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PREFACE

THE author’s aim has been to produce a book suitable to the
beginner who wishes to acquire a sound knowledge of the more
elementary parts of the subject, and also sufficient for the
candidate for a mathematical scholarship. The syllabus for
Honour Moderations at Oxford has been taken as a maximum
limit.

The main principles observed in its construction are: (1) to
utilize the previous knowledge of the student; (2) to make the
subject self-dependent; (3) to arrange the bookwork in such
logical order that any portion can be readily found; (4) to
illustrate difficulties by worked-out problems, each selected with
a definite object; (5) to graduate the exercises and to select
only those which can be done by the preceding bookwork.
The solutions of illustrative examples are not always the most
elegant possible; the probable capacity of the student at cach
stage has been carefully considered.

During twelve years’ daily experience of teaching this sub-
jeet the author has noted the difficulties common to students.
For example, the average student has no idea of ‘the form of
an equation ': thus, asked to find the equation of a Yine through
a given point perpendicular to a given line, he begins, ‘Let
y=ma +c¢ be the line, then its “m”’, &c., whereas, if he had
a clear understanding of form, he would readily write such an
equation down.

In order to give the reader confidence in analytical methods,
familiar properties are used as illustrations and well-known
facts are noted wherever they arise naturally out of the analysis.
Thus the circle is fully dealt with; methods and ideas are
thereby illustrated earlier than usual. A large number of
exercises are given in this part of the work so that the pupil
can make the foundations sure; the reader with special mathe-
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4 PREFACE

matical ability can omit many of these. Some of the work on
the circle, especially that dealing with the circles of the triangle
is, the author believes, new.

The author has tried to avoid obtaining analytical results by
quoting geometrical results with which the reader may be
acquainted in Geometrical Conics. This process makes some
pupils lose confidence in Analytical Geometry; others welcome
it as a dodge enabling them to avoid a real understanding of
the principles of the subject; in either case the result is bad.
All properties of the conic are developed by analytical processes
following on definitions. Thus, for instance, the equation of
the axes of the general conie, either in Cartesian or Areal
coordinates, is obtained from the simple definition of an axis
as a straight line about which the conic is symmetrical : the
foci are subsequently shown to lie on the axes. This equation
of the axes is rot deduced from those giving the foei by making
the statement that the foci lie on the axes, a statement which,
most probably, the reader would fail to justify except by an
appeal to Geometrical Conics.

Briefly, this book attempts to answer the question, ¢ What do
the general equations of the first and second degree represent 22
rather than, ¢ What equations represent certain known curves?’
The chapter on the circle, however, comes before the general
discussion of the equation of the sccond degree; the purpose
being to familiarize the student with the work before the more
serious attack, and to cater for those examinations which limit
their syllabus to the line and circle.

A few details may be noted : abridged notation is insisted upon
as probably the best introduction to quite general coordinates.

The author’s treatment of the parabola v/az + +/by=1isoriginal.
and will, he hopes, commend itself to teachers who have realized
the difficulties boys find with the usual work. Parametric co-
ordinates are given their rightful prominence. In the first draft
of this book point and line coordinates were treated concurrently :
convinced, however, of the relative importance of the former, the
author changed his scheme: it is hoped that the introductory
chapter on line coordinates will prove useful. Special care has
been given to the introduction of imaginary points, points at
infinity, and the line at infinity. The last chapter is devoted
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PREFACE 5

to Areal coordinates, and here tangential equations are freely
used ; many of the proofs given are new.

The author’s first and unlimited thanks are to Mr. A. E. Jollifte,
M.A,, Fellow and Tutor of Corpus Christi College, Oxford : when-
ever a difficulty, either of arrangement or of method, has arisen
he has given most helpful advice, and it is largely due to his aid
and encouragement that this work has been completed.

Mr. Jolliffe also read through and thoroughly criticized both
the manuscript and the proofs. The author is entirely responsible
for the formn and accuracy of the work, but it is right to state
that Mr. Jolliffe most generously placed a quantity of his own
work at the author’s disposal; thus the practical methods of
drawing conics and some of the best paragraphs in the later
chapters are adapted from his manuscript. Chapter IV was
inserted at his suggestion, and he kindly submitted this part
of the work to other mathematical authorities for their criticism.

Mr. P. H. Wykes, M.A., spent much time and care reading the
manuscript, and his suggestions were often adopted.

Miss Isabella Thwaites, scholar of Girton College, Cambridge,
and Mr. W. E. Paterson, M.A., have kindly read the proofs.

The author is glad also to recognize the unfailing courtesy
and kindness extended to him by the Clarendon Press.

The author hopes he has produced a book that will not only
make the subject interesting to schoolboys, but will be a valuable
companion to which later on the undergraduate will often refer
and from which he will not readily part.

A.C.J.
Brapvrorp, 1912.






CONTENTS

CHAPTER I
Tue Point

CHAPTER 11
THE EquaTIioN oF THE First DEGREE

CHAPTER III
Equarions or Hicuer DEGREEs. CHANGE oF AXEs

CHAPTER IV
AxavyricaL NoratioN, A Revision ANpD EXTENSION
CHAPTER V
THE CIRCLE
CHAPTER VI

Tue GeENERAL EquarioN or Tuk SEcCOND DEGREE .
L[]

CHAPTER VII
Tue PAraBOLA

CHAPTER VIII

CENTRAL Conics. Tue Ervipse axp THE HyPERBOLA

CHAPTER IX
Porar CooRDINATES

CHAPTER X
Lixe CoorRDINATES AND TANGENTIAL EQUATIONS

CHAPTER XI
MiscELLANEOUS THEOREMS

CHAPTER XII
TRILINEAR AND AREAL COORDINATES

ANSWERS

INDEX

PAGE

28

84

116

126

222

257

303

378

390






CHAPTER 1
THE POINT

§ 1. Tue method of algebraical analysis involves three distinct
processes :-—

(@) The conditions of a geometrical problem are represented by

algebraical expressions and equations.

(b) The processes of algebra are applied to these expressions and

equations to obtain new results.

(¢) These new results are translated back into geometrical lan-

guage.

The object of the bookwork given is to enable the student to
perform readily the first and third operations. The tendency in this
subject is to lose sight of the geometrical significance: the student
should take the greatest pains to acquire the habit of connecting
evéry algebraical detail with its geometrical interpretation.

One of the most eclementary relations between Geometry and
Algebra is the expression for the area of a rectangle. The number
of square units in the area of a rectangle, whose sides are a and ¥
units of length respectively, is the product ab. The algebraical ex-
pression ab may thus be said to represent the geometrical quantity,
the area of a rectangle.

Algebraical proofs of the propositions in Euclid, Bk. II, are based
on this idea. The logic of the process is here illustrated.

2 b A c B

A P B
2b <3

JAf a straight line be divided into any two parts the square on the
whole lime s equal to the sum of the squares on the two parts, together
with twice the rectangle contained by the two parts.
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If AB is the straight line divided at C, let AC, CB be a and b
units of length respectively.

(@) The area of the square on AB is represented algebraically by
the product (a+b) x (a +b).

(®) Now (a+0b)x(a+b) = (a+D)?

= a®+b*+2ab.

(¢) But this result represents the square on AC+ the square on
CB + twice the rectangle contained by AC and CB.

Hence ‘the square on AB is equal to’, &e.

The algebraical idea of sign is represented geometrically by direc-
tion; thus if the length of CB measured from C to B is +b, the
length measured from B to Cis —0.

(i) (ii)

Thus in Fig. (i) 4B is of length (« +b), in Fig. (ii) of length (¢ —b).
The absence of this idea in Euclid accounts for the number of pairs
of propositions which are algebraically equivalent: e.g. II. 4 and
II. 7; II. 6 and II. 6; II. 12 and II. 13.

For instance, in the example given above, it 0 were negative
proposition IL. 7 is derived. Using Fig. (ii) '

(«) The square on AB is represented by (a—0) (¢ —D).

(0) (a—b)? = a*+b*—2ab.

(¢) This represents the sum of the squares on AC and BC less
twice the rectangle contained by AC and BC.

The drawing of graphs is a further useful step towards connecting
the subjects of Geometry and Algebra. Graph drawing is now taught
in all schools, and we assume that the reader has some knowledge
of the process.

§ 2. Cartesian Coordinates. Rectangular and Oblique Axes.

The position of a point P in a plane is indicated by its distances
measured in fixed directions from two chosen intersecting straight
lines Ox, Oy (the coordinate axes or axes of reference); the axes
are called rectangular when Oz, Oy are perpendicular, otherwise
oblique. In both cases, if PN be drawn parallel to Oy (the axis of y),
the lengths ON, NP are called the # and y coordinates. Thus, if
ON = h and NP =k, P is the point (, k).

The same convention with regard to sign is made as in trigo-
nometry: lines measured upwards (NP) are positive, downwards (N"P’)
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negative, and again to the right (ON) positive, to the left (ON’)
negative : e.g. the point P’ is (—a, —0b) where ON'=a and
N'P'=10. The angle x0y is usually called w.

P(hk) hk)

N' N'
’ 0 N X 0 N 53

P'(-a-b) P(-a-b)

The z-coordinate of a point is called its abscissa, the y-coordinate
its ordinate. 'We shall refer to ‘the point P whose coordinates are
a, b’ as ‘the point P(a, D)’.

Note. In the majority of problems it 13 more convenient to use rect-
angular axes, especially when the lengths of lines or the magnitude of
angles (i.e. metrical properties) are involved, because the expressions for
these quantities are much simpler when w is a right angle : it may happen,
howcvcr, that the solution of a problem is so much simplified in other
ways by the use of oblique axes that the inconvenience due to the wore
clumsy formulae is outweighed; consecquently the student should make
himself familiar with the formulae in the more general case. It may be
well to note here that as a rule the student has free choice of axes of
reference in any problem; the first step is to decide what lines in the
figure will make the most convenient axes of reference, the only 1estriction
being that they must be fixed ; a variable line must not be chosen for an
axis nor a variable point for origin.

§ 8. Polar Coordinates.

P(v.0)

\
JO
¥
o> \
(‘D

O(pole) z

The position of a point P is indicated by

(i) its distance OP (r) from a fixed point O, called the pole,

(ii) the angle (6) which OP (the radius vector) makes with a fixed
axis OZ.
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When 0 is positive, to find the position of P, the radius vector
must start from the position 0Z and revolve about O in a direction
opposite to that of the hands of a clock through the angle 6; the
distance r, if positive, is measured along this radius from O0; if
negative, in the opposite direction. It should be noted that with
this convention of sign the points indicated by (r, 6), (—r», 7w+ 0),
(=7, —7+0), (r, 0—27) are identical.

§ 4. The polar coordinates of a point referred to the line OZ are
connected by simple relations with the Cartesian coordinates referred
to rectanqular axes through O, along and perpendicular to OZ.

Y
PeE)
1] Y4
0 N X
Let P be the point (1, 0) or (v, y):
then = ON =7 cos 0; y= NP— r sin 0.

1Y

Conversely » = Vz?+y*; and 0 = tan™! 92"

Thus with these lines of refercnce the graphs of

2=2y—1 and 7 cos§=2rsin -1
are identical.

Examples I a.

1. With rectangular axes mark the positions of the points (2, 1'5), (0, 3),
(4,0), (8 —8)(—2,4.5). Note graphically that they are collinear. Wha,t
equation do they all satisfy ?

2. With axes inclined at 120°, note the positions of the points (0, 0),
6, 1), (-2, —8),(5,4), (2, —1) (-8, 4).

Which of these points are collinear ?

3. Mark the positions of the following points:—

(a, §7), (@, §7), (@, —}7), (—a, —}m),
and find their Cartesian coordinates referred to rectangular axes through
the pole, one of which coincides with the polar axis.
4. Find the polar coordinates, referred to Oz, of the following points,
whose Cartesian coordinates referred to rectangular axes are:-—

(3,4), (5, 5), (2v/3,2)(~2v3, 2), (-2+/3, -2), (2V3, -2).
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5. The sides of a square are 4 units long; choose coordinate axes so as
to make the coordinates of the corners as symmetrical as possible, and
state their coordinates.

6. The sides of a parallelogram are 4 and 6 units of length; find the
coordinates of its corners referred to suitable axes.

7. The diagonals of a rhombus are 2 and 4 units of length; find the
coordinates of its corners referred to suitable rectangular axes.

8. Draw the graphs of (i) x =4, (il) y =38, (iii) z =y, (iv) x+a =0,
(v) y =4z, (vi) z+y = 0, referred to (a) rectangular, (b) oblique axes.

9. Draw graphs of (i) » cos 8 =1, (ii) »sin +2 =0, (iii) 3»—sec § =0,
(iv) 8 = &m, (v) 2r+5 cosec § = 0.

10. The polar coordinates of a point are (e, &), its Cartesian coordinates
referred to rectangular axes through the pole, the z-axis making an
angle 30° with the polar axis, are (x, y) : prove

(i) «*+y-=a®; (ii) tan & = (y/3+2)/(x4/3—y).

§ 6. To find the distance between two points whose coordinates are
given.

1. Cartesian Coordinates, Oblique axes.

P(ax. ,y.)

(x2Y2)

Let the points be P (xy, y,) and @ (4, ,). Draw PN, QMM parallel
to Oy, and QL parallel to Ox.

then LPIQ =7—w; QL=0N-0M = r —uz,.
LP= NP—MQ =y, ~y,;
therefore in the triangle PLQ, PQ* = LI+ QL2—2 L. QI cos PLQ.
PQ? = (11 —2,)* + (Y1 = Yo)* + 2 (2 —70) (31— 9.) cos o,
or 1Q = v {(xy— )" + (n—y)+2 (0= 2,) (1 —1) cos w).

Note i. When the axes are rectangular, since o = 1,

PQ = v/ (2, —ay) + (s, —yg)")
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Note if. If the point P (z, y) is always at a distance ¢ from a fixed point
(@, b), then the coordinates of P always satisfy the equation

(x—a)?+(y—b)'+2(x—a)(y—b)cos w = ¢?
(oblique axes) and (z—a)?+ (y—b)?=c? (rectangular axes). The equations

therefore represent a circle whose centre is the point (e, b), and whose
radius is c.

I1. Polar Coordinates.

P(ri.61)

~.

Q(r2,62)

0 z

Let the points be P(r), 6,) and @ (1, 0,), then the ZP0Q =0, 4,,

and from the triangle POQ
PQ? = r2+r,2=2rr, cos (6, —0,),

or PQ = V{r2+r%-2rr, cos (0,—0,)).

Note. If the point (r, 6) moves so as to be always a distance ¢ from
the point (a, &), then its coordinates satisfy the equation

r2+a*—2ra cos (0—x) = ¢?,

which equation therefore represents in polar coordinates the circle
whose centre is (@, &) and whose radius is ¢.

§ 8. To find the coordinates of a point which divides the distance
between two given points in a given ratio.

y

QX202
R(x

P(IU

The method and result are the same for rectangular and oblique
axes.
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Let the given points be P(z,y,) and Q(ry,), and let the point
R (z, y) divide P internally in the ratio 7:m.
Now draw PL, QM, RN parallel to Oy,

then PR _ LN e U _z—a
RQ™NM' ~““m rp—zx
leg—lr = mx—mz,.

_ Bt ma,
T ol+m
By drawing parallels through P, @, R to Oz, we can show similarly
that y=tetmn
l+m } o
) . rlr,+ mx ly, +my '
Ris th 22 e W2 TR,
Hence 12 is the pomt( Tm I )

Notei. The mid-point of PQ is [L(x, +x,), (v, +1,)]-

Note ii. \When the point R lies outside PQ, i.e. when it divides PQ
externally in the ratio //m, this ratio must be considered negative, and m
written negative in the result.i For in the ratio PR/RQ the length RQ is
measured in the opposite direction to the length PR.

Note iii. If the points C, D divide a straight line 4B internally and
externally in the same ratio, the points CD are said to he Harmonic conju-
gates of A, I3 also the four points 4, B, C, D are said to form a Hairmonic
Range. From Note (ii) it follows that the points

(et ) (L )
l+m ° 1+m /)’ l-m ’ I-m
are harmonic conjugates of the points (zy, y,), (x,, y,), and these four points
form a harmonic range.

Note iv. If (x, ) is a point dividing the distance between P (x,, y,),

Q (x4, ¥,) in the ratio 7: m, we have shown that

L _r—z _y-un
mo - -y
This is true for all values of the ratio 7 : m provnided the point (z, y) is on
the line PQ. Therefore, provided (, y) is on the straight line joining P, @,
its coordinates satisfy the equation

% Y-
=T Yo=Y’
or ® (Y —ys) —y (r,— %) + 2y, — 2y, = 0:

this equation is then the condition that the point (, y) should lie on the
straight line PQ,'and is called the equation of the straight line PQ.

Note v. An investigation of the problem in this paragraph in the case
of polar coordinates will well illustrate how inconvenient a particular
system of coordinates may be in any special case.
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Illustrative Examples.

Ex. 1. The base of a lriangle is fixed and its vertex moves alony
a fixed straight line : find the locus of its centroid.

Take the fixed base produced as axis of z and the given fixed line as axis
of y. Let the coordinates of the fixed points B, C be (I, 0), (n, 0), and sup-
pose the variable vertex is (0, A).

The coordinates of E, the mid point of BC, are {} (Z+m), 0}.

The coordinates of G which divides AF in the ratio2:1are {3 (I + m), 3 A}.

Hence for all positions of 4, the x-coordinate of ¢ is constant and equal
to ¥ (I +m), i.e. G lies on the line* « = % (! +m), which is parallel to the
y-axis, i.e. to the given fixed straight line.

Ex. 2. Show that the points P (2, —4), Q(4, —2), R (7, 1) lie
on a straight line, and find (1) the ratio PQ : QR, (ii) the harmonic
conjugate of @ with respect to I and I.

If @ lies om the line PR, its coordinates must be of the form
(724 2m (_—4_7)}}
U l+m ° l4m )’

if Z!ﬂ' = 4, then 37 == 2.
{+m

I—4m
L+ m
i.e. Qlieson PR, and PQ: QR =2:3.
The harmonic conjugate of Q with respect to /2 and R divides PR in the
ratio 2 —3; its coordinates are therefure
(11-6 2412)

i tie

3

Also if

= =2, then 37 =2,

ie {8 —14}.

* The abbreviation ‘the hne . . ." is used throughout for ‘the hine whose
equation is. ..
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Examples 1Ib.

(The axes are rectangular unless otherwise stated.)

1. Find the coordinates of the centroid of the triangle whose vertices
are (1, 8), (=38, 7), (5, —9).

2. Show that the points (2, 4), (2+ 4/3, 5), (2, 6) are the vertices of an
equilateral triangle.

3. Show that the point {2acos’}6, 2acos®(}w+16)} is at a constant
distance from the point (g, a) for all values of 6.

4. The distance of a point (z, ) from (12, 8) is double its distance from
(8,2). What equation must the coordinates x, y satisfy ?

5. Find an equation satisfied by the coordinates of all points distant 5
units from (4, 3).

6. Find the ratio in which the point (2, —3) divides the distance between
the points 4 (=7, 1}), B (—14, 5), and find its harmonic conjugate with
respect to 4 and B.

7. Find the coordinates of the mid-point of the line joining (4, 3) and
(=2,1). Where is its harmonic conjugate with respect to these points
situated ?

8. Straight lines are drawn from a fixed point to meet a fixed straight
line. Show that their points of trisection lie on one of two fixed straight
lines.

9. Shbw that the point (1, 53) lies on the line joining (5, 3) and (-2, 7).
In what ratio does it divide this distance ?

What is the harmonic conjugate of this point with respect to the
other two ?

10. Find the sides of the triangle whose vertices are (1, 3), (3, 1), (6, 4),
and its greatest angle.

11. Find the coordinates of the centre of gravity of five equal particles
sitnated at the points (2, 4), (-1,7), (8, 11), (=8, =5), (4, 8).

12. Find the distance of the mid-point of the line joining (¢, =b), (b, @)
from the origin.

13. Prove that the points (1, 1), (4, 4), (4, 8), (1, 5) are the corners of
a parallelogram, and find the lengths of its diagonals.

14. Prove algebraically that the joins of the mid-points of the sides of
a quadrilateral form a parallelogram. (Take the diagonals for axes.)

15. Find the condition that the points (a,, b,), (ay, b;) should lie on a
straight line through the origin. (Oblique coordinates.)

16. Find the polar coordinates of the six vertices of a regular hexagon
(side a) taking one vertex and side as pole and initial line.

17. Points X, ¥ are taken in the side BC of a triangle and in BC pro-

duced respectively so that BX:XC = BY: YC = AB:AC. Show that
XA4Y is a right angle.

1287
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§ 7. To find the area of any rectilineal figure, given the coordinates
of its vertices.

1. If A, B be the points (z,, y,), (24, ¥s), to find the area OAB.
J

B(x2y2)

Alxiyn)

/0 L' M' L M x

Let ZAOx=9,, BOx=4,; draw AL, BL’ parallel to Oy; AM, BM’
perpendicular to Ox. Then since ZAOB =0,—6,

area 0AB=10A4. OB sin (0,—0,)

=1 {OBsin 0,. 04 cos 0,—0A sin6; . OB cos 6,}
1{BM .OM—-AM.O0XM';
) {y,sin o (1,4, cos w) — ¥, sin o (£,+y, cosw) }

oy, — ) sine ;

or in determinant notation
Y I
T2 Y,

Nots. So many results in analytical geometry are simplified by the
determinant notation that the student is recommended to acquaint him-
self with it before proceeding with the subject: sufficient knowledge of
determinants for this purpose can be acquired in two or three hours.
Vide Hall and Knight's Higher Algebra, Chap. XXXIIL

Cor. If the points O, 4, B are collinear the triangle 04 B has zero area :
hence the condition that the points (0, 0), (2, ¥), (x;, ¥,) should be collinear
is xy, — 2y = 0.

This condition must be satigfied by the coordinates (z,y) of any point
on the straight line joining (0, 0) and (z,.y,): and conversely any point
whose coordinates satisfy this equation lies on this straight line. Hence
xy, -y =0 is called the equation of the straight line joining the origin
and (zy, #,).

In the above method of finding the area of the triangle 04 B no question
of sign arises, because the angle 6, is taken greater than 6, in the figure.
But when the coordinates of two points 4, B are given in a general form

I

I

area OAB =} sin v
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such as (z, ¥,) (x, ¥,), we do not know which of the angles AOx, BOz is
the greater, and the result for the area will differ in sign according to
which angle is chosen the greater in the figure,

We adopt the following convention :—

When the expression for the area of the triangle 04 B is written down,
the first term contains the z-coordinate of A. Thus 4 and B being the
I)Oints (IL‘], yl)r (xzv yﬂ)'

area OAB = 1sin w (2y, — 2y, ;

area OBA = }sin o (xy, — z,y,) ; and consequently
area 04B = —area BOA.

II. 7o find the areaw of the triangle whose vertices are (ry,¥y,),
(2, ¥g)s (%3, ¥3)-

Y

./ |

Let A BC be the points ; join 04, OB, OC, then remembering that
as drawn in the figure the area 0AC is positive and therefore
area 0C4 negative,

AABC =A0AB+AOBC+A0CA

= §sinw {(Lyy, —a0) + (L5 = 230,) + (0 — 2109
of in determinant notation
N
isinw |2, y, 1
w3 Y3 1
Note. 'This expression gives the area positively if, as we go round the

triangle in the order 4, B, C, the rotation is positive in accordance with
the convention used in trigonometry, and vice versa.

Cor.i. When the axes are rectangular the area of the triangle whose
vertices are (2, 1), (@, ), (25, 95 is

Xy yy 1
Mzl
Zy ysy 1

B2
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Cor, ii. 1If (a, y) are the coordinates of any point P on the straight line
joining the points Q(ay, y,), R(x,, y,), then the area of the triangle PQR is
zero. Hence

z y 1
x4 1) =0,
xy Yy 1
or a(yy = yg) =y (21— a3) + 21y, — a0, = 0.

This is therefore the condition that the point (x, y) should lie on the

straight line joining (@, y,) (w5, ¥;); in other words, it is the equation of this
straight line. (Cf. § 7, Cor.)

III. The method applies similarly to the area of a figure of any
number of sides. Thus a pentagon, for example :—

Area ABCDE = AOAB+ AOBC+AOCD+ AODE+ AOEA.
= § sin o {219 = oy1) + (1095 —2390) + (2394 — 2, Y,) + (Y5 — %5Y4)
+ (2,9 —21Ys); -
IV. The case when the polar coordinates (ry, 6,), (,, 6,), (3, 83) of

the vertices are given is left as an exercise for the student: the

consequent formula is of no value : particular cases should be worked
out from first principles.

§ 8. We have seen that the coordinates of a point lying on the
straight line joining two given points satisfy a certain equation, and
conversely that all points whose coordinates satisfy the equation lie
on the straight line. This straight line is called the locus of points
which satisfy the equation. _Any equation containing the variables
z and y represents a locus. To every value of z definite correspond-
ing values of y can be found, one value if y occurs only in the first
power, two values if y occur in the second power. Thus the coor-
dinates of any number of points can be found which can be indicated
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on a graph. If » is made to increase continuously, the corresponding
values of y will as a rule change continuously ; a line can be drawn
which passes through all these points, and the curve so drawn is
called the locus of the point whose coordinates satisfy the given
equation. In the present work all forms of equations of the first
and second degree are examined, and the properties of the corve-
sponding loci found. At present, when the student is asked in
examples to find ‘the equation of the locus’ of a point under given
conditions, the equation is all the answer required ; the student is
not of course at this stage expected to recognize the locus which the
equation repregents : its form can be roughly found by drawing its
graph. We may also note that when the coordinates of a point are
given in some special form, this is equivalent to giving an equation
satisfied by the coordinates (., #). Thus the point (« cosd, «sin 6),
for different values of 0, is on the locus 22+ y*> = a2

Again, points whose coordinates are of the form (cA, ¢ A) lie on
the locus ry = ¢?, whatever value A may have. The idea conveyed
by the word ‘ form’ is of the highest importance.

Illustrative Examples.

Ex. L. The joins of the mid-points of the opposite sides of a quadri-
laterad and the join of the nid-points of its diagonals bisect eacl other.

Choice of axes. It is an advantage in
this case to indicate the four vertices by
quite general coordinates: tor. if ABCD is
the quadrilateral and P, Q, R, S are the mid-
points of the sides, and (v, y,), (¥o v,),
(wy y)y (2 y,) the vertices ABCD, then,
having found the coordinates of the mid-
point of PR, those of @S follow by changing
the suffixes 1, 2, 3, 4 in cyclic order.

The coordinates of Pand R are c R 0
i@t @), L Oty {3 (et ), X4 )
Therefore those of the mid-point of PR ave
1@t xgt gt @), Yoy ya+ it g,
The same result is therefore true for the mid-point of QS.
The coordinates of L and M are similarly
3@+ ), 3 (i + .'/J)}’ {‘.13‘ (g + 2, Hyat )}
Therefore those of the mid-point of LA are
@t x a2, Y ont gt ystyd s
hence the mid-points of PR, @5, LM arc identical.
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Bx. 2. Two sides O, OR of a quadrilateral OPQR are fixed: if
the area of the quadrilateral is constant, find the equation of the locus of
the mid-point of 0Q.

Y

(xy)

0 P X

Take OP, OR as axes of x and y and let P be-the point (a, 0), I the point
(0, b). If the coordinates of the mid-point of 0Q be (x, ), those of @ are
(2, 29).

Area OPQ = }sinw.2ay = ay 8in w.

Area OQR = Lsinw.2bz = bz sin w.

Hence ay 4 bz is constant, and the equation of the locus is bx+ay = ¢,
where ¢ sin w is the area of the quadrilateral.

Ex. 3. ABCD is a parallclogram whose diagonals mect at O : if
D is any point, prove that PA? + PR2+ PC?+ PD?= AB?+ B(?+4 PO

KB(O,b) A(QM

b
_—"TC(>,0) D\(o )

We give two solutions of this question to illustrate the effect of the use
of different coordinate axes:—
(i) Take the diagonals for axes of reference; since the diagonals of
a parallelogram bisect each other, the coordinates of the vertices are
(a, 0), (0, 1), (—a, 0), (0, =b); let P be the point (x, y), then
PA'= (x—a) 4 y*+ 2y(x —a)cosw,
PB*= a®+(y—b)*+ 22 (y—b)cos v,
PC*=(z+a)+9*+2y (x+a)cosw,
PD*= o+ (y+b)*+ 22 (y +b) cos w.
. PA*+ PB*+ PC?+ ’D* = 4 (2 + 4 + 2zy cos w) + 2 (a® + b?).
=4 (@ +y°+ 22y cos w) + (a®+ 12+ 2ab cos ) + (a®+ b? ~ 2¢b cos w)
=4 P0*+ AB*+ BC".
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(i) Take lines through the intersection of the diagonals parallel and
»erpendicular to a side respectively as axes. The symmetry of the figure
sives for the vertices (&, k), (=1, k), (=h, —k), (I, —k)

PA* = (x=h)’ + (y—k)?,

PB? = (x+1)%+ (y—k)?,

PC = (z+h)"+ (y+k)},

PD* = (x—=0)2+(y+ k)%
PA*+ PB*+ PC*+ PD?* = 4(2* + y*) + 21* + 21 + 447
=4(@+ ")+ (B+1)2+ {(h—-1)*+ 442}
= 4P0"+ AB*+ BC%

Y
B(-l,k) A(h.k)

C(-h,-k) Dil-k)

Examples I c.

. (The axes are rectangular unless otherwise stated.)

1. Find the coordinates of the points of trisection of the straight line
joining the point I’(1, 2) to @(3, —2).

Also the coordinates of a point R dividing I’ externally so that 3I’R = QK.

2. The straight line joining the points (-2, —4),(3, 1) is divided into five
equal parts. Find the coordinates of the points of division.

3. The coordinates of three points P, @, R are (1, 1), (3, 5), and (6, 11).
Show that @ is a point lying between P and K on the straight line PI.
Find also the coordinates of a point S on the straight line between P and
R such that PQ = 3 SR.

4. Find the coordinates of the six vertices of a regular hexagon referred to
rectangular axes through its centre, one of the axes lying along a diagonal.

5. Squares are described on the sides 4B, AC, BC of a triangle right-
angled at 4. Find the coordinates of the corners of these squares and the
points of intersection of their diagonals when AB, AC are axes of reference.
AB =¢, AC=b.

6. Find the polar coordinates of the six corners of a regular hexagon,
when the centre is the pole and a diagonal the initial line.

7. Find the area of a triangle whose vertices are the points (5, 7).
(-2, =1), (0, 8).

8. Find the area of the quadrilateral whose vertices are (4, 5), (2, —6),
(_141 6)) (-5’ =7).
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9. Find the cosine of the angle which the straight line joining the points
(a, b, (a’, V') subtends at the origin.

10. The coordinate axes being inclined at 60°, prove that («, 0), (0, 2¢).
(2a, a) are the corners of an equilateral triangle.

11. The centre of a circle 15 (3, 5), one end of a diameter is (7, 8); what
are the coordinates of the other end of this diameter? Find the radius.

12. Prove analytically that the three straight lines joining the vertices of
a triangle to the mid-points of the opposite sides have one point of trisection
in common.

13. Find the coordinates of a point which is equidistant from (a, ) and
(2a. b). and whose distance from the origin is ja.

14. Find the coordinates of a point which is equidistant from (0, 0), (0, «),
and (3¢, 4a).

15. Draw the graphs of the equations (i) z =5, (il) y = — 7, and find the
distances of the point (8, 8) from them.

16. Prove that the point (@ cosé, asiné) is at the same distance from the
origin whatever value § may have.

Show that the point (a4 rcosé, b+rsinb) lies on a fixed circle whose
centre is (¢, b) whatever value 4 may have,

What equation is satisfied by coordinates of this form, @, b, and » being
fixed ?

17. Show that the distance Letween the points {a+5,0+9), {a42,b+5)
is the same for all values of « and ». Find the distance.

18. Draw the graphs of (i) 2 ~2xy +y*+2x—y =0;

(ii) rcos( + 3m) = 2.

19. The coordinates of three points A, B, C are (8,6),(7,7), (0,6); show that
they are equidistant from the point (4, 3). Find an equation satisfied by
the coordinates of any point on the circle ABC.

20. Find the distance of the point (a tan®é, 2a tané) from (e, 0), and from
the locus represented by 2+ a = 0.

What equation will the coordinatesin this form satisfy, e being a constant ?

21. Find the ratio of the distances hetween the pairs of points

(i) (asind, bcosb), (0, 0); (i1) (@ cos 8, bsin 8), {(a*—b*/a) cos 6, 0].

22. Express algebraically that the point (xy) is equidistant from (a, b)
and (~a, D).

23. What angle does the line joining (a+4/3, ) and (b, b4/3) subtend at
the origin ?

24. Write down an equation satisfied by the coordinates of a point which
moves so that the difference of its distances from two intersecting straight
lines is constant.

(Take the lines as axes: if they are inclined at 30° trace the graph of
the locus.)

25. The polar coordinates of two points are (ry, &), (5, ,): the line
through the pole bisecting the angle which they subtend at the pole meets
their join in P. Find the polar coordinates of P.

26. The distances of the collinear points P, R, @ from the origin form
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a harmonic series. If the coordinates of I, Q are (¢, 0), (b, 0), find those of
R. TDrove that P, @ divide OR internally and externally in the same ratio.

27. P and @ are two points whose coordinates are (am?, 2am), (am™?,
—2am™"), and S is the point (@, 0). Prove (i) that PSQ are collinear,
(i1) 1/8P+1/5¢) is constant for all values of m.

28. Choose the most convenient axes to represent the vertices of an
equilateral triangle .1 B¢, and find the coordinates of the centre (P) of its
circumeircle.  If @ is any point in the plane, find the ratio of

QA4 QB4 (= B(*? to P2,

29. Find the area of the triangle whose vertices are (a, 70°), (24, 40°) and
the origin.

Also of the triangle whose vertices ave (e, 107), (3¢, 40°), (5@, 100°).

30. Show that the points (a, a), (ke, —L«) subtend a right angle at the
origin. Prove also that the triangle whose vertices are (3, —2), (=5, +4),
(9, 6) is right-angled.

31. Prove that the point (¢ + @ tan?d, 2atané) is equally distant from the
point (2qa, 0), und the axis of y for all values of 6.

32. Show that the middle points of the non-parallel sides of a trapezium
and the middle points of its diagonals lie on a straight line parallel to the
parallel sides.

33. Find the cquation of the locus of a point P which moves so that the
arca of the rectangle formed by the axes and the perpendiculars from P
to them is of constant area.

34. Prove that the distance of the point (a cosd, bsin 6) from the point
(ve, 0) i 0+ ae cos 8, if a*— 0% = a%?

35, Find the condition that the coordinates of the middle point of the
straight line joining (a, b), (20, 2 «) should satisfy the equation 22 +2y = 3e.

36, Find the equation of the locus of the middle point of straight lines
drawn from a given point to any point in a given straight line.

37. In any triangle ABC, if D is the mid-point of BC, prove analytically
that AB*+ AC* = 24D+ 2 BD™

38. Find the coordinates of the centroid of the triangle ABC whose
vertices are (zy, 1), (ry, ¥), (5, ¥y), and hence prove

AB*+ BC*+ CA® = 3 (4G?+ BG* + CQY).

39. The sum of the squares on the diagonals of any quadrilateral is double
the sum of the squares on the lines joining the middle points of the
opposite sides.

40. The diagonals of a trapezium are drawn and the mid-points of the
parallel sides are joined : show analytically that there is a point common
to these straight lines which divides each of them in the same ratio.

(Take the third line and one parallel side for axes.)

41. A variable line cuts any two lines intersecting at O in the points
P, @ so that OP+ 0Q = 2I. Find the equation of the locus of its middle
point.

42. If P, Q are two points (2, ¥,), (s, ¥,), and PL, QM be drawn parallel
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to the axis of g, find the area of PQLM when (i) the axes are rectangular,
(ii) oblique.

43. P, Q, R are the points (2, ¥,), (22, ¥2), (s, ¥5), and PL, QM, RN are
drawn perpendicular to the axis of . Find the areas PLMQ, RNMQ,
PLNR, and deduce an expression for the area of the triangle PQR.

44. Show that the three points (=1, —2), (4, 1), (9,4) lie on a straight
line, and find the ratio of the distances of the second from the other two.

45. Find the condition that the point (z, y) should lie on the straight line
joining (3, 4) (-5, 2).

46. ABCD is a rectangle, P any point in the plane.

Prove PA%+ PC? = PB*+ PD?

47. The coordinates of two points P, Q are (2, 3), (10, 15).

Show that the straight line PQ passes through the origin.

Find the coordinates of a point R such that RQ = 3@ and the ratio
PR/RQ.

48. The points C, D divide the line 4B harmonically.

Show that (i) the lengths AC, AB, AD are in I . P;

(i1) if O is the mid-point of AB, 04? = 0C . 0D ;
(iii) 2/CD = 1/BD +1/AD.

49. The coordinates of four points are (1, 3), (3, 5), (4, 6), (7, 9).

(1) Prove they are collinear.

(i1) Prove they form a harmonic range.

(iii) In what ratio is the line joining the first and third divided by the
second ?

(iv) Find the equations of the straight lines joining the origirf to the
points.

(v) Find the coordinates of the points on each of these straight lines
whose abscissae are 10, and prove that these points form another harmonic
range.

50. Find the condition that the three points whose polar coordinates are
(11, 6,), (19, 8,), (75, 6;) should be collinear.

51. Find the ratio of the areas of two triangles whose angular points are

(1) (ar?, 2a), (ap?, 2ap), (0?, 2av);
(i1) {arp, aA+p)}, {apr, a(p+v)}, {ar), a(v+}) }e

52. Express algebraically that the distance of the point (z, ) from (3, 4)
is 5 units.

What is the graph of the equation ?

53. 4, B are fixed points on the axes: find the equation of the locus of
a point P such that 20P* = AP*+ BP?, given that 04 = a, OB = b.

54. Two sides of a quadrilateral OP, OR are fixed, and the diagonal 0@ is
of constant length c: find the equation of the locus of the middle point
of the join of the mid-points of the diagonals, given that OP = a, OR = b.

55, Two vertices of a triangle are (x,, 1), (,, ¥,) and the centroid is (z, y):
find the coordinates of the other vertex.

56. Find two points €, D which are harmonic conjugates of the points
A(xy, ), B(x,, y,) : if perpendiculars are drawn from the four points to the
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axis of z, prove the feet of the perpendiculars form a harmonic range.
What general propeity can you deduce from this result ?

57. ABCD is a parallelogram : show that D, a point of trisection of AC
and the mid-point of 4B, are collinear.

58. The vertices of a triangle are (acosd, bsind), (acosd+3m,
bsin§+_§;r), (acos@+4m, bsin6+4n). (i) Prove its centroid is the origin.
(i1) Find its area. (iii) If a = b show that the triangle is equilateral.

59. A straight line of length 27 has its ends on the axes of reference:
find the equation of the locus of its middle point.

Draw the graph when I=3.

60. A point Phas coordinates which satisfy the equation z+ /3y -2, =0,
and its distance from the origin is »: find the angle POx.

61. Find the distance hetween two points whose polar coordinates are
(6a %7")’ (_3v %")’

62. P is a point inside a parallelogram A BCD such that the area PBCD is
double the area PB.1D: find the equation of the locus of P.

63. A point moves so that the ratio of its distances from the points
(=a,0), (a, 0)is 2:3: find the equation of its locus.

Where does the locus meet the axis of z?

64. 4, B, C...K are n points whose coordinates are (x,, 7,), (a3, #,),
(35 Ys) +v (Tny Yn)-

AB is bisected at P, P,Cis divided at P, so that 2P, P, = P,C, I,D is
divided at P, so that 31,1, = P, D, and so on until P’,_, i is divided at P,_,

80 th:'\t (n=1) P,_yP,_, = P,_yK. Find the coordinates of P, _,.



CHAPTER 1II

THE EQUATION OF THE FIRST DEGREE

§ 1. WHeN two points on a straight line are known, the straight
line is completely determined. We have shown in Chapterl, § 6,
that the coordinates (z, y) of any point on the straight line which joins
the points (z,, ¥,), (., ¥,) satisfy the equation

(Y1 —Ya) = y (@ —25) + (B Y, —2,01) = 0,
or in determinant notation
x y 1|
x 1 ' =0,
€, ¥y 1

This equation is of the first degree in the variable coordinates (. y) :
we proceed to show conversely that every equation of the first
degree in x and y represents a straight line, or, in other words,
that every pair of values of z and y which satisfy a given equation
of the first degree represents a point on a definite straight line.

The most general form of the equation of the first degree is

Az+By+ (=0,
where the coefficients or constants of the equatior: {, B, (! ecan have
any values, positive or negative.

§ 2. The equation Ax+ By + C = 0 represents a straight line.

Method I. Let (ry, 3,), (3 ¥2), (%4 y,) be any three points whose
coordinates satisfy the equation: then

Axz,+ By, +C =0,
Ax2+B!/-_),+O= 0,
Axy+ By, +C = 0.

Eliminate the constants 4, B, and (), then
(o 1
Ty Yy 1
zy Yy 1

Hence the triangle formed by joining any three points on the locus
represented by Az+By+C =0

=0




THE EQUATION OF THE FIRST DEGREE 29

has zero area, i.e. any three points on the locus lie on a straight
lifie : the locus is therefore a straight line.

Method IL. 1f B is not zero the point (0, — 1%) satisfies the

equation Az+By+C =0,

and lies on the axis of y: it is therefore the point where the locus
represented by this equation cuts the axis of y. Let this point be @,
c

and for convenience let k = — —-

B
Clearly —-%can be positive or negative ; if due regard is paid to

the signs the following argument holds whether we take this quan-
tity positive or negative.

(a) Oblique axes. (b) Rectangular axes.

x,
P(x,y) Cy)

(v} x X
/ ) 0 (b)

Suppose P (z, y) is any other point whose coordinates satisfy
Az+By+C=0.

Join PQ and dvaw QA, PA parallel to the coordinate axes, then

) QA =2a, AP =y-k.

The given equation can be written

-4 y=k_ _4
y+ B -—Bx, or i
hence ‘%}1{= - %;

consequently for all positions of P the ratio gﬁ is constant, hence
P lies on a straight line. [Eueclid VL]
If B =0, the equation reduces to
Az+C=0,
which evidently represents a straight line parallel to the axis of y.
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Note. If k were negative and P in some other quadrant, say the fourth,

then the length of 0Qis + %, and since the y-coordinate of P is negative,

J

N xX
(0]

L
! A

the numerical value of the length NP is —y. hence the length AP is
k=(=y)=k+y and Q4 = x.

C A
But, as above, yt = p%
i ytk_ 4 q4P_ 4
he gy B

The student should go through the proof with the point I’in the other
quadrants, remembering that the general coordinates (x, y) contain the signs:
thus (x, y) might represent, for example, (-8, 4) or (-5, —6).

Cor. Let the straight line PQ make an angle 6 with the axis of «;
i.e. ZPQA =0; then ZQPA = w—6. In the triangle PQA

y 04 _sin(=0) _ B
“) AP~  singd ~— " A4°
hence sind (A cosw—B) = Asino.cos .
. e . _ Asine
Therefore tan 6 = +Adcos 0B
or () in rectangular coordinates
tang =40 _4
=0i= "B

1t should be carefully noted that the value of tand does not contain the
constant C: hence the direction of the straight line

Ar+By+C=0

is independent of C, and depends only on the ratio of the coefficients of x
and y. Hence if 4 and B are kept constant while different values are given
to C, the resulting equations will represent a series of parallel straight

lines all making an angle tan— (—g) with the axis of x: the position of

any particular line is fixed by the value of C, for this determines the
position of Q.
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Examples II a.

(The axes are rectangular except in questions marked with an asterisk.)

1. *Find the equation of the straight line joining the points (a+1, %+ 3),
(a, ).
2. *Find the equations of the straight lines joining the following pairs
of points:  (a) (1,1),(5,5); (b) (=2, 8), (=7, =9);
() (0,1),(1,0; () (0,0), (6 3);
(e) (0,0),(0,a);  (f)(0,0),(»,0)
3. *What are the equations of the coordinate axes ?
4. Draw the graphs of: Sx+4y = —12,

Szx+4y = -6,
3z +4y =0,
3z +4y =6,
3x+4y=12;

and show that the distance between each pair of consecutive lines is
the same.

5. What angles do the following lines make with the axes or a cnd y
respectively ? _
(a) y+4 V3x="1T:

) V3y-z=",
(c) x—y = -9,
d) x+y = -8 Draw these lines.

6. *If the axes of coordinates are inclined at 60°, what angles do the
following lines make with the z-axis ?
(@) y-2=0;
) ytxz=-2;
(c) Caty=1;
(d) (vV8-1y-22=1.
7. What is the equation of a straight line parallel to 2x+3y = 6 which
passes (i) through the point (0, 4) ; (ii) through the origin ?
&. Find the angle between the pairs of lines

(a) y— /3 =0,

V3y—x=0;
(b) y-f_\/_&z' = 5,
VB3y—x =1

§ 3. Some special forms of the equation of a straight line.

Special attention should be paid to the results found for rectangular
axes: as before stated, oblique axes are not often necessary in the
more elementary parts of the subject. The results for oblique axes
are, however, worked out for future reference.
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Form I. The cquation of the straight line in terms of the lengths
which it intercepts on the coordinate axcs. '

Y
B

/A / 0 D%
P

Let the straight line PQ cut the coordinate axes in 4 and B so
that 0A =a, OB=1"0. Now the points (a, 0), (0, b) are on the
straight line ; its equation therefore is

br+ ay = ab,
TLY = :
or @ +3 1. (1)

The usual convention with regard to sign must be observed ; thus
the equation of the straight it 4’8" making intercepts —4 and 3 on
the axes is —}z+3y=1.

/N.B.—This result is true for rectangular and oblique axes.

Form II. 7The cquation of the straight line in terms of the per-

pendicular on it from the origin and the angle this perpendicular makes
with the x-axis.

Nt

(Rectangular Coordinates.)

(1) ()

Let the length of the perpendicular be p and the angle made by it
with the z-axis be o This angle must be measured from Ox as
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initial line as in polar coordinates : thus the polar coordinates of the
foot of the perpendicular on the straight line are (p, x).
Let the straight line meet the axes in 4 and B.. .
Hence 04 = p sec -
OB = p cosee Q.
Therefore by (i) the equation is
) @ y
psecx | pcosecx
or T cos X+ ysinx = p. (i1)

1

e

In this form of the equation p is supposed to be positive and x to
vary from O to 27.

If the line does not lie in the positive quadrant, asin Fig. (ii), it will
be found that the signs of the intercepts are given correctly by the
signs of the sine and cosine of x : thus in the third quadrant sin x
and cos o are both negative, and the intercepts 0A, OB are both
negative.

Cor.i. In the case of oblique axes, if the perpendicular makes angles
o, B with Oz and Oy, it can be shown in exactly the same way that the
equation of the line is.xcos X+ ycos B3 = p.

Cor. ii. The general equation Aw+ By + ¢ = 0 can be put in this form.

Let A = rcosn,
‘1‘;‘; rsin X,
then 0= A%+ BY

consequently Cos X = At 7

8in X = —_i -

A+ B?
Hence @+ Ml—g —y = — —-= ('
WO LED L NV AL+ B vV AT+ B

is in the required form, if the sign of the radical is chosen so as to make
the right-hand side positive.

Note. It follows that the length of the perpendicular from the origin
to the straight line A+ By+C=0is

__ < .
VAT B

1207
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Form III. The equation of the straight line in terms of the angle
which it makes with the x-axis, and the length of the intercept on the
axis of y.

Let the angle be 0 and the intercept c.

(a) Oblique Coordinates,

Let P (x, y) be any point on the straight line, @ the point where it
cuts the y-axis; therefore 0Q = c.
Now AP =y—c, QA =2,
hence in the triangle AD7Q,
y—c sin 0
Tz sin(w—0)
or the coordinates of any point (z, ) on the straight line satisfies the
equation sin 0

Y=o —— - c.
Y sin (v —0)

Cor. The equation y = mx+c¢ represents a straight line cutting oft
a length ¢ from the axis of y and making an angle 6 with the axis of x given
by sin @ = i sin (0 — 6).

(b) Rectangular Coordinates.

Since v = 47 in this case, the

7 equation becomes y = ztan 0+,
Pt P(xy) — ) .

N and y = mz + crepresents a straight

\ line inclined at an angle tan 1m

to the axis of # and cutting oft a

Q A .

A length ¢ from the axis of y. The

% m angle 0 is that formed by a straight

/ 0\ X line starting from the initial posi-

AR tion Or and revolving in the

positive direction about 0 until it

is parallel to the given line. Thus I’’Q in the figure is the straight

line y=atan 3w +c.
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Cor. i. If the straight line make an angle 8 with the axis of y and cut
oft a length ¢ from the axis of «, its equation is

xz=ytan 6+ c, y
and conversely the equation 5
x=my+c

makes an angle tan='m with the axis of y, and
cuts off a length ¢ from the axis of x. This angle
must be measured in a similar way: a straight 0
line starting from the position Oy and revolving

in the negative direction until parallel to the given

line moves through the angle 8.

Cor. {i. The straight lines
y=rtanbic )
y=wxtan(@+ln)+d]
are evidently perpendicular to each other.
These can be written
y=wxtanb+e¢ )
y = —acot 0+([} ’
or, with the notation of this paragraph,
y=mrtc )
Y= — I + 41' ’
¥ m
Thus, for example, the straight lines
ax+by+c=0
bx—ay+d=10 }

are perpendicular.
This can be expressed otherwise thus: the straight lines

y=mr+ec }
J=mr+d
are perpendicular if mm' = —1,

or the straight lines Av+ By C = 0}

Ax+By+C =0
are perpendicular if AL+ BB =0,
It should he noted, as in § 2 of this chapter, that the direction of the lines
depends only on the ratios of the coeflicients of . and y.

Examples II b.
1. Find the equation of a straight line which passes through the origin
and makes an angle (i) 45°, (ii) 30°, (iii) 120°, with the axis of .
2. Draw the straight lines
Jetly=1,  la-ly=-1
to—ty=1, dr+iy= -1
In what points do they intersect ?
3. What angles do the straight lines x+y =2, 2 — y = 4 make with the
axis of v and with each other ?
4, Find the lengths of the perpendiculars from the origin on the stiaight
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lines 3x+4y =", Rx-5y=10, x+y+4=0, 3r-a=0, 2y-0b=0.
Draw the line in each case.
5. Find the equation of the straight line which makes intercepts on the
axes twice as long as those made by Ty —9x = 63,
6. Find the equations of the sides of an equilateral triangle referred
(i) to a pair of sides, (ii) to the bisectors of one angle as axes.
7. Two straight lines make intercepts a, b and ka, kb respectively on the
coordinate axes, Show that they are parallel.
8. Two straight lines make intercepts a, b and b, —a on the axes. Show
that they are perpendicular.
9. If the axes are inclined at 120°, what angle does x = 2y + 3 make with
the z-axis ? _
10. A straight line makes intercepts 4/3 and 1 on the axes of z and y; what
angle does it make with the axes? also if the intercepts are 54/3 and 5?
11. The angle 4 of a triangle is 75, the perpendicular from A on the
base BC is of length 3, and divides the angle 4 in the ratio 2:3. Find
the equation of BC referred to AB, AC as axes.
12. Prove that the straight lines y =32 +7, 5y =82 +35, and =0
are concurrent.
13. Put the equations (1) Sz+4y =12;
(i) 2y—x+4=0
into each of the standard forms I, IT, and 1II.
14. For what value of m are the straight lines y =32+7, y=mx+5
(i) parallel, (ii) perpendicular ?
15. Find the equations of the straight lines making an intercept® on the
axis of  and inclined at an angle 30° to y = /3.0 4 4. -
16. Draw the straight lines
(i) wcosym+ysindnr = «;
(i1) xcos §wr+ysin§mr=a;
(iil) x cos§ w+ysin 4w = a, when « = 2 and —2 regpectively.
17, Draw the lines (i) y =xtan §m+c;
' (i) y = rtanfmr +¢;
(ili) r =ytanim+ec;
when ¢ = 3 and — 3 respectively.
What intercepts does each make on the axes?
18. Show that the straight line
x+ ytan X = Jsecx
touches a fixed circle, whatever value & may have.
19. If the straight lines 3z +4my+7 =0,
3my—9x+8 =0,
are perpendicular, find the value of m.
20. Find the equation of the straight line perpendicular to
y=1x4/345
which (i) cuts off a length 4 units from the x-axis;
(i1) cuts off —4 units from the y-axis;
(iii) is distant 5 units from the origin.
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§ 4. The coefficients or constants, 4, B, and (, in the general
equation of a straight line Ar+By+( =0, involve only two
independent quantities, viz. two of the ratios A : B: C, for the
equation represents the same straight line if each term is multiplied
or divided by the same quantity.

Thus Sr4+4y+5=0,
152+20y+25=0
represent the same straight line.

We have seen that when certain pairs of conditions are given the
equation of the straight line can he formed. Thus

(«) It two points (r, 7,), (r,, ¥.) on the straight line are given, its
equation is oy 1
1= 0.
Sy Yy 1
(h) If one point and the direction of the line, i.e. the angle it
makes with some given straight line such as the axis of »

are given, the equation is of the form y = mx +c.

(¢) If the direction of the line and its distance from the origin are
given, the equation is then of the form 2 cos x+y sin x=p.
In each of these cases there are two independent constants in the
equaticn of the straight line corresponding to the two given con-
ditions.
The form Ax+ By+ (= 0 is used for a general discussion of the
straight line. Any one of the equations

l+my+1=0, (1)
r4+my+n =0, (i1)
e+ y+n=0 (iii)

represents a straight line and contains two independent constants.
No one of them, however, is suitable for a general discussion; the
first cannot represent a straight line through the origin, the second
cannot represent a straight line parallel to the axis of , the third
cannot represent a straight line parallel to the axis of 4.

It is evident then that two conditions are necessary to fix a
straight line, and further that in the cases above given these two
conditions are sufficient: we shall see later that two conditions are
not always sufficient.

When one condition (e. g. a point on the line, or the direction of
the line) is given, a relation between the constants can be found.
Thus if we know that the point (@, b) lies on the straight line, we
have Aa+Bb+C=0.
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It is then possible to find the value of one of the independent
ratios or constants in terms of the other, and the equation of the
line can be found in a form which involves only one unknown or
undetermined constant. Thus, in the example given above, since
(= —Aa— B, the equation

Az+DBy+C=0
can be written Ar+By—Aa—DBb =0,
or x—a—i—%(g/—b):().

B

R

condition is necessary in order to find the value of this constant and
so fix the equation of the straight line.

We have seen that the general equation Aw+ By+C =0 can be
made to represent any straight line by giving suitable values to the
constants. When one condition is given, and therefore only one
undetermined constant is left in the equation, the equation can no
longer be made to represent any straight line, but only one of
a definite group of straight lines. Thus, in the example given
above, the equation A (x—a)+ B (y— ) = 0 must represent one of a
group or system of straight lines all of which pass through the
point (a, b). *

which involves only the one undetermined constant A second

1
By giving definite values to the remaining constant ,; the

equation can be made to represent any one of this system of
straight lines. Hence we see that if an equation of the first
degree contains only one undetermined constant, this equation for
different values of the constant represents some definite group of
straight lines; a further condition, if sufficient, will determine any
particular line of the group. In the following work we shall lfu.r
convenience use the Greek letter u for the undetermined constant. |

Two conditions are not always sufficient to determine a straight
line. If a point on the line be given together with the condition
that the line touches a given circle, there are two straight lines
which fulfil both conditions. If a single insufficient condition like
the latter is given, it will he found that the corresponding equation
in the constants representing this condition algebraically contains
one constant in the second or a higher power, so that more than one
value of it in terms of the other constant can be found: such cases
will be fully discussed at a later stage.
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Groups or Systems of Straight Lines.

(1) Straight lines which pass through a given point (h, k).

The equation y—7% = p(r—1n) represents a straight line, and is
satisfied by the coordinates (h, k) of the given point, whatever the
value of p may he: it therefore represents for different values ot p
the system of straight lines which meet at the point (£, /).

Such an equation is said to be of a particular form: thus, for

instance, an equation of the form y = u(x—3) represents a system
of straight lines through the point (3, 0).

(i1) Straiyht lincs inclined at a given angle (x) to the X-uris.

The direction of a straight line depends only on the ratio of the
coefficients of x and . The equation y = & tan x4+ p represents for
different values of p the system of parallel straight lines which make
an angle o with Ou.

In partiéulur, 9 = mx+p represents a system of straight lines
parallel to a given straight line y = ma.

(i11) Straight lines perpendicular to a given straight line.

Let the given straight line be y = mr+c¢, then (p. 85) the equa-
tion my+a+ k= 0 represents a straight line perpendicular to it:
it therefore for different values of p represents a system of parallel
straight lines all perpendicular to the given straight line.

If the given line is «r+by+c¢ =0, the required form of the
equation is bx—ay+pu = 0.

(iv) System of straight lincs pussing througl the odterscction of the
two given straght lines Ar+By+C =0; Ax+B'y+C" =0Q.

The coordinates of the intersection of these straight lines satisfy
simultaneously both the equations

Ax+By+C=0, Az+DBy+C’ =0,

Hence they satisfy also the equation

Ax+By+C+p(Ad’x+y+C)=0.

This equation is of the first degree in » and y and represents
a straight line; it therefore represents a straight line through the
intersection of the given lines; e.g. «+ uy = 0 represents a system
of straight lines through the intersection of . =0 and y =0, i.e.
through the origin.

(v) System.of straight lines distant p from the origin.
The equation z cos &+ y sin o = p represents a straight line whose
distance from the origin is p, whatever value & may have; x is in
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this case the undetermined constant. The equation can be written
z(cos?} a—sin®’Lo)+y.2sinl occos L o = p(cos? } a+sin®} a)
or z(l—tan?} o) +2ytanfx =p (1 +tan*} a).
Put u for tan } o and we obtain
pi(z+p)—=2pny+p—2 =0,
1. e. the undetermined constant appears in the second degree.

The method illustrated in this section is generally convenient for
numerical examples; the use of the single constant . does not,
however, give quite satisfactory results. For example, we have
shown in (iv) that

Ax+By+C+p(Ad’2+By+(C)=0 (1)
represents, for different values of p, a pencil of lines passing through
the point of intersection of the straight lines Ar+ By+ (=0 and
A’z4+By+C =0. If we give u increasingly large values, the
straight line represented by (i) approaches the position of the straight
line A7+ By+ C'=0. It is sometimes said that for an infinite
value of p it coincides with this straight line. It is safer and more
correct, however, to write equation (i) in the form

A(Az+By+C)+p(A’2+By+C")=0. (ii)
This equation contains only one independent constant, viz. the ratio
A/p or the ratio u/A ; but the equations of every straight line in the
pencil can be found by giving finite values to A and u. When A is
zero, the equation reduces to A’x+ B’y+ C’ = 0, and when p is zero
it reduces to A« + By+ ¢ = 0. This method of writing the equation
is preferable for two reasons: we avoid the: necessity of giving an
infinitely large value to the constant, and we get a more symmetrical
equation,

Examples II c.

Write down the equation of the straight line in the form in which it
represents
(i) A system of straight lines intersecting at (2, 1).
(i) A system of straight lines parallel to 3z 44y = 6.
(iii) A system of straight lines perpendicular to (a) Tx—y =16, (1)
x-3=0.
(iv) A system of stiaight lines concurrent with 8z y~5 = 0 and z = 0.
(v) Straight lines touching a circle of unit radius whose centre is at
~ the origin.
(vi) A group of parallel straight lines making an angle of 30 with the
straight line y = /3. +12.
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§ 6. Determination of the equation of a straight line when two conditions
are qiven, ’
I. The straight line passing through the two points (z,, ¥,), (X2, Yl
This equation has been already found in the form
zy 1
oyl
a, 4y 1]
but is given again as an example of the presenl method.
Since the line passes through (z,, #,) its equation is of the form
r—ay = (Y =)
The second condition, viz. that (z,, y,) lies on the line, fixes the
value of . Thus we have x,—x, = u(y,—u,)
Substituting for u, the required equation is

=0,

=2y _ Y=,
?2“-"1 Ty

1I. The straight line paralicl to ar+by+c =0 and passing through
the point (xy, y,).

Since it is parallel to ax + by + ¢ = 0, the straight line is one of the
group ar+by+pu = 0.

The point (z,, #,) lies on it; hence the value of u for the particular
line of the group required is given by az, + by, +p == 0.

With this value of y, a(v—ux) + 0(y—u,)=0 is the required equation}

This equation is instructive: it should be noted that (§ 4. i) its
form implies that it passes through (r,. »,) and (§ 4. 1i) its form also
implies that it is parallel to «r+ by +c¢ = 0.

When the student is familiar with the forms of the equation

corresponding to given geometrical conditions, such results can be at
once written down.

IIL. The straight line prrpendicular to ac+by+c =0 and passing
through the intersection of the straight lines
pr+qu+r=20, par+ 11'3/ +1 = 0.
The second condition gives that the required equation is in the
form (pr+qy+7r)+m (P2 +qy+1r) = 0, and since it is perpendicular
te ar+ by + ¢ = 0, the ratio of the coefficients of rand yis b: - a;

hence Py = 1+pra,
b —t
or m(ap'+bg) = —(ap +0g),

and the required equation is
(@’ +0g) (px+aqy+7)—(ap +b9) (V2 + gy +7) = 0.
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IV. 1o find the equation of the straight line through the point (h, k)
which malkes an angle o with the straight line axr+by+ ¢ = 0. )

The straight line az +by +c¢ = 0 makes an angle tan™! <—Z) with

. . . } a
the 2-axis, hence the required line makes an angle tan™! (— l—))_—ta

with the 2-axis; it is therefore parallel to

@
y = xtan {tan"1<——b»)ior;,

_¢ + tan x
l.e b
- Y=
1+ »b-'tan-x
ie. (b+utan o)y +x (e Fbtanax) = 0.

And since the line passes through (%, k) its equation is (z«de 1)
(y—=k)y(b+atanx)+(x—n)(a Fbtanx) = 0.

There are:avidently two straiciil lines which satisfy the conditions

V. The straight line throuy' -+, y,) distant p from the origin.

Since the distance of the line from the origin is p, the equation of
the straight line is in the form (§ 4. v)

pe(r+p)—=2ypt+p—z = 0.
Siuce (2, 7,) lies on this, to determine the value of i we have
pHpt+a)=2pptp—r =0.

This is a quadratic equation in p, hence there are two straight
lines which satisfy both the given conditions: these conditions are
therefore not sufficient to determine one definite straight line.

Note. The above results are not to be regarded as formulac; cach
numerical cxample should be worked out on similar lines.

Examples II d.

Write down the equations of the straight lines which satisfy the following
conditions :—

1. The straight line passes through the point (-2, 3) and is (a) parallel,
(b) perpendicular to 3z —y = 6.

2. The straight line passes through the origin and is perpendicular to
4x+7y = 8.

3. The straight line joining the points (a) (3,2), (1,1), (b) (-4, 5), (=2, =3),
() (a,b), (a—6,0—6), (d) (acosd, asin), (acos¢, asing), (e) (am? 2am),
(an?, 2an), (f) (a,b), (a+7rcosb, b+rsinb).

4. The straight line cuts off a length 5 from the axis of  and makes
an angle of 75° with it.
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5. The straight line cuts off a length 10 from the y-axis and is perpen-
dicular to 11y —10x = 21.

6. Find the equation of the straight line drawn through the point (z,, ,)
perpendicular to the straight line joining the points (x5, y,), (5, y3).

7. ¥Find the equation of a straight line passing through the intersection of
ar+by4c=0,a'r+by+ =0 which is parallel to pzr +qy+» = 0.

8. What is the length of the perpendicular from the origin on the
straight line 3x + 4y =2°

Find the tangent of the angle this perpendicular makes with the axis of ..

The centre of an equilateral triangle is at the origin, and one side of the
triangle lies in the straight linc 3244y =2. Find the equations of the
other two sides.

9. What angle is formed by the straight lines whose equations are

zcosX+ysinX = p,
xcosB+ysinf=q?

10. ¥ind the equation of a straight line inclined to the straight line
2 cos X4 ysinX = p at an angle X, whose distance from the origin is 2p.

11. Find the equation of the straight line joining the point of intersection
of the lines ax +by+ ¢ =0, ¢’ 4 by + ¢’ = 0 to the origin.

12. A square has its centre at the origin: one side of the square is the
straight line £ —+/3y—4 = 0; find the equations of the other three sides.

13. Find the equation of the straight line which passes through the points
of intersection of each of the pairs of straight lines

ar+by4e=0, ar+by+d =0
ar—by+c=0," —ur4by+d=10 ’

14. The perpendicular from the origin to u straight line meets it at
the point (b, &) : show that the equation of the straight line is

ha 4 ky = W+ &2

15. Show that the straight lines joining the points (1, 1), (2, 2) respectively
to the point of intersection of the straight lines

19r43y-29=0, 132+11y-27=0
are at right angles.

16. Find the equations of the medians of the triangle whose vertices are
(2,1), (3, =8), (-5, 2.

17. The sides of a quadrilateral taken in order are

z4+2y=>5,32+y =10, v+6y+8=0,4r-y+7=0;
find the equations of its diagonals.

18. Find the equation of a straight line through the intersection of
32z4+5y—7=0 and 4x+6y—5 =0 parallel (i) to the axis of z, (ii) to the
axis of y. ~

19. Show that the two straight lines z+y+c =0, 4/3z+y+d =0 are
inclined at an angle of 15°

20. Find the condition that the straight lines joining the origin to the
points of intersection of the pairs of straight lines

x+ay+c=0) Ix+my+l=0}
ar+y+c=0}" I+ e+ (m+m)y+l=0
should be (i) perpendicular, (ii) coincident.
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§ 8. T find the coordinates of @ point whose distunce from a fixed
point (&, B) is v and which lies on a straight line through (x, 3) inclined
at an angle 8 to the x-axis.

P(x,y)
) )
o N
0 x

Let A4 be the point (%, 3) and P (z, y) the required point.
Draw AN, PN parallel to the axes,
Then AN=z—x=rcosb
PN =y—p3=rsinb,
i.e. the coordinates of I’ are (r cos 8 + «, 7 sin 6+ j3).

Note. The length » is measured from 4 in the positive direction; if
) i8 negative P lies on the other side of A.
This result can be written
r=X_y-B_
cosd  sind
and if P be regarded as any point (z,y) on the straight line AP, this may be
regarded as the equation of the straight line. The equation in this form is
often very useful, and the meaning of the constants should be carefully
noted. (X, B) is a fixed point on the straight line, 6 is the angle the
straight line makes with the a-axis, (r, y) is any point on the straight line,
and the distance of (x, y) from (X, B) is . Two examples will illustrate the
type of problems in which this form of the equation is useful: we shall
refer to it again when equations of a higher degree are discussed.

Iy

Ex. i. A straight line is drawn through the point 1’ (2, 3) parallel to
the straight liney = v/ 3z to meet the straight line 22+ 4y = 27 in the
point Q. Find the length 1Q).

The straight line y = 4/32 makes an angle § = with the z-axis: hence the
equation of the straight line through (2, 3) parallel to it is

x -2 y—3
——— = e =)
coskmr  sinin
or 7$f‘:‘_2_:l[——§=1
1 V3 '
2 2

where r is the distance between the point (x,y) and the fixed point
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(2, 3). Now if » is equal to P¢, then (z, y) must be the point @ which
lies on the line 2244y =27; the coordinates of Q are therefore

{ r+2, ‘/31 + 3} where r = PQ.

Hence 2(%»-+2>+4 ‘/3,”/_27
i.e. (2v3+1)r=11,
11 “
h = s =2 /31 = .
1ence r= ST V3 -1= 246,

which is the required length of PQ.

Ex. ii. 7o find the perpendicular distance of the point (a, b) from
the straight line Ar+ By+C = 0,

The equation of « straight line through (a, b) perpendicular to the given
line is Ble—a)—Ay—b) =0,

r—a J—rh J(x‘ a)2+(1/—1f)

e Y S Ty
» )
+ /AT B '
where » 1s.the distance between (a, b) and (x, y).
If » 1s equal to the length of the required perpendicular, the point (x, ) is
on Axr+ By+ C=0.

Ar
Hence A< SO +a>+lf —-~B' b)+C= 0.
+v A2 B +V AT+ B
Qe Aa+DBb+C
. e. r = U
JA’+B‘

Examples II e.

1. Find the perpendicular distance of (2, 5) from 122+ 5y = 40 and from
3x+4y =16

9, A, B, (", D is a parallelogram ; A is the point (=5, 2); BC, CD are the
straight lines 2 —y = 7 and 3z +4y = 28, Find the lengths of the sides of
the parallelogram.

3. Through a point P(h, k) a straight line is drawn, making an angle 6
with the axis of .r, to meet the straight line «x + by = 1 at @.

Find the coordinates of a point on I’Q distant P¢@/n from P,

Hence find the locus of such points when 6 varies.

4. A straight line is drawn through the point A (e, b) making an angle
with the axis of x to meet the locus represented by a*+y* =% Show
that it meets it in two points P, ¢, and that the rectangle AP.AQ is
independent of 4.

If AP, AQ are equal, prove that (asind—bcos6)’ =



46 THE EQUATION OF THE FIRST DEGREE

§$ 7. To find the perpendicular distance of any point from a straight
line whose equation is given.

(a) Oblique Coordinates.
Let the equation of the straight line be given in the form
zcosx+ycos3 =p (i)

and let the point be P (z,, %,).

Through P draw a straight line parallel to r cos a4 ¥ cos 3 = p.

And from O draw OLM per-
pendicular to these lines. Draw
PN perpendicular to the given
line: then PN is the required
length, call it ¢.

Now by § 3 of this chapter
OL = p, hence OM =p+q and

/0 \ \ X the equation of PI is

rcosx+ycosi3=p+gq.

But (xy, 7,) lies on this, hence
Zycosx+y,cos3=p+q;
therefore q = 2,080+ ¥, cos [3—p.
Hence, if the equation of a straight line is given in the form
reosx+ycos3—p =0,
the length of the perpendicular from any point on it is found by
substituting its coordinates in the left-hand side of the equation. It
follows from this result that if we can put the equation of any straight
line in this particular form, the length of the perpendicular on it from
any point can be at once written down.
Compare the equations
Az+By+C=0 (i)
and reosx+ycos3—p =0, {ii)
If they represent the same straight line,
cosx _ cos3 _ —p
A~ B T C
cos? o cos? 3 _ cosacos 3
AT BT AR
cos? o+ cos? 3 — 2 cos & cos ;3 cos (X + ;3)
A2+ B2—2ABcos (x+7)
sin® (x4 f3)
ATy B*=3ABcos (x+7)

Hence
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But a4+3 = w, therefore
cosx _cos3  —p sin o
4 T B T ¢ /ATy B _24Besw
Hence equation (i) written in the form (ii) is
Asino. o3 Beino y1 0o _,
VA*+ B2—2ABcosw
Therefore the perpendicular from (r,, 7,) on theline Ax+ By + C'is
Ar,+ By, +C
VAR + B—2A B cos w

(b) Rectangular Coordinates.

. sin w,

The student should work out in the same way the more simple
case : the results are

(i) The length of the perpendicular from (., #,) on the straight line
reosX+ysina—p =0 is 2, co8 X+, sin x— .
(ii) The length of the perpendicular from (.}, ;) on the straight line

. 3 !
Ax+By+C=0is ‘ifﬂ_li!’b_ff_

VA% + B
y Yy
Y P \
M A M
N
q
o \ X p ~ X
< Y .
(1) (31)

In the two figures given P is placed on opposite sides of the line : the
equation of the straight line through P parallel to the given line is

Fig. (i) reosx+ysina—(p+q) =0,
Fig. (ii) reosatysin x—(p—y)=0;
and as above, since (r), y,) is on the line,

Fig. (i) 2y eos X+, sin x—( p4q) = 0,
Fig. (i) 71e0S X+ iy sin X—(p—yq) = 0.
Hence the length q of the perpendicular is
Fig. () q =, cos X+ sina—p,

Fig. (ii) ( = p—2x, €08 X—y, Sin X,

and these results are of different sign.
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The sign of the perpendicular changes as the point P crosses the
line, being of zero length when P is on the line. When dealing
with more than one perpendicular we must call those drawn from
points on one side of the line positive and those from points on
the other negative. It follows similarly that all points whose
coordinates make Ax+ By+ C positive lie on one side of the line
Az+ By+C =0, and those whose coordinates make Az+ By+ C
negative lie on the other side.

This can also be shown independently

The result only gives us a means of discovering whether two
points are on the same or opposite sides of a straight line: this
question of sign arises in such problems as.‘ find a point equidistant
from three intersecting straight lines’; there are four such points,
the in-centre and the three ex-centres of the triangle formed by the
lines. Thus, if the sides are

Gr+by+e, =0, ayr+byy+c, =0, axz+dby+e, =0,
the four points are given by the equation
alx+rl‘)}\3-/7+ Gy a,r+byy+c, -+ @ +0,y+c;
Varebt T Vagibi T Vaithz
To determine in any special case which solution corresponds for

example to the in-centre, the student should draw the graph of
the lines.

Example. 70 find the in-centre of the triangle formed by the straight
lines (i) 3x+4y—12=0, (ii) 52 —12y—20=0, (iii) 24y —~Tr—-72=0.

y

15 é
/
10 4/

S
Pz ] 10 15 20 25 30 35 40 X

7 \

=5 \

We see from the figure that the in-centre and the origin are on opposite
sides of the line (i), and hence the perpendiculars from these points must
be taken of opposite sign.

Since the substitution of =0, y =0 in 32+ 4y—12 gives us a negative
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value, the substitution of the coordinates (&', y’) of the in-centre will give
a positive result: hence the perpendicular fiom the in-centre (x,y’) on
3x+4y—12 = 0 is numerically equal to
1 (32" +4y" -12).

The origin and the in-centre are on the same side of the line (ii): x = 0,
y = 0 makes 5x—12y—20 negative, x = 2', y = y’ will therefore also make
it negative.

The nunierical value of the perpendicular from «’, " on this line is therefore

— (5 —12y" -20") = X (12y -5’ +20).
Similarly, the perpendicular from (2', y') on 24y ~Tx—T2 =0 18
-3 (24y -T2’ —T72) = L (Tx' — 24y +72).
Hence the in-centre will be given by
1Bx+4y—12) = H (12y-5r+20) =& (T2 —-24y+72);
i.e. 8xr—y =32, and 2x+11y =33,

and the in-centre is (4 5, 2%).

Examples II f.

1. In the above example work out similarly the coordinates of each of
the ex-centres, giving a reason for the signs chosen in each case.
2. Find the centre of the circle inscribed in the triangle whose sides are
r—=y+1=0,2x+y-7=0,2r-3y+5=0.
3. The equations of the sides of a triangle are x = 0,y = 0, 3.r+ 4y = 12.
Find the coordinates of the centre of the circle escribed to the side y = 0.

§ 8. Relations between two straight lines whose equations are given.

(i) To find the coordinates of the point of interseetion of two straight
lines.

This is equivalent to finding a pair of values of the coordinates
z and y which satisfy simultaneously the equations of both the

straight lines ; in other words, to solving the equations simultaneously.
e. g. to find the point of intersection of

5r+4y—7=0,
3r—T7y+6=0,

by cross multiplication

1.
r St

I

1 — ]
782 = 31Y
the point of intersection is (2%, §1).
1267 D
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(ii) To find the angle between two straight lines whose equations are
given in rectangulur coordinalces.

Let the equations be Ar+By+C=0,
A’z +By+€ =0;

these straight lines make angles

A A’
b N (R 1( .-
tan ( 7 )and tan < B’)
with the axis of 2 ; the angle between them is therefore

tan™~! (—-J]‘g) — tan” ’(— %

4 A
=1 1]; 4 — tm]—IABI.—_A.,B.
= tan ;;71;{’ = AA’F B
BE
If the equations are given in the form
Y = mr+oe, y=m'z+c,
the angle between them is tan ! nom
14+mm
It is clear that in the general case we cannot decide whether the
acute angle bet the li is tan ! o’ or tan ‘ w—m ,
cute angle between the lines is tan™! y——-o [prpe—t

one value is positive and corresponds to the acute angle, one is
negative and corresponds to the obtuse angle.

Corresponding results can be obtained for oblique axes in the same
way (§ 2) ; these results ave
(AB'—A’B)sinw - (m—m/)sine

-1 - \mTm)SRe .
tan AA’+ BB'—(AB + A’B)cosw and an 1+ (m+m')cosw+mm’
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(iti) The condition that the straight lines should be perpendicular
follows. Since the tangent of a right angle is infinite, in rectangular
coordinates AA'+BB =0 or 14+mm’'=0,
and in oblique coordinates

AA’+ BB —(AB’ + A’B)cosw =0 or 14 (m+m')cos w+mm’ =0,

(iv) To find the equations of the bisectors of the angles between the
straight lines whose equations in rectangular coordinates are

Ax+By+ (=0, A'r+ By+C'=0.

y P'

If (), 1) is any point on either of the bisectors, the perpendiculars
from it to the straight lines are of equal length. It is evident
(see figure) that for points on one bisector these perpendiculars

are of the same sign, and for points on the other bisector they are
of opposite sign.

Ar + By, +C =+ A'e + By +

VA4 B2 - ~A "+/’” '
and any point on a bisector lies on one of the lines

Ar+ By+C 4’.+B'J+( Av+By+C_ AW+ By+C

VAT T VAT BE | VAR R | JAiy i

which are consequently the equations of the bisectors.

(v) It has been shown in § 4 (iv) that the equation of any straight
line through the point of intersection of the straight lines
Axr+ By+C=0, A'r+By+C =0,

is of the form

Hence

Ax+By+ C+A(A'c+By+C)= 0,
whatever coordinate axes are employed.
D 2
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It is often convenient in order to save the constant repetition of
such an equation as Ar+ By+ C =0 to refer to it in the following
way: let w stand for the expression Ax+ By+C, i.e. u= Ax+ By+C,
then « = 0 represents the straight line, and for the sake of brevity
we can refer to ‘the straight line«'. This notation (usually called
abridged) is of much greater importance than appears at first sight.
There is a large class of problems in geometry of a purely descriptive
character (i.e. not dealing with magnitudes such as length, or size of
angle) which can be solved in a quite general manner: in such work
it is quite sufficient to recognize that u = 0 represents a straight line
where % is an abbreviation for any expression which, equated to zero,
represents a straight line without any regard to the actual system of
coordinates employed.

This idea is introduced early in the work and will be developed
when occasion offers, and it is hoped by this means to help the
student at the later stages to pass to generalized coordinates more
readily.

If w=0, v=0 represent two straight lines, any line through
their point of intersection is «+Av = 0.

If ' = A2’ + By’ +C, then 4’ = 0 is the condition that the point
(«’, ¥) should lie on the straight line w = 0; and similarly we
interpret v = 0.

If the straight line u+Av = 0 passes through some given point
(z’, %), then o' +Av" = 0, hence uv'—u'v = 0 represents the straight
line joining the point (2, 3’) to the intersection of « =0, v = 0.

Again, u—u’ =0 represents a straight line through (2, y’) parallel
tou=0.

In the particular case when the equations of straight lines are in
the form & cos 4y sin x—p = 0,
if % = xcos X+ ysin X—p,

v = zcosB+ysinf—gq,
then %’ and v’ are the actual values of the perpendiculars from (2’ y')
to the straight lines w = 0, v =0.

Hence the equations of the bisectors of the angle between the
straight lines =0, v=0 are u—v =10 and u+v =0,

A point can be determined as the intersection of two given
straight lines: if then u = 0, v = 0 represent straight lines, their
point of intersection can be referred to as the point (u, v).
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Example. If two triangles ABC, A’B'C’ wre so placed that the
points of intersection of AB, A’B’; BC, B'C’; (A, ("A’ lie on « straight
line, then the joins of corresponding vertices AA’, BI', CC will meet in
a point. (Coaxal triangles arc also copolar.)

Let ¢B, C'B" meet at ’; C.L. C.U at @ AB, A'B at R, where PQR is
a straight line.

Let the sides of the triangle ABC be the straight lines « =0, v =0,
w =0, and the straight line PQR be 2 =

Now B'C’ is a straight line through the point of intersection of w = 0,
2 =0. Its equation is therefore of the form aw+ z =0, where « i1s a con-

stant which can be determined for any chosen system of coordinates; for,
when the axes are fixed, since BC, B'C’ are given straight lines their
equations are completely known.  Without reference to any particular co-
ordinate axes, therefore, we c¢in consider the constant @ as known. Similarly,
C'd’ passes through the intersection of the given straight lines C.t, PQ
and its equation is bv+2 =0, where b is @ known constant. .1'B’in the
same way is represented by cw iz ==0. Hence the sides of the triangle
A'B'C are the atraight lines whose equations are
au+2=0, bv+z=0, ctw+z = 0.

Now the equation br+ z—(cw+#2) = 0 represents a straight line through
the point of intersection of the straight lines bv+2 =0, cio+2 =0, Lec.
through the point A'.

But (bu+2) = (cw+2) = 0 is equivalent to bv—cw = 0, and this represents
a straight line through the point of intersection ot the straight lines v =0,
1 =0, i.e: through the point 4. Hence 4 and 4’ both lie on bv—cw =0:
this then is the equation of the straight line 44"

In exactly the same way cw—aw =0 represents the straight line BB,
and aw —bo = 0 the straight line CC'.
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Hence the cquations of the three straight lines joining corresponding
vertices, viz, AA', BB, CC,

are bv—-cw=0 (1)
cwo— au=0 (i1)
au — br =0 (iii)

But (bv—ctw)+ (cie—aun) = 0, which represents a straight line through the
point of intersection of (i) and (ii), is the same equation as «u—br =0,
i.e. the straight line CC’ (iii) passes through the intersection of A4’ and
BB’: in other words, A4’, BB, CC’ are concurrent.

Examples II g.

1. Find the length of the perpendicular drawn from the point (2, 4) to
the straight line joining the points (3, 1), (7, 4).

2. Find the cquation of the straight line which joins the intersection of
the lines 3x—4y+1 =0 and dbx+y—1=0 to the point (1,3). Draw the
lines and find the tangent of the angle between them.

3. Find the coordinates of the feet of the perpendiculars drawn from
the point (1, 1) to the straight lines x+-2y+2=0, 2x-y+1=0. Find
also the length of the perpendicular drawn from the point (1, 1) to the
straight line joining these feet.

