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PREFACE

IN
the winter of 1929 Professor Weitzenbock pointed out to me that

there was no complete account of the theory of modular invariants

embodying the work of Dickson, Glenn and Hazlett. The sole source of

information on this subject was a number of papers, most of which ap-

peared in American periodicals, and a tract by Dickson which contained

the substance of his Madison Colloquium Lectures. This tract, while

giving a good account of the subject as it was understood in 1914, was

published before the modular symbolical theory was instituted. Although

the symbolical theory is not yet complete, it certainly affords a much

better introduction to the subject than did the earlier non-symbolical

methods. The theory is much hampered by the lack of two theorems

which seem to be true but for which, as yet, no proof has been given.

These are (i) that all congruent covariants can be represented

symbolically; (ii) that Miss Sanderson's theorem can be applied to

covariants as well as to invariants.

In preparing the present account, the chief difficulty has been the

lack of any systematic method of approach, since most of the papers on

the subject have been concerned with particular cases only. My aim

has been to give a clear and concise account of the theory rather than

to give a complete survey of the subject, and I have therefore included

in this tract only those methods which seem to be of general application.

For the sake of completeness it has been necessary to include the in-

tricate proof of Dickson's theorem in paragraph 13. It is suggested that

this might be omitted at a first reading. In order to avoid confusion

the reader should notice that the wordsfundamental and modular vary

somewhat in meaning in the different papers on the subject.

I have, of course, benefited considerably from the papers of Dickson,

Glenn, Hazlett, Sanderson and others, and many theorems are taken

directly from their papers. The substance of Part II is largely taken

from a course of lectures entitled
"
Algebraische theorie der lichamen"

which Professor Weitzenbock delivered in Amsterdam University during
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the session 1929-30. I have also made use of his lecture notes which

he has kindly placed at my disposal. Professor Weitzenbock has been

of great assistance to me throughout my work and has given me much

helpful advice. My grateful thanks are due to Professor Turnbull of

St Andrews University and to Professor Weitzenbock for reading the

proof-sheets and for making many suggestions and corrections.

Many thanks are also due to the Syndics of the Cambridge University

Press for their helpful criticism of the manuscript.

D. E. K

ST ANDKEWS

April 1932
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PART I

1. A new Notation.

It has been found convenient in this book to introduce the signs II

and HI which shall presently be explained. We say that two numbers

a and b are congruent modulo p if their difference is divisible byjo.

This is commonly written in text-books on the theory of numbers as

a = b (modjp) (11).

The sign
=

, however, often means "is identically equal to," and confusion

will arise if we wish to use it with these two different meanings. When
it is used as in (I'l) it gives no indication as to whether the congruence

holds for all values of and b or only when a and b belong to a par-

ticular field, e.g. x
p is congruent to x modulo p if, and only if, as is an

integer (a positive integer if p is even). We shall therefore use HI to

mean "is identically congruent to" and II to mean "is residually

congruent to by Format's Theorem." Hence the sign || can only be used

in the cases where Fermat's Theorem and its extensions hold. Thus

means "
is equal to," e.g. x ~ 4, 2 =*= 3,

= means "
is identically equal to," e.g. 4 = f ,

x ^ 4,

II means
"
is residually congruent to," e.g. dP II a mod p,

if a is a positive integer,

ill means "is identically congruent to," e.g. 6 ill 3 mod 3,

ap -Hf a mod p.

2. Galois Fields and Fermat's Theorem.

A. Speiser* gives the following definition of a Galois Field.

A system of a finite number of elements forms a Galois Field if the

following conditions are satisfied :

(i) The elements form a commutative group with respect to the

addition law.

(ii) The elements with the exception of zero form a commutative

group with respect to the multiplication law.

(iii) For any four elements the distributive law is valid.

From these three conditions all the properties of a Galois Field can

be obtained, but it is easy to see that the Galois imaginaries, hereafter

*
Theorie der Gruppen (second edition), p. 54.
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defined, satisfy these three conditions and are therefore the elements

of a Galois Field.

Let us consider a polynomial

where each of the coefficients an ,
...

,
a is one of the following integers

0, 1, 2, ...,/> !, where p is a given prime, i.e. the coefficients are the

positive integral residues modulo p. We may of course suppose that

&rt -HfOmodjp, and we shall further suppose that / is irreducible

modulo JP, i.e. that there exist no polynomials ^ and
</>s

of degree less

than n such that <i< 2 Ml/ mod p.

Now it is always possible to find a number bn such that bn an \\\l

provided that an -ttf 0, therefore bn f in
n + cn^ l ~ l + . . . + <? ,

where

Ci\\\ bnat ,
each d again being a residue modulo p of a positive integer.

an + Cn-iO?
1
" 1 + ... +c is called the normalised form of/; and obviously

bnf ill if/ ill 0. Since we are dealing with the case where / in 0, we

can without lack of generality take the coefficient of xn
congruent to 1.

If/ ill 0, any polynomial in x with integer coefficients is congruent
to a polynomial of degree ^n 1. Thus for any < (r) we get for moduli

/ and p a residue (#). These residues are the GALOIS IMAGINARIES

of order n and it is easily seen that they satisfy the conditions (i), (ii)

and (iii). Each < (x) can be written congruent to some 6 (x\

Since each d% can be chosen in p different ways, there are p
n
different

residues and so the ORDER of the Galois Field is p
n

. Hereafter we shall

write this briefly as GF\_p'
l

'\
while we shall denote the field of all complex

numbers by CF.

Fermat's well-known theorem states that ify is a positive integer, then

y
p

\\\y modp. The generalisation of this theorem for the case where y is

a Galois imaginary is obtained as follows. Let u be a Galois imaginary

and not zero, then . . .
,
u~2

,
url

,
u (

\ u\ u2
, u?, ... are not all distinct : hence

if u8
II u? then u8~*

II 1. Let e be the least value of s t for which this

is true, then 1, w, w
2
,
...

,
u6' 1

are distinct. So are u1} UiU, UiU
2

,
. . .

, uu*~\
where Ui is not one of 1, u, ...

, u
e
~

l
. Proceeding in this manner we see

that since there are p
n -l non-zero Galois imaginaries, e must be a

divisor of q~pn
\. Since ue

II 1, therefore uq
\\ 1, and if y be any

Galois imaginary then ypn
|| y. In Part I we shall write

J>*-15?, P
n
(p

n
-l) = d.

Thep
n
solutions of x*n - x || are the p

n
Galois imaginaries, therefore



MODULAR INVARIANTS 6

<l

x"*>
n - x II

n (a:
-
Ui\ where u =

0, HI, ...,uq are the elements of GF[p
n
].

i^Q

Further generalisations of Perrnat's Theorem were given by E. H. Moore.

For a first reading we would advise the reader to take n 1 through-

out, thus qp 1 and d-p^p. The elements of GF\_p\ are the

residues modulo p of the positive integers.

3. Transformations in the Galois Fields.

In the work which follows we shall have to consider groups of homo-

geneous linear transformations whose determinants do not vanish in

the field. The inverse transformations therefore exist. We shall call G
the group where the coefficients belong to the OF, and we shall call r

the group where the coefficients of the transformations belong to GF[pn
'].

GI and I\ are the sub-groups of G and r respectively which consist only
of transformations whose determinant is equal to unity in the field.

When necessary we shall denote the number of variables in the trans-

formation by an upper suffix m, e.g. Gm
, Gj

n
,
Tm

, I\
w

.

We obtain the order of the group r as follows* : Consider the trans-

formations of the following type where the coefficients are elements of

the GF[p*] t

There are pnm I possibilities for the right side of the first equation,

for we cannot set HP-L
= 0. If $ and T be two transformations which

replace x by the same linear function of the #*s, then /ST"1
will leave

XL unchanged and therefore will have a matrix of the following type :

"1 ...

t)m,2 ^m3 vw

Such substitutions form a sub-group of T: and if we give the fo's fixed

values there are pn
(
m~^

possibilities for the a's. Also if the a's are

fixed we have a sub-group of the sub-group the order of which is

(m - 1), where (m) means the order of the group Tm
;
thus

(m) =p
n

(
m~v

(p -i)0(m- 1),

and using this as a reduction formula, we have

(m) = (p
nm -

1) (p
nm
-p

n
} (p

nm
-p*

n
)

. . . (p
nm

-p***-
1

)).

*
Speiser, Theorie der Gruppen (second edition), p, 219.
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4. Types of Concomitants.

Let <(, ^) = ^n...i^i
?' + n...i2^~

1
^2+

be an m-axy /:ic which is homogeneous in the #'s. We shall call <#> the

GROUND FORM. So far as is conveniently possible we shall reserve the

letters a, 6, c, ... for the coefficients of the ground forms. Consider

now the group of all homogeneous linear transformations

Xi= Sa</^ (e
=
l,2,...,w)...(4'l),

.7=1

subject to the condition that
|
av |

does not vanish in the field F. Let the

matrix of the transformation (4'1) be H. We shall use small old English

text throughout for the coefficients of the transformations. Now let

4>(a, x) become </> (a, x) under a transformation of the group; then the

a's will be functions of the a's and the a's. Now if any function C of

the a's and #'s exist such that

C(a, x) is equal to M(jSi) C(a, x) in the field,

where M is some function of the a's only, then C is said to be a

CONCOMITANT. If C is a function of both the a's and the #'s, it is called

a COVARIANT; if it is a function of the a's only, it is called an INVARIANT
;

if it is a function of the #'s only, it is called a UNIVERSAL COVARIANT or

an INVARIANT OF THE GROUP. These definitions can readily be extended

to the cases where we have more than one ground form. We shall

commonly use the term covariant to include invariants.

The a's and the a's may belong either to CF 01 GF[p
n
\ so that we

have the following types :

Type I. If both the a's and the a's belong to CF and reductions of

the formp HI are forbidden, the concomitants are then called ALGEBRAIC

and this is the classic type treated thoroughly elsewhere.

Type II. If both the a's and the a's belong to CF but p ill is

allowed, then we speak about CONGRUENT concomitants. Miss Hazlett*

has treated this case as a special case of Type III.

Type III. If the a's belong to the CF and the a's belong to the

GF[pn
"\,

then the reductionsp ill and a*
n

||
a are permitted. In this

case we talk of FORMAL concomitants. These have been treated by

Dicksont, Sanderson! and Hazlett*.

Type IV. If the a's belong to the GF[p
n
] and the a's to CF, then

* Trans. Amer. Math. Soc. vol. 24, pp. 286-311 (1922).

t Madison Colloquium Lectures and Trans. Amer. Math. Soc. vol. 15, pp. 497-503

(1914).

J Trans. Amer. Math. Soc. vol. 14, pp. 489-500 (1913).
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p ill and a n
II a are allowed. This type has not been treated so far,

but we shall give to them the name of NON-FORMAL concomitants.

Type V. If both the a's and the a's belong to the GF[p
n
\ then

three types of reductions are allowed, p in 0, apn II a, EpW II a. We shall

call concomitants of this sort RESIDUAL concomitants, but in other papers
on the subject they are termed modular concomitants. We prefer to use

this term to cover all types where p ill is allowed. Type V has been

treated extensively by Dickson *.

We shall call concomitants of types II, III, IV and V MODULAR to

distinguish them from Type I, the algebraic or projective case. By
considering the reductions employed it is obvious that every algebraic

covariant is also a congruent covariant
;
that every congruent covariant

is also a formal covariant
;
that every formal covariant is also a residual

covariant. It is clear, however, that two formal covariants may be

identical when considered as residual covariants or that a formal

covariant may be zero when regarded as a residual covariant, e.g.

ai*a2 aL a} is known to be a formal invariant of/ = alxl -\- a2^ if JP
= 2.

When this is considered as a residual covariant we can use Fermat's

Theorem on the a's and our invariant is a^a^ aia^-0.

We can extend our definitions to include what are known as cogredient

points. Following Dickson we use the term point in the sense of homo-

geneous coordinates
;
thus the point (y^ys) is identical with the point

(ky\ky>Jsy*) and the point (0, 0, 0) is excluded. Now if the transforma-

tions (4*1) of the variables #,, ..., #m and the transformations of the

coordinates ylt ...,ym have the same matrix H, then (ylt . . .
, ym) is called

a COGREDIENT POINT. We shall now prove the theorem which will be

required later, that all points whose coordinates belong to GF [p
n
] are

conjugate under I\, i.e. any such point can be transformed into any other

by transformations of I\ .

Now (1, 0, 0, ..., 0) is conjugate with (1, aa , ..., am) under

and the elements of (1, a2 , ..., OT) can be rearranged with perhaps

changes of sign under _ -

This proves the theorem, e.g. (2, 1,0) is conjugate with (1, 2,0) which

in turn is conjugate with (1, 0, 0).

* Amer. Journ. of Maths, vol. 81, pp. 837-354 (1909) and other papers.



6 MODULAR INVARIANTS

5. Systems and Finiteness.

We shall call a system of covariants 7TC ,
Klt ...

,
-/Tff-i a FULL SYSTEM

if every other covariant / can be expressed in terms of these JTt's. If

the o- covariants K0) ..., Ka-i are linearly homogeneously independent

and if every covariant / can be expressed as a linear homogeneous

function of these JT/s, then we shall call the set JT
, ..., Ka-^ a FUNDA-

MENTAL SYSTEM. The reader should be careful to note that in some

papers no distinction is made between a full system and a fundamental

system. It is obvious from the above definitions that every fundamental

system is also a full system but that not every full system is a funda-

mental system. As a special case of a full system we have a SMALLEST

FULL SYSTEM. The s covariants N^... t
NB form a smallest full system

if (i) they form a full system; (ii) no full system exists with less than

s covariants. These elements N^ ..., N* form a BASIS of the smallest

full system and K, ..., Kff^ form a basis of the full system or the

fundamental system as the case may be.

The covariants of a ground form with respect to a group of transforma-

tions are said to possess the FINITENESS PROPERTY if there exists a finite

full system. We shall not have to prove the finiteness property for any

given case, as we shall prove that it holds in every case with which we deal.

That algebraic covariants possess the finiteness property is well known.

In another section of this book we shall give E. Noether's proof that

modular covariants of all types possess the finiteness property. L. E.

Dickson* also gave a proof of the finiteness of residual covariants. We
shall consider these finiteness theorems as proved, although we leave the

proof till later. Most ofthe work done in the theory ofmodular covariants

has been concerned with the finding of a basis of a full system in

some particular case. As we shall show, there exist several methods of

obtaining covariants, but except in the case of residual invariants it

is very difficult to say whether a given system is a full one or not.

6. Symbolical Notation.

One of the greatest difficulties for many years in the theory of

modular invariants was that no suitable symbolic method of treatment

had been found. The method employed in the algebraic invariant

theory obviously would not do, since it employed to a large extent

multinomial coefficients which in certain cases might be congruent to

zero modulo p. Let us take as an example the binary cubic. In the

algebraic case we represent it symbolically as o^
8
,
where <* =

* Trans. Amer. Math. Soc. vol. 14, pp. 229-310 (1913).
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Now a/ = a/ a?!
3 + Saj

2
o^x-iX* + 804 cu,

2^X? + &/%<?>

Ill a^8 + a2
3
3?2

3 mod 3.

Thus for the modular case with p -
3, a/ does not represent the general

cubic. The method employed in the modular case is merely a generali-

sation of this one, and it has the advantage that it can be used for the

algebraic case also. In general then, we write the ground form as a

product of linear homogeneous symbolical factors*. We shall write for

example the general binary cubic as

/= ax* + bx^Xz + cx^x} + dxl
~

<*>xpxyx
a2#2) (&#j + 2#2) (ylXl + y2#2)

We shall note that any non-symbolic coefficient of a ground form

when represented symbolically must be of the first degree in the a's,

first degree in the /3'$ and so on. It is also symmetrical in the symbols

a, /?, Thus we have the important conditions which a function of

the non-symbolic coefficients satisfy :

(i) It must be symmetrical in the symbols a, (3,

(ii) Each term of the function must be of the same degree in each of

the symbols a, fi, ....

We have other conditions that this function be also a modular con-

comitant. These will be given in 9.

We shall use the small Greek letters a, /3, . . .
,
8 for symbols.

It should be noticed also that with this symbolism no equivalent

symbols are required. To illustrate the difference in the two symbolisms

we shall consider the discriminant of the binary quadratic.

Let f- axi + b

If we represent / as ax
2 =

/3x
2
,
then a = a

1
* = pl

2
,
& = 2a1 a2

c = a* - ft
2 and (a/?)

2 = 2ac - 1"
= (4ac

- b
2
).

2

If we represent f as a^ft, then a %A, b = ajft + aa/2i> c = ogft and

(a)
2 = &2 -4ac.

The invariant obtained is the same in both cases, but in the former

case it is multiplied by a constant = f . An invariant need not, however,

have the same form in both symbolisms.

*
Sanderson, Tram. Amer. Math. Soc. vol. 14, p. 496 (1913).
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7. Generators of Linear Transformations.

Capelli* proved that any linear transformations of m variables can

be obtained by the successive application of a finite number of linear

transformations of the following types :

It is easy to see that these in turn can always be generated from

S^\ S1 2 supplemented by transformations of the type

X-L
=

Xj, Xj-x^ %ic x-k (k =1= 1, k ^pf).

We have therefore the theorem : Any homogeneous linear transforma-

tion whose determinant is not zero can be generatedfrom transformations

of the following three types:

Type I.

Type II. ^ =
i

Type III. xl
=

Xj

(*=*=!)

e.g.

11..
. 1 . .

. . 1 .

... 1

rfc . .

i .

. i

. i . .

i . . .

. . i .

. . . i

for the case where

By a combination of matrices of Type III we can interchange any pair

of variables thus :

*
Lezioni, p. 202.
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by interchanging the variables of Type II we get Capelli's type S%\ and

by interchanging the variables of Type I we get Capelli's type Shtk .

"We shall give a short proof of the theorem in the matrix notation for

.1 x
pfc

. .1 x
[".

1 .1=
j"l

. .'

. 1 . 1 . . . fc .

1 . . 1 . . 1 . . 1

and fl .

."]
x fl 1 .1 x fl .

."]

= Pi ft .

. IT 1
. . 1 . . fe . . 1 .

..1 ..1 ..1 .'I

Similarly by use of Type III we can obtain the type

1 . ft

Now 1 . i C . . c a i

. i .

and ai a2 as

. i .

. . i

6i t)2 t)3

. l .

. . l

C2 C3

i .

where tT8i
=

Ci,

fci2
= ax + a2 tJ22 + as r2 , fcw = a2 tJ23 + a3 cs .

Now provided that the determinant
|
Hi

|
-Hf 0, we can solve these nine

equations for the a1? a2 ,
...

,
C8 . This proves the theorem.

The proof in the w-ary case is similar.

It follows from this theorem that any function which remains in-

variant under every transformation of the above three types is invariant

under every transformation of the group. Also if the group is r then

the fe in Type II must be an element of the GF[pn
].

Thus a formal

covariant is invariant under Type II if, and only if, ft is an element of

the 6r.F|j?
n
], unless it be also a congruent covariant.
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8. Weight and Isobarism.

