4

)

R

Fra. 75.

Calculate first the charges at A and B and the location of
these charges, when A is at potential V and B is at zero potential.
Then reverse the operation, and calculate the charges at A and B
and the location of these charges, when B is at a potential V,
and A is at zero potential. Then add the charges and potentials
respectively, and the desired solution is obviously obtained.

(1) Calculation of the charges on A and B when the potential
of 4 is V and that of B is zero:

The first approximation is obtained when the potential of A
alone is considered. We have then, since in general @ = VR, a
charge in the center of A of value Qo = VR, and we may, for
completeness, say that its distance ao from the center is zero.

This charge affects B by giving B a potential, which is I—/LE

Since, however, the potential of B must be zero, it is necessary
to supply B with a charge which gives a potential — —I;JR. This
charge, which may be called @’;, has previously been shown

tobe @', = —VR <{Z~l>, shall not be placed in the center of
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The total charge on A isQy = Qo+ Q1+ Q2+ . . . ;

The total charge on Bis Qg = Q"1 Qs + Q'3 + .

But, it must be remembered that in order to find the intensity
of the field at any point, the position of the charges has to be
considered.

. (2) By an identical method, a new set of charges are obtained,
when A4 is kept at zero potential and B at its potential V.

The total charges on A and B are the sum of all the charges so
calculated.

Assuming, for instance, that the potentials of A and B are
both positive.

The first set of calculations will then give a number of positive
charges in A, all of which, except the first, located at points, not
its center, the charges in B will all be negative, and all be located
at points not its center.

The second set of calculations (not shown above) will result in
a series of negative charges in A, all of which are located at points
not its center, and a set of positive charges in the sphere B, the
first of which is at its center. Thus the total charge in either 4
or B is a sum of a series of positive and negative charges.

Simple Case.—For two similar spheres, one at zero potential
and the other at a potential, 17, we have:

On the sphere of pot. V° On the sphere of pot. zero
V R?
Qo= VR Q= — —]—
R?
dy = 0 b1 = l:
VR? VR
Q: = IQ’Z = — —
L(L — by) \ L(L — b)(L — ay)
R? !b R?
R A 3] T @ —a)
‘Q’a =
Qs = VR® B VR
UL - b)) - a)(L — b) L(L —=b1) (L —a) (L —b2)(L —ax)
R? R?
az b’s =

ey 72T (= aw)
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The total charge on the sphere of potential V is:

Qi=Q+Qq:+Q4+ . . . ;

and that of the sphere of zero potential is:
Qp = Q1+ Q2+ Qs+ .

To study the sphere gap, the following problem has been
solved to show more particularly, that, while the difference in
potential between two gaps may be the same, one gap may break
down with considerably lower potential difference than the
other.

Air at atmospheric pressure appears to sustain, as a maxi-
mum, a density of about 100 lines per sq. em., or a potential
gradient of 100, electrostatic units or in practical units 30,000
volts per em. If, therefore, the potential to ground is high, the
air may well break down around the spheres, even though the
potential difference between the spheres may be comparatively
low.

When the air breaks down, corona appears. Then the effective
dimensions of the spheres are increased and the gap length
correspondingly lowered.

The following three cases are calculated, and the results are
tabulated below.

Diameter of the spheres, 25 cm.

Distance between surfaces, 14 cm.

Potential difference 1000 electro static units or 300,000 volts.

In the first case, sphere A has a potential of 1000 and B is
at zero potential, in the second case the spheres are at potentials
+500 and —500 respectively, and in the third case they are
at potentials 41500 and +500 respectively. In the example
the potential gradient @ is calculated at the surface of the sphere
of highest potential on the center line between the spheres al-
though it may, of course, be greater at some other points. In

general ¢ = — I (-dTéQ—t-)E The gradients due to the two spheres

should obviously be added if the charges are of opposite potential.
Since the intensity of the field is in the same direction at the point
considered.
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Referring to Fig. 81, before the journey starts, the potential at
P has been shown to be lw.

When the journey has covered 1 revolution, the solid angle
has changed from 0 to 4r. Thus, after n revolutions of the unit
pole the potential of it is:

Iow 4 4vIn = I (w + 47n).

It is evident then, that, when a magnetic-pole of strength m is
moved around in a field, and returned to the starting point, work
will be done every time the circuit is treaded. If it is treaded n
times, the work is:

4rInm.
The magnetic potential is thus a multi-valued function of the
space coordinates. Y

Coil Carrying
Current
Path of Unit Pole
Fia. 81. F1a. 82.
. . . . av
The intensity of the magnetic field at the point, H = — o

depends, however, only upon the term involving the solid angle
w, not upon the term involving 47n.

Consider now a straight infinitely long wire carrying current I.

Let the wire form the y-axis and let the point be in the z-z
plane (Iig. 82). The cone subtended by the plane of the current
(z-y plane with y-axis as one edge) which goes out to infinity and
the point P has a solid angle, 2(x — 6).

Note.—If the angle in the z-z plane had been , the solid
angle would have been 2r; in this.case the former is (x — 6), the
latter is 2(r — ).

SV = 1(w + 47n) = (2r — 20 4 4zn).

The direction of the lines of force which are cireles around the

y axis are along the are, rdf, then

an equation very often used in electrical engineering.



CHAPTER XV

DIVERGENCE OF A VECTOR, POISSONS AND LAPLACE
EQUATION

It has been shown by Gauss’s theorem that the total flux
entering and leaving a closed surface in a vector field is zero,
unless the (closed) surface_ contains some charge @, in which case
the outward flux equals 47Q.

This charge may be a single charge, or it may consist of a large
number of small charges throughout the interior of the surface.

The divergence of a vector is the excess of outgoing flux over
the incoming flux per unit volume of the space enclosed by the
surface; it is the number of lines which diverge per unit volume.

If the excess of flux in a small volume dv is dy, then the diver-

gence of the vector is —g‘f
It is written div. R, div. (X, ¥, Z) or V- R (read del dot R),

; j k . .
where V stands for %% -+ ‘75?—/ + k9 V is sometimes called LamM®’s

0z
differential parameter. Z Axis

It is evident, from what has i
been said above, that unless |
some charges are enclosed in '
the small volume, there can be 1z
no divergence. If there are as i
many units of positive charge §
as of negative charge in each
small volume, there can also be ,/
no divergence, t.e., div. & = 0. .

o 0 00 ., Y Axis

The divergence is positive, if Trc. S3.
there is an excess of positive
charge; it is negative (sometimes called convergence), if there is
an excess of negative charge. The presence of divergences
involves the presence of charges. In hydraulics the presence of
divergence means cither the presence of some source of fluid in
the element or some change in density.

Consider a small volume represented by a cube, in Fig. 83 for
the sake of simplicity. This cube is assumed to be a small part
185

ler—g——>X Axis











































CHAPTER XVII
DISTRIBUTION OF CHARGE ON AN ELLIPSOID

If an ellipsoidal thin shell is formed by two similar, similarly
situated ellipsoids, and the charge per unit volume, p, is constant
in the shell, then the force at any point
inside the ellipsoid is zero, that is the poten-
tial is constant. The outer surface is an
equipotential surface.?

To prove this, consider the attraction at

o of the two masses at A and B, Fig. 89. Tra. 89.
The volume at A is r? dw dr .. charge, ¢ = pr? dwdr.
The volume of Bisri®dwdr .". charge ¢' = pr,? dwdr;

.. The attraction of A at O is 7% = pdw dr.

4

The attraction of B at O is ;q—z = pdw dr.
1

But from geometry it is known that with two ellipsoids, one of
axes a, b and ¢, and the other of a (1 + ), b(1 4+ «) and ¢(1+ «),
that is, with two similar, similarly situated concentric ellipsoids,
dr must always be equal to dr;. Thus the attraction at O must
be zero.

In the case of a conducting ellipsoid charged with electricity,
the charge is confined to the surface and the distribution will be
shown to be such as is represented by the thickness of the shell
in Fig. 89. It is greatest where the curvature is greatest and
least on the flat point of the surface.