4. Find the length of the perpendicular from the origin on

(« cosé)/a+ (ysin 8)/b = 1.

5. Find the equations of the straight lines through the intersection of
the straight lines 2w —y+5 =0, x+3y—6 = 0 respectively perpendicular
and parallel to the straight line Hx+8y—-10 = 0.

6. Prove that (2, — 1), (0, 2), (3, 0), (=1, 1) are the angular points of a
parallelogram, and find the angle between the diagonals.

7. Find the condition that the straight line lx+4 my+ n =0 should touch
the circle whose centre is (¢, ) and radius »-.

8. Find the equations of the sides of a rectangle which has (1, 2), (4, 3)
as coordinates of the extremities of one diagonal, and whose other
diagonal is parallel to 4 3y = 0.

9. Find the coordinates of the orthocentre of the triangle whose sides
arey =2, 2y=x,x+y =9.

10. Show that the triangle formed by the straight lines whose equations
are 4z-3y-8=0, 8x-4y+6=0, x+y—9 =0 is isosceles: find the
length of the equal sides. _

11, Oneside of an equilateral triangle is the straight line #— 4/3y+4 =0,
and the opposite vertex is the point (2, 1).

Find the equations of the other sides.

12. Find the conditions that the straight lines ax+by+¢, =0,
az+by+c, =0, agw+bgy+c;=0 should form an isosceles right-angled
triangle, the last line being the hypotenuse.

Give, with numerical cocflicients, the equations of three such lines.
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13. The algebraical sum of the perpendiculurs from the points (ay, y,).
@y, ¥3), (s, y5), (24, y,) on & straight line is zero: show that the line must pass
through the mean centre of the four points.

Extend your proof to the case of any n fixed points.

14. A straight line is drawn through (5, 9) inclined at 45° to the axis of .
The straight line is cut in P, @ by #+3y =20, Tz +y = 120, which pair
intersect at 1" Show that PQT is isosceles; give the lengths of the equal
sides and the tangent of the angle at the vertex.

15. If the straight line PQ drawn through the point (& 4) at right angles
to the line joining (6, 2) (4, 1) intersects the axes in I’ and @, find the area
of the triangle POQ, and the distance of (4, 2) from PQ.

16. Find the coordinates of the centre of the circle inscribed in the
triangle formed by the lines 2 =1, 3z +4y~5 =0, 5x—~12y+16=0; also
those of the centre of the circle escribed to the side x = 1.

17. Find the cvordinates of the foot of the perpendicular from (q, 0) on
the line My = »r+«A? and show that when X varies all these feet lie on
a fixed straight line.

18. Show that the two straight lines

(zcosb)/a +(ysinb)/b =1, (zsind)/b—(ycosb)/a = (aesin §)/b
are perpendicular, and that the distance of their point of intersection from
the origin isx independent of 8 if a*(1-e?) = b%

19. Straight lines are drawn trom the point (3, 2) to meet the straight
line 60+ 7y = 30, and these straight lines are bisected: find the equation
of the locus of the points of bisection.

20, The product of the perpendiculars from («e, 01, (~we, 0) on

(xcosd) /a4 (ysinb)/b=1
18 b*: prove = a*(l1-¢).
21. The equations of the sides of u triangle are
w4 ly=C=0, r4my—m* =0, r+ny~n* =1,

Find the coordinates of its orthocentre.

29, The connector of any point I'(+”, ') with the origin O meets the
straight line «x4by+ 1 =0 in Q: show that PQ: 0Q = ax'+ by + 1.

23, If the sides of a parallelogram are the straight lines w =0, r= 0,
i =@, v = Db, find the equations of (i) the diagonals, (ii) lines through the
intersection of the diagonals parallel to the sides. ’

24, Find the equation of the straight line which joins the point of inter-
section of uw =0, v =0, to that of u+w =10, r+mw=0.

25. The four sides of u quadrilateral have equations w+v =0, v4w =0,
w=v =0, v—w = 0. Find the equations of its diagonals.

26. Find the locus of the middle point of that portion of a straight line
passing through the fixed point (%, &) which is intercepted between the
axes of coordinates.
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§ 9. Relations between three straight lines whose equations
are given.

(1) To find the condition thut the three straight lines
Az+By+C=0, Ax+By+C' =0, A”r+B"y+C"=0
should be concurrent.

If they are concurrent they have a common point; let its coordinates
be (x,,y,)- Then
Ax, +By, +C =0,
A'.Tl +B’y1 +C =0,
A"+ By, +C"= 0.
Eliminating (z,, ;) we find the required condition to be
A4 B C
|4 B¢ | =0
A7 B C7
Since any two straight lines meet in a point, one condition is neces-
sary and sufficient that a third line should pass through the same point.

(i1) To find the urca of the triangle enclosed by the three straight lines
Ayjz+By+C, =0, Ajx+B,y+C, =0, A2+ B,y+C,=0.
Method i. The equations can be solved in pairs and the co-
ordinates of the vertices of the triangle found, and hence, Chapter I,

§ 7, the area. This method is often useful in the case of numerical
examples.

Method ii. The following method obtains the result in determinate

form,
Let the equations of the sides of the triangle he

nr+by+c, =0, (1)
a,x+b,y+c, =0, (ii)
wx+by+e, = 0. (i11)

Suppose (ii) and (iii) intersect at (r,, »,). (iii) and (i) at (ry. »,),
(i) and (ii) at (x;, y;). Then

o m 1

bc,—bye,  c,a,—cyay  ayby—a,b,
x i 1
- let av [ S
or, let us say 4,"B=C
.. x. 9. 1
We have similarly =
4,- B, G
vy _ Y 1
45876
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where A4,, 4., &c., arve formed from 4, by permuting the suffixes in
cyclic order.

A, By C
Then the area of the triangle = | ., A, B, (, .
POGC 4, ¢,
* Ly b] cy
The product of this determinant and of the determinant | a, b, c, ',
{ t
a; by

which we denote by A, is
A+, B+ Uy a, A+ 0, B 40,0 ug A+ 0B 4y C)
a, Ady+ b, Byt eCyy a,Ay+ 0By 40,0, a,Ay+ 03B, 4,0,
o As+b B+ Cy, a4+ 0,B, 46,0,y a; A+ b, B, 40,04

! A0 O i
or 1 0 A 0 ; sothat its value is A% and we have for the area the
P00 A
A «y by e
expression 5= where A= «a, b, ¢, and (), (. ( are the
1VY2Y3 a, h,; c,

minors of ¢, ¢,. ¢, in the determinaut A.

Here the coordinates have been taken to be ieclangular.  Ior
oblique coordinates we multiply by sinw.

(iti) If A, e+Biy+ (1 =0, L,x+By+C, =0, Adyx+By+ ;=0
are three straight Lnes achich are not concurrent, the equation of any
straight line can be expressed in the form

lH A, v+ Biy+C)+m (A, r +Byy+ Cod+n(dy e+ DBy+ ) = 0.

Tet Ar+By+C = 0 he the equation of the straight line which is
to be put into the required form.

Compare the coeflicients with those of the above equation, then

TAj+ mA,+ nd, = A,
IBi+mBy,+ 0D, =D,
ey + my + nl; = (.

This gives three equations to determine the three constants i, m, n:
they are in general sufficient to find these constants. If the given
straight lines are concurrent we have the relation

A, A, A, [
By B, By | =0,
G C, Gy

in which case we do not find finite the values of I, m, and », and
there is no solution.
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Cor. If values of /, m, and # can be found so that the relation
l(Adjz+ By +C,) +m(Ax+ By +C,) +n(4dgx+ Byy+Cg) =0
is identically true, we must have
4, +md,+ndy =0,
1B, + mB,+nBg = 0,
1Cy+mCy+nCy =0;
and consequently ‘ A, Ay Ay
B, B, B,
¢ C, ¢y
i.e. the straight lines are concurrent.
Thus, for instance, we can sce from their form that the straight lines
§& w—v =0, v=w =0, w—u = 0 are concurrent.

=0,

Proposition iii of this section can also be proved in the following
manner.

Let the three equations in abridged notation be 1 =0, v=0,
w = 0. and let BC, ('4, AD represent these lines.

If PQ is any other line, let 4 B meet it in P’ and join PC.

Since PC is a straight line through the intersection of « = 0, v = 0,
its equation is of the form (p. 52) lu +mv = 0.

Hence PQ is a straight line through the intersection of the straight
lines lu 4+ mv = 0 and w = 0 ; its equation is therefore of the form

(le + mv) + nw = 0,

or lu+mv+nw=0;
hence if u = 0, v = 0, w = 0 ave any three straight lines, the equation
of any other straight line can be expressed in the form

lu+mv+nw = 0.
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Cor. If u=0,¢=0,10=0, lu+mv+me =0 are four straight lines,
multiply the first three equations by I, m, and # respectively, and let
U=, V=mv;, W=nwo,
then U= 0, V=0, W =0 represent the three straight lines, and in this
case the fourth line is represented by the equation

U+V+W=0.
This result is useful when descriptive properties of a quadrilateral are

considered : the following example illustrates the method, which will be
referred to again later.

If the four sides of a complete quadrilateral are represented by the
equations ¥ =0, v =10, w=0, u4v+2w =0, to find the equations of its
three dingonals.

Let ABA'B’ be the quadrilateral.

Now the diagonal A4’ passes through the intersection of the pairs of
straight lines

v=0) =0

"= 0,: and ut v = 0};
but the equation v =0 [straight line thiough .1')
can also be written (t+r+w)—u=0  [straight line through ]
and therefore represents the straight line 4.1".

Similarly the equation ERIES [straight line through C']
can be written (te40)—v=0 |straight line through C]
and represents C(".

Also the equation wu4r=0 [straight line through B’'|
can be written (w+v42)—w=0  [straight line through B]

and represents B3,
Hence v+1w0 =10, w+u=0, u+r-=0 arc the three diagonals of the
quadrilateral.

Examples IIh.
1. What is the value of a if the three straight lines x+y—-4 =0,
3242=0, x~y+3a= 0 are concurrent?
2. Find the area of the triangle formed by the three straight lines
2y+x-5=0,y+2x-T=0, x-y+1=0.
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8. For what values of « are the three straight lines 2z+y+1 =0,
3z+2ay+4=20, x+y—~8¢ =0 concurrent?

4. The equations of the sides of a triangle are 3z 4+ 4y= 12, 52 -12y = 20,
24y—Tx = 72: find its area.

5. Prove that the straight lines

(b+c)x—bey = a(b?+bc+ c?),
(c+a)x —cay = b(c*+ ca +a?),
(@ +b)x—aby = c(a’+ab+¥?)

are concurrent. What is the point of intersection ?
6. Find the condition that the three straight lines
Az+y = 2al+ald,
pxty =20¢p+ap’,
ve+y=2av+ai?
should be concurrent.

7. Find the area of the triangle formed by the axes and the line
Ax +y = ¢\, when the axes are inclined at an angle o.

8. Prove that the perpendiculars of a triangle are concurrent.

9. Show, using abridged notation, that the three bisectors of the angles
of a triangle are concurrent.

10. Prove analytically that the bisectors of the vertical angle and the
bisectors of the exterior base angles of a triangle are concurrent.

11. The equations of three straight lines are

u=3z+4y-7=0, v=42+5y—-6=0, w=x-y+1=0,
and that of a fourth line is 59z + 7y —21 = 0.

Express the last equation in the form Zu + mv + niw = 0.

Find the equations of the three diagonals of the quadrilateral formed by
these four lines.

12. The six vertices of a complete quadrilateral arve A44’, BB, CC', and
the diagonals form the triangle PQR. If the equations of the sides are
u=0,v=0, w=0, u+v+w =0, find the equations of 'A’, QB’, RC’, and
of P4, @B, RC. (See figure, p. 59.)

Show that PA’, @B’y RC’ are concurrent.

13. If the sides of a quadrilateral are the four straight lines u+v+ 1w =0,
—tu4+v4+w=0, u—-v+w=0 u+v—1w=0, find the equations of its
diagonals.

§ 10. Relations between four straight lines whose equations
are given.

Anharmonic Ratios.

Definition. If 4, B, C, D are four points on a straight line,
then the value of the expression AC.DB/CB.AD, in which the
signs as well as the magnitudes of the segments are taken into
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consideration, is an Anharmonic Ratio of the four points 4, B, C, D.
It is frequently denoted by (4B, OD).*

There are as many anharmonic ratios of four points as there are
permutations of the letters A4, B, C, D, that is 24 ; but if one ratio
is known all the others can be completely and uniquely determined
(vide Russell’s Trcatise on Pure Geometry, Chap. IX). For the sake
of preciseness we shall refer to the above expression as the anharmoniec
ratio of the points 4, B, C, D.

Tt should be noted that, if ' divides the segment AB in the ratio
1:m, and D divides the segment AB in the ratio I":m’, these ratios
having ‘sign’ as well as ‘ magnitude’ as in Chapter I, § 6, then the

anharmonic ratio of 4, B, C, D is ;lr_a+ -l—,

In Chapter I a harmonic range was defined as four points, two
of which divide the distance between the other two internally
and externally in the same ratio: i.e.

AC A_D or AC.BD =1,
CB~ BD " AD.CB
which, with due regard to sign, gives

AC.DB ,
cB.4p = 48, (D} = —1;

thus, when the range is harmonic, the value of the anharmonic
ratio is —1.

I If any four concurrent straight lines OP, 0@, OR, OS (called
a pencil of rays, vertex 0) are cut by any straight line (called a trans-
versal) in four points A, B, C, D, the anharmonic ratio {AB, CD)
18 the same for all positions of the transversal.

0

P

* This notation is not universal. Many writers use (4BCD) to denote the
anharmonic ratio that we should denote by (46, BD),
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The ratio
AC.BD _ AOAC.AOBD

AD.BC ~ AOAD. AOBC
_04.0C.sinZA0C.0B. 0D .sin LBOD
T 04.0D.sinZA0D.0B. 0C.sin ZBOC
__8in ZA0C . sin ZBOD
"~ sin ZAOD.sin ZBOC’
and this quantity is independent of the position of the transversal
ABCD.

This proves the proposition so far as the magnitude of the ratio
is concerned ; it can easily be verified, by drawing transversals in
different positions, that 0, 2, or 4 of the segments AC, CB, AD, DB
change their sign ; the sign of the ratio is therefore unaltered. The
constant anharmonic ratio determined on any transversal by the
pencil is called the anharmonic ratio of the pencil.

(Euc. VL i.)

Cor. i. Since the anharmonic ratio of a pencil of four rays depends
only on the sines of the angles between the rays, the anharmonic ratio of
any parallel pencil is the same.

Hence the anharmonic ratio of any pencil of four rays is equal to that
of a pencil formed by four parallel straight lines through the origin:
consequently we need only consider pencils with vertices at the origin.

Cor. ii. The pencil formed by joining any point to four points forming
a harmonic range is a harmonic pencil. ~

IL. (a) To find the anharmonic ratio of the pencil formed by the
Jour lines y = pz, y=qu, y=rz, y = sx.
Let the pencil be cut by a transversal # = h in the points
4, B, C, D.
The coordinates of these points are
(®, ph), (k, gh), (h, rh), (h, sh): hence
AC.BD _ (rh—ph) (sh—qh)
AD.BC ™ (sh—ph) (rh—qh)
_(r=p)(s—q)
T -p (-9
_(@—1@-9
X rEIreT)
(b) If u = 0, v = O are any two straight lines, to find the anharmonic

ratio of the pencil formed by the lines u—kv =0, u~ky,v =0,
U—=kv=0, u=kov=0,
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Let the lines cut any transversal in the points A, B, C, D; let
A be the point (ry, ), B the point (r,, »,), and let u;, u, and »,, v,
be the values of u and v when the coordinates of these points are
substituted in them.

A
L tAG A D—g = p; then the coordinates of
(Zy+Ary gy +Ay, {xl‘i'#xz ?/1+My2}.
Care( T 1A , and of D T+5 ° 1+n

Now, since the points A4, B, €, D lie on the four given lines
respectively, we have

w,— kv, = 0 (i), Uy —kyv, = 0 (ii),
Uy — kv, + N (ug—k3v,) = O (iii),
(y = Fyvq) + e (wy—kyw)) = 0 (iv).
Substituting from (i) and (ii) in (iii) and (iv) we have
(ky—ky) vy + A (by—Fg) 0, = 0,
(ky=Fky) vy + p (ky —Fg) v, = 0.

A _ (y—ky) (ky—Fy)
Hence b O =) (=)
A_AC AD
~CB~ DB
This result is a complete analytical proof of proposition I of this
section ; for the value of A/n found is independent of the position
of the transversal. This proof, though more difficult, is preferable
because it deals simultaneously with the magnitude and the sign
of the ratio.

Bu t = the anharmonic ratio of the four lines.

Cor.i. An important result follows from this: the anharmonic ratio of
the pencil formed by the four lines =0, v=0, u+A¢t=0, 4 +A'v=0 is
;—:—,. For a harmonic pencil ;— = ~1, hence the four straight lines » = 0,
v=0, u+Av =0, «—Av =0 form a harmonic pencil. But given any four
concurrent straight lines, if ¥ =0, v = 0 are two of them, the equations
of others can be put in the form lu+mv =0, l'u+m'v = 0.

Hence the equations of the rays of any harmonic pencil are of the form
u=0 0=0 lut+mo=0, lu—mv=0,

Cor. ii. The condition that the four straight lines y =pz, y =gz,
y = rx, y = sx should form a harmonic pencil is
(p-r)(@-9)+(»-9)(g-r =0,
or (p+9) (r+8) = 2(pg+73).
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Ex. i, Find the locus of a point P which is such that the lines joining
it to the points (a, 0), (—a, O) are harmonic conjugates of the lines
Joining it to the points (0, b), (0, —D).

Let P be the point (, n), then the equations of the four straight lines are

e-a_y zta_y z_y-b z_y+b
E—a n' E+a ' £ p=b’ £ g4b
These are parallel to
-b +b
vl r=ps = m ="y e

Hence, Cor. ii above,
M on \(n=b by ot n"-0)
(E-—a+§+(t)(? + £ —2{§2-a2+ g )

ie & = (£~a®) (= V%);
i.e. the locus of (£, ») is b*z® + a’? = a?%

Ex, ii. Fach diago..al of a complete quadrilateral is divided har-
monically by the other two.

Let the sides 4B', B'A’", A'B, BAbe u=0, v=0, 0w=0, u+r+w=0.
' Then it was shown in § 9 that the equa-
C tions of A4’, BB, CC' are
v+10=0 ut+v=0 utw=0.

Now C'R is a straight line through the
intersection of AB' and BA', i.e.of u=0
and w = 0.

It also passes through the intersection of
AA"and BB, i.e. of v+w0 =0, u+v=0;
its equation is therefore u—w = 0, for this
can also be written (v +v)—(v+w) = 0.

Hence the pencil C'4, C'4’,C'R, CC' is
u=0,w=0, u—w=0, u+w =0, which
from its form is seen to be harmonic.

Examples II i,

1. Find the equation of a straight line which is the harmonic conjugate
of y —ma = 0 with respect to the axes.

2. Find the anharmonic ratio of the pencil x+ly=0, xz+my=0,
x+ny=0, x+py=0,

3. Find the condition that the four straight lines joining the point
(%, y) to the four corners of a square whose centre is the origin, and whose
sides are parallel to the axes, should form a harmonic peneil.

4. Find the fourth harmonic of the pencil y —px =0, y—gz =0, y —rx =0.

5. The equations of two intersecting straight lines are X =0, Y =0:
find the value of the anharmonic ratio of the pencil formed by 4, X + m, ¥ =0,
L, X4mY=0, ,X4+m¥ =01 X+mY=0
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§ 11. Polar Coordinates.

We have shown in Chapter I that if the initial line and a per-
pendicular through the pole are taken as axes of Cartesian coordinates,
then (x, y) and (r, ) being the same point

x=rcosd and y=rsind.

Since the equation of a straight line is linear in # and y, the

general equation of a straight line in polar coordinates is

Arcos0+Brsin6+C=0. (i)

(i) To find the equation of a straight line in polar coordinates, given

the length p of the perpendicular to it from the pole and the angle o which
this perpendicular makes with the initial line.

Let P(r, 6) be any point on the line, ON the perpendicular to
the line,

Then R0
POZ=0, NOZ = x, PON = (0—0); N
hence in the triangle OPN

reos(0—o) =p, (i1)

and this equation, being true for
the coordinates of any point on the = \z
line, is the equation of the line.
Expanding cos (§ —«) the equation becomes
rcosd.cosx+rsinf.sinox—p =0,
which is of the form (i) found above. (Cf. § 8, II.)

Cor.i. The equation of any straight line parallel to (ii) is of the form
rcos (f—) =g

Cor. ii. The equation of any straight line perpendicular to (ii) is of the
form rsin (0 -&) = g,
since « is in this case increased or decreased by % .

Cor. iii. The equation of any straight line through the pole is of the
form 6 = &, for any point (r, &) lies on it whatever value » may have.

Let PQ be any straight line

Arcos 0+ Brsind+ C =0, i)
and OR a straight line through the origin parallel to it.
Since the equation (i) is equivalent to
Ax+ By+C = 0,

the straight line PQ makes an angle tan™ ( —%) with the initial line 0Z.

1267 E
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The straight line OR, parallel to it, makes the same angle with 0Z;
consequently its equation is

g = tan ( —%) , (ii)
which may also be written
Acosd+ Bsiné = 0. (1i1)

In the same way we can show that the equation of the straight line
through the pole, making an angle o with

Arcosf+ Brsind+ C = 0,
is Acos(+X)+Bsin(8+X)=0 (iv)
according as the angle is made towards the initial line or away from it.

Example. 7o find the angle between the two straight lines

l e .
;= cos 8 + cos §—x (i)
l — .
and 5. = cos 0+cos0—p3. (ii)
These straight lines are parallel to the lines
cosf+cosd—0O = 0,
cosf+cosf—B =0,
which pass through the pole.

These can be written
2cos}x.cos(d-31x) =0,

and 2cos}B.cos(d—-1B) =0,
i.e. 6=3mr+19
and 0=1%in+3B

The angle between these straight lines is (X —p3), and this is also the
angle between the given lines which are parallel to them.

§ 12. Envelopes.

The equation lr+my+n = 0 can represent any chosen straight
line provided that the values which can be assigned to I, m, and n
are unrestricted. If, however, there is some given relation between
l, m, and n (e.g. | = m—2n) the equation lx+my+n can represent
only one or other of a group of straight lines.

In the simple case I = m—2n, we can replace ! by its value in
terms of m and » and the equation then becomes

m(x+y) =n(2z-1),
and this represents for different values of m and n any one of a pencil
of lines passing through the intersection of #+y =0 and 22—-1=0,
i.e. the point (}, —1).

The equation lr+my+n = 0 contains only two independent con-
stants (vide § 4); for the sake of simplicity we will discuss the
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equation in the form lz+my = 1, which can represent any straight
line which does not pass through the origin.

A relation then between I and m means that lx+ my = 1 represents
a definite system of lines: if we take a series of values for !, gradually
increasing by small quantities, and find the corresponding value or
values of m, the line represented by

le+my =1
for these values of [ and m will take up a series of different positions,
each differing slightly from the one before.

Compare the case of a point whose coordinates (z, y) are connected
by some given equation (e.g. 8x+4y =1); if series of values are
given to z, increasing by very small quantities, and.the correspond-
ing values of y are found, the corresponding point will take up a series
of positions each differing slightly from the one before.

If a point continuously changes its position, a curve is formed on
which all the points lie ; the more points we plot the more clearly
this curve is indicated. So if the line continuously changes its
position, a curve is formed which all the lines envelope or touch;
the more lines we draw the more clearly this curve is indicated.
The curve thus formed by a moving line is called an envelope,
the curve formed by a moving point is called a locus. It should
be clearly understood that the envelope of a line moving under
a constraint or condition is as simple an idea as the locus of a point
moving under a constraint or condition.

Y

(ii)
The figures illustrate (i) the locus of a point whose distance from
the origin is constant, (ii) the envelope of a line whose distance
from the origin is constant.

v 9
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In (i) two points of the series lie on any given straight line, and in
(ii) two lines of the series pass through any given point.

In (i) the line joining two consecutive and very near points is said
to touch the locus, and in (ii) the intersection of two consecutive and
very near lines is said to lie on the envelope.

To consider this algebraically: if the coefficients ! and m are
connected by any relation, we can in general find ! in terms of m and
substitute in lx+my = 1; we thus obtain an equation containing
only one arbitrary constant.

We shall consider only the two cases, where the undetermined
quantity occurs in the equation (a) in the first degree only, (b) in
the second degree at most.

For case (a) we have already shown that all the straight lines meot
at a point, i.e. the envelope is a point.

The most general equation in case (b) is

A(ax+by+c)+Au'2+by+c)+(a"z+ 0"y +c") =0,
where all the coefficients except A are supposed known.

Now through any point (x,, 3,) two lines of the system pass, the
values of A being given by the equation

AZ(az,+ by, + o)+ A (a2, +Vy, + )+ (a”2, + 0y, +¢7) = 0.
These two lines will be coincident if
(@'zy + by, + ') = 4(az; + by, +¢) (0”2, + 17y, +¢") 5
but in this case the point (z,, y,) is on the envelope; thus the equation
(@'x+Vy+c') = 4 (ax+ by +¢) (a”z + 1"y +c”)
is salisfied by the coordinates of all points on the envelope, i.e. is the
equation of the envelope.

Note. In abridged notation the envelope of the line A +Av+w =0
is v? = 4uw.

Ex. i. To find the cnvelope of a line whose distance from the origin is
constant.

The equation of the line can be written
ZcosX +ysindX —p = 0,
where p is constant.
This can be written A (z+p)—2Ay+(p—2) =0,
where A =tanda.
Hencs the envelope is  y* = (2 +p) (p—x),
or 24yt =pt
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Bx. ii. To find the envelope of the straight line g + % = 1 when

the coefficients are commected by the condition a+b=c, where ¢ is
a constant.

Since a+b = ¢, the equation of the straight line can be written

x [/
...+-f5/4-=1
a c—a

or d—a(x-y+c)+ex =0,
where ¢ is an undetermined constant.

The values of @ for lines of the system which pass through a particular
point (2, y') are given by a’—a(z’ -y +¢)+cx’ = 0.

This is quadratic in a; hence two lines of the system pass through any
point (=, ¥'). If these are coincident, («', ') lies on the envelope.

The condition for thisis (2" ~y'+¢)? = 4ex'.

Hence the equation of the locus of («/, y'), i.e. the envelope of the
given system of lines, is
(x—y+c) =4cx,

This is shown in the figure.
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Illustrative Examples.

(i) A straight line parallel to the base BC of a triangle meets the sides
AC, AB in P and Q respectively. Show that the area of the triangle
Jormed by the straight lines BP, CQ, PQ bears to the arca of the triangle
ABC the ratio N%:(A+41)% (2X+1), where X is the ratio of AP to P(.,

Take 4B, AC for axes of x and y and let B, C be the points (b, 0), (0, ¢).
Then the coordinates of P and @ ave

(0.553) ﬁ"’iv")‘

Hence BP is the line

A

x  (A+1l)y _ .
_l—) + e - 17 (1)
and CQ is the line
G4l y_ )
8 [ o tET 1. (i)
The coordinates of their point of intersection are given by these
g ion = —~ Y =0 e Y =1(s
equations: by subtraction XD e 0, i.e. = 1 (say).
Substitute in (i) to find I, hence
A+1 A
1+ MX l=1 or l= m’
. . . Ab Ac
i.e. K is the point (m , m)
The area of the triangle PAQ is then
Ac ‘
© !
. Ad
3sin 4 ST 0 1
Ab  Ae 1
22 +1 2a+1
01 A+1
Abesin A
= mm) x|1 0 A+1
1 1 2x+1
_ 3 Mbesind
TEAHIEEN+])

s OPKQ:AABC=\:(\+1)}(2\+1).
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(ii) The area included by the lines
bx cos a+ay sin &« = abd,
bz cos B+ay sin 8 = ab,
bz cos y+aysiny = ab
is ab tan 3 (3—y) tan } (y—a) tan § (x— ).

beosX asinX ab !
The arca =} bcosp asinB ab |
bcosy asiny ab
. |beosx asinx bcosB asinB| y |beosy asiny
*{bcosB asinf beosy asiny! © beos X ¢sinX

“|

(0. §9)

cosX sinX 1 |2
=2a'bt | cosB sinB 1]+ a*b*sin(B—-0)sin (y —B)sin(X~7y)
cosy siny 11
cos X sin X 12
=3}ab|2sin}(B-a)sin} (B+&) 2sin}(x—-P)cosi(B+x) 0
2sin } (y—0)sin} (y+0) 28in (X—y)cosd(x+y) 0l

+ 8sin}(B—)cos} (B~a)sin (y—B)
cos}(y—P).sind (X—y)cos 3 (x—y)
sin} (B+x)cos} (B+ ) 2
sin«}(y+a)cos.};(a+y)|
+sind (y—p)cos}(y—RB)cos (X —y)cosl (B—x)
= gbtan } (B~ y) tan } (y — o) tan } (x—B),
for sin} (3+x)cos} (x+y)—sin} (y+&)cos} (B+0) =sin} (B—y).

= absin} (B—)sin} (y—0a)

(i) If straight lines drawn through the points A, B, C parallel
respectively to the lines MN, NL, LM are concurrent, then straight lines
through LMN parallel respectively to BC, CA, AB are concurrent.

This is a good example of the advantage of using quite general coordinate
axes in dealing with a general proposition.

Let 4, B, C be the points (z,, #,), (%,, ¥,), (@, y5) and L, M, N the points
(&) m) (& ) (€35 mg)-

The line MN is & (1,—ns) —y (éa—€3) = més—naés.
Hence the line through A (,, y;) parallel to this is

z (ng=ns) =y (b= &) = 2, (ny —ns) =91 (£5—£3)- (1)
From symmetry the equations of the lines through B and C parallel to
NL, LM, are
x(ng=m)~y (s—&1) = @3 (3~ m) — ¥ (F3— &), (ii)
z (=) ~y (b, ~&) = 23 (n—ng) ~¥s ({1~ &)- (iii)
The condition that (i), (ii), and (iii) should be concurrent, is
n=ns &~ o (n—rny) - (&—&)

ns—n &—& 2y (ns—m)—Ya(§s—£&) | = 0.
im=ny E1—& @s(n—~ng —ys(é1—£))
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Add the second and third row to the top; then
0 0 2z (’79"'135"2!/1 (43— ¢9)
n—n €s—& T(s—m)— ya(és—&) | =0.
m—m &—& z(n—m)- ys(é—¢&)
Hence either 22, (1~ 1)~ 2y (6= &) = 0,
or (ns=m) (61— &)= (m—m) (4 —£) = 0;
which cannot be true unless L, M, N are collinear: therefore the required
condition is
22 (ng—ns) =25 (6— &) = 0. (iv)
From symmetry the condition that the lines through L, M, N parallel
to BC, CA, AB should be concurrent is
24 (W —ys)—Em (2, —y) = 0. v
But the conditions (iv) and (v) are identical; this can be at once seen by
expanding the terms.
Hence the required proposition is established.

(iv) A point P divides a fixed straight line AB in the ratio
p+m:p—m, and Q divides another fixed line CD in the ratio p+n:p—n
where m and n are constants and p is variable. Find the locus of the
middle point of PQ.

Y A P B

Take AB, CD for coordinate axes and let 4, B, C, D be the points
(a, 0), (b,0), (0, ¢), (0,d). The coordinates of P and Q are
a(p—m)+b(p+m) c(p-n)+d(p+n)
,0 ’ 09 *
2p 2p
Hence if R, the mid-point of PQ, is (z, ¥),
_atb_m@-b) _c+d n(c—d)
= ip YT 4 i
By eliminating p we get
4dx—-a-b 4y—c-d
m(a—10) = nc-d)’
the equation of a straight line.
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(v) A straight line moves so that the sum of the intercepts made by it
on the axes is constant and equal to ¢,

Show that the locus of the point of intersection of two such lines at
right angles to each other is the straight line (x+vy) (1 + cos w) = ¢ cos w,
the axes of coordinates containing the angle w.

Let the equations of the two straight lines be

.Y 1. %L Y 2
atcia 1; " L
or (c—a)z+ay—a(c—a) =0, (i)
(c=b)x+by—b(c—b)=0. (ii)
Cross multiplying to find the coordinates of their point of intersection
we get L= y !
g ab(b—a)~ (c—a) (c=D) (b—a) _cb—a)’
z2_ v 1
or ab~ (c—a)(c—b) ¢ (i11)

But since (i) and (ii) are perpendicular
(e—a)(c—b)+ab= {b(c—a)+a(c—b)} cosw,
[Ch. II, § 8 (ii).]
ie. {(c- a) (c—b) +ab} {1+cosw}=c?cosw,
Hence (iii) (x+y)(1+cosw) = ccos o,
which is the required locus.

(vi) A straight line OP is drawn through the origin making an angle 6
with the axis of x; a straight line AP is drawn thrcugh the point
A (b, k) making an angle 20 (in the same sense as 6) with OA produced.
Prove that the locus of P, the intersection of these straight lines, is

9 B4k bk
2+y? z Yy
the azes being rectangular.
b
¥
A
0 L
0 X

Let the angle LOA = ¢ so that tan¢ = ;, and let P be the point (z,y);

s0 that tanf = ;‘1: Then the angle OPL = 6+ ¢,
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OA sin/ZOPA #n/ZOPL sin(6+¢)

and OP = sinZ0AP ™ sinZ0AP~ sin2é '
i.e. 04 _sinfcosgp+cosbsing
or 28in 4 cos 4 ’
ie 04 _cos¢p  sing
. OP cosf  siné
o 2 o4’ _0Acos g + OA sin ¢
OP* ~ OPcosd ' OPsiné’
or 2 h*+ k2 ;_;+ k.

‘Frp Tz oy

(vii) Find the equations of two straight lines which make equal angles
with the linesy = z tan B+c; y = z tan y+c¢ and form triangles with
them whose areas are c2, the axes of coordinates Leing rectangular.

Y
B
c q
N /4 3(B+Y)
0 x
A

The given lines 4.4’, BB’ pass through the point (0, ¢), and make angles
B, y respectively with the a-axis Let 4B, A'B’ be the required lines
inclined at an angle 6 to the z-axis and equally inclined to 44’, BB’

If p be the perpendicular from the vertex C on these lines, the area
of the triangle CAB or CA'B’ is

p’tan}(8-y).
Now 6 =8+/CAB
=B+ /ABC
=R+y+m—6.
0=3n+3(B+9).

Hence AB is the straight line

wcos§(B+y)+ysin(B+y)—q=0,
if the perpendicular from (0, 0) on it is equal to q,
ive. tp=csin}(B+y)-qg.

But A =pitan}(B~y) or p=cy/cot}(B~7).
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Hence q=csin}(B+y)tc/cot3(B-1y), .
and the required equations are
zcos}(B+y)+ysin}(8+y)~csin}(B+y) = ca/cot}(8—1).
There are two other straight lines perpendicular to these, which satisfy
the conditions of the problem.

(viii) If P, and P, are the feet of the perpendiculars drawn from the
point O (2, y') to the straight lines L+ my +n, = 0, L,z + myy +n, = 0,
Sfind the value of OP\2+ OP,2— P, P2 ; hence show that O lies in the
obtuse or acute angles between the straight lines according as the ex-
pressions (La' +my’ +ny) X Lz’ +mey + ny) and 1,1, + m,m, have the
same or opposite signs.

Since the question is one of sign, it is better to proceed in the most
straightforward manner possible, and thus avoid any unnecessary complica-
tion of signs. Let the straight lines y
intersect at 4.

The equation of 4P, is

!
ha+my+n =0, o(x.y)
so that the equation of OP, is A P,
(&=2)/h = (y=3)/m,. —— -
The coordinates of P, are therefore of /
the form z’ +Lk, ¥’ +mk, and since /
P, lies on AP, we find that k is

— (L' +myy +n) /(L +m?).
We shall use the following abbreviations:
Li=La +my +ny,
Ly=1a’ +myy +n,.
Then the coordinates of P, are

, LL, , omy I,
z L+ m? and y LTtm?
Similarly, the coordinates of P, are
’ lng , m,L,
{x I +mgd’ y l,’+m52} .
L3 L3
3 2. "3
NOW OPI = 11’ +"‘1’ ) OP! l’n + m’Q

Hence OP,*+ OPy'~ P, P?

- L} + L _ { LWL, Ly }’_ { m L, _ my Ly }a
T am? T g +m? T T m?t T i mp L4md L mt
_ 2L Ly(4ly+ mymy)

(W +my?) (45 + my?)

Now the angle P,OP, is obtuse or acute, and consequently I AP, is
acute or obtuse according as OP+ OP?—P P} is negative or positive,
i.e. according as L, L, and ;1 + m,m, have different or the same signs.
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(ix) 4 straight line moves so that the product of the perpendiculars on it
Jrom two fixed points is constant : find the equation of its envelope.

Let the two fixed points be (a, 0), (—a, 0), and the equation of the
straight line le+my+1=0. @

The condition gives us that

(la+1) (=le+1)
VBimd JBrm?
i.e. 1-02a% = A%+ 3m?,
or B(+a%)+etmP =1 (ii)

Now the values of 7 and m for those straight lines of the system which

pass through some particular point (z,, y,) are given by
lo, +my,+1 =0 (iii)
and B(c*+a?)+tm?=1. (iv)

The values of I (and note that from (iii) to any one value of ! there

corresponds one and only one value of m) are thus given by
Pyl (3 +a) +c* Iz + 1) =y,
i.e, B{(+ad)yl+ctzt} +2c e+ -yt =0,

If the two values of I given by this equation are coincident, two
coincident straight lines of the system intersect at (z,, v,), and (zy, ;)
is on the envelope.

The condition for this is

cx? = {(P+aY)y2+ 2t} {2 —-yf}.
e 0 = *(*+a) 9,2 — (¢ +a%) ' — P2y,
or Azl + (A +a%)y,t = (¢ +a?).

Hence the equation of the envelope is

A2+ (c? +a?) ¥ = ¢ (¢ +a?).

(x) ABC is a triangle, and any straight line cuts the sides BC, CA,
AB in the points P, Q, R. O is any other point, and OP cuts AB, AC
in D and E, 0Q cuts BC, BA in F and G, OR cuts CA, CB in J, H.
The straight lines J&, HD intersectin O'. Prove that C, O, 0’ are collinear.

= constant = ¢* (say),

No special details of any of the lines in this question are given: there
is nothing metrical; this property of the triangle is purely descriptive;
we shall therefore use the abridged notation.
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Let PQR be the straight line « = 0, and let the sides BC, CA, AB of the
triangle be =0, v =0, w =0,

Now DE, GF, JH are straight lines through the intersection of the pairs
of lines (v, ), (v, ), (w, x) : let their equations be

lu+x=0,

mo+x =0,

nwo+x =0,
Now the equation mo+nw+z =0

can be written in either of the forms

my+ (nw+zx) =0,

nw+ (mo+zx) =0;
it therefore represents a straight line through the points of intersection of
v=10 and nw+x =0, and also of w =0 and mv+x = 0, i.e. through the
points J and G.

Hence the equation of JG is mv+nw+x = 0.

In the same way the equation of HD is lu+nw+z = 0.

Now the equation (lu+mnw+z)—(mv+nw0+x) =0 represents a straight
line through the intersection of JG and HD, i.e. through 0'. But it reduces
to lu—mv= 0, i.e. it represents a straight line through the intersection
of u =10 and ¢ = 0, i. e. through C. Hence the equation of CO’ is

lu—my=0.

But 0 is the point of intersection of DE and GF,

i.e. of lu+z =0, m+x =0,
and therefore (lu+z)—(mv+x)=0
is & straight line through 0.

But this equation reduces to lu—mv = 0, i.e. O lies on the straight line

CO. In other words COO' ie the straight line lu—mv = 0.

Examples II j.

1. Show that the feet of the perpendiculars from the origin to the straight
lines x+y—-4=0, 2+5y—-26 =0, 152~27y—424 = 0 are collinear.

2. Through the origin a straight line is drawn making an angle of 30°
with the axis of . A second straight line is drawn making intercepts
8 and 5 on the -positive directions of the axes of x and y respectively.
Determine the distance of their point of intersection from the origin.

8. Find the locus of & point which moves in such a way that its distances
from the straight lines 22—y +5 =0, 40 -2y -8 =0 are equal.

4. Find the acute angle between the straight lines 122-5y—5=0,
6-8x—4y =0 and the equation of the straight line which bisects the
obtuse angle between them. In which angle does the origin lie ?

5. Through the origin three straight lines are drawn, making angles 30°,
120°, 150° with the axis of x, of length 4 units. Find the coordinates of
their extremities and those of the centroid of the triangle of which these
extremities are the vertices.
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6. Find the length of the perpendicular drawn from the point (2, 2) to
the straight line joining (3, 1), (7, 4).

7. Show that the straight lines joining (3, 0), (3, 4) to the point of
intersection of the straight lines 192+ 3y—29 =0, 18x+11y—27 =0 are
at right angles.

8. Find the equation of the two straight lines which pass through the
intersection of the lines z—y+2 =0, 22—y +3 = 0, and are such that the
perpendicular from the point (—1, —1) on each is of length 6/5.

9. Prove that the line joining (1, 1) and (23, 4) passes through the
intersection of x+y—7 =0 and 22—-3y-6 = 0.

10. Find in what ratio the straight line 3x+2y =7 divides the distance
between the points (6, 5), (-8, 2).

11. The coordinates of ABCD are (3, 4), (6, 3), (5, 7), and (4, 6).

Find the equation of the straight line which joins the mid-points of
AC and BD. Show that it cuts 4D, CB in P, Q respectively such that
AP/PD = CQ/QB = 5.

12. Find the area of the quadrilateral whose vertices are (2, 1), (4, - 3),
(2, =5), (-1, 4), the axes being inclined at 60°.

13. Find the polar coordinates of the foot of the perpendicular from
(3, 0) on 22— 4/8y+1 =0, the line Ox being the initial line.

14. A straight line moves in such a way that the sum of the intercepts
it makes on the axes is 4. Find the locus of either of the points of
trisection of the portion intercepted between the axes.

15. Find in their simplest form the equations of the straight lines joining
the following pairs of points:—

(1) (am, 2am), (an®, 2an);
(ii) (am, a/m), (an, a/n);
(iii) (@ cosé, bsinb), (acosd, bsin ¢).

16. Find the equations of the straight lines from the vertices of a triangle
perpendicular to the opposite sides,"given the vertices (3, 4), (1, 5), (6, 7).
At what point do they intersect ?

17. Find the equations of the medians of a triangle whose vertices are
(3, -2), (-6, 5), (4, —7), and find the point where they intersect.

18. A straight line is drawn from the point P(a, b) in a direction inclined
at an angle & to the axis of x to meet the straight line x/a +y/b =1 at Q.
Find the length of PQ.

19. Show that the straight line bsin} (x+8)xz = acos$ (X +8)y bisects
the distance between the points (e cos X, bsin ), (acosf, bsinRB).

20: The equations of three lines are dx—y =17, y=T2-5, y+42=2;
find the length intercepted on the third by the other two.

21, Find the locus of a point (w,, y,) which is such that the straight line
xx, +yy, = & passes through the fixed point (h, k) for all values of (,, ¥,).

22, A straight line of given length slides between two lines at right
angles; find the locus of a point dividing it in a given ratio.

23. Find the coordinates of the centre of the circle circumscribing the
triangle whose vertices are (2, 3), (3, 4), (6, 8).
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24. If Ax+By =1, ar+by =1 are parallel, find the distance between
them, given a?+ b = ¢* and 4 = ka.

25. Determine the locus of the intersections of the straight lines given by
tr/a-y/b+t=0, z/a+ty/b—1 =0, t being a variable.

26. Two straight lines cut the axis of « at distances ¢ and —a, and the
axis of y at distances b and b’ from the origin. Find the point of intersection.

27. If a number of such pairs of lines be drawn with a the same for all
and bb’ = a? find the locus of their intersection.

28. Find the area of OLM, where LM are the feet of the perpendiculars
let fall from the origin 0 on gcosax, + ysina, = p,,

X o8 Xy + y8in Xy = p,.

29. Find the locus of the orthocentre of the triangle whose sides are
Ay =x+aX py =z +aul, vy = z+ar?, for different values of A, y, ».

30. Find the coordinates of the circumcentre of the triangle formed by
the lines z+2y+3=0, 22+38y+1=0, 32+5y+2= 0.

81. Find the coordinates of a point which is such that the line joining
it to the point (7, 4) is bisected at right angles by the line 3x—y = 1.

32. Find the orthocentre of the triangle whose sides are

z/m+y/p-1=0, z/mn+y/p-1=0, y=0.

33. Two straight lines have equal angular velocities o in opposite
directions about two points O, 4. Find the polar equation of the locus
of their intersection when 0O is pole, 04 initial line, and 04 = a, and each
line is initially inclined at } m to 0A4.

34. Find the angles which the straight lines

(i) »8in (§—B) = gcos O ;
(ii) ¢/r = cos§—cos (§—0);
(i1i) !/r = cos@+ecos(6+X)
make with the initial line.

35. Find the polar equation of the locus of the feet of the perpendiculars
from the pole on a straight line which passes through the fixed point (p, &).

36. Find the polar coordinates of a point I’ which is distant d from a
point @ (p, &) when PQ makes an angle 8 with the initial line.

37. Find the polar equations of the straight lines bisecting the angles
between the following pairs of lines : —

(i) 0=q,0=8;

(i1) 7cos 8 = p, rsinf = g;
(iii) sin § ~sin (§+x) = 0, cosf+cos (6—8) =0;
(iv) rcos (§~&) = p, rcosd = pcosX.

38. The line joining the feet of the perpendiculars from a point P on the
two fixed straight lines y = 0, y = x is parallel to the line joining the feet
of the perpendiculars from P on 3z+4y—-12=0 and 42-3y+8=0.
Find the equation of the locus of P.

89. Find the area of the triangle formed by the straight lines

rcos (9=2) =p, 1cosf =psecX, rsin(f~0) = p.
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40. The vertices of a triangle lie on the lines y = xtané,, y = xtan §,,
y = ztan 8, the circumcentre being at the origin: prove that the locus
of the orthocentre is the right line #3sind—~yZcosd = 0.

41. If A, Pbe two.points on Oz, and B, @ two points on Oy, 4 and B being
fixed, and P and @ varying in such manner that1/04-1/0P=1/0B-1/0Q,
show that PQ passes through a fixed point.

42. The lines I(l-a)z+bly =1—a,

mm—a)z+bmy=m-—«
make a constant angle & with one another when ! and m vary.
Show that the locus of their intersection is
(bx +ay)®tan’ & = (ax—by +1,"—4ax.
43. Find the perpendicular distance of the point (+, ') from
(i) rcos(6—a) =p, (ii) I/r = cosf+ecos(d—).

44, If a straight line moves so that the sum of the perpendiculars let
fall on it from two fixed points (8, 4), (7, 2) is equal to three times the
perpendicular from a third fixed point (1, 3), show that this line passes
through one of four fixed points.

45. A straight line 4B makes intercepts 04, OB on the axes of x and y
of lengths 4, 3 respectively ; if P is the mid-point of AB, find the equation
of OP referred to BA as axis of x, and the perpendicular from (7, 8) upon
BA as axis of y.

46. The vertices 4, B of a given isosceles triangle 4 BC, right-angled at C,
move one on each of two fixed perpendicular straight lines 04, OB.
OC meets 4B at X, and the feet of the perpendiculars from 4, B on OC are
MN. Prove that (i) CO.CX is constant ; (ii) OM = NC.

47. P is any point. on the straight line whose equation is y = mz, and
through P any two straight lines are drawn meeting the axis of = in points
4, and 4,, and the axis of y in B,, B,. Prove that the point of intergection
of A, B,, A, B, lies on the straight line whose equation is y+mx = 0.

48. The ends BC of the base of a triangle are (g, 0), (—a, 0).

Find the locus of the vertex when (i) AB*—~AC*=¢?; (ii) AB*+ AC*=2¢%

49, If the coordinates of two points 4 and B be (2, 8) and (-1, 4), find
the coordinates of the points Pand Q in 4B and in 4B produced respectively
for which AP/PB = AQ/QB = \.

Hence find the ratio in which AB is divided by x+y = 6.

50. If =0, B=0, y =0 represent in Cartesian coordinates three
straight lines such that an identical relation I +mB8+ny =0 holds for
all values of (z, y), then these lines meet in & point.

Hence show that the bisectors of thé angles of a triangle meet by threes
in four points.

51. Find the equations to

(i) The two straight lines through the point (-4, 3) which make an
angle 45° with 8z—~y+5 =0,

(ii) The straight lines through the origin, each of which forms with the
two lines x+y = 0, 20 —8y = 4 a triangle whose area is 5.
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52. Prove that (1, 2) is the centre of one of the four circles touching the
three straight lines 82+4y=16=0, 5x-12y+6=0, 42+8y-15=0,
and find which of the four circles it is.

58. Given two straight lines 8x—4y+5=0, 82x—7y—8 = 0, determine
the equation to the straight line through their point of intersection
making the same angle with the first straight line as the second does on
the opposite side of it.

54. A variable straight line through the fixed point (f, g) meets the axes
of coordinates in P, ¢. Prove that the points of trisection of PQ lie on one
or other of the loci whose equations are 82y —2gx—fy =0, 8xy—ga—2fy =0.

55. AB, CD are two finite straight lines: P, @ are their middle points,
Prove that PQ divides AC and BD in the same ratio.

56. Find the conditions that the straight line joining the origin to the
intersection of the straight lines ax+by+c=0, d'z+by+¢ =0 should
bisect the angle between them.

57. ABCD is a rhombus, and the polar coordinates of ABC are (4, }n),
(3, %), (4, §n). Find the coordinates of the remaining corner, and the
equations of the sides and diagonals.

58. Find the locus of the intersection of two straight lines which pass
through (g, 0), (—a, 0) respectively and include an angle of 45°.

59. Prove that if the three straight lines

axsec 6 —by cosec § = c?,
axsec ¢ —by cosec ¢ = ¢!,
az sec y — by cosec § = c*
are concurrent, then sin (6 +V) +sin (¢ +6) +sin(y +¢) = 0.

60. The equations of two parallel straight lines are 4x+8y =12,
42 +8y = 8; obtain the equations to the straight lines which pass through
the point (-2, —7) and have a length 8 intercepted on them between the
parallel straight lines.

81. Find the coordinates of that point on the straight line 22 -y~5=0
the sums of whose distances from the points (19, 18) and (9, 8) is least.

62. The vertices of a triangle lie on three fixed concurrent straight lines,
and two sides pass each through a fixed point: prove that the third side
passes through a fixed point.

63. Show that the lines

4:c+3y—25==0} d 2x—7y+47-0}
8x-2y+11=0 10z-y-8=0
are concurrent, and find the anharmonic ratio of the pencil they form.

64. A triangle is formed by the axis of x and by the straight lines whose
equations are }z+¢;y=1 and 3x~Ay+1=0; find the equation of
the locus of the centre of the rectangle inscribed in the triangle and
having one side on the axis of z.

85. (x5, ¥, (%5, ¥5), (3, ys) are three points 4, B, C, and are such that
the straight line BC is zx,+yy, = o, and C4 is 2x;+yy, = a'. Prove
that the equation of AB is xx,+ yys = a®.

1367 F
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66. What curve do all lines of the form eA*—Ay+ 2 =0 touch?

67. What curve do all lines of the form AN?x—aX+y =0 touch?

68. What curve do all lines of the form (zcos))/a+ (ysin\)/b =1 touch ?

69. Find the envelope of a straight line PQ which meets the axis of y
in @, and is always perpendicular to SQ, where S is the point (e, 0).

70. ABC is a triangle, D, E, F the feet of the perpendiculars from 4, B, C
respectively on any straight line. Prove algebraically that the perpendicular
from D, E, F on BC, CA, AB respectively meet in a point.

71. The sides of a triangle ABC are #u=0, v=0, w=0; find the
equation of the straight line joining 4 to the intersection of M +mv =0,
lu+nw = 0, and the equation of the harmonic conjugate of this line with
respect to v =0 and w=0.

72. Find the equation of the straight line which passes through the
intersection of the two pairs of lines

uw=0 utv+w=0
v = 0}’ u—v421w = 0},
where u, v, w are abridged forms of the equations of straight lines.

73. When the axes are oblique () find the equations of lines through
(p, g) perpendicular and parallel to the axes.

74. Show that, if the point (h, k) is the foot of the perpendicular drawn
from the point (2, ') to the straight line Iz + my+n = 0, then

h=z' k—y  (Iz'+my +n)

l m B+m?

75. If a triangle ABC remains similar to a given triangle, and if the
point 4 be fixed, and B move along a straight line, find the equation of
the locus of C (polars).

76. Find the lengths of the sides of the triangle formed by the lines

zcosX+ysino =p, xcosB+ysinB=gq, xcosy+ysiny=r.

Prove that the area is

{psin(B—1vy)+gsin (y— &)+ rsin (x -B)}*
28in (B—y).8in (y—0).sin (A —B)

77. A and B are fixed points, LM a fixed straight line. Points P, @ are
taken in LM such that PQ is of constant length. AP, BQ meet in R.
Find the locus of R as PQ moves along LM.

78. P, Q are two points one on each of two fixed straight lines at right
angles, such that PQ subtends a right angle at a fixed point.

Find (a) the locus of the middle point of PQ; (b) the envelope of PQ.

79. If the coordinates of the vertices of the triangle ABC are (xy, y,),
(3, ¥5), (x5, ys) respectively, and those of the triangle A'B'C' (¢, n),
(&, m4), (£s, ng), show that the perpendiculars from 4, B, C to B'C,, C'4’,

111 111
A'B’ are concurrent if |z, z, 25| + | ¥, ¥ ys| =0.
b & & M M s

What can we infer from the symmetry of this result in the two sets
of coordinates ?
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80. Four straight lines @, b, ¢, d being given, show that in general one
and only one straight line can be drawn meeting them respectively in
points 4, B, C, D (in this order), so that AB = BC = CD.

Discuss exceptional cases.

81. P, Q, R are three points in the sides BC, CA4, AB of the triangle
ABC such that

BP:PC=1:m; CQ:Q4d =m:n; AR: RB =n:p.
AP, BQ, CR are joined: show that the area of the triangle formed by
these lines o (p 1
" -
= Ad4BC. (mn + mp + np) (nl+mn + mp) (nl + ml + mn) )
82. The triangle ABC is formed by the lines

ax+by+ey =0, a@+by+c, =0, ax+by+e;=0,
and the lines joining the vertices to the origin meet the opposite sides

in D, E, F. Show that the sides of the triangle DEF intersect the
corresponding sides of ABC on the straight line
w (@y/cy + /ey + agfeg) +y (by/cy + by/cy + bs/c5) +3 = 0.

83. PQ, a bar of fixed length, slides between two bars intersecting in 0,
and from any one point in PQ lines are drawn in all directions and move
in rigid connexion with PQ: show that there is a point in each of these
lines which will trace out a straight line as PQ moves.

84. One side of a quadrilateral is fixed and its length is 2%, the adjacent
sides are each of length a, and the opposite side is of length 2¢. Prove
that the equation of the locus of the middle point of the last side may
be written in the form 2 (12 +0%)? - 4Kk72% (12 + 1%) = 4c?k*y? — 4 k*a?, where
b= c?+R¥—a? 12 =2 +4?% and the fixed side is taken as axis of z, and
a perpendicular line through its mid-point as axis of y.

85. The triangle AO0B has the angle at O equal to w and x,, y, for its
orthocentre: show that the equation of AB referred to 04, OB as axes
of x and y is x/(x,+ y,8ec ©) +y/(yo+ x,8ec ) = 1, and the further end of
the diameter through O of the circumecircle of the triangle OAB is (x,,4,)
where (x,+ y, €08 w)/(¥, + &, C08 @) = (Y, + Xy CO8 )/ (%, + ¥, CO8 w) = CO5 .

F2



CHAPTER III

EQUATIONS OF HIGHER DEGREES. CHANGE OF AXES

§ 1. THE equations of several straight lines can be combined into
a single equation : thus
Bz+2y—1) bx—8y+2) =0,

or 1622 +2y—6y’+2+4+7y—2 = 0,

is evidently satisfied by the coordinates of any point on either of the
straight lines 82+2y—1=0,

and bx—8y+2=0,

and conversely the coordinates of no point can satisfy the equation
unless it is en one of these lines.

Any equation in the variables z and y,

S (xy y) =0,

will then represent straight lines, if, and only if, f(x, ) breaks up
into factors of the first degree.

A single equation may represent partly straight lines and partly
some curve. If the graph of f(z, ¥) = 0 is drawn, there will be
a straight line in the figure corresponding to every linear factor of

S(=z, 9).

§ 3. A homogeneous equation of the nth degree represemts n straight
lines through the origin.

Let gz + 0, 2"ty +agz" 2yt + ... +ayt =0
he any homogeneous equation of the nth degree.
Divide the equation by g", thus

W +aC) ral) e ranmo

this is an equation of the nth degree in (g) and consequently has %
roots, real or imaginary.



CHANGE OF AXES 8b

If the roots of the equation are o, a,...x,, then the equation can

be written
a"(; -—a,) (;—az) (s—a,) =0;

hence the original equation represents the n straight lines
2=0y =0, 2—09y =0, ... 2—0x,9y = 0,
i. e. n straight lines, real or imaginary, all passing through the origin.

Cor. i. If ¥ =0, v =0 represent two straight lines, a homogeneous
equation of the ntb degree in « and v must repreaent n straight lines through
the point of intersection of these two straight lines.

In particular the equation

ay(@—a)'+a, (x=a)"(y=b)+uy(x—a)2(y-0)+...+a,(y-b)" =0
represents n straight lines through the point («, b).

Cor. ii. An important method arises from the result of this paragraph.
Consider the equation

ax® +2haxy +by* +29x +2fy+c=10; (i)
whatever locus it represénts, the straight line
lz+my+n =20 (i1)

cuts it in two points, which may be found by solving the eyuations (i) and

(ii). Without thus solving we can at once write down the equation of the

straight lines joining the origin to these points of intersection ; forthe equation

(lz + my) c(lz + my)?
n?

is homogeneous in « and y, and is of the second degree: it therefore

represents two straight lines through the origin.

But the coordinates of any point common to the lvei (i) and (ii) satisfy
the equation (iii): hence this equation represents the stinight lines joining
the origin to the points of intersection of (i) and (ii).

The same method can be used with equations of a higher degree.

ax®+ 2hay + by - 2 (g9 + fy)

=0 (ii)

§ 8. Consider the equation

(@12+ D1y + 1) (@52 + bey +€5) (32 + byy + C5)... (@u 2+ bay +x) = 05 (i)
when the factors are multiplied together the terms of the highest
(i e. nth) degree are obtained from the product

(@12 + byy) (@32 + bgy) (@32 + byy)... (A2 + bay) = O. (ii)

Now a,2+b,y = 0 is a straight line through the origin parallel to
a,2+b,y+¢, =0. Hence the equation (ii) represents n straight
lines through the origin parallel to the » straight lines represented
by equation (i). This result is of great importance: we see that if
any equation represents struight lines, the terms of the highest degree
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equated to zero represent a system of straight lines parallel to them
through the origin. Any question dealing only with the directions
of straight lines given by a single equation can thus be at once sim-
plified by considering parallel straight lines through the origin.

Example. 1o find the equation of two straight lines through the point
(2, —8) parallel to the straight lines

1522 +ay—6y*+a+y—2=0. )

The equation 1542 +xy —6y? = 0 represents two straight lines through the
origin parallel to those represented by equation (i); hence
15(x -2+ (x~-2) (y+3)-6(y+3)*=0
represents straight lines through the point (2, —3) parallel to (i).

§ 4. Most of the properties of equations representing straight lines
can be investigated by comparing the equations with the product of
linear factors, and the majority of problems on them are little more
than algebraical exercises in the comparison of coefficients.

When the axes are rectangular the directions of the lines can be
found by substituting = x tan 0 in the equation to parallel straight
lines through the origin; this gives an equation for tan 6, and the
values of & thus found give the angles which the straight lines
make with the axis of 7. We give some illustrations of these
points.

Ex. i. What is the equation of n straight lines through the point (h, k)
perpendicular respectively to the n straight lines given by the equation

Do +py 2" Y +p,2" Y+ 4 pay” =0, (i)
Let P+ "y + ptly 4L
= (0,2 +b1y) (apx +byy) (asz +bgy)...(ane +byy)- (i)

The straight line perpendicular to ez + by = 0 is ¢,y —byx = 0 ; hence the

equation of » straight lines parallel to those required is
(@Y —bz) (ay — byx) (asy —byw)...(a,y —bx) = 0,

which is obtained from the right-hand side of (ii) by substituting y for .,
and -z for y.

Since the right-hand side is identically equal to the left, the equation of
n straight lines through the origin perpendicular to the given straight lines
is obtained by making the same substitution in (i) ; this gives

Py ~ Py + pyt Tt~ . 4 p, (- 1)"'7" =0,

and straight lines throvgh the point (A, k) parallel to these are
Py =R)"=p, (g = k)= (@ =D) + Py (y = kP (e =1+ .4 0, (- 1)" (@ =R)"=0.



CHANGE OF AXES 87

Ex. ii. Find the conditions that two of the straight lines
ar® +brty +cxy*+dy* =0
should be perpendicular to one another.

The equation of the three straight lines perpendicular respectively to the
given straight lines is found by substituting y for z and —z for y,
i.e. dr® — cx®y + bay® —ay® = 0.
Hence the two expressions
ax® + ba’y + caxy® + dyt, dx®— cx’y + bay® - ay®
have a common quadratic factor, since each of the two perpendicular
straight lines becomes the other in the equation of the perpendiculars.

Add a times the first to d times the second, and take a times the second
from d times the first: then the common quadratic factor is also a factor
of both z{(a®+d?*) 2" + (ab—cd) xy + (ca + bd) y*}
and y{(bd + ac)x® — (ab —cd)xy + (a’ + d%)y*};
consequently the quadratic factors in these are identical, if a?+d? 0,
a’+d® _ ab—cd _ ac+bd
bd+ac —(ab—cd) a’+ d?

i.e. a’+d®+bd +ac = 0.

The solution can also be obtained as follows : —

put y = xtan 8 in the equation, then
dtan®d+ctan’6+btanf+a = 0.

This must give two values of § which differ by a right angle,
1. e. two values of tan 8 whose product is —1.
Hence if the roots of the cubic
dt’+ct’+bt+a =0
are t;, t,, ¢, we have t,¢, = ~1,

1. e.

a a
But ¢ty = — 7 b=
and since ¢, is a root of the equation, we have
a a’ a
d-a—s +¢.Z,‘ +b.d +(l=0,

or a+a*c+abd+ad* =0; or a®+ac+bd+d* =0,
unless @ = 0 ; this special case is left for the reader's consideration.

Ex. iii. Find the angles which the straight lines
by(x?+y?)?2—20y° (22 +y?) +16y> =0
make with the axis of x.
Put y = xtan 8 in the equation, then
5tan 6 (1 +tan®4)?—20tan%4 (1 + tan®d) + 16 tan® 4 = 0.
Multiply throughout by cos® 6, then
58infd—~20sin* 4+ 16sin%d = 0,
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hence sin 6 {16 sin* 6 —20sin* 4+ 5} = 0,
i.e. sinf{4(1-cos26)*—~10(1 -cos28) +5} = 0;
sin0{4—8cos20+2(1+cos40)—10+10cos 20+ 5} = 0;

8ind+2co828sin §+2cos46s8ind=0;
sinf +8in 30 —sin §+5sin 50 —sin38 = 0,

i.e. sindd =0,

hence 59 =180n° (n being an integer),

and the values of 4 are 0, 86°, 72°, 144°, 288>,

N.B.—1It should be carefully noted that any other value of n gives a value
of 6 corresponding to one of these directions.

Examples III a.

1. Represent the following loci in a figure :—
(i) 2y =0; (i) a*—4y* = 0; (iii) 2*~Tay+10y* = 0; (iv) 2’ ~2y = 0;
(v) 2*-2ay+y? =0; (vi) 2*=24/Bay+y* = 0.

2. Show that 22"+ 3xy—~2y*~x+8y~1 = 0 represents a pair of straight
lines at right angles, and draw them.

8. Find one equation representing the diagonals and sides of a square
referred to convenient axes.

4. The centre of a square lies at the point (a, a), one of its diagonals
is parallel to the axis of , and each side is of length 2a.

Find an equation representing its sides and diagonals,

5. What does the equation 2% —a’" - a%" + a* = 0 represent ?

6. Draw the locus 2%* - a%? - b +a®b* = 0.

7. Draw the locus (x~a)*-(y—b)* = 0.

What is the equation of parallel straight lines through the origin ?

8. Find the equation of a pair of straight lines through the origin
perpendicular to the lines 2* + 2hxy—~y® = 0,

What do you conclude from your result ?

9. Find the equations of pairs of straight lines through the origin
making an angle § with (a) x4y =0, (b) z-y=0.

10. Find the angles which the straight lines given by the following
equations make with the x-axis. Hence write down the separate equation
of each line: —

(i) 2*~aly-3ay*+8y* = 0;
(ii) «*sin 8x -8’y cos B —8xy*sin 8+ y*cos8X = 0.

11. If u =10, v=0 represent straight lines, what does the equation
1= m%? = 0 represent ?

12. Find the equation of two straight lines (a) through the origin,
(b) through the point (3, 0), parallel to x*~8xy+6y* = 0.

13. Find the equation of a pair of straight lines perpendigular to the
lines az® + 2hay + by* = 0, and passing through the point (b, a).

14. What lines are represented by «°—2xysecf+y*=0? What is
the angle between them ?
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15, If u=axcos X +ysinX—p, v =xcosB+ysinB~gq, express in a single
equation the bisectors of the angles between u = 0, v = 0.
16. Find the coordinates of the points where the straight lines
82 +ay -4y -62-22y—-24=0
cut the axes of coordinates and the line £+y = 0. Can you draw the lines
from these data ? If so, find their separate equations.
17. Find the condition that the two lines ax®+2hxy+by® = 0 should be
perpendicular.
18. Find the conditions that the equation ax®+3ba’y+3cay’+dy’ =0
should represent,
(a) three coincident straight lines ;
(b) two coincident lines and another;
(c) three lines equally inclined to each other.
19. Find the equation of three straight lines through the origin which
make angles with the axis of x:—-
(i) 6, 6+60°, 6+120°;
(i) 6—45, 6, 6 +45.
20. When does az® + ba’y + cxy®+ dy® = 0 represent a pair of perpendicular
lines and a straight line bisecting the angles between them ?
21. Find the equation of the straight lines joining the origin to the
points of intersection of the lines
22+8y=1 and 32’ +2xy—y'-Tx—-8y+3=0.
22. Find the condition that the straight lines joining the origin to the
points common to the loci 2® +y* = ¢* and Iz + my =1 should be coincident.
23. Form the equation of four straight lines which make angles 6, 6+ %,
6+%m, 0+%n with the axis of z.
24. If wu=0, v =0, w=0 represent straight lines, and ', v/, w’ are the
values of u, v, w when = J and y = k, show that
wow' (u' — w'v) + vion' (010’ — 1wv') + wus' (wu' —uw') = 0
represents the joins of (h, &) to the vertices of the trianglc formed by
1, v, and w.
25. Show that the equation of any pair of perpendicular struight lines
through the origin can be put in the form z*~y? + 2hxy = 0.
Hence show that
'+ Bx’y + Cx'y* + Dxy* + Ey* = 0
represents two pairs of perpendicular straight lines if B+ D =0and E = 1.

§ 6. The greater part of elementary algebraical geometry is occu-
pied with the properties of the locus represented by the most general
equation of the second degree, viz.

ar®+2hoy +by* +.292+2fy+c=0.
When the left-hand side of this equation has two linear factors the

locus represents two straight lines which are parallel to the straight
lines through the origin

ax?+2hxy +by3 = 0.
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We propose here to discuss the properties of this latter equation.

(i) To find the nature of the lines ax®+ 2haxy + by? = 0.

If the equation
b(i—/)2+2h(i—/)+a=¢0 )

is solved, and m,, m, are the two values of g so found, then

y—mzx =0, y—myx =0
are the two straight lines.
These are therefore real, coincident, or imaginary according as
my, m, are real, coincident, or imaginary.
Hence, according as
h2—ab is positive, zero, or negative,

the lines represented by the equation are real, coincident, or
imaginary.

The idea of an imaginary line has been adopted in order to preserve
continuity : thus, for instance, we say that two tangents can be drawn
to a circle from a point which are real, coincident, or imaginary ac-
cording as the point lies outside, on, or inside the circumference.
Imaginary points and lines cannot be represented in the same way as
real: their existence is indicated by the algebraical ‘consideration of
geometry and has been accepted in Pure Geometry with fruitful results.
They offer an explanation of many facts, and their recognition saves
the necessity of a long series of exceptions. (See Chap. IV).

(if) Z'o find the angle between the straight lines ax® + 2hxy + by? = 0.

When the axes are rectangular, since the equation of a straight line
through the origin making an angle 6 with the z-axis is y = z tan 6,

the two values of (%) given by the equation are the values of tan 6,

tan 6,, where 6,, 9, are the angles which the straight lines make with
the z-axis.
Put therefore % = tan 0 in the equation and we get

b tan20+2h tanf+a = 0.

2h
Hence tan 0, + tan 6y, = — 5

and tan 6, tan 6, = %-
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The angle between the lines is (6, —6,), hence

_ tan6,—tané,
tan (b0 = T and tan 6,
\/4h‘ _4a .
ANy _2/r=ab,

a - a+b
1+i)

The reader should consider the case when b is zero.

Cor.i. If the lines are at right angles, §,—6, = }= and tan(6,—4,) is
infinite, hence the condition that the lines should be perpendicular
is a+b=0.

Cor. ii. If the lines are coincident, 6§, = 6,, and tan(6;—46,) is zero,
i.e. k* = ab.

Note. When the coordinates are oblique, it may be shown that the
angle between the lines is

2/ =ab .sinw '

tan! a+b=2hcosw

(i) Zo find the equation of the straight lines which bisect the angles
between ax®+ 2hxy+ by? = 0.

,70 x

If 6,, 6, are the angles which these stlaight lines make with the
z-axis, the bisectors make angles (6, +6,), 37+ (6, + 6,) with this
axis.

Hence the equation of the bisectors is

(y—xtan b,+0 )( +zeothitt ) 0,

ie Y +wy{cot&(61+02)— tan%(ol'l'og)} —a? :=O,
cos3} (6, + 6,) —sin?} (6, + 6,)
2sin (6, +6,). cos 4 (6, +6,)

i e. ¥ +2uay. —a?=0.
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Hence (#®—y?) tan (6, + 0;) = 2xy,
i e. (x3—y?) (tan 6, + tan 6;) = 22y(1 —tan 6, tan 6,) ;
-2k a
or (x2—y?) ( b_) = 2xy (l - 3).
i. e, h(x2—y3) = (a—Dd)2y.

Hence the required equation is
—(@—b)ay—hy? = 0.

Note i. The condition that these lines should be real is that (a —b)* + 42
should be positive, which is always the case.

Note ii. The equation satisfies the condition that the bisectors should
be perpendicular to each other.

(iv) To find the condition that the straight lines ax®+2hxy+by? =0
should be harmonically conjugate with respect to the straight lines

a2+ 20 zy+ b’y = 0.
If neither b nor ¥’ is zero, let
az®+ 2hay +by* = b (y—pz) (y — )
and a'2® 421 2y + b y? = V' (y — rx) (y — s).

Now the straight lines y—pr=0, y—gzr=0 are harmonic
conjugates with respect to the straight lines y—rz =0, y—sx =0
if (p—1)(g—9) = —(p—3)(g—7), (§ 10. II)
ie if 2(pg+rs)=(p+q)(r+s).

Expressing this relation in terms of the coefficients in the given

equations, we find
21 2N
2(+5)=(-3) (- F);

ab’+a’b = 2hl.

The reader should prove that this condition holds when either
b or b’ is zero.

The converse can be easily proved by reversing the steps in the
work above.

The equation az®+ 2hxy+by? = 0 contains only two independent
constants, viz. the mutual ratios a:h:0. If a 3 0, we can therefore

ut

’ ax’+2hay + by? = a(x +py) (+ay),
since the right-hand side contains the two independent constants p, g.
This is a useful comparison to make in many special cases.
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Ex. i. To find the product of the perpendiculars from the point (€, 1)
on the straight lines ax®+ 2 hxy + by? = 0.

Let ax’+ 2haxy + by = a (z + py) (x + qv).

Comparing coefficients p+¢q = g;h ,

b
pq = E .
The product of the perpendiculars
= Etpn £+
J1i+pt J/1+g
= £+ +9én+pgn’
Vitp+g+p'g
- af+a(p+q)én+apgn’
v {a*+a%(p+q)* - 2a’pq + a’p’¢*}
_ _af+2hén+by’
v{a®+4h*—2ab+ %}
_ af*+2hén+bnt
= V{e-0p+any

Ex. ii. To find the anharmonic ratio of the pencil formed by the two
pairs of straight lines whose equations are

ax?+2hoy+by? =0 and @'z?+2h 2y +b'y? =0,

Let az?+2hxy + by® = a(z + py) (= +gy),
a'z’ + 2hxy + by = o' (x + ry) (x +9y),
2h b
then preg=—,pq=
1% v

str=gm =y

The anharmonic ratio = (p=1)(g-9)
(p-9)(g-r)

_Patrs—(ps+qr)
pg+re—(pr+gs)
Now (p+q)(8+7) = ps+qr+pr+gs,
(p—9)(s—7)= ps+qr—(pr+gs).
Hence pstar=3}{(p+q) (s+1)+(p-g) (e-)}
4hh' 44/K—ab. /Wi -a'V
=G e |

= 2w+ /F@. T,

and similarly pr+gs = a% {WW — /Wi =ab /WP ~a't'};
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the anharmonic ratio is therefore equal to

ab’ +a'b~2hh =2/ W —ab /B -a'b’
ab' +a'b—2hk + 2/ B —ab. /B = aV

Ex, iii. 70 find the area of the triangle whose sides are given by the
equations ax?+2hxy+by?=0, lr+my=1.

Let the points of intersection of Iz +my = 1 with the lines

ax’+2hay +by' =0 be (21, 49), (@, 1)
then the area of the triangle, since one vertex is at the origin, is

% (@193 —231),

. z, =«
which =} et R R
' X210 (yl .’h)
The values of Z/i’ and 3? are given by the equation
1 2
2 7
a(i”) s2n(Z)4p=0,
Y Y
Hence x—‘+"f’—_-_.2l', “;'lfﬂgli‘
i Y a Y1y, ¢
ie azl_g,=2/ﬁ:¢t—1)
o oY a '

Again, the values of y, and y, are given by

% =my) + 2 (1) 4 by = 0,
i.e. ylam=2hIm+bl)+2y (hl—am)+a=0;
a
hence %Y= G Tt o
The area of the triangle is therefore

Vhi=ad
am® —2 him + b3’

Examples III b,

1, Prove that the equation 42*~122y+9y? = 0 represents two coinci-
dent straight lines, and 42*-122y+9y® = 1 two parallel straight lines.

Find the equation of coincident lines perpendicular to them and passing
through the point (1, -1).

2. Find the angle between the lines 602'—1038 zy—72y* = 0,

8. Show that the equation z*~2xycot 2 X —y® = 0 represents two straight
lines, and find their equations.

Draw the locus when o = 30°.
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4. Show that the two pairs of lines
1022 +8zy+y* =0 and 52*-12xy+64* =0

contain the same angle.

5. Find the area of the figure enclosed by the lines z =3, y =2,
52°-182y+9y* = 0.

6. Prove that the two pairs of lines

azt+acxy+cy* =0, (B+c V) 2+axy+(8+aN)y?=0

have the same bisectors of the angles between them.
7. Find the length of the intercept cut off on

z+y—1=0 by 2?+4zy+y*= 0.
8. Find the separate equations of the bisectors of the angles between
(a+8)x*+6xy+ay*= 0.

9. Prove that « —y = 0 bisects the angle between 42—y +44* = 0.

10. Show that the straight lines (¢ +\)2?+ 2hay +(b+A)y? = 0 have the
same bisectors whatever value A may have.

11. Find the anharmonic ratio of the pencil formed by the two pairs of
lines 32?=5xy+y* =0 and 2+ T2y +9¢? = 0.

12. Find the condition that one of the lines ax?+2 hay+by* = 0 should
(a) coincide with, (b) be perpendicular to one of the lines

@'zt +2hzy+ byt = 0.

13. Find the equation of a pair of straight lines which are harmonic
conjugates with respect to each of the pairs

422 +5xy+y'=0 and 327+ Txy+4y*=0.

14. Find the equation of a pair of straight lines which are at right angles
and have the same bisectors of the angle between them as the straight
lines y—22 =0, y—3xr = 1.

15, Show that 11 y®+ 16 2y —2® = 0 represents a pair of lines through the
origin inclined at 30° to the line #+2y = 1.

16. Find the condition that xcos X +ysin @ = p should be parallel to
one of the straight lines ax?+ 2 hxy + by* = 0.

17. Find the angle between the straight lines

2+ y? = 4 (x cos § + y 8in 6,

18. Show that the straight lines acos® a?+abzy+bsin*axy* =0 form
for different values of & pairs of straight lines which are harmonic conju-
gates of ax’+2 xy + by’ = 0.

19. Prove that the straight lines joining the origin to the points common
to (z—h)*+(y—k)*=c* and kx+hy=2ht will be at right angles if
W4k = ¢,

20. Prove that (a+2k+b)2?+2 (a~b)ay+(@a—=2h+b)y* =0 denotes a
pair of straight lines each inclined at 45° to one or other of the lines given
by ax®+2hay+by* = 0.
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21. Find the length of the'intercept cut off on
2cos0+ysin = p by ax’+2bay+cy’ = 0.

Interpret the results when d'= ac or when « satisfies the equation
atan*a-2btan ot +¢ = 0.

22. Find the condition that the straight lines a2®+2hay + by’ = 0 and
lz+my+n = 0 should form a right-angled isosceles triangle.

28. Find the equation of the straight lines which are harmonic conjugates
of both the pairs ax?+2hxy+by* =0, a'z*+2h'zy+b'y’ = 0.

24. One of the lines az®+bxy+cy* = 0 coincides with one of the lines
'z +bxy+c'y' = 0. Show that the tangent of the angle between the
other two is {ac’~a'c}l/ {aa’ (bc’ - b'c) + cc’ (ab’ — a'b)}.

25. Two fixed straight lines whose equation is 2*+2axycotx—y =0
are intersected in P, @ by a variable line lz+ my = 1.

Find the area of the triangle formed, and, if the area is constant, find the
equation of the locus of the mid-point of PQ.

26. Find the condition that the two pairs of straight lines

az'+2hay+by* = 0, a'z*+2h'zy+b'y* =0
may form a barmonic pencil (i) when lines of the same pair are conjugate,
(1) when lines of different pairs are conjugate.

27. Show that the conditions that the straight lines ax®~2 hxy +by* = 0
should form an equilateral triangle with 2 cos X + ysin & = p are

a/(1-2c0820) = h/(2sin20) = b/(1+2cos20x).

28. A straight line of constant length 27 has its extremities one on each
of the straight lines a2?+2hay +by? = 0.

Show that the locus of its middle point is

(az + hy)® + (ha + by)® + (ab—h?) 1 = 0.
29. If xcos X +ysin 0 = p makes angles 8,, 4, with the lines
az'+2 hxy + by* = 0,
then the values of tané, +tan 4, and tané,tan 6, are
h'—(a—blt—h _, at'—2ht+d

arohirbn - *d g S tan).

80. The diagonals of & quadrilateral are # = ¢ and y = ¢, and a pair of
opposite sides are ax?+by’ = 0. Show that the other two sides intersect at
the point {2 be/(b—a), 2ac/(a—b)} and are parallel to

(az +by)* + ab (z +y)* = 0.

81. Find the length of the intercept on the line y = ma + ¢ made by the
lines ax®+2 hay +by* = 0 when the axes are oblique.

82. Show that, when the axes are oblique and inclined at an angle a), the
lines a2+ 2 hay + by* = 0 also include an angle o, if

4abcos® w—4h(a+b)cosa+(a+bd)? =0,

2.
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§ 6. CHANGE OF AXES.

It is often convenient to change the position of the axes of coordi-
nates : it is then necessary to find what the equation of any locus
referred to the original axes becomes when referred to the new axes.

If the axes are changed from Oz, Oy in the figure to 0’ X, 0’ Y, the

transformation can be made in two stages.

(i) We can transfer to a pair of axes parallel to Ox and Oy drawn
through the point 0’.

(i) We can then change the directions of these axes to 0'X, 0’Y.
The two stages can be examined separately : the first step is simple
in all cases; the second, however, in the case of oblique coordinates,
is very involved and is rarely required in practice. We need, how-
ever, for future work to show that no change of axes alters the degree
of the equation of any locus : to do this it is necessary to show that,
if the coordinates of a point referred to the original axes are (x, ¥)
and referred to the new axes (.Y, Y), then the new equation is obtained
from the old by some linear substitution such as

z2=1X+mY+n, y=U'X+m'Y+n'

We shall prove this, but otherwise confine our attention to special
cases which experience shows are required in the processes of analysis.
This part of the work is often omitted by the student. This is a
mistake, as many elementary properties become clear if the results
of transformation are understood: we intend therefore to give
a considerable number of easy exercises to emphasize this part
of the work.

1207 G
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1. To change the origin without changing the direction of the axes.

Let the new origin be the point 0’(h, k). Suppose the coordinates
of any point Pare (z, y) referred to thé axes Oz, Oy and (X, Y) referred
to parallel axes 0'X, 0'Y.

P
y /A M x
Draw PLM parallel to Oy to meet 0’X, Ox in L and M : and let
the new axes meet the original axes in 4, B.
Then x:OM:OA-}-O'L:h-l-X,
Hence, if in the equation of any locus referred to the axes Ox, Oy
we substitute (2 + X) for z and (k+ Y) for y, the equation obtained

is that of the same locus referred to 0’'X, 0’Y.

Note. The point P has been taken in the positive quadrant for both sets
of axes: the student should draw other figures and see that this method
gives results true for all points.

Examples IIIc.

1. What does the equation 3x+4y =7 become when referred to axes
through the point (1, 1) parallel to the original axes? Verify the result by
drawing the graph of the locus.

