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PREFACE

N the winter of 1929 Professor Weitzenbick pointed out to me that

there was no complete account of the theory of modular invariants
embodying the work of Dickson, Glenn and Hazlett. The sole source of
information on this subject was a number of papers, most of which ap-
peared in American periodicals, and a tract by Dickson which contained
the substance of his Madison Colloqguium Lectures. This tract, while
giving a good account of the subject as it was understood in 1914, was
published before the modular Syml.ﬁolical theory was instituted. Although
the symbolical theory is not yet complete, it certainly affords a much
better introduction to the subject than did the earlier non-symbolical
methods. The theory is much hampered by the lack of two theorems
which seem to be true but for which, as yet, no proof has been given.
These are (i) that all congruent covariants can be represented
symbolically; (ii) that Miss Sanderson’s theorem can be applied to
covariants as well as to invariants.

In preparing the present account, the chief difficulty has been the
lack of any systematic method of approach, since most of the papers on
the subject have been concerned with particular cases only. My aim
has been to give a clear and concise account of the theory rather than
to give a complete survey of the subject, and I have therefore included
in this tract only those methods which seem to be of general application.
For the sake of completeness it has been necessary to include the in-
tricate proof of Dickson’s theorem in paragraph 13. It is suggested that
this might be omitted at a first reading. In order to avoid confusion
the reader should notice that the words fundamental and modular vary
somewhat in meaning in the different papers on the subject.

I have, of course, benefited considerably from the papers of Dickson,
Glenn, Hazlett, Sanderson and others, and many theorems are taken
directly from their papers. The substance of Part II is largely taken
from a course of lectures entitled ‘“ Algebraische theorie der lichamen”
which Professor Weitzenbsck delivered in Amsterdam University during
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the session 1929-30. I have also made use of his lecture notes which
he has kindly placed at my disposal. Professor Weitzenbick has been
of great assistance to me throughout my work and has given me much
helpful advice. My grateful thanks are due to Professor Turnbull of
St Andrews University and to Professor Weitzenbick for reading the
proof-sheets and for making many suggestions and corrections.

Many thanks are also due to the Syndics of the Cambridge University

Press for their helpful criticism of the manuscript.
D.E.R.

ST ANDREWS
April 1932
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PART I

§ 1. A new Notation.

It has been found convenient in this book to introduce the signs ||
and |1 which shall presently be explained. We say that two numbers
@ and b are cougruent modulo p if their difference is divisible by p.
This is commonly written in text-books on the theory of numbers as

a=b (modp) ..occoovvvin oin v (1°1).

The sign =, however, often means “is identically equal to,” and confusion
will arise if we wish to use it with these two different meanings. When
it is used as in (1°1) it gives no indication as to whether the congruence
holds for all values of ¢ and & or only when « and b belong to a par-
ticular field, e.g. #? is congruent to # modulo p if, and only if, 2 is an
integer (a positive integer if p is even). We shall therefore use m to
mean “is identically congruent to” and Il to mean “is residually
congruent to by Fermat’s Theorem.” Hence the sign || can only be used
in the cases where Fermat’s Theorem and its extensions hold. Thus

= means “is equal to,” eg. w=4, 2+ 3,
= means ‘‘is identically equal to,” eg 4=8, z %4,
Il weans “is residually congruent to,” e.g. @® | @ mod p,
if @ is a positive integer,
Il means “is identically congruent to,” e.g. 63 mod 3,
a?H#a mod p.

§ 2. Galois Fields and Fermat’s Theorem.

A. Speiser* gives the following definition of a Galois Field.—
A system of a finite number of elements forms a Galois Field if the
following conditions are satisfied :

(i) The elements form a commutative group with respect to the
addition law.

(ii) The elements with the exception of zero form a commutative
group with respect to the multiplication law.

(i) For any four elements the distributive law is valid.

From these three conditions all the properties of a Galois Field can
be obtained, but it is easy to see that the Galois imaginaries, hereafter

* Theorie der Gruppen (second edition), p. 54.
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defined, satisfy these three conditions and are therefore the elements
of a Galois Field.
Let us consider a polynomial

S = 2"+ . +ay,

where each of the coefficients ay, ..., a, is one of the following integers
0,1,2 ..., p—1, where p is a given prime, i.e. the coefficients arc the
positive integral residues modulo p. We may of course suppose that
@, Omod p, and we shall further suppose that / is irreducible
modulo p, i.e. that there exist no polynomials ¢, and ¢, of degree less
than » such that ¢, ¢, 11/ mod p.

Now it is always possible to find a number b, such that b,a, 111
provided that a, 0, therefore b, f 1a™+cuya" '+ ...+ ¢y, Where
cillt by a,, each ¢; again being a residue modulo p of a positive integer.
I+ Cpr @+ ... + ¢, 18 called the normalised form of #; and obviously
b 10 1f £ 110. Since we are dealing with the case where /1110, we
can without lack of generality take the coefficient of 2" congruent to 1.

If /0, any polynomial in @ with integer coeflicients is congruent
0 a polynomial of degree gz —1. Thus for any ¢ («) we get for moduli
J and p a residue 6 (x). These residues arc the GALOIS IMAGINARIES
of order « and it is easily seen that they satisfy the conditions (i), (ii)
and (iii). Each ¢ () can be written congruent to some 6 (2),

0(x)=dy12" 7 + ... +d,.

Since each d, can be chosen in p different ways, there are p* different
residues and so the ORDER of the Galois Field is p". Hereafter we shall
write this briefly as G#'[ p™] while we shall denote the field of all complex
numbers by CF.

Fermat’s well-known theorem states that if yis a positive integer, then
y? iy mod p. The generalisation of this theorem for the case where y is
a Galois imaginary is obtained as follows. Let w be a (falois imaginary
and not zero, then ..., =2 u™, o', u!, «* 4’ ... are not all distinet: hence
if «* Il u* then »* || 1. Let ¢ be the least value of s—¢# for which this
is true, then 1, u, % ..., "' are distinct. So are w,, u,w, v, %’ ..., u,u"},
where , is not one of 1, %, ..., ™. Proceeding in this manner we see
that since there are p”—1 non-zero Galois imaginaries, ¢ must be a
divisor of ¢=p"—1. Since w° |l 1, therefore »¢ || 1, and if y be any
Galois imaginary then y?" || y. In Part I we shall write

pi-1=q, Pt -1)=d.
The p solutions of #?" -z || 0 are the p" Galois imaginaries, therefore
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27" —z || H (.r u;), where u, =0, u,, ..., u, are the elements of GF'[p"].

Further geuerahsamons of Fermat’s Theorem were given by E. H. Moore.

For a first reading we would advise the reader to take » =1 through-
out, thus gq=p—1 and d=p*—p. The elements of GF[p] are the
residues modulo p of the positive integers.

§ 3. Transformations in the Galois Fields.

In the work which follows we shall have to consider groups of homo-
geneous linear transformations whose determinants do not vanish in
the field. The inverse transformations therefore exist. We shall call G
the group where the coeflicients belong to the CF, and we shall call T
the group where the coetficients of the transformations belong to G #[ p"].
G, and I; are the sub-groups of G and T respectively which consist only
of transformations whose determinant is equal to unity in the field.
When necessary we shall denote the number of variables in the trans-
formation by an upper suffix m, e.g. G™, Gy, I'™, T\™,

We obtain the order of the group I' as follows*: Consider the trans-
formations of the following type where the coeflicients are elements of
the GF [p"], _ _

Ly =8 &+ .+ 8By Ty

X =By + ... + 5mm'im
There are p"™— 1 possibilities for the right side of the first equation,
for we cannot set #,=0. If § and 7 be two transformations which
replace a, by the same linear function of the Z’s, then S7-! will leave
2, unchanged and therefore will have a matrix of the following type :

1 0 0 ... 0
ag hz‘.’ hza R hmn
a by by bym
A hmﬂ hms e hmm

Such substitutions form a sub-group of I': and if we give the ¥’s fixed
values there are p"™-1 possibilities for the &’s. Also if the @’s are
fixed we have a sub-group of the sub-group the order of which is
O (m —1), where O (m) means the order of the group I'"; thus
0 (m)=p"™ (p"~1) O (m~1),

and using this as a reduction formula, we have

0 (m)=(p™ = 1) (4™ =") (§"™ ~1"") .. ("™ =p"™),

* Speiser, Theorie der Gruppen (second edltlon), p. 219.
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§ 4. Types of Concomitants.
Let d(a, )=y, 2+, 1227 Tt ot G Zo”
be an m-ary {ic which is homogeneous in the #’s. We shall call ¢ the
GROUND FORM. So far as is conveniently possible we shall reserve the
letters a, b, ¢, ... for the coefficients of the ground forms. Consider
now the group of all homogeneous linear transformations
x,-:ngaﬁz-j (i=1,2, ..., m) ..(41),

subject to the condition that | &, | does not vanish in the field #. Let the
matrix of the transformation (4'1) be @. We shall use small old English
text throughout for the coefficients of the transformations. Now let
¢ (a, z) become ¢ (@, Z) under a transformation of the group; then the
@'s will be functions of the a’s and the &’s. Now if any function C of
the a’s and #’s exist such that
C (a, z)is equal to M (a) C(a, z) in the field,

where M is some function of the a’s only, then € is said to be a
CONCOMITANT. If Cis a function of both the a’s and the 2’s, it is called
a COVARIANT; if it is a function of the a’s only, it is called an INVARIANT ;
if it 1s a function of the &’s only, it is called a UNIVERSAL COVARIANT or
an INVARIANT OF THE GROUP. These definitions can readily be extended
to the cases where we have more than one ground form. We shall
commonly use the term covariant to include invariants.

The &’s and the &’s may belong either to CF or GF [p"], so that we
have the following types:

Type 1. If both the ¢’s and the a’s belong to CF' and reductions of
the form p 111 0 are forbidden, the concomitants are then called ALGEBRAIC
and this is the classic type treated thoroughly elsewhere.

Type II. If both the @’s and the @’s belong to CF but pin 0 is
allowed, then we speak about CONGRUENT concomitants. Miss Hazlett*
has treated this case as a special case of Type I1I.

Type III. If the a’s belong to the C# and the &’s belong to the
GF [p"], then the reductions p il 0 and a®" || & are permitted. In this
case we talk of FORMAL concomitants. These have been treated by
Dickson T, Sanderson} and Hazlett*.

Type IV. If the a’s belong to the GF'[p"] and the &’s to CF, then

* Trans. Amer. Math. Soc. vol. 24, pp. 286-311 (1922).

1 Madison Colloguium Lectures and Trans. dmer. Math. Soc. vol. 15, pp. 497-503
(1914).

1 Trans. Amer. Math. Soc. vol. 14, pp. 489-500 (1913).
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M0 and a®" || @ are allowed. This type has not been treated so far,
but we shall give to them the name of NON-FORMAL concomitants.

Type V. If both the a’s and the &'s belong to the GF'[p"], then
three types of reductions are allowed, p 110, a?* || @, a*" | 4. We shall
call concomitants of this sort RESIDUAL concomitants, but in other papers
on the subject they are termed modular concomitants. We prefer to use
this term to cover all types where p 11 0 1s allowed. Type V has been
treated extensively by Dickson *.

We shall call concomitants of types II, III, IV and V mMoDULAR to
distinguish them from Type I, the algebraic or projective case. By
considering the reductions employed it is obvious that every algebraic
covariant is also a congruent covariant ; that every congruent covariant
is also a formal covariant ; that every formal covariant is also a residual
covariant. It is clear, however, that two formal covariants may be
identical when considered as residual covariants or that a formal
covariant may be zero when regarded as a residual covariant, e.g.
@ a,—a, 05" 1s known to be a formal invariant of /' = @y 2, + @, 2, if p=2.
When this is considered as a residual covariant we can use Fermat’s
Theorem on the a’s and our invariant is a;a, — @@, = 0.

We can extend our definitions to include what are known as cogredient
points. Following Dickson we use the term point in the sense of homo-
geneous coordinates ; thus the point (#:v.9;) is identical with the point
(b ky.ky,) and the point (0, 0, 0) is excluded. Now if the transforma-
tions (4'1) of the variables ay, ..., @, and the transformations of the
coordinates ,, ..., 4. have the same matrix @, then (y,, ..., ¥m) is called
a COGREDIENT POINT. We shall now prove the theorem which will be
required later, that all points whose coordinates belong to GF [p*] are
conjugate under Ty, i.e. any such point can be transformed into any other
by transformations of T';.

Now (1, 0, 0, ..., 0) is conjugate with (1, as, ..., @,) under

Y=,

Yi=adh+¥  (I*1),
and the elements of (1, a,, ..., @,) can be rearranged with perhaps
changes of sign under

Yi= U
Y ==

Y= T (k=*7, k=+j).
This proves the theorem, e.g. (2,1,0) is conjugate with (1,~2,0) which
in turn is conjugate with (1, 0, 0).
* Amer. Journ. of Maths. vol. 81, pp. 337-354 (1909) and other papers.
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§ 5. Systems and Finiteness.

We shall call a system of covariants K, K, ..., K,—, a FULL SYSTEM
if every other covariant 7 can be expressed in terms of these K,s. If
the o covariants K, ..., K, are linearly homogeneously independent
and if every covariant J can be expressed as a linear homogeneous
function of these K7's, then we shall call the set &K, ..., K,_, a FUNDA-
MENTAL SYSTEM. The reader should be careful to note that in some
papers no distinction is made between a full system and a fundamental
system. It is obvious from the above definitions that every fundamental
system is also a full system but that not every full system is a funda-
mental system. As a special case of a full system we have a SMALLEST
FULL SYSTEM. The s covariants IV, ..., NV, form a smallest full system
if (i) they form a full system; (i) no full system exists with less than
s covariants. These elements NV, ..., IV, form a BASIS of the smallest
full system and K, ..., K,_; form a basis of the full system or the
fundamental system as the case may be.

The covariants of a ground form with respect to a group of transforma-
tions are said to possess the FINITENESS PROPERTY if there exists a finite
full system. We shall not have to prove the finiteness property for any
given case, as we shall prove that it holds in every case with which we deal.

That algebraic covariants possess the finiteness property is well known.
In another section of this book we shall give E. Noether’s proof that
modular covariants of all types possess the finiteness property. L. E.
Dickson* also gave a proof of the finiteness of residual covariants. We
shall consider these finiteness theorems as proved, although we leave the
proof till later. Most of the work done in the theory of modular covariants
has been concerned with the finding of a basis of a full system in
some particular case. As we shall show, there exist several methods of
obtaining covariants, but except in the case of residual invariants it
is very difficult to say whether a given system is a full one or not.

§ 6. Symbolical Notation.

One of the greatest difficulties for many years in the theory of
modular invariants was that no suitable symbolic method of treatment
had been found. The method employed in the algebraic invariant
theory obviously would not do, since it employed to a large extent
multinomial coefficients which in certain cases might be congruent to
zero modulo p. Let us take as an example the binary cubic. In the
algebraic case we represent it symbolically as a.’, where a;= a2 + 052,.

* Trans, Amer. Math. Soc. vol. 14, pp. 229-310 (19183).



MODULAR INVARIANTS 7

Now 0’ = 020 + 8ot a2,y + 80,072, )7 + 4w,
Ma’2® + a2, mod 3.
Thus for the modular case with p = 3, a,® does not represent the general
cubic. The method employed in the modular case is merely a generali-
sation of this one, and it has the advantage that it can be used for the
algebraic case also. In general then, we write the ground form as a
product of linear homogeneous symbolical factors*. We shall write for
example the general binary cubic as
S =az? + balw, + cry st + dast = 0, 8,7,
= (@ + ay@,) (Bi + Buts) (101 + yait)
=0 B2 + (@ Brye + a1 Boys + @ Biyn) 2,2
+ (0 Boye + 02Biye + 0o Bovi) 21257 + a3 Ba s 2.

We shall note that any non-symbolic coefficient of a ground form
when represented symbolically must be of the first degree in the a’s,
first degree in the B’s and so on. It is also symmetrical in the symbols
a, B, .... Thus we have the important conditions which a function of
the non-symbolic coefficients satisfy :

(i) It must be symmetrical in the symbols «, 8, ...

(i1) Each term of the function must be of the same degree in each of
the symbols a, 3, ....

We have other conditions that this function be also a modular con-
comitant. These will be given in § 9.

We shall use the small Greek letters a, B, ..., & for symbols.

It should be noticed also that with this symbolism no equivalent
symbols are required. To illustrate the difference in the two symbolisms
we shall consider the discriminant of the binary quadratic.

Let F=ax?+ba,x, + ezl
(aB) =0’ B ~ 2a1 048, By + a5’ B,%
If we represent f as a2=0,% then a=a2=0"% b=2a,0,=28,0,,
2

c=at=pi and (aB)=2a0-" =} (dac 1)

If we represent f as a,f8;, then a=a,8;, b=0,8;+ 0,8, c=0,0; and
(af)? =" - dac.

The invariant obtained is the same in both cases, but in the former

case it is multiplied by a constant =— 4. Aninvariant need not, however,
have the same form in both symbolisms.

* Sanderson, Trans. Amer. Math. Soc. vol. 14, p. 496 (1913).
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§ 7. Generators of Linear Transformations.

Capelli* proved that any linear transformations of m variables can
be obtained by the successive application of a finite number of linear
transformations of the following types :

(). =7 — 7 — P -7 -7
Sh)' Ty =1y covy Tp-1=Tp_ 1y Zp = 0y, Tp+1=Lny1s ooy Tm = Lpyy
Sue: B=F1, ..., By1 =Tpr, Bu=Tn+ Ty Bntr=Tha1, vy T =T

It is easy to see that these in turn can always be generated from
8%, 8, , supplemented by transformations of the type
&y =5/_‘j, $j=51, kaEk <k¢1ak*j)‘

We have therefore the theorem : Any komogeneous linear transforma-
tion whose determinant is not zero can be generated from transformations
of the following three types:

Typel. &=7+2, (11 .
.’1/'1':2'—1- (l‘*l) 1.
1.
1
! 1
Type II. =%z, [k .
2=z (i+1) C1.
1
L 1
Type III. =17, eg. [. 1 . . .7 forthecasewhere
n=7 (k+jk+1)|1. . . .| J=2
wk='—ik .. 1.
1
i 1

By a combination of matrices of Type III we can interchange any pair
of variables thus:

* Lezioni, p. 202.
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by interchanging the variables of Type II we get Capelli’s type 8¢, and
by interchanging the variables of Type I we get Capelli’s type S, x.
We shall give a short proof of the theorem in the matrix notation for

m=3: . o - - -
[« 1 =& . Jx[-1.]=]1..
1 1 1 .. k
i 1 |1 . 1_J 1
and . =11 .]x1..]=l1%.
k. .1 N 1
| 1 I [PRE ¥) I IPE 1) I P
Similarly by use of Type III we can obtain the type
1.%
1.
Now la.|x[1.0]x|e..|j=[cabi
1 I 1. . 1.
1 1 .1
and [& @& &Gx[. 1 . ]x[b b b]x[. . 1[x[c 605
1 1.. 1 1 1.
1 .1 1 1 .1
= hrz h]x = ;E;
th h?? DZJ
hﬂl D32 hﬁS
where by =0y, Vg =0Csy Vs =Cs,
bm:hacl, 1122=ﬁ3$2+h2, hea‘—“hsca"“hl:

V= 8pWoy + 8y, Voo = A+ Ao Vyp + Ayly, Vg = Ap Vg + AL

Now provided that the determinant | #B| # 0, we can solve these nine
equations for the &,, &, ..., &;. This proves the theorem.

The proof in the m-ary case is similar.

It follows from this theorem that any function which remains in-
variant under every transformation of the above three types is invariant
under every transformation of the group. Also if the group is T' then
the & in Type II must be an element of the GF [p*]. Thus a formal
covariant is invariant under Type II if, and only if, & is an element of
the GF'[p"], unless it be also a congruent covariant.
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§ 8. Weight and Isobarism.

Following the method of Elliott* we define the term weight. Suppose
that our ground form is an m-ary l-ic in the m variables i, ..., Zu,
and let the coefficients of

ol ! -1

By, Xyy ey By g, X Ty, e have the suffix 0,
-1, -1 -2

Ty Ly Ty Ly -o-y &y Zo&ps -+ » 1!
-2 2 -3 2

Xy Wy ey @y Ty e ’ 2,

-1 -1 . 1-1
Ty, Xyl e, . -1,

mfn, have the suffix /,

that is, the suffix of any coefficient is equal to the power of @, which
it multiplies in the form. In addition we say that the suffix of z,, is 0,
while the suffix of #; is 1 for ¢#m. The WEIGHT of any term is defined
as being the sum of the suffixes of its various factors. Thus the weight
of each term in the ground form is /. If a polynomial in the coefficients
@ and the variables # be such that each term is of the same weight w,
then the polynomial is said to be 1SOBARIC. This is a definition of
“isobaric ” according to Elliott, but we note that to state quite clearly
what we mean we must use the phase ‘“isobaric with respect to 2,.”
We shall therefore make the following definition: If a polynomial 1s
isobaric with respect to all variables, it is said to be COMPLETELY
ISOBARIC.