The problem then is to express the thickness of the shell in
terms of a variable surface charge, o.

The volume of the shell is evidently = 44mabe [(1 4+ ) — 1];
considering uniform volume charge, the total charge is:

@ = 20 + 2 ~ 1.

! Note.—See '‘Analytical Statics,” vol. II, by Rours.
199
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Example—Calculate the average potential gradient in the
space between two concentric spheres separated by a distance of
2 cm.

Assume that the potential gradient at the surface of the inside
conductor is 100 electro-static units per centimeter, that is, just
about on the point of glowing.

Consider a concentric sphere, Fig. 98, the inner sphere of which
has a charge Q; and the outer a charge Qo = Q2 + Qs.

Evidently, . Qo = Q2 + Qs

Since all tubes of force beginning at the surface of the inner
conductor terminate at the inner surface of the outer conductor,

it is evident that the charge Q2 = — Q1.
Qo = "Q1+Q3-
The potential at a point outside of the outer conductor is
thus, from (6),
V= %’ @ — ; Ql’ where r = 73

Since the capacity of an electric field is the ratio between the
charge on the positive boundary and the potential difference
between the boundaries,

Q:
C=vi-T
Thus from (9),
I 51 = 1 Ve 1 TiTe

e Ty e = .
Te — Ty Irl -V, Te —T1

The capacity of the inside sphere alone is ;.

. Capacity of concentric spheres Wyiiza
Capacity of inner sphere re — T1





































224 ELECTRICAL ENGINEERING

1
2R\R,

R— (R + ReY) — V/16h* — 8 (R + R + (R — Re)
which becomes:

y

2 log

1
h+ \/h2 —R2
R

=

4 log

if R is substituted for both R; and R, a result obtained before.

Construction of Equipotential Surfaces around a Cylindrical
Conductor, Charged to a Certain
Potential, V.—Let the distance be-
tween the center of the conductor,
Fig. 107, and ground be k, and the
distance of the equivalent line charge
above ground be h;.

Since the ground is an equipotential
surface, it is evident that the problem
will in no way be affected, if a
second conductor with a charge —@Q
be placed equidistant below the
ground surface, and the equipotential
surfaces around A be considered as
due to a positive charge, @ at A, and

Frc. 107. " an equal but opposite (‘“‘image’’)
charge — @, at the inverse point A’.

Suppose that it is desired to draw the equipotential surface
through a point P, distant d from the ground.

The first step is to locate the equivalent line charge in the
original conductor of radius R and distance kA from ground.
We have,

ke = h? — R?,

“hi= V= R? (1)
To find the radius of a circle whose center is «; from A, the
location of the equivalent line charge, we have,

a1 (2hy 4 a1) = Ri? )]
But from the figure we have, -
hl+al=R1+d (3)

% a1=R1+d—h1. (4)
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Substituting in (1),
dgj_ + df)g = 0

or 6, + 0, = constant.

This equation represents a family of circles through A and B,
with center on the line 0-0.

Construction of Lines of Force.—Referring to Ilig. 111, as P
is in the center line,

_2_2 . h_]] _ 4Qh1 4:Qh1

n N

G3 = G1cos 0y + Geeos 0; = 2[ TE T he 4 X?

N L)
=M Gali 1 (1)
o /
AQ 01

k r < I i

Frc. 111.

Knowing the values of x and the fixed points, 4 and B, the
lines of force, being circles, can be readily constructed.

Problem.—Draw equipotential surfaces around a line charge
placed 10 em. above the neutral plane, when the charge is 1
electro-static unit per centimeter of conductor.

Find the radius of the conductor containing the line charge
whose potential is 2000 volts. Draw surfaces corresponding
to 400, 800, 1200 and 1600 volts.

Draw lines of force whose intensities at the neutral plane are .
120, 110, 100, 90 and 80 volts per centimeter.

Solutions.—

First.—Radius of conductor: Since 2000 volts corresponds to
6.67 electro-static units, we have:

hy - VA2 + 2_

7 =
. 10 4 /100 + R?
.. loggo 7

. 10 + /100 + R?
c 7

By a similar process the radii corresponding to 1600, 1200, 800
and 400 volts are found.

g10—}-\/100-I-R2
R

6.67 = 2Q log 2 lo

= 0.434 X 3.3 = 1.445.

= 28.05 .. R = 0.72 cm.












CHAPTER XX

MUTUAL AND SELF-INDUCTION OF ELECTRO-STATIC
CHARGES OR FLUXES—MAXWELL’S COEFFICIENTS

If among a number of conductors say No. 1, No. 2, ete., &
particular one, say No. 1, is given a charge ¢, so that its potential
is V1, and if all other conductors are connected to ground, that
is, are at zero potential, then,

Q= K1.1V1,

where Ki.; (with its two indices) is called the coefficient of
self-induction of electrostatic charge, and is, as seen, the capacity
of No. 1 due to its own charge ¢;, when all other conductors are
at zero potential.

Obviously while the potential of the other conductors is zero,
each has a certain part of the induced negative charge corre-
sponding to ¢; on No. 1.

The charge on No. 2, for instance, is of course proportional to
the potential of No. 1 and is written:

g2 = KoV
Similarly,
qs = K31V, qu = K41V, ete.

K,.1, K31, ete., are called the coefficients of mutual induction.
Since V; is positive, ¢, must be negative, therefore, K,.,, or in
general, K with two different indices, is always negative, while K
with same indices is positive.

If instead of grounding all of the conductors except No. 1, we
now ground all but No. 2, and this is given a potential Vs, we get,
by a similar reasoning, ‘

g2 = Ko.sVae, @3 = Ks.2Vs, @i = K42V, and, ¢1 = K15V
Superimposing these conditions, it is readily concluded, that,
if at any time the potential of No. 1 is V;, that of No. 2 is V,,
ete.
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But K;.; = K., K12 = K;3 and K,; = K., approximately.
Qa = KI.IVa + Kl.zrb,
@y = K1.2Vs + K14V,
Qc = K1.2Va + Kl.zvb,
and, Qe = Kl.eVa + Kl.eVb-
. Qa = K_I.IEO sin 6 + K1.2 Eo sin (0 + 60)

= Eo(K11 + 0.5K,.5) sin 6 + %5”- Eo K13 cos 6 (6)

Qs = Ki.2 Eosin 6 + Ky.1 Eosin (8 + 60°) = Eo(Ky.2 + 0.5K,.1)

Sin 6 + ? Ky.1 cos 6 )
. , , . V3
Qc = IX1_2(17(1 + ¥ b) = EOR1,2(1.5 sin 6 + T COSs 0) (8)

and, Qc = Kl.z(p,a + .Vb) = E0K1,9(1.5 sin 6 —+ }‘g—"?" cOSs 0) (9)

Assuming for the present that the values of the MAXwWELL’s
coefficients are known, it is then possible to obtain, in a manner
similar to that used for the balanced system, the potential of
the telegraph wire.

While in this case we deal with four charges, the effect of the
charge of the earth is not felt at the telegraph wire, because
the earth may be considered as an infinite cylinder, enclosing
all wires; thus the effect of its charge on any point inside it, re-
sults in no potential. The potential of the wire is now readily
obtained from equation (1). The charging current in the three
wires and the earth is found from equations (6) to (9), remem-
bering that 6 = «t.

o= d—d% = Eow[(m.l +0.5K.5) cos wf — \—2@ Ki.zsin wt] ;
7, = Eow[(Kl_z + 0.5K,.,) cos wt — —‘2/—§Kl,1 sin wt-],'
. V3 . (10)
h = Eow[Kl,z (1.5 cos wt — —5 sin wt];
0 = Eow[Kl,e (1.5 cos wt — %ﬁ sin wt)]'

It remains now to determine the values of the MaxwELL's
coefficients.

Give each of the three conductors the same charge @, and
assume average values of the distance between the conductor
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It

2H 2H 2H
200 log == + log ) + log ) |

8HE . L
= 2Q, log 7Dz USing the approximations.