2. Find what the equation 42"+ 8ay+3y®= 0 becomes when referred
to parallel axes through the point (-2, 8).

Verify, by finding their separate equations, that the new equation still
represents two straight lines.

8. Take any pair of coordinate axes and u pair of purallel axes through
the point (-4, 5).

Verify, by drawing, that the coordinates (x, y) of the following points
become (X, Y) when referred to the new axes, where = X—4 and
y=Y+5.

i) (7, 2). (ii) (8, 5). (iii) (-2, -8).
(iv) (~8, ~8) () (=4, =7). (v) (=6,8).

4. Prove that, when the origin is changed but the directions of the axes
are unchanged, the coefficients of the highest powers of = and y in-an
equation are not altered, e.g. ¢ and b in ax+by+c=0, or a, b, b in

axr’4+2hry+by’ 4+ 29x +2fy+c = 0.
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II. To change from ome set of rectamgular axes to another set of
rectangular axes without changing the origin.

Y

Let the new axes make an angle  with the original axes, and let P
be the point whose coordinates referred to Ox, Oy are (x, y), and
referred to 0X, 0Y are (X, Y).

Draw PL perpendicular to OX and PM perpendicular to Oux,
LN, LR perpendicular and parallel to O.r.

Then

2= 0M=0ON—-RL=0Lcos0—LPsind = X cos 0— Y sin 0,

y=MP=NL+RP =0Lsin0+LPcosd = X sin0+ Y cos 6.

The equation of any locus referred to the new axes is thus obtained
by substituting (X cos § — Y sin 6), (X sin 0+ Y cos 6) for « and y in the
equation of the locus referred to the original axes.

Examples IIId.

1. What does the equation x?+y? = a* become when the axes are turned
through an angle 6 ?

2. What does the equation z?—y® = a®* become when referred to axes
inclined at an angle }m to the original axes?

3. For the equation 2#*—y?—2ax+2by+¢® = 0 change the origin to the
point (@, b) and turn the axes through an angle } .

4. What does the expression az®+2haxy+ by’ become when the uxes are
turned through an angle 6 and the origin is unchanged ?

5. What does the equation xcos +ysin X —p = 0 become when the axes
are turned through an angle  ?

Draw a figure.

6. Find the angle between the straight lines z'-2aysec26+y* =0.
1f the axes were changed to the bisectors of the angles between these lines,
what would the equation become ?

G2
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7. Transform the equation #*+42y+y*+ 6 x—38 = 0 by turning the axes
through 60° and changing the origin to (1, —2).

What do you conclude from your result ?

8. If the new axes are inclined at an angle, 6, taken in the positive sense,
to the old, find the equations of the new axes referred to the old. Hence
find the values of X and Y in terws of «, y, and 4; discuss the signs of the
expressions so found.

1I1. To change from a pair of obliguc axes to a convenient pair of
rectangular axes, retuining the same origin.

Y
Y

Retain the original axis of 2 and take a line perpendicular to it for
axis of y.

Let I’ be (x, y) referred to the original axes and (X, Y) to the new.

Draw PL perpendicular to Ox, and I’M parallel to Oy.

Then = O0M=O0OL—-ML=0L—-PLcotw = X-—Ycotw,

y = PM = X cosec .

Hence for # and y we substitute (X — Y cot w) and Y cosec .

N.B.—To transfer back to the original axes we must put for X and
Y the expressions 2+ cosw, ¥ sinw.

Examples III e.

1. If the axes be inclined at an angle o, find by changing to rectangular

axes the conditions that the lines
(a) Azx+ By+C = 0,
Az+By+C=0;

shéuld be perpendicular.

2. Referred to oblique axes inclined at an angle o the point P'is (x,, y,),
and the line 4B lx+my+n =0,

Change to rectangular axes and hence find the length of the perpen-
dicular from P on 4B.

3. What does the expression x’+y*+2 zy cosw become when the axes are
changed to rectangular axes ?

Interpret the result geometrically.

(b) ax®+2hxy+by* =0
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4. When the axes are inclined at  the equation of a | air of straight lines
is az’+2hxy+by*=0. Change the axes to rectangular axes, form the
equation of the bisectors of the angles between them, and find what the equa-
tion of the bisectors becomes when the axes are changed back to the
original axes.

1V. To change a pair of rectangular axes to another pair of rect-
angular axes whose equations referred to the original axes are given.

Y Y

Let the equation of the new axes referred to the old be reduced to
the form, zcosa+ysinx—p=0, —zsina+ycosx—q=0.

Let P be any point whose coordinates referred to the original axes
are (r,y) and to the new axes (X, ¥). Draw PN perpendicular to
0’ X, then X = () M = perpendicular from Pon 0'Y

= —xsin x4y cosx—q, (i)
Y = MP = perpendicular from P on 0’'X
=z cosa+ysina—p. (i)

Note. In the figure P is placed in the positive quadrant X0'Y; Xand ¥
are therefore positive. In the forms chosen the substitution of the coor-
dinates of O in the equations of the lines gives —p, and — g, hence, since P
is on the opposite side of the lines to the origin the substitution of the
coordinates of P will give positive results as required. Note that p and q
were considered positive in the figure. In any special case under considera-
tion draw a rough figure and determine the signs.

Equations (i) and (ii) give us two linear simultaneous equations
from which to find z and y in terms of X and Y ; the results are
z=(Y+p)cosax—(X+g)sina,
Y= (X+q)cosax+(Y+p)sina.

Cor. In the case of oblique coordinates the expression for the perpen-
dicular from any point on a straight line contains the coordinates only in the
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first degree: hence, if the method just explained is used when transforming
from any pair of axes to any other pair, we shall get two simultaneous
equations of the first degree between the old and new coordinates, and
consequently the change is effected by a substitution of the form

z=1X+mY+n,

y=1X+0'Y+n'
Hence, however the nxes may be changed the degree of any equation
is nunaltered.

Example.

What does the equation of the straight lines 72>+ 4xy+4y? =0 be-
come when the axes are the bisectors of the angles between them ?

The equation of the bisectors is

22'-82y-24* =0,
i.e. 2z+y=0, 2z-2y=0.

Now we know that the equations of two straight lines equally inclined to
the «-axis are of the forme y—mz =0, y+ma = 0; hence the single
equation representing the two lines referred to the bisectors of the angles
hetween them as axes contains only the #* and #* terms: suppose it is

ax’*+ byt = 0. (1)

The coordinates in this case are the perpendiculars from any point on the

lines 22+y =0 and x—2y = 0. i.e. in terms of the old coordinates are

2x+y x-2y
NV
Change equation (i) back to the old axes ; it becomes
1aRz+y)t+3{b(x-29)?% =0.
or aRx+yP+b(x-2y)?%=0;
this is therefore equivalent to
Tat+4zy+4y= 0.

Hence 4a+b =T,
4a—-4b =4,
a+4bdb =4,

which are consistent and give ¢ = §, b = §.
Hence the required equation is

8at+3y* =0,
The lines are evidently imaginary.

§ 7. Invariants. When any equation of the second degree
ax?+ 2hay+ by + 292+ 2fy+e=0

is transformed by any change of axes to another equation of the
second degree, such as

aXE4 2 XY+ VY2429 X 4+2f'Y+¢ =0,
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certain relations between the constants are unaltered by the change ;
these relations we call Invariants.

(i) To show that when we transform from ome set of rectangular co-
ordinates to another the quantities a+b and ab— h? are unaltered.

Firstly. We have seen (Ex. 111 c.4) that changing the origin without
changing the direction of the axes does not affect the coefficients
a, h, and b. We have only then to deal with a change in direction
of the axes.

Secondly. No change of axes affects the degree of the terms

292+2fy+c;

hence these terms do not affect the coefficients a’, 7/, and V.

We have then only to find what the terms az? +2hzy + by? become

when the direction of the axes is changed. Suppose the axes turned
through an angle 4.

Then ax? + 2kxry + by® becomes
4 (X cos@—Y sin 0)2+ 2/ (X cos 0 — Y sin 6) (X sin 0 + XY cos 6)
b (X sin 6+ Y cos 0)?
= X?%[acos?0+2h cos 0 8in 0+ b sin?@]
+2XY[(b-a)sin 0 cos 0 + h(cos?d —sin20)]
+ Y?[a sin?0—2h sinf cos 6+ b cos?0],
Hence, if 2%+ 2hxry+ by? becomes «’23 + 2h'zy + b'y?, we have
@’ = a cos?0 + 2k cos 0 sin 0 + b sin?4,
U = asin?0—2h cos @ 8in 0+ b cos?b,
i.e. o+ =a+b;
and further, 1'= h (cos?d—sin?6)+ (b—a) sin 0 cos 8
=h cos 20+ % (b- a)sin 26 ;
2h" = 2h cos 20— (a—b) sin 26.
Also we can write
20’ = 2hsin 20+ a+ b+ («—b) cos 26,
2V = —2hsin20+a+b—(a—"D)cos 29,
40’V = (a+b)>—[2hsin 20+ (a—b) cos 26]*
= (a+D)2—~4h?sin? 20— 4h (a—b) sin 20 cos 20 —(a— b)?cos® 20
= 4ab—4h2+(a—Db)?sin?20 —4h(a—b)sin 26 cos 20 + 4h?cos?26
= 4ab—412+ 412
or a’t/—h"? =ab—h>
Note. One point needs careful notice : the proposition states and the
proof implies that a+b, ab—h? are invariants if o'X*+2h XY +0'Y?

is obtained from az?+2haxy+by® by the processes of transformation. It
does not follow when we are told that

az®+ 2hay + byt + &e. = 0 and «’ 2°+2h xy + 'y’ + &e.
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represent the same locus referred to different rectangular axes that these
relations are true: for either equation may have heen simplified by
multiplication or division by some constants.

Thus, for example, 22 —~y? = 0 and X?— ¥?—-2,/3XY = 0 represent the
same pair of straight lines (the angle X0z being 30°), but the values of
ab—h? in these two equations are —1 and —4 respectively: the fact is that
when the process of transformation is ecompleted the second equation
appears in the form 3X?-37—~,/3.XY =0

All we can say, then, when we know that

ax’+2hzy+ by’ = 0 and a'2*+2h 2y +b'y* =0
represent the same locus referred to different axes, is that
a+b=2\(d+b),
ab—nht=N(a'd - 1'?)

2
(aab-’-—blf ; 1s an invariant.

where A i8 a constant.

In any case, however,

Example.

What does the equation of the pair of lines 7Tx2+4xy+4y*=0
become when referred to the bisectors of the angles between them ?

We know that the new equation is of the form
aX*+0Y? =0,
and we suppose that this equation is the result obtained by changing the
axes to the pair of bisectors.
Then a+b="T+4=11,
ab=1"7.4-2"=24;
a=8 b=3 or a=3 and b=8§,
and the equation is 8X%?+3¥Y?=0 or 3X?+8Y?=0.
The two results correspond to two cases when a particular bisector is
taken as axis of X or as axis of Y.

The new axes being uow called the axes of & and y the results can be
written 822+8y?=0 or 32?+8y* = 0.

(i) A proof of this invariant property due to Prof. Boole is
applicable also to any change of axes, Suppose that we transform
an equation from axes inclined at  to axes inclined at ’; and
that on making the substitutions for tramsformation the expression
ax?+2hay+by* becomes o’ X2+2h XY+U' Y?: the expression
2%+ 2 2y cos w+y? represents the (distance)’of the point (z, %) from
the origin, and when transformed must therefore become

X242 XYcosw + Y4
We suppose that the origin is unchanged, for we have shown
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that a change of origin only does not alter the coefficients a, 7, b,
and therefore such a change need not be considered.
It follows then that the equation
ar?+ 2hry+by2+ & (¥ + 2.0y cos w+y?) =0 @y
will become
X242 XY+ Y24+ E(X24+2XY cos o'+ Y2)=0. (i1)
Hence if the value of % is such that the first equation represents
a pair of coincident straight lines, i.e. if the left-hand side of the
equation (i) is a perfect square, the second equation must also represent
coincident lines and the left-hand side of (ii) is also a perfect square.
The conditions in these cases are
(a+k)(+k) = (h+kcosw)?, (i)
(' + %y (b + k) = (W + k% cos )2 (i)
Hence any value of %k which satisfies (i) also satisfies (ii); these
equations are therefore identical. They may be written
Ksin2w+(a+b—2hcosw)k+ab—n? =
k?sin? o’ +(a’+b" —2 K cosw)k+a’b’— '2—0
a+b—2hcosw a 4+ =21 cos o’

Hence —— e, .
sin?w sin? o’
ab—h?* o’ b’ -0
sinfw ~ sin? o’

The student should work out the case of rectangular axes in the
same way.

We again note the words in italics: it is supposed that the second
equation is in the form given by the process of transformation without
subsequent simplification.

If we merely know that az®+2hay+0y2 =0
and 2Ny +V'y2 =0
represent the same locus referred to axes inclined at o and w
respectively, all we can say is that

(@a+b—2h cos w)* _ (a’+ V' — 21 cos o)?
@-19sinlw @V —1?sinte

Examples III f.

In the following exercises 1-6 it is understood that the general equation
of the second degree ax®+2hxy+by*+2gx+2fy+c=0_ is transformed by
a change of origin or a change in the direction of the axes from one set of
rectangular axes to another.

1. Show that it is possible by a change of origin only to remove the t,enn
which contains x. Find the equation which the coordinates of the new
origin referred to the original axes satisfy.

Can this always be done, and in how many ways ?
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2. Discuss the removal under the same conditions of (a) the y term,

(b) the constant term.
hat is the geometrical significance of the transformation ?

8. When is it possible by a change of origin to remove both the « and y
terms? Examine the case when @b = A% In how many ways can it be
done? Where is the new origin ?

4. Can the y term and the constant be removed simultaneously ? When
is this impossible ?

5. Show that by changing the direction of the axes the term (a) #* or
(b) ¥* or (¢) xy can in general be removed. Find the equation giving the
value of the angle through which the axes are turned.

In what cases is the transformation impossible ?

6. If the equation can be transformed to y®+2lx +2my = 0, what condi-
tions exist among the original constants of the equation ?

§ 8. The most general equation of the second degree in » and y is
ax®+2hxy+by? + 292 +2fy+¢=0;

this contains five independent constants, viz. the ratios of a, 1, 1,
9, S

The greater part of analytical geometry is concerned with the loci
which this equation represents in the various special forms to which
it can be reduced, and under the various conditions which may exist
among the independent constants. The student will thus do well to
acquire early a knowledge of the notation by which the discussion of
the equation is simplified. 'We shall discuss in the next paragraph
the properties of the equation when it represents a pair of straight lines
and include this notation.

§ 9. If the general equation
f(z y) = ar’+2hay+by®+292+2fy+¢c=0
represents a pair of straight lines, then the expression f (», y) can be
resolved into two linear factors. The condition for this is worked
out in most text-books on Algebra: we append here the most obvious
method because it applies to any system of coordinates, gnd to
equations of a higher degree.
Let ax?+2hay + by* + 292+ 2 fy+c
= (pe+qy+1) (P'2+9'y+7)
Then, comparing coefficients,
a=pp, b=gqd, c=1’, 2f=qr'+¢n,
29 =p' +p'r, 2h =p9' +) q.
From the equations 2/ = g’ +¢'r, 29 = pr' +p'r
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we obtain 2(fo—99) = r(pgd’ —pq)
and 2(f'—9d) =¥ (V'a—p9),
therefore 4 (fp—g9) (f'—99) = — 1’ (vd —0'9)",
ie. 4{pp'fP~(0d' +9' DSy +ad9*} = —r7{(pd +9'9)*— 4pp'9d'}-
Hence af3—2 fgh + bg? = —c (h?—ab),
i.e. abe + 2 fgh— af2—bg?—ch? = 0.
This condition is necessary. It includes all cases, whatever values
», 49 2, ¢, may have.
Conversely, to show that it is sufficient, i.e. if
abc + 2 fgh— af?—bg?—ch? = 0,
then ax?+ 2hay +by?+29x+ 2 fy+ ¢ can be factorized.
We can always find p, ¢, 2, ¢/, so that

az?+2hxy+ Ly = (v2+9y) (0" 2+ Q'y),

where pp’ =a, pg’+p'q=2h, q¢’ =b; and evidently p and ¢
cannot both be zero, nor can p” and ¢'.
We are given that

af?—2 fgh+ by = —c(h*—ab);

thus 4 (fo—gq9) (fp'—94') = —c(pd —p'9)*
Now put c=rr, 2(fp—9q9) = r (p9'—2"9),
_then 2(fp'—99) = v’ (v'a—p9).

Solving these equations for f'and g, we find
2f=q’+q¢'r and 29 =pr'+p'r
provided that p’¢—pq’ is not zero.
If fand g have these values it is evident that
ax®+2hay+ by + 29242 fy+c = (px+gy+ 1) (@' z+ ¢y + 7).

The condition is thus proved to be sufficient except when

pqg’ — p’q=0. In this case, however, we have
(fo—99) (S¥'—99) = 0,
ie. fop—9g=0 or fp'—gq=0.

Either of these conditions combined with pg’—p'g= 0 gives us
that gz+/y is a multiple of px+qy; further, since pg'—p'q =0, it
is evident that aa?+ 2hxy+by? is a multiple of (px+gy):. Hence
ar? 4 2hay + by + 292+ 2 fy+ ¢ is of the form

1(px+ gy)* +2m (vz+gy) +¢,
and can therefore be written in the form I(pz+ gqy+ &) (px+ qu+ B).
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The condition is therefore sufficient in this case also. The factors
equated to zero represent parallel straight lines.

The veader may examine the special cases when p and p’ or
q and ¢’ are both zero.

§ 10. In discussion of the general equation the following notation
is convenient :—

u = a4+ 2hay+ byt +292+2 fy+c,

W= a2+ 20’y + by + 292 + 2 fiy' +
X =azx+hy+y, X'=ad+hy' +9,
Y = hx+by+/, Y = '+ by +f,
7 = gx+fyte, Z' =g +fy +ec,
A = abe+ 2 fgh— af?—bg?—ch?,

A = be—f?, I = gh—af,

B = ca—g?, G = hf—byg,

C = ab—1? H = fy—ch.

The latter can be remembered in the notation of the differential
calculus, thus

dA dA dA
A=50 B=73 =i’
o =98 9a_d48 Hy_944
2FP="r 26 g’ n .’

It is evident that
uw=2X+yY+2Z,
and =X +yY +7.

§ 11. Now if the equation # = O represents a pair of non-parallel
straight lines, these must intersect at some point (¢, y’). If, then,
the origin of coordinates is changed to the point (+/, 7'), the resulting
equation must represent a pair of straight lines through the origin,
and is therefore of the form

Ax?+2 Hxy + By? = 0,
i.e. the constant term and the terms containing x, y disappear.

The transformed equation is

a(z+2)2+20 (x+2) (y+y)+b(y+y)
+2g9 (x+2)+2f (y+y)+c=0.
Hence, equating the coefficients of = and 7, and the independent
term to zero, we get
ar’ +hy' +9=0, ie X’'=0,
he! +by'+f =0, ie Y =0,
ax? + 2 W’y + by’ + 292’ + 2y +¢=0, ie w' =0.
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But, identically, wW=2'X'+y'Y' +27';
hence, since X’ and, Y’ are zero, we also have Z' = 0,
i.e. ax’+hy +9 =0,

e +0y’ +f =0,
9’ + fy +¢ = 0.
Eliminating 2’ and ¥/,
uhyg
rbdf
gfe
which is the condition that = 0 should represent a pair of straight
lines.
Now X’=0 and Y’'= 0; but these are the conditions that the
point of intersection (2, y’) [referred to the original axes] should be
on each of the lines

A= =0,

ax+hy+g9 =20,
hz +by +/f=0.
This point is therefore given by
& _ 4y __1
hf—bg ~ gh—af  ab—h*’
i.e. the point of intersection of the straight lines is ((Z,, %) referred

to the original axes.
We can obtain other forms by using either X =0 and Z=0,
or Y=0 and Z = 0: the results are identical because A = 0

I. Sincethe point of intersection of the given straight lines lies on
each of the lines X =0, ¥ =0, Z = 0, there must be some linear
relation between X, Y, Z, such as IX+mY +nZ = 0.

Now we have by Algebra (or from the theory of Determinants)
the identities aG+1F+gC=0,

LG+ bF+ fC = 0,
9G+fF+cC= A =0.

Multiply these equations by x, y and 1 respectively, and add;
then GX+FY+0Z = 0.

1I. Since the point of intersection of the straight lines lies on each
of the lines X =0, ¥ = 0, i. e. each of the given lines is a straight
line through the intersection of X = 0, ¥ = 0, their equations must
be of the forms IX+mY =0, VX +m'Y = 0, and consequently the
equation % = 0 must be of the form pX2+¢X)Y +7Y2= 0.
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We proceed to obtain the equation in this form ; now
bX~hY = b(ax+hy+9)—h(hz+dy+f)
= (ab—1?)z—(fh—bg)
=0x—-G,
~hX+aY = —h(az+hy+9)+a(hz+by+f)
= (ab—h%)y—(hg—af)
= Cy-F.
Hence bX?—2hXY +aY3 =X (bX—=hY)+ Y («Y—hX)
= X(Cz—@)+ Y (Cy—F)
= C0(Xz+ Yy)—GX—FY
=(Cu—2)-GX-FY
= Cu—(GX+FY+02Z)
= Cu,
for GX + FY + CZ = 0 identically.
Thus the equation # = 0 can also be written
bX2—2hXY +aY3=0.

Note. This enables us to factorize the equation of a pair of straight lines
with numerical coefficients.

III. If the equation u = O represents straight lines, they must be
parallel to the pair of straight lines through the origin which are
given by ax? + 2hwy + by? = 0.

The bisectors of the angles between the lines w = 0 are therefore

straight lines drawn through the point (%, g) parallel to

h(@*—y*)—(a—b) 2y = 0,
i.e. they are the lines

H(e=8) (=)= ) (-5 =0
h[(Cx—G)*—(Cy—F)*]—(a—b)(Cx—G) (Cy—F) = 0.
Using the results in (II), we can write this equation
(X —=hY)PR—=(aY—hX)?]—(a—b)(bX~hY) (@Y —=hX) =0,
which reduces, on our dividing by ab— 1% to
W(X:=Y)—(a-0) XY =0.

or

IV. To find the condition that the siraight lines u =0 should be
parallel.

The angles between the straight lines uw =0 are equal to the
angles between the straight lines through the origin

ux®+42hxy +by* = 0.
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When the straight lines w =0 are parallel these straight lines
through the origin are coincident, hence ab = h%

In this case we have A =0 and C = 0; it follows at once that
G=0and F=0.

Thus bX =hY and kX = aY; consequently if = 0 represents
parallel straight lines,

(a) the equation VX2—2hXY +aY? =0 becomes an identity,
and (b) the straight lines X =0, Y = 0 are identical.

V. To find the product of the lengths of the perpendiculurs from any
point (', y’) to the straight lines u = 0.

Let
ar?+2hxy + 02+ 295 +2fy+c = (pr+qy+r) Wz +qy+7).
Then the product of the perpendicular from (z’, y’) on
prigy+r=0, pe+dy+r =0,
i (02 + gy’ +1) W' +dy +7)
Voi+gt Vp+q?
The numerator is equal to
ax’?+2hr'y’ + by + 294" + 2 fy + ¢, that is o',
We have also  pp'=a, q¢' = b, pg’ +p'q = 2h.
Hence  (p*+¢%) (p"+9™) = p*p + ¢*¢"+ p*¢" + "¢
="+ ¢+ (pg +9'9)° -2 pp'e0’
= (o' —qq +(pg' +9'9Q° = (@ -D)* + 41",
. u’
Hence the required product = s o
VI. To find the locus of the middle points of the intercepls made by

the straight lines w = 0, on a system of straight lines parallel to 7 ‘/, and

to deduce the equation of the straight lines bisecting the ungles between
the straight lincs u = 0.
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Let the point P(x, B8) be the mid-point of any one intercept 4 B.
Then the equation of the straight line AB which makes the
y-—~8

intercept is a_;_;_a =", for it is parallel to ?::—; and passes
through (&, 8).

This equation can be written

s—o _ y—f _ (z—0)*+(y—B)*
T~ m 124 m3
r
= = kr,
vV B+ m?

where » is the distance of any point (x‘, y) on the straight line
from the fixed point (&, B) and % is a constant put for convenience

instead of 71-—'_:—1;; :

If the value of 7 is either BP or PA, then the point (z, y) is on the
given locus; its coordinates are then (klr + o, kmr + 8), and, since it is
on the locus,

a (klr +0)? + 21 (Klr + o) (kmr + B) + b (kmr + B)* +2g (Klr + )
+2f(kmr+B)+c=0.

Consequently this quadratic in » gives the values of P4 and PB:
these are to be equal in magnitude and opposite in sign ; hence the
coefficient of  in the equation must be zero. This gives

2k{laoc+hlB+ hino + bm B+ gl + fm} = 0,

L e. llax+hB+g)+m(ha+bB+Sf)=0.
Hence (%, B) lies on the line
lax+hy+9)+m(hz+by+s)= 0, (i)
or, with our previous notation,
IX+mY =0, (ii)

i.e. a straight line through the intersection of X = 0, Y = 0.
Now if this equation represented one of the bisectors of the angles
between the lines it would be perpendicular to the intercept 4B, and

therefore to r=y .
I m

The condition for this is
(la+ km)m—(th+mb)l = 0,

or Im (a=b) +h (m?—1%) = 0.
But any point on the locus satisfies the equation
IX+mY =0,
X Y
or =" .

m -1
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Hence, in the special case considered, a point on the locus, i.e. on
one of the bisectors, satisfies
—XY(a—b)+h(X2-Y?) =0,
X2-Y? XY
a=b L
This represents a pair of perpendicular straight lines (for, if the
equation be written in full, it will be seen that the sum of the
coefficients of 22 and y? is zero).
Hence the locus of the middle points of the intercepts made on

straight lines parallel to %0 = 7% by

or

ax? + 2hxy + by + 292+ 2 fy +¢ = 0,
when this equation represents a pair of straight lines, is a straight
line through their point of intersection ; and when ! and m are such

that the locus is perpendicular to ?::‘é, the locus is one of the
perpendicular straight lines
X*-Y: XY
a=b ~ n’

which equation therefore represents the two bisectors of the angles
between the straight lines = 0.

When the straight lines « = 0 are parallel, and therefore ab = 72,
we have seen that the straight lines X =0, ¥ = 0 are identical.
It follows from equation (i) that the straight line X = 0 lies midway
between the straight lines u = 0.

Examples III g.

In the following exercises w = aa?+2hxy+by*+292+2fy+c=0 is
supposed to represent a pair of straight lines, and consequently the
coefficients are connected by the relation A =0. It must be carefully
noted that the results given are, as a rule, only true in this special case.

1. Prove that Bu=c¢X*-2¢9XZ +aZ?.

2. Show that G/C = 4/G = H/F, and that F/C = H/G = B/F.

3. Prove that AX+HY+GZ=0.

4. Find for what values of X the following equations respectively represent
a pair of straight lines: —

(a) 82+ T2y 42y +82x~Ty+\=0;

() \e*+8ay~5y +x—y+4=0;

(¢) 52 =Tay+ Ay ~Tx+8y~-5=0;

(d) 82 +10zy+3y*+2 2 +8y+3=0;

(e) 182 +2x\xy+T7y*~122~10y+1 = 0.
1367 H
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5. If all the coefficients in the equation « = 0 are known except g, show
that the equation can represent real straight lines, provided that CA is
positive. Examine the case when CA is zero.

6. If u =0 represents two parallel straight lines, show that

(a+b)d*=H/h= —Bla= —4/b,
where 2d is the distance between them.

7. Show that the necessary and sufficient condition that the triangle
formed by the straight lines ¥ = 0 and lz+my =1 may be right-angled
i8 (a+d) (al’+2hIm+bm?) = 0.

8. Show that the equation

(ab—h?) (ax?+2hxy +by* + 292+ 2fy) +af* + bg* —2fgh = 0
represents & pair of straight lines, and that they form a rhombus with
ax?+2hxy +by? = 0, provided that (a—b)fg+h (f*—¢*) = 0.

9. Find the condition that # =0 should represent (a) two parallel,
(b) two perpendicular straight lines.

10. Find the equation of the lines #*+84/2xy+ 53 = 0 referred to the
bisectors of the angles between them as axes.

11. Find the equation of the straight lines #*+axy—y’-3x—4y+1=0
referred to the bisectors of the angles between them as axes.

12. Prove that 2*+9y*+6xy+4x+12y—5 =10 represents two parallel
straight lines, and indicate them in a figure.

13. If A\, p are quantities, the difference of whose reciprocals is constant,
and p, ¢ are constants, show that (A\px+ pgy)® = AP+ ry?) \p*+4g*—1)
represents two straight lines equally inclined to each of two fixed straight
lines.

14. Show that the area of the parallelogram formed by the straight lines
u=0 and az*+2hzy+by* = 0 is equal to ¢/(24/4%—abd).

15. Prove that the two straight lines

(@ +y?) (con? §8in® o + gin® §) = (wtan X —ysin 6)?
are inclined at the same angle whatever value § may have.

Turn the axes through an angle tan™ (tan o cosec 6).

16. Show that the equation of the bisectors of the angles between the
straight lines ¥ = 0 can be written in the form

(ab—W)1h (@~ 4*) ~ (a —b) zy + 2fz~ 29y} + (a+ 1) (& (gh—af) — y (h—by)}
-h(f’-9")—(a-b)fg=0.
17. If the axes are oblique and inclined at an angle 30°, sketch the locus
62 -5y~ Tay—42+1ly =2,

18. Show that if the straight lines given by ax'42hxy+by® =0 are
turned through an angle &, their equation in their new position will be
az®+2hay +by* — 2 {(b—a)zy + h(2*—y®)} tan o + (12" — 2hay + ay®) tan’ o = 0.

19. If the axes and two pairs of the five lines

ax®+ by + cx’y + daty +exyt + fyt = 0
contain right angles, prove that the equation of the fifth can be written
~aly = fla = (@=e))(b~F) = b+d)/(c+e).
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20. Show that the coordinates of the orthocentre of the triangle formed
)y the straight lines ax® + 2hxy + by® = 0 and the straight line Tz +my =1
ire given by 2/l = y/m = (a+b)/(am®—2hlm + bl?).

21, Show that the four lines a*+72°y+152'y*+T2y’—6y* =0 form
v harmonic pencil.

22. If the two straight lines u = 0 are equidistant from the origir, show
hat f*—g* = ¢ (bf—ayg®).

23. Show that the angle between one of the lines ax®+2hxy+by?=0

ind one of the lines a2® +2hxy + by +\ (2 +4% = 0 is equal to the angle
between the other two lines of the set.
24, If u is one of the anharmonic ratios of the pencil formed by
ax’+2hxy+by* =0, a2+ 2h'zy+b'y* = 0,
14+u\* (ab’+a'b—2hhH')
I'ZZ) T AW ad) (WP —a't)
25. Find an equation for A so that X*+ Y?+Au = 0 may represent a pair
of straight lines.
26. If the same straight line occurs in each of the two pairs
ax®+2hxy +by? = 0, a'x*+2h'zy+b'y: = 0,
and 4 is the angle between the other two, then
+2cot'd = aa’/(ha’—h'a) +bb’ /(Kb - hb').
27. What is the meaning of the equation ata® —2anbranys + b y® = 0
where z and y are coordinates with respect to obligue axes ?
28. The base of a triangle passes through a fixed point (/, g), and its
sides are respectively bisected at right angles by the lines
azx®+2hxy +by? = 0.
Show that the locus of the vertex is
(a+d) (2" +y*) + 2k (fy + 92) + (a - b) (fx—gy) = 0.
29. Find the condition that one of the lines ax®+2hzy+by* = 0 may
make an angle = with one of the lines a’z?+2h'2y + b'y* = 0.
80. Obtain the equation to the bisectors of the angles between the lines
# = 0, in the form
[{(ad~h*)z—fh +bg}?~ {(ab—h*)y—gh +af}*]/(a—D)
= [{(ab—h*) 2 ~fh + by} {(ab—h®) y—gh+af}]/h.
31. Prove that there is always one real value of k, for which the equation
az’+ 2hay +by* + 292 +2fy +c+k {a'a* +2Wwy + by + 2’ + 2fy +¢'} =0
represents straight lines. In this question A is not zero,
32. Find the values of & for which the equation
(lz+my+1)(lz+my+1)+kay =0
represents pairs of straight lines.
Give a geometrical explanation.
33. Show that, if ax®+ 2hay + by = 0 and a, 22 +2h,zy + b, y* = 0 are trans-

formed by any change of axes, the expression (ab,+a,b—2hh,) cosec’w
is unaltered.

show that

H2



CHAPTER 1V

ANALYTICAL NOTATION, A REVISION AND EXTENSION

§ 1. THE geometrical ideas employed in the previous chapters
to obtain our formulae and equations have been those of Euclidean
geometry, with the addition of the sign convention used in Trigono-
metry.

The coordinates of a point, # and y, are numbers which are the
measures of the distances of the point from two fixed straight lines
in terms of some chosen unit of length. Conversely, if any real
numbers are chosen for 2 and y, we can, having chosen a unit, plot
a point of which they are the coordinates. 'We have here implicitly
assumed that, in any system of units, there is a number which is
the measure of any such distance (e.g. the diagonal of a unit square),
and thus the idea of number has been used in a wider sense than
that of a rational number. It is beyond the scope of this book
to dwell on this idea. The reader is referred to G. H. Hardy’s
Course of Mathematics.

‘We have shown that a geometrical property of a point can be
expressed by a relation between its coordinates, and, conversely, that
a relation between the coordinates of a point expresses the fact that
it lies on some locus. Thus, if a point moves on a straight line,
there is a relation of the form x4+ my + n = 0 between its coordinates,
Conversely, if any set of numbers be assigned to I, m, and n (excluding
the case when ! and m are both zero), ary points whose coordinates
satisfy the relation lx+my +mn = 0 lie on a certain straight line.

§ 2. The points of intersection of two loci.

If we wish to discuss the intersection of two loci, we obtain their
equations and find sets of value of z and y which satisfy these
equations simultaneously. Each set of values gives the coordinates
of one point of intersection.

For example, the point of intersection of the two straight lines
lz4+my+n=0 and V'z+m’y+n" = 0 is the point whose coordinates
are (mn’—m'n)/(Im’—VUm) and (nl'—n’l)/(Im"—Um). If, however,
the straight lines are parallel, their equations are of the form
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le+my+n=0 and lx+my+n"=0; in this case the method fails,
for we cannot find any set of values of x and y which will satisfy
these equations simultaneously. This result is to be expected, for
in Euclidean geometry parallel straight lines are straight lines in
the same plane, which, being produced ever so far in either direction,
never meet.
‘We proceed to investigate the intersections of a straight line with
a locus whose equation is of the second degree. The nature of the
locus is immaterial for our present purpose: we wish to discover
whether the method of solving the equations of two loci always
gives satisfactory results.
Consider then the points of intersection of the locus
2*+4zy+8y*—22—2y+1=0 (1)
with the straight line le+my+n =0, (i)
The equation can be solved by substituting y=—(lx+n)/m or
x =— (my+n)/l, obtained from the equation of the straight line,
in the equation of the locus (i). This substitution evidently gives
us in general a quadratic equation in either z or y. Suppose that
the equation in z is  La?+ Mz+ N=0.
Three cases may occur :
(i) L is not zero ; the equation is quadratic.
(ii) L is zero, M is not zero; the equation is the simple equation
Mx+ N=0.
(iii) L and I are zero; the solution fails entirely.

Note. If m =0, we substitute for x and get a quadratic in y,
L'y*+ M’y + N = 0 ; exactly similar cases may then occur.

Case i. If the roots of the quadratic in x are real and distinet, we
have two distinct real values of z and one value of y corresponding
to each satisfying both equations. There are therefore two points
in which the straight line meets the locus. Let us examine special
cases illustrating the possible results.

(8) The straight line 4y = 9 meets the locus in the two points
whose coordinates are (—2%, 2}), (—41%, 2}).

(b) The straight line y =0 gives us the quadratic 22—2x+1=0;
this gives us only one point of intersection (1, 0).

(¢) For the straight line y =1 the equation for zis 224 22x+2=0;
the sets of values of z and y are then (— 1+ +v/ —1,1), (=1—=+—1, 1),
or, in the usual notation, (—1+i, 1), (—1—4, 1). Evidently it is
impossible for us to plot any points whose coordinates are given by
either of these sets of values.
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In the Euclidean sense therefore the straight line y = 0 meets the
locus in one point only, and the straight line y = 1 does not meet
it at all. If we investigate similarly, the intersections of the locus
with the straight line y =%, we find that, unless & lies between
0 and 2, there are two real points of intersection, and the distance
between them is 2 +vk¢—2k; this distance becomes smaller and
smaller as %k approaches one of the values 0, 2. It is clear that
y =0 is the limiting position of a straight line which meets the
locus in two points. Instead then of saying that the straight line
y = 0 meets the locus in the single point (1, 0), we say that it meets
it in two coincident points (1, 0), (1, 0).

In the case of the straight line ¥ = 1 we found two distinct sets
of values of z and y satisfying the equation, but we cannot plot any
points to correspond to them. We say that this straight line meets
the locus in two imaginary points.

Thus by adopting the ideas of ‘coincident points’ and ‘imaginary
points’ we are able to say that (for all straight lines which come
under Case i) a straight line meets the locus in two points which
may be real and distinct, real and coincident, or imaginary and
distinct.

Note. When the coefficients of the equations are real we obtain
a quadratic equation with real coefficients ; the imaginaries so found
are called ‘conjugate’; that is to say, if (a+0bi, c+di) are the
coordinates of one point, (a—0i, c—di) are the coordinates of the
other. Thus one cannot have a real straight line meeting the locus
in coincident imaginary points.

Case ii. If the straight line is #+y = 2, we substitute y = 2—x
in the equation of the locus and obtain 42—9 = 0.

This straight line then meets the locus in the single point (2}, —}).
This is a single point in a totally different sense to that in which
y = 0 meets it in a single point. We get simply one point, not two
coincident points.

Case iii. If we take the straight line z+y = 0, we cannot find
any values of # and y which satisfy both equations. This straight
line does not meet the locus at all. This is a totally different result
to that which we found for y = 1; there we found sets of values for
z and y, but could not plot corresponding points; here we find no
values for x and y at all.

It is convenient and important in Analytical Geometry to be able
to assign complete generality to our results; to say that ‘Every two
straight lines meet at a single point’, ‘Every straight line meets
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every locus of the second degree in two points’, ‘Every equation
of the first degree represents a straight line’, and so on.

To effect this and to include the second and third cases illustrated
above, we require, in addition to the non-Euclidean ideas of ‘coincident
points’ and ‘imaginary points’, the ideas of ‘points at infinity’ and
‘the straight line at infinity’. We proceed to develop these ideas.

§ 3. Homogeneous Coordinates. The straight line.

The general equation of a straight line contains only two inde-
pendent constants, but we found that in order to represent every
straight line by a general equation we had to adopt the form
lz+my+n=0; we saw further that although the equation in this
form apparently contains three constants, in reality it is given by two
independent ones ; one of the constants, though not always any one,
can have a purely arbitrary value, other than zero, assigned to it.
The constants [, m, » have no absolute values and no geometrical
meaning in themselves, though the ratios of two of them to the
third are perfectly determined for any particular straight line, and
have precise geometrical meanings.

If we give any set of values to I, m, n (except simultaneous zero
values to ! and m, a restriction we shall practically remove later)
we have an equation, the locus of which is a straight line; we may
refer to it as the straight line (I, m, %), and, since a set of values
of I, m, n completely fixes the straight line, we may call !, m, n
the coordinates of the straight line. Such coordinates have no
absolute values, although their ratios have. The set of coordinates
kl, km, kn (where k is any number) determines the same straight
line as the set I, m, n; e.g. the equations 6x+10y—15 =0 and
2+2y—8 = 0 obviously represent the same straight line. Such
coordinates are said to be homogeneous.

Any relation between the coordinates 1, m, n, expressing some pro-
perty of the straight line, must be homogeneous in those coordinates.
For example, the fact that the straight line passes through the point
(a, b) is expressed equally well by the relations la+mb+xn =0 and
kla 4+ kmb + kn = 0, where k is any number. A non-homogeneous
relation, such as al+bm+cn® =0, cannot indicate any property
of the straight line. The coordinates of an arbitrary straight line,
z+2y+8 = 0 for instance, can be made to satisfy this relation by
choosing them to be (k, 2k 8%k) where k is determined by the
equation a+2b+9ck = 0.

Unless we have to deal with a straight line passing through the
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origin we can put » =1 and take the equation of a straight line
to be lz+my+1=0; and we can call it the straight line (I, m).
By giving arbitrary values to ! and m we can obtain the equation
of any straight line, except a straight line through the origin.

To obtain complete generality, we require the homogeneous system
of coordinates.

§ 4. Homogeneous Coordinates. The Point.

It may now seem natural to inquire whether we cannot obtain
complete generality for Cartesian coordinates by adopting some
system of homogeneous coordinates which we may use when the
ordinary coordinates appear to involve a loss of generslity, as in
cases (ii) and (iii) above. We shall see later that there are systems
of coordinates, Areal and Trilinear, in which a point is determined
uniquely by a set of numbers, the absolute values of which need
not be fixed although their ratios are, and that Cartesians may be
regarded as a special or rather limiting case of these. Let us take
a set of three numbers which we will call & 7, {, which have
themselves no absolute values but are such that, for any particular
set, the ratios of two of them to the third are fixed. How can
these represent the point whose Cartesian coordinates are (z, »)?
There is one quite simple way of effecting this. Let the ratios
£/¢ and 7/ be respectively # and y. The point (z, y) will then
be defined by the set of numbers (z(, y(, {), where  is arbitrary.
Conversely, if { s not zero, the set of numbers (&, 7, {) define the
point whose Cartesian coordinates are £/ and 7/{. Our equations
in z and y now become homogeneous in & 7, (. We write £/
for # and 3/( for y, and multiply by the power of { necessary to
clear the equation of fractions. The general equation of the first
degree then becomes I{+mn+n{ = 0, and the general equation of
the second degree becomes a&?+bn%+c(%+2/M(+29L+2hén = 0.
Any two equations of the first degree

E+mn4+n{=0 and V'é+mm+2{=0
are satisfied by a common set of values of & 0, {, viz. mn’—m'n,
nl' —n'i, Im’ —1Um.

We have seen that any set of numbers (§, 7, () define a point
in the Euclidean sense if { is not zero. We shall now say that
such a set continue to define a point even when ( is zero. Such a point

* We may notice that this form of the equation explains ‘the conventional
distribution of the coefficients in the expression ax?+ 2hxy+ by*+2gx+ 2fy+c.
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is not a point in the Euclidean sense ; it cannot be plotted. It may,
however, be regarded as the limit of a sequence of points which can
be plotted. Let us consider a straight line l(z—a)+m(y—b) = 0.
Any point on this straight line has Cartesian coordinates of the
form (a+mi, b—1Ut). In homogeneous coordinates we may take
the coordinates of this point to be (m+a{, —1+b¢{, (), { being the
same as 1/¢. Now as the point moves along the straight line further
and further from the point (a, b), ¢ increases in absolute magnitude,
its sign being positive for points moving in one direction and
negative for those moving in another. So that, as the point moves
further and further from (a, b), its homogeneous coordinates take
the form (m+al, —1+0b(, {), whert { is continually diminishing.
These coordinates tend to the numbers (m, —1, 0) as a limit. We
say then that (m, —1, 0) is the ‘point at infinity’ on the straight line
l(x—a)+m(y—b) = 0. Note two things about this ‘point at infinity’.
Firstly, its coordinates are independent of @ and b ; secondly, we arrive
at the same ‘point at infinity’ in whichever direction we proceed
along the straight line. So that a straight line has only one ‘point
at infinity’, and a set of parallel straight lines have the same
‘point at infinity’. Thus we may now say that parallel straight
lines meet at a ¢ point at infinity ’ instead of saying, with Euclidean
Geometry, that they do not meet. The equations Ix+my+n =0,
le+my+n"=0 have no common set of solutions, the equations
1+mn+nl =0, 1é4+mn+n'{=0 have, however, the common set
(m, =1, 0).

We see that all points at infinity possess the common property
(=0. Now (=0 is a form of the equation I{+mn+n{=0,
which is the general equation to a straight line. We say then
that (=0 is the equation to a straight line. 'We call it the
‘straight line at infinity’. We will now arrive at { =0 as the
equation of a straight line from other considerations. The equation
E{lE+mn)+n{ =0 represents for all values of %, other than zero,
a straight line parallel to the straight line Ilz+4+my=0. The
intercepts made by this straight line on the axes of coordinates
are —n/kl and —n/km. Therefore as k diminishes, the straight line
recedes further and further from the origin in one sense or other
according to the sign of k. Now as k¥ diminishes the equation
k(@lé+mn)+nl =0 tends to the form n{ =0, or, what is the same
thing, {=0.

We see then that the equations of all straight lines, as these
straight lines recede from the origin, tend to the same form (= 0.
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There is therefore in the plane one ‘line at infinity’, and all
‘points at infinity’ lie on it.

The homogeneous coordinates of a point dividing in the ratio A: 1,
the distance between the points whose Cartesian coordinates are
(%1, 91), (29, ¥,), are (x,+Axy, ¥, +Ayy, 1+A). So that the ‘point
at infinity’ on the straight line joining two points may be said
to be the point dividing the distance between them in the ratio —1.
We may notice also that the ‘point at infinity’ on the straight
line joining two points is the harmonic conjugate with respect to
them of the middle point of the segment joining them.

§ 6. Cases (ii) and (iii) rediscussed.

‘We may now resume the discussion of the intersection of straight
lines with the locus 2%2+4xy+8y*—22—2y+1 =0, in cases (ii)
and (iii).

Take the straight line x+y = 2, which previously we found to
meet the locus in a single point, and use homogeneous coordinates.
The equations of this line and the locus now become

E+1—2{=0 and E&+4M+8n2-2& -2+ =0.
Substituting 7 =2{—¢ in the equation of the locus, we obtain
46—-90(=0. This gives us 4£—9({=0 or {=0; combining
these results with {+1—2( =0, we get the two sets of values
(9, —1, 4) and (1, —1, 0). The former is the point whose Cartesian
coordinates are (2%, — 1), which we found before; the latter is a
‘point at infinity’. So that z+y = 2 now meets the locus in two
points, one of them a ¢ point at infinity ’.

Take now the straight line z+y = 0, which appeared to have no
points of intersections with the locus. Its equation in homogeneous
coordinates is §+% = 0. Substituting £ = —7 in the equation of the
locus we obtain (% = 0 ; so that now this straight line meets the locus
in two coincident ‘ points at infinity ’, the point (1, — 1, 0) repeated.

We now have a method of making all our'results general. For
example, the properties which we have proved for a system of
straight lines passing through an ordinary point will be true for
a system of parallel straight lines; for a system of parallel straight
lines is a system of straight lines passing through a ‘point at
infinity’. We can in future deal with the nature of a locus at
an infinite distance from the origin by making our equations homo-
geneous, and considering the intersections of the locus with the
straight line { =0, instead of entering upon an investigation of
limiting values,
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§ 6. The third coordinate { may present some slight difficulty
at first to the reader owing to the fact that no geometrical meaning
in the Euclidean sense can be assigned to it. It is, however,
impossible to dispense with it if we wish our scheme of Analytical
Geometry to be ¢ Projective’. The Cartesian system of two co-
ordinates is based on Euclidean notions, and is necessarily subject
to their restrictions. It might be thought that we can avoid
a third coordinate by the use of the symbol o (infinity); that we
might in fact represent the ‘point at infinity’ on the straight line
lz+my+n =0 by the coordinates (m w0, —1 ). But while the two
sets of homogeneous coordinates (I, —m, 0), (—1, m, 0) define the
same point, (+1w, —m o) and (—lw, +m®») do not. And we
cannot choose 4 in preference to —o. Our parallel straight
lines would now meet in two points, not in one. Apart from this,
‘infinity ’ is not a number such as 1, 2, 8, . . ., and it is undesirable
to regard it as if it were, which we should be doing if we
employed the symbol o to represent a Cartesian coordinate.
It is also undesirable to think of the ‘straight line at infinity ’ except
as (= 0. The equation C = 0, C being read as ‘ constant’, is some-
times employed. This is open to the very obvious objection that
the equation ¢ C = 0’ habitually stands for the statement  C is zero’.
It is also open to the much more serious objection that ‘C =0’
does not discriminate between (=0, =0, =0, ..., a discrimi-
nation that it is occasionally extremely important to make.

It is most desirable that the reader should understand clearly
that ‘points at infinity’ and the ‘straight line at infinity’ are
conventions of Analytical Geometry. They are not realities.
Parallel straight lines do not actually meet, They do not meet
for all purposes of Mathematics. In the Integral Calculus and the
Theory of Infinite Series there are no ‘points at infinity’ and no
‘straight line at infinity’. They are conventions of Analytical
Geometry, and, what is more, of particular types of coordinates in
Analytical Geometry. There is no ‘straight line at infinity’ in
Polar Coordinates. It is possible to dispense with ‘points at
infinity’ and ‘the straight line at infinity’ altogether. 'We could
prove without their use anything that we can prove with their
use, but we should only be taking unnecessary trouble, and we
should miss many of the beauties of Analytical Geometry.

We have already said that ¢ points at infinity’ are not real points
in the Euclidean sense. They are not ‘imaginary points’ in the
sense in which we have already annexed that term to indicate
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a point to which we can assign definite, but complex numbers, for
its coordinates. A ‘point at infinity’ may also be an ‘imaginary
point’ in the sense that its coordinates are complex numbers. The
terms ‘ideal points’ and ‘fictitious points’ are sometimes used, but
are not particularly satisfactory. Perhaps the simplest thing for
the reader to do is to think of them as ‘points at infinity’ in
inverted commas till he is sufficiently familiar with them to think
of them as ‘ points’ without confusion with real Euclidean points.

The notation § 7, { has been used for homogeneous coordinates
to avoid, at their first introduction, any possible confusion with
the # and y of the Cartesian coordinates that might arise from
calling them 2, y, and 2. But z, y, and 2 are the symbols used
in English writings for general trilinear coordinates, of which
our homogeneous coordinates can be considered to be a special case ;
and z, y, # are generally employed for all types of homogeneous
point coordinates. A very little experience will enable the reader
to use z, y, # without confusion with z and y.



CHAPTER V

THE CIRCLE

§ 1. Deflnition. A circle is the locus of a point which moves so that
its distance from a fixed point is constant: the fixed point is called
the centre and the constant length is called the radius.

(A.) To show that the equation

ax? +2hxy + by’ + 292+ 2fy+¢c= 0 ()
in rectangular coordinates does under certain conditions represent
a circle, and to find the conditions.

Let C (x, 3) be a fixed point; then any straight line through (x, 8)
is o= :ZIT[; =7 (i)
where 7 is the distance of a point (x, ) on the line from the fixed
point C.

Suppose that this line meets the locus represented by (i) in two
points P and Q.

Then, if r is put equal to either CP or CQ, the point (z, y) must be
on the locus (i).

Thus, if r is equal to either CP or CQ, the coordinates of the point
{rcos 8+, rsin 0+ B}
satisfy equation (i). Hence, substituting, we find
r2{a cos?0 + 2h cos 0 sin 0 + b sin?0}
+2r{(acxx+hB+g)cosf+ (hoe+bB+f)sin 0}
+ao?+2haB+0R2+2g90+2fB+c=0. (iii)

This equation is quadratic in 7, and its roots are the lengths of CP
and CQ.

The equation (i) can represent a circle, if we can show that the
point C (o, 3) can, subject to certain relations between the constants

of this equation, be selected so that as the line revolves about C
(i.e. as 0 varies):

(8) the values of CP, CQ shall be always equal and opposite
(b) these values shall be independent of 6.
The locus will then be a circle whose centre is C,



126 THE CIRCLE

The first condition (a) is fulfilled if (o, 8) is chosen so that
ax+hB+g=0 }
ha+dB+f=0}’
for in this case the equation (iii) will be of the form
A= B.
Let o, 3 have the values given by these equations; we then have
ao?+2haB+bB%+2ga+ 2 c
CPP=0Q*=1r3= — a co:; 0+ g}-:. Sig 0+0050: bi?n-:a ) )
The second condition (b) then requires that
acos2042hsin 0 cos0+-bsin20
shall be independent of §. This is so in one and one case only.
Let acos?204+2hsinfcos@+bsin20 =k
= k (cos? 6+ sin’%0)
where  is independent of 0 ; then (b—F) tan20+2h tanf+a—k = 0

for all values of tan @; hence b =% /h=0, and a=F% or a= b
and A= 0.

Hence the general equation of the second degree represents a circle
when @ = b and A = 0, and in this case only.

Put b = a and h = 0 in equation (iv).

(iv)

Hence o= _2.’ ;6=—-[’
a a

i. e. the centre of the circle is (-%,’ - ‘f) .

From equation (v) we find the value of the square of the
radius.

Thus, putting b =a and 5 =0, and substituting the values of
; A
o and B just found, r2=" 4°— —=,

We thus conclude that the equation of the second degree repre-
sents a circle when it is of the form a (2®+y?)+2g2+2fy+c =0,

and that its centre is the point (—g, - {), and its radius is

Y@+ —ac
a
If the equation is divided throughout by a, it becomes

f

2 1 g2 g z S_o.
x+y+2a:c+2ay+a 0;
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" c
or, writing ¢,, f;, and ¢; for %, ‘-£: 2

which can be written
(z+9)*+ly+A)P = 9“1.2 +hE-e,
where (—g;, —/)) is the centre and +/g,3+f;2—¢, the radius.

Note i. If the quantity (¢4*+f?— ac) is negative the radius is imaginary,
and the equation does not represent a real circle.

Note ii. If »is the radius and the centre is at the origin the equation
becomes z?+y? = »*, which is the simplest form of the equation of a circle.

224+ 924+ 29,2+ 2 fiy+c,= 0,
(vi)

(B.) Conversely, if the centre and radius of the aircle are given we
can write down an equation which is always satisfied by the co-
ordinates of any point on its circumference.

For let C (, B) be the centre and r the radius, and suppose P (z, )
to be any point on the circle.

By the definition

CP? = 92,
i.e (x—0)4 (y—B)2 = 13, P(x.y)
which corresponds with the form (vi)
found above.

This equation is evidently the
general equation of a circle, for the
centre and radius have been chosen in 0 x
general. By comparing this equation
withthe general equation of the second
degree, we see that a =0 and A = 0.

The discussion in (A) is given for two reasons: (i) it helps to
prepare the way for a more general analysis of the general equation ;
(ii) the second method is not always convincing to the student.

Note. We have used rectangular coordinates: it is rarely necessary to
use oblique coordinates in work on the circle. If in (B) the axes of
coordinates were inclined at an angle «, the equation would be

(@—0)*+(y~B)*+2(z - &) (y—B) cos o = 7,

80 that the more general conditions for a circle referred to.any axes are
a=>b and h = acos .

Examples V a.
1. Find the centie and radius of each of the following circles:—
(i) 2*+y*-2x—-4y+1=0;
(ii) 2*+y*—6x = 0;
(iii) (x+a)’+(y+b)* = c*;
(iv) 122*+12y*~122—-8y+8=10;
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v) (x—a)(®x-2a)+(y—>) (y—2b) = 0;
(vi) 72*+7y*-32-2y—-8 = 0.
2. Write down the equations of the circles whose centres and radii are
(i) (8, 4), 5 units,
(ii) (-2, 8), 1 unit,
(iii) (2cosd, 2sin @), 2 units,
(iv) (0, 13), 1 unit,
(v) (0,0, a.
Find the real points where they cut the line z = y.
3. Draw the following circles and note any special points on them :—
(1) 2*+y*-6x+5y=0;
(ii) 2*+y’—4x=0;
(iii) (z—1)(@—2)+(y~3)(y—4) = 0;
(iv) 2’ +9*-22-4=0;
(v) 422 +4y°+ 122 -8y = 11.
4. Find the equation of a circle whose centre is (-1, —3) and radius
2 units; when the axes are inclined at (a) 60° (b) 120° (c) 45°.
5 If a2®+ay+y*—8x—~Ty+6 =0 represents a circle, find the angle
between the coordinate axes, and the centre and the radius of the circle.
6. In Question 3 put each of the equations (i), (ii), and (iii) into the form
(@—0)*+(y—B)* = 1.
7. Show that the equation of the circle x?+4? = #? is unaltered if the
axes are turned through any angle 6.
8. Write down the equations of the circles given in Question 1 when the
axes are changed to any pair of rectangular axes through their centres.

§ 8. The general equation of the circle
22+ y2+292+2fy+c=0
containg fhree independent constants, g, f; and c.

A circle can therefore be drawn to satisfy three conditions, if these
conditions give equations from which g, £, and ¢ may be found.
Thus we may be given

(a) The two coordinates of the centre and the radius.

(b) Two points on the circle and its radius.

(¢) Three points on the circle.

On the other hand, we see that a circle cannot be made to satisfy
more than three conditions : for example, a circle will not in general
pass through four given points.

Example i. To find the equation of a circle which passes through the
points (2, 8), (6, ~1) and whose radius is 4 units.
The equation will be of the form
(=)' +(y-B)* = 16,
where (&, B) is its centre.
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The conditions that the given points may lie on it are
(2=0)*+ (3-8)° = 16,
(6-0)+(1+3)*=16;

or 034+pr— 400~-68= 3,
ad+R°-120+28 = —-21.
by subtraction 8Xx—~88 = 24,
or x—~ B= 3.
Hence a—2=(8+1);
by substitution (B+1)24 (83-R8)? = 18,
or 28'-43-6 =0,
Le. B2—-28-3 =0.

B= ~lor3d and x=2or6.
There are consequently two circles which satis{fy the given conditions,
viz. (@ =2 +(y+1)* = 16,
(x—6)*+ (y—3)? = 16,

Example ii. 10 find the equation of the circle passing through the
three I)Oints (331, ."/l)’ (x‘.'., ?/z)y (‘L'Sr .'/3)'

Suppose the equation of the circle is

24+ +29x+2 fy+c¢ = 0. (i)

The conditions that the three points should lie on this circle are
292, + 2 fi, +e+ P4yt =0, 1i1)
2ga, + 2 fyg+ e+t +y,’ =0, (iii)
2gxg+2fys+ e+ 2 + 1y, =0, (iv)

These three equations give the values of g, /, und ¢, provided that they are
independent.

We fail to obtain definite values of g, fand ¢ if
ry 1
x Yy 1
Ly Yy 1
i.e.if the three given points lie on a straight line. Hence, in order that
the circle may be finite the three given points must not be collinear.

The equation of the required circle can be expressed in determinant
notation by eliminating g, £, and ¢ from equations (i), (ii), (iii), and (iv); for
equation (i) is satisfied (by hypothesis) by the coordinates of all points on
the required circle. Thus,

::O'

2 +yt x oy 1

o'ty 2 oy 1

Zy' Yy’ Ty Ya 1

gl +yd @ ys 1

is the equation of the circle through the points (z, ¥,), (%5 y ¥3)s (%) ¥s)-
1267 I
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Example iii. Two variable struight lines are at right angles and are
such that the middle points of their intercepts on the axes are fixed.
Find the locus of their point of intersection.

Let the fixed mid:points of the intercepts be A4 (k, 0), B(0, k). Suppose P
is the point (¢, 5): any two perpen-

\7 dicular lines through this point have
equations of the form
P (y—n)+m(x-§) =0,
mly—n)= (z-§) =0.
B These meet the axis of x in the
) ry ~—% pomts(
1& + ,:{:0}) {5""”']; 0 }’
/ and the axis of y in the points
{0, m§+q}, {0, N - 5‘} .
Hence 2£+£z—m"=2h’
’ _€_ o,
2yp + m¢ m-—Zk,
th ( ! =2h-2
" ET
1 o .
.f(m - m) =2k-2y;
therefore E(2h~2¢)+ 7 (2k=2n) =0,

and (&, n) always satisfies the equation

oy —hx—ky = 0,
which is a circle whose centre is (3%, §4) and radius }(4/A*+k’), i.e. the
circle on 4 B as diameter ; for:its centre is the mid-point of 4B and its radius
is 3 AB.

Example iv. 1o find the equation of the circle circumscribing the
triangle whose sides are
Lr+my+1l=0,
Lz+my+1=0,
Liz+my+1=0.
Consider the equation
Az +my+1) sz +myy+1)+ Bz +mgy+1) (ho+my+1)
+Clhiz+my+1) (lgx+my+1) =0,
where 4, B, and C are arbitrary constants.
The coordinates of any points which satisfy the equations of any two of
the given lines also satisfy this equation : this equation therefore represents
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some locus passing through the vertices of the given triangle: this locus is
a circle, provided that
(i) the coefficients of x* and y* are equal,
(ii) the coefficient of xy is zero.
Thus Al ly—mgmg) + B (lghy — mgmy) + C(ly Iy —mymg) = 0,
A (Iymg+1ymy)+ B(lgm, +1,mg) + C(lymy+lm,y) = 0.
Cross multiplying to find the ratios 4 : B: C, we have 4, B, C proportional to
(Il —mgmy) (Lymg + lym,) — (L 1y —mymy) (Iymy + ymg) = (12 +my*) (lymg —Tymy),
and two symmetrical expressions.
Hence the equation of the circumcircle is
(L3 + my?) (Igmg —lymg) (l,z + myy + 1) (x4 myy + 1)
+ (1,2 + m?) (mg—Ilgm)) (lyz +myy +1) Lz +myy+1)
+ (I +mg?) (Lymy— 1 mg) Gz +my+ 1) Lz +myy+1) =0,

Examples V b.

1. Find the equations of circles whose centres are (-6, 5), (3, ~4) and
which pass through the point (0, 1).

2. Show that the points (4, 3), (8, —3), (4}, 2}) cannot lie on a circle.

3. Show that the circle whose centre is (a, ) and which passes through
the point (0, b) also passes through the point (24, b).

4. Show that the point (7, —5) lies on the circle 2+ y*—6x +4y—12 = 0,
and find the coordinates of the other end of the diameter through this
point.

Show also that the points {5cos8+3, 5sin§~2}, {5sind+3, 5cosd—2}
lie on this circle whatever value 6 may have.

5. Find the equation of the circle which passes through the points (1, 5),
(4, 6), (5,3). What is its radius? Where does the line z = 2 cut it ? Also
the linex—y =0?

6. Find an equation giving the abscissae of the points of intersection of
the circle 2 +y* +2gx+2fy+ ¢ = 0, and the x-axis.

Hence find the general form of the equation of a circle which passes
through the points (a, 0), (-, 0).

7. Find the condition that a circle represented by the general equation
should meet the axis of y in coincident points.

8. Fiud the equation of a circle which passes through the origin and cuts
off lengths a and b from the axes.

9. Find the equation of the circle of which the join of (g, 0), (—a,0) is
a diameter.

10. Show that the four points (2, 2), (5, 3), (6, 0), (3, —1) lie on a circle,
and find its centre and radius.

11. Prove that points whose coordinates are of the form

{h+acosb, k+asin 6}
lie on a circle for all values of 6, and find its equation, centre, and radius.
12
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12. What is the lucus of the points of intersection of the lines
%cosf+ysin 0= «4/2, zsinf—ycosd=a,/?,
where 6 is a variable constant ?

13. At what points does the line 8y +5 = 0 cut the circle

2’ +y'—42-8y+15=07?

Find the length of the intercept made on the line by the circle.

14. Find the locus of a point whose distance from (e, 0) is double its
distance from (~-a, 0).

Where does the locus cut the axis of z ?

15. The join of the points (2, 8), (-1, 2) subtends a right angle at P.
Find the equation of the locus of P.

16. Find the equation to the circle whose centre is (—6, —8) and whose
radius is §; determine whether the origin lies inside or outside the circle.

Find the coordinates of the extremities of that diameter which passes
through the origin.

17. Find the equation of the circle circumscribing the triangle whose
sides are z+2y =0,

z-3y+1=0,
3x+y-5=0.

18. Find the condition that the point dividing the join of the points
(2, 5), (3, —4) in the ratio 7:1 should lie on the circle #*+y* = 9.

Deduce the ratios into which this line is divided by the circle.

19. A point P moves in a plane so that its distance from 4, the point of
intersection of x—-2y—-4 =0, 72x+11y—-38 =0, is a mean proportional
Letween OA4 and PN, O being the origin, PN the perpendicular distance
of P from the first line. Prove that Plies on one or other of two fixed circles.

20. A circle passes through two points on the axis of & whose distances
from the origin are «, ¢*/a, and through two points on the y-axis whose
distances from the origin are b, ¢*/b. Find its equation.

21. Find the equation of the line joining the centres of the circles which
pass respectively through the points (2, 1), (8, —2), (4, —3), and (4, 6),
4, —4), (1’ ‘5)

22. Find the coordinates of the centre and the radius of

82 +8y*+24x~8y+15 = 0.

Find also the coordinates of the point on the circle furthest from the
origin.

Determine the length intercepted by the circle on the line 22—y +3 = 0.

23. Write down the equations of circles which satisfy the conditions: —

(i) centre (a, b), and passing through (h, k),
(ii) radius », and touching the z-uxis at (g, 0),
(iii) radius », and touching.the coordinate axes.

24. Prove analytically that if any circle cuts the axes of coordinates at
PQ and P'Q’ respectively, then OP. 0Q = OP'. 0¢Q'.

25. Find the equation of the circle through the points (x,0), (8,0),

(0, &) (0, B).
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26. Find the locus of the centres of circles which pass through the points
(3,2), (5,4).

27. Pisa point in the plane of an equilateral triangle ABC such that
PA®* = PB*+ PC% Find the locus of P.

28. Show that a circle can be drawn to pass through the origin and the
points (1, —3), (2, —4), (5, 5), and find its equation.

29. Find the condition that the circle circumscribing the triangle whose
gides are # = a, y = b, lx+ my = 1 should pass through the origin.

30. ABCD are four concyclic points and P is any other point; prove that

PA*. ABCD+PC*. AABD = PB*. AACD+PD*. A ABC.

§ 4. Every straight line meets a circle in two points whose
coordinates are obtained by solving simultaneously the equations of
the line and circle : these two points may be (i) real and distinct.
(if) coincident, (iii) imaginary.

Deflnitions.

(i) When a straight line meets a curve in two real and distinet

points, the join of these points is
P
’ >
)

(ii) In the particular case when
the points of intersection are coin-
cident, the line joining them is called
a tangent to the curve at the point.
This point is the ‘ point of contact’.

(iif) A straight line through the
point of contact perpendicular to
the tangent is called the normal to

the curve at this point. Such a straight line cuts the curve at right
angles or orthogonally.

(iv) If tangents are drawn at two points P and @ meeting at 7, then
P@Q is called the ‘chord of contact’ of the tangents from T to the curve.
Let P(xy, 31), Q(x3, y5) be two y

points on a circle.
Draw PM, QN perpendicular to
Ox and QL perpendicular to PM.
Then PL =y,—y,, P
QL = z,—x,; L
and if PQ makes an angle 6 with
(4] N T M x

the axis of z

called a chord.
Q

Ni—Y,
xl"'wa

tan g =
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Let the equation of the circle be
224+y?+2924+2fy+c= 0.
Then, since the two points P, @ lie on it,
T ety +29m+2 e =0,
x22+y22+ 29w2+2fy2+c =0.
Subtracting, we get
(1= 2) (@1 + 2+ 2 9) + (1~ y2) (n + ¥ +2/) = 0.
Hence the direction of the chord can be otherwise expressed, thus
—9 2 xl + o+ 2 9 (1)
“f"‘Tz T ntwt2f
Now as the point @ approaches P, i.e. as 2, and y, approach the
values x;, and ¥y, respectively, the fraction (y, — y,)/(x, —,) approaches
a limit. The chord PQ then becomes ultimately, by our definition,
the tangent at P. The value of this limit can be found by putting

2,=2, and ¥, =y, in (i); thus we see that the direction of the
tangent at P(z,, y,) is given by

tan 0 =

— _nhtyg .
tan 6 = —,;/1+f' (if)

The equation of the chord P can be written down at once as the
equation of the straight line joining the points (z,, #,), (%, ¥,) ; since,
however, the tangent is defined as a special case of a chord, it is a
logical demand that the equation of the chord joining two points
should be found in such a form that the equation of a tangent can

be deduced by making the points coincident algebraically.

Equation of the chord joining two points (xy, ¥,), (%2,ys) on the circle
22+y24+ 29242 fy+c=0.

We can now obtain the equation of the chord in a form sym-
metrical with respect to the two points, for the mid-point of the
chord is {(z,+2,), ¥ (¥;+»,)}, and consequently the chord is
a straight line passing through this point whose direction is given
by equation (i) above : thus the equation is

{#—} (@ +a))} (@ +23+29)+ (¥~ (1 + 9} (@1 +92,+21); = 0. (iii)
Now let us call the coordinates of the middle point A of the
chord PQ (&, ), then £ = (2, +x,), 1=} (y,+y2) we then see that
the equation of the chord PQ can be expressed in terms of its mid-
point ; for substituting in equation (iii) we obtain
@—8(¢+9+y—n)(+f)=0 (iv)

as the equation of the chord whose mid-point is (¢, 7).



THE CIRCLE 135

We can discover at once from this equation several properties
of a chord.

(i) The centre of the circle is C(—g, —f) ; hence the equation of the
line joining the centre to the mid-point A (£, 1) of the chord is

2=§ _y=n,
E+9  n+f
Now this line is perpendicular to the chord (iv).
Hence the straight line joining the centre of a circle to the mid-point of
@ chord is perpendicular to the chord.

(ii) Suppose the chord to be one of a system of chords parallel
to some straight line

y = mzx. (@
The straight line

@—8(E+9)+y=nt+f)=0
is parallel to (i), so that
E+g)+m@+s) =0.
Hence the mid-point of any such chord lies on the line
(@+9)+m(y+/)=0,
which passes through the centre (—g, —f) and is perpendicular to
the line y = ma.

Hence the middle points of all parallel chords of a circle lie on a
straight line through the centre of the circle perper.dicular to the chords.

(iif) Again, if the chord
(=€) E+9+y—=n(r+/)=0
passes through a fixed point (b, k), we have
(k=E)(E+9)+(k—=n)(1+f) =0,
or E+n*—E(h—g)—n(k—f)—hg—fk = 0.

Hence the mid-point of any chord which passes through the point
(h, k) lies on the locus

224y —z (h—g)—y (k—f)—hg—fk = 0.

This is a circle whose centre is the point 1 (h—g), 3 (k—/), i. e. the
point midway between the given fixed point (, k) and the centre of
the given circle (—g, —f): that the two points (, k), (—g, —f) lie on
this circle is evident from the form

(h—2)(z+9)+(k—y) (y+Sf) = 0.
Hence ‘ the locus of the middle points of all chords of a circle which pass
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through a fized point is a circle on the straight line joining the fixed point
and the cenire of the given civcle as diameter’.

(iv) The constant term ¢ of the equation of the circle does not
occur in the equation of a chord whose mid-point (§ 1) is given : we
conclude from this that ‘all conmcentric circles have the same chord
corresponding to a given mid-point’.

Note i. The reader should prove these and similar results in the simple
case when the origin is taken as centre of the circle. The equation of the
circle is then a4yt =3,
and the equation of the chord whose mid-point is (£, ») is

(r=&) E+(y—n)n=0,
or zé+yn= £+
Note ii. If the equation of the circle is given in the form
(= 002+ (y—B)' =1,
the equation of the chord whose mid-point is (¢, ») is
(z—8) (x=£)+(y—n) (B~n) =0.

The equation of the tangent at the point (xy, y,) to the circle
22+ y*+29x+2fy+c=0.

The equation of the chord joining the points (x. y,), (7, y,) on
the circle is

r+ 2 Yt
(.’L‘— '2 2) (x1+x2+29)+(y—"/l§£) th+9+2/)=0.

Hence, putting z, = 2, and y, = ¥,, the equation of the tangent

becomes
(z—2)) (214 9)+ (¥—n) (1 +S) =0,

or z (@ +9)+y (i +S) = a2 +y 2+ 92, + 5 .

But 2,24+ ,2+2 gx, + 2 fy, + ¢ = 0 since the point lies on the circle ;
hence the equation can be written

z (@ +9)+ywn+f)+92+fn+c=0.
Note i. For the circle 2?+ % = #? this becomes xx, +yy, = 1%

Note ii. In connexion with the general equation
ax®+2hxy +by* + 292+ 2 fy+c =0
we adopted in Chapter III the notation
X=azx+hy+g, X' =ax' +hy +g,
Y=hx+by+f, Y =ha'+by +f,
Z=gx+fy+e, Z'=gx'+fy+e
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For the circle 2ty + 292+ 2fy+e=0
we have a=b=1and h=0;
so that the equation of the tangent at the point (2, ') can be written
X' +yY'+ 2 =0,
or ZX+yY+Z=0.

This form should be remembered ; it will be shown later on to be true for
the general equation.

Note iii. The equation of the tangent at (z,, ;) can also be written

(@ +9) (21 +9) +(y+f) (1 +S) = +7"~¢,
where g%+ f2—c¢ is the square of the radius.
Thus if the equation of a circle is given in the form

(=0 +(y—B)" =1,
the tangent at (z,, y,) is
(#=) (#,=0) + (y—B) (1, —B) = »*.

Deflnition. The angle between a straight line and the tangent at the
point where it cuts a circle is called the angle at which the straight line
cuts the circle.

Ex. 10 find the angle at which the straight line lr + my+n = 0 cuts
the circle 224+ 92+ 2904+ 2fy+c=0.

Let (z,, y,) be a point of intersection of the line and circle.
The tangent at (xy, y,) is
z(xy +g)+y(n+f)+gzm+fy+ec =0,
hence, if 4 is the angle required,
_m@+g)=lyn+f)

tand = m(y, +f)+l (2, +9)
Now {m (@ +9) =1+ )} + Uz + 9) +m(p +1)}?

S P+ m?) {(xry+9)*+ (4 +f)*}

= (P+m’) {g+f?~c},

because 22+ y,°+ 292, +2fy, + ¢ = 0.
Also m(y+ 1)+ 1z, +9) = lzy + my, + g+ mf = lg+ mf—n,
since (z,, ,) lies on lz+my+n=0.

Thus  tand = 5 YA+ —c)=(g+mf—n)’,
lg+mf—n
As (x,, y,) can be either of the points of intersection, it follows that the
straight line cuts the circle at the same angle at both points of intersection,
or ‘tangents are equally inclined to the chord of contact’.
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If P is the point of intersection and ON the perpendicular from the
centre O to the line, OP is perpendicular to the

Q tangent and the result can be more easily obtained
» from the fact that
<, PN _ ,/OP-0ON:

P

v A tand =

ON ON
where OP is the radius.

The equation of the chord of contact of tangents which meet at a
point (£, n).
Let the points of contact of the tangents be P (z,, y,) and @ (=,, ¥5),
and let these tangents meet at T'(¢, n).
Kx,,y) If the equation of the circle is
2+y? +2924+2fy+c =0,
the equations of the tangents are
(z+9) (@1 +9)+ [y +/) (1 +S) = g*+f2—c
X2,2) and
(@+9) (@3 +9)+ W+ (g, +S) = g*+/%—c,
and since these pass through I’ we have the conditions
E+9) (@ +9)+(+S) (i +S) = 92+f2—C},
(E+9)(x3+9)+(+/) (y+/) = g* +f%—c
But these are also the conditions that (z,, y,), (z,, ¥,) should be on
the straight line
€+9) (@ +9)+0+/)y+f) = g +/2~c¢;
hence this must be the equation of the straight line PQ.
The equation of the chord of contact of tangents which meet
at the point (§ n) is therefore
@+9)(€+9)++/) +f) = g*+f*~c.
It should be noted that this is exactly the same form as that

of the tangent at a point (&, 7) on the circle, viz. X’ +yY’ + 27’ = 0.
The symmetry of the result leads to the following proposition :—

If the chord of contact of tangents from a point T passes through
a point T’, then the chord of contact of tangent from T’ will pass
through T.

For let T be the point (& 7) and 7” be the point (&, 7) ; the chord
of contact of tangents from 7' is

@+9)(E+9)++/) 1+S) =92 +f%—¢, (i)

TEN)
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and the chord of contact of tangents from 7" is

(@+9) (€ +9)+y+Sf) (W' +f) = g*+/2—c. (ii)
The conditions that 7' should lie on (ii) -and that 7" should lie
on (i) are identical, viz. )
E+9)(E +9)+m+S) (" +S) = g*+Sf?—c.
We shall discuss these equations more fully later in the chapter.

T0 find the coordinates of the point of intersection of tangents to
the circle x?+y2+29x+2fy+c = 0 at its points of intersection with
lx+my+n=0.

Let (& 1) be the point of intersection ; then the chord of contact
of tangents from (§, ) to the circle

z(+g)+ym+f)+9é+Sn+e=0
must be identical with lx+my+n = 0.

Thus E+g9 _n+f_gé+Sute
l m n
_ 9 tfi=c
T lg+mf—n’

The coordinates of the point are therefore

fter=g_, migterog_ 1

lg+mf—n 9 lg+mf—n

To find the length of the tangent from any point (£, m) to the circle
22492+ 292+ 2fy+c = 0.

Let (2, ¥,) be the point of contact of the tangent ; this lies on the
chord of contact of tangents from (¢, 7), viz.
z(E+9)+y(+S)+9é+ mte=0;
hence 2 E+9)+n(+S)+gé+Sn+e=0.
Now (length of tangent)?
= (f—=)+(—p)*
= E4+n*=22 -2y 1+ 2% +y®
= +1°—22,§-2y,1—2 g2, -2 fip—c
[since (), #,) lies on the circle]
= &+n1-22 ({+9)—-25 (+S)—c
= 84+n2+296+2 n+c¢
[since (z;, ¥,) lies on the chord of contact].
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Note i. If TP is the tangent and O the centre of the circle, then, since
OP is perpendicular to PT, PT?= OT*-OP?
= (E+9)+(+S)=(g"+1*~0)
=&+n?+29£4+2fn+e.
Note ii. The square of the length of the tangent from 7' to a circle
2+ +2g9x+ 2fy+ec =0,

is obtained by substituting the coordinates of
T in

P

T 2t +y'+ 292+ 2fy+c.

Hence, if T is outside the circle the result of
this substitution is positive, if on the circle zero,
if inside the circle negative, the tangent being
then imaginary.

This agrees with the condition

TO* >, =, or < (radius)?.
The equation of the normal at the point (x,, y,) to the circle
24y +2gx+2fy+c=0.
The tangent at (2, y,) is

z@+9)+y @+ +9n+fy+e=0,
and the normal is the line through (z,, ;) perpendicular to this, viz.

(=) (n +S)— (—91) (1, +9) = 0,
which is the equation of the straight line joining the points (z), ,)
and (_g) =f)

Hence the normal at any point of a circle passes through the
centre, i.e. is a radius; and conversely all radii cut the circle
orthogonally. Hence, also, the join of the centre to the point of
contact is perpendicular to the tangent; or, in other words, the per-
pendicular from the centre on a tangent is equal to the radius.

We have endeavoured so to discuss these preliminary equations
as to discover naturally by analytical methods the well-known
properties of tangents and chords of a circle: the object of this
is to create in the mind of the reader, if possible, a feeling of
confidence in the analytical method.

The work can obviously be simplified by assuming these well-
known properties (see notes appended above), but if this is done
no opportunity occurs of exhibiting in a simple manner the certainty
and directness of analysis. When solving problems the student
should take the simplest form of the equation of the circle which is
allowable under the given conditions.



THE CIRCLE 141

Illustrative Examples.
1. 7o find the condition that the line lx+my+n = O should touch
the circle 22+ y%2+292+2 fy+¢ = 0.
The perpendicular from the centre (—g, —f) on the line is equal to the
radius Vo+fi—ec.
Thus (lg+mf—n) = (+m?) (®+f2~c).

11. 1o find the equations of tangents to the circle
22+y2+2924+2fy+c=0
which are parallel to the line lo+my = 1.

If (2, ¥,) is the point of contact, then, since the tangent is a line
through this point which by hypothesis is parallel to Iz +my = 1, its equation

18 lw—z)+m(y—y,) = 0. (1)
But the perpendicular on this from the centre (—g, —f) is equal to the
radius Va+f—c.
Hence g+z)+m(f+y) _ + V=,
U+ md
or Loy +my, = + o/B+m? /P +f—c—(lg+mf);

and substituting in (i) we obtain
Wx+g)+my+f) = + /TTEm? /g +f —c
as the required equation.
There are then two tangents to a circle parallel to any given line.

Note. If the line is given in the form zcosx+ysinx—p =0, the
equation of the parallel tangents follows more simply, viz.

(x+g)cos X+ (y+f)sinX = + /g7 +f—c.

II1. To find the equation of the circle touching the line
424+2y+3avb=0,
and cutting off equal chords, each of /

length a, from the portions of the
coordinate axes between this line and

A 0
the origin. SRR x
The straight line ~ >
AB, 4z +2y+3a+4/5=10

cuts the axes at points whose coordi-
nates are negative ; hence the centre
of the circle lying inside the triangle
04 B has negative coordinates.
If the circle is

'+ +29x+2fy+c=0, B
the values of g and f are consequently
positive.
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This circle cuts the x-axis at points whose abscissae are given by
o a'+2gx+e=0.
If these are x; and x,, then by hypothesis

2 ~% = a.
Hence 4g°—4c = a’.
Similarly for the y-axis 412 —4c=a’
Hence 9 =3

and since both are positive g=1r

Expressing the fact that the perpendicular from the centre (—g,
equal to the radius, we have

(49+21-8a+/5) =20(8*+f%~c).

Since g=fand ¢ =g'-1%d?,
we have (6g—38a+/5) = 209+ 542,
i.e. ng’—SGyaJ5+40a"= 0,
or 49°~99a4/5+100*=0;

g=1%+5a or 2a/5.
The centre is therefore (—3}4/5a, —}+/5 a),
for the point (—2a+/5, —2a 4/5) lies outside the triangle 0 AB.
Hence ¢ = {ha’—}a® = &a?,
and the required equation is
2 +y’+3/ba(x+y)+ ga? =0,
or 16(2+4%) +8+4/5a(z+y) +a* = 0.

~f)is

1V. Investigate the condition that frome the point P (x, 3) on the circle
2(x—o)+y(@y—PB) =0 it may be possible to draw two chords each

bisected by the axis of x, and show that the angle between them is
Vi g
a1 VBB
33
Let 4 (¢, 0) be the mid-point of a chord PQ of the circle
b 2ty -z —LBy =0.
The equation of this chord is

(§—=) (-3 +3(yB) = 0.