Following the method of Elliott* we define the term weight. Suppose
that our ground form is an w-ary l-ic in the m variables #1 ,

- . .
,
xm ,

and let the coefficients of

a?j ,
an
2 ,

. . .
,
#m_j , #i~~

1

x^ ,
... have the suffix 0,

2,

T J~ l
r r l~ l

<r r~ l 7-1^l^m ^2'^m ' "' ^w-l'V '
' " * *

#j^, have the suffix /,

that is, the suffix of any coefficient is equal to the power of xm which

it multiplies in the form. In addition we say that the suffix of xm is 0,

while the suffix of xt is 1 for i=tm. The WEIGHT of any term is defined

as being the sum of the suffixes of its various factors. Thus the weight

of each term in the ground form is /. If a polynomial in the coefficients

a and the variables x be such that each term is of the same weight w9

then the polynomial is said to be ISOBARIC. This is a definition of
"
isobaric

"
according to Elliott, but we note that to state quite clearly

what we mean we must use the phase "isobaric with respect to am ."

We shall therefore make the following definition : If a polynomial is

isobaric with respect to all variables, it is said to be COMPLETELY

ISOBARIC.

For example suppose that /= a^x^ + a^x^ + azx be the ground form :

then g = a^x\ + as 2̂ + ^2^3 is isobaric with respect to XL but is not iso-

baric with respect to ^2 or #3 and is therefore not completely isobaric.

By considering transformations of Type III we see that if a concomitant

is isobaric with respect to any variable, it is completely isobaric. Thus

g could not be a covariant of/.

9. Congruent Concomitants.

By definition it is clear that congruent concomitants only differ from

the algebraic concomitants in that it is permitted in the former case to

make the modular reduction p \\\ 0. Let us take as our ground form

< =
CL,./^, ...

, 83., where a^ = a^j 4- ...

*
Algebra of Quantics (first edition), p. 38.
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and where there are r symbols a, ft, ..., 8. Now if C be a congruent
covariant of </> where C is a function of variables x and the non-sym-
bolical coefficients a, then we can write

C(a, x] III M (a) (7 (a, #),

where Jf is a function of the coefficients of the transformation only.

As in the algebraic case* we can shew that C is homogeneous in the

variables #, or else is the sum of covariants which are homogeneous
in the variables x. We can assume then without loss of generality that

C is homogeneous in the variables x.

Now considering transformations whose matrices are of the type

\\ . .

ft .

* \
where fc is a non-zero scalar, we have easily that C must be homogeneous
in the non-symbolical coefficients a. By considering transformations of

the type
<r,=$F.,

we see that must be symmetrical with respect to the suffixes both of

the #'s and of the symbols a, /3, ...
,

8.

Let us represent then our covariant C (a, x) symbolically. A single

term of this representation can be written as follows :

where jS=S! + ss + ... + sm

and Jfi
r=A1 + h2 + > +hm -kl

are constants for every term c{ of C.

Now if #1 fc#i ,

^ ... = Jj ... lm

and i
=

ltai,then

so that c f
= fc

T
i, where T=^ + ^ + . . . + /i

-
i .

Now tt
T must be the same for every term ci} so that since ft is an

arbitrary non-zero scalar we have that T is a constant and therefore

*
Elliott, loc. cit. p. 40.
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T+ S is a constant, but T+ 8 is the weight with respect to a?i, so that

C is isobaric with respect to xl and therefore is completely isobaric.

This gives us the theorem : A congruent concomitant is completely

isobaric. Conversely if a formal concomitant is isobaric, then T + 8 is

a constant and so is T, and so the concomitant is invariant for all

values of It and is therefore a congruent concomitant. Miss Hazlett
*

proved the converse for the binary case. We shall also extend to the

7-ary case her proof of the following theorem t : If a congruent con-

comitant has factors, these also are isobaric. For, let C have factors CL

and Cg which are not both isobaric, then the term which has the

greatest/least weight in the product 1
x 6y2 is the product of the terms

which have the greatest/least weight in Cl and (72 respectively. The

theorem follows at once.

By considering transformations whose matrices are

ft

fe

we find as in the algebraic case that the following relations hold for

congruent concomitants :

(91),

where the index is K> the order $, the degree ff&nd the weight is W$ with

respect to any variable #t and where r is the degree of the ground form.

10. Relation between Congruent and Algebraic Covariants.

Let/= axi + 2b&i&2 + c - It is well known that b
z - ac is an algebraic

invariant of this form. It is therefore also a congruent invariant.

Also (b
2

acf must be both an algebraic and a congruent invariant, but

if p = 3, then

(6
a

-ac)
8
ill6

6-aV
and so b* - as

c* must be a congruent invariant. It is not, however, an

algebraic invariant. Thus it would seem that for one algebraic invari-

ant (
2 -

ac)
3 we have four congruent invariants, viz.

these are all, however, congruent to each other, and therefore represent

* Trans. Amer. Math. Soc. vol. 24, p. 296 (1922).

f Ibid. p. 297.



MODULAR INVARIANTS 13

the same congruent invariant. It will be more convenient therefore if

we neglect any term in a congruent covariant having the factor p. If

we proceed in this way we infer that one, and only one, congruent

covariant is obtained from any algebraic covariant, and we can therefore

represent such a covariant symbolically since every algebraic covariant

can be represented symbolically. We now put the important question.

Can every congruent covariant be represented symbolically? In other

words, does there correspond to every congruent covariant an algebraic

covariant? An answer to this question for the general case has not yet

been given, but clearly it forms the keystone of the symbolical theory of

modular covariants. A symbolical theory is obviously not of much use

if covariants exist which cannot be represented symbolically. It is

extremely likely that every congruent covariant can be represented

symbolically, but in the absence of proof we shall have to divide

congruent covariants into two sorts, symbolical congruent covariants

and non-symbolical congruent covariants, i.e. those which cannot be

represented symbolically. If it be proved later that this second kind

does not exist, then our discussion of the first kind will be applicable

to all congruent covariants.

Let C be a congruent covariant: then will in Jf(7,whereMis a function
a

of the coefficients. Let C be a sum of terms Piy thus C = 2 P* and
i=l

_ a _ b

similarly C= 2 Pi= S MiPit say, so that, for all values of the a's,
i-l i=l

S Jf<P< ill 2 MP,,
i=l i=l

then must Mi ill ifi>a

and Mt\\\M ifi^a.

We prove that M is congruent to a power of |iE| by the same argument
as that used in the algebraic case. The proof of the binary algebraic

case given by Grace and Young* can be extended to the w-ary case.

Thus each Mi (a*
=

1, ...,&) is a power of the determinant of the trans-

formation or else zero and is therefore isobaric since Fermat's Theorem

cannot be applied here. Miss Hazlettt proved this for the binary

case.

Miss Hazlett and R. Weitzenbock have proved in special cases that

every congruent covariant can be represented symbolically.

*
Algebra of Invariants, p. 22.

t Trans. Amer. Math. Soc. vol. 24, p. 297 (1922).
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R. Weitzenbock's proof is as follows :

Let C be a congruent covariant, then as before

O(a,^\i\M(a)C(a t ai) and M (a) III |a|
s
,

or C (a, x) = |a|* C (a, x) + pD (a, x, a).

Now operate 5 times with the Cayley operator O. Then O*|l3|
8 = cs a

constant so that &*C(a, x) is independent of a and is therefore* an

algebraic covariant K, say. Now QD (a, x, a) must also be independent

of a and we shall call this expression E. Then

K= c. C (a, x) +pE or K\\\ csC (a, x).

K
Now if cs is not divisible by p, then C (a, ,r) ill

,
which is an algebraic

GS

covariant and is therefore representable symbolically ;
so that C (a, x)

is also representable symbolically. Unfortunately cs is very often

divisible by p, in which case the proof does not hold. In fact t

. \m

"JO

and is therefore divisible by p unless m + s-1 <p, i.e. unless

s < p m+ 1.

Miss HazlettJ proved as in the theory of algebraic seminvariants that

if/ be a congruent seminvariant of a system S of binary forms, which is

of degree g and weightw t
then /is congruent, modulo p, to a product of a

power of a and a symmetric polynomial P in symbolic ratios
,

-

,
. .

.,
a

i Pi

which is homogeneous in these ratios. Moreover P is expressible as a

polynomial in the differences of these ratios. From this she proved

that every congruent invariant of a system of binary forms is congruent

to an algebraic invariant. The symbolical representation of such in-

variants follows immediately.

Since symbolical congruent covariants are congruent to algebraic

covariants, they can be represented by the corresponding symbolical

expressions. The fmiteness of symbolical congruent covariants follows

at once from the algebraic case. It is seen that such symbolical congru-

ent covariants are very similar to the algebraic case, and we obtain full

systems of the one from the full systems of the other.

*
Weitzenbdck, Invariantentheorie, p. 147.

f Weitzenbock, loc. eit. p. 16.

} Trans. Amer. Math. Soc. vol. 24, p. 298 (1922).

Trans. Amer. Math. Soc. vol. 30, p. 855 (1928).
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11. Formal Covariants.

Not every formal covariant is isobaric; and so while every congruent
covariant is also a formal covariant the converse is not true. As in 9,

tt
r must take the same value for every term ct of C (a, sc\ but according

to definition ft is no longer an arbitrary non-zero scalar but is now an

element of GJ?[p
n

~\
and we may therefore reduce {t

r
by Fermat's

Theorem. Thus it is no longer necessary for T to be equal to a constant

but jTmust be congruent to a constant modulo q for every term c% . It

follows that the weights with respect to all variables must be congruent
modulo q to each other. Thus the weights of the different terms of a

formal covariant must be congruent modulo q. In this case we say that

a formal covariant which is not isobaric is PSEUDO-ISOBARIC. The uni-

versal covariants which we shall now discuss are all pseudo-isobaric, and

since they are independent of the coefficients of the form they are also

residual covariants, without any reduction being performed.

The equations' (91) must hold also for formal concomitants if we

replace the equal sign by a congruence modulo q :

thus rH $ in mK (mod <

rH+ (m i)8\\\m Wi (mod <

12. Universal Covariants*.

Let X-L ,
. . .

,
xm be a set of variables which undergo the following trans-

formation :

TO

(e
=

l, ..., m\

where each % belongs to Gl?[p
n
] and where

then xt = 2 (KMT +Pn
(--^

j=i

or a?f H i> a##f and thus #f" ..

,7=1 j-l
'

We have therefore the important result that the set #f"> . . .
,

modularly cogredient with the set #1, ..., #m ,
where t is any positive

integer. Now let us write

[>!, ..., em]
=

Dickson, Trans. Anier. Math. Soc. vol. 12, p. 75 (1911).
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As in the case of algebraic invariants this must be an invariant since

all the rows are cogredient. [ely ..., em~]
is an example of a universal

covariant ;
it is frequently referred to also as an invariant of the group

since it is independent of any ground form. There is no expression in

the theory of algebraic invariants corresponding to this, if there are less

than m sets of cogredient variables.

In particular we shall write

[m,m-l, ..., g+1, 8-1, ..., 1,0]= Iff, 4r> = TO , 7==g.,..J^m

We have seen in 4 that all points with coordinates belonging to

GF[p
n
] are conjugate under I\. Thus if a covariant vanishes when the

#'s take the values of one of these points, it must vanish for all
;
therefore

if a covariant contains one factor of

Em = n n

where d/p
n denotes that each d in the product takes all the p

n
possible

values, it will contain every factor and thereforeEm itself. NowZm has the

factor xm and therefore the factor 12m> and comparing coefficients we have

that Lm \\\Em .

Similarly every Lm has the factor acm and is therefore either zero or has

Lm as a factor; hence Qmt8 is rational and is an absolute covariant since

the index of every Lm is 1. Also Lm-i divides Lm since J m-i 'is

obviously a factor of Em .

Consider the following determinant which vanishes identically.

^n(m-i) pn(m-i)

...

m cols. i
- 1 cols.

m + 1 rows

i

m - 2 rows
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By Laplace's development we get

(-1)
W- 2K ..., 1][>-1, ...,*+l,*-l, ..., 1,0]

+ (- 1)"*-
1

O, .. .,* + !, s-l, ..., 0][>-1, ., 1]

+ (- l)
m

[m-1, ..., 0] [m, ..., s-f 1, s- 1, ..., 1]
= 0.

If therefore 1 < ,9 < m - 1 we have

= l Qn-^L^ - Qvl , t
Lm2_ x

+ Lm(Q^^L^T,

andso

For the case where .s = 1 we find that the exponents in the last row of

the determinants are equal to p
2n

. If s = m 1 the exponents of the

(m + 2)th row are j9
w (m~ 2) and we have

L
nl Qm-i, i An-i Qw, i Lm Lm_ l

+ Lm Lm_ l
=

0,

so that Qm.i^Qm-i.il-r^-} + L p
m _\

p
(12'2),

/ T \pn-l

so that ^- 1=(^) + C-i,- 2 (12-3).

Expanding LM by the last column we have

m~ 2
na n(Ttt-l)

(12-4).

Thus Lm is divisible by Lm^ and each expression (12'1), (12'2), (12*3)

can be given in an integral form.

The degree of Qm)8 is p
nm

p
ns and that of Lm is

pmm-i) + fff +pn + i (12'5).

13. Dickson's Theorem.

Dickson* proved the fmiteness theorem for universal covariants and

gave a full system. The proof of this theorem is of course included in

E. Noether's Theorem (v. 43), but we require Dickson's proof however

in order to obtain the full system. The theorem is stated as follows :

The functions L^ QM , i, ., QM, M-i are independent andform a full

system of the invariants of 1>.

* Trans. Amer. Math. Soc. vol. 12, pp. 75-98 (1911).
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The theorem is proved by induction. We assume that it is true for

ft
< m where m 2, and prove that it is true for /x

= m + 1. Let / be

any homogeneous integral universal covariant of Tm+1 . The coefficients

of the various powers in xm+l in / must be universal covariants of rw ,

and hence by hypothesis are integral functions of Lm ,
...

, Qm, m-i' We
suppose then that

/= / + am+1 /i+...+ #4+i Ir ,

where each It is an integral function of Lmt . . .
, Qm> m_j . Then / is an

aggregate of terms
/' _ '

JTfl' /l&l' f)b'm-lt -c Lm ty/M ... C4im _r

Consider those terms in which a' is a minimum a, the sub-set where 6'

is a minimum b, and so on, so that finally we obtain the unique term

Expanding by (12*1), ..., (12 '5), we see that the terms of minimum

degree in xm are included in

m 1

< , where t,
= c i^-i n C-i ,_i (i = P" + *i 0-

s= 2

Similarly the terms of the minimum degree in xm -.i are included in

where ,
= cL^_n Qi"*".., (a,

= ,#" + jJ-
s=3

and so on, so that finally t contains a term

r =c^<1

_ 1
... a??-

1

(a<
= ai. 1^ +^- 1

)ft< rf):

and this term T will only occur once in t and not in any other product

except t. Now /has the isolated term T and therefore also

<!+i T
I where TI

= c<-i <C-2 XT~'-

Therefore rx is a term of a universal covariant of Tm . Similarly

is a term of a universal covariant of Tm
~

l and cx-f is a term of a uni-

versal covariant of r2
,
therefore GX* is a term of kQ^

a whence a = ad.

By (12*5) the degree of Qm ,
8 is a multiple of

jt>

w
,
and since a is a multiple

ofp
n

,
therefore the degree of t is a multiple ofp

n
. This is therefore true

of t',
and since the degree of Lm is prime to p therefore a' is a multiple

ofp
n

; it is also a multiple of g, for apply a transformation of determinant

p to /
,
then the Q's being absolutely invariant we have p

a '

II
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hence a' in a mod <?; but a is divisible by d and therefore by g, so that a'

is also divisible by d. Hence in every term t' of 70>

'

is a multiple of d.

From (12-1) (12'4) we have

and
,.
=

ri..-i + <^-i -!..+ - Gl)
(the factor Q,ft_ 1 8 being suppressed if s = m -

1).

In these series the exponents of xm differ by multiples of q. Let

b8 =pPsJE}8) where B'

is prime to p. To obtain the p^tli power of a sum
in a field having modulus p we have only to multiply every exponent

by pP. Hence

...... (13-1),
dbi r> ^qp*1 re nP^1

.

m,l
=

m-l +f^m Lm~\ Vm -l,l
+ ' ' '

>

where e = db1 -qpP*- ...... (13"2),

/)& _ npnbs
,
n ~,qpP* T o.^8

f\a r\jP*
,ym,8-ym-l t 9-l

+ B* Xm L m-\ Hf-l, s-l ^ m-l, s
+

where e,= bsp
n ~pn+^ ...... (13'3),

where in the last series s > 1 and the factor ^OT_i, 8 is to be suppressed
if s m 1. Hence /c contains the terms

where o- > 1, and QTO _i, a is to be suppressed if o- = m-~l, and where in

the final product s has the values 2, ...
,

o- - 1, o- + 1, ...
,
m - 1 .

First let A < w, then qp^ < d. The product t contains but one term

with the same set of exponents as T. For if we employ a term of (13*2)

after the second, the exponent of xm exceeds that in T^ . If we employ
the second term in (13'2) we must use the first terms in (131) and (13*3)

and hence get TI itself. If we employ the first term of (13*2) we must use

the first term of (131), and obtain ap
n
+db! as the exponent of Lm,^ in

the product of the two, which is greater than e+ap
n which is impossible.

Suppose that 7\ is a term of a product t' distinct from t. If a' > a, then

a' ^ a 4- d, since a' and a are multiples of d. Hence the minimum ex-

ponent a' of xm in t' would exceed the exponent of xm in Tlt It follows
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that a' = a, further by (11 '5) and by the homogeneity of the universal

covariant,
m

-pns
)
= ............... (13-4).

Hence (&/
-
b^)p

n
is a multiple of p

zn
,
so that bi ill h mod jp

w when a = a.

Thus in bi = pPi BI we have, since & and /?/ are both less than n,

&'=& ........................... (13-5).

I\ cannot therefore occur in terms of t' other than

'"
......(13-6).

If we employ the second term in the parenthesis we must take the

term of each Qm>ii free of xm . Then &/ = 61, from the exponents of Lm~i,

and 6/ = 6S (,s
- 2, . . .

,
m -

1), from the exponents of Q-i, -i But this is

impossible, for t' * . If we employ the first term in the parenthesis in

(13*6) we obtain as the exponent of Lm,i in the product of the first two

factors ap
n+ dbi >e + ap

n
,
since bi = h when a' = a. Hence our assump-

tion is false. We have now shown that Ji occurs as an isolated term of

the invariant. But, the exponent of xm is not a multiple of d, and the

coefficient Bl is not zero. Hence the case & < n is excluded and there-

fore bi is a multiple ofp
n

.