Since —V, = — E sin (wt + 240°), the maximum value of the
charge is Qo = ;L
9 log SH?
08 . pe

The charges on the conductor 4 after grounding the conductor
C are therefore,
g 1
Q1 + Qo = I sin wt I S N
2log= 21 8H°%
= 0g

Similar expressions are of course readily written for the
charges on the conductors B and C.
The potential of the telegraph line after grounding is thus,

V=2 [(QA + Qﬂ)al + (QB + Qo)bl + (Qc + QO)CI]-

By applying these equations to the numerical example given
previously, it will be found that the induced potential of the
telegraph line will be 25 per cent. of the phase voltage or 14.5
per cent. of the line voltage. In the case of an insulated balanced
system, it was found about 5 per cent. of the phase voltage or
about 3 per cent. of the line voltage.

The Effects of a Grounded Horizontal Wire on the Distribution
of Electricity in the Atmosphere.—It has been observed that
frequently considerable potential difference exists between
successive layers of the atmosphere. A potential gradient of
600 volts per m., or roughly 200 volts per ft., is not unusual.

It is of interest then to see how much the potential at a given
height may be reduced by a grounded overhead line such as
is used in high-potential transmission systemns.

Assume that the gradient, not far from the earth, is 2 electro-
static units per m. (600 volts per m.). It is readily seen that
the distribution can be quite closely represented by the effect of
a charged cylindrical conductor, say 300 m. or more above the
surface of the earth. The conductor then represents whatever
cause there was for the potential gradient.

The charge per centimeter length of the fictitious conductor
is determined by the fact that the potential at a certain height
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The line integral around the rectangle is then:
dlL = Ydy + Z:dz — Yidy — Zdz

_ (o7 oY

Extending this to all three planes, we get: the line integral
around ds,

8z 9y (aX EYVA
= @b = —_ = — = )dz
<6y o2 )dydz T (o 0x>d dr +
oY X

or ay
= C cos adS, where « is the angle betwcen curl C and the
normal to the surface dS.

The z-component of the curl C, is then seen to be the limit
of the ratio between the line integral of the vector around a small
element in the y—z plane and the area of the element. Since it
is the z-component, it is, of course, at right angle to the surface,
dydz.

In general,

>d:vd1 = C . dA‘S'

. AL dL
Curl = lim Eg =i dS,

where surface dS is normal to the vector C.

Stokes’s Theorem.—STokEs’s theorem states that the line
integral of a vector R around any closed contour is equal to the
surface integral of the curl of the vector over the surface or cap
enclosed by the contour.

The theorem holds always when transforming from the line
integral to the surface integral, but applies in the transformation

. aC aC
from the surface to the line integral only when waﬁxx + ———ayy
9Cz = 0, that is, only when the curl has no divergence.
9z

Depending upon the system of notations used, it is written
in either of the following ways:
In vector notation, it is:

SR = f (7 x B NS,

which is to be read: The line integral of the electric field in-
tensity along the circuit is equal to the surface integral of the
curl of the vector over any surface (any cap) bounded by the
circuit, where N is the unit, outward drawn normal to dS.






CHAPTER XXIV
THE EQUATION OF THE ELECTROMOTIVE FORCE

It has been shown that the potential difference between two
points in an electric field is the line integral.

V = S (Xdx + Ydy + Zdz) = S Gds (1)
where X, Y and Z are the components of the ficld intensities or
gradient along the x, y and z axes and V is expressed in electro-
static units.

It will be shown later that the conversion factor between the
electro-static units and electromagnetic units of potential is the
velocity of light, v = 3 X 10'° e¢m. per sec.

The e.n.f. in the electromagnetic system of units is » times

that in the electro-static system of units. Equation (1) should
be written:

V = v S (Xdx + Ydy + Zdz) in clectromagnetic units (2)

Ixperiments have also shown that the e.m.f. in electromagnetic
units in a circuit is equal and opposite to the product of the turns
enclosing the magnetic flux and the rate of change of the flux.

I L, M and N are the components along the x, ¥ and 2z axes
of the magnetic field intensity, and if I, m and n are the direction
cosines of the normal to the surface dS, and if u is the permea-
bility then the flux is:

= S S u(L + mM + nN)dS = S S ul - dS

Then the e.m.f. induced per turn is:
V=-— Cgf = %[ffu(lL + mM + nN)dS] 3)

combining (2) and (3), and assuming u constant,

v_/'(de+de+Zdz)——,uff —+m—+n§-]X)dS 4)

But from Stokes’s theorem, we can write:
BY X o7
f()&dx-l-Ydy—!-Zdz)—ff )+m(¥_%)+
(aY X

" r aJ) ]dS @)
260
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If the components of the electric field intensity R, are X,
. K
Y and Z, then, the total energy per unit volume = W, = &
(X2 4+ Y24 Z2).
Similarly, it is proven that the energy stored per unit volume
in the magnetic field is:

Wo =g (L2 + M2 + N?).

Thus the total energy per cubic centimeter in space occupied
by magnetic and electrie field is:

Wo = gl; [w(@? + M2 + N2) + K(X? 4 Y2 + Z2)]

There appears to be no limit to the possible intensities of the
magnetic field, but for the electric field in air at atmospheric
pressure, experiments indicate a maximum possible gradient, or
field intensity of 30,000 volts per cm., or 100 electro-static
units of potential per em.

Thus in the electric field the maximum amount of energy at

normal pressure is:

1002

117"“12. = 87rl
cu. cm.

Maxwell’s Displacement Current.—MAXWELL assumes that
when a potential difference exists in any part of a dielectric, an
electric displacement, or a displacement of electricity has
taken place along the lines of electric intensity (force). The
greater the displacement, the greater the difference in potential.

The displacement, however, is resisted by the electric elasticity
of the medium, which, for the lack of a more satisfactory analogy,
can be thought of as being in a way similar to that existing in
an elastic body, against which a particle is pressed.

For a given potential difference, the displacement is greater
the greater the specific inductive capacity; for example, if the
dielectric be glass, the displacement may be five to six times as
great as would be true with air or vacuum.

A metal may be considered to have zero capacity, in other
words, energy can not be stored into it, but electricity would
continue to pass through it as long as a potential difference
existed.

Dieleétrics, on the other hand, would permit electricity to
flow up only to a certain distance, and the flow ceases when the

= 400 ergs per cu. cm. or 0.00004 joules per
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force causing the electricity to flow is exactly equal to the
opposing force due to the elasticity of the dielectric.

The displacement of electricity is in the direction of the lines
of electric force; since the displacement has magnitude as well
as direction, it is a vector quantity.

According to MaxwELL’s theory an electric current is a time
rate of change of the displacement of electricity.

The charge on a body is a measure of the displaced electricity.
Indeed, MaxXwELL states that a charge @ on a body causes a
displacement of @ units of electricity out from the body, and he
has defined the displacement D as the charge per unit area. It
is then numerically equal to ¢, the charge per unit area, but
while ¢ is a scalar quantity, D is a vector.

D can be expressed as a function of the intensity R and the
specific capacity K.

flux ) 47Q

In air the intensity of the field is — = -—— = —=- 1In
area  area A
other dielectrie of specific eapacity K,
o1 4@ . _ARK
K A YT Ax

~_Q ARK _RK
The surface charge = A" 4rd = dr
Thus the displacement D is also,

RK
D=4

The displacement of electricity is in the direction of the field.
Thus if f, g and h are the components of the displacement, and
X, Y and Z are the components of the electric field intensity,
then,

KX
I= s

g = KY In these equations, the units

4’ are in the electro-static system.
K7
47

The amount of electricity displaced is the product of current
and time, or considering current per square centimeter or current
density, the displacement is the product of current density and
time.

and,
h =
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or in general,
92U i v? ., .

-2 = a°V2U, where a* = ;—-, and U stands for either X, Y,
at? ku

Z,L, M or N.

This is the well-known equation of the propagation of any
disturbance at finite speed.

The velocity of the propagation is a = \/Lk In air, £ =1

i
and p = 1, thus the velocity of propagation of the electric
and magnetic field is v.