For example suppose that /= a,2, + @2, + as2; be the ground form :
then g = @,2; + @32, + @25 is isobaric with respect to #, but is not iso-
baric with respect to @, or #; and is therefore not completely isobaric.
By considering transformations of Type I1I we see that if a concomitant
is isobaric with respect to any variable, it is completely isobaric. Thus
g could not be a covariant of f.

§ 9. Congruent Concomitants.

By definition it is clear that congruent concomitants only differ from
the algebraic concomitants in that it is permitted in the former case to
make the modular reduction p 0. Let us take as our ground form

¢ =0,8,, ..., 8, where a, =0, 2y + ... + 4y &p,

* Algebra of Quantics (first edition), p. 38.
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and where there are » symbols a, B, ..., 8. Now if C be a congruent
covariant of ¢ where € is a function of variables z and the non-sym-
bolical coefficients @, then we can write
Cla, z) WM (&) 0 (a, z),
where M is a function of the coefficients of the transformation only.
As in the algebraic case* we can shew that C is homogeneous in the
variables z, or else is the sum of covariants which are homogeneous
in the variables #. We can assume then without loss of generality that
C is homogeneous in the variables .
Now considering transformations whose matrices are of the type

k. .D
.k
&
where % is a non-zero scalar, we have easily that € must be homogeneous

in the non-symbolical coefficients @. By considering transformations of

the type 2 =7,

xp = ih
Tp= Ty k=1, k=+j),
we see that ' must be symmetrical with respect to the suffixes both of
the #’s and of the symbols q, 8, ..., 8.
Let us represent then our covariant (@, @) symbolically. A single
term of this representation can be written as follows :

. St S sm T hm k1 lem 11 Im
;=22 ... aa a, By B & ... 8

eyt o .,
where S=8+8+...+8,
and H=b+ho+...vbpy=k+...tbp=...=bL ... Iy
are constants for every term ¢; of C.
Now if x, =%z,
z,=7; (i+1),
then zZ=k"'m and @, =ka,,
Zo=x, (i*1), @G=9o  (i%1),
50 that ¢:=%%c;, where T=h, +k + ...+, — 5.

Now &7 must be the same for every term ¢, so that since ¥ is an
arbitrary non-zero scalar we have that 7" is a constant and therefore
* Elliott, loc. cit. p. 40.
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T+ 8 is a constant, but 7'+ S is the weight with respect to #;, so that
C is isobaric with respect to #; and therefore is completely isobaric.
This gives us the theorem: A congruent concomitant is completely
dsobaric. Conversely if a formal concomitant is isobaric, then 7'+ 8 is
a constant and so is 7, and so the concomitant is invariant for all
values of ¥ and is therefore a congruent concomitant. Miss Hazlett*
proved the converse for the binary case. We shall also extend to the
m-ary case her proof of the following theoremt: If a congruent con-
comitant has factors, these also are isobaric. For, let C have factors C,
and O, which are not both isobaric, then the term which has the
greatest/least weight in the product C; x C; is the product of the terms
which have the greatest/least weight in C; and C, respectively. The
theorem follows at once.
By considering transformations whose matrices are

k. ] ad [y 7,
-k .1
& | U
we find as in the algebraic case that the following relations hold for
congruent concomitants:
rH-8S=mkK,
rH+m-1)S=mW; .cccooovvniininnn (9°1),

where the index 1s K| the order S, the degree A and the weight is W, with
respect to any variable #, and where 7 is the degree of the ground form.

§10. Relation between Congruent and Algebraic Covariants.

Let f=az?® + 2bz, 2, + cx;®. It is well known that b* — ac is an algebraic
invariant of this form. It is therefore also a congruent invariant.
Also (b*— ac)* must be both an algebraic and a congruent invariant, but
if p =38, then

(B =ac)n b*—a’c
and so 6° — a®c® must be a congruent invariant. It is not, however, an
algebraic invariant. Thus it would seem that for one algebraic invari-
ant (% — ac)® we have four congruent invariants, viz.

(b*—ac), b°—38btac -a’c®, b°+30%a*c®—~a’c’, b°- a’c’;
these are all, however, congruent to each other, and therefore represent

* Trans. Amer. Math, Soc. vol. 24, p. 296 (1922).
1 Ibid. p. 297.
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the same congruent invariant. It will be more convenient therefore if
we neglect any term in a congruent covariant having the factor p. If
we proceed in this way we infer that one, and only one, congruent
covariant is obtained from any algebraic covariant, and we can therefore
represent such a covariant symbolically since every algebraic covariant
can be represented symbolically. We now put the important question.
Can every congruent covariant be represented symbolically? In other
words, does there correspond to every congruent covariant an algebraic
covariant? An answer to this question for the general case has not yet
been given, but clearly it forms the keystone of the symbolical theory of
modular covariants. A symbolical theory is obviously not of much use
if covariants exist which cannot be represented symbolically. It is
extremely likely that every congruent covariant can be represented
symbolically, but in the absence of proof we shall have to divide
congruent covariants into two sorts, symbolical congruent covariants
and non-symbolical congruent covariants, i.e. those which cannot be
represented symbolically. If it be proved later that this second kind
does not exist, then our discussion of the first kind will be applicable
to all congruent covariants.

Let C'be a congruent covariant: then will C 11 MC,where Mis a function

a
of the coefficients. Let C be a sum of terms P;, thus C=3 P; and
i=1

— a __ b
similarly C= = P;= 3 M, P;, say, so that, for all values of the &’s,

i=1 i=1

b a
3 ﬂ’[rpi m= MP,‘,
=1 =1

then must M;mo0 fi>a
and M;wM if7<a.

We prove that M is congruent to a power of |@| by the same argument
as that used in the algebraic case. The proof of the binary algebraic
case given by Grace and Young* can be extended to the m-ary case.
Thus each M; (i =1, ..., b) is a power of the determinant of the trans-
formation or else zero and is therefore isobaric since Fermat’s Theorem
cannot be applied here. Miss Hazlettt proved this for the binary
case.

Miss Hazlett and R. Weitzenbick have proved in special cases that
every congruent covariant can be represented symbolically.

* Algebra of Invariants, p, 22.
+ Trans. Amer. Math. Soc. vol. 24, p. 297 (1922).
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R. Weitzenbock’s proof is as follows:
Let C be a congruent covariant, then as before
C(a, 7) uM(a)C(a,x) and M (a)u|A[",
or C(a, 7)=|A|° C(a, ) + pD (a, =, a).
Now operate s times with the Cayley operator ©. Then Q*|@[*=¢, a
constant so that Q°C (@, ) is independent of & and is therefore* an
algebraic covariant K, say. Now Q' (a, z, a) must also be independent
of @ and we shall call this expression £. Then
K=¢,C(a,2)+pE or KueO(a, )

>

Now if ¢, is not divisible by p, then C(a, ) ul % , which is an algebraic

covariant and is therefore representable symbolically; so that C'(a, x)
is also representable symbolically. Unfortunately ¢, is very often
divisible by p, in which case the proof does not hold. In factt

R e P I
and is therefore divisible by p unless m +s— 1 <p, i.e. unless
s<p—m+1.

Miss Hazlett } proved as in the theory of algebraic seminvariants that
if I be a congruent seminvariant of a system § of binary forms, which is
of degree g and weight w, then I is congruent, modulo p, to a product of a

B.

power of @, and a symmetric polynomial P in symbolic ratios 23, =,
1 1

which is homogeneous in these ratios. Moreover P is expressible as a
polynomial in the differences of these ratios. From this she proved§
that every congruent invariant of a system of binary forms is congruent
to an algebraic invariant. The symbolical representation of such in-
variants follows immediately.

Since symbolical congruent covariants are congruent to algebraic
covariants, they can be represented by the corresponding symbolical
expressions. The finiteness of symbolical congruent covariants follows
at once from the algebraic case. It is seen that such symbolical congru-
ent covariants are very similar to the algebraic case, and we obtain full
systems of the one from the full systems of the other.

* Weitzenbock, Invariantentheorie, p. 147,
+ Weitzenbbek, loc. cit. p. 16.

1 Trans. Amer. Math. Soc. vol. 24, p. 298 (1922).
§ Trans. Amer. Math. Soc. vol. 30, p. 855 (1928).
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§ 11. Formal Covariants.

Not every formal covariant is isobaric; and so while every congruent
covariant is also a formal covariant the converse is not true. Asin §9,
&7 must take the same value for every term ¢; of C (a, ), but according
to definition & is no longer an arbitrary non-zero scalar but is now an
element of GF[p*] and we may therefore reduce &7 by Fermat's
Theorem. Thus it is no longer necessary for 7" to be equal to a constant
but 7' must be congruent to a constant modulo ¢ for every term ¢,. It
follows that the weights with respect to all variables must be congruent
modulo ¢ to each other. Thus the weights of the different terms of a
formal covariant must be congruent modulo ¢. In this case we say that
a formal covariant which is not isobaric is PSEUDO-ISOBARIC. 'The uni-
versal covariants which we shall now discuss are all pseudo-isobaric, and
since they are independent of the coefficients of the form they are also
residual covariants, without any reduction being performed.

The equations (9°1) must hold also for formal concomitants if we
replace the equal sign by a congruence modulo ¢:

thus rH—-SumK  (mod g),
rH+(m—-1)SnumW, (mod g).
§12. Universal Covariants*.

Let z,, ..., 2, be a set of variables which undergo the following trans-
formation :

m
.Tl=21ay.i':/ (l‘=1, ...,m),
j=

where each a; belongs to G.F'[p"] and where

lag| #0;
” m
then ay =2 @z +ph(...)
j=1
pn m J_ n ne —pnt
or @] 1| 3 ay@} and thus 2} I Elaq-,a:j .
=1 j=

We have therefore the important result that the set #2™, ..., 22" is
modularly cogredient with the set @i, ..., #n, where ¢ is any positive
integer. Now let us write

— en

[elr seey em] = .Z‘iﬂm ves .'Efnl
pemn pemn

&y e X

* Dickson, Trans. Amer. Math. Soc. vol. 12, p. 75 (1911).
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As in the case of algebraic invariants this must be an invariant since
all the rows are cogredient. [ey, ..., 6] is an example of a universal
covariant; it is frequently referred to also as an invariant of the group
since it is independent of any ground form. There is no expression in
the theory of algebraic invariants corresponding to this, if there are less
than m sets of cogredient variables.
In particular we shall write o
£
[m,m=1, ...,s+1,s=1,...,1,0]=LY, LW=L,, % =@, s-
m
We have seen in §4 that all points with coordinates belonging to
GF'[p] are conjugate under I;. Thus if a covariant vanishes when the
#'s take the values of oue of these points, it must vanish for all; therefore
if a covariant contains one factor of
m
E,=1 IO (&3+ Chr @psa + - + Cp Tmy)s
k=1ci/pn
where ¢;/p" denotes that each ¢; in the product takes all the p™ possible
values, it will contain every factor and therefore £, itself. Now L,, has the
factor z,, and therefore the factor £, and comparing coefficients we have

that Lo 1 B,
Similarly every L!¥ has the factor «,, and is therefore either zero or has
L, as a factor: hence @), , is rational and is an absolute covariant since
the index of every LY is 1. Also Ly, divides L, since &, is
obviously a factor of &,,.

Consider the following determinant which vanishes identically.

pnm prm pnm pnm
'xl e Ty zy wm—-l }
prim—1) prim—1) pr(m—1) pr(m—1)
ry . X z R S
................................................... m+ 1 rows
pﬂ pﬂ p’l p’l
Ty T Zy Pm-1
o T 51 Zm—1 J
pn(m—-x) pn(m——l)
Y -0 1 m~1 w
pr(s+1) pr(s+)
........................ 1 -1
RUUUITR " e PNy — 2 Tows
.................... 1 m-1
pll pn
0 0 zy Ty |

‘—— m cols. — ‘“—— m—1cols. —~
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By Laplace’s development we get
(—1)™*[m, ..., 1][m—1, ..., s+1,5-1, ..., 1, 0]
+ (=" [my ey s+1,8—1 O][m—-l, ..,1]
+(=1" [m-1, ...,O][m,. s+ 15— ., 1]=0,
If therefore 1 <s <m - 1 we have
0=L"" Quos,s Lin-s = Qu,s Lo L2 + Ly Qs ey Lin—r )™,

L,,L pr-1 n
and so Qs = Qs < 7> QN gy e (12°1).
m—l

For the case where s =1 we find that the exponents in the last row of
the determinants are equal to p*. If s=m —1 the expounents of the
(m + 2)th row are p"™=2 and we have

LY Quory Ly = Qs Lt LF 4 L P =

my~1 m—1

’ Ly \P"~ 20 _ o
so that Qu,1= Q1,1 <”“m“> LZ 1 LA (12°2),
Lina
a,nd -Lj,;‘: Lm 1 Qm, m—1 Lm Lf;,"_l + Lm (Qm—-] m—2 Lm—])pn = 01
Lﬂl pn
SO that Qm. m-1= (T) Qm—-l M sessesaes (123)-

Expanding Z,, by the last column we have

Lm =T Lm-—-l + Lm -1 2 (_ 1)“ p"' Qm—l 8 + (_ l)m_ 10"("’_1) -Lm—l

Thus L, is divisible by L, and each expression (12°1), (12'2), (12'3)
can be given in an integral form.
The degree of @n,s is p™™ —p™ and that of L,, is

PN L e, (12°5).

§13. Dickson’s Theorem.

Dickson* proved the finiteness theorem for universal covariants and
gave a full system. The proof of this theorem is of course included in
E. Noether’s Theorem (v. § 43), but we require Dickson’s proof however
in order to obtain the full system. The theorem is stated as follows:

The fumctions Ly, Q. 1, -, Qu, -1 are independent and form a full
system of the invariants of T,

* Trans. Amer, Math. Soc. vol. 12, pp. 75-98 (1911).
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The theorem is proved by induction. We assume that it is true for
pu = m where m Z 2, and prove that it is true for p=m+ 1. Let I be
any homogeneous integral universal covariant of I™*1. The coefficients
of the various powers in ., in Z must be universal covariants of ™,
and hence by hypothesis are integral functions of Ly, ..., @, m—1- We
suppose then that

I=Li+apu by + ... + & I,

where each Z; is an integral function of L,,, ..., Qu, m-;. Then ;is an
aggregate of terms ,

=¢ L& QU .. Qi
Consider those terms in which ¢’ is a minimum @, the sub-set where &’
is & minimum b, and so on, so that finally we obtain the unique term

— a bm—1
t=c¢ L Qm 1" Qm, m—1°

Expanding by (12°1), ..., (12'5), we see that the terms of minimum
degree in @,, are included in

1 ",
Qp i (@ =ap™ + b,d).
=2

m=—-1, §—1

x5 t, where t,=c L

m—

Similarly the terms of the minimum degree in #,,_, are included in

" Q"”"l" (= a, p" + p"byd),

2 t, where t,=c L® D s

m—1 m-—2 =3
and so on, so that finally # contains a term

T=Ca Ty e XY (a;= @iy p™ + ™) ;d):

mml

and this term 7 will only occur once in ¢ and not in any other product
except 2. Now [ has the isolated term r and therefore also

a1 az am — l
am. ™ wherer =cax, _ &5 _, ...

Therefore r, is a term of a universal covariant of I'. Similarly

as Qm—1
1'2—(}.Z'm 2'Zm—3 - &

is a term of a universal covariant of T™! and cx,® is a term of a uni-
versal covariant of I'%, therefore cz,* is a term of £Q,* whence @ = ad.
By (12°5) the degree of @y, s 1s a multiple of p", and since a is a multiple
of p*, therefore the degree of ¢ is a multiple of p". This is therefore true
of ¢/, and since the degree of L, is prime to p therefore o’ is a multiple
of p"; it is also a multiple of g, for apply a transformation of determinant
p to I, then the @'s being absolutely invariant we have p* Il p*mod p,
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hence @' Il mod ¢; but @ is divisible by & and therefore by g, so that o’
is also divisible by d. Hence in every term # of 1,, @' is a multiple of d.
PFrom (12:1)—(124) we have

2
Q"‘l_ m— l+‘7";lnLgn_1Qm—1,1+ ves

and Qno=Qh ) +@L LY Quyst .. (s>1)

(the factor @, s being suppressed if s=m - 1).

In these series the exponents of @, differ by multiples of ¢. Let
by = pPs B,, where B, is prime to p. To obtain the pfth power of a sum
in a field having modulus p we have only to multiply every exponent
by pP. Hence

(Lpn)all ;L:Zp a(]‘z(H—d Lap"— Q

m

Q b ___Ldbl +B q?‘)BlLe

m, 1 m=1 mll

where ¢ = db1 —gpPr ... (13-2),
bs _ p”b. qpﬂ' q?pﬂl es pﬂ:
Qm,s—Qm—l,s—]+ Bs'xm Lm—l m—1, s—1 Qm 1, s R

where ¢,= b, p" — p"*Ps ...... (13'3),
where in the last series s > 1 and the factor @n_,, , is to be suppressed
if s=m—1. Hence ¢/c contains the terms

T Bld oz+qp181 Lc+ap" QPB‘ mﬁl Qp”ba
2

m=1,1 = m=-1,s—1

a+q1a" h, pﬂff Phbs
1,=B,z,, Ly, Q. la'—lQ—l,c'l;IQ

m~1, 8—~1
(hy=ap™ + db, + ¢*pP~),
where o > 1, and Q,,—,, , is to be suppressed if o =m—1, and where in
the final product s has the values 2, ..., 0-1,0+1, ..., m-1.

First let 8, <=, then ¢pPr<d. The product ¢ contains but one term
with the same set of exponents as 7';. For if we employ a term of (13-2)
after the second, the exponent of @, exceeds that in 77. If we employ
the second term in (13°2) we must use the first termsin (13°1) and (13°3)
and hence get 7} itself. If we employ the first term of (13'2) we must use
the first term of (13°1), and obtain ap™+db, as the exponent of L,,_, in
the product of the two, which is greater than e+ap™ which is impossible.
Suppose that 77 is a term of a product ¢’ distinct from ¢. If o’ > @, then
@ >a+d, since o' and @ are multiples of d. Hence the minimum ex-
ponent & of 2y, in ¢ would exceed the exponent of z, in T3. It follows

2-2
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that @’ = a, further by (11°5) and by the homogeneity of the universal
covariant,

m—1
Z OB =Y =0 (18:4).

Hence (b, — b,) p™ is a multiple of p*", so that b," 111 b, mod p" when a' =a.
Thus in b,' = pPr’' B, we have, since B, and By are both less than n,

Bl = Bi e, (18°5).

T, cannot therefore occur in terms of #' other than

1: -
ap™ At ’ qul ¢ pBl b’
L 1 <L + Bl L Qm 1,1 =g Qm,s

m— m-1 )'l m—1

If we employ the second term in the parenthesis we must take the
term of each @, free of #,,. Then 4, = b,, from the exponents of L,,;,
and b, = b,(s=2, ..., m—1), from the exponents of @,,—; ._,. But thisis
impossible, for ¢ +¢. If we employ the first term in the parenthesis in
(18'6) we obtain as the exponent of Z,,—, in the product of the first two
factors ap™+ db,' > ¢ + ap”, since b,’ Z b, when a’'=a. Hence our assump-
tion is false. We have now shown that 7’ occurs as an isolated term of
the invariant. But, the exponent of @, is not a multiple of d, and the
coefficient B, is not zero. Hence the case 8, <# is excluded and there-
fore 4, is a multiple of p™.

Of the numbers b., ..., b,_; not multiples of p” let b, be the one with
the smallest subscript. A term of ¢ with the same set of exponents as 7',
can be obtained only by taking the first term of (13°1), (13-2), (13°3) for
s < o, for otherwise the exponent of 2, is divisible by d. 1f we use the
second term of (18°3) for s = o, we must use the first term of (133) for
s> o and then obtain 7,. If we use the first term of (13'3) for s=o the
exponent of @,,; ,—, in the product is p"b,, which exceeds its exponent
¢,in T,. Next if T, occurs in ¢’ distinet from ¢, then o’ = @. From (18°5)
b, 1s a multiple of p™ Analogous to (13-2)

QU =L¥ + 2l K o (13°7).
Hence we take the first terms of (13'1) and (13°7). In the product of these
two, the exponent of L,,_, is ap™ + db,’ > h, if b, > b, + p™. It follows that
b'=b,. If ¢>2, b, is by hypothesis a multiple of p™ and sois b, by (13°4),
and we must take therefore the first term Q7 1”1 s—1°f Q”’ Since @n-1,1

does not occur in the expansion of @, for s> 2 but occurs in 77, with
the exponent p"b,, we conclude that &, =b,. In this manner we can

show that we must take the first term of Qf,::s (s<o) and that b, =1,
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(=2, ...,0—1). Then by (134)b, 11 b, mod p™ whence B, =fB,. If we

employ the second term in Qf’];’ »» We must use the first term in Qf’:'s (s>0)

and we obtain 7, if, and only if, b, =b,(s=0, ..., m - 1), as shown by
comparing the exponents of ., ; (s> o), but in this case ¢ =¢. If we
employ the first term in Q:’n""u, the total exponent of @,y ,—; 1n ¢ 18
»"b, which exceeds its exponent ¢, in 7', since b, > b, in view of our
definition of ¢

We have now shown that 7', occurs as an isolated term of the in-
variant. But the exponent of 2, is not a multiple of d since b, is not
a multiple of p”, and the coefficient B, is not zero in the field. Hence
our assumption concerning b, is false, so that by, ..., b, are all multiples
of p™. Put b,=p"c,, then

m-—

1
’__ _ a Cs
I'=I-cQ7.,, 51=11 Qoms1, 541

1s an invariant of ™' in which 7, lacks £. We can proceed in this
manner until we have an invariant of I'*! which has no terms free of
@41, 1t therefore has L,,, as a factor. Proceed as before and we infer
finally that any integral universal covariant of T'™*' is an integral
function of Ly, Quis,. (=1, ..., m).