Of the numbers b2) ...
,
bm_i not multiples ofp

n
let ba be the one with

the smallest subscript. A term of t with the same set of exponents as Ta

can be obtained only by taking the first term of (131), (13*2), (13*3) for

s < o; for otherwise the exponent of xm is divisible by d. If we use the

second term of (13'3) for s = cr, we must use the first term of (13*3) for

s > o- and then obtain T
ff

. If we use the first term of (13*3) for s = cr the

exponent of Qm-i
t ff-i in the product is p

n
b

ff ,
which exceeds its exponent

e in T
ff

. Next if Ta occurs in t' distinct from t, then a' - a. From (13 '5)

bi is a multiple ofp
n

. Analogous to (13'2)

Hence we take the first terms of (131) and (13*7). In the product ofthese

two, the exponent of Zm_! is ap
n + dbi > ha if bi > bi +p

n
. It follows that

bi ~bi. Ifo->2
} bz is by hypothesis a multiple ofp

n and so is bz

f

by (1 3'4),

and we must take therefore the first term Q^^ s _ 1
of Q

*'
2

. Since Qm~ 1} i

does not occur in the expansion of Qmi8 for s> 2 but occurs in Ta with

the exponent p
n bs ,

we conclude that b2

' = b>2 . In this manner we can

show that we must take the first term of Q* (s
<

<r) and that bs

' = bs
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(s
=

2, . . .
,
or - 1). Then by (13'4) bj ill ba mod p

n whence ft/
=

ft,. If we

employ the second term in Q
b

ff ,
we must use the first term in Q^ g (s> o-)

and we obtain T
ff if, and only if, bs

' ~b8 (s
= a-

9
. . .

,
m- 1), as shown by

comparing the exponents of Qm-i, 8 (s ^ o-), but in this case t' = t. If we

employ the first term in $!%> the total exponent of Qm-^ a-i in t' is

X^</ which exceeds its exponent e
CT
in T

ff
since &,/ ^ ba in view of our

definition of .

We have now shown that Ta occurs as an isolated term of the in-

variant. But the exponent of xm is not a multiple of d since ba is not

a multiple ofp
n

,
and the coefficient By is not zero in the field. Hence

our assumption concerning b
ff
is false, so that bit . . .

,
bm -i are all multiples

ofp*. Put b,
=p

n
cs ,

then

is an invariant of Fm+] in which /</ lacks . We can proceed in this

manner until we have an invariant of Tm+1 which has no terms free of

#w+i, it therefore has Lm+l as a factor. Proceed as before and we infer

finally that any integral universal covariant of rm+1 is an integral

function of Lm+lt Qm+i, t (i
=

l, ..., ).

As a basis of the induction Dickson* has proved that any integral

invariant with coefficients in the GF[p
n
}
of the group T2

is an integral

function of QZ1 andZ2 with coefficients in the GF\j)
n

'\.

We have still to show that these universal covariants are independent.

For if they are not, then there will be a relation

-^m+l^l C-^m+i? N^m+l, 15 > tym+l, m) ~*~ -t* CM>W+I, 1) j tym+i, m)
~

...... (13-8)

Putting %m+i
= and substituting for the $'s in ^? we have

but I/m and the Q,n, g are independent by hypothesis and so B =
0, so

that the relation (13*8) has the factor Lm+i . Removing this factor and

repeating the above process we prove every successive B = and the

covariants Lm+lt Qm+i,i, ..., Qm+1 ,
m independent.

As a basis of the induction proof used above we notice that there is

no relation AL2 + CQ\ i
= between the universal covariants of P, for

by putting #2
= we have (7=0 and finally A = 0.

This concludes the proof of the important theorem.

It seems almost certain that a similar theorem would hold for the

* Trans. Amer. Math. Soc. vol. 12, p. 4 (1911).
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case of several cogredient variables x, y, z, ... and that a full system of

universal covariants in such a case would contain determinants and

quotients ofdeterminants in which only the following rows would appear :

etc -

of'

The proof of such a theorem for the perfectly general case by the above

method would be cumbersome in the extreme. W. C. Krathwohl* has

proved a theorem of this sort for the binary case where there were two

sets of variables. The full system which he gave is, with slight changes
of notation, as follows :

xf

x*

x
l

x? xf

2/2

yf yf

y\ 2/2

2/2

#.=

14. Formal Invariants of the Linear Form.

Although the theorem of the previous paragraph is strictly concerned

with universal covariants only, it at once furnishes us with a method for

obtaining a large number of formal invariants and covariants. If% ,
. . .

,
am

be any set of quantities which is contragredient to xly . . .
,
xm ,

then so also

is the set a^
M

,
. . .

, a^
n

contragredient ;
and we at once obtain the following

pure invariants of the linear ground form a1x1 + ... + am xm>

L(a)m> Q()mt
* (5=1, .",^-1) (U'l),

where L(a}m is obtained from Lm by substituting a for x, and Q(a ) m}S is

obtained from Qm , K by the same substitution. As in the algebraic case

we can form inner and outer products and each of these must be a formal

covariant. We shall presently exhibit a system of covariants of the formal

linear binary form modulo 3, but we shall first consider how Glenn t

* Amer. Journ. of Maths, vol. 36, pp. 449-460 (1914).

f Bulletin Amer. Math. Soc. vol. 21, p. 173 (1914-15).
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found this system. He was the first to use modular operators. Since

x
n

\ . . .
, x^ are cogredient with xt ,

. . .
,
xm ,

is an invariant operator. We shall call it the MODULAR POLAR. Similarly

we have the MODULAR ARONHOLD OPERATOR

pnt 9
pnt

9
pnt

9
w(t).

da l 9% *
da^"

**

Again, if we have two m-ary quantics whose coefficients are a
,

..
, a^and

6
,

...
,
6M respectively, then we have two modular Aronhold operators

VMl 9 nfMt 9 < 9 TV (ft. t\

Glenn also defines MODULAR TRANSVECTANTS for the binary case. For the

general case if we have m functions <j61} <
2 ,

. . .
,

< m and if the degree of ^
is ^-, then the rth transvectant with respect to s* t

8S ,
...

,
sm is obtained

by operating r times with the Cayley operator O on

dividing by , -*=^ rr^ . . .
~^~-

,
and then substituting #?

?
*
2
for yit ...

,

\ti-r\ti-r -r

x?*m for Zi. We shall write the expression thus obtained as

By means of such modular operators Glenn gives the following system
for the formal covariants of the binary linear form for p - 3. He does

not show, however, that it is a fundamental or a full system. We append
the symbolical representation

(a
3

a),



24 MODULAR INVARIANTS

Proceeding in this manner we can easily find a great many formal

covariants, but so far we cannot say whether every covariant can be

expressed in such a symbolical form. We do know, however, that Lmi

Qm,i9 -
) Qm,m-i form a full system of universal covariants ofm variables,

so that interchanging as for x8 we have the fmiteness of formal invariants

modulo p of the w-ary linear form

a
1 a?1 +...+am afm .

We can write this basis as

L(a.)m> Q(a)m,l, >> Q(a ), m, m-1

If the generalisation of Dickson's Theorem for several cogredient

variables were known, then of course we should have a full system of formal

invariants of a system of linear forms. Utilising Krathwohl's Theorem

we have the following full system of formal invariants of a pair of

binary linear forms

"1

&1

15. The use of Symbolical Operators.

We noticed in 14 that the modular Aronhold operators were riot

symbolical operators. The symbolical operators

9 V & ,, 9 / 5 \

are also invariant operators if used with certain restrictions. A function

in the a's, fi's, . . . has no meaning unless it is symmetrical with respect

to the a's, /?'s, . . . and of the same degree in each. Thus the symbolic

operators can be used provided the expression remains symmetrical in

the a's, /3's, ... and the total change of degree is the same for every

symbol a, /?, .... Thus (a/5)
2
is an invariant of/= a^, p = 3 : whence

(
aS

1 1

Thus we get the new invariant (a
s

a) (/3
3

/3) since (a/?)
4
is an invariant.

Great care must be employed in using these operators to ensure that

the factor p does not arise through their use. This factor may be
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trivial or it may not. We shall show an example where it is not trivial.

For further use we shall give some symbolical formal invariants of the

binary quadratic p = 2 :

/= a^x*

(a) HI a1? (aa

(a
2

/?)
3

(/3
2

/2) + (
2

a)' (a
2

a) m a? (

(a
4

a) (/2
4

/3)/(a
2

a) (/3
2

/5) III

2

That symbolical representation of covariants can be very complicated
is seen by the following example of a covariant of/:

Xi a,! (a

It is comparatively easy to write down many symbolical formal

covariants, but it is not always easy to find what their non-symbolical

representations are. A good insight into the structure of such symbolical

covariants is obtained by considering a few examples. To lessen the

work entailed we can use the following method of abbreviation for the

binary case :

We write a
i
Sa2

2
/V/?2 as 3

1
4

; 1

5
1

5
[

aiV&8& ~ iVA/V as 2
I (3

- 1)
; (TQ

1V&V + 20jV&V aS 3
I
5

I
+ 2 3

I 1
5

J | 5| 5| 5
|

etc., that is, we simply write the indices of alt /3l} yl , . . .
,
with strokes

between. The coefficients remain full size while the indices remain

their own size. The figures in the oblongs at the side show how many
a's, /3's, etc. appear in each term. As an example of this notation we

shall show that it is not in general permissible to divide by the modulus,

even though the modulus appears only as a factor due to an operator. Let

/= aQ Xi + diSCiM* + a%x>2
= ax /3x and p = 3.

Then (a/3)
2 = a

1%2 -2a1 a.2A/32

Now

1 1)K) (

= 6 [V&W -<&& -

-a.W + o.WA1

]
...... (151)

= 6 [5 I (3 - 1) + 4
| (- 0) + 3

|
5 + 2

|
+ 1

| (~ 5) + J (- 4 + 2)] J |

5
[

5
|
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this last must be a formal invariant modulo 3. If it were permissible

to divide by 3 here, then would

6
| (8

-
1) + 4

| {- 0) + 8
|
5 + 2

|
+ 1 I (- 5) +

| <- 4 + 2)
j |

5
|

5
J

be an invariant, Call this K.

Now (a
s

a) is 3
|
o - 1

1
o

; |

4
|

o
[

(a/3
8

) is i|o-o| 3; |i |

3
1

(a/3
3

)
2
IS 2

|
o - 2 1

1
s + o

|
6

; |

2 J6|

= 2|o + i |3 + o |e; |

2
|

e
|

.

Hence (a
3

a) (a/3
3

)

2 = 5
|
o + 4

I
3 + 3

I
(6
-

o) + 2
I (- s) + 1 (-6)

; [7[7|

so that (aV) (a/F)
2 -

(p*p) (/3a
3

)

2 =
, say, will be an invariant and

+ 2
| (-3) f 1

| (-6)4-0 | (-5 +
3); |

6
|

6
|.

We divide this by (a/3)
= 1

1
o - o

1
1

; [

1
1

1
1

5|(-3 + l) + 4|(-4 + 2 + 0)+8|{-5-3+l) + 2|(4-2-0) + l|(5 + 3~l) +0|(4-2)

|6|(-3
+ l) + 5|0 + 4|3 + 3|<6-4+2-0)

5|(4-2) 4!(5-3-l) 3|(6 + 4-2) 2
| (- 5H 3 + 1) 1

1 (- 6 - 4 + 2) | (- 6-f 3)

5|(-4 + 2 + 0)4|(-5-3 + l) 3|(4-2-0) 2| (+5 + 8-1) 3
| (4-2) ...

'

L
SO that K+j-:yT

= 4
| (-4 + 2) +3 | (-3 + 1) + 2

| (4-2)+l | (3-1); I 5 I 5 I .^^
Now (a

3

a) (^) = (s
I
o - 1

1 o) (o |
3 - o

1 1);

= 3
| (3-1) + 1

[ (-3 +
1); I

4
I

4
J

.

Thus if K is an invariant so is a + a2) but a + a2 is not invariant

under the transformation of matrix . Therefore K is not an in-

variant; hence we may not divide by 3 in equation (151). This shows

that the operator I as

|

J
operating on a8

is an invariant operator only

in virtue of the factor 3 produced.

16. Annihilators of Formal Invariants*,

In this paragraph we shall consider a method utilised by Glenn and

Dickson for finding modular invariants in special cases. The modular

*
Amer. Journ. of Maths, vol. 37, pi 75 (1915).



MODULAR INVARIANTS 27

annihilate differs somewhat from the algebraic counterpart. The theory

will he best illustrated by a simple example. We wish to find formal

invariants of degree 4 of the binary quadratic form modulo 3. Let

f-

and let x

Then /=
where

Let <f> (a (} aia>2) be an invariant and let be written <

ai , then

+

+ i [

II

>
2 ]

+ Q

,
8 + (toi + i

2

o)
4 * 4

] ..................... (16*1),

in which we need not go farther than the fourth derivatives since the

invariant is only of the fourth degree.

Now we can write equation (16*1) as

<
(tf i#2)

~
<t> (oi2) =

t$i<t> + t
2 S2 <^>

+ ... 4-

Equations (11*1) show that < must be of the form

< (a)
= A^af + APafa* + A^afa? + A^af

where the A's are undetermined constants. Hence

We notice also that whenever the modulus 3 appears in the denominator,
it will also occur in the numerator. We are still at liberty to cancel out
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these 3's as we have not yet introduced into our argument the fact that

there is a modulus. "We have so far proceeded exactly as in the algebraic

case except for the fact that in the algebraic case the invariants are

isobaric and hence we would have to set several of the A's equal to zero.

In the formal case modulo 3, t II t
8

II t
5

II t
7

,
and hence we obtain formal

invariants if we put 8
T + 88 + 8B + 87

= 0. This gives the following relations :

A^ - A,^ + A^ III 0, AP ni Af\
A^ ill A^ ni 0, A^ + AJ + A^ - AJ in 0,

and since < must be invariant under the substitution XL
= x2 , x% = x\ ,

it is invariant if we interchange a with a2 and - #a with alt so that

A^ III A^ ni 0, A-j III Aj.
Hence <f>(a)\\\A j

(4)

(
2
<^

2 + aQa*a2
- 3

#2
-

o#/)

Hence we have two linearly independent invariants of degree 4 of the

binary quadratic, mod 3,

Glenn points out that I+J\\\ D2 where D is the discriminant of/, so

that either / or J is reducible.

This method is somewhat cumbersome but it leads to all invariants.

By a different method Glenn found a full system of the binary cubic

mod 2 and the binary quadratic mod 3. His method is somewhat long

and will not be included here, but the procedure will be indicated. As in

the algebraic theory, the coefficient of the highest power of Xi is called

the leader and the leader must be a seminvariant. We can always

remove factors L so that a covariant can be taken generally as having

the highest power of xl equal to the order of the covariant. If we have

a fundamental system of seminvariants, then we try to find a fundamental

system of invariants. If there be two covariants of the same order with

the same leader, then their difference has the factor L, and we can reduce

so that it is sufficient to consider only one covariant of a given order

with a given leader. We would refer the reader to the original papers

for further details*.

17. Dickson's Method for Formal Covariants.

Let /i (a?i ,
. . .

,
#m),

. . . ,/e (#1 ,
. . .

, #,) be forms of total degrees s^ ,
. . .

,
st

in the independent variables xlt ...
,
xm . Let g t be the H.C.F. of q and

Si and let qt
-
q/g{ . Then for any non-zero element /o, of the

*
Dickson, Trans. Amer. Math. Soc. vol. 14, p. 299 (1913) and Glenn, ibid. vol. 20,

p. 154 (1919).
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and hence [/ (P^ ,
. . .

, p0?Xh II [ft (#1 ,
- -

, #,)?<

Thus /? has a definite value at every point whose coordinates belong

to GJ?[p
n
].
We have seen in 4 that all such points are conjugate, that

is they are permuted by transformations of the group; hence the values

/?* also will be permuted by transformations of the group. Now let

(/*i ,
. . . ,/*) be any function of/^ ,

. . . ,/*< ;
then will take different

values <a, 02, ...
, P for the different points where there are P points

with coordinates from the GF(p
n
). Any symmetric function of the P

quantities fa ,
. . .

,
< p must be a formal covariant, since the eifect of

any transformation is merely to permute the different points.

As an example we consider the binary quadratic modulo 2

/= rt #i
2 + <%#i#2 + a<2 %/.

The only points with coordinates from the GF[2] are (1, 0), (0, 1),

(1, 1), for which/ takes the values a
(} , az ,

a + a^ + a2 . Any symmetric

function of these three must be a formal invariant. We easily infer that

al9 # 2 + a

2 + a a + ^0^1 + %2 and a^a, (a + i + 2) are formal in-

variants. Other examples are given by Dickson*.

We can also find certain covariants by an extension of this method.

Let ylt y2 , ..., ym be a set cogredient with x^ x, , %m'> then

is an invariant whi|h we can use as an auxiliary ground form. Now,

if f(a, x] be an w-ary ground form, then a simultaneous invariant of

f(a y x) and < obtained by Dickson's method will be a formal covariant

of/(, y)-

A modification of these methods can be used in simple cases. Ifp =
2,

we see from 7 that every function which is invariant under

1
= #1 + #2

and under

* Tran. Amer. Math, Soc. vol. 15, pp. 499 ff. (1914).
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is a formal covariant. Consider the case p = m =
2, n = l of the

quadratic
/= a^x-f + aiffii

Under ^f becomes/ where

aQ
= aQi

III i,

A function of the a's which is invariant under Ji is called a SEMINVARIANT.

It is easy to see that

are seminvariants. Any function of these which is symmetrical with

respect to a and $2 will be invariant under T.3 also, and will therefore

be a formal invariant. Thus we have the following formal invariants

01 + 03
2
-

18. Symbolical Representation of Pseudo-isobaric Formal
Covariants.

If we consider the system of formal covariants of the binary linear

form modulo 3 given in 14, it seems at first sight as if every formal

covariant could be expressed as a rational function of symbolical inner

and outer products. This however is not the case. Let

Then K= a^ + a% is known to be a formal invariant of / if /;
=

2, but it

cannot be expressed as a rational function of symbolical inner and

outer products. Miss Hazlett however noticed that if we writef ax ftxyx,

then K* in S (a
2

r) (/?
2

y) + (a/3) (py) (ya).

The remainder of this paragraph is an extension to the w-ary case of

what Miss Hazlett* did for the binary case.

Let a.
psn - a (s)

. Then a^, . . .
, a^ are simply a set of elements cogre-

dient with the set oj, ...
,
am . Let C, a pseudo-isobaric formal covariant,

consist of terms C<. The weights of the different terms must be congruent

modulo q. Let the weight then of (7< with respect to x be wl -f qWu,
where wl is the weight of the term of least weight with respect to xl .

Suppose first that ^=(=0. Now Cpn and therefore 3<7f are formal co-

variants. The weight of 0?" with respect to xl is pn
(wl + qWu). Now

Trans. Amer. Math. Soc. vol. 14, pp. 300-304 (1913).
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replace qWlt symbols of the sort af, /3f ,
...

, 8J

n

, x^',
...