This value has been measured and found to be that of light,
thus the conversion factor is the velocity of light. Thus v =
3 X 10,

This important fact was deduced by MAXwWELL in 1865.

(®) In a conductor, the specific inductive capacity may be
assumed as zero, thus we get:

4r U
Y e
, ot =7 ViU
or,
*U 92U |, 9*U 4x oU .
= LE 2 3y L= 927 = 52 a0 0 rectangular

coordinates, and,

U 1 0*°U | 39U 1 oU 4rdU . S
E‘—{ + 'T‘Z ’605 Eg ;_ '57: = 7213;9’[, imn cyhndrlcal

coordinates.

9)

Assuming, as an application, that it is desired to determine
the current distribution at any time in a cylindrical conductor
at any distance from the origin and any distance from the
center of the conductor. If the practical system of units is
used, »? = 1; and on account of circular symmetry, the term

oU .
1nvolv1ng dlsappears Thus the equation becomes:

0% 9% 1 91 Am

T Tr o=, b ()

Distribution of current in a cylindrical conductor: If it is of
interest to find the distribution along a radius only, the equation
becomes:

%

— A (11)

1N
;
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R4[156 ("‘R) 2705("&?) + 14. 580(mR) Yo ] 37)
Substituting (35) (36) and (37) in (34),
o 14104, 3("1’(1)3) +780(" ) + 3100(’-’1’%) e

mR mhR mlt\ 1?
L+ 52('p) + 206(g)” + 300(G) A
The following tables give the coefficient of skin effect at
various values of mR and the values of m for copper, aluminium
and iron.

mR K mR K mR K

0 1 3.0 1.32 6.0 2.39
0.05 1.0001 3.5 1.49 8.0 3.10
1.0 1.005 4.0 1.68 10.0 3.79
1.5 1.026 4.5 1.86 15.0 5.57
2.0 1.08 5.0 2.04 20.0 7.32
2.5 1.17 5.5 2.22

[

Material m p in.e.an.u. ‘ m
Copper.....covvieiiieineinn. 1 1700 at 20°C.| 0.216 \/f
Aluminium................... 1 3,000 0.162 \/f
Iron............... e 300 to 1200 10,000 0.09 /uf

The value of p for iron is usually taken as 309, but experi-
ments on iron wires used as transmission lines seem to give values
of u as high as 1200.

Lorp RayrLerem has shown that when the penetration is so
slight that the above table can not be used a close approximation
of the “effective thickness’ in centimeters of the surface layer
which causes the current is:

1
5 = — —
V2ruKw
where K is the specific conductivity

This formula becomes § = for copper approximately.

for aluminium approximately.

6= r steel approximately.

7
7
T



CHAPTER XXVI
ELECTROMAGNETIC RADIATION

Introduction.—The laws governing electromagnetic radiation
were stated by MaxweLn fifty years ago. The experimental
verification was presented twenty yecars later by HerTz in a
series of most extraordinary papers, which were later published
in book form. The practical application was made by MaRrconT.

An extensive literature is now available, notably Freminag’s
“The Principles of Electric Wave Telegraphy and Telephony,”
and ZeENNECK’s ¢ Wireless Telegraphy.”

In writing this chapter the author has drawn extensively upon
the information which is given in these books. Since it is likely
that students who have not read what preceded this chapter
will want to understand the principles of wireless iransmission
it has seemed wise to built up the theory from the fundamental
laws even though this procedure necessarily involves some
repetition of what has been given in previous chapters.

Fundamental Conceptions.—Surrounding any body charged
with electricity is an electric field. The intensity of the field
usually varies from point to point, but, at any point it is propor-
tional to the charge, that is, the amount of electricity on the
charged body.

To charge a body we connect it to a source of potential when a
current momentarily flows from the source to the body, the cur-
rent stopping when the potential of the body is the same as the
potential of the source.

If ¢ is the current flowing during an interval of time d¢ then
the resulting charge on the body is dg = dt, or,

. dg
t=a (1)
For reasons that will appear later, it has been assumed that
the outward field of flux from a body charged with @ units of
electricity is
¥ = 47Q lines of electric force.
278
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If the lines are uniformly distributed over a closed envelope of
area A sq. cm., then the density of the electrie field is
47Q
=4 (2)
By the introduction of the constant 4 in the flux formula this
density becomes in space the same as the force in dynes per unit
charge which is numerically the same as the intensity 2 of the
clectric field at the particular point considered. This is easily
seen from Couroms’s law, which states that the repulsive force
between two charges Q and @, is
_ 9@
Kr?
where 7 is the distance between them and V; = 1
In the ideal case the charge is confined to a point and the flux
is distributed uniformly in every direction.

¥ rQ  Q

" area of sphere ~ 4zr? ~ p?
where 7 is the distance from the point to the point charge.
or, Q = Rr?

R
. = 7‘*2 TZQl = RQ]

If, therefore, @, = 1, f = k.

The potential difference bhetween two points in an electric
field is by definition numerically the same as the work done in
moving unit charge from one point to the other.

Thus, if X represent the intensity of the electric field in a cer-
tain direction, say a direction parallel to the z-axis in a rectangu-
lar coordinate system, then the potential difference across a
short element dx is dV = Xdx = force on unit charge at dis-
tance z, or,

av

A= dx’

Similarly Y = av
dy

and _ QZ
4= dz’

Y and Z being, respectively, the electric intensities along, or
parallel to, the z-and-y axes.
,k, ,
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where N is the density of the magnetic field perpendicular to the
plane of the electrie circuit.

By a similar reasoning we get then the following three impor-
tant equations:

oY _oX = dN
ax dy dt
0X dZ dM
9z or  dt %)
9z 9y __ dL
dy dz dt

where X, Y, Z, L, M, N, are respectively the electric intensities
and magnetic intensities in the same system of units parallel to
the z, y and 2z axes.

Note that in air the densities are"
the same as the intensities.

The next consideration is in re-
lation to the magnetic effect of a
current.

Let A, Fig. 145, represent the
end view of a wire A ecarrying a
certain cwrrent dI, perpendicular
to the plane of the paper. Let the Frc. 145.
curved line be in the plane of the paper.

The magnetic field intensity at P is then I and this is defined
similarly to R as numerically the same as the force on unit pole.
Let, therefore, a pole of unit strength be carried along the curved
path, Tfig. 145. The work done per unit pole in completing the
journey once is evidently

2d
W = S H cos 0ds = f ;I cos 0ds

but Z‘da o . . rda
ds =, cos 0 "ds_cost)
=27
W= f 2dlda = 4rndl.
a=0

The work is independent of the position of the current clement
and the path. Thus if there are a number of filament currents
inside the path,

I = =dl
W = 4nl (6)

Il
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" This quantity is by physicists called
Ay the magnetomotive force, around the

M N .. .
circuit, whereas, cngineers would call

) I it 47 X m.m.f,
Consider now a small rectangular

w surface, Fig. 146, in the z-y plane of a
magnetic field, and let L and L,, M

% 7 % and M; be the components of the
g, 146. magnetic field intensities, along the z

and y axes respectively.
Then the line integral, or work on unit pole around the element
is '
Ldx + M,dy — Lidx — Mdy.

. . oL
The rate of change of L as we travel along the y-axis is —ay’

. oL
thus the total change is ay dy, thus

dL
Similarly M, = M+ oM iz,
ox
. e OM oL _ (M OL
LW = Gy dedy — 5 dxdy = (= ay) dzdy.
From (6) it is seen that
oM oL
= 5&) dudy = 41, @)

where I, is the total current flowing through the rectangle per-
pendicular to dxdy.

Depending upon the medium, this current may be the ordinary
conduction current such as flows in a wire or the charging current
which is incident to a change in the electric field, or indeed, the
sum of the two currents.

In this analysis it will be assumed that the air surrounding the
oscillator is free from ionization, so that its resistance is infinite;
thus the only currents considered are the “displacement, or
charging currents.”