As a basis of the induction Dickson* has proved that any integral
invariant with coeflicients in the G #'[p™] of the group I'* is an integral
function of @, and L, with coefficients in the G#'[p"].

We have still to show that these universal covariants are independent.
For if they are not, then there will be a relation

Lm+1A (-Lm+1! Qm+l. 1y *vy Qm+1. m) +B (Qmﬂ. 1y **y Qmﬂ, m) =0

Putting 2541 = 0 and substituting for the ¢’s in B we have
BWL, QY ., . Q0 . _)=0,

but L, and the @, , are independent by hypothesis and so B =0, so
that the relation (13°8) has the factor Ly.,. Removing this factor and
repeating the above process we prove every successive B =0 and the
covariants L1, @mss, 15 -+ » @mss, m independent.

As a basis of the induction proof used above we notice that there is
no relation A4 L, + CQ%, ;=0 between the universal covariants of I for
by putting #,=0 we have 0'=0 and finally 4 =0.

This concludes the proof of the important theorem.

It seems almost certain that a similar theorem would hold for the

* Trans, Amer, Math, Soc. vol, 12, p. 4 (1911).
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case of several cogredient variables «, y, 2, ... and that a full system of
universal covariants in such a case would contain determinants and
quotients of determinants in which only the following rows would appear :

T e D, Y e Ymo
nn pn n p'l
" L ah ¥y, ete.
pnl nit p)ﬂ pﬂl
a .l Yy e Y s

The proof of such a theorem for the perfectly general case by the above
method would be cumbersome in the extreme. W. C. Krathwohl* has
proved a theorem of this sort for the binary case where there were two
sets of variables. The full system which he gave is, with slight changes
of notation, as follows:

L,=|a? x|, Ly =y’ ¥,
T Xy Y Y
M=|x ]|, M =| x? xp My=| @ w |,
Y Y Y Y yr oy
Qm _ xfz mg2 s Qy — ?/{)2 yg2 ,
Xy Xy Y1 Yo
L, L,
ME+IL70-S_1+(~)AMP_3L}
2 v
= z VG L (I<sgp=-2).

§ 14. Formal Invariants of the Linear Form.

Although the theorem of the previous paragraph is strictly concerned
with universal covariants only, it at once furnishes us with a method for
obtaining a large number of formal invariants and covariants. If ay, ...,
be any set of quantities which is contragredient to ,, ..., #,, then so also

O,

is theset o, ..., o¥" contragredient ; and we at once obtain the following
pure invariants of the linear ground form a,a; + ... + a @,

L(a)m’ Q(a)m,,-, (8=], ,p—-l) ......... (14'1),
where L, is obtained from Z,, by substituting o for , and Quym,  is
obtained from @,, , by the same substitution. As in the algebraic case
we can form inner and outer products and each of these must be a formal
covariant. We shall presently exhibit a system of covariants of the formal
linear binary form modulo 3, but we shall first consider how Glennt

* Amer. Journ. of Maths. vol. 36, pp. 449-460 (1914).
+ Bulletin Amer. Math. Soc. vol. 21, p. 178 (1914-15).
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found this system. He was the first to use modular operators. Since
12 13 . .
al™, ..., «P" are cogredient with @, ..., @y,

pm a pnl 8 pnl a _ E“)
1 6w, o, + %2 o, Tt O &y,
is an invariant operator. We shall call it the MODULAR POLAR. Similarly

we have the MODULAR ARONHOLD OPERATOR

x

pnt 0 pnt O O
al” - e F
0 TN 1+ +al o,

Again, if we have two m-ary quantics whose coefﬁclents are g, .., a,and
by, ..., b, respectively, then we have two modular Aronhold operators

pnl_a_ pnli pnl 3 (a ,{)
ay 61)0+a1 b+ ot al ab _H
pnt 9 i pm O _ 00
L7 ‘aa b’f et Bf a%*A 2.

Glenn also defines MODULAR TRANSVECTANTS for the binary case. For the
general case if we have m functions ¢,, ¢,, ..., ¢, and if the degree of ¢;
is ¢;, then the rth transvectant with respect to s, ss, ..., Sn 1s obtained
by operating r times with the Cayley operator © on

$1 (@), $2(Y), -5 P (2),

t t. tm
dividing by ’ 1;17 i L_ir 3 t! -, and then substituting #?" for y;,
xf'™ for z;. We shall write the expression thus obtained as

(d’l) ¢2: ERE] 4’77: ;53...37,;'

By means of such modular operators Glenn gives the following system
for the formal covariants of the binary linear form for p=3. He does
not show, however, that it is a fundamental or a full system. We append
the symbolical representation

seey

S=om; + a2 =ay,
Ez(l)f= @y, + ay )’ = ags,
Fl(l)fz 0’y + 0.’ Ty = o',
Ly =z, — 2,2 = (),
Qo1 =28 + e’ + @t + o, = (aPa) [ (acPar),
(LZ: f‘)l‘ Nala,—a;a= (a.B a),

(@1, SO)° loy® + 0t ag? + 0y ay’ + af = (a° ) /(o ),
(@a 1, S0 Moy (00 — 0%) &)° — 0’2, @y + 05”2, 25 — 0y (! — 0%) @’

= [(azs)* (" @) = (o) (")) /(o).
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Proceeding in this manner we can easily find a great many formal
covariants, but so far we cannot say whether every covariant can be
expressed in such a symbolical form. We do know, however, that L,
Q1 -+ s Qm, m—1 form a full system of universal covariants of m variables,
so that interchanging a, for #, we have the finiteness of formal invariants
modulo p of the m-ary linear form
[T/ Bl ol * P/ P
We can write this basis as

L(a)m) Q(a)m,l: reey Q(a),m.m—l'

If the generalisation of Dickson’s Theorem for several cogredient
variables were known, then of course we should have a full system of formal
invariants of a system of linear forms. Utilising Krathwohl’s Theorem
we have the following full system of formal invariants of a pair of
binary linear forms

S=ay2,+ aza., g=blzl+b2w2.
Loy Ly, Qu, @y, M=| 0, a, |, Ml:!alp al | M,=| a a, |,
by b, by b, by by
M‘S-H_Lp_s—l 4 (= szvp—sLs
N,=—2 e MP() L (ass<p-2).

§ 15. The use of Symbolical Operators.

We noticed in §14 that the modular Aronhold operators were not
symbolical operators. The symbolical operators
0 4 a 0
r__ r 7 » - | Y
al 8a1+a“ a%-Jr o tal 2a,, (u Ia.;)

are also invariant operators if used with certain restrictions. A function
in the o’s, 8’s, ... has no meaning unless it i1s symmetrical with respect
to the o’s, B’s, ... and of the same degree in each. Thus the symbolic
operators can be used provided the expression remains symmetrical in
the o’s, B’s, ... and the total change of degree is the same for every
symbol a, B, .... Thus (af)? is an invariant of f=a,B,, p=3: whence

(¢12) (1 55) @821 - @8) (B') - (@a) ()
tii(aB)* + (o’a) (B°B).
Thus we get the new invariant (a*a) (8°8) since (¢8)* is an invariant.

Great care must be employed in using these operators to ensure that
the factor p does not arise through their use. This factor may be
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trivial or it may not. We shall show an example where it is not trivial.
For further use we shall give some symbolical formal invariants of the
binary quadratic p=2:
S=auw? + 4y 2,25+ @25 = a, By,
(B wa, (%) (BB) Il aas(o+a+ay),
(a®B)* (828) + (B%a)* (a2a) l (@ + a@y) (@2 + @yaty + Ay, + @ty as),
(ofa) (B'B)/(a®a) (B2B) ll @6 + @, + A* + Aoty + Ay Ay + Ay

That symbolical representation of covariants can be very complicated
is seen by the following example of a covariant of f:

(@l + a)* — ayay) 8% — ty (g + @) 2125 + (@2 + 4,2 — a,0,) 2,
9 9
0 2 o+ D () + (WY (o) Con) — o) ()] 225

It is comparatively easy to write down many symbolical formal
covariants, but it is not always easy to find what their non-symbolical
representations are. A good insight into the structure of such symbolical
covariants is obtained by considering a few examples. To lessen the
work entailed we can use the following method of abbreviation for the

binary case :

We write aloB'Bs as sle;
aa’B B — a%a’By B’ as 2lG-1; Eﬂ
0,’a)’Byys” + 20,%a’Byy," as slslo+23]0]s; : °1s

etc., that is, we simply write the indices of a;, 8;, v, ..., with strokes
between. The coefficients remain full size while the indices remain
their own size. The figures in the oblongs at the side show how many
o’s, B’s, etc. appear in each term. As an example of this notation we
shall show that it is not in general permissible to divide by the modulus,
even though the modulus appears only as a factor due to an operator. Let

F = + ay@, @5 + @7 = 0,3, and p = 3.
Then (“B)a =032 -2, a"lﬁl :82 + “22,312-
Now

[(5158) (5"138) (<138) + («15) (=12) (81 22) J copr
= 6 [a15313322 — 0-1531 324 — 0-140.2625 + alaa22 ]5 + ‘112%3,325 — ‘11 azdﬁl":
—a B+ afBEBM] ... (15°1)

=6[51(B-1)+4|(-0)+8]|5+2]0+1](~8)+0]|(-4+23)]; [E
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this last must be a formal invariant modulo 3. If it were permissible

to divide by 3 here, then would
6l@-1)+a](-0+8|s+2|o+1l(-6)+0](-4a+2); E_T_I

be an invariant. Call this .

Now (a®a) is 3]0 -1]0;
(aBis1lo-0]s; [1]s
(aB®Pisslo-211s+0]s;

=z2|0+1{3+0]6; EE
Hence (c®a) (af*=s]0+a|3+3](6-0)+2|(-3)+1(-0);
80 that (a’«) (ef)*— (88) (Ba?)*= L, say, will be an invariant and

L:el(—s+1)+5{o+dls+sl(a-|+2—o)

+2[(-8) +1](-6) +0|(-5+3); |[6]6].
We divide this by (aB)=110-0]1;

5l(—=8+1) +4[(-4+2+0)+8|(-5~-8+1) +2[(4—2-0) +1|(6+8—~1) +0|(4—2) E_[

]1le|(—a+1)+5|o +4|3 +3[(6—a+2-0)+2|(-3) +1](-8) +0|(-5+8)’

5((a—-2) 41(6-3~1) 8|(6+4~2) 2[(=543+1) 1|(-6-4+2)0]|(~5+3)

5l(-4+2+0)4[(-5-3+41) 8[(4—-3-0)  2|(+5+3-1) 1](4—2) ’

L
so that K+ =5 =dl(-a+9+3](-3+D+2|(4-2+1|(3-1); .

(eB)
Now (a*a) (B*B)=Glo-1(00|3-0|D; ]_T_]Z[
=3{B-D+1{(-3+1); .
So that _%o%gg%%leno]o;
=08+ 0,8,
=a,+a,.

Thus if K is an invariant so 18 @, + @,, but a,+a; is not invariant

ﬂ Therefore X is not an in-

variant; hence we may not divide by 3 in equation (15°1). This shows

9 . . . .
that the operator <a3 | a—a> operating on «? is an invariant operator only

under the transformation of matrix [1

in virtue of the factor 8 produced.

§16. Annihilators of Formal Invariants®.

In this paragraph we shall consider a method utilised by Glenn and
Dickson for finding modular invariants in special cases. The modular

* dmer, Journ. of Maths. vel, 37, p. 75 (1915).
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annihilator differs somewhat from the algebraic counterpart. The theory
will be best illustrated by a simple example. We wish to find formal
invariants of degree 4 of the binary quadratic form modulo 3. Let

=z + 0, 2,25 + (o205,

and let 2= T, + 1B, Xo= To.
Then =002+ OBy Ty + AT,
where @y = Wy,

a, = o, + 21y,
Gy = @y + tay + ta,.
. . 0 .
Let ¢ (@@, a,) be an invariant and let 55— be written ¢,,, then
(1
¢ (d()al aﬂ)
= ¢ (U1 @) + 2t oy + (Ta, + 12ay) by,

" é [4t2 ' 4)“12‘ + 4ta° (tal + tan) ¢al ay (tal + 1240)2 d’agﬁ]

13 [8t'as’ bag2 + 1282a, (ta, + P ay) buy2q, + 6tae (0 + 2@ ) gy g2

+ (tay + Pao) bas] + |1:1 [16t4ag oy

’

+ 828’ (tay + 12a,) Pagda, + 248 @’ (101 + 1a0)° Poyaay
+ 8tay (10, + £200) Pagags + ($01 + 1240)* Pagt] —oveiiiniiineen (16°1),
in which we need not go farther than the fourth derivatives since the
invariant is only of the fourth degree.
Now we can write equation (16°1) as

¢ (‘70@162) - ¢ (Mmaa,) =18, + 28,d + ... + '8¢
Equations (11°1) show that ¢ must be of the form
¢ (@)= A4,"a + A4 2ala,+ APala’+ 4,9 ala?
+AMapaa,+ AMat + AP0+ 4,9a2a + 4,%a,,
where the A’s are undetermined constants. Hence
So= 200 $a, + A1 bay;
85 = 200> Puyay + G BoPoy? + Fa’ Payd + 2a,* Pasaq
+ Bo® Puyag® + F 00  bag?,
o= a’ Payag? + taas Pag? + $a* Paydag
+ 20, @y PP + BB By g8 + F 0 g Pt
& ¢=1%a’ Pagag® + Tl Pugt-
‘We notice also that whenever the modulus 3 appears in the denominator,
it will also occur in the numerator. We are still at liberty to cancel out
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these 3’s as we have not yet introduced into our argument the fact that
there is a modulus. We have so far proceeded exactly as in the algebraic
case except for the fact that in the algebraic case the invariants are
isobaric and hence we would have to set several of the 4’s equal to zero.
In the formal case modulo 8, t Il 31l £ Il ', and hence we obtain formal
invariants if we put 8, + 8, + &; + &, = 0. This gives the following relations:
A~ As(“) + 4,90, Al(4) m A2(4)’
A9 A4,% o, AP+ 40+ 4,9-4910,
and since ¢ must be invariant under the substitution #, = ,, #,=— 7,
it is invariant if we interchange @, with @, and — @, with a;, so that
AOMmAL o, A4,
Hence ¢ (a) Il 4,9 (ala? + ayalta, — a ay — qa.’)
+ A (@ ay + a* + agas’).
Hence we have two linearly independent invariants of degree 4 of the
binary quadratic, mod 3,
I=ala’+ a,alay—ala, — a0, J = ala, +at + aya)’.

Glenn points out that 7+J i D? where D is the discriminant of £, so
that either 7 or J is reducible.

This method is somewhat cumbersome but it leads to all invariants.

By a different method Glenn found a full system of the binary cubic
mod 2 and the binary quadratic mod 3. His method is somewhat long
and will not be included here, but the procedure will be indicated. Asin
the algebraic theory, the coefficient of the highest power of #, is called
the leader and the leader must be a seminvariant. We can always
remove factors L so that a covariant can be taken generally as having
the highest power of #, equal to the order of the covariant. If we have
a fundamental system of seminvariants, then we try to find a fundamental
system of invariants. If there be two covariants of the same order with
the same leader, then their difference has the factor Z, and we can reduce
so that it is sufficient to consider only one covariant of a given order
with a given leader. We would refer the reader to the original papers
for further details*.

§17. Dickson’s Method for Formal Covariants.

Let fi (@1, ... ,@w), .. 1 Ji (@1, ... , &n) be forms of total degrees s, ... ,s;
in the independent variables #;, ... ,#,. Let g; be the m.0.F. of ¢ and
s; and let ¢; =¢/g;. Then for any non-zero element p, of the GF[p"],

pieti = (p?)% 1l 1,

* Dickson, Trans. Amer. Math. Soc. vol. 14, p. 299 (1913) and Glenn, ibid. vol. 20,

p. 154 (1919),
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and hence [fiCpary .y pam)]a l [fi (21, «ov, @m)]%.

Thus /% has a definite value at every point whose coordinates belong
to GF[p"]. We have seen in §4 that all such points are conjugate, that
is they are permuted by transformations of the group; hence the values
f% also will be permuted by transformations of the group. Now let

¢ (/1, ...,/ 1) be any function of /1, ... ;5 then ¢ will take different

values ¢, ¢., ..., ¢pp for the different points where there are P points
with coordinates from the G/ (p"). Any symmetric function of the 2
quantities ¢, ..., ¢p must be a formal covariant, since the effect of

any transformation is merely to permute the different points.

As an example we consider the binary quadratic modulo 2

F= o + a2, 2+ Qs

The only points with coordinates from the GUF'[2] are (1, 0), (0, 1),
(1, 1), for which f takes the values @, @, @ + @& + @.. Any symmetric
function of these three must be a formal invariant. We easily infer that
@1, A+ A2+ oty + Ay, + @y and doa. (@ + @y + a,) are formal in-
variants. Other examples are given by Dickson*.

We can also find certain covariants by an extension of this method.
Let 91, 92, --+, ¥m be a set cogredient with ;, s, ..., &n; then

¢: B Yo oo Yn

p P »
B Y o Unm

pm—z ‘pm—2
% o Um
|, e T

is an invariant whigh we can use as an auxilliary ground form. Now,
if /(a, ) be an m-ary ground form, then a simultaneous invariant of
/ (a, #) and ¢ obtained by Dickson’s method will be a formal covariant
of f(a, y)-

A modification of these methods can be used in simple cases. If p=2,
we see from §7 that every function which is invariant under

=7+ T
Doz (i+1)
and under z =7
Ty =7, (k+Jj, k+1)
Zy= Ty

* Trans. Amer. Math. Soc. vol. 15, pp. 499 ff. (1914).
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is a formal covariant. Consider the case p=m=2, n=1 of the
quadratic '
F=ax? + a2, + a0t

Under 7.,.f becomes f where

ao = ao:

ay =20, + &, Il ay,

Ay = Ay + Ay + Ay,
A function of the a’s which is invariant under 77, is called a SEMINVARIANT.
It is easy to see that

@y, Ay, ty (@ + ay+ ay)

are seminvariants. Any function of these which is symmetrical with
respect to a, and @, will be invariant under 7} also, and will therefore
be a formal invariant. Thus we have the following formal invariants

@y, oty (G + @y + ), B + Ay + ey + A0 + X1

§18. Symbolical Representation of Pseudo-isobaric Formal
Covariants.

If we consider the system of formal covariants of the binary linear
form modulo 3 given in §14, it seems at first sight as if every formal
covariant could be expressed as a rational function of symbolical inner
and outer products. This however is not the case. Let

t= @y’ + 022X + O T + a2y
Then K = @, + a, is known to be a formal invariant of / if p =2, but it

cannot be expressed as a rational function of symbolical inner and
outer products. Miss Hazlett however noticed that if we write /= a,8,v.,

then K* 3 (a*y) (B*y) + (aB) (By) (ya).

The remainder of this paragraph is an extension to the m-ary case of
what Miss Hazlett* did for the binary case.

Let o”" =a®. Then o\, ..., ¥ are simply a set of elements cogre-
dient with the set o, ..., a,,. Let C, a pseudo-isobaric formal covariant,
consist of terms C;. The weights of the different terms must be congruent
modulo ¢. Let the weight then of C; with respect to 2, be w, + ¢ Wy,
where w; is the weight of the term of least weight with respect to ;.
Suppose first that w, +0. Now C*" and therefore 307" are formal co-

variants. The weight of C%" with respect to ; is p" (w, + ¢Wy;). Now
Trans. Amer. Math. Soc. vol. 14, pp. 800-804 (1913).
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replace g W,; symbols of the sort o2", 87", ..., 87", 27", ..., 27" by the
corresponding symbols of the sort a(ll), B il), ey 8(11), w(zl), i) mi}z). Each
replacement lowers the weight of the term by ¢, so that the weight of
Of" with respect to z, is now
prwy+ gWi.