, ^ by the

corresponding symbols of the sort a*
1

*, ft^\ ..., 8^, x^\ ..., x^. Each

replacement lowers the weight of the term by q, so that the weight of

C?" with respect to Xi is now

We do this for every term C^*. We make a further replacement of Wy
symbols in the terms where Wi > Wy . The weight of such terms Cpn

is

TWN p
n
Wi. If there still exists terms C% for which Wi^Wlk ,

we con-

sider next the formal covariant 2,0f
n

. The weight of the term Cfis
now p

2nwl if W"n < Wi ,
and is (p

n
Wi + q Wit)p

n
if Wu ^ wl . We proceed

as before, and if Wli <p
nwl for all WH, then on making p

n Wu replace-

ments of the types af by a^, a[
l)pn

by af
}

, ..., 0%** by ^, we find

that the weight of every term is p
2n
Wi. If Wu^pnwl for any Wu>

then we must go farther and consider %C? ", and so on until we have

WLi<p*
n
Wi for all Wn. Then we have that C is isobaric with respect,

to #i in the symbols a, a<
!

),
a<

2

), ..., aw, ft /8W ..., #. We proceed

similarly with respect to ,^, --, ocm and finally we have that 2(7?*" is

completely isobaric in the corresponding symbols. We therefore have

the important result that if C be aformal covariant then Cpnsfor some

s is congruent to an isobaric polynomial of the symbols a, a^, ...
, a^, /3,

&l

\ ..., #w ,
i.e. to a simultaneous congruent covariant of

f(a, *),/(", x\ ...,/(a
p'"

ar),/(a, ^O, -,/(,O
...... (18-1).

If ^ =
0, we first multiply C by some algebraic invariant / whose

weight is greater than zero, and then the proof holds for JO, so that C is

congruent to the quotient of two such simultaneous congruent covariants

of the ground forms (181).

Thus if it be true that every congruent covariant can be represented

symbolically it will also be true that every formal covariant can be

represented symbolically in terms of the secondary symbols a(l
\ a(2)

,
. . .

,

x(8\ As we have seen in 10 however, this has been proved for the

binary case only.

19. Classes.

We must now consider the theory of classes and characteristic in-

variants. Diokson found this the best method for dealing with residual

invariants. Now ifthe coefficients of the ground form / belong to GF [p
n
]
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there will be a finite number of possible /
J

s. If two of these can be

transformed into each other by a transformation of the group, then they
are said to belong to the same CLASS. If they cannot be transformed

into each other by a transformation of the group, then they belong to

different classes. All the/'s can thus be separated into classes such that

any two/'s in one class are transformable while any two/'s of different

classes are not transformable. We shall use as an illustration the binary

quadratic
f = ax* + bocy + cy'\

where a, b, c belong to the GF [2]. The different possible types of /
are evidently

/()

=
0, /4

=
tf

3

,

.(191)

while the possible substitutions of the group are

...... (19-2)

We tabulate the results obtained by transforming every/ with every T
in the following manner, where e.g. T4fs ==/i :

(19-3).
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We therefore separate/ , ...,/7 into the following four classes:

C containing /< *\

6i containing.A/3/5, 1

(19-4}

Ca containing/2/4/6 ,
I

ft containing/7 . j

We can proceed in this manner in the general case even where we have

more than one ground form. For example, Dickson gives as typical

members of two m-ary linear forms the four classes

ft; %i, dx*

ft; #1, ar1

ft; 0, ^
ft; o, o.

Classes under a group may be further separated into sub-classes by a

sub-group of the group. Considering, then, these classes we see that we

may expect a residual invariant to take different values for different

classes. Indeed this gives us another definition of a, residual invariant,

namely a residual invariant is a function of the coefficients of a ground
form such that it has the same value for two/'s belonging to the same

class, but may in certain cases take different values if the two /'s do

not belong to the same class.

20. Characteristic Invariants*.

We now come to the important functions called CHARACTERISTIC

INVARIANTS. The characteristic invariant Ij of a class Cj is such that it

takes the value 1 for every / belonging to CJ- but the value for any
other /. Suppose that any particular residual covariant V takes the

values i?
, ..., vk_i for the classes ft, ..., ft-1} then obviously

The total number of possible invariants of this sort is manifestly p
nje

.

A set of invariants Rlt ..., Hi are said to CHARACTERISE the classes

ft , > ft if they form a criterion for determining to which class a par-

ticular form belongs. Thus if an invariant Jii takes a different value

for each class, then it characterises the classes. Suppose however that

it takes a different value for all classes with the exception of ft and Oj

for which it takes the same value
;
then it will not distinguish between

ft and Cj and it does not therefore characterise the classes. If however

* Amer. Jour, of Maths, vol. 31, pp. 349-366 (1909).
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we have a second invariant R2 which takes different values for the

classes Ct and Q, then R: and R^ together characterise the classes.

From definition it is obvious that the characteristic invariants

characterise the classes. We shall now consider a few of the properties

of the characteristic invariants.

THEOREM. A ny residual invariant can be expressed in one, and only

one, way as a homogeneous linearfunction of the characteristic invariants

with coefficients of the field.

PROOF. If it were possible to express the invariant in two ways, then

we should have

... +Wfc-l/A;-l ........... (20*2),

whence =
(>

- u ) 7 + (X - u^ /, + ... + <X_i
-
%-i) /&-i .(20'3).

Now for a class C, we have 7f
= l and Ij

= () (j*i\ so that = 1^-1*1

or vt
= ut . We get this result for every value of i and thus the Jheoreru

is proved. We also see from this theorem that the number of homo-

geneously linear independent residual invariants is equal to the number

of non-equivalent classes. We notice however the non-homogeneous
relation

l=7 + 7J
+ ...+7fc

_ 1 .................. (20'4).

From the definition of characteristic invariants we obtain the following

relations :

I? = It, 7,7;
= 0>jO ......... (20-5).

By means of these, any relation between the characteristic invariants

can be reduced to a linear one which can be made homogeneous by
means of (20*4). Thus any relation between the 7's can be repre-

sented as

2c t 7,--0 ........................... (20'6),

whence every ct is zero. Thus (20*4) and (20'5) are the only relations

between the characteristic invariants. Dickson* has given two rather

artificial formulae for these characteristic invariants in the general

case. If a system of forms has coefficients CD ...
, c, we have

/.-SD^l-^-cf)'}
.................. (20-7),

where the sum extends over all sets of coefficients cf\ ..., cf\ of the

* Madison Colloquium Lectures, p. 13 and Amer. Journ. ofMaths.vol 31, p. 339 (1909).
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various systems of the class Gk . The second formula is obtained by

making use of Lagrange's interpolation formula

s C
l>n _

7fc
= 2 H J -^ .................. (20-8).

cw... c j=ic) '-c,.

Both of these expressions give

/ =n(l-cc ) ........................ (20-9).

These results are not of much practical value, but they prove the

existence of the characteristic invariants.

21. Syzygies*.

Let Li t ..., L<j be a full system of residual invariants, then every

characteristic invariant must be a function of L\ ,
. . .

,
La . Let

/ = <At(Aj >
La\ then since /,/, II (a=K;) then $ t <fe || gives a rela-

tion between Li9 ..., La and is therefore a syzygy. Similarly every Z?

is expressible as a linear homogeneous function of the characteristic

invariants so that every syzygy can be represented as a function G of

the characteristic invariants, which is equal to zero
;
thus

(/ , ..., Ja-OllO.

But we have already shown that the only relations between the /'s are

(20'4) and (20'5). Therefore G II must be a result of combining

(20-4) and (20'5).

Now suppose KO, ..., Kit-i is another fundamental system. Since
A-l k-l

KH II S a x7l/x and ^ II S aM7/M ,
then

A=0 ^=0

jff"^ II i %;^M/A H *S C^JT, ............(211),
A=0 r=0

A;-l

where c
vjh
= cvly= ^ aKha^A^v .................. (21'2),

A=

if J. A>/ be the cofactor of aKv in
|

a
\

divided by |

a
\.

Thus every product of the jfiT's can be represented as a linear homo-

geneous expression in the JT's themselves. If now

is a syzygy between the JTs 5
then by means of (211) we can reduce

the syzygy to a linear relation between the JT's, or else both sides

vanish. Suppose then that this relation is expressed by

...(21-3).

From Prof. Weitzenbock's notes.
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k-l
But Kv II 2 a\v l\, and so we have

x=o
k-l k-l
2 2 ftfl^A I! ft.

v=.0 \=0
Therefore

&Ao+&0;u+---+Afe-i0A,*-i II (* = 0, 1, ...,/;-!)

so that ftv II /?2Av II ft(A* + A lv + ... +-4*-!.,),
A

and substituting in (21*3),

V

~2 \J^ + ^+...+^*-i,,)#"JI 1 ......... (21-4).
v= Q

(21 '4) and (21*1) we call ground syzygies. These correspond to (20 "4)

and (20*5) in the case of characteristic invariants.

THEOREM. If a residual invariant J takes the value J%for the class d
(i
=

0, ..., # 1), and if g of these values Jt are different when 2^g^p,
then J satisfies a congruence of the gth degree, but satisfies no congruence

of lower degree.

PROOF. From J \\ JQIQ + J1I1 + ... +/A_ 1/A;
_ 1 and (20'5) we have

Jf
p

II Jplp or (/-/p)/p || 0. Give p the values 0, ..., k- 1, then since

one Ip must be congruent to 1, one factor (J~Jp)
must be congruent

to 0, and therefore

Let J^, ...
,
J

f
be the g different values of /, then obviously

is a congruence satisfied by J and is of degree g. If J satisfied a con-

gruence of degree s < gy then the congruence could not have g different

roots J
Pl ,

. . .
,
t/

p
and so there is no congruence of degree less than g.

22. Residual Covariants.

Every formal covariant is a residual covariant. We can of course

reduce the non-symbolical coefficients of a formal covariant by Format's

Theorem, so that the function remains a residual covariant but is no

longer a formal covariant. The residual covariant thus obtained turns

out in many cases to be zero. The most obvious method then of finding

residual covariants is first to find formal covariants by any method

suitable and then to reduce the non-symbolical coefficients by Format's

Theorem.

In the case of residual invariants we can use the following theorem



MODULAR INVARIANTS 37

to find whether we have a full system or not. If the residual invariants

Rl ^ ..., Hi completely characterise the non-equivalent classes, then they

form a full system of residual invariants. Let cl ,
. . .

,
c8 be the coefficients

of the forms in the system S. For the resulting p
sn

sets of values of

the c's let 1A> -
, RI take the distinct sets of values

There are thus ^non-equivalent classes in the system S; and by hypo-
thesis the eth class is uniquely defined by the values JRi, ...

, Mm). If

an invariant Q takes the value Qt for the class ft, then

Hence any invariant can be expressed as a polynomial in the Rl9 ...
, RI

with coefficients from the GF\_p
n

~\.
Thus the invariants RI, ...

, RI form

a full system.

The converse of this theorem is also true, for if Rl} ..., RI are a full

system every characteristic invariant must be a function of J?i, ..., RI.

Since the characteristic invariants characterise the classes, so also must

MI, ..., RI.

In 15 and 17 we found by different methods that al and

a 2 + a* + $0^2 + $o#i + #1^2 were formal invariants mod 2 of

Therefore using Fermat's Theorem we find that b, a + c + ab + bc + ca

are residual invariants of the modular form aar + b%y + cy* moreover

they characterise the classes, for they take the following values for the

different classes :

b

ft 1

ft 1

ft 1 1

Thus b and a + c + ab + bc + ca form a full system of invariants. As will

be shown in a later paragraph, they also form a smallest full system.

From the theorem of the next paragraph we have a means of ob-

taining a full system of residual invariants if we know a full system of

formal invariants. Miss Sanderson's Theorem has not, so far, been

extended to covariants, and so at present there is no definite method of

proving whether a given system of residual covariants is a full one or
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not. It seems likely however that a full system of residual covariants

can be obtained from a full system of formal covariants.

Glenn* has given the following full system of formal covariants of

/= a^x* + a^x^x* + azXz, where p = 3 :

A = a^ -

$ = #/ + xfxf + x?x + x
-

ft = (d^dl
-

1
8

) #1* + (#2
~

^4 = (0
2 + <l\

-

/4
= a^Xi -

a^ (xfx% + ^i

/6
= aQ Xi + a^XiM* + azx

-4= (^0
2

l 1

3

)^1
4 + (0 - 02) (1

8

<>
+ x-^

^0
2

1

8

) I + (^0
8

1
2 - 4

<^2

+ a*a - a?a* + aQaf) x^x^. + (a*a*
-a^} x* ,

We now suppose that
> <*i> <^2 are elements of (^^[3] ;

this gives at once

*all/, 4ll/4,

J5 ii 4 ii 4 it o.

We shall however expect to find relations amongst the remaining

/, A, J, T, L, Q, C19 C,, 04,/4,/e, t, 4, thuS/6 II 7s
, -4 II ft'.

Dickson t gives as a full system of residual covariants

/, A, ft, ftj,/4 , ., Q, and q^(aQ + a2)(a

Also T in (a + 02) (o
8 - ^i

2 + <*2
2 + ^0^2)

II (o + a) (i
2 + o2 ~ 1) + (o + a) Oo

2

II q + 2a 4- flo^
2 + a a2

2 + azaQ
z + a^a? +

II g + ( + ^2)W + o2 - 1)

So we see that every residual covariant in this case can be obtained from

* Trans. Amer. Math. Soc. vol. 20, p. 154 (1919). f Ibid vol. 14, p. 310 (1913).
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a formal covariant ;
the methods of proof that the above systems are full

systems are not sufficiently general to be included here.

23. Miss Sanderson's Theorem.

Miss Sanderson's Theorem * can be stated as follows : To any residual

invariant i of a system offorms under a group F with coefficients from

the GF[p
n
],

there corresponds aformal invariant I under r such that,

for all sets of values in the field of the coefficients of the system offorms,

1 1! L

We require the Lemma Let alt ..>
,
ar (r > 1) be arbitrary variables and

glt ... ,gr given elements of the GF[p
n
] } gr *Q, then the determinant

a1

<*

p(r-i)n C*!
" "> *

is divisible in the field by the determinant

!
... ar

a
l

.(23-2)

N
and the quotient Q - -^

has the properties

.(23-3),
if !

= #, ..., ar =

Q = if !
=

<?!, ..., ar
=

where el} ...
,
er are elements of the field not proportional to glt ..., gr .

"We refer the reader to Miss Sanderson's paper for a proof of this lemma.

We consider a system S of forms /i, ...
9 ft inm variables with co-

efficients Oi, -..,ar . We separate all such systems into classes Ct . If S'

is a particular system of forms//, ...,// and if k is a constant, then we

shall say that the system //, ..., /*' is a MULTIPLE of 8' and shall

denote it by M', Now let c{ be a sub-set of d such that if s is in d then

no multiple of s is in ciy and such that every system $ in d is a multiple

of some system mct . Letp be a primitive root of the GF[p
n
], i.e. if

P
v =

1, then y must be an integral multiple of p
n - 1. Let e{ be the

* Trans. Amer. Math. Soc. vol. 14, p. 490 (1913).
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smallest exponent for which s' and p
e
is' are equivalent, where s' is any

system in d. Then et is a factor ofp
n - 1 and

s', p
e
is

,
. . .

, pPi-Wta' (dt et
= />*-!) ......... (23'4)

are all contained in ft. If S" is a system in ft not in the set (23*4), then

p
e
*/S"' will be in ft. For S" may be transformed into $', s' into p

e

*V, p
e
ts'

into p
eiS". Moreover any system 8'" in ft is equal to p

fe<
V times a system

s"' in d, for we may write S f" =
p**f

+V" (0 ^ /<^). Since p
pn- l- JceiS'" is

in ft, pV is in ft. But ^ is the smallest exponent for which this is

possible, hence I = 0, and we can write

where 2 denotes an aggregate, and dp*
6
* is the set of systems obtained

by multiplying each system in c
t by p**i. If ^= 1, ft will contain all the

multiples of the systems in c,. In general there are et different classes,

dt

Cu= 2 dp
ke

i
+l

(/
=

0, 1,2, . ..,<- 1) ...... (23'5),
7f=l

formed on the sub-sets d c<p, ..., c^p**"
1

respectively. Thus a complete

list of the classes is given by Ca (i
=

1, . . .
,
h

;
I = 0, 1, . . .

, ei 1 ) and (700

which contains only the identically zero system.

We have seen in 20 that all invariants of the system S of forms can

be expressed in terms of characteristic invariants %, which have the

value 1 for the class CM and the value for every other class. To prove our

theorem it will be sufficient to construct formal invariants /# which

reduce to % if the coefficients are in the field. For this purpose we find

it convenient to employ the invariants

-,9rW (t=l, ...,A) ...(23-6),
gi-ffr

where the summation extends over the different sets of coefficients in c*.

When the variables are transformed, the coefficients Oi, ...
9
ar undergo

an induced transformation which is also linear with coefficients in

GF[p
n

~\. Ji is a formal invariant, since the numerators are invariant

apart from a factor which is the c^th power of the determinant of the

induced transformation and the denominators are permuted among them-

selves apart from the same factor.

Consider any particular denominator

a, ... ar

(23-7).
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Since the <//, ...
, gr

'

are the coefficients of a system of c^ this system is

also in C&. After the transformation ai = ^c fjAj this becomes

(2 means 3
)

\ 3=1 J

(23-8),

where the G19 ...
,
Gr are also the coefficients of a system in C& and hence

may be written p^gS, ...
, p

fc

'#r", where <//', ...
, gr

"
are the coefficients of

a system of ct . Hence (23'8) becomes

Since p
ze

< d'=l, this denominator apart from the factor |ce |

d occurs

among the denominators in the sum (23 '6), and the factor \Cg\
di is

cancelled by the same factor which is brought into the numerator by
the transformation : hence Ji is a formal invariant.

We shall denote
"
the value which Ji has for systems of the class Cy

by Ji(Qfc). Then obviously by (23*3) and (23'6)

Since Ji (C^) =
0, we may put Ji (ft- )

= p
l and it is easy to show that

The theorem of 20 implies that any invariant V can be written

V= ^Vjk Ijk , where V ( (7^)
= v^ .

?fc

We can therefore determine the /# from

/f=
f'"'

for the determinant of the coefficients can be shown to be non-singular.

For Coo we have

- 2
01 -0
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We now have a theoretical if not a very practical method of obtaining

the formal invariants Jjk which reduce to the residual invariants ijk of

the class cjk . The theorem is therefore proved.

Miss Sanderson's Theorem shows us that if we have a full system of

formal invariants we can easily obtain the corresponding full system of

residual invariants. For the binary linear foYiaf a^ + a2#2 mod 3 we

have the full system of formal invariants

c^'oa
-

a, a,/, < + a/c^
2 + a/a/ 4- a/,

which reduce to and af + a^a^ + a2
2

respectively when the a's belong to

GF[3], so that a full system of residual invariants of the binary linear

form with coefficients from GJ?\3} is given by

A residual covariant does not take a definite value for each class and so

we cannot write a residual covariant C as

(7= 7 C + /!<?!, . .
, /fc-iCfc-!.

Miss Sanderson's Theorem therefore cannot be directly adapted for

covariants. It seems likely, however, that every residual covariant can

be obtained from a formal covariant; and in 22 we have seen that this

is true in one case.