MaxweLr assumed that surrounding a charged body is an
electric field, the strength of which is proportional to the charge,
and that the intensity of the field is a measure of what he calls
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displaced electricity. The displacement of electricity is in the
direction of the field intensity, and is thus a directed quantity.
Numerically a charge @ displaces @ units of electricity outward
from the body. Since dQ = dt, it follows that the displacement
current or, as engineers say, the charging current is proportional
to the time rate of change of the electric field intensity.

Or,
1 =a Si R
dt
where R is the intensity and a a constant to be determined.
MaxweLL worked out his theory on the basis that the dis-
placement is numerically the same as the charge per unit area.

Thus ,
doo=-2
area
But the outward normal flux from a charge Q isy = 4#xQ; thus
the intensity of the field is
14 47Q

R = — = )
area area

R

S R = 4nd or d = — in air.
4r

where 7 is the current per unit area or current density.

If, therefore, u, v and w are the components of the displace-
ment current densities along the z, y and 2 axes and X, ¥ and Z,
the components of the electric intensities then:

1 X 1 aY 1 9Z
u=4—1rﬁ:v=g—at—andw=gbai (8)
everything being given in electro-static units.

From (7) and (8) it is evident that one can write

oM oL a7
(% - 5!;) dxdy = 4nwdady = m dxdy,
or,
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By a similar reasoning are obtained the following three
relations. ’
oN oM  oX
9y~ 9z ot
dL  ON oY
Tz 9z ot

everything being given in the same system of units.

The simplest form of oscillator, or rather that form which
lends itself to the simplest mathematical treatment, is that used
by HEerrtz.

The oscillator consists of two large spheres separated by a
considerable distance and connected by wires through the spark
gap to the source of energy as shown in Fig. 147.

%:\ \
\\\\\\ \

O &

Fia. 147. Fi1ag. 148.

=
7

2

Eﬁ
=
[}
o

<= e >

It will be assumed that the electric field is due to the spheres
alone, and the magnetic field to the lincar conductor.

It will be assumed that the axis of the oscillator is the z-axis.
Thus the magnetic field which is in the form of rings around the
conductor has, in the z-y plane, no component in the direction
Z and therefore no e.m.. can be induced in the z-y plane.
However, e.m.fs. will be induced in the direction of the Z-axis.

Whatever the potential distribution in the z-y plane it
must thus be due to the charges on the spheres alone, that is,
due to the eleetric field alone.

The distribution of potential around an electric double, that is,
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lator. Suppose, for instance, that we are dealing with a linear oscillator.
We assume then that the potential at a point P can be expressed as due to
two point charges located at some points on each rod (not the end of the
oscillator) which will give the same potential as the linear conductor actually
gives at distances far away from the oscillator. While this assumption is
quite justified when dealing with points in space far away from the oscillator,
it is obviously not at all perinissible at points near the oscillator, because
it is readily seen that the potential distribution at the surface of the two
halves of the oscillator must be such that the surfaces themselves are equi-
potential surfaces and two point charges, no matter where located, can not
give such equipotential surfaces. Fortunately, we are for practical purposes
interested in only what happens far away from the oscillator, where equation
11 applies. The subsequent equations can indeed be used with such linear
oscillator if instead of letting @ or I represent the charge and current respect-

. . Ly . 2 2
ively, we use the average value along the oscillator which is - Q and - 1.

The ratio between X the wave length and 4 the height of the sending antenna
is in such case, theoretically 4, but in reality due to various effect nearer 4.8.

When P is far away from the oscillator the electric condition
is not due to the instantancous value of the charge ¢ at the
oscillator but due to the value of ¢ which existed somewhat
earlier in time.

Thus the charge causing the electric field at P is not ¢=Q sin wt
but ¢ = @ sin w({ — At) where At is the time required for the
distribution to reach P.

If v is the velocity of the propagation which is that of light,
then

vAf = r'or Al =

eI

.o ¢ = Qsin (wt = 5:)1)
If A is the wave length then

X = i)T =§
D
oo Jf £ N
. g = Qsin <wt — 2;51") = @ sin (of — mr) = — Q sin (mr — wt)
C o 9 sin (mr — wt)
V= — 20h % (12)
. eV 9% sin (mr — wt) |
A= = ox A 010z r (13)
Y = — aV 20h 9%  sin (mr — wt)
dy dydz 7
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Z the component of the electric field intensity perpendicular to
the x-y plane cannot be obtained from V alone as discussed
above.

We shall now consider some of ___| M
the properties of the magnetic field ¥
intensities.

Consider the z-y plane (Fig. 150). @
It is obvious that since the lines >
of force are circles, the sum of the P
projections of the components of G
the magnetic field intensitics along Fre. 150.
the @ and y axes on a radius vector
must be zero. Let L and M be the components of H along the
z and y axes. Since L itself is negative in the position shown,
we have,

| z

Lcosa—+ Msina =0

but cos a = =
p
and sin @ = y
p
SoLx 4+ My = 0,
or L _ Y 2 — .2 !
ue —xbutx +yrt=0p
xdr + ydy = 0.
Thus L _dx
M dy
or Ldy — Mdx =0 (19
This is satisfied as long as
u du
=@andM=—55 (15)

where w is any function of z and y
N the component along the z-axis is obviously zero.
From equations (9) and (15)

0X oON oM oM _ d*u

8t ey 9z 0z owde

e s L2 (16)
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0=
and f sin® 0d6 = 43
0

o T h?
W \2 127
. W h?

JLowatts = T = 1600 NE 12,

If I is given in effective current then,

1600

2
watts = 3200 ;f—zI 2 (26)

In the case of wireless transmission the radiated power corre-
sponds to one-half of the area of the sphere thus,

2
Watts = 1600 %12 27)

where I is the effective value of the current. The ““Radiation”

resistance is obviously

2
R = 1600 % (28)

It is noted that in the case of wireless telegraphy the energy
radiated is greatest along the equatorial plane, that is, near the
surface of the earth.

Since the receiving antenna is near the earth this result is,
of course, very desirable.

Marcont's improvement upon HErTz's oscillator resulted
from his connecting the lower end of his oscillator through a
spark gap to ground, by which he was able not only to obtain
the maximum energy, where it was most useful, but also to make
use of half the length of oscillator for the same distribution of
the magnetic and electric field above ground. This will be evi-
dent at once if it is considered that the earth being a perfect con-
ductor, its surface is an equipotential surface.

It is easily proven from the equations given that the energy
received near the surface of the earth through unit surface is
1.5 times the average value of the energy per unit surface.

It is also of interest to note that with an ‘““ideal” simple
antenna where X = 44 and the current is zero at the top at all

. . 2
times and therefore the average value of the current is - I that

the power radiated in watts is 4012 or the radiation resistance
18 R, = 40 ohms.
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In this connection it is of interest to add that MaxwrLn's
general equation of propagation of electromagnetic waves in
space free from electric charges or magnets has been shown to he:

dzu <()2u % 62u

where u is any of the components of the electric and magnetic
intensities. ‘

In the case of spherical waves it is readily proven by trans-
forming the equation in spherical codrdinates that any function
of r — vt divided by r satisfies the equation. Thus

T = %f(?‘ — vi).

The function used so far was
sin (mr — wt)
r

H:

: 3 . ¢
which satisfies the above since mr — wt = r — % = m(r — vt).

In the case of sustained oscillations the function chosen was
obviously most suitable. In the case of damped oscillations we
would naturally choose

A _ .
T= e " Gt =m0 gin(mr — wt)

where A and « depend upon the amplitude and damping of the
circuit.

Of special interest is the magnetic intensity I/ near the surface
of the ground and the electric intensity R perpendicular to the
surface but near the ground.

Equation (21) gives,

2Qhm . I.m? . .
R = —Qr—"~ sin (mr — wt) sin 6 = 2h; ,7;L sin (mr — wt) sin 0 =

h . .
47r§ IX sin (mr — wt) sin 6

where [ is expressed in electro-static units.
If the current be expressed in amperes and the potential
gradient in volts per centimeter

4rlh V . i
R = " X 10 X 300 sin (mr — ot) sin 6

= 377 % h): sin (mr — wt) sin 8 (29)
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If the sending antenna were a simple rod then the current at
the top would always be zero and the average value of the current

would be ?r I. Inthat case the wave length would be 4h.
Substituting these values we get:
H = 0721 sin (mr — ot)

near the surface of the earth.
Thus the approximation sometimes made in writing

21 .
H = 07_ sin(mr — ot) sin 6

is not very far from right—and is correct in the case of an “ideal
simple antenna.”