We do this for every term C”". We make a further replacement of W;
symbols in the terms where w, >W;;. The weight of such terms 05.’" is
now p"w,. If there still exists terms O’;:" for which w, <W, we con-
sider next the formal covariant 205”2". The weight of the term Of’" is
now p™w, if Wy, <w,, and is (p™w, + g Wy,) p™ if Wy, > w,. We proceed
as before, and if Wy; <p"w, for all W, then on making p™ Wy, replace-
ments of the types a®" by a{, u{”pn by « @, ..., 2"
that the weight of every term is p*w,. If Wy > p™w, for any Wy,
then we must go farther and consider 30%"", and so on until we have

by xﬁ), we find

Wi <p™w, for all W,;. Then we have that C is isobaric with respect,
to @, in the symbols a, a®, a®, ..., a®, B, B9, ..., 2. We proceed
similarly with respect to @, ..., @, and finally we have that EOf‘" is

completely isobaric in the corresponding symbols. We therefore have
the important result that ¢ C be a formal covariant then O™ for some
s @s congruent to an isobaric polynomial of the symbols a, a®), ..., a®, B,
BY, ..., 2%, ie. to a simultaneous congruent covariant of

f(a’ x),f(ap”’ x)) “.’f(a'p”', -l‘),f(ll, wp" ) ""f(“s mﬂm)

If wy =0, we first multiply C by some algebraic invariant 7 whose
weight is greater than zero and then the proof holds for ZC, so that C is
congruent to the quotient of two such simultaneous congruent covariants
of the ground forms (18°1).

Thus if it be true that every congruent covariant can be represented
symbolically it will also be true that every formal covariant can be
represented symbolically in terms of the secondary symbols a®, a®), ...,
2. As we have seen in § 10 however, this has been proved for the
binary case only.

§19. Classes.

We must now consider the theory of classes and characteristic in-
variants. Dickson found this the best method for dealing with residual
invariants. Now if the coefficients of the ground form f belong to GF [ p"]
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there will be a finite number of possible f’s. If two of these can be
transformed into each other by a transformation of the group, then they
are said to belong to the same crass. If they cannot be transformed
into each other by a transformation of the group, then they belong to
different classes. All the /’s can thus be separated into classes such that
any two f’s in one class are transformable while any two f’s of different
classes are not transformable. We shall use as an illustration the binary
quadratic .
S = ad® + bay + oy,
where @, 0, ¢ belong to the G #'[2]. The different possible types of f
are evidently

Ji =0, Si= &, ]
Ly, fe=svay, L (19°1)
Se =9, Jo= &+ 1,

fizay+y, fr=at+ay+ys)

while the possible substitutions of the group are

TI:E i]: Tz’[i 1] TB l]] ...... (19°2)
r[' n[l) 2w ;1]

We tabulate the results obtained by transforming every f with every 7'
in the following manner, where e.g. 7, /;=/1:

So | A S | S| A S | Jo | Jr

T fo Ji T2 I3 Ji J Jfo b

| £ N Ji Js Ja Js Js Ja

Ts |- fo Js Ja fi Jo Js J T

Ts| fo | s | K | A | o | o | o | S

Ts | Jo Ts Jo Js Ja N Je i

Lo\ o | S| fo | | Lo | A | A | S
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We therefore separate f,, ...,.f; into the following four classes:
C, containing f,,
C containing f1./5./s,
C, containing f../3./s,
C; containing f;. ‘
We can proceed in this manner in the general case even where we have

more than one ground form. For example, Dickson gives as typical
members of two m-ary linear forms the four classes

Ci; =z, da.
Ny &y, Cay

Cy; 0, m

Co; 0, 0.

Classes under a group may be further separated into sub-classes by a
sub-group of the group. Considering, then, these classes we see that we
may expect a residual invariant to take different values for different
classes. Indeed this gives us another definition of a residual invariant,
namely a residual invariant is a function of the coefficients of a ground
form such that it has the same value for two /’s belonging to the same
class, but may in certain cases take different values if the two f’s do
not belong to the same class.

§ 20. Characteristic Invariants*.

We now come to the important functions called CHARACTERISTIC
INVARIANTS. The characteristic invariant Z; of a class C; is such that it
takes the value 1 for every f belonging to C; but the value 0 for any
other /. Suppose that any particular residual covariant V takes the
values v,, ..., v, for the classes (i, ..., Cj_;, then obviously

V=wvly+o, L+ ... +5_3L4—y cv.ovon...(20°1).

The total number of possible invariants of this sort is manifestly p™*.
A set of invariants R, ..., B, are said to CHARACTERISE the classes
0, ..., G, if they form a criterion for determining to which class a par-
ticular form belongs. Thus if an invariant R, takes a different value
for each class, then it characterises the classes. Suppose however that
it takes a different value for all classes with the exception of C; and C;
for which it takes the same value; then it will not distinguish between
C; and C; and 1t does not therefore characterise the classes. If however

* Amer. Jour. of Maths. vol. 31, pp. 349-366 (1909).
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we have a second invariant R, which takes different values for the
classes C; and O}, then R, and R, together characterise the classes.

From definition it is obvious that the characteristic invariants
characterise the classes. We shall now consider a few of the properties
of the characteristic invariants.

THEOREM. Amny residual invariant can be expressed in one, and only
one, way as a homogeneous linear function of the characteristic invariants
with coefficients of the ficld.

Proor. If it were possible to express the invariant in two ways, then
we should have
V=vdy+od+ ... +vp_ L,
=ug o+ Iy + oo Fupy ey e (202),
whence 0= (vy—uo) I, + (v, —w) [ + ... + (g — wp—y) L4y -..(20°3).

Now for a class €, we have I;=1 and ;=0 (j=1), so that 0=v,~u,
or v,=u,. We get this result for every value of 7 and thus the fheorem
is proved. We also see from this theorem that the number of homo-
geneously linear independent residual invariants is equal to the number
of non-equivalent classes. We notice however the non-homogeneous

relation
T=lo+ L+ + Dy e, (20°4).

From the definition of characteristic invariants we obtain the following
relations :

=1, LL=0 (i%j) ccooont (20°5).
By means of these, any relation between the characteristic invariants
can be reduced to a linear one which can be made homogeneous by
means of (20°4). Thus any relation between the I’s can be repre-
sented as

whence every c; is zero. Thus (20'4) and (20°5) are the only relations
between the characteristic invariants. Dickson* has given two rather
artificial formulae for these characteristic invariants in the general
case. If a system of forms has coefficients ¢, ..., ¢, we have

8
L=3T{1—(c;— e i, (20°7),
=1
where the sum extends over all sets of coefficients ¢l¥, ..., ¢, of the

* Madison Colloquium Lectures, p. 18 and dmer. Journ. of Maths.vol 31, p.339(1909).
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various systems of the class C,. The second formula is obtained by
making use of Lagrange’s interpolation formula

L.: = (ME " II {,k) :—J .................. (20‘8).
...l )=1C; Cj
Both of these expressions give

Ly= T (1=68) oo, (20°9).
i=1

These results are not of much practical value, but they prove the
existence of the characteristic invariants.

§ 21. Syzygies*.

Let Ly, ..., L, be a full system of residual invariants, then every
characteristic invariant must be a function of Z;, ..., L,. Let
L,=¢,(Ly, ..., L,), then since 1,1, | 0 (i==7) then ¢,¢; Il 0 gives a rela-
tion between L,, ..., L, and is therefore a syzygy. Similarly every Z,
1s expressible as a linear homogeneous function of the characteristic
invariants so that every syzygy can be represented as a function G of
the characteristic invariants, which is equal to zero ; thus

G Loy ey Iyy) 0.
But we have already shown that the only relations between the [’s are
(20'4) and (20°5). Therefore G II 0 must be a result of combining
(20°4) and (20°5).
Now suppose K,, ..., K, is another fundamental system. Since

k-1 k-1
K\ 3 aylyand K, 1 2 a,l,, then
A=0 #=0

k-1 k~1
KK 1 3 agaydy |l Eocvav ............ (21°1),
A=0 v=
k-1
where Cyn = Cyrg = 20 U@ Ay eveennieiinnnn (21-2),
A=

if A,, be the cofactor of a,, in | a| divided by |a|.
Thus every product of the K’s can be represented as a linear homo-
geneous expression in the K’s themselves. If now
G (Ko, Kyy ooy K ) 10
is a syzygy between the Ks, then by means of (21°1) we can reduce
the syzygy to a linear relation between the K’s, or else both sides
vanish. Suppose then that this relation is expressed by

BoKo+BiK,+ .+ Pra Kia I B (B#0) ...(21°3).
* From Prof. Weitzenbick’s notes.
32
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-1
But K, II 3 aa, [y, and so we have
A=0

k~1k—1
2 2 Bva)\vl)\ “ B‘
v=0 A=0
Therefore
,Boa)\o*‘ﬁla,\ﬁ‘ coot Bra@y -1 |l B (>‘=0; 1, . k- ])
so that Bl B34, N B(Ay+ A+ + Asea,,),
A
and substituting in (21°3),
v=k-1
S (Ap+Au+e+ A YK N1 (21°4).
v=0

(21+4) and (21°1) we call ground syzygies. These correspond to (20°4)
and (20°5) in the case of characteristic invariants.

THEOREM. [f a residual invariant J takes the value J, for the class C;
(=0, ..., k—1), and if g of these values J; are different when 2<g<p,
then J satisfies a congruence of the gth degree, but satisfies no congruence
of lower degree.

Proor. From J I Joly+J L1+ ...+Jy 0y and (20°5) we have
JI,1J,1,or (J-J,)I,1 0. Give p the values 0, ..., £ -1, then since
one I, must be congruent to 1, one factor (/' —.J,) must be congruent
to 0, and therefore

=) (J=J) ... (J =) I 0.
Let J,,, ..., o be the ¢ different values of J, then obviously
=T ) =) .. (J=J, )10

is a congruence satisfied by J and is of degree ¢g. If J satisfied a con-
gruence of degree s <g, then the congruence could not have g different
roots J, , ..., Jpg and so there is no congruence of degree less than g.

§ 22. Residual Covariants.

Every formal covariant is a residual covariant. We can of course
reduce the non-symbolical coefficients of a formal covariant by Fermat’s
Theorem, so that the function remains a residual covariant but is no
longer a formal covariant. The residual covariant thus obtained turns
out in many cases to be zero. The most obvious method then of finding
residual covariants is first to find formal covariants by any method
suitable and then to reduce the non-symbolical coefficients by Fermat’s
Theorem.

In the case of residual invariants we can use the following theorem
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to find whether we have a full system or not. If the residual invariants
R, ..., By completely characterise the non-equivalent classes, then they
Jorm a full system of residual invariants. Let ¢, ..., ¢, be the coefficients
of the forms in the system S. For the resulting p*" sets of values of
the ¢’s let R, ..., R, take the distinct sets of values

Ry, Bagyy ooy Biy (6=0, ..., N—1).

There are thus V non-equivalent classes in the system S; and by hypo-
thesis the ¢th class is uniquely defined by the values Ry, ..., . If
an invariant @) takes the value @); for the class C,, then

QS QU= (= By} o (1= (B B

Hence any invariant can be expressed as a polynomial in the R, ..., 2,
with coefficients from the G# [ p*]. Thus the invariants £&,, ..., £; form
a full system.

The converse of this theorem is also true, for if &, ..., B, are a full

system every characteristic invariant must be a function of R, ..., R,.
Since the characteristic invariants characterise the classes, so also must
Ry, ..., R

In §15 and § 17 we found by different methods that a, and
A + @+ Qolls + oAy + @ @y Were formal invariants mod 2 of

Ao y° + Oy Ty Ty + A 5.

Therefore using Fermat’s Theorem we find that b, a+c+ab+bc+ca
are residual invariants of the modular form a2® + bay + cy*; moreover
they characterise the classes, for they take the following values for the
different classes :

1 a+c+ab+bc+ca
Cy 0 0
C, 1 0
C, 0 1
C; 1 1

Thus b and @+ ¢ + ab + be + ca form a full system of invariants. As will
be shown in a later paragraph, they also form a smallest full system.

From the theorem of the next paragraph we have a means of ob-
taining a full system of residual invariants if we know a full system of
formal invariants. Miss Sanderson’s Theorem has not, so far, been
extended to covariants, and so at present there is no definite method of
proving whether a given system of residual covariants is a full one or
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not. It seems likely however that a full system of residual covariants
can be obtained from a full system of formal covariants.
Glenn* has given the following full system of formal covariants of
J=ap2? + ay 2,2, + @y, where p=3:
A=al- a0,
I =y (@~ + @) (@0 + @ + ay) @y
B=a,(a*-a? (ao - ) (@ =)
T=(ay+a)(—a+a,+a,) (—a,—a, +a,)
L=a’z,—a,2,°
Q=2+ rtal + 2l + 28
= O =(ada,— &) & + (s - ay) (af + @) 212, + (@° = a,057) 27
Oy = (a2 + a2 — aya) @2 — ay (A + @) 2y @ + (2 + ) — Ao @s) F
Ci=(ai* + @ — ay @) 2,* +ay (@ + @) (2 @ + 2 257) + (@ + ) — o) 25°
Si= it -ay (‘1'18@'2 +o2d) + azxs’
SJo= a2 + ay 2P 2 + ay
=& =(ala— a®) 2y + (@ — @) (@) +@o @) (22 + 2y 27 + (a0 — o a”) 0y
{6 = (a02 a - als) 25— (ao - aa) (a12 + @y az) 2lw’ + (‘1'13 - aZZ) zf
b= a2’ + a2 2, + 4l xs?
b= ol —a? ('lea'zZ +& 'Z'ﬂs) + ot wst
0, = (aosal - aoals) 2+ (aoﬂzs —-a az) &%y + (a13a2 — a23) z’
&= (e — a’a’) o+ (“oxalz — Gty — o + 0yt A — @’
+ @ a’ — a2 a’ + apa,t) 2y @y + (0P — ayat) )t
‘We now suppose that @,, @,, a, are elements of GF[38]; this gives at once

¢2 ”/; ¢4 "fdy
Buéug&uo.

We shall however expect to find relations amongst the remaining
58,0, 0, L, Q, 0, C, O fi, fs, &, &, thus f5 11/, =& 1 G
Dicksont gives as a full system of residual covariants
S8, Gy O Sy, L, Q, and g = (o + as) (ar + apa, — 1).
Also T (@ + as) (@ — @ + a2 + apa,)
Il (@ + @) (& + @os — 1) + (@ + @) (@ + & + @ + 1)
Il g+ 2a + @ + as® + Az + a,a.° + 2a,
Il g+ (@ + @) (&, + @@, — 1)
Il 2¢.
So we see that every residual covariant in this case can be obtained from

* Trans. Amer. Math. Soc. vol. 20, p. 154 (1919). + Ibid vol, 14, p. 810 (1913).
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a formal covariant; the methods of proof that the above systems are full
systems are not sufficiently general to be included here.

§ 23. Miss Sanderson’s Theorem.

Miss Sanderson’s Theorem * can be stated as follows: 70 any residual
invariant i of a system of forms under a group T with coefficients Srom
the GF[p"], there corresponds a formal invariant I wnder T such thot,
For all sets of values in the field of the cogfficients of the system of forms,

L.
We require the Lemma— Leét ai, ... , a, (r > 1) be arbitrary variables and
Giy +r s Or given elements of the GF[p"], g,+ 0, then the determinant

N=|a vee Oy
o o
«
1 T (231)
plr=1n plr=1n
1 r e
1s divisible in the field by the determinant
D=|a e Ay
a” cal
........................................... (232)
a;,(r-z)n :l,(r— 2)n
[ o Gr
. N ,
and the quotient Q= D has the properties
Q0 a=g oar=g:l (283),
Q:‘O ifa, =6, ..., a,=0

where e, ... , e, are elements of the field not proportional to gy, ..., g
Werefer the reader to Miss Sanderson’s paper for a proof of this lemma.
We consider a system S of forms f;, ..., ./; in m variables with co-

efficients ay, ..., a,. We separate all such systems into classes C;. If 8"

is a particular system of forms £, ..., f; and if £ is a constant, then we

shall say that the system &fY, ..., &7/ is a MULTIPLE of S’ and shall
denote it by £S". Now let ¢; be a sub-set of C; such that if s is in ¢; then
no multiple of s is in ¢;, and such that every system § in C; is & multiple
of some system ine¢,. Letp be a primitive root of the G [p"], ie. if
p¥=1, then y must be an integral multiple of p"— 1. Let ¢ be the

* Trans. Amer. Math. Soc. vol, 14, p. 490 (1913).
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smallest exponent for which ' and p%is’ are equivalent, where s’ is any
system in ¢;. Then ¢; is a factor of p" -1 and
s, pis’, ..., phi~g (diei=p"~1) ...coonn. (23°4)

are all contained in C;. If 8" is a system in €, not in the set (23'4), then
p%8" will be in ;. For 8” may be transformed into s, s into ps’, ps’
into p%S"”. Moreover any system S in C; is equal to p* times a system
§" in ¢;, for we may write 8" = p*i*'s” (0 <l<e¢;). Since p?"~1-* 8" is
in O, p's" is in C;. But ¢; is the smallest exponent for which this is
possible, hence /=0, and we can write

di
Oz' = 2 csze':;
k=1

where = denotes an aggregate, and ¢;p™% is the set of systems obtained
by multiplying each system in ¢; by p*4. If ¢;=1, C, will contain all the
multiples of the systems in ¢,. In general there are ¢; different classes,

d
Co=3 cipt (1=0,1,2, ..., 0-1) ...... (23°5),
=1

formed on the sub-sets ¢;, ¢ip, ..., ¢;p% ! respectively. Thus a complete
list of the classes is given by Cy; (i =1, ..., 2; 1=0,1, ..., ¢;—1) and Cj,
which contains only the identically zero system.

We have seen in §20 that all invariants of the system S of forms can
be expressed in terms of characteristic invariants ¢y, which have the
value 1 for the class Cy and the value 0 for every other class. To prove our
theorem it will be sufficient to construct formal invariants Z,; which
reduce to 7y if the coefficients are in the field. For this purpose we find
it convenient to employ the invariants

= 2 [Qu gt (=1 B) o (28)

where the summation extends over the different sets of coefficients in ¢;.
When the variables are transformed, the coefficients @, ..., @, undergo
an induced transformation which is also linear with coefficients in
GF[p"]. J;is a formal invariant, since the numerators are invariant
apart from a factor which is the dith power of the determinant of the
induced transformation and the denominators are permuted among them-
selves apart from the same factor.
Consider any particular denominator

a, " L
p(r—s)n p(r—g)n .................. (23 7)
1 ar



MODULAR INVARIANTS 41

Since the gy, ..., g’ are the coefficients of a system of ¢;, this system is
also in Cy. After the transformation ;= =c;4; this becomes

(r—2)n (r—2)n
Seyy A7 e Zoy A7

201} G.f ves Ecrj Gj

where the G4, ..., G, are also the coefficients of a system in C, and hence
may be written pg,”, ..., p"g,”, where g,", ..., g," are the coefficients of
a system of ¢;. Hence (23°8) becomes

pet|c, %) A, . A, |4

.....................

plr—2m pr—2)n
AT AT
"

PR a—

Since p%%=1, this denominator apart from the factor |c¢,|% occurs
among the denominators in the sum (23'6), and the factor |cy|* is
cancelled by the same factor which is brought into the numerator by
the transformation: hence J, is a formal invariant.

We shall denote “the value which J; has for systems of the class Cj”
by J;(C). Then obviously by (23'3) and (236)

Ji(C) =0, Ji(Cu)=0 (k=1), Ji (Cy)=0.
Since J; (Cy) + 0, we may put J; (Cy) = p* and it is easy to show that
Ji(Cu)=p"** (=0, ..., 6,—1).
The theorem of § 20 implies that any invariant ¥ can be written

V= glcvjkLk, where V (Cp)=wp.
/]

We can therefore determine the I from
g eg—1
Ji =k pg(l+M‘)I;'k (9= 1’ ceey 64);
=0 ,
for the determinant of the coefficients can be shown to be non-singular.
For C), we have

Iog= 1 - E [Q(gn “':gf)]q‘
g1...9r
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We now have a theoretical if not a very practical method of obtaining
the formal invariants Z, which reduce to the residual invariants 4, of
the class ¢i. The theorem is therefore proved.

Miss Sanderson’s Theorem shows us that if we have a full system of
formal invariants we can easily obtain the corresponding full system of
residual invariants. For the binary linear form /= a,2; + a,2, mod 3 we
have the full system of formal invariants

aay— aja’, %+ ata? + a0t + a)f,
which reduce to 0 and «? + a,%a,? + o,® respectively when the o’s belong to
GF[3], so that a full system of residual invariants of the binary linear
form with coefficients from #'[8] is given by
0+ ala? + a2
A residual covariant does not take a definite value for each class and so
we cannot write a residual covariant C as
C=ILc,+ 1ic, ..., Lyycy.

Miss Sanderson’s Theorem therefore cannot be directly adapted for
covariants. It seems likely, however, that every residual covariant can
be obtained from a formal covariant; and in §22 we have seen that this
is true in one case.

§ 24. A method of finding Characteristic Invariants.

TrEOREM. Let K, ..., K;-, be k absolute rational integral residual
invariants suck that a,, is the value of K, for the class O\ where there
are k classes C,, ..., C,_y; these k invariants will form a fundamental
system if and only if |a,, |+ 0.

By equation (20°1),
k-1
K3 a,t, (#=0,..,k-1) ... (241).
A=1

If {@,,] I 0, then the K’s are not linearly independent and hence do
not form a fundamental system.