24. A method of finding Characteristic Invariants.

THEOREM. Let K
, ..., Ju-\ be k absolute rational integral residual

invariants suck that aXp is the value ofKft
for the class CK where there

are k classes C
, ..., Vi; these k invariants will form a fundamental

system if and only if \
a
x? \

-H- 0.

By equation (201),

JT, n*^ aAl,Jx (WO, ..., A-l) ......... (241).
A= l

If
|

a
Xp |

II 0, then the JT's are not linearly independent and hence do

not form a fundamental system.

If |#AP |-H-0, then we can solve the equations (241) for the charac-

teristic invariants, and obtain

Jx ll'i

1

^JT, (A
=

0, ...,*-!),
i/=0

where A Kv is the cofactor of aKv in |aXl/ |,
divided by \a^\. It follows

that the JT's are linearly independent and form a fundamental system.
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From this theorem we have an easy method of finding the character-

istic invariants, provided that we know already some other fundamental

system. We continue with the example of the binary quadratic modulo 2.

Dickson* has shown that a fundamental system of residual invariants

for this case is given by

"We can tabulate the value of each K for each C as follows :

ft

1

1

1

the reciprocal determinant is

And we have

IB
= K% = abc.

25. Smallest Pull Systems.

It is obvious that a fundamental system cannot be a smallest full

system on account of the relation (20'4). Indeed any invariantK can be

expressed as follows :

m 1 m 1 / m 1 \
JT= 2 %/,= 2 ijIj

+ iJl- 5
/,)

y=o j=i \ j=i /

=
o + ft

-
fc'o) Ii + . + ft-i

~
o) Im-i -

Madison Colloquium Lectures, p. 29.
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If we are considering the field GF[pn
~\
whose elements are

then any invariant can take at most p
n

different values, that is, any
invariant can characterise at most p

n
classes. It follows that s invariants

can characterise at most p
ns

different classes. Suppose that there are

k classes
;
then the minimum number of invariants in a smallest full

system will be t + 1, where t is the greatest power ofp
n which is less than

k\ i.e. p
nt < k ^pn

(t+1
). We shall now show that there always exists

a full system with only t + 1 elements ; hence the number of elements

in a smallestfull system is t+l.

The method employed in finding the elements of a smallest full

system can best be illustrated by studying a simple example. Let us

suppose that there are 12 classes ft, ft, ..., fti, and that their charac-

teristic invariants /
, 7j, ..., /u are known. We shall also suppose

that the field is GF[S]; the elements of this field are 0, 1, 2. Now
32<11 <38

,
hence t = 2, and there will be three elements A> A> A m

the smallest full system. Let A, A> A take the following values for

the different classes.

/"Y/>/'>/~y/'Y/Y/"y/"Y/'>/"Y/'y/"Y

Since the /'s are known we can find the D's at once. It is easy to see

that the D's form a smallest full system. At first sight it does not seem

that equations (25*1) are soluble for the /'s, but this is not difficult in

view of the relations (20'4) and (20'5) by considering expressions such

as A2

, AA, -.. E.g., AA = /io-/n, hence (AA)2 = /io + -/n so

that AA + (AA)2 - - /io-

As an example we consider the binary quadratic mod 2. There will

be two invariants in a smallest full system, since from 19 there are four

classes. Give A and A the following values :

G0 t/i C/2 t/g

A o i o i

A o o i i
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then, from 24,

D1
= J1 + l3

= b(l + ac) + abc = b,

Dt = I2 + It =l + b + (l + a)(l + fy(l + c) + <ibc

giving the same full system as that obtained in 22. Further

The method illustrated in the above examples is perfectly general

26. Residual Invariants of Linear Forms.

The following treatment of linear forms is due to Dickson*. Let

li
~ an #! + a ia #2 + ... + aim xm

andput 4=n(l-a?r)
..................... (261).

r

There are only two classes for a single form 119 C containing the null

form and Cl containing every other form. We have readily

,
/O
= ^LI, I1=1-A I ;

also AI is seen to form a smallest full system.

We must now consider the classes of a pair of forms 4 and 4- We have

the class (7 if 4 = 4 = 0, Ci has 4 0, 4 ^ and in this case we choose

as a type 0, ^ . If 4 and 4 are linearly independent, then we have the

class C2 and choose as our type x^ dx^ where d= 1 if w > 2 and e = Z>12 ,

the discriminant of the forms if m = 2. We have also the classes C8 (C)

where 4 is c^ and as type we take x^ cx^. For the case where m~2
instead of one class Ca we have q classes 2 (d),

- In general let k be a

non-zero element of the GF[p
n
] and write l^li Mj. Using kpn II ^

we have

AV
= n [i

- (. -
fa^yg ii ^ +^ (^ - 1) ** + s 8*

r i=l

and the coefficients of powers of Jc must be invariants. In particular

write F0 = $0i.

If w > 2, the values of the different invariants for the different classes

are as follows :

Class

C

3 (C)

* Proc. Lond. Math. Soc. (2), vol. 7, p. 430 (1909).
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From this table we have readily

/ = J.i^2, /i=-4i (1 -A 2}, Iz(Q)
= A<2 (l~Ai),

/*) = l-(c-F12)
9

(c*0), 7^1-Jo-/!- 5 /
8(c)

.

o/z>

For the case w = 2 the value of /2 <d)
is

l-(d-DK}.
A smallest full system is given by

A,,A 2,V12 ,
if w>2; A lt A, Vu ,

D12 ,
if w-2.

Smallest fall systems can easily be obtained from the above charac-

teristic invariants. Dickson gives the following fundamental systems of

residual invariants of a pair of linear forms 4 and 4 :

ItA^A^A^s, Fia
*

(=1,2, ..., 0) w>2,
A l} A^A,A,, FM*,Aa* (*

= 1,2, ...,g) w-2.

We find the classes of a system of X binary linear forms as follows :

We say that JEJ
par ... follows Erst ... if r<p or if r = p, s<o- or if r^p,

s~cr, #<T, First, let not every Du vanish. Let Drs be the first

which does not vanish, then

^ = (i<r), A*=0 (r <<*), J9r.*0,

and by an obvious transformation

lr
=- xl ,

Is -cx2 ,
c =Drs .

Since Ar = As =
(^
<

r), ^ is free of #1 and ^2 .

Since Drfc
= (r<k< s), 4 is free of #2 ; therefore we can take as type

l{
=

0, Ir x-i) 4 - CkMi , 4 = ca?2 >
lt
= dt

(i<r<k<s<t^\'} C4=0) ...... (26'2).

Secondly, if every D$ vanish but not every /, then we can take as

Lastly we have the class C$ containing only null forms ...... (26 '4).

By giving c, the CAT'S, the <#/s, the et'8 and the m/s, all the values

possible, we can in the above manner find all the different classes.

Now the products

...... (26-5)
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are linearly independent in the field; also the number of these invariants

is equal to the number of classes A c

rf'. Similarly
\

l-Af) H Fft
(/*,

=
0, 1, ...

, q : not every /*,
=

0)

are linearly independent and of the same number as the classes of type

B. We associate the invariant 1 with the class C . The products (26 "5)

vanish for the classes of 13 and (7
,
also for those classes of A which

follow-4 rs ; (26*6) vanish for the classes (7 and those of B which follow Bf .

A fundamental system of residual invariants of A. binary linear forms

is given by
I, (26-6), (26'5).

By an extension of this method Dickson gives a fundamental system of

X ^ m linear forms, but for this we would refer the reader to the paper

itself. He also treats the case when A, < m.

27. Residual Invariants of Quadratic Forms.

Our first task in the finding of residual invariants of quadratic forms

is to separate the general quadratic form into classes. We see at once

that this is a much more difficult task than it was in the binary case.

We shall find an essential difference between the cases p 2 and p > 2.

We shall follow Dickson 's methods*.

First let p > 2, then we can write the general quadratic form as

m

and we can choose bu 4= with perfect generality. Let the determinant

B =
|
&y

.

|

be of modular rank r, i.e. every minor of order exceeding r is

congruent to zero but not every minor of order r is congruent to zero.

Now let bn^i III bu t
then under a transformation of matrix

1

.(27'2)

1-

we have qm = bu x? + <, where < is independent of x . Proceeding in this

way we can ultimately replace qm by

0, Oa*0, ..., ar =f=0) ...(27'3).

* Madison Colloquium Lectures, pp. 4-12 and Amer. Journ. of Maths, vol. 30,

p. 263 (1908).
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Now every a thus obtained can be written congruent to a power of

some primitive root p of p. After applying a transformation of deter-

minant unity which permutes the #Y
2

,
. . .

, #y
2 we can assume that a^ ,

. . .
,
as

are even powers of p while as+1 ,
...

,
ar are odd powers of p. The trans-

formation

(27-4)

is of determinant unity. If r < m, transformations of the above type

replace

i#i
2
+...+0,.tf/

.

2

by xf + ... +%i + p(%
2
s+1 + ...+#v

2

)...(27-5).

This in turn may be replaced by one of the forms

X\ + ... r_l ri f,,. \ /,,._ n x

(0<r<a) ............ (27'6)v } ^ }

by transformations of the types

^^ \

l ; '

where au and a^ are chosen so that

(*i? + a,/)-
3

in p.

If r~m, then transformations of type (2 7 '4) replace S a^i
2

by
i

,r/+ ...+#s
2 + p(#Vn+ ... + ^2

OT-i) + o-^v
5

...... (27'8),

where o- is not necessarily equal to p. If there be an even number of

terms with the factory, transformations ofthe type (27 '7) reduce (27 '8) to

xf + x2
z + ...+x\,- 1 + Bxm2

.. ............. (27"9)

or, if an odd number, to

^1

2 +...+^2
m_2 + P^m-l + p-

1^m2
............ (2710).

(27*10) can be transformed into (2 7 '9) by the substitution

^m-i
~~
p ffirn. 5

#w = P~
l

^m-i>

xt
= Xi (i 3=m, i=^m- 1),

if B III p
+
\

Or by #m-i
= am-i, m-i^m-i - a^jn-jp

21" 1^,
%m - &m,m~im-l + &m~l,m-iPm,

~
1),
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where 0U-i,m-i an^ flm,m-i are chosen such that

/rj2 i_
2'2a2 ^>-l .,, n

(,ttm-i,m-i + P **m,m-i; HI P

in the case where I? in p~
l

.

Thus every quadratic form qm modp (p > 2) can be reduced to one of

the forms of (27*6) or (2 7 *9) by transformations with determinant unity.

For the proof that none of these forms are equivalent we refer the reader

to Dicksou, Madison Colloquium Lectures, page 8.

We cannot of course hope to classify every possible modular form of

the m-ary quadratic as we did in the example of 19. In the more com-

plicated cases we must be content to find a specimen of each class, and

we can find whether or not a system of invariants characterise the classes

by examining the values which they take for the specimens of each

class.

The invariants B and r do not distinguish between the two classes

of (27 '6) and they therefore do not characterise the classes.

It is known * that a symmetrical determinant of rank r (r > 0) has a

non-vanishing principal minor of order r. By a suitable transformation

we can take this minor as

M= bn ... blr -BfO.

n bn

It is possible to replace qm by qr a function of r variables, arid proceeding
as before with only r variables we can reduce qr to

Now, let M be congruent to p
zl or

/o

a+1
, then the transformation

gives us the two forms of (27*6) and M 2 =
pMa-i) or p a in the

respective cases. But these are congruent to + 1 and - 1 respectively.
q^lM 2 distinguishes therefore between the two forms of (27*6) and we

shall call the non-equivalent classes Cr>l and Cv
t
_i respectively.

Let us now consider the functions

*
Dickson, Annals of Maths. Ser. 2, vol. 15, pp. 27-28 (1913-14).
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where Mlt ...,Mk denote the principal minors of order r taken in any

order, and the N's are the principal minors of order greater than r.

It is easily seen that A r has the value + 1 for any form belonging to

the class Cril
- the value - 1 for any form belonging to the class (?r,-i;

and the value for any form riot contained in Crtl or Crt
- 1 : thus the

following invariants characterise the classes

^3.1, J2) "
5
Am -i^lJ

as is seen from the following table which illustrates the case n = 1, p -
3,

m = 3:
Class Specimen AI A% B

ft 000
C

Jtl ^2
1

Ci,-j 2^ 2 - 1 0*0
6\3 tf^+tfa

2
1

02.-1 ^r+i^y 0-1
V*=i aY' + av'+tfa

2
1

63-2 x? + xf+2j'f 002
Thus since all the transformations employed have been those with deter-

minant unity, we have as a full system of invariants of the ternary

quadratic mod 3,

A lt A t ,
B.

We notice however that certain of the classes (7#, are equivalent under

transformations whose determinant is not congruent to unity, so that a

full system of relative invariants is given by
A A A
-/l, ./l 2) > -^mt

and the non-equivalent classes are

'
yo> ^1,15 VI, -l ''2,l> ^2,-ij ? ^m.U ^w,-!'

The treatment of the quadratic where p = 2 is essentially different

from the case where p> 2. For the separation of the classes we refer

the reader to Dicksoii's papers. He shows that an w-ary quadratic is

either reducible to a quadratic in less than m variables, or else it is

reducible to

if m be odd, or to one of the two forms

#!#2 + #3#4 + ... + #OT-

^^2 4- . . . -f a:m-.iaym + c

provided that 8 + S2 + 84 + . . . + 82W
~ l

H 1,

if m be even.

For small values of m we can of course proceed as in 19.
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28. Cubic and Higher Forms.

The quadratic case is rather difficult when compared with the linear ;

and we may expect that the separation into classes of the cubic, quartic

and higher forms will present great difficulty. This can only be

accomplished without enormous labour in a few simple cases. Thus

while we may find by different methods a number of invariants, it is not

possible in general to say whether a system is full or not. The separa-

tion into classes is really a subject in itself and we would refer the

reader who is interested to a list of papers on the subject which Dickson

gives in the last chapter of his History of the Theory of Numbers.

29. Relative unimportance of Residual Covariants.

Nothing has been said so far about finding full systems of residual

covariants. Indeed there is no method known which can be applied to

a general case. Neither of the two methods which can be used for

invariants hold when applied to covariants. We notice however that

classes of modular forms are completely characterised by rational

integral invariants and therefore an invariantive property of a system
of modular forms can be expressed by the vanishing of an invariant.

This is in contrast to the algebraic case where a property may be ex-

pressed by the vanishing of a covariant. The difficulty of finding a means

of forming a full system of residual covariants may be linked up with

the fact that residual invariants in themselves completely characterise

the classes of systems of forms.

30. Non-formal Residual Covariants.

The subject of non-formal residual covariants has not yet been studied.

In this type the a's are arbitrary but the as are elements of the GF[p
n
].

It is seen therefore that these bear the same relation to the residual

covariants as the congruent covariants bear to the formal covariants.

This gives us a clue to the study of non-formal concomitants. They
are obtained from congruent concomitants by reducing the coefficients

of the forms by Fermat's Theorem. If it be true that every congruent
covariant is congruent to an algebraic covariant, then it is also true that

every non-formal residual covariant can be obtained from an algebraic

covariant by reductions of the two types II and in . Also every non-

formal residual covariant is a residual covariant, just as every congruent
covariant is a formal covariant. It is seen then that these non-formal

covariants are not of any special interest, but are merely those

residual covariants which are obtained from congruent covariants

through reductions by Fermat's Theorem.

4-2



PART II

31. Rings and Fields.

A RING is a collection of elements a, b, c, . . .
,
such that for every pair

of elements #, b, a sum a + b and a product a x b are defined, where a + b

and a x b both belong to the ring, and such that the following laws are

satisfied :

I. (i) a + (b + e)
=

(a + b) + c,

(ii) a + b = b + a,

(iii) a + x = b,

has always a solution for x in the ring.

II. a x fo ab x c.

III. a(b + c)
- ab + ac.

We shall only consider COMMUTATIVE rings where the following law also

holds.

IV. ab = ba.

A ring together with the laws which the elements of the ring obey

is called an ALGEBRA. An algebra which has no divisors of zero is called

a DIVISION algebra. That is, in a division algebra if ab = and if a 4= 0,

then must b = 0.

A FIELD is a collection of the elements of a division algebra for which

every equation ax-b has one and only one solution for x provided that

a is not zero. We shall denote this unique solution by x b/a.

A field is said to be FINITE if it contains only a finite number of

elements. Every division ring JR, (i.e. a ring with no divisors of zero) is

contained in its QUOTIENT FIELD. The elements of this quotient field L
are determined by all the elements given by solutions of the following

type of equation :

ax b, where a =}= 0,

provided that the further conditions hold :

(i) a/b = c/d if ad = be,

(ii) ra/a = r if r belongs to the division ring,

(iii) (a/b) x (c/d}
-
ac/bd,

(iv) (a/b} + (c/d)
= (ad + bc)/bd.
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Every element of R is an element of L and we say that R is contained

in Z. Every field which contains an element other than the zero element

contains the unit element e which is defined by ex~x where x is any
element in the field. There can only be one unit element, for, if ^ and

e2 were two solutions, then would

ei a = a, where a 4=
;

e>2 b = b, where b =1= 0.

Hence e^ab = e^ab and (^
-

2) ab - 0. It follows that el = e%.

If every element of a ring L is also an element of the ring K, thenK
is said to contain L, We shall use the sign ^ to denote "is contained

in
"

; thus, L ^ K] K is called a SUPER-RING of L and L is called a

SUB-RING of K. IfM be a super-ring of L and at the same time a sub-

ring of K, then M is said to be a MEDIAL-RING between K and L.

Replacing the word "ring" by the word "field" in the foregoing defini-

tions, SUPER-FIELD, SUB-FIELD and MEDIAL-FIELD are defined. If L be a

sub-ring of K, we write L^K. If L < K, L =j= K, i.e. if there exists

elements of K which are riot elements of L, then L is called an ACTUAL

sub-ring of K. The term "actual" is used in other cases with a similar

meaning ; e.g. if L be an actual super-field of J5T, then L > JT, L^F K.

Consider now a ring R containing the elements Oi, a2 , ..., and let x

be an arbitrary quantity, then A - 21a
rt
#* is called an /^-POLYNOMIAL.

r
i

If the sum and product of two /^-polynomials are defined in the usual

manner, then obviously these ^-polynomials form a ring. This ring is

called a POLYNOMIAL RING of R and is denoted by R [#]. By an obvious

extension, polynomial rings containing ^-polynomials in several variables

can be obtained. Thus

R [#i, #2]
= RI [#2], where 7^ = R [#J.

Since the field K contains the unit element e, it will also contain the

elements e + e = 2#, 30, . . .
,

ne. There are two possibilities here ;
either

e, 20, 30, - . .
, ne, ... are all different, in which case the fieldK is said

to have the CHARACTERISTIC zero; or else they are not all different. In

this case let me = ne, hence (m n)e = 0. Let p be the smallest value

of m n for which this is true; then the elements 0, e, 2e, ... (p~ 1) e

are all distinct and K is said to be of characteristic p. We show that

JTis of characteristic or p by writing K^ or K (p) as the case may be.