It should again be emphasized that equations (29) and (34)
give the values of the electric and the magnetic intensities several
wave lengths away from the oscillator.

It can very readily be proven by carrying out the differentia-
tions in equation (18) that near the oscillator the magnetic
intensity decreases inversely as the square of the distance and the
electric intensity inversely as the cube of the distance.

Power Factor and Logarithmic Decrement.—Prior to the use
of high-frequency alternators for the production of radiation the
trains of waves were oscillating, with decaying current and e.m.f.
in the antenna and the word decrement had therefore a very
significant meaning.

When alternators or oscillating ares are used the current and the
e.m.f. at the antenna are sustained, and therefore “decrement”
ceases to have any meaning.

It is, therefore, appropriate to discuss the power factor rather
than to try to treat of the decrement in such circuits.

If R, is the sum of the radiation resistance and the effective
resistance of the wires and the ground connection, then the power
consumed in the circuit is P = I?R,, where [ is the effective cur-
rent. If E is the effective voltage, then

_I’Ro _ , 1
Pf = g =Tog
but 7 _ 9rfCE = wCE where C is given in farads,
thus

Pf = oCR, (35)
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i I,, Eop
The ratio Lyoo oot
I,
as is readily proven.

The logarithmic decrement is

6 = Iog ’12 = QL_ (37)

Incidentally 6 is also the ratio between the energy absorbed by
the resistance and the surging energy per cycle.

Thus - I*R,T LI = 1_39@

g 2 oL

which agrees with (37).

In the case of the Herrz oscillator or the umbrella type of
antenna the inductance is confined largely to the linear con-
ductor and the capacity to the spheres or superstructure; thus
we may consider the inductance and capacity as separated rather
than distributed, thus ' :

_1__ 1
=7~ 5%vic 39

R — c
r 8= oo /BC = B (39)

The resistance in the above formula is the sum of the radiation
resistance, the resistance of the wires (taking into consideration
the skin effect), the ground and the radiation resistance.

When an arc is used the resistance of the arc should also enter.
Unfortunately the latter is not a constant but depends upon the
current carried, and hence the decrement is not logarithmiec.
However, for the purpose of this article the arc resistance may
be assumed constant at say 5 ohms. For a very complete dis-
cussion of this whole subject the reader is referred to FLEMMING’S
“Principles of Electric Wave Telegraphy.”

Equation 39 contains the inductance and capacity as well as
the resistance. The inductance is usually very difficult to
determine since at different wave lengths more or less inductance
is added to that of the antenna proper. The capacity of the
antenna is however, usually not changed but it depends upon the
construction of the aereal. The complexity of the structure is,
however, such that its value can hardly be calculated except in
the very simplest cases—rarely used in practice.
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FLEMMING expresses the approximate capacity of a vertical
wire of radius, k& cm. long as:
h
C, = 7 farads,
210g; X 9 x 10t

when, as is the case in wireless stations the lower end of the wire
is near ground, the capacity may, however, be say 10 per cent.
greater.

He also expresses the capacity of a horizontal wire placed h,

above ground as
l

210gg§1~1><9><10”

Cp =

where [ is the length in centimeters and & the height above
ground.

Thus the capacity of a T-shaped antenna may be approxi-
mated as:

C=Cv+0h

obviously the total capacity is not at all proportional to the
number of wires connected in multiple. It is only slightly
increased as the number of wires is increased.

If the value of the capacity is difficult to calculate accurately
it is measured relatively easily and will therefore be assumed
as known. It ranges according to ZENNECK approximately as
follows:

0.001 m-f. in torpedo boat antenna.
0.002 m-f. in battleship antenna.

0.007 m-f. in BRANTROCK station.

0.18 m-f. in NavueN high-power station.

The capacity of the antenna of the experimental installation at
Union College is 0.0012 m-f.

When the wave length is considerably more than four times
the height of the antenna the current distribution is fairly uni-
form in the conductor, and, the circuit can be treated as consist-
ing of “bunched” rather than distributed inductance and
capacity when the following relation obtains.

o I
T=2rvVIC . L =335
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of the current and the wave length is proportional to A/C it
follows that by adding capacity to the superstructure and there-
fore increasing the wave length the radiated energy is increased.

Therefore, if the capacity is made four times as great, the cur-
rent? is 16 times as great and A? is only four times as great, and
hence, the radiated energy for the same antenna height is in-
creased four-fold.

Unfortunately, however, there is hardly a practical way of
increasing the top capacity without decreasing the effective
height so that the gain is not as great as indicated and if the
umbrella is carried to an extreme, the effective height may be so
much decreased that the energy radiated may eventually begin
to decrease. .

With a given construction of the antenna the wave length may
be increased by the introduction of inductance. In this case the
energy radiated is, however, reduced. ,

It is noted that for a given current the radiated power is
greater the higher the frequency. This does, however, not
necessarily mean that the power received is greater, since as will
be shown later the absorption of energy in space is much greater
with short wave length than with long.

At times it is necessary to send at two widely different fre-
quencies. The natural wave length may be say 600 m. and it is
desired to communicate at a wave length of 300 m. In that case
a condenser may be connected in the series with the antenna.
Since two condensers in series have a smaller capacity than each
and thus the frequency is increased.

The relation between the effective value of the antenna current
and the maximum instantaneous value of the current and e.m.f.

If the damping is not excessive the discharge current of a
condenser of voltage £ can be represented by the following
equation :

Ro
¢ = EwCe 2L sin wi (42)
= Je* sin wit
where
I=EwCanda=2EZ%=%‘

R, being the total resistance in the circuit which is assumed
constant, not depending upon the current.
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ary circuits an e.m.f. E; sin w;¢ will be impressed upon the
secondary.
The differential equation of the secondary circuit is thus:

El sin wit = ’Llfz + Lz%‘ + €g

where e, is the voltage across the secondary condenser.

But . d
o des . ., . dl%
S Eysin wit = Czlfz‘&et'z' -+ (/sz?i% + e (1)

The sine term can be eliminated by two successive differentia-
tions and the result will be a well-known linear differential
equation of the fourth order the solution of which is:

€y = ElSin (it + ¢) + E'e = sin (wst + ) (2)

The first term shows the value of the permanent voltage of the
secondary circuit—of primary frequency, the second that of the
transient which very soon ceases to exist.

Thus, if it is desired to study the constants of the antenna the
transient term may be neglected and the permanent voltage
becomes

€y = FE sin (wlt + ¢).

Substituting this value in the differential equation we get
after some simple transformations the following relation between
the maximum value of the secondary voltage and the induced
voltage.

_ (w2? + a2?) By
’ V(w0 — @ — az?)? + (2wi0)?
The secondary frequency

i =

E

(3)

1
21V L,C,
when the circuit contains no resistance and
=1 [ 1 (Ry2
fe 27r\/Csz (2L2>

when the resistance is R,

h 1
Thus (21rf2)2 = (7;[72 —_ a22
or 1 = o+

CsL,
20
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The corresponding equation when both the primary and second-
ary circuits are oscillating has been worked out by BsERKNES and
others who found that as long as the decrements are small the
following relation obtains:

NE? 1 .
16/°Ls* dada(ds + ) @

In this equation J,... is the maximum possible value of cur-
rent read by a hot wire instrument in the antenna circuit.

N is the number of condenser discharges per second.

E is the maximum value of the e.m.f. induced in the antenna
circuit. Lj is the inductance of the antenna circuit in henrys,
f is the frequency and d; and d, the logarithmic decrements in
the primary and antenna circuits per full period.