(-0 (§-30)+36" =0,

/ Le. £-géo (0’ +p) =0,
qQ Q which equation gives the values of £.
These values are real if
Ja?>208+ 28,

i.e. if o®>88? which is the required condition.

This passes through the point (a, B) if
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If §,, & are the roots of the equation,

§i+6 =8 &4 =3(0%+8%)
The equations of the two chords PQ, PQ’ are then
(&—=) (6-3x)+3yB =0,
(6s~2) (§,—-3x) +3y8 = 0;
thus the angle between them
24— 24—
B B
1+ (?5,—a;2(2§,~a)
23(51 _fa)
46,6, -2%(§ + &) +o0+ 8
Vi -8g
88
since &+&6=3038%)
b6 = (0% +8),
and (Gi=&) = (&L +&) 444,

= tan™!

= tan-!

= tan!

Examples V c.

1. Find the equation of the chord of the circle £?+y*+6x+8y+9 =0,
whose mid-point is (~2, —3).
2. Write down the equations of the tangents at the point (-2, 4) to the
circles (i) 2@ +y*+4x-10y+28 = 0;
(i) (x=1)*+(y—95)? =10;
(iii) (x+5)?+y? = 25.
3. Find the equation of the tangent to the circle #*+y® =4 which is
perpendicular to 3z +4y = 5.
4. Show that the line 32 +4y +10 = 0 touches the circle
2’+yt-2x+4y+4=0.
Find the point of contact and the equation of the other tangent parallel
to this.
5. Is the point (5, —6) inside or outside the circle
+y’—2y—~112-24=07?
Show that the point (1, 2) lies inside the circle, and find the equation of
the chord of which it is the middle point.
6. Find the coordinates of the point of intersection of tangents at the
points where z+4y = 14 meets the circle 2?7+ y*~3x+2y = 5.
7. Prove that the point (8, 4) lies outside the circle
2234+ 2y*+ 122 -9y = 1,
and find the lengths of the tangents from it to the circle.
Show that their points of contact lie on the circle
2 +y'—6x—8y+3 =0,
and on the straight line 24x+7y~2=0.
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8. Find from the definition of a tangent as the limit of a chord the
‘equation of the tangent at (2, 5) to 2 +y* = 29.

9. Show that 2 +3y—1 =0 touches 2*+y*~82-3y+2 = 0.

Find the equations of the tangents to the circle which are perpendicular
to the given one.

10. The point (2, 8) is the mid-point of the chord of a circle and the
equation of the chord is 52 +2y = 16. Find the locus of the centres of such
circles.

11. Find the equation of the circle inscribed in the triangle 3z +4y = 12,
=0, y=0. Also of the circle escribed to the first side.

12. Prove that the line (x—1)cosd+ (y—2)sind = 3 touches the circle
(£=1)2+(y—2)* = 9 whatever value § may have.

Find the coordinates of the point of contact.

13. Show that the lengths of the tangents from any point on the straight
line z—y+1 =0 to the circles

2’+y’+72-9y+6 =0, 2*+y*-5x+3y—6=1
are equal.

14. A point moves so that the lengths of the tangents from it to the
circles 2 +y*+6x~4y =12, 2 +y’—42x—-4y+5 =0 are equal. Find the
equation of its locus.

Find also the equation of the line joining the centres of the circles and
show that the locus cuts it orthogonally.

15. Find the equations of tangents to the circle (x—1)%+ (y—2)* = 4,
which make an angle tan™  with the axis of .

16. Find the locus of a point P which moves so that PT? + PI1"*= constant,
where PT and PT’ are tangents from it to two given circles.

Also when PT?— PT"? = constant, and in general when

1. PT*+m.PI"%= constant.

17. A point P moves in the plane XOY so that its digtances from the
points (5, 1), (3, 2) are in the constant ratio of 2: 1.

Find the locus of P and show that 2o~y +1 = 0 is a tangent to the locus.

18. Find the equation of the circle passing through the points 4 (-4, 3),
B(-3, -4), C(4, -3).

Prove that the tangents at 4 and C are parallel and each perpendicular
to the tangent at B.

19. Show that the straight line xcosd+ysind~p = 0 meets the circle
a?+y=+? in real, coincident, or imaginary points according as p is <, =,
or > 7.

20. Find the equations of tangents to the circle x*+y® = »* parallel to
ZcosX +ysin X = p,

21. Find the locus of the centres of circles which pass through the
points (ay, b,), (ag, by).

22. Find the locus of the mid-point of a chord of a circle which is of
constant length.

23. Find the locus of the mid-points of all chords of a circle which are at
a fixed distance from a given point.
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94. Show analytically that two circles can be drawn through a given point
to touch each of two given straight lines.

Find the equation to the circle when the straight lines are axes of coor-
dinates and the coordinates of the fixed point are (3, —6).

25. A point P’ moves so that the squares on the tangents PT}, PT,, PT;...
from it to a number of given circles aie connected by the relation

ay PT? + ay PT? 4+ ag PTd +... = 0.

Show that P lies on a circle whose centre is the mean point of the centres
of the given circles for the constants a,, a,, as....

26. A point moves so that its distance from a fixed point is twice the
length of the tangent from it to a given circle. Show that its locus is
a circle which lies entirely outside the given circle. Find also the distance
of the fixed point from the centre of the given circle if the centre of the
locus lies on the given circle.

27. Find the locus of the foot of the perpendicular from the origin to
tangents to @+ 4+ 292+ 2fy+c = 0.

§ 6. We now propose to discuss various forms into which the
equation of the circle can be put, and convenient methods of
manipulating these equations; and also to illustrate the types of
problems to which each form is specially suitable.

The centre at the origin. x*+y* =2 1T

In the majority of problems dealing with one circle the work is
simplified by using this, the simplest, form of the equation of the
circle. Since the equation is the same for any pair of rectangular
axes through the centre, we can further choose the coordinate axes so
as to make some other detail of the problem simple, e.g. the axis
of # may be taken through some special point.

The various equations already found become in this case:

The chord joining (x5, #,), (g, ¥5)

(@ +2,)+Y (1 + 1) = 2y 2.+ Y1y + 02

The chord whose mid-point is (&, 1)

xé+yn = E2+0%

The tangent at (x;, y,) ax, +yy, =%

The chord of contact of tangents meeting at (€, 5)

zE+yn =1’

We have hitherto denoted any point on the circle by (2, ),
coupled with the conditional equation x2+y,2=172 It is often
P?Ssible to find a particular form for the coordinates of a point on a
g1ven curve containing only one variable, and such that the conditional
equation is identically satisfied by the coordinates. Such coordinates

are called parametrig, and the single variable is called the parameter.
1267
K
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Now in the case of the conditional equation z,2+y,2 = #2, since
7% cos?0 +72s8in%20=12 is identically true, the point (rcos6, rsin 0)
satisfies the equation of the circle for all values of 8. We can
therefore use (rcosd, rsinf) to signify in general a point on the
circle provided that every point on the circle can be so denoted.

Geometrically, if P is any point on

Y the circle, the position of P is known
when the angle zOP(0) is known, and

P provided that the method explained for

/1 polar coordinates is adopted to measure
) % the angle 6, one definite point on the
circle corresponds to a given value of

P 0, and, on the other hand, a definite
value of 6 corresponds to every point

on the circle if 6 is taken between
0 and 27,

Algebraically, we see from the equation x24y% =12 that the
maximum and minimum real values of z and y are r and —r; since
cos 0 and sin 6 lie between 1 and —1, the coordinates (r cos 6, » sin 6)
lie between r and' —7, and can have any value between these limits.

In future we shall refer to the point (r cos 6, r sin 6) as the point
on the circle 2%+ 4% =172 whose parameter is 0, or briefly ‘the
point 0’ on the circle.

The equations of the. chord joining two points 6,, 6, and of the
tangent at the point 6 can be found from the above equations by

substitution ; we leave this as an exercise for the student and give an
independent investigation.

(i) To find the equation of the chord Joining the points 6, and 0,.
The line joining (r cos 8, rsin 0,), (r cos 8,, r&in 6,) is

x—rcosf, _  y—rsiné,
- 1 . y
r(cos ;—cos 0;) 7 (sin 6,—sin 6,)
i x—1rcos b, y—rsin b,
.e.

sin§ (6,—0) sin }(0,+0;) _ sin} (9,—6;) cos } (6, +0)
or, dividing the denominators by sin § (6, —4,), we get
zcos}(6,+0,)+y sin } (6, +0,) = rcos i (6,—0,).

Note. The removal of the factor sin$ (6, —6,) should be compared with
the corresponding work in § 4, p.-134.

(i1) The equation of the tangent at the point 6.

This follows from that of the chord by putting 6, = 6; =6 ;
zcosf+ysind=r.
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<(iii) The interscction of the line lx+my+n = 0 and the circle
2242 = 92,

To find the points of intersection of two loci we have to solve
simultaneously the equations representing those loci: we may obtain
an equation giving the z-coordinates of the common points and
a second giving the y-coordinates.

The following illustrates the advantage of the use of parametric
coordinates in such investigations.

If 9 is the parameter of any point common to the circle 22 + yi=12

and the line lx+my+n = 0, the coordinates (r cos 9, r sin §) of the
point must satisfy the equation of the line. Thus

lrcos @4+ mrsin@+n = 0.

This is true for any common poi;xt of the circle and line, hence the
values of 6 given by this equation are the parameters of the points of
intersection.

The equation can be expressed in terms of a single variable tan 1 6
by substituting

_1—-tan®}0 . . 2tan}@d
coso_i%—taﬁ?%ﬂ’ smo_l-f-tan?,}-d’
in which case it becomes
(n—1r)tan? 0 +2mrtan L 0+ (n+1Ir) = 0. (i)

Each value of tan 0 given by this equation corresponds to one
point only on the circle ; for suppose that

tan 3 0 = £,
then 10 = nn+tan 1%,
or 0 =2nm+2tan" 1k,

which gives the same point whatever value % has.

The equation (i) is quadratic in tan 16, and we can now apply

our knowledge of quadratic equations to investigate the intersections
of the line and circle,

(a) A quadratic equation has two roots; hence a straight line
meets a circle in two points.

(b) The roots of the equation are real and distinct, coincident,
or imaginary according as
m?r?is >, =, or <n?-1%9%
i.e. as 2r24+m?r2—n? is positive, zero, or negative,
Hence the line lz+my+n=0 cuts the circle 22+32 =% if
K 2
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12724+ m?r2—n? is positive, touches it if the expression is zero, and
meets it only in imaginary points if negative.

(This condition corresponds to the perpendicular from the centre
to the line being less than, equal to, or greater than the radius.)

(¢) If 6,, 6, are the values of 6 which satisfy the above equation,

the sum of the roots = tan } 6, + tan } 6, = — f»m;r,
the product of the roots = tan } 6, tan} 6, = 22_;"_;_:

Hence lr:mr:n

=1-~tan} 6, tan10,:tan} 0, +tan30,: —(1+tan} 6, tan}4g,)

= cos 3 (0,+6,) : sin } (6, +6,) + —cos} (6, —86,).

The equation of the straight line in terms of the parameters of its
points of intersection with the circle is therefore

xz cos(0,+0,)+ysini(6,+0,)—rcosi(6,—0,) =0,

which agrees with the equation of the chord joining the points 6, 6,
found otherwise.

(iv) To find the points of contact of the tamgents which can be drawn
Jrom a given point to the circle.

Let the given point be (%, k) ; now the tangent at the point 6 is
zcosO+ysinf =r.
If this passes through (&, &)
hcos0+ksind = r.
This equation is true for the parameter of any point the tangent at
which passes through (&, k). It can be written in the form
(h47)tan? L 0—2k tan 30+ (r—h) =0
Then
(a) Since the equation is quadratic it has two roots; thus two
tangents can be drawn from any point to a circle.
(b) The roots are real,-coincident, or imaginary as
k%is >, =, or < r2—h2,
i.e. as h*+Kk*—1»2 is positive, zero, or negative.
Thus the two tangents which can be drawn from (&, k) to the
circle are real, coincident, or imaginary according as
h3+k%—7* is positive, zero, or negative,
i.e. as (h, k) is outside, on, or inside the circumference.
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(c) The square of the length of a tangent from (4, k), (if 0 is the
point of contact)
= (h—r cos 0)% + (k— r sin 0)?
= h2+k*+r*—2r (h eos 0+ Lk sin 0)
= "2+ K2+ r*—2y2
=24+ k2—ri
(d) If the two values of 0 given by the equation are 6, 6;, then
2k

the sum of the roots = tan 4 6, +tan 3 6, = h

r—-h.
r+h

the product of the roots = tan }6,.tan 16, =
_ . l—tan}6,tan}6,  cos}{9,+9,
Hence L=vr. TFtani0 tanld, r. cos}(0,—6,)’
p=r tan } 0, +tan } 6, -~ s‘m{;(g,_-i-_(v’g)
"1+4+tani 0, tanl 6, cos} (6,—6,)
This result evidently gives the coordinates of the points of
intersection of the tangents at the points 6, and 6,.
It can be verified by solving the equations

xcos 0, +ysinb, =7,

xcosd,+ysinb, = r.

No new facts have been found in the above analysis ; the work is
intended to illustrate the application of algebra to geometry, and also
to familiarize the student with methods which will be used later on
in the book.

Illustrative Examples.

(i) Lo find the angle between the tangents which can be drawn from
the point (b, k) to the circle 22+ y? = r2,

Suppose that the points of contact of the tangents are 6, and 6,; then
equating the coordinates of the point of intersection of the tangents at these
points to the given values

cos}(by+6,) _h_ sin}(6,46,) k. ()
cos3(8,—8,)  »’ cosi(6,-6,) »
But the equation of the tangent at the point 4, is
xcosf;+ysin b, =,
which makes an angle (3« +6,) with the axis of x.
Hence the angle between the tangents is (6, —6,).
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But from equation (i)
(B + &%) cos? 3(6,—6,) = 1*.

— 2
1 +cosf,— 6, = ’;W .
PP VY
cosbi=b="grw -

Cor. The locus of the intersection of tangents to the circle which include
u constant angle 2 is 2? +y® = 12sec? (, 1. e. a concentric circle.
The student should also work the problem geometrically.

(ii) AA’ is the diameter of a semicircle and P is any point on the
circumference; to find the locus of the centre of the circle inscribed
in the triangle APA’.

The geometrical solution of this question is evidently easy; for if I be
the point 74 and I4’ bisect the angles PAA’
and PA’A; moreover, the angle P is a right
angle. Hence the angle AI4’, which is the
supplement of 3(4 +4'), is 135°. The locus
consists therefore of the arc of a circle
passing through 44’. We have selected this
problem, however, because the result obtained
by purely algebraical analysis results in an
equation which needs discussion and is
typical of a variety of problems in which
the results are difficult for the student to
interpret.

Now let 4’, P,and A4 be the points 0, 6, =
on the circle

Pyt
0 being <.
Then the lines AP, P4, and 44’ are
xzcos}b+ysinyd—rcos}bd=0,
—zsin}f+ycosfd—rsin}d =0,
y =0.
If I, any point on the required locus, be (, y), since I is the centre of

a circle touching 4'P, P4, and 4 4’, the perpendiculars from I on the three
straight lines are equal. Hence (z, y) satisfies

(z~7)cos}f+ysingf+y =0, (i)
ycos}d—(x+r)sini0+y =0, (ii)

. cos}d sin }0 1
e yy+rx+n) ygly—a+tr) -y (i)
Hence Y'(y+x+r)+y (y—x+9)? = (y*+2?—+3)?% which is the

equation of the locus required.
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This can be simplified thus: it is the same as
29 (g + 2+ 2ry + %) = (yP + 22 - 12)?,

Le. 2y (y* +27+ 21y — %) = (" + 2" = ¥)P —42%yf,

ie. 2 (VP + 22 +21y—17) = (P + 22+ 20y — ) (Y + 22 =20y ~13),
ie. (Y +2+ 2ry—1%) (¥ — 2+ 2ry +4%) = 0,

i.e. (P+22+2ry—1%) (y+r+z)(y+r—2) = 0.

The locus then consists of three parts :

(a) the circle 2?+y*+2ry—~1? =0, i.e. a circle centre B(0, —») and
radius #4/2; (b) the line #+y+7 =0, viz. AB; (c) the line z—y—r =0,
viz. A'B.

Solving equations (i) and (ii) for y, we find

Y (1+sing +cosg) =7s8iné;
since 4 is less than , y is always positive and therefore the locus is confined
to that part of the circle (a) which is above 44",

Now we see from the equation (i) that when 2+y+»=0, 6 is =, and
when z—-y—r=20, 0is0.

When P approaches 4’, AP approaches coincidence with 44’; and 4'P
approaches the position where A'P is perpendicular to 44’

In the limit when P coincides with 4’, then the sides of the triangle are

AA', A4’ and T4'.

Now the line BA' bisects the angle A44'T'; hence the perpendiculars from
any point on this line to 44’ and T'4’ are equal, i. e. any points on the line
fulfil the condition that the perpendiculars from it on the sides of the
triangle APA’ are equal when P coincides with A'.

So also B4 corresponds to the position when P coincides with 4.

Note. Had we been finding the locus of the centre of the circle escribed
to the triangle 4 P4’, the sign of perpendicular on y = 0 would be changed
in our original equations ; but in the process of elimination we have squared
the y arising from this perpendicular, hence the locus of the escribed centre
is contained in the equation found.

Examples V d.

1. Find the area of the triangle formed by tangents at (1, 18), (6, 17),
(10, 15) to the circle «®+ y* = 325.

2. Where does the circle z?+y? = 125 meet the line z+3y =25°?

Find the point of intersection of tangents at these points.

3. Find the coordinates of the points of contact of tangents from (7, 1)
to 2?+y? = 25.

4. If AB is the chord of contact of tangents from P to a circle centre O,
prove that OP is perpendicular to 4B; and if these lines intersect at N
then ON. OP = (radius)?,

5. Find the tangents to the circle 2?+y® = a? inclined at an angle o to
the axis of x and the coordinates of the points of contact.

6. Show that the length of the chord joining the points 6,, 6; on the
circle x*+ y? = #* is 2rsin}(6,-6,).
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7. Tangents at the ends of chords of fixed length in a circle intersect on
a concentric circle.

8. Find the tangent of the angle between the two tangents from the
point (83, 3}) to the circle ?+ y* = 29.

9. Prove analytically that all angles in the same segment of a circle
are equal.

10. A straight line cuts two concentric circles in the points 4, Band C, D
respectively : show that the area of the rectangles AC.CB or 4).DB
are independent of the position of the straight line.

11. 4B is a given diameter of a circle and PQ a chord of constant length.
If AP, BQ meet at R, show that the locus of R is a circle.

12. AC.BD are perpendicular chords of a circle through fixed points
4, B on the circle: prove that CD always touches a circle concentric with
the given circle.

13. Tangents from the point P to the circle z*+y* = a* meet the axes of
coordinates in four concyclic points. Show that P lies on one or other
of two right lines.

14. 44’ is a diameter of a circle and P is any point on its circumference.
Find the equation of the locus of the foot of the perpendicular from A
on the bisector of the angle APA’. Describe the locus.

§ 8. A circle can be drawn to circumscribe any triangle, and when
its centre is taken as origin of coordinates many of the properties of
a triangle can be conveniently investigated.

H\\

N

Cc

In this paragraph we shall use the following notation :—
The circumcircle is 22+ y? = R?; its centre is O.
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The vertices of the triangle are 4 (R cosax, Bsina); B (R cosp,
Rsinf); C(Rcosy, Rsiny).
The perpendiculars from the vertices on the sides are AD, BE, CF.
The orthocentre is H.
The mid-points of sides are 4’, B, (.
The centre of gravity, centroid, or centre of mean position of 4BC
is G.
The nine-point centre is .
2C = R (cos &+ cos 3+ cos y),
28 = I (sin a + sin 3+ sin y),
20 = x+3+7.
The student should work straight through the following examples:
the easier questions are left as exercises, and the results obtained
are used in the illustrative problems,

Examples Ve.

1. The coordinates of the centre of gravity (G) are {¥ C, §Sj.
2. The orthocentre (1) is the point {2 C, 28}.
3. The mid-point (U) of HA is {C+4 Y} RcosX, S+ } Rsin x}.
4. The mid-point (A’) of BCis {C—§Rcosx, S—}RsinXj.
5. The mid-point of 4'U is {C, S}.
6. Show that G trisects the line joining OIf.
7. The Nine-point Circle.
The equation of the chord BC (Fig., p. 152) is
xcos3(B84y)+ysini(3+y) = Rcos I(B—1y). i)
The perpendicular to this thirough 4, viz. 4D, is
(x~RcosX)sin}(B+7y)—(y—Rsin &) cos }(B+7y) = 0,
i.e. xzsin}(B+y)—ycos3(B+y) = Rsin 3(B+7y)—j. (i1)
"The coordinates of the point (D) of intersection of the lines (i) and (ii)
are given by solving these equations; thus
22 = R(cosB+cosy+cosX—cosB+y— )
=2C—Rcos (B+y—0X),
2y = R(sin B+siny+ sin X —sin 8+ y— )
=285~ Rsin (B+y—).
Thus x—C=—-%4Rcos(B+y—),
y—S=—%Rsin (B+y—).
Hence the coordinates of the point D satisfy the equation
(2= C)*+(y—S)? = LR (cos* B+y— O +8in? B+ y — X),
ie. (= C)P+(y—8)*=} R (iii)
The symmetry of the result shows that the coordinates of the points
E and F will also satisfy this equation.
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Thus equation (iii), which represents a circle, is the circle DEF.
This equation is satisfied by the coordinates of 4', viz.
{C~}Rcos, S-}Rsina},

and from symmetry by those of B axd C'.

So also the point U {C+}RcosX, S+}Rsina} lies on this circle, and
from symmetry V and W.

Hence the nine points D, E, F, 4', B, ¢, U, V, W lie on a circle whose
centre is (C, S) and radius 3 R.

The nine-point radius is half the circumradius.

8. The orthocentre, nine-point centre, and circumcentre are collinear,
the nine-point centre lying midway between the other two.

9. The angles 4, B, C of the triangle are }(y—8), 7—}(y-x), }(8—0).

10. Show analytically that H4A = 2R cos 4.

11. Show that AB. AC=2R.AD.

12. If ABCD are any four points on a circle

AB.DC+ AD.BC =-AC.BD.

13. The feet of the perpendiculars from any point P on the circumcircle
to the sides of an inscribed triangle lie on a straight line called the
‘Simson line* of the point P, or the ‘ pedal line’ of P.

Let the circumcircle be «*+y? = R?, and the vertices of the triangle be

A (Rcos, Rsin), B(Rcosp, RsinB). C(Rcosy, Rsiny):
let P(Rcos8, Rsiné) be any point on the circumcircle.

Now BC is the line
wcos(B+y)+ysing(8+y) = Rcos}(B—v), i)
and the equation of the perpendicular from P to BC is
(x—Rcos6)sind(B+y)~(y—Rsin 6) cos §(B+y) =0
or zsin§(B8+y)—ycos}(B+y) = Rsin {}(8+7y) -0} (i)
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If then x and y are the coordinates of L, the point of intersection of

(1) and (ii),
2 = Ruin}(8+7).sin {}(8+7)—6} + Rcos }(8+7). cos }(8~7)

or 2x = R {cosf+cosB+cosy—cos (B+y—0)};
50 also 2y = R {sin 0 +8in B +siny—sin (8+y—6)}.

Hence, using our former notation, we get
22-2C—-Rcosd = R{~cos0~cosB+y—8}

=—-2Rcos}(X+B+y—0)cos}(x+8~-B~y),

= —2Rsin} (x+B+ y—06)cos}(x+6-8-1y);

therefore the coordinates (x, y) of the point L satisfy
(z=C~3Rcosf)sin} (X+B+y—0)—(y—S—} Rsinb)cos} (x+B+y—0)=0.
The result is symmetrical with respect to &, B, v, and consequently the

coordinates of the feet of the perpendiculars from P to CA4, AB also satisfy
this equation.

Hence LMN is a straight line whose equation is
(= C—=31Rcosf)sin(c~36)—(y—S—3 Rsinb)cos(r—}6) =0,  (iii)
and this is the pedal line of the point 6.

14. If the pedal lines of P, @, K all pass through the nine-point centre
of ABC, then PQR is an equilateral triangle.

Let P be the point 6, then the pedal line is

(x—C-3Rcos ) sin (0 —30)— (y—S—3Rsinb) cos (¢ —16) = 0.

The nine-point cgntre is the point (C, S); hence if the pedal line of the

point 6 passes through the nine-point centre we have
cos §.sin (0 —}0) —sind.cos (c—36) =0 or sin(36—0)=0.

Hence $0—oc=nr or 6=gnr+go.

The possible values for the parameters of points P, @, R whose pedal lines
pass through (C, S) are therefore go, 47+ 40, 4% §0o, obtained by giving
n the values 0, 1, 2; the value of 8 corresponding to any other value of
n gives one or other of the same points P, , K.

Hence the angles which PQ, QR, RP subtend at the centre of the circle
are each equal to §m, and the triangle PQR is equilateral.

Note. If &, B, y, 8 are four points on the circle 2*+y* = R? and

2C'= R(cos X +cos B+ cos y+ cos ),
28 = R (sin X +8in B +8in y +sin 3),
2¢ = a+B+y+d,

then the equation (x—C’)sin(0'—6)—(y—S’)cos(s'—6) =0, when 6 has
any one of the values &, 8, y, or §, represents the pedal line of the corre-
sponding point with respect to the remaining three points. The symmetry
of this result is helpful in problems relating to the pedal lines of four points.

15. The pedal line of P with respect to the triangle ABC bisects the join
of P to the orthocentre of the triangle.
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16. If the pedal lines of P, P' are perpendicular, then PP’ is a diameter
of the circle.

17. The pedal lines of PP’ are inclined at an angle cqual to half the
angle subtended by PP’ at the centre.

18. If PL meets the circumcircle at R, AR is parallel to the pedal line of P.

19. If the pedal line of P is parallel to BC, find P.

20. The pedal lines of three points PQR on the circumcircle of a triangle
ABC with respect to ABC form a triangle similar to PQR.

21. The pedal lines of the extremities of any diameter intersect on the
nine-point circle.

22. If PP’ is parallel to BC, then P’4 is perpendicular to the pedal line
of P.

23. If 4, B, C, D are four concyclic points, and the pedal lines of each with
respect to the other three be drawn, these four pedal lines meet in a point :
prove also that the centre of mean position of 4BCD bisects the join of
the centre to the point of concurrence of the pedal lines.

24. There are three pedal lines which pass through any given point.

25. If the pedal lines of the points 6, ¢, ¥ on the circle «?+y? = R? with
respect to the points &, B, y are concurrent, then 8+ ¢+ = x+B8+y+2nm.

26. A,B,C, D are fixed points on a circle on which moves a variable point
P, and the pedal lines of C and D with respect to ABP meet at Q. Show that
the locus of @ is a circle.

§ 7. The equation of the circle whose centre (x, 3) and radius » are
given, is
(€—0)*+(y—p)* = r™ (I1)
This form has occurred previously, and the equations of a chord,
tangent, and chord of contact were found.
As in the first form, we can use a parametric system of coordinates
for a point on this circle. The coordinates of the point
{a+rcos b, 3+rsin b}
satisfy the equation of the circle for all values of 6.
If C is the centre (o, B) of the circle,

J P and P is any point 6 on the circle, then
6 is the angle which the radius CP
c N makes with the axis of .
Thus in the figure the z-coordinate
% of Pis
OM = OL+ LM = o+ r cos 0,
and the y-coordinate

MP = LC+NP = 3+rsiné.

When 6 is in the second quadrant
the z-coordinate of P is less than o and the y-coordinate greater
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than 3, which corresponds to the fact that cosf is negative and
sin @ positive when 6 lies in the second quadrant. The student
should consider the coordinates of P when it lies in the third and
fourth quadrants.

To find the equation of the chord joining two points 6 and ¢ on the
circle (x—0o)+(y—p): =r2
The following is a variation of the former method of finding the

equation of a chord.
Let the equation of the chord be

Az+By+C=0. (i)

Since the given points lie on this
A (x+7cos8)+B(B+7rsinf)+C =0, (i)
A (a+7rcosdp)+ B(B+rsing)+C = 0. (iii)

From (ii) and (iii) by subtraction
A (cos ¢—cos6) = B (sin §—sin ¢);
A B
COSw(0+¢) sin 12(0-}-(1))
Now from (i) and (ii) by subtraction the coordinates of any point
on the chord satisfy
A(x—a)+ B (y—pB) = Ar cos 0+ Brsin 6.
Substituting for the ratio 4 : B we get
(x—a) cos } (0+ @) +(y—p) sin } (0 +¢) = » cos } (6 —¢).
The equation of the tangent at the point 6 is then
(x—a)cosb+(y—pL)sinf = r.

Conversely, all lines whose equations are of this form touch the
circle.

Since 0 is the same angle in both forms I and II, these equations
follow from those found for I by transferring the origin to the
point (—o, —pB). It is important to notice that when the single
variable (0) is used to denote a point on a circle, the equation of the
tangent (or any line depending on a single point of the circle) takes
a definite form and is completely known when 6 is known.

i. To find the equations of tangents to the circle (x— )? +( y—P)2 =12
parallel to the given straight line y = x tan ¢.

If (x—o)cos 0 +(y—pB)sin = r be such a tangent, then
cotd = —tan¢p = cot 37+ ¢);
6= (kn+9) or (m+im+).
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The tangents are therefore
(x—o) sinp—(y—B)cosp+r =0,
(r—o) sin p—(y—B) cosp—r = 0.

il. Two equal circles pass each through the centre of the other : tangents
are drawn from points on the first to the second. Show that the feet of the
perpendiculars from the centre of the second circle to the chords of contact

lie on the straight line perpendicular to the line of centres and midway
between them.

Take the- line of centres and the perpendicular line midway
between them as axes. Then the centres of the circles are (a, 0),
(=—a, 0) and the radii are each 2a. Their equations are therefore

(@—a)l’+y* =44, (i)
(c+a)P+y:=4a2 (i)

Any point on (i) is (e +2a cos 6, 24 sind), and the chord of contact

of tangents from it to the second circle is

(x+a)(2a+2acos ) +y2asinf = 4a?,

ie. (x+a)(1+cosf)+ysind = 2a
or (x+a) cos® 30 +y sin 30 cos 30 = a,
i.e. zcos? 30+y sin 36 cos 0 = asin? } 9,
which can be written
z+y tan $0 = a tan? }6. (iii)
The perpendicular to this from (—a, 0) is
y = (r+a)tan}b, (iv)

Eliminating tan 46 between equations (iii) and (iv) we get =0
as the equation satisfied by the coordinates of the point common to
(iii) and (iv) whatever value 8 may have.

This is then the locus required.

iil. Chords of one circle are drawn which are tangents to another : find
the locus of the points of intersection of the tangents at their extremities.
In what case is the locus a circle ?

Let the circle be #? + y? = r? and suppose the chords touch
(r=0)%+y% = R? i.e. we have taken the centre of one circle as
origin and the line joining the centres as axis of x.

The equation of a tangent to the latter circle can be written

(x=o)cosf+ysind = R. @)
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Suppose that (£, ) is the point of intersection of the tangents to
the first circle at the ends of this chord: the equation of the chord
must then be

zé+yn=r?; (ii)
and therefore (i) and (ii) are the same straight line.
E _»n
Hence cos0 sind R+ocosh
2_
Hence E 1 _7 af'

cosf sinf R
Eliminating 6, we get
B (&+n%) = (r*—af)’.
Hence the point (£, 7) always lies on the locus
R(@+y%) = (r*—aa)?,
i. e 2 (B2 —o?) + 42 R? 4 20r2x—1t = 0,

which is a circle only when & = 0, i. e. when the given circles are
concentric.

Examples V f.

1. Find the equation of the tangents to the circle 2? +y?*— 62—4y+5 =0
which make an angle of 45° with the axis of . Verify by a figure.

2. Find the equations of the tangents to the circle (z—a)?+ (y—b)? =»*
which make an angle & with the z-axis.

3. Find the equations of the circles whose centres are at the origin and
which touch (z-3)*+(y—4)* = 4. '

4. A tangent to the circle z'+y® = R? is perpendicular to a tangent to
(x—a)?+ (y—b)* = . Find the locus of their intersection.

5. Tangents are drawn to a circle from points on a straight line which
does not cut the circle; show that the chords of contact are concurrent.

6. Find the equation of a line inclined at 45° to the axis of #, such that
the two circles 2?+y’=4, a'+y*'~10x—-14y+65 = 0 intercept equal
chords on that line.

7. Chords of a circle, whose centre is the origin, are tangents to the
circle (x—a)*+{y—b)? =+*; find the equation of the locus of their mid-
points. ' -

8. A system of circles of radius » have their centres on a fixed circle
of radius ». Find the locus of points on these circles the tangents at which
are in a given direction.

9. Tangents are drawn one to each of two concentric circles and include
an angle of 60°%, Find the locus of their intersections.
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§ 8. The equation of '« circle referred to a tangent and normal as

coordinate axes is 224 y2 = 2rr,
Let the tangent be the axis of y: the normal passes through the
centre.
4 Geometrically it is clear that, if the
radius is », the centre is (r, 0), and
P consequently the equation of the circle is
(=722 = 12
0 c X or 24y =2 (i)

This equation can be obtained alge-
braically ; for, if the equation of the
circle is 22+ y2+2gxr + 2 fy+ ¢ = O, then,
since the line 2 = O touches the circle
at the point (0, 0), the two values of y given by y*+2fy+c =10
must both be zero ; hence f=0, and ¢ = 0.

The coordinates of the point { (1+ cos ), »sin 8} satisfy equation
(i) whatever value 6 may have, and these coordinates may be used as
those of any point on the circle. The angle 8 is PCr and ZPOx =} 6.

Note. If two circles touch one another their equations can be
written, by a proper choice of axes,

x2 + y2 — 27-1‘, wz + yz = 2];'1‘0

Ex. AB is a diameler of a circle and P any point on the tangent at B
a point T is taken on the straight line AP ; and TE, TF are drawn
to touch the circle in E and F. Show that AE and AF intersect the
tangent at B in points equidistant from P.

Take the tangent at 4 as axis of y and the normal as axis of .
The equation of the circle is
al+y?=2rr; (i)
the tangent at B is x =2
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Let T be the point (£, n), then the chord of contact EF is

z(§—r)+yn=ré (ii)
Now the equation  2?+4? =2z, 'Lé_r%)—i‘ﬂ (iii)

is satisfied by the coordinates of all points which lie on (i) and (ii), and
therefore by those of E, F.
Further, the equation is homogeneous and therefore represents two
straight lines through the origin, i.e. represents AE, AF.
The values of BE', BF' are the values of y which satisfy (iii) when x =2 r.
.. BE', BF’ are given by
YEé—drny+4r2¢—-812(£—1) =0.

<. BE'+ BF’ = tho sum of the roots = ~-7-

Z
But AT in the line y = 2Z; hence BP — ﬁfs-” -

.. BE'+ BF' =2BP or Pisthe mid-point of E"F".

Examples V g.

1. Show that the equation of the chord joining two points
{r (1 +cos @), »sin 6}, {r(1+cos¢), rsing}
on the circle 2+ = 2rx
is xcosh(0+¢@)+ysing(0+¢d) = 2rcos}dcos 3¢,
and the tangent at the point 6 is
xcosf+ysiné = r(1+cosé).

2. The line joining the origin lo any point 8 on the circle 2*+y? = 22
is y =axtan }4.

3. The middle point of the chord joining the origin to the point 4 is

(rcos?46, rsindfcos}d).

4. The locus of the middle points of chords of the circle 2*+y* = 2rz
which are drawn through the origin is the circle z?+y* = rw.

5. Two circles touch one another, and any straight line through the
point of contact cuts the circles in P and @. Show that the locus of the
middle points of PQ is a circle which touches the given circles and whose
radius is the arithmetic mean of the radii of the given circles.

6. n circles touch one another at the same point 4 and any straight line
through the origin meets them in the points P,, P,, ... P,. Find the locus
of a point Q such that

n.AQ = AP, + AP, + ... + AP,.

7. Two circles touch one another, tangents to one of them ave chords
of the other. Find the locus of the mid-point of these chords.

8. Show that the straight line 8 (ycosf—1) =axcos28 cuts the circles
x?+y? = 22, a*+y* =4z in four points which form a harmonic range.

1267 L
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9. Show that any point on the circle a?+y® = 27z can be represented
by (27 cos?8, rsin 26).

10. Find the coordinates of the intersection of tangents at the points
6 and ¢ in Question 9.

11. Show that the pedal of the origin with regard to a triangle whose
vertices are &, B, y (see Question 9) on the circle z*+y2 = 2rx is

xcos (X+B+y)+ysin(X+B+y) =2rcosXcosBcosy.

12. If «, B, vy, 8 be four points on this circle, there are four pedal lines of
the origin with respect to these four points taken three at a time. Show
that the feet of the perpendiculars from the origin on these four pedal
lines are collinear. Find the equation of the line.

13. 4B is a diameter of a circle of which P is any point. AP meets at @
the straight line drawn through B such that BPand BQ are equally inclined
to the tangent at B. Find the equation of the locus of @.

14. O is a fixed point on a circle and tangents to the circle from a point
Ptouch it at QQ'. Find the locus of Pif 0Q, 09" are harmonic conjugates
of a given pair of lines through 0.

15. Show that there are four chords of the circle a? + y* — 4rx —»* = ( which
subtend right angles at the origin and also touch the circle 2*+y* = 21x;
and show that they form a square.

§ 8. The equation of a system of circles passing through two given
points.

Take A (a, 0), A" (—a, 0) for the given points.

If 224+ 2 +29x+2 fy+c¢ = 0 is the equation of the circle, then the
axis y = 0 meets it at the points

A and 4’.
7 Thus the values of  which satisfy
P 22+29x+c=0
are ¢ and —a; therefore g = 0 and
c= —a%

The required equation is then

B +y*+2fy—a*=0,
A _VA *  which for different values of / repre-
sents a system of circles passing
through A and 4”: the centres of
all these circles lie on the axis of y, since g = 0.

Ex. i. If one side of a triangle inscribed in a circle is fived, the locus
of its centre of gravity is another circle.
Let 44’ be the fixed side and P (z,, y,) any position of the vertex.
The coordinates of the centre of gravity (G) are given by
8z =x,+a~a =a,,
3y = .
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But 224y +2fy—at=0
it the equation of the circle is
2+ Y’ +2fy—a’ = 0.
Hence the locus of G is

92+ 9y’ +6fy~a®>=0,
which is a circle.

Ex. ii. To find the locus of a point P which moves so that the angle
APA’ is constant, where A und A’ are fixed points.

Let P(«', ') be any position of the point.

The lines AP and A'P’ are

z—a Yy x+ta Y
Z,

7

L—=a ¥y xrt+a ¥y
If LZAPA' = «,

Yy y

5 T Qay’

+ tan x = %.__a___':_:*-__a = A-Izﬂ_(’;z__i.
Y rit+yt—a

1+ g 2
z?—a

Hence the locus is the two circles z*+ y*—a® = +2aycot x.

Examples V h,

1. Find the equation of a circle through the two points (—a, 0), (a, 0)

which also
(i) passes through the point (k, &) ;
(i1) touches the line x+y = 3a;

(iii) is such that the tangents at the given points make an angle 30° with

the join of the points.

2. 4, B are fixed points on the circumnference of a circle; 4P, BQ are
parallel chords. Prove that the locus of the intersection of AQ, BP is the
circle through 4, B and the centre of the given circle.

3. A series of circles pass through two fixed points; find the equation of
the locus of the points of contact of tangents to these circles parallel to
a fixed straight line.

4, Circles are drawn through the points (—a, 0), (e, 0); find the locus of
the point of contact of tangents to thesc circles which pass through the
point (2q, 0).

5. Show that there are two circles of the system 2?+ y*—2\y = a? where
A is a variable constant, which touch the straight line xcos X+ ysinx—p =0,
and that they are real onlyif p is = or > acos®. If A, 1, are the values of
A for these circles, show that A, = (a?—p?)sec?x. When the value of p
is such that the two circles are coincident, show that their equation is
2 +y* +2aytan o = @’

6. Two fixed circles intersect in A4, B; P’ is a variable point on one of

L2
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them, and P4 meets the other circle in X and PB meets it in Y. Prove
that BX and AY intersect on a fixed circle.

7. Two circles intersect in 4 and B. A line through 4 meets one circle
again in P and a parallel line through B meets the other circle again in @.
Prove that the locus of the middle point of PQ is a circle.

8. The base of a triangle is fixed and its vertical angle is given; find the
locus of (i) its centroid, (ii) the inscribed centre, (iii) the orthocentre.

§10. The equation of the circle on the straight line joining (xy, y,),
(,, y,) as diameter is
(z—xy) (x—25) +(y—1) (y—y5) = 0.
The centre is the mid-point of the line joining (z,, ¥,), (%, ¥2),
ie {3 (@ +7), 3 (y1+22);
Hence its equation is of the form
a2+ y? =z (xy+2) —y (1 +Y5) +¢ = 0.
But (x,, »,) lies on this; hence
224y = =2 Ty =Y~ 1Y +c = 0,
or =223+ % Y25
the equation is then
@+ Y2 — 2 (0, + 25) — Y (91 + ¥a) + 2123+ 9,9, = O,

or @—z))@—2)+ (¥ ~9) (—y)) = 0;

e.g. the circle of which the line joining (—5, 4), (2, —8) is a diameter
is (#+5) (2—2) +(y—4) (¥ +3) =0,

or 224+ y*+32—y—22 = 0.

Examples V i.

1. Find the real points where the circle on the line joining (13,5), (-7, 15)
‘as diameter cuts the z-axis.

2. Find the equation of the circle on the line joining the points
(a)? 2al), (a/\?—2a/)) as diameter.

Where does it meet the line £ = —~a?

3. Find the equation of the circle on the chord of the circle 2+ y* = 125
as diameter whose equation is z + 3y = 35.

4. Find the equation of the circle on the line joining the points (1, 3), (5, 1)
as diameter, and the coordinates of the extremities of the perpendicular
diameter,

5. A circle is described on the line joining (3, 7), (9, 1) as diameter.
Show that it touches z+y~4 = 0.

6. Find the equation of the circle whose diameter is the chord of the
circle 2+ y* = 169 whose mid-point is (8, 4).
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§ 11. To find an equation giving the lengths of the segments of a chord
of a circle drawn through any given point in a given direction.

Q

If the given point is outside the circle the segments OP, 09
are both of the same sign: if the given point is inside the circle the
segments OP, 0Q are of different sign.

Let the equation of the circle be

224+ y%2+ 292+ 2fy+¢=0,
and let the given point O be (&, B8) and let the chord through O make
an angle 6 with the axis of 2. The equation of the chord is

I |
where r is the distance of any point (z, ¥) on the line from the fixed
point O.
Now, if » is equal to OP, the point (r,y) is P; its coordinates are
x=0+rcosf, y=pLR+rsinb,
and it lies on the circle. Similarly for Q.
Hence, if r is equal to either OP or 09,
(x+rcos 6)2+(B+rsin 6)2+ 29 (x+ 7 cos 8)+ 2 f(3+7sin 6)+¢ = 0,
ie. 24+ 2r{(x+9g)cos 0+ (B+f)sind} + 0%+ 324+ 29x+2f3+¢=0.
Now, if we write for convenience,
S 9) = 2 +y*+ 292+ 2y +,
then S, B) = o2+ 82+ 290+ 2B +c.
Hence the equation may be written
r2+2r{(x+g)cos 0+ (B3+f) sinb} +f (o, B) = 0,
which is a quadratic in » whose roots are equal to OP and- 0Q.
Hence (i) The product of the roots = OP.0Q = f («, 3).
This is constant for a given position of 0, whatever the value of 6;
hence the well-known proposition :
‘The rectangle contained by the segments of a chord of a circle
which passes through a fixed point is constant.’
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Incidentally, we see that if the chord meets the circle in two
imaginary points P, Q the rectangle of OP. 0Q has a real value.

Also if f (a, B) is positive, OP. 0@ is positive, and O lies outside
the circle ; but if f (&, 8) is negative, OP. 0Q is negative, and O lies
inside the circle.

[This can be shown directly; for the centre C of the circle is
(=g, —f); hence  OC* = (x+ g+ (B+/)2;

0C%—(radius)? = o2+ 82+ 29+ 2 fB+c = f(a, B).]

(ii) Note that when O is at the centre, i.e.
x=—gand 8= —f,
the coefficient of » vanishes and we have

r?= —f(a B),
i. . OP, 0@ are equal and opposite for all values of 0, (Cf. p. 126.)

(iii) If the values of r given by the equation are equal and opposite,

1. e. if O is the middle point of the chord PQ, then we must have
(x+g) cos0+(8+f)sind=0.

If now we consider the mid-point O (x, 8) of PQ unknown and
0 constant, i. e. the chord to be drawn in a fixed direction 6, then (x, 3)
must lie on the line

(r+9g) cos 0+(y+f)sinf =0,
which is therefore the locus of the mid-points of all chords of the
circle drawn in a fixed direction 6.

(The question of the chord meeting the circle in real poihts has
not arisen ; hence the mid-point of the lire joining a pair of imaginary
points of intersection is real.)

Evidently then ‘the locus of the mid-points of parallel chords of
a circle is a straight line through the centre perpendicular to the
chords’.

(iv) To deduce the equation of the pair of tangents to the circle from
the point O (x, f3).

If the chord through O, drawn in the direction 6, cuts the circle in
P and @, the lengths of OP, 0@ are given by

r242r{(x+g) cos0+(B+S) sin 0} +f(x, B)=0; (i)
but if this chord touches the circle P and @ coincide and the lengths
OP, 0Q are equal. The condition that the roots of equation (i)
should be equal, viz.

{(@+g) cos 0+ (B+5) sin 6}* = f (, B), (ii)
gives us an equation from which to determine the directions 6 in.
which to draw tangents to the circle.
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If we choose either of these values of 6, then any point on the
line (which is now a tangent) satisfies
2=0 _y=p,
cos § sin 6
Hence, substituting for cos 6 and sin 6 in (ii), we see that

{@+9)(z—0)+(B+S) (y—B)If? = f (% B) {(zx—a)* +(y—pB)*}
is an equation satisfied by any point on a tangent from O to the
circle, i.e. is the equation of the tangents from O.
This can be at once reduced to the form
(@ +y2+ 292+ 2y +c) (¢ + B2+ 29+ 2fB+c)
={z(x+9)+y (B+S)+xg+BS+c}
Now we have shown that the equation
z(x+9)+y(B+f)+ag+pBf+c=0
represents the chord of contact of tangents from O (&, 3) to the
circle.

Thus, if f(z, y) = 0 is a circle, and » = 0 is the equation of the chord
of contact of tangents from a point O (&, 8) to the circle, the equation
of these tangents is  f(z, ») . f(x, B) = %

Incidentally, if 6 is the direction of a tangent, equation (i) gives the
length OP of this tangent: we see, as previously proved, that

OP? = f(a, f3).

(v) If a chord through the point O cuts a circle in the points P and @,
to find the locus of a point R on PQ which is such that

2 _ 1,1
OR~ 0P " 0Q’
or, in other words, the point R which is the harmonic conjugate of O with

respect to P and Q.
y / '

(0,0) x

Let the equation of any such chord be

z— _y=p _ .
cos0  sinf (i)
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where O is the point («, B8) ; then the lengths of OP, 0Q are given by
12427 {(x+g) cos 0+ (B+f)sin 0} +f(x, B) = 0.
Hence O0P+0Q = —2{(x+g) cos 0+ (B+)sin 6},
OP.0Q =f(x B)

1 1 2{(+g)cosf+(B+f)sinb}
Henee  5p+0g =~ 7@ B)
= O%R (by hypothesis).

Thus  ORcosd (x+g)+ORsin 6 (8+5)+f(x B) =0.
But since R is on the line PQ (i), if its coordinates are (z, ¥),

z—o = OR cos 0, y—fB = ORsin 6,
i. e. R lies on the locus
(#—0) (x+9)+(y—B) B+S)+02+ B2+ 2ga+2fB+c =0,
i e z(+9)+y(B+f)+g9a+fB+c=0.
This is a straight line, and, when O lies outside the cirele, it
represents the chord of contact of tangents from O.
The locus is called in all cases the polar of 0, and is discussed later.
The above results can be obtained in the following manner :—
Let T be a point (z, y) and let the straight line OT cut the circle
at Pand . Since P and  are points on the straight line joining
the points (%, 8) and (z, y), their coordinates are of the form
I+ ly+48 . .
T51° 131/ where the values of 1 are given by the condition

that P and @ should lie on the circle. Substituting these coordinates
in the equation of the circle, we obtain

B.f(x, y)+2lu+f(o B) =0,
where f(z, y) = O is the equation of the circle, and

u=(a+g)2+(B+f)y+gu+fB+c.

If OT is a tangent to the circle, P and @ coincide, so that the
values of | are equal, hence f(z, ¥). f(x, B) = u®.

This is an equation satisfied by the coordinates of any point T
such that OT is a tangent to the circle ; it is therefore the equation
of the tangents from O to the circle.

If T is the harmonic conjugate of O with respect to P and @, then
the -values of I are equal and opposite. This gives us » = 0; this
is the equation of the locus found in (v).
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Examples Vj.

1. Find the equation of tangents from the point (k, k) to the circle
24yt =12

2. Show that, with the notation of Chapter IV, the equation of a pair of
tangents from (2, y') to the circle u =0 is uw' = {xX'+y¥Y'+2Z'}%

8. Find the angle between the tangents from the point (4, 8) to the circle
B+y'—2x—-4y=0.

4. Find the locus of points the tangents from which to the circle

2+y*+292+2fy+c=0
are at right angles.

5. Find the locus of points the tangents from which to the circle
2 +y*+4x—6y+12 = 0 include an angle of 120°.

6. If PT, PT' are two tangents to a circle centre, C, @ any point on PT,and
QN the perpendicular from this point on T'T", show that PT': CP = @N: QT
and deduce the equation of a pair of tangents in the form found above.

7. Find the locus of the middle points of chords of the circle

2?+y'+62x-8y+17=0
which make an angle cos™! 3 with the axis of 2.

§ 12. Poles and Polars.

(1) If tangents be drawn to a circle from any point on a given straight
line, the chords of contact will all pass through a fixed point.

(2) If chords of a circle are drawn through a given point, the tangents
at their extremities will meet on a fixed straight line.

To prove *hese propositions take the equation of the circle in its

simplest form :
a4yt =12 F

(1) Let the equation of the
given straight line be

u=lzx+my+n=0.

If P («/, y) is any point on this
straight line, we have the condi-
tion

I’ + my’ +n = 0. (1)
The equation of the chord of
contact of tangents from (z/, ') is (p. 145)
zx +yy = 1
Using the condition (i) this can be written
max’ —y (n+ 12') = mr?,
or x’ (mx—ly) = ny +mr3.
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This contains one undetermined constant z’ in the first degree
only, and therefore represents a straight line passing through the
fixed point given by

mer=1ly and ny = —mr?
i. e. the fixed point U(— l_r_z’ _me .
n n

(2) Let the fixed point be U (§ 1). Any straight line through this
* y=n+k@—£)=0. @

Suppose the tangents at its point of intersection with the circle

meet at (x/, '), then since
&)

xx’ +yy = 1 (i1)
is the chord of contact of tangents
from (2, y’) to the circle, the lines (i)
and (ii) are identical. Hence

 _y
k- 17 n+kE’
and therefore
=g,

n
Hence o E+yn =13
i. e. the point (2’, 3’) always lies on the straight line

u=zé+yn—r2=0.

Pole and Polar. If tangents are drawn to a circle from any point
on a straight line u, their chords of contact all pass through a point U.
And if chords of a circle are drawn through

v a point U, the tangents at their extremities
intersect on a straight line w.
The point U is called the ‘pole’ of the
line %, and the line u is called the ‘polar’
of the point U.

Notes. (i) If the line « cuts the circle at 4
and B, real tangents cannot be drawn from points
between 4 and B on the line: it can be shown,
however, that the chords of contact of pairs of
imaginary tangents from these points pass through

U. When the chosen point is 4, the tangents from it coincide and their
chord of contact is the tangent at A4 ; so also at B: hence U is the inter-
section of the tangents at A and B, This can also be seen from the above
algebraical result.
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2
Forif u=lx+my+n =0, U is the point —’—:;—, —"—:;—’

of contact of tangents from U is xl{; +yninrf+r’ =0 or lz+my+n =0,

), and the chord

i.e. the line v = 0.

(ii) If the point U lies outside the circle, and UA, UB are the tangents
from U to the circle, only lines through U which lie between UA and UB
cut the circle in real points. The tangents at the imaginary points of
intersection of the circle and other lines through U may be shown alge-
braically to meet on .

The line UA meets the circle in coincident points: hence the tangents
at the points of intersection coincide and intersect at A: thus 4 is on .
Similarly B is on ». Hence, if U lies outside the circle, the polar of U
is the chord of contact of tangents from U.

(iii) Many different definitions of the pole and polar are used in various
books on Geometry. We have adopted the above because it applies equally,
as will be seen later, to all curves represented by the general equation
of the second degree, ahd also, although in our notes we have introduced
imaginary considerations, the pole and polar can be found from this
definition by a real construction in every case.

(iv) It should be noted that the equation of the polar of any point (2, y')
takes the same form as that of the tangent at a point («', #’) on the circle.
A tangent to a circle is the polar of its point of contact.

For the general circle

2+ +2g9x+2fy+¢c=0
the polar of the point (', #') is, in our usual notation,
xX'+yY' + 7' = 0.
This should be remembered. as the equation is true for any curve of the
second degree.

Dropositions on the Pole and Polar.
(1) Lf the polar of U passes through V, the polar of V passes through U.
Let U, V be the points (x,, 9,), (x5, 9,) ; the polar of U with respect
to the circle 2%+ y% = a? is ax, +yy, = a?; U
this passes through Vif z, 2, +y,y, = a* v
Which is also the condition that U (z;, ¥,) w
should lie on zx,+yy, = a? the polar g
of V.
(ii) If w 1is the join of the poles of the
lines u and v, then w is the polar of the
point of intersection of u and v.
(iii) If the pole of the line u lies on the line
v, then the pole of the line v lies on the line u.
These results are immediate consequences of (i).
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(iw) If U is the pole of u with respect to a circle whose centre is C, then
(a) CU is perpendicular to u.
(b) If CU meets u at L, then
CU. CL = (radius)®.
Let the circle be 22+ y% = r%

(a) If U is the point (x,, %), then u is
the line

axy+yy, = rs ()
Also CU is the line
xy, —yx, =0, (ii)
and the lines (i) and (ii) are evidently perpendicular.
(b) Again CU = vz +y?,
7.‘.’.
CL = pe—
v Vo
i.e. CU.CL = »2.

Definitions.
(i) U and L are called inverse points with respect to the circle.

(ii) If the polar of U passes through V, U and V are called conjugate
points.

(iii) If U, V, W are three points such that the polar of each with
respect to a circle is the line joining the other two, the triangle
UVW is said to be self-conjugate with respect to this circle.

(v) If a triangle is self-conjugate with
respect to a circle, the centre of the circle is
the orthocentre of the triangle.

If UVW be a triangle self-conjugate
with respect to the circle, then VW is the
v polar of U. We have just shown that
CU is perpendicular to VW, and similarly
CV and CW are perpendicular to UW
v and UV, i.e. C is the orthocentre of the

triangle UV W.
The circle in this case is called the ¢ polar-circle’ of the triangle.
In the figure
CM.CV=CU.CL=CN.CW
= square on the radius of the circle.

Evidently, then, the triangle UV W must be obtuse, otherwise the

square of the radius will be negative and the polar-circle imaginary.
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Ex.i. To find the polarcircle of the triangle whose vertices are
(Rcosa, Rsina), (Rcosf, Rsinf), (BRcosy, Rsiny).
The orthocentre of the triangle is the point (2 C, 2), where
2C = R(cos &+ cos 8+ cosy),
28 = R (sin & +sin B+sin y).
Hence the equation of the polar-circle is of the form
(x=2C)*+ (y—28) = p
The polar of (Rcos®, Rsin) with respect to this circle is
(®-2C) (Rcosx~2C)+ (y—28) (Rsinx ~28) = p?,
i.e. (x~2C) R (cosB+cosy)+(y—2S)R(sin B+siny) +p? = 0,
or 2Rcos}(B+y)cosi(B—v)(x—2C)
+2Rsin} (B+7y)cos3 (B—v) (¥—28)+p* = 0;
1. e zcosd(B+y)+ysing (B+y)—2Ccos}(B+y)—2Ssin} (B+7y)

]
+fpsec}(8-7) =0,
i.e. zcos}(B+y)+ysin}(B+y)—Rcos{x—%(8+y)}~2Rcos}(B—y)
P =
+ ﬁsec}(ﬁ y) =0.
But the chord joining the points 8, y is by hypothesis the polar of the

point o(; hence the equation just found is identical with
zcos} (B+y)+ysin} (8+y)—Rcosz(B—y) = 0.

Thus %sec&(ﬂ—y) = R[cos {&x—3} (B+7)} +cos} (8~7)]

= 2R cos } (0 —P) cos } (X —7v),
or p*=4R*cos} (x—B)cos} (B—7y)cos} (y—),
and the required equation is
(x—-2C)*+(y—285)* =4R*cos } (d—B)cos} (B—7y) cos } (y—X).

Ex. ii. To find the condition that a triangle may be drawn inscribed
in a circle radius R and self-conjugate with respect to a circle radius p.
Let the first circle be 2?+y? = R?, and let &, 8, y be the vertices of the
triangle. Then we have shown in Ex. i that the equation of the polar-
circle is
(x-2C)2+(y—2S)*=4R*cos } (x~B) cos } (B—1) cos § (y—).
If d is the distance between the centres, we have
@ =4 +48?
= R?[(cos & +cos B+ cos y)? + (8in & + sin B +8in y)?]
=R:[3+2cos x—B+2cos B—y+2cosy—0a]
= R'+2R(1+cos X—B+cos@—y+cos y—Q,
and by elementary transformation this
= R3+8R?cos } (¢ —B) cos } (8—y) cos } (y~%).
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But p*=4R'cos} (x~B)cos} (B—y)cos} (y=0);
hence d* = R*+2p?,
which is the required condition.
If one such triangle.can be drawn, any number can.
For take the circle (x—a)?+ (y—b)? = p?, where
@'+ = R*+2p%
Then, if we choose &, 8, y so that

R(cosx+cosB+cosy)=a,

R (sin & +8in B +siny) = b,
we shall find, working backwards, that (z—a)?+(y—b)? = p? is the polar-
circle of the triangle , 3, y. We can take an arbitrary value for o and
then find values for B, y; so that if the condition d? = R?+2p® is satisfied,
not only one but any number of such triangles can be described.

Miscellaneous Examples for Revision.

1. Find the equation of the polar of the origin with respect to the circle
Z+y*+29x4+2fy+c=0.

2. Find the locus of the poles of the straight line «+y =1 with respect
to a system of circles which pass through the points (2, 0), (=2, 0).

3. Find the coordinates of the pole of the line 3x+4y = 5 with respect
to the circle z*+y* = 25.

4. If tangents be drawn from any point on one of three circles (which
all pass through two fixed points) to the other two, prove that the ratio of
the lengths of these tangents is invariable.

5. Find the equation of tangents from the origin to

+y?—-6x+2y+5=0.

6. A chord of a fixed circle is such that the sum of the squares of the
tangents drawn from its extremities to another fixed circle is constant:
prove that the locus of its middle point is a straight line.

7. Find the locus of a point the tangents from which to two fixed circles
include equal angles.

8. Two fixed points are conjugate with regard to a circle of given radius.
Find the locus of the centre of the circle.

9. From two points P, @ perpendiculars are drawn to the polars of @ and
P with respect to a circle. Show that the ratio of their lengths is equal
to the ratio of the distances of the points from the centre of the circle.

10. Tangents are drawn from a point P to a given circle and meet the

tangent at a given point 4 in Q and R. If 4Q+ AR is equal to a constant
length, find the locus of P.

11. If ABC is a triangle self-conjugate with respect to a circle, two of
the vertices lie outside and one inside the circle.
12, Show that the polar of a point (&, y') with respect to the circle
Bx+4y+4)+ (4x+3y+5)* =24 (x+y)?
is Br+4y+4) B’ +4y' +4)+(4xr+3y+5) (42’ +3y +5) =24 (x+y) (@ + ¥).
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13. A circle is drawn to touch one side of an equilateral triangle and
to make the pole of another side with respect to it lie on the third side.
Find the locus of its centre.

14. Show that the equation of the locus of the poles of tangents to the
circle (x—a)*+y® = b? taken with respect to the circle 2*+y* = ¢, is

(a®~bY) a2t - b2yt —2cfazx +c! = 0.
15. The sides of a triangle are

z/m+y/p—1=0,

w/=n+y/p=1=0,

y=0.
Find its orthocentre and also the equation of the circum- and nine-point
circles. Verify that the centres of the two circles, the orthocentre and the

centroid, lie on the same straight line.

16. Find the condition that the straight line joining the points (z,, y)),
(23, y;) may touch the circle a*+y?* = a’

Hence find the equation of the pairs of tangents that can be drawn from
(z,, y,) to touch the circle.

17. From each of two points 4, B pairs of tangents are drawn to a circle.
Prove that the nole of 4B is the intersection of two of the diagonals of the
quadrilateral formed by the tangents.

18. A circle turns in its own plane about a point in its circumference.
Find the locus of the point of contact of a tangent drawn parallel to a fixed
straight line.

19. If L and M are the feet of the perpendiculars drawn from a point P
to one fixed pair of lines, and L', M’ are the feet of the perpendiculars
from P to another fixed pair of lines, prove that, if LM and L'M’ are
inclined to one another at a constant angle, the locus of P is a circle.

20. Show that the tangents from the origin to the circle whose equation
i8 2+ y* =5k (x +y)+104* = 0 are the same, whatever value is assigned to .

For what values of & will this circle touch the straight line 3x+y+15=0?

21. Show that the equation of the tangents drawn from -the point (k, &)
to the circle 2+ y* = a? is (2 +y*—a®) (R*+A*—a?) = (hx +ky—a’)t

Tangents are drawn to this circle from two points on the axis of .,
equidistant from the point (c, 0). Show that the locus of their intersections
is ¢y = a®(c~x).

22. The vertices 4, B, C of a triangle lie one on each of three concentric
circles; and 4B, AC are parallel to the tangents at C, B respectively.
Prove that BC is parallel to the tangent at A.

Also prove that the circumcircle of the triangle formed by the tangents
at 4, B, C is concentric with the three given circles; and find 'a relation
connecting the radii of the four concentric circles.

23. From a fixed point P (', y') is drawn a straight line to cut the circle
2 +y* =a’ in Q and R; find the locus of the point harmonically conjugate
to P with respect to @ and R.

24, If a straight line move so that the lengths intercepted upon it by
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two given circles are equal, the locus of its pole with regard to either circle
will be a curve of the second degree.

25. Chords of a circle, radius @, subtend right angles at a point whose
distance from the centre of the circle is c.

Prove that the locus of their.poles is a circle of radius

(@ V2F= (@~ .

§ 13, Properties of two circles.

1. Definition. The points which divide the line joining the
centres of two circles internally and externally in the ratio of the
radii are called the Centres of S8imilitude of the two circles.

If the points C) (o, By), Ca(xg, B;) are the centres of two circles,
whose radii are 7, 7,, the centres of similitude, S, S,, are the points
S {"1 Op+1y&y 1y ﬁ2+72ﬁ1} .S {':1.9‘3:129‘_1 7y 32"’231}

Y ’ ’ 29 ) T (°

rtr, 1 +7, ry—17, r—7r

The points S, S, evidently divide the line C; C, harmonically
(Chapter I, p. 15).

Show that any straight line through a centre of similitude of two
circles is divided similarly by the circles.
Suppose two circles
22+ y*+ 292+ 2fy+¢ = 0 (radius 7),
22492+ 2Gx+2Fy+ C = 0 (radius R),
have a centre of similitude at the origin (0, 0).

Then Rg—rG =0; Rf—rF = 0.
R R

Hence G-—?.g, F—?-f:

Now put g—:’:/\.

Then G=A.g, F=XA.f, R=\Ar.

But G*+F?—(C=R?;

C=G*+F*—~R?
=N (gr+f2— 1)
= \2¢.
Hence the equation of the second circle is
2+ y*+2Agr+ 2N fy+Ai¢ = 0.
Let any straight line through the origin, i. e. through the centre
z Y

of similitude, be woad = ang="
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If this cuts the circle 22+y%+2Agx+2rfy+A2¢c =0 at P and Q
the lengths OP, 0Q are given by

r2 cos? 0+ r2sin? 0+ 2Agrcos 042X frsin@+A2¢=0;
i.e. r24-2rA (g cos 0+ fsin )+ A2¢c = 0,
Hence OP+0Q = —2A (g cosf+fsin6)
OP.0Q = A2¢;
(OP+0Q)? _ 4(g cos 8+ fsin 6)?
’

OP. 0Q c

0P+ 0Q+2 = a quantity independent of A and therefore the

0Q or same for both circles.
Let the straight line cut the circles in the points P, Q and P, Q,
and let OP =%. 0Q and OP'=F'. 0Q'; then it follows that
k+1/k=FK+1/K,
hence k—¥) (kX' —1) = 0.
Therefore k=K or k= 1/K; whence
OP/0Q = OP’/0Q or 0Q'/OP'.
The straight line is therefore divided similarly by the two circles.

I1. Definition. The circle described on the line joining the centres
of similitude of two circles as diameter is called the Circle of Similitude.
If the equations of the two circles are
@=0)?+(y=p))° = "1 )
(=0 +(y—Bo)? = 1y,
the equation of the circle of similitude is (v. p. 164)

( 7’1 CX2 + 1‘2 dl) ( 7‘1 (12— Ty al)
” + LD -7,

+( nﬂz+fzﬂ1)( rlﬁg_::ﬁl) 0.

ri1+7,

This at once reduces to
n* {2 — 20,2+ 0% + ¥ — 28,9 + B,%}
—r {2t -2 2+ 0+ =2 By + B,%} =0,

or r?{(@—0) + [y —By)?} —rl{(x—0y)?+ (y—By)3} =0, ()
which is identical with
nH{(@—0e)? +(y— B2 — 1,3} — 2 {(x— )2+ (y— B)i—n?} = 0. (ii)

Note that

(a) Equation (i) shows that if P (x, y) is any point on the circle of
similitude of two circles whose centres are C,, C,
then PC,:PCy=r,:1,

1267 M
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(b) If 8 = (r-0g)’+y—B)—n?=0,
8, = (x -0 +(y—B)f—r2=0
are two circles, we see from (ii) that the circle of similitude can be
S8 _ 5
et
(c) It can be shown that the circle of similitude is the locus of
points at which the two circles subtend the same angle.

written

Example. The centres of similitude of the circumcircle and nine-point
circle of a triangle are the orthocentre and the centre of gravity.

If the vertices of the triangle are (Rcos, Rsin &), (RcosB, RsinpB),
(R cosy, Rsinvy), we have seen (p. 153) that the equation of the nine-point
circle is (x=C)*+ (y—8)* =} R

Hence the centres of the circumcircle and nine-point circle are (0, 0),
(C, S), and their radii are R and } R,

The coordinates of the centres of similitude are therefore (4C, §S) and
(2 C, 28), which are those of the centre of gravity and the orthocentre.

The equation of the circle of similitude is

(x-3C)(x-2C)+(y—38)(y-28) =0,
or 32?+3y?-8Cx-8Sy+4(C*+ 8% = 0.

II1I. The Common Tangents of Two Circles.
The equation of any circle can be written in the form
(z— )+ (y—B) = 12
this is the most convenient form for this problem.
Let the equations of two circles be
(w—0)?+(y—pB)? = n? (i)
(=0 +(y— By = r?; (i)
we wish to find the equations of those lines which touch both of the

circles,
The coordinates of any point on the circle (i) can be written

{ay+7r,co80, B, +7r 8inb},
and the tangent at this point is

(x—0y) cos 0+ (y—p,)8in0 = r,. (iii)

There are two tangents to the circle (ii) parallel to this, viz.
(r—0op)cos 0+ (§—pB;)sinb = 7, (iv)
and (x—0p) cos 0+ (y—~By) sind = —=r,. (v)

If either of these coincides with (iii) it will be a common tangent
of the two circles.
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Comparing the equations (iii) and (iv) the condition that they
should be identical is

o cos 043, sin 0+ 1, = xgco8 0+ 3,8in 0+ 7,,
i. e, (xy—0ty) co8 0 + (B, — B,) sin 0+ (r; —=1ry) = O. (vi)
This equation then gives the values of 8 which make the line (iii)
‘a tangent to both circles. It can be written
(o —0) (1 —tan? 36) + (8, — B,) 2 tan 30 + (r, —r,) (1 + tan? }6) = 0,
or tan?}0 (r,—1,— 0 — ) + (3,— ;) . 2tan } 0+ =1, + 0, — 0= 0.
This is a quadratic and gives two values for tan 60 with corre-
sponding values for cos 8 and sin d to be substituted in (iii).
The two tangents are real, coincident, or imaginary according as
(Bi=By)? >, =, or < (r—=1)*— (=%
i.e as (0‘1_0‘2)2 + (ﬁl _BZ)Z >y =,0r < (7’1 - r2)2'
Since the centres of the circles are the points C; (;, 1), C; (%2, B),
this condition is the same as C,C; >, =,0or < r,—1,.
If one circle is outside or cuts the other, clearly C,C,>r —r,
and two real common tangents can be drawn.

If one circle lies within and just touches the other, then
C,C, = r,— r, and the common tangents coincide.

Ci

If one circle lies entirely within the other, C,C,<r —r, and the
tangents are imaginary.
Again, if equations (iii) and (v) are identical, we get similarly that
(o) —otg) cos 0+ (B, —By)sin O+ ry+7r, = 0. (vii)
Treating this in the same way as equation (vi), these correspond
to two common tangents which are real, coincident, or imaginary
M2
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according as C,C, is >, =, or < 7, +7,, i.e. according as the one
circle lies outside, lies outside and touches, or cuts the other.

(D0 (o CF

We see then that equation (vi) gives the values of 0 for the ‘direct’
common tangents and equation (vii) for the transverse common
tangents.

Now let PP’ be the points of contact of the tangents given by

equation (vi) )
(0, —0y)cos 04 (3, —Bg)sin0+7,—7r, =0

with the first circle. Since the coordinates of P are

(o +17, cos 8, 3,41 sinb),
where 6 is one of the values given by (vi), if Pis called the point (z, y)
we have r=0,+7r.c080,y=B,+rsiné.

Hence
(g —0) (B=04)+ (By—Bg) (y—F) + 1 (r—1ry) =0 (viii)
is an equation satisfied by the coordinates of P, and (by precisely the
same argument) by the coordinates of P’. In other words (viii) is the
equation of the chord of contact PP’.
Now the chord of contact of tangents from the external centre of

similitude S {"“2"““1, n f:*‘ '2‘3‘} to the first circle is
n—r; 1~ 72

(x_al){ﬁ_o_‘}:ﬁﬁl - 0‘1} + {y_ﬁl} {ﬁﬂ?:f!@} -7ﬁ1} =r?

"=

71 (X — ) n(Bs—B) _ ..
“‘;.‘lz—_# + (y—B) *1—,.1—2:,—2“1 =’

ie. (x=04) (0 = 0g)+ (¥—B1) (By—Bo) + 11 (1 —1) = 0,
which is identical with equation (viii) of the line PP’.

i. e. (z - al)
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Hence the direct common tangents meet at the external centre of
similitude S,.
In the same way it can be shown from equation (vii) that the
chord of contact Q@ of the transverse common tangents is
(0 —0g) (=) +(By—Bg) (y— Bo) + 11 (n +79) = 0,
which is the chord of contact of tangents from the internal centre of
similitude S;.
The following example illustrates the methods of finding the
equations of common tangents in numerical cases: the equation

of each pair can be written down generally as the tangents from
the centres of similitude to the circles.

Ex. i. Find the common tangents of

22+ y?—8x—4y =0,
22+4*=212x4+90 = 0.

These equations can be written
(x=3)+(y-2)"= (B
(=3 +y = @)
The condition that (x—%)cosf+(y—2)sind = §

and (x=%)cosf+ysind = +§
should be identical is 3 cos0+2sind+§ = 3 cosb + 8,
i.e. 9co80—28inf+2=0
or Ttan’}0+4tano—-11 = 0.
Hence tandd =1 or —3r
1-tan?}d ;
Th = o en ey Y}
en cos 8 T7tani}o 0 or —38,
. 2tan 34 -
sin f= 1+tan'30 =1 or —ji.

The corresponding common tangents are
y=1%and §§(z~3)+5ky+§=0.
Again, the tangents (z—§) cosd+ (y—2)siné = §,
(x=2}2)cos 8 +ysin =—4

are identical if $cosf+28ind+§ = 3} cosbd—4,
ie. 9cosf—28in -7 =0,
or 8tan’}6+2tan}6~1=0,
i.e. tan 6= —}% or }.

Then as above cosd = § or 14,

sind = —$ or .
The corresponding tangents being
-4 -fy= -} and H@E-3)+ Yy = -4
or 8x~-4y-9 =0; 1562+8y—-8l=0.
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Ex, ii. Show that the equations of the two pairs of common tangents
to the circles (x—a)*+(y — V)2 = 12; (x—a')*> +(y = V)2 = v'2 are given by

r—a, y—=b *_ja—a, |2 |y=0 r|?
‘x—a’, y=V i = j x—a’, + + (:1/'—-1/, +7
Any tangent to the first circle can be written
(z—a)cosf+ (y~b) sinf = »- @)
A parallel tangent to the second circle is one of the straight lines
(x—a')cos8+(y—b')sind = + 4. (ii)

Points on the common tangents therefore satisfy both equations (i)
and (ii).
But from these

cosd sin 1
- {_l/—b, r ‘= ! x—a, r P z—a, y-> |
.'/—b,’i"' | -’U"a"i"l ! ‘ (L‘—(l', y‘b/
Hence, since cos®6 +sin?d = 1, any point on a common tangent satisfies
z-a, y-b |* | x—a, » |’ y=b, 1 |?
’ r—a, y=0 r—a', +1 y=b,+7

1V. The Common Chord of Two Circles.
Let the equations of the two circles be
224+ y*+2g2+2fy+c =0, (i)
4yt + 200+ 2 fy+¢ = 0. (i1)
The equation
(2492 4+ 290+ 2fy+ )= (= +y*+ 290+ 2 y+¢) =0 (i)
is satisfied by the coordinates of any point whose coordinates satisfy

both the equations (i) and (ii) ; hence it is a locus through the com-
mon points of the two circles,
But the equation is equivalent to

2(9—9)2+2(f=f)y+c—c =0,
which is a straight line and is therefore the common chord.

Note i. If one circle bisects the circumference of another, their common
chord is a diameter of the latter circle.

Thus, if 224 y*4 2924 2fy4¢=0 ()
bisects the circumference of
2+ +2Gr42Fy+4 C =0, (i1)

then (- @, —F) lies on
2(G-9)x+2(F-f)y+C—c =0,

ic. 2G(G-g)+2F(F~f)4¢~C =0,

or the coefficients of the first equation (i) satisfy the linear relation
2Gg+2Ff-c=2G*"+2F*—C.
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Hence a circle can be drawn to bisect the circumference of any three

circles, for we then get three linear equations to find g, f, and ¢. The only
case in which this fails is when

G, F 1
G F, 1|=0,
Gy Fy 1

i.e. when the three given circles have their centres collinear.

Note ii. If two circles touch, their common chord is a tangent to each

of them, for this is the limiting case when the two points of intersection
coincide.

Thus, if two circles C; =0, C, =0 touch, the line C;~C, =0 is their
common tangent at the point where they touch.

Suppose its equation is T = 0 ; then C,—C; =kT where k is a constant,
ie. C,=C,—kT.

Hence, if T=0 is a tangent to the circle C, =0, C;=kT represents
a circle touching C, = 0 at the point of contact of T' = 0.

Note iii. It follows that if two circles cut in imaginary points, the
join of these points is a real straight line.

The result of this paragraph can be written briefly thus:

If C, =0, C,=0 are the equations of two circles, C;=C, =0 is the
equation of their common chord.

Conversely, if we are told that a straight line « = 0 is the common chord
of the circle C =0 and some other circle, the equation of the second circle
must be of the form C —ku = 0, where & is some constant.

This relation will be discussed more fully in § 14.

Example i. 1o find the cquation of a circle which passes through the
points of intersection of 22 +y*—2x+8y+8 = 0 and 5z—2y—10 =0,
and also through the point (3, 1).

The equation of the required circle is of the form

2+ y'-22+3y+3-k(bx—-2y-10) = 0.

Since the point (3, 1) lies on this,

10-8k =0, i.c. k=X

Hence the required circle is

3(x*+y*~2x+3y+3)~10(52—-2y-10) =0,
ie. 322 +3y?-562+29y+109 = 0.

Example ii. To find the equation of the circle which is equal to
the circle 2% +y% = a? and touches it at the point (acos &, a sin ).

The tangent to the given circle at this point is
ZcosX+ysinX = a.
Hence the required circle is of the form
2 +y'—a® = k(rcos X+ ysin X—a).
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The radius of this circle is
V1 (%% cos? &) + } (k* sin’ ) + a® — ka.
Hence, since the circles are equal,
1% —ka + a® = d?,
i.e. k = 4a.

The equation required is therefore
z?+y*—a? = 4a(xcos X +ysin X—a).

V. To find the angle at which two circles cut, i.e. the angle between the
tangents to the circles at their common points.

If the circles cut at P, the tangents to them at P are perpendicular
respectively to the radii C,P, C,P ; hence
P the angle between the tangents is equal
“\ or supplementary to the angle C, PC,.
Now, if we denote the angle C, PC, by v,
C, P24 C,P2-C, C,?
2C,P.C,P

cosy =

If the circles are
224y’ + 292+ 2fy+c¢ =0,
2+y*+2Gx+2Fy+C =0,
since their centres are (—g, —f), (— @, —F) and their radii
V@+fizc and vV@+F=C,
we have
F+/i=c+ G2+ Fi=C— (9~ G)2~ (/= F)
2Vt i=c VGi+F:=C
- 29G+2fF-C—c
2Vgitfimec VGi+F*—C’
i.,e. 2Brcosy = 29G + 2 fF— C—c, where R, r are the radii.

Note i. If two circles touch internally or externally, ¥ is 0 or =
respectively, and 29G +2fF~C—-c = +2Rr. This is equivalent to the sum
or difference of the radii being equal to the distance between the centres.

Note ii. When the circles cut at right angles (i.e. orthogonally)  is
a right angle and cosy is zero: hence the condition that the two circles
should cut orthogonally is 2Gg+2Ff~C~c¢ = 0.

Note iii. The square of the length of the tangent from the centre
C,(~g, —f) of the first circle to the second circle is equal to

9'+*~2G9-2Ff+C=g*+f?~c—(2Gg+2Ff-C—c).

Hence, if the circles cut orthogonally, the length of this tangent is equal to
the radius of the first circle. Similarly, the length of the tangent from the

cosy =
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centre of the second circle to the first circle is equal to the radius of the
second circle. The converse of this proposition is clearly true.

If the first cirele is known and we are finding the equation of the
second, cutting it orthogonally, this condition is linear in the three
unknown quantities G, F, and C.

The circle can therefore be made to fulfi] two other conditions.
Thus, for example, one definite circle can be found which cuts three
given circles orthogonally.

If the tangents to two circles which cut orthogonally at one of
their common points be taken as coordinate axes, the equations
of the pair of circles are

2+y?—2rz =0,
22+y*—2ry = 0.

Ex. i. If two circles cut orthogonally, the tangents at one point of

intersection meet the circles again in points whose join passes through the
other point of intersection.

Taking the tangents at a common point as coordinate axes, the other
points in which the axes meet the circles
2+y*—2rx =0,
2 +y'-2ry =0
are (21, 0), (0, 21,). ‘
[y .2 .2
Their other point of intersection is ( 2—:1'—’—;, g'—‘—r!, )
4t nl4n
- L
This lies on o7, + Py 1.
Ex. ii. Show that a line cut harmonicully by two orthogonal circles
must be a diameter of one of them.

Let the circles be

2+ -2nz=0, P Y
&' +y'—2ry=0,.
and the line lx+my=1.
Then, if the points of intersection are S
PQRS, the lines 0 %

OP, 0Q are 2*+y*—2rz(lx +my) = 0,

and
OR, OS are x*+y*—2r,y (lz+my) =0,
i.e. ®(1-2nl)—-2r,mry+y* =0,

B —2rlzy+y* (1 -2mry) = 0.
These form a harmonic pencil if
(1=-2r ) (1=2rym)+1 =27, 0ymi,
[Chap. I1I, p. 92.]
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i.e. 1= l—rym+rrlm =0,
i.e. (L=nrl)(1=rym)=0.
Thus 1-rnl=0o0r 1-im=0,

i.e. either (1, 0) or (0, »,) lies on the line lz+ my = 1.

Ex. iii. A circle cuts the two circles
(x—ax)? +@y—b)?=r?
(z—a,)*+([y—by)? =1’
at angles 0, and 0,. Prove that it cuts their circle of simililude ortho-
gonally if rycos 8, = r;cos 6.
Let the centre of this circle be (&, B) and its radius be p, then we have
the conditions  (x(—a,)*+(8—b,)® = p? +r3—2r,pcosd,,
(=@ +(8—b,)* = p+7r2—2r,pcosb,.
The circle of similitude is
(@=-a)+(y=b)" _ [@=a)"+(y-b,)’
1.12 - rzﬁ
or nH{(@ =)+ (y = b)) = {(z—a))* + (y =)'} = 0,
and since the coefficients of 2* and y* are (1,?—7n?), the square of the
tangents from (&, B8) to this circle
= {(X =g, P+ (B=b)* =2 {(X—a,)* + (B—b,)*]
7'22 — ,.12

’

_ 2 {p2+ 12 =21 pcos @) —r2{p? 4 12— 2ryp cos b,

LT3
Yoty

= g2 27173p (73 08 6, — 1y 08 6;)
P 7 )

= p% since 1y cos 8, = », cos b,.

—r‘

Hence the circle cuts the circle of similitude orthogonally.

Ex. iv. Find the equation of the circle having jor u diameter that
chord of the circle 2*+y*+2 gx+2 fy+c = 0 whosc equation is
lz+my+n=0.