The following theorems are easily obtained* :

THEOREM 1. It is necessary and sufficient for the vanishing of the

derivative of a rationalfunction of #, either that the function is a con-

*
Steinitz, Algebraische Theorie der Korper, p. 46.
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stant provided that the characteristic of field of the coefficients be zero,

or that thefunction be also a rational function of y = #p
, provided that

the characteristic be p.

THEOEEM 2. Iff(%\ a rational function of #, has an r-fold linear

factor (r^l), then the derivative f (%) contains this factor at least

(r- 1) times. If the field to which the coefficients off(x) belong has the

characteristic p and if r is divisible by p, then /' (x) has the factw at

least r times, otherwise it has the factor exactly r 1 times.

THEOREM 3. If f(x) be a polynomial in xpf and the cliaracteristic of

the field be p, then f(x) is the pf-th power of a polynomial <t>
in % and

vice versa where the coefficients of < are in a super-field L(p) ofK(p\

The proofs of these theorems are left to the reader.

32. Expansions.

A super-fieldK2 of a field KI can be obtained in the following manner.

Choose an arbitrary element a which does not belong to jff^ ,
and let the

elements ofK} be &, /32 , , A- If a is to be a member ofK2 ,
so must

<* + &, a + /32 ,
2a + &, <*&, a2

,
a3& + /?2 , a//?j , ftn/a9

etc. In this way
we obtain a number of new elements and each one can be expressed as

'a quotient of two polynomials in a with coefficients belonging to K^ .

The totality of such quotients, including the cases where one or both

of the polynomials do not contain a, form a super-field J5T2 and we write

JT2 = KI (a). A super-field ofK2 is also a super-field of K^ and we write

JT3 =Kz (y)
= K^ (a, y). Similarly K* (c^ ,

a2 ,
. . .

,
an) is a super-field of JTj .

Every super-field can be built up in this manner. As an example we

notice that the field of all complex numbers is obtained from the field of

all real numbers by the adjoining of a single element i ~ v- 1 . The above

process leads us to use the word EXPANSION as an alternative for super-

field. Some writers use the term EXTENSION as a further alternative.

An expansion is said to be SIMPLE if it is obtained by the adjoining

of a single element which does not belong to K. It is easily shown

that every element of the expansion K(x^ ...,#m) can be expressed

as the quotient of two elements belonging to the polynomial ring

JET^i, ..., #ml Hence

K<K\x\^K(x\

There are two principal kinds of expansions. Consider two K-

polynomials A = $#{#* and B = S6t#*! We shall suppose that A-E
i i

but that A^Bj i.e. for some values of
,
at *b% . Since A=B,
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A -B ~ 0, where A -B is a polynomial in x which does not identically

vanish. If such a polynomial exist, we say that K(x) is an ALGEBRAIC

expansion of K
y
and x is said to be an algebraic element with respect

to K. Every algebraic element satisfies an equation with coefficients

from the field.

Let <t> (V) - be the equation of lowest degree which is satisfied by

#?, or

<f> (x)
= <? #w + Ciff*-

1 + ... + cn = (c *0, n ^ 1).

Now 4>(ai) must be irreducible in the field, for otherwise divisors of

zero would exist. Any element of K(x) can now be expressed as a poly-

nomial in x of degree less than or equal to n 1 . Indeed any element

of K(x) is of the form f(x)jg(x) where /(#) and g(x) are JT-poly-

nomials and where (/, g)
=

e, the unit element. If be a multiple of

<
(a?), then = since <#> (a?)

= 0. If I be not a multiple of <
(a?), then,

since g (x) may not be a multiple of <
(a;),

it is always possible to find a

polynomial h (x) such that h (x) </ (a?) is equal to unity plus a multiple

of <
(x). Hence h (x) g(ai)

= l since <#> (,r)
= and

We can now reduce the degree of/(.r) h (x) to n - 1 or lower by means

of the equation < (x)
-

0. We shall say that x is of DEGREE n with respect

to the field K if <

(,#) is of the wth degree in ^r.

For any w elements of K(x) we have therefore w equations of the

type
. + ^_ 1 r

ri""1 a = 0,

so that on eliminating the x, ,#
2
,

. . .
,
^;
n~ 1

,
we have a vanishing deter-

minant and there is therefore always a linear relation with coefficients

from ./T between any n elements of K(x). We have two such relations

for any n + l elements and therefore a homogeneous linear relation is

obtained by eliminating the constant terms. Every element of an algebraic

expansion of K is algebraic with respect to K. This gives us another

definition of an algebraic expansion, namely, an expansion L ofK is

said to be algebraic if every element of L is algebraic with respect to

K. In some cases however every < (x) is reducible, e.g. ifK is the field

of all complex numbers. In such a case no algebraic expansion is possible.

Suppose now, on the other hand, that there exist no two elements

A and B which are equal unless each a, is identical with the corre-

sponding bi. In such a case there will be no polynomial in x which is
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equal to zero; and K(x) is called a TRANSCENDENTAL expansion of K\

further, x is said to be a transcendental element with respect to K.

We have therefore the following criterion: K(x) is an algebraic or a

transcendental expansion of K according as e, , %*, ... are linearly

dependent or independent with coefficients from K. An infinite system

of elements is said to be linearly dependent or independent with

respect to a field K according as there exists or does not exist a finite

sub-system of these elements which is linearly dependent with respect

toTT.

THEOREM 1 *. In a transcendental expansion K(x) every element not

contained in K is a transcendental element with respect to K.

If be an element of K(z\ then =/ (#*)/# (#), where /(V) and g (V)

belong to J5f [#*], and without loss of generality we can put (/, g) e-
9

the unit element. Now if were algebraic, then there would exist an

equation of the sort

C + CT + . . . 4- Cr
r =

(cr * 0, C =t= 0),

where each c8 belongs to K. Substituting for and multiplying

throughout by #
r

,
we would have

cff
r + cifg

r- l + ...+crfr =
Q,

or - cQg
r
=f[c^g

r- 1 + ... + crfr~ l

l

thus g
r would be divisible by f, which is in contradiction to (/, g)

= e.

Hence either is transcendental or else/and g are constants, in which

case is contained in K. This proves the theorem.

THEOREM 2 1. If n elements x\ ,
#2 > ?

^ ar?' adjoined to a field KQ

so that the expansions KQ (sr-^)
K

,
K (x^) K^ ,

. . .
,
Kn-i (n) -Kn are

obtained, and if every element x
1: is transcendental with respect to K^-i

(jb=l t >
n\ tlwn is every element xk transcendental with respect to the

field which is obtained by adjoining the n-l remaining elements to K,

We have seen that every element of an expansion is a quotient of

two elements of the corresponding polynomial ring. If now rk be not

transcendental with respect to KQ (x^ ..., ^-i, ^+i> , #)> then there

will exist a relation

e + c^* + Caa + -+em a = ............... (32-1),

where each d is a quotient of two elements of

*
Steinitz, Algebraische Theorie der Korper, p. 23.

t loc. cit., p. 26.
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Hence multiplying throughout by the L.C.M. of the denominators we

can consider each ct as being an element of K^ [x^ ...
,
xk, ly %k+l ,

...
,
a?n].

We can therefore rearrange the equation in powers of xn and thus

obtain

<%+ Crf + ... + 6\< =
(32-2),

where each Cl is fromK [a\ ,
. . .

,
an-i] and therefore fromKQ (x]_ 1

. . .
,
xn-i)

so that xn is not transcendental with respect to j5ro (#], ...
,
an-i). This

is contrary to hypothesis, arid so xk must be transcendental with respect

to KQ fa ,
. . .

,
xk-i , tffc+i , , #n)- ^ # does not occur in equation (32 *2),

then we rearrange (321) in powers of the x with the greatest suffix

and we proceed in the same manner as above.

33. Isomorphism.

If there be a (I
-

1) correspondence between the elements of two

rings R and E and if the products and sums of R correspond to the

corresponding products and sums of R, then R and R are said to be

ISOMORPHIC. The correspondence is written R=-H. If
,
b and a, b be

corresponding pairs of elements from R and R respectively, then a a

b~T>, (a + 6) (a + b) and ab = ab. Isomorphic fields are defined in the

same way.

Let L and L be two expansions of the field K; further, let L and L
be isomorphic ;

if the elements of K in L correspond to the elements of

K in L, then L and L are said to be EQUIVALENT. It is obvious that two

simple transcendental expansions of K are equivalent, for /(#) /(/),
hence K(x)~ K(y) and the elements of JTare self-corresponding.

34. Finite Expansions.

Let L be an expansion of K, and suppose that there exist n elements

in L which are linearly independent with respect to K, but that there

do not exist n + 1 elements in L which are linearly independent, then

L is said to be of DEGREE n with respect to K. This is written as follows :

\L\K\ = n\ [K:K] = l.

The expansion is said to be FINITE if n is finite.

The following theorems are proved by Steinitz* :

THEOREM 1. Every finite expansion L of a field K is an algebraic

expansion.

Let [L : K] = n and let a be an element of L : then, since any n + I

*
Steinitz, Algebraische Theorie der Korper, p. 34.
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elements of L are linearly dependent, there must be a linear relation

between 0, a, a2

,
. . .

,
an or

Thus every element of L is algebraic with respect to K\ and L is an

algebraic expansion. The converse of this theorem is not true.

If there exist n elements of L which are linearly independent with

respect to K, then, since any n + 1 elements are linearly related, every

element of L can be expressed as a linear function of these n with

coefficients from K. The n linearly independent elements are said to

form a BASIS of L. Any other n elements &, ..., ftn can be written in

terms of the basis elements ^ ,
. . .

,
an thus :

If the determinant aik does not vanish in the field, then ft ,
. . .

, ftt
also

are linearly independent and form a second basis of L.

THEOREM 2. Let K<L<M. The necessary and sufficient conditions

thatM be a finite expansion ofK are that M be a finite expansion ofL
and that L be a finite expansion of K.

The condition is necessary; for, let [Af:K] = v
)
then v + 1 elements

ofM are linearly dependent with respect to K, that is, with coefficients

from K and therefore from L. M is therefore a finite expansion of L.

Further v+1 elements of L are v+1 elements of M and are linearly

dependent with respect to K, so that L is a finite expansion of K.

The condition is also sufficient ; for, let \L : K] ~ m and [M : L] =
n,

where m and n are both finite, and let alt ...
t
am be a basis of L with

respect to K, and ft ,
. . .

, ft be a basis ofM with respect to L. The mn
elements a,^ft are linearly independent with respect to K, for otherwise

would 3 Cik a,il3k ^Q where each c*k belongs to K. In this case would

% Yfcft = where yfc
= 2 c-^a ?: ,

but this is impossible unless each y be
k=l i=l

m
zero since the y's are from L. If yk be zero, then 2 c^^ =

0, which is

impossible unless every cijc is zero. It is easy to see that every element

of M can be expressed as a homogeneous linear function of the a^fc's,

so that the a^'s form a finite basis of M. It follows that Mis finite

and that .._. r̂
mn=[M:K] = v.

THEOREM 3. If K(x) is a simple algebraic expansion of K, then K(x}
is a finite expansion of K of degree d, where d is the degree of x with
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respect to K. If x is of degree d with respect to JT, then every element

a of K(x) can be expressed as follows :

a ~ a + a} x + ... + ad-i%
d~ l

(at from K).

Hence e, #, ...
,
xd

~
l form a basis of K(x) and hence \K(ai) \ K] = d.

THEOREM 4. An expansion L of K is a finite expansion if, and only

if, L can be obtained from K by the adjunction of a finite number of

algebraic elements.

This is sufficient
; for if K=KQ and L =KQ (j1 ,j2 ,

. . .
, /), then put

K^K^fa JTa = *iC;V), ..., K* = K^(j& ..., L^Kv^Kv_,(jv).

Hence jk is algebraic with respect to Kk^: and Kk is a simple algebraic

expansion of Kk^ and is therefore a finite expansion of Kk^lt by
Theorem 3. Hence from Theorem 2, L also is a finite expansion of

-ZT = K.

The condition is also necessary ; for let L be a finite expansion of

K~K
(}
and let [L : jfiTJ

= n. If ^ belongs to L but not to J5T
,
then is

KQ<KQ (j^)^L. If KQ (j^)<L, then let J2 belong to Z but not to

-^o (^'i)
=

^TI- Hence A^ < JTX (j 2) ^ L and so on. From Theorem 2 the

degrees [JTj : JT ], [JT2 : ^ ], \K$
' K^ are ascending integers less than

or equal to n and hence for a certain finite v we have the condition

Kv
= L = K,(jl ,j.2 , ...,A).

THEOREM 5. Let JS be a collection of elements a which are all algebraic

with respect to K ; then K(S} is also algebraic with respect to K.

If 8 is a finite collection, then, from Theorem 4, K(S) is a finite and

therefore an algebraic expansion of K. If $ is infinite and /3 is an

element from L = K ($), then /3 is a rational function of a finite number

of elements als ..., a
v from S with coefficients from K. Thus ft is

contained in K(al , ..., a,) and is thus algebraic with respect to K.

Therefore L K (S) is algebraic with respect to K from definition.

THEOREM 6. 'Let K^L^M and let L be algebraic with respect toK
and letM beAlgebraic with respect to L; then Mis algebraic with respect

to K also.

For, if ft is an element of M of degree n with respect to Z, then ft

satisfies an equation
a 4- a ft + ... + an ft

n =
(af from Z).

Now every a
t
- is algebraic with respect to K, therefore from Theorem 4

L' = -^r(a j
a

) is a finite expansion of A" and therefore ft is algebraic

with respect to L'. Thus L' (ft) is a finite expansion of L' and there-

fore of K. Therefore from Theorem 1, ft is algebraic with respect to K.
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35. Transcendental and Algebraic Expansions

We shall now make a new definition of a transcendental expansion.

Every expansion which is not an algebraic expansion shall be called a

transcendental expansion. We find it necessary first to reconsider the

expression "algebraic dependency." Let L>K and let 8 be a system
of elements from L, and let a be an element from L. Now 8 determines

an expansion K(8) ofK for which K^K ($) ^ L. If now a is algebraic

with respect to K(8\ then we say that a is ALGEBRAICALLY DEPENDENT

upon IS. Therefore a satisfies an equation with coefficients which are

rational functions of the elements of S with coefficients from K.

Further, a system T of elements a from L is said to be algebraically

dependent upon a system 8 from L if every element a of T is alge-

braically dependent on S. In this case Tis entirely contained in JT($).

If a is algebraically dependent on 8 and

A + Aia+ ...+ A n-ia
n~ l + an =

expresses this dependence, then the elements At belong to 7T($) and

are therefore rational functions of a certain finite number of elements

s1} ...,#. That is, these coefficients A,
t are already contained in

K(slt ...
, .<?)

= K(S'), where 8' is a finite sub-system of 8, Hence we

have

THEOREM 1. If a is algebraically dependent on S, then there exists a

finite sub-system 8' of8 such that a is algebraically dependent on 8'.

It is seen from this theorem that when we are considering the notion

of one system T being dependent upon another system S, we may
always consider T and S to be finite collections of elements.

THEOREM 2. If $s is algebraically dependent on S3 ,
and &2 is alge-

braically dependent on 8l} then 83 is algebraically dependent upon Si.

Let K(8l}
=Kl and K(SJ = K*. From 34, Theorem 5, we know

that KI ($2) is algebraically dependent on KI and K ($3) is algebraically

dependent on K%. Now K2
<KL ($2), hence the elements ofK2 ($8) are

algebraic with respect to K^ ($2) and therefore with respect to K^ by

34, Theorem 6. Thus the elements of K2 (Ss) are algebraic with

respect to K(S^) and the elements of $8 are algebraic with respect to

JT(/$i). It follows that $3 is algebraically dependent on Slt

If the system $ is algebraically dependent on $2 ,
and $2 is alge-

braically dependent on $1} then Si and $2 are said to be EQUIVALENT

*
Steinitz, Algebraisclie Ttieorie der Korper, pp. 114-119.
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systems. [N.B. The reader must be careful to distinguish between

equivalent systems and equivalent expansions.] If Si and SQ are equi-

valent systems, we write Si ~ S.2 . From Theorem 2, it is seen that if

AS
Y

X
~ $j and if Sz

~ Ss ,
then SL

~ /S.

A system S is said to be ALGEBRAICALLY REDUCIBLE with respect to

K either if S contains a single element which is algebraic with respect

to K, or if S is equivalent to an actual sub-system of itself. If S is not

algebraically reducible it is said to be IRREDUCIBLE. A reducible system
S contains at least one element that is algebraically dependent upon
the others. This follows from Theorem 1.

THEOREM 3. Every sub-system S' of an irreducible system S is

irreducible.

THEOREM 4. Every reducible system S contains a finite sub-system S'

which is reducible.

A transcendental expansion is said to be PURE if it is obtained by
the adjoining of an irreducible system. Let S = $i t -..,# be a finite

irreducible system, then L-K(xi y ...,#M) is the field of all rational

functions of n unknowns. If S be infinite we can show that L is equi-

valent to K(&i, r2 , ...) where there are an infinity of #'s within the

bracket. Let /Si
= x^ . . .

,
xn and $2

=
#1, , yn be two finite irreducible

systems with the same number of elements.

THEOREMS. K'($) is equivalent to K (#a).
That is, K ($) -

and every element ofN is self-corresponding. We can obtain

the following manner :

arid similarly

It has been shown in 33 that K(x^) K (y^) and so by an ^-fold

application, K (S-?) K (S^). This theorem may also be proved for the

case where Si and S2 are infinite systems.

Suppose now that the system S is irreducible with respect to K and

that a is an additional element.

THEOREM 6. If S is irreducible but S+a is reducible, then a is

algebraically dependent upon S.

From Theorem 4, S+ a contains a finite reducible sub-system jTand

T must contain a. Let T= T + a. Now T' is a finite sub-system of
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S and is therefore irreducible. Suppose that jT'=#i, ...,#* and let

K! =
^T(^i), ,

Kn =Kn -i (sc^)
= K(T') t

where every field IT, is a pure
transcendental expansion of Kv -.^. Now, if Kv (a) were transcendental

with respect to Kv , then, from 32, Theorem 2, every element of T
would be transcendental with respect to the n remaining elements of

T j i.e. T would be irreducible : which is a contradiction. Therefore

Kn (a) is algebraic with respect to Kn so that a is algebraic with respect

to Kn and therefore with respect to T' and finally with respect to S.

THEOREM 7. Every system S of elements from L> K, of which not

every element a is algebraic with respect to K, is equivalent to an irre-

ducible sub-system S' ^ 8.

We may suppose that S contains no elements which are algebraic

with respect to K
t
for otherwise we can neglect these. Thus every a

of L is transcendental with respect to K. If S is a finite system the

theorem is obvious. We shall not require this theorem for the case

where S is an infinite system, so for the proof of this case we shall

refer the reader to Steinitz*.

If L~K(S} is a transcendental expansion of K, then from the

theorem just proved 8~ S' where S' is irreducible. Thus every element

of j$ is algebraic with respect to K(8'\ and K(S} is an algebraic

expansion of K(8'}. Hence follows

THEOREM 8. Every transcendental expansion is obtained by an

algebraic expansion following on a pure transcendental expansion.