If |a,,| #0, then we can solve the equations (24'1) for the charac-
teristic invariants, and obtain

k-1
I)\ ! 20 Al\v-Kv (A’=Or L) ]C—l),

where 4,, is the cofactor of a,, in |e,,|, divided by |a,,|. It follows
that the K’s are linearly independent and form a fundamental system.
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From this theorem we have an easy method of finding the character-
istic invariants, provided that we know already some other fundamental
system. We continue with the example of the binary quadratic modulo 2.
Dickson * has shown that a fundamental system of residual invariants

for this case is given by
K,=1, K,=b, K,=abe, K;=(1-a)(1-0)(1-c¢).
We can tabulate the value of each K for each C as follows :

CO 0] 02 C.i

K, 1 1 1 1
K 0 1 0 1
K, 0 0 0 1
K, 1 0 0 0
lay,l=71 0 0 1]mi;

1100

1 0 0 0

1 110

the reciprocal determinant is

0 0 0 1

0110 '

11 01

0 01 0 [

And we have
Li=K;=(1+a)(1+b)(1+¢),
L=K,+ K,=b(1+ac),
L=K+K+K,=1+b+(1+a)(1+b)(1+c),
I,=K,=abc.

§25. Smallest Full Systems.

It is obvious that a fundamental system cannot be a smallest full
system on account of the relation (20'4). Indeed any invariant K can be

expressed as follows:
m—1 m=—1 m~1
K=3iL=% zj4+ia(1- s I,)
§=0 =1 j=1
=t + (1:1 - i(r) L+.. + (im_l— ’L'o) I,

* Madison Colloguium Lectures, p. 29.
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If we are considering the field GF[ p"] whose elements are
Uy = O; ul, u‘27 AR up"—l:

then any invariant can take at most p™ different values, that is, any
invariant can characterise at most p” classes. It follows that s invariants
can characterise at most p™ different classes. Suppose that there are
k classes; then the minimum number of invariants in a smallest full
system will be ¢ +1, where ¢ is the greatest power of p™ which is less than
k; ie p™ < k<pmt). We shall now show that there always exists
a full system with only #+ 1 elements; hence the number of elements
in a smallest full system is t + 1.

The method employed in finding the elements of a smallest full
system can best be illustrated by studying a simple example. Let us
suppose that there are 12 classes O, (1, ..., Cii, and that their charac-
teristic invariants [, 1,, ..., I, are known. We shall also suppose
that the field is GF[3]; the elements of this field are 0, 1, 2. Now
3*<11< 3%, hence ¢ =2, and there will be three elements D,, D,, D; in
the smallest full system. Let D,, D,, D, take the following values for
the different classes.

6 6 C ¢ O 6 ¢ 6 C €6 ¢ C
D, 0 1 2 0 1 2 0 1 2 0 1 2
D, 0 0 0 1 1 1 2 2 2 0 0 O
Dy 0 0 0 0 0 0 0 0 0 1 1 1

Then by (20°1)
D =L-1L+I—~I+1- I+ 1,-I,
D,=L+1,+I,-I,-I-1I, .... (25°1).
Dy=I+ I, + I,

Since the I’s are known we can find the D’s at once. It is easy to see
that the D’s form a smallest full system. At first sight it does not seem
that equations (25°1) are soluble for the I’s, but this is not difficult in
view of the relations (20°4) and (20'5) by considering expressions such
as D D\D,, .... Eg., D, D;=1,- 1, hence (D, Dy =L, + I, s0
that Dy Dy + (D D)2 = — I,.

As an example we consider the binary quadratic mod 2. There will
be two invariants in a smallest full system, since from § 19 there are four
classes. Give D, and D, the following values:

Cs (04 0, Cs
D, 0 1 0 1
D, 0 0 1 1
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then, from § 24,

D=1 +1;=b(1+ac)+abc =0,

D=L+ L;=1+b+(1+a)(1+b)(L +¢c)+abc=a+c+ab+ac+be,
giving the same full system as that obtained in §22. Further
D, D,=1;, DD+ D=1, D, D,+ D,=1,, 1+D,+D,+ D .D,=1,.
The method illustrated in the above examples is perfectly general.

§ 26. Residual Invariants of Linear Forms.
The following treatment of linear forms is due to Dickson*. Let
Li=ana, + Qp st oo + @ Ty
and put Ai=1}(1 —al) (26°1).

There are only two classes for a single form /,, C, containing the null
form and C, containing every other form. We have readily

1,=4,, I1:1—A1;
also A, is seen to form a smallest full system.

‘We must now consider the classes of a pair of forms /, and /,. We have
the class Gy if ,=4,= 0, C, has , = 0, I, = 0 and in this case we choose
as a type 0, #;. If [, and /, are linearly independent, then we have the
class C,and choose as our type #,, dz,, where d=1if m>2 and d = D,,,
the discriminant of the forms if m=2. We have also the classes Cy,
where /, is ¢/, and as type we take @, c¢z;. For the case where m=2
instead of one class C, we have ¢ classes Cyy), .... In general let £ be a
non-zero element of the GF'[p"] and write /y=1{,—%. Using ##" || &
we have

Aii =1I [1 el (air - ka,-r)q] I Ai + Ai (Aj - 1) k? +t§1lgfm &

and the coefficients of powers of £ must be invariants. In particular
write Vy=8u.

If m > 2, the values of the different invariants for the different classes
are as follows:

Class Types Invariants

ll lz A 1 A, A 1A 2 Vu
C, 0 0 1 1 1 0
G 0 z, 1 0 0 0
C, A d, 0 0 0 0
Csi0) 2 cTy 0 1—¢? 0 ¢

* Proc. Lond. Math. Soc. (2), vol. 7, p. 430 (1909).
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From this table we have readily
Li=4,4,, L=4,1-4,), ILpw=4.1-4,),

Lo=1=(~ Vi (40, L=1-L-L-3 L.

For the case m = 2 the value of L) is
1-(d— D)

A smallest full system is given by

Ay Aoy Vi, if m>2; Ay, Ay, Viey Dy, if m=2.
Smallest full systems can easily be obtained from the above charac-

teristic invariants. Dickson gives the following fundamental systems of
residual invariants of a pair of linear forms , and Z;:

I,Al, A27 A1A~2; [71215 (t:1721 y(]) m>27

-AI;AQ’ A]A:h ]fl‘zt’ Dl‘.!t (t:1,2, R ] (1) m:2~
We find the classes of a system of A binary linear forms as follows :
We say that %, . follows K., if r<porif r=p, s<o orif r=p,

poT .-

s=o, t<t, .... First, let not every D, vanish. Let D, be the first
which does not vanish, then

Difzo (7‘<7')a -[)rkzo (’l'<k<8), Drs*oy
and by an obvious transformation
lr:‘xl, lszc'z'z, cZDrs-

Since Dy, = Dy =0 (i <7), [; is free of #, and a,.

Since D, =0 (r<k<s), I is free of a5; therefore we can take as type
Acde .

rs °

=0, l.=a, b, = cpy, by = cas, b=~ dyo, + e,
(i<r<k<s<t<X; ¢*0) ... (26-2).
Secondly, if every ), vanish but not every /, then we can take as

type B} :
T =0, L=a, L=ma, (i<f<j<)\) ...(263).

Lastly we have the class C, containing only null forms...... (26°4).
By giving ¢, the ¢’s, the df’s, the ¢/s and the m/’s, all the values
possible, we can in the above manner find all the different classes.
Now the products
¥ Yo e 1o y=1,2, ...,q)
11| DY D} DyDY (Yk, o 8=0, 1

k=rdl, .., s=1; t=s+1, .\ ks
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are linearly independent in the field ; also the number of these invariants
is equal to the number of classes A5%. Similarly

A
1-A4y, o Vi (u=0,1, ..., ¢: notevery p=0)
J=r+1

are linearly independent and of the same number as the classes of type
By We associate the invariant 1 with the class C;. The products (265)
vanish for the classes of /2 and C,, also for those classes of A which
follow A ,,; (26°6) vanish for the classes C; and those of B whichfollow B;.

A fundamental system of residual invariants of A binary linear forms
15 given by

1, (26%6), (26%5).

By an extension of this method Dickson gives a fundamental system of
X > m linear forms, but for this we would refer the reader to the paper
itself. He also treats the case when A <m.

§27. Residual Invariants of Quadratic Forms.

Our first task in the finding of residual invariants of quadratic forms
is to separate the general quadratic form into classes. We sce at once
that this is a much more difficult task than it was in the binary case.
We shall find an essential difference between the cases p= 2 and p > 2.
We shall follow Dickson’s methods*.

First let p > 2, then we can write the general quadratic form as

m

In= = 1 by (by="by), - @71
2 J=

and we can choose b,, # 0 with perfect generality. Let the determinant
B =|by| be of modular rank 7, i.e. every minor of order exceeding r is
congruent to zero but not every minor of order r is congruent to zero.
Now let by, b; 11l 0y;, then under a transformation of matrix

1, —ho, - hs, _hm

1
1| e (272)

we have ¢,, = by; 2,2 + ¢, where ¢ is independent of z;. Proceeding in this
way we can ultimately replace ¢, by

OTE+ W+ ... + a2 (%0, ay*0, ..., @, +0) ...(27°3).

* Madison Colloguium Lectures, pp. 4-12 and Amer. Journ. of Maths. vol. 30,
p. 263 (1908).
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Now every o thus obtained can be written congruent to a power of
some primitive root p of p. After applying a transformation of deter-
minant unity which permutes the #1% ..., #,* we can assume thata,, ..., a,
are even powers of p while a,,,, ..., @, are odd powers of p. The trans-
formation

x; = p*7, (2 <m)
=8,  (JFLIFM) b, (27-4)
’Zl’"b = p"ki”b
is of determinant unity. If r<m, transformations of the above type
replace
@A+ ot @, by @i+ 2E+p (@ .+ 27 L (2T°5).
This in turn may be replaced by one of the forms
2+ .o+ +rad

P O<r<m) coveernnnn.. (276)
by transformations of the types
Tp= a“@ + auz—;
&y =— QuZ; + A, 7,
J i S O 27°7),

T = (a“2 + awE)-—l’z—.m
zn= T, (k=7 k+j, k+m)
where a,, and @y are chosen so that
@2+ a2 mp.
If r =m, then transformations of type (27°4) replace = a;2,* by

L2+ e+ @2 p (B + o+ Ty) F O, (217-8),

where o is not necessarily equal to p. If there be an even number of
terms with the factor p, transformations of the type (27°7) reduce (27'8) to

T2 ZEF o+ B+ B, (27°9)
or, if an odd number, to
D+ o+ B o+ P+ PTIBL e (27°10).

(27°10) can be transformed into (27'9) by the substitution
Zp-1= —plfnu
Ty = p—l"’z—m—l 3
& =T, (i+m, i+=m-1),
if BN P21+1,
or by Zp—1 = Am-1, m—lim-l - am,m—] Pﬂl—x@—m,
Xy = A, m—1 Typ-1 + avrf—l, m=1PZm
x;=T; (GEm, t+m—1),
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where @y, m-1 and &m m-1 are chosen such that
(agm—l, me1+ P77 €, me1) P
in the case where B 1 p™

Thus every quadratic form ¢,, mod p (p > 2) can be reduced to one of
the forms of (27°6) or (27°9) by transformations with determinant unity.
For the proof that none of these forms are equivalent we refer the reader
to Dickson, Madison Colloquium Lectures, page 8.

We cannot of course hope to classify every possible modular form of
the m-ary quadratic as we did in the example of §19. In the more com-
plicated cases we must be content to find a specimen of each class, and
we can find whether or not a system of invariants characterise the classes
by examining the values which they take for the specimens of each
class.

The invariants A and r do not distinguish between the two classes
of (27°6) and they therefore do not characterise the classes.

It is known* that a symmetrical determinant of rank 7 (r> 0) has a
non-vanishing principal minor of order r. By a suitable transformation
we can take this minor as

M=

by ..o by |40

bry oev by
It is possible to replace ¢,, by ¢ a function of r variables, and proceeding
as before with only » variables we can reduce ¢, to

2%+ ..+ &+ Mak
Now, let M be congruent to p* or p?+!, then the transformation

Ty = P_[-'Zr
~Tm:Pl«’/U_m (J#:’)J:‘:m)
z =&

. q-1 Q@) (g-1) |
gives us the two forms of (27°6) and M 2 =p'@V or p~ 2 in the
respective cases. But these are congruent to + 1 and —1 respectively.

q-1
M 2 distinguishes therefore between the two forms of (27°6) and we
shall call the non-equivalent classes C., and C, _, respectively.

Let us now consider the functions

q q
A ={M%+ M2 (1— M)+ ...
q
+ M2 (1= MY ... (1= ME_ )} (1— N9,

* Dickson, dnnals of Maths. Ser. 2, vol. 15, pp. 27-28 (1913-14).
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where 2, ..., M, denote the principal minors of order » taken in any
order, and the V’s are the principal minors of order greater than 7.

It is easily seen that 4, has the value + 1 for any form belonging to
the class C,,,; the value —1 for any form belonging to the class C,, _i;
and the value 0 for any form not contained in C, ; or C, _,: thus the
following invariants characterise the classes

Ah A‘.!, tery Am-hB
as is seen from the following table which illustrates the casen =1, p =38,
m=3:

Class Specimen 4, 4, B
G 0 0 0 0
Gy a? 1 00
C 2 -1 0°0
02,] I+ X 01 0
Co, 2%+ 2yt 0-1 0

51 a0+ g+ 0o 01

'Bt 20+ 2+ 2t 0 0 2

Thus since all the transformations employed have been those with deter-
minant unity, we have as a full system of invariants of the ternary
quadratic mod 3,
4,, 4., B.

We notice however that certain of the classes Cz.., are equivalent under
transformations whose determinant is not congruent to unity, so that a
full system of relative invariants is given by

Ay, Ayyoony A,y
and the non-equivalent classes are

0()7 C],la C],—U 02,1, 02,-‘1) AR an,ls (/le,—l'

The treatment of the quadratic where p =2 is essentially different
from the case where p> 2. For the separation of the classes we refer
the reader to Dickson’s papers. He shows that an m-ary quadratic is
either reducible to a quadratic in less than m variables, or else it is
reducible to

DXy + ByTy + oo F Ty @y + Ty
if m be odd, or to one of the two forms
ByDy + Byly + oo + Tpymy O
3o+ oo+ Ty T + 2, + B2,
provided that S+ 8+ 8+ ...+ 1,
if m be even.
For small values of m we can of course proceed as in §19.
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§28. Cubic and Higher Forms.

The quadratic case is rather difficult when compared with the linear;
and we may expect that the separation into classes of the cubic, quartic
and higher forms will present great difficulty. This can only be
accomplished without enormous labour in a few simple cases. Thus
while we may find by different methods a number of invariants, it is not
possible in general to say whether a system is full or not. The separa-
tion into classes is really a subject in itself and we would refer the
reader who is interested to a list of papers on the subject which Dickson
gives in the last chapter of his History of the Theory of Numbers.

§29. Relative unimportance of Residual Covariants.

Nothing has been said so far about finding full systems of residual
covariants. Indeed there is no method known which can be applied to
a general case. Neither of the two methods which can be used for
invariants hold when applied to covariants. We notice however that
classes of modular forns are cowmpletely characterised by rational
integral invariants and therefore an invariantive property of a system
of modular forms can be expressed by the vanishing of an invariant.
This is in contrast to the algebraic case where a property may be ex-
pressed by the vanishing of a covariant. The difficulty of finding a means
of forming a full system of residual covariants may be linked up with
the fact that residual invariants in themselves completely characterise
the classes of systems of forms.

§ 30. Non-formal Residual Covariants.

The subject of non-formal residual covariants has not yet been studied.
In this type the a’s are arbitrary but the a’s are elements of the G/ [p"].
It is seen therefore that these bear the same relation to the residual
covariants as the congruent covariants bear to the formal covariants.
This gives us a clue to the study of non-formal concomitants. They
are obtained from congruent concomitants by reducing the coefficients
of the forms by Fermat’s Theorem. If it be true that every congruent
covariant is congruent to an algebraic covariant, then it is also true that
every non-formal residual covariant can be obtained from an algebraic
covariant by reductions of the two types Il and 1. Also every non-
formal residual covariant is a residual covariant, just as every congruent
covariant is a formal covariant. It is seen then that these non-formal
covariants are not of any special interest, but are merely those
residual covariants which are obtained from congruent covariants
through reductions by Fermat’s Theorem.

42



PART II
§31. Rings and Fields.

A RING is a collection of elements «, b, ¢, ..., such that for every pair
of elements a, 0, a sum @ + b and a product @ x b are defined, where @ + b
and @ x b both belong to the ring, and such that the following laws are
satisfied :

L @) a+b+c)=(a+b)+¢,
(i) a+b=0+a,
(111) a+z=b,

has always a solution for # in the ring.
II. @ x be=ub x c.
111, a(b+c)=ab+ac.

We shall only consider COMMUTATIVE rings where the following law also
holds.

IV. ab=ba.

A ring together with the laws which the elements of the ring obey
is called an ALGEBRA. An algebra which has no divisors of zero is called
a DIVISION algebra. That is, in a division algebra if ab=0 and if a +0,
then must & =0.

A FIELD is a collection of the elements of a division algebra for which
every equation ax = b has one and only one solution for # provided that
a is not zero. We shall denote this unique solution by « = b/a.

A field is said to be FINITE if it contains only a finite number of
elements. Every division ring £ (i.e. a ring with no divisors of zero) is
contained in its QUOTIENT FIELD. The elements of this quotient field L
are determined by all the elements given by solutions of the following
type of equation:

ax=>b, where a + 0,
provided that the further conditions hold:
@A) alb=c/d if ad = be,
(ii) rafo=r  if r belongs to the division ring,
(i1i) (afb) x (¢/d) = ac/bd,

@iv) (afb) + (¢/d) = (ad + be)/bd.
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Every element of R is an element of L and we say that R is contained
in L. Every field which contains an element other than the zero element
contains the unit element e which is defined by ex =2 where # is any
element in the field. There can only be one unit element, for, if ¢, and
¢, were two solutions, then would

e,a=a, where a=+0; e,b=0, where b==0.
Hence ¢,ab = e,ab and (¢, —e,) ab = 0. It follows that ¢, = e,.

If every element of a ring L is also an element of the ring K, then K
is said to contain L. We shall use the sign < to denote ““is contained
in”; thus, L<K; K is called a SUPER-RING of L and L is called a
SUB-RING of A. If M be a super-ring of L and at the same time a sub-
ring of K, then M is said to be a MEDIAL-RING between K and L.
Replacing the word “ring” by the word “field” in the foregoing defini-
tions, SUPER-FIELD, SUB-FIELD and MEDIAL-FIELD are defined. If L be a
subring of K, we write LS K. If L<K, L+K, 1e. if there exists
elements of A which are not elements of Z, then £ is called an ACTUAL
sub-ring of K. The term “actual” is used in other cases with a similar
meaning; e.g. if L be an actual super-field of X, then L> K, L+ K.

Consider now a ring /2 containing the elements a,, a,, ..., and let
be an arbitrary quantity, then 4 = S a,, 2" is called an /2-POLYNOMIAL.

If the sum and product of two R-polynomials are defined in the usual
manner, then obviously these Z-polynomials form a ring. This ring is
called a POLYNOMIAL RING of % and is denoted by & [#]. By an obvious
extension, polynomial rings containing &-polynomials in several variables
can be obtained. Thus

R [z, )= R, [,], where B, = R[]

Since the field A contains the unit element ¢, it will also contain the
elements ¢+ ¢=2¢, 3¢, ..., + ne. There are two possibilities here; either
e, + 2, + 3¢, ..., + ne, ... are all different, in which case the field X is said
to have the CHARACTERISTIC zero; or else they are not all different. In
this case let me = ne, hence (m —n) e =0. Let p be the smallest value
of m —n for which this is true; then the elements 0, ¢, 2¢, ... (p—1)e
are all distinct and K is said to be of characteristic p. We show that
K is of characteristic 0 or p by writing K or K as the case may be.

The following theorems are easily obtained*:

TuEOREM 1. [t s necessary and sufficient for the vamishing of the
derivative of a rational function of x, either that the function is @ con-

* Steinitz, 4lgebraische Theorie der Korper, p. 46.
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stant provided that the characteristic of field of the coefficients be zero,
or that the function be also a rotional function of y= x?, provided that
the characteristic be p.

TuroreM 2. If f(2), a rational function of z, has an rfold linear
factor (r> 1), then the derivative f' (z) contains this factor at least
(r—1) times. If the field to which the coefficients of f(z) belong has the
characteristic p and if r is divisible by p, then [ (x) has the factor at
least r times, otherwise it has the factor exactly r— 1 times.

TuroreM 3. If f(z) be a polynomial in x*’ and the characteristic of
the field be p, then f(z) is the p’-th power of « polynomial ¢ in z and
vice versa where the coefficients of ¢ are in a super-field L of K@),

The proofs of these theorems are left to the reader.

§ 32. Expansions.