Eo = 21rfﬂl]1 = me
Il = 27!‘fClE1 = wClEl
o Eo = w21M01E1 and E02 = w4M2012E12 = w4k2‘1L2012E12

Jmaz.2 =

2
..‘Ilioi = il C’E\? = 'k?C1Ca K,
g = N ATPOCER  4nYOCER o
. 16f3 dldz(dl + dz) 1d2(d1 + d2)
Similarly,
af2l.207 ]
Jma,a:.2 = 21'{ @E(/ 102E (9)
2

In the case of sustained primary power.

The maximum instantaneous value of the antenna current is
from (45) remembering that in these equations the decrements
per full period is used.

max 4 6 maz
Ip = Tresl 80y Jneel gy, (10)
The maximum instantaneous value of the antenna voltage is
. _ da
E, = oCs (11)

Numerical Examples.—Union College small set.
E; = 5000 volts

120

C, = 101 farads
12

Cz = im farads

N = 500
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A=700m.; ..f=04310°
b= 0,056, = 010k = 010 . dids(ds +ds) = 10,
5
Tae.? = 50,000 0.43 100 22X 120 50100 6 01 10° _ o
102 75
‘. Jmaz. = 4.5
and 2 4 X20 6 J—
Ir = 2X200.43 100 x 0.10 = 1375
or I, = 37 amp.
10
o L % 10% 500 o 37 — 11,400 volts.

"~ 27 0.43 10° 12
BserkNEs has shown how with a slight modification equation
(6) can be used to determine the decrement of the secondary
circuit which may, for instance, be the antenna circuit by means
of a third tuned circuit which is called a wave meter:
This expression is:
5+ 6, = 2r (1—)2) 12)
Ao
where 6 is the decrement of the circuit being tested and &, is
the decrement of the meter.
The formula is limited as is the case of equation (6) to the

condition that
J 2
J? =
Jr and J being the effective values of the current in the wave
meter.
It is also limited to the condition
that both § and §; are small and @l——%@
that 8, is considerably smaller than w
8 and that finally \; and \; do not
differ more than, say, 5 per cent. %
Referring to Fig. 156, W is the
wave meter which is a calebrated
closed circuit of known inductance,
capacity and therefore of known ,
natural period. The resistance is Fra. 156.
made aslow as possible so that the decrement of the meter is small.
The value of the current or the (current)? is frequently deter-
mined by means of a low resistance heating element, actually a

thermal couple, which supplies a direet current to a galva-
nometer G.
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In that case the galvanometer deflection is obviously pro-
portional to the square of the current value.

The procedure is as follows. The meter is loosely coupled to
the antenna and the capacity of the wave meter is varied until
the largest galvanometer deflection G, is obtained and the
corresponding wave length X, is read.

Then the capacity is changed so that the deflection of the
GT
2
We have then from (12)

5+51=27r(1—;\\—1)-
0

galvonometer is — when the meter reads shorter wave length.

To determine the decrement of the meter it is desirable to
insert in the meter circuit such non-inductive resistance that at
resonance, that is when the wave meter reads o, the galvanom-

eter deflection is (;’—-

The capacity is then varied until the galvanometer deflection

is % when the wave length is ..

We have then if §, is the decrement due to the added resistance,

L Az

b+ 61+ b = 20 (1 M)

. _ A A\ A o— Ay
..62—271'(1 )\—> 271'(1 )\>—27r

0 0 )\0

It has been shown in equation (8) that the relation between
the effective values of the resonance current with different
decrements are related as follows:

J2_ dhd(d A+ dy)

2 duds (do A ds)

In our case
J? G,
Ji=g =2
2

d’y = 6 = decrement of the antenna.
d’s = &; 4+ 8, = decrement of the wave meter in second
test.

d; = 6 = decrement of the antenna.
ds = 6; = decrement of the meter in the first test.
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ing antenna, X the wave length and r the distance between h,
and hz.

In order to be applicable to wireless transmission this formula
needs to be elaborated in several respects.

(a) The voltage is actually greater due to the concentration
of energy as the waves sweep over the surface of the earth.

(b) The voltage is smaller on account of the energy which
strays away from the curvature even if the surface of the earth
is assumed to be perfect of conductivity.

(¢) The voltage is reduced on account of the energy absorption
of the earth current which effect is prominent near the sending
conductor where the concentration of current is greatest.

(d) The voltage is sometimes increased, but more often re-
duced, due to reflection, absorption, ete., depending upon the
condition of the atmosphere.

Fia. 157.

Conditions (¢) and (d) have not been studied theoretically,
but a considerable amount of data has been given from actual
tests, notably by Austin and FUuLLER.!

The Effect of the Curvature of the Earth.—Assume that the
sending antenna is at A and the receiving antenna at B, Fig.
157.

The distance between A and B is 7%3 In the case of a plane

wave the receiving antenna for the same distance would then be
at C where,

™
A—C-—ER.

Thus in this latter case the energy would be spread over a

1AusTIN, Bulletin, Bureau Standards, 1914.
FuLLER, Proc., A. 1. E. E,, April, 1915.
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AUsTIN’s experiments indicate, however, that with continuous
waves this coefficient is:

0.0915r
kl = € VA
and FUrLLER’S experiments show )
0.0045r
T anan

kl = J
AvusTIN’s equation gives values which lie between ZENNECK’S
and FuLLER’s and has the advantage of being simpler than the
other two.
Thus the general formula for continuous waves becomes:
By = bk 1201riz)1h2a1 )

Note, however, that in equation (4) the dimensions are ex-
pressed in kilometers.
The maximum value of the antenna current in the case of

sustained oscillations is evidently I, = 1] where R, is the total
2

R
resistance of the antenna that is the radiation resistance, the
effective resistance, ground resistance, and resistance of the
receiving device.
1207k, kol (6)

AR

The equation or the current in the case of damped oscillations
is slightly different.

It has been shown that if an e.m.f., E,, is impressed on a tuned
circuit the following relations obtain:

NE?

T2 = {6 Lo tdds? (@, da) @)
where F, is the voltage induced, which in our case is F,. d; and
ds are the decrements in the two circuits.

Thus d, and d, are in this case the decrements of the sending
and receiving circuits respectively.
Equation (7) may be written:
Tut = NEy?

16f3L5%d1dy? (1 + é)
ds
But the decrement of the receiving antenna is

R
&= 5o
]v.Elz2 _ ATg2I12 .
di) 2 @
4fR22d1(1 + 3;) 4R 2d, (1 . d)

S Iy = kky

'. J22 =

)









APPENDIX I

Partial Differentiation.—The complete differential of a func-
tion V of several independent variables r, ¢, 0 is recalled to be:

dV—~dr+‘3—Kd¢+~do (1)

In words this equation reads: The total differential of V is
the sum of the partial differentials of V with respect to the

. . oV . .. .
independent variables. oy Ineaning the derivative of V with

respect to 7 when ¢ and 6 are considered constant.

If the independent variables r, ¢, and ¢ are some functions of
a single other variables ¢ the derivative of V with respect to ¢
is obtained by simply dividing equation (1) by dt.