Let L = K(8} where 8 is equivalent to the irreducible 8'. If the

system 8' has n elements, then n is said to be the TRANSCENDENTAL

DEGREE of L with respect to K. If 8' contains no elements, i.e. if L is

algebraic with respect to K, then we say that the transcendental degree

of L with respect to K is zero. If the transcendental degree of L is n}

then there exists in L at least one irreducible system of n elements

but no irreducible system of more than n elements.

36. Rational Basis Theorem of E. Noether.

THEOREM f. Jf {/} is a collection of rational functions f(xlt . . .
,
#n)

of n indeterminate^ #1, ...,# with coefficientsfrom afield K, thenfrom

{f} it is possible to choose a finite number of functions /i, ... 34/m such

that everyf is a rational function of thef^^ *..,fm with coefficients from
the field K.

* LOG. cit.

t Gott. Nach. 1926, Heft 1, p. 28.
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Such a system of functions flt ...,/m is called a RATIONAL BASIS.

The above theorem is trivial if {/} is a finite collection.

I. Now jfT(d?], , &n) is a pure transcendental expansion of JTand

is of transcendental degree n. The total of all the rational functions of

the/'s from {f} with coefficients from IT also gives a transcendental

expansion of K, namely L = K({f}}. Obviously

K<L<*K(a\, ...,).

The transcendental degree h of L is then ^ 1 and ^ n. Now let

2/ij > !/h he an irreducible system S of L. If it can be shown that L
is a finite and therefore an algebraic expansion of H=K(yi, ...,#&),

.then the theorem is proved, for if L is a finite expansion of ff, then

will L H (Li, ...
, LI) from Theorem 4, 34

;
i.e. L is obtained by the

adjunction of a finite number of elements L1) ..,, Lt from I/ to H.

Hence L^K(yly . . .
, yh , 1/j ,

. . .
,
l/

?). This last shows that every element

from Z/ and therefore every / from {/} is a rational function of

T/], ..,#/ l/i, >"\Li with coefficients from A, and since the ^, ...,^
are also elements of 1>, i.e. are also rational functions of the /'s from

{y },
therefore those /'s which are used for the T/'S and the 1/s form a

rational basis for {/}.

II. It remains therefore to prove that if K<L^ K(tri, ...
,
#n) and

if L be of transcendental degree h, less than or equal to n with respect

to Jf with an irreducible system S y^ ..., y/ then I/ is a finite alge-

braic expansion of H^-K(yl , ..., ^t). If A = then 17" is of the same

transcendental degree as K(a^ ,
. . .

,
r

tt). Since^ is an irreducible system of

L and therefore of K (X ,
. . .

,
xn) also, hence every element ofK(x} ,

. . .
, #ft),

and thus ^ itself, is now algebraic with respect to H, since every system

yl9 ...,#,# is reducible with respect to A*". It follows that every element

of L and of K(xly . . .
,
a?w ) also is algebraically dependent on H. Hence

L and K(x^ ..., x^) are algebraic expansions of IL Now since

then K(XD ..., ?n) is obtained from H by the adjunction of a finite

number of algebraic elements ^, ...
,
xn and is therefore by Theorem 4,

34, a finite algebraic expansion of H. But since every element ofH is

also an element of L
3 therefore H ^ L ^K (x ,

. . .
,
#w).

Hence I/ also is a finite algebraic expansion of H. The Rational Basis

Theorem has now been proved for the case where h - n.

Suppose next that h < n. S is an irreducible system in L and in

K(XI, ..., #). The suffixes of the #'s can so be chosen that
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is an irreducible system of K(x^ ..., #tt),
for otherwise would the

T ,. d(yi, , y*, a?im , .-,#<) . , , . . , ,

Jacobian --^---^
-- vanish for all th+1 , ..., ?n ,

so that
o (^ ,

. .
, #,J

the #'s would not form an irreducible system of K(%i, . . .
,
#w). The

system JT= ^/i+ i ,
. . .

,
xn is therefore irreducible with respect to y ,

. . .
, yh

and hence with respect to II. We may suppose then that X is an irre-

ducible system with respect to L also
;
for otherwise #VH, for example,

would be algebraically dependent upon L, i.e. on certain elements from

L, so that #
fc+i would be algebraic with respect to yly ...

, yh , since every

element of L is algebraic with respect to /S
y

. Hence Jf is algebraically

independent or irreducible with respect to $, II and L
y
and hence with

respect to every medial field M between H and L, where

It follows that

-n, ,#) and K=
are pure transcendental expansions of 37, Z and JT respectively and $
is therefore irreducible with respect to j/f : for if this were not the case

then we should have an algebraic equation with coefficients from K
relating the y^ ..., ?//,;

and yl9 >->'yh> &h+i t > n would not then be

an irreducible system of A"(r1? ..., #n). We can now chooseK in place

of JT as the coefficient field. Since K<-L<K(.i\, ..., #n), therefore

K<L<K(xi> . . .
,
^w)- But the transcendental degree of jk with respect

to K is ^ and that of K(x^ ...
,
<r

7//) with respect to K is also k. There-

fore L and K(x^ . . .
, #/t) or .// and K (,r1} . . .

, #) are of the same

transcendental degree h with respect to K. But the theorem has been

proved for the case where Ji = n, so that L is a finite algebraic expansion

of K with a rational basis yl ,
. . .

, yh , ^ ,
. . .

,
zk , say. Thus

L = S(yl9 ...
9 yh , ^ ...,^) ............... (361).

We now consider the field

M=K(yl9 ...,yfc ,i, ...,^fc) ............... (36*2).

We may suppose here that ylt ...
, y/ ^1} ...

, ^ are from Z. yL9 ...
, ^

certainly are, also i> is a finiteAlgebraic expansion of K and therefore

h + k elements are adjoined to K which do not belong to K. They can

therefore be chosen belonging to L. Obviously

H<M^L ........................ (36-3).

Formulae (36*1) _and (36*2) give M=L, so that L is contained inM for

L < Z, thus L < M. It follows from (36 '3) that

M ........................ (36-4).
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Now every element of M, which is not Contained in M already, is

transcendental with respect to M, since M is a pure transcendental

expansion of M. Every element of L which does riot belong to M is

transcendental with respect to M. Also every element of L is algebraic

with respect to yly ..., 2fa and therefore with respect to M, so that

ML = K(jyi) -, 2//u 1, , s&), and I/ is a finite algebraic expansion

of IL The theorem of E. Noether is therefore proved for all cases.

We have also the corollary*. If K<L<M<K(vl , ...,#) and M
is an algebraic expansion of L, then must M be a finite expansion of L,

for M has a finite rational basis by the last theorem. '

37. The Fields KJ>f
.

The operation of finding thejoth root of an element of aK{p) is unique,

for if there were two/>th roots of a, let them be a and b. Hence a = ap = bp

and therefore = ap - bp - (a
- by, whence a = b. We can write the pih

root of uniquely as of. If a belongs to K it may or may not happen
i

that OP also belongs to K. We shall consider a case where this does

not happen.

Let L = K(n) be a simple transcendental expansion of a field K with

characteristic p. L also must be of characteristic p. Let a be an ele-

ment of L but not of K and of grade k [the grade of a is maximum

(degree of/; degree of g) where a =--f(ji)lg (/*.)].
It can be shown that

a? is of grade Jip, which is certainly greater than unity. The equation

a1 ' =
fji
would then reduce to an equation in /x,

with coefficients from K
so that /A would be algebraic with respect to K. This is impossible,

i i

hence the equation a ^ is impossible, that is, L does not contain p p
.

A field K is said to be PERFECT f if every polynomial F(a) with

coefficients in the field and with repeated linear factors is reducible in

the field. A field K is said to be IMPERFECT if there exist in K irredu-

cible polynomials with repeated zeros in a super-field of K.

Obviously every field of characteristic zero is perfect. For fields of

characteristic p we have the following theorem :

1

There are perfect and imperfectK ( 's. A K(p) is perfect if a** belongs

to Kprovided that a belongs to K. In every other case K(v) is imperfect.

Suppose then that K is a K (p] and that y is from K, then from

Theorems, 31, ^__ y

* Gdtt. Nach., loc. cit. p. 31. t Steinitz, loc. cit. p. 50.

R 5
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where 8 is either from K or from an algebraic expansion of K. We now

try to find irreducible factors < of xpj"- y. Suppose then that ^ = (x~ 8)
pr

= xpr - <^
r

(0 ^ r ^ /) be an irreducible factor. We can only have r -

if B = y
p~f

belongs to K. Otherwise r > 0, in which case we have an

irreducible polynomial withj/ repeated roots, and henceK(p) is imperfect.
i

Suppose now that both y and y p
belong to the K(p) and that/0^) is

a polynomial which has coefficients from the K^ and which has repeated

zeros. Then is (/,/') of at least the first degree in x. If/' (x) 4=0, then

the degree of (/,/') is less than the degree of /(#), and /(a?) is there-

fore reducible. If/' (x)
=

0, then

/ (#)
= # + $!#p + ... + a vxvp

(vp
-

n).
i i

But by supposition an
p

, #i
p

,
are all elements of jftT(p)

,
so that21 i

/Or) = (>
p + ajP a? + . . . + aj* xv

)
p

and is therefore reducible : hence K(p] in this case is a perfect field.

This leads us to consider the fields which we shall designate byKpf.

We suppose that K has the characteristic p, then

ap bp = (a &)* ;
ap bp = (aV)

p
;
a* : bp = (a : fe^.

We see therefore that the ptli powers of the elements of K constitute

a sub-field of K which we shall denote by K*. (N.B. K is not the

same as Kp
.)
K and jST* are seen to be isomorphic, or K~KP

. It is

obvious also that Kp ^ K.

If we now add to A" every element a? as a new element whenever &

is an element of K but not of J5TP
,
we obtain a field X such thatK= Lp

.

i

For this reason we write L =Kp
. We can repeat either of the above

processes as often as we wish and obtain the fields Kp
*. Such fields as

K*~f are expansions of K and we shall call them RADICAL fields of K.

In the same way we can obtain radical rings. IfL be a radical field of K,
then there must be a minimum exponent m such that the p

m
-\h power

of every element in L is an element of K. In this case m is called the

EXPONENT of L. Similarly we define the exponent / of an element a of

L. It is obvious that/^ m.

38. Expansions of the First and Second Sorts.

We can divide algebraic expansions into two sorts*. Let g(x) be a

polynomial which is irreducible in the field K. We say that g (x) is of

the FIRST SORT if it has only simple zeros when considered in an expan-
*

Steinitz, Zoc. cit. p. 62.
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sion of K. Now let the element y be algebraic with respect to K] then

y satisfies an equation of the type g (x)
= which is irreducible in K.

If g (x) is of the first sort, then we say that y is an ALGEBRAIC ELEMENT

OF THE FIRST SORT with respect to K. An algebraic expansion L of K
is said to be of the first sort, if every element of L is an algebraic

element of the first sort with respect to K.

WQ see that every algebraic element with respect to a perfect field is of

the first sort. Suppose then that K is a K^ and is imperfect. Suppose
also that g (x) is a polynomial which is irreducible in K. We have seen

that there is associated with an element a from the radical fields K**,
1

K^
',

... an exponent/, such that ap} lies in JTbut ap/
~ x

does not. We
extend this notion to the case where a does not actually belong to a

radical field, as follows :

Either g (x)
= G (x

vf
), f > 0, i.e. g (x) is a polynomial in xpf for some

maximum/; or/ = and g (x) is not identically zero and has thus no

common factor with g (x\ so that g (x)
= has only simple zeros and is

therefore of the first sort. If /> 0, g (as) is the p
f-th power of a poly-

nomial in K I>j and is not of the first sort. Let this polynomial be h (x)

In this case/ is called the exponent of h (x\ for the p
f-th power of h (x)

belongs to K while the pf
~

l~th power does not.

An algebraic expansion ofK is said to be of the SECOND SORT if it is

not of the first sort.

THEOREM. Tf L is an algebraic expansion of an imperfect field K,
then there exists a medial field Z ,

i.e. K^ L ^ L, such that LQ is of the

first sort with respect to K and such that L is a radical field of L .

further L is the aggregate of all the elements of L which are of the first

sort with respect to K.

This theorem holds for infinite algebraic expansions, but it is only

proved here for the finite case. Let us call L the system of all

elements in L which are of the first sort with respect to K; then

obviously K (LJ)
=K (LJ), where L9

'

is obtained by removing from LQ

every element which is also contained in K. Further, by Abel's Theorem*
on primitive elements, a single element y can be found such that

K (Ld) =K (y), where y is algebraic and of the first sort with respect to

K. Let a be any element of ^(y) and let

[JT(a) :*] =
,, \K(y) : K(a)] =

,,

*
Steinitz, loc. cit. p. 52.
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Hence m^m^ = nlnz
= [K(y)

'

K~\ and sinceK (a?) is a sub-field of K (a),

therefore

Wj^Wj, m2 ^n2 .

Now let ^W 2 + ha:*-
1 + ... + bmz

be the irreducible function which vanishes when x - y, then will

vanish for a = y
p and the coefficients b^, ..., b

r

^ belong to the field

./f ); therefore

n2
= \K(y) : K(o?)} = [JT (/) : A>)] S 2 .

Hence w2 -%2 and Wj -
MJ, that is, a and ap are of the same degree

with respect to K. Since this is so, [J5T(a); ^T(o
p
)]
= 0. But, by a

theorem of Steinitz*, [K(a)-y K(ap
)] -p if the exponent of a is greater

than zero. It follows that the exponent is zero and so a is of the first

sort. Hence K(y) is an expansion of the first sort. It has been proved
that K(Lo) contains elements of the first sort only, hence

and LQ is a medial field between K and L or

Now if S be an element of L of exponent / with respect to K, then

g (si)
= G (x

vf
)
= G (y), say, arid G (y) is certainly irreduciWe in K.

Thus G (y) has only simple roots, so that y - apf is of the first sort and

therefore an element of L
,
i.e. every element of L is a radical element

of L and therefore L is a radical field of LQ . It is easy to show that

I/Q is uniquely determined by L.

If L is a finite algebraic expansion of an imperfect field K, then is

i, ..., 8m). Suppose./^- is the exponent of 8
t and that the maxi-

.

mum /J is/, then/ is the exponent of the expansion ofL and L ^ LQ&.

39. The Theorem on Divisor Chains f.

Let E be a commutative ring with elements a
t b, c, . . .

,
with a unit

element and with no divisors of zero. We shall consider in particular

sub-rings a of Ji which have the following properties : (1) if a and b

belong to a, so do a + b and a b\ (2) if a belongs to a and r belongs to

R, then ra belongs to a. Thus a is the total of all elements such as

r'a + r" b + r"'c + ... and is said to be an IDEAL in R. We write

a = ($, b, c, ...).

An ideal a is said to divide the ideal fo if every element b of fc is con-

tained in a. This is written 6 ^ a. This idea of division is explained
*
Algebrauche Theorie der Korper, p. 63.

f Van der Waerden, Moderne Algebra, vol. n, p. 25.
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more fully by van der Waerden*. With this definition of division the

H.C.F., written (a, t), C, ...)> and L.C.M., written [a, ft, C, ...]> f the ideals

a, ft, t, .
,
are obtained. An ideal a = (al ,

a2 ,
. . .

, M) is said to be FINITE

if n is finite. a1} $2 ,
...

,
a are said to form a BASIS of the ideal a.

We shall only consider rings in which every ideal is finite, and we

shall now prove the following theorem. Every ideal of a ring has afinite
basis if, and only if, there exists no chain of ideals a t

< a2
<

,
where &i+1

is an actual divisor of a,, which chain does not come to an end after a

finite number of steps.

This is known as the theorem of divisor chains. The proof is as follows.

We shall first suppose that there exists no infinite chain of ideals

aa
< a2

< a3
< . . .

,

where a +1 is an actual divisor of a7> Now if a be an ideal without a

finite basis, then let x be an element of a. Since a =t
(a-^), then a must

contain an element as such that &a'=(<&i,#2) is an actual divisor of

a/ = (i). Since a4~(X, 2), there must exist an as such that

a8

' = (i } 2ia)

is an actual divisor of a2', and so on. We would thus obtain an infinite

chain of ideals in contradiction to hypothesis : we were therefore in error

in supposing that an ideal existed without a finite basis.

Suppose now that every ideal has a finite basis and let

ax
< a2 < as

< - -

be an infinite chain of ideals such that each is an actual divisor of the

preceding. Let ft = (3i, a2 , ) be the H.C.F. of all the ideals &lt a2)

Now ft is itself an ideal
;
for if a and b are two elements of "D, then suppose

that a belongs to a^ and that b belongs to a/. If^be the greater of i

and jt
then both a and b must lie in a# and hence a + b, a-b and ra

belong to &N ,
where r is an element from R. It follows that a + b,a-b

and ra lie in ft, hence ft is an ideal and by hypothesis will have a finite

basis di, ...,dft
. Each d, must belong to some ideal a^t

. Let the

greatest v
t be M; then every element of the basis belongs to &M and

hence ft belongs to a^ ;
that is ft ^ Hjf . But, since ft is the H.C.F. of all

the ideals a z-, ft > &M . It follows that ft = a^ and in the same way it may
be shown that ft = &M+t where t is a positive integer. Hence

&M ~ fljkT+i
= #M+2 = j

and the divisor chain is not an infinite one, since a^+t is not an actual

divisor of a^ . This concludes the proof of the theorem.

* Loc. cit. p. 29.

5-3
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40. R-Modules.

Let 8 be a super-ring of R, where both S and R are commutative rings

with a unit element and with no divisors of zero. Consider systems M
of & which contain R and which have the following properties :

1. If a and /3 "belong to M, so do a + /? and a -
/3.

2. If a belongs toMand r to R, then ra belongs to M\ thus M is

the aggregate of elements r'a + r" ft + ... of $, where a, /?, ... are from $
and r', r", ... are from R. A system M of the above sort is called an

R-MODULE. a, /J, ... form the BASIS of If and if the basis has a finite

number of elements, then we say that M is a finite jR-module.

If every element of a module Mis also contained in a module N, then

we say thatM is divisible by N. If a module .ftf has a basis /*!, ...
, p,m

and a module j?V has a basis vl5 ...
,
vn ,

then the module with the basis

/*i
vi /*<ty /**

v ig called the product of M and JV^ and is written

JIfZV. Note that ifM is divisible by N, then AT^ N.

Let Jf be a finite J?-module whose basis is & , 2 ,
. . .

, &. from & Every
jR-module A which contains R and is contained by M must also be

finite. 27/0 theorem of divisor chains holdsfor every R-module A provided

that it holdsfor ideals in R*.

Without lack of generality we may suppose that &, ...
, 4 are linearly

independent. We shall say that an element //.
ofM is "of the length i"

if n = T! fj
+ 7*2 2 + + ^^ f r some values of the rly . . .