A super-field K of a field K can be obtained in the following manner.
Choose an arbitrary element o which does not belong to A7, and let the
elements of K, be B,, B., ..., B.. If o is to be a member of A, so must
a+ By, a+ By, 2048y, af, &), &*B,+ B, o/By, Bufa, ete. In this way
we obtain a number of new elements and each one can be expressed as
“a quotient of two polynomials in a with coefficients belonging to K.
The totality of such quotients, including the cases where one or both
of the polynomials do not contain a, form a super-field K, and we write
K,=K,(a). A super-field of K&, is also a super-field of X, and we write
K,=K,(y)=K,(a, y). Similarly K, (o, a,, ..., a,) is a super-field of &,.
Every super-field can be built up in this manner. As an example we
notice that the field of all complex numbers is obtained from the field of

all real numbers by the adjoining of a single element ¢ = ~/= 1. The above
process leads us to use the word EXPANSION as an alternative for super-
field. Some writers use the term EXTENSION as a further alternative.

An expansion is said to be SIMPLE if it is obtained by the adjoining
of a single element which does not belong to K. It is easily shown
that every element of the expansion X (i, ..., %) can be expressed
as the quotient of two elements belonging to the polynomial ring
K, ..., #n). Hence

K<K[z]<K ().

There are two principal kinds of expansions. Consider two K-

polynomials A =3a,2* and B=3b,2". We shall suppose that 4 =B
1 1

but that 4 % B; ie. for some values of ¢, a;+5, Since 4=25,
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A - B=0, where A — B is a polynomial in # which does not identically
vanish. If such a polynomial exist, we say that A (z) is an ALGEBRAIC
expansion of K, and z is said to be an algebraic element with respect
to K. Every algebraic element satisfies an equation with coefficients
from the field.
Let ¢ (2)=0 be the equation of lowest degree which is satisfied by
x, or
d(@)=ca"+aa" 7+ ... +¢, =0 (o #0, > 1).

Now ¢ (2) must be irreducible in the field, for otherwise divisors of
zero would exist. Any element of A (#) can now be expressed as a poly-
nomial in # of degree less than or equal to »—1. Indeed any element
¢ of K(x) is of the form f(2)/g (#) where f («) and g (2) are K-poly-
nomials and where (f, g) =e¢, the unit element. If ¢ be a multiple of
¢ (@), then =0 since ¢ (#)=0. If & be not a multiple of ¢ (), then,
since ¢ (#) may not be a multiple of ¢ (), it is always possible to find a
polynomial 4 (#) such that 4 (2) g (#) is equal to unity plus a multiple
of ¢ (#). Hence k() g (x)=1 since ¢ (x) =0 and

@) _S@ (D)o
=) " g a) )~ A

We can now reduce the degree of /' (#) £ (x) to = — 1 or lower by means
of the equation ¢ (2) =0. We shall say that « is of DEGREE n with respect
to the field A if ¢ (z) is of the nth degree in .

For any n elements of A () we have therefore n equations of the

type
A+ QT+ oo + G " T —a=0,

so that on eliminating the 2, 2% ..., 2", we have a vanishing deter-
minant and there is therefore always a linear relation with coefficients
from A between any n elements of A («). We have two such relations
for any n+ 1 elements and therefore a homogeneous linear relation is
obtained by eliminating the constant terms. Everyelement of an algebraic
expansion of K is algebraic with respect to K. This gives us another
definition of an algebraic expansion, namely, an expansion L of K is
said to be algebraic if every element of L is algebraic with respect to
K. In some cases however every ¢ () is reducible, e.g. if A is the field
of all complex numbers. In such a case no algebraic expansion is possible.

Suppose now, on the other hand, that there exist no two elements
A and B which are equal unless each @, is identical with the corre-
sponding ;. In such a case there will be no polynomial in & which is
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equal to zero; and K (2) is called a TRANSCENDENTAL expansion of K:
further, 2 is said to be a transcendental element with respect to A

We have therefore the following criterion: K (#) is an algebraic or a
transcendental expansion of K according as e, @, 2% ... are linearly
dependent or independent with coefficients from K. An infinite system
of elements is said to be linearly dependent or independent with
respect to a field K according as there exists or does not exist a finite
sub-system of these elements which is linearly dependent with respect
to K.

THEOREM 1*. In a transcendental expansion K (x) every element not
contwined in K is a transcendental element with respect to K.

If £ be an element of K (), then é=f(a)/g (x), where f (x) and g ()
belong to K [«], and without loss of generality we can put (f; g)=e,
the unit element. Now if ¢ were algebraic, then there would exist an
equation of the sort

Cot+Cé+ .46, =0 (¢, %0, ¢,%0),
where each ¢, belongs to K. Substituting for & and multiplying
throughout by ¢”, we would have

Cog" e fgT e fT=0,
or —cg =flag + .+ Y,
thus ¢ would be divisible by f, which is in contradiction to (f, g)=e.

Hence either ¢ is transcendental or else f and ¢ are constants, in which
case ¢ is contained in K. This proves the theorem.

TaeoreM 2t. If n elements x,, @,, ..., @, are adjoined to a field K,
so that the expansions K,(r)=K,, K, (x)=K,, ..., K, (2,) = K, are
obtained, and if every element 2. is transcendental with respect to K.,
(k=1, ..., n), then is every element x, transcendental with respect to the
field which is obtained by adjoining the n — 1 remaining clements to K.

We have seen that every element of an expansion is a quotient of
two elements of the corresponding polynomial ring. If now a3 be not
transcendental with respect to K, (21, ..., #%-1, Zr41, ---, &), then there
will exist a relation

Cot L+ Coh + e Oy =0 e (32:1),

where each ¢; is a quotient of two elements of
Ko [171, coey L1y L1 ooey .Z'"].

* Bteinitz, Algebraische Theorie der Korper, p. 23.
1 loc. cit., p. 26.
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Hence multiplying throughout by the n.c.M. of the denominators we
can consider each ¢; as being an element of K[y, ..., Ze—1, Tpyay - )
We can therefore rearrange the equation in powers of @, and thus
obtain

Cot+ Coavy + oo + O =0 v (32°2),

where each O, is from &, (a1, ..., #,-,] and therefore from K, (zy, ..., 2n-y)
so that , is not transcendental with respect to &, (, ..., #,-,). This
is contrary to hypothesis, and so 2, must be trauscendental with respect
to Ky (@1, ..., Bpoy, X1y -y Zn). 1f @, does not oceur in equation (32°2),
then we rearrange (32°1) in powers of the # with the greatest suffix
and we proceed in the same manner as above.

§ 33. Isomorphism.

If there be a (1—1) correspondence between the elements of two
rings £ and & and if the products and sums of /2 correspond to the
corresponding products and sums of &, then 2 and R are said to be
1SOMORPHIC. The correspondence is written 2= 7. If a, b and @, b be
corresponding pairs of elements from £ and £ respectively, then ¢ =@
b=0, (@ +b)=(@+0) and ab=ab. Isomorphic fields are defined in the
same way.

Let Z and L be two expansions of the field £7; further, let L and L
be isomorphie; if the elements of K in L correspoud to the elements of
K in L, then L and L are said to be EQUIVALENT. It is obvious that two
simple transcendental expansions of A” are equivalent, for /() =7/ (y),
hence K (z)= K (y) and the elements of K are self-corresponding.

§ 34. Finite Expansions.

Let L be an expansion of K, and suppose that there exist » elements
in L which are linearly independent with respect to K, but that there
do not exist # + 1 elements in L which are linearly independent, then
L is said to be of DEGREE # with respect to K. This is written as follows:

[L:K]=n; [K:K]=1
The expansion is said to be FINITE if » is finite.
The following theorems are proved by Steinitz* :

TueoreM 1. Every finite expansion L of o field K is an algebraic
expansion.

Let [L: K]=n and let o be an element of L: then, since any n+ 1

* Steinitz, 4lgebraische Theorie der Korper, p. 34.
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elements of L are linearly dependent, there must be a linear relation
between ¢, a, o, ..., a® or '

Aol + Wy o+ Apa® + ... + @yo™=0.
Thus every element of L is algebraic with respect to K; and L is an
algebraic expansion. The converse of this theorem is not true.

If there exist n elements of L which are linearly independent with
respect to K, then, since any =+ 1 elements are linearly related, every
element of L can be expressed as a linear function of these » with
coefficients from K. The n linearly independent elements are said to
form a BasIS of L. Any other n elements B, ..., B, can be written in
terms of the basis elements «a;, ..., a, thus:

n
ﬁizﬁlamak (i=1,2,...,n)

If the determinant | ;| does not vanish in the field, then B3, ..., B, also
are linearly independent and form a second basis of L. .

Tueorem 2. Let K< L<M. The necessary and syfficient conditions
that M be a finite expansion of K are that M be a finite expansion of L
and that L be a finite expansion of K.

The condition is necessary; for, let [AM: K]=v, then v+ 1 elements
of M are linearly dependent with respect to A, that is, with coefficients
from K and therefore from L. M is therefore a finite expansion of L.
Further v+ 1 elements of L are v+ 1 elements of M and are linearly
dependent with respect to K, so that L is a finite expansion of K.
The condition is also sufficient; for, let [L: K]=m and [M: L] =n,
where m and n are both finite, and let a;, ..., a, be a basis of L with
respect to A, and By, ..., B, be a basis of M with respect to L. The mn
elements a;8; are linearly independent with respect to K, for otherwise
would 3 cya;8; =0 where each ¢, belongs to K. In this case would

v
m

n .
3 v Br=0 where y,= = c¢ya;, but this is impossible unless each y be
k=1 =1

m
zero since the y’s are from L. If y, be zero, then 3 cya; =0, which is

=1
impossible unless every cy is zero. It is easy to see that every element
of M can be expressed as a homogeneous linear function of the a;8;’s,
50 that the a;8;'s form a finite basis of M. It follows that M is finite

and that mn=[M: K]=.

TueoreM 3. If K (z) is a simple algebraic expansion of K, then K (z)
is a finite expansion of K of degree d, where d is the degree of & with
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respect to K. If x is of degree d with respect to K, then every element
a of K () can be expressed as follows :

a=ay+ &+ ...+ 2% (a; from K).
Hence ¢, @, ..., #*™* form a basis of K (#) and hence [K (z): K]=d.

THEOREM 4. An expansion L of K is a finite expansion if, and only
if, L can be obtained from K by the adjunction of a finite number of
algebraic elements.

This is sufficient ; for if K=K, and L=K,(j, js, ---, J,), then put
K =K, (jl), K,=K, (j:?)y ey K= Ky (jk): vy L=K,=K,, (.7»)
Hence j is algebraic with respect to Kj—.: and K} is a simple algebraic
expansion of K, and is therefore a finite expansion of K., by
Theorem 3. Hence from Theorem 2, Z also is a finite expansion of

K,=K.

The condition is also necessary ; for let L be a finite expansion of
K=K, and let [L: K]=n. If j belongs to L but not to X, then is
K,<K,(j)<L If K,(j)<L, then let j, belong to L but not to
K,(j)=K,. Hence K;<K,(j,) <L and so on. From Theorem 2 the
degrees [K, : K,], [K,: K,], [K;: K,] are ascending integers less than
or equal to n and hence for a certain finite » we have the condition

’ —K-yv:-l/:A’O(jl),jﬂ’ IJV)

TuEOREM 5. Let S be @ collection of elements o whick are all algebraic
with respect to K ; then K (8) is also algebraic with respect to K.

If S is a finite collection, then, from Theorem 4, K (S) is a finite and
therefore an algebraic expansion of K. If § is infinite and B is an
element from L = K (§), then 8 is a rational function of a finite number
of elements ay, ..., o, from S with coefficients from K. Thus B is
contained in K (o, ..., o,) and is thus algebraic with respect to X.
Therefore L = K (8) is algebraic with respect to A from definition.

TurorEM 6. 'Let K < L <M and let L be algebraic with respect to K
and let M be glgebraic with respect to L ; then M is algebraic with respect
to K also.

For, if B8 is an element of M of degree » with respect to L, then g
satisfies an equation

g+ aB+...+a,pB=0 (a; from Z).
Now every o, is algebraic with respect to X, therefore from Theorem 4
L' =K (o, ... ;) 1s a finite expansion of X, and therefore B is algebraic
with respect to L. Thus L' (B) is a finite expansion of L’ and there-
fore of K. Therefore from Theorem 1, 8 is algebraic with respect to X
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§ 35. Transcendental and Algebraic Expansions

We shall now make a new definition of a transcendental expansion.
Every expansion which is not an algebraic expansion shall be called a
transcendental expansion. We find it necessary first to reconsider the
expression ““algebraic dependency.” Let L> K and let S be a system
of elements from L, and let @ be an element from L. Now S determines
an expansion K (8) of K for which K< K (S)< L. If now a is algebraic
with respect to K (8), then we say that @ is ALGEBRAICALLY DEPENDENT
upon S. Therefore a satisfies an equation with coefficients which are
rational functions of the elements of S with coefficients from A"
Further, a system 7" of elements ¢ from L is said to be algebraically
dependent upon a system S from L if every element ¢ of 7'is alge-
braically dependent on S. In this case 7'is entirely contained in & (S).

If a is algebraically dependent on S and

Ao+ dia+...+ 4,0 +a"=0

expresses this dependence, then the elements A; belong to A7 (S) and
are therefore rational functions of a certain finite number of elements
81, -+, 5,. That is, these coefficients A4, are already contained in

K (s, ...,s,)=K(N), where 8" is a finite sub-system of S. Hence we
have

TrEOREM 1. If a is alyebraically dependent on S, then there exists o
Simite sub-system S’ of S such that a is algebraically dependent on S'.

It is seen from this theorem that when we are considering the notion
of one system 7 being dependent upon another system S, we may
always consider 7" and S to be finite collections of elements.

THEOREM 2. If S;is algebraically dependent on S,, and S, 1is alge-
braically dependent on Sy, then Sy is algebraically dependent wpon S,.

Let K (8,))=K, and K (8,)=K,. From §34, Theorem 5, we know
that K, (S,) is algebraically dependent on A, and K, (iS;) is algebraically
dependent on K,. Now K, < K, (S,), hence the elements of &, (S;) are
algebraic with respect to K, (S;) and therefore with respect to K by
§ 84, Theorem 6. Thus the elements of A,(S;) are algebraic with
respect to A (8S)) and the elements of S; are algebraic with respect to
K (8). It follows that S is algebraically dependent on &S;.

If the system S is algebraically dependent on S,, and S, is alge-
braically dependent on ), then S, and S, are said to be EQUIVALENT

* Steinitz, 4lgebraische Theorie der Kirper, pp. 114-119.
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systems. [N.B. The reader must be careful to distinguish between
equivalent systems and equivalent expansions.] If S, and S, are equi-
valent systems, we write &, ~8;. From Theorem 2, it is seen that if
S, ~ S, and if Sy~ Sy, then S, ~S,.

A system § is said to be ALGEBRAICALLY REDUCIBLE with respect to
K either if § contains a single element which is algebraic with respect
to A, or if § is equivalent to an actual sub-system of itself. If 5 isnot
algebraically reducible it is said to be IRREDUCIBLE. A reducible system
S contains at least one element that is algebraically dependent upon
the others. This follows from Theorem 1.

TuroreM 3. Lvery sub-system S' of an irreducible system S is
irreducible.

THEOREM 4. Hvery reducible system S contains a finite sub-system S’
whick is reducible.

A transcendental expansion is said to be PURE if it is obtained by
the adjoining of an irreducible system. Let S=a,, ..., 2, be a finite
irreducible system, then L = K (2, ..., «,) is the field of all rational
functions of » unknowns. 1f S be infinite we can show that L is equi-
valent to K (@, @y, ...) where there are an infinity of #’s within the
bracket. Let 8=y, ..., 4, and S, =, ..., ¥, be two finite irreducible
systems with the same number of elements.

THEOREM 5. K (8,) 7s equivalent to K (S.). That is, K (8,)= K (S.)
and every element of A" is self-corresponding. We can obtain K (S,) in
the following manner :

Kl = K('/I"l)y K.= Krl (’7"2): crey I((Sl) =K,= -Kn—l ('Z‘“>’
and similarly

E = K(_”/l)y jf‘z = E (.7/2); teey K(Sl) = En :En—l (.7/n)-
It has been shown in § 33 that K (2,)=K (y,) and so by an n-fold
application, K (8,)= K (8;). This theorem may also be proved for the
case where S, and &S, are infinite systems.

Suppose now that the system § is irreducible with respect to K and
that @ is an additional element.

TueorEM 6. If S is irreducible but S+ a s reducible, then a is
algebraically dependent upon S.

From Theorem 4, S+ a contains a finite reducible sub-system 7" and
T must contain «. Let 7'= 7"+ a. Now 7" is a finite sub-system of
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S and is therefore irreducible. Suppose that 7" =, ..., z, and let
K=K (&), ..., Ky= Ky ()= K (T"), where every field X, is a pure
transcendental expansion of K,_,. Now, if K, (a) were transcendental
with respect to K, then, from § 32, Theorem 2, every element of 7'
would be transcendental with respect to the n remaining elements of
T; ie. T would be irreducible: which is a contradiction. Therefore
K, (@) is algebraic with respect to K, so that « is algebraic with respect
to K, and therefore with respect to 7" and finally with respect to S.

TueoreM 7. Ewery system S of elements from L > K, of which not
every element a is algebraic with respect to K, is equivalent to an irre-
ducible sub-system S’ < 8.

We may suppose that S contains no elements which are algebraic
with respect to K, for otherwise we can neglect these. Thus every a
of L is transcendental with respect to K. If S is a finite system the
theorem is obvious. We shall not require this theorem for the case
where S is an infinite system, so for the proof of this case we shall
refer the reader to Steinitz*.

If L=K(S) is a transcendental expansion of K, then from the
theorem just proved S~8’ where S’ is irreducible. Thus every element
of 8 is algebraic with respect to K (§'), and K (S) is an algebraic
expansion of K (8”). Hence follows

TueorEM 8. Ewery transcendental expansion is obtained by an
algebraic expansion following on o pure transcendental expansion.

Let L= K(S) where § 1s equivalent to the irreducible &’. If the
system S has n elements, then n is said to be the TRANSCENDENTAL
DEGREE of L with respect to K. If & contains no elements, i.e. if L is
algebraic with respect to K, then we say that the transcendental degree
of L with respect to K is zero. If the transcendental degree of L is n,
then there exists in L at least one irreducible system of n elements
but no irreducible system of more than » elements.

§ 36. Rational Basis Theorem of E. Noether.

Traeoremt. If {f} is a collection of rational functions f(ay, ..., 2,)
of n indeterminates @, ..., &, with coefficients from a field K, then from
{f} it is possible to choose @ finite number of functions fi, ..., fn such
that every f is a rational function of the f,, ..., fm With coefficients from
the field K.

* Loc. cit.
+ Gott. Nach. 1926, Heft 1, p. 28.



MODULAR INVARIANTS 63

Such a system of functions f}, ...,/ is called a RATIONAL BASIS.
The above theorem is trivial if {/} is a finite collection.

I. Now K (@, ..., @,) is a pure transcendental expansion of K and
is of transcendental degree n. The total of all the rational functions of
the /’s from {/} with coefficients from K also gives a transcendental
expansion of K, namely L= K ({f}). Obviously

K<L<K(ay, ..., ).

The transcendental degree 4 of L is then >1 and <. Now let
Y1,y -+, Y be an irreducible system S of L. If it can be shown that L
is a finite and therefore an algebraic expansion of H=K (y., ..., y1),
then the theorem is proved, for if L is a finite expansion of /, then
will L= H(L,, ..., L;) from Theorem 4, § 34 ; i.e. L is obtained by the
adjunction of a finite number of clements Z,, ..., L, from L to H.
Hence L= K (31, ..., Y, Lo, -, L). This last shows that every element
from L and therefore every f from {f} is a rational function of
Yry -y Yy L, ooy Ly with coefficients from K and since the 3, ..., 9,
are also elements of L, i.e. are also rational functions of the /’s from
{f}, therefore those f’s which are used for the #’s and the L’s form a
rational basis for {/}.

II. It remains therefore to prove that if K<L < K (a4, ..., 2,) and
if L be of transcendental degree 4, less than or equal to » with respect
to K with an irreducible system S=y,, ..., ¥, then L is a finite alge-
braic expansion of H =K (y,, ..., y). If A=n then H is of the same
transcendental degree as K (a1, ..., a,). SinceS1is an irreducible system of
L and therefore of K (2, ..., #,,) also, hence every element of K (2, ..., 2,),
and thus a; itself, is now algebraic with respect to H, since every system
Y1y +ovs Yn, &, 1s reducible with respect to A~ 1t follows that every element
of Land of K (#,, ..., z,) also is algebraically dependent on H. Hence
L and K (z,, ..., #,) are algebraic expansions of //. Now since

K (2, ooy @) =K Wy oy Yns &1y ooey ),
then K (2, ..., #,) 1s obtained from H by the adjunction of a finite
number of algebraic elements @, ..., #, and is therefore by Theorem 4,
§ 34, a finite algebraic expansion of H. But since every element of A is
also an element of Z, therefore H < L< K (@, ..., &n).

Hence L also is a finite algebraic expansion of 4. The Rational Basis
Theorem has now been proved for the case where % =n.