Thus: dV. oV dr  dV dp 9V db

d “or di Vg da Too @)

If the independent variables r, ¢ and ¢ are functions of several
other independent variables, for instance z, y, 2, then the partial
derivative of V with respect to z is obtained in a similar way by
dividing the equation by dz, remembering, however, that now

av . . .. . av
% is the partial derivative and should be written Fru

Thus dV _aV ar  aV dp OV a8

or  or oz dp oz ' 90 ox @)

Similarly av. oV or + aV o av ae @
é)y oo ay By a6 6y

and oV aV ar aV aV a0 )

9z  ar 9z ' d¢ az a9 oz

The second partial derivative of ¥V with respect to z is obvi-
ously obtained from (3) as follows:

3tV oV o  ar 9 dV 9% . d¢ 9 GV)
o = ar a;ﬁs;az(_) T 90 ox i
oV 9% 06 0 (6V

* 90 oz T oz oz ae) ()
319
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V= F(TO‘P)) = fl(xyz)l 0 = fZ(xyz)y Y = f;(.’l;yz),
OV _ AV or L Vo0 aV dp

dr  or oz 90 dx ' dp oz
v av o  ar a oV oV 820 09 4 dV
o e e + )

30 dx* ' dx dx\a0
AV 9% dp d AV
T do dx? T o ax<a¢>

But
A R G T O I
dr? dxr =~ 90rdf dx = Jrde ox
d VN 8V ar | 9V 80 | 8V de
o e 3099 9z
aVY\ _ aV ar | 8V a0 | 9V de
Gl e 1 o006 0z T 3g? u

.oV _ oV a%r oV 920 oV 9%

"t oz ar oz | 90 oz ' e dx?
OV or\2 . 0%V [0\? . 9%V 3¢\ 2

T o <éx) T o2 (a&i) + 9p? (ax)

202V 9dr a0 20%V or do 202V 90 d¢
T 5000 93 93 T orog oz oz | 969 3z Oz

. . v .9V
Similar expressions can be gotten for v and o

otV 8V | 9V 8V /8% a%r | o¥r
T

o2 Yoy T o T e

ax? ' oy ' 922
oV (320 | 0% | 9%\ . dV (0% , 0% , 8V
( ) + o0 o )

- - p — -— —_— - w —
a0 \ox* ' 9y? + 9z g \0x? + dy? + dz?

+5al 60+ @)+ G 1+ %G+ G) G ]

+

+

+

V09 (00)? (29) il 2RV 60 67 61
6¢2[<6x)' + <6Q) + (az + araolox ax + dy oy
or 001 | 90V for dp | ar Do | b de]
0z 0z drdeldx dxr = 9oy 9y = 0z 0z

2d2V[69 d , 80 9p , 30 3_99]

0000l ox dx ' oy dy ' 9z 9z

but in the spherical coordinate system,

r = (x® + y2 + 2»)*, 6 = arc tan

and ¢ = arc tan g

NCET,
4


















APPENDIX II

Elements of Vector Analysis.—Physical quantities can be
divided into two large and important classes, namely: scalars
and vectors.

A scalar quantity is one that is absolutely determined by its
magnitude. Thus temperature, work, etc., are scalars.

A vector quantity may be defined as one having magnitude,
sense and direction and it is necessary to specify these three in
order to determine a vector. Velocities and accelerations are
examples of vector quantities; forces are strictly not vectors,
since they are characterized not only by their magnitude, sense
and direction but also by the point of application, while vectors
do not have definite position in space. However, forces can
be treated as vectors when proper account is taken of this
difference.

Addition and Subtraction of Vectors.—Vectors are added or
subtracted by the well-known parallelogram law:

Thus d
a+b=c
and
c—b=a. c = "
Vectors follow the associative and com- /,// .
mutative laws of algebra, and hence very =< \
little explanation is necessary as to the \
addition of vectors. P s
Fia. 161.

The sum of three vectors a, b and 4 is

given by the diagonal mn as ‘shown  in Fig. 161.
Products of Vectors.—There are two kinds of vector products:
I. The dot product which is defined as,

adotb a- b = ab cos (a, b)

where a and b are the two vectors to be multiplied together,
and a and b are the numerical values of the vectors.
I1. The cross product which is defined as:
acrossb = a X b = eabsin (a, b),
) D7
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where e denotes that the product is a vector. It is the unit
vector perpendicular to the plane formed by @ and b.

The above names have been introduced by Wrmrarp Gisss
and they are used principally by American writers.

The reader is familiar with the resolution of vectors into com-
ponents which can be treated according to the laws of ordinary
algebra. The great advantage of vector analysis is that it deals
with vectors directly. It is found useful, however, to resolve
vectors into their components and in such case a vector g is
defined in terms of its magnitude along any direction, say =z,
times a unit vector 7 along z.

For convenience rectangular codrdinates are used and the
unit vector along the z-axis is denoted by 7, the unit vector along
the y-axis is denoted by j and the unit vector along the z-axis
by k.

Thus a =a;i + a,j + a.k
and a=Va’'+a’+a?
also

a=a(icosa + jcosp + k cosy)

where o, f and v are the direction cosines.
Now it will be easily seen from the definition of the dot product
that:

1-72=1 1:7=0
j-i=1 i-k=0
E-k=1 j-k=20
a-a= a?

It is also clear that the condition of perpendicularity of two
vectors is that their dot product shall be zero.

The dot product is also called (by HamiLToN)
the scalar product, because the product is a
scalar. The cross product is called the vector
product, because it is a vector.

a X b gives a vector ¢, Fig. 162, whose mag-
nitude is (ab) sin (a, b), its direction is along
® the normal to the plane of the vectors a and b,

and finally the sense of ¢ is taken so that as one
goes from a to b he follows a right-hand screw. In other words
from a to b we follow the threads of a corkscrew whose direction
of progress determines the sense of b. This is, of course, the well-

e

a

Fra. 162.
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Now it will be noticed that in the last exercise, a2, 4+ a2, + a,?
is simply equal to a - a.

Thus:
First term =a-a
Second term =b-b
Third term = (a-b)?
= (ab cos a)?
where =<£ab

so that ]q ><13| V- a)(b-b) — (abcos a)?

c=aXb= \/a2b2 — a??cos? o
= ab \/1 — oS «
= gbsin «

The product of a X b, must be the normal to the plane of the
vectors a and b is seen as follows: Assume c to be the vector and
finda-¢c=a.- (@ XD)

also b:c=b. (aXDb)
Multiplying these out in the ordinary way we find

a-g=0 bc=0,
i.e., ac cos (a,¢c) = 0
beeos (b,c) =0

which is satisfied when ¢ is normal to the plane ab.

The above are intended to cover the very small part of vector
analysis used in this book. For further information the reader
should consult special treatises written on the subject.

Heavisipes’ ‘Electromagnetic Theory;” AsramaM and
ForpL’s “Theory of Electricity and Magnetism’’ can be recom-
mended highly.

An excellent short treatise on the subject is ‘“Elements of
Vector Analysis” by BuraLLi-Forti and R. MarrOLONGO, and
a somewhat larger work is that of WmwLarp Gisss, edited by
WiLson. Finally Corrin’s ““Vector Analysis” may be men-
tioned among works of reference, it appears indeed as best suited
for the introduction to vector analysis.
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H

Hertz's oscillator, 284
Hysteresis loop, 56

1

Images, method of, 168
Inductance, 11

of air coil, 36

of concentric cables, 97
Inductances, combined, 37
Inductive circuit containing iron, 62

K
Kelvin, 273
L

Lame's differential parameter, 185
Laplace’s equation, 188, 320
Legendre’s coefficient, 188
function, 189
Leyden jars, 72
Linear differential equations, 3
Line charge, 218
integrai, 163
Logarithmic decrement, 295

M

Magnetic field, energy of, 263
energy stored in, 8
intensity, 290
po‘ential, 180

and current, 183, 184
shell, 181

Marconi, 292

Maxwell’s coefficient, 232, 263

Metallic spheres, 169

Mutual induction, 33
imperfect, 51
perfect, 37

(0]

Oblate ellipsoid, potential distribu-
tion, 21

P

Partial differentiation, 319
fractions, 21

INDEX

Poisson’s equation, 187
Potential, 162
distribution  between
charge and plane, 171
between two spheres, 175
gradient, 164, 165
of small magnet, 180
outside of thin circular dise, 197
Power factor, 295
received, 317

R

point

Radiated energy, 290
Radiation, 278
resistance, 292
Receiving station, 313
S
Short-circuited winding, current in,
54
Short-circuit suddenly opened, 84
Shunt motor self excited, 16
Skin effect, 271
Solenoidal field, 186
Solid angle, 183
Step-by-step method, 66
Stoke’s theorem, 258
Surface density, 170
integral of distributed vector,
158
Symbolic factors, 89

T

Three-phase cable, 243
Three-phase line, 249
Tuned circuit, 80 -

Two conductor cables, 237

U
Unit charge and unit pole, 157
\Y

Vector analysis, 327
Velocity of propagation, 121-132

W

Wave lengths, 121-132
Weber’s equation, 182
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