Since the circle passes through the common points of

2+ 4292+ 2fy+c= 0 and lx+my+n =0,
its equation is of the form
2 +y'+292+2 fy+c+2k(lx+my+n) = 0.

Moreover, lx+my+n =0 is a diameter of this cifcle, hence its centre
{=(g+%l), —(f+km)} lies on this line.

Thus Hg+kl)+m(f+km)—n=0
or kE(@24+m?) = —(ly+mf—n).

Thus the required equation is

B3+ md) (2 + 4+ 292+ 2 fy + ¢) = 2(Ig + mf —n) (I + my + n).
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Examples V k.

1. Find the equations of the common tangents of the circles #?+ y? = 1,
.r2+!/2—337+2 = 0.

2. Find the coordinates of the centres of similitude of the circles

24yt -4x-2y+ 1 =0,
2+ +2x+4y-11 =0,
and the equation of their real common tangents.

3. Find the equation of the circle cutting orthogonally the three circles

2+ +2x~-4y+1 =0,
2?4y’ —6x+8y+7=0,
'+ y*—4x+6y+9 = 0.
4. Find the equation of a circle which bisects the circumferences of
4y’ =1, 2+y +2x =3, 22 +y*+2y = 3.

5. Find the equations to the two circles which have their centres at the
origin and touch the circle .«?+ 42— 6x—8y+9 = 0.

6. Find all the common tangents of the circles z*+y*—32-54 =0,
2 4+y*-212+90 = 0.

7. Find the equation to the circle which passes through the point (1, 1),
and the points of intersection of 8247 = by, 82—2a%:= 5y+24*-17.

8. Find the radius of the circle of similitude of two circles in terms of
their radii and the distance between their centres.

9. Write down the equation to the circle which passes through the point
(a, b) and the points common to lz+my =1, 2* 4y +2gx+ 2 fy+c = 0.

10. 4 and B are the centres of two orthogonal circles intersecting in O,
and Pis any point on the circle AOB. Show that P isequidistant from the
two points in which PO cuts the circles.

11. Find the equations of the two circles which cut orthogonally the
circles ' +4*+ 22 -9=0, a?+¢y*-8x—9 = 0, and touch the line y—2x=4.

Show that the distance between their centres is 10 4/2.

12, Show that the circle on the line joining the centres of similitude of

2+yt-2kx+62=0,
2+ —-2kx+ 8= 0,
as diameter is 2+ y?—2x (AK' +6%) /(k+ %) + 82 = 0.
13. Find the condition that the circles
(x=c)? + N (z+c)*+(1+N)y* =0,
(x=cP+p@+e)+(1+p)y*=0
should cut at right angles.

14. Show that the equation of the circle which cuts each of the three
circles 2’ +¢® = a%, (x—~b)*+y' =a?, a?+(y—c)*=a® at right angles is
+yt~bx—cy+a®=0.

15. Show that the circle ‘of similitude of z*+ y®—2ax+a’cos’X =0,
2+~ 2bx + b cos? X = 0 is (a+ D) (x*+y*) = 2abu.

16. If two circles intersect, their circle of similitude passes through their
points of intersection.
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17. If two circles cut orthogonally, the extremities of a diameter of either
are conjugate points with respect to the other.

18. Find the equation to a circle which touches a%+y?—2zx =0,
2*+4*4+8x = 0 at their point of contact, and bas internal or external
contact with the circle (x—-3)p*+(y—-§)= 1.

19. If a circle of fixed radius p cuts a circle C = 0 whose radius is » at an
angle &, the locus of its centre is C = *—2p cos (.

20. Find the locus of a point at which the two circles 2? + y*—2a,2 + b* = 0,
2+ y*—2a,2 +b* = 0 subtend the same angle.

21. Find the locus of the centre of a circle which cuts the circles

(x—ay)*+ (y—b,)* = c®cos® &,
(£ —a5)'+ (y—b,)" = c?cos’B
at angles 8 and o respectively.

22. Find the locus of the centre of a circle which cuts each of two given
circles at a given angle.

28. Find the equation of a circle which cuts orthogonally

2+ +2gx+2fy+c =0,
2+y*+292+2f'y+c =0,
and also the line (z+my = 1.

24. Find the equation of the circle which has for its diameter the chord
cut off on the straight line ax + by +c=0 by the circle (a?+1?) (2*+4*) = 2¢%

25. Circles are drawn through the point (¢, 0) touching the circle
*+y® = a’. Show that the locus of the pole of the axis of x with respect
to them is 4a*(x~c)t = («®*—c?) {a®— (c—2x)?%} 42

26. If C=2*+y*+292+2fy +c, and u=x cos X + ysikX—p, and u, is the
value of u at the centre of the circle C = 0, then the equation of the circle
on the chord which C = 0 cuts off from « = 0is C—2uu, = 0.

27. If a circle cuts three circles C; =0, C, = 0, C3 = 0 orthogonally,
prove that it cuts all circles of the system \C,+pC,+»C; = 0 orthogonally.

28. If @, R are the points of contact of the tangents drawn to the circle
C=a+y*+2g2+2 fy+ c= 0 from an external point (%, k), find the equation
P = 0 of the chord QR and show that the circle described on QR as diameter
may be written in the form 2:2P = {(h+g)*+(k+£)*} C, » being the radius
of the circle.

29. If C,=0, C;=0, C;=0 are three intersecting circles and
aC, +bC; + ¢Cy is identically zero, where a, b, and ¢ are constants, then all
three circles pass through the same two points; and if this condition is
satisfied the circle IC,+mC,+nCy = 0 for any values of I, m, and n also
passes through these two points.

§ 14. Systems of Circles.
L Ci=2"+y*+29,24+2f/iy+¢, =0,
C=22+y2+29,2+2f,y+¢c; =0
being the equations of two circles, we have shown that
C—C= P+ +2012+2/iy+0)— (1 + 9+ 20,2+ 2,y +05) = 0
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is the equation of their common chord; when the circles do not
meet in real points, )} — C, = 0 still represents a straight line satisfied
by the coordinates of all points common to C;, =0, C, = 0; it is the
join of their imaginary points of intersection.

Now the square of the lengths of the tangents from any point
(@, ¥') to the circle C, = 0 is found by substituting 2’ and g for
z and y in C;. Another geometrical interpretation ean now be
given to the equation

C,— 02 =0,
which enables us to define the line in 7eal terms in all cases.
The equation
@+ +29,2+2fiy+c)— (22 + 92 +29,2+2 f,y+¢,) =0
represents the locus of a point, the tangents from which to the two
circles are equal ; hence the definition:

The locus of a point, tangents from which to two given circles are
equal, is a straight line which 1s called the Radical Axis of the two
circles.

Evidently, when the circles cut in real points, the radical axis
is the common chord : if the circles touch each other, it is the
common tangent at the common point. In every case the radical
axis bisects the common tangents to the circles..

The equation of the radical axis reduces to
2z (9:,—9)+2y (hi—Sf)+e,—ca= 0. (i)
Now the centres of the circles C;, C, are (—g,, —Af}), (—93, —/f2)
and therefore the equation of the line joining the centres (the line of

centres) is
@+a)(A—L) =+ (01—9) =0. (i)
This is perpendicular to the line (i); hence the radical axis of two
circles is perpendicular to their line of centres.
Now consider the equation
2+y: 4292+ 2fy+c+A(le+my+n)=0. (iii)
It represents a circle whatever value A may have.
But the radical axis of this circle and the circle
224+ y*+ 2924+ 2fy+¢c=0
is the straight line lx +my+n = 0.
Hence for different values of A, equation (iii) represents a system
of circles each of which has the same radical axis lx+my+n =0
with the circle 22 +4?+2g2+2/fy+c = 0.
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Further, if
22+y2+ 292+ 2fy+c+ A (le+my+n) =0,
22+y?+2gx+4+2fy+c+ A, (lx+my+n)=0
be any two circles of this system, their radical axis is
(A =2)(lz+my+n)=0,
i.e. lx+my+n=0.

Thus 22+ %%+ 2 g2+ 2 fy + ¢ + A (lz+my + n) = O represents when A
varies a system of circles, such that every pair has the same radical
axis lx+my+n = 0. Such a system of circles is called a Coaral
System.

In abridged notation we can write briefly: if C = 0 is a circle and
u = 0 a straight line, C+ Au = O represents a coaxal system of circles
of which % = 0 is the radical axis.

Since the radical axis of two circles is perpendicular to their line

of centres, the centres of all circles in a coaxal system lie on a
straight line.

The equation of a system of coaxal circles is simplified by taking
the line of centres as the axis of x and the radical axis, which is
perpendicular to it, as the axis of y.

In this case, since the centre is on the axis of x, f= 0, and the
equation is of the form z2+y2+2gx+¢= 0.

Now the radical axis is =0, hence the equation of the system of
circles is 2y 4+2g9x+c+hr=0
for different values of k%, 1. .

2+ yt+c+z(29+K) =0;
or, writing 2 A for the variable coefficient of z, we have
24y 4c+2r22=0.

The constant ¢ is fixed ; by varying the coefficient A the equation
of all the circles of the system can be obtained, and further, to every
value of A there corresponds a circle of the system.

Properties of a system of coaxal circles.
(i) The general equation of a circle of the system
24y +c+222=0
can be written (@+A)239% = A2—¢,
and if A has either of the values + +/c, this reduces to
(= vVe)i+y2=0 or (z++)2+y2=0.

These equations represent circles whose centres are (+'¢, 0) and
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(— Ve, 0) and whose radii are zero: the only real values of 2 and y
which can satisfy them are the coordinates of these centres.

These points (¢, 0), (— +/¢c, 0) are called the Limiting Points of
the coaxal system : they lie on the line of centres at equal distances
from the radical axis on either side. They are often referred to as
the Point-circles of the system.

The limiling points are real when ¢ is positive, and imaginary
when c is negative.

Now the cirele 22+ y%+c+2 A = 0 meets the radical axis x =0
in points whose coordinates are given by y*+¢ =0, i.e. the radical
axis meets the circles of the system in real or imaginary points
according as ¢ is negative or positive.

Thus a system of coaxal circles which intersect only in imaginary
points has real limiting points: a system of coaxal circles which
intersect in real points has imaginary limiting points.

Hence x>+ 9>+ 0%+2Az =0 represents in general a system of
coaxal circles which do not intersect in real points, and whose
limiting points are (3, 0), (—9, 0).

(ii) The limiting points are conjugate with respect to every circle
of the system and have the same polars with respect to all circles of
the system. For the polar of (3, 0) with regard to

2+y?+02+2A2=0

is 204824+ A(x+0) =0,
i.e. (z+9) (8+A)=0,
1. e. z4+0=0,

a line through the other limiting point parallel to the radical axis.
Thus the polars of the limiting points are the same for all circles of
the coaxal system and are conjugate with respect to every circle of
the system.
(iii) The equation of any circle of the system can be written
(T4 A)24+y% = A2-82;
hence if the circle is real A2> 6% ; the centre is (—A, 0), hence no real
circle of the system has its centre between the limiting points.
(iv) Any circle through the limiting points cuts all the circles of
the system orthogonally.
Any circle through (3, 0), (=9, 0) is [p. 162]
2?4yt +2fy—-9 =0,
which cuts any circle of the system
22+ y2+2A24082=0
orthogonally. (The condition 2 Gg+2 Ff = C+c is satisfied.)
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Ex. i. AU circles which bisect the circumferences of two given circles
form a cogxal system.

Let the equations of the two given circles be

2 +y?+c+2fx =0, )
D+yt+c+2g9x=0. (i1)
Any diameter of (i) is of the form
z+f+ky =0,

since its centre is (~f, 0).
Hence the circle
2 +y'+c+2fx+\ (2 +f+ky) =0 (iii)
bisects the circumference of (i).
The common chord of the circles (ii) and (iii) is
2(f-g)x+\(x+f+ky)=0
but this is a diameter of the circle (ii) if the circle (iii) bisects its circum-
ference. Hence the centre of (ii), viz. (— g, 0), lies on this line. Hence
-29(f-9)+A(f-9)=0;
A=2g.

The circle bmechng the circumferences of the circles (1) and (ii) is accord-
ingly By +c+2fx+2g (@ +f+ky) =
i.e. z’+y’+2(f+g)z+c+2fy+2gky==0,

which for different values of the undetermined constant % represents a
system of coaxal circles, the radical axis being y = 0.

Ex,ii. If C=22+y2+292+2fy—2fy=0
C=s2+y*+292+2fy—-2fg =0
are two circles of a coaxal system, show that the point-circles are given by
the equation C*(f +9')*—2 CC’ (f+9')(f' +9)+ C*? (f+9)* =0
Any circle of the system is C+\C’' = 6, or written in full
2+ + 292+ 2fy-2/9+ N (2P + 42 +29'2+ 21 y~21y) = 0.
This is a point-circle of the system if its radius is zero, i.e. if

(g+)\g) (f+)\f 2fg+2)\f’g’ =0,

14+ 1+ 14
i.e (9+2g P+ (f+Af)P+2(1+N) (fe+rf9) =0,
or Mg+ +2N (g9’ + S + L9 +f)+(g+f) =0,
i.e. M(g+SP+2N(f+9)(f +9)+(9+f) =

Hence, if \ has either of the values given by this equation, C+AC’' =0
is & point-circle of the system, /
Thus the coordinates of the point-circles satisfy
c
X = - "C—n
where A satisfies the above equation.
Therefore the equation of the point-circles is

CH g +1')-20C" (f+9)(f'+9)+C (g+ ) = 0.
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II. Three Circles.
The radical axes of threc circles tuken in pairs are concurrent.
For, if ¢, =0, C;=0, (; =0 are three circles, their radical axes
when taken in pairs are the lines
CI_CZ = 0, 02'—‘ '3 = O, 03—(4'1 = 0,
which evidently are concurrent. Their point of intersection is

given by C, = (, = C;; it is called the Radical Centre of the three
circles.

The lengths of the tangents from the Radical Centre to the circles
are equal, since its coordinates satisfy C; = (, = C,.

The circle whose centre is the Radical Centre and whose radius is
equal to one of these tangents is called the Radical Circle, and cuts
all three circles orthogonally.

If C,=0, C,=0, C;= 0 are three circles, their six centres of
similitude lie in scts of three on jour straight lines, viz.

(a) the three external centres of similitude of C,(,, C,Cs, CyC,.

(b) the two internal centres of similitude of C,C,, C;Cj;, and the
cxternal of C,C,.

(c) the two internal centres of similitude of Cy(Cy, C,C,, and the
external of C,C;.

(d) the two internul centres of similitude of C,C,, C,C,, und the
cxternal of C,C,.

These four lines arc called Axes of Similitude.

Let the centres and radii of the ecircles be (x;, 3,), ry; (Xg, By), 4
(O‘ar By), ¥5.

The external centres of similitude are

(ryO =1y & 138y —ryf, }, {":4_0.‘.1 =N ythoh “‘"lﬁ*} ,

ry—ry rpg=7 r,=n ry—n

{’_liz:"‘z?_‘l "n,/?z,_—_"g_»"_n}.
r—r, = r—r
Let lr + my+ n=0 be the straight line joining the first two; then,
substituting the coordinates of the first in this equation, we obtain
log+midg+n _ lag+m3;+n
s - s ,
and, substituting the coordinates of the second,
log+mBg+n _ log+mpB +n

T "
1267 N
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Hence lag+mpy+n _ log+mgB,+n
o - ry ’
and the third centre of similitude also lies on the line.
To obtain the equation of this line, let
log+mpy+n _ lop+mBy+n _ log+mpBy+n
r - ry - 7y -
Thus le +my +n =0,
log+mpB,+n—kry =0,
log+mpBy+n—kr, =0,
lo,+mpBy+n—kr; = 0.
If we eliminate I, m, n, and %, we obtain the equation in the form
lz v 1 0!
g /1 !
o, By 1 7
0 By 1oy !

If we change the sign of », we obtain the equation of the axis of
similitude which passes through the external centre of C,, C; and
the internal centres of C,, C, and C,, C,, and similarly for the
other two.

k.

Ex. i. Prove thut the locus of the centre of a circle cutting three given
circles at the same angle is the perpendicular let fall from their radical
centre on an axis of similitude.

Let the circles be C, = (z-u,)*+(y—-8,)*=r?=0,
C=(@—0,) +(y—F,) =12 =0,
Ci=(x~0) +(y—By) =7 = 0;
and suppose (£, n) to be the centre and p the radius of the cutting circle.
Then (=0 + (=B, = r+p*+2r pcos ;
i.e. the coordinates ¢, n satisfy
. C,=p*+2r, pcosa.
Similarly they satisfy  C, = p*+21, p cos &,
Cs = p?+ 24 p cos (.
Eliminating p? and p cos & from these three equations, we get the

equation C, 1 n
C 1 n|=0,
i C.,, 1
i.e. #7,(Cy= Cy) +1,(Cs— Cy) + 75 (C, = C,) = 0. (1)

This is & straight line, and it evidently passes through the radical centre,
which is given by C, = C; = C;. -

The equations of the axes of similitude were found above; it can be
verified that the straight line (i) is perpendicular to the axis of similitude
which contains the three external centres of similitude.
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The angle at which two circles cut can be taken as the acute or the obtuse
angle between the tangents at the point of intersection.
We might therefore have taken

C,=p*22¢ pcosq,

Co=p"+2rpcosq,

Cy=p"+2r,pcos 1,
giving as the locus of the centre

G n
C, 1 47| = 0,
Cs 1 41y

i.e. four different straight lines,
71(C—C) 213 (Cy—Cy) £ (C, = C,) = 0.

These will be the perpendiculars from the rudical centre to the four axes
of similitude.

Ex.ii. If C; =0, C,=0, C;, =0 are three circles, then
A101+/\203+)\303 == O

represents for different values of Ny, Ay, Ay a system of circles cutting
a fixed circle orthogonally.

Let (x, B) be the centre of a circle and p its radius, and let C’, c’, Cy
stand for the values of C,, C;, C; when &, 8 are substituted for = and y.

Now this circle cuts the circle

MO +MC 400 =0 (1)

orthogonally, provided that the square of the tangent from (a, 8) to the
circle (i) is equal to p2

The coefficients of z* and »? in equation (i) are (A + Ay +X,).

Hence the square of the tangent from (&, 8) to the circle is

MG+ CY +2,Cy
TN AN
Thus, if the circle whose centre is (&, 8) and radius p cuts the circle
orthogonally A CY 00y + Mg Cy = p? (A + g +1Ay),
ie. AL(CY =) 425 (G5 =) + 24 (Cy = p%) = 0.

It will then cut all circles represented by (i) orthogonally if this condition
is true for all values of \;, A;, and A, i.e. if it is possible to have
C/'=p2=0, C/=p?*=0, C/—p*=0
simultaneously, i.e. C/ =Cy=Cy=pt
This is possible if (, 8) is the radical centre of
C,=0 C =0, Cg=0,
and p* is the square of the length of the tangent from the radical centrs to
either circle.
Hence for all values of \,, A;, A, the circle
MG +2,C+0,C3 =0
cuts orthogonally the circle whose centre is the radical centre of C, =0,
N 2
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C,= 0, Cy=0, and whose radius is equal to thc tangent from this centre to
either circle,

In particular the circles C, =0, C, =0, C; = 0 each cut this circle
orthogonally, corresponding to the cases when two of the coefficients
Ay, Agy Ay are zero.

Examples V1.
1. Find the radical centre of the circles
2+ +82+2y+ 1 =0,
+y'— x+6y+ 5 =0,
L+y'+52-8y+15 = 0,
and find whether it lies inside or outside the circles.
Hence find the equation of a circle cutting all three orthogonally.
2. Find the radical axis of
228 +2y*-3x+5y+2 =0,
2+ y'+8x+4y-5=0,
and show that the circles cutting these two circles orthogonally pass through
two fixed points on their line of centres.
8. Find the equations of the three radical axes of the circles
(x—-a)*+(y-b)? = b,
(z-b)'+(y—~a)’ = a,
(r—a-b—c)’+y?* = ab+c?
and prove that they are concurrent.

Find also the equation of the circle which cuts them all three ortho-
gonally.

4. Find the coordinates of the limiting points of

L+ +2x+4y+7 =0,
2+ +5z2+ y+4=0.

5. Two circles whose centres are (a, 6) (b, ) have the axis of y as radical
axis. If the radius of the first circle is », find that of the second.

6. If two circles cut a third circle orthogonally, the radical axis of the two
circles passes through the centre of the third circle.

7. Show that the locus of a point the tangents from which to two given
circles are in a constant ratio is a coaxal circle.

8. The polars of a point P with respect to two given circles meet in Q:
show that the radical axis of the circles bisects P9Q.

9. In the equation 2?+y*+2gx+c¢ =0, if g is a variable parameter and
(2’, ') a fixed point, then the polars of (2’,y’) with respect to the circles all
pass through a fixed point lying on a circle through (2, y') and the limiting
points of the circles,

10. Show that the three circles of similitude of three given circles taken
in pairs are coaxal.

11. If the equations of one circle and of the radical axis of this circle
and another are respectively

a(@+y*)+292+2fy+c=0 and lr+my+n =0,
find the equation of the other circle with the proper number of arbitrary
constants and the coordinates of the limiting points,
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12. Circles which cut two fixed circles of a coaxal system at constant
angles will cut all circles of the system at constant angles.

13. Two systems of coaxal circles are such that the radical axis of either
is the line of centres of the other. Show that the product of the radii of any
two circles, one of each system, which touch one another, is constant.

14. A certain point has the same polar with respect to each of two circles:
prove that a common tangent subtends a right angle at the point,.

15. Prove that the locus of the middle points of chords of a fixed circle
which subtend a right angle at a fixed point is a circle, and that the fixed
point is a limiting point of the two circles.

16. A common tangent is drawn to two circles so as to intersect the line
joining the centres when produced, and S is a limiting point external to one
circle and internal to the other. Prove thattwice the perpendicular from $
to this tangent is a harmonic mean between the greatest distances of S from
each of the circles.

17. 4, B, C, D are four circles: the radical axis of 4 and B is perpen-
dicular to that of C and D; also the radical axis of 4 and C is perpendicular
to that of Band D; prove that the radical axis of A and D is perpendicular to
that of B and C.

18. Show that the limiting points of the circle x*+y* = a® and an equal
circle with centre on the line /x+my+n = 0 lie on the locus

(2 + ¢?) (lx + my + n) + a® Iz + my) = 0.

19. Find the limiting points of the system of circles defined by the
equation z?+y*+2gx+c+N(2?+y*+2fy+¢’) =0, and show that they sub-
tend a right angle at the origin if cg=?+¢'f—? = 2.

20. Show that the circle of similitude of any two of the circles described
on the sides of a triangle as diameters cuts orthogonally the circle circum-
scribing the triangle.

21. D, E, F ars points on the sides of a triangle ABC such that AD, BE,
CF are concurrent. Prove that the radicul axes of the circle ABC and the
circles on 4D, BE, CF as diameters meet BC, CA, AB in three collinear
points.

§ 156. Other Forms.

) B
A
0 ()
D (w C
I. Let the four sides of a quadrilateral ABCD be

u =xcos; +ysinoy—p, =0, (i)
v =rxcosog+ysinag—p, =0, (ii)
w = rcos X3+ ysin o, —p, = 0, (iii)

g=xcos g +ysina,—p, =0, (iv)
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Consider the equation uw = \ve, which, written in full, is

( cos o +y sin o —p,) (x cos X3+ y sin 0ty ~p,)

= A (zcos 0, +ysindy—p) @oos o +ysincy—py),  (v)
where \ is a constant. This is satisfied by the coordinates of each
of the points A, B, C, D: thus, B is the point of intersection of ¥ = 0
and v = 0; its coordinates therefore make u and v zero, i.e. satisfy
the above equation. Hence equation (v) represents a locus passing
through the four points 4, B, C, D. In order that the equation should
represent a circle two conditions must be satisfied, but we have
only one constant, A, undetermined: thus the equation can only

represent a circle when some definite relation exists between the
coefficients of the equations of the lines u, v, w, 2.

The conditions for a circle give us

€08 (X; €08 (X3 — A CO8 (3 CO8 O, = 8in (X, sin 03— A sin, sin &,

and sinogecosa, +8ina; cosag = A(sin &, cos &y + 8in o, cos &),
i.e. cos (&, + o3) = A cos (x, +a,),§ (vi)

vi
and sin (&) + o) = A sin (0, + ).

Hence the condition that the lines (i), (ii), (iii), (iv) should form
a quadrilateral which can be circumscribed by a circle is

tan (o +0g) = tan (g +a,),
or 0y =0+ Oy — 0, = N,
where # is an integer.

This corresponds to the proposition ‘the opposite angles of a
cyclic quadrilateral are supplementary’.

Note. It follows also from (vi) that A = +1, and » is even or odd

according as we take the upper or lower sign; for example, taking A =1,
the equation

{2 cos(+B+ysinX+B—acosX—B} {xcosy+8+ysiny+d~acosy—3}

={xcos X+y+ysinX+y—acosX—y} {xrcosB+3+ysinB+3—acosB-3}
represents a circle; it can in fact be reduced to 2*+y* = a*.

II. Now suppose that the lines ¥ =0, v=0, w =0, 2 = 0 are
such that the two points A and D coincide, then ¢ = 0 meets the
locus represented by

uw = A, vz

in two coincident points, i.e. # = 0 is a tangent to the locus.
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But in this case ¢ = 0 is a line through the intersection of ¥ = 0
and w = 0: hence [ Chap. II, p. 52] 2=1u + muw, B
where I and m are constants.

Thus the equation of the locus ABCD 0

(when 4 and D coincide) becomes A ()

(v
where lu+mw =0 is the tangent at the (w

point of intersection of u =0, w=0. C
Thus, if ¥ = 0, v = 0, w = 0 are the three sides of a triangle,
luv + mow + nuw = 0

represents a locus passing through the vertices, and the tangents at
the vertices are mv+nu = 0, nw+ 1l = 0, lu + mv = 0 respectively.

ww = v (lu+ mw)

Example. o find the equation of the circle circumscribing the
triangle formed by the lines ax2+2hry+by?=0, lx+my+n=0.

/

A~

%
°

Suppose that the tangent to the circle at the origin is
Az + By =0,
then, for some values of 4 and B,
ax®+2hxy + by® = (Ax + By) (Ix + my +n)
represents the circle.
The conditions for a circle give us

a—Al =b—~Bm and 2h = Am+ Bl.
Thus, Al-Bm+b—a =0 and Am+ Bl-2h =0;
4 B _ 1
2hm+(a—b)l 2hl—(a—b)m B+m®
The equation of the circle is then
(@& + 2hay + by®) (B + m¥) = {(2hm + ¢ —bl)x + (2hl—a—bm) y} {lx + my +n};
which reduces to
(@ +y*) {am® —2him + b} = 2hn (mzx +ly) + n(a —b) (lx - my).

or
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ITT. Again, in the quadrilateral A BCD, suppose that the pair of
opposite sides (ii) and (iv) coincide; then the equation ww = Ave
becomes uw = \v*,

This locus meets the line v = 0 in coincident points at 4, B and
the line ® = 0 in coincident points at C, D, i.e. the locus touches
the lines u = 0, 20 = O at the points where * = 0 meets them.

Thus,

(r cos oy + ¥ 8in 0y —p,) (x cos oz + y sin o3 —p )

= A (zcos &, + y 8in 0, — p,)*
represents a curve to which the lines (i) and (iii) are tangents, the
line (ii) being the chord of contact.

As in I, this curve can only be a circle if

cos (&, + &) = A cos 203, sin () +a3) = Asin 2a,,
i.e. 0+ 0 = nwr+2a,,
which is equivalent to ZEAC = £ EDA, i.e. the tangents must be
equally inclined to the chord of contact. If this condition is
fulfilled, either of the above conditions gives the value of A.

IV. Let C=22+y*+29x+2fy+c = 0 be any circle and

u=2zcosx;+ysino,—p, =0,
v = xcosg+ysindg—p, =0

two straight lines cutting it at A, D and B, C respectively.

Now the equation C = Auv represents some locus; the coordinates
of the points 4 and D satisfy both C = 0 and % = 0, and therefore
lie on this locus. So also for B and C. Hence C = Auv represents
a locus passing through the points 4, B, C, D.

This can never represent a circle unless the locus C = Auv
coincides with the original circle, i.e. A = 0, for three points are
sufficient to fix a circle. It can, however, for certain values of A,
represent the pairs of straight lines AB and CD, or AC and BD.
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Example. If a pair of straight lines is drawn through a fixed point
to meet two fixed straight lines in four concyclic points, show that the locus
of the centre of the circle is a straight line.

Let the two fixed straight lines be

y—mz =0, ()
y+mzx=0. (i)
Suppose that 2+y*+292+2fy+c =0 (iii)
is any one of the circles. Then the equation
AP -miz®) =2 +y*+ 2970+ 2fy +¢ (iv)

is satisfied by the coordinates of the four points common to (i), (ii), and (iii),
and hence represents a locus passing through the four points. For some
values of A this equation represents two stiaight lines through the four
points, and we are given that these struight lines intersect in a fixed point,
say (p, q).

The equation (iv) can be written

2 (1+m*d)+y*(1-4)+2g9x+2fy+c = 0,
and (Chap. III, § 11), if this represents two straight lines through (p, g),
we have (1+m*d)p+g =0,
(1-4)g+f=0.
Hence, eliminating 4, we have

q(p+9)+m'p(g+f) =0.
But the centre of the circle is (—g, —f); it therefore lies on the straight
line g(@=p)+m’p(y—gq) =0.

Examples Vm.

1. Find the equation of the other two pairs of straight lines which pass

through the intersections of z*~2xy+y*—4 = 0, and the circle
B+yt=2x-2y-2=0.

2. A cirgle touches the straight line 8x+4y = 0 at the origin and cuts
the straight lines 72%+ 112y +8y* = 0 at the points P and Q.

If PQ passes through the point (1, —38), find its equation.

3. The common chord of a given circle and any other circle of given
radius a passes through a fixed point. Find the locus of the centre of the
circle of radius a. '

4. Show analytically that if a parallelogram is inscribed in a circle it
must be a rectangle.

5. Show that the two pairs of straight lines

r-42y+3y*+102-6y—-24 = 0,
at+4ay+yt—26x—-18y+56 =0
form a cyclic quadrilateral.
Find the equation, centre, and radius of the circumscribing circle.
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6. Circles are described through the intersections of
lx+my+n =0, (1)
and ax®+2haxy + by = 0. (i)
Show that the other chord of intersection with (ii) is fixed in direction, and
find its equation in a form containing one arbitrary constant.
7. Find the equation of a circle touching the x-axis and passing through
the points of intersection of the circles
L+y’+4x—-14y-68=0,
2 +y?—6z—22y +30 = 0.
8. The circles 2+y-2kzx—-d'=0,
D+ -2k'z—d* =0
intersect in 4 and B. Through 4 a line is drawn perpendicular to AB

meeting the circles in C and D respectively. Find the equation of the
circle circumseribing the triangle BCD.

9. Write down the equation to the circle which passes through the point

(2, 1) and the points common to the circles
222 +2y - B2 +5y+1 =0,
+yt=1

10, Find the equation of the circle whose diameter is the portion of the
line 8x+4y = 12 intercepted by the lines 52— Tay+2y* = 0.

11. The points of intersection of the circles

22+ '+ 2g9x+c =0,
B2+y+2fy—c=0
subtend a right angle at the origin. Prove that ¢*—r? = 2c.

12. Find the area of the triangle formed by the three points where the

circle 2+ 3® = 2ax+2by is cut by the pair of straight lines
2+ 2may +ny* = 0.

13. Find the equation of the circle which passes through the intersection
of the circles 2’+y*-32-2y—-6=0, 2*+y*~5x+4y+2 =0, and has
its centre on the straight line x = y.

14. Show that the equation of the circle whose diameter is the portion
of the line lz+my =1 intercepted by the lines az®+2haxy+by® =0 is
(22 + y*) (am® — 2him + 1) + 22(hm —bl) + 2y(hl—am)+a+b = 0. Ifa+b=0,
this passes through the origin: to what geometrical fact does this corre-
spond ?

15. If ax®+2hxy + byt + 29z +2 fy+c =0
and A?+2Hzy+ By* +2Gz+2Fy+C=0
are the equations of the pairs of opposite sides of a quadrilateral inscribed
in a circle, show that H(b—a) = h (B - A4).

16. The straight line xcosX+ysina=p being called the line (¥, p),
find the equation of the circle circumscribing the triangle formed by the
lines (&, p) (8, g) (v, ), and show it passes through the origin if

qrsin (8 —y) +rp sin (y— &) + pgsin (x —-8) = 0.
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17. Find the equation of the circumcircle of the triangle formed by the
lines bz +cy+a =0, cx+ay+b =0, ax+by+c =0, and show that it passes
through the origin if (b*+¢?) (¢® + a?) (a® + %) = abe (b+¢) (¢ + a) (a + D).

18. Prove that the equations of the common tangents of the circle
«*+y* =289 and the circle whose diameter is the chord zcos o + ysina = 15
of the first circle are 3 (zcos X +ysin &) + 4(y cos X —x8in &) = 85.

19. If uv = w? is a circle, where # =0, v =0, w = 0 are straight lines,
show that any point on the circle is the point of intersection of two lines of
the form Aw = w, v = Aw.

Indicating any point on the circle by the parameter A, show that the
chord joining two points whose parameters ate A, and A, is

Muto—(A+7)w=0.

20. Show that the equation of the tangent to the circle in Question 19 at
the point whose parameter is A is A?u+v—2Aw = 0, Show also that the
tangent at the points A and p intersect at a point whose coordinates satisfy
the equation

/2 = v/2Nu = w/(A+p).

21. Use the notation in Question 20 to solve the following : —

04, OB are tangents to a circle, P is any point on the circle, and the
lines PA, PB meet any line through O at Cand D. Find the locus of the
intersection of BC and AD.

22. 04 and OB are tangents to a circle, a line through O meets the circle
at P, Q,and ABat R.

If =0, v =0 are the tangents 04 and OB, and the equation of the
circle is uv = 1?, find the equations of the lines AP, AQ, and thus show that
0, R, P, Q form a harmonic range.

23. Show that the pole of the line Iu+mv+nw =0, with respect to
a circle uv = 1% is the intersection of the lines nu +2miw = 0, nv+ 20w =0,
i.e. 18 given by u/2m = v/2l = 1w/ —n.

24, The coordinates of a point make u, », and w equal to ', v’, and 1’
respectively. Show that the polar of thia point with respect to a circle
whose equation is uv = w?® i8 v’ +u'v = 2w,

25. Show that the triangle whose sidesare u~lv =0, u+lv =0, 10 =0
is self-conjugate with respect to the circle uvo = %

26. 04 (u = 0), OB (v=0) are tangents to the circle uv = «*, and any
other tangent to the circle meets them in A’ and B’. Show that the locus
of the intersection of AB’ and A'B is 1o = 4%

§18. The ‘circular points at inflnity’.

If C,=0, C,=0 are the equations of two circles, then for
all values of A except unity the equation C, = AC, represents
a circlee When the circles C), C, intersect in two real points,
all the circles represented by C, = AC; pass through these two
points. In order to obtain complete generality we introduced in
Chap. 1V the ideas of imaginary points and coincident points; so
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that we may say that all the circles represented by the equation
C, = AC, pass through the two points of intersection of the circles
C;=0 and C,=0. Now any other type of locus might pass
through these two points of intersection; this property is not
therefore a geometrical explanation of the algebraical result that
C, = AC, always represents a circle.

Again, if =0, » = 0 are the equations of two straight lines, the
locus C; = Auv passes through the four points of intersection of
the straight lines %, v with the circle C;. This locus is not a circle
except in the special case when A is zero. On the other hand, the
equation C, = Au always represents a circle; this circle passes
through the two points of intersection of the line » = 0 and the
circle C; = 0, but this property evidently does not correspond to
the fact that the locus is a circle. 'We have seen in Chap. IV that
in order to obtain complete generality we had to adopt the ideas
of ‘points at infinity’ and ‘the line at infinity’. Also we saw that
the properties of a locus with respect to the line at infinity could
only be satisfactorily examined by using homogeneous coordinates.
Euclidean Geometry fails to explain the facts given above; we
proceed to examine, by the use of homogeneous coordinates, whether
projective geometry offers an explanation.

The general equation of a circle in homogeneous coordinates is
224 yd4ce?+ 2fyz+ 2922 =0. The points of intersection of the circle
and the line at infinity, # = 0, are therefore given by z*+y* = 0 and
£=0. The homogeneous coordinates of these points are therefore
1,4 0), (1, —4, 0), i.e. a pair of imaginary points. Now the co-
ordinates of these points are independent of the coefficients g, f
and ¢ ; hence, all circles «ntersect the line at infinity in the same pair
of imaginary points. These points are called ‘the circular points
at infinity ’, and will be referred to as Q, Q’.

Notei. C,—C;=0.

This equation becomes in homogeneous coordinates

(@%+ y? +c2%+ 2f1y7 + 2 gy2x) — (22 + Y2 + c36% + 2 foyz + 2g,22) = 0,

i.e. {2(91—9)) x4+ 2(fi—Sf)y+(c,—cr)e} = 0.
The equation represents two straight lines, viz. the straight line
at infinity and the radical axis. Thus in projective geometry we
may say that one common chord of every pair of circles is the
straight line at infinity.

Noteii. C,—Au=0.

This equation becomes in homogeneous coordinates C;—Azu = 0;
it therefore represents a locus passing through the points of inter-
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section of the straight lines ¥ = 0, 2 = 0, and the circle ¢, =0. If
the straight line = 0 cuts the circle in the points A and B, then
Ci—Au =0 represents a locus circumsecribing the quadrilateral
ABQY.

Note iii. ©,—\C, = 0.

In the same way, since the circles (|, (, intersect in two finite
points (real and distinct, real and coincident, or imaginary and
distinct), say A and B, and also in the points £, (', the equation
C,—ACy; =0 represents a locus circumscribing the quadrilateral
ABQLY.

The general equation of the second degree

ax?+ by’ +c2®+ 2 fyz+ 2920+ 2hay = 0
contains five independent constants ; if we know fire points on the
locus we can therefore find its equation, and the locus is completely
determined

“We have seen that both the equations C;—Azu =0 and
C,—AC; = 0 imply by their form that the loci they represent pass
through four given points; only one more point on the locus is
required then in order to determine its equation completely; it
follows, therefore, that the equations C;—Azu =0 and C,—ACy, =0
should contain only one undetermined constant ; this constant is A.

Note iv. The centre of the circle in relation to the line at
infinity,

The polar of a point P, with respect to a circle, was defined as
the locus of the points of intersection of tangents to the circle
at the pairs of points in which chords, passing through I’, cut the
circle. Now chords which pass through the centre of the circle
cut the circle in pairs of points the tangents at which are parallel
In Euclidean Geometry, therefore, the centre of the circle has no
polar with respect to the circle. In projective geometry we say
that pairs of parallel straight lines meet in ‘points at infinity’, and
that the locus of these ‘points at infinity’ is the straight line at
infinity. Thus ‘the polar of the centre of a circle with respect
to the cirele is the line at infinity >, and conversely ‘the pole of the
line at infinity with respect to a circle is its centre’.

- In homogeneous coordinates the equation of the polar of the
point (z,, y,, £,) with respect to the circle

224yt 4cet+2fyr+ 29202 =0
is % (%) +92) +y () +S81) 2 (92, +fin +c4) = 0.
The homogeneous coordinates of the centre of the circle are (g, /. —1),



206 THE CIRCLE

and the polar of the centre is therefore z(g%+s3—c¢c) =0, or, what
is the same thing, # = 0, which is the line at infinity.

Note v. The equation of any circle, by a proper choice of axes,
can be written 22+ y? = a2, or, in homogeneous coordinates,

22+ y? = ad

This equation may be written (z+ dy) (v—1iy) = a%¢3, which is in
the form wv = kw? and represents a locus touching the imaginary
straight lines z+4y = 0,  —iy = 0, the line at infinity s = 0 being
the chord of contact.

We have seen that every circle passes through the two fixed
imaginary points Q, 2’ on the line at infinity. Conversely, every
locus of the second degree which passes through £ and Q' is a circle.
The points Q, {2’ are determined by the equations #%2+y? =0 and
2 =0; i.e. are the points of intersection of the line 2 =0 and the
lines 244y = 0, x—iy = O respectively.

Now we showed in Chap. IV that, having adopted the ideas
there explained, we could state that every
straight line meets a locus of the second
degree in two points. If, then, a locus
of the second degree passes through £
and /, it meets each of the straight lines
z+iy =0, z—iy = 0 in one other point,
say 4 and B. Let ar+by+ce =0 be
the equation of the straight line AB.

Since the locus circumsecribes the quadrilateral A B2’ its equation
is of the form  (r+iy) (¢ —1y) + £ (ax+ by +¢c2) = 0,
ie. 22+ y?+ et +bys+arz =0,
which is a circle.

We may therefore define a circle in projective geometry as a locus
of the second degree passing through 2 and '. Thus, if the locus
represented by the general equation of the second degree

ax?+ by + c2? 4 2fye+2g92x +2hxy = 0
passes through the points £ and {2, then a =10 and A =0; and
this locus is called a circle.

§17. Polar Coordinates.

Let the centre of a circle be the point (¢, @) and R the radius:
then if P(r, 8) be any point on the circle we have
PO%4+0C%—=20P. 0Ccos L COP = PC?,
i.e r24+0%2—2rocos (0 —a) = R?,
which is the general polar equation of a circle.
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The equation of the circle takes the following simple forms in
special cases:— P(r0)

/
)

(i) The origin at the centre of the circle
r = R.
(ii) The origin on the circumference
r=2Rcos (0 —a).
(iii) The origin on the circumference and the initial line passing
through the centre r=2Rcosé.
Polar coordinates can be used with advantage in certain types
of problems ; the following examples illustrate the method.

0

Ex. i. A triangle given in species has one verter fixed, and a second
moves on a given circle ; find the locus of the third.

N

Let the fixed vertex be at the origin and let the initial line pass
through the centre of the given circle. The equation of this circle is
r24¢*—2rccos§ =R2. (i)

Suppose that OIQ is one position of the triangle, and let the
given angles of this triangle be o, 8, and y. Let the coordinates
of the point P be (», 6) and those of @ (/, 8"); then, since the triangle
is given in species, the ratio r: ¢’ is fixed, let » = 1.7’

It is evident from the figure that 6 = ¢ —x. Now the coordinates
of P, r and 0, satisfy equation (i); substituting r = k' and § = ¢’ —«
in this equation, we obtain ,

k2r'2+ 2 —2kr'c cos (0’ —x) = R

Hence, the equation of the locus of @ is the circle

k24 c?—2krccos (0 — o) = R2.

Note. In general, if P lies on the locus r = f(6), then the locus
of Qis kr = f(0—a).
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Ex. ii. Two circles of radii a, b have their centres distant ¢ apart.
The origin being the centre of the Sformer and the initial line the line of
centres, find the equation of the locus of centres of circles touching the
Jormer and cutting the latter orthogomally.

Let P, the centre of such a circle, be the point (r, 8), and let the radius of
this circle be p.

Since this circle touches the circle A, » = a+p.

Also, if Q be a voint of intersection with the circle,

PB® = PQ*+ QB?,
ie. P+ ct—2rccosd = p?+ b
Hence P4 ~2recosf = (r—a)+ b,
or 2rccos§~2ar+a’+b?—c? =0,

is the required equation,

Ex. iii. Show that the cquation of the circle of similitude of
r2—2arcos 0 +acos’a = 0,
r2—2brcos 0+ b cos’a =0

is (a+b)r=2abcosd. Hencc prove the property of the circle of
similitude of two circles, that the tangents from any point on it to the
two circles are in the ratio of their radii.

The equation of the circles can be written
1 =2arcos §+a? = a®sin’ &,
12=2brcos 8 +b* = b?sin’ .
Hence their centres are (s, 0) (b, 0) and their radii asinX, bsin X
respectively.



THE CIRCLE 209

If =& or — &, the corresponding value of » is given by (»r— @ cos X)?=0;
thus 0 = & and § = —& meet the first, and similarly the second, circle in
coincident points, i.e. are tangents : this is otherwise evident.

The centres of similitude lie on the initial line; one is at the origin and
the radius vector of the other is

asinX.b+bsinX.¢ _ 2ab
asinX+bsinX ~ a+b

Thus, if P(r, 6) is any point on the circle of similitude, since OPS is
a semicircle and hence £ OPS a right angle,

OP = 0Scosé,
i.e. r=2—a’1coae,
a+b
or (a+b)r=2abcosé.

Let PT be a tangent from this point to the first circle, then
PT?*= PA*-AT?,
=3+ a?—-2arcosd—a’sin’q,
= 13~2arcos 0 +a’cos? A.
But (a+b)r=2abcos ¥,
ie. ar= —=b(r—2acosb).

P = — a_br_‘ + a’cos? & = %(ab cos? X —»7),
So if PT’?is a tangent to the second circle,
PT"3 = g (abcos? -1,

PT?; PT'3 =a?: 0%,
or PI:PT" =a:b=asinX:bsinX.

Ex. iv. Prove that the polar cquation
r2—Fkrcos(0—a)+kd =0,
where k s variadble, represents a4 system of coaxal circles, and find the polar
coordinates of the limiting points.
Any two circles of the system are
P =krcos(8—x)+kd =0,

1 —kyrcos (=) +k,d =0.
The equation

1=k cos (0 — )+ kyd— {1 = kyrcos (0 —X) +Ryd) =0,
l.e. (ky=k,) {reos(0-0)~dj =0,
i.e. rcog(§—0)~d =20

represents a straight line through the real or imaginary points of inter-
section of the circles.

This is therefore the radical axis of the two circles and, since the equation
1267 0o
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does not contain %, or k,, every pair of circles in the system have the same
radical axis, i.e. the system is coaxal.

The equation of the circle can be written

r?—krcos (0—0) + 3k = }i* ~kd ;

thus the radius is 4/}k*—kd and the centre (3%, ).

The circle is a point-circle when 3k*—kd = 0,
i.e, k=0 or 4d.

Hence the coordinates of the point-circles are (0, &) and (2d, &), i.e. the
origin and (24, x).

Examples Vn.

1. Find the polar eq.ation of the circle on the line joining the points
(ry, 6,) (73, ;) as diameter.

2. Find the equation of the tangent to the circle » = R at the point
whose vectorial angle is ox.

8. The equation of the chord joining two points on the circle »=2 Rcos¥,
whose vectorial angles are 6, 6,, is rcos(6,+6,—8) =2Rcosf, cosd,.
Deduce the equation of the tangent at the point 6,.

4. Show that the vectorial angles of the points of contact of tangents
from the point (»,, 8,) to the circle » = 2R cos 8 are given by

ryc086;.tan’8—2»,8inf.tan 8+ 2R —r, cos b, = 0.

5. The polar of (»,, 6,) with respect to » = 2R cosd is

194 cos (0 —~6,) = R (rcos 8+, cosé,).

6. Show that ?—2arcosfd—38a? =0 is the polar equation of a circle
whose centre lies on the initial line. If OP is any radius vector of this
circle and a point @ is taken on OP so that OP. 0Q = 6a? find the equation
of the locus of Q and show it is a circle whose radius is double the radius of
the given circle.

7. 04 is a diameter of a circle, @ any point on the polar of P, E the
mid-point of PQ; EL is perpendicular to O4 and QM is perpendicular
to OP. Show that 4, L, P, M lie on a circle.

8. If PQ is a chord of » = 2bcosd which touches » = 2acosd at R, then
OR bisects the angle P0OQ.

9. If P, Q are two points on the circle » = 2Rcos § whose vectorial
angles have (i) their sum, (ii) their difference constant, find the locus of the
centroid of the triangle OPQ.

10. PQ is a chord of the circle » = 2bcosd which touches the circle
r =2acos §. Show that the locus of a point R on PQ, such that OP. 0Q are
harmonic conjugates of OR and the tangent at the origin, is

r{b*~(a—b,*sin’8} = 2ab®cos b.

11. A straight line OP meets the circle » = 2Rcos 4 at P and a point @
is taken on OP such that OP. 0Q = k*; find the locus of Q.

12. Show that the equation #*—2(a—A)rcosd+2\d =0 for different
values of A represents a system of coaxal circles, and find the radical axis
and limiting points.
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13. From a fixed point O a line is drawn to meet a fixed circle at P.
A line PQ is drawn equal to and perpendicular to OP. Find the locus of Q.

14. OP is the radius vector from a fixed point O to a given circle, the
angle POQ is constant and equal to &, and the area of the triangle POQ is
fixed. Show that Q lies on a circle.

15. Show that 2/r = 48in6~3cosd is a common tangent of »= 2 cosd
and »2=12rcos8+20 = 0.

16. The equation of the pair of tangents at points on the circle
r*+d*—2rdcos (—) = RY,
whose vectorial angles are ¢, is
(A= RK%)? + (d*— R?) {s3cos? (0 —¢)—2rd cos (0 —) ~d? cos® (p — )}
= 1?d? cos (§— ) {2 cos (p — &) cos (¢ —8) —cos (8 — )}
—27rd3cos (—-a) cos? (¢ — &),
and show that when ¢ = & this reduces to
72 co8? (§—)—2drcos (6 ~x)+d?—R* = (.

17. w, is the line »cos (8—6,)cos b, = a, and circles are drawn about
triangles formed by the lines w,, u,, u,, ¥, t;, taken three at a time:
circles are then drawn through the centres of these circles taken four at
a time ; show that the five centres of these circles lie on the circle

4rcos 8, cos 8,cos 8y cos §,cos 8y = a cos (§—06,~6;, —6;,~0,—6,).

§ 18. We conclude this chapter with the solution of some
important and typical problems.

EX. i. Find the condition that the four points (m,2, 2m,), (my?% 2m,),
(mg2, 2my), (m2 2m,) should lie on a circle.

Show that (0-25,1), (2-26,3), (1-69, —2.6), (0-49, —1-4) lic on u circle,
and find its equation.

The equation of any circle is of the form

22+ Yy +292+2fy+¢c = 0.

A point of the type (m?, 2m) lies on this, provided that m satisfies
the equation mt+4dm>4+29gm* +4 fm+c =0,
ie. mi+2(g+2)m2+4fm +c=0.

This is of the fourth degree, and for any given values of g, f, and
¢ gives four values of m, the corresponding points to which lie on
the circle.

On the other hand, four chosen points of the type will lie on
a circle provided that we can find values of g, f, and ¢ such that the
four given values of m are roots of an equation of this type.

If the roots of the above equation are m,, m,, m,, m,, then

Im=0, Emym, =2g9+4, Emymem; = —4 f, mymym,m, = c.

Hence, provided that

my +mg+mg+m, = 0,
o2
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values of g, f; and ¢ can be found from the remaining three conditions.
This, then, is the necessary and sufficient condition that the given
points should lie on a circle.

In the numerical example

m; =056; my;=15; mg= —~13; my= =07
. m;+my+mg+my, = 065+15—-183-07 =0,
i.e. the points lie on a circle,

Now
29+4 = Zmymg = (my +mg) (m; + m)+mym,+mym,

= =4+075+091 = —2.34.
29 = —6.34.

Again,
4f= Eml 7”2”&3 = (ml +m2) m3m‘ + (ma + m‘) ml m2

=2x091-2x0-756 = 0-32.
2= 016,
c=mm,m;ym, = 0-6825.
The equation of the circle is then
2°+y?—6-342+0-16y + 0-68256 = 0.

Ex. il, Show that «ll circles of the family
2+ y2+2A242py+r =0,
where AN+ Bu+ Cv+D = 0, have a common orthogonal circle, and find
its equation.

Suppose that the circle

22+y°+2924+2fy+c=0 (1)

cuts the circle 2>+ y*>+2A2+2uy+ v = 0 at right angles; then
29A+2pf—c—v =0. (i)
We are given that AN+ Bu+Cv+D = 0. (iii)

Eliminating v from equations (ii) and (iii), we obtain
A(A4+2C9)+nr(B+2Cf)+D—Cc=0.

In this equation A and p are independent; hence, if the circle
(i) cuts every circle of the family at right angles, this equation must
be true for all values of A and p: so that

A+42C9g=0, B+2Cf=0, D-Cc=0.
Hence

A B D
2g=-——0—: 2f=—-0—’ c=a—,
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and the circle (i) becomes

Az B D
2 2 — =
Y- mgvte=
or C(z*+y*)=—Ax—By+D = 0.

This circle cuts all the circles of the family at right angles.

Ex. iii. A triangle circumscribes the circle
22492 = 12,
and two of it3 vertices lie on the circle
(r=—d)r2+y?= R?%;
show that. if d® = R*+ 2Ry, the third vertex also lies on this circle.

Let P, Q, It be the points of con-
tact of the sides with the circle

=1, ()

b/
and B, C be the two vertices on p
(—d)2+92 = B2 (i) /
Let P, @, R be the points «, 3, y; Q
%

then, since B is the point of inter- B

section of tangents at P and R, its
coordinates are

)

reos Y (x+y) rsinlk(a+vy)
{etln® costia |
and sinco this lies on the cirele (ii),
reost (x+y)—dcos §(x—y);2+128in? § (x+y) = R?¥cos? § (x—7),
e, 1=2dreos! (x+7y)cos i (x—y)+ (2= R?%) cos? L (x—y) =0,
ie.  12—2drcos L (x+y)cos! (x—y)+ 2Rrcos?l(x—y) =0,
ie. r—2dcos} (x+y)cos} (x—y)+2Rcos? ! (x—y)=0;
r—d(cosax+cosy)+ R(l+cosx—y)=0;
cosx(Recosy—d)+ Rsinysinx+ R+r—dcosy = 0.
Similarly, since C lies on the circle (ii),
cos (Rcos 3—d)+ Rsindsina+ R+ r—dcos 3= 0.
Hence, by cross multiplication

co8 X - . Sno
({4 + Rr) (sin y—sin@)— Rdsin(y—/3) =~ (L%+ Rr—d*)(cos 3—cosy)
1

= R%sin (3—y)—Rd (sin 3—siny)
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Put d2 =R?+ 2 Rr, and multiply each fraction by 2 Rsin } (y—8);
then
cos sin &

(Bt 7)cos L (y+P)—deos k (y—p)  rsink(3+7)

1
~ deos(}B+ y)—Reos} (B—7)

Now the coordinates of A are
p=TC08i(B+y) _rsink(B+y),

cos}(3—y)’ 7 cosi(3—y)’
hence
cos & _sina _ 1
RB+nz—dr~ ry ~ de—Ir
Thus {R+ r) e — (lr}2+ r2y? = (de— Ry)?,

i.e 22{R%*+ 2 Rr+1*—d?} +r?y?—2dr?z+ (12— RY)r* = 0.
Substituting for d? in the coefficient of x% this becomes, after
dividing through by 7% 2?+y?—2dx+d?—R%? = 0, or
(x—d)?+92 = R?,
i.e. A also lies on the circle (ii).
Note. Since we have chosen the point P in any position, any

number of triangles can be drawn circumscribed to the one circle
and inscribed in the other, if 12 = R2+2Rr.

Ex. iv. Show that the equations of any two non-intersecting circles can
be written in the forms
{(z—al+y?} = X {(z+a)l +y2),
(x—a)*+9*} = p{(z+a)*+y%},
and find the equation of the polar reciprocal of the first with respect to the
second.

Note. The polar reciprocal is the envelope of the polars of points
on the first circle with respect to the second.

Since the circles are non-intersecting, their limiting points are real;
let the limiting points of the two circles be (a, 0) (—a, 0), then the
equation of either circle is of the form

22+ 92+ 29z +a% = 0.

A
Put g = )—\—i—: ; then the equation becomes
(A—=1) (22 +y*+aY)+2(A+1)az = 0,
ie (z—a)?+9% = A {(z+a)+ 22}

This proves the first part of the question.
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Let (#/, ¥’) be any point on the first circle, then

(@ —aP+y'2=A{(@"+a)+y%}, (@)
and the polar of («’, y) with respect to the second circle is
@—a)@ -+ = p @+ +a) 4wy} (i)

Hence, from (i)
(x—a) (@' —a)—p(z+a) (@' +0a) = (u—=1) 2/,
and from (i) (Z'—a)?=A(z'+a)2 = A=1)y'2
Eliminating 3’ so as to get the equation of the polar with only one
variable 2/,
"(&—a) (@—a)—p(z+a) @ +a)j* (A1)
=y (u—1)* ("= a) = A (2" +a)?].
. T—a_
Now let the fraction ZTas P; then
{P(r—a)—p (24))2 (A\—1) = g2 (u—1)2 { P
or
P*[(A=1) @—a)2— (u—1)2 7]
—2u(A— 1)( —a) P+p2(A=1)(x+ a2+ A (u—1)2y2 = 0.
The envelope of this line for different values of P is (cf. Chap. II,
§12)
BEA— 1) (22— a2y
=[A=D(r—aP=(u=1729][1? A=1) (@ +a)® + X (—1)*4*],
which reduces to
AMu—1792 = A=1) {A (r= ) —p2 (r + Q).

Ex. v. Show that the locus of the point from which the pairs of
tangents to the two circles
O =22 +y* 4201242/ y+¢, =0,
C,=r2+y*+20,24+2fy+e; =0
are harmonically conjugate to onc another is

(02 +A%=¢) Co+ (92 + /P =) G
= &(h—Lf) =y (h— 9+ /9. —Fon} 2
If the pencil formed by the tangents from a point (¢, y’) is
harmonie, so will a pencil of lines through the origin parallel to the
tangents be harmonic.
‘We shall use the usual notation,

O/ =a'2+y'2+20,2"+ 2y + o,
C/=x"24y 24 29,2+ 21,y +¢,.
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The equation of the pair of tangents from the point (/, y’) to the

circle C; =0 is
C0" = {2 (" +9)+y (0 +/) + 9,12 + Ay + ¢}
and lines parallel to them through the origin (retaining only terms
of the second degree in x and ) are
@+ O = (2 (@ +9)+y & +AH) 17

Le. 2% (O =" +01)*) =22’ +9) (/' +f) ay+ 9> {C = (' +/)?} = 0.

So the tangents from (z". 3’) to C, = 0 are parallel to

£ (C = (2" +92)2} =2 (2" + 9 (f +) ey + 92 {C) — (v’ +£,)?} = O

These pairs of lines are harmonic conjugates if
1O/ = (" +00)%) {C = + %) + (C) = (2" +9.)%} {C/ = (v + )%}

=2(2"+0) (2" +0) (0" +4) (v +./2)
(see Chap. III, § b).

If we omit the accents, the resulting equation therefore gives the
locus of 2" 3/,
This equation is

2C,C—C, {(x‘*'{/'z)g'*'(y‘*'fz)g} =Gy {(r+9) 2+ (y+1)?}
+{@+0)W+)—(2+0)Y+A)2 =0,
e, 2C,C—C (Gt 92+ 1" =y} = C {Ci+ 9.2+ fi2—c
+{x (fa=R)=y(9=9) +fo 01—/ 0,}% = 0,
or  Cy {02+ 12—c,) +C, {92+ /% —c,}
= fl'(ﬁ—fz)_fl(ﬂl“92)4’}’192_/}.’71}2~
Definition. If a radius vector OP is drawn from a fixed point O

to meet a given curve at I, then the locus of a point P” on OP such

that
OP. O = constant

is called the inverse of the given curve with respect to the point 0.

(&) To find the inverse of a straight line with regard to any point.
Let the origin of coordinates (0)) he the centre of inversion, and
let the equation of the straight line be
Ax+By+C = 0.
The equation of any straight line through the origin is
£ K/
cost JrJT 0=
The distance from O of the point P, in which this line intersects
the given line, is given by the equation
r(Acos0+ Bsind)+ C = 0.
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Suppose that P’ is the point on the inverse corresponding to P

and let OP’ = ¢/, then substituting for r it follows that
k2 (Acosf+ Bsinb)+2 C=0.

Now, since the point P’ is on the straight line OP, its coordinates

are 1’ cos 0, v’ sin 0 ; hence tho equation of the inverse is
k*(Az+By)+ C(x*+3%) =0

This equation represents a circle passing through the centre of
inversion, whose centre lies on the line Bx — Ay = 0 drawn through
the centre of inversion perpendicular to the given line.

(b) To prove analytically that the inverse of a system of coaral circles
with respect to a limiting point is a system of concentric circles.

Let 224+ y?+2gr+d2= 0 be any one of the system of coaxal
circles, whose limiting points are (+d, 0). Any line through
z+d ]

a limiting point is —— s =g =

This line meets the circle at points whose distances from the
centre of inversion are given by the quadratic equation
(rcosf+d)2+12sin2042g(rcosf+d)+d? =0,
ie 124+ 2rcosf(g+d)+2d(d+g)=0.
The equation connecting the distances of corresponding points on
the inverse from the centre of inversion is accordingly
kl
({] + (I)
Hence the equation of the inverse curve is

K —

Y 192 ) (xFd)2+2) =0,
Gid + 2R (xFd)+ 2d{(xFd)*+ %}
which represents a circle whose centre is the fixed point

() 2iok )

+ 2827 . cos0+2d. 92 = 0.

Miscellaneous Harder Examples on the Circle.
(For Revision.)

1. If the chord of contact of tangents from (k, &) to the circle a* +y* = »?
subtends a right angle at (4’, &), prove that
(W2 + 172 =13 (B2 4 1) = 202 (BB + k&' — 1),
2. Show that the cquation of the circle cirenmscribing the triangle
formed by the lines y = am, +a/my, y = amg+x/my, y = amg+x/my is
a® + y? — (14 Smym,) ax— (mymgmg+ Em)ay +a*Smymy = 0,
and find the points where it cuts the a-axis.
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8. A variable circle is drawn through the origin and is such that the
tangent at the origin makes a constant angle with the line joining the points
of intersection of the circle with the coordinates axes. Show that the circle
belongs to one or another of two coaxal systems.

4. Points P, Q are taken, one on each of the two circles

‘ 22+ +2a(z+¢) =0,
50 that they subtend a right angle at the origin. Show that the locus of
the point of intersection of the tangents at P and @ is the circle
c(@®+yY)+a’(x+¢) =0,

5. Prove that the coordinates of the centre of the circle which passes
through the points (acos®, bsin &) (e cosB, bsinB) (acosy, bsiny) are
given by  gx = («?—1%) cosl(8+7y) cos} (y+a)cos} (x+B),

by= —(a®-b")sin } (B+y)sin i (y+a)sin} (x+B).

6. Through the origin pass two circles which cut the rectangular axes of
coordinates in the points (a, 0), (0, a) and (- aq, 0), (0, a) respectively. Prove
that, if straight lines be drawn through the origin to cut both circles, the
locus of the intersection of the tangents to the two circles at the correspond-
ing points where they are cut by these lines is

(a?+y)? -2 -Lay (2’ + ' - ?) ~a* = 0.

7. Show that the locus of a point, such that tangents from it to two equal
circles are at right angles, consists of two cuives of the fourth degree placed
symmetrically with respect to the line of centres.

8. If 18, + mS; + nS; = 0 is the equation of a circle orthogonal to S, =0,
S; = 0, then the tangents from its centre to Sy, S, are in the ratio

,\/; {1 + ?,(_l_g_fzv)} H

9. If the axes of x and y are conjugate lines with respect to a circle, show

that the general equation of such a circle is
a*+y?+cosw[R2ay—2xn—-2yé+£n] = 0.

10. ABC is a triangle, AB, AC are axesof x and y. A point P is taken on

the circle

22 +y*+2xyco8 4—-2(c+bcos A) x—2(b+ccos d)y+4bccos 4 =0,
and PIL, PM are drawn parallel to the axes to meet AB, AC in L, M. On AB,
AC points L', M’ are taken such that B’ = BIL, CM’ = CM. Prove that
LM, L'M are perpendicular.

11. Find the coordinates of the centre and the length of the radius of
the circle which is the inverse of (x—a)?+(y—0)% = c* with respect to the
origin, k? being the constant of inversion.

12. Show that the envelope of chords of the circle

D+y*+29x+2fy+c=0
which subtend a right angle at the origin is
2e-g'-f") (P +y") + gz +fy+c,* = 0.
What does this become when the origin lies on the circle ?
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13. Show that the system of circles C—kC’ =0 can be obtained by
inverting a system of concentric circles, if C and C’ do not intersect in real
points.

14. The axes AB, AC are inclined at an angle of 60°. A circle touches
AB at P and intercepts on AC a chord whose length is equal to AP. Show
that the locus of the centre is a straight line and give the equation of the
circle when AP =c.

15. If at any point P of a circle chords PQ, PR are drawn making given
angles with the tangent at P, show that the locus of the intersection of QR
with the radius at P is a circle.

16. If each of three circles touches two parallel straight lines, prove that
their three angles of intersection 2, 28, 2y are connected by the equation
sin +8in8 +s8iny = 0.

17. Two fixed circles intersect in 4, B; P is a variable point on one of
them, PA meets the other circle in X, and PB meets it in Y. Prove that BX
and AY intersect on a fixed circle.

Discuss the case when the given circles are orthogonal.

18. Two circles touch one another at 0; on their common diameter fixed
points 4 and B are taken and a variable straight line through O cuts the
circles at Pand . Prove that the locus of the intersection of AP and BQ
is o circle which becomes a straight line if 0A4/0B = n/r,.

19. Find the equation of a circle through the origin cutting the axis of =
at right angles and the circle 2% +y® = a? at an angle of 45°.

20. If a circle cuts two given circles orthogonally, show that the locus of
its centre is a straight line.

21. The three segments of the radical axis of the circles 2 +y? =2 ¢?
23+ 4*~16cr+14 ¢ = 0 made by the circles and their common tangents
are equal.

22, If P is the point (p, q) and @, R are the feet of the perpendiculars
from Pto the straight lines ax®+2hxy+by® = 0, find the equation of the
circle PQR and show that the length of QR is

9 {(h’—ab) (p"’+q_"')}§.
(@a—b)2+4h?

23. Show that the locus of & point, such that the square of the tangents
drawn from it to three given circles are in A. P., is a straight line which
forms a harmonic pencil with the radical axes of the circles taken in pairs.

24, If A, B, C are the respective centres of three circles

S =a'+y'+29x42fy+c=0,

S =x2'+y'+292+2fy+c =0,

S =2"+y*+29"2+2 y+c" =0,
and O the centre and p the radius of the circle which cuts each of them at
right angles, show that the equation of the latter may be written

OBC.S+0CA.S +0AB.S" = 2p*. ABC,

where OBC denotes the area of the triangle OBC, &c.
Show how to find the coordinates of O and the value of p.
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25, Given a circle and a point P in its plane, show that there is in the
same plane o straight line L such that the square of the distance of any
point on the circle from P is equal to the distance of the same point from L
multiplied by a constant length, and find the position of L.

26. Find the equation of the tangent at any point of the circle

2+ +292+ 2 fy+c= 0.

Prove that the polar with respect to the circle 2? + y* = ¢? of any point on

the circle (z+a)®+(y+b)? = k? always touches the curve
(ax+by +c?)? = k(2 +4?).

27. If one of the external common tangents to two circles meet their
radical axis in R and a perpendicular drawn to it from the internal centre
of similitude S in T, and if ST produced meet the radical axis in R’, then
V, the middle point of RR’, will be such that VR is equal to the tangent
from V to either circle.

28. Tangents to a circle from a point P cut a fixed diameter of the circle
at 4 and B. If the mid-point of the segment AB is fixed, find an equation
for the locus of P.

29. Show that four points of the type (a cos 6, bsin §), where a and b are
constants, lie on any given circle; and if four given points of this type lie on
a circle, then 20 = 2nm. Interpret when a =b.

30. How many points of the type (A3, A) lie on a given circle? If four do,
then §,28,~8,.’+8,~S,8, = 1, where S, = sum of the \’s taken » at a time.

31. A point C is taken in the diameter AB of a circle: on AC, CB as
diameters circles are described; PQ is a common tangent to these latter
circles; show that AP, BQ and the common tangent at.C meet on the first
circle.

32. A point P moves in the plane of a triangle ABC so that

PA?. BC* = PB'. CA*+ PC?. AB?;
prove that the locus of P is the circle which passes through B, C and cuts
the circle 4 BC orthogonally.

33. Show that the circle through the three points (aX, aX™), (ap, ap™),
(av, av™") passes through the point (a/Auv, aApy).

34. Prove that the difference of the squares of the tangents drawn from
any point to two circles is proportional to the distance of the point from the
radical axis of the circles.

Two circles are such that the sums of the squares of the tangents drawn
to them from the vertices of a triangle are the same for each circle; prove
that the radical axis of the circles passes through the centroid of the
triangle,

35. Show that a homogeneous equation in  and y of degree » represents
n straight lines through the origin, and find the equation giving the six
straight lines joining to the origin the points where the curve

2 +3xy’+5y'+6x =T
cuts the circle 22+ y? = 1.
36. Given three non-intersecting coaxal circles, prove that the lengths of
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the tangents drawn from any point of one of them to the other two are in
a fixed ratio.

87. Prove that the locus of the middle points of chords of a fixed circle
which subtend a right angle at a fiacd poiut is a circle, and that the fixed
point is a limiting point of the two circles.

88. Find the locus of a point the tangent from which to a fixed circle
bears a constant ratio to its distance from a fixed point.

If §,, denotes the circle coaxal with the circles §,, S, and having its
centre at their external centre of similitude, and Sy, S,y are the circles
obtained in the same way from S,, S, and S,, S, prove that S, S, Sy, are
coaxal,

89. Form the equation of u system of coaxal circles of which the points
(+a, 0) are the limiting points.

Prove that, if log {(z + iy + a)/(z + iy — @)} = u + fp, the curves u = constant
and v = constant are two families of coaxal circles.

40. A, O, B are three collinear points; circles are described with centres
A and B to cut orthogonally a circle of variable radius », whose centre is 0.
Prove that the product of the perpendiculars from O on all common tangents
to the first-named circles is in a constant ratio to »4.

41. Show that a circle can be drawn to touch the four circles

P+yt—-2ax=0, 22+y'-2bx =0,
2+y'-2cy =0, 2'+y’-2dy =0,
if (1/a=1/bp= (1/c-1/d).



CHAPTER VI

THE LOCUS REPRESENTED BY THE GENERAL EQUATION
OF THE SECOND DEGREE, S= ax?+ 2hxy + by? + 29z + 2fy +c.

§ 1. Preliminary. In the following discussion it is assumed
that neither @ nor b is zero: this involves no loss of generality, for
if either or both of these coefficients is zero, by a simple change
of axes the equation can be transformed into one in which ¢ and b
are not zero. Now,Llf any value of z is substituted in the equation
S 0, we obtain a quadratic equation giving two values of y; these
may be real and distinct, equal, or imaginary. Thus, to every value

of z there correspond two real,
R 4 two coincident, or two imaginary
points on the locus. Similarly, to
every value of y there correspond
two points on the locus. As the
value of z is increased continuously
from —« to +, the two corre-
0 % sponding points move across the
plane of the coordinate axes and
Q trace out the complete locus; as,
for example, P\Q,, P;Qyy P3¢ ..
in the figure.

We propose to investigate by
elementary algebra the values of y as « increases from —w to 4+,
and the values of z as y increases from —w to 40, and to classify
the loci by their principal graphical properties so found.

The equation S =0 can be written

ax®+2(hy +9) z+by* +2fy+c =0,
or by + 20z +f)y+art+2gr4¢=0.

Hence ar = ;'(hy'+g)'4$'J{(hy+g)’-a(by +2fy+c)}
=—(hy+9) £ ¥ {—(ab=1")y*+2y (g —af) - (ac—g*)}
=—(hy+9)+ vV {~Cy’+2Fy— B},

which for convenience of reference we will write
==(hy+9)+ vD.
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Similarly, by=—(ke+f)+ v {—Cr2+2Gz—A4)}
=—(hx+f)+ vE.
(For the notation refer back to Chap. III, §10.)
The values of x and y will be real only when D and E respectively
are positive.
Now (vide Hall and Knight's Higher Algebra, § 120) D has the
same sign as —C for all real values of y except when the equation
Cy’*—2Fy+B=0
has real distinct roots (say y and 8), in which case D has the opposite
sign to — C when y lies between y and 9, but otherwise has the same
sign as —C.
The condition that the equation
Cy*—=2Fy+B=0 (1)
should have real and distinct roots is that ¥'2— B( should be positive,
i.e. that A. a should be negative.
Thus D has the same sign as —C except when A.ua is negative
and y has a value between y and o.
In the same way E has the same sign as —C except when A. b is
negative and x has a value between the roots of the equation
Cr*=2Gx+4 =0,
which we will call o and ;3.

1. C positive, i. e. ab > h%

Since h? is essentially positive, ab is positive, and consequently
a and b have the same sign.

Hence A.a and A.) have also the same sign.

(a) A.a and A.b positive.

Now D and E have the same sign as —C, i. e. are both negative.
In this case the locus is wholly imaginary ; e.g.

2?4+ y*—2xr-4y+6=0.

(b) A.a and A.b negative.

Now D and E are negative, except when y lies between y and 3,
and z lies between o and /3 respectively. Hence z is only real when
y>y and <9, and y is only real when z > o and < 3. Thus
the real part of the locus lies inside the parallelogram whose sides
sre z=0,z=0, y=y, y=24

When y has either of the values y or 3, then D is zero and the
corresponding values of z are equal: the paths of the two points
which correspond to these two values of y meet each other (vide P,Q,,
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Fig. p. 222), and the lines y = 7, ¥ = 8 touch the curve. So with the
lines # =, z =. Hence the locus in this case is a closed curve
inscribed in the above parallelogram.

V/a \/
/i,

The locus is in this case called an Ellipse; the whole curve is
at a finite distance from the origin. A particular case is the cirole.

II. C negative, i. e. ab<h?

(a) A.a and A.b positive: then D and E are positive, therefore
z and y are real for all values of y and x respectively.

N

0\\1
(a)

(b) A.a positive, A.b negative.

As in (a) « is real for all values of y. E has the same sign as —C,
i. e. positive, except when x lies between & and 3. Hence y is real
for all values of x except those lying between o and 3.

As before, when z = « or z = f3, the values of y become coincident,
and the locus touches the lines z =« and = = g.

The curve thus consists of two branches which extend in opposite
directions from # = o and z = (3 respectively to infinity.
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A.a negative and A.b positive gives a similar result.
(c) A.a and A.Db negative.
In the same way it can be seen that x and y are always real

Y

op

()

except when z>a and <3 and y >y and < & respectively.
The curve touches the four lines r=0o, 2=03, y=1y, y =8, but
no part of it lies within the parallelogram formed by these lines.

x p
y
— ya— —
/) ,
=3
(o)

In each case the curve consists of two branches extending in
opposite directions to infinity: the curve is called an Hyperbola,
a special case being a pair of straight lines, viz. when A = 0.

Note. It must be borne in mind throughout that no straight line

can meet the curve in more than two points.
1207 P
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III. C=0,ie ab=12

In this case D and E are both linear: all cases give a similar
result. As an example £ =2Gr—A. If Gand A are both positive,

E will be positive for all values of x greater than g—ié , and negative

4,
2@

The values of y are coincident when » =

for all values of z less than

A
26"
Thus the curve consists of a single branch extending on one side

only of the line z = ‘)'% to infinity.
The locus in this case is called a Parabola, a special case when
A is zero being a pair of parallel straight lines.

Summary.

If S=0is
C positive, A = 0, | an Ellipse which is a finite closed curve.
(' positive, A = 0, | a pair of imaginary straight lines.
C negative, A 5 0, | an Hyperbola which has two branches ex-
tending to infinity.
C negative, A = 0, | a pair of straight lines.
C zero, A # 0, | a Parabola which has one branch extending
to infinity.
C zero, A =0, | a pair of parallel straight lines.
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Examples VIa.

1. Classify the following curves :-—
(i) 922+ 3xy+1y*+2r+5y+6 =0,
(i) 22+ ay—21y%4 6x—55+4 =0;
(1) 2’+xy+y?—6xr-3=0;
(iv) 2 —4axy+4y2+32-6y+2=0;
(v) 2+ xy—212+ 6 —Hy+15=0;
(vi) 52 =2xy+ 2y +2c—-4y+2= 0.

2. Show that the curve 42?+ 120y + 104> +R2+8y+7 = 0 lies between
the lines y =1 and y = 3.

Where do these lines touch the curve ?

Find the equation of two lines parallel to the y-axis which touch the
curve.

3. Show that the line .~ = ¢ cuts the curve 2’ +4xy+342—~1 = 0 in real
points for all values of ¢.

4. Prove that the curve 4(x—2)(y—3)= (x4 »+6)% lies altogether on
the same side of the lines z = 2, y = 3 as the oigin.

5. Show that the curve 4a°—8.ay+y*+ 12y = 0 touches the sides of the
parallelogram formed by the lines x =1, x =3, y =0, y = 4, and that no
part of the curve lies within the parallelogram.

Find the points of contact of the sides and the chords of contact.

6. Find the condition that the axis of y should meet the locus §=0
in (i) real, (ii) coincident, (iii) imaginary points.

7. Prove that the tangents at the points where the straight line
ar+hy+y = 0 meets the curve S = 0 e parallel to the x-axis.

8. Find the equation of the chord of contact of tangents to S = 0 which
are parallel to the y-axis.

9. Find an equation giving the ordinates of the points where the line
x—y=0 cuts S= 0.

If these are real, prove that 211> A+ B.

10, Prove that the line r+y - 0 tonches the curve S= 0, provided that
A+B+2IT=0.

§ 2. To find the locus of the middle points of chords of the curve
S=a2+2hy+by?+29r+2fy+c=0

. .o !
which are parallel to the straight line 7= 17/&

Suppose that the point M, whose coordinates are (.}, ,), is the middle

point of a chord I’Q : if the chord is parallel to E = !Z, its equation is

m
L= Y=
l m
p2
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The coordinates of any point on this lineare (z, + I¢, y, +mt); if this
point lies on the curve S = 0, we have
a(x, + )24+ 2h (2, + Ut) (y, + mt) + b (y, + mit)?
+2g (1, + 1)+ 2f (1 + m) +¢ = 0,
or 2 (al?+ 2hlm + bm?) + 21 (IX, + mY )+ S, = 0, (i)

where S, = az,3+4 2hxy, + by,2 + 297, 4+ 2y, + ¢. [Chap. III, §10.]

NAARANN

o
—]
o

This equation gives the two values of ¢ which correspond to the
points P and @ in which the chord cuts the curve. Since the point
(=, 9,) is the mid-point of PQ), the coordinates of P and @ are of the
form (x, + U, y, + mt), (x,—It, y;—mi); in other words, the values of
t given by equation (i) are equal and opposite. Hence we have

IX,+mY, = 0.
This is the condition that the point (z,, ¥,) should be on the line
- IX+mY=0.

Thus, the middle points of all chords of the curve S=0, which are
parallel to mx—1ly = 0, lie on a straight line whose equation is
IX4+mY = 0. Such a straight line is called a diameter.

Now if the coordinates z,, y, satisfy both the equations

X=aothy+g=0; Y=ho+tbytf=0, (i)
the coefficient of ¢ in equation (i) vanishes for all values of I and m,
and the equation gives equal and opposite values of ¢.

If ab—h? is not zero, there is a finite point whose coordinates
satisfy the equations X = 0, Y = 0. In this case any straight line
through this point cuts the curve in two points which are equidistant
from this point and on opposite sides of it. This point is called the
centre of the curve.
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If ab—h? = 0, there is no finite point whose coordinates satisfy
the equations X = 0, ¥ = 0; in this case the curve has no centre.

The loci, represented by S = 0, can be divided into two classes
according as ab—h? is or is not zero. They are called central and
non-central curves. The reader, on referring back to the Figures in
§ 1, will see that this is in accordance with the general shapes of
these loci. It is convenient to examine the two classes separately.

I. Central curves. (ab—h*0.)

Since the centre is given by the equations X = 0, ¥ = 0, and the
equation of a diameter is IX +mY = 0, it is evident that all diameters
pass through the centre.

Conjugate Diameters.

We have seen that all chords of the curve S =0, which are
parallel to mr—1ly = 0, are bisected by the diameter IX +mY =0;
the equation of this diameter written in full is

X (al + hm)+y (Rl + dm) + gl + fm = 0.

This is parallel to the straight line m’z—1"y = 0 if

all’ +h (Im” +Um)+ bmm” = 0.

The complete symmetry of this result in the numbers I, tn and
U, m’ shows that if the diameter which bisects chords parallel to
mz—1ly = 0 is parallel to m'z—0ly = 0, then the diameter which
bisects chords parallel to m’z -~y = O is parallel to mx—1ly = 0.

Such a pair of diameters is called a pair of conjugate diameters.

The pair of diameters IX+mY = 0, X +m’Y = 0 are conjugate,
therefore, if all’ + % (Im” + U'm)+ bmm’ = 0.

Ex. The lines a’z*+2h'zy +b'y® = 0 are parallel to conjugate diameters
of S = 0, provided that they are parallel to (mx—1Iy)(m’z~1y) = 0, where
all’ b (Im’+U'm)+bmm’ = 0; that is, if ab’+a’b = 2hh’,

Axes of Symmetry.

It has been shown that the diameters IX+mY =0, 'X+m’'Y =0
are parallel to mz—ly=0, mx—ly=0, and are conjugate if
all 41 (Im’ +Vm)+bmm’ = 0. If this condition is satisfied, these
diameters are therefore perpendicular when the lines m’z—1'y = 0,
max—ly = 0 are perpendicular.

If the coordinate axes are rectangular, the condition for this is
W+mm' = 0.

Thus, if the ratios I/m, I’/m’ are determined by the equations

all’ 4+ h(im’ +Um)+bmm’ = 0, W+mm’ =0,
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the diameters IX+mY =0, 'X+m’'Y = 0 are both conjugate and
at right angles.

These equations give

h(i2=m? = (a—b) Im,
from which we obtain two directions for the line mxz —1Iy = 0; these
directions are at right angles, and therefore correspond to the
directions of the two diameters IX+mY = 0, ' X +m’Y = 0, which
are both perpendicular and conjugate. The equation of these dia.
meters is therefore
(IX+mY)UX+n'Y)=0,

or n(X2—Y?% = (a—-0)XY. (iii)

This, therefore, is the equation of the two diameters which are
both conjugate and perpendicular; the diameters are always real,
for the condition that h(X!—Y4)—(a—b) XY should have real
factors is that (a—b)2+4h% should be positive; this is always
true. Now, a straight line which bisects all chords perpendicular
to itself clearly divides the curve symmetrically. There are then
two straight lines, at right angles to each other, which divide the
curve symmetrically. These are called the axes of symmetry, or
simply the axes of the curve.