Suppose next that A<n. S is an irreducible system in L and in
K (2, ..., 2,). The suffixes of the #’s can so be chosen that

Y1y vooy Yny Tnsrs ---:mn:S+X
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is an irreducible system of K (i, ..., #,), for otherwise would the
0ty oor Yns Biyyyy oo i)
(2, ey @)
the ’s would not form an irreducible system of K (2, ..., ,). The
system X =1, ..., @, is therefore irreducible with respect to ¢, ..., 9,
and hence with respect to /. We may suppose then that X is an irre-
ducible systemn with respect to L also ; for otherwise 24, for example,
would be algebraically dependent upon L, i.e. on certain elements from
L, so that 234, would be algebraic with respect to v, ..., ¥, since every
element of L 1s algebraic with respect to 5. Hence .\ is algebraically
independent or irreducible with respect to S, /4 and L, and hence with
respect to every medial field M between H and L, where H< M < L.
It follows that

M= M (@hsay -y Z0), L=L (41, ---, @) and K=K (24,1, -, n)

are pure transcendental expansions of A, L and K respectively and S
is therefore irreducible with respect to K for if this were not the case
then we should have an algebraic equation with coefficients from A
relating the vy, ..., v5; and %, ..., ¥z, @y, ---, @, would not then be
an irreducible system of A" (a4, ..., 2,). We can now choose & in place
of K as the coefficient field. Since A <L <K (o, ..., @,), therefore
K<L<K (1, +.., xy). But the transcendental degree of L with respect
to K is b and that of K (@, ..., @) With respect to K is also 4 There-
fore L and K (@, ..., @) or L and K (v, ..., ) are of the same
transcendental degree 4 with respect to A. But the theorem has been
proved for the case where % =n, so that L is a finite algebraic expansion
of K with a rational basis 91, ..., yu, %1, ---, %, say. Thus

vanish for all 4,4, ..., 7,, so that

Jacobian

L=K (31, e, Yns F1y oey B) vrvevvnveennens (86°1).
We now consider the field
M=K (Y, eeey Yty F1y covy Bh) eeererrnennnns (36°2).

We may suppose here that 9, ..., 4u, %, ..., % are from L. g, ..., o
certainly are, also Z is a finite algebraic expansion of £ and therefore
h+k elements are adjoined to & which do not belong to &. They can
therefore be chosen belonging to L. Obviously

H<MSL ooioieieeeienn., (36°3).

Formulae (36°1) and (36°2) give M=1L, so that L is contained in M for
L <L, thus L<M. It follows from (86°3) that

MSL<M ...cocovvvvvannnnnn, (86°4).
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Now every element of M, which is not contained in 3/ already, is
transcendental with respect to M, since M is a pure transcendental
expansion of 3. Every element of L which does not belong to M is
transcendental with respect to M. Also every element of L is algebraic
with respect to yy, ..., ¥4 and therefore with respect to A7, so that
M- L=K %, s Yns 51, -» =), and L is a finite algebraic expansion
of 1. The theorem of E. Noether is therefore proved for all cases.

We have also the corollary*. If K<L <M<K (ay, ..., a) and M
is an algebraic expansion of L, then must M be o finite expansion of L,
for M has a finite rational basis by the last theorem. -

§37. The Fields K/

The operation of finding the pth root of an element of a A is unique,
for if there were two pth roots of o, let them be ¢ and . Hence a=a? ="
and therefore 0 = a? — 07 = (o — 6)?, whence a=0b. We can write the pth

1
root of o uniquely as a?. If « belongs to K it may or may not happen
L ;
that o also belongs to K. We shall consider a case where this does
not happen.

Let L= K (x) be a simple transcendental expansion of a field K with
characteristic p. L also must be of characteristic p. Let o be an ele-
ment of Z but not of K and of grade % [the grade of a is maximum
(degree of £; degree of ¢) where a =/ (u)/y (n)]. 1t can be shown that
a? is of grade Ap, which is certainly greater than unity. The equation
a? = p would then reduce to an equation in p with coefficients from A

so that w would be algebraic with respect to A. This is impossible,
1 1

hence the equation a = nP is impossible, that is, L does not contain W
A field K is said to be PERFECT? if every polynomial #'(2) with
coefficients in the field and with repeated linear factors is reducible in
the field. A field £ is said to be IMPERFECT if there exist in A irredu-
cible polynomials with repeated zeros in a super-field of A
Obviously every field of characteristic zero is perfect. For fields of
characteristic p we have the following theorem : L
There are perfect and imperfect K®’s. A KW is perfect if a® belongs
to K provided that a belongs to K. In every other case KW is impenfect.
Suppose then that K is a K™ and that y is from K, then from
Theorem 3, § 31,
! —y = (&= 8)",
* Gott. Nach., loc. cit. p. 31. + Steinitz, loc. cit. p. 50.
R 5
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where 8 is either from KX or from an algebraic expansion of X. We now
try to find irreducible factors ¢ of #*/— y. Suppose then that ¢ = (2 — 8)*"
=27 - 8" (0 < r<.f) be an irreducible factor. We can only have r—0
if 8 =2/ belongs to K. Otherwise > 0, in which case we have an
irreducible polynomial with p” repe?ted roots, and hence K@ is imperfect.

Suppose now that both y and y? belong to the K® and that f(2) is
a polynomial which has coefficients from the A® and which has repeated
zeros. Then is (f, /") of at least the first degree in #. If /" («) 0, then
the degree of (f, /) is less than the degree of f (), and f(«) is there-
fore reducible. If /' (z)=0, then
Sf(@)=a,+maf+ ... +a,a®  (vp=n)
11
But by supposition a,?, @,?, ... are all elements of K™, so that
1 1 1
S@=(aP+a?x+ ... +a,?2)?

and is therefore reducible: hence A in this case is a perfect field.

This leads us to consider the fields which we shall designate by K#*/.
We suppose that A has the characteristic p, then

a’+ P =(axb); a’b?=(ab) ; a® : 0" =(a : ).

We see therefore that the pth powers of the elements of K constitute
a sub-field of K which we shall denote by A?. (N.B. A® is not the
same as K?.) K and K7 are seen to be isomorphic, or K = K*. It is

obvious also that K? < K. .

If we now add to K every element a” as a new element whenever o
is an element of K but not of K?, we obtain a field L such that A= L?.
1

For this reason we write L=K?. We can repeat either of the above
processes as often as we wish and obtain the fields A?*/. Such fields as
K are expansions of K and we shall call them RADICAL fields of K.
In the same way we can obtain radical rings. If Z be a radical field of &,
then there must be a minimum exponent m such that the p™th power
of every element in L is an element of K. In this case m is called the
EXPONENT of Z. Similarly we define the exponent f of an element a of
L. It is obvious that /< m.

§ 38. Expansions of the First and Second Sorts.

We can divide algebraic expansions into two sorts*. Let g () be a
polynomial which is irreducible in the field K. We say that g (#) is of
the FIRST SORT if it has only simple zeros when considered in an expan-

* Steinitz, loc. cit. p. 62.
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sion of K. Now let the element y be algebraic with respect to K; then
y satisfies an equation of the type g (#)=0 which is irreducible in K.
If g () is of the first sort, then we say that y is an ALGEBRAIC ELEMENT
OF THE FIRST SORT with respect to K. An algebraic expansion L of K
is said to be of the first sort, if every clement of L is an algebraic
element of the first sort with respect to K.

We see that every algebraic element with respect to a perfect field is of
the first sort. Suppose then that K is a A and is imperfect. Suppose
also that ¢ (#) is a polynomial which is irreducible in K. We have seen

that there is associated with an element a from the radical fields K7,
1

K7, ... an exponent 7, such that o*’ lies in & but o’ does not. We
extend this notion to the case where a does not actually belong to a
radical field, as follows:

Either g (#) =G (2*'), />0, i.e. g (#) is a polynomial in 2?/ for some
maximum /; or/ =0 and ¢’ («) is not identically zero and has thus no
common factor with ¢ (z), so that ¢ (#) = 0 has only simple zeros and is
therefore of ‘1che first sort. If />0, g () is the p’~th power of a poly-

nomial in K and is not of the first sort. Let this polynomial be % ()
In this case / is called the exponent of % (z), for the p”-th power of & ()
belongs to A~ while the p/~*-th power does not.

An algebraic expansion of X is said to be of the SECOND SORT if it is
not of the first sort.

TarorEM. If L is an algebraic expansion of an imperfect field K,
then there exists a medial field Ly, i.e. K< Ly< L, such that Lyis of the
Jirst sort with respect to K and such that L is a radical field of L.
Further L, is the aggregate of all the elements of L which are of the first
sort with respect to K.

This theorem holds for infinite algebraic expansions, but it is only
proved here for the finite case. Let us call L, the system of all
elements in L which are of the first sort with respect to K; then
obviously K (L,)= K (L,), where L, is obtained by removing from L,
every element which is also contained in K. Further, by Abel’s Theorem *
on primitive elements, a single element y can be found such that
K (L,) = K (y), where y is algebraic and of the first sort with respect to
K. Let a be any element of K (y) and let

[K(a): K]=m;, [K(y): K(a)]=m,
[K(@):K]=m, [K(y):K(")]=n,.
* Bteinitz, loc. cit. p. 52.
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Hence m,m,=nyn, =K (y) : K] and since K (a?)is a sub-field of K (),

therefore
m, =Ny, Mg S Ng.

Now let 2™ + bya™ ™ 4 L.+ by,
be the irreducible function which vanishes when z =1, then will
s+ b A L b

vanish for #=y? and the coefficients 47, ..., b, belong to the field
K (o7); therefore
no=[K () K ()] = [K (") : K (@)] < ma,
Hence m,=m, and m, = n;, that is, « and o are of the same degree
with respect to A. Since this is so, [K (a); A (a?)]=0. But, by a
theorem of Steinitz*, [K (a); A (a?)]=p if the exponent of a is greater
than zero. It follows that the exponent is zero and so a is of the first
sort. Hence K (y) is an expansion of the first sort. 1t has been proved
that K (L,) contains elements of the first sort only, hence K (L,)= L,
and L, is a medial field between K and L or
K<L,<L

Now if 8 be an element of L of exponent f with respect to K, then
g (@)= G (a*") =G (y), say, and G (y) is certainly irreducible in K.
Thus G (y) has only simple roots, so that y = 27/ is of the first sort and
therefore an element of L, i.e. every element of L is a radical clement
of L, and therefore L is a radical field of L,. It is easy to show that
L, is uniquely determined by L.

If L is a finite algebraic expansion of an imperfect field X, then is
L=K(, ..., 8,). Suppose.f; is the exponent of 8, and that the maxi-

1
mum f; is f, then f is the exponent of the expansion of L and L < Ly»'.

§ 39. The Theorem on Divisor Chainsf.

Let 2 be a commutative ring with elements a, b, ¢, ..., with a unit
element and with no divisors of zero. We shall consider in particular
sub-rings & of A which have the following properties: (1) if @ and b
belong to &, so do @+ b and @ —b; (2) if @ belongs to & and r belongs to
R, then ra belongs to @& Thus a is the total of all elements such as
ra+r"b+r"c+ ... and is said to be an IDEAL in R. We write

a=(a, bc, ...).
An ideal a is said to divide the ideal b if every element b of b is con-
tained in & This is written b < a. This idea of division is explained

* Algebraische Theorie der Korper, p. 63.
+ Van der Waerden, Moderne Algebra, vol. 11, p. 25.
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more fully by van der Waerden*. With this definition of division the
1LC.F., written (&, b, ¢, ...), and L.c.M., written [&, b, ¢, ...], of the ideals
a,b,c, ..., are obtained. An ideal a=(a,, a,, ..., a,) 1s said to be FINITE
if n 1s finite. @, @, .., a, are said to form a BAsIS of the ideal a.

We shall only consider rings in which every ideal is finite, and we
shall now prove the following theorem. Lvery ideal of a ring has a finite
basis if, and only {f, there exists no chain of ideals &, < A, < ..., where &,,,
is an actual divisor of Q,, which chain does not come to an end after a
Jinite number of steps.

This is known as the theorem of divisor chains. The proof is as follows.
We shall first suppose that there exists no infinite chain of ideals

a1<az<a3<...,
where @, is an actual divisor of a;. Now if @ be an ideal without a
finite basis, then let @, be an element of a. Since a= (@), then a must
contain an element @, such that &, =(a,, «,) is an actual divisor of
a, = (a,). Since a#+ (w, a,), there must exist an a, such that

ag' = (ay, ay, @)
is an actual divisor of a,, and so on. We would thus obtain an infinite
chain of ideals in contradiction to hypothesis: we were therefore in error
in supposing that an ideal existed without a finite basis.

Suppose now that every ideal has a finite basis and let

A <TAo<Az<...

be an infinite chain of ideals such that each is an actual divisor of the
preceding. Let W= (ay, @, ...) be the m.c.r. of all the ideals ay, a,, ...
Now bisitself an ideal ; for if @ and b are two elements of B, then suppose
that @ belongs to @, and that & belongs to ;. If NV be the greater of ¢
and j, then both @ and 6 must lie in ay and hence @ +b, a—b and ra
belong to ay, where 7 is an element from £. It follows that a + b, a —b
and 7« lie in ¥, hence ¥ is an ideal and by hypothesis will have a finite
basis d,, ..., d,. Each d, must belong to some ideal a,,. Let the
greatest v; be M; then every element of the basis belongs to &z and
hence U belongs to ay; that is ¥ < az. But, since ¥ is the m.C.F. of all
the ideals a;, U > ap. It follows that ¥ =ay and in the same way it may
be shown that ¥ = ., where ¢ is a positive integer. Hence

A =8M1= AM+2= -+,

and the divisor chain is not an infinite one, since &4, is not an actual
divisor of ay. This concludes the proof of the theorem.

* Loc. cit. p. 29.
5-3
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§40. R-Modules.

Let 8 be a super-ring of &, where both § and R are commutative rings
with a unit element and with no divisors of zero. Consider systems 2/
of 8§ which contain £ and which have the following properties :

1. If a and B belong to M, so do a + B and a— .

2. If o belongs to M and » to R, then ra belongs to M; thus M is
the aggregate of elements #'a + 7’8+ ... of S, where a, B, ... are from S
and 7, 7", ... are from R. A system M of the above sort is called an
R-MODULE. o, 3, ... form the BasIS of M and if the basis has a finite
number of elements, then we say that M is a finite £-module.

If every element of a module A is also contained in a module &V, then
we say that M is divisible by V. If a module A has a basis g, ..., pn
and a module &V has a basis »,, ..., v,, then the module with the basis
PaViy ooes Bi¥js -or, ¥y 18 called the product of M and IV and is written
MN. Note that if M is divisible by &V, then M < N.

Let M be a finite /2-module whose basis is &, &, ..., & from S. Every
R-module 4 which contains B and 1is contained by M must also be
finite. The theorem of divisor chains holds for every R-module A provided
that it holds for ideals in RB*.

Without lack of generality we may suppose that &, ..., & are linearly
independent. We shall say that an element p of M is “of the length ¢”
if p=r & +r€o+ ... +1:& for some values of the 7, ..., r,, where r;+0
and ¢ is & minimum, and if no such equation holds for 2 <4. There are
therefore in M elements of the lengths 1, 2, ..., £, e.g. &, ..., &. Now
the system of all the elements in A4 of length < ¢ also form an Z-module,
namely A;, and every element in 4, is of the form

a1i$1+ a%&"‘ +aii$i .................. (40'1)

The system of elements ay,, all from R, form an ideal &; in 2. We
obtain in this manner a sequence of ideals

HSHL<AS e S 8o

If A contains no element of length j, then, since 4;=4;,=... =0, must
G=8=..=0.
Now let us suppose that B is an actual divisor of 4, then
R<A<B<M,

5o that every element
(AT S NN

* Van der Waerden, loc. cit. p. 87.
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of A4, is contained in B, since 4, < 4 <B; it is also contained in By
since it is at most of length A. Thus 4, < B, and similarly

RS O (402).

Since B is an actual divisor of A4, there must exist in 2 one or more
elements which are not contained in 4. Let 8 =0,& + ... + b,§; be such
an element whose length ¢ is a minimum. If §, were not an actual
divisor of a;, then every &; of 1i; would be contained in a; and

a=ay &+ o @b+ b

would be an element of A; and therefore of 4 also. Now if a is in
By, soisy=B—a=(b—a,:) &+ o + (biny— ai_1,:) &1, but y cannot be
contained in A4 for otherwise 8 would be contained in 4 which is con-
trary to supposition. Hence y is an element of B but not of 4 and is of
length <¢—1, which is also contrary to supposition ; hence b, is an actual
divisor of a@,. We have shown therefore that if 4 <23, then &, < b; for
some minimum value of 4.

Suppose now AW < 4®< A®<... i.e. that we have a chain of modules,
and suppose that the theorem of divisor chains holds for the ring R,
then associated with A® are the ideals &, <& < ... < &,

From equation (40°2) we have for every A=1, 2, ..., k that

LM <aP<a< ..,
But by hypothesis this last must be a finite chain. Let the last member

be a'™ and let the maximum 7, be 7, so that al® = al**V= .. for all

values of \. Butsince A< 40t g A exists for which a‘[°’ < a‘["“’ and
we have a contradiction; therefore the chain AW <A4® < 4®¥< ... is a
finite one. This theorem can be stated as follows: If 8 is a finite
super-ring of R and if every ideal in R is finite, then every R-module in
8 has a finite basis.

Suppose that R is an actual sub-ring of F) and let « be an element of
F but not of B. We can therefore form a super-ring of B containing all
the elements in F of the type 7 + r,a + ... + r,a™, where m is arbitrary.
Here we have the RB-modules

A4,= (ao) = (6) :R: Al = (ao’ a'l)v A,= (ao’ “‘l) az) (403) .
This chain is a divisor chain since 4; < 4;,;.
If for a certain m, A, = A,_;, then there must be an equation of the

following type O P 0™ =0 (404),

with integral coefficients 7y, ..., #n-1, and therefore every polynomial of
degree m+p in a is contained in A,—. In this case the super-ring
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has a finite module basis a’, @, ..., a”, When o satisfies such an
equation as (40°4) we say that it is entirely algebraic with respect to £,
or shortly that it is R-ENTIRE¥.

From definition an R-entire clement « defines a finite super-ring of
R which we shall denote by B,. We mean by this that R, is finite
with respect to B : we do not mean that 2, is itself a finite ring.

THEOREM 1. Kvery element of a finite super-ring 8 of It is entire.

Let § be a finite superring of 2 so that R <8 aud let « be an
arbitrary element of S. Let oy, ..., o, form a finite module basis of S.
Now since § is a ring, ao, belongs to S, so that

a0, =10 + 0o+ oo + 7y 0.
Hence, using & in the Kronecker sense, |7y — a8§'€| =0 or a"+...=0;
that is to say a 1s entire.

TuEOREM 2. If S is a super-ring of R and if every element of S is
R-entire and if a from T, a super-ring of S, be S-entire, then o also is
R-entire.

Since o is S-entire, then a™ + o a™" + ... + o, = 0, where every o, is
from § and is therefore Z-entire. Hence a is also entire with respect to
the super-ring S of R obtained by adjoining the elements oy, ..., oy to
R. Since every o; is H-entire, S is a finite super-ring of £2; also a is §-
entire, so that §, and 8, are finite super-rings of § and & respectively.
8, is therefore a finite superring of £, so that « is R-entire by the
last theorem. If every A-entire element of the quotient field P of B
is an element of R, then we say that R is ENTIRELY CLOSED.

TurorEM 3. If any element of B can be resolved into prime factors
uniquely, then R is entirely closed.
For, let a be an R-entire element of P, then since a is F-entire

a4 a™ L+, =0 (r, from ).

. t .
Since a belongs to P, then a = ot and s being elements of 2. Thus
4, *
" s+ L+ S =0,

and s divides #™ and therefore divides £. Let #=ss,, then a= sgﬁ =8,
an element of B itself. That is to say, R is entirely closed.

* Van der Waerden, Moderne Algebra, Teil 2, pp. 88-89, and Landau, Zahlen-
theorie, Bd. 3, p. 32.
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§41. A Theorem of Artin and of van der Waerden.

Suppose that R is a commutative ring with a unit element and
with no divisors of zero. We shall further suppose (1) that every ideal
in this ring is finite and that therefore the theorem of divisor chains
applies; (2) that R is entirely closed in its quotient ﬁeldll’ ; (8) that

if R has a characteristic p > 0, then is the radical-ring R? finite with
respect to 22, The third of these conditions is satisfied if R is a field
which is either finite or perfect, or still more generally if R is a ﬁnit?

algebraic or a transcendental expansion of a finite or perfect field. If R?
1

be finite with respect to 2, so also is 27 finite with respect to £. We
shall now prove van der Waerden’s Theorem *. Let P be a quotiont field of
R, 3 a finite expansion of I, S the ring of all R-entire elements of 3
then if conditions (1), (2) and (3) obtain for R, they also obtain for S.

‘We shall first prove that § is entirely closed. This means that if «
from = is entire with respect to S, then o is an element of & itself. Now
if o is entirely algebraic with respect to S, then o™ + 5, 6™ + ... + 5, =0
and the /s are [2-entire, and therefore o is Z-entire so that o belongs to
S. Hence S is entirely closed.