, r, ,
where rt

-

=1=

and i is a minimum, and if no such equation holds for h < i. There are

therefore in M elements of the lengths 1, 2, ...,#, e.g. &,...,&. Now
the system of all the elements in A of length ^ i also form an 72-module,

namely A i} and every element in A t is of the form

!ifl + M&+ +& ..................(401).

The system of elements aw ,
all from R

y
form an ideal a* in R. We

obtain in this manner a sequence of ideals

IfA contains no element of length/, then, since A$ =Aj+1
= ... = 0, must

a,
=

a,+ i
= ...=o.

Now let us suppose that B is an actual divisor of A, then

so that every element

* Van der Waerden, loc. cit. p. 87.
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of A K is contained in B, since AK ^ A <Bj it is also contained in EK
since it is at most of length X. Thus A x ^ Bx and similarly

aA ^i)A (40-2).

Since B is an actual divisor of A, there must exist in B one or more

elements which are not contained in A. Let ft
= b^ + ... + bt t be such

an element whose length i is a minimum. If ft t were not an actual

divisor of a*, then every bj of 6* would be contained in a* and

a = 0i,^i+ +0-i,t&-i+&i<

would be an element of ^ and therefore of A also. Now if a is in

J5f ,
so is y = /3

- a =
(&,_

- aM) fi + ... + (&;_!
-

i_M) &_i, but y cannot be

contained in A for otherwise /3 would be contained in A which is con-

trary to supposition. Hence y is an element of B but not of A and is of

length ^i 1, which is also contrary to supposition ; hence ^ is an actual

divisor of a^ We have shown therefore that if A <B, then at
<

fc* for

some minimum value of i.

Suppose nowA (l) < A (^ < A (^< . . .
,
i.e. that we have a chain of modules,

and suppose that the theorem of divisor chains holds for the ring Rt

then associated with A (r^ are the ideals a/* < a2
(r) < ... < &k(r) .

From equation (40 '2) we have for every X= 1. 2, ...
, k that

aAw^a*<
2Ua/u....

But by hypothesis this last must be a finite chain. Let the last member

be af
x)
and let the maximum rA be r

,
so that a

A
ro) =- aA

r +1) = ... for all

valuesofX. But since A^<A^ro+1
\ a A exists for which a^ < a(

A
ro+1) and

we have a contradiction; therefore the chain A (1) <A < A {3) < ... is a

finite one. This theorem can be stated as follows : If JS is a finite

super-ring ofR and if every ideal in It is finite, then every R-module in

S has a finite basis.

Suppose that R is an actual sub-ring of F, and let a be an element of

F but not of R. We can therefore form a super-ring ofR containing all

the elements in F of the type r + ra
a + ... + rm a

w
, where m is arbitrary.

Here we have the 72-modules

^o = (a) = W=22, ^i = (a',a
l

),
A 2

=
(a',

a1

,
a2

) ...(40'3), ,

This chain is a divisor chain since A t ^ Ai+ i

If for a certain m, Am = -4 TO-i, then there must be an equation of the

following type
ftm+^^ + ... +n =

(4(,4)j

with integral coefficients r
, ..., rTO_!, and therefore every polynomial of

degree m+jt? in a is contained in Am~i. In this case the super-ring
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has a finite module basis a, a1

, ..., a"1- 1
. When a satisfies such an

equation as (40 '4) we say that it is entirely algebraic with respect to R,

or shortly that it is R-ENTIRE*.

From definition an ^-entire element a defines a finite super-ring of

R which we shall denote by Ha . We mean by this that Ea is finite

with respect to R : we do not mean that Ra is itself a finite ring.

THEOREM 1. Every element of a finite super-ring S ofR is entire.

Let S be a finite super-ring of R so that R < 8 and let a be an

arbitrary element of 8. Let o^, ...
,

<rn form a finite module basis of S.

Now since S is a ring, a<r
t belongs to S, so that

a<rt = r,a 01 + riz
<r2 + ... + r.m <rn .

Hence, using S in the Kronecker sense, \rlk -<*&k \

=0 or an + ... -0;

that is to say a is entire.

THEOREM 2. Jf 8 is a super-ring of R and if every element of 8 is

R-entire and if a from T, a super-ring of 8, be 8-entire, then a also is

R-entire.

Since a is ^entire, then am + o-m^am
~l + ... + a- = 0, where every or, is

from $ and is therefore jft-entire. Hence a is also entire with respect to

the super-ring S ofR obtained by adjoining the elements <TO ,
...

,
crm_ T to

R. Since every o-4 is ^-entire, S is a finite super-ring of R ; also a is $-

entire, so that 8a and â are finite super-rings of 8 and 8 respectively.

8a is therefore a finite super-ring of jtf, so that a is 72-entire by the

last theorem. If every ^-entire element of the quotient field P of R
is an element of R, then we say that R is ENTIRELY CLOSED.

THEOREM 3. If any element of R can be resolved into prime factors

uniquely, then R is entirely closed.

For, let a be an ^-entire element of P, then since a is ^-entire

am + TI a
1"- 1 + . . . + rm = (n from R).

Since a belongs to P, then a = -
,
t and s being elements of ^. Thus

*

and 5 divides
m and therefore divides . Let # = s^, then a = =^t ,

5

an element of R itself. That is to say, R is entirely closed.

* Van der Waerden, Moderne Algebra, Teil 2, pp. 88-89, and Landau, Zahlen-

theorie, Bd. 3, p. 32.
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41. A Theorem of Artin and of van der Waerden.

Suppose that R is a commutative ring with a unit element and

with no divisors of zero. We shall further suppose (1) that every ideal

in this ring is finite and that therefore the theorem of divisor chains

applies; (2) that R is entirely closed in its quotient field P\ (3) that

if R has a characteristic p > 0, then is the radical-ring Rp finite with

respect to R. The third of these conditions is satisfied if R is a field

which is either finite or perfect, or still more generally if R is a finite

algebraic or a transcendental expansion of a finite or perfect field. IfR p

i_

be finite with respect to R, so also is R 1

** finite with respect to R. We
shall now prove van der Waerden's Theorem *. LetPlea quotient field of

H, IS a finite expansion of P, 8 the ring of all R-entire element* of 2
;

then if conditions (1), (2) and (3) obtain for R, they also obtain for S.

We shall first prove that S is entirely closed. This means that if cr

from 2 is entire with respect to S, then or is an element of$ itself. Now
if o- is entirely algebraic with respect to S, then vm + s\ <r

m~l + ... + sm -

and the s/s are 72-entire, and therefore o- is 72-entire so that cr belongs to

S. Hence S is entirely closed.

We must now show that S is a finite ^-module, for the theorem of

divisor chains would then hold for S. Also S would be finite with
i

respect to R and so, following the isomorphism, S v would be finite with
L L 1

respect to R p
,
and Rv is finite with respect to R, so that S p would be

i

finite with respect to R and hence with respect to S, since R <JS <S P
;

and hence condition (3) would be satisfied. We have therefore still to

show that $ is a finite 72-module.

Now S is a finite and therefore an algebraic expansion of P. The
most general finite expansion ofP is obtained by an expansion T of the

first sort followed by finding a radical field of T. If e be the exponent
of S, i.e. e maximum of all the exponents of the elements of 2, then

r <$ S ^ r *'*. Now let C be the ring of all the .^-entire elements in r,
i

_i

then C pe is the ring of all ^-entire elements in r P* since an element of
\_

r pe is entire if, and only if, its p
e
th power is entire, i.e. if its p

eth power
j_

is in C. Hence C

*
Gottinger Nachrichten, Heft 1, p. 26 (1926).
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Now F is a finite expansion of the first sort of the field P, thus

r =P (a).. Every element y of T and therefore every element of can

be written as

y = p 4- Pitt 4- p2 a
2

4- ... 4- pn-iQ-
n 1

,

where each p, is from P. Since r is an expansion of the first sort, there-

fore the equation which defined a,

has n different roots. Let these be aj} a2 , ..., aw , so that we have n

equations ^_
y,, =~po + p 1 a* + p2<V+ + P-iC (

v== l>2, ...,),

and solving these for p^ we have

ll n " ^M~l -v/ r,^ +1 ft
W ~M . -

Now Z) is the square of the product of the differences of the roots

and is therefore rational. Hence D is an entire element of P, i.e. D
belongs to Jf. Also TM

= /)pM ,
that is, it belongs to P; also it is entire

since it is an integral function of the a's and is therefore also an element

of 7t\ Hence

7 =
y,

(
To + Tja + . . . + Tn_! a7*" 1

).

Every element y belonging to C can be represented in this manner, so

that C is a module contained in the finite moduleM-
-P\~i\i~i\>

~

/r )

Since A/ is a finite /^-module, KO is 6Y

,
for R ^ C ^ M. Now is finite

L J

with respect to Jt, and hence (7^
fl

is finite with respect to R*e

\
also by

i i

isomorphism, Jt pe is finite with respect to J?, so that (7^
e
must be finite

i

with respect to JR; but C ^ /S ^ (7^. Hence ^ is finite with respect to

JR and is an 7?-module. This completes the proof of van der Waerden's

Theorem.

42. The Piniteness Criterion of E. Noether*.

Let P be a given field and let P [.^ ,
. . .

,
#w] be the polynomial ring

of rational integral polynomials in the ^ ,
. . .

,
tfn with coefificients

belonging to P. Further, let J be a division ring whose elements are

*
Q'ottinger Nackrichten (1926), p, 31.
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P polynomials such that P<J<P [x^ ...
,
srn]. J is finite with respect

to P whenever there is contained in J a finite number of elements

/i, 72 , , I*, so that every element of / can be expressed as a rational

integral function, with coefficients from P, of this basis Il9 ..., Ih9 in

which case

We shall suppose also that if P has the characteristic p, then P p is

finite with respect to P-

E. NOETHER'S THEOREM. A ring J of polynomials in x
l ,

. . .
,
xn with

coefficients from P, which has no divisors of zero, is finite with respect to

P if, and only //*,
tlwre exists within J a sub-ring R which is finite with

respect to P, suck that every element of J is If-entire.

This condition is necessary; for if /is finite with respect to P, then we
can put R=^J. It is also shown to be sufficient as follows. Suppose that

JT is the quotient field of I? cund that L is the quotient field of J. This

is possible since the rings have no divisors of zero. Hence

P<K<L<P(x\
where P (x) is the field of all rational functions of x with coefficients

from P. We now make use of tho corollary given at the end of 36.

It can be demonstrated readily that L is an algebraic expansion of K^
and hence L is a finite expansion of K, where, if P be a P^ with p > 0,

we understand the most general expansion of the first or second sort.

Call $ the ring of /^-entire elements of L. Since therefore every element

of ./ is /f-entire, J is a sub-ring of $, i.e. J < /S
y < L.

Suppose now that J? be entirely closed. Since R is finite with respect

to P, then 72 = /*[*/! (,r), ..., gT (w)~], where g t (x} is a polynomial in

#!, ...
,
xn with coefficients from P and belongs to R and is therefore an

element of J. Since R is a finite ring the theorem of divisor chains

applies and we can also use van der Waerden'.s Theorem. R is a finite

ring and K is its quotient field. L is a finite expansion of K\ 8 is

the ring of 72-entire elements of L. The theorem of divisor chains for

72-inodules therefore holds for $. J is an //-module and has therefore

a finite module basis fh(x\ ..., hs (x\ i.e. every f(x) of J can be

written *&f(x) - AI h+ (x) + ... 4- A e hs (x), where the A's belong to R.

The A'a are therefore polynomials in the </'s so that the gr's and h'&

together form a finite module basis of K.

If R be not entirely closed, then we must first construct a sub-ring

T ofR which is finite with respect to P and which is entirely closed and
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with respect to which R is entire. We can proceed with the above proof,

using T in place of R, We refer the reader to E. Noether's paper for

this case.

43. Application of E. Noether's Theorem to Modular Co-

variants*.

Consider the group r of all homogeneous linear substitutions with

coefficients from a Galois field, and let A
} ,
A 2 ,

A h be the different

substitutions whore A l is the identity substitution. Now let the trans-

formation Ait transform the set of variables ,r
1 , ...,a?m to the set

sr^,
...

, ^ , Consider also the resolvent of Galois,

where a < h and a + a, + ... 4- am = h.

in,

Let 0*= 2$
,
/rM. We can choose the w/s so that #;t ^0, unless 7r -,/,

1=1
l

so that any symmetrical function of 19 ..., h must be an absolute co-

variant. <(s, )
is such a function and hence the coefficients Uaai ... am (%)

are absolute covariants.

Let J be the ring of all absolute covariants and R the ring obtained

from all the elements Uao.i ... am (?*) so that R, ^ J. If we can show that

every element / of ./ is 72-entire, then from the theorem of the previous
i

paragraph, J will have a finite basis provided as before that Pp is

finite with respect to P.

Now if we put z = ?A x^ 4- ... + um .r^/, then

(^.r^+.-.+^^^+s^.,.. a w( 1 ^i
1)+-+^i1>r - r = o

for all w t's. Suppose then that
iij
=

8J (using S in the Kronecker sense),

then ,rN S-rf ^fl0 .. Oa . .. (,r) =0,

where a + a, = h and a < //. This last equation shows that 3\ is entirely

algebraic with respect to a portion of R and therefore with respect to

ft itself. It follows that every polynomial in the #'s and therefore every
element of J is entire with respect to /?.

*
GMinger Nachrichten (1926), p. 33.
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:i

If the field P is the GF[p*], then P* is finite with respect to P and

all the conditions are satisfied and the theorem is proved for the case

of universal covariants. The extension is made to covariauts involving

coefficients of the forms by regarding the coefficients as additional

variables.

The proof also holds for relative covariants as well as for absolute,

since the factor appearing also belongs to P. The proofs also hold if

the #'s and a's are unknowns of the GF[p
n
\ so that we have proved

the finiteness of covariants for every case in the theory of modular co-

variants.



APPENDIX I

Dickson in his History of the Theory of Numbers, vol. 3, chap. 19,

has given a summary of all the papers printed before 1922 on the

subject of Modular Invariants. The present Appendix is intended to

bring Dickson's work up to date.

Moore* gave a twofold generalisation of Ferrnat's Theorem and

showed that the determinant

is congruent to the product of all distinct non-zero linear forms with

coefficients in the GF[pn
~\.

This determinant is none other than the

universal covariant Lm which we discussed in 12.

Hazlettt discussed the relationship between the theory of modular

invariants and the theory of project!ve invariants. She developed the

use of symbolical notation and showed the important difference between

isobaric and pseudo-isobaric covariants. It is shown that all formal

binary invariants admit of symbolical representation. Methods of

finding the symbolical representation of an invariant are given. There

is an error in this paper which Miss Hazlett J later corrected.

Feldstein gave the full system of universal covariants of the w-ary

group of transformations whose coefficients are the positive integral

residues mod t, where t p
1*

\
viz.

pk-i pk-i j japK-l-^^rftpk-i-iLm ' ^,* P Lm
l~\

m ' S

where s=l
?

. . .
,
w = 1

; ,;'
=

1, ...,&-! ;
and where the a and &., s range

over 0, 1, .
, p -

1, but may not all be zero. The above results were

given in an earlier paper for the case where k 2 by Turner ||.

* Bulletin of the American Mathematical Society, vol. 2, p. 189 (1895-96).

t Transactions of the American Mathematical Society, vol. 24, pp. 286-311 (1922).

J Ibid. vol. 30, p. 855 (1930).

Ibid. vol. 25, pp. 223-238 (1923).

||
Ibid. vol. 24, pp. 129-134 (1922).
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Glenn* gave a full system of the formal covariants of two binary

quadratics in the GF['2]. A new method of obtaining covariants is

described which depends upon the
"
appropriate selection

"
of a primary

quantic. If the selection be not
"
appropriate

"
then no covariants may

result, so that this method is of no great value until we have some

more definite method of selecting the primary quantic.

Gouwensf extended the results of a paper by Mrs Ballantine t from

2 to m variables. It is proved that every invariant of the group
of transformations with determinant congruent to unity modulo

^^PiP^-P^r is a sum f invariants, each of which is expressible

as a product of kt
= -

A
-
by an invariant of the group Hi of transforma-

Pi
tions with determinant congruent to unity mod pS. Conversely every

such product is an invariant.

Williams treated full systems of formal modular protomorphs of

binary forms. Elliott 1 1 gave the algebraic protomorphs of the trans-

formation x = x + ty, y = y, viz.

Si = 0o ?
$2
= 0o 0-2

-
0i

2
j

$ = 2
3
- 30 0i 2 + 20i

3
5

....

It is shown that the seminvariants $(=1, 2, ...,) and a *
-aj"

1

^
form a full system of protomorphs of the binary l-ic modp, where p is

such a prime that (
.J

-Hf modp (j= 1, 2, ...,/ 1). The theorem is

also given for the case of several binary /-ics.

HazlettU extended the results of a paper by Williams**. Let

f(i9 > &m) be any homogeneous polynomial in n variables of order /,

and let F be any homogeneous polynomial in the values of f as

fe, ..., #m) range over the real points of the field. Let F% range over

all the conjugates ofF1} under transformations of the group r^
w)

,
which

are incongruent in the field. If x=-^(p
n
-~l)ll be an integer, where A-

is some fixed positive integer, then any symmetric function of the xth

powers of the FI is a formal invariant of/ under the group T^ with

* Bulletin of the American Mathematical Society, vol. 30, pp. 131-139 (1924).

f Transactions of the American Mathematical Society, vol. 26, pp. 435-440 (1924).

J American Journal of Mathematics, vol. 45, pp. 286-293 (1923).

Transactions of the American Mathematical Society, vol. 28, pp. 183-197 (1926).

|| Algebra of Quantics, pp. 212-215.

IF Journal de Mathematique, Ser. 9, vol. 9, pp. 327-332 (1930).
** Ibid. vol. 4, pp. 169-192 (1925).
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respect to the GfF[p
n
].

This result is similar to Dickson's* method

of obtaining formal covariants.

E. Noethert proved the finiteness of modular covariants by using

the Theory of Fields.

APPENDIX II

In this Appendix we give a list of papers on the subject of Modular

Invariants. The contents of these are summarised either in Appendix I

or by Dickson in his History of the Theory of Numbers. We shall use

the following abbreviations :

T.A.M.S. = Transactions of the American Mathematical Society.

JB.A.M.8. = Bulletin of the American Mathematical Society.

A .J.M. American Journal of Mathematics.

P.L.M.S. = Proceedings of the London Mathematical Society.

Q.J.M. Quarterly Journal of Mathematics.

A.M. Annals of Mathematics.

J.M. = Journal de Mathematique.

P.N.A.8. = Proceedings of the National Academy of Sciences.

* Transactions of the American Mathematical Society, vol. 15, pp. 497-503 (1914).

t GWtinger Nachrichten (1926), pp. 28-35.



APPENDIX II 81



82 APPENDIX HI

APPENDIX III

We tabulate here the papers in which the modular covariants of an

m-ary /-ic are considered for particular values of m and /. The numbers

of the papers refer to those of Appendix 1^ 1=1 + 2 denotes that the

simultaneous covariants of a linear and a quadratic form are treated.
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