Note. Since the axes are parallel to lr+my = 0, where
(l2—m?kh = (a—Db) Im,

their inclinations () to the z-axis are given by tanf = — 7—)’; ; thus
I (cos* 0 —sin? 0) = (a—Db) sin 0 cos 6,
or tun26 = -2I¢-—-
a—b

If 6,, 6, are the values of 6 given by this equation, the equations
of the axes are X sin 6, = Y cos 0, and X sin 6, = Y cos 0,.
Ex. If the axes of coordinates arc oblique and inclined at an angle o,
show that the equation of the axes is
h(X?'=Y?~(a=b) XY = cos 0 (bX?—aY?).

II. Non-central curves. (ab—72%= 0.)

In this case Loth the lines X = 0, Y = O are parallel to ax + hy = 0;
hence every diameter IX +m Y = 0 is parallel to this straight line.

The diameter aX + 1Y = O is therefore parallel to ax+hy = 0 and
bisects all chords parallel to bx—hy = O; hence, the diameter
aX+hY =0 hisects all chords at right angles to itself. A non-
central curve has therefore one axis of symmetry.

Ex. If the coordinate axes are oblique, show that the equation of the
axis of a non-central locus, =0, is (¢~hcosw) X+ (h—acosw) ¥ = 0.
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§ 3. The graph of 8 = 0.

Since the equations of the axes of the locus are of the form
IX+mY = 0, the axes pass through the intersection of the lines
X =0 and Y =0: this point of intersection is the centre.

Let CA, CB be the axes of
symmetry, then if P; is any point
on the locus S =0, the points
P,, P, P, are also by symmetry
on the locus.

P, P,, P, P, form a rectangle
whose sides are parallel to the
axes and are bisected by the axes.

Incidentally, we see that if a
point P, on the locus and the centre of symmetry C are known,
a second point on the locus P, can be constructed, since CP, = CP;.

We have seen that the line IX+mY = 0 bisects all chords
parallel to z oy

l m

B
Py R

R P2

Two important special cases arise when ! and m are respectively
zero.

Thus the line X = 0 bisects all chords parallel to y = 0, i.e. parallel
to the x-axis.

So also ¥ = 0 bisects all chords parallel to the y-axis.

This is of practical importance when drawing the graph of a given
equation : the following general rules will be useful; the student will
discover with practice their relative utility.

To draw the graph of a curve § = 0.

(a) Draw the graphs of the lines X = 0, Y = 0; these intersect at
the centre C.

(b) If hX%2—(a—0D)XY—72Y2 has simple factors such as
(X+AY) (X+1Y), next draw the axes X+AY =0, X+pY =0.
A single point on each is sufficient for this purpose, since we know
the axes pass through C. Even if the above factors ave inconvenient,
as when A and u involve surds, it is often possible to find convenient
points on the axes, e.g. the points of intersection of

hX2—(a—-b) XY-hY?=0
and the z-axis ; these points can be joined to C.

(¢) Try to discover a point P on the curve: it is generally con-
venient to try the intersections of S =0 with x =0, y =0, r =,
or r= —y.
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Having found one point P, other points can be found thus :

(i) Construct a chord PQ, parallel to the 2-axis and bisected
by X =0.

(ii) Construct a chord PQ, parallel to the y-axis and bisected
by Y =0.

(iii) Construct a chord PCQ, such that PC = CQ,.

(iv) Construct points which are symmetrical with P with respect
to the axes,

The last method involves drawing perpendiculars to the axes,
but is useful when (as in the case of the hyperbola) the points
@1, @, may be off the paper.

It will be helpful to the student at this stage to draw a few curves and
thus to acquire a knowledge of their shapes and to become familiar
with the notation we have employed. (See also Chap. VIII, § 9.)

Illustrative Examples.
(i) 922+ 242y+16y°— 442+ 108y —124 = 0.
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Here C=9x16~122=0; .. the curve is a parabola.
X=9x+12y-22=0.

Y=12x2+16y+54 = 0.

The axis of symmetry A X+ bY = 0 is 8x+4y+6 =0,

X =0, Y =0, and the axis are parallel.

The points (-2, 0), (2, =3) lie on the axis, draw this line.
X = 0 passes through (2-45, 0) and is parallel to the axis.
Y = 0 passes through (~4-5, 0) and is parallel to the axis.
The point P (-2, 0) is on the curve.

The other points shown in the figure are found by (i), (ii), or
(iv) above.

i) 922 +42y+6y?—102+20y+5 = 0.
y

Since C = 54—4 =50, i.e. is +ve, the curve is an ellipse.
X=9x+2y— 5=20. Points on this line are (1, —2), (0, 2-5).
Y=2x+6y+10 = 0. Points on this line are (1, =2), (-2, —1).
The axes are 2X+Y =0, X—-2Y = 0, which give

2x4+y =0, x—2y=05.
Point on curve P (0, —3.06).
The curve does not cut either y = 0 or x =y in real points.
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(iii) 2224+ b52y+2y*—62x—6y—8 = 0.

Since C=4-34E, i.e.is —ve, the curve is an hyperbola.
X=2x+4§y—-3=0. Points on this line are (1.5, 0), (-1, 2).
Y=4§x+2y—-3=0. Points on this line are (0, 1.5), (2, —1).
The axesare X—Y =0, X+Y =0, i.e. z—y =0, and z+y = 4.
Points on the curve are (0, 4), (0, —1), (4, 0), (-1, 0).
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Examples VI b.

Classify the following curves and draw their graphs: —
X +4dxy+4y*—6x-3y+8 =0.
. xl+day+y -2x+42y+6 = 0.
(-1 (x+2)+(y—2)(y+4)=0.
32"ty -4+ 18x+ 10y +24 = 0.
22" +5ay+2y"~6xr—6y—8=0.
22+ 9y’ +6xy—5x—9y+1 = 0.
. (Z+3y)?-4(Bx—-y2 =05
. 322-Sxy+ 3y’ —x~y=0.
. 927~ 24y +164*+ 21228y +6 = 0.
10. 22+ xy--y*—2 42y = 0.
11, 22y +2y*—22-6y+4 = 0.
12. Draw with the same axes of reference z*+xy+y®=c, when ¢ =1, 4,
9, 16 respectively.

© 00 =3 U W~

§ 4. In this section we propose to find the equations of certain
lines relative to the general curve S =0; this will prevent repetition
in the following chapters when special forms of the equation are
considered.

(I) To find the equation of the chord of the curve
' 8 = ax?+2hxy+by2+2gx+2fy+ec =0,
whose middle point is (x,, y,).
. =% _Y—Hh :
Let the equation of the chord be T =" then the coordi-
nales of any point on this line are (x,+1t, y,+mit). As in §2, the
values of ¢ corresponding to the points of intersection of the line and
the curve are given hy
(@l 4+ 2hlm+bm?) 24+ 2(IX, +mY ) t+ 5, =0,
and since (z, #,) is the mid-point of the chord,
IX,+4mY, =0.
Thus the equation of the chord is
(@—z) X, +(y—m) Y, =0,
Le. aX;+y Y, =2, X, +y, Y,
or “2X, +y Y, 42, = S, (4)
(II) To find the equation of the tangent to S = 0 at the
point (x’, ¥). '
~ When the two points of intersection P, @ of aline and the curve
become coincident, the mid-point of the chord evidently coincides
with this point: hence we can deduce the equation of the tangent
at (¢, ') from (A) by writing , = «, y, =¥ ; remembering that
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(#’, ') is on the curve and therefore S’ =0, the equatxon of the
tangent at (2, v) becomes
h :vX’+yY'+Z’ (B)
Note. If the axes are rectangular the norma.l at (%, y) is therefore
(x -z ¥ —(y- ~y)X’'=0"or Y —yX' =2'Y -y’ X"

(III) To find the equation of the chord of contact of tangents
from (x’, y) to the curve 8 = 0. T

Let the points of contact of the tangents be (z, %), (%5, ¥5)-

The tangents at these’ points are

ar:X1+le+Z1 = 0 2 X, +yY,+Z,=0;
and since by "hypothesis each of these passes through (2/, ¥)
we have
. X, +y’' Y, +2,=0; «X,+y'Y,+Z,=0.

But these are the conditions that the points (z,, y,) (z,, 73) should

lie on the line

' X+y'Y+Z =0,
which is therefore the equation of the line joining (z,, ¥,), (2;, ¥2),

i.e. of the chord of contact.
This equation is equivalent to

@' (az+hy+9)+y (hx+by+S)+g9z+Sfy+ec =0,
ie.to z(@x+hy+g)+yha’+by +1)+92" +fy +¢ =0,
i.e. 2 X' +yY' '+ 2’ = 0. (C)

(IV) To find the equation of the polar of the point (x’, y’)
with respect to 8 = 0.

Suppose that P is any chord passing through (2’, ) and that
the tangents at P and @ meet at (r;, y,) ; the locus of (z,, y,) is the
polar of (z/, ¥’). Since PQ is the chord of contact of tangents from
(zy, y,) its equation is (vide (C) above)

xX, +yY,+Z, = 0.
This line therefore passes through (2, '), hence
X, +yY,+Z, =0,
which is algebraically equivalent to
o X'+, Y +2' = 0.
Now this is the condition that (x,, ,) should lie on the line
oX’ +yY'+2' =0, (D)
which is consequently the polar of (2, ¥').

Note. If (2, y’) is the centre, then X’=0 and Y’ =0, so that the
centre has no polar; we shall see later that, as in the case of the circle,
the polar of the centre is ¢ the straight line at infinity’.
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(V) To find the coordinates of the points where the straight
line joining the points (x,, y,), (X;, ¥,) cuts the curve 8 = 0.

Let P be the point (x,, ¥,) and @ the point (x,, ¥,), the coordinates
of any point on the straight line P are

{’”1_?‘1’,‘?‘3, M@}
l+m l+m
If this point lies on S = 0, we have

a (Izy + may)® + 21 (lzy + mzy) (lyy +my,) + b (ly, + my,)*
+2 {g Iz, + map) + f (g + my,) } (L4+m)+e(l+m)? =0,
which may he written
S +2m {2, X+ 9y, Y, + Z,} + m?2S, = 0. (E)
This equation gives-fthe two values of I : m corresponding to the
two points L, M in which PQ cuts the curve,

Cor. i. If the points of intersection, L and M, are coincident, then PQ is
a tangent to the curve. In this case the two values of 7 : m given by (E) are
equal, hence §,.8, = {z, X, +y,Y,+ Z,}%

Thus, if PQ is a tangent to the curve from the point P(z,, y,), the locus
of Qis S,8 = {aX, +y¥,+Z}* (F)

This equation, therefore, is that of the pair of tangents from (z,, ¥,) to the
curve.

Cor. ii. If (z,, y,) lies on the curve, then S, = 0; the locus of Q then
reduces to X, +yY,+Z, = 0, which is the tangent to the curve at (x,, y,).

Cor. iii. Again, suppose that @ lies on the polar of P, so that a straight
line through P cuts the curve at L, M and the polar of P at Q. The polar of
P(z,, y,) is X, +yY,+ Z, = 0, so that, if Q(z,, y,) lies on it, we have

X, +y,Y,+2Z,=0
The equation (E) now becomes
135, +m3S, =0,
80 that the two values of Z: m are equal and opposite: hence the points L, M
are harmonic conjugates of P and Q.

Thus any chord of the curve S =0 through P is divided harmonically by
P and the polar of P.

Cor. iv. In the equation (F) of the tangents from (z’, ') to the curve
S =0, omit all except the terms of the second degree in = and y; we find
then that the tangents from (z,, y,) to the curve S = 0 are parallel to the
pair of lines through the origin whose equation is

(ax®+2hxy +by?) 8" = {xX’' +yY'}?,
which reduces to
2*(Cy'* -2 Fy' + B)-2xy (Cx'y’' — Fx'— Gy’ + H) +y* (Cx?—-2Gx"+ 4) = 0.
* These are perpendicular (the axes of coordinates being rectangular) if
Cz''+Cy''—2GQ@x"-2Fy'+ A+ B =0,
i,e. if (', y’) lies on the circle
Cx*+ Cy'—2Gx—-2Fy+ A+ B =0, @)
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Hence the locus of points the tangents from which to the curve S= 0 are

perpendicular is a circle; this circle is called the Director Circle; its
centre is the centre of the curve S = 0.

Note. If S = 0 isa parabola, i.e. if C = 0, this locus is a straight line;
its equation is 2Gz+2Fy—~A4—B = 0. (H)

This straight line is called the Directrix of the parabola; its other
properties will be discussed later.

Ex. Find the equations of the director circle of a central curve and the
directrix of a parabola when the coordinate axes are oblique.

The student is advised to read the remainder of this chapter
carefully through so as to maintain a logical sequence: as a study
it may be postponed until the end of Chap. VIII.

§ 5. To find the lengths of the axes of a central curve,

Deflnition. If the axes of symmetry meet the curve at the points

A, A’, B, B’ respectively, then AA’ and BB’ are called the axes of
the curve.

Using rectangular coordinates, if the centre of the curve is (r,, )
and either axis makes an angle 0 with the z-axis, the equation of
this axis is T—2, Y—i

cosf  sinf’
Hence, if » is the length of the semi-axis, the point
(r,+7cosd, y +rsiné)
lies on the curve. This gives us, by substituting in the equation S= 0,
r2(a cos? 0+ 2k cos 0 sin 0+ b sin?g)
+2r (X, cos0+ Y,sin )+ S, = 0. (i)

But since (z;, y,) is the centre, X;’=0 and Y; =0, so that this
equation becomes

r%(a cos? 0+ 2L cos O sin 0+ hsin?6) + S, = 0.
Also, Si=x, X1+ W+ 2, =7, =gr +fin+c.
Thus ar,+hy,+9 = 0,
hxy + by, +f = 0,
gr+ Sy +c—8 = 0.
Eliminating 2, and », we have

a b g
h b f = 0,
g f c=5

ie S = %, when (z;, ;) is the centre,
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The length of the semi-axis in the direction 6 is therefore given by
r2 (@ cos? 042N sin 0 cos 0+ D sin? ) + %: 0.

Now, we showed (§ 2, p. 230) that the values of 8 are given by
I: (cos® §—sin? 0) = (a—1) cos 8sin 0,

acosf+hsind hcos+Dsind

so that wos 0 = pe =k, say;
therefore acosG+hsin@ = Ekcosd,
heosO+Dbsin@ = ksin6.
Hence
acos?0+2h cossin0+0Usin?0 = k(cos?0+sin?6) = k.
A
Thus k= — e
A .
‘We now have (a + ~———) cosO0+hsinfd =0
Cr?
and (b+ A )sin0+hcos(9=0-
Cr? ’

(a+ 5a) (o + o) =12

This equation gives the squares of the semi-axes of the curve.

Note i. If r, is one of the semi-axes, we have
(a+ C%,)cos()-{»hsin(): 0.

But we showed in § 2 that the equation of the axis, whose inclination to
the x-axis is §, is X'sind = Y cos 6.

Hence the equation of the semi-axis of length 7, is

(a+ —A»~>X+hY= 0,

Cr?
and that of length », is similarly
A
(a+ (Tf> X+hY = 0.
Note ii. Since, when (x,, »,) is the centre, we have X; =0, ¥, = 0 and
S, = %, if the coordinate axes are changed to parallel axes through the

centre the equation S = 0 becomes
a(r+z,) +2h(@+2,) (y+y)+b(y+y)'+2g(x+x)+2f(y+y)+c =0,
which at once reduces to
ax®+ 2hxy + by + % = 0.
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§ 6. The Curve 8 = 0 at infinity. Asymptotes.

The coordinates of the points of intersection of the straight line
(—2)/1 = (y—y)/m with S=0 are 2’ +1t, 4’ +mt where ¢ has the
values given by the equation

(al?+ 2Klm + bm?) 2+ 2 (IX' +mY’) t 4+ 8’ = 0.

If al?+ 2him + bm? = 0, then in the Euclidean sense the straight line
meets the curve in one point only ; as explained in Chap. V we can
keep our results general by means of the conventional ¢points at
infinity’ and ‘straight line at infinity’, thus we say every straight
line meets the curve S=0 in two points. In the present case,
then, if al?4+2him+bdm? =0 (for the present ab = A2), i.e. if the
straight line is parallel to one of the lines ax?+ 2hay+by? =0,
we say that the straight line meets the curve in one finite point
and in one ‘point at infinity’. Again, if al’+ 2him +0m? = 0 and
IX'+mY' = 0, then in the Euclidean sense the straight line does
not meet the curve at all; in this case we say that the straight line
meets the curve in two coincident points at infinity’, or the
straight line touches the curve at infinity.

If therefore the point (2, ') lies on a line which touches S =0
at infinity, its coordinates satisfy the equation IX+mY = 0, where
al?+2him+bm? = 0. The equation of the locus of (/, y’) is therefore

bX2—2hXY +aY?’=0;
this equation represents two straight lines passing through the
centre 'of S = 0; these lines are called the 'Asymptotes of the curve,
and may be regarded as the tangents to the curve from the centre.

The equation of the asymptotes, written in full, is

(ab— k%) (ax?+ 2hay + by + 292+ 2 fy) + bg?—2 fgh +af2 = 0, '
or CS—A = 0, which only differs from the equation of the curve
in the term independent of z and .

The asymptotes are therefore straight lines through the centre
parallel to the lines axz?+ 2hay+by%2 = 0; if (x,, y,) is the centre,
their equation can also be written

0 (@— 20+ 2h (5 —,) (y—0) +b (y—9,) = 0,
a form which is sometimes useful.

The asymptotes are real or imaginary according as ab-h? is
negative or positive ; thus an ellipse has imaginary asymptotes, and
an hyperbola has real asymptotes. When the asymptotes are real
and at right angles, the curve is called a Rectangular Hyperbols ;
the condition for this is a+b—2hkcosw = 0. '

In the case of the parabola, when ab = h?, the equation

al’+2hlm+bm? = 0
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gives (al+ hm)®> = 0 or (ll+bm)? = 0, i.e. two coincident directions
in which a straight line can be drawn to meet the curve at infinity.

There is no finite straight line which meets the parabola in two
points at infinity ; for in this case, since al+ Am =0 and hl+bm = 0,
the equation IX’+mY’ = O reduces to gl+ fm = 0, so that af = gh.
When it is possible to satisfy simultaneously the equations al+Am = 0
and IX'+mY' = 0, the equation of the parabola becomes

a(x+h—é—/)2 + 2g(x + l’g)-;-c:o,

which is not a proper parabola but a pair of coincident straight
lines. The parabola meets the straight line at infinity in coincident
points, i. e. touches the line at infinity.

Application of Homogeneous Coordinates.

The equation of the curve S = 0 in homogeneous coordinates is

aft+on*+cP+2/ml+ 296+ 21én = 0;
the points at infinity on it are given by its intersections with {= 0.
We have therefore for these points af2+2h&n+0n2=0 and (= 0.
The points are real, coincident, or imaginary according as h?—ab
is positive, zero, or negative: hence an hyperbola meets the line
at infinity in real distinct points, the ellipse meets it in imaginary
points, the parabola meets it in coincident points or, in other words,
the parabola touches the line at infinity.

I. When the points are not coincident, let their coordinates be
(&, m, 0) and (&;, ng, 0), then
Giba _ &Mt & _mmy,
b —2h a
The equations of the tangents at these points, i.e. of the asymp-
totes, are & X+, Y =0 and £X+1,Y =0; their combined
equation is therefore

(LX4+mY)(LEX+n,Y)=0,
or bX2—2hXY+aY? =0,
as previously shown.

This equation can also be written CS—A{%?=0, and if U, V are
the linear factors of S—A(?/C, then U= 0, ¥V = 0 are the separate
equations of the asymptotes. The equation of the curve can then
be written in the form UV+ A{?/C = 0, which indicates that U = 0,
V = 0 are tangents to the curve, { = 0 being the chord of contact.

If U and V are real, we can take the asymptotes as coordinate axes,
1207 Q
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in which case the equation of the curve becomes & = k2{% or, in
Cartesian coordinates, xy = k2

Note i. It is evident from the form of the equation that the centre, in
this case the origin, is the pole of the ‘line at infinity’.

Note ii. Itisevident from this form of the equation of an hyperbola that,
if A0A’, BOB’ are the asymptotes, the curve lies altogether within either
the angles A0B, 4'0B’ or the angles AOB’, A’OB; also, that the distances
from the centre of the points of intersection of the hyperbola and a diameter
increase without limit as the diameter approaches the position of the
asymptotes.

The following important properties of central curves are left as
exercises for the reader :—

(i) The bisectors of the angles between the asymptotes are the
axes of the curve.

(ii) The asymptotes are harmonic conjugates of every pair of
conjugate diameters.

(iii) An asymptote, regarded as a diameter of the curve, is its
own conjugate.

II. When tﬁepoints are coincident, i.e. ab = h?% we haveal+hn =0
and ¢ = 0, hence the coordinates of this point are (2, —a, 0).

The tangent at this point is

h(aé+hn+g()—a@i+bn+/() =0,
which reduces to { = 0, the line at infinity.

To obtain the separate equations of the asymptotes of am hyperbola
when its equation is given with numerical coefficients.
The equation of the asymptotes in the form bX2—2hXY +aY%= 0
may be used.
‘When, however, ax?+2hxy+0by®> has rational factors, we may
proceed as follows: —
Let the equations of the asymptotes of S=0 be lx+my+n =20
and l'z+my+%" = 0; then
S= (lx+my+n) Ve+m'y+n')+Fk,
so that m'n+mn’ =2f, Un+ln’ =2y,
hence n(lm’—=Vm) = 2(f1—gm).
Thus the equation of one asymptote is
(I =Um) (lz +my) + 2 (f1—gm) = 0.
Hence the following rule: Express ax?+ 2hxy+by®+2gz+2fy
in the form (Iz+my)(Vz+m'y)+292+2fy: in this expression put
x=m and y= —I, excepl in the factor lx+my. The resulting
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expression equated to zero is the equation of the asymptote parallel
to lz+my = 0. Similarly, for the other asymptote, put == w/,
y = —V, except in the factor 'z +m'y.

Ex. 7o find the asymptotes of the hyperbola
222 —ay—6y?—4x+5y+1=0.
In the expression (2z+3y) (x—2y)—42+5y put =3, y = -2, except
in (22 +3y); this gives 7(22+3y)—-22 = 0,
Again, put & =2, y = 1, except in (x—2y); this gives 7 (x—2y)-8 = 0.
The equation of the curve can then be written
(Tx—14y-3) (142 +21y—22) = 17,

To determine in which quadrant the infinite part of a given parabola lies.

Let (xx+ By)*>+29x+2fy+ ¢ = 0 be the equation of the parabola.

Change the origin to the point of intersection of the lines
az+pBy =0, 29x+2fy+c¢ = 0, the equation then becomes

(xz+pBy)2+2g9x+2fy = 0.
The position of the infinite part of the parabola relative to the
coordinate axes is clearly not altered by a change of origin.

Let z/8 = y/(e— ), where € is a very small number, be a straight
line through the origin nearly parallel to the axis of the parabola.
This will meet the parabola again at a point which is at a very great
distance from the origin, and which lies in that quadrant in which
the infinite part of the parabola lies.

Substituting y = (e—a) /3, we obtain for the z-coordinate of
the point

@ = —2{g+f(e- 0)/B} = 2(fx—gB)/B—2fe/B.

Since ¢ is very small, z will have the same sign as (fax—gg3)/3,
and therefore y will havo the same sign as (¢3—/x)/x.

Hence, if the equation of the parabola is

(z+ By +292+2fy+c =0,
the signs of z and y, determined so that xz+ 3y = 0 and gr+/fy is

negative, indicate the quadrant in which the infinite part of the
parabola lies.

Ex. (52+2y)’+72—3y+8=0.

Take 5x+2y =0 and Tx—3y = a negative quantity; then y= —§x
and (7 +X4f)x is negative, therefore x is negative and y is positive.

The infinite part of the curve lies therefore in the second quadrant.

This rule will be found useful when drawing a parabola from its equation.

Q2
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§ 7. The foci and directrices.

To find the locus of a point which moves so that its distance from
a fized point is proportional to its distance from a fixed straight line.

Let the fixed point be S(2’, #’) and the fixed line be
zcosf+ysinf—p =0,
using rectangular coordinates.

If P(z, y) is any point on the required locus, and PM the perpen-
dicular from P to the fixed line, we have SP = ¢.PM where e is
a constant ; hence SP? = ¢2, PM? or

(x—2)2+(y—y)? = e {xrcosf+ysin 6 —p}? (i)
which is the equation of the locus. Now this equation contains five
arbitrary constants, 2/, ¥, 6, p, and e: we may expect then that the
equation S = az?+ 2hxy + by*+2gx+ 2fy+c¢ = O can be put into this
form, and we proceed to show that this is always so.

The locus represented by the general equation of the second
degree can therefore be described as the locus of a point which
moves so that its distance from a fixed point S is a constant (e)
times its distance from a fixed straight line.

The point S is a focus, the fixed line is the corresponding
directrix, and the constant ¢ is the eccentricity of the curve.

Note. This is the fundamental property proved in geometrical conics for
the various curvés which are sections of a cone by a plane. The locus S=0
is therefore usually referred to as a conie section, or briefly, a conic.

The equation (i) above will be referred to as the focus-directrix form
of the equation of a conic.

1. To express the equation S = O in the focus-directriz form.

Using Fectangular coordinates, suppose that the equations
(x—2')*+(y—y')* = ¢* (x cos 6+ y sin 6 — p)? (i)
and S = ax?+2hay + by  + 292 +2fy+c =0 (ii)
are identical.
Change the origin of coordinates to the point (z’, y’) ; these equations
then become

#?+y* = ¢ (x cos 0+ ysin 6 —p')? (iii)
where »’ = p—2'cos —y sin 6,
and ar®+2hxy+ by* +2X'24+2Yy+8 = 0. (iv)

Observe the way in which the terms containing x and y and the
independent term occur in equation (iii); this suggests writing
(iv) in the form
(X'2—a8") 2+ 2(X’Y' —hS’) 2y + (Y'2—-bS") y*

- =(X2+Yy+8)P2  (v)
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This equation will be of the same form as equation (iii) provided
that we can find a point (¢, ¥) whose coordinates satisfy the equations

X2 —agS= Y2—bS; XY=1IS, (vi)
or ?—(2— L H—‘ S
a=b ~ h ~

Note i. Fora central conic, the equation & (X? - Y?)=(a—b) XY indicates
that the foci (if any) lie on the axes of the conic.

Note ii. For a parabola, the equation & (X*— ¥?) = (¢ —b) XY reduces to
F(aX+hY) = 0, which indicates that the foci of a parabola (if any) lie on
its axis.

Now, if we substitute the usual values of X, Y, and S in equa-
tion (vi), we obtain

C(xz—yz)—-2Gx+2.Fft/+A—B=0}. (vii)
and Coy—Fr—Gy+H =0 v
Thus, (1) If the conic is a parabola, i. e. €= 0, we have the two

linear equations 2Gz—-2Fy—A+B=0
Fr+Gy—H=0 } )

There is therefore a single solution ; hence the equation of a para-
bola can be put in the focus-directrix form in one way. We have
now proved that a parabola has one focus, and that this focus lies on
the axis.

(2) If the conic is central, i.e. C 5 0, equations (vii) can be written

(Cx—G)*—(Cy—F)*= G*—F*+BC—-CA
=A (a—b)r
and (Cx—@)(Cy—F)= FG—CH = Al.
If we write A for Cz— G and u for Cy— F, these give
)\2—-;;2 =A (a-—b), )\p. = Ak;
hence A —A(a—b)A2— A2 = 0,
or 2X\2 = A(a—b) + A V{a—D)*+ 412

The expression under the radical is always positive; we get
therefore two real values of A%; evidently one of these values is
positive and one negative, hence A has two real and two imaginary
values. We have now proved that a central conic has four foci, two
real and two imaginary, and that thesc foci lie on the axes.

I1. To prove that two foci lie on eacl axis of the curve.

Now, if (§ n) are the coordinates of the centre of the conic, the
equations for the foci may be written
(@—&P—(y—n) = A(a~0)/C?,
(@—&) (y—m) = Ah/C
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If, then, (x— £)sin 6—(y—n) cos 6 = 0 is the equation of one of the
axes, the coordinates of the foci on that axis are (£ + kcosé,
n + ksind), where C?A%cosfsind = Ah.

The equation of the other axis is (z—§&)cos0+(y—n)sinf = 0,
so that the coordinates of the foci on this axis are (§+A sind,
N F 1" cos 6) where C%l"2cos§sin@ = — AL, Hence k%+1%'2 =0; this
shows that two foci lie on each axis, one pair being real and one
pair imaginary.

I11. To find the distance between the real foci.

Let 27, be the length of the axis which lies along

(x—€)sinf—(y—mn)cos § = 0,
and 27, be the length of the other axis.
We showed (Chap. VI, § b) that »%r,2 = A%/C3, and that

acosf+hsing A
cos d - Con?’
<o that acos6+hsiné _ O
cos ¢ A
Since the axes are perpendicular, substituting n/2+ 6 for 6, we get
asinf—"hcosd  Cr?
sin 6 T A
Subtracting these equations we have
C?(r¥=n?) I3
A ~ sinfcosf

Thus A = r?—r,*; evidently % is real if 7, >7,, so that in the
case of the ellipse the real foci lie on the major axis, and the distance
between them is 2 +/r,2 —r,%

If the ellipse is real, it is evident from the equation giving the
lengths of the axes that A must be negative; hence the foci lying
on the axis (z—¢)sinf—(y—n)cosf =0 are real or imaginary
according as % cos sin 6 is negative or positive.

In the case of the hyperbola the real foci must lie on the axis
which meets the curve in real points.

IV. To find the eccentricity of the conic S = 0.
Comparing coefficients in the equations
a4 2hay+ by +29x+2fy+¢=0

and (=2 +(y—y')? = c*(xcos b+ ysin 6—p)?
we have

1—e%cos?0 = Aa, 1—e?sin?0 = Ab, €%cosfsinf = —Ah,
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so0 that 2—e2=A(a+0)
and  (1—¢*cos? 6) (L — ¢?sin? 6) —ct cos® @ sin® 6 = A%(ab—12),
or 1—e? = A%(ab—-1?);
— o2)2 3
thus 2—e?)? _(a+0)

1—¢* = ab—h?
Note i, Since 1-¢* = A (ab—h?):

(i) If the conic is an ellipse, ab—~h* is + ve, soe<l,
(i1) If the conic is an hyperbole, ab—nh* is —ve, .. e>1.
(i1i) If the conic is a parabole, ab—h? is zero, coe=1,

(iv) If the conicisa circle, a =b and b =0, and e = 0.

Note ii. This eyuation gives two values for e, one corresponding to the
real and one to the imaginary foci. When the cccentricity of a conic is
referred to the eccentricity corresponding to the real foci is meant. (Cf.
the example given below, p. 249.)

We have also from the above relations

€% (cos? 0 —sin%6) = —A (a—b),
e?sinfcos = —AJ,
so that (¢—1D) sin 6 cos 6 = I (cos? § —sin* 6) ;
but this is the equation which gives the inclinations of the axes of
the conic to the z-axis of coordinates. Hence the directrices of the
conic are parallel to the axes.
The equations 1—c¢*cos?0 = Aa, ¢*cosfsinf = —Ah give
¢* = h/cos 6 (h cos §—asin 6) ;
but, if 27, is the length of the axis inclined at the angle 6 to the
z-axis, we have shown that
asin 6 —h cos 0 Cir C?%(r)2—n,?%) I/
sng —a ™M TR T et
hence ¢ = (r2—nr?)/n

V. 1o find the equations of the directrices of a conic.

Referring back to equation (v) we see that the directrix
X'z+ Y'y+8 =0 is the polar of the origin with respect to the conic
ar?+2hxy+by*+2X'2+2Y’y+ 8 = 0; we took the focus as the
origin, hence the directrix corresponding to a focus is its polar.

(a) Central Conics.

The coordinates of the foci lying on the axis

(x—§)sin 0—(y—n)cosd = 0
are £+ kcos 0, n+ksin 6, where (& 1) is the centre and
C?k2sinfcos @ = AL,
The corresponding directrices, which are the polars of these points
with respect to § = 0, are therefore
XE+Yn+Z+k(Xcos0+ Ysin6) = 0.
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Now X &+ Yn+Z = A/C, therefore the equation of -the pair of

directrices is
A2 = C?k?(X cos 0+ Y sin 6)?,

or I (X cos 0+ Ysin 0)2 = Acosfsin 6.

(b) The Parabola.
The coordinates of the focus are given by the equations
2Gx—2Fy—A+B =0, Gy+Fr—H =0,
and the equation of the directrix may be found as the polar of
this point. The case of the parabola is, however, practically and
theoretically, most simply dealt with by reducing the equation to
the focus-directrix form.
Let the equation of the parabola be
(x+By)+2¢r+2fy+c =0,
where we have written a2, 32, and a8 for a, b, and h. The
eccentricity of the parabola is 1, so that the focus-directrix form is
(x—2")2+(@y—y)% = (x cos 0+ ysinb—q)2
Comparing coefficients of z% and xy, we get tan § = — /83, so that
the directrix is perpendicular to az+ By = 0, and therefore to the

axis of the parabola. We may write the equation of the parabola
then in the form

(O +p%) (z =22 +y—y'") = (Bx—ay+p)*
Hence, comparing coefficients, we have

2+ pY) 2’ +Bp = —y, (i)
C2+pY)y —op = ~f, (ii)
2+ B) (@2 +y'H—p=c. (iii)

From these equations we find
(Bp+9)* +(op—=f) = 2+ B ("2 +y"?) = (0*+ %) (p* + ),
or  (02+p%p*+2(Bg—af)p+g*+/* = (2 + )P+ (0 + 8% ¢;
2p(Bg—of)=c(?+p%)—g*—f?
=c(a+b)—g?—f2 = A+B.
But B(Bg—of) =by—If= —G,
x(39—af) = hg—af=F,
so that the equation of the directrix (3z—oy+p =0) may be written
2Gx+2Fy—A—-B=0.
Using this value of p in equations (i) and (ii), we can write down
the coordinates of the focus ; thus

(@a+b)z’ = b(A+B)/2G~g; (a+V)y = a(4 + B)/2F—f.
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It can be readily verified from equations (i) and (ii) that the
coordinates of the focus also satisfy the equations
@+ X+G@=0; (a4+V)Y+F=0; 2(a+b)Z=A+B.

VI. Methods of finding the foci and directrices of a central comic,
whose equation is given with numerical coefficients.

The coordinates of the foci involve complicated surds unless the
factors of I (X?—Y?%)—(«¢—b) XY are rational. If these factors are
not rational the coordinates of the foci may be found as on p. 245.

When the factors are rational the following method is useful.

If ax®+2hay+by*+ 292+ 2 fy+c

=Lk{lc—2)2+@y—y)*} +1(xcosb+ysind—p)®> (i)
identically, on econsidering the terms of the second degres, it is evident
that az®+ 2hay + by —k (2% + »°) is a perfect square. This is the case
when (k—a)(k—b) = &% and this equation gives two values of &
which are rational when the factors of h(X2—¥?)—(a—0) XY are
rational. Take either of these values of k¥ and then we have

ax®+ 2hay + by —k(2* +y?) = I (x cos 6+ y sin 6)?,
from which we can determine I, cos 6, and sin 6.
Comparing the coefficients of x and y and the independent terms

in equation (i), we obtain k' +lpcosd = —g (i)
ky +lpsin § = —f, (iii)
whence, E@?+y" %) +p? =, (iv)

E(c—W?) = ¥ (2" +y'%) = (9+Ip cos 6)® + (f+ lp sin 6)
This gives a quadratic equation from which we can find p, and the
corresponding values of 2’ and y’ are given by (ii) and (iii).
This gives the directrices, foci, and also the eccentricity which is
v =k
Ex. 710 find the foci and direcirices of the conic
2+ dxy+yP—22—6y = 0.
If 2" +4zy+y®—k (2*+9*) is o perfect square, we have (k-1)? = 4, i.e.
k= —=1or 3.
Thus +4xy+ 4+ (2 +yt) = 2(x+y)?,
and 22+day+ 9yt -3 (2 +yh) = —2(x—y)%
(@) When £ = -1,
B4y +yt~2x -8y = 2 (x+y+p)P—(x—2)—(y~y')%,
so that Z+2p==1, y42p= -3, 2?+y’?=2p;
. 2pt= (2p+1)*+(2p+3)%;
3p*+8p+5=0;
p=—1lor —4§.
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If p= -1, then +'=1, y'=-1, and the equation of the conic

reduces to (=1P+y+1) =2(x+y-1),
_ 4(x+J 1
V2
If p= -3, then 2’ = §, "=}, and the equation reduces to

@5+ (y— é)‘—4(”” 1")

(b) When & = 3,
+4xy+y’—22—-6y =3 (x—a')+3(y—y) -2 (x~-y—p)

so that 32’ -2p=13y"+2p =3, 3(z?+y?) =2p*;
6p?=(2p+1)°+(2p-3)%
P=4dp+5=0;
p=24+1

If p= 2+1, then 2 =3(5+2i) and y’'= —}(1+2i), and the cquation
can be written in either of the forms
5424 1_4;2["__4{ (2+1))"
(" ‘3“) + (”* 3) =3 72
We have now the real and imaginary foci; the equations of the real
directrices are z+y—~1 = 0 and 32+ 3y—5 = 0, and the eccentricity corre-
sponding to the real foci is 2.

VIL. The foci in relation to the civcular points at infinity.
The equation of a conic in the focus-directrix form
(=2 )2+ (y—y) = ¢ (xcosb+ysing—p}?
may be written

[(x=2)+i(y—=y)][(e=%)—i(y—y)]) = ¢* {xcos O+ ysinb—p}*;
this is of the form wv = kw?, from which it appears that the conic
touches the imaginary lines

(@—a)+ily—y) =0, (@—2)—ily—y) =0,
the chord of contact being the directrix
zcosf+ysin §—p = 0.

These imaginary lines intersect at the focus (2, y); hence the
directrix is the chord of contact of the imaginary tangents from the
focus to the conic.

These imaginary lines are parallel to z+i =0 and x—1iy =0,
i.e. they pass through the circular points Q, 0 at infinity.

This argument applies to each of the ways in which the equation
of the conic § = 0 can be put in the focus-directrix form.

Hence the foci are the points of intersection of tangents to the
conic from the circular points Q, Q.

Since these points Q and € are imaginary, we cannot properly
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represent them in a figure ; the following diagram shows the relative
properties of these points and lines,

[ine at infinily

8, 8,,8;, Sy are foci; dy, d,, d,, d, are the corresponding directrices.
Two of the foci are real and two are imaginary, and the conic
is inscribed in the quadrilateral S, S,, S,, S,.

When the conic is a parabola, since. £ 2’ touches it, we have only
one focus, S.
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Note. Since the tangents from a focus to the curve are parallel to
(x+1y) (x~iy) = 0, i.e. to 2+ y* = 0, the equation of & pair of tangents to
the curve from a focus satisfies the conditions for a circle. This gives us
another method of finding the foci.

§ 8. The equations of the various conics in their simplest
forms.

When the axes of symmetry are taken as coordinate axes, the
equation S = 0 reduces to its simplest form.

Two cases arise: (i) C is not zero, being positive for an ellipse
and negative for an hyperbola; there are then two finite axes of
symmetry.

(ii) C =0, the curve being a parabola ; there is only one finite
axis of symmetry.

It has already been shown that when the coordinate axes are
changed from one set of rectangular axes to another the quantity C
is unaltered : this is also self-evident so far as sign is concerned, since
a change of axes cannot affect the nature of the curve.

(i) When the coordinate axes are the axes of symmetry, if the
point (z, y) lies on the curve, so also do the points (r, —y), (—x, ¥),
(=2, —y); hence the coefficients of zy, z, and y in the equation of
the curve must be zero. The equation is then of the form

wx®+ byt +¢ = 0.

(@) For an ellipse ab is positive, i.e. ¢« and b have the same sign.
If a and b are positive, ¢ must be negative, otherwise no real values
of z and y could satisfy the equation.

We can thus write the equation of the ellipse referred to its axes
of symmetry in the form

2 2
Y 1

where a, b are evidently the lengths of the semi-axes.

(b) For the hyperbola ad is negative: hence the equation of an
hyperbola referred to its axes of symmetry can be written in one of
the forms

a? g 2 P
dp=l T =

Consider the first equation; the z-axis meets the curve at the
points (+a, 0), (—a, 0), and @ is the length of the corresponding
axis,

-1,
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The axis of y does not meet the curve in real points ; b is, however,
usually called the length of the other semi-axis.

(ii) Take the finite axis of symmetry as axis of z; if the point
(x, y) lies on the curve, so does the point (r, —y), whatever value
2 may have, hence the coefficients of xy and y in the equation of the
curve are zero. The equation is of the form

ar®+ by’ +2gx+c = 0.

Now ab = 0, since the curve is a parabola, hence a = 0 or b= 0.
We cannot have b = O unless the curve is a pair of straight lines
parallel to the axis of y, hence ¢ = 0.

The equation is then of the form

by +2g9x+c= 0.

Now take the origin at (—c¢/2g, 0), i.e. on the curve; the constant
of the equation then becomes zero.

The equation of the parabola now takes the form y? = 2¢’z, or, as
it is usually written, y? = 4ax.

The axes of coordinates are the axis of the parabola and a tangent
to the parabola at the point where its axis intersects it.

In the following chapters we propose to discover the properties of
the parabola, the ellipse, and the hyperbola from their equations in
these simple forms.

§ 9. Envelopes.

In Chapter II we showed how to find the equation of the
envelope of a straight line whose equation contains an arbitrary
constant in the first or second degree. It will be convenient to
extend this method to the equation of any curve which contains an
arbitrary constant, or the constants of which are connected by given
relations which leave one of them undetermined.

If P, Q, R are three functions of the coordinates # and y, of the
first or second degree, then

AMP+AQ+R=0 (1)
is an equation of the first or second degree, and represents some
straight line or curve whatever value A may have.

Two of these lines pass through any proposed point (', ¥’), for if
P’, Q’, R are the values of the functions P, @, R when z’, y’ are
substituted for 2 and y, we have the condition

NP HAQ+R =0
to determine A for loci of the type which pass through @, ¥')
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These two lines will be tangents, straight or curved, from the
point (2, ¥) to the curve enveloped by the system.

If («/, ') is on the énvelope, then these tangents become coincident.
The condition for this is 4 P’R’ = Q2

Hence the equation of the envelope of loci represented by (i) is
4PR= Q.

Examples VI c,

1. Write down the equation of
(1) the tangent at (2, ') ; (ii) the normal at (2, ¥');

(iii) the polar of («’, ¥') ; (iv) a pair of tangents from (27, y"),
for the curves whose equations are given in Ex. VIa, 1.

2. Find the coordinates of the centre of these curves, and explain your
results.

8. Find the eccentricity of the curves in Ex. VIa, 1 (i), (iii).

4. Find the focus-directrix form of the parabola (z+2y)*=42+2y+1.

5. Express the equation 82?4153+ 242y +22+4y—5 = 0 in the focus-
directrix form.

6. Find the equations of the asymptotes of the hyperbolas in Exs. VIb.

7. If the coordinate axes are oblique, show that the foci of the conic
S = 0 are given by the equations X?—aS = Y?—bS = sec 0 (XY ~hS).

8. Find the lengths of the axes of those curves in Exs. VI b which are
ellipses or hyperbolas.

9. Find the equations of the ellipses in Exs. VIb referred to their principal
axes as axes of coordinates.

10. If the coordinate axes are turned through an angle 6, what does the
equation of the conic ax®+2hxy +by*+c¢ = 0 become ?

For what valnes of 6 does the xy term in the result vanish ? Explain this
result.

11. Show that the equation of the axes of symmetry of the curve
1122+6xy+19y*~22-26y+3=0 are 3x-y+1=0and x+3y-2=0.

Determine p, g, and » so that p(38z—y+1)*+¢ (x+38y—2)’+» = 0 may be
identical with the given curve, and hence show that the equation of the
curve referred to its axes as coordinate axes is 52+ 10y = 3.

(Note. When the separate equations of the axes take a simple form, as in
this example, this is the easiest method of finding the equation of the curve
referred to its axes. Exs. VIa and VIb give other curves which can be
similarly treated.)

12. Where are the focus and directrix of a circle ?

13. 4 A’ is a given finite straight line and PN is perpendicular to it. If P
moves 80 that PN?: AN, A’N is a constant ratio, show that its locus is
a curve of the second degree. If the given ratio is A:1, distinguish the
cases of the circle, parabola, ellipse, and hyperbola.

Find the eccentricity of the curve in terms of A,
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14. Draw graphs of (i) 9 =4x; (ii) y* = —4dx; (iii) 22 +42 = 1;
(iv) 2 —4y* =1; (v) 2 —4y? = ~1; (vi) ay = 4; (vii) 2y = —4.

15. Find axes, eccentricity, centre, foci, equations of axes, asymptotes, and
directrices of 2%+ 4xy+y*—2x—6y = 0.

16. Draw the curve and find the foci and eccentricity of

52 +4xy+8y"—1220—-12y = 0.

17. Find the condition that an asymptote of S = 0 may pass through the
origin.

18. Determine completely the position and nature of the curve

22+ 4y -y +4x-6y+2 =0,
finding its centre, its eccentricity, and the equations to its axes. Sketch the
curve.

19. Find the condition that the line Iz +my = 1 should be (i) a tangent,
(ii) a normal at a point on the curve ax?+ 2hay+by? = 1.

20. Find the coordinates of the centre and of the foci, and the equations
of the axes, asymptotes, and directrices of the conic whose equation is

Ta?—48xy—Ty*+60x+80y—50 = 0.

21. Find the poeition and magnitude of the axes of the conic whose
equation is ax®+2hay +by® = 1.

22. Find the asymptotes of the hyperbola

62— Tay-3y*—22x—8y—6 = 0,

23. Trace the conic whose equation is (x—4y)? = 51y.

Find the eccentricity of the conic whose equation is 22+ 2y +#? = 1.

24. Show that one focus of the conic ®+y?+2hay+2g (x+y)+g*/h=0
is the origin, and that the other is * = y = (—2g)/(1 +h).

25. Trace the curve 812%+ 90xy +254°+59x+21y+9 = 0, and find the
coordinates of its focus and the equation of its directrix.

26. Trace the curve 3a?+8ay—8y*—402x—20y+50 =0, and find the
equations of its directrices.

27. Reduce to its simplest equation and draw the figure of the conic

1222+ T2y —12¢2 -2+ Ty = 26.

28. Mark on a diagram the position of the focus and directrix of the
parabola whose equation is #*—2zy+y*+x—8y+3 = 0.

29. Show that the equation (a—1//%)x+hy =0 represents one of the
axes of the conic a2’+2hry+by’ =1, if » is o root of the equation
(a=1/2) (b—1/»%) = b~

Traee the curve 82 +4xy+y*~32—-2y+21 = 0.

30. Show that the equation of the directrix of the parabola

axr’+29x+2fy+c=0
is 2afy+ca—g*—y?=0.

31. If the axes are so inclined that a4y +4? = a? is a circle, trace the
conic z?—xy+y’ = a% and obtain the lengths and positions of its axes,
the coordinates of its foci, and its eccentricity.

32. If the straight line y = xtan @ is an axis of the conic

ax’+2hxy + by’ = 1,
and the length of this axis is 2r, show that 1/»* = «+h tand = b+ h cot 4,
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83. Show that the equations to the tangents to the ellipse
1722 - 122y + 84+ 502 —20y + 21 = 0
at the extremities of its axes are
Qz-y+3)* =4, (x+2y+1)2=16.
34. Prove that
z (ax’+hy' +9)+y (hx' +by’ + )+ 92" + fy' +¢ = &/(ab—R?),
where A is the discriminant, is the diameter parallel to the tangent at 2’ y'.

85. When the coordinate axes are oblique, the eccentricity of the conic
8 =0 is given by (ab—h?) (2—e%)?sin’e = (a +b—2h cosw)? (1 —¢?).

36. If (2, ¥') is a focus of the conic S = 0, and d its distance from the
corresponding directrix xcosd+ysin§—p = 0, show that X'siné = hd,
Y'cos 8 = hd, and S cos 8 sin 8 = hd?2

37. Show that a pair of intersecting straight lines possesses the focus
directrix property. Where is the focus ?



CHAPTER VII
THE PARABOLA

§ 1. The parabola referred to its axis of symmetry and the tangent at
the vertex as coordinate axes (y*> = 4ax).

The equation y* = 4ax (Chap. VI, § 8) can be put into the focus-
directrix form

Y
M P
A
/ A
T X S N G x

(=22 +y~y)P =€ {xrcosx+ysinx—p}?
in one way only: viz.
(@—a)f+y* = (@+a).

Hence the Focus S of the parabola is the point (a, 0), and the
Directrix X is the line x+a = 0.

The following definitions are common to all the conics :—

(i) The perpendicular (PN) from any point (P) on the curve to the
axis is called the ordinate of the point P with respect to the axis.

(ii) The double ordinate through the focus (ZLSZL’) is called the
latus rectum.

(iii) The length of the normal at a point (P) means the distance
(@) measured along the normal to the axis, unless otherwise stated.

(iv) The length NT is called the sub-tangent, and the length NG
the sub-normal.

1307 R
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(a) Since the focus is the point (a, 0), we have AS = a, and the
equation y* = 4ax expressed geometrically is

PN*=4A8.AN.
When the point P is at the end L of the latus rectum
SL:=4A48% or SL=2A48;

thus the latus rectum LSL = 4.

(b) The equation in the focus-directrix form

(r—a)P+y* = (x+a)?
expressed geometrically gives
SP*= PM? or SP=DLM.

Thus the focal distance of any point on a parabola is equal to its
distance from the directrix.

The focal distance of the point (z, %) is 2+ a.

§ 2. Tangent, Normal, Diameter, Polar.
The student should refer back to Chapter VI, § 4, and work out
the equations given below for the case of the parabola »* = 4 ax.
(1) The equation of the chord whose mid-point is (¥, y’) :—
—2ar+yy —2ar’ = y'?—4ax,
or y (y—Y) = 2a (x—X).
(2) The equation of the tangent at the point (¥', y') :—
’ —2ar+yy —2ax" =0,
or Yy = 2a(x+x’).
Example i. If the tangent at P mects the axis ut 1) then SP = ST.

Let P be the point (z',y’); then the tangent at P is yy' =2a(z+x);
hence, putting y = 0, the point T'is (~a’, 0), and since Sis (a, 0) we have
ST = a+x’', which is, § 1, the focal distance SP.

Hence SP = ST.

Example ii. If the tangent at P mcets the tangent at the vertex at Y,
SY is perpendicular to the tangent.
Let P be the point (z’, ') ; then the tangent at P is
yy' = 2a(x+2), (1)
therefore the point Y is ( 0, 25:1) But y'? = 4ax’, therefore the point ¥

is (0, 4y').
SY is therefore the line 2ay+y (x—«) = 0 which is perpendicular to (i).

(8) T'he equation of the normal at (x', y').
The normal being perpendicular to the tangent, its equation is
Y (@—a')+2a(y-y)=0.
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Example. If the normal at P meets the uxis at G, SP = SG.
Let P be the point (z’,y’), then the normal at P is
Y(x=~x')+2a(y—y’) =0;
hence, putting y = 0, & is the point {(2e+x'), 0}.
Thus SG = ¢+ = SP.

(4) To find the locus of the mid-points of parallel chords of the parabola,
i. €. the equatior. of a diameter.

Let (2/, ") be the mid-point of any chord parallel to the fixed line
y=mr.
Since the equation of the chord is
Y (y—y) =2a(-7),

the condition that it should be parallel to the given line is 3’ = %?)

hence the locus of the mid-points of all chords parallel to y = w is
my = 2a, i.e. a line parallel to the axis.

Hence all diameters of a parabola are parallel te the axis.

Note. The diameter bisecting all chords parallel to the tangent at
(¥, y"), viz. yy' =2a(x+x’) is the line y =y’, which passes through the
point of contact of the tangent.

Thus the chords bisected by any diametler are parallel to the tangent at
its extremity.

Definition. If the chord through a point I’ on the parabola.
drawn parallel to the tangent at @, meets the diameter through ¢
at V, PV is called the ordinate of I’ with respect to this diameter.

P

(5) The cquation of the polar of the point (&', y').

This takes the same form as that of the tangent at a point (', y’),
viz. yy’ = 2a(x+2’). (Chap. VI, § 4, IV.)

Note. If Q(z’, ) is a point on the parabola, the polar of any point
T(h, y') on the diameter through Q is yy’ = 2a (x+ 1", which is parallel to
the tangent at @ and to the chords bisectea by the diameter: convesscly,
the pole of any chord lies on the diameter bisecting the chord.

R 2
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(8) The equation of a pair of tangents from a point (x', y’) to the
parabola.
This equation (Chap. VI, § 4) is
(y2—4dazx)(y'*—4az’) = {yy' —2ax—2ar’}%
Retaining terms of the second degree only, we find that these
tangents are parallel to the straight lines
Yy (y'*—4a2’) = (yy' —2a2)’,

ie. 2y —y'zy +ax? = 0.
The angle 0 between the tangents is therefore given by
v i—4ax
tan 6 = vy 7 a7,
z+a

Thus the locus of a point, the tangents from which include a
constant angle 0, is
y:—4dar = (z+a)’tan® 4.
The locus of the intersection of orthogonal tangents is z+a = 0,
i.e. the directrix.

§ 8. (a) The cquation of the parabola referred to the axis and latus
rectum as coordinate axes.
When the equation of the parabola is »? = 4ax, the focus is (a, 0).
Changing the axes to parallel axes through this point, we obtain
the required equation as
yi=4a(x+a)
(b) The equation of the parabola referred to any diameter and the
tangent at its extremity as coordinate axes.
Let the origin be 0, and let the axes of soordinates be the diameter
Oz and the tangent Oy. Since all chords

y P of the parabola parallel to Oy are bisected
by the diameter Oz, the ordinates of
o / M 2 points on the parabola, which have the
v same abscissa, are equal and of opposita
sign.
TA L]

Hence the equation of the parabola
must be of the-form #?=4Arz; we
have then to find the value of A.

Let the angle between the coordinate
axes he w: draw the ordinate P¥ and
PN, OR perpendicular to the axis of the parabola.

If the coordinates of O, referred to the principal axes of the

parabola, are (h, k), then tanw = .27?.
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Since %% = 4ah, we have &k = a cot’ w and k¥ = 2acot w.
Let P be the point (z, y), then
PN = PM+ OR = ysinw+k = ysin v+ 2a cot v,
AN=AR+OV+ VM =h+x+ycosw = acot? w+ z+y cos w.
But PN? =4a.AN; hence

(ysinw+2acot w)® = 4a(acot? w+ 2+ y cos w),
or y? = 4ax cosec® v,
and consequently A = a cosec? w.

This is then the equation of the parabola referred to a diameter
and the tangent at its extremity ; it is of the same form as y* =4axz,
consequently the equations of the tangent, polar, and diameter will
be of the same form as those already found, but the normal which
involves the condition for perpendicularity will not be the same,
since the axes of coordinates are now oblique.

The equation translated into geometrical notation gives

PV? =4A4Scosec?w.0V.

Now SO=a+h=a+acot?w = acosec?w;

hence PV?=408.0V.

Example i. To find the coordinates of the focus of the parabola
y? = 4ax cosec® w.
If the tangent at O (see Fig., p. 260) meets the axis at T, the z-coordinate
of S isequal to ST. But ST=S0=a+h;
=a+acot’n;
= a cosec? w.
The y-coordinate is equal to OT', hence
ys8ine = ~OR= —k = —2acotow
The focus is therefore the point {a cosec’w, —2a cosec’ w cosw}.

Example ii. On the diameter through a point O of a parabola are
taken points P, P’ so that the rectangle OP.OP’ is constant : prove that
the four points of intersection of the tangents drawn from P, P’ lie on two
fized straight lines parailel to the tangent at O and equidistant from it

Take the diameter and tangent at O for axes of coordinatcs and fou che
points P, P’ be (¢, 0) (¢, 0), where £ = ¢
The equation of the pairs of tangents from P to the parabola is
—4af (Y -4ax) = (2ax+2a¢)},
which reduces to at*+(y*~2ax) E+ax® = 0. (i)
The equation of the pair of tangents from P’ to the parabola is obtained
by writing ¢ for £.
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Thus, if (x, ) is one point of intersection of the tangents from P and P,
& and ¢’ satisfy equation (i).

The product of the roots of this equation is 2?; thus z? = ££' = ¢

Hence the points of intersection of tangents from P, P’ to the parabola
lic on one or other of the lines +¢ =0, x--¢ = 0; these lines are parallel
to and equidistant from tue tangent at 0, viz. x = 0.

Example iii. The lines joining the wid-points of the sides of a
triangle, which is sclf-conjugate with respect 1o a parabola, touch the
parabola.

Let the vertices 4, B, C of the triangle be the points (x, ), (z,, #,),
(3‘3, .1/8)'
The conditions that the polar of each of these points should pass through
the other two are Yoy = 20 (x,+ ),
Ysth = 2a (x5 + ),
N = 2a (@, +ay).
Now, the coordinates of the mid-points of AB and AC are

(@ +a), L(n+u)) and (o +ay), J(y,+99)} 5

(4, Y Ny
J{ 7;—““2; T+ .’/2)} and { ‘4!‘(:7 } (n+u,) }

The equation of the straight line joining these points is

i.e.

x y 1
iy 2a(y+y) 4da =0,
Ly 2a(ytyy) 4a |

| Y 1

i.e. ny, 2a(y+y) 4a |=0,
1 2a 0
i.e. 2yy, = 4ax +y

This is the equation of the tangent to the parabola at the point
( Z‘ , _/,> , which proves the proposition.
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Examples VII a.

1. The tangent and diameter at a point are perpendicular only when the
point is the ve.tex.

2. The point (¢, n) lies outside, on, or inside the parabola y* = 4ax,
according as n*—-af is positive, zero, or negative.

3. Obtain the coordinates of a point the tangent at which meakes an
angle ¢ with the diameter through the point.

4. If the ordinate of a point on the parabola is 2«¢, find the abscissa.

5. Fiad the condition that the straight line lr+my =1 shouid touch the
parabola y? = 4.

6. Find the equation of the pair of straight lines joining the intersec-
tions of the straight line lz+my==1 and the parabola y?® = 4ax to the
vertex. What are the conditions that they should be (a) perpendicular,
(b) coincident ?

7. Show that the tangents at (x', y'), (2", y”) intersect on the diameter
2y =y’ +y”. Find also the x-coordinate of their point of intersection in
terms of y" and y”.

8. The tangent at P meets the axis at 7" and the tangent at the vertex
at Y. Prove that PY = YT

9. The subnormal of any point on a parabola is half the latus rectum.

10. At what angle does the straight line ma+ y —am®—=2am = 0 cut the
parabola ?

11. The tangent at P and the ovdinate of P mcet the axisat T and N:
show that AN = AT.

12. Find the equation of a parabola, with latus rectum 4b, which touches
the axiy of 2 at the origin and has the axis of y for axis.

13. PG is the normal at I’; prove that the vrojection of PG on the
focal radius of I’ is half the latus rectum.

14. Show thut the length of the focal chord bisected by the diameter at
P is 4SP.

15. The perpendicular from the focus S to the tangent at P meets it at
Y : show that SY? =S4 .SP.

16. Find the vertex, axis, focus, and directrix of the following parabolas:—

() (x+2)2 =4y+5;
(i) (y=1) = 22-7;

(iii) 2*=-8x+2y = 0;

(iv) (@~1)"+(y—2) =3 (x+y-1)%
and write down their equations when referred to their principal axes.

17. The tangents at P and Q to a parabola are at right angles: show that
PQ passes through the focus.

18 The tangent at P meets the directrix at R: show that the angle RSP
is & right angle.

19. Express the coordinates of a point on a parabola ir terms of the
angle which the normal at the point makes with the axis.

20. Find the equation of the directrix of the parabola y* = 4ax cosec’w.
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21. Find the coordinates of the points of intersection of the parabola
y* =4z with the straight line 8y—42+4 = 0. Find the equations of the
tangents at these points, and show that they are perpendicular and meet on
the directrix.

22. Tangents are drawn to the circle «#*+y® = a? from two points on the
axis of x equidistant from the point (¢, 0). Show that the locus of their
intersections is the parabola c¢y® = a?(¢c—x).

23. Show that the normals to the parabola y*= 4ax at its points of inter-
section with the line 2o -3y + 4a = 0 intersect on the parabola.

24. Prove that the distance between a tangent to a parabola and the
parallel normal is @ cosec ¢ sec? $h, where ¢ is the angle which either makes
with the axis.

25, Find the focus and directrix of the parabola (y—2x)* = 5=z+1, and
draw the curve.

26. Two points are taken on the parabola 3* = 4ax, on the same side
of the axis, such that the product of their distances from the axis is 4a?
Show that the tangents at these points (i) intersect on the latus rectum ;
(i) intercept on the directrix a segment whose length is the difference of
their distances from the axis.

27, Obtain the conditions that the straight line Iz + my+n = 0 should be
(i) a tangent; (ii) a normal to the parabola y* = 4ax. Find the locus of
the middle points of the portions of (i) a tangent; (ii) a normal intercepted
between the point of contact and the axis.

28. Find the equation to the parabola whose vertex is the point (1, 2) and
directrix the straight line 3z—4y+10 = 0.

Determine its focus and latus rectum.

29. For the parabola y? = 4ax show that the middle points of all chords
parallel to 3z+4y—2 =0 lie on the straight line 3y +8a = 0; and that
tangents at the extremities of any one of these chords intersect each other
on that diameter.

80. A point P is such that the line drawn through it perpendicular to its
polar with respect to the parabola y* = 4ax touches the parabola 2? = 4by.
Show that P lies on the line 2ax + by +44a® = 0.

81, If the normal at a point P, on the parabola y? = 8x, whose abscissa

is 18, cuts the parabola again at @, show that 9 PQ = 80,/10.

32. A tangent is drawn to a parabola of latus rectum 4¢ and makes an
angle ¢ with the axis ; prove that the sum of the radii of thé two circles
which pass through the focus and touch the tangent and the corresponding
normal is 2a cosec ¢ (1 + cot ¢h).

33. The tangent to a parabola at P meets the tangent at the vertex in 7,
the normal at P meets the axis in G, and the diameter through 7' meets
the curve in Q. Prove that TG? = 4SP. SQ.

34. Through the vertex 4 of the parabola y® = 4ax two chords AP, 4Q
are drawn and the circles on 4P, AQ as diameters intersect in B. Prove
that if 6,, 6,, and ¢ be the angles made with the axis by the tangents at
P and Q and by AR, then coté, +cot6;,+2tan¢ = 0.
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§ 4. Parametric coordinates.

(i) When the equation of the parabola is in its simplest form,
y® = 4azx, the coordinates of any point on it can be expressed in the
form (at? 2at): for since t can have any value positive or negative,
if the ordinate of any point on the parabola is 3’, we can find ¢ so that
t =9/2a; and since y’2 = 4ax’, we have by substitution 2’ = at?
Hence the coordinates of any point on the parabola y? = 4ux can
be expressed in the form (at?, 2at), and conversely it is manifest by
substitution that any point whose coordinates are of this form lies
on the parabola. The quantity ¢ is called the parameter of the
point.

(ii) When the curve is referred to the axis and latus rectum as
coordinate axes, y>=4a(r+a), any point on the curve can be
represented by (at’—a, 2af) for some value of ¢.

(iii) When the curve is referred to a diameter and the tangent at
its extremity as coordinate axes, we have y? = 4xxr where

& = a cosec? w.
We can then use (xt%, 2af) to denote any point on the curve.

The following results apply equally to this case except when we
assume the axes to be rectangular, e.g. when we are using the
condition that two lines should be perpendicular or the condition
that an equation should represent a circle.

§b. 1. To find the parameters of the points of.intersection of any
straight line and the parabola y* = 4 axz.
Let the straight line be lr+my+1 = 0.
If any point (at? 2at) of the parabola lies on this we have
lat?4+2mat+1 = 0. (i)
This equation is quadratic in ¢ and gives the two values of the
parameters of the points where the straight line cuts the parabola.

Cor. i. The points of intersection are real and distinct, coincident, or
imaginary according as the roots of the equation (i) are real, coincident, or
imaginary, i.e. as am? is >, =, or < I.

In particular the line touches the parabola when am? =1.

Cor. ii. Let ¢,, 1, be the roots of the quadratic (i), then

2m 1

hity==""0 thity= o,

L+t
thus 1 and m= ——2
at, ty 2at,t,

If we substitute these values of 7 and m in the equation of the straight
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line, we find that the equation of a chord of the parabola joining the
points whose parameters are #,, ¢, is
y(t +1t)—2a = 2al t, (i1)

Cor. iii. The direction of the chord joining the two points whose para-
meters are #, ¢, depends only on the value of (¢, +1,).

When the axes are rectangular the angle y which thjs chord makes witl
the z-axis is given by cot =% (¢, +1,).

Consequently, if the direction of a chord is constant, the sum of the
parameters of its extremities is constant, or since the ordinates are 2«¢, and
2ut,, the sum of the ordinates of its extremities is constunt. Hence the
ordinate of its mid-point is coustant: this gives us another proof of the

property that the locus of the mid-points of parallel chords is a line parallel
to the axis.

Cor. iv. The focus is the point (a, 0); hence the chord joining the two
points (at,%, 2at,), (at?, 2ai,), viz. y(t,+t,) —2x = 2at,t, passes through the
focus if —2a = 2at,t,, or tt,= —1.

. . o |
Hence, if ¢, is the parameter of one end of a focal chord, —; s the

parameter of the other end. ‘

I1. The length of a chord in terms of the parameters of ils cxiremities.
Length = v/ | (ut,2—at,?)? + (2at, — 2at,)?}
=a(h—t) Vit +t)*+4].
Thus the lengths of pavallel chords (¢, + ¢, = constant) are propor-

tional to the difference of the psrameters (or ordinates) of their
extremities. Also for a focal chord, since ¢,{, = —1, we have

lengtn = a (¢, —?,)%

Example. 70 find the locus of the mid-points of chords of constant
length.

Let the constant lergth be ¢ and let ¢,, t, be the parameters of the ends
of any one of the chords.

The coordinates of its mid-point are given by
20 =a(t?+1}), y=a(t+1y),

and by hypothesis =al(t, ~ ) {(t, + 1) +4}.
Now (f,=t,)2 = 2(t,2+¢8,%) ~(t; +¢,)*
L
= "at

2
Hence ¢* = (4daxr—yp?) <1‘Z,+4}, and the required locns is

(4az—y?) (y* +4a?) = a?c’.
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II1. To find the equation of the tangent to the parabola y? = 4ax at
a point whose parameter is t.

The equation of a chord joining the points whose parameters are
t,, t, is y(h+1,)—24 = 2att,. If the points ¢, ¢, are coincident
with ¢ (i.e. t; = t, = {) we get for the equation of the tangent

ty—x = at?,
or al’—ty+x=0.

Cor. i. Since the paramecer ¢ can have any value, it follows that any
straight line whose equation is of the form x—ty+at®* = 0 is a tangent to
the parabola. (Chap. 11, § 12.)

The tangent to the parabola which is parallel to Ax+By+C =0 or
z -(—f;)er j =0 is x-—( ﬁ)/+ ‘fg =0, the parameter of whose
point of contact is (—B/A4).

This result is often useful when the middle point of a chord is required ;
for the diameter through the point of contact of the parallel tangent
bisects the chord: thus the chord whose equation is dx+By+C=0 is
bisected by the diameter y = —2u¢B/A4.

Cor. ii. The geometrical meaning of the parameter ¢ follows from the
form of the cquation of a tangent ; the tangent at the point (at?, 2at) makes
an angle ¢ with the axis of y such that ¢ = tan ¢.

Evidently ¢ is also the angle which the normal at (at?, 2at) makes with
the axis of a.

It is often convenient to take tan¢ as the parameter of a point; the
coordinates of this point are then (atan?¢, 2atan ¢).

The equation of the tangent at this point can be put in the form

x—atan’¢p y—2atand
sinp  cosgp

IV. Since the equation of the tangent at the point (at?, 2at) is
at*—ty+x =0,
the condition that this tangent should pass through some specified
point (x;, 7,) is
at?—ty, +x, = 0. (i)
Conversely, then, the parameters of the
points of contact of tangents from the point
(®;, ¥,) to the parabola are given by this
equation. If ¢, {, are the roots of equa-
tion (i), then the tangents at the points
whose parameters are f;, ¢, pass through
the point (z,, ,).
Cor. i. Since the equation (i) is quadratic,
it furnishes a proof that two tangents can be
drawn to a parabola from any point: these tangents are real, coincident,
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or imaginary according as y,’—4ax, is positive, zero, or negative, i.e. as
(#;, ¥,) lies outside, on, or inside the curve.
Cor. ii. If ¢, ¢, are the roots of equation (i) we have
t+t, = %—‘, bty =2
i.e. the point (z,, »,) is {at; ¢, a (t; +t,)}.

This gives the coordinates of the point of intersection of tangents at the
points ¢,, ¢,; they can also clearly be found by solving the equations of
the tangents at these points.

It follows also that (x;, y;) lies on the diameter bisecting the chord
joining (%, 7). :

Incidentally, if the points ¢, , ¢, are the extremities of a focal chord we have
shown that ¢,¢, = —1. Hence, tangents at the extremities of a focal chord
are at right angles, and intersect on the directrix z+a = 0.

V. To find the lengths of the tangents from any point O (xy, y,) to the
parabola y? = 4ax.

A straight line through the point O(z,, ¥,), making an angle 6
with the axis of z, is
r—=x Y=Yy

cosf  siné

Let this straight line meet the parabola in the points P, P’; then,
if r has the value OP (or OP’), the point P (or P’) has coordinates

{rcos0+z;, rsinf0+y,};
the condition that this should lie on the parabola gives
(r8in 0+ y,)* = 4a (r cos 0 + 2,),
which is a quadratic equation whose roots are OP, OP’.
If we write u; = y,2—4ax,, this equation becomes
r2sin? 0 + 2r (y, sin 0—2cr,¢.'056).-}-ul =0 (ii)
Now if the line (i) is a tangent to the parabola, P and P’ coin-
cide, and the roots of this equation are equal.
In this case
(y,8in 0 —2a cos 6)? = sin? 0 (y,2— 4 ax,),
which reduces to

™

=7, (1)

acot?@—y, cot 0+ 2, = 0. (i)
This equation is quadratic and gives two values of 6, viz. those
corresponding to the directions of the two tangents OP, 0@, which
can be drawn from O to the parabola.
If 0 has either of these two values, then equation (ii) will have
two roots each equal to the length of the corresponding tangent
from O.
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Thus, if I is the length of the tangent, drawn from O to the
parabola, whose direction is ¢, we have

2 — 1
~ sin%20
But the values of cot 8 are given by
acot?0—y, cot 0+2, = 0.
Hence, eliminating cot §, we get
a?l—u, (y,2—2az, + 20Y) B+ u 2 {(r, —a)’ +y,%} = O,
which is a quadratic equation in I? giving the squares of the lengths

of the tangents which can be drawn from the point (z,, y,) to the
parabola.

Since the roots of this equation are OP? 0@? we have
a? (OP*+ 0Q%) = u, (,>~2ax, 4+ 24?),
and a?.0P%, 0Q* = u® {(r;—a)’*+y,%}:
the latter result can also be written
a*. 0P2.0Q* = u,%. 0S*
or a.O0P,0Q = u,.08S.

2 __
%, (1 +cot?0), i.e. cot?d = -

%

Example i. Two tangents TP, TP’ to a parabola meet the tangent
at the vertex in Q, Q. Prove that the radius of the circle TQQ' is

1 A A, where f,, f, are the focal chords parallel to TP, T'P’.

Let P be the point whose parameter is ¢,, P’ the point ¢,.

Since the tangent at P is #,y—x—at,? =0, the parallel focal chord is
ty—-z+a=0.

Therefore if (a)? 2a)) is either extremity of the focal chord we have by
substitution \?—2#A -1 = 0, which gives the values A, A, of the para-
meters of the ends of the chord.

Hence A\ +X; = 2¢,A\\A\; = —1 and

Length of focal chord = a(A\,—2,)* = 4a(1 +¢?).

Thus f, =4e(1+¢?%; and f,=4a(l+¢t?).

Now the intersection @ of the tangent at P with the tangent at the
vertex = = 0 is (0, at,), and @’ is (0, at,).

If 6 is the angle between the tangents at the points P, P,

heh 00
YA+ (1447 a/(1+1) (1418}
But the radius of the circle TQQ’
_ 09 _av/AFehaxsn _ At}
" 2sind 2 8

sinf =
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Example ii. Show that an infinite number of triangles can be
inscribed in the conic 8y*—8ax—128y+93%--12ax = 0, and circum-
scribed to the parabola y* = 4ax.

Also that, it P, Q, R are the points of contact of any such triangle,
the centroid of PQR is (x, A).

It is evident that a triangle can be circumscribed to the parabola y* = 4ax
with twe of its vertices on the conic
-8ax—12By+98%-12ax = 0.
Suppose that the vertices of such a triangle ave
{apr, a (u+v)}, {avd, a (v+0)}, {alp, a(A+p)}.

Let X +p4» =35 and Ay = p; then the point {—f, a(s— )} lies on the
conic when ¢ is equal to X or u. Hence

2
8a? (c— t)i— 3“‘1’ —12aB(s- )+ 92~ 1200 = 0,
or 8a'l+4a(38-4as)t’+(8a’s*+ 982 -12a0(--12aBs)t-8a*p =0. (i)

Two of the roots of this cubic are therefore X und g ; the product of the
three roots is p (i.e. Auv), hence the third root of the cubic is v. This shows
that, if a triangle circumscribes »* = 4az, and has two vertices on the given
conic, then the third vertex also lies on the conic.

Any number of such triangles can be drawn; for if any tangent to the
parabola cuts the conic at 4 and B, and tangents from 4 and B to the
parabola intersect in C, then we have shown that C also lies on the conic.

The points of contact, P, @, R, of the sides are (e}, 2al)). (ap? 2ap),
(av? 24v). The centroid of the triangle PQR is

3o+ 2 +1%), $a(A+p+v)f.
Since \, u, v are the roots of the cubic (i),

s=)\+p+v=2s-—g—'§; e—gg,
W 8a’82+96 —12ax-12a3s
8al
932 — 12a0(
T8

Hence Npd4+1? =N+ p+v)2—2(uv+ v+ )
3o
e

The coordinates of the centroid are therefore (&, B).

VI. When the focus is the origin, the equation of the parabola is
¥ =4da(x+a).

It can be shown, by a method similar to that used in I and II,
that the equation of the chord joining the points {at,®—a, 2at,},
{at,—a, 2at,} is y (¢, +¢,) = 2(x+a)+2at,t,, and that the equation
of the tangent at the poins (at*—a, 2at) is yt = x+a +at’.

A modification is illustrated in the following example.
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Example. Two parabolas of the systems y? =4 a(c—1,), 2>*=4aly—1,),
wiere Land 1, are variable, touch one arother ; find the locus of their point
of contact. :

Let the parameters of the point of contact (z, y) for the two parabolas
be ¢ and s,
Then the coordinates of this point are
{l; +at?, 2at} or {2as.1,+ as?}.
Hence xz=Ul+at*="2as; y=2at =1,+as’
The equation of the tangents at the point to the twe parabolas are
ty—x+l —at* =0,
st—y+l—ast=0;
and, since these are identical, ts = 1.
Hence xy = 2as.2at = 4a’st = 4a?, i.e. the locus of the point of contact
(r, y) 18 xy = 442

Examples VIIb.

1. In the parabola y? = €x, chords are diawn through the fixed point
19,5). Show that the locus of the mid-points of these chords is the parabola
Y -0y —-3x+27=0.

2. Show that the locus of the middle point of a chord of a parabola
which subtends a right angle at the vertex is another parabola of half the
latus rectum.

3. Show that the angle between any two tangents to a parabola is
cos~'(»,/»,) where 1, r, are the respective distances of their point of
intersection from the focus and directrix.

4. From the point (o, B) two tangents are drawn to the parabola
y? = 4ax: show that the square of the area of the triangle formed by these
tangents and their chord of contact is (5*~4ax)*/4«*

5, If the focus is taken for origin, show that the equation of a tangent
to the parabola can be thrown into the form

2cosX+ysin X+asec X =0,

Two tangents. t; and t,, are drawn to a parabola; I is the internal
bisector of the angle between them and ¢ the tangent parallel to 2. Show
that the product of the perpendiculars from the focus to ¢, and ¢, is the
same as that of those drawn to ¢ and &,

6. Show that the envelope of the chords of the parabola y* = 4ax which
subtend an angle of 45° at the vertex is

2+ 8y’ —24ax+164 = 0.

7. The tangents at P, @, R of a parabola intersect at the points P, @', R’:
find the ratio of the areas of the triangles PQR and FP'Q'R’.

8. The locus of the middle points of all chords of a parabola which pass
through a fixed point is another parabola.

9. Tangents to a parabola cut off a length on u fixed tangent which
subtends a right angle at the vertex: show that their inteisections lie on
a fixed straight line.
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10. Two tangents to a parabola make angles ¢,, ¢, with the axis: prove
that their lengths measured from the points of contact to their point of
intersection are asin (¢, ~ ¢;)/sin’ ¢ sin ¢,; asin (¢, ~ ¢,)/sin P, sin’ ¢,.

11, Two tangents to the parabola y* = 4ax make angles 6, ¢ respectively
with the axis of y. Prove that the equation of their chord of contact is

ysin(f+¢) = (x+ a) cos(§—¢) + (x—a) cos (8 + ).

The envelope of chords of a parabola, the tangents at the ends of which
include a constant angle, is in general an ellipse.

What are the exceptions ?

12. The envelope of the chords of the parabola whose mid-points lie on
x=my+c is (y+2am)® = 8a(x—c).

13. The locus of a point, the tangents from which to the parabola
y® = 4ax make equal angles with y = xcotf+c¢, is y = (a—x) tan 24.

14. Show that the ratio A of the lengths of the tangents drawn from any
point on the latus rectum produced to a parabola is given by aA*—y\ +a = 0,
where y is the ordinate of the point.

15. Tangents are drawn to the parabola y?=4axz at points whose
abscissae are in the ratio p:1. Showthat the locus of their intersection is
the parabola y* = (ut +u~t)%az.

16. A triangle circumscribes y* =4axz and two of its vertices lie on
y* =4a(x+1); find the locus of the other vertex.

17. TP; TQ are tangents to a parabola and O is the orthocentre of the
triangle TPQ. Prove that OT is bisected by the directrix of the parabola.

18. An equilateral triangle circumscribes a parabola: show that the join
of the focus to each vertex passes through the point of contact of the
opposite side.

§ 6. The equation of the normal.

The equation of the tangent at the point (at?, 2at) is
ty—z—at? = 0.
Since the normal is the perpendicular to this line through the
point (at? 2at), its equation is
t(xz—at’)+y—2at =0,
i.e. y+tx—2at—at? =0 (1)
or at’+t(2a—x)—y = 0. (ii)
Similarly, the equation to the normal at (a tan?¢, 2a tan ¢) can be
written ” Satsn
z—atan y—2atan
cosp —singp r (i)
Note i. The condition that the normal at the point (¢!) should pass
through a particular point (x,, ¥,) is (see equation (ii) above)
at’+t(2a~xz) ~y, = 0,
and conversely this equation gives the parameters of the feet of the normals
which pass through (z,, #,). Now, since this equation is a cubic in ¢, it
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follows that from any point three normals can be drawn to a parabola;
these may be all real or one real and two imaginary.

Note ii. The condition that three normals should be concurrent.

If the normals at three points whose parameters are ¢, ¢, ¢, are con-
current at the point (,, y,), then ¢, ¢;, ¢; all satisfy the equation
at+t(2a—-x)—y, =0,
i.e. ¢y, t;, ty are the roots of this equation.
We have then L+t +tg=0,

2a-x
tltﬂ+t2t3+t3tl= a ‘1

ttyty = %‘.

Hence ¢, +#,+t; = 0 is the necessary and sufficient condition that the
normals at the points ¢, ¢,, #; should be concurrent: the remaining two
conditions give the values of the coordinates of their point of intersection in
terms of these parameters provided that the above condition is satisfied.

Now if th+t,+t, =0,
also 2at, +2aty + 2aty = 0,
hence if the normals at three points on a parabola are concurrent the sum
of the ordinates of these points is zero, and conversely.

Note iii. To find the condition that the normals at two points should inter-
sect on the parabola,

Suppose the normals at two points whose parameters are t,, ¢; intersect
at a point P (x;, y,) on the curve whose parameter is A.

Put x, = a)3 y, = 2a); the parameters of the feet of the three normals
meeting at P are given by

att+t(2a—ai®)—2ai =0,
or B+E(2-2N) =21 =0.

Evidently one of these three normals is the normal at the point P itself :
the equation may be written (¢—\)' (#+¢X+2) = 0, so that ¢, ¢, are given
by #2+tA+2 = 0, and the required condition is ¢ ¢, = 2; thus the product
of the ordinates of the two points is 8a? and, further, the chord joining
them passes through the point (~2aq, 0).

Further, the values of ¢, ¢, are given by
and consequently the two normals which can be drawn from a point
(aX% 2a)) on the parabola other than the normal at this point are real,
coincident, or imaginary according as A\? is >, =, or < 8, i.e. according as
the abscissa of the point is >, =, or < 8a.

Note iv. To find the locus of a point, two of the normals from which to
a parabola are coincident.
If the point is (x,, y,), the parameters of the feet of the normals drawn
from it to the curve are given by
at+t(2a—x)~y, = 0.
1267 S
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Now if two of the normals are coincident, two roots of this equation are
equal. Let the roots be #,, #,, ¢, ; then we have

2t +¢, =0,
or f2= -2f17

i.e. the roots of the equation are 7,, #,, —2¢,.

2a— -2
Hence B =200 0 I — ¢ =312,
and —ot3 =",
a

Eliminating t,, we obtain
27ay,® = 4(x,—2a)*:
i.e. the equation of the locus required is
27ay® = 4(x—20)’

This equation represents the locus of thé intersections of consecutive
normals and the curve is called the Evolute of the parabola.