We must now show that § is a finite Z-module, for the theorem of
divisor chains would then hold for §. Also S \;vould be finite with

respect to I2 and so, following the isomorphism, §7 would be finite with
1 1 1

respect to RB?, and R? is finite with respect to R, so that §» would be

1

finite with respect to & and hence with respect to S, since R <8 < §?;
and hence condition (3) would be satisfied. We have therefore still to
show that § is a finite /2-module.

Now = is a finite and therefore an algebraic expansion of P. The
most general finite expansion of P is obtained by an expansion T' of the
first sort followed by finding a radical field of T. If ¢ be the exponent
of 3, ie. o= maximum of all the exponents of the elements of 3, then

T <3 <T7”. Now let C be the ring of all the R-entire elements in T,
1 1

then O'%* is the ring of all R-entire elements in T'7* since an element of
1
T' 7 is entire if, and only if, its p°th power is entire, i.e. if its p’th power
1
1sin C. Hence C<8< O,

* Gittinger Nachrichten, Heft 1, p. 26 (1926).
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Now T is a finite expansion of the first sort of the field P, thus
T= P (a). Every element y of T' and therefore every element of C can

be written as _
Y=pot+ pra+pal+ i +py a7

where each p, is from P. Since TI'is an expansion of the first sort, there-
fore the equation which defined a,

a®+p'a + .+ pM =0,
has n different roots. Let these be a;, a, ..., a,, so that we have »

equations i
yy:p0+p]a,,+p2a,,“+.,.+p,,_1av (V:]: 21 LR n)y

and solving these for p, we have

o - Il, a, o .., a7y et L a"“‘L], o .n
e T, ,a" n
I D T 2 TP i FRT) | LRIl PRI
(Il,u, ..................... s ‘1"‘111,2, )
r
m
= - say.
1) ’ y

Now D is the square of the product of the differences of the roots
and is therefore rational. Hence ) is an entire element of P, i.e. D
belongs to K. Also ,=Dp,, that is, it belongs to £; also it is entire
since it is an integral function of the ’s and is therefore also an element
of 2. Hence

1
=7 (ro+mo+ ... +7y 0"
Every element y belonging to € can be represented in this manner, so
Y ging P

. i . . . . o 1 a a"“)
that C'is a module contained in the finite module M= P (7)’ D)

Since M is a finite R-module, so is C, for # < C < M. Now Cis finite
1 1
with respect to £, and hence C?* is finite with respect to £¥; also by
1 1

isomorphism, /¥ is finite with respect to &, so that C?* must be finite
1

with respect to R; but € <8< C¥. Hence S is finite with respect to
R and is an R-module. This completes the proof of van der Waerden’s
Theorem.

§42. The Finiteness Criterion of E. Noether*.

Let P be a given field and let P [y, ..., «,] be the polynomial ring
of rational integral polynomials in the 2, ..., #, with coefficients
belonging to P. Further, let J be a division ring whose elements are

* Gittinger Nachrichten (1926), p. 31.
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P polynomials such that P<J< P [z, ..., x,). J is finite with respect
to P whenever there is contained in J a finite number of elements
I, I, ..., I, so that every element of J can be expressed as a rational
integral function, with coefficients from 2, of this basis Z,, ..., 1, in
which case
P<J<sP[L, .., L]<Plx, ..., z] .

We shall suppose also that if P has the characteristic p, then P’? is
finite with respect to P.

E. Noerner's TusoreM. A ring J of polynomials in z,, ..., &, with
coefficients from P, whick has no divisors of zero, is finite with respect to
P if; and only if, there exists within J a sub-ring I whick is finite with
respect to I, such that every element of J is [i-entire.

This condition is necessary; for if Jis finite with respect to 2, then we
can put R=.J. It is also shown to be sufficient as follows. Suppose that
K is the quotient field of 2 and that L is the quotient field of /. This
is possible since the rings have no divisors of zero. Hence

P<K<L<P(a),

where P () is the field of all rational functions of @ with coefficients
from . We now make use of the corollary given at the end of § 36.
It can be demonstrated readily that L is an algebraic expansion of X,
and hence L is a finite expansion of KA, where, if 72 be a P® with p=- 0,
we understand the most general expansion of the first or second sort.
Call S the ring of R-entire elements of L. Since therefore every element
of J is R-entire, J is a sub-ring of S, i.e. J <8< L.

Suppose now that 77 be entirely closed. Since /2 is finite with respect
to P, then R =P[g(2), ..., g-(x)], where g,(2) is a polynomial in
2, ..., a, with coefficients from /2 and belongs to /2 and is therefore an
element of J/. Since R is a finite ring the theorem of divisor chaing
applies and we can also use van der Waerden’s Theorem. £ is a finite
ring and A is its quotient field. £ is a finite expansion of A7; S is
the ring of f2-entire elements of L. The theorem of divisor chaius for
R-modules therefore holds for 5. J is an //-module and has therefore
a finite module basis /4, (2), ..., b (z), i.e. every f(z) of J can be
written as f(x) = A, & (%) + ... + A, b (), where the A’s belong to R.
The A’s are therefore polynomials in the ¢’s so that the ¢g’s and A’s
together form a finite module basis of K.

If R be not entirely closed, then we must first construct a sub-ring
T of R which is finite with respect to P and which is entirely closed and
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with respect to which £ is entire. We can proceed with the above proof,
using 7" in place of 2. We refer the reader to E. Noether’s paper for
this case.

§43. Application of E. Noether'’s Theorem to Modular Co-
variants*.

Consider the group T of all homogeneous linear substitutions with
coefficients from a Galois field, and let 4,, /1., ..., 4, be the different
substitutions where A, is the identity substitution. Now let the trans-

formation A, transform the set of variables ;r(ll), ., 2% to the set

) m
.T(lk), ey .sz,) Consider also the resolvent of Galois,

h
i & )
¢ (2, u) :.Alzl(:~11, .7-(1 ) —uga'; . —um;r(m)

=243 Uy o () 22U o wi
where a <2 and a+ o, + ... +a,,=h.

nh
Let 6= 3 u,a®. We can choose the /s so that 6, + 6, unless F = j,
1

50 that any symmetrical function of 6y, ..., 6, must be an absolute co-
variant. ¢ (z, #)is such a funetion and hence the coefficients U, ... 0y ()
are absolute covariants.

Let J be the ring of all absolute covariants and # the ring obtained
from all the elements Us g ... on () so that £ <J. If we can show that

every clement 7 of ./ is R-entire, then from the theorem of the previous
1

paragraph, J will have a finite basis provided as before that PP is
finite with respect to .

Now if we put =z =1, .r‘l” 4o+, @V then

m?

1 (1 : 1 ) -
Gt a4t e VX Uy (@) (Mt 2wt i = 0

for all u’s. Suppose then that u;=38; (using 8 in the Kronecker sense),
then .Z‘T + EJ:X ”r.,o.. 0aj0.. 0 (l) =0,

where a+a,=/ and a </. This last equation shows that a; is entirely
algebraic with respect to a portion of R and therefore with respect to

R itself. It follows that every polynomial in the 2’s and therefore every
element of J/ is entire with respect to R.

* Gattinger Nachrichten (1926), p. 33.
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1

If the field 2 is the G-F [p*], then P? is finite with respect to P and
all the conditions are satisfied and the theorem is proved for the case
of universal covariants. The extension is made to covariants involving
coefficients of the forms by regarding the cocfficients as additional
variables.

The proof also holds for relative covariants as well as for absolute,
since the factor appearing also belongs to I2. The proofs also hold if
the #’s and @’s are unknowns of the G/'[p"], so that we have proved
the finiteness of covariants for every case in the theory of modular co-
variants.



APPENDIX I

Dickson in his History of the Theory of Numbers, vol. 8, chap. 19,
has given a summary of all the papers printed before 1922 on the
subject of Modular Invariants. The present Appendix is intended to
bring Dickson’s work up to date.

Moore* gave a twofold generalisation of Fermat’s Theorem and
showed that the determinant

.Z‘l, .2'2, ey X
pﬂ pﬂ pﬂ
x] 5 x2 , veey m
: |
pr(m—1) pr(m—1)
| ™ L , a2

is congruent to the product of all distinct non-zero linear forms with
coefficients in the G#[p"]. This determinant is none other than the
universal covariant L, which we discussed in § 12.

Hazlettt discussed the relationship between the theory of modular
invariants and the theory of projective invariants. She developed the
use of symbolical notation and showed the important difference between
isobaric and pseudo-isobaric covariants. It is shown that all formal
binary invariants admit of symbolical representation. Methods of
finding the symbolical representation of an invariant are given. There
is an error in this paper which Miss Hazlett } later corrected.

Feldstein§ gave the full system of universal covariants of the m-ary
group of transformations whose coefficients are the positive integral
residues mod ¢, where ¢ =p*; viz.

. n-1 .
g R
where s=1,...,m=1; j=1, ..., k—1; and where the o and b,s range
over 0, 1, ..., p—1, but may not all be zero. The above results were
given in an earlier paper for the case where £=2 by Turner|.

* Bulletin of the American Mathematical Society, vol. 2, p. 189 (1895-96).

t Transactions of the American Mathematical Society, vol. 24, pp. 286-311 (1922).
1 Ibid. vol. 30, p. 855 (1930).

§ Ibid. vol. 25, pp. 223-238 (1923).

| Ibid. vol, 24, pp. 129-134 (1922).



APPENDIX I 79

Glenn* gave a full system of the formal covariants of two binary
quadratics in the GF[2]. A new method of obtaining covariants is
described which depends upon the ‘appropriate selection” of a primary
quantic. If the selection be not ‘“appropriate” then no covariants may
result, so that this method is of no great value until we have some
more definite method of selecting the primary quantic.

Gouwenst extended the results of a paper by Mrs Ballantine} from
2 to m variables. It is proved that every invariant of the group

of transformations with determinant congruent to unity modulo
A;

II=pl

'py...pY is a sum of invariants, each of which is expressible

as a product of %, = —ri} by an invariant of the group H; of transforma-

tions with determina,nzt congruent to unity mod p*. Conversely every
such product is an invariant.

Williams§ treated full systems of formal modular protomorphs of
binary forms. Elliottll gave the algebraic protomorphs of the trans-
formation z = Z + g, y =7, viz.

Si=ay, Si=aa—at, Si=ale;~3aa,a,+2a, ...

It is shown that the seminvariants S;(¢=1, 2, ..., {) and a? ~a(’)’—1a1
form a full system of protomorphs of the binary /-ic mod p, where p is

such a prime that G)HO modp (j=1,2, ...,1—1). The theorem is

also given for the case of several binary /-ics.

HazlettT extended the results of a paper by Williams**. Let
S (@1, ..., o) be any homogeneous polynomial in 7 variables of order /,
and let #, be any homogeneous polynomial in the values of f as
(@, ..., @n) range over the real points of the field. Let #) range over

all the conjugates of ¥, under transformations of the group I‘(lm), which

are incongruent in the field. If x=A(p"~1)/l be an integer, where A

is some fixed positive integer, then any symmetric function of the xth

powers of the #} is a formal invariant of / under the group I'(lm) with

* Bulletin of the American Mathematical Society, vol. 30, pp. 131-139 (1924).

1 Transactions of the American Mathematical Society, vol. 26, pp. 435-440 (1924).
I American Journal of Mathematics, vol. 45, pp. 286-293 (1923).

§ Transactions of the American Mathematical Society, vol. 28, pp. 183-197 (1926).
|| Algebra of Quantics, pp. 212-215.

M Journal de Mathématique, Ser. 9, vol. 9, pp. 327-332 (1930).
** Ibid. vol. 4, pp. 169-192 (1925).
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respect to the GF[p"]. This result is similar to Dickson’s* method
of obtaining formal covariants.

E. Noethert proved the finiteness of modular covariants by using
the Theory of Fields.

APPENDIX I1I

In this Appendix we give a list of papers on the subject of Modular
Invariants. The contents of these are summarised either in Appendix I
or by Dickson in his History of the Theory of Numbers. We shall use
the following abbreviations :

T . A.M.S. = Transactions of the Americaun Mathematical Society.
B.A.MS. = Bulletin of the American Mathematical Society.
AJ M. = American Jowrnal of Mathematics.

P.L.M.S. = Proceedings of the London Mathematical Society.
QJ.M. = Quarterly Journal of Mathematics.

A.M. = Annals of Mathematics.

JM. = Journal de Mathématique.

P.N.A.8.= Proceedings of the National Academy of Sciences.

Author Periodical Volume  Pages Year Ref. No.

Hurwitz Arcliv d. Math. 5 17-27 1903 1

u. Phys. (3)

Dickson T.A4.M.8. 8 205-232 1907 2
" P.LMS. (2) 5  301-324 1907 3
» AJM. 30 263-281 1908 4
" T.AMS. 10 123-158 1909 5
. Q.J.M. 40 349-366 1909 6
N P.LM.S.(2) 7 430-444 1909 7
” AJM. 31 103-146 1909 8
' AJM. 31 337-354 1909 9
) T.A.MS. 12 1-18 1911 10
’ Q.J. M. 42 158-161 1911 11
, T.AMS. 12 75-98 1911 12
. BAMS. 19 456-457  1912-13 13
" AJM. 33 175-192 1913 14
N B.AMS. 20 132-13¢ 191314 15
. TAMS. 14 299310 1913 16
. AN @) 15 114-117 1913-14 17
" Madison Colloquium Lectures 1914 18

* Transactions of the American Mathematical Society, vol. 15, pp. 497-503 (1914).
+ Gottinger Nachrichten (1926), pp. 28-85.
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Author Periodical Volume  Pages Year Retf. No.

Dresden B.A.M.S. 20 116-119 1913-14 19
Glenn B.AMS. 21 464--470 1914-15 20
Dickson Q.J. M. 45 373-384 1914 21
Krathwohl A4.J.M. 36 449-460 1914 22
Wiley T.4.M.8. 15 431-438 1914 23
Dickson T.A4.M.8. 15 497-503 1914 24
»y B.AM.S. 21 174~179 1914-15 25
' AJM. 37 107-116 1915 26
) P.N.A.S. 1 1-4 1915 27
» AJ M. 37 337-3b4 1915 28
» AJM. 37 3556-358 1915 29
McAtee A.J.M. 41 225-242 1919 30
Hazlett AJ M. 43 189-198 1921 31
. T.4.M.8. 21 247-254 1920 32
. T.AMS. 22 144-157 1921 33
Sanderson 7 4. M.S. 14 489-500 1913 34
Glenn - B.A.M.S. 21 167-173 1914-15 35
N AJM. 37 73-78 1915 36
) T.4.M.8. 17 545-556 1916 37
’ T.A.MS. 18 460-462 1917 38
N AM. (2) 19 201-206 1917-18 39
" T.A.M.S. 19 109-118 1918 40
’ T.4.M.8. 20 154-168 1919 41
N TAMS. 21 285-312 1920 42
” P.NAS. 5 107-110 1919 43
Williams T.4.M.8. 22 56-79 1921 44
Hazlett T.A4.M.8. 24 286-311 1922 45
Turner T.4.M.8. 24 129-134 1922 46
Feldstein T.4.M.8. 25 223-238 1923 47
Glenn B.A.M.S. 30 131-139 1924 48
Ballantine  A4.J. .M. 45 286-293 1923 49
Fouwens T.4.M.8. 26 435-440 1924 50
Williams T.4.M.8. 28 183-197 1926 51
" J.M. (9) 4 169-192 1925 52
Hazlett J.M. (9) 9 327-332 1930 53
Nocther Gottinger Nachrichten 28-35 1926 b4

Dickson History of the Theory of Numbers,
vol. 3, chap. 19 1923 55
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APPENDIX III

We tabulate here the papers in which the modular covariants of an
m-ary lic are considered for particular values of m and /. The numbers
of the papers refer to those of Appendix II, /=1 +2 denotes that the
simultaneous covariants of a linear and a quadratic form are treated.

m l Papers

2 1 35, 42

9 9 3, 3, 4, ’), 8, 9, 16, 18, 19, 24, 25, 30, 31,
33, 34, 36, 41, 42, 43, 45, H2

2 3 2, 18, 36, 37, 40, 43, 45, 52

2 4 17, 18, 37, 42, 52

2 5 37, 52

2 6 37

2 7 37

2 m 18, 44

2 1+1 48

2 1+2 9, 24

2 242 6, 8,9, 48, 51

2 1+24+3 | 21

3 2 2, 3, 4, 13, 18, 24, 25

3 3 26

3 4 28

3 1+1 29

3 242 6

4 2 3,25

5 2 3

6 2 3

m 2 3,4

m 242 7




INDEX

Actual sub-rings 53
algebra 52
—, division 52
algebraic concomitants 4, 12
— dependency 60
— elements 55
— —- of the first sort 67
— expansion 55, 60
algebraically reducible systems 61
annihilators 26
Aronhold operators 23
Artin 73

Basis 58
— of a module 70
— of an ideal 69
— of a system 6
—, rational 62, 63

Capelli 8
characteristic 53

— invariants 33, 42
classes 31, 37, 51
cogredient points 5
commutative ring 52
completely isobaric 10, 12
concoiitants, algebraic 4, 12

-—, congruent 4, 10, 12

—, formal 4, 15, 28, 30

—, modular 5

—, non-formal 5, 51

—, residual 5, 33, 36
congruence, identical 1

—, residual 1
congruent concomitants 4, 10, 12
conjugate points 5
covariants 4

—, universal 15

Degree of an element 55, 65
— — — expansion 57
—, transcendental 62
dependency 56, 60
Dickson 4, 15,17, 26, 28, 31, 34, 38, 47,78
Dickson’smethod forformal covariants 28
— theorem 17
division algebra 52
— ring 52
divigor chains 68, 70

Elliott 10, 79

entire element 72
entirely closed fields 72
equivalent rings 57

equivalent systems 60
expansion 54

—, algebraic 55, 60

—, degree of 57

—, exponent of 66, 68

—, finite 57

— of the first sort 67

— of the second sort 67

—, simple 54

—, transcendental 56, 60
exponent of an element 66

— — — expansion 66
extension 54

Feldstein 78
Fermat 1, 3
Fermat’s theorem 1, 2, 78
field 52
—, finite 52
—, Galois 1
—, medial 53
—, perfect 65
—, quotient 52
—, radical 66
—, sub- 53
—, super- 53
fields, isomorphic 57
—, kKr*' 65
finite expansion 57
— field 52
— ideal 69
finiteness of covariants 76-77
— criterion 74
—- property 6
first sort, algebraic elements of the 67
—, expansions of the 67
—, polynomials of the 66
formal concomitants 4, 15, 28, 30
— invariants 22, 26
full system 6
fundamental system 6

Galois field 1
~— imaginaries 2
generators of linear transformations 8
Glenn 22, 26, 38, 79
Gouwens 79
Grace 13
ground forms 4
— syzygies 36
group I'”, the order of 3
groups of transformations 3

Hazlett 4, 12, 29, 78



84

Ideal 68, 69
identically congruent 1
imperfect fields 65
invariant 4

—, formal 22

— of the group 4
irreducible system 61
isobarie 10
isomorphism 57

Krathwohl 22, 24

Linear dependency 56
— form 22, 45

Medial field 53
— ring 53
modular Aronhold operator 23
— cogredience 15
— concomitant 5
— polar 23
— transvectant 23
module basis 70
modules 70
Moore 3, 78

Noecther, E. 6, 62, 74, 76
Noether’s theorem 75
non-formal concomitants 5, 51

Order of a Galois field 2
— of the group I™ 3

Perfect fields 65
points, cogredient 5
polar, modular 23
polynomial ring 53
polynomials 53
— of the first sort 66
pseudo-isobarism 15, 30
pure transcendental expansions 61

Quadratic ground form 47
quotient field 52

R-entire elements 72
R-modules 70
R-polynomials 53

radical fields 66}

rational basis theorem 62
reducible systems 61

residual concomitants 5, 83, 36, 45,47, 51

— covariants 36, 51

INDEX

residual invariants 33
— invariants, cubic 51
— —, linear 45 °
~— —, quadratic 47

residually congruent 1

ring 52
—, commutative 52
—, polynomial 53

rings, equivalent 57
—, isomorphic 57

Sanderson 4, 7, 87, 39
Sanderson’s theorem 389 .
second sort, expansion of the 67
seminvariants 28, 30
simple expansion 54
smallest full system 43
Speiser 1, 8
Steinitz 53, 57, 60, 65
sub-field 53
,sub-ring 53
tsuper-field 53
super-ring 53
symbolical notation 6, 80
— operators 24
system, algebraically reducible 61
—, basis of 6
systems, equivalent 60
—, full 6
—, fundamental 6
—, smallest full 6, 43
sysygies 35

Transcendental degree 62

— element 56

— expansion 56, 60

— —, pure, 61 .
transformations, generators of 8

—, groups of 3

transvectants, modular 23
Turner 78

Universal covariants 4, 15

Van der Waerden 68, 72
van der Waerden’s theorem 73

‘Weight 10
Weitzenbock 13, 14, 35
Williams 79

Young 13

PRINTED BY WALTER LEWIS, M.A., AT THE UNIVERSITY PRESS, CAMBRIDGE

