Now at a point (if any) where the evolute meets the parabola the two
normals which can be drawn through it other than the normal at the
point itself must be coincident: if this point of intersection is the point
(a)? 2a)) of the parabola we have shown (Note iii) that the parameters
of the feet of the other two normals are given by

2+iN+2 =0,

These are coincident when \? = 8: hence the points of intersection of

the parabola and its evolute are (8a, 44/2a) and (84, —44/2a): the

3)

student can verify this by substitution in the equation of the evolute.
The evolute meets the axis at (2a, 0); its graph is shown in the figure;
PR, PR, PG are the normals meeting at P.
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Cor. We have seen that the normals meeting at (z,, y,) are given by
at? +t (2« —a) —y, = 0.
Now (vide Hall and Knight's Higher Alyebra, § 579) there is always one

real root of this equation; the other two are real, coincident, or imaginary
according as

27ay? is >, =, or < 4(x,—-2a)?,
i.e. according as the point (x,, y,) lies inside, on, or outside the evolute:
thus the evolute divides the plane of the parabola into two parts such that
from any point (e.g. @) in the one three real normals can be drawn to the

parabola, and from any point in the other only one real normal can be
drawn.

Example i. A chord of the parabola y* = 4ax passes through the
point (Aa, 0) : prove that the normals at its extremities intersect on the
curve y* = Na(x—Aa—2a).

Let the parameters of the extremitics of any chord through (Aa, 0) be
t,, t,: the equation of the chord is

(t,+t)y =2x+2att,;
hence 2Na+2att, =0,
or tity = —N\.

Now if the normals at ¢, #,, t, meet at (, y), these parameters are given
by at®*+t(2a—x)—y = 0.

ﬂmsq+g+g=0,QQ+QQ+%Q=%€:F,

Hence, by substituting ¢, +¢, = —t, and #;¢,= —\, we have

r—2a

]
tlt2t3=~é-

= A+t and ¥ - =\t
a

Eliminating t;, we get the equation of the locus required, viz.
7= Aa(x®—hra—2aqa).

Example ii. Normals are drawn to the parabola y*—4ax =0 from
the point (X, Y): show that the equation of the nine-point circle of the
triangle formed by their feet is

42 +y)+2(10a—8X)z+ Yy+2(2a—X)(6a—X) = 0.

Let the feet of the normals be A4, B, C and the parameters of these
points be #,, #,, t;: the nine-point circle passes through the mid-points of
the sides of the triangle ABC.

Since the normals at 4, B, C meet at (X, Y), ¢, t,, t; are given by

att+t(2a-X)=-Y =0,

2a—-X Y
thus ll+t2+13= 0; tlf2+t2t3+t8tl = a H tltgta = '(-': ¢

The mid-point of BC is {3a(t,?+1), a(t,+1t5)}.
S 0

-~
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Now t,+t,=~t,, and ... i, + bt +tt, = tyts—1?2,

2a-X
tits =1t + rEah
But tl 124+ 24t = 1,2,
hence ti 4+t = 2X;4a -3

i.e. the mid-point of BC is
{X~2a-%at?; —at},
and the coordinates of the mid-points of C4, 4B can be found sym-
metrically by writing t,, ¢, for ¢, respectively.
Now let the nine-point circle be
2+ 92+ 292+ 2fy+c = 0.
Since each of the mid-points lies on this, #,, #,, and ¢, satisfy the equation
{X—-2a-3at?}?+a’t?+2g {X—-2a—}at?} —2aft+c =0,
which reduces to
a*t'+ 418 {3a®—aX —ag} —8aft+4(X—-2a)*+8g(X—2a)+4c=0.
Since the coefficient of ¢ is zero, the sum of the four roots of this equation
is zero ; but the sum of the three roots ¢,, ¢,, 7, is zero, therefore the fourth
root must be zero.
Hence (X-2a)+29(X-2a)+c=0, @)
and the equation reduces to
at*+4 {8a—-X—-g}t-8f=0,
which, having roots ¢,, ¢,, #;, is *lentical with
at’+(2a-X)t-Y =0.

Hence 12a-4X-49g=2a-X,
49 =10a-3X,
and 8f=7Y.

But, substituting for g in (i), we have
¢c=—(X-2a)(X~-2a+2y)
= —(X-2a)(X~-2a+5a-4X)
=4 (X~2a)(X-6a).
Hence, substituting in the equation of the circle for g, 7, and ¢, we get for
the nine-point circle
4(2*+9y)+2(10a-3X)x+ Yy+2(X~2a)(X—-6a)=0.

§ 7. Relations between the coordinates of the points of inter-
section of the tangents and normals at any two points on a
parabola. ;

Let (z, y) be the point of intersection of the tangents at two points
and (£, 1) that of the normals.

The parameters of the points' of contact of the tangents which

meet at (2, y) are given by
at—yt+2z = 0, )
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and the parameters of the feet of the normals which can be drawn
from (&, 1) are given by
att+(Ra—§&t—n=0. (i1)
Hence two of the roots of equation (ii) are the same as those of
equation (i). These two roots therefore also satisfy
at*+(2a—§)t—n—t{atP—yt+x} =0,
i.e. ytt—(x+£¢—2a)t—m=0;
this equation is therefore identical with (i), and we have
g=x+§—2a=_r_7. (i)
a y z
Suppose now that the points of intersection of two tangents under
certain conditions lie on some locus f(z, y) = O, the corresponding
locus of the intersections of the normals at their points of contact
will be ¢ (& n) = 0, obtained by eliminating z and y from f(x, y)=0
and the equations (iii).
The converse proposition can be stated more directly ; thus we
have from (iii) ,
§=‘1—Ia——x+2a; n=-—%,
and if the locus of the intersections of the normals at the ends of
a chord moving under given conditions is f(§, 1) = 0, the equation
of the locus of the intersections of tangents at the ends of the chord is

| UAgp __‘ﬁ/}_
fm r+2a, — = 0.

Example. 1o find the locus of the intersection of the normals at the
ends of a focal chord.

We know that the locus of the intersection of the tangents at the ends of
a focal chord is the directrix z+a = 0.

The locus of the intersections of the normals is obtained by eliminating
2, y from this equation and

a y x
Hence y_£-3a_n ;
d a a
y=n an
n'=a(é-3a);
or the required locus is y'=a(x-3a)

Examples VII c.

1. Find the equation of the normal at the point (—a+at?, 2at) of the
parabola y? = 4a(x+a).

2. Find the parameter of the point where the normal at (at?, 2at) meets
the parabola y® = 4ax again.
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8. Find the equation of the normal at the point (d¢? 2dt) on the parabola
y* = 4dx, where dsin’w = a (oblique axes).

4. Show that the normals to a parabola at the points (at,? 2 at)), (at,%, 2at,)
intersect at the point {2a+«(t,2+1t,t,+4,2), —at t,(t,+4,)}.

5. Normals at pairs of points on the parabola y? = 4ax meet on the line
x=h. Find the locus of the intersections of tangents at these pairs of
points. Also when the normals meet on y = F.

6. Tangents are drawn to a pz;,rabola, from points on a line parallel to the
axis; prove that the normals at their points of contact intersect on a fixed
straight line.

7. Show that, if a variable chord of the parabola »* = 4x touches the
parabola y?= wx, the tangents at its extremities meet on the parabola
y? = 16, and find the locus of the meets of the normals at its extiemities.

8. The normal at any point P of a parabola cuts the axis in G and meets
the curve again in @. If the normal makes an angle 4 with the axis, prove
that GQsin?d = 2 4G cosé.

9. Show that the equation of any normal to the parabola 4* = 4b (z +¢)
may be written in the form y+max = (2b—c)m + dm®.

10. Normals are drawn from the point (am? 2am) to the parabola y* = 4a.r.
Show that the feet (at?, 2at)), (at?, 2at,) of these normals are given by
2+ mt+2 = 0. Show also that the product of their lengths is 4a?(1 + m)?,

11. Show that the middle points of the sides of a triangle formed by
tangents at P, @, R to the parabola y* = 4ax lie on the parabola 2y +axr =0
if the normals at P, @, R are concurrent.

12. If chords of the parabola y® = 4ax pass through the foot of the
directrix, show that normals at their extremities meet on 4 = a(x—a).

13. If the chord PQ of 3> = 4ax passes through (—2¢, 0), the normals at
P, Q@ meet on the curve and contain an angle equal to PAQ.

14, If the normals at P, P,, P;are concurrent, the centroid of the triangle
P, P, P, lies on the axis.

If P,, P, coincide at («’, y') the equation of P, P, is w/x"+ y/y’ = 2.

15. If the normals corresponding to the tangents drawn from 71'(h, k)
meet at N, then SN2:ST? = o> +k%: %

16. If the tangents at I, Q meet at (x,, ) and the normals at (ur,, y,),
then x,—x, = SP+8Q and ay, = —u,y,.

17. A triangle is inscribed in a parabola and the normals at its vertices
are concurrent: show that the perpendiculars to its sides at the points where
they meet the axis intersect on the tangent at the vertex.

18. TP, TQ are two tangents to a parabola; PN, QN are the corre-
sponding normals; M is the mid-point of TN.

Prove that TM subtends a right angle at the focus.

19. If P, Q, R are the feet of the three normals from a point on the line
x = 2a +¢, the intersections of the tangents at P, @, K lie on 3* = a(xz+c).

20. If a tangent to = 4a(x+a) meets a normal to y* = 4b(x+b) at
right angles, the locus of their intersection is a parabola.

21. A, B, C are the feet of the normals which meet at (X, B) ; prove that
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the straight lines bisecting BC, CA, 4B at right angles are normals to the

parabola y* =8a(4a+0—x) at the points whose ordinates are equal to
those of 4, B, C.

22. The normals at P, @, the ends of a focal chord, n:eet the curve again
at P’, Q". Show that P’Q’ is parallel and equal to 8 PQ.

Show also that the envelope of P’Q’ is a parabola whose latus rectum is
cight times that of the given parabola.

25. Find the orthocentre of the triangle tormed by the feet of the normals
fiom (X, Y) to the parabola.

24. The three normals from a point P to the parabola y' = 4ar and the

line through P parallel to the axis form an harmonic pencil: show that P
lies on 27ay® = 2(x—2a)%.

§ 8. The parabola and the circle.

We propose firstly to discuss the intersection of a circle and
a parabola by means of parametric coordinates; in the next
section we shall discover the fornms of the equations of circles
and other curves which are variously related to the parabola. Some
of the work overlaps; the student will learn by experience which
method is the inore appropriate for a given problem.

The general equation of a circle is

22+ 17+ 2924+ 2fy+¢= 0. (i)

If any point (at?, 2at) on the parabola lies also on this circle, the
parameter ¢ of the point must satisfy the equation obtained by
substituting x = at?, y = 2at in (i), viz.

a2+ (4 a*+2ga) 2+ 4 fut+c¢ = 0. (ii)

Since the parameter of any point common to the circle and the

parabola satisfies this equation, it is evident that this equation gives

the values of the parameters of all the points of intersection of the
circle and the parabola.

Cor.i. The equation is a quartic in¢; hence every circle meets the
parabola in four points; these may be all real, two real and two imaginary,
or all imaginary.

Cor. ii. If the four roots of equation (ii) are ¢,¢,, ¢, ¢, since the
coefficient of # is zero, we have

L+t +ts+t, = 0.

Conversely, if the sum of the parameters (t,, t,, £, f,) of _four points on
the parabola is zero, these four points lie on a circle ; for if we find g, £, and
¢ 80 that

29+4a=astt,
4f=—alttt,,
¢ = @3ttty
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then ¢,, 1, t, t, are the roots of the equation (ii); but the condition that
¢, should satisfy this equation is also the condition that the point (at,2, 2at,)
should lie on the circle 2*+4*+ 292 +2fy+ ¢ = 0.

Thus the necessary and sufficient condition that four points on the
parabola should be concyclic is that the sum of the parameters, and there-
fore the sum of the ordinates, of the points should be zero.

Cor. iii. If the four points 4ABCD whose parameters are ¢,, ¢,, t5, ¢, are
concyclic, we have ¢, +¢,+¢;3+¢, = 0.
These four points can be joined in pairs in three ways, 4B, DC; 4D, BC;
AC, BD. The equations of the first pair are
y(,+t)—2x =2att,
y(ts+1¢,) —2x = 2atyt,,
But t,+¢,=—(t;+1,), hence these chords are equally inclined to the axis
of the parabola. The same is true for the other pairs.
Hence, The common chords of a circle and a parabola are in pairs
equally inclined to the axis.

Cor. iv. When two of the points of intersection coincide (e.g. C and D)
the circle touches the parabola at C. Also AB and the common tangent
at C, being a pair of common chords, are equally inclined to the axis.

Cor. v. Three of the points (e.g. B, C, D) may coincide; in this case
the circle both cuts and touches the parabola at B. The circle is then said
to osculate the parabola, and is called the osculating circle or the circle
of curvature at the point B.

Since 4B and the tangent at B are a pair of common chords, they are
equally inclined to the axis of the parabola.

The properties of the circle of curvature can be at once deduced from the
cquation (ii) a’¢'+ (4a®+2ga)t*+4 fat+c = 0.

Let B be the point ¢, and 4 the point ¢, ; then the roots of this equation
are ty, ¢, 4, 4.

Thus (a) 3t,+¢, =0,
or tz = —-3[1,

80 that the circle of curvature at the point (at?, 2a¢,) meets the parabola
again at the point (9at? —6at,); the equation of the common chord of the
parabola and the circle of curvature at the point ¢, is

ty +a = 3at}.

(b) The sum of the products of the roots two at a time = 4 + g‘;j/;
2—;—’ +4 = 84%+38¢,1, = 8429, = - 6¢,%;
—g=3at>+2a.
The sum of the products of the roots three at a time = ~ %f ;

- ‘};f—_- 04347 = 42— 94" =~ 841,

-‘f‘ - 20[13.
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The product of the roots = -, 23
a

c
P ity = —34*;

¢ = —3a’t"
The centre of the circle, i.e. the centre of curvature, is therefore
(8at,®+2a; —2at®). The radius of curvature (p) is given by

P =rfligi—c=4a* (14427 ie. p=2a(1+)t.
(c) If the length of the radius of curvature is given, the parameter of
the point of contact of the corresponding circle of curvature is given by

3 _2
tlz=\/;_a,_1.

2

There is only one real cube root of £—, hence there is only one real value

4a%
of t,%. This value is positive provided that p > 2a, in whicb case ¢, has two
equal and opposite values.

Thus the minimum length of the radius of curvature is 2a.

Two circles of curvature, symmetrically placed with respect to the axis of
the parabola, correspond to any value of the radius of curvature greater
than 2a.

(d) It follows from the results found in (b) that the equation of the ciicle
of curvature at the point (at?, 2at) is

2+ y*—-2(3at?+2a)x+4aPy -3’ = 0.

(e) If P, @, R are three of the points of intersection of a circle and
a parabola, then, when P and R coincide with Q, each of the chords Pg@,
QR becomes a tangent to both the circle and the parabola.

These two tangents are coincident, hence the corresponding normals are
coincident. Since these coincident normals are normals to the circle, they
intersect at the centre of curvature.

Since they are consecutive normals of the parabola, they intersect on the
evolute of the parabola.

Hence the evolute is the locus of the centre of curvature.

We have shown that the coordinates of the centre of curvature corre-
sponding to the point (at?, 2a¢) are given by

x=—g=23at"+2aq,
y=—f=-—2at

Eliminating ¢, the equation of the locus of the centre of curvature, i.e.
of the evolute, is 27ay® = 4(r—2a)d.

Cor. vi. If equation (ii) has two pairs of equal roots, the circle touches
the parabola in two points and is said to have double contact.

Let the two points be ¢, f;; then the roots of the equation (ii) are
tiy by, tg, tg; but 22 =0; hence ¢, = —¢,.

The points of contact are therefore symmetrically placed with respect to
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the axis, and the common chord of the circle and the parabola is perpen-
dicular to the axis.

The centre is evidently on the axis; and, since in this case = ¢,t, = ~2¢3,
the abscissa of the centre is given by
-0 =at®+2aq,
and its minimum value is therefore 2a.

Example i. A circle cuts a parabola in four points: if the normals
at twree of these points are concurrent, prove that the circle passcs through
the verter, and find its equation if the normals meet at (€, 7).

Let the parameters of the four points of intersection be ¢, t,, t5, ¢,.

Since the points are concyclic

i+t +t+t, =0,
and if the normals at ¢, ¢,, ¢, are concurrent
L+t +t; =0,

Hence ¢, = 0, i.e. the circle passes through the vertex.

Since the normals meet at (£, n) the parameters of their teet (viz. ¢,, t;, t;)
are given by

at+(2a—¢)t—n =0, (1)

Let the circle be £'+y*+2gx+2fy =0, then the parametlers of the
points of intersection of this circle and the parabola are given by

a +(4a+2g)t+4f=0. (i1)
Since these are by hypothesis t,, ¢,, 5, equations (i) and (ii) are identical.
Thus 29 =-(¢+2a),
ef=-%n.

Hence the equation of the circle is
Z+yt—(£+2a)c—-1ny =0.

Example ii. A straight line cuts the evolute of a parabole in three
real points, from cach of which the normal to the parabola, other than the
radius of curvature, is drawn. Show that the centres of curvatures at
the feet of these normals are collincar.

If L is any point on the ¢volute, two of the normals which can be drawn
from L to the parabola coincide with each other.

If P(at?, 2at,) is the foot of these coincident normals, then I is the
centre of curvature of the parabola at P. If @ (at;? 2«t,) is the foot of
the third normal from L, since the normals at 1, ¢, ¢, are concurrent,

24+, =0,
i.e. the parameter of Q is —2¢,.

We have therefore to show that if the centres of curvature at three

points whose parameters are #,,¢,,¢; are collinear, then the centres of

curvature at the three points whose parameters are —2¢,, —2¢,, ~2¢; are
also collinear,
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The centre of curvature at the point ¢ is {2a+3at?, ~2a#3}; the centres
of curvature at the point ¢, ¢,, t; are collinear if ¢, ¢, ¢, satisfy an
equation of the form p(2a+ 8at?)—2qaqt3+r = 0.

The necessary condition for this is'that 3¢;¢, =0, or 2 (1/¢)= 0, and the
condition is evidently sufficient.

Similarly, the condition that the centre of curvature at the points
~2t,, —2t,, —2t; should be collinear is £ (—-1/2¢)=0. Butif 2(1/¢t) =0,
then obviously = (-1/2¢)= 0.

Examples VIId.

1. Find the radius, centre, and circle of curvature at the extremity of the
latus rectum.

2. A circle touches the parabola at the two points of intersection of the
curve and = 3¢ ; find its equation.
3. A circle is described on the chord of a parabola whose equation is

Az + By +« = 0 as diameter; find the equation of the other common chord
of the circle and the parabola.

4. The circle of curvature at the vertex meets the curve in four coincident
points.

5. The extremities of any two chords of a parabola which are perpen-
dicular to the axis are concyclic.

6. Find the points at which the radius of curvature is 164.

7. The common chords of the circles of curvature at (x,, y,), (2,, ¥,) respec-
tively and the parabola intersect at the point (£, ) ; prove that

3y, y, +4uf =0 and 3(y, +y,) =2n.

8. The circle of curvature at a point P on a parabola meets the parabola
again in Q. If p,, p, are the radii of curvature at P and @, prove that
9 p,§ —p,g is constant.

9. If m,, m,, my are the roots of the equation w4 pm®+4gm+r=0,
show that the points (am,? 2am,), (amy? 2amy), («mg?, 2am,) lie on the
circle %+ y*+ (q—p* —4)ax + L (r—pq) ay — «*pr = 0, and deduce the length
of the radius of curvature at any point of y* = 4«x.

10. A circle passes through the vertex and three other points P, @, It of
a parabola. The lines joining P, @, R to the focus meet the curve again at
P, @', B’. Prove that the centres of curvature at P, @', R are collinear.

§ 9. Forms of Equations.

In this section we shall use the following abridged notation.
P = 0, the equation of any parabola.

u = 0, v = 0, the equations of two chords of the parabola.

t =0, ¢’ = 0, the equations of any two tangents to the parabola.
C = 0, the equation of a circle.

Throughout % is used for an undetermined constant.
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(i) P = kuv.
Let v = 0, v =0 cut the parabola P = O in the points 4, B, C, D.
Now the coordinates of any one of these points satisfy the equation
P—Fkuv = 0.
For the point 4 lies on P = 0 and « = 0; its coordinates, therefore,
substituted in P and %, make these expressions zero: and con-
sequently, when substituted in P—%uv, they make it zero.

Now P is of the second degree, and since « and v are linear,
uv is of the second degree. Hence P~—Fkuv is of the second degree ;
the equation P—Fkuv = O consequently represents a conic passing
through the four points 4, B, C, D. The constant % is still at our
disposal, so that the conic may be made to satisfy one other condition
by giving & a suitable value. For example, it may be another
parabola, or it may pass through some given fifth point.

In two cases the equation P = kuv represents a pair of straight
lines, viz. AC, BD; AD, BC. The equation cannot in general
represent a circle, since two conditions are necessary: we have seen
that « = 0, ¥ = 0 must be equally inclined to the axis of P = 0.

Example. To find the equation of the parabola which passes through
the points of intersection of y*> = 4x and the straight lines 8x+4y =6
and x+2y = 3.

The equation of the parabola must be of the form

y'—4zx+k(Bx+4y-5)(x+2y—-8) =0.

The condition that the curve which is the locus of this equation should
be a parabola is 3% (1 +8%)—-25%* =0, i.e. £ =0 or 3.

Hence the required equation is

y'-4x+3(8x+4y-5)(x+2y-3) =0,
i.e. 9%+ 30xy + 25y - 46— 66y +45 = 0.
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(ii) P—ku?= 0.

If the straight lines » = 0, v = 0 coincide, the pairs of points
AC, BD become coincident: the conic P—%ku? = O therefore touches
the parabola at the points 4 and B.

AC

8D

Thus P—ku? = 0 is the general equation of a conic having double
contact with the parabola, # = O being the chord of contact.

The equation can only represent a circle when u =0 is per-
pendicular to the axis: for one value of k it represents a pair of
straight lines, viz. the tangents A and B to the parabola.

Example. A conic has doudble contact with a parabola, one of the
points of contact being the vertex, and passes through its focus. Show
that the locus of its centre is a parabola.

Let the parabola be y? = 4ax. Since the chord of contact passes through
the origin, its equation is of the form lz+my = 0.
The equation of the conic is then
k(y*—4ax)+ (Iz + my)t = 0,
since it passes through the focus (a, 0);
4o’k = o', e k=23
The equation of the conic is then
P(y*—4ax)+4(lx+my) =0,
or 402 4+ 8lmxy + (4m? + P)y*—4alx = 0.
Its centre is given by
482+ 4Imy—2al* = 0, or 2lx+2my—al = 0,
and 4lmz+(Am*+P)y =0;

- Py,
2(x+my) = al = — o’

I m  lztmy al

9" =y 2az-y' " 2Qaz—y)’
and the required locus is y* = a (22— a), which is a parabola.
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(iii) P—kut = 0.

When the line v = 0 is a tangent to the parabola (viz. ¢ = 0),
the points C, D coincide and the conic touches the parabola
at C.

Thus P—kut = 0 represents a conic passing through the inter-
sections of P=0 and # =0, and
touching I’ = 0 at the point of contact
of t=0.

It can only represent a circle when
w=0, t=0 are equally inclined to
the axis of P= 0.

For one value of % it will represent
the pair of straight lines CA4, CB.

Note that, if the line » = 0 is not
given, the general equation of a conic
touching the parabola P=0 at the
point of contact of ¢ =0 is

P=Lt(lx+my+1) = 0.

‘We have now three undetermined constants, and the conic can
therefore satisfy three other conditions.

Example. Find the equation of the circle touching the parabola
Y2 = 4x+4 atthe point (8, 6) which passes also through the focus.

The tangent at the point (8, 6) is
xz-3y+10=0.
The equation of the circle is of the form
k(y*—4x—4) = (z-3y+10) (lx + my +1).
Since it passes through the focus (i.e. the origin)
~4k =10 or k = —4.
Hence the equation becomes
5(y*—4x—-4)+2@x -3y +10)(lx+my+1) =0.
The conditions that this should represent a circle are

H—6m =2l
and m = 31;
=%}, m=3.

The equation of the circle is therefore
10(y*—42~4)+(x-8y+10) (x+3y+4) =0,
ie. 2?4+t -262+18y = 0.
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(iv) P—kut =0, when u = 0, t = O intersect on P = 0.

If three of the points, for example A, C, D, coincide, the conic
touches and cuts the parabola at 4. The conic P—kut = 0 and the
parabola P = 0 are then said to have ‘three-point contact’ or ‘con-

tact of the second order’. AC
Example. 10 find the equation of v
the circle of curvature at the point
(@)% 2al) of the parabola y* = 4 ax.
The taagent at the point A is
t=Ny—x—aX’ =0,
and any chord through the point of con-
tact is
w=x—aN+m(y—2al) =0, B
where m is a constant to be determined. I

The equation of the circle of curvature is therefore of the form
P—daz+kNy—z—ar?) {a—aX+m(y—2a))) = 0.
The conditions that this should be a circle are
—k=14+kAm
and A=m=0; )
m=NX\, k= i
The equation of the circle is then
(1 +2) (y*—dax)— (Ay—x—4a)?) (z+ry—3aX?) =0,
which reduces to
Z+y—2a(2+32)x+4ary—3a*\ = 0.

(v) P—kt?=o0.

When the four points 4, B, C, I coincide, both the chords
% =0, v = 0 coincide with the tangent at A, viz. t = 0. The conic

aBS2

L

P—Fk? = 0 then meets the parabola in four coincident points and
is said to have ‘four-point contact’ or ‘ contact of the third order’.
The conic can only be a circle when ¢ = 0 is the tangent at the vertex.
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(vi) P—ktt’ = 0.

When the chords = 0, v = 0 both become tangents, the pairs
of points A, B and O, D coincide, and we get another form of the
equation of a conic having double contact with the parabola: the
points of contact are those of the tangents.

Thus Y—dar=k{A+p)y—22—2aAu}?
and Yi—4dar =k (Ay—z—aA?} {py—z—ap?};

both represent a conic having double contact with the parabola at
the points (aA?, 2al), (au? 2ap).

(vi) P—kC=0.

By similar reasoning this represents a conic passing through the
four points of intersection of the parabola P =0 and the circle
C=0. For certain values of % it will represent the common
chords of the circle and parabola.

Note. It is evident that the seven forms here discussed would give similar
results if we used S =0, the equation of any conic, parabola, ellipse, or
hyperbola, instead of P= 0. It is therefore important to understand these
forms ;: we have used the parabola because the student is now familiar with
the form of its equation.

Example, Prove that the equation of the parabola which passes
through the origin and has contact of the second order with y*> = 4ax at
the point (ap?, 2ap) is (42—8py)’+4ap® (8x—2uy) = 0.

The required parabola is of the form P—kut =0, where ¢ =0 is the
tangent at (ap? 2ap) and u = 0 is the join of the origin to this point, i.e.

y'—4ax—k (py -z —ap’) (—py+22) =0.
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Since the curve is to be a parabola,
2k (1+Kud) = (3 ub)?,
i.e. 8+48ku? =9k p?;
k= 8/p;
.. the required equation is
K (Y —4dax) -8 (uy—x—aup®) 2z —py) =0,
l.e. 162 —24pxy +9p?y’ + 12a p’x —8apdy = 0,
or (4z—-3py)+4ap? (Br—2uy) = 0.

Examples VII e.

1. Find the equation of the other parabola which passes through the four
points common to y® = 4ax and 2*+y*+29x+2fy+c = 0.

2. Find the equation of a parabola which has contact of the second order
with y® =4 ax at the point (af?, 2«¢) and passes through an end of the
latus rectum.

3. Find the equation of the rectangular hyperbola which has contact of
the third order with the parabola at the point (af?, 2at).

4. For what values of A does the equation y*—4ax +A (x—2a) (x—3a) =0
represent straight lines. Illustrate these lines in a diagram.

5. TP, TQ are tangents to a parabola from any point 7' on the line z = 2a:
show that the circle TPQ passes through the origin.

6. A circle has double contact with the parabola y* = 4« (x+«a), and the
point whose abscissa is 8 is one point of contact. Find its equation and
its centre.

7. Circles are described passing through the vertex of the parabola
¥* = 4ax and cutting the parabola orthogonally at the other point of inter-
section. Show that their centres lie on the curve

202 Ry +a¥-12ax) = ax (Bxr—4a)%

8. Find the equation of the circle which touches the parabola y® = 4ax
ab the point (am?, 2am) and passes through the focus.

Prove that three such circles can be drawn to touch a given line at the
focus and that the tangents at their points of contact form an equilateral
triangle.

9. From a point 7'(x", y') tangents TP, TQ are drawn to a parabola:
show that the other common chord of the parabola and the circle TPQ is
the polar of (2a—a', —y').

10. From points on the line x = h tangents are drawn to the parabola
¥ = 4ax, and circles are described round the triangles formed by each pair
and their chord of contact. Find the locus of their centres.

11. A circle of variable radius whose centre is (0, ) meets the parabola
¥ =4ax at P and Q. Show that the locus of the intersection of the
tangents to the parabola at P and @ is y*—2axy +4a’y—4a’b = 0.

12. PQ is a focal chord of u parabola. Two circles are drawn through the
focus to touch the parabola at P and @ respectively. Show that they cut
one another orthogonally, and find the locus of their second point of
intersection.

1267 T
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13. Circles are drawn through the focus to touch y? = 4ax. Find the en-
velope of those common chords of the circles and the parabola which do
not pass through the points of contact.

14. The tangents to y* =4ax at P and @ meet in 7, and the centre
of the circle TPQ lies on the parabola.
Show that the locus of T'is y" (a —x)® = 16a*+8a%y

§ 10. Method of reducing the equation of a given parabola
to its simplest form.

When the general equation of the second degree

ax*+2hxy +by* +2g9x+2fy+c =0
represents a parabola, it takes the form
(lx+my)*+29x+2fy+c = 0.
Then X =1 (lz+my)+y,
Y = m(le+my) + £,

and the eyuation of its axis (aX +hY = 0, Chap. VI, § 7) becomes,
since @ = 1% and /= Im,

lg+mf
lx 4+ my +ﬁm‘ =0,
lg+mf

or lx+my+n =0, if we write n= ", —- .
y ! 1% 4 m*

The equation of the parabola can be written
(lx+my+n)2+2(9g—In)x+2(f—mn)y+c—n =0,
which reduces at once to

2 gm:’_ﬂ o
(lz+ my + n) +2(l2+mz)(mx—ly)+c-n =0.

If we take le+my+n = 0 and
2+ m?) (c—n?
mx—1ly + g1 0
as new axes of x and y, the equation becomes
2 2U—mg)
(2+m?)t
Example. Find the latus rcclum and the equation of the axis and
the tangent at the vertex of the parabola

2622 + 1202y + 144 y*— 1462+ 89y —256 = 0.
In this case X = 252+60y-~738 =5 (52+12y)-78,
Y =60x+144y +44} = 12(5x + 12y) + 44},

a 9
ulso a=25 h=60; .. =13
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The equation of the axis is therefore

(52 +12y) (25 +144) —365+534 = 0,
i.e. S5z+12y+1=0.
The equation of the parabola can be written
(Bx+12y+1)? = 13(12z— 5y +2).
If we take 52+12y+1=0, 122~5y+2 =0 as axes of X and Y, the
equation becomes y* == x.

Hence the latus rectum is 1, and the equations of the axis und the tangent
at the vertex are Sx+12y+1 =0, and 122~-5y+2 = 0.

Examples VII f.

1. Find the latus rectum of 92*+16y*+24ay—4y—-2+7 = 0.
2. Reduce to their simplest form and draw the graphs of :
(1) (®+2y)+2zx-y = 0;
(i) @+y=1)7 = 4/2(x~y);
(iii) 92*+16y*+24xy—34x+88y+1 =0;
(iv) 922+ 6zy+y* —4x+y+2=0.
3. Show that the parahola
(fe=gy)*-22(hf ~Ng) =2y (hy =N f) —N'+h? =0
has the same axis and focus for all values of A.

4. Prove that the two parabolas which can be drawn through the four
common points of ax?+by* = 1 and 27 +y*+ 29z +2/y + ¢ = 0 have their axes
perpendicular, and that their latera recta are equal if bf = ag.

5. Find the equation of the parabola which cuts the axes at the points
(e, 0) and (0, b) and has its tangents at these points parallel to the axes of y
and x respectively.

6. A parabola has for focus the point (£, n) and for directrix the line
ax+by+c=0. Show that the line Az+By+C =0 is a tangent to the
parabola if (4%+ B%) (aé+bn+c)—2(da+ Bb) (4é+Bn+C) =0.

7. Show that the locus of the intersection of normals to a parabola which
are at right angles to each other is a parabola.

Find its focus and vertex.

8. Find the focus of the parabola (ax+by)? =2y, and show that the
equation of its latus rectum is 2a(a? +b%) (bx —ay) +a* —b* = 0.

9. If aa®+2hay+by*+2gx = 0 represents a parabola, find the coordi-
nates of its vertex.

§ 11. The equation of a parabola referred to any pair of tangents as
coordinate axes.

Let the parabola touch the coordinate axes at 4 (¢, 0) and B (0, b).
The chord of contact is therefore
TV 1=
=+ 1=0.
T 2
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We have seen in § 9 that the equation of a pair of tangents whose
chord of contact is w = 0 is of the form P—ku* = 0.
In the present case therefore

i (E+? 1) =
/ P-k(-+3-1) =,
or
B (o.b) r 2
d=I{ - e — g T .
P=h(C+5-1) +ay=0
In order that
NE R
A___— ’"(?z+b—l) toy=0
0 (8,0) x

should be a parabola, & must equal
—} ab: the equation of the parabola is therefore

S Y "'_éﬂ
(5+5_1) T ab

Parametric representation. The coordinates of any point on
this parabola can be expressed in the form [aA?% b(A—-1)%}, for
these values of z, y satisfy the equation of the parabola and they
can have any positive value we please since A may have any value.
This point will be referred to as the point A on the parabola.

(1) Lo find the equation of the chord joining the points A, .

Let the equation of the chord be
ZIJ + 1;!/ +1=0,
then, since the points A, u are on it,
AN+ BA=1)2+1 =0,
Apt+Bu—-1)2+1=0.
By cross multiplication
4 _ B 1
A=p) A +p=2)  w=A " [u=A)@Au—A—p)’
4 B 1 .
Ap=2" —(Ngp) At+p—2r’
therefore the equation of the chord is

hence

z()\+y.—2) —L+p) = 2—A—p
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(ii) To find the equation of the tangent at the point A.

This follows from that of the chord by putting u = A; thus
the tangent is

z y
SA-1)=FA=A(A-1).

(iii) To find the locus of the intersection of perpendicular tangents.
Suppose that the tangents at A and u are perpendicular; their

equations are z()\—l) - ‘g)\ =AA=-1)

T =Y = u(u—1):
aW=1) —ppr=pk-1);
their point of intersection is therefore given by

x
D=y L= M- 1= A1) (= 1)

=r_Y
A p= PR + 1.
The condition that the tangents should be perpendicular is

(i\:_l&___l_) + Ap + “()\_1)+A('u—1)cos(»= 0.

a* b? ab
Hence 22 x ¥y
L —— + S —
¥y oz 4+ 8 a b co 0
a*d = ab? ab Se="5

or the required locus is
z(a+bcosw)+y(b+acosw) = ab cos w.
This is therefore the equation of the directrix.

(iv) To find the equation of the tangent al the verter.
If the tangent at A,

o= =Ir=r(A—
“(A-1) - FA= A=),

is parallel to the directrix
z(@+bcosw)+y(b+acosw) = abcosw,
we have
A—1 A 1
aitabeosw  —(0'+abeosw)  —(a*+ b+ 2a.
Hence, substituting for A in the equation of the ta
x ] ab

btacosw @ atbeosw a*+bi+2al
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(v) To find the coordinates of the focus.

The perpendiculars from the focus on the coordinate axes lie on
the tangent at the vertex, since the axes are tangents. If (£ 7)
be the focus, the feet of these perpendiculars are

(E+1ncosw,0), (0, n+ & cosw).

Hence the equation of the tangent at the vertex is

d Y -
E+neosw + n+Ecosw 1

Comparing this with the equation already found in (iv), we got
E+meosw  n+fcosw ab
btacosw a+bcosw a’+bi+2abeosw
whence immediately

n ab

T a4 a*+0°+2abcosw

oy

(vi) The latus rectum is twice the perpendicular from the focus to
the directrix.
4 a??sin? w

Its value is x
fa%+ D%+ 2ab cos w)

(vii) Zo find the condition that lx+my+n = 0 should fouch the
parabola.

Any tangent to the parabola is of the form
z ~Irx=2rp=
S —FA= A1)

Comparing this with the given equation
A=1_ A _AQ-=1),

al — =bm~  —mn
n n
= - — A—1= 3
A=—a l=+50
1 1 1
(;l+bowz+ Tz_O°

equation of the parabola can be written

2 Y4 zy
ato 1—i2\/ab’

(o O
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It is often referred to in the form

\/f+\/€=1.
a )}

Evidently for points in different positions on the curve, different
signs for the radicals must be taken. The equation is true with
positive signs for the part of the curve between the points of contact
A and B. For the rest of the curve we must use

3 z y
\/a—\/%= 1(x>a} or - '\/a+\/‘g= 1(y>1).

The equation of the tangent at the point (.7, ¥") on the parabola

\/§+\/‘Z~=l can be put in the form
g\/ﬁ'ﬂ\/@':"
aN ©  bA/ ¥y

where \/ g; and \/ :);, have those signs which satisfy

.:D; y/—
NEEINA

It should be noted, however, that when («', ) does not lie on the
parabola, this equation is not that of the polar of (x/, ¥").

{t is sometimes stated that (@ cos'd, b sin*6) can be used to
denote a point on the curve : this is only true, if 6 is real, for the
portion between the points of contact, i.e. when z<a and y<b.

The notation given above covers the whole curve and is to be
preferred.

- -
Exaemple i. A tangent to the parabola \/ Z + \/ ‘Z =1 meets the

axes of coordinates in P, Q, and perpendiculars are drawn from P, @
to the opposite ares : prove that the locus of their points of intersection ie

X C
DHYSOS® | YHECOBY oy,

Let the tangent be E()\ - 1)—y% =\(A-=1); this meets the axes at the

points P(aX, 0), @ (0, b{1=N\)).

Let PL, QM be the perpendiculars on the axes of y and «: then L is
the point (0, aX cosw) and M the point [b (1 —A)cosw, 0].
x y

The equation of PL is Y + N eos o
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The equation of QM is
z Y

FA-Noosw T 5N " D
ie. m_cgsl:"_"r-'_/=)\cosw; ?/COSbw-i-x: (I-=XN)cosw;

.. their point of intersection lies on the straight line

xCcosw+y + Z+1ycosw

= cos w.
a b

Example ii. A variable tangent to a given parabola meets two fized
tangents, and on the intercepted segment as diameter a circle is described :
the envelope of the circles is a conic touching the two fixed tangents in the
points where they are met by the directrix of the given parabola.

Take the fixed tangents for axes, and let the parabola be

LY ) o,
(a 3 1> )
Any tangent 5—:-()\—-1)— %)\ = X(A-1) meets the fixed tangents at the

points P (aX, 0), @ (0, b—0bN).

If R(x, y) be any point on the circle described on P@Q as diameter, we
have, since RP?+ RQ* = PQ?,
(x=al)+9y2+2y (x—aX) cosw+ 22+ (y—b+DA)*+ 22 (y— b+ bA) cosw

= A1+ b2 (1 -2)2+ 2abX (A —1) cos w,
which reduces to

abcos w\?~\ {x (bcosw—a)+y (b—acosw)+abcosw}
—(#*+y*+2xycos 0 — by —bx cos w) = 0.
Since A is an undetermined constant, the envelope of this circle is
(Chap. VI, p. 253)
{x(becosw—a)+y(b=—acosw)+abcosw}?
+4abcosw (x?+y?+2xy cos 0—barcos w—by) = 0.
This may also be written
{x(a+bcosw)+y(b+acosw)—abcosw}?= 4abxysin’o,
which represents a conic (equation of second degree) touching the lines
x=0, y=0, the chord of contact being
z(a+bcosw)+y(b+acosn)—abeosw =0,
i.e. the directrix (because the form is up = kw?).

Examples VII g.

1. A variable tangent to a parabola meets two fixed tangents at the
points P, Q. Find the locus of the mid-point of PQ.

2. 04, OB are fixed tangents to a parabola and P any point on the curve.
The harmonic conjugate of OP with respect to 04 and OB meets the tan-
gent at Pin Q: find the locus of ¢.
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3. A variable tangent to a parabola meets two fixed tangents T4, TB at
Pand @. Find the locus of the centre of the circle TPQ.

4. Show that the normal at X to the parabola (x/a+y/b—1)? = 4xy/ab is
x (X +bX—1cosw)+y(aX cosw+br—1)
=abA(A=1)(2A—1) cosw +aA% + B2 (A — 1)%.
5. Find the focus and directrix of the parabola (z/a+y/b—1)* = (4zy/ad)
by comparing the equation with
(-2 +(y~y)+2(z—a') (y—y’) cos ® = (x cos X +y cosB—p)?,
where X438 = o.

N.B. Use the identity

(zcosw+y)y+(ycoso+x)?~2(xcosw+y) (ycosw+x)cosw
= (2®+4* + 22y cos w) sin%w.
6. A parabola touches O4, OB in 4 and B: show that the portions of any
chord, which has its middle point on AB, intercepted between 04, OB and
the parabola are equal.
7. Parabolas are drawn which touch the axes Oz, Oy, inclined at an angle

o, and whose directrices pass through a fixed point (k, k): show that they all
touch the line z/(h+ksecw)+y/(k+hsecw) = 1.

8. AB, CD, two fixed segments of straight lines, are divided similarly at
Pand @: prove that PQ envelopes a parabola which touches 4B and CD.

9. Show that if @ and b are variable and h/a+k/b =1, the directrices
of »/z/a+ +/y/b =1 pass through a fixed point.

10. A parabola touches two given straight lines 04, OB at given points

and a variable tangent meets 04, OB at P, Q. Show that the circle OPQ
passes through the focus.

11. If the chords of contact of parabolas touching two fixed lines are
concurrent, their directrices are also concurrent.

12. The parallels through the origin to the tangents from (z’, y’) to
v 2+ 4/y = 4/c are the lines cxy + (x ~y) (zy’ —z'y) = 0.

13. The equation of the tangents from (27, y’) to the parabola is

@y —2zy’) {(a’'—z)/a—(y —y)/b} + (@'~ x)(y' ~y) = 0.

14. A variable tangent to a parabola meets two fixed tangents, and
another parabola is drawn touching the fixed tangents at these points:
prove that the envelope of its directrix is a third parabola touching lines
drawn at right angles to the fixed tangents through their intersection, in
the points where they are met by the directrix of the given parabola.

Illustrative Examples.

(i) If the tangents at P and Q mect at T and the orthocentre of the
triangle PTQ lies on the parabola, show that either the orthocentre is at
the vertex or the chord PQ is a normal to the parabola.

Let P be the point (a)? 2al), @(ap? 2ap), then T is the point

{adp, a(A+m}.
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The equation of TP is Ay —z—a\? = 0, and that of the perpendicular from
Qonitis NMzx—au?)+y—L2au= 0, i.e.

Az+y=alp®+2ap. (i)
So the perpendicular from Pon T'Q is
px+y = ap\?+2al, (11)

Solving (i) and (ii) to obtain the coordinates of the orthocentre of the
triangle TPQ, we have

z=—alp—2a, y=a(X+p) A\p+2).
Since this point lies on the parabola,
AN +p)? Ap+2)?=—-4a?(Au+2).

Hence either Au+2 = 0, in which case the orthocentre is the vertex
(0,0), or

NP Op+2) = —4, @
ie. A\ F A +2) (p4+pA+2) = 0.
Hence AN 4Ap+2=20o0r p?+pA+2=0.

Therefore Q is the point where the normal at P cuts the parabola, or Pis
the point where the normal at @ cuts the parabola.

(ii) Prove that the tangents of the angles at which y = mx+n cuts
the parabola y* = 4ax are given by
tan? 6 (n + 2am + am?®) + 2 tan 6 (a — mn) + m (mn—a) = 0,
and deduce conditions that the line be (i) a tangent, (ii) a normal to the
parabola.

Suppose that the line y = ma + n cuts the perabola at the point (af?, 2a¢) :
the condition for this is

mat®—2at+n = 0. @)
The tangent at ¢ is ty = x + as’.
Hence
m- 1
t tm-1 ..
tan0=1—:E= t+m‘ (“)
t
Hence t=— l+mtand
tan 8 —m

Substituting this value in (i) we have
ma (1+mtan 6)*+2a (1 +mtan ) (tan 8 —m)+n (tan 6 —m)2

Thus tan?d (am®+2am+n) +2tan 8 (a ~mn) + m (mn —a) = 0.
In (ii) we could equally well take the supplementary angle, i.e.

1
P
tanf = —>
m
147

t
which gives the alternative sign.
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(i) If the line touches the curve, both values of 6 must be zero, hence
mn = a.

(i) If the line is a normal, one value of 9 is 90°,

. one value of tan 4 is infinite and

anmd+2am+n= 0.

Miscellaneous Examples, VII.

1. Prove that the orthocentres of the triangles formed by three tangents
and by the corresponding three normals are equidistant from the axis of
the parabola.

2. Prove that if a®>83" a point can be found the two tangents from
which to y* = 4ax are normals to 2® = 4 by,

3. Find the equation of the common tangent to the parabolas represented
by y* = 4ax and 2’ = 4by.

4. A system of chords is drawn so that their projections on a line inclined
at an angle  to the axis of a parabola are of constant length ¢: prove
that the locus of their middle points is th¢ cuive

(¥’ —4azx) (y cos & +2asin a)? + a?c? = 0.

5. Prove that the locus of the intersections of the tangents at the points
{asinh? (x ), 2asinh(x+B)}, where & is variable and B constant, is
a parabola having the same focus as y* = 4qz.

6. A is the vertex of y?=4ax P is ahy point on it, and the circle on
AP as diameter meets the parabola again in @ and R. Show that the
normals to the parabola at P, @, R meet at a point on the parabola
y'=16a (x+2a).

7. The normal at P meets the axis at G; the circle APG cuts the
parabola again in @, R. Show that the normals to the parabola at @ and
R meet at P.

8. If P issuch that when PQR is drawn in a fixed direction io meet the
parabola in @, R the rectangle PQ.PR is constant, the locus of P is
a parabola.

9. Two parabolas touch at P and intersect at Q, R. Prove that PQ, PR
are harmonically conjugate to the diameters of the two curves at P.

10. Prove that, if the normal at P meets the curve again in @, and if the
circle on PQ as diameter cuts the curve in R, the locus of the middle point
of QR is the curve y*(y*—4ax)+64at = Q.

11. The normal at P to a parabola, whose vertex is 4, meets the curve
again in Q: show that the locus of the centre of the circle circumscribed to
APQ is a parabola.

12. Through any point not on the axis of a parabola the two straight
lines are drawn which are conjugate with regard to the parabola and
perpendicular to one another. Prove that they meet tite axis in two points
equidistant from the focus.
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18. If a circle is drawn to pass tRrough the vertex of a parabola and to have
its centre on a fixed diameter of t '€ parabola, show that the orthocentre of
the triangle formed by the ta,,lgents to the parabola at the other three
points where the circle cuts it is f Xed.

14. Show in a diagram the pacabolas y? = 8ax and 2* = ay, and prove
that they cut each other at rigt angles at the origin and at an angle
whose tangent is -6 at their other point of intersection.

15. Find the locus of a point su’h that the angles between the connectors
of the vertex of the parabola 4= 4ax with the points of contact of the
tangents from the point may have & given pair of bisectors.

16. Prove that the curves y2 = &» @' +y*—3x+1 = 0 touch at two points,
and find the equations of their common tangents. Show also that each of
these curves touches in the sam: two points any curve whose equation
is 2+ —8z+1+\ (P —z) = 0 Pr all values of .

17. Find the equations of the circles which touch the directrix of the
parabola y* =4, and pass through the points of intersection with the
parabola of the straight line y = £—1

18. Normals are drawn to th¢ parabola y? = 4ax to touch the circle
(x—c)?+32 =% Find for differnt values of the radius of the circle the
locus of their points of contact.

19. If the normals at three poirts P, @, R on a parabola meet at a point
whose abscissa is x, prove that tae centroid of the triangle PQR is on the
axis at a distance from the vertex €qual to §(z—2a).

20. Show that the locus of the ntersections of equal chords of a parabola
drawn in fixed directions is a straight line.

21. Tangents TP, TQ are drawn to the parabola y* = 4ax; find the equation
of the circle 7PQ.

22. Find the envelope of the circle whose diameter is a chord of the
parabola y® = 4ax passing through & fixed point on the axis of x, and show
that for one position of the pont the envelope reduces to a circle and
a straight line.

23. Three normals of which the lengths are ny, n,, ns and two tangents
of which the lengths are ¢,, #, are drawn from the same point to a parabola
with parameter 4a. Show that 717a%s = ahif;.

24. Find the equation of that rectangular pair of conjugate lines with
regard to the parabola y? = 4ax Whose intersection is the point (h, k).

C is a point on the latus rectum and P a point not on the latus rectum
such that PC is equally inclined to the rectangular conjugate lines which
intersect at P. Prove that the 1¢cus of P is a circle.

25. Tangents OP, 0Q are draw? to the parabola y* = 4ax from a point 0
lying on the straight line o = —}a: show that the envelope of the circle
OPQ is the curve y?(4a +x) = z(i¢+2) (Sa—a).

26. A circle centre P, a point On ¥’ = 4az, and radius 2SP cuts the
diameter through P in @, Q': sh'W that the loci of @ and Q" arc

Y +4ax+8a> = (and 8y —4axr+84* = 0.

27. Chords of 3* = 4az pass through a fixed point (&, ) : show that the
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locus of the orthocentre of the triangle formed Ly any such chord and
the tangents at its extremities is
22 +4axr—-20x—By = 0.

28. If p,, py are the radii of curvature at the feet of the normals to
4 parabola from a point P on the curve, show p, p, = pp, where p and p,
are the radii of curvature at P and at the vertex.

29. Tangents TP, T'Q are drawn to a parabola such that P@Q is the normal
at P. Show that the area of the triangle TPQ is 4a®sec®d cosec’d, where 4
is the acute angle which the normal makes with the axis.

30. Prove that a circle whose diameter is a chord of a parabola such that
the distance between the diameters through its extremities is double the
latus rectum will touch the parabola.

31. The circle of curvature at (af?, 2at) cuts the parabola again at the
angle tan—! {8¢3/(3¢4—6¢2~1)}.

32. If the normal at P makes an acute angle y with the axis, and the
normals at @, R each make acute angles 3= —v with the axis, the three
normals form a triangle of area a?(tan®y — cot y).

33. Through any point on a given line through the focus three normals
are drawn to the parabola: show that the sum of the angles they make with
any fixed direction is constant.

34. If the normals to.y* = 4«x at the points (x, y), (z', ¥’), (=", ") form an
equilateral triangle, prove that (3y*—4a?) (3y'?—4a?) (By'2—4a?) +64a*=0.

35. Four points on a parabola are concyclic and the orthocentre of the
triangle formed by three of the points is joined to the fourth : show that
the mid-point of the joining line is the same whichever three points arve
chosen. Also the line joining this mid-point to the centre of the circle
is bisected by the axis, and the length of its projection on the axis is the
latus rectuni.

36. N, N;, N; are the lengths of the three normals drawn from a given
point to a parabola, and n,, n,, ny are the lengths intercepted between the
curve and the axis: prove that, with the usual convention as to signs,

N, N, /nyng + Ny Ny/ngng+ Ny Ny /ngng + 2(Ny /iy + Ny/ny + Ny /ng) + 8 = 0.
37. Show that the area of the triangle formed by xcosX+ysinax—p = 0
and the tangents at its extremities to 3* = 4ax is 4a} (etan® o +psec cx)i.
38. Show that the length of the normal (other than the radius of curvature
p) drawn from the centre of curvature to the parabola is of length
a {8~ (p/20)}} {4 (p/20)1 -3},
39. A chord PQ of a parabola makes acute angles & and 8 with the
tangents at Pand Q: show that it makes an acute angle
_,/28in0sin B
tan ‘( sin (o —8) )
with the axis.
40. Show that the locus of the poles of the axis of a parabola with respect
to its circles of curvature is
yi(x=2a)® = 12a (¢* —ax + a?).
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41. The normal at P meets the axis in G, and O is the centre of curva-
ture at P: show that no other normal intersects PG at a distance from G
on the side opposite to O which is >3 GO.

42. In a parabola the normal at P meets the curve again at Q. If R i3
a point midway between the centres of curvature at P and @, prove that
R’s distance froia the tangent at the vertex is least when P’s distance from
it is a4/2.

43, Show that chords of y* = 4ax, which are divided by (', ¥') in the
ratio A:1, have for their equation

My (y-y)-2a (-2 +(y-y) (¥~ 4az) A= 1)’ = 0.

44. PG, the normal at P to a parabola, cuts the axis in G, and is produced
to @ so that G@ = } PG: show that the other normals passing through @
intersect at right angles.

45. Through a fixed point on the polar of (3¢, 4 ), with respect to a para-
bola y? = 4ax, a chord of the parabola is druwn. Prove that its length will
be either a maximum or a minimum when it is inclined at an angle }=
to the axis of . Is it a maximum or minimum ?

46. Prove that the latus rectum of the parabola which touches the four
common tangents of two circles whose radii are @, b, and the distance
between whose centres is ¢, is 2(a?—b%)/c.

47. The normal at P is produced outwards to K. Find the locus of K
(1) when PK = PG; (ii) when PK = } the radius of curvature at P.

48. Find the equation of the parabola which touches the four straight
lines z/a+y/b=1, z/a’ +y/b=1.

49. A chord of a parabola is drawn parallel to a fixed direction and on it
as diameter a circle is described. Prove that the polar of the vertex with
respect to this circle envelopes another fixed parabola.

50. Find the locus of the foot of the perpendiculars from (%, k) to
tangents to a parabola, and show that it lies inside au infinite strip perpen-
dicular to the axis of width equal to the focal distance of (&, k).

51, Show that five common normals can be drawn to y* =4ex and
a2 = 4by, and that if they are inclined at angles 6,, 6,, 6, 6,, 6, to the axis
of either parabola then

tan (6, +6,+6;+6,+6;) = tan 6, . tan §; . tan 6 . tan 6, . tan 6.



CHAPTER VIII

CENTRAL CONICS
THE ELLIPSE AND THE HYPERBOLA

§ 1. We have seen in Chapter VI that the equations of the ellipse
and hyperbola, when referred to their axes of symmetry, take the
forms x?/a*+y*/b? =1 and 2?/u®?—y*/0* = 1. The ellipse makes
intercepts 2a, 2b on the coordinate axes, and these are the lengths
of the axes of the conic. It is conventional to take the major axis
along the axis of x, so that we have « > b.

The hyperbola does not meet the axis of 3 in real points; its
intersections are the imaginary points whose coordinates are
(0, +b+v/ —1). It is, however, common to find b referred to as
the length of the other or ‘conjugate’ axis; evidently b may be
either greater or less than «. When a = 0, the hyperbola is called
Equilateral or Rectangular.

The central conics can, in many particulars, be conveniently
studied together, and in this chapter we shall use the equation
ox?+4 By? =1 to represent a central conic; for an ellipse & = 1/a?
3 = 1/b?% for an hyperbola &x = 1/a*, B =—1/b%

§ 2. To find the foci and directrices of a central conic.

If (2/, ) is a focus, and x cos 8+ ysin 8 —p = O the corresponding
directrix, then the equations
art+ LBy =1=0, (x—2)P+{y—y)y—e*(rcosf+ysinf—p): =0
are identical.
Comparing coefficients we have
1—e’cos?0 _ 1—e*sin%0
x - [
e’ginfcosd =0, 2’ =e?pcosh, y' = e’psinb.
Since ¢ is not zero, 6 is 0 or 3 .
(a) If 6 =0, then o’ =e?p, " =0, and
(1-e})/a = 1/8 = e¥p? —c'p? = Pp? (1—¢?).

= e?p?—a'2—y'?
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. 1 a
Hence, since a = Zir We have p = + . and 7' = +ae, where
o
d=1—--.

The focus-directrix forms are then
(r+ae)2+y% = ¢’ (x t a/e)

The foci and the corresponding directrices are (ae, 0), x—a/c =0,
and (—ae, 0), x+ a/e = 0, where, for the ellipse ¢* = (a?—b?%/a? and
for the hyperbola ¢? = (a®+ b%)/a®. In both cases ¢ is real.

(b) If 6 =} =, then 2’ =0, ¥’ = ¢%p, and

/o = (1—=¢?)/3 = e2p—etp? = e2p? (1 —¢?).

Hence p = +1/ev/B; 9 = +e¢/+/3; and € = 1-p/a.

For the ellipse B/x = a?/b? > 1, .. e is imaginary, and also ¥’
and p.

For the hyperbola, since 3 is negative, 3" and p are imaginary.
In this case ¢ is real.

In any central conic, if ¢, ¢/ are the two eccentricities, we have
24 2=1.

Examples.

(See Figures below.)
Prove that

(1) CS.CX = CA™

(2) AS.A’S = CB~.

(3) SX: CX = CB*: CA™.
(4) CB® = CA*~CS".

(5) CS=¢.CX.
R y
YI
|
K
P
M n Y M
R
-~ x
x! A S C /G N A X
]
Bl

§ 8. It is convenient to use definite letters to indicate the prin-
cipal points of central conics: the following should therefore be noted.
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Foci S, S’ ; directrices XM, X’M’; vertices 4, A’, B. B’; centre C;
tangent at P, RPR’; normal at P, PGy ; perpendiculars from the
foci and centre on the tangent, SY, S§’Y’, CK; ordinates of P to
the axes, PN and Pp, the latter meeting the directrices in A7, M’,

4
2
RN
M i e 4
s' Al [x'c x

\/K N\S. G

R
‘We have already proved that CA = CA’=a; CB=CB =1b;
C8=C8" =ae; CX=CX"= g ; and from the focus-directrix form

of the equation of the conic SP = ¢PM, S'P = ePM’.
If P(2’y’) is any point on the conic,

Ellipse. Hyperbola.
SP = ePM = ¢(CX—CN) SP = ePM = ¢ (CN—CX)
a a
= e(é —x’) = e(x’ - 5)
= a—ex’, =ex' —a,
§’P = ePIM’ = e(CX’ +CN) 8’P = ePM’ = ¢(CN+ X’'C)
(/] » —_ Vi q
=e(z+x) —e(x +c)
= a+ex. =er’ +a.
Hence SP+S’P = 2a. S’P—-SP = 2a.

Note. If P lies on the left-hand branch of the hyperbola we have
SP = a—ex’ and P = —a—ex’, in which case SP—-S'P = 2a.

An ellipse can therefore be described as the locus of points the sum of
whose distances from two fixed points is constant, and an hyperbola as the
locus of points the difference of whose distances from two fixed points is
constant,

1267 U
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§ 4. L. The equation of the chord, whose mid-point is (2, y'), is
axx’+Byy = ax'I+ By’?
(Chap. VI, § 4).
II. The tangent.
The equation of the tangent at the point (2, ¥') is
azx’ +Byy’ = 1.

(8) To find the condition that the straight line lx+my+n = 0 should
touch the conic.

Suppose this straight line touches the conic at the point (2, ¥’),
then the equations lr+my+n=0 and ozz’+Byy’—1 =0 are
identical. Hence 2’ = —Il/nx and y = —m/n g, but since (z/, %)
lies on the conic we have az’%+By’% = 1.

Thus, substituting for 2" and »’, we have the required condition

/a4 m?/B = n?

For the ellipse this is @212+ b?m? = #%, and for the hyperbola
a?lt—12m? = nl

If the perpendicular from the centre on a tangent makes an angle
0 with the ux-axis, the equation of the tangent is “f the form
xcosf@+ysinfd—p=0. Apply the above condition that this line
should be a tangent, and we have for the ellipse p? = a®cos?6 + L2sin?6,
and for the hyperbola p? = a?® cos? § —b? sin? 0.

Thus the straight line cos@+ysiné = +/a?cos? 0+ b%sin?
touches the ellipse for all values of 6.

Also zcosf+ysinf = va?cos?0—b?sin%0 touches the hyperbola.

Note. This form of the equation of a tangent is called the pedal equation :
the pedal of the ellipse with respect to any point (h, k) is
r=4/a*cos? 0 +b*sin? 6 —h cos § —kgin 6,
the point (A, k) being the pole and a line parallel to the x-axis being the
initial line.

Example i. To find the locus of the jfoot of the perpendicular SY
Jrom the focus S on a tangent to an ellipse, i.e. the pedal of the ellipse
with respect to the focus.

The equation of a tangent is
x cosf+ysin 6 = 4/a%cos?d + b*sin’d.

If S is taken as the pole and S4 as the initial line, the polar coordinates
of Y are SY and é.

Hence r = 8Y = 4/a%cos® 4 + b*sin? ¢ —ae cos b,
therefore (r+aecos 8)® =a® cos? § + b*sin? 4,
and since a?e? = a?—b?% this becomes

13+ 2aercos 0+ a’e? = a’.
This is the circle on 44’ as diameter ; it is called the Auxiliary Circle.
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Example ii. If p is the length of the perpendicular from the focus S

lo the tangent at P of a central conic, and r is the length of SP, show
2

2
that for-an ellipse gg = g; —1, and for an hyperbola :—); =1+ —2;—‘, or
1- ?;g s according as P lies on the near or far branch of the curve.

Let P be the point (', y') ; the equation of the tangent at P is
Axx'+Byy’ =1,
and we have the condition xz'?+8y’? = 1.
Now, since ¢? = 1-0(/8, we have
2z’
03214 1y’ = 002’ I - B2 3+ = B(l—xeiz'?) = 8 (1 - )
Thus (1 _ex’)\?
pr= (12—’;3‘“9:"); _ & _ a-ex
otz + By 't B (a+ex’)’
8(1-5%)

hence 1 _ater  2a

Bp®* a—ex’ a—ex’

For the ellipse, 3 = !

i and » = ¢ —ex’.

For the hyperbola, 8 = — bl and for the near branch » = ex’ —a, tor the

far branch » = a—ex’. This gives the required results.

Examples.

1. Prove that SY.S'Y’ = CB2.

2. If the tangent at I> meet the major axis at 7 and the minor axis at ¢,
show that CN. CT' = C4? Cn.Ct = CB.

3. If T'is any point of a tangent to u central conic at the point P, and
TM, TN are drawn perpendicular to SP and the directrix corresponding to
S, show that SM = ¢T'N.

Hence prove that the tangents from any point to a conic subtend equal
angles at a focus.

4. Prove that ZPSR = £/ PS'R' = }.

5. Show that CY = CY’ = CA.

III. The Normal.

The equation of the normal at («/, &) to the conic az®+3y% =1
is By (x—a) = aa’ (y—y).

Note. If the normal at (z', y') passes through a given point (2, %),
we have By’ (h-2') = 0’ (k—y’), or
(x~B) 'y’ -k’ +Bhy = 0;
hence the point (2’, y') lies on the rectangular hyperbola (Chap. VI, § 6)
(X-B)axy—Xkx+Bhy =0.
U 2
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Since, in general, two curves of the second degree intersect in four points,
four normals can be drawn from any point (%, k) to a central conic and
their feet lie on the above rectangular hyperbola.

Examples.

1. Show that the pedal equation of the normal to an ellipse is
zcosf+ysind = (a?—b?)sin 0 cos 84/b2cos’d + a’sin?é.

Prove that SG =e.SP.

Prove that PG.CK = CB?; Py. CK = CA*; PG.Py=SP.SP.

Show that NG : CN = CB*: CA%,

Prove that SP: SP= SY:S'Y = 8G: S'G, and hence show that

LSPY = LS'PY",
6. Show that S, S/, P, ¢, g lie on a circle.
7. Prove that CG@ = ¢*. CN, and a®. GN = b*. CN.

AR

IV. Conjugate points and lines.

(8) The polar of the point (2, y’) with respect to the conic
ax?+ Byt =1 is axx’+Byy = 1.

Hence the polar of (2, ¥') passes through the point (+”, y”) if
ax'z" +By’y" = 1. The symmetry of this result shows that if the
polar of (z/, ') passes through (z”, ”), then the polar of (27, y”)
passes through («/, y'); it is therefore the condition that these points
should be conjugate.

(b) To find the pole of the line lx+my+n = 0 with respect to the
conic ax+By? = 1.

Let the point (2/, 4') be the pole, then evidently the equations
le4+my+n=0 and oxx’+Byy’—1 =0 must be-identical. Hence

l m
/ - — = — _— 1 1 =
¥ =— and y An The straight lines Ilz+my+n =0,
Vz+m'y+n" =0 are conjugate (i.e. the pole of each lies on the
L W omm ,
other) if — + — —nn'=0.
o B

If one of the straight lines is a diameter Iz +my = 0, since n=0 it
follows that the straight lines lx+my = 0, U'z+m’y+#’ = 0 are con-
jugate whatever value »” may have. Hence the poles of all straight
lines parallel to 'z+m’y = 0 lie on the diameter Ix+my = 0 if
W/o4+mm’/3 = 0.

V. Conjugate Diameters.

Two diameters are conjugate if each bisects all chords parallel to
the other ; referring to the condition found in Chap. VI, § 2. I, we
see that the two diameters lz+my = 0, I'z+m’y = 0 are conjugate
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if W/oc+mm’/3 = 0. This is also the condition that the poles of lines
parallel to the one should lie on the other (see IV above). We can
therefore define conjugate diameters either as in Chapter VI or by
this polar property.

In particular, the diameters y = wmu, y = w'x are conjugate for
the ellipse if mm’ = — 1% 'a% and are conjugate for the hyperbola if
mm’ = +b% @ .

Note i. Since a diameter bisects all chords parallel to its conjugate, the
middle point of the chord whose equation is lLe+my+n = 0 is its point of
intersection with the diameter mXz—IBy = 0

Note ii. A convenient general form for a pair of conjugate diameters of
the ellipse x*/a®+y?/b? =1 is ay—~Abx =0, Aay+bx = 0.

Suppose that these diameters meet the ellipse at PP, DD respectively;
then for the abscissae of P and P’ we have

2 (1 +\?) = o

Hence, if P. P’ aie the points (zy, i), {(—;, =),

@t = (14N, g3t = NUR/(1 432
and CP? = CP? = a2+ y = (a®+\0)/(1 +\%).
Similarly, it D, )" are the points (ag, y2), (=g, —i,0

wg = /(1 EN), g2 = b¥/(1+2%),
and CD? = CD' = (N2 4 bY)/(1 4 \?).

Hence CP*+ CD* = a4 b2, i.e. the sum of the squares of two conjugate
diameters is constant.

Now if CP = CD, we have a®+4 X% = N2+ 17 i.e.

N =1)(«®=0") =0; .. A=4+L

The equations of these diameters arc therefore x/a+y/b=0; they are
called the equi-conjugate diameters.

Note i1i. A pair of conjugate diameters of the hyperbola z?/a?—y*/1? =1
may be represented by

Proceeding as in Note ii, we find
CP? = (2 +2%0%)/(1 =22, CD* = — (\*a’+1?) (1 =)\?%).

Hence CP*4 CD* = a*—b*; but evidently CP? and CD? are of ifferent
sign, hence either CP o1 CD 1s 1magi-
nary. Only one of two conjugate
diameters meets the hyperbola in real
points.

If lengths CD;, CD," are taken on
the diameters which meet the conic
in imaginary points so that

CD? = CD,'* = - CD?,
then CD, is often called the length
of the semi-diameter conjugate to CP.

In this case CP:~CD?= a’~b?% or, the diftercnce of the squares on
conjugate diameters of the hyperbola is constant.
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Note iv. 1f CP, CD are two conjugate diameters, the polar of any point
on CP is parallel to CD and to the tangent at P, Thus, in the Figure (sce
p- 309), V is the mid-point of TT".

In particular, DD’ is the polar of the ¢ point at infinity’ on CP.

Note v. To find the equation of a central conic referred to a puir of
conjugate diamelers as axes of coordinates.

Let PCP’, DCD’ be any pair of conjugate diameters, and @ any point
(x, ¥) on the conic referred {o these diameters as coordinate axes.

If QQ,, Q@ are drawn parallel to CD and CP, they are bisected by
CP and CD; further, if @, @, is a chord parallel to CP, it is bisected
by CD’; hence @,Q, is both parallel and equal to Q@Q;, thercfore Q,Q; is
also parallel and equal to @Q,. Hence @, Q, is also bisected by CP".

Thus, if the point (x, y) lies on the conic, so do the points (—=z, ).
(~-=, —y), (z, —y), i.e. the equation of the conic is of the form

oz’ + By’ = 1.

If CP=a’, CD =1’ the equation of the ellipse is

$2/a’2+y2/b’2 = 1 ;
for the hyperbola CD is imaginary, and the equation is
/e’ — b’ = 1.

It follows that all the results we find for the equation of a central conic

referred to its principal axes are true also for the conic referved to any pair

of conjugate diameters except when our results depend upon the axes being
rectangular.

Examples.

1. Prove that (Fig., p. 309, CV.CQ = CP~

2. Show that TV?: CP*—CV? = CD?*: CP%.

3. Any pair of orthogonal lines through a focus are conjugate.

4. Prove that «. PG =0.CD, and b.Py=a.CD, where CD is the
semi-diameter conjugate to CP.
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VI. Pair of tangents.
The equation of a pair of tangents from P (/, y') to the conic
x4+ Byt=11s (B + 3y =) (a2’ 2+ B3y 2 —1) = (xxx’+ Byy —1)%
These are parallel to the pair of diameters
oz +By?) (" + By 2= 1) = (zx’ +Byy'),
i.e a By —1)z*—2a3xy 2y +B(xx'*=1)y* = 0.
If the tangents, and therefore the parallel diameters, include

an angle 6, *hen
ban g = 2. (00A%"2y a3 (e — 1) (By ™ — 1)}
T x(By t=1)+p(az’?=1)

_2VioBa+py -1

o‘,’i{x’2+y"‘ — ; — /%}

The angle 0 is a right angle if
iyt = ! + !
Y"=x R
Hence the locus of point I, the tangents from which to the conic
are at right angles, is the circle

O

b

+

KX

L.Z +Z/2 —
}

which is called the director circle.

For the ellipse this becomes 2% +y* = a*+ b% and for the hyperbola
iyt = ot =0

The latter is real only when « > 0. When the hyperbola is
rectangular the circle reduces to a point at the centre: the asymp-
totes are the only real orthogonal tangents.

Note. The equation
! a2 3 2
2 (T Y 20 0 _
b ((’2+ W 1) +e <x e,,) 0
represents (vide p. 284) a locus passing through the points of infer-

o
. . . . . a® . .
section of the ellipse, and its directrices 2* - 2= 0. This equation reduces

2
to x? (2—2 4 e’) 1y =+ 87

L.c. 2+t = 2+, since (e’ = (2=

It follows that the common chovds of the ellipse and its director circle are
the directrices.
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Illustrative Examples.
(i) The angles which the normals from (f, g) to the ellipse
22/a%+ 2 /b —1=0
make with the z-axis are given by
(fsin 0 —g cos 0)? (a® cos? 0 + b? sin% 0) = (a%—b%)? sin? 6 cos? 6.
The equation of the normal at the point (2'y’) is
’ , xt ,
%ﬁ(“z—w): dz(y_?/)y

an if this makes an angle 8 with the z-axis,

a’y’
tind= 1)2_;”
so that
&y :
atcosd bHiemné )

Tf the normal passes through the point (£, g), we have

o xr .
‘é,l(f*.l')= ag(.'/"‘.’/ )’

or
(f—x)sinf = (g—y )cosé. (i1)
But since (£’y’) lies on the curve, we have (i)
zt Tk
x Y \/717 ” 1

WWeosd  Bsinb " /gicos g1 Bemi0 o/« cosi O+ bisint0
Substituting in (ii) for 2" and y’, we get
2 _p2 ind
Ssinf—gcosb = (Q;M)il.i_. ,
4/ a? cos? 8+ b*sin® d
ie. (a%cos? 6 +b?sin? 8) (fsin 8 —g cos 8)? = (a® - 1*)2cos® §sin’ 4.

(i1) Show  that if (& n) is « point of interseclion of the cllipses
lat+y?/0t =1, 2%/’ +92'2 =1, the cquations of thew common
tangents are +x€/aa’ +yn/LV = 1; and the product of the arcas of
the parallelograms formed by their four common points and their fowr
common tangents is 8aa’bb’.

The common pointseof

are given Ly
af'lbﬁb“ﬂ—!/jla?a’!— ’qﬁbﬁa’lb’ﬂ (i
ViV *—a’t a'b*—a’?bV )
hence we gather that the points are symmetrically placed with respect to
the principal axes: let their coordinates be (&, 1), (&, =n), (=&, —n), (=&, n).

The area of the parallelogram they form is 4 .
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If lx+my =1 is a tangent to both conics,
Al+VP?mi=1 =0, «’*B+0"*m*—1 =0,

Hence
? m? 1 . .
b2 pt _d’—a"=a2b"—a"b" (i)
Thus, combining (i), which is satisfied by (£, 1), and (ii),
B m? 1

PYIE T watp T S
l= +¢&/aa’, m = +n/bY.
Hence the common tangents are
tzf/aa’ £yn/bb’ = 1.
The corners of the parallelogram formed by these tangents are
(aa’/§, 0), (~aa’/£, 0), (0, bd'/n), (0, —bb'/n),
and consequently the area of the parallelogram they form is 2aa’bb’/én.

The product of the areas of the two parallelograms in question is
therefore 8ca’bb’.

(iii) Z'he tangents from any point to a central conic ure equally inclined
to the focal distances of the point.
Let the point be (2, //): then the cquations of the focal distances are
Yi{x—ae)—y (&' —ae) =0, y' (x+ae)—y(x' +ae) = 0;
these are parallel to
zy —y(x' —ae) =0, xy' —y (' +ae)=0;

i.e. to the lines (xy’ —yx')t —y’a’e? = 0,
or B (xy —yx' Y-y (B-) =0,
or oB y'txt-20Bx'y zy + (Bx’ + X —B)y* = 0.

The bisectors of the angles between these lines are the same as those of

the angles between the lines
X (By*—1)a*— 2082y 7y + B (z 1~ 1) y? = 0,

which, we showed above, are parallel to the tangents from (2, ') to the
conic.

Hence the bisectors of the angles between the tangents from a point to
the conic and of the angles between the focal distances of the point are the
same : this establishes the proposition.

Examples VIIIa.

1. A circle on a diameter PP’ of an ellipse as diameter meets the tangent
at an end of the minor axis in Q and Q. Show that Q@ is equal to-the
difference of the distances of P from the two foci.

2. Find the equation of the pair of tangents from the point (&, 8) to the
hyperbola x*/a® — y*/b% = 1.

For the case in which x =5, 8 =38, a =1, b =1/4/3, find the equation
of each tangent separately.
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3. If (h, k) i8 a point P on the ellipse 1?4+ ¢y’ = eV and 4, 4’ the
extremities of its major axis, show that cot APA’ = & (1*—a?)/2al%

4. Prove that if (v, y) and (2, ¥’) are any two points on the ellipse
2o+ /b =1, then b'z/(y+y')+a’y/(x+z’) = a®b*/(xy’ +2'y). Deduce
that the locus of the middle points of parallel chords is a straight line.

5. Prove that the bisectors of the angles between the focal distances of
a point P on an ellipse are the tangent and normal at P.

6. The locus of points at which the ellipse subtends an angle 60° is

3 (x2 +y2__a2_b2)2 J— 4 (beZ +y",a2—a2b’).

7. Prove that the rectangle under the perpendiculars drawn to a normal
at P from the centre and the pole of the normal is equal to the rectangle
under the focal distances of P.

8. Tangents are drawn to the ellipse (¢, b) from the point

[a?/ V/(a* =), &/(a*+Db%)]:
" show that the intercept made by them on the ordinate through the neaer
focus is equal to the major axis.

9. A rod AB of length ! moves with its extremities on two fixed lines
which intersect each other at right angles. If P be the point which divides
AB in the ratio 2 to 3, show that the locus of P is an ellipse, and state its
eccentricity.

Find the points on AB which describe ellipses whose eccentricity is 4.

10. Find the coordinates of {he intersections of

xcosX/a—ysinX/b = cos2X with «*/a®+ y°/b® = 1.

Find also the locus of the projection of the centre of the ellipse on the
above line.

11. Find the locus of the point of intersection of tangents to an ellipse
which meet at a given angle x.

Pairs of tangents to an ellipse intersect at right angles; prove that their
chords of contact touch a fixed concentric ellipse.

12. Show that the points in which the straight line zcosa+ ysinae = 2
meets the hyperbola 2x%—y® =4 subtend a right angle at the centre of
the hyperbola.

13. Find the coordinates of the foci and the length of the latus rectum
of the conic Aa®+ (1 +X) > = A%, where \ is positive.

Find also the locus of the extremities of the latera recta as A varies.

14. Show that the locus of the middle points of chords of the ellipse
a~?2? 4+ b7%y* = 1, the tangents at the ends of which intersect on the circle
a4y = a?, is (@~ %2+ b %y)? = a2 (2% + i),

15. All the chords of an ellipse whose middle points are on the same
straight line touch a parabola.

16. Tangents are drawn to the ellipse #?/a®+4*/b* =1 from any point on
the circle 2% +4% = a*+b%

Prove that

(i) the tangents are at right angles;
(ii) the locus of the middle points of the chord of contact is given by
the equation (2?+y?) = (a’+b?) («*/a® + y*/b?)"
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17. Find the coordinates of the extremities of the diameter of the ellipse
a*/a®+ y?/b* = 1 which is conjugate to the diameters y'z = z'y.

Two such conjugate diameters are-inclined at angles 4 and ¢ to the
major axis of the ellipse: show that their lengths a’b’ are connected by
the relation a’?sin268+ b"?sin2¢ = 0.

18. If S, H are the foci of an ellipse and P is any point on the curve, show
that the locus of the centre of the inscribed circle of the triangle SPH is the
cllipse 22+ (1 +¢)y?/(1—e) = a’e.

19. Chords of an ellipse which subtend a right angle at the centre are
distant ab/4/a?+b? from the centre.

20. Find the equation to the locus of the foot of the perpendicular drawn
to a tangent from one of the foci of az®+ by? = 1.

21. Express the length of the perpendicular from the centre on the
normal to an ellipse in terms of the perpendicular on the corresponding
tangent.

Show that the area of the rectangle formed by two parallel tangents and
the corresponding normals is never greater than half the square on the line
joining the foci.

22. Chords BD, BE of the ellipse z?/a®+ 4*/1? = 1 are drawn at angles n/3
to the x-axis to meet the ellipse again in D and E. Find the coordinates o¢
the centre of the circle inscribed to the triangle BDE.

23. If PQ is normal to the conics

axt+by? =1,
ax?+ byt =1
at Pand Q.

. 1 1
PQ’= (ab'—a'h) {a’b’(a—b) " ab (a’—b’)} '

24. A diameter DD’ of an ellipse is produced, meeting the director circle
in O, and two points P and @ are taken on the diameter produced such that
the angle between the two tangents from Pis the supplement of that between
the tangents from Q. Prove that PD.PD’.QD.QD = OD*. OD™.

25. An ellipse has its centre at O, its axes lie on the coordinate axes 0X
and OY, and it passes througb the points P (2, 7) and @ (4, 83). Find the
equation of the ellipse and give the positions of the foci. Show that the
length of the semi-diameter conjugate to OP is 4/841/30, and give its
equation.

26. A variable tangent is drawn to the hyperbola z?—y® = a® cutting
the circle 2®+y* = a? in P and @.

Show that the locus of the middle point of PQ is

(@ +y?)! = o’ (a? ~3").

27. P and Q are extremities of two conjugate diameters of the ellipse
b2+ ay? = a?b? and S is a focus. Prove that PQ*—(SP-SQ)* = 2.

28. Show that a normal to an ellipse divides the distance between the

two parallel tangents most unequally when it is equally inclined to the axes.
29. Find the equation of a chord of the ellipse x%/a’+y?/0® =1 in terms
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of z,,y, the coordinates of its middle point, and show that the equation of
the circle described on the chord as diameter is
(O'z," +a’y)’) {(x —2y)* + (y —9,)°} = a*V* (,/a* +y,°/b!) (a? V7 — D' 2~ ay,").
30. The points (x,, ¥,), (%3, ¥3), (%3, ys) are the vertices of a triangle 4BC
self-polar for the conic x%/a?+y*/b*~1 = 0.
Prove that the points 4, B, C are on the rectangular hyperbola
(2122%5)/(0*2) + (119395)/(b*y) = 1,
and that the lines BC, CA4, 4B touch the parabola

v J‘”x”a“’sz*‘a x/yl!/a!/-sy =a'd

§ 6. Coordinates expressed in terms of a single parameter.
I. The Ellipse

11;2 yz
Since the equation of the ellipse gives us

p 2
= \/1—‘:—2 and y=ib\/l—%;

it is evident that the coordinates x and y of real points on the ellipse
lie in magnitude between +a and —a, +b and —b respectively.
Now the point whose coordinates are (acos®, bsin6) lies on the
ellipse for all values of 6, and further, since cosf and sinf can
have any values between +1 and —1, any point on the ellipse can
be so represented.

= 1.

Geometrical interpretation when the coordinate axes are
rectangular.

The coordinates of any point p on the circle x*+y? = a? described
on AA’ as diameter can be represented by (wcos0, asin6) where
0 is the angle pCA : if the ordi-
nate pN meet the ellipse at P,
the r-coordinate of P must then
he acosf, and its y-coordinate
is consequently b sin 0; i.e. P
» 18 the point (@cos 6, bsind). The
angle 6 corresponding to any
point P on the ellipse is called
its eccentric angle; the points
v, P are said to correspond, and
the eccentric angle of P is that
made with the z-axis by the
radius-vector to the corresponding point j. The circle 4pA4’ is called
the auxiliary circle, It is evident from the symmetry of the
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figure that if P is the point 0, P’, the other extremity of the diameter
PC, is the point (7+6). Now the ordinates of corresponding points
are in a fixed ratio, viz.
PN:pN =b:a.

Various properties of the ellipse can be deduced from properties of
the circle as illustrated below.

(i) If P, p and Q, q are two pairs of corresponding points, then
ApCq: APCQ=a:d.

For if P, @ have eccentric angles 0, ¢, the areas of the triangles
pCq and PCQ are
3} {a?cosfsin p—a’cosPpsin O} and } {abcos Osin p—ab cos ¢sin b}
which are in the ratio a:b.

Hence it follows that if P, p, Q, q, R, r are three pairs of corre-
sponding points, A PQR: Apgr = b:a, for

A PQR = A PCQ+ D QCR+ A RCP, &e.

Consequently, when the triangle pgr is a maximum, the triangle
PQR is a maximum. But the maximum triangle which can be
inscribed in the circle is equilateral, and its area is }(8+/3)a?;
hence the maximum triangle which can be inscribed in the ellipse
has for the eccentric angles of its vertices 6, §7+6, §7+6, and its
area is } (3 v/8) ab.

(i) Conjugate diameters.

Suppose P(acosa, bsinax), D(acosB, bsinB) are the extremities of
two conjugate diameters CP, CD.

The equations of CP, CD are

bx bx
y_-a-tand, y—;-tanﬂ,

b? b3 .
whence -a—ztana tanpg = -4’ (Vide p. 309)
or l+tano.tan3 =0;
o3 = %m.

Hence the eccentric angles of the ends of conjugate diameters are
of the form o, o+ 4.

If p, d are the corresponding points on the auxiliary circle, it
follows that the diameters cp, cd are at right angles, and are therefore
conjugate diameters of the circle.

If pCp’, dCd’ are diameters of the circle which are at right angles,
pdp’d’ is a square, and its area is 4pCd = 2a?,
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If PCP’, DCD’ are conjugate diameters of the ellipse corresponding
to these, PDP’D’ is a parallelogram, its area is

4PCD = 43.pc¢z= 2ab ;

thus the parallelogram whose diagonals are a pair of conjugate
diameters has a constant area.

Since the tangents at P, P’ are parallel to CD, and those at D, D/
parallel to CP, the tangents at the extremities of a pair of conjugate
diameters form a parallelogram; its area is evidently twice that of
the parallelogram PDP’D), i.e. 4ab. This is called the conjugate
parallelogram.

Incidentally,

CP? = a2 cos? o + b2 sin?x,
CD% =a’cos? (x+ %) +b%sin? (a+3m);

.. CD? = a’sin?a 4+ b? cos? ,
and, as before shown, CP?+ CD? = a?+b?.

2 2

Since €% = i Wecan write these values in the convenient form

CP? =a’(1—e’sin’a); CD? = a?(1—e?cos’).

(iii) The area of a sector pCq of the auxiliary circle is }a®(6,—6,);
the area of the sector PCQ of the ellipse is }ab(6,—96,).

The student should now re-read Chapter V, §§ 5-7; by exactly
similar methods to those there illustrated the following equations
can be found :—

(8) The equation of the chord joining the points whose eccentric
angles are 6, ¢, is

zcos HO+9) + Lsin} (9+) = cos } (6—9).
(b) The tangent at the point, whose eccentric angle is 6, is

z Yeinpg—
acosO-f- bsmo— 1L

(¢) The point of intersection of tangents at the points whose
eccentric angles are (6§, ¢) is

{acos i(6+¢), bsin §(6+ 4’)}
cos}(6—9) cos 3 (6—9¢)

or {a l1—tan36tani¢ tan36+tan ¢
"1+tan}6tanke’ 1+tan'§6tanﬁ¢}.
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(d) The equation of the tangent at the point P, whose eccentric
angle is 6, can be put in the form

z—acosf _y—bsind v {(x—acosb)+(y—bsinb)?; r
asin® ~ —beosf v 1a?sin? 0 + b2 cos? 6} e’
where 7 is the distance of any point (r, ) on the tangent from the

point of contact P and CD is the semi-diameter conjugate to CP.

Example. To find the lengths of the tamgents which can be drawn
Jrom any point to an ellipse.

The equation of the tangent at the point P(8) is

z—acosé y[_bsmd r )
asin 6 —bcosd CD’ (

and, if (z, y) is the given point from which the tangents are drawn, r is the
length of the tangent if the point 4 is the point of contact.

Hence the elimination of 8 from equation (i) will give us an equation in »
whose roots will be the lengths of the required tangents.

Now f=——s1n0+cos€
a C
Y- .
3 CD cos 8 +sin 4.
.L'2 yﬂ _ -_r-'i
Hence - + B -1= G
or ”=f.CD, (ii)
2 '}
where = x !I:‘ -1
Thus 13 = f(u smz 6+ b2cos?f),
or r¥(cos® 0 + sin? §) = f (a’sin’@ 4 b? cos? §),
i.e. (P=a*f)tan’0+ (P -b2f) = 0. (ii1)

But the first of equations (i) gives us

gcosé+ Yging = 1,

b
ie. a~:+gtan9=sece,
a b
z .9 ' 19
or (a+btan6) 1+tan%d;
(1—5-)tn’6- ta.n8+l—» =0

Eliminating 8 from this equation and (iii) we get

( Z_,,A 2f{(x’+y=)f+a=b=<”' Z:)}r'

+3(x+ae)* + %) [(x—ae)’ +y*] = 0.
which is the required equation.
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Cor.i. If P, P’ are the points of contact of tangents from 7'(x, y) to
the ellipse, CD, CD’ the diameters conjugate to CP, CP’, we have from (ii)
TP = f.CD? and TP?*=yf.CD%

» TP: TP = CD:CD'.

Cor. ii, The term independent of » represents the product of the
squares of the distances of T from the foci S, S’

Hence TP . TP*=f3 ST?.S'T?

SO
2t 5)

=1L
or TP.TP = 225 .ST.ST.

(¢) The Normal. The normal at the point 6 being perpendicular
to the tangent, its equation is
sin 6
b
which is usually given in the form
ax sec 0 —by cosec § = a3— b3,
It can also be put in the useful form

(x—a cos 6)— %e(y-'—b sin 6) = 0,

z—acosf _y—bsinf __ r
becos6  asinf CD
The normnals which can be drawn from any point to an ellipse.
If the normal at the point whose eccentric angle is 6 passes
through the fixed point (&, k), then
ah sec 0— bk cosec § = a®— b2,
and, conversely, this equation must be satisfied by the eccentric angle
of any point the normal at which passes through (4, k).
The equation can be written in the following three fo;'ms, where
¢ = a?—b3
I. c*cost0—2c%ah cos® 0+ (a?h? + b3 — c*) cos? 6
+2c%ah cos 6—a*h? = 0.
IL. c*sint 6+ 2c*bksin® 0 4 (a®h? + b2 —c*) sin? 0
—2¢%ksin 6 —b%k2 = 0.
III. bktan*}0+2(ah+c?)tand 360+ 2(ah—c?)tan 60—k = 0.
Each of the equations is quartic, and it follows that four normals
can be drawn from any point to an ellipse, of which all may be real,
two real and two imaginary, or all imaginary.
It should be noted that one value of tan }0 corresponds to one

definite normal, for this value gives one value only for cos® and
sin 6.
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To find the conditions that the normuls ut four points on an ellipse,
whose eccentric angles are given, should be concurrent.

If 6, 6,, 65, 6, are the eccentric angles of the four points, then
for some value of i and % these must satisfy equation III above.
The coefficient of tan?}6 is zero, and the coefficient of tan*}d is
equal and opposite to the absolute term ; hence we get the following
conditions :---

(@) =tan}6,.tan 16, = 0;

(b) tan 36, . tan 16,.tan 36, .tan } 6, = —

Only two conditions are necessary in order that four straight lines

should be concurrent, consequently these conditions are necessary
and sufficient.

From (a) and (b) it follows immediately that
tan (6, +36,+30;+10,) = o
hence 0,+0,+0,+0, =(2n+1)m

To find the condition that the normals at three points on the ellipse
should be concurrent.
Equation (1) above gives us
tan 360, tan 3 6, +tan 360,tan 0, + tan 3 6, tan .6,
= —tan 16, (tan } 6, + tan } 6, + tan } 6,).
Hence, substituting for tan }6, from (b),
tan 3 0, tan } 0, +tan } 6, tan § 6, + tan 3 65tan 16,
= cot 46, cot 46,4+ cot 16, cot }6,+cot 3 6, cot 36,.

2 (cos 6, + cos 6,)
- anlg, = 212 1T PR e,
But cot 36, cot }6,—tan 36, tan } 6, sin 0, sin 6,
Hence 2 sin 6, (cos 6, +cos 6,) = 0,
or sin (8, + 0,) + sin (8, +9,) + sin (6,+6,) = O,

which is the required condition.
This condition can also be deduced from equations I and II.

To find the conditions that the normals at the extremities of the
chords whose cquations are lx+my—1=0, Lr+My—1=0 should
be concurrent,

The equation
Ju
+2

is satisfied by the coordinates of the points common to lr+my—1=0,
Lz + My--1 = O respectively, and the ellipse : it therefore represents

1247 X

—14A(le+my—1)(Le+My—1)=0 (i)



322 CENTRAL CONICS

for different values of A the conics which can be drawn through the
points of intersection of these chords and the ellipse.

Now we have shown in § 4 (iii) that if the normals at these points of
intersection are concurrent at the point (4, k), then these points lie
on the rectangular hyperbola

ay (@*—b*)—a?hy + b¥%x = 0 (i1)
thus for some value of A the equations (i) and (ii) will be identical.

Since the term independent of z and y in (ii) is zero, we have
at once A =1.

Also equating the coefficients of z* and y? to zero, we get

1 1
Ll = — (;2, Mm = — 1)2 3
or WAL =M= -1,
which are the required conditions.

The equations of two chords the normals at whose extremities are

concurrent can then be put in either of the following forms :—

Q+’—)-A’fg—-1=0| fc059+‘1—/sin9——d—_—_0

a b l or a b

r 1 x Y 1 ’
Z' +1-n‘b+1-—”J ;SQCG-{‘-'I;‘COSGC&-{-&:OJ

hoth of which are quite general.

The equation of the rectangular hyperbola passing through the
ends of the chords then hecomes

3 2
e A AAD
which at once reduces to
zy(4+mY)—al(1=mY)y+bdm (PF=1)x =0,
and comparing this with (ii) we find that the coordinates of the
point of intersection of the normals are
@' =b* I(1=m?) —  _ a*=b* m(F=1)

h_—;_...d T mE T T TrymE

To find the locus of the intersection of coincident normals.

The chord joining the feet of coincident normals is then a tangent
to the ellipse: if («cos 6, bsin 0) ‘is the point of contact and the foot
of the normal, the chord is

fcos@ + 3—llsxin()--l =0
a b
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Hence the equation of the chord the normals at whose extremities
are concurrent with the normal at (« cos6, b sin 6) is

T sec + zcosec¢9+1 = 0.
« b
Hence, as in the last paragraph, if (k, k) is the point of intersection

of these normals, the rectangular hyperbolas

xﬁ .7/2

At 1-— (zcos(i + %sin@— 1)(254300 + %cose09+1) =0
and xy (P —b%)—u'hy + b’kx = 0
are identical. The former reduces to
Ly—bsindzr—acos®* §y = 0.
Hence, comparing coefficients,
= a:;;bf cos® 6, k= — @—b sind 6,

For different values of 6 the locus of this point is
(az)¥+ (by)* = (=93,

which curve, called the evolute of the ellipse, is the locus of the
intersections of consecutive normals. Incidentally, we see that
a?— b2 b2 —a?
T eos30. - gint
( “ cos3 6, 5 sin3 0)

is the centre of curvature at the point (a cos 6, b sin 6).

/

The form of the evolute is shown in the figure: from points
within it four real normals can be drawn to the ellipse; from
points on it the four normals are real but two coincident; from
points outside it only two real normals can be drawn.

x 2
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Illustrative Examples.

Example i. The normals at P,Q, R, S meet in a point, and P’,Q’,R’, S’
are the points on the auxiliary circle corresponding to P, Q,R, S respectively.
If straight lines are drawn through P, Q, R, S purallel to CP’, CQ’, CR’
CS’, they are concurrent.

Let P be the point (¢ cos 8, bsind), then P’ is (« cos 6, « sin 6).

‘I'he equation of CP’ is xsinf—ycosfd = 0.

Hence that of a line through P parallel to it is

(r—~«cosf)sind—(y—bsinf)cosd = 0,

or wginf—ycosd—(«~b)sinfcosd = 0.
If this straight line passes through a given point (z/, y'),

&'sin 80—y’ cosd- («—b)sinfcosd = 0.

Write ¢ for tan g, this equation becomes

ye+28(x'+a=b)+2t(x'—a+b)—y = 0. (1)
Hence four lines of this type can be drawn which intersect at the point
(', y):if 8y, 6,, 65, 6, are the eccentric angles of P, @, R, S, the corre-
sponding lines of the above form are concurrent provided 6,, é,, 6, 6,, for
some value of #’ and y’, satisfy equation (i). The conditions for this are
Stan}6,tan}é, =0, tan 16, .tan}6,.tan}6;.tan 3, = —1,
and these are identical with the conditions that the four normats at
8,, 6;, 6, 6, should be concurrent.

Example ii. Lengths are measured off from I on the normal at P
in both directions equal to the semi-diameter perpendicular to the normal;
prove that the loci of the two points thus obtained are circles.

Let P be the point (a cos 6, bsin 6), the equation of the normal is
x—acosd y—bsind r

bcosd  asind  CD’
where CD is the semi-diameter conjugate to CP and therefore perpendicular
to the normal at P.
We have then to find the loci of points on the normal distant + CD from
the point (@ cos 6, bsin 8).
Their coordinates are therefore given by

a:—-acost9= y—bsin é
bcos b asin g

1,

+

i.e. z=(a+ b)'cos 9,
y = (b+a)siné.
Eliminating 8 the loci are
o'+ y = (a £ b)’,
1.e. two circles.
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The intersections of the ellipse and a circle. Application
of parametric coordinates.

The equation of any circle is of the form
22 4+y*+2924+2fy+c= 0.

The eccentric angles of the points of intersection of this circle and

the ellipse are given by
a? cos? 0+ b%sin? 0+ 2gacos 0+ 2/bsinf+¢c =0,

for this is the condition that the point (a cos 6, bsin 6) of the ellipse
should lie on the circle.

Writing ¢ = tan $ 6, this equation reduces to

a?(1—t3)24+ 4022 +2ga (1 —t) + 4 /0t (1 + ) +c(1+ D2 = 0,

i.e.

tt (@ —2ga+c)+ 47063+ t* (402 =2a% +2¢)+ 4/t + a*+ 2ga+¢c = 0.

Hence a circle intersects an ellipse in four points and, if the
eccentric angles of these points are 6,. 8,, 6, 6,,we have, since the
coefficients of ¢3 and ¢ are equal,

Stan 16 = Ztan }6,.tan}6,.tan }6,;

hence tan (30, +30,+3%6,+36,)=0,
i.e 6+ 6,4+ 0,46, = 2nm.

Conversely, this is the condition that four points, whose eccentric

angles are given, should be concyclic: one condition is sufficient
since any three points lie on a circle.

Note i. The equations of the common chords of the circle and ellipse
being

gcosg(elw,) + %sing(e,w,) = cos} (6,—6,),

1

g cos} (6y+0)) + ¥ sin } (6,+6,) = cos} (6,6,

the condition 260 = 2n# shows that common chords of a circle and an
ellipse are equally inclined to the axes.

The circle of curvature. Since the circle of curvature meets
the ellipse (p. 280) in three coincident points, if the eccentric angle of
these points is 6 and that of the other point of intersection 6,, we
have 36 +6, = 2nm, i.e. the circle of curvature at 6 cuts the ellipse
again at the point 2n7—36.

The common chord of the circle of curvature at 6 and the ellipse

is therefore gcos 6— % sin @ = cos 26.
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The equation of the circle of curvature is therefore of the form

(p- 287)
2
x , 1+)\{ cosé-{-gsma—1}{@c056—gsin6—cos20 =
b b a b
Equatmg the coefficients of 2% and y? we get for A
Acos? 1 _ Asin®6 1
a? at o T
232
or (a*—=1b?)

= 5?05 P oot 0’
i. e. the equation of the circle is

(a“ + = - 1) (a? sin? 6 4 b2 cos? 6)

+ (az—bz){ cos 6 + —sm0—1} {j—fcosﬁ - %sin 6—cos20} =

which reduces to

2(a%—1%) 2(b%2—a?)

224y - cos* 6. ar — sin36.y

+ (a®—2 b¥) cos? 6 + (b2—2 a%)sin*f6 = 0
Cor. The radius of curvature at the point P(acos 6, bsin ) is
{a%sin? 6 + b7 cos? 6}
ab
. . - . . . CD?
or, if CD is the semi-diameter conjugate to CP, its length is — -

ab
Note. The work throughout this paragraph can be considerably shortened

by usingg (e*0 + e719), ;—1 (e%6 —e~#9) instead of e cosd, bsinfd. The method

involves the use of imaginary quantities; we leave it as an exercise for the
student.

Examples VIII b,

1. If a circle touches and cuts an ellipse, the tangent at the point of
contact and the common chord are equally inclined to the axis of the
ellipse.

2. The inclinations to the axis of the ellipse of tangents drawn to it from
the point (x, y) are given by the equation

(x*—a?) tan® =22y tan 6+ 4> -0 = 0.

3. If the normals at four points whose eccentric angles are 8,, 6,, 6,, 8, are

concurrent, then
S sin 6, + = 8in 6, rin 8, 8in 6, = 0,
and Scos 8, + = cos 6, cosd, cosd; = 0.
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4. If from any point four normals are drawn to an ellipse meeting one of
the axes in G,, G,, G4, G, then 3 (1/CG) = 4/3CG.

5. Show that it is impossible for the normals at four concyclic points on
an ellipse to be concurrent.

6. The three points @,, @,, @, are such that their three circles of curva-
ture intersect on the ellipse at the point whose eccentric angle is 8. Show
that @,, @,, @, are the vertices of a triangle of maximum area inscribed in
the ellipse.

7. If four concurrent normals are OP, 09, OR, O~ and T, T" the poles of
PQ, RS, then, if CT, CT' make angles &, 3 with the axis, show that
tan & tan 8 = b?/a’.

8. The normal at any point P of an ellipse intersects the axes at M and
N respectively ; prove that PM is to PN in a constant ratio.

9. The tangent at a point on the ellipse b’x*+«’)? = ¢?b* meets the axes
in T, ¢ and the normal mects them in G, g; prove that the locus of the
intersection of 7g and G is the curve (2?4 )%/ (?=1%)% = 2 fa® + y* /12

10. From points on a line parallel to the axis of . normals are drawn to
the ellipse ; show that, if &, &y, X, &, are the eccentric angles of the feet
of the normals drawn from a point on the line, £ (sin ) and = (cosec X) are
both constant.

11. Show that the equation of the chord of the ellipse x*/a?+y? 0 =1
joining points whose eccentric angles are & +3, X —f is

(zcosx)/a+ (ysin x)/b = cos 3.

12. If P and CQ are conjugate diameters, show that

4(CP - CQY = (SP-S'P)? — (SQ-SQ).

13. Two tangents TP, TQ are diawn to the ellipse from the point 7,
whose coordinates are I, &; show that the area of the triangle TPQ is
ab {h?/ad + B3 =1} 5/ (13 /a® + k302,

14. Prove that the normals at the points where the line

z/(acos ) +y/(bsin X) = 1
intersects the conic 2?/a®+ y*/0? = 1 meet at the point whose coordinates
are —clcos® &X/u, +crsindx/b. (l=da?-D.)

15. PP’ is a double ordinate of an ellipse, and the normal at P meets
CP in Q. Show that the locus of a point which divides P. Q in a given
ratio is an ellipse.

16. A, B, C are the vertices of a triangle of maximum area inscribed
in the ellipse b*2°+a?y® = a®b?; P, @, R the centres of curvature corre-
sponding to 4, B, C. Find the locus of the centroid of the triangle PQR.

17. Find the equation of the tangent to the ellipse 2*/a*+y*/1? =1 in
terms of the angle X the perpendicular from the centre on it makes with
the major axis. If this tangent and a perpendicular tangent-be taken as
new coordinate axes, what will be the coordinates of the centre of the
ellipse ?

18. The tangent at (2’, y') meets the auxiliary circle at QQ. Show that
the lines CQ, CQ’ are represented by the equations .y’ = y i +ae); C being
the centre of the ellipse,
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19, Show that there is in general one conic of finite axes with given
centre and direction of axes which has two given lines as normals.

20. The locus of the intersection of perpendicular normals to an ellipse
ig (a®+b?) (2 +¢?) (a®y? + 1" 2% = (a® —b2)? (a®y* — D2 2?)’.

21. The normal at P meets the tangent at @ on the minor axis; show
that PQ touches x?/a?(a®—20%) —y%/V* = 1/(a? - 1?).

22, If the normals to an ellipse at ABCD are concurrent, and diameters
are drawn parallel to 4B and CD, their extremities are at the angular
points of a parallelogram whose sides are parallel to the equi-conjugate
diameters.

23. If the centres of curvature of an ellipse at the extremities of a pair of
conjugate diameters are joined to the centre, the product of the tangents
of the angles these lines make with the major axis is constant.

24. The normal at any point P meets the axis in @, a point @ is taken in
the tangent so that PQ = \. PG, where A is constant; prove that the locus
of @ is x%/a®+ y*/b? = («*+\201?)/a’.

25. The line joining the centre of an ellipse to the pole of the chord
common to the ellipse and the circle of curvature at any point, and the line
joining the centre of the ellipse to the point where the circle of curvature is
drawn, make equal angles with the axes.

26. If TP, TQ are the tangents from the point T'(f, y) to the ellipse
x?/a*+y*/1¥~1 = 0, whose centre is C, prove that the area of the quadri-
lateral TPCQ is (i) 4/0'f%+a%y*—ab%; (ii) 4 TT'*tan 6, where TT" is the
tangent from 7' to the director circle and 6 is the angle PTQ.

27. PQ, PR are focal chords of an ellipse. Prove that the tangents at @
and R intersect on the normal at P.

28. In an ellipse, if CPand CD are conjugate diameters, find the envelope
of PD.

29. A chord PQ of a conic passes through a fixed point. If the circle
on PQ as diameter mecets the conic again in P'Q’, show that P'Q’ also
passes through a fixed point.

30. Find the coordirates of the intersection of the normals at the points
of contact of two tangents from (£, n) to the ellipse, and show that the
normals at the points of contact of tungents from (-—a?/§, —0%/n) pass
through the same point.

31. A chord of a%/a®+y%/V* =1 touches x%/«,®+4 */b,* = 1.

If 2» is the length of a diameter of the first ellipse parallel to the chord
and ¢ the length of the chord,

(a*—1?) ¢ = 4t [@? - b* — (a,>— b,%) + % (a,%/a* - b2 /b?)).

82. The normal at a point P of the curve meets the major axis in G, and
a point @ is taken on the normal at P such that PQ = PG; find the
locus of Q.

83. If (x,, %) and (=x,, y,) are two points on the ellipse x?/«®+y*/1* =1,
the tangents at which meet in (z, y) and the normals in (¢, 5), prove that
a*¢ = *xx x, and U2y = e’yy,y,, where e is the eccentricity,
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34. Chords of the ellipse z*/a+#?/b*=1 are drawn parallel to the
diameter lxz/a+my/b = 0; find the locus of their middle points.

The normal at P to the ellipse meets the curve again at @; show that
the locus of the middle point of P@ is given by the equation

(b'lx'l 4 a‘ly'l)'l (bﬁx'l + aGyZ) -— al bl (a?__ b‘l)? xﬂyﬁ.

35. Normals at the ends of chords parallel to the tangent at 6 meet in

points lying on
2 (ax 8in 8+ by cos 8) (ax cos 0+ by sin 8) = (a®—b*)?sin 26 . cos? 24.

36. If normals to an ellipse from O meet the curve in P,, P,, Py, P, and
the major axis in N, N,, N;, N,, then £(OP,/N,P)) is constant.

37. Show that unless the eccentricity of an ellipse be greater than 1/,/2
it is impossible for the centre of curvature at any point of the ellipse to lie
on the curve itself.

38. The locus of the poles of normal chords of an ellipse is

/2t + 1 [y? = (a® - b%)%

39. From any point on the normal at the point & on an ellipse two
other normals are drawn to the ellipse. Show that the locus of the point
of intersection of corresponding tangents is

b sin X +ay cos X +ry = 0.

40. From any point of the curve x?/a® + y*/b? = (2*/a® — y*/b%)? tangents are
drawn to the ellipse 2°/a®+ y%/1> = 1 ; show that the line joining the points
of contact is the chord of curvature at one of them.

41. Pisany point on the ellipse 2%/a?+42/b® = 1. Show that the normal
at P bisects the angle between the focal distances SP and HP. If SP
is produced to @, making PQ = PH, and HP is produced to R, making
PR = PS, show that RQ intersects the tangent at P on the major axis;
and find the equation of the locus of the intersection of RQ with a line
drawn from the centre of the ellipse, parallel to HQ.

42, If tangents TP, TQ are drawn from T'(f, g) to a conic 2%/a® +y*/b* =1,
prove the difference of the angles TPQ, TQP is

e 2@ ) (@R =)
4(&2 b‘ZfQ‘(I? + (ade - blf‘?) (aﬂ — b2 _f‘Z + g‘l)

43. The circles of curvature at the points L, M, N on the ellipse meet the
ellipse at the same point O whose eccentric angle is o ; find the eccentric
angles of L, M, N, and show that the circle circumseribing the triangle LMN
passes through 0.

44. A point P on the ellipse b’2%+a’y® = a?b? is such that the centre
of curvature there lics also on the ellipse. Find its coordinates, and show
that the radius of curvature at P is {34/3a?0?}/{(a*+b%)%}.

45, Prove that four normals, real or imaginary, can in general be drawn
from a point to an ellipse ; and show that the line joining the feet of any
two of them is equally inclined to the axis with the diameter which bisects
the chords joining the feet of the other two. Show also that the middle
points of the diagonals of the quadrilateral formed by the tangents at the
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four feet lie on a straight line which passes through the centre and is at
right angles to the diameter which passes through the point.

46. Chords through the point

(a*=b%) . acosb/(a+b%), (b*—a?).bsin §/(b*+a?
subtend a right angle at the point (acosé, bsin6).

47. If &, B are the coordinates of the centre of curvature at a point (2, ¥")
on z*/a*+y*/b* = 1, and if the centre of curvature is on the ellipse, prove
o/z'+B/y’+1=0.

48. The normals to an ellipse at P, @, R meet in a point, and also the
sum of the eccentric angles of these points is constant.

Show that the locus of their point of intersection is a straight line, and
that the sides of the triangle PQR touch a parabola.

49. A point P moves on the ellipse

22/{(2a%— %)%} + 42/ {(20% —a?)?} = 1/K?,
where k is a constant ; prove that it is a constant distance from the centroid
of the four points on the ellipse x?/a®+%%/b® =1, whose normals meet at P.

50. A tangent is drawn from the point (@ cos 6, bsin 6) of an ellipse to the
circle of curvature at the other end of the diameter through the point;
show that the length of the tangent is 2 {(a®—b?) cos 26}}.

§ 6. II. The Hyperbola
zZ yz
@b
Several systems of parametric coordinates are possible ; each can be

developed in a manner analogous to that used for the circle and the
ellipse : we shall therefore only give a short sketch of each.

(a) Any point on the hyperbola can be represented by

(a cos 6, b sin 6),
where i = +/—1. The results in this case can be deduced from
those found for the ellipse by substituting throughout ib for . The
objection to this system is the use of an imaginary quantity.

(b) The hyperbolic trigonometrical functions can be used, and any
point on the curve represented by (acosh 6, bsinh#). This system
has the advantage of retaining the symmetry to which we have
become accustomed in the case of the ellipse. The objection to the
system is that only one branch of the curve can be so represented
for real values of 6. '

The area of a sector PCQ of the hyperbola is } ab (6, = 6,).

The equation of the chord joining two points a, /3 is

= 1.

‘f cosh } (+ ) -;4 sinh } (& + ) = cosh } (x— ).
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The equation of the tangent at the point 0 is

L cosh 8 — Lginh 6= 1.
a b

The equation of the normal at the point 6 is
az sech 6+ by cosech § = a® + 12
This equation can also be written
by tanh* } 6 + 2 (ax + a® + b?) tanh3® 3 6 — 2 (ax— a*-- %) tanh 3} 6 — by = 0.
Thus the normals at 6,, 6,, 05, 6, are concurrent if
Ztanh 16, .tanh 36, =0
and tanh 46, . tanh 36, . tanh 46, . tanh 3 6, = — 1.
But
tanh (36, +16,+136,+16,)
_ 2tanh } 64 Ztanh 36, tanh 36, tanh }6, '
~ 1+ 2 tanh 46, tanh } 6, + tanh 1 6, tanh } 6, tanh } 6, tanh 16,
Hence, if the normals at these points are concurrent,
tanh(1 6, +36,+30,+36,) = .
20 ="C2n+1)in.

(¢) Again, any point on the hyperbola can be represented by
(¢ sec 6, btan ). The results are not analogous to those .for an
ellipse.

The equation of a chord joining the points o. 3 is

‘%sin—.‘_, @+ B) = cos } (x+4).

v
. X = {3) —
Scos b (a—p)
The equation of the tangent at the point 6 is
L Zsing = cosé.
a b
The equation of the normal at the point 6 is

arsin 64 by = (a*+ b?) tan 6.

(d) The most workable system of coordinates is a variation of (b):
we can use for any point on the hyperbola the coordinates

a 1 b 1
%Q(t+z), Q(t—Y)}.
The equation of the chord joining the points ¢, ¢, is

x )
a(l'*”'lf'z) + é(l"‘tltz) =ttty
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The equation of the tangent at the point ¢ is
Ta+e)+2—p =
a(1+t )+ b(l t?) = 24,

The equation of the normal at the point ¢ is
2at(1—-t%)2—2bt(L+t®)y = (a®+ V%) (1—1t%).
This equation can also be written
(a®+ b?) 14 =283 (ax -+ by) + 2¢ (ax— by)— (a® + V%) = 0.
Thus the coundition that the normals at the points ¢, ¢,, ¢, ¢,
should be concurrent are
Stht, =0, ttptt, = —1.
Eliminating ¢, we see that the condition that the normals at the
three points ¢, ¢,, ¢; should he concurrent is
1
e
The equation giving the parameters of the points of intersection
of the hyperbola and the circle
22+ y2 4292+ 2fy+c=0

Etltz =

18
@2+ V)t +4(ga+rb)E+2(2c+a’—1?%) : +4(ga—fb) t + (a® + %) = 0.
Hence the condition that four points on the hyperbola, whose
parameters are ¢, t,, ¢;, ¢, should be concyclic is
tt,tt, = 1.

Example i. To find the equation of the circle of curvature at the
point whose parameter is t, and the coordinates of the centre of
curvature.

Let the circle of curvature be
x2+yt+2gx+2fy+c =0,
then the parameters of its points of intersection with the ellipse are given
by the equation
@+t +4(ga+/b) P +2(2c+a’ )2 +4(ga —fb)t+ @ +b* = 0.
Since three of these intersections are coincident, let the roots of this
equation be t, ¢, ¢, ¢\

, , 1
Then Br=1; .~ t= -
Also S(ga D) 1
sa+fY) a1
~ =i sum of roots = 3¢ + =
2 __h?
2ot =) o) = sum of roots two at a time = 3 <t"’ + }i),
a®+ b ;
.—‘E_((/a"fb) = sunl of roots thl‘ee ut a time - § +t3.
a®+? ;
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Sga 8fb 13
Henee “eiw= (1) wm=(m)
and 2¢=}(a"+0% (t’+ t—lz> -a’+ %

Thus the circle of curvature is

at+ V? 1\3 a?+41? 13\° 1
24 g% pt T (== 3+ 00 245 )=1(a?—b?) =
x4y v (t+ t>x+ i ¢ t) y+3a +b)<t +t2) 1(a®-b) =0,

and the coordinates of the centre of curvature are

a’+ b 1\* a®+ b* 14\*
‘szr(‘*?)' 85 ("’{)'

Incidentally, if (x, y) is the centre of curvature at the point whose
parameter is ¢, we have

8ax \§ 1\2 1
;2737) =(‘+:> =+ a2

8by \} 1\2 1
(220)' = (e 1w+ B
Hence the equation of the evolute is
(ax) —(by)} = (a?+b%)}.

Example ii. Show that chords which subtend a right angle at
a fixed point on an hyperbola all pass through a fixred point, and find
its coordinates in terms of those of the given point.

Let the given fixed point be P {%a ( t+ %), 16 (t - 12)}, and suppose
¢, t, are the parameters of the extremities of any chord QR which subtends
a right angle at P.

Then the equations of the chords PQ, PR are

E(l +t) + %(1—:@): t+t,

-(1 +tty) + ‘/(l-lt,)_t+t,,

and since these are perpendicular
(T+ey) (1 + tt,) ttl) tt,)
T
which at once reduces to
(1 +222,t,) (a® + b%) = (a®— DY)t (¢, +1,).
But the equation of the chord QR is

Znt)+E1-nt) =+,

or, substituting for (¢, +¢,), it becomes
a®+ b’

Stnt) + {(1=t) = O (14+£00)
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This can be written

Ly _ @+d z_y _otb )

{a b (a’-——b’)t} +hty {a b -0 t} =0,
which for different 'values of ¢, ¢, represents a line passing through the
intersection of the lines

Yy _ bl
a b ad-b ¢’
x_y _ et
e b a'-b

i.e, through the point

a?+b? | 1 a?+ b 1
{EzT—_b":“ (t+ -f-), - 2b(t— r)} .
Thus if the coordinates of the fixed point P are (w,, y,), chords which

subtend a right angle at P all pass through the point
(aﬁ + b'l b7 ta'l }

lat-0"1 g

This point lies on the normal at P.

Example iii. From any point on the normal at « poml P o the
2 92
hyperbola 55——{;2- =1 the three normals other than that at I are drawn.

Show that the circle through their feet is one of a coaxal systcm.

Let the parameters of the tixed point P be ¢, and those of the feet of the
other three normals drawn from any point on the normal at ¢ be 7, 1,, ¢,.
Algo let s=t,+t,+1t5, p =t t,+t b5+ 15t

Since the normals at ¢, ¢,, t;, ¢, are concurrent

p+ts=0 and t# ¢ty =—1.
Now suppose the circle through the points ¢, ¢,, ¢, is
2+ +2gx+2 fut+ec=0,
then, since the parameters of the points of intersection of the circle and the
hyperbola are given by
(@®+ %) ' +4(ga+fb) P +2(2c+a?—b*) 2 +4(ga—fb) t+a*+ b2 =0,
three roots of this equation must be ¢, ¢,, ¢;; let the fourth root be ¢, then

t,t,tst, = 1; hence 7, = ~t = constant.
Thus
-4—%%4—1’—) =ttt gt it = 5=t
| X}
?&‘;E’Fﬂ = tty+ bty + bt (G +t+Ey) = p—ts = —2ts,
4(ga—rsb)

1 1
and - prg s =t,t,t,-{-t,(t,t,+t,t3+13t,)==—z—tp=—-z+st2.
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_al "
Hence 29 = m—(lﬂ ) (1=st),
_ a®+?
2f—- —;—bz— (t —1)(1+3t],

c=—3(a’~b) =3 (a?+1?).st.
The equation of the circle is then

2 2 2 2
x2+y?+‘1z’;—f’— (14+8) (1-s)a+ 52 (1)1 +st)y

4bt
=3 (=) =1 (a’+ 1% st =0,
which can be written * :

'+ y* +

2+ b'l 2 2
a4,,, (1+)z + ‘_‘4_2‘2 (=1 y—%(a®=b"

=1(c®+b?) .5 {g(l-%t’) - %(ﬂ—l)-&-?t}'

Since s is the only undetermined constant, this equation represents
a system of coaxal circles of which the radical axis is

< 2 _ Y 1) 49t =
a(lu) b(z 1)+2¢=0.

Evidently the point whose parameter is (—t) lies on the radical axis
since it is common to all the circles.

Examples VIIIc.

1. Show that the normal at the point whose parameter is ¢ on the
rectangular hyperbola x?—y® = a® meets the curve again at the point whose
parameter is —1/¢5.

2. The tangents at the points ¢, t; on 2%/a*—y°/b® =1 intersect at

fa(tty+1) b(tt,—1) .
hity ' At }

3. Find the locus of the foot of the perpendicular from the centre to
a tangent to the hyperbola z%/a?~y*/b% = 1.

4. The equation of the straight line joining any point on the hyperbola
to the vertex is of the form x/a+y/b—1+¢(x/a—y/b~1) = 0.

Find the locus of the mid-point of a chord of the hyperbola which
subtends a right angle at the vertex.

5. Find the coordinates of the foot of the normal which meets the axis
of the hyperbola at {(a®+b%)/a, 0}.

6. The tangent at any point P of the hyperbola a'/a?—y3/b* =1 meets
the lines (a%+ b?%) y*+ a?® = 0 at the points @, R: show that CP bisects QCR.

7. The mid-points of focal chords of an hyperbola lie on an hyperbola of
equal eccentricity.

8. The mid-point of a chord of an hyperbola which passes through a
fixed point P lies on another fixed hyperbola which passes through the
centre C of the given hyperbola and its centre is the mid-point of CP.
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9. Find the conditions that the chord joining two points on an hyperbola
should (i) pass through a focus, (ii) be a diameter when the extremities are
given in'each system of coordinates.

10. Show that the normals at the ends of the chords

(zsecd)/a—(ytan6)/b+d =0,
(xcosb)/a+(ycot8)/b—-1/d =0
of the hyperbola x%/«?*-y»?/b*~1 = 0 are concurrent.
Hence find the coordinates of the centre of curvature at (asecd, btané).
11. Find the equations of the common tangents of
o fat—y /b = 1,
2*/b*—y*/a® = — 1.

12. Find the conditions that the normals at the points (asecd, btan 6)
where 8 is 4,, 6,, 6;, 6, vespectively should be concurrent.

Also find the condition that those points should be concyelic.

18. If the tangents at two points on z%/a®—y%/b? = 1 meet at (r, y) and
the normals at the same points at (¢, n), show

¢/ {x(*+b%)} = n/{y(a*—2?)} = {a®+b%}/{b°x* —a’y?;.

14. Find the locus of the mid-points of focal chords of the rectangular
hyperbola x?—y* = a®

15. A circle whose centre is ( f, ) cuts the hyperbola x*—3* = a? in four
points: find the coordinates of their centre of mean position.

16. A tangent to x*/a®—y?/b® = 1 cuts the ellipse z?/a®+y?/b? =1 at P
and @. Show that the locus of the mid-point of PQ is

(/a2 + 4Y/6) = & /ad = y1)b,

17. From any point on the hyperbola z*/a®— y*/b* =1 three normals other
than the one at the point are drawn: show that the centroid of the triangle
formed by the feet of these normals lies on the hyperbola

9 (2%/a — /1% = {(a*~ /(@ + 1)}
18. In the last question the locus of the circumcentre of the triangle is
4 (a®x?—b%y?) = a*bi.

19. If (x,, y,) is the centre of curvature at (z,, y,) of the hyperbola
z%/a?—y*/b? = 1, show that z3/a’z,—y23/b%y,—~1=0.

Hence show that if (x;, y,) lies on the hyperbola x;/x, +y,/y, +1 = 0.

20. Find the locus of the intersection of a normal to x*/a?—y?/b* =1 and
a chord which subtends a right angle at its foot.

21. Find the equation to the normal to the hyperbola z*/a*—y*/1* =1
at a point whose eccentric angle is 4.

Show that the sum of the eccentric angles at the points where normals
from a given point meet the hyperbola is an odd multiple of two right
angles.

22. Show that in general four normals can be drawn from a point to the
hyperbola #?/a*—y*/t* = 1. If z,, x,, x,, 2, be the abscissae of four points
on the hyperbola, the normals at which meet in a point, prove that

(@, + @y +xy+x,) (Lo + 1 /2, + 1 /23 + 1/2,) = 4.
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23. Find the radiug of curvature at any point of the hyperbola
bt —ay? = a?le
Prove that the difference of the lengths of the tangents from any point of
the hyperbola to the circles of curvature at its two vertices is « onstant.

24. PN is an ordinate of an hyperbola; NQ is drawn to touch the circle
described on the major axis as diameter: show that the tangent at P
intersects NQ in a concentric conic.

25. Prove that the equation of any normal to the hypeibola ?—y* = ¢?
can be written in the form zsinf+y = 2¢tané.

Prove that the locus of the middle points of normal chords of the hyper-
bola is (y*—2%)® = 4cx%y"

26. The circle of curvature at any point P of the hyperbola 2?/a® — y?/b* =1
meets the curve at Q; if (¢secd, btand) and (asec ¢, btan¢) be the
coordinates of P, Q respectively, find the relation connecting 8 and ¢. Deter-
mine also the locus of the pole with regard to the hyperbola of the chord PQ.

27. Prove that the chord joining the two points on z?—y? = a® whose
abscissae are acosh 8 and acosh ¢ is the line

x cosh 3 (6 + ) —ysinh } (6 + @) = acosh } (6 —).
AA’ are the vertices of 22— = a?% and P, @ the points whose parameters
are 6+4& and 6~ where 0 is constant.

Prove that the locus of the intersection of AP and 4'Q is a 1ectangular
hyperbola.

28. Determine the equation of the chord joining the two points on the
hyperbola 0%2?—a?y? = a®b® whose coordinates are

(asec X, btan ), (asecB, btanp).

If S and & are the foci, A and A4’ the vertices of the hyperbola, and
if from any point P on the curve PS, PS be drawn cutting the curve again
in @, @, then if QA, @’ A’ are joined the locus of their point of intersection
will be an hyperbola having double contact with the given one.

29. Prove that the line joining the centre of a rectangular hyperbola to
any point on the curve is perpendicular to the chord common to the circle
of curvature at the point and the hyperbola.

30. From a point O (z, y), lying on the hyperbola #*—y* = a*—b? tangents
OP, 0Q are drawn to an ellipse b*2®+a’y® = a®b?, whose centre is C. If
CO meet P’Q in I, show that OP.0Q:xy::20R: OC.

31. The common chord of an hyperbola and the circle of curvature at
a point on it passes through a fixed point: show that there are four such
points and that they are concyclic.

If the fixed point is (z,, y,), the equation of this circle is

2 (2 +y?) — xx'(a® + b?) f«* = yy’ (a® 4 b%) /0* — (a?—D?) = 0.

32. The chords of curvature at four points 4, B, C, D of the hyperbola are
concurrent: if 4 is a fixed point show that the circle BCD is one of
o coaxal system, and find its radical axis in terms of the coordinates of A.

33. The chords of curvature at P, @, R intersect on the chord of curvature
at K and the circle PQR cuts the diameter at 0. Prove that

CK.CO =} (a®-1%).
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§ 7. The Asymptotes. The asymptotes of the ellipse
2 y2 x? y‘l
?-}-E‘z:l are 21—2+i)7‘=0’
i.c. are imaginary, in accordance with our original classification.
The asymptotes of the hyperbola

2 P a? gyl
P i 1 are — — e 0;
Hd 1 x 1 .. .
or, written separately, a V= 0, -+ % = 0; cach is inclined to

.

the z-axis at an angle tan~!

. b
Thus, if the angle between the asymptotes is w, we have tan g= a

Conjugate Hyperbolas. The two hyperbolas whose equations
referred to their principal axes are

2y .
Pl vl @
x* oy "
(—l—z-——b—z-_: —1 (ll)

have the same asymptotes.
The axis of # meets the first in real and the second in imaginary

points: the axis of y meets the first in imaginary and the second in
real points.

‘We note that the points
(a. 0), (=a, 0), (0, ¢D), (0, —11)
lie on the first, and

\\ V/
N

BI

(‘“a 0); (""'U! 0)' (07 b)a (Oa _b)
lie on the second.
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Any powmnt P on the first hyperbola can be represented by
(@ cosh 6, bsinh6), and similarly any point p on the second can
be represented by (a sinh 8, bcosh 6).

Thus for the same value of 6 the equation of the diameters CP, Cp
are v
y=ag tanh 6,

b
y==z_ coth 6.
The tangents to these hyperbolas respectively at the points P, p are
¥ cosh 6 — 'ysinhG =1,
a b

L sinh 6 — qcoshG = -1,
« b

which are respectively parallel to Cp and CP.
Thus CP, Cp are a pair of conjugate diameters of both hyperbolas.
The curves are therefore called Conjugate Hyperbolas.
The following properties should be noted :—
(i) If CP, Cp are a pair of common conjugate diameters of the two

hyperbolas, each meets one hyperbola in real and the other in
imaginary points.

(i) CP? = a2 cosh? 6 + b?sinh? 6,
Cp?* = a?sinh? 6+ L2 cosh® 6 ;
hence, since cosh? §—sinh?2 0 = 1,

CP?—Cp® = a’>—b%
(ili) The tangents at the real points of intersection of conjugate

diameters with the conjugate hyperbolas inteysect in pairs on the
asymptotes.

Let PCP’, pCp’ be a pair of conjugate diameters: then the
coordinates of their extremities are
P(acosh 6, bsinh 6),
P’(—acosh 6, —Dbsinhé),
p (asinh 6, bcosh 6),
p’ (—asinh §, —bcosh 6).
Hence the tangents at P and P’ are
% cosh 6 — Lsinh 6 = +1,
a b
and at p, p’ are
x Y —
-ginh§ — % coshf = F1.
a b
Yy 2
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Hence the intersection of the tangents at Pp or P’p’ satisfy
z Y *sinh 6 — 7 T1)=
(G cosh6—7sinh 6 + 1) +(Zsinh 6~ cosh 6 F 1) =0,
i.e. they lie on the line
L _ ¥ 1 =
(a b) (cosh 6 + sinh 6) = 0,
or on the asymptote
x_y_
il 0.
So the intersection of tangents at Pp’, P’p lie on

£ Y . x . y N —
(ﬁ cosh 0—-l~)smh 0+ 1) — (&3111]19 -3 cosh 6 -+ 1) =0,

i.e. on
roy . _
| ( ot b)(cosh 6 — sinh ) = 0,
i.e. on the other asymptote
‘3" + y = 0.
a b
The student should prove the following additional properties :—
(a) If PCP’, pCp’ are a pair of conjugate diameters common to
two conjugate hyperbolas, then
(i) The parallelogram PpP’p’ is of constant area.
{(ii) The parallelogram formed by the tangents at PpP’p" is of
constant area.
(iii) The lines Pp, Pp’, P’p, P’p’ are each parallel to one asymptote
and bisected by the other.
(b) The chord of contact of tangents from a point on an hyperbola
to its conjugate hyperbola touches the hyperbola.
(¢) The polars of any point with respect to two conjugate hyperbolas
are parallel and are equidistant from the common centre.

§ 8. The equation of an hyperbola referred to its asymptotes
as coordinate axes.

Method i. The equation of the hyperbola in this case is of the
form (vide Chap. VI, § 6.1) zy = %
Now the asymptotes are equally inclined to the axes: hence the

equation of the axis is
z—y = 0.
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This meets the curve where
ot = g = 2
i.e. at the points (+ ¢, + ¢).
Hence 042 = a® =4c%cos?iw
or 4¢? =a’sec’lw
= a%(1 + tan? }w)

= az(l + Zj)

= a? + 0%
The equation then of an hyperbola, whose semi-axes are a, b,
referred to its asymptote as axes, is
xy = }(a®+0%);
we shall generally use this in the form
ay = ¢
where 4c% = a?+ b2

Method ii. Let any point I’ on the hyperbola have coordinates
(x, y) referred to tho asymptotes as coordinate axes and (+/, ¥’)
referred to its axes. Draw PN perpendicular to the axis, and let
PDM, parallel to the asymptoute Oy, meet the asymptote Ox at M.

Then a’ = ON, y’ = PN,

©=OM, y=DPM.
Thus
& = ON = (PM+ OM) cos 3w = (y+x) cos }o,

¥ = PN = (PM—O0M) sin }o = (y—2)sin }w;
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(@+y)—(x—y) = 2"?sec? }o—y'?cosec? } o
= a’?(1+tan?w)—y'*(1 +cot? 3 v)

=a2(1 +Z;)—y’2(l+%;)

2 o2y
= (a‘ +b'z) ('{"2- - 62)
= a?+b?
for (2/, y’) lies on the hyperbola
e =t

Hence the required equation is
4xy = a?+ b’

The reader can also obtain this equation by the method of
Chap. I1I, § 6.

Note. The equation of the conjugate hyperbola is
4xy = —(a2+ D7),
or a pair of conjugate hyperbolas can be represented by
xy = }
xy = —c? )

The majority of problems dealing specially with the hyperbola are con-
cerned with the properties of its asymptotes, which are peculiar to it: in
such cases it is usually convenient to use the hyperbola in the form xy = ¢?
and we proceed to develop a parametric system of coordinates for this
form.

For the hyperbola in general the axes are then oblique, but for the
rectangular hyperbola, since its asymptotes are at right angles, the
coordinate axes are rectangular.

§ 9. The hyperbola referred to ite asymptotes. Parametric
Notation.

The coordinates of any point on the hyperbola zy = ¢® can be put
in the form (ct, %) for some value of ¢, and further, every point

whose coordinates are in this form lies on the hyperbola.
(i) The equation of the chord joining two points whose
parameters are t,, t,.
Let the equation of the chord be
Az+By+c=0;
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then, since the given points lie on it,

Act1+B§ +c=0,
1

or At2+ B+t =0,
and At2+B+t,=0.
4 B 1
Henee b=t hly(—t)  GF=gF
or A = ‘l_; —_ — i .
i1, i+t

Thus the equation of the chord is
r+ bty =c(t,+1t,).
This may also be written

LA Y _q.
clt +12,) v

1 1,
(4,
hence, if (£, n) is the mid-point of a chord, its equation is
x/E+y/n =2

Cor. If the chord PQ meets the asymptotes at p and ¢, and the mid-point
of PQ is (£, n), then, since the equation of the chord is z/£+y/n =2, the
points p, g are (0, 2n) and (2¢, 0). Hence the point (£, n) is also the mid-
point of pg, and Pp = Q4. This property enables us to draw an hyperbola
when we have the asymptotes and one point P on the curve; for if any
straight line through P mecets the asymptotes at p and ¢, we can at once
construct the point @ on the curve.

The figure (see p. 344) represents the same hyperbola as that shown in
Chap. VI, p. 234. Any number of points, such as @, can be found by using
a ruler and a pair of dividers. Each of these gives, in the same manner,
two other points @,, @, on lines parallel to the coordinate axes, which can
be found conveniently when the construction is made on squared paper.

(ii) Conjugate Diameters. If the chord x/¢é+y/) = 2 is parallel
to y+mz = 0, we have n—mé = 0.

Thus the mid-points of chords parallel to y+mxr=0 liec on
y—mz = 0. The converse is evidently true; the equations of a pair
of conjugate diameters thus take the simple forms y +mz = 0.

Note. It follows that any pair of conjugate diameters are harmonic
conjugates with respect to the asymptotes.

(iii) The Tangent. The equation of the tangent at the point
whose parameter is ¢ is 2+ {2y = 2¢t; this follows from the equation
of the chord by putting ¢, = ¢, =1
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Note. If the tangent at P meets the axis of x at T, 1" is the point (2¢¢, 0),
sothat CT = 2c¢t. Also CS* = a®+ 1% = 4¢%, so that CS = 2¢. Geometrically
therefore ¢ = CT/CS. 1t can be shown that ¢ has the same value in the

. a 1 b 1
gystem of coordinates x= Q(‘ + E)' Y= §<t - ;)-

\ i

T

N\ | -

‘?
)4
7

\

Example. The intercept made by the asymptotes on any tamgent is

bisected at the point of contact and the triangle so formed is of constant
area.

For the tangent at the point ¢ meets the asymptotes at the points
(2ct, 0), ( 0, -2—;), and the coordinates of the point midway between these is

( ct, i—) The area of the triungle so formed is evidently 2¢*sin .
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(iv) The equation of the polar of any point (2/, ") with respect to
the hyperbola xzy = ¢% is zy’+ 2y = 2¢% and if («/, y’) lies outside
the hyperbola this is the equation of the chord of contact of tangents
from (z', y’) to the hyperbola.

Example. 70 find the point of intersection of the tangents at points
whose parameters are i, t,.

Let (2, y’) be the point of intersection, then
zy' +a'y =2c
and Tttty =c(t;4t)
both represent the chord of contact.
Comparing cocfficients we get

Tty
(v) The equation of the normal at the point .
Let the normal be the line («—ct) +m (y - g) = 0; this is per-

pendicular to the tangent z+ {?y = 2¢c, hence
1+mit? = (t%+m) cos w,

t2cosw—1

or m = H

t{—cosw
and the equation of the normal takes the form

(b—ct)(t*—cosw) + (y — g)(tzcosw—l) =0,

or at (22— cos w) 4yt (2 cosw—1) = c(t*—1).
As a general rule questions involving the equation of the normal

are more conveniently treated by referring the hyperbola to its
axes.

Special case of the Rectangular Hyperbola. In this case
w = 90° and the equation of the normal becomes
Br—ty =c(t'—1),
or ctt—atd 4+ yt—c = 0.

(a) Concurrent Normals. If the normal at the point ¢{ on a
rectangular hyperbola passes through any proposed point (k, k) we
have ctt—ht*+kt—c=0.

Hence, conversely, this equation gives the parameters of the feet
of the normals which meet at (&, k).

Since the equation is of the fourth degree four normals can be
drawn from any point to a rectangular hyperbola.



346 CENTRAL CONICS

(b) Conditions that the normals at any four points on a rectangular
kyperbola should be concurrent.

If the normals at the point whose parameters are ¢, t,, {5, ¢, are
concurrent, these parameters must satisfy ct*—h3+ki—c =0 for
some values of & and Z.

Hence S4t,=0 and ¢ttt = —1,

or, written otherwise,
1
W [ T —
“tlt‘l— ~t1tz—0,
which are the required conditions.
If these conditions are satisfied, the coordinates of the point of

intersection are then given by

h=c34,
. .1
k:—cbtltzt.jzcl?-

Example. 7'he orthocentre of a triangle inscribed in a recltangular
hyperbola is on the curce.

Let the parameters of the vertices of a triangle PQR inscribed in the
rectangular hyperbola xzy = ¢* be ¢, #;, t;. Suppose that the straight line
through P perpendicular to QR meets the curve at the point T whose
parameter is ¢,; then the lines

Z+ttyy = c(ty+1t),

x+hty=c(t+1,)
are perpendicular, hence t,1,¢,¢, = —1. The symmetry of the result shows
that the pairs of chords PQ, RT and PR, QT are also perpendicular, i.e. T is
the orthocentre of the triangle PQR.

We may notice that the feet of the four normals from any point to
a rectangular hyperbola form a triangle and its orthocentre.

(¢) The feet of four concurrent normals lie on another rectangular
hyperbola.

If the normal at any point (ct, i) passes through the point (4, %),
we have seen that
ctt—h + kt—c =0,

2
or c2t2-hct+7—ct-9—ct—§=0.

Thus if (z, y) are the coordinates of the foot of any normal passing
through (k, k), i.e. in the present case if z =cf, y = —g, then (z, )

must satisfy 2?2—hz +ky—y?=0, i.e. the feet of the normals meeting
at (o, k) lie on the rectangular hyperbola #?—y?—hxz+ky = 0, which
also passes through (h, %).
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(d) To find the conditions that the normals at the ends of the chords
of a rectangular hyperbola whose cquations are
lx+my—1=0,
Ulz+m'y—1=0
should be concurrent.

The points of intersection of these chords and the rectangular
hyperbola lie on the conic
A(ey—c) + (e +my—1)(Ve+m'y—1) =0, ()
and consequently, if the normals at these points are concurrent, for
some value of A this conic must be the rectangular hyperbola,

x2—y?—hx+ky = 0. (ii)
Comparing the coefficients of 2% and y*
W= —mm,

i.e. the chords are perpendicular, and also, since the coefficient of
a2y and the constant term in (ii) ave zero,

W +lm=—A=—5-
c

The required conditions are therefore
W+mm’ =0,
(' +Vm) = —1.
By comparing the coefficients of x and y the coordinates of the
point of intersection of the normals can be found in terms of the
coefficients in the equation of either chord, thus

1 1 1 1
h—-l-l-l—,) 7\——”-‘& ;;/,

and the conditions above give !’ and w in terms of ! and 1, or
vice versa.

Cor. If one chord is the tangent at the point ¢, viz.

z+tly—2ct =0,
the other chord must be
2tz —2ty—c(1-1*) =0,

and the point (%, &), which is the centre of curvature at the point ¢, is then

e(ors ). (22

(vi) The intersections of the hyperbola and a circle.
The equation of any circle is of the form
22+ Y2 +2xycosw+2gx+2fy+d=0.
¢

Substituting = = cf, y=7 we obtain an equation giving the
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values of the parameters of points on the hyperbola which also lie
on the circle ; this equation is
2t +2gctd + (A + 2 cos w) 2+ 2fct + ¢ = 0.
If the values of ¢ given by this equation are ¢,, ¢,, ¢;, ¢, we have
bttty = 1.

This is the necessary and sufficient condition that any four points

whose parameters are ¢,, ¢;, ¢;, ¢, should be concyeclic.

Note. If the points 4, B, C, D on a rectangular hyperbola are concyclic,
then D and the orthocentre of the triangle ABC are extremities of a
diameter. Vide Example, p. 346.

Circle of curvature. If the circle
224y +2xycosw+2g9z2+2fy+d =0

is the circle of curvature at the point (ctl,tf), then three of the values
of ¢t given by '

2t +2gct+ (@ +2c% cosw) t2+ 2fct +¢* = 0
must be ¢;, for the circle intersects the hyperbola in three coincident
points at the point of contact.

Let the values of ¢ given by the equation be ¢, ¢, ¢, ¢,, then

t3, =1, or t,= 4

t’l‘a
i.e. the circle of curvature at the point (ct,, ;) cuts the hyperbola
1
again at the point (7%, ctla).
1

The equation of the common chord of the hyperbola and the circle
of curvature at ¢, i.e. of the chord of curvature, is

’ 1
x+g§= c(tl +£1—5),

or t3z+ty = c(tt+ 1)
Further,

1
—29=cIt=c(Bt+t,) = c(3t‘+f;"’)’
A 3
—-2f= (‘L't— = C(t13+ t;),

d+2c%cosw =234 t, = 02(3t12+ .312)
tl
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Hence the equation of the circle of curvature at the point ¢ is

x2+y2+2.rycosw-—cx(3t+;3)—cy(% +l3)+(‘2(3t2 + %-2cosm)=0.

Special case of the Rectangular Hyperbola. When the hyper-
bola is rectangular the equation of the circle of curvature becomes

1 3 3
2 4 y2— Neey(=+ 3 2(3424 =) =
4y cx(3t+t3) cy(t+t)+c (3t +t2)_0'
(a) The centre of curvature is the point

freat+ ), de(Gre)}

(b) The equation of the evolute, viz. the locus of the centres of
curvature, can be found thus:
r=1Yc(Bt+1/8),
y=1eB/t+8);
w+y = se(l/t+1),
x—y = c(1/t—1tp,

and @4y} —(x—9)% = (40)*.
(c) The radius of curvature (p) at the point ¢ is given by
pr=g+ft—d
= }c2(8t+1/63)2+4 1c2 (134 8/)2— 3¢ (1/62 4 17)
= 12 (2 +1/8%,
i.e. p=%e(2+ 1/}

Illustrative Examples.

Example i. A triangle is inscribed in the hyperbola xy = c% so
that its centroid is a fived point on the hyperbola : show that its sides
touch an ellipse which touches the asymptotes and the hyperbola.

Let the vertices of the triangle be (('fl, -c-), (ctg, {5), <cts, tf-) and the
2 3

t]
fixed point (cd, f—{)

Hence t,+t, +1ty = 3d,
1/t,+1/t;+1/ty = 3/d.
A side of the triangle is a4,y = ¢ (¢, +1,).

Now t+t, = 3d—1,,
htty 3 1
and s d i

tity = d_féi.@.q_:-_tl) .
8t,—d
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The equation of the side of the triangle then becomes
(Bty—d) x +dty (Bd—tg) y = c(3d~t5) (3¢,—d),
i.e. 4 (Bec—~dy) +t,(Bx+3d%y—10cd) +3d?c~dx = 0.
For all values of t; this touches
(8z+3d*y—10cd)* = 4 (8¢c—dy) (3d%c—dwz),

i.c. Bx+3d?y—10c¢d)* +4cd B3z +3d’y) —36¢*d@? = 4d°xy,
i.e. (B2 +3dy):~16cd (3x +3d?y) +64°A = 4d’y,
i.e. Bz +3d*y—8cd)? = 4d*xy. 1)

The same result is evidently true for the other sides of the triangle : now
equation (i) from its form represents a conic touching the asymptotes
z =0, y =0, the chord of contact being

3x+3d’y—8cd = 0.
The terms of the second degree are
922 +9d'y*+ 14 d?xy ;
hence the asymptotes are parallel to
92+ 9d'y* + 14dPay = 0,
i.e. are imaginary: the curve is therefore an ellipse.
Now the parameters of the points of intersection of the ellipse (i) and the

hyperbola are given by substituting z = ¢f, y = ; in this equation, i.e.
2 2
(3ct+3%1— - Bcd/ = 4dic%;

@ N .
(3t+3t~—8d)-4d.
3
Hence 3t+§zd——8d=_t2d.

2
Taking the negative sign 3¢+ ?3? -6d=0,

i.e. ?-2dt+d*= 0,

i.e. (t=d)?=0;
hence it meets the hyperbola at two coincident points at the given fixed
point and consequently touches it there.

Example ii. If the circle circumscribing the triangle formed by the
tangents at the points (xy, ¥,), (%5, ¥2), (25, Y3) on a rectangular hyperbola
passes through the centre of the curve, then

OtT+%  NitYetYs 0

b4

Ty Zg 3 NY2Y3
and the centre of the circle is
Y44 X)Xy Xy
I R
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Let the parameters of the points of contact of the ta.ngen.ts be ¢, t;, tg;
and write 8, =S¢, s, = St,t,, 8 = t,1yts. .
The coordinates of the vertices of the circumscribing triangle are
2cs, 2¢
t(s,—t) s—t’
where ¢t has either of the values ¢, ¢,, or ¢,.
A circle whose centre is (g, f), and which passes through the origin, is
2 +yt-2g9x-2fy = 0.
If any one of the vertices of the triangle lies on this circle, then
S —(f8,—gs3—c) ¥ — gs, 85t + c8;* = 0.
But this condition is satisfied when ¢ is equal to ¢, ¢, or #; hence

4, t;, t3 are the roots of this equation.
It follows that

. A

(1) 8g= —-c-—f:, ie f=—csg;

. 85 . cs,

(ii) 8 = "931?, 1.e. g = '8—2;

1

983 ¢ . c
i) s, =8, — = — =, L.ec. - .
(ii1) & 1TF T g= 5

Hence the centre of the circle is ( —-8-0-, —cs,), with the condition
3
8,85 +8 = 0.

. . . . . (4
These results are identical with those required, since ,=ct,, 1 = 7, &e.
1

Examples VIIId.

1. The tangents at the extremities of a chord of xy = ¢? whose mid-point
is (X, Y), intersect at the point {¢*/Y, ¢*/X}.
2. The equation of the director circle of the hyperbola xy = ¢* is
22+ + 22y cosw = 4% cos w.
What does this become for a rectangular hyperbola ?
3. Find the locus of the intersections of perpendicular straight lines which
are tangents respectively to a rectangular hyperbola and its conjugate.

4. The normal to the rectangular hyperbola xy = ¢* at the point ( ct, :)
meets the curve again at the point (—c/, —ct®).
5. The normals to the rectangular hyperbola xy = ¢* at the ends of the
chords whose equations are
xcosd+ysinb =c,

xsind—ycosd = ccos 26
are concurrent.

6. There are four points on a rectangular hyperbola xy = ¢? the chords
of curvature at which are concurrent, and these points are concyclic.

7. The sum of the squares of the lengths of the normals which can be
drawn from a point P to the rectangular hyperbola xy = ¢* is 3CP?,
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8. Find the locus of the centroid of an equilateral triangle inscribed in
a rectangular hyperbola.

9. The polar of any point on an asymptote is parallel to that asymptote.

10. Four points 4, B, C, D on a rectangular hyperbola are such that the
straight lines 4B, CD are perpendicular. Show that 4D is perpendicular
to BC, and AC to BD.

11. Find the equation of a pair of conjugate hyperbolas referred to
a common pair of conjugate diameters.

12. CP, Cp are conjugate diameters of two hyperbolas, P being on one,
p on the other. Find the locus of the orthocentre of the triangle PCp.

13. Show that the envelope of the chords of the rectangular hyperbola
xy = a® which subtend a given angle & at the point (27, ¥’) on the curve
is the hyperbola 2?z'% +y?y’? = 2a%ry (1 + 2 cot’ &) —4 a* cosec? .

14. A circle is described having its centre at a point P on a rectangular
hyperbola and passing through the diametrically opposite point P on
the hyperbola. Prove that, if L, M, N are the other three points in which
the circle cuts the hyperbola, the triangle LMN is equilateral.

15. A normal to a rectangular hyperbola makes an acute angle 8 with
the transverse axis. Prove that the acute angle at which it cuts the curve
again is cot™ (2 tan 24).

16. If the position of a point on a rectangular hyperbola is determined
by the variable 8 where x = ctané, y = ccot 6§, the locus of the intersection
of tangents at the points 6, 6 + &, & being a constant angle, is

4(?—ay) = (x+y)tan’ .

17. Prove that the locus of the mid-points of chords of the rectangular

hyperbola zy = ¢* which are of constant length 27 is
(2 + ) (xy—c*) = VPry.

18. The sides of a triangle ABC, inscribed in a rectangular hyperbola,
make angles &, B, y with an asymptote. Prove that the normals at 4, B, C
will meet in a point, if cot 2 +cot 28+ cot2y = 0.

19. To a rectangular hyperbola with centre C and focus S normals are
drawn from a point P. Show that, if these normals make angles 6,, 6,, ...
with one of the asymptotes = cosec 26 = (2 CP?/CS?).

20. The normal at P to a rectangular hyperbola whose centre is C meets
the curve again at @; show that PQ? = 3CP?+ CQ”

21. The normal to the rectangular hyperbola xy=(* at P meets the
curve again at @ and touches the conjugate hyperbola; show that

PQ* = 512,

22.' PP’ is a diameter of the hyperbola x?/a®—y?/b* = 1. A straight line
is drawn through P parallel to one asymptote, and a straight line through
P’ parallel to the other asymptote ; show that the locus of the intersection
of these straight lines is the hyperbola #?/b*~2%/a® = 1.

23. If 4 and A’ are the vertices of the hyperbola 2%/a®—?/b* =1, and
P any point on it, and if P4, PA’ meet an asymptote at the points X and
Y, show that XY = 4/a*+ b
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24. The straight line 4 B is bisected at C; through C a fixed straight
line is drawn, and two points P,  are taken on it, such that the distance PQ
is constant. Show that the locus of the intersection of the straight lines
AP, BQ is an hyperbola.

25. A and B are fixed points, and AC is a fixed straight Jine. If a line
drawn through B meet AC in @, and a point P be taken on this line,
produced if necessary, so that P4 = P@Q, show that the locus of P is an
hyperbola whose centre is the middle point of AB.

26. Show that the polar of the origin with respect to the circle of
curvature at the point (2, ) on the rectangular hyperbola xy = a? is

z(3a’z +4%) +y(x'2+ 3a’y’) = 6a’(x’?+y'?).

27. The tangent at any point P of the hyperbola »%/a?—y?/0®* =1 meels
the asymptotes in L and M. Find the equation of the circle OLM in terms
of the coordinates of P, and deduce the locus of the centre of this circle.
Explain the result of putting ¢ equal to b in the equation to this locus.

28. Find the equation of the normal at any point of the rectangular
hyperbola ay = ¢*: show that from any point in its plane four noimals can
be drawn to this hyperbola, and that if x,, a,, 25, #, be the abscissae of the
Teet of these normals x, z,x32,+c* = 0.

29. The normal at P to the rectangular hyperbola xy = ¢* meets the curve
again al Q. If x, y are the coordinates of P and £, n those of @, prove that
£’ =ny’ = —c.

30. If the tangent at the point (&, k) of the hyperbola *2? —a?y* = a?)?
meets the asymptote b = ay at the point M, and the asymptote bx+oy =0
at the point N and S is a focus of the hyperbola, show that

SM/SN = h/a+k/b.

31. From a point P are drawn two tangents to a rectangular hyperbola.
The tangents of their inclinations to an asymptote being p and g, show that,
if tne ratio of 1—pq to (4/p—+/q)? is constant, the locus of P is another
rectangular hyperbola.

32. Show that the lengths of the tangents from P(x, y) to the rectangular
hyperbola f=xy—c*= 0 are given by

ZYPAA2( + ) (R —zy) AN+ (@)~ 1667] = 0;
and show that the lengths of SP, S’ P are factors of the absolute term.

§ 10. In Chapter VII, § 9, we discussed the forms of the equations
of several loci related to the parabola: these forms clearly apply
equally well to any of the conics; thus throughout the section we
may substitute S for P where § = 0 is the equation of a parabola,
an ellipse, or an hyperbola.

Example i. A circle is described on the clord z+8y =1 of the
cllipse 22+8y* =4 as diameter. Find the straight line joining the
other two points in which the circle culs the ellipse.

Let the equation of the other common chord of the circle and the ellipse be

le+my-+1=0.

1207 VA
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The equation of the circle is therefore of the form
ANa®+8y*—4)+(x+3y—1) lx+my+1) = 0.
The two conditions for a circle give
A+l=3\x+3m and 3l+m =0,
i.e. m==31 and 2\ =10-3m =101,
or A =0l
The equation of the circle then becomes
51(x*+8y*—4)+(z+3y—1)(lx-3ly+1) = 0.
Its centre is the point {l——l 31+3

1w T 1)
and this by hypothesis lies on the diameter z+4 3y = 1.
Hence 1-1-91-9 = 121;
l=-1%.

The equation of the circle is then
S5(x?+3y*~4)+(x+38y—1)(x-3y—-2) =0,
or 22742y —x—y-6=0,
and the required equation of the chord is x -8y = 2.

Example ii. Find the equation of the parabola which touches the
hyperbola 3x*+2xy—y?+8x+10y+14 =0 in the points in which
it is met by the straight line bx—y—2 = 0.

The equation of the parabola is in the form S = ku? i.e.

32+ 2xy—y*+82+10y+14 =k (Sz-y-2)%
The condition for a parabola is ab—h? = 0,

i.e, (25k—3) (k+1) = (bk+1)?
i.e. 25k 4+ 22k =3 = 25k2+ 104k +1;
12k =4;
k = :J’-

The equation of the parabola is therefore
832" +2ay—y'+ 82+ 10y + 14) = (Sz—y -2,
or 8x?—8xy+2y*~222-13y-19 = 0.
Example iii. Find the equation of the parabola which has four-point

contact with the hyperbola xy—c* = 0 at the point (ct, ;)

The equation of the tangent at the point (ct, ;-) is

x+t2y = 2ct.
The equation of the parabola is of the form S = ku? (Chap. VII, § 9, v),
i.e. ay—ct =klx+ty—2ct)%
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The condition for a parabola gives
Kt = (kt?—3)°

3)%
1
or k=4_t2.

Hence the required paiabola is
42 (ay—c?) = (x+ 2y —2ct 2,
or (v—ty)?=4cte—4ctty + 82 = 0.

§ 11. Confocal Conics. We have shown that the foci of a conic
lie on its axes and are equidistant from the centre ; hence if conies
have the same foci S8’ their axes lie along the same straight lines
and they have a common centre C,

Now if -—z+ b‘ —1 be any conic referred to its axes we have

CS? = a?—1?% and consequently all conics which have the same foci
are such that a?—b? = constant = c%

A conic, then, whose equation is of the form

22 a
AT !
is confocal for different values of A with the conic
L+l=1,

and this equation therefore represents a system of confocal conies.
The conic is an ellipse or hyperbola according as the value of A
chosen makes a?+ A, b+ A both positive or of opposite sign.

Proposition 1. Two real confocals of a system puss through any

real point, one an cllipse and one an hyperbola.

Let («’, ¥’) be a given point ; then to find the values of A for those
conics of the system which pass through this point we have

@'%/(@®+A)+y" /(b2 + ) = 1,

i.e. MA@ 2+y2—a*=0Y)+a’*b?—122"2—a%y’2 = 0.

If A = —a?, the left-hand side of the equation becomes (a®—0?%) 2%,
i. e. is positive.

If A = —0b2 it becomes — (a2—02%)y’% i.e. is negative.

If A =+, it is positive.
Hence there are always two real roots, one lying between —a?
and —b2%, and one between — b2 and + .
Thus a?+A, b2+ A are for one value of opposite sign, and for the
other both positive.
z 2
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Henco there are two real confocals pussing through (27, '), one an
ellipse and one an hyperbola,

Proposition 2. One confocul of a system touches cvery real straight
line.

Let the equation of the straight line be lx+my+n =0; this
touches the conic 22/(a®+A)+y%/(b%+A) = 1, provided that

(@4 X)) B+ (2 4+ A) m? = n2

This equation gives one value of A corresponding to the one conic of
the system which touches the straight line. The equation of this
conic is

z? y? 1

WE@=me T @y T mt
and since 724 (a?—0%) m? is always positive the conic is real ; it is
an ellipse or an hyperbola according as n? is > or < (a?—0?) 2.

Proposition 3. Amny two confocals cut at right angles.
Let the two confpcals be
x?/(a*+ 7)) + /(02 4+ Ay) = 1,
a?/(@®+ Ag) + Y2 /(b* + Ag) = 1.
If these conics intersect at (x;, ), we have
@@+ )+ O+ A) =1, 2%/ (@ +2) +3,%/ (VP +A,) = 1.
Subtract these equations and divide through by (A,—A,;); then
2 2/(0 + Ay) (a* + Ag) + 912/ (0 + Ay) (2 4Ay) = 0,
which is the condition that the tangents
ar /(@ +N)+ Y/ +HA) =1,y (@A) +yy, /(WP +Ay) =1
at the point (x5, 7,) to the two confocals should be at right angles.

Proposition 4. 1he poles of a straight line with respect to a system
of confocal conics lic on the normal to the confocal which it touches at the
point of contact.

Let lx+my+n = 0 be the equation of the straight line, and let
(x,, ¥;) be its pole with respect to any conic of the system

/(@ + N+ /IR 4 X) = 1.
Hence lz+my+n = 0, and xry/(@? 4+ N) +yy, /(02+A) = 1 are iden-

tical, and therefore ‘
x, = =@+ A)/n  y = —m(*+A)/n.

Eliminating A, we get the cquation of the locus of the poles of the

straight line, viz.
mnxy,— iy, + (a4=0%) e = 0.
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This straight line is perpendicular to the given straight line : also
the pole of the given straight line with respect to that conic of the
system which it touches is its point of contact; hence this point of
contact lies on the locus found. Thus the locus of the poles of the
given straight line is the normal at its point of contact to that conic
of the system which it touches.

Note. If the given straight line passes through the centre of the confocal
conics, its pole with respect to each conic is a ‘point at infinity’. [f
le+my = 0 is such a straight line, the conic of the system which it touches
is (see Prop. 2)

(2 +m?) (P2 —m?y?) = Bn?(a® - b?),
i.e. the straight line is one of the asymptotes of the conic and its point of
contact is a ¢ point at infinity .

Proposition 6. The cnvelope of the polars of a given point with
respect to a system of confocal conics is a parabola touching the axes.

Let (x;, ;) be the given point; then its polar with respect to any
conic of the system whose equation is a2 (a?+X)+»2/(02+A) =1 is
X Ma% -+ A) + Yy (02 +A) = 1.

This may be written

NE— A (g + gy, — a*—=0*) —(ayy, + b*er;—a®b?) = 0.
The equation of the envelope is therefore
(xxy +yy,~a® = V22 + 4(a* yy, + U 2oy — a®VP) = 0,
which at once reduces to
() = yu; — a? + 032 + 4.0y 0y = 0.
The latus rectum of the parabola is
4(a2 =V 2 4 00
and the equation of the axis is
(zay +yy) @ +9:%) + 6= %) (y,* = 2y%) = 0

these results are left for the reader to prove.

Proposition 8. The biscctors of the angles betwcen the tangents
drawn to 4 conic from any point are the tangents to the confocals through

the point.
Let the point be (@ cos 6, bsin 6), which lies on the conic
a?/a+yt v =1,
and let tangents be drawn to the conic
2 /(a?+A)+y2/(02+A) = 1.
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If the straight line lx+my+n = 0 iis one of these tangents, then
12 (a4 A) + m? (02 4+A) = n?;
and, since (a cos 6, D sin 6) lies on the line
alcos0+Imsinf = —n,
go that (al cos 6+ bmsin 6)%2 = Za?+m? 0%+ A (1% 4+ m?)
or (al sin 6—bm cos 6)2+ A (12 +m?) = 0.

This equation gives the values of the ratio !:m corresponding
to the directions of the two tangeats. Thus the equation of the
straight lines through the origin parallel to the two tangents is

(ay sin 6 + bx cos 6)® + A (22 +y?) = 0.

For all values of A these have the same bisectors of the angles

between them, viz.
lrxcosf+aysind =0 and arsinf—0bycosf=0.

The bisectors of the angles between the tangents are the two

straight lines through (@ cos 6§, b sin 6) parallel to these, viz.

brcos @+ aysin 6 = ad, axsec §— Dby cosec § = a®—12,
i.e. the tangent and normal to the conic #?/a%+%/b? =1 at the
point (@ cos 6, Dsin ) ; or, since confocals cut at right angles, they
are the tangents to the confocals which pass through the point.

Cor. Let PQ, PR bethe tangents from P to a conic, PX, PY the tangent
and normal to a confocal conic through P. We have shown (p. 308, Ex. b)

that PX, PY bisect the angles between SP, S'P; it follows thercfore that
the tangents from any point to a conic are equally inclined to the focal
distances of the point.

(7) If x+yi = ccos(E+m1i), then £ = constant and n = constant are
confocal hyperbolas and ellipses.

Now, since
z+yi = ccos(§+11i) = ccos £ coshn—icsin ¢ sinh 7,



THE ELLIPSE AND THE HYPERBOLA 359

we have
2z =ccosfcoshn, y= —csinésinh.
Eliminating 7 we find
z° 2 )
= e =1, (i
c?cos*E  c®sin® ¢

which equation, for different values of £, represents confocal hyper-
bolas, for ¢%(cos?{+sin?2f) =c2 or CS =c.
Again eliminating & we find
x? y? .
Fooshity * ity = 1 i)
which equation, for different values of 7, represents confocal ellipses
of the same system, for ¢*(cosh?y—sinh?7) = ¢% or CS=c.
Evidently then the equation z,+,i = ccos({;+m, %) is the con-

dition that (21, y;) should lie on both the confocals é= &, n =,
whose equations are

22 o 22. y2

= 5 =1 7 : + 5= = 1.
ctcos?é,  c?sin?§ " ¢?cosh?y, ' c%sinh? ),

(8) Definition. Two points P(x, ;) and P’(z,, y,) on two
confocals 22/a?4+4202 =1 and 2%/a’?+p%V'2 =1 are said to
correspond if x,/a = z,'/d, y,/b=y'/V.

(8) If P, P’ are two corresponding points on two confocals, then
the second confocal of the system which passes through P passes also
through P’.

Let the system of confocals he defined by

x+yi = ccos(&E+11),
and let the coordinates of the given points be P(x;. ), P (x)/, %\).

Then if ¢ =¢,, £ = & are the two confocals on which the corre-

sponding points P and P’ lie, we have by definition
r,/cos &, = xy//cos &, and  y,/siné) =y, /sin&,.
Let n=m, and n =1, be the second confccals of the system
which pass through P and P’ respectively : thus
x +uyi = ceos (§+mi), o +y/i = ccos (&4 i),
and therefore
@, = ccos £, coshny, x/ = ccos&,coshyy.

But x,/cos {, = x,//cos &;; hence y; =n;," and P, P’ lie on the
confocal 7 = 1;.
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(b) Ivory’s Theorem. If P, P’ and Q, Q" are two pairs of corrc-
sponding points on two confocals, then PQ’ = I"’Q.
Let the system of confocals be defined by
Z+yi = ccos (£+11),
and let the given points be
Py, y), Pl 0)) Q@ y) Q) ))
Then, if P, Q lie on £ =&, and I”, @ on ¢ = £, we showed above
that P, P’ lie on 7 = 7, and similarly @, Q" lie on n =17,. Hence
ay+y,4=ccos (&, +mi), x4y i=ccos(&+mi),
2+ Y51 = ccos(éy+my0), @ +1,"i = ccos (&4 m,9).
Then
PR = (ry—a/ P+~
c

{@ i) — (g + 9,0 (@ =919 = (ry =),
2 {cos (& + mi)—cos (&, +M,0) } {cos (& —n, 1) —cos(§,—n,1))
4 ?sin} (§,— & +in,—mn,).sin } it Eatiom+my)
.sin} (§,— & —i g — ;) . sin ] L&+ E—in 41y
= ¢? {cosh (,—n)—cos (§;— &) ! {cosh (my +11,)—cos (&, +&y);
Now the value of P’Q? is obtained by interchanging £, and ¢, in
this result, which evidently gives us PQ’ = P’Q.

Illustrative Examples.

Example i. If a,, a, arc the semi-major axes of two conics, confocal
with the ellipse x2/a® + y%/V? = 1, which can be drawn through the point
(1, 1), find x, and y, in terms of a, an a,.

If 2¢ Ve the angle between the tangents from (z,, y,) to the ellipse
(a, V), prove that a,?sin? ¢+ a,?cos?p = al.

Any conic confocal with the given ellipse is #®/(a®+X)+42/(b2+)\) =1,
and the values of N for the conics of the system which pass through
(xy, y,) ave given by  x,.2/(a®+ ) +9,2/(D*+7) = 1,

Let a®-b? = ¢? and let a stand for either a, or a,; then we have

22/00 4 y,3/(00 =) = 1,

or o — o (2,2 +.!/12+ ) +ctz,? = 0.
Hence
a’+al =2’ +y’+ ¢, (1)
and
a’a,t = ta) (11)
Thus 2, =ayayfc, and % = —(a,®~c?) (a,? —c?)/c?,

or h= N/(a_lq'cz) (¢*—ag’)/c = byby/c.
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We showed (p. 311) that
tan2¢) =

2 /b x 2 +a*y, = a?b?
4yt —-at -2

From (i) a*2,?+a%y? = a%a,® +d’a,t —a' + a® 0%
From (ii) a’x®—0%z® = a,%e